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Abstract

The accurate description of multiphase chemical reactors is essential to improve
existing applications and design new configurations. Nevertheless, a detailed simula-
tion of a full multiphase reactor is a complex problem that involves the description
of distinct modeling levels. Despite of the increasing computing power and the ad-
vances in modeling, there is a need for efficient simulation techniques, robust models
and practical coupling methodologies for the simulation of multiscale reactors of
industrial interest.

In this thesis, techniques and methodologies that assist the simulation of multi-
phase chemical reactors have been developed and tested. The main results presented
in this work are the following: (i) technique for the reconstruction of distribution
from a finite number of moments, (ii) methodology for model parameter optimization
using multi-objective optimization and (iii) methodology for the multiscale coupling
of multiphase reactors.

Quadrature-based method of moments are commonly used to solve population
balance equations (PBEs). With this method only a small number of moments
of the underlying distribution are tracked. The developed adaptive reconstruction
technique using splines allows to retrieve distributions from a finite set of moments
without prior knowledge on the shape of the distribution; only the initial moments
and a rough estimation of the domain are needed.

Another tool explored in this work is the multiobjective optimization, which
has been used for the optimization of model parameters. It is a methodology that
has not been well explored in this realm. In many practical situations, however,
multiobjective optimization may deliver more robust and general applicable set of
parameters compared with single objective optimization. This methodology has
been applied for the optimization of the realizable & — e turbulence model and for
the optimization of kinetic and model parameters of a catalytic chemical reaction
network.

Finally, a batch crystallization reactor has been simulated. The distinct modeling
levels, e.g., fluid dynamics, population balance, growth kinetics, are coupled within
the Euler-Euler framework. Nevertheless, the brute-force 3-D simulation leads to
unaffordable computing time. Motivated by that, a methodology combining 3-D
and 0-D simulation has been elaborated. The developed methodology considers the
mixing and the crystal growth separately but uses the local information of the flow

for a detailed description of the crystal growth.
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Kurzfassung

Die genaue Beschreibung von mehrphasigen, chemischen Reaktoren ist von wesentlich-
er Bedeutung fiir die Optimierung von bestehenden Anwendungen und fiir den En-
twurf von neuen Konfigurationen. Dennoch ist eine detaillierte Simulation des
gesamten Reaktors ein komplexes Problem, das die Beschreibung verschiedener
Modellierungsebenen beinhaltet. Trotz der zunehmenden Rechenleistung und der
Fortschritte in der Modellierung besteht weiterhin ein Bedarf an effizienten Simula-
tionstechniken, robusten Modelle und praxistauglichen Kopplungsmethoden fiir die
Simulation von industriellen Reaktoren.

In dieser Arbeit wurden Techniken und Methoden entwickelt und getestet, die die
Simulationen von mehrphasigen, chemischen Reaktoren unterstiitzen. Die wichtig-
sten Ergebnisse in dieser Arbeit betreffen folgende Gebiete: (i) Rekonstruktion
der Verteilung aus einer finiten Anzahl von Momenten, (ii) Anpassung der Modell-
parameter mit Mehrzielfunktion Optimierung und (iii) mehrskalige Kopplung von
mehrphasigen Reaktoren.

Quadratur-basierte Momente Methoden werden haufig verwendet, um Popula-
tionsbilanzgleichungen (PBs) zu l6sen. Mit dieser Methode werden nur eine kleine
Anzahl von Momenten der zugrundeliegenden Verteilung verfolgt. Die entwickelte
adaptive Rekonstruktionstechnik erlaubt es, mittels Splines, Verteilungen aus einer
endlichen Menge von Momenten abzurufen, ohne vorherige Kenntnisse iiber die Form
der Verteilung. Lediglich die anfanglichen Momente und eine grobe Schatzung des
Wertbereiches werden benotigt.

Ein weiteres Werkzeug, das in dieser Arbeit untersucht wurde, ist die Optimierung
von Mehrzielfunktionen. Dies wurde fiir einzelne Modellparameter angewendet. Es
handelt sich dabei um eine Methode, die in diesem Bereich noch nicht gut unter-
sucht wurde. In vielen praktischen Anwendungsfallen liefert die Mehrzielfunktion
Optimierung jedoch robustere und besser verallgemeinerbare Satze von Parametern
im Vergleich zu der Einzielfunktion Optimierung. Diese Methodik wurde fiir die
Optimierung des realizable k — ¢ Turbulenzmodells und fiir die Optimierung der
Modell- und Kinetikparameter eines katalytischen, chemischen Reaktionsnetzwerkes
angewandt.

Schlieflich wurde ein diskontinuierlicher Kristallisationsreaktor simuliert. Die
unterschiedlichen Modellierungsebenen (z.B. Fluiddynamik, Populationsbilanzgle-
ichungen, Wachstumskinetiken) wurden im Euler-Euler-Rahmen gekoppelt. Den-
noch fiithrten reine 3-D-Simulationen zu unerschwinglichen Rechenzeiten. Dadurch

motiviert, wurde eine Methodik erarbeitet, die die 3-D und die 0-D-Simulation



kombiniert. Die entwickelte Methodik, betrachtet das Mischen und das Kristallwach-
stum separat, nutzt aber die lokalen Informationen der Stromung fiir eine detaillierte

Beschreibung des Kristallwachstums.

vi



Contents

1 Introduction 1
1.1 Thesisoutline . . . . . . .. ... ... ... 2
2 Methods to simulate polydisperse multiphase flows 5
2.1 Introduction . . . . .. .. Lo D
2.2 FEulerian multiphase model . . . . . . . ... ..o 6
2.3 Population balance equation and quadrature-based method of moments 8
2.3.1 Population balance equation (PBE) . . . . .. ... ... ... 8
2.3.2 Quadrature-based method of moments . . . .. ... .. ... 9
2.3.3 CFD-PBE coupling . . . . ... ... ... ... ... ..... 11
2.3.4  Solution algorithm for CFD-PBE (QMOM) . . ... ... .. 11
2.4 Reconstruction of a distribution from a finite set of moments . . . . . 12
2.4.1 Techniques to reconstruct a distribution from a finite set of its

moments . . . .. o. .. 13
2.4.2 The adaptive spline-based reconstruction algorithm . . . . . . 15
2.4.3 Results and discussion . . . . . ... ..o 19
244 Conclusions . . . . ... .. ... 25
2.5 SUMMATY .« . v v v e e e e e e 26

3 Methodology for model parameter optimization using multi-objective
genetic algorithm 29
3.1 Imtroduction . . . . . . . ..o 29
3.2 Multi-objective optimization . . . . . . . . ... ..o 30
3.3 Basicconcepts . . . . . ... 31
3.3.1 Pareto optimality . . . . .. .. .. ... 31
3.3.2 Decision making . . . . . .. ... Lo 32
3.4  Coupling simulation software with optimization algorithm . . . . .. 33
3.5 Summary ... 35

vii



4 Model optimization for turbulent flows 37

4.1 Introduction . . . . . . . .. ... 37
4.2 The closure problem . . . . .. ... ... 39
4.3 Two-equation RANS models . . . . ... ... ... .. ........ 39
4.4 The realizable k — € turbulence model . . . . . . . .. ... ... ... 41
4.4.1 Determination of the model parameters . . . . . . . . ... .. 43
4.4.2 Overall values in literature . . . . . . . . ... .. ... .. .. 47
4.5 Selected test cases. . . . . ..o 48
4.5.1 Channel flow . ... ... ... ... ... 48
4.5.2 Backward-facing step . . . . .. ..o 49
4.5.3 Freejet . . . ... 50
4.5.4 Flow over periodic hill . . . .. ... ... ... ... ... .. o1
4.6 Details of the CFD simulations . . . . ... ... ... ... ..... 52
4.7 Multi-objective optimization . . . . . .. .. ..o L0 53
4.8 Independent configurations . . . . . . .. .. ..o 54
4.8.1 Savonius turbine . . . . ... ... 54
4.8.2 Airfoil wake . . . . . ... 55
4.8.3 Flow around building . . . . . . ... ... oL 56
4.8.4 Square duct with 180° bend . . . . . . . . .. ... ... 57
4.9 Results and discussion . . . . . ... 58
4.10 Conclusions . . . . . . . . . . e 65

5 Model optimization for chemical reactions using global model struc-

ture 67
5.1 Introduction . . . . . . . . . ... 67
5.2 Generalized kinetic model for heterogeneous catalytic reactions . . . . 69
5.3 System under investigation . . . . .. ... ..o 71
5.3.1 Modeling . . ... ... 72

5.4 Reparametrization . . . . . . .. . ... 73
5.5 Optimization methodology . . . . . . . . . ... .. ... ... ... . 73
5.6 Results and discussions . . . . . . . .. ..o 76
5.7 Conclusions . . . . . . . . . . e 82
6 Simulation of a multiphase chemical reactor 83
6.1 Crystallization: a multiscale problem . . . . . . ... ... ... ... 83
6.2 Crystal growth kinetics and interplay with fluid dynamics . . . . . . . 85
6.2.1 Slip velocity and the diffusive mass transfer coefficient (k;) . . 86

6.3 Studied system: batch cooling crystallization reactor . . . . . .. .. 87
6.3.1 Experimental details . . . . .. ... ... ... ... ... .. 87



