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Due to methodological reasons, the X-chromosome has not been featured in the major genome-wide association studies on
Alzheimer’s Disease (AD). To address this and better characterize the genetic landscape of AD, we performed an in-depth X-
Chromosome-Wide Association Study (XWAS) in 115,841 AD cases or AD proxy cases, including 52,214 clinically-diagnosed AD
cases, and 613,671 controls. We considered three approaches to account for the different X-chromosome inactivation (XCI) states in
females, i.e. random XCI, skewed XCI, and escape XCI. We did not detect any genome-wide significant signals (P ≤ 5 × 10−8) but
identified seven X-chromosome-wide significant loci (P ≤ 1.6 × 10−6). The index variants were common for the Xp22.32, FRMPD4,
DMD and Xq25 loci, and rare for the WNK3, PJA1, and DACH2 loci. Overall, this well-powered XWAS found no genetic risk factors for
AD on the non-pseudoautosomal region of the X-chromosome, but it identified suggestive signals warranting further
investigations.

Molecular Psychiatry (2025) 30:2335–2346; https://doi.org/10.1038/s41380-024-02838-5

INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative
disease and the most common cause of dementia among the
elderly. AD is caused by a combination of modifiable and non-
modifiable risk factors, including genetics. Currently, more than 80
genetic loci are associated with AD risk, highlighting several
underlying biological mechanisms for AD, including APP metabo-
lism, Tau-mediated toxicity, lipid metabolism or immune-related
processes [1–6]. Greater understanding of the genetics of AD is
essential to improve the characterization of the pathophysiologi-
cal processes involved in the disease. However, although the
genetic landscape of AD has been extensively studied on the
autosomes, little is known about the association of the
X-chromosome gene variants with AD risk. To date, large-scale
genome-wide association studies (GWAS) did not include the
X-chromosome due to the need of specific analyses to account for
its features.
While women carry two copies of the X-chromosome, men are

hemizygous, meaning they have one X and one Y chromosome.
To maintain balance around allelic dosage between the sexes,
X-chromosome inactivation (XCI) occurs in females. This process is
where one X chromosome is transcriptionally silenced during
female development [7, 8]. The choice of the silenced copy is most
often random (random XCI or r-XCI), but inactivation can also be
skewed toward a specific copy (skewed XCI or s-XCI). Such XCI
‘skewness’ can be subsequently acquired during life and has been
described to increase with age in adults [9–12]. Importantly, up to
one‐third of X‐chromosome genes ‘escape’ inactivation and are
expressed from both X‐chromosomes in female cells (escape XCI
or e-XCI). However, these tend to be expressed less from the
inactive X-chromosome. Notably, all the genes in the pseudoau-
tosomal region (PAR) 1 of the X-chromosome have Y-chromosome
homologues and escape inactivation. Additionally, some genes
variably escape inactivation: their expression from the inactive
X-chromosome differs between individuals or between cells and

tissues within an individual [7, 13]. The inactivation process and
the distinction between the PAR and non-PAR regions are thus
important considerations when performing an X-chromosome-
wide association study (XWAS). For all these reasons, the
X-chromosome needs to be treated separately from the auto-
somes in the quality control (QC), the imputation process and the
analysis [14, 15], and has usually been excluded from GWAS,
including for the large-scale AD ones. Yet, the X-chromosome
represents about 5% of the genome in terms of size and number
of genes (UCSC Genome Browser, https://genome.ucsc.edu/cgi-
bin/hgTracks?db=hg38&chromInfoPage=), and thus the study of
AD genetics remains incomplete.
Several X-chromosome genes have been associated with brain

imaging phenotypes [16, 17]. Furthermore, the X-chromosome
carries, disproportionately for the whole genome, more than 15%
of the known genes related to intellectual disabilities [18]. While
genes related to intellectual disabilities are considered to
modulate early neurodevelopmental stages well before neurode-
generative processes start, they might impact on the development
of cognitive abilities and, potentially, on the establishment of
cognitive reserve and brain resilience [19]. Additionally, XCI escape
or skewness might contribute to observed sex differences
reported in AD [7, 20]. Women have a higher risk of developing
dementia than men: in the 65–69 and 85–89 age groups, the
prevalence is 1.5% and 24.9% respectively for women, compared
with 1.1% and 16.3% for men [21, 22]. However, conclusions
regarding differences of incidence across men and women are
more mixed [23–27]. Indeed, the sex difference in prevalence can
be largely explained by a greater longevity of women, although
other factors may also be involved, such as a selective survival bias
in men, socio-environmental factors, or different AD-related
biological mechanisms between sexes [28]. For example, women
have a greater tau burden than men [29–36] and the impact of
APOE variants on the disease risk or on Tau concentration differs
between males and females [37, 38]. Additionally, in the general
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population, women have better memory performance [39–43];
some studies reported a faster decline of the global cognition in
women but results were mixed in the literature [39, 41, 43, 44].
However, among people with mild cognitive impairment,
cognitive decline is reportedly faster in women than in men
[43, 45, 46]. Additionally, women live longer with AD compared to
men [47, 48]. Consistent with this, in AD mouse models, having
two X-chromosomes was associated with reduced mortality [47].
This advantage conferred by a second X-chromosome could partly
relate to the KDM6A gene, which escapes inactivation. A variant of
the human version of this gene was associated with an increase in
this gene’s expression in the brain, and with less cognitive decline
in aging and preclinical AD [47]. Finally, in humans, expression/
level of other X-linked genes or proteins are reportedly associated
with cognitive change or tau pathology in a sex-specific manner
[49, 50].
To investigate the impact of X-chromosome genetic variants on

