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Abstract

Optimization embraces everything humans do: from common everyday tasks to engineer-
ing development, optimization is present everywhere. In early history, technology was
advancing very slowly, as improvements were achieved with a primitive trial-and-error
approach. However, with the appearance of the different mathematical optimization
techniques and with their integration into the engineering practice, improvements are
achieved at an accelerating rate. Optimization is becoming more wide-spread, starting
from the easier analytical cases even to computationally demanding fields.

The ultimate goal of the present thesis is to visit the different topics of Computational
Fluid Dynamics-based optimization (or shortly, CFD-O), to provide an overview of the
difficulties frequently encountered by engineers on different fields and to propose solutions
for selected areas and issues. Thus, focus will be given to the distinctive aspects of
engineering optimization. Most importantly, an optimization software is developed as
part of this thesis to support the implementation of selected analyses and a new algorithm
will be proposed to take into account all practical aspects encountered in the various
chapters.

This will be achieved through a series of carefully chosen CFD problems (e.g., heat
exchangers, medical problems, wind turbines). A successful automation and optimiza-
tion process will be implemented for many problems, which were previously not – or at
least not at this level of complexity – considered in the corresponding scientific litera-
ture. Among others, an efficient way for the optimization of arrangement problems will
be identified, optimization of airfoil geometries for wind turbine applications based on
2D CFD computations will be considered, a 3D parameterization method for tube-like
geometries (wings, winglets, channels, etc.) will be proposed. Though many engineers
perceive optimization as an automation to replace humans not only in manufacturing,
but in the research and development phase as well, experts cannot be eliminated from the
process. An optimization process delivers a meaningful answer only to a well-formulated
question. To provide an example for such an expert-driven problem, a patient-specific
treatment will be considered for intracranial aneurysms. Additionally, robustness will be
considered and the order needed for Uncertainty Quantification will be analyzed for a
wind turbine to show the need for advanced methods, as applied in the present work.

Keywords
Computational Fluid Dynamics (CFD), optimization, Evolutionary Algorithms (EA),

wind energy, heat exchanger, medical optimization, mesh generation
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Kurzzusammenfassung

Optimierung umfasst alles, was Menschen tun: von alltäglichen Aufgaben bis zu
industriellen Entwicklungen. Optimierung ist überall präsent. In der früheren
Geschichte der Menschheit kam die Entwicklung der Technik nur sehr langsam voran,
da Verbesserungen mit einer primitiven Versuch-und-Irrtum-Methode erzielt wurden.
Doch mit dem Auftreten der verschiedenen mathematischen Optimierungstechniken
und mit ihrer Integration in die technische Praxis werden Verbesserungen mit
einer beschleunigenden Geschwindigkeit erreicht. Optimierung wird immer häufiger
angewendet, von den einfachsten analytischen Fällen bis zu rechenintensiven Bereichen.

Das Ziel der vorliegenden Arbeit ist es, die verschiedenen Themen von Computational
Fluid Dynamics basierter Optimierung (oder kurz, CFD-O) zu betrachten, einen
Überblick von den unterschiedlichsten, bei Ingenieuren häufig getroffenen Schwierigkeiten
zu geben und Lösungen für ausgewählte Bereiche und Fragen zu bieten. Der
Fokus liegt auf den wichtigen Aspekten der praxisrelevanten, technischen Optimierung.
Im Rahmen dieser Arbeit ist zur Unterstützung der ausgewählten Analysen eine
Optimierungssoftware entwickelt worden. Außerdem wird ein neuer Algorithmus
vorgeschlagen, um alle praktischen Aspekte der unterschiedlichen Kapitel zu
berücksichtigen.

Dies wird durch eine Reihe von sorgfältig ausgewählten CFD-Problemen (z.B.
Wärmeübertrager, medizinische Probleme, Windkraftanlagen) erreicht. Eine erfolgreiche
Automatisierung und Optimierung wird für viele Probleme umgesetzt, die bisher in
der einschlägigen Literatur nicht oder nur mit weniger Komplexität betrachtet wurden.
Unter anderem werden ein effizienter Weg zur Optimierung eines Anordnungsproblems
beschrieben, die Optimierung des Schaufelprofils für Windkraftanlagen auf Basis von
2D-CFD-Berechnungen in Betracht gezogen und ein 3D-Parametrisierungsverfahren für
wellenförmige Geometrie (Flügel, Winglets, Kanäle usw.) vorgeschlagen. Obwohl
viele Ingenieure Optimierung als Ersetzung der Menschen betrachten (nicht nur in
der Produktion, sondern auch in der Forschungs- und Entwicklungsphase), können
Experten aus dem Verfahren nicht ausgeschlossen werden. Ein Optimierungsprozess
liefert eine sinnvolle Antwort nur auf eine gut formulierte Frage. Um ein Beispiel
für ein solches expertengeführtes Problem zu nennen, wird eine patientenspezifische
Behandlung bei einem intrakraniellen Aneurysma betrachtet. Ebenso wird am Beispiel
einer Windkraftanlage Robustheit berücksichtigt, um die notwendige polynomische
Ordnung einer Quantifizierung von Unsicherheiten zu bestimmen. Damit kann die
Notwendigkeit der hochentwickelten Methoden präsentiert werden.

Schlüsselwörter
Computational Fluid Dynamics (CFD), Optimierung, Evolutionärer Algorithmus (EA),

Windenergie, Wärmeübertrager, medizinische Optimierung, Gittergenerierung
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Φ van der Corput sequence −
ψ non-dimensional parameter −
ω angular velocity rad s−1

ω specific rate of dissipation s−1

Ω boundary/sample space −

General Symbols
Symbol Description Units
A archive −
A area/projected area m2

AR Aspect Ratio −
c camberline function/calibration coefficient −
c chord m
c speed of sound m s−1

cp specific heat capacity J kg−1K−1

C coverage of set/constraint violation −
CL/D/N/T lift/drag/normal/thrust coefficient −
Cp power coefficient −
CQ/M/T torque coefficient −
Cx,y global force coefficients −
d maximal distance between elements of the Pareto front −
D diameter m
E energy J
E expected value −
f objective function −
F force N
g equality constraint −
h inequality constraint −
H height m
I moment of inertia kg m2

I turbulent intensity −
k number of equality constraints/number of tournaments −
k thermal conductivity W m−1K−1
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k turbulent kinetic energy m2s−2

kl laminar kinetic energy m2s−2

l number of inequality constraints −
L length/integral length scale m
M Mach number −
MR maximal rank −
n number of variables −
N number of individuals/blades/revolutions −
N standard normal distribution −
Ncrit turbulence level (in XFOIL) −
o objectives −
O Bachmann-Landau symbol −
p non-dimensional position along the camberline/number

of computers
−

p pressure Pa
p probability −
P Pareto front/probability measure −
P performance W
Q volumetric flow rate m3s−1

Q̇ heat transfer J s−1

r/R radius m
R growth rate −
R response −
Re Reynolds-number −
s first derivative −
S mesh size m
t thickness m
t thickness function −
t time s
T period time/total time s
T temperature K
T torque N m
u velocity m s−1

U uniform distribution −
v velocity m s−1

V validity −
V volume m3

Va induction velocity m s−1

w weight/Gaussian weights/weight function −
W local relative velocity m s−1

x first spatial coordinate m
X set of feasible designs −
y second spatial coordinate m
y+ non-dimensional wall distance −
z third spatial coordinate m
z0 roughness length m
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Subscripts and Superscripts
act actual value
c camber/cross-over
crowd crowding
D drag
eq equivalent
inc incremental
L lift/leading edge
m mutation
max maximal
mean mean value
mech mechanical
meta metamodel
min minimal
N normal
norm normalized
obj objective
opt optimal
ref reference value
sym symmetry
T thrust
T trailing edge
t thickness
th. theoretical
tot/total total
upd update
var variable
x, y, z Cartesian coordinate system directions

Vectors and Matrices
Symbol Description Units
Ψ random variable vector −
A surface vector m2

e unit vector −
F force vector N
p position vector m
u wind velocity vector m s−1

v velocity vector m s−1

x design variable vector −
x position vector m
y objective function vector −
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Introduction

“Excellent firms don’t believe in excellence
- only in constant improvement and
constant change.”

Tom Peters

The complete human history is the result of our wish to strive for excellence. Using
the definition of Cambridge Dictionary, optimization is “the act of making something as
good as possible”. Optimization practically embraces everything we do, from everyday
tasks (schedule daily task, buy groceries) to engineering processes (more, better, faster,
cheaper); optimization is present everywhere.

The speed of engineering design processes are accelerating as well, mainly due to the
quickly changing customer demands, competitive markets and stricter regulations. The
design of products in such an environment is not possible anymore with the usual, manual
trial-and-error engineering approach. Thus, systematic automated processes have to be
introduced not only in the manufacturing, but in the research & development phases as
well.

For industrial sectors heavily relying on Fluid Dynamics (e.g., automotive industry,
energy sector, aeroplane applications, etc.), these processes depend on Computational
Fluid Dynamics (or CFD), thus CFD-based optimization (or shortly CFD-O [212]) is
required. However, CFD-O is a multidisciplinary field requiring highly trained experts
excelling on all relevant fields simultaneously. More specifically, such experts must have
an excellent knowledge (see Fig. 1) of

(a) Mathematical optimization to be able to choose an adequate parameterization, op-
timization method and settings,

(b) Geometry and mesh generation processes to implement it in an automated way into
the process,

(c) Computational Fluid Dynamics to choose the appropriate models for the simula-
tions,
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(d) Information technologies to be able
to implement the process in an auto-
mated way using the available hard-
ware and software environment,

(e) Practical engineering aspects in or-
der to guide the optimization into the
direction of designs and configura-
tions of practical significance and to
avoid designs which cannot be man-
ufactured,

(f) Expert knowledge required for the
specific field being considered.

Figure 1: Multidisciplinary aspects of
CFD-O

In order to present all these different aspects, selected examples will be visited in
the present thesis 1) to answer the most important questions engineers face in CFD-O
problems and 2) to provide a good starting point for everybody interested specifically
in CFD-O. Thus, Chapter 1 will provide an introduction to Mathematical Optimization,
followed by Chapter 2, which will emphasize that the mathematical aspects of even a
relatively simple engineering problem can be challenging, by relying on the example of a
two-dimensional laminar heat-exchanger. Chapter 3 will further extend the example of
Chapter 2 to demonstrate the importance of parameterization methods and parameter
space.

Afterwards, based on wind turbines, an example will be presented in Chapter 4 where
Computational Fluid Dynamics, i.e., validation of the appropriate model is more de-
manding than the optimization itself (which is quite surprising, as the optimization took
months with more than one thousand of processor cores). Additionally, this chapter will
also use a very complex Geometry and mesh generation method, which will be extended
to 3D in Chapter 5.

Afterwards, Chapter 6 will present a very important Practical engineering aspect, i.e.,
robustness, which can only be achieved with efficient Uncertainty Quantification (UQ)
methods. For this, UQ will be presented for the wind turbine already used in Chapter 4.

Chapter 7 will present a special field of optimization based on a patient-specific med-
ical treatment process, where Expert knowledge is of key importance, i.e., it has to be
included not only in the planning, but in the actual optimization process as well. Finally,
based on all the experiences gained in the present thesis, a new optimization algorithm is
proposed in Chapter 8, to accommodate the most important Practical engineering aspects
into a Mathematical optimization algorithm.

Of course, various aspects of Information technologies will be also discussed in the
different chapters. Most of all, Chapter 1 will focus on the developed optimization soft-
ware for the present thesis and Chapter 4 will present a very demanding automation
and optimization process. Using these selected examples based on original research and
publications, all relevant aspects of CFD-O will be presented.
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Chapter 1

Introduction to optimization

“Good, better, best: never let them rest
until the good is better and the better is
best.”

St. Jerome

The present chapter will especially focus on questions related to the theory of Mathe-
matical Optimization, and actually putting the theory into practice by using Information
Technology.

1.1 Mathematical optimization

Let us assume a problem with n independent variables:

x = (x1, x2, ..., xn)T, x ∈ X, (1.1)

where x is the decision variable vector (or design variable) and X the feasible domain.
The feasible domain is defined by k equality constraints, l inequality constraints and the
bounds for each variable:

x ∈ X ⇐⇒


gi(x) = 0 (i = 1...k)

hj(x) ≤ 0 (j = 1...l)

xk,min ≤ xk ≤ xk,max (k = 1...n)

(1.2)

Besides the variables m objective functions are defined:

y(x) = (f1(x), f2(x), ..., fm(x))T. (1.3)

The yi(x) function may be defined explicitly (analytical problems) or implicitly (numerical
problems). Without any loss of generality the optimization can be defined as

O :

{
y(x) −→

x
min

so that x ∈ X
. (1.4)

If maximization is required, the function simply has to be transformed by f ∗i (x) = −fi(x).
In the followings, the terms ‘design variable’, ‘decision variable vector’ and ‘configu-

ration’ will be used as synonyms.
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1.1.1 Optima

The ultimate goal of any mathematical optimization process is to identify the optimum
(or optima). Without loss of generality, the different types of optima will be presented
for m = 1. The design variable x0 is a global optimum (see Fig. 1.1), if and only if:

f(x0) ≤ f(x) ∀x ∈ X (1.5)

i.e., it is at least as good, as any other design variable. It is not trivial to find this design
variable without having an extensive knowledge of the objective function (for implicit
problems, without computing the objective function for each design variable, one cannot
ensure that no better configuration exists). When using local search methods (e.g., many
gradient-based methods, see later), the optimization method might get stuck into a local
optimum (see Fig. 1.2), without finding the real global optimum:

f(x0) ≤ f(x0 + ε), ∀ε : x + ε ∈ X, |ε| << 1 (1.6)

As a result, global optimization methods are recommended to avoid this problem. These
methods are however time-consuming.

Figure 1.1: Example of local (left) and
global optimum (right)

Figure 1.2: Example of gradient based
method getting stuck in local optimum
(moving from red to green point, based on
the gradient)

1.1.2 Classification of optimization problems

Optimization tasks may be divided into different groups, based on the definition. Ta-
ble 1.1 summarizes the most important groups of optimization problems. As for most
numerical simulation based problems it cannot be decided, if the problem is convex,
convexity will not be discussed here.

1.1.2.1 Number of objectives

Single-objective problems are the easiest problems, with only one objective function
defined (m = 1).
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Table 1.1: Classification of optimization problems

k = l = 0 unconstrained
k 6= 0 ∩ l 6= 0 constrained

m = 1 single-objective
m ≥ 2 multi-objective

y(Xopt
1 ) = y(Xopt

2 ) =⇒ Xopt
1 = Xopt

2 uni-modal

y(Xopt
1 ) = y(Xopt

2 ) 6=⇒ Xopt
1 = Xopt

2 multi-modal

Multi-objective problems are defined with more than one objective function (m > 1).
These problems are actually very common, as most objectives in real life are concurring
as well (e.g., minimize the price and simultaneously maximize the quality of a product).
As a result, deciding which design variable is better, may be difficult. When comparing
two design variables, one may use the Pareto dominance, as defined by:

x1 ≺ x2 ⇐⇒
{
∀i ∈ [1...m] : fi(x1) ≤ fi(x2)

∃j ∈ [1...m] : fj(x1) < fj(x2)
(1.7)

i.e., x1 design variable dominates x2 design variable if and only if y(x1) is not worse in
any objective value as y(x2) and is better at least in one objective value. During a multi-
objective optimization process our goal is now to determine the true Pareto front (i.e.,
the set of non-dominated designs) with the best possible resolution. The Pareto-front is
defined as:

P (X) := {x ∈ X |@x̂ ∈ X : x̂ ≺ x}. (1.8)

This set contains all designs, which are not dominated by any member of the feasible
domain. The exact set is usually impossible to reach (except for some simple analytical
cases). Thus, it will be approximated by an iterative algorithm. Multi-objective prob-
lems may be transformed into single-objective problems by using different scalarization
techniques. The most well-known method is the simple linear weight function [65]:

f =
m∑
i=1

wifi . (1.9)

Through the transformation, only a single point of the Pareto front can be retained.
Hence, to apply such a simplified, fixed-weight method, a priori information is needed for
the decision making process. “Without such knowledge or due to faulty assumptions, a
lumped analysis can rapidly lead to suboptimal results” [56].

Many-objective problems have unfortunately no exact definition, as there is no agree-
ment for the definition yet. Some define them with 3, 4 or more objectives (m > 3 or
m > 4) [141]. Mathematically, there is no difference between multi- and many-objective
problems, but very different algorithms are required to solve such problems, as due to
the curse of dimensionality, the size of the Pareto-front increases exponentially with m.
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1.1.2.2 Modality

For single-modal problems only one optimum exists, while for multimodal problems more
optima exists. Thus, the same objective values can correspond to different design variable
vectors, and a bijective correspondence between x and y does not exist.

Such multimodal solutions have large engineering significance, as one of those design
variables will be usually superior for practical purposes due to a priori unknown con-
straints (for instance, it might be easier or cheaper to manufacture). Mathematically
formulated:

y(Xopt
1 ) = y(Xopt

2 ) 6=⇒ Xopt
1 = Xopt

2 . (1.10)

Depending on the goal of the optimization study (find only one better solution or find
all optima), different methods are required. Usually, finding a single optimum for multi-
modal problems might be easier than for single-modal (if there are more optima, the
probability of finding one may be higher), getting all solutions of multimodal problems is
much harder (without knowing the number of optima, it may be difficult to determine,
when to stop the optimization algorithm).

1.1.3 Classification of optimization methods

The methods proposed for solving the problems are as different, as the methods them-
selves. Methods can be classified according to many different aspects; two possible clas-
sifications will be presented below.

1.1.3.1 Black box versus non-black box methods

Optimization algorithms
may take advantage of
knowledge of the problem
directly, or handle the
evaluation of the objective
function(s) as a black-box
(see Fig. 1.3). Black box
methods have absolutely no
knowledge of the problem
itself. Although this seems
to be a disadvantage, this
is not necessarily true. In
industrial practice, many
commercial software are
applied, where access to the
source code is not possible
due to license restrictions.

Figure 1.3: Classification of optimization methods

In such cases, only black box methods can be used, i.e., black box methods can be
applied to a broader range of problems and are more flexible. A disadvantage of black-box
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methods is their significantly higher computational cost.
In contrast, one can also take advantage of knowing, how the objective functions look

like. In CFD, such methods are called adjoint methods, where the flow solver has to
be modified (thus, the optimization algorithm has to get access to the problem in an
intrusive manner). This increases the implementation time significantly, but provides
the derivatives ( ∂yi

∂xj
) of the objectives with regard to the variables [175]. Based on the

derivates, one can simply advance using a hillclimbing method into the direction of the
optimum. Although being fast, these methods can get trapped into a local minimum
(i.e., they are local optimization methods, not global optimization methods).

1.1.3.2 Gradient-based and gradient-free methods

As presented earlier, with non-black box methods,
gradients can be computed directly. If gradients are
known, the optimization becomes a trivial task. If
γn designates a (small) step size, one may advance
into the direction of a local optimum by simply mov-
ing from a reference design variable x0 step-by-step.
In case of single-objective optimization, e.g.,:

xn+1 = xn − γn∇f (xn) . (1.11)

Gradient-based methods are not necessarily adjoint
methods, as gradients may be reconstructed using
n additional function evaluations for an n dimen-
sional case. As a result, gradient-based black-box
methods suffer from the “curse of dimensionality”
and become unaffordable very rapidly. Gradient-
based methods are local search methods, as they
rely only on local information.

Figure 1.4: Gradient-based opti-
mization

Gradient-free methods handle the function evaluations as black-box. These are iter-
ative methods using different heuristics or mimicking different natural phenomena (e.g.,
swarm-based optimization, evolution, simulated annealing, etc.). The most popular
methods, the Evolutionary Algorithms are usually population-based (especially suited
for multi-objective or multi-modal problems), although some exceptions exist with a sin-
gle candidate solution at each time (e.g., hill climbing) [197]. To speed up convergence,
one may implement hybrid methods as well, combining local and global search [105].

1.1.3.3 Other classifications

As every year several dozens of new methods are published [93], algorithms could be
classified based on many different criteria (e.g., single/multi-modal; local/global opti-
mization; single/multi-objective; etc.), filling many books on this subject. This is out of
the scope of the present thesis.
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1.1.3.4 Iterative optimization methods

In the following, only black-box, gradient-free methods will be considered due to the
commercial software used in the present thesis. These methods are usually iterative in
nature. Consider a modified form of an iterative search procedure as defined by Laumanns
et al. [136]:

0: optimize(y(x)):

1: c := 0

2: A(0) := ∅
3: while terminate(A(c), i) = false do

4: c := c+ 1

5: F (c) := generate(A(c−1))

6: compute y(x) ∀x ∈ F (c)

7: A(c) := update(A(c−1), F (c))

8: end while

9: return A(c)

where c is the iteration cycle counter, A(c) is the archive in step c and F (c) is the list of
new individuals generated by the different operators. Compared to [136] it is emphasized
that in Step 5 the new design variables are generated based on the old archive and
Step 6 is added to emphasize that generating the new design variables and evaluating
them is logically different (in CFD, this is especially true). Finally, the Pareto front is
approximated with

P (X) ≈ P (A(C)) = {x ∈ A(C) |@x̂ ∈ A(C) : x̂ ≺ x}, (1.12)

if the total number of generations is C = max (c). The quality of this approximation
can be evaluated using different metrics, e.g., set coverage ratio, spacing, generational
distance, inverted generational distance, generalized spread [65], hyper volume indicator
[234], etc. In single-objective cases, the Pareto front degenerates into a single point.

For Step 5 different operators can be applied. If a genetic operator is used, the
approach is a genetic optimization method; if vector operations are used, it is Differ-
ential Evolution (DE); if the individuals are based on an interpolation method, it is a
metamodel-based optimization technique.

1.1.3.5 Which method to use?

“An inherent difficulty of optimization is that one has to choose for each problem the ap-
propriate optimization method. An algorithm, which is efficient for an unimodal problem
with a single optimum might fail for noisy or multimodal problems. There is no algorithm
that is efficient for all problems” [58]. This is the result of the so called ”no free lunch
theory”, which states, that ”...all algorithms for optimization will give the same average
performance when averaged over all possible functions, which means that the universally
best method does not exist for all optimization problems” [228,230].

Thus, it is usually very difficult to make a decision a priori, for which reason opti-
mization software still heavily rely on expert knowledge.
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1.2 Optimization in engineering practice

The following section is based on:
Daróczy, L., Janiga, G., and Thévenin, D. Workshop on Turbomachine Op-

timization based on Computational Fluid Dynamics. In Conference on Modelling Fluid
Flow (the 16th International Conference on Fluid Flow Technologies) (Budapest, Hun-
gary, 2015), J. Vad, Ed [58].

Optimization in the engineering practice is somewhat different, compared to the math-
ematical optimization. E.g., while in mathematical optimization one is interested in ap-
proximating the exact solution with as much accuracy as possible, this is completely
irrelevant for practical purposes: one has to take into account manufacturing precision
(i.e., it makes no sense to optimize the dimensions of a car with nanometer precision).

Furthermore, except the most unique cases, one is not interested to ensure that the
real optimum is found. Instead, one has to find a configuration providing an improvement
of economical interest. I.e., if one can build a new product, which is better than the old
one and it is economical to enter the market with it, the task is completed.

The large differences between the theoretical and practical approach lead often to mis-
understandings between the two communities. Engineers are not interested in optimiza-
tion methods, which require “only” 25 000 function evaluations, while mathematicians
may find methods based on heuristic approach irrelevant, if proof of convergence cannot
be provided. From the mathematical point of view, the convergence of each Genetic Al-
gorithm (GA) to the optima is not guaranteed (however, for some algorithms, there is a
guarantee [136]). Nevertheless, they proved to be very efficient for practical applications.
One should not forget, that many other engineering methods are also based on heuristics.

1.2.1 Optimization of CFD-based problems

When using CFD-based optimization (or CFD-O [212]), additional difficulties are faced
during the optimization process, summarized as follows:

- Objective function values are not explicitly known and have to be computed based
on numerical simulations. Thus, gradients are usually not available.

- Function evaluations are very costly, requiring from a couple of minutes of compu-
tational time (see Chapter 2) up to several days (see Chapter 4 and 5).

- Due to numerical noise and model uncertainties, the objective functions are usually
noisy.

- During the optimization, differences of the variables below manufacturing tolerance
are irrelevant (e.g., optimization of a car geometry with nm precision).

- The geometry and mesh have to be created/morphed for each design variable in an
automated and robust way.

- Different software (including proprietary commercial software) have to be coupled
to cooperate for the optimization.

As a result, speed and efficiency is of key importance in CFD-O [58].
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1.2.2 Governing equation in CFD

In the present thesis, flow simulations will be restricted to the viscous flow of Newtonian,
incompressible fluids. Simulations in Chapter 2 and 7 will be in the laminar flow regime;
all other Chapters will include only turbulent simulations, using different turbulence
models. Additionally, Chapters 2, 3 and 7 will rely on steady-state simulations; the other
Chapters will present transient simulations. In a Cartesian coordinate system the flow of
such fluids can be described with the mass conservation (i.e., continuity):

∇ · u = 0 (1.13)

and the Navier-Stokes (or momentum conservation) equation:

∂u

∂t
+ (u · ∇) u = g − 1

ρ
∇p+ ν∇2u (1.14)

where ρ is the density, u velocity vector, p is the pressure, g is the gravitational acceler-
ation vector and ν is the kinematic viscosity.

Unfortunately, the Navier-Stokes equation does not have an analytic solution (except
in the simplest cases). Thus, different numerical techniques have to be applied to ap-
proximate the solution. For this, one has to generate a grid and transform the partial
differential equation using Finite Difference, Finite Element or Finite Volume method into
a system of algebraic equations. In the present study, only Finite Volume discretizations
are considered, using the commercial software packages ANSYS Fluent [6] or CD-Adapco
StarCCM+ [37].

1.2.3 Chosen optimization algorithms for the present study

For CFD-O problems, probably the most popular methods are the different Evolutionary
Algorithms (EA). Especially interesting are Genetic Algorithms (GAs), although there
are other methods as well, e.g., Evolution Strategy (ES) [184,194] and Evolutionary Pro-
gramming (EP). Unfortunately, Evolutionary Algorithms do not have a clear definition.
According to Dan Simon “Terminology is imprecise and context-dependent ... [EA is] an
algorithm that evolves a problem solution over many iterations” [197]. There is still a
serious debate, if swarm optimization methods belong to EAs.

Most of these methods are more resistant to numerical noise than gradient-based
methods; they are robust and flexible. Thus, this semi-stochastic, soft-computing [197]
approach is especially well-suited for engineering and CFD-based optimizations, as pre-
sented in many studies [117].

Genetic Algorithms (GA) are based on an analogy with natural selection. Just like
in nature, characteristics of each individual (configuration or design) is described with a
collection of genes. One may use many different coding schemes for the genes, based on
binary or floating-point representation. In each generation, the objective function of the
single individuals is evaluated. Based on the fitness of the different individuals a new set
of designs (offsprings) is generated. Just like in evolution, only the best individuals can
reproduce (selection). These parents create offsprings using a set of genetic operators
(cross-over and mutation). Only the best individuals can survive (survival of the fittest),
i.e., inferior individuals will be eliminated during the process.
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As the best individuals will be favored, the population will drift toward better solu-
tions, converging in each generation closer to the true Pareto front (or single optimum).
Throughout the iterations, an appropriate balance must be kept to ensure simultaneously
diversity of the solutions and convergence toward the Pareto front; i.e., an appropriate
emphasis must be put onto the choice of the parameters of the GA in order to obtain a
balance between exploration and exploitation. In the present thesis, only GA methods
will be used.

1.3 Optimization Algorithm Library++ (OPAL++)

In order to analyze the most important aspects of CFD-O, a software (OPtimization
Algorithm Library++ or simply OPAL++) was developed to serve as a framework for
the optimization. Although OPAL++ builds on top of our considerable experience with
OPAL (see for instance [110]), it is based on a completely new structure. OPAL++ is an
object-oriented multi-objective optimization and parameterization framework developed
in C++. OPAL++ is highly portable, supporting Microsoft Windows, most common
Linux distributions (e.g., CentOS, Fedora, Scientific Linux, Redhat, etc.) and Mac OS
operating system as well [52]. The complete source code of OPAL++ is around 92 000
lines.

The software has already been successfully applied to many different problems [54,55,
56,57,60,62,119,153,154] and is focused especially on CFD-related problems.

1.3.1 Feasibility and dominance in OPAL++

As many different Evolutionary Algorithms (EA) are available in OPAL++, a unified
approach had to be chosen for dominance (which design variable is better) and constraint
handling. Only such methods were chosen for implementation, where instead of using
a cost or fitness function, comparison of individuals is sufficient (i.e., no roulette wheel
selection can be applied).

In OPAL++, all individuals store the values of the design variables

x = (x1, x2, ..., xn)T. (1.15)

OPAL++ supports only inequality constraints, however, this is not really a restriction,
as equality constraints can be reformulated into inequality constraints:

hj(x) = 0 ⇐⇒ |hj(x)| ≤ 0. (1.16)

For constraint handling, the constraint violation approach as implemented in NSGA-II
was chosen [68], although many different methods (e.g., penalty function) could be ap-
plied [44]. To additionally improve the efficiency, constraints are classified into two groups,
i.e., design constraints (only depending on design variables) and functional constraints
(depending on objective function values as well):

hj(x) ≤ 0 (j = 1...l) →
{
hdj (x) ≤ 0 (j = 1...ld)

hfj (x,y) ≤ 0 (j = 1...lf )
(1.17)
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For analytic problems this approach may seem redundant, as one may transform func-
tional constraints into design constraints by:

hfj (x,y) ≡ hfj (x,y(x)). (1.18)

However, in CFD, this is not as simple. Based upon this definition, the evaluation process
can already be given:

- (1) First, design constraints are evaluated. Constraint violation is defined as:

C =

(
ld∑
j=1

max

(
hdj (x)

wdi
, 0

))
· [1 + Ccliff · sgn (lf )] , (1.19)

where Ccliff is an appropriately large constant and wdi are normalization factors.
This equation ensures, that Ccliff is only added to the constraint violation, if there
are functional constraints and a constraint violation is present. For C 6= 0, no
additional steps are performed.

- (2) If C = 0 holds, objective function(s) will be evaluated:

y(x) = (f1(x), f2(x), ..., fm(x))T. (1.20)

- (3) Functional constraints are evaluated:

C =

lf∑
j=1

max

(
hfj (x,y)

wfi
, 0

)
(1.21)

As one can see, due to the presence of Ccliff , design variables, which violate only func-
tional constraints (i.e., a successful function evaluation can be performed) are superior
compared to design variables, which violate design constraints.

Additionally, a validity bit is defined (V ) to provide support for realistic applications.
During CFD-O, many unspecified problems can be encountered, where defining a con-
straint or constraint violation in an explicit form is impossible. Causes for such situations
are for instance, failed mesh operations, software crash, divergence, etc. Configurations,
where the flow solver experiences problems should still be avoided. If such an error is
encountered, the individual can be marked as invalid (V = 0).

When comparing two (A and B) individuals (note, that as previously explained,
OPAL++ is based only on methods, for which comparison of the individuals is sufficient),
the following approach is adapted:

I. Comparison based on validity

(a) If VA = VB = 0, both individuals are equivalent.

(b) If VA = 1, VB = 0, A dominates B.

(c) If VA = VB = 1, proceed to comparison based on constraint violation.

II. Comparison based on constraint violation
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(a) If CA = CB > 0, both individuals are equivalent.

(b) If CA < CB, A dominates B.

(c) If CA = CB = 0, proceed to comparison based on objective functions.

III. Comparison based on objective functions

(a) Comparison is based on dominance used by the algorithm, i.e., usually based
on Pareto-dominance:

x1 ≺ x2 ⇐⇒
{
∀i ∈ [1...m] : fi(x1) ≤ fi(x2)

∃j ∈ [1...m] : fj(x1) < fj(x2)
(1.22)

However, in some cases, e.g., by OMOPSO, ε-dominance might be applied.

The above presented method of OPAL++ provides a very robust approach and was
successfully applied in many studies, as will be presented in the followings.

1.3.2 Automatization of workflow

In order to create an optimization setup, OPAL++ requires two script files, the master
and simulation script. The master script contains the definition of the optimization, the
list of necessary input and output files and the settings for Evolutionary Algorithms.

The second file, the simulation script contains the workflow for evaluating a single
design variable. OPAL++ provides many different commands to ease the coupling of
different software. Both script files rely on “Language for OPAL++ Scripting” (LOS), a
specific script language developed for the present application. Thanks to its very simple
syntax, LOS has a very steep learning curve and eliminates the need to setup many
different scripts in different languages.

//...

//Substitute the values of variables in a file

OPAL2S.TOOLS.SUBSTITUTE(STR/*example.txt*/);

//Wait 10 seconds

OPAL2S.TOOLS.WAIT(10.0);

//Check, a specific condition

OPAL2S.CONTROL.IF(STR/*variable1>0*/);

//Do something

OPAL2S.CONTROL.END;

//...

Before an optimization can be started, OPAL++ will check the syntax for errors,
eliminating common mistakes and providing a robust execution.
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When an optimization is started,
OPAL++ will evaluate the different
individuals in parallel, relying on Message
Passing Interface (MPI). A single node
will serve as master (controller) node,
responsible for performing all operations
of the EAs, administrative, disk operations
and for managing the workload of the
different nodes (see Fig. 1.5). OPAL++
uses an internal job management system;
the different configurations are evaluated
in a FIFO (first in, first out) manner.
The other nodes will serve as workers,
performing the same steps defined in the
simulation script again and again, for
different design variables.

Figure 1.5: Parallel execution in OPAL++

As the CFD solver can be started using many CPU cores (or even computers), this
enables a two-level parallelization with drastic speed-ups. 100% parallelization efficiency
cannot be achieved, as discussed later in Chapter 2 and 4.

The optimization process can be stopped at any time and OPAL++ will be able to
continue from the last completely finished generation (it saves the whole memory image
after each generation).

1.3.2.1 Support for heterogeneous systems

A common problem in practical optimization setups is that some software components
may support only a single operating system (e.g., PTC Creo supports only Microsoft
Windows). This breaks the parallelization scheme and results in significant problems.
In order to by-pass this issue, OPAL++ provides support directly for SSH and SFTP
operations (though in Linux one could simply use the available sftp and ssh commands,
Windows provides no alternative), based on the LibSSH2 library. The user can access all
SFTP and SSH related commands in the simulation script file using LOS syntax.

Furthermore, OPAL++ is able to maintain an SSH channel, i.e., not only single
commands can be executed but a connection can be kept open.

1.3.2.2 Mutex for synchronization

Although the largest speed-up can be achieved, if the same number of nodes is used in
parallel as the number of individuals in a single generation, this is not always possible. Not
only the available computational resources may be limited, but if commercial applications
are applied in the workflow, the number of licenses might be restricted as well. To
eliminate this problem, in OPAL++ so-called mutexes can be defined. If a specific section
of the automated workflow is protected by a mutex, only a defined number of nodes can
enter this section simultaneously. This ensures that no evaluation of an individual can
fail due to exhausted licenses.
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1.3.2.3 Other features

Besides the features listed above, OPAL++ provides support for many other features
(e.g., user-defined equations, dynamic C++ libraries loaded directly into OPAL++, etc.),
which will not be detailed here for the sake of length. For a full list of options, please
refer to the OPAL++ manual [52].

1.3.3 Initialization of the first generation

For each population-based optimization algorithm the initialization of the first generation
is a very important question. Although the most easiest and widely used method is a
simple random population, it is not the most efficient method. Random populations
increase the effect of genetic drift and do not guarantee, that the whole design space is
equally covered, resulting in some cases in lack of information for several domains.

To address this issue, instead of using a completely random initialization, one may
use different Design-Of-Experiment methods to cover the parameter space. Especially
for high-dimensional problems, where the curse-of-dimensionality applies, using an ap-
propriate initialization can enhance convergence speed significantly. There are hundreds
of different methods, just to mention a few, pseudorandom or quasirandom series, Latin
Hypercube Sampling, full or fractional factorial design, Plackett-Burman design, Box-
Behnken design, D-optimality, V-optimality, I-optimality [162], etc.

The detailed explanation of all these methods is out of the scope of the present thesis,
as one can fill several books with it [162]. A couple of methods were chosen for OPAL++;
in the followings a short description of the implemented methods is given.

1.3.3.1 Pseudorandom initialization

Although C++ provides a random generator (int rand(void)), it is not well suited for
the present case, as it does not provide uniformly distributed random numbers, but
lower numbers are favored. More advanced methods, e.g., the Mersenne-Twister random
generator is supported since C++11, but for compatibility reasons (to support older
systems as well), OPAL++ was developed in C++98.

To address this issue, a 623-dimensional Mersenne-Twister pseudorandom generator
was implemented in OPAL++ [150], which has an enormous 219937 − 1 cycle. OPAL++
uses a single global pseudorandom generator. If necessary, one can reconstruct the opti-
mization methods by forcing OPAL++ to use the same seed as in a previous optimization:
thus, exactly the same operations will be performed.

1.3.3.2 Quasirandom initialization

Although pseudorandom generators follow the rule of big numbers, i.e., they guarantee
a uniform distribution for thousands and millions of points, this is not the case for a
couple of points (< 200), as the probability of an equally distributed series is small,
resulting in large “gaps” in the parameter space. Instead, one may use so-called low-
discrepancy sequences. These sequences mimic the properties of random numbers (i.e.,
uniform distribution for large number of points), but additionally avoid clustering and
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gaps in order to provide uniform coverage of the domain. In reality, these sequences are
totally deterministic.

Halton sequence Let us take an arbitrary number n and prime number b. In this
case, n can be represented in the b number system as:

n =
m∑
j=0

dj(n)bj, (1.23)

with dj(n) the digits of the number. In this case, the n-th element of the van der Corput
sequence is defined as:

Φb(n) =
m∑
j=0

dj(n)b−j−1 . (1.24)

Halton sequence is a simple k-dimensional low-discrepancy sequence, which uses for each
dimension a van der Corput sequence of different prime number base. Let us denote in
what follows the prime numbers as P (i), with P (1) = 2, P (2) = 3, P (3) = 5, ... Then,
the n-th point of the k-dimensional Halton sequence can be computed as

Halton(n) =
(
ΦP (1)(n),ΦP (2)(n), ...,ΦP (k)(n)

)
(1.25)

Due to the correlation between the dimensions, it is not recommended to use a Halton-
sequence over a dimension of 7 [70].

Hammersley sequence Hammersley sequence is based on a simple modification of the
Halton-sequence, i.e., the last dimension is replaced with n/N , where N is the number
of points.

Hammersley(n) =
(
ΦP (1)(n),ΦP (2)(n), ...,ΦP (k−1)(n), n/N

)
(1.26)

As a result, Hammersley sequence still suffers from degradation in multi-dimensional
cases, but provides a better coverage for 2...5 dimensions. One disadvantage of this
method is that one has to know in advance the number of points N .

Sobol sequence Sobol’ sequence is one the most well-known and well-spread method,
based on primitive polynomials [201]. The biggest advantage of the method is that it
does not suffer from degradation, even for 260 dimensions [91]. For practical applications,
the first point (0, 0, ..., 0) has to be discarded [122].

1.3.3.3 Latin Hypercube Sample (LHS)

Let us create a Latin Hypercube Sample (LHS) for a D-dimensional problem and N
points (i.e., samples). In this case, for each dimension d N different levels have to be
defined (xd(i), i = 1...N). An LHS contains N design variables

LHS(j) = (x1(i1,j), x2(i2,j), ..., xD(iD,j), ) j = 1...N, (1.27)

so, that each level for each dimension can appear only once. I.e., for the indices it holds,
that

id,j1 = id,j2 ⇐⇒ j1 = j2. (1.28)
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The levels can be defined in different ways. The easiest is to use equally distributed
points in the parameter space. If the parameter space is defined as [xmin,d; xmax,d] (called
marginal LHS design in OPAL++), the points will be computed as:

xd(i) = xmin,d + (xmax,d − xmin,d) ·
i− 1

N − 1
. (1.29)

If one does not want to include the boundary of the domain, alternatively, (xmin,d; xmax,d)
(called centralized LHS in OPAL++) could be used as well. Additionally, instead of using
deterministic levels, one could generate the levels based on a uniform random distribution,
e.g., for the marginal random LHS (as called in OPAL++):

xd(i) = xmin,d +
xmax,d − xmin,d

N
· [i− 1 + U (0, 1)] (1.30)

Generating an LHS is not difficult, one has to simply use random permutations of the
1, 2, ..., N series for the indices of the different dimensions. This also means, that there
are a vast number of different LHS designs for each D,N combinations.

OPAL++ supports additionally a so-called near-orthogonal LHS approach. This
means, that for the two-dimensional case 200 000 random LHS samples are created and
OPAL++ chooses the one, where the correlation between the first and second dimen-
sion is the smallest. Afterwards, for creating a near-orthogonal LHS with d dimensions
(d > 2), OPAL++ takes the near-orthogonal LHS of d−1 dimensions, adds 200 000 differ-
ent permutations for the last dimension, and chooses the design variable which minimizes
the maximal element of the correlation matrix. This is continued, until D is reached.
Although this method does not guarantee finding an orthogonal LHS (orthogonal design
does not exist for each N,D design variable [142]), it provides very good results while
staying practical.

1.3.3.4 Constrained initialization

When performing constrained optimization, large areas of the parameter space maybe
infeasible. As a result, the first generation may contain only a couple of feasible indi-
viduals, resulting in inferior convergence speed and coverage. To eliminate this error,
OPAL++ supports a so-called constrained initialization. If the first generation has to
contain N individuals, OPAL++ searches for the smallest Nmod number, which satisfies,
that out of the Nmod design variables N are feasible (with regard to the design con-
straints). Afterwards, the optimization will be started using only the N feasible design
variables. Constrained initialization can be applied in combination with all pseudo- or
quasi-random sequences.