6.3.2 Physical properties and measured data . . . . . ... ... .. 88

6.4 Reactor geometry . . . . . . ... oL 90
6.5 Reactor mesh and boundary conditions . . . . . .. .. .. ... ... 91
6.6 CFD simulation: hydrodynamics (single phase) . .. ... ... ... 92
6.7 QMOM (0-D approach) . . . . ... .. ... 93
6.7.1 Imitial distribution . . . . . ... ... 0oL 93

6.7.2 Modeling . . ... 95

6.73 Results. . . . .. .. 95

6.8 CFD-QMOM (3-D brute-force approach) . . . . ... ... ... ... 96
6.8.1 CFD-QMOM (mixing dynamics) . . ... ... ... ..... 96

6.8.2 Models used in ANSYS Fluent . . . . . . ... ... ... ... 98

6.8.3 Results. . . . . ... . 99

6.9 Coupled 3-D/0-D simulation . . . . . ... ... ... L. 100
6.9.1 Methodology . . . . . . . ... ..o 101

6.9.2 Mixing time . . . . . .. ..o 101

6.93 Results. . . . .. .. 103

6.10 Conclusions . . . . . . . . ... 113

7 Conclusions and outlook 115
A Appendix 119
A.1 Two-equation RANS models . . . . .. ... ... ... ... ..... 119
A.2 Reactor volume variation . . . . . . . ... ... L 120
References 123

X






Nomenclature

A list with the most relevant symbols is included here. In order to follow standard

notations, a few symbols may represent more than one quantity.

Latin symbols

dio median mean diameter [m)]

dsa Sauter mean diameter [m]

D diffusion coefficient [m~2 ]
E4 activation energy [kJ /mol]
g gravity [m s72]
G particle growth rate [m s7!]
h characteristic length [m]

kaq diffusive mass transfer coefficient [m s~
ks surface integration coefficient [m s7!]
ky volume shape factor -]

L abscissas of the quadrature approximation [m]
n(€,x,t)  number-based density function [s7Y]
Ny number of phases -]

N number of quadrature points -]

Nob; number of objective functions -]
Nparam number of parameters -]

D pressure [Pa]
Re Reynolds number -]

Sc Schmidt number -]

Sh Sherwood number -]

Sk source term -]

t time [s]

T temperature K]

r; reaction rate [mol s™!]
U instantaneous velocity [m s™1]

xi



fluctuation velocity

mean velocity

mean velocity vector of the ¢gth phase
slip velocity

space coordinate

Greek symbols

Q volume fraction

€ turbulent dissipation rate

0 dynamic viscosity

ke kth moment of a distribution

v kinematic viscosity

vp turbulent eddy viscosity

19 internal coordinate vector

p density

T Reynolds stress tensor

w weight of the quadrature approximation
Abbreviations

CFD Computational Fluid Dynamics

DQMOM Direct Quadrature Method of Moments

GA Genetic Algorithm

NDF Number-based Density Function

NSGA-II  Non-dominated Sorting Genetic Algorithm-2

PBE Population Balance Equation

PSD Particle Size Distribution

QBMM Quadrature-based Method of Moments

QMOM Quadrature Method of Moments

RANS Reynolds-averaged Navier—Stokes

UDF

User-defined function

xii



Chapter 1
Introduction

A chemical reactor is a very complex system where phenomena with distinct time
and length scales coexist and influence each other. The accurate description of this
complex system requires different modeling levels. For instance, the simulation of a
crystallization reactor involves the fluid dynamics modeling, the particle properties
evolution modeling and the crystallization kinetics modeling (see Fig. 1.1). For the
description of each of these modeling levels, specialized submodels are required.
There is a need for better models and techniques that support the simulation
of complex chemical reactors. This thesis tackles some of these issues, providing
methodologies and techniques that assist the simulation of chemical reactors and
testing it in applications of industrial interest. Considering the modeling levels
involved in the description of chemical reactors, the methodologies and techniques

developed in this work have the following applications:

e Fluid dynamics modeling: the accurate prediction of turbulent flows is a funda-
mental issue to improve existing applications and develop new configurations.
Numerical simulations based on Reynolds Averaged Navier-Stokes (RANS)
models are still widely used today for practical engineering problems. RANS
models have been usually calibrated based on simple flows but are applied in far
more complex geometry. For a particular flow, it is known that the prediction
can usually be improved by adjusting the model parameters. A methodology
for the determination of optimal and generally applicable parameters would

be a valuable tool.

e Particle properties evolution modeling: moment-based quadrature method of
moments are a popular approach to solve the population balance equations
(PBE). Nevertheless, with such methods only the moments are tracked and no
information about the shape of the distribution can be derived. A technique

that supports the reconstruction of distributions considering only a finite set



of moments would find applications in many fields.

e Kinetics modeling: in many practical situations a single set of parameters
should fit a model to different experimental conditions or fit different models
simultaneously. In such cases, a multi-objective optimization would be a far

more valuable tool for the determination of optimal model parameters.

Within the framework of the computational fluid dynamics (CEFD) it is possible to
use specialized models at distinct modeling levels and exchange information between
the different scales. For instance, in crystallization the local conditions of the flow
influences the evolution of the particles properties which in turn affects the spatial
distribution of the particles in the reactor, creating a complex network. Nevertheless,
the simulation of phenomena with very different temporal and spatial scales leads
to further complexities. Therefore, a methodology to track the particle properties

evolution while considering a detailed fluid dynamics description is needed.

Kinetic subproblem

Fluid dynamics
subproblem

Particle evolution
subproblem

Figure 1.1: Multiphase chemical reactor, showing the distinct modeling levels.

1.1 Thesis outline

Distinct topics have been addressed in this thesis and some chapters can be seen as
a topic on their own. A mind map of the topics addressed in this thesis is showed
in Fig. 1.2.
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Multiobjective Multiphase

CFD + e
optimization QMOM modeling

(Chapter 3) (Chapter 2)
Opt.

turbulence
model
(Chapter 4)
Opt. QRO
reaction Reconstruc-
model tion
(Chapter 5)

Multiphase
reactor
(Chapter 6)

Growth 3-D/zero-D
kinetics coupling

Figure 1.2: Mind map of the topics addressed in this thesis.

The thesis is structured as follows:
Chapter 2 (Methods to simulate polydisperse multiphase flows): describes the
methodology for the simulation of multiphase follows using the Euler-Euler mul-
tifluid framework. The quadrature method of moments (QMOM), as well as its
coupling with CFD is discussed. Finally, a novel technique for the reconstruction of
distributions based on a finite set of moments is discussed.
Chapter 3 (Methodology for model parameter optimization using multi-objective ge-
netic algorithm): describes a methodology for the optimization of model parameters
using multi-objective optimization. The advantages of multi-objective optimiza-
tion, basic concepts and the coupling between simulation software and optimization
algorithm are discussed. The presented methodology is employed for the model op-
timization of a turbulence RANS model (Chapter 4) and for the model optimization
of a chemical catalytic reaction network (Chapter 5).
Chapter 4 (Model Optimization for Turbulent Flows): describes the optimization of
the realizable k£ — € turbulence model parameters using multi-objective optimization.
The optimized model is also tested in four independent configurations.
Chapter 5 (Model Optimization for Chemical Reactions using Global Model Struc-

ture): describes the optimization of mechanism and parameters of catalytic reactions



using multi-objective optimization

Chapter 6 (Simulation of a Multiphase Chemical Reactor): investigates a full multi-
phase crystallization reactor involving distinct modeling levels. The methodology to
simulate polydisperse multiphase flows described in Chapter 2, as well as the devel-
oped distribution reconstruction technique are applied. Furthermore, the optimized
RANS turbulence model (see Chapter 3 and Chapter 4) is employed. Details on the
growth kinetics are elaborated in this chapter. A methodology to track the particle
properties evolution while considering a detailed fluid dynamics description is also
discussed in this chapter.

Chapter 7 (Conclusions and Outlook): finalizes the thesis with a discussion on the

topics developed and discusses perspectives to further works.



Chapter 2

Methods to simulate polydisperse

multiphase flows

2.1 Introduction

Polydisperse multiphase flows are characterized by a disperse phase distributed as
small discrete elements in a continuous phase. Such flows are present in many
environmental and industrial applications, being often realized in chemical reactors
(e.g., crystallizers, fluidized beds, emulsions).

The discrete elements in the disperse phase (or phases) can be solid particles,
drops or bubbles — note that the term “particles” is used in this work as a general
reference to solid particles, drops or bubbles. These particles are mostly not identical,
they may differ due to several properties, e.g., size, shape, temperature, composition,
leading to polydisperse multiphase flows.

In multiphase flows, particle-particle interactions and also interactions with the
continuous phase occur. A modeling framework that accurately describe polydis-
perse multiphase flows should consider the modeling of the multiphase flow and the
evolution of the properties of the dispersed phase.

In practical engineering applications, a microscopic detailed description of the
interfaces between the disperse and the continuous phase is not required. Thus,
the macroscopic continuum description provided by the Eulerian multiphase model
is suitable for most practical cases. In the Eulerian multiphase model, averaged
mass and momentum equations are derived for each phase (more details are given in
Section 2.2). The averaging procedure introduces interphase exchange terms, which
need to be modeled bringing the microscale and mesoscale physics into account. Nev-
ertheless, particle-particle interactions are not considered in the Eulerian multiphase
model. A detailed description on the derivation of the Eulerian multiphase model
can be found in Ishii and Hibiki (2006).



