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Abstract

Microbial populations contribute strongly to the total biomass on Earth and are important key
players in biochemical cycles. Microorganisms are also essential in biotechnological applica-
tions and represent the majority of cells in the human body. While the importance of microbial
consortia for life and human health is increasingly recognized, this growing interest demands
the holistic analysis of microbial communities. To that extent, metagenomic and metatranscrip-
tomic approaches provide a solid blueprint, however, assessing the actual phenotypes requires the
analysis of protein expression. Since the �rst large-scale proteome analysis of a microbial com-
munity one decade ago, metaproteomics has advanced as an indispensable tool for the detailed
investigation of expression pro�les in microbial samples: mass spectrometry-based proteomics
provides insights into potential functions and enzymatic capabilities of microorganisms from
di�erent environmental conditions and habitats. Although many technical improvements have
beenmade regarding the analytical tools, various severe challenges related to processing, evalua-
tion and interpretation of high-throughput data remain unresolved in this �eld. �ese issues are
mainly caused by the lack of standardized so�ware and the limited integration of available meth-
ods from bioinformatics. Accordingly, the aim of this work was to identify the major challenges
for the analysis of metaproteomic data and to provide solutions to these encountered issues.
�e�rst part of this work presents theMetaProteomeAnalyzer, an open-source so�warewhich

was developed to analyze and interpret comprehensive data sets from metaproteomic experi-
ments. �e tool includes and combines multiple search algorithms for the identi�cation of pro-
teins from tandem mass spectra. �e server side features the automated integration of relevant
taxonomic and functional meta-information for the identi�ed proteins. �e client application
then allows to examine the microbial community composition and to detect key enzymes in
metabolic pathways. To tackle data redundancy and protein inference issues, di�erent rules were
implemented to group protein hits to so-called meta-proteins. �e so�ware tool holds an intu-
itive graphical user interface with various visualization and categorization features to facilitate a
detailed and unbiased exploration of the data. To handle complex questions, the included graph
database back-end further extends the prede�ned presentation of the results by providing a user-
de�nable query system.
�e second part of this work focuses on the identi�cation of typical bottlenecks and short-

comings which frequently arise during the data analysis in metaproteomics. �erefore, the in-
�uence of search algorithm, protein database, and enzymatic cleavage parameters on the iden-
ti�cation outcome is evaluated by investigating metaproteomic data sets from biogas plant and
human intestine samples. �e results show that combining the search algorithms X!Tandem and
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OMSSA as well as searching against subsets of a typical metaproteome sequence database signif-
icantly improve the identi�cation yield. Furthermore, both metagenomic and public sequence
databases result in unique peptide identi�cations, indicating that parallel searches against di�er-
ent resources lead to an information gain in terms of the proteome content of microbial samples.
A benchmark experiment based on Pyrococcus furiosus proteome data demonstrates that iden-
ti�cations are lost due to an FDR overestimation in target-decoy-based searches against large
protein databases. �e increase ofmissed cleavage parameter values reduces the number of iden-
ti�cations for metaproteomic data sets and semi-tryptic searches fail to provide a signi�cant gain
in identi�cations. In addition, de novo sequencing is applied as alternative identi�cationmethod
to conventional database searching. It is shown that the outcome of de novo sequencing cannot
justify the e�ort due to the low overlap with the corresponding results of database searching.
�e �nal part of this work addresses the essential requirement of methods beyond the scope

of common identi�cation work�ows in proteomics. First of all, the meta-protein generation ap-
proach is evaluated that was developed to group redundant protein hits by means of a provided
set of di�erent rules. It is shown that the grouping rule based on one shared peptide leads to
the greatest redundancy reduction within a single result set and increases the comparability of
results from di�erent experiments. Next, the compliance of the taxonomic assignment process
is tested using identi�cations derived from a mixture sample of known organism composition.
In comparison to Unipept, the MPA so�ware achieves signi�cantly more correct assignments of
taxon-speci�c peptides across the evaluated data sets. Regarding the analysis of human intestine
samples, no signi�cant taxon-speci�c abundance di�erences are found between two investigated
groups (obese/non-obese). �e results from further investigations dealing with the mapping
of protein identi�cations into metabolic pathways suggest the combination of phylogenetic and
functional annotation to increase the information content in metaproteomic data. Moreover,
the analysis of the biogas samples reveals that the public databases SwissProt and TrEMBL are
complementary regarding the assignment of identi�cations to taxonomic and functional anno-
tations. �e work is concluded by performing a supervised classi�cation method for the results
of the human intestine samples which detects 27 functional groups of Bacteria that di�er signif-
icantly between the result sets of lean and obese individuals.
Overall, the investigations in this work highlight the importance of appropriate bioinformatic

methods and protein databases to overcome limitations of the data analysis in metaproteomics.
To that end, a dedicated so�ware is presented for the processing and interpretation of metapro-
teomic data and recommendations regarding an optimized data analysis work�ow are provided
based on the knowledge gained from this work.
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Zusammenfassung

Mikrobielle Gemeinscha�en haben einen bedeutenden Anteil an der Gesamtbiomasse der Er-
de und besitzen eine Schlüsselrolle in biochemischen Kreisläufen. Mikroorganismen sind zu-
dem wichtig für biotechnologische Anwendungen und machen einen Großteil der Zellen im
menschlichen Körper aus. Während die Bedeutung von mikrobiellen Konsortien für das Leben
und die menschliche Gesundheit zunehmend wahrgenommen wird, erfordert dieses gesteigerte
Interesse gleichzeitig auch die Analyse von mikrobiellen Gemeinscha�en als Gesamtheit. An-
sätze, die auf Metagenomik und Metatranskriptomik basieren, stellen ein solides Grundgerüst
bereit, jedoch können Aussagen über die tatsächlichen Phänotypen nur mithilfe der Proteinex-
pression getro�en werden. Seit der ersten groß angelegten Proteomanalyse einer mikrobiellen
Gemeinscha� vor einem Jahrzehnt stellt die Metaproteomik ein unverzichtbares Werkzeug für
die genaue Untersuchung von Expressionspro�len in mikrobiellen Proben dar: auf Massenspek-
trometrie basierende Proteomik gewährt Einblicke in mögliche Funktionen und enzymatische
Aktivitäten der Mikroben für unterschiedliche Umweltbedingungen und Habitate. Obwohl es
viele technische Verbesserungen im Bereich der experimentellen Analyse gegeben hat, sind vie-
le ernstzunehmende Probleme in Bezug auf Prozessierung, Auswertung und Interpretation der
Hochdurchsatzdaten immer noch ungelöst. Diese Schwierigkeiten liegen hauptsächlich an ei-
nem Mangel an standardisierter So�ware und der unzureichenden Evaluierung von vorhande-
nen bioinformatischen Methoden. Das Ziel dieser Arbeit ist es, die größten Hürden der com-
putergestützten Auswertung aufzuzeigen und Lösungen für die Analyse vonMetaproteomdaten
bereitzustellen.
Im ersten Teil dieser Arbeit wird die Open-Source So�ware MetaProteomeAnalyzer vorge-

stellt, welche entwickelt wurde, um umfangreiche Datensätze von metaproteomischen Experi-
menten auszuwerten. Das Programm enthält und vereint mehrere Suchalgorithmen zur Iden-
ti�zierung von Proteinen aus Massenspektren. Die serverseitige Anwendung stellt die automa-
tische Integration von relevanten taxonomischen und funktionellen Metainformationen für die
identi�zierten Proteine bereit. Die Client-So�ware ermöglicht es, die Zusammensetzung dermi-
krobiellen Gemeinscha� zu untersuchen und wichtige Enzyme inmetabolischen Netzwerken zu
identi�zieren. Um die Problematik der Datenredundanz und des Rückschlusses auf Proteine an-
zugehen, wurde die auf verschiedenen Regeln basierende Gruppierung von Proteinen zu soge-
nanntenMeta-Proteinen implementiert. Die So�ware besitzt eine benutzerfreundliche gra�sche
Ober�äche, die zahlreiche Möglichkeiten zur Visualisierung und Kategorisierung erlaubt, um
eine genaue und unverfälschte Untersuchung der Daten zu ermöglichen. Für komplexere Fra-
gestellungen erweitert die zugrunde liegende Graphdatenbank die vorgegebene Darstellung der
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Ergebnisse, indem sie ein vom Benutzer de�nierbares Abfragesystem bereitstellt.
Der zweite Teil der Arbeit konzentriert sich darauf, typische Engpässe und Unzulänglichkei-

ten aufzuzeigen, welche häu�gwährend der Datenanalyse in derMetaproteomik au�reten. Dazu
wird der Ein�uss des Suchalgorithmus, der Proteindatenbank und der Parameter des enzyma-
tischen Verdaus auf das Ergebnis bei der Identi�zierung mittels Metaproteomdaten von Proben
aus Biogasanlagen und aus dem menschlichen Darmtrakt getestet. Die Ergebnisse zeigen, dass
die Kombination der Suchalgorithmen X!Tandem und OMSSA sowie die Suche gegen Teile ei-
ner typischen Metaproteom-Sequenzdatenbank signi�kant die Gesamtzahl der Identi�kationen
erhöhen. Außerdem führen sowohl metagenomische als auch ö�entlich zugängliche Sequenz-
datenbanken zu spezi�schen Peptididenti�kationen, was darauf hindeutet, dass parallele Suchen
gegen verschiedeneQuellen zu einem Informationsgewinnbezüglich der proteomischenZusam-
mensetzung vonmikrobiellen Proben führen. Ein Experiment basierend auf Pyrococcus furiosus
Proteomdaten zeigt, dass Identi�kationen wegen einer Überschätzung der False Discovery Rate
in Target-Decoy-basierten Suchen gegen große Datenbanken verloren gehen. Die Erhöhung von
Werten desMissed Cleavages-Parameters führt zu einer verringerten Anzahl an Identi�kationen
für metaproteomische Datensätze und semi-tryptische Suchen können keine signi�kante Erhö-
hung derTre�er erzielen. Zusätzlichwird de novo-Sequenzierung als alternative Identi�zierungs-
methode zur gewöhnlichen Datenbanksuche verwendet. Dabei wird deutlich, dass die Ergebnis-
se der de novo-Sequenzierung den betriebenen Aufwand wegen der geringen Überschneidung
mit den jeweiligen Ergebnissen der Datenbanksuchen nicht rechtfertigen können.
Der letzte Teil der Arbeit bezieht sich auf den grundlegenden Bedarf von Ansätzen, die über

den Prozessschritt der Proteinidenti�zierung hinausgehen. Zunächst wird dabei die Methode
zum Generieren von Meta-Proteinen evaluiert, welche entwickelt wurde, um redundante Pro-
teintre�er anhand von einem vorgegebenen Regelwerk zu gruppieren. Es wird aufgezeigt, dass
die Gruppierungsmethode, welche auf einem geteilten Peptid basiert, zur höchsten Reduzierung
der Redundanz innerhalb einer einzelnen Ergebnismenge führt und damit die Vergleichbarkeit
von Resultaten aus verschiedenen Experimenten erhöht. Daraufhin wird die Anwendbarkeit der
taxonomischen Zuordnungsmethode mit Hilfe von Identi�kationen aus einer Mischprobe mit
bekannter Zusammensetzung der Organismen überprü�. Die MPA So�ware erzielt dabei si-
gni�kant mehr richtige Zuweisungen von Peptiden zu Taxa für die getesteten Datensätze im
Vergleich zu Unipept. In Bezug auf die Analyse von menschlichen Darmproben können kei-
ne signi�kanten taxon-spezi�schen Unterschiede in der Abundanz zwischen zwei untersuchten
Gruppen (adipös/nicht-adipös) gefunden werden. Die Resultate weiterer Untersuchungen, die
sich mit dem direkten Abbilden von Proteinidenti�kationen in Sto�wechselwege beschä�igen,
legen nahe, dass eine Kombination von phylogenetischer und funktioneller Annotierung not-
wendig ist, um den Informationsgehalt von Metaproteomdaten zu erhöhen. Außerdem zeigt die
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Analyse der Biogasproben, dass die ö�entlichen Datenbanken SwissProt und TrEMBL komple-
mentär sind bei der Zuweisung von Identi�kationen zu taxonomischen und funktionellen An-
notationen. Die Arbeit wird durch die Anwendung einer überwachten Klassi�zierungsmethode
anhand der Ergebnisse der menschlichen Darmproben abgeschlossen, bei der 27 funktionelle
Gruppen von Bakterien gefunden werden, welche sich signi�kant zwischen normalgewichtigen
und übergewichtigen Probanden unterscheiden.
Insgesamt stellen die Untersuchungen dieser Arbeit die Wichtigkeit von geeigneten bioinfor-

matischenMethoden und Proteindatenbanken heraus, umEngpässe bei dermetaproteomischen
Datenanalyse zu überwinden. Dazu wird eine spezielle So�ware für die Prozessierung und Inter-
pretation von Metaproteomdaten vorgestellt, und es werden anhand der gewonnenen Erkennt-
nisse aus dieser Arbeit Empfehlungen bezüglich eines optimierten Work�ows zur Datenanalyse
von metaproteomischen Proben gegeben.
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1
Introduction

Microorganisms account for the major proportion of biomass on Earth and are omnipresent in
any environment. Microbes exhibit a remarkable degree of diversity and commonly live as com-
plex communities in natural habitats [1]. �ese consortia are essential in geochemical cycles,
renewable energy production, waste water treatment, agricultural and biotechnological applica-
tions [2, 3, 4, 5]. Moreover, the analysis of microbial communities is highly relevant for human
and animal healthwheremicrobes have a bene�cial or—in rare cases—harmful role to their hosts
[6]. In contrast to pure culture studies, the holistic approach of studying complexmicrobial com-
munities increases the chance to decipher the interactions between hundreds or thousands of
di�erent species and the environment with the ultimate goal to gain comprehensive knowledge
about their functions in diverse ecosystems.

Latest advances in high throughput DNA sequencing have provided exciting opportunities to
study a microbial population in its ecological habitat by means of metagenomic techniques [7].
While investigations at the genomic and transcriptomic level provide valuable insights into the
genetic diversity and taxonomic composition of microbial consortia, the protein expression pro-
�le cannot be readily assessed by these approaches. By characterizing the entire set of expressed
proteins of environmental microbiota at a given time point, metaproteomics—also referred to as
whole community or environmental proteomics [8, 9]—aims to examine the functional compo-
nents of a microbial ecosystem. �ereby, the application of proteomic techniques for analyzing
samples of microbial communities allows to investigate potential metabolic activities carried out
by these consortia [10].
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Chapter 1 Introduction

In recent years, microbial community proteomics has been driven forth by enormous ad-
vances concerning analytical tools, in particular, by the rapidly evolving technological platform
of mass spectrometry. Compared to pure-culture proteomics, however, metaproteomic research
poses several unique challenges. In particular, samples of microbial communities are complex
and heterogeneous exhibiting highly dynamic protein expression levels. Although various im-
provements regarding computational methods have facilitated the analysis of single-organism
proteomic data over the last decade, metaproteomics is still an untapped �eld which lacks the
detailed evaluation of database search algorithms and parameter selection. For instance, protein
identi�cation algorithms are designed to process single-organism samples and are therefore chal-
lenged by size and redundant composition of microbial sequence databases. Moreover, a critical
obstacle presents the protein inference problem [11] which is more di�cult to resolve in the con-
text of metaproteomics due to the high amount of shared peptides found in homologous proteins
from di�erent organisms. Eventually, only a low proportion of microbial genomes has been se-
quenced, which negatively impacts the computational analysis of metaproteomic data: the lack
of appropriate sequence databases is a serious bottleneck for the identi�cation of proteins from
microbial samples and results in a large proportion of unidenti�ed tandem mass spectra. Be-
yond protein identi�cation, the taxonomic assignment and functional annotation of the results
in microbial data sets gains relevance: the integration of meta-information, referring to phyloge-
netic origin and involvement in metabolic pathways, is essential for conducting in-depth anal-
yses, such as understanding the biological processes in biogas and wastewater treatment plants
[12, 13] or examining the enzymatic interactions of complex microbial communities in the hu-
man gastrointestinal tract [14, 15].

Due to the lack of appropriate computational methods, the analysis and interpretation of data
constitute the major bottleneck for metaproteomic research. �e main goal of this work is to
tackle the aforementioned challenges by developing a data analysis pipeline that is tailored to-
wards samples from microbial communities. �e objectives for such a so�ware work�ow are
to integrate multiple protein identi�cation algorithms, to provide a user-friendly, yet powerful
processing and storage framework for high volumes of upcoming data, and to enable a compre-
hensive analysis of microbial community samples at the taxonomic and functional level. More-
over, the aforementioned inference issue should be addressed by the integration of meaning-
ful protein grouping strategies. Mainly, the dedicated so�ware aims at analyzing and interpret-
ing metaproteomic data sets originating from microbial community samples: for this purpose,
metaproteomic data sets derived from biogas plant and human feces samples are investigated
in this work. Using this kind of data, conventional and alternative computational methods are
evaluated to identify shortcomings and provide recommendations for optimized parameter se-
lection and analysis strategies inmetaproteomics. �e last objective focuses on the detailed anal-
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ysis of results from processed metaproteomic data and regards essential steps that come a�er the
identi�cation of proteins, namely, approaches for protein grouping, taxonomic assignment and
functional annotation. �erefore, the performance of computational methods developed in this
work as well as of external so�ware tools is tested using aforementioned data sets derived from
metaproteomic samples.
�is work is structured in six chapters. A�er explaining the motivation and aim of the work

in this chapter, relevant background information on the analysis of microbial communities and
available computational methods is given in Chapter 2. Chapter 3 describes the developed data
analysis pipeline and provides further details on employed so�ware tools, applied methods, pro-
tein sequence databases and experimental data sets. In Chapter 4, the results are presented; Sec-
tion 4.1 starts with �ndings on the performance of di�erent database search algorithms used for
the identi�cation of metaproteomic data sets. In Section 4.2, search algorithm parameters, such
as chosen protein database and cleavage enzyme, are evaluated, in particular, regarding their ef-
fect on the identi�cation yield. In Section 4.3, the outcome of de novo sequencing as alternative
peptide identi�cation method is shown. In Section 4.4, the performance of diverse strategies
for the grouping of protein results is examined. Furthermore, the developed grouping rules are
evaluated by comparing results of replicate and multiple data sets from di�erent experiments.
Section 4.5 focuses on the assignment of identi�cations to taxonomic groups. Section 4.6 ends
the chapter by evaluating di�erent methods for functional annotation. Chapter 5 provides a de-
tailed discussion of the outcome of this work and is structured in accordance to the outline of
the previous results chapter. Finally, conclusion and outlook of the work are given in Chapter 6.
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2
Theoretical Background

2.1 Analysis of Microbial Communities

Microorganisms represent the oldest and genetically most diverse life forms on earth. �e total
number of prokaryotes has been estimated to be around 5x1030 cells and this high amount of cells
outnumbers by far all other organisms [16]. Most of these microorganisms are reported to occur
in soil [17] and in global oceans [18], but are also widespread in terrestrial and oceanic subsurface
regions – even in the most inhospitable locations on Earth [19, 20, 21]. By their omnipresence,
prokaryotes in�uence the entire biosphere and play key roles for biogeochemistry, nutrient cy-
cles and waste degradation on earth [1]. �eir impact on human health was demonstrated by
important �ndings proo�ng that many infectious diseases are caused by pathogenic microor-
ganisms. For the healthcare sector, multidrug-resistant pathogens became a serious risk in the
recent past [22, 23, 24]. Conversely, it was o�en demonstrated how microbes can be used ben-
e�cially for medical and biotechnological applications such as the production of antibiotics and
industrial enzymes. �e enormous population size and rapid changes by horizontal gene transfer
contribute signi�cantly to the vast microbial diversity and rapid evolution [25]. �e �ndings how
frequently genes are transferred fromone organism to another even put the concept of individual
microbial species into question [26, 27]. Accordingly, genomes may not be regarded as discrete
and independent entities, but rather units with strong capabilities to reconstruct themselves with
respect to their environment and the metabolic �ux.
�e analysis of microorganisms faces the issue that only a low proportion of microorganisms
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Chapter 2 �eoretical Background

are readily culturable in a laboratory [28, 29, 30]. As a consequence, most environmental mi-
crobiota have not been studied or described in detail. Moreover, the cultivation methods are
limited and additionally bias the approaches to investigate the potential of microbial communi-
ties [31]. Consequently, these severe challenges stand against the immense microbial diversity
which researchers attempt to investigate. �erefore, innovative methods and methodological
improvements are required to study complex microbial communities.

2.1.1 Role of Microbial Communities in Humans

�e human body harbors 1014 microbial cells [16] and a quadrillion viruses [32]. �us, the num-
ber of bacterial cells in humans exceeds the number of human body cells by a factor of ten [33].
In particular, the quantity of microbial genes in the human gut is impressive, since it is estimated
to exhibit a magnitude of more than 100 times that of the human genome [34]. Together, the
microbial associates residing in and on the human body constitute the microbiota, whereas the
collective genome they encode is called the microbiome. Although a diverse ensemble of mi-
croorganisms provides humans with bene�cial genetic and metabolic characteristics, studies in
microbiology were mostly performed with the focus on pathogenic organisms rather than in-
vestigating the bene�ts of resident microbes. �e endogenous microbiota of humans was poorly
understood for a long period of time [35], however, recent studies began to characterize the
driving factors which in�uence the distribution of microbial communities to fully understand
the human genetic and metabolic diversity [36, 37].
�e microbiota is essential for health and disease in humans and was therefore also called a

virtual organ with its own metabolic activities [38]. Microbial symbionts ful�ll important func-
tions, such as nutrition uptake, pathogen resistance and immune response [39]. �e majority of
microorganisms present in humans can be found in the gastrointestinal tract. �e human in-
testine is mostly composed of Gram-positive and anaerobic microbes which are responsible for
the processing and uptake of nutrients otherwise inaccessible to humans [34]. �e gut �ora has
a strong impact on metabolic processes of the host, in particular, by the provision of energetic
substrates. [40, 41].
To understand the role of the human microbiota in health and disease, large consortia, such

as the Human Microbiome Project [37] and MetaHIT [42] were established. �e goals of these
collaborative initiatives were the characterization of the humanmicrobiota and the identi�cation
of criteria in�uencing the evolution and distribution of involved microorganisms. Respective
projects provided a hint on the diversity at the genetic level and also showed a large variability
of microbial species and abundance even within closely related healthy individuals. While the
human body holds an immense variety of human andmicrobial cells, it has also been found that a
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2.1 Analysis of Microbial Communities

conserved set of microbial genes and species is shared among di�erent persons. Clearly, this core
microbiome is essential for the metabolism and health of the hosts. However, each person is also
able to carry a distinct microbiota and species abundance can vary strongly between individuals
[42]

2.1.2 Microbial Analysis Techniques

In 1977, Carl Woese and George Fox revolutionized the �eld of microbiology by de�ning Ar-
chaea as a third domain of life [43]. �is pioneering work became feasible using the 16S ribo-
somal ribonucleic acid (rRNA) technique which was then extensively applied to study microbial
communities [44, 45]. Later on, the phylogenetic tree of life was divided into 23 main divisions
under the three domains Archaea, Bacteria and Eucarya [46]. Due to the age and the critical role
of ribosomes for protein synthesis, rRNA genes represent evolutionary chronometers [47, 48].
Additionally, the analysis of 16S rRNA gene sequences provides insights into the composition
and diversity in environmental samples without culturing [49]. Along with the application of
the polymerase chain reaction (PCR) to 16S rDNA sequences this approach accelerated the de-
scription of uncultured organisms inmixedmicrobial communities [50]. Nowadays, the Riboso-
mal Database Project contains more than 2.8 million archaeal and bacterial small subunit (SSU)
rRNA gene sequences, re�ecting the high microbial diversity on Earth [51]. Despite its wide
application, one major shortcoming of 16S rRNA sequencing presents the limited information
content about the functional role of themicrobeswithin the community [31]. Microbes rarely live
in single species communities, but interact with each other in their habitats and host organisms.
�erefore, a clonal culture does not represent real conditions in nature with respect to molecular
interactions, biological functions and resulting genomic diversity ofmicrobial communities [52].
At the beginning of this century, a milestone was reached by the development of DNA shot-

gun sequencing methods that shi�ed from the expensive and labor-intensive Sanger sequencing
technology to more a�ordable next-generation sequencing approaches with rather short read
lengths, such as high-throughput pyrosequencing [53, 54, 55]. Using these modern technolo-
gies, genomic sequence information can directly be inferred from the microbial communities
in their natural environment. Retrieving sequence data obtained from multiple species of an
entire microbial community is called metagenomics [56]. By examining the genetic material of
a whole consortium, metagenomic analysis allows to characterize the most dominant commu-
nity members. Due to the overwhelming majority of uncultured organisms in microbial niches,
metagenomic analyses are likely to uncover novel sequences from previously unknown genes.
On the one hand, the relationship between a microbial community and its habitat can be in-
vestigated, on the other hand, the adaption of microbes to di�erent environments, such as host
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animals or other microbial members, and the related manifestation in the microbial genomes
can be studied.
�e resulting wide application of whole-genome and metagenomic sequencing studies pro-

vided completely new perspectives on the role of environmental microbial consortia [57, 58].
�e Sargasso Sea project by Venter et al. encompassed an extensive environmental metagenome-
based analysis which resulted in the identi�cation of various novel genes [59]. Due to advances
in sequencing technologies, the amount of available genomic and metagenomic sequence in-
formation has rapidly increased in the recent past and will probably grow further. It has been
speculated that the number of population genomes stored in public databases will even outnum-
ber those from pure culture and single cells [60]. Recently, instead of analyzing single snap-
shot metagenomes, researchers even moved forward to biologically replicated series of several
metagenomes [61]. On the genomic level, single-cell genomes could already be obtained from
uncultivated archaeal and bacterial cells [62].
Despite the outlined bene�ts and progress, one major drawback of genome-level approaches

is the missing link between genomic presence and functional level. For example, Tringe et al.
used environmental DNA data from di�erent ecosystems for the clustering of functional groups
and concluded that the predicted protein complement of a community is in�uenced by its en-
vironment [58]. With regard to rapid environmental changes, it is therefore required to deter-
mine the abundance of actually expressed genes within a microbial community. In contrast to
metagenomics, metatranscriptomics determines the gene expression by providing the complete
set of transcriptional pro�les within a microbial community at the time of sampling [63, 64].
However, it was reported that the expression levels of mRNAs and proteins are only poorly cor-
related [65, 66]. Regarding the analysis of microbial communities, the short half-life of mRNAs
in bacteria [67, 68] and ine�ective mRNA enrichment [69] are the major challenges for meta-
transcriptome studies. As described in the following section, proteomic approaches address these
limitations by directly characterizing the phenotypes as functional key players inmicrobial com-
munities.

2.1.3 Beyond the Genome to the Proteome

According to the central dogma of molecular biology DNA is transcribed into messenger RNA
entities that contain required information for the synthesis of particular proteins. Ribosomal
cell structures translate each mRNA into a protein which itself undergoes various modi�cations
before reaching its fully functioning state. Proteins are characterized as molecules consisting
of one or more polymer chains of amino acids which are folded in a speci�c conformation. In
biological systems, proteins are responsible for a plethora of important functions, such as cell
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structure integrity, molecule transport, enzymatic regulation of metabolism, signal transduction
and their own biosynthesis. Proteins exhibit a high temporal and spatial variability with respect
to turnover and expression rates.
�e proteome has been de�ned as the entire set of proteins in an organism including cells,

tissues or subcellular components [70]. While the genome of an organism works as the static
template being almost identically present in all cells, the proteome is a highly dynamic collec-
tion that spatially and temporarily varies between cell types or even within a cell, depending
on environmental or physiological conditions. While the human genome has been estimated to
comprise between 20 000–25 000 protein-coding genes [71, 72], the human proteome has been
valued to contain over one million protein variants in total [73]. Furthermore, in eukaryotic
cells, the majority of proteins is subject to post-translational modi�cations (PTMs) which can-
not be observed at genome or transscriptome level. Phosphorylation, glycosylation, acetylation,
methylation and ubiquitylation are modi�cations that frequently occur at amino acid side chains
or peptide linkages by the mediation of activated enzymes. �ese PTMs are capable of directly
in�uencing activity state, turnover, localization and interaction of proteins [74]. Consequently,
protein modi�cations play a major role in various cellular processes and increase the functional
diversity of the proteome [75].
Initially, the term proteomics was coined as an analogy to genomics and originally referred

to the identi�cation of proteins separated and visualized by two-dimensional gel electrophoresis
[76]. �e latter approach was modi�ed by using multiple dyes on the same gel: the so-called dif-
ference gel electrophoresis (DIGE) allowed to reproducibly identify di�erences between protein
samples [77]. Later on, these latter approaches have been widely replaced by shotgun proteomic
methodswhich employ the enzymatic digestion of proteins into peptides prior tomass spectrom-
etry (MS) or tandem mass spectrometry (MS/MS) analysis (see Section 2.1.5). Nowadays, pro-
teomics is more generally associated with the comprehensive analysis of proteins with respect to
their identi�cation, quanti�cation and functional classi�cation. Furthermore, novel approaches
to investigate protein structure and protein-protein interactions became an increasingly impor-
tant part of the �eld [78]. Moreover, MS has been extensively used to determine a large variety
of aforementioned occurring PTMs which are potentially able to in�uence the modulation of
protein functions [79].
While an encompassing amount of knowledge has been gained from MS-based proteomic

studies, the vast majority of experiments was performed on single cell or tissue samples of rel-
atively low complexity. Over the last decade, the �eld of proteomics has immensely matured
through technological advanceswith respect to sample preparation, instrumental techniques and
data analysis [80]. Driven by these latter improvements and the provision of metagenomic se-
quence information (see Section 2.1.2), proteomic methods are nowadays increasingly applied
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to investigate the protein expression and functional potential of microbial communities as de-
scribed in the following section.

2.1.4 Microbial Community Proteomics

In the recent past, the cost-e�ectiveness and improved throughput of DNA sequencing tech-
nologies resulted in an extended availability of sequence information from single genomic and
metagenomic experiments. While metagenomics andmetatranscriptomics provide insights into
the phylogenetic structure and functional potential of microbial communities, the extension of
single-organism proteomics to the so-called metaproteomics or whole community proteomics
is the large scale characterization of the entire protein complement of the environmental micro-
biota at a given point in time [8, 9]. �e term metaproteome had been proposed by Rodriguez-
Valera to characterize the most abundantly expressed genes and proteins in environmental sam-
ples [1]. By investigatingmicrobial communities on the proteome level, themajor goal ofmetapro-
teomic research is to �nd the link between microbial community composition and functional
pro�le [81].
One of the early criticisms of proteomics was based on the assumption that this method would

provide only limited depth in terms of identifying merely the most abundant housekeeping pro-
teins. However, this argument has been lately disproved by studies reporting in-depth proteome
coverage due to modern proteomics protocols and MS technologies, exempli�ed by the report
of near-complete proteomes for mammalian cell lines [82, 83, 84] and �ndings on the human
proteome [85, 86]. While the proteomic analysis of microorganisms enables to identify 50–70%
of the predicted proteome formost bacteria grown in pure cultures, the diversity of the proteome
is much higher in microbial communities than in single organisms. In this context, metagenome
sequencing is able to obtain a content-rich catalog directly from amicrobial community by trans-
lating metagenomic sequence information into a collection of predicted proteins (see Section
2.2.2).
Ametaproteome study ondissolved organic carbon and soil particleswas performedby Schulze

et al. to investigate the phylogenetic groups and catalytic functions of species identi�ed in mi-
crobial samples from four di�erent environments [87]. Despite the low number of proteins iden-
ti�ed, the presence and potential activity of di�erent phyla could be demonstrated in this study.
Hence, it was shown that microbial community proteomics presents a promising technique, in
particular, when information about diversity and richness of the species is inferred. However, the
taxonomic diversity re�ecting thewide range of species within one sample remained challenging.
Obviously, microbial communities with low complexity are easier to characterize than samples
derived from complex ecosystems, such as soil and seawater. Consequently, early studies focused
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on samples with low complexity, such as microbial consortia from acid mine drainage bio�lms
[88, 89] or activated sludge water bioreactors [3]. In addition, more complex environments, such
as soil, present serious challenges regarding sample preparation and protein extraction, for in-
stance, due to the presence of humic organic matter [90]. As one of the most complex microbial
communities soil holds low protein abundance and accessibility due to its diversity and heteroge-
neous spatial distribution [91]. For freshwater and seawater samples, larger volumes are required
to obtain su�cient material due to low cell densities [92]. While a wide range of potential �elds
of applications exist for metaproteomic research, the focus of this work was on biotechnologi-
cal and medical applications. For this purpose, metaproteome samples originating from biogas
plants (BGPs) as well as human gut microbiomes were studied. In the following, the essential
background and the most relevant studies for both types of samples are provided.

Investigating composition and enzymatic activity ofmicrobial communities in biogas plants.
Over the recent past, BGPs became an important and reliable source of renewable energy in Ger-
many [93]. �e production of biogas is established by anaerobic digestion processes in which a
complexmicrobial community converts organicmaterial primarily tomethane and carbon diox-
ide [94]. �e produced biogas can be used as fuel or transformed into electricity in combined
heat and power units. In general, various physicochemical and technical process parameters can
in�uence the success of biogas production, including temperature, pH value, substrate composi-
tion and con�guration of the fermenter [95]. Based on the impact of these parameters, the most
important goals of BGP optimization address the biogas and methane yield, the e�ciency of
biomass degradation and the process stability within BGPs. Furthermore, the biogas producing
microorganisms can be strongly a�ected by several process disturbances, such as acidi�cation
due to organic overloading [96] or increased ammonia concentrations due to protein-rich sub-
strates [97]. To tackle such problems which impair biogas production and consequently cause
economic losses, a deeper understanding of the composition and the metabolic state of micro-
bial communities is required. In contrast to the community characterization which is based on
metagenomic approaches [98, 99], metaproteomics can be used investigate the active role of in-
dividual species as functional key players in metabolic networks. In recent years, metaprotomic
analyses were applied successfully to examine the taxonomic and functional pro�les of micro-
bial communities in BGPs [100, 101]. In the beginning, metaproteome analyses achieved only
low amounts of protein identi�cations [5, 13]. However, in the recent past, due to experimental
advances of high-resolution methods between 500 and 2 000 proteins were identi�ed in BGP
samples [101]. Notably, the majority of the identi�ed proteins could be assigned to the main
anaerobic process steps, namely hydrolysis, fermentation, acetogenesis and methanogenesis. In
addition, the latter study covered the most important archaeal and bacterial taxa which are in-
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volved in the production of biogas. Eventually, a long-term study of an agricultural BGP com-
bined di�erent analytical methods with metaproteomic analysis and evaluated the in�uence of
process disturbances on the composition and activity of the microbial community [102]. While
di�erent BGPs may have a common set of certain methanogenic enzymes, such as methyl CoM
reductase, that are expressed by particular dominant community members, each BGP provides
an individual protein pro�le that is stable over longer time periods [93].
In this work, metaproteome data sets of BGP samples from di�erent anaerobic digesters (see

Section 3.2.1) were used to compare the performance of database search algorithms with respect
to peptide-spectrummatching (see Section 4.1.1). Further goals were to evaluate the in�uence of
the protein database on the identi�cation yield (see Section 4.2.1) and taxonomic assignment (see
Section 4.5.1), and to establish ametaproteomic data analysis work�ow that allows to identify key
enzymes and to link themost importantmicrobial taxa tometabolic pathways (see Section 4.6.1).

