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Abstract 

Cell culture processes are a well-established platform for the research and manufacture 

of therapeutic biologicals such as recombinant proteins and vaccines. Cell growth and 

production of these products requires optimal cultivation conditions (temperature, pH 

value, dissolved oxygen, etc.) and a well formulated medium (substrates or energy 

sources, amino acids, vitamins, and micro-nutrients). Growing cells can adjust the 

substrates usage and products release via reactions of the metabolic network (comprising 

transmembrane transporters and enzymes) to produce energy and precursors. 

Furthermore, it is also known that enzymes are controlled using sophisticated regulation 

mechanisms. Thus, increasing the cell growth and by-product yields requires the 

understanding of cellular metabolism, especially the central carbon metabolism where 

most of the energy and precursors are produced. Relatively few dynamic mathematical 

models have been developed that describe cell growth and the central carbon 

metabolism, especially for animal cell lines due to a lack of experimental data and 

complexity of this system. Most modeling approaches focus on cell growth and 

extracellular metabolites, while some include only parts of the central carbon metabolism 

(intracellular), limiting their applicability. 

The overall focus of this work was the development of quantitative and dynamic 

mechanistic models that describe both cell growth and central carbon metabolism which 

are observed at different scales, i.e., the macroscopic scale (bioreactor) and microscopic 

scale (intracellular). For the macroscopic scale, a segregated cell growth model that 

describes substrates, by-products as well as cell number and cell volume was 

established. For the microscopic scale, a structured model of the central carbon 

metabolism was developed. Both models were coupled, allowing a direct connection 

between cell growth, substrates consumption, metabolic by-product release and the 

intracellular state. The central carbon metabolism describes the dynamics of key 

metabolites from glycolysis, the citric acid cycle, glutaminolysis, transamination, and the 

pentose phosphate pathway. 
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The first aim of this work was to establish a dynamic mathematical model for the human 

designer cell line AGE1.HN.AAT (provided by ProBioGen AG, Germany). The model 

comprises a set of 33 ordinary differential equations (ODEs) accounting for cell growth 

(concentration of viable cells, mean cell diameter, volume of viable cells), and the 

concentration of key substrates and metabolites both at the intracellular and extracellular 

level. It also describes the formation of the product alpha1-antitrypsin. Model validity was 

assessed using experimental data of four independent batch cultivations performed at 

different scales (0.5 and 2.5 L) in a chemically defined medium. Using the same set of 

parameters and specific initial conditions for each experiment, the model simulations 

captured the concentration dynamics in the four experiments well. Analysis of the 

simulated intracellular rates revealed at least two distinct cellular physiological states. The 

first cellular physiological state was characterized by a high glycolytic rate and high lactate 

production. Conversely, the second state was characterized by efficient ATP production, 

a low glycolytic rate, and reactions of the TCA cycle (tricarboxylic acid cycle) running in 

the reverse direction from alpha-ketoglutarate to citrate. The model was used to predict 

the impact of changes of media composition and maximum enzyme activity on the 

intracellular metabolism. Finally, based on the knowledge from this work, options for 

improving cell growth and measures towards the establishment of a more efficient 

metabolism were addressed. 

The second aim of this work was the establishment of a dynamic mathematical model to 

describe cell growth, the central carbon metabolism and influenza A virus (IAV) 

production in suspension Madin-Darby canine kidney (MDCK) cells. This model structure 

was based on the previously established model for a human designer cell line 

(AGE1.HN.AAT, first aim of this work) and takes additional aspects related to IAV 

propagation into account. The model is composed of 35 ODEs that account for cell 

growth, the concentrations of key metabolites and virus production (virus titer). Most 

model parameters were estimated using experimental data from a mock-infected cell 

culture. Using the set of identified parameters and specific initial conditions for each 

experiment, model simulations accurately captured the overall dynamics of the mock-

infected culture and could largely predict the dynamics of cultivations with infected cells. 

For the first 24 hours post infection (hpi), IAV infection appeared to have a negligible 

effect on the intracellular metabolism, with most of changes in metabolic rates occurring 

as a direct result of cell growth arrest, virus-induced apoptosis, cell damage and cell lysis. 



Abstract 

V 

 

A few notable exceptions were the dynamics of glutamate and ammonium release at later 

infection time points (>24 hpi). Based on the model simulations with a unique set of 

parameters largely capturing the dynamics of non-infected and infected cells, it was 

concluded that IAV infection has only a minor impact on central carbon and energy 

metabolism of MDCK suspension cells. Most metabolic changes could be directly 

explained by accounting for the cessation of cell growth during virus infection and the 

subsequent transition to apoptosis and cell death. Additional in silico studies were 

conducted to investigate the cause of the discrepancy between experimental data and 

model simulations for glutamate and ammonium during late infection phases. The results 

indicated that the discrepancy could be attributed to the degradation of amino acid by 

enzymes in the bioreactor induced by cell lysis in the late phase of infection. 

Overall, this work showed that cell growth, intracellular metabolism, and extracellular by-

product accumulation can be described closely with a relatively simple model (few 

parameters, <150), when the corresponding experimental data is available. Furthermore, 

model simulations enabled the identification of unique metabolic states and elucidated 

the transition between Warburg effect (inefficient glycolysis) and more efficient 

metabolism (low glycolysis, lactate consumption and active TCA). It was shown that such 

a model may be used for media design, which is highly desirable in a pharmaceutical 

industry setting, and provides a solid tool to identify changes in metabolism during virus 

infection. 
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Kurzfassung 

Zellkulturverfahren sind eine gut etablierte Plattform für die Erforschung und Herstellung 

therapeutischer Arzneimittel, wie z.B. rekombinante Proteine und Impfstoffe. Das 

Zellwachstum und die Herstellung dieser Produkte erfordern optimale 

Kultivierungsbedingungen (Temperatur, pH-Wert, gelöster Sauerstoff, usw.) und ein gut 

formuliertes Medium (Substrate oder Energiequellen, Aminosäuren, Vitamine und 

Mikronährstoffe). Wachsende Zellen können von der Anpassung des Substratverbrauchs 

und der Produktfreisetzung durch Reaktionen ihres metabolischen Netzwerks 

(Kombination aller Transmembrantransporter und Enzyme) profitieren. Darüber hinaus 

werden diese Enzyme durch ausgeklügelte Regulationsmechanismen gesteuert. Die 

Steigerung des Zellwachstums und der Nebenproduktausbeute erfordert daher ein 

Verständnis des zellulären Stoffwechsels, insbesondere des zentralen 

Kohlenstoffstoffwechsels, in dem der größte Teil der Energie und der Vorläuferstoffe 

produziert wird. Aufgrund des Mangels an experimentellen Daten und der inhärenten 

Komplexität solcher Systeme wurden bisher nur wenige dynamische mathematische 

Modelle zur Beschreibung des Zellwachstums und des zentralen 

Kohlenstoffstoffwechsels entwickelt, insbesondere für tierische Zelllinien. Die meisten 

Modellierungsansätze konzentrieren sich auf das Zellwachstum und extrazelluläre 

Metabolite, während einige nur Teile des (intrazellulären) zentralen 

Kohlenstoffstoffwechsels berücksichtigen, was ihre Anwendbarkeit einschränkt. 

Das Hauptziel dieser Arbeit war die Entwicklung quantitativer und dynamischer 

mechanistischer Modelle, die sowohl das Zellwachstum als auch den zentralen 

Kohlenstoffstoffwechsel beschreiben, die auf verschiedenen Skalen beobachtet werden, 

d. h. auf der makroskopischen Skala (Bioreaktor) und der mikroskopischen Skala 

(zelluläres Zytoplasma, intrazellulär). Für den makroskopischen Maßstab wurde ein 

segregiertes Zellwachstumsmodell erstellt, das Substrate, Nebenprodukte sowie Zellzahl 

und -volumen beschreibt. Für die mikroskopische Skala wurde ein strukturiertes Modell 

des zentralen Kohlenstoffstoffwechsels entwickelt. Beide Modelle wurden gekoppelt, so 

dass eine direkte Verbindung zwischen Zellwachstum, Substratverbrauch, Freisetzung 

von Stoffwechselnebenprodukten und dem intrazellulären Zustand hergestellt werden 

konnte. Der zentrale Kohlenstoffstoffwechsel beschreibt die wichtigsten Metaboliten aus 
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der Glykolyse, dem Zitronensäurezyklus, der Glutaminolyse, der Transaminierung und 

dem Pentosephosphatweg. 

Das erste Ziel dieser Arbeit war die Entwicklung eines solchen dynamischen 

mathematischen Modells für die menschliche Designer-Zelllinie AGE1.HN.AAT (zur 

Verfügung gestellt von ProBioGen AG, Deutschland). Das Modell umfasst 33 

gewöhnliche Differentialgleichungen, die das Zellwachstum (Konzentration lebensfähiger 

Zellen, mittlerer Zelldurchmesser, Volumen lebensfähiger Zellen) und die Konzentration 

von Schlüsselsubstraten und Metaboliten sowohl auf intrazellulärer als auch auf 

extrazellulärer Ebene berücksichtigen. Es beschreibt auch die Bildung des Produkts 

Alpha1-Antitrypsin. Die Gültigkeit des Modells wurde anhand experimenteller Daten von 

vier unabhängigen Batch-Kulturen in verschiedenen Größenordnungen (0.5 und 2.5 Liter) 

in einem chemisch definierten Medium bewertet. Unter Verwendung derselben 

Parameter und spezifischer Anfangsbedingungen für jedes Experiment konnten die 

Modellsimulationen die Gesamtdynamik aller Experimente gut wiedergeben. Die Analyse 

der simulierten intrazellulären Raten ergab mindestens zwei unterschiedliche zelluläre 

physiologische Zustände. Der erste Zustand war durch eine hohe glykolytische Rate und 

eine hohe Laktatproduktion gekennzeichnet. Im Gegensatz dazu war der zweite Zustand 

durch eine effiziente ATP-Produktion, eine niedrige glykolytische Rate und Reaktionen 

des TCA-Zyklus (Tricarbonsäurezyklus) gekennzeichnet, die in umgekehrter Richtung 

von Alpha-Ketoglutarat zu Citrat ablaufen. Das Modell wurde verwendet, um die 

Auswirkungen von Änderungen der Medienzusammensetzung und der maximalen 

Enzymaktivität auf den intrazellulären Stoffwechsel vorherzusagen. Schließlich wurden 

auf der Grundlage der Erkenntnisse aus dieser Arbeit Möglichkeiten zur Verbesserung 

des Zellwachstums und Maßnahmen zur Etablierung eines effizienteren Stoffwechsels 

erörtert. 

Das zweite Ziel dieser Arbeit war die Erstellung eines dynamischen mathematischen 

Modells zur Beschreibung des Zellwachstums, des zentralen Kohlenstoffstoffwechsels 

und der Influenza-A-Virus (IAV)-Produktion in MDCK-Suspensionszellen. Diese 

Modellstruktur basiert auf dem zuvor erstellten Modell für eine menschliche Designer-

Zelllinie (AGE1.HN.AAT, erstes Ziel dieser Arbeit) und berücksichtigt zusätzliche Aspekte 

im Zusammenhang mit der IAV-Vermehrung. Das Modell besteht aus 35 gewöhnlichen 

Difefrentialgleichungen, die das Zellwachstum, die Konzentrationen der wichtigsten 
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Metaboliten und die Virusproduktion (Virustiter) berücksichtigen. Die meisten 

Modellparameter wurden anhand von experimentellen Daten aus einer mock-infizierten 

(nicht infizierten) Zellkultur geschätzt. Unter Verwendung der ermittelten Parameter und 

der spezifischen Anfangsbedingungen für jedes Experiment konnten die 

Modellsimulationen die Gesamtdynamik der mock-infizierten Kultur genau erfassen und 

die Dynamik der Kulturen mit infizierten Zellen weitgehend vorhersagen. In den ersten 24 

Stunden schien die IAV-Infektion nur eine vernachlässigbare Auswirkung auf den 

intrazellulären Stoffwechsel zu haben, wobei die meisten Änderungen der 

Stoffwechselraten als direkte Folge des Zellwachstumsstopps, der virusinduzierten 

Apoptose, der Zellschädigung und der Zelllyse auftraten. Einige bemerkenswerte 

Ausnahmen waren die Dynamik der Glutamat- und Ammoniumfreisetzung zu späteren 

Infektionszeitpunkten (>24 hpi). Auf der Grundlage der Modellsimulationen mit 

einzigartigen identifizierten Parametern, welche die Dynamik von nicht infizierten und 

infizierten Zellen weitgehend erfassen, wurde der Schluss gezogen, dass die IAV-

Infektion nur einen geringen Einfluss auf den zentralen Kohlenstoff- und 

Energiestoffwechsel von MDCK-Suspensionszellen hat. Die meisten metabolischen 

Veränderungen ließen sich direkt erklären, wenn man die Einstellung des Zellwachstums 

während der Virusinfektion und den anschließenden Übergang zu Apoptose und Zelltod 

berücksichtigt. Zusätzliche In-silico-Studien wurden durchgeführt, um die Ursache für die 

Diskrepanz zwischen experimentellen Daten und Modellsimulationen für Glutamat und 

Ammonium während der späten Infektionsphasen zu untersuchen. Die Ergebnisse 

deuteten darauf hin, dass die Diskrepanz auf den Abbau von Aminosäuren durch Enzyme 

im Bioreaktor zurückzuführen sein könnte, der durch die Zelllyse in der späten 

Infektionsphase ausgelöst wird. 

Insgesamt hat diese Arbeit gezeigt, dass Zellwachstum, intrazellulärer Stoffwechsel und 

extrazelluläre Nebenproduktakkumulation mit einem relativ einfachen Modell (wenige 

Parameter, <150) gut beschrieben werden können, wenn die entsprechenden 

experimentellen Daten verfügbar sind. Darüber hinaus ermöglichen Modellsimulationen 

die Identifizierung einzigartiger Stoffwechselzustände und klären den Übergang zwischen 

dem Warburg-Effekt (ineffiziente Glykolyse) und einem effizienteren Stoffwechsel 

(geringe Glykolyse, Laktatverbrauch und aktive TCA) auf. Ein solches Modell kann für die 

Entwicklung von Medien verwendet werden, was in der pharmazeutischen Industrie sehr 
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wünschenswert ist, und bietet ein solides Instrument zur Ermittlung von Veränderungen 

im Stoffwechsel während einer Virusinfektion. 
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mmol/cell/min Cell number-specific maximum activity of SDH 

 max

FMAv
  

mmol/cell/min  Cell number-specific maximum activity of FMA 

max

MDHv
  

mmol/cell/min  Cell number-specific maximum activity of MDH 

max

ATPasev
  

mmol/cell/min  Cell number-specific maximum activity of ATPase 

max

AAexv
  

mmol/cell/min  Cell number-specific maximum activity of AAex 

max

cUGLCv
  

mmol/cell/min  Cell number-specific maximum activity of UGLC 
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max

CSv   
mmol/cell/min  Cell number-specific maximum activity of CS 

max

MEv   
mmol/cell/min  Cell number-specific maximum activity of ME 

max

PEPCKv
  

mmol/cell/min  Cell number-specific maximum activity of PECK 

max

PCv   
mmol/cell/min  Cell number-specific maximum activity of PC 

max

GLDHv
  

mmol/cell/min  Cell number-specific maximum activity of GLDH 

max

GLNasev
  

mmol/cell/min  Cell number-specific maximum activity of GLNase 

H4dNv  
mmol/cell/min  

Cell number-specific maximum activity of NH4 
degradation 

m

HKk  
mmol/L Affinity constant of HK 

m

GPIk
 

mmol/L Affinity constant of GPI 

eq

GPIk
 

- Equilibrium constant of GPI 

6

m

G PDHk
 

mmol/L Affinity constant of G6PDH 

m

UTk  
mmol/L Affinity constant of UT 

6

eq

TATKF Pk
 

- Equilibrium constant of TATKF6P 

3

eq

TATK PGk
 

- Equilibrium constant of TATK3PG 

m

PFKk
 

mmol/L Affinity constant of PFK 

16F Pk
 

mmol/L Affinity constant of ALD for F16P 

eq

ENOk
 

- Equilibrium constant of ENO 

PKPEPk
 

mmol/L Affinity constant of PK for PEP 



List of symbols 

XXVII 

 

Symbol Unit Description 

PEP

eq

ENOk   - Equilibrium constant of ENO for PEP 

m

PKk   mmol/L Affinity constant of PK 

m

LDHk   mmol/L Affinity constant of LDH 

iPYR

LDHk   mmol2/L2 Inhibition constant of LDH from Pyr 

m

Pyrk   mmol/L Affinity constant of PDH to Pyr 

PKPyrk
 

mmol/L Affinity constant of PK for Pyr 

PDHPyrk  
mmol/L Affinity constant of PDH for Pyr 

eq

ACOk
 

- Equilibrium constant of ACO 

2

eq

ACOk
 

- Equilibrium constant of ACO 

m

Citk  
mmol/L Affinity constant of CL for Cit 

CL

mk   mmol/L Affinity constant of CL 

eq

ICDHk
 

- Equilibrium constant of ICDH 

m

ICDHk   mmol/L Affinity constant of ICDH 

eq

AAexk
 

- Equilibrium constant of AAex 

eq

SDHk   mmol/L Equilibrium constant of SDH 

m

MDHk   mmol/L Affinity constant of MDH 

eq

FMAk
 

- Equilibrium constant of FMA 

m

FMAk
 

mmol/L Affinity constant of FMA 
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m

MDHk
 

mmol/L Affinity constant of MDH 

xATPk
 

cell/L/min Specific ATP consumption related to growth 

 

mATPk
 

cell/L/min Specific ATP consumption related to maintenance 

basalNAD
 

mmol/L Adjustable parameter for influence of NAD/NADH 

m

cUGLCk
 

mmol/L Affinity constant of a general enzyme to UDPGlc 

m

CSk   mmol/L Affinity constant of CS 

m

MEk  
mmol/L Affinity constant of ME 

i

ATPk   mmol2/L2 Inhibition constant of ME from ATP 

eq

UTk   mmol/L Equilibrium constant of UT 

ik   mmol/L Inhibition constant of ALD 

m

GSk   mmol/L Affinity constant of GS 

 

ME

i

ATPk
 

mmol2/L2 Inhibition constant of ME from ATP 

ik  
mmol/L Growth related inhibition constant of ALD 

GS

m

Gluk  
mmol/L Affinity constant of GS for Glu 

m

ICDHk
 

mmol/L Affinity constant of ICDH 
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m

OAAk
 

mmol/L Affinity constant of CS for OAA 

m

AcCoAk
 

mmol/L Affinity constant of CS for AcCoA 

m

SDHk
 

mmol/L Affinity constant of SDH 

i

SDHk   mmol/L Inhibition constant of SDH 

5

m

dR Pk
 

mmol/L Affinity constant of a general enzyme to R5P 

m

PEPCKk
 

mmol/L Affinity constant of PEPCK 

i

AcCoAk   mmol/L Inhibition constant of PC  

PC

m

Pyrk  
mmol/L Affinity constant of PC for Pyr 

eq

MEk  
- Equilibrium constant of ME 

m

KDHk
 

mmol/L Affinity constant of KDH 

m

AlaTAk   mmol/L Affinity constant of AlaTA 

OAA

eq

AspTAk   mmol/L Equilibrium constant of AspTA of OAA 

Glu

eq

AspTAk   mmol/L Equilibrium constant of AspTA of Glu 

ketok   mmol/L Equilibrium constant of AspTA to Keto 

AspTAOAAk
 

mmol/L Affinity constant of AspTA for OAA 
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AspTAGluk  
mmol/L Affinity constant of AspTA for Glu 

AspTAKetok
 

mmol/L Affinity constant of AspTA for Keto 

GLDHGluk  
mmol/L Affinity constant of LDH for Glu 

ln

m

G asek
 

mmol/L Affinity constant of GLNase 

eq

GLDHk
 

- Equilibrium constant of GLDH 

i

GLDHk   mmol/L Inhibition constant of GLDH 

eq

ALDk
 

- Equilibrium constant of ALD 

a

PFKk
 

mmol/L Activation constant of PFK 

6

i

G Pk   mmol2/L2 Inhibition constant of HK 

m

ATPasek
 

mmol/L Affinity constant of ATPase 

3PGk
 

mmol/L Affinity constant of ENO for 3PG 

ENOPEPk
 

mmol/L Affinity constant of ENO for PEP 

3PG

eq

ENOk   - Equilibrium constant of ENO for 3PG 

3

m

TATK PGk
 

mmol/L Affinity constant of TATK3PG 

6

m

TATKF Pk
 

mmol/L Affinity constant of TATKF6P 
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m

GLDHk
 

mmol/L Affinity constant of GLDH 

HK

m

ATPk
 

mmol/L Affinity constant of HK for ATP 

ALD

m

ATPk
 

mmol/L Affinity constant of ALD for ATP 

3 ALD

m

PGk
 

mmol/L Affinity constant of ALD for 3PG 

eq

ALDk   - Affinity constant of ALD 

PC

m

ATPk
 

mmol/L Affinity constant of PC for ATP 

PDH

m

ATPk
 

mmol/L Affinity constant of PDH for ATP 

xGlu
k

 
mmol/L Direct binding affinity constant for extracellular Glu 

Gluk  
mmol/L Direct binding affinity constant for Glu transporter 

x
trans

eq

Glu
k

 
- Direct biding equilibrium constant for Glu transporter 

ln xG
k

 
mmol/L Direct binding (simplified) affinity constant for 

extracellular Gln  

x
trans

m

Pyr
k

 
mmol/L Affinity constant of extracellular Pyr transporter 

pyrk   mmol/L Inhibition constant of Pyr transporter 

m

AspTAk
 

mmol/L Affinity constant of AspTA 

GS

m

ATPk
 

mmol/L Affinity constant of GS for ATP 
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lnG ase

i

ATPk
 

mmol2/L2 Inhibition constant of GLNase from ATP 

SDH

i

OAAk
 

mmol2/L2 Inhibition constant of SDH from ATP 

m

GLYSk
 

mmol/L Affinity constant of GLYS 

CL

m

ATPk
 

mmol/L Affinity constant of CL for ATP 

x
trans

eq

Lac
k

 
- Equilibrium constant of transporter for Lac 

x

m

mLac
k   mmol/L Affinity constant of transporter to Lacx  

transLack
 

mmol/L Affinity constant of transporter for Lac 

x
transLac

k
 

mmol/L Affinity constant of transporter for extracellular Lac 

LDHPyrk  
mmol/L Affinity constant of LDH for Pyr 

LDHLack
 

mmol/L Affinity constant of LDH for Lac 

iATP

LDHk   mmol2/L2 Inhibition constant of LDH from ATP 

cPyrk
 

mmol2/L2 Activation constant of LDH from Pyr 

PyrLDH

ak
 

- Activation constant of LDH from Pyr 

LDHGluk  
mmol2/L2 Inhibition constant of LDH from Glu 

LDH

i

Gluk  
- Inhibition constant of LDH from Glu 

Symbo
l 

Unit Description 
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eq

LDHk
 

- Equilibrium constant of LDH 

H4

m

dNk  
mmol/L Affinity constant of general enzyme for NH4 

H4dN

a

ATPk
 

mmol/L activation constant of NH4 degradation from ATP 

H4xN
k

 
mmol/L Direct binding affinity constant for NH4 transporter 

H4xtrans

eq

N
k

 
- Direct biding equilibrium constant of NH4 transporter 

H4Nk  
mmol/L Direct binding affinity constant for NH4 transporter 

m

AlaTAk
 

mmol/L Affinity constant of AlaTA 

AlaTA

i

Gluk  
mmol2/L2 Inhibition constant of AlaTA from Glu 

AlaTA

i

Glck   mmol/L Inhibition constant of AlaTA from Glc 

AlaTA

i

ATPk   mmol/L Inhibition constant of AlaTA from ATP 

x

m

Glc
k

 
mmol/L Monod constant for extracellular Glc 

min

dk  
1/min Basal cell death rate 

max

dk  
1/min Maximum cell death rate 

mininf

dk  
1/min Basal cell death rate of infected cells 

max inf

dk  
1/min Maximum cell death rate of infected cells 

ln xdG
k

 
1/min Spontaneous glutamine degradation rate 

xGlc
m

 
mmol/L/µL/min Maintenance related glucose consumption rate 

max

eK   
mmol/L/min Cell volume-specific reaction rate of enzyme e 
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max

HKK
  

mmol/L/min Cell volume-specific reaction rate of enzyme HK 

max

GPIK
  

mmol/L/min Cell volume-specific reaction rate of enzyme GPI 

 
max

6G PDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme G6PDH 

max

5dR PK
  

mmol/L/min Cell volume-specific reaction rate of general enzyme of 
R5P degradation 

max

UTK
  

mmol/L/min Cell volume-specific reaction rate of enzyme UT 

max

GLYSK
  

mmol/L/min Cell volume-specific reaction rate of enzyme GLYS 

max

PFKK
  

mmol/L/min Cell volume-specific reaction rate of enzyme PFK 

max

6TATKF PK
  

mmol/L/min Cell volume-specific reaction rate of transaldolase and 

transketolase for F6P 

max

3TATK PGK
  

mmol/L/min Cell volume-specific reaction rate of transaldolase and 

transketolase for 3PG 

max

ALDK
  

mmol/L/min Cell volume-specific reaction rate of enzyme ALD 

max

ENOK
  

mmol/L/min Cell volume-specific reaction rate of enzyme ENO 

max

PKK
  

mmol/L/min Cell volume-specific reaction rate of enzyme PK 

max

LDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme LDH 

max

PDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme PDH 

max

H4dNK  
mmol/L/min Cell volume-specific reaction rate of general enzyme for 

NH4 degradation 
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max

ACOK
 

mmol/L/min Cell volume-specific reaction rate of enzyme ACO 

max

CLK
 

mmol/L/min Cell volume-specific reaction rate of enzyme CL 

max

ICDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme ICDH 

max

GSK
  

mmol/L/min Cell volume-specific reaction rate of enzyme GS 

max

KDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme KDH 

max

SDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme SDH 

max

FMAK
  

mmol/L/min Cell volume-specific reaction rate of enzyme FMA 

max

MDHK
  

mmol/L/min Cell volume-specific reaction rate of enzyme MDH 

max

ATPaseK
  

mmol/L/min Cell volume-specific reaction rate of enzyme ATPase 

max

AAexK
  

mmol/L/min Cell volume-specific reaction rate of enzyme AAex 

max

cUGLCK
  

mmol/L/min Cell volume-specific reaction rate of enzyme UGLC 

max

CSK
  

mmol/L/min Cell volume-specific reaction rate of enzyme CS 

max

MEK
  

mmol/L/min Cell volume-specific reaction rate of enzyme ME 

max

PEPCKK
  

mmol/L/min Cell volume-specific reaction rate of enzyme PEPCK 

max

PCK
  

mmol/L/min Cell volume-specific reaction rate of enzyme PC 
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max

AlaTAK
  

mmol/L/min Cell volume-specific reaction rate of enzyme AlaTA 

max

AspTAK
 

mmol/L/min Cell volume-specific reaction rate of enzyme AspTA 

max

GLDHK
 

mmol/L/min Cell volume-specific reaction rate of enzyme GLDH 

max

GLNaseK
 

mmol/L/min Cell volume-specific reaction rate of enzyme GLNase 

xGlc
m   mmol/L/µL/min Cell volume-specific uptake rate of Glc for 

maintenance 

MOI virions/cell Multiplicity of infection 

basalNAD
 

- Adjustable parameter for influence of NAD/NADH 

cN   - Number of cell classes 

basalPPP   mmol/L Basal concentration of PPP metabolites 

AATq   mg/cell Cell specific product formation rate 

ir   
mmol/L/min Cell specific activity of enzyme i 

macror
 

- Formula for conversion of macroscopic scale rates to 
microscopic scale 

HKr   
mmol/L/min Cell volume-specific reaction rate of HK 

GPIr   
mmol/L/min Cell volume-specific reaction rate of GPI 

6G PDHr
  

mmol/L/min Cell volume-specific reaction rate of G6PDH 
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5dR Pr
  

mmol/L/min Cell volume-specific reaction rate of R5P degradation 

H4dNr  
mmol/L/min Cell volume-specific reaction rate of NH4 degradation 

UTr   
mmol/L/min Cell volume-specific reaction rate of UT 

GLYSr
  

mmol/L/min Cell volume-specific reaction rate of GLYS 

PFKr   
mmol/L/min Cell volume-specific reaction rate of PFK 

6TATKF Pr
  

mmol/L/min Cell volume-specific reaction rate of TATKF6P 

3TATK PGr
  

mmol/L/min Cell volume-specific reaction rate of TATK3PG 

ALDr   
mmol/L/min Cell volume-specific reaction rate of ALD 

ENOr   
mmol/L/min Cell volume-specific reaction rate of ENO 

PKr   
mmol/L/min Cell volume-specific reaction rate of PK 

LDHr   
mmol/L/min Cell volume-specific reaction rate of LDH 

PDHr
  

mmol/L/min Cell volume-specific reaction rate of PDH 

ACOr   
mmol/L/min Cell volume-specific reaction rate of ACO 

CLr   
mmol/L/min Cell volume-specific reaction rate of CL 

ICDHr
  

mmol/L/min Cell volume-specific reaction rate of ICDH 
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GSr   
mmol/L/min Cell volume-specific reaction rate of GS 

KDHr
  

mmol/L/min Cell volume-specific reaction rate of KDH 

SDHr   
mmol/L/min Cell volume-specific reaction rate of SDH 

FMAr
  

mmol/L/min Cell volume-specific reaction rate of FMA 

MDHr
 

mmol/L/min Cell volume-specific reaction rate of MDH 

ATPaser
  

mmol/L/min Cell volume-specific reaction rate of ATPase 

AAexr
  

mmol/L/min Cell volume-specific reaction rate of AAex 

cUGLCr
  

mmol/L/min Cell volume-specific reaction rate of UGLC 

CSr   
mmol/L/min Cell volume-specific reaction rate of CS 

MEr   
mmol/L/min Cell volume-specific reaction rate of ME 

PEPCKr
  

mmol/L/min Cell volume-specific reaction rate of PEPCK 

PCr   
mmol/L/min Cell volume-specific reaction rate of PC 

AlaTAr
  

mmol/L/min Cell volume-specific reaction rate of AlaTA 

AspTAr
  

mmol/L/min Cell volume-specific reaction rate of AspTA 

GLDHr
  

mmol/L/min Cell volume-specific reaction rate of GLDH 

Symbol Unit Description 
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GLNaser
  

mmol/L/min Cell volume-specific reaction rate of GLNase 

x
transLac

r
 

mmol/L/min Medium volume-specific transport rate of Lac 

H4xtransN
r

 
mmol/L/min Medium volume-specific transport rate of NH4 

ln xtransG
r

 
mmol/L/min Medium volume-specific transport rate of Gln 

x
transGlu

r
 

mmol/L/min Medium volume-specific transport rate of Glu 

x
transPyr

r
 

mmol/L/min Medium volume-specific transport rate of Pyr 

transr
 

1/min Specific transition rate 

/ xm Glc
r

  
mmol/L/min Medium volume-specific uptake rate of Glc for 

maintenance 

/ xx Glc
r

  
mmol/L/min Medium volume-specific uptake rate of Glc for growth 

GLUTr
  

mmol/L/min Cell volume-specific transport rate of Glc 

xATPr
  

mmol/L/min Cell volume-specific ATP consumption rate of cell 
growth 

mATPr
  

mmol/L/min Cell volume-specific ATP consumption rate of cell 
maintenance 

ATPaser
  

mmol/L/min Cell volume-specific rate of ATPase 

dATPr
  

mmol/L/min Net ATP consumption rate 

CCMr   
mmol/L/min Net ATP production rate 
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NADHr
  

mmol/L/min Net ATP production from NADH 

FADHr
  

mmol/L/min Net ATP production from FADH 

TCAr   
mmol/L/min Net ATP production from TCA  

glycolysisr
  

mmol/L/min Net ATP production from glycolysis 

2Or  
fmol/cell/min Theoretical O2 consumption rate 

rk(c) 1/min or 
mmol/L/min 

Rate of consumption/production of c 

Sk L Sample volume 

V L Reactor volume 

cV  µL/mL Viable cell volume 

c

sV  
L/cell Cell-specific volume 

wV  
- Working volume 

iX  
cells/mL Number of viable cells of class i 

vX   
cells/mL Viable cell concentration 

/ lcxx G
Y

  
mmol/L/cell Cell growth-specific yield coefficient of Glc 
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    Chapter 
 

 Introduction  

 

Cell culture processes were developed throughout the 20th century and are currently a 

well-established platform for the research and manufacture of therapeutic biologicals 

such as recombinant proteins, nucleic acids, live cells, and vaccines. These processes 

require cell lines with specific characteristics, which are generated through careful clone 

development, selection, and genetic engineering. Bacteria, yeast and animal cells, such 

as mammalian cells and insect cells, are commonly used in bioprocesses to produce 

therapeutic biologicals. These processes vary in scale and complexity, and are 

characterized by the coupling of upstream and downstream processes. The latter focuses 

on product recovery, purification, and subsequent product formulation. Upstream 

processes essentially rely on efficient cell growth in a defined environment and the 

production of products such as viruses, viral vectors, antibodies, and insulin, among 

others. Typically, in biopharmaceutical production, careful process optimization and 

design are required for both upstream and downstream processes to keep the cost per 

dose of the final product low. In addition, it is necessary to guarantee product quality, 

safety, and efficacy to conform to the guidelines of regulatory authorities. For process 

optimization, detailed knowledge about the impact of parameters such as temperature, 

pH value, dissolved oxygen, and carbon dioxide concentration on cell growth and product 

formation is required. The optimization of these parameters is crucial for each cell line as 

specific characteristics can be scale-dependent and vary for every cell line [1]. 