The models that describe the disperse phase are based on the solution of the
population balance equations (PBE), see Ramkrishna (2000). The PBE describes
in terms of number-based density function (NDF) information about the properties
of the disperse phase. For instance, the evolution of particle size in crystallization
processes accounting for all the physical phenomena that may occur, e.g., nucleation,
growth, aggregation, breakage. As it is discussed in Chapter 6, the description
of the particle size distribution (PSD) in crystallization processes is fundamental
to determine the quality of the process. In order to describe spatial gradients
and account for the influence of local conditions of the flow in the properties of
the particles, the CFD model and the PBE should be coupled. However, classical
numerical methods to solve the PBE, such as Monte Carlo methods (Gillespie (1972);
Shah et al. (1977)) and sectional or class methods (Geldard and Seinfeld (1980);
Hounslow et al. (1988)) are computationally very intensive to be coupled with CFD
for solving engineering problems of practical interest.

Quadrature-based method of moments (QBMM) has gained popularity as an
efficient technique to solve population balance equations. Following the quadrature
method of moments (QMOM) of McGraw (1997), numerous similar methods have
been published, e.g., direct quadrature method of moments (DQMOM), conditional
quadrature method of moments (CQMOM), sectional quadrature method of moments
(SQMOM), adaptive direct quadrature method of moments (ADQMOM).

In quadrature-based methods, the PBE problem is written in terms of the mo-
ments of density functions and it is approximated by a set of Dirac delta functions.
The quadrature method of moments (QMOM) (McGraw (1997)) is employed in this
work; QMOM and its coupling with CFD is explained with details in Section 2.3.3.

The main drawback of QBMM, comparing with classical numerical methods to
solve the PBE, is that the quadrature method does not preserve the shape of the
number-based density function (NDF); nevertheless, the NDF can be approximated
based on the information of the first moments. A review on techniques to reconstruct
distributions from a finite set of its moments are discussed with details in Section 2.4,

along with a novel method introduced by the author in de Souza et al. (2010).

2.2 Eulerian multiphase model

The Eulerian multiphase model describes the flow as an interpenetrating continua.
It is defined by the averaged conservation equations for mass and momentum; these
averaged equations are solved for each phase at every point in space and time during
the simulation. The Eulerian multifluid model implemented in the commercial
software ANSYS Fluent 14.0 is used in this work. The formulation of the model
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includes the concept of volume fraction of phase ¢, given by:

0y = an v s.t. Zaq—l (2.1)

with V, being the volume of phase ¢ in each grid cell. The continuous phase is

referred by the index ¢ = 0 and the disperse phases are denoted by ¢ =1, ..., n,,.

The averaged conservation equations of mass and momentum read as follows:

oo, p
qrq
o +V. ozq,oquq E Mg (2.2)
~——
transient convective , ,
interphase
mass
exchange
and
9 ki
Qg Pglh _
9Fq™q - _ -V (7 i
ot + V- agpguquy = —agVp+agpeg — V- (Tg) + E ( Rpg + 1ipqtty)
———— e N N — -~ ——
i convective pressure body shear p= interphase interphase
transient force force
exchange exchange

+O‘qpq(Flift,q + Fomyg) (2.3)
N —

lift and
virtual mass force

where p, and u, represents the density and velocity of phase ¢, respectively. The
term 1,, describes the mass exchange between phase ¢ and the other phases p. In
Eq. (2.3), 7, is the stress-strain tensor. The pressure field p is assumed to be the
same for all the phases.

The Eq. (2.3) must be closed with appropriate expressions for the interphase
force R,,, with R,;, = —R,, and R, = 0. In ANSYS Fluent 14.0 the interphase

momentum exchange is expressed as:

np

Z Rypq = Z pa(Up — Ug) (2.4)

p=1
where K,, (= K,,) is the interphase momentum exchange coefficient.
The momentum exchange between the phases is based on the value of the ex-
change coefficient K,,, which can be written in the following general form:
qu — aqapppf (25)
Tp
where f is the drag function, defined differently for the different exchange coefficient

models and 7,, the “particulate relaxation time”, is defined as



dezz:

= — 2.6

Tp 18,1Lq ( )
where d, is the characteristic diameter of the disperse phase p.

The well-established drag model of Schiller and Naumann is employed in this

work, see Schiller and Naumann (1935):

CpRe
where
24(1 4+ 0.15 Re%%®7) /Re Re < 1000
Cp = (1+ ¢)/Re Res (2.8)
0.44 Re > 1000

and Re is the Reynolds number calculated based on the relative velocities between

the phases.

2.3 Population balance equation and quadrature-

based method of moments

2.3.1 Population balance equation (PBE)

The evolution of the properties of the disperse phase is obtained using population
balance equations (PBE). The PBE describes in terms of number-based density
function (NDF) information about the properties of the dispersed phase. The NDF
n(&, x,t) is a function of internal and external coordinates. The internal coordinates
¢ refer to intrinsic properties of the disperse phase, e.g., particle size, surface, volume.
The external coordinates refer to the spatial location x and time ¢. The PBE can

be formulated as a transport equation of the NDF, as given by Eq. (2.9):

on(&,x,t)  Oumn(&, x,t) 8én(£,x,t)
o T om T o

The PBE thus contains a transient term; a convection term, with u; being the

— S (2.9)

velocity vector of the particulate system; a term that accounts for continuous changes
(e.g., growth), with 5 being the continuous rate of change of the internal coordinate
¢; and a discontinuous jump function S (e.g., breakage, aggregation). An additional
diffusive-flux should be added in the cases of very small particles (less than one
micron) to account for the Brownian motion.

In this work only univariate cases are considered, with ¢ = L referring to the

particle length. It is also useful to define here £ = G as the continuous rate of

8
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change of particle length.

2.3.2 Quadrature-based method of moments

Before we discuss with further details about quadrature-based method of moments,
let us derive an integral quantity for the NDF known as moments, as well as their
transport equations.

The definition of the k-th moment 1 (§) of the function n(&, z,t) is given by:

i (€) = /Ooofkn(f,x,t) de, k=0,1,2,... (2.10)

Applying the moment transformation, Eq. (2.16) to Eq. (2.9), the moment-

transport equation is obtained:

opr . Oufir

where the particle-growth rate can be defined as:

= kGr_1pp—1 + Sk (2.11)

< GrnpLrdL
Gy = o G (2.12)
’ Jo np(L)LFdL
and applying moment transformation to the source term S gives:
Sy = / SpLFdL (2.13)
0

Note that Eq. (2.11) is closed only in very particular cases, for instance, when
the particle-growth rate (Gp) is size-independent. In most applications, an accurate
description would require more complex kernels (e.g., size-dependent particle-growth
rate); in this case the moment-transport equation of order k& would involve moments
of order higher than k, creating a closure problem.

A solution for the closure is obtained approximating the NDF by an N-point

Gaussian quadrature as given by the following equation:

N

n(& x,t) = wyln, t)E(x,t) (2.14)

q=1
where N is the number of delta functions, w,(z,t) and &(z,t) correspond to the
quadrature weights and the abscissas, respectively. Usually, just a few number of
moments need to be tracked. In most cases 4 to 6 moments are sufficient to estimate
physical properties of interest and get a good approximation of the shape of the
distribution, as illustrated in Fig. (2.1). From the quadrature theory it is implied
that if 2N moments are given, the calculated N-point quadrature (N-weights and



N-abscissas) delivers the exact moments up to degree 2N — 1 (first 2N moments).
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Figure 2.1: PDF with respective weights and abscissa (a) Gauss distribution, 2-point
quadrature (b) Gauss distribution, 3-point quadrature (c¢) Two-peak distribution,
2-point quadrature (d) Two-peak distribution, 3-point quadrature.

There are several algorithm that can be used for the calculation of weights and
abscissas; as listed by Thein (2012) the product-difference algorithm (PDA) (Gordon
(1968)), the long quotient-modified difference algorithm (Wheeler (1974)), Golub-
Welsch algorithm (Golub and Welsch (1969)) and the Newton method. McGraw
(1997) suggested the PDA as a suitable moment-inversion algorithm to be used with
QMOM. However, Marchisio and Fox (2013) pointed that the Wheeler is more stable
when calculating high-order quadrature approximations comparing with the PD
algorithm and it also has the advantage to be able to calculate weights and abscissa
for distribution with zero mean (a case where the PDA algorithm is known to fail).

The Gaussian quadrature is the core of quadrature-based method of moments,
firstly used in the quadrature method of moments (QMOM) introduced by McGraw
(1997). Along with the QMOM, the direct quadrature method of moments (DQ-
MOM) (Marchisio and Fox (2005)) is the most prominent and well tested quadrature-
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based method. QMOM is used in this work and its coupling with CFD is discussed

in more detail in the next subsection.

2.3.3 CFD-PBE coupling

The coupling between the CFD code and the PBE (QMOM) solution is accomplished
by relating the results of QMOM with the Eulerian multifluid model. An import
result from QMOM is the characteristic Sauter mean diameter (dss = 3/ 112), which
is used in the multifluid model for the calculation of interfacial properties (e.g., drag
force).

Another important result from QMOM is the third-order moment, which is

related to the volume fraction occupied by the disperse phase as given in Eq. (2.15):

N
Qdisperse = ky Z qug (215)

g=1

where Ky is the volumetric shape factor (for spherical particles ky = %).