1.3.3.5 Listfile

Additionally, in some cases it might be necessary to add specific design variables to
the first generation. By adding a close-to-optimum configuration convergence speed can
increase or one can use OPAL++ instead of an optimization simply for a parameter
study, i.e., to test specific design variables (e.g, for a mesh-independency study). In this
case, simply a list of design variables can be given to OPAL++.
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1.3.3.6 Comparison of methods

The different methods are compared in Fig. 1.6. Fig. 1.6 (a) shows a completely random
initialization for the [0; 1] × [0; 1] domain, using 128 samples. Similarly, Fig. 1.6 (b)
presents a Halton-sequence, Fig. 1.6 (c) a Hammersley sequence, Fig. 1.6 (d) a Sobol
sequence, Fig. 1.6 (e) a near-orthogonal LHS while Fig. 1.6 (f) shows a constrained
Hammersley-sequence.
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Figure 1.6: Comparison of different initialization methods for the first generation in
OPAL++ (a) Random (b) Halton (c) Hammersley (d) SOBOL (e) Near-orthogonal
LHS (f) Constrained Hammersley

1.3.4 Optimization algorithms

OPAL++ supports many different optimization algorithms, mainly focusing on multi-
objective methods. It is out of the scope of the present thesis to provide a detailed
description for each method, thus, appropriate reference(s) will be provided.

1.3.4.1 Single-objective algorithms

For single-objective optimization, the following three methods have been implemented.
These methods cannot be used for multi-objective problems. Additionally, all methods
follow a completely different principle.

- Firefly: Firefly is a swarm optimization method, mimicking the behavior of fire-
flies [230]. It is extremely well suited for multi-modal problems, as fireflies can
self-organize around local and global optima. The main advantage of firefly method
compared to GAs is the exchange of information between the individuals.
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- Differential Evolution (DE): DE is a fast and robust global optimization method.
Instead of mimicking swarm behavior or evolution, it is based on vector operations.
For each iteration, new vectors are generated by mixing randomly chosen vectors
(mutation) and mixing them with target vector [206]. OPAL++ provides support
for de/best/1/exp, de/rand/1/exp, de/best/1/bin and de/rand/1/bin schemes.

- GENETIC1: a simple, single-objective genetic algorithm implemented in OPAL++:

- All variables have real representation.

- Each generation contains N = const. individuals.

- Tournament with 2 cycles is used to select parents (can be changed if neces-
sary).

- SBX is used for cross-over.

- Polynomial mutation operator of NSGA-II is applied [67,68].

- Selection method depends on the settings (by default, the life of the individuals
can last only for 1 generation; however, one can also activate elitist selection).

Although the method is very simple, it proved to be very efficient, as it will be
discussed in Chapter 4.

1.3.4.2 Multi-objective algorithms

The following multi-objective methods are implemented in OPAL++:

- NONE: NONE denotes, that no optimization has to be performed; only the design
variables contained in the Design-Of-Experiment (thus, first generation) have to be
evaluated.

- HYENA: Hybrid adaptive multi-objective optimization method proposed by the
current author based on the experiences gained in the present thesis. The method
will be discussed in Chapter 8 in a detailed manner.

- NSGA-II: Non-dominated Sorting Genetic Algorithm-II developed by Kalyanmoy
Deb et al. [68]. NSGA-II is one of the most popular methods in multi-objective op-
timization, with already several thousands of applications. As a result, it expresses
a higher level of maturity compared to novel algorithms. This method will be used
in Chapter 2 and 3. NSGA-II is not only fast due to the use of non-dominated
sorting algorithm, but preserves diversity as well by using crowding distance. It
is an elitist method without an external archive. However, as there is no proof of
convergence for NSGA-II, partial deterioration can occur. Sometimes, designs of
the true Pareto front can even get lost during the iterations [136]. To overcome this
problem, HYENA uses an external archive.

- Omni-optimizer: an improved version of NSGA-II, developed by Kalyanmoy
Deb [69]. The method provides support for the optimization of multi- or single-
modal and multi- or single-objective problems as well. Despite the improvements,
it cannot compete with the popularity of NSGA-II. The idea of modified crowding
distance implemented for the support of multi-modal problems has been used in
HYENA as well.
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- OMOPSO: Optimized Multi-Objective Particle Swarm Optimization (OMO-PSO).
PSO methods are very different from Genetic Algorithms; instead of genes they
mimic the behavior of swarms. OMOPSO represents an improvement over the nor-
mal single-objective PSO, as it provides support for multi-objective problems and
uses additionally techniques such as crowding, mutation and ε-dominance [196].

- SPEA2: Strength Pareto Evolutionary Algorithm 2 developed by ETH Zürich
[233]. SPEA2 provides a similar performance to NSGA-II.

- FastGPA: FastGPA provided an improvement compared to other methods (e.g.,
NSGA-II, SPEA2) by introducing a dynamic population size. Thus, fewer individ-
uals are wasted in the first generation on uninteresting regions. Instead, the pop-
ulation size increases when approaching the optimum (optima) [78]. The idea of
dynamic population size, as introduced in FastGPA, has been adapted into HYENA
as well.

Please note, that some multi-objective methods (e.g., NSGA-II, Omni-optimizer) work
well for single-objective problems as well.

1.3.5 Advanced post-processing methods

Following an optimization, OPAL++ collects all results (all variables and objective val-
ues) into different CSV (Comma Separated Values) files to enable analysis. One CSV
file contains all individuals encountered during the optimization. Additionally, for each
generation one CSV file contains the actual population and one additional file the actual
Pareto-front. This enables the analysis using many different software, e.g., Microsoft
Excel. For more advanced analyses (Surrogate Models and Uncertainty Quantification),
OPAL++ provides additional support, mainly through providing C++ libraries (some
coding is required).

1.3.5.1 Uncertainty Quantification

In order to support Uncertainty Quantification (UQ), Non-Intrusive Polynomial Chaos
Expansion (NIPCE) was implemented into OPAL++. The implemented method sup-
ports UQ for independent uncertain input variables, of arbitrary distribution. The poly-
nomial basis functions are evaluated based on the Gram-Schmidt orthogonalization [227].
Evaluation of the coefficients is done either by numeric integration [95, 101] or by Point
Collocation. The detailed description and an example application of the method are given
in Chapter 6.

1.3.5.2 Surrogate models

OPAL++ provides support for creating different surrogate models based on evaluated
design variables. Additionally, the generated Surrogate Models can be exported and
saved from OPAL++. Without providing here a detailed description of the methods, the
list of methods supported by OPAL++ is given below:

- Least Squares Method (LSQ): LSQ is a fitting method, which tries to minimize
the sum of the squares of error (between the interpolated and exact solution).
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OPAL++ supports linear/non-linear LSQ methods as well, based on polynomials
or on arbitrary parametric functions. Additionally, instead of uniform weighting,
one can use Iteratively Reweighted LSQ as well, with Gaussian, inverse quadratic
or inverse weighting method. Iteratively Reweighted Least Squares Method will be
applied in Chapter 4.

- Radial Basis Functions (RBF): RBF is an approximation method, which de-
scribes a response as a sum of radial functions, i.e., functions whose value depends
only on the distance from the center of origin:

y(x) =
N∑
i=1

wiφ (||x− xi||), (1.31)

where xi are the different RBF centers and φ is the radial basis function. How-
ever, radial basis functions are dependent on a reference radius, e.g., for Gaussian
φ(r) = e−(r/R)2 . OPAL++ supports both simple and augmented RBF method.

For choosing the R constant and the basis function, OPAL++ divides the points
into centers (training set, 75% of points) and calibration points (testing set, 25%
of points). Afterwards, the value of the constant and the basis function type
(from Gaussian, multiquadratic, inverse quadratic, inverse multiquadratic, thin
plate spline, cubic, compact1, compact2) is optimized with regard to the error
computed for the testing set.

- Kriging: Kriging models have their origin in geostatistical application [198]. They
belong to Gaussian process regression, which treats the response as if “it were
a realization of a stochastic process” [39]. For Kriging, a semivariogram has to
be provided by an expert, however, OPAL++ calibrates the semivariogram in
an automated way, by optimizing a non-nuggeted, exponential power semivari-
ogram. OPAL++ supports Simple Kriging, Ordinary Kriging, Moving Neighbour-
hood Kriging and Kriging with Detrending.

OPAL++ can save and load the computed surrogate models. This way, metamodel-
based optimization becomes possible. In metamodel-based optimization, after training
the metamodel [216], the objective functions are replaced with their metamodel-based
approximation:

y(x) ≈ ymeta(x) , (1.32)

updated in an on-line or off-line manner. As metamodels can be evaluated in a much
faster way, optimization can be executed on this model within a couple of seconds.

Ometa : ymeta(x) −→
x

min (1.33)

If the optimum of the virtual optimization is no optimum when evaluated with CFD, new
training points have to be defined and added. Metamodel-based optimization will used
at the end of Chapter 4.

Having defined all the basic concepts, it is now time considering the first, simple
application of CFD-based optimization relying on OPAL++.
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Chapter 2

Optimization of a heat-exchanger -
Analyzing the Pareto front

“In my opinion, no single design is apt to
be optimal for everyone.”

Donald Norman

The present chapter will especially focus on questions related to the theory of Mathe-
matical Optimization, by analyzing the complex structure of the Pareto front for a simple
Computational Fluid Dynamics case, to provide the necessary insights into CFD-O.

2.1 Aim of the analysis

In the previous chapter a short introduction was given to the theory of optimization and
to OPAL++, which is the software developed and used in the present thesis.

In the followings, an aspect of the parameterization will be discussed, using a Compu-
tational Fluid Dynamics example. In many cases optimization problems are attacked by
”brute force”, using a large number of parameters or a redundant description. Such setups
may lead to slower convergence, incorrect or incomplete results, discouraging engineers
from further use of optimization methods.

To present the most important aspects, a relatively easy CFD setup will be used: a the-
oretical two-dimensional cross-flow tube bank heat exchanger arrangement problem with
internal laminar flow is considered in this chapter. The objective is to optimize the ar-
rangement of tubes and find the most favorable geometries, in order to simultaneously
maximize the rate of heat exchange while obtaining a minimum pressure loss. For this,
a systematic study is performed involving a large number of simulations using the global
optimization method NSGA-II. Special focus is given on the fundamental understanding
of the structure of the Pareto front, comparing symmetric designs and asymmetric ge-
ometries, and on the effect of constraints concerning the speed of exploration. Altogether,
more than 140 000 CFD simulations are used in this direct optimization.

The discussion is based on an extended version of the article:
Daróczy, L., Janiga, G., and Thévenin, D. Systematic analysis of the heat

exchanger arrangement problem using multi-objective genetic optimization. Energy 65
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(2014), 364–373 [56].

2.1.1 Optimization of heat exchangers in the literature

The optimal placement of the heat sources or sinks in a channel, a cavity or a heat ex-
changer may affect dramatically the performance of the considered device. These prob-
lems are highly interesting, as they couple the questions relating to parameterization,
topology and constraint handling. For this purpose, Computational Fluid Dynamics
(CFD) coupled with Genetic Algorithms (GA) have a high potential to explore a large
number of different configurations.

One efficient way to further speed up an optimization process is to use a Design of
Experiment (DOE) with a limited number of evaluations as starting point, followed by
the generation of a Response Surface using one of the available Response Surface Methods
(RSM). Finally, a virtual optimization can be performed on this surface using, e.g., again
GA. However, the global quality of such an advanced interpolation technique completely
depends on the complexity of the problem. While it works well for simple configurations,
it may completely fail for concurrent objectives involving local minima and stiff surfaces,
as often found in practical applications. In order to avoid this issue and to eliminate any
interpolation error resulting from the technique, all designs considered in this chapter are
directly evaluated using CFD simulations.

Numerical investigation of heat exchangers and heat exchange processes in general
is an intensive field of research due to its practical importance. For instance, Şahin
et al. [189] investigated the flow around plate fin and tube heat exchanger for a single
cylinder. Monteiro and Mello analyzed the thermal performance and pressure drop in
ceramic heat exchangers [160].

The optimal location of heat sources was investigated by da Silva et al. [48] for forced
convection and in [49] for natural convection. The optimal shapes of heat exchang-
ers have been discussed by various authors [82, 83]. Bello-Ochendo et al. [18] performed
gradient-based optimization of conjugate cooling channels. Pussoli et al. [181] optimized
finned-tube evaporators. Arrangement problems have also been considered; for instance,
Sudhakar et al. [209] analyzed the optimal arrangement of heat sources for a laminar,
steady flow using ANSYS-Fluent for CFD.

Thanks to recent progress concerning multi-objective optimization problems, corre-
sponding studies became increasingly popular. Lee et al. [138] performed multi-objective
optimization of plate heat exchangers using MOGA, while Hämäläinen et al. studied
papermaking processes with multi-objective methods based on simulations [107]. Ranut
et al. [183] studied the optimal shape of tube bundles using multi-objective optimization.
Seung-Hwan et al. [231] considered the optimization of radial heat sinks for weight and
thermal resistance using a weighted sum method. Their approach relies on a response
surface based on measurements, followed by a GA study. Hilbert et al. [110] performed
a multi-objective shape optimization of 2D laminar tube bank heat-exchanger using GA.
Copiello and Fabbri analyzed and optimized the heat transfer process considering lon-
gitudinal wavy fins [46] and using SPEA2 optimization method [233]. Foli et al. [89]
and Okabe et al. [172] have obtained optimal results for a micro heat exchanger based
on different multi-objective optimization methods. Iqbal et al. [116] determined opti-
mal configuration for heat transfer processes under laminar conditions using GA. Nobile
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et al. [169] performed a multi-objective optimization of convective periodic channels us-
ing again GA. Multi-objective genetic optimization of tube arrangement for cooling of
prismatic bodies was analyzed by Robbe and Sciubba [186].

This long list of publications demonstrates the importance of this issue.

2.2 Setup of CFD model

2.2.1 Tube bank heat exchanger configuration

One possible simulated configuration of the analyzed design is exemplified in Fig. 2.1.
Here, xi and yi denote the coordinates of the centre of tube i. Please note, that the dots
over the outermost numerals represent repeating decimals.

Air enters the domain from the left at Tinlet = 293 K and is warmed up by passing
between tubes in which a warm fluid flows in the corresponding application. The tubes
are supposed to have a constant outer wall temperature, Twall = 343 K. Walls 1-10 are
considered to be fully adiabatic. In the followings the inlet is denoted by Ωinlet, and
the outlet as Ωoutlet. At the inlet a parabolic velocity profile is defined with average
velocity of v̄inlet = 5 cm/s. The outlet is defined as a pressure outlet with zero gauge
pressure (poutlet = 0 Pa). The diameter of all tubes is Dtube = 10 mm and the height

Figure 2.1: Schematic layout of optimal arrangement problem for a basic heat exchanger
configuration [56]

of the main channel is Hchannel = 33.3̇ mm. In order to eliminate possible effects of the
boundary conditions on the solution, the length of the inlet channel is increased to Linlet =
4.5Hchannel. For the same purpose at outlet, the condition Loutlet = 8Hchannel is enforced.

To further avoid any impact of local discretization errors near the boundaries, the
objectives are evaluated at Ωinlet∗ and Ωoutlet∗, which are at a distance of 2.5Hchannel and
1.0Hchannel from the inlet and outlet, respectively.

Due to the small range of temperatures involved in this problem, all material proper-
ties are regarded as constants:

cp = 1006.5
J

kg ·K ; k = 0.026341
W

m ·K ; ρ = 1.1649
kg

m3
; µ = 1.868 · 10−5 kg

m · s . (2.1)
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The Reynolds number using the tube diameter as reference is

Re =
ρv̄D

µ
= 31.18 < Re1, (2.2)

where Re1 = 46 according to Barkley and Henderson [15], or Re1 = 47± 1 following Nor-
berg [171]. Above this value, the fluid undergoes a supercritical Hopf bifurcation leading
to a periodic, oscillatory flow and the physics becomes more complex [14]. However, in
the present case, the Reynolds number is well below this limit. Therefore, a laminar and
steady flow can be safely assumed, as done in all simulations. For flow past a stationary
cylinder, 3D instabilities occur first at around Re=189 and Re=259 (Mode A and Mode
B, respectively [15]). Therefore, 3D simulations are not required in the present case and
only a 2D slice of the heat-exchanger will be simulated in what follows. The effect of
buoyancy is neglected as well, since only small density differences will appear. Gravity is
not included in the computational model.

2.2.2 Validation of the CFD model

The optimization takes place in a fully automatic manner, including geometry creation,
unstructured mesh generation and CFD evaluation. The computational geometry and
mesh were generated by ANSYS Gambit 2.4.6 using a prepared journal template file.

A meaningful optimization based on design comparisons requires a very high numerical
accuracy. As a consequence, an appropriate emphasis must be set on mesh quality.
However, when evaluating automatically hundreds or thousands of designs, a case-by-case
analysis or the generation of structured meshes are both out of question. High-quality
but automatic meshing is required, for which unstructured triangle mesh elements are
recommended.

Figure 2.2: Mesh-independency test concerning (a) equivalent hydraulic resistance (b)
efficiency

In a first step a mesh independency test was performed for different mesh sizes for
a random design. Corresponding results can be seen in Fig. 2.2(a) and Fig. 2.2(b). On
the x-axis the typical size of the mesh cells are shown (as defined in Gambit), together
with the total number of computational cells in brackets. The rhombuses represent
the automatically-generated unstructured triangle meshes, while the circles represent
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Figure 2.3: (a) Typical mesh for part of the domain with 36k cells (b) Topology of the
block-structured mesh

block-structured meshes with quadrilateral cells created manually (the block-structure is
exemplified in Fig. 2.3(b)).

As can be seen, when the mesh is getting finer (going toward the left side in the
figures), the values obtained with both meshes converge. For a mesh size lower than
2.5 mm, the maximal relative difference between both approaches stays below 0.3 % for
the equivalent hydraulic resistance, and below 0.6 % for the theoretical efficiency. This
is small enough to allow a meaningful comparison of the designs.

Finally, choosing a mesh size of 1.5 mm (indicated with red) was the retained compro-
mise between evaluation speed, needed memory storage and resulting accuracy. A zoom
of such a typical mesh for one random design can be seen in Fig. 2.3(a). During the later
optimization, all meshes contain between 32000 and 37000 finite volume cells.

All CFD simulations rely on the steady, 2D laminar, coupled solver of ANSYS-Fluent,
neglecting gravity. For a higher numerical accuracy second-order spatial discretization is
used for the pressure, and a second-order upwind scheme is activated for momentum and
energy. The node-based calculation is used, since it is better suited for triangular meshes
compared to the default, cell-based gradient scheme [6]. The flow domain is initialized
using the velocity profile for the channel flow.

To check the possible impact of prescribed residual levels, all mesh-independency tests
were run for very low thresholds of 10−10, 10−11 and 5 · 10−12 (relative) residual limits
(with 1000 as maximal iteration number). Convergence was always achieved and no
significant difference was found in the results or in the computing time. A 10−11 criterion
was finally applied for all evaluations. If a simulation should not reach this convergence
level by iteration 1000, it is considered as problematic and becomes invalid.

After finishing the study every fourth element of the Pareto front was re-evaluated
with a much finer mesh, and the results were compared against the results of the original
mesh. The error in the case of efficiency always remained below 0.8 %, which is excellent.
In case of pressure the relative error was for most designs in the [-2,0] % range, while
for isolated designs (those with the largest pressure drop, i.e., with the smallest distance
between walls) the obtained error was in the [-7,-3] % range. Since this error showed a
monotonic trend (i.e., larger errors correspond to larger pressure drops), the structure of
the Pareto front is not influenced by this uncertainty, and the precision of the obtained
optimization is therefore appropriate.
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2.3 Setup of the optimization

2.3.1 Design variables

Let us denote the x and y coordinate of the center of the seven cylinders by xi, yi (i =
1, . . . , 7). Most designers would assume by instinct or experience that the optimal designs
have to be symmetric. This is indeed a very interesting question to be analyzed. Thus,
three different cases will be considered here. Case 1 (from now on referred as Assym)
did not imply any restriction; thus, the resulting design might be either asymmetric or
symmetric (if the convergence criteria are met). Case 2 (from now on referred as Sym1)
and Case 3 (from now on referred as Sym2) were forced to be symmetric arrangements
of different types, as explained below. Using such an approach it is possible to analyze
quantitatively, if the symmetric designs (with fewer variables, thus easier and faster) are
indeed superior, and if the differences between the two approaches are significant.

Assym is an optimization with 14 independent variables. This means that all the
coordinates of the cylinders are optimized simultaneously. It is here the most difficult
problem to solve due to the curse of dimensionality. The parameter space is:

xi ∈
[
21.6̇; 128.3̇

]
, yi ∈ [−45; 45] , i = 1 . . . 7 . (2.3)

Sym1 has only 7 independent variables:

xi ∈ [21.6̇; 128.3̇], i = 1...5; y4, y5 ∈ [0; 45] . (2.4)

The design was forced to be symmetric by

y1,2,3 = 0, xi+2 = xi, yi+2 = −yi, i = 4, 5 . (2.5)

Sym2 has again 7 independent variables, namely

x1, x2, x3, x4 ∈ [21.6̇; 128.3̇]; y2, y3, y4 ∈ [0; 45]. (2.6)

The design was forced to be symmetric by

y1 = 0, xi+3 = xi, yi+3 = −yi, i = 2, 3, 4 . (2.7)

All design variables were real-coded, thus SBX (Simulated Binary cross-over) had to be
used [66].

As one can see, the employed representation can result either in ”crowded” or ”spa-
cious” designs (i.e., small or large distances between the tubes). This gives us the possi-
bility to analyze the assumption, that the best heat exchanger configurations are found
for tubes placed close to each other. This idea corresponds to an implicit third objective
function, the minimization of the size of the heat exchanger. Though beneficial for most
practical purposes, less crowded designs could lead to significantly lower pressure loss
while not degrading noticeably the heat transfer process. Such configurations might be
particularly interesting for applications with low temperature and pressure differences,
as considered more and more often to increase energetic efficiency of all existing systems.
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2.3.2 Constraints

For further analysis, the variable-volume (V V ) metric is introduced, which is the volume
of the n-dimensional region associated with the feasible domain. Although one cannot
expect this simple metric to give a clear idea of the complexity of the optimization
problem, for problems differing only in constraints or range of variables, greater values of
V V mean a larger exploration space and therefore, a more considerable amount of work.
On the other hand, comparing values of V V is impossible for problems involving different
dimensions. Problems with smaller V V can obviously be explored faster.

In order to reduce the search domain, possibly to take into account practical aspects
associated to later production and also to avoid any software problem during, e.g., the
generation of the computational mesh, additional constraints have to be introduced. In
the present case, mesh collisions between cylinders can be avoided if all designs satisfy

(xi − xj)2 + (yi − yj)2 > (2R)2, i, j = 1 . . . 7; i 6= j, (2.8)

where R = Dtube/2 is the cylinder radius. Moreover, collision of the tubes with walls must
be avoided as well. Considering the already assigned parameter space, collision with wall
can only appear at walls 2, 4, 7, 9. To avoid this problem, straightforward additional
constraints have been coded using elementary coordinate geometry.

Applying all constraints finally reduces the search domains. The volumes of the
domains were evaluated with Monte-Carlo integration using the Moivre-Laplace theorem
for 99.9999% confidence intervals (±0.003%):

V V Assym
constr. = V V Assym · 24.8556%, (2.9)

V V Sym1
constr. = V V Sym1 · 28.8659%, (2.10)

V V Sym2
constr. = V V Sym2 · 38.8119%. (2.11)

The original search domains were thus reduced to 1/3 − 1/4 of the original extent. Ad-
ditionally, it must be ensured that the optimization algorithm will not waste time on
evaluating cyclic permutations of the same designs. As for Assym the variable space to
be explored is relatively large, it had to be ensured that the optimization algorithm will
not be wasted on evaluating cyclic permutations of the same designs. This was easily
achieved by adding the constraint

x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 ≤ x7. (2.12)

This way 7! permutation of the same design can be eliminated, thus reducing the search
domain to

V V Assym,∅cyclic
constr. = V V Assym

constr. /5040 = V V Assym · (4.9202 · 10−3%± 5 · 10−5%) '
' V V Assym/20324.

(2.13)

Similarly
x4 ≤ x5;x1 +R ≤ x2;x2 +R ≤ x3 (Sym1), (2.14)

x2 ≤ x3 ≤ x4 (Sym2), (2.15)
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leading to a reduction of

V V Sym1,∅cyclic
constr. = V V Sym1

constr./12 = V V Sym1 · (2.4± 10−3%) ' V Sym1/41.6, (2.16)

and

V V Sym2,∅cyclic
constr. = V V Sym2

constr./6 = V V Sym2 · (6.5± 2 · 10−3%) ' V V Sym2/15.5. (2.17)

It must be kept in mind that such reductions of the search space do not always speed-
up a practical optimization problem. With more constraints, the optimization algorithm
encounters increasing difficulties to stay in the feasible domain, since corresponding re-
gions may become severely disconnected, and the freedom of movements in the variable
space is lost. Although it is widely recommended in the literature to avoid the undue
use of constraints, only very few examples are provided on real problems concerning the
impact of constraints on the speed of exploration.

Consider a simple optimization problem with two indistinguishable variables, x1, x2

(i.e., swapping the values of the variables does not result in different designs). Supposing,
that an optimal solution is located at x1 = 30;x2 = 32 and the current population contains
an individual x1 = 32;x2 = 33, the individual can easily mutate with x2 = 33 → 30 to
the optimal solution. However, if we reduce the domain by imposing x1 ≤ x2 (50 %
reduction), the same mutation would lead to an infeasible solution. To reach the optimal
solution both variables would have to mutate simultaneously, or in two steps (however,
if the intermediate design is inferior, it might be deleted). With this example one can
see, that although the constraints reduce the search domain, flexibility is lost. At 7 or
14 variables the question is much more difficult. On one hand, the flexibility is greatly
reduced. But the search domain is drastically reduced as well (in our case, by a factor
7!=5040 for Assym). The two effects are thus competing. One could see this loss of
flexibility in a different way: without constraints the optimum can be reached on many
different ways, while with constraints only few exist.

In order to identify the best strategy, three additional optimizations were performed
as well, where cyclic permutations were allowed. From now on, they are denoted as
Assymcyclic, Sym1,cyclic and Sym2,cyclic.

2.3.3 Objective functions

Our obvious goal is to maximize the efficiency of the heat exchanger. However, this goal
cannot be mathematically formulated as a single value or indicator; at least two objectives
are needed, which are known from many previous works as being concurrent. On one
side, the pressure loss (which is proportional to the power need) is to be minimized. Due
to the employed boundary conditions, it reads:

∆p = p̄|Ωinlet∗ − p̄|Ωoutlet
. (2.18)

The associated value can be in the range ∆p ∈ [0,∞). For a more meaningful com-
parison, an equivalent, non-dimensional hydraulic resistance [46] is calculated for the
computed system:

∆p = ξeq ·
ρ

2
v̄2 → f1 = ξeq =

2∆p

ρv̄2
, (2.19)
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where v̄ is the average velocity at the inlet.
Other options could have been the power input per unit volume [139], friction factor

[169] or simply the pressure drop [12,110].
The second objective is related to the efficiency of the heat transfer process. Several

different metrics have been proposed in the literature for this quantity, e.g., temperature
difference between outlet and inlet [110], Nusselt number [46, 116], entropy resistance
[42], overall heat transfer coefficient [163], thermal resistance [231], entropy generation
number [46,181], total heat transfer [139] or mean heat transfer coefficient [139].

In the present problem, the total heat transfer can be formulated along the outflow
boundary as

Q = ρ · cp
∫

Ωoutlet∗

(T (y)− T0) · v · dA = ρ · cp
∫

Ωoutlet∗

(T (y)− T0) · vxdA . (2.20)

In practice, this integral was calculated along a fixed, vertical line (x = const.) placed
slightly before the outlet. Taking into account the imposed wall temperature, the max-
imum possible value of the total heat transfer is Qmax,th. = 97.706 W. For a more
straightforward comparison, the theoretical efficiency of the heat-exchanger η is intro-
duced, which can be calculated as f2 = η = Q/Qmax,th., and is non-dimensional. This
value is to be maximized. The possible range of the second objective reads f2 ∈ [0, 1].

2.3.4 Automation

One important part of the optimization process is to define the evaluation chain for the
individual designs. After a new generation has been created, the following approach was
applied for every individual:

• If the individual is infeasible (i.e., constraints are violated), do not proceed further.
Otherwise, send the individual to the next free worker node for evaluation.

• Modify the prepared Gambit (and/or Fluent) journal template according to the
values of the design variables.

• Create computational mesh in Gambit and check quality. If the mesh cannot be
successfully generated, the individual becomes invalid and no evaluation takes place.

• Perform the CFD computation with Fluent.

• Check if convergence criteria are met. If not, the individual becomes invalid and is
not considered further. Otherwise, compute the objectives f1 and f2.

2.3.5 Optimization settings

A simultaneous, multi-objective optimization is performed using the NSGA-II algorithm
as implemented in OPAL++ for the previously discussed objective functions. All op-
timizations were carried out with N = 100 individuals in each generation. Sym1,
Sym1,cyclic, Sym2, Sym2,cyclic were evaluated using 250 generations, while Assym and
Assymcyclic were evaluated using 480 generations (due to the higher dimensionality of
the problem). Designs that would violate constraints were not evaluated. As a result,
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20937 CFD-evaluations were performed for Sym2,cyclic, 19825 for Sym2, 18457 for Sym1,
17616 for Sym1,cyclic, 33054 for Assym and 34678 for Assymcyclic. In this extensive test,
144 567 different CFD simulations have thus been finally carried out. The probability of
mutation has been set to 1/n, as recommended in [68], while the probability of cross-
over was set to 0.8. The first generation of the population was initialized with feasible
individuals using a Sobol sequence [122]. Due to the different formulation (and different
number of variables) of the six different variants of the problem, all six optimizations
received different initial populations.

Using the parallelization of OPAL++, a very good speed-up was achieved with 12
nodes. An acceleration of the full optimization process by a factor between 9 and 10 was
obtained, meaning roughly 80% parallel efficiency.

2.4 Results

2.4.1 Comparing Pareto fronts

Analyzing the results first confirms the findings in [136]; in the NSGA-II algorithm certain
elements of the Pareto front can get lost during the iterative process. Hence, the front
can deteriorate. Furthermore, visual analysis revealed, that the Pareto front returned
by the algorithm is really close to the front that is obtained by merging all individuals
ever encountered during the optimization process and deleting dominated individuals; no
difference can be found during visual inspection.

A modified (i.e., domination is used instead of weak domination) Coverage of Set is
introduced here based on the original one [65]:

C ′(A,B) =
|{b ∈ B|∃a ∈ A : a ≺ b}|

|B| , (2.21)

i.e., it shows the fraction of B which is dominated by elements in A. If C ′(A,B) = 0,
then no elements exists in B, which are dominated by individuals in A. Moreover if
C ′(A,B) = 0 and C ′(B,A) > 0 then it can be stated, that the set B is better than A, if
they are in common regions. However, if A and B discovered different parts of the true
front, such comparison has no meaning.

Although this metric does not give a perfect view of the optimality of sets, it can still
reveal several characteristics about convergence without knowledge of the true Pareto
front (diversity is not considered here, as the same algorithm was used for diversity pre-
serving). The comparison confirms the findings of [136], i.e., for all six cases
C ′(front, totalfront) = 0 was found (this is always true), but C ′(totalfront, total) ∈
[0.32; 0.55] (where total front is assembled from non-dominated individuals in regard of
all encountered elements in a specific optimization run). However, visual inspection re-
veals that the two fronts cannot be differentiated from each other due to their minimal
distance. Therefore, from now on front will always mean the total front.

2.4.2 Cyclic vs. normal version

As mentioned previously, the comparison of cyclic and normal optimization is interesting.
Although preventing cyclic permutations should simplify the problem considerably, the
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resulting number of constraints can hinder exploration by the optimization algorithm.
This trade-off is indeed an issue, and larger, but more flexible design spaces are indeed
found to be favorable. This supports the recommendation, that although GAs are able
to work with constraint handling mechanisms, an excessive number of constraints should
be avoided; free movements within the variable space should be a priority.
The cyclic versions have a larger freedom
(due to the mechanism described earlier),
i.e., they can easier reach specific designs
along different paths, while the normal ver-
sion can get stuck, but can at the same
time focus on other regions with a higher
precision. The comparison of the results
for Assym, Sym1 and Sym2 when allow-
ing or preventing permutations is shown in
Figs. 2.4 and 2.5. Figure 2.4 represents a
typical Pareto front. The shaded area de-
notes the feasible set in the objective space,
i.e., designs that exist. The white area
represents the unfeasible set, which cannot
be reached for the problem considered here
since they lie beyond the Pareto front. Our
dream is to advance as far as possible to-
wards the lower right corner.
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Sym1,cyclic (b) Comparing the Pareto front of optimization problems Sym2 and Sym2,cyclic

Although the curves in Figs. 2.4 and 2.5 are completely different at first look, they
indeed just cover different parts of the Pareto front (please note the different axis ranges).

As plotting all the curves on a single diagram would be too crowded to understand
their relationship, the Approximated Continuous Generational Distance (ACGD) is pro-
posed for the analysis of two-objective Pareto fronts by modifying the original definition
of Generational Distance (GD). First, the best known approximation of the Pareto-front,
XP.f. is created (e.g., in this case by merging all simulations into a single archive) and
is normalized into the [0, 1]m range along with the analyzed Pareto-front X∗P.f. using the
same technique and ranges.
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Next, a linear interpolation of the best known approximation of the Pareto-front is
created by connecting all neighbouring points in the front XP.f., and the arc coordinate
along the interpolation is calculated for each point (the use of attainment surface might
have been correct as well, or in many cases even better, but this would give unpropor-
tionally small distances measured from the Pareto-front at extremes). Supposing that
xj ∈ XP.f. is closest (according to Euclidean distance in objective space) to xi ∈ X∗P.f.,
where fk(xj−1), fk(xj), fk(xj+1) are all in monotonically decreasing or increasing order,
the metric is defined as

ACGD : si → dij, (2.22)

where the distance between xi ∈ X∗P.f. and xj ∈ XP.f. is

dij =

√√√√(m=2∑
k=1

(fk(xj)− fk(xi))2

)
, (2.23)

and the arc coordinate along the interpolated Pareto front is:

si =

j∑
l=2

(
m=2∑
k=1

(fk(xl)− fk(xl−1))2

)
(2.24)
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Figure 2.6: ACGD metric for all six cases

ACGD = 0 means that the analyzed
Pareto front gave the points for the total
front in the specific region, while horizon-
tal lines will indicate discontinuities in the
best known approximation of the Pareto
front. Thus, this metric will not reveal in-
formation about the behavior of the ana-
lyzed Pareto front next to discontinuities,
but will reveal the relationship between the
analyzed fronts and the best known ap-
proximation of the Pareto front. Also, it
can show not only how perfect the conver-
gence was, but also which areas of the front
were discovered.

Previous findings are supported by Fig. 2.6, but it is revealed as well, that cyclic
variants (cyclic permutations allowed) are superior compared to the overly constrained
(no cyclic permutations allowed) variant (except for some regions). Due to the stochastic
nature of GA, for clear conclusions more optimizations had to be analyzed.

2.4.3 Assym vs. Sym1 vs. Sym2

Assym and Assymcyclic discovered only the lower left part of the best known approx-
imation of the Pareto front, both quite equivalently. However, they failed to find the
corresponding part of the front for higher efficiencies. It is obviously more difficult to
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reach this region when involving a larger number of design variables. These findings are
confirmed by Fig. 2.7, which shows that NSGA-II reached the Pareto front quite quickly,
but has spent the rest of the iterations refining it, without much progress concerning
domains with higher efficiencies. This can be explained from one side with the curse of
dimensionality. The complexity of a problem with 14 variables is tremendously larger
than with 7 variables. Moreover, as the tubes can move independently, the number of
constraints increases as well (in order to avoid collisions). The domain of Assym contains
more “obstacles” or discontinuities compared to Sym1 or Sym2 (see Eqns. 2.9-2.11).
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On the other hand, both Sym1 and Sym2

managed to explore a considerably larger
region of the front. Additionally, it can be
seen that the cyclic and normal versions of
the optimization have often concentrated
on different parts of the Pareto front. Fig-
ure 2.8 shows the evolution of the Pareto
front for Sym1,cyclic. The lower left part
of the Pareto front is quickly found, as for
Assym. But, thanks to the lower num-
ber of variables and constraints (and thus
“obstacles”), the Sym1,cyclic optimization
is able to expand progressively into the do-
main of higher thermal efficiency.
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Figure 2.8: (a) Convergence of Pareto front for Sym1,cyclic as a function of the generation
number (b) Convergence of Pareto front for Sym2,cyclic

2.4.4 Analysis of the Pareto front

By merging all individuals from all optimizations into a single data set and sorting dom-
inated designs out, the best approximation of the true Pareto front can be derived. This
Pareto front spans the range 2.714 ≤ ξeq ≤ 59.687, 0.1497 ≤ η ≤ 0.8997 and is shown in
Fig. 2.9. The gray points represent dominated individuals encountered in the optimiza-
tion process. Some selected optimal designs together with the computed temperature
contours are also plotted using the same color scale as later (e.g., in Fig. 2.10 (a)). This
figure clearly illustrates that different regions were successfully explored by the different
optimization runs. Overall, an excellent exploration has been obtained.
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Figure 2.9: Best approximation of the true Pareto front from all optimizations [56]

The Pareto front consists of five clearly distinghuisable segments. The lower left
domain of the Pareto front is completely dominated by Assym. This can be easily
explained. Since an odd number of cylinders have been retained, symmetric designs imply
that at least one cylinder had to reside on the centerline, thus increasing immediately the
pressure drop. Moving now from lower values of the thermal efficiency to higher values,
the cylinders far from the centerline start to move slowly toward the central horizontal
axis, interacting more and more strongly with the main flow. These designs provide low to
moderate efficiency with extremely low pressure drop. Starting around η = 0.6, the Sym2

optimization becomes essential to populate the Pareto front. It is perhaps interesting to
note, that at this cross-over point, three completely different configurations leading to the
same objective values have been identified, as shown in Fig. 2.10 (a). Several such points
exist, i.e., the problem is multi-modal. Moreover, many relatively small regions contain
designs, which are of completely different geometry, e.g., Fig. 2.11 (a). This justifies the
need for optimization algorithms that preserve the diversity not only in the objective
space, but in the variable space as well, as e.g., the Omni-Optimizer [69].

Fortunately, in our case a complete archive of all individuals was maintained, so
that the diversity-preserving mechanism did not have an adverse effect. Moreover, this
raises the interesting question, whether algorithms maintaining a full archive could be
superior for practical engineering purposes. In such algorithms the diversity-preserving
mechanisms would not focus on the archiving process, but on the selection of individuals
for mating. These algorithms could not deteriorate with time, i.e., proof of convergence
would be always provided. This question is discussed in more details in Chapter 8.

Going now above η = 0.84, the Pareto front appears to become discontinuous, and
various optimization formulations are alternatively dominant. Starting at the first gap
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Figure 2.10: (a) Different designs all leading to η = 0.6, ξeq = 3.77 (from left to right,
obtained from Assym, Sym2, Sym2, respectively) (b) Different Sym2 designs for η =
0.736, ξeq = 4.326
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Figure 2.11: (a) Designs for η = 0.83, ξeq = 6.7 (Sym2) and ξeq = 7 (Sym2) (b)
Discontinuity in the Pareto front observed at η = 0.84, from ξeq = 7.3 (Sym2, left) to
ξeq = 12.2 (Sym1, right)

(η > 0.84), the equivalent hydraulic resistance increases very rapidly (ξeq = 7.3 → 60),
but the efficiency does not increase very much (η = 0.84→ 0.9). This means that, while
compact heat exchangers will provide the best heat transfer rates, it is possible to find
configurations with similar efficiency but significantly lower pressure drops. This could
be an interesting direction for the design of low-power heat exchangers in applications
with low pressure differences, as found sometimes for energy recuperation.

The first discontinuity is found around η = 0.84, ξeq = 7.3(Sym2)→ ξeq = 12.2(Sym1),
see Fig. 2.11 (b). A second, even larger gap is present at η = 0.87, ξeq = 17.4(Sym1) →
ξeq = 29.9(Sym2) (Fig. 2.12 (a)). As usual for stochastic optimization methods, it can-
not be proven, that no solutions exist in these gaps. Still, considering that more than
140 000 designs have been evaluated, we believe that these are either real discontinu-
ities in the objective space, as observed for instance in the well-known optimization test
case ZDT3 [45], or that only sensitive (i.e., not robust) solutions reside in those regions.
Moreover, as seen in Figure 2.9, the important criterion in locating the discontinuities
was not the distance in the objective space (as several smaller discontinuities exist), but
the ’topological distance’, i.e., the different rules used to enforce symmetry.

Finally, the last obtained discontinuity appears at η = 0.89, from ξeq = 39.6(Sym2)→
ξeq = 50.6(Sym1), see Fig. 2.12. There, the observed pressure drop is very large, 22 times
larger, than the smallest value found (ξeq,min = 2.714). In this region of the Pareto
front, most of the heat exchanger is left empty. Therefore, such designs could readily
be transformed into compact configurations, as used in most practical tube bank heat
exchangers.

As a whole, it is particularly interesting to see that the finally obtained, best approx-
imation of the Pareto front contains results from different formulations of the problem.
Therefore, it is indeed worth running an optimization involving different formulations
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Figure 2.12: (a) Discontinuity in the Pareto front observed at η = 0.87, from ξeq = 17.4
(Sym1, left) to ξeq = 29.9 (Sym2, right) (b) Discontinuity in the Pareto front at η = 0.89,
ξeq = 39.6 (Sym2) → ξeq = 50.6 (Sym1)

and constraints in order to explore more widely the possible designs. An optimization re-
lying only on the most general, Assym configuration could be misleading, since no design
could be found for η > 0.74, while they do exist in reality. The complex impact of the
constraints on the optimization process was illustrated as well. While adding additional
constraints is attractive to reduce parameter space and in principle speed-up the com-
putations, it might have a strong negative impact on the GA exploration, so that whole
regions of the Pareto front might be missed. This is even true for very large numbers of
evaluations, as considered here. Moreover, the current study points out the importance
of the engineer carrying out the final analysis. Even such a simple problem can result
in a complex Pareto front. A superficial analysis of the results can lead to premature,
inaccurate or even wrong decisions.