Optimization of basal medium and feed compositions are other important aspects. The 

formulated medium contains a supply of energy sources, amino acids, vitamins, and 

micro-nutrients which are required to grow and produce the product of interest. These 

substances are appropriately utilized by the cell via the reactions/transport to generate 
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energy, growth precursors, the desired product and other by-products. Specifically, the 

latter consists of enzymatic reactions that convert one metabolite to another and 

transmembrane transport. The enzymes and transmembrane transporters are proteins 

that intervene in all biological reactions and transport, respectively. These proteins are 

coded in genes that constitute the genome of each cell. Fig. 1.1 summarizes the different 

layers between the cell genome and metabolism. Gene transcription is the process of 

copying genes from DNA to mRNA. Translation is the usage of the information of mRNA 

to make proteins (enzymes and transporters). Substantial efforts have been made to 

annotate genomes of over 6000 organisms including the well-studied Escherichia coli, 

Mus musculus, Pichia pastoris, Saccharomyces cerevisiae and Homo sapiens [1]. These 

efforts eventually translate into detailed knowledge about the proteins and consequently 

the set of possible enzymes or transporters within a cell. The combined 

reactions/transport that can be utilized by a cell is defined as its genome-scale metabolic 

network (GEM). 

The rate of energy and cell growth precursors formation in the metabolic network are 

determined by the resulting network property and are controlled using sophisticated 

regulation mechanisms. Substantial research efforts have been dedicated to 

understanding the fundamental principles of the underlying metabolic regulation 

mechanism of individual reactions in vitro. This includes studies covering multiple omics 

(genome (genomics), transcription (transcriptomics), protein (proteomics) and 

metabolites (metabolomics)). The study of genomics and metabolomics led to the 

uncovering of detailed enzyme kinetic mechanisms, including their dependency on the 

substrate, products and cofactors. However, in vivo mechanisms are largely hypothetical 

due to differential regulation in a more complex system where many principles such as 

allosteric effects, activation or inhibition may differ significantly. In order to improve our 

understanding of the cells, several mathematical approaches have been established, with 

varying degrees of complexity to describe biological data using enzyme kinetics [2]. The 

resulting increase in knowledge of cell metabolism played a crucial role in the 

development of genetic engineering and optimization of bioprocesses. In turn, 

advancements and refinements in bioprocess understanding have enabled the 

production of several highly valuable biological products at large scales. In addition to 

recombinant protein production, other critical biological products include inactivated 
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viruses and viral proteins used for vaccines. Vaccines play a vital role in public health, 

particularly during seasonal epidemics and global pandemics. 

 

Figure 1.1.: Different layers of omics used for genome-scale model reconstruction. GPR is 

the Gene-Protein-Reaction association. Figure elements taken from Strain et al., 2023 [1] under 

CC4.0. 

Seasonal influenza epidemics and global pandemics can have a significant economic 

impact on societies and result in a very high death toll. It is only due to the availability of 

vaccines and antivirals that more severe consequences can be averted, as seen in the 

recent COVID-19 outbreak. However, most influenza vaccines are still produced in 

embryonated hens’ eggs. To overcome certain disadvantages of this production system 

and to meet rising demands, various cell culture-derived vaccine manufacturing 

processes have been established [3,4]. Typically, continuous cell lines are cultivated and 

infected with IAV near the end of the exponential cell growth phase with a low multiplicity 

of infection (moi). The virus replicates intracellularly after entering the cells, and the first 

https://creativecommons.org/licenses/by/4.0/
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virions are released approximately 4‒6 hours post infection (hpi). The virus yield in cell 

cultures is influenced by a variety of factors including the cell substrate used, the cell 

concentration at time of infection, moi, medium composition and pH value [3]. In 

comparison to other cell culture-based processes, most notably large-scale recombinant 

protein production with bioreactor harvests in the gram per liter range, typical virus yields 

are rather low. Due to the complexity of virus-host cell interaction, numerous explanations 

and hypotheses exist regarding these low cell-specific virus yields. These include the 

interferon-mediated antiviral response, a high rate of cell death as a result of virus-

induced apoptosis and rapid cell degradation [5–14] as well as numerous host cell factors 

[15,16]. Recently, it was demonstrated that by combining model-based analysis with 

experimental data collected on genetically engineered cells, it is possible to investigate 

the effect of selected host cell factors on individual virus replication steps and to predict 

measures to increase virus yields [17]. So far, many studies performed to improve virus 

production processes focused on cell metabolism since the synthesis of viral components 

requires precursors and energy from the host cell. The majority of modeling approaches 

have focused on estimation of cellular resources required for virus production [18] or on 

metabolic flux analysis [19–21], and only few attempts have been made to incorporate 

aspects of virus replication. Quantitative changes in extracellular metabolite 

concentrations observed during the progression of infection for several viruses, including 

IAV, included changes in glucose consumption, lactate production and ammonium 

release, among other effects [22–26]. These changes have been primarily attributed to 

cell growth arrest, virus-induced apoptosis, breakdown of intracellular carbon and energy 

metabolism, and cell damage [22,26]. While some viruses appear to induce changes in 

aerobic glycolysis, many viruses also seem to stimulate fatty acid synthesis or influence 

amino acid metabolism, i.e. glutaminolysis – possible to meet specific virus replication 

requirements [27]. Nevertheless, the cumulative effect of these changes on virus yields 

is still poorly understood. Additionally, it is largely unclear whether the metabolic changes 

observed during virus production in cell culture are caused directly by virus-specific 

mechanisms or are influenced indirectly by the transition of infected cells to apoptosis 

and cell lysis. Even for cultivations infected with low moi of IAV, changes are observed as 

early as 6‒8 hpi. These changes include a rapid decrease in viable cell concentration and 

a decrease in the average cell-specific volume, as well as changes in substrate 

consumption, metabolic by-product release, and in cell death rate. Quantitative studies 
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on the impact of virus infections on cell growth and metabolism require comprehensive 

sets of experimental data, ideally collected for both infected and mock-infected cells. This 

includes viable cell counts, cell size and viability, extracellular substrates and metabolic 

by-products, and, ideally, intracellular metabolite concentrations and enzyme activity 

measurements. The establishment of dynamic mechanistic models is crucial  for 

evaluating  such complex and high-dimensional data [28]. However large quantitative and 

dynamical models that describe both cell growth and intracellular metabolism are still 

largely missing. These limitations can be attributed to the complexity of eukaryotic cells, 

scarcity of experimental data, and computational limitations. A particular challenge is the 

complexity of the metabolism of animal cells, which arises from the multitude of regulatory 

mechanisms as well as the high number of substrates taken up and by-products released. 

The lack of experimental data can be attributed to the laborious process of data collection 

and the lack of uniform quantification methods established to measure intracellular 

metabolite concentrations and enzyme activities; quenching of metabolism and sampling 

are also challenging. Finally, the establishment of dynamic models can also be hampered 

by the availability of computational resources and limitations of algorithms required to 

estimate the large number of often poorly defined parameters. 

The first aim of this project was the development of a mechanistic dynamic mathematical 

model that links cell growth, extra– and intracellular metabolism. This resulted in a set of 

33 ODEs that combines a segregated cell growth model with a structured model of 

intracellular metabolism. It describes concomitantly viable cell concentration, mean cell 

diameter, viable cell volume, concentration of extracellular substrates, product of interest 

(alpha-1 antitrypsin) concentration, and intracellular concentrations of key metabolites 

from the central carbon metabolism. The model parameters were optimized using one 

batch experiment and the model was tested using three separate batch cultivations. 

The second aim of this project was the extension of this mechanistic dynamic 

mathematical model to describe cell growth, extra– and intracellular metabolism in 

infected and non-infected cells. This resulted in a set of 35 ODEs that describes 

concomitantly viable cell concentration, mean cell diameter, viable cell volume, Influenza 

A virus (IAV) titer, concentration of extracellular substrates, and intracellular 

concentrations of key metabolites from the central carbon metabolism. The model 
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parameters were optimized using one shaker-flask cell growth experiment and the model 

was used to predict another shaker-flask experiment wherein the cells were infected. 

Overall, this work will contribute to a better understanding of the complex interplay 

between cell growth, changes in cell size, virus production and metabolism and support 

the identification of parameters relevant for increasing cell-specific growth rate, 

recombinant protein production and viral productivity in mammalian cells. 
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Bioprocess engineering uses organisms and biochemical systems to produce many 

biopharmaceuticals such as monoclonal antibodies, growth hormones, therapeutic 

enzymes among others. Animal cells play a crucial role as they are frequently used for 

production of biopharmaceuticals. Compared to other types of cells, animal cells have 

several advantages, such as the capacity to synthesize complex proteins and perform 

distinct modifications such as folding and glycosylation patterns. Furthermore, animal 

cells are amenable to genetic modification, which enhances their manufacturing 

capabilities. The cell lines used are continuous cell lines, obtained through several 

passages and immortalization of primary cells. Typically, primary cells are obtained from 

tissue samples and retain tissue-specific characteristics and have limited lifespan. The 

continuous cells are termed as adherent cell lines if they grow as monolayers attached to 

a surface or suspension cell lines if the growth in a liquid media. 

In the context of bioprocesses and continuous animal cell lines, decades of research have 

revealed the sophisticated and diverse facets of metabolism. One of the hallmarks of 

continuously growing cells is the metabolization of glucose into large amounts of lactate 

under aerobic conditions, also known as the Warburg effect [29]. This is still used 

nowadays as a marker in cancer diagnosis. The Warburg effect is coupled with an 

impaired mitochondrial respiration, even though the latter would allow a more efficient 

energy production. Various metabolic factors have been identified as sources contributing 

to this phenomenon but no universal explanation has been found. This can be attributed 

to the overall complexity of animal cells. This arises from the multitude of regulatory 

mechanisms as well as the high number of enzymes and transporters that make up the 

cell metabolic network. Furthermore, metabolic characteristics have been found to 
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change according to the cell type, cell physiological state and cultivation conditions [29–

31]. Study of animal cells is also significantly impacted by lack of experimental data. Data 

collection is a laborious process and there is a lack of uniform quantification methods 

established (for the determination of the concentration of the multitude of metabolites and 

enzyme activities). Overall, it is reasonable to affirm that research of animal cell growth 

and metabolism is imperative, with many questions still to be answered.  

Several continuous cell lines such as CHO cells and MDCK cells are used and are widely 

investigated for production of biopharmaceuticals such as recombinant proteins and 

viruses for vaccines (e.g. IAV vaccines). The main advantage of these continuous cell 

lines over primary cells resided on their longer life span and their ability to divide 

indefinitely in vitro obtained via spontaneous or directed immortalization. The next 

sections summarize the characteristics of the two cell lines which were used in this work, 

along with an introduction to recombinant protein production and influenza virology. 

General concepts of cellular growth and metabolism, mathematical modeling and 

optimization of bioprocess are also briefly described. 

2.1 AGE1.HN.AAT cell line  

AGE1.HN.AAT is a human designer cell line established by the company ProBioGen 

(ProBioGen AG, Berlin, Germany). In this instance, primary cells from a tissue sample of 

a human brain were immortalized via the integration of genes from adenovirus into its 

genome [32,33]. More specifically the adenoviral E1 A and B genes of the human 

adenovirus type 5. Overall, these cells were designed to have an enhanced protein 

export, to be susceptible to a variety of viruses [34]. To produce recombinant protein, the 

gene encoding alpha1-antitrypsin (A1AT) was inserted into these cells. A1AT is a 

glycoprotein, also called alpha1-proteinase inhibitor, and is the most common protease 

inhibitor in human plasma [35]. This protein is mainly produced in the liver, and in minor 

quantities in by macrophages, intestinal and bronchial epithelial cells [36]. A1AT’s main 

function is to inhibit the action of neutrophilic elastase (an enzyme that digests the elastin 

basement membrane, and other extracellular components) [35]. A deficiency of this 

protein can lead to lung emphysema and liver dysfunction [34,36]. Patients with this 

deficiency are mostly treated with A1AT obtained from human serum. This is expensive 

and there is a risk of infection, thus AGE1.HN.AAT cells have the potential to be an 
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alternative source for human A1AT [34]. The safety and compliance with the regulatory 

requirements for human therapeutic production of this cell line was also assured. For 

example, its development was performed under a dedicated cell culture suite and the 

development history recorded [37]. Besides they were adapted to grow in suspension 

using chemically defined medium [37]. The media used is compliant with regulatory 

guidance to minimize the risk of transmitting animal spongiform encephalopathy agents 

via human and veterinary medicinal products. One of the most important advantages of 

this cell line also is its ability to produce complex and human-like glycosylation patterns 

increasing the product efficacy and safety [38]. So far, several studies and metabolic 

characterizations have been performed for this cell line such as transition in apoptosis, 

metabolism under steady state and metabolism under limitations including cell growth 

optimizations [37,39–42]. 

2.2 Madin-Darby canine kidney cell line 

MDCK cells were isolated in 1958 by S.H. Madin and N.B. Darby from the kidney 

epithelium of an adult cocker spaniel (Canis lupus familiaris). Initially, these cells 

contained a normal canine karyotype (2n= 78) [43], but over time, depending on the origin 

and number of passages, some may contain significantly higher chromosome numbers. 

Initially, MDCK cells were cultivated as adherent cells [44–47] and later adapted to grow 

in suspension. The cells were robust and able to grow rapidly and often used as a model 

to study epithelial phenotypes in vitro [48]. MDCK cells are susceptible to a wide range of 

viruses, of which influenza viruses (A, B and C) are the most relevant for human 

therapeutics [43]. As such nowadays they are widely used for research and virus 

propagation for vaccine production [49–51]. In the context of influenza virus vaccine 

production and research, two parental cell lines dominate the field (American Type 

Culture Collection (ATCC) and the European Collection of Cell Cultures (ECACC)). 

Several suspension cell lines have been developed from both ATCC and ECACC-derived 

cell lines [52–54], due to their potential of better scalability compared to the adherent 

counterpart.  In particular, a MDCK suspension cell line used in this study, MDCK.SUS2, 

has been extensively characterized and specific medium optimized to enable high cell 

density cultivations while minimizing cell aggregations [55,56].  
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2.3 Influenza virus 

Influenza disease 

Influenza or flu designates the contagious respiratory disease caused by influenza viruses 

[57]. Influenza viruses belong to the Orthomyxoviridae family and can be separated into 

four genera, based on the nucleoprotein: IAV, Influenza B viruses (IBV), Influenza C 

viruses (ICV) and Influenza D viruses (IDV) [58]. IAV particles are mostly spherical and 

their diameter ranges from 80-120 nm. The genome of IAV and IBV contain eight 

segments of negative-sense single stranded (-ss) viral RNA (vRNA), while ICV and IDV 

contain only seven segments [57]. 

Humans, other mammals, and birds are susceptible to infection with IAV, IBV and ICV, 

while IVD mostly infects cattle and are not known to infect humans [59]. In humans, these 

viruses mainly infect cells in the nose, throat, and bronchi (the upper respiratory system), 

leading to problems such as runny nose, sore throat, cough, fatigue, fever and headache. 

In some occasions influenza virus infection can also lead to gastrointestinal problems. 

Influenza infection may become severe because it may allow secondary opportunistic 

infections (bacterial or other viruses). Different subtypes of IAV and IBV cause seasonal 

flu epidemics in humans while ICV infections are less frequent and cause only mild illness. 

IAV research is of significant interest as IAV possesses a great potential to infect different 

hosts (avian and mammalian in this instance) [57]. Circulating and emerging IAV variants 

can lead to influenza epidemics and even global pandemics which can have significant 

economic impact on societies and result in a very high death toll. Due to its relevance this 

work mainly focuses on IAV. 

Influenza A virus structure and intracellular replication 

IAV contains eight segments of negative-sense single stranded vRNA, which encodes for 

at least 10 viral proteins (Fig. 2.1). The vRNA forms a complex with nuclear proteins (NP) 

and the RNA polymerase complex (PB1, PB2 and PA) denominated by viral 

ribonucleoproteins (vRNPs). The genome is enveloped by a membrane, containing a 

proton channel (matrix protein 2, M2) and a structural protein (matrix protein 1, M1) 

forming a capsid below this lipid membrane. The lipid membrane also contains two 

glycoproteins hemagglutinin (HA) and neuraminidase (NA).  
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Figure 2.1.: Schematic structure of influenza A virus (IAV). The envelope of the IAV particle, 

formed from the host cell plasma membrane, contains trans-membrane proteins glycoproteins 

designated as hemagglutinin (HA) and neuraminidase (NA) and the proton channel matrix protein 

2 (M2). The matrix protein 1 (M1) underlies the inner surface of the viral envelope and associates 

with nuclear export protein (NEP) and viral ribonucleoprotein complexes (vRNPs). The eight 

vRNPs comprise eight negative-strand RNA segments associated with the nucleoprotein (NP) 

and three RNA-dependent RNA-polymerase (RdRp) subunits (PA, PB1, PB2). Figure elements 

taken from Mostafa et al., 2018 [57] under CC4.0. 

IAV attaches the host cell by binding to sialic acids on the host cell membrane, a step 

facilitated by the HA protein (Fig. 2.2). After the attachment, the virus is imported via 

endosomal trafficking (endocytosis). During the import, endosome acidification occurs, 

which leads to structural changes in the HA protein, leading to the fusion of the virus 

envelope with the membranes of the endosome. The viral genome is released and 

transported into the nucleus. In the next steps viral mRNAs are produced and translated 

https://creativecommons.org/licenses/by/4.0/
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to produce viral proteins. The RdRp, NP and the RNA assemble to form a new viral 

genome. Finally, the viral genome is exported to the cell membrane where new virus 

particles are created and released via membrane budding.  

 

Figure 2.2.: Schematic depiction of influenza A virus infection. For simplification only one of 

the eight vRNPs is shown and non-structural proteins are omitted. The virus infection follows 

steps: (1) attachment, (2) endocytosis, (3) fusion, (4) nuclear import, (5) transcription, (6) 

synthesis of complementary RNA, (7) translation, (8) encapsulation of complementary RNA 

(cRNA), (9) negative-sense RNA (vRNA) synthesis, (10) viral RNA synthesis, (11) M1 and NEP 

assembly, (12) nuclear export, (13) virus assembly and budding. Figure elements taken from 

Heldt et al., 2013 [60] under CC4.0. 

 

Influenza A virus evolution, epidemics, and pandemics 

IAV subtypes are named according to the viral surface glycoproteins (HA and NA) and in 

total 18 HA and 11 NA genetically different have been identified. Over 131 subtypes of 

IVA (with unique combinations of HA and NA) have been identified in nature [61]. These 

subtypes likely emerged due to co-infection of two IAV subtypes and subsequent 

reassortment also referred to as antigenic shift. Theoretically the combination or 

https://creativecommons.org/licenses/by/4.0/
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reassortment of known HA and NA suggests that 198 subtypes of IVA could exist, though 

some combinations could require direct human and livestock contact because aquatic 

birds are the main reservoir for IAV. Typically, IAV seldom crosses the species barrier 

from birds to humans or to other mammals. For this reason, most of the IAV subtypes 

were initially isolated from avian hosts [57]. Furthermore, only a limited number of IAV 

subtypes are usually circulating in humans such as H1N1, H2N2 and H3N2 and lead to 

seasonal epidemics or occasional pandemics (Fig. 2.3) [57]. New  IAV can also emerge 

by antigenic drift or the accumulation of point mutations [57]. In addition the glycosylation 

of viral proteins contributes significantly to the complexity of IAV subtypes and should be 

considered during vaccine production [62]. Glycosylation complexity and glycosylation 

site are dependent on the host cell glycosylation machinery (endoplasmic reticulum and 

Golgi apparatus). As such, variations appear on HA and NA of IAV according to the host 

cell. The glycosylation patterns are important for the viral biological properties and 

immune response [63]. 
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Figure 2.3.: Timeline of relevant influenza pandemics and epidemics caused by influenza 
A virus. The “Spanish Flu” of 1918-1957 was the most devastating influenza pandemic (likely 
caused by transmission of an H1N1-type IAV from poultry to humans). In 1957, the strain H2N2 
led to the second influenza pandemic known as the “Asian Flu.” In 1968, the third pandemic known 
as “Hong Kong Flu” was caused by the strain H3N2. In 1977 the H1N1 strain reemerged, resulting 
in the “Russian Flu”. In 2009, a new H1N1 variant was transmitted from swine to humans lead ing 
to the first pandemic of the 21st century known as the “Swine Flu.” In parallel, different avian 
influenza A virus strains (H5-, H6-, H7-, H9-, and H10-types) have occasionally crossed the host 
barriers causing mild to fatal infections in humans. Figure elements taken from Mostafa et al., 
2018 [57] under CC4.0. 

2.4 Cell growth and metabolism 

The cell-based production of recombinant proteins requires cell lines with specific 

characteristics, which are generated through careful clone development and selection. 

Similarly, cell-based virus production for vaccines and viral vectors, requires specific cell 

lines susceptible and permissive for the selected virus. Several animal cells have been 

selected such as CHO cells, MDCK cells, BHK cells, HEK293 cells, HeLa cells, Vero cells 

or even insect cells such as SF9 cells (from Spodoptera frugiperda). The cultivation of 
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these cells in bioreactors is performed using different cell cultivation modes such as 

batch, semi-batch, fed-batch, continuous, etc. The cells require carefully formulated 

media with all the necessary nutrients to sustain cell growth (carbon source, amino acids, 

vitamins, minerals and occasionally growth factors). Growing cells undergo four different 

growth phases (section below) while adjusting substrates usage and metabolic by-

product release via the reactions of its metabolic network. Typically, animal cell metabolic 

networks contain a large number of unique reactions and metabolites. For example, over 

13000 reactions and 4000 metabolites have been identified for human cells [64] and over 

6000 reactions and 4000 metabolites for CHO cells [65] (see section below). 

2.4.1 Cell growth phases 

Cell-based processes are typically operated at large scales and depend on achieving and 

maintaining high concentrations of viable cells. Typically, the cell cultivation starts with 

the inoculation after which the following cell growth phases are observed [68] (Fig. 2.4): 

Lag phase: after inoculation, a lag phase where no apparent change in the population 

number is observed. This phase is shorter in suspension cells (few hours) compared to 

adherent cells (can take up to 24 h). This phase is attributed to a cell adaptation to a new 

environment and is in fact a dynamic, organized and evolvable process [66] that occurs 

before the cell growth phase. 

Exponential cell growth: In this phase the number of cells increases in an exponential 

manner, concomitant with the increase of total cell dry weight and total cell volume. At a 

single cell level, there is an increase of single cell volume until it reaches a certain cell-

specific volume, where the parental cell divides into two daughter cells, which continue 

the growth process. For this reason, at a population level, typically an increase of total 

cell volume and total cell dry weight is observed well before the actual increase in cell 

number [67,68]. During the exponential phase the relative number of cells in the S-phase 

of the cell cycle is high [69] and the cell-specific growth rate (µ) is close to the maximum 

cell growth rate (µmax). This rate decreases because of several factors including 

substrates limitation, by-products inhibition and surface limitation. Due to these 

limitations, the cell growth rate decreases significantly and the cells enter a transition 

phase. 
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Figure 2.4.: Schematic depiction of cell growth phases. (1) lag phase, (2) exponential cell 

growth phase, (3) transition phase, (4) stationary phase and (5) cell lysis phase. 

Transition phase: The cell growth rate decreases significantly in this phase due to 

nutrient limitations such as glucose and glutamine [70] and depletion of other medium 

components such as amino acids [71]. Furthermore, this decrease can also occur due to 

accumulation of by-products in the bioreactor. Lactate, which is produced from 

degradation of glucose, impairs growth as it reduces the pH [72]. Ammonium, which 

results from spontaneous decomposition of glutamine and metabolic usage of amino 

acids such as glutamine, impairs cell growth by interference with amino acid transport 

across cell membranes [73]. Following this phase typically, the cells enter a stationary 

phase.  

Stationary phase: Additional substrate limitations and the accumulation of by-products 

lead the cells to enter a maintenance metabolism characterized by low substrate 

consumption. In this phase either full growth inhibition with no cell lysis occurs or the cell 

growth rate is equal to the cell lysis rate leading to a null apparent cell growth rate. If the 

bioreactor conditions are not renewed either substrates are depleted or the by-product 

concentrations reach toxic levels which lead to a rapid decrease in the cell viability. 

Cell lysis phase: In this phase cell death rate increases followed cell lysis leading to the 

sharp decrease in cell numbers. The cell death occurs through various mechanisms 
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[74,75], including  virus-induced apoptosis or extrinsic factors such as nutrient depletions 

and by-product toxicity.  

2.4.2 Cell metabolism  

In the context of cell-based processes, such as biopharmaceutical production, a cell’s 

capacity for growth and the synthesis of the products of interest is fundamentally 

dependent on its intracellular metabolism. The latter includes the intricate system or 

reactions to convert substrates into cellular energy and necessary building blocks or 

precursors for cellular components (biomass) and the product of interest. These vital 

functions are orchestrated in the cell’s complex metabolic network. This network is 

composed by the complete set of transmembrane transporters (for molecule transport) 

and enzymes (to catalyze reactions). Ultimately, the cell’s metabolism is characterized by 

its utilization of this enzymatic network; consequently, detailed study of metabolism 

provides mechanist insights crucial for enhancing cell growth and eventually increasing 

the product yields through rational process design and optimization.  

The metabolic network itself consists of several subsystems or pathways with numerous 

reactions. At least 150 unique pathways have been identified in human cell lines, 

comprising over 13000 unique reactions and over 4000 unique metabolites [64]. The core 

pathways in different cell lines are very much conserved and termed as the central carbon 

metabolism. The central carbon metabolism includes critical metabolic pathways that play 

a crucial role in the generation of energy, and the biosynthesis of various cellular 

compounds for cell growth and maintenance (Fig. 2.5). It includes glycolysis, pentose 

phosphate pathway, citric acid cycle, glutaminolysis, and oxidative phosphorylation. Each 

of these subsystems performs a unique function in the overall metabolic network and 

plays a critical role in the regulation of cellular energy production and growth. Their 

combined function accounts for most of the carbon metabolization. Their efficient 

operation is essential to the proper functioning of the cell. As such, understanding the 

complexities of central carbon metabolism is essential for the development and 

optimization of bioprocesses. 
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Figure 2.5.: Simplified metabolic network of the central carbon metabolism. In green: key 
metabolites. Arrows: reactions or transport, with the arrowhead indicating the reaction or 
transport direction (for simplification, reversible reactions have an arrow for both directions). 
Abbreviations of metabolites: 3PG: 3-phosphoglycerate, AcCoA: acetyl coenzyme A, ATP: 
adenosine tri-phosphate, cAc: cis-Aconitate, Cit: citrate, F16P: fructose 1,6-biphosphate, F6P: 
fructose-6-phosphate, Fum: fumarate, G6P: glucose-6-phosphate, Glc: glucose (intracellular), 
Glcx: glucose (extracellular), Gln: glutamine (intracellular), Glnx: glutamine (extracellular), Glu: 
glutamate (intracellular), Glux: glutamate (extracellular), IsoCit: iso-citrate, Keto: alpha-
ketoglutarate, Lacx: lactate (extracellular), Mal: malate, NH4: ammonium (intracellular), NH4x: 
ammonium (extracellular), OAA: oxaloacetate, PEP: phosphoenolpyruvate, Pyr: pyruvate 
(intracellular), Pyrx: pyruvate (extracellular), R5P: ribose-5-phosphate, SUC: succinate, UDPGlc: 
uridine diphosphate Glucose. Note that it is a simplified model as citric acid cycle and oxidative 
phosphorylation occur in the mitochondria, while the remaining reactions occur in cytosol. 
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Glycolysis 

Glycolysis is an essential pathway of cellular metabolism, where glucose is converted to 

pyruvate. This process generates lactate, energy in the form of ATP and other precursors 

such as NADH in the cytoplasm. 

Pentose phosphate pathway 

The pentose phosphate pathway is an essential metabolic pathway that generates 

NADPH and sugars, which are essential for biosynthesis of nucleotides. 

Citric acid cycle 

The citric acid cycle, also known as the Krebs cycle or tricarboxylic acid cycle (TCA), is a 

central metabolic pathway that occurs in the mitochondria and produces energy in the 

form of GTP, ATP and precursors such as NADH and FADH2. 

Glutaminolysis 

Glutaminolysis is a process in which glutamine is converted into other metabolic 

intermediates that enter TCA and glycolysis. Typically, glutamine metabolism plays a 

crucial role in metabolism of continuous cell lines, especially in cells with high energy 

demands. 

Oxidative phosphorylation 

Oxidative phosphorylation is the process by which ATP is generated from the oxidation 

of NADH and FADH2, which are produced mainly in glycolysis and TCA cycle. This 

process is an essential source of energy for cells for cell growth and maintenance. 

2.5 Recombinant protein production 

Proteins play an essential role in virtually every function in a cell and have emerged as 

the therapeutic of choice as they can be engineered to target specific disease processes. 

Additionally, proteins are essential components of most vaccines, as they can be used to 

stimulate the immune system to build immunity against pathogens. However, isolating 

high quantities of desired proteins from natural sources is challenging, as such one of the 

main objectives in biotechnology is the production of soluble and functional recombinant 
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proteins [76]. Typically, this involves the isolation of a gene encoding the target protein 

and its introduction in host organisms capable of synthesizing that protein.  

Escherichia coli is the most popular host for expression of recombinant proteins but as a 

prokaryotic system they are unable to produce complex proteins which may also need 

specific post translational modifications. The most widely recognized form of modification 

is glycosylation and can only be performed by eukaryotic cells. Therefore, eukaryotic cells 

such as mammalian cells, insect cells, yeast and microalgae are being used as viable 

alternatives for production of these complex proteins [76]. The most used mammalian 

cells are Chinese hamster ovary (CHO) cells, mouse myeloma (NS0), baby hamster 

kidney (BHK), human embryonic kidney (HEK-293), Madin-Darby canine kidney (MDCK) 

cells and human retina-derived (PERC6) cells [76]. In some case, the productivity of 

mammalian cells has reached the gram per liter range [77]. Several recombinant proteins 

that are commercially available are produced in mammalian cells such as hormones, 

growth factors, antibodies, enzymes, inhibitors etc. [78]. Other cell lines such as human 

cell lines are being investigated for recombinant protein production such as the 

AGE1.HN.AAT as source for human A1AT [34]. The most important advantage of human 

cell lines is their ability to produce complex and human-like glycosylation patterns, 

increasing the product efficacy and safety [38].  

 

2.6 Vaccine production 

A vaccine prevents disease spread and/or reduces their severity by creating immunity. It 

usually contains weakened or fragments of the disease-causing pathogens that stimulate 

the immune system to fight and create immunity against the pathogen (e.g., viruses and 

bacteria). As such, vaccines are one of the most significant medical advancements in 

human history, protecting against several illnesses thereby saving millions of lives 

annually. Vaccine manufacture is a sophisticated, multistep process including growth of 

pathogens, purification, and formulation. Steps in the manufacturing of influenza vaccines 

include growing the virus in a suitable host, such as embryonated eggs or cells 

(mammalian and insect), and then purifying the virus or its components. Viral vaccine 

typically consists of attenuated viral particles, dead viral particles, or viral proteins. These 
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components, especially viral proteins, are combined with adjuvants and other substances 

to enhance both the efficacy and durability. Ensuring the safety of these vaccines is 

paramount, while at the same time preserving their ability to activate the immune system 

and create immunity. Furthermore, to address the worldwide demand for vaccines, 

efficient and scalable manufacturing methods are necessary. Bioprocess engineering is 

essential to the manufacture of vaccines because it enables the optimization of production 

processes to boost efficiency, decrease costs, and assure quality consistency. The 

production of influenza vaccines is one of the most urgent aspects of vaccine 

manufacturing. Influenza viruses cause respiratory infection (flu). The latter is a significant 

threat to public health because it affects millions of people annually and may lead to 

hospitalization, severe illness, and death. Because the influenza virus constantly mutates, 

new vaccinations must be created annually to guarantee their effectiveness. Specifically, 

influenza vaccine productions are time constrained as there is a need for production 

before each flu season. 

 

 

2.7 Mathematical modeling of bioprocess  

The simulation of complex biological systems in bioprocesses is possible by mathematical 

models, which are powerful tools that are increasingly being used for process 

optimization. In most cases, the models that are developed consist of a set of ODE-based 

equations that either describe portions of or a whole biological system. The equations 

make it possible to simulate and predict the behavior of biological systems. Recently 

machine learning such as feed forward neural networks  and hybrid methods that combine 

machine learning and first-principles equations are also being used to simulate and 

predict culture dynamics [79–81]. Overall, it is reasonable to affirm that the application of 

mathematical methods such as mathematical models in the field of bioprocess 

engineering has led to a considerable advance in the knowledge of bioprocesses. In 

addition, they enabled the identification of critical process and product quality parameters 

for optimization. However, limited availability of large amounts of experimental data and 

lack of fundamental knowledge due to the intrinsic complexity of biological systems have 
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historically been limiting factors. New essays for intracellular metabolite quantification 

(e.g. liquid chromatography-mass spectrometry (LC-MS), mass spectroscopy (MS) and 

nuclear magnetic resonance spectroscopy (NMR)) are offering unprecedented detailed 

intracellular data which will immensely facilitate model establishment for animal cells. 