AD risk, we conducted an in-depth XWAS on 115,841 AD cases or
AD proxy cases and 613,671 controls from the IGAP (International
Genomics of Alzheimer’s Project), EADB (European Alzheimer &
Dementia Biobank), UK Biobank (UKB) and FinnGen studies
(Supplementary Table S1). We considered three approaches to
account for the different inactivation states in females, i.e. r-XCI,
s-XCI, and e-XCI [15]. In the r-XCI model, males were considered as
homozygous females, while they were coded hemizygous in the
e-XCI model. In the s-XCI model, a dominance effect was added to
the r-XCI model to account for non-random inactivation in
females.

METHOD
Samples
The XWAS is based on 115,841 AD or AD-proxy cases (58% females) and
613,671 controls (55% females) of European ancestry from 35 case-control
studies, 2 family studies (LOAD and FHS), and 2 biobanks (UKB and
FinnGen) (Supplementary Material and Supplementary Table S1). 55,868 of
the 115,841 cases were AD-proxy cases from the UKB. Females were
considered as AD-proxy cases if they indicated having at least one parent
with dementia [51]. For males, only the mother’s status was used to define
the proxy status (Supplementary Material). In a sensitivity analysis
including only the diagnosed AD cases, a total of 63,838 AD-cases (59%
females) and 806,335 controls (55% females) was considered (Supplemen-
tary Table S1).
Additionally, we also analyzed levels of the two cerebro-spinal fluid

biomarkers Aβ42 and phosphorylated tau (pTau) in 5522 and 5415 EADB-
core samples, respectively [52] (Supplementary Table S2). We also
considered 2661 samples with cognitive impairment from three
population-based longitudinal studies: AgeCode [53], SNAC-K [54] (both
included in EADB-core) and 3C [55] (included in EADI) (Supplementary
Table S3). Definitions of cognitive impairment are described in the
respective references. These individuals are at increased risk for dementia,
but their speed of progression is heterogeneous. For each sample, a Mini-
Mental State Examination (MMSE) score was obtained at baseline and in 1
to 5 follow-up sessions.
In addition to the classical autosomal QC, an X-chromosome specific QC

was performed prior to imputation for each study (Supplementary Material
and Supplementary Table S4). We did not analyze the PAR regions due to a
lack of variants on most genotyping chips. Related individuals were
excluded from UKB samples but were kept in FinnGen, where related
individuals’ exclusion accounts for about 40% of the sample size [56].
Thirty-four studies were imputed with the TOPMed [57] panel

(N= 112,690) and three studies were imputed with the 1000 Genomes
[58] panel (March 2012) (FHS, CHS and RS, N= 10,102, Supplementary
Table S4). The FinnGen was imputed with a Finnish reference panel and
the UKB with a combination of 1000 Genomes, HRC [59] and UK10K [60]
panels.

Main analyses
Association tests. Since random X-chromosome inactivation is the most
frequent case, we considered the r-XCI approach for our main analysis and
the s-XCI and e-XCI approaches for secondary analyses. The approaches are

described briefly below, while additional details are provided in
the Supplementary Material. An overview of the study design is
represented in Fig. 1. For all the models, the analyses were adjusted on
the principal components (PCs) and/or the genotyping center if necessary
(Supplementary Table S4). Dosage or genotype probabilities were used for
all studies but FinnGen, where best guessed genotypes were considered
(Supplementary Material).

r-XCI approach: The r-XCI approach is equivalent to an additive genetic
model, where males are considered as homozygous females. Males’ and
females’ genotypes were thus coded: genotype (G)= {0, 2} and G= {0, 1, 2}
respectively. The association test was performed for each study in men and
women jointly using an additive logistic regression model for case-control
studies, a generalized estimating equation (GEE) model for family studies
and a logistic mixed model for biobanks. To account for differences in
genotypic variance between sexes, we considered a robust estimate of the
variance (or Huber-White Sandwich estimator, accounting for hetero-
geneity of variance within a regression model, Supplementary Material) for
case-control studies [61, 62] and an adjustment on sex for family studies
and biobanks (Supplementary Table S5). The association test on proxy
status in UKB was performed separately for males and females, and a
correction factor of 2 was applied to the association statistics (effect sizes
and standard errors) of the female-only model (Supplementary Material)
[51, 63]. The results were then combined across studies in a fixed effect
meta-analysis with an inverse-variance weighted approach with METAL
[64].

