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INTRODUCTION

Ecologists are frequently interested in how the composition
of species in a community changes across space or time
(Daskalova et al., 2020; Magurran et al., 2019; Scheiner
et al., 2011). The degree of change in species composition
in assemblages across space or time is often referred to as
pB-diversity: localities or time periods with fewer species in
common have higher p-diversity. Most conceptual expla-
nations of p-diversity evoke processes that generate
nonrandom spatial or temporal patterns of species aggre-
gation (Leibold & Chase, 2018). Aggregation here refers to
clustering whereby individuals occur near other individ-
uals of the same species in time and/or space. For
instance, two of the most discussed mechanisms underly-
ing patterns of p-diversity are environmental filtering and
dispersal limitation (Legendre et al., 2005; Leibold &
Chase, 2018; Vellend, 2016). Both of these mechanisms
increase aggregation of species distributions via conspecific
clustering in space or time increasing f-diversity.
Although most attention has been focused on
the nonrandom mechanisms underpinning p-diversity,
B-diversity can also reflect random sampling effects of
individuals and species taken from multiple points in space
or time. Imagine we collect a sample of 40 individuals within
a region or time period that supports up to 50 different
species. Even in the improbable case that the numbers
of individuals of each species are exactly the same
(completely even), at least 10 species will be excluded from
our sample because of the limited number of individuals.
If we then compare that sample to another from a dif-
ferent location in space or time, a different set of
10 (or more) species will be excluded simply due to
random sampling effects: the species composition of
the two samples will differ entirely due to incomplete
sampling. This phenomenon has been variously termed
a “sampling effect” (e.g., Adler et al., 2005), a “rarefaction
effect” (e.g., Palmer et al., 2008), and the “random place-
ment model” (e.g., Coleman et al., 1982). The core idea is
that the number of species observed in a sample is
constrained by the number of individuals in that sample.

versus natural riparian areas. The primary strengths of our approach are that
it provides an intuitive visual null model for expected patterns of biodiversity
under random sampling that allows integrating analyses across o-, y-, and
B-scales. Importantly, the method can accommodate comparisons between
communities with different species pool sizes, and it can be used to examine
species turnover both within and between meta-communities.

aggregation, patchiness, rarefaction, sampling effects, scaling, species turnover,
species-abundance distribution

Returning to our thought experiment, if the species have a
more realistic abundance distribution, with many individ-
uals of a few common species and many species with few
individuals (i.e., rare species), these sampling effects on
B diversity can be strong (Chase et al., 2018; Engel
et al., 2021; Kraft et al., 2011; McGlinn et al., 2019). This
example emphasizes that spatial or temporal § diversity is
potentially underlain by two factors: (1) the nonrandom
turnover of species, due to ecological mechanisms such as
environmental filtering or dispersal limitation; and (2) the
random turnover of species due to incomplete sampling,
especially of rare species (i.e., sampling effects).

Most metrics of p-diversity conflate variation from both
random sampling effects and spatially nonrandom mecha-
nisms (Chao et al., 2023; Chase et al., 2018; Engel et al., 2021;
McGlinn et al., 2019; Stegen et al., 2013). This means that the
same observed change in p-diversity may be due to different
underlying mechanisms, sometimes referred to as a
“many-to-one problem,” which are common in ecological
studies (Frank, 2014; Scholes, 2017). Specifically, random
turnover can occur where there are changes/differences in
other nonspatial components of diversity, such as the species
abundance distribution and size of the regional species pool
and the total number of individuals. To illustrate this, con-
sider the three hypothetical scenarios in Figure 1 using
Whittaker’s (1960) p-diversity (B =7y/&, where y is the
regional, and « is the average of local diversity). In each
scenario (Figure 1a—c), a shift in a different component of
community structure results in a doubling of Whitaker’s
B-diversity (from 1 to 2). In the first two cases
(Figure 1a,b), p-diversity increases due simply to ran-
dom placement of individuals resulting either from a
shift in the species-abundance distribution (SAD), for
example, a decrease in evenness or, from a decrease in
the total number of individuals (N). In the third case,
the same magnitude of shift in fs is due to an increase
in conspecific aggregation (Figure 1c). This
“many-to-one” effect is particularly problematic when
trying to link changes in p-diversity to hypotheses that
evoke changes to conspecific clustering due to environ-
mental filtering or dispersal limitation. To link these
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FIGURE 1 Cartoon communities that illustrate how random sampling effects and nonrandom spatial effects can result in identical

values of Whittaker’s p-diversity (fs), where @ is average sample richness across plots (small boxes) and y is total species richness in a site

