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a German Aerospace Center (DLR), Münchener Straße 20, 82234, Weßling, Germany
b Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
c Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 4, 06120, Halle (Saale), Germany
d Rhenish Friedrich Wilhelm University of Bonn, Meckenheimer Allee 166, 53115, Bonn, Germany

1. Introduction

In the 21st century city, urban space is both physical and digital. 
Terms such as “smart city”, “digital twin”, and “digital citizenship” 
illustrate that urban communities are increasingly complemented by 
information-rich overlays and digitally represented (Robertson & Feick, 
2016) on social networks, web-mapping sites and content-sharing plat-
forms. The spread of information & communication technology and 
geospatial software applications make the digital space increasingly 
important for how individuals and organizations perceive the city and, 
by extension, make decisions within it (Törnberg & Uitermark, 2022). In 
this way, the power to shape the cultural, social, and economic reality of 
urban areas is partly dependent on the visibility they have in the digital 
sphere. But this visibility is not evenly distributed, neither among citi-
zens nor among the spaces in which they live (Boy & Uitermark, 2017; 
Zhu & Lerman, 2016). The competition for attention has led to the 
development of entire industries and technologies around an “urban 
attention economy” (Törnberg, 2023). Online visibility is a form of 
power, and it is in limited supply: not every place can be the center of 
attention. But which places are?

The spatial distribution of online visibility on social media can be 
found in explicit form on web platforms that offer a geolocation func-
tionality, such as Twitter (now X) or Instagram. Compared to other so-
cial media services like Facebook or WhatsApp, these platforms are 
notable because they allow users to explicitly link their contribution to 
specific geolocations, creating geolocated social media (GSM) data. The 
result is a layer of GSM activity that covers cities like a perceptible 
“digital skin” (Rabari & Storper, 2015) – a skin that exists in both virtual 
and geographic space and has the potential to connect the two worlds. 
As Kelley (2011) describes it, GSM are positioned to fill the gaps be-
tween the material landscape and the socio-cultural facts of how we 
perceive, experience, and interact with this environment. For this 

reason, they are frequently used sources of information for individuals 
and indicators for places’ positions in the urban attention economy. 
Importantly, online visibility can be approximated via GSM activity (the 
number of GSM content pieces attached to a certain location) and 
reception (number of responses, typically in the form of likes, shares, or 
replies).

The distribution of GSM activity is highly heterogeneous across and 
within cities (Robertson & Feick, 2016). Understanding variation across 
urban space can support urban studies in several ways: Firstly, it helps 
identifying types of intraurban areas for which GSM data is promising 
for research and planning. Secondly, understanding what drives differ-
ences in GSM activity can reveal digital disparities and underlying 
socio-cultural inequalities (Lemoine-Rodríguez, Mast, et al., 2024). 
Previous works identified inequalities in social media use along de-
mographic lines such as gender, ethnicity, and age (Hargittai, 2020; 
Malik et al., 2015; Wentrup et al., 2016). In geographic space, disparities 
exist between countries (Huang & Carley, 2019), within countries 
(Sanderson et al., 2024), and even within cities, between more and less 
prosperous parts of neighborhoods (Taubenböck et al., 2018) and from 
centers to peripheries (Jiang et al., 2016). However, one aspect of the 
digital urban divide was not researched yet, despite its increasing rele-
vance considering the rapid growth rates of many cities: The digital 
disparity between older and newer parts of settlements.