e-XCI approach: Under the e-XCI hypothesis, males’ and females’
genotypes were coded G = {0, 1} and G = {0, 1, 2} respectively. Variant
effects were estimated separately in females and in males, except in
FinnGen, where the variant effects were estimated directly in both males
and females combined with an adjustment on sex (Supplementary
Table S5). Results were then combined across studies, males and females
with a fixed effect meta-analysis, inverse variance weighted approach
using METAL. We did not include AD-proxy in the e-XCI meta-analysis. As
males and females are related in family studies, only female results from
LOAD and FHS were included in the meta-analysis. The sex-stratified
models were adjusted on PCs and/or the genotyping center only, except
for two ADGC studies (PFIZER and TGEN2) and the CHARGE studies (FHS,
RS and CHS), where models were additionally adjusted on age
(Supplementary Table S6 and Supplementary Material).

s-XCI approach: For the s-XCI approach, males’ and females’ genotypes
were coded G = {0, 2} and G = {0, 1, 2} respectively. A general genotypic
model, including both an additive and a dominance variable, was
estimated in females from case-control studies to account for non-
random inactivation through the dominance variable, which equals 1 in
female heterozygotes, and 0 otherwise. The χ2 test of the dominance effect
was then added to the χ2 test of the additive effect estimated under r-XCI,
which results in a two degree of freedom (df) test of the association of the
variant with AD risk including its potential skewedness [62, 65] (Supple-
mentary Table S5). We did not include family studies and biobanks in the
s-XCI approach.
While analyses and QC of the results (see below) were performed with

the coding scheme described above, odds-ratio and confidence intervals
are provided on the real XCI scale, i.e. G = {0, 1} for males and G =
{0, 0.5, 1} for females under r-XCI and s-XCI, but G = {0, 1} for males and
G = {0, 1, 2} for females under e-XCI (Supplementary Table S5).

Sex-stratified analyses: As the XCI mechanism induces variability
across females, one might expect stronger effects in males compared to
females; we therefore performed an additional sex-stratified analysis and
compared the variant effect sizes in males and females. Proxy cases were
not included in this analysis. We combined the results across studies in
males and females separately with a fixed effect meta-analysis and inverse-
variance weighted approach using METAL [43, 64]. The variant effect sizes
of males and females were then compared with a Wald test (Supplemen-
tary Material).

Quality control of the results and definition of associated loci. A QC of the
results was carried out for all the studies. We filtered out variants with at
least one missing datum (on effect, standard error, or p-value), an absolute
effect size greater than 5, or an imputation quality less than 0.3. We also
filtered out the variants whose effective allele count (product of the

J. Le Borgne et al.

2336

Molecular Psychiatry (2025) 30:2335 – 2346



imputation quality and the expected minimum minor allele count between
the cases and the controls) was less than 5, and less than 10 for LOAD [66].
For datasets imputed with 1000 G and the UKB, we excluded variants for
which the conversion of position or alleles from GRCh37 to GRCh38 was
not possible or problematic, and variants with a difference in frequency
>0.5 compared with the reference panels TOPMed or 1000 G.
After the meta-analysis, we filtered the variants analyzed in less than

40% of AD cases (considering the effective sample size of females UKB-
proxy, which is the raw sample size divided by four [51]), variants with
heterogeneity p-value < 5 × 10−8 and variants where the difference
between the maximum frequency and the minimum frequency across
studies was higher than 0.4.
Inflation of the test statistics was checked in each study and in the meta-

analysis by computing a genomic inflation factor λ with the median
approach implemented in the GenABEL 1.8-0 R package [67], on common
variants in low LD (r2 < 0.2) (Supplementary Material). A signal was
considered genome-wide or X-chromosome-wide significant in either
approach if associated with AD risk with P ≤ 5 × 10−8 or P ≤ 1.6 × 10−6. This
X-chromosome wide threshold is based on R= 3.12%, the relative number
of tests performed on the X-chromosome (n= 888,213, r-XCI approach)
versus on the autosomes (n= 27,549,394) in the EADB-core study, the
largest dataset imputed with the TOPMed reference panel. As the genome-
wide threshold of 5 × 10−8 corresponds to the Bonferroni correction for
one million tests, we computed the corresponding threshold for the
X-chromosome as 0.05 / (R*1,000,000)= 1.6 × 10−6.

