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Abstract
A variety of local index formulas is constructed for gapped quantum Hamiltonians
with periodic boundary conditions. All dimensions of physical space as well as many
symmetry constraints are covered, notably one-dimensional systems in Class DIII as
well as two- and three-dimensional systems in Class AII. The constructions are based
on several periodic variations of the spectral localizer and are rooted in the existence
of underlying fuzzy tori. For these latter, a general invariant theory is developed.
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1 Overview

In several works [1–3] it was shown that the index pairing between K -theory and K -
homology elements can be computed as the half-signature of a suitably constructed
finite-dimensional matrix, called the spectral localizer. The main motivation for these
works is the application to topological insulators for which the bulk topological
invariants (Chern numbers and winding numbers) then become readily accessible
in numerical computations. As will be described below, the technique is based on the
principle of placing the physical system in a linearly growing Dirac trap and hence the
spectral localizer is an intrinsically non-periodic object. On the other hand, it is well-
known that periodic approximations often provide stable algorithms for bulk quantities
in solid state systems (for invariants, this is described in [4]). This work constructs
new periodic versions of the spectral localizer, for sake of conciseness referred to as
periodic spectral localizers, which also allow to compute the topological invariants
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numerically, possibly in a more stable manner than with the non-periodic spectral
localizer used in other works. Apart from this practical aspect, a further more theoret-
ical insight is that the periodic spectral localizers can be understood as the K -theory
representatives of associated fuzzy tori. Furthermore, the periodic spectral localizers
may inspire extensions to interacting systems (with periodic boundary conditions)
with a computable gapped ground state.

Let us directly describe the periodic spectral localizer for a bounded tight-binding
Hamiltonian H = H∗ on the Hilbert spaceH = �2(Zd ,CL) over an even dimensional
latticeZd with L local degrees of freedom. This Hamiltonian is supposed to satisfying
the following hypothesis:

• H has finite range R, namely the L× L matrices 〈x |H |y〉 vanish for |x − y| > R;
• H is periodic, namely 〈x+ p j e j |H |y+ p j e j 〉 = 〈x |H |y〉 for some periods p j ∈ N

in the direction of the unit vectors e j , j = 1, . . . , d;
• 0 lies in a spectral gap of H .

In physical terminology, the last condition means that H describes an insulator (here
the Fermi level is shifted to μ = 0). For any such insulator it is well-known (e.g.
[5]) that the Fermi projection P = χ(H < 0) has an associated (even strong) Chern
number Chd(P) ∈ Z. This paper provides yet another way to compute this topological
invariant. Moreover, the formula that is proven to work in the asymptotic regime of
large volumes also allows to associate numerical topological invariants to rather small
systems with periodic boundary conditions. This enables efficient algorithms that can
analyze the effect of defects or disorder on the bulk invariants without the confounding
influence of edge effects.

Definition 1 Let p1, . . . , pd be the periods a short range Hamiltonian H = H∗ onH.
Suppose that ρ ∈ N is such that 2ρ is an integer multiple of each of the p j , and denote
Hρ = �2((Z/(2ρZ))d ,CL). The finite-volume restriction Hper

ρ of H with periodic
boundary conditions is an operator onHρ defined by

〈x |Hper
ρ |y〉 =

∑

a∈Zd

〈x |H |y + 2ρa〉 , x, y ∈ (Z/2ρZ)d ∼= {−ρ + 1, . . . , ρ}d .

Note that the sum over a ∈ Z
d is finite due to the finite range assumption.

Definition 2 Let d be even and H , Hper
ρ and Hρ as above. Further let η > 0. The

(even) periodic spectral localizer is a finite-dimensional matrix on (Hρ ⊕Hρ)⊗C
d ′

defined by

Lper
η,ρ =

(∑d
j=1

(
1− cos( π

ρ
X j )

) ∑d
j=1 sin(

π
ρ
X j ) γ̂ ∗

j∑d
j=1 sin(

π
ρ
X j ) γ̂ j −∑d

j=1

(
1− cos( π

ρ
X j )

)
)
+ 1

η

(−Hper
ρ 0
0 Hper

ρ

)
,

(1)

where X j are the components j = 1, . . . , d of the position operators on the lattice,
furthermore γ̂1, . . . , γ̂d−1 is a selfadjoint irreducible representation on C

d ′ of the
Clifford algebra with d − 1 generators, namely γ̂i γ̂ j + γ̂ j γ̂i = 2 δi, j for i, j =
1, . . . , d − 1, and γ̂d = ı1 with ı = √−1.
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In Remark 5 below it is argued that η should roughly be chosen as ‖H‖, and hence
not be considered a free parameter in applications. Note that the first summand in (1)
is the restriction of a diagonal operator onto (Hρ ⊕Hρ)⊗C

d ′ and it is periodic in all
d directions of the discrete torus (Z/(2ρZ))d ∼= Z

d ∩ [−ρ + 1, ρ]d . The following
result now states that the periodic spectral localizer has, under suitable conditions, a
well-defined signature that is equal to the Chern number. On first sight this may look
like a minor modification of earlier results [2, 3]. However, the main player Lper

η,ρ is
different here. It is periodic by construction, potentially useful at very small volumes
ρ and allows to establish deep connections to invariants of associated fuzzy tori. All
of these points will be discussed in detail in the remainder of this introduction.

Theorem 3 Let d be even and H = H∗ be a finite-range periodic operator on H =
�2(Zd ,CL). Also let ρ ∈ N be such that 2ρ is an integer multiple of the periods and
ρ ≥ 2R. Suppose

ρ ≥ C d4 M ‖H‖3 η2

g6
, (2)

where g = ‖H−1‖−1, M = max j=1,...,d ‖[X j , H ]‖, and finally C = 15 · 106. More-
over, η ≥ g

4 is such that

(
1− g

‖H‖
)2 + 4

(
1− η

‖H‖
)
≤ g2

4 d η ‖H‖ . (3)

Then the periodic spectral localizer is gapped with lower bound

(Lper
η,ρ)2 ≥ g2

600 d η2
1 , (4)

and the strong invariant given by the d-th Chern number of P = χ(H < 0) is equal
to the half-signature of the periodic spectral localizer, namely

Chd(P) = 1

2
Sig(Lper

η,ρ) . (5)

Remark 4 Let us start out by comparing the periodic spectral localizer Lper
η,ρ with the

spectral localizer Lκ,ρ used in prior works [1–3], and also explain the connection
between the two of them. The latter matrix Lκ,ρ is defined on the same finite-
dimensional Hilbert space (Hρ ⊕Hρ) ⊗ C

d ′ by

Lκ,ρ = κ

(
0

∑d
j=1 X j γ̂

∗
j∑d

j=1 X j γ̂ j 0

)
+
(−Hρ 0

0 Hρ

)
. (6)

Here Hρ is the restriction of H to Hρ , also called either the compression of H or H
with Dirichlet boundary conditions. The first matrix, without the factor κ , is called the
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Dirac operator D and is off-diagonal as the dimension d is even. The spectral localizer
Lκ,ρ is clearly not periodic in the above sense because the position operators take large
positive and negative values at the boundaries of the discrete cube Zd ∩ [−ρ+ 1, ρ]d .
The main result of [2] (see also [3]) is that the equality (5) holds with Lper

η,ρ on the r.h.s.
replaced by Lκ,ρ , provided conditions on κ and ρ hold that are quantitatively weaker
than (2). In the latter regime, the spectral asymmetry of both operators Lper

η,ρ and Lκ,ρ

is acquired near the center of the finite volume where both operators are roughly the
same which gives an intuitive understanding why Theorem 3 should hold (based on
the earlier results [1, 2]). Indeed, the proof of Theorem 3 consists of constructing
a homotopy from Lκ,ρ to Lper

η,ρ inside the finite-dimensional invertible selfadjoint
matrices. The essential step is a deformation of the first summand in (1), which is
explicitly given in (25) below. It further results from the strategy of proof in Section 2
that the Hamiltonian can be tapered down, see (23). This means that in the regime of
(2) the contribution to the signature results merely from the central part of the finite
volume. Hence the half-signature in (5) is a local topological marker in this regime,
just as the half-signature of the spectral localizer of [1, 2]. However, one can use
the r.h.s. of (5) also for much smaller ρ for which periodic boundary conditions are
relevant so that the signature invariant is a global or bulk topological invariant. All
of this is numerically confirmed in Remark 8 on the example of a one-dimensional
topological system, but there is definitely a need for further investigations. �

Remark 5 Besides being the volume, the parameter ρ sets the length scale of the
position operator close to the origin because sin(π

ρ
x j ) ∼ π

ρ
x j and 1 − cos(π

ρ
x j ) ∼

1
2 (

π
ρ
x j )2. Comparing with the (non-periodic) spectral localizer (spelled out in (6)), 1

ρ
hence plays the same role as the parameter κ in prior works [1–3]. Having this in mind,
the condition in (2) is a more stringent version of the main hypothesis in these works.
Note that, given a gapped Hamiltonian H , it can always be guaranteed by choosing
ρ sufficiently large. The second bound (3) is a new supplementary condition. For a
flat band Hamiltonian which by definition satisfies g = ‖H‖, the condition becomes

η ≥ g
2 (1 +

√
1− 1

4d ). In particular, η = 1 is allowed for a flat band Hamiltonian
with g = ‖H‖ = 1. As will be explained in the second part of this introduction and
Section 5, this is reminiscent of the fact that the flat band Hamiltonian together with
suitable functions of the position operators forms a graded fuzzy torus. On the other
hand, if one chooses η = ‖H‖ (without imposing the flat band condition), then the
bound (3) becomes ‖H‖

g − 1 ≤ 1
2
√
d
which means that H has to be relatively close to

a flat band Hamiltonian in the sense that ‖H‖ is not allowed to be much bigger than
g = ‖H−1‖−1. Furthermore, (3) is always satisfied if η ≥ 5

4‖H‖ (simply because
then the l.h.s. becomes negative due to g ≤ ‖H‖). Note, however, that for large η, (2)
enforces ρ to be larger, and furthermore the gap of Lper

η,ρ closes, see the bound (4), and
then its signature may not be numerically stable any more. Hence from a numerical
perspective, it may be best to choose η of the order of ‖H‖ and actually somewhat
smaller than ‖H‖ so that the periodic spectral localizer is associated to a fuzzy torus of
small width (in the sense of Definition 21 below). In conclusion, the discussion shows
that one should chose η ≈ ‖H‖ and in the sequel not consider it as a free parameter. �
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Remark 6 Thebounds (2) and (3) have an intrinsic scale invariance.Actually, replacing
H ,M , g and η by λH , λM , λg and λη respectively where λ > 0 is a scaling parameter,
leaves the conditions invariant. All four quantities are expressed in energy units, while
ρ is a space unit. From a quantitative aspect, we believe that hypothesis (3) is relatively
close to optimal, while the condition (2) is certainly off by several orders of magnitude
and even the dependence on g is likely much worse than needed. Let us stress that
once η is chosen as in Remark 5, there is no further parameter other than ρ. One can
then analyze numerically the behavior for small ρ and safely use the half-signature as
local topological marker, as long as it is stable. �
Remark 7 As pointed out in Remark 5, the condition (3) is easiest to satisfy if H is
already somewhat close to a flat band Hamiltonian. This can be attained by replacing
a given initial gapped finite-range periodic Hamiltonian H ′ by a suitable polynomial
H = q(H ′) which is then also periodic and of finite range, even though the range
is increased by a factor given by the degree of the polynomial q. The polynomial q
should be chosen odd with q(x) > 0 for x > 0 so that H also has a spectral gap at 0,
and, moreover, to have a degree as small as possible. Based on the spectral information
of H ′, it is straightforward to construct a suitable polynomial. �
Remark 8 As already discussed in Remarks 4 and 6, we expect the signature of Lper

η,ρ to
be stable for much smaller system sizes ρ. Let us support this belief by some numerics
(see Fig. 1) in the numerically most simple situation of a chiral model in dimension
d = 1, namely the so-called SSH model (a more detailed description of this much
studied object can be found in [5]). The chiral Hamiltonian is then an off-diagonal 2×2
matrixwith off-diagonal entry A given by an invertible tight-binding operator on �2(Z)

which in Dirac Bra-Ket notation is given by A|x〉 = (m +mx )||x〉 + (1+ tx )|x + 1〉,
wherem ∈ C, (mx )x∈Z and (tx )x∈Z are independent and identically distributed random
variables in [−λ, λ] with λ < 1. For λ and m sufficiently small, the operator A has
a non-commutative winding number equal to −1 in the present situation. According
to Theorem 17 (the odd-dimensional equivalent to Theorem 3), it can be computed
using the following odd periodic spectral localizer discussed in Section 3:

Lper
η,ρ =

(
sin(π

ρ
X) 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X)

)
− 1

η

(
0 Aper

ρ

(Aper
ρ )∗ 0

)
. (7)

Here X = X1 is the position operator and the right summand is the periodized SSH
Hamiltonian Hper

ρ in finite volume. Numerics readily show that its half-signature is
−1 for a large span of ρ and λ, simply confirming Theorem 17. If periodic boundary
conditions are used, this reliably works for ρ as small as 4. Also interesting is that
drastic modifications of the Hamiltonian do not alter the signature index if ρ is suf-
ficiently large: instead of Hper

ρ , one can use H̃per
ρ obtained from Hper

ρ by setting all
matrix elements 〈x |Hper

ρ |y〉 = 0 for either |x | > (1− s)ρ or |y| > (1− s)ρ where
s ∈ [0, 1). Any s > 0 will eliminate the periodic boundary conditions and, moreover,
leads to a large kernel of H̃per

ρ , roughly of dimension 4ρs. Nevertheless, this kernel
results from regions where the first summand in (7) has large off-diagonal parts and
hence does not lead to a kernel of Lper

η,ρ . In the central region [−(1− s)ρ, (1− s)ρ]∩Z
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Fig. 1 Plots of the full eigenvalue distribution for one realization of the Hamiltonian H̃
per
ρ described in

Remark 8, then its central part and in the third plot the eigenvalue distribution of L
per
1,ρ . The random

variables are uniformly distributed, λ = 0.5, m = 0.9 ı , ρ = 300 and s = 0.05. Hence the Hilbert space is
of dimension 1200 states and due to s = 0.05 the kernel of H̃per

ρ has about 60 states, and L
per
1,ρ has about

30 supplementary eigenvalues close to −2 and 2 each. The half-signature of Lper1,ρ is still −1

where Lper
η,ρ extracts the topology by means of its spectral asymmetry, the modified

Hamiltonian H̃per
ρ coincides with the Hper

ρ . Indeed, numerics clearly show that the
half-signature is still −1 as long as (1− s)ρ ≈ 30. This clearly shows that the peri-
odic spectral localizer in the regime of large ρ reads out the topology locally close to
the origin (where sin is linear and 1− cos vanishes). �

Remark 9 In Section 4, it is shown how to deal with the strong Z2-invariants for
Hamiltonians lying in the suitable Cartan-Altland-Zirnbauer symmetry classes. In
principle, one can also access weak invariants by the techniques of the present work.
Indeed, the experienced reader will easily locate the relevant formulas for fuzzy tori
in Section 5, but this is here not explained in detail for solid state applications. �
Remark 10 Theorem 3 is stated for periodic Hamiltonians. However, for space homo-
geneous random operators (in the sense of Bellissard [6], see also [5]), there is a
natural construction of periodic approximants [4]. For sufficiently large sizes of these
approximants, the Chern numbers coincide with those at infinite volume and can be
computed using periodic boundary conditions [4]. In order to avoid introducing the
notational machinery, these results are not spelled out in detail. �
Remark 11 From a KK -theoretic perspective (explained in some detail elsewhere),
both Lper

η,ρ and Lκ,ρ are representatives of a Kasparov product of two even KK -cycles
[P] ∈ KK 0(C,A) and [D] ∈ KK 0(A,C) for a suitable algebraA. The two gradings
are apparent in (6), but once the Kasparov product is computed, one can deform it
without respecting the grading of the separate Fredholm modules [D] and [P]. This is
reflected by the lack of grading of the first summand in expression (1) of the periodic
spectral localizer. �

Let us conclude this introduction with a brief discussion of the notion of a fuzzy
d-torus in connection with the periodic spectral localizer. This is discussed in detail in
Section 5whichwe believe to be of considerable independent interest, possibly serving
as a guideline to the construction of numerically computable local index formulas
for other fuzzy versions of classical geometric objects. Abstract index formulas (not
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suitable for numerical implementation) have been known for a long time [7–9], and
invariants for the special case of fuzzy spheres were already studied in other works,
in particular [2, 10]. More specifically, a fuzzy d-torus consists by definition of d
operators A1, . . . , Ad which are almost unitary and almost commute, seeDefinition 21.
Motivated by standard models of topological insulators (see Chapter 2 in [5]) and the
work [11], let us associate a selfadjoint operator to the fuzzy torus:

G = ı

2

d∑

j=1

(A∗j − A j ) ⊗ γ j +
⎛

⎝(d − 1)1− 1

2

d∑

j=1

(A∗j + A j )

⎞

⎠⊗ γd+1 , (8)

where γ1, . . . , γd+1 is an irreducible representation of the Clifford algebra with d + 1
generators. In Section 5 it is shown that G is gapped and hence defines an even K -
theory class which in the case of a matrix torus of even dimension d can be read out as
half-signature. At the root of the construction of (8) is a classical map from the torus
T
d to the sphere Sd ofmapping degree 1. Thismap is analyzed in detail in Appendix B.

Using variations of this map, one can construct a large set of invariants associated to
the fuzzy torus, see Section 5. In the context of Theorem 3, there are two fuzzy tori
of matrices, namely eı

π
ρ
X1 , . . . , eı

π
ρ
Xd , Hper

ρ and Pρe
ı π

ρ
X1 Pρ, . . . , Pρe

ı π
ρ
Xd Pρ where

Pρ = χ(Hper
ρ < 0). The first one is a (d + 1)-torus consisting of d + 1 operators, but

the last operator Hper
ρ in the list is selfadjoint; such a fuzzy (d + 1)-torus is called a

graded d-torus (see again Definition 21). Essentially the G-operator associated to the
graded fuzzy d-torus eı

π
ρ
X1 , . . . , eı

π
ρ
Xd , Hper

ρ is the periodic spectral localizer. On the

other hand, Pρe
ı π

ρ
X1 Pρ, . . . , Pρe

ı π
ρ
Xd Pρ is an un-graded fuzzy d-torus. The latter is

the reduced out version of the former and both have the same topological content (see
Proposition 35). Indeed, for d = 2, this second fuzzy torus already played a role in
[8, 9] and the recent work by Toniolo on quantum Hall systems [12]. Combined with
Theorem 3 one obtains:

Theorem 12 Let G = G(Pρe
ı π

ρ
X1 Pρ, . . . , Pρe

ı π
ρ
Xd Pρ) be constructed as in (8). For

ρ sufficiently large, one has

Chd(P) = 1

2
Sig(G) . (9)

The remainder of the paper is organized as follows. Section 2 is dedicated to the
proof of Theorem 3. Section 3 describes the odd dimensional version of the periodic
spectral localizer. Then Section 4 shows how to modify the periodic spectral localizer
so that it can be used to compute Z2-invariants in systems with real symmetries such
as time-reversal and particle-hole symmetry. Finally Section 5 introduces the general
notion of a fuzzy torus and shows how to extract K -theoretic topological invariants
from it. Appendix A recalls the tight connection between mapping degree and Chern
number, which is then applied in Appendix B in order to analyze the classical maps
behind the index construction of the periodic spectral localizer.
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2 Periodic spectral localizer in even dimension

This section provides the proof of Theorem 3. Let H = H∗ be a gapped bounded
selfadjoint operator on H = �2(Zd ,CL) of finite range R which is periodic in all d
directions with periods p = (p1, . . . , pd) ∈ N

d . As above let ρ ∈ N be such that 2ρ is
an integer multiple of all these p j . Then H is 2ρ periodic in each of the d directions. It
is well-known that such an operator can be partially diagonalized by a Bloch-Floquet
transformation Fρ : �2(Zd ,CL) → L2(Td

ρ,C(2ρ)d L) where Td
ρ = (R/4πρZ)d :

Fρ H F∗
ρ =

∫ ⊕

Td
ρ

dk H(k) . (10)

Then the periodic Hamiltonian introduced in Definition 1 is Hper
ρ = H(0). Actually,

any fiber H(k) could be used as well and Theorem 3 remains valid. The first key
observation, following directly from the direct integral representation is that

spec(Hper
ρ ) ⊂ spec(H) .

In particular, Hper
ρ also has a gap around the Fermi level μ = 0 of size at least

g = ‖H−1‖−1.
Next let us introduce the periodic function ξ : R → [−1, 1] by

ξ(x) = sin(π
2 x) , (11)

and then set ξρ(x) = ξ( x
ρ
). Due to the addition theorems, one then has

eı
π
ρ
x = 1− 2 ξρ(x)2 + ı 2 ξρ(x)

√
1− ξρ(x)2 (12)

for x ∈ [−ρ, ρ]. The main estimates of the next lemma are folklore (e.g. [13]), but
for the convenience of the reader a full proof is nevertheless provided.

Lemma 13 For j = 1, . . . , d and ρ > 0, one has

∥∥[ξρ(X j ), H
]∥∥ ≤ π

2ρ
‖[X j , H ]‖ . (13)

Furthermore if ρ ∈ N is such that 2ρ is an integer multiple of the periods of H one
has the following commutator bounds for Hper

ρ :

∥∥[ cos(π
ρ
X j ), H

per
ρ

]∥∥ ≤ π

ρ
‖[X j , H ]‖ , (14)

∥∥[ sin(π
ρ
X j ), H

per
ρ

]∥∥ ≤ π

ρ
‖[X j , H ]‖ , (15)

∥∥[|ξρ(X j )|, Hper
ρ

]∥∥2 ≤ 25π

32 ρ
‖H‖ ‖[X j , H ]‖ . (16)
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Proof Let us start out by noting that ξρ(X j ) is a linear combination of eı
π
2ρ X j and

e−ı π
2ρ X j , see (11). Therefore DuHamel’s formula implies

‖[ξ(X j ), H ]‖ ≤ 1

2

(
‖[eı π

2ρ X j , H ]‖ + ‖[e−ı π
2ρ X j , H ]‖

)
≤ π

2ρ
‖[X j , H ]‖ ,

which shows (13). As cos(π
ρ
X j ) is a periodic multiplication operator one has

‖[cos(π
ρ
X j ), H

per
ρ ]‖ ≤ ‖[cos(π

ρ
X j ), H ]‖

and then (14) follows from DuHamel’s formula as above. Further, (15) holds by the
same argument. To show (16) note that

|ξρ(X j )|2 = 1− cos(π
ρ
X j )

2
.

Then using the main theorem in [14] stating that for any positve semidefinite bounded
operator T onHρ and any bounded operator S on Hρ

‖[T 1
2 , S]‖ ≤ 5

4
‖S‖ 1

2 ‖[T , S]‖ 1
2 ,

one obtains

∥∥[|ξρ(X j )|, Hper
ρ

]∥∥ ≤ 5

4
‖Hper

ρ ‖ 1
2

∥∥∥
[
1
2 (1− cos(π

ρ
X j )), H

per
ρ

]∥∥∥
1
2

≤ 5
√

π

4
√
2ρ

‖H‖ 1
2 ‖[X j , H ]‖ 1

2 ,

where in the last step (14) was used. The square of this bound is precisely (16). ��
The next result shows that the signature in (5) is well-defined. Some elements of

the proof below are inspired by [11], others follow [2, 3].

Proposition 14 If all conditions ofTheorem 3 hold, then the periodic spectral localizer
satisfies the bound (4). Moreover, if two parameter sets (η, ρ) and (η′, ρ′) both satisfy
all conditions, then

Sig(Lper
η,ρ) = Sig(Lper

η′,ρ′) .

Proof Let us start out with several preliminaries. To shorten notations let us denote
Hper

ρ simply by Hρ , sin(π
ρ
X j ) by sρ, j and cos(π

ρ
X j ) by cρ, j . Further let us introduce

the Clifford representation γ1, . . . , γd+1 by

γ1 = γ̂1 ⊗ σ1 , . . . , γd−1 = γ̂d−1 ⊗ σ1 , γd = 1⊗ σ2 , γd+1 = 1⊗ σ3 ,
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13 Page 10 of 47 N. Doll et al.

where σ1, σ2 and σ3 are the Pauli matrices. Finally let us set H̃ρ = 1
η
Hρ . Then the

periodic spectral localizer as given in (1) becomes

Lper
η,ρ =

d∑

j=1

sρ, j γ j +
( d∑

j=1

(1− cρ, j )− H̃ρ

)
γd+1 . (17)

Next let us introduce a tapering function as in [2, 3] by setting G(x) = 1
2 (χ(4x +

3) − χ(4x − 3)) with χ : R → [−1, 1] being be the odd non-decreasing switch
function with χ(±x) = ±1 for x ≥ 1 given by χ(x) = x(2 − |x |) for x ∈ [−1, 1].
Then set Gρ(x) = G( x

ρ
). One finds that Gρ satisfies by construction Gρ(x) = 1

for |x | ≤ ρ
2 and Gρ(x) = 0 for |x | ≥ ρ, and, moreover, it is an even function.

Furthermore, by Lemma 4 in [1] one has ‖[Gρ(D), H ⊕ H ]‖ ≤ 8
ρ
‖[D, H ⊕ H ]‖

where D = ∑d
j=1 X jγ j (see also [3]). As Gρ is even and D0 = ∑d

j=1 X j γ̂ j is
normal, the operator Gρ(D) is diagonal with diagonal entry Gρ(|D0|) = Gρ(|D∗

0 |).
Therefore the commutator bound can also be stated as

‖[Gρ(|D0|), H ]‖ ≤ 8

ρ
‖[D0, H ]‖ . (18)

Then introduce an interpolating function Gρ,t : R → [0, 1] by Gρ,t (x) = tG ρ
2
(x) +

(1− t). Finally let us also set

Gt = Gρ,t (|D0|) , H̃ρ,ρ′,t = Gt H̃ρ′ Gt ,

where ρ′ ∈ [ρ, 2ρ] satisfies all conditions of Theorem 3. The path

t ∈ [0, 1] �→ Lper
η,ρ,ρ′(t) =

d∑

j=1

sρ′, j γ j +
( d∑

j=1

(1− cρ′, j )− H̃ρ,ρ′,t
)
γd+1 (19)

connects Lper
η,ρ,ρ′(0) = Lper

η,ρ′ to an operator on (Hρ′ ⊕Hρ′)⊗C
d ′ that can be restricted

to (Hρ ⊕Hρ)⊗C
d ′ easily. After these preparation, let us now start by computing the

square

Lper
η,ρ,ρ′(t)

2 =
⎛

⎜⎝
d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2
⎞

⎟⎠⊗ 1

+
∑

1≤ j<l≤d
[sρ′, j , sρ′,l ] ⊗ γ jγl

+
d∑

j=1

[
sρ′, j ,

d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t
]⊗ γ jγd+1
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≥
⎛

⎜⎝
d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2
⎞

⎟⎠⊗ 1

−
d∑

j=1

‖[sρ′, j , H̃ρ,ρ′,t ]‖1 . (20)

because [sρ′, j , sρ′,l ] = [sρ′, j , cρ′,l ] = 0 for all j, l = 1, . . . , d. Hence

d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2

=
d∑

j=1

s2ρ′, j +
( d∑

j=1

(1− cρ′, j )
)2 + (H̃ρ,ρ′,t )

2

− Gt

d∑

j=1

(
(1− cρ′, j )H̃ρ′ + H̃ρ′(1− cρ′, j )

)
Gt

=
d∑

j=1

s2ρ′, j +
( d∑

j=1

(1− cρ′, j )
)2 + (H̃ρ,ρ′,t )

2

− λGt

d∑

j=1

(
(1− cρ′, j )Ĥρ′ + Ĥρ′(1− cρ′, j )

)
Gt ,

where λ > 0 is a parameter to be chosen later and Ĥρ′ = H̃ρ′
λ
. Using s2

ρ′, j + c2
ρ′, j = 1

for all j = 1, . . . , d one directly checks

d∑

j=1

s2ρ′, j +
( d∑

j=1

(1− cρ′, j )
)2 ≥

d∑

j=1

s2ρ′, j +
d∑

j=1

(1− cρ′, j )
2 = 2

d∑

j=1

(1− cρ′, j ) .

Replacing in the above gives

d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j )− H̃ρ,ρ′,t

⎞

⎠
2

≥ 2(1 − λG2
t )

d∑

j=1

(1− cρ′, j ) + (H̃ρ,ρ′,t )
2

+ λGt

d∑

j=1

(
(1− cρ′, j )(1− Ĥρ′)+ (1− Ĥρ′)(1− cρ′, j )

)
Gt .

Now let us use the elementary identity

1− Ĥρ′ = 1

2
(Ĥρ′ − 1)2 + 1

2
(1− Ĥ2

ρ′) , (21)
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which implies that

d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2

≥ 2(1 − λG2
t )

d∑

j=1

(1− cρ′, j ) + (H̃ρ,ρ′,t )
2

+ λ

2
Gt

( d∑

j=1

((1− cρ′, j )(Ĥρ′ − 1)2 + (Ĥρ′ − 1)2(1− cρ′, j ))
)
Gt

+ λ

2
Gt

( d∑

j=1

((1− cρ′, j )(1− Ĥ2
ρ′) + (1− Ĥ2

ρ′)(1− cρ′, j ))
)
Gt .

