Safe and Efficient Hierarchical Planning
and Control of Mobile Raobots:
Moving-Horizon Optimization with Local
Sensing

Dissertation
zur Erlangung des akademischen Grades
Doktoringenieur
(Dr.-Ing.)

von
Mohamed Abd Alla Mohamed Soliman
geboren am 09.02.1987 in Fayoum, Egypt

genehmigt durch die Fakultat fir Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universitdt Magdeburg

Gutachter: Prof. Dr.-Ing. Rolf Findeisen
Prof. Dr.-Ing. Achim Kienle

Promotionskolloquium am 20.June 2025






“Science is the great antidote to the poison of enthusiasm and superstition.”

Adam Smith, Scottish philosopher (x1723 +1790) [184]






Contents

Abstract 1
Deutsche Kurzfassung \Y
1 Introduction and Motivation 1
1.1 Main contributions . . . . .. .. ... 6
1.2 Outline. . . . . . . . 8

2 Optimization Based Motion Planning for Mobile Robots 11
2.1 Mobile Robots and Navigation . . . . . . ... ... ... ... ..... 11
2.2 The General Path Planning Problem . . . . .. ... ... ... ... .. 13
2.3 Classifications of Planning Problems . . . . . . . . ... ... .. ... 15
2.4 Existing Motion Planning Algorithms . . . . . . . . . .. ... .. ... 18
2.4.1 Global Path Planner . . . . . . . ... ... ... ... ..... 18

24.2 Local Path Planner . . . . . . .. ... ... ... ... ... 19

2.4.3 Differentially Unconstrained Path Planners . . . . . . . . . . .. 20

2.4.4 Differentially Constrained Path Planners . . . . . .. ... ... 24

2.4.5 Completeness and Planning . . . . . .. ... ... ... .... 33

2.5  Uncertainty- and Perception-aware Planning . . . . . .. ... ... .. 33
2.5.1 Uncertainty-aware Planning . . . . . . . ... ... ... .... 34

2.5.2 Adaptive environmental perception . . . . . ... ... ... .. 35

2.6 Safe and Fallback Path Planning . . . . .. ... . ... ... ..... 36
2.7 Summary ... .. 37

3 Model Predictive Control for Tracking, Path Following, and Planning 38

3.1 Principle of Model Predictive Control . . . . . . ... .. ... ..... 39
3.2 Basic MPC Formulation . . . ... .. ... ... .. .......... 40
3.3 Set-point Tracking . . . . . . . .. ... o 42
3.3.1 Stability of MPC Set-Point Tracking . . . . .. .. ... .. .. 43
3.3.2 Ilustrative Example . . . . ... .. ... ... ... ... ... 44
3.4 Path-Following Formulation . . . . .. ... .. ... .. ... ..... 48
3.4.1 Stability of MPC Path-Following . . . . . . ... ... .. ... 49
3.4.2 Illustrative Example . . . . . . . .. .. ... ... .. ..... 50
3.5 Trajectory Tracking Formulation . . . . .. ... ... ... ...... 54
3.5.1 Stability of MPC Trajectory Tracking . . . . . . .. .. ... .. 55
3.5.2  lustrative Example . . . . . ... ... 00000 56



Contents

3.6 Model Predictive Control for Path Planning—A Mixed-Integer Formulation 59
3.6.1 Special Case: Path Planning for Mobile Robots on the Ground . 61

3.6.2 Obstacle Avoidance Approximation . . . . . . .. ... ... .. 63
3.6.3 Approximating Nonlinear Vehicle Dynamics . . . . .. ... .. 65
3.6.4 Constraints on the Vehicle Dynamics . . . . . .. ... ... .. 66
3.6.5 Mixed-Integer Programming Path Planning . . . ... ... .. 67
3.6.6 Illustrative Example . . . . . . .. . . ... ... ... ... .. 68
3.7 Summary ... .. 69
4 Efficient Hierarchical Planning and Control: Mathematical Program-
ming and Local Sensing 71
4.1 Local Path Planning - Existing Approaches . . . . . . . .. .. ... .. 72
4.2 FEfficient Local Path Planning via Mathematical Programming Using
Sensor Field of View Data . . . . . . . . ... ... ... ... . ... 75
4.2.1 Planning with no Obstacles in the Field of View . . . . . . . .. 7
4.2.2  Planning Subject to Obstacles in the Field of View . . . . . .. 78
4.2.3 Modeling and Approximating the Field of View . . . . . .. .. 78
4.2.4 Obstacle Approximation in the Field of View . . . . . . . . . .. 79
4.2.5 Overall Linear Mixed-Integer Moving-Horizon Local Planner For-
mulation . . . . ... 81
4.3 Low Level Receding Horizon Control . . . . . . . . ... ... .. ... 83
4.4 Simulation Examples . . . . . . . ... 84
4.5 Summary ... e 88
5 Hierarchical Dual Rolling Horizon Control for Path Planning and Control 92
5.1 Control, Planning, and Perception-Aware Probing . . . . . . . ... .. 93
5.1.1 Dual Control and Hierarchical Rolling Horizon Planning . . . . 94
5.1.2  Dual Model Predictive Control . . . . . .. ... .. ... ... 96
5.2 Efficient Hierarchical Dual Control for Sensor-Aware Path Planning . . 102
5.2.1 Local Planner . . . . . . . . ... ... . ... ... ... .. 103
5.2.2  Obstacle and Field of View Information Sent to the Controller . 107
5.2.3 Low-Level Dual Model Predictive Controller . . . . . . . .. .. 107
5.3 Simulation Examples Planning and Exploration . . . . . ... ... .. 113
5.4 Moving Horizon Planning and Control for Autonomous robots with
Active Exploration and Safety Strategies . . . . . ... ... ... ... 118
5.4.1 Tllustrative Example . . . . . . . ... .. ... ... ... ... 119
D5 Summary ... ... 120
6 Conclusions 123
6.1 Outlook and Future Research Directions . . . . . ... ... ... ... 124
Bibliography 127

IT



Abstract

Mobile robots are increasingly being used in various fields such as delivery logistics,
healthcare, elder care, and industrial automation. Many of these applications require
high reliability and safe operation, especially when robots operate in dynamic envi-
ronments shared with humans. A key challenge in this context is the planning of an
optimal path to reach a desired goal —commonly referred to as path planning. Under
ideal conditions, path planning relies on complete environmental information, includ-
ing all obstacles, dynamic and static objects, and uncertainties regarding the available
data. However, in real-world applications, mobile robots often have only limited in-
formation, necessitating path planning based on locally available sensor data and the
ability to respond to unforeseen changes, such as sudden obstacles.

Technological advancements have helped to address this challenge. Modern mobile
robots can be equipped with various sensors such as LiDAR, ultrasound, and camera
systems, enabling them to capture environmental data in real-time. These data serve
as the foundation for the planning and control layers, which guide the robot safely
from an initial state to a desired location. However, this introduces the challenge of
ensuring that path planning under limited information remains efficient and safe in
real time.

Generating a collision-free path for mobile robots in a partially or fully unknown
environment presents a significant challenge. The planned trajectory must avoid obsta-
cles and adhere to the robot’s dynamics, while being computed in real-time. Typically,
this problem is solved hierarchically, where planning and control tasks are executed
step by step based on available information. However, this approach often leads to
overly cautious behavior and suboptimal paths, as the robot must continuously avoid
potential collisions. Adaptive navigation in dynamic environments offers a potential
solution, as it provides additional information and reduces uncertainties. Taking a
slight detour using onboard sensors can improve environmental perception and lead
to a more efficient movement strategy.

This work focuses on the interaction between planning and control for mobile robots,
aiming to achieve more efficient and faster navigation through adaptive navigation
strategies, even in partially unknown environments. To accomplish this, the planner
and controller must generate a safe path within the sensor’s field of view while simul-
taneously gathering new information during movement, without compromising safety.
By formulating the planning problem as a mathematical optimization problem, this
thesis addresses key challenges and develops corresponding solutions.

First, a hierarchical control framework over a moving horizon is introduced, enabling
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Abstract

real-time path planning and control under limited sensor information. This concept
includes a local planner, which solves a mixed-integer optimization problem using
only local sensor data to generate a safe path within the sensor’s field of view. The
robot’s dynamics are approximated using a linear model, while constraints such as
obstacles and maximum velocities are enforced through linear inequalities with mixed-
integer components. A low-level controller, based on a nonlinear model predictive
control approach, ensures that the robot accurately follows the planned trajectories
while accounting for potential nonlinearities. Simulation results confirm the real-time
feasibility of the approach while ensuring safe obstacle avoidance.

Building on this, a two-stage planning and control strategy over a rolling horizon is
introduced, enabling adaptive navigation to enhance environmental perception within
the robot’s sensor range. The local planner provides the low-level controller with a safe
region in which it can perform navigation adjustments. New sensor data is integrated
into the controller through an additional term in the cost function, allowing the robot
to refine its navigation strategy while ensuring safe and efficient movement within its
environment. Additionally, a fallback strategy is developed to limit the additional
computational effort required for navigation adaptation. This strategy terminates
adjustments when they become too costly and ensures that the robot can return to a
preplanned safe path if necessary. Simulation results demonstrate that the approach
is computationally efficient in real time, leading to shorter, safer, and more efficient
paths.

In summary, this work makes a significant contribution to the development of more
efficient, adaptive, and safer mobile robots, capable of navigating reliably in complex
environments. Particularly in dynamic scenarios where robots interact with humans,
such as in care facilities, hospitals, or public spaces, safe and predictive movement
is essential. The methods presented in this work enhance robotic assistance in daily
life, enabling mobile robots to operate safely and efficiently, detect and avoid obsta-
cles in real time, and dynamically adjust their navigation in changing environments,
ultimately improving their usability and effectiveness in real-world applications.
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Mobile Roboter finden zunehmend Einsatz in verschiedenen Bereichen wie der Lieferlo-
gistik, dem Gesundheitswesen, der Pflege und der industriellen Automatisierung. Viele
dieser Anwendungen erfordern eine hohe Zuverlassigkeit und einen sicheren Betrieb,
insbesondere wenn Roboter in dynamischen Umgebungen mit Menschen agieren. Eine
zentrale Aufgabe dabei ist die Planung eines optimalen Weges, um ein gewiinschtes
Ziel zu erreichen — die sogenannte Pfadplanung. Unter idealen Bedingungen basiert die
Pfadplanung auf vollstandigen Umgebungsinformationen, einschliellich aller Hinder-
nisse, dynamischer und statischer Objekte sowie moglicher Unsicherheiten beziiglich
der verfiighbaren Daten. In der Realitit jedoch stehen mobilen Robotern oft nur be-
grenzte Informationen zur Verfiigung, was eine Pfadplanung auf Grundlage lokal ver-
fiigbarer Sensordaten sowie die Reaktion auf unvorhergesehene Verdnderungen, wie
plotzlich auftretende Hindernisse, erforderlich macht.

Diese Herausforderung wird durch den technologischen Fortschritt erleichtert. Mo-
derne mobile Roboter konnen mit verschiedenen Sensoren wie LIDAR- und Kame-
rasystemen ausgestattet werden, die es ermoglichen, Umgebungsdaten in Echtzeit zu
erfassen. Diese Daten dienen als Grundlage fiir die Planungs- und Regelungsschicht,
die den Roboter sicher von einem Ausgangszustand zu einem gewitinschten Ziel fiihrt.
Dies bringt jedoch die Herausforderung mit sich, dass die Pfadplanung unter begrenz-
ten Informationen effizient und sicher in Echtzeit erfolgen muss.

Die Entwicklung eines kollisionsfreien Pfades fiir mobile Roboter in einer teilweise
oder vollstandig unbekannten Umgebung stellt eine erhebliche Herausforderung dar.
Die geplante Trajektorie muss nicht nur Hindernisse vermeiden, sondern auch der Dy-
namik des Roboters entsprechen, wahrend sie in Echtzeit berechnet wird. Typischer-
weise wird diese Problematik hierarchisch gelost, indem Planungs- und Steuerungsauf-
gaben auf Grundlage der verfiigharen Informationen schrittweise ausgefithrt werden.
Diese Vorgehensweise fithrt jedoch haufig zu vorsichtigem Verhalten des Roboters und
suboptimalen Pfaden, da jederzeit eine Kollision vermieden werden soll. Eine adaptive
Navigation in dynamischen Umgebungen kann eine Losung bieten, da sie die Umge-
bungswahrnehmung verbessert und Unsicherheiten bei der Bewegung reduziert. Ein
,Umwegiinter Nutzung der Bord-Sensoren kann die Umgebungswahrnehmung erwei-
tern und zu einer effizienteren Bewegung fiihren.

Diese Arbeit konzentriert sich auf die Interaktion von Planung und Regelung fiir
mobile Roboter mit dem Ziel, durch adaptive Navigation effizientere und sicherere
Pfade zu finden, selbst in dynamischen Umgebungen mit begrenzten Sensorinforma-
tionen. Dazu muss der Planer/Regler einen sicheren Pfad innerhalb des Sichtfeldes der
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Bord-Sensoren berechnen und gleichzeitig sicherstellen, dass wihrend der Bewegung
des Roboters neue Informationen gewonnen werden, ohne die Sicherheit zu gefahrden.
Basierend auf der Grundidee, Planungs- und Regelungsprobleme als mathematische
Optimierungsprobleme zu formulieren, stehen die folgenden spezifischen Fragestellun-
gen im Mittelpunkt dieser Arbeit, und es werden geeignete Losungen entwickelt.

Zunachst wird ein hierarchisches Regelungskonzept iiber einen bewegten Zeithori-
zont, vorgestellt, das eine Echtzeit-Pfadplanung und -regelung unter begrenzten Sen-
sorinformationen ermoglicht. Dieses Konzept umfasst einen lokalen Planer, der ein
gemischt-ganzzahliges Optimierungsproblem 16st. Dabei werden ausschliefllich lokale
Sensordaten genutzt, um einen sicheren Pfad innerhalb des Sichtfelds der Sensoren
zu planen. Die Dynamik des mobilen Roboters wird durch eine lineare Beschreibung
approximiert, wiahrend die Einhaltung von Beschrankungen, wie Hindernissen oder
maximalen Geschwindigkeiten, durch geeignete lineare Ungleichheitsbedingungen mit
gemischt-ganzzahligen Komponenten sichergestellt wird. Ein unterlagerter Regler, der
auf einem nichtlinearen modellpradiktiven Regelungsverfahren zur Verfolgung der ge-
planten Trajektorien basiert, garantiert die Einhaltung der Dynamik des Roboters,
unter Beriicksichtigung moglicher Nichtlinearitédten. Simulationsergebnisse belegen die
Echtzeittahigkeit sowie die garantierte Vermeidung von Hindernissen.

Darauf aufbauend wird eine zweistufige Planungs- und Regelungsstrategie iiber
einen beweglichen Horizont vorgestellt, die eine adaptive Navigation zur verbesser-
ten Wahrnehmung und préaziseren Umgebungserfassung im Sensorumfeld des Roboters
ermoglicht.

Der lokale Planer stellt dem unterlagerten Regler den sicheren Bereich in der Um-
gebung zur Verfiigung, in dem dieser seine Navigation anpassen kann. Die Gewinnung
neuer Informationen wird im Regler durch einen zusétzlichen Term in der Kostenfunk-
tion berticksichtigt, wodurch neben der moglichst exakten Verfolgung des geplanten
Pfades auch eine verbesserte Umgebungserfassung ermoglicht wird. Zusatzlich wird
eine adaptive Anpassungs- und Riickfallstrategie vorgestellt, um den Rechenaufwand
zu begrenzen. Die Strategie sorgt dafiir, dass der Roboter seine Navigation effizient an-
passt und im Bedarfsfall zu einem vorab geplanten sicheren Pfad zuriickkehren kann.
Simulationsergebnisse belegen, dass das Verfahren in Echtzeit umsetzbar ist und zu
kiirzeren, sichereren und effizienteren Pfaden fiihrt.

Zusammenfassend leistet diese Arbeit einen wichtigen Beitrag zur Entwicklung ef-
fizienter, adaptiver und sicherer mobiler Roboter, die in der Lage sind, in komplexen
Umgebungen zuverléssig zu navigieren. Besonders in dynamischen Szenarien, in denen
Roboter mit Menschen interagieren, wie beispielsweise in Pflegeeinrichtungen, Kran-
kenh&usern oder offentlichen Rdumen, ist eine sichere und vorausschauende Bewegung
essenziell. Durch die hier vorgestellten Methoden kann Unterstiitzung im Alltag ver-
bessert werden, indem mobile Roboter sicher und effizient arbeiten, Hindernisse au-
tonom erkennen und vermeiden sowie ihre Navigation dynamisch anpassen, um ihren
Einsatzbereich, ihre Effektivitdt und ihre Sicherheit weiter zu erhohen.

VI



1 Introduction and Motivation

The more original a discovery, the
more obvious it seems afterward.

Arthur Koestler

As technology advances, there is a growing focus on the development of intelligent
and autonomous robots to support humans in performing complex or physically de-
manding tasks. These systems contribute to various applications, including firefight-
ing, delivery services [1], disaster response and emergency assistance [3], and home
cleaning and elder care [5].

A key challenge in deploying autonomous robots is ensuring safe and reliable naviga-
tion while effectively completing their assigned tasks. Robots often operate in environ-
ments with obstacles that can affect their movement and task execution. Additionally,
these environments may be partially or entirely unknown, requiring planning and con-
trol strategies that account for uncertainty and real-time adaptability to maintain
operational safety and efficiency.

The problem of motion planning and controlling a mobile robot is often hierar-
chically decomposed; cf. Figure 1.1, where the planner provides a path to track to
the controller. Frequently global/offline path planners are used, which are based on
'offline" information about the working environment, considering environmental infor-
mation like obstacles’ position, geometry, and the goal to reach. The controller uses
the planned path to steer the vehicle until it reaches the destination safely, cf. Figure
1.2a. However, in real applications, autonomous robots are typically deployed in only
partially known environments, resulting in the need to perform a sensor-based/online
path planning problem. Taking advantage of the rapid advancements in sensor tech-
nology, autonomous robots are equipped with sensors, including LiDAR and camera
systems. These sensors provide the controller and the planner with environmental in-
formation within the vehicle’s proximal surroundings; cf. Figure 1.2b. These sensors
are characterized by a limited range or field of view, and these limitations culminate
in a scarcity of information accessible for path planning. Consequently, the controller
must anticipate the likelihood that the vehicle will encounter unforeseen obstacles
owing to its limited sensing abilities, for example, an obstacle that obstructs the au-
tonomous robot’s path around a corner, posing a potential collision hazard. To ensure
vehicle safety during operation, the planner is tasked with devising a safe path based
on currently available sensor information. As the vehicle progresses on its path, new
information becomes available, prompting updates to the planned path accordingly.
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This iterative process constitutes a strategy known as passive navigation; cf. Fig-
ure 1.3a. However, the passive navigation approach allows the autonomous robot to
safely move from an initial state to the destination, but the control strategy remains
cautious. Improved performance can be achieved by enabling the robot to adapt its
navigation based on real-time sensor data, highlighting the need for perception-aware
and information-driven planning and control.

In perception-aware planning and control, a more efficient and adaptive path can
be determined when the autonomous robot adjusts its trajectory based on sensor
inputs. The robot may temporarily modify its planned route to improve environmental
awareness by refining its perception of detected obstacles through onboard sensors. As
a result, the overall navigation strategy can be optimized; for example, the robot may
reach its destination more efficiently.

To achieve this, the control objective is enhanced with a term that prioritizes real-
time obstacle awareness, allowing the robot to proactively adjust its trajectory. There-
fore, the planner must balance sensor-informed navigation adjustments with overall
task efficiency; cf. Figure.1.3b. Notably, the planner and controller should ensure
that the vehicle can follow the planned path. To achieve this, they must consider the
vehicle’s dynamics and inherent constraints, such as maximum speed, steering angle,
acceleration, and turning rates. To guarantee safe operation, the planning phase must
account for partially detected obstacles within the current field of view. Moreover, the
entire planning problem must be solvable in real-time on the embedded hardware of
the mobile robot.
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Figure 1.2: ((a) Offline path planning, used when all required information is available. (b)
Online path planning, which leverages local sensor data in real-time.

Many approaches exist for adaptive navigation and planning. In [48], the authors
proposed a perception-aware path planning framework that uses geometric and pho-
tometric information to improve localization. Planning a path with enriched envi-
ronmental information allows for faster and more precise navigation. The authors in
[51] consider planning a path that maximizes coverage while accounting for obstacles,
localization, and uncertainty detection. In [171], a perception-aware planner was pro-
posed, where perception uncertainty is pose-dependent and represented by ellipsoids,
which shrink as the robot moves closer to known points. Adaptive navigation can
also be achieved using reward-based functions. In [92], an entropy-based information
measure is used, while the Fisher information matrix is exploited in [132].

Typically, path planning is formulated as an optimization problem, often solved
using search-based approaches that involve discretizing the search and action space
[13, 84, 103, 103, 169]. However, many search-based methods neglect vehicle dynam-
ics, leading to trajectories that may not be feasible for execution. To address this, a
common strategy is to integrate robot dynamics into the optimization process, em-
ploying a rolling horizon approach, commonly referred to as moving-horizon control
and planning. This involves solving an optimization problem that accounts for obsta-
cles, task objectives, and robot dynamics. The iterative nature of this optimization
process, known as Model Predictive Control (MPC) or Moving Horizon Control, has
been widely adopted in control systems.

We propose a hierarchical planning and control strategy for local navigation, based
on mathematical programming formulations while ensuring real-time feasibility. The
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Figure 1.3: Comparison of adaptive and passive navigation for planning under limited envi-
ronmental information: Without real-time adaptation (a), planning and control
rely solely on previously acquired information. With sensor-informed adjust-
ments (b), the robot dynamically refines its path based on real-time data.

approach employs model predictive control (MPC) at both the local planning and
control layers, enabling the robot to navigate within the safe space provided by sen-
sor data. The principle of MPC/Moving Horizon Control [69, 180] is particularly
suited for this task, as it allows the explicit consideration of obstacle constraints while
maintaining formulation flexibility.

MPC is an advanced control strategy that accounts for nonlinear systems, mul-
tiple inputs and outputs, time delays, and constraints. It has been widely applied
across various civilian domains, including the process industry [121] and autonomous
systems [117, 200]. When formulated correctly, MPC ensures constraint satisfaction,
provided that a feasible solution exists. At each time step, MPC solves an optimiza-
tion problem based on a user-defined performance metric, such as minimizing travel
distance or reducing energy consumption. The optimization problem is subject to
system dynamics (e.g., robot motion), constraints (e.g., obstacles), and stability and
feasibility conditions [69, 180]. In its standard form, the solution to the optimization
problem provides an open-loop input trajectory. Feedback is introduced by applying
the first control input, then re-measuring/estimating system states and re-solving the
optimization problem at each time step.

Planning and control for autonomous mobile robots is an adaptive research field,
particularly in computer science and control engineering. While hierarchical MPC
frameworks have been used, their formulation as a mathematical programming prob-



lem has not been as widespread [107, 162, 221, 236]. To address real-time feasibility,
we introduce a Hierarchical Receding Horizon Planning and Control strategy, which
generates a safe path and ensures trajectory tracking within the sensor field of view,
where obstacles are detected (see Figure 1.4).

:_ — _N_o_ T Obstacle
|
|L_ _OESE&QIQ L present
Objective Objective

Local planner

trajectroy
——Z|Tracking controller Tracking controller
inputs inputs
FOV Mobile robot output FOV Mobile robot output

(a) (b)

Figure 1.4: Proposed hierarchical scheme, which switches between operational modes de-
pending on the presence of obstacles. When no obstacles are detected, the
planning layer is bypassed to reduce computational effort. When obstacles are
present, the planner generates a safe path, which the low-level controller follows
to ensure obstacle avoidance. FOV refers to the field of view of the sensor, which
can only provide sensory information in a certain area.

The proposed scheme operates in two distinct modes. When no obstacles are de-
tected within the sensor field of view, the planning layer is bypassed, reducing com-
putational effort. When obstacles are present, the high-level planner computes a safe
trajectory, which is then executed by the low-level controller, ensuring constraint sat-
isfaction. This results in a safe trajectory forwarded to the low-level controller. Sub-
sequently, the low-level controller utilizes a model predictive control path following
formulation to follow the path, accommodating the possibly nonlinear robot dynamics
and constraints such as maximum turning rate and acceleration. The first control
input candidate is applied to the system, altering the state of the robot and provid-
ing new information for subsequent hierarchical iterations, as shown in Figure 1.4 b.
This iterative process continues throughout the robot’s operation, with planning and
control problems being solved based on newly captured information at each time in-
stance. Notably, the path is not adaptively adjusted to obtain further environmental
information, that is, passive navigation is used. The question arises as to how control
behavior can be improved through the design of an adaptive navigation strategy.
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From a control perspective, the adaptive navigation path planning problem is closely
related to the so called dual control problem, in which the goal is to obtain further
state or system information while controlling a system. Feldbaum [65] first recog-
nized that the control inputs to an uncertain system should have a probing effect to
adaptively learn the system uncertainty and system dynamics, thus improving the
control performance. However, it is necessary to balance the improved system infor-
mation with the overall control objective. In general, solving the original dual control
problem is computationally expensive. Approximations have been proposed, leading
to the so-called implicit dual control problem and the explicit dual control problem
(152, 153].

To avoid the complexity associated with solving a dual control problem while ac-
counting for nonlinear robot dynamics and obstacles, a hierarchical dual rolling hori-
zon control and planning strategy is proposed. In the proposed strategy, the high-level
planner addresses the planning problem in a traditional way, purely based on available
and potentially limited information. The information transmitted from the planner
layer to the low-level controller includes a safe trajectory within the current field of
view, a safe navigation set, and the available environmental information. The low-level
controller is extended by a dual control capability. The control inputs derived from
solving the dual optimization problem keep the system states in the safe set provided
by the planner and contain probing capabilities to decrease obstacle uncertainty and
enhance accessible environmental information.

Although adaptive navigation can improve control actions and progress toward the
overall objective, it may also lead to additional movement that increases the overall
effort . Furthermore, obstacles encountered during adaptive navigation may require
an adaptation of the approach, see Figure 1.5. A fallback strategy is proposed to
address these challenges. The strategy ends the adaptive navigation if the effort re-
quired becomes too high. It also ensures that the mobile robot remains on a feasible
path by guiding it toward the preplanned safe path leading to the goal. The proposed
approaches are validated through simulations using a mobile robot equipped with on-
board sensors such as LIDAR or camera systems. The simulation results demonstrate
that adaptive navigation leads to an improved performance while avoiding obstacles.

1.1 Main contributions

This thesis introduces a new hierarchical receding horizon framework for real-time
motion planning and control of mobile robots in dynamic, partially unknown envi-
ronments based on mathematical optimization. The proposed techniques ensure safe,
efficient, and human-aware navigation by integrating local sensor-based planning with
optimization-based decision-making and model predictive control strategies. These
methods lay the foundation for future advancements in reliable, adaptable, and intel-
ligent robotic systems. The main contributions of this work are:
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Figure 1.5: A mobile robot follows a safe preplanned path from point A to point B (dashed
blue line). Upon reaching an unknown region, detected by local sensors, an on-
line path planner is activated that steers the robot. Obstacle detection activates
the sensor-driven navigation adjustment scheme (dashed black line). When the
mobile robot is obstructed by other obstacles, the fallback controller is activated
to guide the robot along the safe and the preplanned path to the destination
(dashed red line).

Real-Time Feasibility in Local Planning and Control: A hierarchical receding hori-
zon approach enables safe and dynamically feasible path planning within the sensor
field of view. A computationally efficient mixed-integer programming formulation en-
sures real-time path updates based on live sensor data, allowing the robot to operate
smoothly and predictably in human-populated environments while avoiding obstacles
in a timely manner.

Hierarchical Planning and Control for Reliable Navigation: The proposed frame-
work integrates local path planning with MPC-based control, enabling robots to adapt
their motion predictably and safely in changing environments. The local planner com-
putes a safe corridor, while the low-level controller accurately tracks the planned path,
significantly reducing the computational complexity of global planning while enhanc-
ing responsiveness and safety.

Safe and adaptive navigation for Enhanced Perception: A novel adaptive naviga-
tion strategy enables robots to dynamically adjust their movement based on real-time
sensor data while ensuring safe operation within predefined limits. By balancing ef-
ficiency and environmental awareness, the robot can optimize its navigation, leading
to smoother and more natural movement, particularly in human-centered spaces such
as hospitals, warehouses, and service environments.
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Safety Fallback Strategy for Human-Friendly and Reliable Navigation: To en-
sure controlled and predictable behavior, a fallback mechanism prevents unnecessary
deviations during adaptive navigation. If adaptive navigation becomes computation-
ally demanding or impractical, the system seamlessly transitions to a precomputed
safe path, enhancing reliability while ensuring smooth, consistent, and human-aware
operation.

Laying the Foundation for Future Safe and Intelligent Robotics: The methods in-
troduced in this dissertation mark a significant step toward safe, efficient, and adaptive
mobile robot navigation. By integrating real-time optimization with perception-aware
control, this work lays the groundwork for future research in human-robot interaction,
assistive robotics, and urban autonomous mobility, ensuring that mobile robots can
operate seamlessly and safely in dynamic, shared spaces.