Sensitivity analyses. To account for potential results that we may have
missed because of false negatives related to proxy cases or biobanks, we
performed sensitivity analyses on the whole X-chromosome excluding
these samples for the r-XCI approach and excluding biobank samples for
the e-XCI approach (in the first place, proxy cases were not included in the
e-XCI analysis and samples from biobanks, including proxy cases, were not
included in the s-XCI analysis).
Additionally, several sensitivity analyses of the identified signals were

performed. As the robust r-XCI model can generate false positives in the
case of differences of frequency between males and females, we
performed a sensitivity analysis by adjusting it on sex rather than using
a robust variance for the r-XCI signals. The results were obtained by meta-
analyzing the sex-stratified models for all case-control studies and UKB,
and a sex-combined model adjusted on sex for FinnGen, with males coded
as homozygous females for all models (family studies were excluded)
(Supplementary Material, Supplementary Table S5). Sensitivity analyses
including an adjustment on age and the number of APOEε4 and APOEε2
alleles were also performed for all signals. Results were obtained from the
meta-analysis of adjusted sex-stratified models with the adequate coding
of males and excluding family studies. Finally, a sensitivity analysis was
performed using a stricter imputation quality filter (r2 > 0.8).

Biomarker and cognitive decline analyses
We tested the association of Aβ42 and pTau with the genotypes of each
common index variant in the EADB-core samples. The analyses were

Fig. 1 Study design of the AD-XWAS. a Main analyses and b sensitivity analyses. Box colors indicate the approach: purple, green, orange and
blue represent r-XCI, s-XCI, e-XCI and sex-stratified approaches, respectively. Boxes circled in red are the main r-XCI, s-XCI and e-XCI analyses.
*Fixed effect meta-analysis with an inverse-variance weighted approach as implemented in METAL [64]. **Sex-stratified models were adjusted
on 1) principal components (PCs) and/or the genotyping center; 2) PCs, center and age; 3) PCs, center, age and APOE.
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performed separately in 11 batches from 7 European countries (Supple-
mentary Table S2). Following the protocol used by Jansen et al. 2022 [52],
we applied a linear regression of the normalized log-transformed levels of
Aβ42 and pTau, adjusted for sex, age, assay type (if applicable), and ten
PCs, using SNPTEST ‘expected’ method [68]. Genotype probabilities were
used for all batches. Additionally to the filters on variants with missing
datum, variants with minor allele frequency or MAF < 1% were filtered out,
and for batches with less than 250 samples, variants with MAF < 5% were
also excluded. We applied this model to both the r-XCI and e-XCI
approaches, using a meta-analysis of sex-combined models with an r-XCI
coding of the genotypes and a meta-analysis of sex-stratified models with
an e-XCI coding of the genotypes, respectively.
Evaluating the link of AD-related X-chromosomal variants with cognitive

decline may inform about their contribution to the trajectory of the
disease. An association study of cognitive decline was thus performed for
the common index variants of the X-chromosome wide significant signals
using samples with cognitive impairment from longitudinal studies. Both
the r-XCI and e-XCI approaches were considered. The association tests
were performed in each study in males and females separately using a
linear mixed model. The models tested the association between the
normalized MMSE score [69] and the index variant dosage. To account for
the random effect between the individuals, we included a “Time” variable,
representing the time between the baseline and each follow-up session for
each individual. Females were coded G = {0,0.5,1} and G = {0,1,2} for the
r-XCI and e-XCI approaches, respectively, and males were coded G = {0,1}
in both approaches. Each model was adjusted for age at baseline and four
PCs. We also performed sex-combined quadratic models -including the
squared effect of “Time”- adjusted on sex, for both r-XCI and e-XCI
approaches, as sensitivity analyses [70]. The sex-combined quadratic
models were only computed in 3C and AgeCode (the quadratic models did
not converge in SNAC-K due to low sample size). We then meta-analyzed
together the results of the male-only and female-only linear models of all
three studies, and meta-analyzed together the linear and quadratic effects
of the sex-combined quadratic model for both approaches.
The significance threshold used for the Aβ42, pTau and cognitive decline

association test is 4.17 × 10−3, which corresponds to the Bonferroni
correction for the 4 independent common variants analyzed for 3
phenotypes.

Colocalization with brain tissue eQTL and pQTL
We performed a genetic colocalization of our hits with brain tissue pQTL
and eQTL (protein and expression Quantitative Trait Loci, respectively) for
all protein-coding genes within 500 kb of each common index variant,
using the “coloc.abf” function from the coloc R-package (version 5.2.3). The
brain tissue QTL data were extracted from Wingo et al. 2023 [71], GTex (11
brain tissues) and CommonMind; the last two were processed by the eQTL
Catalog (https://www.ebi.ac.uk/eqtl/Data_access/). From the GTex data, we
identified 20 genes within 500 kb of the common index variants. We
performed the colocalization analyses using the results of the r-XCI or e-XCI
analysis where each AD association signal was identified (either the meta-
analyses including AD-proxy cases, the diagnosed AD cases meta-analysis
or the meta-analysis excluding biobanks). A colocalization between a brain
tissue eQTL or pQTL of a gene and an AD-association signal was
considered significant when PP4 > 0.75 (posterior probability that both
traits are associated and share a single causal variant) [2].