Both of the last two summands require a detailed analysis. In order to deal with the
first of them, let us use

(1− cρ′, j )(Ĥρ′ − 1)2 = (
(Ĥρ′ − 1)(1− cρ′, j ) + [1− cρ′, j , Ĥρ′ − 1])(Ĥρ′ − 1)

and

(Ĥρ′ − 1)2(1− cρ′, j ) = (Ĥρ′ − 1)
(
(1− cρ′, j )(Ĥρ′ − 1) − [1− cρ′, j , Ĥρ′ − 1])

as well as (Ĥρ′ − 1)(1− cρ′, j )(Ĥρ′ − 1) ≥ 0. One gets

(1− cρ′, j )(Ĥρ′ − 1)2 + (Ĥρ′ − 1)2(1− cρ′, j )

≥ −2‖[1− cρ′, j , Ĥρ′ − 1]‖‖Ĥρ′ − 1‖1
≥ −2‖[cρ′, j , Ĥρ′ ]‖(‖Ĥρ′ ‖ + 1)1

≥ −4max{‖Ĥρ′ ‖, 1} ‖[cρ′, j , Ĥρ′ ]‖ 1
≥ − 4π

ρ′λ2η2
max{‖H‖, λη} ‖[X j , H ]‖ 1 ,

where the last step follows from Lemma 13. This combined with G2
t ≤ 1 leads to

d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2

≥ 2(1 − λG2
t )

d∑

j=1

(1− cρ′, j ) + (H̃ρ,ρ′,t )
2 − 2π

λη2ρ′
max{‖H‖, λη} d M 1
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+ λ

2
Gt

( d∑

j=1

((1− cρ′, j )(1− Ĥ2
ρ′) + (1− Ĥ2

ρ′)(1− cρ′, j ))
)
Gt .

For the last summand, let us use that (12) implies
1−cρ′, j

2 = |ξρ′, j |2 where ξρ′, j =
sin( π

2ρ′ X j ). Thus

(1− cρ′, j )(1− Ĥ2
ρ′)+ (1− Ĥ2

ρ′)(1− cρ′, j )

= 4 |ξρ′, j |(1− Ĥ2
ρ′)|ξρ′, j | − 2 |ξρ′, j |[(1− Ĥ2

ρ′), |ξρ′, j |]
− 2 [|ξρ′, j |, (1− Ĥ2

ρ′)]|ξρ′, j |

≥ − 2 ‖1− Ĥ2
ρ′ ‖ (1− cρ′, j ) − 8

5
√

π

λ2η24
√
2ρ′

‖[X j , H ]‖ 1
2 ‖H‖ 3

2 1 .

Replacing in the above, one then gets

d∑

j=1

s2ρ′, j +
⎛

⎝
d∑

j=1

(1− cρ′, j ) − H̃ρ,ρ′,t

⎞

⎠
2

≥
(
2 − (

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖
)
G2

t

) d∑

j=1

(1− cρ′, j )

+ (H̃ρ,ρ′,t )
2 − 2π

λη2ρ′
max{‖H‖, λη} d M 1

− 5
√

π

λη2
√
2ρ′

‖H‖ 3
2 d
√
M 1 .

Now let us focus on the summand (H̃ρ,ρ′,t )2. Due to (H̃ρ,ρ′,t )2 ≥ g2

η2
1 and again

G2
t ≤ 1

(H̃ρ,ρ′,t )
2 = 1

η2

(
G2

t H
2
ρ′G

2
t + G2

t Hρ′ [Gt , Hρ′ ]Gt + Gt [Hρ′ ,Gt ]Gt Hρ′Gt
)

≥ g2

η2
G4

t − 2
η2
‖H‖ ‖[Gt , Hρ′ ]‖ 1 .

The commutator can be bounded using (18):

‖[Gt , Hρ′ ]‖ = t‖[G ρ
2
(|D0|), Hρ′ ]‖ = t‖[G ρ

2
(|D0|), H ]‖ ≤ 16

ρ
‖[D0, H ]‖,

where [G ρ
2
(|D0|), Hρ′ ] = [G ρ

2
(|D0|), H ] as R + ρ

2 ≤ ρ ≤ ρ′ so that periodic
boundary conditions do not interfere in the commutator. Replacing this, one concludes
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13 Page 14 of 47 N. Doll et al.

from (20)

Lper
η,ρ,ρ′(t)

2 ≥
(
2 − (

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖
)
G2

t

) d∑

j=1

(1− cρ′, j ) + g2

η2
G4

t

− 2π

λη2ρ′
max{‖H‖, λη} d M 1 − 5

√
π

λη2
√
2ρ′

‖H‖ 3
2 d
√
M 1

− 32‖H‖
ρη2

‖[D0, H ]‖ 1 − 1

η

d∑

j=1

‖[sρ′, j , H ]‖ 1 .

Using
∑d

j=1(1− cρ′, j ) ≤ 2d and also bounding ‖[sρ′, j , Hρ′ ]‖ ≤ π
ρ′ M by Lemma 13

and ‖[D0, H ]‖ ≤ dM , this implies

Lper
η,ρ,ρ′(t)

2 ≥
(
2 − (

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖
)
G2

t + g2

4dη2
G4

t

) d∑

j=1

(1− cρ′, j )

+ g2

2η2
G4

t −
2π

λη2ρ′
max{‖H‖, λη} d M 1

− 5
√

π

λη2
√
2ρ′

‖H‖ 3
2 d
√
M 1− 32‖H‖

ρη2
d M − π

ηρ′
d M 1 .

Now the parenthesis in the first summand seen as a function of G2
t has a negative

derivative for all G2
ρ,t ∈ [0, 1] as long as

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖ ≥ g2

2dη2
,

which, after discarding the summand ‖λ 1−λ−1 H̃2
ρ′ ‖, actually always holds for λ ≥ g

η

and η ≥ g
4d (which is required in Theorem 3). Then the minimum of the parenthesis

is taken at G2
t = 1. Hence

L
per
η,ρ,ρ′ (t)

2 ≥
(
2 − (

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖
) + g2

4dη2

) d∑

j=1

(1− cρ′, j ) +
g2

2η2
G4
t

− 2π

λη2ρ′ max{‖H‖, λη} d M1 − 5
√

π

λη2
√
2ρ′

‖H‖ 3
2 d
√
M1

− 32‖H‖
ρη2

d M1 − π

ηρ′ d M1

≥
(
2 − (

2λ + ‖λ 1− λ−1 H̃2
ρ′ ‖
) + g2

8dη2

) d∑

j=1

(1− cρ′, j ) +
g2π2

2560dη2
1

− 2π

λη2ρ′ max{‖H‖, λη} d M1 − 5
√

π

λη2
√
2ρ′

‖H‖ 3
2 d
√
M1
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− 32‖H‖
ρη2

d M1 − π

ηρ′ d M1 ,

because
∑d

j=1(1−cρ′, j ) ≥ 1
5

∑d
j=1

π2

(ρ′)2 X
2
j ≥ π2ρ2

80(ρ′)2 (1−G4
t ) ≥ π2

320 (1−G4
t )where

the second step holds as (1− G4
t )χ

(∑d
j=1 X

2
j ≤ ρ2

16

) = 0 and the final step used the
bound ρ′ ≤ 2ρ. Because spec(Hρ′) ⊂ spec(H)

‖λ 1− λ−1 H̃2
ρ′ ‖ ≤ ‖λ 1− λ−1 H2

η2
‖ .

Thus let us minimize f (λ) = 2λ + ‖λ 1 − λ−1 H2

η2
‖ over λ ∈ [ g

η
,
‖H‖

η
]. By spectral

calculus and elementary analysis one finds

min
ηλ∈[g,‖H‖] f (λ) = min

ηλ∈[g,‖H‖] λ
(
2+max

{
1− g2

λ2η2
,
‖H‖2
λ2η2

− 1
})

= f (λc)

where (λc)
2 = ‖H‖2+g2

2η2
. Thus

f (λc) = 1

η

g2 + 3‖H‖2√
2
√
g2 + ‖H‖2 = ‖H‖

η

(√
1− 1

2 (1− g2

‖H‖2 ) + 1
√
1− 1

2 (1− g2

‖H‖2 )

)

≤ ‖H‖
η

(
2+ 1

8

(
1− g2

‖H‖2
)2) ≤ ‖H‖

η

(
2+ 1

2

(
1− g

‖H‖
)2)

,

where the first inequality follows from
√
1+ ε + 1√

1+ε
≤ 2 + 1

2ε
2 holding for ε ∈

[− 1
2 , 1]. Then the term in the parenthesis satisfies

2− (2λc + ‖λc 1− λ−1
c H̃2

ρ′ ‖
)+ g2

8dη2
≥ 2− f (λc) + g2

8dη2

≥ 2− ‖H‖
η

(
2+ 1

2

(
1− g

‖H‖
)2)+ g2

8dη2
≥ 0 ,

where the last inequality is precisely the bound (3) divided by ‖H‖
2η . Due to ‖H‖ ≥

ηλc ≥ g and the equality max{‖H‖, λcη} = ‖H‖ one hence deduces

Lper
η,ρ,ρ′(t)

2 ≥ g2π2

2560dη2
1 − 2π

gηρ′
‖H‖ d M1 − 5

√
π

gη
√
2ρ′

‖H‖ 3
2 d
√
M1

− 128‖H‖
ρηg

d M1 − π

ηρ′g
d ‖H‖M1

≥ g2

300dη2
1 − 128+ 3π

gηρ
‖H‖ d M1 − 5

√
π

gη
√
2ρ′

‖H‖ 3
2 d
√
M1 ,
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where 1 ≤ ‖H‖
g and η ≥ g

4 was used. Now ρ is bounded below by (2) and ρ′ bis
bounded below by ρ. Then elementary numerical estimates show that

Lper
η,ρ,ρ′(t)

2 ≥ g2

600 d η2
, (22)

uniformly in t ∈ [0, 1]. For t = 0 this implies (4), namely the first claim of the
proposition.

Now let (η, ρ) and (η′, ρ′) both satisfy all the conditions of Theorem 3 and suppose,
without restriction, that ρ′ ∈ [ρ, 2ρ]. Continuity of Lper

η,ρ in η together with the bound
(22) shows that Sig(Lper

η,ρ′) = Sig(Lper
η′,ρ′). Hence one can assume η′ = η. Then the

above argument shows that the signature does not change along the paths t ∈ [0, 1] �→
Lper

η,ρ,ρ(t) and t ∈ [0, 1] �→ Lper
η,ρ,ρ′(t). But

Lper
η,ρ,ρ′(1) = Lper

η,ρ,ρ′(1)H ρ
2
⊕ (Dper

ρ′ )Hρ′�H ρ
2

,

where Dper
ρ′ is the first summand in (1) with ρ replaced by ρ′ and the lower indexH ρ

2

and (Hρ′ �H ρ
2
) indicates its restriction to (H ρ

2
⊕H ρ

2
) ⊗ C

d ′ and ((Hρ′ ⊕Hρ′) �
(H ρ

2
⊕H ρ

2
))⊗ C

d ′ respectively. As Sig((Dper
ρ′ )H′

ρ�H ρ
2
) = 0 it is sufficient to show

Sig(Lper
η,ρ,ρ′(1)H ρ

2
) = Sig(Lper

η,ρ,ρ(1)H ρ
2
) .

This follows as the path

t ∈ [0, 1] �→
d∑

j=1

sin( π
tρ+(1−t)ρ′ X j ) γ j

+
( d∑

j=1

(1− cos( π
tρ+(1−t)ρ′ X j )) − 1

η
G ρ

2
(|D0|)HG ρ

2
(|D0|)

)
γd+1 ,

of operators on (H ρ
2
⊕H ρ

2
)⊗C

d ′ entirely lies in the invertibles, which can be checked
directly by an argument very similar to the one showing that the path in (19) lies in
the invertibles. �

In the proof of Proposition 14 itwas shown that Lper
η,ρ can be homotopically deformed

into

Lper
η,ρ,ρ(1)=

d∑

j=1

sin(π
ρ
X j )γ j+

d∑

j=1

(
1− cos(π

ρ
X j )

)
γd+1− 1

η
GρH

per
ρ Gργd+1 (23)

without closing the gap, provided the conditions of Theorem 3 hold. In particular, one
has Sig(Lper

η,ρ) = Sig(Lper
η,ρ,ρ(1)). Here Gρ = G ρ

2
(|D0|) is a tapering function so that

GρH
per
ρ Gρ is a tempered Hamiltonian which is localized strictly inside the volume
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[−ρ
2 ,

ρ
2 ]d . In particular, the boundary conditions on the Hamiltonian are irrelevant,

namely GρH
per
ρ Gρ = GρHGρ . As already stressed in Section 1, this reflects that the

signature is a local topological invariant associated to the Hamiltonian.
The next step in the proof of Theorem 3 will be to deform the first two summands

in (23). To spell out that homotopy, it will be useful to express Lper
η,ρ,ρ(1) through the

function ξ by means of the formula (12):

Lper
η,ρ,ρ(1) = 2

( d∑

j=1

ξρ, j

√
1− ξ2ρ, j γ j +

d∑

j=1

ξ2ρ, jγd+1

)
− 1

η
GρHGργd+1 ,

(24)

where ξρ, j = sin( π
2ρ X j ), see (11). Then the homotopy in the parameter s ∈ [0, 1]

will be given by

Lper
η,ρ(1, s) = 2

( d∑

j=1

ξρ, j

√
1− s2ξ2ρ, j γ j +

d∑

j=1

sξ2ρ, jγd+1

)
− 1

η
GρHGρ γd+1 .

(25)

Clearly Lper
η,ρ(1, 1) = Lper

η,ρ,ρ(1), but moreover Lper
η,ρ(1, 0) is essentially the spectral

localizerwith the dampedHamiltonianGρHGρ . It was already proved in earlierworks
[1–3] that the half-signature of the spectral localizer with this damped Hamiltonian is
equal to the index pairing Ind(PFP + 1 − P) with F as below, which by an index
theorem [5] is in turn equal to the Chern number. Hence a central element of the proof
of Theorem 3 consists of checking that the homotopy s ∈ [0, 1] �→ Lper

η,ρ(1, s) lies in
the invertible matrices.

Proposition 15 For (η, ρ) satisfying the conditions of Theorem 3,

1

2
Sig(Lper

η,ρ) = Ind(PFP + 1− P) ,

where P = χ(H < 0) and F = D0|D0|−1 is the phase of D0 =∑d
j=1 X j γ̂ j , suitably

regularized at the origin.