(large boxes). The different symbols represent individuals of different species. Panels (a) and (b) illustrate changes in community structure

that are consistent with a random sampling model in which spatial f§ increases either (a) because the regional species-abundance

distribution (SAD) is less even or (b) because there are many fewer individuals. Panel (c) illustrates how a spatially nonrandom process such

as environmental filtering results in conspecific aggregation producing an identical value of pg.

mechanisms to p-diversity, it would make sense to focus
on patterns of pB-diversity that reflect only changes in
conspecific aggregation after controlling for changes in
N or the SAD (which we refer to as sampling effects).
One consequence of p-diversity metrics confounding
both random and nonrandom variation is that most
B-diversity metrics can increase as aggregation decreases
if N is decreasing or the SAD is becoming less even, for
example. It is important to note that as Figure 1 demon-
strates, the SAD, N, and aggregation effects cannot be
disentangled completely (this is particularly true when
the number of individuals and/or the number of samples
is small). For example, the random removal of individ-
uals inevitably also leads to a change in the spatial
point pattern and SAD seen at the sample scale
(Figure 1b). Therefore, we propose a metric that iso-
lates aggregation effects after controlling for SAD and
N effects. Priority is given to SAD and N effects
because they provide a more parsimonious null

explanation (sampling effects) for why species com-
position has changed.

It is important to emphasize that sampling effects
potentially influence all B-diversity metrics. Any metric
of pB-diversity that does not explicitly consider the process
of sampling is sensitive to sampling effects. So regardless
of whether turnover is calculated using presence—absence
versus abundance data, is examined in space or time, or
using pairwise versus multisite metrics, if the goal of the
analysis is to link patterns of compositional change to
mechanisms that generate nonrandom conspecific occur-
rence patterns, then sampling effects should be controlled
for in the measurement of B-diversity. Other authors have
recognized this and proposed a randomization algorithm
to try to control for sampling effects on p-diversity (Chase
et al., 2011; Kraft et al., 2011; Myers et al., 2013, 2015).
Yet, continued debate as to exactly how to develop those
randomizations, and just what the deviations mean
(Kraft et al., 2012; Qian et al., 2012, 2013; Tucker
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et al., 2016; Xu et al., 2015), indicates that a more gen-
eral solution is necessary.

In this paper, we describe a framework for quantify-
ing the nonrandom contribution of species compositional
differences across samples to f-diversity. This framework
can be applied to any question related to measuring
compositional variation (i.e., -diversity) across samples,
whether it be within a given (relatively homogenous)
meta-community, across an environmental gradient, or
through time. The approach allows us to differentiate the
contribution of nonrandom species compositional shifts
from the effects of sampling properties due to random
placement to changes in f$-diversity. As a result, we can
quantify and compare compositional shifts among sam-
ples through space or time, and potentially relate these to
other features of the system (e.g., changing spatial or
environmental conditions). Here, our primary purpose is
not to review and/or unify all metrics and measures of
pB-diversity, nor to advocate for a single superior metric,
both of which have been attempted (Chao et al., 2012,
2023; Tuomisto, 2010). Rather, we promote a framework
for measuring the relative influence of sampling and
nonrandom associations that underlie p-diversity among
samples, regardless of whether it is measured within
or across landscapes, through time, or any combination
thereof. Furthermore, rather than using different concepts
and tools, we show how a single conceptual framework
can identify the key components underlying variation in
species composition.

First, we describe a simple framework that uses rare-
faction curves to decompose p-diversity into components
due to sampling effects, and those that are due to
nonrandom aggregations of species. Second, we show
that the framework can be applied to multiple, related
questions about how species composition varies across
samples.

A UNIFIED FRAMEWORK FOR
DISSECTING THE NONRANDOM
CONTRIBUTION OF SPECIES
COMPOSITIONAL VARIATION TO
B-DIVERSITY IN SPACE AND TIME

