
From inner structural arrangements
in elastic materials

to tailored overall behavior

Thesis

for the degree of

doctor rerum naturalium (Dr. rer. nat.)

approved by the Faculty of Natural Sciences of
Otto von Guericke University Magdeburg

by M. Sc. Lukas Fischer

born on June 12, 1996 in Krefeld

Examiners: Prof. Dr. Andreas M. Menzel

Prof. Dr.-Ing. Thomas Wallmersperger

submitted on: November 20, 2024

defended on: April 30, 2025





iii

Abstract

In this dissertation, the main focus is on magnetic gels and elastomers, fascinating
composite materials that consist of magnetic or magnetizable inclusions embedded
in a soft, usually polymeric, elastic matrix material. These inclusions cause the
materials to be responsive to external magnetic fields. The two most noticeable
and well-studied effects are changes in the rheological behavior (magnetorheological
effect) and overall deformations (magnetostriction) in response to the applied
external magnetic fields. We mostly concentrate on the latter effect. More precisely,
we investigate what the influence of the arrangement of magnetizable inclusions
within the elastic matrix on the magnetostrictive response is.
So far, mostly randomized or chain-like configurations have been investigated.

However, with modern technologies such as 3D printing, manufacturing magnetic
gels and elastomers with targeted placements of the inclusions is within reach.
For the model system of a homogeneous, isotropic, and linearly elastic sphere with

embedded magnetizable inclusions, we managed to calculate overall magnetically
induced deformations from the arrangement of magnetizable inclusions directly.
First, we investigate the consequences of various regular lattice arrangements for the
magnetostrictive response, which even leads to qualitative differences. Additionally,
the deformational response depends on the employed elastic matrix material as well.
Next, we show that specific arrangements of magnetizable inclusions can induce
twist-type deformations of the whole material. Moreover, we investigate samples
with a polydisperse, binary distribution of the inclusion sizes. Targeted placements
of bigger and smaller inclusions allows to further tailor the magnetostrictive effects.
Next, we investigate several other configurations, regarding higher-order modes
of deformation and relate them to the underlying configuration. As a major con-
tribution, we then identify arrangements of magnetizable inclusions that lead to
the largest magnetostrictive effects, which is often desirable in applications, by
combining analytical theory with a computational optimization scheme. Further-
more, we study magnetically induced changes in the transport properties and the
thermal conductivity of these materials, which is related to chain formation in the
arrangement of the inclusions. As an addition, we investigate spherical, linearly
elastic core-shell systems for their response to an applied isotropic line force in the
equatorial plane, which is relevant, e.g., for functionalized microgels adsorbed to a
liquid-liquid interface.
In summary, we wish to support the path towards tailored applications of this

exciting class of materials. This dissertation is intended to provide a fundamental
theoretical framework for this ambition.
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Kurzzusammenfassung

Thema dieser Dissertation sind magnetische Gele und Elastomere, faszinierende
Komposit-Materialien, bestehend aus magnetischen oder magnetisierbaren Ein-
schlüssen in einer weichen, typischerweise polymerartigen, elastischen Matrix. Durch
diese Einschlüsse sind die Materialien durch externe Magnetfelder ansprechbar. Die
zwei deutlichsten und am besten untersuchten Effekte sind die Änderungen des
rheologischen Verhaltens (magnetorheologischer Effekt) und globale Deformationen
(Magnetostriktion) durch die Anwendung externer Magnetfelder. Wir konzentrieren
uns überwiegend auf Zweiteres. Insbesondere untersuchen wir, welchen Einfluss die
Anordnung der magnetisierbaren Einschlüsse innerhalb der elastischen Matrix auf
das magnetostriktive Verhalten hat.
Bisher wurden hauptsächlich zufällige oder kettenartige Strukturen untersucht.

Allerdings ist durch moderne Techniken wie den 3D-Druck die Herstellung magne-
tischer Gele und Elastomere mit gezielter Platzierung der Einschlüsse in greifbarer
Nähe.
Für das Modell-System einer homogenen, isotropen und linear elastischen Kugel

mit eingebetteten magnetisierbaren Einschlüsse konnten wir die magnetisch indu-
zierten Deformationen direkt aus der Anordnung der magnetisierbaren Einschlüsse
berechnen. Zuerst untersuchen wir die Auswirkungen verschiedener Gitterstruktu-
ren auf das magnetostriktive Verhalten, was sogar zu qualitativen Unterschieden
führt. Weiterhin hängt die Deformationsantwort ebenfalls vom elastischen Material
ab. Als Nächstes zeigen wir, dass spezifische Anordnungen zu einer Verdrillung des
gesamten Materials führen können. Anschließend betrachten wir Systeme mit einer
polydispersen, binären Größenverteilung der Einschlüsse. Gezielte Platzierungen
der größeren und kleineren Einschlüsse ermöglichen ebenfalls die Anpassung magne-
tostriktiver Effekte. Hiernach untersuchen wir weitere Anordnungen bezüglich ihrer
höheren Deformationsmoden und führen diese auf die verwendete Konfiguration
zurück. Als wichtigen Beitrag identifizieren wir danach solche Anordnungen der
magnetisierbaren Einschlüsse, die zu den größten magnetostriktiven Effekten führen,
was oft in Anwendungen gewünscht ist. Hierzu verbinden wir analytische Theorie
mit numerischer Optimierung. Weiterhin untersuchen wir magnetisch induzierte
Änderungen in den Transporteigenschaften und der thermischen Leitfähigkeit die-
ser Materialien, was von einer Kettenbildung herrührt. Zusätzlich betrachten wir
kugelförmige, linear elastische Kern-Schalen-Systeme bezüglich deren Antwort auf
isotrope Linienkraftdichten in der Äquatorialebene, was beispielsweise relevant ist
für funktionalisierte Mikrogele, die an einer Flüssig-Flüssig-Grenzfläche adsorbiert
sind.
Zusammenfassend möchten wir die Entwicklung zu maßgeschneiderten Anwen-

dungen dieser spannenden Materialklasse fördern. Diese Dissertation soll dazu
einen fundierten theoretischen Rahmen liefern.
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Preface

The main contents of this cumulative dissertation is based on jointly published
articles (my name is highlighted by an underscore in the following list), and that
have been published in or submitted to peer-reviewed scientific journals. The work
for all publications has been supervised by Prof. Dr. Andreas M. Menzel. These
articles are reproduced in Chapter 2 and are listed according to their topical order:

� P1 L. Fischer and A. M. Menzel, Magnetostriction in magnetic gels and
elastomers as a function of the internal structure and particle distribution,
J. Chem. Phys. 151, 114906 (2019).

� P2 L. Fischer and A. M. Menzel, Towards a soft magnetoelastic twist actuator,
Phys. Rev. Research 2, 023383 (2020).

� P3 L. Fischer and A. M. Menzel, Magnetically induced elastic deformations
in model systems of magnetic gels and elastomers containing particles of
mixed size, Smart Mater. Struct. 30, 014003 (2021).

� P4 L. Fischer and A. M. Menzel, Magnetic elastomers as specific soft actua-
tors – predicting particular modes of deformation from selected configurations
of magnetizable inclusions, J. Magn. Magn. Mater. 591, 171695 (2024).

� P5 L. Fischer and A. M. Menzel, Maximized response by structural optimiza-
tion of soft elastic composite systems, PNAS Nexus 3, pgae353 (2024).

� P6 L. Fischer and A. M. Menzel, Analytical expressions for the two basic
modes of surface displacement and overall deformation of a free-standing or
elastically embedded sphere, arXiv:2407.09291 (2024).

� P7 G. J. L. Jäger, L. Fischer, T. Lutz, and A. M. Menzel, Variations in the
thermal conductivity of magnetosensitive elastomers by magnetically induced
internal restructuring, J. Phys.: Condens. Matter 34, 485101 (2022).

� P8 J. Kolker, L. Fischer, A. M. Menzel, and H. Löwen, Elastic deformations
of loaded core-shell systems, J. Elasticity 150, 77 (2022).

My contributions to each of these scientific articles are specified in detail in
Chapter 2.
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Chapter 1

Introduction

In this chapter, we start by introducing the publications and their general back-
ground and common themes in Sec. 1.1. Afterward, we expand on the theoretical
background of this dissertation and corresponding experimental realizations. The
background is split into two parts: First, we introduce linear elasticity theory,
describing deformations of low amplitudes in Sec. 1.2. We then continue by dis-
cussing magnetic or magnetizable inclusions concerning their phenomenology and
most important characteristics in Sec. 1.3. A combination of elastic and magnetic
properties is then provided by magnetic gels and elastomers, which belong to the
class of magnetic hybrid materials that we discuss in Sec. 1.4.

1.1 Overview

The present dissertation roots in the area of soft matter physics. This field concerns
materials or systems showing strong responses to applied forces and that are easily
driven out of equilibrium or even permanently in a non-equilibrium state [1]. More
specifically, my studies concern the subject of magnetic gels and elastomers [2–8].
While a more detailed definition is given later in Sec. 1.4.2, in short, they consist
of a soft, usually polymeric, matrix with embedded magnetic or magnetizable
particles. One prominent feature of these materials are strong responses to external
magnetic fields which drive them out of their initial equilibrium configuration (and
often into a new equilibrium state). Therefore, they present prime examples of soft
matter systems.
One of those responses is the so-called magnetostriction, i.e. shape changes of

materials in homogeneous external magnetic fields [9–21]. In our works, we use a
mesoscopic model to describe these effects: We do not resolve the elastic matrix
material itself, for instance, by taking into account the discrete nature of individual
polymer chains, as has been done in some previous studies. This is what we term
the microscopic level of description. Instead, we treat it as a fully homogeneous
and isotropic continuous medium. Nevertheless, the arrangement of the magnetic
or magnetizable inclusions inside of the elastic matrix is resolved by respecting their
discrete character. This is in contrast to the macroscopic level, where the whole
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system is described by macroscopic continuous fields. Corresponding equations are
derived, amongst others, based on conservation laws and symmetry properties. For
a more detailed discussion, we refer to Sec. 1.4.4.
Naturally, each level features its own set of advantages and disadvantages. For

the microscopic level, the main advantage is naturally that it is the most basic
one, resolving many individual degrees of freedom of the material (albeit not on a
quantum level). The disadvantage of these models is their high computational cost,
which often limits them to rather small systems with a low number of magnetic
or magnetizable particles. On the macroscopic level, the description is naturally
quite general and some purely analytical calculations are possible. The description
does not resolve the magnetizable inclusions explicitly, so it works even for huge
numbers of them. Yet, details of individual interactions between the discrete
inclusions and their consequences on the material behavior remain unresolved. The
mesoscopic level that we choose is naturally somewhere in between the microscopic
and macroscopic model. This level is ideal for the question that we aim to answer in
this thesis: What is the effect of different structural arrangements of the magnetic
or magnetizable inclusions on the overall, macroscopic material behavior? As we
show later, the answer is that the arrangement is a very important ingredient
concerning which type of magnetostrictive deformation or also magnetorheological
effect results, even qualitatively.
It is important to note that this question is not a purely hypothetical one.

While some improvements are still needed to allow for an easy manufacturing of
these materials with precisely controlled arrangements of magnetizable inclusions
within the elastic matrix, recently developed technology allows to control these
arrangements more and more [22–33]. Thus, we can expect them to become
increasingly common in the future, see Sec. 1.4. This opens another means to tune
magnetic gels and elastomers for their desired applications. By predicting what
the effect of these targeted placements is, we determine which types of placements
should be investigated experimentally and what the important requirements for
these new manufacturing methods are, such that they are useful for potential
applications.
Firstly, in P1, we present results for irregular randomized arrangements of

magnetizable inclusions, representing the type most commonly found in experiments
to date. They are placed in a soft, homogeneous and isotropic as well as linearly
elastic sphere, which allows us to treat the deformational response analytically,
based on earlier work by Walpole [34]. We previously extended it to a free-standing
sphere [35], which is further worked out in the present work. Here, vanishing overall
forces and torques are required to avoid non-static situations that cause diverging
displacements.
Concerning the magnetizable inclusions, we describe them as magnetic dipoles,

which is reasonable, provided the inclusions are sufficiently far apart from each
other. This is guaranteed in our work because we only consider well-separated
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inclusions. From these magnetically induced dipole–dipole forces, we calculate
the overall deformation of the initial sphere by calculating the displacement field
at 49152 approximately evenly spread positions on the spherical surface. In that
evaluation, we iteratively calculate the influence of the deformations on the magnetic
interactions and the resulting magnetic forces to find the new equilibrium positions
of the magnetizable inclusions. Finally, to analyze the resulting displacement
field in more detail, we expand the displacement field into spherical harmonics to
quantify the dominant modes of deformation.
From there, we obtain qualitatively the same results as in the experiments for

the randomized arrangements [20,21], namely an elongation along the external field
direction. Additionally, we investigate multiple regular lattice-type arrangements
of magnetizable inclusions. Different types of responses result, not only as a
function of the arrangement, but also depending on the parameters describing the
elastic matrix material (specifically the Poisson ratio, see Sec. 1.2) for the same
configuration of magnetizable inclusions.
Next, in P2, we show that with specific arrangements of magnetizable inclusions,

a twist-type or torsional magnetostrictive deformation can result in spherical
magnetic gels and elastomers (quantified by a specific mode of deformation). We
also discuss which of the proposed arrangements lead to the strongest effect. In
detail, we compare globally twisted structures on the one hand to different helical
arrangements on the other hand, where many helices are placed next to each other
and the central axis of the globally twisted structures or of the helices coincides
with the magnetization direction. We vary the radius as well as the pitch of the
helices or the degree of initial structural twist for helical and globally twisted
arrangements, respectively. Finally, the results are rationalized in terms of a
minimal analytical model. Afterward, another group has observed corresponding
effects experimentally [36] and a scale-bridging description that allows to calculate
macroscopic material parameters as a function of the mesoscopic arrangement has
been proposed [37].
Third, we move on to magnetic gels and elastomers that feature a set of mag-

netizable inclusions showing polydispersity, as is inherent to any experimental
system. As the simplest model, we investigate a binary size distribution P3. In this
publication, we conclude on the one hand that a randomized usage of polydisperse
magnetizable inclusions does not majorly influence the resulting magnetostrictive
effects. This is quite helpful for experimentalists because it means that a certain
degree of polydispersity does not change the observed effects significantly. On the
other hand, however, if the polydisperse magnetizable inclusions are placed in a
strategic manner in the elastic matrix, even qualitative changes of the magnetostric-
tive effects can result for positionally identical but size-controlled arrangements of
magnetizable inclusions.
Moreover, we investigate additional regular arrangements, similar to P1, but now

focusing on the higher modes of deformation in P4. The main arrangements that
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we investigate are chain-like arrangements (with different lateral configurations of
the chains), inspired by experimental configurations, as well as three-dimensional
spherical or star-shaped arrangements and arrangements that induce twist-type
magnetostrictive deformations, similar to those from P2. We find that these higher
modes of deformation can be seen in some cases as a fingerprint of the underlying
arrangement of magnetizable inclusions.
As a final publication that investigates magnetostrictive effects, we managed

to derive analytical formulae for the two most basic relevant modes of overall
deformation: One of these characterizes overall changes in volume, while the other
characterizes elongation along the external magnetic field direction relative to
lateral contraction or vice versa (depending on the sign of this mode). A (lengthy)
derivation of these analytical formulae is provided in P6. With these formulae
at hand, we proceed to optimize the arrangements of magnetizable inclusions for
the largest magnitudes of these two modes of deformation P5. For this purpose
and due to the many degrees of freedom, we employ a numerical optimization
technique based on simulated annealing (SA) [38–41]. In this manner, we manage
to find the configurations of magnetizable inclusions that lead to the largest
deformations, distinguishing maximized elongation or contraction along the field
direction as well as maximized increases or decreases in volume. For applications,
large magnetostrictive deformations are usually desirable. Consequently, this
represents an important step forward. As in the previous publications, we evaluate
the influence of different elastic matrix materials on these effects.
Moreover, P5 likewise presents results for optimizing the so-called magnetorheo-

logical (MR) effect. This term refers to another type of response of these materials
to applied external magnetic fields, namely, changes in their rheological behav-
ior. Commonly, these materials show hardening upon magnetization [2, 27,42–46].
Much more rarely, also the opposite behavior of magnetically induced softening
is considered, the so-called negative MR effect [47,48]. In this work, we consider
both of them in view of their static elastic moduli. We find optimized structures
for maximized amplitude of the positive as well as the negative MR effect, here
considering systems of overall cubical shape. We distinguish MR effects under
uniaxial elongation conserving the overall volume and simple shear deformations.
Additionally, we compare all optimized configurations to regular lattice arrange-
ments, identifying as far as possible those regular arrangements that can lead to
similar magnetostrictive or MR effects.
The optimized configurations as well as the resulting magnitude of these effects

depend on the number of magnetizable inclusions, as we show here. Our method
should apply for other soft elastic systems as well. Immediately, electrorheological
elastomers [49–51] or thermally actuated systems [52] come to mind. More generally,
whenever one can connect the overall macroscopic response of soft elastic composite
materials to some internal degrees of freedom, one can optimize the former for the
latter. In this manner, P5 represents an example how a so-called inverse problem
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might be solved, which is a current research topic that has received much attention
lately [53].
P7 was the result of supporting and working together with a bachelor student of

physics, G. J. L. Jäger. Here, we continue to study magnetic gels and elastomers,
but now investigate the effect of magnetically induced deformations on the transport
properties, particularly thermal conductivity. We use a dipole-spring model to
investigate two-dimensional model systems of magnetic gels and elastomers, repre-
senting thin films or membranes. The magnetically induced restructuring of these
materials is linked to a change in the thermal conductivity. We discuss the influence
of several parameters on these changes, such as the strength of magnetization, the
particle number, their area fraction, and the aspect ratio of the system.
Finally, we return to spherical, linearly elastic systems, but now consider materials

consisting of an elastic core and an elastic shell in the collaborative work P8. We
calculate how these systems deform in response to a radially applied force line
density of constant strength in the equatorial plane. This situation is relevant on
various scales and for different example systems, but a motivating example are
microgels adsorbed to a fluid-fluid interface, where the surface line tension at the
interface provides the force density. We discuss how the deformational behavior
depends on the different elastic properties of the core and the shell and their relative
sizes.
Having provided an overview of our own works that form the basis of this

dissertation, we next briefly review fundamental relations of linear elasticity. They
form the quantitative theory that constitutes the backbone of our calculations.
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1.2 Elements from linear elasticity theory

The continuum theory of linear elasticity is reviewed briefly in this section to
overview the relevant aspects for our work. Other aspects are at least partially omit-
ted, specifically concerning more general nonlinear elastic descriptions. Throughout
this section, our presentation mainly follows Ref. 54.

First, we recall that we use a mesoscopic description for the materials, which
means that we do not resolve the discrete nature of the constituents of the elastic
matrix. Instead, we treat it as a continuous elastic material – a material that
can perform reversible deformations under applied forces (excluding effects related
to plasticity). For simplicity, we further assume the elastic matrix to be fully
homogeneous and isotropic. Furthermore, we do not resolve the time-dependence
of the deformations. Instead, we calculate which final state is reached when forces
are acting inside the elastic matrix, not resolving the time-dependent deformations
that happen in the time period from the undeformed to the final deformed state.
This would require a viscoelastic description, which is much more involved. For
example, Ref. 55 presents a possible approach. Throughout this section, we always
assume the elastic materials to be three-dimensional.

The central quantity of linear elasticity theory is the so-called displacement field
u(r), describing how much the material elements are displaced from their initial
positions r. In formulae, if we denote the positions in the deformed final state by
r′(r), then we can define

u(r) := r′(r)− r. (1.1)

Obviously, since this is a field description, displacements u and positions in the
deformed state r′ depend on the initial positions r. Furthermore, we assume that
r′(r) is one-to-one, because material elements are neither created nor destroyed
during the process of deformation.

1.2.1 Changes in length and the strain tensor

Next, we are interested in how much distances change during the deformation. This
is relevant because, for example, the interactions of the magnetizable inclusions
depend on their mutual distance. Using Einstein’s summation convention (summa-
tion over repeated indices, with each index i, j, . . . = 1, 2, 3 indicating the Cartesian
components of a vector/tensor), we calculate the difference of the squares of an
infinitesimal initial distance dr between two material elements and the distance
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between the same material elements in the deformed state dr′:

dr′2 − dr2 = dr′idr
′
i − dridri (1.2)

= d (ri + ui) d (ri + ui)− dridri (1.3)

= 2duidri + duidui (1.4)

=
∂ui

∂rj
dridrj +

∂uj

∂ri
dridrj +

∂ui

∂rj
drj

∂ui

∂rk
drk (1.5)

= dri2εijdrj. (1.6)

From the first to the second line, we have used Eq. (1.1). In the last line, we have
renamed summation indices and introduced the so-called strain tensor (the factor
2 is added by convention), the components of which read:

εij =
1

2

[
∂ui

∂rj
+

∂uj

∂ri
+

∂uk

∂ri

∂uk

∂rj

]
. (1.7)

As we can deduce from this line, the strain tensor is dimensionless. In linear
elasticity theory, we assume the magnitudes of deformation to be small. Therefore,
we linearize Eq. (1.7) as

εij ≈
1

2

[
∂ui

∂rj
+

∂uj

∂ri

]
. (1.8)

Consequently, the strain tensor ε in linear elasticity theory is simply given as the
symmetrized gradient of the displacement field.

1.2.2 Changes in volume and incompressibility

In addition to how lengths change in the deformed state, we can also calculate how
the change of an infinitesimal volume element (at a position r) can be expressed in
the coordinates of the deformed state:

dV ′ − dV =

(
det

∂r′

∂r
− 1

)
dV (1.9)

=

[
det

(
∂u

∂r
+ 1

)
− 1

]
dV. (1.10)

Here, we introduced the unit matrix 1, the determinant det, and we used the
definition of the displacement field u(r) in the last line. Continuing the calculation,
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we obtain

dV ′ − dV =


det



1 + ∂u1

∂r1

∂u1

∂r2

∂u1

∂r3
∂u2

∂r1
1 + ∂u2

∂r2

∂u2

∂r3
∂u3

∂r1

∂u3

∂r2
1 + ∂u3

∂r3


− 1


 dV (1.11)

=

[
1 +

∂u1

∂r1
+

∂u2

∂r2
+

∂u3

∂r3
− 1 +O

((
∂ui

∂rj

)2
)]

dV (1.12)

=

[
∂ui

∂ri
+O

((
∂ui

∂rj

)2
)]

dV (1.13)

≈ εiidV. (1.14)

In linear elasticity theory, we omit quadratic terms in the derivative of the dis-
placement field in these expressions. In this case, the last line shows that the trace
(written as Tr in the following) of the strain tensor is related to changes in the
volume at a certain position. If we require all volumes to be the same in the unde-
formed and in the deformed state, we formulate the condition of incompressibility.
We can write this condition within the framework of linear elasticity theory as

εii = Tr ε
!
= 0. (1.15)

This is often a reasonable assumption for rubber-like materials [56] and is commonly
assumed for hydrogels [57,58]. Still, it should be verified experimentally, for example
using the method proposed in Ref. 58, because it may depend on the situation at
hand.

1.2.3 The stress tensor

In (linear) elasticity theory, deformations cost energy. Therefore, restoring forces
emerge upon deformation that try to return the elastic body to its initial unde-
formed shape. These forces are counteracted by the forces applied in the material.
Considering a volume element V at position r, two possibilities exist for forces to
be applied to this volume element: The forces can either attack the bulk of the
material directly as bulk force densities fb(r) or act on the surface of a volume
element. In the latter case, they are called stresses, the corresponding surface force
density is given by n̂(r) · σ(r). Here, we introduced the stress tensor σ and the
surface normal (pointing towards the outside) n̂ at position r.
Therefore, the k-th component of the total force acting on this volume element is
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given by the sum of those two terms:
∫

V

fb,k(r)dV +

∮

∂V

[n̂(r) · σ(r)]k df (1.16)

=

∫

V

fb,k(r)dV +

∮

∂V

σlk(r) d⃗f l(r) (1.17)

Gauss
=

∫

V

[fb,k(r) +∇lσlk(r)] dV (1.18)

=:

∫

V

fk(r)dV. (1.19)

Here, df marks the infinitesimal surface element with d⃗f(r) := n̂(r) df , “Gauss”
refers to Gauss’s divergence theorem with the nabla operator ∇, and f(r) denotes
the net force density at position r. Here and in the following, integrals are formulated
in the undeformed state over the volume V .
In static equilibrium, no net forces act on any volume V . Therefore, we can set the
expression in Eq. (1.19) to zero. Since the volume of integration is arbitrary, we
can conclude that the integrand is vanishing identically, i.e. in index notation

fb,k(r) +∇lσlk(r) = 0 (1.20)

or in vector notation

fb(r) +∇ · σ(r) = 0. (1.21)

As can be seen from this formula, the units of the stress tensor σ are those of a
force density times a length, or in other words, those of a pressure (measured in
Pa). In the following, we will connect the stress tensor to the deformations via
the energy that is required to induce these deformations. Illustratively, the stress
tensor σij(r) measures the j-th component of the force applied at that surface
of the considered volume element with normal vector in i-direction per surface
direction.
Before we continue with the elastic energy, we will also consider the total torque

density M acting on a given volume V (again considering the k-th component):
∫

V

Mk(r)dV =

∫

V

ϵklm fl(r) rmdV (1.22)

=

∫

V

ϵklm fb,l(r) rmdV +

∮

∂V

ϵklm σnl(r) rmd⃗fn(r) (1.23)

Gauss
=

∫

V

ϵklm [fb,l(r) rm +∇n (σnl(r) rm)] dV (1.24)

=

∫

V

ϵklm [fb,l(r) +∇n (σnl(r))] rmdV +

∫

V

ϵklm σml(r)dV. (1.25)
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Here, we introduced the Levi-Civita symbol ϵklm. Assuming static equilibrium, i.e.
vanishing total torque, and using Eq. (1.20) to eliminate the term in the square
bracket in Eq. (1.25), we can conclude due to the integration over an arbitrary
volume:

ϵklm σml(r) = 0 = ϵklm σlm(r) ∀k ∈ {1, 2, 3}. (1.26)

Thus, we conclude that symmetry of the stress tensor is required to avoid global
rotations. Consequently, we can also rewrite Eq. (1.20) as

fb,k(r) +∇lσkl(r) = 0. (1.27)

As a remark, a uniform compressing pressure p that acts on the material from all
sides equally can be written as the stress σ = −p 1 for fb = 0.

1.2.4 Relation to the thermodynamic energy

For a purely elastic material, the deformation is assumed to be independent of
its deformational history. Instead, we can deduce the deformational state of the
elastic body by minimizing an (appropriate) energy, as detailed in the following.
This allows us to connect the stress and strain tensors, as defined in Secs. 1.2.1 and
1.2.3, respectively.
We assume that the material is in a deformed state with displacement field u(r).
Then, we change the displacement field by an infinitesimal amount δu(r). The
(infinitesimal) work δW needed for this change in a volume V can be calculated
by summing up the contributions from the bulk and the surface, as in Eq. (1.16).
We use the convention δW > 0 for an increasing internal energy density of the
system. As in classical mechanics, the work is given as the product of the forces
and displacements, which results (in index notation) in

δW =

∫

V

fb,i(r)δui(r)dV +

∮

∂V

σji(r)δui(r)d⃗f j (1.28)

Eq. (1.20)
=

∫

V

[−∇jσji(r)] δui(r)dV +

∮

∂V

σji(r)δui(r)d⃗f j (1.29)

= −
∫

V

∇j [σji(r)δui(r)] dV +

∫

V

σji(r)∇jδui(r)dV +

∮

∂V

σji(r)δui(r)d⃗f j

(1.30)

Gauss
= −

∮

∂V

σji(r)δui(r)d⃗f j +

∫

V

σji(r)∇jδui(r)dV +

∮

∂V

σji(r)δui(r)d⃗f j.

(1.31)

Here, obviously the first and the third terms cancel each other. Therefore, only
the second term remains, which can be rewritten using the symmetry of the stress
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tensor and linearity of the derivative as

δW =
1

2

∫

V

σij(r) δ∇jui(r)dV +
1

2

∫

V

σij(r) δ∇iuj(r)dV (1.32)

=

∫

V

σij(r)
1

2
δ [∇jui(r) +∇iuj(r)] dV (1.33)

=

∫

V

σij(r)δεij(r)dV. (1.34)

As the integration volume V is arbitrary, we can conclude that the integrand is
vanishing identically. It follows for the work density by taking the limit of the
change in the displacement field δu(r) to zero, then writing d instead of δ:

dW (r) = σij(r)dεij(r). (1.35)

For the systems that we consider, it is usually appropriate to work in the canonical
thermodynamic ensemble, because the temperature T is usually fixed overall by the
room/environmental temperature and no material is added or taken away. Therefore,
we consider the free-energy density F of the materials. Its thermodynamic relation
to the work density W , chemical potential µ and entropy density S is given as

dF = −SdT + dW + µdN (1.36)

= −SdT + σijdεij + µdN. (1.37)

Therefore, we can conclude

σij =

(
∂F

∂εij

)

T,N

, (1.38)

i.e., we can calculate the stress tensor in linear elasticity theory by calculating
the derivative of the free energy density with respect to the strain tensor at fixed
temperature T and particle number N .

1.2.5 Free-energy density

Next, we present an ansatz for the free-energy density that can then be used
to calculate the stress-strain relation via Eq. (1.38). Obviously, the free-energy
density is a function of the deformations, which we describe by the strain tensor. In
particular, the derivatives of the displacements enter the free-energy density because
homogeneous displacements do not cost energy (they correspond to rigid translations
of the whole elastic body). First, we set the free energy of the undeformed ground
state (σ = 0 = ε) to zero, fixing the zero of the free energy. Next, linear terms
in the strain tensor of the free energy are forbidden because they would lead to
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stresses without deformations of the material via Eq. (1.38). Therefore, we focus
on the quadratic terms in the strain tensor. Cubic and higher-order terms of the
energy in the strain tensor are neglected due to the assumption of small strains in
linear elasticity theory. For more general nonlinear descriptions, they can become
important – they are incorporated in so-called hyperelastic models, which are
beyond the scope of this dissertation.

To get a scalar quantity from quadratic terms of the symmetric strain tensor εij
(as is required for a scalar energy function), there are only two possibilities that
respect the condition of isotropy: The squared trace of the strain tensor and the
squared Frobenius norm, i.e., the sum of the squares of each element of the strain
tensor. Therefore, we can write the most general form of the isotropic free-energy
density that only contains quadratic terms in the strain tensor as

F =
λ

2
ε2ii + µ εijεij. (1.39)

Here, we introduced the so-called Lamé parameters λ and µ. The 2 is added by
convention. Since the strain tensor is dimensionless [see its definition in Eq. (1.8)],
the Lamé parameters are both measured in the units of an energy density of Jm−3

or equivalently Nm−2 = Pa. Their exact numerical values always depend on the
material that is to be described by our theory.

From Eq. (1.38), we calculate the stress tensor from the free-energy density as

σij =
λ

2
2δilδjlεkk + 2µ εij (1.40)

= λ δijεkk + 2µ εij. (1.41)

In this equation, we introduced the Kronecker delta δij, which represents the
i, j-component of the unit matrix 1.

One issue with the form of the free-energy density in Eq. (1.39) is that both
components are not independent: The second term is related to the squared
Frobenius norm, which is a norm and therefore only nonzero for nonzero strain
tensors. Therefore, if it is larger than zero, also the first term is always larger than
zero. Consequently, it makes sense to split the strain tensor into a trace-free part,
the so-called pure shear part, and the remaining pure compression/dilation part,
related to changes in volume [see Eq. (1.14)]:

εij = εij −
1

3
δijεkk

︸ ︷︷ ︸
trace-free

+
1

3
δijεkk. (1.42)
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Next, we split Eq. (1.39) in the same manner:

F =
λ

2
ε2kk + µ

[(
εij −

1

3
δijεkk

)
+

1

3
δijεkk

]2
(1.43)

=
λ

2
ε2kk + µ

(
εij −

1

3
δijεkk

)2

+
2µ

3
δijεkk

(
εij −

1

3
δijεll

)
+

µ

9
ε2kk δijδij︸ ︷︷ ︸

δii=3

(1.44)

= µ

(
εij −

1

3
δijεkk

)2

+
1

2
ε2kk

(
λ+

4µ

3
− 4µ

9
3 +

2µ

9
3

)
(1.45)

= µ

(
εij −

1

3
δijεkk

)2

+
1

2
ε2kk

(
λ+

2µ

3

)

︸ ︷︷ ︸
=:K

(1.46)

= µ

(
εij −

1

3
δijεkk

)2

+
K

2
ε2kk. (1.47)

The parameters µ and K are called shear and bulk modulus, respectively. (The
naming is consistent: µ is related to the pure shear part of the strain tensor.)
We can vary the two parts of the strain tensor in Eq. (1.42), related to the two
contributions to the energy density, independently. Thus, to guarantee thermo-
dynamic stability of the system, i.e., for the undeformed state to be the global
minimum of F , we equivalently require positivity of the two moduli,

µ > 0, K > 0. (1.48)

Another possible choice to express the two parameters in the free-energy density is
to use only the shear modulus as a dimensional quantity and another dimensionless
parameter, the so-called Poisson ratio ν, which is defined as

ν :=
1

2

3K − 2µ

3K + µ
(1.49)

or equivalently when using the two Lamé parameters as

ν :=
1

2

λ

λ+ µ
. (1.50)

From Eq. (1.49), we deduce that the Poisson ratio is bounded by −1 from below
(for K → 0 or µ → ∞ ) and by 1/2 from above (for µ → 0 or K → ∞). The
latter is called the limit of incompressibility: As Eq. (1.47) shows, K → ∞ implies
that non-zero values of the trace cost an infinite amount of energy, which therefore
implies that Eq. (1.15) must be fulfilled for a finite energy. Moreover, materials
with a negative Poisson ratio, i.e. ν < 0, are called auxetic [59–64]. They have the
unusual property that uniaxial elongation of these materials leads to a perpendicular
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elongation (instead of the contraction for “normal” materials, i.e., those with a
positive Poisson ratio).
In the following, we always describe linearly elastic materials by the shear modulus

and Poisson ratio. This combination of parameters leads to the free-energy density
[from Eq. (1.39)]:

λ =
2µν

1− 2ν
(1.51)

⇒ F =
µν

1− 2ν
ε2ii + µ εijεij. (1.52)

Inserting these parameters into Eq. (1.41) leads to

σij =
2µν

1− 2ν
δijεkk + 2µ εij (1.53)

=
2µν

1− 2ν
δij∇ · u+ µ (∇jui +∇iuj) . (1.54)

In the last equation, we have used the definition of the strain tensor from Eq. (1.8).

1.2.6 Navier–Cauchy equations

The final step is to insert Eq. (1.54) into the equilibrium condition Eq. (1.27):

0 = fb,i(r) +∇j

[
2µν

1− 2ν
δij∇ · u(r) + µ (∇jui(r) +∇iuj(r))

]
(1.55)

= fb,i(r) +
2µν

1− 2ν
∇i∇ · u(r) + µ∇j∇jui(r) + µ∇i∇juj(r) (1.56)

= fb,i(r) + µ

(
2ν

1− 2ν
+ 1

)
∇i∇ · u(r) + µ∆ui(r) (1.57)

In the last line, we have introduced the Laplace operator ∆ := ∇ · ∇. Finally,
combining the terms in the bracket, reordering terms, and switching to vector
notation leads to

µ∆u(r) +
µ

1− 2ν
∇∇ · u(r) + fb(r) = 0 . (1.58)

These are the so-called Navier–Cauchy equations [65] that are the central equations
of linear elasticity theory. Mathematically, they represent second-order partial
differential equations for the displacement field for a given bulk force density.
For an infinitely extended linearly elastic medium, the solution for an arbitrary

force density is straightforward. It can be calculated using the Green’s function
approach. Along these lines, we search for the solution of the Navier–Cauchy
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equations with a delta-distributed force distribution fb(r) = Fδ(r− r̄), where δ(r)
is the Dirac delta distribution, r̄ marks the position where the force is concentrated,
and F denotes the force that acts there. Since the Navier–Cauchy equations are
linear in the forces and displacements, we write the solution in the form of a
Matrix-vector product:

u(r) = G(r, r̄) · F, (1.59)

where G(r, r̄) is the so-called Kelvin tensor, the searched-for Green’s function for
the Navier–Cauchy equations, which assumes vanishing displacements at infinity.
Its name derives from Lord Kelvin, who presented the solution in Ref. 66. A
derivation is given for example in Ref. 67, Appendix A. The components of the
Kelvin tensor read

Gij(r, r̄) = Gij(r− r̄) =
1

16πµ(1− ν)

(
(3− 4ν)δij
|r− r̄| +

(ri − r̄i)(rj − r̄j)

|r− r̄|3
)
. (1.60)

The first equality follows from the homogeneity of the material. Returning to
general bulk force densities, the resulting displacement field is calculated by a
convolution (via the superposition principle):

u(r) =

∫

V

G(r− r̄) · fb(r̄)d3r̄. (1.61)

As a final remark, we add that, for perfectly incompressible materials, i.e. for
ν = 1/2, the Kelvin tensor formally coincides with the Oseen tensor of low-Reynolds-
number hydrodynamics [68], replacing the displacement field u(r) and the shear
modulus µ by the velocity field v(r) and the hydrodynamic (shear) viscosity,
respectively.
Furthermore, for rather incompressible materials of ν = 1/2, a scale–separation

occurs in the Navier–Cauchy equations. As a consequence, Eq. (1.58) is split into
the following set of two equations for incompressible materials:

∇ · u(r) = 0, (1.62)

µ∆u(r) + fb(r) = 0. (1.63)

1.2.7 Summary of this section

To summarize, the methods in Sec. 1.2 are used throughout to describe the defor-
mations of linearly elastic materials. More precisely, we assume that the elastic
matrix materials are fully homogeneous and isotropic, which means that their
elastic properties can be described by two parameters: their shear modulus µ and
the nondimensional Poisson ratio ν. Particularly the latter value is extensively dis-
cussed in P1–P6 and P8. To calculate the deformations, we use the Navier–Cauchy
equations as formulated in Eq. (1.58).
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These equations can be solved by a Green’s function method, with the Green’s
function given by the Kelvin tensor in Eq. (1.60) for bulk systems. However, real
experiments complicate matters in a few different ways: The deformations are
not infinitesimally small and real samples are never infinitely extended. For the
former issue, we note that linear elasticity is still often a very good approximation,
even for finite deformations, as comparisons with nonlinear finite-element simu-
lations show [69]. To address the second issue of finite extension, we explicitly
included the boundaries of the systems into our investigations: Walpole [34] has
developed a Green’s function for a linearly elastic sphere embedded in an infinitely
extended elastic background medium. We have adapted this Green’s function to
the case of a free-standing elastic sphere [35, 70]. This function is used to study
magnetostrictive effects in P1–P5. Earlier work considered the interactions of
magnetizable inclusions in linearly elastic media in the presence of a rigid wall, for
which a corresponding Green’s function is also available [71].
Moreover, in P8, we also study the deformational behavior of a finite-sized sphere,
but here, the sphere is composed of a core and a shell. Additionally, forces are
applied from the outer surface as a force line density at the equator, acting radially
outward or inward. For this case, we calculate the displacement field analytically,
based on linear elasticity, see P8.
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Figure 1.1: (a) Magnetization M , divided by its saturation value MS, for param-
agnetic materials as a function of the applied magnetic field H. We
here plot the so-called Langevin function, which is a common model
for the magnetization behavior, see Sec. 1.3.2. Its argument is the
nondimensional parameter ξ which is proportional to H. (b) Qualita-
tive sketch of a hysteresis curve of M(H) for ferro- or ferrimagnetic
materials in blue. The initial magnetization behavior, drawn as the
dashed line, can be approximated for small values of H by the linear
function χH, indicated as the orange line. The order of the hysteresis
loop is illustrated by small arrows. Furthermore, we mark characteristic
points on the curve with gray dots with corresponding labels, namely
the remanence magnetization Mr and the coercivity field magnitude
HC .

1.3 Magnetic or magnetizable inclusions

1.3.1 Overview and phenomenology from experiments

In order to control the properties of the soft elastic materials by external magnetic
fields, they require magnetic or magnetizable inclusions. These inclusions are
discussed in this section for the situation of magnetic gels and elastomers. They
are of particulate character, therefore often also called magnetic or magnetizable
particles. However, we mainly refer to them as inclusions throughout, to stress the
fact that they are included in the elastic matrix material. In this section, we give
an overview of the commonly used inclusions from an application point of view,
not discussing the quantum mechanical origin of magnetic phenomena.

Generally, two typical magnetization curves are shown in Fig. 1.1. It describes
the magnetization M of a given material in response to an external magnetic field
H. In the absence of any other preferred directions, these two vectors have to
point to the same or opposite directions. Therefore they are only depicted in a
one-dimensional plot. In general, these curves contain the precise information
needed to calculate the magnetization behavior of a material, at least if they
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cover the full range of the external field magnitude of interest. The resulting total
magnetic field B (magnetic flux density field) is then given as the sum of these
values, multiplied by the vacuum permeability µ0.

In practice, one often simplifies these curves by discussing specific characteristic
properties of the curve. Firstly, the response to an initial magnetization in the
still linear regime is characterized by the magnetic susceptibility χ, which is given
by the initial slope of the magnetization curve, see Fig. 1.1(b). The susceptibility
allows to distinguish two types of materials:

� diamagnetic materials for χ < 0,

� paramagnetic materials for χ > 0 [see Fig. 1.1(a)].

In this context, it should be noted that the elastic or liquid matrix material
is often diamagnetic [72]. However, its magnetization is usually comparatively
small and not sufficient for the desired significant changes in response to external
magnetic fields. Therefore, magnetic or magnetizable inclusions dominate the
magnetic behavior in view of their much more pronounced responses to external
magnetic fields. Consequently, the magnetic properties of the matrix materials can
typically be safely neglected in the characterization of magnetic hybrid materials.
Continuing the discussion of the magnetization curve, the next important aspect is

the saturation magnetization, commonly denoted as MS. It describes the magnitude
of the magnetization for very strong (in theory: infinitely strong) external magnetic
fields of magnitude H, in a formula:

lim
H→∞

M(H) =: MS. (1.64)

We use the value of MS to rescale the magnetization in Figs. 1.1(a) and (b). Some
magnetic materials also show hysteretic behavior: When the magnetic field is
reduced from an elevated magnitude, the magnetization does not (necessarily)
return along the same curve. Instead, at least for so-called ferromagnetic and
ferrimagnetic materials, for which the magnetization generally aligns with applied
external fields, the magnetization is higher than the value when initially magnetizing
the materials. Even at zero external field, the so-called remanence magnetization Mr

remains, see Fig. 1.1(b). The external magnetic field must then be reoriented into
the opposite direction to remove the effect of the previous saturation magnetization.
In Fig. 1.1(b), we also display the so-called coercivity field magnitude HC , the
value at which the magnetization M reaches zero again.

In contrast to ferromagnetic and ferrimagnetic materials, a paramagnetic material
does not show hysteresis, see Fig. 1.1(a). Similarly, many ferromagnetic and
ferrimagnetic materials show a hysteresis loop with relatively small width, allowing
to neglect their hysteretic behavior. These materials are denoted as magnetically
soft materials. In contrast to that, ferromagnetic and ferrimagnetic materials with
significant hysteresis are denoted as magnetically hard.
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Returning to the nature of the magnetizable or magnetic inclusions (magnetically
soft or hard), the most important factor is thus obviously the material that they
consist of. However, other features are important as well, for example their size,
shape [73], and temperature [74].
One important aspect of the size-dependent properties is the fact that below a

threshold size of typically 100 nm [73,75], ferro- or ferrimagnetic particles become
single-domain, i.e. they can be viewed as featuring only one magnetic moment that
can be reoriented by an external magnetic field. However, there is often a so-called
magnetic easy axis, depending on the shape or crystalline structure, anchoring
the direction of magnetization [75]. Changing the direction of magnetization is
therefore unfavorable energetically. Consequently, these materials are also denoted
as magnetically blocked. Still, this threshold size depends strongly on the material
and can range from 20–800 nm [75].
When changing the magnetization direction, in principle two mechanisms are

possible. One is the so-called Brownian mechanism, which means that the particle
as a whole rotates. Another possibility is the Néel mechanism, which indicates
internal rotation of the magnetic moment against the “easy axis” [4, 76]. Which of
those two dominates depends on the particle size: The smaller the particle, the
more important is the latter mechanism [76].
For even smaller particles of about 10–15 nm, their magnetic behavior is changed

further. In that case, the Néel mechanism dominates and the magnetic moment can
easily rotate internally. These particles can change their magnetization direction
quickly, as the thermal energy is now sufficient to rotate it against an easy axis.
Therefore, the time average over typical measurement times of their magnetization
amounts to zero in the absence of an external magnetic field, as in bulk param-
agnetic materials. Still, a collection of many of such particles usually maintains
stronger saturation magnetization compared to bulk paramagnetic materials [77].
Consequently, a collection of these particles, termed superparamagnetic, is often
used in applications if reversible changes in properties combined with a strong
response to applied external magnetic fields is desirable, such as in magnetic hybrid
materials. Still, if the particles become even smaller, surface effects dominate and
their magnetic behavior can change again [75].
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1.3.2 Theoretical description

To describe the role of the magnetic or magnetizable inclusions theoretically, the
simplest option is to consider their magnetic effect in terms of point-like magnetic
dipoles – the first term of a multipole expansion (the zero-order term vanishes
because there are no magnetic monopoles [78]): Each inclusion i features an
associated dipole momentmi at position ri, the center position of the inclusion. This
is a simple but common approach, see Sec. 1.4.4. Furthermore, if the magnetization
is caused by a sufficiently strong external magnetic field, mutual magnetization
effects can be neglected. The external field magnetizes the inclusions to saturation,
and all magnetic dipole moments are oriented in the same direction: m̂i = m̂ ∀i =
1, . . . , N . Here, we defined the orientation of the magnetic moment m̂i := mi/mi

with the magnitude of the dipole moment mi := ∥mi∥. For this description, we
recapitulate some known equations from classical electrodynamics [78].
The magnetic field generated by a magnetic dipole m, located at the origin,
reads [78, Eq. (5.56)]:

B(r) =
µ0

4π r3
[3r̂ (m · r̂)−m] (1.65)

where r̂ := r/r and r := ∥r∥. µ0 denotes the vacuum permeability. If we now
return to the set of N magnetic dipoles mi at positions ri, i = 1, . . . , N , which
are all oriented in the m̂-direction, we calculate the resulting potential energy [78,
Eq. (5.72)] using the superposition principle as

U = −
N∑

i,j=1
i<j

mi ·Bj(rij) (1.66)

Eq. (1.65)
= −µ0

4π

N∑

i,j=1
i<j

mi mj

r3ij

[
3 (m̂ · r̂ij)2 − 1

]
. (1.67)

Here, we introduced the magnetic field generated by dipole j as Bj, the distance
vector between two dipoles rij := ri − rj, r̂ij := rij/rij, and rij = ∥rij∥.
Finally, we calculate the force acting on dipole i as

Fi = −∇riU (1.68)

=
µ0

4π

N∑

j=1
j ̸=i

∇rij

(
mi mj

r3ij

[
3 (m̂ · r̂ij)2 − 1

])
(1.69)

= −3µ0

4π

N∑

j=1
j ̸=i

mi mj

r4ij

[
5r̂ij (m̂ · r̂ij)2 − r̂ij − 2m̂ (m̂ · r̂ij)

]
. (1.70)
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It should be noted that one generally needs to add the external magnetic field to
the one generated by the other inclusions in Eq. (1.66). However, if we assume
homogeneous external fields (as in the case of magnetostrictive deformations), the
gradient of the external field vanishes and it therefore does not enter the resulting
forces.
As a side note, calculating the dipolar interactions directly as in Eq. (1.70)

requires an order of N2 evaluations for a number N of magnetizable inclusions.
This scaling can be reduced to N logN by a recently introduced method based on
a fast Fourier transform [79], but this reduction only becomes more efficient for
N ≳ 10000 [79], which is beyond the number of magnetizable inclusions used in
our evaluations. We typically use values for N of the order 1000.
As we deduce from Eq. (1.70), the magnetic dipole–dipole interactions are quite

sensitive to the distance of each pair of dipoles and the relative orientation of their
distance vectors to the magnetic field direction. More in detail, we can investigate
the character of the interaction by projecting the dipole–dipole interaction force of
dipole i and j onto the orientation of their distance vector r̂ij (ignoring the effects
of other dipoles k ̸= i, j here):

Fi · r̂ij = −3µ0

4π

mi mj

r4ij

[
5 (m̂ · r̂ij)2 − 1− 2 (m̂ · r̂ij)2

]
(1.71)

= −3µ0

4π

mi mj

r4ij

[
3 cos2 θ − 1

]
, (1.72)

where θ marks the angle between the distance vector of the positions and the
magnetization direction, i.e. cos θ := m̂ · r̂ij. Therefore, we distinguish angles
θ < θm where the interaction is attractive, characterized by a negative sign of the
force projected onto the distance vector, i.e., a positive term in the square brackets.
Repulsion occurs for θ > θm. θm is the so-called magic angle [80], the angle for
which the interaction flips from attractive to repulsive:

θm := arccos

(√
1

3

)
≈ 54.74◦. (1.73)

As a side remark, the term in the square bracket in Eq. (1.72) is identical to twice
the second Legendre polynomial P2(cos θ) [81].
In many cases, we further simplify Eq. (1.70) by assuming that all magnetizable

inclusions are identical, setting mi = m, see P1, P2, P4, P5, and P7. Still, we
also discuss explicitly what happens when this is not the case: We instead assumed
a binary size distribution of the magnetizable inclusions, therefore distinguishing
two possible values of mi for each inclusion i in P3, see chapter 2 for details.
In the dipole approximation under saturating external magnetic fields and

for identical magnetizable inclusions, only one parameter remains that needs
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to be adjusted based on the experimental system that we model, namely, the
magnitude of the magnetic dipole moment mi or m. To find realistic values
for it, we compare to values of corresponding possible experimental realizations.
We assume that the magnetizable inclusions only consist of one material, for
example pure magnetite (Fe3O4), which is a ferrimagnetic, magnetically soft material.
For it, we find values for the volume saturation magnetization of approximately
100 JT−1 kg−1 [82], corresponding via a density of approximately 5.18 g cm−3 [82]
to MS ≈ 518 kJT−1 m−3(= 518 kAm−1). The magnetic moment of a magnetizable
inclusion in a saturating external magnetic field can be calculated simply as the
product of its volume with the volume saturation magnetization.
Interestingly, magnetite is even found naturally in the human brain [83]. A more

detailed account of magnetite nanoparticles, including their experimental synthesis
as well as biological and other applications, is given in Ref. 73.
Restricting ourselves to reversibly magnetizable inclusions implies that all evalu-

ated effects are completely reversible. Still, magnetically hard materials might open
new avenues for applications, see Sec. 1.4.2. They represent a possible extension of
our work in the future.
In general, a dipole approximation of the magnetizable inclusions might not

always suffice, especially for smaller distances between two inclusions. In that case,
one option is to also include higher-order moments of magnetization [84]. Another
issue that is discussed in the literature is mutual magnetization of the magnetizable
inclusions, in cases where the external magnetic field is not strong enough for
saturation [69]. In Ref. 69, two examples are presented of taking into account
effects of mutual magnetization between the inclusions. A simpler approach still
restricts itself to magnetic dipole moments, but calculates the dipole moments
in an iterative loop to account for the mutual magnetization effects. A more
involved approach uses finite-element simulations to resolve the inhomogeneous
magnetization profiles within each inclusion. The dipole approximation is reasonable
for many purposes, if the distance between the inclusions is at least 1.5d, where d
is the diameter of the inclusions [84–86].
For the full magnetization curve, a common model for paramagnetic materials

(and approximately also for magnetically soft materials) is given by the Langevin
function [75,87–89], which we plot in Fig. 1.1(a):

L(ξ) = MS (coth ξ − 1/ξ) , (1.74)

with ξ =
µ0mH

kBT
. (1.75)

Here, we introduced the the magnetic moment of a monodomain ferromagnetic
particle m, the Boltzmann constant kB, and temperature T . For example, it
was proven to be a very good fit for Nickel particles with a diameter of 280 µm
[90,91]. For magnetically hard materials, different models are used to model the
magnetization behavior [92–94].
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1.4 Magnetic hybrid materials

The class of magnetic hybrid materials consists of magnetic or magnetizable
particles inside a matrix material [3]. Usually, two prominent types of materials are
distinguished: Those with a liquid and those with a solid, elastic matrix. Naturally,
there can also be intermediate materials with a viscoelastic matrix. More exotic
types of matrices exist, such as foams or plastomers, see Refs. [95, 96] and the
references therein. The more exotic ones are not discussed here. Historically, those
with a liquid carrier matrix were addressed first, so we will start by discussing
them.