Proof The main result of [2, 3] states that PFP + 1 − P is a Fredholm operator
with index that can be computed as the half-signature of the finite-volume restrictions
Lκ,ρ of the spectral localizer defined in (6), provided that the parameters κ > 0 and
ρ < ∞ are sufficiently small and large respectively. As also the signature of the
periodic spectral localizer Lper

η,ρ and its damped version Lper
η,ρ,ρ(1) is stable for such

parameters by Proposition 14, it hencemerely has to be shown that for such parameters
Lper

η,ρ,ρ(1) is homotopic to Lκ,ρ inside of the invertible matrices so that the signature
does not change. Being able to choose ρ sufficiently large considerably simplifies the
proof because one can simply neglect all commutators of the type [G ρ

2
(|D0|), H ] and

[ξ2ρ, j , H ] as they are of orderO( 1
ρ
). Here G ρ

2
is the same function as used in the proof
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of Proposition 14. Furthermore, it is possible to choose η = 5
4‖H‖ because then the

bound (3) is automatically satisfied.
Let us start out by proving that the path s ∈ [0, 1] �→ Lper

η,ρ(1, s) defined in (25) lies
in the invertible matrices for ρ sufficiently large. The proof will essentially follow the
first part of the proof of Proposition 14, namely one simply checks that Lper

η,ρ(1, s)2 > 0
for all s ∈ [0, 1]. Setting Gρ = G ρ

2
(|D0|) and Ĥ = 1

η
H = 4

5
H

‖H‖ and, moreover,
discarding commutators as described above, the square of (25) can be computed using

( d∑

j=1

ξρ, j

√
1− s2ξ2ρ, j γ j +

d∑

j=1

s ξ2ρ, jγd+1

)2 ≥
d∑

j=1

ξ2ρ, j

and thus satisfies

Lper
η,ρ(1, s)2 ≥ 4

d∑

j=1

ξ2ρ, j + G2
ρ Ĥ

2G2
ρ

− 2s
( d∑

j=1

ξ2ρ, j Gρ ĤGρ + Gρ ĤGρ

d∑

j=1

ξ2ρ, j

)
+O( 1√

ρ

)

= 4
d∑

j=1

ξ2ρ, j (1− sG2
ρ) + G2

ρ Ĥ
2G2

ρ

+ 2sGρ

( d∑

j=1

ξ2ρ, j (1− Ĥ) + (1− Ĥ)

d∑

j=1

ξ2ρ, j

)
Gρ +O

(
1√
ρ

)
,

with a remainder that is uniformly bounded in s ∈ [0, 1]. In the first summand one can
use the lower bound 1 − sG2

ρ ≥ 1 − G2
ρ . In the second summand, let us simply use

G2
ρ Ĥ

2G2
ρ ≥ 16

25
g2

‖H‖2G
4
ρ . Finally, the last summand is non-negative up to errorsO( 1

ρ
)

because 1 − Ĥ ≥ 1
51 and ξ2ρ, j (1 − Ĥ) = ξρ, j (1 − Ĥ)ξρ, j + O( 1

ρ
) by Lemma 13.

Hence

Lper
η,ρ(1, s)2 ≥ 4

d∑

j=1

ξ2ρ, j (1− G2
ρ) + 16

25

g2

‖H‖2G
4
ρ + O( 1√

ρ

)
.

Now one uses the geometric fact that
∑d

j=1 ξ2ρ, j (1− G2
ρ) ≥ sin( π

8
√
d
)2(1− G2

ρ) and

the bound 1− G2 + G4 ≥ 3
4 holding for any number G ∈ [0, 1] to conclude

Lper
η,ρ(1, s)2 ≥ min

{
16

25

g2

‖H‖2 , 4 sin( π

8
√
d
)2
}

(1− G2
ρ + G4

ρ) + O( 1√
ρ

)

≥ 3

4
min

{
16

25

g2

‖H‖2 , 4 sin( π

8
√
d
)2
}
+ O( 1√

ρ

)
.
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The next (and essentially final) step is to homotopiclly deform

Lper
η,ρ(1, 0) =

(
−Gρ ĤGρ 2

∑d
j=1 ξρ, j γ̂

∗
j

2
∑d

j=1 ξρ, j γ̂ j Gρ ĤGρ

)

into

L̂κ,ρ =
(

−Gρ ĤGρ κ
∑d

j=1 X j γ̂
∗
j

κ
∑d

j=1 X j γ̂ j Gρ ĤGρ

)
,

inside of the invertible matrices. This can readily be checked for the straight-line path
from Lper

η,ρ(1, 0) to L̂κ,ρ . But due to the stability of the signature, one has Sig(L̂κ,ρ) =
Sig(Lκ,ρ) for κ sufficiently small and ρ sufficiently large. But by [2, Theorem 3] or
[3, Theorem 10.3.1] the index of PFP + 1− P equals the half-signature of Lκ,ρ . ��
Proof of Theorem 3: By a well-known index theorem [5] the Chern number Chd(P)

is equal to the index pairing appearing in Proposition 15, which hence directly implies
the claim. ��
Remark 16 As already stressed in the introduction, the quantitative aspects of the
proofs in this section are far from optimal. Considerably better (but still not optimal)
estimates can be obtained by working with

Lper
κ,η,ρ =

(∑d
j=1

(
1− cos(πχκ(X j ))

) ∑d
j=1 sin(πχκ(X j )) γ̂ ∗

j∑d
j=1 sin(πχκ(X j )) γ̂ j −∑d

j=1

(
1− cos(πχκ(X j ))

)
)

+1

η

(−Hper
ρ 0
0 Hper

ρ

)
,

where χκ(x) = χ(κx) is constructed from a suitable switch function χ and κ > 0 is a
supplementary parameter. Modifying the above proofs one can show that Chd(P) =
1
2 Sig(L

per
κ,η,ρ) provided that (3) holds as well as the bounds

κ ≤ g3

890 d2 M ‖H‖ η
, ρ ≥ 4

√
d

κ
.

Note that this merely requires ρ ≥ C ′ M‖H‖η/g3 for some constant C ′, which is
considerably weaker than (2). However, the advantage of Lper

η,ρ given in (1) over Lper
κ,η,ρ

is the simplicity of the formula as well as the fact that Lper
η,ρ essentially contains no

other free parameter than the volume (as discussed in Remark 5, one can safely choose
η ≈ ‖H‖). �

3 Odd periodic spectral localizer

In this brief section, the odd-dimensional counterpart to Theorem 3 is described.
Hence let H be a periodic finite-range tight-binding Hamiltonian on the Hilbert space
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H = �2(Zd ,CL) with d odd and L even and with a spectral gap at 0. On the fiber CL

let J be a selfadjoint unitary with eigenvalues 1 and −1 of equal multiplicity L
2 . The

Hamiltonian is supposed to be chiral in the sense that J H J = −H . This implies that
it is off-diagonal in the grading of J :

H =
(

0 A
A∗ 0

)
, J =

(
1 0
0 −1

)
, (26)

where hence A is an invertible short-range periodic operator on �2(Zd ,C
L
2 ). As such

it has a strong invariant Chd(A) ∈ Z called either a (higher) winding number or also
an odd Chern number [5]. Previous results [1, 3] allow to compute it as the signature
of the spectral localizer. Here a similar connection is established to the (odd) periodic
spectral localizer which is defined to be the finite-dimensional matrix on Hρ ⊗ C

d ′

where Hρ = �2((Z/(2ρZ))d ,CL) given by

Lper
η,ρ =

( ∑d
j=1 sin(

π
ρ
X j ) γ j

∑d
j=1

(
1− cos(π

ρ
X j )

)
∑d

j=1

(
1− cos(π

ρ
X j )

) −∑d
j=1 sin(

π
ρ
X j ) γ j

)
− 1

η
Hper

ρ . (27)

Just as in (1), the size ρ is a multiple of the periodicities of H , Hper
ρ is the Hamiltonian

with periodic boundary conditions on Hρ and γ1, . . . , γd is an irreducible Clifford
representation acting on C

d ′ . Note that Hper
ρ is again off-diagonal and its upper right

entry is denoted by Aper
ρ .

Theorem 17 Let d be odd. Suppose that H is a finite-range periodic operator on
H = �2(Zd ,CL) of the form (26). Let η and ρ satisfy the same conditions as in
Theorem 3, in particular the bounds (2) and (3). Then Lper

η,ρ defined in (27) is gapped
with the bound (4) and the odd Chern number is

Chd(A) = 1

2
Sig(Lper

η,ρ) . (28)

All the comments of Section 1 transpose to the odd-dimensional case. Example 28
in Section 5 explains that, in the case of a flat bandHamiltonian, the signature invariant
in Theorem 17 is in fact associated to a fuzzy torus associated to H .

Sketch of proof of Theorem 17. A detailed proof will not be provided as it merely a
modification of the proof of Theorem 3. However, let us briefly sketch the strategy of
the argument. Unless differences are stressed, the same notations as in Section 2will be
used.HereGt = Gρ,t (D) for t ∈ [0, 1] and D =∑d

j=1 X j γ j . By an argument similar

to the one leading to Proposition 14, one shows that the path t ∈ [0, 1] �→ Lper
η,ρ,ρ′(t)

for

Lper
η,ρ,ρ′(t) =

( ∑d
j=1 sin(

π
ρ
X j ) γ j

∑d
j=1

(
1− cos(π

ρ
X j )

)
∑d

j=1

(
1− cos(π

ρ
X j )

)−∑d
j=1 sin(

π
ρ
X j ) γ j

)

ρ′

123



Topological indices for periodic gapped Hamiltonians… Page 21 of 47 13

−1

η

(
0 Gt A

per
ρ′ Gt

Gt (A
per
ρ′ )∗Gt 0

)

ρ′

lies in the invertibles and fulfills the bound (4) if η and ρ satisfy the conditions of
Theorem 17 and ρ′ fulfills ρ ≤ ρ′ ≤ 2ρ. Then, as in the proof of Proposition 14
one can conclude that Sig(Lper

η,ρ) is independent of η and ρ in the permitted range of
parameters.

To show that the half-signature of the periodic spectral localizer equals the Chern
number of A let us use the path s ∈ [0, 1] �→ Lper

η,ρ(1, s) given by

Lper
η,ρ(1, s)=

⎛

⎝ 2
∑d

j=1 ξρ, j

√
1− s2ξ2ρ, j γ j 2s

∑d
j=1 ξ2ρ, j − 1

η
Gt A

per
ρ Gt

2s
∑d

j=1 ξ2ρ, j − 1
η
Gt (A

per
ρ )∗Gt −2

∑d
j=1 ξρ, j

√
1− s2ξ2ρ, j γ j

⎞

⎠

ρ

(29)

with ξρ, j = sin( π
2ρ X j ) as in (11). As in the proof of Proposition 15, one checks that

Lper
η,ρ(1, s) is invertible for ρ sufficiently large. Thus Sig(Lper

η,ρ) = Sig(Lper
η,ρ(1, 0)).

Finally, by transposing the techniques of the proof of Proposition 15, Lper
η,ρ(1, 0) can

be deformed inside the set of invertibles into the odd spectral localizer introduced in
Section 1.4 of [1] butwith A replaced by−A. Then as Chd(A) = Chd(−A)Theorem1
in [1] allows to conclude. ��

4 Z2-invariants via periodic spectral localizer

This section addresses the real cases of the CAZ (Cartan-Altland-Zirnbauer) classi-
fication. They all impose a symmetry property on the Hamiltonian that involves a
complex conjugation (real structure, denoted by an overline) on the complex Hilbert
space. There are 64 such cases, stemming from an 8-periodicity in both dimension
d and the CAZ classes (both routed in Bott periodicity). Only 16 of these cases are
known to lead to Z2-valued strong invariants [15, 16]. In previous works [17, 18]
it was shown that a real skew-adjoint version of the spectral localizer, the so-called
skew localizer, can be used to compute these Z2-indices. In this section the associated
skew periodic localizer is introduced for the physically most relevant low-dimensional
cases, and it is shown that the sign of its Pfaffian is connected to the Z2-invariants. An
exhaustive treatment of all cases as in [18] is not provided here.

Let us now sketch the general common scheme. Like in [18], the skew periodic
localizer is constructed from the periodic localizer by a basis change andmultiplication
by ı . More explicitly, in each of the relevant CAZ classes in even dimension d, there
is a unitary R : (Hρ ⊕Hρ) ⊗ C

d ′ → (Hρ ⊕Hρ) ⊗ C
d ′ such that the skew periodic

localizer given by

Lskew,per
η,ρ = ı R∗Lper

η,ρR

is a real and skew-adjoint operator on (Hρ⊕Hρ)⊗C
d ′ . For oddd, the onlymodification

is that R : Hρ ⊗ C
d ′ → Hρ ⊗ C

d ′ and Lskew,per
η,ρ then acts on Hρ ⊗ C

d ′ . Cleary R
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depends on ρ, but as R is local, this dependence is suppressed in the notation. For even
d and (η, ρ) as in Theorem 3 and for odd d and (η, ρ) as in Theorem 17 this operator
is invertible and therefore has a non-vanishing Pfaffian. Moreover, let D̃ρ be a suitable
perturbation of the first summand of the periodic spectral localizer (1) or (27) by a
term localized at the origin such that D̃ρ is invertible and such that Dskew

ρ = ı R∗ D̃ρR
is real and skew-adjoint. Then its Pfaffian is well-defined, does not vanish and the
Z2-index associated to the Hamiltonian H is in each case proven to be given by

Ind2(T ) = sgn(Pf(Lskew,per
η,ρ )) sgn(Pf(Dskew

ρ )) ∈ Z2 , (30)

where Ind2(T ) = dim(Ker(T ))mod 2 in the 16 relevant cases is defined as in [16]
using the Fredholm operators T = PFP + (1 − P) or T = E AE + (1 − E) with
F being the Dirac phase and E the Hardy projection. Let us stress that the sign of
the Pfaffian depends on the choice of basis and that for a suitable choice one can
always arrange that sgn(Pf(Dskew

ρ )) = 1 so that the equality (30) takes a more simple
form. Let us also note that the index pairing and therefore also the Z2-index does
depend on the perturbation of the first summand of the periodic spectral localizer at
the origin. In the following this scheme is materialized in some of the important cases
by constructing the unitary R. Also explicit formulas for Lskew,per

η,ρ will be provided in
these cases.
Case d = 1 for CAZ class DIII: For d = 1 the Dirac operator is just the position
operator D = X . Let us add the projection onto its kernel to make it invertible, namely
D̃ = X + p0 where p0 is the orthogonal projection onto Ker(D) = span(|0〉). Let
H be a finite-range periodic Hamiltonian on �2(Z,CL) with L even that is in CAZ
class DIII namely that has an odd time-reversal symmetry and an even particle-hole

symmetry. In a suitably chosen basis, H is of the form (26) with an A ∈ B(�2(Z,C
L
2 ))

fulfilling the additional symmetry

(ı σ2)
∗A∗ı σ2 = A (31)

where σ2 denotes the second Pauli matrix acting only on the fiber. The index pairing
is T = E AE + 1− E where E = χ(D̃ ≥ 0). Then set

Q =
(

0 ı σ2
−ı σ2 0

)
, R = 1+ ı

2

(
1 σ2

−σ2 1

)
. (32)

Then Q is a self-adjoint real unitary and R is a particular choice for the root, namely
R2 = Q (in principle onemay choose other roots, but this choice leads to nice formulas
below). The one-dimensional periodic spectral localizer is

Lper
η,ρ =

(
sin(π

ρ
X) 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X)

)
− 1

η

(
0 Aper

ρ

(Aper
ρ )∗ 0

)

where Aper
ρ is the off-diagonal entry of Hper

ρ . As Aper
ρ fulfills the same symmetry

relation as A, namely (31) holds with A replaced by Aper
ρ , one then has QLper

κ,η,ρQ =
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−Lper
κ,η,ρ . Then set

Lskew,per
η,ρ = ı R∗Lper

η,ρR , Dskew
ρ = ı R∗ D̃ρR ,

where

D̃ρ =
(
sin(π

ρ
X) + p0 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X) − p0

)

ρ

.

Both Lskew,per
η,ρ and Dskew

ρ are bounded real and skew-adjoint operators. Explicitly one
finds:

Lskew,per
η,ρ =

(
−(1− cos(π

ρ
X) − 1

η
�(Aper

ρ )
)
ıσ2 sin(π

ρ
X)ıσ2 + 1

η
�(Aper

ρ )

sin(π
ρ
X)ıσ2 − 1

η
�(Aper

ρ )∗ ıσ2
(
1− cos(π

ρ
X) − 1

η
�(Aper

ρ )
)
)

,

where�(B) = 1
2 (B+ B) and �(B) = 1

2ı (B− B) are real (note that they are different
from �e(B) = 1

2 (B + B∗) and �m(B) = 1
2ı (B − B∗)).