1.2 OQutline

The thesis is structured as follows:

In Chapter 2, the general problem of path planning in the context of mobile robotics
is introduced. An overview of the current state of the art is provided, reviewing
existing concepts such as search algorithms and the formulation of path planning as a
mathematical optimization problem. These approaches aim to improve the efficiency
and reliability of autonomous navigation in applications such as logistics, healthcare,
and assistive robotics.

Chapter 3 introduces Model Predictive Control in the context of planning and con-
trol, using illustrative examples to outline key formulations employed in this thesis,
including set-point stabilization, path following, and trajectory tracking. The chap-
ter also discusses stability and repeated feasibility conditions to ensure consistent and
safe operation of mobile robots. Additionally, it outlines how Model Predictive Control
can be applied to path planning on moving horizons, formulating it as a mathemati-
cal programming problem that includes mixed-integer variables to guarantee obstacle
avoidance. The concepts are demonstrated through illustrative examples to highlight
their practical applicability.

Chapter 4 presents the first major contribution of this work, formulating local path
planning as a Hierarchical Receding Horizon Control and Planning problem. The
term local refers to the fact that only sensor data from the immediate surroundings,
which may be limited in range and precision, is used for planning. Consequently,
only a local path is generated, constrained by the field of view of the sensors. The
resulting local planner solves a mixed-integer optimization problem, incorporating
linear robot dynamics and approximated robot constraints. Obstacle avoidance is
achieved by reformulating obstacle constraints as mixed-integer constraints using the
Big-M method. The low-level controller ensures accurate execution of the planned



1.2 Outline

trajectory using a trajectory-tracking formulation that accounts for nonlinear robot
dynamics. This hierarchical approach significantly reduces computational complexity
while ensuring safe and efficient robot movement. The effectiveness and real-time
feasibility of the approach are demonstrated through simulations.

Building on this, Chapter 5 introduces methods for enhancing performance through
adaptive environmental aware navigation. The chapter provides an overview of dual
control and its approximations, which allow robots to adapt their navigation strategies
based on newly available sensor data, with a focus on mathematical programming-
based formulations. A hierarchical dual-rolling horizon approach is introduced, where
the local planner generates a safe trajectory within the sensor field of view, along
with a time-varying safe navigation set and environmental information. The low-level
controller extends its objective to include adaptive navigation, leading to an explicit
dual control formulation that allows safe navigation within the sensor’s field of view
when beneficial. A fallback controller is presented to guide the robot back to a prede-
termined safe path if the adaptive navigation does not yield a feasible path forward.
This strategy enhances real-time adaptability, efficiency, and safety in applications
such as warehouse automation, indoor service robots, and autonomous delivery. The
approach is validated through simulations, demonstrating that adaptive navigation
improves efficiency while remaining computationally feasible and ensuring safe robot
movement.

Finally, Chapter 6 summarizes the proposed approaches and results, providing in-
sights into potential future research directions to further improve the adaptability,
efficiency, and safety of mobile robots in real-world environments. The findings of
this work contribute to the development of more intelligent, responsive, and human-
centered robotic systems, capable of seamlessly operating in dynamic and shared
spaces. Future advancements could focus on enhancing robot perception, increas-
ing interaction capabilities with humans, and improving decision-making in complex,
uncertain environments. These improvements would enable mobile robots to better
assist in everyday tasks, healthcare support, smart logistics, and public service appli-
cations, ultimately contributing to more accessible, efficient, and sustainable solutions
that enhance human well-being and quality of life.

The following articles cover parts of the work presented in this thesis:

1. M. Soliman, R. Findeisen. Moving Horizon Planning and Control for Au-
tonomous Vehicles with Active Exploration and Fallback Strategies. In Proceed-
ings of 21*" International Conference on Informatics in Control, Automation and
Robotics, Porto, Portugal, 2024.

2. M. Soliman, B.Morabito, R. Findeisen. Towards Safe Exploration for Au-
tonomous Vehicles using Dual Model Predictive Control. In The 9** IFAC Sym-
posium on Mechatronic Systems, 2022.



1 Introduction and Motivation

3. J. Matschek, J. Bethge, M. Soliman, B. Elsayed, R. Findeisen. Constrained
reference learning for continuous-time model predictive tracking control of au-
tonomous systems. IFAC Conference on Nonlinear Model Predictive Control,
pages 329-334, Bratislava, Slovakia, 2021.
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2 Optimization Based Motion Planning for
Mobile Robots

Any man who afflicts the human race
with ideas must be prepared to see
them misunderstood.

HL Mencken

Navigating from one location to another may seem straightforward for humans,
but for autonomous mobile robots, it is a complex challenge, especially in dynamic
environments such as warehouses with other robots and workers, hospitals, or elderly
care facilities. Ensuring safe and efficient navigation is essential for applications where
robots assist humans in logistics, healthcare, or daily activities. The efficiency of
the planned path directly impacts the overall system performance, influencing aspects
such as energy consumption, task completion time, and operational safety:.

2.1 Mobile Robots and Navigation

Robots are commonly classified into two broad categories-mobile robots and industrial
robots-based on their structural and functional characteristics (see Figure 2.1). Mobile
robots are distinguished by their ability to autonomously navigate and operate in
various environments. They are used in a wide range of civilian applications, from
household assistance to automated delivery systems in hospitals, warehouses, and
logistics [196]. In contrast, industrial robots typically consist of articulated robotic
arms equipped with grippers or other end-effectors, which are stationary and designed
for repetitive tasks in manufacturing and automation settings [24].

Mobile robots can be classified based on their operating environment into three
categories: land-based (ground or indoor robots), commonly used in service and lo-
gistics applications; aerial robots, often deployed for infrastructure inspection and
environmental monitoring; and underwater robots, utilized in marine research and
exploration. The integration of advanced sensors, such as cameras, LIDAR, and ultra-
sound, along with enhanced computational capabilities, has expanded the capabilities
of autonomous robots to perform complex, high-precision tasks in collaborative and
assistive environments. These include automated material handling in warehouses,
patient assistance in healthcare, and mobility support in public spaces. The role of
advanced sensors is critical, as they provide real-time environmental data, enabling
decision-making systems to ensure safe and reliable robot operation [45, 158, 195].

11



2 Optimization Based Motion Planning for Mobile Robots
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—

(c) Food delivery robot [147]. (d) Industrial mobile robot [4].

Figure 2.1: Mobile robots used in various applications, spanning from agriculture, to hos-
pital and elderly care, food delivery and logistics, up to industrial production.

One of the primary challenges in designing navigation systems for autonomous mo-
bile robots is ensuring safe, collision-free movement while adapting to changing envi-
ronments. To formalize this process, we introduce the following key concepts:

Definition 1. The configuration space, or C-space, of a mobile robot is the set of all
possible positions and orientations (configurations) that the robot can achieve within
1ts environment.

Definition 2. An obstacle/unsafe workspace is a subset of the configuration space
that is permanently or temporarily occupied. In the configuration space, this region is
referred to as the obstacle space, denoted by Co or in short O.

Definition 3. A safe path is a collision-free trajectory within the configuration space
along which the mobile robot can mowve.

Definition 4. A trajectory is a continuous curve that connects two points in the
configuration space.

Definition 5. Path planning refers to the task of determining a safe path from an
initial configuration Co or in short A to a final desired configuration Cy or a final
configuration B while avoiding unsafe workspace.

12




2.2 The General Path Planning Problem

Generally, solving the path planning problem involves a series of subtasks [120]:

o Localization: This refers to the task of determining the position of the robot
within the environment. Typically, a variety of methods are used for localization,
such as camera-based systems or GPS for outdoor applications. Localization may
also be based on known landmarks in the environment.

e Mapping: The planner requires environmental information and a map of the
environment to plan a safe and optimal path. This map can be obtained from

offline data, discovered by the robot through sensor information, or a combination
of both.

o Motion planning: This refers to the task of deciding, What is the best way to reach
a certain final position or achieve a goal?. Based on a user-defined metric, such
as the shortest distance, the planner calculates an obstacle-free path between a
starting point and a given final point.

The complete framework resulting from these subtasks is generally referred to as
the navigation system, cf. Figure 2.2.

Environment
map

}\Y/ \Y/ \/‘
AAA
|~ - - 1
| | Vehicle location
| & _ Trajectory/path planning [ |
|£8 !
| Tg- § lPath/trajectory | g
|22 | 5
| § © Trajectory/path | g

controller | =1

| 3
| JrControI inputs | s
____________ 3

Figure 2.2: Hierarchical structure of navigational systems for autonomous mobile robot.

2.2 The General Path Planning Problem

In this section, we focus on path planning and review existing methodologies used to
address it. The general motion or route planning problem can be stated as follows

13



2 Optimization Based Motion Planning for Mobile Robots

[129]:

Problem 1. Given a mobile robot V- moving in an environment E that contains static
or dynamic obstacles O (see Figure 2.3), find a (safe) path P C E starting from an
initial position A € R™, such that the robot reaches a final position B € R™. Here,
P represents the state of V', ensuring that the robot does not intersect the obstacle set

Co.

Figure 2.3: General path planning problem avoiding unsafe workspace Cp moving from A
to B, while staying in the set F.

The motion/path planning problem for autonomous mobile robots is challenging due
to the various factors that must be considered during the planning process. Specifi-
cally, the problem requires accounting for the mobile robota€™s equations of motion,
its velocity and acceleration restrictions, uncertainties in the mobile robot’s state, and
limited environmental awareness due to restricted sensing capabilities and ambiguities
in sensor data. Numerous algorithms have been proposed to obtain or approximate
solutions to problem 1. These algorithms vary in terms of soundness, completeness,
optimality, precision, and computational complexity, which can be categorized as fol-
lows [84]:

Definition 6. Completeness: A path planning algorithm is considered complete
if, under all conditions, it either finds a safe and obstacle-free path connecting the
initial point to the goal point or correctly states that no such path exists. Resolution
completeness applies to algorithms that discretize the solution space: as the resolution
of the discretization increases, the algorithm should converge toward an exact solution.
Probabilistic completeness means that the probability of finding a solution approaches
1 as the number of samples or the computation time increases.

14



2.3 Classifications of Planning Problems

Definition 7. Optimality: A path planning algorithm is considered optimal if it can
find the best possible path with respect to a specified criterion, such as the shortest
distance, minimum time, or lowest energy consumption.

Definition 8. Soundness subject to uncertainty: A sound planner ensures that
the autonomous mobile robot reaches the goal state without colliding with an unsafe
workspace, even in the presence of uncertainties in state estimation, sensor measure-
ments, and control actions.

Definition 9. Polynomial complexity: An algorithm exhibits polynomial complez-
ity if it can find a solution within a time frame that scales polynomially with the size
of the input. Although the general path planning problem is known to be NP-hard,
approximate solutions can often be found using approximation algorithms [116].

Definition 10. Polynomial-time planners (P): These are planners capable of
solving the path planning problem in polynomial time, with time complexity functions
such as logarithmic, linear, or quadratic [103].

Definition 11. Nondeterministic polynomial-time (NP) planners: These
planners can verify a solution to the path planning problem in polynomial time.

Hardest
NP-complete Hard
Medium

Figure 2.4: Computational complexity of algorithms.

2.3 Classifications of Planning Problems

The general path planning problem (1) can be categorized into two main classes: static
and dynamic path planning problems. In a static path planning problem, extensive
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2 Optimization Based Motion Planning for Mobile Robots

information about the environment may be available, such as workspace dimensions,
obstacle locations, and geometry. However, mobile robot dynamics is either not con-
sidered or only indirectly accounted for. In contrast, dynamic path planning problems
directly incorporate the dynamic properties of the mobile robot into the planning
process.

In addition, path planning problems can be further classified according to whether
the environment is time-varying or time-invariant. Time-varying path planning prob-
lems involve finding a safe, obstacle-free path for autonomous mobile robots operating
in environments with moving obstacles or changing environmental conditions [43, 101].
In contrast, time-invariant path planning problems focus on determining paths in en-
vironments where obstacles remain stationary.

Another classification for path- /motion-planning problems is based on the presence
of differential constraints. In a differentially constrained path planning problem, the
equation of motion of the mobile robot is incorporated as a constraint on the planned
path. This means that the planner must respect the kinematic and dynamic properties
of the mobile robot. In contrast, in differentially unconstrained problems, mobile robot
movement is not restricted by its dynamics, allowing the planner to focus solely on
the geometric aspects of the route.

In addition, path planning problems often account for the shape of the mobile robot.
In many simplified models, the mobile robot is treated as a point mass, resulting in
what is known as a mass point motion planning problem. In these cases, the mobile
robot is approximated as a point in the configuration space, while unsafe workspace is
expanded by the radius of the mobile robot’s bounding ball to ensure safety, as shown
in Figure 2.5 [88]. This expansion ensures that the simplified model avoids collisions
with an unsafe workspace despite the approximation. In more detailed planners, the
mobile robot’s shape and dynamics are fully considered by incorporating differential
constraints, allowing the mobile robot to follow the planned path while minimizing a
given criterion [130].

The so-called piano mover’s problem represents a specific class of path planning
problems in which the mobile robot is treated as a rigid body without dynamic con-
straints. In this scenario, the planner’s goal is to find a safe and barrier-free path
for the mobile robot to travel through an environment populated by static obstacles
[84, 103, 222]. The solution is defined as a sequence of positions and orientations in
the free configuration space (Figure 2.5a). Although algorithms exist to solve this
problem, its complexity increases with the size of the configuration space, that is, the
state space of the autonomous robot [104].

Another important class of problems involves autonomous mobile robots with differ-
ential constraints, which includes both kinematic and dynamic constraints. Kinematic
constraints govern the mobile robot’s motion without accounting for the forces applied,
leading to what is commonly called a nonholonomic path planning problem. Dynamic
constraints, on the other hand, impose second-order or higher constraints, taking into
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2.3 Classifications of Planning Problems

account factors such as acceleration and force. Solving path-planning problems un-
der these full sets of differential constraints is particularly complex when an unsafe
workspace is introduced into the environment.

Finally, path planning problems can also be categorized based on the number of
autonomous robots operating in the same environment. This distinction leads to two
primary cases: single-robot path planning, where one robot navigates independently,
and multi-robot path planning, where multiple robots operate within a shared space.

In multi-robot path planning, robots must coordinate their movements to ensure
safe and efficient navigation in environments such as hospitals, warehouses, or public
spaces. The planning approach must account for robot interactions, ensuring that
paths remain collision-free and that tasks such as cooperative transport, delivery, or
facility maintenance are executed smoothly [76, 194].

The complexity of multi-robot navigation arises from the need to dynamically adapt
routes based on real-time information while avoiding congestion and maintaining effi-
ciency. Planners must consider how the collective movement of multiple robots affects
navigation, ensuring that coordination strategies enable smooth operation in shared
environments [106].

Free space
o
© :
A '\'/ \V \/‘
Obstacle ’\ IA\ ’A\

RRR

Figure 2.5: Safety in path planning can be ensured by expanding unsafe workspace bound-
aries while approximating the mobile robot as a mass point.
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2 Optimization Based Motion Planning for Mobile Robots

2.4 Existing Motion Planning Algorithms

Algorithms for motion planning for mobile robots must take into account the mobile
robot’s dynamics and constraints. The algorithm identifies configurations within the
state space of the mobile robot, linking the initial position to the desired destination.
The planned trajectory or path must navigate the environment while avoiding both
static and dynamic obstacles.

Definition 12. A path refers to a planned route or geometric curve that an au-
tonomous mobile robot follows to reach a destination. It is typically defined in terms
of the mobile robot’s position in a two- or three-dimensional space (e.q., latitude, lon-
gitude, and altitude or coordinates X, Y, and Z). The path represents the desired
spatial route, but does not include information on the mobile robot’s speed or timing.
Essentially, the path is the spatial plan that the mobile robot should adhere to, without
considering the dynamics of motion, such as speed or acceleration.

Definition 13. A trajectory is a plan that specifies not only the path of the mobile
robot (the spatial route) but also the timing and dynamic aspects of its movement
along this path. It includes information on the mobile robot’s position, velocity, and
acceleration at each point in time. A trajectory defines where the mobile robot should
be at every moment to ensure safe and efficient travel from the starting point to the
destination.

Numerous classifications of path planning algorithms have been described in the
literature [84, 103]. A common categorization is based on the level of environmen-
tal awareness, distinguishing between global and local path planners. Global path
planners operate with full knowledge of the environment, whereas local path planners
make decisions based on immediate surroundings. Another classification is based on
the differential constraints imposed, segmenting the motion planning algorithms into

differentially unconstrained and differentially constrained path planning algorithms
84].

2.4.1 Global Path Planner

Global path planners are particularly useful in structured environments where detailed
maps are available, such as hospitals, warehouses, manufacturing facilities, or public
transportation hubs. They enable efficient long-term navigation by leveraging preex-
isting knowledge of the environment, including information on workspace dimensions,
static obstacles, and infrastructure layouts [37, 169]. These planners are well-suited for
environments with predictable conditions, where navigation can be planned in advance
to optimize efficiency, energy consumption, and operational safety.

18



2.4 Existing Motion Planning Algorithms

2.4.2 Local Path Planner

Local path planners, also known as sensor-based planners, rely on real-time environ-
mental perception to determine safe trajectories at each time step. These planners
are particularly valuable in dynamic environments, where changes such as rearranged
objects in a warehouse, moving hospital beds in a healthcare facility, or pedestrian
movement in public spaces require continuous adjustments.

Unlike global path planners, local planners do not rely solely on preexisting maps.
Instead, they process sensor data from technologies such as LiDAR, cameras, or ul-
trasound to detect obstacles and adapt routes accordingly. This capability is crucial
for applications in assistive robotics, autonomous service robots, and indoor mobil-
ity solutions, where unexpected environmental changes must be handled safely and
efficiently.

In practice, local planners are often used in combination with global planners, allow-
ing robots to follow a general precomputed route while dynamically adjusting their
movements based on immediate surroundings. This hybrid approach ensures that
robots can operate reliably and safely in both structured and semi-structured environ-
ments [46].

The distinction between global and local path planning can be illustrated using the
example of an autonomous service robot navigating in an indoor environment, such
as a hospital, shopping mall, or warehouse. A global planner computes a collision-free
and efficient trajectory from the starting location to the final destination, utilizing
preexisting environmental information, such as floor layouts, static obstacles, and des-
ignated pathways. This allows the robot to follow an optimized route while considering
factors such as travel efficiency and energy consumption.

However, real-world environments are dynamic and unpredictable. Changes such
as rearranged furniture in a hospital, a temporarily blocked aisle in a warehouse, or
increased foot traffic in a shopping center may disrupt the planned path. Since a
global planner alone cannot adapt to such real-time changes, a local planner is used to
process sensor input and adjust the trajectory accordingly. The local planner ensures
that the robot can safely navigate around unexpected obstacles, modifying its path in
real-time to maintain smooth and efficient movement.

Often, global and local planners work in combination. The global planner estab-
lishes a structured route, while the local planner continuously refines it based on newly
acquired sensor data. This hierarchical approach is beneficial because global planners
optimize long-term efficiency but may require substantial computation time, whereas
local planners prioritize real-time reactivity and ensure that the robot remains respon-
sive to changes in its immediate surroundings.

By integrating both planning strategies, service and assistive robots can operate
safely and effectively in dynamic environments, ensuring uninterrupted navigation in
hospitals, public spaces, and industrial settings [99].
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(b)

Figure 2.6: The global path planner (a) considers all offline-available information about the
environment to plan a safe path connecting the starting point (A) and the goal
point (B). A local path planner (b) often considers only local environmental
information in the sensor range (shown by the green cone) to plan a safe path.
Global path planners are useful for structured environments where detailed maps
are available, such as hospitals, warehouses, or public transportation hubs. They
provide efficient long-term navigation but may require additional real-time local
adjustments in dynamic environments.

2.4.3 Differentially Unconstrained Path Planners

The path planning problem for autonomous mobile robots is widely recognized as an
NP-Hard problem [107, 181, 192, 224]. Several approaches have been proposed to
simplify the problem of path planning for autonomous mobile robots. An effective
simplification involves treating the autonomous mobile robot as a mass point, which
is handled by differentially unconstrained algorithms. These algorithms disregard mo-
bile robot dynamics and solve the planning problem using geometric and topological
methods. Solutions to differentially unconstrained planning problems can be found
using search algorithms based on representations of the unobstructed space, such as
Roadmap methods, Cell decomposition, Potential field methods, and Probabilistic ap-
proaches [84, 103].

In so-called Roadmap approaches, the unobstructed space is explored through a set
of mobile robot movements, which are represented as a network of connected lines.
The motion planning problem is then converted to a graph search, where algorithms
such as A* are used to find the optimal path according to a specific metric, such as
the shortest path [61, 136]. The prominent roadmap methodologies include Visibility
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(a) (b)

Figure 2.7: (a) Visibility Graph, where the free space is represented by lines connecting the
mobile robot’s possible movements, with the shortest path (in black) intersect-
ing the obstacle vertices. (b) Voronoi Roadmap, which increases the distance
between the obstacle and the path to ensure safe navigation.

Graph method and Voronoi Roadmap. In the visibility graph method, a series of lines
connect all feasible mobile robot positions in the unobstructed space. However, the
shortest path in this graph may intersect obstacle vertices, posing a safety hazard. To
address this, obstacles are expanded by a safety margin, such as a sphere with a radius
equal to the mobile robot’s maximum dimension [84].

In contrast, Voronoi Roadmap ensures that the mobile robot maintains a safe dis-
tance from the unsafe workspace. The algorithm constructs a roadmap with a built-in
safety margin, allowing the mobile robot to navigate efficiently while avoiding close
proximity to obstacles, as shown in Figure 2.7 [13, 103].

The concept of Cell Decomposition in path planning involves partitioning the free
configuration space into smaller, interconnected cells that are then used to form a
graph. A graph search algorithm is applied to solve the path planning problem by
navigating through these cells [84, 103, 169]. The process of finding an obstacle-
free path requires identifying the cells that contain both the starting and the goal
configurations of the autonomous mobile robot and then determining a sequence of
connected cells that link them.

A specific method for cell decomposition is trapezoidal or vertical cell decomposition,
which is frequently used in path planning for autonomous systems [201]. In this
approach, the free space is vertically divided, with the vertical lines aligned to the
obstacle. Then a roadmap is constructed connecting the midpoints of these cells, and
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a graph search algorithm, such as A*, is used to calculate the shortest path (see Figure
2.8) [130].
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Figure 2.8: In vertical cell decomposition, the free configuration space is divided using ver-
tical sections, and the obstacle-free path is represented by connections between
the midpoints of each cell.

In the Potential Field method [80, 105, 118, 119], a cost function -such as the time
to reach the destination - is minimized while penalizing proximity to the obstacle.
As the mobile robot approaches an obstacle, the cost increases, creating a potential
field that guides the mobile robot away from collisions (see Figure 2.9). Potential field
methods are computationally efficient to implement; however, they are susceptible to
getting trapped in local minima, where the attractive and repulsive forces balance out,
preventing the mobile robot from progressing.

In Probabilistic Approaches to path planning, algorithms utilize probabilistic meth-
ods to find feasible and efficient paths for autonomous mobile robots or robots in
environments that may be uncertain, dynamic, or partially known. These methods
account for uncertainties in the environment, the robot state, or sensor data, using
probabilistic models to incorporate this uncertainty into the planning process. Al-
though the solutions generated may not always be nominally optimal, the probability
of successfully solving the path planning problem approaches one as the computation
time tends toward infinity [85, 206]. Examples of such methods include randomized
path planners and Rapidly-Exploring Random Trees (RRT) [206].

A randomized path planner, often based on potential fields, addresses the issue of
local minima in a probabilistic manner. In this context, the autonomous mobile robot
follows a planned path that connects the initial configuration (starting point) to the
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Figure 2.9: The potential field is generated using a cost function based on the distance to
the goal (attractive force) and repulsive forces around the unsafe workspace to
ensure safety.

desired destination. If the mobile robot becomes trapped in a local minimum-where
the attractive forces guiding it to the goal and the repulsive forces from the obstacle
balance each other-the planner introduces random movements to escape this state.
These random movements may involve temporarily substituting the global goal with a
virtual local goal or introducing a virtual obstacle to bypass the local minima [44, 238|.
This iterative process continues until a lower-cost or lower-potential solution is found.
As the size of the configuration space increases, the complexity of the problem increases
significantly, resulting in longer computation times to find a solution [18].

Rapidly Exploring Random Tree (RRT) algorithms are primarily designed to build
an expanding tree starting from the initial state, with the aim of exploring the available
configuration space Cgpe. until the desired destination is reached [115, 124]. During
each iteration, a new point or vertex is randomly selected and collisions are checked.
Should the point be situated within the free space, it is attached to the tree by con-
necting it to the nearest existing vertex. This step-by-step method continues until
the tree reaches the final configuration, as depicted in Figure 2.10 a. It is crucial to
understand that RRT algorithms do not emphasize optimization of the route between
the initial state and other nodes, making them efficient for finding paths but often
not crafting them optimally. To overcome this issue, RRT* refines the standard RRT
approach by introducing two major improvements [115, 163]. Initially, RRT* tracks
the cost, such as the travel distance, from the initial node to every other sampled node.
Once the closest node is found, a set of nearby vertices is examined within a predeter-
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mined range of the new node. If one of these vertices offers a more efficient path to the
starting node, it replaces the nearest node in the path. Furthermore, RRT* evaluates
neighboring vertices to see if connecting them to the newly incorporated vertex can
reduce their costs. If such a reduction is possible, the neighbor is reconnected to the
new vertex, as illustrated in Figure 2.10b. Related research indicates that bidirec-
tional artificial potential fields have been integrated with RRT* to enhance obstacle
avoidance in tight spaces [225]. Furthermore, an adapted version of RRT* has been
designed to minimize memory usage to store nodes [9]. In this variant, the RRT*
algorithm runs until the tree grows to a set number of nodes. Should a viable path
from start to goal not be identified, nodes deemed less useful are removed whenever
a superior node, such as one showing a reduced total path cost, is introduced. This
strategy has been expanded to address motion planning challenges in dynamic settings

10].
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Figure 2.10: (a) RRT algorithm: the path displayed in black links the start point A to
the goal point B; (b) The RRT* algorithm incorporates nearby vertices within
a set radius (illustrated by a circle with dotted lines), resulting in fan-like
formations.

2.4.4 Differentially Constrained Path Planners

In real-world mobile robot applications, addressing differential constraints when deal-
ing with the path planning problem is important. Neglecting these constraints can
yield overly cautious solutions, leading to suboptimal solutions with respect to energy
efficiency or travel time. To account for these constraints, the concept of Nonholo-
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nomic/Kinodynamic Planning, specifically for planning for wheeled mobile robots has
emerged [130]. With respect to deferentially constrained planners, the following no-
tions and definitions are important:

Nonholonomic Constraints are differential constraints that cannot be integrated or
formulated to produce a finite set of algebraic equations. Non-holonomic constraints
typically manifest as restrictions on the system velocity in the configuration space
C. A common example is the inability of wheeled mobile robots to move sideways
instantaneously. As a result of these constraints, the system state space becomes
restricted, rendering certain configurations inaccessible through direct paths. This
limitation characterizes what is known as a non-holonomic system. Such systems are
often classified as underactuated, meaning that the number of independently con-
trollable degrees of freedom exceeds the number of control inputs. The presence of
non-holonomic constraints significantly impacts path planning and control strategies
for mobile robots, necessitating specialized algorithms to navigate the constrained
state space effectively [130].

An Underactuated System refers to a mechanical system where the number of inde-
pendent control inputs or actuators is strictly less than the total degrees of freedom
of the system.

Kinodynamic planning addresses motion planning problems that incorporate both
kinematic and dynamic constraints. Originally, it focused on satisfying second-order
constraints in the configuration space C, specifically dealing with limitations on veloc-
ity and acceleration. However, the concept has evolved to encompass a wider range
of dynamic considerations. Modern kinodynamic planning extends beyond simple
bounds on velocity and acceleration, integrating more complex dynamic models that
may include forces, torques, and other physical properties affecting the system’s mo-
tion. This expansion allows for more realistic and physically accurate motion plans,
particularly crucial in advanced robotic systems and dynamic environments [56, 130].

To illustrate nonholonomic constraints, consider a car-like robot (Figure 2.11). This
robot cannot move directly sideways because its rear wheels are fixed, allowing only
rolling motion. Consequently, certain positions are unreachable through direct paths,
necessitating a series of forward and backward movements. This constraint makes
tasks such as parallel parking challenging, as the robot must execute specific move-
ment sequences rather than simple lateral shifts. Such limitations significantly impact
path planning and navigation strategies for wheeled mobile robots. Indeed, problems
involving kinodynamic constraints are inherently more challenging to solve due to the
temporal dependence in the differential states, especially in the presence of an ob-
stacle. As a result, algorithms that incorporate approximations are often necessary
to find optimal or suboptimal solutions, while also addressing hardware limitations
effectively.

