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Metabolic modeling elucidates
phenformin and atpenin A5 as broad-
spectrum antiviral drugs against RNA
viruses
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The SARS-CoV-2 pandemic has reemphasized the urgent need for broad-spectrum antiviral
therapies. We developed a computational workflow using scRNA-Seq data to assess cellular
metabolism during viral infection. With this workflow we predicted the capacity of cells to sustain
SARS-CoV-2 virion production in patients and found a tissue-wide induction of metabolic pathways
that support viral replication. Expanding our analysis to influenza A and dengue viruses, we identified
metabolic targets and inhibitors for potential broad-spectrum antiviral treatment. These targets were
highly enriched for known interaction partners of all analyzed viruses. Indeed, phenformin, an
NADH:ubiquinone oxidoreductase inhibitor, suppressed SARS-CoV-2 and dengue virus replication.
Atpenin A5, blocking succinate dehydrogenase, inhibited SARS-CoV-2, dengue virus, respiratory
syncytial virus, and influenza A virus with high selectivity indices. In vivo, phenformin showed antiviral
activity against SARS-CoV-2 in a Syrian hamster model. Our work establishes host metabolism as
druggable for broad-spectrum antiviral strategies, providing invaluable tools for pandemic
preparedness.

FromDecember 2019 on, the outbreak of the novel Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) caused a pandemic with dramatic
health-related and socioeconomic consequences. This novel virus was highly
similar to SARS-CoV, responsible for a global outbreak in 2002 and 20031. In
2012, another coronavirus spread in theMiddle East, causing theMiddle East
RespiratorySyndrome, leading to2458reportedcasesandahighmortality rate
of 35%2. History shows that pandemics have repeatedly plagued humankind.
In the last 100 years alone, there have been four major influenza pandemics
and multiple epidemics, including the Spanish flu in 1918, with an estimated
17–50 million deaths worldwide3, as well as the Asian and Hong Kong flu in
1957/58 and 1968/69 with one to four million deaths worldwide4. Pandemics
are not only virus-driven: One of themost extensive pandemics was the Black
Death from 1331 to 1353, caused by the bacterium Yersinia pestis and is
estimated to have killed approximately half of Europe’s population5.

Thus, pandemics and epidemics are recurrent, and more are likely to
follow in the future, in particular, due to human impact on the global
environment6,7. Moreover, the COVID-19 pandemic illustrates its sub-
stantial impact on long-term socioeconomic well-being due to the wide-
spread and long-lasting consequences of efforts of pathogen containment8

and the potential occurrence of post-acute sequelae such as long COVID9.
Therefore, rapidly developing effective treatment strategies and vaccines are
vital to mitigate those consequences. However, despite the unprecedented
acceleration in the development of treatment and vaccination approaches
against SARS-CoV-2, it still took ~10 months before vaccine approval to
treat SARS-CoV-2 and another 6–8 months before production and dis-
tribution workflows became functional for a widespread roll-out. Thus,
treatment approaches that contain viral replication of not only a single but a
broad array of viruses as first-line therapeutic approaches for novel
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emerging pathogens are a highly sought-after goal in preparation for future
pandemics10. Nowadays, pandemic preparedness summarizes efforts to
provide such broadly acting antivirals.

Due to the essential dependence of viruses on the metabolic networks
of their host for reproduction11, the utilization of in silico models of virally
infected cells provides new avenues to identify druggable targets for antiviral
therapy12.One such approach is representedby constraint-basedmodeling13

with flux balance analysis in particular (FBA,14) which allows us to predict
the metabolic behavior of biological systems. These methods build upon
genome-scale metabolic networks that encompass the entire known
repertoire of metabolic reactions taking place in an organism15. In the
context of viral replication, constraint-basedmodeling allows the simulation
and prediction of the viral capacity to replicate within a host cell by con-
sidering nutrient availability, energy resources, and other cellular factors16,17.
Thus, genome-scale metabolic models of host cells extended to incorporate
viral replication16 can be employed to identify host enzymes essential for
viral replication but dispensable for cellular viability. The viral biomass
reaction is a key element in these networks that represents the sum of all the
cellular components and resources consumed or created during viral
replication16. Through simulation of the viral biomass reaction, important
factors influencing viral replication can be identified, such as essential
enzymes or the availability of specific nutrients17. Importantly, these
methods also allow for the integration of OMICs data such as tran-
scriptomics, proteomics, and metabolomics to reconstruct metabolic
models that more accurately reflect the metabolic state of cells in a given
condition, so-called context-specific metabolic models18.

In this work, we introduce a computational workflow that we devel-
oped to integrate a generic metabolic model of a virally infected cell with
transcriptomic data to predict metabolic pathways relevant for viral repli-
cation. We demonstrate the establishment of this workflow and how it is
exploited to rapidly identify druggable targets and human approved com-
pounds with antiviral efficacy in vitro and in vivo.

Results
Development of a computational workflow to predict viral repli-
cation capacities and antiviral targets
We developed a computational workflow to reconstruct themetabolic state
of virally infected cells, leveraging single-cell sequencing gene expression
data (Methods). To this end, we expanded the generic human metabolic
reconstruction Recon 2.219 by incorporating reactions specific to the sub-
strates essential for the replication of the investigated viruses. Additionally,
we considered allmetabolites known to exist in the blood as potential inflow
to the model (see “Methods”). Subsequently, single-cell sequencing data,
were preprocessed with StanDep20 to identify core sets of reactions active in
each cell which then were used to identify context-specific metabolic net-
works that contain those reactions using fastcore21. This process facilitated
the generation of context-specific models for each cell or gene expression
dataset. The resulting computational models of virally infected cells were
then employed to predict the cellular capacity to produce virions via flux
balance analysis14 and to screen cells for enzymes whose knockout impedes
viral replication. Moreover, these models enabled us to predict the effect of
knockouts on cellular viability and thereby subsetting the target enzymes to
those whose inhibition hinders viral replication but not normal cellular
metabolism. These predicted targets were further integratedwith additional
experimental information on the relevance of enzymes for viral replication
to subselect candidates for experimental testing.

SARS-CoV-2 infection systemically activates metabolic path-
ways to enhance cellular viral replication capacity
In the first step, we used scRNA-Seq data of samples from COVID-19
patients as input to our modeling workflow to predict viral replication
capacity depending on cell type and disease severity22. Prior experimental
observations reveal that viral replication heavily relies on profound changes
in host metabolism23. We found that the predicted capacity to sustain viral
replication in the upper respiratory tract of infected individuals was

enormously increased compared to uninfected participants (Fig. 1A).
During infection, both ciliated and secretory cells showedamean increase in
the predicted viral replication capacity by a factor of 2 and 3, respectively.
Both cell types are the primary site of cellular infection in the upper
respiratory tract24,25. Also, FOXN4 cells, only detected in infected
individuals22, showed a similar high viral replication capacity.Notably, these
changes were not attributable to active viral replication since most cells in
the dataset were negative for SARS-CoV-2 RNA. This indicates that viral
infection of a particular cell might have pleiotropic effects on non-infected
bystander cells, making them more permissive to viral replication.
Accordingly, our models predicted a strong induction of several metabolic
pathways in non-infected cells of COVID-19 patients based on an increased
number of reactions active in the respective context-specific metabolic
models, which was even more pronounced in patients with severe disease
(Fig. 1B). Thus, 55 of the 57 analyzedmetabolic pathways were significantly
induced in infected individuals compared to healthy controls, and 39 were
significantly more active in patients with severe versus moderate disease.
Altogether, this indicates that viral replication heavily depends on a sub-
stantial induction of metabolism and supports the notion that inhibition of
host metabolism might be used as an antiviral strategy.

Metabolic enzymes essential for viral replication are enriched
among the interactome of human-pathogenic viruses
In thenext step,weusedourmodels to identify potentialmetabolic targets to
inhibit viral replication. Besides SARS-CoV-2, we included influenza A and
dengue as two highly human pathogenic prototypic RNAviruses to identify
promising broad-spectrum antiviral targets. For the identification of
druggable targets, we considered three classes of enzymes: “tier-1 targets”,
“tier-2 targets”, and “other enzymes.” Tier-1 targets correspond to enzymes
whose knockout impedes viral replication while having a minimal impact
on the simulated cellular viability. In contrast, the knockout of tier-2 targets
inhibits viral replication and impacts normal cellular metabolism. While it
is, in principle, not advisable to impede normal cellular metabolism, anti-
viral treatments are typically expected to be provided shortly during the
acute phase of infection. Hence, tier-2 targets follow a similar strategy to
chemotherapeutics in cancer, which often impair regular cellular metabolic
activity. Finally, enzymes not belonging to either group are categorized as
“other enzymes.” We separated enzymes into these three classes for each
dataset and virus using flux balance analysis (see “Methods”). We hypo-
thesized that the proteome of the viruses should preferentially interact with
enzymes relevant to their replication without harming cellular viability and
hence, be considered tier-1 targets. In line with this assumption, for all three
viruses, we observed a highly significant enrichment of known physical
interaction partners of the viral proteome among predicted tier-1 targets
compared to tier-2 targets and all other enzymes (Fig. 2).