Proposition 18 For (η, ρ) as in Theorem 3, Lskew,per
η,ρ and Dskew are invertible and

(30) holds.

Proof First of all Lper
η,ρ and therefore Lskew,per

η,ρ is invertible by Theorem 17. Therefore
and as Dskew

ρ is a real skew-adjoint invertible by construction, the r.h.s. of (30) is
well-defined. One has to show that it is independent of η and ρ. For Lper

η,ρ,ρ′(t), as in
the proof of Theorem 17,

Q Lper
η,ρ,ρ′(t) Q = −Lper

η,ρ,ρ′(t)

for all t ∈ [0, 1]. Therefore ı R∗Lper
η,ρ,ρ′(t)R is a real skew-adjoint invertible and thus

its Pfaffian is well-defined, does not vanish and the sign of this Pfaffian is independent
of t . Now let (η, ρ) and (η′, ρ′) both satisfy all the conditions of Theorem 3 and
suppose, without restriction, that ρ ≤ ρ′ ≤ 2ρ. Continuity of Lskew,per

η,ρ in η allows to
assume η = η′. By the above argument it is suffcient to show

sgn(Pf(ı R∗Lper
η,ρ,ρ(1)R))sgn(Pf(Dskew

ρ ))

= sgn(Pf(ı R∗Lper
η,ρ,ρ′(1)R))sgn(Pf(Dskew

ρ′ )) .

But

Lper
η,ρ,ρ′(1) = Lper

η,ρ,ρ′(1)H ρ
2
⊕ (D̃ρ′)Hρ′�H ρ

2
,
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where the lower index H ρ
2
indicates the restriction to H ρ

2
⊗ C

2 and the lower index

(H′
ρ �H ρ

2
) indicates the restriction to (Hρ′ �H ρ

2
)⊗ C

2. Thus

sgn(Pf(ı R∗Lper
η,ρ,ρ′(1)R))sgn(Pf(Dskew

ρ′ ))

= sgn(Pf((ı R∗Lper
η,ρ,ρ′(1)R)H ρ

2
))sgn(Pf((Dskew

ρ′ )Hρ′�H ρ
2
))sgn(Pf((Dskew

ρ′ )H ρ
2
))

sgn(Pf((Dskew
ρ′ )Hρ′�H ρ

2
))

= sgn(Pf((ı R∗Lper
η,ρ,ρ′(1)R)H ρ

2
))sgn(Pf((Dskew

ρ′ )H ρ
2
)) .

By the same argument

sgn(Pf(ı R∗Lper
η,ρ,ρ(1)R))sgn(Pf(Dskew

ρ ))

= sgn(Pf((ı R∗Lper
η,ρ,ρ(1)R)H ρ

2
))sgn(Pf((Dskew

ρ )H ρ
2
)) .

Because the paths t ∈ [0, 1] �→ (ı R∗Lper
η,ρ,tρ+(1−t)ρ′(1)R)H ρ

2
and t ∈ [0, 1] �→

(Dskew
tρ+(1−t)ρ′)H ρ

2
both lay in the real skew-adjoint invertibles

sgn(Pf((ı R∗Lper
η,ρ,ρ′(1)R)H ρ

2
)) = sgn(Pf((ı R∗Lper

η,ρ,ρ(1)R)H ρ
2
))

and

sgn(Pf((Dskew
ρ′ )H ρ

2
)) = sgn(Pf(Dskew

H ρ
2

))

for any fixed basis of H ρ
2
⊗ C

2. This shows that the r.h.s. of (30) is independent of
(η, ρ) in the permitted range of parameters.

Thus it remains to show (30) where ρ can be chosen as large as needed. For
Lper

η,ρ(1, s) as in the proof of Theorem 17

Q Lper
η,ρ(1, s) Q = −Lper

η,ρ(1, s)

for all s ∈ [0, 1]. Thus ı R∗Lper
η,ρ(1, s)R is a path of real skew-adjoint invertibles.

Thus for fixed and sufficiently large ρ, the Pfaffain of the skew periodic localizer
has the same sign as the Pfaffain of the skew localizer L̂κ,ρ for the considered index
pairing introduced in Section 5.2 of [18] but for −A instead of A. In the same way,
one checks that the sign of the Pfaffian of Dskew

ρ equals the sign of the Pfaffian of
(ı R∗((D + p0) ⊕ (D + p0))R)ρ . Then the claim follows from Theorem 26 in [18]
as Ind2(E AE + (1− E)) = Ind2(−E AE + (1− E)). ��
Case d = 2 for CAZ class AII: For d = 2 the Dirac operator is D = X1γ1 + X2γ2.
Thus its off-diagonal entry is D0 = X1 + ı X2. Again in order to eliminate the
kernel, D0 is replaced by D0 + p0 with a projection p0 on the origin. For sake of
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simplicity let us suppress this in the notations. In the present case, the index pairing is
T = PFP+1−P where F = D0|D0|−1 is theDirac phase and P = χ(H < 0). Then
the symmetry of the Hamiltonian is σ2Hσ2 = H where σ2 is the second Pauli matrix
which commutes with X1 and X2. Then for Q as in (32) the periodic spectral localizer

defined by (1) satisfies QLper
η,ρQ = −Lper

η,ρ . Finally the skew periodic localizer and
Dskew are again defined by

Lskew,per
η,ρ = ı R∗Lper

η,ρR , Dskew = ı R∗DρR ,

for R as in (32). Both are real and skew-adjoint and the explicit form of the skew
periodic localizer is

L
skew,per
η,ρ =

(
−ıσ2 sin(

π
ρ X1) ıσ2

∑2
j=1(1− cos( π

ρ X j ))+ sin( π
ρ X2)

ıσ2
∑2

j=1(1− cos( π
ρ X j ))− sin( π

ρ X2) ıσ2 sin(
π
ρ X1)

)

+ 1

η

( �(H) −ıσ2 �(H)

−ıσ2 �(H) −�(H)

)
.

By essentially the same proof as in Proposition 18 one obtains:

Proposition 19 For (η, ρ) as in Theorem 3, Lskew,per
η,ρ and Dskew

ρ are invertible and
(30) holds.

Case d = 3 for CAZ class AII: For d = 3 the Dirac operator is D = X1γ1+ X2γ2+
X3γ3. Then let us set D̃ = D + γ1 p0. Let H be a finite-range periodic Hamiltonian
on �2(Z,CL) that is in CAZ class AII namely that has an odd time-reversal symmetry
σ2Hσ2 = H . The index pairing is T = E(1− 2P)E + 1− E where E = χ(D̃ ≥ 0)
and P = χ(H ≤ 0). The skew periodic localizer can be obtained form the even or
odd periodic spectral localizer.

The even periodic spectral localizer, given by (1), fulfills QLper
η,ρQ = −Lper

η,ρ for

Q =
(

0 σ2γ2
σ2γ2 0

)
. (33)

One possible choice of R is

R = 1

2

(
(1− ı)R (1+ ı)R
(1+ ı)R (1− ı)R

)
, (34)

where R2 = σ2γ2 and R = R∗ = R−1. The skew periodic localizer is off-diagonal

Lskew,per
η,ρ =

(
0 Bρ

−B∗
ρ 0

)
, (35)

for Bρ = R∗(ı
∑3

j=1 sin(
π
ρ
X j )γ j − 31+∑3

j=1 cos(
π
ρ
X j )+ 1

η
Hper

ρ )R.
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Proposition 20 For (η, ρ) as in Theorem 3, Lskew,per
η,ρ and Dskew

ρ are invertible and one
has (30). Choosing the even periodic spectral localizer and R as in (34) one obtains

Ind2(T ) = sgn(det(Bρ)) sgn(det(Cρ))

for Bρ as above andCρ = R∗(ı
∑3

j=1 sin(
π
ρ
X j )γ j+γ1 p0−31+∑3

j=1 cos(
π
ρ
X j ))R.

5 Fuzzy tori and their invariants

This section develops a general theory of fuzzy tori and their invariants. Here the
terminology of fuzzy geometric object is meant in the following sense: consider a
classical geometric object (compact or non-compact) as a subset of an Euclidean
space Rd defined by a set of equations in the components of x = (x1, . . . , xd) ∈ R

d ;
replace these coordinates or functions of them by operators in some algebra and ask the
defining equations to be satisfied only approximately, namely up to errors in operator
norm; then these operators are called a fuzzy geometric object. As this is a particular
case of algebras defined by relation, an abstract study of the K -theoretic invariants of
such fuzzy objects has been known for a long time [7–9]. The construction of these
invariants was essentially based on the replacement of the fuzzy object into classical
maps from the geometric object to a sphere [10]. This leads to correct, but not very
practical maps. Here we rather use relatively easy polynomial maps into the dotted
Euclidean space and show that they do allow to construct the invariants, actually in a
much easier manner that can be implemented numerically. The focus is only on fuzzy
tori, because of their great relevance for solid state systems and hence connections to
the first part of the paper. More precisely, it is shown how these abstract constructions
applied to natural fuzzy tori associated to the situations analyzed in Sections 1 to 3
directly lead to the periodic spectral localizers.

Definition 21 Let A be a C∗-algebra of operators on a separable Hilbert spaceH and
let A∼ denote its unitization. Then d invertible operators A1, . . . , Ad ∈ A∼ form a
d-dimensional fuzzy torus of width δ ∈ [0, 1), or simply a fuzzy d-torus, if for all
j, i = 1, . . . , d

‖A j A
∗
j − 1‖ ≤ δ , ‖A∗j A j − 1‖ ≤ δ , ‖[A j , Ai ]‖ ≤ δ . (36)

If, moreover, is given a selfadjoint,

(Ad+1)
∗ = Ad+1 (37)

such that A1, . . . , Ad+1 ∈ A∼ form a (d + 1)-dimensional fuzzy torus of width δ,
then A1, . . . , Ad+1 ∈ A∼ are said to form a graded fuzzy d-torus of width δ.

In the definition of a graded fuzzy d-torus, the last added selfadjoint operator Ad+1
will be viewed as in approximate grading operator which approximately commutes
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with the fuzzy d-torus given by A1, . . . , Ad . Recall the definition of the real and
imaginary part of an operator A:

�e(A) = 1

2
(A + A∗) , �m(A) = 1

2ı
(A − A∗) .

Definition 22 Associated to a fuzzy d-torus A1, . . . , Ad ∈ A∼ and a subset I ⊂
{1, . . . , d}, the operator GI = GI (A1, . . . , Ad) is defined by

GI =
|I |∑

j=1

�m(Ai j ) ⊗ γ j +
⎛

⎝(|I | − 1)1−
|I |∑

j=1

�e(Ai j )

⎞

⎠⊗ γ|I |+1 , (38)

where I = {i1, . . . , i|I |} and γ1, . . . , γd+1 is an irreducible selfadjoint representation
of the Clifford algebra with d + 1 generators. Furthermore, if A1, . . . , Ad+1 ∈ A∼
form a graded fuzzy d-torus, then an operator Ĝ I = Ĝ I (A1, . . . , Ad+1) is introduced
by

Ĝ I =
|I |∑

j=1

�m(Ai j ) ⊗ γ j +
⎛

⎝|I |1−
|I |∑

j=1

�e(Ai j ) − Ad+1

⎞

⎠⊗ γ|I |+1 . (39)

By construction, GI = G∗
I and Ĝ∗

I = Ĝ I are selfadjoint operators onH⊗C
d ′ for

some d ′. The results below show that GI and Ĝ I are invertible for sufficiently small
δ, so that their positive spectral projections fix K -theory classes which for matrices
can simply be read out via the signature. Underlying the construction in (38) are
certain maps g|I |,|I |−1 : Td → R

d+1 \ {0} which for even |I | are analyzed in detail in
Appendix B. In particular, it is shown that the normalizedmaps g|I |,|I |−1/‖g|I |,|I |−1‖ :
T
d → S

d have a mapping degree equal to 1. One then gets GI : Td → C
d ′×d ′ by

multiplying the coefficients with an irreducible representation of |I | + 1 Clifford
generators:

GI (e
ıθ ) =

|I |∑

j=1

sin(θi j ) ⊗ γ j +
⎛

⎝(|I | − 1)1−
|I |∑

j=1

cos(θi j )

⎞

⎠⊗ γ|I |+1 .

As GI (eıθ ) remains gapped, Sig(GI (eıθ )) is independent of θ and Sig(GI (eıθ )) =
Sig(GI (1)) = 0. The same holds for fuzzy tori composed of commuting unitary
matrices:

Proposition 23 If a fuzzy d-torus consists of commuting unitary matrices A1, . . . , Ad,
one has Sig(GI ) = 0 and Sig(Ĝ I ) = 0 for all I .

Proof As thematrices can be simultaneously diagonalized, the above argument applies
to all common eigenspaces. ��
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For non-commuting (but almost commuting) matrices, the signatures of GI and
Ĝ I can be different from zero though, see the examples below. Hence these signa-
tures allow to distinguish different homotopy classes of fuzzy d-tori. As shown in
Proposition 35 below, the definition (39) of Ĝ I essentially reduces to the same map.
Furthermore, one has the following elementary fact:

Lemma 24 For odd |I |, there exists a further Clifford generator � = γ|I |+2 on the
same representation space for which �GI� = −GI and �Ĝ I� = −Ĝ I .

Remark 25 The formulas (38) and (39) look very much alike, but there is never-
theless a crucial difference that will be explained now. Given a graded fuzzy d-torus
A1, . . . , Ad+1 ∈ A∼, one can, of course, view it by definition as a (d+1)-dimensional
fuzzy torus and hence associate the operators GI = GI (A1, . . . , Ad+1). It requires
the use of an irreducible selfadjoint representation of the Clifford algebra with |I | + 1
generators even though, for i|I | = d + 1 and due to �m(Ad+1) = 0, the generator
γ|I | does not appear in the formula. Therefore, the operator GI satisfies the chirality
relation γ|I |GIγ|I | = −GI , no matter whether |I | is even or odd. For even |I | so that
|I |+1 is odd, it is not possible to add a further Clifford generator on the representation
space. On the other hand, if |I | is odd and |I | + 1 is even, there then does exist an
extra generator γ|I |+2. Choosing the representation such that

γ1 = γ̂1 ⊗ σ1 , . . . , γ|I |−1 = γ̂|I |−1 ⊗ σ1

γ|I |+1 = γ̂|I | ⊗ σ1 , γ|I | = 1⊗ σ2 , γ|I |+2 = 1⊗ σ3 ,

where σ1, σ2 and σ3 are the Pauli matrices and γ̂1, . . . , γ̂|I | is an irreducible selfadjoint
representation of the Clifford algebrawith |I | generators, one then has the two chirality
relations

σ2GIσ2 = −GI , σ3GIσ3 = −GI .