Models based on classification of bioprocesses: Mathematical models of cell 

cultivations can be classified as segregated vs. unsegregated [82,83], structured vs 

unstructured [82,83], deterministic vs stochastic (probabilistic) [84] and may comprise 

multiple scales (multi-scale model) [84]. A structured model refers explicitly and in detail 

to the cell population in terms of their intracellular contents, particularly it attempts to 

describe the intracellular dynamics of a large number of metabolites [82,84]. An example 

of these types of models are mechanistic models, which rely on the underlying biological 

mechanisms [82]. The unstructured models omit the intracellular description [82]. An 

example of these type of models are data driven models, in which the structure of the 

model is irrelevant and hidden [82]. Segregated models account for cell to cell 

heterogeneity in a population by explicitly considering cells in different stages of 

development, specifically cell age, size and metabolic state [82]. Unsegregated models 

do not account for cell heterogeneity as they only consider identical “average cells”, which 

can useful to describe overall trends and system responses [82]. The Stochastic models 

typically consider the behavior of individual cells or molecules, where their individual 

behavior results from randomness based on probability distribution functions [82]. In 

contrast, deterministic models describe the behavior of the entire population as 

continuous and predictable [82]. Moreover these models contain clear mathematical 

relationships of cause-and-effect and a set of initial conditions always produces the same 

simulation results. 

2.7.1 Modeling methods 

Biological data is complex and multidimensional, as such mathematical models are 

suitable approaches for their understanding and improvement. Modeling a bioprocess 

can make use of a wide variety of mathematical methodologies, including constraint-

based modeling and dynamic models. Known mechanistic or kinetic descriptions of 

enzymes that are taking part in the bioreactions can be included in either method. 
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Machine learning methods are also increasingly being used in the context of 

bioprocesses. In addition, hybrid techniques, which blend known (parametric) models with 

unknown (non-parametric) models to provide a more accurate simulation of biological 

systems, are becoming increasingly popular. The latter includes for example the 

combination of dynamic metabolic models or constrained-based models with machine 

learning (ML) in the modeling framework [80].  

Constraint-based models: Constraint-based models are a type of mathematical model 

that describe biological systems using constraints, such as the maximum–minimum 

reactions (substrate consumption or by-product formation), reactions stoichiometries and 

thermodynamic constraints (reaction reversibility). In such approaches the cellular 

behavior is assumed as being limited by the availability of resources. The standard 

constraint-based method used to compute fluxes at genome scale is flux balance analysis 

(FBA) [85]. A biological objective is assumed based on the idea that cellular behavior is 

regulated to achieve certain goals such as cell growth maximization. Constraint-based 

methods allow estimation of intra–extracellular flux distributions allowing the study of 

regulation of pathways in cellular metabolism to investigate certain objectives which are 

at least directionally correct. For example, a constraint-based model can be used to 

identify the limiting substrate for cell growth or for the product of interest formation, which 

can be useful even if the predicted limitation factor is not 100% accurate. 

Data-driven models: Data-driven models describe statistical relationships between input 

controls and output in bioprocesses, essentially, they are models of correlations. These 

models can capture these correlations by employing advanced statistics and multivariate 

data analysis (MVDA), which includes methods such as principal component analysis 

(PCA) and partial least squares (PLS) [86]. In the realm of ML, artificial neural networks 

are employed as data-driven models, also known as black-box models. These models 

can achieve accurate experimental data fitting and without extensive knowledge of 

underlying biological mechanisms. This makes them easy to use and employ when there 

is lack of fundamental knowledge about the biological process. However, in general, like 

any data-driven approach it requires extensive data. Furthermore, data-driven models 

lack the extrapolation capabilities and have been shown to violate physical principles, in 

contrast with models based on fundamental knowledge (e.g. mechanistic models). 
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Dynamic models: Dynamic models typically consist of ODEs to compute the time-course 

behavior state variables. This mainly consists of cell and metabolite concentrations, and 

their mass balance can be written as: 
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k f k c
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Where c is the concentration of a state variable, V is the reactor volume, Fk is the volume 

of a feed stream, ck,f is the concentration of c in the feed stream, Sk is the sample volume, 

rk(c) is the rate of consumption/production of c in the kth reaction and µc is the growth rate 

dilution in case of intracellular metabolites. The rk(c) is governed by several 

reactions/transport kinetics, e.g. the Michaelis-Menten kinetic, described below. A 

dynamic model that includes kinetic descriptions is termed as a mechanistic model. These 

models rely on the accurate description of several underlying kinetic mechanisms to 

describe the observed cell growth and metabolism. In vivo mechanisms may differ from 

kinetics observed in vitro, and, depending on the complexity of the overall kinetics, several 

parameters need to be optimized. Due to these facts, accurate mechanistic modeling of 

cell metabolism is a challenging task. 

Hybrid models: Data-driven models, such as ML (e.g. neural networks, discussed in the 

previous paragraph), have some limitations including data dependency, low extrapolation 

capabilities and potential violations of physical principles. To address these challenges, 

researchers have explored hybrid model structures that combine neural networks with 

prior fundamental knowledge (e.g. mechanistic information). Hybrid models require less 

training data, excel in extrapolation, and capture physically relevant behavior and are 

becoming widely applied [80,87–92]. Essentially a hybrid model structure consists in 

connecting outputs of neural networks with systems of equations. The equations can 

describe bioreactor material balance (e.g. system of ODEs) using the output of neural 

networks as inputs (kinetics of substrate consumption, by-product accumulation, cell 

growth and product formation) [81]. 

Kinetics of reactions catalyzed by enzymes: Unlike spontaneous reactions or 

reactions catalyzed by chemical compounds, most biological reactions are catalyzed by 

enzymes. A general simplification is depicted in Fig. 2.6, where S is the substrate, E is 
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the enzyme and P is the product. Typically, an enzyme-mediated reaction involves 

multiple steps, including substrate binding, enzyme conformational changes, substrate 

conversion, and product release, which can overall be represented by mass-action kinetic 

equations [68]. The order of such reactions depends on the number of substrates and 

products, resulting in numerous parameters. This multiplicity can make parameter 

identification and analysis cumbersome. Michaelis and Menten presented a pioneering 

simplification of reaction kinetic that links product formation to substrate conversion under 

specific assumptions. Cleland expanded on this by developing a comprehensive 

nomenclature and rate equations for various reaction types, considering the number of 

reactants/products (e.g. uni-uni, bi-uni, bi-bi,...) , reaction order (random or ordered), 

reversibility and enzyme isomerization (ping-pong, iso, …)  [85,93,94]. Despite their utility, 

some of these kinetics were quite difficult to derive, and this motivated King and Altman 

to propose a simpler, graph-based method mainly relying on the reaction scheme [95]. A 

disadvantage of the latter is that it lacked the capacity to capture crucial regulatory 

mechanisms such as cooperativity and allosteric effects [68]. Enzyme cooperativity 

phenomenon gained importance after Hill discovered the sigmoidal oxygen binding 

curves in hemoglobin and proposed the hill kinetic [96]. This kinetic was a significant 

contribution that aided characterization of many enzymes such as the 

phosphofructokinase (PFK, a glycolytic enzyme). The role of the allosteric effect was 

especially recognized by Monod et al. which introduced the Monod-Wyman-Changeaux 

model to describe some glycolytic enzymes [97]. Essentially this kinetic postulated that 

the substrate affinity is influenced by both substrate and allosteric modulator 

concentrations. 

 

Figure 2.6.: Schematic representation of a reaction catalyzed by an enzyme. S is the 

substrate, E is the enzyme, P is the product, E+S is the enzyme-substrate complex and E+P is 

the enzyme-product complex 
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Overall, the complexity of enzyme kinetics reflects the diverse factors influencing the 

conversion of substrates to products. Furthermore, since the pioneering studies 

previously mentioned several enzyme kinetics, which dictate the rate of substrate 

conversion to the product have been proposed [2]. These kinetics have varying levels of 

complexity depending on the relevant factors considered such as allosteric effects, 

cooperation, reaction order and number of substrates/products. As such in this work, 

numerous enzyme kinetics with varying complexity were used such as mass-action, 

Michaelis-Menten, Monod, hill kinetic, Monod-Wyman-Changeaux, etc.  

Estimation and identifiability of model parameters: Ideally a model is a mathematical 

description that can accurately simulate a determined biological process. To achieve this, 

the correct mathematical description (e.g., kinetic equations) must be identified and its 

related parameters optimized. As such parameter optimization is a crucial step in the 

development of mathematical models for biological systems. It consists of finding values 

for the model's parameters that allow the model simulation to accurately capture the 

dynamics in experimental data from a biological system. Often, this task can be very 

changeling due to sparse data availability and the inherent complexity of biological 

phenomena [68]. Due to their complexity (model structure), parameter estimation typically 

involves non-linear optimization methods to minimize a goodness-of-fit function 

(experimental data – simulation data). Several algorithms are available that are being 

successfully used to tackle nonlinear optimizations [98]. Identifiability, which refers to the 

ability of determining the unique parameter, is also a key concern during the development 

of mathematical models. Identifiability issues can be attributed to low-quality data, sparse 

data, or complex models with overparameterization. Several methods can be used to 

estimate the uncertainty of parameters (correlations and confidence intervals) such as 

the Fisher Information Matrix, bootstrap, and Bayesian approaches [99–101]. 

Identifiability issues become clear when several distinct sets of parameters yield similar 

goodness-of-fit resulting in large parameter uncertainties [68]. This tends to happen when 

different mechanisms in the model produce indistinguishable responses (i.e. depending 

on the parameters used, some mechanisms can compensate or eliminate the need for 

another). In a biological context, a plausible explanation for this effect is that metabolic 

networks are known to be robust against environmental fluctuations. Furthermore, it is 

known that the cell’s metabolic network possesses the “small world” property, meaning 

that metabolic conversions to form a specific metabolite is possible through many 
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alternative pathways. This suggests multiple combinations of reaction pathways can be 

used to produce a single metabolite. More specifically, if an enzyme is inhibited or “tuned 

off,” the cell metabolism can adapt and use alternative routes. This implies that the 

metabolic network is robust and redundant in order to maintain their functionality in face 

of variations. It is thus reasonable to assume that the hurdles of parameter identifiability 

of models describing such a system is further exacerbated by this metabolic network 

property. In conclusion, it is essential to understand and mitigate the challenges in 

biological model establishment, parameter optimization and identification is essential. In 

this work, mathematical models were established for different cell lines and bootstrap was 

used to obtain parameter confidence intervals. It also guaranteed that enough data points 

were used for accurate estimation of the parameters (2r + 1 of highly informative data 

points are enough to identify r unknown parameters [102]). 

2.7.2 Cell growth models 

Cell growth refers to the increase in cell number, cell mass or cell volume. Cell 

multiplication requires doubling of the genetic material and biosynthesis of 

macromolecules. This synthesis requires amino acids, energy and other precursors 

obtained through substrates catabolism, which simultaneously releases by-products. The 

rate of amino acid and substrate consumptions are directly linked to the cell growth rate. 

Several empirical mathematical formulations have been used to model cell growth 

concomitant with substrate consumption and by-product release. Modeling cell growth 

based on cell numbers is the simplest and ubiquitous approach due to data availability. It 

has been shown to be applicable to several cell types and growth conditions, such as 

CHO cells [46,103–105]. However, this approach of modeling cell number has some 

limitations because there is a delay between the increase in cell number and cell 

mass/volume. This translates into a clear disadvantage of modeling cell numbers as the 

average cell size changes drastically during exponential cell growth. Accounting for this 

is particularly important when analyzing intracellular phenomena, i.e. when a cell growth 

model is linked to intracellular metabolism. To overcome this issue some approaches 

focus on modeling cell growth through cell mass increase [84,106,107]. However, despite 

its inherent advantage to describe specific cells and their mass over time, validating such 

a model is difficult due to its complexity and lack of experimental data in some instances. 
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Another alternative, over modeling cell number only, is modeling cell volume. 

Experimental cell volume can be obtained using viable cell counters (Vi-Cell analyzers) 

which determines viable cell counts and cell diameters. The cell mean diameter is an 

average determined by taking stationary pictures of the cell broth sample. The total cell 

volume is obtained with the product of the mean cell volume and viable cell concentration. 

Modeling cell volume should allow more accurate predictions of concentrations than when 

considering cell numbers only (constant volume) [108]. Recently Rehberg et al. 

developed and validated a model describing cell volume and intracellular metabolism 

[109].  

2.7.3 Metabolism models 

Glycolysis: Since the pioneering work of Chance et al. [110], glycolysis has been in the 

focus of many mathematical models. The first models were developed for erythrocytes 

where enzyme kinetics were included (e.g.,[111,112]). Later other models were 

developed for mammalian cells (liver, muscle) to study glucose homeostasis and 

glycogenolysis [113]. Chloe et al. developed a model to describe glycolysis of HeLa cells, 

accounting for allosteric regulation by using the Monod-Wyman-Changeux kinetic derived 

from analysis of thousands of in vitro kinetic measurements [114]. Similar models were 

established for other cell lines [115,116]. More recently Rehberg et al. established and 

validated a structured model of glycolysis for MDCK cells, which considers the in vitro 

enzyme activities and performed model validation using pulse feed data [109].  

Citric acid cycle: Since the pioneering model describing TCA and related metabolism in 

rat liver established by Garfinkel [117] that unraveled the citric acid cycle's control 

mechanisms, several model refinements followed  [111,118–120]. Recently Bazil et al. 

established a model with 400 parameters to describe data from mitochondria [120]. 

However, in this instance discrepancies between in vitro and in vivo data pose validation 

challenges. As such Nazaret et al. [121] proposed some implications that enabled a 

successful prediction of steady state observed experimentally, demonstrating simpler 

models can capture key features. Similarly, Wu et al. established a simpler model 

describing mitochondrial metabolism in rat brain cells [120].  
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Central carbon metabolism: Both glycolysis and citric acid cycle are essential for energy 

and biomass precursors. Based on mathematical models established for each pathway 

individually, some approaches try to combine both in a single model. In E. coli, such 

models have been established and validated utilizing knockout mutants [122,123]. 

Similarly in yeast such a model has also been established and validated using data 

generated after glucose pulse feeds [124]. Such a detailed central carbon metabolism 

model exists for CHO cells [103,104,125,126], human-derived cell lines [127] and MDCK 

cells [68]. Overall, central carbon metabolism modeling and validation in animal cell lines 

is still scarce, largely due to a lack of intracellular data.  

2.7.4 Modeling and optimization of bioprocess 

The cell cultivation in bioreactors requires carefully formulated media with carbon source, 

amino acids, vitamins, minerals and occasionally growth factors. Physical process 

conditions such as pH, temperature, dissolved oxygen should also be optimum. While 

growing, cells adjust substrate usage and metabolic by-product release via the reactions 

of its metabolic network (discussed in the previous section). The metabolic network of 

animal cells consists in transmembrane transporters and enzymes that allow generation 

of energy, growth precursors, and the desired products. The rate of energy and product 

of interest formation are determined by the resulting network properties. The enzymes in 

the network are controlled using sophisticated regulation mechanisms. In case of viral 

vaccines production, the virus yield in cell cultures is essential to assure enough viral 

materials are produced. This yield is influenced by a variety of factors including the cell 

substrate used, the cell concentration at time of infection and moi [3]. For process 

optimization, detailed knowledge about the impact process parameters is required. As 

such, careful mathematical model formation for process simulation, optimization and 

design is required to increase cell growth yield of the product of interest.  

In the past, the optimization of biological processes often relied on trial and error using a 

high number of experiments. With the additional use of mathematical methods, however, 

process design and optimization can be significantly accelerated [128,129]. Decision-

making based on models is a more rational approach regarding critical factors and 

responses of the process under investigation. One option is the use of design of 

experiments (DoE) approaches, where experiments are planned in a statistically optimal 



Background and theory 

30 

 

way to reduce the number of cultivations to be performed and to investigate the impact of 

parameters on product yield and product quality [130–132]. A drawback of these 

methods, however, is their inability to handle more complex systems dynamics, for 

example changes in critical cell properties or medium composition with process time, the 

release of inhibitory compounds into the cultivation broth, or the decrease in specific 

precursor concentrations required for product synthesis. Furthermore, conventional DoE 

approaches cannot explicitly consider the intracellular dynamics of animal cells, i.e. 

crucial aspects of the central energy and carbohydrate metabolism.  

Another option for process optimization and design is the well-known constraint-based 

modeling. This approach relies mainly on the estimation of flux distributions of metabolic 

networks using a pseudo-steady state assumption [133–135]. As this approach deals with 

intracellular dynamics, it can support a typical DoE method. Examples are metabolic flux 

analysis (MFA) and flux balance analysis (FBA), which solve a linear system of equations 

to estimate the flux distribution in large-scale network models without taking into account 

any kinetic information [136–139]. For animal cells, various MFA models have been 

derived that rely on pseudo-steady state assumptions [140]. With these types of models, 

the response of a metabolic network can be used to assess possible steps towards 

achieving a significant increase in product yields. The models allow the detailed 

characterization of several biotechnological processes and the unraveling of cell line-

specific properties [140–142].  

Despite their widespread usage and simplicity, these models have limited applicability 

(due to their pseudo-steady state assumption) and usually include no information about 

the reactions kinetics involved [143].  

For more realistic scenarios, dynamic models should be used to allow for the handling of 

complex and high-dimensional experimental data. Typically, this is achieved with the 

simulation of changes (such as metabolite concentration) over the time course using a 

set of ODEs with defined initial conditions and simplified, but biologically valid 

assumptions regarding cell growth, product formation, enzyme kinetics and virus 

production [144,145].  In particular, the formulated mathematical relationships should 

establish a direct link between experimental data and cellular behavior [146–148]. For 

example, such models could enable a detailed analysis of cell growth and in particular 

changes in the central carbon and energy metabolism during virus replication. Based on 

this, the understanding of the complex behavior of animal cells regarding growth and 
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product formation can be increased. A deeper understanding of the direct and indirect 

impact of virus replication on its host cells can also be obtained. In turn, possible 

bottlenecks may also be identified to take measures to increase cell-specific or overall 

virus yields. Linking such models with a more detailed description of protein glycosylation 

taking place in the endoplasmic reticulum and the Golgi apparatus, might even allow to 

uncover correlations of cultivation conditions with critical product quality attributes (i.e. 

antennary composition, sialylation or core fucosylation) [149–151]. Eventually, options for 

increasing cell concentrations and product yields can be evaluated [147], thus supporting 

processes intensification. Furthermore such models can also be combined with omics 

measurements [152] and hybrid approaches that complement what is mechanistically 

known [153] in order to confirm identified hypotheses.  

Despite these benefits, few dynamic models have been established that describe both 

cell growth and intracellular metabolism of animal cells, while in E. Coli and yeast such 

models are validated and frequently used in metabolic redesign (as discussed in the 

previous section) [122,124,154]. Regarding studies to improve the yield of viruses for 

vaccine production, in case of cell culture-based influenza virus production it is well 

established and virus replication has been studied in detail. In addition, quantitative 

mathematical models have been derived that describe dynamics of viral replication at the 

intracellular [155,156] and the cell population level [60]. However, to better understand 

the complex interplay between the virus and its host cell, metabolism during virus 

replication should be considered and studied in more detail.  
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    Chapter 
 

 Models and methods  

3.1 Model definition  

This section describes the development of two separate dynamic models, these models 

were published in [157,158] and parts of the method were used without quotation to 

facilitate reading. The first model was developed to describe batch cultivations of 

AGE1.HN.AAT suspension cells [157]. It consists of a set of 33 ODEs with 132 

parameters which were fitted using 353 data points (one batch experiment). It describes 

cell growth (concentration of viable cells, mean cell diameters, volume of viable cells), 

concentration of alpha-1-antitrypsin and key metabolites in the central carbon metabolism 

concomitantly. The first model was extended into a second model to describe virus 

production in MDCK suspension cells in shaker flasks. The extended model introduced a 

more detailed description of intracellular lactate metabolism, the alpha-1-antitrypsin 

kinetics was disregarded and new kinetics to describe virus titer and virus-induced cell 

death were introduced. The extended model contains 35 ODEs with 143 parameters 

which were fitted using 360 data points (one experiment) [158]. The extended model 

describes the cell growth (concentration of viable cells, mean cell diameters, volume of 

viable cells), key central carbon metabolites and influenza A virus titer concomitantly. 

3.1.1 AGE1.HN.AAT suspension cell model 

This section introduces the dynamic model that describes both cell growth and 

metabolism developed for AGE1.HN.AAT cells by Ramos et al., 2020 [157]. This model 

couples a segregated growth model, which describes cell growth dynamics in batch 
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culture, with a structured model of the central carbon metabolism, which describes 

intracellular metabolite dynamics and connects extracellular product accumulation to the 

intracellular metabolic network. The segregated cell growth model was based on a model 

proposed for MDCK adherent cells [159], which considers different cell size classes. This 

enables the estimation of the mean cell diameter and consequently the cell volume. 

Modeling cell volume was essential for the coupling of the cell growth model with the 

structured model of the intracellular metabolism considering that volumetric maximum 

enzyme activities depend on the cell-specific volume (Eq. 3.1.10, i.e. enzyme 

concentration affected by changes in cell-specific volume). Further aspects regarding this 

modeling approach, including a discussion concerning the number of cell classes required 

in the segregated model, can be found elsewhere [109,159,160]. Five cell classes with 

linear increasing diameter were chosen to describe the experimental data collected for 

AGE1.HN.AAT cells. This was found as the minimum number of cell classes required to 

describe the experimental data and is in accordance with the number previously used for 

MDCK cells [159]. In contrast, however, various modifications of the model developed for 

adherently growing cells were required to describe growth and metabolism of 

AGE1.HN.AAT suspension cells. The most important change concerned the lack of a 

surface area limitation, which is only relevant for growth of contact-inhibited adherent 

cells. In addition, due to the rather long cultivation time, cell death was considered to 

handle the loss of cell viability typically observed after substrate depletion. The cell death 

phase is typically not relevant in industrial settings, however, for this cell line a rapid switch 

from exponential cell growth to cell death occurs (without a noticeable stationary phase). 

As such, modeling this phase allowed detailed analyses of the switch from exponential 

cell growth to cell death and its implication on the cell’ metabolism. For the structured 

central carbon metabolism model, most assumptions regarding the set of reactions were 

made according to previous studies of metabolism of this cell line [37,161,162].  

An overview of the structure of the metabolic network is shown in Fig. 3.1. Following in 

structure and basic assumptions the work for MDCK  adherent cells [109,159,160,163] 

and others [126], reaction kinetics used were either simple or modified versions of first 

order kinetics, i.e. Michaelis-Menten or Hill kinetics. In addition, the model explicitly takes 

into account maximum enzyme activities measured experimentally [161] and the 

degradation of amino acids ( AAexr ) was estimated as proposed for MDCK cells [160]. In 
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extension of the model proposed for MDCK cells [109,160], reactions that link the 

glycolytic pathway to the TCA cycle and vice versa were considered. Furthermore, 

various aspects of the intracellular metabolic network were considered in more detail. For 

instance, the ATP dynamic takes into account all reactions in which it is either directly 

consumed or produced, as well as other sources such as redox cofactors NADH 

(nicotinamide dinucleotide) and FADH2 (flavin-adenine-dinucleotide) [164]. Furthermore, 

in contrast to the previous models, consumption rates of all extracellular substrates 

(glucose, glutamine, glutamate, lactate) were used as inputs for the intracellular metabolic 

network. The accumulations of extracellular by-products (lactate, ammonium and 

glutamate) were estimated directly from intracellular metabolic rates. Another aspect of 

metabolism considered is the transamination of oxaloacetate (OAA) to ketoglutarate. The 

latter was added since previous studies of AGE1.HN.AAT cells suggested that this 

pathway strongly influences ammonium release and OAA synthesis [162]. Finally, due to 

lack of data regarding the distribution of intracellular metabolites in the cytoplasm and the 

mitochondria, it is assumed that all intracellular metabolites are homogeneously 

distributed.  
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Figure 3.1.: Simplified model of the central carbon metabolism of AGE.HN.AAT suspension 

cells. In green: metabolites and product measured by Rath et al. [161]; in grey: metabolites not 

measured. Ellipsoids: enzymes considered in the model. Arrows: reactions or transport, with the 

arrowhead indicating the reaction or transport direction (for simplification, reversible reactions 

have an arrow for both directions). Grey rectangles: sinks or metabolites not accounted for in the 

model. Red triangles: all the reactions included in the energy balance. Abbreviations of 
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metabolites and product: 3PG: 3-Phosphoglycerat, AAT: Alpha1-antitrypsin, AcCoA: Acetyl 

coenzyme A, ATP: Adenosine tri-phosphate, cAc: cis-Aconitate, Cit: Citrate, F16P: Fructose 1,6-

biphosphate, F6P: Fructose-6-phosphate, Fum: Fumarate, G6P: Glucose-6-phosphate, Glc: 

Glucose (intracellular), Glcx : Glucose (extracellular), Gln: Glutamine (intracellular), Glnx : 

Glutamine (extracellular), Glu: Glutamate (intracellular), Glux : Glutamate (extracellular), IsoCit: 

Iso-citrate, Keto: alpha-Ketoglutarate, Lacx : Lactate (extracellular), Mal: Malate, NH4: Ammonium 

(intracellular), NH4x : Ammonium (extracellular), OAA: Oxaloacetate, PEP: Phosphoenolpyruvate, 

Pyr: Pyruvate (intracellular), Pyrx : Pyruvate (extracellular), R5P: Ribose-5-phosphate, SUC: 

Succinate, UDPGlc: Uridine diphosphate Glucose. Abbreviations of enzymes and transport rates: 

HK: Hexokinase, G6PDH: Glucose-6-phosphate dehydrogenase, rdATP: Reaction rate for ribose-

5-phosphate consumption, UT: Uridyl transferase, GLYS: Glycogen synthetase, ruGLC: Reaction 

rate for other uridine diphosphate glucose consumption, GPI: Glucose-6-phosphate isomerase, 

TATKF6P: Transaldolase and transketolase, TATK3PG: Transaldolase and transketolase, PFK: 

Phosphofructokinase, ALD: Aldolase, rqAAT: Reaction rate for product formation, ENO: Enolase, 

rCCM: Reaction rate for overall ATP production, rdATP: Reaction rate for overall ATP consumption, 

PK : Pyruvate kinase, PEPCK: Phosphoenolpyruvate-kinase, LDH: Lactate dehydrogenase, PC: 

Pyruvate carboxylase, PDH: Pyruvate dehydrogenase, AlaTA: Alanine transaminase, ME: Malic 

enzyme, CS : Citrate synthetase, CL: Citrate lyase, ACO: Aconitase, ICDH: Isocitrate 

dehydrogenase, KDH: Ketoglutarate dehydrogenase, AspTA: Aspartate transaminase, SDH: 

Succinate dehydrogenase, FMA: Fumarase, MDH: Malate dehydrogenase, GLDH: Glutamate 

dehydrogenase, GS: Glutamine synthetase, GLNase: Glutaminase, rAAex: Amino acids 

degradation, rGLUT: Reaction rate for extracellular glucose consumption, 
Pyrxtrans
r : Reaction rate for 

extracellular pyruvate consumption, 
NH4xtrans
r : Reaction rate for ammonium production from 

intracellular rates, 
Gln xtrans
r : Reaction rate for extracellular glutamine consumption, 

Glu xtrans
r : Reaction 

rate for extracellular glutamate consumption and/or production from intracellular rates. Figure 

taken from Ramos et al., 2020 [157]. 

In this modeling approach, the segregated cell growth model describes the macroscopic 

scale (dynamics of cells, product formation and extracellular metabolites) while the 

structured model describes the intracellular metabolism including glycolysis, TCA, 

transamination, and energy metabolism on the microscopic scale. Accordingly, the 

macroscopic scale needs to be linked with the intracellular scale and vice versa (Eq. 

3.2.1) using macror  (mmol min-1 L-1 for the volume referring to the bioreactor) and the 

corresponding intracellular rates  (mmol min-1 L-1 for the volume referring to the cells).  ir
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In the following section, the ODEs for the segregated cell growth model and the structured 

model for the central carbon metabolism of AGE1.HN.AAT cells are introduced.  

Segregated cell growth model 

The segregated cell growth model describes the dynamics of viable cells, substrates, 

product formation, and metabolic by-products on the macroscopic scale. It is assumed 

that cells transition from a first class ( 1X , cells with the smallest diameter) to the last class 

( 5X , cells with the largest diameter) before dividing into two daughter cells (Eqs. 3.1.1–

3.1.3).  

1
5 1 1(2X ) ,trans d

dX
r X f k X

dt
= − −                                                                                     (3.1.1) 

2
1 2 2( ) ,trans d

dX
r X f X k X

dt
= − −                                                                                     (3.1.2) 

1( ) , for i 3,..., N .ci
trans i i d i

dX
r X X k X

dt
−= − − =                                                               (3.1.3) 

As in Rehberg et al. [159], five cell classes were considered to describe changes in the 

mean cell diameter during the time course of cultivation. In these five cell classes 

( 5cN = ), the transition rate ( ransr , Eq. 3.1.4) controls the rate of cell division, the inhibition 

factor ( f ,  Eq. 3.1.6) limits the amount of cells that undergo cell division, and a cell death 

rate ( dk ,  Eq. 3.1.7) accounts for cell death which occurs during the cultivation and 

specifically after substrate depletion.   

The specific transition rate ( ransr , Eq. 3.1.4) is estimated based on a Michaelis-Menten 

kinetic ( ) using the extracellular glucose concentration xGlc  multiplied with a constant 

( ).  



Models and methods 

38 

 

max

1/

[ ]

[ ]

1

2 1

x

c

trans

x

m x

Glc

N

r

Glc

k Glc
with



 

= 


=

+


 =
 −

                                                                                    (3.1.4) 

This constant ( ) depends on the number of different cell classes considered in the 

model (for a mathematical explanation  [159]). The parameters max , xGlc  and x

m

Glc
k are the 

maximum cell-specific growth rate, the extracellular glucose concentration, and the 

Michaelis-Menten constant, respectively. 

The viable cell concentration ( vX ) is given by the sum of cells in each class. 

 
1

cN

v i

i

X X
=

=                                                                                                                (3.1.5) 

The inhibition factor ( f ) accounts for a growth inhibition of viable cells by a cell-specific 

concentration of extracellular glucose concentration ( xGlc ). 

1

x

v

Glc

X
f e

−

= −                                                                                                          (3.1.6) 

Note that this inhibition factor corresponds to the fraction of cells that start the division 

process (transition from the first cell class to the last cell class). Therefore, it has a 

maximum value of 1 (corresponding to 100% of the first cell class starting the division 

process) and a minimum of 0 (when 0% of the cells of the first cell class start the division 

process). To adjust the changes on the inhibition factor in all cultivations a scaling 

constant ( ) is used. Note that the fraction of non-dividing cells from the first cell class 

was not considered in the growth-related glucose consumption (Eq. 3.1.13), but only in 

the maintenance related glucose consumption (Eq. 3.1.14). 

In order to account for the loss of cell viability, especially after substrate depletion, the 

cell-specific death rate ( dk ) considers a basal cell death rate (
min

dk ) during the exponential 
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cell growth phase (caused by cell damage, age, etc.) plus an additional term which 

approaches 
max

dk . The increase of 
max

dk  is inversely correlated with the effective cell growth 

rate ( f ) and this correlation has been previously reported in the literature [165,166].  

2

min max

d d dk k k
f



 

 
= +  

+ 
                                                                                          (3.1.7) 

The parameter   is a constant manually adjusted to fit the overall increase in dk  with 

cultivation time. This implies that the cell death is not explicitly assumed to depend on the 

accumulation of by-products such as ammonium or lactate as described in various other 

cell growth models. Implicitly, however, inhibition is accounted for as by-products 

accumulate while substrates such as glucose, glutamine and pyruvate are consumed and 

the substrate level (i.e. glucose concentration) directly influences the effective growth 

rate. If required, the corresponding term for by-product accumulation could be easily 

added to the dk  kinetic. 

Considering the total number of cells of each class ( iX ), the mean cell diameter ( d ) is 

determined by Eq. 3.1.8. 

( )
1

1
1

cN
c m i

m c
i v

d d X
d d i

N X=

− 
= + − 

− 
                                                                                   (3.1.8) 

With equidistant cell diameters ranging from a minimum value ( md ), where cell division is 

initiated (if not inhibited), to a critical value ( cd ) where it divides into two daughter cells. 

(I.e., the first cell class ( 1X ) has the lowest diameter ( md ) and the last cell class ( 5X ) has 

the largest diameter ( cd ). The estimated mean cell diameter in the model is fitted to the 

mean cell diameter calculated from the experimental data collected by Rath et al. 

[39,161]. Note that both cd  and md  were manually adjusted for each experiment to 

minimize the difference between the experimental and simulated viable cell volume. 
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Based on the mean diameter ( cd ) it is possible to calculate the viable cell volume ( cV , 

µL) and the cell-specific cell volume (
c

sV , L/cell) using Eqs. 3.1.9 and 3.1.10, respectively. 