1.4.1 Magnetorheological fluids and ferrofluids

In 1948, Rabinov patented what is now known as a magnetorheological fluid (MRF):
Micron-sized magnetic particles (“finely divided iron”, i.e. carbonyl iron) in an
appropriate carrier fluid, here light machine oil [97]. In this paper, not only is
the material presented, but the author already points towards applications in
clutches that can be controlled magnetically. The trend of emphasis on applications
continues in the magnetic hybrid materials community until today. In turn, this
causes the community to be very broad, with theoretical research (as in this
dissertation) often going hand in hand with experimental research and engineering
or even further outreaching (e.g. biological or medical) applications.
Interestingly, these MRFs show quite strong responses to applied external mag-

netic fields in their rheology, hence their name. Because of the liquid matrix, it is
quite easy for the magnetic particles to rearrange under the presence of magnetic
fields, mainly forming chain-like aggregates along the field direction. While these
materials can be regarded as conventional suspensions in the absence of the fields,
the chain-formation means that they are almost solid-like under applications of
magnetic fields [98], at least in the so-called pre-yield regime. This is in contrast to
the so-called post-yield regime: These chains can break under the application of
sufficiently strong static or dynamic shear stresses (the critical value is the yield
stress), particularly when induced by hydrodynamic shear flows. It is often the
goal to generate materials of a yield stress as high as possible, maximizing the
magnetorheological (MR) effect [98].
MRFs have found successful commercial applications in the meantime, see Ref. 98,

Sec. 2.7, and references therein. In particular, they are used in damping applications,
brakes, sound propagation, and thermal transport applications.
Still, many challenges or problems have been identified over the years [98,

99]. Besides questions of chemical stability and durability, the main one is the
sedimentation problem: Because of the much higher density of the magnetic particles
compared to the carrier fluid, the particles will sediment to the bottom of a container
over time. After a few hours, almost all of the particles will sediment [99].
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The development of ferrofluids is one approach to reduce the impact of this
problem. These materials are quite similar to magnetorheological fluids, but instead
they use nanometer-sized magnetic particles (typically about 10 nm in size [100]).
Commonly, magnetite or maghemite are used [77,101]. While the density mismatch
is obviously still unchanged, the smaller size reduces the sedimentation as Brownian
motion becomes more important [102]. These smaller magnetic particles are usually
superparamagnetic collectively [77] (see also Sec. 1.3). Still, the magnetically
induced solid-like properties of MRFs cannot be found in ferrofluids. They remain
fluid also under application of external magnetic fields, but with a huge increase
in viscosity [100]. One interesting aspect of ferrofluids is that they show a surface
instability, featuring a spike formation when magnetized. This is the so-called
Rosensweig instability [103].

Historically, ferrofluids were developed by NASA in 1963 to develop a rocket
fuel that can be pumped and controlled even under zero-gravity conditions [104].
Nowadays, they can be found more commonly in a share of commercial applications,
such as sealing (e.g. in mass spectrometers, clean room robots, and in spinning
hard disk drives in computers), damping (e.g. for stepper motors), heat transfer,
bearing and sensing/detection [77,101]. Additionally, many loudspeakers contain
ferrofluids, combining their damping and heat transfer properties, see Refs. 77, 101
and references therein.
Still, any liquid such as MRF or ferrofluid faces issues such as the need for a

container/storage device and potential leakage [95]. Therefore, it is helpful for
some applications to use a soft solid matrix instead, which is the topic of the next
section.
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1.4.2 Magnetic gels and elastomers

The goal for these materials is to combine the field-dependent properties of MRFs
or ferrofluids with the benefits of a soft, polymeric matrix material. Depending
on the employed matrix material as well as the magnetizable inclusions, different
names are used in the literature, such as magnetic gels, magnetic elastomers,
magnetorheological elastomers, magnetosensitive elastomers, or ferrogels. In the
following, we will denote them as magnetic gels and elastomers.
Concerning the matrix material, on the one hand, the term “gels” usually refers

to soft polymeric matrices that are swollen by a solvent such as water (in that
case, the gels are called hydrogels) [3, 4, 20, 87,105,106]. On the other hand, the
term “elastomers” refers to polymers not explicitly swollen by a solvent, similar to
natural rubbers [3, 4, 10,17,105,107,108].
Another distinction is provided by the employed magnetic or magnetizable

particles: These can be nanometer-sized ones as in ferrofluids, therefore the similar
name “ferrogels” was chosen. It is also possible to use larger, typically micrometer-
sized inclusions, which can be either magnetically hard or soft [2]. In P1–P5, P7, we
always assume superparamagnetic or magnetically soft inclusions, which naturally
cause reversible magnetic effects by externally applied magnetic fields. In contrast,
when permanent changes should be induced that persist upon removal of the external
magnetic fields, magnetically hard inclusions should be used instead [44,109–112].
In recent years, there is even interest in combining magnetically hard and soft
inclusions in a single sample [113–115]. An interesting recent variation is given by
magnetically hard inclusions with a very low Curie temperature (the temperature
above which the material looses its permanent magnetization), such that laser
radiation is sufficient to remove the magnetization of these materials. This allows
for targeted reprogramming of the magnetization and thereby the overall material
behavior for different purposes [116].
According to a recent review [95], the most common matrix material is silicone

rubber (such as PDMS) in 56% of the investigated cases. For the magnetic
particles, the most common choice is a carbonyl iron powder (CIP, 88% of the
studies), representing a magnetically soft particle. For magnetically hard particles,
the most common choice is NdFeB. Besides the elastic matrix and the magnetic
particles, many studies also use additives, such as plasticizers that increase the
softness of the matrix. Typically, all three ingredients are mixed in the liquid state
and then cured/vulcanized in a mold. Two cases should be distinguished here:
On the one hand, these are materials cured without applied external magnetic
fields, commonly denoted as possessing an isotropic or random microstructure
(arrangement of magnetizable inclusions) [2, 6, 17, 117, 118]. On the other hand,
materials cured in the presence of external magnetic fields are denoted anisotropic,
usually exhibiting chain-like aggregates along the field direction [6,107,117,119,120].
Still, the precise amount and length of the chains depends on the strength of the
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applied field and particle concentration [121].
Moreover, other means are available for a more targeted placement of the mag-

netizable inclusions, which is a main topic of our research. As experimental
techniques that could be utilized for this purpose, we are thinking mainly of 3D
printing [22–24, 24–27]. Other options are structuring by magnetic fields [28],
sequential photopolymerization [29], acoustic holography [30], layerwise polymeriza-
tion combined with particle placement by molds or by hand [31, 32], and wax-cast
molding [33].
After the fabrication of magnetic gels and elastomers with a controlled arrange-

ment of magnetizable inclusions, it is possible to analyze the arrangement of
magnetizable inclusions after the fabrication has been completed. An important
technique for this purpose is given by X-ray microtomography [119,122–126].
Another way is to tie the inclusions into the elastic matrix in a more literal way:

In so-called particle-crosslinked gels [106,127–131], the particles themselves, after
appropriate surface functionalization, act as the crosslinkers of the elastic polymer
network. Besides the obvious coupling of the displacement of the inclusions to the
deformations of the gels, these particle-crosslinked gels also affect the rotation of the
inclusions. When the inclusions rotate, for example due to changes in the magneti-
zation (see Sec. 1.3), they transmit the magnetic torques to the polymeric network,
which leads to elastic deformation and therefore energetic costs. This effect is not
present in the usual magnetic gels and elastomers without particle crosslinking,
if the polymeric network is not sufficiently adsorbed to the surfaces of the inclusions.

Naturally, a first area of study in magnetic gels and elastomers is the magnetorhe-
ological (MR) effect, i.e., changes in the rheological or mechanical properties of
these materials induced by external magnetic fields. This continues the research pre-
viously performed for MRFs and ferrofluids, see Sec. 1.4.1. One of the early works
addressing magnetic gels and elastomers is given by Rigbi and Jilkén in 1983 [132].
However, the topic only gained increasing interest later in 1996 [87,107,133]. In
Refs. [107,133], the change in shear modulus for these new materials was already
measured and the dependence on the volume concentration of particles was ex-
amined. A maximal MR effect of 39%, i.e. an increase of the shear modulus by
39% relative to the shear modulus without field, was reported for samples with a
volume concentration of 20% [107]. Additionally, the viscoelastic properties were
probed, observing an increase in the loss factor (the ratio of the imaginary part of
the complex shear modulus divided by its real part) with increasing strain when
an external magnetic field is applied [133].
Experimentally, it is quite straightforward to determine the MR effect: One

uses a rheometer for the samples without applied external magnetic field and
compares it to the values with applied field. Here, the rheometer measures, e.g.,
the force needed to obtain a certain amount of shear deformation of the whole
sample. A number of experiments have determined associated changes in the
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static elastic moduli [2, 27, 42–46] as well as in the dynamic storage and loss
moduli [107,108,134–141].
The second major effect in magnetic gels and elastomers are macroscopic deforma-

tions induced by applied external magnetic fields. Here, one typically distinguishes
those deformations induced by homogeneous and those by inhomogeneous fields.
The former is called magnetostriction, while the latter is known as magnetodefor-
mation [142]. (Still, this nomenclature is not always used uniformly across the
literature, for example, the term “magnetodeformation” is sometimes used in the
case of homogeneous fields as well [143].) Already in 1996, a magnetodeformation
of about 10% was observed [87].
As mentioned in Sec. 1.3, inhomogeneous magnetic fields directly apply forces

to inclusions carrying magnetic dipoles. Since this inhomogeneity stems from the
outside, the whole sample can in this way be set into motion, which means that the
sample needs to be fixed to avoid net displacement [144]. In our investigations, this
effect does not emerge, because we only describe magnetostrictive effects (those
induced by homogeneous external magnetic fields) in P1–P5, P7.
More in detail, the effect that is now known as magnetostriction dates back to

observations by Joule in 1842 [145], who quotes a previous observation by Arstall
in 1841. At that time, solid iron bars were observed to change their length in
response to magnetic fields. However, the associated relative length changes are
rather small, quoted as 1/720000. Nowadays, magnetic materials of much higher
magnetostrictive amplitude have been found, such as rare-earth-Fe2 alloys showing
effects of relative magnitude 1/500 [146]. Still, these effects are rather small,
because they are induced by changes in the crystal lattice structure on the atomic
scale.
For magnetic gels and elastomers, the mechanism is different, rendering magne-

tostriction of the individual embedded particles as no longer relevant. Important are
the magnetic forces that act on these inclusions. Since the inclusions are typically
much bigger compared to the mesh size of the polymer network that makes up
the elastic matrix, so that they cannot easily move through it, or the particles
themselves are used as crosslinkers for the polymers, the magnetic forces on these
particles make them push or tear on and deform the elastic matrix [31,67,147,148].
This can lead to overall deformations of the material up to a couple of percent,
which is much larger compared to the amplitudes of magnetostriction in metals.

These magnetostrictive effects have been extensively studied experimentally, often
in cylindrical specimen [9–19]. In early investigations [9], a magnetostrictive length
change of about 1% was observed in very high fields (up to 8T). This magnitude
was significantly increased in later works, e.g. Ref. [18] reports respective values of
about 16% in fields of only 0.8T and Ref. 19 even 21% for anisotropic samples
or 14.6% for isotropic samples in fields of only 0.5T. One major contribution to
this increase is the usage of softer matrices: While Ref. 9 used an elastic matrix
of a Young’s modulus of about 0.25MPa, the matrix material in Ref. 19 is much
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softer, that is, of a shear modulus of about 30 kPa. (In the case of incompressible
media, the Young’s modulus is three times the shear modulus, which is a reasonable
approximation to compare these two values.) It is even possible to measure the
spatially resolved surface displacement field within the surface plane using a light
speckle method, at least for a planar surface [149].
In particular, two experimental works have studied samples of spherical shape

[20,21], which is the most relevant case for our considerations in Ch. 2. Still, Ref. 20
only addressed isotropic arrangements of the magnetizable inclusions. In contrast
to that, Ref. 21 also studied anisotropic distributions, albeit not observing any
significant magnetostrictive effect in the latter case with the external magnetic
field applied along the axis of anisotropy. In the isotropic case, both studies found
elongation along the field direction, in qualitative agreement with our results in
P1.
Another effect, which we study in P7, relates to magnetically induced restruc-

turing [123, 150]. Not only are the samples magnetically deformed, also the magne-
tizable particles in the samples are shifted in position upon the application of an
external magnetic field. This affects, amongst others, the transport properties such
as the electric conductivity [151–153] and thermal conductivity [154, 155] of the
whole material, which has only been rarely investigated previously. A magnetically
tunable thermal conductivity is also observed for MRFs [156,157].
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1.4.3 Current and future applications of magnetic gels and
elastomers

For (potential) applications, magnetic gels and elastomers combine a variety of
desirable properties. Naturally, applying magnetic fields to these materials is
contactless [144,158] and silent [87]. Additionally, these materials are inexpensive
in general [4, 95,159,160]. Furthermore, biological tissues are usually transparent
for magnetic fields [4, 160–163], which opens the path towards possible internal
medical applications. Especially for specific matrix materials of magnetic gels and
elastomers, biocompatibility has been confirmed [45,164,165].
Concerning possible applications, we refer to corresponding reviews [6,96,166].

In summary, the two main responses of magnetic gels and elastomers, implying
magnetostrictive and magnetorheological effects, allow for various possible appli-
cations. On the one hand, the MR effect qualifies these materials for the use as
vibrational absorbers/isolators or damping devices with magnetically tunable behav-
ior [167–171]. On the other hand, magnetostrictive properties facilitate applications
such as artificial muscles [172, 173], valves [174,175], microfluidic pumps [160,176],
or soft actuators more generally [2,49,87,106,177–181]. Associated deformations are
typically reversible [123]. Dynamically varying the magnetic field, even locomotion
can be realized [182–184]. Additionally, the use of magnetic gels and elastomers
for grippers [158,183] or sensors [46,185] was pointed out.
Another important area of potential applications is found in the medical context.

One particular realization has been suggested in terms of targeted drug delivery,
where the drugs could be placed in magnetic gels as carrier materials that transport
drugs to their target and then are released by magnetically induced deformations
[186–188].
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1.4.4 Theoretical description of magnetic gels and elastomers

A theoretical treatment of magnetic gels and elastomers is quite difficult because
effects on different length scales influence the overall, macroscopic material behavior.
Therefore, some simplifying assumptions are unavoidable. (Theoretical descriptions
of MRFs and ferrofluids are not discussed here.) For a recent review of the employed
theoretical approaches, we refer to Ref. 142.
Starting on the smallest scale, microscopic approaches resolve the elastic polymer

matrix as an ensemble of discrete polymer chains in a coarse-grained manner
[144,189–191], instead of treating it as a continuous elastic matrix. These approaches
are based on molecular dynamics, i.e. computer simulations of the movement of
magnetic or magnetizable particles as well as the polymer chains. Consequently,
when the interactions of the magnetic or magnetizable particles with individual
polymer chains should be resolved, this level of description is the right one. For
example, to study the differences of particle-crosslinked elastomers and the usual
magnetic elastomers with the magnetic particles dispersed in the medium, a
microscopic picture is needed [189, 190, 192]. A scale-bridging description for a
particle-crosslinked gel is also available [193], however, evaluations are based on
pairwise interactions between two particles. In other words, this approach allows to
treat pairwise interactions between inclusions, but not the long-range interactions
between all magnetic or magnetizable particles.
On the other end of the modeling spectrum, macroscopic theories aim to directly

describe overall properties, representing the polymer matrix as well as the arrange-
ment of magnetic or magnetizable inclusions only by continuum fields. Instead,
conservation laws and symmetry arguments are used as a basis. For ferrogels
with isotropic distributions of magnetizable inclusions, a macroscopic theory is
presented in Ref. 194. It couples the macroscopic strain to the macroscopic magne-
tization, based on a hydrodynamic and thermodynamic description. Additionally,
it considers how an oscillating temperature gradient and gradient of the magnetic
field can induce shear deformations. It also discusses the effect of the magnetic
field on sound propagation. For anisotropic magnetic gels, a related macroscopic
theory has likewise been developed [195]. There, shear flow is predicted to induce
rotations of the magnetization. Moreover, oscillating magnetic fields perpendicular
to the magnetization direction can induce shear strains of the material. Later,
this approach has been extended to anisotropic magnetic gels with tetrahedral
order and permanent magnetization [196]. Additionally, shear stresses can again
be induced by temperature gradients.
Besides, magnetostrictive effects were predicted from macroscopic models, using

an analytical continuum approach. Spherical two-dimensional samples were studied
in Ref. 197 and three-dimensional cylindrical samples in Ref. 198. Apart from that,
for spherical isotropic samples, which we also study in P1, elongation along the field
direction was predicted, assuming linear magnetization and Hookean elasticity by
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Raikher and Stolbov [143]. This description was extended to hollow spheres [199]
as well as to ellipsoidal samples [200]. A similar model for the magnetostriction
of spheroidal samples was provdided [201]. Ref. 201 predicts an elongation for
a/b < 1.35 (including the case of spherical samples) and contraction otherwise
(and no deformation for a/b ≈ 1.35), where a and b are the semi-minor and minor
semi-major axis of the spheroid, respectively (b is the length of two perpendicular
axes of the corresponding ellipsoid).
By construction, these macroscopic approaches cannot resolve dependencies of

the overall properties on the arrangement of magnetic or magnetizable inclusions
in detail. Therefore, mesoscopic models are useful, located in between microscopic
and macroscopic models. They explicitly resolve the discrete arrangement of mag-
netizable inclusions, while usually treating the elastic matrix as a homogeneous
and isotropic carrier medium.

With the rise of computational power, it is quite logical to use finite-element
(FE) simulations for modeling magnetic gels and elastomers on the mesoscopic
scale [17, 47, 84, 202]. In these approaches, the volume of the material is discretized
into finite elements (hence the name). With these methods, (almost) arbitrary
non-linear elastic models can be used and can even be combined with a spatially
resolved magnetization of the particles. Typically, the magnetic inclusions in these
approaches are also treated as elastic, but with a much higher shear or Young
modulus, such that their deformations are negligible. Still, these approaches remain
very demanding computationally and therefore cannot treat overly large numbers
of magnetizable inclusions.
Another common method is dipole-spring modeling. In that case, the elastic

matrix is represented by a network of discrete elastic springs, while the presence
of magnetizable particles is simply represented by magnetic dipoles. Therefore, it
constitutes one of the least computationally demanding approaches, allowing to
treat comparatively large numbers of magnetizable inclusions. P7 is based on such
a model. Additionally, many other groups have also used this type of approach
previously [42, 139, 203–209]. However, these springs are obviously just a very
reduced representation of the elastic matrix. Additionally, it is more difficult to
adjust the Poisson ratio of corresponding dipole-spring models [210,211], e.g. for
modeling incompressible elastic matrices.
Moreover, a simple way to describe magnetic gels and elastomers is to assume

that the magnetically induced deformations are affine, i.e. that the macroscopic
deformations are identically mapped to all scales of the material [212–214]. Obvi-
ously, this is quite a strong simplification that might not always be reasonable [42].
From this assumption, some works calculated magnetostrictive effects for different
arrangements of magnetizable inclusions [213–215]. This assumption is also used
in P5 to calculate the resulting MR effects.
A recent work studied the effect of the particle rearrangements on the magne-
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tostrictive and MR effect in a mesoscopic model for an ellipsoidal sample. The
evolution of the particle arrangement due to the applied external magnetic field
was resolved in a coarse-grained manner via the field-dependent fraction of particles
in columnar structures [89].
A statistical description for magnetic gels and elastomers is available in terms

of density functional theory (DFT): This theory in principle describes equilib-
rium thermodynamics of many-particle systems in an exact way. In DFT, the
arrangement of magnetizable inclusions is represented by (statistically averaged)
density profiles, hence the name. Still, to adapt this theory to magnetic gels and
elastomers, the fact that the permanent elastic locking in the polymeric matrix
renders the particles distinguishable complicates the description. Each particle
has its own unique positional state that it returns to in the undeformed ground
state. Based on DFT, macroscopic properties of the systems can be calculated.
First, a corresponding theory was developed (due to the technical difficulties) for
one-dimensional models of magnetic gels and elastomers in Ref. 216. Subsequently,
it was extended to two-dimensional [217] and three-dimensional systems [218]. For
the one-dimensional and two-dimensional case, the DFT was tested against Monte
Carlo (MC) simulations. It was used to calculate magnetostrictive [217, 218] as
well as MR effects [216–218].

Concerning continuous linearly elastic representations of the elastic matrix mate-
rial in a mesoscopic description, previously infinitely extended media were consid-
ered, for which the solution of the Kelvin tensor is available, see Sec. 1.2. However,
due to the presence of the other magnetizable inclusions in the vicinity of each
other and their finite size, the resulting solution is altered. To allow for analytical
progress, the inclusions are modeled as fully rigid. Nevertheless, the problem can
only be solved in an expansion in the inverse inter-inclusion distances [31,67,147].
When the inclusions are positioned far from any the boundary, the results agree
well with experiments and can even be used to determine elastic moduli from
experimental measurements [31]. A related description has investigated viscoelastic
carrier media [55], allowing to describe overdamped dynamic effects. Afterward, a
similar description was used to study particles subject to an externally imposed
torque in viscoelastic environments, e.g., torques induced by external magnetic
fields [219]. Additionally, the corresponding expressions for two-dimensional elastic
sheets or membranes, including matrix-mediated interactions between the inclu-
sions, have been derived [220]. Geometries of membranes of finite thickness [221]
and boundary effects [222] have been addressed as well. A modification of the
three-dimensional Kelvin tensor is available for inclusions in bulk elastic media
near a no-slip or free-slip wall [71].

Some works combine or compare different approaches for the theoretical modeling
of magnetic gels and elastomers. As mentioned previously,Ref. [69] compares FE
simulations to analytical descriptions in the framework of linear elasticity theory.
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Additionally, both theoretical descriptions are compared to experiments and the
linearly elastic description is even mapped to a simple dipole-spring model. Raikher
and Stolbov also compared an analytical model based on the assumption of affine
deformations, using two different elastic models (neo-Hookean and Peng-Landel
energy), to FE simulations in Ref. 223. Another work that compares dipole-spring
and FE models to calculate the MR effect is given by Ref. 47.
A fruitful combination is given by FE simulations, which are very accurate,

but limited to lower numbers of magnetizable inclusions, with a homogenization
approach. In that way, the whole material does not need to be represented in full
by FE simulations, but the accuracy of the FE approach enters the construction
of a material model on the macroscopic level. First, the continuum equations are
analyzed for a small volume that still contains a sufficient number of particles
using FE simulations. These small volumes are labeled representative volume
elements (RVEs) or statistical volume elements (SVEs). Then, by an appropriate
scale transition scheme, the overall, macroscopic material behavior can be obtained,
while ensuring that some averaged quantities coincide in the meso- and macroscopic
representation [224]. This strategy was used to calculate magnetostrictive effects in
two-dimensional [225] and three-dimensional [148,226–228] samples. Additionally,
these descriptions that combine FE simulations with homogenization have been
compared to a dipolar mean-field approach (magnetization field instead of individual
dipoles) that calculates the magnetization in a self-consistent manner with the
assumption of affine deformations. Those comparisons were performed in the two-
dimensional case [229]. In a later work, the three-dimensional case was addressed
[85], now using a linearly elastic description for the deformations based on Ref. [67].
Nowadays, the computational homogenization can be performed by neural networks
for magnetic gels and elastomers, at least when the neural networks are restricted
by physical constraints such as polyconvexity [230].
Concerning comparisons between experiment and theory, we already mentioned

Ref. 31 that includes experiments and analytical theory. A similar work, but now
for two-, three-, and four-particle systems with comparatively lower interparticle
distances relates experiments to FE simulations [231]. Another strategy determines
experimentally arrangements of particles, e.g. via X-ray microtomography, as input
for numerical evaluations [42,124,139,232].

In the next chapter (see chapter 2), my own contributions are presented. As
discussed in the introduction (see chapter 1), they mainly focus on the dependence
of magnetostrictive effects on the arrangement of the magnetizable inclusions as well
as on the elastic matrix of magnetic gels and elastomers. This approach is based on
linear elasticity of the elastic matrix material (see Sec. 1.2), explicitly accounting
for boundary effects and nonaffine deformations, but restricted to systems of overall
spherical shape. Furthermore, we restrict ourselves to a dipolar approximation
for the magnetic interactions. This combination is presented in detail in P1–P5.
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The analytical background of P5 is provided in P6. Additionally, we analyze
magnetically induced changes in the thermal conductivity in P7 and finally close
with a linearly elastic description of core-shell particles in P8.
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Chapter 2

Scientific publications

In the following, the publications that form the basis of this dissertation are repro-
duced, numbered by P1–P8. For each publication, I summarize my contributions
and present a notice on copyright and licensing.
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ABSTRACT
Magnetic gels and elastomers are promising candidates to construct reversibly excitable soft actuators, triggered from outside by magnetic
fields. These magnetic fields induce or alter the magnetic interactions between discrete rigid particles embedded in a soft elastic polymeric
matrix, leading to overall deformations. It is a major challenge in theory to correctly predict from the discrete particle configuration the type
of deformation resulting for a finite-sized system. Considering an elastic sphere, we here present such an approach. The method is in principle
exact, at least within the framework of linear elasticity theory and for large enough interparticle distances. Different particle arrangements are
considered. We find, for instance, that regular simple cubic configurations show elongation of the sphere along the magnetization if oriented
along a face or space diagonal of the cubic unit cell. Contrariwise, with the magnetization along the edge of the cubic unit cell, they contract.
The opposite is true in this geometry for body- and face-centered configurations. Remarkably, for the latter configurations but the magne-
tization along a face or space diagonal of the unit cell, contraction was observed to revert to expansion with decreasing Poisson ratio of the
elastic material. Randomized configurations were considered as well. They show a tendency of elongating the sphere along the magnetization,
which is more pronounced for compressible systems. Our results can be tested against actual experiments for spherical samples. Moreover,
our approach shall support the search of optimal particle distributions for a maximized effect of actuation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118875., s

I. INTRODUCTION

Magnetic gels and elastomers, also referred to as magnetorheo-
logical elastomers, magnetosensitive elastomers, ferrogels, or differ-
ently, are magnetoelastic hybrid composite materials of magnetic or
magnetizable colloidal particles embedded in a soft polymer-based
elastic matrix.1–5 Many of their outstanding properties arise because
they can be addressed by external magnetic fields. Through these
fields, the magnetic interactions between the particles are affected,
which presses or rotates the embedded particles against the sur-
rounding elastic environment. As a consequence, the overall prop-
erties of the material are altered. For instance, in this way, the
mechanical stiffness can be tuned and adjusted to a certain amount
as requested.1,2,6–24 Such induced switching, because of the involved
restoring elastic forces, is typically reversible.25

Here, we concentrate on a differentmagnetically induced effect,
namely, on overall shape changes resulting from the modified par-
ticle interactions. Corresponding externally and reversibly induced
magnetostrictive behavior can be exploited to construct, for exam-
ple, soft actuation devices.1,26–35 Naturally, in this context, it becomes
crucial to know whether the employed system or sample will con-
tract or elongate along an applied magnetic field (usually involving
opposite behavior along the transverse directions because of the typ-
ical quasi-incompressibility of the materials). Our central focus in
the present work is on the question of the kind of overall resulting
shape changes.

In experiments, commonly an elongation of the investigated
materials along the axis of the appliedmagnetic field is observed.36–45

Yet, as has been revealed by many theoretical studies, the type of
expected deformation strongly depends on the internal structural
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particle arrangement of the investigated systems. For instance, sim-
ple regular rectangular lattice structures with magnetic moments
induced along the edges of the rectangular unit cells were found to
contract along these edges.13,46,47 An extreme example of this kind
is given by just a pair of magnetic particles that are driven toward
each other by induced magnetic attraction.48–50 In contrast to that,
regular body-centered cubic (bcc) lattices are found to extend along
the induced axis of magnetization when oriented along the edges of
the cubic lattice cells,13 as are two-dimensional systems containing
hexagonal or initially wiggled chainlike structures.47 Likewise, the
rotation of embedded clusters can lead to an extension along the
applied magnetic field.51,52

One significant problem in theoretical treatments is that sim-
plifications and approximations are mostly unavoidable when char-
acterizing complex materials of the considered kind. Consequently,
the results need to be treated with special care. Studies based on
assumptions of affine (homogeneous) deformations suppress inter-
nal degrees of freedom that may become important.12,13,46 Basic
dipole-spring models may serve to include such internal degrees of
freedom to a certain amount;18,20,23,53–56 however, it is difficult to
fully comply with quasi-incompressibility in such approaches. The
same applies to more microscopic simulation approaches resolving
in a coarse-grained manner individual polymer chains.57–59 Finite-
element simulations, although quantitatively very reliable,15,47,48,52,60

may be limited at some point concerning the number of considered
embedded particles. So far, the majority of these simulation works
seems to have been carried out for bulk systems. Moreover, statis-
tical and scale-bridging procedures likewise and naturally contain
certain types of approximations.61–65

To avoid many of the problems involved in the approaches
just summarized, we adhere to the following strategy. We con-
sider elastic spherical systems, as realized in some experiments,44,45

to explicitly include the role of the system boundaries. More-
over, we confine ourselves to linear elasticity, that is, only dis-
tortions of low amplitude are addressed.66–69 For elastic spheres
embedded under no-slip surface conditions in a homogeneous and
infinitely extended elastic background, an analytical expression for
the linearly elastic Green’s function is available.70 It describes the
static elastic displacements that result in response to a constant
force acting onto the elastic material at one pointlike force center.
We adapt this expression to pairwise forces acting inside a free-
standing elastic sphere without any additional elastic background
medium. Elastic distortions of the sphere, particularly along its sur-
face, are then evaluated when many such force centers are present.
Consequently, the force centers are identified with the embedded
magnetic particles, subject to pairwise magnetic interaction forces
between them. In this way, we analyze the resulting overall defor-
mation of the whole free-standing sphere upon induced magnetiza-
tion of various different contained regular and randomized particle
distributions.

II. SYSTEM UNDER INVESTIGATION
As already indicated above, we confine ourselves to spherical

elastic systems, strongly relying on previous work by Walpole.70 In
his study, a system as sketched in Fig. 1(a) was investigated. An
elastic sphere of modulus μ and Poisson ratio ν is embedded in

FIG. 1. Illustration of the system under investigation. (a) Walpole considered a
deformable elastic sphere of elastic shear modulus μ and Poisson ratio ν embed-
ded under no-slip surface conditions in an infinitely extended elastic background
medium of shear modulus μ̃ and Poisson ratio ν̃. He determined the corresponding
Green’s function, which quantifies the displacement field u(r) inside and outside
the sphere resulting from a pointlike force center acting on the inside.70 (b) On
this basis, we investigate the deformation of a free-standing sphere (for μ̃ → 0
and ν̃ → 1/2) that contains many pointlike force centers exerting pairwise mag-
netic forces of vanishing global force on the sphere. In this case, terms in the
original solution70 that would diverge, connected to a net translation of the sphere,
balance each other. Then, Walpole’s solution can be adapted accordingly. Similar
reasoning applies to net rotations of the sphere in response to net torques acting
on it.

an infinitely extended elastic background of modulus μ̃ and Pois-
son ratio ν̃. The sphere of radius R is centered around the origin.
Both parts, the sphere and the surrounding elastic background,
are linearly elastic, spatially homogeneous, and locally isotropic in
their undeformed states. At the interface between the two parts,
perfect bonding prevails, implying continuity of the corresponding
displacement fields and traction vectors.

In an impressive treatment of this problem, Walpole managed
to derive the associated Green’s function.70 It solves the correspond-
ing Navier–Cauchy equations71

μΔu(r) + μ
1 − 2ν∇∇ ⋅ u(r) = −f(r) (1)

inside the sphere (r = |r| < R) and with the replacements μ → μ̃ and
ν → ν̃ outside the sphere (r > R), respecting the described boundary
conditions at the interface (r = R). In these equations, u(r) repre-
sents the displacement field and the force density f(r) is specified as
f(r) = Fδ(r − r̄). That is, the Green’s function G(r, r̄) provides the
solution for the resulting displacement field u(r) in response to a
static force F. The force F acts on one pointlike force center located
at position r̄. It leads to the displacement field u(r) = G(r, r̄) ⋅ F. To
evaluate G(r, r̄), we have implemented it numerically following the
presentation in Ref. 70.

All force centers are located on the inside of the sphere
(r̄ = ∣r̄∣ < R). It was already mentioned in Ref. 70 that the limit
μ̃ → 0 leads to a divergence of u(r). From a physical point of view,
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this can be understood as follows: The limit μ̃ → 0 (and simultane-
ously ν̃ → 1/2) implies the absence of an elastic background. Thus,
a free-standing sphere is considered [see Fig. 1(b)]. If a net force F
acts on the sphere, there is no surrounding elastic background that
would hold the sphere back from displacing. Thus, an arbitrarily
small but finite magnitude of the force F can displace the sphere by
an infinite amount.

FIG. 2. Deformation of a sphere with two mutually attracting magnetic dipoles
aligned along the horizontal symmetry axis, each at a distance of 0.5R from the
center, and for 3μ0m2/4πμR6 = 0.001. The left column shows cross-sectional cuts
through the sphere containing the symmetry axis. We mark the initial positions
of the inclusions by red dots and the direction of the magnetic moments by red
arrows. The surface displacements, indicated by black arrows, are enhanced by a
factor of 500 for ν > 0, 350 for ν = 0, and 200 for ν < 0. Inside the gray frames,
we enhanced the displacement arrows by an additional factor of 4. On the right-
hand side, we illustrate the induced displacements on the surface of the sphere
by so-called Mollweide projection plots. Outward displacements are marked in
green/blue, inward displacements in orange/red, with the numbers on the scale
bars encoding the radial displacements. All Mollweide plots were arranged so
that the magnetic moments point outwards toward the reader from the centers
of the plots and inwards on the left and right ends. Furthermore, all plots indicate
a contraction of the sphere along the symmetry axis. For positive Poisson ratio ν,
the sphere expands along the lateral directions. In contrast to that, for the aux-
etic case of ν = −0.5, a contraction along all directions is observed. The plots on
the right-hand side were generated using the HEALPix package.81 Moreover, the
pairs of numbers on each plot indicate the coefficients (u�00,u�20) of an expansion
into spherical harmonics of the radial outward displacement in units of R, associ-
ated with the overall change in volume and relative elongation along the axis of
magnetization, respectively.

Physical intuition then implies that the corresponding diver-
gence for μ̃ → 0 should be lifted when pairwise reciprocal forces are
considered. In this case, there are zero remaining net forces acting on
the sphere. The sole effect of the forces is then to deform (or rotate)
the sphere.

We could demonstrate by analytical considerations that, in fact,
the terms that lead to the described divergence lift each other for
pairwise reciprocal forces. The necessary condition for the forces
is indeed satisfied for the pairwise magnetic forces considered in
our present study. We thus drop the corresponding terms from the
expressions listed in Ref. 70.

A similar divergence results if the applied forces lead to a net
torque on the sphere. Analogously, this situation leads to a diver-
gence of the displacement field for μ̃ → 0. A free-standing sphere
can be rotated by an infinite amount, if an arbitrarily small but finite
net torque is applied to it. Again, if the net torque vanishes, terms
that would lead to the divergence lift each other, and we thus drop
them from the solution in Ref. 70.

FIG. 3. Same as in Fig. 2, but now with the magnetic dipole moments located in a
mutually repulsive configuration on the horizontal axis running through the center
of the sphere and for 3μ0m2/4πμR6 = 0.002. The corresponding plots on the right-
hand side were generated using the HEALPix package.81 As in all our plots using
the Mollweide projection, the magnetization vector points toward the reader at the
center of each plot. The horizontal extension in the plots on the left-hand side due
to the repulsion between the two dipoles is clearly visible by the dark blue spot in
the Mollweide projections on the right-hand side. In the auxetic case of ν = −0.5,
an expansion along all directions is observed.
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We numerically implemented the corresponding expressions
and confirmed their validity by comparison with extrapolated results
obtained from the numerical implementation of Walpole’s expres-
sions70 for decreasing μ̃. To confirm the correctness of the latter, we
tested that our implementation satisfies Eq. (1) and the boundary
conditions on the surface of the sphere. Moreover, we have tested
that our numerical implementation of the Green’s function reduces
to the results from the well-known bulk Green’s function72 when
we set μ = μ̃ and ν = ν̃. Apart from that, for μ ≠ 0 and μ̃ → ∞,
we considered force centers located close to the boundary of the
sphere. In this case, the boundary can be approximated as a flat rigid
wall. Our numerical results in this limit agree well with those of the
Green’s function calculated for a half-space filling elastic material
bordered by a rigid no-slip boundary.73,74 A similar solution exists
for a half-space in the case of μ ≠ 0 and μ̃ → 0 with ν̃ → 1/2, i.e., a
semi-infinite solid with a free boundary.75 Again, in the considered
limit, the results of our numerical implementation match the results
obtained from these analytical expressions.

As a result, the deformations induced by magnetic interactions
of inclusions within a free-standing elastic sphere can be calcu-
lated. For simplicity, we concentrate on magnetic dipolar interac-
tions between the inclusions.57,76 All inclusions are assumed to be
identical and to carry the same magnetic dipole moment m = mm̂,
with m = |m|. Such a situation arises, for example, if a strong exter-
nal magnetic field magnetizes all small identical spherical inclusions

to saturation. Then, the induced magnetic force acting on the ith
inclusion, exerted by all other inclusions, reads77

Fi = −
3μ0m2

4π

N

∑
j=1
j≠i

5ˆ̄rij(m̂ ⋅ ˆ̄rij)
2 − ˆ̄rij − 2m̂(m̂ ⋅ ˆ̄rij)

r̄4ij
, (2)

where μ0 denotes themagnetic vacuum permeability, r̄i sets the posi-
tion of the ith inclusion, r̄ij = r̄i − r̄j = r̄ijˆ̄rij with r̄ij = ∣r̄ij∣, i = 1, . . ., N,
and N fixes the number of inclusions.

In all that follows, we rescale lengths by the radius R of
the elastic sphere and measure forces in units of μR2. Ther-
modynamic stability requires μ > 0 for the shear modulus of
the sphere and −1 < ν < 1/2 for the Poisson ratio,66 while the
limit ν → 1/2 characterizes an incompressible material. Nega-
tive Poisson ratios refer to so-called auxetic materials that, if
stretched along one axis, expand to the lateral directions instead of
contracting.

Summarizing, the free-standing elastic sphere is distorted in
response to the magnetic forces acting on the embedded magnetic
inclusions. These inclusions are assumed to be spherical and of
radius a = 0.02R. To find the steady distorted state, we adhere to
the following iterative numerical scheme.

First, we estimate how a rigid sphere of radius a embedded
inside the free-standing elastic sphere is displaced in response to

FIG. 4. Mollweide projections and expan-
sion coefficients (u�00,u�20) in units of
R81 for a simple cubic (sc) lattice struc-
ture of the embedded particle configu-
ration for 3μ0m2/4πμR6 = 5.4 × 10−8.
Again, the magnetization points toward
the reader at the center of each plot.
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a force acting on it (see the supplementary material). Analytical
expressions fitted to the numerical estimates are obtained for these
displacements (see again the supplementary material). Next, the
forces on all other inclusions induce elastic distortions within the
elastic sphere that add to the displacement of the considered inclu-
sion. These additional contributions to the displacement are calcu-
lated from our modified version of Walpole’s solution. To evaluate
this mutual interaction, mediated by the elastic environment, the
inclusions are treated as pointlike, assuming them to be sufficiently
far apart from each other. Then, after having calculated the new
positions of all inclusions, we can evaluate the magnetic interactions
between them anew. This in turn leads to different displacements,
which again leads to adjusted forces, and so on. After multiple of
these steps of iteration, we reach a steady state. Our goal is the final
steady magnetic force distribution that can then be used in con-
junction with our modified solution by Walpole to calculate the
deformation on the surface of the elastic sphere within the frame-
work of linear elasticity theory, once more treating the inclusions as
pointlike.

III. SETTING THE REMAINING SYSTEM PARAMETERS
Upon the mentioned rescaling, we obtain in Eq. (2) a dimen-

sionless force coefficient of 3μ0m2/4πμR6. To set its value in our sub-
sequent evaluations in agreement with possible experimental real-
izations, we consider nickel or iron oxide (Fe3O4) as the material
for the magnetic inclusions. For nickel, the literature, for instance,
lists a saturation magnetization of approximately 55.1 J T−1 kg−178

or, by using the density of nickel of approximately 8.908 g cm−3,79

MS ≈ 490.8 kJ T−1 m−3(= 490.8 kA m−1). For iron oxide, we
use a saturation magnetization of approximately 100 J T−1 kg−1,80

corresponding via a density of approximately 5.18 g cm−380 to
MS ≈ 518 kJ T−1 m−3 (= 518 kA m−1). In both cases, we assume
a shear modulus of 1.67 kPa. A further parameter is the radius of the
magnetic inclusions a which we choose as a = 0.02R. Furthermore,
we assume that the elastic material does not influence the magnetic
interactions. These choices lead to a dimensionless force coefficient
3μ0m2/4πμR6 of approximately 4.9× 10−8 for nickel or 5.4× 10−8 for
iron oxide, respectively. The latter value is used in all our evaluations
unless otherwise noted.

IV. BASIC ILLUSTRATIVE EXAMPLES
As a first step, we illustrate the formalism using two basic exam-

ple situations as depicted in Figs. 2 and 3. Since here only two
magnetic inclusions are considered, we use much higher dimen-
sionless force coefficients than introduced in Sec. III to still pro-
duce visible displacements. First, in Fig. 2, two mutually attractive
magnetic dipole moments are induced on the horizontal symme-
try axis running through the center of the sphere. As expected, the
sphere in response to these induced forces contracts along the hori-
zontal axis. For positive Poisson ratio, ν > 0, this contraction leads
to an expansion in the lateral directions. This effect is most pro-
nounced for an incompressible elastic sphere, i.e., for ν = 0.5 (see
the first row in Fig. 2). In contrast to that, the negative Poisson ratio
ν = −0.5 reverses this secondary response (see the bottom row in
Fig. 2).

A repulsive magnetic interaction between two inclusions is
considered in Fig. 3. Again, the magnetized particles are located on a
horizontal axis running through the center of the sphere. In this case,
the magnetic dipoles point into the vertical direction. As expected,
the sphere now expands along the horizontal axis. Moreover, the
sphere contracts along the vertical axis, except for the depicted case
of ν = −0.5, in which it expands along all directions.

The right columns in both Figs. 2 and 3 show how we illus-
trate our results in the following. To display the surface deforma-
tion, the resulting displacement field is evaluated on 49 152 surface
points. Then, the surface of the sphere is slit open and bent into the
plane in a so-called Mollweide projection.82 By the color code, we
mark whether the surface is pushed toward the outside (green/blue)
or pulled toward the inside (orange/red) of the sphere. Further-
more, the spheres are always rotated so that the magnetic moments
point toward the reader in the center of the plots. We used the
HEALPix package (http://healpix.sourceforge.net)81 to generate
these plots.

To obtain a more quantitative measure for the overall elonga-
tion or contraction of the sphere as well as for the overall change
of volume, we proceed along the following lines. We determine for
each of the 49 152 surface points the radial outward component

FIG. 5. Same as in Fig. 4, but for a rectangular (rect.) lattice structure featuring two
identical edge lengths of the unit cell and the third edge length of 0.7 of that value,
for 3μ0m2/4πμR6 = 5.4 × 10−8. In the plots on the left-hand side, the magnetiza-
tion is directed along the edge of smaller lattice constant, while it points along one
of the edges of the larger lattice constant in the right-hand plots.
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u�(r) = u(r) ⋅ r̂ of the resulting displacement field u(r). Then, again
using the HEALPix package,81 we expand u�(r) into spherical har-
monics.77 The coefficient u�00 of the spherical harmonicY00 =

√
1/4π

indicates an overall expansion of the sphere (increased volume) for
u�00 > 0 and an overall contraction (decreased volume) for u�00 < 0.
Similarly, we determine the expansion coefficient u�20 for the spher-
ical harmonic Y20 =

√
5/16π(3 cos2θ − 1), with θ denoting the

angle of the center-to-surface vector on the sphere with respect to
the magnetization direction. This coefficient, for u�20 > 0, indicates
an elongation of the sphere along the axis of magnetization, rela-
tive to its transverse deformation. For u�20 < 0, contraction along
the axis of magnetization, relative to the transverse deformation,
occurs.

Values of the corresponding pairs (u�00,u�20) are indicated on
the plots of Figs. 2 and 3. As expected, u�20 < 0 in Fig. 2 as well as
in Fig. 3 due to the relative contraction along the direction of mag-
netization in both cases. Moreover, u�00 < 0 in Fig. 2 and u�00 > 0 in
Fig. 3 (except for ν = 0.5) due to the mutual attraction and repulsion,
respectively. The absolute values of u�00 strongly increase for decreas-
ing ν as the sphere gets more compressible. Not shown are the dis-
placements of the inclusions obtained from our iterative numerical
procedure. These displacements are in each situation pointing into
the directions of the forces, i.e., toward and away from the center in
the attractive and repulsive case, respectively.

V. MANY-PARTICLE CONFIGURATIONS
To now turn toward the situation in small model systems of

magnetic gels and elastomers, we address the structures of approxi-
mately N = 1000 magnetic force centers distributed throughout the
sphere. First, the effects of regular lattice configurations are analyzed
for different orientations of the magnetization with respect to the
corresponding unit cells. To position the force centers (“particles”)
inside the sphere, we cut from a bulk-filling lattice structure all par-
ticles that are located on the inside of the sphere with a minimal
distance of 3a = 0.06R from the surface. Afterward, we also briefly
illustrate situations of randomized particle distributions. As outlined
at the end of Sec. III, we from now on set 3μ0m2/4πμR6 = 5.4 × 10−8
throughout.

A. Simple cubic lattice structure
We started with a configuration cut from a regular simple cubic

(sc) lattice. As a lattice constant, we chose 0.15R, which yields 1021
particles inside the elastic sphere. Three different orientations of the
magnetization direction were probed, namely, along the (1, 0, 0)
direction (edge of the unit cell), (1, 1, 0) direction (face diago-
nal of the unit cell), and (1, 1, 1) direction (space diagonal of the
unit cell). See the left, center, and right column of plots in Fig. 4,
respectively.

FIG. 6. Same as in Fig. 4, but for a
body-centered cubic (bcc) lattice con-
figuration, again setting 3μ0m2/4πμR6

= 5.4 × 10−8.
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First, we observe a contraction of the sphere along the magne-
tization axis when it is directed along the edge of the unit cell (left
column of plots) in qualitative agreement with Ref. 13. This can be
understood already by considering the interactions within a pair of
nearest neighbors. The corresponding dipole–dipole interactions are
attractive along the magnetization direction and repulsive perpen-
dicular to it. Second, in both other cases of orienting the magnetiza-
tion, we find an expansion along the direction of the magnetization,
which is more pronounced and uniaxial for the magnetization along
the space diagonal of the unit cell (right column of plots). For the
magnetization along the face diagonal (center column of plots), we
observe contraction along the perpendicular face diagonal in the
xy-plane, i.e., in the (1, −1, 0) or (−1, 1, 0) direction. Indicated by
u�00, we find that the volume of the sphere is shrinking in every
case.

B. Rectangular lattice structure
Next, we broke the cubic symmetry along one direction by

turning to a rectangular lattice configuration. For this purpose,
we considered a unit cell within which the lattice constant along
one direction is 70% of the lattice constants along the perpendic-
ular directions. The latter lattice spacings were chosen as 0.171R,
leading to 999 inclusions. We imposed the magnetization along
the axis of smaller lattice constant as well as along one of the

other axes. These cases are referred to by (1, 0, 0) and (0, 1, 0),
respectively.

Figure 5 reveals a contraction of the sphere along the magneti-
zation axis in both cases (except for ν = −0.5). A relative contraction
along this axis is observed in the spherical harmonic coefficients as
u�20 < 0 in every case. In the auxetic situation (ν = −0.5), a global con-
traction or expansion of the sphere is observed, respectively. We can
understand this behavior from the interactions between the closest
neighbors (along the axis of shorter lattice constant) which attract
each other in the left-hand plots and repel each other in the right-
hand plots in analogy to Sec. IV. Furthermore, we observe a fourfold
symmetric deformation on the left-hand side due to the fourfold
symmetry around the axis of magnetization, which is no longer
present on the right-hand side. In the latter case, the symmetry axis
parallel to the edges of shorter lattice constant runs through the cen-
ter of the dark blue spots. Our results for the situation (1, 0, 0) and ν >
0 can be compared to those of Ref. 46 obtained for spatially homoge-
neous deformations of the elastic environment, showing qualitative
agreement.

C. Body-centered cubic lattice structure
Next, we address magnetostriction for body-centered cubic

(bcc) lattice configurations. We probed the same magnetization
directions (1, 0, 0), (1, 1, 0), and (1, 1, 1) as for the sc lattice

FIG. 7. Same as in Fig. 4, but for
a face-centered cubic (fcc) lattice con-
figuration, again setting 3μ0m2/4πμR6

= 5.4 × 10−8.
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(see Sec. V A). For comparison, these directions again refer to the
cubic unit cell. A lattice constant for the cubic cell of 0.1885R was
used, which implies 1037 inclusions. As a result, we observe a rel-
ative expansion along the magnetization axis for the (1, 0, 0)-case
(see Fig. 6). For the other two orientations of the magnetization, the
opposite is true for ν = 0.5. Yet, for the auxetic spheres in the bottom
row of Fig. 6, an expansion along the magnetization direction can
be observed in all cases. Thus, for the (1, 1, 0) and (1, 1, 1) orienta-
tions, the response switches from contraction to expansion along the
magnetization with decreasing ν.

D. Face-centered cubic lattice structure
Likewise, for face-centered cubic (fcc) lattice configurations,

we label the orientations of the magnetization direction (1, 0, 0),
(1, 1, 0), and (1, 1, 1). We used a lattice constant for the cubic cell
of 0.236R, which implies 1055 inclusions.

In the case of this lattice structure, we find a strong resem-
blance to the previous situation of a bcc lattice (see Sec. V C) for all

three magnetization directions that were probed. The corresponding
results are summarized in Fig. 7.

E. Randomized configurations
Finally, we also considered the response of less ordered par-

ticle configurations. For this purpose, the pointlike particles were
inserted at random into the sphere. During the process, we impose
a minimum distance of 6a = 0.12R of the particles from each
other.

When aligned magnetic dipoles are generated on the parti-
cles, mutual magnetic interactions between them lead to defor-
mations of the elastic sphere also for these more irregular
configurations. Due to the disordered particle arrangement under-
neath the surface of the sphere, by eye the surface deforma-
tion appears quite irregular in most cases (see Fig. 8). Gener-
ally, the observed irregularities in the shape of the deformed
surface are in line with previous experimental observations and
simulations.51,52

FIG. 8. Same as in Fig. 4, but for two
randomized configurations, again setting
3μ0m2/4πμR6 = 5.4 × 10−8.
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To obtain a definitemeasure for the overall volume changes and
elongation or contraction along the axis of magnetization, we again
determined the coefficients u�00 and u�20, respectively. As demon-
strated for two randomly selected example realizations in Fig. 8,
the displacements generally tend to become more pronounced for
decreasing ν. Our plots indicate an elongation along the magneti-
zation axis, similarly to the situation for the fcc lattice magnetized
along the (1, 0, 0) axis (see Fig. 7). To search for more general
trends in the behavior of the values u�00 and u�20, in total 50 differ-
ent realizations of randomized configurations were generated and
evaluated.

The averaged results are summarized in Fig. 9. A trend of over-
all contraction of the whole sphere is identified for smaller Pois-
son ratios [see the darker data points for u�00 in Fig. 9(a)]. For an
incompressible elastic sphere, i.e., for ν = 0.5, the volume remains
unchanged, as expected. In fact, we observe a trend of relative elon-
gation of the sphere along the direction of magnetization (u�20 > 0)
[see the darker data points in Fig. 9(b)]. The absolute values quan-
tifying the degree of deformation increase with decreasing Pois-
son ratio ν. For clarity, we also summarize the averaged values in
Table I. Comparing with the related experimental results,44,45 we find
qualitative agreement.

FIG. 9. (a) Volume expansion (u�00) and (b) relative elongation along the magne-
tization axis (u�20) of the elastic sphere when randomized particle configurations
within the sphere are magnetized as 3μ0m2/4πμR6 = 5.4 × 10−8. We depict the
corresponding mean values by darker (blue) dots and standard deviations by dark
error bars obtained from 50 realizations of the particle distributions for the four
studied values of the Poisson ratio (as marked on a nonlinear scale on the abscis-
sae). Insets show the corresponding boxplots using the same scaling of the axes.
The medians are plotted as (orange) horizontal lines. Boxes indicate the middle
50% of obtained values, while the whiskers mark the highest and lowest values
except for outliers that are shown as circles. Outliers are defined as points for
which the distance to the end of the box is larger than 1.5 times the box height.
Lighter symbols in the main plots were obtained for comparison for the same val-
ues of the Poisson ratio from threefold mirror symmetric but otherwise randomized
configurations.

TABLE I. Rounded averaged values of the expansion coefficients u�00 and u�20,
averaged over 50 randomized configurations.

ν −0.5 0 0.3 0.5

u�00 −6× 10−4 −1× 10−4 −4× 10−5 3× 10−10

u�20 5× 10−3 2× 10−3 8× 10−4 3× 10−4

We remark that, in general, the randomized particle configu-
rations exposed to an external magnetic field will experience a net
torque that would induce a macroscopic rotation. Still, we were able
to perform our calculations. In our approach, as explained before,
we have excluded corresponding contributions. For comparison, to
generate systems of vanishing overall torque, we changed our pro-
cedure of initialization. The particles were now inserted at random
into that eighth of the sphere of Cartesian coordinates of x, y, z > 0.
Afterward, the configuration was mirrored at the planes x = 0, y = 0,
and z = 0 so that the whole sphere is filled. The resulting data
points for the same values of the Poisson ratio ν are included in
lighter color in Fig. 9 and confirm the previously inferred trends.
As one significant deviation, for incompressible systems (ν = 0.5),
we now observe a weak tendency of relative contraction instead of
elongation along the axis of magnetization. We can understand this
deviation illustratively. The procedure of mirroring introduces pairs
of nearby particles that mutually attract each other along or repel
each other perpendicularly to the axis of magnetization, support-
ing an overall relative contraction of the sphere. We have checked
that the associated change in the overall behavior for ν = 0.5 is
related to the finite size of the sphere. When we double the radius
R of the elastic sphere, keeping the concentration of contained par-
ticles constant, we found the mean value in Fig. 9(b) for ν = 0.5
and for the threefold mirror-symmetric configuration (lighter data
point) to move toward positive numbers. It would be interesting to
know whether global rotations were observed in the macroscopic
experiments.44,45

VI. CONCLUSIONS
In summary, we have adapted the Green’s function derived by

Walpole for an elastic sphere embedded in an infinitely extended
elastic environment70 to the case of a free-standing elastic sphere.
As a result, we can, in the linear regime of elasticity, calculate the
small-amplitude deformations of the sphere if ensembles of point-
like inclusions exert forces in the absence of global translations and
rotations.