By an elementary argument with 2× 2 matrices, the second relation implies that GI

is off-diagonal in the grading of the Pauli matrices, and the first relation that the off-
diagonal entry is selfadjoint. Actually, setting Î = I \ {d+1} and comparing with the
definition of Ĝ Î written with the γ̂ j instead of the γ j , one finds

GI =
(

0 Ĝ Î
Ĝ Î 0

)
, |I | odd . (40)

Hence Ĝ Î is the reduced-out form of GI . Note that the spectra satisfy spec(GI ) =
spec(Ĝ Î )∪(−spec(Ĝ Î )). In particular, the spectrum ofGI is always symmetric, while
that of Ĝ Î may have a spectral asymmetry. �

Before starting with the analysis of the gap of GI and Ĝ I and their K -theoretic
interpretations, let us provide several examples of fuzzy tori.

Example 26 Let θ ∈ R
d×d be an anti-symmetric matrix and Aθ = C∗(U1, . . . ,Ud)

be the d-dimensional rotation algebra generated by d unitaries U1, . . . ,Ud satisfying
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UiU j = eıθi, j U jUi . One has the bound ‖[Ui ,Uj ]‖ = (2(1 − cos(θi, j )))
1
2 . Hence if

|θi, j | ≤ δ, then ‖[Ui ,Uj ]‖ ≤ δ. If this holds for all i �= j , then U1, . . . ,Ud form a
fuzzy d-torus of width δ. �
Example 27 Let A ∈ C1(Td ,CL×L) be a continuously differentiable function from
the classical d-torus to the invertible L × L-matrices. In applications to solid state
physics, this A appears as the off-diagonal entry of a periodic Hamiltonian with chiral
symmetry [5]. This is viewed as a fiberwise multiplication operator on L2(Td ,CL).
It is supposed to lead to small norms ‖A∗A − 1‖ and ‖AA∗ − 1‖, namely is almost
unitary. It is well-known that A has odd Chern numbers (also called higher winding
numbers) given by

Chd(A) = ( 12 (d − 1))!
d!

( ı

2π

) d+1
2
∫

Td
Tr
((

A−1dA
)d)

.

Let ı∂ j for j = 1, . . . , d be the (selfadjoint) coordinate vector fields on the torus.
Then eıπχκ (ı∂ j ) is defined by functional calculus from a scaled smooth switch function
χκ(x) = χ(κx). For κ sufficiently small, an argument similar to the one leading to
Lemma 13 implies that

eıπχκ (ı∂1) , . . . , eıπχκ (ı∂d ) , A

form a fuzzy (d + 1)-torus in the algebra of bounded operators on L2(Td ,CL). Its
width can be determined from κ and the above two norms. Note that, due to χκ(ı∂ j ) =
χ(κı∂ j ), κ plays the role of Planck’s constant here.Also let us stress that associated to a
classical d-torusTd is a fuzzy (d+1)-torus. Hence there there is a natural dimensional
shift here. There is an associated self-adjoint operator G = G{1,...,d+1}. If one chooses
the Clifford representation

γ1 ⊗ σ3 , . . . , γd ⊗ σ3 , 1⊗ σ2 , 1⊗ σ1 ,

it is given by

G =
( ∑d

j=1 sin(πχκ(ı∂ j )) γ j d −∑d
j=1 cos(πχκ(ı∂ j ))

d −∑d
j=1 cos(πχκ(ı∂ j )) −∑d

j=1 sin(πχκ(ı∂ j )) γ j

)
−
(

0 A
A∗ 0

)
. (41)

Note that if d is even, then the Clifford representation γ1, . . . , γd admits another
generator γd+1 and then G is odd w.r.t. γd+1 ⊗ σ3. �
Example 28 Upon Fourier transform F : �2(Zd ,CL) → L2(Td ,CL), Example 27
essentially becomes the situation described in Section 3 because F∗ı∂ jF = X j and
the finite range condition in Section 3 corresponds to a finite frequency condition. Then
F∗AF is a 1-periodic operator on �2(Zd ,CL) which for sake of simplicity is simply
denoted by A again. Then eıπχκ (X1), . . . , eıπχκ (Xd ), A form a fuzzy (d+1)-torus in the
algebra of bounded operators on �2(Zd ,CL), actually rather the much smaller algebra
generated by the algebra A1 of 1-periodic short-range operators and the algebra K
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of compact operators on �2(Zd ,CL) (as a vector space, this algebra is A1 ⊕ K, but
the multiplication is not fiberwise). The associated operator G = G{1,...,d+1} is, as in
(41),

G =
( ∑d

j=1 sin(πχκ(X j )) γ j d −∑d
j=1 cos(πχκ(X j ))

d −∑d
j=1 cos(πχκ(X j )) −∑d

j=1 sin(πχκ(X j )) γ j

)
−
(

0 A
A∗ 0

)
.

In this formula, one can now let A be a 2ρ periodic operator. Furthermore, choosing
χ(x) = x for |x | ≤ 1 and χ(x) = sgn(x) for |x | ≥ 1 as well as κ = 1

ρ
, one then

obtains an operator G with a restriction Gρ toHρ = �2((Z/(2ρZ))d ,CL) coinciding
with the odd periodic spectral localizer with η = 1, provided one replaces A by Aρ

with periodic boundary conditions. The spectral asymmetry of G entirely results from
the spectral asymmetry of this finite-dimensional piece Gρ (as can readily be shown
for ρ sufficiently large and the arguments in Section 2 that modifying the boundary
conditions does not alter the signature either) and can hence be measured by the half-
signature of the odd periodic spectral localizer. The fuzzy torus (of square matrices of
size (2ρ)d L) leading toGρ is given by e

ı π
ρ
X1 , . . . , eı

π
ρ
Xd , Aρ . Actually, the framework

can further be extended to operators A from the algebra A of covariant operators as
defined in [5, 6]. Then the fuzzy torus lies in the algebra A⊕K. �
Example 29 Suppose that H = H∗ is an invertible finite-range operator on
�2(Zd ,CL). Then the operators

eıπχκ (X1) , . . . , eıπχκ (Xd ) , H ,

form a graded fuzzy d-torus. Associated is therefore an operator Ĝ = Ĝ{1,...,d}. If the
irreducible representation of the Clifford algebra with d + 1 generators is chosen to
be

γ1 ⊗ σ1 , . . . , γd−1 ⊗ σ1 , 1⊗ σ2 , 1⊗ σ3

where γ1, . . . , γd−1 is an irreducible representation of the Clifford algebra with d − 1
generators (the tensor products will be dropped in the following), then one finds

Ĝ =
d−1∑

j=1

�m(eıπχκ (X j )) γ j σ1 + �m(eıπχκ (Xd ))σ2 +
(
d 1−

d∑

j=1

�e(eıπχκ (X1)) − H
)
σ3

=
(

−H + d 1−∑d
j=1 cos(πχκ(X j ))

∑d−1
j=1 sin(πχκ(X j )) γ j − ı sin(πχκ(Xd ))∑d−1

j=1 sin(πχκ(X j )) γ j + ı sin(πχκ(Xd )) H − d 1+∑d
j=1 cos(πχκ(X j ))

)
.

Replacing theγ j by γ̂ j andproceeding as inExample 28, one recovers the even periodic
spectral localizer with η = 1 as the finite-volume restriction of Ĝ. In connection with
this example, let us also point out that Proposition 35 below shows how to construct
an (ungraded) fuzzy d-torus associated to the above graded fuzzy torus. It is given by
Peıπχκ (X1)P, . . . , Peıπχκ (Xd )P where P = χ(H > 0). This fuzzy d-torus already
appeared in [12], and Proposition 35 shows that its associated G-operators GP

I are
homotopic to the Ĝ I and therefore have the same signature invariants. �
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Example 30 Suppose given a C∗-dynamical system (A,Rd , α) consisting of a C∗-
algebra (for simplicity given as subalgebra of the bounded operators on some Hilbert
spaceH) and a continuous group action α of Rd onA. The action is implemented (in
a unique manner, up to isomorphisms) by a strongly continuous unitary group action
U on H, namely αx (A) = U∗

x AUx for A ∈ A and x ∈ R
d . If e1, . . . , ed is a basis of

R
d , then t ∈ R �→ Ute j is a strongly continuous one-parameter group with generator

X j . Then define unitaries eıχκ (X j ) by spectral calculus. Further be given an invertible
operator A ∈ A fixing a class in K1(A). This operator is supposed to be sufficiently
smooth w.r.t. the action α (see [19] for a detailed description of conditions that assure
the existence of semi-finite index parings in the presence of an α-invariant tracial
state on A). One then has an associated fuzzy (d + 1)-torus eıχκ (X1), . . . , eıχκ (Xd ), A
of width converging to 0 as κ → 0 (no detailed proof of this fact is provided here,
as it readily follows from the techniques of Lemma 13 and [3]). Similarly, given a
sufficiently smooth gapped selfadjoint operator H ∈ A specifying a class in K0(A),
one has a graded fuzzy d-torus eıχκ (X1), . . . , eıχκ (Xd ), H . From both of these tori, one
can build lower-dimensional tori associated to choices of a subset I ⊂ {1, . . . , d}.
Note that these constructions are generalizations of the Examples 28 and 29. �

The next two results give simple criteria on the width δ assuring that G-operators
are invertible. We will focus on the case G = G{1,...,d} simply because the GI with
|I | < d are associated to a fuzzy |I |-torus so that the below results cover this case as
well. As the estimate of the gap is more simple and transparent, let us first restrict to
a fuzzy d-torus given by unitaries instead of invertible operators. Note that this case
is sufficient for Example 26.

Proposition 31 For unitaries U1, . . . ,Ud ∈ U(H), the operator G = G{1,...,d}(U1,

. . . ,Ud) satisfies

G2 ≥
⎛

⎝1− 7
∑

1≤ j<i≤d
‖[Uj ,Ui ]‖

⎞

⎠ 1 . (42)

In particular, G is invertible if the unitaries U1, . . . ,Ud ∈ U(H) form a fuzzy d-torus
of width δ satisfying 1− (d2

)
7δ > 0.

Proof The argument is essentially identical to the one leading to Proposition 4.3 in
[11]. Using the Clifford relations, one finds

G2 =
⎛

⎜⎝
d∑

j=1

�m(Uj )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2
⎞

⎟⎠⊗ 1

+
∑

1≤ j<i≤d
[�m(Uj ),�m(Ui )] ⊗ γ jγi

+
d∑

j=1

[�m(Uj ), (d − 1)1−
d∑

i=1

�e(Ui )] ⊗ γ jγd+1 .

123



13 Page 32 of 47 N. Doll et al.

Using that

‖[�m(Uj ),�m(Ui )]‖ ≤ ‖[Uj ,Ui ]‖ , ‖[�m(Uj ),�e(Ui )]‖ ≤ ‖[Uj ,Ui ]‖

and that γ j is unitary for all j one obtains

G2 ≥
⎛

⎜⎝
d∑

j=1

�m(Uj )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2
⎞

⎟⎠⊗ 1

− 3
∑

1≤ j<i≤d
‖[Uj ,Ui ]‖1 . (43)

Moreover,

d∑

j=1

�m(Uj )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2

=
d∑

j=1

�m(Uj )
2 + (d − 1)21− 2(d − 1)

d∑

j=1

�e(Uj ) +
⎛

⎝
d∑

j=1

�e(Uj )

⎞

⎠
2

= d1+ (d − 1)21− 2(d − 1)
d∑

j=1

�e(Uj )

+
d∑

1≤ j<i≤d
(�e(Uj )�e(Ui ) +�e(Ui )�e(Uj )) ,

where the last step follows from �m(Uj )
2 +�e(Uj )

2 = 1. This simplifies to

d∑

j=1

�m(Uj )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2

= 1+
∑

1≤ j<i≤d

(
(1−�e(Uj ))(1−�e(Ui )) + (1−�e(Ui ))(1−�e(Uj ))

)
.

(44)

One directly checks that 1−�e(Uj ) = 1
2 (Uj − 1)(Uj − 1)∗ and therefore

d∑

j=1

�m(Uj )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2

= 1+ 1

4

∑

1≤ j<i≤d

(
(Uj − 1)(Uj − 1)∗(Ui − 1)(Ui − 1)∗
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+ (Ui − 1)(Ui − 1)∗(Uj − 1)(Uj − 1)∗
)

= 1+ 1

4

∑

1≤ j<i≤d

(
(Uj − 1)(Ui − 1)(Ui − 1)∗(Uj − 1)∗

+ (Uj − 1)[(Uj − 1)∗, (Ui − 1)](Ui − 1)∗

+ (Uj − 1)(Ui − 1)[(Uj − 1)∗, (Ui − 1)∗] + (Ui − 1)(Uj − 1)(Uj − 1)∗(Ui − 1)∗

+ (Ui − 1)[(Ui − 1)∗, (Uj − 1)](Uj − 1)∗ + (Ui − 1)(Uj − 1)[(Ui − 1)∗, (Uj − 1)∗]
)
.

Using that the first and fourth summand are non-negative and ‖(Uj − 1)‖ ≤ 2 and
‖(Ui − 1)‖ ≤ 2, one obtains

d∑

j=1

�m(Uj )
2+
⎛

⎝(d − 1)1−
d∑

j=1

�e(Uj )

⎞

⎠
2

≥ (
1− 4

∑

1≤ j<i≤d
‖[Uj ,Ui ]‖

)
1 .

Combining with (43) the claim (42) follows. ��
Example 32 Let us continuewithExample 26 of the non-commutative torus. If |θi, j | ≤
δ for all i �= j and δ < 2

7d(d − 1), then GI = GI (U1, . . . ,Ud) is gapped by
Proposition 31. If 1

2π θ consists only of rational numbers, it is well-known that the
unitaries U1, . . . ,Ud can be chosen to be finite-dimensional matrices. In this case
also GI is a finite-dimensional matrix and one can hence define the invariants νI =
1
2 Sig(GI ) which are integer-valued because the representation space of the Clifford
algebra is even-dimensional so that also the selfadjoint matrix GI acts on an even-
dimensional vector space. Let us now focus on the case d = 2 and I = {1, 2}. Then
θ is a scalar which is supposed to be θ = 2π

N . Choosing the Clifford representation to
be the standard Pauli matrices, the associated operator G = G{1,2}(U1,U2) is then

G =
(
1−�e(U1) −�e(U2) �m(U1) − ı �m(U2)

�m(U1) + ı �m(U2) −1+�e(U1) +�e(U2)

)
.