Obtaining taxonomic and functional pro�les of human intestinal microbiota. �e highly
complex ecosystem of 100 trillion bacterial cells in the human gut [16] is known interact with the
innate immune system by providing signals to promote the maturation of immune cells and the
normal development of protective functions [103, 104]. �e human gut contains mainly anaer-
obic microbes that play an important role in the well-being of their host [105]. Microorganisms
that interact with each other and the host also in�uence the development of several diseases
[106]: for instance, alterations of the human gut microbiome have been associated with patho-
logical states, such as obesity [107, 108], type-2 diabetes [109], cardiovascular disease [110] and
in�ammatory bowel disease [111]. While studies at the genomic level have shown the close con-
nection between host andmicrobes [105, 112], the direct e�ects on the host proteome can only be
detected bymetaproteomic approaches. Consequently, human intestinalmicrobiomes have been
also investigated in several proteomic studies that focused on the analysis of extracted microbial
as well as host proteins from human fecal samples [14, 15, 113, 114, 115]. However, in compari-
son to the large number of metagenomic studies, relatively few investigations have been carried
on gut samples at the proteome level. Several challenges, including sample heterogeneity, high
abundance of host proteins and lacking database references, impede the analysis in these studies.
In thiswork,metaproteomic data sets originating fromhuman intestinemetaproteome (HIMP)

samples (see Section 3.2.2) were used to evaluate the performance of di�erent data analysismeth-
ods used for protein identi�cation (see Section 4.2) and protein grouping (see Section 4.4.3).
Since these samples originated from obese and non-obese individuals, another goal was to deter-
mine any characteristic taxonomic (see Section 4.5.3) and functional (see Section 4.6.3) pro�les
for both categories from the identi�ed proteins.
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2.1.5 Experimental Bottom-Up Workflow

Commonly, metaproteomic studies employ experiments using bottom-up proteomics, also re-
ferred to as shotgun proteomics [116]. �e bottom-up approach is based on the proteolytic diges-
tion of protein mixtures, followed by the chromatographic separation of the resulting peptides
and eventually the mass spectrometric analysis via MS and MS/MS. Acquired peptide fragment
spectra are then processed using bioinformaticmethods (see Section 2.2) to identify peptides and
to infer proteins present in the analyzed sample. Alternatively, top-down proteomic approaches
can be used: in this case, protein mixtures are �rst separated on the protein-level, and whole
single proteins are subsequently subjected to LC-MS/MS analysis [117, 118]. Eventually, the com-
bination of top-down and bottom-up proteomics has been successfully applied in various studies
[119, 120].
In the following, the most important experimental techniques of metaproteomic experiments

are presented. �is general overview is by no means exhaustive and for further detailed infor-
mation regarding microbial analysis prior to MS, the reader is referred to a review of proteomic
techniques in environmental and technicalmicrobiology [121]. Formore detailed information on
general analysis techniques in bottom-up proteomics, the reader is further referred to compre-
hensive reviews in the literature [122, 123, 124]. While the experimental and analytical methods
have advanced with respect to accuracy, resolution and speed, the high complexity and hetero-
geneity of microbial samples are the most severe challenges of the �eld of metaproteomics [10].
In the recent past, an increasing amount of protocols have been developed to tackle both experi-
mental and data analysis issues [125, 126, 127]. �e reader is referred to Section 2.2 for details on
data analysis techniques in metaproteomics.
�e classic work�ow of bottom-up proteomics consists—with some variations—of the follow-

ing �ve essential steps:

1. Sample acquisition and preparation

2. Protein separation

3. Enzymatic protein digestion

4. Peptide separation

5. Mass spectrometry
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Sample acquisition and preparation.�e �rst step of a metaproteomic experiment involves the
sample acquisition and preparation. While variations have been reported to be caused by sample
collection in proteomic experiments, the most severe challenges can be assigned to the prepara-
tion of samples from microbial communities: for environmental samples, the steps of cell lysis
and protein extraction are o�en a�ected by impurities, such as humic and fulvic acids [90, 93].
Regarding the high sample complexity and individual characteristics of each microbial commu-
nity, various sample preparation methods have been proposed [128]. Protocols for protein ex-
traction in metaproteomics can be classi�ed into methods for cell lysis with chemical reagents,
mechanical cell disruption or thermal treatments [127]. Since few standard procedures are avail-
able, extensive method optimization steps are required, frequently by using a combination of the
aforementioned protein extraction techniques. Another problem that is more pronounced for
environmental than for pure culture samples concerns the limited availability of biomass due
to di�culties during sample collection [10]. Finally, the e�ects of protein degradation during
sample processing further impair the proteomic analysis by the generation of unwanted protein
artifacts [129].

Protein separation. In metaproteomics, a common protein separation procedure is sodium do-
decyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) by which proteins are separated
according to their molecular weight. To further reduce the sample complexity, two dimensional
polyacrylamide gel electrophoresis (2D-PAGE) is used by which proteins are separated in two
dimensions. In the �rst dimension, the proteins are separated by their net charge using isoelec-
tric focusing. �e second dimension is a conventional SDS-PAGE that separates proteins by their
molecular weight. �emajor advantages of gel-based methods are the low complexity of later on
analyzed protein spots and the potential to identify protein isoforms. However, gel-based meth-
ods have limitations regarding hydrophobic membrane proteins or proteins present in low copy
numbers [130]. As additional method in metaproteomics, centrifugal fractionation can be ap-
plied to separate crude �bers, suspendedmicroorganisms and secreted proteins, as demonstrated
for biogas sludge samples [131].
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Enzymatic protein digestion. �e idea of the bottom-up approach is to enzymatically degrade
proteins into peptides which are analyzed and subsequently mapped back to the protein se-
quence. �us, in the next step, proteins are denatured and proteolytically digested with a se-
quence speci�c protease. An important condition for such an enzyme is to be capable to cleave
any protein inside its amino acid backbone. In proteomics, trypsin ismost commonly used, since
it presents a highly stable and e�cient protease which speci�cally cleaves proteins into peptides
ending with lysine or arginine residues [132]. Nevertheless, it should be noted that also tryptic
cleavage rarely works perfectly and various studies reported the occurrence of missed cleavages
and non-tryptic peptides [133, 134, 135]. Moreover, while the bottom-up technique facilitates
the remaining experimental procedures, it also results in the loss of information on the original
protein from which a peptide originated. �is essential drawback eventually complicates mat-
ters related to the computational analysis, as described in more detail for the protein inference
problem in Section 2.2.5.

Peptide separation. Liquid Chromatography (LC) is frequently employed to separate complex
peptide mixtures, predominantly by the degree of hydrophobicity of the analyte [123]. �e prin-
ciple of LC is to bring the analyte into themobile phase via a liquid solvent and pass it through the
stationary phase being a chromatography column �lled with adsorbentmaterial. In LC, the com-
pounds are separated in the mobile phase based on their a�nity for the hydrophobic stationary
phase. Consequently, the peptide compounds elute from the column at a speci�c time point, the
so-called retention time, and are transferred separately into the MS instrument for further anal-
ysis. �e online-coupling of LC methods to (tandem) mass spectrometry is called LC-MS (LC-
MS/MS). Alternative chromatographic setups, such as a combination of reverse phase LC with
strong cation exchange chromatography (SCX), can be used to achieve a multidimensional sepa-
ration [136]. Furthermore, due to its bene�cial properties for the analysis of post-translationally
modi�ed peptides hydrophilic interaction liquid chromatography (HILIC) was reported to be a
valuable alternative separation method to SCX [137].

Mass spectrometry.�eprinciple ofMS presents themeasurement of ionized compounds based
on their mass-to-charge (m/z) ratios using controlled electromagnetic �elds [138]. In the con-
text of proteomics, the technique is used to identify peptides by measuring the m/z ratios of
their ionized variants [122]. However, MS is also successfully applied in other �elds, including
metabolomics, glycomics and lipidomics.
In general, the MS peptide analysis consists of various steps of which the most important ones

are highlighted here. Once the samples are loaded into theMS instrument (e.g. via direct online-
coupling using an LC-system), gaseous particles are formed in the ion source, which transfers the
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sample compounds from solution or solid media into the gas phase. Subsequently, the gaseous
particles are ionized to produce charged species which are separated in the mass analyzer by
applying electromagnetic �elds according to their m/z ratios. In the last step, the ions hit the
detector and an intensity signal for each speci�c ion m/z ratio is recorded. Before the detection
process, ions can be subjected to multiple stages of mass analysis separation and fragmentation
to increase the resolution of the analysis. While MS is realized via several analytical platforms,
the outlined principles of ionization, mass analysis and detection are always applied.
Whilemany ionizationmethods exist, themost commonly used ones belong to the category of

so-called so� ionization to prevent unwanted fragmentation of biomolecules. In MS-based pro-
teomics, the most relevant techniques are matrix-assisted laser desorption/ionization (MALDI)
[139] and electrospray ionization (ESI) [140, 141]. Nowadays, ESI presents the favored ion source,
since it has the advantage of working continuously in direct connection to an LC-based system.
�e signals derived from MS instruments are recorded as mass spectra containing pairs of

m/z ratios and intensity values based on the detected ion current. �e most common operative
mode presents tandem mass spectrometry (MS/MS) in which selected ionized compounds un-
dergo fragmentation. Usually, a de�ned number of high-abundant precursor ions are selected
and subjected to collision with an inert gas for subsequent fragmentation. As a consequence, two
di�erent kinds of mass spectra are produced: the MS1 spectra which contain the signals of ana-
lytes eluting from the column and theMS2 (orMS/MS) spectra which feature the corresponding
fragment ion signals of analytes that were selected for fragmentation.
Since a shotgun proteomics experiment can result in tens of thousands of MS/MS spectra

within a short time period, computational methods are required to provide a rapid analysis of
the high-throughput data. As described in the following section, several techniques and so�ware
tools are available to derive peptide and protein identi�cation from the fragment ion information
of the spectra. In this context, themost severe challenges concerning the data analysis in bottom-
up metaproteomics are highlighted speci�cally.
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�is section outlines the most important computational methods used to process and analyze
MS-based data frommicrobial community samples. In the following, parts of the original publi-
cation inMolecular BioSystems [142] are used with permission from�eRoyal Society of Chem-
istry.
�e typicalmetaproteomic data analysiswork�owcanbe regarded as a three-step process, con-

sisting of pre-processing, protein identi�cation and post-processing (Figure 2.1). In the displayed
�gure, the most relevant methods regarding the analysis of metaproteomic data are summarized
for each step.

Figure 2.1: Metaproteomic data analysis workflow. Figure adapted from Muth et al. [142] with permission
from The Royal Society of Chemistry.
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2.2.1 Filtering and Clustering of MS/MS Spectra

�ehigh amount ofMS/MS spectra derived frommetaproteomic experiments makes it useful to
�lter out noisy spectral data in order to accelerate the actual peptide and protein identi�cation
processing a�erwards. Filtering criteria, such as the minimum number of peaks or the signal-to-
noise ratio can be inferred from the spectra and algorithms can be applied to assess the overall
quality of the spectral data [143, 144, 145, 146, 147]. Machine learning can be applied to separate
low quality from high quality spectra including several spectral features [148].
As another method for reducing the total number of processed MS/MS spectra and improv-

ing the overall spectrum quality, spectral clustering can be applied. �e clustering approach
combines similar spectra into consensus spectra that serve as representatives for spectral clus-
ters [149, 150]. In addition, clustering can be used for the identi�cation of unexpected PTMs
[151, 152]. Spectral clustering was also applied to �nd reliable identi�cations in heterogeneous
proteomic data sets from the PRIDE database and to generate spectral libraries based on con-
sensus spectra [153].

2.2.2 Tailor-Made Database Construction

�e computational analysis of metaproteomic samples aims to identify and subsequently quan-
tify proteins and peptides from MS/MS spectra. However, �nding the optimal sequence space
by which these identi�cations can be obtained is highly challenging for microbial communities:
since the majority of organisms in a natural community is very heterogeneous or even uncul-
turable (see Section 2.1.2), the restricted availability of suitable microbial sequences frequently
results in a low number of identi�ed proteins in previous metaproteomic studies: for instance,
an environmental study analyzing sewage sludge from membrane bioreactors reported only 24
identi�ed proteins due to missing sequences in the reference database [12]. In comparison to
pure culture proteomics, metaproteomic studies also yield signi�cantly fewer identi�ed MS/MS
spectra: for example, only 5% of the spectra could be identi�ed in a study on the gut micro-
biome in mice [154]. Moreover, samples from microbial communities are a�ected by horizontal
gene transfer and strain variability: a metaproteome study reported that small di�erences in
the amino acid composition in comparison from experimental to theoretical data reduce the
protein identi�cation by a factor of two [155]. Consequently, the outcome of metaproteomic
analyses depends strongly on composition and integrity of provided protein sequence databases.
In the ideal case, the reference database covers exactly the sequences contained in the sample
under study. Since the composition of a microbial community is unknown, however, mainly
three approaches are employed to construct protein sequence databases. First, the full coding
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potential of a sample can be retrieved by applying metagenomic sequencing. Next-generation
DNA-sequencing technologies such as pyrosequencing [53, 156] and sequencing by synthesis
[157] allow for the rapid generation of sample-speci�c databases as the produced reads cover
the coding potential of the microbial community [158, 159]. In metagenomics, the prediction
of whole genes from short sequence reads is more di�cult as the traditional assembly applied
for single genomes cannot be performed. For this purpose, speci�c gene prediction so�ware
tools exist [160, 161, 162, 163, 164]. Due to imperfect sequencing and assembly, however, protein
databases derived frommetagenome sequencing are prone to various sources of error resulting in
partial or incorrect sequence information. Eventually, the generation of a metagenome database
from the same sample is not always feasible due to experimental limitations. �erefore, the use
of metagenomes that have been created from similar microbial communities in comparable con-
ditions is an alternative—yet related—strategy [92]. Second, the protein database can be built by
using published microbial reference genomes: as a consequence, it contains sequences from pre-
viously described organisms that are assumed to be present in the samples under investigation.
For instance, this approach has been successfully applied in several studies on the human gut
metaproteome [14, 15, 113]. Finally, protein databases can be derived from public repositories,
such as UniProtKB [165] and National Center for Biotechnology Information (NCBI) RefSeq
[166]. Although using predicted protein databases from metagenome sequencing may result in
more identi�cations [92], the quality of the sample and the used metagenome still have a strong
impact on the results: in particular cases, database searches against protein sequences from pub-
lic repositories can be more e�ective than using metagenomes [167]. On the other hand, public
databases can also result in a bias which is inferred by the overrepresentation of certain species, as
in the case of clinical strains. Moreover, public databases may hold a high degree of redundancy
which biases the results (see Section 2.2.5). In this work, di�erent database types are evaluated
with respect to their identi�cation yield for varying metaproteomic analysis setups (see Section
4.2).

2.2.3 Protein Identification by Database Searching

�e common principle of protein database search algorithms is to correlate acquired MS/MS
spectra with theoretical fragment ion spectra. �e theoretical spectra are calculated for each
of the peptides derived from an in silico digested protein sequence database. SEQUEST [168]
and Mascot [169] are the pioneering and still the most popular commercial database search al-
gorithms. Freely available algorithms include X!Tandem [170], OMSSA [171], MyriMatch [172],
Crux [173], InsPect [174], Comet [175], MS-GF+ [176], MS Amanda [177] and Andromeda [178]
included in the MaxQuant so�ware package [179].
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Despite the immense variety of database search engines and di�erent scoring techniques, each
of these algorithms su�ers from the problem of false positive (FP) identi�cations [180]. �ere-
fore, procedures to control the false discovery rate (FDR) are essential to retrieve reliable search
results. Various approaches have been developed to estimate the FDR for peptide and protein
identi�cations, including algorithms based on statistical modeling, such as PeptideProphet [181].
�is rescoring algorithm uses a mixture model-based approach to estimate the global FDR by
assessing the probabilities of peptide identi�cations and was later updated by an expectation-
maximization algorithmoptionally including a decoy database [182]. �is approachwas reported
to be robust in case of simulated partial sequence databases [183]. Post-processing algorithms
such as MSblender [184] and iProphet [185] improve the yield of correct identi�cations. �ese
methods bene�t from the complementarity of the search engines and combine the results by
calculating probabilities of correct identi�cation based on individual algorithm scores.
�emost commonly usedmethod for estimating the FDR is the target-decoy approach (TDA)

[186, 187] which has been implemented into database search engines such asMASCOT [169]. �e
usual way to generate a decoy database is to reverse or shu�e the protein sequences present in
the input database [188]. �e identi�cations from the decoy database search results are taken
into consideration to estimate the number of FP matches in the target database search. So�ware
tools, such as QVality [189] and FDRAnalysis [190] utilize the TDA to determine the FDR based
on the scores from the individual search engines.
�e so�ware Percolator employs semi-supervisedmachine learning to increase the number of

identi�cations at a constant FDR threshold [191]. Several identi�cation features, such as score and
precursor mass error, are extracted from both target and decoy results to train a support vector
machine (SVM).�e trainedmodel is used to reevaluate each obtained peptide-spectrummatch
(PSM). Percolator was also adapted for the MASCOT search engine [192]. �e binary classi�er
Nokoi is another machine learning technique that allows the distinction between correct and
incorrect identi�cations [193]. �e algorithm was trained on heterogeneous identi�cations from
the MASCOT search engine and holds the bene�t of circumventing the use of a decoy database:
although the TDAprovides reliable FDR estimations for the limited search space of a pure culture
proteome, the scoring metric deteriorates when the database search space increases in size, as
in case of metaproteomics and proteogenomics [194, 195, 196]. For incomplete databases, the
conventional FDR estimation su�ers from similar issues: despite their high quality, a signi�cant
number ofMS/MS spectra are not identi�ed in the target database, but a fraction of these spectra
may �nd a match in the decoy database. �us, for large and incomplete databases, problematic
decoy hits can signi�cantly a�ect the FDR estimation.
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2.2.4 De Novo Sequencing and Homology Search

�e major downside of database search engines is their dependence on protein sequences. For
instance, in case of metaproteomics, the protein databases are o�en incomplete and the over-
head of searching against a large search space covering all potential microbial species can be
immense. �e method of de novo sequencing fully circumvents the need of a protein database,
since it infers the amino acid sequence directly from the information given in each mass spec-
trum. Additionally, unknown peptide sequences that have not been identi�ed by conventional
database searching can be found and certain post-translational modi�cations present on peptide
sequences can be targeted. �ese advantages qualify de novo sequencing as promising tool for
the research �eld of metaproteomics.

�e drawback of this approach is the demand of high quality data to deduce the amino acid
sequences correctly [197]. Furthermore, accurate processing methods, such as noise reduction,
binning and �ltering aremandatory steps for successful de novo sequencing [198]. Finally, in case
protein sequences are neither available nor known, de novo searching remains the only valuable
method to assign peptide sequences toMS/MS spectra [199]. �emost popular de novo sequenc-
ing tools are the freely available PepNovo+ [200] and the commercial PEAKS so�ware suite [201].
In addition, several other algorithms have been described in the literature [202].

Nevertheless, de novo sequencing has not been widely adopted for proteomic work�ows: one
of the major drawbacks is that the matching the de novo peptide sequencing to the protein level
is not included in most available so�ware tools. For instance, performing a heuristic search by
means of the basic local alignment search tool (BLAST) presents an opportunity to map gener-
ated peptide sequences to a protein database [203]. In addition, candidate homology proteins
can be identi�ed by using an extension of the BLAST algorithm via the MS BLAST searching
protocol [204]. However, the latter application should be used with caution as the process of de
novo sequencing is prone to various errors which may result in incorrect protein sequence as-
signments in the end. �us, a manual inspection of the results is still required in order to reduce
the total error rate. �e combined approach of de novo sequencing with BLAST similarity search
is therefore not suited for high-throughput studies. Notably, the BLAST algorithm does not in-
corporate the information from the spectrum level and the identi�ed amino acid sequences may
be changed by allowing mutations in the search options without vitally adjusting the �nal scor-
ing. All of these mentioned issues may be overlooked in case the BLAST algorithm is used in a
naive approach as post-processing step for de novo sequencing.

Similar to the combination of multiple database search algorithms, a combined use of several
algorithms in the context of de novo sequencing could be bene�cial for the con�dence of the
derived peptide sequence suggestions. For example, Cantarel et al. merged the results of Pep-

21



Chapter 2 �eoretical Background

Novo+ and PEAKS in a metaproteomic work�ow to retrieve consensus sequence tags [199]. �is
approachmay be promising for future whole-community proteomics studies, in particular, when
it is coupled to an e�cient method of receiving protein sequences by de novo sequencing results
with a global FDR rate, as described in the PepExplorer so�ware speci�cation [205].

2.2.5 Protein Inference and Taxonomic Assignment

Bottom-up shotgun proteomics brings along the problem of protein inference that complicates
the data analysis and interpretation [11]. Central to this issue is that themapping ofmostly tryptic
peptide hits to the protein space can be a�ected in various ways: the same peptide sequence can
be assigned to di�erent protein splice isoforms or to homologues proteins frommultiple di�erent
species or strains. Additionally, protein families with functional domains may share the same or
at least similar sequences. Eventually, the shared peptides cannot be uniquely assigned and result
in ambiguities in the identi�cation of proteins. While the inference problemhampers the analysis
and interpretation of experimental results in proteomicwork�ows [188, 206], inmetaproteomics,
the challenges are even higher when the samples contain hundreds of di�erent organisms: the
identi�ed peptides can then be assigned to protein sequences from multiple species. �is is a
frequent situation in related organisms with high sequence similarity and also for conserved
protein domains. Consequently, a unique taxonomic assignment and correct quanti�cation of
species is challenging for metaproteomic samples.
On the computational side, the database search algorithms were designed for pure-culture

proteomics and o�en provide a limited output with respect to the total number of identi�ed pro-
teins: some search engines only consider the most probable hits for the display and this becomes
an issue for samples from complexmicrobial communities. Conversely, themore recent versions
of MASCOT [169] report all protein identi�cations for each PSM. However, this also leads to a
high redundancy in the results output for metaproteomic experiments.
�e so�wareMEGAN, although it was originally tailored towards metagenomic analysis, sup-

ports a protocol for metaproteomic data and includes the lowest common ancestor (LCA) ap-
proach by constructing a phylogenetic tree based on the NCBI taxonomy database [207, 208].
�e script-based PROPHANEwork�ow employs a protein grouping approach by merging those
protein identi�cations that share common peptides to a group [4]. �is approach also uses the
phylogenetic information to �nd the common taxonomic level at which the assigned protein
identi�cations are converging in the hierarchy. Although these methods are promising, both
have not been included in a complete proteomic analysis work�ow. Another disadvantage of the
LCA method is that certain amino acids are more conserved than others and could introduce
a bias into the analysis. Conversely, a di�erent approach is to limit the analysis to a representa-
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tive set of species [209]. Overall, both approaches reduce the taxonomic resolution and make it
therefore di�cult to di�erentiate between low-level taxa.

2.2.6 Functional and Metabolic Pathway Analysis

Proteomic work�ows o�en end with lists of peptide and protein identi�cations. However, the
analysis ofmetaproteomic samples always requires to put the obtained protein data into a seman-
tic context. Here, various post-processing steps are described which can be applied to interpret
metaproteome data at the functional level.
�e functional annotation of the identi�ed proteins can be achieved by accessing informa-

tion in public databases. �erefore, the Universal Protein knowledgebase (UniProtKB) is an im-
portant resource that holds curated information content about proteins and also provides links
to other repositories containing functional annotations on speci�c proteins [165]. �e Cluster
of Orthologous Groups (COG) database connects both eukaryotic and prokaryotic proteins to
functional groups and respective categories [210, 211]. For example, COG categories were used
in a metagenomic study on a biogas-producing microbial community in order to map coding
sequences to predicted functions [98]. �e COG classi�cation was also used for the functional
analysis of the human gut metaproteome [15]. �e COG database was updated in 2014 and now
contains an increased microbial genome coverage of 711 archael and bacterial genomes [212].
However, this database project is manually curated and therefore has the disadvantage of con-
taining a relative low amount of entries. A related approach presents the Evolutionary Genealogy
of Genes: Non-supervised Orthologous Groups (EggNOG) database that extends the original
COG database by far more orthologous groups covering 3 686 organisms as underlying species
set [213]. In addition, for those protein sequences that cannot be directly assigned to COGs, so-
called non-supervised orthologous groups (NOGs) are created. Another important bene�t of the
EggNOG database comes with the feature of automatically linking the groups to further func-
tional resources, such as theGeneOntology (GO)database [214]. GOaims to describe gene prod-
ucts consistently across several databases and consists of three di�erent ontologies as structured
vocabularies that describe biological processes, cellular components and molecular functions.
�e disadvantage in the context of microbial community proteomics is that the GO database
holds only the main reference genomes so far. Various other tools, such as Ontologizer [215] or
the web-based DAVID [216] can also be used to connect protein information with ontologies
and protein families. InterPro is an integrated documentation resource which holds catalogued
information on protein domain, families and functional sites [217]. �e repository also includes
data fromother resources on proteinmotifs, domains and functional sites, such as PRINTS [218],
SMART [219], PROSITE [220], ProDom [221] and Pfam [222]. �e InterPro database can thus
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be used to gain insights into the functional context of the identi�ed proteins. �eKyoto Encyclo-
pedia of Genes and Genomes (KEGG) is another valuable data resource that features genomic,
molecular and functional information and also includes rich content on intermediate metabolic
pathways [223]. Di�erent kinds of expression data can be transferred into data models to inves-
tigate higher-order cellular processes. While the KEGG model is primarily based on enzymatic
activities referenced by the Enzyme Commission (EC) nomenclature, proteins can be mapped
via the KEGG automatic annotation server (KAAS) into corresponding KEGG orthology (KO)
identi�ers and related KEGG pathway maps [224]. As an alternative, the information from the
COG database can be integrated to transfer the protein data indirectly onto the KEGG path-
ways for obtaining a whole metabolic pathway mapping as demonstrated in a study describing
the functional core in human intestinal metaproteome samples [15]. �e PROPHANE work�ow
[4] provides access to the COG and KEGG databases and also evaluates protein information by
several secondary methods, such as BLAST [203], BioPerl [225] and Clustal W [226].
�e Reactome database provides peer-reviewed and manually curated information on bio-

logical processes and pathways in human [227]. In addition, the repository holds orthologues
events for non-human model organisms, such as mouse, rat or worm. For metaproteomic re-
search, however, Reactome is a rather limited resource, as the knowledgebase contains only few
higher eukaryotes. �eMetaCyc project features a curated reference database of metabolic path-
ways from various species, but is mainly focused on plants and microorganisms [228]. �e Bio-
Cyc database is connected to MetaCyc and provides organism-speci�c genome and pathway re-
sources [229]. �ese resources are highly relevant formicrobial community studies, in particular,
as 891 genomes from the HumanMicrobiome Project have been successfully integrated over the
past years [230]. Finally, metaproteomic data analysis can bene�t from these resources by com-
plementing the protein data with information on metabolic pathways, biological networks and
protein-protein interaction maps [231].

2.2.7 Protein Quantification Methods

For the analysis and comparison of di�erent protein expression pro�les, methods for protein
quanti�cation are required to compare experiments and samples from microbial communities
[232]. To measure the protein expression levels, gel-free protein quanti�cation techniques, such
as iTRAQ [233] or ICAT [234] are commonly used in traditional proteomics work�ows, but can-
not be directly applied to samples from complexmicrobial communities due to the high variabil-
ity caused by sample preparation and protein separation: in particular for metaproteomics, these
procedures are rather challenging and prone to errors due to the requirement of time-consuming
optimization steps for di�erent types of environmental samples. In addition, so�ware for label-
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based quanti�cation is frequently outdated due to the rapidly evolving analytical methods [235].
As a valuable alternative, so-called label-free analysis techniques can be used for the quanti�-

cation of LC/MS-MS data inmetaproteomics [155]. �ese approaches have the bene�t of directly
using the protein identi�cation data in order to provide a relative measure on the protein abun-
dance. �e most straightforward label-free quanti�cation method is spectral counting: given
the assumption that an increased spectral count for a speci�c protein correlates with higher pro-
tein abundance, the sum of the spectrum identi�cations for each protein is taken to estimate its
abundance [236].
Various other label-free quanti�cation methods either based on spectral counting or on the

summed-up intensity of the matching peptides exist [237, 238]. For example, the normalized
spectral abundance factor (NSAF) takes the protein sequence length into account [239]: longer
protein sequences result inmore tryptic peptides and an increased probability of being identi�ed
in comparison to shorter proteins. Various improvements have made over the past years, in
particular in the robustness of the label-free quanti�cation algorithms. For example, the robust
intensity-based averaged ratio (RIBAR) and its extension xRIBAR correlate the intensity sum of
the related MS/MS spectra in two experiments and thereby increase the reproducibility of the
results [240].

2.2.8 Data Storage and Online Data Repositories

Although so�ware tools are available for di�erent data analysis steps, handling and integration
of the upcoming data is o�en more di�cult. �erefore, many research groups have built their
own solutions in terms of in-house scripts and implemented database systems. Despite the clear
bene�ts of customized work�ows with respect to �exibility and user-de�nable settings, the out-
come of the performed analyses can rapidly become user-dependent and di�cult to compare.
As a consequence, the reported results may not be replicated by any other laboratories. Most
importantly, in-house solutions o�en lack standardized data formats and are not embedded into
a server-based database architecture. However, to handle the amount of data from omics exper-
iments, the integration of a laboratory information management system (LIMS) is highly useful.
Such a framework o�en provides a relational database system which can be accessed by interfac-
ing data analysis tools. Inmost cases, themanagement and querying of the database is performed
by means of the Structured Query Language (SQL). On the commercial side, various available
LIMS products facilitate the integration and storage of information obtained from various pro-
teomics data analysis tools. Ms_lims [241], CPAS [242], MASPECTRAS [243], myProMS [244]
and OpenMS [245] are MS-based data analysis systems that also hold comprehensive storage
capabilities and are freely available.
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Besides local database systems, so-called public repositories became popular within the last
decade. �e purpose of various initiatives is to share experimental proteomics data with the
community via publicly accessible databases. �e PRoteomics IDEnti�cations database (PRIDE)
[246], Global ProteomeMachine Database (GPMDB) [247], Mass spectrometry Interactive Vir-
tual Environment (MassIVE) as part of ProteomeXchange [248] and PeptideAtlas [249] are the
commonly used online repositories for proteomics data today. ProteomeCommons Tranche
[250] and NCBI Peptidome [251] were popular databases, but both are no longer available while
the Peptidome data have been saved to PRIDE [252]. �e aim of these repositories is not only to
be used as storage volumes, but to exchange data within the research community by giving access
to both the original raw data and the �nal result �les. Likewise, the stored data can be reanalyzed
or used for benchmarking during the development of novel algorithms and data analysis tech-
niques. Several publications describe extensively the operatingmodes of these public repositories
[253, 254, 255].
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Material and Methods

�e most common issues for the analysis of microbial communities on the proteome level have
been described in the last chapter. On the experimental side, the unknown complexity and in-
trinsic heterogeneity of the samples present enormous challenges for the scientists (see Section
2.1.4). Regarding the data analysis, which is the focus of this work, the size and redundancy
of the protein sequence database have an impact on the results as introduced in Section 2.2.3.
Furthermore, the taxonomic binning of peptide identi�cations is an issue on top of the protein
inference problem (see Section 2.2.5). Finally, metaproteomic research intends to provide a per-
spective reaching beyond the stage of protein identi�cation: researchers are not only interested
in the identi�cation of certain taxa, but also in the functional context of proteins and their role
in metabolic pathways (see Section 2.2.6). Despite the importance and impact of these issues,
the central question of the �eld "who is doing what" has not been addressed by any particular
so�ware work�ow yet.
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3.1 MetaProteomeAnalyzer

3.1.1 Software Workflow

�e MetaProteomeAnalyzer (MPA) so�ware was developed with the aim of analyzing and in-
terpreting data from metaproteomic experiments, for instance, to investigate the composition
and function of microbial communities in BGP or HIMP samples (see Section 2.1.4). �e JAVA-
based data analysis pipeline consists of a server application for processing experimental data sets
and a graph-database driven interactive client for visualizing the results. �e MPA so�ware was
published in Journal of Proteome Research [256] and parts of the original publication are used
herea�er in this work.
A general overview of the client-server application is provided in Figure 3.1. In the following

text, the most important steps of the data analysis are described in detail.

Figure 3.1: MetaProteomeAnalyzer software workflow. Figure adapted fromMuth et al. [256].

�e entry point into the work�ow presents the creation of a new project (Step 1): experimental
data, that is MS/MS spectra, are supplied by the user to the client application via the graphical
user interface. �ese input data are sent to the MPA processing server which then runs up to
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four of the supported database search algorithms X!Tandem [170], OMSSA [171], Crux [173] and
InsPect [174] in sequential order (Step 2). As an additional option, the output of the popular
commercial search engine MASCOT can be included for the identi�cation results [169, 257].
Protein and peptide identi�cations are obtained by searching the MS/MS spectra against a sup-
plied database in FASTA format. �eMPA was mainly built for protein databases in UniProtKB
format [165], but also supports customized databases. For example, references frommetagenome
sequencing can be included into the work�ow. To combine the individual results of the used
database search algorithms, the identi�cation scores are transformed to q-values as comparable
signi�cance measures by using the QVality algorithm [189]. By de�nition, the q-value repre-
sents the minimum FDR and is used to �lter the peptide-spectrum matches for a speci�c FDR
level [258]. By using q-values, the individual con�dence of each identi�cation is measured and
issues of p-values with respect to multiple hypothesis testing are avoided [259]. For each pro-
tein identi�cation, additional information with respect to taxonomic and functional context is
automatically queried from external resources via the UniProt remote API [260].

�e MPA server holds a relational database based on SQL at the back-end to which all input
and output data, such as MS/MS spectra, identi�cation results and annotations, are stored dur-
ing the processing. �e whole pipeline is designed as LIMS with features for handling di�erent
projects and experiments. In addition, all stored information can be used for further analysis
and re-analysis at a later time point.

A�er the processing has �nished on the server side, the user can load the results onto the client
application for the subsequent detailed analysis (Step 3). In this step, meta-information on the
protein level, such as ontology keywords, taxonomic data from the NCBI database, metabolic
pathway information from the KEGG public repository and enzymatic data via the numerical
EC nomenclature is linked to the protein result set.

Figure 3.2: Pie and bar charts displaying protein distributions on taxonomic ranks. (a) Pie chart and (b)
bar chart visualization for identified proteins, categorized into taxonomic ranks (e.g. phylum), and names (e.g.
Proteobacteria in blue color). Figure adapted fromMuth et al. [256].
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�e overview display on the client provides general information on the number of identi�ed
spectra, peptides and proteins (Step 4). Additionally, pie charts and bar charts show the relative
identi�cation yields for the di�erent taxonomic and functional groups (Figure 3.2). �e taxo-
nomic levels can be adjusted by the user, ranging between superkingdom and species.
Figure 3.3 shows the main display of the MPA so�ware with the database search result panel

presenting the protein identi�cations in a top-down view: for each protein, the attributed pep-
tides are shown in detail, and for each peptide, the supporting PSMs are displayed across the em-
ployed database search engines. In addition, an annotated spectrum display with fragment ion
information can be inspected for each PSM (Step 5). �e protein view shows relevant informa-
tion, including for example protein description, protein taxonomy, sequence coverage, protein
mass, spectral count, NSAF [239] and emPAI [261].

Figure 3.3: Search result panel of theMPAclient user interface. The identified proteins are shown in the top
panel, the identified peptides for the selected protein in the middle left panel, and the PSMs for the selected
peptide in the lower left panel. The right panel displays the annotated fragment ion series of the currently
selected PSM. Figure adapted fromMuth et al. [256].

Further enzyme and pathway displays visualize proteins grouped by EC numbers and KEGG
pathways (Step 6). �ese views directly support detailed investigations on proteins involved in
certain microbial functions. �e meta-protein view enables the inspection of protein groups of
which the generation is described in the following section. In accordance to the general overview,
the taxonomies and ontologies are visualized in detailed viewswith the related proteins. All views
can be �ltered for a speci�ed entity, such as microbial group or metabolic pathway to allow for a
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user-de�ned result inspection.
�eMPA client application holds a graph database which can be used to ask speci�c questions

in the result data by sending custom queries to the back-end (Step 7). �e graph database will be
further explained in Section 3.1.3. �e so�ware also provides a MPA project �le export to share
the results data with other researchers. Finally, the common exchange format comma-separated
values is supported to transfer the results as plain text to conventional spreadsheet so�ware.

3.1.2 Meta-Protein Generation

As already mentioned in Chapter 2.2, various issues impede the data analysis of microbial com-
munity proteomics experiments. An important problem concerns the non-unique relation of one
peptide to many potential proteins, commonly formulated as the protein inference problem [11].
Transferring this paradigm to the �eld of metaproteomics, it becomes even more problematic as
identi�ed peptides can then be mapped to a large amount of expressed proteins originating from
di�erent species. As a consequence, the interpretation of the results is hindered by the redun-
dancy of the reported protein identi�cations. To overcome this problem, various approaches have
been proposed in metaproteomic studies to group redundant protein identi�cations [4, 209, 15].
In pure culture proteomics, the maximum parsimony approach attempts to explain the pep-

tide identi�cations by a minimum protein set [262]. However, this strategy collides with hetero-
geneous data from microbial community samples, as the presence of a particular protein from
a certain taxonomy can hardly be determined con�dently. Consequently, from a given group
of proteins, it is hard to decide which of the identi�cations should be highlighted or excluded
completely. In addition, the quanti�cation of individual proteins is complicated, since label-free
quantitative measures, such as spectral counting or intensity-based methods, do not account for
multiple protein candidates within a group.
To tackle this advanced protein inference problem, several rules for the protein grouping were

implemented into the processing work�ow (Section 3.1.1). In this work, the term meta-protein
was de�ned as a protein group being generated based on one of the rules described in the fol-
lowing.
At the beginning of the protein grouping process, a meta-protein is generated for each protein

identi�cation holding the same features as the original protein. Similar as in hierarchical clus-
tering strategies, the meta-proteins are merged when the rules are applied as explained in the
following paragraphs. Each grouping method can be executed individually or in combination
with other rules.
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Leucine vs Isoleucin Distinction. MS instruments are not capable of distinguishing between
the amino acids leucine and isoleucine due to their identical masses. �erefore, those peptides
which di�er only in these amino acids are considered equal (Figure 3.4a).

Figure 3.4: Peptide rules formeta-protein generation. Green areas visualize identical peptides. (a) Peptides
differing in the amino acids leucine and isoleucine are considered identical. (b) Proteins 2 and 3 hold the same
set of peptides. Protein 1 shares a subset. (c) All three proteins share exactly one single peptide with each
other. Figure adapted fromMuth et al. [256].

ProteinGrouping based on Shared Peptides. In the data analysis of microbial community sam-
ples, it can be o�en observed that peptide identi�cations originate from homologous proteins
expressed by organisms from di�erent species. To reduce the size of the �nal protein result with-
out excluding any valuable hits, the proteins can be grouped according to their shared peptides.
In the MPA so�ware, the rules for grouping of proteins di�er with respect to the granted overlap
of the peptide sets: In the All Shared rule, proteins are grouped when they have a whole peptide
set or a subset in common (Figure 3.4b). Conversely, in theMinimum One Shared rule, proteins
form a group when they share at least one single peptide (Figure 3.4c).