The Grid-based State Space Search method provides a deterministic approach to
solving path planning problems under differential constraints [56]. This method dis-
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obstacle

Figure 2.11: Nonholonomic constraints force the autonomous mobile robot to follow a com-
plex path (solid and dashed lines) from point A to B, involving steering, for-
ward, and backward movements, rather than a direct route.

cretizes the configuration space of the autonomous mobile robot into a lattice, trans-
forming the continuous-time motion planning problem into a discretized hyperdimen-
sional grid. A graph search is then conducted to identify a dynamically feasible path
that connects the initial and final states, based on a specified performance metric such
as the shortest path.

There are two primary categories of lattice generation techniques: control-sampling
and state-lattice sampling [22]. In the control-sampling method, the control space
is sampled to ensure that the resulting state space adheres to the mobile robot’s
differential constraints [31, 60]. However, designing control-sampling primitives can
be challenging due to the often nonlinear relationship between the mobile robota€™'s
control inputs and its state evolution under kinematic and dynamic constraints [173].

In contrast, the state-lattice approach first discretizes the state space, and then
a boundary value problem (BVP) is solved to connect states within the discretized
space. For example, in [172], the problem of path planning for wheeled ground mobile
robots was addressed by constructing a state lattice using an inverse path generator,
which established feasible paths between lattice nodes/configurations characterized
by polynomials of arbitrary curvature. Based on this lattice configuration, a heuristic
search algorithm was used to identify the feasible optimal path connecting the initial
and final lattice nodes.

In another example, [137] introduced a state-space lattice for a quadrotor navi-
gating an obstacle-laden environment by generating a set of motion primitives. The
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discretized configuration space was then explored to identify dynamically feasible,
smooth, minimum-time trajectories. The authors of [22] further enhanced this ap-
proach by introducing a motion primitive generation framework that automatically
optimizes boundary constraints within the boundary value problem, along with the
corresponding motions. This framework also optimizes the maneuverability at the
end-point of the resulting path, which can be determined using fast optimization tech-
niques.

The concept of Dynamic Programming (DP) can be employed to solve the path plan-
ning problem for mobile robots under differential constraints [21]. In this approach,
the configuration space C is discretized into nodes, with each node representing a
distinct configuration of the autonomous mobile robot. The optimal path, defined
according to a specified performance metric, is constructed as a sequence of these
nodes connecting the initial configuration to the final configuration. An optimization
criterion is formulated to identify this sequence of nodes while ensuring adherence to
the differential constraints, which is governed by the following equation:

N
L(S,G) = min>_ L(x;, xit1).
i=1
where L(z;, x;11) denotes the cost of transitioning from node x; to node x;;1, and N
represents the number of nodes (cf. Figure 2.12).

However, the use of dynamic programming for path planning in mobile robots
presents certain drawbacks. One notable limitation is that the resultant path can
be more expensive (longer) than the theoretically optimal path [187]. This discrep-
ancy arises because the DP algorithm requires the planned path to visit specific grid
nodes, which may not align with the optimal path in a continuous space. Further-
more, the computational demands of the DP algorithm can be significant, particularly
in large-scale environments [67].

To mitigate these limitations, a variation of dynamic programming augmented with
discretization of the randomized grid is proposed in [187]. In this approach, the
configuration space is initially discretized into a regular grid of nodes, with obstacles
enlarged by a safety margin. Then each node is randomly displaced before the path
search is executed. This randomized grid enables the exploration of a wider variety
of paths, potentially discovering paths that are shorter or more efficient than those
produced by a standard grid-based DP approach.

In a different application, [112] applied dynamic programming to plan the paths
of a small autonomous aerial robot operating in a 2D environment with wind effects.
The configuration space was discretized into nodes that represented the headings of
the aircraft. DP was then used to calculate suboptimal paths comprising heading
sequences, with the point of departure defined by distances d; and angle of departure
0;, where i ranges from 0 to n, denoting the number of points of departure. The
problem was solved for all discrete initial and final headings, resulting in a database
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of turn progressions.

Dbstacle

L

Figure 2.12: The configuration space is discretized into cells with resolution N, and the
initial configuration is S, while the goal configuration is G. Potential paths are
represented by solid black lines starting from S.

X

In [231], iterative dynamic programming was used for motion planning in autonomous
mobile robots. This approach incorporated a path improvement strategy in which the
configuration space was discretized using a Voronoi graph, and a search algorithm was
used to find the shortest path. The planned path consisted of waypoints connecting
the starting and destination locations. To improve the smoothness of the path, the
authors applied Hermite interpolation between the waypoints. Dynamic programming
was then used to modify these interpolated waypoints, identifying a time-optimal tra-
jectory that accounted for both kinematic and dynamic constraints. This iterative
process refined the trajectory step by step, ensuring that the motion plan adhered to
system constraints while optimizing for time efficiency.

Rapidly-Ezxploring Random Tree (RRT) can also be used to address the differential
constraints of autonomous mobile robots by building a tree structure by random sam-
pling of the configuration space (see Figure 2.13) [131]. In [77], an RRT algorithm is
proposed that considers the dynamics of the system and incorporates knowledge of the
motions of obstacles. The algorithm expands the tree by identifying nodes or states
that minimize a cost function while adhering to the constraints imposed by system
dynamics.

A closed-loop RRT algorithm (CL-RRT) is introduced for autonomous urban driv-
ing in [125]. Unlike traditional RRT, this algorithm samples inputs to the stable
closed-loop system of the controller and mobile robot rather than sampling the con-
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figuration space directly, generating dynamically feasible trajectories. Furthermore,
Kinodynamic RRT* is introduced in [220], extending the capabilities of RRT* by solv-
ing a fixed final-state-free-final-time optimal control problem. This problem optimally
connects pairs of states while minimizing a cost function, subject to the constraints
imposed by the mobile robot linear dynamics.

obstacle

Figure 2.13: The configuration space tree is explored and expanded according to mobile
robot dynamics, such as the steering angle, ensuring the near-optimal path,
depicted in solid black, is dynamically feasible while avoiding unsafe workspace.

Another approach to solving the problem of autonomous mobile robot path planning
while considering differential constraints involves searching for a discrete configuration
space interpolated with polynomial arcs [84]. In this method, the planner-generated
waypoints are fitted with a spline constructed from polynomial arcs, ensuring that
the planned path is dynamically feasible and adheres to mobile robot constraints,
such as the turning radius. For example, in [58], B-splines were used to smooth the
planned path, ensuring C? continuity and bounded maximum curvature for a carlike
robot. Similarly, the work in [81] introduced a polar polynomial curve and a straight
line to smoothly connect two configurations for differential-drive nonholonomic robots
while satisfying dynamic constraints. Moreover, [217] combined path optimization
with spline interpolation to generate an optimized (minimum length) trajectory for a
carlike model, demonstrating the versatility of spline-based interpolation techniques
for solving path planning problems with differential constraints.

The Dynamic Window Approach (DWA) restricts the input space to values that
satisfy the dynamic constraints of the mobile robot, limiting the velocity space to
values achievable by the robot while ensuring safety (cf. Figure 2.14) [74]. This
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method consists of two primary steps: first, the velocity space is pruned and then
an optimal solution is selected from the remaining feasible velocities, restricting the
search to safe circular trajectories that can be achieved within a short time interval
[74]. The optimization objective is to select a pair (v, w) of translational and rotational
velocities that guide the robot to the destination while maximizing clearance from the
unsafe workspace.

The DWA is often integrated with other planning techniques to ensure feasible
paths for autonomous mobile robots. For example, in [219], the RRT approach is
combined with DWA, where RRT is used to plan a global path in the configuration
space, and DWA computes translational and rotational velocity commands along the
path. Similarly, in [135], the Dijkstra algorithm is used to plan a global path, while
DWA calculates feasible velocities for a smart car. Furthermore, [233] integrates DWA
with a global path planner, where the global planner generates a reference trajectory,
and an evaluation function within DWA is used. This function considers factors such
as the distance of the robot from the global path, the distance to the local final point,
and the proximity to the unsafe workspace. To ensure smooth motion, the evaluation
function also takes into account path directivity, smoothness of motion, and speed of
reaching the final point.

Figure 2.14: DWA is applied to steer an autonomous mobile robot from a starting point A
to the destination point B. Feasible safe trajectories are shown in solid black.

Motion primitives can also be used in the context of path generation considering sys-
tem dynamic constraints. These primitives consist of precalculated motions that the
mobile robot can execute by applying control input from a set of permissible controls.
They encompass various positions and states that enable the autonomous mobile robot
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to smoothly transition from a specific initial state to different states. In [27], the con-
cept of motion primitives is employed to smooth a sequence of 3D waypoints, ensuring
that the resulting trajectory is feasible from a helicopter dynamic perspective. This is
achieved by selecting an appropriate sequence from a pre-computed library of motion
primitives. Similarly, the work in [52] adopts a motion primitives-based exploration
path planner to rapidly plan a path for aerial robots. In [47], a motion primitives-based
graph is utilized for a 7 degree-of-freedom mobile manipulation platform, where tran-
sitions between states are restricted to a predefined set of feasible motion primitives.
Furthermore, the authors in [34] presented the application of motion primitives and
state lattices for ground robots operating in partially GPS-denied environments. The
motion primitive-based controller facilitates navigation by discarding states leading to
GPS-denied regions and enabling motion primitives based on lane or wall following.

In [168], the authors demonstrated 3D path planning for autonomous aerial robots
in dense obstacle environments using motion primitives. Two families of motion primi-
tives were introduced: one comprising 3D circular paths between points in space, along
with the necessary control input, and the other consisting of aggressive turnaround
maneuvers to effectively avoid unsafe workspace.

The path planning problem for autonomous mobile robots can also be tackled using
mathematical programming techniques, which formulate the problem as a numerical
optimization task. The goal is to determine the optimal route according to a prede-
fined performance metric, such as minimizing the distance or travel time between the
initial and final destinations, while adhering to constraints related to mobile robot
dynamics, mechanical safety, and human safety. This approach can solve differen-
tially unconstrained problems with linear equality or inequality constraints, resulting
in a linear programming optimization problem [40]. Two widely adopted methods for
addressing these problems in the presence of differential constraints are Mixed Inte-
ger Programming (MIP) and Nonlinear Programming (NLP). These techniques involve
formulating and solving an optimization problem to identify the most suitable path for
the autonomous mobile robot, considering its dynamic capabilities and environmental
factors [87].

Mized Integer Programming problems can involve linear, quadratic, or nonlinear
objective functions, with constraints that may consist of combinations of linear or
nonlinear equalities or inequalities. The subsets of variables may be integers or real
numbers that represent the state of the autonomous mobile robot[109, 223].

The classification of MIP problems depends on the form of the objective function
and the constraints. A problem with a linear objective function is referred to as a
Mixed-Integer Linear Program (MILP), while a quadratic objective function results
in a Mixed-Integer Quadratic Program (MIQP). If any constraints involve quadratic
terms, the problem is classified as a Mixed Integer Quadratically Constrained Program
(MIQCP).

Various optimization-based approaches for MIP have been proposed in different
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planning scenarios, ranging from minimizing travel time to considering mobile robot
turning rates. The computational complexity of these problems can be influenced
by the number of binary variables, which depends on factors such as the number of
constraints, obstacle characteristics, and the operational environment [49].

In [107], a MILP formulation was introduced to alleviate the computational demands
of solving path-planning problems for autonomous aerial robots. Similarly, [190] tack-
led a fuel-optimal path planning problem for multiple vehicles using mixed-integer
linear programming. The work in [182] employed MILP with a linear aircraft model
to find optimal trajectories for multiple aircraft to prevent collisions. This MILP for-
mulation can be extended for multi-waypoint path planning, as shown in [108] and
[229].

Moreover, [55] introduced a computationally efficient MILP formulation for the
optimal path planning of robotic manipulators, while [207] used MIQP to plan trajec-
tories for quadrotors with cable-suspended payloads in obstacle-filled environments.
In [151], MIQP was used for teams of quadrotors operating in 3D environments with
obstacles, incorporating collision avoidance through integer constraints. Furthermore,
[174] used the MIQP formulation to solve the optimal trajectory planning problem for
autonomous driving, considering robot dynamics, obstacle avoidance, multiple maneu-
ver choices, overtaking, and lane change decisions.

Alternatively, the path planning problem for autonomous mobile robots can be
formulated as a nonlinear program, where the objective function and/or some of the
constraints are nonlinear [20]. In contrast, if both the objective function and the
constraints are linear, the problem becomes a linear program [142].

Model Predictive Control (MPC), also known as receding-horizon control, can ad-
dress the motion planning problem for autonomous mobile robots by solving an op-
timization problem over a finite time horizon using non-linear or linear programming
techniques [36, 179]. The primary goal of an MPC-based motion planner is to deter-
mine a feasible reference trajectory or path for the control system while minimizing an
objective function designed, such as minimizing time or path length, subject to a set of
linear or non-linear constraints. These limitations reflect the operating characteristics
of the system and ensure safety, such as avoiding unsafe workspace.

MPC generates a sequence of states and control input, starting from the current
state of the mobile robot and ending at the end of the prediction period. An advantage
of MPC-based /receding horizon motion planning is its ability to account for physical
constraints while generating optimal paths or waypoints. However, model predictive
control can be computationally demanding, leading to research efforts aimed at reduc-
ing their computational requirements.

For example, [235] employed an MPC-based planning algorithm to maneuver an
underwater robot manipulator to a predefined pose while maintaining tight control
over robot roll and pitch. In [102], a receding horizon-based planner was used to
minimize energy consumption for an autonomous underwater robot under varying
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ocean disturbances and model uncertainty. In [35], a sample-based MPC approach
was introduced to plan the path of an autonomous underwater robot by sampling the
control space that satisfies input constraints and evaluating the generated nodes using
a A*-like algorithm.

For autonomous mobile robots, an MPC-based planner in [133] generated safe tra-
jectories for low-level trajectory tracking controllers, considering moving obstacles and
selecting appropriate mobile robot maneuvers. Similarly, [38] validated an MPC plan-
ner for autonomous mobile robots, capable of generating smooth trajectories that
follow reference paths while avoiding unsafe workspace. In [143], a distributed MPC
approach was proposed for real-time trajectory planning, incorporating obstacle avoid-
ance through soft constraints and penalty terms in the objective function.

However, in many real-world scenarios, the location of mobile robots can be uncer-
tain,

2.4.5 Completeness and Planning

Completeness is a desirable property in motion planning problems, as it ensures that
a planning algorithm returns a solution whenever one exists. Motion planners can be
categorized based on their completeness properties. A complete planner guarantees
that a solution will always be found if one exists. In contrast, an incomplete planner
does not provide such a guarantee, meaning it may fail to find a solution even when
one is available. Another category is resolution-complete planners, which ensure the
discovery of a solution at a specific level of resolution or discretization of the configu-
ration space, provided one exists. Finally, a planner can be probabilistically complete,
meaning that as the number of samples approaches infinity, the probability of finding
a solution-if one exists-converges to one [46].

2.5 Uncertainty- and Perception-aware Planning

In path planning, it is often assumed that precise knowledge of the mobile robot’s posi-
tion, as well as the shape and location of the unsafe workspace is available. Moreover,
it is typically assumed that the planned path will be executed with precision. However,
these assumptions are often impractical in real-world scenarios. Consequently, path
planners must account for uncertainties such as localization errors, imprecise motion
execution, and inaccuracies in sensor measurements.

Thus, the objective of path planning goes beyond simply reaching the destination.
It also involves navigating through uncertain or unknown environments to gather
additional information, thereby increasing the likelihood of achieving the main goal.
This expanded problem, which accounts for uncertainties, is referred to as perception-
aware path planning.
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A perception-aware path planner seeks to mitigate the challenges posed by uncer-
tainty by generating paths that not only avoid obstacles but also maximize information
gathering. This additional information helps reduce uncertainty in mobile robot lo-
cation or enhances exploration to improve overall performance. Consequently, the
planning problem can be categorized into two main types, depending on the nature of
the uncertainties to be addressed [177].

2.5.1 Uncertainty-aware Planning

In uncertainty-aware planning, also known as belief-space planning, the planner aims
to select trajectories that minimize uncertainty in the mobile robot’s location. This
problem is often tackled using techniques such as Partially Observable Markov Deci-
sion Processes or graph search in belief space. However, the computational complexity
of these methods grows exponentially with the number of possible actions and obser-
vations [48].

To overcome this challenge and enable rapid trajectory computation, the Rapidly
Exploring Random Belief Tree (RRBT) approach has been proposed [32]. This al-
gorithm leverages the Rapidly Exploring Random Tree (RRT) method to plan paths
within the uncertainty space.

When perceptual information is incorporated as a planning metric, the problem is
termed active perception or, more broadly, active simultaneous localization and map-
ping (active SLAM). One of the objectives of active perception is to reduce uncertainty
in the location of autonomous mobile robots by using sensor information, a concept
known as active localization [138].

In [48], a perception-aware path planning framework was proposed, which uses both
geometric and photometric information to improve location. This framework facilitates
faster and more precise movements by planning paths using enriched environmental
data.

The authors in [171] introduced a perception-aware planner operating in environ-
ments with uncertainty. They represented this uncertainty using ellipsoids that de-
crease in size as the robot approaches known landmarks.

In [167], the authors proposed an online algorithm that samples a finite-iteration
random tree. Each branch in this tree is evaluated on the basis of the amount of area
to be explored, and the best branch is selected to minimize expected robot localization
and mapping uncertainty.

Furthermore, [183] developed a visual navigation algorithm based on artificial po-
tential fields, which assigns attractive and neutral potential energy to areas rich in
high and low features, respectively, to improve the visual location of mobile robots.
Finally, in [234], the Fisher Information Matrix (FIM) was introduced as a perception
metric to minimize the uncertainty of localization.
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2.5.2 Adaptive environmental perception

In adaptive environmental perception, the primary objective of the planner is to gen-
erate motions that allow the autonomous mobile robot to gather more information
about its environment. This approach finds applications in tasks such as searching,
building inspections, and leak detection [177].

Various methods have been developed to address the adaptive navigation task,
which can be broadly categorized into two main types: frontier-based methods and
information-gain-based methods [39]. The frontier-based method, initially proposed
by Yamauchi [228], identifies the boundaries between the known and unknown areas,
known as the frontiers. The robot then navigates to the nearest accessible and un-
visited frontier. Upon reaching a new frontier, the robot explores new regions and
updates its map with newly acquired information. The coordination of a team of mo-
bile robots for adaptive environmental perception in an occupancy grid environment
is addressed in [33]. A comparative analysis of frontier-based strategies is presented in
[97], while an improved frontier-based algorithm is introduced in [79]. A combination
of frontier-based and sampling-based approaches is applied in [50].

Information-gain-based mapping strategies optimize an information-theoretic mea-
sure for exploration. In [29], the expected Shannon information obtained from an oc-
cupancy grid map is maximized, while minimizing uncertainty in both the robot pose
and the map characteristics. In [165], an online exploration algorithm that maximizes
expected information from unmapped space at the next best viewpoint is introduced.
The authors in [113] maximize a mutual information reward function to encourage
robots to explore new regions. Using an information-theoretic approach, [71] employs
RRT*-IT to plan exploration paths for a Mars helicopter, aiming to reduce the stan-
dard deviation of the terrain type belief distribution.

In [12], a map is represented by obstacles and free-edge lists, where the free-edge
list marks the boundary between the explored and unexplored regions. The expected
information gain is quantified on the basis of the total length of segments in the
free-edge list detected from a candidate observation point. In [218], an autonomous
exploration task for a mobile robot in a 2D environment, expressed by an occupancy
grid map, selects the next observation point to minimize the expected reduction in
entropy.

Although adaptive environmental perception enhances the robot’s ability to gather
information and reduce uncertainty, it may also lead to unexpected obstacles or op-
erational challenges. In such cases, fallback path planning ensures that the robot can
safely recover and continue its task without external intervention, e.g., returning to
charging stations, safe human interaction, or logistics tasks.
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Figure 2.15: An autonomous mobile robot follows a preplanned safe path from point A
to point B (dashed blue line). If an unknown area is encountered, the robot
dynamically adjusts its route. If further obstacles prevent progress, the fallback
controller reverts to a previously explored safe path to ensure continuity and
safety (dashed red line).

2.6 Safe and Fallback Path Planning

In perception-aware and autonomous navigation, robots may encounter unforeseen
situations that prevent them from proceeding safely. To address this, a fallback planner
serves as a recovery mechanism, enabling the robot to return to a previously known safe
state or adapt its path when necessary. Such situations may arise due to unexpected
workspace constraints, environmental changes, or temporary sensor limitations. The
fallback approach leverages either precomputed safe paths or recently explored routes
to allow the robot to safely reposition itself and continue its operation (see Figure
2.15).

Several strategies have been proposed to enhance fallback planning for safety-critical
applications. For instance, [226] introduces a method for handling sensor failures,
ensuring that robots can continue operating safely despite temporary perception issues.
Similarly, [82] presents a driving fallback controller designed to improve pedestrian
safety in urban environments by mitigating unexpected perception errors. In [199],
a safety-oriented fallback controller is proposed to protect autonomous systems from
perception failures, enhancing overall reliability.

In the context of automated mobility, [232] emphasizes the importance of a multi-
level fallback strategy for highly autonomous systems, detailing various degradation
levels that allow for graceful performance reduction while maintaining operational
safety. A similar approach is outlined in [227], where a fallback control mechanism is
designed to assist automated vehicles in safely maneuvering to a designated parking
area in case of sensor malfunctions.

By incorporating fallback planning, robots operating in hospitals, warehouses, and
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service environments can ensure safety, minimize disruptions, and recover from unex-
pected changes in their surroundings. These strategies enhance operational reliability
and contribute to the trustworthiness of autonomous robotic systems in real-world
applications.

2.7 Summary

Designing a safe and efficient path for an autonomous mobile robot is a complex task
that requires consideration of factors such as robot dynamics, sensing capabilities, and
operational safety, particularly in environments where robots interact with humans.
This chapter provided an overview of the general path-planning problem, introduced
key definitions, and categorized planning strategies based on available environmental
information and system constraints.

Given the complexity of real-world navigation, various computational approaches
have been developed to address the path-planning problem. These range from simpli-
fied models that approximate the robot as a point mass to full dynamic models that
incorporate constraints such as nonholonomic motion and sensor-based adjustments.
Additionally, perception-aware planning was discussed, emphasizing the role of sensor-
driven navigation in handling uncertainties related to localization, motion execution,
and environmental changes.

The chapter also introduced the concept of fallback path planning, which ensures
that an autonomous robot can safely recover from unexpected obstacles or tempo-
rary sensor limitations by reverting to a previously known safe state. This enhances
the robustness and reliability of robotic systems in dynamic environments such as
warehouses, healthcare facilities, and public spaces.

Several optimization-based approaches have been developed to improve motion
planning, including mathematical programming techniques that allow for structured
decision-making under constraints. Among these, Model Predictive Control has emerged
as a promising method, enabling rolling-horizon optimization for hierarchical planning
and real-time adaptability. The subsequent chapters will explore the application of
MPC-based approaches for efficient, perception-aware motion planning and control in
autonomous robotic systems.
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Following, and Planning

We should be taught not to wait for
inspiration to start a thing. Action
always generates inspiration.
Inspiration seldom generates action.

Frank Tibolt

Model Predictive Control (MPC) has become a widely adopted control methodology
for mobile robots due to its ability to handle constraints, optimize control actions,
and ensure stability. This chapter introduces the fundamental principles of MPC for
autonomous mobility in structured environments, focusing on applications such as
warehouse automation, industrial logistics, and urban transportation systems.

The chapter provides a structured overview of MPC formulations for set-point track-
ing, trajectory tracking, and path following, emphasizing their role in improving effi-
ciency, safety, and reliability in real-world applications. The discussion begins with an
introduction to MPC’s core principle: solving a constrained optimization problem in a
receding horizon fashion. It then explores practical implementations in various robot
control tasks: Set-point tracking enables a mobile robot to reach and stabilize at a de-
sired location, improving precision in automated warehouses and industrial robotics.
Trajectory tracking ensures a mobile robot follows a time-dependent reference, en-
hancing automated delivery robots and fleet coordination. Path following allows a
robot to navigate along a predefined path, supporting urban mobility solutions and
collaborative robots.

The chapter also discusses MPC-based path planning, which enables mobile robots
to operate in partially known environments while accounting for constraints such as
obstacle avoidance, motion feasibility, and real-time adaptation. To ensure computa-
tional efficiency, the chapter introduces approximate models and Mixed-Integer Pro-
gramming formulations, making MPC scalable for real-world robotics applications.

The methodologies discussed here provide a robust foundation for safe, efficient,
and adaptive control in structured civilian settings. The next sections present de-
tailed mathematical formulations and case studies, demonstrating how MPC enables
autonomous systems to perform complex tasks while ensuring safety and reliability.
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3.1 Principle of Model Predictive Control

Model Predictive Control (MPC), also referred to as receding horizon control, has
emerged as a prominent advanced control methodology widely utilized in both aca-
demic research and industrial applications. Initially developed and popularized in the
1970s and 1980s, MPC gained widespread adoption in the process industry due to
seminal contributions such as dynamic matrix control, model predictive heuristic con-
trol, and generalized predictive control [107]. Its versatility in managing soft and hard
constraints, which encapsulates physical system limitations and safety considerations,
and its capability to handle nonlinear system dynamics and multi-input-multi-output
(MIMO) systems makes MPC a superior control approach compared to alternative
methods. Numerous studies offer comprehensive information on MPC principles and
diverse applications, as documented in works such as [114, 141, 150, 185]. Simula-
tion studies considering autonomous systems highlight the differences between the
approaches and provide insights into the controller design for the different tasks.

Initially, the utilization of MPC algorithms was confined to systems characterized by
simple or slow dynamics due to constraints imposed by available solvers and computa-
tional resources. However, with continued advancement of computational capabilities
and the development of efficient formulations and tailored solution methods, MPC
can now address more complex and fast tasks, spanning domains such as aerospace
and robotics [53, 54, 70, 141]. The fundamental principle of MPC revolves around
iteratively solving a finite-horizon optimization problem at each time instant, as illus-
trated in Figure 3.1 [36, 175, 180]. The optimization problem is subject to constraints
imposed by the system dynamics, system limitations, and additional constraints that
ensure system stability. The solution to the optimization problem involves deter-
mining an open-loop optimal control signal. The optimal control input minimizes a
user-defined objective function while respecting the imposed constraints. This objec-
tive function typically minimizes or maximizes a specific metric, such as travel time or
distance. In practice, only the first part of the optimal control input is applied to the
system. Subsequently, the new state of the system is fed back into the optimization
problem, which is solved iteratively in a rolling horizon framework. The accuracy of
the mathematical model used in MPC formulations as well as the correct choice of
the cost function is crucial: a more accurate model reduces prediction errors and im-
proves control performance, possibly at the cost of increased computational overhead
or the need to determine more parameters of the model. Both the reiteration/sampling
time and the prediction horizon influence the computational load, underscoring the
trade-off between control effectiveness and computational efficiency. In addition, the
iterative real-time optimization characteristic of MPC can pose challenges, particu-
larly when dealing with large-scale or very fast problems [70, 149]. These problems
often require substantial computational resources to ensure that the optimization can
be solved within the available sampling time. As a result, achieving a balance between
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computational complexity, optimization accuracy, and real-time performance is crucial
for the practical implementation of MPC. Despite the challenges and considerations
described, Model Predictive Control (MPC) is a widely applied control methodology
that finds application across various domains, including aerospace and robotics, see,
i.e.[15, 53, 176].

3.2 Basic MPC Formulation

We start by considering continuous-time formulations for MPC, following the exposi-
tions provided in [68] for the setpoint stabilization case. For the practical implementa-
tion, we will use sampled-data formulations, where the input will be updated or kept
constant between sampling instances, where new measurements become available.

The core principle of MPC involves solving an optimization problem at each time
t > 0 (or specific sampling times) to minimize or maximize a user-defined objective
function J(-). This optimization yields a control signal over possibly a control horizon,
and the first control input is then applied to the real system at the subsequent time
step. In this section, we present the fundamental formulation of MPC. We consider
nonlinear, continuous-time, time-invariant systems of the form:

#(t) = f(z(@),u®)),  2(0) = o,
y(t) = hz(t), u(t)).

Where ¢ € R is the time, z(t) € R™, u(t) € R™ and y(¢) € R™ are the system states,
control inputs and output states respectively with state, output, and control dimen-

(3.1)

sions n,, n, and n,. The nonlinear mapping function f : R" x R"™ > R"* represents
the system dynamics. The output mapping function h : R™ +— R™ represents the
relation between the system states and the output y(¢). Notably, the output does not
necessarily denote the measured variables; we rather use it for defining the control
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Figure 3.1: Moving horizon principle of MPC: The System behavior is forward predicted
using a model of the system over a finite prediction horizon.
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3.2 Basic MPC Formulation

objective, or to capture important states or state projection for obstacle avoidance.
Rather, we assume that all system states are measured and available at each time
instant. The nonlinear system (3.1) is subjected to constraints. One might consider
constraints due to safety reasons by excluding some regions of the state, input, or
output space that are considered dangerous for the system under control or its envi-
ronment. These restrictions can take the form of state, input and output constraints,
which are represented in this work through the sets X € R"* i/ € R™, and ) € R"v.
Moreover, we rely on the following assumptions on the nonlinear system in (3.1):

Assumption 1. The state and output constraint set X and ) are closed, the input
constraint set U is compact.