2.5 Conclusions and summary

In this chapter, a genetic algorithm has been applied to the multi-objective optimiza-
tion of a two-dimensional heat exchanger arrangement problem. All evaluations rely on
direct CFD simulations, after having checked mesh independency and avoiding any un-
due influence of the boundary conditions. Accepting a very large number of evaluations
(> 140 000), the Pareto front connecting equivalent hydraulic resistance and efficiency of
heat transfer is finally revealed.

It has been shown, that avoiding cyclic permutations, i.e., adding constraints to the
optimization problem in order to reduce the search domain does not provide any advan-
tage. The gain associated to the reduction in the feasible configurations is spoiled by the
induced complexity associated to additional constraints, hindering the progress of the
GA. Letting the algorithm freely search in the domain is computationally more effective.

The finally obtained Pareto front consists of designs showing alternating types of
symmetry, with noticeable discontinuities between continuous regions, from low-power
configurations to designs close to compact geometries. Symmetric designs are generally
superior to asymmetric ones at high efficiency, but not necessarily in the low-efficiency
region.

After discussing symmetry and effect of constraints on the speed of exploration, in the
following an attempt will be made to try to find a parameterization, which is even more
efficient for the optimization of such arrangement problems.
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Chapter 3

Extending the heat exchanger
example - What is the impact of
parameterization?

“I do the very best I know how - the very
best I can; and I mean to keep on doing so
until the end.”

Abraham Lincoln

In the previous chapter, questions related to symmetry of parameterization, number
of constraints and curse of dimensionality were analyzed. Based on the experience made
in the previous chapter, a second question, namely the speed of exploration depending on
the parameterization will be analyzed. However, in this study, the original CFD study
was extended to higher complexity, to be able to highlight the differences in convergence
resulting from the parameterization. Thus, questions related to the theory of Mathematical
Optimization will again be in the focus.

The results are partly based on a conference presentation:
Daróczy, L., Janiga, G., and Thévenin, D. Genetic optimization of heat-

exchanger arrangement problem. In ProcessNet Jahrestreffen der Fachgruppen Compu-
tational Fluid dynamics, Mischvorgänge und Rheologie (Würzburg, Germany, 2014) [55].

3.1 Setup of CFD model

The CFD setup and the analysis of the objectives will be only briefly presented in what
follows, as the setup is based on the previous chapter.

3.1.1 Tube bank heat exchanger configuration

A similar geometry was applied as in the previous study, but in this case the geometry
was parameterized using 4 values, see Fig. 3.1 (a):

- D1: the diameter of the in- and outflow channel,
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- D2: largest diameter of the heat-exchanger,

- s: slope of the wall connecting D1 and D2 section,

- L: length between the in- and outflow channels,

- Rtube: radius of tubes.

As you can see, there were 8 tubes applied but the geometry was forced to be sym-
metric (as in the previous chapter symmetric optimizations turned out to be superior),
with two tubes in the middle. The radius was fixed to Rtube = 10 mm, the slope to s = 6
and the channel diameter D1 = 40 mm. Additionally, the inlet and outlet channels had a
length of Lin = 200 mm and Lout = 320 mm, respectively, to ensure fully developed flow
profiles.

small
medium

large

Figure 3.1: (a) Schematic layout of arrangement problem for the present heat exchanger
configuration (b) Small, medium and large heat-exchanger configuration

In the study, three different sizes were analyzed (see Fig. 3.1 (b)):

- small configuration: D2 = 100 mm, L = 90 mm,

- medium configuration: D2 = 120 mm, L = 100 mm,

- large configuration: D2 = 140 mm, L = 120 mm.

3.1.2 Physical modeling

The temperature of the tube walls was set to constant Ttube = 368 K, while the inlet
temperature was specified as Tin = 278 K with v̄ = 3 m/s average air speed (parabolic
profile using User-Defined Function or shortly UDF). All other walls were considered to
be adiabatic. As the setup is not anymore in the laminar flow regime, k-ε Realizable
model with Enhanced Wall Treatment has been chosen. Computed from the channel
diameter, turbulence intensity of 3.91% with length scale of 2.8 mm was applied to the
inlet. Gravity is not included in the computational model.

Instead of using constant density and constant material properties, the temperature
dependency of the different properties were modeled as well. For density ideal gas law was
chosen, viscosity was specified using the Sutherland law while the thermal conductivity
was specified using polynomial law. Only the specific heat capacity has been modeled
as constant, which is an acceptable approximation for the considered temperature range.
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Pressure and velocity equations have been solved in a coupled manner; all derivatives
were discretized using second order or second order upwind method.

For temporal discretization steady-state simulation was assumed, as transient effects
were negligible (for a single random case of medium configuration, both steady and tran-
sient computations were performed, resulting in identical objective function values, i.e.,
ηst. = 0.2350909, ηtrans. = 0.2350985, ξst. = 2.009210, ξtrans. = 2.009867).

3.1.3 Spatial discretization

For the grid generation, ANSYS Gambit 2.4.6 was applied, with an unstructured quadri-
lateral mesh structure. A single parameter was defined, which controls the size of the
mesh at different locations: s0.

Afterwards, the mesh size at the walls was set to 0.4s0, at the tube walls to 0.1s0,
everywhere else to 0.5s0. Four size functions ensured the smooth transition between
the regions. Mesh near the wall was calibrated to ensure y+ < 1. Following a mesh
independency test (see section 3.1.4), s0 = 1.2 was chosen. This resulted in an average
mesh size of 77.4k cells for small, 82.7k cells for medium and 90.6k cells for large.

The mesh structure can be seen in Fig. 3.2.

Figure 3.2: Mesh structure at different locations for an exemplary configuration of medium
setup

3.1.4 Mesh independency

Afterwards, a mesh independency study was performed by varying the size of s0. Fig-
ure 3.3 presents the number of cells, runtime, ξ and η (objective functions, see later) as
a function of s0. The green domain shows the final, chosen value s0 = 1.2. As one can
see, at this point, η and ξ are already quasi-constant.
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Further decreasing s0 below 0.8, strange oscillations in the objective function values
appear, which are the result of a convergence problem (however, if you look on the scale
of the y-axis, they are indeed very small!). As the mesh size increases, more iterations
would be needed to ensure convergence. Thus, s0 = 1.2 was retained for the followings
as a compromise between runtime and accuracy.
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Figure 3.3: Mesh independency study for medium configuration

3.2 Setup of the optimization

As the aim of the present analysis is to find a better parameterization for the arrangement
problem, two different versions were defined for the analysis with the same number of
parameters.

3.2.1 Design variables

For the optimization, the coordinates of the cylinders (xi, yi, i = 1...5) have to be varied;
due to the symmetry y1 = y2 = 0, resulting in 8 Degrees-Of-Freedom (DOF). However,
in the present case instead of using the coordinates directly, a non-dimensional form was
defined with:

vi ∈ [0, 1], i = 1...8 . (3.1)

Afterwards, mapping functions were defined:

xi = fi(v1, ..., v8), i = 1...5, (3.2)
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yi = fi(v1, ..., v8), i = 3...5, (3.3)

which provide connection between the 8 non-dimensional variables and the real coordi-
nates.

3.2.2 Constraints

In the followings, δt and δw denote the thickness of boundary layer for tubes and outer
walls, respectively. These constants were automatically computed by OPAL++ and were
necessary to ensure an appropriate mesh quality (mesh quality can be only ensured, if not
only the tubes do not collide, but the prismatic boundary layers do not collide either).
For the optimization, the following constraints were defined:

• C1 : Collision of the tubes is not allowed:

(xi − xj)2 + (yi − yj)2 ≥ (2R + 2δt)
2 i, j = 1...5, i 6= j , (3.4)

• C2 : Collision of the tubes and horizontal walls is not allowed:

dist((xi, yi), wallh) ≥ R + δt + δw , (3.5)

• C3 : Collision of tubes and sidewalls is not allowed:

dist((xi, yi), walls) ≥ R + δt + δw , (3.6)

• C4 : The cylinders are not allowed to move into the symmetry plane (except the
two fixed in the middle):

yi > R + δt i = 3, 4, 5 , (3.7)

• C5 : Triangle inequality for any three tube positions:

dist((xi, yi), (xj, yj)) < dist((xi, yi), (xk, yk)) + dist((xk, yk), (xj, yj)) , (3.8)

i, j, k = 1...5; i 6= j 6= k , (3.9)

where dist denotes standard Euclidean distance on the plane. Please note, that with
the tested mappings (parameterization 1 & 2), not all constraints are active during the
optimization (will be discussed later).

3.2.2.1 Parameterization 1

With parameterization 1, essentially the same method is followed, as earlier, i.e., the vari-
ables correspond to the coordinates directly. The non-dimensional variables are mapped
using simple scaling to the following domain:

v1, v3, v4, v5 ∈ [0, 1]→ x1, x3, x4, x5 ∈ [−L/2 +R,L/2−R] (3.10)

v6, v7, v8 ∈ [0, 1]→ y3, y4, y5 ∈ [R + δt, H/2− (R + δt + δw)] . (3.11)

An exception is variable 2, which was chosen to represent distance between the two
cylinders on the symmetry plane:

v2 ∈ [0, 1] → dist(1, 2) ∈ [2R + 2δt, L− 4R− 2δt] (3.12)

By this method, C2, C4 and C5 are automatically satisfied, thus only C1 and C3 are
active. However, C1 constraint is highly non-linear!
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3.2.2.2 Parameterization 2

By parameterization 2, the variables do not correspond to the coordinates (except for
v1), but to the distance between the cylinders (green segments in Fig. 3.4):

v1 ∈ [0, 1] → x1 ∈ [−L/2 +R,L/2−R] , (3.13)

v2 ∈ [0, 1] → dist(1, 2) ∈ [2R + 2δt, L− 4R− 2δt] , (3.14)

v3 → dist(2, 4), v4 → dist(1, 4), v5 → dist(4, 5) , (3.15)

v6 → dist(2, 5), v7 → dist(1, 3), v8 → dist(3, 4) , (3.16)

With this parameterization, the highly
non-linear C1 constraint is automatically
satisfied, but other (easier) constraints
C2 − 5 remain active. As the collision of
the tubes is impossible, the parameteriza-
tion results in a more continuous search
field. Furthermore, this parameterization
is focusing on the topology of the problem.
E.g., if v1 is varied, the same structure is
shifted in x-direction, thus a relative ar-
rangement can be retained even after mu-
tation and cross-over.

Figure 3.4: Parameters (length of green
segments) of parameterization 2

3.2.3 Objective functions

Objectives were defined in agreement with the previous chapter, i.e., maximization of
thermal efficiency and minimization of pressure drop is desired. However, slight modifi-
cations had to be done to take into account the variable density (but assuming a constant
heat capacity):

f1 = η =
Q

cp · ρref · (Ttube − Tin)v̄inAcross
=

∫
Ωoutlet∗

ρ(T )(T (y)− Tin) · vxdA

ρref · (Ttube − Tin)v̄inAcross
→ max (3.17)

f2 = ξeq =
2∆p

ρref v̄2
in

=
2 (p|Ωinlet∗ − p|Ωoutlet

)

ρref v̄2
in

→ min (3.18)

3.2.4 Automation

Due to the more complex physical models, the original workflow had to be extended with
an additional criterion to ensure the quality of the solutions. The following approach was
applied for every individual:

• If the individual is infeasible (i.e., constraints are violated), do not proceed further.
Otherwise, send the individual to the next free worker node for evaluation.

• Modify the prepared Gambit (and/or Fluent) journal template according to the
values of the design variables.
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• Create computational mesh in Gambit and check quality. If the mesh cannot be
successfully generated, the individual becomes invalid and no evaluation takes place.

• Perform the CFD with Fluent using 4 computing cores.

• Check if convergence criteria are met (10−5 residuals with no more than 2000 itera-
tions). If not reached, the individual becomes invalid and is not considered further.

• A custom C++ library loaded by OPAL++ checks, if the monitored objective
functions reached a constant value. If oscillations are encountered (i.e., RMS values
are larger than 1% of the mean values), the configuration is considered invalid.

3.2.5 Optimization settings

For the optimization, the NSGA-II algorithm was applied again with N = 100 individuals
per generation. As not all configurations are feasible, optimization was run to approxi-
mately reach 10 000 full function evaluations with OPAL++ (i.e., CFD computations).
This resulted in 177 generations (9842 CFD computations) for medium with parame-
terization 2 and 174 generations (10 034 CFD computations) with parameterization 1.
For small and large only parameterization 2 was tested, resulting in 198 (10 006) and
160 (10 021) generations, respectively. One can see, that as the size of search domain
increases, proportionally more individuals remain feasible, resulting in lower number of
necessary generations to reach 10 000 CFD computations.

3.3 Results

In the followings, different questions will be analyzed using the performed optimizations
with parameterization 1, 2 and configurations small, medium and large.

3.3.1 Efficiency of parameterizations

In the first step, the efficiency of the parameterizations was compared. The optimization
of medium configuration was executed using both parameterizations; the Pareto-fronts
are compared in Fig. 3.5, for generations 20, 75 and 175. As one can see, parameterization
2 has identified a significantly larger Pareto-front compared to parameterization 1. Fur-
thermore, the tendency remains valid when comparing previous, unconverged generations
as well (20 & 75). Theoretically, both parameterizations cover the same domain, but in
practice not all methods exhibit the same efficiency. This highlights the importance of
choosing a well-suited parameterization: equal care should be given by the engineers for
the validity of the numerical model, for the choice of optimization algorithm and for the
choice of parameterization as well.

3.3.2 Effect of domain size

In a second step, the effect of domain size was analyzed. As parameterization 2 proved to
be superior, the optimizations were run using this method for small, medium and large
configurations as well; results are compared in Fig. 3.6. As one can see, the methods
agree on a large part of the Pareto-front, while small exhibits smaller efficiency regarding
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Figure 3.5: Comparison of optimization process with parameterization 1 & 2

pressure losses at higher thermal efficiencies (which is not suprising). However, medium
and large agree almost completely.

This points out again, that when performing an optimization, one should not make
unnecessary assumptions of the problem. E.g., here one would assume, that smaller
configurations result in higher thermal efficiency but higher pressure drop as well. This is
not the case, at least for medium and large. As a result, if one would try to perform the
optimization based only on the large configurations, unnecessarily large heat exchanger
designs would be achieved, when more compact alternatives exist. However, starting
immediately with small would result in unnecessarily large pressure drops. Instead, the
size of the heat-exchanger should be considered as an additional objective as well.
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Figure 3.6: Comparison of optimization process with different sizes

3.4 Summary and conclusions

In this chapter, the importance of a correct parameterization was considered. First, the
CFD model used in Chapter 2 was updated and validated. Afterwards, two different
parameterizations and three different sizes were chosen for optimization. Altogether, 5
optimizations were performed, each with at least 10 000 direct CFD computations.

At first, one may think, that the two equivalent parameterizations result in the same
Pareto-front. This is true, but one should not forget, that although the problem is the
same, the optimization methods are not well suited for all problems and formulations
(keep in mind the “no free lunch theory”!). In genetic optimizations, the probability
of the appearance of a specific configuration decreases with an increasing distance, i.e.,
mutation generates configurations near the original configuration (although, one may
define special operators for special problems as well). Thus, parameterizations, where
the parameter space is highly disconnected due to the presence of constraints, are not
desirable. A more efficient parameterization method for arrangement problems has been
identified, resulting in better exploration. As a result, it may be advantageous for several
problems to test different descriptions of the problem: this may result in configurations
completely missed previously.

This concludes the analysis of the heat exchanger configurations.
In what follows, even more difficult CFD problems will be considered, with much higher

runtime requirements to analyze further questions of CFD-O. There, one cannot afford
anymore thousands of computations. Instead, metamodels, Design-Of-Experiment meth-
ods or fewer parameters have to be applied with very robust automation methods.

The following chapter will start with the analysis of H-Darrieus rotors, where even 2D
CFD simulations require many days in a parallel environment, as the problem is transient,
turbulent and exhibits highly complex physics.
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Chapter 4

VAWT blade optimization

“The pessimist complains about the wind;
the optimist expects it to change; the
realist adjusts the sails.”

William Arthur Ward

In the previous chapter a CFD-O problem with large number of parameters was ana-
lyzed. In this case, using metamodels proved to be impossible, due to the

(a) large number of discontinuities,

(b) large number of parameters,

(c) large number of global and local optima,

(d) complex response of the objectives.

It was presented that choosing the right parameterization and constraints can result in
huge differences for the exploration.

The present chapter will especially focus on questions related to automated Geometry
and mesh generation, validation of Computational Fluid Dynamics and to Information
technology, i.e., actual implementation of the automation, based on wind turbines.

Due to the growing importance of wind energy, efficiency has become a crucial factor
and optimization of wind turbines is being increasingly considered. The ultimate goal
of the present chapter is to increase the performance of H-Darrieus rotors by chosing
an optimal airfoil shape. The aerodynamic efficiency of commercially available rotors is
already very high (large-size HAWTs can reach up to 50%). A further improvement is
only possible using advanced optimization methods. Optimization in the literature itself
is not unprecedented, but usually based on simplified models. For instance, Fischer et
al. [87] performed multi-objective optimization of horizontal axis wind turbines with Blade
Element Momentum (BE-M) code.

Even with CFD techniques, the resulting increase in performance cannot exceed more
than a few percents. Therefore, it is essential to reach sufficient precision in corresponding
CFD simulations, in order to be sure that the resulting improvement is not simply due
to model uncertainties or numerical noise. Moreover, as computing time is an essential
factor, one has to identify the really necessary mesh resolution and modeling approach,

60



delivering a high accuracy at acceptable computational cost. For this purpose, the model
should be fast enough to perform at least 500 simulations with no more than 30 computers
in no more than 3 months runtime. Besides, the model should provide mesh and temporal
independency with no more than 2% error.

As a result, this chapter presents, how important it is for an optimization to identify
the correct numerical setup. This step can be in some cases even more demanding, than
the optimization itself ! Following a very detailed numerical analysis, an optimization will
be performed as well for an exemplary rotor.

4.1 Introduction to wind energy

As several chapters of the current thesis focus on optimization of wind turbines, an in-
troduction to the theory is given here.

4.1.1 Importance of wind energy

“The energy consumption of the world increases rapidly. Due to the increasing awareness
of the population, to alarming reports concerning global warming, air pollution and
nuclear accidents, these increasing needs have to be covered by clean and reliable energy
sources. Wind energy can be a suitable answer to these needs. As a consequence, the gross
production of wind energy in the EU27 (European Union with 27 members) increased
from 80 PJ (2000) to 537 PJ (2010) just over a period of ten years [79], and an increase
to 2300 PJ is prognosed for 2030 [80]. This would correspond to an increase in the share
of gross production from 4.5% (2010) to 15.36% (2030). Meanwhile, in more developed
countries the share of wind energy in the energy production is already high (e.g., Germany,
7.74% in 2012 [29])” [54]. For 2050, even larger increase is projected: altogether 3900 PJ
production for the EU28 [81], this would correspond to 26% share.

Moreover, this increase is the result of the low necessary capital investments of wind
energy [81]:

- The capital cost over time is expected to stay around 1100-1300 EUR/kW for
onshore wind parks between 2015 and 2050.

- In contrast, the capital cost over time is expected to drop significantly for off-shore
wind parks, from 4500 (2015) to 2800 (2050) EUR/kW.

Parallel to this decrease, the price of fossil fuels is expected to increase dramatically.
As a result of this increase, markets can only stay competitive by increasing the share of
wind energy. Parallel to the financial benefits, these changes will ensure a decreased CO2

emission and reduced environmental pollution.

4.1.2 Description of wind

As small Darrieus rotors do not have high rotational speed, the relative speed of the
blades always stays well below M = 0.3 (≈ 100 m/s). As a result, air can be modeled
as an incompressible medium, as widely done in the literature (e.g., [34]). For reference
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density ρ = 1.225 kg/m3 was chosen according to DIN EN 61400 [71], and the viscosity
was chosen correspondingly as µ = 1.7894 · 10−5 kg m s−1.

Wind speed has spatial and temporal distribution as well, meaning, that it changes
depending on the time and location. Wind speed can be classified e.g., using the Beaufort
scale [152, 168], which specifies the wind speed from scale 0 (calm, 0-1 m/s) to scale 12
(hurricane, u=33- m/s). Wind speed has not only a horizontal, but a vertical distribution
as well, i.e., wind speed near the ground does not exhibit a constant velocity due to the
shear stress generated by the ground. This layer next to the ground is also called Atmo-
spheric Boundary Layer (ABL), and the description of this layer is a separate scientific
field [123]. Unfortunately, the precise description of the ABL is only possible through
the full modeling of the surroundings of the wind turbine together with all natural and
urban structures [40, 41].

For an optimization such an approach would be impossible due to the large com-
putational requirements. In the engineering practice the ABL is replaced by simplified
wind profiles, which are described by the different standards [71] and are presented in the
followings. Exponential wind profile or wind profile power law [71] defines wind speed as:

u(z) = uref · (z/zref )α , (4.1)

where zref is the reference height, uref is the reference wind speed (speed at the reference
height) and α is an empirical constant (usually 1/7 is a good approximation; DIN EN
61400 uses 0.2 [71]). Another widely used function is the logarithmic wind profile, defined
as [9]:

u(z) = uref · ln
(

z/z0

zref/z0

)
, (4.2)

where z0 is the roughness length, depending on the surface of the actual location. Values
for z0 are defined in tables (e.g., z0 is for low crops 0.1, for forest and suburban 1, for
offshore 0.0002 [225]).
However, when relying on 2D Computa-
tional Fluid Dynamics simulations, con-
stant wind profile has to be assumed. If
the rotor is positioned in an appropriately
large distance from the ground, the simpli-
fication is valid, see Fig. 4.1. In this figure
if the rotor is placed at 7 m height, the
agreement will be very good.

Figure 4.1: Comparison of exponential
(black), logarithmic (orange) and constant
(red) wind profiles (uref = 8.4 m/s, zref =
7 m)
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4.1.3 Classification of wind turbines

Without claim of completeness, the most important groups of wind turbines will be
presented in the followings. Besides these groups, several other types of wind turbines
exist, but these turbines are not well-spread or have no technical relevance.

4.1.3.1 Axis of rotation

According to the position of the rotation axis, wind turbines can be classified into two
groups:

- Horizontal Axis Wind Turbines (HAWTs): In these turbines the rotation axis is
parallel to the wind direction, i.e., horizontal. As a result, these turbines have to
be rotated always into the direction of the wind. These are the most common and
most widely spread wind turbines (see Fig. 4.2).

- Vertical Axis Wind Turbines (VAWTs): In these turbines the rotation axis is per-
pendicular to the wind direction, i.e., vertical, see Fig. 4.3. Due to the vertical
direction, the operation of these rotors is independent from wind direction, i.e.,
they are omnidirectional. The current project considers only VAWTs.

Figure 4.2: Horizontal Axis Wind Turbine
(Photo courtesy of Warren Rohner (C),
https://www.flickr.com/photos/warrenski)

Figure 4.3: Schematical two-bladed H-
Darrieus rotor

4.1.3.2 Principle of operation

According to forces used for energy production, wind turbines can be classified into two
groups:

- Drag-driven wind turbines: Drag-driven turbines use the aerodynamic drag to pro-
duce torque. These turbines usually have slower angular velocities, are small in
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size and have small efficiencies. The most well known such turbine is the Savonius
rotor [50], although horizontal drag-driven turbines exist as well.

- Lift-driven wind turbines: Lift-driven turbines use the aerodynamic lift to produce
torque. These turbines usually have higher angular velocities. The two most com-
mon variants are the well known HAWTs (see Fig. 4.2), and the Darrieus rotors,
see Fig. 4.4.

4.1.4 Darrieus wind turbines

The original patent of the Darrieus rotor from Georges Jean Marie Darrieus dates back
to 1927, but its very complex aerodynamics are still not completely understood. Darrieus
wind turbines can be further classified into different groups based on the shape of their
blades. The first turbines had the so-called eggbeater or Troposkien shape (see Fig. 4.4
(a)), due to mechanical considerations. Another possibility is the so-called H-Darrieus
rotor, which is very popular due to its simple (thus cheap) blades (see Fig. 4.4 (b)). As
Darrieus rotors tend to have very unsteady torque (i.e., torque ripple), the blades are
sometimes twisted to reduce this effect (see Fig. 4.4 (c)).

The Darrieus rotor is a vertical-axis lift-type rotor. The flow physics is inherently
unsteady due to the varying angle of attack, which leads to a higher complexity compared
to standard HAWTs. In particular, dynamic stall is of major importance but is still not
completely understood [3].

Figure 4.4: Darrieus rotors with (a) Troposkien (b) H-blades (Photo cour-
tesy of Stahlkocher(C), https://commons.wikimedia.org/wiki/File:H-Darrieus-
Rotor.jpg) (a) Twisted blades (Photo courtesy of Branko Radovanović (C),
https://commons.wikimedia.org/wiki/File:Wind turbine FSB Zagreb 20130513 0424.JPG)

4.1.4.1 Advantages and disadvantages

“Most installed turbines are Horizontal Axis Wind Turbines, but Vertical Axis Wind
Turbines (VAWT), and especially the H-Darrieus wind turbines are very interesting as
well, especially for small-scale applications, due to their low cost and easy installation at
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almost any location, and due to more favorable interaction effects at low inter-turbine
distances. As a yaw system is absent and since all electrical and mechanical components
are close to the ground, it has a relatively simple design [155], which decreases installation
and operation costs dramatically. Darrieus turbines show relatively low sound emissions
and have increased performance in skew [85] as shown, e.g., by Bianchini et al. [21].
Furthermore, they are omni-directional and are thus better suited for areas with strongly
inhomogeneous topology, like in urban and peri-urban environments [170]. Last but
not least, Darrieus turbines can withstand larger windspeeds due to their aerodynamic
behavior” [54].

4.1.5 Physics of the H-Darrieus wind turbine

4.1.5.1 Notation

As the current chapter considers only H-Darrieus wind turbines, in the followings the
term ”Darrieus” rotor will be used as short for ”H-bladed Darrieus rotors”. H-Darrieus
wind turbines consist of 2, 3 or more straight blades, installed vertically around a rotating
shaft (see Fig. 4.3). These blades use aerodynamic airfoil profiles in order to generate
aerodynamic lift throughout the rotation.
In order to support the blades mechani-
cally, the blades are mounted with struts
to the rotating shaft. These struts have
to be aerodynamic as well to minimize the
parasitic drag of the struts. The struts
can be installed horizontally (to minimize
length) or with an angle (V-shaped). Ex-
cept the blade tips and cross-sections with
the struts, the rotor has quasi uniform
cross-sections. As a result, in CFD H-
Darrieus rotors are frequently simulated
only in 2D, modeling a single cross-section
of the rotor. The notations used in the
current study are presented in Fig. 4.5. In
the current project φ = 0° means, when the
blade starts moving against the wind (lee-
ward positions), 90° denotes the upwind
position, 180° denotes the windward posi-
tion, 270° denotes the downwind position.
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Figure 4.5: Schematical representation of the
conventions used for the H-Darrieus rotor in
the current study

4.1.5.2 Most important quantities

Tip-speed-ratio (or TSR; denoted by λ) is the most important non-dimensional num-
ber used to describe the operation of wind turbines. The tip-speed-ratio is defined as
the ratio of the highest velocity of the rotating blade (thus, the speed of the tip of the
blades) compared to the wind speed (u):

TSR = λ =
vtip
u

=
Rω

u
, (4.3)
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where R is the radius of the rotor, u is the wind speed and ω is the angular velocity of the
rotor. In case of the H-type Darrieus rotor the cross-section does not vary with height,
i.e., the rotor has the same speed for each cross-section.

The total performance of the wind flowing through the swept area of the rotor is
defined as:

Ptotal =
1

2
ρAu3, (4.4)

where ρ is the density of air and A is the projected area of the rotor.

The chord Reynolds number (Re) describes the flow around the blade in a non-
dimensional manner. As the relative velocity (W ) experienced by the blade in the rotating
non-inertial coordinate system is not constant, it can be approximated using the rotational
velocity:

Re =
cvblade
ν

=
ρcW

µ
→ Remean ≈

cRω

ν
. (4.5)

where c is the camber or chord length.

Solidity (σ) is the ratio of the total rotor planform area compared to the total swept
area [176]. Moreover, for Darrieus rotors the definition is slightly modified: the ratio
of the perimeter occupied by blades compared to the whole perimeter multiplied by a
constant. Unfortunately, no convention was reached for this constant yet and several
different definitions exist, regarding the constant. In the current work the following
definition will be used, if not stated otherwise:

σ =
Nc

2R
, (4.6)

where N is the number of the blades. In several sources R or 2Rπ is used for the
denominator.

Angle-of-attack (AOA or α) changes throughout the rotation of the blades, resulting
in a highly transient flow. The exact and precise evaluation of this quantity is not possible
in CFD (as instead of a single local velocity a velocity field exist). Hence, a theoretical
approximation is used:

αth. ≡ AOAth. = atan

(
sin(φ)

λ+ cos(φ)

)
− β, (4.7)

where φ is the angular position and β is the preset pitch angle.
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The theoretical angle of
attack is presented in
Figure 4.6 for different
tip-speed-ratios. As one
can see, the angle of at-
tack changes fast and
far beyond static stall
angles (12 − 13° [147]).
As a result deep stall
and dynamic stall will
be the dominating phys-
ical effects in such wind
turbines.
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Figure 4.6: Theoretical angle of attack for different tip speed
ratios

Torque coefficient, or moment coefficient (Cm or CT or CQ in the literature) of a wind
turbine expresses the torque exerted on the rotor shaft in a non-dimensional manner. The
coefficient is expressed as:

CQ(φ) =
T (φ)

1
2
ρu2AL

=
T (φ)

1
2
ρu22R2H

(4.8)

where T is the instantaneous torque on the shaft.

Power coefficient (Cp) is the indicator of efficiency. It is the ratio of the power
generated by the wind turbine compared to the available energy in the wind:

Cp =
Pmech
Ptotal

=
Tω

1
2
ρu3A

=
Tω

1
2
ρu32RH

= −λ · CQ, (4.9)

where T is the (average) torque generated by the rotor (average, because a torque ripple
is present [226]). This value shows a theoretical upper limit (Cp = 1 would mean, that the
wind flowing through the rotor would stop moving, which is a violation of the continuity
equation), which is known as Betz limit (59.3%). In reality, even modern HAWTs usually
cannot reach more than Cp = 45− 50% [19, 77]. Please note, that the Betz limit is only
valid, if the assumptions of the model hold (i.e., it is not valid anymore for rotors with
guide vanes or in wind channels, as the streamlines cannot expand anymore). The nega-
tive sign applies due to the rotation direction used in the current CFD model: clockwise,
i.e., negative rotation direction.

Characteristic curve is the Cp(λ) function. Although it is often regarded as a non-
dimensional indicator of the performance, the same tip-speed ratio can correspond to
different local chord Reynolds numbers. The dependence of the power coefficient on the
Reynolds number can be experimentally measured [98, 195]. Thus, characteristic curves
corresponding to constant wind speed and constant angular velocity are not the same!
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As a result, for the complete description of the operation of a wind turbine one has to
evaluate the Cp = Cp(ω, u) function completely.

The optimal tip-speed ratio depends on the airfoil shape and on the solidity. Lower
solidity rotors operate at higher tip-speed ratios, while higher solidity rotors typically have
low optimal tip-speed ratios, as discussed also in [156], see Fig. 4.7. This dependence is
the result of the changing Reynolds number.
As the camber length increases (thus the
chord Reynolds number), the stall mech-
anism will be delayed, as the boundary
layer flow becomes more resistant to sep-
aration [103]. Although the solidity can be
decreased also with the number of blades
(thus resulting in higher optimal tip speed
ratio), this results in higher torque ripple
and thus in mechanical problems [103].
The loss of performance at lower tip-speed
ratios originates from the stall mechanism
(when the angle-of-attack, AOA of the
blade increases above 12 − 13° [147]). For
higher tip speed ratios the loss of efficiency
is the result of secondary losses: strut
losses, wingtip losses, etc. These losses
could only be properly computed with de-
tailed 3D computations.
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Figure 4.7: Effect of solidity on characteristic
curves

Global force coefficients (Cx and Cy) express the streamwise and perpendicular
forces exerted (Fx and Fy) on a rotor in a non-dimensional form:

Cx =
Fx

1
2
ρu2A

=
Fx

1
2
ρu22RH

, Cy =
Fy

1
2
ρu2A

=
Fy

1
2
ρu22RH

(4.10)

Normal, tangential force coefficients for the blades can be reconstructed using an
approximation based on the theoretical angle-of-attack. Based on the definition of global
force coefficients:

Fx = Cx
1

2
ρ2RHu2, Fy = Cy

1

2
ρ2RHu2 (4.11)

and on the definition of the blade force coefficients:

CN =
FN

1
2
ρcW 2

CT =
FT

1
2
ρcW 2

, (4.12)

using simple geometrical considerations one gets:

FN = Fx sin(ωt− β) + Fy cos(ωt− β) (4.13)

FT = −Fx cos(ωt− β) + Fy sin(ωt− β) (4.14)

thus,

CN =
2RHu2

cW 2
(Cx sin(ωt− β) + Cy cos(ωt− β)), (4.15)
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CT =
2RHu2

cW 2
(−Cx cos(ωt− β) + Cy sin(ωt− β)), (4.16)

where the relative speed is

W 2 = (Rω + Va cos(ωt))2 + (Va sin(ωt))2, (4.17)

where Va is the induction speed inside the rotor. When not assuming an induction factor,
one can use simply Va ≈ u as approximation. From these values one can estimate the
drag and lift coefficient for the blades as well:

CD = −CT cos(α) + CN sin(α), (4.18)

CL = CT sin(α) + CN cos(α). (4.19)

Thus, the CD(φ), CL(φ) and CD(α), CL(α) curves can be estimated for further analysis.

Strut losses will be frequently considered in what follows. Thus, the most widespread
analytical evaluation of strut losses will be presented here. The easiest analytical method
was developed by Ion Paraschivou [176]. The approximation assumes, that tip-speed-
ratios are large (λ >> 1), the drag coefficient is constant along the strut (CD0 = const.),
struts have a constant cross-section and the radius of the shaft is negligible compared to
the rotor radius. With these assumptions the forces acting on the single strut-elements
can be estimated as

dFs =
1

2
ρcsCD0W

2dR (W ≈ Rω) (4.20)

The total torque acting on the shaft is given as:

T = NbNs

∫ Rmax

R=Rmin

dFsR dR =
1

2
NbNsρcsCD0ω

2

∫ Rmax

R=Rmin

R3 dR (4.21)

Due to Rmin << Rmax assumption the equation can be simplified to:

T =
1

8
NbNsρcsCD0Rmax

4ω2 → Ploss =
1

8
NbNsρcsCD0Rmax

4ω3 (4.22)

Thus one gets finally:

Ploss =
1

8
NbNsρcsCD0Rmax

4ω3 =
1

8
NbNsρcsCD0Rmax

4

(
λu

Rmax

)3

=
1

2
ρAu3 1

4A
NbNscsCD0Rmaxλ

3 =
Ptotal
4A

NbNscsCD0Rmaxλ
3

(4.23)

As one can see, strut losses are cubic in nature (∼ λ3). A more advanced model can be
built by assuming, that only the tangential component of the velocity has an influence
on the strut, but not assuming λ >> 1 and CD = const.:

Ploss =
1

2
NbNscsρ

ω

2 · π

∫ 2π

φ=0

∫ Rmax

R=Rmin

CD(Re, φ)W (φ,R)2 dR dφ (4.24)

This method was first published by Goude et al. [104]. For this, numerical integration is
needed.
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4.2 Numerical validation of the model

The present section is based on:
Daróczy, L., Janiga, G., Petrasch, K., Webner, M., and Thévenin, D.

Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus
rotors. Energy 90, 1 (2015), 680–690 [54].

As already pointed out, numerical validation is of crucial importance for CFD based
optimizations. To present this, the first questions that must be answered in the present
section concern mesh independency, turbulence modeling and boundary conditions, in or-
der to ensure sufficient precision. Thus, a systematic numerical analysis will be performed
in order

1. to identify the necessary mesh resolution for the different turbulence models

2. to choose a model suitable for optimization

3. to compare the characteristic curves obtained with the different models for four
different configurations.

4.2.1 Performance evaluation of Darrieus wind turbines

Early models for the evaluation of wind turbines were based on the Glauert actuator disk
theory [99]. Starting from the Single Streamtube Model [211], the Multiple Streamtube
Model [208] and the Double Multiple Streamtube Model [177] were progressively devel-
oped. Following the development of vortex-based models, the next natural step was to
rely on CFD simulations. There are three main families of turbulent CFD computations,
namely the Direct Numerical Simulations (DNS), the Large Eddy Simulations (LES), and
the simplified approach relying on Reynolds-Averaged Navier Stokes equations (RANS,
or URANS for Unsteady RANS). DNS for Darrieus rotors is still infeasible, since resolv-
ing all scales at this Reynolds number is too expensive. LES has been employed only
in a few studies (e.g., [84]), but due to the very high computational costs compared to
RANS, LES is clearly incompatible with any optimization process and can only be used
to investigate specific aerodynamic aspects. As a result, the present manuscript considers
only URANS simulations.

4.2.2 CFD evaluation of Darrieus wind turbines in the scientific
literature

Recently, a few articles dealt with the analysis and optimization of Darrieus turbines.
Using CFD techniques, Mohamed [155] investigated different airfoils for performance
improvement of an H-Darrieus rotor. Bedon et al. [16] used a BE-M model for the
optimization of a Darrieus rotor, while Castelli et al. [35] proposed a new performance
prediction model for Darrieus turbines. Gosselin et al. analyzed the flow around an
H-Darrieus rotor while varying solidity, pitch angle or number of blades [103].

Due to the varying angle of attack the physics of these turbines is inherently complex,
e.g., dynamic stall is still not completely understood [3]. As a result, the turbulent flow
field is extremely complex and there are still contradictory statements in the literature
concerning the most appropriate turbulence model. For instance, Mukinovic et al. [161]
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have used Spalart-Allmaras and k-ω SST model, while Lanzafame et al. used k-ω SST
and Transitional SST model in 2D CFD simulations to evaluate the performance of H-
Darrieus rotors [135], and concluded that Transitional model is the best. The same
model was applied in the mesh independency analysis for the rotor of Bravo et al. [28]
by Almohammadi et al. [3]. In contrast, Gosselin et al. have tested Spalart-Allmaras
(with modified strain-based formulation), k-ω SST with low Reynolds corrections and
Transition SST and concluded that the k-ω SST model was the most appropriate [103].
The k-ω SST model was also applied by Jericho et al. for a novel wind turbine concept
[121] or by Campobasso et al. for HAWTs with harmonic balance method [30]. Wang et
al. [221] found, that the k-ω SST model provides appropriate agreement with experiments
for the simulation of low-Reynolds flow around pitching blades in stall.

Ferreira et al. analyzed a single bladed H-Darrieus rotor with NACA0015 blade and
compared the vortex structures to PIV measurements [84]. They have used 3305 nodes on
the blade, giving totally 1.6 million cells. They have tested laminar, Spalart-Allmaras,
k-ε, DES and LES model, using ∆φ = 1/2; 1/4; 1/8; 1/16° angular time-steps. They
concluded, that URANS models proved to be inaccurate in modeling the large eddies, and
the LES performed even worse compared to the DES. However, the obtained performances
were not compared.

Castelli et al. found that k-ω SST model is the most appropriate in 3D, while k-ε
Realizable model is more accurate in 2D [34]. Mâıtre et al. have also applied k-ω SST
model for Darrieus water turbines [147].

4.2.3 Limitations in the comparison of numerical and experi-
mental investigations

Although in some articles a nearly perfect agreement between CFD and experiment is
discussed [135, 155], such an observation should not indeed be expected. Even if CFD
can be used to resolve the flow field around the rotating turbine, important details will
always be missing in the CFD. As a whole, the resulting differences can be quite large.
In many studies the predicted efficiency exceeds the measured one by up to 75-95% [3].

Minor issues encompass the uncertainty of the measurement devices in the experiment,
geometrical tolerances during manufacturing, insufficient temporal or spatial resolution
in the simulation, inadequate level of convergence, rounding errors, missing fluctuations
in the rotation speed (present in the reality, but not in the simulation), unknown tur-
bulence conditions (cannot be exactly measured), lacking three-dimensional instabilities
and three-dimensional expansion. For 2D simulations, the lack of end-plate friction and
the missing exponential wind profile additionally lead to mistakes as well.

More significant terms are the generator losses (if only the power output is measured)
and bearing losses. However, these terms can be in principle measured and taken into
account.

The major source of discrepancy is connected to the strut losses and strut-junction
wake interaction. Mâıtre et al. came to the conclusion, that the main losses do not come
from the arms friction, but from the tip and arm-blade junction vortices [147]. In contrast
with this observation, the 3D CFD study of Castelli et al. indicated that, for small aspect
ratio rotors the arm friction losses can result in more than 20% loss of performance [34].
Fortunately, the strut losses can be analytically estimated with a good accuracy [104,176],
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as discussed previously.
The largest and most difficult terms are the wing-tip vortex losses.

Airfoils generate lift through the pressure
difference on the two sides of the airfoil.
Moreover, the blade has an end and due to
the pressure difference airflow is introduced
from the higher pressure side to the lower
pressure side along the end of the blade. As
a result, a wingtip vortex is generated (see
Fig. 4.8). In wind turbines with small as-
pect ratios these losses can be large (up to
25% [34]), while at high aspect ratio these
effects are small. As shown in the study of
Gosselin et al., the last 20-30% of the blade
height are less effective [103]. Amet also
came to a similar conclusion, with 22% loss
of performance due to the tip vortices and
blade/arm junctions [5], while Qin et al. re-
ported 40% losses compared to 2D simula-
tions [182].

Figure 4.8: Wingtip vortex generated by
an airplane; Source: NASA;Photo ID: EL-
1996-00130; Alternate ID: L90-5919

Finally, the uncertainty of the turbulence models can also result in large errors and
will be considered more specifically in what follows. As a result, at least 5-25% differences
in Cp are expected. This error could only be eliminated (or at least reduced) using 3D
CFD computations.

One final difference originates from the way performance is evaluated experimentally
and analytically. In the reality performance is measured and averaged for many revolu-
tions, thus averaging out the effects of vibrations, vortex shedding and turbulence gusts.
In a simulation, computing such a large number of revolutions is very time consuming
and thus not feasible. Some sources estimate [20...90] for the minimal necessary number
of revolutions [11].