The components of our framework are not new. The
framework is based on a long history of rarefaction and
accumulation curves that depict how species numbers
increase with increasing sampling effort (Preston, 1960;
Sanders, 1968). For example, Kobayashi (1982, 1983)
showed how spatial aggregation could be quantified
from rarefaction curves by comparing subsets of spa-
tially explicit samples to the entire range of spatially ran-
domized samples. Likewise, Gotelli and Colwell (2001)
showed how comparing accumulation or “collectors” curves

that retain spatial information about the distributions of
individuals to individual-based rarefaction curves could
provide an indicator of the degree to which aggregation
influenced spatial patterns of species accumulations (see
also Cayuela et al., 2015; Chase et al., 2018; Chiarucci
et al., 2009; Crist & Veech, 2006; He & Legendre, 2002;
McGlinn et al., 2019). Plotkin and Muller-Landau (2002)
demonstrated analytically that species turnover is strongly
linked to variation in the SAD and conspecific aggregation.
Finally, Olszewski (2004) explicitly discussed how the
comparisons between spatially explicit and randomized
rarefaction curves could be used as an index of p-diversity
(see also Crist & Veech, 2006; Dauby & Hardy, 2012).
These perspectives have been more recently formalized
using individual-based rarefaction curves (and related
diversity curves) to disentangle nonrandom structure from
random placement underlying p-diversity within a given
set of environmental conditions (i.e., a meta-community)
(Chase et al., 2018; Engel et al., 2021; McGlinn et al., 2019,
2021). Specifically, Engel et al. (2021) developed an
approach that uses coverage-based rarefaction to compare
meta-communities at similar levels of sample complete-
ness. Here, we generalize this approach and apply it to
questions examining B-diversity among different kinds of
samples, such as sites across a strong environmental gradi-
ent, or when quantifying temporal $-diversity.

Our framework is designed for one of the most com-
mon data types available to community ecologists—a
sample-by-species matrix. Each sample contains a vector
of abundances of all species sampled from a given assem-
blage and comes from a given local site. Samples can be
collected across multiple sites (a site-by-species matrix) or
across multiple time periods (a time-by-species matrix), or
a combination of the two. For simplicity, we illustrate the
different steps of the approach with samples taken from
two spatial locations or time points in Figure 2, but it can
be generalized to any number of samples. We assume that
the communities being compared are sampled in such a
way that they have the same sample effort, that is, the spa-
tial and temporal grain, extent, and sample arrangement
are equal across communities (or can be standardized to
such). Here, we define a single sample as the a-scale, and
the sum of samples as the y-scale; however, other accumu-
lation schemes are also possible, so long as the a-scale is a
subset of the y-scale.

Step 1: Create a rarefaction curve for the
sum of all samples: y-scale

If we pool the two (or more) samples, we can calculate the
y-scale rarefaction curve (solid, thick black line in Figure 2).
This curve shows the number of species for a random
sample of individuals from the whole meta-community,
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FIGURE 2 Individual-based rarefaction curves at the o- and
y-scales. Solid thin black lines depict two a-scale curves, with their
average shown by the dashed thick gray line; the thick solid black
line shows the y-scale curve, which is calculated by pooling the two
a-scale samples. Whittaker’s P is calculated as the ratio of yg (total
species richness) and o (average sample richness). In contrast,
coverage-based P controls for the number of individuals sampled
(n) by using the ratio of y5, and «s,. When comparing
meta-communities, n should be chosen such that it provides a
target degree of coverage that adjusts for variation in the regional
(species pool) species-abundance distribution (eq. 5 from Engel

et al., 2021).

or time series; for any sample of n individuals, S, is the
expected number of species in that sample. This type
of rarefaction curve is sometimes referred to as an
individual-based rarefaction curve or random sampling
model. The curve and its variance has been derived
analytically for sampling without replacement (Heck
et al., 1975; Hurlbert, 1971; see Coleman et al., 1982
for formulation for sampling with replacement). Here,
because we calculate rarefaction using all samples,
the y-scale curve represents a “null expectation” of the
number of species for n individuals, when all individ-
uals of all species occur randomly across the samples
(in space or time).

Step 2: Create a rarefaction curve for each
individual sample and average them:
o-scale

Next, we calculate the rarefaction curves for the individ-
ual samples (Figure 2, solid thin black lines) and average
them to obtain the a-scale rarefaction curve up to the
number of individuals (n) that provides the target level
of coverage (dashed thick gray line; Engel et al., 2021).
Here, coverage refers to how close the y curve has come
to a hypothetical asymptote (i.e., it is an estimate of sam-
ple completeness; Chao & Jost, 2012).

Step 3: Compare the o and y-scale curves to
estimate the p-scale patterns

The classical Whittaker’s fs metric is calculated as y/a,
where o is the average sample richness
(Whittaker, 1960). Within our framework, these values
are represented by the ends of the rarefaction curves
(i.e., the average number of species per site [a], and all
species observed across all sites in a region or time points
[y], Figure 2).