Identification of drug targets for broad-spectrum antiviral
therapy
Following our identification of tier-1 targets that inhibit the individual
viruses, we sought to identify potential broad-spectrum antiviral targets. To
this end, we collected all predicted tier-1 targets across all cells from the
individual datasets and identified254 enzymes that occurred as shared tier-1
targets in at least one cell across all datasets (Supplementary Data 6 and
Supplementary Data 1). Using the BioGRID database26 as a reference, we
find that interactions of 158 of these targets with human pathogenic viruses
have been reported before, which represents a highly significant enrichment
among reported interactions between enzymes and viruses (Fisher’s exact
testp = 9.1 × 10−12, odds ratio 1.9–3.4) and supports their central role in viral
replication across diverse viruses. Performing an enrichment analysis, we
identified several metabolic subsystems in which shared predicted tier-1
targets were particularly prevalent (Fig. 3A). We observed the most con-
centrated enrichment among oxidative phosphorylation enzymes, the citric
acid cycle, and fatty acid oxidation. This aligns with the high energy need
associatedwith viral replication27 and themitochondria’s central role in viral
replication and antiviral immune responses28. Thus, viruses often target
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mitochondrial proteins to deregulate cellular metabolism, providing sub-
strates for viral replication and hampering immune response29. Indeed,
almost allmetabolic reactions in theTCAcycle and the respiratory chain are
predicted as targets (Fig. 3B). Along those lines, mitochondrial transport
reactions that provide substrates for the TCA cycle are enriched among the
predicted targets. However, it is important to note that the enrichment of
predicted targets among enzymes known to interact with viruses is still
significant when removing enzymes of the respiratory chain and TCA cycle
(Fisher’s exact test p = 9.3 × 10−4, odds ratio 1.3–2.6).

Interestingly, theknockoutof the respiratory chain ispredicted to affect
viral replication mostly but, to a lesser extent, normal biomass production.
Exploring this observation in more detail using the BALF-2 dataset (data
from patients with COVID-19), we find that among the ~140k sequenced
cells, enzymes of complex I of the respiratory chainwere identified in 12.8%
of the cells as tier-1 target and in 3.6% of the cells as tier-2 target. Thus,
complex I is also essential formaximal biomassproduction in somecells, but
viral replication appears to be much more dependent on it. This char-
acteristic is also reflected in comparing the ATP maintenance costs of the
normal biomass reaction of the human model and the viral replication
reaction. While the production of one gram of cellular biomass requires
5.9mmol of ATP, the production of 1 g of virions requires 19.6mmol of
ATP, supporting a much higher energy demand of viral replication.

Other enriched subsystems are N-glycan synthesis as well as degra-
dation and glycolysis/gluconeogenesis. While protein glycosylation is

paramount for enveloped viruses30, we did not include glycosylated proteins
in the viral biomass reaction due to a lack of information on virus-specific
protein glycosylation. Instead, tracing the corresponding metabolic path-
ways,we found that those pathwayswere used to recycle sugars contained in
glycans such as mannose, fucose, and glucosamine for use as substrates for
viral replication (SupplementaryData 2). Similarly, glycolysis is often found
to be induced during viral infection since it also provides crucial building
blocks for viral replication11,31.

To further stratify our hitlist to potential broad-spectrum antiviral
targets, we required that each predicted target had an experimentally con-
firmed interaction with at least two of the three viruses analyzed. Thus, we
obtained a list of 39 predicted targets belonging to 22 proteins/protein
complexes (Fig. 3B, Supplementary Data 8). Please note that using protein
interactions as a selection criterion alone would yield 84 targets (Supple-
mentary Data 5). Among those 22 protein complexes, we selected four,
encompassing 11 of the 39 enzyme targets, for further experimental vali-
dation based upon additional criteria such as evidence from CRISPR-Cas9
screens32–34, relevance in other viral diseases, and the availability of inhibi-
tors, as discussed below. These four protein complexes are the NADH:u-
biquinone oxidoreductase complex (complex I of the respiratory chain), the
succinate dehydrogenase complex (complex II of the respiratory chain),
CDP-diacylglycerol—inositol 3-phosphatidyltransferase (CDIPT), and
solute carrier family 16 member 1 (SLC16A1). We evaluated the sensitivity
of our selected targets to variations in the cut-off thresholds for maximal

A

B

Fig. 1 | Workflow and impact of disease state on predicted viral replication
capacity of SARS-CoV-2 during infection. A Differences in viral replication
capacity according to disease severity in SARS-CoV-2 permissive lung cell types.
Please note that FOXN4-positive cells were only detected in infected individuals. P
values indicate significance of difference of viral replication capacities between
groups based on a Kruskal-Wallis test. B Cellular metabolism is strongly induced in
the respiratory tract of COVID-19 patients. Metabolic models built from throat

swabs and lung lavage scRNA-Seq data from SARS-CoV-2 infected individuals were
analyzed. Only cells where no viral RNA was detected were considered (=“unin-
fected cells”). Pathways with significantly different predicted activity between
moderate to severe COVID-19 patients based on aWilcoxon test aremarkedwith an
asterisk. The 20 pathways with the most pronounced effects are shown. For the
complete list of pathways, see Supplementary Data 4.
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viral replication rate and maximal biomass production rate. Our analysis
revealed that targets associated with complex I, complex II, and SLC16A1
were largely insensitive to changes in these cut-offs. In contrast, CDIPTwas
identified only at cut-off values of 80% or higher for maximal biomass
production rate, but not at more stringent thresholds (Fig. 3C).

Eight targets correspond to various subunits of NADH:ubiquinone
oxidoreductase, for which protein-protein interactionswith all three viruses
have been observed (Supplementary Data 7). Moreover, interactions of
NADH:ubiquinone oxidoreductase subunits with the respiratory syncytial
virus (RSV)35, human immunodeficiency virus 1 (HIV-1)36, human gam-
maherpesvirus 8 (HHV-8)37, human papillomavirus (HPV) serotype 1838,
hepatitis C virus (HCV)39 and Nipah virus40 have been reported. An
approved drug that inhibits NADH:ubiquinone oxidoreductase is the
biguanide metformin41, the first-line treatment in type II diabetes41. Intri-
guingly, previous observational studies have shown reduced mortality of

type II diabetic patients taking metformin during COVID-1942. The aim to
improve the effect of metformin led to the development of phenformin43,
which showed an improved cellular uptake compared to metformin44. We
hence decided to use phenformin for experimental validation of our
approach. The solute carrier family 16 member 1 gene (SLC16A1), a
monocarboxylic acid-transporter that transports compounds such as pyr-
uvate, lactate, branched-chain amino acids, and ketone bodies across the cell
membrane45, interacts with SARS-CoV-2 and influenza A virus (IAV)
proteins. It was additionally identified as a host cell factor of HCV46 and
demonstrated to be a relevant host factor for SARS-CoV-2 infections in two
CRISPR-Cas9 knockout screens33,34. SR13800 was identified as a potential
inhibitor of SLC16A147,48. The succinate-ubiquinone oxidoreductase sub-
unit A (SDHA) is part of complex II of the respiratory chain and catalyzes
the reaction of succinate to fumarate in the tricarboxylic acid cycle. Besides
its interaction with SARS-CoV-233,49, SDHA also interacts with the Epstein-
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Fig. 2 | Enrichment of viral interaction partners among model-predicted
enzymes involved in the replication of SARS-CoV-2, dengue virus, and influenza
A virus. The fraction of experimentally identified viral proteome interaction part-
ners among tier-1 and tier-2 targets (found in at least 5% of cells with tier-1 targets)
was calculated for each dataset. Enrichment was tested using a one-sided Fisher’s
exact test. P values were corrected for multiple testing using false discovery rate
control. The number of interacting proteins relative to the number of all proteins in

each category is shown below each bar. For the host-virus-interaction data set and
the list of tier-1 and tier-2 targets for each data set, see Supplementary Data 5 and 6.
ScRNA-Seq datasets: SARS-CoV-2, BALF1118; SARS-CoV-2, BALF222; SARS-CoV-
2, CALU-3 cell culture119; SARS-CoV-2, scH1299 cell culture119; influenza H1N188,
Human airway epithelia (MucilAirTM)120; dengue, PBMC,87. Protein-protein-
interaction datasets: SARS-CoV-249; dengue virus101; influenza A virus102.
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Barr virus (EBV)38, the IAV50,HCV51, andHHV-837. AtpeninA5 is a known
SDHB inhibitor52 and was previously assessed for its therapeutic effect on
cardiac injury in isolated perfused rat hearts53. The CDP-diacylglycerol-
inositol 3-phosphatidyltransferase (CDIPT) is involved in the biosynthesis
of phosphatidylinositol. It interacts with SARS-CoV-2 as well as IAV and is
reported in three CRISPR-Cas9 studies as a relevant host factor during
SARS-CoV-2 infection32–34. CDIPTalso interactswith proteins of numerous
HPV serotypes38,54, EBV38, and HIV-155. Scyllo-inositol is listed as an inhi-
bitor of CDIPT56 and was proposed as a potential drug to prevent Alzhei-
mer’s disease57.

Experimental validation of broad-spectrum antivirals in viral
infection assays
The antiviral activity of the identified compounds phenformin, atpenin A5,
SR13800, and scyllo-inositolwasfirst tested in the lung-cancer cell lineCalu-
3 and the colon-cancer cell line CaCo-2 infected with SARS-CoV-2
(Fig. 4A). The infection rate was measured by virus-encoded reporter gene
expression (mNeonGreen) 48 h after infection. The cell viability was
assessed by Hoechst staining of the nucleus (see “Methods”) and hence
assessment of total cell numbers after 72 h of treatment, which is a good

proxy for cell survival and cell growthuponprolonged compound exposure.
PhenforminandatpeninA5 inhibited SARS-CoV-2 infectionofCalu-3 cells
at different doses and partly of CaCo-2 cells, whereas SR13800 showed
toxicity at higher concentrations (Fig. 4B). Scyllo-inositol showednoactivity
(Fig. 4A and representative primary images in Fig. 4C).

