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ABSTRACT
Aim: Pollen assemblages are widely used to infer paleoenvironment features, aiming at reconstructing both past climates and 
biomes. However, the functional link between environmental conditions and pollen assemblages is not straightforward and 
requires thorough testing to be used confidently. Here, we use a trait-based approach to assess the consistency of functional sig-
natures between pollen and plant assemblages.
Location: Arid Central Asia (ACA).
Taxon: Spermatophytes (pollen-producing plants).
Methods: We assess whether trait values and trait distributions are consistent for surface pollen samples and extant vegetation in 
the Arid Central Asia biogeographic region. A working plant checklist was compiled for ACA in order to assign trait values to pollen 
types and vegetation taxa. This was done for two widely used methods of pollen aggregation schemes (coarse and fine pollen type 
depend on the level of pollen identification). The functional signatures of pollen and vegetation samples were compared both at the 
taxon and community levels, using large-scale trait and vegetation databases, for the six traits of the global spectrum of plant form 
and function (i.e., plant height, seed mass, leaf area, specific leaf area, nitrogen content per leaf mass, and stem-specific density).
Results: Trait distributions and bivariate trait relationships were broadly similar for pollen types and vegetation taxa, which 
is also the case for the multivariate spaces of the global spectrum of plant form and function. At the community scale, the trait 
values weighted by taxon abundance significantly differed among biomes, and these differences were consistent for both pollen 
aggregation schemes and extant.
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Main Conclusions: The pollen aggregation scheme does not impact the organisation of the functional space of the global spec-
trum of plant form and function, which compares well with that based on species actually present in the vegetation plots. This 
is also true at the community scale. These findings are very promising for improving climate and biome reconstructions from 
pollen assemblages and pave the way to a “pollen functional biogeography”.

1   |   Introduction

Accurate reconstructions of past vegetation and climate are in-
creasingly required by policy-makers in conservation biology 
(Barnosky et al. 2017; Carter et al. 2018), researchers in biodiver-
sity predictions and mapping (Cai et al. 2023), and climate change 
evaluations since it offers potential analogues for the future 
(Tierney et al. 2020). Reconstruction of plant functional diversity 
through time has also raised interests since it permits understand-
ing the plant-climate relationships on longer time scales (Gaüzère 
et al. 2020; Carvalho et al. 2019; van der Sande et al. 2019; Adeleye 
et al. 2023). Different methods exist to quantitatively reconstruct 
past climate and vegetation based on pollen assemblages from 
marine cores or from terrestrial cores collected in lakes and wet-
lands. The question of the interactions between vegetation com-
position, as assessed by the relative abundances of pollen types, 
and climate, is key in palaeoenvironmental sciences (Marquer 
et al. 2017). Sediment accumulation within lakes and wetlands is a 
powerful environmental archive to record past pollen rain, mainly 
reflecting the watershed vegetation dynamics through time (Last 
et al. 2001).

However, pollen-based past climate and vegetation re-
constructions suffer from various biases: sediment types, 
sampling methods, taphonomy (i.e., pollen fossilisation pro-
cesses), pollen production, dispersion, and identification (ter 
Braak et  al.  1993; Salonen et  al.  2014; Gillison  2019; Cleal 
et al. 2021). To reduce these uncertainties, several mathemat-
ical methods have been developed and applied to reconstruct 
past vegetation (Prentice et al. 1996; Marquer et al. 2017; Sun 
et al. 2020; Cruz-Silva et al. 2022) or past climate (Chevalier 
et al. 2020), and approaches combining multiple methods have 
been developed to improve the reliability of the reconstruc-
tions (Peyron et al. 2013; Salonen et al. 2019). These methods 
directly map pollen abundances to climatic parameters with-
out considering the intermediary link—the plants producing 
the pollen—resulting in uncertainties and potential biases 
(Chevalier et al. 2020). A first attempt to tackle this issue used 
Plant Functional Types (PFTs) to reconstruct climate from pol-
len (Prentice et al. 1992; Box 1996; Peyron et al. 1998; Tarasov 
et al. 1999; Kumke et al. 2004). Still, the results obtained for 
the Last Glacial Maximum (21,000 years BP) were not satisfac-
tory, mainly because the assignment of non-arboreal taxa to 
PFT was too broad (Peyron et al. 1998).

To improve pollen-inferred climate and biome reconstructions, 
Harrison et  al.  (2010) suggested using continuous plant traits, 
defined as measurable and heritable morphological, physiologi-
cal, and phenological characteristics of individuals usually rep-
resenting a taxon, rather than discrete PFTs (Violle et al. 2007; 
Van Bodegom et al. 2012; Garnier et al. 2016). There is a grow-
ing consensus that a trait-based approach has strong potential 
to address several pending issues in ecology (for syntheses, see 

Garnier et al. 2016; Shipley et al. 2016), including the functional 
bases of how organisms relate to the environment and how the 
functioning of organisms scale to the community level (Enquist 
et al. 2015; Garnier et al. 2016). Especially, a trait-based approach 
instead of PFTs has already been proposed for vegetation mod-
elling (Van Bodegom et al. 2012; Scheiter et al. 2013). Tracking 
past functional changes of vegetation also permits to revealing 
evolution in vegetation's ecological strategy in adaptation to cli-
mate change (Gaüzère et al. 2020; Adeleye et al. 2023).

In this present study, we compare the trait values and distribu-
tions of surface pollen assemblages and vegetation plots to test (1) 
whether relationships between traits (univariate distributions of 
trait values and pairwise trait–trait relationships) are conserved 
between pollen and vegetation. We also test (2) whether the func-
tional space (i.e., the organisation of plant height, seed mass, 
leaf area, specific leaf area, nitrogen content per leaf mass, and 
stem-specific density trait values in multivariate space) derived 
from surface pollen samples matches that of extant vegetation 
(in vegetation plot records). This is necessary since whole phe-
notypes rather than individual traits respond to the environment 
(Anderegg 2023). Once validated, it will be possible to (3) combine 
sediment pollen with traits (Birks 2020) to assess the functional 
structure of past vegetation, from which biomes could be recon-
structed (Harrison et al. 2010).