4.2.4 Computational method

4.2.4.1 Analyzed rotor

This section describes the complete workflow of the simulation. For the current study a
geometry was chosen, which is currently under development for an industrial project. The
rotor has three blades with R = 1.5 m radius, each blade has a chord of
c = 160 mm, thus solidity is σ = 0.32 and the optimal tip-speed ratio is 3 < λ < 4.
The exact airfoil profile cannot be disclosed due to confidentiality requirements from the
industrial partners of the project.

4.2.4.2 Automated workflow

Systematic studies are always subject to human errors. Thus, in order to eliminate
this problem, the complete workflow has been fully automated. The analysis and the
evaluation of the different configurations have been carried out using OPAL++.
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For the present study a module has been created for OPAL++ in C++. In this
module (approx. 5500 lines of code) the complete CFD workflow was parameterized,
from the geometry creation (number of blades, geometry of the blade, radius of the
rotor, blunt/rounded/sharp edge, etc.), through the meshing (mesh size, size of domain,
etc.) to the CFD setup (choice of CFD software, choice of solver, turbulence model,
boundary conditions, etc.). By keeping all settings as parameters, extensive studies could
be performed in a fast and efficient manner, without the risk of errors. Additionally, the
module collected the most important results (number of cells in the mesh, orthogonal
quality of the mesh, instantaneous maximal and average y+ values for all blades, thickness
of the blade, performance coefficient, instantaneous lift-, drag- and torque coefficients,
maximal and average lift-, drag- and torque coefficients of the last revolution) in an Excel
file, enabling extensive analysis based on the data.

The workflow is presented in Fig. 4.9. When starting an optimization, for each config-
uration the same OPAL++ script was repeated automatically according to the specified
parameters (blue section) from the Genetic Algorithm. If a numeric study was executed,
instead of a Genetic Algorithm, directly the configurations listed in an input listfile were
processed.
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Figure 4.9: Loop of evaluation in the OPAL++ H-Darrieus module

As proprietary software is used for mesh generation and CFD computation, the num-
ber of available licenses becomes an issue. To solve this problem, synchronization barriers
are defined, which can be entered only by one node at a time. The defined loop of evalu-
ation will be blocked on each worker node in each step, when a license is needed (starred
steps in the list below, dashed red box in the figure). A single node will check the license
server, and if enough licenses are available, will proceed with the computation. After the
node has acquired the license, other nodes will start to check the license server after each
other. This blocking (or synchronization) is necessary to avoid race conditions (i.e., only
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1 license is available, but all parallel nodes detect available licenses). The following steps
were executed:

- (0) Preparation: OPAL++ looks for a free node (OPAL++ has a built-in separate
job manager), which receives the actual configuration and prepares the different
data files and temporary working directory.

- (1) Preparation of script files: OPAL++ calls the OPAL++ dynamic library, which
creates the necessary script files for the meshing software and for the CFD software.

- (2*) Geometry preparation: The worker calls the meshing software (ANSYS Gam-
bit) to prepare the geometry using the generated script files and to create the
report.

- (3) Preparation of script files/2: OPAL++ calls the compiled dynamic library again,
which will read the output generated by the meshing software, determines the IDs
of the different edges and faces, and prepares the final script for meshing. This is
necessary, as during the different subtraction operations the different geometrical
entities receive their names in an automatic manner, depending on the geometry of
the current configuration.

- (4*) Meshing: OPAL++ calls the meshing software (ANSYS Gambit) to prepare
the mesh using the generated script (journal) files. If any fatal error (failed mesh
generation process; distorted cells; etc.) is detected, the loop of evaluation is broken
and the individual is considered invalid.

- (5*) Mesh check: OPAL++ calls ANSYS Fluent/CD-Adapco StarCCM+ to check
the quality and validity of the mesh. The mesh size and mesh quality indicators are
then read and stored in OPAL++. If a mesh with inadequate quality is detected,
the loop of evaluation is broken and the individual is considered invalid.

- (6*) CFD computation: After the mesh is prepared, the CFD computation is ex-
ecuted using all cores of the actual node. If divergence is detected, the individual
becomes invalid.

- (7) Post-processing: Finally, the results saved by the CFD software are post-
processed. OPAL++ computes the average and maximal values of the different
coefficients in the last revolution. The values are read and stored by OPAL++ and
the results (and important files) are given to the master node for archiving.

4.2.4.3 Domain decomposition

As the flow around a Darrieus rotor is highly transient, it has to be resolved not only
in space, but in time as well: a moving mesh has to be created with a sliding mesh
technique (although there are some groups, which try to simulate the flow in a stationary
manner, which is a principally wrong approach [148]). This means, that the domain of
the computation has to be decomposed into a stationary domain, which will be used to
simulate the free stream flow around the rotor (Fig. 4.10 (a)), and a moving domain, which
will rotate with the blades (Fig. 4.10 (b)). Between the two domains an interface is used
in order to interpolate the flow quantities. In this study the same circular decomposition
was applied as e.g., by Castelli et al. [34]. Another possible decomposition could have
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been a ring structure [135, 170]. Preliminary tests have shown no significant differences
between both.

The mesh was created with ANSYS Gambit 2.4.6 [88]. Unstructured parts are plot-
ted with a brick pattern in Figs. 4.10, the density of the pattern indicating the mesh
resolution. If a shaft is not present in the computation, the inner structured domain
can be simply removed and replaced with an unstructured mesh. For the structured
parts the Map algorithm is applied, while for the unstructured parts the quadrilateral
Pave method is used. In the current study only quadrilateral cells are used (following
the recommendation of [3]), as triangular cells are well-known to be dissipative in nature.
However, tests have indicated in the present study no large differences between triangular
or quadrilateral cells for the mesh-independent resolution.

Figure 4.10: (a) Stationary domain of the mesh (b) Rotating domain of the mesh

The employed hybrid structured-unstructured grid (as shown schematically in Fig. 4.10)
provides the advantage, that it increases the accuracy near the interface (where interpo-
lation errors can be large) and in the wake of the blades, while being still very flexible,
thus enabling automatic mesh generation of different blades. A completely structured
approach was tested as well, but tests did not indicate significant differences either [158].

4.2.4.4 Mesh size and mesh independency

In published studies very different mesh resolutions and temporal resolutions have been
applied. For a corresponding review please refer to Trivellato and Castelli [214].

The mesh size is very important for the turbulence as well. If the mesh spacing is
too coarse, the decay of turbulence will be grossly overestimated [203]. The reference
mesh sizes are defined at seven different locations (S1, ..., S7): on the sides of the middle
rectangle in the stationary domain (90 mm), inside the middle rectangle in the stationary
domain (60 mm), on the interface (20 mm), on the wall of the shaft (2.5 mm), on the
blade (0.375 mm), in the middle of the rotating domain (13.5 mm) and around the blade
in the additional control area (4.8 mm). The C++ module uses additional size functions
to ensure a smooth transition between the different sizes. The nodes on the surface of
the blade were uniformly distributed, except at the trailing edge, where a refinement was
used with an exponential growth factor.
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Throughout the studies, a calibration coefficient (ccalib; with tested values of 1.5,
1.25, 1.0, 0.75, 0.5) was used to compute actual mesh sizes from the reference size
(Sact,i = ccalibSref,i). In case of the boundary layer the refinement is modified to
yact = yref

√
ccalib. The quality of the mesh was checked and recorded in all cases by

the software and reported in the output log file. Orthogonality (as defined by Fluent)
was always above 0.7, and maximum skewness angle (as reported by StarCCM+) was
always below 40° during the validation process.
For a precise computation the boundary lay-
ers have to be resolved up to the laminar
sublayer. The number of layers and thick-
ness of the first layer were calibrated by the
C++ module so, that the transition between
the size of the boundary layer and the nor-
mal mesh has to be smooth (see Fig. 4.11)
and y+ < 1 has to be maintained. Then,
y+
avg ≈ 0.2, y+

max ≈ 1.0 was maintained for all
computations (except for the test with the
k-ε Realizable model with Wall function).
This strong criterion was applied following
the recommendations of Mâıtre et al. [147].

Figure 4.11: Example of the obtained
mesh resolution near a random blade ge-
ometry

This was ensured by using the Schlichting correlation [192] with the camber of the
blade as reference length and W = (λ+ 1)uwind as the relative speed.

4.2.5 CFD setup

4.2.5.1 Material properties & discretization

Flow was chosen, as described earlier, to be incompressible and properties according to
DIN EN 61400 [71] (ρ = 1.225 kg/m3, µ = 1.7894 · 10−5 Pa s), as discussed previously.

In the present work a second-order implicit temporal discretization is always applied,
together with second-order (central or upwind) derivatives, if not stated otherwise. If
for a specific case or model divergence is detected as observed with k-ε RNG always, the
simulation is restarted using first-order discretization and Segregated solver.

4.2.5.2 Segregated vs Coupled solution

When solving the fluid dynamics equations, there are two possibilities for the pressure-
velocity coupling: the segregated approach (SIMPLE, SIMPLEC or PISO in ANSYS
Fluent and Segregated in CD-Adapco StarCCM+), where a predictor-corrector approach
is applied, and the Coupled solver, where the momentum and continuity equations are
directly coupled. In transient cases the coupled algorithm is necessary for poor mesh
quality or large time steps [6]; this solver can dramatically increase the performance even
for incompressible flows [125]. According to the CD-Adapco StarCCM+ User Guide [37],
the Coupled solver is always recommended when sufficient resources are available due to
its increased robustness. Another advantage of the Coupled solver is that the CPU time
scales linearly with the number of cells, i.e., the convergence rate will not deteriorate
when refining the mesh resolution.
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Again, different authors do not agree concerning this topic. The SIMPLE method was
applied, e.g., in the study of Lain and Osorio [133], while the PISO method was finally
retained by Lanzafame et al. [135]. Instead, Qin et al. [182] or Balduzzi et al. [10] have
applied the Coupled solver due to its increased robustness.
For the geometry discussed later for numer-
ical analysis (Operating condition 2, k-ω
SST model), the PISO and Coupled solvers
were compared using ANSYS Fluent 14.0.
As a convergence criterion, the number of
inner iterations per time step was fixed to
15, 24, 50 and 100 for both solvers.
Figure 4.12 shows the torque coefficient
for blade 1, for the 15th revolution. One
can see, that the results with the Cou-
pled solver stay identical when enforcing
more than 24 iterations, while for PISO
the agreement is only achieved for more
than 100 iterations. Thus, the Coupled
solver was always employed with 24 inner-
iterations in what follows. This is the
faster solution. These results support the
conclusions of Mâıtre et al. [147], where at
least 75 inner iterations were necessary for
convergence with the SIMPLE method.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  60  120  180  240  300  360

C15

C24

C50

C100

P15

P24

P50

P100

CQ

φ

Figure 4.12: Torque coefficient with dif-
ferent solvers and number of inner itera-
tions in ANSYS Fluent (C denotes Cou-
pled Solver, P denotes PISO solver, the
number denotes the number of inner iter-
ations)

This proved to be a very strict convergence criterion. The different residuals, as
reported by Fluent, generally dropped to 10−5 − 10−10 depending on turbulence model
and angular position. All residuals always were reduced at least to 10−3 in the numerical
validation.

4.2.5.3 Boundary conditions

The four sides of the computational domain are defined as velocity inlet, pressure out-
let and symmetry boundaries. Proper inlet conditions are clearly the most important
ones. Unfortunately, the specification of inlet turbulence properties is a very difficult
question, particularly so for wind turbines. Different sources propose incompatible values
and procedures. Although one could use values derived from corresponding experimen-
tal measurements, turbulent variations are usually post-processed from measured wind
fluctuations during 10-60 min [71, 188]. As noted by Spalart and Rumsey [203], in the
atmospheric boundary layer the typical length scales are around 100 m and the eddy
viscosity can reach 50 m2/s on windy days (corresponding to a turbulent viscosity ratio
TVR = 3.3 · 106!). However, the boundary layer will couple only with length scales in
the order of 1 cm [203] and, due to the large rotation speed, only a part of the turbulent
spectra will really interact with the blades in the CFD [129].

In the first numerical studies different values were tested. After confirming that small
values are almost equivalent to each other, final values of I = 0.1% and TVR = 10
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were retained for all further configurations, in agreement with recommendations from the
literature [134, 135]. Such low intensities are not rare in wind tunnels. E.g., the wind
tunnel of TU Delft has I = 0.015% at 10 m/s [85].

4.2.5.4 Temporal discretization - Size of time step

To determine the time step size, the Courant-Friedrichs-Lewy (CFL) number can be used.
In CFD, CFL = 1 is usually recommended for stability. However, with an implicit time
integration scheme, much larger values are allowed. In the current study the time-step
was thus defined as

∆t =
2π

ω∆φ
, (4.25)

where ∆φ = 2−k (k = 0, 1, 2) is the angle of rotation for each tested time step. This
criterion is strongly correlated with the CFL number. Then, the post-processing becomes
very simple, as a single revolution will be 360 ·2k time steps. Of course, the independence
from the temporal resolution still has to be analyzed.

This strategy offers another advantage: if the nodes on the interface are equidistant,
and equal in number to n · 360 · 2k, they will overlap at each time step. Instead of inter-
polation, the values can be copied directly between the moving and stationary domain
(conformal match). This is automatically detected by some solvers (e.g., CD-Adapco
StarCCM+). In the experimental validations 720 points were always used. The study of
Gosselin et al. proposed similar values, i.e., 1000 time-steps [103], while Castelli et al. [34]
or Mâıtre et al. [147] used 360 time-steps per revolutions.

4.2.5.5 Temporal discretization - Number of revolutions

Reaching a quasi periodic solution can require a large number of revolutions, leading to
very long computations. Moreover, when starting the computation, the flow field is not
realistic around the blade. To solve this problem, a two-level approach was applied. In
the first part the flow field around the blade does not necessarily have to be computed
precisely, thus ∆φ = 4...6° is used to speed up the initialization of the flow field. Later,
in the second part ∆φ = 1°, ∆φ = 1/2 °, ∆φ = 1/4 ° or an even smaller value is employed.

In the current study at least 10 (coarse)+5 (detailed) revolutions were always used
(for slower wind speed or faster rotation, the number of revolutions were increased).
Although this seems to be large at first look, similar recommendations are found in
the literature (e.g., Gosselin et al. used 20 revolutions [103], Mâıtre et al. considered
11 revolutions [147]). To evaluate the average performance, only the last revolution is
post-processed.

Although in the present study such a case was never encountered, theoretically, it is
not guaranteed, that a quasi-periodic solution exists: the vortex shedding frequency of
the blades, shaft and rotor might be very different, resulting in a non-periodic torque
signal. E.g., the vortex shedding frequency of the rotor depends on the Strouhal-number;
if no lock-in condition is achieved [13], the torque signal will not be periodic.
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4.2.6 Systematic numerical analysis

In order to identify the optimal setup and mesh for the CFD computations, an extensive
numerical analysis was performed, involving many different tests. In particular, the
domain size, boundary layer resolution, mesh resolution, temporal resolution, different
turbulence specifications and different tip-speed-ratios were analyzed. Unless otherwise
specified, all comparisons have been done with ANSYS Fluent 14.0.

In order to enable a short and quick description of the turbulence models, the fol-
lowing notations are used in all Tables: T0=k-ε Realizable with Enhanced Wall Treat-
ment; T0*=k-ε Realizable with Standard Wall Function (y+ > 30); T2=k-ε RNG (Re-
Normalization Group), T3=Spalart-Allmaras, T4=SAS, T5=k-ω SST, T6=k-ω;
T7=Transitional k-kl-ω; T8=Transitional SST in the standard formulation implemented
in ANSYS Fluent [6]. For selected cases the simulations were performed using StarCCM+
as well to allow for comparison: all models starting with S denote the equivalent model
in StarCCM+ with All-y+ Wall Treatment. As different turbulence intensities and tip
speed ratios result in different stall mechanisms and angle of attacks, four different cases
were tested.

4.2.6.1 Impact of domain size

In order to analyze the effect of the domain size on the performance coefficient, four
different sizes were tested (D1-D4). Table 4.1 presents the performance coefficients for the
corresponding domain size (Linlet, Loutlet and Lsym represent the distance from the central
rectangular area to the inlet, outlet and symmetry boundary, respectively; Lrect = 8 was
kept constant in all cases). The computations were done with λ = 2.28, I = 0.1%,
TVR = 10 and k-ω SST model. All coefficients agreed and the hysteresis curves did not
reveal significant differences either. Choosing the first variant might be inappropriate for
some cases, as it could be on the boundary of the acceptable domain. Hence, D2 was
retained for all further simulations.

Table 4.1: Comparison of performance coefficients for four different domain sizes (λ =
2.28, k-ω SST model)

D1 D2 D3 D4
Linlet[m] 15 20 30 45
Loutlet[m] 30 40 60 90
Lsym[m] 18.75 25 37.5 56.25
Cp[%] 23.58 23.46 23.46 23.75

4.2.6.2 Impact of boundary layer resolution

In order to analyze the effect of the boundary layer resolution, the thickness of the first
layer and the growth rate were varied. A growth rate of 1.1, 1.175 and 1.225 was tested
with different thicknesses resulting in y+

max ∈ [0.23− 3.65] and y+
ave ∈ [0.04− 0.63] for the

last revolution. With λ = 2.28, I = 0.1%, TVR = 10 and k-ω SST model the resulting
coefficients were all within the range of Cp ∈ [23.41 − 23.70], and the hysteresis curves
indicated only very small differences as well. This confirms that when using the default
values (growth rate ≈ 1.2, y+ < 1), the models will deliver suitable results in all cases.
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4.2.6.3 Effects of distance of the interface

In order to analyze the effect of the distance between the interface and blades, four
different distances were tested (see Table 4.3). The computations were done with λ =
2.28, I = 0.1%, TVR = 10 and k-ω SST model. Result have agreed almost completely
for all cases, but choosing the first variant might be inappropriate for some cases, as it
could be on the boundary of the acceptable domain. Hence, I2 was retained for all further
simulations.

Table 4.2: Comparison of performance coefficients for four interface locations (λ = 2.28,
k-ω SST model)

I1 I2 I3 I4
dint[m] 0.5 0.7 1.1 1.5
Lrect[m] 8 8 8.8 9.6
Cp[%] 23.46 23.48 23.52 23.99

4.2.6.4 Effects of the presence of the shaft

In a next test the effect of the shaft was analyzed using the k-ω SST model with I = 0.25%
and L = 0.15 for λ = 2.28. The power coefficients show similar tendencies with and
without the shaft (M4 : 21.48%; M3 : 23.63%; M2 : 23.52%; M1 : 24.77%, for value
with shaft see Table 4.4). The torque coefficient (CQ(φ)) without the shaft was smoother
due to the lack of the Kármán vortex street - blade interaction, but this did not help
improving mesh independency due to dynamic stall and wake-blade interaction.

We nevertheless decided to keep the shaft in the CFD computations.

4.2.6.5 Operating condition 1 - Low turbulence intensity, λ = 3.8

In the first numerical study the turbulence models were analyzed for λ = 3.8 and low tur-
bulence, I = 0.25%, L = 0.15 m. In this case the angle of attack was rather low resulting
in only weak stall effects and in smooth torque curves (see Fig. 4.13). Analysis of the vor-
tex structure revealed a wide filament, as also found by Mâıtre et al. [147]. For all cases
five different mesh configurations were analyzed, with ccalib = 1.5, 1.25, 1.0, 0.75, 0.5.
For the time-steps ∆φ = 1° was applied. When changing the time-step to ∆φ = 0.5°,
the total change in the performance coefficient with the k-ε Realizable model was only
∆Cp = 0.02%. Investigating the performance and torque not only in an integral manner,
but also in a time-dependent sense, revealed no significant changes either. This is in
agreement with the study of Mâıtre et al. [147], where ∆φ = 1° was found to be sufficient
for appropriate accuracy.

As strong dynamic effects are missing, in Fluent solver CFL = 200 (default value) was
used. In StarCCM+ lower values (between 25 and 35) were applied to ensure stability.
The results are presented in Table 4.3, together with the number of cells and with the
number of nodes on the interface (int.).
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Table 4.3: Comparison of performance coefficients for the last revolution for Operating
Condition 1 with 8 different turbulence models Ti, 5 mesh resolutions Mi and 2 CFD
codes.

M5 M4 M3 M2 M1
cell 201k 296k 368k 588k 1089k
int. 360 720 720 1080 1440
CT0
p 40.04 40.14 40.19 40.22 40.23

CT0∗
p 36.86 37.84 38.93 39.72 40.50

CT2
p 35.66 35.24 35.18 34.89 34.38

CT3
p 34.49 34.45 34.50 34.47 34.43

CT4
p 42.44 42.53 42.66 42.83 43.00

CT5
p 42.26 42.36 42.48 42.52 42.54

CT7
p 49.40 49.50 49.66 49.78 49.87

CT8
p 45.47 45.70 46.01 46.51 46.42

CST0
p 40.89 40.99 41.09 41.10 41.44

CST3
p 35.17 35.27 35.34 35.36 35.41

CST5
p 42.50 42.56 42.82 42.95 43.38

The standard k-ω model was tested as well, but resulted in unphysical results. This
is no surprise, since the k-ω standard model is intended only for fully turbulent flows.
In StarCCM+ the AKN (Abe-Kondoh-Nagano) k-ε Realizable model resulted also in
unacceptable oscillations. Model T0* (k-ε Realizable with Wall Function) did not provide
appropriate results either (in this case the boundary layer was calibrated for y+ > 30).
The reason for this failure was that maintaining y+ > 30 and a cell aspect ratio of 1 was
impossible for the finer mesh resolutions.

All models managed to reach ∆Cp = |CM1
p − CM3

p | < 1%, and most of them provided
even stricter results. Thus, the grid corresponding to M3 provides an appropriate reso-
lution. The agreement between StarCCM+ and Fluent is satisfactory as well, although
StarCCM+ always overestimated the power coefficient by approximately 1% compared
to Fluent. However, the hysteresis curves did not reveal significant differences between
StarCCM+ and Fluent. The φ− CQ(φ) curves are presented for blade ’1’ in Figure 4.13
for all turbulence models computed in Fluent.
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Figure 4.13: Comparison of torque coefficients for the last revolution for Operating Con-
dition 1 with 8 different turbulence models for a single blade

4.2.6.6 Operating condition 2 - Low turbulence intensity, λ = 2.28

For Operating Condition 2 the turbulence was still kept low (I = 0.25%, L = 0.15
m), but the tip-speed-ratio was decreased to increase the angle of attack, and thus stall
effects. Due to their inappropriate performance in the first test, following approaches
have not been considered further: k-ε Realizable (T0*) with Wall Function; k-ω (T6),
and Transitional k-kl-ω (due to instability problems with the tested Fluent version when
running it in parallel on Linux). The results are shown in Table 4.4.

For the temporal resolution ∆φ = 0.5° was used. Coarser resolutions did not result
in temporal independency (the hysteresis curves indicated noticeable differences). Using
∆φ = 0.125° resulted in only 1.5% difference for k-ε Realizable model, 0.8% for Spalart-
Allmaras and 2.2% for k-ω SST in the performance coefficient. As the maximal allowable
error was chosen as ≈ 2%, ∆φ = 0.5° was deemed acceptable. One has to keep in mind,
that this excellent temporal independency has been achieved due to the robustness of the
Coupled solver, even at large CFL numbers.
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Table 4.4: Comparison of performance coefficients for the last revolution for Operating
Condition 2 with 6 different turbulence models Ti, 5 mesh resolutions Mi and 2 CFD
codes

M5 M4 M3 M2 M1
cell 226k 266k 370k 547k 1091k
int. 540 540 720 900 1440
CT0
p 35.49 36.30 37.66 38.0 38.65

CT2
p 33.54 33.89 34.77 35.18 35.83

CT3
p 25.27 25.54 26.21 26.27 26.59

CT4
p 21.01 20.80 22.60 22.05 19.90

CT5
p 21.62 21.77 23.63 23.95 24.05

CT8
p 16.53 17.69 18.44 20.29 21.4

CST5
p 19.83 19.68 23.35 22.93 24.65

All models were able to satisfy ∆Cp = |CM1
p − CM3

p | < 2%, except SAS and Transi-
tional SST, where M2 resolution is necessary (in case of T4 (SAS) model the SIMPLE
solver was used due to convergence problems).

The phase-angle dependent torque values are presented in Figure 4.14. As one can
see, the predictions are very different. The largest differences are seen at φ = 60 − 160°
and φ = 200 − 300°, which correspond to the appearance of dynamic stall and wake
interaction. The k-ω based models result in higher fluctuations, while k-ε based models
stay relatively smooth.
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Figure 4.14: Comparison of torque coefficients for the last revolution for Operating Con-
dition 2 for 6 different turbulence models for a single blade

Comparison of vortex shedding mechanism In order to analyze the source of the
difference for the turbulence models, the vortex shedding structure as obtained with the
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different turbulence models are compared in Figures 4.15-4.21. The Figures show the
results as obtained with the k-ε Realizable, Spalart-Allmaras and k-ω SST models, from
left to right, respectively. The shape of the blade was censored due to confidentiality. As
one can see, the three models show a high similarity, despite the very different performance
predictions.

In the first part of the revolution (φ = 0−90°) there is only a wide filament generated
behind the blade. A vortex is formed at the trailing edge at φ = 90° by k-ω SST, at
φ = 100° by Spalart-Allmaras and at φ = 110° by k-ε Realizable. The leading edge vortex
starts to roll up and is shed from the blade at φ = 120° by Spalart-Allmaras, at φ = 130°
by k-ε Realizable and at φ = 110° by k-ω SST.

Reattachment happens approximately at φ = 170° by k-ω SST, at φ = 170° at Spalart-
Allmaras and at φ = 180° by k-ε Realizable. The upstream wake propagates down to the
blade between φ = 210−220°. At this point, the difference between the predictions of the
different models is significant, which explains the different prediction of the oscillations
encountered in the simulations. Around φ = 230° a vortex is shed from the leading edge
(by all models) and reattachment does not happen until φ = 290°. After this point, the
vortex structure is a wide filament again.

Figure 4.15: Vortex shedding (φ = 0° and φ = 60°; StarCCM+)

Figure 4.16: Vortex shedding (φ = 90° and φ = 110°; StarCCM+)

Figure 4.17: Vortex shedding (φ = 120° and φ = 130°; StarCCM+)
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Figure 4.18: Vortex shedding (φ = 150° and φ = 170°; StarCCM+)

Figure 4.19: Vortex shedding (φ = 220° and φ = 230°; StarCCM+)

Figure 4.20: Vortex shedding (φ = 240° and φ = 260°; StarCCM+)

Figure 4.21: Vortex shedding (φ = 280° and φ = 300°; StarCCM+)

Impact of turbulence intensity (I) When comparing different, but low turbulence
specifications, the results were found to be very similar. The comparison was done for
the k-ω SST model, which provided the most fluctuating but still converged solution
for the previous, stall conditions. When varying I, no significant changes were detected
in the time-dependent curves. The performance coefficients were very similar as well,
for instance 23.50% for I = 0.1%, TVR = 10, compared to 23.63% for I = 0.25%,
L = 0.15 m. As the former set of values has been widely used in publications [134, 135],
it was retained for the experimental validations.
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4.2.6.7 Operating condition 3 - High turbulence intensity, λ = 2.28

In the third case the same tip-speed-ratio is retained as in the previous test but with
increased turbulence (I = 7%, L = 0.3 m), based on the NRC wind tunnel [218]. The
results are shown in Table 4.5.

Table 4.5: Comparison of performance coefficients for the last revolution for Operating
Condition 3 with different turbulence models

M5 M4 M3 M2 M1
cell 224k 264k 367k 544k 1085k
int. 540 540 720 900 1440
CT0
p 35.29 35.75 36.67 36.83 37.16

CT2
p 26.85 28.83 29.28 29.47 -

CT3
p 16.65 16.69 16.92 16.96 -

CT4
p - - - - -

CT5
p 21.00 21.24 23.02 23.17 24.15

CT8
p - - - - -

CST0
p 34.19 34.85 36.08 36.44 37.23

CST3
p 15.76 15.96 16.39 16.52 17.00

CST5
p 19.03 19.98 22.00 22.44 24.27

As one can see, the performance coefficients drop down due to the increased turbu-
lence, especially for the Spalart-Allmaras model. Furthermore, the different torque curves
were very smooth in this case. This is no surprise; it was also noted by Wang et al. [221],
that with increasing turbulence intensity the oscillations in the stall phenomenon are
effectively stabilized (damped).

SAS and Transitional models failed to converge, Spalart-Allmaras and k-ε RNG mod-
els have experienced significantly decreased performances, while other models delivered
similar results. The models were again able to reach for all cases ∆Cp = CM1

p −CM3
p < 2%,

thus M3 was deemed as the appropriate resolution, once again. The agreement between
StarCCM+ and Fluent is again satisfactory.

4.2.6.8 Operating condition 4 - Very high turbulence intensity, λ = 2.28

When choosing an extremely large turbulence intensity, as specified by the DIN EN 61400
standard (> 20%), most turbulence models start to have problems. The k-ε Realizable,
RNG and Spalart-Allmaras lead to significantly reduced performance (≈ 27%, 22% and
8%, respectively), while the curves become very smooth and the strong oscillations and
peaks in the hysteresis curves completely disappear. SAS and Transitional SST models
fail to converge and k-ω SST model provides completely unrealistic values. The same is
true for StarCCM+ as well.

4.2.6.9 Final recommendations

Considering all the previous results, M3 resolution was finally chosen, with 367k cells.
This corresponds to at least 720 nodes along the interface and at least 720 nodes along
the blades. A coarser resolution is not sufficient.
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Concerning turbulence intensity, I = 0.1% and turbulent viscosity ratio TVR = 10
is recommended. At least 10+5 revolutions with ∆φ = 0.5° are needed for proper time-
resolution. Resolving 720 time steps per revolutions together with at least 720 points on
the interface ensures CFL ≤ 1 for stability.

4.2.7 Experimental validation process

Although most standard turbulence models managed to reach mesh independency at
M3-level, they delivered significantly different results concerning performance. In what
follows, four experimental measurement campaigns are compared with the results of 2D
CFD computations in order to help identifying the most suitable model.

For all comparisons the previous recommendations have been taken into account.
Although the integral Cp values are not able to capture all aspects of the flow (e.g.,
the time-dependent distribution of forces and torque in a single rotation), PIV or LDV
measurements are rarely available in the literature and difficult to obtain. Using such
data would make it impossible to compare a wide range of rotors and Reynolds numbers.
Due to the lack of data, in the followings only performance coefficients will be compared.

The main purpose of the validation process was to see, if the differences between
experimental measurements and 2D simulations show a systematic tendency, then opening
the door for quantitative predictions based on 2D simulations. At the end this was indeed
observed, but only for the k-ε Realizable model and the k-ω SST model. The differences
compared to experiments were found to be constant, or cubic with the tip-speed-ratio,
respectively. A constant offset was already observed for the k-ε Realizable model in other
works as well [34]. The cubic offset found for the k-ω SST model is probably associated
to the strut losses, though further studies are needed to prove this point.

In all cases the original experimental measurements and the characteristic curves of
the 2D simulations are first shown unaltered, along with the modified curves taking into
account the offset (constant for k-ε Realizable, cubic for k-ω SST) obtained from a best
fit.

4.2.7.1 Validation 1

The first validation is based on the investigated geometry of the industrial project. For
this, the rotor was placed on a platform moving at constant speed (similar, e.g., to Gorle
et al., who analyzed the flow around a Darrieus water turbine in a towing tank [102])
and an anemometer was fixed at midheight in front of the rotor. The wind speed was
recorded every second.

In a first step the turbulence spectrum was analyzed by defining the turbulence in-
tensity as a function of the time window (N∆t, i.e., the duration used to compute the
turbulence intensities). If the velocity with i samples after the arbitrary t0 time is de-
noted as u(t0, i) = u(t0 + i∆t), the turbulence intensity for a time window of N steps
(twindow = N∆t) after t0 can be defined as:

I(t0, N) =

√
1
N

∑N
i=1

(
u(t0, i)− 1

N

∑N
i=1 u(t0, i)

)2

1
N

∑N
i=1 u(t0, i)

. (4.26)
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Then, if the total time domain of the measurement is denoted with T, the average tur-
bulence intensity with a time window of twindow = N∆t can be defined as:

I(N∆t) = I(t0, N) ∀t0 ∈ T (4.27)

The I(N∆t) curve was computed and plot-
ted in Fig. 4.22 for all the measurements
(denoted as all), for a single measurement
(stat.; length of the measurement: 2821 s),
where the mobile platform was standing
and for a single measurement, where the
mobile platform was moving (mov.; length
of the measurement: 1169 s). As one can
see, the standing and moving spectra are
significantly different; in the moving case
the vibrations of the platform during move-
ment increase significantly the measured
intensities.
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Figure 4.22: Measured turbulence spectra
for different time windows

However, although the turbulence is high, the turbines are operating at smaller time
scales than the atmospheric turbulence. Thus, only a part of the spectra will interact with
the blades, where the frequency of the wind speed oscillations is similar to the frequency
of the rotation [129]. This means, that the rotor will feel turbulence and gusts rather
as a quasi-steady flow. In the N∆t < 4 s range (inlaid plot) the curves collapse with
very low turbulence intensities. This explains and justifies the common practice of using
low-turbulence intensities in URANS-based simulations of wind turbines, even under real
wind conditions.

As measurements themselves are very unsteady concerning wind speed, rotation speed
and torque, a filtering method was applied. Only measurement intervals (N∆t) were
accepted, where the root-mean-square of the rotation speed and wind speed stayed below
a specified limit compared to the average. Uniformity factor was defined as

Ψω =
ωRSM
ωmean

,Ψu =
uRSM
umean

≡ I. (4.28)

Afterwards, the corrected efficiency can be determined using the energy balance:

η2D ≈
Ee − Es + Eoutput + Ebearing + Estrut

Ewind
, (4.29)

where Es = 0.5Izω(t0)2, Ee = 0.5Izω(t0 +N∆t)2

Ewind = 0.5ρA

∫ t0+N∆t

t=t0

u(t)3dt , (4.30)

Ebearing ≈Mbearing

∫ t0+N∆t

t=t0

ω(t)dt , (4.31)

Finally, all measurement points were formed with N = 8 length (see Eq. 4.30), and
these measurement points were filtered to include only points with 6 < u < 11 m/s and
with uniformity factor Ψmax

u = 0.16, Ψmax
ω = 0.06.
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From these points, tip-speed-ratio intervals were formed (λmin,i ≤ λ ≤ λmax,i), and for
each interval a single point was computed by averaging the tip-speed-ratio and the per-
formance for the bin, forming a characteristic curve. The filtered measurements points,
together with the obtained characteristic curve are presented in Figure 4.23. The char-
acteristic curve has been already compensated for strut losses (based on an analytical
model [176]) and bearing losses.
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Figure 4.23: Experimental validation (1) based on own measurements

For this experimental comparison the curves were computed using CD-Adapco Star-
CCM+, with k − ε Realizable, k − ω SST and Spalart-Allmaras model. As one can see,
the overall prediction of the location of the maximal performance is excellent, but the
turbulence models exhibit a very interesting tendency. With the k-ε Realizable model,
the numerically evaluated curve shows a constant offset of ∆Cp = 0.1 compared to the
experiment. Alternatively, the k − ω SST model exhibits roughly a cubic offset with
∆Cp = 0.002λ3. As the curves were compensated for bearing and strut losses, the differ-
ences can only originate from junction wake interaction, wing-tip losses and turbulence
effects.

4.2.7.2 Validation 2

The second validation from the literature is based on the experimental work of Bravo et
al. [28], where a small (H = 3 m, D = 2.5 m), high-solidity (N = 3, c = 0.4 m) rotor
was tested in the NRC 9 m x 9 m Low Speed Wind Tunnel in Ottawa (I < 2% [129]).
The rotor used NACA0015 profiles. The mount position was at 0.5c [86] and the trailing
edge rounding was 4 mm [129].

Experiments have confirmed, that the characteristic curves of the Cleanfield rotor
were almost invariant for 8 m/s ≤ u ≤ 16 m/s (ω = const.). The experiments were
performed for the 0.8 < λ < 2.2 domain, the maximum power coefficient achieved was
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Cp = 0.3 for λ = 1.6. It was further revealed in the work of Fiedler and Tullis [86], that
the frictional and strut losses were quite large, 50-500 W between 40-200 rpm. The study
has also revealed, that the mounting position (i.e., location of the chord-strut connection)
has quite a large effect on the rotor. Mounting at 145 mm instead of 200 mm (c = 400
mm) resulted in a performance loss of almost ∆Cp = 0.086.

The performance curve in the wind tunnel and on the rooftop (thus in turbulent
urban environment) were very close to each other [129]. Even with 25 % fluctuations the
performance dropped only by 10%, showing that the urban environment has very little
impact on the performance.

In the simulation the rotor was placed in an open field. The curves were computed
using ANSYS Fluent. About 1700 points were used to resolve the blade with u = const. =
10 m/s. The resulting number of cells was around 530,000.
Figure 4.24 shows the characteristic curves
with ”Exp.” as obtained in [28]. The shaft
losses were added to this curve as measured
in [86] (denoted with Exp. (+shaft)). As
the struts were not aerodynamic, the as-
sumption must hold that large cubic losses
are present. The results with the different
turbulence models are shown as well. In
case of the Transitional model the trend
is not correct as the optimal tip-speed ra-
tio is shifted to larger values. Interestingly,
for the present geometry all other models
agree approximately with each other. All
models predict the optimal tip-speed ratio
almost correctly.
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Figure 4.24: Experimental validation (2)
based on [28]

When using a cubic correction (”Exp. (+shaft+corr.)”, ∆Cp = 0.02λ3, computed for
the best fit), the agreement is even better. Unfortunately, without knowing the exact
geometry it is not possible to determine more accurately the corresponding cubic losses.

4.2.7.3 Validation 3

The third validation is based on the experimental work of Kjellin et al. [127]. In this
field test a three-bladed Darrieus rotor with 12 kW rated power output (u = 12 m/s),
H = 5 m height and D = 6 m diameter was tested and measured for around 350 h. The
blades were NACA0021 airfoils, with c = 0.25 m chord length and tapered end to reduce
the wingtip losses (the mounting position was not indicated in the original article, but
the difference in the pitch angle between 0.25c and 0.5c corresponds only to ∆β = 0.6°).
The rotor used passive stall regulation with a direct drive. The test was conducted at 48 -
57 rpm. The blades were mounted with two struts at 17.6°, the struts having NACA0025
profile with 280-320 mm chord length. With the tested constant rotational speeds, the
optimal performance of Cp = 0.29 was found at λ = 3.30. Comparisons are presented in
Fig. 4.25. The computations were carried out using ANSYS Fluent. About 1200 points
were used to resolve the blade. A shaft with 200 mm was added to the simulation as well.
The total number of cells was around 815,000.
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In Figure 4.25, the typical behavior of
the turbulence models can be seen again.
The Transitional SST model overestimates
the performance coefficient and the opti-
mal tip-speed-ratio as well, due to the lack
of calibration of the empirical correlation
function. The k-ε Realizable model is able
to predict the shape of the characteris-
tic curve and the location of the maxi-
mal performance, but not the exact val-
ues. Instead, it shows a constant offset
(∆Ccorr

p = 0.14). The modified curve (see
k-ε Real. corr.) shows a very good agree-
ment. A similar behavior was experienced
by Castelli et al. for a different wind tur-
bine [34].
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Figure 4.25: Experimental validation (3)
based on [127]

For k-ε RNG neither the values nor the optimal tip-speed-ratio are predicted correctly.
In case of the Spalart-Allmaras and k-ω SST models the tendency is completely different.
At low tip-speed-ratios the prediction is rather accurate; but, at higher λ-values the
differences increase. It is interesting to note, that the difference is again cubic in nature
(∝ λ3). The same tendency can be found, e.g., in [3]. When using a correction factor of
∆Ccorr

p = −0.0021λ3, the resulting curve (k-ω SST corr.) shows a very good agreement
for the whole domain. However, estimating the strut losses analytically (CD0 = 0.01288),
they can account only for about 30 % of these cubic losses. It remains unclear yet where
the further difference finds its explanation.

4.2.7.4 Validation 4

The 4th and last validation was based on the work of Castelli et al. [34]. The authors have
numerically and experimentally analyzed a three-bladed Darrieus-rotor with D = 1030
mm diameter and c = 85.8 mm camber length using a NACA0021 airfoil. The rotor had a
small aspect ratio, with only H = 1456.4 mm height. For the location of the spoke-blade
connection 0.5c was used [35].

The blunt edge (0.38 mm) of the airfoil was disregarded. In the experiment, 9 m/s
wind speed was tested in a wind tunnel with 4000x3840 mm cross-section. The blockage
was not considered in the simulation. About 840 points were used to resolve the blade,
the shaft was disregarded. The total number of cells was around 330,000, ANSYS Fluent
was used for the simulations. The results can be seen in Fig. 4.26.
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In their study, Castelli et al. have found,
that k-ω SST model is the most appro-
priate model in 3D, while k-ε Realizable
model is the most accurate in 2D. One can
see, that the present study further confirms
this observation. Indeed, k-ε Realizable
shows an acceptable agreement. In spite
of an overestimation at lower tip speed ra-
tios, the optimal tip speed ratio is correctly
predicted. The overproduction at low λ
might be a consequence of the mounting
position, since T0* shows the characteris-
tic curve obtained for 0.25c mounting (as
computed with StarCCM+).
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Figure 4.26: Experimental validation (4)
based on [34]

In case of the k-ω SST model the performance curve is shifted slightly to higher tip-
speed-ratios. The underestimation at low TSR values for this model was observed as well
in many different studies [103,147], but remains unexplained yet. The agreement between
the present computations and the computations of Castelli et al. is very good concerning
the location of the maximal value, but the absolute values do not agree, though all models
are identical. The origin of this discrepancy could not be explained yet.

4.2.8 Conclusions and summary

In the present section, URANS-based 2D computations of H-Darrieus wind turbines were
analyzed and compared. Deriving a proper URANS tool is of considerable importance,
since such an approach opens the door to performance optimization, as corresponding
simulations are relatively fast. For this purpose mesh independency, temporal discretiza-
tion, the effect of turbulence intensity and the impact of different turbulence models
have been checked. After identifying an optimal value for these parameters, an exten-
sive validation campaign was performed by comparison with independent experimental
measurements. Experimentally measured characteristic curves were compared with the
results of different turbulence models using CFD computations with StarCCM+ and
Fluent. The results with the different software showed a very good agreement.