Phenformin and atpenin A5 showed antiviral activity against
mNeonGreen expressing SARS-CoV-2, which is based on an early Wuhan
isolate (Fig. 4A). Since we identified both compounds in silico as potential
broadly acting antivirals, we assessed their IC50 in inhibiting SARS-CoV-2
including an Omicron variant, dengue virus (DENV), the respiratory syn-
cytial virus (RSV) and IAV (Fig. 5A) and the CC50 based on total cell
numbers (Fig. 5B). Phenformin had an IC50 of 1.81 µM, and atpenin A5 an
IC50 of 0.45 µM against the original Wuhan strain in Calu-3 cells without
cellular toxicity and both compounds were similarly active against the
Omicron variant. It was previously reported that type II diabetic patients
taking metformin, similar to phenformin, showed a reduced risk of severe
COVID-19 compared to non-users42. We also included metformin in our
SARS-CoV-2 infection experiments revealing that it inhibited infectiononly
at very high concentrations at an IC50 of 459 µM in Calu-3 cells, again
without showing any cytotoxicity (Fig. 5 and Supplementary Fig. 1). We

Fig. 3 | Shared tier-1 and broad-spectrum antiviral targets. A Enrichment of
metabolic subsystems among shared tier-1 targets. The 20 most significantly enri-
ched metabolic subsystems are shown. Abbreviations: BCAA metabolism,
branched-chain amino acid metabolism. B Shared tier-1 targets and broad-
spectrum antiviral targets in central metabolic pathways. Broad-spectrum antiviral
targets are also shared tier-1 targets. Please note that transport reactions involving
malate are anti-porters. See Supplementary Data 1 for a complete map of human

metabolism. Abbreviations: AcCoA acetyl-CoA, AKG alpha-ketoglutarate, ATPS
ATP synthase, Cit citrate, Cpx I–IV complex I–IV, Fum fumarate, ICit isocitrate,
Mal malate, PEP phosphoenolpyruvate, Pyr pyruvate, Succ succinate, SuccCoA
succinate-CoA.C Sensitivity analysis of identified broad-spectrum antiviral targets.
Cut-offs used for the analysis are indicated in the plots. Black rectangles represent
genes that are identified as broad-spectrum antiviral targets in the corresponding
setting. Bold gene names correspond to those selected for experimental validation.
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therefore decided to do further tests exclusively with phenformin, as met-
formin was clearly inferior in its antiviral activity.

Phenformin had an IC50 of 17.15 µM against DENV in Huh7.5
hepatoma cell lines, while atpenin A5 inhibited DENV infection at an IC50

of 0.38 µM (Fig. 5A and Supplementary Fig. 1). Of note, atpenin A5 also
inhibited RSV and IAV infection of the lung cell line A549 at IC50s of
1.01 µM (IAV) and 0.12 µM (RSV), respectively (Fig. 5A and Supplemen-
tary Fig. 1). Phenformin was inactive against RSV and IAV at the con-
centrations tested.We did not measure any severe cytotoxicity of any of the
compounds in the three cell lines tested (Fig. 5B).

Detailed analysis of atpenin A5 and phenformin cytotoxicity and
inhibition of metabolic activity in various cell lines
As predicted from our modeling approach as tier 1 targets, atpenin A5 at
20 µM and phenformin at 100 µM do not show toxicity in endpoint mea-
surements based on total cell counting when Calu-3, CaCo-2, A549, and
Huh7.5 cells were exposed to the compounds for 72 h (Fig. 4 and Fig. 5).
However, since cell counting is only a rough proxy to assess cytotoxicity and
a higher dose escalation is necessary for CC50 determination, we further
included careful assessment of growth kinetics by live cell imaging, mea-
surement of mitochondrial metabolic activity by MTT assay as well as

Fig. 4 | Atpenin A5 and phenformin show antiviral activity against SARS-CoV-2.
Calu-3 and CaCo-2 cells were pretreated for 24 h with atpenin A5, phenformin,
scyllo-inositol, and SR13800 in indicated concentrations and infected with icSARS-
CoV-2-mNG (MOI 0.2 for CaCo-2 and MOI 0.5 for Calu-3). Fourty-eight hours
post-infection, cells were fixed, stained with Hoechst, and measured with a Cyta-
tion3multiplate reader. n = 3.Data representmeans ± S.E.M.A Infection rate (mNG

+/Hoechst+ cells) normalized to control/DMSO-treated infected cells. B Overall
cell count (Hoechst+ cells) normalized to mock. C Representative fluorescence
microscopy images were taken at 4-fold magnification to detect cell nuclei count
(Hoechst+) and infected cells count (mNeonGreen+). Shown are Calu-3 cells
treated with 2 µM of the respective compounds. Scale bar is 1 µm.
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cellular ATP levels by CellTiter-Glo (CTG, see “Material and Methods”
section for details). The data is summarized in Fig. 6. Careful titration of
atpenin A5 indicated CC50 values based on growth curve assessment in
Calu-3 cells > 160 µM,115 µMinHuh7.5, and67 µMinA549cells (Fig. 6A).
In comparison, phenformin showed much less impairment of cell growth
with aCC50 of 2060 µM inCalu-3 and 1313 µM inHuh7.5 cells (Fig. 6B). As
expected, since MTT and CTG assays measure cellular metabolism, the
CC50 values of both compounds were somehow lower in the various cell
types as compared to growth curve assessment. This can be interpreted as a
surrogate for the compounds’ on-target activity (Fig. 6C). CC50 values
measured for atpenin A5 based on MTT and CTG closely mimic the IC50,
with 3.6 µM (MTT) and 1.0 µM (CTG), respectively. The other cell types,
Huh7.5 and A549, seem to have more active metabolic pathways showing
only modest impairment in MTT and CTG in the presence of atpenin A5.
Similarly, phenformin showed a lower on-target activity in both assays than
atpenin A5 (Fig. 6C), as indicated by its higher IC50 values.

Finally, determination of the IC50 (Fig. 5) andCC50 (Fig. 6) allowedus to
calculate the selectivity indices (SI) of atpenin A5 and phenformin against
different viruses in the various cell lines (Table 1). We conclude that atpenin
A5 is apotent antiviral that inhibits SARS-CoV-2,DENV, IAV, andRSVwith
SIs throughout >100 when considering growth kinetics as the most relevant
assay to determine impairment of cellular viability. Phenformin potently
inhibited SARS-CoV-2 and DENV, while it was not active against IAV and
RSV. Altogether, this data shows that phenformin and atpenin A5 are anti-
virals active against several non-related viruses and support the suitability of
our workflow to identify broad-spectrum antiviral drugs and targets.

Compound time-of-addition (TOA) analysis suggests differential
modes of antiviral activity
In order to get first insights into the potentialmode-of-action exerted by the
two compounds against the viruses investigated, we performed time-of-

addition assays. Compounds were added from 24 h before infection up to
2-h post infection.Hypothesizing that the compounds suppressmetabolism
and therefore block viral gene expression, adding the inhibitors 2 h after
infection, when entry has occurred, should not have a dramatic negative
impact on their antiviral activity. Adding atpenin A5 inhibited SARS-CoV-
2, RSV, IAV, and DENV as expected (Fig. 7). However, of surprise, atpenin
A5 showed a clearTOAeffect against SARS-CoV-2 andRSV, even though it
still exerted some antiviral activity when added 2 h post infection. This
suggests that the compound has a dual mode-of-action against these two
viruses, likely involving inhibition of metabolism as well as entry. In con-
trast, there was clearly no TOAeffect of atpenin A5 in suppressing IAV and
DENV infection, indicating that these two viruses are inhibited by the
compound’s action on metabolism. A similar phenotype was observed for
phenformins antiviral activity on SARS-CoV-2 versus DENV (Fig. 7B). In
conclusion,whileTOAis compatiblewith theknownmetabolic suppression
of phenformin and atpenin A5, there might be additional antiviral activity
exerted by both compounds.

Antiviral activity of phenformin in vivo
Given that phenformin is an established drug in humans with known
pharmacokinetics and safety profiles, that is hence readily available, we
further evaluated the in vivo antiviral potential of phenformin against
SARS-CoV-2 in a Golden Syrian hamster model of infection (Fig. 8A).
Hamsters have been identified as an effective in vivomodel for SARS-CoV-2
due to their physiological and immunological parallels to humans, enabling
a comprehensive analysis of viral replication, transmission, and disease
progression58. Moreover, developing severe, human-analogous symptoms
in hamsters following infection with SARS-CoV-2 closely mirrors the
clinical manifestations of humans, making them an invaluable model for
studying potential therapeutic interventions59. Two groups of seven female
9-11 week-old animals were intranasally infected on day 0 (D0) with 105,5

Fig. 5 | IC50 determination against different RNA viruses in various cell lines of
atpenin A5 and phenformin. Atpenin A5 and phenformin were tested for antiviral
activity against two SARS-CoV-2 strains, icSARS-CoV-2-mNG (MOI 0,5), and the
variant of concern Omicron (MOI 1.1), a respiratory syncytial reporter virus (RSV,
MOI 0.6) and an influenzaA reporter virus (IAV,MOI 1.4) expressingGFP aswell as
a luciferase-expressing dengue reporter virus. Cells were pretreated with the

compounds for 24 h, respectively for 1 h (DENV, MOI 1). Fourty-eight hours post-
infection, cells were fixed, stained with Hoechst, and measured with a Cytation3
multiplate reader. DENV-infected cells were lysed to measure luciferase activity.
A Graphs show the infection rate normalized to untreated infected cells. µM values
in the graphs refer to the specific IC50 values. B Cell count (Hoechst+ cells) nor-
malized to mock. n = 3; n = 1 (IAV, phenformin). Data represents means ± S.E.M.
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TCID50 of a SARS-CoV-2 Delta (B.1.617.2) strain. The “Treated” group
received a 5-day oral treatment course of 100mg/kg phenformin (once daily
for 5 days, D-2 toD2), whereas the “Vehicle” group received sterile water. A
third group of two “Uninfected Treated” animals received the same phen-
formin regimen as the “Treated” group but was not infected. Animals were
monitored for clinical signs, and oropharyngeal swabswere performeddaily
to assess viral load in the upper respiratory tract. Lung viral titers were
evaluated in a subset of animals on D3 and D6. Of note, two animals of the
“Treated” group were lost due to technical problems during gavage, hence
reducing to 5 the effective n of this group and precluding statistical analysis
beyond D3.