1
=) =) '

—— $

| 0

Figure 2.2: CFD-PBE scheme.

The scheme in Fig. 2.2 shows that at each grid cell there is a volume faction of
the disperse phase, which is correlated to a certain distribution. These distributions
are transported in the domain with the velocities calculated by the multifluid model.

In the current QMOM implementation all the particles share the same velocity field.

2.3.4 Solution algorithm for CFD-PBE (QMOM)

The built-in implementation of QMOM in the commercial software ANSYS Fluent
14.0 is used in this work. The algorithm for the solution of QMOM-multifluid
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(two-fluid) is described in the following sequence of steps:
1. Input of initial values: moments, volume fraction of the disperse phase
2. Solution of the multifluid equations, using dss obtained from the moments

3. Solution of the moment-inversion algorithm PDA to generate QMOM values:

weights and abscissas
4. Evaluation of source terms S, and growth rate Gj.

5. Solution of the moment transport equations, using velocity field obtained from
the multifluid model

6. Loop over steps 2 to 5 for each time step

2.4 Reconstruction of a distribution from a finite

set of moments

This section is written based on the following paper:
L. G. M. de Souza, G. Janiga, V. John, D. Thevenin. Reconstruction of a distri-
bution from a finite number of moments with an adaptive spline-based algorithm,

(2010). Chemical Engineering Science (65), 269-277.

Moment-based methods to solve population balance equation directly deliver
information about the moments of a distribution, nevertheless, in many cases it would
be useful to have information about the shape of the underlying distribution. In fact,
the problem of reconstructing a scalar-valued function f(t,¢) from a finite number
of its moments, the so-called “finite moment problem”, arises in many scientific and
technical applications, e.g., image processing, magnetic imaging, molecular physics
or chemical engineering.

The i-th moment pu(t) of the function f(¢,&) : [0,00) — R depending on time
and on a one-dimensional, so-called internal coordinate £ (typically, a length scale)

is classically defined by

()= [ ¢rod K=oz (2.16)
0
Since a majority of practical applications still only consider mono-variate problems

at present, the developed formulation will be restricted to such cases, involving a

single internal coordinate ().
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From the mathematical point of view, the finite moment problem is a severely ill-
posed problem. It has been studied in the mathematical literature almost exclusively
from the theoretical point of view (see John et al. (2007) for a review of the most
important results). In principle, there is no unique solution for this problem and all
moments up to infinity should be known to reconstruct the function.

Nevertheless, there are usually constraints on the domain and on the range of
f(t,€) due to the underlying physics of the application. A typical example is the
reconstruction of Particle Size Distributions (PSD) when considering particulate
processes like crystallization, precipitation, etc. The particle size (£ coordinate) is
always positive, and there is always a maximal possible size, at most the reactor
size, usually even much smaller. Thus, the domain spanned in the ¢-direction by
f(t,€) is only an interval within the positive real numbers. Furthermore, a PSD
should have only non-negative values, hence the range of f(¢,&) is only a subset
of the non-negative real numbers. Even if these limitations sound trivial from an
engineering point of view, they are indeed sufficient from a mathematical point
of view to simplify tremendously the complexity of the finite moment problem as
recognized also for instance by Strumendo and Arastoopour (2008).

Usually, the moments p;, associated with the distribution are determined using
numerical simulations or advanced experimental techniques. Note, however, that
corresponding measurements are extremely difficult, in particular if a high accuracy
is required, as documented for example in Allen (1997). As a consequence, only very
few moments are usually determined experimentally, mostly in an indirect manner.
In practice, only the mean particle size and the particle number concentration can be
measured with a relatively high accuracy, even if some set-ups deliver an estimation
of the complete PSD (e.g., Baldyga and Orciuch (2001); Marchisio et al. (2002)).
This demonstrates the importance of a robust reconstruction method that is able
to deliver a good approximation of the underlying distribution with only limited
information input.

The situation is not quite as difficult when the moments are determined from
numerical simulations. Indeed, very popular numerical techniques like Method of
Moments (MOM), Quadrature Method of Moments (QMOM) and Direct Quadrature
Method of Moments (DQMOM) directly deliver the moment values. In principle,
it is possible to consider as many moments as the user wishes. But the cost of the
numerical simulation of course increases rapidly when considering more moments.
Furthermore, the mathematical system becomes very badly conditioned for higher-
order moments. As a consequence, results found in recent publications deliver a
larger but still limited number of moments. For instance, two (Schwarzer et al.
(2006)), three (Diemer and Olson (2002)), four (Wei et al. (2001)), five (Onciil et al.
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(2009)) or even for test purposes up to eight moments (Fan et al. (2004)) have been

considered for coupled simulations involving particles in a turbulent flow.

2.4.1 Techniques to reconstruct a distribution from a finite

set of its moments

For practical engineering purposes, the usual method for reconstructing a function
from a small number of its moments is based on an a priori knowledge of the
solution. Using this information (e.g., a Gauss shape, or a Poisson distribution), a
strong ansatz is made for the shape of f(¢,¢) and the known moments are just used
to fit parameters in this ansatz. This fitting is a fast and very easy computation.
Nevertheless, this approach is restricted to functions with simple shapes. Even more
troublesome is the fact that you need in principle to know the solution before you can
get it back, which is obviously not very satisfactory in general (see John et al. (2007)
for a more detailed discussion of the advantages and drawbacks of this approach).
A direct reconstruction is only possible if the number of known moments is equal
to the number of parameters in the ansatz. As an additional difficulty, the shape of
the function needed to reconstruct is often time-dependent in practical applications,
f(t,€). It is then not clear if the presumed shape is suitable for all times.

One very known method to reconstruct distributions from a finite set of moments
is the maximum entropy method (MEM). The MEM provides, indeed, an elegant
means to solve the finite moment problem. Although a considerable amount of
information on this method can be found in literature, the MEM has been rarely
applied in the context of chemical engineering to reconstruct PSD.

In order to compute a reconstruction, MEM starts from a so-called prior distri-
bution chosen by the user and applies a finite number of explicit constraints. As
a consequence, the shape of the reconstruction is not completely prescribed, but
the results still depend on the choice of the prior distribution. Theoretically, as the
number of available moments increases, the results of MEM should become more
and more independent from the prior distribution. Nevertheless, the limited number
of moments usually tracked in moment-based methods may not be enough for a
satisfactory reconstruction using MEM.

Further possible techniques to reconstruct a distribution from a finite set of
moments include also discrete methods based on a time-dependent update of the
distribution (e.g., Giaya and Thompson (2004)). Basically, in this method the form
of the PSD can be recovered using information about the growth and nucleation
time trajectories. Obviously, the method requests a number of assumptions and can

only be applied considering a very simple growth and nucleation kinetics.
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In John et al. (2007), a reconstruction approach was presented, which does not
require any information on the shape to be reconstructed nor on the spatial extent
(¢ coordinate) of the function f(¢,£). The unknown function is represented by a
spline defined on an underlying grid. An arbitrary number of moments can be used
for the reconstruction, and the real £-domain is identified iteratively during the
reconstruction.

The standard approach presented in John et al. (2007) was very successful for

many different distributions, but suffered from major drawbacks:
1. it cannot really reconstruct non-smooth distributions;

2. even smooth functions are not always well reconstructed, in particular when

they involve several peaks (lack of generality).

As a whole, this means that the original procedure is not general enough. An in-depth
analysis of the spline-based reconstruction process has shown that a tremendous
progress could be obtained by placing the underlying grid points in an optimal
manner. The main issue consists in finding appropriate criteria for an optimal
distribution of the grid points. This issue has been addressed by the author in
de Souza et al. (2010); the most prominent numerical results are discussed in the

next subsections.

2.4.2 The adaptive spline-based reconstruction algorithm

The reconstruction of particle size distributions (PSD) as found in process engineering
is our major purpose, in particular for non-homogeneous conditions in space. Thus,
the usual constraints on the domain (internal coordinate £) and the range of the
function f(¢,&) to be reconstructed apply as described in the introduction: the
particle size is positive and bounded; the PSD f is nonnegative everywhere.

Let the first L moments of f(t,£) be given at some time. An initial interval [a, b],
which should contain the real range of f(t,£), is divided into n sub-intervals [&;, & 11],
i=1,...,n, witha=§ <& < ... <& =0 Asin John et al. (2007), splines
(piecewise polynomials with compatibility conditions at the nodes &, i = 2,...,n)
of order 3 are used in the reconstruction. For such a cubic spline, there are in each
interval 4 unknown coefficients of the cubic polynomial leading altogether to 4n
unknowns. From the boundary conditions at x; and x,,.; and the compatibility
conditions at &, ¢ = 2,...,n, one obtains 3n + 3 equations. The missing L =n — 3
equations come from the known moments of f(t,£). Altogether, one has to solve in
the spline-based reconstruction with cubic splines linear systems of equations of size

4n X 4n.
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The spline-based reconstruction algorithm from John et al. (2007) is an iterative

process. Given a mesh & < & < ... < &,41, one iteration looks as follows:
1. Solve the resulting linear system of equations.

2. Check if the interval [&1,&,11] for computing the reconstruction can be reduced.
This step is crucial for finding a good interval, which contains the real domain of
f(t,€). In this step, the absolute values of the current reconstruction in the sub-
intervals at the boundaries [£1, &, [€n, §ni1], are compared with the maximal
value of the current reconstruction. If, for instance, the values in [£1, &) are
negligibly small compared to the maximal value, the new left boundary for the
reconstruction is set to be & := (& + &2)/2. The same procedure is performed
for the right boundary. If the interval has changed, the nodes are redistributed

in an equidistant manner. Go to step 1.