A central issue with using this approach is the taxonomic level at 
which the pollen is identified. There is no unified methodology 
to do so (De Klerk and Joosten 2007). Some authors retain the 
original and finest level of pollen identification (i.e., pollen type 
fine; Birks et al. 2016; Brussel and Brewer 2021), while others 
use a coarser and standardised identification level (i.e., pollen 
type coarse; Goring et  al.  2013; Giesecke et  al.  2019). For the 
aggregation of pollen traits, it is necessary to determine which 
plant taxa will be selected for aggregation. This is especially 
the case for family-based pollen types (e.g., Poaceae). In previ-
ous studies of pollen-based traits, various approaches have been 
applied, from global aggregation of families using the average 
value (Brussel and Brewer 2021) or Bayesian modelling (Veeken 
et  al.  2022) to well-covered regional families (van der Sande 
et al. 2019) to selection of a single representative species for the 
entire family (Connor et al. 2018). We evaluate the influence of 
these two broad methods ( fine and coarse pollen types) on the 
aggregation of traits based on pollen.

The main objective of this study is to test how comparable the 
functional space of surface pollen samples and vegetation plots 
is combined with plant traits. Since the functional space for 
plant species (Díaz et al. 2016) and plant community (Bruelheide 
et  al.  2019) depicts a universal strategy, we are following the 
same “bulk” approach based on the biogeographic repartition of 
the pollen and vegetation sites. The aim is to enable assessment 
of the functional space of plant communities in the past using 
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past pollen sequences. More specifically, we address the follow-
ing questions:

1.	 What is the more reliable aggregation scheme (coarse or 
fine) to assign trait values to pollen types to reduce the 
biases between pollen and vegetation-based functional 
spaces?

2.	 Between plant species and pollen types, do we observe 
consistent trait distributions, univariate relations between 
traits, and multivariate phenotypic spaces?

3.	 Are the functional spaces derived from pollen and extant 
vegetation comparable at the level of communities?

In this present study, these issues are addressed in Arid Central 
Asia (ACA hereafter Chen et  al.  2015; Figure  1). Due to large 
variations in altitude and climate, this area encompasses a wide 
range of biomes from warm deserts to taiga, with a predomi-
nance of drylands (Dinerstein et al. 2017). These drylands are 
expected to be rapidly and drastically affected by the spread 
of deserts into the surrounding steppes due to temperature in-
crease and aridification (Huang et al. 2016).

2   |   Materials and Methods

2.1   |   Approach and Objectives

Due to extreme temperature seasonality and aridity in this 
region, ACA's climate forecasts and vegetation models are 
among the least reliable worldwide (Sherwood and Fu 2014; 

Huang et al. 2014). That is why the different forecasting sce-
narios should be evaluated and selected in light of pollen-
based past climate reconstructions (Lioubimtseva et al. 2005). 
However, pollen type diversity in the ACA is reduced. A 
few pollen types, mostly identified at the family level, dom-
inate drylands from Iran to Mongolia (e.g., Amaranthaceae, 
Artemisia spp., Cyperaceae, Pinus spp., and Poaceae) and 
cannot reflect temperature changes (Tarasov et  al.  1998). It 
is especially the case since warm-dry desert-steppes (Iran, 
Uzbekistan…) and cold-dry desert-steppes (Mongolia, Tibetan 
Plateau…) present important climate differences (mainly in 
temperature and seasonality), although the pollen rain is 
very similar (Tarasov et al. 1998; Lioubimtseva 2003; Zheng 
et al. 2014). A trait-based approach could overcome this poor 
taxonomic resolution using the functional link between veg-
etation and climate in order to enhance past vegetation and 
climate reconstructions in ACA.

This study uses surface pollen and vegetation data from ACA 
(Chen et  al.  2015; Figure  1) combined with trait data taken 
from worldwide databases. The full methodological workflow 
followed in this study is illustrated in Figure 2. Pollen surface 
samples and vegetation plots for ACA (Figure 2, step 1) and the 
major plant trait values (Figure 2, step 2) were extracted from 
global databases. In step 3, an ACA plant checklist was built to 
assign plant traits to species and pollen types (following two 
aggregation schemes, step 4). Finally, to compare community-
weighted functional space, the trait values were gap-filled 
(Figure 2, step 5), and the community-weighted mean (CWM) 
traits were calculated. All the abbreviations used in the article 
are detailed in Table 1.

FIGURE 1    |    Map of the Arid Central Asian (ACA) biomes (Dinerstein et al. 2017) with pollen surface samples (ACASP, blue triangles) and vege-
tation plots (ACAV, red dots).
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2.2   |   Arid Central Asian Geography

Central Asia covers Uzbekistan, Turkmenistan, Tajikistan, 
Kyrgyzstan, Kazakhstan, and Afghanistan (Figure 1). The Touran 
lowlands (Kyzylkum and Karakum deserts) and piedmont moun-
tains (south-Siberian steppes, Alay, Altai) in the central part of the 
area are surrounded by the Caspian Sea to the east, the Pamir-
Alay and Tian Shan ranges to the west, the Kopet Dagh and 
Hindu Kush ranges to the south, and Kazakh hills to the north 
(Figure S1A; Lioubimtseva et al. 2005). A climatically consistent 
region described by Chen et al.  (2008) as the Arid Central Asia 
(ACA area in Figure 1) is currently used by the paleoclimate com-
munity (e.g., Chen et al. 2008, 2010; Rao et al. 2020). The ACA area 
encompasses central Asia as well as all the surrounding Asian dry-
lands: Lesser Caucasus and Iranian deserts; mainland China and 
Mongolia (Gobi and Taklamakan deserts, Tibetan and Mongolian 
plateaus); and the Indo-Pakistan Thar desert. This area is large, 
spanning 80° longitude (40°–120° E) and 25° latitude (30°–55° N), 
and is located at the crossroads of the alpine and Hercynian range 
belts (Figure  S1A); it also controls atmospheric regimes and bi-
omes (Lioubimtseva et al. 2005).