To estimate nonrandom spatial structure, we compute
the ratio of ys and s, (dashed line), which we call
coverage-based p diversity (Bc; Engel et al., 2021). This
metric standardizes for sampling effects because we use
the same value of n for the average a- and y-scale rarefac-
tion curves. As noted above, the value of n is chosen to
meet a particular level of coverage it provides at the
y-scale.

To illustrate the behavior of these metrics, we simulated
four scenarios similar to those shown on Figure 1, and cal-
culated ps and pc (Figure 3). All scenarios have 50 species
in the regional pool, but they vary from the starting commu-
nity in either their evenness, total number of individuals, or
conspecific aggregation. When individuals of all species are
distributed randomly and only the evenness of the SAD
decreases or the total number of individuals decreases, we
see that the average a-scale curve (dashed gray line) falls
directly on top of the y-scale curve (solid black line,
Figure 3e-g), and low evenness and fewer individuals are
associated with increases in fg, but pc is equal to 1 in both
cases. However, when we add nonrandom structure via spe-
cies aggregation, the a- and y-scale IBR curves diverge, and
both metrics are greater than 1.

If species are randomly distributed among sites, then
species will likely be sampled at all sites, and the a- and
y-scale curves will fall on top of each other. However, if
species display conspecific aggregation (i.e., individuals
within a species are clumped) such that they are
nonrandomly distributed in space or time, then the a-scale
curve will fall below the y-scale curve (as in Figure 3h),
because new species will be encountered across different
sites or time points due to the within-species aggregation,
pulling the o-scale curve down relative to the y-scale
curve. The resulting ratio of yg and as, becomes larger
than unity (fc>1) due to intraspecific aggregation
among sites or time periods. Thus, pc reflects the degree
of nonrandomness in the spatial or temporal distribution
of species within the domain of (0, o).

The example in Figure 3d shows a case where there is
a nonrandom distribution of species composition among
samples due to conspecific aggregation, and fc > 1.
However, it is also plausible that the a- and y-scale
curves could completely overlap, in which case we
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FIGURE 3 Quantitative illustration that g responds to changes in evenness and the total number of individuals, whereas ¢ only
responds to changes in within-species aggregation. Simulated communities are shown in panels (a-d) in which different colored dots
represent individuals of different species. The landscape (y scale) is divided into four quadrats (o scale, dashed gray lines). Panels (e-h) show
the corresponding rarefaction curves associated with each artificial community for the y- (solid black line) and average o-scales (dashed gray
line). Inset on these panels is the value of each p diversity metric described. Note that p = 1 means species composition does not vary among

samples.

would conclude that even though there is f-diversity
(i.e., ps> 1), this is simply due to random placement
effects (B¢ = 1). Finally, species can also show conspe-
cific segregation (i.e., individuals within a species are
overdispersed more than random), where the a-scale
curve falls above the y-scale curve, and fc <1 (not
shown).

One additional benefit of pc (that is not illustrated in
Figure 3 but described in detail in Engel et al., 2021) is
that this metric is unbiased when comparing p-diversity
across meta-communities that differ in the size of their
species pools (e.g., in temperate vs. tropical environ-
ments, or across strong environmental gradients). This is
accomplished by computing ¢ within each meta-community
at the same level of sample coverage or completeness
(Chao & Jost, 2012). In effect, ensuring that y-scale sample
coverage is the same for all meta-communities means that
the value of n (the number of individuals for which yg,
and o, are calculated) varies among meta-communities.

To summarize, traditional measures of variation in
species composition across area or time (ps) are shaped
by both random and nonrandom sampling processes, and
we can isolate the nonrandom structure in space or time

in determining that scaling by calculating pc (Table 1).
Furthermore, we can evaluate these p-diversity measures
for a wide variety of questions concerning species com-
positional shifts in space and time. We provide R code
to calculate classical ps and B¢ (as well as several other
f metrics which we do not show here for simplicity)
in mobr::calc_beta_div (McGlinn et al., 2024). The
target level of coverage can be specified using the
“C_target_gamma” argument.

ONE APPROACH, MANY
QUESTIONS: SOME EXAMPLE
APPLICATIONS

There are several benefits to our approach. Rarefaction
curves provide an intuitive visualization of o- and
y-diversity patterns, the shape of the SAD, and the degree
of variation in species composition that exists between
samples. Moreover, the same family of measures can be
used to estimate p-diversity, and to differentiate between
random placement and nonrandom structure leading
to biodiversity scaling for multiple related questions.
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TABLE 1 Multiplicative f diversity metrics and the effects that they capture.