Our approach has the advantage of explicitly including the
boundaries of the system, incompressibility or auxetic behavior if
required, and all internal degrees of freedom of the elastic matrix. It
treats the matrix as an elastic continuum. In principle, the formal-
ism becomes exact for linear small-amplitude distortions and low
volume fractions of the inserted particles, that is, large interparti-
cle distances when compared to the particle diameters. At the same
time, the action of many force centers can be conveniently super-
imposed in this way. We stress that this formalism naturally takes
into account the spatial inhomogeneities of deformation that occur
within the elastic material.
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Along these lines, we have addressed the deformation of spher-
ical elastic example systems that contain different spatial arrange-
ments of magnetized pointlike inclusions. We started from the illus-
trative examples of two mutually attracting or repelling dipoles.
Next, we addressed several different types of configurations of
approximately 1000 inclusions. Interestingly, for simple cubic con-
figurations, we observed contraction or extension along themagneti-
zation direction, depending on whether themagnetization was along
the edge or face/space diagonal of the unit cells. Body- and face-
centered cubic configurations, in contrast to that, led to expansion
along the magnetization direction when oriented along the edges
of the unit cells. Remarkably, for magnetizations along the face and
space diagonals of the latter two lattice types, the behavior switched
from relative contraction to relative expansion along the magne-
tization direction with decreasing Poisson ratio. Moreover, simple
rectangular and randomized configurations were addressed.

Out of these examples, spheres containing randomized parti-
cle configurations probably represent the most relevant considered
systems concerning actual experimental realizations using presently
available tools of fabrication. These spheres tend to elongate along
the axis of magnetization, which becomes more pronounced with
decreasing Poisson ratio. Moreover, with decreasing Poisson ratio,
they tend to decrease their volume upon magnetization. By con-
struction, our approach is restricted to the linear regime of defor-
mation. This means that only small-scale deformations of the elastic
spheres can be described.

In reality, it is possible to generate spherical samples of mag-
netic gels and elastomers by curing the material in a spherical
compartment.44,45 Afterward, the internal structure and overall mag-
netostriction induced by an external magnetic field can be recon-
structed, for example, using x-ray microtomographic analyses.83,84

Small-scale spherical samples could likewise be generated using
different methods such as solvent evaporation85 or microfluidic
methods.86 Another type of complex polymeric material, spher-
ical samples of which were produced in the latter way success-
fully, are liquid-crystalline elastomers. They can likewise show
induced deformations and actuation.87,88 Magnetic gels and liquid-
crystalline elastomers share several similarities in their overall stress-
strain properties.89,90 Potentially, also the induced distortions of
spherical samples of magnetic gels generated by microfluidic pro-
duction techniques91,92 reveal such related behavior. Possibly, our
approach may further be helpful in characterizing the deforma-
tional response of biological cells containing embedded magnetic
particles.93

SUPPLEMENTARY MATERIAL

See supplementary material for further details on how we
obtain approximate analytical expressions for the displacement of
a finite-sized inclusion in our free-standing elastic sphere when the
inclusion is subject to an applied net force.
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In this supplemental file, we describe how we calculate in our free-standing elastic sphere the
displacement of each finite-sized inclusion when it is subject to a non-vanishing but sufficiently
small force.

In our iterative numerical scheme, it is necessary to
know during each step how much each magnetic inclusion
is displaced directly in response to the force acting on it.
This force, in our situation, results from the magnetic
interactions with all other inclusions. Here, we assume
the inclusions to be of rigid spherical shape of radius
a = 0.02R, where R is the radius of the free-standing
embedding elastic sphere.

We note that because of the spherical geometry of the
overall elastic body in combination with the linearity of
the underlying equations, we only need to consider two
complementary situations: First, the force may act par-
allel to the positional vector of the inclusion within the
sphere, that is along a radial axis. Second, the force may
act perpendicular to this axis. In general, we can split
any force into these two orthogonal components.

To take into account the finite size of the spherical
inclusion, we distribute about 3 × 106 point-like force
centers approximately evenly on a spherical shell around
the center of the inclusion (again using the HEALPix
package [1]). Then, we let a force of unit magnitude,
divided by the number of force centers, act on each of
these force centers. The resulting displacement field is
evaluated on the spherical shell at 192 different positions,
again distributed approximately evenly.

We calculate this displacement field using our modi-
fied version of Walpole’s solution. At the end, we de-
termine from the 192 positions of evaluation the average
displacement. The latter is assigned as the displacement
of the whole inclusion. (Corresponding standard devia-
tions over the shell are calculated as well.)

In principle, we need to repeat this procedure for all
positions along one (arbitrary) radial axis. Obviously,
this is only possible for a finite number of center
positions of the inclusion. Therefore, we interpolate our
results for intermediate positions. To achieve this, we
use a fitting function for the resulting displacements of

the form

ud(r̄) =
6∑

i=0

αd
i

(1− r̄)i
, (1)

where d ∈ {‖,⊥} marks displacement components in
response to forces parallel or perpendicular to the radial
axis, r̄ sets the distance of the center of the inclusion from
the center of the elastic sphere, and αd

i are fit parameters.

Figure S1 demonstrates very good agreement between
our fits using the functional form of Eq. (1) and our calcu-
lated data. Thus, we used the fitted functions to calculate
the displacements of the inclusions during the iterative
numerical loop as described in the main article. Nat-
urally, the curves for the cases of displacement parallel
and perpendicular to the radial axis coincide for r̄ = 0
for all considered values of the Poisson ratio ν. This is
expected for symmetry reasons. In the limit r̄/R → 1,
we compare the resulting displacements to correspond-
ing displacements calculated via the solution by Mindlin
[2]. The latter refers to a homogeneous elastic half-space
bounded by a free surface. We find good agreement for
all four values of the Poisson ratio ν and both force direc-
tions (data not shown). We note the increased standard
deviation in Fig. S1 of the displacements on the shell of
evaluation around the center of the inclusion for posi-
tions closer to the elastic surface. The points on that
side located closer to the surface of the elastic sphere get
displaced more than on the opposite side because there
is less elastic material in the closer vicinity that needs
to be dragged along (the elastic sphere ends within a fi-
nite distance). In our numerical evaluations associated
with the results in the main article, we only used val-
ues r̄ < r̄max, see Fig. S1, for which these deviations are
reasonably small.

[1] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt,
F. K. Hansen, M. Reinecke, and M. Bartelmann, Astro-
phys. J. 622, 759 (2005).

[2] R. D. Mindlin, Physics 7, 195 (1936).
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FIG. S1. A spherical shell of radius a = 0.02R is located at a distance r̄ from the center of a free-standing elastic sphere
of radius R centered around the origin. As a measure for the induced displacements of a spherical inclusion of radius a, we
distribute point-like force centers on the shell. Each force center exerts a force of identical magnitude on the elastic body.
Resulting displacements are evaluated at probe positions also located on the shell. We distinguish cases in which the force is
applied parallel to the positional vector, i.e., along a radial axis (on the left-hand side), and cases in which the force is applied
perpendicular to the positional vector (on the right-hand side). The (blue) dots represent mean values calculated from 192
probe positions distributed over each shell, together with corresponding standard deviations. Results for the fitting functions
in Eq. (1) are indicated by solid (orange) lines. The vertical dashed (green) lines mark the maximal value of r̄ used in the
evaluations reported in the main article. As in the main article, we distinguish four values of the Poisson ratio ν.

P1 J. Chem. Phys. 151, 114906 (2019) 51



52 Chapter 2 Scientific publications



P2 Phys. Rev. Research 2, 023383 (2020) 53

P2 Towards a soft magnetoelastic twist actuator

Reproduced from

L. Fischer and A. M. Menzel,
Towards a soft magnetoelastic twist actuator,

Phys. Rev. Research 2, 023383 (2020).

Digital Object Identifier (DOI):
https://doi.org/10.1103/PhysRevResearch.2.023383

Statement of contribution

Both authors contributed to this work. I performed all calculations and amended
the theory, based on ideas and discussions with AMM. Moreover, I drafted most
of the first version of the manuscript, including all figures, and the supplemental
material. I estimate my contribution to this work during my PhD as 90%.

Copyright and license notice

©The author(s), 2020.
This is an Open Access article, published by the American Physical Society under
the terms of the Creative Commons Attribution 4.0 International license (https:
//creativecommons.org/licenses/by/4.0/). This license permits unrestricted
use, distribution, and reproduction in any medium, provided attribution to the
author(s) and the published article’s title, journal citation, and DOI are maintained.

https://doi.org/10.1103/PhysRevResearch.2.023383
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


54 Chapter 2 Scientific publications



PHYSICAL REVIEW RESEARCH 2, 023383 (2020)

Towards a soft magnetoelastic twist actuator

Lukas Fischer * and Andreas M. Menzel †

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstraße 1, D-40225 Düsseldorf, Germany

(Received 9 March 2020; accepted 29 May 2020; published 23 June 2020)

Soft actuators allow external stimuli to transform into mechanical deformations. Because of their defor-
mational response to external magnetic fields, magnetic gels and elastomers are ideal candidates for such
tasks. Mostly, linear magnetostrictive deformations, that is, elongations or contractions along straight axes, are
discussed in this context. In contrast to that, here we propose the concept of a twist actuator that responds
by torsional deformations around the axis of an applied magnetic field. For this purpose, we theoretically
investigate the overall mechanical response of a basic model system containing discrete magnetizable particles
in a soft elastic matrix. Two different types of discrete particle arrangements are used as starting conditions in
the nonmagnetized state. These contain globally twisted anisotropic particle arrangements on the one hand, and
groups of discrete helical-like particle structures positioned side by side on the other hand. Besides the resulting
twist upon magnetization, we also evaluate other modes of deformation. Our analysis supports the construction
of magnetically orientable and actuatable torsional mixing devices in fluidic applications or other types of soft
actuators that initiate relative rotations between different components.

DOI: 10.1103/PhysRevResearch.2.023383

I. INTRODUCTION

Torsional actuators respond by a twist-type deformation
to external stimuli. Most studies are concerned with linear
actuators that contract or elongate along a certain axis upon
actuation. However, there are several important prospective
applications of twist actuators, for example, microfluidic mix-
ing, microscopic surgery tools, and prosthetics [1]. Depending
on the application, a certain degree of softness of the actuator
in combination with a certain degree of biocompatibility may
be beneficial or even mandatory, particularly when it comes to
medical applications. This is one of the reasons why so-called
magnetic gels and elastomers (also commonly referred to
as magnetorheological elastomers or ferrogels) [2–11] were
introduced as important candidates for the construction of
soft actuators [2,12–24]. These materials usually consist of
magnetic or magnetizable colloidal particles embedded in an
elastic, typically polymeric matrix. Such magnetic gels have
the advantage that their distortions can be induced by external
magnetic fields, and the resulting deformation is typically
reversible [25].

To now generate magnetoelastic twist actuators in the form
of magnetic gels or elastomers (see Fig. 1), we suggest to build
on the following previously explored insights. When the ma-
terials are fabricated in the presence of strong homogeneous
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†menzel@thphy.uni-duesseldorf.de

Published by the American Physical Society under the terms of the
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external magnetic fields, chainlike structures of the inserted
particles may form before the surrounding polymeric matrix is
permanently established through corresponding chemical pro-
cesses. Once the elastic matrix has reached its elastic (solid)
state, these particle structures remain locked in the material,
as can be seen in many experimental realizations [13,26–33].
One possible route to generate torsional actuators may be
to additionally twist these chainlike aggregates, before the
particle positions are fixed in the material by the final chem-
ical crosslinking and establishing of the elastic polymeric
matrix. This leads to self-supported torsional actuators. Such
a concept is different from materials that are clamped at
one end, contain anisotropic nonchiral structures, and are
twisted by external magnetic fields that exert torques on
the contained anisotropic aggregates [34,35]. Naturally, the
situation that we consider is also different from studying how
magnetic fields modify the stiffness of magnetic gels and
elastomers when distorted by externally imposed torsional
deformations [36–42].

To realize soft torsional actuators, in our case, on the one
hand, one may think of a globally, collectively twisted state of
the whole set of embedded chainlike aggregates in the initial,
cured state of the materials. On the other hand, one may as-
sume each individual chainlike aggregate to show an initially
twisted structure.

We start by considering globally twisted particle arrange-
ments as initial states. To generate corresponding samples, a
procedure of the following kind could be realistic. The ap-
proach is inspired by a protocol of synthesizing monodomain
nematic liquid-crystalline elastomers [43–45] consisting of
liquid-crystal molecules that are chemically attached to or
part of crosslinked polymeric networks [45–47]. Its scheme
follows a two-step crosslinking process [43–45], employing
two crosslinkers of different speed of chemical reaction. The
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FIG. 1. Illustration of the general idea and setup. The considered
soft magnetoelastic composite system is spherical in overall shape.
Upon application of a homogeneous external magnetic field B, it
shows a reversible torsional twist deformation, as indicated by the
bent arrows on the right-hand side.

action of the first crosslinker generates a weakly crosslinked
elastomeric sample that is stiff enough to already be uniax-
ially stretched. Maintaining this stretched state in which the
liquid-crystal molecules are on average uniaxially oriented
in response to the imposed strain, the second crosslinker
reacts and locks in this configuration. Along these lines,
monodomain nematic samples, featuring an average uniaxial
molecular liquid-crystalline alignment, are obtained. Such
materials show pronounced nonlinear stress-strain properties
when stretched perpendicular to the direction of nematic
alignment [43,44,48,49].

In our case of magnetic gels and elastomers, the two-step
crosslinking process may be performed accordingly. First,
under the presence of strong homogeneous external magnetic
fields, uniaxially ordered chainlike aggregates of the mag-
netized particles form. They get locked into the sample by
the generated surrounding elastic environment resulting from
the quick action of the first crosslinker [26–28,31–33,50,51].
Finite gaps between the particles as considered below may
result from previous coating of the particles or by using
surface-functionalized particles themselves as crosslinkers
[19,52–55]. In a next step, this precrosslinked system is
twisted around the anisotropy axis. This leads to a global twist
of the contained chainlike particle aggregates. The sample is
maintained in this state while the second, slower crosslinker is
reacting chemically and establishing the final elastic matrix.
In this way, the twisted structure gets permanently locked in.

Another, possibly more academic procedure to generate
example systems for investigations of the effects that we
predict here might be to deposit the particles in a controlled
way, maybe even by hand, at prescribed positions while gen-
erating the elastic environment layer by layer [56,57]. Even
macroscopic spherical particles could be used for such proofs
of concept [58]. In this case, besides implementing globally
twisted structures, one could also arrange the magnetizable
particles in individual helices, positioned in an aligned way
side by side. Maybe, in the future, such a deposition process
can be automated, as has recently been achieved for the
production of magnetic microhelices [59,60].

In the present work, we use such twisted discrete particle
configurations as an input to calculate the resulting magnet-
ically induced overall deformations of corresponding elastic
composite systems. Our theoretical approach is analytical,
based on linear elasticity theory, and then evaluated numer-

ically. To achieve such an analytical approach, we concentrate
on elastic systems of overall spherical shape. The degree of
initial twist is varied and the consequences of such variations
are analyzed, both by numerical evaluations and by simplified
analytical considerations. Both the globally twisted structures
as well as several individual helical-like aggregates arranged
side by side are addressed.

We give a brief overview of our theoretical approach in
Sec. II, together with a motivation of our chosen parame-
ter values. After that, in Sec. III the torsional actuation of
systems containing globally twisted particle configurations is
addressed. In Sec. IV, we consider particle arrangements of
helical aggregates positioned side by side. To further facilitate
the understanding, we compare the resulting twisting defor-
mation to a minimal analytical consideration in Sec. V. We
conclude in Sec. VI.

II. THEORETICAL FRAMEWORK

To perform the following evaluations, we build on our
methods developed in Ref. [61]. We assume that the elastic
material used for the magnetorheological elastomer and con-
taining the magnetizable particles is spatially isotropic as well
as homogeneous. Moreover, we confine ourselves to small
deformations (up to a couple of percent) so that we can use
linear elasticity theory. This allows us to superimpose the
deformations resulting from each internal force center.

Consequently, we describe this material via only two elas-
tic coefficients, namely, the shear modulus μ and the Poisson
ratio ν. They quantify the stiffness and compressibility of the
material, respectively. A Poisson ratio ν of 1/2, representing
an upper bound [62], describes incompressible materials.
However, the Poisson ratio can reach negative values as well,
down to −1 [62]. In these cases, the corresponding material is
called auxetic, implying that when stretched along one axis
it will show expansion to the lateral directions instead of
contraction.

Generally, the response of the elastic material to an applied
force density f (r) inside it is then quantified by the so-called
Navier-Cauchy equations [63],

μ�u(r) + μ

1 − 2ν
∇∇ · u(r) = − f (r), (1)

where u(r) denotes the displacement field at position r. In our
case, the elastic material forms a freestanding elastic sphere
of radius R. Fortunately, an analytical solution for Eq. (1) in
this case is available in terms of the corresponding Green’s
function. f (r) then specifies the effect of a pointlike force
center inside the elastic sphere. We were able to transfer
this solution to the case of a freestanding sphere of free
surface [61], starting from previous work that considered the
sphere embedded in an elastic background material [64]. This
analytical solution for the elastic part of the problem was
afterwards implemented numerically.

Next, to include the magnetic effects of magnetorheologi-
cal gels and elastomers, we distributed magnetic inclusions at
prescribed positions inside the elastic material, see Secs. III
and IV. We always assume the magnetic inclusions to be
sufficiently far apart from each other so that we can describe
their magnetic signature as magnetic dipoles. As a further
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simplification, we assume that the magnetic dipole moment
m = mm̂, where m = |m|, is identical for all inclusions. In
experiments, such a situation could be realized by applying a
strong external magnetic field that magnetizes all (identical)
inclusions to saturation.

In this case, the magnetic dipole-dipole forces are given
by [65]

Fi = − 3μ0m2

4π

N∑
j = 1
j �= i

5ˆ̄ri j (m̂ · ˆ̄ri j )2 − ˆ̄ri j − 2m̂(m̂ · ˆ̄ri j )
r̄4
i j

, (2)

where Fi is the force exerted by all other inclusions on the
ith inclusion. Moreover, μ0 denotes the magnetic vacuum
permeability, r̄i marks the position of the ith inclusion, the
difference vector of positions is given by r̄i j = r̄i − r̄ j =
r̄i j ˆ̄ri j with r̄i j = |r̄i j | (i, j = 1, ...,N), and N sets the number
of magnetized inclusions. The resulting force density inserted
into Eq. (1) based on Eq. (2) is

f (r) =
N∑
i=1

Fi δ(r − r̄i ), (3)

where δ(r) represents the Dirac delta function, and we thus
assume pointlike magnetic force centers.

After rescaling lengths by R and forces by μR2, the
strength of the magnetic forces relative to the elastic restoring
forces is characterized by a dimensionless force coefficient
3μ0m2/4πμR6. Its value is set to 5.4 × 10−8 for all that
follows, as inspired by realistic experimental parameters [61].
The inclusions are assumed to be of spherical shape as well,
with their radius set to a = 0.02R.

To include the effect of the induced elastic distortions on
the positions of the magnetized inclusions and thus on the
resulting magnetic forces and vice versa, an iterative scheme
had been developed, see Ref. [61]. Finally, to characterize
the induced overall deformations and capabilities of actuation,
we evaluate the resulting displacement field on 49 152 surface
points of the elastic sphere. These points are approximately
evenly distributed with positions generated by the HEALPix
package [66].

For the problem at hand, we choose the z axis to always
coincide with the magnetization direction of the magnetic in-
clusions, i.e., m̂ = ẑ. Moreover, we express the displacement
of each surface point using spherical coordinates as

u(r(θ, ϕ))= u⊥(θ, ϕ)

⎛
⎜⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎟⎠+uθ (θ, ϕ)

⎛
⎜⎝

cos θ cos ϕ

cos θ sin ϕ

− sin θ

⎞
⎟⎠

+ uϕ (θ, ϕ)

⎛
⎜⎝

− sin ϕ

cos ϕ

0

⎞
⎟⎠, (4)

with

r(θ, ϕ) =R

⎛
⎜⎝

sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎟⎠. (5)

Thus, the components u⊥, uθ , and uϕ describe displacements
inwards or outwards of the elastic surface, tangential deforma-
tions along the polar direction, and tangential deformations
along the azimuthal direction, respectively. Below, the com-
ponent uϕ will become particularly important to quantify the
overall twisting deformation.

To associate the resulting displacement field with different
modes of overall deformation, we perform spherical harmonic
expansions of u⊥, uθ , and uϕ . We use the same definitions
for spherical harmonics, especially concerning the Condon-
Shortley phase, as in Ref. [65]. The most relevant spherical
harmonics for our analysis are given by Y00 = √

1/4π , Y10 =√
3/4π cos θ , and Y20 = √

5/16π (3 cos2θ − 1).
As announced above, we then focus on the resulting overall

torsional deformations for two types of spatial arrangements
of the magnetizable inclusions: globally twisted and side-by-
side aligned helical structures, see Secs. III and IV, respec-
tively. The degree of initial structural twist in the nonmagne-
tized state is quantified by a parameter γ ; see below for its
definition. In both cases we confine the initial positions of the
inclusions by requiring a minimal distance of 3a = 0.06R to
the elastic spherical surface.

III. GLOBALLY TWISTED STRUCTURES

To numerically generate the globally twisted structures,
we start from layers of hexagonally arranged magnetic in-
clusions [51,67–69]. These layers are all oriented parallel to
the xy plane and spaced equally from each other in their
normal direction by a distance dlayer = 0.11R. The center layer
is located in the plane z = 0. In the initial, nonmagnetized
situation, the hexagonal particle arrangements within each
layer are in a state rotated by an angle of γ z/dlayer relative
to the arrangement in the plane z = 0. This corresponds
to a globally twisted configuration of the inclusions when
compared to straight chainlike aggregates aligned parallel
to the z axis. Here we consider small angles γ � 0.159π

to preserve the chainlike structure, see Fig. 2. The lattice
constant within each plane, which equals the lateral distance
between the chains, is set to dchain = 0.25R. Overall, this leads
to 623 magnetizable inclusions in 55 chains. An illustration
of an initial structure is presented in Fig. 3, where we have,
however, increased dchain to 0.5R for clarity. In the numerical
evaluation, we consider the range 0 � γ � 0.159π in steps of
approximately 0.0016π . We distinguish four possible values
of the Poisson ratio: ν = 0.5 (incompressible), ν = 0.3, ν =
0, and ν = −0.5 (auxetic).

As a first step, we focus on the following spherical har-
monic expansion parameters for the resulting overall surface
distortions: u⊥

00, u⊥
20, and uϕ

10. The coefficient u⊥
00 quantifies

overall changes in volume of the composite material. Positive
values correspond to an increase in volume, while negative
values correspond to a decrease in volume. Next, the coeffi-
cient u⊥

20 describes a relative elongation (u⊥
20 > 0) or contrac-

tion (u⊥
20 < 0) along the direction of magnetization, here along

the z axis. Most important for our investigation in the present
context is the parameter uϕ

10. This coefficient is set by the
lowest mode of a twist-type deformation around the z axis. For
a counterclockwise rotation of the upper hemisphere against
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dchain

dlayer

ẑ

γ

FIG. 2. Illustration of two layers of hexagonally arranged mag-
netizable inclusions inside the elastic material. dlayer sets the vertical
distance between two layers, dchain the in-plane particle distance.
We set dchain = 0.25R > dlayer = 0.11R, which implies vertically
aligned, chainlike aggregates. Here, for illustration, dlayer is exag-
gerated. The upper arrangement shows a rotation by an angle γ

relative to the lower arrangement, where we chose γ = π/6 for
reasons of visibility. To emphasize the twist from layer to layer,
we plot the positions corresponding to the lower layer in the upper
layer as gray spheres, together with a dotted arrow that shows their
vertical identification. Having applied a rotation by γ to the structure
from the lower layer, the positions marked by dark spheres result.
We indicate this in-plane rotational displacement by blue in-plane
arrows. In the teal triangle, we illustrate the definition of the angle γ .

FIG. 3. Illustration of an example for the initial structure of the
magnetizable inclusions, indicated as small (blue) spheres, inside
the larger elastic sphere. This structure is generated from hexago-
nally arranged parallel chainlike aggregates of particles, where each
horizontal layer of particles is rotated relative to the next particle
layer underneath by an angle γ , see Fig. 2. In this illustration,
we chose γ ≈ 0.019π . Moreover, for better visibility, we here set
dchain = 0.5R. Instead, for our actual numerical evaluation, we used
a value of dchain = 0.25R.
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FIG. 4. Resulting overall surface displacement field of the spher-
ical magnetoelastic composite upon magnetization for an initially
globally twisted configuration of the magnetizable inclusions. To
quantify perpendicular surface displacements, we plot the two co-
efficients (a) u⊥

00 and (b) u⊥
20, indicating overall volume changes

and overall elongation along the magnetization direction relative to
lateral contraction, respectively. To quantify the lowest mode of an
overall twist deformation around the magnetization axis, we plot
the coefficient (c) uϕ

10. In all three cases, we display the behavior
with increasing angle γ , characterizing the global twist of the initial
nonmagnetized structure of inclusions (see Fig. 2 for the definition
of γ ). Moreover, we show graphs for the four different values of the
Poisson ratio, namely, ν = 0.5, ν = 0.3, ν = 0, and ν = −0.5.

the lower hemisphere it becomes uϕ
10 > 0. For a reversed

mutual sense of rotation, one obtains uϕ
10 < 0.

The three coefficients u⊥
00, u

⊥
20, and uϕ

10 are shown in Fig. 4
when the aforementioned particle structures are magnetized.
We have not included the data for negative values of γ because
the curves in Figs. 4(a) and 4(b) are mirror symmetric with
respect to the line γ = 0, while the curve in Fig. 4(c) features
a point symmetry with respect to the origin.

As a first result, we infer from Fig. 4(a) that the overall
volume is constant (u⊥

00 ≈ 0) for ν = 0.5, as expected for
an incompressible material. With decreasing Poisson ratio,
we find that the elastic sphere shrinks more and more upon
magnetization. Naturally, this volume decrease is maximal for
γ = 0, i.e., straight chains of magnetizable inclusions. In this
case, the induced attraction between the particles along each
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chain is strongest. When increasing γ , the volume decrease
becomes smaller and oscillates for higher values of γ .

Similarly, we infer from Fig. 4(b) that the overall con-
traction along the magnetization direction relative to a lateral
expansion, as quantified by u⊥

20, is strongest for γ = 0 for the
same reason as above. This effect is most pronounced for in-
compressible materials because the contraction along the field
implies lateral expansions for reasons of volume conservation.
In contrast to that, the auxetic nature for ν = −0.5 counteracts
the lateral expansion for γ = 0. The oscillations for increasing
values of γ can be found in this coefficient as well.

When we focus on the behavior of uϕ
10 in Fig. 4(c), we

observe that it is almost independent of the Poisson ratio.
This is expected because a pure twist-type deformation leaves
the total volume unchanged. A small effect of the Poisson
ratio is still present and can most likely be attributed to
nonlinear effects revealed by our iterative scheme, i.e., to
the effects of the resulting displacements of the magnetic
inclusions, which are larger for more compressible materials.
Furthermore, we do not observe any torsional deformation for
γ = 0 because our initial configuration is not twisted in this
case. Increasing γ from zero, we see that the corresponding
values of uϕ

10 first become more and more negative. The sign
here represents the sense of the induced torsional deformation
of the composite, which is opposing the sense of initial twist
of the initial structure. We reach a maximum magnitude of
this twist deformation at γ ≈ 0.019π . For larger values of γ ,
the magnitude of uϕ

10 again decreases. This effect results from
the increasing distance between the inclusions with increasing
γ , implying a decreasing magnetic interaction. At even larger
values of γ , uϕ

10 oscillates around zero. We return to this
feature in Sec. V.

In practice, one would typically be interested in the situa-
tion of maximum observed effect. We therefore concentrate
on the system for γ ≈ 0.019π . First, we checked how the
magnitude of the induced torsion around the z axis varies with
the height z above or below the horizontal center plane (the xy
plane). For this purpose, we calculated the average azimuthal
angular displacement of the horizontal plane parallel to the xy
plane at height z as

�ϕ(z) =
〈
arctan

(
uϕ

√
R2 − z2

)〉
z

, (6)

where 〈. . . 〉z denotes an average over all surface points at
which uϕ was evaluated at a given height z. We found that
this quantity is approximately proportional to z. Furthermore,
we find that it is nearly independent of the Poisson ratio, in
agreement with the behavior of uϕ

10 in Fig. 4(c).
As a further visualization of the magnetically induced

deformation of the spherical elastic systems, again for angles
of initial global twist of γ ≈ 0.019π and for the four values of
the Poisson ratio as in Fig. 4, we illustrate in Fig. 5 the types
and magnitudes of deformation associated with the three main
modes that we have focused on, namely, u⊥

00, u⊥
20, and uϕ

10. For
this purpose, we show in each case the elastic sphere in the
undeformed state in blue. The sphere in the deformed state is
shown in ocher. Only the modes with expansion coefficients
u⊥

00 and u⊥
20, associated with the overall change in volume and

the relative elongation along the axis of the magnetic field,

FIG. 5. Illustrations of the differences between the undeformed
spherical state of each system (blue) and its deformed state (ocher)
upon magnetization for elastic spheres containing globally twisted
structures of the magnetic inclusions. The structures initially feature
the same value of γ as in Fig. 3. Only the effects of the modes u⊥

00 and
u⊥

20 are included to draw the deformed spheres. These deformations
are represented (approximately) quantitatively; however, we have
increased their magnitudes by a factor of 50 for illustration. More-
over, the deformation associated with the mode uϕ

10, representing
the magnitude as well as the direction of the magnetically induced
torsional deformation, is encoded by the lengths (increased by a
common global factor for illustration) and directions of the bent
(ocher) arrows. Results are displayed for the same four values of the
Poisson ratio ν as in Fig. 4.

respectively, are used to determine the shape of the deformed
sphere in these illustrations. We multiply the values of u⊥

00
and u⊥

20 by a factor of 50 for visualization. Furthermore, the
lengths of the bent arrows encode the magnitude of uϕ

10 and
the sense of the associated torsional deformation.

Considering the results, Fig. 5 confirms the aforemen-
tioned trends of the overall shrinking volume for compressible
materials and the additional relative contraction along the
axis of the magnetic field. The latter process is linked to an
expansion/contraction along the lateral directions for the pos-
itive/negative value(s) of the Poisson ratio. Furthermore, we
see that the magnitude of the induced twist-type deformation
is approximately independent of the Poisson ratio.

Next, in Fig. 6 we provide additional information on the
importance of different modes involved in the overall surface
displacement, obtained by our expansion of the perpendicular
and tangential components of the surface displacement field
into spherical harmonics. Again, we concentrate on the value
of γ ≈ 0.019π , and we use the same four values of the
Poisson ratio as in Fig. 4. We select the expansion coef-
ficients alm of ten representative spherical harmonic modes
for each component of the displacement field according to
the following scheme. First, for each mode the value of
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FIG. 6. For the same systems considered in Fig. 4, we depict for
γ ≈ 0.019π the values of the expansion coefficients into spherical
harmonics for the three components (a) u⊥, (b) uθ , and (c) uϕ of the
overall surface displacement field. The value of γ is the same as in
Fig. 3. The real part is always plotted along the upper line, while
the lower line illustrates the imaginary part of the corresponding
spherical harmonic expansion coefficient. We use bar plots with
the four colors corresponding to the four selected values of the
Poisson ratio ν = 0.5, ν = 0.3, ν = 0, and ν = −0.5. In this way,
the values of the expansion coefficients for ten representative modes
are displayed for the three components of the surface displacement
field. Particularly, we note the dominating character of the mode
(l,m) = (1, 0) for uϕ , which is associated with the type of twist
actuation upon magnetization that we here focus on. Additionally,
we include matrix plots to illustrate the magnitudes of the expansion
coefficients associated with these and additional modes in the Sup-
plemental Material [70].

alm of highest magnitude is identified from the four values
associated with the different Poisson ratios ν. These alm are
then ordered according to their absolute values, and we find
the labels l,m for the ten largest ones. Due to the high
degree of symmetry of our configurations, the most dominant
modes are those of m = 0. However, we observe nonvanishing
modes that depend on ϕ as well, characterized by m �= 0.
This leads to complex expansion coefficients. Since u⊥, uθ ,
and uϕ are real, we can find values for negative m via the
relation al (−m) = (−1)ma∗

lm, where the star denotes complex
conjugation. Consequently, for real alm the corresponding

spherical harmonics result together with al (−m) in a cos (mϕ)
mode, while purely imaginary alm result in a −sin (mϕ) mode.
The real and the imaginary parts of alm are shown separately
in the plots. (For an illustration of the values of the coefficients
alm in a different way, namely, matrix plots, together with
values for additional modes and for modes of negative m, we
refer to the Supplemental Material [70].)

Figure 6 confirms that those coefficients that we have been
concentrating on so far indeed dominate the spectrum. For u⊥,
see Fig. 6(a), these correspond to an overall volume change
(l = m = 0), especially for auxetic materials and except for
ν = 0.5, and to an overall contraction along the magnetization
direction relative to a lateral expansion (l = 2, m = 0), with
small higher-order corrections. All coefficients odd in l for
m = 0 are approximately zero here. We observe some very
small contributions related to the sixfold symmetry about the
z axis in the modes of l = 15, m = 6 and l = 24, m = 6.

Turning to uθ in Fig. 6(b), significantly smaller absolute
values of the expansion coefficients are obtained. Here, as for
uϕ in Fig. 6(c), the coefficients even in l vanish approximately
for m = 0, in contrast to the case for u⊥. The most important
contribution to uθ in the mode l = 1, m = 0 corresponds
to an overall surface displacement towards the equator on
both the upper hemisphere and the lower hemisphere upon
magnetization. In the incompressible case this effect is most
pronounced, as we then have the strongest expansion of the
sphere in the lateral directions. Again, higher-order contribu-
tions emerge which strengthen the aforementioned effect in
the vicinity of the equatorial plane.

Considering uϕ in Fig. 6(c) reveals the most important
mode in the present context, associated with the twist de-
formation through magnetization. As noted already above,
the mode l = 1, m = 0 is associated with a rotation around
the magnetization direction of the upper hemisphere relative
to the lower hemisphere. This mode dominates the overall
behavior by its absolute value [only exceeded by the mode
corresponding to overall volume expansion for the auxetic
case ν = −0.5 in Fig. 6(a)]. Near the equatorial plane, higher-
order modes in combination still support the effect of the
upper hemisphere being rotated relatively to the lower hemi-
sphere.

IV. HELICAL STRUCTURES

As a next step we address helical structures of the mag-
netizable particles embedded in the same elastic spheres as
before, arranged side by side. In contrast to the globally
twisted structure of parallel chainlike aggregates investigated
in Sec. III, we now consider each chainlike element by itself
to feature an initial helical shape. To set up our numerical sys-
tems, we again start from hexagonal arrangements of aligned
chainlike aggregates as before, this time for dchain = 0.5R,
i.e., for double the distance to each other. As above, the
vertical distance of the horizontal layers of particles is set
to dlayer = 0.11R. However, instead of initiating each layer
rigidly rotated relatively to its upper and lower neighboring
one, we now rigidly displace each layer laterally by adding a
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FIG. 7. Illustration of initially nonmagnetized particle structures
composed of helical elements of magnetizable inclusions, arranged
side by side. Within each layer parallel to the xy plane, the particles
form a hexagonal lattice of lattice constant dchain = 0.5R. The layers
have a vertical spacing of dlayer = 0.11R. Furthermore, we here chose
the radius of each helix to be rhelix = 0.05R. In the depicted case, we
set γ = π/8.

vector

rhelix(z) = rhelix

⎛
⎜⎝

cos(γ z/dlayer )

sin(γ z/dlayer )

0

⎞
⎟⎠. (7)

This lateral shift introduces an additional parameter, namely,
rhelix. Here we show results for structures corresponding
to two different values rhelix = 0.05R and rhelix = 0.1R, see
Figs. 7 and 8, respectively. In both cases, we fit 95 magneti-
zable inclusions into our elastic sphere, avoiding inclusions

FIG. 8. Same as in Fig. 7, but for rhelix = 0.1R.

FIG. 9. Same as in Fig. 4 but for the systems composed of helical
structure elements of magnetizable inclusions arranged side by side
instead of a globally twisted structure. Here, rhelix = 0.05R, as in
Fig. 7.

that would need to be deleted for particular values of γ .
Importantly, the overall structure in each case is no longer
sixfold rotationally symmetric about the z axis nor globally
screw-symmetric within the spherical boundaries. In the cen-
ter layer for z = 0, all helices start with a particle deflection
in the x direction, rhelix(0) = rhelixx̂, according to Eq. (7).
The resulting structures composed of helical aggregates are
depicted in Figs. 7 and 8. Using our numerical approach, we
evaluate the full range 0 � γ � 2π in steps of π/360.

As in Sec. III, we first address the expansion coefficients
u⊥

00, u⊥
20, and uϕ

10 for the overall displacements upon magneti-
zation as functions of γ . The curves in Figs. 9(a), 9(b), 10(a),
and 10(b) show a mirror symmetry with respect to the vertical
line γ = π , while those in Figs. 9(c) and 10(c) feature a point
symmetry with respect to the point (γ , uϕ

10) = (π, 0). This is
expected because Y00 and Y20 are even in z, while Y10 is odd.
Obviously, the results for helices of an initial twist π < γ <

2π can be mapped onto those for a corresponding initial twist
of 2π − γ . Illustratively, this corresponds to helices that differ
only by their sense of twist. The resulting displacements are
of much smaller magnitude when compared to the results for
the globally twisted arrangements in Fig. 4, which can already
be expected from the lower total number of inclusions for the
helical structures (95 here versus 623 inclusions in Fig. 4).
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FIG. 10. Same as in Fig. 9 but for setups with rhelix = 0.1R.

We start by considering the configurations of rhelix =
0.05R. In Fig. 9(a), we again find that the elastic sphere,
except for ν = 0.5, shrinks as a whole, specifically for
the smallest and largest values of γ . For these values, the
chains are straightest and therefore show the maximal internal
longitudinal attractive forces. Furthermore, the absolute mag-
nitude of overall contraction strongly increases with decreas-
ing Poisson ratio, i.e., for more compressible spheres.

Next we address in Fig. 9(b) the elongation along the
magnetization relative to the lateral contraction. Qualitatively,
we infer a similar behavior as in Fig. 9(a). Here we observe a
further, much smaller minimum for γ = π because we have
effectively generated two chains of distance 2rhelix = 0.1R out
of each helix. Apart from that, auxetic materials show stronger
relative contractions along the magnetization axis.

Concerning the magnitude of the twist actuation quantified
by Fig. 9(c), we again find a pronounced minimum, here
around γ ≈ 0.24π . In line with the point symmetry of the
curve mentioned above, the corresponding maximum is lo-
cated at γ ≈ 1.76π . As in Sec. III, uϕ

10 as a measure for the
twist actuation is approximately independent of the Poisson
ratio. This behavior will also be discussed in Sec. V.

Figure 10 shows corresponding results for rhelix = 0.1R.
The qualitative picture is similar to Fig. 9, with the same
symmetries of the curves. We notice that the aforementioned
minimum at γ = π [Fig. 10(b)] is more pronounced and can
be found in u⊥

00 [Fig. 10(a)] as well. Concerning the coefficient

FIG. 11. Same as in Fig. 5, but here for a system containing
helical structures of radius rhelix = 0.05R arranged side by side, see
Fig. 7, for γ ≈ 0.24π . This value of γ corresponds to the minimum
of the curves in Fig. 9(c) and thus to the maximal magnitude of
induced twist actuation. Here the rescaling factor for illustrating
the overall changes in volume and the relative elongation along the
direction of the imposed magnetic field is two times bigger than
in Fig. 5 for the case of the initially globally twisted structures.
Moreover, we rescale the lengths of the bent arrows by an additional
factor of 20 when compared to Fig. 5.

uϕ
10 quantifying the twist actuation, we see that the minimum

is shifted to smaller values of γ , namely, to γ ≈ 0.13π , and
is increased in magnitude by a factor of approximately 2.23.
Moreover, some oscillations together with positive values of
uϕ

10 occur at higher values of γ < π . Again, we will return to
this topic in Sec. V.

To further visualize these deformations, we again add
in Figs. 11 and 12 corresponding illustrations in analogy
to Fig. 5. The values of γ are chosen as those identified
for maximized amplitudes of magnetically induced torsional
deformations, represented by the minima in the curves of
Figs. 9(c) and 10(c). For rhelix = 0.05R and rhelix = 0.1R, we
show the results in Figs. 11 and 12, respectively. Here u⊥

00
and u⊥

20 are multiplied by a factor of 100 for illustration. The
lengths of the bent arrows are rescaled by an additional factor
of 20 when compared to Fig. 5 in Sec. III.

These different factors already indicate that the overall
induced deformations are much smaller in the present cases
of included helical structural elements when compared to the
investigated globally twisted structures in Sec. III. Specifi-
cally, this remark concerns the twist deformation. Comparing
the results for the two types of helical structures, we observe
that in the case of rhelix = 0.05R the amount of torsional
deformation is much smaller (less than half the magnitude)
than in the case of rhelix = 0.1R. However, the reduction in
overall volume and the relative contraction along the axis of
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FIG. 12. Same as in Fig. 11 but for a system of the included
helical structures of radius rhelix = 0.1R, as illustrated in Fig. 8, here
for γ ≈ 0.13π . The latter value identifies the minimum on the curves
in Fig. 10(c).

the magnetic field are both very similar in magnitude, albeit
slightly bigger in the former case.

We continue with a discussion on the coefficients ob-
tained from an expansion of the surface displacement fields
into spherical harmonics for the same two configurations.
Corresponding values are displayed in Figs. 13 and 14 for
the configurations of rhelix = 0.05R and rhelix = 0.1R, respec-
tively. Again, we plot ten relevant modes for each of the
three components of the surface displacement field identified
according to the same scheme as in Sec. III. (As before,
additional illustrations in terms of matrix plots can be found
in the Supplemental Material [70].)

Figure 13(a) shows that u⊥
00 and u⊥

20 dominate the over-
all behavior (for ν = 0.5 we correctly find u⊥

00 ≈ 0). Some
higher-order contributions to u⊥ are observed, however, of a
relative magnitude of less than 15% of the dominant mode,
given by either u⊥

00 or u⊥
20. The configurations are less sym-

metric than those in Sec. III, and we observe a stronger
influence of the modes of m �= 0, particularly for m = 1,
which characterizes the lowest-order nontrivial dependence
on ϕ.

Next, Fig. 13(b) identifies uθ
10 as a dominating mode of uθ

for ν � 0. The same was observed in Fig. 6(b). In general,
higher-order modes enter as well, especially for auxetic ma-
terials. As before, the maximal magnitude of the modes de-
scribed by uθ is smaller than the magnitude of the dominating
mode for u⊥.

The modes relevant to torsional deformations of the elastic
material are addressed in Fig. 13(c). We observe again the
most dominant mode to be the lowest one, i.e., uϕ

10. However,
we also find another mode to be almost equally as strong,
namely, uϕ

41. This is most likely an effect related to the

FIG. 13. Same as in Fig. 6 but for the configuration underlying
Fig. 9 for γ ≈ 0.24π . See also the Supplemental Material for corre-
sponding matrix plots [70].

specific helical structure that was used in our investigation.
Nevertheless, both modes are of smaller magnitude when
compared to the modes of uθ and even smaller when compared
to u⊥. Thus, the twisting actuation for this structure is only
of secondary importance when compared, for instance, to
the global volume change or relative elongation along the
magnetization direction.

In addressing the results for the structures of rhelix = 0.1R
in Fig. 14, we mainly focus on the differences when compared
to the situation in Fig. 13. Due to the larger magnitude of rhelix,
the asymmetry of the configurations with respect to rotations
around the z axis by π/3 is still more pronounced, and we
thus observe even more relevant modes for m �= 0. This trend
concerns all three components of the surface displacement
field in Figs. 14(a), 14(b), and 14(c). Differences between
Figs. 13 and 14, especially in the mode numbers for m �= 0,
can to some extent be traced back to the different value of γ of
the investigated structure, according to the different locations
of the minima in Figs. 9(c) and 10(c).

Particularly when focusing on the torsional deformation
addressed in Fig. 14(c), we observe that the mode uϕ

10 iden-
tifying a global twist deformation is not even the strongest
one here. Instead, the strongest mode is uϕ

31. This mode is
symmetric for z → −z, implying that it cannot describe an
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FIG. 14. Same as in Fig. 6 but for the configuration underlying
Fig. 10 for γ ≈ 0.13π . See also the Supplemental Material for
corresponding matrix plots [70].

overall twist deformation corresponding to a relative rotation
of the top hemisphere with respect to the bottom hemisphere.
However, the lowest mode of twist actuation uϕ

10 has a much
higher absolute magnitude when compared to the structures
of rhelix = 0.05R in Fig. 13(c). Apparently, the radius of
the helical elements can have a pronounced effect, partly of
antagonistic consequences. If such systems are transferred
to actual applications, it is therefore important to adjust the
radius of the helical elements to the desired behavior.

Overall, we observe a significantly more pronounced influ-
ence of higher-order modes and particularly modes depending
on ϕ for the displacement fields in Figs. 13 and 14 when
compared to the results in Fig. 6. Importantly, the ratio of
the magnitudes of uϕ

10 to the magnitudes of u⊥
00 (except for

ν = 0.5) or u⊥
20 is much smaller. Thus, the twist actuation

is not as pure for the investigated structures composed of
helical elements, and we conclude that the globally twisted
structures of Sec. III are in general more promising candidates
to construct a magnetoelastic twist actuator.

V. MINIMAL ANALYTICAL MODEL

Having presented our numerical results for the functions
uϕ

10(γ ) in Secs. III and IV, shown in Fig. 4(c) as well as in

i

j

dlayer

Δ

r̄ij
ζ

ẑ

(a)

ẑ

j

i

ρρ
γ
2

γ
2

Δ
(b)

FIG. 15. In a simplified discussion, we consider the interactions
between the magnetized nearest-neighboring particles i and j on an
initially twisted chainlike aggregate. Their dipole moments, aligned
with the center axis ẑ, are depicted by small arrows. We denote the
vector from the position of j to the position of i by r̄i j . In (a), their
distance along the z axis is given by dlayer , and their lateral distance is
denoted as �. ζ quantifies the angle between the z axis and r̄i j at the
site of particle i. In (b) we show a bottom view of the configuration.
We introduce two right-angled triangles to relate the lateral distance
� between the particles to the radial distance ρ of the particles from
the center axis, around which the initial twist of the structure was
set. The angle γ was defined previously for both the globally twisted
structures and the helically twisted structural elements arranged side
by side; see Fig. 2 and Eq. (7), respectively.

Figs. 9(c) and 10(c), respectively, we here discuss how we
can understand the behavior qualitatively in simpler terms.
To this end, we propose a minimal analytic model based on
the dipole-dipole force between the inclusions, see Eq. (2).
If we only concentrate on the magnetic interactions between
two nearest neighbors on a single chain, the geometry can be
parameterized as depicted in Fig. 15.

Obviously, the situation in reality is more complex as
magnetic dipole interactions are long-ranged, leading to mag-
netic interactions between all particles. Furthermore, due to
the magnetically induced deformations, the particle positions
are affected as well, which in turn changes the magnetic
interactions, see Sec. II. Nevertheless, considering pairwise
nearest-neighbor interactions along one chain will allow for a
basic qualitative description, see below.

Since we are interested in the magnetically induced over-
all twist deformation, we here focus on the magnetic force
components perpendicular to the magnetization direction, i.e.,
in the xy plane. These in-plane force components are the
source of torsional deformations around the z axis. Instead,
the z components of the magnetic forces are associated with
axial contractions. For initially twisted particle configurations
and not-too-large values of γ , the in-plane force components
aim to straighten the chains. Defining ζ as the angle be-
tween m̂ and the connecting vector r̄i j between two nearest-
neighboring particles i and j, see Fig. 15(a), the magnitude
Fxy of the in-plane force component on particle i, exerted by
particle j, see Eq. (2), is given by

Fxy(ζ ) = 3μ0m2

4π

cos4 ζ

d4
layer

|5 sin ζ cos2 ζ − sin ζ |. (8)
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Here we have inserted m̂ · ˆ̄ri j = cos ζ , r̄i j = dlayer/ cos ζ , and
sin ζ for the component of ˆ̄ri j in the xy plane.

Next, we maximize Fxy(ζ ) with respect to ζ to find an
optimal configuration of particles i and j that supports a
maximized twist actuation. The maximum is found for

cos2 ζmax = 1

2
+ 1

2

√
19

35
. (9)

If we now restrict the solutions to the range 0 < ζ < π/2, we
find the unique solution

ζmax = arccos

⎛
⎝

√
1

2
+ 1

2

√
19

35

⎞
⎠ ≈ 0.118π. (10)

When we compare to our previous results, we can use the
relations deduced from Fig. 15(a),

tan ζ = �

dlayer
, (11)

and Fig. 15(b),

sin
(γ

2

)
= �

2ρ
, (12)

where we have introduced ρ as the distance of the inclusions
i and j from the axis of the initial twist of the corresponding
structure. To relate the result of this analytical consideration
to our numerical evaluation, we find from Eqs. (11) and (12)

γmax = 2 arcsin

(
dlayer

2ρ
tan ζmax

)
, (13)

where γmax implies a maximized in-plane torsional force com-
ponent, based on this simplified analytical consideration. For
the systems addressed in Sec. IV, to compare these analytical
and the numerical results, we can simply set ρ = rhelix. For
the globally twisted configurations in Sec. III, the situation is
more complex, as there is not a single value of ρ that is equal
for all chainlike aggregates, but the value of ρ depends on
which chain we consider.

To illustrate this more complex dependence for the glob-
ally twisted structures on the angle γ , quantified by uϕ

10(γ ),
we have generated additional globally twisted configurations
while removing from the systems considered in Sec. III those
chainlike elements that have a value of ρ smaller than a certain
threshold. Illustratively, this corresponds to only considering
those chains that are located outside a coaxial cylinder of di-
ameter 2ρ. In Fig. 16 we present results for cutoff values for ρ

of R/2, 2R/3, and
√

13 dchain ≈ 0.901R, where the latter value
marks the outermost chains. For comparison, we have added
in Fig. 16 the results for the configurations of Sec. III as well.
For this evaluation, we restrict ourselves to incompressible
elastic materials (ν = 0.5) for clarity.

The main result of Fig. 16 is that as we increase the lower
threshold value of ρ, the global minimum is shifted towards
lower values of γ . For all chains considered, see Sec. III, the
value of γ corresponding to a maximized twist deformation
is γ ≈ 0.019π . Introducing a cutoff for ρ of R/2, this value
is reduced to γ ≈ 0.018π . Moving on to a cutoff for ρ of
2R/3, it is further reduced to γ ≈ 0.016π . When keeping
only the outermost chains, we obtain γ ≈ 0.014π for the

0.00 0.04 0.08 0.12 0.16
γ/π

−5.0

0.0

10
3
u
ϕ 10
/R

ν = 0.5
all chains
chains forρ > R/2
chains forρ > 2R/3
outermost chains

FIG. 16. Same as in Fig. 4(c) but for configurations for which
we only consider those chains that have a minimal distance ρ from
the axis of twist of the initial nonmagnetized structure. We show
a comparison between the results of Fig. 4(c), here labeled as “all
chains,” and corresponding configurations that include only those
chains for which ρ > R/2 and ρ > 2R/3. Furthermore, we show
results for only keeping the outermost chains, i.e., chains of ρ =√

13 dchain ≈ 0.901R. In all cases, we only display the results for
incompressible systems, i.e., for ν = 0.5, for clarity. Particularly,
we note how the position of the global minimum is slightly shifted
towards smaller values of γ for configurations of larger average
values of ρ for the chains. The vertical gray dashed line marks the
value γmax ≈ 0.015π as obtained from Eqs. (10) and (13) for the
outermost chains.

location of the maximized twist deformation. Moreover, we
observe a decrease in magnitude of the minimum of uϕ

10.
This contains, however, a trivial effect, as we decrease the
number of inclusions for increasing cutoff values for ρ. More
precisely, we find 623, 324, 168, and 60 inclusions for the four
different systems addressed in Fig. 16.

When we now compare our numerical results to the min-
imal analytical model according to Eqs. (10) and (13), we
consider the configurations of only keeping the outermost
chains. In this case, inserting ρ ≈ 0.901R into Eq. (13), we
obtain a value of γmax ≈ 0.015π ; see the vertical dashed line
in Fig. 16. This is only slightly bigger than the numerical value
of γ ≈ 0.014π . It shows a fair agreement, considering, for
instance, the assumptions of including only nearest-neighbor
particle interactions and rigid particle positions in the analyti-
cal model.