New settlements are no negligible part of the urban landscape: As 
humanity is undertaking its largest migration ever – from rural to urban 
areas (Saunders, 2010) – cities are growing at unprecedented rates due 
to a combination of natural population increase, migration, and the 
transition of formerly rural to urban areas (UN DESA 2019). The way in 
which cities accommodate the newly arriving population is mostly 
through the creation of new built-up areas (henceforth NBA), usually 
close to existing older built-up areas (henceforth OBA). Although pop-
ulation densities are also increasing in OBAs, NBAs absorb the majority 
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of urban population growth. Analyses of satellite imagery over the past 
decades have shown that the urban extent of many cities has increased at 
astonishing speed and in a wide variety of patterns (Taubenböck et al. 
2020, 2024, 2025). This diversity is the result of differentiated paths of 
historical processes that directly impacted urban developments, such as 
demographic growth, colonization (Şen, 2024), economic growth, and 
changes in planning culture (Taylor, 2013). Even within the extent of a 
same city, differences in urban morphology testifies to these historical 
processes. Trying to summarize them in a general and reproduceable 
way, Debray et al. (2023) showed that the connection between historical 
processes and intra-urban morphology can be captured through the 
concept of intensity of plannedness (henceforth IoP). The concept of IoP 
summarizes the combined historical processes influencing intra-urban 
layout on a gradient of how forcefully it has been planned. This 
gradient is conceptualized in five categories ranging from very sponta-
neous urban developments resulting from the decisions of many in-
dividuals to extremely planned development resulting from the 
manicured planning of a single institution or estate company.

While the underlying processes are manifold, they affect settlements’ 
form and density, which are related to socio-economic factors and the 
quality of life of their inhabitants (Debray et al., 2023; Sapena et al., 
2020).

For all these reasons, NBAs across the world, even when sharing a 
same development date, can be very heterogeneous in terms of mor-
phologies. Therefore, NBAs cannot be associated with a specific and 
unique morphological type of urban fabric: they stand on their own as a 
spatiotemporal frame in the dynamic process of urbanization. NBAs are 
characterized by two factors: 1) They are new i.e., they consist of 
recently constructed buildings; 2) They are places where many (or all) 
new residents have only recently settled. While we cannot assume 
anything about the distance people moved to relocate to these newly 
built housing areas, this still makes them places of comparatively high 
population dynamism, and thus an interesting unit of analysis for 
migration research. And it is the first characteristic, their recency, that 
allows their large-scale analysis through remote sensing time series. The 
temporal granularity of satellite data supports fine-grained analyses of 
settlement age which have revealed the massive extent to which cities 
have grown in recent decades (Lemoine-Rodríguez et al., 2020; Liu 
et al., 2020; Taubenböck et al., 2024). While the distribution of GSM in 
the urban space has been analyzed in several studies (e.g., Taubenböck 
et al., 2018; Jiang et al., 2016; Cai et al., 2017; Lv et al., 2021; Robertson 
& Feick, 2016; Yin and Guangqing, 2021; Lang et al., 2022; for reviews 
of the use of Twitter data in urban geography, see Zhu et al., 2022; Smith 
et al., 2025), to our knowledge the link between GSM activity and set-
tlement age remains unexplored.

This is especially relevant on the African continent, which has, 
together with Asia, the highest urban growth rates (Kamana et al., 2024; 
Taubenböck et al., 2024) and between 2020 and 2050 is predicted to 
double its population from 704 million to 1.4 billion people by 2050 and 
increase its total urban footprint from 175,000 km2 to 450,000 km2 

(OECD, 2025). Because of this, Africa can be considered the place where 
we find the world’s urban frontier: A region where new territory is 
transformed into urban space at unparalleled pace and at the same time, 
much urban potential yet to be realized (Goodfellow, 2022). Compared 
to elsewhere, much of Africa’s urban expansion is unregulated 
(Güneralp et al., 2017), with substantial heterogeneity in urban 
morphology (Taubenböck et al., 2020). At the same time, a high degree 
of urban primacy indicates that it is traditional urban centers that still 
dominate most African countries, with disproportionately less resources 
and attention given to other urban areas (Güneralp et al., 2017), sug-
gesting a divide that may also extend into the digital sphere. In other 
words, the digital urban frontier may lag behind the physical urban 
frontier. Whether this disparity exists, and whether regional character-
istics or the plannedness and structure of settlements influence it, has 
not been investigated so far.