Mutation-Tolerant Grouping. Per de�nition, homologous proteins are related proteins that
were derived from a common ancestor. Although proteins from di�erent species might di�er
from one another by their sequence, they still ful�ll similar or identical functions. As a con-
sequence, an exact string matching of peptides during the grouping may not be su�cient with
respect to the illustrated biological concept of homology. In addition, horizontal gene transfer
frequently occurring in bacteria even enhances sequence mutation events. Since such changes
are o�en translated from the genome to the proteome level, a high sequence variance leads to
issues in the data analysis. As a consequence, a speci�cmetric was required to account for the de-
scribed sequence variability in metaproteomic data. Tomeasure the similarity between peptides,
the Levensthein edit distance (ED) was implemented in the MPA so�ware. �is straightforward
string metric calculates the distance between two given peptide sequences a and b (Equation
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3.1). �e number of point mutations are counted which are required to transform one peptide
sequence into another. �e mutations are de�ned as deletion, insertion or substitution of one or
more amino acids. In theMPA application, the user can specify the ED parameter value to re�ne
the peptide-based grouping of proteins described in the previous paragraph. Eventually, pro-
teins are merged when they share peptides which are considered equal according to the speci�ed
maximum ED value.

EDa,b(i , j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i , j) if min(i , j) = 0

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

EDa,b(i− 1, j)+ 1
EDa,b(i , j− 1)+ 1 otherwise

EDa,b(i− 1, j− 1)+ 1

(3.1)

Protein Cluster Rule. �e grouping of proteins can be also achieved based on the similarity
of the sequences in the result set. For this purpose, the Protein Cluster Rule uses information
from the UniRef (UniProt Reference Clusters) public resource that provides clustered sets of
sequences from the UniProtKB [165, 263]. UniRef supports three sequence identity levels: the
Uniref100 database merges identical sequences and subfragments from di�erent organisms into
a single entry. �e UniRef90 and UniRef50 databases provide clustered sequences at 90% and
50% identity levels based on the UniRef100 entries. Using this resource, a UniRef cluster can be
retrieved for each protein identi�cation with a given UniProt accession. In the MPA so�ware,
themeta-proteins are then generated by re�ecting theUniRef cluster assignments. Since proteins
with a certain level of sequence homology also have a fair chance of sharing similar biological
functions, the time and complexity of the data analysis can be reduced using this rule.

Taxonomy Rule. Given the information about the taxonomic origin of the protein species, the
protein grouping can be further re�ned to merge only those proteins whose lineages converge
below a speci�c taxonomic level. �e idea behind the Taxonomy Rule is that proteins and their
respective taxa are assumed to be more closely related at lower phylogenetic ranks. �is method
can be used to control the phylogenetic diversity during the meta-protein generation. �us, lim-
iting the taxonomic convergence level to a speci�edmaximum rank results in closer relationships
within the protein groups. �is rule cannot be used in isolation, but in combination with other
grouping rules described in the previous paragraphs.
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Taxonomy De�nition. As mentioned in the previous section, the taxonomic origin can have
an impact on the protein grouping and the �nal evaluation of the results. In general, the pro-
teins in public repositories, such as UniProtKB [165], are reported together with their species
or subspecies from which they have been isolated. However, due to the enhanced protein infer-
ence issues with microbial community samples, it is di�cult or even impossible to con�dently
select particular species that contributed mostly to the results, as described in more detail in
Section 3.1.2. To better cover the uncertainties of the taxonomic origin, the individual protein
taxonomies can be reconstructed by the following method: the so-called Taxonomy De�nition
process is based on the shared peptide associations of each individual data set and is therefore
able to locally modify the taxonomic lineage of the proteins given from the original database.
�e algorithm is sequentially executed in three steps. In the �rst step, each peptide in the data
set retrieves the information of the originating protein taxonomy (Figure 3.5a). Shared peptides
obtain the LCA of all connected taxonomic lineages, as explained in the previous section. �e
second step transfers the retrieved peptide taxonomies back to the associated parent proteins
(Figure 3.5b) and is mandatory to apply the previously described Taxonomic Rule for the meta-
protein generation. Subsequently, on the protein level, a particular protein taxonomy can also be
inferred by determining the LCA of all peptides linked to that protein. As an additional alterna-
tive, the most speci�c taxonomy (MST) is provided to preserve the peptide-level speci�city. As
�nal step, the taxonomy of the protein groups can be retrieved by performing the second step for
meta-proteins and proteins (Figure 3.5c).

3.1.3 Graph Database System

In addition, as any so�ware development process is dependent on the user requirements, the
graphical interface and the output format are o�en tailored towards particular speci�cations.
However, it is hard to predict all use cases and users also may develop novel questions during the
data investigation. �erefore, instead of limiting the so�ware during design and development to
static interaction possibilities, it is advisable to provide a maximum �exibility for the analysis of
the data to the user.
For themetaproteomic data analysis, the graphdatabase systemNeo4j (http://www.neo4j.com)

(version 1.8) was integrated into the MPA so�ware to enable a user-de�ned querying of the re-
sults based on a speci�c query language called Cypher. �e graph database di�ers strongly from
a classic relational database system. �e relational model organizes data as tuples that represent
ordered lists of elements grouped into relations [264]. A relation forms a table and describes a
set of tuples in which each member is part of a data domain. Conversely, the graph database
system consists of a graph structure with nodes (vertices) and relationships (edges). Both of these
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Figure 3.5: Example of the taxonomy definition process. (a) The taxonomy for the peptide LGNIASGVMAEL-
LLDER is assigned as the LCA derived from all three protein hits sharing this peptide (Methanomicrobiales). (b)
Protein B8GJQ7 will receive either the common ancestor taxonomy (Methanomicrobiales) or the most specific
taxonomy (Methanosphaerula palustris) of all peptides assigned to it. (c) A meta-protein will be classified in
similar fashion using either LCA or MST of all its associated proteins (Euryarchaeota or Methanosphaerula
palustris). Figure adapted fromMuth et al. [256].

entities can be labeled with a name representing its function. �e relationships always connect
two nodes with each other. Additional key-value pairs, so-called properties, can be used to de-
scribe particular attributes for nodes and relationships. Similar to relational systems, the graph
database is fully transactional to ensure data integrity.
While relational databases have been the workhorses for decades in almost any IT environ-

ment, one of the major disadvantages presents their rigid schema that makes it hard to add
new relationships between entities. Moreover, various issues of scalability exist due to the high
amount of upcoming data in modern applications, since the querying of the data involves many
computationally expensive JOIN operations on the tables in the database. In contrast, the graph
database inherently avoids such operations by accessing connected nodes directly in the struc-
ture. In particular for large data sets, the graph database is better scalable than relational systems.
Another advantage of the Neo4j graph database is that it runs both in server and embedded
mode. �eMPA client application employs the embedded variant without the need of a separate
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Table 3.1: Node types and descriptions for the graph database schema. Table adapted from Muth et al.
[256].

Node type Node description

Proteins Identi�ed proteins; properties include protein accession, description, se-
quence coverage, species and spectral count.

Peptides Identi�ed peptides; properties include peptide sequence and spectral count.
PSMs Peptide-spectrum matches; properties include spectrum identi�er and

search engine score.
Taxonomies Taxonomies; properties include taxonomy name, NCBI taxonomy ID, and

rank.
Ontologies UniProtKB ontologies; properties include ontology name and category (for

example, biological process).
Pathways KEGG pathways; properties include KO number and KEGG description.
Enzymes EC-based enzymes; properties include EC number and description.

database server. �is mode also o�ers low latency and complete control of the database life cycle.
Table 3.1 displays the node types and descriptions of the graph database schema. Moreover,

the respective relationship types are describedwith outgoing and incoming relationship direction
(Table A.1 in the appendix).

3.2 Experimental Data

In this work, di�erent metaproteomic data sets were used to evaluate the performance of devel-
oped methods and so�ware. �e �rst data sets feature the metaproteomes of microbial commu-
nity samples from di�erent biogas plants (Section 3.2.1). �e next data sets belong to human
intestine metaproteomes from lean and obese individuals (Section 3.2.2). �e third data set fea-
tures a single-species proteomic sample which is employed as benchmark experiment (Section
3.2.3). All data sets were obtained by LC-MS/MS.
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3.2.1 Biogas Plant Samples

Di�erent BGP data sets were used for the evaluation of the developed metaproteomic data anal-
ysis work�ow. �e samples which were obtained from BGPs at di�erent locations are described
in the two following paragraphs.

EBENDORF.�e technical replicate data sets EBENDORF01 and EBENDORF02 represent the
metaproteome of a complex microbial community sample derived from an agricultural BGP lo-
cated in Magdeburg/Ebendorf (Saxony-Anhalt, Germany). Details on the sample preparation
and LC-MS/MS measurements can be found in the original publication in Journal of Proteome
Research [256]. In the same study, the main process parameters and the substrate feed compo-
sition are summarized.

GENT. For more detailed investigations on di�erent BGP data, three exemplary MS/MS data
sets were used: �e data sets GENT01, GENT07 and GENT16 with two technical replicates each
were obtained from samples of di�erent reactors located in Gent (Belgium). �e samples were
analyzed in a 16s RNA gene study by DeVrieze et al. [265]. �e GENT01 and GENT07 samples
were derived from continuously stirred tank reactors. �e substrate used for the GENT01 re-
actor was an organic fraction of municipal solid waste, while the GENT07 sample was derived
from a reactor which was fed with a mix of maize silage and chicken manure. In contrast, the
GENT16 sample belonged to a steady-state operating reactor suspension in an industrial scale
up�ow anaerobic sludge blanket reactor using brewery waste water as substrate. �e respective
process parameters and the substrate feed composition of the fermenters are summarized in the
original study [265]. Additional details regarding sample handling and LC-MS/MS measure-
ments can be found in the study of Kohrs et al. [131].

3.2.2 Human Intestine Metaproteomes

MS/MS data sets derived from 29 HIMP samples were processed via the MPA so�ware and used
for the evaluation of the metaproteomic data analysis in this work. �e processed data were also
used for a comprehensive study that investigated signatures of bacterial and host proteins in the
colon of obese and non-obese individuals [266]. Sample handling and LC-MS/MSmeasurement
are described in detail for the respective samples in the aforementioned publication. Moreover,
the individuals took part in a larger study as described in the publication of Verdam et al. [267].
HIMP10 presents a subset of tenHIMP data sets (P1, P3, P8, P11, P17, P23, P27, P28, P31, P34) that
was used for the major computational analysis steps. For the functional analysis, the data from
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all 29 HIMP samples were taken to separate the result sets from obese and non-obese individuals
on the basis of bacterial proteins (Section 4.6.3).

3.2.3 Pyrococcus Furiosus

To further inspect issues related to the in�uence of database selection and parameters on the
search results in the identi�cation work�ow, a Pyrococcus furiosus (PFU) sample was used which
contained 14 467MS/MS spectra as described in the study of Vaudel et al. [268]. �ePFUdata set
was used for the benchmark analysis since it stands out prominently from the HIMP data: PFU
is a hyperthermophilic archaeon featuring an unique biochemistry and high taxonomic distance
to other species [269, 270].

3.2.4 Mixture of Nine Organisms

To evaluate the performance of the MPA so�ware with respect to the reliability of taxonomic
assignment process, data from a sample of known microbial composition was required. �e
9MMsample was used from a study that evaluated the impact of using di�erent protein sequence
databases [126]. Table 3.2 displays detailed information on the nine bacterial and eukaryotic
species contained in themixture sample. In the original analysis of the study, two complementary
methods were used for the sample preparation, namely �lter-aided sample preparation (FASP)
[271] and protein precipitation followed by in-solution digestion (PPID) [272]. �eMS/MS data
sets are denoted 9MM_FASP and 9MM_PPID in this work. Further details on sample handling
and LC-MS/MS measurement can be found in the original publication by Tanca et al. [126].

Table 3.2: Microorganisms of the 9MM sample. Table adapted from Tanca et al. [126]

Species Description Genome size

Escherichia coli Gram-negative bacillus 4 600 Kb
Pasteurella multocida Gram-negative coccobacillus 2 250 Kb
Brevibacillus laterosporus Gram-variable bacillus 5 180 Kb
Lactobacillus acidophilus Gram-positive bacillus 1 993 Kb
Lactobacillus casei Gram-positive bacillus 2 900 Kb
Enterococcus faecalis Gram-positive coccus 3 128 Kb
Pediococcus pentosaceus Gram-positive coccus 1 832 Kb
Rhodotorula glutinis Yeast 20 300 Kb
Saccharomyces cerevisiae Yeast 12 068 Kb
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3.3 Protein Sequence Databases

3.3.1 UniProtKB (SwissProt/TrEMBL)

UniProtKB presents a public repository of protein sequence information and meta-information
[165]. SwissProt is the manually annotated, non-redundant and curated part of UniProtKB. It is
supported by information extracted from the literature and computational analysis of the cura-
tors. In this work, a local SwissProt database containing 547 599 entries (version 2013/02/20) was
used in FASTA format for database searches with X!Tandem, OMSSA and MASCOT.
In addition, TrEMBL representing the unreviewed portion of UniProtKB was taken for the

identi�cation of MS/MS spectra from metaproteomic experiments. �e main rationale was to
compare the performance of both UniProtKB variants during the identi�cation of metapro-
teomic data. Since the TrEMBL mainly covers computationally annotated protein information,
farmore sequences (27 122 814 entries) are contained in this database than in SwissProt. TrEMBL
is also non-redundant with respect to full-length protein sequences occurring only once. How-
ever, due to the non-curated creation process, protein fragments, splicing isoforms and other
variants are stored in separate entries. A local version of TrEMBL (version 2013/02/20) was used
in FASTA format for the database searches with X!Tandem and OMSSA. Both UniProtKB vari-
ants were employed as target databases for the identi�cation of MS/MS spectra from BGP sam-
ples (see Section 3.2.1).

3.3.2 Biogas Plant Metagenome (BGPMG)

�ebiogas plantmetagenome (BGPMG)database consists of a combination of fourmetagenomes
from full-scale and lab-scale BGPs. BGPMG features a total of 452 170 protein entries. Further
details concerning the composition of this database can be found in the study by Kohrs et al.
[131]. �e BGPMG database was used as alternative resource to UniProtKB for the analysis of
BGP metaproteome data sets (see Section 3.2.1).

39



Chapter 3 Material and Methods

3.3.3 Human Intestinal Metaproteome Database (HIMPdb)

�eHuman IntestinalMetaproteome database (HIMPdb) consists of 6 153 068 protein sequences
from di�erent sources, such as metagenomes, bacterial genomes, plant genomes and the human
genome (Table 3.3). �us, thismanually created FASTAdatabase covers a broad range of proteins
which are expected to occur in human fecal samples. Hence, HIMPdbwas used as themain target
database for the identi�cation of MS/MS spectra from human intestine data sets (see Section
3.2.2). Moreover, two particular subsets of HIMPdb were employed separately to study the e�ect
of the database size: intestinal metagenome data obtained from 124 individuals (Qin2010db) [42]
and a collection of 594 bacterial genomes (Bact594db). More detailed information on the exact
composition of Bact594db can be found in the supplementary of the original publication [273].

Table 3.3: Composition of the human intestine metaproteome database. Name, description and number
of protein entries are shown for each database. Table adapted fromMuth et al. [273].

Database name Description Number of entries

HIMPdb Concatenated target database 6 153 068
Bact594db 594 bacterial genomes 1 850 744
Qin2010db 124 metagenomes of European subjects [42] 3 267 604
Kurokawa2007db 13 metagenomes of Japanese subjects [274] 600 752
Human2010db Human protein sequences (Integr8/Genbank) 69 879
Human2010altdb Putative human protein sequences (Genbank) 116 718
FoodSourcesdb Plant protein sequences (UniProtKB) 247 371
HIMPdb (re�ned) Extracted proteins a�er �rst search 90 040

3.3.4 Pyroccoccus Furiosus Database (Pyrodb)

For benchmark experiments, MS/MS spectra from Pyrococcus furiosus strains (see Section 3.2.3)
were searched against the FASTA database Pyrodb that contains 2 139 Pyrococcus furiosus, 7 325
Saccharomyces cerevisiae and 50 Homo sapiens protein entries (UniprotKB/SwissProt). In addi-
tion, the protein sequences of HIMPdb and Pyrodb were concatenated for a benchmark analysis.
�is database is referred to as PyroHIMPdb and contains 6 162 852 sequence entries in total.

40



3.4 Employed So�ware

3.4 Employed Software

3.4.1 X!Tandem

X!Tandem presents an open-source database search algorithm for identifying peptides and pro-
teins fromMS/MS spectra [170]. X!Tandem (version 2013.02.01) was used via the in-house MPA
server for all conducted database searches throughout this work. Trypsin was the default enyzme
cleavage parameter and a maximum of one missed cleavage was allowed. Carbamidomethyla-
tion of cysteine was selected as �xed, and oxidation of methionine as variable modi�cation. For
the HIMP data sets, the fragment ion tolerance was set to 0.4 Da and the precursor tolerance
to 0.03 Da. For the BGP data sets, a fragment ion tolerance of 0.5 Da and a precursor tolerance
of 10 ppm were used. For some explicitly mentioned experiments, the default parameters were
modi�ed with respect to the maximum of missed cleavages and the cleavage enzyme.

3.4.2 OMSSA

OMSSA constitutes another freely available protein database search engine developed by the
NCBI [171]. OMSSA (version 2.1.8) was mounted into the MPA server application as second
algorithm and used for the protein and peptide identi�cation in this work. As for X!Tandem, the
same parameters for the respective data sets were employed, only for some explicitly mentioned
experiments, the default parameters were modi�ed.

3.4.3 MASCOT

MASCOT is a commercial algorithm for matching MS/MS spectra against protein sequence
databases [169]. Partly, BGP data sets were searched via MASCOT (version 2.2) using the fol-
lowing parameters: trypsin, one missed cleavage, monoisotopic mass, carbamidomethyl (C) as
�xed and oxidation (M) as variable modi�cation, precursor tolerance of 10 ppm , fragment ion
tolerance of 0.5Da, 1 13C and+2/+3 peptide charge. �e resultingMASCOTDAT�les containing
peptide and protein identi�cation information were uploaded via the MPA client to the server
application.
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3.4.4 DeNovoGUI

From a data analysis perspective, the most important requirement for the identi�cation of pro-
teins inMS-based proteomics is an appropriate protein sequence database as target for the search
algorithms. In metaproteomics, however, the incompleteness of the protein sequence databases
is problematic, since many bacterial strains have not been sequenced or are even considered
unculturable (Section 2.2.3). �e method of de novo sequencing yields the potential to over-
come this issue by obtaining the peptide sequences directly from the MS/MS spectra (Section
2.2.4). Despite the potential of the de novo sequencing approach, algorithms, such as PEAKS
[201] and PepNovo+ [200], are not widely applied by the community. While PEAKS presents a
so�ware package that is only commercially distributed, PepNovo+ is freely available, but has sev-
eral shortcomings: Importantly, the PepNovo+ algorithm is only available as command line tool,
which lowers the adoption of the so�ware in proteomics labs. Moreover, this algorithm lacks
further essential features, such as support of the standardized controlled vocabulary for PTMs, a
multi-core implementation for running searches in parallel and an output format that provides
fragment ion and spectrum annotation.
�e so�ware DeNovoGUI was developed to provide a front-end application for the PepNovo+

algorithm (Figure 3.6). �e so�ware was originally published in Journal of Proteome Research
[275]. Besides the incorporated function of a graphical user interface, the feature of an automated
parallelization across multiple compute cores was added to the tool to accelerate the de novo
sequencing process for a large amount of MS/MS spectra, as commonly provided by metapro-
teomic experiments. �e application also allows to add typical PTMs, such as oxidation of me-
thionine, and further modi�cations that can be customized by the user.
For the de novo sequencing of metaproteomic data, the PepNovo+ algorithm (version 3.1)

[200] was used via DeNovoGUI (version 1.2.0) in multi-threaded mode using four compute
cores. �e parameter values were chosen in accordance with the ones used for the database
search algorithms: precursor ion tolerance of 0.03 Da, fragment ion tolerance of 0.5 Da, car-
bamidomethylation as �xed PTM and oxidation of methionine as variable PTM. �e default
fragmentation model (CID_IT_TRYP) was used which stands for CID fragmentation and tryp-
tic cleavage. �e maximum number of de novo peptide solutions was set to 20. As further de-
scribed in the respective results section, the de novo peptides were classi�ed according to their
PepNovo+ score.
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Figure 3.6: Main panel of the DeNovoGUI graphical user interface. Figure taken fromMuth et al. [275].

3.4.5 Unipept

For the taxonomic assignment of peptides, the web-based tool Unipept (version 2.3) [276, 277]
was used with the following parameters: equating isoleucine/leucin, �ltering for duplicate pep-
tides and advanced missed cleavage handling. �e respective peptide sequences were exported
using the MPA client application and subjected to the metaproteomic analysis feature on the
Unipept website (http://unipept.ugent.be).

3.4.6 EggNOG

For the functional analysis of HIMP data, unannotated protein sequences were extracted from
the MPA client application and subsequently matched to the Evolutionary Genealogy of Genes:
Nonsupervised Orthologous Groups (EggNOG) version 4.1 containing bacterial orthologous
gene clusters [213] using the HMMER algorithm (version 3.1) [278] with default parameters. �e
resulting nonsupervised orthologous groups (NOGs) were �ltered by accepting the best search
hit with an e-value below 10-30 for each query.
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3.4.7 LEfSe

�e linear discriminant analysis e�ect size (LEfSe) method was used to �nd characteristic mi-
crobial features at the taxonomic and functional level [279]. LEfSe is a supervised classi�cation
approach that �rst determines features by a non-parametric factorial Kruskal-Wallis sum-rank
test that are statistically di�erent among biological groups. Subsequently, the biological consis-
tency of identi�ed di�erences across subgroups is evaluated by employing an unpairedWilcoxon
rank-sum test. Finally, the e�ect size of each di�erentially abundant feature is estimated using
linear discriminant analysis (LDA) to determine the magnitude of variation of the features be-
tween the groups. In this work, a signi�cance level of alpha = 0.01 was chosen for both described
statistical tests. An LDA log10 score threshold of 2.0 was applied to �lter for markedly increased
bacterial features.

3.5 Applied Methods

3.5.1 Target-Decoy Approach

In proteomic work�ows, the statistical signi�cance of peptide and protein identi�cations in a
data set is usually assessed by estimating the FDR [280]. �e FDR is de�ned as the expected
proportion of false positives (FP) among multiple hypotheses. �e target-decoy approach (TDA)
presents themost commonmethod of determining the FDR for an entire result data set [186, 187].
�e TDA can be easily adopted to any database search work�ow: it merely requires a target
database that contains protein sequences appropriate to the protein mixture to be analyzed, and
a decoy database which can be directly generated by reversing, shu�ing or randomizing the
protein sequences of the target database [206]. �e aim is to minimize the amount of common
peptides between target and decoy database. �e major two strategies are the following: the �rst
one is to append the decoy database to the target database resulting in a composite database
twice the size of the original. �e second option to search separately against the target and decoy
database. �e resulting number of identi�cations in the decoy database is then used to estimate
the incorrect hits obtained when searching the original target database. Consequently, the FDR
is calculated as the ratio of the number of decoy hits above a given threshold to the number of
target hits above the threshold (Equation 3.2).

FDR =
Ndecoy(FP)

Ntarget(FP+TP)
(3.2)

While the FDR applies globally to a collection of PSMs, it is also useful to assign statistical
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scores to individual hits: for this purpose, q-values are used to describe the minimum FDR at
which a PSM is accepted [258, 259]. For example, a q-value of 0.01 stands for 1% estimated
incorrect hits in a whole set of PSMs. In the MPA so�ware, resulting PSMs from the database
searches are therefore automatically passed to theQVality algorithm [189] (see Section 3.1.1). �is
method calculates q-values from a provided set of target and decoy PSM scores. Eventually, the
hits can be �ltered according to their q-values as FDR estimates which guarantee consistency
across heterogeneous search engines. In this work, FDR thresholds of 1% and 5% were used,
depending on the type of analysis.

3.5.2 Quality Control and Results Combination

Besides the TDA-based FDR estimation, also the original search scores were used to check for
the quality of the identi�cations. For the search algorithm X!Tandem, the hyperscore was taken
as scoring value for each PSM. �e hyperscore is calculated by multiplying the preliminary dot
product with the factorials of the amount of assigned b and y ions [281, 170] (Equation 3.3).
�e factorials are based on the assumption of a hypergeometric distribution for the matching
fragment ions.

hyperscore = (
n
∑
i=0

Ii ∗Pi)∗Nb!∗Ny! (3.3)

Conversely, for OMSSA, the e-value was used as score basis for each PSM. �e probabilistic
value was then transformed according to Equation 3.4 [282]. �e purpose of this transforma-
tion was to facilitate the comparison of the PSM scores from X!Tandem and OMSSA during the
evaluation of the identi�cation quality.

score(OMSSA) = −10∗ log10(e−value) (3.4)

In addition, the search results fromX!TandemandOMSSAwere combined in variousmetapro-
teomic analyses by using the individual PSMs which were �ltered by a prede�ned FDR threshold
(see Section 3.5.1). Furthermore, the union set of identi�cations was retained from the search
algorithms to increase the overall sensitivity of the results.
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3.5.3 Identification Rescoring

Since results from both database searching and de novo sequencing algorithms were analysed,
another scoring metric was required to evaluate the quality of identi�ed spectra independently
of the original scores from the output of the methods. �erefore, a rescoring technique was
employed by calculating the relative matched ion count (RMIC) that is based on the intensities
of the matched fragment ions (a/b/c, x/y/z, y-NH3, y-H20, b-NH3, b-H20, precursor MH, MH-
NH3, and MH-H2O) of the peptide divided by the total ion current (TIC) that is de�ned here
as the sum of all peak intensities from the respective experimental MS/MS spectrum (Equation
3.5).

RMIC =
∑
p∈S

I(p)

TIC
(3.5)

Accordingly, an RMIC value of 0.5 implies that 50% of the MS/MS peak intensities were cov-
ered by matching fragment ion peaks. �e RMIC was used as a quality control mechanism inde-
pendent of the applied identi�cation strategy, since it is solely based on the provided spectrum
and peptide information.

3.5.4 Two-Step Searching

�e two-step searching approach proposed by Jagtap et al. [125] features an iterative database
search strategy. �e �rst step involves conventional protein identi�cation search against a target
database. Without limitation to a certain FDR threshold, the protein identi�cations are extracted
andused to generate a re�ned sequence database for a subsequent search. Finally, the results from
this second search are validated by a TDA-based FDR estimation. �e main advantage of two-
step searching is to reduce the protein database size in proteomic identi�cation work�ows. In
this work, this approach was evaluated with respect to its applicability on metaproteomic data.

3.5.5 Jaccard Index

�eJaccard index, also called Jaccard similarity coe�cient, constitutes a statisticalmeasurewhich
is applied to compare and assess the similarity of di�erent sample sets. �e metric is calculated
as the size of the intersection divided by the size of the union of the sample sets (Equation 3.6).

Jaccardindex(A,B) = A∩B
A∪B (3.6)

Analogous to the visualization technique of a Venn diagram, the Jaccard similarity coe�cient
presents a commonly used numerical indicator of the similarity between two sets.
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According to a typical data analysis work�ow in metaproteomics, the following chapter is di-
vided into six parts starting with the algorithms employed for peptide and protein identi�cation:
Section 4.1 begins with comparing the results of various database search engines on the basis of
di�erent metaproteomic data sets. In the following Section 4.2, several important algorithmic
parameters are investigated that in�uence the outcome of database searches. As an alternative to
techniques requiring a protein database, the method of de novo sequencing is evaluated in Sec-
tion 4.3. �e following sections then deal with post-processing approaches beyond the level of
identi�cation: in Section 4.4, a variety of protein groupingmethods is examined to handle issues
of protein inference and redundancy. Since metaproteomics is strongly focused on the semantic
context of protein data, methods for assigning hits to taxonomic groups are investigated in Sec-
tion 4.5. Finally, the functional annotation and pathway mapping of metaproteomic results are
addressed in Section 4.6.

4.1 Search Algorithm Comparison

�e objective was to evaluate the performance of the work�ow used for the identi�cation of
peptides and proteins in the MPA so�ware. First, a preliminary analysis is performed on an
exemplarymetaproteomeBGP sample using three database search algorithms. In the secondpart
of this section, an extended identi�cation analysis is carried out by which two algorithms were
employed to process on a larger collection of ten data sets from HIMP samples. In this section,
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data from the original publications in Journal of Proteome Research [256] and Proteomics [273]
are partly used.

4.1.1 Preliminary Analysis

In general, di�erences in identi�cation yield were expected between database search algorithms
due to diverging scoring models and parameter sets. To evaluate the impact of using di�er-
ent algorithms in the data analysis work�ow, the BGP data set EBENDORF01 (Section 3.2.1)
was searched using the search algorithms X!Tandem (Section 3.4.1), OMSSA (Section 3.4.2) and
MASCOT (Section 3.4.3) against the SwissProt protein database (Section 3.3.1). As the number of
reported protein hits depends on the output format of the search engine [283], the identi�cation
analysis was restricted to the spectrum and peptide level to guarantee a meaningful performance
comparison of the algorithms.
First of all, the spectrum identi�cations of each of the algorithms were compared at 5% FDR

against each other: Figure 4.1a shows that each search engine provided an essential amount of
unique spectrum identi�cations. X!Tandem turned out as the best-performing algorithm at the
spectrum level by identifying 2 523 (76.6%) out of 3 295 spectra. �e same search engine pro-
vided also the most unique identi�cations, as it identi�ed exclusively 799 (24.2%) spectra. It can
be recognized that X!Tandem also yielded the highest number of unique identi�cations at the
peptide level since this algorithm exclusively identi�ed 281 (28.3%) out of 992 peptides (Figure
4.1b). In total, all three search engines showed a total overlap of 309 (31.1%) identi�ed peptides.

Figure 4.1: Comparison of identifications from three search engines for EBENDORF01 data set. The
Venn diagrams show identified (a) spectra and (b) peptides being unique and shared for search algorithms
X!Tandem, OMSSA and MASCOT at 5% FDR. Figure taken fromMuth et al. [256].
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4.1.2 Performance of X!Tandem and OMSSA

To further examine the question whether the use of multiple identi�cation algorithms is bene�-
cial for the analysis ofmetaproteomic data, database searches were performed on a representative
data collection: in total, 317 375 MS/MS spectra from ten human intestine metaproteome data
sets (HIMP10, see Section 3.2.2) were searched against a customized protein sequence database
(HIMPdb, see Section 3.3.3) using the algorithms X!Tandem and OMSSA.
When combining both search engine results, 30.2% of the totalMS/MS spectra and on average

7 322 peptides for each data set were identi�ed at 5% FDR (Table 4.1). At 1% FDR, the percentage
of identi�ed spectra dropped to 21.2% and 6 737 peptides could be obtained on average (Table
A.2 in the appendix). It can be also recognized that X!Tandem yielded signi�cantly more iden-
ti�cations than OMSSA: on average, X!Tandem could identify 6 446 spectra and 4 624 peptides,
while OMSSA obtained 4 084 spectral and 3 292 peptide hits. In the line with the �ndings of the
previous investigation, it was found that a substantial part of the identi�cations was speci�c for
each respective search engine: Table 4.1 shows that X!Tandem yielded 25.3% and OMSSA 10.8%
exclusively identi�ed spectra on average at 5% FDR. At the peptide level, 23% and 16% unique
identi�cations were found by X!Tandem and OMSSSA, respectively.

Table 4.1: Total number of MS/MS spectra, percentage of identified spectra (ID), exclusive spectrum and
peptide identification yield fromX!Tandem andOMSSA for HIMP10 data sets P1-P34 (FDR < 5%). Table adapted
fromMuth et al. [273].

Dataset Total ID (%) Peptides Excl. Spectrum ID (%) Excl. Peptide ID (%)

X!Tandem OMSSA X!Tandem OMSSA

P1 35 179 31.7 8 473 21.5 11.4 19.8 16.4
P3 26 560 26.0 5 624 24.0 11.2 22.9 15.3
P8 31 891 31.6 7 640 19.1 11.2 17.5 17.1
P11 31 744 26.1 6 295 30.4 12.0 26.2 16.5
P17 32 203 31.7 8 082 19.5 11.5 18.9 16.3
P23 34 050 33.2 8 255 35.8 8.6 30.4 13.7
P27 27 339 24.8 5 266 24.8 11.2 22.6 14.9
P28 32 037 30.9 7 273 25.9 10.4 23.5 14.9
P31 35 848 34.6 9 084 30.1 9.9 25.9 15.4
P34 30 524 31.1 7 231 20.1 12.1 19.0 17.1

Average 31 737 30.2 7 322 25.3 10.8 22.7 15.8
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4.2 Database Searching

For each of the algorithms investigated in the previous section, the search space is in�uenced
by various parameters, including mass tolerance, protein database, number of missed cleavages,
enzyme speci�city and post-translational modi�cations. In this section, those parameters were
examined that were expected to have the highest impact in a metaproteomic work�ow. As in-
troduced in Section 2.2.2, the protein database as target for metaproteomic samples is di�erent
in composition and size compared to the sequence databases used in pure-culture proteomic ex-
periments. In metaproteomics, a FASTA database o�en needs to be manually constructed and
consists of a collection of translated genomes and—preferably—also metagenomes to provide an
adequate amount of target sequences for successful protein identi�cation. �erefore, the relation
between database composition and number of identi�cations is �rst examined for three exem-
plary BGP data sets. �e second part of this section is devoted to the in�uence of the database
size on the outcome for selected human intestinemetaproteome samples. In the third paragraph,
di�erent parameter values for the number of missed cleavages are tested. �e fourth part then
involves the parameter evaluation of di�erent cleavage enzymes. Finally, this section ends with
analysis of a proteomic data set of known sample composition to evaluate the �ndings of the pre-
vious metaproteomic analyses. In the following, parts of the original publication in Proteomics
[273] are used.

4.2.1 Influence of Protein Database

To investigate the impact of the database composition on the results in a metaproteomic experi-
ment, the BGPdata sets GENT01, GENT07 andGENT16 (see Section 3.2.1) werematched against
three di�erent databases: the MS/MS spectra of each of the respective samples were searched
with X!Tandem andOMSSA against the databases SwissProt, TrEMBL and BGPMG.While both
UniProtKB databases were publicly available (see Section 3.3.1), the BGP database was manually
generated by assembling four di�erent translatedmetagenomes from biogas fermenters (see Sec-
tion 3.3.2).
�e searches of GENT01 and GENT07 against the BGBMGmetagenome database resulted in

more identi�cations in comparison to SwissProt and TrEMBL (Table 4.2). Conversely, the high-
est fraction (22%) of identi�ed spectra could be detected for GENT16 when searching against
TrEMBL. For the latter data set, only a low percentage of identi�ed spectra (2%) can be recog-
nized in the BGPMG search result.
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Table 4.2: Percentage of identified spectra (Spectrum ID) and number of peptides obtained from searching
GENT01, GENT07 and GENT16 with X!Tandem and OMSSA against SwissProt, TrEMBL and BGPMG (FDR < 5%).

Dataset Spectrum ID (%) Peptides

SwissProt TrEMBL BGPMG SwissProt TrEMBL BGPMG

GENT01 7.1 4.7 7.9 728 721 933
GENT07 2.9 2.0 10.7 508 417 1,342
GENT16 4.1 22.0 2.0 494 1 910 267

Portion of unique peptides.�e goal of the next analysis was to review the portion of so-called
unique peptides in the BGP result sets. In this context, a unique peptide is de�ned as peptide
hit that exists solely in one protein of the whole result set. In contrast, a shared peptide can
be ambiguously assigned to multiple proteins. �e objective here was to test whether a higher
fraction of unique peptides could be obtained for BGPMG, since such a metagenome database
was expected to be more speci�c than the UniProtKB database variants which contain many
homologous proteins from di�erent species.
It was found that an average portion of 80.4% peptide identi�cations were classi�ed as unique

in the BGPMG searches, while this ratio was lower for SwissProt (69.9%) and TrEMBL (65.2%)
searches (Table 4.3). From the investigated data sets, GENT16 resulted in the highest ratio of
unique peptides: in particular, a portion of 80.1% could be obtained from TrEMBL and 87.6%
from BGPMG searches.

Table 4.3: Number of peptide identifications and percentage of unique peptides obtained by searching
GENT01, GENT07 and GENT16 with X!Tandem and OMSSA against SwissProt, TrEMBL and BGPMG (FDR < 5%).