3

910
6

c

v

d
V X −=                                                                                                         (3.1.9) 

610
c

c

s

v

V
V

X

−=                                                                                                             (3.1.10) 

c

s v
macro i

w

V X
r r

V
=                                                                                                         (3.1.11) 

With cell-specific cell volume (
c

sV , L/cell, Eq. 3.1.10), the viable cell concentration ( cV , 

cells per mL, Eq. 3.1.5) and the conversion factor to the reference working volume of 1 

mL ( wV , 10-3) to convert viable cell volume per mL to viable cell volume per L.  

The cell-specific enzyme activities were expressed per cell ( ev , mmol/cell/min), and 

because the average cell volume changes during cultivation, the maximum volumetric 

enzyme activities change as well (Eq. 3.1.12). 

                                                                                                      (3.1.12) 

Where 
max

eK  denotes the maximum volumetric enzyme activity of an enzyme e  

(mmol/L/min) and is dependent on its related cell-specific enzyme activity ( ev , 

mmol/cell/min), cell enzyme level ( levelE , constant) and the cell-specific volume (
c

sV , L/cell). 

The enzyme level ( levelE ) is a term that was previously proposed for MDCK cells [109] and 

corresponds to the experiment-specific relative enzyme level of the cell population, which 

indicates that total enzyme content varies between experiments. 

max e level
e s

c

v E
K

V
=
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Cells consume substrates and release metabolic by-products over the time course of 

cultivation, i.e. glucose, glutamine, and glutamate as well as lactate and ammonium. 

Regarding glucose consumption, growth (
/ xx Glc
r ) and maintenance (

/ xm Glc
r ) rates are 

considered as described in [159]. 

1/Glc /
2

c

x x

N

ix x Glc
i

r X f X Y
=

 
= + 

 
                                                                                     (3.1.13) 

Where the cell growth-specific yield is 
/ xx Glc

Y . And for maintenance 

/ x x

c x

m Glc Glc
r m V Glc =                                                                                              (3.1.14) 

Where xGlc
m  is a constant and   is a step function, which is one for 0xGlc   and zero 

otherwise. This yields the following ODE that describes the dynamics of extracellular 

glucose uptake. 

/ /

[ ]
x x

x

X Glc m Glc

d Glc
r r

dt
= − −                                                                                           (3.1.15) 

In contrast to glucose, for other extracellular metabolites such as glutamine and pyruvate, 

a simpler approach to describe their consumption was used since cell growth was 

assumed to be independent of their presence in the medium. For this reason, the 

dynamics of the remaining extracellular substrates and the metabolic by-products were 

described by Michaelis-Menten-like kinetics. This application is similar to the approach 

previously used for this cell line [161] and other authors [116,167–170]. Furthermore, it is 

assumed that the intracellular concentration of certain amino acids, such as glutamate 

and glutamine, has an impact on their consumption rate as their intracellular 

concentration has been shown to impact transporter capacity [171]. Note that, ammonium 

accumulation was simulated accounting for the spontaneous degradation of extracellular 

glutamine, as reported in [172], and all other intracellular reactions where it is either 

consumed or produced. These reactions include two enzyme-catalyzed reactions 

(glutaminase, glutamine synthetase) and amino acid catabolism ( AAexr ), which were 
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lumped in one reaction (
NH4xtrans
r ). Since the intracellular ammonium concentration could not 

be quantified, it is assumed that ammonium does not accumulate intracellularly. Finally, 

product formation is assumed to be growth-related and a mass action kinetic was used. 

Refer to the supplement for each kinetic (Eqs. in Appendix A). 

[ ]
x x
trans

x

Gln dGln

d Gln
r r

dt
= − −                                                                                           (3.1.16) 

[ ]
trans

cx

s v
Glu

w

V Xd Glu
r

dt V
= −                                                                                             (3.1.17) 

NH4

[NH4 ]
x x

trans

x

dGln

d
r r

dt
= +                                                                                           (3.1.18) 

[ ]
x
trans

cx

s v
LDH Lac

w

V Xd Lac
r r

dt V
= −                                                                                     (3.1.19) 

[ ]
x
Trans

x

Pyr

d Pyr
r

dt
= −                                                                                                    (3.1.20) 

[ ]
qAAT

d AAT
r

dt
=                                                                                                         (3.1.21) 

Structured model of the central carbon metabolism 

The structured model for central carbon metabolism includes reactions from glycolysis, 

citric acid cycle, glutaminolysis, transamination, and the pentose phosphate pathway. To 

cover changes in extra– and intracellular metabolites concentrations this model requires 

several growth-related variables such as mean cell volume and glucose uptake rate, so 

it was linked to the segregated cell growth model.  

Glycolysis 

The following set of equations (Eqs. 3.1.22–3.1.30) was used to describe the dynamics 

of intracellular metabolites involved in the glycolytic pathway. In each ODE, changes in 

the intracellular metabolite concentrations were obtained considering consumption or 

production in different reactions or transport. Refer to the Appendix A for individual 
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reactions kinetics. Note that the term [ ]f C  expresses the dilution of each intracellular 

metabolite (C ) by changes in the cell volume caused by the effective growth rate ( f ).  

GLUT

[ ]
[ ]HK

d Glc
r r f Glc

dt
= − −                                                                                   (3.1.22) 

6

[ 6 ]
[G 6P]HK GPI G PDH UT

d G P
r r r r f

dt
= − − − −                                                             (3.1.23) 

6

[F6 ]
[F6P]GPI PFK TATKF P

d P
r r r f

dt
= − + −                                                                    (3.1.24) 

6 6 3 5

[ 5 ]
[R 5P]G PDH TATKF P TATK PG dR P

d R P
r r r r f

dt
= − − − −                                                 (3.1.25) 

[ ]
[UDPGlc]UT cUGlC GLYS

d UDPGlc
r r r f

dt
= − − −                                                           (3.1.26) 

[ 16 ]
[F16P]PFK ALD

d F P
r r f

dt
= − −                                                                              (3.1.27) 

3

[3PG]
2 [3 ]ALD ENO TATK PG

d
r r r f PG

dt
= − + −                                                                (3.1.28) 

[ ]
[PEP]ENO PK PEPCK

d PEP
r r r f

dt
= − − −                                                                       (3.1.29) 

( ) ( )
[ ]

[Pyr]x x
Trans trans

w w
PK LDH PDH ME PC AlaTAPyr c Lac c

s v s v

V Vd Pyr
r r r r r r r r f

dt V X V X
= − − + − + + − −   (3.1.30) 

 

Citric acid cycle, glutaminolysis and transamination 

Glycolysis was linked to the TCA cycle through different enzymes like pyruvate 

dehydrogenase (PDH), phosphoenolpyruvate carboxylase (PEPCK), pyruvate 

carboxylase (PC), and malic enzyme (ME). The following set of equations (Eqs. 3.1.31–

3.1.41) introduces the ODEs used to describe the dynamics of the different metabolites 
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of this pathway. The dilution of each intracellular metabolite due to changes in the cell 

volume caused by cell growth was considered by using the term [ ]f C . For individual 

enzyme kinetics, refer to Appendix A. 

[ ]
[ ]PDH CS

d AcCoA
r r f AcCoA

dt
= − −                                                                          (3.1.31) 

[ ]
[ ]CS ACO CL

d Cit
r r r f Cit

dt
= − − −                                                                               (3.1.32) 

2

[ ]
[ ]ACO ACO

d cAc
r r f cAc

dt
= − −                                                                                 (3.1.33) 

2

[ ]
[ ]ACO ICDH

d Isocit
r r f Isocit

dt
= − −                                                                          (3.1.34) 

( )
[ ]

[ ]x
trans

w
Glnase GSGln c

s v

Vd Gln
r r r f Gln

dt V X
= − + −                                                           (3.1.35) 

[ ]
[Glu]

transGLU Glnase AAex GS GLDH AspTA

d Glu
r r r r r r f

dt
= + + − − + −                                        (3.1.36) 

[Keto]
[Keto]ICDH KDH GLDH AspTA

d
r r r r f

dt
= − + − −                                                         (3.1.37) 

[Suc]
[Suc]KDH SDH

d
r r f

dt
= − −                                                                                   (3.1.38) 

[Fum]
[Fum]SDH FMA

d
r r f

dt
= − −                                                                                 (3.1.39) 

[Mal]
[Mal]FMA MDH ME

d
r r r f

dt
= − − −                                                                          (3.1.40) 

[OAA]
[OAA]MDH AspTA CL PC PEPCK CS

d
r r r r r r f

dt
= + + + − − −                                           (3.1.41) 
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Energy metabolism  

 ATP is either generated directly in some reactions or produced from several precursors 

such as NADH and FADH2 through oxidative phosphorylation. On the other hand, ATP is 

consumed for cell growth, maintenance metabolism, various other reactions of glycolysis 

and the TCA cycle, and in several futile cycles. Here, ATP production and its usage were 

lumped in the rates ( CCMr ) and ( dATPr ), respectively. Furthermore, it was assumed that 

energy precursors do not accumulate, rather they are used directly in the oxidative 

phosphorylation (electron transport) pathway, and that 2.5 ATP are produced from NADH 

and 1.5 ATP from FADH2 as reported in [164,173]. For simplification and lack of 

experimental data for many cofactors, their regulation or their homeostasis-driven 

regulation are not considered which evidently could place limitations on the model 

predictions. The following ODE (Eq. 3.1.42) was used. The dilution of ATP due to changes 

in the cell volume, caused by cell growth, was considered by using the term [ ]f C . Kinetic 

equations for each reaction/transport are provided in Appendix A. 

[ATP]
[ATP]CCM dATP

d
r r f

dt
= − −                                                                               (3.1.42) 

 

3.1.2 MDCK suspension cell model 

This section introduces the dynamic model that describes both cell growth, virus 

production and metabolism developed for MDCK suspension cells by Ramos et al., 2022 

[158]. The model established for this study follows, in structure and basic assumptions, a 

model established previously for a human derived cell line AGE1.HN.AAT suspension 

cells [157]. This model describes cell growth, virus production and metabolism by 

coupling model variables from a segregated growth model (for the macroscopic scale) 

with a structured model of the central carbon metabolism (for the microscopic scale). 

Compared to the previous approach [157], various modifications were made to cover the 

virus infection phase. This includes a description of virus production (the concentration of 

all virus particles in the supernatant) as well as changes in cell growth and the death of 

infected cells that are not related to the substrate availability. Further modifications, 
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described in more detail below, refer to the introduction of new states in the structured 

part of the model dealing with the central metabolism. This includes new state variables 

for the intracellular concentration of lactate and ammonium, a rate to describe the 

consumption of pyruvate, the transport of ammonium and lactate, and some 

reactions/transport kinetics modified to fit the experimental data sets obtained for shake 

flask cultivations (compared to stirred tank bioreactors described before [55]). Finally, 

equations related to alpha-1-antitrypsin production were removed. An overview of this 

model is shown in Fig. 3.2. 

Following the previous model, the macroscopic scale are linked with the intracellular scale 

and vice versa (Eq. 3.2.1) using macror  (mmol min-1 L-1 for the volume referring to the 

bioreactor) and the corresponding intracellular rates ir  (mmol min-1 L-1 for the volume 

referring to the cells). The cell-specific enzyme activities were expressed per cell ( ev , 

mmol/cell/min), and because the average cell volume changes during cultivation, the 

maximum volumetric enzyme activities change as well (introduced previously in Eq. 

3.1.12). 

In the following section, the ODEs for the segregated cell growth model, virus titer and 

the structured model for the central carbon metabolism of MDCK suspension cells are 

introduced.  

 



Models and methods 

47 

 

 

Figure 3.2.: Simplified model of the central carbon of MDCK suspension cells, modified 

from [157] (changes to the previous model in orange). In green: metabolites and product 

measured experimentally; in grey: metabolites not measured. Ellipsoids: enzymes considered in 

the model. Arrows: reactions or transport, with the arrowhead indicating the reaction or transport 

direction (for simplification, reversible reactions have an arrow for both directions). Grey 

rectangles: sinks or metabolites not accounted for in the model. Red triangles: all the reactions 
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included in the energy balance. Abbreviations of metabolites and product: 3PG: 3-

phosphoglycerate, AcCoA: acetyl coenzyme A, ATP: adenosine tri-phosphate, cAc: cis-Aconitate, 

Cit: citrate, F16P: fructose 1,6-biphosphate, F6P: fructose-6-phosphate, Fum: fumarate, G6P: 

glucose-6-phosphate, Glc: glucose (intracellular), Glcx: glucose (extracellular), Gln: glutamine 

(intracellular), Glnx: glutamine (extracellular), Glu: glutamate (intracellular), Glux: glutamate 

(extracellular), IsoCit: iso-citrate, Keto: alpha-ketoglutarate, Lacx: lactate (extracellular), Mal: 

malate, NH4: ammonium (intracellular), NH4x: ammonium (extracellular), OAA: oxaloacetate, 

PEP: phosphoenolpyruvate, Pyr: pyruvate (intracellular), Pyrx: pyruvate (extracellular), R5P: 

ribose-5-phosphate, SUC: succinate, UDPGlc: uridine diphosphate Glucose. Abbreviations of 

enzymes and transport rates: HK: Hexokinase, G6PDH: Glucose-6-phosphate dehydrogenase, 

rdATP: Reaction rate for ribose-5-phosphate consumption, UT: Uridyl transferase, GLYS: Glycogen 

synthetase, ruGLC: Reaction rate for other uridine diphosphate glucose consumption, GPI: 

Glucose-6-phosphate isomerase, TATKF6P: Transaldolase and transketolase, TATK3PG: 

Transaldolase and transketolase, PFK: Phosphofructokinase, ALD: Aldolase, rqAAT: Reaction rate 

for product formation, ENO: Enolase, rCCM: Reaction rate for overall ATP production, rdATP: 

Reaction rate for overall ATP consumption, PK : Pyruvate kinase, PEPCK: Phosphoenolpyruvate-

kinase, LDH: Lactate dehydrogenase, PC: Pyruvate carboxylase, PDH: Pyruvate dehydrogenase, 

AlaTA: Alanine transaminase, ME: Malic enzyme, CS : Citrate synthetase, CL: Citrate lyase, ACO: 

Aconitase, ICDH: Isocitrate dehydrogenase, KDH: Ketoglutarate dehydrogenase, AspTA: 

Aspartate transaminase, SDH: Succinate dehydrogenase, FMA: Fumarase, MDH: Malate 

dehydrogenase, GLDH: Glutamate dehydrogenase, GS: Glutamine synthetase, GLNase: 

Glutaminase, rAAex: Amino acids degradation, rGLUT: Reaction rate for extracellular glucose 

consumption, 
Pyrxtrans
r : Reaction rate for extracellular pyruvate consumption, 

NH4xtrans
r : Reaction rate 

for ammonium production from intracellular rates, 
Gln xtrans
r : Reaction rate for extracellular glutamine 

consumption, 
Glu xtrans
r : Reaction rate for extracellular glutamate consumption and/or production 

from intracellular rates. Figure taken from Ramos et al., 2022 [158]. 

 

 

 

Segregated cell growth and infection model 
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The segregated cell growth and infection model describes the dynamics of cells, 

substrates, metabolic by-products, and virus particles on the macroscopic scale. 

The specific transition rate (
transr , Eq. 3.1.43), between the cell classes is described by 

a Monod equation ( ) using the extracellular glucose concentration ( xGlc ) multiplied with 

a constant ( ) that depends on the number of cell classes considered in the model (for a 

mathematical explanation, see [159]). The transition rate is not equal for infected and 

mock-infected cells; to use the same model variable for both, two step-functions are used. 

The first step function ( ) is 0 for mock-infected cells and 1 for infected cells. 

( )1

max

1/

1

[ ]

[ ]

1

2 1

x

c

trans

x

m x

Glc

N

r

Glc

k Glc
with

=  −


=

+


 =
 −

 

 
                                                                                                (3.1.43) 

The parameter max  is the maximum cell-specific growth rate and x

m

Glc
k  is the Monod 

constant. A time-dependent sigmoidal step function ( 1 and 2 ) was used to take into 

account the decrease in µ and the increase in the death rate ( dk , Eq. 3.1.46), respectively, 

after virus infection. This function was previously used to describe the transition of viable 

cells to apoptosis for IAV infected cells [156], and the smoothness of the transition 

depends on a constant (
1 , manually adjusted). 

( )1
1 hpi

1

1 e
−

 =
+

                                                                                                                     (3.1.44) 

The viable cell growth inhibition factor f (Eq. 2.1.45) corresponds to a limitation in the 

number of cells that start cell division and is related to extracellular glucose concentration 

( xGlc ). It has a maximum value of 1 (corresponding to 100% of the first cell class can start 

the division process) and a minimum of 0 (0% of the cells of the first cell class can start 

the division process). A scaling constant ( ) was used to adjust the changes in the 

inhibition factor. Here, due to the arrest observed in total cell number after infection it was 



Models and methods 

50 

 

assumed that infected cells do not divide anymore by using the step function (  ) 

introduced above. 

( )1 1

x

v

Glc

X
f e

− 
 = − −
 
 



                                                                                               (3.1.45) 

Overall, the inhibition factor f (Eq. 3.1.45) is effectively zero after virus infection and the 

growth rate decreases with a smooth step such as function (
1 ) leading also to a smooth 

decrease in the transition rate (
transr , Eq. 3.1.43). This implies that even after a 

synchronous infection, some cells of the classes (
2 4X X− , Eqs. 3.1.47–3.1.49) finish the 

division process leading to a small but noticeable increase in the cell concentration shortly 

after the infection step. More importantly, however, this also has an impact on the 

dynamics of the mean cell diameters and consequently the cell-specific volume and 

maximum enzyme activities.  

During the cell growth phase, cell death after substrate depletion is described by the rate 

dk   (Eq. 3.1.46) as introduced before by Ramos et al. [157]. It considers a basal cell death 

rate ( min

dk ) related to cell age, mechanical damage, etc. and an additional term ( max

dk ), 

which is inversely correlated with the effective cell growth rate. The parameter  is an 

adjustable constant for which effective growth rate and death rate are equal. 

( ) ( )
2

min max min max

inf inf 21d d d d dk k k k k
f

  
 = + − + +   +  


 

 
                                             (3.1.46) 

Mechanisms of cell death are obviously not the same for infected and mock-infected cells. 

In particular, infected cells mainly die due to virus-induced apoptosis. Accordingly, death 

rate (
dk ) in these two scenarios also makes use of the step function ( ) introduced 

previously, and a smooth step-like function (
2 ). The latter is similar to the previously 

introduced step function (
1 , Eq. 3.1.44), where the constant parameter 

1  was replaced 

with a different value (
2 , manually adjusted). More specifically, for infected cells, it is 

assumed that a basal cell death rate ( min

infdk ) applies and, in addition, a term ( max

infdk ) is added, 
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which is a time-related increase in the cell death rate caused by using the time step 

function (
2 ). The time-related increase in the cell death rate is closely related to the 

transition to an apoptotic state typically observed for infected cells, as described by 

Rüdiger et al. [156]. 

The segregated cell growth model approach allows the consideration of several classes 

of cells. Similar to previous approaches [157,159], five classes ( 5cN = ) were used to 

describe changes in the mean cell diameter of MDCK cells. Analyses and discussions 

regarding the choice of five cell classes can be found in appendix C and further 

discussions elsewhere in [109,157,159,160].  

Because a segregated cell growth model enables the estimation of the mean cell 

diameter, it also allows the estimation of the total viable cell volume. Estimating the cell 

volume was critical for determining the cell-specific volume, which impacts the maximum 

volumetric enzyme activities (discussed in the previous section, Eq. 3.1.12). The model 

describes the cell transition between each cell class using a transition rate    ( transr , Eq. 

3.1.43), starting with the class ( 1
X ) which contains the smallest cells and ending with the 

class ( 5
X ) containing the largest cells. The latter divide and produce two cells of the first 

class (Eqs. 3.1.47–3.1.49).  

                                                                           (3.1.47) 

                                                                           (3.1.48) 

                                                      (3.1.49) 

Given the different cell classes introduced, the viable cell concentration ( v
X ) was 

calculated as the sum of cells in each class (Eq. 3.1.50). 

1
5 1 1(2X ) ,trans d

dX
r X f k X

dt
= − −

2
1 2 2( ) ,trans d

dX
r X f X k X

dt
= − −

1( ) , for i 3,..., N .ci
trans i i d i

dX
r X X k X

dt
−= − − =
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                                                                                                            (3.1.50) 

The mean cell diameter ( d ) was estimated using Eq. 3.1.51, in which the number of cells 

of each class ( 1
X ) and their respective diameters are considered. Here, the diameter of 

cells in each class are equidistant ranging from a minimum value ( md , for the smallest 

cells found in the first class 1
X ) to a critical diameter value ( cd , for the largest cells found 

in class cN
X ). Note that both cd  and md  were manually adjusted for each experiment. 

                                                                                 (3.1.51) 

Using the mean diameter ( d ), the viable cell volume ( cV , µL) and the cell-specific volume 

(
c

sV , L/cell) were calculated using Eqs. 3.1.52 and 3.1.53, respectively. 

                                                                                                      (3.1.52) 

                                                                                                            (3.1.53) 

Substrates and dynamics of released metabolic by-products are also part of the 

macroscopic model. These include extracellular glucose, glutamine, glutamate, lactate 

and ammonium. The glucose dynamics was described using cell growth-related and 

maintenance terms. The remaining extracellular metabolites were described using a 

Michaelis-Menten-like kinetics or more complex equations in accordance with previous 

studies describing their transport through the cell membrane [116,157,161,167–170]. In 

particular, these metabolites were produced and/or consumed independently from the cell 

growth rate and cell growth occurs even after depletion in some cases. The spontaneous 

degradation of extracellular glutamine to ammonium was also taken into account, as 

reported in [172]. Eqs. 3.1.54–3.1.59 introduce the ODEs associated with the extracellular 
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metabolites and the transport kinetics in these ODEs, chosen based on previous literature 

[109,157,159,160,174]. Kinetic equations for each reaction/transport are provided in 

Appendix B. 

                                                                                          (3.1.54) 

                                                                                      (3.1.55) 

                                                                                            (3.1.56) 

                                                                                 (3.1.57) 
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                                                                                        (3.1.58) 

                                                                                                    (3.1.59) 

A state variable was required to describe the virus dynamics. As the maximum number 

of virions produced per cell, the CSVY ( 11989pv = ), corresponds to only 0.55% of the mean 

cell volume, no attempts were made to describe the virus particle increase by substrate- 

or precursor-based kinetics. Instead, the concentration of all virions (
tV ) released from 

infected cells was considered using Eq. 3.1.60), where 
pv is the virus production rate and 

3  is a smooth step function to account for the time delay between virus infection and 

virus release (eclipse phase). This step function is similar to the previously introduced 

step function ( 1 , Eq. 3.1.44), where the constant parameter 
1  was replaced with a 

different value (
3 , manually adjusted). 
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 
3

t

v p

d V
X v

dt
=                                                                                                           (3.1.60) 

 

Structured Model of the Central Carbon Metabolism 

The structured model for central carbon metabolism describes the microscopic scale, and 

comprises reactions from glycolysis, citric acid cycle, glutaminolysis, transamination, and 

the pentose phosphate pathway. The model was coupled with the structured cell growth 

model using growth-related variables such as the cell-specific volume, and uptake or 

release rates of the extracellular substrates and metabolic by-products, respectively. This 

coupling was accomplished by converting the model variables between the different 

scales using (Eq. 3.2.1, discussed in the section below). This implied using substrate 

consumption rates as input and metabolic by-products accumulation rates as the outputs 

of the intracellular metabolic network, effectively allowing the description of dynamics of 

metabolites both at the extra- and the intracellular level. In this model extension, to 

describe the dynamics of metabolic product accumulation on the extracellular level 

intracellular concentrations of lactate and ammonium were considered (Eqs. 3.1.70 and 

3.1.77). In addition, kinetics related to PEP, 3-phosphoglycerate, xLac , xGlu , 4xNH , Cit 

and Keto, were updated from the model described in the previous section by Ramos et 

al. [157]. There may be some differences in central carbon metabolism of MDCK 

suspension cells compared to AGE1.HN.AAT suspension cells or that metabolism of 

suspension cells. These differences may, however, be due to cultivations performed in 

shaker flasks (MDCK cells) and stirred tank reactors (AGE1.HN.AAT cells). Specifically, 

the main changes concern few enzymes or transporter kinetics such as enolase (ENO), 

aldolase (ALD), pyruvate kinase (PK), PC, glutaminase (Glnase), ammonium transporter 

( 4xtransNH ), citrate lyase (CL) and aspartate transaminase (AspTA) according to the 

literature [174]. The equations of ODEs for the structured intracellular metabolism states 

are provided below and individual enzyme/transporter kinetics are provided in Appendix 

B. 

Glycolysis 
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Glycolysis and pentose phosphate pathways were described using the ODEs in Eqs. 

3.1.61–3.1.70 in accordance with the structure and basic assumptions for modeling 

MDCK cells [109] and other animal cell lines [157]. For each intracellular metabolite (C

), the consumption or production by individual enzymes was considered. The enzyme and 

transport kinetics in these ODEs, chosen based on previous literature 

[109,157,159,160,174]. Additionally, the transport of glucose ( GLUTr ), pyruvate) ( x
transPyr

r ) 

and lactate (
transLacr ) were considered, linking the extra- and intracellular forms of these 

metabolites. The dilution of each intracellular metabolite due to changes in the cell volume 

caused by cell growth was considered by using the term  f C . Kinetic equations for 

each reaction/transport are provided in Appendix B. 

                                                                                   (3.1.61) 

                                                             (3.1.62) 

                                                                   (3.1.63) 

                                                (3.1.64) 

                                                          (3.1.65) 

                                                                            (3.1.66) 

                                                                (3.1.67) 
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                                                                      (3.1.68) 

                         (3.1.69) 

                                                                          (3.1.70) 

 

Citric acid cycle, glutaminolysis and transamination 

Following the structure and basic assumptions from previous work [157], Eqs. 3.1.71–

3.1.82 were used to describe citric acid cycle (TCA), glutaminolysis and transamination. 

For each ODE, the individual enzyme and transport kinetics, chosen based on previous 

literature [109,157,159,160,174]. Additionally, the transport of glutamine (
Gln xtrans
r ), 

glutamate (
transGLUr ) and ammonium (

NH4xtrans
r ) were considered, linking the extra- and 

intracellular forms of these metabolites. The dilution of each intracellular metabolite due 

to changes in the cell volume caused by cell growth was considered by using the term 

 f C . Kinetic equations for each reaction/transport are provided in Appendix B. 

                                                                         (3.1.71) 

                                                                              (3.1.72) 

                                                                                 (3.1.73) 

                                                                          (3.1.74) 

[ ]
[PEP]ENO PK PEPCK

d PEP
r r r f

dt
= − − −

( )
[ ]

[Pyr]x
Trans

w
PK LDH PDH ME PC AlaTAPyr c

s v

Vd Pyr
r r r r r r r f

dt V X
= − − + − + − −

 
 

transLDH Lac

Lac
r r f Lac

dt
= − −

[ ]
[ ]PDH CS

d AcCoA
r r f AcCoA

dt
= − −

[ ]
[ ]CS ACO CL

d Cit
r r r f Cit

dt
= − − −

2

[ ]
[ ]ACO ACO

d cAc
r r f cAc

dt
= − −

2

[ ]
[ ]ACO ICDH

d Isocit
r r f Isocit

dt
= − −



Models and methods 

57 

 

                                                          (3.1.75) 

                                        (3.1.76) 

                         (3.1.77) 

                                                         (3.1.78) 

                                                                                  (3.1.79) 

                                                                                (3.1.80) 

                                                                         (3.1.81) 

                                           (3.1.82) 

 

Energy metabolism  

Following the structure and basic assumptions from previous work [157], Eq. 3.1.83 was 

used to describe ATP dynamics. ATP production was lumped into one rate   ( CCMr ), where 

2.5 ATP are produced from NADH and 1.5 ATP from FADH2 as reported in [164,173]. 

ATP usage was lumped into a degradation term ( dATPr ), which contains the terms for the 

estimated consumption for cell growth and maintenance. It was assumed that energy 

precursors do not accumulate but are used directly in the oxidative phosphorylation 

( )
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(electron transport) pathway. Furthermore, due to the lack of experimental data, the 

impact of cofactors on enzyme regulation and homeostasis was not considered. The 

dilution of ATP due to changes in the cell volume caused by cell growth was considered 

by using the term  f C . Kinetic equations for each reaction/transport are provided in 

Appendix B. 

                                                                              (3.1.83) 

3.2 Coupling the cell growth and metabolism model 

Coupling the segregated cell growth model and the structured model for the central 

carbon metabolism for AGE1.HN.AAT and MDCK (Fig. 3.3) requires the following 

considerations: Using the same model variables at the macro- and microscopic scale 

considered in this approach demands a conversion function, which provides a link 

between rates on the macroscopic scale (
macror , mmol/min/L referring to the working 

volume of the shaker) and the corresponding rates at the microscopic scale 
ir  

(mmol/min/L refers to the volume of cells). Where 
c

sV is cell-specific volume (L/cell) and 

vX  is the total viable cell concentration (cells/mL). To convert the viable cell volume per 

mL to the viable cell volume per L, a conversion factor ( wV , ) was used.  

                                                                                                 (3.2.1) 

Cell enzyme activities were expressed per cell ( ev , mmol/cell/min), and because the 

average cell volume changes during cultivation, the maximum volumetric enzyme 

activities change as well (Eq. 3.2.2). 

                                                                                                (3.2.2) 
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Where 
max

eK denotes the maximum volumetric enzyme activities (mmol/L/min) and are 

dependent on their related cell-specific enzyme activity ( ev , mmol/cell/min), the enzyme 

level ( levelE , constant) and the cell-specific volume (
s

cV , L/cell). The enzyme level ( levelE ) is 

a term that was previously proposed for MDCK cells [109] and corresponds to the 

experiment-specific relative enzyme level of the cell population, which indicates that total 

enzyme content varies between experiments. In this instance, since the experiments were 

conducted using the same pre-culture, the enzyme level was set to one for both 

cultivations.  
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Figure 3.3.: Scheme of coupling of the segregated cell growth and the structured 
central carbon metabolism model. Connected parameters: (1) Time-dependent 
extracellular metabolite productions/consumptions rate (Glnx, Lacx, NH4x), predicted 
directly from intracellular rates; (2) Cell-specific volume, and the cell-volume-specific 
maximum enzyme activity; (3) Time-dependent main substrate uptake rate (Glcx); (4) 
Growth rate, to account for dilution of intracellular metabolites pools during cell growth; 
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(5) Time-dependent extracellular metabolite productions/consumptions (Glux, Pyrx). kd is 
the cell death rate, rtrans is the transition rate, Glcx: glucose (extracellular), Glnx: glutamine 
(extracellular), Glux: glutamate (extracellular), Lacx: lactate (extracellular), NH4x: ammonium 
(extracellular), Pyrx: pyruvate. 

 

3.3 Parameter estimation and model simulation 

3.3.1 AGE1.HN.AAT suspension cell model 

Parameter fitting and visualization of the results was carried out in MATLAB (Version 

R2012b, The Mathworks, Inc.). For handling of the model and the data, the Systems 

Biology Toolbox 2 developed by Schmidt and Jirstrand [175] was used. Integration of 

ODEs was performed with CVODE from SUNDIALS [176]; the enhanced scatter search 

(eSS) algorithm was used for stochastic global optimization [177,178]. For the 

implementation of the bootstrap method, in silico data were generated through Monte-

Carlo sampling using the average of the experimental data and their corresponding 

standard deviation. In the next step, parameters were fitted using these newly generated 

data sets.  

In the first step, parameters from the segregated cell growth model (Eqs. 3.1.1–3.1.21) 

were fitted using one of the available experimental data sets. For optimization the initial 

values of the parameters were estimated from the experimental data (i.e. cell-specific 

growth rate) or taken from the literature [109,160]. Next, variables from this model (growth 

related glucose consumption rate, maintenance related glucose consumption rate, cell-

specific volume, cell growth rate) were used as input for the structured central carbon 

metabolism model and the parameters of this model were fitted using one of the available 

experimental data sets. In this step, dynamics of some extracellular metabolites 

(extracellular glutamine, extracellular pyruvate, extracellular lactate, extracellular 

glutamate) were also considered since these were predicted directly from the intracellular 

ODEs. Overall, 132 parameters were fitted using around 353 data points and the 

minimization applied Eq. 3.2.3, 
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                                                                   (3.2.3) 

Where p  is the parameter set, 1, ..., ee T=  the number of experiments, 1, ..., nn T=  is number 

of states and 1, ..., ii T=  the time, while   is the weighting to the maximum for state n  in 

the experiment e . Due to the complexity of the developed model and the limited number 

of experimental data sets to test the model predictability, parameter overfitting (fitting of 

the noise in the data set) cannot be ruled out in this instance. Nevertheless, parameter 

fitting of over 2500 data sets generated in silico using Monte-Carlo sampling (as 

described above) resulted in reasonably small confidence intervals (Tables B1.1 and B1.2 

in Appendix B1). Due to the model complexity and data variability, only one data set is 

used for parameter estimation. Accordingly, the parameter overfitting cannot be discarded 

but it can be presumably limited if the same parameter set is also able to describe 

independent experiments.  