2.3   |   Pollen

Since there is currently no modern pollen dataset covering the 
whole ACA, we compiled pollen assemblages from available 

databases to build an Arid Central Asian Surface Pollen data-
set (ACASP, nsite = 2393, Figure 2), as part of the contribution 
of this study. To the Eurasian Pollen Database compiled by 
Peyron et  al.  (2017), modified by Dugerdil et  al.  (2021) and 
d'Oliveira et al. (2023), were appended open-access surface pol-
len sites from the European Modern Pollen Database v.2 (Davis 
et al. 2020), the East Asian Pollen Database (Zheng et al. 2014), 
and several open-access Tibetan pollen datasets from Li, Xie 
et al. (2020). The full list of references for pollen contributors 
is in Table S5. Poaceae and Cerealia-type were distinguished 
from the majority of pollen studies used in the database mainly 
from pollen morphological considerations (size of pollen and 
their pore). Surface samples dominated by human-induced pol-
len types such as Plantago spp., Rumex spp., and Cerealia-type 
or pollen types favoured by overgrazing were removed from 
the database (Peyron et al. 1998) since disturbed pollen sam-
ples do not record climate and environmental drivers (van der 
Sande et  al.  2019; Dugerdil et  al.  2021). Long-spreading pol-
len types (e.g., Pinus spp.) and exotic species (ornamental or 
invasive species) were not removed from the database since it 
is difficult to infer this species status at the biogeographical 
scale. Pollen counts were standardised to the pollen total (anal-
ogous fractional abundance calculation following Equation (1) 
below). Since the main issue in the pollen-base trait approach 
is the taxonomic matching between pollen type and plant spe-
cies, we tested two aggregation schemes (Figure 2, panel 4):

1.	 ACA Surface Pollen Fine (ACASP-fine): the finest level of 
pollen-type identification is retained for aggregation. If the 
pollen type is identified at a clade level (genus, family…), 
the average trait values for all species in the same clade in 
ACA were used. We obtained NACASP-fine = 462 different 
pollen types in ACA.

2.	 ACA Surface Pollen Coarse (ACASP-Coarse): Pollen-type 
identification has been down-scaled to commonly used 
and reliable pollen types (generally, pollen types are 
presented at the family level for non-arboreal pollen and 
genera for arboreal pollen). We obtain NACASP-coarse = 163 
pollen types.

2.4   |   Vegetation

The vegetation plots used in this study were taken from the sPlot 
vegetation database extracted for Asia (Figure  2; Bruelheide 
et al. 2019), combined with some open-access vegetation plots 
from central Mongolia (Jamsranjav et  al.  2018). The result-
ing vegetation database for the entire ACA region (ACAV, 
nplots = 21,347; nspecies = 7723) is displayed in Figure  1. The 
majority of site-present species abundances are in the Braun-
Blanquet abundance scale, and all of them have been converted 
to percentage cover. Then, each vegetation plot k is expressed as 
the sum of fractional abundance pi,k defined for each species i as

with SC, the surface covered by each plant species, and pi,k the 
species fractional abundances. Although ferns, lycophytes, and 
bryophytes were recorded in some vegetation plots from ACA, 

(1)pi,k =
SCi,k

∑Ntot,k

j=1
SCj,k

TABLE 1    |    Abbreviations used in this study and abbreviations 
commonly used in palaeoecology or plant functional ecology. The 
abbreviations used for the database names and the trait are displayed, 
respectively, in Table 2 and in Tables S5 and S6.

Full name Abbreviations Commentary

ACA vegetation 
dataset

ACAV This study

ACA surface 
pollen-fine

ACASP-fine This study

ACA surface 
pollen-coarse

ACASP-coarse This study

Angiosperm 
phylogeny group IV

APGIV The Angiosperm 
Phylogeny 

Group (2016)

Arboreal pollen AP Usual abbreviation 
in paleopalynology

Community-
weighted mean

CWM Usual abbreviation 
in trait-based 

ecology

Non-arboreal pollen NAP Usual abbreviation 
in paleopalynology

Pearson correlation 
coefficient

r

Plant functional 
types

PFT

Principal component 
analysis

PCA
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only the spermatophytes were selected to permit consistency 
among vegetation and pollen plots. As for pollen, the grass-
dominated plots from forested landscapes (human clearing, 
crops…) and areas locally dominated by trees among open bi-
omes (such as orchards or hedgerows) were removed.

2.5   |   Plant Checklist and Taxonomy

In order to catch all the ACA functional diversity (and not only 
the one recorded in our vegetation plots), an ACA checklist is 
needed (Meyer et al. 2016). As there is no checklist available for 
the Central Asian area studied, we compiled an original check-
list of ACA species that is as exhaustive as possible. Plant oc-
currences within the boundaries of ACA were extracted from 
GBIF (Robertson et  al.  2014) and BIEN (Maitner et  al.  2018). 
The occurrence density used to form this checklist is shown 
in Figure S1B. This list was then merged with the plant list ex-
tracted from the vegetation plot and the pollen sample matrices. 
We obtained 26,204 taxa (Figure 2, panel 2).

This checklist was then homogenised, and the taxonomy 
was verified using the Taxonomic Name Resolution Service 
(TNRS; Boyle et al. 2013) package on R. This online applica-
tion uses name parsing and fuzzy matching between the input 
plant checklist and taxonomic databases (Boyle et  al.  2013). 
We selected taxa with a matching score above 0.95 (1 for full 
matching). In parallel, we applied a second taxonomic refer-
ential checking with the Taxonstand R package from Cayuela 
et al. (2012). We use both algorithms since databases and ap-
proaches are not the same. Due to the heterogeneity of the 
pollen identification level (De Klerk and Joosten 2007), some 
pollen types are expressed in particular taxonomic levels such 
as sub-family (Asteroideae-t, Cichorioideae-t and Cardueae-t) 

or sub-genus (Pinus-Haploxylon and P.-Diploxylon). This 
taxonomic-level information was taken from the National 
Centre for Biotechnology Information's Taxonomy database 
(https://​www.​ncbi.​nlm.​nih.​gov; accessed January 2021). In 
order to feat with the pollen database, the Cerealia pollen 
type was associated with a list of botanical taxa (e.g., Sorghum 
spp., Avena sativa, Hordeum spp., Zea mays…) using the USDA 
Plants Database. For oaks, two pollen types are identified: the 
Quercus-deciduous and Q.-evergreen types. Quercus species 
were associated with these two pollen types using the leaf phe-
nology trait information from TRY. The upper classification 
levels needed for trait assignment (families, orders, kingdoms, 
and sub-reigons) were extracted from the APGIV classifica-
tions (The Angiosperm Phylogeny Group  2016). Then, each 
taxon was allocated to one of the growth forms (herb, shrub, 
tree, and other) extracted from TRY (Kattge et al. 2020). Each 
taxon was also associated with a pollen type: Arboreal Pollen 
(AP), Non-Arboreal Pollen (NAP, i.e., herb and shrubs), and 
variable (when pollen types contain herbs, shrubs, and trees). 
The clean ACA checklist contains 23,619 species, 2772 genera 
and 233 families associated with the 462 fine and 163 coarse 
pollen types (Figure 2, panel 3).