Dataset SwissProt TrEMBL BGPMG

Total Unique (%) Total Unique (%) Total Unique (%)

GENT01 728 61.1 721 53.1 933 77.7
GENT07 508 72.8 417 62.4 1 342 75.9
GENT16 494 75.7 1 910 80.1 267 87.6

Average 577 69.9 1 016 65.2 847 80.4
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Overlap between database search results. �e previously reported results demonstrated that
the identi�cation yield strongly depends on the chosen protein database. �e next objective was
to examine this e�ect in more detail by reviewing the overlap of peptide identi�cations between
the previously obtained search results for the BGP data sets.
Figure 4.2 summarizes the sets of peptides that are either commonly shared or exclusive to a

particular database result for the data sets GENT01, GENT07 and GENT16 at 5% FDR. Overall,
it can be found that identi�cations barely overlap between the metagenome database BGPMG
and the public UniProtKB variants. �e Venn diagrams also show that many database speci�c
identi�cations were found in the searches against BGPMG: for instance, searching the GENT07
data set against BGPMG resulted in 1 208 (60.9%) exclusive peptide hits. Remarkably, the overlap
was minimal between the results from the three search databases: 39 (GENT01), 42 (GENT07)
and 50 (GENT16) peptide identi�cations were shared between SwissProt, TrEMBL and BGPMG.
In comparison to GENT01 and GENT07, it can be recognized that GENT16 resulted in the high-
est number of database-speci�c peptide identi�cations: 1 566 (69.0%) out of 2 269 hits could be
exclusively derived from the search against TrEMBL. In accordance with these �ndings, a low
overlap was found when mapping the peptide sequences from TrEMBL searches to the protein
sequences in BGPMG and SwissProt: for GENT16, only 7.4% and 14.8% of the TrEMBL peptides
could be matched against BGPMG and SwissProt, respectively (Table A.4 in the appendix).

Comparison of target and decoy PSM scores. To �nd an explanation for the varying identi�ca-
tion yield between the databases, the PSM scores from X!Tandem were further investigated for
the BGP data searched against SwissProt, TrEMBL and BGPMG.
While the target and decoy PSM scores for TrEMBLwere higher than the corresponding scores

for SwissProt and BGPMG, compared to each other, the latter databases resulted in similar score
ranges (Figure 4.3). �e boxplots also show that target PSM scores for GENT16 searched against
TrEMBL (Figure 4.3c) di�ered more from decoy PSM scores than respective distributions of
scores for GENT01 (Figure 4.3a) and GENT07 (Figure 4.3b).
So far, the �ndings highlighted that the identi�cation yield strongly depends on the used pro-

tein database. As the evaluated databases di�ered signi�cantly in their composition, each of the
database searches resulted in unique identi�cations. Also, the tested metagenome database was
bene�cial for an additional increase in hits. However, another important aspect became appar-
ent when searching against a large database, such as TrEMBL that contains more than 27 million
protein entries: the results suggested that the database size itself can have a major impact on the
scoring and the FDR estimation during the identi�cation process. Hence, this e�ect was further
examined in the following section in more detail.
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Figure 4.2: Venn diagramoverlaps of peptides identified in BGP samples for three databases. The values
in the circles show the numbers of identified peptides from combined database searches by using X!Tandem
andOMSSA against SwissProt (red), TrEMBL (green) and BGPMG (blue) for BGP data sets (a) GENT01, (b) GENT07
and (c) GENT16 at 5% FDR.

4.2.2 Evaluation of Search Strategies

To systematically investigate the e�ects of the database size on the search results in metapro-
teomic analyses, three data sets (P1, P23 and P34) from the HIMP samples (see Section 3.2.2)
were chosen for the investigations in the following. In this analysis, three di�erent search strate-
gies were evaluated for each of the HIMP data sets: (1) Classic searching was performed against
a tailored protein database (HIMPdb) that had been manually constructed by integrating a va-
riety of bacterial genome and metagenome information (see Section 3.3.3). (2) Subset searching
was used by matching the aforementioned data sets against fractions of the HIMPdb database:
Bact594db and Qin2010db were chosen as subset databases since they had delivered the most
database-speci�c identi�cation in preliminary analyses (Table A.3 in the appendix). (3) Two-
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Figure 4.3: Comparison of scores from searches against three different databases for BGP data sets.
Each of the grouped box plots shows target and decoy PSM scores for data sets (a) GENT01, (b) GENT07 and
(c) GENT16. X!Tandem searches were performed against target and decoy databases of SwissProt, TrEMBL and
BGPMG. Target PSM scores are displayed in green and decoy PSM scores in red.

step searching (see Section 3.5.4) was applied by searching the data in an initial round against
HIMPdb without limiting the FDR and using the obtained proteins as target database in a sec-
ond round by �ltering the results with a stringent threshold (1% and 5% FDR).�is method had
been reported to improve the identi�cation yield for large database searches in proteogenomics
and metaproteomics [125].

Figure 4.4 shows an overview on the identi�cation results for the data set P1: while classic
searching against HIMPdb and subset searching against Qin2010db provided comparable num-
bers of PSMs and peptides, subset searching against Bact594db resulted in the lowest amount
of identi�cations . It can be further recognized that two-step searching more than doubled the
number of identi�cations in comparison to classic searching at 1% and 5% FDR. �e bar plots
also show that two-step searching resulted in more peptides than identi�ed spectra at 5% FDR.
It is worth noting that similar identi�cation yields could be observed for the data sets P23 and
P34 (Table A.5 in the appendix).

Analogous to the investigations on the BGP data sets in the previous text, the ratio of peptides
that were uniquely identi�ed for a single protein was also examined within the HIMP result sets
for the three described search strategies.

Remarkably, two-step searching against HIMPdb resulted in the highest average fraction of
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Figure 4.4: Overview on the identification results for data set P1. The bar plots display the total number of
PSMs and peptides identified at 1% and 5% FDR. Classic searching was performed against HIMPdb, Bact594db
and Qin2010db, while two-step searching was applied only against HIMPdb. Figure adapted from Muth et al.
[273].

unique peptides (79.4%), while the lowest portion (51.2%) could be found for classic searching
against HIMPdb (Table 4.4). Subset searching against Bact594db and Qin2010db resulted in an
average of 65.3% and 68.2% unique peptides, respectively.

Table4.4:Number of peptide identifications andpercentage of uniquepeptides obtainedby searching P1, P23
and P34 with X!Tandem and OMSSA (5% FDR). Classic searches were performed against HIMPdb, Qin2010db,
Bact594db and two-step searches against HIMPdb. Table adapted fromMuth et al. [273].

Dataset HIMPdb Qin2010db Bact594db Two-Step

No. Unq. (%) No. Unq. (%) No. Unq. (%) No. Unq. (%)

P1 8 473 52.6 8 012 66.7 4 841 67.0 27 136 77.2
P23 8 255 51.8 7 730 69.5 4 617 66.8 31 913 81.4
P34 7 231 49.1 6 599 68.4 4 686 62.0 27 769 79.5

Average 7 986 51.2 7 447 68.2 4 715 65.3 28 939 79.4

Comparison of classic and subset searching. Using the results of the HIMP data, the numbers
of PSMs and peptides that could be speci�cally assigned to a particular database were next in-
vestigated to illustrate the actual di�erence in the identi�cation yield between classic and subset
searching.
It was found that subset searching against Bact594db and Qin2010db resulted in signi�cantly

more database-speci�c identi�cations than classic searching against HIMPdb for the data set
P1 (Figure 4.5). Furthermore, the number of database-speci�c identi�cations was almost one
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magnitude higher for Qin2010db compared to Bact594db. Finally, similar �ndings illustrating
the e�ects of subset searching could also be made for the data set P23 (Table A.6) and P34 (Table
A.7 in the appendix).

Figure 4.5: Database specific identifications from classic and subset searching for data set P1. (a) The
total number of Bact594-specific PSMs andpeptides are shown for classic searching against HIMPdb and subset
searching against Bact594db. (b) The total number of Qin2010-specific PSMs and peptides are displayed for
classic searching against HIMPdb and subset searching against Qin2010db. Figure adapted from Muth et al.
[273].

Quality check for two-step searching results. �e previous results indicate that considerable
amounts of identi�cations were uniquely detected by subset searching against Bact594db and
Qin2010db and would therefore have been lost when performing exclusively classic searching
against HIMPdb. While databases of large size (> 106 entries) are commonplace in metapro-
teomics, a strategy is required to search in large databases without the issues of lacking sensi-
tivity in classic searching. Although two-step searching was suggested as a reasonable search
strategy for metaproteomics, two major �ndings in these data cast doubt on the reliability of
this method: �rst, an unrealistically high identi�cation yield was found in comparison to clas-
sic searching. Second, among the applied strategies, only two-step searching resulted in more
peptides than spectra at 5% FDR. As a consequence, the next objective addressed a detailed eval-
uation on accuracy of the two-step searching method by comparing the PSM score distributions
from classic and two-step searching for the data set P1.
Figure 4.6 displays the distributions of PSM scores from X!Tandem for classic and two-step

searching �ltered at 1% and 5% FDR. In comparison to classic searching, it can be recognized
that the score distributions for two-step searching are shi�ed to the le� at both FDR thresholds.
Eventually, to �nd an explanation for the diverging score distributions between classic and
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Figure 4.6: Comparison of scores between classic and two-step searching for data set P1. The density
distributions of PSM scores from sample P1 are shown for classic database searching (in black) and two-step
searching (in blue) against HIMPdb by using X!Tandem. Results are displayed for filtering by an (a) 1% and (b)
5% FDR threshold, respectively. Figure adapted fromMuth et al. [273].

two-step searching, a reevaluation method to further assess the quality of the search hits was
applied to the data set P1: for this purpose, the measure RMIC is calculated by summing up the
intensities of thematched fragment ions for each PSM (see Section 3.5.3). To account for any par-
ticular in�uence of the chosen algorithm, the PSMs were investigated separately for X!Tandem
and OMSSA. Such a rescoring method has the bene�t of being independent of any particular
search algorithm, since it only requires the input of the suggested peptide sequence and the ex-
perimental spectrum.
Figure 4.7 illustrates that the distributions of theRMICvalues could be separated between both

search strategies as two-step searching resulted in lower RMIC scores compared to the classic
searching. It can be found that the separation of RMIC scores between the search strategies is
stronger for X!Tandem (Figure 4.7a) in comparison to OMSSA (Figure 4.7b).
So far, it was demonstrated that both protein database and applied search strategy a�ect the

outcome of data analysis work�ows inmetaproteomics. In the following, the in�uence of further
search algorithm parameters are investigated in detail.
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Figure 4.7: Reevaluation of identifications from classic and two-step searching for data set P1. The
density distributions of RMIC values from (a) XTandem and (b) OMSSA results are shown for classic database
searching (in black) and two-step searching (in blue). The identifications were obtained by classic and two-step
searching against HIMPdb at 5% FDR.

4.2.3 Missed Cleavage Parameter Testing

Since the missed cleavage of peptide bonds is a common event in bottom-up proteomics due to
insu�cient speci�city of the protease (see Section 2.1.5), the database search algorithms account
for it by providing a parameter to specify the maximum number of allowed missed cleavages
(MC). In the following investigation, the goal was to examine the e�ect of the MC parameter
on the identi�cation yield, since the sequence search space was expected to increase for each
elevated MC value. �erefore, parameter values were chosen betweenMC = 0 andMC = 3 and
database searches were performed for the HIMP data sets P1, P23 and P34 (Section 3.2.2).
�e highest number of PSMs and peptides was reported for MC = 0 in each of the evaluated

data sets at 1% FDR (Figure 4.8). At 5% FDR, most identi�cations could be obtained for either
MC = 0 orMC = 1 depending on the chosen data set (Figure A.1 in the appendix).
Next, the in�uence of theMCparameter on the results was evaluated for the data set P1 inmore

detail: complementing the preceding analyses, the �rst objective was to examine the number of
total peptides in dependence of the chosen MC parameter value. �e second objective was to
investigate how many peptide hits were exclusively found for a speci�c MC parameter value.
While the number of identi�ed peptides for the evaluated MC values approached each other

with increasing FDR threshold (Figure 4.9a), a signi�cant amount of peptides could be identi�ed
exclusively for MC = 0 (Figure 4.9b). Similar �ndings could also be observed for P23 and P34
(Figures A.2 and A.3 in the appendix).
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Figure 4.8: Comparative evaluation of the identification yield for different MC values (HIMP). The bar
plots show the total number of (a) PSMs and (b) peptides for data sets P1, P23, and P34 when using missed
cleavage parameter values MC = 0 - 3 at 1% FDR. Identification results were combined from searching with
X!Tandem and OMSSA against HIMPdb.

Figure 4.9: Comparisonof total andexclusive peptides for differentMCvalues (P1). The line charts display
the number of (a) total and (b) exclusive peptides for data set P1when usingmissed cleavage parameter values
MC = 0 - 3 as a function of the respective FDR threshold. Peptides were called exclusive when being identified
uniquely for a particular MC parameter value.
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4.2.4 Non-Tryptic Enzyme Settings

�e �nal parameter under investigation was the cleavage enzyme since the hypothesis was that
proteases occurring in the human intestinal tract may lead to the presence of various non-tryptic
protein fragments in the metaproteome samples. �erefore, the HIMP data sets P1, P23 and P34
(see Section 3.2.2) were subjected to database searches by setting the enzyme parameter value
to semi-tryptic. �is parameter value allows one peptide terminus to be non-tryptic, while the
other end remains tryptic. Since the default enzyme parameter value had been tryptic in the
preceding analyses, the results could be directly compared for both enzyme parameter settings.
In addition, chympotrypsin (pancreatic enzyme) and pepsin A (gastric enzyme) were tested as
enzyme parameter values: it was speculated that the respective enzymes—representing common
intestinal proteases—might be present in the HIMP samples.
Table 4.5 displays the identi�cation results for tryptic and semi-tryptic cleavage settings at 5%

FDR. It can be recognized that more PSMs and peptides were found for tryptic than for semi-
tryptic as chosen cleavage parameter. �e gain of using semi-tryptic as cleavage parameter was
minimal: on average, an exclusive proportion of 1% PSMs and 7% peptides was found that could
not be retrieved when using tryptic. Conversely, at 1% FDR, more identi�cations were obtained
when using semi-tryptic as parameter (Table 4.6). Consequently, using both tryptic and semi-
tryptic settings and combining the results from both search variants can serve to increase the
identi�cation yield in metaproteomic data analyses. However, a drawback presents the running
time which increased �ve fold on average when using semi-tryptic instead of tryptic as cleavage
parameter (data not shown).

Table 4.5: Number of identifications and percentage of exclusive hits for data sets P1, P23, and P34 using
tryptic and semi-tryptic cleavage settings (FDR 5%). Table adapted fromMuth et al. [273].

Dataset
Tryptic cleavage Semi-tryptic cleavage

PSMs Peptides PSMs Peptides

No. Excl. (%) No. Excl. (%) No. Excl. (%) No. Excl. (%)

P1 11 133 8.1 8 473 12.5 10 354 1.1 7 959 6.9
P23 11 288 6.1 8 255 10.5 10 777 1.7 7 976 7.4
P34 9 491 8.6 7 231 13.1 8 743 0.8 6 678 5.9

Average 10 637 7.6 7 986 12.0 9 958 1.2 7 538 6.7

Finally, using the cleavage enzymes chymotrypsin and pepsin A for the database searches re-
sulted in an insigni�cant number of less than 100 PSMs and peptides per data set (Table A.8 in
the appendix).
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Table 4.6:Number of identifications and percentage of exclusive hits for samples P1, P23, and P34 using tryptic
and semi-tryptic cleavage settings (FDR 1%). Table adapted fromMuth et al. [273].

Dataset
Tryptic cleavage Semi-tryptic cleavage

PSMs Peptides PSMs Peptides

No. Excl. (%) No. Excl. (%) No. Excl. (%) No. Excl. (%)

P1 7 819 4.5 5 598 4.4 7 874 5.1 5 760 7.1
P23 8 228 1.8 5 685 1.7 8 581 5.8 6 109 8.4
P34 6 722 3.0 4 876 3.1 6 817 4.3 5 046 6.4

Average 7 590 3.1 5 386 3.1 7 757 5.1 5 638 7.3

4.2.5 Benchmark Evaluation of Proteomic Sample

To evaluate the in�uence of the database composition and size on the results observed inmetapro-
teomic experiments, benchmark analyses were next performed by using a sample of known pro-
teome content. �erefore, classic searching was performed for the PFU data set (see Section
3.2.3) against Pyrodb, a FASTA database that contained 9 514 protein sequences from P. furiosus,
S. cerevisiae and H. sapiens (see Section 3.3.4). �e main objective was to simulate the scenario
of a search against the commonly large collection of protein sequences in metaproteomic exper-
iments: for this purpose, Pyrodb was merged with HIMPdb, which served as target in preceding
experiments. Subsequently, classic searching was used for the PFU data set against the afore-
mentioned concatenated database, which is referred to PyroHIMPdb in the following. Finally,
two-step searching against PyroHIMPdbwas applied to further evaluate themethodwith respect
to the identi�cation quality.
From a total number of 14 467 MS/MS spectra within the PFU data set, classic searching

against Pyrodb resulted in 10 576 PSMs and 6 408 peptides at 5% FDR (Figure 4.10). Using the
same FDR threshold, classic searching against PyroHIMPdb resulted in a strong decrease in both
PSMs and peptides: against the large concatenated database, 6 406 PSMs and 3 751 peptides could
be obtained. In line with preceding �ndings of analyses onmetaproteomic data, two-step search-
ing achieved the most identi�cations for the PFU data set.
Figure 4.11 further illustrates the clear reduction in PSMs and peptides for the used search en-

gines X!Tandem and OMMSA up to the FDR level of 5%. It can be also recognized that the com-
bination of both algorithms increased the proportion of PSMs to a larger extent for PyroHIMPdb
than for Pyrodb.
Tounderstand the observed change in the amount of identi�cations between the applied search

strategies, the target and decoy PSM scores of X!Tandem and OMSSA were investigated for clas-
sic searching (Pyrodb and PyroHIMPdb) and two-step searching (PyroHIMPdb).
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Figure 4.10: Comparative benchmark evaluation of different search strategies and databases for PFU
data set. The bar plots show the total number of (a) PSMs and (b) peptides for classic searching against Pyrodb
and PyroHIMPdb, and two-step searching against PyroHIMPdb at 1% and 5% FDR. The displayed identification
amounts result from combined database searches by using X!Tandem and OMSSA. Figure adapted fromMuth
et al. [273].

Figure 4.11: Evaluation of the identification yield for PFU searches against small (Pyrodb) and large
(PyroHIMPdb) search space. The line plots show the total number of (a) PSMs and (b) peptides for database
searching against Pyrodb (solid lines) and PyroHIMPdb (dashed lines) as a function of the respective FDR
threshold. The single results are displayed for X!Tandem in blue and for OMSSA in black color. The identification
amounts from combining X!Tandem and OMSSA searches are illustrated in green color. Figure adapted from
Muth et al. [273].

Figure 4.12 shows that the distributions of target and decoy PSM scores for Pyrodb can be
clearly distinguished in both search algorithms, the score distributions for PyroHIMPdb show
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a stronger overlap. In comparison to Pyrodb, it can be further observed that the decoy score
distributions for PyroHIMPdb are broader and have a larger tail to the right. Consequently, this
e�ect results in an increased score threshold during the FDR estimation and explains the reduced
number of total identi�cations in the PyroHIMPdb searches. Conversely, similar decoy score
distributions were found for Pyrodb and PyroHIMPdb two-step searching results. Accordingly,
the FDR score thresholds of these latter results are in the same rangewith a X!Tandemhyperscore
of 21.1 and 21.8 at 5% FDR, while the cuto� values for PyroHIMPdb are increased with score
values of 37.6 at 5% FDR and 43.4 at 1% FDR (Table A.9 in the appendix). Consequently, the total
increase of identi�cations for two-step searching can be explained by a higher number of target
PSMs above the FDR threshold, while no in�uence of the decoy hits could be observed in this
case.

Figure 4.12: Evaluation of score distributions between classic and two-step searching for PFU data set.
The line plots display the relative score distributions of target (in blue) and decoy (in red) PSMs identified by
(a) X!Tandem and (b) OMSSA. The upper panel refers to classic searching against Pyrodb, the middle panel to
classic searching PyroHIMPdb, and the lower panel to two-step searching PyroHIMPdb. Figure adapted from
Muth et al. [273].

To evaluate previous �ndings from themetaproteomic analysis in Section 4.2.3, further bench-
mark investigations were performed by using varying parameter values of missed cleavages and
cleavage enzyme for the PFU data set. Accordingly, parameter values betweenMC = 0 andMC
= 3 were selected and semi-tryptic was chosen as alternative cleavage setting to tryptic for per-
forming PFU database searches against Pyrodb.
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Figure 4.13 displays that slightly more identi�cations were found for parameter valuesMC= 1,
MC = 2 andMC = 3 in comparison toMC = 0. At 1% FDR, 9 054 PSMs and 5 019 peptides were
obtained forMC= 0 in comparison to values of around 9 500 PSMs and 5 500 peptides for higher
MC parameter values. Also at 5% FDR, an increase of around 500 PSMs and peptides could be
observed when investigating the results of MC parameter values above zero. Furthermore, it
can be recognized that markedly fewer PSMs and peptides were identi�ed for semi-tryptic in
comparison tryptic as chosen cleavage enzyme: for instance, only 6 707 PSMs and 3 964 peptides
were identi�ed at 1% FDR when using semi-tryptic cleavage.

Figure 4.13: Comparative evaluation of the identification yield for different MC values (PFU). The bar
plots show the total number (a) PSMs and (b) peptides for the PFU data set using missed cleavage parameter
valuesMC= 0 - 3 and semi-tryptic cleavage settings at 1% and 5% FDR.

Finally, the identi�cation performance was assessed for FDR threshold values up to 5% by
investigating the number of total and exclusive peptides found by each chosen MC parameter
value for the PFU data set.
Figure 4.14a illustrates that less peptides were found for MC = 0 in comparison to MC = 1,

MC = 2 and MC = 3. �e latter three MC parameter values showed a comparable performance
among each other. Figure 4.14b further shows that the number of exclusive peptides raised the
most forMC = 0 compared to higher MC values when elevating the FDR threshold.
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Figure 4.14: Comparison of total and exclusive peptides for different MC values (PFU). The line charts
display the number of (a) total and (b) exclusive peptides for PFU searches using missed cleavage parameter
values MC = 0 - 3 as a function of the respective FDR threshold. Peptides were called exclusive when being
identified uniquely for a particular MC parameter value.
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4.3 De Novo Sequencing

�e �ndings from previous sections indicate that search algorithm, protein database and cleav-
age parameters markedly a�ect the amount and quality of identi�cations inmetaproteomic anal-
ysis work�ows. To improve the identi�cation yield for microbial community samples, tailored
databases derived frommetagenomic techniques can be engaged in addition to public databases.
Alternatively, completely circumventing the use of protein databases is a conceivable option. For
this purpose, the technique of de novo sequencing is able to infer peptide sequences directly
from experimental MS/MS spectra (see Section 2.2.4). In this section, this method is applied on
metaproteomic data sets and derived de novo sequences are compared to previous results from
conventional database searching. In the following text, data of the original publication in Pro-
teomics [273] are shown in parts.

4.3.1 Method Evaluation and Identification Recall

To test the eligibility of de novo sequencing for typical metaproteomic data, DeNovoGUI (see
Section 3.4.4), which employs the PepNovo+ algorithm [200], was used to process the HIMP10
data sets (see Section 3.2.2). Using this so�ware, the de novo sequencing algorithm was executed
in parallel processes. �ereby, the same parameter values as for the database searches were used
to guarantee a fair comparison of both methods. Furthermore, the de novo peptide sequences
that could be exactly matched to the respective target were used for the following investigations.
Also, the amino acids leucine and isoleucine were considered as equal.
Table 4.7 summarizes the results using de novo sequencing for the HIMP10 data sets: on aver-

age, 23% of the spectra could be identi�ed at a score threshold of S = 100. It can be recognized
that the average percentage of identi�ed spectra raised to over 60% at S = 50.
Following on, various evaluation steps were applied: �rst, the sets of obtained de novo se-

quences were compared with the sets of identi�ed peptides from database searching at 5% FDR
(see Section 4.1.2). �us, the peptide identi�cations of the database searches were used as ref-
erences to assess the performance of the de novo sequencing method, since the actual ground
truth of the identi�cations cannot be determined due the unknown microbial composition in
the HIMP samples. However, the high percentage of identi�ed spectra of 30% on average (see
Section 4.1.2) justi�es the use of the combined database search results for evaluating the perfor-
mance of the de novo sequencing algorithm.
Table 4.7 displays that 1 689 (23%) out of 7 322 peptides from the database searches (Table 4.1)

were identi�ed using de novo sequencing on average at S = 100. Without the application of any
score threshold, the complementarity between both techniques accounted for around 25%.
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�e second objective was to investigate whether any additional peptide hits can be gained by
de novo sequencing that remained unidenti�ed when using conventional database search algo-
rithms. �erefore, the sets of de novo peptides were matched against an in silico digest of all
protein sequences from HIMPdb.
It can be recognized that at S = 100 an average of 1 557 peptides could be recalled success-

fully when matching the de novo sequences against the in silico digested database (Table 4.7).
Remarkably, lowering the cuto� to S = 50 resulted in a retrieval of 5 287 peptides.

Table 4.7: De novo sequencing results for the HIMP10 data sets (P1-P34). Peptide sequences have been
matched against results from database searching (5% FDR) and an in silico digest of HIMPdb. Table adapted
fromMuth et al. [273].

Dataset Spectrum IDs Peptides (Recall) Peptides (DB digest)

S = 100 S = 50 S = 100 S = None S = 100 S = 50

P1 8 121 22 110 1 822 1 999 1 723 5 881
P3 6 196 16 617 1 628 1 791 1 345 4 960
P8 7 207 18 933 1 758 1 909 1 567 5 396
P11 6 766 18 612 1 510 1 638 1 406 5 076
P17 7 527 19 900 1 775 1 911 1 691 5 516
P23 7 952 21 543 1 814 1 948 1 666 5 480
P27 6 281 16 378 1 437 1 529 1 330 4 694
P28 7 217 19 927 1 591 1 733 1 491 5 085
P31 8 699 23 561 1 893 2 056 1 807 5 839
P34 6 677 18 360 1 665 1 802 1 539 4 940

Average 7 264 (23%) 19 614 (62%) 1 689 (23%) 1 831 (25%) 1 557 5 287

4.3.2 Comparison of Classic and Two-step Searching

In the following, the investigations were limited to the data set P1, since all ten data sets resulted
in similar results from de novo sequencing as displayed in Table 4.1. To evaluate the reliability of
the method, the de novo sequencing result from this sample was compared to the peptide iden-
ti�cations obtained from database searching in more detail. Hence, a comparable quality metric
for the identi�cations from both techniques was required. In order to obtain such a measure,
a binary classi�cation scheme was employed a according to which de novo peptides were sub-
divided into low scoring (LS) and high scoring (HS) hits: as in the previous paragraph, a score
cuto� of S = 100 was used here to classify the de novo sequences into these two categories. �e
peptide identi�cations originating from the database searching were divided into LS and HS hits
using a score threshold of 40. Here, the score values were obtained as follows for the database
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search algorithms: for X!Tandem, the hyperscore was chosen as quality metric from each PSM
and forOMSSA, the probabilistic scorewas transformed to facilitate the comparison of the scores
between X!Tandem and OMSSA (see Section 3.5.2). Although these metrics present only rough
estimates, the peptides could be directly classi�ed according to their identi�cation quality when
applying the respective thresholds.
Figure 4.15 displays the number of peptides that were found both by de novo sequencing and

database searching for the P1 data set at 5% FDR.�e results demonstrate that themajority of the
peptide identi�cations overlapping between both techniques achieved a high score. Di�erences
were found in the portion of overlapping peptides between classic and two-step searches: the
number of identi�cations which received a low score from the respective search engine as well
PepNovo+ was signi�cantly increased for the two-step search approach. �is was also the case
for hits that received a high score from PepNovo+ and a low score from the search engine. In
line with previous investigations, compared to X!Tandem (Figure 4.15a), the algorithm OMSSA
(Figure 4.15b) was more stringent, since fewer low scoring identi�cations were obtained across
the algorithms and search strategies.

Figure 4.15: De novo sequencing recovery of peptides from classic and two-step searching for data set
P1. The bar plots show the total amount of peptides that were identified both by de novo sequencing with
PepNovo+ and database searching with (a) X!Tandem and (b) OMSSA. Classic and two-step searches were
performed against HIMPdb and the results were filtered at 5% FDR threshold. The peptides are classified into
categories of low scoring (LS) and high scoring (HS) identifications. In total, four categories are displayed
which represent the combination of identification quality (LS/HS) and identification methods (PepNovo+ and
X!Tandem/OMSSA). Figure adapted fromMuth et al. [273].

As shown previously, various identi�cations from classic and two-step searching were recov-
ered when using de novo sequencing. In the next analysis, the di�erences between both search
strategies were evaluated with respect to the identi�cation quality of the hits: therefore, the
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PepNovo+ scores of the overlapping peptide identi�cations were examined between de novo se-
quencing and both database search strategies for the data set P1.
Figure 4.16 shows a trend towards lower scores for two-step searching at both applied FDR

thresholds, since the respective distributions are shi�ed to the le� in comparison to the scores
corresponding to classic searching.

Figure 4.16: Comparison of PepNovo+ scores between classic and two-step searching for data set P1.
The density distributions of PepNovo+ scores are shown for classic database searching (in black) and two-step
searching (in blue). The peptide sets were taken from the intersections of hits from de novo sequencing and
database searches at (a) 1% and (b) 5% FDR threshold. Classic and two-step searches were performed against
HIMPdb and results from both search engines X!Tandem and OMSSA were combined. Figure adapted from
Muth et al. [273].
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4.4 Protein Grouping

In metaproteomics, peptide identi�cations are frequently linked to multiple homologous pro-
teins that are expressed by organisms from di�erent taxonomic origin: consequently, the results
can be highly redundant at the protein level. However, instead of selecting solely one or a sub-
set of proteins, an explorative analysis aims to maintain or even enhance the information given
at this stage. One of the contributions in this work presents the method of protein grouping
in the data analysis work�ow of the MPA so�ware (see Section 3.1.2). In this section, di�erent
rule-based strategies are evaluated for the generation of so-called meta-proteins which represent
groups of proteins.

4.4.1 Testing Meta-Protein Generation Rules

To evaluate the rules developed for the meta-protein generation, the data sets from two BGP
replicate samples EBENDORF01 and EBENDORF02 were used (see Section 3.2.1). �e MS/MS
data were processed using the MPA so�ware by combining database searches with X!Tandem
and OMSSA against SwissProt. In the unprocessed result sets, EBENDORF01 contained 1 324
(5% FDR) and 1 071 (1% FDR) proteins, while EBENDORF02 resulted in 1 138 (5% FDR) and 942
(1% FDR) protein identi�cations. In this analysis, di�erent protein grouping rules were applied
on both result sets using the meta-protein generation function.
Figure 4.17 shows that the highest protein result set reduction could be achieved using the

MinimumOne Shared rule , whichmerges proteins sharing at least one peptide (see Section 3.1.2).
�e second highest reduction was obtained by the All Shared rule, which combines proteins on
the condition that they have all peptides or a subset in common (see Section 3.1.2). Since the
latter presents amore stringent rule thanMinimumOne Shared, it could be expected that it would
combine fewer protein identi�cations. In addition, around 5% more reduction can be observed
on average for both rules at 1% FDR (Figure 4.17b) when compared to 5% FDR (Figure 4.17a).
For theUniRef-basedmeta-protein generation rule (see Section 3.1.2), the protein grouping e�ect
was stronger when lowering the sequence similarity threshold between the protein clusters [263]:
while UniRef100 showed the lowest reduction of proteins (3.4–5.1%), UniRef50 displayed the
highest reduction rates (34.6–38.0%).
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Figure 4.17: Protein result set reduction achieved by applying meta-protein generation rules. The
percentage reduction of protein amounts in the results sets is displayed for EBENDORF01 and EBENDORF02
when using grouping rulesMinimumOne Shared, All Shared, UniRef50, UniRef90, UniRef100 at (a) 5% and (b) 1%
FDR. The proportions shown were calculated relative to the numbers of proteins from the unprocessed result
sets.

Mutation-Tolerant Grouping. While the meta-protein generation is based on exact sequence
stringmatching, the biological reality of frequently occurring sequencemutations is disregarded.
Since proteins o�en ful�ll the same functions a�er changing their sequence, a mutation-tolerant
strategy is useful for the grouping process. �erefore, the Levenshtein edit distance (ED) was
implemented as parameter representing the maximum allowed sequence transformations at the
peptide level (see Section 3.1.2). Since the application of this method leads to more grouped
sequences, a decrease of meta-proteins was expected depending on the chosen ED parameter
value. �e meta-protein generation was evaluated for EBENDORF01 using parameter values
between ED = 0 and ED = 4. �e latter was chosen as maximum value, since the length of
tryptic peptide sequences typically ranges from 8 to 20 amino acids in bottom-up proteomics.
�us, the ED parameter was limited to permit at most 50% sequence variation. Once again,
the grouping rules Minimum One Shared and All Shared were applied. To evaluate the e�ect of
the ED parameter, the relative reduction of the meta-protein result set was calculated as ratio
between the amount of meta-proteins for ED > 0 and ED = 0.
Figure 4.18 illustrates that the number of meta-proteins decreased with elevated ED parameter

values. It can be recognized that for ED = 2, the reduction e�ect was less than 10% in both group-
ing rules. �e bar plots also display that the ED parameter a�ected the protein grouping more at
5% FDR than at 1% FDR. Finally, the e�ect of the ED parameter was stronger forMinimum One
Shared than for All Shared.
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Figure4.18:Meta-protein result set reductionachievedbymutation-tolerancegrouping. The percentage
reduction of the number of meta-proteins in the result set is displayed for EBENDORF01 achieved by applying
the grouping rulesMinimumOne Shared and All Shared in combination with ED parameter values ranging from
ED = 1 to ED = 4 at (a) 5% and (b) 1% FDR. The proportions shown were calculated relative to the number of
meta-proteins for ED = 0.

Phylogenetic Diversity Control.�e �nal evaluated parameter for the meta-protein generation
presents the Taxonomy Rule (see Section 3.1.2). �e aim of this method is to control the phyloge-
netic diversity by specifying a threshold for the maximum taxonomic convergence level at which
proteins are grouped together. In comparison to the grouping used without a taxonomic thresh-
old, an increase in meta-proteins was therefore expected depending on the chosen convergence
level. �e EBENDORF01 data was evaluated by using superkingdom, phylum, genus and species
as taxonomic convergence levels. Note that the Taxonomy Rule cannot be used alone, since it
presents rather a taxonomic �ltering than a grouping method. �us, this method was applied in
combination with the grouping rulesMinimumOne Shared and All Shared. �e relative increase
of themeta-protein result set was calculated as ratio between the number ofmeta-proteins before
and a�er applying taxonomic cuto�s during the grouping.
Figure 4.19 displays that the number of meta-proteins increased when lowering the taxonomic

convergence level at both evaluated FDR thresholds. �e strongest increase can be observed be-
tween the higher hierarchies superkingdomandphylum, while the lower taxonomic convergence
levels genus and species less a�ected the outcome. �e bar plots further illustrate a stronger e�ect
forMinimumOne Shared in comparison toAll Shared. While a high diversity could be preserved
at the species level, the relative increase of protein groups did not exceed 8%.
In previous investigations, the �nal size of the meta-protein result set from a single sample

was considered as quality measure to evaluate the performance of the developed grouping rules.
�ereby, it can be observed thatMinimum One Shared and All Shared can be employed as meth-
ods to reduce the protein result set. However, monitoring the change in the absolute number
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Figure 4.19: Meta-protein result set increase resulting from phylogenetic diversity control. The
percentage increase of the number of meta-proteins in the result set is displayed for EBENDORF01 when using
the grouping rules Minimum One Shared and All Shared and setting the maximum taxonomic convergence
levels by the Taxonomy Rule to superkingdom, phylum, genus and species at (a) 5% and (b) 1% FDR. The
proportions shown were calculated relative to the number of meta-proteins when no threshold for the
taxonomic convergence level was applied.

of protein groups within one data set only provides a limited view on the accuracy of the meta-
protein generation. In a typical metaproteomic experiment, samples from di�erent origin or
time point are compared against each other at the protein level. �erefore, it is also required to
guarantee the consistency of the protein grouping across di�erent data sets. Hence, the e�ects
of the grouping rules on the comparability of results from replicate data were examined in the
following paragraph.

4.4.2 Evaluating Reproducibility between Replicates

�e next objective was to assess the reproducibility of the developed protein grouping methods.
�erefore, the GENT01 and GENT16 samples were analyzed which were repeatedly measured
resulting in two technical replicate data sets (see Section 3.2.1). �ese data sets were searched
against SwissProt by using X!Tandem and OMSSA and the results were combined as in previous
investigations. Subsequently, the peptide identi�cations between each of the respective data sets
were compared based on the spectral count, thus, the number of identi�ed spectra for each pep-
tide. �e purpose of this preliminary analysis was to determine whether the replicates form a
comparable data basis. In this and each of the following investigations, for each pair of technical
replicates, scatter plots were produced and the corresponding Pearson’s correlation coe�cients
were computed.
Figure 4.20 shows a high correlation for the peptide identi�cations between the replicates of
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GENT01 searched against SwissProt at 5% and 1% FDR. In addition, the GENT16 results showed
also strong linear relationships between the replicates at both FDR thresholds (Figure A.4 in the
appendix). Since these �ndings suggested a high reproducibility of the identi�cations between
the replicates, it can be concluded that respective data sets would �t for evaluating the perfor-
mance of the protein grouping methods.