Next, we compare the numerical and analytical results for
the structures composed of helical elements as considered in
Sec. IV. Setting ρ = rhelix, we find from the analytical con-
sideration γmax ≈ 0.28π and γmax ≈ 0.14π for rhelix = 0.05R
and rhelix = 0.1R, respectively. The results of our numerical
investigation for uϕ

10 were γ ≈ 0.24π and γ ≈ 0.13π , respec-
tively, see Sec. IV. While showing fair agreement concern-
ing the involved approximations, our analytical model again
shows a tendency of overestimating the numerical results, see
above.

Within our minimal analytical model, we may equally well
estimate analytically the lowest value of γ > 0 for which uϕ

10
becomes zero. Again, we require a fixed value of ρ. From
Eq. (8), we find that Fxy = 0 for a value ζ0 > 0 of

ζ0 = arccos

(
1√
5

)
≈ 0.352π, (14)
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FIG. 17. Sum �xy over the appropriately signed azimuthal mag-
netic force components acting on all particles as defined in the main
text (dotted line) for the systems containing the globally twisted
structures. The shape of the curve for �xy qualitatively agrees with
the shape of the curves for uϕ

10 reproduced from Fig. 4(c) (solid lines)
that quantify the induced overall torsional deformation.

corresponding to

γ0 = 2 arcsin

(
dlayer

2ρ
tan ζ0

)
= 2 arcsin

(
dlayer

ρ

)
. (15)

Inserting the value of ρ for the outermost chains in Fig. 16
implies γ0 ≈ 0.078π , while the numerical result for uϕ

10 sug-
gests γ ≈ 0.057π . As before, we observe that the analytically
determined value of γ exceeds that determined numerically.
For the systems containing the helical structural elements, our
analytical estimate does not imply any value of 0 < γ < π

at which Fxy = 0, because dlayer > rhelix in both cases. This
is in line with our numerical results for rhelix = 0.05R, for
which uϕ

10 < 0 for all 0 < γ < π . However, our numerical
investigation reveals a value of γ ≈ 0.62π , at which uϕ

10 = 0
for rhelix = 0.1R.

As had become obvious above and from Fig. 16, comparing
the simple analytical model approach to the numerical results
for the complete globally twisted structures of Sec. III is less
direct. The different chainlike aggregates in the system are
located at different radial distances ρ from the center axis.
These varying distances need to be taken into account.

To find a reasonable measure, we start from the magnetic
forces Fi according to Eq. (2) on each particle i. We denote by
ϕ̂i the local azimuthal unit vector in the spherical coordinate
system at the position of particle i. To identify those force
components that supposedly directly support the overall twist
deformation, we project Fi onto ϕ̂i on the upper hemisphere
and onto −ϕ̂i on the lower hemisphere. Particles i located on
the center axis and on the equatorial plane are not taken into
account. Finally, the sum over all force components obtained
in this way is denoted as �xy. It is plotted as the dotted line
in Fig. 17, together with the results for uϕ

10 as displayed in
Fig. 4(c). Since the initial positions of the particles are used
for this basic analytical evaluation, the curves for �xy are
independent of the value of the Poisson ratio ν.

Comparing these graphs, we notice that the force compo-
nent �xy as well as the curves for uϕ

10 have a pronounced
minimum at approximately the same value of γ ≈ 0.019π .
Moreover, for the lowest value of γ > 0 at which �xy = 0 and
uϕ

10 = 0, we find γ ≈ 0.068π and γ ≈ 0.072π , respectively.

In summary, we can estimate certain characteristic points
on the curves of uϕ

10(γ ) by simple analytical model consid-
erations. Often, it is sufficient to focus on the interactions
between neighboring dipoles only. For the globally twisted
structures, see Sec. III, the different distances of the chainlike
aggregates from the center axis of the elastic sphere need
to be taken into account for more quantitative evaluations.
Nonaffine elastic deformations have not been included in the
simple analytical model. Furthermore, our simplified analyt-
ical approach does not account for the change in magnetized
particle positions during deformations included in our numer-
ical description.

VI. CONCLUSIONS

To conclude, we have suggested a way to construct soft
torsional actuators using magnetic gels and elastomers. For
this purpose, we have addressed two different structural
arrangements of the magnetizable inclusions in the elastic
material: globally twisted structures and side-by-side arrange-
ments of helical elements. Both are generated from initially
hexagonally arranged parallel chainlike elements. For both
configurations, we have explicitly calculated the resulting
magnetostrictive distortion of the overall system upon magne-
tization. In this context, for reasons of analytical accessibility,
we have here concentrated on systems of overall spherical
shape. Particularly, we have focused on the degree of induced
twist actuation, which we quantified using a spherical har-
monic mode expansion of the surface displacement field.

Among the systems that we investigated, we found the
globally twisted structures to show a significantly larger tor-
sional actuation when compared to the systems containing
helical elements arranged side by side. For the studied glob-
ally twisted structures, the overall deformational response
is indeed dominated by a twist-type distortion. Instead, the
overall twist response in the case of the embedded helical
elements arranged side by side was less pure. Thus, it appears
that the considered globally twisted structures are better suited
to construct a soft torsional actuator. In the near future, these
might also be the ones requiring less additional effort for
actual fabrication.

Furthermore, we have quantified which degree of initial
structural twist in the nonmagnetized state leads to a max-
imized torsional actuation. Such an optimized value arises
from two antagonistic tendencies. If the internal structure
is not twisted at all, then an overall torsional deformation
cannot be induced. However, if the initial structure is twisted
too much, then the interactions between the inclusions upon
magnetization may even become repulsive for a too large
lateral separation. We find an optimized value in between. In
fact, these properties can be understood already on a quali-
tative basis by addressing the magnetic interactions between
two neighboring particles on one initially deformed chainlike
structural aggregate.

Concerning actual applications, soft magnetic actuators
have the advantage that they can be addressed in a contactless
way from outside by an external magnetic field and may
respond relatively quickly on timescales of tens of millisec-
onds. This qualifies them, for instance, as candidates for
microrobotic and microsurgical use [23,71]. Frequently, one is
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interested in realizing maximized amplitudes of deformations
or stresses. Here we have deliberately concentrated on com-
paratively small amplitudes of deformation. We emphasize
that this is predominantly a necessary requirement by the
employed method of calculation in the framework of linear
elasticity theory, which then allows for a quantitative eval-
uation. Yet, in reality, various types of modification could
increase and maximize the presented effects. For instance,
the system size, particle size, and volume fraction could be
increased, the mutual distances between the particles may be
decreased, or a softer elastic matrix material could be used. By
our work, we wish to stimulate investigations on such possible
ways of optimization.

Overall, we hope that our study will inspire experimental
realizations of corresponding soft magnetoelastic torsional
actuators in the future. Such devices may find further possible
applications, for instance, as microfluidic mixing actuators.
Not only can twist deformations and thus torsional flows

around such an element be induced upon request from outside
by alternating magnetic fields, but also, due to the existence
of an overall structural anisotropy axis associated with the
axis of global twist, the mixing element can simultaneously be
oriented by the direction of the external magnetic field. More-
over, as long as dynamic effects like leaking electrical currents
do not play an important role, our results equally apply to the
construction of corresponding devices from electrorheological
gels and elastomers [14,72,73] using external electric fields
for actuation.

ACKNOWLEDGMENTS

Some of the results in this paper have been derived using
the HEALPix package [66]. The authors thank the Deutsche
Forschungsgemeinschaft for support of this work through the
priority program SPP 1681, Grant No. ME 3571/3.

[1] S. Aziz and G. M. Spinks, Mater. Horiz. 7, 667 (2020).
[2] G. Filipcsei, I. Csetneki, A. Szilágyi, and M. Zrínyi, Adv.

Polym. Sci. 206, 137 (2007).
[3] M. R. Jolly, J. D. Carlson, B. C. Muñoz, and T. A. Bullions,

J. Intel. Mater. Syst. Struct. 7, 613 (1996).
[4] S. Odenbach, Arch. Appl. Mech. 86, 269 (2016).
[5] A. M. Menzel, Phys. Rep. 554, 1 (2015).
[6] M. M. Schmauch, S. R. Mishra, B. A. Evans, O. D. Velev, and

J. B. Tracy, ACS Appl. Mater. Int. 9, 11895 (2017).
[7] R. Weeber, M. Hermes, A. M. Schmidt, and C. Holm, J. Phys.:

Condens. Matter 30, 063002 (2018).
[8] R. Weeber, P. Kreissl, and C. Holm, Arch. Appl. Mech. 89, 3

(2019).
[9] O. V. Stolbov and Y. L. Raikher, Arch. Appl. Mech. 89, 63

(2019).
[10] A. M. Menzel, Arch. Appl. Mech. 89, 17 (2019).
[11] M. Schümann, T. Gundermann, and S. Odenbach, Arch. Appl.

Mech. 89, 77 (2019).
[12] M. Zrínyi, L. Barsi, and A. Büki, J. Chem. Phys. 104, 8750

(1996).
[13] D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and

H. R. Brand, Macromol. Rapid Commun. 24, 737 (2003).
[14] Y. An and M. T. Shaw, Smart Mater. Struct. 12, 157 (2003).
[15] K. Zimmermann, V. A. Naletova, I. Zeidis, V. A. Turkov, E.

Kolev, M. V. Lukashevich, and G. V. Stepanov, J. Magn. Magn.
Mater. 311, 450 (2007).

[16] Y. L. Raikher, O. V. Stolbov, and G. V. Stepanov, J. Phys. D:
Appl. Phys. 41, 152002 (2008).

[17] R. Fuhrer, E. K. Athanassiou, N. A. Luechinger, and W. J. Stark,
Small 5, 383 (2009).

[18] H. Böse, R. Rabindranath, and J. Ehrlich, J. Intell. Mater. Syst.
Struct. 23, 989 (2012).

[19] P. Ilg, Soft Matter 9, 3465 (2013).
[20] Y. Li, J. Li, W. Li, and H. Du, Smart Mater. Struct. 23, 123001

(2014).
[21] J. Maas and D. Uhlenbusch, Smart Mater. Struct. 25, 104002

(2016).
[22] G. Z. Lum, Z. Ye, X. Dong, H. Marvi, O. Erin, W. Hu, and M.

Sitti, Proc. Natl. Acad. Sci. USA 113, E6007 (2016).

[23] L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, Adv. Mater. 29,
1603483 (2017).

[24] T. I. Becker, V. Böhm, J. C. Vega, S. Odenbach, Y. L.
Raikher, and K. Zimmermann, Arch. Appl. Mech. 89, 133
(2019).

[25] M. Schümann and S. Odenbach, J. Magn. Magn. Mater. 441, 88
(2017).

[26] E. Coquelle and G. Bossis, J. Adv. Sci. 17, 132 (2005).
[27] S. Abramchuk, E. Kramarenko, G. Stepanov, L. Nikitin, G.

Filipcsei, A. Khokhlov, and M. Zrinyi, Polym. Adv. Technol.
18, 883 (2007).

[28] H. Böse, Int. J. Mod. Phys. B 21, 4790 (2007).
[29] L. Chen, X. Gong, and W. Li, Smart Mater. Struct. 16, 2645

(2007).
[30] G. Filipcsei and M. Zrínyi, J. Phys.: Condens. Matter 22,

276001 (2010).
[31] D. Günther, D. Y. Borin, S. Günther, and S. Odenbach, Smart

Mater. Struct. 21, 015005 (2011).
[32] T. Borbáth, S. Günther, D. Y. Borin, T. Gundermann, and S.

Odenbach, Smart Mater. Struct. 21, 105018 (2012).
[33] K. Danas, S. V. Kankanala, and N. Triantafyllidis, J. Mech.

Phys. Solids 60, 120 (2012).
[34] S. Monz, A. Tschöpe, and R. Birringer, Phys. Rev. E 78, 021404

(2008).
[35] D. C. Stanier, J. Ciambella, and S. S. Rahatekar, Composites,

Part A 91, 168 (2016).
[36] S. Abramchuk, E. Kramarenko, D. Grishin, G. Stepanov, L.

Nikitin, G. Filipcsei, A. Khokhlov, and M. Zrínyi, Polym. Adv.
Technol. 18, 513 (2007).

[37] P. Blom and L. Kari, Int. J. Mech. Sci. 60, 54 (2012).
[38] H. A. Hashi, A. G. A. Muthalif, and N. H. D. Nordin, Iran. J.

Sci. Technol., Trans. Mech. Eng. 40, 181 (2016).
[39] N. Hoang, N. Zhang, W. Li, and H. Du, J. Intell. Mater. Syst.

Struct. 24, 2036 (2013).
[40] K.-H. Lee, J.-E. Park, and Y.-K. Kim, J. Intell. Mater. Syst.

Struct. 30, 2212 (2019).
[41] D. I. Merkulov, A. V. Muravlev, E. D. Martynova, D. A.

Pelevina, V. A. Turkov, and V. A. Naletova, J. Magn. Magn.
Mater. 470, 81 (2019).

023383-13

P2 Phys. Rev. Research 2, 023383 (2020) 67



LUKAS FISCHER AND ANDREAS M. MENZEL PHYSICAL REVIEW RESEARCH 2, 023383 (2020)

[42] V. V. Sorokin, G. V. Stepanov, M. Shamonin, G. J. Monkman,
A. R. Khokhlov, and E. Y. Kramarenko, Polymer 76, 191
(2015).

[43] J. Küpfer and H. Finkelmann, Makromol. Chem. Rapid
Commun. 12, 717 (1991).

[44] J. Küpfer and H. Finkelmann, Macromol. Chem. Phys. 195,
1353 (1994).

[45] C. Ohm, M. Brehmer, and R. Zentel, Adv. Mater. 22, 3366
(2010).

[46] K. Urayama, Macromolecules 40, 2277 (2007).
[47] S. Krause, F. Zander, G. Bergmann, H. Brandt, H. Wertmer, and

H. Finkelmann, C. R. Chimie 12, 85 (2009).
[48] K. Urayama, R. Mashita, I. Kobayashi, and T. Takigawa,

Macromolecules 40, 7665 (2007).
[49] A. M. Menzel, H. Pleiner, and H. R. Brand, Eur. Phys. J. E 30,

371 (2009).
[50] A. Y. Zubarev, Soft Matter 9, 4985 (2013).
[51] G. V. Stepanov, D. Y. Borin, Y. L. Raikher, P. V. Melenev, and

N. S. Perov, J. Phys.: Condens. Matter 20, 204121 (2008).
[52] R. Messing, N. Frickel, L. Belkoura, R. Strey, H. Rahn, S.

Odenbach, and A. M. Schmidt, Macromolecules 44, 2990
(2011).

[53] R. Barbucci, D. Pasqui, G. Giani, M. De Cagna, M. Fini, R.
Giardino, and A. Atrei, Soft Matter 7, 5558 (2011).

[54] N. Frickel, R. Messing, and A. M. Schmidt, J. Mater. Chem. 21,
8466 (2011).

[55] R. Weeber, S. Kantorovich, and C. Holm, J. Magn. Magn.
Mater. 383, 262 (2015).

[56] M. Puljiz, S. Huang, G. K. Auernhammer, and A. M. Menzel,
Phys. Rev. Lett. 117, 238003 (2016).

[57] M. Puljiz, S. Huang, K. A. Kalina, J. Nowak, S. Odenbach, M.
Kästner, G. K. Auernhammer, and A. M. Menzel, Soft Matter
14, 6809 (2018).

[58] W. Chen, L. Sun, X. Li, and D. Wang, Smart Mater. Struct. 22,
105012 (2013).

[59] A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009).
[60] K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, and B. J. Nelson,

Chem. Eur. J. 19, 28 (2013).
[61] L. Fischer and A. M. Menzel, J. Chem. Phys. 151, 114906

(2019).
[62] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Elsevier,

Oxford, 1986).
[63] A.-L. Cauchy, Exercices de Mathématiques (Bure Frères, Paris,

1828), Vol. 3, pp. 160–187.
[64] L. J. Walpole, Proc. R. Soc. London, Ser. A 458, 705 (2002).
[65] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1999).
[66] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.

Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J. 622,
759 (2005); HEALPix, http://healpix.sourceforge.net.

[67] D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, and G.
Heinrich, Condens. Matter Phys. 15, 33601 (2012).

[68] P. Metsch, K. A. Kalina, C. Spieler, and M. Kästner, Comput.
Mater. Sci. 124, 364 (2016).

[69] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett. 82, 2721
(1999).

[70] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.023383 for matrix plots to visu-
alize the values of the expansion coefficients associated with
those modes referred to in Figs. 6, 13, and 14 as well as with
some additional modes.

[71] J. J. Abbott, E. Diller, and A. J. Petruska, Annu. Rev. Control
Robot. Auton. Syst. 3, 57 (2020).

[72] E. Allahyarov, H. Löwen, and L. Zhu, Phys. Chem. Chem.
Phys. 17, 32479 (2015).

[73] B. Liu and M. T. Shaw, J. Rheol. 45, 641 (2001).

023383-14

68 Chapter 2 Scientific publications



Supplemental material
“Towards a soft magnetoelastic twist actuator”
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In this supplemental material, we add alternative illustrations for the values of the expansion
coefficients of the displacement field shown in Figs. 6, 13, and 14 of the main body of the article.
Corresponding matrix plots are included on the following pages.

During our investigations in the main body of the arti-
cle, we focused on elastic spheres enclosing three different
types of particle arrangements. First, the elastic sphere
embedded an initially globally twisted structure of chain-
like aggregates of particles. Next, we addressed two types
of systems containing helical particle aggregates arranged
side by side. These two types of systems differed by the
radius of the helices.

In all situations, the degree of initial global twist or
initial helical twist was quantified by a parameter γ. We
determined that value of γ associated with the maximal
amplitude of the magnetically induced overall torsional
deformation. It was found by identifying the maximal
value of |uϕ10|. For the corresponding systems, Figs. 6, 13,
and 14 in the main article depict in each case the values of
the expansion coefficients associated with ten representa-
tive modes of the three components of the displacement
field. Here, for further illustration, we include an alterna-
tive representation of the relative importance and values

of the expansion coefficients of these ten and additional
modes. For this purpose, we choose an illustration via
matrix plots. One axis refers to the mode number l, one
axis to the mode number m. We color-code the value
of the expansion coefficient associated with each corre-
sponding mode of the displacement field, connected to
the spherical harmonic Ylm. The resulting illustrations
follow in Figs. S1–S3. Again, we used the HEALPix pack-
age for our evaluations [1]. More precisely, the values of
the expansion coefficients into spherical harmonics are
depicted for the three components (a) u⊥, (b) uθ, and
(c) uϕ of the overall surface displacement field in each
case. We color-code the related expansion coefficients in
a nonlinear (symmetric linear-logarithmic) way. Yellow
indicates a vanishing contribution of the related mode,
while blue colors imply a positive and red colors a nega-
tive value of the expansion coefficient. Furthermore, we
separate the real (Re) and imaginary (Im) parts, which
are shown on the left- and right-hand sides, respectively.

[1] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt,
F. K. Hansen, M. Reinecke, and M. Bartelmann, Astro-
phys. J. 622, 759 (2005).
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FIG. S1. Illustration of the values of the expansion coefficients of the magnetically induced surface displacement field for an
initially globally twisted configuration of the magnetic inclusions (γ ≈ 0.019π). Here, we consider at most l = 24 and m = ±12,
so as to include all modes of the related Fig. 6 of the main body of the article.
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FIG. S2. Same as in Fig. S1, but for a system containing helical elements of inclusions, arranged side-by-side. The radius of all
helices is set to rhelix = 0.05R. We here show expansion coefficients up to l = 12 and m = ±6, in analogy to the corresponding
Fig. 13 of the main article.
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FIG. S3. Same as in Fig. S2, but for rhelix = 0.1R. In this case, expansion coefficients up to l = 11 and m = ±6 are considered,
in analogy to the corresponding Fig. 14 of the main article.
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Abstract. Soft elastic composite materials can serve as actuators when they

transform changes in external fields into mechanical deformation. Here, we

theoretically address the corresponding deformational behavior in model systems

of magnetic gels and elastomers exposed to external magnetic fields. In reality,

such materials consist of magnetizable colloidal particles in a soft polymeric matrix.

Since many practical realizations of such materials involve particulate inclusions of

polydisperse size distributions, we concentrate on the effect that mixed particle sizes

have on the overall deformational response. To perform a systematic study, our focus

is on binary size distributions. We systematically vary the fraction of larger particles

relative to smaller ones and characterize the resulting magnetostrictive behavior. The

consequences for systems of various different spatial particle arrangements and different

degrees of compressibility of the elastic matrix are evaluated. In parts, we observe

a qualitative change in the overall response for selected systems of mixed particle

sizes. Specifically, overall changes in volume and relative elongations or contractions

in response to an induced magnetization can be reversed into the opposite types of

behavior. Our results should apply to the characteristics of other soft elastic composite

materials like electrorheological gels and elastomers when exposed to external electric

fields as well. Overall, we hope to stimulate corresponding experimental realizations

and the further investigation on the purposeful use of mixed particle sizes as a means

to design tailored requested material behavior.
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1. Introduction

Magnetic gels and elastomers consist of magnetic or magnetizable colloidal particles

locked into a soft, elastic, permanently crosslinked polymeric body [1–13]. Representing

a class of stimuli-responsive materials, at least two types of reaction to external magnetic

fields are standing out. First, the overall mechanical properties and stiffness are

affected by sufficiently strong external magnetic fields, a scenario that was termed

magnetorheological effect [1, 2, 6, 14–31]. Second, the materials tend to respond by

significant elastic deformations, which allows for the construction of soft actuators and

is often referred to as magnetostrictive behavior [2,32–41], particularly when the external

magnetic fields are homogeneous. We here concentrate on the latter effect.

Corresponding experiments on the magnetostrictive behavior based on spherical

samples of ferrogels [33, 42] featuring rather random spatial arrangements of the

inclusions suggest an overall elongation of the samples along the axis of an applied

external magnetic field. This is confirmed by finite-element simulations [39]. However,

several previous studies have revealed that the type of deformation, i.e., whether an

elongation or contraction along the axis of the magnetic field occurs, strongly depends

on the spatial arrangement of the magnetizable inclusions [20,35,40]. The consequences

of nonuniform particle sizes are still to be further addressed in such theoretical works.

It is already known from the study of magnetic fluids, consisting of magnetic or

magnetizable colloidal particles suspended in a carrier liquid [43–47], that the particle

size is a key parameter. For example, it has been demonstrated that the magnetoviscous

effect, that is, the change in the macroscopic fluid viscosity induced by external magnetic

fields, is dominated mainly by the response of the larger suspended particles [48]. For

magnetic gels and elastomers, the dependence of the material behavior on the particle

size has been analyzed as well. Changes on the type of behavior with varying particle

size were partially attributed to the higher rotational mobility of smaller particles in

the elastic environment [49]. Similarly, the particle size can affect the formation of

structural elements when the samples are cured under an external magnetic field [50].

A stronger magnetorheological effect was observed for samples containing particles of

larger size [16,17,26,51].

Actual samples are frequently based on particles of polydisperse size distribution.

Nevertheless, theoretical approaches frequently assume a uniform particle size.

Examples for exceptions are finite-element simulations [52] or dipole-spring models [30].

Moreover, hybrid models investigate the behavior of discrete large particles in an elastic

environment containing a lot of magnetizable small particles by approximating the latter

as a magnetizable elastic continuum [53]. In contrast to that, genuine macroscopic

continuum theories often consider the whole system as a continuous magnetic or

magnetizable medium, therefore they do not resolve any actual particle sizes explicitly,

but represent the resulting effects by the values of the involved material parameters

[15,54,55].

To be able to perform a systematic study of the consequences of the presence of
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particles of different sizes in the system, we here concentrate on particles of binary

size distribution in a mesoscopic description. It is well known that in general this

reduced binary type of deviation from a uniform particle size can already have strong

and qualitative effects on the overall behavior. To understand the often quite complex

overall system properties, turning to binary size distributions, for instance, in model

systems of hard spheres or rod-like particles of colloidal size, thus often marks the first

step towards understanding the effects of polydispersity [56–58]. Accordingly, several

previous experimental studies and associated strategies of modeling on magnetic gels

and elastomers concentrate on materials of a relatively bimodal size distribution of the

contained inclusions [16, 18, 26, 59–63]. It was found, for example, that bimodal size

distributions can enhance the magnetorheological effect [64].

In the present study, our focus is on the influence of mixed particle sizes on the

overall magnetostrictive response of the system. For this purpose, in model systems

featuring binary particle size distributions, we systematically increase the number of

smaller particles at the cost of the number of larger particles, keeping the overall particle

number constant. We evaluate how the magnetostrictive behavior, appropriately

rescaled to take into account the different particle sizes, changes during these variations

of the size distribution. Different discrete spatial arrangements of the particles are

considered. We rescale all lengths by the dimension of the system. Therefore, absolute

lengths are not decisive. Instead, we set the relative sizes of the magnetizable inclusions

to 1 % and 2 % of the overall system size.

As a benefit of our theoretical work, we are able to selectively concentrate on

isolated properties related to the particle size and to study their impact on the overall

behavior, excluding other aspects that may play a role in real samples as well. This

helps us to understand the relative importance of specific aspects. In the present case,

we concentrate on the roles of the magnitude of the magnetic moment and of the

displaceability against the elastic matrix as related to the particle size. Other effects, for

instance variations of the magnetization behavior with the particle size, are not taken

into account.

We continue in the following way. In section 2, we provide a brief overview

on the mesoscopic model system that we use to perform our evaluations, together

with our protocol of introducing and modifying the binary size distribution of the

magnetizable particles. Results for various different spatial particle arrangements and

compressibilities of the elastic matrix are then presented in section 3. We conclude in

section 4.

2. Mesoscopic model systems containing discrete spatial particle

arrangements of binary size distributions

To perform our investigations, we utilize a recently developed discrete mesoscopic model

system [40, 41]. It allows to calculate overall mechanical deformations of a soft elastic

spherical body in response to the magnetization of a discrete set of embedded spherical
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Figure 1. The system considered in the present study consists of a soft spherical elastic

body that contains a discrete set of magnetizable spherical particles. These particles

feature a binary size distribution, implying that the diameter of the larger particles is

twice the diameter of the smaller particles. Upon exposure to a strong homogeneous

external magnetic field, here vertically oriented, the particles are assumed to be

magnetized to saturation. We indicate the induced magnetic particle moments by the

small arrows on the inclusions. In our investigation, we analyze and quantify the types

of overall deformation of the enclosing elastic sphere induced by this magnetization

for different spatial arrangements of the particles, different number fractions x of the

smaller particles, and different Poisson ratios ν of the soft elastic sphere.

particles, see figure 1.

The radius of the elastic spherical body is denoted as R. Only elastic deformations

of small amplitude are addressed, so that linear elasticity theory can be used for our

evaluations [65]. Our analysis assumes a homogeneous isotropic elastic material forming

the soft spherical body. Its elastic properties are specified by the shear modulus µ and

the Poisson ratio −1 ≤ ν ≤ 1/2, the latter being connected to the compressibility of

the elastic matrix material [65].

As a major benefit of the spherical shape of the elastic matrix body, a corresponding

Green’s function is available to quantify its elastic deformations. This function specifies

the displacements of all volume elements of the elastic body in response to a mechanical

force applied at an arbitrary point within the sphere. Building on the derivation of the

Green’s function for an elastic sphere embedded in an infinitely extended surrounding

elastic medium [66], we determined this function for a free-standing elastic sphere [40].

The explicit analytical expression is very lengthy and thus we do not reproduce it here.

Due to the linearly elastic characterization, the overall response of the elastic sphere to

the action of many internal force centers is obtained by simple superposition.

In our case, it is the embedded magnetizable spherical particles that correspond
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to the force centers. We here include smaller particles of radius 0.01R and larger

particles of radius 0.02R. The number fraction of smaller particles is denoted as x.

All particles are at least separated by a center-to-center distance of 0.11R from each

other and by a distance of 0.06R of their centers from the surface of the surrounding

elastic sphere. Moreover, we assume strong homogeneous saturating external magnetic

fields that magnetize the systems. Thus all induced magnetic particle moments point

into the same direction and only differ by their magnitudes for different particle sizes.

Assuming identical material and identical internal structure of the magnetic particles,

this implies an eightfold magnetic moment for the larger inclusions.

Together, the induced magnetic interactions between the embedded particles are

approximated using magnetic dipole forces. The magnetic force on particle i resulting

from the magnetic interaction with particle j thus reads [67]

Fi =
3µ0

4πr4ij

[
mi (mj · r̂ij) + mj (mi · r̂ij) + (mi ·mj) r̂ij

− 5r̂ij (mi · r̂ij) (mj · r̂ij)
]
. (1)

Here, mi and mj are the magnetic dipole moments of particles i and j, respectively,

µ0 denotes the magnetic vacuum permeability, and rij = rij r̂ij is the distance vector

pointing from the center position of particle j to the center position of particle i, with

rij = |rij|. In our implementation, we measure lengths in units of R and forces in units

of µR2.

The magnetizable particles are assumed to be enclosed by the surrounding elastic

body but not to be able to move through it. Therefore, when upon magnetization

the particles are subject to the induced magnetic forces, they are pressed against their

elastic surroundings. Thus, the particles transmit the forces to the elastic environment.

This induces local and possibly global elastic distortions of the surrounding elastic

medium [68–70]. The resulting long-ranged distortions are calculated from the Green’s

function as mentioned above [40,41].

As a consequence of the distortions in response to the magnetic forces, the embedded

magnetic particles are displaced. In turn, this couples back to the induced magnetic

forces that depend on the distance vectors between the particles, see (1). This problem

is solved by an iterative loop to determine the final particle positions and thus the final

set of magnetic forces [40, 68]. Along that way, we need to know the displacement of

a single particle within the elastic sphere when a force is applied to it, as a function

of the particle position and the orientation of the force. We determined corresponding

fit functions as approximations for spherical particles of the two different radii [40]. To

take into account the mutual particle interactions mediated via induced distortions of

the elastic body, we approximate the inclusions as point-like. This is in line with our

configurations that ensure pronounced distances between the particles. The same applies

when we calculate the induced displacements on the surface of the sphere, assuming that

the inclusions are sufficiently separated from the surface.

In previous investigations, events of mutual approach of individual particles up
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Figure 2. Illustration of the types of overall deformation of the initial spherical

elastic body that are quantified by the expansion coefficients u⊥00 and u⊥20. The darker

(greenish) spheres indicate the initial undeformed states, while the brighter (yellowish)

ellipsoids mark the deformed states. On the one hand, the coefficient u⊥00 refers to

overall isotropic expansion for u⊥00 > 0, as indicated here, or isotropic contraction for

u⊥00 < 0. On the other hand, u⊥20 > 0 represents an expansion along the axis of the

magnetization M relative to the lateral directions, as illustrated here, while u⊥20 < 0

identifies a contraction along this axis relative to the lateral dimensions. For clarity,

the magnitudes of deformation are indicated in an exaggerated way.

to virtual contact under magnetic attraction were observed and analyzed [71–78].

Such a magnetomechanical collapse results when mutual magnetic attractions between

individual particles surmount the elastic barrier connected to the necessary strong

deformation of the elastic material between the particles. During all our investigations,

we ensured that a corresponding scenario does not occur and the particles remain well

separated.

On this basis, we next determine in section 3 the magnetically induced change

in shape of the elastic spherical system by evaluating the resulting steady-state

displacement field on the surface of the sphere [40, 41]. The components of the surface

displacement field are expanded into spherical harmonics using the HEALPix package

(http://healpix.sourceforge.net) [79]. We mainly concentrate on the values of two

expansion coefficients as illustrated in figure 2.

First, the expansion coefficient that we denote as u⊥00 quantifies changes in the

overall volume of the spherical system. For u⊥00 > 0 the total volume increases, while

it decreases for u⊥00 < 0. Second, the expansion coefficient referred to as u⊥20 quantifies

changes in the overall aspect ratio. For u⊥20 > 0 the spherical system extends along the

axis of magnetization relative to the lateral dimensions, while for u⊥20 < 0 a relative

contraction results along this axis. Thus, the coefficient u⊥20 refers to an actuation mode

of relative overall axial elongation along the magnetization axis, which we are mainly

interested in below. A third expansion coefficient, referred to as uϕ10, is evaluated for

particle arrangements that feature an overall twist. For nonvanishing uϕ10, a net rotation

of the upper hemisphere, as selected via the magnetization direction, relative to the lower

hemisphere is observed. The sign of uϕ10 specifies the sense of this relative rotation [41].

uϕ10 represents the lowest-order coefficient to describe a magnetoelastic material in a
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mode of twist/torsional actuation.

3. Results for different spatial particle arrangements and varying elastic

compressibility

As detailed below, we now consider various different spatial arrangements of the discrete

set of mesoscopic magnetizable particles embedded in the spherical elastic body. In

each case, we evaluate the overall deformations as described in section 2 for the number

fractions x = 0, 0.2, 0.4, 0.6, 0.8, and 1 of the smaller particles. After fixing a specific

spatial particle arrangement in the form of a regular lattice structure, there is only

one possible realization for x = 0 and x = 1. Conversely, many different realizations

are possible for the other values of x. The smaller and larger particles can be placed

in various different ways onto the given lattice sites. Except when noted otherwise,

we randomly assign the particles of different sizes to these lattice sites and average our

results over 50 realizations for each data point. In the case of the randomized structures,

we additionally randomize the particle positions for each realization and again average

over all 50 systems. In this case, averages are also necessary for x = 0 and x = 1.

Moreover, we evaluate our results for four different values of the Poisson ratio

ν in each case. For ν = 0.5, the elastic body is incompressible and conserving

its overall volume under any type of deformation. Thus, u⊥00 should vanish. Next,

ν = 0.3 defines moderately compressible systems. An extreme case of compressibility

is given for ν = 0. For this value, stretching the elastic body along one axis does not

induce any lateral elastic reaction. Finally, ν = −0.5 identifies a pronounced auxetic

behavior, that is, the system expands to the sides when stretched along an arbitrary

axis. Such a negative Poisson ratio does not apply to the typically studied systems of

magnetic gels and elastomers. However, our formalism readily allows for a corresponding

evaluation for isotropic elastic materials as well, and we therefore include the associated

results. Possibly, our consideration can stimulate the further future investigation of

the properties of, for instance, auxetic polymeric foams containing colloidal magnetic

particles [80].

In an idealized system, assuming magnetic saturation, the magnetic moment of the

particles scales cubically with their radius. Therefore, our larger particles feature an

eightfold magnetic moment when compared to the smaller particles. Thus, for identical

configurations of larger particles, the resulting magnetic forces are 64-times as strong as

for the smaller particles, see (1). In our linearly elastic description, a 64-times stronger

force implies equally increased magnitudes of deformation. We therefore need to rescale

our calculated quantities u⊥00, u
⊥
20, and uϕ10 to make our results for different values of x

comparable with each other. As a divisor for rescaling, we use
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1

N2m2

N∑

i=1

N∑

j=1

mimj

=
1

N2m2

( xN∑

i=1

xN∑

j=1

mimj + 2
xN∑

i=1

N∑

j=xN+1

mimj +
N∑

i=xN+1

N∑

j=xN+1

mimj

)

= x2 + 2x(1− x)8 + (1− x)282

= (8− 7x)2, (2)

where N denotes the total number of particles, mi = |mi|, mj = |mj|, m is the

magnitude of the magnetic moment of the smaller particles, while i and j label all

particles, starting with the smaller ones. The rescaled quantities are denoted as ũ⊥00,

ũ⊥20, and ũϕ10. Thus, we rescale the magnitudes of deformation in terms of the overall

strength of magnetic particle–particle interaction. This is important, because we intend

to keep the spatial arrangements of the particle sites constant while varying x. Thus,

the overall volume fraction of magnetizable particles is affected. Our rescaling allows to

still quantitatively compare the resulting magnitudes of deformation for different values

of x to each other, while maintaining an unchanged spatial arrangement of the particle

sites.

Along these lines, we now analyze the deformational response upon magnetization

for various different realizations of particle positioning within the spherical elastic

body. In all cases, we take care that the deformational response remains small, as

required for our theoretical description to remain quantitative. However, in experimental

realizations, the amplitudes could be increased by various means, e.g., by a higher

volume fraction of the magnetizable material, by a lower interparticle distance, or by

using a softer elastic material to form the elastic sphere. Implicitly in our evaluation, we

assume the process of magnetization to occur on a fast time scale when compared to the

process of particle displacements. Each realization contains N ≈ 1000 particles in total,

unless noted otherwise. In line with realistic experimental system parameters, we set

the one remaining dimensionless system parameter as 48µ0m
2/πµR6 = 5.4×10−8. This

value corresponds to, e.g., a soft elastomer of a shear modulus of 1.67 kPa containing

spherical inclusions of iron oxide of radius a = 0.01R [40].

As mentioned previously, assuming ideal scaling, m increases cubically with

increasing linear dimension of the magnetic inclusions. Therefore, the only remaining

dimensionless system parameter 48µ0m
2/πµR6 remains unchanged when all dimensions

of the system are scaled linearly by the same factor. Consequently, in this case also the

material behavior controlled by 48µ0m
2/πµR6 remains unchanged. Naturally, under

experimental conditions, further effects may introduce an additional dependence on the

overall system size beyond the one that we consider in our evaluation. For example, the

saturation magnetization still may vary with the size of the magnetic inclusions [81].

In the introduction, we referred to studies investigating variations of the material

properties and behavior as a function of varying particle size [16,17,26,50,51]. However,
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while the sizes of the magnetic inclusions were altered, especially samples of identical

volume fractions of these magnetic inclusions and of identical overall dimensions were

compared to each other. Thus, not all linear dimensions were varied by the same factor,

and thus the magnitude of the system parameter 48µ0m
2/πµR6 was affected. As a

consequence, in line with our description, modifications of the system properties were

observed.

We note that most present techniques of fabricating the materials would lead to

rather randomized isotropic particle positioning within the elastic body, see section

3.4. Apart from that, when samples are cured in a strong homogeneous external

magnetic field during the manufacturing process, chain-like particle aggregates are

formed that then are locked into the system when the surrounding elastic body is

permanently established [82]. Chain-like structures are addressed in sections 3.5 and

3.6. Additionally, we devote larger parts to the evaluation of rather regular particle

arrangements. In experimental model systems, such configurations can be realized

by building up the elastic environment layer by layer, while during each step placing

the particles by hand [68, 77, 83]. Such a procedure requires substantial effort and is

predominantly possible for particles of at least a size of approximately 100 µm [68].

However, to achieve in experimental studies a similar number of particulate inclusions

as in our theoretical investigation, that is, N ≈ 1000, one may tend to switch to

macroscopic experimental model systems instead [83]. Nevertheless, with the advent

and further development of 3D-printing techniques also for the fabrication of magnetic

gels and elastomers [84–86], we may expect that the realization of requested positional

arrangements of many magnetic inclusions within elastic environments will become

possible on realistic microscopic scales as well. Our consideration of clearly spatially

separated magnetizable inclusions is in line with such types of technical approach [84].

In all cases, we have checked that our results for x = 0 are identical to those in

our previous investigations [40, 41]. Thus, we here mainly focus on the dependence

of the deformational effects on the binary distribution of the particle size, specifically

on the fraction of smaller particles replacing the larger particles. Increase or decrease in

volume, relative elongation or contraction along the axis of magnetization, and possibly

induced overall twist deformation are the physical consequences of magnetization that

we concentrate on.

3.1. Simple cubic lattice structure

We start by investigating systems in which the particle positioning follows regular simple

cubic lattice arrangements, with magnetizations along one edge of the cubic unit cells.

The fraction x of smaller particles is increased by randomly replacing larger particles

by smaller ones. Our results are displayed in figure 3.

To begin, we note that, on average and for the investigated Poisson ratios ν < 0.5,

the overall total volume upon magnetization tends to decrease, i.e., ũ⊥00 < 0, see

figure 3(a). However, the rescaled reduction in volume decreases in magnitude with

P3 Smart Mater. Struct. 30, 014003 (2021) 83



Magnetostriction of magnetic gels and elastomers of mixed particle size 10

Figure 3. Deformational response of soft spherical elastic bodies containing rigid

particulate inclusions arranged in a simple cubic lattice-like structure. Increasing

the number fraction x of smaller particles implies that larger particles are randomly

replaced by smaller ones. As illustrated in figure 2, (a) ũ⊥00 marks changes in the overall

volume, while (b) ũ⊥20 is related to elongations along the magnetization axis relative

to the lateral dimensions, both quantities rescaled as given by (2). Averages are taken

over 50 realizations of the systems, leading to the indicated standard deviations. For

fixed ν < 0.5, the overall changes in volume tend to decrease in magnitude with

increasing x. The elongational response remains approximately constant within the

standard deviations.

increasing x. Apart from that, the systems on average show a relative contraction along

their axis of magnetization, as indicated by ũ⊥20 < 0 in figure 3(b). Interestingly, within

the standard deviations, the values for ũ⊥20 remain approximately constant. First, this

indicates that our way of rescaling according to (2) is reasonable. Second, this result

suggests that very large systems of simple cubic lattice structure may be insensitive

concerning the nature of their (rescaled) response against randomized positioning of

differently sized particles on their lattice points. These results are in qualitative

agreement with [83], where the magnetostrictive strain is approximately independent

of the size of the included magnetizable particles of uniform diameter.

Yet, we do observe the existence of the noticeable standard deviations in figure 3.

Evidently, the auxetic systems on average are most susceptible to the presence of

differently sized magnetized particles concerning resulting variations in their overall

behavior. Furthermore, they show here and also in the following the largest magnitudes

of ũ⊥00. This is a direct consequence of their auxetic nature. If the magnetization induces

an overall contraction along the axis of the external magnetic field, the auxetic systems
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tend to contract along the lateral directions as well. In combination, this adds to the

overall decrease in volume. Analogous conclusions hold for the induced elongations

below.

Apparently, introducing the binary size distribution can qualitatively change the

response to the external magnetic field for individual realizations of the systems.

For example, as indicated by the standard deviations in figure 3(a), the binary size

distribution can lead to an overall expansion (ũ⊥00 > 0) instead of a contraction (ũ⊥00 < 0)

of the elastic sphere for some individual realizations. This observation made us look for

designed individual implementations. More precisely, for a given spatial arrangement of

the particle positions, e.g., a simple cubic lattice structure, we wish to use the binary size

distribution to affect the overall response by selectively replacing only larger particles

on specific sites by smaller ones.

Along these lines, we analyze the consequences of the following targeted approach.

We split the set of all particle sites on the simple cubic lattice into two subsets. The

site in the center of the sphere belongs to the first subset, all its nearest neighbors are

part of the second subset. All the nearest neighbors of the latter again belong to the

first subset, and so on. At the end, any two nearest neighbors always belong to the two

different subsets. Each of these two subsets identifies octahedral structures with space

diagonals along the axis of magnetization.

Instead of randomly replacing any of the larger particles by a smaller one, we now

first only exchange those particles at random that belong to the second subset. This

has profound consequences for the rescaled deformational response upon magnetization,

see figure 4. Particularly, the behavior described by ũ⊥20 now is significantly affected

by the binarization of the particle size distribution. The curves in figure 4(b) first

monotonically rise with increasing x. At the location of the maximum at x ≈ 0.48

all the larger particles of the second subset have been replaced by smaller ones. We

find that the overall response of the systems under these circumstances can even be

changed qualitatively. Namely, for Poisson ratios ν = −0.5 and 0.0, the overall relative

contraction along the magnetization axis is reversed into relative expansion. Beyond

this point, with the further increase in x and now also randomly replacing particles

belonging to the first subset, the curves monotonously drop. At x = 0 and x = 1, we

find by construction the same values in figure 4 as in figure 3.

This basic example already demonstrates that a tailored assignment of different

particle sizes to different lattice sites can be employed to design a requested material

behavior. We continue by addressing various further types of spatial particle

arrangements.

3.2. Body-centered cubic lattice structure

In contrast to simple cubic systems, body-centered cubic particle arrangements on

average elongate along the magnetization axis [40]. Again, the magnetization is directed

parallel to the edge of the cubic unit cell. Apart from that, we observe for random
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Figure 4. Same as in figure 3 for a simple cubic particle lattice. Yet, in contrast to

figure 3, larger particles are not replaced by smaller ones in a completely random way.

Instead, first only particles belonging to a specific subset are randomly exchanged, so

that for x ≈ 0.48 octahedral structures of larger and smaller particles remain with space

diagonals along the axis of magnetization. Subsequently, also the remaining particles

are exchanged at random. Obviously, this strategy has profound consequences for the

rescaled overall deformational response of the systems. For Poisson ratios ν = −0.5

and 0.0, we in between even observe relative contraction along the magnetization axis

to be reversed into relative elongation.

particle replacements similar trends as for the simple cubic lattice structures, as seen by

comparing figures 3 and 5. Thus we again turn to a more specific strategy of targeted

replacement of larger by smaller particles to induce a qualitative change in behavior

when modifying the particle sizes.

Instead of completely randomly picking larger particles that are replaced by smaller

ones, we now first choose those particles at random that are located within the centers

of the unit cells of our body-centered cubic structures. As figure 6 demonstrates,

this procedure can reverse the observed behavior. Specifically, the curves for ũ⊥20 now

significantly drop with increasing x, see figure 6(b). For the Poisson ratios ν = 0.5,

0.3, and 0.0, they even decrease to negative values. This means that the magnetically

induced relative extension along the axis of magnetization obtained for x = 0 is now

reversed to a relative contraction.

When reaching x ≈ 0.53, all larger particles at the centers of the cubic unit cells

have been replaced by smaller ones. Then, apparently, both the spatial arrangements of

the remaining larger particles and the resulting overall responses become related to those

of our simple cubic lattices studied in section 3.1. Moreover, the curves in figure 6(b)
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Figure 5. Same as in figure 3, here for body-centered cubic particle lattices. On

average, for each value of the Poisson ratio, the spherical elastic body extends along

the magnetization axis. We do not find any quantitative change in this behavior as a

function of x within the standard deviations.

at x ≈ 0.53 reach their minimum. We subsequently randomly pick the remaining larger

particles for replacement, and the curves start to rise again up to x = 1 towards values

similar to those for x = 0. By construction, at x = 0 and x = 1, the configurations in

figure 6 are identical to those at x = 0 and x = 1 in figure 5, respectively.

3.3. Face-centered cubic lattice structure

Our results for face-centered cubic lattice structures for randomly replacing larger by

smaller magnetizable particles are qualitatively similar to those for body-centered cubic

lattices, as inferred by comparing figures 5 and 7. We therefore do not enlarge on specific

observations, but directly turn to more specific results for targeted replacements of larger

by smaller particles.

Here, instead of completely randomly replacing larger particles by smaller ones, we

first only randomly exchange those particles located on the faces of the cubic unit cells.

Corresponding results are displayed in figure 8. As a consequence, we find a monotonous

drop of the curves of ũ⊥20 in figure 8(b) with increasing x up to x ≈ 0.76. At this number

fraction, all larger particles on the faces of the cubic unit cells have been replaced by

smaller ones. Consequently, a simple cubic lattice structure of larger particles remains.

For Poisson ratios ν = 0.3 and 0.5, this leads to an even qualitative change in the

response. The relative elongation along the axis of magnetization is reversed into a

relative contraction. Beyond the number fraction of x ≈ 0.76, the curves monotonously
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Figure 6. Same as in figure 5 for body-centered cubic particle lattices, now first

selectively replacing at random those larger by smaller particles that are located in

the centers of the cubic unit cells. At x ≈ 0.53 all the center particles are replaced.

This targeted approach implies an even qualitative change of overall response, with

induced expansion along the magnetization axis being reversed into contraction for

Poisson ratios ν = 0.0, 0.3, and 0.5.

Figure 7. Same as in figure 3, here for face-centered cubic particle lattices. Similar

results as for the body-centered cubic particle structures in figure 5 are obtained.
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Figure 8. Same as in figure 7 for face-centered cubic particle lattices, now first

selectively replacing at random those larger particles by smaller ones that are located

on the faces of the cubic unit cells. At x ≈ 0.76 all the particles on the faces have been

exchanged. Again, even an qualitative change of the overall response can be observed

following this targeted approach. In between, the induced overall expansion along the

magnetization axis is reversed into contraction for Poisson ratios ν = 0.3 and 0.5.

rise again. For x = 0 and x = 1, the same results are obtained as in figure 7.

3.4. Randomized isotropic configurations

We now turn to basically isotropic particle distributions. In this case, the particle

positions are chosen at random, only confined by the conditions listed in section 2.

Out of the here-studied systems, these realizations probably correspond most closely to

actual samples of well-dispersed particles that are cured in the absence of an external

magnetic field. Depending on x, we randomly select a fraction of the particle positions

that are assigned to the smaller instead of the larger particles.

We depict corresponding results in figure 9. Again, we find that the rescaled

change in volume, measured by ũ⊥00, tends to decrease in magnitude with increasing x.

However, within the standard deviations, we do not observe any quantitative variation

in the amount of rescaled relative elongation along the axis of magnetization indicated

by ũ⊥20 > 0. These values agree quantitatively with our previous results obtained for

uniform particle sizes in [40]. Since the realization of randomized particle arrangements

in practice most likely corresponds to fabrication methods that do not allow to control

the particle positioning, we in this case also do not investigate the possibility of targeted

spatial assignments of particle sizes.
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Figure 9. Same as in figure 3, here for configurations of randomized particle positions.

On average, for each value of the Poisson ratio, the spherical elastic body extends

along the magnetization axis. Within the standard deviations, we do not observe any

quantitative change in this behavior as a function of x.

3.5. Quadratically arranged chain-like structures

In a second step, we now turn to particle structures composed of chain-like particle

aggregates. Still, within each chain, our requirements of keeping the specified

minimal distances between the particles are maintained, and the initial nearest-neighbor

interparticle distance within all chains is constant. Every chain is aligned parallel to

the axis of magnetization. Overall, the particles still form layers, oriented normal to

the magnetization axis, as for the other regular lattice structures. Since our chains are

arranged according to a quadratic pattern, this implies that the particles are actually

organized in a primitive tetragonal lattice. The two lattice constants perpendicular to

the magnetization axis are equal, the one along the magnetization axis is smaller by a

factor of 0.62.

Upon magnetization, the spherical elastic body reduces its overall volume for the

evaluated Poisson ratios ν < 0.5, see figure 10. Generally, this effect is not influenced as

much by the random replacement of larger by smaller particles as in the previous cases,

as the smaller magnitudes of the standard deviations indicate. Interesting tendencies

are found for the observed rescaled relative contractions along the magnetization axis,

see figure 10(b). First, the rescaled magnitudes of ũ⊥20 are notably smaller for x = 1

than for x = 0. Second, focusing on the average values of ũ⊥20, the curves tend to show

a minimum at intermediate values of x. This implies that randomly assigning binary
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Figure 10. Same as in figure 3, but here for quadratically arranged chain-like

aggregates oriented along the axis of magnetization. For Poisson ratios ν < 0.5, on

average, the total volume of the spherical elastic body decreases upon magnetization

(ũ⊥00 < 0). Moreover, for each value of the Poisson ratio, the spherical elastic body on

average contracts along the magnetization axis (ũ⊥20 < 0). The rescaled magnitude of

this effect is slightly smaller for x = 1 than for x = 0, with weakly increased magnitudes

of the averages at intermediate values of x, although not within the standard deviations.

particle sizes can in fact increase the magnitude of the rescaled contraction along the

magnetization axis. The effect is not significant within our standard deviations, yet

our results imply that individual systems showing such a tendency can definitely be

identified.

3.6. Hexagonally arranged chain-like structures

To continue, we remain with aligned chain-like particle aggregates, now, however,

arranged in a hexagonal lattice structure. In fact, this structure is related to patterns

observed for real samples that are cured in the presence of a strong homogeneous

external magnetic field [50]. The mutual distance between the particles required in

our calculation may be realized by appropriate coating of the particles or using the

particles as the actual chemical crosslinkers after surface functionalization [3, 87–89].

Initially, in our calculations, within each chain-like aggregate the particles are separated

from each other by a center-to-center distance of 0.11R, while the chains themselves

show a center-to-center distance of 0.19R.

Corresponding results for the deformation of the enclosing spherical elastic body

upon magnetization along the chain-like aggregates are displayed in figure 11. They
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Figure 11. Same as in figure 10, here for hexagonally arranged chain-like aggregates

oriented along the axis of magnetization. Similar results as for the quadratically

arranged chain-like aggregates in figure 10 are obtained.

are qualitatively similar to the ones reported in section 3.5 for quadratically arranged

chain-like aggregates.

3.7. Globally twisted hexagonally arranged chain-like structures

Finally, we turn to hexagonally organized chain-like structures that show an additional

initial global twist. That is, an arrangement of particles similar to the one studied in

section 3.6 is initially twisted around the center axis that is parallel to the untwisted

chain axes. Here, we consider a total number of only N = 623 particles. When such a

system is magnetized for not too large values of the initial twist, the structures attempt

to untwist themselves. Besides the other induced types of global distortion, an overall

torsional deformation results for the spherical elastic body. Therefore, corresponding

systems were suggested in [41] as candidates to realize soft torsional actuators [90].

We here evaluate systems of a pitch of approximately 11.5R, for which we observed

the largest magnitude of torsional response in our previous study for a uniform particle

size [41]. As can be inferred from figures 12(a) and (b), the rescaled change in overall

volume and the rescaled contraction along the axis of magnetization, respectively, behave

similarly to those for the untwisted structures in figures 11(a) and (b) as functions of x.

We note, however, that the order of the curves for ũ⊥20 is reversed for the investigated

values of the Poisson ratio.