3. Regularize the solution of the linear system of equations. If there is no recom-
mendation to reduce the interval in step 2, but the reconstruction has local
values which are exceedingly negative, the solution of the linear system will
be regularized. This is done by removing subsequently the smallest singular
values of the system matrix. After each such removal, it is checked again if the

interval for the reconstruction can be reduced, i.e., step 2 is performed.

The algorithm stops if all values in the nodes and in the midpoints of the sub-intervals
are almost non-negative and if no reduction of the interval for the reconstruction is
recommended.

The regularization of the linear system removes first the smoothness of the second
derivative in the nodes. Thus, the recommended reconstruction will be often not
twice differentiable (the second order derivative of the PSD is a piecewise linear but
discontinuous function). This is not an issue for engineering purposes.

The procedure for an adaptive redistribution of the nodes needs some starting
guess about the shape of the expected solution. This is a classical requirement for
adaptive methods, e.g., for the solution of partial differential equations. For this
reason, the adaptive procedure starts only after the spline-based reconstruction has
finished computing a first approximation of the solution on an equidistant grid using
the original algorithm of John et al. (2007), which does not require any starting
guess. The adaptive algorithm developed in de Souza et al. (2010) consists of the

following steps:

1. Compute the second-order derivative of the current approximation. The key
observation for choosing the initial nodes of the adaptive grid is that, if f(¢, &)

changes the sign of its curvature quickly, as at narrow peaks, then it is not
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possible to represent this region with a cubic function in one interval. This
is because a cubic function can lead only to one single change of the sign of
the curvature in one interval. In fact, the original algorithm always leads to
very bad results if more than one change of the sign of the curvature of f(¢,¢)
occurs in one sub-interval (see for instance later Fig. 2.5). For this reason,
we decided to place nodes at all points where the second-order derivative of
the current reconstruction either changes its sign from a positive to a negative

value, or vice versa.

2. Compute the first-order and derivative of the current approximation. Nodes
are also placed in those sub-regions where the absolute value of the first-order
derivative is large, i.e., where the solution is steep. This idea resembles the well-
known gradient indicator in adaptive methods for partial differential equations.
For choosing the next nodes of the adaptive grid, the first-order derivatives of
the spline at the points of the current grid are thus evaluated. The obtained
values are ordered with respect to their size (absolute value) and then grouped
into so-called windows. The default number of windows is set to be equal
to the number of nodes that still need to be chosen. In the first window all
the points with the largest derivative values are gathered, but only those that
have a minimal prescribed distance from the nearest node are finally accepted
within the new list of nodes. Excessive clustering of nodes is avoided in this
way. This procedure is applied until the appropriate total number of nodes
has been obtained, which is given by the order of the spline and the number

of known moments.

3. Enlarge the domain. Numerical tests have shown that it is useful to slightly
enlarge at first the range identified by the original, equidistant algorithm of
John et al. (2007) and to compute iteratively a new domain with the adap-
tively distributed nodes. For this purpose, the coordinate of the node &, is

multiplied in practice by 1.2 (20% increase).
4. Go to step 1 of the original algorithm using the new distribution of the nodes.

Now, the original algorithm of John et al. (2007) is performed again. After this,
a new distribution of the nodes is computed with the adaptive procedure, and so
on. For all the cases presented in this paper, three node redistributions have been
required at most before finding the final solution.

An approximation f*~1 is considered to be the final approximation of f(t, &) if:
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e the error associated with all moments is sufficiently small

max relative error in ¢th moment of f (k_1)| < tol,
i=0,...,L—1

e and the approximation on the next adaptive grid leads to a growing mean error

L-1
Z |relative error in ith moment of f ("“_1)|
=0
L1
< Z ’relative error in 7th moment of f (k)‘ )
=0

The workflow of the adaptive spline-based reconstruction algorithm is presented
in Fig. 2.3.
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Figure 2.3: Workflow of the adaptive spline-based reconstruction algorithm.
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2.4.3 Results and discussion

The spline-based reconstruction algorithm using equidistant grids has already shown
excellent results for smooth distributions with a slowly changing sign of the PSD
curvature (John et al. (2007)). Therefore, we concentrate here on the cases where
the reconstruction was not really successful.

The chosen examples (values of all moments) come from crystallization appli-
cations, the data for all these test cases can be found in John et al. (2007). The
adaptive algorithm has been implemented as a MATLAB script. The number of
iterations needed to get the final distribution depends of course on the example
considered and on the number of known moments. However, the computation time
was less than 120 s on a standard PC for all simulations carried out up to now,
including a graphical representation of all intermediate solutions. If necessary, this
duration could be tremendously reduced by suppressing graphical outputs, writing
a dedicated code instead of using MATLAB, optimizing further the algorithm and

using a faster computer.

Multi-peak, smooth distributions

Figures 2.4(a)-(f) present a comparison of the results obtained with the original
(equidistant) and the adaptive algorithm for the smooth distribution with two peaks,
one of them being considerably narrower than the other one. The reference distribu-
tion has been obtained numerically by solving directly the full population balance
equations. Such a distribution with two peaks is typical of crystallization applica-
tions, for which seeds are employed initially, so that finally both seed crystals and
newly nucleated crystals will be found at different sizes. More information on that
topic can be found for example in Qamar et al. (2006), or for a more general picture
in Lorenz et al. (2006).

As already shown in John et al. (2007), the original approach is not able to resolve
the changing sign of the curvature for the first, narrow peak and thus leads globally to
a poor result. The adaptive algorithm is in most cases able to find suitable positions
for the nodes, leading to an excellent reconstruction of the reference distribution.

As explained in the introduction, only a limited number of moments are usually
known. It is therefore important to check how many moments are really needed for
a good reconstruction of the PSD. For this purpose, a systematic study showing the

results for three up to eight moments is presented.

20



CHAPTER 2

12 8 T T T T T 12 T T T T T
S IR reference N reference

10} —&— Cubic spline adaptive grid 10F - —<&— Cubic spline adaptive grid ]
- — © - Cubic spline equidistant grid — © - Cubic spline equidistant grid

crystal mass distribution, [kg/m]
crystal mass distribution, [kg/m]

crystal size, [mm] crystal size, [mm]
(a) (b)
12 — . . . . 12 — .
R reference S reference
10k 4 —&— Cubic spline adaptive grid | | b A —&— Cubic spline adaptive grid
- — © - Cubic spline equidistant grid - — © - Cubic spline equidistant grid

crystal mass distribution, [kg/m]
crystal mass distribution, [kg/m]

0 1 2 3 4 5 6 0 1 2 3 4 5 6
crystal size, [mm] crystal size, [mm]
() (d)
12 - i i - i i 12 = T T T T T
e reference ~oooo reference
10l 9 Cubic spline adaptive grid ol A —&— Cubic spline adaptive grid
- — © — Cubic spline equidistant grid N - ©- Cubic spline equidistant grid

crystal mass distribution, [kg/m]
crystal mass distribution, [kg/m]

crystal size, [mm] crystal size, [mm]
(e) (f)

Figure 2.4: Reconstruction of a two-peak distribution, comparison of equidistant
and adaptive algorithm using (a) three moments (b) four moments (c) five moments
(d) six moments (e) seven moments (f) eight moments.

Visually, results obtained with four to eight moments (documented respectively
in Fig. 2.4(b)-(f)) can be considered as good to very good. On the other hand,
the reconstruction using just three moments does not resolve the peaks with high
precision. This is due to the lack of information when using such a small number of

moments.

21



A quantitative evaluation of the reconstruction quality is presented in Table 2.1
(standard algorithm) and Table 2.2 (adaptive algorithm). Different methods and
parameters have been used in order to quantify precisely the quality of the recon-

struction. First, the norm of the global error is defined as:

Sm” ‘freC(x) — fref(x)|
0" [ fres ()]

Norm =

The correlation coefficient (Corr) between the reconstructed and the reference
curve is furthermore computed using the built-in MATLAB function corrcoef.

For many practical purposes, the position and the height of the peaks observed in
the PSD are essential pieces of information. Consequently, measuring the accuracy
of the procedure for both quantities is also interesting, even if they do not describe
the quality of the whole reconstruction. The corresponding errors are defined in the
following equations:

Relative height difference (AH,¢):

AHrel _ ‘frec(ajrec,peak) - fref (xref,peak)’
|fref(xref,peak)|

Relative position difference (AL, ):

|$rec,peak - wref,peak|
ALrel -

Tref,domain

The relative negativity
min (frec)

max (frec)

has also been quantified, since in some cases slightly negative values allow to obtain

Neg =

much better reconstructions. It is interesting to know how much this will affect the

results.
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Table 2.1: Quantitative evaluation of the smooth distribution reconstruction using
the standard algorithm.

Case Norm [%] Corr [%] Neg [%] AHpa [ ALya [%]
3 mom 95.8 17.8 0 rigﬁ gzzlﬁ gg:g ;g
R L N S v
smom 1076 95 ou P
6 mom 104.9 12.1 0 rilge}i ﬁijﬁ gg:g :ﬁi
7 mom 102.5 13.2 0 riﬁi iEZE gg:? ;3:2
8 mom 101.9 12.2 0 rilge}iu giii gsl)?) ;gi

It can be seen clearly in Table 2.1 that the original algorithm of John et al. (2007)
using an equidistant grid cannot produce the right solution. Even when considering
more and more moments, the reconstruction quality does not increase measurably.