Figure 4.20: Reproducibility of peptide hits between technical replicates for GENT01. The plots compare
the peptides that were reproducibly identified between GENT01 replicates on the basis of the spectral count
at (a) 1% and (b) 5% FDR. The color scale represents the number of identified peptides; low amounts in bright
blue and high amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in
the lower right corner of each panel.

In the next analysis, the focuswas shi�ed from the peptide to the protein level: while ascending
the bottom-up hierarchy less consensus was expected between the replicate results due to protein
inference issues (see Section 2.2.5). To estimate the reproducibility between the replicates at the
protein level, their protein identi�cations were correlated on the basis of the number of assigned
spectra and peptides for each protein.
In comparison to the initial analysis at the peptide level, weaker correlations of proteins were

foundbetween the replicates based on the peptide counts forGENT01 (Figure 4.21a) andGENT16
(Figure A.5a in the appendix). On the contrary, strong correlations of proteins can be recognized
between the replicates on the basis of spectral counts for GENT01 (Figure 4.21b) and GENT16
(Figure A.5b in the appendix). �ese latter �ndings show that the majority of the identi�ed spec-
tra was assigned to proteins shared between the replicates.
Following on, a meta-protein generation was performed using the rulesMinimumOne Shared

and All Shared. �e goal was to examine the e�ect of the protein grouping rules on the compa-
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Figure 4.21: Reproducibility of protein hits between technical replicates for GENT01. The plots compare
the proteins that were reproducibly identified between GENT01 replicates on the basis of their (a) peptide
and (b) spectral count at 5% FDR. The color scale represents the number of identified proteins; low amounts
in bright blue and high amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is
displayed in the lower right corner of each panel.

rability of the replicate result sets. To estimate the reproducibility between the replicates at the
meta-protein level, the generated protein groups were correlated on the basis of the number of
assigned spectra and peptides for each meta-protein.

When applyingMinimumOne Shared for GENT01, very strong correlations for meta-proteins
were found between the replicates with respect to identi�ed spectra (pearsonr = 0.97) and pep-
tides (pearsonr = 0.99) (Figure 4.22). In addition, comparably high correlation values could be
observed forGENT16 (FigureA.6 in the appendix). In comparison to the unprocessed protein re-
sults (Figure 4.21), more peptides and spectra were shared between the respective meta-proteins
for GENT01 (Figure 4.22).

Compared to theMinimum One Shared rule, the application of All Shared resulted in weaker
correlations between the replicates for GENT01 (Figure 4.23). In particular, the agreement at the
peptide level was low (pearsonr = 0.46), since various identi�cations could not be assigned to a
common protein group (Figure 4.23a). In contrast, GENT16 data displayed strong correlations
of meta-proteins for All Shared (Figure A.7 in the appendix).

To further illustrate the diverging performance of the rules, one exemplary case for GENT01
was inspected in detail. �erefore, a meta-protein called Acetyl-CoA decarbonylase/synthase
complex subunit gamma was selected: for Minimum One Shared, it contained 20 peptides and
108 identi�ed spectra in the �rst replicate, while 25 peptides and 128 spectra were assigned in the
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Figure 4.22: Reproducibility of meta-protein hits between technical replicates for GENT01. The plots
compare the meta-proteins that were reproducibly identified between GENT01 replicates on the basis of their
(a) peptide and (b) spectral count at 5% FDR. Meta-proteins were generated by using theMinimumOne Shared
rule. The color scale represents the number of identified meta-proteins; low amounts in bright blue and high
amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in the lower
right corner of each panel.

Figure 4.23: Reproducibility of meta-protein hits between technical replicates for GENT01. The plots
compare the meta-proteins that were reproducibly identified between GENT01 replicates on the basis of their
(a) peptide and (b) spectral count at 5% FDR. Meta-proteins were generated by using the All Shared rule. The
color scale represents the number of identified meta-proteins; low amounts in bright blue and high amounts
in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in the lower right corner
of each panel.
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second replicate. Hence, this protein group exhibited a similar identi�cation pro�le in both data
sets. Conversely, for All Shared, the same protein group was found in four di�erent forms with
non-correlated amounts of identi�cations between the replicates: for instance, Acetyl-CoA de-
carbonylase/synthase complex subunit gamma 2 was identi�ed with 19 peptides and 109 spectra
the �rst replicate, while no identi�cations were assigned to this group in the second replicate.
As a consequence, the demonstrated issues and low correlation values for GENT01 depreciate
All Shared as protein grouping method as soon as results from multiple data sets are compared
against each other.
In summary, these �ndings show thatMinimumOne Shared represents the most reproducible

grouping rule when evaluating replicate data sets. However, to draw conclusions on the general
performance of the protein grouping for a metaproteomic experiment, further investigations on
multiple data sets from di�erent samples are required. Consequently, the meta-protein genera-
tion procedure is regarded using HIMP samples from di�erent individuals in the following.

4.4.3 Comparing Data Sets from Different Samples

Ametaproteomic experiment typically involves various samples obtained from di�erent subjects
and varying time points. In particular, qualitative and quantitative protein pro�les are investi-
gated for each sample and—if required—changes across di�erent measurements are recorded.
In order to compare data sets from di�erent samples, it is essential to detect protein identi�ca-
tions that are shared between respective result sets. However, reaching such a common basis for
comparison is hampered by protein inference issues, since peptides are assigned inconsistently to
proteins across di�erent samples. For metaproteomic experiments, an aggravating circumstance
concerns the presence of many species which leads to high amounts of candidate proteins (see
Section 2.2.5). To tackle these challenges, the meta-protein generation procedure was developed
as a peptide-centric protein grouping approach (see Section 3.1.2). In the following, the results
fromHIMP data sets are compared at the protein and meta-protein level to evaluate the applica-
bility of the grouping methods for data sets from di�erent sample origin. Eventually, the e�cacy
of the grouping rules is brie�y illustrated by evaluating the numbers of peptides contained in the
meta-protein results.
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Comparability of result sets from di�erent samples. Next, the identi�cations from each of
the HIMP10 data sets were taken to evaluate the comparability of di�erent results at the protein
and meta-protein level. In this analysis, the Jaccard index was calculated as a similarity measure
for each pair of result sets based on the shared peptide sequence information for proteins and
meta-proteins (see Section 3.5.5). In addition, a threshold was used that �lters the protein and
meta-protein groups by their minimum amount of assigned peptides: it was assumed that the
similarity between groups of di�erent result sets could be related to the number of peptides per
group. Hence, supposing themeta-protein generationmethod works correctly, the probability of
obtaining groups that share the same peptides between the data sets increases with the amount
of hits contained in each group.
At the meta-protein level, the Jaccard similarity coe�cient between the result sets increased

with the number of peptides per group (Figure 4.24a). Conversely, the average agreement de-
creased whenmore peptides were assigned to a group at the protein level. Figure 4.24b illustrates
the average number of proteins and meta-proteins for each pair of result sets. In this graph, a
steep decline in the average number of proteins and meta-proteins can be observed for groups
with more than one assigned peptide. It can also be recognized that this event was more pro-
nounced for the protein than for the meta-protein level. �e average number of groups for both
hierarchies was lower at 1% FDR when compared with the results at 5% FDR. Finally, the num-
ber of proteins andmeta-proteins approached each other with increasing amount of peptides per
group.

Evaluation of peptide frequencies for meta-protein generation rules. According to the �nd-
ings on single (see Section 4.4.1) and replicate (see Section 4.4.2) result sets,MinimumOne Shared
determines themost reliablemeta-protein generation rule. �e goal of the �nal investigation was
to examine the peptide frequencies of meta-proteins when applying Minimum One Shared and
All Shared formultiple results fromdi�erent data sets. In this analysis, theHIMPdata sets P1, P23
and P34 were used to determine the number of peptides assigned to each of the meta-proteins.
Across the results for aforementioned data sets,Minimum One Shared performed better than

All Shared: while the latter resulted in higher proportions of meta-proteins yielding one peptide,
increased amounts of meta-proteins with a peptide frequency of more than one were obtained
for Minimum One Shared (Figure 4.25). �e relative amount of meta-proteins with more than
�ve peptides was minimal for All Shared. It can be also recognized that the proportion of meta-
proteins with one assigned peptides was lower at 1% FDR for both rules (Figure 4.25a) when
compared to 5% FDR (Figure 4.25b). Vice versa, in comparison to 1% FDR, fewer meta-proteins
with frequencies of two or more peptides were observed at 5% FDR.
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Figure 4.24: Evaluation of group similarity and size in dependence of assigned peptides. The line plots
show (a) average Jaccard index and (b) average group size as a function of the number of assigned peptides
per group. The identifications were obtained for HIMP10 data sets (P1-P34) and the groups were classified
based on their shared peptides at the protein (orange) and at the meta-protein (blue) level. Jaccard similarity
coefficients and group sizes were retrieved for each pair of results from HIMP10. The result sets were filtered at
1% (solid lines) and 5% FDR (dash-dot lines) threshold. The grouping rule Minimum One Shared was used for
the meta-protein generation.

Figure 4.25: Comparative evaluation of peptide frequencies for meta-protein generation rules. The bar
plots show the relative average amount of the number of peptides per meta-protein from the HIMP result sets
P1, P23 and P34. The grouping rules Minimum One Shared and All Shared were used for the generation of
meta-proteins at (a) 1% and (b) 5 % FDR.
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4.5 Taxonomic Assignment

�e previous sections have primarily dealt with various aspects of data processing related to the
increase and validation of identi�ed spectra, peptides and proteins. �ese investigations were
performed with the aim to �nd an optimized data analysis work�ow for metaproteomics ensur-
ing the output of con�dent results for further postprocessing steps. Next, the e�ectiveness of the
developed methods is evaluated for the taxonomic assignment of metaproteomic data. For this
purpose, the MPA so�ware is used to assign identi�cations to respective taxonomic ranks. First,
the BGP data sets are used to evaluate the in�uence of the protein database on the taxonomic
assignment process. Second, the developed methods are applied to data sets from a sample of
knownmicrobial composition. Based on these ground truth data, the reliability of the taxonomic
assignment is subsequently examined in detail. Finally, as a proof of principle, a phylogenetic
classi�cation is performed based on result sets from the HIMP samples.

4.5.1 Influence of Protein Database

�e results in Section 4.2 showed that the protein database plays an important role with respect
to quality and yield of identi�cations in metaproteomic work�ows. In principle, it could be ob-
served that the twomain in�uencing factors are the composition and the size of the database. As
a consequence, both of these parameters were assumed to also a�ect the taxonomic assignment
process. In a next step, the taxonomic origin of the identi�ed peptides was therefore investi-
gated for the BGP data sets GENT01, GENT07 and GENT16 (Section 3.2.1) which were searched
against two databases varying in their composition and size: while SwissProt presents amanually
curated and relatively condensed database, TrEMBL contains a large number of computationally
annotated sequence entries (see Section 3.3.1). In this analysis, the peptides were regarded which
could be uniquely assigned at the highest taxonomic rank of superkingdom.
Figure 4.26 displays that GENT16 results were signi�cantly di�erent with respect to the pro-

portion of peptides assigned to Archaea between SwissProt (37%) and TrEMBL (62%). Hence,
it can be also recognized that the fractions of assignments to Bacteria and Eukaryota varied be-
tween the database search results. While GENT16 was exceptional with respect to the high iden-
ti�cation yield for TrEMBL, it can be observed that the taxonomic assignment process was also
a�ected by the chosen database for GENT01 (Figure A.8 in the appendix) and GENT07 (Figure
A.9 in the appendix).
In order to increase the phylogenetic resolution of the previous investigation, the unique pep-

tide assignments were determined at the deeper taxonomic rank of phylum. In this case, peptides
originating from eukaryotic taxa were �ltered out to facilitate a systematic view on microbial
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Figure 4.26: Phylogenetic classification of BGP data set GENT16 based on number of peptides per
superkingdom. The pie charts display the relative distribution of total peptide hits retrieved from (a) SwissProt
and (b) TrEMBL searches. The total number of assigned peptides is provided above each chart panel (n).

species.
It was found that each BGP result set provided a unique taxonomic pro�le in which Eur-

yarchaeota, Proteobacteria and Firmicutes were themost abundant phyla (Figure 4.27). It can be
observed that GENT07 resulted in more relative assignments to Actinobacteria in comparison
to GENT01 and GENT16. For GENT16, decreased proportions of Firmicutes and increased lev-
els of Euryarchaeota were found compared to the other BGP result sets. Again, the distribution
of the peptides among the phyla di�ered signi�cantly between the used protein databases: in
line with the �ndings at the superkingdom level, the number of Euryarchaeota-speci�c peptides
in GENT16 was particularly elevated for TrEMBL (73%) in comparison to SwissProt (52%) and
other result sets. Due to the generally increased identi�cation yield for GENT16 (see Section
4.2.1), the highest number of identi�cations (1 577 peptides) could be assigned to the phyla for
TrEMBL.

4.5.2 Assignment Performance Evaluation

�e aim of the next investigation was to evaluate the performance of the taxonomic assignment
of the MPA so�ware: therefore, MPA was compared against Unipept (see Section 3.4.5) with re-
spect to the number of taxon-speci�c peptide identi�cations. In general, each of the tools follows
a di�erent assignment strategy: inUnipept, a central database provides information on each pep-
tide that can be linked uniquely to a certain taxon. Conversely, the MPA relies on the peptide to
protein relations, since the provided protein accessions are used to resolve the taxonomic origin.
In this case, the NCBI taxonomy served as the reference database to retrieve the taxonomic lin-
eage for each of the reported identi�cations in theMPA so�ware. In these analyses, the same data
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Figure 4.27: Phylogenetic classification of BGP data sets based on the number of peptides per phylum.
The major phyla per data set and search protein database are presented in the pie charts that display the
distribution of the peptide hits: (a) GENT01 against SwissProt, (b) GENT01 against TrEMBL, (c) GENT07 against
SwissProt, (d) GENT07 against SwissProt, (e) GENT16 against SwissProt and (f) GENT16 against TrEMBL. All
eukaryotic phyla were filtered out. The total number of assigned peptides is provided above each chart panel
(n).

were used that resulted from searching GENT01, GENT07 and GENT16 against SwissProt and
TrEMBL as described in the previous section. In addition, the distinct peptide sequences from
these results were subjected to Unipept. Consequently, unique taxonomic assignments could be
retrieved for both so�ware tools.

Figure 4.28 provides an overview of peptide assignments to di�erent taxonomic ranks for
MPA and Unipept. �e relative proportions of successfully assigned peptides are displayed in
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the heatmaps. In comparison to Unipept, MPA achieved higher fractions of taxon-speci�c pep-
tides across all data sets and taxonomic ranks for the results against SwissProt. For the TrEMBL
searches, Unipept was in turn able to assign slightly more peptides for superkingdom. For each
of the other taxonomic ranks, MPA outnumbered Unipept with few exceptions in case of data
set GENT16. On average, Unipept could not assign 22% of the peptides to any taxonomic rank
for the data sets searched against SwissProt.

Figure 4.28: Taxonomic assignment performance of MPA and Unipept for BGP data sets. The heat maps
show the relative percentage of peptides that could be assigned to a specific taxonomic rank for (a) MPA
and (b) Unipept. The respective peptides were obtained from searching the data sets GENT01, GENT07 and
GENT16 against SwissProt and TrEMBL (FDR < 5% ). The white-blue color scale depicts the relative percentage
of assigned peptides (white: low, blue: high).

Ground Truth Data of a Microbial Mixture. �e previous investigation on the BGP data suf-
fered from the shortcoming that it was not possible to evaluate the accuracy of the taxonomic
assignment process due to the unknownmicrobial composition of the samples. To overcome this
limitation, in the following analysis, metaproteomic data was used which originated from a lab-
assembledmicrobial mixture containing nine bacterial and eukaryotic species (see Section 3.2.4)
as published in a study by Tanca et al. [126]. Providing knowledge about the exactmicrobial com-
position, the ground truth data allowed to perform benchmark experiments evaluating the exact
performance of the taxonomic assignment process in MPA and Unipept. �erefore, database
searches were performed against SwissProt by using the microbial mixture data sets 9MM_FASP
and 9MM_PPID originating from two di�erent sample preparation steps. �ese samples were
regarded as technical replicates, since the di�erences of the experimental setup were out of scope
in this work. �eMS/MSdata sets were searched independently and therea�er the identi�cations
from each result were merged. From these results, the taxon-speci�c peptides for the taxonomic
ranks family, genus and species were exported at 1% and 5% FDR. As proposed in the original
study, the peptides were classi�ed as correct and incorrect taxonomic assignments according to
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the information of the nine organisms contained in the sample [126]. In this step, the strategy of
the authors was evaluated by which a �lter was used that determines whether a set of peptides
contributes signi�cantly to a certain taxon: the proportion of these peptides to the total amount
of taxon-speci�c identi�cations needs to be higher than a speci�ed threshold. �e authors rec-
ommended a value of 0.5% for this taxon signi�cance threshold when testing the reliability of
taxonomic assignment using Unipept [276] and MEGAN [207]. Eventually, di�erent threshold
values were applied to determine a robust default parameter for the MPA so�ware.
It was found that the number of correct peptide assignments in the MPA results increased

when elevating the taxonomic rank from species over genus to family (Figure 4.29). Further-
more, it can also be recognized that at a taxon signi�cance threshold of above 3%, the amount
of incorrect taxon-speci�c assignments is reduced to a minimum for the taxonomic ranks under
investigation. Furthermore, it can be observed that an increase from 1% to 5% FDR resulted in a
higher number of correct and incorrect assignments.

Figure 4.29: Taxonomic assignment performance of MPA for 9MM data set. The line plots show the
number of correct (solid) and incorrect (dashed) taxon-specific peptide assignments of MPA for species (black),
genus (blue) and family (green) as function of the taxon significance threshold at (a) 1% and (b) 5% FDR. The
peptides were assigned according to the LCA approach.

Figure 4.30 shows that signi�cantly fewer peptides could be assigned when using Unipept in
comparison to previous results from MPA. In particular, the number of correct assignments at
the species level was reduced. Remarkably, the application of a taxon signi�cance threshold of
up to 5% did not weed out the wrong assignments at the species level. Examining this result in
detail, it can be recognized that all incorrectly assigned peptides were attributed to the eukaryotic
species Gallus gallus by Unipept (data not shown). For the other taxa, the application of a taxon
signi�cance threshold of 3% could exclude most of the incorrect taxonomic assignments. In
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addition, applying a threshold value of 0.5% could remove the majority of incorrectly assigned
peptides at 1% FDR.

Figure 4.30: Taxonomic assignment performance of Unipept for 9MM data set. The line plots show the
number of correct (solid) and incorrect (dashed) taxon-specific peptide assignments of Unipept for species
(black), genus (blue) and family (green) as function of the taxon significance threshold at (a) 1% and (b) 5% FDR.

Finally, it should be noted that peptides of the species Escherichia coli and Lactobacillus casei
were considered at a taxon signi�cance threshold of 0.5% in theMPA (TableA.11 in the appendix).
In contrast, Unipept did not report any assignments to these two species.

PerformanceComparison of LCA andMST.Besides the conventional LCA approach, the alter-
native MSTmethod was developed to preserve the speci�city of the peptides at the phylogenetic
level. Since both methods were implemented in the Taxonomy De�nition process of the MPA
so�ware (see Section 3.1.2), the results between LCA and MST could be directly compared with
respect to their correctness during the taxonomic peptide assignment for the microbial mixture
data sets.
Figure 4.31 displays that the MST method resulted in a slightly better performance for the

proportions of correct taxon-speci�c peptide assignments in comparison to the LCA method.
Finally, no signi�cant di�erences were found between the result sets from both replicates with
respect to the relative number of correct taxonomic assignments.
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Figure 4.31: Performance comparison of LCA and MST taxonomic assignment methods. The line plots
display the relative fraction of correct taxon-specific peptide assignments of MPA for species (black), genus
(blue) and family (green) when using the LCA (solid) and MST (dashed) method as function of the taxon filter
threshold for (a) 9MM_FASP and (b) 9MM_PPID data set results. The Taxonomy Definition feature of the MPA
software was used to specify the LCA and MST method.

4.5.3 Phylogenetic Overview on Human Intestine Microbiota

Most studies on intestinal microbiota between lean and obese adults were conducted by tech-
niques of 16S rRNA or metagenomic pro�ling [284]. Although a single study described the anal-
ysis of faecal samples taken from an obese and a lean adolescent [108], obese adults have not
been analyzed nor compared to non-obese individuals at the proteome level. MS/MS data sets
originating from 29 HIMP samples (see Section 3.2.2) were analyzed using the MPA so�ware.
�e results of these analyses were used for a comprehensive study conducted by Kolmeder et
al. in which the compositional and functional properties of the intestinal metaproteomes were
compared between obese and non-obese adults [266].

While the focus of the above mentioned study was to �nd characteristic di�erences between
the obese and non-obese group, the motivation of the next analysis was to establish a general
phylogenetic overview on human intestine microbiota. For this purpose, ten HIMP data sets
(HIMP10) were analyzed from which samples P1, P3, P8, P11 and P17 belonged to �ve non-obese
subjects (BMI < 30 kg/m2), while samples P23, P27, P28, P31 and P34 were derived from �ve
obese individuals (BMI > 30 kg/m2). For the taxonomic assignment of the HIMP10 data, the
identi�cation results were extracted from previous investigations (see Section 4.1.2) and there-
upon the peptide sequences were subjected to Unipept [276, 277]. �is procedure was required
since HIMPdb contained an insu�cient amount of protein accessions that were compatible with
UniProtKB to perform the taxonomic assignment of peptides in the MPA so�ware. In the �rst
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investigation, the distribution of distinct peptides and identi�ed spectra was examined at the
highest taxonomic rank of superkingdom.
Figure 4.32 displays that the majority of the identi�cations in HIMP10 could be assigned to

Bacteriawith an average of 88.8% at the peptide and 86.2% at the spectrum level. It was found that
7.5% of the peptides and 10.4% of the spectra originated from Eukaryota on average. Moreover,
it can be observed that the identi�cation yield for Viruses and Archaea was minimal (0.1%).

Figure 4.32: Superkingdom-level phylogenetic classification for HIMP10 data sets based on average
amount of Unipept hits. The pie charts display the relative distribution of (a) distinct peptide sequences
and (b) number of MS/MS spectra. The identifications were retrieved from searching HIMP10 samples against
HIMPdb (FDR < 5% ) and taxonomic assignments were obtained by subsequent use of Unipept. Peptides were
called Unclassified when an assignment for superkingdom could not be found by Unipept.

Second, the proportion of peptides and spectra was examined that could be assigned to the
most abundant phyla. For this analysis, peptides from non-bacterial origin were discarded and
only those taxa were considered for which the ratio of identi�cations per phylum exceeded 1%
in total.
Figure 4.33 illustrates that Actinobacteria (7.6%), Bacteroidetes (21.3%), Firmicutes (69.6%)

and Proteobacteria (1.5%) were the major contributors of all bacterial phyla.
�ird, a closer look was taken at the deeper taxonomic rank of genus. In general, lower ranks

are expected to contain fewer assignments, since the LCA approach aims to converge at higher
levels. However, the genus taxon allows a more detailed resolution than phylum-based investi-
gations: therefore, the peptides assigned to the genera were counted for each of the four most
prominent bacterial phyla.
It can be found that the most represented genera in Firmicutes were Faecalibacterium (21.5%),

Ruminococcus (21.4%), Eubacterium (12.7%), Roseburia (11.1%), Blautia (8.8%) and Clostridium
(7.6%) (Figure 4.34a). Moreover, it can be observed that the relative distribution of the genus-
speci�c peptides in Firmicutes was more stable across the HIMP10 data sets than the one in
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Figure 4.33: Phylum-level taxonomic classification of Unipept peptides for HIMP10 data sets. The
stacked bar charts display the relative abundance of (a) peptides and (b) MS/MS spectra for Actinobacteria,
Bacteroidetes, Firmicutes and Proteobacteria. The identifications were retrieved from searching HIMP10
samples against HIMPdb (FDR< 5%) and taxonomic assignmentswere obtained by subsequent use of Unipept.
Non-bacterial hits and fraction below 1% of the total amount of identifications were filtered out.

Bacteroidetes (Figure 4.34b). In particular, the relative abundance of peptides in Prevotella was
signi�cantly increased for the data sets P1, P8, P11 and P27. In fact, the genus Bacteroides acted as
the counterpart of Prevotella since a decreased amount of peptides were found in the same data
sets.

Figure 4.34: Genus-level taxonomic classification of Unipept peptides for HIMP10 data sets. The stacked
bar charts display the relative abundance of genus-specific peptide hits for (a) Firmicutes and (b) Bacteroidetes.
The identifications were retrieved from searching HIMP10 samples against HIMPdb (FDR < 5%) and taxonomic
assignments were obtained by subsequent use of Unipept. Genera that contained less than 5% of the total
identifications were classified as "Other".

Figure 4.35 displays the major di�erence between Actinobacteria and Proteobacteria: while
Actinobacteria were supported to a large extent by peptides from two genera, namely Bi�dobac-
terium and Colinsella, Proteobacteria contained assignments that were distributed among nu-
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merous genera, includingBilophila,Campylobacter,Desulfovibrio,Escherichia,Helicobacter, Pseu-
domonas and Sutterella. Since the proportion of Proteobacteria-speci�c identi�cations was the
lowest for the four considered phyla with 64 peptides on average, a more detailed analysis was
renounced for this genus.

Figure 4.35: Genus-level taxonomic classification of Unipept peptides for HIMP10 data sets. The
stacked bar charts display the relative abundance of genus-specific peptide hits for (a) Actinobacteria and (b)
Proteobacteria. The identifications were retrieved from searching HIMP10 samples against HIMPdb (FDR < 5%)
and taxonomic assignments were obtained by subsequent use of Unipept. Genera that contained less than 5%
of the total identifications were classified as "Other".
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4.6 Functional Analysis

�e expressed proteins within a microbiome constitute the main target of research in metapro-
teomics. Notwithstanding the important requirement of the identi�cation at the protein level, the
ultimate goal presents the exploration of protein functions and detection of involved metabolic
pathways in microbial communities. By using metaproteomic approaches, the composition of a
microbial community can be linked to its function and the function of the community members
can be investigated. If additional information on involved metabolites is available, models on
active pathways can be constructed: combining data from metaproteomics and metabolomics
holds the potential of gaining a comprehensive insight into the functioning of an ecosystem.
In this section, the use of the MPA so�ware is demonstrated for assigning metaproteomic data
from BGP samples to functional ontologies, enzymatic activities and metabolic pathways. Sub-
sequently, the reproducibility of the functional annotation is estimated on the basis of replicate
samples. At last, alternative options for assigning unannotated protein sequences to functions
are demonstrated using data set from HIMP samples.

4.6.1 Methods of Functional Annotation

An important goal of the analysis of BGPs is to understand the anaerobic digestion processes
for subsequent optimization regarding robustness and yield of the biogas production (see Sec-
tion 2.1.4). In this context, the metaproteome analysis of BGP samples investigates the anaerobic
process steps in the process of converting biomass to methane, namely hydrolysis, fermentation,
acetogenesis and methanogenesis. In this analysis, the main objective was to demonstrate the
applicability of functional analysis methods in the MPA so�ware. �erefore, the BGP data sets
GENT01, GENT07 and GENT16 were �rst used to obtain detailed ontology information from
UniProtKB for the identi�ed proteins. Each ontological term thereby provides detailed infor-
mation on the function of a particular protein. To study the processes inside the fermenters,
the terms for the ontology Biological Process were derived. In addition, the ontology Molecular
Function was investigated which describes the enzymatic activities of the microbial community
inside the reactors.
Since a considerable bias of the chosen protein database was noticed in previous investiga-

tions (see Section 4.2.2, 4.2.1 and 4.5), the second goal was to evaluate this e�ect also for the
functional analysis. Analogous to the previous section, the respective BGP result sets were used
from searching against SwissProt and TrEMBL. In this analysis, identi�ed spectra and peptides
were taken as quantitative measures.
Figure 4.36 shows the peptide assignments of the BGP data sets for the ontology Biological
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Process. �e bar plots illustrate that most of the identi�cations in GENT01 and GENT07 were
assigned to "Methanogenesis" for SwissProt, while this functional term was supported by fewer
peptides in GENT16. �e categories "Transport", "Hydrogen ion transport" and "ATP synthesis"
were the most prominent in the GENT16 results for UniProt/TrEMBL. Notably, various peptide
identi�cations for "Glycolysis" could be found for all three data sets. It can be also observed that
GENT01 and GENT07 resulted in signi�cantly more peptides identi�ed from searches against
SwissProt in comparison to TrEMBL, while the opposite was the case for GENT16.

Figure 4.36: Total number of Biological Process-specific peptide hits for BGPdata sets. The bar plots show
the peptide assignments to ontological terms for (a) GENT01, (b) GENT07 and (c) GENT16. The identifications
were obtained by searching with X!Tandem and OMSSA against SwissProt and TrEMBL (FDR < 1%). Fractions
below 1% of the total identifications were classified as "Other".

Figure 4.37 illustrates that "Transferase" and "Oxidoreductase" were the most abundant func-
tional terms for the ontologyMolecular Function in each of the BGP result sets. It can be recog-
nized that a portion of the identi�cations was assigned to the speci�c term "Methyltransferase".
�e enzyme "Acetyltransferase" belonging to the acetoclastic pathway was also found in the re-
sults of GENT01 and GENT07. In line with the �ndings for the ontology Biological Process,
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more assignments were obtained for GENT01 and GENT07 from SwissProt than from TrEMBL
searches, while the ratio of assigned peptides was inverted for GENT16 between the database
variants.

Figure4.37:TotalnumberofMolecularFunction-specificpeptidehits forBGPdata sets. Thebar plots show
the peptide assignments to ontological terms for (a) GENT01, (b) GENT07 and (c) GENT16. The identifications
were obtained by searching with X!Tandem and OMSSA against SwissProt and TrEMBL (FDR < 1%). Fractions
1% of the total identifications were classified as "Other".

Enzyme classi�cation. To investigate potential enzymatic activities of the microbial consortia
inside the BGPs more thoroughly, the data were further analyzed by using the EC numbers that
specify enzyme-catalyzed reactions. �is numeric nomenclature consists of four consecutive
numbers: each number represents an increasingly �ner classi�cation of the enzyme. �e main
EC categories are oxidoreductases (EC 1), transferases (EC 2), hydrolases (EC 3), lyases (EC 4),
isomerases (EC 5) and ligases (EC 6). For the following analysis, only the most detailed level of
enzyme classi�cationwas inspected. In addition, a unique descriptive label was retrieved for each
EC number. �e number of assigned spectra and peptides were used to quantify the observed
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enzymes. For the sake of clarity, assignments were �ltered out which obtained less than 1% of the
total identi�ed spectra.
"Coenzyme-B sulfoethylthiotransferase" (EC 2.8.4.1) was the most abundant enzyme in both

SwissProt and TrEMBL results for GENT01 (Figure 4.38). �e observed enzyme is also called
"Methyl-coenzyme M reductase" and catalyzes the �nal step in the formation of methane. In
general, the overlap at the enzyme level was low between the protein databases: in compari-
son to SwissProt, fewer identi�cations were assigned to EC numbers in TrEMBL. While "Co-
methyltransferase" (EC 2.1.1.245), an enzyme from the acetoclastic pathway was observed for
SwissProt, it was absent for TrEMBL. Vice versa, "5,10-Methylenetetrahydromethanopterin re-
ductase" (EC 1.5.99.11) could be identi�ed only in the TrEMBL results.

Figure 4.38: Total number of enzyme-specific spectrum and peptide hits for GENT01. The identifications
were obtained by searching with X!Tandem and OMSSA against (a) SwissProt and (b) TrEMBL at 1% FDR.
Assignments with less than 1% of the total identified spectra were filtered out.

Moreover, a di�erence could be observed between the results of GENT01 and GENT07, since
only the latter yielded a signi�cant abundance of "Coenzyme F420 hydrogenase" (EC 1.12.98.1)
which represents an essential enzyme for the �nal processing step of methanogenesis (Figure
4.39). It can be also recognized that—compared to GENT01—fewer identi�cations could be as-
signed to speci�c enzymes for GENT07. Conversely, the abundance of enzyme-speci�c assign-
ments was higher for GENT16 than for the other data sets (Figure 4.40). �e most prominent
enzyme was "Carbon-monoxide dehydrogenase" (EC 1.2.99.2) which belongs to the acetoclastic
methane production route. Furthermore, "Acetate-CoA ligase" (EC 6.2.1.1) could be detected
exclusively in the GENT16 results. It should be also noted that "Glyceraldehyde-3-phosphate de-
hydrogenase" (EC 1.2.1.12) was found in all data sets. Finally, "Alcohol dehydrogenase" (EC 1.1.1.1)
was found exclusively in the TrEMBL results for GENT16. Analogous to previous observations
for GENT16, the total number of assignments was markely higher for TrEMBL in comparison to
SwissProt.
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Figure 4.39: Total number of enzyme-specific spectrum and peptide hits for GENT01. The identifications
were obtained by searching with X!Tandem and OMSSA against (a) SwissProt and (b) TrEMBL at 1% FDR.
Assignments with less than 1% of the total identified spectra were filtered out.

Figure 4.40: Total number of enzyme-specific spectrum and peptide hits for GENT16. The identifications
were obtained by searching with X!Tandem and OMSSA against (a) SwissProt and (b) TrEMBL at 1% FDR.
Assignments with less than 1% of the total identified spectra were filtered out.

�e performed analysis illustrates a systematic way to gain an overview on potentially active
enzymes in metaproteomic samples. However, an analysis solely based on EC nomenclature has
the limitation of disregarding the context in which the enzymes are working. Hence, another key
aspect for a functional data analysis presents the role of enzymes in biochemical and metabolic
pathways (see also Section 2.2.6). To fully cover the functional space, the mapping of relevant
protein identi�cations into such networks is demonstrated in the next paragraph.
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Mapping into KEGGpathways. To gain knowledge about the functioning of microbial commu-
nities in the environment, a global view onmolecular routes is required. �erefore, theMPA so�-
ware allows to map identi�ed proteins into KEGG pathways by direct submission to the KEGG
website. To demonstrate the value of this feature, the protein results for GENT01 at 5% FDRwere
mapped into the major pathway of carbon metabolism.
Figure 4.41 shows the respective KEGG reference pathway (map01200) including involved

metabolites, intermediates and enzymes. In this case, the identi�ed proteins from GENT01 are
highlighted in the network and represent enzymes relevant for the production of methane: this
example shows that both pathways describing the conversion of acetate and carbon dioxide to
methane are covered by the data.
In another pathway analysis, the taxonomic range was restricted to the level of superking-

dom. �ereby, the protein identi�cations that were unique to Archaea and Bacteria were as-
signed to the previous pathway map of carbon metabolism. It can be observed that the pathway
of methanogenesis is only present in Archaea (Figure A.10 in the appendix), while the one of
glycolysis/gluconeogenesis is mainly represented by Bacteria (Figure A.11 in the appendix).
Another distinction at the taxonomic level could be found when comparing the results of the

two superkingdoms in the KEGG reference pathway of amino acid biosynthesis (map01230): few
proteins could be assigned Archaea (Figure A.12 in the appendix), in contrast to Bacteria which
are heavily involved in this route (Figure A.13 in the appendix). More detailed �ndings on this
analysis are provided in the publication of the MPA so�ware [256].
In summary, the advantage of this implementation is to access the KEGG pathway maps di-

rectly from theMPA so�ware. Hence, this approach enables the researcher to examine the cover-
age of essential pathways for any metaproteomic result sets. In general, the developed work�ow
provides several methods to investigate the functional pro�le of the microorganisms within a
sample.

4.6.2 Quantifying the Functional Profile

In the foregoing functional analysis, the number of identi�ed spectra and peptides was used as
measure of quanti�cation. While the focus was on the functional assignment of identi�cations
in single data sets, the robustness of the quantitative methods needs to be further evaluated for
consistency between multiple di�erent results sets. Consequently, the next objective was to in-
vestigate the reproducibility of the results for di�erent quantitative measures: in particular, the
number of identi�ed spectra, peptides, protein and meta-proteins was reviewed for their appli-
cability to the functional analysis of results from di�erent experiments. As already addressed in
Section 4.4.2, the results from the GENT01 and GENT16 data sets were used that each originated
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Figure 4.41: KEGG reference pathway of carbonmetabolism (map01200) for GENT01 protein identifica-
tions. The edges represent enzymes required for the conversion of onemetabolite into another. The identified
proteins of the data set are highlighted in red after submission to the KEGG website. The identifications were
obtained by searching with X!Tandem and OMSSA against SwissProt at 5% FDR.

from two technical replicates. �e ontologies Biological Process and Molecular Function were
correlated between the replicates on the basis of the number of assigned identi�cation peptides
for each functional term. �e correlation analyses were performed using Pearson’s correlation
coe�cients.
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Figure 4.42 displays that the correlation between the results from both GENT01 replicates was
very strong for each of the evaluated quantitative measures (pearsonr >= 0.96). At the meta-
protein level, the functional assignments were close to the maximum (pearsonr = 0.99). High
correlations could also be found for the GENT16 replicates (Figure A.14 in the appendix). In this
case, the spectrum assignments showed a perfect linear relationship (pearsonr = 1.0).