2.6   |   Plant Trait Selection

We selected six continuous traits (Table  2; Bruelheide 
et al. 2019; Kattge et al. 2020) widely used in trait-based eco-
logical studies (Garnier et al. 2016; Díaz et al. 2016; Bruelheide 
et  al.  2018). These traits are also the most commonly avail-
able in trait databases (Kattge et al. 2020; Weigelt et al. 2020). 
Details on the functional significance of the selected plant trait 
(with trait description and measurement) can be found in Díaz 
et al. (2016) and Garnier et al. (2016) and are summarised in 

FIGURE 2    |    Workflow followed in this study: From the first methodological step (input methods and databases–left-hand side) to the final cor-
relation results. Each column of boxes represents a methodological step carried out in our study.
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Table 2. These are: (1) plant height, the maximum plant height 
at plant maturity; (2) seed mass (the oven-dry mass of an aver-
age set of seeds); (3) leaf area, the average surface of one side 
leaf; (4) specific leaf area (SLA), the ratio between the area and 
the oven-dry mass of the leaf, which reflects resource use by 
the leaf, (5) nitrogen content per leaf mass (Nleaf), and (6) stem 
specific density (SSD), the ratio between stem dry mass and 
fresh volume of a stem section.

2.7   |   Plant Trait Databases

Trait values were taken from TRY (Kattge et  al.  2020), BROT 
(Tavşanoğlu and Pausas 2018), and BIEN (Maitner et al. 2018) 
databases and the recent Global Inventory of Floras and 
Traits (Weigelt et al. 2020) using the GIFT R package (Denelle 
et al. 2023). References of datasets from TRY used in this study 
are detailed in Table S6. The six selected traits (Table 2) were 
extracted for the species in the ACA checklist. The missing 
SSD values for herbaceous taxa were imputed from the leaf 
dry matter content following Díaz et  al.  (2022). Plotting the 
frequency distribution for each trait (Figure  S2), errors in the 
databases (negative values, unit errors) were corrected. Then, 
the trait values were log10-transformed in order to fulfil normal 
requirements and reduce the influence of extreme trait values. 
Afterward, each trait j for each species i (ti,j) was z-scaled with

to ease the comparison among traits with different units.

The trait dataset was gap-filled using the Bayesian Hierarchical 
Probabilistic Matrix Factorisation (Schrodt et  al.  2015) ma-
chine learning technique. The R package BHPMF applied to the 
trait matrix and using six taxonomic levels of the Angiosperm 

Phylogeny Group IV (APG) classification produces two output 
matrices: a mean (μgf) and a standard deviation (�gf) gap-filled 
trait matrix. The total RMSE of the z-score traits gap-filled 
matrix is 0.70 ± 0.02 (RMSE average and standard deviation 
are calculated among all folds of the cross-validation process). 
Cross-validation permits removing the badly gap-filled values 
following the method presented by Fazayeli et al. (2014). We cal-
culate predicted trait cross-validated values for each trait as

For each CrossValidatedgf predicted value, the BHPMF pack-
age calculated the mean (μgf) and the standard deviation (�gf ) 
of the prediction. Then, only the gap-filled values with stan-
dard deviation vs. mean above one were retained; in other 
cases, the predicted value was not used and replaced by a miss-
ing value (Figure 3, panel 5; Fazayeli et al. 2014; Bruelheide 
et al. 2018).

2.8   |   Trait Aggregation at the Community Level

The community-weighted mean (CWM) value for each trait was 
calculated for both pollen surface and vegetation plots following 
Garnier et al. (2004) as

with k each vegetation/pollen plot, j each trait, and n the total 
number of taxa in plot k. Since trait coverage is not complete 
(Table S1) and following the recommendations of Pakeman (2014) 
and Borgy et al. (2017), the Pcover for each sample (proportion of 
taxa with available trait value) should be considered when using 
CWM trait. That is why only plots with Pcover > 80% were used 
for analysis (Borgy et al. 2017). A biome type was assigned to 

(2)z − scoret(i,j) =
ti,j − �ti,j

�ti,j

(3)CrossValidatedgf =
�gf

�gf

(4)CWMj,k =
∑nk

i
pi,k × ti,j

TABLE 2    |    List of the six traits used in this study with their main distribution statistical values on the ACA taxa checklist.

Trait Full name Unit Mean SD Min Max Nspecies

Functional 
significances

Height Adult plant height 
(vegetative)

(m) 3.02 6.39 0.004 74.7 7423 Above-ground 
competition, light 
capture, dispersal 

distance

LeafArea Leaf area (mm2) 3580 11,900 1 272,000 3260 Light interception, 
energy balance

NLeaf N content per 
unit leaf mass

(mg.g−1) 23.9 9.18 0.97 99.6 2356 Light capture, 
photosynthetic rate

SeedMass Diaspore mass (mg) 142 5820 0.0005 404,000 4861 Dispersal and 
regeneration strategy, 
seedling competition

SLA Specific leaf area (mm2.mg−1) 0.02 0.01 0.0005 0.22 3619 Photosynthetic rate, 
leaf longevity

SSD Stem specific 
density

(mg.mm−3) 0.32 0.19 0.07 1.55 2465 Trade-off between 
growth potential 

and mortality risk
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7 of 17

each vegetation plot and pollen surface sample by extraction 
from the biome mapping of Dinerstein et al. (2017).

Then, we analysed the relation among traits and among CWM 
traits using a correlation matrix, linear relations (Pearson's cor-
relation coefficient, r), and principal component analysis (PCA) 
using R. The linear correlations among traits and among CWM 
traits were all performed on 10,000 permutations using the 
perm.cor.test from the jmuOutlier package (Garren 2017). The 
CWM trait functional spaces described by the two different pol-
len aggregation schemes (fine and coarse) were compared using 
a Procrustes rotation of two configurations and a PROTEST 
significance test between the two PCAs using the R package 
vegan version 2,6-8 (Dixon 2003). Finally, analysis of variance 
(two-way ANOVAs) and Tukey post hoc comparisons were per-
formed using the R functions aov() and TukeyHSD().