By Proposition 31, G is gapped provided that N ≥ 14π . In reality, the gap is already
open for N much smaller. Associated is then the invariant 12 Sig(G(U1,U2)) ∈ Z. Due
to [8, Proposition 5.1] and [9, Theorem 6.15] it is known that this integer is equal to
the winding number of the path t ∈ [0, 1] �→ det(tU1U2 − (1− t)U2U1). �
Example 33 This example is a continuation of Example 27, albeit with a function
A = U ∈ C1(Td ,U(L)) with values in the unitary matrices. For such a function,
Proposition 31 applies. Therefore the G-operator given in (41) is gapped. It is still an
operator on an infinite-dimensional Hilbert space and has no finite-dimensional invari-
ant subspaces (even if U only contains a finite number of frequencies). Nevertheless,
the operator has a spectral asymmetry which can be extracted by projecting G down
to frequencies of modulus less then ρ. If Gρ denotes this restriction, then the proof of
Theorem 17 shows that Chd(U ) = 1

2Sig(Gρ) for ρ sufficiently large. Let us note that
the spectrum of the operator G in infinite volume is contained in two intervals of size
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κ around −1 and 1, because G2 − 1 is bounded by a constant time κ . In particular, G
does not have a compact resolvent so that it is not possible to define an η-invariant,
other than for the spectral localizer [1, 3]. Furthermore, let us note that for d even, the
symmetry γd+1 ⊗ σ3Gργd+1 ⊗ σ3 = −Gρ implies that Sig(Gρ) = 0. However, for
d even, one can choose I of odd cardinality |I | < d and then the spectral asymmetry
of the associated operators GI determines the odd Chern numbers of lower degree. �

Proposition 31 does not allow to show the G-operators associated to Examples 28
and 29 are gapped because A and H are not necessarily unitary, even though all other
operators of the fuzzy tori are unitary which, moreover, commute with each other. Of
course, the situation of Example 29 is dealt with in detail in the proof of Theorem 3
given in Section 2. The next result generalizes Proposition 31 to invertible operators
A1, . . . , Ad ∈ B(H) that form a fuzzy d-torus. This also provides the gap estimate of
Theorem 3, albeit with considerably worse constants.

Proposition 34 If A1, . . . , Ad ∈ B(H) form a fuzzy d-torus of width δ ∈ (0, 1
2 ] the

selfadjoint operator G = G{1,...,d}(A1, . . . , Ad) satisfies

G2 ≥ (
1 − 24 d2δ

)
1 . (45)

In particular, G is invertible if δ < 1
24 d2

.

Proof Using the Clifford relations one has

G2 =
⎛

⎜⎝
d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2
⎞

⎟⎠

+
∑

1≤ j<i≤d
[�m(A j ),�m(Ai )] ⊗ γ jγi

+
d∑

j=1

[�m(A j ), (d − 1)1−
d∑

i=1

�e(Ai )] ⊗ γ jγd+1

≥
⎛

⎜⎝
d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2
⎞

⎟⎠

−
⎛

⎝
∑

1≤ j<i≤d
‖[�m(A j ),�m(Ai )]‖ −

d∑

j,i=1

‖[�m(A j ),�e(Ai )]‖
⎞

⎠ .

(46)

Using that spec(|A j |) ⊂ [(1− δ)
1
2 , (1+ δ)

1
2 ] and δ ≤ 1

2 , one checks that

‖A j‖ = ‖|A j |‖ ≤ (1+ δ)
1
2 ≤ 1+ δ

2
, ‖A−1

j ‖2 ≤ (1− δ)−1 ≤ 1+ 2δ. (47)
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Therefore

‖[Ai , A
∗
j ]‖ = ‖A−1

j (A j Ai A
∗
j A j − A j A

∗
j Ai A j )A

−1
j ‖

≤ ‖A−1
j ‖2 ‖A j Ai (A

∗
j A j − 1) + [A j , Ai ] + (1− A j A

∗
j )Ai A j‖

≤ (1+ 2δ)
(
2(1+ δ)δ + δ

) ≤ 8 δ . (48)

This leads to

‖[�m(A j ),�m(Ai )]‖ ≤ 1

4

(∥∥[A j , Ai ]
∥∥+ ∥∥[Ai , A

∗
j ]
∥∥+ ∥∥[A∗i , A j ]

∥∥+ ∥∥[A∗j , A∗i ]
∥∥
)

≤ 1

2
(δ + 8δ) ≤ 5 δ .

In the same way one shows the bound

‖[�m(A j ),�e(Ai )]‖ ≤ 1

4

(∥∥[A j , Ai ]
∥∥+ ∥∥[Ai , A

∗
j ]
∥∥+ ∥∥[A j , A

∗
i ]
∥∥+ ∥∥[A∗i , A∗j ]

∥∥
)

≤ 5 δ ,

for j �= i . For j = i a slightly better estimate holds

‖[�m(A j ),�e(A j )]‖ = 1

2
‖A j A

∗
j − A∗j A j‖ ≤ δ .

Inserting this into (46) leads to

G2 −
⎛

⎜⎝
d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2
⎞

⎟⎠

≥ −
(
dδ + 15

(
d

2

)
δ

)
1 ≥ −9 d2 δ 1 . (49)

It thus remains to prove a lower bound on the term in the parenthesis. Using

�m(A j )
2 +�e(A j )

2 = 1

2
(A j A

∗
j + A∗j A j )

≥ 1− 1

2
‖(A j A

∗
j − 1) + (A∗j A j − 1)‖1 ≥ (1− δ)1 ,

one finds

d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2
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≥ d(1− δ)1+ (d − 1)21− 2(d − 1)
d∑

j=1

�e(A j )

+
d∑

1≤ j<i≤d

(�e(A j )�e(Ai ) +�e(Ai )�e(A j )
)

= 1+
∑

1≤ j<i≤d

(
(1−�e(A j ))(1−�e(Ai )) + (1−�e(Ai ))(1−�e(A j ))

)− dδ1 .

(50)

One directly checks that

1

2
(A j − 1)(A j − 1)∗ − (1−�e(A j )) = 1

2
(A j A

∗
j − 1)

and therefore, by the first part of (36),

∥∥1
2
(A j − 1)(A j − 1)∗ − (1−�e(A j ))

∥∥ ≤ 1

2
δ .

Moreover, using (47)

‖1−�e(A j )‖ ≤ 1+ (1+ δ)
1
2 ≤ 5

2
, ‖A j − 1‖2 ≤ (

1+ (1+ δ)
1
2
)2 ≤ 5 .

Using the last two bounds one gets

∥∥1
4
(A j − 1)(A j − 1)∗(Ai − 1)(Ai − 1)∗ − (1−�e(A j ))(1−�e(Ai ))

∥∥

≤ ∥∥1
2
(A j − 1)(A j − 1)∗

(1
2
(Ai − 1)(Ai − 1)∗ − (1−�e(Ai ))

)∥∥

+ ∥∥(1
2
(A j − 1)(A j − 1)∗ − (1−�e(A j ))

)
(1−�e(Ai )

∥∥

≤ 1

2
5
1

2
δ + 1

2
δ
5

2
= 5

2
δ .

Inserting this into (50) leads to

d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2

≥ 1+ 1

4

∑

1≤ j<i≤d

(
(A j − 1)(A j − 1)∗(Ai − 1)(Ai − 1)∗

+ (Ai − 1)(Ai − 1)∗(A j − 1)(A j − 1)∗
)

− d δ 1− 2

(
d

2

)
5

2
δ

123



Topological indices for periodic gapped Hamiltonians… Page 37 of 47 13

≥ 1+ 1

4

∑

1≤ j<i≤d

(
(A j − 1)(Ai − 1)(Ai − 1)∗(A j − 1)∗

+ (A j − 1)[(A j − 1)∗, (Ai − 1)](Ai − 1)∗

+ (A j − 1)(Ai − 1)[(A j − 1)∗, (Ai − 1)∗]
+ (Ai − 1)(A j − 1)(A j − 1)∗(Ai − 1)∗

+ (Ai − 1)[(Ai − 1)∗, (A j − 1)](A j − 1)∗

+ (Ai − 1)(A j − 1)[(Ai − 1)∗, (A j − 1)∗]
)
− 7

2
d2 δ 1 .

The first and fourth summand are non-negative and can thus be left out for a lower
bound. In the other four summands, the commutators reduce to [A∗j , Ai ] or [A∗j , A∗i ]
which can be bounded directly by (36) or by (48). Using, moreover, again ‖A j−1‖2 ≤
5, one thus obtains

d∑

j=1

�m(A j )
2 +

⎛

⎝(d − 1)1−
d∑

j=1

�e(A j )

⎞

⎠
2

≥
(
1− 5

4

(
d

2

)
(8δ + δ + 8δ + δ)

)
1 − 7

2
d2 δ 1

≥
(
1− 15 d2 δ

)
1 .

Combining with (49) one obtains (45). ��
The next result shows that a graded fuzzy d-torus can always be reduced to a suitably

associated ungraded fuzzy d-torus.

Proposition 35 Let A1, . . . , Ad , Ad+1 = A∗d+1 ∈ A∼ be graded fuzzy d-torus of

a sufficiently small width δ ≤ 1
2 . Let P denote the Riesz projection on the positive

spectrum of Ad+1. Then P A1P, . . . , PAd P form a fuzzy d-torus of width 6δ on the
Hilbert space PH. Setting GP

I = GI (PA1P, . . . , PAd P) for I ⊂ {1, . . . , d}, the
operator Ĝ I = Ĝ I (A1, . . . , Ad , Ad+1) is homotopic to GP

I ⊕ (1− P)γd+1 inside the
invertible operators, still for δ sufficiently small. In particular,

Sig(GP
I ) = Sig(Ĝ I ) .

Proof As ‖A2
d+1 − 1‖ ≤ δ by assumption, Ad+1 is close to a symmetry and its

spectrum is separated into two intervals [−√1+ δ,−√1− δ] and [√1− δ,
√
1+ δ],

see e.g. (47). Let P denote the Riesz projection associated to [√1− δ,
√
1+ δ]. Then

‖Ad+1 − (2P − 1)‖ ≤ 1−√
1− δ ≤ δ by the spectral mapping theorem. Moreover,

the other conditions in (36) imply

‖[A j , P]‖ ≤ max
z∈∂B1(±1)

‖(z1− Ad+1)
−1‖2‖[A j , Ad+1]‖ ≤ 2 δ ,
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so that

∥∥A j − PA j P − (1− P)A j (1− P)
∥∥ = ∥∥(1− P)A j P + PA j (1− P)

∥∥ ≤ 2 δ .

(51)

Moreover, since ‖A j‖ = ‖A∗j A j‖ 1
2 ≤ (1+ δ)

1
2 ≤ 1+ 1

2δ,

∥∥[PA j P, PAi P]
∥∥ ≤ ∥∥P[A j , Ai ]P

∥∥+ ∥∥P[A j , P]Ai P
∥∥+ ∥∥[P[Ai , P]A j P

∥∥
≤ 6 δ ,

the operators PA1P, . . . , PAd P forms an (ungraded) fuzzy d-torus on the Hilbert
space PH of width 6δ. (Similarly, also (1− P)A1(1− P), . . . , (1− P)Ad(1− P) is
an (ungraded) fuzzy d-torus on the Hilbert space (1− P)H of width 6δ, but this torus
will not be used.) The associated G-operator is denoted by GP

I , see the statement of
the proposition. One then has, due to (51),

∥∥Ĝ I − GP
I ⊕ G̃1−P

I

∥∥ ≤ 5 d δ ,

where

G̃1−P
I =

∑

j∈I
(1− P)�m(A j )(1− P) ⊗ γ j

+
(
(|I | + 1)(1− P) −

∑

j∈I
(1− P)�e(A j )(1− P)

)
⊗ γ|I |+1 .

Let us stress that this is not the G-operator G1−P
I on (1 − P)H associated to the

fuzzy d-torus (1− P)A1(1− P), . . . , (1− P)Ad(1− P) for I ⊂ {1, . . . , d} by the
definition (38), simply because one of the summands is (|I |+1)(1−P)⊗γ|I |+1 rather
than (|I | − 1)(1− P) ⊗ γ|I |+1. It hence remains to show that G̃1−P

I is homotopic to
(1 − P) ⊗ γ|I |+1 inside the invertible operators. This follows directly from the next
lemma, applied to the fuzzy |I |-torus associated to I . ��
Lemma 36 Given a fuzzy d-torus A1, . . . , Ad of a sufficiently small width δ, the oper-
ator

G̃ =
d∑

j=1

�m(A j ) ⊗ γ j +
(
(d + 1)1−

d∑

j=1

�e(A j )
)
⊗ γd+1

is homotopic to γd+1 inside the invertible operators.

Proof The homotopy will be given by the straight-line path t ∈ [0, 1] �→ G̃(t) =
(1− t)γd+1 + t G̃. Explicitly

G̃(t) = γd+1 + t
( d∑

j=1

�m(A j ) ⊗ γ j +
( d∑

j=1

(1−�e(A j ))
)
⊗ γd+1

)
.
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Now all commutators [�m(A j ),�e(Ai )] and [�m(A j ),�m(Ai )] are of order O(δ),
see the proof of Proposition 34. Hence

G̃(t)2 = 1+ 2t
d∑

j=1

(1−�e(A j ))+ t2
( d∑

j=1

�m(A j )
2 + (

d∑

j=1

(1−�e(A j ))
)2) + O(δ) .

But up to errors of orderO(δ), one also has 1−�e(A j ) ≥ 0. Hence G̃(t)2 ≥ 1+O(δ),
which implies the claim. Note that the claim merely reflects that the maps gd,d+1
defined in Appendix B have a vanishing mapping degree and are hence homotopic to
the identity. ��

Now that the crucial property that the operators GI are gapped is proved for fuzzy
tori of sufficiently small width, it is possible to extract topological information from
them. Recall that elements of the K -group K0(A) are homotopy equivalence classes
of either projections or equivalently invertible selfadjoints in matrix algebras of A,
and that K1(A) are homotopy equivalence classes of invertibles in matrix algebras of
A or equivalent equivalence classes of selfadjoint invertible which anti-commute with
some symmetry in the matrix degrees of freedom (see (40), or e.g. [1] for some further
explanations of this). Based on Proposition 34 and Lemma 24 one therefore has the
following.

Corollary 37 Let A1, . . . , Ad be a fuzzy d-torus in a C∗-algebraA of sufficiently small
width. For any index set I ⊂ {1, . . . , d}, one then obtains a class [GI ]0 ∈ K0(A) if I is
of even cardinality and a class [GI ]1 ∈ K1(A) if I is of odd cardinality. For a graded
fuzzy torus one obtains [Ĝ I ]0 ∈ K0(A) for I of even cardinality, and [Ĝ I ]1 ∈ K1(A)

for I of odd cardinality. In the latter case, the classes can also be represented by the
G-operators GP

I of the P-restricted fuzzy tori given in Proposition 35.

If the algebra A is given by matrices (or compact operators) and A1, . . . , Ad is
a fuzzy d-torus of matrices, then one can read out its K -theoretic content using the
half-signatures 1

2 Sig(GI ) ∈ Z with I ⊂ {1, . . . , d} being of even cardinality. Note

that the number of such I is given by
∑� d2 �

j=0

( d
2 j

) = 2d−1. For a graded fuzzy d-torus of

matrices, the invariants are given by 1
2 Sig(Ĝ I ) = 1

2 Sig(G
P
I ), again for I ⊂ {1, . . . , d}

of even cardinality so that there are again 2d−1 invariants.

Proof of Theorem 12 One only has to apply Corollary 37 to Example 29. ��
In the case of two almost commuting unitariesU1,U2 (see Example 32) satisfying

that Sig(G{1,2}(U1,U2)) = 0, it is known [9] that they can be deformed into two com-
muting unitaries. Hence one can expect the integers 1

2 Sig(G{1,2}(U1,U2)) to fully
classify all fuzzy 2-tori. We even suspect that all fuzzy matrix tori are completely clas-
sified by the signature invariants constructed above, provided G∅ is suitably defined:

Conjecture Two fuzzy d-tori of matrices having the same signature invariantsSig(GI )

for all I ⊂ {1, . . . , d} of even cardinality can be homotopically deformed into each
other without closing the gaps of any of the GI . Similarly, graded fuzzy d-tori of
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matrices are classified by the invariants 1
2 Sig(Ĝ I ) = 1

2 Sig(G
P
I ), again for I ⊂

{1, . . . , d} of even cardinality.