Assumption 2. The system dynamics f : R" x R™ — R" and the output mapping
function h : R™ — R™ are assumed to be sufficiently continuously differentiable and
locally Lipschitz for all (z,u)" € X xU.

Assumption 3. For any continuous input signal u(-) and for all initial points xog € X,
the system (3.1) admits a unique absolutely continuous solution

Model Predictive Control can address the control of the nonlinear system (3.1)
considering the constraints such as system dynamics and the constraints on the in-
put, states, and output sets. The optimal control problem minimizes a user-defined
objective function to find an optimal open-loop control input sequence and the corre-
sponding state trajectory.

The objective function to be optimized over the finite, in our considerations fixed,
prediction horizon T is represented as follows:

IO = [ F@), ulrdr + Ba(Tr) (3.2)

where ¢y is the current time and the function F(-) represents the stage cost that
penalizes the state and the input with respect to the reference functions. The solution
of the optimization problem minimizing (3.2) with respect to the input leads to an
open loop control input u(-) over the prediction horizon. The predicted input signal
could be infeasible, i.e., can’t be achieved by the dynamical systems. Therefore, the
optimal control problem (3.2) is augmented with constraints. These constraints may
account for various physical limitations of the system, such as maximum speed /voltage
or torque. Additionally, constraints can be imposed to regulate the rates of change in
certain states, ensuring passenger comfort [23], or to ensure that the system operates
within a safe region while avoiding obstacles; see, e.g. [7, 100]. Generally, the problem
should be well defined to be solvable by an off-the-shelf solver in a reasonable time to
meet the real-time requirements.

Summarizing, at each time instant ¢ the following constrained continuous-time op-
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3 Model Predictive Control for Tracking, Path Following, and Planning

timization problem is solved:

i /tTf Fla(7), u(r))dr + E(@(T})) (3.3a)
s.t. T = f(z(r),u(r)), (3.3b)
g(x(1),u(r)) <0, (3.3¢)

z(1) € X,u(r) €U, (3.3d)

x(Ty) € € (3.3¢)

The solution of (3.3) over the prediction horizon T yields a state trajectory z*(-) and
a feasible open loop control input trajectory u*(-) that satisfies the system dynamical
constraints in (3.3d) and safety constraints imposed in (3.3c). At the end of the
prediction horizon, the predicted state is enforced to belong to the terminal region
in (3.3e). The first part of the open loop optimal control signal is fed back to the
real system and the new state is measured or estimated and the optimization problem
(3.3) is solved at the next time in a rolling/moving horizon fashion.

As the objective function is central in determining the optimal control input w*(-),
one can formulate different tasks, such as setpoint-tracking, trajectory-tracking, path-
following, or economic operation [148]. For example, one can use a time-dependent
state or output reference trajectory. The cost function then penalizes the error be-
tween the predicted states and the reference at each stage or prediction step. This
formulation leads to the trajectory-tracking MPC problem [106, 148]. Alternatively,
in the path following MPC problem, the reference is defined by a parametrized path,
via the path parameter. This introduces an additional degree of freedom, allowing the
optimizer to adjust the path parameter to minimize the error between the predicted
states and the reference path without explicitly adhering to specific states or outputs
at particular times, as required in trajectory-tracking [63, 148]. This flexibility can be
advantageous in applications where specifying a time-dependent reference trajectory
is impractical or overly complex [63]. Furthermore, the reference can be defined as
a constant state value that remains unchanged along the predictions. Doing so leads
to a set-point MPC formulation. In the following sections, we underline the formula-
tion of MPC for different problem formulations, spanning from set-point tracking to
trajectory-tracking control, before outlining the moving-horizon optimization principle
for path-planning problems.

3.3 Set-point Tracking

Set-point stabilization or tracking involves a steady state. The control objective is to
steer the system state x(t) to a reference state value z5. The objective function in the
case of the set-point stabilization penalizes the error between the predicted states and
their reference. MPC set-point formulations are used in many applications [146, 193].
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3.3 Set-point Tracking

For the desired setpoint the following steady state condition needs to hold:

0= f(xs,us). (3.4)

Here x4 is the set-point or desired state, and ug is the corresponding control input.
We use the subscript s to refer to set-point.

The optimal control problem for the set-point tracking can be expressed in contin-
uous time as follows:

Ty
E(lr)l /to Fy(z (1), u(r), xs)dT + Es(x(T¥), zs) (3.5a)
s.t. T = f(z(r),u(r)), x(ty) = x(t), (3.5b)
z(T) € X,u(t) €U, (3.5¢)
z(Ty) € &, (3.5d)
VT € [to, Ty (3.5¢)

Here we assume zero control input at the reference point, i.e., ug = 0. The stage cost
Fs(-) penalizes the errors between the predicted states and input and the reference
values, while the terminal cost Fs(-) penalizes the error at the end of the prediction
horizon Ty. The solution of the open loop OCP (3.5) results in a feasible input trajec-
tory u*(-) and a state trajectory x*(-) that respects the input and state constraints in
(3.5¢). Moreover, the state trajectory at the end of the prediction horizon is restricted
to be in a set & in (3.5d), which is often used to ensure stability. This terminal region
Es should be a subset of the state constraint set X' and the pointwise preimage of
the output constraint set ). Only the first control input candidate in the predicted
control trajectory is applied to the real system. The new states of the system are
measured or estimated at the next instance ¢ + 1 and the optimization problem is
solved repetitively.

3.3.1 Stability of MPC Set-Point Tracking

The fundamental principle of MPC involves solving a constrained or unconstrained
open-loop optimization problem at each time instant. However, as highlighted in
(68, 149], achieving optimality in MPC does not necessarily guarantee stability, except
in certain exceptional cases, such as the infinite horizon scenario where N, — oo.
However, solving an infinite open-loop optimization problem online is impractical and
also often the finite-time behavior, not the asymptotic behavior, is important. Hence,
since MPC solves a finite optimization problem, other properties must be carefully
considered to ensure stability. Various approaches have been proposed in the literature
to establish the stability of MPC [62, 68, 149], which generally involves the proper
selection of the terminal cost, the terminal set, and the weighting matrices.

Similarly as in [68], to discuss stability of MPC for the system in (3.1) we relay on
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3 Model Predictive Control for Tracking, Path Following, and Planning

the following assumptions:

Assumption 4. (Stage Cost)
The stage cost Fy : R™ x R™ s R{ is continuous and Fs(0,0) = 0. It is further lower
bounded by a class K function oy, such that Fs(z,u,xs) > aq(||z — zs||), V(z, u, z)

Assumption 5. (Terminal Cost)
The terminal cost Es : R™ w R{ is positive semi-definite and Es(0,0) = 0. Further-
more, it is continuously differentiable.

Assumption 6. (Terminal Set)
The terminal set £, C X is closed.

Assumption 7. (Ezistence of local controller)
For any state x € &, there exist a local control input u(-) € U such that V7 > 0,

OE,

9 Sx(r), u®s (1)) + Fs(x(7),u(r)) <O0.

This inequality ensures that the local controller u®(-) stays inside the terminal set &,
and the terminal cost Eq(-) will decrease by at least Fs(x(7),u(T)).

Assumption (4) is typically required for set point stabilization as it enforces that
minimizing Fy(-) leads to convergence of the state to the desired set point. Whenever
assumptions (1-7) hold, one can state the following theorem:

Theorem 1. (Convergence of sampled-data NMPC' for set point tracking)

Given a system in (3.1), if the OCP (3.5) is feasible at ty with a proper stage, terminal
costs as well as the terminal set satisfying assumptions (4-7), then it is recursively fea-
sible, and the controller will lead to error convergence as the stage cost Fs(-) penalizes
the system states with respect to the reference state value xg.

The proof for convergence in the sampled-data NMPC case can be found in [68].

3.3.2 lllustrative Example

In the following, we employ a sampled-data model predictive control formulation to
enable real-world application to a continuous-time system via a discrete-time imple-
mentation, which is necessary for controller design. The optimization problem to be
solved at all sampling times looks like follows:

Np—1
min Y ly(@k, Ts, up) + es(TN,, ). (3.6a)
{ur} k=0
st. xp1 = falag, ug), o= 2(t), (3.6Db)
Tpp1 € X, up €U, (3.6¢)
TN, € &, (3.6d)
vk € [0,..., No]. (3.6¢)
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3.3 Set-point Tracking

The optimization problem (3.6) is solved over the prediction horizon N, utilizing
the discrete-time stage cost function /4(-) and the terminal cost function ey(-). The
system dynamics, as described in (3.6b), represent the discrete-time counterpart of
the continuous-time dynamics in (3.5b), obtained through appropriate discretization
or implicit integration within the chosen dynamic optimization scheme.

Similar to the continuous-time formulation, the predicted states and inputs are con-
strained to remain within the state and input sets specified in (3.6¢). The predicted
optimal control input accounts for system limitations, such as maximum acceleration
and turning rates, ensuring feasibility with respect to the system dynamics. Addi-
tionally, the predicted states at the end of the prediction horizon must belong to the
terminal set defined in (3.6d).

Solving the optimization problem (3.6) yields an optimal control trajectory u* =
{uo, Ui, ..., uNp,l} that minimizes the cost function, along with a corresponding state
trajectory x* = {xo, e ,pr}.

Only the first control input from the optimal sequence is applied to the system,
after which the measured states are updated. The set-point tracking problem (3.6) is
solved recursively until the system states converge to the desired reference values.

We demonstrate the MPC set-point tracking formulation (3.6) considering an mobile
robot that can be mathematically represented by a kinematic bicycle model as outlined
in [111]:

Pz = vcos(). (3.7a)
Py = vsin(v). (3.7b)
Y = vtan(d)/L. (3.7¢)
U= uy. (3.7d)
6 = uy. (3.7¢)

Equations (3.7a) and (3.7b) represent the dynamics of the center of mass of the vehicle
while the heading angle dynamics is given by (3.7c). The control inputs u; and us
are the acceleration and steering angle rates, respectively. The differential equations
can be either implicitly integrated in the optimization, or the system equations can
be discretized, leading to:

Tpy1 = falxg, ug), xo = Z(t).

ok = halzy). (3.8)

Here, x represents the state vector [ps, py, ¥, v, (5]T and u is the control vector [uy, 'U/Q]T

and y is the output of the system.

Example 1. (Set-point tracking problem,)
The system should be steered from an initial point A to a final destination point B
while avoiding obstacles. Therefore, the following optimal control problem is solved at
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Figure 3.2: The autonomous mobile robot moves from a start given point A to a final
destination point B while avoiding static obstacles.
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3.3 Set-point Tracking

sampling times t:

Ny—1
min Y (|l —2°[15 + [JuxllF) (3.92)
{ur} k=0
st. w1 = falog, ug),xo = 2(t), (3.9b)
Pmin < Pk < Pmaz; (3.9¢)
Umin < Uk < Upmaz, (3.9d)
Omin < 0k < Omaz, (3.9¢)
Unin < u < Upaz, (3.9f)
vk € [0, ..., N,). (3.9g)

Here, p represents the center of mass coordinates with respect to the global frame, i.e.,
p= [pw,py]T, while ps denotes the final goal coordinates, which are time-independent.
The objective function (3.9a) not only minimizes the difference between the predicted
vehicle position and the goal position but also seeks to reach the final point with min-
tmal control effort, thereby reducing the vehicle’s energy consumption. The weighting
matrices () > 0 and R > 0 are positive semidefinite and positive definite, respectively,
representing the trade-off between state and control input penalization.

Note that we focus only on reaching the point B, the speed is not constrained, thus
it does not appear in the cost function. This does not allow to utilize Theorem 3.3.1
to proof stability.

In addition to the system dynamics constraints physical limitations such as maxi-
mum and minimum velocity and steering angle are incorporated, ensuring the feasibility
of the predicted trajectory (3.9c) . The input constraints in (3.9f) allow for a trade-off
between system aggressiveness and passenger comfort [23].

In this example, the reference is defined by constant reference states that are con-
stants throughout the prediction horizon, such as the state at reference point B, as
illustrated in Figure 3.2. Hard constraints account for the physical limitations of the
mobile robot, including velocity and steering angle. Additionally, obstacle avoidance
constraints are integrated into the optimization problem to ensure the autonomous
mobile robot safety. By solving the constrained optimization problem (3.9) at each
simulation step, the controller safely guides the robot from the initial point A to the
destination point B, as shown in Figure 3.2. The controller optimizes acceleration to
reach the final with maximum speed while adjusting speed and steering angle to nav-
igate safely around known obstacles, as illustrated in Figure 3.3. Consequently, the
planned path is both dynamically feasible and safe.

The MPC optimization problem (3.9) has been implemented numerically and trans-
lated into highly efficient C-code using the ACADO toolbox [98]. The implementation
was executed on an Intel® Core™ i7-6700 CPU @ 3.40 GHz, achieving an average
computation time of tep, = 2.4732 ms.
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3 Model Predictive Control for Tracking, Path Following, and Planning

3.4 Path-Following Formulation

In the set-point tracking formulation so far presented, the reference is considered
constant, i.e. to reach a specific vehicle position, as demonstrated in Example 1.
However, often the system is required to follow a reference state trajectory or path.
For example, an autonomous mobile robot may need to follow a predefined path to
accomplish specific tasks, where the exact timing of reaching particular points along
the path is less critical, provided the vehicle completes its task within a specified
timeframe or as quickly as possible.

This requirement gives rise to the path-following problem, where the reference is
represented as a geometric curve without predefined timing information [63, 148]. In
path-following formulations, the reference velocity is not predetermined. Instead, the
planner supplies a geometric curve, and the controller dynamically adjusts the velocity
along the path during operation. MPC path-following formulations have been applied
to autonomous systems in [66, 89, 198] and to robotic manipulators in [64, 215].
Typically, the reference path denoted as P, is defined as a parameterized curve within
the output space Y, expressed as follows:

P o= {y” € R™[y" = fr(6(t))}. (3.10)

In the context of the path-following formulation, we use the superscript p to refer
to the path-following. In (3.10) the scalar variable 6 is the path parameter. In the
following, the mapping function f? is assumed to be a continuous differentiability,
denoted as C°. The reference defined in (3.10) is indirectly depending on the time
via the path parameter 0(¢f) € ©. In turn, the evolution of the path parameter over
time is not fixed a priori. We will consider constraints on the path parameter of the
form 6 := [Osart, Oena] and 6 > 0. In the controller, the path parameter is increased,
until the final value 6.,4 is achieved, such that the whole parametrized reference is
traversed. The parameterization of the reference can be introduced by introducing
a virtual dynamical single-input single-output system that delineates the evolution
along the intended path as follows:

(3.11)

>
—~
~
N—
I
o~
—~
N
—~
~
N—
S—

In this context, the variable z(¢) € R"* denotes the virtual system states, ¢(t) € R"
represents the virtual system input, and 6(t) signifies the virtual system output. It is
important to emphasize that the progression of the reference path is achieved upon
the input of the virtual system g. The optimizer can freely choose the values of the
virtual input to minimize the error between the real system states and the reference
path. Constraints can also be imposed on the virtual states, inputs, and outputs. For
simplicity, the virtual system dynamics (3.11) is typically chosen as an integrator chain.
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3.4 Path-Following Formulation

In this case, forward motion can be enforced by choosing the virtual state constraints
to restrict the derivative of the path parameter to be positive until reaching the end
value 0.,,4. Therefore, for the system (3.1), the path-following optimal control problem
is formulated as:

o [ Fyfa(r), (). =), a())dr + By(a(Ty), =(T)) (3.12)
s.t. &= f(x(r),u(r)), z(ty) = z(t), (3.12b)

2 =r(z(7),q()), 2(to) = 2(t), (3.12¢)

O(1) = 1(z(7)), (3.12d)

O(7) € [Omaz, Omin), (3.12¢)

z(1T) € X,u(r) €U, (3.12f)

z(1) € Z,q(1) € Q, (3.12¢)

(2(Ty), 2(Tp))" € &, (3.12h)

V7 € [to, T (3.12i)

The objective function in (3.12a) minimizes the error between the system states and
the parametrized reference path through the stage function F,(-), and the terminal
cost function E,(-). The real system dynamics are considered in (3.12b) while the
virtual system dynamics are represented in (3.12c). The evolution of path parameter
is considered in (3.12d) and constrained in (3.12¢). The real and virtual systems states
and inputs are restricted to be in the corresponding safe sets in (3.12f), (3.12g). The
terminal set represented in (3.12h) does not depend on time rather it depends on the
virtual and real system states sets such that £ C X x Z that is influenced by the
augmented system input u?/ = [u, ¢]T with augmented states 27/ = [z,2]T. It is im-
portant to note that with the introduction of the virtual system input ¢, the controller
gains an additional degree of freedom to adjust the parameterized evolution of the
path. This flexibility allows the controller to minimize the error between the reference
path and the actual system states. The solution of the OCP in (3.12) results in an
optimal control input «*?/(-) and optimal state trajectory z*P/(-) over the prediction
horizon [ty, T¥|.

3.4.1 Stability of MPC Path-Following

To derive stability of the path-following formulation, the following assumptions are
required to hold [63, 148]:

Assumption 8. (Constraint consistent path)
The path P in (3.10) respects the state constraints R"=.

Assumption 9. (Stage Cost)
The stage cost F, : R"™ x R x R™ x R"™ — Ry is continuous. It is further lower
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3 Model Predictive Control for Tracking, Path Following, and Planning

bounded by a class Ko function ay such that 1,(x, z,u, q) > a1 (||(z — z||) "V(z, 2, u, q).
(Here x is the real system state while z is the virtual system state representing the
path. The real and virtual system inputs are u,q, respectively).

Assumption 10. (Terminal Cost)
The terminal cost E, : R™ x R" +— R{ is positive semi-definite. Furthermore, E,(-)
is continuously differentiable w.r.t. the states of the real and virtual systems x and z.

Assumption 11. (Terminal Set)
The terminal set £, C X x Z is closed.

Assumption 12. (Existence of a local controller)
For any state (xy, z) € &, there exist a local control input (uf,¢%) € U x Q such
that

(o5 aE,J),(f(x(T),u%(T))

70 0\ r(elr), (7))

This implies that the local controller (uf?, q®) keeps the states inside the terminal set
&y, that is, it renders the terminal region invariant and ensures the convergence of the
cost function.

) + Fy(z(7),u(r), 2(1),q(7)) <0.

Whenever assumptions (1-3) as well as assumptions (9-12) hold, one can obtain the
following theorem.

Theorem 2. (Convergence of sampled-data NMPC' for path following)

Given the system (3.1). If the OCP (8.12) is feasible at ty with a proper stage, terminal
costs as well as the terminal set satisfying Assumptions (9-12), then the MPC OCP
is recursively feasible, and the controller will lead to convergence of the path following
error under sampled-data NMPC.

For the proof we refer to [62].

3.4.2 lllustrative Example

For the autonomous mobile robot described in (3.7) we adopt a discrete-time/sampled-
data formulation (assuming fixed inputs between the equi-distant sampling times) of
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(3.12):
Np—1
min Y (@, 2k, up, @) + ep(Tran,, Vi n)- (3.13a)
uP{-} =0 ’
s.t. 1 = falzg,ug), ©o = 2(t), (3.13Db)
Zk+1 = 9a(2k, i), 2 = 2(1), (3.13¢)
Or = U(zk), (3.13d)
Ok € [Omaz, Omin, (3.13e)
Thr1 €X, up €U, Yy, €Y, (313f)
% €2, € Q. (3.13g)
(Tha1, 2hr1) € &p, (3.13h)
Vk € [0, ..., Np). (3.13i)

The objective function (3.13a) penalizes the error between the predicted system states
xr and the parameterized reference that is calculated based on the virtual system
represented in (3.13c) and the path parameter in (3.13d) through the stage and termi-
nal costs [,(+), e,(-) respectively. The evolution of the path parameter is restricted in
(3.13e). Constraints are applied to the states and inputs of the real and virtual systems
in (3.13f) and (3.13g). Please note that the control input «?- in the (3.13) represents
not only the system input u but also the virtual system input ¢q. The solution of the
OCP (3.13) results in a feasible input trajectory u*? = {uf, Upyq, uf+Np} and a state
trajectory x* = {$t+1, x -xt+Np+1} that respect the input and state constraints. Only
the first control input candidate in the predicted control trajectory is applied to the
real system. The new states of the system are measured or estimated at the next time
instance, and the optimization problem is solved repetitively.

We demonstrate the path-following MPC formulation using the mobile robot de-
scribed by (3.7) to track a preplanned path. This path is designed by a suitable
path planning algorithm to safely guide the autonomous mobile robot from a starting
point A to a final destination point B. The planned path ensures safety, as obstacle
avoidance constraints are explicitly considered during the path planning phase.

Example 2. (Path following problem)
The safe planned path P is parameterized by a path parameter 0 as in (3.10). The
evolution of path parameters can be expressed by virtual system dynamics as follows:

In our example, the virtual system is expressed by a double integrator chain such that:

251 (t) = 29,

Z(t) = q. (3:14)
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3 Model Predictive Control for Tracking, Path Following, and Planning

Moreover, a sigmoid function denoted by S(-) is employed to guarantee a seamless
transition and ensure the path’s continuity in differentiation. A prevalent example of
sigmotid functions is the logistic function, expressed as follows:

B 1
C14e

S(z)

Therefore, the optimal control input can be obtained by solving the following optimiza-
tion problem:

N,—1

min Y (lpe — {15 + I} ]15) (3.150)
uP{-} k=0

st xpyr = falxg, uk),mo = Z(t), (3.15b

21 = 9a(2h, @) 26 = £(1), (3.15¢

Oy = 21, (3.15d

pr = U0k), (3.15¢
(

Vmin < Uk < Umaz,

Omin < Ok < dmaz (3.15¢g
0< 2 <1, (3.15h
Ub i <ub <UP... (3.151
Vk € 0,...,N,). (3.15

Where x is the system states capturing the center of mass, velocity, steering angle,
etc...., p captures the center of mass coordinates w.r.t. the global frame, i.e., p =

[px,py]T, and pP is the parametrized such that p’ = [p’;,pgr. The objective function
(3.15a) aims to minimize the error between the predicted position of the system and
the parameterized reference outlined in (3.15¢). The weighting matrices Q) and R are
chosen such that QQ > 0 and R > 0. It is important to note that the path velocity or the
velocity of the virtual system q is an optimization variable that remains flexible for the
optimizer’s selection. Analogously to Example (1), physical constraints are taken into
account in (3.15f) and (3.15g). At the same time, the dynamics of the autonomous
mobile robot are captured in (3.15b) based on the measured or estimated states Z(t)
at time t. In addition, constraints on the path parameter are enforced in (3.15h). It
is noteworthy that uP represents the comprehensive control input vector, defined as
wP = [u1, us,q] ", and is subject to constraints as detailed in (3.15).

In this example, upon solving the path following optimization problem (3.15), the
resulting control inputs guide the autonomous mobile robot safely along the reference
path, circumventing obstacles, as depicted in Figure 3.4. Leveraging the concept of
virtual system dynamics, representing the evolution of the reference path, offers the
controller an additional degree of freedom (cf. Figure 3.6). This enables the selection
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Figure 3.4: The autonomous mobile robot follows the safe path given by the planner using
the NMPC path following formulation.
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Figure 3.6: The evolution of the path parameter enables the vehicle to follow the safe path
without colliding with the obstacles.

of values that minimize the discrepancy between the vehicle’s state and the reference
path while adhering to constraints. As illustrated in Figure 3.5, the control inputs
comply with the limitations of the autonomous vehicle, speeding it at maximum velocity
and adjusting the steering angle to avoid obstacles and keep on track with the reference
path. Please note that autonomous vehicle safety and task completion are ensured as
the path the wvehicle follows is safe and steers the autonomous mobile robot to the
destination point. The path following optimization problem (3.15) is tackled using the
ACADO toolbox [98], executed on an Intel® Core™™ i7-6700 CPU @ 3.40 GHz, with

an average computation time of tep, = 7.5381 ms.

3.5 Trajectory Tracking Formulation

In the path following formulation, the evolution along the trajectory is not fixed a
priori. In contrary, in the trajectory tracking formulation, the reference comprises
a time-dependent curve that assigns specific values to the system’s state/output at
particular time intervals. This formulation is commonly applied to mobile ground
robots [123, 155] and aerial vehicles [78, 205]. The challenge of designing a trajectory-
tracking problem lies in defining the time-dependent reference, which can be crafted
by an offline path planner or determined dynamically by online planning algorithms
[148]. The trajectory tracking problem aims to determine an optimal control input
u* that minimizes the tracking error between the predicted system trajectory and
a given time-dependent reference trajectory. This optimization must be performed
while ensuring adherence to the imposed constraints on the system dynamics, control
inputs, and states. However, applying trajectory tracking formulation could endanger
task completion as some time-dependent reference can’t be achieved while respecting
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3.5 Trajectory Tracking Formulation

the system constraints, e.g., maximum/minimum steering angles. The OCP for the
trajectory tracking problem is formulated as follows while the superscript tt refers to
the trajectory tracking:

%1 /t OTf Fu(a(r), u(r), 2"(r))dr + Ey(x(Ty), 2™(T})) (3.16a)
s.t &= f(x(1),u(r)), z(ty) = z(t), (3.16Db)
g(x(1),u(r)) <0, (3.16¢)

x(r) € X,u(r) €U, (3.16d)

(@(Ty)) € Eu, (3.16e)

VT € [to,Tf]. (316f)

The objective function (3.16a) minimizes the error between the system states and
the reference time-varying states with stage cost Fy(-) and the error at the end of the
prediction horizon via the terminal cost function Ey(-). System dynamical constraints,
e.g., maximum acceleration and turning rates are considered in (3.16¢). The predicted
state and input are restricted to the state and input sets in (3.16d). The predicted
state at the end of the prediction horizon is restricted to the time-varying terminal
region &; C X in (3.16e) which can be considered as an equality constraint forcing the
predicted state to be on the state reference. The solution of the OCP (3.16) results
in an optimal control input function «*(-) and a state trajectory z*(-) minimizing the
tracking error between the system states and the reference states.

3.5.1 Stability of MPC Trajectory Tracking

In the trajectory tracking case, the time-dependent state reference leads to a time-
varying error and a time-varying terminal region. Time-varying terminal regions pro-
vide a possibility to achieve trackability.

Definition 14. (Trackability under Constraints)

The reference state xy is said to be trackable for the system (3.1) if it fulfills the state
constraints,i.e., v'* € X and can be tracked given the system dynamics once starting
on it. This implies that once the system starts on the reference states there is a control
input u(t) € U driving the system to track the reference.

To discuss the stability of trajectory tracking OCP (3.16) for the non-linear system
given in (3.1) considering the control input design according to Definition 14 the
following assumptions ensures the convergence of the tracking error [63, 148]:

Assumption 13. (Stage Cost)
The stage cost Fy; : R™ X R™ — RS’ is continuous and Fy(0,0) = 0. It is further lower
bounded by a class Ko function oy such that ly(z — 2) > a1 (||l — o) "V(x, 2).
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3 Model Predictive Control for Tracking, Path Following, and Planning

Assumption 14. (Terminal Cost)
The terminal cost Ey : R™ s RY is positive semi-definite. Furthermore, Eu() is
continuously differentiable w.r.t. system states x.

Assumption 15. (Terminal Set)
The terminal set E; C X is closed and time-varying.

Assumption 16. (Ezistence of local controller)
For any state x € &y, there exist a local control input ugtf(-) € U such that

OFy

o f (), u® (7)) + Fyy((r), 2" (1), u(7)) < 0

This means that the local controller u* will keep the states inside the terminal set Ey
i.e., the terminal region is a control invariant set and ensures the convergence of the
cost function.

When assumptions (1-3) as well as assumptions (13-16) hold, one can state the
following theorem [62]:

Theorem 3. (Convergence of sampled-data NMPC' for trajectory tracking)

Given a system in (3.1), if the OCP (8.16) is feasible at ty with proper stage, terminal
costs, and the terminal set satisfying assumptions (13-16), then the OCP is recursively
feasible, and the controller will lead to convergence of tracking error under sampled-
data NMPC see [62] for the complete proof.

3.5.2 lllustrative Example

For the autonomous mobile robot that is described in (3.7) we adopt the discrete-time
form of (3.16) that can formulated as follows:

Ny—1
min Y (g, o) u) + en(zn,, o). (3.17a)
uf-} k=0 ’
s.t. Tpy1 = falxp, ug), xo = Z(t), (3.17b)
Try1 € X, up€eU,, (3.170)
TirNy+1 € Eu, (3.17d)
Wk € [0, ..., N,). (3.17¢)

The stage cost () in the objective function (3.17a) minimizes the error between the
predicted system state and the time-varying reference state z%!, while the terminal cost
e () minimizes the error at the end of the prediction horizon. The objective func-
tion does not explicitly vary with time. However, the time dependence is introduced
through the time-varying reference states this implies that a new reference is available
to the controller at each prediction step. Consequently, the controller must guide the
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3.5 Trajectory Tracking Formulation

system to specific states at specific times while adhering to state and control input con-
straints (3.17¢). Due to the time dependency of the reference states, some states may
be infeasible due to system dynamics limitations resulting in higher deviation errors
than the path-following formulation. This can potentially threaten the system’s safety
and overall task completion. The solution of the OCP (3.17) results in a feasible input
trajectory u* = {Ut,UIt+1, . --uHNp} and a state trajectory z* = {$t+1, . --IHNPH}
that respect the input and state constraints. Only the first control input is applied to
the real system. The new states/output of the system are measured or estimated at
the next instance, and the optimization problem is solved repetitively.