3   |   Results

3.1   |   ACA Traits

3.1.1   |   Traits Coverage and Distribution

Trait coverage varies for each trait and each pollen-type scheme. 
Mainly, the fine or coarse aggregation induced a change in trait 
coverage. Large differences occur according to the aggregation 
scheme used (Table S1): only 14% of the traits are available for the 
total ACA taxa checklist (on average for the six traits). After gap-
filling this matrix, it reaches about 32%. Then, the percentage 

of coverage increases as the number of plant types decreases: 
there are more plant types in the vegetation (Pcover = 34%) than 
in the pollen samples. Also, the cover is better for coarse (94% 
and 98% for gap-filled values) than fine pollen types (82%). The 
traits with the best coverage are plant height, seed mass and 
SLA, with 73%, 68% and 63%, respectively. By contrast, Nleaf is 
less well represented with only an average coverage of around 
58%, followed by SSD (62%).

3.1.2   |   Pollen Type Aggregation

The trait distribution of twelve of the major pollen types for ACA 
is studied as ACA pollen types representative (Figure  3 and 
Table S2), most common pollen types in ACA and high pollen 
producers (Wieczorek and Herzschuh 2020). First, trait values 
are missing for some pollen types (mainly SSD and Nleaf), and 
others only have values for fine or coarse: for example, the pollen 
of Nitraria-t is identified as Nitrariaceae for coarse and Nitraria 
spp. for fine. Trait variance is shown compared to the variance of 
the global spectrum of plant form and function (Figure 3; Díaz 
et al. 2022). Trait variance (Figure 3, lower panels) depends on 
(1) the level of aggregation (from family to species level) and (2) 
the type of trait. This results from the fact that some aggregated 
trait values are obtained from a few species (for Pinus types), 
while other types are derived from a large amount of data (fam-
ilies and large genera such as Artemisia spp. and Ephedra spp.). 
Logically, the aggregation for pollen types based on only one 
species (Betula pubescens and Carpinus betulus) has the smallest 
variance.

FIGURE 3    |    Distribution of trait values after aggregation by pollen type for 12 selected major ACA pollen types. Yellow boxplots show all retained 
trait values for ACA and are compared to the global spectrum values (in pink) from Díaz et al. (2022). Lower panels show the trait variance. The se-
lected plant traits are displayed in Table 2.
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8 of 17 Journal of Biogeography, 2025

Variance also depends on the homogeneity of plant growth form 
(tree, herbs…) among the species used for aggregation: Pinus-
Haploxylon and P.-Diploxylon subgenus regroup species with 
similar plant growth form, resulting in small variance for each 
trait. By contrast, plant height in Fabaceae is very different be-
tween the tiny crawling herb Astragalus tribuloides (height 
< 0.02 m) and the large tree Albizia chinensis (height > 30 m). The 
same is observable for seed mass in Ericaceae, with an import-
ant amplitude between Pyrola spp. small seeds (mass < 0.002 g) 
and bigger seeds of Arbutus spp. (mass > 30 g). Nleaf and SSD have 
smaller variances, which is the consequence of a lower number of 
trait values available in the databases (Kattge et al. 2020).

3.1.3   |   Trait Covariation

Plant height and seed mass are positively correlated (Pearson's 
correlation coefficient r from 0.50 to 0.64; find details in 
Figure S3), as well as the SLA and the Nleaf (r between 0.46 and 
0.52). SSD is positively correlated to plant height and seed mass 

(same r range). The SLA–leaf area positive correlation was higher 
for pollen aggregation (rACASP-fine = 0.44 and rACASP-coarse = 0.52) 
than for vegetation (rACAV = 0.29). After considering the bivar-
iate relationships, we performed a multivariate analysis using 
Principal Component Analysis (PCA, Figure 4).

When all taxa from the ACA checklist were considered, the 
first two axes of PCA can explain 70% of the traits variance 
(Figure 4A). SSD, seed mass and plant height have high positive 
loadings on PCA1; SLA and Nleaf have negative loadings, while 
PCA2 is driven by leaf area. In the PCA of the whole ACA check-
list (Figure 4A), taxa are clustered into three pools corresponding 
to the different growth forms: herbs cover mainly the left part of 
the plane (low plant height, SSD and small seeds), trees cover the 
upper-right corner (tall plants with heavy seeds), while shrubs 
are in between these two. When taxa from vegetation plots are 
used (Figure  4B), the overall relationships among traits appear 
similar to those from the global PCAACA. For taxa from surface 
pollen samples, the variance explained by the first two axes is 
even higher than for ACAV and the overall organisation of traits 

FIGURE 4    |    PCA of the global spectrum of plant form based on six core traits and tested on (A) ACA plant checklist; (B) plants from the vegetation 
plot dataset (ACAV); (C) traits aggregated by pollen types fine (ACASP-fine); and finally (D) traits aggregated by pollen types coarse (ACASP-coarse). 
Dot colours (A, B) are for different growth forms and pollen types (C, D). The thickness of the arrows indicates relative contribution to explaining the 
variance. Details of trait correlations can be visualised in Figure S3.
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is comparable to that of the two previous PCA. Then, even if the 
pool of pollen types is smaller (nfine = 462 and ncoarse = 163), the 
PCA space is overall similar (Figure 4C,D) to Figure 4A.

3.2   |   CWM Trait Coverage and Distribution

Trait coverage for CWM traits is similar to individual traits cov-
erage (Tables S1 and S3). However, the cover is almost complete 
for ACASP-fine and coarse (98% for all ACASP CWM traits). 
Conversely, the Pcover for vegetation plots is lower than for sur-
face pollen samples. SSD and Nleaf have the lowest coverage (re-
spectively 18% and 19%). The strongest correlations were found 
for plant height–seed mass, the plant height–SSD (also SSD–seed 

mass), and the SLA–Nleaf relationships for vegetation plots and 
surface pollen samples fine and coarse (Figure  S3). However, 
some correlations were found to be significant for pollen, while 
they were not for vegetation plots: the plant height–Nleaf, the plant 
height–SLA, and the SLA–Nleaf (the difference between vegeta-
tion and pollen type r values is from 0.26 to 0.56, Figure S4).

3.3   |   Variance in CWM Traits Among ACA Biomes

Differences in CWM traits among biomes and sample types (i.e., 
vegetation plots, surface pollen samples fine and coarse) were 
tested using two-way ANOVAs (Table 3 and Figure 5). Sample 
type has a significant effect (i.e., p < 0.001) for all CWM traits 

TABLE 3    |    Results of ANOVA performed to assess the impact of aggregation schemes (vegetation taxa, pollen types fine and coarse) and biome 
distribution on the variance of CWM traits Details of each relation are inferred by the ad-hoc Tukey significant test in Table S4.