On the other hand, the adaptive algorithm (Table 2.2) fully exploits the supple-
mentary information. With only three moments, the reconstruction is inaccurate.
But, for four and more moments, the reconstruction quality is good up to excellent.
Using more moments, the reconstruction quality increases further, but only slightly

since the solution obtained with four moments is already good.

Table 2.2: Quantitative evaluation of the smooth distribution reconstruction using
the adaptive algorithm.

Case Norm [%] Corr [%] Neg [%] AHpa [ ALpe [%]
swom w0m1 50 o e Ae O
4 mom 19.0 969  0.52 ri};ﬁ ii:i 2?:3 ii
5 mom 17.2 978  0.73 ri:}i igzlﬁ ﬁg 1:2
6 mom 16.2 96.5 0 rilge}i igiﬁ Z:g 1:3
Tmom 128 o2 0 oiRRE L0
Smom 58 es4 0 iRl D0
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Multi-peak, non-smooth distributions

The second example considers a non-smooth distribution with two peaks. The first
peak is extremely narrow and drops suddenly from its maximal value to zero. This
distribution corresponds again to a preferential crystallization process, described in
more details in Elsner et al. (2005).

35 L] L] L L) L)
------- reference

—&— cubic spline adaptive grid
- —%— ' cubic spline equidistant grid

30

25

20

15

10

crystal mass distribution, [kg/m]

|
()]
1

crystal size, [mm]

Figure 2.5: Reconstruction of a two-peak distribution with steep gradient using five
moments, comparison of equidistant and adaptive algorithm.

The original algorithm on an equidistant grid completely fails for this application,
as already shown in John et al. (2007). On the other hand, Fig. 2.5 demonstrates
that the adaptive algorithm is able to give a rather good reconstruction for this very
difficult case. The height and the position of both peaks are reproduced with good
precision and even the steep gradient at the end of the first peak is relatively well
resolved. The price to pay for this good resolution is a slightly negative value of the
PSD for a short range behind the sharp peak. Since splines are intrinsically smooth
functions, it cannot be expected that they will allow directly an exact description
of a non-smooth PSD. This drawback is however in practice of minor importance
compared to a correct estimation of the peak magnitudes and positions.

The quality of the reconstruction is quantified in Table 2.3. The comparison shows
again the clear improvement of all indicators when using the adaptive algorithm.
This shows that the adaptive spline-based reconstruction algorithm described in

Section 2.4.2 is also able to automatically take into account a local non-smooth
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behavior of the distribution to reconstruct.

Table 2.3: Quantitative evaluation of the non-smooth distribution reconstruction
using five moments.

Case Norm [%] Corr [%] Neg [%] AHpa []  ALra [%]
left peak 69.4 16.9

standard 135.3 19.1 right peak 35.4 31.5
‘ left peak 11.0 0.2
adaptive 35.7 80.2 right peak 16.8 2.9

Robustness of the reconstruction

As already explained in the introduction, the developed reconstruction process must
be as robust as possible. When considering experimental measurements, the uncer-
tainty is not negligible. It must be checked that the predicted distribution is not
impacted too strongly by such inaccurate inputs.

Even when considering results of numerical simulations, the shape and extent of
the distribution are usually very poorly known at first. Therefore, the reconstruction
must be able to work efficiently with a very low level of starting information.

Both issues have been checked separately, first by modifying the input moments
by a certain percentage, thus mimicking a possible (measurement) error. In a second
step, the size of the (guessed) initial domain has been varied over an order of
magnitude, in order to quantify its impact.

The effect of an error in the moments has been first investigated. Systematic as
well as random errors have been introduced in the original moments and the final
distribution obtained can be seen in Fig. 2.6(a)-(b) respectively.

When considering systematic errors, all moments are modified by multiplying or
dividing them with the same factor, e.g. 1.3 for 30% relative error. As demonstrated
in Fig. 2.6(a), such systematic errors fortunately do not have a very large impact
on the reconstruction. Even when a large relative error of 30% is applied, the shape
of the distribution remains very similar and the position of the peaks is still very
well predicted. This is undoubtedly related to the fact that the coupling between
function and moments (Eq. 2.16) is linear.

Random errors have a larger impact on the shape of the distribution (Fig. 2.6(b)).
For random errors, each moment is again multiplied or divided by the same factor (e.g.
1.1 for 10% relative error), but a random process is called to decide for each moment
individually if a multiplication or a division should take place. As a consequence,

some moments will be increased while some others reduced in a random manner.
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Here also, the adaptive algorithm has been able to deliver a reconstruction of
acceptable quality. In fact, the algorithm works indeed very well and delivers the
correct moments with a very high accuracy. The observed discrepancies are directly
connected to the random modification of the moments. Even a small change in the
moments leads to a considerably different distribution. This illustrates the need for
an accurate determination of the moments. The needed level of accuracy certainly

constitutes a real challenge, in particular for experimental measurements.
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Figure 2.6: Reconstruction of a two-peak distribution using four moments (a) with
systematic error (b) with random error.

Altogether, the reconstructions obtained with the adaptive algorithm are of a
much better quality and considerably more robust than the original results using an

equidistant grid for all configurations tested up to now, without any exception.

2.4.4 Conclusions

In this section, the adaptive spline-based algorithm for the reconstruction of distribu-
tions from a finite set of moments introduced by the author in de Souza et al. (2010)
has been presented. The algorithm shows a considerable improvement comparing
with the original equidistant-grid algorithm (John et al. (2007)), which failed to re-
construct distributions with a quickly changing curvature or with local non-smooth
behavior. The needed computing time is still very small (expressed in seconds,
without optimizing the process), so that it would be probably possible to use this
algorithm for process control.

The numerous tests carried out during the development of this procedure reveal

following features:

e For a really accurate reconstruction of a two-peak, smooth distribution, four
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moments should be known. A reconstruction with only three moments is

already possible, but will lead only to a semi-quantitative description.

e [t is not necessary to know the domain of the function to reconstruct with
a high precision. A first guess with only the right order of magnitude (i.e.,
knowing only the typical size of the largest particles) is fully sufficient to start
the process. A good initial guess is twice the real domain of interest, if known

in advance.

e When more moments are known, the accuracy of the reconstruction increases

as expected.

e To reconstruct accurately a non-smooth distribution, more moments are needed
than for a smooth distribution. As a rough recommendation, one moment more
should be known for each non-smooth event compared to a smooth distribution

with the same number of peaks.

e The reconstruction process is robust enough to tolerate some error in the mo-
ment values. Nevertheless, these errors must of course be minimized, since a
random error of 10% might already lead in reality to a considerably different

distribution.

Since its publishing, the developed algorithm has been successfully applied to recon-
struct distributions in different scientific applications, for instance, quantum physics
(Slater (2011)), process control (Soltanzadeh and Dumont (2012)) and pharmaceuti-
cal process (Mortier et al. (2014)).

2.5 Summary

In this chapter, the methods to simulate polydisperse multiphase flows have been
presented. The described methods are later employed for the simulation of a full
multiphase chemical reactor.

The Eulerian-Eulerian approach has been chosen as it is the most appropriate
framework for the computation of dense flow, which is common in practical industrial
applications. Thus, the continuous and disperse phase are described using the
Eulerian approach. The model to simulate the multiphase flow, as well as the model
to describe the evolution of the particles properties have been discussed. As such,
the Eulerian multifluid model together with the required constitutive relations are

outlined. In order to get a correct description of the disperse phase the quadrature
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method of moments (QMOM) is applied to solve the population balance equation;
the coupling between CFD and QMOM is explained with details.

Finally, a reconstruction technique was presented, which allows to recover the
shape of a distribution from a finite set of moments; this technique can be used as a

tool to analyse the information obtained with the moment-based methods.
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Chapter 3

Methodology for model parameter
optimization using multi-objective

genetic algorithm

In this short chapter, a methodology for the optimization of model parameters us-
ing multi-objective optimization is described. The advantages of multi-objective
optimization, basic concepts and the coupling between simulation software and opti-
mization algorithm are discussed. The presented methodology is later on employed
for the model optimization of a turbulence RANS model (Chapter 4) and for the

model optimization of a chemical catalytic reaction network (Chapter 5).

3.1 Introduction

A mathematical model often requires calibration to fit a particular condition. Even
when very complex physical and chemical models are employed, there are usually
empirical, semi-empirical or pure numerical parameters that need to be tuned.

The optimal parameter set should minimize the difference between experimental
data and simulation results. In principle, many algorithms could be applied to
solve this optimization problem. Gradient-based algorithms, e.g., Newton’s method,
Steepest-Descent, Levenberg-Maquardt, yield an accurate local minima or maxima,
but depend strongly on the starting values of the parameters. Metaheuristic op-
timization algorithms, e.g., Genetic Algorithms (GA), Simulated Anneling (SA),
Particle Swarm Optimization (PSO), provide an effective global search, but do not
guarantee finding the global minima or maxima.

In multi-variable and non-linear optimization problems, which is often the case
in complex systems, an effective global search is needed. Metaheuristic algorithms

have become a popular approach to solve this class of optimization problems as they
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provide an effective search in the variable space and are less prone to premature
convergence to a suboptimal solution.