Finally, two turbulence models were identified that lead to the best systematic agree-
ment:

1. The k-ε Realizable model was able to predict correctly the location of the optimal
tip-speed-ratio in all four cases, with an almost constant offset of Cp compared to
the experimental measurements.

2. The k-ω SST model with a cubic correction delivers also an excellent prediction for
all four cases.

Furthermore, at higher tip-speed-ratios (where losses are significant) k-ε Realizable
and k-ω SST models agreed, but at lower tip-speed-ratios (where losses are less dominat-
ing), the k-ε Realizable model showed a significant overestimation, while k-ω SST model
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indicated agreement. Thus, for following studies the k-ω SST model will be recommended
(it is able to predict the performance curves at least for one region correctly). The k-ε
Realizable model seems to underestimate stall effects. Additional 3D computations were
performed confirming indeed, that strut losses and endplate friction losses are really cubic
in nature and significant (results are not presented due to confidentiality).

In the present section, it was presented through a very detailed example that numerical
validation is an essential part of an optimization process, sometimes even more demanding
than optimization itself. In the next section, an optimization will be executed based on an
exemplary geometry to show the effectiveness of the chosen method.
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4.3 Optimization of a H-Darrieus rotor blade

In the previous section the numerical validation of the CFD setup was presented. This
pointed out the importance of the appropriate validation of models. In fact, such valida-
tions can require in some cases significantly longer time than the optimization itself. This
is the case here as well: the validation took 10-12 months, while the optimization required
“only” 2-3 months of run-time.

In the followings, the optimization process will be presented with the parameterization
and detailed analysis of results.

4.3.1 Introduction to the current analysis

As commercially available rotors already exhibit large performance (large-size HAWTs
can reach up to 50%) further improvements are unlikely to be achieved by the usual
trial-and-error engineering design approach. Instead, systematic optimization approach
is needed. For this reason, the aim of the current study is to optimize the shape of the
airfoil to achieve higher performance (Cp).

4.3.1.1 Optimization of wind turbines in the scientific literature

There are already a few studies dealing with optimization of wind turbines, but most of
these studies lack high-fidelity performance evaluation methods or systematic optimiza-
tion algorithms. E.g., Fischer et al. [87] used a Blade Element Momentum (BE-M) code
instead of CFD for the multi-objective optimization of HAWTs. Although the present
study considers only performance, annual energy yield [20], aero-elastic behavior and
loading [32,33], noise [43,63,157], optimal layout [92] or robustness [143], cost [179,215],
or structural optimization [25] could also be considered. Simultaneous consideration of
several objectives, i..e, real multi-objective optimizations are even scarcer (Göçmen and
Özerdem [100] or Sleesongsom and Bureerat [199]).

4.3.1.2 Aim of the analysis

The ultimate goal of the present study is to perform a blade shape optimization for
VAWT rotors. Besides the obvious question (what is the optimal geometry), additional
questions to be answered are:

- Are there more efficient geometries than the classical airfoils used in many studies?

- Are the optimal blade geometries cambered and/or pitched?

- Are the results robust regarding the turbulence modeling (i.e., does the blade
maintain its efficiency, when performance is evaluated with a different turbulence
model)?

- How could significant improvements be achieved?

95



4.3.2 Setup of CFD Model

4.3.2.1 Exemplary rotor geometry

In the present study an exemplary rotor was analyzed and optimized. The exemplary
geometry was chosen to avoid any confidentiality requirements, so that the full speci-
fication of the rotor geometry can be given without industrial restrictions. Thus, this
study can be repeated or continued by any group and can be used as a good reference for
further studies. Furthermore, a similar size was chosen as by Mohamed [155], enabling
comparisons.

The rotor has three straight blades (N = 3) with R = 1 m rotor radius. All airfoils
have a sharp trailing edge (instead of blunt or rounded trailing edge) with c = 100 mm
camber length, mounted at 0.25c. The resulting solidity is σ = Nc/(2R) = 0.15. Shaft
was neglected in all CFD simulations.

4.3.2.2 Spatial discretization

The mesh was created with ANSYS Gambit 2.4.6 using a hybrid (structured-unstructured)
quadrilateral mesh, following the recommendations of [54], as presented earlier. However,
as the rotor is smaller compared to the original study, mesh sizes were reduced propor-
tionally: on the blades 0.25 mm, in the middle of the rotating domain 9.17 mm, around
the blades 3.2 mm, in the stationary domain 60 mm, around the interface 40 mm mesh
size was applied, resulting in approximately 500,000-520,000 two-dimensional quadrilat-
eral finite-volume cells and 700-750 nodes on the airfoil walls. The boundary layer was
calibrated using the Schlichting correlation to ensure y+ ≈ 1, following the recommen-
dations of Mâıtre et al. [147]. The interface contained 720 nodes to ensure conformity
throughout the computations and to minimize interpolation errors. Finally, to eliminate
the effect of boundaries, a relatively large domain with 68 m× 58 m was applied.

4.3.2.3 Simulation settings

Based on the previous section, the settings are summarized as follows:

- The flow around Darrieus rotors was modeled as incompressible (M < 0.3), wind
speed is fixed to 8 m/s.

- Reference density ρ = 1.225 kg/m3 was chosen according to DIN EN 61400 [71],
the dynamic viscosity was correspondingly µ = 1.7894 · 10−5 Pa s.

- Second-order implicit temporal discretization is applied with second-order (central
or upwind) derivatives.

- In the first step at least 10 revolutions were computed with lower temporal resolu-
tion (72 time steps per revolution) to initialize the flow field.

- In the second step at least 5 high-resolution revolutions were computed, with 720
time steps per revolution (∆ϕ = 0.5°).

- For each time step, 24 inner iterations were computed.

- Only the last quasi-periodic revolution was used for post-processing.

- k-ε Realizable and k-ω SST models were considered, with the Coupled solver.
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- The sides of the domain were defined as velocity inlet, pressure outlet and symmetry
boundaries. At the inlet, I = 0.1% and turbulent viscosity ratio of 10 was retained
in agreement with recommendations from the literature [54, 134,135].

4.3.2.4 Characteristic curve of the reference rotor

In order to determine the optimal tip-
speed-ratio for the chosen solidity, a
NACA0021 profile was retained and the
complete characteristic curve was de-
termined (based on the points λ =
2; 2.5; 3; 3.5; 4; 4.5; 5), see Figure 4.27.
As one can see, the rotor has its optimal
tip-speed-ratio at 3.5 with Cp ≈ 36.98%
(k-ε Real.) and Cp ≈ 38.72% (k-ω SST).
Thus, this tip-speed-ratio was retained for
the further optimization.

k-ε Real.
k-ω SST

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1.5  2  2.5  3  3.5  4  4.5  5

TSR(λ)

P
o
w

e
r 

c
o
e
ff
ic

ie
n
t 
(C

p
)

Figure 4.27: Characteristic curve of the
exemplary rotor

4.3.2.5 Spatial and temporal independency

In order to test if the setup is correct,
mesh, temporal independency and
convergence were analyzed for the ref-
erence geometry with the k-ω SST
model. Analyzing only the optimal
tip-speed-ratio may not be enough,
as several airfoils may move into the
stall region during the optimization.
Figure 4.28 shows the torque coeffi-
cient for doubled temporal resolution
(1440 time steps per revolution) and
refined mesh (all mesh sizes were re-
duced to 75 %, resulting in 990,000
cells). The figure additionally shows
the results for the penultimate rev-
olution, demonstrating appropriate
convergence toward periodic steady-
state.
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Figure 4.28: CQ(ϕ) curves for a single blade for
λ = 2.5&3.5, improved mesh and temporal res-
olutions are compared to the original simulation
(base) and for the penultimate revolution (N−1)
with k-ω SST model

When looking at the performance coefficients, appropriate convergence was confirmed
again, i.e., differences stayed below the predefined ∆Cp = 2% accuracy range of the
optimization: for λ = 3.5 values changed from Cp = 38.72% to Cp = 38.75% and Cp =
38.93%, for λ = 2.5 from Cp = 11.69% to Cp = 13.46% and Cp = 12.14%, for the base,
refined temporal and refined spatial simulations, respectively.
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As the mesh resolution around the blades might be slightly different for the dif-
ferent geometries, the mesh size along the blade walls was further reduced by 5 %
(to 0.2375 mm) in the final optimization.

4.3.3 Setup of the optimization

The complete optimization process was implemented in the OPtimization Algorithm Li-
brary++, as presented earlier. One additional modification was added, to increase the
robustness of the process. Should the mesh generation process fail in Gambit (due to
unspecified error), OPAL++ will try to generate a second mesh with 0.225 mm resolution
of the blades (additional 5% refinement).

4.3.3.1 Parameterization

For an optimization the appropriate choice of the parameterization is at least as impor-
tant as choosing the right algorithm or a stable automation (as presented in Chapter 3).
When using too many parameters, methods will converge much slower; when using not
enough parameters, one might miss the optimum. For the description of an airfoil ge-
ometry, many different options are available. Popular approaches are to use NACA4
parameterization [73], PARSEC-11 parameterization [149, 200] or different polynomials,
like Bézier-curves or NURBS [217]. Alternatively, instead of a parameterization one could
use a direct topology optimization as widely done in structural optimizations [61].

In the current study, three different methods were tested in a preliminary optimization:
a) Bézier-curves, b) description based on the radius of inscribed circles and c) an extended
NACA4 method [57] (called exNACA from now on). For the optimization, the latter
method was finally retained, as it produced very realistic airfoils and could describe
NACA4 and other classical airfoils with high accuracy as well. When using Bézier-curves
the convergence was slower, as the variables of the optimization (i.e., the coordinates of
the control points) had no direct physical meaning. Method b) produced many unrealistic
or distorted geometries.

With exNACA parameterization, the non-dimensional shape of the airfoil is defined
similarly to NACA4, by the thickness and camber. The thickness of the airfoil is defined
as for NACA4:

t(x) = a0

√
x+ a1x+ a2x

2 + a3x
3 + a4x

4. (4.32)

This equation automatically satisfies dt(x)/dx
∣∣
x=0

= ∞ and t(0) = 0. The coefficients
are determined using the following criteria:

t(1) = 0, t(pt) =
tmax

2
(4.33)

dt(x)

dx

∣∣∣∣
x=1

= −st,2
tmax

0.2
;

1

2

(
tmax

0.2
a0

)2

= rL (4.34)

where rL is the leading edge radius, tmax is the maximal thickness, pt is the location of
the maximal thickness and st,2 is the first derivative of the thickness at the trailing edge.
NACA4 uses in comparison pt = 0.3, t(1) = 0.002, t(0.1) = 0.078 (corresponding to
1.1t2max) and st,2 = 0.234 (for tmax = 0.2). However, in the present formulation, pt, tmax,
st,2 and rL all remain parameters, resulting in an increased flexibility.
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The camber-line is defined in a more flexible form compared to NACA4 (with cubic
functions instead of quadratic):

c(x) =

{∑3
i=0 bix

i if 0 ≤ x ≤ pc∑3
i=0 cix

i if pc ≤ x ≤ 1.
(4.35)

The coefficients can be determined using the following equations:

c(0) = 0, c(1) = 0, c(pc) = cmax, (4.36)

dc(x)

dx

∣∣∣∣
x=0

= sc,1
cmax

0.2
,
dc(x)

dx

∣∣∣∣
x=1

= −sc,2
cmax

0.2
, (4.37)

where the variables of the parameterization are the derivatives at the extremes (sc,1, sc,2)
together with the value and location of the maximal deviation from the axis (pc, cmax).

The dimensionless airfoil is computed afterwards by using the same transformation
as NACA4 [73], i.e., the x- and y-coordinates of the lower(-) and upper (+) contours are
computed as:

p± =

(
x±

y±

)
=

(
c(x)∓ t(x) sin(Θ)
c(x)± t(x) cos(Θ)

)
, (4.38)

where the rotation of the camberline is

Θ = arctan
dc(x)

dx
. (4.39)

Finally, the airfoil is scaled up to the camber length (c), moved to the mounting position
(0.25c) and rotated around the mounting point with the pitch angle (β). Fixing the
mount position is necessary, as the pitch angle and the mounting position are not inde-
pendent [86]. Moreover, the pitch angle is a very important optimization parameter, as
studies have confirmed that a correctly chosen pitch angle leads to improved performance
for VAWTs [86]. Throughout the study, the parameter space presented in Table 4.6 is
applied for the optimization.

Table 4.6: Parameter space for the optimization

Param. β pt tmax rL st,2 pc cmax sc1 sc2
Min. −5° 0.25 0.06 0.005 0.01 0.25 −0.15 0.7 0.01
Max. 5° 0.35 0.3 0.08 0.3 0.35 0.15 2.0 0.2

4.3.3.2 Constraints

Unfortunately, not all generated profiles are correct and can contain different errors. In
order to ensure, that only realistic profiles are evaluated, several constraints were applied.
Thus, only airfoils were accepted, that ensured that (C1) the thickness function is always
positive, (C2) the camber function does not change sign, (C3) the thickness and (C4)
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camberline functions have only one extremum and (C5) the contours cannot contain any
fracture:

(C1) : t(x) > 0 ∀x ∈ [0; 1]. (4.40)

(C2) : c(x1)c(x2) ≥ 0 ∀x1, x2 ∈ [0; 1]. (4.41)

(C3) :
dt(x)

dx

∣∣∣∣
x1

= 0;
dt(x)

dx

∣∣∣∣
x2

= 0 → x1 = x2, (4.42)

(C4) :
dc(x)

dx

∣∣∣∣
x1

= 0;
dc(x)

dx

∣∣∣∣
x2

= 0 → x1 = x2, (4.43)

(C5) : lim
δx→0

(
arctan

dp±y (x+ δx)

dx
− arctan

dp±y (x)

dx

)
= 0 ∀x ∈ [0; 1]. (4.44)

The coordinates of the contours were computed at 600 different locations. Then, the
generated file was forwarded to Gambit 2.4.6 for mesh generation. If (C1-C5) were not
satisfied, the configuration was marked invalid in OPAL++.

4.3.3.3 Objective functions

The goal was to maximize the performance coefficient (Cp → max) corresponding to the
optimal tip-speed-ratio (λ = 3.5), computed from the ultimate revolution.

4.3.3.4 Optimization with Genetic Algorithm

For the optimization a single-objective genetic algorithm (called GENETIC1 in OPAL++)
was applied. The properties of this method (already described in Chapter 1) and the ap-
plied settings are summarized below:

- All variables have a real representation.

- Each generation contains N individuals.

- Tournament with 2 cycles is used to select parents.

- SBX is used for cross-over with distribution index of ηc = 20 and probability of
pc = 0.8 [66].

- Polynomial mutation with distribution index of ηm = 10 and probability of pm =
1/9 is applied [67,68].

- Elitist selection is applied (individuals are immortal to preserve information, but
only the best N individuals survive).

Although there is no guarantee that the method will converge to the global optimum
(far more evaluations would be needed), the simple Genetic Algorithm managed to find
significantly improved configurations, demonstrating its efficiency.
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Initialization of the first generation

To provide a better coverage of the
search domain, a low-discrepancy quasi-
random sequence, the Sobol sequence,
was applied [122] for the initial gener-
ation instead of using a random popu-
lation. This not only ensures that the
domain is well covered, but additionally,
when starting the optimization with dif-
ferent turbulence models, it is guaran-
teed that initial generations will contain
the same configurations. The coverage
of the parameter space (see Table 4.6) is
shown using a parallel plot for N = 72
in Fig. 4.29.
To speed-up convergence, some classical
airfoils, e.g., NACA0021, were added to
the first generation.
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Figure 4.29: Design-Of-Experiment with Sobol
method for N = 72

However, to be able to include these profiles in the optimization efficiently (i.e., with
cross-over and mutation operators as well), the airfoils had to be reproduced using the
exNACA parameterization. A preliminary optimization was executed for each profile
with the objective to minimize the distance between the points of the reference profile
and the newly computed profile. This was successfully achieved with maximally 70 µm
error, which is well below manufacturing tolerances.

4.3.4 Results

The optimization was executed on
the Neumann High Performance
Cluster of the Otto-von-Guericke
University. Each CFD simulation
was executed by using all 16 cores
of a single node (2× Intel Xeon
E5-2630 v3), and N nodes were
used for the optimization process
simultaneously (N being the num-
ber of individuals in a single gen-
eration). With both turbulence
models, a single computation took
approximately 16-18 hours, de-
pending on the configuration.
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Figure 4.30: Distribution of mesh sizes and run-
time during the optimization (red=k-ε Realiz-
able; blue=k-ω SST)

The histogram of the necessary runtime (after removing invalid individuals and a few
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outliers above 24 hours) and the mesh size distributions are presented in Figure 4.30. As
one can see, the runtime shows a very similar distribution to the Gaussian. This also
highlights, why one cannot achieve 100% efficiency in the parallelization of CFD-based
optimizations.

In the followings, as they are of special interest, the following geometries have a special
notation:

- NACA0021: NACA0021 without pitch and with a sharp trailing edge;

- NACA0021*: NACA0021 with pitch;

- OPTε: best configuration found in the optimization process with k-ε Realizable
model;

- OPTω: best configuration found in the optimization process with k-ω SST model;

- OPTS
ω: best configuration found in the optimization process with k-ω SST model

with the camber removed (S means Symmetric, cmax = 0).

4.3.4.1 Optimization with k-ω SST model

Optimization process In this optimization N = 72 individuals were applied for each
generation, resulting in the simultaneous use of 1152 processor cores. Altogether 14
generations were computed. Out of the 1008 generated individuals, 888 resulted in valid
evaluations (valid geometry, mesh & CFD computation). The optimization process is
presented in Fig. 4.31.

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0  144  288  432  576  720  864  1008

best ind.
all ind.

Cp

evaluation

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  256  512  768

Cp

evaluation

Figure 4.31: Optimization with the k-ω SST model
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The configuration, which is denoted as OPTω (see Fig. 4.32), had an impressive perfor-
mance coefficient of Cp = 48%. With the increasing number of generations the improve-
ments became smaller in the subsequent generations, i.e., the optimization converged. In
Figure 4.32 one can compare the different airfoil shapes. Comparing OPTω and OPTS

ω

reveals, that the camber is not very significant. Interestingly, the optimal profile is not
curved towards the centre of the circle, but outwards (green arrow shows the location
of the axis of rotation). When applying the pitch angle of OPTω to NACA0021, the
resulting NACA0021* profile seems to be significantly thicker compared to OPTω.

NACA0021
*

OPTω
S

OPTω OPTε

Figure 4.32: Comparison of the different geometries obtained by optimization

Modality

After the optimization, solutions
near the optimum were analyzed.
All solutions were filtered, for
which the CFD simulation predicted
Cp(OPTω)− Cp < 2%, i.e., all solutions
with 46% < Cp < 48%. These configu-
rations are displayed in Fig. 4.33 using
a parallel plot [117]. As one can see, the
optimal solutions all share similar pitch
angles, thickness and camber. However,
regarding the first derivative of the
thickness at the trailing edge (st,2),
two dominant values are present. This
indicates that the present problem may
show multi-modality, instead of having
one single global optimum. For a more
efficient exploration of the multi-modal
solutions, Firefly method could be used
in future research [230].
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formance)

Multi-fidelity analysis When comparing the performance coefficients computed from
the ultimate (Cp in Table 4.7) and penultimate revolutions (Cp,N−1 in Table 4.7), very sur-
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prising findings are to be seen. For NACA0021, the differences are very small
(∆Cp < 0.13%), while for OPTω the differences are quite large (∆Cp < 0.92% and
∆Cp < 0.42% for k-ω SST and k-ε Realizable model, respectively). This indicates,
that although for several geometries the validation in the previous chapter may be appro-
priate, but for others more revolutions would be necessary, as recommended by Balduzzi
et al. [11].

Using a very strict criteria would increase the computational time several times. How-
ever, one should not forget, that even in the presence of an error the optimization process
and its result still remain valid, as long as there is a clear trend (i.e., the error exhibits a
systematic bias). This means that the optimization only has to show the right direction!
Such an approach is widely used in multi-fidelity optimization processes.

To reduce the effect of this convergence problem, the temporal resolution was increased
to 10 (5°/time step)+10 (0.25°/time step), halving the size of the time step and doubling
the number of revolutions. The results obtained with this second fidelity are denoted as
C2
p . The performance coefficient of NACA0021, OPTω, OPTS

ω and NACA0021 with the
pitch angle of OPTω (denoted as NACA0021*) were recomputed using k-ω SST and k-ε
Realizable models as well; values are presented in Table 4.7. With 10+10 revolutions,
the total physical time computed was 4.55 s, requiring 62 hours of runtime with 16
cores. To analyze the convergence further, the computation of NACA0021 and OPTω

was extended to simulate in total 27 seconds (> 120 revolutions). Performance coefficients
were computed again (denoted as fidelity level 3: C3

p), resulting in 37.91% and 41.80% for
the ultimate and penultimate revolution as well for NACA0021 and OPTω respectively.
Hence, at this point, results were completely converged.

Table 4.7: Performance coefficients of the different airfoils with different models and
fidelity

Model NACA0021 NACA0021* OPTω OPTS
ω

Cp(k-ε Real.) 37.22% - 42.8% -
Cp,N−1(k-ε Real.) 37.32% - 43.22% -
Cp(k-ω SST) 39.06% - 47.96% -
Cp,N−1(k-ω SST) 39.19% - 48.88% -

C2
p(k-ε Real.) 36.95% 37.56% 41.19 % 41.00%

C2
p,N−1(k-ε Real.) 37.00% 37.64% 41.33% 41.14%

C2
p(k-ω SST) 38.76% 39.86% 45.74% 44.82%

C2
p,N−1(k-ω SST) 38.82% 39.97% 46.01% 45.03%

C3
p(k-ω SST) 37.91% 38.70% 41.80 % -

C3
p,N−1(k-ω SST) 37.91% 38.70% 41.80% -
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The instantaneous torque coeffi-
cients of OPTω with k-ω SST (fi-
delity level 1,2,3) and k-ε Realiz-
able (fidelity level 1,2) models are
compared in Fig. 4.34. As one
can see, the differences are small
and both models agree to a large
extent, showing only smaller off-
sets at the highest angle-of-
attack (60° < φ < 120°) in the
upstream zone and at wake-blade
interaction (210° < φ < 330°) in
the downstream zone. As Cp is
an integral quantity, the small
offset still results in noticeable
differences.
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Figure 4.34: CQ(ϕ) curves for a single blade (λ = 3.5)
with two different turbulence models for OPTω

Source of improvement Using fidelity level 2 and k-ω SST model, the source of the
improvements was analyzed. As one can see in Table 4.7, the improvement originates
from many different sources. Comparing OPTω and OPTS

ω reveals, that the cambered
geometry is indeed slightly superior compared to the symmetric variant (∆Cp = 0.92%).
This means, that asymmetric geometries could be superior for practical applications.

Furthermore, the optimized blades have a significant pitch angle (β > 4°). When
applying this pitch angle to NACA0021, an improvement is achieved for this profile
as well (∆Cp = 1.1%). However, the pitched geometry still does not have the same
performance as OPTS

ω (∆Cp = 5.88%). This means that actually the new airfoil shape
helps in providing a superior performance. Summarizing, using a camber, a pitch angle or
a different airfoil shape alone can provide an improved performance. However, using an
optimal camber (∆Cp = 0.92%), airfoil (∆Cp = 5.88%) and pitch (∆Cp = 1.1%) together
results in a significantly improved performance. Although it could be tempting to use
the optimal values of the present case for a different wind turbine, one should not forget,
that these parameters have a strong interaction with each other. Therefore each turbine
should have a (slightly) different optimal pitch angle, camber and airfoil shape. When
checking fidelity level 3, OPTS

ω is still significantly better compared to NACA0021.
Looking at the instantaneous torque values (see Fig. 4.35), the mechanism behind

the improvement becomes clear. Applying the pitch angle and modified airfoil shape
results in decreased torque values and thus energy extraction in the upstream zone
(30° < φ < 120°). This reduced energy extraction results however in an increased wind
speed in the downstream region. Normally, the rotor would experience in the downstream
zone smaller angle-of-attack due to the decreased wind speed. However, with increased
downstream wind speeds angle-of-attack and energy extraction increases in the down-
stream zone as well, resulting in an increased energy extraction in total. This means,
that OPTS

ω balances angle-of-attack and the energy extraction between the upstream
and downstream zones. Finally, adding the camber keeps energy extraction almost con-
stant in the downstream zone, while providing an increase in the upstream zone, where
angle-of-attack is large (30° < φ < 120°).
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Figure 4.35: CQ(ϕ) curves for a single blade (λ = 3.5) for different airfoils with k-ω SST
model

Comparison with k-ε Realizable When comparing the performances with fidelity
level 2 as computed with the k-ε Realizable model, the improvements are unfortunately
different, but the trend still holds: i.e., modifying pitch (∆Cp = 0.61%), airfoil shape
(∆Cp = 3.44%) and camber (∆Cp = 0.19%) results in an improved performance. The
new airfoil shape seems to be very robust. Independently from the turbulence modeling
and level of fidelity, it still provides an improvement.

4.3.4.2 Optimization with k-ε Realizable model

The previous validation section stated, that k-ε Realizable model seems to underestimate
stall effect (see Section 4.2.8). This makes the model incompatible with an optimization
approach due to robustness considerations.

In order to test this assumption (i.e., that k-ε Realizable model is less suited for an
optimization process), a second optimization was performed using N = 64 individuals in
each generation (as the information gained from the previous optimization was used, the
number of evaluations could be reduced).

Optimization process For the initialization the same Sobol series was applied with
the same classical airfoils as earlier, additionally adding OPTω and OPTS

ω. 13 gener-
ations were computed. From the 832 tested configurations, 772 individuals were valid
(correct geometry, mesh & CFD computation). The results of the optimization process
are presented in Fig. 4.36. As one can see, the results seem to be very different. The
process is able to quickly find (in the first generation from the Sobol initialization) a
configuration with Cp ≈ 44%. From this point on, only slight improvements are found.
After 13 generations, the best configuration still has Cp = 44.2% performance. Thus, no
further computations were needed.
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Figure 4.36: Optimization with the k-ε Re-
alizable model
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for λ = 3.5 with two different turbulence
models for OPTε

Recomputing optimum with k-ω SST However, when computing the performance
of OPTε with k-ω SST, the result is surprisingly only Cp = 13.21%! Looking at the
instantaneous torque coefficient reveals the reason for this surprising behavior: as previous
studies have already indicated, the k-ε Realizable turbulence model underestimates stall
effects at large angle-of-attacks and wake-blade interactions (see Fig. 4.37). Although
without experimental measurements it is difficult to tell, which model predicts the correct
values for the present geometry, OPTω seems to be a much more promising geometry.
Due to its larger thickness, OPTω is superior when considering mechanical aspects as
well (e.g., fatigue).

Correlation of turbulence models

This underestimation can be further con-
firmed by looking at the correlation of the
power coefficients computed with k-ω SST
and k-ε Realizable models based on 60 con-
figurations from the initial generation, see
Fig. 4.38. As one can see, the correlation
is strong (i.e., geometries exhibiting high
performance with one model result with
high probability in superior configurations
for the other model). However, there are
many outliers. More importantly, geome-
tries, which exhibit high performance with
the k-ω SST model always show high per-
formance with the k-ε Realizable model.
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Unfortunately, inverted, the statement does not hold, i.e., superior configurations
found with the k-ε Realizable model can lead to inferior configurations with the k-ω
SST model, due to the underestimated stall. These conclusions agree with the findings
in [57]. The outliers in the present study, however, are even more pronounced, due to the
significantly larger parameter space (0.06 < tmax instead of 0.17 < tmax in [57]). Hence,
the k-ε Realizable model is not appropriate for optimization.

4.3.4.3 Analysis with surrogate model

As a large number of configurations were computed, it becomes possible to analyze the
problem with a Surrogate model. For this, a Response Surface Method was chosen with a
polynomial containing the constant, all linear, quadratic and first-order interaction terms.
Altogether, 55 coefficients had to be evaluated. For the fitting all configurations exhibiting
Cp > 30% were chosen to focus on the optimal region (containing 680 configurations). The
coefficients were evaluated in OPAL++ by first normalizing all variables and objectives to
the [−1; 1] domain and afterwards using an Iteratively Reweighted Linear Least Squares
(IRLSQ) method, relying on Gaussian weights.
In order to test the quality of the model,
the performance of the original points
were recomputed with RSM. The corre-
lation is presented in Fig. 4.39. The per-
formance coefficient obtained from CFD
using the k-ω SST model is denoted as
Cp(CFD), from the surrogate model as
Cp(RSM). One can see that the corre-
lation is very good in general; almost all
points reside in the Cp(CFD) ± 2% (yel-
low) zone. Only a small number of out-
liers are found (28 out of 680), where the
RSM fails. As outside the ±2% zone the
outliers were always the result of overes-
timation of the performance with RSM,
the response surface is safe for additional
analysis (i.e., it would not underestimate
the performance of promising configura-
tions).
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Figure 4.39: Correlation of RSM and CFD
for 680 configurations with Cp(CFD) > 30%

Thus, a second analysis was performed in OPAL++. First, twenty billion points were
generated randomly (using a Mersenne-Twister random generator [150]) in the parameter
space spanned by the 680 configurations. Then, performance was evaluated based on the
Response Surface Model. Additionally, GENETIC1 was started with 200 generations and
2000 individuals per generations to search for the best configuration in the parameter
space spanned by the 680 configurations (performance was evaluated again with the
Response Surface Model). Due to the ±2% error zone and the Cp = 48% optima found
in CFD-based optimization, OPAL++ was looking for configurations with Cp > 48+2 %.
However, no configuration was found satisfying this criterion, neither with the brute force
search method, nor with the metamodel-based optimization. This indicates, that the
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CFD-based optimization was already able to explore the parameter space appropriately.

4.3.5 Possible improvements

Although the present method proved to be very efficient and already managed to identify
superior configurations, there is still place for further improvements:

- One obvious improvement would be to use CFD models with higher fidelity, e.g.,
3D LES computations. This would result in significantly larger runtime.

- Additional objective functions could be added, e.g., to minimize the cost or to
minimize the noise emission. This would result in a multi-objective approach.

- Instead of maximizing the performance coefficient for the optimal tip-speed-ratio,
one could maximize the annual energy yield based on the Rayleigh distribution of
the wind speed and the complete characteristic curve.

- Airfoil shapes might be sensitive to operating conditions [174]. For a robust de-
sign, Robust Design Optimization (RBO) or Reliability-Based Design Optimization
(RBDO) could be performed. For this, Uncertainty Quantification (UQ) is required
(see Chapter 6).

4.3.6 Conclusions and summary

In the present study, the optimization of H-Darrieus rotor airfoils was considered based
on two-dimensional CFD computations. First, an exemplary rotor geometry was chosen
and the characteristic curve of the rotor was computed with k-ω SST and k-ε Realizable
models. Afterwards, the parameterization was presented, followed by the optimization
with two different turbulence models. The optimization confirmed again, that k-ε Realiz-
able model underestimates stall and k-ω SST is better suited. Afterwards, the identified
optimum was analyzed with increased fidelity. Detailed simulations with both turbulence
models confirmed the increased performance.

At last, based on the computed points a Response Surface was created and analyzed.
No further promising configurations were found using this method, confirming that the
Genetic Algorithm provided an appropriate exploration. The following conclusions were
made:

- The optimum achieved in the optimization with k-ε Realizable model leads to infe-
rior results compared with other turbulence models.

- The optimum achieved in the optimization with k-ω SST model shows increased
performance with each tested turbulence model and temporal resolution.

- Non-zero camber, pitch and modified shape contribute to improved performance.

- The improved design has a more balanced energy extraction in the upstream and
downstream zones.

In the current section, the optimization of Darrieus wind turbines blades was con-
sidered. First, an extensive validation was presented to point out the importance of an
appropriate computational model. Additionally, the automatization was presented in de-
tail, which can be a very long and complex process to provide robust mesh generation and
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evaluation. Following the numerical validation, the optimization itself was presented with
the parameterization and analysis of the results. Even Response Surface method could
not identify configurations that could beat the performance of the optima found by the
CFD-based optimization; Genetic Algorithm provided an appropriate exploration.

Although significant improvements were achieved, this study was still based on 2D CFD
models. For realistic, practical optimization problems, this is not always enough. Thus,
the next chapter will present a proof-of-concept to show that implementing a similar opti-
mization in 3D is not necessarily more difficult, but “only” requires more computational
power.
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Chapter 5

Optimization of VAWT blades
revisited - Extension to 3D

“The fuel in the earth will be exhausted in
a thousand or more years, and its mineral
wealth, but man will find substitutes for
these in the winds, the waves, the sun’s
heat, and so forth.”

John Burroughs (1916)

The present chapter will especially focus on questions related to automated, 3D geom-
etry and mesh generation.

In the previous chapter the optimization of H-Darrieus wind turbines using 2D CFD
simulations was considered, with success. Although the results are already very promising,
the approach is unfortunately very limited, as only straight bladed Darrieus-rotors can be
considered with the 2D method. Popular designs, such as Troposkein blades, or innovative
new approaches, such as twisted blade rotors or winglets cannot be approached with the
previous method, unfortunately.

In the present chapter, the question of the optimization is revisited to answer the
questions:

(a) Is it possible to extend the Darrieus optimization to 3D?

(b) What is an efficient way for the parameterization of 3D rotor blades?

(c) Can the parameterization be implemented without additional softwares (e.g., CAD
licenses)?

(d) Is it possible to generate 3D meshes in a fast, robust and automated way?

Fortunately, for all questions a positive answer will be given. The intention of the
current chapter is not to optimize a complete three-dimensional Darrieus rotor (although
in principle it would be possible), but to present a proof-of-concept using winglets. The
following sections are partly based on a conference presentation:

Daróczy, L., Janiga, G., and Thévenin, D. Towards the optimization of
winglets for H-Darrieus rotors: Parameterization and automatization for performance
evaluation based on 3D-URANS. In European Congress on Computational Methods in
Applied Sciences and Engineering (Crete Island, Greece, 2016) [60].

111



5.1 Blade tips of Darrieus rotors

Darrieus rotors are lift-driven rotors equipped with airfoils. Airfoils generate lift through
the pressure difference on the two sides of the airfoil. As all blades have a finite aspect
ratio, an airflow is induced from the higher pressure side to the suction side along the end
of the blade and a wingtip vortex is generated, which results in losses. In wind turbines
with small aspect ratio these losses can be large (even up to 25% [34]), while at high
aspect ratio the corresponding losses become negligible.

This aerodynamic problem has been known for a long time, mostly in connection
with airplanes, and several blade tip modifications were already proposed to overcome it,
e.g., vortex diffuser, tip sails [130], wing-grids, raked tip [106] and many different winglet
designs. Some of them are presented later in Figure 5.7. Winglets are now widely used
for airplane wings [223] and, to a less extent, for wind turbines.

Only few studies have considered winglets on wind turbines in the scientific literature.
Taborda et al. [210] analyzed a cross-flow vertical axis wind turbine based on 3D transient
turbulent simulations using the Transitional SST model. The original rotor without
winglet, with an asymmetric winglet and with a symmetric winglet was analyzed. They
came to the conclusion, that the performance can be increased using winglets, the optimal
solution being to use a symmetric winglet. Berlferhat et al. experimentally analyzed the
polars for different winglets [17]. The aerodynamic efficiency of HAWTs with blade tip
modifications was also discussed in the work of Gaunaa and Johansen [94] and in the
work of Imamura et al. using a vortex lattice method [114].

Winglets on VAWTs have been even less considered. Amato et al. investigated Dar-
rieus rotors equipped with different blade tips [4]. The original configuration, an aero-
dynamic bulkhead, elliptic termination and three different winglets were evaluated using
numerical simulations, validated by the measurements of Castelli et al. [34]. This study
indicated that using a correct wingtip configuration, the performance can be increased.
However, a poorly chosen solution can further decrease it.

The present study is even more challenging compared to the blade shape optimization
of Darrieus wind turbine, since the evaluation of the winglet performance can only be
achieved using three-dimensional, transient, turbulent, large-scale Computational Fluid
Dynamics (CFD) simulations. As a result, only very few articles deal with the CFD
simulation of winglets for VAWTs. The optimization of such winglets has never been
discussed in the literature according to the best knowledge of the author.

The first step of the current study is to derive a fully automatic procedure to optimize
winglets for H-Darrieus rotors. To show the viability of this proof-of-concept, the general
geometrical description of parametric winglets is first given, followed by a simplified model
parameterized by only two parameters. Afterwards, a very simple Design-of-Experiment
is created with 6 different configurations and CFD simulations are carried out for a single
tip-speed-ratio. Finally, results are analyzed and conclusions are drawn. The evaluation
of the cases is executed in a completely automatic manner in an optimization framework,
proving the viability of the developed approach.

5.2 Setup of CFD Model

In the followings the applied CFD setup will be presented.
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5.2.1 Physical model

As many different studies found, that 2D and 3D computations may require different tur-
bulence models [34], both k-ε Realizable and k-ω SST models are retained for the present
study, despite the conclusions of the previous chapter. The flow around the rotor was
modeled as incompressible (this is a widely adopted simplification in the literature [34],
as the relative speed of the blades stays well below M = 0.3 due to the relatively small
rotation speed of small Darrieus rotors). Reference density ρ = 1.225 kg/m3 was chosen
according to DIN EN 61400 [71], and the dynamic viscosity was chosen correspondingly
as µ = 1.7894 · 10−5 Pa s.

The system of equations was solved in a coupled manner, as the solver was revealed to
be superior in earlier chapters. Additionally, Cell Quality Remediation was activated [37].
This model can efficiently improve stability locally if divergence is detected in a couple
of deformed cells, which is unavoidable in an automatic 3D mesh generation process. To
promote precision, second-order implicit temporal discretization is always applied in the
current work together with second-order (central or upwind) derivatives.

5.2.2 Boundary conditions

The sides of the computational domain are defined as velocity inlet, pressure outlet
and symmetry boundaries (except for the validation in the wind tunnel, where no-slip
conditions are applied except for the symmetry plane). Proper inlet conditions are clearly
the most important ones: u = 9 m/s, I = 0.1% and TVR = 10 were retained for all
configurations, in agreement with recommendations from the literature [134,135] and as
a result of preliminary studies [54], as already discussed in Chapter 4.

For the computations with winglets, λ = 2.6 was used in all cases. For the experi-
mental validation the angular velocity was varied while keeping the wind speed constant.

5.2.3 Spatial discretization

After the geometry was imported into StarCCM+ v10, the mesh generation is executed in
a completely automatic manner based on a custom JAVA script developed for the present
case. Relevant parts of the geometry are retained and combined with the surroundings
with the help of the ‘Surface Wrapper’. Mesh for the stationary and rotating domain is
created using polyhedral mesh, additional refinements are created with several volume
controls, surface and edge controls to ensure an appropriate resolution. In the stationary
domain, refinement is added for the wake, in the rotating domain for the blade, wingtip
and trailing edge (see Fig. 5.1). Extreme care was given to resolve the flow around the
wingtips. The most important settings are summarized in Table 5.1.

The applied script can be used with any 3D Darrieus blade geometry.
The inlet and outlet domains are extended to allow development of the flow and to

ensure an appropriate distance from the boundaries with the help of ‘Directed Mesh’.

5.2.4 Multi-fidelity approach

In order to speed-up the CFD computation, a multi-level approach was adopted. In this
multi-fidelity computational approach not only the temporal, but the mesh resolution
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Figure 5.1: Cross-section of mesh at different locations

was varied as well. The following three steps were defined for the computations:

1. Level 1 - Initialization of flow field : Coarse mesh resolution (sact,i = scalib,i · 1.5),
large time step (∆ϕ = 5°), N = 6 revolutions, Solver Courant number=15.

2. Level 2 - Initialization of flow field near the blades : Fine mesh resolution (sact,i =
scalib,i), intermediate time step (∆ϕ = 1°), N = 1 revolution, Solver Courant num-
ber=30.

3. Level 3 - Precise computation of torque: Fine mesh resolution (sact,i = scalib,i), small
time step (∆ϕ = 0.5°), N = 1 revolution, Solver Courant number=30.

In all cases N = 30 inner iterations were performed, in order to ensure very low
residuals (e.g., for B1 configuration discussed later all residuals stayed below 10−7 in
absolute value). Although it would be advantageous to increase the number of revolutions,
this is unfortunately not possible, as the detailed mesh and temporal resolution already
lead to huge computational requirements. Additionally, 200 would be better suited for
the solver Courant number, but this resulted in instability and divergence. With the
current settings, an analysis of the coefficients revealed an appropriate convergence, and
the results did not change significantly between Level 1, 2 and 3, see Figure 5.3. Thus,
additional revolutions were not considered to be necessary for the computations. As the
periodic signal generated by the simulation did not change significantly between Level
1-3, the mesh resolution seems to be appropriate as well.

Due to the huge computational requirements, mesh independency was not analyzed
(Please note, that previous 2D simulations have indicated, that for complete mesh inde-
pendency y+ < 1 would be required with a resolution s < 0.4 mm on the surface of the
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Table 5.1: Settings for mesh generation

Description Value

base size in stator 0.12 m
size on the rotating interface 14 mm
size in the wake of the rotor 55 mm
size on the edge of straight blade 1.25 mm
target maximal y+ value 100
base size in the rotating domain 14 mm
size around the blades 5.5 mm
size on the surface of the blades 2 mm
size near the trailing edge 0.5 mm
size around the wingtips 4 mm
size on the surface near the wingtips 0.5...0.75 mm
prism growth rate 1.3
volume growth rate 1.06
surface growth rate 1.075
volume blending 0.68
volume density 0.8
length of extruded inlet domain 13 m
length of extruded outlet domain 17 m
length of stator domain 4+6 m
width of the domain 12 m
height of domain 7.68 m
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Figure 5.2: Torque coefficient for C1 configuration for a single blade

blades; this would require at least 100 million cells only in the boundary layer). Mesh
sizes were calibrated so that the number of cells stays in the acceptable range for the
available computational system (below 12 million polyhedral cells).