Example 3. (Trajectory tracking problem)

In contrast to Example (2), where the reference path is defined by a path parameter
0 and the problem is formulated as a path following optimization problem, in this
example, we tackle a trajectory tracking problem. Specifically, the autonomous mobile
robot described by the nonlinear vehicle dynamics (3.7) is assigned to track a trajectory
based on the trajectory tracking formulation (3.17). The optimal control input u* has to
drive the autonomous mobile robot to a specific state at a specific time while respecting
the vehicle constraints such as mazximum and minimum turning rates and acceleration.

The optimal control problem for trajectory tracking is expressed as follows:

4N,
min > (o~ ol S+ ) (3.180)
uf{-} k=t
st xpy = falag,ur), xo = 2(t), (3.18b)
Umin < Uk < Upmaz, (3.18¢)
Omin < 0k < dmaz, (3.18d)
€ X, up €U, h(zy) €, (3.18e)
VE € t, ...t + N, (3.18f)
Where x s the system states capturing the center of mass, velocity, steering angle,
etc...., p captures the center of mass coordinates w.r.t. the global frame, i.e., p =
[px,py]T, and p* is the reference at each time step, such that p' = [pfnt,pztf. In this

formulation, the control objective (3.18a) aims to minimize the tracking error between
the time-dependent reference p'* and the predicted vehicle trajectory pr. The weighting
matrices Q@ and R are chosen such that @ > 0 and R > 0. Constraints (3.18¢)
and (8.18d) enforce the mechanical limitations on the velocity and steering angle of
the autonomous vehicle, respectively. Nonlinear vehicle dynamics are considered in
(3.18b) with states Z(t) measured or estimated at time t. Solving the trajectory tracking
optimization problem (8.18) yields optimal control inputs u* that guide the vehicle
states to specific values at each prediction step. However, while the control inputs
steer the wvehicle to track the reference, some states can’t be achieved with limited
vehicle capabilities such as steering angle. Consequently, the autonomous mobile robot
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Figure 3.7: The mobile robot tracks a reference path from a start given point A to a final
destination point B, which leads to hitting the obstacle.
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may collide with an obstacle, resulting in a higher error between the vehicle path and
the reference trajectory compared to the path following formulation in Example (2), as
depicted in Figure 3.7. This arises from the controller’s attempt to minimize the error
between the current vehicle states and the time-varying reference while adhering to the
vehicle’s dynamic constraints, as illustrated in Figure 3.8.

Similarly to the previous examples, problem (3.18) is solved using the ACADO tool-
box [98] on an Intel® Core™ i7-6700 CPU @ 3.40 GHz, with an average computation
time of tepy = 1.5724 ms.

3.6 Model Predictive Control for Path Planning—A
Mixed-Integer Formulation

The previous sections reviewed various Model Predictive Control (MPC) formulations
for tracking or following a predetermined safe path. In this section, we establish the
foundation for the subsequent chapters by demonstrating that the path-planning prob-
lem for an autonomous mobile robot (1) can also be effectively addressed within the
MPC framework. This approach involves solving a constrained optimization problem
at each time step in a rolling-horizon or moving-horizon manner. The constraints
embedded in the optimization problem ensure vehicle safety by incorporating obsta-
cle avoidance and guaranteeing the feasibility of the planned path while considering
the vehicle’s dynamics and physical limitations, such as steering angle constraints,
speed limits, and turning rate restrictions. Furthermore, additional constraints can
be included to enhance vehicle stability and passenger comfort. The formulation of
the optimization problem, along with the imposed constraints, plays a crucial role
in determining both the quality of the planned path and its suitability for real-time
implementation.

However, a fundamental trade-off exists between achieving an optimally planned
path according to a given metric and ensuring that the computational complexity re-
mains manageable for real-time execution. Thus, balancing optimization accuracy and
computational efficiency is crucial when designing effective path-planning algorithms
for autonomous vehicles.

The extent of available environmental information significantly influences the ap-
proach to solving the path-planning problem for autonomous mobile robots, cf. Figure
3.9. On the one hand, global or offline path planners leverage all accessible environ-
mental data before the robot’s motion execution. In this approach, an optimization
problem is formulated to minimize or maximize a user-defined objective function while
considering factors such as obstacle geometry, position, and velocity. Additionally,
constraints related to the autonomous robot’s motion capabilities and dynamics are
integrated into the planning process.

On the other hand, online or sensor-based path planners operate by utilizing real-
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3 Model Predictive Control for Tracking, Path Following, and Planning

(b)

Figure 3.9: A global/offline path planner (a) considers all available offline environmental
information to generate a complete, safe path connecting the starting point
(A) to the goal point (B). A local path planner (b) primarily utilizes real-time
environmental data within the sensor range (depicted in green) to compute a
safe but locally constrained path.

time environmental information captured by onboard sensors within their field of view.
This approach involves continuously sensing new environmental data at each time step
and dynamically planning a safe path accordingly (see Sections 2.4.1, 2.4.2).

To ensure a safe transition from a starting point A to a final destination B when
solving a local planning problem, two main strategies can be employed. One approach
integrates local and global planning in a hierarchical manner, where the local planner,
operating over a shorter horizon, refines its decisions based on the global path and
repeatedly solves the local planning problem. Alternatively, a purely local planning
strategy may be employed, where local paths are computed iteratively without ref-
erence to a global plan. However, this approach may result in the vehicle becoming
trapped in an obstructed or infeasible region.

MPC has gained significant attention in the context of path planning. For instance,
the study conducted in [204] employed a global path planner within the MPC frame-
work to determine the fastest and safest path for an autonomous go-kart. In [133], an
MPC-based path-planning approach was proposed to enhance safety by modeling other
vehicles as polygons. The work in [110] introduced an MPC path-planning method for
coordinating multiple mobile robots in a warehouse setting. Similarly, [59] presented a
global path-planning strategy for autonomous mobile robots, incorporating potential
functions to ensure safety in the presence of adversaries and road boundaries.
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3.6 Model Predictive Control for Path Planning—A Mixed-Integer Formulation

In [164], a global path-planning approach for autonomous vehicles was developed
using obstacle approximations based on circular representations. Furthermore, [197]
focused on online route planning for autonomous underwater vehicles operating in dy-
namic environments. Additionally, [159] proposed an MPC-based online path-planning
method for articulated vehicles navigating partially known environments. In [170], an
online three-dimensional path-planning algorithm was introduced for UAVs operating
in environments with emerging threats.

3.6.1 Special Case: Path Planning for Mobile Robots on the Ground

For clarity of exposition, this section explores path planning using an MPC formulation
for an autonomous mobile robot operating on a planar surface (2D). However, the
outlined concepts can be readily extended to more complex 3D environments with
additional dynamic considerations. Specifically, we focus on an autonomous mobile
robot navigating a partially known environment. The vehicle dynamics are assumed
to be given in discrete time:

Th+1 = fd(:ck,uk). (3.19)

Continuous-time dynamics can be considered by integrating the differential equations
(numerically) to obtain f;. Here, x € R™ and u € R™ represent the mobile robot’s
states and control inputs, respectively, with f; : R" x R™ — R™. The state vector
is given by:
-
v =[pk, ] (3.20)

where p;, € R? represents the coordinates of the vehicle’s center of mass, and possibly
additional states such as heading angle, velocities, and pitch are included.

The autonomous mobile robot operates in a partially known environment with static
obstacles whose positions and geometries are known a priori. Any region that remains
unmapped is treated as a no-go zone and incorporated into the obstacle avoidance
constraints of the optimization problem. The global path planner is responsible for
generating a safe path from the initial starting point (A) to the final destination (B)
while ensuring obstacle avoidance and path feasibility.

Definition 15 (Obstacle Avoidance). Obstacle avoidance for an autonomous mo-
bile robot j is achieved if its position satisfies p; ¢ O; for all time instances. Here,
pj € R" denotes the position of the vehicle j with respect to a given reference frame,
and O; C R" represents the set of all forbidden regions in the environment that must
be avoided. Fach element of O; corresponds to an obstacle that has been enlarged by
the mazximum vehicle dimensions to ensure safety [189].

Notably, incorporating obstacle avoidance constraints leads to a nonconvex opti-
mization problem, significantly increasing computational complexity[190].

Definition 16 (Convex Set). A set C is convez if the line segment between any two
points in C remains entirely within C, as illustrated in Figure 3.10. Formally, for any
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two arbitrary points x1,xe € C and any scalar 0 satisfying 0 < 0 < 1, the following
relation holds [30]:
Oxy + (1 — 9)1‘2 eC.

Figure 3.10: Convex set C.

Definition 17 (Nonconvex Set). A set C is said to be nonconver if there exist
two points x1,xe € C such that the line segment connecting them contains at least one
point that does not belong to C. This concept is depicted in Figure 3.11.

T2

I

Figure 3.11: Nonconvex set C.

In the following, the convex polyhedron O; represents the known i'" obstacle. It is
defined as:
O, :={peR™

Epp < e}, (3.21)

where n, denotes the dimension of the i obstacle. If an obstacle is nonconvex, a
convex hull enclosing the obstacle can be used instead [189]. To ensure robust obstacle
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avoidance, the obstacle representation may be enlarged by incorporating the vehicle’s
maximum dimensions.

In a moving horizon optimization setting, at each sampling time ¢, the optimization
problem for planning a safe path from the initial point to the final destination point
can be formulated as follows:

Np—1
min Y (|lpr — pBlloo + [[uklls) (3.22a)
P o

s.t. Tpy1 = fa(zg, u), xo = &(t), (3.22b)
pr & O, (3.22¢)

g(n, ug) <0, (3.22d)

Vk € [0,..., Ny, (3.22¢)
Vie[l,...,N,. (3.22f)

Where xp, = {ka, x -}T contains all system states, i.e., the coordinate of the center of
mass pi and other states, e.g., heading angle and pitch. Z(¢) is the measured /estimated
system state at the current time ¢ and wu is the control input. We consider an infinity
norm for penalizing the distance to the goal location, which allows later on formula-
tion as a linear programming problem if all other components are linear. The safety of
the autonomous vehicle is considered by enforcing the obstacle avoidance constraint
(3.22¢c). Equation (3.22d) considers the mechanical limitations of the autonomous
vehicle on velocities and acceleration. The resulting path planning problem (3.22) ex-
hibits nonlinearity due to the possible non-linear equations (3.22b) and (3.22d), and is
in general nonconvex, resulting in a computationally expensive constrained optimiza-
tion problem. To alleviate the computational burden, we introduce approximated
models and obstacle avoidance constraints.

3.6.2 Obstacle Avoidance Approximation

The reduce the computational complexity, obstacle avoidance constraints (3.22¢) can
be approximated by a set of linear inequalities; each of them represents a plane, and
the intersection between these inequalities represents the obstacle, see Figure 3.12
[73, 189]. To furthermore simplify the problem and formulate it as a MILP, if linear
dynamics are considered, one can use the Big-M method and exploit binary/integer
variables [73, 189]. To illustrate the main idea of the Big-M method and binary
variables, let us consider the following simple example:

Example 4. Assume that a user-defined objective function J(x) is minimized subject
to either one of the following constraints hy(x) and ha(x). Then, the following OCP

63



3 Model Predictive Control for Tracking, Path Following, and Planning

Figure 3.12: Obstacle O; is approximated by a set of linear inequalities g(+)

can be formulated:

min J(z) (3.23a)
st. hi(z) <0 OR, (3.23b)
ha(x) <0 (3.23c)

By introducing a sufficiently large positive integer M and a binary variable d, the
optimization problem (3.23) can be rewritten as follows:

m:gn J(x) (3.24a)
s.t.  hi(x) < Md AND, (3.24Db)
ho(z) < M(1 —d), (3.24c¢)

d € {0,1}. (3.24d)

Here, by choosing d = 0, the constraint in (3.24b) is activated, i.e., it has to be satisfied
while the other constraint in (3.24c) is relazed. The situation is reversed when d = 1.
As d is a binary variable, d only takes the value 0 or 1, only one constraint hy(-) or
ho(+) is activated at a time. One should also be careful when using binary variables

as the complexity of the problem increases with increasing numbers of binary variables
and prediction horizon N, [107].

Consequently, the obstacle O; can be represented by an inequality constraint such
that Vi € [1,2,---, N,] where N, is the number of known obstacles that are deployed
in the working environment of the autonomous vehicle,

O; ={(z,y) | Eilr y] < e} (3.25)

Please note in (3.25), the row entry of the matrices F; and e; represent a plane and
the intersection between these planes represents the obstacle i**. In addition, the
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direction of the inequality reflects the definition of the obstacle region ;. Therefore,
the obstacle avoidance constraint (3.22c) can be formulated using the Big-M method
introducing binary variables d as follows: Vk € [0, Ny

Here, p € R? captures the mobile robot coordinates. Please also note the change in
the inequality direction because we enforce the mobile robot position to be outside
the obstacle set, and the vector D contains the binary variables such that:

D=[d dy---dy]". (3.27)

Here n is the number of rows in E; or e;. To ensure that one constraint is active, i.e.,
must be satisfied while the others are relaxed at each prediction step, the following
constraint is imposed: Vi € [1,...,n/:

t+N,
S dig =1 (3.28)
k=t

3.6.3 Approximating Nonlinear Vehicle Dynamics

The primary objective of the path planner for an autonomous mobile robot is to for-
mulate a safe path that establishes a connection between the initial starting point and
the final destination goal. This path must account for the robot’s equation of motion
and adhere to its capabilities to ensure feasibility for execution by the autonomous
robot. However, incorporating the full complexity of the vehicle’s dynamics could sig-
nificantly increase the challenge of finding a safe path. Consequently, a trade-off exists
between the vehicle model’s complexity and the problem’s complexity, ultimately im-
pacting the quality of the planned path compared to what could be achieved with a
more comprehensive consideration of the vehicle’s dynamics. In the following, we limit
the derivations to mobile robots moving in a plane and approximate the dynamics of
the mobile robot by a linear, double-integrator model:

pret| _ (12 Tl %‘*’212 azy, (3.29)
Vk+1 O, I Ty | | ayk
The state vector p represents the coordinates of a point mass, defined as p = [p, p,]".

The vector v = [v, v,]" characterizes the vehicle’s velocity. The matrices O and I

denote zero and identity matrices of size 2 x 2, respectively. The acceleration vector
T

Pk
Vg

_|_

lay a,] encapsulates the control inputs. Generally, the vehicle dynamics expressed in

(3.29) can be written as follows:

Trr1 = Axp + Bug. (3.30)
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Similar simplified vehicle dynamics have been used before, see [42, 108, 134, 216] to
alleviate computational load.

3.6.4 Constraints on the Vehicle Dynamics

Very often there are additional constraints required on the vehicle dynamics, such as
maximum speed and acceleration. These constraints are often represented by a set of
nonlinear inequality constraints:

V Uazc + U?? < Umaz; (331&)
Vaz: + a2 < amaa- (3.31b)

These constraints (3.31) are nonlinear and do not conform to the desired linear mixed-
integer representation. To address this, we approximate them using linear inequality
constraints based on an M-sided polygon [73].

Figure 3.13: Nonlinear constraints, such as speed limitations, are approximated using poly-
gons.

¥me {1, , M}

2 2
Uy COS T + vy sin cmm < Vpmaz, (3.32a)
M
2 2
Gy COS mm + aysin ;\rjm < Umaz- (3.32b)

Remark 1. Minimum velocity constraints, such as vy, = 0, can also be incorporated.
While they fit within the outlined formulations, they significantly increase computa-
tional complexity.

Moreover, the smoothness of the planned path, i.e., the transitions between the
waypoints, can be ensured by considering the rate of change of acceleration per each
prediction step such that: Vk € {1,--- N}

\/(al"k — g )+ (ay, —ay ,)? < TsAapes. (3.33)

66



3.6 Model Predictive Control for Path Planning—A Mixed-Integer Formulation

Where a,, and a,, , are the accelerations in x at the current and previous prediction
steps, while (a,, — a,, ,) is the difference between the acceleration in y direction at
two successive prediction steps. By approximating the nonlinear constraints in (3.33)
using M-sided polygons, i.e. 4 sided ones setting M = 4, a set of linear inequalities
can be formulated:

IN

TAmaz, —z + 0z, < TsAapmag, (3.34a)

Az, — Qgy_4

Ay, — Qg , < TsDAOmaz, —y, +ay, , < TiAGpmag. (3.34b)

3.6.5 Mixed-Integer Programming Path Planning

Mixed-Integer Programming (MIP) refers to solving a mathematical optimization
problem in which some or all decision variables are constrained to take integer values.
The objective function can be linear, quadratic, or nonlinear, aiming at either mini-
mization or maximization. Constraints may include linear or nonlinear equalities and
inequalities, with certain variables restricted to binary values (0 or 1) [109].

Notably, MIP formulations belong to the class of NP-hard problems, meaning that
computational complexity grows exponentially with the number of integer variables
involved. This complexity is highly dependent on the problem formulation, influenced
by factors such as the number of obstacles, vehicles, and the length of the prediction
horizon [107].

MIP-based formulations have been widely used in mobile robot applications. For
instance, [191] addresses a Mixed-Integer Linear Programming (MILP) optimization
problem for single and multiple mobile robots vehicles, optimizing energy consumption
and travel time while ensuring not to collide with static and dynamic obstacles. Simi-
larly, [91] presents a multi-objective MILP approach for optimizing both fuel efficiency
and arrival time for a UAV flying at a fixed altitude.

MILP formulations have also been applied in search-and-rescue operations. In [72],
an MILP-based approach facilitated efficient planning, where an onboard camera sys-
tem was used to cover a designated search area. Additionally, MILP techniques
have been utilized for coverage path planning in UAV operations, as demonstrated
in [41, 108].

Beyond aerial applications, MILP has been employed for mobile robot trajectory
planning. In [14], a nonconvex safe operational region was defined to account for
vehicle motion constraints, such as speed and jerk limitations, while ensuring safety
through MIP-based trajectory planning. To improve computational efficiency, [157]
proposed an optimized MILP formulation that reduces the number of binary variables,
thereby streamlining online computations. Moreover, MILP has been used for coor-
dinated path planning of autonomous vehicle fleets, incorporating obstacle avoidance
directly into the problem formulation [§].

Building upon these concepts, we now define the base path-planning problem for
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an autonomous mobile robot navigating in a partially known environment with static
obstacles (3.22), derived from the outlined approximations.

Np—1
{gl}i?d kZ::O (||Pk —pllF + HWH?) (3.35a)
s.t. Tp1 = Az + Bug, xo = (), (3.35b)
Eipr, > e; + Myig(1 — di 1), (3.35¢)
Az, — Ay y < TsAapmag, (3.35d)
—Qgy, + Ay < TsAtman, (3.35¢)
Ay, — Ay, < TsAmaz, (3.35f)
—ay, + ay,_, < TsAamaz, (3.35g)
Uy COS 2;:;1 + v, sin 2;:;” < Vpmaz (3.35h)
@y COS 2mm + a, sin 2}\?1 < Gmaz, (3.351)
an dik =1, (3.35)
k=1
Vk € [0, ..., Ny, (3.35Kk)
Vie[l,.., N, (3.351)
Vm € [1,..., M]. (3.35m)

The objective function (3.35a) determines an optimal control input sequence u that
minimizes the error between the vehicle position p; and the destination point position
pp at each prediction step k, utilizing the approximated linear autonomous vehicle
dynamics (3.35b). The nonlinear state constraints on velocity and acceleration are
approximated using M-sided polygons and expressed as linear constraints (3.351 and
(3.35h)). The safety of the autonomous vehicle is ensured by incorporating obstacle
avoidance constraints using the Big M method and binary variables in (3.35¢ and
(3.35j)). Solving the optimal control problem (3.35) yields an optimal obstacle-free
state trajectory x* = [xO*T, o TN, +1T] and optimal control input sequence u* =
{uo, U, - - UNp—l} . The optimization problem (3.35) is solved at each time step in a
rolling horizon manner, resulting in a safe path from the starting point to the final
destination oint. In the subsequent section, we demonstrate the global path planner
based on the MIP formulation through an illustrative example.

3.6.6 lllustrative Example

We consider the autonomous mobile robot represented in (3.7) operating in a partially
known environment. Static obstacles with known positions and geometries obstruct
the operational environment. Some information about the environment is unknown
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during the path planning process and is represented as a no-go region cf. Figure 3.14.
To ensure the safety of the autonomous mobile robot, the no-go region is considered
in the obstacle avoidance constraints forcing the vehicle to avoid it.

Example 5. (Global path planner)
A global or offline path planner is employed. The planner utilizes the MIP formulation
(3.35) to effectively leverage the environmental data, generating a safe path that quides
the autonomous mobile robot from the initial starting point (A) to the final destination
point (B), as illustrated in Figure 3.1/.

Problem (3.35) is solved using the YALMIP toolbox [139] on an Intel® Core’™
i7-6700 CPU @ 3.40 GHz, with an average computation time of tep, = 2.3264 ms.

3.7 Summary

This chapter introduced Model Predictive Control and outlined its key principles for
tracking, path following, and planning. MPC provides a powerful approach for con-
trolling mobile robots while handling constraints, ensuring stability, and optimizing
decisions in real-time.

The discussion covered different MPC formulations. In set-point tracking, the mo-
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Figure 3.14: The offline planner plans a safe path from the start point to the final destination
point, taking into account known obstacles while the no-go region is considered
in the obstacle avoidance constraints .
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bile robot reaches and stabilizes at a fixed reference state. In path following, a param-
eterized reference path allows flexible navigation while maintaining smooth motion.
In trajectory tracking, the mobile robot follows a predefined time-dependent reference,
ensuring precise execution but facing feasibility challenges due to dynamic constraints
and physical limitations. The examples used a nonlinear mobile robot model to il-
lustrate the trade-offs between computational complexity and real-time performance.
The chapter also examined stability conditions and recursive feasibility to ensure ro-
bust and reliable control for various tasks.

The second part of the chapter focused on MPC-based path planning. A mobile
robot must navigate an environment with static obstacles and limited prior informa-
tion. To improve computational efficiency, the chapter introduced approximations
such as linearized mobile robot dynamics and obstacle avoidance constraints formu-
lated with Mixed-Integer Programming using the Big-M method. These techniques
ensure safe and feasible motion planning while considering physical constraints like
acceleration limits and system dynamics.

70
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The greatest challenge to any thinker is
stating the problem in a way that will
allow a solution.

Bertrand Russell

This chapter presents a hierarchical path-planning and control framework for au-
tonomous mobile robot operating in partially or entirely unknown environments, such
as warehouses with moving objects or dynamic indoor spaces. Traditional global path
planning methods, which require prior knowledge of the environment, are unsuitable
for such applications. Instead, online path planning is employed, dynamically adapting
to real-time environmental data from onboard sensors, such as cameras and LiDAR.
However, these sensors have inherent limitations in range and field of view, requiring
continuous updates to the planned trajectory.

Obstacle detection and avoidance remain the primary challenges in online path
planning. When no obstacles are present within the sensor range, a direct path to the
destination can be efficiently computed. However, when obstacles are detected, the
problem becomes computationally demanding, often requiring complex formulations to
ensure safe and feasible trajectory generation in real-time. To alleviate this complexity,
we propose a hierarchical approach where the planning problem is formulated using
simplified linear vehicle dynamics, and obstacles are approximated via mixed-integer
linear inequality constraints. This enables an efficient solution while guaranteeing
obstacle avoidance within the sensor’s field of view.

A local high-level planner computes a safe trajectory based on the latest sensor data,
while a low-level controller employs trajectory-tracking MPC to follow the planned
path, ensuring constraint satisfaction and optimized performance. Importantly, the
limited sensor field of view is explicitly incorporated into the planning formulation,
restricting the trajectory selection to areas where sensor data is available, thereby
ensuring that the vehicle operates within a well-perceived environment.

At each time step, replanning and control are executed iteratively based on new
sensor data, until the vehicle reaches its final destination. The hierarchical scheme
is activated only when an obstacle is detected within the field of view (see Figure
4.1b). In the absence of obstacles, the low-level controller solves a set-point stabi-
lization problem, incorporating vehicle dynamics, destination constraints, and sensor
limitations (see Figure 4.1a).
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This approach effectively balances computational efficiency and path safety in dy-
namic environments, ensuring real-time feasibility while adapting to sensor constraints
and environmental uncertainties.

:_ __ _N_o_ 0 Obstacle
1
| obstacle i present
Objective Objective

Local planner

trajectroy
Tracking controller Tracking controller
inputs inputs
FOV Mobile robot output FOV Mobile robot output

(a) (b)

Figure 4.1: If no obstacles are detected (a), the low-level controller steers the vehicle using a
setpoint-tracking formulation, considering the current field of view, destination,
and vehicle dynamics, to generate a safe trajectory. Upon detecting an obstacle
(b), the hierarchical scheme is activated: the high-level planner computes a safe
trajectory within the sensor’s field of view, incorporating the detected obstacle,
and transmits it to the low-level controller for execution until the destination is
reached.

4.1 Local Path Planning - Existing Approaches

We employ a local "High-level" planner for finding a path based on the local sensor
information. The overarching control objective entails guiding the autonomous vehicle
from its initial starting point to a final destination goal. The selection of path planners
hinges upon the available information concerning the vehicle’s working environment,
as sketched in Chapter 2.

In the following, we summarize path planning approaches with a focus on local
obstacle avoidance, complementing the general review of path planning provided in
Chapter 2.

A global or offline path planner is utilized when complete knowledge of the environ-
ment is available before the autonomous mobile robot begins its motion. This knowl-
edge includes the spatial dimensions of the environment, the locations, and shapes of
obstacles, as well as their velocities. The offline-planned path, free from obstacles,
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establishes a connection between the initial starting position and the final destination
point. In contrast, the online or local path planner primarily depends on information
gathered within the immediate field of view of the mobile robot’s onboard sensors.
These sensors continuously acquire updated environmental data at each time step, en-
abling the planner to generate a safe path or trajectory in real-time. The planned path
must remain confined to the current field of view to ensure the autonomous robot’s
safety. Extending the planning horizon beyond the sensor’s field of view could pose
risks to the robot’s safety and hinder the successful completion of its task, see Figure
4.2.

Motion planning methods have been shaped by contributions from two primary
fields: robotics, and dynamics and control. From the robotics perspective, the mo-
tion planner places greater emphasis on computational challenges and real-time robot
control, while the dynamics and control developments focus on dynamic behavior and
might simplify problem formulations to suit real-time applications. Graph-Search
methods, such as roadmaps and the Dijkstra algorithm, represent safe paths as se-
quences of states, also known as nodes or waypoints, within free space [130, 144].
Sampling-Based approaches discretize the state and input spaces into a predefined
library of steady states and transient trajectories that connect these states. This ap-
proach reduces computational time by limiting the planner’s search to a finite set
of precomputed states and inputs. Another category of planners includes Heuristic
Search algorithms or Informed Search strategies, such as A* and D*. Over the past
two decades, Evolutionary Algorithms, including Genetic Algorithms (GAs) and
Particle Swarm Optimization (PSO), have also been developed and applied to path-
planning problems. While these methods generate obstacle-free paths, the resulting
paths are often suboptimal and require significant memory resources [186]. Addition-
ally, randomized planning approaches, such as Rapidly-Exploring Random Trees
(RRT), can quickly identify feasible paths in cluttered environments by expanding a
tree through random sampling of the configuration space. However, these methods
face challenges such as high computational costs as the configuration space grows,
lack of guarantees for convergence rate or optimality, and the generation of numerous
redundant points during path planning [84, 212].

Several approaches have been proposed in the literature to address the local obstacle
avoidance problem. For example in so-called Bug Algorithms, the vehicle is required
to follow the contour detected by its sensors and navigate around obstacles [160]. A
significant limitation of this method is that the vehicle’s position relies mainly on
sensor readings, which can result in situations where the sensor provides insufficient
information about an obstacle, potentially leading to unexpected collisions. In the
Vector Field Histogram (VFH) approach, the environment is represented using
a 2D histogram grid [26]. This technique constructs a polar histogram around the
vehicle at each time step, incorporating sensor data. The histogram sectors represent
polar obstacle density, with values below a predefined threshold indicating free space
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Figure 4.2: (a) Offline or global path planners use available offline information, while (b)
online path planners calculate a path based on local, limited sensor information.

and values above the threshold marking obstacles. The algorithm then guides the
vehicle toward safe regions based on this information.