Figure 4.42: Reproducibility of ontology-specific assignments across technical replicates for GENT01.
Each scatter plot compares either the number of (a) spectra, (b) peptides, (c) proteins and (d) meta-proteins
that were reproducibly assigned across two replicate experiments to the functional ontologies Molecular
Function (blue) and Biological Process (green). The data set GENT01 was searched against SwissProt (5% FDR).
Meta-proteins were generated by using the Minimum One Shared rule. The Pearson correlation coefficient
(pearsonr) is displayed in the lower right corner of each panel.
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Since the comparison of replicates merely displays the technical variation, functional data of
di�erent BGP samples was investigated in the following analysis. �erefore, the identi�cations
that could be uniquely assigned to the functional term "Methanogenesis" from the ontology Bi-
ological Process were compared between GENT01, GENT07 an GENT16 data searched against
SwissProt at 1% FDR.
It could be found that spectra and peptides (Figure 4.43a) had a larger impact on the abun-

dance of "Methanogenesis" than proteins and meta-proteins (Figure 4.43b). For instance, while
the number of identi�ed spectra varied signi�cantly between GENT01 (786) and GENT16 (113),
the number of meta-proteins was similar between GENT01 (12) and GENT16 (14).

Figure4.43: Total numberof "Methanogenesis"-specific identifications forBGPdata sets. (a) The absolute
number of assignments to the ontology term "Methanogenesis" are shown at the spectrum and peptide level
for GENT01, GENT07 and GENT16. (b) In addition, the "Methanogenesis"-specific assignments are displayed at
the protein andmeta-protein level. The results were obtained by searchingwith X!Tandem andOMSSA against
SwissProt at 1% FDR.

In the previous section, the variance of di�erent quantitative measures for the functional anal-
ysis was investigated. To infer functional processes from metaproteomic data, however, the pro-
portion of identi�ed spectra and peptides may be less important than the quantity of di�erent
proteins: for instance, the more enzymes are found in the result set, the better the metabolic net-
work can be explained for a particular pathway. �erefore, the total number of proteins which
could be mapped to KEGG pathways was examined for the BGP results in the following.
To investigate the coverage of identi�ed enzymes in the pathways, the KO and EC numbers

from theGENT01, GENT07 andGENT16protein resultswere used thatwere identi�ed by search-
ing against SwissProt and TrEMBL at 5% FDR. �e identi�ed proteins were mapped to the
KEGG reference pathway for carbon metabolism (map01200). In a preliminary analysis, it was
found that around �ve times more peptides in GENT16 were assigned to carbon metabolism for
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TrEMBL in comparison to SwissProt (FigureA.15 in the appendix). Consequently, the hypothesis
was that the choice of the database would also a�ect the number of found KO and EC numbers.
Figure 4.44a shows that searching the GENT16 data set against TrEMBL doubled the number

KO identi�ers for carbon metabolism in comparison to SwissProt. An increase in EC identi�ers
can be also observed from SwissProt to TrEMBL for GENT16 (Figure 4.44b). For the evaluated
result sets, clear di�erences in the number of assigned KO and EC numbers were found between
the two chosen databases.

Figure 4.44: Total number of "Carbon metabolism"-specific identifiers for BGP data sets. The bar plots
show the total number of (a) KO and (b) EC identifiers covering the pathway carbon metabolism (KEGG
map01200) for GENT01, GENT07 and GENT16. The results were obtained by searching with X!Tandem and
OMSSA against SwissProt and TrEMBL at 5% FDR.

�e previous investigations relied exhaustively on metadata from the UniProtKB databases.
However, inmetaproteomics, customized protein databases that frequently contain unannotated
sequences are used either as alternative or supplement to public databases. In the next section,
additional methods are demonstrated to perform functional studies on sparsely annotated pro-
teins in the data for the HIMP samples.

4.6.3 Postprocessing Unannotated Data

To investigate potential functions of proteins without given sequence annotation, various tools
and databases are available (see Section 2.2.6). In the following, the HIMP10 results sets were
processed by matching identi�ed protein sequences against the EggNOG database (see Section
3.4.6) [213]. EggNOGprovides a large repository of non-supervised orthologous groups (NOGs)
from complete genomes. �e EggNOG analysis was limited to sequences from Bacteria, since it
had been previously observed that the majority of the results in the HIMP data were of bacte-
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rial origin (see Section 4.5.3). �e main purpose of the following analysis was to �nd bacterial
NOGs that could separate result sets between non-obese and obese individuals. In order to pass
protein sequences to EggNOG, the respective protein identi�cations that yielded a minimum of
two peptides were exported using the MPA so�ware. To search against the bacterial EggNOG
database, the so�ware package HMMER (ver. 3.1) [278] was used, since the EggNOG website
allowed only one search query at a time. �e results were �ltered by using the best search hit
with an e-value below 10-30 for each query.
�e �rst objective was to obtain an overview on the functional pro�le of the HIMP results.

�erefore, the data sets P1 and P23 were analyzed using the MPA and EggNOG annotation
pipeline as described above. Sample P1 originates from a non-obese (BMI = 22.0) and P23 from
an obese subject (BMI = 50.0). �e distinct peptides for each EggNOG category were used as
quantitative measures for the functional analysis. In addition, the in�uence of the chosen FDR
threshold on the number of assigned peptides was evaluated.
Although the absolute numbers of assignments moderately increased at higher FDR values,

the relative proportions remained constant (Figure 4.45). For instance, the proportion of P1
peptides assigned to "Carbohydrate transport and metabolism" accounted for 42.1% at 5% FDR
and 43.0% at 1% FDR. In general, it can be observed that the highest proportion of assignments
could be related to the aforementioned category. At 5% FDR, 55–60% of the 20 most abundant
NOGs belonged to this functional class (Table A.12 and A.13 in the appendix). For P1, 1 189 (965)
proteins could be assigned and for P23, 1 156 (986) proteins of this category were found at 5%
(1%) FDR (Table A.14 and A.15 in the appendix). �e secondmost abundant functional class was
"Amino acid transport and metabolism" at 5% FDR. Next to the previous category, proteins with
unknown function were in a similar abundance range. Furthermore, the forth most abundant
class was "Energy production and conversion".
While the �rst aim was to gain general insights into the functional potential of two represen-

tative samples, the major goal of metaproteomics is to examine the relation between microbial
community and function. To increase the information gain, functional data is coupled to knowl-
edge about the taxonomic origin of proteins in the study. �erefore,the HIMP10 result sets were
further analyzed by combining EggNOG functional annotation with taxon-speci�c peptide as-
signments that had previously retrieved by means of the Unipept analysis so�ware (see Section
4.5.3). In the following, the functionally classi�ed data were grouped into di�erent bacterial taxa
for the phylum rank. �e taxa Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria were
used, since they were the four most abundant phyla according to previous �ndings in this work.
Figure 4.46a displays that the major part of the peptides originating from the Gram-positive

Firmicutes was linked to "Carbohydrate transport and metabolism" (53.9%). �e next most
abundant categories were "Amino acid transport and metabolism" (19.2%) and "Energy produc-
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Figure 4.45: Total number of peptides assigned to EggNOG categories for HIMP data sets at 1% and 5%
FDR. The identifications for (a) P1 and (b) P23 were obtained by searching with X!Tandem and OMSSA against
HIMPdb. Fractions below 1% of the total assignments were filtered out.

tion and conversion" (14.4%). Less frequently found were peptides linked to functional classes
"Function unknown" (5.0%) and "Lipid transport and metabolism" (3.6%). In contrast, 37.5% of
Bacteroidetes-speci�c peptides could not be associated with a known function (Figure 4.46b).
Similar as in Firmicutes, "Carbohydrate transport and metabolism" (30.0%) was the most rep-
resented category of known function. In addition, "Amino acidmetabolism and transport" (9.1%)
and "Energy production" (7.7%) play an important role in theGram-negative Bacteroidetes. More-
over, only "Inorganic ion transport/metabolism" (8.8%) and "Cell wall/membrane/envelope bio-
genesis" (5.1%) were represented in signi�cant amounts for this phylum.

Figure 4.46: Phylum-level functional classification of peptides from Firmicutes and Bacteroidetes for
HIMP10. The stacked bar charts display the relative abundance of (a) Firmicutes and (b) Bacteroidetes peptides
that couldbeassignedto the followingEggNOGcategories: (E)Aminoacid transportandmetabolism; (G)Carbo-
hydrate transport andmetabolism; (C) Energyproductionandconversion; (I) Lipid transport andmetabolism; (S)
Function unknown; (P) Inorganic ion transport andmetabolism; (M) Cell wall/membrane/envelope biogenesis;
(X) Other. Less than 2% of the total identifications were classified as Other.
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Figure 4.47a shows that themajor part of Actinobacteria is associated with functions related to
carbohydrate metabolism (60.3%). �e second most abundant category represents "Amino acid
transport and metabolism" (33.8%), while "Energy production and conversion" (2.8%) plays a
minor role in this phylum. While anaerobic andGram-positiveActinobacteria thatmainly reside
in the large intestinewere dominated by two functional categories, Gram-negative Proteobacteria
provided more mixed functions (Figure 4.47b). �e functional diversity in Proteobacteria �ts
well with the di�erent observed taxonomic genera (see Section 4.5.3). However, it should be
considered that only an insigni�cant number of Proteobacteria-speci�c peptide assignments was
found in the results (Table A.16 in the appendix). While the relative functional distribution was
relatively stable across the data sets for Firmicutes, Bacteroidetes andActinobacteria, the absolute
amount of the phylum-speci�c assignments was highly variable (Table A.16 in the appendix).

Figure 4.47: Phylum-level functional classification of peptides from Actinobacteria and Proteobacteria
for HIMP10. The stacked bar charts display the relative abundance of (a) Actinobacteria and (b) Proteobacteria
peptides that could be assigned to the following EggNOG categories: (C) Energy production and conversion;
(E) Amino acid transport andmetabolism; (G) Carbohydrate transport andmetabolism; (H) Coenzyme transport
and metabolism; (I) Lipid transport and metabolism; (M) Cell wall/membrane/envelope biogenesis; (O)
Posttranslational modification, protein turnover, chaperones; (P) Inorganic ion transport and metabolism; (Q)
Secondary metabolites biosynthesis, transport and catabolism; (S) Function unknown; (X) Other. Less than 2%
of the total identifications were classified as Other.

Supervised classi�cation based on bacterial functional groups. In the original study on the
HIMP data [266], bootstrap aggregated (bagged) redundancy analysis (RDA) was used as su-
pervised classi�cation method to identify each non-supervised orthologous group (NOG) that
di�ered signi�cantly between obese and non-obese individuals. �e idea behind this approach
was to detect characteristic functional patterns in the invenstigated data by which a new sample
could be reliably classi�ed into a speci�c category (obese or non-obese). To evaluate the general
validity of supervised classi�cation on the metaproteomic data, another method called LEfSe
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was applied which is frequently used for classifying high-dimensional data of microbial samples
(see Section 3.4.7). Overall, the scope of this analysis was to compare the performance of both
supervised methods in order to justify their application for the classi�cation of metaproteomic
data based on their functional annotation. For this analysis, the complete set of EggNOG as-
signments for 13 obese and 16 non-obese subjects was used to maximize the sensitivity of the
supervised method. �e feature vectors were constructed by extracting the peptide assignments
for each EggNOG identi�er from the results. In accordance with the above mentioned study,
NOGs with less than seven assignments were �ltered out.
Table 4.8 summarizes 27 NOGs that were identi�ed as signi�cantly di�erent between lean and

obese samples. �e six NOGs that were characteristic for the obese group were two lipoprotein
types, aminoacyl-histidine dipeptidase, arginine deiminase, a LacI transcription factor and pec-
tate lyase. �e last enzyme is produced by bacteria to degrade plant material and points to a
pectin rich diet. Conversely, from the NOGs identi�ed for the non-obese individuals, enzymes
that are mainly involved in carbohydrate metabolism were overrepresented, including alpha-
glucuronidase, carbohydrate kinase, enolase, glycoside hydrolase, phoshoketolase, ribouloki-
nase, xyluokinase. In same group of data, the abundant proteins from amino acid metabolism
were aminotransferase, cysteine desulfurase and cystathionine. Consequently, the use of bacte-
rial NOGs led to a separation of the two groups, in particular, due to increased abundance of
enzymes characteristic for the non-obese class.
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Table 4.8: The supervised classification method LEfSe reports 27 NOGs that were significantly different (alpha
= 0.01) between non-obese and obese individuals. For each NOG the corresponding group and LDA score are
given. The LDA score can be regarded as a measure of consistent difference in relative abundance between
the NOGs in the groups. An LDA score threshold of 2 was used.

EggNOG Description Group LDA Score

Alpha-glucuronidase (EC 3.2.1.139) non-obese 2.40
Alpha-keto-beta-hydroxylacyl reductoisomerase non-obese 3.05
Amino acid ABC transporter non-obese 2.61
Aminoacyl-histidine dipeptidase obese 3.51
Aminotransferase non-obese 3.06
Arginine deiminase (EC 3.5.3.6) obese 3.11
Arylsulfotransferase non-obese 2.50
Bifunctional purine biosynthesis protein purh non-obese 2.69
Carbohydrate kinase non-obese 2.62
Catalyzes reaction R1* non-obese 2.53
Catalyzes reaction R2* non-obese 3.95
Catalyzes reaction R3* non-obese 3.61
Cystathionine non-obese 3.08
Cysteine desulfurase non-obese 2.85
Dihydro-orotase (EC 3.5.2.3) non-obese 2.58
Enolase N non-obese 3.03
Formate acetyltransferase non-obese 3.45
Galactose glucose-binding lipoprotein obese 3.37
Glycoside hydrolase,family 3 domain protein non-obese 3.23
Lipoprotein obese 3.13
Periplasmic binding protein LacI transcriptional regulator obese 3.50
Pectine lyase obese 2.49
Phosphate-selective porin O and P non-obese 2.34
Ribulokinase non-obese 2.49
Phosphoketolase non-obese 3.26
Promotes the GTP-dependent binding of aminoacyl-tRNA non-obese 2.34
Xylulokinase (EC 2.7.1.17) non-obese 2.84

R1*: Condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons
from malonyl-ACP. R2*: Reversible conversion of 2-phosphoglycerate into PEP. R3*: Reversible conversion of
3-phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4-phosphonooxybutanoate to phos-
phohydroxythreonine.
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5.1 Combining Multiple Search Algorithms

For the evaluated metaproteomic data, each database search engine resulted in a signi�cant pro-
portion of algorithm-speci�c identi�cations. As a consequence, when combining the results by
addition of these individual search engine hits, the overall identi�cation yield could be increased
compared to the single use of database search algorithms.
�e results from the preliminary analysis of BGP data sets advocate the application of multiple

search engines, since each of the three algorithms reported a considerable fraction of algorithm-
speci�c hits: for instance, X!Tandem identi�ed exclusively 24% of the spectrum and 28% of the
peptide hits (Figure 4.1). While OMSSA and MASCOT retrieved a lower absolute and exclusive
number of hits, X!Tandem exhibited the highest identi�cation yield. �is result can be explained
by the re�nement mode used in the algorithm which performs an additional analysis on previ-
ously selected candidate proteins to detectmissed cleavages andmodi�cations during the peptide
spectrummatching [281, 170]. While this feature greatly reduces the running time of the identi�-
cation process, limitations caused by the induced statistical bias of suchmulti-pass searches have
been described in the literature [285, 286]. �erefore, a reliable FDR estimation is mandatory to
ensure a high quality of the results [287] (see Section 5.2.2).
�e combined use of X!Tandem and OMSSA for the analysis of ten data sets fromHIMP sam-

ples resulted in spectrum identi�cation rates of 30% at 5% FDR and 21% at 1% FDR (Table 4.1 and
A.2). �ese proportions are higher than the values commonly reported in other metaproteomic
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studies: while a study on the human intestine using SEQUEST [168] as single search engine listed
between 8% and 17% identi�ed spectra for di�erent databases at 5%FDR [199], amousemetapro-
teome analysis in which the commercial Sca�old so�ware was used resulted in only 5% spectrum
identi�cations below 1% FDR [154]. Hence, the �ndings in this work demonstrate that the use of
more than one search algorithm can signi�cantly increase the fraction of identi�ed spectra for
metaproteomic experiments. Furthermore, the results in this work show that the complemen-
tary use of both algorithms is justi�ed, since X!Tandem yielded 25% and OMSSA 11% exclusive
spectrum identi�cations. In line with these �ndings, another study on human cell line data re-
ported a complementarity of 12% for X!Tandem and OMSSA at 1% FDR [288]. Moreover, the
authors suggested using a combination of up to �ve search engines to increase the sensitivity of
database searching. However, it was beyond the scope of this study to evaluate the use of such a
high number of algorithms, since each additional search engine commonly doubles the running
time and increases the overhead for combining the results. Frequently, the use of multiple search
algorithms is impractical for many metaproteomic research groups due to constraints in time
and computational resources. To e�ciently improve the identi�cation yield for large amounts
of upcoming MS/MS data in metaproteomics, more advanced computational solutions with a
reasonable scalability and cost e�ciency, such as using cluster and cloud computing, are recom-
mended [289, 290, 291].
Another bene�t of using multiple search engines is the option to validate questionable hits,

so-called one hit wonders, i.e. protein identi�cations that are based on a single peptide hit [292].
Gupta and Pevzner argued against the common practice of experimentalists to overhastily ex-
clude potentially valuable single-peptide hits [293]. To avoid early elimination of correct hits,
the combination of multiple search engine results can be a useful backup method: while one al-
gorithm may miss one hit or assign a low score, another search engine retrieves a high scoring
peptide for the same spectrum. Consequently, this approach retains the individual strength of
each algorithm without su�ering from the disadvantage of losing identi�cations due to inaccu-
rate scoring or inappropriate parameter choice.

Summary. In conclusion, the application and combination of multiple search algorithms in-
creases the sensitivity and speci�city of the identi�cation process. While respectivemethods have
been investigated in numerous proteomic studies [294, 295, 296, 297], it was here demonstrated
that combining di�erent identi�cation algorithms is particularly useful for the data analysis in
metaproteomics. �e MPA so�ware lowers the adoption threshold of such an approach by fully
integratingmultiple search engines and automatically combining hits identi�ed by individual al-
gorithms. Although the algorithm choice is vital for the successful outcome of a metaproteomic
experiment, an equally important aspect presents the selection of appropriate search engine pa-
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rameters as discussed in the following section.

5.2 Evaluating Parameters of Database Searching

�e objective of the investigations in Section 4.2 was to evaluate the determining factors of
database searching that impact the identi�cation of peptides and proteins in metaproteomic ex-
periments. �e in�uence of various parameters, including protein database, search strategy and
cleavage settings, on the identi�cation yield was shown by analyzing exemplary data sets from
metaproteomic samples.

5.2.1 Influence of Protein Database

In contrast to pure-culture proteomics, low numbers of available genomes led to a decreased
identi�cation yield inmetaproteomic experiments in the past [5, 12, 13]. To cover the widest pos-
sible search space for protein identi�cation in microbial communities, manually constructed as
well as publicly available databases are used inmetaproteomic analysis work�ows [14, 88, 89, 113].
While latter investigations focused on the biology behind the data, the goal of the computa-
tional analysis in this work was to inspect the relation between protein database composition
and identi�cation yield. For this purpose, three exemplary metaproteomic data sets from BGP
samples (GENT01, GENT07 and GENT16) were searched against two public (SwissProt and
TrEMBL) and one manually generated protein database (BGPMG) containing entries of se-
quenced metagenomes from biogas plants.
�e �ndings suggest that the use of the metagenome database BGPMG improves the identi�-

cation yield for particular metaproteomic samples: regarding the total number of identi�cations,
the results for GENT01 and GENT07 show that BGPMG provides a higher portion of identi-
�ed spectra than the public databases (Table 4.2). Notably, the overall agreement between the
results from three search databases was very low (Figure 4.2): this result indicates that few pro-
tein sequences were shared between the original databases. Among all data sets, the percentage
of database-speci�c identi�cations was the highest for the search of GENT07 against BGPMG
by which around 61% of the peptide hits were obtained exclusively. While 2.6 times more pep-
tides were found here for BGPMG than for SwissProt, a study investigating microbial consortia
on a oceanic scale reported six times more identi�ed peptides using a metagenomic database in
comparison to the search against a public one [92]. Moreover, the highest fraction of unique pep-
tides was observed for the BGPMG searches with an average of approximately 80% (Table 4.3).
�ese latter �ndings show that BGPMG contains more speci�c protein targets than the public
databases: thus, the metagenome database su�ers less from the issue of protein inference ac-
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cording to which one peptide is found in multiple proteins. Tanca et al. had reported also higher
portions of unique peptides in their analyses for experimental databases (96–97%) in compari-
son to public resources (86–88%) [126]. In general, the probability of obtaining unique peptide
hits is higher for more speci�c (e.g. metagenomic) databases due to a lower sequence similarity
when compared to public databases. However, the single use of ametagenome sequence database
could be also considered detrimental: searching the data set GENT16 against BGPMG resulted
in the lowest fraction of identi�ed spectra (2.0%) in comparison to the higher yield from the
searches against SwissProt (4.1%) and TrEMBL (22.0%) (Table 4.2). Due to the high fraction of
identi�ed spectra against the latter database, any severe problems originating from the experi-
mental analysis, such as sample preparation or protein extraction, could be excluded. Although
the reason for such a low number of matches against BGPMG for GENT16 could not be deter-
mined, these �ndings point to a potential risk for analysis work�ows that are exclusively based on
metagenomic information: when a sample is searched against a metagenome database that does
not �t to the sample under investigation, the chances of successful identi�cation are rather lim-
ited: for instance, a di�erent community composition may lead to sequence changes which then
reduces the identi�cation yield. While it is recommended to evaluate the �t of the entries in a
reference database, this issuemight become obsolete whenmetagenomic analyses are performed
routinely along with metaproteomic experiments.
As mentioned above, the public databases provided a signi�cant number of unique identi�ca-

tions that cannot be retrieved when matching the MS/MS spectra against the metagenome ref-
erence background. In particular, a high identi�cation yield was observed for GENT16 searched
against TrEMBL: 22% identi�ed spectra and 69%of the total number of peptides could be uniquely
found here (Table 4.2). From a computational perspective, this result can be explained by a
stronger disparity of target and decoy PSM score distributions for TrEMBL when compared to
SwissProt and BGPMG (Figure 4.3). In addition, it was also found that only a limited proportion
of TrEMBL peptides could be mapped back to SwissProt and BGPMG, underlining the bene-
�t of obtaining unique identi�cations from public databases. From a biological perspective, the
�ndings might be related to a speci�c composition of the GENT16 sample that is derived from
a biogas plant with process parameters that vary signi�cantly from GENT01 and GENT07: for
example, the substrate for GENT16 is based on brewery waste water which is di�erent from the
feed inGENT01 andGENT07 (see Section 3.2.1). Moreover, other important process parameters,
such as pH value, reactor type and temperature, are di�erent between the BGPs for the respec-
tive samples. Overall, the results clearly indicate that the GENT16 sample contains strains which
protein sequences are better covered by TrEMBL when compared to SwissProt and BGPMG.
It could be found that public databases, such as SwissProt and TrEMBL, can support the anal-

ysis of metaproteomic data for two main reasons: �rst, they contain protein sequence informa-
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tion that can be easily accessed and integrated into any data analysis pipeline. While SwissProt
presents a well-curated and relatively condensed resource, mainly unreviewed protein entries
are found in TrEMBL. Remarkably, the latter led to a signi�cant number of additional identi�ca-
tions in the investigated data sets. Second, another important advantage of public databases
presents the provided annotation of proteins. Manually curated entries provide high-quality
meta-information and cross-references to taxonomic origin and functional context. With respect
to these latter aspects, further strengths and limitations of public databases will be discussed in
Section 5.5 and 5.6.

Summary. Based on the results of the evaluations for the BGP data sets, it is de�nitely recom-
mended to include metagenome sequences into the data analysis work�ow in metaproteomics.
However, it is advisable to rely on a customizedmetagenomic database with exact or at least close
origin to the samples under investigation to provide a sequence-speci�c basis for the protein
identi�cation. Since the exclusive use of a metagenomic database increases the risk of missing
peptide sequences that are not contained exactly in the database, it is useful to include sequence
entries from public databases. While metagenome sequences are commonly unannotated, pub-
lic resources have the additional bene�t of containing well annotated protein entries by which
useful meta-information can be retrieved (see Section 5.5 and 5.6). Finally, another important
challenge for a metaproteomic analysis work�ow concerns the in�uence of the database size as
discussed in the following.

5.2.2 Evaluation of Search Strategies

In a computational benchmark study [287], Jeong et al. stated that the impact of the database
size is o�en not addressed by the community, and reported a signi�cant decrease in identi�ca-
tions with an increasing number of protein sequences using the standard ISB [298] and CPTAC
[299] data sets. Vice versa, it had been observed in a study with an arti�cial mixture sample
of nine di�erent microorganisms that searching against subsets of a large database led to an in-
crease in PSMs and peptides [126]. However, in this latter metaproteomic study, the reasons for
the observed e�ects had not been examined by the authors in detail. In order to systematically
investigate the in�uence of the database search space on the identi�cation yield in a metapro-
teomic experiment, exemplary data sets from human intestine metaproteome samples (P1, P23
and P34)were used and three di�erent search strategies were applied: (1) classic searching against
a largemetaproteomic database (HIMPdb), (2) subset searching against two portions of the latter
database (Bact594db and Qin2010db) and (3) two-step searching against HIMPdb.
In general, the results indicate that the identi�cation yield is strongly in�uenced by the num-
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ber of entries in the protein search database. In particular, the data suggest that subset searching
against Bact594db and Qin2010db markedly increases the number of database-speci�c identi-
�cations in comparison to classic searching against HIMPdb (Figure 4.5). �ese �ndings raise
concerns that valuable identi�cations might be lost in searches against metaproteomic databases
that typically contain millions of protein entries. Moreover, it can be observed that two-step
searching more than doubled the number of identi�cations (Figure 4.4). However, the dispro-
portionately high amount of hits in the latter strategy points to an underestimation of the FDR.
�e hypothesis of an increased number of false positives in the results of two-step searching
is corroborated by evaluations of the underlying PSM score distributions suggesting a decrease
in identi�cation quality when compared to classic searching (Figure 4.6). �ese �ndings are
con�rmed when employing a method to rescore the PSMs: the identi�cations from two-step
searching show lower RMIC score values indicating less reliable hits when compared to classic
searching (Figure 4.7).
�e next goal was to put preceding observations in a more general context by performing

benchmark analyses on a proteomic PFU sample in three steps: �rst, classic searchingwas applied
against a targeted PFU-speci�c database (Pyrodb) corresponding to a common proteomic analy-
sis. Second, classic searching was used against a large and unspeci�c database (PyroHIMPdb) to
simulate a typical database search inmetaproteomics. Finally, two-step searching was performed
against PyroHIMPdb to evaluate the performance of the method by investigating the quality of
the results.
�e results of the PFU benchmark investigations con�rm previous �ndings on subset search-

ing against HIMPdb (Figure 4.5): a markedly decreased identi�cation yield can be recognized
for classic searching against PyroHIMPdb when compared to Pyrodb results (Figure 4.10 and
4.11). Moreover, the investigation of respective target and decoy PSM scores revealed a much
broader overlap of both score distributions for PyroHIMPdb when compared to Pyrodb (Figure
4.12). Although both databases contained the same amount of PFU target sequences, the abso-
lute number of protein entries di�ered signi�cantly between Pyrodb (around 9 000 sequences)
and PyroHIMPdb (over 6million sequences). �ese �ndings indicate a serious issue of the TDA-
based FDR estimation: the probability of obtaining decoy hits —representing estimates for false
positive identi�cations—increases with the search space. Consequently, the method of classic
searching against large databases is prone to an overestimation of the FDR.�is observation is in
line with previous proteomic [194, 287] and proteogenomic [196] studies that reported a reduced
resolution when increasing the search space in TDA-based identi�cation work�ows. Although
PyroHIMPdb served only as a representative database for a typical metaproteomic analysis, the
observed statistical bias is important for general proteomic work�ows as well due to a constantly
increasing number of protein sequences in public repositories. Unlike pure culture proteomics,
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however, it is di�cult to exclude certain proteins in a metaproteomic experiment a priori due
to the high number of potentially occurring species in the samples. �e benchmark analyses
further show that two-step searching against PyroHIMPdb resulted in more identi�cations in
comparison to classic searching against Pyrodb (Figure 4.10). Although a signi�cantly increased
identi�cation yield of two-step searching indicated an FDR underestimation in preceding results
of the HIMP experiments, the score distributions from the PFU experiments did not show any
peculiarities (Figure 4.12).
When comparing the performance of the di�erent search strategies, the results unveil strik-

ing shortcomings of classic searching against large databases: an FDR overestimation leads to
reduced accuracy and resolution of the results. In contrast, the results of subset searching sug-
gest a better performance of the method, since it produced exclusive sets of database-speci�c
identi�cations. �e �ndings also indicate that the sensitivity of a metaproteomic analysis can
be increased by combining results from multiple subset searches. While the method of subset
searching was employed for metagenomic (Qin2010db) and genomic (Bact594db) databases, the
strategy could be also be applied to public databases: to minimize the negative e�ects of the
database size, the large TrEMBL database could be split for speci�c taxonomic ranks (e.g. su-
perkingdom or phylum) into taxon-speci�c subset databases. Analogous to the application of
multiple search algorithms (see Section 5.1), however, the use of subset searching is resource in-
tense and the combination of distinct results is technically challenging. While Rooijers et al. had
previously reported an 2-fold increase of the identi�cation yield for an iterative search method
[113], this approach su�ers from technical issues by requiring two external BLAST routines in
addition to the database searching. In this work, the method of two-step searching was therefore
evaluated, as it automatically reduces the protein search space by solely employing conventional
database searches [125]. �is method can be directly applied for any metaproteomic analysis,
however, an excessively high identi�cation yield and low-quality hits in the presented results
points to an underestimation of the FDR. Based on these �ndings, the application of two-step
searching can only be recommended when using a stringent FDR �ltering to minimize the num-
ber of false positive hits. Accordingly, Gupta et al. recommended to disable the second pass
feature in X!Tandem that may lead to the underestimation of the FDR due to insu�cient com-
pliance with the TDA [300].
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Summary. In conclusion, the path of �nding an optimal search strategy in metaproteomics is
paved with various obstacles. A general recommendation is to downsize the database as much as
possible by retaining only the protein taxa of interest to decrease the risk of losing identi�cations
when the database size is increased [301]. Due to the unknown sample composition in metapro-
teomic experiments, however, it is not feasible to exclude particular sequence entries from the
protein database without sacri�cing potentially valuable hits. �erefore, the use of subset search-
ing against multiple database variants is recommended to increase the resolution for complex
metaproteomic and proteogenomic search spaces. �e �ndings indicate that the method of two-
step searching should be used with utmost caution to avoid the danger of underestimating the
FDR. Finally, it is important to critically evaluate the use of TDA-based FDR estimation due to
the signi�cantly decreased identi�cation yields for searches against large databases. To circum-
vent the latter issue, solutions using a decoy-free result validation, for instance, based onmixture
modeling [181, 302, 303] or machine learning [193], might be an alternative. Moreover, an im-
proved procedure for obtaining more accurate FDR estimates has also been proposed recently
[304]. In the next part, the impact of other parameters, including missed cleavages and enzyme
speci�city, on the outcome of metaproteomic analyses will be discussed.

5.2.3 Missed Cleavages and Enzyme Specificity

�roughout this work, the parameter for the maximum of allowed missed cleavages was set ac-
cording to general recommendations for database searches in proteomics [305, 306]. Since tryp-
tic digestion works rarely perfect in a proteomic experiment [133, 134, 135], it is useful to choose
the correspondingMC parameter values above zero. However, it can be expected that this search
parameter a�ects the results, as higher MC parameter values increase the search space of gen-
erated in silico sequences during the peptide spectrum matching process. So far, the e�ect of
this parameter on the identi�cation yield has not been addressed by any metaproteomic study
in detail. �erefore, MC parameter values between zero and three were evaluated for database
searches of three exemplary HIMP data sets (P1, P23 and P34). In addition, the same MC pa-
rameters were tested in the benchmark evaluation for the PFU sample.
For each of the HIMP result sets, the somewhat counter-intuitive e�ect of retrieving lower

numbers of identi�cations in total was observed for increasing MC parameter values. It was
found that a parameter value ofMC = 0 resulted in the highest number of identi�ed PSMs and
peptides at 1% FDR , whereasMC= 3 yielded the lowest number of hits (Figure 4.8). Remarkably,
the number of identi�ed peptides was more similar for all MC parameter values at 5% FDR com-
pared to 1% FDR (Figure 4.9a). Moreover, a considerable number of exclusive identi�cations was
found forMC= 0 at all tested FDR levels (Figure 4.9b). In contrast, results for the proteomic PFU
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benchmark experiment indicate a clear increase in identi�cations towards higherMC parameter
values (Figure 4.13 and 4.14a). �e contradictory �ndings between the metaproteomic (HIMP)
and proteomic (PFU) results can be explained—similar to previous observations—by the search
space complexity of the target databases that is several times higher for themetaproteomic exper-
iments. Hence, it can be suggested that the decreased identi�cation yields for MC values above
zero in the HIMP searches are a result of an FDR overestimation. While the issues for the TDA-
based FDR estimation prevail in the investigations on the HIMP data, the PFU analyses show the
expected behavior of an increased identi�cation yield for higher MC parameter values. In this
case, the PFU results also show that signi�cant proportions of exclusive peptides with multiple
missed cleavages were found (Figure 4.14b). From a biological perspective, this �nding could
be expected since Pyrococcus furiosus presents a hyperthermophile bacterium that synthesizes
various proteins resistant to an enzymatic digest. Nevertheless, the number of exclusive peptides
in the PFU searches was the highest forMC = 0 among all tested values. From a computational
perspective, this result can be attributed to the preference of the search algorithms for longer
peptides: for MC = 1, one spectrum can be explained by two peptide variants, thus a shorter
sequence with no missed cleavage and a longer sequence with one missed cleavage. Since the
former receives a lower score due to a lower number of matched fragment ion peaks in com-
parison to the latter, only the longer peptide hit is considered forMC = 1. Consequently, a high
number of exclusive peptide hits forMC = 0 is replaced by longer peptides forMC = 1.
�e next evaluated parameter was the choice of the cleavage enzyme, since various proteomic

studies emphasized—despite the high speci�city of trypsin [132]—the occurrence of non-tryptic
peptides [133, 134, 135, 307]. In addition, it was assumed that the presence of various proteases
in the human intestinal tract may lead to non-tryptic protein fragments. To increase the overall
peptide detectability, semi-tryptic or non-tryptic searches can be employed [308]. In the inves-
tigations, tryptic and semi-tryptic were used as search settings, and the number of PSMs and
peptides obtained from separate searches with these parameters were evaluated.
Depending on the chosen FDR threshold, it was found that the highest number of identi�-

cations could be retrieved using either tryptic (Table 4.5) or semi-tryptic (Table 4.6) as cleavage
parameter. �e additional gain of using semi-tryptic as search option was rather minimal with
approximately 7% exclusive peptides at 1% and 5% FDR. In the PFU benchmark analyses, signi�-
cantly fewer peptides were detected for semi-tryptic in comparison to tryptic (Figure 4.13). �ese
�ndings stand in contrast to the results of another metaproteome study focusing on host pro-
teins in which the authors reported a similar number of tryptic and semi-tryptic peptides [115].
�e benchmark results indicate that semi-tryptic is not recommended to be applied as the only
cleavage parameter. Notwithstanding considerably higher running times, however, semi-tryptic
searches can still be used to complement results from tryptic searches. �ereby, the data pro-
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cessing can be accelerated by methods e�ectively reducing the computational time of the search
algorithms, such as aforementioned cluster computing approaches [289, 290] and algorithms
predicting either peptide truncatability [309] or tryptic cleavage [310].
Lastly, the evaluation of chymotrypsin and pepsin A as cleavage parameters resulted in a very

low number of identi�cations. Since trypsin was used as cleavage enzyme in the experimental
setup, it can be assumed that non-tryptic peptides were low abundant in the samples. Conse-
quently, it could not be demonstrated that particular gastrointestinal enzymes were active in the
investigated samples.

Summary.�e�ndings indicate that increasing theMC parameter values impairs the identi�ca-
tion yield due to the increased search space for metaproteomic data. While the use of up to four
missed cleavages has been reported in a metaproteomic study [311], lower parameter values are
recommended based on the observed results. Similar to the previously discussed combination of
searches against di�erent databases, a combination of multiple searches with varying MC values
betweenMC= 0 andMC= 2 can be used to increase the speci�city and sensitivity. Consequently,
an automated integration of database search results for di�erent MC parameter values might be
useful in the future to improve the overall reliability of results in metaproteomics. Moreover,
the results demonstrated that semi-tryptic may not be su�cient as exclusive parameter setting,
but was able to complement the results for the tryptic cleavage parameter. Finally, the activity
of any suggested gastrointestinal enzymes could not be con�rmed by the results from the HIMP
samples, which is probably due to their low abundance in comparison to trypsin.