Metric No. individuals sampled (n) Effect controlled for Effects captured

Bs (Whittaker’s) Regional n versus average local n None SAD, N, and aggregation

Regional n equals local n and
corresponds to a target level

of coverage. Across meta-communities,
coverage is fixed but n may vary.

Bc (coverage)

N and SAD (evenness and
size of pool)

Aggregation

Note: Species abundance distribution (SAD) effects are due to changes in species evenness and/or the size of the species pool, N effects refer to changes in
richness due to variation in the number of individuals sampled, while aggregation effects refer to changes in richness due to variation in how individuals are

spatially or temporally distributed (clumped, random, or overdispersed).

We illustrate some of this potential using a case study.
We examined compositional variation in bird diversity
between natural and engineered riparian habitats using
a subset of data from the Central Arizona-Phoenix
Long-Term Ecological Research site (Warren et al., 2022).
We focus on riparian habitats where water permanence
was perennial, and contrast sites in engineered settings
(including a landscaped riparian preserve, a constructed
wetland, and a water retention area along the Salt River,
each surrounded by urban or agricultural areas) with
those in more natural environments (located along peren-
nial river reaches and surrounded by desert). Point count
surveys with a 40-m fixed radius were conducted by
trained observers that recorded all birds seen and heard;
we analyzed samples collected in spring between 2001
and 2016. Before calculating our metrics, we ensured
that sample effort was consistent across all sites and
years; this meant three sites were retained from each
habitat (engineered and natural), and data from 2003
and 2009 were discarded due to missing samples.

Using these effort-standardized data, we address four
questions examining how random and nonrandom com-
ponents contribute to patterns of p-diversity through space
and time: (1) Does the total spatiotemporal variation in
community composition differ between engineered and
natural habitats? (2) How does spatial variation in com-
munity composition change through time in each of the
two habitats? (3) Does the temporal variation in commu-
nity composition differ between engineered and natural
habitats? (4) Are there compositional differences between
(rather than within) engineered and natural habitats, and
do any differences change through time?

(Q1) Does the total spatiotemporal
variation in community composition differ
between engineered and natural habitats?

We used all site-year combinations within each habitat to
examine total spatiotemporal variation in community
composition. y-Scale rarefaction curves combine all the

samples across space and time within habitats, and show
that the engineered habitat had more individuals, but fewer
species than the natural habitat (Figure 4a). To examine spa-
tiotemporal variation, we defined the o-scale as a single
site-year combination within a habitat (Figure 4a inset
shows a- and y-scale curves). The greater number of species
in the natural habitat compared with the engineered habitat
resulted in higher s in natural habitats. However, this
pattern was reversed for P when the influence of
sampling effects was removed from the calculations
(Figure 4b), meaning that aggregation in time and space
was similar in the engineered and natural habitats.

(Q2) How does spatial variation in
community composition change through
time in each of the two habitats?

Figure 5 shows the pattern of spatial p-diversity in
engineered and natural habitats through time. g
increased through time for the natural sites, indicating
that those communities were becoming more different
from one another through time (opposite to the oft
expected pattern of biotic homogenization, where com-
munities become more similar through time and spatial
diversity declines). There was no similar trend in spatial
Bs of the engineered sites, and by the end of the time
series (but not the beginning) the engineered sites had
lower levels of fs than the natural sites. However, this
pattern qualitatively changed when the influence of
nonrandom patterns was explicitly considered. fc indi-
cates that species became less aggregated within
engineered sites through time, suggesting biotic homoge-
nization after random-placement mechanisms were con-
trolled, and no change in B¢ in the natural habitat.
Combined, these results suggest the apparent pattern of
increasing differentiation in the natural habitat was
mostly driven by sampling effects (e.g., altered numbers
of individuals, and/or rare species), and that there was a
weak decrease of within-species aggregation across sites
in the engineered habitat.