5.2.5 Validation of the model

The experimental validation relies on measurements from the literature. In the work of
Castelli et al. [34] a small H-Darrieus rotor was tested. The rotor has NACA0021 blades
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Figure 5.3: Torque coefficient for C1 configuration for a single blade for a single section
near the symmetry and near the end (scaled by the projected area)

with 0.38 mm blunt edge, c = 85.8 mm chord length and was mounted at 0.5c. The radius
and height were 1030 mm and 1414 mm respectively. The geometry is summarized in
Table 5.2. The measurement was conducted in the Milan-Bovisa low turbulence wind
tunnel with 4 m x 3.8 m cross-section at 9 m/s wind velocity. In the original experiment
the results were not corrected for wind tunnel blockage. Castelli et al. [34] found that
the best agreement was delivered by the k-ω SST model, with y+ > 30 and a resolution
of 2 mm on the surface of the blades.

Table 5.2: Geometry for validation & optimization

Parameter Valid. Optim.

number of blades 3 3
airfoil NACA0021 NACA0021
radius of the rotor 515 mm 515 mm
camber 85.8 mm 85.8 mm
mounting 0.5c 0.5c
(half)-length of blades 707 mm 707+200 mm
wind speed 9 m/s 9 m/s
TSR 2.05/2.35/2.6/3.1 2.6
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To reduce the mesh size, only half
of the rotor and wind tunnel were
retained. The mesh was created
with the same setup as the opti-
mization process itself (except the
wall of the wind tunnel, where
prism layers were added and no-
slip condition was set), see Fig. 5.4
for the geometry.

Figure 5.4: 3D geometry of experimental validation

The recommendation of Castelli et al. was retained, i.e., y+ > 30 and 2 mm cell size on
the blades. The resulting mesh contained 7.05 million polyhedral cells. If the boundary
layer would be resolved up to y+ < 0.8 and the mesh would be refined with additional
30% size reduction, the resulting resolution would be 24 million polyhedral cells, leading
to 4× longer computational times.

The simulations were performed with
the k-ε Realizable and k-ω SST model for
tip-speed-ratios for λ = 2.05, λ = 2.35,
λ = 2.6, λ = 3.1 (near the optimal tip-
speed-ratios; the curves between the oper-
ating points have been interpolated with
cubic spline); the blunt edge was disre-
garded and modeled instead as being sharp
(resolving such a small geometric detail
would have required an even larger reso-
lution making the optimization impracti-
cal). The characteristic curve of the com-
plete rotor is compared in Fig. 5.5 to the
measurement of Castelli et al.; this Figure
also contains the characteristic curve far
away from the wingtip, near the symme-
try plane.

experiment
k-ε Real.; far from wingtip
k-ω SST; far from wingtip
k-ε Real.; complete rotor
k-ω SST ; complete rotor
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Figure 5.5: Experimental validation

As one can see, the agreement in the location of the optimal tip-speed-ratios is quite
good (exp.: λopt = 2.7; sim.: λopt = 2.5), but the exact values are not reproduced. As
struts were not modeled and gear losses were not computed, this is not really a surprise.
Furthermore, the large deviation in the trend at small tip-speed-ratios is most likely due
to the application of the Wall Function approach (y+ > 30). In this domain the flow is
very complex due to the presence of dynamic stall and a finer grid resolution would be
required.

The two turbulence models deliver very similar (but not identical) results. This is
again not a surprise: the k-ω SST model is a blended model, which falls back to k-ε in
the free stream and to k-ω near the wall. Since y+ > 30 was employed, the benefits
offered by the k-ω model are replaced virtually with the Wall Function, except for the
places, where the blade interacts with vortex structures shed from the previous blade,
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thus, where y+ values can drop down locally. As a result, the k-ε Realizable model was
retained for all further computations.

5.3 Setup of the optimization

5.3.1 Parameterization

Winglets are essentially the composition of one or more wings, with (usually) blended
center line and non-uniform cross-section. Thus, the geometry of the winglet can be
defined based on several support sections and/or by varying all parameters along the
span. This approach is described, e.g., in the work of Sobieczky [200], and can be applied
to an arbitrary blade geometry.

5.3.1.1 General parameterization

In the current study variation of parameters along the span were defined. The different
geometrical parameters of the winglet are defined along a non-dimensional parameter
(ψ = 0...1). First, a guiding line (see Fig. 5.6(a)) of the winglet is defined by

x(ψ) = (x(ψ), y(ψ), z(ψ)) . (5.1)
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Figure 5.6: Parameterization (a) general; (b) specific variant

This is equivalent to the definition of the parameters along the span as the arc length
can be simply computed as

s(ψ) =

∫ ψ

0

√√√√((dx

dψ̂

)2

+

(
dy

dψ̂

)2

+

(
dz

dψ̂

)2
)

dψ̂. (5.2)

For each ψ a local coordinate system (xL, yL, zL) is defined with (x(ψ), y(ψ), z(ψ)) as
center and with α(ψ), β(ψ), γ(ψ) angle rotation around the x-, y- and z-axis, respectively.
In this coordinate system, a profile is mounted on the (xL, yL) plane, defined by the
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equation C(xL, yL, ψ) = 0. Using this method, the contour of the winglet is completely
defined.

This parameterization is implemented in C++ and the centerline positions and profiles
are exported at the x(ψ1), x(ψ2), ...,x(ψn) positions as support sections. StarCCM+ can
create the surface of the winglets as a NURBS based on these data. Alternatively, one
could produce the geometry as an STL surface using in-house code as well.

To illustrate the appropriate flexibility provided by the present model, a couple of
winglets are presented in Fig. 5.7, as created by the current workflow. As one can see,
the most common types of winglets can be described and fully parameterized.

a) b) c) d)

Figure 5.7: Example of different winglet designs: (a) Whitcomb winglet as a composition
of two single centerline winglets; (b) Canted winglets; (c) Simple blended winglets; (d)
Blended winglets with more complex leading edge

Actually, the present description is not only valid for winglets, but for any geometry
which can be described as a geometry along a centerline (e.g., blades, pipes, channels,
etc.)!

5.3.1.2 Specific parameterization

Although the previously presented (and widely used) parameterization is very flexible, it
is too general to be used for an optimization (as all parameters are arbitrary functions).
As a result, a simplified form was defined, see Fig. 5.6 (b). In this method the frontal
projection of the centerline of the winglet is composed of a vertical segment with length
L1 and an inclined segment with L2 length, the angle between the two segments is denoted
as γ. The two sections are connected by a circular arc with radius R1. Besides the frontal
projection, the side view of the winglet is defined so, that its height is equal to the length
of the frontal projection: this way the same form can be bended on the frontal projection
independently from the size of γ. The side view is defined by the trailing and leading
edge, which are both created by two linear segments connected by circular arcs. The
lower camber has a length of c0, the winglet ends with a camber of cend.

In the current study R1,2,3, c0, cend, L1, L2 were fixed and γ and α2 were varied.

5.3.1.3 Analyzed configurations

Following the setup of the workflow, 8 different configurations were created and meshed.
’Base’ denotes a straight three-bladed rotor with Hhalf=707+200 mm height, ’Endplate’
denotes the ’Base’ configuration equipped with a NACA0030 endplate (c = 150.15 mm,
rT = 4 mm rounding, t = 2 mm thickness).
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Configurations A1, A2, B1, B2, C1 and C2 denote winglets with length L1 + L2 =
707+200 mm. For the transition R1,2,3 = 100 mm was applied. For the cambers c0 = 85.8
mm, cend = 85.8/3 mm was retained, A, B and C denote respectively α2 = 0°, 15° and
30°. Numbers 1 & 2 denote configurations with γ = 60° and γ = 30°, respectively.

The configurations can be seen in Figure 5.8.

A1 B1 C1

A2 B2 C2

A2− C2

A1− C1

C2 B2A2

C1 B1 A1

A2B2C2

A1B1C1

a) b) c) d)

Figure 5.8: Tested configurations from (a) isometric; (b) front; (c) top; (d) side view
(gray=’base’; black=’endplate’; red=’C2’; blue=’B2’; purple=’A2’; brown=’C1’, yel-
low=’B1’; green=’A1’)

5.3.2 Automated workflow

For the optimization of winglets, the whole process (mesh generation, CFD computation,
post-processing) has to be automated. This was achieved using OPAL++. OPAL++
is able to operate in parallel on many PCs to speed up the optimization process. For a
single configuration, the followings steps are performed:

1. The geometry is created using a custom C++ code (approximately 1200 lines),
which is called by OPAL++ as an ODL (OPAL++ Dynamic Library); the surface
geometry is exported in CSV format.

2. The geometry is read in CD-Adapco StarCCM+ and the surface is prepared using
a NURBS surface. Afterwards, polyhedral mesh is generated. All operations are
performed by a custom JAVA script (4000 lines).

3. Mesh quality is checked.
4. The simulation is started in parallel with CD-Adapco StarCCM+ (in the present

study each simulation was performed with 24 cores using Intel(R) Xeon(R) E5-
1650v3 3.5 GHz CPUs; each simulation required 1-2 weeks to finish). Upon com-
pletion, StarCCM+ exports the y+ values, forces and moments for the different
parts of the rotor and for the whole rotor.

5. Post-processing is performed using a small bash script through OPAL++.
6. Results are collected in a Microsoft Excel file for all the different winglets.

5.4 Results

The direct comparison of the performance of the different rotors is not possible, as the
projected area (see Table 5.3) and height of the rotor changes from configuration to
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configuration. As a result, four different analysis were performed, as discussed in the
followings.

5.4.1 Performance coefficient far away from the wingtip

In the first step the performance coefficient of the first 0.1 m blade section (Section 0) was
analyzed, far away from the wingtip (near the symmetry plane). Although far away from
the wingtip it is expected, that the different rotors will deliver a similar performance, this
is not necessarily true. The wingtip vortex changes the flow structures near the end of
the blades, and through 3D instabilities it can have an effect on the flow structure of the
whole rotor, see Table 5.4 and 5.5. As one can see, the performance coefficients remain
very similar to each other; only small differences can be seen. Nevertheless, more than
1% (relative) improvement is detected for the B2 and C2 configurations.

This can be either the effect of the decreased energy extraction of B2 and C2 config-
urations near the wingtip, which results in an increased energy flux, or could be a result
of the different blockage, since the wingtips restrict the 3D expansion in the vertical di-
rection, leading to an increased efficiency. For rotors with high aspect ratios (AR) this
effect could provide an advantage.

Table 5.3: Projected area of the different
configurations

Proj. area [mm2]

Base/Endplate 934210 mm2

[A/B/C]1 812814 mm2

[A/B/C]2 889168 mm2
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Figure 5.9: Instantaneous torque coeffi-
cients for all configurations for a single
blade for a single section near the sym-
metry

The instantaneous torque coefficients for Section 0 (first 0.1 m near the symmetry
plane) for a single blade are shown in Fig. 5.9. As one can see, the difference is small and
for most angular positions they overlap. For configuration C1 (yellow), a small increase
can be seen at the location of the maximal energy extraction (60° < φ < 120°), as
expected from the Cp values.
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Table 5.4: Performance coefficients far
away from the wingtips

Cfirst
p [%] Improv.

Base 34.43% −
Endplate 34.45% 0.058%
A1 34.54% 0.319%
A2 34.65% 0.639%
B1 34.71% 0.813%
B2 34.81% 1.103%
C1 34.42% −0.029%
C2 34.89% 1.336%

Table 5.5: Performance coefficients for the
whole rotor

Crotor
p [%] Improv.

Base 32.20% −
Endplate 32.40% 0.62%
A1 31.38% −2.55%
A2 31.33% −2.70%
B1 31.48% −2.24%
B2 31.03% −3.63%
C1 31.09% −3.45%
C2 29.97% −6.93%

5.4.2 Performance coefficient of the complete rotor

In the second step the total performance coefficient of the rotor was analyzed, non-
dimensionalized by the projected area for each case. The results can be seen in Table 5.5.
As one can see, instead of the expected improvement, the winglets provide a decrease in
the performance for the current case. However, in case of the endplate variant, a small
improvement can be seen. The improvement is small, showing that the wingtip losses do
not seem to be that significant in this case. Obviously, this statement does not necessarily
hold for rotors with more significant wingtip effects.

5.4.3 Effect of the wingtip on the distribution of the energy
generation

Afterwards, the energy generation of the different sections were analyzed and compared
graphically. The results can be seen in Fig. 5.10. Section 0 denotes the first 0.1 m
near the symmetry plane (far away from the wingtip), while Section 6 denotes the last
section (0.6 m - to the end of the blade). All results are non-dimensionalized by the
projected area of the section. As one can see, all configurations resulted in a decreased
performance coefficient for the last section compared to the base geometry, except the
endplate. This supports the importance of endplates. The decreased performance of the
winglets is most probably the result of the decreased camber length and rotor radius. For
an efficient improvement, smaller winglet configurations or rotors with more significant
wingtip losses would be needed.

A2 proved to be the best configuration among the winglets for Section 6. The B2
and C2 configurations provided an increased performance coefficient far away from the
wingtip, as discussed previously.
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Figure 5.10: Performance coefficients of
the different blade sections for the different
configurations
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Figure 5.11: Instantaneous torque coef-
ficients for all configuration for a single
blade for a single section near the end

The instantaneous torque coefficients for Section 6 (last section of the blade far away
from the symmetry plane) of blade 1 are shown in Fig. 5.11. Please note, that CQ values
are somewhat misleading, as all values were normalized for a blade section of 0.1 m height
and nominal radius, while in the reality they have different heights. Unfortunately, no
clear tendency can be recognized.

5.4.4 Size of wingtip vortex

Finally, the vortex structures were compared for a single angular position for all the
different cases (ϕ = 0°, starting position), see Fig. 5.12. In this figure the isosurface for
75 1

s
vorticity magnitude is presented along with the vorticity magnitude in two cross-

sections. As one can see, A1 and B1 configurations efficiently reduced the size of the
vortices, while C1 and C2 provided similar sizes to the base and endplate configuration.
Additionally, a threshold was created for 75 1

s

vorticity magnitude and the volume of this
threshold was computed to estimate the size
of the vortex structures. The results are shown
in Table 5.6. The values further confirm, that
A1 and B1 provide the smallest vortex volumes,
while C2 shows similar values to the base con-
figuration. Interestingly, the rotor with the
endplate did not show a decrease in the size
of the vortex.
As noise emission is directly related to the vor-
tex shedding, this effect could be efficiently
used to reduce noise emissions from the blades.
For this however, additional acoustics compu-
tations are necessary.

Table 5.6: Volume of fluid domain
with vorticity magnitude larger than
75 1

s

V vortex
75 [m3]

Base 4.437 · 10−2

Endplate 4.452 · 10−2

A1 2.706 · 10−2

A2 2.910 · 10−2

B1 2.903 · 10−2

B2 3.197 · 10−2

C1 3.298 · 10−2

C2 3.650 · 10−2
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Figure 5.12: Vortex structures near the configurations (first line: base, endplate, A1, A2;
second line: B1, B2, C1, C2; isosurface: 75 1/s)

5.5 Conclusions and summary

In the current chapter a completely automatic method was developed and presented for
the efficient optimization of 3D Darrieus rotor blades and winglets. Parameterization, ge-
ometry and mesh generation, CFD simulation are efficiently realized in a fully automatic
way.

Following a tentative validation of the model using a rotor from the literature, a
Design-Of-Experiment was executed with 8 different winglet configurations to check the
validity of the developed approach. Unfortunately, no configuration was found that leads
to a performance improvement compared to the rotor with a simple endplate. However,
two configurations show an increased performance far away from the wingtips, which
could be advantageous for rotors with high aspect ratio. To understand this effect,
further studies are needed.

After providing this example, a completely new field, the question of robustness and
reliability follows. The key for robust and reliability-based optimizations is Uncertainty
Quantification (UQ), as one has to be able to quantify the effect of unknown (or in a
better formulation, uncertain) processes. This field is alone a huge research field; it is out
of the scope of the present thesis to present and discuss all details. Therefore, only one of
the newest methods, Polynomial Chaos Expansion (PCE) will be discussed. Following a
theoretical introduction and validation of the implementation, the method will be applied
to the same problem as used in the previous chapters, i.e., to the transient turbulent flow
around an H-Darrieus wind turbine.
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Chapter 6

Question of robustness - Uncertainty
Quantification

“True genius resides in the capacity for
evaluation of uncertain, hazardous, and
conflicting information.”

Winston Churchill

The present chapter will especially focus on a Practical Engineering aspect of op-
timization, i.e., dealing with stochastic and uncertain processes. For this, Uncertainty
Quantification (UQ) of an exemplary H-Darrieus rotor will be presented using CFD com-
putations. The chapter is based on an extended version of:

Daróczy, L., Janiga, G., and Thévenin, D. Analysis of the performance of
a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion. Energy 113
(2016), 399–412 [59].

6.1 Aim of the analysis

Optimization is a very important field of the industrial engineering practice, but for
practical purposes, optimization in itself is not enough. The improved design has to
retain its performance under various and uncertain conditions, i.e., the optimization
must deliver a robust solution (robustness will be mathematically defined a bit later).
Robustness is receiving an increased interest in the last years [190]. In other words, if
a product is superior compared to other products on the market, but 50% of the products
are defect, the product still won’t succeed. The reason for such defects is very simple:
there are many uncertainties present in the manufacturing process (e.g., dimensions may
slightly vary). This can be presented graphically even better, see Fig. 6.1.
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Figure 6.1: Graphical presentation of sensitive and robust optimum

As one can see, there are two local optima (rectangular symbol) for the present case,
the right one (red rectangle) being superior. However, if the variable exhibits a deviation,
the same deviation can result in locations (circular symbols), which are worse, than for
the left local optimum (blue rectangle), i.e., the optimum on the right is sensitive.

In the present chapter the Uncertainty Quantification of an H-Darrieus rotor will be
performed, using Polynomial Chaos Expansion (PCE), as the question of uncertainties is
particularly important for wind turbines due to many sources of uncertainties, e.g., inflow
conditions [131] or airfoil geometry [1]. Up to now, only very few studies addressed
the question of robustness, mostly considering HAWTs. E.g., Liu et. al. [143] used
probabilistic collocation and CFD simulations to study the effect of uncertainty associated
to the inlet velocity on the performance coefficient, performance distribution and forces
acting on HAWT blades, while Padron et al. used a multi-fidelity UQ method to study
the effect of extreme gust uncertainties on the maximum forces acting on the blades of a
large (54 m radius) Darrieus rotor by combining 2D Euler simulations and a BEM/vortex
lattice solver [174].

In what follows, first, a short introduction will be given to Uncertainty Quantification
and Polynomial Chaos Expansion, followed by the description and analysis of the present
rotor.

6.2 Uncertainties and Polynomial Chaos Expansion

6.2.1 Sources of uncertainty

Although in most engineering computations informations (from dimensions to material
properties) are considered as having a fixed and perfectly known value, in reality most pa-
rameter values are associated to some uncertainty. Dimensions vary throughout the man-
ufacturing process, inflow conditions (temperature, density, concentrations) can change,
not to mention unknown material properties or varying operating conditions due to an
imprecise control. Thus, uncertainties originate from the most different sources, such
as model coefficients, material properties, boundary conditions, operating conditions,
dimensions, etc.
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Uncertain parameters can be classified as

1) aleatoric (i.e., being the result of a stochastic process, e.g., varying material prop-
erties), which are usually irreducible, i.e., stochastic from their own nature, or

2) epistemic (result of a lack of knowledge; e.g., wrong model assumptions), which
are reducible; they could be quantified with a higher accuracy by collecting more
information [24].

In this study, only aleatoric uncertainty will be considered.

6.2.2 Quantification of uncertainty

A large area of uncertainty quantification (UQ) is interested in forward uncertainty prop-
agation, i.e., analyzing the effect of uncertain input variables on the outcome. Note that
uncertainty can also address mesh dependency or temporal dependency [185]; however,
in this case there are no uncertain input variables. Another field is to address inverse
uncertainty quantification.

UQ can be applied in optimization as well. It is essential for Robust Design Op-
timization (RDO, for which the variance is additionally minimized) and Reliability-
Based Design Optimization Methods (RBDO, where the failure rate is constrained).
Mathematically formulated (if the expectation is denoted as E(·), the variance with
σ2(·), the random input variables with ξ and the objective function vector with y):

Orobust :


E(y(x, ξ)) −→

x
min

σ2(y(x, ξ)) −→
x

min

so that x ∈ X

(6.1) Oreliability :


E(y(x, ξ)) −→

x
min

P (failure) < 5%

so that x ∈ X
(6.2)

For example, an uncertainty handling method is used in an Evolutionary Algorithm
(EA) in the work of Hansen et al. [108] for the online optimization of gas combustors,
while Wang et al. [222] used non-intrusive Polynomial Chaos Expansion (PCE) for the
robust optimization of compressor rotor blades.

6.2.3 Polynomial Chaos Expansion

Several methods exist for UQ, e.g., Monte-Carlo sampling, or univariate reduced quadra-
ture methods, which have been for instance used for wind turbines in [31]. In the follow-
ings we will only focus on the Polynomial Chaos Expansion (PCE).

The basic idea of Polynomial Chaos Expansion is the separation of the solution into
a stochastic and a deterministic part. Let us consider a probability space (Ω, σ, P ), con-
sisting of a sample space (Ω), of a σ-algebra on Ω, and of P , probability measure on
(Ω, σ) [164]. Given the independent random input variables (ξ), any random variable
with a finite variance (or output, written R) can be decomposed into deterministic αi(x)
components (or mode strengths) and random basis functions (Ψi(ξ), multivariate poly-
nomials) [112]:

R = α0(x)Ψ0 +
∞∑
i=0

αi(x)Ψ1(ξi) +
∞∑
i=0

∞∑
j=0

αi,j(x)Ψ2(ξi, ξj) + ... =
∞∑
i=0

αi(x)Ψi(ξ) . (6.3)
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In the multi-dimensional case, with n (independent) variables, the random basis functions
can be computed as a product of the corresponding one-dimensional basis functions:

Ψi(ξ) =
n∏
j=1

Ψ
mi

j

j (ξj) , (6.4)

i.e., the multivariate polynomial basis is the product of the univariate optimal polynomial
basis for the distribution of each uncertainty, where

n∑
j=1

mi
j = pi; deg(Ψ

mi
j

j (ξj)) = mi
j , (6.5)

i.e., pi is the total order of Ψi(ξ).
Ψ0
j(ξj),Ψ

1
j(ξj),Ψ

2
j(ξj), ... are the basis functions for variable j with order 0,1,2.... and

mi
j is the order of variable j in the i-th multivariate basis function. In practice, evalu-

ation up to infinite polynomial degree is obviously impossible. Thus, the summation is
truncated in practice to a total order of p (pi ≤ p ∀i), resulting in

P + 1 =
(n+ p)!

n!p!
(6.6)

terms, where n is the number of random variables, p is the total order of the polynomial
and P is the number of polynomial coefficients. An alternative, not considered further in
what follows, is to perform the truncation on a per-dimension basis [75]:

mi
j ≤ q ∀i, j (6.7)

This computation of the random basis functions is valid for independent random vari-
ables, but is only an approximation for uncorrelated, but not independent non-Gaussian
variables [75]. Multi-variate weight functions (distributions) can be computed similarly.

In the original formulation of Wiener about the theory of homogeneous chaos [224],
only unbounded independent Gaussian input variables (N (0, 1)) were supported using
Hermite polynomials. Later, this was extended with the Wiener-Askey scheme to differ-
ent distributions and basis functions (Generalized Polynomial Chaos), as described e.g.,
by Xiu and Karniadakis [229]. These polynomials satisfy orthogonality to the weight
functions, i.e.,

〈Ψi(ξ),Ψj(ξ)〉 = 〈Ψ2
i (ξ)〉δij , (6.8)

where δij is the Kroenecker-delta and the inner product 〈·, ·〉 is defined as:

〈Ψi(ξ),Ψj(ξ)〉 =

∫
Sξ

Ψi(ξ)Ψj(ξ)w(ξ)dξ , (6.9)

where w(ξ) is the weight function (probability distribution). Based on the properties of
Equations (6.8) and (6.9), the coefficients can be evaluated as:

〈Ψj(ξ), R〉 =
P∑
i=0

〈Ψj(ξ), αi(x)Ψi(ξ)〉 , (6.10)
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αj(x) =
〈Ψj(ξ), R〉
〈Ψ2

j(ξ)〉 . (6.11)

This is called Galerkin projection [74]. Mean value µ and deviation σ can be determined
due to the orthogonality as:

µR = α0, σ2
R =

P∑
i=1

α2
i 〈Ψ2

i (ξ)〉 . (6.12)

However, only classical distributions are supported using the Wiener-Askey scheme. For
other distributions, non-linear transformations can be used, but this results in a degrada-
tion of the convergence rate [75]. Alternative numerical methods exist to compute orthog-
onal polynomials for an arbitrary distribution [95, 101]. Witteveen and Bijl showed that
using Gram-Schmidt orthogonalization the optimal polynomial basis can be computed
with better accuracy and convergence [227].

6.2.4 Evaluation of Polynomial Chaos Expansion (PCE)

When handling uncertainties, two different approaches exist.

- For intrusive methods the original code has to be modified, i.e., the original system
of equations for the model has to be extended to include stochastic effects, resulting
in a (larger) deterministic system of equations. This requires usually a large effort,
but the problem has to be solved only once (it is thus much faster).

- When relying on non-intrusive methods the original code does not have to be
modified at all, but the simulation must be executed several times. The implemen-
tation of latter methods is usually easier, but leads to higher computational efforts.
However, non-intrusive methods can be efficiently applied even to complex, coupled
systems without huge implementation effort; they can be also used with proprietary
or commercial software.

As a consequence, only non-intrusive techniques will be discussed in the followings,
as all simulations are based on a commercial software, CD-Adapco StarCCM+ [37].

The integration for Eq. (6.11) can be for instance performed using a Monte-Carlo
approach, quadrature methods, Smolyak sparse grids, or linear regression (also called
stochastic collocation). According to Eldred et al. [74], “cubature is the most affordable
for the largest dimensionalities and expansion order”. Considering that in the present
study only two input uncertainties are analyzed, only tensor-product quadrature (TP)
and point collocation (PC) methods will be employed.

6.2.4.1 Point collocation

With Point Collocation (also named stochastic response surfaces or linear regression
method), the polynomial expansion is essentially used as a response surface built using
N support points, at which the responses are computed. As a result, Equation (6.3) is
rewritten for the N points into a matrix form:

Ψα = R . (6.13)
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As N might be larger than the number of coefficients, the equation must be solved using
a least-squares method based on the response vector (R) and on the matrix of basis
function values (Ψ) at the known points. Finally, the coefficients can be determined
following [207] as:

α = (ΨTΨ)−1ΨTR . (6.14)

According to [112], optimal results are obtained with an oversampling of 2, i.e., for total
order expansion

N = 2
(n+ p)!

n!p!
(6.15)

points, using Latin Hypercube Sampling (LHS) for smoother convergence. Essentially,
UQ creates a response surface for the input variables using Least Squares fitting. This
also means, that using the collocation method the transformation can be efficiently re-
computed for another input distribution, as long as the probability space remains the
same [128]. Also, multi-fidelity approaches can be applied [167].

6.2.4.2 Quadrature method

Equation (6.12) can be also computed based on numerical integration with Gaussian
quadratures. Starting from the one-dimensional case and assuming that the domain of
the weight function w(x) is [a, b], the integral∫ b

a

f(x)w(x)dx =
m∑
i=1

wif(xi) , (6.16)

will be exact up to polynomial order of 2m − 1. To integrate the product of R and Ψ,
m = p + 1 is required for accuracy. Finally, wi are the weights and xi are the abscissas
with respect to the w(x) weight function. For the different basis (weight) functions, dif-
ferent abscissas and weights are needed (e.g., Gauss-Hermite, Gauss-Legendre, etc.). The
abscissas can also be computed numerically. In the present study, the Golub-Welsch algo-
rithm was applied to compute the Gaussian quadratures [101]. In the multi-dimensional
case the weights and abscissas can be computed with a single tensorial product of the
one-dimensional cases, creating a multi-dimensional grid. For the computation, (p+ 1)n

simulations have to performed. The number of necessary points for the two methods are
compared in Table 6.1. The more efficient method (i.e., smaller number of evaluations)
is highlighted with green in each case.

Table 6.1: Number of necessary computations for UQ with PC/TP

PC/TP n=1 n=2 n=3 n=4
p = 1 4/2 6/4 8/8 10/16
p = 2 6/3 12/9 20/27 30/81
p = 3 8/4 20/16 40/64 70/256
p = 4 10/5 30/25 70/125 140/625
p = 5 12/6 42/36 112/216 252/1296
p = 6 14/7 56/49 168/343 420/2401

As one can see, quadrature based methods are efficient for small problems with lim-
ited number of input variables, but suffer from the curse of dimensionality, while Point
Collocation is more efficient for larger problems.
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6.2.5 Polynomial Chaos Expansion in CFD

Application of uncertainty quantification methods in CFD is not new. Therefore, many
detailed descriptions are available. Knio and Mâıtre [128], and Najm [164] reviewed both
intrusive and non-intrusive polynomial chaos expansion methods for CFD applications,
while Xiu and Karniadakis [229] presented the application of the Wiener-Askey polyno-
mial chaos for stochastic differential equations, using an intrusive approach.

A non-intrusive Polynomial Chaos Expansion (NIPCE) method was applied by He et
al. [109] for the analysis of the Delft Catamaran 372 with variable geometry, speed, and
head waves. Non-Intrusive UQ methods (implemented in PSUADE) were applied to a
multiphase CFD problem by Gel et al. [97] using a Response Surface Method to leverage
the computational burden of function evaluation. Hosder et al. [113] analyzed using
a non-intrusive PC method the laminar boundary layer flow over a flat plate, the 2-D
supersonic flow over a wedge and the flow over a three-dimensional wing [112]. NIPCE was
applied by Hosder and Maddalena [111] around a three-dimensional supersonic pressure
probe using an Euler CFD solver. Zhao et al. [124] used PCE for the robust design of a
supercritical airfoil, while Loeven and Bijl applied probabilistic collocation for the flow
around a NACA0012 profile with 8 uncertain parameters [144].

6.2.6 Workflow of non-intrusive Polynomial Chaos Expansion
in CFD

In the present section, the workflow for the selected PCE approach (with Gram-Schmidt
orthogonalization) is summarized in Fig. 6.2.

In this workflow, large sections (I, II) are completely the same, only small changes
appear depending, if one chooses to use TP or SC method. First (I), the problem has to
be analyzed to determine the distribution of the input variables. This is a very difficult
step for many studies due to the lack of information. Furthermore, the variables have
to be independent. If classical distributions are chosen, the orthogonal polynomials can
be chosen from tables, otherwise, Gram-Schmidt orthogonalization has to be executed,
which delivers the necessary polynomials. In the second step (II), sampling points have
to be chosen, where the output quantities will be evaluated. With stochastic collocation
(SC), one has to create simply a Latin Hypercube Sample, with an oversampling rate of
2 (II.1b), according to the recommendation of Hosder et al. [112]. For Tensor Product
method (TP), one has to compute the Gauss-quadratures based on the Golub-Welsch
method (II.1a); the coordinates are simply the combination of the quadratures for each
dimension (II.2a).
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After this step, the output quantities have
to be computed based on CFD simula-
tions (III). This is obviously the most time-
consuming part. There can be more than
one quantity of interest.
Finally, the coefficients have to be com-
puted. With SC, one needs a simple Least-
Squares Fitting, as defined in Eq. 6.14,
while for TP a Galerkin-projection (thus
a numeric integration) has to be executed,
based on Eq. 6.11. If the coefficients are
known, the most important quantities, i.e.,
expected value and standard deviation can
be evaluated based on Eq. 6.12, while Cu-
mulative Distribution Function and Prob-
ability Distribution Function can be recon-
structed using e.g., Monte-Carlo simula-
tion.

aI. Preprocessing

II
. C

ho
si

ng
 

sa
m

pl
in

g 
po

in
ts

II.2a Compute points based on 
quadratures

II.1b Create Design-Of-
Experiment (preferably LHS)

I.1 Analyze the problem, choose distribution for uncertain input 
parameters

II.1a Compute the Gauss-
quadratures (Golub-Welsch 
algorithm)

I.2 Compute the orthogonal polynomials for each input (Gram-
Schmidt orthogonalization)

II. Sampling 

III. Evaluation

III. Evaluate output values (here Cp) for each sampling point by 
means of CFD computations

IV. Postprocessing

IV.1b Based on Least-Squares 
fitting, evaluate the coefficients 
(Eq. 8.14)

IV.1a Based on Galerkin-projection, 
evaluate the coefficients (Eq. 8.11)

TP PC

TP PC

IV.2 Compute the expected value and standard deviation  
(Eq. 8.12) and distribution functions (e.g., Monte-Carlo method)

Figure 6.2: Workflow of PCE based
on Gram-Schmidt orthogonalization with
TP/SC method

6.3 Validation of the implementation

6.3.1 Validation of the implemented numerical integration method

In order to test the implementation of the numerical integration and of the orthogonal-
ization routines, an analytical example was analyzed in the first step. A single random
variable was chosen as input (ξ), which was truncated from a standard normal variable
to the [−2σ; 3σ] domain. The polynomial

f(x) =
7∑
i=0

0.5(i+ 1)xi (6.17)

was retained for testing purposes, the distribution function of ξ was denoted as w(x).
The integral

S =

∫ 3

−2

f(x)w(x)dx (6.18)

was first evaluated by using the Simpson-formula for 100 000 intervals, resulting in
S = 78.9531. In the second step, quadratures and weights were computed for p = 4
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order resulting in 5 points (using these quadratures integration up to order of 7 should

be exact). Using the numerical integral Snum =
p∑
i=0

wif(xi) = 78.9531, exactly the same

value was obtained. The Gauss quadratures and weights for the present weight function
were computed using the Golub-Welsch method [101].

6.3.2 Validation of the implemented generalized PCE method

In order to validate the chosen approach for the rotor, an analytical problem with a
similar response was first analyzed. Two input variables were chosen (ξ1, ξ2). A test
function was retained, showing a similar evolution to the characteristic curve of common
wind turbines, centered around the maximal performance coefficient. It is not a direct
polynomial function, so that the PCE method can be efficiently tested:

f(x, y) = 0.6 cos(0.1x2 + 0.1y2)2 − 0.05(x2 + y2)− 0.1 . (6.19)

The function is shown in Figure 6.3.
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Figure 6.3: Function used for analytical tests

For the Tensor-Product quadrature integration (further denoted simply TP) the two-
dimensional Gaussian quadratures and weights were computed with the Golub-Welsch
method, and orthogonal polynomials were computed numerically as well. Cumulative
distribution functions (CDF) and probability distribution functions (PDF) were evalu-
ated using a Monte-Carlo simulation with 10 million samples in each case (for the exact

solution, and for the reconstructed response R =
∑
i

αi(x)Ψi(ξ) as well).

For Stochastic Collocation, if not stated otherwise, near-orthogonal Latin Hypercube
Sampling (LHS) was used in the C-space, as computed by OPAL++.

In the first step, the input variables were chosen to be truncated from a standard
normal variable (N (0, 1)) with:

ξ1 ∈ [−2σ; 3σ] ; ξ2 ∈ [−2σ; 2σ]. (6.20)
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6.3.2.1 Exemplary computation with TP

For the present case, for polynomial order p = 2 and p = 3 the method is presented
in detail using Tensor Product Quadratures for evaluation, following the workflow as
presented in Fig. 6.2. As the input variables (I.1 in Fig. 6.2) were already chosen, the next
step (I.2 in Fig. 6.2) is to evaluate the orthogonal polynomials. First, the one-dimensional
polynomials are computed using the Gram-Schmidt method in a numerical manner. As
a result, the polynomials Ψ0

1(ξ1), Ψ1
1(ξ1), Ψ2

1(ξ1), Ψ3
1(ξ1), ... and Ψ0

2(ξ2), Ψ1
2(ξ2), Ψ2

2(ξ2),
Ψ3

2(ξ2), ... are obtained as the orthogonal polynomials with order 0, 1, 2, 3, ... for ξ1

and ξ2, respectively. The multivariate polynomials can be computed by multiplying the
corresponding one-dimensional polynomials, as already stated in Eq. (6.5). According
to Eq. (6.6), 6 (Ψ1(ξ1, ξ2)...Ψ6(ξ1, ξ2)) and 10 (Ψ1(ξ1, ξ2)...Ψ10(ξ1, ξ2)) polynomials will be
needed for p = 2 and p = 3 total order. For p = 2, one has to use the combinations
(0×0), (1×0), (0×1), (2×0), (1×1), (0×2), as shown with black color in Table 6.3. The
numbering used in the present study is arbitrary, one could use a different one as well.
For p = 3, the combinations (3×0), (2×1), (1×2), (3×0) have to be added as well, as
shown with green color in Table 6.3. Having computed all multivariate polynomials, the
preprocessing part is finished.

In the next step, the Gauss-quadratures with the corresponding weights are com-
puted for each order using the Golub-Welsch method (Step II.1a in Fig. 6.2). For vari-
able ξ1 and ξ2 and order p, the weights are denoted as wj,p0 ...wj,pp and the abscissas as
xp0...x

p
p and yp0...y

p
p, respectively (p + 1 values are required always). Please note, that

xp1i = xp2i ⇐⇒ p1 = p2, i.e., the quadratures and abscissas are different for different
orders. Furthermore, as ξ1 and ξ2 have different distributions, xpi 6= ypi , w

1,p
i 6= w2,p

i . At
last, the coordinates for the sampling points are determined (II.2a in Fig. 6.2).
This is simply done by combining the ab-
scissas of the first variable as the first co-
ordinate, with the abscissas of the second
variable as second coordinate, in each pos-
sible combination, resulting in 9 combina-
tions for p = 2 and 16 for p = 3, as pre-
sented in Table 6.2. Please note, that as
the abscissas are different, different sam-
pling points have to be used.

Table 6.2: Sampling points for p = 2

(ξ1, ξ2) y2
0 y2

1 y2
2

x2
0 (x2

0; y2
0) (x2

0; y2
1) (x2

0; y2
2)

x2
1 (x2

1; y2
0) (x2

1; y2
1) (x2

1; y2
2)

x2
2 (x2

2; y2
0) (x2

2; y2
1) (x2

2; y2
2)

In the third step (III in Fig. 6.2), the function has to be evaluated at the sampling
points. Although not very demanding in the present case, by CFD a single evaluation
could require several days. Thus, for the present case the values f(x = xpi , y = ypj ) are
evaluated for p = 2, 3 and for i = 0...p, j = 0...p resulting in 9 and 16 evaluations,
respectively. The values will be denoted from now on as fpi,j.

Table 6.3: Multivariate polynomials for p = 2 (black) and p = 3 (black+green)

Ψ(ξ1, ξ2) Ψ0
2(ξ2) Ψ1

2(ξ2) Ψ2
2(ξ2) Ψ3

2(ξ2)

Ψ0
1(ξ1) Ψ1 = Ψ0

1(ξ1)Ψ0
2(ξ2) Ψ3 = Ψ0

1(ξ1)Ψ1
2(ξ2) Ψ6 = Ψ0

1(ξ1)Ψ2
2(ξ2) Ψ10 = Ψ0

1(ξ1)Ψ3
2(ξ2)

Ψ1
1(ξ1) Ψ2 = Ψ1

1(ξ1)Ψ0
2(ξ2) Ψ5 = Ψ1

1(ξ1)Ψ1
2(ξ2) Ψ9 = Ψ1

1(ξ1)Ψ2
2(ξ2)

Ψ2
1(ξ1) Ψ4 = Ψ2

1(ξ1)Ψ0
2(ξ2) Ψ8 = Ψ2

1(ξ1)Ψ1
2(ξ2)

Ψ3
1(ξ1) Ψ7 = Ψ3

1(ξ1)Ψ0
2(ξ2)
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The last step is to evaluate the value of the different coefficients. This can be done
by Galerkin-projection (Step IV.1a in Fig. 6.2) using Eq. (6.11). The integration has to
be done in a numerical manner, using a simple formula:

αk(x) =
〈Ψj(ξ), R〉
〈Ψ2

k(ξ)〉 =

p∑
i=0

p∑
j=0

w1,p
i w2,p

j fpi,jΨk(x
p
i , y

p
j )

〈Ψ2
k(ξ)〉 (6.21)

where 〈Ψ2
k(ξ)〉 are constants computed previously by the software, independent from the

problem. In this equation, all constants are already computed in Step I (quadratures,
abscissas and polynomials) or evaluated in Step III (fpi,j). Thus, using a simple sum-
mation the coefficients are determined. After evaluating the equation for k = 1...6 and
k = 1...10 for p = 2 and p = 3, respectively, the response is completely reconstructed

(
∑
k

αk(x)Ψk(ξ)). Based on this function many different analyses can be done (Step IV.2

in Fig. 6.2). Furthermore, expected value and standard deviation are evaluated based on
Eq. (6.12).

6.3.2.2 Results

The results of the PCE expansions are shown in Figure 6.4. As one can see, TP and SC
methods show a very good agreement. For a polynomial order p ≥ 5, the PDF function
is almost perfectly reconstructed. The convergence can be seen in the upper left corner,
showing the logarithm of the average error between the Monte-Carlo simulation of the
original function and the reconstructed function. As one can see, the convergence is very
fast. Reaching order 8, the error cannot be reduced any more, as the precision has already
reached the confidence interval of the Monte-Carlo simulation.
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Figure 6.4: (a) Convergence of the Probability Distribution Function (PDF) with trun-
cated normal variables (b) Convergence of the Probability Distribution Function (PDF)
with truncated normal variables for SC method with TP samples

Although LHS should be the optimal sampling method for SC according to Hosder et
al. [112], there is no restriction in using a different sampling method and oversampling
rate. To test the accuracy, Stochastic Collocation was applied to the samples of the
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quadrature method, resulting in a slightly lower oversampling rate (np =1.333, 1.5, 1.6,
1.667, 1.714, 1.75). The resulting PDF functions can be seen in Figure 6.4. The method
(SC(TP DOE)) is still able to converge to the same PDF function. However, due to the
smaller oversampling, the error increases for the same polynomial order.