Differential expression and methylation analyses
To evaluate the biological significance of the genes in the identified loci,
we examined differential expression and methylation data in studies
comparing AD vs control brains and assessing amyloid plaque burden. We
considered 19 genes located at +/- 500 kb of the index variants.
To explore differential expression of our associated loci, we analyzed

postmortem brain pathology expression data from individuals of European
ancestry using RNA-seq data obtained from temporal lobe and pre-frontal
cortex (GEO: GSE44772, GSE33000, GSE118553). Logistic regressions were
performed inmales and females separately and were adjusted on age at death
(age at last visit for clinical AD diagnosis), postmortem interval, RNA integrity,
APOE ε4 status, and first 3 genomic principal components. A significance
threshold of 1.32 × 10−3 was considered, corresponding to a Bonferroni
correction for 19 genes analyzed in two subgroups, that being 38 tests.
Differential methylation of associated loci was assessed by using the

DNA Methylation in Aging and Methylation in AD (MIAMI-AD) database
(miami-ad.org) [72] which collates results from epigenome-wide associa-
tion studies in aging and AD. Studies in the database meet two main

criteria: 1) having more than 100 total subjects and 2) conducting a
genome-wide study of more than 100k CpGs. Details of individual studies
can be found on the MIAMI-AD website. Here we queried genes within the
associated loci for association with AD neuropathology or dementia, in
males and females separately, but also in the combined sample. A
significance threshold of 4.39 × 10−4 was considered, corresponding to a
Bonferroni correction for 19 genes analyzed for 2 phenotypes in
3 subgroups, hence a total 114 tests.

X-linked intellectual disability (XLID) enrichment analysis
We also tested the enrichment of AD association signals in XLID genes in
each approach. We first performed gene-based analyses for each approach
(Supplementary Material) and then compared the enrichment of AD
association signals in the 156 XLID genes included in the gene-based
analysis (out of 164 XLID genes [18]) with the rest of the X-chromosome
genes, using MAGMA v1.08 [73].

RESULTS
XWAS overview
A total of 666,264, 442,001 and 438,420 variants - including
288,320, 276,902 and 263,169 common variants (MAF ≥ 1%) - were
analyzed in the r-XCI, e-XCI and s-XCI approaches, respectively. We
observed a minor deviation from expected p-values in the r-XCI
and e-XCI models (median genomic inflation factor λ= 1.074 and
1.087, respectively) and a deflation in the s-XCI model (median
λ= 0.735) (Supplementary Material, Supplementary Figs. S1–S3
and Supplementary Table S7). We did not identify any genome-
wide significant signals (P ≤ 5 × 10−8) in any of the models
(Figs. 2–4). However, five loci exhibited signals that were
X-chromosome-wide significant (P ≤ 1.6 × 10−6) in the r-XCI
approach; the index variants were common for the Xp22.32,
FRMPD4 and Xq25 loci, and rare for the PJA1 and TMEM187-G6PD/
IKBKG loci (Fig. 2, Table 1 and Supplementary Table S8).
Additionally, a rare variant in the WNK3 gene was
X-chromosome-wide significant in the e-XCI analysis (Fig. 3). No
X-chromosome-wide significant signal was found in the s-XCI
analysis (Fig. 4). As expected, we observed correlated results
between the r-XCI and e-XCI meta-analysis results (Supplementary
Table S9).
In the sensitivity models including only diagnosed AD-cases or

excluding biobank samples, we did not identify any genome-wide
significant signals among X-chromosome variants either
(Figs. 2 and 3 and Supplementary Figs. S1 and S2). However, we
identified an X-chromosome-wide significant signal at a common
index variant in the DMD locus in the r-XCI meta-analysis
excluding biobanks, and at two rare index variants in the WNK3
and DACH2 genes in the r-XCI meta-analysis excluding AD-proxy
cases (Table 1 and Fig. 2).
In either the male-only or female-only meta-analyses, we did

not identify any genome-wide nor X-chromosome-wide significant
signals (Supplementary Fig. S4). We also did not observe any
genome-wide nor X-chromosome-wide significant difference of
effect between males and females for any X-chromosome variants
(Supplementary Fig. S4).

Detailed description of the X-chromosome-wide
significant loci
In more details, rs4364769 (MAF= 0.12, OR= 1.079 [1.048–1.110],
P= 2.55 × 10−7) was identified as the index variant of the Xp22.32
locus in the r-XCI meta-analysis (Table 1 and Supplementary
Fig. S5). The odds-ratio estimate of rs4364769 shows some
variability across sensitivity analyses but confidence intervals
overlap (Supplementary Table S8). The index variant of the
Xp22.32 signal is located more than 300 kb from the closest
protein coding gene, NLGN4X (Neuroligin 4 X-Linked).
The index variant in the FRMPD4 (FERM and PDZ Domain