In addition, we plot in figure 12(c) the coefficient ũϕ10, which quantifies the rescaled
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Figure 12. Same as in figure 11, here for hexagonally arranged chain-like aggregates

featuring an additional initial global twist of an approximate pitch of 11.5R. The

initial twist is implemented around the center axis that is aligned with the direction of

magnetization. For (a) ũ⊥00 and (b) ũ⊥20 similar results as for the untwisted structures

in figure 11 are obtained, only that the magnitudes for ũ⊥20 are reversed concerning

the Poisson ratios ν. Additionally, (c) ũϕ10 quantifies the rescaled magnitude of the

torsional deformation that is induced upon magnetization when the initially twisted

structures attempt to untwist themselves.

magnitude of the induced twist deformation. It describes the rotation of the upper

hemisphere of our elastic body relative to the lower hemisphere, as seen from the

direction of magnetization. The sign of ũϕ10 is related to the sense of this relative rotation

and is thus connected to the sense of the initial twist that we impose. As figure 12(c)

implies, the rescaled magnitudes of the effect are a bit smaller for the smaller particles

at x = 1 than for the larger particles at x = 0, in line with the trends observed for ũ⊥00
and ũ⊥20 for the chain-like structures addressed in sections 3.5–3.7. Taking into account

the magnitudes of the standard deviations, there is no clearly monotonic trend of the

average values in figure 12(c) as a function of x.
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3.8. Layered regular structures

From a practical point of view, it might be most realistic with presently available

techniques to build up the systems containing regular particle arrangements layer by

layer [68, 77, 83]. If these processes are automated, it may be most convenient to only

use per layer one of the two particle sizes. Therefore, we add an analysis for regular

particle arrangements, in which we always replace complete layers of larger particles by

smaller particles in our theoretical evaluation.

In each case, we start from the center plane normal to the magnetization direction

and replace all particles within this plane. Then, from there, we additionally replace all

particles in the uppermost and in the lowermost layer parallel to the center plane, as

seen from the direction of magnetization. These outermost layers are the n-th layers of

particles as counted from the 0-th layer, the latter referring to the center plane. n ∈ N
depends on the specific regular particle arrangement at hand. To further increase x, we

instead replace the larger particles in each (n− 1)-th, (n− 2)-th, ..., third, second, and

every layer by smaller particles, again counted from the center plane.

We studied the consequences of such layerwise replacement of larger by smaller

particles for the simple cubic, body-centered cubic, and face-centered cubic lattice

structures as well as for the quadratically and hexagonally arranged chain-like structures,

see sections 3.1, 3.2, 3.3, 3.5, and 3.6, respectively. Corresponding results are depicted

in figures 13–17.

Concerning all regular cubic lattice arrangements, we find that the layerwise

replacement of larger by smaller particles can significantly enhance the rescaled

magnetically induced increase in total volume, see figures 13(a), 14(a), and 15(a). For

the investigated Poisson ratios ν < 0.5, this effect is largest for the simple cubic and

face-centered cubic lattices when every second layer is replaced. In contrast to that, for

the body-centered cubic lattice it is most pronounced when every third layer is replaced.

Moreover, for all these three lattice types the value of ũ⊥20 shows a nonmonotonic

behavior as a function of x. We observe in each case a pronounced minimum when every

second layer of larger particles is replaced by smaller ones, see figures 13(b), 14(b),

and 15(b). For the system containing the simple cubic lattice structure this implies

that the rescaled magnitude of relative contraction along the axis of magnetization

is largest in this case. Conversely, for the body-centered and face-centered cubic

structures this implies a reduced rescaled magnitude of relative extension along the

axis of magnetization. When every second layer of particles is replaced, we even observe

a reversed behavior for the evaluated Poisson ratios ν > −0.5 for the body-centered and

face-centered cubic structures. That is, these systems show a relative contraction along

the axis of magnetization instead of relative extension, see figures 14(b) and 15(b).

The results for the quadratically and hexagonally arranged chain-like aggregates

are relatively similar to each other, see figures 16 and 17. First, the magnetically

induced rescaled reduction in overall volume significantly decreases in magnitude with

increasing x < 1 for the evaluated Poisson ratios ν < 0.5. A most pronounced reduction

94 Chapter 2 Scientific publications



Magnetostriction of magnetic gels and elastomers of mixed particle size 21

Figure 13. Same as in figure 3 for a simple cubic lattice structure, but here increasing

x through a layerwise replacement of larger by smaller particles. First, all particles in

the center plane normal to the axis of magnetization are replaced. Then, additionally,

every n-th, (n − 1)-th, ..., third, second, and each layer of particles is replaced,

where n ∈ N refers to the outermost layers as counted from the center plane. There

are pronounced effects nonmonotonic with x concerning the rescaled magnitudes of

deformation. (a) A very large rescaled increase in total volume is observed for the

evaluated Poisson ratios ν < 0.5 when every second layer of larger particles is replaced.

(b) With increasing x < 1, the rescaled magnitudes of contraction along the axis

of magnetization are found to increase significantly and monotonically, except for

ν = −0.5.

in magnitude is found when every second layer of larger particles is replaced by smaller

ones. Second, the rescaled relative contraction along the axis of magnetization varies

nonmonotonically with x. Also this effect is most severely reduced in magnitude when

the replacement of particles occurs in every second layer. Yet, remarkably, we here

again observe for all evaluated Poisson ratios that the effect is increased in magnitude

above the one at x = 0 for some intermediate values of 0 < x < 0.3. This confirms

that, indeed, the combination of different particle sizes can enhance the magnitude of

magnetically induced contraction per squared employed mass of magnetizable material.

4. Conclusions

In summary, we have investigated theoretically the magnetically induced overall elastic

deformation of spherical model systems of magnetic gels and elastomers containing

discrete arrangements of magnetizable particles of binary size distribution. Simple
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Figure 14. Same as in figure 13, but for a body-centered cubic lattice structure.

(a) Similar results are obtained as for the simple cubic structures, but here with the

maximum of total increase in volume observed when all particles in every third layer

are replaced. (b) The rescaled magnitude of elongation along the magnetization axis

mainly decreases with increasing x < 1, with slight nonmonotonicities. When every

second layer of particles is replaced, even an inversion of the behavior into contraction

along the magnetization axis is observed for the evaluated Poisson ratios ν > −0.5 at

x ≈ 0.47.

cubic, body-centered cubic, face-centered cubic, and randomized isotropic particle

arrangements were studied as well as systems containing quadratically or hexagonally

arranged straight chain-like particle aggregates or globally twisted chain-like structures.

In each case, we systematically increased the fraction of smaller particles at the cost

of larger particles, keeping the total number and spatial arrangement of particles

constant. Additionally, the role of the compressibility of the elastic matrix material

was analyzed. We concentrate on the change of the overall volume in response to a

saturating homogeneous external magnetic field as well as on the amount of relative

extension or contraction along the axis of magnetization. For the systems containing

the twisted chain-like structures we further evaluate the magnetically induced overall

torsional deformation. To be able to compare the results for different number fractions

of larger and smaller particles, we appropriately rescaled the magnitudes of the induced

overall deformational response.

In the limit of uniform particle sizes, we can compare our results to corresponding

previous investigations that used different approaches. For example, for a simple cubic

structure we find contractional deformations along the axis of the magnetic field, in

agreement with previous investigations [20,83]. Likewise, consistency and the same type
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Figure 15. Same as in figure 13, but for a face-centered cubic lattice structure.

The results are very similar to those for the body-centered cubic lattice structure in

figure 14, only that the maximal rescaled increase in total volume in (a) is observed

for the evaluated Poisson ratios ν > 0.5 when every second instead of every third layer

of particles is replaced.

of response is found for tetragonal structures when compared to previous studies [20,35].

Moreover, in the case of a body-centered cubic lattice structure, we observe an elongation

along the axis of the magnetic field as identified in a previous analysis as well [20].

Finally, for a randomized isotropic configuration, besides a simulation result [39], we

can compare to experimental observations on real samples [33, 42]. There, in all cases,

an elongation along the magnetic field axis is obtained.

Our results indicate that completely random replacements of larger by smaller

particles in the investigated particle arrangements do not significantly affect the averaged

overall rescaled deformational response. Only for the evaluated systems containing

chain-like structures, slight trends of increased averaged rescaled mechanical reaction

were observed as a consequence of randomly assigned binary particle sizes. However,

specific individual realizations of systems of mixed particle sizes can show remarkably

different types of behavior. Therefore, selectively replacing larger by smaller particles

in a targeted approach allows to design the nature of the overall rescaled deformational

response. Even qualitative changes are possible, for example, relative magnetically

induced contractions along the axis of magnetization can be reversed into relative

expansions, and vice versa. The effect is solely tuned by selectively positioning particles

of different sizes onto the particle sites. Finally, these trends were confirmed when

we studied the consequences of layerwise exchange of particle sizes, which may be
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Figure 16. Same as in figure 13, but for quadratically arranged chain-like aggregates

aligned along the axis of magnetization. (a) Here, the layer-by-layer replacement of

larger by smaller particles with increasing x < 1 reduces the rescaled magnitude of

the decrease in total volume for the evaluated Poisson ratios ν < 0.5. The effect is

markedly pronounced when every second layer is replaced at x ≈ 0.51. (b) Similarly,

the rescaled magnitude of overall relative contraction along the magnetization axis

is severely reduced for x ≈ 0.51. The behavior is nonmonotonic as a function of x.

Interestingly, larger rescaled magnitudes of overall relative contraction along the axis

of magnetization than those at x = 0 are observed at several values of 0 < x < 0.3 for

all evaluated Poisson ratios.

important for subsequent steps of practical automated realizations of corresponding

systems. We expect that with the further development of 3D-printing techniques also

for the fabrication of magnetic gels and elastomers [84–86], the various regular structures

that we considered can be realized at some point in the future. Our investigations may

then provide a basis to select requested configurations.

Although we here were presenting our results in the context of magnetically

induced deformations of magnetic gels and elastomers, our discussion equally applies to

electrically induced deformations of electrorheological gels and elastomers when exposed

to homogeneous external electric fields [91–93]. In this case, the inclusions are electrically

polarized by the external field and their mutual interactions are described by the formally

identical electric dipolar interactions [67]. The analogy holds as long as dynamic effects

like electrically induced leakage currents do not play a significant role.

Finally, we hope that our investigation will stimulate corresponding experimental

realizations together with the further research into the controlled use of mixed particle

sizes to optimize the overall material behavior [64]. Besides direct fabrication of samples
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Figure 17. Same as in figure 13, but for hexagonally arranged chain-like aggregates

aligned along the axis of magnetization. The observed types of behavior are similar to

the ones displayed for the quadratically arranged chain-like aggregates in figure 16.

containing randomized or uniaxially structured arrangements, also positioning into

requested other discrete patterns might become possible in the future when synthesizing

the materials. Then the selective positioning of particles of varying sizes on specific

target locations may become an additional means to optimize and adjust the resulting

desired overall material behavior.
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[42] Filipcsei G and Zŕınyi M 2010 J. Phys.: Condens. Matter 22 276001

[43] Rosensweig R 1985 Ferrohydrodynamics (Cambridge University Press, Cambridge)
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[51] Winger J, Schümann M, Kupka A and Odenbach S 2019 J. Magn. Magn. Mater. 481 176–182
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A B S T R A C T

Amongst the various fascinating types of material behavior featured by magnetic gels and elastomers are
magnetostrictive effects. That is, deformations in shape or changes in volume are induced from outside by
external magnetic fields. Application of the materials as soft actuators is therefore conceivable. Mostly, straight
contraction or extension of the materials along a certain direction is discussed and investigated in this context.
Here, we demonstrate that various further, different, higher modes of deformation can be excited. To this
end, different spatial arrangements of the magnetizable particles enclosed by the soft elastic matrix, which
constitute the materials, need to be controlled and realized. We address various different types of spatial
configurations of the particles and evaluate resulting types of deformation using theoretical tools developed
for this purpose. Examples are sheet-like arrangements of particles, circular or star-shaped arrangements of
chain-like aggregates, or actual three-dimensional star-like particle configurations. We hope to stimulate with
our work the development of experimental design and engineering methods so that selected spatial particle
arrangements in magnetic gels and elastomers can be put to reality. Overall, we in this way wish to promote
the transfer of these promising class of materials to real-world applications.

1. Introduction

We consider soft materials that consist of a reversibly deformable,
elastic, continuous matrix containing discrete, magnetizable inclusions.
Magnetic gels and elastomers [1–11] represent prime examples of this
class of materials. In this case, the elastic matrix is of polymeric origin,
crosslinked to an elastic network and possibly swollen by a solvent
for elevated softness. The inclusions can be regarded as solid particles.
For possible experimental realizations, the diameters of these particles
are typically of submillimeter range, from tens to a few hundreds of
micrometers.

When magnetized by external magnetic fields, the particles interact
with each other magnetically. In the absence of external magnetic field
gradients, the interparticle interactions are the only forces generated
on the inclusions. The particles are enclosed by the surrounding elastic
matrix and cannot move through it due to their size. Therefore, the
forces generated on the particles are transmitted to the surrounding
soft elastic matrix, leading to its deformation [12–16].

From such effects occurring on the microscopic particle scale, over-
all macroscopic material properties are affected. Above all, the macro-
scopic mechanical material behavior is modified, which is frequently
referred to as the magnetorheological effect. More precisely, the in-
duced magnetic interactions lead to changes in the static elastic mod-
uli [2,17–24] as well as in the dynamic storage and loss moduli

∗ Corresponding author.
E-mail addresses: lukas.fischer@ovgu.de (L. Fischer), a.menzel@ovgu.de (A.M. Menzel).

[1,25–36]. Since this effect works in a contactless way by external
magnetic field, is tunable by the strength of the external field, and
often is reversible [37], a multitude of possible applications results. Fre-
quently, magnetically tunable vibration absorbers and damping devices
are mentioned in this context [38–43].

It has been demonstrated by microcomputed x-ray tomography
that the change in overall mechanical behavior is correlated to inter-
nal restructuring [44]. Specifically, chain-like aggregates of initially
well separated magnetized particles can form by deformation of the
surrounding elastic matrix [34,45,46]. Not only is the mechanical
behavior affected by such internal restructuring. The particles usually
feature electrical and thermal conductivities that are notably different
from those of the surrounding elastic matrix. Thus, when the particles
reversibly form anisotropic aggregates (such as chains), this causes
magnetically tunable changes in transport properties, especially electric
and thermal conductivity [47–52]. Only a few studies have addressed
this behavior so far.

We here consider a third type of overall response of the materials
to external magnetic fields. Namely, these are macroscopic magne-
tostrictive effects [53–66]. That is, the deformations induced by the
magnetized particles in their surroundings due to the resulting mag-
netic interparticle interactions result in overall macroscopic distortions.

https://doi.org/10.1016/j.jmmm.2023.171695
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So far, this type of behavior has been discussed in the context of
soft magnetoelastic actuators [2,7,15,58,62,67–76] that can serve, for
instance, as magnetic valves.

It is a significant challenge especially for theoretical studies to link
the properties on the microscopic particulate scale, especially the par-
ticle configurations and resulting magnetically induced interactions, to
the macroscopic scale of overall material behavior [16,77–83]. In this
way, the parameters in macroscopic continuum descriptions [28,84,85]
could be substantiated by their microscopic origin. Several previous
works resort to statistical approaches to handle the many microscopic
degrees of freedom associated with the magnetizable particles [86,87].
These approaches by construction rely on a certain type of averaging
and are justified from a coarse-grained macroscopic perspective for
large samples. However, after all, each sample of an elastic composite
system is of finite size. Moreover, the particle positions are fixed in
this type of materials, so that each individual sample by itself does
not necessarily show an averaged behavior. If we want to describe
quantitatively and in detail the deformation of one specific sample, we
need to calculate the overall response from the discrete arrangement of
all individual inclusions in this specific realization.

Therefore, our approach is different from averaging procedures.
Based on a Green’s function formalism [64,88], we have developed
a theoretical description that allows us to evaluate from the discrete
arrangement of magnetizable inclusions and the resulting magnetic
interactions when exposed to an external magnetic field the over-
all macroscopic deformation of the whole system. The approach is
valid in the regime of linear elasticity, typically corresponding to
not more than moderate elastic deformations (of, for instance, about
10% [89]), and for sufficiently separated magnetizable inclusions. We
have demonstrated that, on this basis, we can determine for various
regular lattice-like arrangements of magnetizable inclusions inside the
elastic matrix the resulting, magnetically induced, overall deformations
for sphere-like systems [64,66].

In one first study, we have shown that more specific modes of
overall deformation can be excited by an appropriately chosen arrange-
ment of the internal particle structure. More precisely, we considered
globally twisted arrangements of chain-like structures and helical par-
ticle configurations [65,81]. As a result, an overall torsional mode of
deformation was induced. Such systems have recently been realized
experimentally as well [76].

It is our goal in the present work to extend such types of con-
siderations. Instead of the previously addressed regular lattice-like
arrangements, we now turn to more specific structures of magnetizable
particles. We demonstrate that an extended spectrum of modes of
overall deformation with special focus on certain specific modes of
deformation can be obtained by realizing these more specific arrange-
ments of particles. Such a perspective highlights the potential of the
materials when searching for soft elastic actuators of peculiar types of
induced deformation for individual tasks.

We proceed by briefly summarizing the background of the theoret-
ical approach that we have developed for this purpose in Section 2.
After that, we introduce several different types of specific arrangements
of particles and evaluate their resulting overall macroscopic magnetoe-
lastic response in the several subsections contained in Section 3. Our
conclusions together with a brief perspective are provided in Section 4.

2. Theoretical description

If one wishes to calculate the actual deformation of a system as
viewed from outside, it is mandatory to include the boundaries explic-
itly. Any sample is of finite size. When we discuss its deformation in
the context of actuation, it is usually the displacement of its surfaces
that determines the considered response.

Calculating by analytical theory the elastic deformations in a finite-
sized system provides an extreme challenge. We have found a way
by turning to spherical systems. In this case, building on previous

work that considered an elastic sphere enclosed by an infinitely ex-
tended elastic matrix [88], we managed to determine the associated
Green’s function for the elastic deformation of a free-standing elastic
sphere [64]. The Green’s function quantifies the elastic displacements
resulting in the elastic sphere in response to point-like force centers
acting within the sphere on the elastic material. In our case, we
consider the magnetizable inclusions as these point-like force centers
when they are magnetized in the external magnetic field. To render
such an approach quantitatively valid, the particulate inclusions need
to be well separated from each other relative to their diameter.

More precisely, we consider homogeneous, isotropic, linearly elas-
tic matrices. Their deformations are quantified by the Navier–Cauchy
equations [90]

𝜇𝛥𝐮(𝐫) + 𝜇
1 − 2𝜈

∇∇ ⋅ 𝐮(𝐫) = −𝐟𝑏(𝐫). (1)

In this equation, 𝐮(𝐫) corresponds to the elastic displacement field at
position 𝐫, 𝜇 is the elastic shear modulus, 𝜈 represents the Poisson
ratio that quantifies the compressibility of the elastic matrix, and 𝐟𝑏(𝐫)
sets the bulk force density acting on the elastic material. To determine
the resulting displacement field, we set 𝐟𝑏(𝐫) =

∑𝑁
𝑖=1 𝐅𝑖𝛿(𝐫 − 𝐫𝑖) in our

case, where 𝑁 provides the overall number of particulate inclusions, 𝑖
labels the inclusions, while 𝐅𝑖 specifies the magnetic force acting on
the 𝑖th inclusion and 𝐫𝑖 its position. 𝛿(𝐫) represents the Dirac delta
function. An analytical expression for the Green’s function associated
with Eq. (1) for a spherical geometry is available [64,88], yet complex
and lengthy, so we do not reproduce it here. After derivation of this
Green’s function for the geometry of a free-standing elastic sphere [64],
we assume the inclusions as well separated from each other and thus to
reasonable approximation as point-like. Then, we obtain the resulting
displacement field as

𝐮(𝐫) =
𝑁
∑

𝑖=1
𝐆(𝐫, 𝐫𝑖) ⋅ 𝐅𝑖, (2)

where 𝐆(𝐫, 𝐫𝑖) denotes the corresponding Green’s function, 𝐫 the posi-
tion at which we evaluate the displacement field, and 𝐫𝑖 the position of
the 𝑖th inclusion.

We evaluate the resulting displacement field 𝐮(𝐫) at 49152 well
distributed positions on the surface of the elastic sphere, relying on
the distribution defined by the HEALPix package [91]. For our pur-
pose, we then consider the components of radial outward, azimuthal,
and polar surface displacements 𝑢⊥(𝐫), 𝑢𝜑(𝐫), 𝑢𝜃(𝐫), respectively. These
components are directly connected to the deformation of the sphere as
viewed from outside. We then expand these components of the surface
displacement field into spherical harmonics. In this way, since spherical
harmonics form a complete basis set of orthonormal functions on the
surface of the sphere, we thus determine the resulting spectrum of
normal modes of deformation. The magnitudes of the expansion coeffi-
cients are related to the strengths of the particular types of deformation
associated with the specific modes.

Finally, since the inclusions are well separated from each other, we
approximate their mutual magnetic interactions as dipolar. Therefore,
the magnetic force 𝐅𝑖 acting on the 𝑖th inclusion is specified as [92]

𝐅𝑖 = −
𝑁
∑

𝑗=1
𝑗≠𝑖

3𝜇0𝑚2
[

5�̂�𝑖𝑗
(

�̂� ⋅ �̂�𝑖𝑗
)2 − �̂�𝑖𝑗 − 2�̂�

(

�̂� ⋅ �̂�𝑖𝑗
)

]

4𝜋𝑟4𝑖𝑗
. (3)

In this expression, 𝜇0 is the magnetic vacuum permeability. We consider
all magnetizable inclusions to be identical in size and magnetic prop-
erties and exposed to strong homogeneous external magnetic fields, so
that they are magnetized to saturation. Then, the magnetic moment 𝐦
of magnitude 𝑚 and orientation �̂� is the same for all these identical
magnetic inclusions. In our coordinate frame, we set �̂� ∥ �̂�. Moreover,
we introduced 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 , 𝑟𝑖𝑗 = |𝐫𝑖𝑗 |, and �̂�𝑖𝑗 = 𝐫𝑖𝑗∕𝑟𝑖𝑗 . Since the
deformation of the material influences the positioning of the magne-
tizable inclusions, which in turn affects the magnetic interactions that
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cause the deformations in the first place, we use an iterative numerical
scheme [64]. It leads us to the final deformed state and thus to the set
of magnetic interaction forces that is utilized to calculate the surface
displacements.

3. Specific discrete arrangements of particulate inclusions and
overall mechanical response

In this part, we investigate the induced mechanical response of
the whole system as induced by various different types of spatial con-
figurations of discrete particulate magnetizable inclusions. To respect
the requirements in Section 2, we impose a minimal center-to-center
separation distance of 0.12𝑅 of the individual particles from each
other, where 𝑅 is the radius of the elastic sphere that in the following
sets our unit of length. Simultaneously, a minimal distance of 0.06𝑅
is maintained from the surface of the sphere. We assume spherical
inclusions of radius 0.02𝑅. To quantify the strength of the magnetic
interactions relative to the elastic interactions, we rely on a nondimen-
sional parameter 3𝜇0𝑚2∕4𝜋𝜇𝑅6. In the following, its magnitude is set
to 5.4 × 10−8, in line with experimental parameter values [64]. One
possible experimental set of parameters that leads to this value is given
by an elastic matrix of shear modulus 𝜇 ≈ 1.67 kPa [53,54,67] and
saturation magnetization of 518 kAm−1 for the magnetizable inclusions,
as would be realistic for Fe3O4 [93]. Besides, the inclusion radius is
set to 0.02𝑅 as above. Along these lines, we evaluate in the following
the overall magnetoelastic response of various spatial arrangements of
chain-like aggregates, hexagonally structured layer-like configurations,
spherical arrangements, three-dimensional star-shaped configurations,
and single- and double-stranded helical arrangements. It becomes obvi-
ous that the different spatial arrangement on the particulate microscale
is connected to and in parts reflected by the resulting spectrum of
modes of overall deformation. Varying the microscopic structure thus
generally enables modifying the relative magnitude of dominating
macroscopic modes.

In each of the various cases considered in the following subsections,
we address four different values of the Poisson ratio. They quantify
the degree of compressibility of the elastic matrix. Specifically, 𝜈 =
0.5 describes completely incompressible materials that do not allow
any changes in volume under deformation. Next, 𝜈 = 0.3 represents
materials that are moderately compressible. 𝜈 = 0 describes a strongly
compressible material for which elongation along one axis does not
lead to contraction along the perpendicular axes. Lastly, 𝜈 = −0.5 is
associated with materials that even elongate along the perpendicular
axes when stretching it along an initially selected axis. Such astonishing
behavior is called auxetic.

3.1. Chain-like structures

The first kind of arrangements of magnetizable inclusions inside
the elastic matrix that we consider are various spatial organizations
of chain-like structures. For this purpose, we specify different two-
dimensional arrangements in the central plane of the elastic sphere,
the normal vector to this plane coinciding with the magnetization
direction. These configurations in the central plane set the spatial
organization of our chain-like structures. Then, we stack magnetizable
inclusions along the magnetization direction above and below these in-
clusions with a spacing of 0.121𝑅 to establish the chain-like aggregates
filling the sphere.

3.1.1. Planar star-shaped arrangements
In the first case, we use a regular two-dimensional star-shaped

arrangement of inclusions in the central plane, where we first select
the number of arms 𝑛𝑎𝑟𝑚𝑠. The plane is then evenly divided into 𝑛𝑎𝑟𝑚𝑠
segments, with inclusions placed on the boundaries between these
segments. One inclusion is always placed at the center of the sphere.
The chain-like aggregates are then grown towards the top and the

Fig. 1. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the star-shaped arrangements of chains of particles. The chains are oriented
along the magnetization direction �̂�. 𝑛𝑎𝑟𝑚𝑠 indicates the number of arms of each star
and 𝑁 sets the number of magnetizable inclusions. Gaps around the centers in the top
views in the regular arrangements for 𝑛𝑎𝑟𝑚𝑠 ≥ 6 result from our constraints, see also
Appendix A.

bottom of the sphere from the central plane. Along one arm, we use
the same distance of nearest neighbors as the distance within the chain-
like aggregates (0.121𝑅). Additionally, for neighboring particles in one
arm, we use an alternating vertical shift of 0.121𝑅∕2. This allows for
more inclusions per arm and in total in our final configuration while
respecting the imposed minimal distance of neighboring inclusions. For
high 𝑛𝑎𝑟𝑚𝑠 ≥ 6, some chains close to the center were deleted because
they are too close to each other, in line with our constraints. We visu-
alize top and tilted top views of the resulting arrangements in Fig. 1,
with the missing chains visible as gaps in the regular arrangements.
Additionally, we list the missing chains explicitly in Appendix A.

Under magnetization, all these arrangements induce magnetostric-
tive deformations of the material. We here characterize and define the
modes of deformation according to expansions into spherical harmon-
ics. The most important modes, i.e. those of overall largest (absolute)
magnitude, are plotted in Fig. 2 for the geometries of different values of
𝑛𝑎𝑟𝑚𝑠. Corresponding types of deformation are illustrated on the right-
hand side of Fig. 2. On the one hand, for the modes associated with
the component 𝑢⊥, the overall shape of the material is affected and we
plot what the new shape looks like if only this mode of positive sign
were present. On the other hand, the modes associated with 𝑢𝜃 (and
also 𝑢𝜑) describe displacements tangential to the surface. Therefore,
the overall shape of a sphere is not changed by them. Instead, possibly
local, tangential displacements are included by them. For modes related
to the spherical harmonic 𝑌𝑙,𝑚 with 𝑚 ≠ 0, the resulting 𝜑-dependence
can manifest itself in two different ways: Either as cos (𝑚𝜑) or as
− sin (𝑚𝜑). In the former case, we write it (using the convention of
the HEALPix package [91]), as a real expansion coefficient, indicated
by the letters ‘‘Re’’ in the plots. In the latter case, as an imaginary
expansion coefficient, indicated by ‘‘Im’’ (with the negative sign by
convention). Obviously, the resulting displacement field is real in both
cases, which is a result of combining the terms with positive and
negative 𝑚 – we here only plot the expansion coefficient for positive 𝑚.
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In our plots, we only show the nonvanishing modes, i.e. for the plots
with ‘‘Re’’, the corresponding imaginary part is approximately zero and
vice versa. For further details, we refer to Ref. [65]. The corresponding
types of deformation are illustrated on the right-hand side of Fig. 2
by the black arrows. The lengths and directions of the arrows describe
the displacements induced by only the corresponding mode, again for
positive sign. For negative sign of the corresponding mode, all the
directions are simply reversed. We illustrate the mode corresponding
to either the real or to the imaginary part of the coefficient, depending
on which one was found as the nonvanishing coefficient in the plots on
the left-hand side.

As can be inferred from Fig. 2(a), magnetizing chain-like structures
mainly leads to overall reduction in volume, i.e. 𝑢⊥00 < 0 (except for
incompressible materials of 𝜈 = 0.5). We note here that for generic
visualization on the right-hand side, we there always refer to positive
values of the mode. In the present case, the illustration on the right-
hand side of Fig. 2(a) is for 𝑢⊥00 > 0. As we obtain negative values
from our expansion, the material behavior is inverse to that, namely
a reduction in volume instead of an increase in volume. Additionally,
we find 𝑢⊥20 < 0, see Fig. 2(b), which indicates a contraction along
the magnetization direction (also referred to as oblate deformation).
Again, on the right-hand side of Fig. 2(b), the visualization is for 𝑢⊥20 >
0, referring to an elongation along the magnetization direction. The
observed behavior is expected from the attractive interactions along the
magnetization direction of each chain-like aggregate. The mode 𝑢𝜃10 >
0 in Fig. 2(d) indicates material displacements along the tangential
direction on the surface of the sphere, within all planes containing the
magnetization direction. Displacements are in opposite directions on
the upper and lower hemisphere. This again contains the effect of a
contraction along the magnetization direction, yet here tangentially to
the surface. With lower magnitude, the values 𝑢𝜃30 < 0 in Fig. 2(e)
modulate this behavior, indicating that displacements towards the
equatorial plane are more pronounced closer to it than near the poles.
Mostly, we observe an increasing trend of all these kinds of deformation
with 𝑛𝑎𝑟𝑚𝑠. This is in line with the increasing number of magnetizable
inclusions. Simultaneously, the higher values of 𝑛𝑎𝑟𝑚𝑠 decrease the
distance between nearby chains, therefore pronouncing the repulsive
interactions between neighboring inclusions from different chains.

Additionally, we plot two modes that are strongly related to the
considered configurations. Namely, these are the modes 𝑢⊥𝑛𝑎𝑟𝑚𝑠 ,𝑛𝑎𝑟𝑚𝑠 and
𝑢𝜑𝑛𝑎𝑟𝑚𝑠 ,𝑛𝑎𝑟𝑚𝑠 , where we set both values of 𝑙 and 𝑚 of the corresponding
spherical harmonic 𝑌𝑙,𝑚 to 𝑛𝑎𝑟𝑚𝑠. Therefore, these modes reflect the
symmetry of the underlying spatial configuration. For example, in
Fig. 2(c), we observe that for 𝑛𝑎𝑟𝑚𝑠 = 4 the deformations characterized
by 𝑢⊥44 show a four-fold symmetry as does the first configuration of
𝑛𝑎𝑟𝑚𝑠 = 4 in the top view in Fig. 1. In the vicinity of each chain located
closer to the surface of the sphere, the contraction on the surface along
the magnetization direction is more pronounced when compared to
the positions that are further away from the chains. In general, this
behavior is more obvious for low 𝑛𝑎𝑟𝑚𝑠, for which the distance between
different chains is larger and the deformation on the surface is therefore
varying more significantly. In 𝑢𝜑𝑛𝑎𝑟𝑚𝑠 ,𝑛𝑎𝑟𝑚𝑠 , we observe a similar behavior,
see Fig. 2(f). This mode shows that the surface of the elastic sphere
close to the ends of the chains is displaced towards the positions of
the chains. For example, the arrows in Fig. 2(f) are all positioned at
𝜑 = −𝜋∕8 and indicate displacements towards 𝜑 = 0, where we find
one of the chain-like aggregates corresponding to the end of one arm
of our planar star-shaped arrangement.

The magnitude of most of these modes increase with decreasing
Poisson ratio, that is, as the elastic matrix becomes more compressible
and finally auxetic, see Fig. 2. This tendency is expected because
a more compressible matrix less severely restricts the deformations.
However, the trend is inverted for some mode of coefficient 𝑢⊥20 < 0,
see Fig. 2(b) where the absolute magnitude decreases with decreasing
Poisson ratio for 𝑛𝑠𝑡𝑎𝑟 ≥ 8, probably due to the more pronounced
repulsive interactions as mentioned above. An inverted behavior is also
observed in the modes of coefficients 𝑢𝜃10 > 0 and 𝑢𝜃30 < 0 for low values
of 𝑛𝑠𝑡𝑎𝑟 in Fig. 2(d) and (e), respectively.

Fig. 2. For the star-shaped chain configurations in Fig. 1, we evaluate the most
important deformational modes. They are characterized by an expansion into spherical
harmonics of the three components of the displacement field on the surface of
the elastic sphere. On the left-hand side, we plot the largest expansion coefficients
depending on 𝑛𝑎𝑟𝑚𝑠 and the Poisson ratio 𝜈 of the elastic material. The second index of
the respective mode 𝑚 can correspond to a 𝜑-dependence of cos (𝑚𝜑) or −sin (𝑚𝜑), which
we label by ‘‘Re’’ (real) or ‘‘Im’’ (imaginary) in the plots by convention, respectively.
From those two options, we always select the nonvanishing modes for the plots. On the
right-hand side, we visualize the corresponding deformational mode (always for positive
value of the coefficient, negative coefficients invert this behavior). For 𝑢⊥ in (a)–(c),
we plot the deformed shape in blue in comparison to the undeformed shape in yellow.
In the first two cases, we use side views, while the third row contains a top view as in
Fig. 1. For 𝑢𝜃 in (d,e), we color-code the value of the corresponding spherical harmonic
in a side view of the sphere with the 𝑥-axis in the center. We illustrate the tangential
polar displacements, given by 𝑢𝜃 , which the mode corresponds to using black arrows.
Black dots indicate negligible displacements at this position. Similarly, we plot 𝑢𝜑 in
(f), but now for corresponding tangential azimuthal displacements. As we found only
an imaginary mode here, we also plot the deformations corresponding to the imaginary
part of this mode (superscript 𝐼𝑚). In (c) and (f), we plot that mode of 𝑙 and 𝑚 set to
the value 𝑛𝑎𝑟𝑚𝑠 of the corresponding configuration. The visualizations on the right-hand
side of those rows correspond to the case of 𝑛𝑎𝑟𝑚𝑠 = 4.

3.1.2. Planar star-shaped arrangements without vertical shift between
neighboring chains

We also investigate planar star-shaped arrangements that were con-
structed in the same way as in the previous Section 3.1.1, but without
the mutual vertical shift of neighboring chains. Instead, we increase
the distance between neighboring chains to 0.121𝑅 so that neighboring
inclusions still approximately maintain the minimal distance according
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Fig. 3. Top views (left of each pair of snapshots) and tilted top views (right of
each pair) of the star-shaped arrangements of chains of particles similarly to the
configurations displayed in Fig. 1, but without mutual vertical shifts of neighboring
chains along the magnetization direction �̂�. Again, 𝑛𝑎𝑟𝑚𝑠 indicates the number of arms
of each star and 𝑁 sets the number of magnetizable inclusions. Appendix B contains
further structural details on these configurations.

to our constraints. For 𝑛𝑎𝑟𝑚𝑠 ≥ 7, some chains close to the center again
must be deleted, see also the top views of the configurations in Fig. 3
and Appendix B.

In general, without mutual vertical shift the number of inclusions
𝑁 needs to be decreased (see Figs. 1 and 3 for comparison). As may be
expected, the magnetostrictive behavior is affected. We plot the most
relevant modes of deformation in Fig. 4 in a similar manner as in the
previous section in Fig. 2.

Fig. 4 already shows substantial differences compared to Fig. 2,
while the configurations themselves in general are quite similar. We
notice that the difference depends on the exact employed configuration,
that is, the value of 𝑛𝑎𝑟𝑚𝑠, and also on the Poisson ratio 𝜈. In detail,
we observe an almost uniform decrease of the dominant mode with
coefficient 𝑢⊥00 that indicates changes in volume in Fig. 4(a). Associated
magnitudes are reduced to approximately 70–75% of the corresponding
previous values in Fig. 2(a).

In contrast to that, for the mode 𝑢⊥20 in Fig. 4(b), the amplitudes are
strongly increased (up to fourfold). Such behavior is in line with the
more pronounced repulsive interactions between neighboring magne-
tized inclusions that now occupy identical planes. Here, 𝑢⊥20 < 0, so that
the system contracts along the magnetization direction and extends in
the planes of mutual magnetic repulsion. Besides, the auxetic systems
(𝜈 = −0.5) always show the largest magnitude, while in the previous
situation this was only the case for 𝑛𝑎𝑟𝑚𝑠 ≤ 7.

In Fig. 2, the coefficient 𝑢⊥40 is not shown, but here the associated
mode is a lot more significant and enters Fig. 4(c). 𝑢⊥40 is always
negative for the configurations without vertical shift, while for the
previous configurations with vertical shift it features both signs. This
mode of negative coefficient here represents displacements that are ori-
ented inwards at the poles and in the equatorial plane while outwards
otherwise. Its increase in absolute magnitude is about or more than
twofold when excluding the vertical shift.

Next, the mode of coefficient 𝑢⊥𝑛𝑎𝑟𝑚𝑠 ,𝑛𝑎𝑟𝑚𝑠 is strongly reduced in im-
portance and at least twofold, partially fourfold, in magnitude when

Fig. 4. For the star-shaped chain configurations without mutual vertical shift of
neighboring chains along the magnetization direction in Fig. 3, we evaluate the most
important deformational modes and visualize them in the same way as in Fig. 2, varying
the number of arms 𝑛𝑎𝑟𝑚𝑠 of the star-shaped arrangements.

compared to the configurations with vertical shift. Therefore, it does
not enter Fig. 4. Also, the sign is sometimes opposite.

Concerning the mode of coefficient 𝑢𝜃10 in Fig. 4(d), it shows a slight
decrease in magnitude in some cases, but mainly a strong increase up
to 84%, when compared to Fig. 2. When decreasing the Poisson ratio
in Fig. 4(d), this mode always decreases in magnitude.

Besides, for the mode of coefficient 𝑢𝜃30 in Fig. 4(e), we observe an
increase that is more uniform, between approximately 26–64%, when
compared to the systems with vertical shift in Section 3.1.1. In Fig. 4(e),
the auxetic systems always show the lowest absolute magnitude of this
mode, nonmonotonic dependence on the Poisson ratio is partly found.

Lastly, the mode 𝑢𝜑𝑛𝑎𝑟𝑚𝑠 ,𝑛𝑎𝑟𝑚𝑠 is generally substantially decreased, at
least when compared to its high magnitudes in Fig. 2(f). For certain
parameters, we do observe an increase, but only at a very low level.
Therefore, this mode is less prominent when compared to the modes
included in Fig. 4.

3.1.3. Circular arrangements
Next, we address planar circular configurations of chains, with

𝑟𝑐𝑜𝑛𝑓𝑖𝑔 denoting the radius of each circular arrangement. Each circle
in the central plane of the elastic sphere is centered at the center of the
sphere. Chain-like aggregates are again built starting from this central
plane as described in Section 3.1. As in Section 3.1.1, a vertical shift
between neighboring chains on the circle is then imposed as a further
step. The procedure of filling the sphere is pursued in a way to in
the end obtain that number of chains corresponding to the maximum
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Fig. 5. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the circular configurations of chain-like aggregates of magnetizable inclusions.
The chains are oriented along the magnetization direction �̂�. 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 sets the radius of
the circle and 𝑁 sets the number of magnetizable inclusions.

Fig. 6. Magnitudes of the most important deformational modes as in Fig. 2, but for
the circular configurations of Fig. 5 with varying values of 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 .

number allowed under the constraints introduced before. Resulting
configurations are visualized in Fig. 5.

The induced overall deformations of the sphere when magnetizing
these configurations are visualized in Fig. 6, in analogy to Fig. 2.
The results are similar to the results in Figs. 2 and 4. Again, we find
𝑢⊥00 < 0 and 𝑢𝜃10 > 0, except for auxetic materials (𝜈 = −0.5) and
𝑟𝑐𝑜𝑛𝑓𝑖𝑔 = 0.42𝑅 where we find 𝑢𝜃10 < 0, see Fig. 6(c) in the first
column. Here, we note that the number of inclusions 𝑁 is not increasing
monotonically with 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , therefore, we cannot expect a monotonic
increase in the magnitudes of the deformational modes. The behavior
of the mode 𝑢⊥20 is even changing sign with increasing 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 . For low
𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , the behavior is as expected for individual chain-like aggregates,
and we find contractions along the magnetization direction, i.e. 𝑢⊥20 < 0.
For larger 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , the chains get shorter as the available space in the
magnetization direction inside the elastic sphere decreases. Thus, repul-
sive interactions perpendicular to the magnetization direction between

Fig. 7. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the concentric ring-like configurations of chain-like aggregates of magnetizable
inclusions. The chains are oriented along the magnetization direction �̂�.

Fig. 8. Top view (left) and tilted top view (right) of the tubular configuration of chain-
like aggregates of 𝑁 = 600 magnetizable inclusions. The chains are oriented along the
magnetization direction �̂�.

inclusions part of different chains become more relevant. A similar
change in sign can partly be observed in the mode 𝑢𝜃10 for 𝜈 = −0.5
and in the mode 𝑢𝜃30 for 𝜈 ≤ 0.

3.1.4. Concentric ring-like and tubular arrangements
Building on the results in Section 3.1.3, we now combine circles

of different 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 in one configuration. Two different variants are
selected, one with a spacing of 0.121𝑅 in the radial direction, i.e. as
a spacing between different 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , and one with twice that amount.
Again, we place as a many chains as permitted by our restrictions on
each circle, see Fig. 7.

In tubular configurations, chains are still placed on circles. How-
ever, these circles are not concentric. Instead, 7 circles are introduced
in the equatorial plane, their centers arranged in a hexagonal manner.
Each circle is of a radius of 0.15𝑅, with a center-to-center distance
between the circles of 0.7𝑅 for nearest neighbors. From there, we grow
from each inclusion in the equatorial plane a chain-like aggregate along
the magnetization direction, which results in tubular configurations,
see Fig. 8. Related tubes were identified in x-ray tomographic investi-
gations of real experimental samples of magnetic elastomers prepared
under strong homogeneous external magnetic fields [94].

Probably due to the attractions along each chain-like aggregate, we
find results similar to those for the star-shaped arrangements depicted
in Figs. 2 and 4 for both concentric ring-like (first and second column
of Fig. 9) and tubular (third column of Fig. 9) configurations. That
is, volume changes are negative (𝑢⊥00 < 0), contraction along the
magnetization direction prevails (𝑢⊥20 < 0), and qualitatively similar
tangential response is observed (𝑢𝜃10 > 0, 𝑢𝜃30 < 0). The notable exception
to this list is 𝑢⊥20 < 0 for the denser concentric ring-like arrangement.
In this case, there are many chains close together, which emphasizes
the repulsive interactions perpendicular to the magnetization direction.
Therefore, it appears conceivable that we observe elongation (𝑢⊥20 >
0) along the magnetic field direction in this case at least for auxetic
materials of 𝜈 = −0.5, see the first column of Fig. 9(b).

3.1.5. Polygonal arrangements
We also constructed chain-like aggregates from regular polygonal

arrangements in the equatorial plane. The center of each polygon
coincides with the center of the sphere. All vertices of each polygon
therefore are located at identical distance from the center, which we
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Fig. 9. Magnitudes of the most important deformational modes as in Fig. 2, but for
the concentric ring-like and tubular configurations of Figs. 7 and 8, respectively.

Fig. 10. Top views (left of each pair of snapshots) and tilted top views (right of
each pair) of the polygonal configurations of chain-like aggregates of magnetizable
inclusions. The chains are oriented along the magnetization direction �̂�. 𝑛𝑒𝑑𝑔𝑒𝑠 indicates
the number of edges of each polygon.

here choose as 0.9𝑅. We show results for different numbers of polygonal
edges, denoted by 𝑛𝑒𝑑𝑔𝑒𝑠, which equals the number of vertices, see
Fig. 10.

For these arrangements, the induced modes of magnetostrictive de-
formation are presented in Fig. 11. Qualitatively, they are quite similar
to the ones for circular arrangements in Fig. 6. As in the circular case for
increasing 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , increasing 𝑛𝑒𝑑𝑔𝑒𝑠 on average moves the chains further
away from the center of the elastic sphere and therefore shortens the
length of the chains that fits into the sphere. This most likely leads
to the decrease with increasing 𝑛𝑒𝑑𝑔𝑒𝑠 in induced shrinkage of volume
obvious from Fig. 11(a) and also to the decreasing contraction along
the magnetization direction from Fig. 11(b). In the latter case, we even
observe a change in sign for auxetic materials as in Fig. 6(b).

However, we here find 𝑢𝜃30 < 0 for all evaluated parameters, which
implies that tangential displacements towards the equatorial plane are
decreasing in magnitude with increasing distance to the equatorial
plane, qualitatively similar to the results in Fig. 2(e). Additionally,

Fig. 11. Magnitudes of the most important deformational modes as in Fig. 2, but for
the polygonal configurations of Fig. 10 with varying values of 𝑛𝑒𝑑𝑔𝑒𝑠. The visualization
in (f) corresponds to the case 𝑛𝑒𝑑𝑔𝑒𝑠 = 3.

we also present the results for 𝑢⊥40 in Fig. 11(c), where we infer that
the displacements are more outwards at the poles and the equatorial
plane and inwards otherwise. This modulation in the perpendicular
component is analogous to the one that is represented by 𝑢𝜃30 < 0 for
the tangential component in Fig. 11(e).

We here also plot the mode 𝑢𝜃𝑛𝑒𝑑𝑔𝑒𝑠+1,𝑛𝑒𝑑𝑔𝑒𝑠 in Fig. 11(f). The mirror-
symmetry of the underlying configuration with respect to the equatorial
plane implies an antisymmetric mode for 𝑢𝜃 . Therefore, the parameters
𝑙 and 𝑚 of any nonvanishing mode corresponding to the spherical
harmonic 𝑌𝑙,𝑚 have to be such that 𝑙 + 𝑚 is odd. Consequently, the
lowest-order mode for 𝑢𝜃 that reflects the 𝑛𝑒𝑑𝑔𝑒𝑠-fold symmetry in 𝑚 is
the one that we plot in Fig. 11(f).

3.1.6. Hexagonal arrangements
Finally, we also consider simple hexagonal arrangements of chain-

like aggregates oriented along the magnetization direction. Here, the
distance of neighboring chains in the equatorial plane is set to 0.18𝑅.
Additionally, we consider the case in which the chain-like aggregates
are oriented along the 𝑥-direction instead. To this end, we apply
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Fig. 12. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the hexagonal configurations (configs.) of chain-like aggregates of magnetizable
inclusions. The chain-like aggregates are oriented along the magnetization direction
�̂� in (a) and along �̂� (pointing to the right) in (b). We also investigate stacks of
hexagonally structured layers instead of hexagonally arranged chain-like aggregates
(smaller inner-layer spacing between nearest-neighboring inclusions when compared
to the inter-inclusion distance along the chain-like aggregates). In the latter case, we
investigate layer structures of normal vector along (c) �̂� and (d) �̂�.

a global rotation matrix 𝐑 to all position vectors of magnetizable
inclusions, where

𝐑 =
⎛

⎜

⎜

⎝

0 0 1
0 1 0
−1 0 0

⎞

⎟

⎟

⎠

. (4)

𝐑 maps the 𝑥-components to negative 𝑧-components and 𝑧-components
to 𝑥-components, while leaving the 𝑦-components unaffected. More-
over, we address configurations that feature an interinclusion dis-
tance of 0.25𝑅 along the magnetization direction (compared to 0.121𝑅
previously). Instead, we reduce the interinclusion spacing within the
hexagonal plane to 0.121𝑅. Therefore, we construct a configuration of
hexagonally structured layers stacked on top of each other (normal
vector �̂�). For these hexagonal layer structures, we also investigate
the rotated configurations (normal vector �̂�) after applying the same
rotation matrix 𝐑. These four configurations are visualized in Fig. 12.
In all cases, �̂� still represents the magnetization direction.

For the hexagonally arranged chain-like aggregates with chains
along the magnetization direction (see the first column of Fig. 13),
we find a qualitatively similar magnetostrictive response as for the
star-shaped arrangements of chains. A reduction in volume (𝑢⊥00 < 0)
in connection with a contraction along the magnetization direction
(𝑢⊥20 < 0) are observed, together with similar tangential deformations
as for the aforementioned structures (𝑢𝜃10 > 0, 𝑢𝜃30 < 0). Evidently, a
rotation of the whole configuration with respect to the magnetization
direction (see the second column of Fig. 13) changes the behavior even
qualitatively. The overall volume is now growing under magnetization
(𝑢⊥00 > 0), as we might expect from the now predominately repulsive in-
teractions within the perpendicularly magnetized chain-like aggregates.
We still find contraction along the magnetization direction (𝑢⊥20 < 0),
or put differently, a sphere that expands upon magnetization across
the equatorial plane, at least for 𝜈 ≥ 0. This also leads to the same
qualitative behavior of 𝑢𝜃10 and 𝑢𝜃30. Moreover, due to the chains being
oriented along the 𝑥-direction, we find additional pronounced modes
in this case, namely 𝑢⊥22 > 0, see Fig. 13(c). This reflects the mirror-
symmetry of the configuration with respect to the 𝑦𝑧-plane. As we infer,
the sphere expands in a more pronounced way along the 𝑥-axis. This
is the axis along which the chains are oriented and, thus, the magnetic
repulsion is strongest. Moreover, we observe 𝑢𝜑22 > 0, see Fig. 13(f),
which indicates azimuthal displacements towards the 𝑥-axis (middle
yellow part in the visualization of the mode).

Likewise, the hexagonal layer-like structures feature repulsive in-
ternal interactions as the layer normals are oriented along the magne-
tization direction (third column of Fig. 13). Therefore, the qualitative

Fig. 13. Magnitudes of the most important deformational modes as in Fig. 2, but for
the hexagonally arranged chain-like aggregates and hexagonally structured layer-like
configurations of Fig. 12 with two different orientations for each case with the major
axes along and rotated perpendicular to the magnetization direction.

response of the modes in many aspects is similar to the rotated chain-
like configurations. As one exception, we find contraction (𝑢⊥20 < 0) in
all cases, also in the auxetic one, see Fig. 13(b).

For the rotated configurations of hexagonal layer-like configura-
tions, see the fourth column of Fig. 13, upon magnetization we obtain
repulsive interactions between nearby inclusions along the 𝑦-direction
and attractive interactions along the 𝑧-direction. Both of these inter-
actions contribute to a contraction along the magnetization direction
(𝑢⊥20 < 0), see Fig. 13(b), as discussed previously. Again, we also observe
𝑢𝜃10 > 0 and 𝑢𝜃30 < 0. 𝑢⊥00 here is found negative in Fig. 13(a), implying an
overall shrinkage of the elastic sphere. We observe the same qualitative
response in the modes 𝑢⊥22 > 0 and 𝑢𝜑22 > 0 as for the rotated chain-like
aggregates, see Fig. 13(c) and (f).

To summarize the above results, for chain-like aggregates arranged
in different configurations but oriented along the magnetization direc-
tion, we mostly find an overall reduction in volume (𝑢⊥00 < 0) and
contraction along the magnetization direction (𝑢⊥20 < 0). We usually ob-
serve tangential displacements towards the equatorial plane (𝑢𝜃10 > 0). A
majority of these modes increase in magnitude with decreasing Poisson
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Fig. 14. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the evenly distributed spherical arrangements of magnetizable inclusions, with
𝑟𝑐𝑜𝑛𝑓𝑖𝑔 as the radius of the sphere on which the inclusions are located.

ratio. Next, we concentrate on further configurations of magnetizable
inclusions that do not consist of chain-like aggregates.

3.2. Spherical arrangements

We continue by placing inclusions on the surface of spheres of
different radii 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 < 𝑅 with the same parameters values for 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 as
in Section 3.1.3. The inclusions are distributed approximately evenly on
the sphere of radius 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , which we ensure by use of the distributions
provided by the HEALPix package [91], see Fig. 14 for the resulting
configurations. We further ensure that the points of evaluating the
displacement field on the surface of the overall elastic sphere of radius
𝑅 are not located on the same radial axis as the magnetizable inclusions
underneath the surface of the sphere at distance 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 from the center.

As a result, we infer that the magnetostrictively induced changes
in overall volume, characterized by the mode 𝑢⊥00, are not dominant
when compared to the other modes. Their maximal magnitudes are
below 10−3 with an average magnitude below 10−4 and thus about one
magnitude below those of the other modes. As the configurations are
approximately isotropic, we find both attractive and repulsive magnetic
interactions. We infer from Fig. 15(a) an elongation along the mag-
netization direction (𝑢⊥20 > 0, prolate deformation), in contrast to the
contraction that was usually observed for the chain-like arrangements
in Section 3.1. This result can be illustratively explained from the
configuration of the inclusions. As we get closer to the equatorial plane,
the nearest neighbors are increasingly located relative to each other
along the magnetization direction. Consequently, they interact in a
rather attractive manner. The opposite is true closer to the poles where
repulsion dominates. This supports 𝑢⊥20 > 0 and 𝑢𝜃10 > 0, see Fig. 15(a)
and (b), respectively. We also observe 𝑢𝜃30 < 0 in Fig. 15(c), qualitatively
similar to Figs. 2(e) and 11(e). The magnitudes of deformation increase
with increasing 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , which again is in line with the increasing
number of magnetizable inclusions 𝑁 . The closer the magnetizable
inclusions are located with respect to the elastic surface, that is, the
larger 𝑟𝑐𝑜𝑛𝑓𝑖𝑔 , the stronger the induced deformations of the surface.