85U8017 SUOWLLIOD 8AIRR1D) 8|qed!jdde au Aq peusenob ae e YO ‘@SN J0Ss|nl 1oy Ariq1T8UlUO A8]IM UO (SUORIPUOD-PUR-SLLIBYWOY™A8| 1M AfeIq 1 pU1|UO//SAIY) SUOTIPUOD PUe SWIB 1 84} 88S *[6202/90/92] U0 AkeidiTauluo A8 |1m ‘Brequenim-a|BH AISIRAIUN JeuinT uneN A TI00Z ZS98/200T 0T/I0PAU0D A8 |1m Aleid jpul [UO'S EUINO essy/Sdny W1y pepeoumoq ‘g ‘SZ0Z ‘SZ680STZ



8of14 | McGLINN E AL.
a) b)
5 - @® engineered
)
8 100 1
o (O}
) =) i
. (] 4

o >
c (&)
ko] Habitat =
Q [0)
O 504 natural = 3-
()] =1
% == engineered 10
LL

10 20 30 40 50 2

@
0-
0 2000 4000 6000 Bs Be

No. individuals

Metric

FIGURE 4 Total spatiotemporal p-diversity: (a) y-scale rarefaction curves for each habitat, with inset showing y- and average a-scales
(note an individual a-scale curve was a single site in a single year); (b) mean ps and B¢ [point] (95% quantile whiskers not visible) of total

spatiotemporal p-diversity jackknife resamples in each habitat type.

Bs Be
v natural
i °
2.00 A == engineered
2 ®
® ! !
L ) °
5 1.75
©
>
0
| -
o 1.504
=
°
e e
d——
1.259 1 - - \a e
ﬁ
[ ]
1.00 4 ®
2004 2012 2004 2012
Year

FIGURE 5 Spatial p-diversity as a function of time for s and ¢ in the two habitats. Trend lines represent linear models with their

95% CI.

85UB017 SUOLULLIOD BAITER.D 3|1 [dde 8y Aq pauseA0b a1 SSPNE YO (38N J0 S3IN1 10} ARIQIT BUIUO AB|IMW UO (SUORIPUOO-PUR-SWLBYWI0D ™A 1M Ae.d)1 U UO//SANY) SUORIPUOD PUe SIS | 83U} 89S *[5202/90/92] uo Ariqrauliuo A1im ‘BRquenim-=a1eH AISRAIUN JeuinT une Aq T900L ZSI8/200T OT/10p/u0d M| im A eiq jeu!uo S euIno fess//sdny wo.y papeojumoq ‘€ ‘G202 ‘S26805TC



ECOSPHERE

| 9 of 14

(Q3) Does the temporal variation in
community composition differ between
engineered and natural habitats?

Across all years, sites in the engineered habitat had
greater variation than sites in the natural habitat in
both the total number of individuals (i.e., the end
points of the y-scale curves on the x-axis, Figure 6a)
and shape of the SAD (reflected by greater variation in
the curvature of the y-scale rarefaction). On average,
natural sites had slightly higher levels of temporal fg
than the engineered sites, but the variation among
sites (and only three replicates) meant there was no
overall difference in temporal pPg between habitats
(Figure 6b). We conclude that the weak differences in
temporal Bs between habitats were primarily due to
random sampling effects (Figure 6a) because this pat-
tern disappeared for pc (and B was slightly higher in
the engineered habitat). In both habitats, B was also
more than double the value of Pc, suggesting that
more than 50% of year-to-year variation in community
composition was due to changes in the number of
individuals and/or rare species. Both habitats had
similar B¢ values, which indicated that the temporal

autocorrelation of species presences was similar in the
natural and engineered habitats.

(Q4) Are there compositional differences
between engineered and natural habitats,
and do any differences change

through time?

Finally, the same concepts and tools that we used to
examine variation in species composition within treat-
ments can also be used to compare species composition
between treatments through time. Essentially, this asks
whether bird communities in natural and engineered
sites are random subsets of a common larger species
pool? Do nonrandom spatial patterns contribute to any
differentiation? And do these patterns change over time?
(Figure 7). Here, the overall difference between treat-
ments (Bs) was larger than 1 (there is some species turn-
over between habitats) and slightly declined through
time (homogenization). However, when only nonrandom
patterns were considered, pc was closer to, though
still greater than 1, and only slightly declined through
time. This suggests that once we control for sampling
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FIGURE 6 Temporal B-diversity: (a) y-scale rarefaction curves for each site (i.e., all years combined), with inset showing y- and the
average a-scales for each site; (b) fs and B (mean [point] and 95% quartiles [whiskers] of jackknife resamples) metrics of total temporal

B-diversity.
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FIGURE 7 Spatial p-diversity metrics that measure the difference in species composition between the engineered and natural riparian

habitat types as a function of time. Trend lines represent linear models with their 95% CI.

effects, compositional differences between the habitats
were relatively small but still detectable and not changing
through time.