Then, a second test was performed. The input variables were replaced to show uniform
distribution in the same domain. After executing again PCE, the results are presented
in Fig. 6.5. Both methods are again able to converge very fast in this case.
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Figure 6.5: (a) Convergence of PDF with uniform variables (b) Convergence of PDF
with uniform variables for SC method with optimal sampling and using the DOE of TP
with truncated normal variables (starred)

At last, it was investigated if it is possible to simply recompute the PDF functions for
a different distribution without computing additional points. The Design-Of-Experiment
from the first step for TP was retained (abscissas for the truncated normal variables,
denoted with star symbol), and the PCE was computed using SC, assuming uniform
variables and compared to the optimal sampling. The PDF functions are compared in
Figure 6.5 for p = 3 and p = 5 along with the convergence history. The agreement is very
good, supporting the original assumption.

6.4 Setup of CFD Model

6.4.1 Selected physical models

In the present study the same two-dimensional approach was chosen again, as in Chap-
ter 4. For the physical modeling, the same approach was repeated. The settings are
summarized again below:

- The flow around Darrieus rotors was modeled as incompressible (M < 0.3).

- Reference density ρ = 1.225 kg/m3 was chosen according to DIN EN 61400 [71],
the dynamic viscosity was correspondingly µ = 1.7894 · 10−5 Pa s.

- Second-order implicit temporal discretization is applied with second-order (central
or upwind) derivatives.
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- Coupled solver is applied.

- In the first step at least 10 revolutions were computed with lower temporal resolu-
tion (72 time steps per revolution) to initialize the flow field.

- In the second step at least 5 high-resolution revolutions were computed, with 720
time steps per revolution (∆ϕ = 0.5°).

- For each time step, 24 inner iterations were computed.

- Only the last quasi-periodic revolution was used for post-processing.

- Considering earlier results of the thesis the k-ω SST model was applied.

- The sides of the domain were defined as velocity inlet, pressure outlet and symmetry
boundaries. At the inlet, I = 0.1% and turbulent viscosity ratio of 10 were retained
in agreement with recommendations from the literature [54, 134,135].

6.4.2 Selected rotor geometry

For the UQ study, the same exemplary rotor was chosen with NACA0021 blades, as for the
blade optimization in Chapter 4. As a result, description of the validation, computation
of the characteristic curve, spatial discretization and numerical validation will not be
repeated here. Following the conclusions of the optimization, only k-ω SST model was
retained for the present study.

6.5 Setup of Uncertainty Quantification

The completely automated OPAL++ workflow presented in Chapter 4 was applied again
and will thus not be presented here again. The PCE expansion and Gauss quadratures
were computed with OPAL++ as well.

6.5.1 Uncertain parameters

In the followings, uncertainties are introduced originating from two sources. For both,
truncated normal distributions were used with an orthogonalization, following [144]:

- Operating conditions, here the rotation speed: for rotors with a variable rotation
speed it is very important, that the control is able to set the correct angular velocity.
Otherwise, the rotor will operate at an incorrect tip-speed-ratio. The actual angu-
lar velocity can deviate from the optimal one due to the latency of the controller,
incorrect rotation speed sensor, incorrectly reported wind speed or sudden gust ac-
celerating/decelarating the rotor. The angular velocity was chosen to be truncated
by ±2σ. This means, that for λ = 2.5 the distribution N (20, 1) was truncated to
u ∈ [18 rad

s
; 22 rad

s
], while for λ = 3.5 the distribution N (28, 1) was truncated to

u ∈ [26 rad
s

; 30 rad
s

].
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- Geometric parameters : one of the most likely imprecisions during manufacturing of
the rotor might be in the pitch angle of the blades. Blades might be mounted in a
slightly displaced position (an offset is also equivalent to a pitch angle). A slightly
incorrect pitch angle can result from deformations of the mounting structure as
well. Under operation, it might be a consequence of the exerted aerodynamic forces.
Unfortunately, there is no published information concerning the distribution of this
quantity, so N (0, 1) was truncated to the domain β ∈ [−2°; 2°].

6.5.2 Applied PCE expansion

Polynomial Chaos Expansion with order 5 was created using Tensor Product Quadrature
method, resulting in 36 simulations for each tip-speed-ratio. In order to evaluate the
convergence, a lower-order (order 4) PCE was computed as well with 25 simulations for
each tip-speed-ratio. Altogether, 61 simulations were necessary to quantify all necessary
values for a single tip-speed-ratio. Thus, a total of 122 CFD-simulations were executed in
parallel with OPAL++ on the institute’s own Linux cluster, using 25 computers, resulting
in several weeks run-time.

6.6 Results

6.6.1 Performance coefficient

In the first step, PCE was computed for the performance coefficient. Cp was evaluated
in all cases for the last revolution. The PDF function can be seen in Figure 6.6.
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Figure 6.6: Probability Distribution Function of Cp with p = 4 and p = 5 for λ = 2.5
and λ = 3.5

As one can see, the agreement between the 4th and 5th order method is perfect for
λ = 3.5, while large discrepancies appear for λ = 2.5. This is not a surprise, since the
aerodynamic behavior of the rotor is far more complex for λ = 2.5, so that the obtained
response shows a much wider spectra. However, one should not forget, that for practical
applications not the Probability Distribution Function, but the Cumulative Distribution
Function is mainly of interest; this is the integral of the former, thus inherently smoother.
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The convergence is appropriate for practical purposes. Although the full distribu-
tion has not converged yet, the most important values already agree, as documented
in Table 6.4. The table first presents the performance coefficient obtained without UQ
(CNUQ

p ); then, using UQ, the expected value (E(Cp)), the variance (σ2(Cp)) and the
chosen percentiles (Cx

p : P (Cp < Cx
p ) = x%). The error is in each case very small,

showing that the expected values and variances can be obtained thanks to PCE with a
high confidence level. Note that the expected values have been always found smaller than
in computations without UQ techniques.

Table 6.4: UQ analysis for Cp
λ = 2.5 λ = 2.5 λ = 3.5 λ = 3.5
(p = 5) (p = 4) (p = 5) (p = 4)

CNUQ
p 0.11693 0.11693 0.38719 0.38719

E(Cp) 0.10207 0.10440 0.37985 0.38012
σ(Cp) 0.05118 0.04414 0.02742 0.02638

C1%
p -0.01606 0.00354 0.26900 0.27553

C99%
p 0.19916 0.19891 0.40840 0.40742

6.6.2 Torque for the quasi-periodic revolution

In a second step, the torque coefficient (CQ; positive values denote regions with energy
generation) for a single blade (non-dimensionalized by 0.5ρAu3, where A = 2R = 2 m2

and u = 8 m/s) is presented for a quasi-periodic revolution of the rotor in Figures 6.7 and
6.8. The UQ method was repeated for each ϕ position (with 0.5° step). The black line
represents the computation without UQ (β = 0°, ω = 20 and 28, respectively for λ = 2.5
and λ = 3.5), the blue dotted line represents the expected value for CQ(ϕ), the two black
dotted lines represent the E(CQ)± 2σ interval. The green-red color scale represents the
percentiles defined as Cx

Q : P (CQ < Cx
Q) = x%.

One can see that for λ = 2.5 the variance is large, except where the angle-of-attack is
close to zero. This is again an indication of the very complex aerodynamic features found
in this case. Furthermore the expected CQ(ϕ) curve does not overlap completely with

the CNUQ
Q curve; it contains far less oscillations and is smoother than the result obtained

without UQ
For λ = 3.5 the variance is only large for the position, for which stall appears in some

configurations considered during UQ due to the large angle-of-attack. Otherwise the
distributions are mostly symmetric with a small variance. The expected values overlap
with the values obtained without uncertainty quantification.

In Figures 6.7 and 6.8, inserts show the obtained PDF functions for ϕ = 30°, ϕ = 140°
and ϕ = 330°. As one can see, the distributions are symmetric and similar to a Gaussian
at many points. However, highly asymmetric distributions are also observed. As a
consequence, the percentile curves are not symmetric around the expected values and the
error bars defined by ±2σ do not completely cover the real behavior of the system. This
highlights the importance of advanced UQ techniques, since applying simply a safety
interval ±2σ will lead to incorrect error ranges in many cases.
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Figure 6.7: Analysis of CQ(ϕ) with PCE for λ = 2.5
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Figure 6.8: Analysis of CQ(ϕ) with PCE for λ = 3.5
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Figure 6.9: Distribution function for CQ(ϕ) with p = 4 and p = 5 for different quadrants
of the rotor (0-180=upstream, 180-360=downstream) for λ = 2.5

6.6.3 Convergence

Finally, the convergence between the two approximation orders (p = 4 and p = 5) was
analyzed. The PDF function was evaluated using p = 4 and p = 5 for several phase
angles. The selected points are presented in Figs. 6.9 and 6.10. As one can see, the
agreement of the PDF functions is perfect for λ = 3.5, except for 120° < ϕ < 150°, which
corresponds to the largest angle of attack, and for which small differences appear. Thus,
applying a p = 4 order UQ is appropriate for this operating point. However, this is not
the case for λ = 2.5. There, the agreement is still perfect for 0° < ϕ < 90° and acceptable
for 300° < ϕ < 360°; but, for all conditions leading to stall and/or wake-blade interaction
the agreement is still not satisfactory. Thus, if the distributions are also of interest, even
higher order approximations are recommended (p = 6 or 7).

However, when comparing the expected values of CQ and the variance, the agreement
is almost perfect, as illustrated in Figs. 6.11. This highlights the robustness of the applied
UQ method. This means that the convergence of the first moments is already good
enough for practical applications, despite the fact that the distribution functions are not
completely converged.
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Figure 6.10: Distribution function for CQ(ϕ) with p = 4 and p = 5 for different quadrants
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Figure 6.11: E(CQ) and E(CQ) ± 2σ for a single revolution with p = 4 and p = 5 for
λ = 2.5 and λ = 3.5

6.7 Conclusions and summary

In the present chapter Uncertainty Quantification based on Polynomial Chaos Expansion
was applied to an H-Darrieus rotor. In a first step, the theoretical background was de-
scribed, followed by the numerical validation of the implementation for an analytical case.

142



Afterwards, the PCE method was applied to analyze the operation of an H-Darrieus rotor
using CFD simulations with the k-ω SST model, considering geometric and operational
uncertainties at λ = 2.5 and λ = 3.5. Pitch angle and angular velocity were defined as
uncertain inputs and modeled as truncated normal variables. The performance coeffi-
cient (Cp) and torque coefficient (CQ(ϕ)) as function of the phase angle were analyzed as
output quantities. These simulations have shown that an order p = 4 is already appro-
priate to reconstruct the distribution functions at the higher tip-speed-ratio. For lower
tip-speed-ratios, higher-order approximations (p > 5) would be needed for that purpose.

However, the first moments (expected value and variance) were already converged at
order 4, the approximations with p = 4 and p = 5 indicating only very small differences.
Since these quantities are essential for practical operation, UQ can already be used to
obtain robust results. It has been observed that the expected performance value with UQ
was systematically lower than the results without uncertainty analysis, which could partly
explain systematic discrepancies between numerical and experimental comparisons.

Additionally, it was also shown that applying ±[1...2]σ might not be a correct indi-
cator for the error bar, since the distributions are found to be asymmetric in many real
conditions. This highlights the need for advanced UQ methods.

This chapter successfully provided one example for using modern Uncertainty Quan-
tification methods on a transient, turbulent complex CFD problem. It has also successfully
highlighted that for high-quality robust optimization, advanced mathematical methods are
required. After this example, medical optimizations will be covered in the next chapter.
In previous studies, every step was completely automated. In principle, the optimization
processes were standarized to describe all configurations of a specific product line and
could be adapted into an industrial development process, without requiring any human
intervention. Medical optimizations are very different, as

- all cases are different (patient-specific),

- expert intervention cannot be completely eliminated (experience of the doctors is
very important),

- the topology of the geometries can be very different.

As a result, an approach will be presented, in which the optimization serves only as
a tool to support the work of experts. The optimization works in an automated way,
but requires expert intervention, resulting instead of a computer-driven process into an
expert-driven optimization process.
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Chapter 7

Optimization of medical problems -
Expert driven optimizations

“An expert is someone who has succeeded
in making decisions and judgements simpler
through knowing what to pay attention to
and what to ignore.”

Edward de Bono

In the previous chapters, various aspects of CFD-optimization processes were presented
by analyzing Darrieus rotors in 2D, 3D and with Uncertainty Quantification. All these
optimizations had a common point: they were completely automated. In principle, after
the time-consuming setup all these methods could be used in the production as well, with
minimal user intervention.

In the followings a completely different problem will be analyzed, where human in-
tervention cannot (and should not) be avoided: a patient-specific medical treatment will
be discussed. This necessitates a completely different approach, in which instead of the
complete automatization support provided by the experts is desired, to the highest possible
level. Hence, experts should be able to perform interventions in the optimization process
in a fast and efficient way, while the process should perform all other operations in the
fastest possible way. Thus, the present chapter will focus on optimizations, where Expert
knowledge is of the utmost importance.

The present chapter is based on an extended version of a journal publication and a
conference presentation:

Janiga, G., Daróczy, L., Berg, P., Thévenin, D., Skalej, M., and Beuing,
O. An automatic CFD-based flow diverter optimization principle for patient-specific
intracranial aneurysms. Journal of Biomechanics 48, 14 (2015), 3846–3852 [119].

Daróczy, L., Berg, P., and Janiga, G. Optimization of Flow Diverter Treatment
for a Patient-specific Giant Aneurysm Using STAR-CCM+. In STAR Global Conference
(Prague, Czech Republic, 2016) [53].
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7.1 Aneurysms and their consequences

Aneurysms are local, permanent dilatations of the arterial vessel walls, which can occur at
different places of the body (cerebral or abdominal) and can take different forms (saccular
or fusiform). The present chapter will focus on saccular cerebral aneurysms.

Despite the fact, that most people are not even aware of the existence of this med-
ical condition, aneurysms have a very high prevalence (up to 2-5% in western coun-
tries [23, 47]). Most of these are detected incidentally during other examinations. Al-
though occurrence of the rupture itself is low, ruptures are in 40% lethal and 66% of the
survivors will suffer from permanent neurological deficits [27]. Aneurysm rupture is still
responsible for almost 500 000 deaths every year [27].

7.2 Treatment of aneurysms

Several options exist for the treatment of intracranial aneurysms. One possibility is the
clipping. In this case, a small metallic clip is placed along the neck of the aneurysm, see
Fig. 7.1 (a). This blocks effectively the blood flow into the aneurysm sac. However, for
clipping dangerous open-skull surgery is necessary, requiring 6-12 months for the skull
bone to heal [27].

Figure 7.1: Possible treatments for aneurysms schematically: (a) Clipping (b) Coiling
(c) Stenting

A less invasive approach is coiling, where platinum coils are placed in the aneurysm
using a catheter, see Fig. 7.1 (b). The coils are simply detached though electrical current.
To prevent the coils from entering the circulatory system, a stent is then placed in the
artery to block them. An increasingly popular method is stenting without coils, where a
low porosity (high-density) flow-diverter is used. This is less invasive [219] and reduces the
risk of perforation [220] while still reducing the mass flow into the sac [187]. This reduces
the load on the vessels and initiates thrombosis and finally occlusion. However, it does
not always lead to the desired effect. To avoid complications, simulative methods could be
used to assist the treatment planning. “The optimal treatment ... is a fundamental issue
for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm
shapes and locations, the choice of the stent and the patient-specific deployment strategy
can be a very difficult decision.” [119].
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7.3 Towards patient-specific treatment

CFD-based treatment optimizations are not completely unprecedented in the literature,
but these studies considered usually only a single device with few variations, without the
possibility of a full optimization; or with significant simplifications. E.g., Lee et al. used
multi-objective optimization for minimizing velocity and vorticity, but based on a strongly
idealized cases [137], while other studies were based on only two-dimensional models [8,
204, 205]. In contrast, Ma et al. used Finite Element method for the simulation of a
realistic deployment process, which is very time-consuming, but fluid dynamics aspects
were not considered [145, 146]. Computer supported treatments are not unprecedented
in other medical fields either and are increasingly considered [193].

For all patient-specific treatments for stenting the same steps have to be performed.
Figure 7.2 presents these steps, denoted as “single evaluation”. Red boxes represent steps,
which cannot be automated (yet) while green boxes present steps, which can be automated
with an appropriate expertise. The small figures represent, if medical (M)/technical (T)
experts are needed for the current step, or if they can be executed only by relying on
computers (C):

1. Angiography (M): First, the aneurysm has to be identified, based on medical image
acquisition (e.g., angiography) and segmentation. At this point, the medical expert
has to define, if treatment is necessary.

2. 3D vessel reconstruction (M&T): The next step is the reconstruction of the 3D
vessel geometry. In this step, both technical and medical experts have to be involved.
This is necessary, as the reconstruction is a very complex technical process. Due to
technological limitations artifacts have to be removed: this can only be done with the
help of a physician in order to obtain realistic geometries.

3. Parameters for stent deployment (M&T): Following the reconstruction, definition of
the parameters for the virtual stent implantation follows. For this step, both technical
and medical experts are needed. These software usually require some expertise, while
only medical experts have an extensive knowledge of the adoptable flow diverters.

4. Parameters for meshing and CFD (T): Finally, for the simulations, the technical
experts have to decide the mesh generation and CFD settings. After this point, all
steps could be theoretically automated, apart the last one.

5. Stent deployment (C): Stent deployment is executed either based on geometrical [26]
or structural mechanical considerations [146], using the defined parameter space.

6. Mesh generation (C): Mesh generation software has to be employed to resolve and
discretize the volume between the vessel and flow diverter.

7. CFD (C): Detailed Computational Fluid Dynamics simulations are executed.

8. Post-processing (C): Quantities of interest are extracted by the simulation software
itself or through an additional post-processing software.

9. Evaluation (M): The final evaluation still has to be based on the decision of the
physician.
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Figure 7.2: Workflow of patient specific treatment

7.4 Expert-driven Computer Aided Stent Evaluation

(ECASE)

To enable patient-specific treatments based on realistic CFD models, a new approach is
proposed, which combines realistic virtual stent deployment with detailed 3D CFD sim-
ulations. The presented approach is fully automated and can be applied to an arbitrary
patient-specific geometry in a relatively short time, making it compatible with clinical
practice. The ultimate goal of the research is to enable patient-specific treatment. The
present study is the first of its kind to the best of our knowledge.

The proposed method was named ECASE, which stands for Expert-driven Computer
Aided Stent Evaluation. The idea is very simple: if optimal efficiency is already achieved
for a single evaluation (i.e., all steps, where expert intervention is not needed are already
automated), there is no reason not to compute and compare many different cases. This
way, instead of a single evaluation, many different configurations can be evaluated in
parallel, without any increase of the user waiting time. All results can be collected in a
database, see Fig. 7.2. This process can be easily coupled with an optimization algorithm.
However, the final decision still has to be based on the decision of the physician.

The most important assumptions/requirements behind the idea are:
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- Completely automatic stent treat-
ment is not (yet) possible (as many
different factors contribute to the ef-
ficacy of the treatment) [53].

- Important medical decisions are
made by a medical expert [53];
all other operations (e.g., meshing,
CFD) are executed by a computer; if
needed, the technical expert can have
an influence on the process.

- An optimization algorithm is used to
find the most efficient solution in the
defined parameter space.

- For high-fidelity results, the CFD
computations have to completely re-
solve the geometry (see Fig. 7.3).

Figure 7.3: Completely resolved struts

However, automation of these steps is still not trivial, as several new challenges appear:

- Coupling of specialized software: Coupling in itself is not a problem, as discussed
in previous chapters. However, the highly specialized in-house virtual stent deploy-
ment software used in the present study cannot be installed on all systems due to
compatibility issues.

- Mesh generation and mesh quality: for such complex geometries with huge scale
differences, automated mesh generation is not easy. Although newer automatic
mesh generation methods (e.g., the Polyhedral Mesh generation in StarCCM+)
provide a great help for a robust and automatic mesh generation, even such methods
will fail to provide the requested quality.

The completely automated workflow was implemented in OPAL++. In the follow-
ings, the different steps implemented in the present study will be discussed in detail.
Afterwards, a real clinical case will be analyzed with the method.

7.4.1 Reconstruction and preparation of the geometry

In the first step, the vessel geometry has to be segmented and prepared (as an STL
format; Step 1-2, see Section 7.3), and a parameterized model of the stent has to be
created based upon the manufacturing technology (Step 3).

7.4.2 Virtual stent deployment

A previously validated [120] in-house stent deployment software was applied for Step
5. The software has a batch mode to support optimizations, but lacks an appropriate
maintenance and presents many compatibility problems; it cannot be installed on all
systems. This problem was solved by using a Virtual Machine. The software was installed
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in this virtual machine and can be accessed simply by an SSH connection. This way, the
software can be efficiently used on any system (Windows/MAC/Linux) without problems,
avoiding compatibility issues.

7.4.3 Mesh and CFD setup

Mesh generation was performed using the commercial CFD software package Star-CCM+.
StarCCM+ supports robust and automatic mesh generation based on polyhedral cells
for the finite-volume discretization. Polyhedral mesh results usually in better quality
compared to, e.g., tetrahedral meshes, as “the presence of multiple neighbors leads to a
better approximation of the gradients and faster convergence” [119].

For the mesh generation an intelligent JAVA macro was developed (appr. 3000 lines
of code). The macro needs only two input files (vessel and stent), and automatically
corrects smaller artifacts, identifies inlets and outlets, creates physical setup and mesh
generation process, defines Automated Mesh Operations with several refinements. Based
on different recommendations [118] and algorithmic methods most parameters can be
defined in an automated matter. Nevertheless, it is still recommended to have the setup
checked by the technical expert. The reason behind this recommendation is very simple:
aneurysms, flow diverters and vessel geometries may vary widely, resulting in possibly
faulty parameter values for some special cases. But to handle real patients, it is crucial
to ensure a correct setup.

These points result in very different requirements. First of all, it is necessary that the
expert can quickly review an exemplary case of different aneurysm setups and modify
the meshing process if necessary. On the other hand, meshing still has to be executed in
a completely automated way during the optimization, while ensuring appropriate mesh
quality. One possible solution to remedy these problems would be to use macro recording
in StarCCM+. However, this is not the most efficient way. When relying on recorded
macros, the experts would need to repeat the same steps for each optimization (e.g.,
define boundaries), when in the reality only a couple of values have to be modified.

The solution was achieved by a combination of innovative methods:

- For mesh generation, one needs a high-quality and correct CAD file describing the
volume of the model. However, in the present case the geometry is created by
importing vessel and flow-diverter geometry. Using simply a subtraction could fail
due to geometrical imprecisions. To avoid a lingering surface-repair process, Surface
Wrapper was used as an alternative to extract the volumes. As a result, the flow-
diverter geometry can be separately created and effectively imported into the vessel
geometry.

- To provide mesh generation both in a manual (i.e., expert-driven) and automated
way, a Script-in-Script (SiS) approach was applied. First, the script tries to per-
form the mesh generation in an automated way and computes the mesh settings.
Throughout the process, it presents the recommended values to the expert, who
has the option to accept or modify the value (Step 4). Following a successful mesh
generation, the values are recorded to a secondary script (with an own syntax).
Afterwards, each mesh generation is completely automated (Step 6), as the JAVA
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script simply performs all operations based on the secondary script containing the
settings.

- Treated geometries are very complex (sharp angles, where flow diverter struts meet
walls, small struts, etc.). As a result, when generating the mesh in an automated
way, some settings may result in incorrect mesh, i.e., inappropriate mesh quality.
However, as the JAVA script already handles the different mesh settings as pa-
rameters, it becomes possible to optimize the mesh quality. In the present study,
for each considered case many different discretizations were generated with slightly
varying settings and the best one (according to skewness angle) was chosen for the
CFD computation.

These methods ensure a robust, high-quality and automatic mesh generation.
Following the automated geometry generation and mesh automatization process, blood

flow simulations were carried out in StarCCM+, with the same JAVA macro. In prin-
ciple, choosing laminar or turbulent, steady or transient, Newtonian or non-Newtonian
fluid makes no difference regarding the effort, it only impacts the computational time. In
order to avoid any divergence due to deformed cells, activating Cell Quality Remediation
in StarCCM+ is recommended.

7.4.4 Post-processing

Post-processing is a very important part of the optimization process: the medical expert
will decide based on the results at this point, which flow-diverter geometry is more ap-
propriate. This is not simple in all cases, as the efficacy of the treatment depends on
many different factors. Most popular options are to look at the Bundle of Inflow, Wall
Shear Stress (WSS), mass inflow through the ostium, maximal velocities, etc. However,
none of these provide a complete description of the efficacy of the treatment: although a
large mass flow is damaging, no flow at all would lead to cell death. Similarly, increased
wall shear stress leads to “mural-cell-mediated destructive remodeling and weakening of
the aneurysm wall” [38]. In contrast, low wall shear stress may trigger inflammatory-cell-
mediated destructive remodeling, if high oscillatory shear is present [151].

Therefore, one has to decide which quantity should be used as an objective function
for the optimization. This value can be simply extracted by the CFD software or by the
post-processing software.

7.5 Exemplary optimization

Following the description of the method, a real patient geometry was chosen for the study
to present the applicability of the present method for clinical practice.
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7.5.1 Analyzed clinical case

“A 53-year-old female with an acute
headache was examined in the emergency
department of the University Hospital
Magdeburg. The patient reported no ad-
ditional symptoms, and a physical exami-
nation yielded no further findings. CT re-
vealed a parasellar mass on the right side.
Through CT-angiography, the suspected
giant aneurysm of the cavernous segment
of the right internal carotid artery was con-
firmed. Treatment was performed elec-
tively 13 days after initial presentation. A
flow diverter (Silk, Balt, France) sized 3.5
mm × 30 mm was implanted, with massive
reduction of blood flow into the aneurysm
sac at the end of the procedure ... MRI
performed six months after the implanta-
tion of the flow diverter showed complete
resolution of the aneurysm.” [119].

Figure 7.4: Analyzed giant aneurysm with
iso-surface (0.04 m/s) and streamlines for
a treated case

7.5.2 Vascular reconstruction and preprocessing

“A 3D rotational angiography was performed with a flat-panel angiography system (Artis
Twin dBA, Siemens Healthcare Sector, Forchheim, Germany). The subsequent segmenta-
tion of the data set containing the aneurysm was carried out using MeVisLab 2.3 (MeVis
Medical Solutions AG, Bremen, Germany), and the three-dimensional surface model was
obtained by applying a seeded region-growth algorithm. Afterwards, visually obvious ar-
tifacts that occurred during the imaging process were corrected manually (Blender 2.68a,
Amsterdam, The Netherlands), especially in areas where the vessel and the aneurysm
were melted. Finally, Taubin-smoothing on the discrete surface mesh ensured a more
realistic representation [159, 166]. In order to check the plausibility of the reconstructed
shape, the treating neuroradiologist reviewed the virtual geometry ... The following ge-
ometric properties characterize the three-dimensional aneurysm model: The diameter of
the parent vessel ranges from 3.2 to 4.2 mm and is 75.2 mm long. Located at a dis-
tance of approximately 40 mm from the inlet cross-section, the aneurysm has a maximal
transverse diameter of 31 x 28 mm. The distance between the dome and the ostium
accounts for 23.1 mm, whereby the ostium itself spans an elliptical area of 4.1 x 9.7 mm
in tangential and axial direction, respectively.” [119]. The 3D reconstruction was carried
out by Dr. Mathias Neugebauer (Fraunhofer MEVIS, Bremen, Germany).

7.5.3 Stent geometry

“Based on the reconstructed patient-specific aneurysm model, the centerline of the parent
vessel was generated with VMTK (Vascular Modeling Toolkit [7]) and used for the virtual
stent deployment. A virtual SILK stent was generated with dimensions matching the
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real implant using Creo Parametric 2.0 (Parametric Technology Corporation, Needham,
USA). For each strut, a mean diameter of 30 µm was applied, and the stent pores of the
uncompressed regions spanned an angle of 44° and 136°, respectively. In areas of local
compression, the angle ratio was changed to 22° and 158°.” [119]

7.5.4 Stent deployment

”An in-house software enabled the deformation and placement of the virtual implant.
The procedure was previously validated using dyna-CT as well as micro-CT in a patient-
specific in-vitro silicone phantom model [120] and compared to in vivo flow diverter
deployments in large white swines [115]” [119].

7.5.5 Meshing

For the present study, 0.25 mm was chosen for vessel and aneurysm walls, 0.5 mm resolu-
tion for the core region [118]. Additionally, local refinements were defined for the ostium
and flow diverter walls (0.01-0.02 mm) to resolve the geometry completely. Between the
refinements and core regions, a mesh density growth rate of 0.8 was applied to ensure
smooth transition. These settings resulted in mesh resolutions of 1.9 million polyhedral
cells without flow diverter and 9-11 million cells for the treated cases.

Mesh generation for a single treated case required approximately 4-6 hours on an
Intel(R) Xeon E5-2620 (2.10GHz) processor. However, based on the parallelization of
OPAL++, the different cases were meshed in parallel on different workstations. The
final spatial discretization is presented in Figure 7.5 at different locations for a treated
case.

7.5.6 Parameterization & optimization setup

In this exemplary optimization the effect of compression was analyzed. First, three
reference cases were defined for comparison: the untreated case (UN), the “normal”
uncompressed stent (NC) and a high compression case (HC) was added as well, see
Fig. 7.6.

Afterwards, the actual optimization variable was chosen. A medium compression was
chosen and the goal was to minimize the inflow into the aneurysm through the ostium,
when the position of the local partial stent compression along the centerline is varied.
However, due to the small parameter space, there is no need for a complete optimization.
Instead, a Design-Of-Experiment was executed with seven equidistant locations (C1-C7).
If needed, an arbitrary parameterization could be obviously performed as well.

7.5.7 Setup of CFD Model

As the ultimate goal of the present chapter was to present a proof-of-concept for expert-
driven optimization, several simplifications were made to reduce the runtime:

- Steady flow was analyzed with an average inlet velocity of u = 0.5 m/s and plug flow
profile. Although real flows are transient in the blood vessels, steady simulations
generate almost equivalent flow patterns to the cycle-averaged results [96].
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Figure 7.5: Mesh resolution of the analyzed case at different locations

UN NC C1 C2 C3

C4 C5 C6 C7 HC

Figure 7.6: 10 different configurations (yellow color highlights ostium)

- Fluid was assumed to be incompressible, laminar and Newtonian with ρ = 1055 kg
m3

density and µ = 0.004 Pa s dynamic viscosity [36], as in the cerebral vasculature
non-Newtonian effects are negligible due to the relatively high shear rate.

- 4000 iterations were performed for each simulation (this ensured normalized resid-
uals below 10−6).
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The CFD simulations were performed on a small computational cluster in parallel.
Each simulation was executed on a single Intel (R) Xeon E5-2620 (2.1 GHz) processor,
resulting in 10-14 hours of computational time with StarCCM+. As simulations were
executed in parallel, all simulations were completed within 14 hours. Together with the
mesh generation, this ensured that the complete optimization did not require more than
a single day, making it compatible with clinical use.

7.5.8 Results

7.5.8.1 Qualitative analysis

Isosurface Flow structures inside an aneurysm are complex and difficult to analyze.
One possible way to visualize the overall flow structures is to use an isosurface of the
velocity (0.04 m/s in this case). Figure 7.7 shows the iso-surfaces for the untreated (UN),
uncompressed (NC) and C5 cases (which provided the strongest reduction of the jet size).
As one can see, blood flow enters the aneurysm sac through the ostium and stays close

UN NC C5

improvement improvement

Figure 7.7: Isosurface for 0.04 m/s velocity

to the wall forming a vortex, leading to the development of a stagnation zone. When
treating the aneurysm with flow diverter, a clear reduction is seen and the expansion of
the isosurface is significantly reduced, for C5 configuration especially. All configurations
are compared in Fig. 7.8.

Wall shear stress The reduction in jet size and velocities leads to additional changes in
the aneurysms: wall shear stresses (WSS) change significantly too. The original untreated
case shows elevated values near the neck region and along the impingement zone of the
giant aneurysm (see Fig. 7.9). In contrast, all treated cases show a significant reduction,
with C5 showing the most significant reduction from NC and C1-C7 (see Fig. 7.10).
Of course, HC shows an even stronger reduction, but at the cost of significantly lower
porosity (which may lead to complications in the clinical cases).
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Figure 7.8: Isosurface for 0.04 m/s velocity

UN NC C5

Figure 7.9: Wall Shear Stress
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Figure 7.10: Wall Shear Stress

7.5.8.2 Quantitative analysis

To enable quantitative analysis, mass in-
flow through the ostium was integrated for
each analyzed case, and compared to the
untreated case (UN). The uncompressed
flow diverter resulted in 24.4% reduction,
indicating that using an arbitrary flow di-
verter leads to improvements in many cases
as well. When looking on C1-C7 configu-
rations, a wide range of improvements are
found (see Fig. 7.11). The ’worst’ con-
figuration (C1) leads to 27.3% improve-
ment, while the best (C5) leads to 33.3%.
This shows, that the optimization can
indeed lead to significant improvements,
even when keeping the porosity constant
(C1-C7).

Figure 7.11: Reduction in mass inflow

This confirms the findings of the qualitative analysis, i.e., that C5 is the best config-
uration. This example concludes the present optimization.
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7.6 Future improvements

Although the present case confirmed the applicability of the approach for real clinical
cases, there are still many points that could be improved regarding the physical modeling.
The possible improvements can be organized into two groups. The first group is relatively
easy to implement. It requires almost no effort, but only a small change in the CFD
settings:

- In the present study flow was considered to be steady. This is a very strong sim-
plification, as in the reality due to the heart a pulsating flow is encountered in
aneurysms. However switching the simulation from steady to transient does not re-
quire a huge effort, it is only a question of available computational resources. This
way, one could compute several cardiac cycles.

- Blood was modeled as a Newtonian fluid. However, it is actually a non-Newtonian
fluid in reality. Again, changing the model for the dynamic viscosity is relatively
simple.

The second group contains improvements, which require significant effort and/or require
a significantly different approach for the optimization process:

- In the present optimization, walls were assumed to be rigid, i.e., exhibited infinite
resistance. In the reality, this is not true. Due to the pulsating flow and forces
exerted by the fluid, walls are moving and deforming during the cardiac cycle.
However, to model this, not only a Fluid-Structure Interaction (FSI) simulation
has to be executed using an additional finite-element software (e.g., ABAQUS), but
precise information concerning wall properties would be needed, as wall thickness
and mechanical properties vary widely along vessel walls. Accurate measurements
of these properties is not feasible yet.

- Virtual stent deployment was computed in the present case based upon geometrical
considerations. However, for a completely realistic approach one could execute
transient finite-element simulations of the unfolding procedure as well. This would
increase computational times significantly [146].

- Parameterization of the stent for the present optimization considered only compres-
sion. Diameter of the struts, interwire distance or angle were not considered. This
could be important for clinical practice and for the development of better devices.

7.7 Second proof-of-concept

In order to show, that the present ECASE method is flexible and can be easily extended,
only the stent parameterization and virtual stent deployment methods were replaced. All
other parts (mesh generation, CFD setup and post-processing) were performed relying
on the same methods and scripts in OPAL++.

7.7.1 Alternative stent deployment

To enable a significantly larger parametric freedom, an additional in-house software was
developed in C++ by the present author (approximately 9000 lines of code). In this
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method, the stent deployment only needs the geometry of the vessel as an STL for-
mat. Thus, any other third-party CAD software is eliminated from the process. In this
implementation, after importing the geometry, inlets and outlets are marked first (see
Fig. 7.12/Step 1). Afterwards, the volume is discretized by voxels (Step 2). Using the
voxels one can run a skeleton algorithm to detect the topology (Step 3 [51]). Based on
the topology, a toroidal coordinate system is defined (Step 4), which is optimized for
maximal cross-section diameter and curvature radius (Step 5). Based on this coordinate
system, arbitrary stent geometry can be put in place based on geometrical considerations
(Step 6 [26]). With this method, among others, wire radius, interwire distance, num-
ber of wires, angle between the wires, stent radius and stent location can be handled as
parameters.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 7.12: Steps of the implemented in-house stent deployment method

7.7.2 Setup of the optimization

To present the parametric freedom, a second short optimization was performed. In this
optimization, only a few configurations were tested as the present study is only a proof-
of-concept. Instead of the compression, the interwire distance and the number of struts
were varied. Each strut has 30 µm diameter, and 20×2, 24×2 and 28×2 struts were
tested (denoted as A, B and C, respectively), see Fig. 7.13. Interwire distance was varied
to be 14 and 19.2 mm/number of wires (denoted as 1, 2). The list of configurations
were given to OPAL++, and mesh generation, CFD computations and post-processing
was executed in a completely automated way, relying on the earlier method.
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A2 B2 C2

A1 B1 C1

Figure 7.13: 3 × 2 different configurations with varying interwire angle and interwire
distance

7.7.3 Results

The whole process again did not require more than 24 hours. The same qualitative anal-
ysis was performed, as presented earlier. However, due to the larger parametric freedom,
much wider differences are obtained. When looking at the iso-surfaces and Wall Shear
Stresses (see Figs. 7.14 and 7.15), there is almost no difference between the worst treated
case and the untreated (UN) case. In contrast, the best case shows significant reduction
regarding both values. This confirms the necessity of a flexible parameterization.

UN worst best

improvement improvement

Figure 7.14: Isosurface for 0.04 m/s velocity

This example concludes the present optimization.
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UN worst best

Figure 7.15: Wall Shear Stress

7.8 Conclusions and summary

In this chapter a proof-of-concept was successfully presented for the optimization of in-
tracranial aneurysm treatment. First, hemodynamic simulations were performed for 8
different compression scenarios, and an optimal configuration (minimal mass flow) was
identified for a fixed porosity. Afterwards, a second optimization was performed by vary-
ing number of struts and interwire angle. All simulations and evaluations were embedded
into a completely automated framework in OPAL++ to enable a qualitative and quan-
titative analysis of the analyzed cases. The method proved to be fast and efficient and
would be compatible with real clinical treatments to enable patient-specific treatments
under the control of a medical expert.

Thus, the present chapter provided an example for an optimization problem, where
the input of the expert cannot be disregarded from. Thus an expert-driven optimization
process was implemented. As one can see, the present approach enables a fast and efficient
optimization of patient-specific medical cases. The research is not yet finished at this point.
Hopefully, many other contributions will be made on this field to truly enable modern and
affordable patient-specific treatment for everyone. With this, all chapters dealing with
CFD problems are concluded.

In what follows, based on the experience gained through the previous chapters, a new
optimization method (HYENA) will be proposed especially focusing on realistic engineer-
ing problems. This will conclude the present thesis.
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Chapter 8

HYENA - Practical engineering
optimization algorithms

“In theory, there is no difference between
theory and practice. But, in practice, there
is.”

Jan L. A. van de Snepscheut

After concluding all chapters directly focusing on CFD-based problems, the present
chapter will focus on incorporating Practical Engineering aspects into Mathematical Op-
timization, by proposing a new optimization algorithm based on the experiences gained in
the previous chapters.

8.1 Introduction

Multi-objective optimization methods have undergone a significant development in the
last years, resulting in reduced number of necessary function evaluations, better applica-
bility to industrial tasks and easier access for everyday users. Nevertheless, application
of these methods to many industrial problems is still impossible. As previously demon-
strated in various chapters, optimization in the engineering practice is not easy and not
identical to mathematical optimization. The most important differences are, as al-
ready pointed out in Chapter 1.2.1:

• The evaluation of the objective function may be very costly, and can require up to
several days.

• During the optimization, differences of the variables below manufacturing tolerance
is irrelevant (e.g., optimization of a car geometry with nm precision is meaningless).

• Due to numerical noise and model uncertainties, the objective functions are usually
noisy.

• The geometry and mesh has to be created/morphed for each configuration in an
automated and robust way.
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• Different software (including proprietary commercial software) have to be coupled
to cooperate for the optimization.

Industrial problems may be examined as well using Response Surface Methods or
Surrogate models. However, without additional a priori knowledge, success is not guar-
anteed. With the advancement of computational power the new methods introduced in
practice (e.g., LES) tend to be increasingly sophisticated, detailed and show complex re-
sponses. As the number of such new methods has significantly increased in the last years,
sufficient understanding of all methods would require an excessive time and effort from
the common industrial engineer, often resulting in a poor choice and incorrect conclu-
sions. For industrial projects, only optimization methods are of interest, which are fast,
take into account manufacturing precision and are error-tolerant. Furthermore, choosing
an appropriate method for optimization is a difficult and complex task requiring expert
knowledge from the engineer. As a result, intelligent and adaptive methods should be
preferred by the industry to leverage the necessary time of training for engineers.

When the problem is simple (e.g., with SCH1, see later), applying a genetic method
would result in a waste of computational resources. In this case a metamodel can be
created and the multi-objective optimization can be performed on this model. Such an
approach was chosen in the work of Pasquale et al. [178] or Leusink et al. [140]. Similar
approaches are quite often found (e.g., [22,126,140,165,178]), but are usually restricted to
creating a metamodel and performing an optimization on it. However, one cannot know
prior to testing, if the answer is really that simple. If the number of variables or the
parameter domain is too large, metamodels might completely fail to work. For example
in Chapter 2 a heat exchanger configuration was analyzed with a genetic method [56].
The analysis has revealed that the domain is severely disconnected both in the variable
and in the objective space. Due to the large number of permutations, a high number
of local and global optima were observed. Approaching this problem with a metamodel
would have been completely incorrect and ineffective.

The goal of the current chapter is to introduce a method that is more suitable for such
problems and will adaptively choose between the methods by introducing competition
not only between the individuals but also between the methods. It is demonstrated in
several analytical cases that the new method overperforms one of the most popular genetic
methods, NSGA-II [68], while it falls back to normal genetic methods in complex cases.
Finally, a fluid dynamics example is described relying on a broadly used panel method
(XFOIL) for function evaluation.