3.3. 3D star-shaped arrangements

In this section, we again distribute magnetizable inclusions evenly
on a spherical surface as a starting point. However, we here set a lower
number (𝑛𝑠𝑡𝑎𝑟 = 48 or 𝑛𝑠𝑡𝑎𝑟 = 192 compared to the number of inclusions
in Section 3.2). Then, we build chain-like aggregates from the center of
the elastic sphere towards these locations up to the maximal number of
inclusions that is permitted by our constraints. Thus, when compared to
Section 3.1.1, we now consider star-shaped configurations of chain-like
aggregates arranged along the radial direction instead of the magneti-
zation direction, see Fig. 16. The nearest-neighbor distance along the
radially arranged chain-like aggregates is set to 0.121𝑅 as before.

Fig. 15. Magnitudes of the most important deformational modes as in Fig. 2, but for
the spherical configurations of Fig. 14.

Fig. 16. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the 3D star-shaped arrangements, where we consider stars with arms/chains
oriented along the radial direction. They are directed towards a set of 𝑛𝑠𝑡𝑎𝑟 points that
are approximately evenly distributed underneath the spherical surface.

When compared to the spherical configurations in the previous
Section 3.2, we again find the same most relevant modes. Likewise,
the 3D star-shaped arrangements do not lead to relevant changes in
volume. In contrast to the results in Fig. 15, here all further displayed
modes are of opposite sign. We observe in Fig. 17(a) a contraction along
the magnetization direction (𝑢⊥20 < 0) as well as in Fig. 17(b) and (c)
𝑢𝜃10 < 0 and 𝑢𝜃30 > 0. In Fig. 17, we again observe that an increase in 𝑛𝑠𝑡𝑎𝑟,
coinciding with an increase in the number of magnetizable inclusions,
increases the magnitudes of deformation.

3.4. Single- and double-stranded helical arrangements

Finally, we return to helical arrangements [65]. Here, we extend the
previous single-stranded [65] to double-stranded helical configurations.
One motivation in this context is to generate twist-type deformations,
characterized by the azimuthal deformational mode 𝑢𝜑10. From above,
these configurations appear similar to the tubular configurations of
Section 3.1.4, see Figs. 8 and 18.

We consider helical arrangements with center axes oriented along
the magnetization direction. They are arranged on a hexagonal grid in
the plane normal to the magnetization direction. The lattice constant of
the hexagonal arrangement is chosen as 0.5𝑅. From each center point
of the hexagonal lattice, we place one inclusion at a distance vector
𝐫⊥ℎ𝑒𝑙𝑖𝑥(𝑧) in the plane perpendicular from the center axis of

𝐫⊥ℎ𝑒𝑙𝑖𝑥(𝑧) = 𝑟ℎ𝑒𝑙𝑖𝑥
⎛

⎜

⎜

⎝

cos 𝛾𝑧
𝑑𝑙𝑎𝑦𝑒𝑟

sin 𝛾𝑧
𝑑𝑙𝑎𝑦𝑒𝑟

⎞

⎟

⎟

⎠

, (5)
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Fig. 17. Magnitudes of the most important deformational modes as in Fig. 2, but for
the 3D star-shaped arrangements of Fig. 16.

Fig. 18. Top views (left of each pair of snapshots) and tilted top views (right of each
pair) of the single- and double-stranded helical configurations. (a) and (c) correspond
to configurations already explored in Ref. [65]. We here choose those configurations
featuring the largest twist-type deformations. The parameter 𝑟ℎ𝑒𝑙𝑖𝑥 describes the radius
of each helix. For the double-stranded helical configurations in (b) and (d), we add
at the height of each inclusion another inclusion on the opposite side of the helical
center axis.

depending on the 𝑧-coordinate which we increase or decrease in dis-
crete steps of 0.11𝑅 from the central plane to fill the elastic sphere. We
here discuss two choices for 𝑟ℎ𝑒𝑙𝑖𝑥, namely 0.05𝑅 and 0.1𝑅, the same
values as in Ref. [65]. For both cases, we choose the value of 𝛾 that
leads to the maximal overall twist-type response of the materials for
single-stranded helices, namely 𝛾 ≈ 0.24𝜋 and 𝛾 ≈ 0.13𝜋 for 𝑟ℎ𝑒𝑙𝑖𝑥 =
0.05𝑅 and 𝑟ℎ𝑒𝑙𝑖𝑥 = 0.1𝑅, respectively.

To expand on Ref. [65], we now also discuss the case of double-
stranded helical configurations, inspired by the structure of DNA. These
configurations are generated by inserting additional inclusions at each
step in the �̂�-direction at −𝐫ℎ𝑒𝑙𝑖𝑥(𝑧). We note that for 𝑟ℎ𝑒𝑙𝑖𝑥 = 0.05𝑅
the distance between the two strands is 0.1𝑅 < 0.12𝑅 and thus
slightly below our generally imposed minimal distance between any
two inclusions of radius 0.02𝑅. Besides, the double-stranded helical
configurations contain twice the amount of magnetizable inclusions,
see Fig. 18 for the resulting configurations.

As we observe, the deformational response for the helical con-
figurations (see the first two columns of Fig. 19) shows a pattern
familiar from the chain-like arrangements, namely a magnetostrictive
reduction in volume (𝑢⊥00 < 0, except for 𝜈 = 0.5), contraction along the
magnetization direction (𝑢⊥20 < 0) and mainly tangential displacements

Fig. 19. Magnitudes of the most important deformational modes as in Fig. 2, but for
the single- and double-stranded helical arrangements depicted in Fig. 18.

towards the equatorial plane (𝑢𝜃10 > 0), see Fig. 19(a), (b), and (c),
respectively. In the case of auxetic materials of 𝜈 = −0.5, we find 𝑢𝜃10 ≈
0. Overall, these characteristics appear conceivable because from a
coarser point of view, the configurations to some extent resemble chain-
like arrangements. Yet, in addition, all these configurations generate
an overall twist-type deformational response as quantified by 𝑢𝜑10 in
Fig. 19(d). The magnitude of this mode is almost independent of the
Poisson ratio, as also discussed in Ref. [65].

Concerning the newly addressed double-stranded helical configura-
tions, in general, the magnitudes of all deformational modes depicted
in Fig. 19 are increased when compared to the single-stranded ones
without changing the qualitative behavior. A slight exception is given
by 𝑢𝜃10 > 0 for 𝜈 = −0.5, see Fig. 19(c). In particular, concerning
the resulting twist-type deformation, 𝑢𝜑10 is increased in magnitude by
approximately 52.7% and 92.2% for 𝑟ℎ𝑒𝑙𝑖𝑥 = 0.05𝑅 and 𝑟ℎ𝑒𝑙𝑖𝑥 = 0.1𝑅,
respectively, see Fig. 19(d). Consequently, the double-stranded helical
configurations are preferred relatively to the single-stranded ones, if a
twist-type deformation of stronger extent is desired and the number of
magnetizable inclusions is not restricted.

4. Conclusions

In this work, we demonstrate that specific modes of overall macro-
scopic deformation of magnetoelastic composite materials can be di-
rectly calculated from the specific discrete microscopic force pattern
arising upon magnetization. This force pattern results from the spatial
configuration and arrangement of the particulate inclusions and their
mutual magnetic interactions. Our approach is based on analytical
theory. It allows to effectively calculate the resulting elastic surface
displacements and thus overall deformations by numerical evaluations.

Thus, we show that a broad range of different spectra of modes
of deformation can be realized by implementing different types of
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microscopic spatial arrangements of the particulate inclusions. For ex-
ample, star-shaped arrangements of chain-like aggregates of a specific
number of arms of the stars imply accordingly pronounced modes of
overall deformation. Thus, if specific patterns of actuation are needed
for specific purposes, for instance, filling of specifically shaped cavities
by actuation of valves [70], magnetoelastic composite materials are
candidates to achieve such realizations.

Experimentally, various ways of generating the different discrete
particle arrangements need to be developed. For more macroscopic
systems or macroscopic objects of demonstration, placement by molds
or by hand is possible [12,89,95,96]. When placing the inclusions
by hand, the reactive polymeric suspension would be added layer
by layer between successive events of placing inclusions. The newly
forming elastic matrix develops by chemical reaction and connects to
the already existing elastic part of the sample [12,89]. Pouring another
layer into an overall spherical cavity to generate spherical samples
may be difficult for the upper hemisphere when simultaneously adding
inclusions by hand. Yet, the two hemispheres could be generated
separately and then in the end be linked to each other by a final
reaction.

3D-printing is a promising tool to be further developed in the fu-
ture [97–103] to generate samples of controlled positioning of magneti-
zable inclusions. Here, one way to fabricate spherical systems would be
to choose three types of ‘‘inks’’. The first one prints the elastic material
that forms the deformable elastic sphere, representing the carrier ma-
trix. From the second one, the magnetizable inclusions are positioned.
Finally, the third ink could form a block of surrounding elastic gel
material that embeds the elastic sphere. It should be much softer than
the printed elastic sphere so that it hardly hinders the magnetostrictive
deformation of the embedded spherical sample upon magnetization.
It could also be generated from a material that can be selectively
dissolved in a solvent after printing the whole arrangement [104],
leaving the spherical sample at the end.

Additional methods of placing the inclusions in a requested manner
are conceivable. Prior to polymerization, the particle arrangement
can also be controlled by external magnetic [105] or acoustic [106]
fields. Once the positioning is complete as desired, polymerizing the
carrier matrix fixes their locations. Generally, polymerization could be
performed stepwise using processes of photopolymerization to fabricate
the matrix material [107].

If the spherical samples are contained in a very soft surrounding
transparent elastic box, see above, direct measurements are conceivable
on such combined systems. Otherwise, free-standing elastic spheres
can be maintained in a density-matched surrounding transparent fluid
to then study magnetostrictive effects [53]. A strong homogeneous
external magnetic field should then be applied for experimental detec-
tion. The resulting magnetostrictive deformations can be recorded by
standard optical tools [53].

Overall, we establish theoretical means that allow to effectively
calculate the magnetomechanical response as a function of the mi-
croscopic particulate structure. We provide a palette of different such
microscopic particle arrangements together with the magnetically in-
ducible overall deformation. From this palette, specific realizations can
be selected according to a particular need. In this way, we promote
the application of magnetic gels and elastomers as tailored soft actu-
ators adjusted to given requirements that are addressed and excited
reversibly in a contactless fashion from outside by external magnetic
fields.
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Appendix A. Details on the planar star-shaped configurations con-
sidered in Section 3.1.1

Here, we list explicitly the chains that we had to exclude from the
configuration in Section 3.1.1 to satisfy our constraints in detail. For
𝑛𝑎𝑟𝑚𝑠 = 4 and 𝑛𝑎𝑟𝑚𝑠 = 5, no chains have been deleted. If we number
the arms of the star-shaped arrangements from 1 to 𝑛𝑎𝑟𝑚𝑠, with 1 being
the arm pointing to the right (along the 𝑥-axis) and then numbering
them counter clockwise (mathematically positive sense of rotation), for
𝑛𝑎𝑟𝑚𝑠 = 6, the arms 2, 4, and 6 are missing the innermost chains. For
𝑛𝑎𝑟𝑚𝑠 = 7, the innermost chains were deleted from the arms 2, 4, 6, and
7. Similarly, for 𝑛𝑎𝑟𝑚𝑠 = 8, the innermost chains were deleted from the
arms 2, 4, 6, and 8. Likewise, for 𝑛𝑎𝑟𝑚𝑠 = 9, the arms 2, 4, 6, 8, and 9 are
missing the innermost chains. Again, for 𝑛𝑎𝑟𝑚𝑠 = 10, we deleted from the
arms 2, 4, 6, 8, and 10 the innermost chains. For 𝑛𝑎𝑟𝑚𝑠 = 11, the arms 2,
3, 5, 6, 8, 9, 10, and 11 lack the innermost chains and the arms 2, 4, 6,
8, 10, and 11 lack the second-innermost chains. Finally, for 𝑛𝑎𝑟𝑚𝑠 = 12,
the arms 2, 3, 5, 6, 8, 9, 11, and 12 are missing the innermost chains
and the arms 2, 4, 6, 8, 10, and 12 are missing the second-innermost
chains.

Appendix B. Details on the star-shaped configurations without
vertical shift considered in Section 3.1.2

For the star-shaped configurations without vertical shift considered
in Section 3.1.2, we likewise summarize which chains were deleted. We
use the same notation as in Appendix A. For 𝑛𝑎𝑟𝑚𝑠 = 4 to 𝑛𝑎𝑟𝑚𝑠 = 6, no
chains are missing. Next, for 𝑛𝑎𝑟𝑚𝑠 = 7 to 𝑛𝑎𝑟𝑚𝑠 = 10, the same chains are
missing as in the case with vertical shift, see Appendix A. For 𝑛𝑎𝑟𝑚𝑠 = 11,
the arms 2, 4, 6, 8, 10, and 11 are missing the innermost chains. Finally,
for 𝑛𝑎𝑟𝑚𝑠 = 12, from the arms 2, 4, 6, 8, 10, and 12 we removed the
innermost chains.
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Abstract
Soft actuators triggered in a wire—and contactless way advance soft robotics, for instance, concerning microsurgical perspectives. For 
optimal performance in this and other contexts, maximized stimuli-responsiveness is frequently desirable. We demonstrate on the 
example of soft magnetoelastic systems how analytical theoretical measures in combination with computer simulations provide tools 
to develop optimized components. To enhance the overall macroscopic response, we adjust microstructural properties. Our strategy 
guides us towards ideally structured soft materials that can be fabricated using modern technologies.
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Introduction
As the backbone of soft robotics, soft actuators have attracted sig-
nificant interest (1–3). They feature many advantages compared 
to conventional solutions, such as light weight (2, 4) and—due to 
their mechanical softness—improved human-robot collaboration 
and handling of fragile items (1–3). Also, they are relatively inex-
pensive (4–6) and compact (3, 5). These materials show an active 
deformation or stress generation in response to external stimuli. 
Many triggers can be used, for example heat, light, chemicals, 
electric, or magnetic fields (3, 6–13). Typically, magnetic fields 
do not interact severely with biological tissue, which is important 
for biological and medical applications (5–8, 14). Consequently, we 
focus on soft magnetoelastic systems, that is, materials consisting 
of a soft, often polymeric, matrix with embedded magnetic or 
magnetizable particles (6, 10, 15–19). When external magnetic 
fields are applied, induced magnetic interactions between the in-
clusions cause an overall, macroscopic deformation (magneto-
striction) and change in macroscopic behavior. These materials 
are discussed as candidates for artificial muscles (11, 20) of revers-
ible deformability (21) and adaptive dampers or vibration 
absorbers (22–24). The latter is due to magnetically tunable 

rheological properties—the so-called magnetorheological (MR) ef-
fect (15, 21, 25–29).

So far, most investigations have concentrated on correspond-
ing materials featuring rather randomized internal particle ar-
rangements (15, 18, 30–32). As one variation, anisotropic and 
chain-like structures are generated in strong uniform external 
magnetic fields (18, 28, 30, 33, 34). However, in general, such types 
of spatial arrangement will not lead to an optimized deformation-
al response.

The advent and development of new routes of sample prepar-
ation will in the future allow for a significantly improved targeted 

placement of magnetizable inclusions in elastic carrier media. 

Accordingly, spatial arrangements tailored to the requested 

purpose are realized. Internal structures are optimized 

for maximized deformational response. Promising example 

techniques include 3D printing (12, 13, 29, 35–37), structuring 

by magnetic fields (38), sequential photopolymerization (39), 

acoustic holography (40), layerwise polymerization combined 

with particle placement by molds or by hand (41, 42), 

and wax-cast molding (43). We here introduce efficient means to 

determine the structure of optimized spatial arrangements of 
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inclusions that afterward can be realized by the listed experimen-
tal methods.

Concerning the types of inclusions considered, we note that our 
approach does not distinguish between individual particles or ag-
glomerates of these, for instance, in a drop of magnetic fluid. Yet, 
we require the condition of well-separated inclusions. Besides, 
due to the generic nature of our approach, the overall size of the 
system is not preset. Only the size of the inclusions relative to 
the overall size needs to be small. Therefore, as long as this condi-
tion is satisfied, even macroscopic inclusions can be described by 
our approach.

Results
Model for calculating the magnetostrictive effects
Our approach is based on analytical theory, which serves as an in-
put for our computational optimization of soft magnetoelastic 
materials. Performing analytical calculations on finite-sized elas-
tic systems is a challenge. We had managed to calculate explicitly 
the deformation of a homogeneous, isotropic, linearly elastic 
sphere in response to an internal force distribution (44). The shear 
modulus μ characterizes the elastic stiffness of the sphere and the 
Poisson ratio ν ∈ ( − 1, 1/2] its compressibility. Materials of ν = 1/2 
are incompressible, for ν < 1/2 they are compressible, and for ν < 0 
auxetic. For small deformations, nonlinear functionals of the elas-
tic energy can usually be expanded into a power series. There are 
generally only two different possible types of quadratic terms that 
may emerge (45). They represent linearly elastic behavior. 
Consequently, analyzing the behavior in terms of linear elasticity 
forms a reasonable and generic starting point.

We first consider spherical model systems containing N mag-
netic force centers. Thus, we explicitly include the boundaries of 
the system into our consideration. Induced changes in volume 
and shape, that is, magnetoelastic actuations, are quantified us-
ing the radial outward displacement field of the surface points. 
We expand this field into spherical harmonics (44). A first expan-
sion coefficient u⊥

00 quantifies the overall induced change in vol-
ume, see Fig. 1A. A second expansion coefficient u⊥

20‘ quantifies 
elongation along a certain axis ẑ relative to lateral contraction, 

see Fig. 1B. We here present explicit analytical expressions form-
ing the basis of our optimization. Point-like force centers of forces 
Fi acting at positions ri, i = 1, . . . , N, with the origin of our coord-
inate frame positioned at the center of the sphere of radius R, 
imply (46)

u⊥
00 =

􏽘N

i=1

Fi · ri
1 − 2ν
1 + ν

1
2μR2

���
1
4π

􏽲

, (1) 

u⊥
20 =

􏽘N

i=1

������
5/4π

√

4μR2(7 + 5ν)
( − Fi · δ⊥ · ri + 2Fi · δ∥ · ri) 7 + 2ν( )
􏼂

+3
r3
i

R2 2νFi · δ⊥ · r̂i − (7 − 6ν)Fi · δ∥ · r̂i + Fi · r̂i r̂i · δ∥ · r̂i(7 − 10ν)
 􏼁

􏼕

.

(2) 

Here, r̂i = ri/ri, ri = |ri|, δ∥ = ẑẑ, δ⊥ = 1 − δ∥, ẑẑ is a dyadic product, 
and 1 the unit matrix.

Each point-like force center represents a magnetizable inclu-
sion. We require a certain distance between any two force centers 
|ri − rj| > 0.12R, and a minimal distance from the boundary 
ri < 0.94R, i ≠ j = 1, . . . , N. These settings (and the overall number 
of inclusions N) affect the resulting structures. The chosen values 
favor a representation using magnetic dipolar interactions and 
linear elasticity. Considering saturated magnetization by strong 
external homogeneous magnetic fields along ẑ, we obtain (47)

Fi = −
􏽘N

j=1
j≠i

3μ0m2 5r̂ij m̂ · r̂ij

􏼐 􏼑2
−r̂ij − 2m̂ m̂ · r̂ij

􏼐 􏼑􏼔 􏼕

4πr4
ij

. (3) 

Here, m = mm̂ is the identical magnetic dipole moment for all in-
clusions, where m̂ = ẑ, rij = ri − r j, rij = |rij|, r̂ij = rij/rij, and μ0 de-

notes the magnetic vacuum permeability. After rescaling, we 
measure lengths in units of R and the relative strength of the mag-
netic dipolar interaction by a nondimensional number 

3μ0m2/4πμR6. The latter is set to a realistic value of 5.4 × 10−8 (44) 
for μ ≈ 1.67 kPa (48–51), inclusions of radius r = 0.02R, and a satur-

ation magnetization of 518 kA m−1 as for Fe3O4 (52).
As a central benefit, we can now determine the maxima of the 

analytical expressions in Eqs. 1 and 2 as a function of the positions. 
That is, we find the largest degrees of deformation associated with 
the amplitudes ±u⊥

00 or ±u⊥
20. Optimization is performed as a func-

tion of the internal structural arrangements. We recall that the 
number of inclusions is fixed during this procedure.

Because of the many degrees of freedom ri, i = 1, . . . , N, we re-
sort to numerical procedures to achieve optimization. We employ 
simulated annealing (SA) (53–56) with modifications (57) and ad-
justed parameter settings, see the Supplementary Material. 
Typically, this method is used to minimize energies. Here, instead, 
we insert the right-hand sides of Eqs. 1 and 2 to maximize the de-
formations induced by the magnetized inclusions. The extrema 
are found using the locations of the N inclusions as degrees of 
freedom, maintaining the above-mentioned constraints. 
Accordingly, we transfer this well-established method to the field 
of material optimization.

Resulting materials of maximized actuation
Linear actuation
First, we maximize the relative contraction along the magnetic 
field direction, referring to linear actuators or artificial muscles. 
We thus minimize u⊥

20 for N = 1,000 magnetizable inclusions, as-
suming incompressibility (48, 49, 51). The resulting optimized 

A

B

Fig. 1. Illustration of the modes of deformation u⊥
00 in A) and u⊥

20 in B). In the 
undeformed spherical ground states on the left, we here indicate three 
magnetizable inclusions as smaller spheres at positions ri, rj, and rk. Upon 
magnetization (right), their interacting magnetic dipole moments m ∥ ẑ 
induce deformations of the whole sphere, implying changes in volume (u⊥

00) 
and elongation along ẑ relative to lateral contraction (u⊥

20). Deformed states 
are illustrated in lighter color (orange) with amplitudes not to scale.
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structure achieves an approximately 68% higher degree of de-
formation u⊥

20 when compared to realizations of regular lattice 
structures (44).

Figure 2A–C indicates that the optimal configuration closely re-
sembles a hexagonally arranged chain-like structure. The chains 
are oriented along the magnetization direction and concentrated 
towards the center axis. Comparative tests arranging regular 
structures by hand confirm this picture, see the Supplementary 
Material. Decreasing Poisson ratios increase the magnitudes of de-
formation, see Fig. 2D. Simultaneously, the inclusions of the opti-
mized structures are shifted closer to the boundary of the sphere, 
see the inset of Fig. 2D, and deviations from results for regular 
structures become significant. Increasing the inclusion density 
mostly enhances the deformational response, see Fig. 2E for 
ν = 1/2. In that case, the regular hexagonal structures perform 
close to optimally.

Natural muscles often work in counteracting pairs (11). We 
therefore continue by discussing relative elongations along the 
magnetization direction, maximizing u⊥

20. For ν = 1/2 and 
N = 1,000, our optimization leads to an increase of approximately 
129% when compared to regular structures (44).

As Fig. 3A illustrates, the optimized configuration now splits 
into an inner and an outer part. Both parts contain about the 
same number of inclusions and also contribute similarly to u⊥

20. 
The inner part can be approximated by a regular simple cubic 
structure, as indicated by Steinhardt bond orientational order pa-
rameters (58), see Fig. 3B. Generating an appropriately oriented 
regular simple cubic configuration by hand over the whole sphere 
(Supplementary Material), the overall degree of deformation u⊥

20 

deviates by only about 0.3%.
When decreasing the Poisson ratio ν, the deformational re-

sponse increases, see Fig. 3D. Simultaneously, the gap in response 
between optimized and regular simple cubic structure increases. 
The optimized locations of the inclusions are pushed closer to 
the spherical surface, see the inset of Fig. 3D.

Again for ν = 1/2, Fig. 3E demonstrates that the deformational 
response mostly increases with increasing number of inclusions. 
Our regular simple cubic structure remains close to optimal. A 
disjoint inner and outer part can only be identified for N ≲ 1,400. 
For N = 2,000, the simple cubic configuration is not dense enough 
and the deformational response decreases. Still, a regular, denser, 
face-centered cubic (fcc) lattice structure performs significantly 
worse.

Changes in volume
Next, we focus on magnetically induced overall changes in vol-
ume, quantified by u⊥

00. Corresponding systems may prove useful 
in the design of soft magnetoelastic valves (59) or microfluidic 
pumps (5). Changes in volume are only possible in compressible 
elastic materials. For ν < 1/2, Eq. 1 demonstrates that materials 
of different Poisson ratio ν all show qualitatively the same depend-
ence of u⊥

00 on the inclusion configuration. Thus, all of them thus 
lead to identical optimized structures.

We first search for a most pronounced induced shrinkage in 
volume, minimizing u⊥

00. For N = 1,000, this optimized shrinkage 
increases by 24% in magnitude when compared to regular struc-
tures (44). The optimized structure mainly consists of (irregular) 
chain-like arrangements oriented along the magnetization direc-
tion, see Fig. 4A, B. Any two nearest-neighboring chains are shifted 
relative to each other along their axes by about half a vertical in-
clusion separation distance (Fig. S2).

With increasing N, see Fig. 4C, the arrangements remain pre-
dominantly chain-like. However, the chains tend to form square- 
like lattices. We compare to results for related regular structures, 
with neighboring chains vertically shifted (Supplementary 
Material). Deviations are significant, see Fig. 4C. Increasing N 
from about 500 to 1,500 raises the magnitude of deformational re-
sponse, in contrast to the subsequent decrease, thus showing 
nonmonotonic behavior.

Lastly, we maximize the induced increase in volume by maxi-
mizing u⊥

00. For N = 1,000, our optimized induced expansion is ap-
proximately 418% larger when compared to results for regular 

A

D E

B C

Fig. 2. Maximized relative contraction along the magnetization direction 
ẑ, minimizing u⊥

20. A–C) Resulting optimized configuration of 
magnetizable inclusions (“opt. config.”) inside an incompressible elastic 
sphere of radius R (orange) for N = 1,000. A) Side view. B) Tilted top view. 
C) Top view. D) Degree of deformation as a function of the Poisson ratio ν. 
Inset: average inclusion distance from the center 〈ri〉 vs. Poisson ratio 
(same scale of abscissa as in main plot). E) Variation of the degree of 
deformation with the inclusion number N. In D and E), we further 
compare deformational results for our optimized structures to those for 
regular hexagonal chain-like configurations, with dashed lines added as 
guides to the eye.

A

D E

B C

Fig. 3. Maximized relative elongation along the magnetization direction ẑ, 
maximizing u⊥

20. A, C) are analogous to Fig. 2. In A), we mark the separation 
between an inner and an outer part in green (slightly darker color). B) 
Steinhardt bond orientational order parameters q4 and q6 for the inner 
part compared to various regular lattices. D, E) are analogous to Fig. 2, now 
showing results for appropriately oriented regular simple cubic (sc) 
configurations. E) The result for a regular face-centered cubic (fcc) 
structure at N = 1,985 is included. Inset: variation of q4 (brown, darker 
color) and q6 (blue, lighter color) with N (same scale of abscissa as in main 
plot) indicate a significant change in the optimized texture at N ≈ 2,000.
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structures (44). Figure 5A, B indicates the optimized structures to 
resemble hexagonal arrangements in layers stacked on top of 
each other. The layer-to-layer distances are much larger than the 
inter-inclusion distances within each layer, see Fig. 5A, B. Regular 
hexagonal layer structures generated by hand (Supplementary 
Material) performed notably worse for elevated numbers of inclu-
sions N, see Fig. 5C.

Optimized magnetorheological effects
(Positive) magnetorheological effect
Additionally, we optimize the inclusion arrangement to maximize 
the magnetorheological (MR) effect of the soft magnetoelastic ma-
terials, here for prescribed affine deformations. We address cubic-
al systems of side length a, maintaining the same conditions as 
before. The radius of the inclusions is set to r = 0.03a, which shifts 
the nondimensional number 3μ0m2/4πμa6 to approximately 
6.2 × 10−7. To this end, we define Δμrel = (μmagn − μ)/μ as the relative 
change in shear modulus, where μmagn is the overall elastic shear 

modulus in the magnetized state as measured for our numerical 
systems.

Our cube is magnetized perpendicular to one of its facets, and 
we consider incompressible systems. The associated overall en-
ergy is given by

E = Edef −
􏽘N

i,j=1
j>i

μ0m2 3 m̂ · r̂ij

􏼐 􏼑2
−1

􏼔 􏼕

4πr3
ij

, (4) 

where Edef is the elastic deformation energy followed by the mag-
netic dipolar interaction energy (47) in the deformed state.

First, we maximize the MR effect when the system is uniaxially 
elongated along the magnetization direction. That is, Edef = 3

2 μδ2a3 

in Eq. 4, where δ is the stretching ratio. To calculate Δμrel, we 
evaluate the total energy, see Eq. 4, for several values of the 
stretching ratio δ close to the energetic minimum. Afterward, we 
fit the evaluated values of the total energy by a quadratic function. 
We determine the minimum of the resulting parabola. It identifies 
the new equilibrium state under magnetization. Then, the change 
in the quadratic coefficient of the energy around its minimum 
from the nonmagnetized to the magnetized state, obtained from 
the parabolic fit, provides Δμrel. To fit the parabola, we always cal-
culate the energy at five points around its minimum. We have 
confirmed that only minor changes (<0.01%) emerge when using 
100 points.

Our optimization for N = 200 reveals a MR effect of 
Δμrel ≈ 17.1%. In that case, the optimized structure is reminiscent 
of an appropriately oriented fcc lattice (Supplementary Material), 
see the Steinhardt bond orientational order parameters in Fig. 6A 
(an illustration of the imposed deformation is provided in Fig. 7A). 

A

B

C

Fig. 4. Maximized decrease in total volume, minimizing u⊥
00. According to 

Eq. 1, the resulting optimized structures are independent of the Poisson 
ratio ν (here ν = 0.3). A) Tilted top view. B) Top view. C) It is analogous to 
Fig. 2E, supplemented by top views of the mean inclusion positions along 
each chain-like element for different inclusion numbers N.

A

B

C

Fig. 5. Maximized total increase in volume, maximizing u⊥
00 (here for 

ν = 0.3). A) Side view. B) Top view, here only displaying the third layer from 
the bottom in (A). C) is analogous to Fig. 2E.

A B

C D

Fig. 6. Maximized relative increase in elastic modulus Δμrel for cubical 
systems by magnetization along ẑ for A, B) uniaxial elongation, here 
ν = 1/2, and C, D) simple shear. A) Steinhardt bond order parameters for 
that configuration of N = 200 that maximizes Δμrel. C) Tilted top view. Gray 
arrows indicate imposed simple shear deformations. B, D) Variation of the 
relative magnetorheological effect with inclusion number N, including 
top views of the optimized configurations. Inset in B): average distance 〈ri〉

from the center of the cube (same scale of abscissa as in main plot).
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Raising N fills the cube starting from the center outwards, see the 
inset of Fig. 6B, with an increasing MR effect. Here, regular struc-
tures (Supplementary Material) perform comparatively well 
(within >96%).

For simple shear deformations, Edef = 1
2 μγ2a3 in Eq. 4, with γ as 

the shear ratio. Shear is imposed within the xz-plane, see 
Fig. 6C. Upon optimization, Δμrel ≈ 33.6% for N = 200. The opti-
mized structures feature layers in the yz-plane of approximately 
hexagonal structure and of maximized mutual spacing. 
Increasing N, the layers approach each other, see Fig. 6D, with in-
creasing deviations in their performance from regular structures 
(Supplementary Material) (remaining within 90%).

Negative magnetorheological effect
The previously considered structures show maximal hardening 
upon magnetization. Next, we also include results for the opposite 
scenario, which is significantly less frequently considered (60, 61). 
It is referred to as negative MR effect, that is, the materials soften 
upon magnetization. Thus, we now minimize Δμrel.

Figure 7A depicts the resulting optimized structure for N = 200 
inclusions and uniaxial elongation, featuring a negative MR ef-
fect of Δμrel ≈ −22%. For N ≲ 200, we observe that the inclusions 
form chains of a particular arrangement, approximately a circle 
with an appendage, see the leftmost inset in Fig. 7B. Neighboring 
chains feature a vertical shift, similar to the configurations 
that minimize u⊥

00 from Fig. 4 (see also Fig. S2). With increasing 
number of inclusions N, the optimized arrangements of the 
chains change. More and more chains form, shifting the overall 
locations of chains from circular to cubic arrangements, see 
again the insets of Fig. 7B. Additionally, we infer from Fig. 7B 

that the MR effect Δμrel is almost perfectly proportional to the 
number of inclusions N. For comparison in performance, we 
construct regular structures by hand using quadratic and circu-
lar arrangements of the chains (Supplementary Material) with 
good agreement (>97%) concerning the resulting negative 
MR effect.

For simple shear deformations, we find a maximized negative 
MR effect of Δμrel ≈ −27.9% for N = 200 inclusions as displayed in 
Fig. 7D. See also Fig. 6C for an illustration of the imposed shear de-
formations. Here, we observe that our optimized textures can be 
divided into layers of inclusions oriented parallel to the shear 
plane. For N = 200, the largest such layer is depicted in 
Fig. 7C. These layers approximately feature centered rectangular 
structures with edge lengths along the magnetization direction 
and the direction of shear displacements. The larger edge length 
is found along the direction of shear displacements. When we in-
crease the number of inclusions N, see Fig. 7D, we observe that the 
number of layers in the optimized arrangements as well as the 
magnitude of the negative MR effect increase. The results for 
regular lattice structures created by hand (Supplementary 
Material) show good agreement (>96%).

Conclusion
In summary, we present a route towards the design of optimized 
soft elastic composite materials that are structured in a way to 
maximize the requested overall response. To this end, we have de-
veloped and successfully applied corresponding tools. As a result, 
very efficient schemes of optimization are established and appro-
priately structured systems are presented.

As examples, we have demonstrated the optimization for soft 
magnetoelastic systems that respond to external magnetic fields 
by deformations and changes in mechanical properties. 
Specifically, we have maximized by adjusting the internal struc-
ture the relative elongation and contraction along the magnetiza-
tion direction, the overall change in volume, and the 
magnetorheological effect in response to an external magnetic 
field. Aspects of how the deformational response and the opti-
mized structures depend on the elastic properties of the employed 
material and on the total number of inclusions are addressed. 
We have shown that regular arrangements of inclusions do not 
necessarily maximize the response for finite-sized systems. 
Future refinements may include adjusted material models, for 
instance, concerning selected nonlinear elastic models, al-
though linear elastic descriptions represent a substantial initial 
step of identifying most suitable arrangements (62). Including 
additional degrees of freedom for optimization, for instance, ori-
entations of rod-shaped inclusions (63), may lead to further 
improvement.

Our results support the construction of soft components of tail-
ored optimized response in general. Through recent technological 
developments, requested placement of inclusions in elastic matri-
ces becomes possible (12, 13, 13, 29, 35–43). Applications include, 
but are not limited to artificial muscles, soft elastic valves and 
pumps, adaptive dampers, or vibration absorbers. The scheme 
of optimization that we present can be transferred to various oth-
er types of soft responsive composite materials. An immediate ex-
ample are electrorheological gels and elastomers (50, 64, 65) or 
thermally actuated systems (66). More generally, whenever it is 
possible to link the discrete microscopic structure to the overall 
material behavior, a similar scheme of optimization can be em-
ployed to find the structure that maximizes the response. 
Overall, we support the growing field of tailored soft materials.

A B

C D

Fig. 7. Maximized magnitude of the negative MR effect, that is, strongest 
relative decrease in elastic modulus Δμrel upon magnetization. The 
illustration is analogous to Fig. 6 for the positive MR effect. Magnetization 
is imposed along ẑ. A, B) Uniaxial elongation, here for ν = 1/2. C, D) Simple 
shear. In B), we mark by a black circle the data point for N = 180, for which 
a circular texture is constructed by hand for comparison, see Section IIB of 
the Supplementary Material. C) Side view of the largest layer of inclusions 
forming when maximizing the magnitude of the negative MR effect under 
simple shear for N = 200. It corresponds to the bottommost layer in the 
leftmost inset (top views) in (D).
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In this supplementary material, we present technical details on the adapted algorithm of simulated
annealing (SA) that we employ to adjust the internal structure to optimize a requested overall
deformational or mechanical response. Particularly, we list our parameter settings for the algorithm.
Furthermore, we provide more background information concerning the regular lattice structures to
which we compare the performance of our optimized textures. We list corresponding lattice constants
and information on how the number of inclusions N is varied.

I. TECHNICAL DETAILS ON OUR
COMPUTATIONAL SCHEME

To optimize the deformational or mechanical response
of our magnetoelastic actuator systems, we utilize sim-
ulated annealing (SA) with adaptive cooling rates. For
this purpose, the algorithm in Ref. 1 is adapted to our
situation, see also the main text.

At the beginning of each process of optimization, we
initialize the positions of the inclusions at random, unless
indicated otherwise. One inclusion is randomly selected
at a time. To generate a new trial configuration, its posi-
tion is modified by a displacement randomly chosen in the
range of [−δ/2, δ/2) for each direction. This marks one
Monte Carlo (MC) step [2], where we measure lengths in
units of the radius R of the elastic sphere when optimiz-
ing the magnetostrictive effect or in units of side length a
of the elastic cube when addressing the magnetorheolog-
ical (MR) effect. The positional constraints mentioned
in the main text are obeyed, that is, minimal distances
between the inclusions and from the boundary of the elas-
tic sphere/cube are ensured. Every njump MC steps, we
instead generate a completely new trial position for the
selected inclusion, still maintaining the positional con-
straints. Individual positional changes favorable to the
optimization are always accepted. Those implying an op-
posite trend are only accepted with a certain probability,
namely e−∆u/T , if ∆u > 0. Here, T is a temperature-like
variable and ∆u marks the difference between the new
trial configuration and the previous configuration, where
u = ±u⊥

20/R or u = ±u⊥
00/R in our case, depending on

the deformational mode to be minimized or maximized
in the magnetostrictive case. For the optimization of the
MR effect, we instead insert u = ±∆µrel. Since u is
dimensionless by definition, T is also introduced in a di-
mensionless way. Afterwards, we move on to the next
MC step, testing for a new trial configuration.

As our optimization is based on SA, we decrease the
temperature T during the course of optimization [3]. Our
“cooling schedule” starts from an initial temperature T =
Ti. We equilibrate the system for a period of Neq MC
steps at the current temperature T . Afterwards, we use

Nprod steps to sample a specific heat-like variable

CV =

〈
u2

〉
− ⟨u⟩2
T 2

, (S1)

where
〈
u2

〉
and ⟨u⟩ mark the mean squared and mean

values of u, see above. Still, the temperature remains
fixed during theseNprod MC steps. During the nextNcool

MC steps of our optimization, we reduce the temperature
each time before generating a new trial configuration. We
decrease the temperature geometrically, that is we set
T = (1 − k)Told, where Told denotes temperature in the
previous MC step and k determines the cooling rate.
In our algorithm, the cooling rate for this period is set

depending on the specific heat that was evaluated in the
previous Nprod steps:

k =

{
ks, if CV ≥ C∗

V ,

kf , if CV < C∗
V .

(S2)

Here, we introduced the notations ks and kf for slow and
fast cooling rates (ks ≤ kf ), respectively, and C∗

V as a
characteristic threshold value of the specific heat. Conse-
quently, our idea is to cool the system more slowly when
more changes are occurring during the process of mea-
suring the specific heat, thus allowing the system more
opportunities to keep changing. Otherwise, the system
is cooled faster to speed up the optimization. Together,
these Neq + Nprod + Ncool MC steps denote one period
of optimization. The same steps are repeated during the
next period. Finally, our routine is stopped when no
positional changes have been accepted for a number of
patience periods (during sampling), or when the temper-
ature has decreased to a predetermined final value of Tf .
To summarize, our scheme makes use of the parameters

δ, njump, Ti, Neq, Nprod, Ncool, ks, kf , C∗
V , patience,

and Tf . All parameter settings that were utilized for
the optimization, leading to the structures depicted in
Figs. 2A C, 3A C of the main text for N = 1000 and
ν = 0.5, Figs. 4A,B, 5A,B of the main text for N = 1000
and ν = 0.3, Figs. 6A,C and 7A,C of the main text for
N = 200, are listed in Tab. I.
When turning to other values of the Poisson ratio ν

or the number of inclusions N , see subfigures B, C, D,
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or E of Figs. 2 7 of the main text, we usually keep
most of the parameter settings as in Tab. I. It is, how-
ever, necessary to rescale the temperature-like variable
in the exponents e−∆u/T , because the typical magni-
tudes of deformation entering ∆u change with ν and N .
For simplicity, we rescale initial and final temperatures
equally. Therefore, we define Ti(ν,N) = Ti α(ν,N) and

Tf (ν,N) = Tf α(ν,N), where α(ν,N) takes care of the
required rescaling. We set α(0.5, 1000) = 1 when ad-
dressing ±u⊥

20, α(0.3, 1000) = 1 when addressing ±u⊥
00,

and α(0.5, 200) = 1 when addressing the MR effect. The
employed values of α and all other adjusted parameter
settings, if different from the values shown in Tab. I, when
varying ν and N are listed in Tabs. II VIII.

δ/R njump Ti Neq Nprod Ncool ks kf C∗
V patience Tf

minu⊥
20 0.03 200 1.5× 10−5 2N 8N 30N 2× 10−9 10−8 25 10 5× 10−8

maxu⊥
20 0.05 50 2× 10−5 2N 8N 30N 5× 10−9 10−8 5 10 10−7

minu⊥
00 0.02 100 3× 10−6 2N 3N 25N 1.6× 10−9 1.6× 10−9 100 1.5× 10−8

maxu⊥
00 0.05 50 7× 10−6 2N 8N 30N 10−9 2× 10−9 10 20 3× 10−8

maxu⊥
00 (alt.) 0.03 100 7× 10−6 2N 3N 25N 1.4× 10−9 2× 10−9 2 20 3× 10−8

∆µrel 0.03 100 1.4× 1.56 × 10−5 2N 3N 25N 2× 10−9 4× 10−9 1 20 6× 1.56 × 10−8

TABLE I. Parameter settings in our SA algorithm to minimize or maximize u⊥
20, u⊥

00, or ∆µrel, see the first column. To
minimize u⊥

00, the parameter C∗
V is arbitrary because we set ks = kf , see Eq. (S2). To maximize u⊥

00, the parameters in the
third row from the bottom are used. Yet, when varying N (see Tab. VII) we use the alternative parameter settings (alt.) of
the second row from the bottom.

For elevated numbers of inclusions N , it is necessary
to adjust the initial input configuration to fit all inclu-
sions into the sphere when optimizing the magnetostric-
tive effect. In that case, we use a face-centered cubic
(fcc) initial configuration of hexagonal layers oriented
perpendicular to the magnetization direction in an ABC
stacking configuration. One inclusion is positioned at
the center of the elastic sphere. From there, we con-
struct all layers. All nearest-neighbor distances in the
fcc configuration approximate the minimal allowed dis-
tance. Then, we randomly delete inclusions from the full
fcc configuration until the imposed number of inclusions
N is reached. For optimizations of the MR effect, we also
start with a simple stacking of hexagonal layers of inclu-
sions oriented perpendicular to the magnetization direc-
tion. The bottom layer is placed at a distance of 0.061a
from the lower boundary of the cube and one inclusion
is positioned at the center of the layer, with inclusions
in different layers placed above each other (denoted by
hexagonal in Tab. VIII). Besides, we also utilize fcc ar-
rangements as starting configurations (denoted by fcc in
Tab. VIII), similarly to the simple stacking of hexagonal
layers, however, with fcc featuring an ABC stacking. (As
a remark we add that we never observed a decrease in
performance after applying our scheme of optimization
when compared to the performance of the initial config-
uration.)

Furthermore, all optimizations are performed starting
from 8 different initializations of the employed random
number generator Mersenne Twister [4], leading to com-
parable results. Deviations in the results are at most of
the order of the symbol sizes in the presented figures.
Among these, we always selected those configurations of
most competitive performance when plotting Figs. 2 7 of
the main text.

ν α

0.5 1
0.3 1.03
0 1.17

−0.5 1.94

TABLE II. Parameter settings in our SA algorithm when min-
imizing u⊥

20 for different values of the Poisson ratio ν, leading
to the results in Fig. 2D of the main text.

N α initialization

1000 1 random
1250 1.25 random
1500 1.5 random
1750 1.5 fcc
2000 1.5 fcc

TABLE III. Parameter settings in our SA algorithm when
minimizing u⊥

20 for different inclusion numbers N , leading to
the results in Fig. 2E of the main text.

ν α C∗
V

0.5 1 5
0.45 1.01 5
0.4 1.08 5
0.35 1.19 5
0.3 4/3 5
0 2.57 5

−0.5 6.77 2

TABLE IV. Parameter settings in our SA algorithm when
maximizing u⊥

20 for different values of the Poisson ratio ν,
leading to the results in Fig. 3D of the main text.
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N α initialization

1000 1 random
1250 1.25 random
1300 1.3 random
1350 1.35 random
1400 1.4 random
1450 1.45 random
1500 1.5 random
1750 1.5 fcc
2000 1.5 fcc

TABLE V. Parameter settings in our SA algorithm when
maximizing u⊥

20 for different inclusion numbers N , leading
to the results in Fig. 3E of the main text.

N α initialization

500 0.5 random
650 0.65 random
800 0.8 random
1000 1 random
1250 1.25 random
1500 1.5 random
1750 1.75 fcc
2000 2 fcc
2100 0.995 fcc
2200 0.936 fcc
2300 0.867 fcc
2400 0.788 fcc

TABLE VI. Parameter settings in our SA algorithm when
minimizing u⊥

00 for different inclusion numbers N , leading to
the results in Fig. 4C of the main text.

N α initialization

1000 1 random
1250 1.25 random
1500 1.5 random
1750 1.75 fcc
2000 2 fcc

TABLE VII. Parameter settings in our SA algorithm when
maximizing u⊥

00 for different inclusion numbers N , leading to
the results in Fig. 5C of the main text.

N α initialization

150 0.75 random
200 1 random
250 1.25 random
300 1.5 random
350 1.75 random
400 2 hexagonal
450 2.25 hexagonal/fcc (uniaxial elongation, max.)
500 2.5 hexagonal/fcc (uniaxial elongation, max.)

TABLE VIII. Parameter settings in our SA algorithm when
maximizing the magnitude of the MR effect ∆µrel for different
inclusion numbers N , leading to the results in Figs. 6B,D and
Figs. 7B,D of the main text.

II. DETAILS ON THE REGULAR LATTICES
TO WHICH WE COMPARE OUR OPTIMIZED

STRUCTURES

In the main text, we compared the performance of our
optimized configurations to those resulting from more
regular arrangements. The latter were constructed artifi-
cially, guided by the optimized textures. In the following,
we include details on the employed regular structures,
first for the studies on magnetostrictive effects, then for
the studies on magnetorheological (MR) effects.

A. Regular lattice structures for comparison with
optimized magnetostrictive effects

We begin by minimizing u⊥
20. The performance of our

optimized structures in Figs. 2D,E of the main text is
compared to results obtained for more regular textures.
Specifically, these were regular structures consisting of
hexagonally arranged chain-like aggregates. To construct
them, we start from layers of hexagonally positioned in-
clusions. Their normal vectors coincide with the magneti-
zation direction (z-direction). To maximize the magnetic
repulsion within each hexagonal layer, we approach the
minimal allowed inclusion distance by setting the lattice
constant to 0.121R. The distance between neighboring
layers is set to an identical value of 0.121R. Inclusions
within nearest-neighboring layers are located above and
below each other, so that they form chains. For simplic-
ity, we anchor the lattices by placing one first inclusion
at the center of the sphere and by building up the lat-
tice from there. For a regular arrangement of N = 1001
inclusions (to be compared to the optimized structure
for N = 1000), we confine ourselves to the 11 innermost
layers. Moreover, we only consider inclusions that are
located within a distance of ρ = 0.62R from that center
axis of the sphere oriented parallel to the magnetization
direction. The resulting deformations characterized by
u⊥
20 for this configuration and for different values of the

Poisson ratio ν are displayed in Fig. 2D of the main text.
To accommodate increasing numbers of inclusions N
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x̂

ŷ

ẑm̂

FIG. S1. To best approximate the deformational response of
the optimized structure for maximal relative elongation u⊥

20,
we identified a simple cubic lattice. Here, we illustrate its
orientation. The normal vector of the plane indicated in red
coincides with the magnetization direction m̂ (by construc-
tion).

we increase ρ. Moreover, we slightly shift the regular ar-
rangements of inclusions homogeneously along the mag-
netization direction by a distance ∆z. We observe that
the optimized structures do not feature a layer exactly
in the middle of the sphere. Indeed, through numerical
trials with different values of ∆z the performance was in-
creased further. Appropriate numbers n+ and n− of lay-
ers above and below the center of the sphere, respectively,
are determined by numerical trials as well to further op-
timize the deformational response. For N = 1001, 1308,
1482, 1771, 1988, we use values of ρ/R = 0.62, 0.65, 0.73,
0.78, 0.84, ∆z/R = 0, 0.043, 0.019, 0.005, 0.019, n+ = 5,
6, 6, 7, 7, and n− = 5, 6, 6, 6, 7, respectively. Corre-
sponding results for u⊥

20 are shown in Figs. 2D,E of the
main text.
Next, when maximizing u⊥

20 (see Fig. 3 of the main
text), we identified a simple cubic (sc) lattice to best
approximate the optimized structures. As in the previ-
ous case, a lattice constant of 0.121R is employed. The
orientation of this regular structure provides additional
degrees of freedom to improve its performance. We start
from an sc lattice for which the lattice vectors coincide
with the coordinate axes of our Cartesian coordinate sys-
tem, the z-direction again indicating the magnetization
direction. Then, a global rotation is applied to this lat-
tice. We found a rotation by a rotation matrix

R =




√
2
3 −

√
1
6 −

√
1
6

0
√

1
2 −

√
1
2

√
1
3

√
1
3

√
1
3




(S3)

to approximately lead to best performance. It sets a
rotation by a rotation angle of about 56.6◦ around the

FIG. S2. Configurations that maximize the decrease in vol-
ume, minimizing u⊥

00, see Fig. 4A of the main text, contain
chain-like elements along the magnetization direction. Here,
we illustrate the typical nearest-neighbor structure of these
chains, where inclusions in neighboring chains are vertically
shifted relative to each other by about one half (vertical)
nearest-neighbor distance.

axis
(
(
√
3− 1)(

√
2− 1) + 1, −1,

√
2− 1

)
. The resulting

orientation is illustrated in Fig. S1.
We again place the first inclusion at the center of the

sphere. Furthermore, to set the number of inclusions, we
only include lattice positions within a distance r from the
center. We use r/R = 0.747, 0.81, 0.82, 0.83, 0.85, 0.86,
0.88, 0.9, 0.94 to obtain N = 1021, 1237, 1309, 1357,
1419, 1503, 1575, 1743, 1935, respectively. The resulting
performance for u⊥

20 is depicted in Figs. 3D,E of the main
text. In the latter figure, we also display results for a face-
centered cubic (fcc) configuration of r/R = 0.84. There,
the edges of the cubic unit cells are oriented along the
axes of our Cartesian coordinate system, leading to N =
1985. In that case, we likewise use a nearest-neighbor
distance of 0.121R.
Third, we optimize u⊥

00, starting with its minimiza-
tion, see Fig. 4C of the main text. In that case, we
use regular chain-like structures with a vertical shift of
neighboring chains by half the inter-inclusion distance
along each chain, as was similarly observed for the opti-
mized structures, see Fig. S2. The lateral arrangement
of these chains in the optimized structure is mostly irreg-
ular. For our regular structures, we arrange the chains
in a square lattice. The corresponding lattice constant
is set to approximately 0.108R. We construct the con-
figuration starting from a chain that runs through the
center of the sphere. The center is located symmetrically
between the two innermost inclusions on that chain. As
in the previous case, we use a radial cut-off distance r
from the center of the sphere to adjust the number of in-
clusions N . We set r/R = 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.84, 0.878, 0.89, 0.907, 0.92, 0.932 to obtain N = 494,
654, 798, 1024, 1240, 1502, 1742, 2006, 2094, 2206, 2296,
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2392, respectively.
Next, we compare the results for textures of maximized

u⊥
00, see Fig. 5C of the main text, to the performance of

regular configurations of inclusions. To this end, we ar-
range the inclusions in 11 layers of orientation normal
to the magnetization direction. Within each layer, the
inclusions are hexagonally organized, with a distance be-
tween nearest neighbors of 0.121R. The textures are con-
structed starting from one inclusion at the center of the
sphere. In this case, however, the inter-layer spacing l is
always chosen larger than 0.121R. Thus, nearest neigh-
bors are found within the layers, not along the magneti-
zation direction. By adjusting l and only keeping inclu-
sions that are located within our constraints inside the
sphere, we change the number of inclusions N . Setting
l/R = 0.27, 0.22, 0.18, 0.155, 0.126 leads to N = 1021,
1239, 1517, 1745, 1973, respectively.