The Dynamic Window Approach (DWA) is another method for obstacle avoid-
ance, which focuses on generating a safe trajectory by selecting control inputs within
the velocity space. In this approach, the trajectory is represented as a sequence of
circular arcs [75]. Similarly, Curvature Velocity techniques incorporate vehicle dy-
namics into the planning process, taking into account the robot’s velocity and acceler-
ation constraints while modeling obstacles as circular objects. This method assumes
that the vehicle’s trajectory follows a circular arc, and the control velocity is selected
based on an objective function. Another approach, the Nearness Diagram (ND)
method, partitions the working environment into distinct regions to represent the po-
sitions of obstacles. Rooted in the situated activity paradigm, which defines specific
situations and their corresponding appropriate actions, the algorithm determines the
current state during execution and performs the corresponding action [156].

In Potential Field methods, system is treated as a particle influenced by a potential
field generated by the goal location and obstacles [105]. The core concept of this
approach is that the final point exerts an attractive force to draw the vehicle toward
it, while obstacles generate repulsive forces to keep the vehicle at a safe distance.
Although these methods are computationally efficient and well-suited for real-time
applications, they are prone to issues such as becoming trapped in local minima and
providing imprecise representations of obstacle shapes and dimensions, as these factors
are not explicitly treated as constraints.
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In [96], the authors represent the online path planning based on Rapidly-Exploring
Random Tree (RRT*). The authors in [230] address the challenge of planning optimal
paths in complex, dynamic urban environments. The authors propose a hybrid ap-
proach that combines offline pre-planning with online adaptation to handle multiple
objectives and real-time changes in the environment based on heuristic search and
predictive modeling to anticipate the position of the moving obstacles. A modified
potential field method is presented in [28]. The online path planning relies on contin-
uously updating the repulsive and attractive forces based on the robot’s current state
and the environment. In the work presented in [188], the authors present a novel ap-
proach for autonomous robots to explore and map unknown environments efficiently.
The key focus is online informative path planning, where the robot must dynamically
decide its path to maximize information gain while operating in real-time. The pro-
posed method uses a sampling-based strategy to generate candidate paths that are
continuously updated as new sensor data is collected. In [161], the authors present
an online adaptation of the RRT algorithm for real-time path planning in dynamic
and uncertain environments, by incrementally updating the tree based on the sensor
information. Notably, most of the planning algorithms mentioned earlier do not in-
corporate the differential constraints of the vehicle, such as its dynamics, during the
planning process. This omission can result in infeasible paths and undesirable vehicle
behavior, particularly in scenarios involving fast dynamics [107].

From a dynamics and control perspective, a widely used approach for solving path
planning problems while incorporating vehicle dynamics is Mathematical Program-
ming [84]. In this framework, the path planning problem is formulated as an optimal
control problem, where the objective function is designed to minimize a specific per-
formance metric, such as travel time to a goal state, control energy consumption, or
deviation from a reference trajectory.

By solving the resulting constrained optimization problem, which accounts for both
vehicle dynamics and obstacle avoidance, an optimal path is generated based on the
defined performance metric. We propose using mathematical programming for local
path planning, leveraging real-time sensor data and taking sensor limitations, such
as limited field of view, into account. To improve efficiency, we distinguish between
obstacle-free and obstructed scenarios. Furthermore, we formulate the planning prob-
lem in mixed-integer form, reducing computational complexity by approximating non-
linear functions with linear equations and inequalities.

4.2 Efficient Local Path Planning via Mathematical
Programming Using Sensor Field of View Data

The moving-horizon path planner presented in Chapter 3 computes a safe trajectory
in a known environment. However, solving such problems in real time remains compu-
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tationally challenging, especially for efficient on-board re-planning. In contrast, local
re-planning, which is the focus of this chapter, requires high computational efficiency.
At each time step, onboard sensors acquire new but inherently limited environmental
data due to their restricted sensing capabilities, see Figure 4.3 and Figure 4.4. The
sensors only provide information in the field of view set Z;.

Figure 4.3: Autonomous vehicles are typically equipped with onboard sensors, such as cam-
eras or LIDAR, which have a limited field of view, characterized by parameters
such as the viewing angle 6 and the sensor range R. This defines the field of view
Z;. In the illustrated examples, the field of view is entirely free of obstacles,
meaning that the detected obstacle-free region coincides with the entire sensing
area, i.e., th = Z;. Consequently, the local path planner can generate a safe
trajectory within the entire field of view, as no obstacles are present at time ¢.

When relying solely on local sensor data, the planner must ensure that trajectory
generation is restricted to areas where sensor information is available, guaranteeing
safety. Therefore, we first address how sensor limitations can be incorporated into the
planning process, distinguishing between obstacle-free and obstructed scenarios. This
data includes partial or complete obstacle detections or may indicate a clear path with
no obstacles in the field of view/under the local sensor information. Additionally, to
enhance real-time feasibility, we propose using suitably formulated and approximated
representations for both vehicle dynamics and constraints.
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known
obstacle

Figure 4.4: Limited sensing capabilities will lead to only partially detected obstacles (shown
in red) and will lead to a set th = Z;\U; O;+, which describes the obstacle free
region in the field of view. Here O, represents an obstacle ¢ detected at time ¢.
The local path planner is only allowed to generate a safe trajectory within the
obstacle free field of view th :

4.2.1 Planning with no Obstacles in the Field of View

In the obstacle-free case, we propose that at each time step, the online path planner
solves the following optimization problem:

Np—1
min Y (Ilpr = ol + Uk loo) (4.1a)
{u} =0
s.t. Tpe1 = f(xg, ug), xo = 2(t), (4.1b)
P € 2, (4.1c)
gl ur) <0, (4.1d)
VEk € [0, ..., Np). (4.1e)

Here x, = [ka, x -}T contains all system states, i.e., the coordinate of the center of
mass pi and other states, e.g., heading angle and pitch. Z(¢) is the measured /estimated
system state at the current time ¢, and uy is the input. The objective function (4.1a)
minimizes the distance in the infinity norm from the desired point while minimizing
the energy. While the objective function could be anything, we focus in this section
on the infinity norm, as this will simplify the optimization later on. Equation (4.1b)
represents the system dynamics. Equation (4.1d) represents constraints, e.g., on veloc-
ities and acceleration. Equation (4.1c) enforces that the planned path remains within
the current field of view Z;. The solution of the online path planning problem (4.1)
results in a path that is executable by the autonomous vehicle dynamics and safe, as
it belongs to the current field of view.
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4.2.2 Planning Subject to Obstacles in the Field of View

When an obstacle is detected, either fully or partially, the planner is required to
generate a feasible path that adheres to the autonomous mobile robot’s dynamic con-
straints while ensuring safe obstacle avoidance, see Figure 4.4. Notably, the detection
of obstacles within the field of view leads to a time-varying obstacle-free set:

zl =2\ U Ot (4.2)

Here O;; represents the obstacle 7 detected at time ¢. To ensure safety, an obstacle-free
path can only be planned within the current field of view. To do so, we propose that
the online path planning problem (4.1) is augmented by obstacle avoidance constraints,
formulated as follows:

Ny—1

min Y ([pk — Pl + [lugll) (4.3a)
{u} k=0

s.t. g1 = f(zr, ur), o= 2(t), (4.3b)

pr € 2, (4.3¢)

pr & Oiy, (4.3d)

gz, u) <0, (4.3¢)

Vk € [0, ..., Np). (4.3f)

Here (4.3d) represents the obstacle avoidance constraint. The overall problem is in
general nonlinear and non-convex.

Similar to the global moving horizon planner, complexity of the overall problem is
reduced by suitable approximations, see Section 3.6.1. The high-level planner will only
consider linear vehicle dynamics and constraints approximated by linear inequalities
and mixed-integer formulations, see Section 3.6.3 and 3.6.4. In the following we focus
on approximating and modeling the field of view

4.2.3 Modeling and Approximating the Field of View

Autonomous mobile robots are commonly outfitted with onboard sensors such as cam-
era systems or LiDAR. These sensor systems play a crucial role in furnishing the
controller/planner layer with environmental information essential for safe navigation.
Specifically, this information delineates the intersection between obstacles and the
current sensor field of view, see Figure 4.4. These sensors have limited sensing capa-
bilities, i.e., limited range R and/or limited sensing angle 6, and can be approximated
by a set of time-varying inequality constraints (cf. Figure 4.5) such that:

2= {(x.y) | Ailw y] < B}, (4.4)
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Figure 4.5: The field of the onboard sensors can be approximated by the intersection be-
tween a set of inequalities.

Ay and B, are time-varying matrices with proper dimensions representing the polytopic
approximation of the field of view at time step ¢. It is worth noting that the entries
of A; and B; matrices vary at each time instant according to the vehicle position.
Moreover, the field of view region Z; is assumed to be a safe convex set as long as no
obstacle is detected, i.e.,

ZNn0=0. (4.5)

By replacing the field of view in (4.1c) or in(4.3c) with the approximation (4.4), the
planner predicts a state trajectory that belongs to Z;.

Remark 2. The field of view approximations depicted, see Figure 4.5, are conserva-
tive, resulting in some regions being clipped. However, doing so guarantees the safety
of the planned path. Additionally, the field of view is dynamically updated at each sub-
sequent time instance, and the corresponding approximation is adjusted accordingly.

4.2.4 Obstacle Approximation in the Field of View

The intersection of an obstacle with the field of view results in a time-varying non-
convex set th (4.2) see Figure 4.6. This increases computational complexity. To
alleviate the computational budget, the obstacles O; that are detected within the
current field of view are represented by linear inequality constraints as follows:

Oi = {(z,y) | A/l y] < BY}. (4.6)

Vi € [1,2,---,N,|] where N, is the number of the detected obstacles within the field
of view. Please note that in (4.6), the row entry of the matrices AJ and Bf represents
a 'plane", and the "intersection between these planes" represents the approximated
detected obstacle. Also, the direction of the inequality reflects the definition of the
obstacle region ;. To ensure the safety of the planned path despite the detected or
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Figure 4.6: The field of view is approximated and the detected obstacle (in red) is considered
in the optimization problem.

only partially detected obstacle, obstacle avoidance is enforced via the Big-M method
and binary variables d as follows: Vk € [t,t 4+ Np|

A%pr, > BY + M (1 — D). (4.7)

Here, p € R? represents the coordinates of the autonomous robot. It’s essential to note
the change in the direction of the inequality because we aim to ensure that the ground
vehicle’s position lies outside the obstacle set. Additionally, the vector D encompasses
binary variables, denoted as follows:

D=1[d dy---dp,]". (4.8)

Here n is the number of rows in A? or By. To ensure that one constraint is active, i.e.,
must be satisfied while the others are relaxed at each prediction step, the following
constraint is imposed: Vi € [1,...,n/:

i+,
> dip=1. (4.9)
h—t

Therefore, the obstacle avoidance constraints (4.3d) can be approximated by binary

variables in (4.8) and (4.7).

Practically, the sampling rate in the planner layer plays an important role in avoid-
ing the obstacle, i.e., with a fast sampling/re-planning rate, the planner could provide
waypoints/states that indeed avoid the obstacle but intersect with the obstacle. How-
ever, a shorter re-planning rate could increase the computational complexity. There-
fore, one should consider obstacle enlargement to ensure obstacle avoidance [73, 107].
Thus, the detected obstacle within the field of view is enlarged by a safety margin
dsafe, cf. Figure 4.7. This safety margin is a function of vehicle dynamics, e.g., Vmas
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and the sampling rate in the planner layer Ty such that [73]:

mafl'TS .
Osafe > Y 5 sin(a). (4.10)

where « is the angle between the boundary and the path between two waypoints.

Lo

Figure 4.7: Obstacle enlargement by a safety margin 6 to ensure vehicle safety despite
corner-cutting. The executed path is depicted in solid green, whereas the
planned path is shown in dotted black.

4.2.5 Overall Linear Mixed-Integer Moving-Horizon Local Planner
Formulation

The outlined approximations and reformulations enable the formulation of a linear,
mixed-integer local planner operating on a moving horizon, which integrates and ac-
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counts for all available local sensor and obstacle data.

Np—1

{ligaffd go (Ilpk = RIS+ lluf115) (4.11a)
s.t. Thyq = Az} + Buy, xf = &(t), (4.11Db)
AS iy > BYy 4 Myig(1 — dig), (4.11c)
A < By, (4.11d)
Az, — gy < TsAtma, (4.11e)
—Qgy, + gy < TsAmaz, (4.11f)
Ay, — Ay, < TsAapag, (4.11g)
—ay, + ay, , < TsAtmaq, (4.11h)
Uy COS 2;\er + vy, sin 2;\7[71 < VUmaz, (4.111)
a, COS 2;:/7[” + a, sin QLm < maz (4.11j)
i dig =1, (4.11k)

k=1
VE € [0,..., Np), (4.111)
Vie[l,...,n], (4.11m)
Ym € [1,..., M]. (4.11n)

In the optimization problem(4.11), we use the superscript p to refer to the planner
layer. The objective function (4.11a) tries to find an optimal control input sequence uP
that minimizes the error between the vehicle position p} and the final point position
ph at each prediction step k considering linear system dynamics (4.11b). The non-
linear state constraints on velocity and acceleration are approximated using an M-
sided polygon and expressed by linear constraints (4.11j, and 4.11i). Vehicle safety is
ensured by enforcing obstacle avoidance using the Big-M method and binary variables
in (4.11c). Moreover, the planned state trajectory has to be inside the current field of
view in (4.11d). The solution of the optimization problem (4.11) results in an optimal

. T T
obstacle-free state trajectory x;" = |z} ,...,:ijﬁNp

In summary, the local planning layer is responsible for generating an obstacle-free
path within the current field of view th while minimizing a user-defined objective
function. This path must satisfy nonlinear vehicle dynamics and nonconvex obsta-
cle avoidance constraints, making the optimization problem (4.3) both nonlinear and
nonconvex, and consequently computationally intensive. To address this complex-
ity, several approximation techniques are introduced. Linear vehicle dynamics are
considered, and constraints are approximated using polygons. Obstacle avoidance
constraints are enforced through the Big-M method. Additionally, the current field of
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view of the onboard sensor is approximated by a set of time-varying linear inequality
constraints, ensuring that the planned path remains within the sensor’s range. These
approximations reduce the computational burden while maintaining the feasibility and
effectiveness of the planned path.

Solving this problem yields an optimal, obstacle-free path that is constrained to
the current sensor range. The computed path is then transmitted to the low-level
controller for execution.

4.3 Low Level Receding Horizon Control

As shown in Figure 4.1, a safe planned path is sent from the high-level planner to
the low-level controller, which should steer the autonomous mobile robot within the
current field of view along this path. The low-level controller exploits the MPC tra-
jectory tracking formulation presented in Section 3.5, incorporating nonlinear vehicle
dynamics to ensure accurate path execution. New sensor data is continuously pro-
cessed to detect new obstacles and switch the operational mode if required, until the
final position is reached.

Specifically, the following MPC trajectory tracking formulation is used, based on

the optimal obstacle-free path z}? = |2P*T, ..., Ty NpT !
min J(x;, xk, ug). (4.12a)
{u}
st. aiy = flog,ug), oy = (1), (4.12b)
Tpi1 € X, up €U, h(xpir) €Y, (4.12¢)
Vk € [0, ..., Np|. (4.12d)

In the trajectory tracking optimization problem (4.12), the superscript ¢ denotes
the controller layer. While the objective function in (4.12a) remains constant over
time, the time dependency enters the optimization problem through the time-varying
reference x;”. This implies that a new reference is available to the controller at each
time instant, incorporating new information captured by the onboard sensor. The
role of the low-level controller is to guide the autonomous robot along the reference
trajectory sent by the high-level planner while considering potential nonlinear vehicle
dynamics (4.12b), as well as constraints on predicted states, inputs, and outputs, as
outlined in (4.12c). The safety of the autonomous robot is ensured as long as the
obstacle avoidance constraints are respected by the high-level planner, resulting in a
safe, obstacle-free path. The effectiveness of the proposed hierarchical approach is
validated through the simulation examples presented below.
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4.4 Simulation Examples

In the subsequent examples, we examine a scenario involving an autonomous mobile
robot equipped with onboard sensors, such as LIDAR or a camera system, as illustrated
in Figure 4.3. The vehicle operates in a partially known environment, where certain
environmental details, including the positions and geometries of obstacles, are known
prior to the execution of the vehicle’s motion. However, some areas of the environment
remain unknown or unexplored. By utilizing the global path planner and the mixed-
integer programming formulation (3.35), a safe path is generated to connect the initial
starting point A with the final destination point B.

Using the model predictive control path-following formulation (3.13), the autonomous
ground robot safely follows the offline planned path until the onboard sensors detect
a no-go zone or an unknown region. When such a region is detected, the online
path-planning algorithm is activated, and the MPC path-following is deactivated to
facilitate exploration of the unknown area. The proposed online path planning algo-
rithm is responsible for generating a safe path based on the sensor data available at
each time instant ¢.

The provided examples highlight the efficacy of the proposed hierarchical approach,
which activates upon the detection of obstacles by the onboard sensors and deactivates
in obstacle-free scenarios, as depicted in Figure 4.1. This method ensures efficient and
adaptive navigation in dynamic and partially unknown environments. The dynamics of
the unmanned ground vehicle are modeled using a kinematic bicycle model, described
as follows [111]:

Pz = veos(v), (4.13a)
Py = vsin(¢), (4.13b)
Y =vtan(d)/L, (4.13¢)
0= ui, (4.13d)
5 = uy. (4.13¢)

Equations (4.13a) and (4.13b) represent the dynamics of the center of mass of the
vehicle while the heading angle dynamics is given by (4.13c). The control inputs u
and uy are the acceleration and steering angle rates, respectively. Generally, (4.13)
can be expressed as:

2(t) = f(x(t), u(t),  2(0) = o,

y(t) = h(xz(t)).

where x represents the state vector [pg, py, ¥, v, (5]T and w is the control vector [uy, uz]T
and y is the system output.

Example 6. In this scenario, the autonomous ground robot is equipped with a Li-
DAR sensor. The LiDAR has a limited field of view as illustrated in Figure 4.3. The
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Figure 4.8: The vehicle followed the offline planned path until detecting the unknown region
(in gray). Upon unknown region detection, the proposed online path planner
is activated to plan a safe path (dashed black line) within the field of view
represented in green.

controller leverages the maximum capabilities of the autonomous robot to follow the
preplanned path until the unknown region is detected. It is important to note that
the controller will not respond to obstacles the onboard sensor detects during the path
following execution, as obstacle avoidance is inherently addressed during the planning
phase. This ensures that the planned path is already obstacle-free, allowing the con-
troller to focus solely on accurately following the precomputed path without the need
for real-time obstacle avoidance adjustments. Upon exploring the unknown region, the
proposed online path planning is activated, and the robot’s speed is reduced to safely
navigate the unknown region such that vs,fe < Upmagz. This approach is essential to
ensure the safety of the autonomous robot, as it allows the vehicle to stop within the
current field of view if an unknown obstacle is detected. As long as no obstacles are
detected within the field of view, the controller/planner solves the MPC' formulation
(3.6), considering the final destination point. The controller/planner must generate a
safe path within the current field of view, as outlined in (4.1), while accounting for the
field of view approximation described in (4.4). Once the robot re-enters the known re-
gion, the controller accelerates the autonomous robot to its maximum velocity until the
destination point is reached, as illustrated in Figure 4.9. It is important to note that
the problem of online path planning becomes significantly more challenging when mul-
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Figure 4.9: The controller is aware of the physical vehicle limitations in velocity and steer-
ing angle. The autonomous robot speed is reduced to ensure its safety while
exploring the unknown region.

tiple obstacles are detected during the exploration of unknown regions, as demonstrated
in the following examples.

Example 7. In this ezample, we investigate the activation of the proposed hierarchi-
cal online path planning and control framework. The autonomous ground vehicle is
equipped with a LiDAR sensor, which captures environmental data within its vicinity,
as illustrated in Figure 4.3. Unlike the scenario presented in Erample 6, where no
obstacles are present, this example involves the detection of obstacles within the Li-
DAR’s field of view. Upon obstacle detection, the hierarchical receding horizon control
approach is activated (cf. Figure 4.1). The high-level planner generates a safe path
within the current field of view, taking into account the detected or partially detected
obstacles, the linearized dynamics of the autonomous vehicle, and the field of view con-
straints. The solution to the mized-integer programming optimization problem (4.11)
in the high-level planner results in an obstacle-free trajectory within the current field
of view. This safe trajectory is then passed to the low-level controller.

The low-level controller employs the nonlinear model predictive control trajectory
tracking formulation (4.12) to follow the safe trajectory provided by the high-level plan-
ner (cf. Figure 4.10). To ensure the vehicle’s safety, the detected obstacle is enlarged
according to the criterion specified in (4.10), accounting for the vehicle’s dimensions.
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4.4 Simulation Examples

Figure 4.10 illustrates the autonomous ground vehicle accelerating to its mazximum
speed while adhering to the offline planned path. When the controller identifies a
no-go region, it navigates the unexplored area at a reduced speed, as demonstrated
in Fxample 6. Due to the detection of obstacles by the onboard LiDAR sensor, the
vehicle’s speed decreases to satisfy the condition outlined in (4.10), and it resumes
acceleration once no obstacles are detected. New environmental information is gathered
at each subsequent time step, prompting the system to reevaluate and adjust the planned
path accordingly. The hierarchical problem is solved on an Intel® Core™ i7-6700 CPU
@ 3.40 GHz with average computation time tqy, = 9.1702 ms.
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Figure 4.10: The vehicle, equipped with a LiDAR sensor represented by a green circle, is
guided by an MPC path-following controller along a safe planned path until
an unknown region is detected. The proposed online planning scheme is then
activated. Upon obstacle detection, the hierarchical framework is activated to
plan a safe path (dashed black line) in the field of view.

Example 8. In this example, we consider an autonomous ground robot equipped with
an onboard camera with limited sensing capabilities, i.e., limited sensing range and
angle (cf.Figure 4.3), rendering a more challenging online path planning problem. The
onboard sensor has a limited range R and sensing angle 6 with zero pitching angle.
Similar to Example 7, the autonomous ground robot follows the safe planned path till
detecting the no-go region. The online path planning and control steers the autonomous
robot to explore the region by solving the optimization problem (4.1) as no obstacle is
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Figure 4.11: The controller maximizes the robot’s capabilities to follow the safe planned
path. The proposed online path planning enforces a safe robot velocity to
ensure safety during the exploration of the unknown region. The controller
accelerates it to its maximum speed in the known region.

detected. The proposed hierarchical scheme is activated when an obstacle is detected
via the onboard camera system.

The hierarchical problem is solved on an Intel® Core™ i7-6700 CPU @ 3.40 GHz
with average computation time in the planner layer tep, = 83.7 ms and tep, = 0.33733
ms in the controller layer.

Note that in the provided examples, the obstacles are assumed to have a rectangu-
lar geometry, but the formulation remains valid for any obstacle shape, as detected
obstacles can be approximated by linear inequalities based on the sensor’s readings.

In the previous examples 8 and 7, the controller /planner does not explicitly incen-
tivize the ground mobile robot to explore the detected obstacle, which could potentially
improve the overall objective of reaching the goal point in a shorter time frame.

4.5 Summary

This chapter introduced an online path planning framework in which the planner
generates a safe trajectory strictly within the sensor’s field of view, ensuring that
the autonomous mobile robot only navigates in regions where reliable sensor data
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Figure 4.12: The autonomous mobile robot is equipped with a camera system represented
in green. The proposed scheme is activated when the onboard sensor detects
the unknown region (depicted in gray) to plan a safe path (dashed black line)
in the field of view. The hierarchal scheme is active upon obstacle detection.

is available. This restriction guarantees that the vehicle always operates in a well-
perceived environment, preventing it from making decisions based on uncertain or
extrapolated data.

A key challenge in real-time execution is computational efficiency, as both the local
planner and the low-level controller must be executed onboard the vehicle with limited
computational resources. To address this, we proposed a hierarchical structure that
efficiently balances path planning and trajectory tracking while ensuring real-time
feasibility. To enable efficient and safe trajectory generation, the sensor’s field of
view and the unobstructed (obstacle-free) portion of the field of view were explicitly
modeled. This distinction allows the planner to incorporate both sensor limitations
and detected obstacles in its decision-making process.

The local planner employs a linear mixed-integer programming formulation, which
leverages simplified linear vehicle dynamics and approximated constraints to reduce
computational complexity. Obstacle avoidance constraints are enforced using the Big-
M method, ensuring that feasible paths are efficiently computed at each planning
step. A fundamental property of the proposed approach is that collision avoidance is
guaranteed, as the detected obstacles are conservatively approximated using polytopic
representations. This conservative modeling ensures that the planned path remains
safe even when obstacles are only partially detected within the field of view.
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Figure 4.13: The controller exploits the maximum vehicle capabilities to follow the safe
path. Once the onboard sensor detects the unknown region, the vehicle speed
is reduced to a safe value. Once an obstacle is detected, the vehicle’s velocity
is reduced to safely avoid the partially detected obstacle.

The low-level controller is a model predictive controller that ensures accurate trajec-
tory tracking by incorporating detailed nonlinear vehicle dynamics. While the planner
operates with simplified dynamics for computational efficiency, the controller refines
the trajectory execution by accounting for the full complexity of the vehicle’s motion.

The effectiveness of the proposed hierarchical framework was demonstrated in simu-
lation examples, showcasing its ability to safely navigate unknown environments while
efficiently avoiding obstacles.

Summarizing, this chapter presents a hierarchical planning and control scheme which
is real-time capable, yet provides safety guarantees despite limited sensor information.
The local high-level planner is formulated as a mixed integer programming problem,
generating feasible trajectories while incorporating obstacle avoidance as hard con-
straints. The low-level controller operates solely within the robot’s sensor field of view,
ensuring computational efficiency by restricting optimization to immediately perceiv-
able obstacles. This reduces complexity, enabling fast, reactive control without global
re-planning. The Nonlinear MPC controller tracks the planned path precisely while
handling nonlinear robot dynamics. The hierarchical approach balances global plan-
ning consistency with local real-time optimization, ensuring robust obstacle avoidance
and efficient trajectory tracking in dynamic settings.
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4.5 Summary

The presented methodologies are intended to advance safe, responsible, and human-
centric robotics, ensuring that autonomous systems operate in a transparent and so-
cially beneficial manner.

The results also suggest that actively exploring partially detected obstacles could
further improve performance, motivating the development of a Dual MPC approach,

which will be the focus of the next chapter.
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5 Hierarchical Dual Rolling Horizon Control for
Path Planning and Control

We live on an island surrounded by a
sea of ignorance. As our island of
knowledge grows, so does the shore of
our ignorance.

John Archibald Wheeler

Chapter 4 introduced the concept of online path planning and control for au-
tonomous service robots equipped with onboard sensors, often deployed in partially
or entirely unknown environments such as hospitals, elder care facilities, or logistics
hubs. The proposed methodology enables the robot to generate a safe and adaptive
path based on the available environmental information within its current field of view.
As the robot follows the planned trajectory, new information is acquired, allowing for
continuous re-planning and improved navigation efficiency.

However, optimizing the movement of an assistive robot is not simply about reaching
a destination—it also requires adapting to evolving conditions in a way that prioritizes
safety, efficiency, and interaction with human users. For instance, a hospital service
robot may need to navigate through a corridor where patients, medical staff, or mobile
equipment introduce temporary obstacles. Rather than rigidly following a pre-planned
path, the robot can adaptively refine its route by incorporating newly observed envi-
ronmental details, improving both efficiency and safety.

At the same time, adaptive navigation introduces potential challenges. The robot
may encounter unexpected obstructions, such as a wheelchair suddenly blocking its
path. To address this, we propose an approach that integrates active perception
with built-in safety mechanisms, ensuring that the robot remains predictable and
trustworthy in dynamic settings.

To achieve both adaptability and safety, we employ a hierarchical motion planning
and control strategy. The local path planner continuously provides the low-level con-
troller with a safe exploration region, defining where the robot is allowed to probe its
environment for additional information. This enables the robot to refine its under-
standing of obstacles while ensuring it remains in a secure, predefined workspace.

Moreover, the control system actively incentivizes exploration by introducing an
additional cost function component that guides the robot toward unknown regions
and partially observed obstacles. In the case of a hospital service robot, this could
mean actively adjusting its trajectory to improve localization in a poorly mapped or

92



5.1 Control, Planning, and Perception-Aware Probing

‘ B
W Ve ||
obstacle :
sensor adapted path I
. 1
l-m i o
safe free path o= =BT - e

field of view

_ “ - i e
A--- offline planned path

Figure 5.1: A robot navigating from point A to B based on uncertain and incomplete in-
formation. The available sensor data (green shading) is limited, requiring the
robot to actively explore unknown areas by adjusting its orientation to improve
environmental awareness.

illuminated corridor or identifying an alternative route when patient beds are moved
unexpectedly.

This hierarchical structure, where probing and adaptation occur at the lowest level,
allows for efficient real-time implementation without excessive computational over-
head. The proposed framework is validated through realistic scenarios, demonstrating
its effectiveness in safe, perception-aware navigation for service robots in dynamic,
human-centered environments.

5.1 Control, Planning, and Perception-Aware Probing

Navigating an autonomous robot from a starting point to a goal while accounting for
uncertainty and obstacle avoidance is a fundamental challenge, especially in partially
known environments. Onboard sensors provide critical environmental information, but
their limited field of view and measurement uncertainty require adaptive strategies for
safe and efficient movement.