DISCUSSION

We have described and demonstrated an integrated
framework for quantifying the underlying causes of
B-diversity and, namely, if those causes are due to ran-
dom sampling effects or aggregating mechanisms such
as environmental filtering and dispersal limitation. The
approach that we have described provides a generalized
framework for comparing patterns of total p-diversity,
which we call fs, to those that specifically partial out
the nonrandom patterns of -diversity (B¢). Using additional
variables, such as environmental gradients or experimental
treatments, it will be possible to judge which processes are
ultimately responsible for nonrandom f-diversity detected
using our approach. We have demonstrated that any ques-
tion relating to how species composition changes across
samples, whether they be taken through space or time, can
be subject to the same approach and metrics. For many
cases, this greatly simplifies what can seem a complex
endeavor of finding the “right” p-metric for the question
at hand.

Often, researchers switch p-diversity metrics and con-
cepts when measuring compositional shifts within a
meta-community or among heterogenous sites along an

environmental gradient (e.g., Anderson et al., 2011). For
example, within a meta-community, estimates of -diversity
are often based on measures of dispersion in community
composition among sites (e.g., Anderson et al., 2006). These
measures, however, can be strongly influenced by both the
relative abundances of species and the size of the regional
species pool. This means that randomization-based null
models are needed if one wants to compare levels of
dispersion among different meta-communities, and/or
make inferences regarding potential driving mecha-
nisms (e.g., Chase et al., 2011; Kraft et al., 2011; Myers
et al., 2013). However, the appropriate form of randomi-
zation for the null model remains contentious (Kraft
et al., 2012; Mori et al., 2015; Qian et al., 2012; Tucker
et al.,, 2016; Xing & He, 2021). Our rarefaction-based
approach can also be considered a type of null sampling
model. However, comparing rarefaction curves has a
number of benefits over other null model approaches:
By calculating o- and y-scale curves, p-diversity can be put
back into the context of scale-dependent multicompo-
nent changes in diversity (Blowes et al., 2022; Chase
et al., 2018; Rolls et al., 2023); rarefaction curves can be
based on analytical solutions improving efficiency; and
rarefaction curves can be visualized, making them more
intuitive and easier to communicate than other null model
approaches. Nevertheless, some of the concerns arising
from the use of null models also apply to the approach
overviewed here. For example, there is a strong
“Narcissus” effect (i.e., the outcome reflects the inputs)
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in developing null models to evaluate whether differences
among samples deviate from a null expectation; the
samples that are used to calculate y-diversity influence the
likelihood that they will deviate from a null expectation
(Ulrich et al., 2017). The same is certainly true for the use
of individual-based rarefaction curves in which deviations
are mathematically constrained by the two end points of
the rarefaction curve (McGlinn et al., 2019).

Baselga (2010) has advocated an approach that partitions
measures of dissimilarity among samples (e.g., Jaccard’s or
Sorensen’s index or an abundance-based equivalent) into
measures that capture species turnover between samples,
and those that account for the nestedness of species dif-
ference between samples (but see éizling et al., 2022). In
essence, the nestedness part of this partition is the same
as our “random-placement” effect, while turnover captures
the essence of our p-diversity measures that capture
nonrandom variation among samples. For example, in our
case study, we asked whether bird species in engineered
and natural riparian habitats were a random subset of the
same regional species pool (Figure 7). We found that fg
values were quite high compared with the pc values,
which indicates the turnover component is small rela-
tive to the nested component in Baselga’s approach.

As with spatial B-diversity comparisons, there have
been variable approaches to capture p-diversity through
time (Legendre, 2019; Magurran et al., 2019; Tatsumi
et al., 2022). Most measures of temporal turnover calcu-
late turnover as a metric of community dissimilarity
through time. Often rates of change between an initial
and subsequent samples, or the rate of decay in dissimi-
larity as a function of the time elapsed between samples
being compared are estimated, which can then be com-
pared across systems or taxa (e.g., Blowes et al., 2019;
Korhonen et al., 2010). However, as with spatial p-diversity,
these measures cannot discern whether observed rates of
turnover are different from what would be expected from a
random placement model through time. Authors have used
different approaches to remedy this problem. For exam-
ple, Dornelas et al. (2014) compared rates of temporal
p-diversity with those expected from a neutral model
(Hubbell, 2001) to discern whether turnover rates were
faster than expected under the assumption of neutral
dynamics, while Stegen et al. (2013) used a null model
to determine whether temporal turnover patterns were
greater than expected from sampling effects. Temporal
turnover can also be decomposed into changes due
to abundances (similar to our “sampling” effects) and
changes due to species turnover (Lamy et al., 2015;
Shimadzu et al., 2015). As with spatial p-diversity mea-
sures, our approach is similar, but simplifies the problem
by asking whether temporal changes are nonrandom in a
time series.