There are numerous articles applying metaheuristic algorithms for model parame-
ter optimization, e.g., reaction kinetics parameters (Polifke et al. (1998), Elliott et al.
(2005) , Park et al. (2010)), coalescence model parameters (Hasseine et al. (2006)),
heat transfer coeflicient (Tesch et al. (2009)). However, most of them consider only
a single objective function.

In most practical situations, a multi-objective optimization would be a far more
valuable tool for the determination of optimal model parameters. For instance: when
the same set of parameters should be used to fit a model to different experimental
conditions or configurations; when the same set of parameters should be used to fit
different models and give optimal prediction for distinct quantities. Multi-objective
optimization accounts for a trade-off between concurrent objectives, increasing the
robustness of the model and reducing ad hoc fitting.

Multi-objective optimization has gained popularity in engineering optimization
problems, see Rangaiah and Pandu (2008) and Janiga (2011) for a broad range of
applications in chemical engineering and computational fluid dynamics, respectively.
Nevertheless, its use in model parameter optimization has remained relatively poorly
explored, being only recently addressed with more details in Rangaiah and Bonilla-
Petriciolet (2013).

3.2 Multi-objective optimization

Multi-objective optimization deals with the problem of optimizing (i.e., maximizing
or minimizing) more than one objective function simultaneously. The optimization

problem can be stated as follows:

Il'liIl fz(é’) V = ]., 2, Nobj
subjected to:

ej S [ej,mzna ej,max] ] = 17 27 Nparam
where Ny; is the number of objectives and Npgram is the number of parameters.
The objective functions are given by f; and the parameter vector is given by ;. The
constraint [0; min; @.maez] defines a feasible set of parameters.

The objective functions are usually conflicting, and in most cases there is not a

single solution that optimizes all the objectives simultaneously. There are different
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approaches to solve multi-objective problems. A common practice is to weight the
objectives and combine them together into a single objective function. In this manner
the problem is reduced to a single objective optimization. This approach, however,
introduce an artificial ordering in the objectives and leads to suboptimal results.

A more elaborated approach is based on the Pareto concept, which formalizes
the trade-off between concurrent objectives; no artificial weight or combination into
a mono-objective function is needed. Genetic algorithms are well suited to solve
multi-objective problems since the Pareto strategy can be easily integrated in the
optimization algorithm loop. In genetic algorithms (Goldberg (1989)), a randomly
generated population of solutions (also called individuals) evolves towards better
solutions. It uses mechanisms inspired by genetics and evolution theory, such as
inheritance, mutation and crossover to obtain the solutions along the generations.
As in evolution theory, the fittest individuals are favored in the selection procedure.
Most of the multi-objective GAs consider the Pareto dominance criterion for the
classification of the individual fitness. Nevertheless, there are considerable differences
on the fitness assignment depending on the algorithm. A comprehensive overview

on the most popular multi-objective GA is given by Konak et al. (2006).

3.3 Basic concepts

In order to better understand multi-objective optimization problems using genetic
algorithms and its applications in model parameter optimization, some basic concepts

are first explained.

3.3.1 Pareto optimality

Considering the scenario involving the simultaneous optimization of N, possibly
contradicting objectives, the determination of an optimal solution is not a trivial
task. Usually it is not possible to find a solution that optimize all the objectives
simultaneously. When dealing with two or more objectives, a given solution may
perform optimal for one objective, but poorly for another. Therefore, a compromise
should be found.

The Pareto concept formalizes the trade-off between concurrent objectives. The
rank between all the individuals is established based on the the number of solutions
that each individual dominates. In Pareto-based approaches (Goldberg (1989)), the
solution A is said to dominate solution B if and only if for all the objectives, the
solution A is at least in one objective better than B and not worse in any objective

function.
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A solution is Pareto-optimal if it is not dominated by any other solution. The
Pareto-optimal solution cannot be improved in any of the objectives without wors-
ening at least one of the other objectives. A set of Pareto solutions constitutes the
Pareto front and may contain infinite number of solutions, see Fig. 3.1.

The challenge of multi-objective algorithms is to describe well-distributed solu-

tions close to the true Pareto, within the region of interest.

1 o
0.8 -
Dominated
0.6 Solutions

f>

0.4 /,

Pareto Front
0.2+

Figure 3.1: Pareto front for two contradicting objective functions.

3.3.2 Decision making

From the mathematic point of view, all solutions in the Pareto are of the same
quality. The process of choosing between one of the optimal solutions usually
requires preferential information of the decision maker; this process is called decision
making.

In engineering applications, the decision-making criterion is normally based on
an economic decision. In the case of model parameter optimization of physical or
chemical models, the most important aspects are the fitting quality and statistical
properties of the model.

Nevertheless, the choice of the final solution generally involves the trade-off
of certain criteria (objectives) for others. Mathematical tools that help in the
decision making process are investigated in the field of multi-criteria decision-making
(MCDM), see Sean and Yang (1998).

The following MCDM methods have used in this work:

1. Weighted sum method. It is the simplest and most known MCDM. In this
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method, the objectives are linearly combined using some prescribed weights.
Thus, the final problem reduces to a single objective optimization within the

Pareto optimal solutions.

2. Aspiration levels method. In this case each objective is compared to a thresh-
old. The solutions that perform worse than a given threshold are filtered out
reducing the subset of interesting Pareto solutions. This threshold can be
made tighter until only very few solutions (or only one solution) remain, see
Lotfi et al. (1992).

3. “Best of the worst” or Mazimin/Minimax strategy. For each Pareto solution,
the worst objective is determined. Then, the best within the worst objectives
is selected. As the objectives usually have different unities and scales, the

normalization of the objectives is needed in order to obtain comparable values.

3.4 Coupling simulation software with optimiza-

tion algorithm

The calculation of the mathematical functions is usually done in specialized simu-
lation softwares, e.g., ANSYS Fluent, OpenFOAM, Matlab. To couple simulation
softwares with optimization algorithm implies building an interface to control and
exchange data between the softwares in an automatic manner.

There exist a few optimization softwares that provide a flexible interface, state-
of-art optimization algorithms libraries, fast communication between the softwares
and offer the possibility for parallelization of the simulations. In this work, we have
used the in-house software OPtimization ALgorithm (OPAL) and the commercial
software ModeFRONTIER for the optimizations. Although there are significative
differences between the softwares, a general optimization loop is proposed in Fig. 3.2.

A general optimization loop can be described in three main steps:

1. Optimization strategy: In this step the optimization algorithm is set up, e.g.,
MOGA, NSGA-II. The main parameters to be defined are: initial population
size, number of generations, number of objective functions, number of design
variables (parameters), design variable constraints (parameter range). In model
optimization the parameter range can be defined based on the values usually
adopted in literature. Other important multi-objective GA settings include:

mutation probability, mutation magnitude and crossover probability.

2. Computation of mathematical functions: Depending on the complexity of the

problem this step may require several simulation softwares. For the cases

33



considered in this work the commercial software ANSYS Fluent and MATLAB

have been used for the simulation and evaluation of the objective functions.

The model is treated as a “black box”by the optimizer. The model parameter
input is generated by the optimization algorithm. The output of the model is
an integral quantity or a profile that should be compared with the experimental

data for the calculation of the objective function.

3. Analysis of the results: As already mentioned, the result of a multi-objective
optimization is usually not a single optimum, but a set of optimal solutions.
In this last step, a decision-making process is needed in order to choose a final

solution within the Pareto optimal set.

Optimization strategy
° Analysis of the results

Optimization W
algorithm b

A 4 P Decision making

Computation of
mathematical functions

Objective
functions

Parameters

o Computation
software

Figure 3.2: Diagram showing a general optimization loop.

3.5 Summary

In this chapter, a methodology for model parameter optimization has been described.
The advantages of multi-objective optimization, basic concepts and the coupling
between simulation software and optimization algorithm have been discussed.

Multi-objective optimization is clearly a valuable tool for the determination
of optimal model parameters, as it accounts for a trade-off between concurrent
objectives, increasing the generality of the model and reducing ad hoc fitting.

The presented methodology is employed for the model optimization of a turbu-
lence RANS model and for the model optimization of a chemical catalytic reaction
network in Chapter 4 and Chapter 5, respectively.

In model parameter optimization the decision-making criterion is not based on
economic decisions, as it is usually the case in engineering application. The fitting
quality has been used in the decision making-process. Nevertheless, in future works,

more advanced statistical analysis could be integrated.
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Chapter 4

Model optimization for turbulent

fAows

This chapter is written based on the following paper:
L. M. de Souza, G. Janiga, D. Thévenin. Multi-objective optimisation of the
Model Parameters for the Realizable k — ¢ Turbulence Model, (2015). Progress in

Computational Fluid Dynamics, in press.

4.1 Introduction

The accurate prediction of turbulent flows is a fundamental issue to improve existing
applications and develop new configurations. A detailed level of prediction can in
principle be obtained with Direct Numerical Simulation (DNS), but limitations in
computer power restrict its application to simple configurations and low Reynolds
numbers. Large Eddy Simulation (LES) is now applicable for many research problems
but simulation times are still prohibitive for many industrial applications, Frohlich
(2006). Therefore, numerical simulations based on Reynolds Averaged Navier-Stokes
(RANS) models are still widely used today for practical engineering problems (Spalart
(2000, 2010)), see also Spalart (2009) for an interesting text on “RANS modelling
into a second century”.