The established model was used with different initial conditions, and the same parameter 

set to simulate different batch cultivations. Note that the initial conditions for the state 

variables of the segregated cell growth model were adjusted manually within the error of 

the experimental data at the start of the cultivation. The initial conditions of the structured 

intracellular model states were obtained from the simulation of a pre-culture from late 

exponential growth phase. To simulate the preculture growth until the exponential growth 

phase (for around 75 h), the known concentrations of all compounds in the medium is 

used as initial conditions. Regarding the initial conditions for the intracellular states the 

initial values were based on the first sampling time point (in cases where no data was 

available, we use reasonable low initial concentrations from previous studies of our group 

and general literature). Thereafter, the estimated basal cell death rate (
min

dk ) was 

increased by a factor of 300 for 7 min cultivation time to take into account the drop in 

intracellular metabolite concentrations resulting from sampling, centrifugation and re-

suspension of cells before measurements were performed. Note that sampling, 

centrifugation, and resuspension of cells lasted around 7 min in this case and thus it was 

assumed that the cells metabolic activity would persist. A list of all initial values is provided 

in Tables B1.3 and B1.4 in Appendix B1. 
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3.3.2 MDCK suspension cell model  

The model was implemented using the Systems Biology Toolbox 2 [175] in MATLAB 

(Version R2012b, the Mathworks, Inc.). Model simulations were carried out using 

MATLAB executable (mex) of the model, which speeds up the execution time 

significantly. For the integration of ODEs, the CVODE from SUNDIALS was used [176]. 

For the parameter optimization, a covariance matrix adaptation evolution (CMA-ES) 

algorithm was used that enables stochastic and derivative free global optimization 

[179,180]. The CMA-ES was used as it performed better than methods used in a similar 

study [157]. For the implementation of the bootstrap method, in silico data were generated 

through Monte-Carlo sampling using the average of the experimental data and their 

corresponding standard deviation. In the next step, parameters were fitted using these 

newly generated data sets.  

In a first step, parameters related to cell growth and extracellular glucose dynamics (Eqs. 

3.1.43 and 3.1.45–3.1.54) were fitted using the experimental data from the mock-infected 

culture. Next, parameters for the infected culture were fitted (Eqs. 3.1.44 and 3.1.60; step 

functions 1 , 2 , 3 ) to describe virus dynamics and the transition from exponential 

cell growth phase to cell death after virus infection, respectively. Finally, the parameters 

related to the dynamics of the remaining extracellular (Eqs. 3.1.55–3.1.59) and 

intracellular metabolites were fitted (Eqs. 3.1.61–3.1.83). During optimization, the initial 

values for the parameters were either taken from the literature [45,52,58] or estimated 

from experimental data (i.e., the cell-specific growth rate). Note that, apart from the 

description of virus dynamics, cell growth and cell death, the same kinetics (transport 

kinetics, intracellular reactions kinetics) and the same set of parameters were used for 

both the infected and mock-infected cells. Overall, 143 parameters were fitted using 360 

data points applying Eq. 3.2.3. Bootstrap parameter fitting of over 2500 data sets 

generated in silico using Monte-Carlo sampling (as described above) was performed. The 

parameter bounds using these parameter sets can be found in Tables B2.1 and B2.2 in 

Appendix B2.  

Note that the initial values for the state variables of the cells and extracellular metabolite 

concentrations were adjusted manually within the error range of the first experimental 

data point. The same principle was used for the state variable that describes the virus 
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particle concentration. Initial conditions for the concentration of intracellular metabolites 

were obtained via simulation of a pre-culture coming from late exponential growth phase 

(85 h). For the simulation of the pre-culture, the initial concentration of state variables 

related to extracellular metabolites were based on the known medium composition. For 

the state variables regarding intracellular metabolites, the concentration of the first 

sampling time point was used (in case these data were not available, a low concentration 

was assumed taking into account values from previous studies [109,157,159,160]). A list 

of all initial values is given in Tables B2.3 and B2.4 in Appendix B2.  
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    Chapter 
 

 Results and discussion  

 

The next two sections describe the results and discussions regarding simulations of the 

two separate dynamic models of two suspension cells. These modeling results were 

published in [157,158] and parts of the discussion were used without quotation to facilitate 

reading.  The first model was developed to describe batch cultivations of AGE1.HN.AAT 

suspension cells, covering cell growth, A1AT production and key metabolites in central 

carbon metabolism [157]. The procedures and analytics used to collect the experimental 

data used for AGE1.HN.AAT suspension cells were described in detail elsewhere 

[157,161,181]. A model extension was performed to describe MDCK suspension cell 

shaker flask cultivations. The extended model describes cell growth, IAV production and 

key metabolites in central carbon metabolism [158]. The procedures and analytics to 

collect the experimental data of MDCK suspension cells were described in detail 

elsewhere [56,158]. 

4.1 AGE1.HN.AAT suspension cell model  

4.1.1 Cell growth 

Model simulations against experimental data (viable cells, the mean cell diameter, and 

the total cell volume) for four AGE1.HN.AAT cultivations at 0.5–2.5 L scale performed by 

Rath et al. [39,161] are shown in Fig. 4.1. Each simulation is based on specific initial 

conditions and using one set of parameters (Table 3 in Appendix B1.3). Note that the 

simulations also cover both the exponential cell growth phase and cell death phase which 
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is often neglected in animal cell models (e.g. the previous studies dealing with the same 

cell line [39]). 

 

Figure 4.1.: Suspension AGE1.HN.AAT cell growth in a chemically defined medium for four 

small-scale cultivations. Viable cell concentration (A1–2), mean cell diameter (B1–2) and viable 

cell volume (C1–2). Data and error bar represent mean and standard deviation of technical 

triplicates for four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred tank bioreactors); 

lines: model simulations. Experimental data used for parameter estimation (A1, B1, C1). Figure 

taken from Ramos et al., 2020 [157]. 

After inoculation with about 6×105 cells/mL, all cultivations started with exponential cell 

growth until maximum cell concentration ranging from 3.8–4.6×106 cells/mL at about 130 

h were achieved. Following a similar trend as cell concentration, the viable cell volume (
c

V ) increased from about 1.3 µL to a maximum in the range of 9–10.2 µL, before the 
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onset of cell death. Initially, cell diameters ranged from 15.8–16.2 µm (Fig. 4.1B). After 

about 18 h, a mean cell diameter of 16.5–17.0 µm was achieved, which decreased after 

about 110 h to a minimum of 15.1–15.8 µm. Although the experimental data is rather 

noisy, the same trend (higher mean cell diameter which decreases at later growth cell 

growth phase) is observed for all cultivations, as it is typically observed for suspension 

cell line cultivations. Specifically, these variations of cell volume and diameters are similar 

to the previously established segregated cell growth model by Rehberg et al. [159] for 

adherent MDCK cells, though to a lesser degree. The model simulations describe these 

changes in cell concentration and mean cell diameter and viable cell volume (Fig. 4.1A–

C). Modeling the cell volume is important because there is usually a delay between the 

increase in viable cell concentration compared to the viable cell volume during cell growth 

[182] which impacts the intracellular metabolism. In this instance, the model simulations 

cover changes of the mean cell diameter of about 10% during the cultivation of 

AGE1.HN.AAT cells. Modeling such minor changes in diameter is relevant since the 

consideration of this effect results in up to 30% variation of the mean cell-specific volume 

(Eqs. 3.1.18–3.1.19, s

c
V  in Fig. 4.7). Furthermore, since the volumetric maximum enzyme 

activity is expressed per cell-specific volume (Eq. 2.1.85), this would lead to up to 15% 

change in the volumetric maximum enzyme activities. As such the volumetric maximum 

enzyme activity was not constant due to changes in the mean cell diameter over time 

(Fig. 4.1B), which is used to calculate the cell-specific volume (Eq. 3.1.19). In other words, 

a smaller cell-specific volume leads to a higher volumetric maximum enzyme activity and 

vice versa. This correlated well with experimental observations for this cell line by Rath 

et al. [161], where the overall volumetric enzyme activity of AGE1.HN.AAT cells was 

higher during the stationary growth phase (on average smaller cells) compared to the 

exponential phase (on average larger cells). Increased cell diameters and consequently 

lower volumetric enzyme activities were also found during the exponential growth phase 

of adherent MDCK cells [109,159,160]. The differences observed in changes in maximum 

enzyme activity from exponential phase to stationary phase could of course also be due 

to changes in transcriptomics which could not be measured in the scope of this study. 

Overall, the segregated growth model used in this study described well the growth of 

AGE1.HN.AAT suspension cells. Taking explicitly into account changes in the mean cell 

diameter enabled the estimation of cell-specific volume which facilitated the 

establishment of the structured intracellular model.  
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4.1.2 Extracellular substrates and metabolic by-products 

Model simulations of extracellular substrates and metabolic by-products dynamics for four 

cultivations at 0.5–2.5 L scale are shown in Fig. 4.2. Extracellular glucose, which was 

considered as the main substrate for cell growth, was consumed rapidly until about 130 

h (Fig. 4.2A). Shortly before its complete depletion, the cell death increased significantly 

(Fig. 4.1A). Lactate accumulated in the bioreactor until about 130 h when glucose was 

depleted (Fig. 4.2D). During this phase, glucose was converted mostly to pyruvate and 

during this process ATP other energy precursors were produced. Pyruvate was used to 

produce lactate in a reversible reaction catalyzed by lactate dehydrogenase (LDH), one 

of the fastest and highly regulated enzymes in glycolysis. In this study, two, ad hoc, 

kinetics for LDH were used to account for the LDH reversibility allowing the model to 

capture the switch between lactate production (first 130 h of cultivation) and consumption 

(after 130 h) (Eq. A.1.23 in Appendix, Fig. 4.7). This added complexity was necessary 

since the intracellular lactate concentration was not considered in the model. One of these 

kinetics is a Michaelis-Menten with a non-competitive inhibition by ATP and pyruvate, 

previously used in [183,184] to model LDH activity. ATP concentration influences the LDH 

rate since lactate conversion to pyruvate can regenerate NADH from NAD+ and NADH 

can be converted to ATP. It is likely that for this reason after glucose depletion, cells 

partially consumed the extracellular lactate. This likely allowed model simulation to 

capture the increase of ATP concentration observed after glucose and glutamine and 

pyruvate were depleted (further discussed in the preceding section on energy metabolism 

and product formation). Lactate consumption by cells has also been observed in other 

cell lines under different cultivation conditions, and might be controlled by signaling 

cascades [47,126,185–190]. As an example, for the parental cell line AGE1.HN lactate 

production has been correlated with PDK4 gene inhibition [191], and in other continuous 

cell lines its consumption correlated with lactic acidosis [186].  
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Figure 4.2.: Experimental data and model simulations of key metabolites of glycolysis for 

suspension AGE1.HN.AAT cell growth a chemically defined medium. Glucose-6-phosphate 

(A1–4), uracil diphosphate-glucose, uridine diphosphate glucose (B1–4), fructose-6-phosphate 

(C1–4), fructose-1,6-biphosphate (D1–4), 3-phosphoglycerate (E1_4), phosphoenolpyruvate 

(F1–4) and intracellular pyruvate (G1–4). Data and error bar represent mean and standard 

deviation of technical triplicates for four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred 

tank bioreactors); lines: model simulations. Experimental data used for parameter estimation (A1, 

B1, C1, D1, F1, G1). The grey lines indicate the limit of quantification for each metabolite and the 

grey data points are under the limit of quantification. Figure modified from Ramos et al., 2020 

[157]. 

Extracellular glutamine and pyruvate (Figs. 4.2C and 4.2E, respectively) were consumed 

rapidly and were depleted before glucose depletion and subsequent cell death at about 

100-115 h. Ammonium (Fig. 4.2D) accumulated over the complete cultivation period, with 

a partial increase of the accumulation rate after glutamine depletion. Glutamate (Fig. 

4.2F) mostly accumulated in the media, while there are short instances where it was 

consumed. Interestingly, even after glutamine depletion, glutamate still accumulated. This 
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phenomenon is not uncommon in cell cultivations as glutamate is a non-essential amino 

acid and it can also be produced from catabolism of other amino acids such as glutamine, 

lysine and proline [192,193]. Although extracellular amino acids were not quantified in 

these experiments, previous batch cultivations with a similar medium composition 

performed for this cell line show that most amino acids are not depleted at the end of the 

exponential cell growth phase [162]. It is thus plausible to assume that even when TCA 

and glycolysis were shutdown, amino acid catabolism persisted, leading to the continuous 

accumulation of glutamate observed. This is further reinforced by the fact that ammonium, 

which is released mainly from amino acid catabolism, also accumulated in the same 

timely manner (Fig. 4.2D). Therefore, assuming that glutamate is mainly produced from 

amino acid catabolism, it is likely that the glutamate excretion by cells is related to its 

intracellular excess. This is predicted in the model simulations, where the amino acid 

degradation rate (Fig. 4.7), which correlates with glutamate production, was predicted to 

remain high over the late cultivation period. This might be biologically relevant as one of 

the mechanisms that the cells use to keep intracellular amino acid homeostasis is the 

control of amino acid entry or exit through their corresponding transporters [194].  

Overall, the model simulations captured well the dynamics of all extracellular substrates 

and metabolic by-products. In particular, the segregated cell growth model correctly 

estimated the consumption rates of the substrates glucose, glutamine, and pyruvate. With 

these consumption rates as an input for the structured intracellular model of metabolism, 

the model also correctly estimated the release rates of the metabolic by-products lactate, 

ammonium, and glutamate.  

4.1.3 Central carbon metabolism 

Model simulations of key metabolites from glycolysis, TCA, and energy metabolism of 

four cultivations at 0.5–2.5 L scale performed by Rath et al. [39,161] are discussed in this 

section. Note that the limit of quantification of a metabolite is influenced by the viable cell 

volume per milliliter (if the volume of sample is constant, a higher cell volume per sample 

decreases the limit of quantification and vise-versa). 

Glycolysis: Regarding the upper glycolytic pathway, two interesting dynamics can be 

observed (Fig. 4.3). The first was a slow accumulation of glucose-6-phosphate (G6P) and 
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fructose-6-phosphate (F6P) until about 96 h followed by their decrease until depletion. 

The second was a peak-like accumulation of fructose-1,6-biphosphate (F16P) between 

96 and 130 h. Most of the remaining metabolites (3-phosphoglycerate (3GP), uridine 

diphosphate glucose (UDPGlc) and phosphoenolpyruvate (PEP)) show a relatively stable 

concentration until the extracellular glucose was depleted at about 130 h (Fig. 4.2A). 

Intracellular pyruvate formed an initial peak at about 20 h and decreased over the 

cultivation time, this is likely due to the overflow of initial pyruvate in the medium and its 

rapid production from glucose, which is abundant at the start of the cultivation. This high 

glycolytic activity (i.e. glucose was not limiting) is supported by the fact that most glycolytic 

metabolite concentrations remained about constant or even increased until around 96 h. 

Furthermore, at approximately 130 h, glucose was depleted, as were all glycolysis 

metabolites. 
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Figure 4.3.: Model simulations against experimental data of key metabolites of glycolysis 

for suspension AGE1.HN.AAT cell growth a chemically defined medium. Glucose-6-

phosphate (A1–4), uracil diphosphate-glucose, uridine diphosphate glucose (B1-4), fructose-6-

phosphate (C1-4), fructose-1,6-biphosphate (D1–4), 3-phosphoglycerate (E1–4), 

phosphoenolpyruvate (F1–4) and intracellular pyruvate (G1–4). Data and error bar represent 

mean and standard deviation of technical triplicates for four independent experiments (0.5 L ○, ○ 

and 2.5 L ○, ○ stirred tank bioreactors); lines: model simulations. Experimental data used for 
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parameter estimation (A1, B1, C1, D1, F1, G1). The grey lines indicate the limit of quantification 

for each metabolite and the grey data points are under the limit of quantification. Figure taken 

from Ramos et al., 2020 [157]. 

In all four experiments, experimental data showed similar dynamics for the key 

metabolites of glycolysis and the model simulations capture these dynamics well, based 

on one parameter set. Some discrepancies between model simulations and experimental 

data can, however, be observed, i.e. for PEP and 3PG. This implies that mechanisms for 

some enzyme directly linked to these metabolites, for instance ENO or PK kinetics, might 

need further improvements. Since simulations with the unique set parameter generally 

led to a better fit of data from cultivations at 2.5 L when compared to 0.5 L, it is also likely 

that fixed kinetics and their related parameters for some enzymes do not account for 

minor differences between cultivations performed at different scales. Nevertheless, these 

results also indicate that reasonable assumptions were made for the most critical 

enzymes in glycolysis, i.e. hexokinase (HK), PFK, and LDH [195]. PFK has been 

described as closely linked to oscillations frequently found in glycolytic rates  [196,197], 

and it is one of the highly regulated enzymes of this pathway with allosteric regulation by 

energy precursors such as ATP, ADP, and cAMP [196–199]. For this particular case, a 

kinetic similar to the Hill kinetic that has been applied for allosteric enzymes was used 

here [198]. With this kinetic for PFK (Eq. A.1.15 in the Appendix A), the glycolytic rates 

are negatively correlated with the intracellular ATP concentration when glucose was 

present in the medium (0–130 h). During model development it was found that another 

critical enzyme was ALD. Without a proper selection of its kinetic (Eq. A.1.21 in the 

Appendix A), it was not possible to simulate the peak-like behavior observed for F16P. It 

was found that the dynamic of F16P is negatively correlated with the cell-specific growth 

rate (Eq. A.1.21 in the Appendix A). Regulation of this enzyme has been previously 

reported to correlate with changes in cell proliferation, mainly through its localization 

inside or outside of the nucleus depending on the cell growth stage [200], which can be 

taken into account indirectly via the cell growth rate. 

Taken together, the model simulation approximates well the dynamics of most of the 

glycolytic metabolites. These results indicate that reasonable and biologically relevant 

assumptions were made for the kinetics and parameters of most of the critical enzymes 

in glycolysis. 
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TCA: The concentration of most metabolites from the TCA cycle remained high until 

around 130 h when glucose was depleted, apart from succinate (Fig. 4.4). Succinate has 

the highest concentration compared to other TCA intermediates and it exceeds even 

alpha-ketoglutarate by a factor of ten. Although alpha-ketoglutarate is produced from 

more than one source, contrary to succinate, the concentration of the metabolites can 

only be related to their related Michaelis-Menten affinity constants. It is also clear that 

alpha-ketoglutarate dynamics differed at the beginning of the cultivations even in the 

same scale. Citrate concentration shows a relatively high concentration before glucose 

depletion while cis-aconitate concentration was near the limit of quantification. This 

suggests an equilibrium of aconitate (ACO) in favor of citrate production since iso-citrate 

concentration was around 100-fold lower. Similarly, the fact that fumarate concentration 

remained low, and at a level similar to iso-citrate, suggests that it was rapidly converted 

to malate by fumarase (FMA), a reversible reaction and one of fastest enzymes in the 

TCA cycle.  
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Figure 4.4.: Model simulations against experimental data of key metabolites of TCA cycle 

for suspension AGE1.HN.AAT cell growth a chemically defined medium. Citrate (A1–4), cis–

aconitate (B1–4), iso-citrate (C1–4), alpha-ketoglutarate (D1–4), succinate (E1–4), fumarate (F1–

4) and malate (G1–4). Data and error bar represent mean and standard deviation of technical 

triplicates for four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred tank bioreactors); 

lines:  model simulations. Experimental data used for parameter estimation (A1, B1, C1, D1, F1, 
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G1). The grey lines indicate the limit of quantification for each metabolite and the grey data points 

are under the limit of quantification. Figure taken from Ramos et al., 2020 [157]. 

Overall, despite some discrepancies for succinate at the end of the cultivations and alpha-

ketoglutarate at the start of the cultivations, the overall dynamics of the metabolites in 

TCA were captured well by the model simulation. This suggests that biologically valid and 

appropriate kinetics and parameters assumptions were made for most of the enzymes in 

this pathway.  

Analysis of the glycolytic and TCA cycle metabolic rates: Given the correct 

descriptions of dynamics of most metabolites in glycolysis and TCA cycles, the rates 

estimated for the enzymes in these pathways can be analyzed in detail against previous 

knowledge or lack thereof. The model simulations showed that the input from glycolysis 

into the TCA was relatively low, similar to studies on animal cells [191,201–203]. 

Typically, in cancer-derived cell lines, the metabolism is reprogrammed to some extent 

resulting in a weaker connectivity between glycolysis and TCA through the pyruvate 

dehydrogenase (PDH). This was likely also the case for AGE1.HN.AAT cells since this 

enzyme has the lowest maximum activity compared to other enzymes of the TCA [181]. 

The highest metabolic rate input from glycolysis into the TCA in the model simulations 

was through PC that converts pyruvate to OAA (Figs. 4.6 and 4.7). PC has also been 

found to significantly contribute to TCA carbon supply according to 13C labeling 

experiments in CHO cells [204].  The low activity of PDH and OAA production through PC 

resulted in a partly reversed TCA to account for the supply of metabolites such as citrate, 

cis-aconitate and isocitrate (further discussed below, and shown in Fig. 4.8). This 

truncation of TCA has also been reported for other cancer cell lines, as it allows 

generation of citrate and iso-citrate, which are important for lipid production [205]. For 

example, in melanoma cells, using 13C labeling it was found that the precursors for lipid 

production are generated mainly from these reverse reactions in the TCA cycle, and that 

the main source of these precursors is glutamine and not pyruvate [206]. Unsurprisingly, 

it is known that glutamine is the main metabolite fueling the TCA since it is converted to 

alpha-ketoglutarate, a TCA intermediate [207]. In this modeling approach, alpha-

ketoglutarate production from transamination, where both OAA and glutamate are 

consumed, was also considered. Previous studies with AGE1.HN.AAT cells [162] had 

also elaborated on the importance of the transamination reactions in these cells. In this 
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model, glutamate is produced from the degradation of amino acids which results in 

production of ammonium. Furthermore, glutamate can also be produced from alpha-

ketoglutarate through the enzyme glutamate dehydrogenase (GLDH), which consumes 

ammonium during this process. This reaction is known to play an important role in the 

ammonium detoxification (rate shown below in Fig. 4.7). In the model simulations 

glutamate was produced through GLDH and amino acid degradation and glutamate was 

then converted to ketoglutarate by aspartate transaminase with OAA consumption. This 

is a strong indication that transamination and part of the TCA are used mainly for energy 

production while the other part of TCA provides intermediates for lipid biosynthesis 

through citrate [208]. However, to better support this theory, the model should be further 

extended to include lipid synthesis and degradation of other amino acids. This could also 

potentially benefit the analysis of the relevance of these findings, especially regarding the 

anaplerotic reaction (glycolysis-TCA cycle connection through PC) addressed previously. 

 

Energy metabolism and product formation: ATP concentrations increased while 

glucose and glutamine (Figs. 4.2A and 4.2C) were available in the medium (Fig. 4.5). 

Shortly before the depletion of glucose at about 130 h, a rapid decrease in ATP 

concentrations occurs on all cultivations. Soon after increasing again (around 140 h) and 

remaining high until the end of cultivation. A1AT was produced and exported to the 

medium while the cells were growing (until about 130 h) and remained constant until the 

end of cultivation. This clearly shows that the production of this protein is growth-related 

and therefore a simple growth related kinetic was sufficient to describe its dynamic (Eq. 

A.1.8 in Appendix A). 
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Figure 4.5.: Model simulations against experimental data ATP and alpha1-antitrypsin 

(A1AT) of suspension AGE1.HN.AAT cell growth a chemically defined medium. ATP (A1–

4) and alpha1-antitrypsin (B1–4). Data and error bar represent mean and standard deviation of 

technical triplicates for four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred tank 

bioreactors); lines:  model simulations. Experimental data used for parameter estimation (A1, B1). 

The grey lines indicate the limit of quantification for ATP. Figure taken from Ramos et al., 2020 

[157]. 

Model simulations capture relatively well the dynamics of ATP and A1AT in all four batch 

cultivations. This indicates that a simple product formation kinetic is sufficient to describe 

its dynamic. For ATP, it indicates that a correct balance between its consumption (Eq. 

A.1.49 in Appendix A) and production (Eq. A.1.45 in Appendix A) was achieved. ATP is 

mainly produced in glycolysis (Eq. A.1.43 in Appendix A) and oxidative phosphorylation 

(Eq. A.1.44 in Appendix A). According to model simulations, at least 50% of the total ATP 

was produced in glycolysis (Fig. 4.7) while glucose is present in the medium (until about 

130 h). This is in agreement with previous studies reporting a range between 1–64% 

[209]. Additionally, this finding supports the theory that glycolysis could sustain growth 

demand of AGE1.HN.AAT cells as previously suggested in [191], i.e. that the glycolytic 

ATP production rate is higher than the simulated ATP consumption for growth (Eq. A.1.46 

in Appendix A and Fig. 4.7). The model simulations also suggests that the rapid decrease 

in ATP observed is mainly due to the depletion of glucose and the subsequent decrease 

in ATP production in glycolysis ( glycolysisr  in Fig. 4.7 below). Shortly after, the increase in 
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ATP concentration again was captured due to an estimated increase in oxidation of NADH 

when lactate consumption occurs ( NADHr Fig. 4.7 below). The increase in oxidative 

phosphorylation also leads to higher estimated theoretical oxygen consumption at the 

end of the cultivation period (Eq. A.1.52 in Appendix A and 2Or  in Fig. 4.7 below). In this 

phase, since cells are not growing, ATP was mainly used for maintenance and consumed 

in other futile cycles (Eq. A.1.47–A.1.48 respectively in Appendix A). Overall, the 

theoretical oxygen consumption for AGE1.HN.AAT was about 22–106 fmol/cell/h ( 2Or  in 

Fig. 4.7 below), which is in a similar range reported for other continuous cell lines of 7–

97 fmol/cell/h [210,211]. Interestingly, a much lower oxygen consumption rate was found 

for the early exponential growth phase compared to stationary phase (Fig. 4.7 below) 

supporting the theory that while there is no limitation of glucose, cells do not use the 

oxidative phosphorylation pathway at its full potential. A lower oxygen uptake during cell 

growth phase without glucose limitation and a higher oxygen uptake near glucose 

limitation (1–1.5 mM) has been previously reported for other cells such as the murine 

hybridoma cells [212]. This confirms again that cells can switch to a more efficient 

metabolism as glucose limitation starts by decreasing the glycolytic activity, consuming 

lactate and activating the oxidative phosphorylation pathway.  

Overall, the model simulations captured very well the dynamics of ATP and product of 

interest (A1AT) and the estimated theoretical oxygen production rates are well within the 

range observed for other continuous cell lines. These findings indicate that valid and 

biological assumptions were made regarding the kinetics of energy and product formation 

and their related parameters. 

4.1.4 Analysis of simulated metabolic rates 

In the following, the simulated metabolic rates over time, which are variables in the model, 

are presented (Figs. 4.6 and 4.7). Given the accuracy of the developed model to describe 

cell growth, extracellular and intracellular metabolites dynamics, these metabolic rates 

were used for further analysis, e.g. identification cellular physiological states (Fig. 4.8). 

Furthermore, the established model was also used for in silico studies in the next section. 
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Figure 4.6.: Metabolic rates from cell growth and central carbon metabolism obtained from 

model simulations of four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred tank 

bioreactors). (A1) growth rate, inhibition factor (A2), transition rate (A3), cell death rate (A4), 

glucose consumption rate for growth (A5), glucose consumption for maintenance (B1) , cell-

specific volume (B2), glucose transporter rate (B3), HK rate (B4), GPI rate (B5) , G6PDH rate 

(C1), general R5P consumption rate (C2), GLYS rate(C3), UT rate (C4), TATK3PG rate (C5) , 

TATKF6P rate (D1), PFK rate (D2), ALD rate (D3), ENO rate (D4), PK rate (D5), CS rate (E1), 

LDH rate (E2), PDH rate (E3), ACO rate (E4), ACO rate (E5), CL rate (F1), ICDH rate (F2), GS 

rate (F3), AAex rate (F4), KDH rate (F5), SDH rate (G1), FMA rate (G2), ME rate (G3), PC rate 

(G4)  and AlaTA rate (G5). Figure taken from Ramos et al., 2020 [157]. 
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Figure 4.7.: Metabolic rates from central carbon metabolism obtained from model 

simulations of four independent experiments (0.5 L ○, ○ and 2.5 L ○, ○ stirred tank 

bioreactors). (MDH rate (A1), PEPCK rate (A2), ATP consumption for growth (A3), ATP 

consumption for maintenance (A4), ATPase rate (A5), general consumption rate for UDPGlc (B1), 

lactate consumption rate (B2), GLDH rate (B3), AspTA rate (B4), GLNase rate (B5), NADH 

oxidative phosphorylation rate (C1), FADH oxidative phosphorylation rate (C2), TCA net ATP 

production rate (C3), glycolytic ATP net production rate (C4), net production of ATP (C5), net 

consumption of ATP (D1), theoretical oxygen consumption rate (D2), Glu transporter rate (D3), 

Gln transporter rate (D4), Pyr transporter rate (D5)  and NH4 transporter rate (E1). Figure taken 

from Ramos et al., 2020 [157]. 
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Identification of dominant reactions: Based on the analysis of experimental data, and 

the corresponding simulated metabolic rates, two distinct cellular physiological states 

were identified which are shown in Fig. 4.8. 

 

Figure 4.8.: The two main cellular physiological states identified for AGE1.HN.AAT cell 

growth. (A) Cellular physiological state characterized by a high glycolytic rate and a truncated 

TCA with lactate production and pyruvate uptake. (B) Cellular physiological state characterized 

by a low glycolytic rate, reactions of the TCA cycle running from alpha-ketoglutarate to 

oxaloacetate, amino acid catabolism, ammonium production, and lactate consumption. The grey 

box is a metabolic sync. Figure adapted from Ramos et al., 2020 [157]. 

In the first cellular physiological state (Fig. 4.8A) has high glycolytic rates and wherein 

most of the glucose was converted to pyruvate, and subsequently pyruvate was 

converted to lactate. Glucose entering the cells did not accumulate as its simulated 

intracellular concentration was always below the limit of detection. I.e., glucose was 
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converted rapidly to G6P and, almost as fast, G6P converted to other intermediates and 

subsequently to pyruvate. This is in line with the well-known phenomena in cancer-

derived cell lines termed as the Warburg effect where glucose is rapidly and almost 

entirely converted to lactate (1 Glc : 2 Lac), even under aerobic conditions [213,214]. 

Here, the experimental data suggests a ratio of 1–1.9 (maximum glucose and lactate 

concentration in Figs. 4.2A and 4.2B). Furthermore, it is reported that 0–40% of G6P 

generated through HK is channeled to the pentose phosphate pathway by glucose-6-

phosphate dehydrogenase (G6PDH) [215–217]. For the cultivations considered, the 

simulated ratio was less than 10% (Fig. 4.6). This ratio correlates well with findings from 

metabolic flux analysis performed for this cell line by Niklas et al [218] using 13C labeling. 

Finally, as discussed in the previous section, during this cellular physiological state 

(beginning of cultivation until about 130 h) model simulations suggested that at least 50% 

of the ATP was produced from glycolysis and a lower oxygen consumption rate is 

predicted compared to stationary phase ( glycolysisr  Fig. 4.7). 

The second cellular physiological state (Fig. 4.8B) is characterized by the consumption 

of lactate and the degradation of amino acids to fuel a truncated TCA cycle. This resulted 

in ammonium secretion even when glutamine was depleted, in line with the experimental 

data. Since glycolysis also provided OAA for transamination (when the glucose 

concentration was low), both glycolytic and TCA rates decreased. Accordingly, glutamate 

consumption in transamination was also lower and glutamate accumulated intra- and 

extracellularly. At this stage, more OAA was produced from citrate degradation by the CL 

indicating that a reverse TCA is required to provide enough OAA to keep transamination 

active and, therefore, reactions that provide energy precursors. Since transamination 

shortens the TCA cycle, a more efficient way of producing ATP during limitations can be 

assumed. Transamination is one option for cells to deal with the weak link of glycolysis to 

the TCA through PDH to keep ATP production high when needed, in particular, an 

increase in PDH activity would not help when glucose is depleted. Furthermore, this 

hypothesis is supported by the fact that a higher PDH activity could lead to OAA depletion 

because it is needed for citrate synthesis (from Acetyl-CoA and OAA), which would shut 

down the TCA\transamination. Finally, as discussed earlier, during this phase ATP was 

produced mainly from oxidative phosphorylation and a higher theoretical oxygen 



Results and discussion 

84 

 

consumption rate is predicted compared to the first metabolic phase, suggesting that this 

cellular physiological state is indeed more efficient ( 2Or Fig. 4.7).  

In summary, at least two distinct cellular physiological states were identified through the 

analysis of the simulated metabolic rates. The main hypothesis derived from the first 

identified cellular physiological states is that the Warburg effect contributes to a significant 

amount of ATP production in glycolysis. The main hypothesis derived from the second 

identified cellular physiological states is that the transamination is a solution to deal with 

the weak link of glycolysis with TCA through PDH. A compelling argument for this was 

that according to the model simulations using pyruvate as a substrate, PC produced 

enough OAA, which was used with glutamate to generate ketoglutarate via 

transamination, leading to a truncated TCA. In turn, this led to ketoglutarate being used 

as the precursor for the second half of the TCA where energy precursors were produced 

in substantial amounts.  

4.1.5 In silico studies 

In the following, the newly established model was used to perform in silico predictions to 

address open questions regarding the metabolism of AGE1.HN.AAT cells and options to 

improve process performance.  