Recently, authors have developed approaches to
partition the influence of species gains and losses to
changes in spatial $-diversity through time (Rosenblad &
Sax, 2017; Tatsumi et al., 2021), and these have been
expanded to incorporate changes in relative abundances
(Tatsumi et al.,, 2022). These methods are useful for
examining “winning” and “losing” species that underlie
changes in spatial p-diversity through time. However,
these methods risk isolating beta-diversity changes from
local (o) and regional (y) scale changes, and are unable
to disentangle random versus nonrandom structure
associated with these changes. Thus, our approach can
provide a complementary, and more complete, picture
into scale-dependent changes driving variation of spatial
composition through time.

Finally, for simplicity we have focused here on two
related metrics: s and pc. Other measures of p diversity
with different weights on common and rare species
(i.e., Hill numbers) (Chao et al., 2012, 2023; Jost, 2007;
Tuomisto, 2010; but see Lande, 1996) can also be calcu-
lated at different points along the rarefaction curves.
For example, the metric based on Simpson’s entropy,
also known as the probability of interspecific encounter
(PIE) (or Gini-Simpson index) (Hurlbert, 1971) (where
g = 2 in the Hill number continuum; Chao et al., 2014;
Jost, 2007), can be visualized as the slope at the base of the
rarefaction curve (Chase et al., 2018; McGlinn et al., 2019).
These Hill numbers or number equivalents can also be
used with the multiplicative diversity partition used here
(ie., y = a X B; Jost, 2007), and result in an effective num-
ber of distinct communities, with the tuning parameter
(i.e., order q) determining the sensitivity to rare and com-
mon species. Recently, Chao et al. (2023) also proposed a
framework for standardizing beta-diversity that considers
the joint influence of sampling effects and spatial/
temporal aggregation. Both their framework and ours
standardize biodiversity data to the same level of sample
coverage when comparing p between meta-communities.
However, an important difference between the approaches
is that Chao et al. (2023) assume that individuals are inde-
pendently sampled (i.e., randomly encountered), whereas
we assume that individuals within a sample are not inde-
pendent of one another due to aggregation. In fact, our pri-
mary intention here is to explicitly quantify the important
contributions of aggregation to p-diversity, which cannot
be directly measured with the Chao et al. (2023) approach.

CONCLUSIONS

Ecologists are often interested in examining the role of
meta-community-level mechanisms such as dispersal
limitation and environmental filtering for patterns of

85U8017 SUOWLLIOD 8AIRR1D) 8|qed!jdde au Aq peusenob ae e YO ‘@SN J0Ss|nl 1oy Ariq1T8UlUO A8]IM UO (SUORIPUOD-PUR-SLLIBYWOY™A8| 1M AfeIq 1 pU1|UO//SAIY) SUOTIPUOD PUe SWIB 1 84} 88S *[6202/90/92] U0 AkeidiTauluo A8 |1m ‘Brequenim-a|BH AISIRAIUN JeuinT uneN A TI00Z ZS98/200T 0T/I0PAU0D A8 |1m Aleid jpul [UO'S EUINO essy/Sdny W1y pepeoumoq ‘g ‘SZ0Z ‘SZ680STZ



120f 14 |

MCcGLINN ET AL.

B-diversity (Leibold & Chase, 2018; Vellend, 2016). The
generalized approach that we have described relies on a set
of intuitive metrics from sampling theory to quantify total
pB-diversity (Bs), and B-diversity due to nonrandom aggrega-
tion (B¢), which will allow for stronger tests of hypotheses
related to mechanisms expected to influence patterns of
aggregation. In addition, the framework provides an inte-
grated way to examine how changes at finer («) and coarser
(y) scales combine to determine variation in species compo-
sition (B). This places a central focus on scale-dependent
diversity changes, with the potential to uncover deeper
insights into scale dependence by varying the focal spatial
or temporal grain of the analysis. It remains an open
question as to how much variation in p-diversity reflects
random sampling effects versus nonrandom aggregation
effects. Our framework provides a means of addressing
this question across space and time.
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