Both “Treated” and “Uninfected Treated” groups showed higher yet
mildmeanmaximumweight losses onD2 compared to the “Vehicle” group
(9.5%, 8.7%, and 3.4%, respectively, compared to the baseline established on
D-3 before treatment start). Besides, no other behavioral or clinical differ-
ences were observed among the three tested groups (Fig. 8B). Infection with
the SARS-CoV-2 Delta (B.1.617.2) strain resulted in rapidly detectable viral
genome copies in oropharyngeal swabs of animals from the “Vehicle” group
(Fig. 8C). Viral titers plateaued during the first 3 days post-infection
(6.9 ± 9.9 × 102, 6.0 ± 7.5 × 102, 6.0 ± 6.6 × 102 nsp14 copies/ng of RNA on
D1, D2, and D3, respectively) and then progressively decayed close to the
limit of detection by D6. Phenformin treatment significantly reduced viral

Fig. 6 | Effects of atpenin A5 and phenformin on the growth and viability of
various cell lines. Calu-3, Huh7.5, and A549 cells were treated with the indicated
concentrations of A atpenin A5 and B phenformin for 48 h (A549) or 72 h (Calu-3,
Huh7.5). DMSO (1.3%) is a solvent control. The positive control is 50% DMSO to
inhibit cell growth. Plates were imaged in the IncuCyte® at 37 °C, 5% CO2, every 3 h
to assess cell confluency. For analysis, IncuCyte® S3 Software was used. Number of

replicates: Calu-3, n = 2 / 3; Huh7.5, n = 3; A549, n = 5. Data represent means ±
interplate S.E.M.CCellularmetabolic activity wasmeasured using CellTiter-Glo® or
MTT assay as described in the “Material and Methods” section. Graphs show nor-
malized MTT signal to non-treated cells or normalized luminescence signal to non-
treated cells. n = 3; Data represent means ± S.E.M.
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replication, as shown by lower mean oropharyngeal viral titers in the
“Treated” group (1.1 ± 0.9 × 102, 0.8 ± 1.3 × 102, 1.5 ± 1.2 × 101 nsp14
copies/ngofRNAonD1,D2, andD3, respectively) compared to those of the
“Vehicle” group. Moreover, no viral genomes could be detected in samples
from the “Treated” group on D5 and onwards. No significant differences
were observed in mean lung viral titers between the “Vehicle”
(3.9 ± 1.8 × 107 and 1.6 ± 0.4 × 104 nsp14 copies/g of lung tissue on D3 and
D6, respectively) and “Treated” (3.3 ± 4.8 × 107 and 1.4 × 104 nsp14 copies/g
of lung tissue onD3 andD6, respectively) groups (Fig. 8D). As expected, no
viral genome was detected in the “Uninfected Treated” group.

Altogether, our in vivo results validate the capacity of phenformin
treatment to reduce viral load and shorten time to negativity in the upper
respiratory tract ofGolden Syrianhamsters. The fact thatwedidnot observe
an antiviral effect in the lower respiratory tract underscores the need of
further treatment optimization before its potential evaluation in humans.

Discussion
In this work, we have used constraint-based metabolic modeling to inves-
tigate themetabolic state of virally infectedcells and identify potential targets
for broad-spectrum antiviral treatment. We found that viral infection of a
tissue led to pronounced induction of predicted viral replication capacity
even in non-infected cells. This indicates that SARS-CoV-2 might induce
transcriptional programs in neighboring cells that prime non-infected cells
for viral replication along with a pronounced induction of many metabolic
pathways, whichwe previously reported for several types of immune cells in
COVID-19 patients60. Such pleiotropic effects in the microenvironment of
virally infected cells have previously been reported for other viruses such as
Epstein-Barr Virus and Kaposi’s sarcoma herpesvirus61. In this context,
those effects are mediated via extracellular vesicles secreted by virally
infected cells that contain viral effectors thatmodulate themetabolic activity
of non-infected cells in the microenvironment. Our observation of a
widespread induction of pathways required for viral replication in unin-
fected cells, in combination with the previous detection of extracellular
vesicles containing viral proteins in SARS-CoV-2 infected individuals62,63

indicate that SARS-CoV-2 infected cells might modulate the permissibility
of theirmicroenvironment for viral replication in a similarmanner. Overall,
these results suggest that SARS-CoV-2 strongly relies on a profound
induction of metabolic pathways for its replication and support the notion
that the cellular metabolism of virally infected cells is an attractive target for
inhibiting viral replication.

Thus, we used our modeling approach on an expanded set of viruses
additionally including DENV, a member of the Flaviviridae and a fast-
spreading insect-borne disease, as well as IAV, belonging to the Para-
myxoviridae to identify potential targets for broad-spectrum antiviral
therapy. Focusing on targets that impeded viral replicationwith only a small
impact on cellular replication (tier-1 targets), we identified 254 potential
enzyme targets, of which 158 have already been reported in associationwith
viral proteins. Those enzyme targets were strongly enriched in pathways
known tobe highly relevant for viral replication such as the electron transfer
chain, the tricarboxylic acid cycle and glycolysis11,28,31. Further including
information about physical interactions of the targets with viral proteomes,
we identified 39 proteins forming parts of 22 protein complexes that could
serve as druggable targets for broad-spectrumviral inhibition. Among those
candidates,we selected four enzymecomplexes comprising eleven identified
targets for further experimental validation based on the availability of sui-
table inhibitors. Thus, we could confirm that targeting the NADH:ubiqui-
none oxidoreductase complex by phenformin and the succinate
dehydrogenase by atpenin A5 blocked viral replication in cell culture
experiments with minimal cellular toxicity. Remarkably, while phenformin
inhibited the replication of DENV and SARS-CoV-2, atpenin A5 showed
excellent antiviral activity against DENV, SARS-Cov-2, RSV, and IAV.
Furthermore, TOA-assays indicate differential modes-of-action of the
compounds used. While DENV and IAV seem mainly inhibited by the
compound’s effect onmetabolism, there is a clearTOAeffect of SARS-CoV-
2 inhibition by phenformin and atpenin A5 and also RSV is potently

suppressed by atpeninA5, especiallywhen it is givenbefore infection. Such a
TOA-effect is supportive for a compound mode-of-action related to early
steps in the viral cycle, i.e., entry. Of note, SARS-CoV-2 and RSV were also
sensitive towards inhibitionwhen the compoundswere givenafter infection,
indicating that in addition to the effects on entry,metabolism is also relevant
for the observed antiviral activity. Altogether, phenformin and atpenin A5
that target pathways based onour predictions, inhibit four virusesbelonging
to completely distinct viral taxons. This supports the suitability of our
pipeline and approach to identify broad-spectrum antivirals. Importantly,
our target prediction approach did not incorporate data fromRSV-infected
cells, thus further supporting the notion that the predicted targets also work
beyond the three viruses initially included in our analysis.

Phenforminwaswell tolerated up to high concentrations, which agrees
with its previous use as an antidiabetic drug before it was withdrawn from
the market in the 1970s due to more frequent fatal cases of lactic acidosis
compared to the alternative antidiabetic metformin. The frequency of lactic
acidosis was 40–64 per 100,000 patients per year and probably related to
renal insufficiency similar to metformin therapy64. However, provided that
treatment in the context of acute viral infections is short-termed and
therefore fundamentally different from the long-term treatment in diabetes,
phenformin could represent a viable treatment option. Indeed, biguanides
including phenformin showed clinical benefit in diabetic influenza patients

Table 1 | Selectivity indices of atpenin A5 and phenformin
against various pandemic RNA viruses in different cell lines

Atpenin A5 IC50 CC50 selectivity
index:
CC50/IC50

ic-SARS-CoV-2-
mNG
(in Calu-3 cells)

0.45 µM
CI 95% [0.249–1.361]

MTT: 3.6 µM
CTG: 1.0 µM
IncuCyte:
>160 µM

MTT: 8
CTG: 2.2
IncuCyte: >355

SARS-CoV-2
Omicron
(in Calu-3 cells)

0.68 µM CI 95%
[0.620–0.788]

MTT: 3.6 µM
CTG: 1.0 µM
IncuCyte:
> 160 µM

MTT: 5.3
CTG: 1.5
IncuCyte: >235

Dengue Virus
(in Huh7.5 cells)

0.38 µM CI 95%
[0.225–0.683]

MTT: 83.3 µM
CTG: 85.4 µM
IncuCyte:
115 µM

MTT: 219.2
CTG: 258.8
IncuCyte: 319.4

Influenza A Virus
(in A549 cells)

1.01 µM CI 95%
[0.561–1.82]