The first open question relates to the high glutamine synthetase (GS) activity observed 

experimentally in AGE1.HN.AAT cells, on whether this could cause ATP dissipation since 

glutaminase (GLNase) is also expressed in higher levels in these cells [161]. Regarding 

the ATP dissipation theory, it is worth mentioning that GS synthesized glutamine from 

glutamate, consumes ATP and ammonium, and thus can theoretically in fact ‘’dissipate’’ 

ATP. Since the GS activity was explicitly considered in the ODEs for glutamine and ATP, 

the GS maximum activity levels could be investigated in silico using the established 

model. 

The second open question relates to the concentration of pyruvate in the basal medium, 

as during media optimization [219], it was found that an increase of initial pyruvate 

concentration resulted in a negative impact on cell growth and it was then postulated that 

it was because of energy spilling and that it did not increase TCA rates. As the intracellular 
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metabolism is complex and the high dimensional experimental data may difficult to 

interpret, the established mathematical model is a great tool that can aid this endeavor, 

i.e. assess possible impacts of changing in initial concentration of pyruvate and analyze 

its impact on intracellular metabolism and gain insights on the cause(s) of the negative 

impact observed experimentally by increasing pyruvate.  

Two in silico studies were performed and to analyze the results five key reactions of 

animal cell metabolism were selected as markers for the intracellular cellular physiological 

state: (1) LDHr  (lactate production), (2) PFKr  (glycolytic activity), (3) FMAr  (TCA activity), (4) 

CCMr  (ATP production), and (5) 
NH4xtrans
r  (ammonium production). Furthermore, the analysis 

was limited to the exponential cell growth phase, which is the most relevant for cell 

expansion and product formation in AGE1.HN.AAT cells. 

In the first study, the model was used to assess the impact of changes in enzymatic 

reaction rate of GS. More specifically this study based on the increase or decrease of the 

GS maximum activity, which is equivalent to this enzyme’s gene overexpression and 

knockout, respectively. The results of this in silico study are presented in Fig. 4.9. In this 

scenario, changes in the GS activity had almost no impact on both lactate production (Fig. 

4.9A) and glycolytic rate (Fig. 4.9B). TCA activity was slightly higher for a lower GS activity 

(Fig. 4.9C), and the same trend applied to the ATP production rate (Fig. 4.9D). On the 

other hand, higher GS activity did seem to lead to less ATP net production rate. Finally, 

the largest impact was on ammonium production as expected, i.e. the ammonium 

production rate is inversely correlated with the GS maximum activity (Fig. 4.9E). Taken 

together, the results of this in silico study shows that changes in high GS activity does 

lead to ATP dissipation, and strongly impacts the accumulation of ammonium.  
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Figure 4.9.: Predicted impact of changes in the maximum activity of glutamine synthetase 

(GS) on selected key reactions of animal cell metabolism. (A) lactate production (
LDH
r ), (B) 

glycolytic activity (
PFK
r ), (C) TCA activity (

FMA
r ), (D) ATP production         (

CCM
r ) and (E) ammonium 

production (
NH4

x
trans

r ). The black dots represent the mean rate and standard deviation during the 

simulation of the four batch experiments. Grey fill: mean and standard deviation of in silico 

simulations. Figure adapted from Ramos et al., 2020 [157]. 

In the second in silico study, the impact of changing the initial concentrations of pyruvate 

in the medium was investigated and the results are presented in 4.10. In this scenario, 

changes of initial pyruvate concentration in the medium did not have a significant impact 

on lactate production rate (Fig. 4.10A). This is the tendency of glycolytic rates with an 

increase of initial pyruvate concentration (Fig. 4.10B). Changes in the initial pyruvate 

concentration also had an impact on both TCA cycle rate and ammonia production rate 

(Figs. 4.10C and 4.10E). A negative correlation between the initial concentration of 

pyruvate and the production of ammonium was predicted. This in silico prediction might 

be biologically relevant as it has been previously reported  that high pyruvate 

concentration in the media resulted in lower ammonia production in different cell lines 

such as MDCK, CHO-K1 and BHK21 [189]. On the other hand, contrary to what was 
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initially postulated [219] for the AGE1.HN.AAT cells, a positive correlation between the 

initial concentration of pyruvate and TCA cycle rate is predicted. This result is not 

surprising since this dynamic modeling approach differs from the constraint-based 

method which deals better with the mass balance. Nevertheless, it is also clear that even 

doubling the initial pyruvate only led to a very minor increase on net ATP production (Fig. 

4.10D), because of the tendency of decrease in glycolytic rates and lactate production. 

This result might be biologically significant as it has been shown for CHO cells that the 

addition of pyruvate resulted in an increase in TCA cycle activity [220]. These results 

pointes that the negative impact of initial pyruvate in cell growth might be related to 

tendency to decrease glycolytic rates and consequently lactate production. The latter 

might have interfered with NAD/NADH balance, thus even an increase in TCA cycle 

activity is not enough to offset this. This conclusion is slightly different from what was 

previously postulated as the source of the negative impact on cell growth regarding the 

intracellular metabolism of AGE1.HN.AAT cells. Nevertheless, these findings are 

supported by what was previously reported for other cell lines. Overall, these results 

highlight the potential for usage of this model for further in silico investigations. 
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Figure 4.10.: Predicted impact of changes in initial extracellular pyruvate concentration 

([PYR(0)]) on selected key reactions of animal cell metabolism. (A) lactate production (
LDH
r ), 

(B) glycolytic activity (
PFK
r ), (C) TCA activity (

FMA
r ), (D) ATP production         (

CCM
r ) and (E) 

ammonium production (
NH4

x
trans

r ). The black dots represent the mean rate and standard deviation 

during the simulation of the four batch experiments. Grey fill: mean and standard deviation of in 

silico simulations. Figure adapted from Ramos et al., 2020 [157]. 

4.1.6 Summary 

Overall, reasonable predictions of the dynamics of cell growth and key metabolites of four 

cultivations with a unique set of parameters were made. This is especially relevant as it 

includes the cell death phase, which is often neglected. This model also covers 

cultivations at two different scales (0.5 and 2.5 L). This strongly suggests reasonable and 

biologically relevant assumptions were made for the cell growth and enzyme kinetics. The 

analysis of the established model allowed the identification of two distinct cellular 

physiological states. One state was characterized by a high glycolytic rate and high 

lactate production, whereas the other was characterized by efficient ATP production, a 
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low glycolytic rate, and truncated TCA cycle (running in the reverse direction from alpha-

ketoglutarate to citrate). Furthermore, the established model was used for in silico studies 

such as predicting the impact of changes of medium composition and maximum enzyme 

activity on the intracellular metabolism mimicking gene overexpression and knockout. It 

was found that an increase GS activity (its gene overexpression) would lead to ATP 

dissipation and decrease metabolic efficiency, while increasing pyruvate in the medium 

would likely changes the glycolytic rates and NAD/NADH balance thus leading to lower 

cellular health which was observed experimentally. Such knowledge shows potential for 

this model to be used to improve cell growth and to find measures towards the 

establishment of more efficient metabolism (e.g. gene expression and media/feed 

design). 
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4.2 MDCK suspension cell model  

4.2.1 Cell growth and virus production 

Model simulations against experimental data (viable cells, the mean cell diameter, and 

the total cell volume) for two MDCK cultivations are shown in Fig. 4.11. The first 

cultivation, Cultivation 1, is a standard cell growth cultivation (mock-infected cultivation, 

without virus infection). The second cultivation, Cultivation 2, is a cultivation where cells 

were infected during the exponential cell growth phase (at around 48 h). 

After inoculation with 7.60×105 cells/mL, cell concentrations increased exponentially in 

both shake flask cultivations (Fig. 4.11), reaching a maximum observable cell growth rate 

of 0.0025 h−1 (Fig. 4.11 (A1–2). The first cultivation (Cultivation 1, mock-infected) reached 

a maximum cell concentration of 9.47×106 cells/mL at around 130 h before cells began 

to die due to substrate depletion. The second cultivation (Cultivation 2, infected) reached 

a cell concentration of 2.10×106 cells/mL at around 48 h and was infected with IAV at moi 

= 10 (infectivity based on TCID50 assay). As soon as 3 hpi, the cell concentrations and 

mean diameter of cells and consequently viable cell volume sharply started to decrease. 

In comparison, the mean cell diameters of Cultivation 1 decreased only gradually (from 

14 µm reached at around 22 h post inoculation to 11 µm end of cultivation, Fig. 4.11B). 

Similar findings for changes in the mean cell diameter of mock-infected cultures have 

been reported for adherent MDCK cells [157] and other suspension cell lines [157], 

though to a lesser degree for the latter. Overall, the model simulations accurately 

reproduced the dynamics of cell concentrations, mean cell diameters and viable cell 

volumes for both mock-infected and infected cells. The model simulations for both 

cultivations cover changes in the mean cell diameter of about 20%, which resulted in up 

to 50% variation in the mean cell-specific volume (
c

sV , Eq. 3.1.10) and up to a 40% 

variation in volumetric enzyme activities (
max

eK , Eq. 3.1.12). These changes are 

consistent with previous findings for lower volumetric enzyme activities during exponential 

cell growth (on average larger cells) compared to later cultivation phases (on average 

smaller cells) for adherent MDCK cells [109,221] and other suspension cell lines [161]. 

The differences observed in changes in maximum enzyme activity from exponential 
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phase to stationary phase could also be due to changes in transcriptomics which were 

not measured in the scope of these experiments. 

 

Figure 4.11.: Dynamics in cell growth of mock-infected and infected MDCK suspension 

cells. (A1–2) Viable cell concentration, (B1–2) mean cell diameter and (C1–2) total volume of 

viable cells. Data and error bars represent the mean and standard deviation of technical triplicates 

for two independent experiments (mock-infected Θ and infected ∆). Lines: model simulations. 

Vertical blue lines correspond to 0, 12 and 24 h post infection. Experimental data used for 

parameter estimation: A1, B1, C1. Figure taken from Ramos et al., 2022 [158]. 

Staining of infected cells with a monoclonal antibody directed against the IAV 

nucleoprotein (NP) showed that all cells in Cultivation 2 were infected simultaneously, 

which was expected due to the high multiplicity of infection used (moi = 10, Fig. 4.12A). 

Initially, the viral ribonucleoproteins (vRNP) accumulated in the cell nucleus after infection 
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(Fig. 4.12B). Shortly after (1.8 hpi), the percentage of vRNP dropped to about 30% (Fig. 

4.12B), indicating the export of viral genomes to the cytoplasm for budding and virus 

release. In the supernatant of Cultivation 2, the first virions could be quantified at around 

6 hpi (by the HA assay) and a maximum of 10.24 log10(virions/mL) was observed at 24 

hpi (Fig. 4.12C). The percentage of apoptotic cells started to increase at around 12 hpi 

(Fig. 4.12D). The model simulations accurately describe the increase in number of 

infected cells and increase in the total number of virions, while the vRNP was not included 

in the model. 

 

Figure 4.12.: Dynamics of influenza A virus replication in MDCK suspension cells after 

synchronous infection at 48 h post inoculation. (A) Percentage of infected cells, (B) 

percentage of viral ribonucleoproteins (vRNP) in the cell nucleus, (C) virus titer, and (D) 

percentage of apoptotic cells. Vertical blue lines correspond to 0, 12 and 24 h post infection, 

respectively. Data and error bars represent the mean and standard deviation of technical 

triplicates for one experiment (infected ∆). Figure adapted from Ramos et al., 2022 [158]. 
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4.2.2 Extracellular substrates and metabolic by-products 

The main substrates and metabolic by-products considered were glucose, lactate, 

glutamine, ammonium pyruvate and glutamate (Fig. 4.13). Extracellular glucose (Fig. 4.13 

(A1)) was rapidly consumed until depletion approximately 144 h after Cultivation 1 (mock-

infected) was inoculated. Glutamine and pyruvate were consumed even faster and were 

depleted at around 100 h (Fig. 4.13 (C1, E1)). Similar to other suspension cell lines, the 

onset of the cell death phase of the mock-infected cells (Cultivation 1) occurred 

concomitant to glucose depletion (Fig. 4.11 (A1)), confirming its critical role as a key 

substrate. For Cultivation 2, which was infected at around 48 h post inoculation, the cells 

initially consumed glucose, glutamine and pyruvate at a similar rate as cells in Cultivation 

1, but their consumptions ceased as virus replication progressed and subsequently cell 

death occurred (Figs. 4.13 (A2) and 4.11 (A2). Mock-infected cells consumed glutamine 

and pyruvate from the extracellular environment until their depletion at around 100–110 

h (Fig. 4.13 (C1, E1)). However, both metabolites were not depleted when the cells were 

infected at 48 hours post inoculation since cell growth was halted and cells started to die 

as virus replication progressed (Figs. 4.13 (C2, E2) and 4.11 (A2)). Similar to the 

previously established model [157], transport of these metabolites into the intracellular 

environment was not considered to be growth-related, as both substrates were depleted 

before the end of the exponential cell growth phase (Figs. 4.11 (A1) and 4.13 (C1, E1)). 

Their consumption kinetics might be governed by homeostasis or involve other 

mechanisms unrelated to cell growth [194]. In this instance, their mechanism of transport 

was described using Michaelis–Menten kinetics or direct binding equation [174] (Eqs. 

A.2.3 and A.2.8 in Appendix A). The model simulations using the same set of parameters 

for both cultivations allowed an accurate description of the dynamics of these extracellular 

metabolites (glucose, pyruvate and glutamine). Notably, not only during the first 24 hpi, 

but also during later phases of infection. 
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Figure 4.13.: Dynamics in extracellular substrates and metabolic by-products of mock-

infected and infected MDCK suspension cells. (A1–2) Glucose, (B1–2) lactate, (C1–2) 

glutamine, (D–2) ammonium, (E1–2) pyruvate, and (F1–2) glutamate. Data and error bars 

represent the mean and standard deviation of technical triplicates for two independent 

experiments (mock-infected Θ and infected ∆). Lines: model simulations. Vertical blue lines 

correspond to 0, 12 and 24 h post infection, respectively. The grey dashed lines indicate the limit 

of quantification for each metabolite and grey data points are under the limit of quantification. 

Experimental data used for parameter estimation: A1, B1, C1, D1, E1 and F1. Figure adapted 

from Ramos et al., 2022 [158]. 

The concentration of extracellular lactate increased in the bioreactor while glucose was 

available and was consumed in both cultivations (Fig. 4.13B). As previously reported for 

MDCK cells [68,163], the stoichiometric ratio of lactate to glucose was approximately 1:1 

for both cultivations. Typically, in continuous cell lines, a large portion of the glucose 

consumed is converted by glycolytic enzymes to pyruvate, which in turn is converted to 

lactate to regenerate NAD+ to maintain a high ATP generation rate [222,223]. The 

previous model developed for AGE1.HNAAT used lumped reaction to describe 
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extracellular lactate production directly from intracellular pyruvate [157]. However, to 

better describe the extracellular lactate dynamics, in this model extension the intracellular 

lactate state was considered in more detail. In particular, it was assumed that intracellular 

lactate is produced via LDH in a reversible reaction (Eqs. 3.1.70 and A.2.23 in Appendix 

A), and a transport equation was added to connect intracellular lactate to its extracellular 

form (Eq. A.2.7 in Appendix A). LDH is known to be a highly regulated enzyme with a very 

fast turnover. Additionally, depending on the metabolic state of the cell, it can favor either 

lactate production or lactate consumption. Different theories exist regarding the control of 

the switch between lactate production and consumption [47,126,185–188,190,224]. Here, 

a reversible hill kinetic with two modifiers for LDH (Eq. A.2.23 in Appendix A) and a 

reversible hill equation ( x
transLac

r , Eq. A.2.7 in Appendix A) to connect intracellular lactate 

with its extracellular equivalent were sufficient to account for this inherent complexity as 

it allowed the correct prediction of this switch. This switch allows a minor lactate 

consumption after glucose depletion (Fig. 4.13 (B1) and x
transLac

r  in Fig. 4.18 introduced 

below). As a result, model simulations accurately reproduced the lactate dynamics in 

mock-infected (Cultivation 1) and infected cells (Cultivation 2) (Fig. 4.13).  

Ammonium and glutamate accumulated until the end of cultivation in Cultivation 1, even 

after the depletion of glutamine (Fig. 4.13 (D1, F1)). Glutamate is a non-essential amino 

acid produced from glutamine as their primary source and other amino acids, e.g., via 

proline and lysine catabolism [192]. Similarly, the production of ammonium is closely 

linked to the metabolism of various amino acids. Apart from glutamine and glutamate, no 

additional amino acids were quantified in this study, but it has been found that the majority 

of amino acids are not depleted at the end of the exponential growth phase of MDCK 

suspension cell cultivations using the same medium [56]. Therefore, and as reported 

previously for other suspension cell lines [157,193], an intracellular accumulation of 

glutamate and ammonium appears to occur even during late stages of cultivation, 

followed by their release into the supernatant. Accordingly, model simulations are also in 

good agreement with the experimental data in the mock-infected cells cultivation (Fig. 

4.13 (D1, F1)) since it also predicted their intracellular excess. For Cultivation 2 (infected), 

however, significant discrepancies between model predictions and experimental data are 

observed (Fig. 4.13 (D2, F2)). Starting about 12 hpi, ammonium and glutamate 
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concentrations are clearly underestimated. Assuming that assumptions in the model 

about glutamate and ammonium metabolism are justified as it describes well these 

metabolites in cells that were not infect, and during the early infection phase, it must be 

concluded that virus infection either results in drastic changes in cellular metabolism 

during the late phase of IAV infection or there are other sources in which virus-induced 

cell death and cell lysis play a significant role. In particular, either enzymes released into 

the extracellular environment following cell lysis retain a high level of activity or both 

metabolites leak into the supernatant due to cell lysis. The latter, however, was safely 

excluded as in silico model simulations clearly demonstrated that the complete release of 

intracellular glutamate and ammonium into the supernatant would not result in more than 

a 1.5% increase in their extracellular concentrations (an increase of about 0.025 mmol/L 

for glutamate and 0.009 mmol/L for ammonium, respectively; see Section 3.1 of 

supplementary studies in Appendix C). On the other hand, it could not be ruled out that 

enzymes released into the extracellular environment because of cell lysis could retain a 

significant activity level. According to results obtained from in silico model simulations, 

taking the amino acid degradation/conversion enzymes rate based on viable cell volume 

(microscale) and converting it to the bioreactor volume scale (macroscale) would be 

enough to explain the increase in extracellular ammonium and glutamate concentrations 

(see Section 3.2 of supplementary studies in Appendix C). Similar mechanisms might 

also apply for other metabolites including lactate and pyruvate. In any case, these events 

take place in a time window where most virus particles have been released into the 

supernatant and the number of productive cells is declining rapidly. These findings are 

more or less irrelevant for virus production process optimization, but are relevant for 

cultivation processes where high cell densities are achieved (e.g. Fed-batch) and cell 

lysis clearly occurs at a much higher rate. 

4.2.3 Central carbon metabolism 

Model simulations of key metabolites from glycolysis, TCA, and energy metabolism of two 

shaker flask cultivations of MDCK cells are discussed in the preceding section. Note that 

the limit of quantification refers to the intracellular concentrations and not to the 

extracellular concentrations (in the sample). As the sample volume was constant, the limit 

of quantification is inversely proportional to the viable cell volume per milliliter; an increase 
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in the number of cells per sample reduces the concentration of intracellular metabolite 

required to reach the limit of quantification and vice versa. 

Glycolysis: Similar dynamics were observed for most glycolytic metabolites for both 

cultivations (Fig. 4.14). A short, more or less peak-like initial accumulation of metabolites 

followed by a gradual decrease over the cultivation time. The dynamics of ribose-5-

phosphate (R5P) and UDPGlc are very similar, with a relatively stable initial concentration 

followed by rapid depletion over time (Fig. 4.14). G6P and F6P exhibited similar dynamics 

prior to their depletion, and the same was true for 3GP and PEP. On the other hand, the 

dynamics of F16P is unique as it remains mostly under the limit of quantification. In 

Cultivation 1, the glycolytic metabolites were depleted concomitant with glucose depletion 

at around 144 h (Figs. 4.13 (A1) and 4.14). In Cultivation 2, the concentrations of these 

metabolites decreased significantly shortly after virus infection. Model simulations of 

glycolytic metabolites concentration closely capture their dynamics in mock-infected cells. 

This indicates that reasonable assumptions were made about kinetics for enzymes from 

glycolysis and pentose phosphate pathway, particularly regarding the enzymes involved 

in feedback control, namely HK, PFK and LDH [195–197]. Model predictions of glycolytic 

metabolite concentrations in infected cells are also in agreement with the experimental 

data, especially for the first 24 hpi (before onset of cell lysis and degradation). However, 

the model slightly underestimated the concentrations of G6P and F6P, though their 

concentrations started to drop below the limit of detection around 12 hpi. Additionally, the 

model did not predict the peak-like dynamic of F16P after virus infection, though this point 

may be considered an outlier since it is a single measurement. Given the precision with 

which the dynamics of most metabolites were described, model assumptions regarding 

the kinetics and control of glycolysis appear to be sufficiently justified. Note that the same 

kinetics and set of parameters was used for simulation of non-infected cells and prediction 

of infected cells. Thus, these results suggest that virus infection had a relatively minor 

impact on glycolysis, especially during the first 24 hpi when virus-induced apoptosis and 

cell lysis are more or less negligible. This is consistent with the fact that the total virus 

particle volume (of 12,000 virions/cell in this instance) accounts for around 0.55% of the 

volume of a single cell (V/V total volume of virus produced in a cell per average volume 

of a cell). This implies that in theory a single cell can produce many more virions. Even 

considering that some of the viral components (protein, RNA) synthesized in infected cells 

are not used for progeny virus production, i.e. are produced in excess, the overall burden 
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of virus replication on cellular metabolism can be considered low. This further cements 

that the changes in metabolism observed during virus replication are an indirect product 

of the latter.  

 

Figure 4.14.: Dynamics of metabolites in glycolysis and pentose phosphate pathway of 

mock-infected and infected MDCK suspension cells (top right insert: 48–72 h of infected 

cultivation). (A1–2) Uridine diphosphate glucose, (B1–2) ribose–5-phosphate, (C1–2) glucose-

6-phosphate, (D1–2) fructose-6-phosphate, (E1–2) fructose-1,6-biphosphate, (F1–2) 3-

phosphoglycerate and (G1–2) phosphoenolpyruvate. Data and error bars represent the mean and 

standard deviation of technical triplicates for two independent experiments (mock-infected Θ and 

infected ∆). Lines: model simulations. Vertical blue lines correspond to (0, 12 and 24 h post 
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infection, respectively). The grey lines indicate the limit of quantification for each metabolite and 

the grey data points are under the limit of quantification. Experimental data used for parameter 

estimation: A1, B1, C1, D1, E1, F1 and G1. Figure taken from Ramos et al., 2022 [158]. 

TCA: The concentration of most TCA cycle metabolites showed an initial peak-like 

behavior and then decreased until about 144 h, and remained practically constant after 

and until the end of Cultivation 1 (Fig. 4.15). The exception was succinate (Suc), which 

did not exhibit the initial peak-like accumulation and as its concentration remained almost 

constant initially (Fig. 4.15 (E1)). The concentration of citrate (Cit) remained 

approximately 100-fold that of cis-aconitate (cAc) and iso-citrate suggesting their 

isomerization by the enzyme ACO favored citrate production (Fig. 4.15 (A1, B1, C1)). The 

remaining TCA cycle intermediates, such as alpha-ketoglutarate (Keto), fumarate (Fum) 

and malate (Mal) showed similar dynamics and their concentrations exceeded their limit 

of quantification (Fig. 4.15 (D1, F1, G1)). The model simulation captures reasonably well 

the dynamics of these metabolites in Cultivation 1. This implies that reasonable 

assumptions were made about reaction kinetics of the TCA cycle, glutaminolysis and 

transamination. In particular, for example, by accounting for the inhibitory effect of 

oxaloacetate on succinate dehydrogenase [225,226] (Eq. A.2.41), the model simulation 

was able to capture the increase in Suc concentration near the end of Cultivation 1. 
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Figure 4.15.: Dynamics of metabolites in TCA cycle in mock-infected and infected MDCK 

suspension cells (top right insert: 48–72 h of infected cultivation). (A1–2) Citrate, (B1–2) cis-

aconitate, (C1–2) iso-citrate, (D1–2) alpha-ketoglutarate, (E1–2) succinate, (F1–2) fumarate and 

(G1–2) malate. Data and error bars represent the mean and standard deviation of technical 

triplicates for two independent experiments (mock-infected Θ and infected ∆). Lines: model 

simulations. Vertical blue lines correspond to (0, 12 and 24 h post infection, respectively). The 

grey lines indicate the limit of quantification for each metabolite and the grey data points are under 

the limit of quantification. Experimental data used for parameter estimation: A1, B1, C1, D1, E1, 

F1 and G1. Figure taken from Ramos et al., 2022 [158]. 
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For Cultivation 2 (infected approximately 48 h post inoculation), concentrations of Cit, cAc 

and iso-citrate decreased immediately after infection and increased again around 24 hpi 

(Fig. 4.15 (A2, B2, C2)). Contrary to mock-infected cells in Cultivation 1, the concentration 

of Suc remained below the limit of quantification after infection. Additionally, the 

concentrations of Keto, Fum and Mal increased rapidly immediately after infection (on 

average about 20%), decreased between 12‒24 hpi and subsequently increased again 

with the onset of cell lysis and degradation (Fig. 4.15 (D2, F2, G2)). Using the same set 

of parameters estimated for mock-infected cells, the model predicts the dynamics of these 

metabolites reasonably well for about 24 hpi. The discrepancies between model 

predictions and the peak-like increase in Keto, Fum and Mal immediately after infection 

are difficult to interpret. Metabolic changes at early infection stages might be related to 

virus-induced cessation of cell growth [22], and/or early virus protein production [27], 

which in turn can lead to changes in the control of enzymes [26,27,171,227–230]. In this 

case, the noticeable accumulation of some metabolites of TCA cycle is either a side effect 

of virus infection or due to specific changes in related enzymes induced by early infection 

events. However, in any scenario, because of the characteristics of the metabolic network 

established (in particular its structural robustness and small-world property considering 

only a low number of reactions linking intracellular metabolites) [231], the dynamics of the 

reactions involved would allow a fast transition towards its inherent “normal behavior” 

(homeostasis on equilibrium point) where model assumptions are valid again. 

Nonetheless, the observed differences between model prediction and experimental data 

are generally small in the first 24 hpi, implying that virus replication only had a minor 

impact on the TCA cycle and its closely related metabolic pathways. The discrepancies 

that begin at around 24 hpi are most likely due to virus-induced apoptosis, which results 

in the disintegration of mitochondrial membranes and cell lysis. In addition to this, the 

discrepancies due to the increase in the concentrations of certain metabolites of the TCA 

cycle starting about 24 hpi may indicate a partial shutdown of the central carbon and 

energy metabolism. In any case, limitations concerning certain model assumptions and 

enzyme kinetics cannot be completely ruled out. 

Energy metabolism: ATP concentration (Fig. 4.16) in mock-infected cells (Cultivation 1) 

remained high throughout the exponential cell growth phase (Fig. 4.16 (A1)) and 

decreased shortly after glutamine and pyruvate depletion at approximately 100 h post 

inoculation. The model simulation accurately reproduces the dynamics of ATP, implying 
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that a good balance between its consumption and production was made (Eqs. A.2.46, 

A.2.48 and A.2.50 in Appendix A). ATP and its precursors are generated in glycolysis, 

TCA cycle, oxidative phosphorylation and other related metabolic pathways (Eqs. A.2.44, 

A.2.45 and A.2.51–A.2.52). According to model simulations, while glucose is present in 

the medium (until about 144 h), glycolysis (
glycolysisr , Eq. A.2.44 in Appendix A) accounts 

for approximately 20% of the total ATP production (
glycolysisr  in Fig. 4.20). This is well within 

the range of 1‒64% previously reported for other animal cell lines [209]. Additionally, the 

estimated theoretical oxygen consumption ranged from 62–113 fmol/cell/h ( 2or  in Fig. 

4.20), which is comparable to the consumptions reported for other continuous cell lines 

of 7–97 fmol/cell/h [210,211]. 

 

Figure 4.16.: Dynamics of ATP in mock-infected and infected MDCK suspension cells (top 

right insert: 48–72 h of infected cultivation). (A1–2) Adenosine triphosphate. Data and error 

bars represent the mean and standard deviation of technical triplicates for two independent 

experiments (mock-infected Θ and infected ∆). Lines: model simulations. Vertical blue lines 

correspond to (0, 12 and 24 h post infection, respectively). The grey lines indicate the limit of 

quantification for each metabolite and the grey data points are under the limit of quantification. 

Experimental data used for parameter estimation: A1. Figure taken from Ramos et al., 2022 [158]. 

For Cultivation 2, ATP concentrations remained high initially during the exponential cell 

growth phase and during the first 24 hpi, and subsequently decreased rapidly 

approaching the limit of quantification as virus infection progressed (Fig. 4.16 (A2)). Model 

simulations using the same kinetics and set of parameters estimated for mock-infected 

cells resulted in a reasonable prediction of ATP concentration dynamics during the first 
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24 hpi. As specific mechanisms for the shutdown of metabolic pathways associated with 

apoptosis and cell deterioration have not been implemented (only cell death has been 

considered so far), the model significantly overestimates the concentration of ATP at later 

time points. In fact, the sharp decrease in ATP concentration starting at 24 hpi also 

supports the hypothesis of at least a partial metabolic shutdown. In this case, ATP was 

predominately produced via the TCA cycle ( TCAr , Eq. (A.2.45 in Appendix A), contributing 

approximately 80% of total ATP ( TCAr , Fig. 4.20); therefore, failing to account for a partial 

shutdown or truncation of TCA previously identified in the model simulations could lead 

to the overproduction of ATP observed. However, generally, and as for glycolysis and 

TCA cycle, model assumptions for ATP generation and consumption seem to be 

sufficiently justified. In particular, since model parameters estimated for mock-infected 

cells enabled a good prediction of the dynamics in IAV infected cells as long as the 

shutdown of intracellular pathways does not play a significant role, i.e., for the first 12–24 

h after virus entry, onset of intracellular virus replication and virus release. 

4.2.4 Analysis of simulated metabolic rates 

Given the overall accuracy of the developed model to describe cell growth, extracellular 

and intracellular metabolites dynamics, these metabolic rates were used for further 

analysis. These metabolic rates were used for a detailed analysis of cellular physiological 

state changes of infected compared to mock-infected cells. The simulated metabolic 

rates, which are state variables in the model, are presented (Figs. 4.17–4.20). 

Furthermore, the established model was also used for in silico studies in the 

supplementary studies (Appendix C).  
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Figure 4.17.: Metabolic rates from cell growth obtained from model simulation of MDCK 

suspension cells (mock-infected ─, infected ─). (A) Growth rate, (B) inhibition factor, (C) 

transition rate, (D) step function 2 , (E) cell death rate, (F) growth related glucose consumption 

rate, (G) step function 1 , (H) step function 3 , (I) cell-specific volume and (J) maintenance-

related glucose consumption. Vertical blue line represents 0 h post infection for Cultivation 2. 

Figure adapted from Ramos et al., 2022 [158]. 
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Figure 4.18.: Metabolic rates from glycolysis obtained from model simulation of MDCK 

suspension cells (mock-infected ─, infected ─). (A) Glucose transporter rate, (B) hexokinase 

rate, (C) glucose-6-phosphate isomerase rate, (D) glucose-6-phosphate dehydrogenase rate, (E) 

ribose-5-phosphate consumption rate, (F) glycogen synthetase rate, (G) uridyl transferase rate, 

(H) transaldolase and transketolase rate, (I) transaldolase and transketolase rate, (J) 

phosphofructokinase rate, (K) aldolase rate, (L) enolase rate, (M) pyruvate kinase rate, (N) lactate 

dehydrogenase rate, (O) extracellular lactate production/ consumption rate and (P) extracellular 

pyruvate consumption rate. Vertical blue line represents 0 h post infection for Cultivation 2. Figure 

adapted from Ramos et al., 2022 [158]. 
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Figure 4.19.: Metabolic rates from TCA obtained from model simulation of MDCK 

suspension cells (mock-infected ─, infected ─). (A) Citrate synthetase rate, (B) : pyruvate 

dehydrogenase rate, (C) aconitase rate, (D) aconitase rate, (E) citrate lyase rate, (F) isocitrate 

dehydrogenase rate, (G) glutamine synthetase rate, (H) amino acids degradation rate, (I) 

ketoglutarate dehydrogenase rate, (J) succinate dehydrogenase rate, (K) fumarase rate, (L) malic 

enzyme rate, (M) pyruvate carboxylase rate, (N) malate dehydrogenase rate, (O) 

phosphoenolpyruvate-kinase rate, (P) uridine diphosphate glucose consumption rate, (Q) 

glutamate dehydrogenase rate, (R) aspartate transaminase rate, (S) alanine transaminase rate, 

(T) glutaminase rate, (U) ammonium consumption rate, (V) extracellular ammonium production 

rate, (W) extracellular glutamate production rate and (X) extracellular glutamine consumption rate. 