B. Regular lattice structures for comparison with
optimized magnetorheological effects

Similarly, we construct by hand regular lattice struc-
tures, the performance of which we compare to our op-
timized ones that maximize the MR effect as described
in the main text for an elastic cubical system. In gen-
eral, the optimized structures guide us to the particular
parameters used for our constructed regular lattice struc-
tures. In this way, the latter are adapted to the former.
For the positive MR effect, maximizing ∆µrel for uni-

axial elongation, see Figs. 6A,B of the main text, we uti-
lize an fcc arrangement (ABC stacking of hexagonal lay-
ers) with a lattice constant of 0.121a, where a is the side
length of the elastic cube. The bottommost hexagonal
layer when viewed along the magnetization direction is
always inserted at 0.1a from the bottom surface of the
cube. The lattice is anchored by placing an inclusion
at the center of the cube. A cut-off value ρ for the lat-
eral distance of an inclusion from the center axis of the
cube oriented parallel to the magnetization direction is
set to tune the number of inclusions. Here, the value of
ρ is chosen per layer, adapted from the optimized struc-
tures, generally decreasing the numbers of inclusions in
the topmost and bottommost layers when compared to
the other layers. For example, forN = 201 inclusions (for
comparison to the optimized structures of N = 200), we
use ρ = 0.2a for the topmost and bottommost layers and
ρ = 0.35a for another 6 layers in between, resulting in a
total of 8 layers. We also generate fcc configurations of
255, 300, 354, 399, 449, 497 inclusions, here always using
9 layers of varying ρ. The layer distance is chosen such
that an fcc lattice of lattice constant 0.121a results.
When instead maximizing the positive MR effect for

simple shear deformations, see Figs. 6C,D of the main
text, textures consisting of hexagonally structured lay-
ers with their normals oriented along the direction of the
shear displacements are introduced. The same lattice
constant as above is used. This time, for each layer an

inclusion is placed on that center axis of the cube that is
oriented along the direction of shear displacements. The
number of layers and locations of layers are adapted from
the optimized configurations. We alternately select op-
posite sides from one layer to the next with respect to
the central shear plane. Approximately, our procedure
consists of cutting inclusions from these sides, starting
from maximal distance from the central shear plane. We
observe such asymmetric features in the optimized struc-
tures, see Fig. 6D of the main text. This procedure leads
to N = 187, 291, 347, 402, 448, 499 inclusions organized
in 4, 5, 6, 6, 7, 8 layers, respectively. In the last two
cases, we use an alternating AB stacking of the layers to
fit all inclusions into the cube.

Turning to the less frequently considered negative MR
effect, we first consider the case of uniaxial elongation of
the cube in the main text, see Figs. 7A,B. Neighboring
chains forming when optimizing the structures are verti-
cally shifted with respect to each other, similarly to what
is displayed in Fig. S2. We generally use a square lattice
arrangement of these chains for simplicity, as its perfor-
mance shows good agreement in the resulting negative
MR effect. For comparison, for N = 180 we also arrange
24 chains on a circle of radius 0.42a, showing a magni-
tude of the negative MR effect in line with the trend of
corresponding square lattice arrangements of the chains.
We shift the inclusions in neighboring chains vertically
by half of the nearest-neighbor distance in a single chain
(0.121a). Their lateral distance is chosen such that neigh-
boring inclusions from different chains have the same to-
tal distance from each other of 0.121a. Therefore, each
inner inclusion on a chain has two nearest neighbors on
the same chain and two more per neighboring chain, for a
total of up to 10 nearest neighbors. To tune the inclusion
numbers of the square lattice arrangements of the chains,
we selectively delete chains, leading to arrangements of
N = 150, 203, 248, 301, 346, 398, 450, 503 with 20, 27,
33, 40, 46, 53, 60, 67 chains, respectively. The chains
for deletion are selected by comparison to the optimized
structures, which are displayed as the insets in Fig. 7B
of the main text, approximately such that the square lat-
tice of chains has a gap in the middle. Results for these
square lattice arrangements as well as the one circular
arrangement of the chains mentioned above for N = 180
are presented in Fig. 7B of the main text (chain-like con-
fig.). The data point for N = 180 of circular arrangement
of the chains is highlighted by the black circular mark.

Lastly, we turn to the negative MR effect under simple
shear deformations, see Figs. 7C,D of the main text. The
resulting optimized structures in that case are similar to
the ones for the positive MR effect under simple shear.
However, the layers here are oriented parallel to the plane
of simple shear. Furthermore, as can be inferred from
Fig. 7C of the main text, the layers do not consist of
regular hexagons anymore. Instead, they resemble a cen-
tered rectangular lattice, with the longer edge along the
magnetization direction. We choose 0.146a for the edge
length along the direction of shear displacements and

132 Chapter 2 Scientific publications



6

0.194a for the edge length along the magnetization di-
rection. Again, we set the numbers and locations of the
layers as inferred from the optimized structures. To re-
strict the number of inclusions in each layer, we use a
cut-off value ρ for the lateral distances of the inclusions
from that center axis that is oriented perpendicular to
the shear plane, similar to the maximization of ∆µrel for
uniaxial elongation (in contrast to the rather diagonal
reduction in Fig. 7C of the main text). Here, ρ is cho-

sen for each layer again by comparison to the optimized
structures. For example, we observe that the optimized
structures for N = 200 inclusions feature a center layer
(see the leftmost inset of Fig. 7D of the main text) with
fewer inclusions compared to the other layers. Therefore,
we choose a smaller value for ρ for that layer. In this way,
we obtain N = 203, 248, 297, 347, 399, 450, 497 with 5,
6, 7, 7, 7, 8, 9 layers, respectively. For N = 497, we use
an alternating AB stacking of the layers.
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Abstract
Magnetosensitive elastomers respond to external magnetic fields by changing their stiffness and
shape. These effects result from interactions among magnetized inclusions that are embedded
within an elastic matrix. Strong external magnetic fields induce internal restructuring, for
example the formation of chain-like aggregates. However, such reconfigurations affect not only
the overall mechanical properties of the elastomers but also the transport through such systems.
We concentrate here on the transport of heat, that is thermal conductivity. For flat, thin model
systems representing thin films or membranes and modeled by bead-spring discretizations, we
evaluate the internal restructuring in response to magnetization of the particles. For each
resulting configuration, we evaluate the associated thermal conductivity. We analyze the
changes in heat transport as a function of the strength of magnetization, particle number, density
of magnetizable particles (at fixed overall particle number), and aspect ratio of the system. We
observe that varying any one of these parameters can induce pronounced changes in the bulk
thermal conductivity. Our results motivate future experimental and theoretical studies of
systems with magnetically tunable thermal but also electric conductivity—both of which have
only rarely been addressed so far.
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1. Introduction

Magnetosensitive elastomers are materials comprised of
magnetizable inclusions embedded in an elastic carrier
matrix [1–6]. The latter is usually a rubber or gel. Apply-
ing homogeneous external magnetic fields, the materials
respond by changes in their overall properties. Most prom-
inently, their stiffness and damping behavior, quantified
in terms of static and dynamic mechanical moduli are
affected [1, 6–12]. Similarly, shape changes occur in gen-
eral, which is termed magnetostriction [13–17]. Both types
of reaction illustrate how the materials sense magnetic vari-
ations in their environment. Possible applications there-
fore comprise tunable damping devices [18–20] and soft
actuators [21–23], which are capable of a wider range of
motion, such as jumping, walking, and rolling. Highly elastic
magnetosensitive elastomers therefore are promising materi-
als in soft robotics [20].

On a more microscopic level, an external magnetic field
induces interactions between themagnetized inclusions. These
interactions cause the inclusions to exert forces on and thus
deform their elastic environment. Under sufficiently strong
magnetic forces, the inclusions can substantially reorganize
and rearrange themselves by deforming the elastic carrier
matrix. For example, for two nearby particles, mutual attrac-
tion leading to their collapse towards virtual contact has been
analyzed both theoretically [24–27] and experimentally [27].
Magnetically induced deformations and buckling of initially
straight, chain-like aggregates were observed [28]. Specific-
ally important for our considerations is internal restructuring
leading to the formation of chains, which, likewise, have been
reported in theoretical [11, 29, 30] and experimental [10, 31]
studies. This effect has been correlated with changes in the
elastic Young modulus of the materials of nearly an order of
magnitude [10].

In the present work, we focus on the tunability of trans-
port properties of such materials by external magnetic fields.
Specifically, we concentrate on variations of heat transport
through the system, as quantified by thermal conductivity.

Ferromagnetic fluids, a related class of materials composed
of colloidal suspensions of magnetic particles in a carrier
liquid, have been shown to exhibit increased thermal conduct-
ivity along the direction of an externally appliedmagnetic field
and no changes in the conductivity in the direction perpendic-
ular to the applied field [32, 33]. The change in thermal con-
ductivity is reversible and decreases quickly once themagnetic
field is turned off. Magnetic elastomers or gels designed to
behave similarly in response to external fields could find med-
ical application as a potentially biocompatible elastic carrier
matrix. Compared to ferromagnetic fluids, soft elastic solids
are generally more convenient to handle—requiring no con-
tainer to hold them in place—and may be less susceptible to
evaporation.

While there has been some research into the electrical
conductivity of magnetosensitive elastomers, investigations
focusing on thermal conductivity are still rarer. When homo-
geneous external magnetic fields are applied already dur-
ing the curing process, chain-like aggregates form and are

permanently imprinted in the materials [1, 34, 35]. The
stronger the magnetic field during fabrication, the lower in
general is the electric resistance [36–38]. Moreover, the chains
can be separated or reconnected by stretching or compressing
the material, which alters the electrical conductivity.

Thermal conductivity has beenmeasured for a composite of
carbonyl iron and agar [39]. There, again, the inclusions were
aligned by an external magnetic field during curing, while
stronger magnetic field amplitudes lead to larger thermal con-
ductivity. The largest increase of thermal conductivity due to
alignment was around 30% measured for a mass fraction of
10% carbonyl iron particles. Increasing the mass fraction of
carbonyl iron increases thermal conductivity.

While there is some research on the electrical conductivity
the main focus has been on materials with an already imprin-
ted chain structure. However, in highly elastic elastomers and
especially gels, these chains can also form when applying an
external magnetic field after the curing process [29]. Here, the
aim is studying the effect of this internal restructuring on the
thermal conductivity.

In contrast to these works on prestructured materials,
we here focus on systems that initially contain rather ran-
dom arrangements of the magnetizable particles. We con-
sider internal restructuring into anisotropic, mainly chain-like
aggregates when external magnetic fields are applied. To this
end, a coarse-grained bead-spring model is evaluated in two
dimensions [11, 30]. We thus focus on the behavior of thin
elastic films and membranes of magnetosensitive elastomers.
In the restructured state under the influence of the external
magnetic field, the change in thermal conductivity is evaluated
as a function of the achieved magnetization of the magnetiz-
able particles, their average distance, the overall particle num-
ber, and the aspect ratio of the rectangular system. Substantial
tunability of the thermal conductivity is revealed.

We proceed as follows. In section 2, we present our theoret-
ical model equations. Appropriate parameter values are selec-
ted in section 3.We describe howwe evaluate the thermal con-
ductivity in section 4. Our results for the variation of thermal
conductivity as a function of the parameters mentioned above
are provided in section 5. We conclude in section 6.

2. Bead-spring model for magnetosensitive
elastomers

Our coarse-grained minimal model describes a mesh of
springs with magnetizable beads connected to some of its
nodes. The spherical beads represent the magnetizable inclu-
sions and include the magnetic interactions [29], while the
springs represent the elastic material behavior [40].

We start from a hexagonal network. During initialization,
the position of each node is shifted by a random value chosen
from a normal distribution of standard deviation of 10% of the
lattice parameter 2dc. Then,Nm nodes are selected to associate
to them the Nm magnetizable beads. We place springs between
any two nodes that are closer than 1.5 times the lattice para-
meter. An example system is depicted in figure 1. The top and
bottom layers are not counted to the total amount of nodes, as
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Figure 1. Example of a randomized hexagonal spring network with
initial shifts of the nodes by a normal distribution of standard
deviation of 0.2dc, a lattice parameter 2dc, and a maximum spring
length of 3dc. Springs (black lines) connect the nodes and
magnetizable beads (blue circles) are randomly associated to the
nodes. This example system features 20× 20 nodes and 100
magnetizable beads.

they are not used in the calculation of the thermal conductivity
(see below).

Between any two nodes i and j of positions ri and rj, respect-
ively, the distance vector is defined via rij = ri− rj. Out of a
total amount of nodes N, there are a number of Nm magnetiz-
able particles, all of diameter dc. With the spring constant k,
the elastic interaction potential is given by

Uel =
1
2

∑

⟨i,j⟩
k(|rij| − |rij,0|)2 . (1)

In this expression, ⟨i, j⟩ includes only pairs of nodes that are
connected by springs, while rij,0 sets the spring length in the
undeformed state.

In the magnetized state, we always assume the external
magnetic fields strong enough to approximately induce the sat-
uration magnetization of magnitude MS in the magnetizable
particles. In homogeneous external magnetic fields and for
monodisperse particles, an identical magnetic dipole moment
m arises for each particle, so that

|m|= m=MS
π

6
d3c . (2)

As a result, we obtain the magnetic interaction potential [41]

Um =
µ0

4π
1
2
m2

Nm∑

i,j=1
i̸=j

r2ij− 3(m̂ · rij)2
r5ij

, (3)

where m̂=m/m, rij = |rij|, and µ0 is the magnetic vacuum
permeability.

Finally, the steric interaction potential between the beads
is assumed as a modified version of the Weeks–Chandler–
Andersen potential [11, 42]

Us =

Nm∑

i,j=1
i̸=j

Θ(dc− rij)εs

[( rij
σs

)−12
−
( rij
σs

)−6
(4)

−
(
dc
σs

)−12

+

(
dc
σs

)−6

− c(rij− dc)2

2

]
. (4)

Here, Θ denotes the Heaviside step function, while σs =
2−1/6dc and c= 18/d2c depend on the exponents of Us, in this
case−6 and−12. SinceUs is always 0 if |rij|> dc, it is neces-
sary to ensure a smooth transition and subsequent differen-
tiability at |rij|= dc. That means σs and c are chosen so that
dUs/drij|rij=dc = 0 and d2Us/dr2ij|rij=dc = 0 are satisfied. εs sets
the magnitude of the steric interaction.

To determine the new restructured states when magnet-
ized, we assume overdamped dynamics of the nodes. For the
equation of motion, combining U= Uel +Um+Us, we then
obtain

dri
dt

=−1
ζ
∇iU, (5)

with a damping coefficient ζ set equal for all nodes.∇i refers
to the derivative with respect to the position of node i and
t denotes time. As indicated above, we confine ourselves to
two-dimensional evaluations representing thin sheets or mem-
branes of magnetosensitive elastomers.

3. Rescaling of the basic equations and setting the
system parameters

For the outlined description to represent real systems, it is
necessary to choose appropriate values for the parameters. To
find the actual number of independent parameters, we first res-
cale the equations in section 2 and then set realistic parameter
values.

First, measure lengths in units of the diameter dc of the
magnetizable particles. Thus, distances become r ′ij = rij/dc.
Energies are rescaled by kd2c , so that equations (1), (3) and (4)
become

U ′
el =

1
2

N∑

⟨i,j⟩

(
r ′ij− r ′ij,0

)2
, (6)

U ′
m =

1
2
µ0m2

4πkd5c

Nm∑

i,j=1
i̸=j

r ′ 2ij − 3(m̂ · r ′ij)2
r ′ 5ij

, (7)

and

U ′
s =

εs
kd2c

Nm∑

i,j=1
i̸=j

Θ(1− r ′ij)

[(
r ′

σs ′

)−12

−
(
r ′

σs ′

)−6

(8)

−
(

1
σs ′

)−12

+

(
1
σs ′

)−6

−
c ′(r ′ij− 1)2

2

]
. (8)
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Here, σs
′
= 2−1/6 and c ′ = 18. Moreover, time is rescaled by

ζ/k, so that equation (5) reads

dr ′i
dt ′

= −∇ ′
iU

′. (9)

Thus, time becomes t ′ = tk/ζ with an incremental time step
τ ′ = τk/ζ that we use to discretize equation (9) when we iter-
ate it forward in time.

Now, there are only two dimensionless parameters remain-
ing in equations (7) and (8) that control the system behavior.
However, the role of the coefficient ε ′

s = εs/kd2c in equation (8)
for our purposes is simply to ensure sufficient volume exclu-
sion of the particles. It is chosen large enough so that mag-
netized beads are generally not overlapping and low enough
so that numerical stability is maintained. This leaves us with
only one actual remaining system parameter, namely

Γ =
µ0m2

4πkd5c
=

πµ0M2
s

36
√
3bE3D

. (10)

in equation (7), where E3D is the Young modulus for three-
dimensional systems. This scaled squared magnetic moment
describes the relative strength of the magnetic versus the
elastic interactions. To provide realistic results, this coefficient
is approximated in the following on the basis of typical exper-
imental data.

First, the saturation magnetization of carbonyl iron
particles is around Ms = 2× 106Am−1 [11, 43]. Average
diameters for volume equivalent spheres of these particles
reported in the literature are, for example, dc = 34 µm for 15
wt% and 28µm for 40 wt% samples [11].

The magnitude of the spring constant k for the spring net-
work should reflect the magnitude of the elastic modulus of
the underlying elastic material. In two dimensions (2D) it was
shown that the Young modulus satisfies [44]

E2D =
4µ(λ+µ)

λ+ 2µ
, (11)

with λ and µ being the Lamé constants [44, 45]. The corres-
ponding calculations were performed for uniaxial strain and
stress. For a triangular lattice, the relation to the spring con-
stant was found to be [44, 46]

µ= λ=
3

4
√
3
k. (12)

Equations (11) and (12) are based on the hexagonal unit cell,
see figure 2, of edge length b (in units of the bead diameter dc)
equal to the undeformed spring length. In the corresponding
calculations these cells were assumed to have a thickness of
b/2 [46]. It follows with the respective units of E3D and E2D

as Nm−2 and Nm−1 that the relation between the three dimen-
sional Young modulus E3D and E2D is

E2D =
b
2
dcE3D. (13)

Figure 2. Regular hexagonal unit cells underlying the spring
network to extract the relation between the spring constant k and the
Young modulus E3D [46]. b denotes the length of the springs in units
of the bead diameter dc.

Combining equations (11)–(13), we find

b
2
dcE3D =

2√
3
k. (14)

This relation, together with equation (2), justifies the second
equality in equation (10). The typical Young modulus is of the
order of magnitude 10kPa for a magnetic elastomer [10] and
1 Pa for a soft magnetic gel [28].

The Poisson ratio for elastic materials that are quantit-
atively described by the spring network is 1/3 [44, 46].
This means that our spring network represents a compress-
ible medium. Different Poisson ratios can be achieved if
angular interactions are added at the nodes connecting the
springs [44, 46].

As we can see, the spring length b (in units of dc) enters
the expression for the remaining parameter Γ in equation (10).
We will therefore include it into our considerations below. We
approach b from the mass fraction φ of magnetizable particles
in the medium, which we select as silicone rubber to set the
associated parameter values [44].

We choose, for instance in figure 2, a unit cell with a node
at the center that carries a magnetizable bead. As above, we
assume the thickness of the sheet to be of size bdc/2. Thus,
we obtain the following expression for the mass fraction using
the volume πd3c/6 of the magnetizable bead and the volume√
3b3d3c/4 of the unit cell,

φ=
mm

mtotal

=
Nmρmπ/6

Nb3 ρsilicone
√
3/4+Nm(ρm− ρsilicone)π/6

. (15)

From there, we find together with ρsilicone = 970kgm−3 [47]
and ρm = 7800kgm−3 [48],

b≈
[
Nm
N

(
9.72
φ

− 8.51

)]1/3
. (16)
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A sufficiently large number of magnetizable particles Nm

is necessary to facilitate chain formation upon magnetization.
We therefore set the overall number ratio of beads and nodes
Nm
N within the range of 25% and 50%. An approximate mass
fraction φ from around 10% to 25% then implies a range of b
from around 2 to 3.5.

4. Evaluation of the thermal conductivity

For each configuration and parameter setting, we iterate
equation (9) forward in time using an Euler forward integra-
tion scheme until a steady state is reached. We then evaluate
the thermal conductivity of the resulting configuration.

From the heat flux

q=−λloc∇T, (17)

where T is the local temperature and λloc denotes thermal
conductivity [49], together with the conservation equation of
thermal energy

ρc
dT
dt

=−∇ · q, (18)

where ρ is the (mass) density and c the specific heat capacity
[50], we obtain the thermal diffusion equation

dT
dt

=
λloc

ρc
∇2T= a∇2T, (19)

with a= λloc/ρc representing the thermal diffusivity [50].
The thermal conductivity of silicone can be found in the

literature as λsilicone = 0.2W m−1K−1 [51], its density as
ρsilicone = 970kg m−3 [47], and its specific heat capacity as
csilicone = 1250Jkg−1K−1 [52]. The values for the magnetiz-
able beads are chosen for iron carbonyl powder. We assume
a density of ρm = 7800kgm−3 [48], a thermal conductivity
of λm = 80.4W m−1K−1 [53], and a specific heat capacity
of cm = 460Jkg−1K−1 [39]. This leads to thermal diffusiv-
ities of asilicone = 1.6495× 10−7m2 s−1 and am = 2.2408×
10−5m2 s−1, respectively.

To evaluate equation (19) in our situation, we employ an
appropriate discretization of our system. We start from the
nodes of our spring network and obtain discrete cells around
them using a Voronoi tessellation [54].We identify the temper-
ature of each Voronoi cell with the temperature at the node that
it contains. On this basis, we evaluate the heat flux between
neighboring cells as described in the following. Correspond-
ing quantities are introduced in figure 3.

Using Gauß’ theorem, we obtain from equation (19) for the
ith cell of ‘volume’ V iˆ

Vi

dT
dt
d3r=

ˆ

∂Vi

a n̂ ·∇Td2f, (20)

where n̂ denotes the outward normal unit vector. Next, we
assume constant temperature T i within the ith cell. Accord-
ing to equations (19) and (20), heat exchange with all cells ⟨i⟩
neighboring the ith cell can then be discretized as

Figure 3. Quantities used for the discretization to calculate the heat
conduction between neighboring cells i and j are their ‘volumes’ V i
and V j, respectively, absolute temperatures T i and T j, respectively,
absolute contact ‘area’ Aij of the unit cells, and absolute distance lij
between the central nodes.

dTi
dt

=
1
Vi

∑

⟨i⟩
Aijaij

Tj− Ti
lij

. (21)

Here, aij is the thermal diffusivity between cells i and j, Aij is
their contact ‘area’, and lij is their distance, see figure 3. Thus,
we find

dTi
dt

=
1

Viρici

∑

⟨i⟩
Aijλij

Tj− Ti
lij

. (22)

Since this equation represents a discretized version of the heat
equation, we expect conservation of heat, which we have con-
firmed in our numerical evaluations as described below.

To calculate the overall thermal conductivity, we induce
an overall heat flux through the system. For this purpose, the
temperatures of the boundary nodes on the left- and right-
hand sides are fixed at Tleft and Tright, respectively. Under these
boundary conditions, the temperatures of all other nodes, here
identified with the temperatures of the corresponding Voronoi
cells, can then be found by iterating equation (22) forward in
time. When a steady state is reached, the temperatures of all
cells are constant in time, dTi/dt= 0. This leaves us with

0=
∑

⟨i⟩
Aijλij

Ti− Tj
lij

. (23)

Equation (23) can be rewritten as a vector equation for all
Voronoi cells as

0= Avc ·Tc+Avv ·Tv, (24)

where Tc is the vector of all temperatures of the boundary cells
that are kept constant. The vector Tv contains all temperat-
ures of the inner cells. The entries of the matrices Avv and Avc
are extracted from the coefficients in equation (23). In fact,
they constitute the negative discretized Laplacian operator for
a graph with weighted edges [55]. We then calculate the tem-
perature of each cell by solving equation (24) for Tv,

Tv =−A−1
vv ·Avc ·Tc. (25)
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Figure 4. Heat conduction through a magnetized example
bead-spring system of 20× 20 nodes. Those nodes carrying
magnetic beads are marked by black dots. Only little chain
formation of magnetized beads has occurred in this case through the
induced magnetic moments m oriented as indicated. Cell boundaries
around the nodes as obtained from Voronoi tessellation are depicted
by the dark lines. The temperature of each cell is indicated by the
color scheme according to the scale on the right-hand side.
(kB denotes the Boltzmann constant.)

In equation (23), the thermal conductivity λij is set to
λsilicone by default. It is only altered to λm, when both cells
i and j hold magnetized beads that are virtually in contact.
Two beads are considered as being in contact when they are
at most a center-to-center distance of 1.04dc apart from each
other. This corresponds to additional 4% of the effective steric
radius and approximately corresponds to the magnitude of the
numerical fluctuations observed for touching particles under
strong magnetization. For illustration two examples for a sys-
tem of 20× 20 nodes are displayed in figures 4 and 5. Here
and in the following, we induce the magnetic dipole moments
m along the negative overall temperature gradient.

A special situation occurs when two magnetized beads
are in contact but their Voronoi cells are not neighbors.
Then, thermal conductivities involving the Voronoi cells ⟨o⟩
obstructing the connection will also be set to λ⟨o⟩i = λ⟨o⟩j =
λm. This situation can occur when a cell not containing
any magnetizable bead is wedged between two magnetized
particles, see the configuration marked by a bright green circle
on the right-hand side of the longest chain in figure 5.

The upper and lower rows of Voronoi cells in these figures
do not contribute to the total amount of nodes N. They are
excluded from the calculation of the thermal conductivity.
Rather, they serve as purely auxiliary nodes to construct all
Voronoi cells.

Figure 5. Same as in figure 4, but for a system of substantial chain
formation. The bright green circle outlines a region where the
Voronoi cells around several nodes not carrying magnetizable beads
are wedged between cells containing magnetizable beads. Still the
surrounding beads are considered as being in contact due to their
proximity.

To now calculate the overall thermal conductivity of the
entire system, we determine the total heat transported per time
through a cross section A cutting through the whole sample
perpendicular to the overall temperature gradient. We check
that this transferred heat is identical through any cross section.
The latter is required by conservation of thermal energy.
Denoting by ⟨A; i, j⟩ all pairs of cells whose contact ‘areas’
Aij together form the cross sectional ‘areas’ A, the total heat
flux is calculated via

qtotal =
1
A

∣∣∣∣∣∣
∑

⟨A; i,j⟩
Aijλij

Ti− Tj
lij

∣∣∣∣∣∣
. (26)

At the same time, the overall thermal conductivity λ is defined
via

qtotal = λ
|Tleft − Tright|

l
, (27)

where l is the averaged distance between the left and right
boundary nodes. Combining equations (26) and (27), the over-
all thermal conductivity can be calculated as

λ=

l

∣∣∣∣∣
∑

⟨A; i,j⟩
Aijλij

Ti−Tj
lij

∣∣∣∣∣
A |Tleft − Tright|

. (28)

The cross section A is averaged as well. qtotal is calculated
for as many cross sections as possible to verify conservation
of heat.
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Calculating l and A, averaging l and A, assuming a roughly
rectangular shape of the system, and initially randomizing the
placement of the nodes [56] all contribute to the error when
determining λ. In our tests, we observed errors up to 6.1%,
which is tolerable within the framework of our discussion.

We measure all thermal conductivities in units of λsilicone

in order to highlight the relative change in conductivity due
to magnetization, which in the initial system approximately
equals λsilicone by construction. Moreover, along these lines we
eliminate the unit of thermal conductivity kBk/dcζ, which con-
tains the unknown damping coefficient ζ.

5. Results

Using the implementation as described above, we evaluate the
magnetically induced changes in overall thermal conductiv-
ity when we vary the scaled squared magnetic moment Γ, see
equation (10), the average spring length b, the total number
of magnetizable particles Nm, and the aspect ratio of the con-
sidered rectangular systems. In all cases, we magnetize the
system from the initial, nonmagnetized state upon each change
in the mentioned parameters. The internally restructured state
is identified and the thermal conductivity is evaluated for each
parameter setting separately. Additionally, we correlate the
observed changes in overall thermal conductivity with the size
of the generated chain-like clusters.We also briefly address the
dynamics when the magnetization is turned on and off again.

5.1. Dependence on the relative strength of magnetic
interactions Γ

Webegin by considering the dependence of the overall thermal
conductivity λ on the scaled squared magnetic moment Γ,
see equation (10). For systems of Nm = 150 magnetizable
beads randomly associated to the N= 400 nodes, we display
in figure 6 results averaged over 50 realizations of the system
(blue). A substantial increase of the overall thermal conduct-
ivity by a factor of approximately 4 is observed in a range of Γ
that still corresponds to realistic parameter values. The aver-
aged curve shows a nearly monotonic increase with Γ.

For one selected example system, we additionally show in
figure 6 the dependence of the overall thermal conductivity
as a function of the strength of magnetic interactions Γ (red).
Associated snapshots illustrate the formation of the aggregates
with increasingΓ for this specific example. It demonstrates the
tendency of increasing integration of magnetizable beads into
chain-like structures when Γ rises. Naturally, the increasing
magnetic interactions facilitate this reorganization against the
restoring elastic spring forces. For sufficiently large values of
Γ almost all magnetized beads are parts of large clusters and
thus the thermal conductivity basically reaches saturation.

The sample system we depict in red is typical in that its
thermal conductivity does not increase monotonically in Γ.
This nonmonotonicity is the result of two distinct effects. First,
with increasing Γ, beads that are in virtual contact increas-
ingly overlap. The employed steric interaction potential is not
perfectly hard and the steric interaction parameter ε ′

s = 100
is finite. This overlap leads to an effective decrease in chain

Figure 6. Overall thermal conductivity λ as a function of the scaled
squared magnetic moment Γ averaged over 50 different realizations
(blue line) of the system for 20× 20 nodes, N= 400, Nm = 150,
b= 2, τ ′ = 10−5, and ε ′

s = 100, at t ′ = 40. Standard deviations are
marked by bars. Snapshots with the magnetizable particles in red
and the Voronoi cells depicted in black are taken from one randomly
selected example of the 50 systems. For that specific realization, we
show the corresponding evolution of λ with increasing Γ as the red
line.

length when further increasing Γ. In reality, such effects may
be observed if still some remaining soft material remains
between the mechanically hard particles, for instance, for
coated particles and/or absorbed polymer chains on their sur-
faces. Specific examples are provided by particles that serve
as crosslinkers of the systems [57, 58]. A slight decrease in
thermal conductivity may be associated with these effects, to
which we attribute the gradual tapering off of λ in the high-Γ
regime.

Second, the more pronounced steps of decrease on the
red curve for the individual system in figure 6 can be of
dynamic origin. We illustrate a corresponding scenario on a
small example system of only Nm = 12 particles in figure 7.
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Figure 7. For illustration, we consider a small example system of
Nm = 12 magnetizable beads. The panels on the left-hand side show
the final states upon chain formation for different strengths of
magnetic interaction (a) Γ = 92, (b) Γ = 104, and (c) Γ = 108. In
these snapshots, blue spheres represent the magnetized beads and
the black mesh corresponds to the boundaries of the Voronoi cells.
Associated panels on the right-hand side depict the trajectories of
the individual nodes, where brightening colors represent
progression in time.

In figure 7(a), for Γ = 92, smaller chains of 3 magnet-
ized beads form, besides one remaining separate bead and
another chain of 5 beads, leading to an overall thermal con-
ductivity of λ= 1.62λsilicone. Further aggregation is preven-
ted as the necessary magnetic interactions cannot overcome
the prevailing elastic interactions. These elastic interactions
are partially overcome when the magnetic interactions are
increased to Γ = 104, see figure 7(b), when significantly
longer chains of 5 and 7 beads form. As a consequence, the
thermal conductivity increases to λ= 2.07λsilicone. However,
at still larger Γ = 108 in figure 7(c), the overall thermal con-
ductivity again drops to a lower value of λ= 1.71λsilicone. This
lower value is correlated with on average two shorter chains of
only 5 beads and two remaining separated beads.

To understand this behavior, we recall that, for each value
of Γ, the system is initiated in a nonmagnetized state. Then the
beads are magnetized. The speed of the subsequent dynam-
ics increases with Γ. For Γ = 108, quicker contraction implies
that the outer beads cannot follow the quick displacement of
the inner beads when the upper chain in figure 7(c) is formed.
This is different for the slower dynamics in figure 7(b) for
lower Γ. The more separated structures in figure 7(c) correlate
with a reduced overall thermal conductivity for Γ = 108 when
compared to Γ = 104. The two separate particles remain
separated because the distances to the other particles are
too large and thus the magnetic attractions are too weak to

Figure 8. Overall thermal conductivity λ as a function of the
relative spring length b (measured in units of the bead diameter dc)
averaged over 50 realizations of the system of 20× 20 nodes for
N= 400, Nm = 100, Γ = 600, τ ′ = 10−5, and ε ′

s = 100, at t ′ = 30.
Snapshots for one randomly selected realization with the
magnetizable beads indicated in red and the Voronoi cells depicted
in black are included as insets.

overcome the elastic counterforces. Thus, on the side, we
conjecture that the protocol of introducing the magnetiza-
tion can influence the resulting internal structure. It may thus
represent another means of tailoring the resulting thermal
conductivity.

As can be inferred from the right panel for Γ = 108 in
figure 7(c), the separated magnetizable bead on the right-
hand side even turns around while the aggregation dynamics
is in progress. This happens at the time when the upper and
lower chains form quickly and the particles within the quickly
formed chains are already too far apart to induce significant
attraction.

In contrast to that, the averaged curve for a larger system
size in figure 6 does not exhibit any sharp elevations in thermal
conductivity any more. While there are some nonmonotonic
intervals, there are not any significant spikes outside the given
standard deviation.

5.2. Impact of the average scaled spring length b

First, we recall that the initial spring network corresponds to
a randomized hexagonal arrangement. Therefore, we refer to
the averaged spring length b in this system. Second, b is meas-
ured in units of dc and thus represents a relative, dimensionless
parameter. The relation between b and the mass fraction φwas
given in equation (16).
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Figure 8 displays the overall thermal conductivity as a func-
tion of the spring length b when averaged over 50 different
realizations of the system at an elevated magnitude of mag-
netization. All other parameters, including the total number of
magnetizable particles and aspect ratio of the systems are kept
fixed. The decrease in thermal conductivity for increasing rel-
ative spring length b is apparent.

The reason for this decrease is inferred from the snap-
shots added as insets in figure 8 for one specific example
realization. For lower values of b, corresponding to increased
densities of the magnetizable particles, the system is able to
form elongated chain-like clusters. Due to the small initial
distances between the magnetized beads, mutual magnetic
interactions are strong and the elastic counterforces are eas-
ily overcome. We recall that the strength of magnetic dipole
interaction scales as the inverse cubic interparticle distance,
see equation (3). With increasing relative spring length b, the
average initial distance between nearest neighboring beads is
larger and the same magnetic moment may not be sufficient
any longer to induce cluster formation. This effect is clearly
visible from the insets in figure 8 corresponding to an elevated
spring length b.

5.3. Dependence on the number of magnetizable particles
Nm

Along analogous lines as above, figure 9 displays the overall
thermal conductivity λ as a function of the number of magnet-
izable particles Nm, while all other parameters remain fixed.
The curve displays some nonmonotonic steps, see also the dis-
cussion in section 5.1, yet well within the range of the stand-
ard deviations. Thus, as a general trend, the thermal conduct-
ivity rises with increasing numbers of magnetizable particles
as expected. The snapshots in figure 9 taken for one specific
example realization illustrate that generally the lengths of the
formed chain-like aggregates increases with increasing Nm,
which supports overall heat transport through the system.

5.4. Effect of the aspect ratio

All the data in sections 5.1–5.3 were obtained for initially
square-like systems of 20× 20 nodes. To get an impression
of the relevance of this shape, we vary the aspect ratio to other
rectangular contours. Figure 10 depicts selected example sys-
tems of (a) 40× 10 nodes (longest system), (b) 25× 16 nodes
(long system), (c) 20× 20 nodes (square system), (d) 16× 25
nodes (wide system), and (e) 10× 40 nodes (widest system).
The remaining parameter values were all kept identical in the
different situations.

The overall thermal conductivities for systems elongated
along the overall thermal gradient are displayed in figure 11,
where for each aspect ratio we again average over 50 different
realizations. There, the values of the overall thermal conduct-
ivity are virtually the same as in the square system. However,
their standard deviation substantially increases with elong-
ated systems. Since the systems are slimmer perpendicular
to the direction of magnetization, in some individual systems

Figure 9. Overall thermal conductivity λ as a function of the
number Nm of magnetizable particles averaged over 50 realizations
of systems of 20× 20 nodes for N= 400, b= 2, Γ = 600,
τ ′ = 10−5, and ε ′

s = 100, at t ′ = 30. As insets, we include
snapshots for one randomly chosen system, where we indicate the
magnetizable beads in red and the boundaries of the Voronoi cells in
black.

an exceptionally long chain-like aggregate forms. Such indi-
vidual occurrences significantly increase the thermal conduct-
ivity and thus the standard deviation.

In contrast to that, figure 12 shows results for systems
that are initially wider perpendicular to the magnetization
direction. For wider aspect ratios, the averaged overall thermal
conductivity decreases, but remains within the standard devi-
ation. Since the systems are shorter along the magnetization
direction, the maximum length of the chain-like aggregates is
reduced.

5.5. Correlation with the average cluster size

In addition, we correlate the magnetically induced changes in
the overall thermal conductivity λ with the average size of
the formed chain-like clusters. To this end, we reconsidered
the above examples of square-shaped systems and the aver-
ages over 50 realizations as displayed in figures 6, 8, and 9,
that is, for increasing strength of magnetic interaction Γ, rel-
ative spring length b, and total number of magnetizable beads
Nm, respectively. The size of a cluster is defined as the total
number of beads that are in virtual contact with each other.
The average cluster sizes were obtained by first averaging
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Figure 10. Example systems of different aspect ratios but otherwise
identical parameter settings. Specifically, we address systems of (a)
40× 10 nodes (longest system), (b) 25× 16 nodes (long system),
(c) 20× 20 nodes (square system, see sections 5.1–5.3), (d) 16× 25
nodes (wide system), and (e) 10× 40 nodes. The snapshots show
the systems in the magnetized state for scaled squared magnetic
moment Γ = 600, relative spring length b= 2, number of
magnetizable particles Nm = 100, strength of steric interactions
ε ′
s = 100, and incremental timestep τ ′ = 10−5 at t ′ = 30.

the sizes of all clusters in each realization and subsequently
over the 50 different realizations. Associated standard devi-
ations depicted below are associatedwith the second averaging
step.

Our results are summarized by figure 13. In all cases, an
increase in average cluster size is related to an increase in
thermal conductivity. The average cluster size and thus the
thermal conductivity increases with increasing scaled squared
magnetic moment Γ, see figure 13(a), decreasing relative
spring length b, see figure 13(b), and increasing total number
of magnetizable particles Nm, figure 13(c).

We add a remark concerning the leveling slope of the curve
in figure 13(a) at elevated strengths of magnetic interactions
Γ. This effect is partially linked to imperfections that arise
during the magnetically induced aggregation. The clusters do

Figure 11. Overall thermal conductivity λ as a function of time for
initially square-shaped systems and systems initially elongated
along the magnetization direction. Again, we average over 50
different realizations for each aspect ratio.

Figure 12. Overall thermal conductivity λ as a function of time for
initially square-shaped systems and systems initially shorter along
the magnetization direction, averaged over 50 different realizations
for each aspect ratio.

not necessarily feature a perfect chain-like structure, as illus-
trated on the example in figure 14. First, when a shorter chain
approaches a longer chain obliquely from the side, the shorter
chain may laterally dock and attach to the longer one. Due
to the magnetic attraction within the longer chain, the smal-
ler chain is prevented from being absorbed into the longer
chain. Examples are displayed in figure 14 as marked by the
green circles. Second, two longer chain-like clusters may con-
nect while partially overlapping side by side. A corresponding
resulting structure is depicted in figure 14 as marked by the
blueish circle.
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Figure 13. Correlation between the average size of the formed
chain-like clusters and the magnetically induced change in overall
thermal conductivity λ. Results are shown for increasing (a) scaled
squared magnetic moment Γ, (b) relative spring length b, and (c)
total number of magnetizable particles Nm, see the color codes on
the right-hand sides. Again, we average over 50 realizations of each
system. The data correspond to our results in figures 6, 8, and 9,
respectively.

5.6. Dynamical aspects when switching on and off the
magnetization

Our basic dynamic equations equation (5) in our investigation
serve to find the final static state upon magnetization. In this

Figure 14. Snapshot of a chain-like cluster formed upon
magnetization. It contains two types of imperfections. One type
refers to smaller chain-like aggregates attached to the side, as
marked by the left two (greenish) circles. The other type implies
imperfectly joined chains that partially overlap, as marked by the
right (blueish) circle. (Parameter settings: 20× 20 nodes, Γ = 600,
b= 1.7, Nm = 200, ε ′

s = 100, τ ′ = 10−5, t ′ = 30.)

Figure 15. Overall thermal conductivity λ as a function of time
when averaged over 50 realizations of a system of 20× 20 nodes.
Magnetization is induced at t= 0, while it is switched off again at
t= 30ζ/k.

simplified form, they are not suited to quantitatively extract
details of the underlying dynamic processes themselves. Nev-
ertheless, a simple qualitative insight is provided.

Figure 15 displays the time evolution of the overall thermal
conductivity when at t= 0 the beads are magnetized to
Γ = 600, while at t= 30ζ/k their magnetization is switched
off again.

Interestingly, it takes awhile until the saturation value of the
thermal conductivity is reached, while it quickly drops towards
zero when magnetization is switched off. The longer initial
procedure can be explained by the coarsening process when
the large chain-like clusters form uponmagnetization. Initially
formed smaller clusters need to migrate collectively as larger
objects to assemble into larger chain-like structures over time.
In contrast to that, when the magnetization drops to zero, each
particle individually is driven by the restoring elastic forces to
find back into a separated arrangement.

6. Conclusions

In this work, we analyzed the magnetically induced changes of
thermal conductivity in thin films or membranes of magneto-
sensitive elastomers. To this end, we employed a simple yet
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effective bead-spring model. Magnetizable inclusions are rep-
resented by spherical beads randomly placed on the nodes of
a randomized hexagonal spring network. The latter represents
the underlying elastic interactions in the material.

Upon magnetization, depending on the strength of the
induced magnetic interactions relative to the mechanical
stiffness, internal restructuring occurs. Particularly, chain-like
particle aggregates form. We determine the changes in overall
thermal conductivity resulting from the internal restructuring.
The rearrangement of the magnetizable particles can lead to
a substantial increase of thermal conductivity along the mag-
netic field direction.

Along these lines, we studied the consequences of varying
the scaled squared induced magnetic moments of the beads,
the lengths of the springs forming the elastic network, the
number of magnetizable particles, and the aspect ratio of the
rectangular network structure. Individual systems may display
nonmonotonic behavior when altering one of the aforemen-
tioned quantities. Yet, the behavior generally smoothens out
on average.

Increasing the scaled squared magnetic moment, which
relates the strength of the magnetic interactions to the elastic
stiffness, causes an increase in thermal conductivity associ-
ated with increasing lengths of the chain-like aggregates, until
a saturation level is reached. Conversely, an increasing spring
length, which is related to the volume fraction of magnetizable
particles, causes the thermal conductivity to drop, while the
overall system size increases. For a low spring length, large
clusters form, with an increased amount of imperfections in
the chain-like structure. In that case, the distances between the
magnetizable particles are so small that the resulting modi-
fied dynamics counteracts proper alignment in perfect particle
chains. Generally, an increase in the volume fraction of mag-
netizable particles causes an increase in thermal conductiv-
ity, while we have not observed a substantial effect of the
aspect ratio. We further supported our results by relating the
variations of thermal conductivity as induced by changes in
the mentioned parameters to changes in the averaged cluster
size. A qualitative consideration of the dynamics of the system
indicates that cluster formation and the associated increase in
thermal conductivity upon magnetization occur significantly
slower than cluster dissociation and decrease of thermal con-
ductivity when the particles are demagnetized.

In future investigations, the discretization into a spring net-
work and the associated Voronoi tessellation into discrete cells
could be refined. Specifically, individual particles could be
represented by multiple Voronoi cells of higher thermal con-
ductivity. Additionally, the bead diameters could be varied to
represent conditions of polydisperse particle distributions. The
influence of the magnetization protocol on the resulting struc-
tures and thermal conductivity should be analyzed. Besides,
in nonuniform magnetic fields, additional translational forces
emerge. Finally, the description so far has only addressed thin
flat systems, representing thin films and membranes of mag-
netosensitive elastomers. Extensions to three-dimensional sys-
tems appear desirable.

Overall, we hope that our study will further motivate
investigations on the promising magnetically tunable transport

properties of magnetosensitive elastomers. So far, some stud-
ies on the electric conductivity [36–38] and a few on the
thermal conductivity [39, 59] have been reported for these
materials. Both on the experimental and on the theoretical side,
a lot of future work is still in order to fully understand the res-
ulting types of behavior. This includes microscopic aspects of
thermal coupling between individual polymer chains and the
particle surfaces. The results will be important both from a
fundamental and applied perspective.
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Abstract
Macroscopic elastic core-shell systems can be generated as toy models to be deformed and
haptically studied by hand. On the mesoscale, colloidal core-shell particles and microgels
are fabricated and investigated by different types of microscopy. We analyse, using linear
elasticity theory, the response of spherical core-shell systems under the influence of a line
density of force that is oriented radially and acts along the equator of the outer surface. Inter-
estingly, deformational coupling of the shell to the core can determine the resulting overall
appearance in response to the forces. We address various combinations of radii, stiffness,
and Poisson ratio of core and shell and illustrate the resulting deformations. Macroscopi-
cally, the situation could be realized by wrapping a cord around the equator of a macroscopic
model system and pulling it tight. On the mesoscale, colloidal microgel particles symmetri-
cally confined to the interface between two immiscible fluids are pulled radially outward by
surface tension.

Keywords Linear elasticity theory · Core-shell system · Deformation under external load ·
Continuum theory

Mathematics Subject Classification 74B10 · 74A10 · 74A30

1 Introduction

Solid sphere-like core-shell systems containing an inner part, the core, of elastic proper-
ties different from a surrounding outer part, the shell, are encountered in various contexts
on different length scales. On large macroscopic scales, many stars, planets and moons can
be approximated by a core and a shell of different elasticity [1]. Jelly sweets covered by a
solid layer represent a popular example of not only mechanical or haptic but also culinary
experience. Conversely, on the mesoscopic colloidal scale and even down to the nanoscale,
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there are numerous soft matter systems involving core-shell particles. These can be prepared
in various ways [2, 3] as spherical colloidal particles with a polymer coating [4–6], as mi-
celles [7] or as polymer networks with different crosslinking degrees in the inner and outer
part [8–10]. Their controlled fabrication is not only pivotal for applications (such as microre-
actors [11, 12], targeted drug delivery [13, 14] or smart elastic materials [15, 16]). They also
serve as model systems to tailor effective repulsive square-shoulder potentials [17–27] and
to understand fundamental questions of statistical mechanics such as freezing and glass for-
mation [4, 28–30].

Our focus in this work is laid on the coupled elastic deformation of inner and outer part,
that is core and shell, respectively. We address spherical elastic systems when exposed to a
radially oriented force line density along the equatorial circumference of the shell. This setup
is motivated by the elasticity problem underlying colloidal core-shell microgel particles that
are adsorbed to the interface between two immiscible fluids. At their common contact line,
the two fluids pull on the shell of the microgel particle approximately in a radially outward
direction in a symmetric setup [31–33]. In many of such interfacial situations, the wetting
properties of the surface of a material are crucial for adsorption. A core-shell system pro-
vides an appropriate opportunity to adjust by a shell these surface wetting properties to the
current need. At the same time, the elastic properties of the core under the influence of an in-
terface are explored. Moreover, the particles may be density matched or functionalized, for
example integrating magnetic behaviour, by the selected core material [34–36]. On macro-
scopic toy model systems, the force densities can be applied by hand, while on even larger,
global scales atmospheric effects may lead to equatorially located line-like force densities on
planets. An example is the thin area of low atmospheric pressure located around the equator
of the earth in the inter-tropical convergence zone. In view of these different systems and
situations, the imposed equatorial line force density can either be oriented radially inward
(compressive) or radially outward (tensile). In the mathematical treatment this difference is
represented by an inversion of the sign of the load.

In this paper, we study the underlying elasticity problem. We present a general contin-
uum theory to compute and predict the shape change of an elastic core-shell system when
loaded by an equatorial ring of line force density. Importantly not only the shell deforms,
but also the inner core, and the two deformations are coupled to each other by the overall
architecture. Through this coupling, the core can influence or even determine the type of de-
formation of the shell, although the load is applied from outside to the shell, not to the core.
We analyse the resulting change of shape in detail, as a function of the relative size of core
and shell, different mechanical stiffness of core and shell, as well as their compressibility.
In particular, we include the possibility of an elastic auxetic response [37–42]. The latter
is characterized by a negative Poisson ratio, i.e. when stretched along one axis the system
expands along the perpendicular axes. Materials exhibiting corresponding elastic properties
have been identified, constructed and analysed [43–46]. In particular it is interesting to con-
sider core and shell materials with different Poisson ratios, as their competition can result
in qualitatively different modes of deformation. Our study links to previously investigated
geometries, particularly spherical one-component systems [47] or hollow capsules [48] as
special cases. Moreover, our additional predictions can be verified by experiments on differ-
ent scales.

2 Theory and Geometry

Within linear elasticity theory, small deformations of elastic materials are described. The
position r of a material element can be mapped to its position r′ in the deformed state

156 Chapter 2 Scientific publications



Elastic Deformations of Spherical Core-Shell Systems Under an Equatorial Load

by adding the displacement vector u. The displacement field u (r) in the bulk satisfies the
homogeneous Navier-Cauchy equations [49]

(1− 2ν)∇2u (r) + ∇(∇ · u (r)) = 0 (1)

with −1 < ν ≤ 1/2 denoting the Poisson ratio of the elastic substance in three-dimensional
situations [50]. Materials with ν = 1/2 are incompressible, while those with negative Pois-
son ratio are referred to as auxetic materials [50]. The latter, when stretched along a cer-
tain axis, expand along the lateral directions (instead of undergoing lateral contraction). We
ignore any force acting on the bulk, for example gravity. Consequently, in the bulk, the
right-hand side of Eq. (1) is set equal to zero.

Furthermore, linear elasticity theory for homogeneous isotropic materials dictates the
stress-strain relation [50]

E

1+ ν

(
ε(r) + ν

1− 2ν
Tr

(
ε(r)

)
I
)

= σ (r). (2)

Equation (2) describes the relationship between the strain tensor ε (r) = (∇u (r) +
(∇u (r))T

)
/2 as the symmetrized gradient of the displacement field u (r) and the symmetric

Cauchy stress tensor σ (we mark second-rank tensors and matrices by an underscore). E is
the Young modulus of the elastic material and I is the unit matrix. The Young modulus E

and the Poisson ratio ν are sufficient to quantify the properties of a homogeneous isotropic
elastic material.

The boundary conditions at the surface of the elastic shell are

σ (r) · n = λ

Rs
δ
(
θ − π

2

)
n. (3)

Here, n describes the outward normal unit vector of the surface and δ
(
θ − π

2

)
/Rs, with δ

the Dirac delta function, sets the location of the line at which the loading force line density
of amplitude λ is acting on the core-shell system. We use spherical coordinates so that θ = π

2
specifies the equator.

Since we are describing a core-shell material, different elastic properties and radii are
attributed to the core and to the shell, see Fig. 1. The core (green) is assigned the radius Rc,
the Young modulus Ec, and the Poisson ratio νc. The shell (red) is defined by the outer radius
Rs, the Young modulus Es, and the Poisson ratio νs. According to Eq. (3), λ > 0 marks the
amplitude of a line density of force pointing radially outward along the equator of the outer
surface of the shell.

The system is characterized by the following five dimensionless parameters. First, the
ratio λ/EsRs of the loading force line density on the surface to the Young modulus of the
shell describes the relative strength of the load magnitude and is proportional to the ampli-
tude of deformation. The second parameter is the ratio of Young moduli Ec/Es of the core
to the shell and in addition, the two dimensionless Poisson ratios νc and νs of core and shell,
respectively, enter the elasticity theory. The fifth parameter is the size ratio Rc/Rs of the
core to the shell.

In spherical coordinates, the position vector r transforms from the unloaded configura-
tion to the loaded configuration as r′ = r+ urer + uθeθ , with ur the radial and uθ the polar
component of the displacement field. er and eθ denote the radial and polar unit vector, re-
spectively. Due to the special axial symmetry of the problem, the azimuthal component of
the displacement field, uφ , is zero. Concerning the homogeneous Navier-Cauchy equations
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Fig. 1 Schematic visualisation of the core-shell system, here still in its initial spherical shape for illustration.
The core (green) is assigned the radius Rc, the Young modulus Ec, and the Poisson ratio νc. The shell (red)
is described by the outer radius Rs, the Young modulus Es, and the Poisson ratio νs. The system is loaded by
exposition to a ring of force line density around the equator of the outer sphere of magnitude λ.

Eq. (1) and the stress-strain relation Eq. (2) recast in spherical coordinates, where in our
case the azimuthal dependence vanishes, see the Supporting Information (SI).