In RANS models, closure parameters (sometimes misleadingly called “constants”)
are introduced in order to replace unknown correlations appearing during the aver-
aging process. These parameters are usually determined in a semi-empirical manner
based on basic flow configurations and on simplifying assumptions, for instance by
considering the properties of homogeneous isotropic turbulence. Afterwards, these
models are applied for quite different and far more complex configurations. For a
particular flow, it is known that the prediction can usually be improved by adjusting

the model parameters, at the cost of generality. Consequently, a large span of model
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parameter values have been tested in the scientific literature, derived from the own
experience of the user on a trial-and-error basis, from values measured in a particular
experiment or, less often, obtained by single-objective numerical optimization, as
discussed later.

The determination of suitable model parameters for engineering turbulence is
indeed a formidable task. It is easy to change one parameter in order to observe
consequences concerning some specific turbulent quantity of the flow. But the
simultaneous modification of several parameters of a turbulence model in order to
increase accuracy for a variety of configurations rapidly becomes an intractable issue.
If all the model parameters are changed in a systematic manner, then the number of
possible combinations would yield an enormous and unnecessary computational effort
when attempting to explore the model parameter space. In that case, numerical
optimization techniques may help speeding up the search procedure in order to find
the best possible combination of model parameters with a minimum computational
load.

In this chapter, the objective is to determine optimized but generally appli-
cable model parameters for the prediction of turbulent quantities. In order to
ensure generality, four widely-used canonic flow configurations are considered si-
multaneously in the optimization: channel, backward facing step, jet and flow over
a periodic hill. High-quality experimental data available from scientific articles,
ERCOFTAC (http://cfd.mace.manchester.ac.uk/ercoftac/) and QNET (http://qnet-
ercoftac.cfms.org.uk/) databases are available as reference. The test cases considered
are classically retained as benchmark for development and validation of turbulence
models. The underlying characteristics allow to investigate the behavior of the model
under very different conditions. The optimization problem thus involves several con-
current objectives that must be fulfilled simultaneously. The multi-objective genetic
algorithm implemented in the in-house computer package OPAL (Thévenin and
Janiga (2008)) has been used for optimization.

The present study considers only the realizable k& — € turbulence model. The
four adjustable parameters of this model have been therefore selected as the four
design parameters of the optimization procedure, as described in what follows. The
initial range for each parameter spans the corresponding values published in the
literature. The differences between selected quantities obtained with this model
and those measured experimentally are quantified using the Euclidian norm. The

objective of the optimization is to minimize simultaneously all these differences.
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4.2 The closure problem

The closure problem arises from the averaging procedure of the Navier-Stokes equa-

tion. In the conservative form the Navier-Stokes equation is written as follows:

+ = 4.1
being the strain rate tensor s;; given by,
1 au, 8Uj
== 4.2

Considering that the instantaneous velocity is expressed by w;(z,t) = U;(z,t) +
wl(z,t), where u}(z,t) is the fluctuating velocity and U;(x,t) the mean velocity. The

time-averaged Navier-Stokes equations reads:

oU; | OUUi +uful) 9P O(2usy)

_ 90 OChsy) 4
T oz, * og, (4:3)

The instantaneous and the time-averaged equations, respectively Eq. (4.1) and
Eq. (4.3), are very similar; with the instantaneous quantities being substituted by

mean quantities in the time-averaged equation. Another difference is the correlation

whu!
hacil
The fundamental problem in RANS modeling is the description of 7;; = wjuj,

which is referred as the Reynolds stress tensor. The averaging process has produced

which appears in Eq. (4.3).

new unknows, but has not generated new equations. There are at this point more
variables than equations; therefore, the system is not closed. The task in turbulence
modeling is to find approximations to describe the Reynolds stress tensor ;.

It is possible to derive equations for the Reynolds stress tensor or other turbulent
quantities, for example, the turbulent kinetic energy k. This can be done after a
large number of algebraic manipulation of the Navier-Stokes equation. However,
such procedures generate new unkown correlations and can not balance the number

of unknows and equations.

4.3 Two-equation RANS models

The Boussinesq assumption serves as basis for the RANS modeling. Boussinesq
postulated that the Reynolds stress tensor in turbulent flows 7;; could be described
analogously to the viscous stress in laminar flows. The equation of 7;; for incom-

pressible flows is given by:
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Tij = _2VTSij — gk&u (44)

The second term on the right-hand side has been introduced in order to avoid
unphysical results; d;; is the so-called Kronecker delta, which is 1 if ¢ = j and 0

otherwise. The mean stress rate S;; reads:

10U U
5i=7 (5 +52) (45)

Note that the turbulent eddy viscosity v, different from the molecular viscosity,

is not a property of the fluid. It changes from point to point depending of the state
of turbulence in a specific point. The question is how to determine the turbulent
eddy viscosity vyp.

Perhaps the most controversial aspect in RANS modelling is the description of
the turbulent eddy viscosity. One can argue that the closure relation of this term
is based just on dimensional analysis and not on fundamental physics. Nonetheless,
dimension analysis has been historically a powerful tool for deducing properties of
turbulent flows.

There is no fundamental reason for v to depend only upon a particular turbu-
lence quantity or quantities. Distinct approaches have proven their applicabilities,
e.g., zero-equation model (e.g., Mixing length), one-equation model (e.g., Spalart-
Allmaras), two-equation models (e.g., k — ¢, k — w). The two-equation models are
the most successful. While algebraic models and most one-equation models need to
prescribe the turbulence length scale based on some flow dimension, two-equation
models automatically provide the turbulence length scale or equivalent being there-
fore called “complete” models.

The turbulent eddy viscosity vy can be regard as the product from a velocity

scale u(x,t) and a length scale [(z,1):

v o< ul (4.6)

Hence, for the complete specification of vy we need to describe a velocity scale,
which is usually done based upon the turbulence kinetic energy k. However, there
is a large arbitrariness in the choice of the second quantity. Based on dimensional
analysis, any quantity which can be stated as a product between k£ and [, in principle,
can be used. Authors have adopted many different variables to describe the length
scale, e.g., dissipation rate (€), specific dissipation rate (w). Yet, these distinct
formulations are theoretically equivalent.

The derived equation for k, obtained from algebraic manipulation of the Navier-
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Stokes equation, is given by:

%—l—Ujg—fj :TU%_H% ug—i—%u;u;ug—%@ (4.7)

In Eq. (4.7) the unsteady and convection terms are given on the left-hand side.
On the right-hand side the first term is called Production (Py) and describes the
rate of turbulent kinetic energy transfer from the mean flow to the turbulence. The
dissipation rate (€) is the rate with which turbulence kinetic energy is converted
into thermal energy. The term V% represents the molecular diffusion. The triple
velocity correlation is usually referred as turbulent transport and the last term on
the right-hand side is the pressure diffusion.

The exact derivation of equations for turbulent quantities from the Navier-Stokes
equation yields unknown double- and triple-velocity correlations. Wilcox (2001)
points out that the modeling of the physics is more important than the modeling of
the differential equations, and therefore, the term-by-term modeling is not the most
appropriate approach. The modeled version of turbulence kinetic energy in Eq. (4.7)
assumes the form:

ok ok U, 0

. vr 8]{3
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(4.8)

where 7;; is given by Eq. (4.4). Note that the unsteady term, convection and
molecular are exactly represented, while the remaining terms are modeled using
closure approximations.

In Appendix A, the most popular two-equation models are shown, as well as their
standard closure approximations. The equation for the turbulent kinetic energy is
similar for all the given models, nevertheless, distinct closure constants are used.
Major differences are observed in the second transport equation, where new terms

and auxiliary relations are introduced.

4.4 The realizable k£ — ¢ turbulence model

The k — e model has been developed by several contributors, starting from early
efforts of Chou (1945) and Harlow and Nakayama (1968), but most prominently
in the 70s by Hanjali¢ (1970), Jones and Launder (1972) as well as Launder and
Spalding (1974). Its standard form is now usually credited to Launder and Sharma
(1974). Since then, many different and extended formulations have been published.
The realizable k — € model was first proposed by Shih et al. (1995) and has soon

become very popular. In general, it provides superior predictions for flows involving
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rotation, boundary layers under strong adverse pressure gradients, separation and
recirculation.

The realizable k — ¢ model differs from the original one in two main respects.
First, it involves a new formulation for the eddy turbulent viscosity. Second, it uses
a modified equation for the dissipation rate (¢), while the equation for k remains
exactly the same as in the standard model. The corresponding transport equations

for k and € read:

%—f—Uak a {(V—i—yt)%}—l—Pk—f—Pb—G (49)
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where the term P, accounts for the turbulence kinetic energy production due to
mean velocity gradient as it appears in Eq. (4.7) and the term P, is the turbulence
energy production due to buoyancy. In the € equation, a new source term S, has

been introduced together with the parameter C';. The new parameter C; has been
described by Shih et al. (1995) as follows:

n
C) = 043, —— 4.11
= o 0.3, (4.11)

with n = s%, 5 = 1/28;j5;j

The last term on the right-hand in Eq. (4.10) does not appear in the original
formulation of Shih et al. (1995), but is adopted in the implementations such of the
commercial Software ANSYS Fluent.

The eddy viscosity read