Containing 4) locus was rs5933929 (MAF= 0.38, OR= 0.952
[0.935–0.970], P= 1.98 × 10−7) in the r-XCI meta-analysis (Table 1
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and Supplementary Fig. S6). This variant is located in an intron
within some transcripts of FRMPD4. The odds-ratio of rs5933929 was
consistent across sensitivity analyses (Supplementary Table S8).
The common variant rs5972406, located in an intron of the DMD

dystrophin gene, was X-chromosome-wide significant only in the
r-XCI meta-analysis excluding biobanks (MAF= 0.075, OR= 1.143
[1.083–1.207], P= 1.16 × 10−6, Table 1 and Supplementary Fig. S7).
The odds-ratio estimate was lower in the analysis including AD-
proxy cases (OR= 1.075 [1.037–1.113], P= 6.75 × 10−5), but
confidence intervals overlap (Supplementary Table S8).
rs191195705 was the index variant in the Xq25 signal in the

r-XCI meta-analysis (MAF= 0.11, OR= 0.925 [0.896–0.954],
P= 7.09 × 10−7, Table 1 and Supplementary Fig. S8). Here the
males and the UKB-proxy males carried a large part of the
observed effect, leading to a lower signal in the sensitivity
analyses excluding proxy or biobank cases, or in the female-only

compared to the male-only meta-analyses (Supplementary
Table S8 and Supplementary Fig. S8). However, the difference of
effect between males and females was not significant (P= 0.51,
Supplementary Table S8). rs191195705 is over 500 kb from the
closest protein coding gene, GRIA3 (Glutamate Ionotropic
Receptor AMPA Type Subunit 3).
Other signals had rare index variants which were not analyzed in

the ADGC and CHARGE studies, due to their smaller sample sizes
(Supplementary Figs. S9–S12). rs189139822, located in an intron of

Fig. 2 Manhattan plot of the r-XCI approach. Association results of
a the meta-analysis including AD-proxy cases, b the diagnosed AD
cases meta-analysis and c the meta-analysis excluding biobanks. The
red and blue lines represent the genome-wide significant threshold
(5 × 10−8) and the X-chromosome-wide significant threshold
(1.6 × 10−6), respectively. The labels show the closest protein-
coding gene (according to GENCODE release 45, https://
www.gencodegenes.org/human/releases.html) to the index variant
of each X-chromosome-wide significant locus.

Fig. 3 Manhattan plot of the e-XCI approach. Association results of
a the diagnosed AD-cases meta-analysis and b the meta-analysis
excluding biobanks. The red and blue lines represent the genome-
wide significant threshold (5 × 10−8) and the X-chromosome-wide
significant threshold (1.6 × 10−6), respectively.

Fig. 4 Manhattan plot of the s-XCI approach meta-analysis, which
excludes biobanks. The red and blue lines represent the genome-
wide significant threshold (5 × 10−8) and the X-chromosome-wide
significant threshold (1.6 × 10−6), respectively.
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WNK3, was identified in the r-XCI (MAF= 9.70 × 10−3, OR= 1.481
[1.263–1.735], P= 1.29 × 10−6) and e-XCI (MAF= 9.10 × 10−3, OR=
1.343 [1.192–1.513], P= 1.20 × 10−6, Supplementary Table S8)
meta-analyses excluding AD-proxy cases (Table 1 and Supplemen-
tary Fig. S8). The odds-ratio of rs189139822 was consistent across
studies and sensitivity analyses (Supplementary Table S8). However,
the imputation quality for the variant was low (r2 < 0.6) in many
studies (Supplementary Fig. S8).
rs771148434, the index variant of the PJA1 (Praja Ring Finger

Ubiquitin Ligase 1) signal, was very rare (MAF= 8.00 × 10−4)
and analyzed only in the EADB-core and UKB-proxy studies.
Detected in the r-XCI meta-analysis (OR= 3.107 [1.967–4.910],
P= 1.18 × 10−6, Table 1 and Supplementary Fig. S10), this variant
was excluded from most of the sensitivity analyses due to its rarity
(Supplementary Table S8).
The rs1326297223 index variant is located in an intron of

DACH2. It was identified in the r-XCI meta-analysis excluding AD-
proxy cases (MAF= 2.10 × 10−3, OR= 2.281 [1.629–3.192],
P= 1.56 × 10−6, Table 1 and Supplementary Fig. S11), and its
odds-ratio was consistent across studies and sensitivity analyses
(Supplementary Table S8).
Three rare variants, all in high LD (r2 > 0.8), were associated at

the X-chromosome-wide significance threshold with AD-risk in the
TMEM187-G6PD/IKBKG (Transmembrane Protein 187, Glucose-6-
Phosphate Dehydrogenase and Inhibitor Of Nuclear Factor Kappa
B Kinase Regulatory Subunit Gamma) locus (Supplementary
Table S10). They were only analyzed in the EADB-core and UKB-
proxy studies, but the signal was heterogeneous across studies
(I2= 56.5 for the index variant rs782044000, Supplementary
Fig. S12), and carried mainly by EADB-core. In this study, most
carriers were from Italy and Greece, and the signal disappeared
when excluding Greek samples (P= 0.43 for rs782044000), or
when meta-analyzing the per-country results in EADB-core
(P= 0.12 for rs782044000, Supplementary Material). One of the
three index variants, rs5030868, is the G6PD Mediterranean
mutation, which is much more frequent in the Mediterranean
region than in the rest of Europe [74, 75]. We thus considered this
signal to be falsely inflated in EADB-core due to this population
structure.