Sample type Biomes

df F p df F p

LeafN 2 359.39 < 0.001 5 195.38 < 0.001

SSD 2 2.11 0.1215 5 1050.23 < 0.001

Height 2 1376.17 < 0.001 5 2811.26 < 0.001

SeedMass 2 14.19 < 0.001 5 1350.92 < 0.001

LeafArea 2 5.3 0.005 5 948.6 < 0.001

SLA 2 187.61 < 0.001 5 509.21 < 0.001
Abbreviations: df = degree of freedom, F = F-statistic, and probability value.

FIGURE 5    |    Boxplot for the six traits grouped by biome and CWM aggregation scheme. For each trait (A–F) and biome (highlighted by boxplot 
colour), the three columns are, from left to right, vegetation-based CWM traits (first histogram); pollen-based CWM traits fine (middle one) and 
coarse (last one). Letters above boxplots highlight the two-way ANOVA and Tukey's test significance clustering (p-values for each test in Table S4).
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except for the leaf area and the SSD due to low trait coverage for 
these two traits. However, the biome effect on the CWM trait 
distributions was always stronger than the sample type effect.

3.4   |   CWM Traits and Functional Space

The first two PCA axes account for 69%, 87% and 89% of the 
total variance of the CWM trait values for ACAV, ACASP-
fine and coarse, respectively (Figure  6). Points are clustered 
by biome assignment (Figure  6D): taiga sites are grouped in 
the upper left corner, temperate forests are in the upper right 
one and mountain grasslands are in the lower left one. Points 
are generally spread out for steppes and deserts, with nega-
tive and positive PCA1, respectively. Desert sites are associated 
with high SSDCWM, low SLACWM, and Nleaf-CWM; mountain 
grasslands with low plant height and seed mass as opposed 
to temperate forests. For pollen surface samples, the sites fol-
low the same organisation for both ACASP-fine and ACASP-
coarse (Figure  6B,C). Mountain grassland sites are clustered 
in the lower right corner linked with low seed mass and 
PlantHeightCWM; by contrast, the temperate forests are char-
acterised by high seed mass and PlantHeightCWM (upper left 
corner). Deserts and steppes are not well clustered and distin-
guishable, and unlike vegetation CWM, the taiga sites cluster 
around low values of SLACWM and Nleaf-CWM. Comparisons be-
tween the PCA results for fine and coarse pollen types using 
Procrustes analysis and PROTEST (Figure  S5) show similar 
functional spaces with a high correlation between PCA-fine 
and PCA-coarse (PROTEST correlation = 0.97).

To assess the consistency of pairwise relationships observed be-
tween pollen and vegetation-based CWM values, we compared 
the correlation coefficients (r) for each pairwise relationship, 
both for the CWM pollen types fine (Figure  7A) and coarse 

(Figure  7B). For some relationships, r values are very similar 
(points close to the 1:1 line). Still, the absolute r values tend to 
be higher for pollen than for vegetation-based relationships, as 
shown by the regression line drawn through the data points. 
Importantly, the direction and strength of most relationships 
are conserved between pollen and vegetation. Only 20% of the 
relations are not conserved in direction (i.e., LeafAreaCWM 
vs. HeightCWM and SSDCWM and Nleaf-CWM vs. SeedMassCWM, 
which are weak relationships overall identified as triangles in 
Figure 7).

4   |   Discussion

At the biogeographic scale of Arid Central Asia, we show that 
(1) the functional signatures of pollen and vegetation are com-
parable, for key traits structuring the plant phenotype, both at 
the levels of taxa and communities, and (2) the pollen aggre-
gation scheme (Fine or Coarse) has little impact on this func-
tional signature. These points are the first step to answer the 
following question: Can a trait-based approach, as applied to 
pollen, be used to help improve past vegetation and climate 
reconstructions? These points are further discussed below.

4.1   |   Functional Signatures of Pollen 
and Vegetation in ACA

For taxa found in vegetation plots of ACA, we found functional 
spaces consistent with the global plant spectrum of plant 
form and function (Díaz et al. 2016): a first axis of variation 
describing a contrast between tall, heavy-seeded plants and 
short plants with small seeds, and a second one between soft  
leaves (high SLA) rich in nitrogen and thicker, leathery 
leaves poor in nitrogen (leaf economic spectrum; cf. Wright 

FIGURE 6    |    Principal Component Analysis of the variance of the six main traits applied on CWM trait values calculated on vegetation plots (A) 
and surface pollen samples with pollen type fine (B) and coarse (C) aggregation scheme. The number of sites (vegetation plots or pollen surface sam-
ples) is indicated on the lower left corner of each panel. The thickness of the arrows varies with the relative contribution of each CWM trait. The 
distribution of the sites is shown as marginal densities above and on the right-hand side of each panel.
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et  al.  2004). These two axes of variation were also found at 
the community level. In this area, grasslands are well rep-
resented, confirming the analysis conducted worldwide by 
Bruelheide et al. (2018).

Despite the methodological limitations that are discussed in 
the next section, the organisation of traits in the pollen-based 
phenotypic space was broadly similar to that obtained for ex-
tant vegetation. Overall, it appears CWM trait correlations 
become tighter as coarser descriptions of the vegetation are 
used: the values of correlation coefficients increase from veg-
etation to fine and coarse, enhancing the impact of dominant 
pollen types in the functional space (trait values of rare taxa 
weightless).

However, not all CWM traits can be considered with equal 
reliability when applied to past pollen climate and vegeta-
tion reconstructions since we found substantial differences 
between pollen and plant variance for several CWM traits. 
In Table 3, the sample type has a limited impact on SSDCWM, 
LeafAreaCWM, SeedMassCWM (F < 15), a slightly stronger im-
pact on SLACWM and Nleaf-CWM (F < 400), and a strong impact 
on PlantHeightCWM. SSD and seed mass traits present a lit-
tle variance when aggregated at fine or coarse pollen types 
(Figure  3), even at family-dominant species (Fabaceae, 
Amaranthaceae, Poaceae and Cyperaceae). In contrast, 
PlantHeightCWM and Nleaf-CWM have to be carefully inter-
preted whenever applied in past pollen sequences (particu-
larly Nleaf-CWM with Fbiome < Faggregation, Table 3). For Nleaf-CWM, 
discrepancies between pollen and plant values may be the 

consequence of the limited number of values for this partic-
ular trait. For PlantHeightCWM, discrepancies cannot be ex-
plained by weak trait coverage, and this trait has been used 
for European Holocene reconstructions, showing a dramatic 
decrease associated with the onset of agriculture and climate 
cooling (Veeken et  al.  2022). The major difference between 
Europe and ACA PlantHeightCWM comes from the pollen 
types. In ACA, pollen samples are widely dominated by her-
baceous pollen, leading to a higher CWM traits bias since her-
baceous pollen are mostly identified at the family level rather 
than the species or genus level for arboreal pollen.