To address this, perception-aware planning balances immediate path efficiency with
active exploration, ensuring that the robot refines its understanding of obstacles as
it moves. As illustrated in Fig. 5.1, taking a short detour to improve environmental
awareness may yield a more optimal long-term trajectory. This approach is particu-
larly relevant for robots operating in dynamic, human-centered environments, where
reactive path adaptation is essential for safety and efficiency.

Recent research has explored various approaches to perception-aware path planning,
where environmental learning enhances trajectory optimization. For instance, [48] pro-
poses a framework that integrates geometric and photometric information to improve
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localization. Similarly, [51] maximizes area coverage while accounting for obstacles,
localization errors, and sensing uncertainties. Other works leverage entropy-based re-
ward functions [92] or Fisher information matrices [132] to enhance active learning
about obstacles.

In [166, 167], an exploration strategy is developed to minimize the covariance of the
estimated robot pose and tracked landmarks, while [237] evaluates information gain
by measuring newly covered free voxels detected by the robota€™s camera model.
These approaches highlight the importance of balancing trajectory optimization with
real-time environmental exploration.

: L : Active
[ _egp_lol"a_tl(_)rl _l exploration
Objective Objective
: Loc ner I Local planner
___________ 1
exploration
information
Tracking COIltI'OHeI‘ Explorative controller
inputs \L inputs
output
FOV]| Mobile robot output FOV| Mobile robot P

(a) (b)

Figure 5.2: Hierarchical dual control scheme: Exploration is only activated upon obstacle
detection. The high-level planner generates a safe trajectory and exploration
set, while the low-level controller integrates uncertainty reduction.

5.1.1 Dual Control and Hierarchical Rolling Horizon Planning

Control strategies that integrate active exploration and uncertainty reduction are
closely related to dual control theory [65, 153]. Dual control ensures that control ac-
tions not only regulate the system states but also influence environmental knowledge.
This is particularly relevant for autonomous robots in complex, dynamic environments,
where uncertainty-aware planning is necessary.

This chapter introduces a Hierarchical Dual Rolling Horizon Control approach to
address this challenge. The high-level planner generates a safe reference trajectory
based on currently available information and constructs a convex exploration set (Fig-
ure 5.2). The low-level controller, in turn, optimizes the control actions by balancing
task execution with environmental learning, using a covariance-based dual cost func-
tion.
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Figure 5.3: Fallback control mechanism: A robot follows a preplanned path (dashed blue).
If unexpected obstacles appear, the online path planner activates (dashed black).
If navigation is blocked, the fallback controller guides the robot back to a safe
trajectory (dashed red).

Furthermore, we formulate a dual optimal control problem specifically designed for
autonomous robots with onboard sensors. This framework integrates the regulation
of system states relative to reference values with an additional exploration objective
aimed at actively improving environmental awareness. However, solving such a dual
control problem is inherently nonconvex and computationally intensive, particularly
in dynamic, partially known environments.

To address this, we propose a Hierarchical Dual Rolling Horizon Controller [203],
which is selectively activated upon obstacle detection (Figure 5.2). This hierarchical
approach enables real-time decision-making while ensuring safe and efficient explo-
ration. The high-level planner generates a safe trajectory within the robota€™s cur-
rent field of view, while also defining a time-varying exploration set. This set represents
regions where additional environmental information can be gathered to improve nav-
igation efficiency. The planner transmits this data, along with obstacle information,
to the low-level controller.

The low-level controller incorporates this environmental data into the control pro-
cess by modeling it as a virtual system dynamics subject to process noise, which
accounts for the uncertain shape and location of obstacles beyond the current sensing
range. Since this uncertainty is influenced by the robot|s motion, the system dynam-
ics exhibit state-dependent uncertainty. By augmenting the control objective with
the trace of the covariance matrix, the controller balances safe navigation with active
exploration, allowing the robot to efficiently probe its surroundings while maintaining
safety constraints.

While probing enhances navigation by acquiring more environmental information, it
can also introduce additional costs, as the robot may deviate from the optimal planned
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path. Furthermore, excessive probing may lead to situations where the system becomes
blocked by unforeseen obstacles due to the limited sensor range. To address these
challenges, we propose an active exploration scheme with integrated safety mechanisms
[202]. This scheme continuously monitors both the overall cost and the information
gained at each time step. If the detected information is insufficient to justify further
probing, or if new obstacles prevent forward progress, the robot safely reverts to a
previously explored, collision-free path leading to the final destination. This approach
ensures task completion, prevents deadlocks, and maintains safe and reliable operation,
as illustrated in Figure 5.3.

5.1.2 Dual Model Predictive Control

To effectively implement the Hierarchical Dual Rolling Horizon Controller, we must
account for both task execution and uncertainty reduction in the planning and control
process. This uses the concept of dual model predictive control, which we briefly
introduce, as it explicitly balances safe navigation with active learning about the
environment.

Dual control is related to adaptive control, which also aims to improve control perfor-
mance over time. Traditional adaptive control strategies typically assume a certainty
equivalence principle, where estimated parameters are used as if they were the true
values. While this approach simplifies control design, it often fails in rapidly changing
or uncertain environments, particularly in scenarios where environmental information
is incomplete or unreliable. In such cases, the control system may overshoot or un-
derperform, as it does not explicitly account for the accuracy of its own estimates
[213].

In contrast, dual control addresses this limitation by simultaneously considering
both the estimated parameters and their associated uncertainty. Originally introduced
by Feldbaum [65], the key insight behind dual control is that control actions must serve
a dual purpose: Directing Effect — Steering the robot toward its goal while maintaining
safety and efficiency. Probing Effect — Actively gathering information to improve state
estimation and environmental awareness.

This dual nature is particularly relevant in autonomous robot navigation, where
perception-aware planning plays a critical role. For instance, when navigating through
a hospital or warehouse, an assistive robot must balance following its optimal path with
the need to adapt to new obstacles and dynamically update its map. As illustrated in
Figure 5.4, while certainty-equivalent controllers treat parameter estimates as fixed,
Dual MPC explicitly accounts for estimation uncertainty and adjusts control actions
accordingly.

By integrating dual MPC into the hierarchical planning framework, we ensure that
the robot not only reacts to environmental changes but also proactively gathers in-
formation to enhance its navigation capabilities. The following sections formalize the
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Figure 5.4: The adaptive control scheme takes into account the estimated parameters 0 as
if it represents the real value, while the dual adaptive controller considers not
only the estimation but also the accuracy of estimation P in addition to the
reference r and the system output y.

dual MPC problem and discuss its computational challenges, as well as practical ap-
proximations for real-time implementation.

In standard control frameworks, the controller regulates system states but does not
influence uncertainty reduction. To illustrate this limitation, consider the following
example, where control inputs do not affect estimation accuracy. This example high-
lights why a conventional control approach fails to balance state regulation with active
uncertainty learning.

Example 9. (System without dual effect)
Let us consider the following system.:

z(t) =ax(t— 1)+ bu(t — 1) 4+ d. (5.1)

with states and controls x and u respectively, b and a are known constants. The
conditional distribution of d, given the output measurements up to and including time
t, is Gaussian with mean d(t) and variance P(t) satisfying the following equations:

d=d(t—1)+ K@®)(z(t) — ax(t — 1) — bu(t — 1) — d(t — 1)), (5.2a)
K(t)=Pt—1)(1+P(t—1))"", (5.2b)
P(t)=(1— K(t)P(t—1). (5.2¢)

with dy = d(to) and P(ty) = Py. Furthermore, the covariance update can be formulated
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using (5.2b) and (5.2¢) as follows:
P(t)=P(t—1)—P*t—1)/(1 - P(t—1)). (5.3)

It is clear that the second central moment (5.3) is not affected by the control input u(t).
Therefore, the control input has no dual effect as it does not influence the d estimate.

To overcome these limitations, Dual MPC extends standard control methods by
incorporating an active learning mechanism, ensuring that control actions not only
regulate the system but also gather additional information about the environment.
This dual effect enables the system to make more informed decisions in uncertain
conditions, improving long-term performance. In particular, Dual Control provides a
framework where control inputs influence both system dynamics and the accuracy of
state estimation.

In conventional MPC formulations, control inputs are designed to regulate system
dynamics but do not actively influence the learning process of system uncertainty.
As a result, these formulations may struggle to address uncertainties that evolve dy-
namically, leading to degraded control performance in unpredictable environments.
Dual MPC, in contrast, introduces the concept of the dual effect, where control inputs
serve both as a means of regulation and as a mechanism for reducing uncertainty. This
necessitates a balance between probing actions (which gather new information) and
directing actions (which achieve control objectives). The challenge lies in integrat-
ing uncertainty-aware control within an optimization framework while maintaining
computational efficiency.

Definition 18. (Dual effect)

A control input has a dual effect if it can, with nonzero probability, affect at least one
r'h central moment of the state, with r > 2. Conwersely, if the future uncertainty is
unaffected by the control with probability one, i.e., there are no central moments of

order v > 2 of any state that is affected by the input signal, the control has no dual

effect [16].

Solving the original Feldbaum dual control problem poses a significant computa-
tional challenge. It involves quantizing hyperstates into a grid and iterating over all
values, leading to exponential growth in computation-a phenomenon known as the
curse of dimensionality [93, 153]. To tackle this complexity, various approximations in
the context of MPC have been proposed. These approximations can be classified into
two main categories: 1. Implicit Dual MPC: This approach aims to approximate the
stochastic dynamic programming problem associated with dual control. 2. Explicit
Dual MPC: This method reformulates the original optimal control problem into a
more tractable form. The objective function is also augmented with a heuristic-based
probing effect to actively learn system uncertainty.
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Implicit Dual MPC: The formulation of implicit dual MPC (IDC) relies on approx-
imating the original Feldbaum dual control problem. As proposed by [57], The early
works on IDC aimed to approximate the infinite-dimensional hyperstates resulting
from the probability distribution of states and/or outputs by their mean and variance.
Another approach to mitigate the computational burden is based on approximate dy-
namic programming (ADP). ADP primarily relies on forward simulation rather than
a backward approximation of the value function. However, while it reduces computa-
tional demands, it tends to yield suboptimal solutions [93, 153].

In [83], an implicit Dual MPC framework was proposed where the influence of
constraints on the objective indirectly incentivizes uncertainty reduction. Implicit dual
MPC within the framework of multi-stage and Ensemble Kalman filter is proposed in
[90], where uncertainty is expressed as a scenario tree branching up to n” < N, possible
realizations of the uncertain system. However, computational complexity increases
with the number of branches. However, this formulation showed promising results for
simple cases that may not be suitable for online controllers.

In [209], an implicit dual MPC based on scenario trees is introduced. In [140],
the authors leverage the concept of Multi-stage MPC to address system parameter
uncertainty, expressed by a tree representing possible realizations of the uncertain
dynamical system. They enforce the probing action by solving a bi-level optimization
problem. The lower-level optimization utilizes the Karush-Kuhn-Tucker conditions,
assuming the predicted measurement is the future measurement, to obtain the exact
confidence region for uncertain parameters. The tree is then updated accordingly
along the robust horizon.

The implicit formulation presented in [210] is based on a multi-stage formulation
and Fisher Information Matrix (FIS). Here, the controller is informed of the estimated
confidence region computed via FIS at each stage k, assuming the least square estimate
of uncertain parameters remains constant along the prediction horizon. This approach
is extended in [211], which provides an approximation for future parameter estimation
instead of assuming constancy along the prediction. The estimation problem is divided
into two parts: estimation based on available information up to time m and estimation
based on predicted information. It’s important to note that problem complexity grows
exponentially with an increase in the number of uncertain parameters and/or longer
prediction horizons [17].

Despite the computational complexities hindering their applications, IDC methods
can still find applicability in the fields of economics and mobile robot trajectory track-
ing controllers based on neural networks. For a comprehensive review of implicit dual
control methods, readers are referred to [153, 213].

Explicit Dual MPC: In explicit dual MPC (EDC), the concept of active uncertainty
learning is realized by incorporating a heuristic function instead of directly solving the
Feldbaum dual problem. This can be accomplished by introducing system excitation
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into the control input or reformulating the Optimal Control Problem (OCP) to include
a measure of model uncertainty regarding the predicted control inputs. However,
probing the system with a control signal may result in a loss of control performance
due to unnecessary excitation. Nevertheless, overall performance is generally expected
to be better compared to cases without active learning [153].

The work in [154] achieved the probing effect for uncertain system parameters by
augmenting the objective function with a reward term expressed by the variance of
the uncertain system parameter. Similarly, in [11], the reward term was treated as
a constraint by constraining the estimated covariance error to remain within certain
bounds. Further enhancement of the probing effect or uncertainty reduction can be
attained by incorporating a "persistence excitation" condition. This condition, defined
in terms of the information obtainable about uncertain system parameters through
system excitation over the control horizon, is integrated into the OCP as a non-convex
constraint. The resulting optimization problem is typically solved using successive
semidefinite programming.

In [178], a persistence excitation constraint was considered to reduce uncertainty for
a system parameter. The excitation constraint is formulated based on the increase of
the system parameter information matrix. For the Auto-Regressive external (ARX)
model structure, the persistence excitation condition is expressed by maximizing the
minimal eigenvalue of the information matrix [214].

While Model Predictive Control with persistence excitation offers the advantage of
exponentially converging parameter estimates when utilizing a recursive least-squares
algorithm, it may lead to a degradation in output regulation, impacting the primary
control objective [95]. Additionally, the excitation level relies on a tuning parameter,
and the controller lacks the ability to determine whether excitation is necessary [153].

An alternative approach is presented in [145], where the condition of persistence
excitation is imposed on the first control input. In this method, the open-loop op-
timization problem is augmented by nonlinear excitation constraints considering the
previous and current control input vectors. This ensures that the first control can-
didate satisfies the excitation constraints by looking back over a specified horizon,
obviating the need for explicit enforcement of periodic system excitation.

Another methodology for excitation is introduced in [86], where the system is steered
to an invariant set X C X where excitation can be conducted safely, ensuring system
stability and recursive feasibility when system states are outside the excitation set.

In addition to the methods discussed earlier for enforcing probing actions of control
inputs, an explicit dual control problem can be viewed as an instance of "optimal
experimental design' (OED). In OED, parameters are estimated without bias and with
minimum variance, enabling precise parameter estimations with a minimum number
of experimental runs. Optimal experiments can significantly reduce experimentation
costs. Integrating OED with control model-based methodologies results in control
inputs that regulate system outputs or states and initiate probing actions on the
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uncertain dynamics of the system [153]. The fundamental concept of MPC combined
with OED is to explicitly augment the objective function with a measure of estimation
quality. Unlike persistence excitation, control inputs in this approach only excite the
system if the quality of parameter estimation, quantified by covariance, is large.

In [94], authors extended certainty equivalence (CE) based controllers by consider-
ing that future measurements will resolve uncertainty. This is achieved by augmenting
the objective function with a reward term, such as minimizing the trace of the covari-
ance matrix or maximizing the trace of the information matrix, to reduce parametric
uncertainty for single-input, single-output (SISO) systems. As discussed in [122], the
dual effect is introduced by expressing the covariance of uncertain parameters as a
function of control inputs for multi-input, multi-output systems. Thus, the modified
objective rewards control inputs that minimize future covariance.

The work in [126] introduced explicit dual MPC by integrating the certainty equiv-
alence formulation with optimal experimental design. This formulation aims to mini-
mize the weighted sum between the control cost function and its variance, expressed
by the Fisher Information Matrix. Another approach for OED combined with MPC
is presented in [127], where probing action is achieved by considering a G-Criterion.
Here, the covariance matrix of the estimate is weighted by the derivative of the nom-
inal objective value with respect to the unknown parameters and the initial states,
reflecting the sensitivity of the optimal objective function to uncertainty in the initial
states.

The field of optimal experimental design motivated the development of "control-
oriented OED" for identifying uncertain systems based on a predefined control per-
formance criterion. In this approach, the standard MPC formulation is augmented
with a control-oriented constraint expressed by an "application cost," quantifying the
control performance degradation between the uncertain system and a predefined one.
The control input excites the system until the information content about uncertain
system parameters, expressed by the Fisher Information Matrix, does not result in
unacceptable control performance degradation. The work in [128] presented the idea
of an application-oriented dual control problem, where excitation is only performed
until a predefined control performance level is achieved. The control input maximizes
the information matrix to meet an application-oriented constraint representing the
accepted degradation between the well-known and identified models. It’s important
to note that the choice of this constraint heavily depends on the application.

The concept of the Fisher Information Matrix and loss of optimality is discussed
in [208]. Here, the solution obtained from known system parameters differs from the
one with estimated parameters, resulting in an optimal gap expressed as an economic
loss constraint. System excitation is conducted until the accepted economic loss is
satisfied. A key challenge in control-oriented dual MPC is the requirement for true
system parameters, which are uncertain [153]. To address the probabilistic nature of
uncertain system parameters, the work in [19] introduced an MPC formulation with a
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control-oriented experimental design. Here, the control-oriented constraint is satisfied
in a probabilistic sense, imposing chance constraints and yielding a stochastic MPC
formulation.

The mentioned works show that the central consideration in explicit dual control
applications lies in the trade-off between probing action, i.e., system input excitation to
gain more information about uncertain system parameters, and control action, which
regulates the system states and/or output. Although explicit dual MPC requires
fewer computational resources and is easier to implement than implicit dual MPC,
it cannot guarantee enhancement in control performance due to the simplification
of the formulation, which relies on performance considerations. Furthermore, tuning
the Explicit dual controller presents challenges due to the inherent conflict between
learning and control objectives.

5.2 Efficient Hierarchical Dual Control for Sensor-Aware
Path Planning

A major challenge in sensor-based path planning and control, as outlined in Chapter
4, arises when obstacles are detected within the sensor’s limited field of view. To
ensure efficient and safe navigation, we propose a hierarchical framework that separates
planning and control into two layers. The local planner formulates a safe path within
the visible environment using a simplified robot model, while obstacle avoidance is
handled through a Mixed Integer Programming approach. The computed trajectory
is then passed to the low-level controller, which employs a Nonlinear Model Predictive
Control formulation to track the planned path. This structured approach reduces
computational complexity while ensuring real-time feasibility.

A key limitation of this passive exploration strategy is that the robot only reacts to
newly detected obstacles without actively seeking additional information. As a result,
the planned path may not be optimal in terms of efficiency metrics such as travel time
or energy consumption. Additionally, control inputs tend to be conservative, prioritiz-
ing safety over exploration due to the limited sensing horizon. This highlights the need
for perception-aware path planning, where the robot actively acquires environmental
information to enhance decision-making.

To address this, we introduce an exploration incentive into the control objective.
The controller is rewarded for investigating detected obstacles, thereby improving en-
vironmental knowledge and potentially discovering more efficient paths (see Figure
5.1). However, solving this dual control problem in real time is computationally de-
manding due to its nonconvex and nonlinear nature. To mitigate this, we propose now
the idea of Hierarchical Dual Rolling Horizon Controller (HDRHC), which efficiently
balances exploration and task performance while reducing computational complexity
202].
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This approach actively integrates exploration into the low-level control by incor-
porating an excitation condition in the objective function. The high-level planner
computes a dynamically feasible and obstacle-aware path while defining a safe explo-
ration region. The low-level controller, in turn, is incentivized to explore within this
predefined region, ensuring that the robot remains safe while acquiring new informa-
tion. This structure allows the system to refine and optimize its path adaptively while
maintaining safety constraints.

The hierarchical approach effectively balances safe navigation and active exploration
by leveraging hierarchical planning and control. Unlike full global re-planning, which
is computationally prohibitive, this approach allows incremental updates based on
newly acquired sensor data, making it computationally feasible for real-time applica-
tions. By integrating learning into the control process, this method enables efficient,
perception-aware motion planning, allowing the robot to make more informed deci-
sions even in uncertain environments. This hierarchical formulation ensures real-time
feasibility while incorporating active exploration, striking a balance between efficiency;,
safety, and adaptability in uncertain environments. The following sections detail its
implementation and demonstrate its effectiveness in autonomous navigation. We now
outline the main components of the approach.

5.2.1 Local Planner

The local planner in the proposed scheme integrates multiple approximations to effi-
ciently compute a safe path, which is then communicated to the low-level controller,
similar to in Chapter 4. These approximations include simplifying the autonomous
robot’s dynamics, incorporating field-of-view constraints, and accounting for the detec-
tion or partial detection of obstacles. The planner streamlines complex robot dynamics
into a more manageable linear model, ensuring computational efficiency. Addition-
ally, the field-of-view constraints guarantee that the planned path remains within the
robot’s sensory capabilities, effectively addressing visibility limitations. Finally, de-
tected or partially detected obstacles are incorporated into the planning process using
binary variables and the Big-M method, ensuring both safety and task completion.

For the sake of completeness and as some of the derivations require insights into the
formulations, we repeat some of the calculations of Chapter 4.

As in Chapter 4 we approximate the autonomous ground robot’s dynamics in the
planner by a linear model, expressed as:

Tpe1 = Az + Buy. (5.4)
The onboard sensors like LIDAR or camera systems that are tasked with capturing

the environmental data with the sensor of view can be approximated by a set of

103



5 Hierarchical Dual Rolling Horizon Control for Path Planning and Control

time-varying inequality constraints such that:
Zy = {(z,y) | Az y] < B} (5.5)

for details see Section 4.2.3. It is worth noting that the entries of A; and B; matrices
vary at each time instant according to the vehicle position (see Section 4.2.3). The
high-level planner must plan a safe path that belongs to the field of view at the current
time Zt.

Upon obstacle detection, the planner must consider the obstacle avoidance con-
straints to ensure the safety of the autonomous mobile robot. Consequently, the
obstacles O; that are detected within the current field of view Z; can be represented
by time-varying inequality constraints as follows:

Oi = {(z,y) | AY[z y] < B} (5.6)

Vi € [1,2,---,N,] where N, is the number of the detected obstacles within the
field of view. In (5.6), the row entry of matrices AY and By represents a plane, and
the intersection between these planes represents the approximated detected obstacle.
Also, the direction of the inequality reflects the definition of the obstacle region O;. To
ensure the safety of the planned path despite the detected/partially detected obstacle,
obstacle avoidance is enforced via the Big-M method and binary variablesd as follows:
VEk e [t,t + Ny

Alpr, > B + M (1 — D). (5.7)

Here, p € R? represents the coordinates of the autonomous ground vehicle. The vector
D encompasses binary variables, denoted as follows:

D=ldydy---dy]". (5.8)

where n is the number of rows in Af or By. For practical reasons, one should consider
obstacle enlargement to ensure obstacle avoidance [73]. Thus, the detected obstacle
within the field of view is enlarged by a safety margin 04, cf. Figure 4.7. This
safety margin is a function of vehicle dynamics, e.g., v, and the sampling rate in
the planner layer Ty such that [73]:

masz .
dsafe > Y 5 sin(a). (5.9)

where « is the angle between the boundary and the path between two waypoints (see.
Section 4.2.4. Constraints on the robot itself, such as maximum speed and acceleration
can be integrated as in the planning process of Chapter 4. These constraints can be
represented by a set of nonlinear inequality constraints as follows

VU2 + 02 < U, (5.10a)
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Jazi + al < (5.10Db)

As these constraints are (5.10) nonlinear and computationally expensive we approxi-
mate them by M-sided polygons as follows:
Yme{l,---, M}

2 2
Uy COS T + v, sin mm < Vpmaz, (5.11a)
M
2 2
(1 COS o + ay,sin ]7:/7[71 < Umaz- (5.11b)

The smoothness of the planned path can be ensured by considering the rate of change
of acceleration per each prediction step such that: Vk € {1,--- N,}

\/(a:ck — g, ) + (ay, —ay, ,)? < TsDapeg. (5.12)

Here a,, and a,, , are the accelerations in = at the current and previous prediction
steps while (a,, — ay, ,) is the difference between acceleration in y direction at two
successive prediction steps. The constraint (5.12) can be approximated using M-sided
polygon with M = 4 as follows:

IA

TsAama:ca — Ay, + Qg _y S TsAamaxa (513&)

Ay, — Qg4

Ay — Oy, < TsDOmar, —y, + 0y, < TsAGmaqe. (5.13b)

Summarizing, the the optimization problem in the local planing layer can be formu-
lated as an mixed-integer optimization problem where we use the superscript p to refer
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to the planner layer :

NP

(i ;%W%ﬂ%%+WﬁMJ (5.14a)
s.t. Ty = Az} + Buy, xf = &(t), (5.14Db)
A? o) > BYy + Myig(1 — d; 1), (5.14c¢)
Ay < By, (5.14d)
Gzy, = Oy < TsAtmag, (5.14e)
— Oy, + oy, < TsAlmaa, (5.14f)
Ay, — Ay, < TsAama, (5.14g)
—ay, + ay,_, < TsAama, (5.14h)
Uy COS 2;\?1 + v, sin Zn < Vpmaz, (5.141)
G COS 2;\?1 + a, sin 2;\?1 < Gmaz (5.14j)
i dig =1, (5.14k)

i=1
vk € [0,..., Ny, (5.141)
Vie[l,...,n, (5.14m)
Ym € [1,..., M]. (5.14n)

The high-level planner sends the safe trajectory x;”, obtained from solving the
optimization problem (5.14), along with obstacle information @; (as outlined in the
following) and the time-varying convex exploration set £; to the controller.

Planer Planer ]
Low-level DMPC o Low-level DMPC | o

Wo

Kwown

obstacle
xploration set

obstacle (Gy) -
Dy Exploration set (L) Dy

T—»?as T—»?a;
(2) (b)

Figure 5.5: The planner sends the safe convex set £;, the safe trajectory x;, as well as the
intersection point closest to the goal point w; or w? to the low-level Dual MPC

(DMPC).
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5.2.2 Obstacle and Field of View Information Sent to the Controller

To enable safe probing and enhance obstacle information, the planner transmits ob-
stacle and field-of-view data to the controller, allowing it to explore the most relevant
obstacles while ensuring safety (see Figure 5.5). The provided obstacle information
w; includes the intersection points where the current field of view Z; overlaps with a
partially detected obstacle O;; (cf. Figure 5.5). To simplify the probing process, only
the intersection points closest to the goal are communicated. The rationale is that
extending knowledge about these obstacles heuristically maximizes information gain,
ultimately improving the likelihood of reaching the goal efficiently.

The controller also receives from the planner the safe convex exploration set L;.
This set is extracted from the field of view while ensuring that possible obstacles are
excluded (see Figure 5.5). It defines the region within which the autonomous robot
can safely explore obstacles. The set L; is given by:

Eip > eit + Myig(1 —d7,),
Li:={peR? Zp<z, . (5.15)
Vie [1,..., Ny

Since d; ; may change for any k € {0, ..., N, }, multiple feasible obstacle-free sets may
exist, depending on the configuration of obstacles at different time steps.

5.2.3 Low-Level Dual Model Predictive Controller

The basic idea is to augment the optimization criteria in the local controller, which
penalizes the deviation from the reference trajectory, by an exploration term. This
exploration or rewarding term incentivizes the autonomous robot to 'detour’ from the
planned path to explore the environment and gather additional information, resulting
in a dual optimal control formulation that explicitly balances control and exploration
objectives.

Common rewarding functions in this context are derived from the parameter esti-
mate covariance matrix or its inverse, known as the information matrix, with respect
to the gain obtained from new information. These functions are often based on optimal
experimental design criteria. For instance, D-optimal design aims to either minimize
the determinant of the covariance matrix or maximize the determinant of the infor-
mation matrix. E-optimal design focuses on minimizing the largest eigenvalue of the
covariance matrix or maximizing the smallest eigenvalue of the information matrix.
Similarly, A-optimal design seeks to minimize the trace of the covariance matrix or
maximize the trace of the information matrix. By incorporating one of these design
criteria into the control objective, the problem is transformed into a dual optimal con-
trol problem, where control inputs are rewarded for navigating the system in a way
that reduces uncertainty and enhances information acquisition.
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Our proposed model, drawing inspiration from [25], does not assume parametric
model uncertainty. Instead, uncertainty arises from sensor limitations, particularly
the partial detection of obstacles. To model this, we treat the obstacle’s impact as a
virtual system dynamic influenced by Gaussian process noise. This noise represents the
unseen or undetected parts of the obstacle that may exist beyond the sensor’s current
field of view. This approach allows for flexible adaptation to previously unknown
environmental features, enabling more informed decision-making during navigation.

To this end, we assume that the obstacle dynamics (which may be stationary or
slowly moving) can be formulated as follows:

Wir1 = A%wi + BV, vp ~ N(0, Q). (5.16)

where w € R? represents the state of the virtual obstacle dynamics with initial condi-
tion w; = w} or wy = w?, depending on which intersection point is closest to the goal
(see Figure 5.5). The overall system states in the controller layer thus consist of the
nonlinear robot dynamics and the uncertain virtual system dynamics.

The uncertainty function plays a pivotal role in the formulation of our proposed dual
control problem. Here, the uncertainty associated with the virtual system dynamics
representing the obstacle, (Jx, is modeled as a function of the robot’s state. This
formulation captures the principle that control inputs not only maneuver the robot
but also improve its perception by covering more of the environment, thereby reducing
uncertainty.