For both core and shell we solve Eq. (1) by separation into a series expansion of the polar
dependence in terms of Legendre polynomials Pn (cos θ) and associated r-dependent pref-
actors (r = |r|) [51]. We distinguish by superscripts c and s the solutions for core and shell,
respectively. More precisely, the solutions [47, 52, 53] of the Navier-Cauchy equations (1)
split into a radial component u(c)

r (r) and a polar component u(c)
θ (r) for the core and take the

form

u(c)
r (r) =

∞∑
n=0

(
a(c)

n (n + 1)(−2+ n + 4νc)r
n+1 + b(c)

n nrn−1
)
Pn (cos θ) , (4)

uc
θ (r) =

∞∑
n=1

(
a(c)

n (5+ n − 4νc)r
n+1 + b(c)

n rn−1
) d

dθ
Pn (cos θ) . (5)

The solutions for the shell additionally contain terms inverse in the radial distance from the
origin

u(s)
r (r) =

∞∑
n=0

(
a(s)

n (n + 1)(−2+ n + 4νs)r
n+1 + b(s)

n nrn−1

+n(3+ n − 4νs)c
(s)
n r−n − (n + 1)d(s)

n r−(n+2)
)
Pn (cos θ) , (6)

u
(s)
θ (r) =

∞∑
n=1

(
a(s)

n (5+ n − 4νs)r
n+1 + b(s)

n rn−1

−(−4+ n + 4νs)c
(s)
n r−n + d(s)

n r−(n+2)
) d

dθ
Pn (cos θ) . (7)

As boundary conditions, we use that the traction vectors at the interface of core and shell
(at radius Rc) must be equal

σ (c) (Rcer ) · n = σ (s) (Rcer ) · n. (8)

Requiring strict elastic no-slip coupling, also the deformations at the interface must be equal

u(c) (Rcer ) = u(s) (Rcer ) . (9)
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Since the Legendre polynomials form a complete orthogonal set, the Dirac delta function in
Eq. (3) can be expanded in Legendre polynomials

δ
(
θ − π

2

)
=

∞∑
n=0

2n + 1

2
Pn

(
cos

(π

2

))
Pn (cos θ) . (10)

Due to the assumed mirror symmetry with respect to the equatorial plane, all odd series
expansion components in the core and shell solution in Eqs. (4)-(7) vanish. Therefore we
can write for the radial displacement

u(i)
r (r) = u

(i)

r,0 (r) + u
(i)

r,2 (r)P2 (cos(θ)) + · · · (11)

with i = c for the core and i = s for the shell, respectively. Here, the first component u(i)

r,0(r)

describes the overall volume change. We note that this term will vanish for νi → 1/2 and
remains as the only component for νi → −1. The second component gives the first correc-
tion to a spherical shape. A positive prefactor u

(i)

r,2(r) describes a relative prolate deformation

while u
(i)

r,2(r) < 0 implies a relative oblate deformation. It is in fact the latter case of an oblate
deformation which we expect when the core-shell particle is pulled outwards at the equator
(λ > 0).

The solutions for the displacements of the core and the shell diverge in response to the
Dirac delta function at the equator on the surface of the shell, see the boundary condition
Eq. (3). Yet, each mode of deformation is only excited to a finite degree by the Dirac delta
function, see Eq. (10). Therefore, the second components u

(c)

r,2(r) and u
(s)

r,2(r) for the core and

the shell remain finite and u
(s)

r,2(r) is even finite at the surface of the shell. We shall use them
as parameters to characterise the relative oblate or prolate deformation of the core and the
shell shape.

For convenience, we evaluate these second components at the core and shell radii and
normalize them with the corresponding unloaded radii of the core and the shell, respec-
tively. Hence, we use subsequently u

(c)

r,2/Rc ≡ u
(c)

r,2(Rc)/Rc and u
(s)

r,2/Rs ≡ u
(s)

r,2(Rs)/Rs as
dimensionless measures for the shape of the core and the shell.

3 Results and Discussion

3.1 General Solution and Limiting Behaviour

We first present the solutions for the displacements under the prescribed boundary condi-
tions by providing the core coefficients of the expansions (4) and (5)

a(c)
n = λ

EsRs

2n + 1

2
Pn (0)

(
Rc

Rs

)−2

R−n
s

[(
Ec

Es

)
c̃01,n + c̃02,n

]
1

D
, (12)

b(c)
n = − λ

EsRs

2n + 1

2
Pn (0)R−(n−2)

s

[(
Ec

Es

)
c̃03,n + c̃04,n

]
1

D
, (13)

and the shell coefficients of the expansions (6) and (7)

a(s)
n = λ

EsRs

2n + 1

2
Pn (0)R−n

s
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×
[(

Ec

Es

)2

c̃05,n +
(

Ec

Es

)
c̃06,n + c̃07,n

]
1

D
, (14)

b(s)
n = − λ

EsRs

2n + 1

2
Pn (0)R−(n−2)

s

×
[(

Ec

Es

)2

c̃08,n +
(

Ec

Es

)
c̃09,n + c̃10,n

]
1

D
, (15)

c(s)
n = λ

EsRs

2n + 1

2
Pn (0)

(
Rc

Rs

)n−1

Rn
cRs

×
[(

Ec

Es

)2

c̃11,n +
(

Ec

Es

)
c̃12,n + c̃13,n

]
1

D
, (16)

d(s)
n = − λ

EsRs

2n + 1

2
Pn (0)

(
Rc

Rs

)n−1

Rn+2
c Rs

×
[(

Ec

Es

)2

c̃14,n +
(

Ec

Es

)
c̃15,n + c̃16,n

]
1

D
, (17)

with

D =
(

Ec

Es

)2

c̃17,n + Ec

Es
c̃18,n + c̃19,n. (18)

The constants c̃01,n to c̃19,n are listed in the SI. In the absence of a core, i.e. Rc → 0, or in the
absence of the shell, i.e. Rc → Rs, we recover the previous solution for a one-component
system as given in Ref. [47]. Also for the special case of Ec = Es and vc = vs of identical
core and shell elasticities, our solution reduces to that of a one-component system.

3.2 Relative Deformation of the Shell and the Core

In the following, the degrees of deformation of the core and the shell are investigated for
volume conserving conditions (νc = νs = 1/2) for both tensile (λ > 0) and compressive (λ <

0) situations. Figure 2 shows the relative deformation u
(i)

r,2/Ri for a tensile (left column) and
a compressive (right column) line force density. The relative deformation is plotted for the
shell (i = s) in a) and b) and for the core (i = c) in c) and d) as a function of the ratios of
Young moduli Ec/Es . Data are provided for several size ratios Rc/Rs ranging from 0.3 to 1.

The first observation is that the coefficient u
(i)

r,2/Ri is negative for the tensile case and
positive for a compressive situation, corresponding to a relative oblate and prolate deforma-
tion. This is a simple consequence of the force load pulling or pushing the equator to the
outward or inward direction, respectively.

Second, the absolute magnitude of deformation decreases in both cases with increasing
Ec/Es which is the expected trend if the core is getting harder than the shell (at fixed shell
elasticity). For Ec/Es → 0 we obtain the special case of a hollow sphere. In this limit, the
relative deformation of the core and the shell reaches a finite saturation (note the logarithmic
scale in Fig. 2). In the opposite limit Ec/Es → ∞ the core gets rigid, which implies that the
displacement of the shell stays finite but the displacement of the core tends to zero. We find
a common finite slope of ±1 for the curves associated with the core for Ec/Es → ∞ in
Fig. 2.
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Fig. 2 Relative deformation u
(i)
r,2/Ri as a function of the ratio of Young moduli Ec/Es at different size ra-

tios Rc/Rs . Two cases are considered, namely a,c) tensile (oriented radially outward, λ/(EsRs) = 1) and
b,d) compressive (oriented radially inward, λ/(EsRs) = −1) line force densities. For both cases the rela-
tive deformation of the shell (i = s) in a) and b) and the core (i = c) in c) and d) is shown on a double
logarithmic scale. Further parameters are νc = νs = 1/2. The blue dashed line corresponds to the limit of a
one-component system (for Rc/Rs = 1).

Moreover, in Fig. 2a all curves intersect in the same point at Ec = Es . At this point the
two materials are identical and the size ratio becomes irrelevant for the deformation at the
shell surface. The curves of Fig. 2b do not exhibit a common intersection point due to our
normalization of the relative deformation with Rc and the fact that the radial deformation
is in general not homogeneous along the radius. For increasing Rc/Rs , the influence of the
core grows and the curves exhibit more sensitivity as a function of Ec for fixed Es .

To complement the picture, Fig. 3 shows the same quantity as in Fig. 2 for the tensile
case, namely the relative oblate deformation u

(i)

r,2/Ri , but now as a function of the size ratio
Rc/Rs for a) the shell (i = s) and b) the core (i = c). Curves for several ratios of Young
moduli Ec/Es are displayed. For Ec = Es (dashed red curves), the resulting effective one-
component system features a shell displacement that does not depend on the size ratio of
core to shell. Conversely, the plotted core displacement does depend on the size ratio for
Ec = Es because it is normalized by the size of the core. The deformation scaled by Rc in
the limit of small core size Rc → 0 (see Fig. 3b) reaches different limits for different ratios
of Young moduli although the core becomes vanishingly small. Furthermore, the limit of a
hollow sphere system Ec/Es → 0, is also shown in Fig. 3a) and b).

3.3 Deformational Behaviour for Different Poisson Ratios of Core and Shell

We now study the different deformation behaviour for the core and the shell with respect
to their Poisson ratios. In particular we explore the elastic response for an auxetic core
combined with a regular elastic shell, and vice versa. Such combinations can, at least, be
realized in macroscopic elastic model systems, when appropriate materials are chosen. Thus
their behaviour is investigated systematically for varying compressibility and auxetic prop-
erties. Figure 4 shows the deformational behaviour of the core and the shell as a function of
their (in general different) Poisson ratios νc and νs . For simplicity we here consider the same
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Fig. 3 Relative oblate

deformation u
(i)
r,2/Ri as a

function of the size ratio Rc/Rs

for different ratios of Young
moduli Ec/Es for a) the shell
(i = s) and b) the core (i = c) on
semi-logarithmic scale. Further
parameters are νc = νs = 1/2
and λ/(EsRs) = 1. The red
(Ec/Es = 1) and blue
(Ec/Es → 0) dashed curves
correspond to one-component
and hollow sphere systems,
respectively.

stiffness of the core and the shell, Ec = Es . Moreover we fix the core size to Rc = 0.5Rs

and the load amplitude to λ/(EsRs) = 0.1.
We distinguish between two different states of the displacement: I) the shell is more

oblate than the core and II) the core is more oblate than the shell. In order to do so, we use
the absolute value of the (here always negative) second coefficient of relative deformation of

the shell
∣∣∣u(s)

r,2/Rs

∣∣∣ and the core ∣∣∣u(c)

r,2/Rc

∣∣∣. For state I) (reddish and greenish in Fig. 4) we have∣∣∣u(s)

r,2/Rs

∣∣∣ >

∣∣∣u(c)

r,2/Rc

∣∣∣, while for state II) (greyish in Fig. 4) we have
∣∣∣u(s)

r,2/Rs

∣∣∣ <

∣∣∣u(c)

r,2/Rc

∣∣∣.
See also the two schematic sketches on the top right-hand side of Fig. 4. The transition from

I) to II), given by the same relative degree of oblate deformation
∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣, is
shown in Fig. 4 by the yellow line separating the two regions. There is a non-monotonic
behaviour of this line as a function of νc for an auxetic shell (νs ≈ −0.6) and a nearly
incompressible core.

The different colour codes on the right hand side in Fig. 4 represent the magnitude of
the relative oblate deformation of the shell for state I) and of the core for state II). For nine
selected points indicated in the νcνs-plane we illustrate the corresponding shapes of the core
and the shell as given by the components u

(c)

r,0, u
(c)

r,2, u
(s)

r,0 and u
(s)

r,2, respectively, describing the
change in volume and relative oblate deformation.

At the origin in the state diagram, where νc = νs = 0, the relative oblate deformation of
the core and the shell are equal so that the yellow line passes through the origin in Fig. 4.
Strictly speaking, this point [and all others on the diagonal from (a) to (d)] describes a one-
component system, because there the elastic properties of the core and the shell are identical.

We note that in general the yellow line of
∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣ does not coincide with the

diagonal of νc = νs in Fig. 4, although we find a one-component material in the latter case.
One aspect that contributes to this result is the inhomogeneous stress and strain distribution
in the system, resulting from the force density that is concentrated at the equator. Further
remarks on these stress and strain distributions are given in Sect. 3.4.
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Fig. 4 Bottom right: State diagram exhibiting two situations I) and II) in the plane spanned by the two Poisson
ratios of the core νc and the shell νs at fixed Ec = Es , Rc = 0.5Rs and λ/(EsRs) = 0.1. In I), corresponding
to the reddish and greenish region, the relative oblate deformation of the shell is larger in magnitude than
that of the core, see schematic representation on the top right. Here we plot in region I of the state diagram∣∣∣u(s)

r,2/Rs

∣∣∣ as colour-coded on the top right. Conversely, in II), corresponding to the greyish region in the state
diagram, the relative oblate deformation of the core is larger in magnitude than that of the shell. Here we

plot in region II of the state diagram
∣∣∣u(c)

r,2/Rc

∣∣∣ as colour-coded on the top right. The two states I) and II) are

separated by yellow lines, which represent the same relative degree of oblate deformation. Effectively, a one-
component system is given by the (white dashed) diagonal from (a) to (d). Furthermore, for nine parameter
combinations indicated for various points (a)-(i) in the state diagram, the corresponding elliptical shapes of
core and shell are shown on the left with the light curves as a reference to the undeformed system.

Clearly, for the parameter combinations on the yellow line separating regions I) and II),
the relative oblate deformations of core and shell are equal, as seen in Fig. 4 (a), (c), and

(i)
(∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣). In the special cases of (a) and (i) we recover spherical shapes

of core and shell, even if the volume has changed
(∣∣∣u(c)

r,2/Rc

∣∣∣ =
∣∣∣u(s)

r,2/Rs

∣∣∣ = 0
)
. We observe

that
∣∣∣u(c)

r,2/Rc

∣∣∣ and
∣∣∣u(s)

r,2/Rs

∣∣∣ in the state diagram are continuous when varying the Poisson

ratios, even in the vicinity of (e). For νs = −1, we found that the shell determines the con-
sidered modes u

(c)

r,2 and u
(s)

r,2, forcing them to vanish. In conclusion, different Poisson ratios
can largely tune the behaviour of the core-shell structure under external loading.

3.4 Internal Stress Field

We now provide explicit data for the internal stress field. For quasi volume conserving con-
ditions (vc = vs = 0.4999), a size ratio of Rc/Rs = 0.5, and an amplitude of λ/(EsRs) = 0.1
of the force line density, loaded configurations of the core-shell system for three different
ratios of Young moduli Ec/Es are shown in Fig. 5.

The loaded configurations are colour coded for the components of the (symmetric) stress
tensor, defined by σ (i) = σ (i)

rr er ⊗ er + σ
(i)
rθ (eθ ⊗ er + er ⊗ eθ ) + σ

(i)
θθ eθ ⊗ eθ , for the core
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Fig. 5 Loaded configurations of the core-shell system at fixed νc = νs = 0.4999, Rc = 0.5Rs , and
λ/(EsRs) = 0.1. The colour code reflects the three scaled components of the symmetric stress tensor

σ
(i)
rr /Ei , |σ (i)

rθ |/Ei and σ
(i)
θθ /Ei for the core (i = c) and the shell (i = s). Three different ratios of Young

moduli Ec/Es each are shown for the three components. The core and shell boundaries are indicated by

black lines. To achieve a better resolution, only the absolute value of σ
(i)
rθ /Ei is shown. By symmetry, this

tensor component changes sign in the different quadrants of the xz-plane.

(i = c) and the shell (i = s). The components of the stress tensor are scaled by the respective
Ei in the core (i = c) and in the shell (i = s). Results for the deformations and associated
components of stress are calculated from Eqs. (2) and (4)-(7), where the infinite series are
truncated at n = 32.

For all configurations, all components of the stress tensor are of the greatest extent around
the equatorial line of loading along the shell surface. Clearly, the system there experiences
a displacement in positive radial (outward) direction. Due to the quasi-incompressibility of
both shell and core, a strong degree of inverted displacement results at the poles.

For Ec 
 Es , the soft core deforms more easily than the surrounding harder shell and
experiences a higher amount of scaled stress. The scaled stress of the quasi-incompressible
shell is transferred from the equator towards the inside by the bulk elasticity of the shell (see
the right column in Fig. 5). Conversely, for Ec � Es , there is hardly any influence of the
deformation of the shell on the core for the scaled stresses (see the left column in Fig. 5).
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For comparison, the center column in Fig. 5 shows a loaded one-component system Ec = Es

and the corresponding scaled components of stress.

4 Conclusions

We have analysed in detail the deformational response of an elastic core-shell system to a ra-
dially oriented force line density acting along the outside equatorial line. Natural extensions
of our considerations include the following.

First, the axially symmetric situation that we addressed could be generalized to systems
exposed to line densities that are modulated along the circumference. Moreover, the ef-
fect of surface force densities applied in patches or distributed over the whole surface area
could be analysed, instead of pure force line densities. In a further step, the imposed dis-
tortions may not only be imposed from outside, but could additionally result from internal
active or actuation centers. Obvious candidates for corresponding actuatable cores are given
by magnetic gels [54, 55]. For these types of systems, magnetically induced deformations
have already been analysed by linear elasticity theory in the case of one-component elastic
spheres [56–58].

The considered geometry of loading can effectively be realised in experiments on the
mesoscale by exposing core-shell microgel particles to the interface between two immisci-
ble fluids acting on the elastic system [32, 33]. There, interfacial tension radially pulls on the
equatorial circumference along the common contact line in a symmetric setup. Yet, our de-
scription can be applied to any system on any scale that can be characterized by continuum
elasticity theory. For example, macroscopic elastic core-shell spheres could be generated as
toy models using soft transparent elastic shells on an elastic core. The line of loading force
could then simply be imposed by tying a cord around the equator of these macroscopic core-
shell spheres and tightening it. In this setup, the direction of the force is inverted as well.
However, this in our evaluation simply means that all directions of displacement are inverted.
Such macroscopic approaches may support the involvement of auxetic components [37–42].
Depending on the materials at hand, this strategy may facilitate the experimental confirma-
tion of our results, possibly by direct visual inspection.
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In this supporting information, the Navier-Cauchy equations and stress-strain relations

Eqs. (1) and (2) in the main text, respectively, are presented in spherical coordinates for

the problem under investigation. The further dependences of the coefficients a
(c)
n , b(c)n , a(s)n ,

b
(s)
n , c(s)n , d(s)n on the dimensionless parameters λ

EsRs
, Ec

Es
, Rc

Rs
, νc, νs and on the index n are

listed in a two-step order. First, the dependence of the coefficients on the amplitude of the

deformation λ
EsRs

, the ratio of the Young moduli Ec
Es

and the ratio of the radii Rc
Rs

is shown

and in the second step the dependence on the index n as well as on the Poisson ratios for

core νc and shell νs is emphasised. At last the asymptotic behaviour for n → ∞ is analysed

for the Legendre polynomials and the general rescaled solutions for the radial component of

the displacement field for the core and the shell.

Navier-Cauchy equations and stress-strain relations in

spherical coordinates

Due to the special axial symmetry of the problem, the azimuthal component uφ of the

displacement field u (r) is zero and any φ-dependence vanishes. Therefore, the displacement

field can be written as u (r) = ur(r, θ)er + uθ(r, θ)eθ, where er and eθ denote the radial and

polar unit vectors, respectively. Then the homogeneous Navier-Cauchy equations, Eq. (1) in

the main text, in spherical coordinates for the problem under investigation become

2(1− ν)

(
∂

∂r

(
1

r2
∂

∂r

(
r2ur (r, θ)

))
+

1

sin θ

∂

∂r

(
1

r

∂

∂θ
(sin θuθ (r, θ))

))

−(1− 2ν)

(
1

r2 sin θ

∂

∂θ

(
sin θ

(
∂

∂r
(ruθ (r, θ))−

∂

∂θ
ur (r, θ)

)))
= 0 (1)
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for the radial direction and

2(1− ν)

(
1

r3
∂

∂θ

∂

∂r

(
r2ur (r, θ)

)
+

1

r2
∂

∂θ

(
1

sin θ

∂

∂θ
(sin θuθ (r, θ))

))

−(1− 2ν)

(
−1

r

∂

∂r

(
∂

∂r
(ruθ (r, θ))−

∂

∂θ
ur (r, θ)

))
= 0 (2)

for the polar direction. The nontrivial components of the stress-strain relation, Eq. (2) in

the main text, in spherical coordinates for the underlying problem read

σrr(r, θ) =
E

1 + ν

(
εrr(r, θ) +

ν

1− 2ν
(εrr(r, θ) + εθθ(r, θ))

)
, (3)

σrθ(r, θ) =
E

1 + ν
εrθ(r, θ), (4)

σθθ(r, θ) =
E

1 + ν

(
εθθ(r, θ) +

ν

1− 2ν
(εrr(r, θ) + εθθ(r, θ))

)
. (5)

Here, in spherical coordinates, we inserted for the symmetric Cauchy stress tensor σ (r) =

σrr(r, θ)er ⊗ er + σrθ(r, θ) (eθ ⊗ er + er ⊗ eθ) + σθθ(r, θ)eθ ⊗ eθ and for the strain tensor

ε (r) = εrr(r, θ)er ⊗ er + εrθ(r, θ) (eθ ⊗ er + er ⊗ eθ) + εθθ(r, θ)eθ ⊗ eθ, where ⊗ denotes the

dyadic product.

Dependence of the coefficients a
(c)
n , b

(c)
n , a

(s)
n , b

(s)
n , c

(s)
n , d

(s)
n on

the amplitude of deformation λ
EsRs

, the ratio of Young

moduli Ec
Es

and the ratio of radii Rc
Rs

The coefficients a
(c)
n , b

(c)
n , a

(s)
n , b

(s)
n , c

(s)
n , d

(s)
n with n ≥ 0 are listed and their dependence on

the amplitude of deformation λ
EsRs

, the ratio of Young moduli Ec
Es

and the ratio of radii Rc
Rs

is highlighted. The expressions are found from the solutions of the relative deformation
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u(c)(Rcer)
Rc

and u(s)(Rser)
Rs

, respectively:

a
(c)
n

Rc
Rn+1

c =
λ

EsRs

2n+ 1

2
Pn (0)

(
Rc
Rs

)(n−2) [(Ec
Es

)
c̃01,n + c̃02,n

]
1

D
,

b
(c)
n

Rc
Rn−1

c =− λ

EsRs

2n+ 1

2
Pn (0)

(
Rc
Rs

)(n−2) [(Ec
Es

)
c̃03,n + c̃04,n

]
1

D
,

a
(s)
n

Rs
Rn+1

s =
λ

EsRs

2n+ 1

2
Pn (0)

[(
Ec
Es

)2

c̃05,n +

(
Ec
Es

)
c̃06,n + c̃07,n

]
1

D
,

b
(s)
n

Rs
Rn−1

s =− λ

EsRs

2n+ 1

2
Pn (0)

[(
Ec
Es

)2

c̃08,n +

(
Ec
Es

)
c̃09,n + c̃10,n

]
1

D
,

c
(s)
n

Rs
R−n

s =
λ

EsRs

2n+ 1

2
Pn (0)

(
Rc
Rs

)(2n−1)
[(

Ec
Es

)2

c̃11,n +

(
Ec
Es

)
c̃12,n + c̃13,n

]
1

D
,

d
(s)
n

Rs
R

−(n+2)
s =− λ

EsRs

2n+ 1

2
Pn (0)

(
Rc
Rs

)(2n+1)
[(

Ec
Es

)2

c̃14,n +

(
Ec
Es

)
c̃15,n + c̃16,n

]
1

D
,

where

D =

(
Ec
Es

)2

c̃17,n +
Ec
Es

c̃18,n + c̃19,n. (6)
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The constants c̃01,n to c̃19,n are given below with their dependence on the ratio of radii Rc
Rs

:

c̃01,n =c01,n + c02,n

(
Rc
Rs

)2

+ c03,n

(
Rc
Rs

)(2n+1)

+ c04,n

(
Rc
Rs

)(2n+3)

,

c̃02,n =c05,n + c06,n

(
Rc
Rs

)2

+ c07,n

(
Rc
Rs

)(2n+1)

+ c08,n

(
Rc
Rs

)(2n+3)

,

c̃03,n =c09,n + c10,n

(
Rc
Rs

)2

+ c11,n

(
Rc
Rc

)(2n+1)

+ c12,n

(
Rc
Rs

)(2n+3)

,

c̃04,n =c13,n + c14,n

(
Rc
Rs

)2

+ c15,n

(
Rc
Rs

)(2n+1)

+ c16,n

(
Rc
Rs

)(2n+3)

,

c̃05,n =c17,n + c18,n

(
Rc
Rs

)(2n−1)

+ c19,n

(
Rc
Rs

)(2n+1)

,

c̃06,n =c20,n + c21,n

(
Rc
Rs

)(2n−1)

+ c22,n

(
Rc
Rs

)(2n+1)

,

c̃07,n =c23,n + c24,n

(
Rc
Rs

)(2n−1)

+ c25,n

(
Rc
Rs

)(2n+1)

,

c̃08,n =c26,n + c27,n

(
Rc
Rs

)(2n+1)

+ c28,n

(
Rc
Rs

)(2n+3)

,

c̃09,n =c29,n + c30,n

(
Rc
Rs

)(2n+1)

+ c31,n

(
Rc
Rs

)(2n+3)

,

c̃10,n =c32,n + c33,n

(
Rc
Rs

)(2n+1)

+ c34,n

(
Rc
Rs

)(2n+3)

,
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c̃11,n =c35,n + c36,n

(
Rc
Rs

)2

+ c37,n

(
Rc
Rs

)(2n+3)

,

c̃12,n =c38,n + c39,n

(
Rc
Rs

)2

+ c40,n

(
Rc
Rs

)(2n+3)

,

c̃13,n =c41,n + c42,n

(
Rc
Rs

)2

+ c43,n

(
Rc
Rs

)(2n+3)

,

c̃14,n =c44,n + c45,n

(
Rc
Rs

)2

+ c46,n

(
Rc
Rs

)(2n+1)

,

c̃15,n =c47,n + c48,n

(
Rc
Rs

)2

+ c49,n

(
Rc
Rs

)(2n+1)

,

c̃16,n =c50,n + c51,n

(
Rc
Rs

)2

+ c52,n

(
Rc
Rs

)(2n+1)

,

c̃17,n =c53,n + c54,n

(
Rc
Rs

)(2n−1)

+ c55,n

(
Rc
Rs

)(2n+1)

+ c56,n

(
Rc
Rs

)(2n+3)

+ c57,n

(
Rc
Rs

)(4n+2)

,

c̃18,n =c58,n + c59,n

(
Rc
Rs

)(2n−1)

+ c60,n

(
Rc
Rs

)(2n+1)

+ c61,n

(
Rc
Rs

)(2n+3)

+ c62,n

(
Rc
Rs

)(4n+2)

,

c̃19,n =c63,n + c64,n

(
Rc
Rs

)(2n−1)

+ c65,n

(
Rc
Rs

)(2n+1)

+ c66,n

(
Rc
Rs

)(2n+3)

+ c67,n

(
Rc
Rs

)(4n+2)

.

Dependence of the constants c01,n to c67,n on the index n,

the Poisson ratio of the core νc and of the shell νs

The constants c01,n to c67,n only depend on the index n, the Poisson ratio of the core νc and
of the shell νs. They are listed below:

c01,n = 0,

c02,n = −4(−1 + n)2(3 + 8n+ 4n2)(−1 + νs)(−2− 3n+ 2νs + 4nνs)

(1 + νc)(1 + νs)2
,

c03,n = −2(1 + 2n)2(−3 + n+ 2n2)(−1 + νs)(−2 + n2 + 2νs)

(1 + νc)(1 + νs)2
,

c04,n =
2n(2 + n)(3− n− 14n2 + 4n3 + 8n4)(−1 + νs)

(1 + νc)(1 + νs)2
,

c05,n = 0,

c06,n =
4(−1 + n)(3 + 8n+ 4n2)(−1 + νs)(1 + n+ n2 − νs − 2nνs)

(1 + νs)3
,

6

P8 J. Elasticity 150, 77 (2022) 173



c07,n =
2(1 + 2n)2(−3 + n+ 2n2)(−1 + νs)(−2 + n2 + 2νs)

(1 + νs)3
,

c08,n = −2n(2 + n)(3− n− 14n2 + 4n3 + 8n4)(−1 + νs)

(1 + νs)3
,

c09,n =
4(−1 + 4n2)(1 + n+ n2 + νc + 2nνc)(−1 + νs)(−1 + 2n+ n2 + 2νs)

(1 + νc)(1 + νs)2
,

c10,n = −4(−1 + n)(3 + 11n+ 12n2 + 4n3)(−1 + νs)(5− νc − 6νs + 2n(−1 + νc + νs) + n2(−2 + 4νs))

(1 + νc)(1 + νs)2
,

c11,n = −2(3 + 2n)2(−1− 2n+ n2 + 2n3)(−1 + νs)(−2 + n2 + 2νs)

(1 + νc)(1 + νs)2
,

c12,n = 2(2 + n)(−1 + 4n2)(−1 + νs)

[
5n3 + 2n4 + n2(6− 8νs)

(1 + νc)(1 + νs)2

+
−4(1 + νc)(−1 + 2νs)− n(1 + 8νs + 4νc(−3 + 4νs))

(1 + νc)(1 + νs)2

]
,

c13,n = −4(−2− n+ 8n2 + 4n3)(−1 + 2νc + n(−3 + 4νc))(−1 + νs)(−1 + 2n+ n2 + 2νs)

(1 + νs)3
,

c14,n =
4(−1 + n)(3 + 11n+ 12n2 + 4n3)(−1 + νs)(5− 4νc + n2(−2 + 4νc)− 3νs + n(6νc − 2(1 + νs)))

(1 + νs)3
,

c15,n =
2(3 + 2n)2(−1− 2n+ n2 + 2n3)(−1 + νs)(−2 + n2 + 2νs)

(1 + νs)3
,

c16,n = −2(2 + n)(−1 + 4n2)(−1 + νs)

[
5n3 + 2n4 + n2(6− 8νc)

(1 + νs)3

+
−4(−1 + 2νc)(1 + νs)− n(1− 12νs + 8νc(1 + 2νs))

(1 + νs)3

]
,

c17,n =
4(−1 + n)2(1 + n+ n2 + νc + 2nνc)(−2− 3n+ 2νs + 4nνs)

(1 + νc)2(1 + νs)
,

c18,n =
2(−1 + n)(1 + 2n)(1 + n+ n2 + νc + 2nνc)(−2 + n2 + 2νs)

(1 + νc)2(1 + νs)
,

c19,n = −2(−1 + n)n(2 + n)(−1 + 2n)(1 + n+ n2 + νc + 2nνc)

(1 + νc)2(1 + νs)
,

c20,n = −4(−1 + n)

[−3(−1 + 3νc)(−1 + νs) + n2(−4 + νc(9− 16νs) + 9νs)

(1 + νc)(1 + νs)2

+
n(−14 + νc(27− 32νs) + 15νs) + 4n3(5− 6νs + νc(−6 + 8νs)) + 2n4(5− 6νs + νc(−6 + 8νs))

(1 + νc)(1 + νs)2

]
,

c21,n = −2(−1− n+ 2n2)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))(−2 + n2 + 2νs)

(1 + νc)(1 + νs)2
,

c22,n =
2n(2 + n)(1− 3n+ 2n2)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))

(1 + νc)(1 + νs)2
,

c23,n =
4(−1 + n)(2 + n)(−1 + 2νc + n(−3 + 4νc))(1 + n+ n2 − νs − 2nνs)

(1 + νs)3
,

c24,n =
2(−2− 3n+ 3n2 + 2n3)(−1 + 2νc + n(−3 + 4νc))(−2 + n2 + 2νs)

(1 + νs)3
,

c25,n = −2n(2 + n)2(1− 3n+ 2n2)(−1 + 2νc + n(−3 + 4νc))

(1 + νs)3
,

c26,n =
4(−1 + n)(1 + n+ n2 + νc + 2nνc)(−2− 3n+ 2νs + 4nνs)(−1 + 2n+ n2 + 2νs)

(1 + νs)(1 + νc)2
,

c27,n =
2(−1 + n)(3 + 5n+ 2n2)(1 + n+ n2 + νc + 2nνc)(−2 + n2 + 2νs)

(1 + νc)2(1 + νs)
,

c28,n = −2(−1 + n)(2 + n)(1 + 2n)(1 + n+ n2 + νc + 2nνc)(8 + n+ n2 − 24νs + 16ν2s )

(1 + νc)2(1 + νs)
,

c29,n = −4(−1 + 2n+ n2 + 2νs)

[−3(−1 + 3νc)(−1 + νs) + n2(−4 + νc(9− 16νs) + 9νs)

(1 + νc)(1 + νs)2

+
n(−14 + νc(27− 32νs) + 15νs) + 4n3(5− 6νs + νc(−6 + 8νs)) + 2n4(5− 6νs + νc(−6 + 8νs))

(1 + νc)(1 + νs)2

]
,
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c30,n = −2(−3− 2n+ 3n2 + 2n3)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))(−2 + n2 + 2νs)

(1 + νc)(1 + νs)2
,

c31,n = 2(2 + n)(1 + 2n)

[
(6n4(−1 + 2νc) + n5(−2 + 4νc)− 12(−1 + νs)(−1 + νc + 2νcνs)− n(11 + νc − 4νs − 28νcνs − 8ν2s + 32νcν2s )

(1 + νc)(1 + νs)2

+
n3(9− 8νs + νc(−15 + 16νs)) + 2n2(3 + 16νs − 16ν2s + 2νc(−7− 4νs + 8ν2s )))

(1 + νc)(1 + νs)2

]
,

c32,n =
4(2 + n)(−1 + 2νc + n(−3 + 4νc))(−1 + 2n+ n2 + 2νs)(1 + n+ n2 − νs − 2nνs)

(1 + νs)3
,

c33,n =
2(2 + n)(−3− 2n+ 3n2 + 2n3)(−1 + 2νc + n(−3 + 4νc))(−2 + n2 + 2νs)

(1 + νs)3
,

c34,n = −2(2 + n)(1 + 2n)(−1 + 2νc + n(−3 + 4νc))(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νs)3
,

c35,n = −2(−1 + n)(1 + 2n)(1 + n+ n2 + νc + 2nνc)(−1 + 2n+ n2 + 2νs)

(1 + νs)(1 + νc)2
,

c36,n =
2(−1 + n)2(3 + 5n+ 2n2)(1 + n+ n2 + νc + 2nνc)

(1 + νc)2(1 + νs)
,

c37,n =
4(−1 + n)(2 + n)(1 + n+ n2 + νc + 2nνc)(−1 + 2νs + n(−3 + 4νs))

(1 + νc)2(1 + νs)
,

c38,n =
2(−1− n+ 2n2)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))(−1 + 2n+ n2 + 2νs)

(1 + νc)(1 + νs)2
,

c39,n = −2(−1 + n)2(3 + 5n+ 2n2)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))

(1 + νc)(1 + νs)2
,

c40,n = −4(−1 + n)(2 + n)(−2 + νc + νs + 4νcνs + n3(−6 + 4νc + 4νs) + 8n2(−1 + 2νcνs) + n(−8 + νc + νs + 16νcνs))

(1 + νc)(1 + νs)2
,

c41,n = −2(−2− 3n+ 3n2 + 2n3)(−1 + 2νc + n(−3 + 4νc))(−1 + 2n+ n2 + 2νs)

(1 + νs)3
,

c42,n =
2(−1 + n)2(2 + n)(3 + 5n+ 2n2)(−1 + 2νc + n(−3 + 4νc))

(1 + νs)3
,

c43,n =
4(−1 + n)(2 + n)(−1 + 2νc + n(−3 + 4νc))(1 + n+ n2 + νs + 2nνs)

(1 + νs)3
,

c44,n =
2(−1 + n)n(−1 + 2n)(1 + n+ n2 + νc + 2nνc)(−1 + 2n+ n2 + 2νs)

(1 + νs)(1 + νc)2
,

c45,n = −2(−1 + n)2(1 + 2n)(1 + n+ n2 + νc + 2nνc)(8 + n+ n2 − 24νs + 16ν2s )

(1 + νc)2(1 + νs)
,

c46,n = −4(−1 + n)(1 + n+ n2 + νc + 2nνc)(−2 + n2 + 2νs)(−1 + 2νs + n(−3 + 4νs))

(1 + νc)2(1 + νs)
,

c47,n = −2n(1− 3n+ 2n2)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))(−1 + 2n+ n2 + 2νs)

(1 + νc)(1 + νs)2
,

c48,n = 2(−1 + n)(1 + 2n)

[
(6n4(−1 + 2νc) + n5(−2 + 4νc)− 12(−1 + νs)(−1 + νc + 2νcνs)− n(11 + νc − 4νs − 28νcνs − 8ν2s + 32νcν2s )

(1 + νc)(1 + νs)2

+
n3(9− 8νs + νc(−15 + 16νs)) + 2n2(3 + 16νs − 16ν2s + 2νc(−7− 4νs + 8ν2s ))

(1 + νc)(1 + νs)2

]
,
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c49,n =
4(−1 + n)(−2 + n2 + 2νs)(−2 + νc + νs + 4νcνs + n3(−6 + 4νc + 4νs) + 8n2(−1 + 2νcνs) + n(−8 + νc + νs + 16νcνs))

(1 + νc)(1 + νs)2
,

c50,n =
2n(2− 5n+ n2 + 2n3)(−1 + 2νc + n(−3 + 4νc))(−1 + 2n+ n2 + 2νs)

(1 + νs)3
,

c51,n = −2(−1 + n)(1 + 2n)(−1 + 2νc + n(−3 + 4νc))(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νs)3
,

c52,n = −4(−1 + n)(−1 + 2νc + n(−3 + 4νc))(−2 + n2 + 2νs)(1 + n+ n2 + νs + 2nνs)

(1 + νs)3
,

c53,n = −8(−1 + n)2(1 + n+ n2 + νc + 2nνc)(1 + n+ n2 + νs + 2nνs)(−2− 3n+ 2νs + 4nνs)

(1 + νc)2(1 + νs)2
,

c54,n =
2(−1 + n)(1 + 2n)2(1 + n+ n2 + νc + 2nνc)(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νc)2(1 + νs)2
,

c55,n = −4(−1 + n)2n(−6− n+ 17n2 + 16n3 + 4n4)(1 + n+ n2 + νc + 2nνc)

(1 + νc)2(1 + νs)2
,

c56,n =
2(−1 + n)2(2 + n)(1 + 2n)2(1 + n+ n2 + νc + 2nνc)(8 + n+ n2 − 24νs + 16ν2s )

(1 + νc)2(1 + νs)2
,

c57,n = −8(−1 + n)(2 + n)(1 + n+ n2 + νc + 2nνc)(1 + n+ n2 − νs − 2nνs)(−1 + 2νs + n(−3 + 4νs))

(1 + νc)2(1 + νs)2
,

c58,n = 8(−1 + n)(1 + n+ n2 + νs + 2nνs)

[−3(−1 + 3νc)(−1 + νs) + n2(−4 + νc(9− 16νs) + 9νs)

(1 + νc)(1 + νs)3

+
n(−14 + νc(27− 32νs) + 15νs) + 4n3(5− 6νs + νc(−6 + 8νs)) + 2n4(5− 6νs + νc(−6 + 8νs))

(1 + νc)(1 + νs)3

]
,

c59,n = −2(−1 + n)(1 + 2n)2(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νc)(1 + νs)3
,

c60,n =
4(−1 + n)2n(−6− n+ 17n2 + 16n3 + 4n4)(−1 + 5νc + 6n(−1 + 2νc) + n2(−2 + 4νc))

(1 + νc)(1 + νs)3
,

c61,n = −2(1 + 2n)2(−2 + n+ n2)

[
6n4(−1 + 2νc) + n5(−2 + 4νc)− 12(−1 + νs)(−1 + νc + 2νcνs)

(1 + νc)(1 + νs)3

+
−n(11 + νc − 4νs − 28νcνs − 8ν2s + 32νcν2s ) + n3(9− 8νs + νc(−15 + 16νs)) + 2n2(3 + 16νs − 16ν2s + 2νc(−7− 4νs + 8ν2s ))

(1 + νc)(1 + νs)3

]
,

c62,n = 8(−1 + n)(2 + n)(1 + n+ n2 − νs − 2nνs)

[−2 + νc + νs + 4νcνs + n3(−6 + 4νc + 4νs) + 8n2(−1 + 2νcνs)

(1 + νc)(1 + νs)3

+
n(−8 + νc + νs + 16νcνs)

(1 + νc)(1 + νs)3

]
,

c63,n = −8(−1 + n)(2 + n)(−1 + 2νc + n(−3 + 4νc))(1 + n+ n2 − νs − 2nνs)(1 + n+ n2 + νs + 2nνs)

(1 + νs)4
,

c64,n =
2(1 + 2n)2(−2 + n+ n2)(−1 + 2νc + n(−3 + 4νc))(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νs)4
,

c65,n = −4n(−2 + n+ n2)2(−3 + n+ 8n2 + 4n3)(−1 + 2νc + n(−3 + 4νc))

(1 + νs)4
,

c66,n =
2(−1 + n)(2 + n)(1 + 2n)2(−1 + 2νc + n(−3 + 4νc))(4− 2n− n2 + 2n3 + n4 − 4ν2s )

(1 + νs)4
,

c67,n = −8(−1 + n)(2 + n)(−1 + 2νc + n(−3 + 4νc))(1 + n+ n2 − νs − 2nνs)(1 + n+ n2 + νs + 2nνs)

(1 + νs)4
.
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Asymptotic behaviour of the Legendre polynomials Pn

and the general rescaled solutions for the radial compo-

nent of the displacement field for the core u
(c)
r /Rc and

for the shell u(s)
r /Rs

For the Legendre polynomials Pn (cos θ) with θ = π/2, the dependence on the index n is as

follows[1]

Pn (0) =





(−1)m

22m
(2m)!
(m!)2

for n = 2m,

0 for n = 2m+ 1.

(7)

Let am = 1
22m

(2m)!
(m!)2

. To calculate the asymptotic behaviour of this coefficient for m → ∞,

Stirling’s formula can be used:

N ! =
√
2πN

(
N

e

)N (
1 +O

(
1

N

))
, (8)

where e denotes Euler’s number. Applying this formula to am leads (for large m) to:

am ≈ 1

22m

√
2π2m

2πm

(
2m

e

)2m ( e

m

)2m

=
22m

22m

√
2π2m

2πm

=
1√
πm

. (9)

Thus, the following asymptotic behaviour for Pn(0) results:

Pn(0) ≈





√
2
πn

for n even,

0 for n odd.
(10)
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Furthermore, the dependence on the index n for the angles θ = 0, π gives[1]

Pn (1) = 1, (11)

Pn (−1) =





1 for n even,

−1 for n odd.
(12)

The case of n being odd is, due to the assumed mirror symmetry, irrelevant for the investi-

gated problem, therefore Pn(cos 0) = Pn(cos π) = 1 holds true.

The general rescaled solution for the radial component of the displacement field for the

core u
(c)
r /Rc is obtained at the core radius Rc as follows

u
(c)
r (Rcer)

Rc

=
∞∑

n=0

G(c)
r,n

(
λ

EsRs

,
Ec

Es

,
Rc

Rs

, νc, νs

)
2n+ 1

2
Pn (0)Pn (cos θ) (13)

where G
(c)
r,n (λ/(EsRs), Ec/Es, Rc/Rs, νc, νs) is the corresponding kernel function of the core

and the remaining factors in the sum result from the expansion of the Dirac delta function

in Legendre polynomials. In terms of the coefficients a
(c)
n and b

(c)
n , (13) can also be written

as

u
(c)
r (Rcer)

Rc

=
∞∑

n=0

(
a
(c)
n

Rc

Rn+1
c (n+ 1)(−2 + n+ 4νc) +

b
(c)
n

Rc

Rn−1
c n

)
Pn (cos θ)

=
∞∑

n=0

2n+ 1

2
Pn(0)Pn (cos θ)

(
Rc

Rs

)(n−2)
λ

EsRs

× 1

D



[(

Ec

Es

)
c̃01,n + c̃02,n

]
(n+ 1)(−2 + n+ 4νc)

︸ ︷︷ ︸
I

−
[(

Ec

Es

)
c̃03,n + c̃04,n

]
n

︸ ︷︷ ︸
II


 .

(14)

Comparing the solution for u
(c)
r /Rc here with that in (13), it can be concluded that the

kernel function of the core G
(c)
r,n is the product of the factors (Rc/Rs)

(n−2), λ/(EsRs), 1/D
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(see Eq. (6)) and the sum of 14I + 14II. By multiplying the sum 14I + 14II by 1/D, an

order in index n of O(1) can be proved in the asymptotic behaviour of the limit n → ∞

for Rc/Rs < 1. Therefore, the factor (Rc/Rs)
(n−2) is the dominant factor in the asymptotic

behaviour for the limit n → ∞ of the kernel function of the core G
(c)
r,n. Combined with

the n-dependence of the Legendre polynomials Pn (cos θ) the general rescaled radial solution

of the core u
(c)
r /Rc at the core radius Rc gives a convergent series at the poles and at the

equator, due to the (Rc/Rs)
n-dependence (Rc/Rs < 1, exponential decrease).

The general rescaled solution for the radial component of the displacement field for the

shell u(s)
r /Rs is obtained at the outer shell radius Rs as

u
(s)
r (Rser)

Rs

=
∞∑

n=0

G(s)
r,n

(
λ

EsRs

,
Ec

Es

,
Rc

Rs

, νc, νs

)
2n+ 1

2
Pn (0)Pn (cos θ) (15)

where G
(s)
r,n (λ/(EsRs), Ec/Es, Rc/Rs, νc, νs) is the corresponding kernel function of the shell

and the remaining factors are the same as for the core solution. In terms of the coefficients

12
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a
(s)
n , b(s)n , c(c)n and d

(c)
n , (15) can also be written as

u
(s)
r (Rser)

Rs

=
∞∑

n=0

(
a
(s)
n

Rs

Rn+1
s (n+ 1)(−2 + n+ 4νs) +

b
(s)
n

Rs

Rn−1
s n

+
c
(s)
n

Rs

R−n
s n(3 + n− 4νs)−

d
(s)
n

Rs

R
−(n+2)
2 (n+ 1)

)
Pn (cos θ)

=
∞∑

n=0

2n+ 1

2
Pn(0)Pn (cos θ)

λ

EsRs

× 1

D




[(
Ec

Es

)2

c̃05,n +

(
Ec

Es

)
c̃06,n + c̃07,n

]
(n+ 1)(−2 + n+ 4νs)

︸ ︷︷ ︸
I

−
[(

Ec

Es

)2

c̃08,n +

(
Ec

Es

)
c̃09,n + c̃10,n

]
n

︸ ︷︷ ︸
II

+

(
Rc

Rs

)(2n−1)
[(

Ec

Es

)2

c̃11,n +

(
Ec

Es

)
c̃12,n + c̃13,n

]
n(3 + n− 4νs)

︸ ︷︷ ︸
III

+

(
Rc

Rs

)(2n+1)
[(

Ec

Es

)2

c̃14,n +

(
Ec

Es

)
c̃15,n + c̃16,n

]
(n+ 1)

︸ ︷︷ ︸
IV




(16)

By comparing the solution for u(s)
r /Rs with that in (15), it can be concluded that the kernel

function of the shell G(s)
r,n is the product of the factors λ/(EsRs), 1/D and the sum of 16I

+ 16II + 16III + 16IV. By multiplying the sum 16I + 16II by 1/D, an order in index n

of O(1/n) can be proved in the asymptotic behaviour of the limit n → ∞ for Rc/Rs < 1.

Multiplying the sum 16III + 16IV by 1/D leads to a dominant factor of (Rc/Rs)
2n under

the same conditions. Therefore, the asymptotic behaviour for n → ∞ is proportional to 1/n

for the kernel function of the shell G(s)
r,n. Combined with the n-dependence of the Legendre

polynomials Pn (cos θ) the general rescaled radial solution for the shell u(s)
r /Rs at the outer

13

180 Chapter 2 Scientific publications



shell radius Rs results in a divergent series at the equator (θ = π/2), due to the 1/n-

dependence of G(s)
r,n (harmonic series) and a convergent series at the poles (θ = 0, π), due to

the property of the Legendre polynomials at the poles (alternating series and a monotonic

decrease to zero of the absolute value of the summands).
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Chapter 3

Concluding remarks

3.1 Summary

In this dissertation, a comprehensive evaluation of effects that can be observed by
varying the arrangement of magnetizable inclusions in magnetic gels and elastomers
is presented. We mainly focus on magnetostriction, i.e. deformations induced
by homogeneous external magnetic fields, and magnetorheological effects, here
particularly implying changes in elastic moduli. For this purpose, we have developed
a scale-bridging approach in P1 to calculate the overall magnetostrictive effects from
the arrangement of magnetizable inclusions. Afterward, it was used to evaluate these
effects for a selection of regular as well as randomized arrangements, identifying
even qualitative differences. The employed elastic matrix material, particularly its
compressibility, also influences the magnetostrictive behavior qualitatively. This
description was subsequently expanded and applied to twist-type deformations in
P2, polydisperse configurations of magnetizable inclusions in P3, and higher-order
modes of deformation in P4.
When substantiated with additional analytical calculations as presented in P6,

we managed to optimize configurations for maximized magnetostrictive as well
as magnetorheological effects in P5. Naturally, which configurations are optimal
depends on several parameters, such as the desired mode of deformation or type of
magnetorheological effect, the number of magnetizable inclusions, as well as the
employed elastic matrix material. With modern fabrication techniques, the targeted
placement of magnetizable inclusions that is necessary for practical realization of
our predicted optimized configurations is within reach. In our investigations, we
identify the ones that are the most promising to be fabricated to substantially
improve the performance of the materials.
As a more rarely investigated effect, we study magnetically induced changes

in the thermal conductivity of magnetic gels and elastomers in P7. Finally, we
investigate linearly elastic deformations of spherical core-shell systems as another
example of elastic composite systems when subject to an applied equatorial force
line density in P8.
The results inP1–P7 can to a large extent be directly applied to electrorheological
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gels and elastomers [49–51], simply replacing the magnetic by electric moments
as induced by external electrical fields. For our approach to remain accurate,
dynamical effects should be small, such as electrical currents.
Lastly, I would like to point to prior dissertations in this research area that provide

further reading and were helpful in preparing the present work. Namely, these are
the dissertations by Mate Puljiz [233], Giorgio Pessot [234], Peet Cremer [235],
Karl Kalina (in German) [236], and Philipp Gebhart (in German) [93].

3.2 Outlook

In the future, I hope that a targeted placement of magnetizable inclusions in
elastic matrices develops as promising as it appears at the moment for practical
realization of the strategies outlined in this work. Potentially, also using explicitly
the polydispersity of the particle sizes is promising. Experimental tools to realize
corresponding systems are primarily 3D printing [22–24,24–27], but other options
exist, namely structuring by magnetic fields [28], sequential photopolymerization
[29], acoustic holography [30], layerwise polymerization combined with particle
placement by molds or by hand [31,32], and wax-cast molding [33]. In this way, the
results presented in P1–P5 can be set into practice. One very promising direction
in the future would be to fully automate the overall process, so that that these
experimental results could directly be connected to an optimization pipeline [237].
On the theoretical side, an immediate extension consists of identifying optimized

arrangements for other modes of deformation as well, besides those listed in
P5. However, this necessitates new analytical derivations in analogy to P6 to
link between the discrete positioning of the inclusions and macroscopic modes
of deformation. Furthermore, introducing nonlinear elasticity into our scheme of
evaluation represents an important aspect. It would increase quantitative accuracy
in the limit of large deformations. As a major difficulty, the superposition principle,
as detailed in Sec. 1.2, would then be no longer applicable. Therefore, further
developments are needed in that case to mitigate the huge increase in resulting
computational requirements.
Additionally, the description of the magnetic effects could likewise be expanded.

It might be worthwhile to study magnetizable inclusions that are not magnetized
to saturation, leading to mutual magnetization effects [69] or to also include
moments beyond the dipole approximation [84]. Still, these approaches are more
computationally demanding, which limits their use to lower numbers of magnetizable
inclusions. Another new avenue is provided by magnetically hard inclusions, which
cause hysteretic behavior of magnetic gels and elastomers [44, 111,112]. Therefore,
they allow these materials to perform history-dependent functions, opening another
means of customization and potential optimization. Finally, studying dynamical
effects in the magnetostrictive behavior, possibly using a viscoelastic description, is
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another open direction.
Generally, theoretical descriptions of these materials remain challenging, as

important features are associated with different scales. Therefore, scale-bridging
links [37,193,238] need to be developed further in the future to compliment each
other and lead to a more unified understanding of the effects of interest, such as the
magnetostrictive and magnetorheological effects. For these descriptions, ideally, the
analysis starts at the microscale of the polymeric network, is then connected to the
mesoscale of the configuration of magnetic or magnetizable inclusions, and is finally
bridged to the macroscale where the global effects of interest can be observed.
Magnetic gels and elastomers are a promising class of materials. Applications

are already discussed and outlined in a wide range of areas, but still, they can
become much more common and much more effective at the tasks that they are to
perform. Additionally applications might open for them in the future, particularly
when combining them intelligently with other “smart” adaptable materials. One
example could be to connect their change in the thermal conductivity, see P7, with
other thermoresponsive materials. In this way, new functionalities can be realized
and more possibilities open up to control these systems. Generally, for magnetic
gels and elastomers to reach their full potential, it is important to characterize
their behavior theoretically and experimentally in detail across the scales. It was
my intention with this work to contribute to this endeavor, to facilitate and to
stimulate further progress.
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