MTT: 114.7 µM
CTG: 49.5 µM
Incucyte:
67 µM

MTT: 113.5
CTG: 49
Incucyte: 66.3

RSV
(in A549 cells)

0.12 µM CI 95%
[0.076–0.190]

MTT: 114.7 µM
CTG: 49.5 µM
IncuCyte:
67 µM

MTT: 955.8
CTG: 412.5
Incucyte: 558.3

Phenformin IC50 CC50 Selectivity
index:
CC50/IC50

ic-SARS-CoV-2-
mNG
(in Calu-3 cells)

1.81 µM CI 95%
[1.034–3.088]

MTT: 456 µM
CTG: 26.3 µM
IncuCyte:
2060 µM

MTT: 251.9
CTG: 14.5
IncuCyte: 1138

SARS-CoV-2
Omicron
(in Calu-3 cells)

1.35 µM CI 95%
[0.798–1.87]

MTT: 456 µM
CTG: 26.3 µM
IncuCyte:
2060 µM

MTT: 337.8
CTG: 19.5
IncuCyte:
1525.9

Dengue Virus
(in Huh7.5 cells)

17.15 µM CI 95%
[10.21–59.66]

MTT: 64.2 µM
CTG: 80.2 µM
IncuCyte:
1313 µM

MTT: 3.7
CTG: 4.7
IncuCyte: 76.6

Influenza A Virus
(in A549 cells)

not active

RSV
(in A459 cells)

not active
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Fig. 7 | AtpeninA5 and phenformin time of addition assay against different RNA
viruses. Cells (Calu-3, A549, or Huh T7 Lunet RC) were treated with different
concentrations of atpenin A5 or phenformin at several timepoints (24 h before
infection, 2 h before infection, at the same time or 2 h after infection). They were
infected with either icSARS-CoV-2-mNG (MOI 0.3), respiratory syncytial reporter
virus expressing GFP (RSV, MOI 0.3), influenza A reporter virus (IAV, MOI 0.3)

expressing GFP, or Dengue virus (WT2, MOI 1). Forty-eight hours post-infection,
cells were fixed with 2% PFA, stained with Hoechst, and infection rates were mea-
sured with a Cytation3 multiplate reader.A Cell count (Hoechst+ cells) normalized
to mock. B Graphs show the infection rate normalized to untreated infected cells.
n = 3; Data represents means ± S.E.M.
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and hence the compound was suggested as a COVID treatment option65.
Another study identified phenformin as a potential SARS-CoV-2
PLproinhibitor with potential antiviral activity using molecular dynamics
simulations66. However, none of the aforementioned studies provided
experimental evidence for antiviral activity of phenformin in cell-based or
in vivo infection models. Reported plasma levels of phenformin after 50-
100mg of phenformin uptake in patients are ~1.7 µM67, while tissue con-
centrations have not been assessed but are expected to be much higher as
reported in animalmodels68. For instance, in rats portal vein concentrations
reached 2.5 µMand liver concentrations 147 µMafter oral gavage of 50mg/
kg phenformin69. Thus, tissue concentrations are expected to be much
higher than the IC50 of 1.35–1.8 µMthatwemeasured against SARS-CoV-2.
Atpenin A5 is, up to now, an experimental compound that was not tested
in vivo, possibly due to its expectable multiple adverse effects in various
organs. Atpenin A5 is known as a potent complex II inhibitor70, thus
affecting the redox chain at themitochondrialmembrane andoverall energy
metabolism. These two features are also reflected by our MTT and CTG
assays (Fig. 6 and Table 1). Nevertheless, complex II inhibition is also
discussed as a druggable metabolic pathway for various cancer types71.
Novel atpenin A5-derived leads were developed with a much higher on-
target specificity72. These recent developments, combined with our obser-
vation that complex II inhibition via the succinate dehydrogenase is a
druggable and highly potent target for broad-spectrum antiviral inhibition,
raise the possibility for the rapid establishment of novel broadly acting
antiviral drugs.

This notion and the reliability of our whole workflow are supported by
our in vivo validation of the antiviral activity of phenformin in the Golden
Syrian hamster model. Although further dose-optimization studies are
warranted to maximize the antiviral effect in the lower respiratory tract,
phenformin showed antiviral activity in the upper respiratory tract, the
main anatomic site for viral entry and spread. Hence, early application of
phenformin may potentially reduce the time to symptom resolution,

prevent or delay spread to the lower respiratory tract, and also shorten and
limit the transmission window. As already discussed, given the well-
elaborated PK/ADME/tox profiles of phenformin in humans, we suggest
holding phenformin as a candidate drug for preparedness in case of future
outbreaks caused by coronaviruses and potentially other pandemic viruses.
Furthermore, recent evidence coming from larger trials analyzing the effi-
cacy of the phenformin-relatedmetformin to ameliorate symptoms of long-
covid and also giving benefit to patients during acute infection73,74, supports
our findings. Importantly, in our comparative analyses, phenformin
strongly outcompetedmetformin in terms of its antiviral activity whichwas
~300 fold higher against SARS-CoV-2 (IC50 of ~1.5 µM for phenformin vs
~450 µM for metformin). This difference in efficiency is in line with the
improved cellular uptake of phenformin over metformin and the much
lower typical therapeutic dosage of phenformin compared to metformin in
humans68.

Nevertheless, there are limitations to our study and open questions
remain.On the computational side, we applied ourworkflow only to single-
cell RNA-Seq datasets which come with the limitation that typically only a
subset of expressed genes is detected75. However, bulk sequencing RNA-Seq
data suffers from the disadvantage that it also includes transcripts of genes
fromcell types thatmight not be permissible for viral infection. For instance,
SARS-CoV-2 is typically only able to infect a small subset of cells in the
lung76. Moreover, due to the reconstruction of context-specific models for
hundreds of thousands of cells being a limiting step in our analysis, we based
our approach on Recon2.219 which is much smaller in size than more
current reconstructions of human metabolism, like Recon3D77. Also, the
mapping approach for transcriptomic data is based on the inclusion of
highly transcribed genes and therefore is biased towards more abundant
proteins, hence potentially missing lowly abundant proteins relevant for
viral replication. Our subsetting approach might further focus predicted
targets to those with known interactions with viral proteins since experi-
mental approaches for detecting such interactions are likely biased to more

Fig. 8 | Antiviral activity of phenformin in vivo. A Golden Syrian hamsters were
infected intranasally on day 0 (D0) with 105,5 TCID50 of SARS-CoV-2 Delta
(B.1.617.2) virus. “Treated” (n = 5) and “Uninfected Treated” animals received
100 mg/kg phenformin by gavage once daily for 5 days, starting on D-2. “Vehicle”
animals (n = 7) received PBS. BWeight loss was monitored on D-3 (baseline before
treatment) and daily from D0 to D6. Data for individual animals (dots and squares)

and means (lines) are shown. C Oropharyngeal swabs were collected daily from D1
to D6 and viral titers were assessed by RT-qPCR. D On D3 and D6 a subset of
animals were euthanized and lungs were harvested to assess viral loads by RT-qPCR.
Data are shown as means ± SD. Two-tailed p values were determined by Mann-
Whitney U test, using GraphPad Prism software v10.3.1. OVT oropharyngeal viral
titers, LVT lung viral titers, LOQ limit of quantification.
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abundant proteins. Additionally, by concentrating on targets that can
inhibit replication across several viruses, we might have missed potent
targets for viral inhibition in individual viruses. The activity of phenformin
needs to be characterized in further detail in vitro as well as in vivo prior to
upcoming clinical trials.While we observed some weight loss in vivo, this is
likely related to an appetite-reducing effect as has been observed for
metformin78, the weight trend reassuringly did not change post-infection.
Furthermore, phenformin was not active in vitro against RSV and IAV. For
both infection models we employed A549 cells and these lung adeno-
carcinoma cellsmight exert cell-line specific resistance to this compound. So
it will be essential to further exploit other cell types and foremost primary
cell models, for example air-liquid-interface cultures to verify this pheno-
type. Atpenin A5 is of limited in vivo compatibility, and following its proof-
of-concept as broad antiviral agents, more work is necessary to render it
biocompatible orfindother inhibitors of the same target.Moreover, wehave
only explored a subset of our predicted targets, and other targets from our
listmight provide an even higher potency for inhibiting viral replication in a
broad set of viruses. Hence, ample follow-up studies to the work presented
herein are necessary to further explore the capability of our modeling
workflow to predict antiviral drugs.

Altogether, this study proves that targeting metabolism is a valuable
strategy in the context of antiviral therapies79, with certain advantages.
Metabolism-based targets exert a very low variability and are predictably
essential for viral replication, resulting in a high resistance barrier and a pre-
dictable broad antiviral activity. In this context, our workflow for identifying
antiviral targets, integrating cellularmetabolism and data fromvirally infected
cells, as well as the inhibitors we have identified, represents an invaluable
resource for pandemic preparedness against future emerging pathogens.

Methods
Computational analysis—single-cell sequencing datasets
Table 2 summarizes the single-cell sequencing datasets used.