At the regional scale of ACA, we observe a structured trend in 
the distribution of pollen-based CWM trait values, compara-
ble to that found in North America, for pollen-based (not ag-
gregated at the level of assemblages) trait distribution (Brussel 
and Brewer 2021). As expected, CWM trait values were sub-
stantially different among biomes. This is especially true for 
PlantHeightCWM, SeedMassCWM and SSDCWM, corresponding 
to differences between forested and open land ecosystems. 
This agrees with observed plant trait distributions within local 
landscapes (Lavorel et  al.  2011) and biomes (Mucina 2019; 
Boonman et al. 2022). LeafAreaCWM, Nleaf-CWM and SLACWM 
differed (1) within forest types, between cold forests on the 
one hand (taiga and conifer forests) and broadleaf forests on 
the other hand, and (2) within open ecosystems, between des-
erts on the one hand and grasslands on the other hand. These 
observations are consistent with the worldwide distributions 
of competitor, stress-tolerant, and ruderal species across bi-
omes (Pierce et al. 2017).

FIGURE 7    |    Comparison of Pearson correlation coefficients (r) for CWM traits correlation between CWM vegetation-based and fine (A) or coarse 
(B) pollen aggregation scheme. The four most consistent (high r values) and least consistent (low r values) relationships are labelled on each panel. 
The central red squares denote relationships with low r values (r < 0.5). If at least one of the r-values were not significant (i.e., p-value > 0.001, the 
relation is shown as a triangle.

 13652699, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.15100 by M

artin L
uther U

niversity H
alle-W

ittenberg, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 17 Journal of Biogeography, 2025

4.2   |   Methodological Issues

4.2.1   |   Taxonomic Checklist and Trait Coverage

Working with a reliable plant checklist is the very first step in 
plant geography and ecological studies (König et al. 2017). Such 
a checklist did not yet exist for the ACA (Li, Tojibaev et al. 2020) 
because (1) floras for this geographic area are published in local 
languages, making it difficult to collect and clean up synon-
ymy (Li, Tojibaev et al. 2020), and (2) the actual floristic diver-
sity in ACA, which presents an important level of endemism 
(Nowak et al. 2020), is currently understudied. This results in 
a lack of data for deserts (especially Iranian deserts, Karakum, 
Kyzylkum, and Taklamakan, which represent 43% of the total 
ACA surface) and an over-representation of plants within the 
borders of Russia (mainly the southern Siberian area and the 
Caucasus) and the mountain ranges (Elburz, Tian Shan, Pamir, 
Kashmir, Himalaya…) mainly covered by forest (19% of the ACA 
surface is covered by forested biomes).

To overcome this knowledge gap, it appears that the utilisation 
of occurrences combining GBIF, BIEN, and sPlot here is the best 
way to obtain an available checklist (Robertson et al. 2014), and 
although there are clearly gaps in databases for the ACA area 
(Meyer et al. 2016). This issue has to be considered for many, if 
not all, biogeographical studies, as plant checklists are always 
estimated and strongly depend on the geographical boundaries 
set for each case study. The checklist combined in this study will 
be used as a basis for further studies on ACA.

The accuracy with which the functional structure of communi-
ties is assessed depends on the coverage in trait data (Pakeman 
and Quested 2007; Borgy et al. 2017). Although we used a gap-
filled version of the trait database (Schrodt et al. 2015), this cov-
erage remained relatively low for some traits and/or taxa lists. It 
is difficult to assess how much this affected our results. However, 
an important finding is that over the whole plant list used, the 
organisation of variables in the functional spaces obtained using 
the “raw” or the “gap-filled” versions remained relatively stable.

4.2.2   |   Spatial Scales of Pollen and Vegetation Samples

The pollen composition at a given site depends on pollen pro-
duction and dispersion from an area extending beyond a local 
vegetation plot (Prentice 1985; ter Braak et al. 1993; Sugita 2007; 
Salonen et  al.  2014; Gillison  2019). While a vegetation plot is 
generally very local (less than 50 m2 in Bruelheide et al. 2018), 
a pollen surface sample captures pollen production from a 12 to 
1000 m diameter circle (distance inferred by stochastic dispersal 
models, Theuerkauf et al. 2016). In airborne pollen studies, the 
dispersal distance is estimated to be several kilometres (Maya-
Manzano et al. 2017). Furthermore, the amount of pollen pro-
duced and its dispersion in the environment depend on the taxa 
(Theuerkauf et  al.  2016; Marquer et  al.  2017; Maya-Manzano 
et  al.  2017; Chevalier et  al.  2020), the landscape openness 
(Pelánková and Chytrý 2009), and the surrounding land cover 
homogeneity (Maya-Manzano et al. 2017). The representative-
ness differences between wind- and insect-pollinated pollen or 
local to long-spreading pollen are considered the main limitation 
of the pollen-based functional approach (Carvalho et al. 2019). 

However, in this study, the correction of this bias using relative 
pollen productivity estimates does not improve the method.

The human impact on vegetation distribution, including grazing, 
introduction of ornamental species, and invasive species, also 
mitigates the pollen sample-vegetation plot match (van der Sande 
et al. 2019; Dugerdil et al. 2021). Such differences might explain 
some differences observed between vegetation-based and pollen-
based CWM trait values (Carvalho et al. 2019; Cleal et al. 2021).

One limitation of our study relates to sampling differences be-
tween vegetation and pollen: the two datasets are unbalanced in 
size (much more vegetation plots than pollen assemblages) and in 
spatial organisation of the data (most pollen and vegetation plots 
are not in the same location). This heterogeneity restricts, to some 
extent, the possibility of statistical quantitative comparisons of 
our data, especially in the case of multivariate analyses, based on 
matrices of heterogeneous sizes. However, the pollen-plant func-
tional trait linkage remains permitted at a biogeographic scale 
(Brussel and Brewer 2021) since the economic spectrum of traits 
is universal for plant taxa (Díaz et  al.  2016) and communities 
(Bruelheide et al. 2018) and since pollen is a good proxy of vege-
tation communities (Sun et al. 2020) permitting reliable quanti-
tative reconstruction of vegetation (Prentice 1985; Sugita 2007).