8.1.1 Iterative methods

In the followings, different aspects of engineering optimization will be analyzed and so-
lutions will be proposed to the individual questions. Finally, all recommendations are
put together to propose a new algorithm. For the discussions, the iterative scheme of
optimization methods will be used, as discussed in Section 1.1.3.4. For the sake of under-
standing, the algorithm is repeated here again. Consider a modified form of an iterative
search procedure as defined by Laumanns et al. [136]:
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0: optimize(y(x)):

1: c := 0

2: A(0) := ∅
3: while terminate(A(c), i) = false do

4: c := c+ 1

5: F (c) := generate(A(c−1))

6: compute y(x) ∀x ∈ F (c)

7: A(c) := update(A(c−1), F (c))

8: end while

9: return A(c)

where c is the iteration cycle counter, A(c) is the archive in step c and F (c) is the list of
new individuals generated by the different operators. Compared to [136] it is emphasized
that in Step 5 the new points are generated based on the old archive and Step 6 is added
to emphasize that generating the new points and evaluating them is logically different.
Finally, the Pareto front is approximated with

P (X) ≈ P (A(C)) = {x ∈ A(C) |@x̂ ∈ A(C) : x̂ ≺ x}, (8.1)

if the total number of generations is C = max (c). The quality of this approximation
can be evaluated using different metrics, e.g., set coverage ratio, spacing, generational
distance, inverted generational distance, generalized spread [65], hyper volume indica-
tor [234], etc.

For Step 5 different operators can be applied. If a genetic operator is used, the
approach is a genetic optimization method; if the individuals are based on an interpolation
method, it is a metamodel-assisted optimization technique.

8.1.1.1 Speed and runtime of the optimization

Let us denote the computational time needed for ’Step 5’ with t
(c)
gen, ’Step 6’ by t

(c)
eval

and ’Step 7’ by t
(c)
upd. The time needed for the evaluation of a single configuration is

tcomp, the number of individuals in the archive is N
(c)
arch = |A(c)| and the number of

generated individuals is N (c) ≡ N
(c)
new = |F (c)|. Moreover, suppose that one can compute p

individuals in parallel (number of processors, or alternatively number of available licenses
needed for the evaluation). The time needed for the optimization with C cycles is

T (C) =
C∑
c=1

(t(c)gen + t
(c)
eval + t

(c)
upd) =

C∑
c=1

(t(c)gen + t
(c)
upd) + tcomp

C∑
c=1

⌈ |F (c)|
p

⌉
(8.2)

8.2 Analysis of optimization process from engineer-

ing point of view

For engineering optimization problems relying on simulations, the evaluation of the ob-
jectives is done by a dedicated numerical simulation. Then, tcomp becomes significantly
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larger, ranging from a couple of minutes up to several days (as compared to a couple of
milliseconds in the case of academic analytical problems). This and many other aspects
result in modified requirements, which will be discussed in the present chapter.

8.2.1 Accuracy

Accuracy is important in the industry, but only up to practical limits (which is not the
case in theoretical mathematics). As a result, making conclusions based on the distance
from the Pareto-front (e.g., the metrics) with several thousands of function evaluations is
completely impractical, as most methods have already converged at this point up to sev-
eral digits. Such comparisons are still widely done in the mathematical literature. If the
difference in a design variable or objective is not measurable in practice or is below man-
ufacturing tolerance, both designs should be considered equal for engineering purposes.
This question was already partially answered with the introduction of ε-dominance [136].
In the present work a slightly modified (submissive) form is defined:

x1 ≺ε x2 ⇐⇒
{

x1 ≺ x2

∃j : fj(x1) < fj(x2)− εj
(8.3)

where εj is the precision of the j-th objective. This means that if the difference in
the objective values are not large enough (i.e., not “measurable”), the configurations
are treated as equal (in the objective space). The first criterion is needed to avoid the
removal of the extremes of the Pareto-front. Using this method the approximation of the
Pareto-front (8.1) is replaced with the Pareto approximate front:

Pε(A
(c)) := {x ∈ X |@x̂ ∈ A(c) : x̂ ≺ε x}. (8.4)

Moreover, the same approach has to be applied to the variable space:

x1 ≡ε x2 ⇐⇒ ∀i ∈ [1...m] : |x1,i − x2,i| ≤ εi (8.5)

where x1,i is the i-th component of x1 and εi is the precision of the i-th design variable.
This precision is usually easy to be defined. For geometrical variables it is the manufac-
turing precision; for process variables it is the precision of the control mechanism. This
means that two configurations are equivalent if the difference between any two compo-
nents of two configurations is not larger than a defined value. This approach remains
valid because if small measurable differences result in large differences of the objective
values, the sensitivities are too large and robust optimization has to be applied [76,222].

A common problem with genetic algorithms is the unwanted clustering of configura-
tions. When a superior element appears in the Pareto front, it will be favored during the
cross-over operations compared to other configurations. As a result, similar configurations
are generated in order to explore the nearby domain. If a large number of generations is
used, the number of similar (or even completely identical) configurations will significantly
increase. This effect is even more pronounced in single-objective optimization. In order
to avoid such an issue a modified non-redundant algorithm is proposed for ’Step 5’, which
will generate new elements until N

(c)
new = |F (c)| is satisfied, but accepting only elements
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that are not equivalent to already existing ones. Thus, the new population has to fulfill
the following two criteria:

∀xi ∈ F (c) @ xj ∈ A(c−1) : xi ≡ε xj (8.6)

∀xi ∈ F (c) @ xj ∈ F (c) (i 6= j) : xi ≡ε xj (8.7)

8.2.2 Resource-efficient optimization

Every time a new optimization method has been proposed, it has been almost immediately
used for some real-life engineering problem. Most algorithms focus on efficiency, but very
few focus on reducing the number of evaluations (although exceptions can be found,
e.g., [213]); even fewer are focusing specifically on problems associated to Computational
Fluid Dynamics [202], as considered in our group. Three different efficiencies can be
defined:

- Total time needed for the optimization: T (C)

- Limit behavior (e.g, O(n2), O(nlog(n)) etc.) of administrational operations of the
optimization algorithm (big O notation or Bachmann-Landau symbol)

- Number of function evaluations: Ntot =
∑C

c=1 |F (c)|
Although minimizing the second criteria will result in a decrease of T (C), it cannot
capture all aspects of the process appropriately. If tcomp >>

∑C
c=1(tigen + tiupd), the

evaluations require much longer time than all other operations in the optimization algo-
rithm together. As a result, many algorithms focus on the minimization of

∑C
c=1 |F (c)|,

which does not cover the whole truth either (for |F (c)| mod p 6= 0 some resources will

be wasted). If p number of computations can be computed in parallel,
∑C

c=1

⌈
|F (c)|
p

⌉
has

to be minimized for an efficient algorithm, i.e., |F (c)| mod p = 0 has to be ensured. In
reality tcomp = constant is not true either, but it has a distribution, see Fig. 8.1 for an
example [56]. Future research will try to analyze, identify and take advantage of this
distribution during the run-time as well.

Figure 8.1: Exemplary distribution in CFD-
O [56] (run-time of evaluation when varying
design)
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8.2.3 Adaptive Operator Selection (AOS)

As already mentioned, different operators can be applied in ’Step 5’ but none of them is
suited for all different problems. Instead, specific operators should be chosen as function
of the considered problem. One may try different operators, and after each step the
success of the different operators is evaluated and the number of individuals generated by
each method is adjusted. In such a way, not only the configurations compete with each
other during the optimization process, but the different operators and methods as well.
This increases the adaptivity and applicability of the model. Such an approach is called
Adaptive Operator Selection (AOS) [64].

Another adaptive approach is used at the common metamodel-assisted or surrogate-
based optimization methods, where the optimization is performed on the metamodel, and
if the accuracy of the Response Surface is not accurate enough, more points are added to
the database and the optimization is performed again [2].

Here, a combination of the two ideas is used. Several operators compete with each
other, but the operators are not necessarily only “simple” genetic operators; some of
them are the combinations of metamodels and optimization processes on the metamodels.
Although this sounds very time consuming (it is really!), the idea is, that as long as
tcomp >> 1, one may increase tgen to increase the efficiency. As long as tgen << tcomp,
even a time-consuming operator will not significantly increase the total runtime.

Another advantage of the proposed approach is the indirect information exchange
between the operators. Although in some cases the metamodel might be inaccurate (so
that it is impossible to use it directly in an optimization), it might still provide important
information concerning the trends, which could be used to accelerate the convergence of
a genetic algorithm. Figure 8.2 shows the objective function of ZDT4 (n = 2, x1 = 0).
Twelve points were generated randomly and a second-order regression was created. It
can be seen that the quadratic metamodel is able to show the direction of the optimum,
but not the exact location nor the value. The combination of the local search (by genetic
operators) and global search (trend analysis) can lead to drastic speed-ups.

8.2.4 Preventing loss of information

Most genetic and iterative algorithms use for Step 7 some kind of filtering mechanism
to keep A(c) moderate in size, thus reducing the burden of the big O notation. How-
ever,

∑C
i=1 |F (i)| is usually limited to a couple of hundreds (at the very most thou-

sands) in simulation-based problems. Thus, filtering unnecessarily removes information,
as P (A(C)) ⊆ P (A(0) ∪ ... ∪A(C)), but the equality might not necessarily hold. It is well-
known, e.g., that the filtering mechanism might result in deterioration of the NSGA-II
algorithm [136]. To avoid this effect, ’Step 7’ is simply replaced with A(c) := A(c−1)∪F (c).
This also increases the quality of the tested metamodels, as more information is available.
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8.3 HYENA

In this section, the algorithm of HYENA (HYbrid ENgineering optimization Algorithm)
will be explained. The flowchart of HYENA can be seen in Fig. 8.3. In principle, HYENA
is a combination of the ideas behind ε-dominance [136], adaptive population size of Fast-
GPA [78], nondominated sorting [68], Adaptive Operator Selection [64] and metamodel-
assisted optimization [2].

Figure 8.3: Workflow of the optimization method HYENA

8.3.1 Step 0: Initialization

In order to avoid unnecessary waste of resources, a reduced number of N (0) individuals
are generated in the first step using a Design-Of-Experiment method: for this purpose,
a SOBOL sequence [122] or Near Orthogonal Latin Hypercube [142] method is recom-
mended. Then, the iterative method is started.

8.3.2 Step 1: Generating new individuals

This step does not have to be executed in the first cycle. Afterwards, the number of
individuals to be generated for the new generation is always dynamically adjusted. This
has the advantage that it will waste fewer individuals in the first generations, when not
enough information is available concerning the function fields. The number of individuals
in a new generation is evaluated as:

N (c)
new =

⌊
min(N0 + |Pε(A(c−1))|cinc, Nmax)

p
+ 0.5

⌋
p, (8.8)
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where N0 is the minimal number of individuals, Nmax is the maximal number of indi-
viduals and cinc is the increment factor. This approach was first introduced in the Fast-
GPA method [78]. Moreover, this value is rounded to increase the efficiency by ensuring

N
(c)
new mod p = 0.

For each operator o, N
(c)
op=o = N

(c)
new · w(c)

o elements are generated (with the necessary

rounding), where w
(c)
o is the weight of operator o. The genetic operator is always denoted

with o = 0 in the current study, while all other operators are denoted with o = 1, 2, ...
w

(c)
o is updated dynamically during the optimization.

8.3.2.1 Step 1: Genetic operators/a

As in HYENA the archive is simply updated by adding all new elements, its size can
become quickly too large to work efficiently with the tournament method. To avoid this
problem, the new individuals are generated from a reduced set of parents. The archive
A(c−1) is reduced to N

(c)
new elements using the following algorithm:

0: filterA(S,N
(c)
new):

1: Q := ∅
2: r := 0

3: ranking(S)

4: while |Q|+ |Rr| < N
(c)
new do

5: Q := Q ∪Rr

6: r := r + 1

7: end while

8: while |Q|+ |Rr| > N
(c)
new do

9: crowding(Rr)

10: Rr := Rr\p : pcrowd ≤ qcrowd ∀q ∈ Rr

11: end while

12: Q := Q ∪Rr

13: return R

Hence, the set S := A(c−1) is reduced by adding all individuals with rank 0,1, ... until
the number of total individuals is N

(c)
new. Finally, the last rank is reduced by iteratively

removing the element with the smallest crowding distance (while recomputing it in each
step). This is a modified (more time-consuming) version of the filtering of NSGA-II, since
the elements from the last rank are reduced iteratively. However, the modified filtering
method still requires significantly smaller time compared to tcomp.

8.3.2.2 Step 1: Genetic operators/b

For creating new elements the classical cross-over (SBX [66]) and polynomial mutation
operators are applied. Moreover, a non-redundant generation is enforced, as defined by
Equations (8.6)-(8.7). For choosing the parents a 2-level tournament was implemented
in HYENA.
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8.3.2.3 Step 1: Metamodel operators/a - Creating the metamodel

For metamodel-based operators the archive (A(c−1)) is normalized in the first step to the
[0; 1]n and [0; 1]m domain. Then, a metamodel is created based on the choice of the user.
Here op = 1 is a response surface with second-order total expansion (containing all 0,
first and second-order effects and all interactions with two variables); op = 2 is a modified
moving least squares interpolation (MLSQ, with weight function w(r) = ((r/R)8 + 1)−1,
where R depends on the location and density of points) with second-order total expansion;
op = 0 is the normal genetic (SBX and mutation) operator.

8.3.2.4 Step 1: Metamodel operators/b - Optimization on the metamodel

After the metamodel was created, the original optimization problem is cloned (with all
variables and analytical constraints) while replacing the objectives with the virtual meta-
model. A virtual optimization is carried out. The number of individuals and generations
used in the virtual optimization depends on the cost of the applied operators. For sim-
ple Response Surfaces 200x300 (individuals×generations) is appropriate, while for MLSQ
100×100 or 150×150 may be better suited to reduce runtime. The result of this opti-
mization (A

(last)
v ) is sent for filtering to the next step.

8.3.2.5 Step 1: Metamodel operators/c - Filtering the results

To improve the exploitation and exploration of the algorithm as well, N
(c)
op is further

divided into two groups (50-50%). The first group will simply select the best config-
urations (largest crowding distance) from the Pareto front (rank 0) of the virtual op-

timization (P (A
(last)
v )). Moreover, redundancy (8.6-8.7) is taken into account to avoid

similar configurations. This promotes convergence. The second group takes the remain-
ing individuals and chooses the configurations with the largest minimal distance from
the archive, based on the following algorithm. The distance for an existing set (S)
for a specific configuration p is defined as distvar(p, S) = minq∈S,q 6=p ‖p− q‖2,norm,var and
distobj(p, S) = minq∈S,q 6=p ‖p− q‖2,norm,obj, where ‖p− q‖2,norm,var and ‖p− q‖2,norm,obj is
the normalized L2 norm in the variable and objective space, respectively. Since the ob-
jective values from the metamodel might be inaccurate or have a bias, the objective field
cannot be taken into account.

0: filterB(A, S,N):

1: r := 0

2: while r < N do

3: p := (q : distvar(q, S) ≥ distvar(t, S) ∀t ∈ A)

4: A := A ∪ p
5: S := S\p
6: r := r + 1

7: end while
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where the subroutine has to be called with A := A(c−1), S := A
(last)
v . This ensures that

only the best individuals will be considered but only from regions not yet discovered,
thus improving the multi-modality and exploration.

8.3.3 Step 2: Evaluation and updating archive

In Step 2 the configurations generated by Step 1 (or by the initialization) are evaluated in
parallel. Then, the archive is updated (A(c) := A(c−1) ∪ F (c)) and the rank and crowding
distance of the individuals are computed. The ranks are computed similarly to the method
developed by Deb [68]:

0: ranking(S):

1: r := 0

2: while |S| > 0 do

3: Rr := Pε(S)

4: for each p ∈ Rr

5: prank := r

6: end for

7: S := S\Rr

8: r := r + 1

9: end while

This subroutine has to be executed for S := A(c). The original form used in the
NSGA-II method for the crowding distance is modified by using a weighting mechanism,
similar to the one of the Omni-Optimizer [69]:

0: crowding(S):

1: for each p ∈ S
2: pcrowd,var := distvar(p, S)

3: pcrowd,obj := distobj(p, S)

4: end for

5: maxvar := maxq∈S(pcrowd,var)

6: maxobj := maxq∈S(pcrowd,obj)

7: for each p ∈ S
8: pcrowd :=

pcrowd,var

maxvar
+

pcrowd,obj

maxobj

9: end for

The subroutine has to be executed for each S := Rr separately. Furthermore, for indi-
viduals corresponding to the extremes of the objectives and design variables pcrowd :=∞
is applied to support exploration. When comparing two configurations, a modified domi-
nance is defined (≺combined), in which first the ε-dominance is compared; if no configuration
is dominating, the configuration with larger crowding distance is chosen.
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8.3.4 Step 3: Efficiency of the operators

The efficiency of the operators is evaluated based on the ranks using the following method.
First, the maximal rank is identified, MRc = maxq∈A(c)(qrank). If the set S contains all
individuals generated by a specific operator o, then its efficiency is defined as

successo =

∑
q∈S (MRc − qrank)

|S| . (8.9)

Larger values indicate a more successful operator. If an operator is always efficient (gen-
erating only individuals with rank 0), successo = MRc, while a completely unsuccessful
operator results in successo = 0.

8.3.5 Step 4: Updating weights

Based on the success of the different operators, the weights have to be updated. First
the change in weight is computed:

∆wo =
successo − successo∑

o successo
. (8.10)

If the largest change exceeds an allowed limit, all changes are scaled down with ∆max

max ∆wo

and the new weights are computed as w
(c+1)
o = w

(c)
o + ∆wo. The success of the operators

can only be tested, if a minimal number of individuals were generated. Thus, each weight
is corrected using:

w(c+1)
o = max

(
w(c+1)
o ,

Nmin,o

N (c+1)

)
, (8.11)

where Nmin,o is the minimal number of individuals to be generated by each operator.
Using this method, it is not sure that

∑
owo = 1 will be fulfilled. Thus, the largest

weight is corrected to ensure
∑

owo = 1.
In the current study the weights were initialized with w0 = 0.75, w1 = 0.125, w2 =

0.125 or w0 = 0.75, w1 = 0.25 and Nmin = 5. The algorithm was implemented in
OPAL++.

8.3.6 Summary

8.3.6.1 Summary of the applied ideas

The most important properties of HYENA compared to classical multi-objective genetic
optimization are:

- During the optimization method, no individuals are eliminated from the archive to
prevent deterioration and loss of information.

- In order to take into account the accuracy of the objective values, ε-dominance is
applied.

- To avoid redundancy in the archive, no individual can be generated that would be
equivalent to an existing configuration up to a defined precision.
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- The size of the generations is dynamically adjusted to avoid wasting function evalu-
ations. The number of parallel computing units (processor, computers, licences) are
taken into account to maximize the efficiency.

- Different operators are used to generate new individuals. Not only the individuals, but
the operators are competing with each other, increasing the adaptivity of the method.

- Surrogate models are used parallel to genetic methods, and information is exchanged
between the methods to ensure the highest efficiency.

8.3.6.2 Summary of parameters

In the followings, the list of parameters necessary for HYENA are summarized, with
recommended values:

- p: Number of parallel nodes used in the optimization (depends on the compute
cluster)

- N0: Minimal number of individuals in each generation (recommended value: 10-40)

- Nmax: Maximal number of individuals in each generation (recommended value:
50-200)

- cinc: Increment factor for the number of individuals in each generation (recom-
mended value: 1)

- ε: value needed for ε-dominance

- list of operators: the operators to be used during the optimization (recommended:
one genetic operator, one global trend analysis, one MLSQ method)

- operator settings: as the user may choose any operator, the necessary settings (e.g.,
distribution index) have to be specified for each operator

- wi: starting weight for each operator (recommended value: 0.75 for genetic operator,
the rest equally distributed)

- Nmin: minimal number of individuals generated with each individual (recommended
value: 5)

As one can see, for most parameters the recommended values are applied throughout
the study, the users should in principle only change N0, Nmax and the list of operators
(Note: although p is important as well, e.g., parallel MPI implementations receive this
value automatically at startup).

8.4 Results

For the initialization of the optimizations, SOBOL method was used, for the genetic
operators ηc = 20, ηm = 20 was applied for NSGA-II and HYENA. If not stated oth-
erwise, ε = 0.01 was applied in HYENA with cinc = 1, p = 10. For NSGA-II the
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Figure 8.4: Solution of the test-function SCH1

recommended settings were retained following [68] (N = 100). In all tests the opti-
mizations were stopped when one of the methods managed to approximate the Pareto
front with high precision. Besides the presented cases, additional tests were analyzed as
well. For Schaffer’s study [191] HYENA overperformed NSGA-II significantly due to the
simple response surface and solved the problem with 400 real function evaluations. For
ZDT4 neither NSGAII nor HYENA could solve the problem considering 1000 function
evaluations.

Please note, that one could compare the method against other adaptive, hybrid meth-
ods as well, but most of these algorithms are commercial and proprietary.

8.4.1 SCH1

In the first test the problem from Schaffer’s study (SCH1 [191], convex) was tested:

O :


f1(x) = x2

f2(x) = (x− 2)2

−1000 ≤ x ≤ 1000

. (8.12)

SCH1 is a very simple analytical problem. However, due to the large domain, evolution-
ary algorithms often have problem with it. HYENA was tested with op = 0 and op = 01
operators with N0 = 30 and Nmax = 100. For the virtual optimization 200 individuals
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Table 8.1: SCH1 statistics

Method gen. Ntot V ar(Ntot) NP γ d1

NSGA-II 10 2000 0 8.6 0.042 2.47

HYENA (op = 01) 7 410 3.52 212 0.0016 0.086

were used with 300 generations; the overhead is not significant. Figure 8.4 shows the
result with HYENA (op = 01) after 410 evaluations, the result with HYENA (op = 0)
after 420 evaluations and the results of NSGA-II after 2020 evaluations. The right top
side shows the number of individuals generated with operator 0 (genetic), 1 (RSM). The
bottom two figures show two independent tests only with HYENA (op = 01) and NSGA-
II. With op = 01 HYENA almost immediately switches to the metamodel operator as
the objective functions can be reconstructed with a second-order trend analysis. This
test is somewhat unfair due to the very simple function. However, it indicates that if the
model is simple, HYENA can effectively switch to a Response Surface Approach. Within
400 full evaluations, HYENA finds the whole Pareto-front, while NSGA-II is not able to
identify the whole front even in 2000 evaluations.

Statistically, the same tendency was observed. The optimization was executed 200
times with the same DOE for the initial generation. The results are presented in Table 8.1
for generations 10 and 7, respectively, showing the average and variance of the total
number of evaluations, the average of the number of solutions in the Pareto front (NP ),
the average convergence metric (γ) and the average of the maximal distance between
consecutive elements in the Pareto front (denoted by d1). In the present case instead of
the spread (∆) the (first) maximal distance between consecutive elements in the Pareto
front (denoted by d1) is presented, as it is better in this case to show how large the gaps
are within the Pareto front. Although for fully converged Pareto fronts the spread is a
better suited metrics, in the present case the convergence is not complete yet in all cases.

8.4.2 KUR

In the second test Kursawe’s study (KUR [132]) was considered, which is a non-convex
problem. For the definition please refer to [68]:

O :


f1(x) =

∑2
i=1

(
−10 exp

(
−0.2

√(
x2
i + x2

i+1

)))
f2(x) =

∑3
i=1 (|xi|0.8 + 5 sin x3

i )

−5 ≤ x1, x2, x3 ≤ 5

. (8.13)

The results of HYENA with op = 012, N0 = 40 and Nmax = 100 can be seen in Fig.
8.5. For the virtual optimization 100 generations were used with 100 individuals. Again,
HYENA is in all cases superior to NSGA-II in convergence and spread. At the beginning
the trend analysis op = 1 is able to provide a small boost, but is turned off shortly
afterwards due to the complex objective field. Then, op = 2 becomes effective after the
5th generation, when enough information is present. This results in a superior exploration
of the Pareto front as the algorithm is able to detect at which point enough information
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Figure 8.5: Solution of the test-function KUR

Table 8.2: KUR statistics

Method gen. Ntot V ar(Ntot) NP γ d4

NSGA-II 10 1000 0 40 0.145 1

HYENA (op = 012) 16 892 922 100 0.047 0.53

is available for the metamodel. Even before this point it focuses on the Pareto front due
to the genetic optimization method.

The statistics (64 samples) for the optimization are presented in Table 8.2. As the
Pareto-front is discontinuous (3 gaps), the fourth largest distance between consecutive
elements of the Pareto front is presented in the statistics (d4), as it is able to show how
large the gaps are within the Pareto front. To show that the relation between different
metrics is not only valid for a chosen time-step, the evolution of the convergence metric
and the number of elements in the Pareto-front (NP ) in function of the number of total
function evaluations (Ntot) is presented in Fig. 8.6. As one can see, HYENA converges
much faster and is superior in every sense.
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8.4.3 ZDT4 (n=4)

ZDT4 ( [232]) is a very complex problem with a large number of local extrema. The case
n = 4 case was selected:

O :



f1(x) = x1

f2(x) = g(x)[1−
√
x1/g(x)]

g(x) = 10n− 9 +
∑n

i=2 (x2
i − 10 cos(4πxi))

0 ≤ x1 ≤ 1

−5 ≤ xi ≤ 5, i = 2...n

. (8.14)

As one can see (Fig. 8.7), it is not possible to solve such a complex problem with such
a small number of evaluations, neither with NSGA-II nor with HYENA. In this case,
HYENA behaves similarly to NSGA-II, since it simply switches back to normal genetic
optimization. For the present case no statistics are presented, as neither method could
solve the problem with such a small number of evaluations.

8.4.4 FON

The problem proposed in Fonseca and Fleming’s study [90] is a non-convex problem.

O :


f1(x) = 1− exp

(
−∑3

i=1

(
xi − 1√

3

)2
)

f2(x) = 1− exp

(
−∑3

i=1

(
xi + 1√

3

)2
)

−4 ≤ x1, x2, x3 ≤ 4

. (8.15)

The results of HYENA with op = 012, N0 = 40 and Nmax = 100 can be seen in Fig. 8.8.
For the virtual optimization 150 generations were used with 150 individuals. Once more,
HYENA is in all cases superior to NSGA-II. At the beginning the trend analysis op = 1
is able to provide a larger boost, but is shortly afterwards turned off due to the complex
objective field and op = 2 becomes more effective. The op = 0 version is also faster
compared to NSGA-II, but leads to a worse convergence compared to op = 012. Using
64 samples, the statistics of the different metrics are presented in Table 8.3, showing the
improved convergence and better coverage of the Pareto front with HYENA.
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Figure 8.7: Solution of the test-function ZDT4 (n=4)

Table 8.3: FON statistics

Method gen. Ntot V ar(Ntot) NP γ d1

NSGA-II 6 600 0 29 0.023 0.20

HYENA (op = 012) 8 494 222 116 0.003 0.065

8.4.5 POL

Poloni’s problem (POL [180]) is non-convex and disconnected.

O :



f1(x) = 1 + (A1 −B1)2 + (A2 −B2)2

f2(x) = (x1 + 3)2 + (x2 + 1)2

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1 = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2 = 1.5 sin(x1)− cos(x1) + sin(x2)− 0.5 cos(x2)

−π ≤ x1, x2 ≤ π

. (8.16)

The results can be seen in Fig. 8.9, which shows the two disconnected parts of the Pareto
front for both cases. HYENA (op = 012) outperforms NSGA-II in both convergence and
spread in all cases, illustrating the efficiency of the method. It is interesting to see that,
even for disconnected problems, the implemented Moving Least Squares method works
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Table 8.4: POL statistics

Method gen. Ntot V ar(Ntot) NP γ d2

NSGA-II 6 600 0 45 0.17 2.57

HYENA (op = 012) 8 523 142 187 0.015 0.46

well.
The statistics (64 samples) are presented in Table 8.4, using the second largest distance

(d2) since the Pareto-front is discontinuous. The convergence metric is more than 10 times
smaller with HYENA, while the number of points in the Pareto front is more than 4 times
larger, with a smaller number of function evaluations.

When the evolution of the convergence metric, d2 and the number of elements in the
Pareto-front (NP ) as function of the number of total function evaluations, the same ten-
dency was revealed, i.e., HYENA converges much faster and is superior in every respect.

8.4.6 XFOIL-based optimization

Finally, a realistic engineering optimization problem is considered. For this purpose,
a blade-shape optimization was performed using XFOIL [72] for the evaluations. The
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Figure 8.10: Evolution of different metrics for POL

software XFOIL uses a panel method for the evaluation of the aerodynamic coefficients
around blades. A Reynolds number Re=400 000 (typical for wind turbines) was retained
in the present case with Ncrit = 4. The geometry of the airfoil was generated by OPAL++
based on the NACA4 parameterization, and loaded into XFOIL.

XFOIL computes the different coefficients for every ∆α = 0.025° with 200 iterations
and the stall angle is approximated as dCL

dα

∣∣
αstall

= 0. Lift and drag coefficients were
determined for the stall angle and the lift to drag ratio was computed for this angle as
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well. The efficiency of wind turbines is mostly influenced by CL/CD [176]. For Darrieus-
type wind turbines the stall angle is a critical parameter, as this value influences the
separation (airfoils with higher stall angle are able to operate under higher angle of attack,
thus at lower rotation speed, allowing lightweight components). To address both issues,
the following optimization was formulated using m (relative camber in percent), p (10×
relative location of maximal camber) and t (relative thickness in percent) as parameters
for a NACA4 profile:

O :


f1(x) = CL

CD

∣∣
α=αstall

→ max

f2(x) = αstall → max

0 ≤ m ≤ 7.5 , 2 ≤ p ≤ 5 , 15 ≤ t ≤ 25

(8.17)

To avoid airfoils that would not be able to withstand high bending moments, the imposed
minimal thickness was set to 15%.

For the optimization, the tolerance of the variables is chosen as ε = 0.01. For the
objectives, ε = 0 was applied with N0 = 40, Nmax = 100; for NSGA-II N = 80 was
retained. Only the op = 2 operator was enabled, as the response would be too compli-
cated for quadratic Response Surfaces. A statistical evaluation with several hundreds of
optimizations was not possible in this case, as a single evaluation already requires 10-46
minutes (average: 18 minutes CPU). Thus, the whole optimization requires several hours
even in parallel. For the virtual optimization, 200 individuals were used with 300 gener-
ations. Although this results in a long runtime, the corresponding overhead (1-3 hours)
is equivalent to less than 10 evaluations, which is deemed acceptable. Although in the
present study the virtual optimization was run in serial, there is no practical limitation to
take advantage of the parallel environment used for the simulations. When using several
computers or cores, a common 8-16 core workstation reduces this overhead to a couple
of minutes.

The results are shown in Fig. 8.11, for three different independent optimization runs.
As one can see, the MLSQ method (op = 2) is able to successfully generate new elements,
which results in a better covered and better converged Pareto front. Some elements were
also found in the o1 < 10 domain as well, but are not shown, since they are irrelevant for
practical purposes. The highest regions were only discovered by HYENA. The NSGA-II
method did not converge completely to the Pareto front and is less well-spread in all
domains. Certainly, NSGA-II would converge to the same front in later generations, but
with a considerably larger number of function evaluations.

In a second test the optimization was performed in parallel on 16 cores. In this case,
both NSGA-II (400 evaluations) and HYENA (350 evaluations) needed 7 hours of CPU
to finish the test, but the results of HYENA were superior. This signifies, that HYENA
with MLSQ becomes more efficient and faster, when a single function evaluation requires
more than 20 minutes.
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Figure 8.11: Solution of the XFOIL-based optimization

8.5 Conclusions and summary

In the present study a new hybrid multi-objective optimization algorithm was proposed
for simulation-based engineering problems. In this approach, called HYENA, metamodels
and genetic operators are combined using Adaptive Operator Selection (AOS). Hence, not
only the individuals but also the different methods are competing with each other. In this
manner, the adaptivity of the method increases significantly and the obtained efficiency
is higher.

The proposed method was tested considering a variety of analytical problems. At
the end, a real simulation-based engineering problem was investigated, using XFOIL to
perform the evaluations. HYENA was able to perform significantly better in all cases but
one (ZDT4). Only in this most complex case, HYENA switches back automatically to the
standard genetic optimization method, and thus performs comparably to NSGA-II. As
a whole, the method proved to be very promising. Future research will focus on further
benchmarking HYENA by comparisons with multiploid methods [173], concentrating on
complex multi-objective applications.

This concludes the present thesis.
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Summary

“Optimization saturates what we do and
drives almost every aspect of engineering.”

Dennis Bernstein

In the present thesis, the importance and multidisciplinary aspects of CFD-O have
been presented by using a few selected engineering problems. Most importantly, an
own software was developed to carry out all studies in an efficient manner. The examples
were selected so, that all aspects of the multidisciplinary CFD-based optimization process
could be analyzed (see Fig. 8.12).

Figure 8.12: Multidisciplinary aspects of CFD-O

Using these selected examples it was presented,

- that mathematical optimization is very different from practical engineering opti-
mization processes, though they share many aspects (see Chapter 1). Thus, spe-
cialized methods are required, as proposed in the present thesis (HYENA, see Chap-
ter 8);

- that developing an appropriate in-house or well-suited commercial software can
increase the efficiency of engineers significantly (see Chapter 1);

- that even the simplest problem can result in a topologically complex Pareto front.
Thus, appropriate care should be given for the post-processing and analysis phase
of multi-objective optimizations (see Chapter 2);
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- that using an unnecessarily high number of constraints will hinder convergence (see
Chapter 2);

- that choosing an appropriate parameterization can speed-up convergence and in-
crease exploration of the problem, even when using the same number of variables
(see Chapter 3 and Chapter 4);

- that uncertainties can be quantified by using an appropriate UQ method even for
physically complex cases; one should be careful when choosing too simple models
or assuming symmetric distributions (see Chapter 6);

- that mesh generation can be efficiently and robustly implemented for 2D and even
for 3D cases, by using a systematic approach and using appropriate mesh generation
tools (see Chapter 4, 5, 7);

- that even problems, where interaction with experts cannot be eliminated, can be
efficiently supported by optimization to speed-up the process (see Chapter 7);

- that metamodel-based optimization can be efficient for many problems, but direct
CFD-based optimization with small number of iterations (< 1000) suffices in many
cases, when choosing an appropriate parameterization, automation and optimiza-
tion method (see Chapter 4).

Research is being continued regarding many aspects. Methods such as robust opti-
mization, multi-fidelity optimization processes, hybrid global-local search methods have
been only rarely applied in the corresponding scientific literature. To introduce these
promising methods in everyday engineering processes, there is still a long way to go.
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[107] Hämäläinen, J., Madetoja, E., and Ruotsalainen, H. Simulation-based
Optimization and Decision Support for Conflicting Objectives in Papermaking.
Nordic Pulp & Paper Research Journal 25, 3 (2010), 405–410.

[108] Hansen, N., Niederberger, A., Guzzella, L., and Koumoutsakos, P.
A Method for Handling Uncertainty in Evolutionary Optimization With an Appli-
cation to Feedback Control of Combustion. IEEE Transactions on Evolutionary
Computation 13, 1 (2009), 189–197.

[109] He, W., Diez, M., Campana, E. F., Stern, F., and Zou, Z. A one-
dimensional polynomial chaos method in CFD-based uncertainty quantification for
ship hydrodynamic performance. Journal of Hydrodynamics, Ser. B 25, 5 (2013),
655–662.

[110] Hilbert, R., Janiga, G., Baron, R., and Thévenin, D. Multi-objective
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[121] Jericha, H., Göttlich, E., Selic, T., and Sanz, W. Novel Vertical-Axis
Wind Turbine with Articulated Blading (GT2012-68969). In ASME Turbo Expo
Conference (Copenhagen, 2012).

[122] Joe, S., and Kuo, F. Y. Remark on algorithm 659: Implementing Sobol’s
quasirandom sequence generator. ACM Transactions on Mathematical Software
29, 1 (Mar. 2003), 49–57.

[123] Kaimal, J. C., and Finnigan, J. J. Atmospheric Boundary Layer Flows: Their
Structure and Measurement. Oxford University Press, 1994.

193



[124] Ke, Z., Zhenghong, G., Jiangtao, H., and Jing, L. Uncertainty quantifi-
cation and robust design of airfoil based on polynomial chaos technique. Chinese
Journal of Theoretical and Applied Mechanics 46, 1 (2014), 10.

[125] Kelecy, F. J. Coupling Momentum and Continuity Increases CFD Robustness.
ANSYS Advantage II, 2 (2008), 49–51.

[126] Khatir, Z., Thompson, H., Kapur, N., Toropov, V., and Paton, J. Multi-
objective Computational Fluid Dynamics (CFD) design optimisation in commercial
bread-baking. Applied Thermal Engineering 60, 1–2 (2012), 480–486.
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[154] Meyer, J., Daróczy, L., and Thévenin, D. Optimizing the external geometry
of a pick-up tube for a Pitot-tube-jet pump. In 4th International Conference on
Engineering Optimization (Lisbon, 2014).

[155] Mohamed, M. Performance investigation of H-rotor Darrieus turbine with new
airfoil shapes. Energy 47, 1 (2012), 522–530.

[156] Mohamed, M. Impacts of solidity and hybrid system in small wind turbines
performance. Energy 57 (2013), 495–504.

[157] Mohamed, M. Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines.
Energy 65 (2014), 596–604.

[158] Molnár, B. Comparison of structured and unstructured meshes for the compu-
tations of an H-type Darrieus wind turbine. Master’s thesis, University of Miskolc,
2014.

[159] Mönch, T., Gasteiger, R., Janiga, G., Theisel, H., and Preim, B.
Context-aware mesh smoothing for biomedical applications. Computers & Graphics
35 (2011), 755–767.

[160] Monteiro, D. B., and de Mello, P. E. B. Thermal performance and pressure
drop in a ceramic heat exchanger evaluated using CFD simulations. Energy 45, 1
(2012), 489–496.
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[173] Öksüz, Ö., and Akmandor, I. Multi-objective aerodynamic optimization of
axial turbine blades using a novel multilevel genetic algorithm. Journal of Turbo-
machinery 132, 4 (2010), 1–14.

[174] Padron, A., Alonso, J., Palacios, F., Barone, M., and Eldred, M.
Multi-fidelity uncertainty quantification: Application to a vertical axis wind tur-
bine under an extreme gust. In AIAA AVIATION 2014 -15th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference (2014).

[175] Papoutsis-Kiachagias, E., and Giannakoglou, K. Continuous adjoint
methods for turbulent flows, applied to shape and topology optimization: Industrial
applications. Archives of Computational Methods in Engineering (2014), 1–45.

[176] Paraschivoiu, I. Wind Turbine Design: With Emphasis on Darrieus Concept.
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Verlag, Basel, 1977.

[195] Sheldahl, R. E., Klimas, P., and Feltz, L. Aerodynamic Performance of a 5-
Metre-Diameter Darrieus Turbine With Extruded Aluminium NACA-0015 Blades,
SAND80-0179. Tech. rep., Sandia National Laboratories, March 1980.

[196] Sierra, M. R., and Coello Coello, C. A. Improving PSO-Based multi-
objective optimization using crowding, mutation and ε-dominance. In Proceedings
of the Third international conference on Evolutionary Multi-Criterion Optimization
(Berlin, Heidelberg, 2005), EMO’05, Springer-Verlag, pp. 505–519.

[197] Simon, D. Evolutionary Optimization Algorithms. John Wiley & Sons, Inc., Hobo-
ken, New Jersey, 2013.

[198] Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F. Krig-
ing models for global approximation in simulation-based multidisciplinary design
optimization. AIAA Journal 39, 12 (2001), 2233–2241.

[199] Sleesongsom, S., and Bureerat, S. New conceptual design of aeroelastic wing
structures by multi-objective optimization. Engineering Optimization 45, 1 (2013),
107–122.

[200] Sobieczky, H. Parametric airfoils and wings. In Notes on Numerical Fluid Me-
chanics, K. Fuji and G. S. Dulikravich, Eds., vol. 68. Springer Vieweg, 1998.

[201] Sobol, I. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics 7, 4
(1967), 86–112.

[202] Soulat, L., Ferrand, P., Moreau, S., Aubert, S., and Buisson, M. Effi-
cient optimisation procedure for design problems in fluid mechanics. Computers &
Fluids 82 (2013), 73–86.

199



[203] Spalart, P. R., and Rumsey, C. L. Effective Inflow Conditions for Turbulence
Models in Aerodynamic Calculations. AIAA Journal 45, 10 (2007), 2544–2553.

[204] Srinivas, K., Nakayama, T., Ohta, M., Obayashi, S., and Yamaguchi,
T. Studies on design optimization of coronary stents. Journal of Medical Devices
2, 1 (2008), 011004.

[205] Srinivas, K., Townsend, S., Lee, C. J., Nakayama, T., Ohta, M.,
Obayashi, S., and Yamaguchi, T. Two-dimensional optimization of a stent
for an aneurysm. Journal of Medical Devices 4, 2 (2010), 021003.

[206] Storn, R., and Price, K. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. J. of Global Optimization 11, 4
(1997), 341–359.

[207] Strang, G. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009.

[208] Strickland, J. H. Darrieus turbine: a performance prediction model using mul-
tiple streamtubes. Tech. rep., Sandia National Laboratories, October 1975.

[209] Sudhakar, T., Balaji, C., and Venkateshan, S. A heuristic approach to
optimal arrangement of multiple heat sources under conjugate natural convection.
International Journal of Heat and Mass Transfer 53, 1-3 (2010), 431–444.

[210] Taborda, M., Laón, S., López, O., and López, Y. Design Improvement of
Cross Flow Water Turbines using CFD. In International Conference on Renewable
Energies and Power Quality (ICREPQ’15) (2015).

[211] Templin, R. J. Aerodynamic Performance Theory for the NRC Vertical-Axis
Wind Turbine. LTR-LA-160. Tech. rep., National Research Council of Canada,
June 1974.
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→ Baranyi, L., Bolló, B., and Daróczy, L. Simulation of low-Reynolds number
flow around an oscillated cylinder using two computational methods. In ASME 2011
Pressure Vessels & Piping Conference (PVP 2011) (Baltimore, USA, 2011).
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mization of Flow Diverter Geometry Towards Patient-Specific Treatment of Intracra-
nial Aneurysms. In Optimize This! 2016 International HEEDS User Conference
(Detroit, USA, 2016).
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→ Daróczy, L., Lindell, G., and Baranyi, L. Safety analysis of cold Helium
releases in the CERN LHC underground tunnel using CFD simulations. In 26th
MicroCAD International Scientific Conference (Miskolc, Hungary, 2012).
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tion of the permeability in porous media using the Lattice Boltzmann method. Int.
J. Heat Fluid Flow (2016).
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