Computational analysis—viral replication models based on
Recon 2.2
The viral replication reaction for SARS-CoV-2 was taken from Renz et al.17.
The viral replication reaction for dengue was taken from Aller et al.16. No
viral replication reaction for influenza A H1N1 was available and, thus,
needed to be constructed. The nucleotide and protein sequences with the
RefSeq number GCF_001343785.1 were downloaded from NCBI’s Refer-
ence Sequence database80. The genome copy number was assumed to be 1.
Influenza A H1N1 has four structural proteins: hemagglutinin (HA),
neuraminidase (NA), matrix protein 1 (M1), and matrix protein 2 (M2).
The nonstructural proteins include the polymerases PB1, PB2, and PA, the
nucleocapsid protein, the nonstructural protein 1, the nuclear export pro-
tein, and the PA-X protein. The detailed list of copy numbers for the
structural and nonstructural proteins is given in SupplementaryData 9. The
stoichiometric coefficients for the nucleotides, amino acids, and energy
requirements were calculated based on the copy numbers and according to
the steps suggested by Aller et al.16. These coefficients are provided in
Supplementary Data 10. We did not consider lipids for the viral biomass

reaction since for most viruses there is only scarce information about the
composition of the viral lipidome81 and this has just recently been deter-
mined for SARS-CoV-282. So far, detailed knowledge about virus envelopes
remains limited inmost cases,making it challenging to include, for instance,
lipid requirements in the virus biomass objective functions. Later genera-
tions ofmodels should consider this informationwhen it becomes available.
A recent study yielded additional model predicted targets after including
lipid requirements83. Please note that due to the modeling procedure
inclusion of lipid metabolites will only increase the number of targets. The
genome-scale metabolic model of humans, Recon 2.219, was expanded with
the viral replication reaction for each of the three viruses. The model was
conditioned with a medium corresponding to the concentration of meta-
bolites present in human blood (Supplementary Data 11)60. Please note that
this diet approximates maximal uptake rates for metabolites based on their
concentration, as typically done when considering complex media84. Sub-
sequently, we used fastcore’s fastcc algorithm and the simulated blood
serum diet to generate consistent models for each virus. These models are
available from the BioModels database (see “Data Availability”).

Computational analysis—cell identity annotation
Cell-type annotationwas not available for all datasets analyzed in this study.
For deposited datawithmissingmetadata on cell identity, we performed cell
type annotation de novo (see Supplementary Fig. 2A–D). For the datasets
BALF1anddengue,we employed theR-packageCHETAH(version1.8.0)85.
CHETAHmakes use of a reference single-cell RNAdataset, which is used to
build a classification tree via hierarchical clustering. Input cells are placed
and identified as reference cell types or intermediate types in the classifi-
cation tree.TheBALF1datasetwas annotatedusing a single-cell lung atlas of
idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and
healthy smokerandnon-smoker’s lung cells (ref. 86,GSE136831).Only cells
annotated as epithelial in the original work were considered.

The dengue dataset was annotated using an in-house available PBMC
single-cell dataset87. References were prepared according to the CHETAH
R-packagemanual. Briefly, annotation references were created from single-
cell expression datasets with known cell type identifications. Single cells of
only healthy donors were kept in the reference. Rare cell typeswith less than
15 cells representing that cell type were dropped from the reference. In the
interest of computing times, the remaining cell types were downsampled to
a maximum of 300 cells, picked at random. The remaining single cells were
normalized sample-wise to an equal sequencing depth of one million, and
+1 was added to each gene’s count to allow for log2 transformation. For an
improved classification, ribosomal and housekeeping genes were dropped
(Supplementary Data 12). After creating Seurat objects and performing
quality control as described in “scRNA core reaction pre-processing,” cell
type annotation was done on the Seurat objects. For this, the classification
function CHETAHclassifier was run with the query dataset and the
matching reference. The quality of the automated classification was visually
controlled with dimension reduction plots.

The influenza H1N1 datasetwas manually annotated since CHETAH
provided unsatisfactory results. We followed the steps outlined in the
accompanying publication’s methods88.

Table 2 | Single-cell sequencing datasets

Dataset Reference Accession Number Celltype annotation source # CS models

BALF1 26 GSE145926 Annotation via CHETAH version 1.8.0 with single cell lung atlas (GSE13683186) 1678

BALF2 22 EGAS00001004481 Original authors (https://doi.org/10.6084/m9.figshare.12436517) 148,420

CALU-3 27 GSE148729 Single cell experiment 32,003

scH1299 27 GSE148729 Single cell experiment 20,604

Influenza H1N1 28 GSE191176 Manual annotation following methods of original publication 3066

Dengue 30 GSE116672 Annotation via CHETAH version 1.8.0 with PBMC single cell reference55 64,638

The last column indicates the number of context-specific models reconstructed from each dataset.
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Computational analysis—scRNA data processing and recon-
struction of context-specific metabolic models
Prior to the reconstruction of single-cell metabolic models, scRNA datasets
(Methods: scRNA Datasets) were downloaded from NCBI’s Gene Expres-
sion Omnibus89 for pre-processing with Seurat90 and StanDep20. Seurat
objects of the respective scRNA datasets were created, and cells were
removed if data was of insufficient quality (number of detected genes > 200
and <6000;mitochondrial RNAwithmapped reads < 10). For datasets with
missing cell type information, cell identity annotation was applied to the
filtered Seurat objects (see “Cell identity annotation”). Gene level counts
were translated into transcripts per million (TPM) values through nor-
malization according to human ENSEMBL gene lengths. Please note that
while we used TPMs, the protocols used for scRNA-Seq often involve
sequencing from the start or end of a transcript and thus approaches for
normalizationnot involving gene lengthmight bemore suitable for this type
of data. ENSEMBL91 gene names were mapped to Recon 2.2 identifiers20,92.
StanDep was employed with the pre-processed expression data to identify
core reactions active in the individual cells. To this end, enzyme expression
was log10 transformed into a matrix with rows representing enzymes and
columns as bins to identifyminimumandmaximum enzyme expression. A
complete linkagemetric with hierarchical clustering and Euclidean distance
was used to cluster (number of clusters = 40) genes with respect to their
expression. Core reactionmatrices were assembled, defined, and used as an
input to fastcore21 to reconstruct single-cell, context-specific metabolic
models. The fastcore algorithm was employed to create cell-type-specific
models based on the consistent Recon 2.2 model, including the viral repli-
cation reaction and the list of core reactions from StanDep expanded by the
biomass objective function and viral replication reaction. The human
metabolic models with all constraints for the blood medium and the viral
replication reactions have been uploaded to the BioModels Database93 in
SBML format94 with the extensions for hierarchical model composition95

and flux balance constraints version 296. Each model entry in BioModels
Database contains a base model derived from Recon 2 and tissue-specific
models, all wrapped together in an Open Modeling EXchange format97 file
with annotation98. For links to the respective datasets and models see the
“Data Availability” statement.

Reactions identified as being active in single-cell metabolic models
were counted and summarized into 82 metabolic pathways based on the
subsystem annotation of Recon 2.2 to analyzemetabolic pathway activity in
the BALF2 data. The small number of single-cell models with detected viral
RNA were not considered to avoid confounding (87 of 148.420 cells). The
resulting counts of active reactions per pathway were checked for toomany
single cells with zero counts, e.g., metabolic pathways were discarded if they
showed zero counts in more than half of the single-cell models across all
three patient groups (control, moderate, and severe COVID). The
remaining 57 metabolic pathways were statistically evaluated individually
for their relation to patient groups while controlling for cell type (“Basal,”
“Ciliated,” “Ciliated-dif,” “FOXN4,” “Ionocyte,” “IRC,” “out-
liers_epithelial,” “Secretory,” “Secretory-diff,” “Squamous”). Active reaction
counts were modeled as the dependent variable in negative binomial
regressions (R-package MASS 7.3-57 function glm.nb99). Metabolic path-
ways with inflated zero counts were modeled with negative binomial
regression with an additional zero-inflation model. The zero-inflation
model took the same independent variables as the primary model, namely
patient group and cell type (R-package pscl 1.5.5, function zeroinfl with
dist = “negbin”100). The logarithm to the base two was calculated for fold
changes between the control group as a baseline and any of the two COVID
patient groups.

Computational analysis—prediction of viral replication capacity
and antiviral targets
In order to predict viral replication capacity for a cell built from scRNA-Seq
data, we used flux balance analysis17 with the applied blood serum diet and
maximized the flux through theVBOF.We performed single gene deletions
to predict antiviral targets and assessed their effects on host biomass

production and viral replication capacity. Supplementary Data 2 lists the
predicted viral replication capacities and predicted tier-1 and tier-2 targets
for each cell. Those gene knockouts that were found to decrease viral
replication capacity by at least 50% of the initial value whilemaintaining the
host’s biomass minimally at 80% of its initial value were reported as tier-1
targets. Tier-2 targets reduced viral replication capacity by at least 50% but
decreased cellular biomass production by more than 20%. While the bio-
mass reaction is typically used to predict maximal growth rates of cells, it
consumes all the molecules whose production is continuously required to
maintain cellular function and hence can be used as a proxy for metabolic
requirements of normal cellular function. Examples of such cellular func-
tions include, for instance, the production of amino acids for protein
turnover, nucleotides for DNA repair, and energy equivalents for cellular
function. To identify tier-1 and tier-2 targets, we considered only cells with a
predicted viral replication rate above 0.01mmol/gDW (unit of flux mea-
surement in constraint-basedmodels) anddetected tier-1 targets.Moreover,
we constricted the data to include only virally infected cells where possible
(i.e., a sufficient number of virally infected cells). Thus, we only considered
infected cells as indicated in the provided metadata for the cell culture data
from SARS-CoV-2 infected cells (CALU3, scH1299) and the BALF1 data
set. For the BALF2 data set, only a few infected cells were detected. Since we
observed priming of non-infected cells for viral replication upon viral
infection of the host, we considered all SARS-CoV-2 permissive cell types of
SARS-CoV-2 infected individuals for this dataset (i.e., those listed in
Fig. 1A). For dengue and influenzaA,we consideredonly cellswith>0.1%of
reads mapping to the respective viral genomes as indicated in the metadata
provided along with the sequencing data.