We adopt the A-optimal design criterion, incorporating an exploration term into the
objective function-specifically, the trace of the covariance matrix. This ensures that
control inputs serve a dual purpose: they both direct the robot along a safe trajectory
and actively probe the uncertain environment, thus imparting a dual effect to the
control strategy.

The newly acquired information from active exploration is then leveraged in the
planning layer to generate a safe and optimized path toward the destination, as illus-
trated in Figure 5.1. This dynamic integration of exploration and regulation ensures
that the autonomous robot not only follows its trajectory but also continuously adapts
and responds to newly detected aspects of its surroundings, enhancing both safety and
efficiency in navigation.

Due to the probabilistic nature of the virtual system dynamics, the propagation of
w can be computed by its mean and variance as follows:

[ = Wy, (5.17a)
Ok+1 = g(O’k,Q<I,U>) (517b)

The function g in (5.17b) is a general estimator that reflects that the predicted control
inputs affect the uncertainty propagation. Note that we assumed that the mean value
of the obstacle dynamics is fixed at w0, while its uncertainty varies with the robot’s
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dynamics.

State-dependent Modeling of the Uncertainty Impact: In the formulation of the
Dual MPC problem, accurately modeling the impact of control inputs on the propa-
gation of uncertainty is crucial. We use a state-dependent uncertainty model in our
formulation, meaning that changes in the robot’s states directly affect the uncertainty
of the surrounding environment, denoted as @(-). This approach acknowledges that
different control actions can influence how much the environment is sensed and un-
derstood.

For instance, an angle-based uncertainty function might be utilized, where changes
in the robot’s heading angle ¢ alter the area covered by the onboard sensors, thus
affecting the detected region of interest. This modification in the heading angle leads
to the acquisition of new information during the planning phase, which is crucial for
updating the robot’s trajectory based on the latest environmental data.

Alternatively, a distance-based uncertainty function may be more appropriate in
scenarios involving sensors like LiDAR, where the orientation of the robot may not
significantly affect the reduction in uncertainty. In these cases, the formulation reflects
that the closer the robot is to an uncertain area, the more information it can gather,
regardless of the robot’s orientation. This approach is particularly effective in dense
or complex environments where proximity directly correlates with the accuracy and
volume of data acquired.

In the case of an angle-based uncertainty function, the uncertainty can be expressed
as a function of the angle of the onboard sensors relative to an obstacle or area of
interest. This might take the form of an equation or a set of rules that link the robot’s
heading angle to the detection efficacy of the sensors, thus capturing the dynamic
interplay between robot orientation and sensor output. This method emphasizes that
the presence of sensors and their directed use is vital in reducing uncertainty and
enhancing the robustness of the path-planning process. Therefore, the angle-based
uncertainty function can be formulated as follows:

Q = e1(,0). (5.18)

Here e1(-) depends on 6 which is the angle of w; at time ¢ w.r.t the ground fixed
frame and the heading angle ¢ of the autonomous robot. In (5.18), the control signal
has a direct effect on uncertainty propagation via robot heading angle state ¢. By
injecting the first control input to the mobile robot, the heading angle will change to
gain more information about the detected obstacle, which is indeed encouraged by the
dual formulation, cf. Figure 5.6 left.

In the context of a distance-based uncertainty function, the uncertainty can be
quantified by the proximity of the autonomous robot to a detected or partially detected
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Figure 5.6: Altering the robot heading will change the region of interest detected by the
sensor. In case of limited range approaching, on the right, the uncertain obstacle
will indeed gain more information as the sensor will cover a new area.

obstacle and can be expressed as follows:

Q = ea(z°, wy). (5.19)

Here, ¢ € R™ denotes the center of mass of the autonomous robot with superscript ¢
referring to the controller layer, and w; represents the position or state of the detected
obstacle. The function es(-) captures the relationship between the robot’s proximity
to the obstacle and the level of uncertainty. This relationship posits that as the robot
approaches the obstacle, the uncertainty diminishes, given that the robot will cover
new areas in its field of view in subsequent time steps, as depicted in Figure 5.6 right.

The underlying principle is that the closer the robot is to the uncertain environment
wy, the more detailed and expansive the sensor data becomes, thereby enhancing the
accuracy of the robot’s environmental model and reducing uncertainty. This dynamic
interplay between the robot’s position and the uncertainty of its environment empha-
sizes the dual effect of control inputs: they direct the robot along a desired trajectory
and actively engage the robot’s sensors in mapping and understanding the environ-
ment more comprehensively. This integration of navigation and sensing underscores
the sophisticated nature of dual control strategies in autonomous robot systems.

Remark 3. To ensure robot safety during exploration and reduce the computational
burden in the controller layer, the exploration is conducted within a safe convex explo-
ration set (5.15) sent by the planner layer

Remark 4. The proposed hierarchical scheme is active when obstacles are detected
within the field of view, while in case of no obstacle, both the planner and exploration
are deactivated, and only a non-linear convex optimization problem (4.1) is solved in
the controller layer.
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Remark 5. In the case of obstacle detection, the exploration is activated if it enhances
the overall task performance, which could be the case when an obstacle obstructs the
robot’s path toward the goal. Otherwise, the controller follows the safe trajectory sent
by the planner. This is due to the fact that unnecessarily exploring the environment
will increase the control task objective by deviating from the reference trajectory.

Choice of the Probing Cost Function: In the dual optimal control formulation for
autonomous robots, the cost function plays a crucial role by balancing trajectory sta-
bilization and information gain. In explicit dual control approaches based on Optimal
Experiment Design, an additional exploration objective is incorporated into the cost
function. Specifically, in A-optimal design, this objective is realized by minimizing the
trace of the covariance matrix.

This formulation highlights that the control system’s objective is not limited to
stabilizing the system states or outputs relative to a reference trajectory (control
objective). Instead, it also actively encourages control inputs that reduce uncertainty
(exploration objective). The resulting dual objective function can be expressed as:

J = W; x (Control Objective Term) + W5 x (Trace of Covariance Matrix) (5.20)

The covariance matrix in our case represents how much we are certain about the
edge location that is detected by the sensor and what would be the shape of the en-
vironment behind the field of view. Therefore, minimizing the trace of the covariance
matrix is synonymous with maximizing information gain about the system’s environ-
ment. This often results in a trade-off where increasing information gain might lead to
deviations from the reference trajectory as the robot engages in actions that enhance
its environmental understanding, depicted in Figure 5.1.

In this equation, W; and W5 are weighting matrices in the objective function that
represent the trade-off between achieving stabilization (information loss) and enhanc-
ing information gain (control performance degradation). These weights help balance
the dual objectives; Stabilization Gain: Maintaining the robot’s path or behavior
aligned with the desired trajectory or behavior. Information Gain: Actively seeking
and incorporating new environmental data to reduce uncertainty, which is quantified
by the covariance matrix’s trace. The selection of these weights is crucial, as it dictates
the emphasis placed on either stabilization or exploration. Adjusting these parame-
ters allows the control system to be tailored to specific operational priorities, such as
prioritizing path accuracy over exploration in safety-critical applications or favoring
extensive environmental mapping. The proposed cost function J can be written as
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follows:

Np
J(xka U’k7 x87 Uk) = Z WIFI(‘I.27 u]c€7 Z’Z)
k=0

+ W Fs(oy)

C C
+ WsFs(xi, N, uitn,)-

(5.21)

Here F) is a quadratic cost that penalizes the states with respect to trajectory z
given by planner, F5 is an exploration function that can be expressed by the trace of
the covariance matrix (tr(ox41)) and Fj is a terminal penalty function. Additionally,
the weighting matrices W7 and W5 represent the trade-off between the control task
objective and the uncertainty learning objective, while W3 is the terminal penalty
weighting matrix. The dual objective function (5.21) is restricted by the non-linear
system dynamics and robot physical constraints, and the predicted state trajectory is
restricted to be in the exploration set £ C Z; where Z; is the current field of view.

Overall resulting Dual Model Predictive Control Formulation Combining all el-
ements, we obtain the following, overall constrained dual model predictive control

problem:

min J (g, ug, Ts, O ) (5.22a)

u
st ahyq = flag,uy), g = (1), (5.22b)
W1 ~ N (i, o%), (5.22¢)
okr1 = 9(ok, Qr),06= 01, (5.22d)
Qr = e1(Vx, 0), (5.22¢)
xy, = 2(1), (5.22f)
ik = W, (5.22¢)
T € Ly, up €U, (5.22h)
Vk € [0,..., N,]. (5.22i)

where u® = {uf, ..., uf, v} is the sequence of control actions. Only the first piece of the
optimal control sequence is applied to the system, and the optimization is repeated
at each simulation step. Note that, the predicted control trajectory affects the un-
certainty propagation through the constraints (5.22d) and (5.22e) where the function
g(+) is a general estimator. Furthermore, note that the state-dependent uncertainty
(5.22¢) can also take the form of (5.19). The robot safety is guaranteed by restricting
the predicted system trajectory to be within the safe exploration convex set £; sent by
the planner layer in (5.22h). Furthermore, the control signal uf is constrained to be
within a set U that can be chosen as a trade-off between the allowed level of aggressive-
ness and driving comfort[23]. The optimization problem is solved using system states
information measured/estimated at ¢ through the equality constraints in (5.22f).
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The overall Dual Model Predictive Control (DMPC) scheme integrates trajectory
tracking with active exploration under uncertainty. The control problem is solved
iteratively in a receding horizon fashion, where only the first optimal control input is
applied at each step before re-optimizing.

The DMPC formulation ensures that the robot follows a dynamically feasible tra-
jectory while gathering additional environmental information. The robot’s motion is
governed by nonlinear system dynamics, with control inputs optimized over a finite
horizon. At each step, the planner provides a safe trajectory, obstacle information,
and a convex safe exploration region, which the controller uses to guide the robot’s
motion.

Uncertainty in the obstacle representation is modeled using a Gaussian process,
where the mean represents the estimated obstacle position and the covariance charac-
terizes uncertainty in the obstacle’s shape and extent. The evolution of this uncertainty
depends on the robot’s trajectory, as its motion determines how much new information
is gained. The control problem explicitly accounts for this effect by incorporating an
exploration term in the objective function. This allows the robot to deviate from the
nominal path when such deviations lead to better environmental awareness.

Safety constraints ensure that the explored trajectory remains within the explo-
ration region defined by the planner while avoiding detected obstacles. The control
inputs are further constrained to balance maneuverability and smoothness. The opti-
mization problem is solved at each time step using real-time state estimates, ensuring
adaptability to newly detected obstacles.

This hierarchical DMPC framework enables safe navigation while actively reducing
uncertainty in the environment. By balancing control objectives with exploration
incentives, it enhances decision-making in unknown environments while remaining
computationally efficient.

In the following Section we provide illustrative simulation examples with respect to
our approach.

5.3 Simulation Examples Planning and Exploration

In this section, we apply the hierarchical planning and dual MPC formulation for an
autonomous ground robot equipped with onboard sensors, navigating in an environ-
ment that might be partially or completely unknown. These sensors provide crucial
environmental data that the planner/controller layers utilize to formulate and execute
the robot’s path planning and control.

We present examples that demonstrate how the dual MPC formulation is imple-
mented in various scenarios. These examples highlight the practical application of the
theoretical concepts discussed and provide insight into the controller’s decision-making
process when faced with dynamic and uncertain environmental conditions. The ex-
amples are designed to showcase both the robustness of the dual MPC strategy in
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maintaining a safe and efficient path and its adaptiveness in incorporating new data
to refine and optimize the robot’s trajectory continuously.

The equation of motion of the adopted autonomous ground robot are the same as

in Section 4.4.

Example 10. (Distance-based uncertainty)
The example illustrates the concept of active planning and control, where both the
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Figure 5.7: The autonomous robot follows the offline path till the detection of the unex-
plored region (in gray). Then the online path planner is activated. Once an
obstacle is detected, the HDRHC is activated. The path of the autonomous
robot equipped with exploration is depicted in dashed black. The LiDAR field
of view is represented by a green circle.

high-level planner and the low-level controller contribute to environment exploration.
The planner provides a safe trajectory, a convex exploration region, and initial condi-
tions for the virtual system dynamics. The low-level controller then solves an explicit
dual optimal control problem, balancing trajectory tracking with active exploration of
detected obstacles.

The robot updates its environment model by steering toward detected obstacle edges
to mazximize information gain. This results in a trade-off between the primary control
objective and exploratory deviations from the planned path. The resulting uncertainty
evolution is formulated accordingly (cf. Figure 5.6 right), with the state propagation
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Figure 5.8: The autonomous robot accelerates with max velocity to follow the safe offline
path. While exploration, the velocity is reduced to safely navigate the robot. In
the case of exploration, the robot accelerates with maximum speed as it is safe
considering the exploration is conducted in the exploration set L;.

of Wy given by:

g = Wy (5.23a)
Opr1 = ATop A+ Q(z,u), (5.23b)

where the state-dependent uncertainty is given by:

Q(x,u) = (pr — wy)*. (5.24)

Here p € R? represents the position of the center of the robot’s center of mass, ma-
triv A = Iy and wy € R? is the initial virtual condition for the virtual system (cf.
Figure 5.5). Notably, increasing the weight of the exploration objective leads to more
explorative behavior at the expense of the control objective. Therefore, the trading-off
between the control objective and exploration objective is a user-defined tuning param-
eter.

Using the MPC-based path-following formulation (3.13), the autonomous ground
robot initially follows the offline-planned path (cf. Figure 5.7). When an unexplored
region is detected, online path planning is activated, solving a convex mnonlinear opti-
mization problem in the planner layer (see Figure 5.2). The hierarchical scheme is ac-
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tivated upon obstacle detection. Unlike the scenario in Example 7, where the controller
must navigate cautiously to avoid obstacles, in the case of exploration, the controller
accelerates the robot at maximum velocity since safety is ensured by constraining explo-
ration within the safe convex set L;. This approach results in a shorter travel time to
the final point B compared to the scenario without exploration, as illustrated in Figure

5.8.

Example 11. (Angle-based uncertainty)
In this example, we adopt an autonomous ground robot with a camera system featured
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Figure 5.9: The autonomous robot follows the offline planned path till detecting the unex-
plored region (in gray). The online path planning and control is activated to
plan a path within the current field of view (in green). The proposed hierarchi-
cal strategy is activated upon the obstacle detection.

by limited range R = 3m and a limited field of view 6. = 60°. The uncertainty
reduction about the environment/information gained about the detected obstacle can be
obtained by altering the sensor’s field of view region of interest. This can be achieved
by making a "detour" by the autonomous ground robot (cf. Figure 5.6 left). Therefore,
state-dependant uncertainty can be expressed in terms of the autonomous robot heading

angle as follows:

Q(z,u) = (¥ — 6;)? (5.25)

where 1 is the robot’s heading angle while 6; is the angle of the the initial condition
wy with respect to the fixed frame of reference with A = Iy. The propagation of w;
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Figure 5.10: The autonomous robot accelerates with maximum velocity following the offline
planned path. The velocity drops while exploring the unexplored region. Upon
the activation of the proposed hierarchical strategy, the dual control input
accelerates the autonomous robot to explore the environment with maximum
velocity as the robot safety is guaranteed by exploring within the exploration
set.

(5.17b) is expressed as follows:

pi = Wy (5.26a)
Ope1 = ATop A+ Q(z,u) (5.26b)

The autonomous ground robot safely follows the offline planned path, adopting the
MPC path following formulation (see. Example 2). Upon detecting the no-go region,
the online path planning and control are activated to plan a safe path within the current
field of view. The proposed strateqy is activated when an obstacle is captured by the
onboard camera system (cf. Figure 5.9). Due to the exploration term in the objective
function, the control input changes the heading angle of the autonomous robot and,
consequently, changes the region of interest of the onboard sensor (cf. Figure 5.10).
Due to the dual feature of the control input, more information about the detected
obstacle is available to the planner layer to plan a more efficient path. During the
exploration, the autonomous robot safety is gquaranteed by exploring the environment
within the safe exploration set sent by the high-level planner L;.
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Remark 6. The autonomous robot follows the safe planned path, and the controller/planner
will not react to the obstacles that might be detected outside the no-go region as these

obstacles are considered during the planning phase before the autonomous robot motion
execution.

Remark 7. The exploration set is a time-varying conver safe set; therefore, the con-

troller can accelerate the robot with mazimum velocity Vmq: as long as the robot is in
L.

Remark 8. The proposed HDRHC' is activated if the detected obstacle hinders the

robot’s path toward the destination point; otherwise, the robot follows the safe trajectory
planned by the planner.

A High cost

A Vehicle block

Figure 5.11: Exploration can lead to high overall cost in (a) or to a situation where the
autonomous ground robot is blocked by other obstacles in (b). The fallback
controller steers the autonomous robot to follow the safe path to the final

destination point B. The preplanned path is in black while the fallback path
is in red

5.4 Moving Horizon Planning and Control for Autonomous
robots with Active Exploration and Safety Strategies

The objective function of the proposed hierarchical dual rolling horizon controller
includes a rewarding term that encourages the autonomous robot to explore detected
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5.4 Moving Horizon Planning and Control for Autonomous robots with Active
Exploration and Safety Strategies

obstacles or environmental features. While this exploration improves environmental
awareness, it may also increase control costs by deviating from the planned trajectory.
Moreover, extended exploration can raise the risk of encountering additional obstacles,
complicating navigation and jeopardizing both safety and task completion (cf. Figure
5.3). Balancing information acquisition with control objectives is therefore critical.

To address these challenges, a fallback controller is introduced to monitor the cost-
benefit trade-off of exploration and ensure safe navigation. If exploration becomes
excessively costly or leads to an impassable situation, the fallback mechanism redirects
the robot to a preplanned safe path (cf. Figure 5.11). Prior work has explored safety
mechanisms in autonomous systems, such as sensor failure handling [226], defensive
driving strategies [82], fallback controllers for perception failures [199], and active
planning approaches based on dual optimal control [203].

Building upon the hierarchical explorative path planning and control scheme in-
troduced in Section 5.2, this section presents a moving horizon planning and control
framework integrating active exploration and fallback strategies [202]. The fallback
controller continuously assesses the cost of exploration and monitors potential obstruc-
tions. If exploration becomes too costly or the robot encounters obstacles that hinder
progress, the system halts further environmental investigation. Additionally, the fall-
back mechanism leverages newly acquired information to guide the robot back to a
safe trajectory, ensuring efficient navigation toward the final destination (cf. Figure
5.11). By combining active exploration with a safety strategy, the proposed approach
enhances both adaptability and reliability, guaranteeing task completion while main-
taining safe, obstacle-free navigation.

5.4.1 lllustrative Example

This example examines an autonomous ground robot equipped with a camera system
with limited sensing capabilities. Initially, an offline path planner generates a safe
trajectory based on known environmental information, including obstacle geometry
and locations, as in Example 5. The robot follows this preplanned path until its
onboard sensor detects an unexplored region. Upon detection, the planner/controller
deviates from the preplanned path to explore the newly detected area using an online
path planning and control strategy.

If no obstacles are detected within the robot’s field of view, the controller focuses on
generating a safe path within the current sensing range, as illustrated in Example 6.
If obstacles are detected, the hierarchical dual control strategy is activated to encour-
age exploration and gather additional environmental information, as demonstrated in
Examples 10 and 11. If the robot encounters additional obstacles that impede its
progress, the fallback safety mechanism is triggered, guiding the robot along a safe
path toward the destination (cf. Figure 5.3).

This approach ensures adaptability to new environmental information while main-
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taining steady progress toward the goal, effectively balancing exploration with safe
navigation.

Example 12. (Fallback-Exploration Moving Horizon Controller)

In this example, we demonstrate the application of the proposed hierarchical dual reced-
ing horizon control framework, integrated with a fallback controller, for an autonomous
ground robot equipped with a camera system. The robot must navigate from an ini-
tial point A to a final destination B. Initially, an offline path planner computes a
safe path, which the robot follows using the MPC' path-following formulation (3.13).
Upon detecting an unexplored region, an online path planner is activated to generate
a safe trajectory within the current field of view, solving the optimal control problem
(4.1). When an obstacle is encountered, the hierarchical framework, augmented with
a fallback controller, engages to explore it (cf. Figure 5.12).

Due to limited sensing capabilities, the robot may become obstructed by additional
obstacles (cf. Figure 5.1), endangering both safety and task completion. In such
cases, the fallback controller intervenes, guiding the robot along a safe trajectory using
the MPC tracking (3.17) or path-following (3.13) formulation at maximum capability,
ensuring it reaches its destination safely (cf. Figure 5.13). This approach enables
robust navigation, effectively balancing exploration, safety, and task execution.

5.5 Summary

Building on the findings from Chapter 4, this work extends the task objectives for an
autonomous robot equipped with onboard sensors by integrating active exploration
into path planning and control. A Hierarchical Dual Rolling Horizon Controller is
proposed to balance computational efficiency with the benefits of explicit dual con-
trol. Instead of assuming parametric model uncertainty, this framework models envi-
ronmental uncertainty as a virtual system influenced by Gaussian process noise.

At the high level, the planner formulates a mixed-integer optimization problem using
simplified robot dynamics, incorporating obstacles as hard constraints via the Big-
M method. It generates a safe trajectory, initializes virtual environment dynamics,
and defines a time-varying exploration set, which is communicated to the low-level
controller.

The low-level controller extends the system state representation by integrating ar-
tificial system dynamics subject to process noise. These dynamics account for unseen
obstacles beyond the sensor’s field of view. Two uncertainty formulations are in-
troduced: distance-based uncertainty, where uncertainty is reduced by approaching
detected obstacles, and angle-based uncertainty, where sensing limitations necessitate
heading angle adjustments. By incorporating the trace of the covariance matrix as a
reward in the control objective, an explicit dual MPC formulation emerges, enabling
the robot to balance trajectory tracking with information acquisition.
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Figure 5.12: An autonomous robot equipped with a limited onboard sensor (in green) is
moving in a partially known environment. The gray region represents the
completely unknown region. The proposed active exploration with a fallback
controller is activated when the autonomous robot is blocked by other obsta-
cles. The safe path (in blue) was planned prior to the robot motion execution.
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Figure 5.13: Velocity and steering angle of the robot. The red areas represent the input
limitations. Note that the hierarchical dual controller steers the robot with
maximum velocity. The fallback controller is activated when no new informa-
tion is added, exploiting the safe preplanned path and explored waypoints.
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5 Hierarchical Dual Rolling Horizon Control for Path Planning and Control

While exploration enhances control performance and task efficiency, it may also
increase deviation from the optimal path and introduce additional risk from unforeseen
obstacles. To address these challenges, a safety strategy is introduced. It serves two
key functions: (i) terminating exploration if the associated cost becomes excessive and
(ii) ensuring task completion by steering the robot back onto a pre-planned safe path
when necessary.

The effectiveness of the proposed framework is demonstrated through multiple sim-
ulations, showcasing improved performance in terms of adaptability, safety, and effi-
ciency.

This chapter contributes to the field of sensor-based navigation by introducing an
efficient hierarchical dual control approach that (1) integrates perception-aware plan-
ning, (2) models environmental uncertainty via virtual system dynamics, and (3) bal-
ances exploration and task efficiency through an explicit dual MPC framework.
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6 Conclusions

This thesis explores how autonomous robots can safely and efficiently navigate un-
known environments using real-time planning and control. Robots are increasingly
deployed in hospitals, elderly care, disaster response, and logistics, where they must
operate in dynamic, unstructured spaces without relying on pre-mapped data. Un-
like conventional navigation, where a full map of the environment is available, these
robots must make decisions on the fly, using only real-time sensor data from LiDAR
and cameras. The key challenge is ensuring that robots move safely and intelligently
while adapting to newly detected obstacles and unknown terrain.

To address this, we developed a Hierarchical Receding Horizon Planning and Con-
trol framework that allows real-time navigation while guaranteeing safety. A high-
level planner generates a safe trajectory based on simplified robot dynamics, using a
Mixed-Integer Programming approach to efficiently compute paths that avoid detected
obstacles. The low-level controller refines this trajectory execution, but crucially, it
operates only within the robot’s sensor field of view, ensuring that computation re-
mains manageable even on embedded systems found in mobile robots. This approach
enables fast, reactive navigation, making it suitable for robots assisting elderly patients
in homes or hospitals, where real-time responsiveness is critical for safety.

While this framework provides safe and computationally efficient navigation, it re-
mains reactive, meaning that robots only respond to obstacles as they appear, without
actively trying to learn more about their surroundings. However, in many real-world
applications-such as search-and-rescue operations or hospital delivery robots navigat-
ing crowded hallways-a robot that can actively gather more information would perform
better. For example, a hospital robot delivering medication could anticipate better
routes based on newly detected obstacles, rather than simply avoiding them last-
minute. This led us to a new, more advanced formulation that actively integrates
exploration into the control process.

To achieve this, we introduced a Hierarchical Dual Rolling Horizon Planning and
Control scheme, which allows the robot to not just avoid obstacles, but also strate-
gically explore its surroundings to improve future decision-making. The high-level
planner defines a safe region where the robot is encouraged to explore, while the low-
level controller models uncertain environmental features as virtual system dynamics,
meaning the robot can intelligently predict what might be hidden beyond its sen-
sors. Using a mathematical optimization approach, the robot balances following its
planned trajectory with actively reducing uncertainty, allowing it to find better paths
in complex environments like hospitals, warehouses, or disaster zones.
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However, exploration introduces risks-a robot that explores too much might stray
from its optimal path or get stuck in unexpected obstacles. To counteract this, we
developed an adaptive safety mechanism that continuously evaluates the cost of ex-
ploration. If the robot is at risk of losing too much time or getting blocked, it au-
tomatically switches back to a pre-planned safe path. This ensures that exploration
enhances performance without jeopardizing safety, making it well-suited for robots
assisting people in unpredictable environments like elder care facilities, where safety
is paramount.

Through extensive simulations, we demonstrated that robots using active explo-
ration navigate more efficiently, avoid obstacles better, and adapt intelligently to
changing environments. This approach is a step toward autonomous systems that
not only move safely but also think ahead, making better decisions through real-time
learning. The combination of hierarchical control, exploration, and adaptive safety
strategies creates a more reliable, intelligent, and autonomous robotic system that can
operate in hospitals, homes, disaster zones, and industrial settings-anywhere robots
need to move safely while continuously adapting to their surroundings.

In conclusion, this thesis provides a foundation for next-generation autonomous
robots capable of real-time decision-making, safe navigation, and intelligent explo-
ration. By integrating hierarchical control with learning-based exploration, robots
can move efficiently, adapt to new situations, and ensure safety-paving the way for
their expanded role in healthcare, logistics, and human-centered environments.

6.1 Outlook and Future Research Directions

While this thesis presents a structured, optimization-based approach for autonomous
path planning and control, it does not incorporate learning-based methods, which
are currently revolutionizing both robotic planning and control. Recent advances
in machine learning, reinforcement learning, and generative models offer promising
alternatives that could further enhance adaptability, decision-making, and real-time
optimization in autonomous systems. Integrating these approaches with the proposed
Hierarchical Dual Rolling Horizon Control framework could yield even more intelligent
and adaptive robots, capable of learning from experience and anticipating environmen-
tal changes beyond their current sensor data.

One particularly promising direction is the use of diffusion models for trajectory gen-
eration. These models, inspired by advances in generative artificial intelligence, have
demonstrated remarkable capabilities in generating high-quality motion plans. Instead
of solving optimization problems from scratch at each time step, a diffusion-based
planner could learn an implicit model of feasible trajectories and generate optimal
paths in real-time. This could significantly reduce computational demands, making
the proposed framework even more efficient and scalable for real-world deployment in
resource-constrained robotic systems.
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6.1 Outlook and Future Research Directions

Another avenue is the integration of reinforcement learning for adaptive control.
While our approach relies on mathematically formulated reward structures, reinforce-
ment learning could allow the robot to dynamically learn optimal exploration and
safety strategies through trial and error. This would enable robots to adapt to new
environments without predefined constraints, making them particularly useful for long-
term autonomy in changing conditions-for example, robots assisting in hospitals or
navigating dynamic urban environments. Furthermore, techniques such as safe re-
inforcement learning could help ensure that exploration does not compromise safety,
complementing the fallback mechanisms developed in this thesis.

In addition to learning-based planning and control, future work could explore hybrid
approaches that combine model-based optimization with learning-based adaptation.
For example, meta-learning techniques could allow the system to improve its own
optimization models over time, reducing reliance on handcrafted constraints and pre-
defined cost functions. This would create self-improving control frameworks, where the
robot continuously refines its ability to balance safety, efficiency, and exploration based
on its experiences. Similarly, uncertainty-aware deep learning models could replace
manual uncertainty modeling, enabling the system to dynamically infer obstacles,
occlusions, and sensor limitations from real-world interactions.

Ultimately, the integration of machine learning and optimization-based control rep-
resents the next frontier in autonomous robotics. While this thesis establishes a
solid mathematical foundation for safe and adaptive robot navigation, future research
should focus on leveraging the power of modern Al techniques to create truly intel-
ligent, learning-enabled autonomous systems. By incorporating generative models,
reinforcement learning, and hybrid learning-control approaches, we can move toward
robots that not only follow safe paths but also understand and predict their surround-
ingsa€”making autonomous systems more efficient, robust, and capable of operating
in complex human environments.
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