5.3 Testing Performance of De Novo Sequencing

In the last section, various obstacles of metaprotomic data analysis with respect to database
searching and statistical validation of the identi�cations were discussed. As an alternative to the
database-drivenmethods regarded in the last sections, de novo sequencing bypasses the following
twomajor problems at once: by not relying on a protein database, this technique circumvents the
issue of missing sequence information and also the statistical bias caused by the complex search
spaces of metaproteomic databases. However, a mapping of de novo sequences to the protein
level is eventually required to infer taxonomic and functional information. While various stud-
ies applied de novo sequencing for the analysis of metaproteomic data [12, 199, 312, 313, 314], the
method has not been contrasted to database searching in detail. For this purpose, the approach
was applied for the HIMP10 data and the identi�ed de novo peptide sequences were compared
to previously identi�ed hits from database searching. To obtain protein identi�cations, the same
de novo peptides were also mapped to a protein sequence database (HIMPdb).
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�e results demonstrate that de novo sequencing insu�ciently recovers hits from database
searching: only 23% of all database search peptides could be obtained using de novo sequenc-
ing at a score threshold of S = 100 (Table 4.7). Since this ratio increased only to 25% when no
score threshold was applied, the identi�cation quality seems to decrease drastically below a score
threshold of S = 100. It can be further observed that the percentage of identi�ed spectra increased
signi�cantly from 23% to 60% when the score threshold was decreased from S = 100 to S = 50.
�is atypically high fraction of identi�ed spectra suggests that such a low score threshold is not
an appropriate parameter choice, since its application would considerably increase the number
of false positive identi�cations. �is analysis also reveals a major issue related to the applicability
of the scoring scheme as error control mechanism: it seems impractical to set a �xed cuto� value
for such an arbitrary score.
Furthermore, the results show that signi�cantly less de novopeptides could bemapped to the in

silico digested protein database in comparison to database searching at 5%FDR (Table 4.1). While
it can be also observed that over three times more de novo peptide sequences could be matched
against the database when decreasing the score threshold from S = 100 to S = 50 (Table 4.7),
these �ndings indicate that the overall cost of using de novo sequencing andmapping of peptides
to proteins exceeds the bene�t of potentially gaining additional identi�cations. Moreover, in
accordance with preceding observations, the undesired side e�ect of adding false positives is
inherently given by this strategy. �e error control is di�cult in this case, as the target-decoy
approach cannot be directly applied to the method of matching de novo peptides against an in
silico digest of a protein database.
In addition, de novo sequencing was used to check for the quality of database search hits: when

comparing the results from classic and two-step searching, a clear trend towards more low scor-
ing peptide identi�cations can be observed in the latter. While the results indicate thatmost over-
lapping peptides between de novo sequencing and both database searching techniques obtained
a high score, the number of low-scoring identi�cations was signi�cantly increased for two-step
searching when compared to classic searching (Figure 4.15). Furthermore, a clear distinction can
be found between distributions of de novo peptide scores for two-step searching in comparison
to classic searching (Figure 4.16). Consequently, these observations con�rm previous results that
attested results from two-step searching a lower identi�cation quality (see Section 5.2.2). �ese
investigations suggest that de novo sequencing could be regarded as method for estimating the
quality of doubtful peptide identi�cations derived from database searching. However, due to
high computational e�ort and limited statistical validation, de novo sequencing is yet impracti-
cal to be used as quality control mechanism for high-throughput studies in metaproteomics.
An important prerequisite for the application of de novo sequencing is to establish an a pos-

teriori error control, since relying on the scoring of the de novo technique involves the risk of
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including many false positives. In fact, the actual bene�t of using de novo sequencing can only
be estimated by investigating the quality of suggested peptides sequences in detail. To that end,
the so�ware DeNovoGUI assists the user with a visualization of de novo sequences and corre-
sponding fragment ion peaks for each considered spectrum [275]. �e tool also provides the
opportunity of exporting the results and using an external BLAST feature for mapping the se-
quences onto the protein level. Another promising tool presents PepExplorer which aligns result
sequences from various de novo algorithms against a target-decoy database [205, 315]. �e so�-
ware employs pattern recognition and gives the user the option to �lter the results based a certain
FDR threshold.
While the application of de novo sequencing in high-throughput studies was also limited due

to high running times of the algorithms, the latest release of an algorithm featuring the real-
time processing of hundreds of spectra per second might increase the popularity of the method
[316]. Together with advances in mass spectrometry instrumentation and resolution, de novo
sequencing might contribute signi�cantly to the identi�cation of unknown peptides in future
proteomic analyses. With respect to the speci�c application inmicrobial community proteomics,
Cantarel et al. reported that de novo sequencing adds valuable information to the analysis even if
protein sequence information is not available or incomplete [199]: by the combined use of PEAKS
[201] and PepNovo+ [200], 754 non-redundant proteins were identi�ed that had not been found
with conventional database searching using SEQUEST [168]. However, it was not evaluated in
this study whether any additional taxonomic or functional information could be obtained by the
use of de novo sequencing.

Summary. Based on these �ndings, it can be concluded that the overhead of using de novo se-
quencing as complementary method to conventional database searching is currently higher than
the bene�t. For the investigatedmetaproteomic data, only amoderate fraction of database search
results could be recovered when using the de novo sequencing algorithm PepNovo+ and the gain
of mapping de novo sequences to an in silico digested protein database could also not justify the
involved e�orts. Moreover, de novo sequencing still requires more reliable error control mech-
anisms and further algorithmic improvements concerning the accuracy of the obtained peptide
sequences. Particularly due to these limitations, de novo sequencing has not been widely em-
ployed in the community yet. In the context of metaproteomics, it also remains to be demon-
strated whether the results of de novo sequencing provide additional insights regarding protein
function or taxonomic assignment.
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5.4 Generating Meta-Proteins by Protein Grouping

Various strategies have been proposed for solving the issue of protein inference [11]: while some
approaches rely on a �xed set of PSMs propagated by the search algorithms [317, 318], other prob-
abilistic methods reassess the identi�cations and also seek for homologous hits [319, 320, 321,
322]. A common solution presents a parsimony-based strategy that attempts to explain the min-
imum amount of proteins from a given set of peptide hits [262]. In contrast to pure-culture pro-
teomics, however, the data analysis of microbial communities usually involves databases which
contain a large collection of homologous proteins across species from di�erent organisms. Be-
sides the fact that the inference problem cannot be easily solved in the presence of these complex
communities, such an anticipating algorithmic solution may also not be useful for the typical
metaproteomic analysis work�ow: a result set with as many proteins as possible e�ectively pre-
serves the maximum amount of information with respect to taxonomic composition and func-
tional potential of the sample. For this purpose, the MPA so�ware provides the meta-protein
generation feature that allows to group proteins according to particular rules.
�ree di�erent grouping rules for the meta-protein generation were implemented in the MPA

so�ware (see Section 3.1.2). �e comparative evaluation of these rules applied to BGP protein
result sets indicates that each rule has a profound e�ect on the number of protein groups (Figure
4.17).MinimumOne Shared displays the highest reduction of proteins, whileAll Shared results in
a weaker grouping e�ect. �e latter is more conservative, because it combines only proteins with
at least a common subset of multiple peptides. Accordingly, the �ndings from the evaluation of
protein grouping for multiple data sets suggest that for Minimum One Shared, the majority of
meta-proteins was linked to more than one peptide, while All Shared contained more than 50%
single peptide assignments (Figure 4.25).
In all investigations, a more stringent threshold of 1% FDR in comparison to 5% FDR leads

to a stronger e�ect of protein grouping resulting in more assigned peptides per group. �ese
observations can be explained by the circumstance that peptide-centric grouping rules pro�t
from more reliable peptide identi�cations leading to fewer con�icts during the protein assign-
ment. Conversely, the results were less a�ected when using the UniRef-based grouping rules:
these rules are based on the sequence similarity of the proteins in the database and are therefore
less susceptible to changes of the PSM-based FDR [263]. Although the UniRef-based grouping
methods show the lowest relative reduction in the regarded results (Figure 4.17), their advan-
tage is to rely on clustered sets of protein sequences from UniProtKB: while a single protein may
feature a limited amount of information, more biologically relevant data, such as protein func-
tion or cross-references, can be provided by other members of the corresponding UniRef cluster.
�us, the UniRef-based protein grouping might also achieve a gain of semantic information by
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reducing the �nal result set.
ForMinimum One Shared and All Shared, the Levenshtein edit distance was evaluated as pa-

rameter that permits sequence variations, such as point mutations, insertion or deletions, in the
grouping process at the peptide level (Figure 4.18). In this case, a higher ED parameter value
leads to increased protein grouping. Since Minimum One Shared is based on a single peptide,
a higher ED parameter value results in a stronger grouping e�ect for this rule compared to the
All Shared rule. Although the total reduction for ED = 2 relative to ED = 0 was less than 10%
for both grouping rules, the mutation-tolerant strategy considers amino acid substitutions that
frequently occur in sequences of metaproteome samples. However, the Levenshtein metric has
the limitation that it only reckons the similarity of two sequences without considering the bi-
ological background: for instance, a hydrophilic amino acid is more likely to be replaced by
another hydrophilic residue than to be transformed into a hydrophobic variant. �erefore, the
mutation-tolerant protein grouping could be extended by using substitution matrices that are
based on evolutionary models. Consequently, the use of amino acid matrices such as PAM [323]
or BLOSUM [324] would enable to assess the probability of sequence transformations.
�e last evaluated method presents the Taxonomy Rule which can be employed as additional

�ltering step for other grouping rules to set the maximum taxonomic level at which proteins
converge. A maximum increase of 8% in the number of total meta-proteins at the evaluated
taxonomic convergence levels suggests that the Taxonomy Rule can be used e�ciently to control
the microbial diversity (Figure 4.19). �ereby, it allows to re�ne the results of a metaproteomic
analysis by classifying the protein groups based on the phylogenetic hierarchy.
Furthermore, the reproducibility of protein groups between results from replicate samples was

evaluated forMinimum One Shared and All Shared. It was found thatMinimum One Shared led
to the best performance in the correlation analysis that compared meta-proteins on the basis of
their spectral and peptide count (Figure 4.22). When picking out a particular protein group, it
could be observed that All Shared failed to merge proteins which belonged together according
to manual inspection. �ese �ndings indicate thatMinimumOne Shared was more reproducible
and less error-prone than All Shared.
Moreover, it can be recognized that the generation of meta-proteins using Minimum One

Shared rule increases the average similarity between di�erent result sets (Figure 4.24a). It was
also found that meta-protein sets contain more shared peptides than protein sets (Figure 4.24b)
which consequently reduces the amount of groups to be compared. As the number of compa-
rable groups is decreased a�er the meta-protein generation for each result set, di�erent samples
can be better compared and quanti�ed than in unprocessed protein result sets.
Overall, the described protein grouping methods are tailored towards metaproteomic data,

because they feature particular rules for allowing mutations and setting taxonomic convergence
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limits. In addition, the grouping of proteins might be applied for proteomic analyses in gen-
eral to tackle the protein inference problem. On the one hand, these approaches are directly
applicable to large data sets, on the other hand, they only rely on the con�dence of the assigned
spectra and peptides. At the protein level, further features such as occurrence rate, sequence
coverage and protein length are important. �erefore, the current approach lacks a qualitative
con�dence estimate for the generatedmeta-proteins. For instance, a recently developed so�ware
called ProteinInferencer assesses the con�dence issue by maintaining a controlled protein FDR
[325]. Another problem arises at the quantitative level: the calculation of label-free quanti�cation
measures, such as NSAF [239], is o�en based on a de�ned sequence length. As a consequence,
the calculation of such quantitative measures is frequently biased by partial protein sequences
in the databases. In metaproteomics, the high sequence similarity between conserved proteins
of related organisms makes matters worse. Consequently, problems are forwarded to the meta-
protein level, when measures for the quanti�cation of protein groups are calculated on the basis
of the assigned protein hits. In the MPA, this issue is addressed by providing the feature of so-
called aggregate functions: for instance, the average of all protein NSAF values can be calculated
for each meta-protein within a sample. �is method has the advantage that it can be directly
employed for the label-free quanti�cation of meta-proteins. However, an essential improvement
to this straightforward approach could be a strategy which also takes the high number of shared
peptides between homologous proteins into account [326].

Summary. In this work, the meta-protein generation is presented to reduce the redundancy
of very large protein sets and also to preserve the diversity of the protein species in metapro-
teomic analyses. Evaluating di�erent rule-based protein grouping methods, it was found that
the approach of grouping a set of proteins based on one shared peptide (Minimum One Shared)
shows the highest reduction of the protein result set. Besides tackling the redundancy issues,
a re�ned analysis of metaproteomic data is established by additional grouping features, includ-
ing mutation-tolerant grouping and taxonomic diversity preservation. In addition to successful
grouping of proteins within one result set, these �ndings indicate that the comparability of results
from replicates and completely di�erent experiments can be improved by using meta-proteins
instead of proteins as common data basis. While meta-proteins have been directly quanti�ed by
the peptide and spectral counts in these investigations, it is recommended to rely on more ac-
curate measures re�ecting the varying sequence length and high sequence similarity within the
generated protein groups.
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5.5 Investigating Techniques of Taxonomic Assignment

�e focus of Section 4.5 was the assignment of identi�cations to particular taxonomic ranks.
First, the in�uence of the protein database on the retrieved taxa was elucidated by analyzing rep-
resentative metaproteomic data from BGP samples. Moreover, the MPA so�ware was compared
to another metaproteomic analysis tool with respect to the taxon-speci�c peptide assignment
ratio. Subsequently, ground truth data from a microbial mixture sample of nine organisms was
used to evaluate the performance of both tools. In the last part of this section, results fromHIMP
samples were classi�ed according to their taxonomic composition.

5.5.1 Influence of Protein Database

Previous investigations in this work revealed that the choice of the protein database signi�cantly
a�ects the identi�cation yield (see Section 4.2). �ese �ndings were the rationale to investigate
the impact of this parameter on the taxonomic assignment process in more detail.
�e analysis carried out on data sets from three exemplary BGP samples reveals a strong e�ect

of the protein database on superkingdom-speci�c assignments: for instance, the proportion of
peptides fromGENT16 assigned to Archaea increased from 37% in SwissProt to 62% in TrEMBL
(Figure 4.26). In contrast, the eukaryotic assignments dropped from 25% in SwissProt to 9% in
TrEMBL. While these di�erences occur for GENT16 with an almost four times increase in iden-
ti�cations for TrEMBL, a strong in�uence of the protein database on the taxonomic assignments
can be recognized across all evaluated data sets. �ese �ndings can be explained by the diverg-
ing content of the database variants in UniProtKB: SwissProt contains curated information with
a particular focus on eukaryotic proteins from clinical strains, whereas TrEMBL provides a large
number of non-curated entries including a signi�cant proportion of proteins from Archaea and
Bacteria. �ese �ndings also suggest that the combined use of SwissProt or TrEMBL could pro-
vide more taxon-speci�c annotations for the protein results than the use of only one of them.
Although such a database combination increases processing time and overhead for the data inte-
gration, it improves the resolution of the taxonomic assignment process. Analogous to guideline
statements made in Section 5.2, it is generally recommended to include multiple databases into
a data analysis work�ow for metaproteomics. However, it should be also considered that Swis-
sProt features manually reviewed annotations in contrast to automatically annotated sequences
in TrEMBL (see Section 3.3.1): thus, more comprehensive and reliable meta-information can be
expected by the protein annotations in SwissProt.
Another important �nding relates to the unique taxonomic distribution observed for each

BGP result set. For instance, the results at the phylum level show that GENT16 provided more
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Euryarchaeota and fewer Firmicutes assignments than the other investigated BGP data sets. An
explanation can be that the BGP samples varied in their microbial composition due to di�ering
process parameters as already discussed in Section 5.2.1. For instance, reactor type and substrate
feed of GENT16 were signi�cantly di�erent in comparison to GENT01 andGENT07 (see Section
3.2.1). Furthermore, the temperature was di�erent for each of the three BGPs: a long-term study
on a continuously operated BGP demonstrated that the process temperature is an important
factor that a�ects microbial activity and community composition in anaerobic digesters [102]. A
desired goal of the BGP analysis is to link metaproteome results with such external parameters
to determine novel relationships between the community and its environment [93]. While early
metaproteomic studies resulted in the detection of only few proteins for the analysis of sludge
[12] and BGP [13] samples, latest developments in sample preparation and instrument technique
led to a high amount of identi�cations that render such a taxonomic analysis possible in the �rst
place [101, 131, 327].

Summary.�e�ndings show that the chosen database has a signi�cant in�uence on the assigned
identi�cations at the taxonomic levels of superkingdom and phylum. While the microbial com-
munity structure had been shown to remain relatively stable in a single BGP under changing
environmental conditions over time [102], it was found in this work that each sample from a dif-
ferent fermenter showed a characteristic taxonomic distribution. While the aim of these prelimi-
nary investigations on a limited number of three data sets was to highlight the factors in�uencing
the taxonomic data analysis of metaproteomic samples, several comprehensive studies investi-
gated the composition of microbial communities for BGP samples in more detail [101, 131, 327].
�e latter studies also showed that sequence information derived from public and metagenomic
databases are equally important for the successful taxonomic assignment of proteins.

5.5.2 Assignment Performance Evaluation

Next, the performance of the taxonomic assignment was assessed for the MPA so�ware in com-
parison to the metaproteomic analysis so�ware Unipept [276, 277]. For this analysis, the same
BGP result sets fromGENT01, GENT07 and GENT16 were used as in the previous investigation.
In comparison to the peptide-centric Unipept so�ware, it was found that the protein-based

MPA application provided increased proportions of taxonomic assignments across the data sets
and taxonomic ranks for the majority of the results. In particular, the relative amount of Swis-
sProt assignmentswas considerably higher in theMPA so�warewhen compared toUnipept (Fig-
ure 4.28). For example, the average portion of assigned peptides accounted for 78% in Unipept
at the superkingdom level for SwissProt, but the MPA could assign more than 98% of the iden-
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ti�cations. While few ranks in the GENT16 data set could be better resolved for TrEMBL when
using Unipept, the analysis shows a higher overall performance of MPA.
While the preceding �ndings suggest that the MPA can be recommended for the taxonomic

assignment of metaproteomic data, it was not possible to check errors of assignment process due
to the unknown microbial composition of the BGP samples. �erefore, ground truth data from
a mixture sample containing nine particular species was used in the next analysis to assess the
exact assignment performance of MPA and Unipept. In the original study by Tanca et al. [126],
the identi�cations from database searching were classi�ed into correct and incorrect taxonomic
assignments based on the knowledge about the actual origin of species within themicrobial mix-
ture sample. In addition, a taxon signi�cance threshold was used to �lter for taxon-speci�c as-
signments that were provided in considerable amounts. When analyzing two microbial mixture
replicate data sets from the above mentioned study, the accuracy and precision of the taxonomic
assignment methods could be assessed for the tools Unipept and MPA.
In line with the �ndings of the previous analysis on the BGP data, a markedly increased num-

ber of taxon-speci�c peptide hits was found for MPA (Figure 4.29) in comparison to Unipept
(Figure 4.30). �e results also show that increasingly more correct assignments are available
when the taxonomic rank is increased from species over genus to family. While the amount of
incorrect assignments is then proportionately increased, the application of the described taxon
signi�cance threshold can reduce or remove false attributions completely forMPA (Figure 4.29).
Conversely, for Unipept, even a �lter threshold of up to 5% could not avoid wrong assignments
at the rank of species. �e �ndings also con�rm that the threshold value of 0.5% for Unipept was
well chosen by Tanca et al. in their study, since it �lters out the great majority of incorrect iden-
ti�cations (Figure 4.30). In addition, the comparison of results between 1% and 5% FDR shows
that—in particular for MPA—a higher amount of correct assignments can be gained by a less
stringent FDR threshold. While more incorrect assignments are retrieved, applying the taxon
signi�cance threshold can also be used to increase the accuracy. Consequently, these �ndings
suggest to apply the described threshold instead of relying solely on the FDR threshold.
As alternative to the LCA-based taxonomic assignment [207, 328], the MST method was de-

veloped to preserve the peptide-level speci�city. Based on the results of the microbial mixture
data sets, the relative proportion of correct taxon-speci�c peptide identi�cation were compared
between LCA and MST in the following.
�e results indicate a trend that the developed MST method obtains more correct taxon-

speci�c peptide assignments than the conventional LCA approach (Figure 4.31). �ese �ndings
were consistent between both regarded replicate data sets. Since the LCA-based peptide assign-
ments to high-level taxa are o�en caused by conserved sequences, a noticeable bias is imposed.
In that case, the taxonomic resolution is reduced and strains or related species cannot be dis-
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tinguished anymore. On the contrary, the idea of the MST method is to preserve the peptide
speci�city and by resolving di�erences between closely related organisms. �is approach follows
a similar principle as methods that only use unique peptides being speci�c for a single organism,
as conducted in previous metaproteomic studies [113, 329]. However, the exclusive use of unique
peptides does o�en not provide enough con�dently identi�ed peptides to discriminate between
particular organisms due to low individual species coverage in metaproteomic experiments [10].
As a compromise, MST therefore also includes shared peptides for the taxonomic assignment at
the protein and meta-protein level. Consequently, unique peptides are decisive for the species-
or strain-level speci�city, while shared peptides contribute to the con�dence of the taxonomic
assignment. Eventually, common issues of metaproteomic data analysis, such as high sequence
similarity and bias in the statistical validation of identi�cations also a�ect the MST method. As
potential extension of this approach, the Pipasic algorithm by Penzlin et al. uses a similarity and
abundance correction strategy to identify and quantify identi�cations at the species level [326].

Summary. When comparing the overall performance between MPA and Unipept, the MPA is
more successful with respect to the total number of taxon-speci�c peptides, because signi�cantly
more identi�cations could be assigned to the examined taxonomic levels. Furthermore, the appli-
cation of a taxon signi�cance threshold improves the results at elevated FDR levels: consequently,
the number of false assignments is decreased, while the total amount of correct assignments is
increased in comparison to more stringent FDR thresholds. Furthermore, the �ndings indi-
cate that MST has a slightly better taxonomic assignment performance than LCA by resolving
species-related di�erences at the peptide level.

5.5.3 Phylogenetic Overview on Human Intestine Microbiota

In the next analysis, theMPA so�ware was used to process and analyzeMS/MS data fromHIMP
samples of 29 obese and non-obese individuals. �e entire taxonomic analysis of the identi�ca-
tions was performed by the supplementary use of Unipept [276], since the majority of the results
contained protein identi�cations from unannotated sequences originating from HIMPdb. �e
exported results from MPA and Unipept provided the basis for a detailed study in which the
HIMP samples were compared based on the abundance of bacterial and host proteins at the tax-
onomic and functional level [266]. While samples from a lean and an obese adolescent had been
analyzed at the proteome level [108], metaproteomic analysis on a representative cohort of adult
individuals has not been performed before. In this work, the analyses of the original study [266]
were complemented by investigating a subset of tenHIMPdata sets (HIMP10) to obtain a general
phylogenetic overview on the community composition in human gut samples.
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�e �rst analysis involved the phylogenetic classi�cation of the hits at the superkingdom level.
It was found that the vast majority of the identi�cations was assigned to bacterial origin. �e
results show that an average portion of approximately 86% identi�ed spectra and 89% peptides
were matched to Bacteria (Figure 4.32). On the contrary, only 7.5% peptides and around 10%
identi�ed spectra originated from eukaryotic taxa. Although the literature pronounces the bac-
terial predominance in human intestine samples [42], it was also demonstrated that food and
host proteins are highly relevant in the context of the interaction between host metabolism and
gut microbiota [330].
�e following investigation on bacterial phyla shows that the results are mainly in line with

previous �ndings reported on the taxonomic bacterial distribution in the human intestine. In
detail, it was found that Firmicutes (69.6%) and Bacteroidetes (21.3%) are themost abundant taxa
in the faecal samples, while Actinobacteria (7.6%) and Proteobacteria (1.5%) are less frequently
found (Figure 4.33). While the observed distribution corresponds well to �ndings of previous
studies on the composition and diversity of the human gut [105, 331, 332, 333], di�erent fractions
were reported by Kolmeder et al. [15]: in comparison to results in this work, more Actinobacteria
(33%) but lower amounts of Firmicutes (60%), Bacteroidetes (6%) and Proteobacteria (0.2%)
were reported in their work. �e di�erences in abundances might be related to the fact that only
three subjects at two di�erent time points were regarded in the latter study.
To gain a better resolution in the taxonomic analysis, the taxonomic rank was lowered by

counting the identi�ed peptides at the genus level for each of the previously described phyla.
While Firmicutes resulted in a balanced distribution on the observed genera, Bacteroidetes

display either a high abundance of Prevotella and low abundance of Bacteroides or vice versa in
between the samples (Figure 4.34). Although the results did not indicate any correlation to the
obese or lean group, determining factors with more direct in�uence on the microbial compo-
sition may play a role here: a study by Wu et al. reported a classi�cation of enterotypes based
on levels of Bacteroides and Prevotella [334]. While the Bacteroides enterotype can be associated
with a diet rich in animal and protein fat, Prevotella is linked to subjects with a carboydrate and
�ber rich diet. Moreover, a study between African and European children revealed that dietary
habits in�uence signi�cantly the Bacteroides/Prevotella balance of human gut bacteria [335].
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Summary. �e phylogenetic overview analysis, which was performed by the combined use of
MPA and Unipept, con�rms previous �ndings on the microbial composition of human intes-
tine samples: the largest proportion of the bacterial peptide assignments related to Firmicutes
and Bacteroidetes. While no indications can be observed that particular taxa were signi�cantly
more abundant in either the obese or the non-obese group of samples, a potential connection
can be guessed between dietary factors of the subjects and microbial abundance of the genera
Bacteroides and Prevotella in respective samples. However, additional information regarding diet
and lifestyle habits would be required to accurately link these results to traits and conditions. In
the next section, the assignment of metaproteomic data to protein function and metabolic path-
way will be discussed.

5.6 Assessing Methods of Functional Analysis

�e investigations of Section 4.6 dealt with the evaluation of functional analysis methods for
metaproteomic data. First, theMPAso�warewas applied formapping the results of BGPmetapro-
teomic data to functional ontologies, enzyme classi�ers and metabolic pathways. In order to
quantify the functional pro�le of metaproteomic samples, the reproducibility of the functional
assignments was tested between replicate samples in the next step. Finally, by using the pro-
tein identi�cations of the HIMP samples, a procedure was evaluated for assigning results which
contain unannotated sequences (e.g. from a metagenome database) to functions.

5.6.1 Elucidating Functional Annotation Methods

�e detailed analysis of BGP result sets shows that several functional terms and enzymes from
the methane production process could be found. �e analysis of the ontology Biological Process
reveals that "Methanogenesis" was the functional term with the most identi�cations for GENT01
and GENT07 (Figure 4.36). �e high abundance of processes and enzymes involved in the pro-
duction of biogas and methane had already been observed in metagenome and metaproteome
studies on BGP samples [5, 13, 100]. In contrast, the ontological term for the biogas production
was less frequently found in the results of GENT16. As discussed previously (see Section 5.2.1),
an explanation for this suspicious event could be that the GENT16 sample may deviate from
GENT01 and GENT07 in its microbial composition due signi�cantly di�erent process parame-
ters (see Section 3.2.1): although methanogenesis is important without any doubt, the identi�ed
proteins for GENT16might be less well annotated due to their origin from TrEMBL. In addition,
a signi�cant number of identi�cations could be assigned to "Glycolysis" for all three data sets. In
this case, an explanation can be that various enzymes from glycolysis catalyze the break down of
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carbohydrates in the BGP fermentation process [93].
�e results for the ontology Molecular Function show that the term "Acetyltransferase" rep-

resenting an important enzyme in the acetoclastic pathway is detected only for GENT01 and
GENT07 in signi�cant amounts (Figure 4.37). On the contrary, the ontological keyword "Trans-
ferase" features the highest number of assigned peptides in all three data sets. In this case, using
the plain UniProtKB keyword ontology has the limitation of concealing the hierarchy of the con-
trolled vocabulary, meaning that the relationship between proteins and ontological terms is o�en
one-to-many: in the BGP result sets, several "Transferase"-speci�c proteins might also belong to
"Acetyltransferase". Another disadvantage of the use of ontological keywords is that the terms
are necessarily subjected to manual review [336]. In particular, most of the protein entries in
TrEMBL have been computationally annotated by using inference from sequence similarity: this
procedure led to a signi�cant level ofmisannotation in this and other public databases as reported
by Schnoes et al. [337]. Finally, the data analysis work�ow developed in this work currently lacks
the feature for an enrichment analysis to identify signi�cantly under- or overrepresented func-
tional terms [338].
Beyond the ontology-based analysis features, the MPA so�ware provides a �ner granularity

of describing enzyme-catalyzed reactions for the identi�ed proteins using the EC nomenclature.
�e results show that several relevant enzymes from the methane producing pathway could be
identi�ed in the three BGP data sets (Figure 4.38, 4.39 and 4.40). For instance, it was found that
"Coenzyme-B sulfoethylthiotransferase" (EC 2.8.4.1) was the enzyme with the highest number
of assignments. �is enzyme is also called methyl-coenzymeM reductase and catalyzes the �nal
reaction in the biogas production process. Since previous studies had successfully correlated the
abundance of methyl-coenzyme M reductase genes and mRNA transcripts to methanogenic ac-
tivity by means of measured methan production [339, 340, 341], it was speculated that this key
enzyme might serve as predictive biomarker candidate for an early detection of process distur-
bances inside BGPs [93, 102]. Yet, it is unclear, whether this approach would have signi�cant
advantages over conventional BGP process monitoring methods. In line with previous �ndings
on "Glycolysis"-speci�c peptide hits, the protein "Glyceraldehyde-3-phosphate dehydrogenase"
(EC 1.2.1.12) was found in all data sets: this enzyme catalyzes the sixth step of glycolysis andmight
serve to degrade carbohydrates which are the major substrate in BGPs. While the EC nomencla-
ture serves to obtain an overview on the potential enzymatic activities in metaproteomic sam-
ples, EC numbers do not provide a wider context of protein-substrate interactions in functional
networks. For this purpose, pathway databases are more useful, since they fully describe the
biochemical reactions in which enzymes are involved.
�e KEGGmapping feature within the MPA so�ware allows to directly transfer protein iden-

ti�cations into metabolic pathways. By applying this function to the GENT01 result data, the
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conversion of acetate and carbon dioxide to methane could be directly visualized (Figure 4.41).
Moreover, a separation at the level of superkingdom via the taxonomic view in the tool enabled
to display the speci�c activity of Archaea in methanogenesis and the predominance of Bacteria
in the glycolysis/gluconeogenesis pathway. �e latter application emphasizes how information at
the taxonomic level can be combined with the functional annotation of proteins in theMPA so�-
ware. Moreover, the integrated graph database system serves to provide answers to user-de�ned
queries by pro�ting from the connectivity of such meta-information.
Similar to previous observations, it was found that the outcome of the functional analysis was

a�ected by the chosen database. Remarkably, particular important enzymes could only be ob-
served in the results from either SwissProt or TrEMBL. �us, the �ndings indicate that comple-
mentary searches against multiple databases are bene�cial for the identi�cation and quanti�ca-
tion of functional ontologies and enzymes.

Summary.�e described automated integration of semantic information reaching beyond pro-
tein identi�cation is valuable to investigate functional aspects of metaproteomic data. When
analyzing three exemplary BGP samples, typical functional terms and enzymes of the methane
production process were identi�ed. �e �ndings also show considerable sample-speci�c di�er-
ences that might be attributed to varying BGP process parameters. Evenmore importantly, since
the quality of protein annotations di�ers signi�cantly between SwissProt and TrEMBL, the func-
tional analysis is also in�uenced by the chosen database. Besides identifying and quantifying
enzymatic key players, the functional role of the microbial community can be studied by inte-
grating the results of a metaproteomic analysis into metabolic pathways. By using the MPA for
the automated mapping of identi�ed proteins into KEGG pathways, important enzymes could
be visualized inside the context of the methanogenesis metabolism. Furthermore, the bene�t of
combining phylogenetic information with pathway data was exempli�ed by demonstrating the
methanogenesis-speci�c occurrence of Archaea proteins in the data. It should be �nally noted
that several metaproteomic studies on BGP samples applied the functional analysis features of
the developed so�ware [131, 101, 327, 102].
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5.6.2 Quantifying the Functional Profile

�e functional classi�cation of metaproteomic data frequently involves multiple samples from
di�erent conditions or time points. However, the comparison of functional pro�les from such di-
verse samples demands that reproducible quantitativemeasures have been de�ned. In proteomic
literature, absolute and relative quanti�cation strategies with labeling and label-free techniques
have been described [234, 233, 232]. In metaproteomics, label-free techniques, such as spectral
counting are o�en used to circumvent experimental issues occurring during labeling of complex
samples [236, 342]. Hence, the reproducibility of functional assignments was evaluated next be-
tween result sets from replicate samples using the number of identi�ed spectra, peptides, protein
and meta-proteins as quantitative units. �e ultimate goal was to assess the applicability of these
measures for the functional analysis of results from di�erent metaproteomic samples or experi-
ments.
It could be observed that all investigated quantitative measures were highly reproducible be-

tween the technical replicate data. When correlating the number of assignments to the func-
tional ontologies Biological Process and Molecular Function, very strong correlations (0.96-1.0)
were observed for the four quantitative measures across the replicate data sets from GENT01
and GENT16 (Figure 4.41). Overall, the use of meta-proteins resulted in the highest correlation
values in comparison to the other quantitativemeasures. Furthermore, the comparison of results
from di�erent BGP data sets for the biological process of methanogenesis indicated that spec-
tra and peptides are more sensitive to changes compared to proteins and meta-proteins, since
their relative abundances varied the most across the BGP samples (Figure 4.43). Nevertheless, a
varying number of identi�ed proteins and meta-proteins can have a strong impact on the func-
tional analysis: the more di�erent enzymes are found in the results of a sample, the higher is
the coverage in the respective pathways and the more reactions in a metabolic network can be
explained.
In order to further examine the in�uence of the protein database on the enzyme coverage in

metabolic pathways, the KO and EC identi�ers were compared between the BGP data sets for
SwissProt and TrEMBL. It was found that the number of identi�ed KO numbers doubled in the
results for TrEMBL when compared to SwissProt (Figure 4.44). On the one hand, these results
con�rm the �ndings in previous sections regarding the in�uence of the chosen protein database,
on the other hand, the consequences from this impact may be more grave in this case, since
few di�erent assignments can already a�ect conclusions which are drawn based on the enzymes
found in the metabolic pathway analysis.
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Summary. It was found that the reproducibility between data sets from replicate samples was
consistently high regarding for the investigated quantitative measures (i.e. identi�ed spectra,
peptides, proteins and meta-proteins) in the exemplary functional assignment to the ontologies
Biological Process andMolecular Function. Furthermore, the evaluation of results from di�erent
metaproteomic samples suggested that changes across samples are easier to detect when counting
the spectra and peptides that were speci�c for a particular functional process. When compar-
ing the KO and EC numbers between the result sets from searches against two di�erent public
databases, it was observed again by the varying amount of assignments that the chosen database
can strongly in�uence the analysis at the functional pathway level.

5.6.3 Postprocessing Unannotated Data

�e functional analysis of results containing unannotated protein sequences (e.g. obtained from
ametagenomic database) requires additional steps to match the identi�cations against resources
that provide relevant meta-information. In this work, to enhance the results from the HIMP
samples with functional annotations, the HMMER so�ware [278] was used for searching iden-
ti�ed proteins against a bacterial EggNOG database [213] that provides orthologous groups of
proteins from complete genomes.
�e aim of the �rst analysis was to obtain a general overview on the functional pro�les of the

HIMP samples. In a second investigation, the functionally annotated data were also grouped into
bacterial taxa at the taxonomic rank of phylum; Firmicutes, Bacteroidetes, Actinobacteria and
Proteobacteria were considered here, since these had been the most abundant bacterial phyla
according to previous analyses carried out at the phylogenetic level (see Section 4.5.3).
�e �ndings of the �rst analysis show that a considerable proportion of functionally annotated

results correspond to previous �ndings in studies on the human gut microbiome. �e results for
two exemplary HIMP data sets (P1 and P23) show that the highest number of peptides were as-
signed to the EggNOG category "Carbohydrate transport and metabolism" (Figure 4.45). Since
more than 50% of the 20 most abundant NOGs belonged to this category, these data con�rm
�ndings from previous studies that highlighted the importance of carbohydrate degradation and
fermentation processes performed by gut microbiota [343, 344]. Metagenomic studies had also
shown an enrichment of genes related to carbohydrate metabolism in the gut [274, 345]. Ameta-
transcriptomic study analyzed fecal samples from two healthy subjects and reported that most
expressed genes could be related to the metabolism of carbohydrates [346]. Gosalbes et al. also
found functional groups from the latter category overrepresented in their metatranscriptome
data [69]. Furthermore, the absolute number of more than 1 000 identi�ed proteins per sample
corresponds to the �ndings of an analysis of gut metaproteome samples from three healthy in-
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dividuals that were measured over a time period of 6–12 months [15]. �e results in this work
show that "Amino acid transport and metabolim" was the second most abundant category. �e
relevance of the latter category is referenced in a recent study that describes the ability of gut
bacteria to modulate the amino acid provision by using food and host proteins [347]. Eventually,
"Energy production and conversion" was another highly abundant functional class in this anal-
ysis. Likewise, comparable abundance estimates for an analogous functional category had been
previously reported in numerous metatranscriptome and metaproteome studies on the human
gut [14, 15, 113, 69, 348].
�e second analysis combined functional informationwith taxonomic assignments at the phy-

lum level of bacterial taxa: the results show that "Carbohydrate transport and metabolism" was
the most abundant category in Firmicutes (Figure 4.46a), while this category alternated with
"Function unknown" for most assignments in Bacteroidetes (Figure 4.46b), indicating that Fir-
micutes are better characterized and annotated by their functions than Bacteroidetes. While
Kolmeder et al. counted spectral instead of peptide hits for each functional class in their study,
they also observed that the aforementioned categories were the most abundant for Firmicutes
and Bacteroidetes. �e results of this work also suggest that the functional diversity of Bac-
teroidetes and Firmicutes is higher than of Actinobacteria, because the latter phylumwasmainly
represented by assignments associated with carbohydrate metabolism and amino acid transport
(Figure 4.47a). Proteobacteria provided more di�erent functions than the other regarded phyla,
but also held considerably less assignments (Figure 4.47b). In addition, three obese samples ex-
hibited a higher abundance and functional diversity for Proteobacteria when compared to the
other data sets. However, the low number of total assigned peptides would only allow specula-
tions about any association between sample group and represented phylum in this case.