Please note that applying the used cutoffs (<50% maximal viral repli-
cation rate, >80% maximal biomass production rate) on the human meta-
bolicmodelwith ourpredefineddietwithout themapping of transcriptomic
data did not yield any tier-1 targets. However, two tier-2 targets could be
identified: asparagine synthetase (ASNS) and cytidine/uridine monopho-
sphate kinase 1 (CMPK1). ASNS knockout reduces maximal biomass
production rate to 57%, while CMPK1 knockout is lethal. This result
highlights the relevance of combining the generic model of viral replication
with gene expression data.

For the comparison of known physical interaction partners of the viral
proteomewith tier-1 and tier-2 targets (Fig. 3), we subsetted tier-1 and tier-2
targets to those occurring in at least 5%of the cells for eachdata set forwhich
tier-1 targets could be identified (high-confidence tier-1 and tier-2 targets,
Supplementary Data 5). To identify broad-spectrum antiviral targets, we
required that the corresponding enzymewas identified as a tier-1 target in at
least one cell in each dataset, yielding a total of 254 shared tier-1 targets
across all datasets/viruses. Additionally, we included information on known
virus protein interactions49,101,102. For SARS-CoV-2, we used host proteins
that had at least one reported interaction with a SARS-CoV-2 protein at a
SAINTexpress Bayesian false-discovery rate (BFDR) ≤ 0.05103 and an
average spectral count ≥2. The list of considered interaction partners for
each virus is provided in Supplementary Data 4. To analyze the enrichment
of predicted shared tier-1 targets across all datasets amongcellularmetabolic
pathways, we used the human metabolic model Recon2.2 to identify genes
associatedwith eachmetabolic subsystem annotated in themodel. Thus, we
mapped each subsystem to the reactions that it contained and identified the
associated gene lists via the gene-protein-reaction associations. Subse-
quently, we used Fisher’s exact test to determine the significance of the
enrichment of shared tier-1 targets among the genes associated with each
subsystem.

We first determined the total weight of compounds required for a set
flux of 1mmol/gDW/h in the biomass reaction and the viral replication
reaction to determine the energetic requirement of normal growth versus
viral replication. To this end, the corresponding stoichiometric coefficients
of each compound consumed for biomass or virion production were mul-
tiplied by the molecular weight of the corresponding compound. The
amount of ATP hydrolyzed to ADP as part of the biomass or viral repli-
cation reaction (29.25mmol/gDW/h for biomass, 30.62mmol/gDW/h for
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viral replication) was subsequently divided by this weight to obtain the
amount of ATP required for production of one gram of biomass or virions.

Wederived a shortlist of candidate targets by subsetting the list to those
enzymes listed as tier-1 targets at least once for each data set and reported as
interaction partners of the proteome of at least two of the three viruses (39
candidates). The frequency atwhich each enzymewas listed as a tier-1 target
is provided in Supplementary Data 8. Further information from the lit-
erature, CRISPR-Cas studies32–34, and the availability of suitable inhibitors
were additionally used to identify candidate targets suitable for experimental
testing. To identify the gene’s relevance in other viral diseases, we searched
the database of protein, genetic, and chemical interactions (BioGRID)26 and
the molecular INTeraction database104. To identify known drugs or inhi-
bitors, we searched the Drug Gene Interaction database105, the DrugBank
database106, and the GeneCards suite107. Based on this information, we
selected four enzyme complexes covering eleven of the 39 gene targets for
which inhibitors were available for experimental testing.

Computational analysis—statistics and reproducibility
Statistical tests were performed with R version 4.1.3 if not indicated
otherwise. The individual statistical tests are indicated for each case inwhich
p values are reported. For all statistical tests the corresponding functions
from the R base package were used. In the case of multiple tests, false
discovery rate control using the Benjamini and Hochberg procedure108

implemented in the p.adjust function of R was used. For plotting, ggplot2
was used. For number and definition of replicates for experimental
approaches, please see the corresponding “Methods” sections.

Experimental approaches—cell culture
A549 cells (human alveolar basal epithelial adenocarcinoma) were main-
tained at 37 °C with 5% CO2 in RPMI 1640 Medium containing 10% (v/v)
inactivated fetal calf serum (FCS) and 100 µg/mL penicillin-streptomycin.
A549 cells were kindly provided by Prof. Stefan Pöhlmann and Dr. Markus
Hoffmann, German Primate Center Göttingen, Germany.

Calu-3 cells (human lung adenocarcinoma cells) and HEp-2 cells
(human epidermoid cancer cells) weremaintained at 37 °Cwith 5%CO2 in
Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FCS, Glu-
taMax, and 100 µg/mL penicillin-streptomycin. Calu-3 cells were received
from Prof. Oliver Planz, University Tübingen, Germany. HEp-2 cells were
received from Dr. Katharina Rox, HZI, Hannover, Germany.

CaCo-2 (human colorectal adenocarcinoma cells) and Huh7.5 cells
(human hepatocellular carcinoma cells) were maintained at 37 °C with 5%
CO2 in DMEM containing 10% FCS, GlutaMax, 1% (v/v) nonessential
amino acids and 100 µg/mL penicillin-streptomycin. CaCo-2 cells were
received fromATCC (Cat#HTB-37). Huh7.5 cells were kindly provided by
Prof. Ralf Bartenschlager (Department of Infectious Diseases, Molecular
Virology, University Heidelberg, Germany).

Huh7-Lunet-T7 RC cells (human hepatocellular carcinoma cells
expressing dengue reporter construct) were maintained at 37 °C with 5%
CO2 in DMEM containing 10% FCS, GlutaMax, 1% (v/v) nonessential
amino acids, 100 µg/mL penicillin-streptomycin, 1 µg/ml Puromycin and
5 µg/ml Zeocin. Huh-Lunet-T7 RC cells were kindly provided by Prof. Ralf
Bartenschlager (Department of Infectious Diseases, Molecular Virology,
University Heidelberg, Germany).

Experimental approaches—viruses
Two different SARS-CoV-2 strains were used in this study and experiments
involving replication-competent SARS-CoV-2 were conducted in a BSL3
laboratory. First is the recombinant SARS-CoV-2 clone expressing
mNeonGreen icSARS-CoV-2-mNG109. It was obtained from the World
Reference Center of Emerging Viruses and Arboviruses at the University of
Texas Medical Branch. For virus production, CaCo-2 cells were infected;
48 h post-infection (hpi), the supernatant was collected, centrifuged, and
storedat−80 °C. Second is a clinical SARS-CoV-2 isolate that belongs to the
B.1.1.529 (Omicron) BA.1 lineage. It was isolated from a PCR-positive
patient by a throat swab at the Institute for Medical Virology and

Epidemiology of Viral Diseases, University Hospital Tübingen, Germany.
Briefly, 200 µLofpatientmaterialwasused to inoculateCaCo-2cells in a six-
well plate (150,000/well). At 48 hpi, the supernatant was collected, cen-
trifuged, and stored at−80 °C.After two consecutive passages, sampleswere
prepared for next-generation sequencing, and the correct SARS-CoV-2
lineage was determined. The MOI was determined for both viruses by
titration with serial dilutions. The number of infectious virus particles per
mL was calculated as the (MOI × cell number)/(infection volume), where
MOI =−ln(1− infection rate).

The recombinant respiratory syncytial virus (RSV rA2-eGFP) was
kindly provided by Jun.-Prof. Konstantin Sparrer (Institute of Molecular
Virology, University Hospital Ulm, Germany) and Assoc. Prof. Michael N.
Teng (University of South Florida Morsani College of Medicine, Tampa,
Florida, USA)110. HEp-2 cells were infected, and the cells and the super-
natant were harvested at 72 hpi, sonicated for 10min at 35 °C, centrifuged,
and stored at −80 °C to generate rA2-eGFP stocks.

The recombinant IAV expressing GFP (IAV-GFP SC35M) was kindly
provided by Jun.-Prof. Konstantin Sparrer (Institute ofMolecular Virology,
University Hospital Ulm, Germany) and Prof. Martin Schwemmle (Insti-
tute of Virology, University Hospital Freiburg, Germany)111.

For the dengue studies, recombinant dengue 2 strains 16681 (Gene-
bank Accession NC_001474) or recombinant dengue 2 strains 16681
(GenebankAccessionNC_001474) containing aRenillaLuciferaseReporter
was used112–115. The dengue genome was transcribed as viral RNA in full-
length and electroporated into Huh7.5 cells or Huh7-Lunet-T7 RC cells
3 days and 5 days post electroporation, the supernatant was collected,
centrifuged, and stored at −80 °C.

Experimental approaches—compound information
Atpenin A5 (Cat# sc-202475A) and scyllo-inositol (Cat# sc-202808) were
obtained from Santa Cruz Biotechnology (Dallas, Texas, USA) and dis-
solved in DMSO for atpenin A5 and in HPLC water for scyllo-inositol.
Phenformin (Cat#P7045) andSR13800 (Cat# 5096630001)were purchased
from Merck (Rahway, New Jersey, USA) and dissolved in HPLC water.
Metformin (Cat# AG-CR1-3689) was acquired from AdipoGen Life Sci-
ences (San Diego, California, USA) and dissolved in HPLC water.