Biomarker and cognitive decline associations
We further investigated the association of the common index
variants of the suggestive signals with CSF biomarkers and
cognitive decline. We found no significant association
(P < 4.17 × 10−3) with Aβ42 or pTau with any common index
variant, whatever the approach (Supplementary Table S11), but
the FRMPD4 index variant rs5933929 was significantly associated
with cognitive decline in both the r-XCI and e-XCI approaches
(P= 2.75 × 10−3 and 3.30 × 10−3 respectively), and the direction of
effect of the cognitive decline and AD-risk associations were
consistent (Supplementary Table S12).

Colocalization with brain tissue eQTL and pQTL
We did not find any significant colocalization of our AD
association signals with any brain tissue eQTL or pQTL signal
(Supplementary Table S13).

Differential expression and methylation
We also examined expression and methylation data of the genes
within the suggestive loci.
The genes FRMPD4 (in males), GRIA3 (Xq25, in females), TSR2 (in

the WNK3 locus), and EDA (in the PJA1 locus) showed significant
differential expression (P < 1.32 × 10−3) in temporal lobe tissue
(Supplementary Table S14). Expression of EDA was also signifi-
cantly associated with AD status in female pre-frontal cortex
tissue. Amyloid plaque burden was found to be significantly
associated (P < 4.39 × 10−4) with methylation changes in FRMPD4,
ARHGAP6 (in the FRMPD4 locus), and DMD.Ta
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XLID gene enrichment
All the suggestive loci contain XLID putative causal genes, except
DACH2. However, we did not detect an enrichment of the AD
association signals in the XLID genes in any of the analyses
(P= 0.37, 0.33 and 0.53 in r-XCI, e-XCI and s-XCI approaches,
respectively).

DISCUSSION
We conducted the most comprehensive XWAS on AD to date,
including 115,841 AD or AD-proxy cases and 613,671 controls and
using three complementary models to account for the complexity
related to the X-chromosome. Importantly, 52,214 clinically
diagnosed AD cases were included, allowing to assess the impact
of proxy-AD or biobank cases on the results. Despite not detecting
any genome-wide significant signals regardless of the approach
used, seven X-chromosome-wide significant loci passed our post-
analysis QC. Index variants were common in four loci; the signal in
the FRMPD4 locus was consistent across the sensitivity analyses,
showing strong robustness, while the other signals in Xp22.32
(NLGN4X), Xq25 (GRIA3) and DMD showed some variability.
Robustness of the results was more difficult to assess for the rare
index variants of the WNK3, PJA1, and DACH2 loci.
FRMPD4 (FERM and PDZ domain containing 4) is mostly

expressed in brain tissues (GTex Portal, https://gtexportal.org/),
and showed differential expression in male temporal lobe
between AD cases and controls. Through its interaction with
other proteins, the FRMPD4 protein is involved in the regulation of
the morphogenesis and density of dendritic spines, and in the
maintenance of excitatory synaptic transmission [76]. FRMPD4 is
an X-linked intellectual disability gene [77] and is associated with
low educational attainment [78]. The association of the index
variant of the FRMPD4 locus with cognitive decline could thus be
linked to a lower cognitive reserve. The associated variant is in an
intron within some transcripts of FRMPD4 but is also close to the
MSL3 gene, which interacts with KAT8, a reported genetic risk
factor for AD [2, 79, 80]. In addition, FRMPD4 is an inactivated gene
in females, while MSL3 escapes inactivation [13].
The signal at the intronic variant within the DMD dystrophin

gene decreased when including proxy or biobank cases; further
analyses are necessary to determine whether this is due to a
falsely inflated signal in the clinically diagnosed samples, or to a
less specific diagnosis in the proxy and biobank samples. DMD is
inactivated in females [13], and mutations in the gene can cause
Duchenne muscular dystrophy. Some patients suffering from this
disease can exhibit cognitive impairment, and a shift towards
amyloidogenesis in memory-specific brain regions was found in
mice mutated in the DMD gene (mdx mouse) compared to wild-
type mice [81]. Additionally, the DMD rs5927116 variant was
reportedly associated with the volume of entorhinal cortex in a
small sample (N= 792); however, this signal is 1.4 Mb away from
our AD signal and the variants are independent (LD measured by
r2= 1.65 × 10−4) [82].
The rare variant signals in the WNK3 and PJA1 loci are