4.2.3   |   Pollen Aggregation Scheme

Most pollen databases provide data in both an ad hoc pollen-
type referential designed by the author of a particular study 
(generally fine; highest level of pollen identification) and a ho-
mogenised pollen-type referential (generally coarse, common 
pollen types; Davis et al. 2020). On the one hand, pollen trait 
values will likely be closer to those obtained for correspond-
ing vegetation plots if the level of determination is closer for 
both assessments (i.e., fine pollen types and taxa in plots) and 
does not derive from an aggregation of several pollen types 
(Finkelstein et al. 2006). On the other hand, pollen fine aggre-
gation is generally less reliable than coarse aggregation since 
the identifiable pollen structures are not distinct enough to 
reach the level of taxa identification and also because it heav-
ily relies on the skills of the person who identifies the pollen 
(Goring et al. 2013). Here, we show that the ACASP-fine and 
ACASP-coarse phenotypic spaces are very similar (variables 
in the first plane of PCAs and percentage of total variance ex-
plained are equivalent for fine and coarse without the impact 
of the different trait coverage). The correlations between traits 
(with enough available trait coverage) are not affected by the 
aggregation scheme either: both the leaf economic (Wright 
et al. 2004) and overall plant spectra (Díaz et al. 2016) appear 
well conserved for both schemes.

At the level of pollen assemblages and vegetation plots, bivariate 
relationships and multivariate analyses involving CWM traits 
show little difference between the fine and coarse schemes. Only 
the SSDCWM shows a difference between fine and coarse, espe-
cially with fine, which is closer to the PCA performed on the 
vegetation plots than coarse.

We thus conclude that the fine or coarse scheme describes 
equally well the plant functional space in the pollen sample. 
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This contrasts with the conclusion put forward by Finkelstein 
et  al.  (2006), stating that a fine aggregation should preferably 
be used in plant functional biogeography. This study was con-
ducted in the boreal forest, however, where the pollen identi-
fication of a few trees was easier than in the species-rich ACA.

4.2.4   |   Taxonomic Level of Pollen Aggregation

In pollen studies, data from different taxonomic levels can be 
retained (De Klerk and Joosten  2007). It ranges from conserv-
ing all plant observations (Brussel and Brewer 2021), only well-
covered families and genera (trait coverage > 30%; van der Sande 
et al. 2019), to single representative species (Connor et al. 2018). 
This raises issues for trait assignment (Barboni et al. 2004) at higher 
taxonomic levels. For example, in a study in the Andes-Amazon 
area, van der Sande et al. (2019) found no significant difference be-
tween family and genus average trait values, which could be due to 
the selection of traits only measured from Neotropic plants in a for-
ested environment (and thus for very homogeneous plant forms; 
these authors also considered that a pollen-aggregated trait value 
was reliable only if derived from at least three different species). 
This is not the case in ACA, where a mosaic of open and closed 
ecosystems is found. Defining narrower geographic boundaries 
for ACA would have certainly excluded the majority of tall trees 
of the Fabaceae family, which are mainly localised in the eastern 
Chinese lowlands. This would have led to a substantial reduction 
of plant height value assessed for this family since in ACA steppes 
and montane grasslands, Fabaceae are mainly crawling plants. 
Using a Bayesian modelling approach of pollen-type distributions 
instead of average values could help address this issue (Veeken 
et al. 2022).

4.3   |   Perspectives

The past pollen signal is the most powerful tool to track vegeta-
tion changes through time, as it is the only temporally continu-
ous, taxonomically accurate, and quantitative proxy that exists, 
at least for Quaternary studies (Prentice 1988; Fyfe et al. 2009; 
Birks 2020). It also allows one to record local and regional veg-
etation signatures (Carter et al. 2018). At a biogeographic scale, 
we have shown that the taxonomic discrepancies between pollen 
types and vegetation taxa are overcome by the use of plant traits, 
a conclusion also reached by Brussel and Brewer  (2021) at the 
continental scale and van der Sande et al. (2021) at the local scale. 
This conclusion supports the proposal of Goring et al. (2013) to 
use functional traits to reconcile discrepancies between pollen 
and plant taxa (De Klerk and Joosten 2007; Birks et al. 2016).

This new approach is very promising and allows one to bet-
ter understand why and how vegetation functional structures 
have changed through time (Adeleye et  al.  2023). In Adeleye 
et al. (2023), the functional adaptations of vegetation were high-
lighted by comparing functional diversity reconstructions with 
independent climate reconstructions. At the local scale of a 
peatland, the same conclusions on the main drivers of long-term 
population changes have been reached using functional traits 
(Gaüzère et al. 2020; Connor et al. 2018). Community traits also 
allow the detection of human pressure thresholds when the 
functional response decorrelates with climate reconstructions 

(van der Sande et al. 2019). This promising approach could also 
be applied to airborne pollen data, which also reflects regional 
vegetation (Smith et al. 2014; Myszkowska et al. 2023).

We have shown that functional signatures of surface pollen and 
vegetation are broadly similar in the ACA as in other study areas 
of the world (Brussel and Brewer, 2021; van der Sande et al. 2021). 
Climate control on key community traits is also well established 
(Bruelheide et al. 2018). The next step will thus be to open-up the re-
lationships between pollen-based CWM traits and climate param-
eters. Provided that these tests are convincing, this can lead to (1) 
powerful trait-based biome reconstructions (Boonman et al. 2022) 
improving the PFT-based classical biomization approach  
(Harrison et al. 2010; Sun et al. 2020) and (2) tracking past changes 
in ecosystem services (Lavorel et al. 2011) to improve ecosystem 
conservation (Barnosky et al. 2017). It will also improve (3) climate 
reconstructions based on PFTs, such as the inverse modelling 
method (Chevalier et al. 2020) using more accurate CWM traits. 
Finally, it will permit verification of the accuracy and reliability of 
pollen-based climate reconstructions (Harrison et al. 2010) and fa-
cilitate the selection of the best model (Peyron et al. 2017; Salonen 
et al. 2019; Dugerdil et al. 2021) by checking the vegetation strate-
gies changes in parallel with climate reconstructions.
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section of the manuscript. The full R script and figures are available 
on Github. The repository link is https://​github.​com/​Lucas​Duger​dil/​
Trait​Pollen.
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