Vertical blue line represents 0 h post infection for Cultivation 2. Figure taken from Ramos et al., 

2022 [158]. 
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Figure 4.20.: Metabolic rates from TCA obtained from model simulation of MDCK 

suspension cells (mock-infected ─, infected ─). (A) ATP consumption for growth, (B) ATP 

consumption for maintenance, (C) ATPase rate, (D) FADH oxidative phosphorylation rate, (E) 

TCA net ATP production rate, (F) glycolytic net ATP production rate, (G) net consumption of ATP, 

(H) NADH oxidative phosphorylation rate, (I) net production of ATP and (J) theoretical oxygen 

consumption rate. Vertical blue line represents 0 h post infection for Cultivation 2. Figure adapted 

from Ramos et al., 2022 [158]. 

Based on these metabolic rates shown in Figs. 4.17–4.20, the aggregated metabolic rates 

were calculated in different cultivation phases (exponential cell growth phase, cell death 

phase and virus infection phase). A brief analysis of cellular metabolic states on infected 
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and mock-infected cells based on these aggregated model simulations is shown for 

selected reactions of glycolysis and pentose phosphate pathway (Fig. 4.21), and for TCA 

cycle, glutaminolysis and transamination (Fig. 4.22). 

 

Figure 4.21.: Box-and-whisker plot for selected intracellular rates of glycolysis and 

pentose phosphate pathway estimated from model simulations for mock-infected and 

infected MDCK suspension cells. (A) Hexokinase, (B) ribose-5-phosphate, (C) enolase, and 

(D) lactate dehydrogenase. Calculated from model simulations of the exponential growth phase 

of Cultivation 1 ( , 6–108 h), the death phase of Cultivation 1 ( , 146–169 h), the exponential 

growth phase of Cultivation 2 ( , 6–48 h) and the virus replication phase of Cultivation 2 ( , 49.9–

107 h). The bar represents the median, the box is the first and third quartile, and the whisker the 

minimum and maximum of the rates from the model simulations of the corresponding cultivation 

phase. Figure taken from Ramos et al., 2022 [158]. 
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Figure 4.22.: Box-and-whisker plot for selected intracellular rates of citric acid cycle, 

glutaminolysis and transamination estimated from model simulations for mock-infected 

and infected MDCK suspension cells. (A) pyruvate carboxylase, (B) glutaminase, (C) amino 

acid degradation, (D) glutamate dehydrogenase, (E) isocitrate dehydrogenase and (F) aspartate 

transaminase. Calculated from model simulations of the exponential growth phase of Cultivation 
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1 ( , 6–108 h), the death phase of Cultivation 1 ( , 146–169 h), the exponential growth phase of 

Cultivation 2 ( , 6–48 h) and the virus replication phase of Cultivation 2 ( , 49.9–107 h). The bar 

represents the median, the box is the first and third quartile, and the whisker the minimum and 

maximum of the rates from the model simulations of the corresponding cultivation phase. Figure 

taken from Ramos et al., 2022 [158]. 

Analysis of the metabolic behavior based on selected rates: Extracellular glucose 

(Fig. 4.13A) was transported into the intracellular environment and rapidly converted to 

G6P through the HK during the exponential cell growth phase in both cultivations (Fig. 

4.21A). After glucose was depleted in Cultivation 1 (mock-infected cells) at approximately 

144 h and the cell entered death, the estimated HK rate decreased to zero. Cells of 

Cultivation 2 (infected at around 48 h) still consumed glucose at a similar rate after 

infection (Fig. 4.21A). Approximately 14‒16% of the intracellular glucose (after conversion 

by HK, percentage of 5dR Pr  divided by the HK rate, Fig. 4.21B) was further processed to 

R5P via glucose-6-phosphate dehydrogenase or via transaldolase and transketolase 

during the exponential cell growth phase of both cultivations (6‒108 h mock-infected, 6‒

48 h infected). This is well within the previously reported range of 0‒40% for glucose 

conversion to R5P [215–217]. In the established model, the usage of R5P in other 

reactions was lumped in a general consumption rate ( 5dR Pr , Eq. A.2.18 in Appendix A), 

and its rate is also zero after glucose depletion in mock-infected cells (Fig. 4.21B). This 

rate slightly decreased after viral infection (Fig. 4.21B), but does not reach zero. The 

upper glycolytic metabolites that are not channeled to R5P reach enolase       ( ENOr , Fig. 

4.21C), which has a dynamic behavior similar to HK in both cultivations. Apart from lactate 

dehydrogenase ( LDHr , Fig. 4.21D), all rates addressed thus far have a relatively small 

standard deviation. Cells in Cultivation 1 had a high and positive LDH rate during 

exponential cell growth, indicating lactate was produced from pyruvate. When glucose 

was depleted and the start of the cell death phase, the LDH rate became negative, 

indicating lactate was consumed and converted to pyruvate. Similarly, in Cultivation 2, a 

high LDH rate was observed during the exponential cell growth phase of (Fig. 4.21D). 

After virus infection, however, these cells still had glucose and kept consuming it (Fig. 

4.13 (A2)). Due to glucose consumption, glycolysis remained active (see HK and ENO, 

Figs. 4.21A and 4.21C), which led to a relatively high lactate production rate (Fig. 4.21D). 
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This high LDH rate after infection allowed a very good prediction of the extracellular 

lactate accumulation in the bioreactor observed after infection (Fig. 4.13 (B2)). Pyruvate 

that was produced in glycolysis was used by other enzymes including PDH ( PDHr , Fig. 

4.19), transaminase ( AlaTAr , Fig. 4.19), and pyruvate carboxylase (PC, Fig. 4.22A). As 

previously reported for other cell lines [204,224], conversion of pyruvate to OAA via PC 

resulted in a significant carbon supply to the TCA cycle from glycolysis. In fact, a relatively 

high PC rate was estimated during both cultivations’ exponential cell growth phases, 

which increased significantly not only during the cell death phase (Cultivation 1), but also 

after virus infection (Cultivation 2). Another important carbon source of precursors for the 

TCA cycle of animal cells is glutamine, which following its conversion to glutamate via 

GLNase may enter the TCA cycle. For mock-infected cells, the GLNase rate was 

relatively high during exponential cell growth phase, but decreases after substrate 

depletion and subsequent cell death    ( GLNaser , Fig. 4.22B). However, GLNase activity was 

not zero during this phase since glutamine synthetase ( GSr , in Fig. 4.19) was still active. 

For Cultivation 2, a similar rate was estimated during the exponential cell growth phase 

and after viral infection (Fig. 4.22B) since the cells were infected before depletion of 

extracellular glutamine (Fig. 4.13 (C2)). Another possible source of glutamate in the 

model is the lumped amino acid degradation rate ( AAexr , Fig. 4.22C). For both cultivations, 

the estimated amino degradation rate was high during the exponential cell growth phase 

and further increased during the cell death phase (Cultivation 1) and after virus infection 

(Cultivation 2). During the exponential phase of both cultivations, the resulting glutamate 

was converted to Keto via glutamate dehydrogenase (GLDH, GLDHr  in Fig. 4.22D). 

However, a stark difference was observed between these cultivations during the cell 

death phase (Cultivation 1) and after virus infection (Cultivation 2). The GLDH rate was 

estimated to be negative for Cultivation 1, indicating that glutamate was produced from 

Keto. As a result, glutamate accumulated intracellularly and was exported to the 

supernatant during this phase, leading to good agreement between model simulations 

and experimental data (Fig. 4.13 (F1)). On the other hand, the GLDH rate was estimated 

to remain high after virus infection in Cultivation 2. This prevented the accumulation of 

glutamate on the intracellular level, and likely contributed to the discrepancy between 

experimental data and model simulations after virus infection (Fig. 4.13 (F2)). But this 
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discrepancy could also be assumed to be due to leakage of enzymes in the supernatant 

after cell lysis (see Section 3.2 of supplementary studies in Appendix C). Interestingly, in 

all scenarios, Keto was mostly produced from glutamate since the isocitrate 

dehydrogenase rates estimated were low (Fig. 4.22E). The fact that the aspartate 

transaminase rate ( AspTAr ) was estimated to be negative in all scenarios (Fig. 4.22F) implies 

that the TCA cycle was truncated and only half of the TCA cycle was active in addition to 

the transamination reactions for energy production, as previously reported [157] and as 

discussed previously. The other half of the TCA cycle, as usual, provided intermediates 

for biosynthesis through citrate [208], and as discussed previously. 

4.2.5 Summary 

Overall, reasonable simulations and predictions of the dynamics of key metabolites in 

mock-infected and infected cells, respectively, was achieved. This is especially relevant 

for the period relevant for IAV replication and release (first 24 hpi). It is also pertinent that 

it was achieved using a single set of parameters and that only kinetics for transition to cell 

growth arrest and cell death after virus infection were implemented for infected cells. This 

strongly suggests that the description of metabolic changes in IAV-infected cells, 

compared to mock-infect cells, primarily only requires a reasonable description of cell 

growth arrest and transition to cell death, rather than changes of specific enzyme kinetics 

or parameters. The fact that prediction of metabolite dynamics in infected cells did not 

require a new set of parameters (compared to mock-infected cells), suggests that IAV-

specific mechanisms affecting the host cell’s central metabolic pathways do not play a 

significant role. However, there have been studies that have shown metabolic differences 

during infection that are host cell-dependent [23–26] and even between virus subtypes 

such as influenza A virus subtypes [22]. at. Finally, the in silico study performed here 

shows that cell lysis can have a significant impact on extracellular metabolites 

concentrations at late infection phase due to enzymes that are released into supernatant 

remaining active. Cell lysis is extremely important in cultivations where high cell densities 

are attained and high cell lysis are typically observed such as fed-batch.  
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    Chapter 
 

 Conclusions  

In the first step of this thesis, a quantitative and dynamic mechanistic model that describes 

cell growth, central carbon metabolism and product formation was established. The model 

combines a segregated cell growth model coupled with a structured intracellular model of 

metabolism to describe growth and metabolism of AGE1.HN.AAT suspension cells. This 

model covers the cell growth (exponential cell growth and cell death phase) and product 

formation (A1AT). It also considers glycolysis, TCA, pentose phosphate pathway, and 

transamination. An important aspect of this approach is that substrate consumption rates 

were used as input to the intracellular model and the intracellular rates were used as 

outputs to simulate the extracellular by-products accumulation. The performance of this 

model was assessed using experimental data (extracellular and intracellular metabolite 

concentrations, enzyme activities) collected for four batch experiments. Using specific 

initial conditions and the same set of parameters, the model described extracellular 

dynamics for growth and death phases well. By considering changes in cell volume, 

dynamics of intracellular concentrations metabolites and the recombinant protein were 

also fitted well. Due to good agreement of model simulations with experimental data, valid 

and relevant biological simulations were made regarding cell growth and enzyme kinetics. 

As such the established model was further used to perform in silico studies and analysis 

of the cellular metabolic state through the simulated metabolic rates.  

Based on simulated rates of key enzymes of the metabolic network, at least two distinct 

cellular physiological states were observed. The first cellular physiological state was 

characterized by a high glycolytic rate and a high lactate production rate. The second 

cellular physiological state was characterized by efficient ATP production, a low glycolytic 

rate, and (partially) reverse or truncated TCA cycle reactions. Furthermore, it was found 
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that the main link between glycolysis and TCA occurred through PC, and discussed the 

importance of transamination on a truncated TCA.  

In silico studies were used to assess AGE1.HN.AAT metabolism, to study possible targets 

for cell line optimization and changes in medium composition. Changes in GS activity was 

found to have only a minor impact on metabolism as previously suggested by another 

study. Sources of the negative impact on cell growth and metabolism from increased 

pyruvate concentration in the medium were corroborated with in silico simulations. 

Taken together, with some simplifications and a few basic biological assumptions, it is 

possible to establish a rather complex dynamic model that not only describes cell growth 

and product formation in animal cell culture but also links extracellular metabolite 

dynamics with main intracellular pathways. Furthermore, it was shown that such a model 

could serve as a basis to address questions related to cell line engineering, medium 

design, and as a tool for rational process design. 

The second goal of this thesis was the extension of the previous model to describe MDCK 

suspension cell growth, metabolism and virus production. The model covers cell growth 

(exponential cell growth and cell death phase) and the virus production phase. Like the 

first model it also considers glycolysis, TCA, pentose phosphate pathway, and 

transamination. Likewise, substrate consumption rates were used as input to the 

intracellular model and the intracellular rates were used as outputs to simulate 

extracellular by-product accumulation. Based on one set of parameters estimated using 

experimental data from a mock-infected (non-infected) cell culture, the model accurately 

simulated the dynamics of mock-infected cells and generally correctly predicted the 

dynamics of virus-infected cells for up to 60 hpi. Given the good agreement of model 

simulation with experimental data, valid and relevant biological simulations were made 

regarding cell growth, virus production and enzyme kinetics. As such the established 

model was further used to perform in silico studies and compare mock-infected and 

infected cell metabolism by analyzing the simulated metabolic rates. The only difference 

between mock-infected cells and infected cells was the inclusion of mechanisms to allow 

transition into the cell growth arrest. This implies that mock-infected and infected cells do 

not differ much in their metabolism for the initial period of virus replication and virus 

release for high moi scenarios. It also clearly suggests that most differences in 
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metabolism observed in the metabolic rates after infection are directly related to cessation 

of cell growth and the subsequent transition to apoptosis and cell death. For the final 

stage of virus production, which is of minor relevance in IAV vaccine manufacturing, a 

straightforward interpretation of some of the results is difficult. This concerns, in particular, 

the relatively high accumulation of glutamate and ammonium in the supernatant. In silico 

study showed that a release of metabolites from lysing cells (by far) cannot explain their 

concentration increase in the bioreactor at the late infection phase. A second in silico 

study showed that to explain this increase, a conversion of extracellular amino acids by 

enzymes released from the cells must be assumed.  

Taken together, it is possible to establish a complex dynamic model that describes cell 

growth and virus production and links extracellular metabolite dynamics with intracellular 

pathways metabolism. Furthermore, it was shown that such a model could serve to 

improve our understanding of the complex interplay between cell growth, virus production 

and metabolism and support the identification of parameters relevant for increasing 

specific viral productivity of MDCK suspension cells. 
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    Chapter 
 

 Outlook  

 

The main goals of this thesis were successfully achieved: developing dynamic models 

describing cell growth, cell volume, extracellular substrates and metabolic by-products 

linked with description of key intracellular metabolite dynamics. The established models 

consistently explain experimental data from several bioreactor experiments. These 

models could be potentially used for media/feeds design and show promising results that 

support previous research outcomes and can be used for in silico studies of metabolic 

phenomena. Model development/ validation is an iterative cycle given that they can be 

extended and new data sets are always generated that can be used to optimize model 

parameters. As such in this outlook I propose future approaches to experimental designs 

and model extensions and model development techniques. These suggestions could 

greatly benefit the endeavor of developing similar or more complex models that can lead 

to exciting discoveries regarding cell metabolism. 

Perturbation experiments: Model validation could be performed for the established 

models. This implies testing if the kinetics used for reactions and transmembrane 

transports still hold in a short time frame experiment, e.g. 1 hour. The perturbation 

experiments can consist in at least one cycle of starvation and one cycle of feed with one 

of the main substrates such as glucose or glutamine. At least 3 data points per metabolite 

should be measured in each cycle. 

Model extension: Data collection on a large scale at both bioreactor and intracellular 

level is very laborious and fitting such a large model is already challenging. Nevertheless, 

the current methods for metabolite quantification will evolve and allow quantification of 



Outlook 

117 

 

many metabolites more efficiently and may allow some level of automation. Furthermore, 

more powerful computers and more capable algorithms will become available. At that 

point, with data (e.g. for amino acids, lipids and other organic compounds at bioreactor 

and/or intracellular level), model extension could be performed. Having other relevant 

pathways included such as amino acid degradation and lipid production will greatly 

improve the utility of such models, especially for usage in the pharmaceutical industry. 

The current model could also benefit from inclusion of growth-related intracellular 

metabolites usage as part of the metabolites are directly used for protein production and 

glycosylation rather than being processed in the central carbon metabolism. More 

specifically, if the cell composition is determined experimentally, these rates (usage of 

amino acids such as Glu and Gln for proteins and Glc for glycosylation) can be added to 

these models as follows, 

 c−                                                                                                                  (6.0.1), 

where  is the cell growth rate, c  is an arbitrary state variable (intracellular metabolite, in 

this instance)  and   is the normalized quantity of c  in the cell dry composition. 

Virus infection experiments: Transferring such models to other cell lines to study 

metabolism of infected and non-infected cells would be an exciting endeavor. The main 

hypothesis derived here was that, if the cell growth arrest and transition into apoptosis 

(cell death) is captured in infect cells, no change is required to any kinetics or their related 

parameters used to simulate non-infected cells. As such, it would be beneficial to have 

future studies with other IAV subtypes or with other influenza virus strains relevant for 

vaccine production to establish a broader database for simulation studies and to 

contribute to a better understanding of the complex interactions of viruses with their host 

cells. 

Incorporation in the era of industry 4.0: Industry 4.0 refers to the fourth industrial 

revolution, where advanced technologies (e.g. artificial intelligence and robotics) are 

integrated into traditional processes. One of the hallmarks is the establishment of digital 

twins (DTs, an identical virtual system that considers the physical and biological aspects 

of process and interacts with the real process [232]) for real time process monitoring and 

simulation. The goal is to allow smarter decision makings, more flexible and efficient 
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bioprocesses. Large scale dynamic models, as established in this thesis, can be trained 

on complex and high-dimensional experimental data and can be used for cell culture state 

simulations and predictions. DTs containing such a model at its core would be beneficial 

for real time model predictions for monitoring cell culture evolution or even for real 

decision making such as cell culture feed.  
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A.1. AGE1.HN.AAT suspension cell model 
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A.2. MDCK.SUS2 suspension cell model 
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+ +
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   

 

 
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 

3

max

44

4

4 4

1

11

1 1

LDH LDH

LDHLDH

LDH

LDH LDH

eq
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LDH LDH

ia

GluPyr

GlucPyr

Pyr Lac
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Pyr Pyr Pyr Lac

k k k k

r K

GluPyr
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kkPyr Lac

k k Pyr Glu

 
 
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Kinetics from glycolysis, TCA and other pathways 
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PEPCK

OAA
r K b

OAA k
=

+
                                                                       A.2.24 

     
 

 
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Kinetics from energy production 
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B. Local and global parameters 

B1. AGE1.HN.AAT suspension cell model 

Table B1.1.: Estimated global parameters of AGE1.HN.AAT structured intracellular model with 
confidence intervals between 0.025-quantile and 0.972-quantile (Q0.025 – Q0.975), calculated via 
bootstrap method with 2000 repetitions. 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

max

HKv  
3.45e-12 2.82e-12–

5.47e-11 
L/cell/min  

 

max

ENOv  
8.39e-11 6.10e-11–

9.89e-11 
L/cell/min  

max

GPIv  
3.48e-10 3.00e-10–

7.00e-10 
L/cell/min  max

PKv  
4.66e-10 3.37e-10–

5.16e-10 
L/cell/min  

max

6G PDHv  
1.13e-11 9.91e-12–

1.31e-11 
L/cell/min  max

LDHv  
3.75e-10 3.20e-10–

3.95e-10 
L/cell/min  

max

5dR Pv  
3.30e-08 2.77e-08–

5.42e-08 
L/cell/min  max

PDHv  
1.82e-13 8.73e-14–

3.67e-13 
L/cell/min  

max

UTv  
7.64e-15 5.91e-15–

8.40e-15 
L/cell/min  max

ACOv  
3.88e-10 3.45e-10–

1.59e-04 
L/cell/min  

max

GLYSv  
2.43e-15 1.81e-15–

3.58e-15 
L/cell/min  max

CLv  
3.86e-13 2.66e-13–

5.40e-13 
L/cell/min  

max

PFKv  
3.88e-12 2.94e-12–

4.55e-12 
L/cell/min  max

ICDHv  
9.14e-10 6.67e-10–

1.30e-09 
L/cell/min  

max

6TATKF Pv  
3.01e-11 2.56e-11–

7.97e-10 
L/cell/min  max

GSv  
7.52e-12 5.15e-12–

9.47e-12 
L/cell/min  

max

3TATK PGv  
1.07e-11 9.73e-12–

1.79e-11 
L/cell/min  max

KDHv  
7.43e-11 7.06e-11–

9.41e-11 
L/cell/min  

max

ALDv  
7.26e-11 6.21e-11–

8.62e-11 
L/cell/min  max

SDHv  
1.71e-10 1.58e-10–

2.06e-10 
L/cell/min  

max

FMAv  
2.95e-10 1.31e-10–

3.63e-10 
L/cell/min  max

AspTAv  
1.10e-10 6.33e-14–

1.21e-10 
L/cell/min  

max

MDHv  
4.12e-10 3.13e-10–

6.84e-10 
L/cell/min  max

GLDHv  
1.97e-12 1.08e-16–

2.25e-12 
L/cell/min  

max

ATPasev  
5.88e-12 1.72e-13–

6.33e-12 
L/cell/min  max

GLNasev  
1.08e-12 2.74e-13–

1.40e-12 
L/cell/min  

max

AAexv  
2.79e-13 2.48e-13–

1.05e+00 
L/cell/min  m

HKk   
1.44e-02 9.86e-13–

1.60e-02 
mmol/L 

max

cUGLCv  
9.17e-13 8.19e-13–

6.30e-12 
L/cell/min  m

GPIk   
3.31 2.24–3.72 mmol/L 

max

CSv  
4.46e-12 2.53e-13–

5.08e-12 
L/cell/min  eq

GPIk   
0.23 1.94e-01–

1.46e+01 
– 
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Table B1.1.: Estimated global parameters of AGE1.HN.AAT structured intracellular model with 

confidence intervals between 0.025-quantile and 0.972-quantile (Q0.025 – Q0.975), calculated via 

bootstrap method with 2000 repetitions (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

max

MEv  
3.59e-13 2.82e-13–

1.15e-12 
L/cell/min  

6

m

G PDHk   
1.31e+01 1.00e-01–

1.36e+01 
mmol/L 

max

PEPCKv  
7.05e-14 5.45e-14–

6.87e-12 
L/cell/min  m

UTk   
1.76e-02 1.34e-02–

2.15e-02 
mmol/L 

max

PCv  
2.98e-13 2.56e-13–

4.53e-13 
L/cell/min  

6

eq

TATKF Pk   
1.44e+01 2.89e+00–

1.72e+01 
mmol/L 

max

AlaTAv  
1.48e-11 1.75e-14–

1.57e-11 
L/cell/min  

3

eq

TATK PGk   
4.00 0.19–5.09 mmol/L 

m

PFKk   
2.66e-03 2.36e-03–

1.96e+01 
mmol/L m

ICDHk   
3.07 2.36e+00–

1.21e+02 
mmol/L 

m

ALDk   
1.10e+01 1.58e-02–

1.35e+01 
mmol/L eq

ICDHk   
5.04 9.10e-03–

5.64e+00 
mmol/L 

eq

ENOk   
0.49 4.69e-01–

2.02e+01 
– eq

AAexk   
0.26 0.21–4.54 – 

m

PKk   
1.13 0.92–5.56 mmol/L eq

SDHk   
5.98e+01 1.36e-01–

7.59e+01 
mmol/L 

m

LDHk   
2.70 1.77e+00–

1.14e+01 
mmol/L eq

FMAk   
7.69 2.91–8.91 mmol/L 

iPYR

LDHk   
1.21e-02 1.21e-02–

1.31e+00 
mmol2/L2 m

FMAk   
4.12 4.08–5.87 mmol/L 

m

Pyrk   
7.95e+01 1.08e+00–

9.68e+01 
mmol/L m

MDHk   
4.19e+02 2.14e-01–

4.44e+02 
mmol/L 

eq

ACOk   
1.12e-02 9.95e-03–

7.57e-01 
– 

xATPk   
2.63e+03 5.81e+01–

3.22e+03 
cell/L/min 

2

eq

ACOk   
3.73 2.18–4.20 – 

mATPk   
2.65e+10 2.42e10–

2.65e11 
cell/L/min 

CL

mk   
0.14 1.15e-02–

1.89e-01 
mmol/L 

basalNAD   
0.58 0.58–8.90 mmol/L 

m

cUGLCk   
9.01e+01 7.48e+01–

6.32e+02 
mmol/L m

RDPKk   
1.19e+02 1.60e-03–

1.25e+02 
mmol/L 

m

CSk   
2.73 2.36e+00–

3.52e+03 
mmol/L m

SDHk   
7.21e+02 4.44e+01–

9.81e+02 
mmol/L 

m

MEk   2.64e+01 7.80e-01–

2.96e+01 
mmol/L 

m

PEPCKk   3.26e+01 3.13e+01–

1.82e+02 
mmol/L 

i

ATPk   6.59e+01 5.36e-01–

8.15e+01 
mmol2/L2 

basalPPP   
1.42 1.00e+00–

1.93e+01 
mmol/L 
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Table B1.1.: Estimated global parameters of AGE1.HN.AAT structured intracellular model with 

confidence intervals between 0.025-quantile and 0.972-quantile (Q0.025 – Q0.975), calculated via 

bootstrap method with 2000 repetitions (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

eq

UTk   5.78 5.21e+00–

1.52e+02 
mmol/L 3

m

TATK PGk   1.45e+01 4.88e-05–

1.60e+01 
mmol/L 

ik   1.12e+02 2.58e+00–

1.33e+02 
mmol/L 6

m

TATKF Pk   0.53 4.26e-01–

8.38e+02 
mmol/L 

eq

PFKk   3.91e+01 2.47e+01–

3.98e+01 
– 

PEP

eq

ENOk  1.47 1.90e-02–

1.80e+00 
– 

m

GSk   5.68 3.73e+00–

1.14e+02 
mmol/L 

3PG

eq

ENOk  0.79 2.16e-03–

8.79e-01 
– 

m

ICDHk   3.07 2.36e+00–

1.21e+02 
mmol/L 

6

i

G Pk   
3.10 1.44e-02–

3.21e+00 
mmol2/L2 

eq

ICDHk   5.04 9.10e-03–

5.64e+00 
– m

PCk   
8.00e-07 6.40e-07–

3.92e+01 
mmol/L 

m

AlaTAk   
1.62 1.08–2.24 mmol/L 

m

ATPasek  2.29 1.07e-02–

2.60e+00 
mmol/L 

m

KDHk   
3.12e+01 2.57e+01–

2.88e+03 
mmol/L m

GLDHk   
1.60e+02 4.40e+00–

1.77e+02 
mmol/L 

OAA

eq

AspTAk   
1.82e-02 1.41e-02–

4.50e+00 
mmol/L 

HK

m

ATPk   
0.95 0.83–2.04 mmol/L 

Glu

eq

AspTAk   
7.53 7.20e-07–

1.02e+01 
mmol/L eq

ALDk  
1.75 1.12–2.15 – 

ketok   
9.60 1.56e+00–

1.04e+01 
mmol/L PK

PYRk   
6.83e+02 1.13e-01–

8.62e+02 
mmol/L 

m

AspTAk   
4.17 2.08e+00–

3.33e+01 
mmol/L PK

ATPk   
0.84 4.73e-02–

1.23e+00 
mmol/L 

i

GLDHk   
4.34e-02 3.86e-02– 

2.25e-01 
mmol/L 

transGLUv   
2.37e-03 1.49e-03–

1.90e+00 

mmol/ 
mmol/L/µL/
min 

 
n

m

Gl asek   
3.48e-04 2.67e-04– 

9.56e-02 
mmol/L 

xGlu
k   

1.47e-02 1.22e-02–

9.07e+01 
mmol/L 

ln

ln

iG

G asek   
1.84e-02 1.72e-02–

3.44e+01 
mmol2/L2 

Gluk   
1.00 9.40e-01–

4.72e+01 
mmol/L 

eq

GLDHk   
7.23e-03 6.55e-03–

1.22e+01 
– 

x

eq

Glu
k   

0.19 1.49e-01–

1.85e+02 
mmol/L 

n xtransGl
v   

0.17 0.11–1.25 mmol/L/µL/
min 

 

m

GLYSk   
1.49e-03 1.14e-03–

2.17e+00 
mmol/L 

ln xG
k  

0.75 0.49–2.75 mmol/L m

AlaTAk   
2.90e-11 2.24e-11–

3.93e-04 
mmol/L 
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Table B1.1.: Estimated global parameters of AGE1.HN.AAT structured intracellular model with 

confidence intervals between 0.025-quantile and 0.972-quantile (Q0.025 – Q0.975), calculated via 

bootstrap method with 2000 repetitions (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

x
transPyr

v   
3.38e-04 2.85e-04–

6.28e+04 

mmol/L/µL/
min 

 

m

OAAk  9.73e+03 9.53e+01–

9.73e+03 
mmol/L 

pyrk   
3.88 3.12–5.71 mmol/L 

m

AcCoAk  4.73e+01 3.75e+01–

5.45e+01 
mmol/L 

   
1.45 3.35e-02–

1.59e+00 
– 

a

PFKk  4.43 3.88e+00–

1.02e+04 
mmol/L 

m

AspTAk   
7.22 1.68e-03–

8.94e+00 
mmol/L max

xmLac
v  

1.75e-08 1.51e-08–

6.72e-03 

mmol/L/cell/
min 

 
GS

m

ATPk   
1.23e+01 1.50e-01–

1.30e+01 
mmol/L 

PDH

m

ATPk  
3.52 1.81e+00–

1.26e+01 
mmol/L 

ln

iATP

G asek   
2.64 5.83e-02–

3.21e+00 
mmol2/L2 

i

AlaTAk  0.12 1.54e-02–

1.75e-01 
mmol/L 

i

SDHk   
9.95e-02 7.59e-02– 

7.58e-01 
mmol/L 

AlaTA

i

Glck  
8.07 3.97e-03–

1.01e+01 
mmol/L 

iATP

LDHk   
8.01e+03 1.20e+00–

9.50e+03 
mmol2/L2 

AlaTA

i

ATPk  
4.79e-02 6.50e-03–

7.57e-02 
mmol/L 

x

m

mLac
k  

8.6 2.81e-04–

9.31e+00 
mmol/L 

i

AcCoAk   0.44 3.98e-02–

5.57e-01 
mmol/L 

 

Table B1.2.: Estimated global parameters of AGE1.HN.AAT segregated cell growth model with 
confidence intervals between 0.025-quantile and 0.972-quantile (Q0.025 – Q0.975), calculated via 
bootstrap method with 2000 repetitions. 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

x

m

Glc
k  2.71 1.17–6.01 mmol/L   6.90e+05 3.353e+03–

9.77e+05 
– 

max  
1.80e-02 1.72e-02–

2.25e-02 
1/h min

dk  
1.99e-06 2.11e-07–

7.98e-06 
1/min 

ln xdG
k  2.5e-05 3.07e-06–

6.39e-05 
1/min max

dk  
3.41e-05 2.22e-05–

6.38e-05 
1/min 

/ lcxx G
Y  3.0e-05 3.15e-07–

6.25e-06 
mmol/L/cell   4.64e-05 2.01e-05–

5.04e-04 
1/min 

xGlc
m  5.0e-04 1.61e-04–

8.18e-04 

mmol/L/µL/

min 
AATq   3.41e-05 2.46e-05–

3.60e-05 
mg/cell 

 

Table B1.3.: Initial conditions used for the simulation of the four AGE1.HN.AAT batch cultivations. 