characterized by a low imputation quality or a limited number
of clinically diagnosed AD cases analyzed, and further analyses in
sequencing data would be necessary to validate those signals.
Inhibition of WNK3 is reportedly neuroprotective in stroke [83] and
intracerebral hemorrhage [84], but has a deleterious effect on
neurons after traumatic brain injury [85]. In the PJA1 locus, the
index variant is located in an enhancer between the PJA1 and
NALF2 (NALCN Channel Auxiliary Factor 2) genes. Variants in this
locus are associated with educational attainment [78], and PJA1 is
expressed in the brain. Another rare variant signal was identified
in the DACH2 gene, which is associated with brain shape
(segment 7) [86] and edge-level brain connectivity measures [87].
Identifying putative causal genes in the two other loci, Xp22.32

and Xq25, is more challenging, as the index variants are located

more than 300 kb away from the closest protein coding gene,
NLGN4X and GRIA3, respectively. Additionally, those variants are
not eQTL/sQTL for any gene according to GTeX Portal. Expression
of the GRIA3 gene in temporal lobe is associated with AD risk in
females, and its expression in the dorsolateral prefrontal cortex is
reportedly associated with cognitive change in women during
aging and AD [47]. However, the rs191195705 index variant of the
Xq25 signal is associated with AD risk mainly in males in our
analyses (Supplementary Table S8). Regarding the Xp22.32 locus,
the rs5916169 variant, located at 127 kb from our index variant, is
associated with functional connectivity [16]. However, this variant
is not in LD (r2= 0.005) with the AD index variant.
Different X-chromosome-wide significant loci were detected in

the main analysis—considering AD-proxy cases— and in the
sensitivity ones including only diagnosed AD-cases or excluding
biobank samples. A loss of significance was expected in the
sensitivity analyses compared to the main analysis due to lower
power; similar odds-ratio and overlapping confidence intervals
should however be observed for signals mainly driven by AD rather
than non-AD dementia. This was the case for the FRMPD4 locus, and
to a lesser extent for the Xp22.32 and Xq25 loci. The loss of a signal
in the sensitivity analyses might also be due to purely analytical
reasons; for example, the rare index variant of the PJA1 locus did not
pass the filtering criteria in the sensitivity analyses. The identifica-
tion of the DMD, WNK3 and DACH2 loci in the sensitivity analyses
but not in the main analysis, despite its higher power, might be due
to sampling variation, a dilution of the signal in the main analysis
linked to the expected higher proportion of non-AD dementia cases
among AD-proxy cases or a falsely inflated signal in the sensitivity
analyses. Additionally, the correction factor used in the UKB proxy
analysis was designed for common variants with low to moderate
effect. It might be less appropriate for rare variants with larger
effects, such as the index variants of the WNK3 and DACH2 loci.
Further studies in larger samples will help to delineate the real
impact of those loci on AD risk.
Although this study represents a powerful XWAS for AD, we did not

find any genome-wide-significant genetic association with AD risk
among X-chromosome variants. A recent XWAS on AD identified only
one genome-wide significant association in the SLC9A7 locus [88]. We
do not replicate this result at the X-chromosome-wide significance
level (OR= 1.023 [1.005–1.042], P= 1.36 × 10−2 for the index variant
rs2142791, andminimumP in the locus of 5.2 × 10−5, in the r-XCI meta-
analysis including AD-proxy cases, Supplementary Table S15). The lack
of signal overlap between the two studies may be explained in part by
a different definition of AD and AD-proxy status, leading to an
expected higher proportion of non-AD dementia cases in the other
study (Supplementary Material).
Technical or analytical reasons can partly explain the absence of

genome-wide significant signals on the X-chromosome, such as: 1)
overall lower variant density, 2) lower coverage by genotyping
platforms, 3) lower call rate of variants, 4) lower imputation
quality, or 5) a lower effective sample size in males on the
X-chromosome compared to the autosomes [89]. However, it is
also possible that fewer genome-wide significant associations of
X-chromosome loci with AD risk exist than on autosomes due to a
lower density of functional variants on the X-chromosome. Indeed,
Gorlov et al. 2023 [89] found a lower density of variants in both
exonic and intronic regions on the X-chromosome compared to
autosomes, which they link to a stronger selection against
X-chromosome mutations.
In conclusion, this XWAS found no common genetic risk factor

for AD on the non-pseudoautosomal region of the X-chromosome
but identified suggestive signals with moderate impact on AD risk,
which warrant further investigations. In particular, future analyses
of sequencing data will help to address some of the technical
issues described above, and will allow to study the impact of
X-chromosome rare variants or structural variants on AD risk.
Additionally, extending XWAS to AD-related phenotypes, such as
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cognitive decline, AD pathology or AD biomarkers, would further
delineate the impact of X-chromosome genetic variations on the
processes leading to AD. Lastly, insights into the contribution of
the X-chromosome to AD or AD-related phenotypes will be
provided by additional studies of the impact of X-chromosome
biology beyond genetic variations, for example gene expression or
epigenetic alterations, including parental imprinting [49, 90, 91].
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