A Mapping degree versus Chern number

For the convenience of the reader, this appendix provides a detailed proof of the con-
nection between mapping degree of a differentiable function f : Td → S

d on an
even-dimensional torus and the Chern number of an associated matrix-valued pro-

jection Pf : Td → C
d ′×d ′ with d ′ = 2

d
2 . This fact is used in Appendix B which

is crucial for understanding the motivation for the periodic spectral localizer and the
G-operators in Section 5. While the main statement, Corollary 39 below, is certainly
well-known in the community, we could not localize a detailed proof.

Let d be even and let us denote the restrictions of the euclidean coordinate functions
to Sd by x j : Sd → R for j ∈ {1, . . . , d + 1}. More precisely,

x j (y) = y j , y =
⎛

⎜⎝
y1
...

yd+1

⎞

⎟⎠ ∈ S
d .

Furthermore, let f j = x j ◦ f : T
d → R be j th component of the function f

for j ∈ {1, . . . , d + 1}. Let γ1, . . . , γd+1 ∈ C
d ′×d ′ be an irreducible self adjoint

representation of the Clifford algebra with the convention that

γ1 · · · γd+1 = ı
d
2 1 . (52)

Then let us define the map Pf : Td → C
d ′×d ′ by

Pf (k) = 1

2

( d+1∑

j=1

f j (k)γ j + 1
)

.

Then Pf (k) is an (orthogonal) projection for all k ∈ T
d . Its exterior derivative is

dPf = 1
2

∑d+1
j=1 γ j d f j , a matrix-valued 1-form on T

d . Then let us set

ω f = Tr
(
Pf (dPf ∧ dPf )

∧ d
2
)

,

which is a d-form on T
d . Using (52) as Tr(1) = 2

d
2 , it is explicitly given by

ω f =Cd

d+1∑

j=1

(−1) j+1 f j d f1 ∧ . . . ∧ d f j−1 ∧ d f j+1 ∧ . . . ∧ d fd+1Cd = 1

2

1

2d
d!2 d

2 ı
d
2

123



Topological indices for periodic gapped Hamiltonians… Page 41 of 47 13

Similarly, let us define another projection-valued map PW : Sd → C
d ′×d ′ (called the

Weyl projection) by

PW (p) = 1

2

( d+1∑

j=1

x j (p)γ j + 1
)

.

Similar as above, there is an associated d-form on Sd given by

ωW = Tr
(
PW (dPW ∧ dPW )∧

d
2
)

= Cd

d+1∑

j=1

(−1) j+1x j dx1 ∧ . . . ∧ dx j−1 ∧ dx j+1 ∧ . . . ∧ dxd+1 .

Proposition 38 For any differentiable map f : Td → S
d , the differential form ω f on

T
d equals the pullback of the differential form ωW by f :

ω f = f ∗ωW .

Proof For a point k ∈ T
d let η1, . . . , ηd : (−a, a) → T

d for a > 0 represent tangent
vectors of Td at the point k, namely η j is a differentiable curve fulfilling η j (0) = k
for all j ∈ {1, . . . , d}. The tangent vector represented by η j is denoted by [η j ]. Then
one has to show

ω f ([η1], . . . , [ηd ]) = ωW (d fk([η1]), . . . , d fk([ηd ])) , (53)

where d fk denotes the differential of f at the point k. A direct computation shows

ω f ([η1], . . . , [ηd ])

= Cd

d+1∑

j=1

(−1) j+1 f j d f1 ∧ . . . ∧ d f j−1 ∧ d f j+1 ∧ . . . ∧ d fd+1([η1], . . . , [ηd ])

= Cd

d+1∑

j=1

(−1) j+1 f j (k)
1

d!
∑

σ∈Sd
d f1([ησ(1)]) · · ·

× d f j−1([ησ( j−1)])d f j+1([ησ( j)]) · · · d fd+1([ησ(d)])

= Cd

d!
d+1∑

j=1

(−1) j+1 f j (k)
∑

σ∈Sd
( f1 ◦ ησ(1))

′(0) · · · ( f j−1 ◦ ησ( j−1))
′(0)

× ( f j+1 ◦ ησ( j))
′(0) · · · ( fd+1 ◦ ησ(d))

′(0) .

In a similar manner one checks

ωW (d fk([η1]), . . . , d fk([ηd ]))
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= Cd

d+1∑

j=1

(−1) j+1x j dx1 ∧ . . . ∧ dx j−1 ∧ dx j+1 ∧ . . . ∧ dxd+1(d fk([η1]), . . . ,

d fk([ηd ]))

= Cd

d+1∑

j=1

(−1) j+1x j ( f (k))
1

d!
∑

σ∈Sd
dx1(d fk[ησ(1)]) · · · dx j−1(d fk[ησ( j−1)])

× dx j+1(d fk[ησ( j)]) · · · dxd+1(d fk[ησ(d)])

= Cd

d!
d+1∑

j=1

(−1) j+1 f j (k)
∑

σ∈Sd
(x1 ◦ f ◦ ησ(1))

′(0) · · · (x j−1 ◦ f ◦ ησ( j−1))
′(0)

× (x j+1 ◦ f ◦ ησ( j))
′(0) · · · (xd+1 ◦ f ◦ ησ(d))

′(0)

= Cd

d!
d+1∑

j=1

(−1) j+1 f j (k)
∑

σ∈Sd
( f1 ◦ ησ(1))

′(0) · · · ( f j−1 ◦ ησ( j−1))
′(0)

× ( f j+1 ◦ ησ( j))
′(0) · · · ( fd+1 ◦ ησ(d))

′(0) .

Therefore (53) holds and the claim follows. ��
Now by a well-known pullback formula (e.g. tomDieck’s lecture notes [20] contain

a detailed proof) one has

∫

Td
ω f = deg( f )

∫

Sd
ωW ,

where deg( f ) is the mapping degree of f , generically defined as the sum over all
preimages (of a fixed point) of the signs of the determinants of the Jacobians. Next
recall (e.g. [5]) the definition of the dth Chern number of a differentiable projection-
valued map P : Md → C

L×L on a d-dimensional manifold M:

Chd(P) = (−1)
d
2 ( 1

2π ı )
d
2
1
d
2 !
∫

Md
Tr
(
P(dP)d

)
.

Then for ω f = Tr
(
Pf (dPf )

d
)
as above, one obtains

Chd(Pf ) = deg( f )(−1)
d
2 ( 1

2π i )
d
2
1
d
2 !
∫

Sd
ωW = deg( f )Chd(P

W ) .

It hence remains to compute Chd(PW ) which is again well-known:

Chd(P
W ) = (−1)

d
2 .

(E.g. [21, 22] contains a detailed computation.) Summing up, one concludes:
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Corollary 39 For d even and a smooth map f : Td → S
d , the dth Chern number of

Pf is

Chd(Pf ) = (−1)
d
2 deg( f ) .

B Mapping degree of somemaps from torus to sphere

This appendix is about the mapping degrees of the maps gd,m : Td → R
d+1 with d

even and m ∈ R given by

gd,m
(
eıθ1 , . . . , eıθd

) =
(
sin(θ1), . . . , sin(θd),m −

d∑

n=1

cos(θn)
)

, (54)

where θn ∈ [0, 2π) for n ∈ {1, . . . , d} and (eıθ1 , . . . , eıθd ) ∈ T
d . It can readily be

checked that the vector on the r.h.s. does not vanish if and only if m ∈ R \ {−d,−d +
2, . . . , d − 2, d}. For such m, let us then set

fd,m
(
eıθ1 , . . . , eıθd

) = ∥∥gd,m
(
eıθ1 , . . . , eıθd

)∥∥−1
gd,m

(
eıθ1 , . . . , eıθd

)
. (55)

Then fd,m : Td → S
d is a map onto the unit sphere with same mapping degree

deg( fd,m) = deg(gd,m). By Corollary 39, this mapping degree is equal to the d-th
Chern number Chd(Pfd,m ). These Chern numbers were computed in Section 2.2.4 of
[5] by analyzing the changes of the Chern numbers at the transition points {−d,−d+
2, . . . , d−2, d}. The argument involves rather delicate singular integrals, and this was
revisited in detail in [22]. Here a direct alternative argument based on the computation
of the mapping degree of gd,m is provided. Let us stress that the map gd,d−1 is at
the root of the construction of the periodic spectral localizer and the G-operators
associated to fuzzy tori. It leads to a Chern number Chd(Pfd,d−1) = 1.

To compactify notations, let us set eıθ = (eıθ1 , . . . , eıθd ) ∈ T
d and x =

(x1, . . . , xd+1) ∈ R
d+1 as well as x̂ = (x1, . . . , xd) ∈ R

d . Furthermore, let Td

be equipped with the orientation inherited from the atlas (Uj, ϕj)j∈J with J = {0, 1}d
given by, for j = ( j1, . . . , jd) ∈ J,

Uj =
{
eıθ ∈ T

d : θn ∈ [0, 2π) \ {π
2 + jnπ} for n ∈ {1, . . . , d}} ,

and the charts

ϕj
(
eıθ
) = (

(−1)|j| cos(θ1)
1+(−1) j1 sin(θ1)

,
cos(θ2)

1+(−1) j2 sin(θ2)
, . . . ,

cos(θd )

1+(−1) jd sin(θd )

)
,

where |j| =∑d
n=1 jn . Note that the factor (−1)|j| in the first component assures that all

charts are positively oriented. Moreover, let Sd be equipped with orientation inherited
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from the atlas (Vj , ψ j ) j∈{1,2} given by

V1 =
{
x ∈ S

d ⊂ R
d+1 : xd+1 �= 1

}
, V2 =

{
x ∈ S

d ⊂ R
d+1 : xd+1 �= −1

}
,

and

ψ1
(
x
) = ( x1

1−xd+1
, . . . ,

xd
1−xd+1

)
, ψ2

(
x
) = ( x2

1+xd+1
,

x1
1+xd+1

,
x3

1+xd+1
, . . . ,

xd
1+xd+1

)
.

Proposition 40 If T
d is equipped with the orientation inherited from the atlas

(Uj, ϕj)j∈J and S
d is equipped with the orientation inherited from the atlas

(Vj , ψ j ) j∈{1,2} the degree of the map fd,m defined by (55) is given by

deg( fd,m) =

⎧
⎪⎪⎨

⎪⎪⎩

∑ d−n−1
2

k=0 (−1)k
(d
k
)
, n ∈ (0, d + 1) ∩ 2N+ 1,m ∈ (n − 1, n + 1) ,

∑ d−n−1
2

k=0 (−1)k+1(d
k
)
, n ∈ (0, d + 1) ∩ 2N+ 1,m ∈ (−n − 1,−n + 1) ,

0 , m ∈ (−∞,−d) ∪ (d,∞) .

Proof By the homotopy invariance of the mapping degree, it is sufficient to consider
the case m ∈ {−d − 1,−d + 1, . . . , d + 1}. For the case m = d + 1, one can consider
the maps

gd,d+1,t
(
eıθ
) =

(
t sin(θ1), . . . , t sin(θd), 1− t

d∑

n=1

(cos(θn) − 1)
)

,

where t ∈ [0, 1]. Then gd,d+1,1 = gd,d+1 and gd,d+1,0(eıθ ) = pN where pN =
(0, . . . , 0, 1) ∈ S

d is the north pole. Now the norm satisfies

‖gd,d+1,t
(
eıθ
)‖2 = t2

d∑

j=1

sin2(θ j )+ 1+ 2t
d∑

j=1

(1− cos(θ j ))

+t2
( d∑

j=1

(1− cos(θ j ))
)2 ≥ 1 .

This implies that t ∈ [0, 1] �→ fd,d+1,t = ‖gd,d+1,t‖−1gd,d+1,t is a homotopy from
fd,d+1 to a constantmap.Hence themapping degree vanishes. (Note that this argument
is essentially reproduced for fuzzy tori in Lemma 36.) Let us next focus on the case
m ∈ {1, 3, . . . , d − 1}. The other points are dealt with in a similar manner (with the
north instead of the south pole used in the argument below). Consider the south pole
given by pS = (0, . . . , 0,−1) ∈ S

d . Its inverse image is

f −1
d,m(pS) = {

eıθ ∈ T
d : θn ∈ {0, π} for n ∈ {1, . . . , d}, θ j

= π for at most d−m−1
2 many j

}
.
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Then, for 1 = (1, . . . , 1) ∈ J,

ψ1 ◦ fd,m ◦ ϕ−1
1 :

R
d \ {x̂ ∈ R

d : xn ∈ {±1}, #{ j ∈ {1, . . . , d} : x j = −1} > d−m−1
2

} → R
d

is given by

(ψ1 ◦ fd,m ◦ ϕ−1
1 )
(
x̂
)

=
(

1−x21
x21+1

(
1− m + 2

d∑

n=1

xn
x2n+1

)−1
, . . . ,

1−x2d
x2d+1

(
1− m + 2

d∑

n=1

xn
x2n+1

)−1

)
.

Its kth component is

(ψ1 ◦ fd,m ◦ ϕ−1
1 )
(
x̂
)
k = (1− x2k )

∏
n �=k(x

2
n + 1)

(1− m)
∏d

n=1(x
2
n + 1) + 2

∑d
n=1 xn

∏
j �=n(x

2
j + 1)

.

(56)

Let us denote the Jacobian matrix of this map by

J = J
ψ1◦ fd,m◦ϕ−1

1
:

R
d \ {x̂ ∈ R

d : xn ∈ {±1}, #{ j ∈ {1, . . . , d} : x j = −1} > d−m−1
2

} → R
d .

To determine the mapping degree of f (at the point pS) it is sufficient to compute the
restriction of J toM = ϕ1( f −1(pS)) explicitly given by

{
x̂ ∈ R

d : xn ∈ {−1, 1} for n ∈ {1, . . . , d}, x j = −1 for at most d−m−1
2 many j

}
.

One directly checks that the off-diagonal entries of J |M vanish, namely J (x̂)k,l = 0
for all x̂ ∈ M and k, l ∈ {1, . . . , d}, k �= l. The diagonal entries of J |M are

J (x̂)k,k = −xk2d

((1− m)2d + 2d
∑d

n=1 x j )
2

(57)

for x̂ ∈ M and k ∈ {1, . . . , d}. Therefore sgn(J (x̂)k,k) = −sgn(xk) and

sgn(det(J (x̂))) = (−1)#{ j∈{1,...,d}:x j=1} = (−1)#{ j∈{1,...,d}:x j=−1} ,

where the last equality holds because d is even. Because

#
{
x̂ ∈ R

d : xn ∈ {−1, 1} for n ∈ {1, . . . , d}, x j = −1 for k many j
} =

(
d

k

)
,
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one has

deg( fd,m, pS) =
d−n−1

2∑

k=0

(−1)k
(
d

k

)
.

As the mapping degree is independent of the point at which the preimage is taken
(provided it has a finite preimage), this shows the claim for m ∈ {1, 3, . . . , d − 1}. ��
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