B. Local and global parameters 

163 

 

Local parameter Cult1 Cult2 Cult3 Cult4 Unit 

( ) 0xGlc t  =  30.52 31.53 30.00 33.96 mmol/L 

( )ln  0xG t  =  3.27 3.40 3.41 3.80 mmol/L 

( ) 0xGlu t  =  0.62 0.58 0.74 0.88 mmol/L 

( ) 0xL tac  =  0.00 0.00 0.49 0.50 mmol/L 

( ) 04xNH t  =  0.49 0.60 0.40 0.40 mmol/L 

( ) 0xP tyr  =  
2.44 2.5 2.09 2.03 mmol/L 

( )1 0X t =  
2.62e+05  2.24e+05  2.41e+05  3.06e+05  cells/mL 

( )2 0X t =  
1.18e+05  1.01e+05  1.08e+05  1.38e+05  cells/mL 

( )3 0X t =  
1.31e+05  1.12e+05  1.21e+05  1.53e+05  cells/mL 

( )4 0X t =  
0.66e+05  0.56e+05  0.60e+05  0.76e+05  cells/mL 

( )5 0X t =  
0.66e+05 0.56+e05  0.60e+05  0.76e+05  cells/mL  

( )0AAT t =  
0.00 0.00 0.00 0.00 mg/L 

cd   21.50 22.81 19.70 19.00 µm 

md   13.50 12.50 14.5 14.50 µm 

LevelE  1.00 1.01 0.98 0.9283 – 

wV  1.00e-03 1.00e-03 1.00e-03 1.00e-03  – 

 

 

 

 

Table B1.4.: Initial conditions of intracellular metabolites used for simulation of the AGE1.HN.AAT 
pre-culture of cultivations. 
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Local parameter Pre-culture Unit Local parameter Pre-culture Unit 

 
0.12 mmol/L 

 

0.41 mmol/L 

 
0.03 mmol/L 

 
1.80 mmol/L 

 
4.43e-04 mmol/L 

 
0.43 mmol/L 

 
0.38 mmol/L 

 
0.18 mmol/L 

 
0.21 mmol/L 

 
0.06 mmol/L 

 
0.07 mmol/L 

 
0.02 mmol/L 

 

0.05 mmol/L 
 

4.21 mmol/L 

 

0.19 mmol/L 
 

1.08 mmol/L 

 
1.21 mmol/L 

 
0.04 mmol/L 

 
0.06 mmol/L    

 

 

 

 

 

 

 

 

  ( ) 6 0G P t =   ( ) 0Glu t =

  ( ) 6 0F P t =   ( ) 0Suc t =

  ( ) 5 0R P t =   ( ) 0Mal t =

  ( ) 0UDPGl tc =   ( ) 0Keto t =

  ( ) 16 0F P t =   ( ) 0Fum t =

  ( )3  0PG t =   ( ) 0OAA t =

  ( ) 0PEP t =   ( ) 0ATP t =

  ( ) 0Pyr t =   ( ) 0AcCo tA =

  ( )0ln  G t =   ( ) 0IsoCi tt =

  ( ) 0Glc t =
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B2. MDCK.SUS2 suspension cell model 

Table B2.1.: Estimated global parameters of MDCK.SUS2 structured intracellular model with 
confidence intervals between 0.025–quantile and 0.972–quantile (Q0.025 – Q0.975) calculated via 
bootstrap method with 2500 runs. 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

max

HKv  6.25e-13 6.15e-13–

1.21e-12 
L/cell/min  

max

PKv  1.44e-12 1.25e-12–

1.48e-12 
L/cell/min  

max

GPIv  1.29e-12 8.43e-13–

4.99e-12 
L/cell/min  

max

LDHv  3.79e-09 1.73e-09–

1.20e-08 
L/cell/min  

max

6G PDHv  1.06e-14 1.03e-14–

3.50e-14 
L/cell/min  

max

PDHv  5.82e-13 1.30e-13–

1.14e-12 
L/cell/min  

max

UTv  9.86e-16 6.16e-16–

1.70e-15 
L/cell/min  

max

ACOv  3.10e-08 1.02e-08–

4.99e-08 
L/cell/min  

max

GLYSv  2.44e-17 6.32e-18–

8.96e-17 
L/cell/min  

max

CLv  1.79e-16 2.43e-17–

9.12e-16 
L/cell/min  

max

PFKv  7.88e-13 6.67e-13–

9.96e-13 
L/cell/min  

max

ICDHv  6.47e-15 2.66e-15–

1.39e-14 
L/cell/min  

max

6TATKF Pv  3.45e-14 1.56e-14–

6.17e-14 
L/cell/min  

max

GSv  7.61e-13 1.05e-14–

1.44e-12 
L/cell/min  

max

3TATK PGv  7.50e-14 3.72e-14–

1.18e-13 
L/cell/min  

max

KDHv  7.90e-13 6.62e-13–

9.68e-13 
L/cell/min  

max

ALDv  3.34e-10 1.77e-10–

8.27e-10 
L/cell/min  

max

SDHv  1.48e-10 8.11e-11–

3.35e-10 
L/cell/min  

max

ENOv  2.17e-11 1.17e-11–

4.00e-11 
L/cell/min  

max

FMAv  8.45e-08 3.07e-08–

1.00e-07 
L/cell/min  

max

MDHv  1.97e-13 2.87e-14–

3.93e-13 
L/cell/min  

max

GLDHv  9.44e-09 5.96e-09–

2.01e-08 
L/cell/min  

5dR Pv  
2.90e-12 1.28e-12–

4.85e-12 
L/cell/min  

max

GLNasev  1.23e-11 4.99e-12–

7.20e-11 
L/cell/min  

max

ATPasev  4.52e-11 3.18e-11–

7.64e-11 
L/cell/min  

max

AlaTAv  4.69e-12 2.26e-12–

1.12e-11 
L/cell/min  

max

AAexv  4.34e-13 3.28e-13–

5.80e-13 
L/cell/min  

NH4dv  
8.58e-11 4.17e-11–

2.24e-10 
L/cell/min  

max

cUGLCv  1.19e-14 7.01e-15–

2.29e-14 
L/cell/min  

x
transLac

v  
1.92e+03 4.05e+02–

7.6e+03 

mmol/L/µL/

min 

max

CSv  4.32e-10 2.05e-10–

9.39e-10 
L/cell/min  

lnxtransG
v  

2.35e-04 1.95e-04–

2.72e-04 

mmol/L/µL/

min 

max

MEv  7.05e-13 5.53e-13–

9.30e-13 
L/cell/min  

x
transPyr

v  
4.31e-04 3.90e-04–

5.12e-04 

mmol/L/µL/

min 

max

PEPCKv  2.84e-13 1.12e-13–

3.36e-13 
L/cell/min  

H4xtransN
v  

4.25e-04 1.09e-04–

2.99e-03 

mmol/L/µL/

min 

max

PCv  1.55e-12 5.36e-13–

2.40e-12 
L/cell/min  

x
transGlu

v  
4.70e-05 2.15e-05–

1.01e-04 

mmol/L/µL/

min 
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Table B2.1.: Estimated global parameters of MDCK.SUS2 structured intracellular model with 
confidence intervals between 0.025–quantile and 0.972–quantile (Q0.025 – Q0.975) calculated 
via bootstrap method with 2500 runs (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

max

AspTAv  
9.54e-09 3.44e-09–

3.11e-08 
L/cell/min  

m

HKk  5.01e-04 2.00e-04–

3.26e-03 
mmol/L 

m

GPIk  7.97e-02 1.37e-02–

3.25e-01 

mmol/L 
PKPyrk  3.21e+03 8.00e+02–

8.29e+03 

mmol/L 

eq

GPIk  1.55e+00 5.63e-01–

6.12e+02 

– 
PDHPyrk  4.97e-07 1.56e-07–

1.31e-06 

mmol/L 

6

m

G PDHk  3.39e-03 9.91e-04–

9.19e-03 

mmol/L eq

ACOk  1.46e-02 1.28e-02–

1.61e-02 

– 

m

UTk  7.23e-02 1.33e-02–

1.82e-01 

mmol/L 
2

eq

ACOk  2.14e+00 1.90e+00–

2.38e+00 

– 

6

eq

TATKF Pk  7.01e-01 2.03e-01–

1.73e+00 

– m

Citk  7.83e+01 1.32e+01–

2.75e+02 

mmol/L 

3

eq

TATK PGk  6.63e-06 1.09e-06–

4.82e-05 

– eq

ICDHk  2.33e+01 1.21e+01–

3.30e+01 

– 

m

PFKk  5.67e-03 3.12e-03–

1.13e-02 

mmol/L eq

AAexk  6.72e+05 1.64e+05–

9.00e+05 

– 

16F Pk  
1.55e-02 4.99e-03–

3.12e-02 

mmol/L eq

FMAk  7.71e+00 5.63e+00–

3.66e+03 

– 

eq

ENOk  4.17e+02 1.20e+02–

3.66e+03 

– m

FMAk  5.54e+03 1.49e+03–

1.72e+04 

mmol/L 

PKPEPk  1.64e-03 8.58e-04–

2.36e-03 

mmol/L m

MDHk  3.25e+00 6.91e-01–

7.79e+00 

mmol/L 

xATPk  
3.00e+02 2.00e+02–

4.79e+02 

cell/L/min m

OAAk  2.31e-04 1.92e-05–

6.18e-04 

mmol/L 

mATPk  
1.33e+07 1.00e+07–

8.81e+07 

cell/L/min m

AcCoAk  1.10e+05 4.29e+04–

3.05e+05 

mmol/L 

basalNAD  
2.33e+00 1.26e+00–

3.55e+00 

mmol/L m

SDHk  4.07e+00 2.78e-03–

6.39e+00 

mmol/L 

m

cUGLCk  4.07e+00 1.97e+00–

6.39e+00 

mmol/L 
5

m

dR Pk  5.25e-01 1.96e-01– 

9.22e-01 

mmol/L 

m

MEk  2.27e-01 1.53e-01–

4.49e-01 

mmol/L m

PEPCKk  3.93e-09 8.42e-10–

1.26e-08 

mmol/L 

ME

i

ATPk  
6.89e+04 1.90e+04–

1.99e+05 

mmol2/L2 

PC

m

Pyrk  
7.62e-02 9.36e-03–

1.24e-01 

mmol/L 

ik  
1.31e+03 3.87e+02–

2.75e+03 

mmol/L eq

MEk  1.84e+04 4.28e+02–

6.93e+04 

– 

AlaTA

i

Gluk  
1.89e-01 9.75e-02–

3.61e-01 

mmol2/L2 m

KDHk  1.14e-01 7.42e-02–

2.06e-01 

mmol/L 

GS

m

Gluk  
2.33e-03 8.16e-04–

2.51e-02 

mmol/L 
AspTAOAAk  

1.15e+03 2.89e+02–

3.05e+03 

mmol/L 
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Table B2.1.: Estimated global parameters of MDCK.SUS2 structured intracellular model with 
confidence intervals between 0.025–quantile and 0.972–quantile (Q0.025 – Q0.975) calculated 
via bootstrap method with 2500 runs (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

m

ICDHk  1.52e-07 5.07e-08–

5.63e-07 

mmol/L 

AspTAGluk  
2.70e-03 7.99e-04–

8.22e-03 

mmol/L 

AspTAKetok  
1.93e+00 4.91e-01–

4.57e+05 

mmol/L 
6

m

TATKF Pk  4.41e-07 1.10e-07–

1.60e-06 

mmol/L 

GLDHGluk  6.27e-05 2.57e-05–

9.71e-05 

mmol/L m

GLDHk  3.32e+04 1.44e+04–

6.37e+04 

mmol/L 

ln

m

G asek  1.69e-04 2.99e-05–

2.59e-02 

mmol/L 

HK

m

ATPk  
2.36e-06 7.20e-07–

7.32e-06 

mmol/L 

eq

GLDHk  4.51e-01 1.25e-01–

1.71e+00 

– 

ALD

m

ATPk  
7.40e+04 1.93e+04–

2.31e+05 

mmol/L 

eq

ALDk  8.95e+03 2.59e+03–

4.02e+04 

– 
3 ALD

m

PGk  
1.47e-04 4.57e-05–

2.99e-04 

mmol/L 

a

PFKk  3.39e+00 2.88e+00–

4.28e+00 

mmol/L 

PC

m

ATPk  
4.06e-09 4.39e-10–

1.16e-08 

mmol/L 

m

ATPasek  1.37e+01 8.79e+00–

2.24e+01 

mmol/L 

PDH

m

ATPk  
3.94e+02 2.16e+02–

7.31e+02 

mmol/L 

3PGk  
1.35e+00 6.39e-01–

2.94e+00 

mmol/L 
xGlu

k  2.47e+01 1.46e+01–

4.57e+01 

mmol/L 

ENOPEPk  1.01e-02 3.53e-03–

1.90e-02 

mmol/L 
Gluk  

2.00e+03 4.71e+02–

1.03e+04 

mmol/L 

3

m

TATK PGk  6.59e-09 5.14e-10–

2.77e-08 

mmol/L 
x
trans

eq

Glu
k  

3.56e-05 4.05e-06–

9.25e-05 

– 

ln xG
k  1.05e+01 4.63e+00–

4.86e+01 

mmol/L 
transLack  2.73e+00 1.46e+00–

7.52e+00 

mmol/L 

x
trans

m

Pyr
k  

2.55e-04 3.24e-05–

1.07e-03 

mmol/L 
x
transLac

k  
7.97e+01 2.68e+01–

1.42e+02 

mmol/L 

  8.57e-06 2.66e-06–

2.20e-05 

– 
LDHPyrk  6.37e-02 3.21e-02–

1.24e-01 

mmol/L 

m

AspTAk  
4.25e+03 2.81e+02–

1.14e+04 

mmol/L 
LDHLack  4.39e-02 2.71e-02–

1.01e-01 

mmol/L 

GS

m

ATPk  
1.88e+01 1.05e+01–

1.17e+02 

mmol/L 
cPyrk  9.10e-06 1.48e-06–

5.27e-05 

mmol2/L2 

lnG ase

i

ATPk  
2.81e-02 1.16e-02–

7.50e-02 

mmol2/L2 
PyrLDH

ak  
3.07e-05 1.07e-05–

9.84e-05 

– 

SDH

i

OAAk  
1.56e-01 6.11e-02–

2.85e-01 

mmol2/L2 
LDHGluk  2.08e+01 8.97e+00–

6.08e+01 

mmol2/L2 

m

GLYSk  8.96e+05 1.95e+05–

9.00e+05 

mmol/L 

LDH

i

Gluk  
1.73e+01 6.41e+00–

9.50e+01 

– 

CL

m

ATPk  
3.08e+04 3.47e+03–

9.44e+04 

mmol/L eq

LDHk  1.01e+01 5.26e+00–

1.84e+01 

– 
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Table B2.1.: Estimated global parameters of MDCK.SUS2 structured intracellular model with 
confidence intervals between 0.025–quantile and 0.972–quantile (Q0.025 – Q0.975) calculated 
via bootstrap method with 2500 runs (continued). 

Parameter Value Q0.025–Q0.975 Unit Parameter Value Q0.025–Q0.975 Unit 

x
trans

eq

Lac
k  

3.73e+01 1.88e+01–

5.88e+01 

– 
H4

m

dNk  8.12e+02 2.48e+02–

1.65e+03 

mmol/L 

H4dN

a

ATPk  
5.27e-03 1.35e-03–

3.66e-02 

mmol/L 
H4Nk  

1.92e-02 7.14e-03–

3.36e-02 

mmol/L 

H4xN
k  2.45e+00 1.22e+00–

7.33e+00 

mmol/L m

AlaTAk  1.68e-01 7.59e-02–

4.91e-01 

mmol/L 

H4xtrans

eq

N
k  

7.46e-06 3.51e-06–

2.28e-05 

–     

 

Table B2.2.: Estimated global parameters of MDCK.SUS2 segregated cell growth model with 
confidence intervals between 0.025-quantile and 0.975-quantile (Q0.025 – Q0.975) calculated via a 
bootstrap method with 2500 runs. 

Paramete

r 

Value Q0.025–Q0.975 Unit Paramete

r 

Value Q0.025–

Q0.975 

Unit 

x

m

Glc
k

 
9.78e+00 4.52e+00-

1.25e+01 

mmol/L   
3.66e+0

5 

3.08e+05

-

5.93e+05 

- 

max
 

4.20e-04 3.46e-04- 4.73e-

04 

1/min min

dk  
1.93e-12 1.93e-14-

3.27e-05 

1/mi

n 

/ lcxx G
Y

 

6.02e-09 4.96e-09- 1.32e-

06 

mmol/L/cell max

dk  
9.48e-05 6.66e-05-

1.02e-04 

1/mi

n 

xGlc
m

 

4.28e-04 1.70e-04- 4.49e-

04 

mmol/L/µL/mi

n 


 

1.46e-19 1.46e-21-

1.02e-05 

1/mi

n 

 

Table B2.3.: Initial conditions of substrates and metabolic by-products with local parameters used 
for the simulation of Cultivation 1 (Cult1) and Cultivation 2 (Cult2) of MDCK.SUS2. 

Local parameter Cult1 Cult2 Unit  Cult1 Cult2 Unit 

( ) 0xGlc t  =
 

19.50 19.50 mmol/L 
LevelE

 
1.00 1.00 - 

( )ln  0xG t  =
 

4.65 4.56 mmol/L 
wV   

1e-3 1e-3 - 

( ) 0xGlu t  =
 

1.50 1.50 mmol/L ( )1 0X t =
  

2.19e+05 2.35e+05 cells/mL 

( ) 0xL tac  =
 

0.00 0.00 mmol/L ( )2 0X t =
  

1.49+05 1.57+05 cells/mL 
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( ) 04xNH t  =
 

0.25 0.25 mmol/L ( )3 0X t =
  

1.50+05 1.58+05 cells/mL 

( ) 0xP tyr  =
 

7.66 7.86 mmol/L ( )4 0X t =
 

1.30+05 1.30+05 cells/mL 

cd   
19.58 19.58 µm ( )5 0X t =

  

1.12+05 1.12+05 cells/mL  

md   
9.76 9.96 µm   ( ) 48.1tV t =

 

- 1.71e08 Virions/mL 

lnxdG
k

 

8.8e-

05 

8.8e-05 1/min 1
 

- 4.85 - 

2
 

- 15.61 - 3
 

- 6.00 - 

mininf

dk  

- 4.9e-08 1/min max inf

dk  

- 2.9e-04 1/min 

pv
 

- 6.45e+00 virions/cell/min 
    

 

Table B2.4.: Initial conditions of intracellular metabolites used for simulation of the MDCK.SUS2 
pre-culture of cultivations. 

Local parameter Pre-culture Unit Local parameter Pre-culture Unit 

 
0.12 mmol/L 

 

1.89 mmol/L 

 
0.036 mmol/L 

 
0.019 mmol/L 

 
0.016 mmol/L 

 
0.42 mmol/L 

 
0.19 mmol/L 

 
0.17 mmol/L 

 
0.035 mmol/L 

 
0.09 mmol/L 

 
0.15 mmol/L 

 
0.24 mmol/L 

 

0.013 mmol/L 
 

2.53 mmol/L 

 

0.036 mmol/L 
 

0.99 mmol/L 

 
1.49 mmol/L 

 
0.023 mmol/L 

 
0.019 mmol/L   ( ) 04NH t =  

5.98 mmol/L 

  ( ) 0Lac t =  
0.00 mmol/L    

 

  ( ) 6 0G P t =   ( ) 0Glu t =

  ( ) 6 0F P t =   ( ) 0Suc t =

  ( ) 5 0R P t =   ( ) 0Mal t =

  ( ) 0UDPGl tc =   ( ) 0Keto t =

  ( ) 16 0F P t =   ( ) 0Fum t =

  ( )3  0PG t =   ( ) 0OAA t =

  ( ) 0PEP t =   ( ) 0ATP t =

  ( ) 0Pyr t =   ( ) 0AcCo tA =

  ( )0ln  G t =   ( ) 0IsoCi tt =

  ( ) 0Glc t =



C. Supplementary studies 

170 

 

C. Supplementary studies 

C.1 Impact of number of cell class on cell volume and enzymes 

Five cell classes were used, analogous to the models used to describe cell growth of 

suspension AGE1.HN.AAT and adherent MDCK cells [1,2]. In the following, in silico 

studies were performed to compare the effects varying the number of cell classes on the 

model fitness (Fig. C.1.1, Table C.1.1). 

 

Figure C.1.1.: Model simulations considering a different number of cell classes. (A) Viable 

cell concentration, (B) mean cell diameter, (C) cell-specific volume and (D) cell-specific 

hexokinase activity. Nc: number of cell classes (Blue: NC=2, Green: NC=5 and Cyan: NC= 7). Black 

squares: experimental data of Cultivation 1. 
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Table C.1.1.: Model fitness for the viable cell concentration and the mean cell diameter 

for different cell classes. 

 Model Fitness* 

Number of cell 

Classes 

Viable cell concentration (
vX ) 

Mean cell diameter ( d ) 
Overall 

Nc=2 0.0102 0.0026 0.0128 

Nc=5 0.0067 0.0011 0.0078 

Nc=7 0.0043 0.0034 0.0077 

*Model fitness was calculated using Eq. 3.1.86 (Models and methods section). 

These findings indicate that reducing the number of cell classes results in a worse fit of 

the viable cell concentration ( vX , Table C.1.1) and the mean cell diameter (d , Table 

C.1.1). For example, when two cell classes were used, the cell-specific volume ranges 

between 0.71–1.38 × 10-12 L/cell, whereas when five classes were used, the range was 

0.63–1.44 × 10-12 L/cell (
c

sV , Fig C.1.1C). Consequently, these differences in the cell-

specific volume also had a noticeable impact on cell-specific enzyme activities (e.g., for 

hexokinase, Fig. C.1.1D), which had a significant impact on metabolism prediction over 

the course of 200 h. The relationship between the cell-specific volume and maximum 

volumetric enzyme activities was introduced in Eq. 3.1.85). Increasing the number of cell 

classes, specifically to seven classes in this case, did not improve model fitness 

significantly. Given these results, five cell classes were chosen, which is also similar to 

previous studies and limits the model complexity [1–4]. 

C.2 Impact of growth-related time step function after virus infection 

Cell growth is halted within a few hours after viral infection, virions are released and the 

cells die. Cell staining can be used to monitor the transition of a cell between its growth 

and apoptotic state, which is also indicated by a decline in viable cell concentration and 

mean cell diameter. In theory, after complete cell growth arrest, most cells will remain in 
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the first cell class ( 1X ) containing the smallest cells rather than transitioning to the last 

cell class ( 5X ) that contains the largest cells. This implies that cells would only grow in 

size during the cell growth phase to produce two daughter cells. In theory, this also implies 

that the mean cell diameter will tend to decrease to the smallest possible value as cell 

growth decreases over time. For this reason, a step function that accurately describes the 

transition from cell growth to cell death following viral infection is required to accurately 

describe the viable cell concentration, mean cell diameter, and the viable cell volume. In 

the following, an in silico study compares the use of a smooth step-function and the 

absence of a step function (cell growth assumed to be zero immediately) after infection 

(results shown in Fig. C.2.1 and Table C.2.1). 

Overall, a better fit of the viable cell concentration ( vX , Fig. C.2.1A and Table C.2.1) and 

the mean cell diameter ( d , Fig. C.2.1B and Table C.2.1) is obtained using the smooth 

step function ( 1 , introduced in Eq. 3.1.44). This step function allows a better description 

of the decrease in the cell growth rate observed after virus infection. The decision to use 

a step function was also influenced by the accuracy of metabolic model predictions. For 

example, mean cell diameter affects the cell-specific volume (
c

sV , Fig. C.2.1C), which in 

turn has an impact on cell-specific enzyme activities (e.g., the cell-specific hexokinase 

activity, Fig. C.2.1D). The correlation between the cell-specific volume and the maximum 

volumetric enzyme activities is described by Eq. 3.1.85. In this instance, without a step 

function, the cell-specific hexokinase activity ranges between 0.43–94 mmol/L/min, while 

with a step function it ranges between 0.43–1.07 mmol/L/min. These small differences 

have a significant effect on the model’s prediction after virus infection, demonstrating the 

importance of using a step function. 
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Figure C.2.1. Model simulations considering a step function for the decrease in the cell transition 

rate after virus infection. (A) Viable cell concentration, (B) mean cell diameter, (C) cell-specific volume 

and (D) cell-specific hexokinase activity. Blue line: cell growth without a step function. Green: cell growth 

with a step function. Black squares: experimental data of Cultivation 2. Vertical blue line: time of infection 

(48 h). 

Table C.2.1. Model fitness for viable cell concentration and mean cell diameter with and 

without step function for the cell growth rate. 

 Model Fitness* 

Step function  

Viable cell concentration (
vX ) 

Mean cell diameter ( d ) 
 

Overall 

without 0.0621     0.0333     0.0954 

with 0.0670         0.0107 0.0776 

*Model fitness was calculated using Eq. 3.1.86 (Models and methods section). 



C. Supplementary studies 

174 

 

 

C.3 Impact of cell lysis on model prediction  

C.3.1 Impact of intracellular metabolites leaking into the supernatant 

The following section describes an in silico study regarding the impact of intracellular 

metabolite release on the extracellular metabolite concentration after cell lysis. To 

investigate the impact of intracellular metabolite (glucose, lactate, pyruvate, glutamate, 

glutamine and ammonia) release on their concentration in the supernatant after cell lysis, 

it was assumed that cell death occurs concomitantly with cell lysis. To begin, new model 

variables were introduced for each cell class’s dead cells ( diX ,cells/ L, Eq. C.3.1). The 

total number of dead cells per class is derived from multiplication of the cell death rate 

with the cell concentration of each cell class. The total number of dead cells ( dX , dead 

cells/ L, Eq. C.3.2) is the sum of dead cells from all cell classes.  

1,..., c

di d iX k X i N= =                                                                                       C.3.1 

1

cN

d di

i

X X
=

=                                                                                                       C.3.2 

Similar to the average cell diameter of a viable cell, the average cell diameter of a dead 

cell ( dd ) was calculated using Eq. C.3.3). 

( )
1

1
1

cN
c m id

d m c
i d

d d X
d d i

N X=

− 
= + − 

− 
                                                                        C.3.3 

Like the viable cell volume, the dead cell volume ( dcV , Eq. C.3.4) was calculated using the 

average diameter of dead cells and the total number of dead cells. 

3

910
6

dc d
d

d
V X −=                                                                                             C.3.4 

Finally, the dead cell-specific volume ( dc

sV ) was estimated using Eq. C.3.5. 
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610
c

dc d
s

d

V
V

X

−=                                                                                                    C.3.5 

Taking into account the conversion required to link the microscopic scale (cell volume) to 

the macroscopic scale (working volume) (introduced in Eq. 3.1.84), the total number of 

moles of any intracellular metabolite (C ) that can potentially be released into to the 

supernatant can be calculated by the multiplication of its intracellular concentration by the 

total volume of lysed cells (
dc

s dV X ). The corresponding increase of this metabolite on the 

supernatant or the macroscopic scale ( xC ) was estimated taking into account the 

conversion of the total number of intracellular metabolite C  into bioreactor level using 

the working volume (
wV ), as shown in Eq. C.3.6. In Eq. C.3.6 the term  refers to the 

other variables previously used to describe extracellular metabolites consumption/ 

secretion, as shown in Eqs. 3.1.16–3.1.21 and 3.1.54–3.1.59. Note that certain substrates 

and metabolic by-products are present both in the supernatant and intracellularly, thus 

making it possible to estimate the impact of their release from intracellular to the 

bioreactor level. For example, intracellular glucose was designated Glc  and the 

extracellular glucose as xGlc . 

 
x dc

s d

w

d C C V X

dt V


   = +                                                                                      C.3.6 

The results of intracellular metabolites leaking into the bioreactor based on the dead cells 

volume are presented in Tables C.3.1A and C.3.1B. 
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Table C.3.1A.: Concentration of extracellular metabolites after virus infection with (+) and 

without (-) leakage of intracellular metabolites due to cell lysis. (Glcx) extracellular glucose, 

(Lacx) extracellular lactate and (Glux) extracellular glutamate; diff (%): percentage difference 

between both scenarios. 

                 Glcx                Lacx                  Glux 

Time 

(h) (-) (+) diff (%) (-) (+) diff (%) (-) (+) diff (%) 

49.90 16.72 16.72 2.67E-06 6.36 6.36 4.46E-05 1.928 1.928 1.43E-05 

51.90 16.54 16.54 4.27E-06 6.769 6.769 4.25E-05 1.956 1.956 4.14E-05 

54.10 16.34 16.34 4.28E-06 7.195 7.195 3.85E-05 1.985 1.985 7.17E-05 

57.00 16.09 16.09 4.39E-06 7.739 7.739 3.41E-05 2.021 2.021 0.00017 

59.90 15.84 15.84 5.58E-06 8.271 8.271 9.33E-06 2.055 2.055 0.00133 

66.10 15.33 15.33 1.77E-05 9.306 9.306 0.001687 2.117 2.119 0.1108 

72.10 14.98 14.98 6.47E-06 9.939 9.94 0.004518 2.143 2.148 0.2672 

83.80 14.6 14.6 3.42E-05 10.5 10.5 0.007366 2.155 2.163 0.37 

107.00 14.26 14.26 5.41E-05 10.78 10.79 0.009126 2.158 2.167 0.4062 
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Table C.3.1B.: Concentration of extracellular metabolites after virus infection with (+) and 

without (-) leakage of intracellular metabolites due to cell lysis. (Pyrx) extracellular pyruvate, 

(Glnx) extracellular glutamine and (NH4x) extracellular ammonium; diff (%): percentage difference 

between both scenarios. 

                 Pyrx                Glnx                  NH4x 

Time (h) (-) (+) diff (%) (-) (+) diff (%) (-) (+) diff (%) 

49.90 5.447 5.447 2.42E-06 2.611 2.611 2.55E-05 1.137 1.137 8.12E-05 

51.90 5.297 5.297 2.30E-06 2.518 2.518 4.49E-05 1.163 1.163 1.68E-04 

54.10 5.134 5.134 2.25E-06 2.417 2.417 6.72E-05 1.19 1.19 2.68E-04 

57.00 4.922 4.922 2.63E-06 2.288 2.288 1.43E-04 1.224 1.224 0.0006158 

59.90 4.711 4.711 8.89E-06 2.161 2.161 1.08E-03 1.256 1.256 0.004894 

66.10 4.291 4.291 4.22E-04 1.913 1.915 0.0978 1.319 1.325 0.4282 

72.10 4.011 4.011 1.13E-03 1.738 1.742 0.2403 1.373 1.388 1.049 

83.80 3.708 3.708 1.80E-03 1.517 1.523 0.3384 1.466 1.487 1.47 

107.00 3.441 3.441 2.30E-03 1.254 1.259 0.3824 1.621 1.646 1.561 

 

Tables C.3.1A and C.3.1B clearly show that the leakage of intracellular metabolites into 

the supernatant after cell lysis has only a minor impact on their corresponding 

extracellular concentrations. The smallest difference was found for glucose and pyruvate, 

followed by lactate (below 0.1 %, at 107 h). The highest difference between these two 

scenarios was found for glutamine, glutamate and ammonium (0.38–1.56 %, at 107 h). 

Overall, these results suggest that a leakage of intracellular metabolites into the 

extracellular environment can be neglected, especially as in this case only relatively low 

cell concentrations (2.1 × 106 cells/mL) was infected. Nevertheless, high cell density 

cultivations [5–8] like 20 × 106 cells/mL could result in more than 15% of the accumulated 

ammonium in the cultivation vessel being due to cell lysis.  
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C.3.2 Impact of intracellular enzymes leaking into the supernatant 

The following section describes an in silico study of the possibility of intracellular enzymes 

leaking into the supernatant after cell lysis remains active. More specifically, the possibility 

of amino acid degradation or conversion to glutamate and production of ammonium 

occurring on the supernatant. This essentially means converting the enzyme’s activity on 

the viable cell volume scale (microscale) to the volume scale of the bioreactor 

(macroscale). The conversion between these scales was introduced in Eq. 3.1.84. To 

begin evaluation of the impact of the activity of intracellular enzymes released into the 

supernatant on the extracellular concentration of glutamate and ammonium, it was 

assumed that cell death occurs concomitantly with cell lysis. New model variables were 

introduced to describe the concentration of dead cells for each cell class ( diX , cells/ mL) 

as described in Eq. C.3.1 and the total concentration of dead cells ( dX , cells/mL) using 

Eq. C.3.2. The average diameter of a dead cell ( dd ) was calculated using Eq. C.3.3 and 

the dead cell-specific volume (
dc

sV ) was calculated using Eq. C.3.5, introduced in the 

preceding section. 

Next, the volumetric enzyme activity related to the dead cell volume (
maxdc

eK , mmol/L/min) 

was estimated based on the dead cell-specific volume (
dc

sV ). 

maxdc e level
e dc

s

v E
K

V
=                                                                                                  C.3.7 

The corresponding volumetric enzyme activity after cell lysis on the macroscopic scale  (

maxmacro

eK ) was estimated taking into account the working volume ( wV , 10-3) and the total 

dead cell volume ( dc

s dV X ) as shown in Eq. C.3.8 (similar to the conversion of the micro- 

to the macroscale described in Eqs. 3.1.84 and 3.1.85) 

max max
dc

macro dc s d
e e

w

V X
K K

V
=                                                                                    C.3.8 
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To evaluate the impact of the amino acid metabolism on the production of glutamate and 

ammonium, the estimated amino acid degradation rate ( AAexr , Eq. A.2.39) was modified 

as shown in Eq. C.3.9. 

maxx macro

AAex AAex NADr K b=                                                                                  C.3.9 

Here, 
x

AAexr describes the amino acid degradation rate on the supernatant after cell lysis, 

maxmacro

AAexK is the macroscopic volumetric amino acid degradation rate, 
NADb is the relative 

NADH level,  is a step function which is zero for non-infected cells and one for infected 

cells.  

The model simulations of this in silico study are shown in Fig. C.3.1. 

 
Figure C.3.1.: Concentration of extracellular metabolites before and after virus infection with (˗ ˗) 

and without (─) leakage of enzymes related to amino acid degradation into the supernatant. (A) 

extracellular glutamine, (B) extracellular ammonium, (C) extracellular glutamate, (D) volume of dead cells, 

(E) intracellular amino acid degradation rate and (F) extracellular amino acid degradation rate. Blue vertical 

lines: 0, 12 and 24 hours post infection. Experimental data of Cultivation 2. Blue line: enzyme leakage (+). 

Red line: enzyme leakage (-). Red circles: experimental data of Cultivation 2. 
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These results demonstrate that accounting for extracellular amino acid degradation 

caused by the intracellular enzyme leakage (
x

AAexr , Fig. C.3.1F) has no impact on the 

concentration of glutamine in the supernatant (Fig. C.3.1A). On the other hand, this 

results in a significant increase in the concentration of ammonium and glutamate in the 

extracellular environment (Figs. C.3.1B and C.3.1C). This is true even when the rate of 

extracellular amino acid degradation (Fig. 3F) is significantly lower than the rate of 

intracellular amino acid degradation (
x

AAexr , Fig. C.3.1E). As can be seen, the rate of 

extracellular amino acid degradation is proportional to the increase in the volume of dead 

cells volume ( dCV , Fig. C.3.1D) which would be proportional to the amount of intracellular 

enzyme leaked.  

Overall, these results indicate that if enzymes leak into the supernatant after cell lysis and 

remain active, they can have a significant impact on the concentration of extracellular 

metabolites. Additional experiments should be performed to support this finding.  
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