Supervised classi�cation based on bacterial functional groups. In order to �nd signi�cantly
di�erent bacterial NOGs in the samples of obese and lean subjects, the supervised classi�cation
method LEfSe was applied on the complete result set of 29HIMP samples. In their original study,
bootstrap aggregated (bagged) RDA was employed as method to identify the separating NOGs
in the same data [266]. While LEfSe is based on LDA as supervised classi�cation technique and
is frequently used for metagenomic data, bagged RDA had been previously applied in a study on
phylogenetic microarray and qPCR data [349].
It was found that the application of LEfSe could separate obese and non-obese samples on

the basis of bacterial functional groups. �e results show that 21 out of 27 signi�cantly di�erent
bacterial NOGs were characteristic for the non-obese group and could be mainly related to car-
bohydrate and amino acid metabolism (Table 4.8). �ese �ndings are in line with the original
study [266]: comparing the results of both supervised methods in detail, it can be observed that
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20 out of 25 bacterial NOGs from the latter study could be con�rmed by the results in this work.
Due to the observed reproducibility of the results, both supervised methods are justi�ed to be
applied at the functional level. Since both of them can be used on moderate sample sizes and
high variable counts, they can be recommended for the classi�cation of high-dimensional func-
tional data in metaproteomics. However, two main advantages advise the use of LEfSe instead
of other supervised classi�cation techniques: �rst, an e�ect size is provided that constitutes a
quantitative measure of the strength of an observed phenomenon. Second, LEfSe can be more
easily accessed, as it is embedded in the web-based Galaxy resource that uni�es bioinformatic
solutions for the analysis of omics data [350, 351]. Since recently, the Galaxy pipeline also o�ers
more computational methods for the analysis of metaproteomic data [352].

Summary. To sum up, it can be constituted that the functional pro�le analysis on HIMP sam-
ples con�rms previous �ndings reported by studies on the gastrointestinal tract: in particular, the
EggNOG analysis revealed a high abundance of peptides from enzymes responsible for carbo-
hydrate transport and metabolism. Furthermore, the combination of functional and taxonomic
information highlighted that carbohydrate degradation was themost abundant enzymatic group
in Firmicutes. In addition, the application of the supervised classi�cation method LEfSe showed
that 27 bacterial NOGs were signi�cantly di�erent between the obese and the non-obese group
of individuals. Overall, the retrieval of these key enzymes presents the starting point for further
more detailed investigations that determine which microbial species interact in the intestine of
healthy individuals to ful�ll the most important tasks, for instance, accomplishing a e�cient
digestion of carbohydrates. In practice, the ultimate goal of longitudinal studies with a larger
sample size would be to examine whether the gut microbiome can be altered to restore the health
status of the host. Eventually, modulations of composition andmetabolism of the gut microbiota
could be induced by diet [353], tailor-made probiotics [354] or fecal bacteriotherapy [355].
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6
Conclusion and Outlook

�e general aim of this work was to develop and evaluate computational methods for analyzing
MS-based proteomic data sets derived from microbial community samples. While metapro-
teomics presents a promising technique for identifying and quantifying the whole set of proteins
in a microbial community, it could be recognized in the �rst place that adequate bioinformatic
analysis methods and dedicated so�ware tools were lacking in this research �eld. �e �rst ob-
jective was therefore to develop a data analysis pipeline geared towards metaproteomic data sets.
While various computational methods have been developed and are commonly used for the pro-
teomic analysis of pure-culture samples, a thorough testing of protein identi�cation search algo-
rithms and respective parameter settings had not been performed on the basis of metaproteomic
data. �erefore, the second objective was to investigate available computational methods and to
identify their limitations in relation to the data analysis in metaproteomics. Subsequently, allevi-
ating these bottlenecks guarantees the eligibility of data analysis strategies to complex samples of
microbial communities. �e third objective was to analyze and interpret metaproteomic results
with the focus on evaluatingmethods beyond protein identi�cation, namely (i) protein grouping,
(ii) taxonomic assignment and (iii) functional analysis.
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Development of metaproteomic analysis so�ware. �e �rst part of this work presents the de-
velopment of an analysis so�ware that is tailored towards metaproteomic data sets. �e MPA
so�ware was a major milestone in this work, since it allowed to process and analyze a high num-
ber of MS/MS data sets derived from diverse metaproteomic samples. �e tool integrates several
commonly used search algorithms and combines their results to increase the identi�cation yield.
While the identi�cation of peptides and proteins constitutes an essential step in any proteomic
analysis work�ow, it is more the starting point than the �nal goal regarding the analysis of micro-
bial community composition and function. For further detailed investigations, public databases
harbor a large quantity of relevant meta-information at the protein level. Since it can be te-
dious and error-prone to manually link search results of a metaproteomic experiment to these
resources, the developed so�ware retrieves such metadata from various sources in an automated
fashion and annotates each protein hit in the result set. In this procedure, the processed data are
categorizedmeaningfully: for instance, proteins are classi�ed according to their enzymatic func-
tion or taxonomic origin. Another advantage of the MPA application presents the meta-protein
generation function that allows the grouping of redundant protein identi�cations obtained from
sequence databases which contain many homologous entries from di�erent organisms. �is fea-
ture enables the user to dynamically choose one ormultiple groupingmethods; each rule presents
a re�nement strategy, ranging from taxonomy-based common ancestor approaches to methods
based on protein sequence similarity. �erefore, instead of providing a static one-�ts-all solution
to the protein inference problem, the developed feature of meta-protein generation aims to be
�exible enough to consider diverse objectives when grouping protein results.
�e graphical user interface of theMPA so�ware includes numerous visualization features that

help to address questions related to the analysis ofmetaproteomic data by categorizing the results
into di�erent functional or phylogenetic classes. Another degree of usability is added by the
graph-based database system that allows the user to submit speci�c queries accounting for more
complex questions that are not covered by the default representation of the results in the so�ware.
Moreover, the implementation of a direct mapping of proteins into pathways can be used to gain
a comprehensive overview on the potential metabolic activities of the involvedmicrobial species.
While the so�ware has been developed with the main focus on analyzing metaproteomic data,
it is also a powerful data analysis tool for pure-culture proteomics in general: the meta-protein
generation and the automated integration ofmeta-information at the protein level are innovative
and useful techniques that had not been realized in any proteomic so�ware work�ow.
Although the current MPA so�ware provides a project management system which includes

the �exible storage of multiple searches, it lacks the possibility of comparing di�erent result sets
between stored experiments. A straightforward solution could be to extend the existing graph
database structure by including additional nodes for experiments and projects. However, such
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a useful feature would also require additional development with respect to statistical methods
for the qualitative and quantitative comparison of the results. It should also be noted that the
current so�ware architecture presents a compromise between solid server infrastructure and
light-weight desktop so�ware. Amore powerful cluster- or cloud-based solution could therefore
handle the huge amount of upcoming high-throughput data in metaproteomics more e�ciently.
�e use of multiple cores and also server instances would highly reduce the running times by
executing the database search algorithms in parallel tasks. Moreover, the current requirement
of a server system impedes the portability of the application. In this context, a single so�ware
package that bundles algorithms and storage database might be of use to laboratories without
access to extensive resources of IT hardware and expertise.

Evaluation of identi�cationmethods and parameters. A�er the development of theMPA so�-
ware which provided the required computational framework for the major part of this work,
the second milestone was to evaluate di�erent methods and selected parameters used to iden-
tify peptides and proteins from MS/MS-based metaproteomic data. �e rationale behind this
task was to detect particular issues occurring during the computational analysis. Based on the
identi�ed bottlenecks, guidelines can be proposed for the optimal use of data analysis methods
in metaproteomic research to increase the reliability of individual experiments and the compa-
rability between di�erent studies: besides varying sample preparation techniques, much bias is
introduced by the heterogeneous use of data analysis procedures between di�erent labs. As a
summary of this work, an schematic overview provides detailed recommendations for an opti-
mized data analysis work�ow in the context of MS/MS-based metaproteomics (Figure 6.1). In
the following, reference is made to the corresponding steps of this proposed work�ow.
By analyzing representative metaproteomic data sets from biogas plant and human intestine

samples (Figure 6.1; Step 1), it is demonstrated that sequence database, search algorithm and
search parameters each strongly a�ect the identi�cation yield. Among these factors, the most
important one presents the choice of the sequence database (Figure 6.1; Step 2). It was found
that searching against metagenome databases can improve the performance of a metaproteomic
experiment with respect to the number of identi�ed spectra and unique peptides. However, the
�ndings also indicate that the success of a performed analysis depends on the relationship be-
tween the microbial community of the sample under investigation and the specimen that served
as template for the metagenome. In addition, it can be observed that public databases, such as
SwissProt and TrEMBL, also provide signi�cant amounts of exclusive identi�cations that cannot
be retrieved when matching MS/MS spectra against a metagenome background. To increase the
total identi�cation yield, it is therefore recommended to complement metagenome sequences by
protein entries from public databases which hold the additional advantage of providing mostly
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Chapter 6 Conclusion and Outlook

Figure 6.1: Optimized data analysis workflow for metaproteomics. The overview figure includes rec-
ommendations for a data analysis workflow in metaproteomics. Details on the steps 1--10 are given in the
text.

well-annotated information. Moreover, the �ndings of the HIMP data analysis also advocate the
use of single genomes from organisms that are suspected to be present in the samples. Finally,
a balanced customization of the database is required to minimize the risk of biasing towards
particular strains.

�e next observed obstacle refers to the frequently neglected in�uence of the database size on
the identi�cation yield: themost severe issue is caused by applying the target-decoy approach for
estimating the FDR to search hits from large metaproteomic databases: the benchmark exper-
iment in which Pyrococcus furiosus data were searched against a database with many unrelated
sequences reveals that valuable identi�cations are lost, since an increase of the protein search
space increases the number of decoy hits as false positive estimates. �is results in an overesti-
mation of the FDR and decreased identi�cation yields in metaproteomic analyses. Conversely, it
could be observed that a two-step searching method results in a drastically increased number of
identi�cations, but underestimates the FDR due to a overly reduced database size a�er the �rst

136



database search round. While a reduction of the database is generally recommended, it is o�en
not feasible to exclude particular sequence a prioriwhen the actual composition of the microbial
sample is unknown. �erefore, searching against subsets of a large databases is proposed in this
work as an alternative to two-step searching (Figure 6.1; Step 3). Subset searching reduces the
search space for each identi�cation round and signi�cantly increases database-speci�c identi�-
cations in comparison to classic database searching. Moreover, it can be recognized in this work
that search algorithms and methods for the statistical validation of database search results need
to be further improved to account for issues resulting from complex search spaces, as in the case
of metaproteomics or proteogenomics. In particular, the target-decoy approach should be care-
fully applied for the FDR estimation. �e results also show that using di�erent missed cleavage
settings and combining the results increases the number of identi�cations (Figure 6.1; Step 4).
To that end, searching with varying parameter values can also help to validate doubtful results by
comparing the respective outcome of di�erent settings. Furthermore, the �ndings in this work
show that the use of multiple search engines and the subsequent combination of the results sig-
ni�cantly increase the number of identi�cations (Figure 6.1; Step 5). According to the results in
this work, an FDR threshold of 5% can be recommended to increase the identi�cation yield in a
metaproteomic experiment (Figure 6.1; Step 6). If two-step searching is applied, however, a more
stringent threshold of 1% FDR should be considered to counteract the potential increase of false
positive identi�cations.
Since the in�uence of the database and the frequent lack of sequence information present

severe challenges in metaproteomics, the method of de novo sequencing becomes an interesting
alternative. However, the �ndings show that the overlap between results from this technique
and database searching is low. Moreover, the number of de novo peptides that were matched
successfully against a provided protein sequence database could not justify the e�ort of using de
novo sequencing to validate questionable peptide hits from conventional database searching. As
a consequence, a clear bene�t of using de novo sequencing as complementarymethod to database
searching cannot be determined.
Besides the issues found during the evaluation of the data analysis methods, each additional

method that is carried out raises computational running time as well as practical e�ort with
respect to combination and validation of the results. As a consequence, primarily to the actual
study, performing pilot experimentswith di�erent settings and a subsequent cost-bene�t analysis
represent recommendedmeans to approximate an optimal work�ow for the analysis of metapro-
teomic data. Finally, another promising strategymight be the alternative use of spectral libraries:
while this method could not be evaluated due to the lack of metaproteome reference data, a de-
velopment in the future could be the construction of customized spectral libraries on the basis
of validated metaproteome results from previous database searches. �is technique would be
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particularly time-saving for repeated measurements or samples from which the same or related
microbial communities have already been characterized in previous experiments.

Methods beyondprotein identi�cation. In the last part of this work, the importance ofmethods
for postprocessing protein data is highlighted, since much valuable semantic context is required
for metaproteomic studies. During the analysis of microbial communities, identi�cations of-
ten occur redundantly due to many homologous entries in protein databases. To reduce this
redundancy, a contribution in this work presents the feature of meta-protein generation based
on di�erent rules that enable the grouping of proteins in the result set. �e comparative analy-
sis of these rules shows that the highest reduction of proteins is achieved by the Minimum One
Shared method which merges a set of proteins sharing at least one peptide (Figure 6.1; Step 7).
While the protein grouping is already useful for the application within a single result set, it also
increases the comparability of results when providing a common set of meta-proteins shared be-
tween data sets from di�erent samples. Additional rules, for instance, allowing point mutations
at the peptide level or using a �xed maximum taxonomic convergence level, are viable options
for user-de�nable grouping of proteins in metaproteomic experiments.
When investigating the in�uence of the protein database on the taxonomic assignment of well-

annotated protein data from BGP samples, signi�cant phyla-related di�erences can be observed
between the results of searches against SwissProt and TrEMBL. While the resolution of the tax-
onomic analysis might be increased by searching against both public database variants, in case
of doubt, it is recommended to rely on the manually curated SwissProt rather than the automat-
ically annotated TrEMBL. In the ideal case, metagenomic sequences ensure the assignments by
providing phylogenetic information in addition to public databases.
�e correct taxonomic assignment of the results is essential for drawing conclusions on the

composition of a studied microbial sample (Figure 6.1; Step 8). When using data sets of known
microbial composition, MPA outperforms Unipept by yielding signi�cantly more correct taxon-
speci�c peptides. Instead of relying on a �xed FDR cuto� value, a phylogenetic �ltering threshold
is recommended to reduce the fraction of incorrect taxonomic assignments. As alternative to the
commonly used LCA approach, the developed MST method shows a trend towards more cor-
rect taxonomic assignments. �e idea of the latter method is to di�erentiate more accurately
between closely related species or strains by preserving the peptide speci�city. Finally, the taxo-
nomic analysis of data fromHIMP samples suggests a link between dietary factors andmicrobial
abundance of the taxonomic generaBacteroides and Prevotella, butmore information on diet and
lifestyle habits of the individuals is required to investigate these �ndings in su�cient detail. In
this analysis, a combination of MPA and UniPept assists to process and interpret unannotated
protein sequence data.
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Based on annotated protein data from public resources, the proposed metaproteomic analysis
work�ow provides detailed functional information (Figure 6.1; Step 9). Besides the use of func-
tional ontology data, the MPA features EC- and KEGG-based categorization views that allow to
directlymap relevant protein identi�cations intometabolic pathway routes. In line with previous
�ndings during the taxonomic analysis of annotated protein data, the chosen sequence database
has a high in�uence on the functional assignment: the investigated BGP samples show a sig-
ni�cantly di�erent abundance of key enzymes from the methanogenesis pathway between the
public database variants. Due to the complementary detection of important functional entities,
parallel searches against SwissProt and TrEMBL can increase the overall information content of
the analysis. In line with previous recommendations in this work, the strategy of using a less
strict FDR threshold of 5% can be useful here to increase the number of functional assignments
and mappings to KEGG pathways. However, the user is then in charge to resolve uncertain
or incorrect assignments of the proteins manually. Furthermore, the results of this work show
that taxonomic and functional information should be combined to unveil properties that remain
hidden when investigated separately: for example, it can be detected which species perform a
particular function in the community. Finally, the functional analysis of unannotated protein
sequences is demonstrated by matching protein identi�cations of the HIMP data sets against
the EggNOG database. Remarkably, the �ndings of this exemplary analysis correlate well with
reports on functional categories from previous omics-based studies on the human gastrointesti-
nal tract. Ultimately, the work is concluded using a supervised method for identifying bacterial
enzymes that di�er signi�cantly between the result data from lean and obese subjects. In this
analysis, 27 functional assignments which are identi�ed to vary signi�cantly between the two
groups con�rm the �ndings of a study in which a more detailed functional analysis has been
carried out [266].

Eventually, an optimized analysis work�ow should also provide features for a detailed inter-
pretation of the results and o�er a reliable data storage (Figure 6.1; Step 10). While the MPA
so�ware meets these latter requirements, it has been designed to be extended by more external
resources, such as further databases containing enzymatic or ontological information. Another
future development presents the implementation of a strategy which automatically annotates
protein sequences from metagenome and other non-reference databases: currently, UniProtKB
reference entries are supported to retrieve comprehensivemeta-information that enables the tax-
onomic and functional analysis. For instance, an additional proteinmapping feature would allow
to match unannotated sequences against a well-annotated public database. In this scenario, each
identi�ed protein could be updated within an automated processing step by including relevant
annotations. In addition, a full integration ofUnipept can increase the information content of the
taxonomic analysis, in particular, when identi�cations are obtained from unannotated protein
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sequences, as commonly given by metagenome databases (Figure 6.1; Step 8). Finally, the auto-
mated retrieval of meta-information from the EggNOG database can add essential knowledge
about protein functions to the analysis work�ow (Figure 6.1; Step 9).
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Table A.1: The relationship types and descriptions for the graph database schema are shown. Out and In are
defined as nodes with outgoing and incoming relationship direction. Table adapted fromMuth et al. [256].

Relationship type Relationship description

HAS_PEPTIDE Proteins that share certain peptides; Out: Proteins;
In: Peptides.

IS_MATCH_IN PSMs that match for peptides. Out: PSMs; In: Pep-
tides.

BELONGS_TO Proteins that belong to certain taxonomies; Out:
Proteins; In: Taxonomies.

BELONGS_TO_ENZYME Proteins that ful�ll an enzymatic function; Out:
Proteins; In: Enzymes.

BELONGS_TO_PATHWAY Proteins that are part of certain pathways; Out: Pro-
teins; In: Pathways.

INVOLVED_IN_BIOPROCESS Proteins that are involved in biological processes;
Out: Proteins; In: Ontologies (Biological Process).

HAS_MOLECULAR_FUNCTION Proteins that have certain molecular functions;
Out: Proteins; In: Ontologies (Molecular Func-
tion).

BELONGS_TO_CELL_COMP Proteins that belong to cellular components; Out:
Proteins; In: Ontologies (Cellular Component).

IS_SUPERGROUP_OF Relationship to re�ect the enzyme (EC) hierarchy;
Out: Enzymes; In: Enzymes.

IS_ANCESTOR_OF Relationship for the taxonomic hierarchy (reaching
from superkingdom to species); Out: Enzymes; In:
Enzymes.

IS_METAPROTEIN_OF Relationship between protein groups and proteins;
Out: Proteins; In: Proteins.
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Table A.2: Number of identified peptides that could be uniquely mapped against an in silico digest of
the respective subset database (MS/MS spectra, percentage of identified spectra, spectrum and peptide
identifications using X!Tandem and OMSSA for HIMP10 data sets searched against HIMPdb (FDR < 1%). Table
adapted fromMuth et al. [273].

Data set Total ID (%) Peptides Spectrum IDs Peptide IDs

X!Tandem OMSSA X!Tandem OMSSA

P1 35 179 22.2 6 274 7 353 4 915 5 268 3 930
P3 26 560 17.0 4 260 4 291 4 105 3 366 3 351
P8 31 891 21.6 5 651 6 665 4 750 4 692 3 752
P11 31 744 17.6 4 590 5 366 3 134 3 907 2 532
P17 32 203 22.3 5 997 6 849 4 058 5 140 3 425
P23 34 050 24.2 6 278 8 030 3 726 5 553 3 049
P27 27 339 17.2 3 966 4 475 3 512 3 338 2 745
P28 32 037 21.4 5 353 6 470 3 464 4 527 2 801
P31 35 848 24.4 6 987 8 504 5 807 5 766 4 532
P34 30 524 22.0 5 400 6 453 3 371 4 678 2 804

Average 31 737 21.2 5 476 6 446 4 084 4 624 3 292

Table A.3: Number of identified peptides from HIMP data sets P1-P34 that could be uniquely mapped against
an in silico digest of the respective databases (FDR < 5%). Database search was performed by using X!Tandem
andOMSSA against the listed databases representing the subsets of the HIMPdb database. Table adapted from
Muth et al. [273].

Dataset Bact594 Qin2010 Kurokawa2007 Human2010 Human2010old Food

P1 376 3 177 98 3 10 40
P3 241 1 996 55 4 7 24
P8 315 2 765 87 4 10 42
P11 218 2 712 45 8 14 23
P17 286 2 887 94 3 10 26
P23 328 2 886 123 2 7 27
P27 220 2 091 71 5 7 25
P28 280 2 368 63 5 4 43
P31 370 2 577 113 3 11 50
P34 318 2 102 64 1 9 31

Table A.4: Proportion of UniProtKB/TrEMBL peptide identifications for GENT01, GENT07 and GENT16 (FDR <
5%) that could be matched against UniProtKB/SwissProt and BGPMG.

Dataset Total UniProtKB/SwissProt BGPMG

GENT01 721 266 (36.9%) 95 (13.2%)
GENT07 417 158 (37.9%) 83 (19.9%)
GENT16 1 910 282 (14.8%) 141 (7.4%)

180



TableA.5:Numberof PSMsandpeptides identifiedby searchingHIMPdata sets P1, P23 andP34withX!Tandem
and OMSSA against HIMPdb, Bact594db and Qin2010db. In addition, two-step searching against HIMPdb was
performed (FDR < 5%). Table adapted fromMuth et al. [273].

Dataset HIMPdb Bact594db Qin2010db HIMPdb Two-step

PSMs Peptides PSMs Peptides PSMs Peptides PSMs Peptides

P1 11 133 8 473 6 694 4 841 10 562 8 012 24 469 27 136
P23 11 288 8 255 6 655 4 614 10 428 7 730 28 132 31 913
P34 9 491 7 231 6 274 4 686 8 425 6 599 24 888 27 769

Table A.6: Number of Bact594db-specific PSMs and peptides identified by database searches against HIMPdb
and Bact594db for HIMP data sets P1, P23 and P34 at 1% and 5% FDR. Table adapted fromMuth et al. [273].

Dataset
1% FDR 5 % FDR

HIMPdb Bact594db HIMPdb Bact594db

PSMs Peptides PSMs Peptides PSMs Peptides PSMs Peptides

P1 224 158 404 293 488 376 758 645
P23 197 137 335 246 423 328 712 600
P34 157 109 314 227 395 318 625 549

Table A.7: Number of Qin2010db specific PSMs and peptides identified by database searches against HIMPdb
and Qin2010db for data sets P1, P23 and P34 at 1% and 5% FDR. Table adapted fromMuth et al. [273].

Dataset
1% FDR 5 % FDR

HIMPdb Qin2010db HIMPdb Qin2010db

PSMs Peptides PSMs Peptides PSMs Peptides PSMs Peptides

P1 2 851 2 013 3 424 2 423 4 296 3 177 4 556 3 487
P23 2 661 1 894 3 191 2 316 3 817 2 886 4 156 3 234
P34 1 687 1 333 2 071 1 612 2 608 2 102 2 841 2 346

Table A.8: Number of identifications for data sets P1, P23, and P34 using chymotrypsin and pepsin A cleavage
settings at 1% and 5% FDR. Table adapted fromMuth et al. [273].

Dataset
1% FDR 5 % FDR

chymotrypsin pepsin A chymotrypsin pepsin A

PSMs Peptides PSMs Peptides PSMs Peptides PSMs Peptides

P1 90 91 88 88 90 91 88 88
P23 63 62 66 67 63 62 66 67
P34 47 47 63 64 47 47 63 64
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Table A.9: PFU result score threshold values using X!Tandem and OMSSA for searching against Pyrodb,
PyroHIMPdb and PyroHIMPdb (two-step searching) at 1% and 5% FDR.

Database X!Tandem OMSSA

1% FDR 5% FDR 1% FDR 5% FDR

Pyrodb 25.9 21.1 7.4 -9.9
PyroHIMPdb 43.4 37.6 29.3 10.2
PyroHIMPdb (two-step searching) 27.6 21.8 7.3 -11.2

Table A.10:Number of species-specific peptides identifications for data sets 9MM_FASP and 9MM_PPID using
MPA and UniPept at 1% and 5% FDR. Taxon filter (TF) thresholds of 0.5% and 3% were employed.

Species 1% FDR 5 % FDR

MPA UniPept MPA UniPept

TF 0.5% 3% 0.5% 3% 0.5% 3% 0.5% 3%

Escherichia coli 71 0 0 0 117 0 0 0
Lactobacillus acidophilus 185 185 56 56 230 230 60 60
Lactobacillus casei 97 0 0 0 125 0 0 0
Pasteurella multocida 554 554 191 191 675 675 232 232
Pediococcus pentosaceus 150 150 58 58 178 178 63 63
Saccharomyces cerevisiae 1 222 1 222 54 54 1 573 1 573 69 69
Incorrect 338 0 43 40 632 0 106 46

Table A.11: Number of genus-specific peptides identifications for data sets 9MM_FASP and 9MM_PPID using
MPA and UniPept at 1% and 5% FDR. Taxon filter (TF) thresholds of 0.5% and 3% were employed.

Genus 1% FDR 5 % FDR

MPA UniPept MPA UniPept

TF 0.5% 3% 0.5% 3% 0.5% 3% 0.5% 3%

Brevibacillus 31 0 0 0 40 0 0 0
Escherichia 75 0 0 125 0 0 0
Lactobacillus 512 512 259 259 645 645 309 309
Pasteurella 554 554 247 247 675 675 296 296
Pediococcus 155 155 94 94 184 184 103 103
Saccharomyces 1 227 1 227 471 471 1 580 1 580 581 581
Incorrect 356 129 40 40 867 185 178 0
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Table A.12: The 20 most abundant NOGs with respect to assigned proteins for the HIMP data set P1. The
identifications were obtained by searching with X!Tandem and OMSSA against HIMPdb at 5% FDR.

Category Description Proteins Peptides

E Glutamate dehydrogenase 149 337
G Catalyzes the reversible conversion of 2PG into PEP 104 150
C Phosphoenolpyruvate Carboxylase 92 119
G Catalyzes the conversion of L-arabinose to L-ribulose 88 141
G Uronic isomerase 85 151
G Solute-binding protein 76 210
G Converts the aldose L-fucose into ketose L-fuculose 71 142
G Phosphohexose isomerase 69 132
G Extracellular solute-binding protein family 1 67 186
G Xylose Isomerase 66 99
I Acetyl-coa acetyltransferase 52 87
C Alcohol dehydrogenase 51 87
G Catalyzes the interconversion of 2PG and 3PG 38 79
G glyceraldehyde-3-phosphate dehydrogenase 37 50
C Transferase 29 49
C Dehydrogenase 28 63
G Solute-binding protein 28 34
M (No annotation provided) 24 84
E M18 family aminopeptidase 24 49
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Table A.13: The 20 most abundant NOGs with respect to assigned proteins for the HIMP data set P23. The
identifications were obtained by searching with X!Tandem and OMSSA against HIMPdb at 5% FDR.

Category Description Proteins Peptides

E Glutamate dehydrogenase 113 228
G Solute-binding protein 110 290
G Xylose Isomerase 77 110
G Uronic isomerase 69 119
G Extracellular solute-binding protein family 1 59 187
G Catalyzes the conversion of L-arabinose to L-ribulose 55 103
C Alcohol dehydrogenase 54 93
G Phosphohexose isomerase 53 99
G Converts the aldose L-fucose into ketose L-fuculose 48 108
E Aminoacyl-histidine dipeptidase 48 64
E M18 family aminopeptidase 44 96
C Phosphoenolpyruvate Carboxylase 41 69
G glyceraldehyde-3-phosphate dehydrogenase 41 46
G Catalyzes the interconversion of 2PG and 3PG 40 93
S Basic membrane 32 65
G Catalyzes the reversible conversion of 2PG into PEP 32 51
G Extracellular solute-binding protein family 1 31 94
I Acetyl-coa acetyltransferase 30 48
G Alpha amylase, catalytic 27 80
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TableA.14:Peptideandproteinassignments toEggNOGcategories for theHIMPdata setP1. The identifications
were obtained by searching with X!Tandem and OMSSA against HIMPdb at 1% and 5% FDR.

Category Name 1% FDR 5 % FDR

Proteins Peptides Proteins Peptides

Carbohydrate transport and metabolism 965 1 873 1 189 2 540
Function unknown 298 755 373 1 035
Amino acid transport and metabolism 324 709 454 1 059
Energy production and conversion 250 451 316 635
Lipid transport and metabolism 85 144 96 189
Cell wall/membrane/envelope biogenesis 44 138 53 182
Inorganic ion transport and metabolism 33 99 38 133
Metabolites synthesis, transport and catabolism 15 53 17 61
PTM, protein turnover, chaperones 14 33 19 50
Cell motility 9 28 16 45
Coenzyme transport and metabolism 11 27 13 33
Transcription 8 14 9 19
Tra�cking, secretion, and vesicular transport 7 12 7 13
Signal transduction mechanisms 1 8 1 8
Nucleotide transport and metabolism 3 5 7 12
Defense mechanisms 1 5 1 7
Translation, ribosomal structure and biogenesis 1 2 1 2
Cell cycle control and division 1 2 1 2
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Table A.15: Peptide and protein assignments to EggNOG categories for HIMP data set P23. The identifications
were obtained by searching with X!Tandem and OMSSA against HIMPdb at 1% and 5% FDR.

Category Name 1% FDR 5 % FDR

Proteins Peptides Proteins Peptides

Carbohydrate transport and metabolism 986 2 140 1 156 2 768
Function unknown 369 883 450 1 171
Amino acid transport and metabolism 370 787 486 1 138
Energy production and conversion 191 377 235 515
Cell wall/membrane/envelope biogenesis 26 120 29 142
Lipid transport and metabolism 43 92 51 114
Inorganic ion transport and metabolism 15 53 21 75
PTM, protein turnover, chaperones 18 42 19 52
Nucleotide transport and metabolism 17 36 21 51
Metabolites synthesis, transport and catabolism 15 34 20 50
Cell motility 16 28 20 37
Transcription 6 18 6 20
Coenzyme transport and metabolism 2 4 2 4
Signal transduction mechanisms 1 2 2 4
Tra�cking, secretion, and vesicular transport 0 0 2 4

Table A.16: Number of phylum-level peptide identifications for HIMP10 data sets that could be functionally
assigned to the bacterial EggNOG database.

Data set Actinobacteria Bacteroidetes Firmicutes Proteobacteria

P1 117 370 782 6
P3 144 89 528 6
P8 278 144 717 3
P11 114 115 375 2
P17 115 333 736 3
P23 109 302 818 2
P27 65 104 447 5
P28 108 256 713 31
P31 138 688 856 19
P34 273 325 624 18

Average 146 273 660 10
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Figure A.1: Comparative evaluation of the identification yield for different MC values (HIMP). The bar
plots show the total number of (a) PSMs and (b) peptides for data sets P1, P23, and P34 when using missed
cleavage parameter values MC = 0 - 3 at 5% FDR. Identification results were combined from searching with
X!Tandem and OMSSA against HIMPdb.

Figure A.2: Comparison of total and exclusive peptides for different MC values (P23). The line charts
display the number of (a) total and (b) exclusive peptides for data set P23 when using missed cleavage
parameter valuesMC= 0 - 3 as a function of the respective FDR threshold. Peptides were called exclusive when
being identified uniquely for a particular MC parameter value.
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Figure A.3: Comparison of total and exclusive peptides for different MC values (P34). The line charts
display the number of (a) total and (b) exclusive peptides for data set P1whenusingmissed cleavage parameter
values MC = 0 - 3 as a function of the respective FDR threshold. Peptides were called exclusive when being
identified uniquely for a particular MC parameter value.

Figure A.4: Reproducibility of peptide hits between technical replicates for GENT16. The plots compare
the peptides that were reproducibly identified between GENT16 replicates on the basis of the spectral count
at (a) 1% and (b) 5% FDR. The color scale represents the number of identified peptides; low amounts in bright
blue and high amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in
the lower right corner of each panel.

188



Figure A.5: Reproducibility of protein hits between technical replicates for GENT16. The plots compare
the proteins that were reproducibly identified between GENT16 replicates on the basis of their (a) peptide
and (b) spectral count at 5% FDR. The color scale represents the number of identified proteins; low amounts
in bright blue and high amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is
displayed in the lower right corner of each panel.

Figure A.6: Reproducibility of meta-protein hits between technical replicates for GENT16. The plots
compare the meta-proteins that were reproducibly identified between GENT16 replicates on the basis of their
(a) peptide and (b) spectral count at 5% FDR. Meta-proteins were generated by using theMinimumOne Shared
rule. The color scale represents the number of identified meta-proteins; low amounts in bright blue and high
amounts in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in the lower
right corner of each panel.
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Figure A.7: Reproducibility of meta-protein hits between technical replicates for GENT16. The plots
compare the meta-proteins that were reproducibly identified between GENT16 replicates on the basis of their
(a) peptide and (b) spectral count at 5% FDR. Meta-proteins were generated by using the All Shared rule. The
color scale represents the number of identified meta-proteins; low amounts in bright blue and high amounts
in dark blue, respectively. The Pearson correlation coefficient (pearsonr) is displayed in the lower right corner
of each panel.

Figure A.8: Phylogenetic classification of BGP data set GENT01 based on number of peptides per
superkingdom. The pie charts display the relative distribution of total peptide hits retrieved from (a) SwissProt
and (b) TrEMBL searches. The total number of assigned peptides is provided above each chart panel (n).
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Figure A.9: Phylogenetic classification of BGP data set GENT07 based on number of peptides per
superkingdom. The pie charts display the relative distribution of total peptide hits retrieved from (a) SwissProt
and (b) TrEMBL searches. The total number of assigned peptides is provided above each chart panel (n).
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Figure A.10: KEGG reference pathway of carbon metabolism (map01200) for GENT01 protein hits
from Archaea. The edges represent enzymes required for the conversion of one metabolite into another.
The identified proteins of the data set are highlighted in red after submission to the KEGG website. The
identifications were obtained by searching with X!Tandem and OMSSA against SwissProt at 5% FDR.
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Figure A.11: KEGG reference pathway of carbon metabolism (map01200) for GENT01 protein hits
from Bacteria. The edges represent enzymes required for the conversion of one metabolite into another.
The identified proteins of the data set are highlighted in red after submission to the KEGG website. The
identifications were obtained by searching with X!Tandem and OMSSA against SwissProt at 5% FDR.

193



Figure A.12: KEGG reference pathway of amino acid synthesis (map01230) for GENT01 protein hits
from Archaea. The edges represent enzymes required for the conversion of one metabolite into another.
The identified proteins of the data set are highlighted in red after submission to the KEGG website. The
identifications were obtained by searching with X!Tandem and OMSSA against SwissProt at 5% FDR.
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Figure A.13: KEGG reference pathway of amino acid synthesis (map01230) for GENT01 protein hits
from Bacteria.. The edges represent enzymes required for the conversion of one metabolite into another.
The identified proteins of the data set are highlighted in red after submission to the KEGG website. The
identifications were obtained by searching with X!Tandem and OMSSA against SwissProt at 5% FDR.
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Figure A.14: Reproducibility of ontology-specific assignments across technical replicates for GENT16.
Each scatter plot compares either the number of (a) spectra, (b) peptides, (c) proteins and (d) meta-proteins
that were reproducibly assigned across two replicate experiments to the functional ontologies Molecular
Function (blue) and Biological Process (green). The data set GENT16 was searched against SwissProt (5% FDR).
Meta-proteins were generated by using the Minimum One Shared rule. The Pearson correlation coefficient
(pearsonr) is displayed in the lower right corner of each panel.
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Figure A.15: Total number of "Carbonmetabolism"-specific peptide assignments for BGP data sets. The
bar plots show the total amount of peptide assignments to the pathway carbonmetabolism (KEGGmap01200)
for GENT01, GENT07 and GENT16. The results were obtained by searching with X!Tandem and OMSSA against
SwissProt and TrEMBL at (a) 5% and (b) 1% FDR.
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