Experimental approaches—initial screening of four drug candi-
dates against
SARS-CoV-2CaCo-2 andCalu-3 cellswere seeded into a 96-wellflat bottom
plate with 1 × 104 (CaCo-2) or 4 × 104 (Calu-3) cells per well. The next day,
cells were pre-treated with phenformin, SR13800, and scyllo-inositol in
concentrations of 50 µM, 10 µM, and 2 µM, and atpenin A5 in concentra-
tions of 10 µM, 2 µM, and 0.4 µM. After 24 h, cells were infected with
icSARS-CoV-2-mNG109 at amultiplicity of infection (MOI) = 0.2 forCaCo-
2 cells and at an MOI = 0.5 for Calu-3 cells or mock-infected. After 48 h
post-infection (hpi), cells were fixedwith 2%PFA and stainedwithHoechst
33342 (Thermo Fisher Scientific, Cat# H1399) at 1 µg / mL final con-
centration. Images of cell nuclei, mNeonGreen, and bright field were taken
with Cytation3 (Biotek,Winooski, VT, USA). Hoechst+ andmNeonGreen
+ cells were counted by the Gen5 software (Biotek, Winooski, VT, USA),
and infection rates were calculated using the ratio of mNeonGreen
+/Hoechst+ cells.

Experimental approaches—IC50 calculation of phenformin,
metformin, and atpenin A5
For IC50 calculationswith the SARS-CoV-2 strains, Calu-3 cellswere seeded
into a 96-well flat bottomplate with 4 ×104 cells perwell. The next day, cells
were pre-treated with phenformin, metformin, or atpenin A5. After 24 h,
cells were infectedwith icSARS-CoV-2-mNG at aMOI = 0.5 or with SARS-
CoV-2 Omicron at a MOI = 1.1. The icSARS-CoV-2-mNG infected cells
were fixed, stained, and measured as described before. The SARS-CoV-2
Omicron infected cells were fixed with 80%Acetone and blocked with 10%
normal goat serum (Cell SignalingTechnology,Cat# 5425).Afterwards cells
were stained by Immunofluorescence with rabbit anti-SARS-CoV-2
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nucleocapsid antibody (GeneTex, Cat# GTX135357, RRID:AB_2868464)
1:1,000 inPBS andwith goat anti-rabbitAlexaFluor™594 antibody (Thermo
Fisher Scientific, Cat# A-11012, RRID:AB_2534079) 1:2,000 in PBS. Cell
nuclei were stained with DAPI (Merck, Cat# D9542) 1:20,000 in PBS.
Images of cell nuclei, AlexaFluor™ 594+ cells, and bright field were taken
with the Cytation3 (Biotek, Winooski, VT, USA), and DAPI+ and Alexa-
Fluor™ 594+ cells were automatically countedby theGen5 software (Biotek,
Winooski, VT, USA).

For IC50 calculations with dengue virus, phenformin or atpenin A5
were prediluted in Huh7.5 complete media and added to Huh7.5 cells 1 h
before adding the virus (MOI = 1). At 24 h post-infection, a lysis buffer was
added to the cells, and the cell lysates were subjected to luciferase assay and
measured with Cytation3 (Biotek, Winooski, VT, USA).

For IC50 calculationwith IAVorRSV,A549 cells were pre-treatedwith
phenformin or atpenin A5. Cells were infected with IAV or RSV 24 h post-
treatment with an MOI of 0.6 (IAV), MOI of 1.4 (RSV), or mock-infected.
After 24 h (IAV) or 48 h (RSV), cells were fixed with 2% PFA and stained
with Hoechst 33342. The plates were measured with Cytation3 (Biotek,
Winooski, VT, USA), and Hoechst+ and GFP+ cells were counted by
Gen5 software (Biotek, Winooski, VT, USA).

IC50s of all viruses were calculated as the half-maximal inhibitory dose
using the GraphPad Prism 9 Software (GraphPad Software, Inc., SanDiego,
CA, USA, Version 9).

Experimental approaches—CC50 calculation of phenformin and
atpenin A5
CC50 calculations were performed using three methods to measure cell via-
bility: the MTT assay, the CellTiter-Glo® assay (CTG) from Promega (Cat#
G7570), andmonitoring cell viability via live cell imaging (IncuCyte®). For the
MTT assay, Calu-3, Huh7.5, and A549 cells were treated with phenformin in
concentrations of 6400 µM to 0.2 µM and atpenin A5 in concentrations of
640 µM to 0.15 µM in two-fold dilution for 72 h. AtpeninA5was dissolved in
DMSO. Therefore, DMSO control with 1.3% (≙ 640 µM atpenin) was added
to exclude false positive cell toxicity. The positive control is 50% DMSO to
inhibit cell growth. After 72 h of compound incubation, cells were washed
with PBS and 10% MTT solution (Abcam, Cat# ab146345) was added in
phenol red-freemedium for 3 h at 37 °C. Cells were then incubated in 0.04M
HCl in isopropanol and plates were gently shaken for 10min at room tem-
perature. Absorption levels at 570 nm and 650 nm wavelengths were mea-
suredbyaBertholdTriStar2SMultimodeReader, andvalueswerenormalized
to non-treated cells. CC50 was calculated as the half-maximal cytotoxic dose
via GraphPad Prism 9 using four-parameter nonlinear regression.

For CTG, Calu-3, Huh7.5, and A549 cells were treated with the same
concentrations as listed above, and DMSO controls and positive control with
50%DMSO treated cells were added. The assay was performed in accordance
with themanufacturer’s instructions.ABertholdTriStar2SMultimodeReader
was used tomeasure luminescent signals. The datawas thennormalized to the
non-treated control. CC50 was calculated as the half-maximal cytotoxic dose
via GraphPad Prism 9 using four-parameter nonlinear regression.

For live cell imaging, Calu-3, Huh7.5, andA549 cells were treated with
phenformin in concentrations of 12800 µM to 0.2 µM and atpenin A5 in
concentrations of 640 µM to 0.15 µM in two-fold dilution. Next, plates were
stored in the IncuCyte® (Sartorius AG, Göttingen, Germany) at 37 °C with
5% CO2. Cell confluence was measured every three to 4 h via a phase
channel with a 10× objective. For analysis, a basic analyzer of the IncuCyte®
S3 Software (Sartorius AG, Göttingen, Germany) was used.

Experimental approaches—in vivo infection experiments
Infection experiments in Golden Syrian hamsters were performed in the
animal facility of the Université de Lyon, VetAgro Sup, Institut Claude
Bourgelat (69280 Marcy l’Etoile, France). The experimental protocol was
authorized by the Institutional Ethics Committee of VetAgro Sup (CEEA
18, project number 2066) and the French Ministry (APAFIS#27797-
2020100516408472), and we have complied with all relevant ethical reg-
ulations for animal use.

Sixteen 9–11 week-old female immunocompetent Golden Syrian
hamsters (Janvier Labs, Le Genest-Saint-Isle, France) were randomized
according to their weight in two groups of 7 and one group of 2, with each
individual animal being considered an experimental unit. Animals were
confirmed to be seronegative for SARS-CoV-2 for their inclusion in the
study. Sample size was calculated to have at least 3 replicates on each
infected group for every time-point in which lungs were collected and.
Animals were housed in micro-isolator cages (maximum 4 animals per
cage) in a biosafety 3 controlled environment (22 °C, 30–70% humidity,
12:12 h photoperiods, 10 air cycles/h), with ad libitum access to food and
water. Cages belonging to each group were clearly labeled to avoid
potential confounders. On day 0 (D0), the two groups of 7 animals were
anesthetized with inhaled isoflurane/oxygen and infected intranasally
with 105,5 TCID50 of a SARS-CoV-2 Delta (B.1.617.2) strain in 60 µL of
PBS. The group of 2 animals was mock infected with 60 µL of PBS. All
animals received one 90 µL gavage per day for 5 days betweenD-2 andD2
containing 100mg/kg phenformin or sterile water, as indicated in each
case. Animals were weighted and monitored for clinical signs on D-3
(baseline before treatment initiation) and then daily after infection.
Oropharyngeal swabs were performed daily between D1 and D6 and
immediately stored at –80 °C for further total RNA extraction. A subset of
animals were euthanized onD3 andD6 and their lungswere removed and
homogenized in cold PBS to minimize degradation before total RNA
extraction. Total RNA from oropharyngeal swabs and lung homogenates
were used for nsp14 gene quantification by RT-qPCR, with operators
being blinded for the nature of each group (treatment vs. vehicle).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All dataproduced in the context of thiswork is available in theSupplementary
Data. Links to source data for the different scRNA-Seq data sets are provided
in Table 2. The human metabolic models with all constraints for the blood
medium and the viral replication reactions have been uploaded to the Bio-
Models Database93 (Table 3) under the following accessions: Dengue, https://
www.ebi.ac.uk/biomodels/MODEL2311070006; Influenza, https://www.ebi.
ac.uk/biomodels/MODEL2311070002; SARS-CoV-2 BALF1, https://www.
ebi.ac.uk/biomodels/MODEL2311070001; SARS-CoV-2 BALF2, https://
www.ebi.ac.uk/biomodels/MODEL2311070007; SARS-CoV-2 CALU3,
https://www.ebi.ac.uk/biomodels/MODEL2311070005; SARS-CoV-2
scH1299, https://www.ebi.ac.uk/biomodels/MODEL2311070004. Figure
source data can be found in Supplementary Data 3.

Code availability
Scripts to reproduce the analyses are available via GitHub in the repository
https://github.com/draeger-lab/R-DRUGS (Zenodo-Archive: https://doi.
org/10.5281/zenodo.15103806116). The program that produced the hier-
archical model versions can be found in this repository https://github.com/
draeger-lab/ModelEditingTools as the TissueModelExtractor
(Zenodo Archive: https://doi.org/10.5281/zenodo.15103819117).
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