In this study, we address this research gap. Our hypothesis is that the 

settlement age affects how GSM is used, influenced by a possibly 
increased affinity of new residents to discuss their new environment, 
NBAs’ novelty providing initial advantages in terms of economic 
attention, or, potentially, disadvantages resulting from delayed devel-
opment of cultural, social or economic places and telecommunication 
infrastructure. To validate our hypotheses, we address the following 
research questions:

How does the density of GSM activity differ between new and old 
areas of African settlements? If imbalances exist, do they differ in fre-
quency and magnitude (2) between regions of Africa, (3) between 
spontaneous and planned settlements, and (4) based on the spatial 
structure of NBAs?

By identifying if –and where– a digital divide can be measured in 
Africa’s cities, we aim to supply the knowledge base on urban devel-
opment with a digital perspective to enable effective urban strategies 
(Kamana et al., 2024) that adequately incorporate all parts of urban 
agglomerations in a digital transformation (African Union Commission, 
2021; OECD, 2025).

2. Data acquisition and processing

2.1. Study period and study sites

We conducted this study for a ten-year period between January 2010 
and December 2019. We selected this timespan due to the availability of 
a consistent set of geolocated social media posts from the platform 
Twitter where the geotagging feature became first widely used in 2009 
and substantially changed in 2019, reducing availability of fine-grained 
geotags (Kruspe et al., 2021, pp. 212–221). To identify the age of all 
built-up areas that already existed before this study period or were 
built-up during the study period, we used remote sensing data to map 
the built-up year not just for the study period, but as far back in time as 
data allows (see Section 2.3). It was not possible to analyze the entire 
African continent due to data limitations. While remote sensing data is 
available, access to social media data was less abundant. Consequently, 
we conducted a site-selection process to identify 135 study sites of 5 km 
radius (Fig. 1) where the most urban area was added between 1985 and 
2019, according to the World Settlement Footprint dataset (Marconcini 
et al., 2020). Focused on capturing any areas where strong growth 
occurred, the sites are not intended to reflect any particular urban 
boundaries and their centroids often do not correspond to a city center. 
Additionally, we ensured the representation of different geographic and 
cultural contexts (Fig. 1) by stratifying sites across United Nations (UN) 
georegions (United Nations Statistical Office, 1982), selecting at least 20 
sites for each georegion. A description of the site-selection process and 
the site outlines can be accessed in Supplement A.

2.2. Built-up expansion

For each site, we used remote sensing data to map the yearly 
expansion of built-up area. Due to the absence of frequent long-term 
data on built-up expansion in Africa, we extended the World Settle-
ment Footprint Evolution (WSFEvo) dataset by Marconcini et al. (2021) 
which provides settlement extents from 1985 to 2015, using the Do-it- 
yourself built-up (DIY-BU) mapping tool (Sapena et al., 2024) for the 
years 2015–2019. Unlike WSFEvo, which is derived from Landsat imag-
ery at 30 m resolution and global scale, DIY-BU uses Sentinel imagery to 
produce local urban expansion maps at 10 m resolution. Compared to 
global multi-temporal products, its locally fine-tuned approach using 
building footprint data has been shown to provide more accurate results 
(for more details, see Sapena et al., 2024). We resampled the WSFEvo to 
match the spatial resolution of the DIY-BU maps. Through spatial 
overlap, we assigned the earliest date from WSFEvo to the built-up pixels 
in DIY-BU maps, resulting in urban expansion maps covering 1985 to 
2019 at 10 m resolution (Fig. 2).
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2.3. Twitter data

As a source for GSM data, we used geolocated tweets (geotweets) 
from the microblog platform Twitter, a favored data source in many 
fields because of its coverage and widespread use (Karami et al., 2020). 
Twitter users may attach geolocation in several ways, primarily through 
place-based tags of various precision levels (point-of-interest, neigh-
borhood, city, administrative, and country), or through precise co-
ordinates obtained from the device or third-party applications (Kruspe 
et al., 2021, pp. 212–221). We were granted access to Twitter’s API via 
Twitter’s Academic Research Track (Twitter Inc, 2022), which allowed 
for the query of 10 million tweets per month via V2 of the Twitter API. 
We used the R package academictwitteR (Barrie & Ho, 2021) in 
December 2022 and January 2023 to download all geotweets available 
for the study period (1. January 2010–1. January 2020) and bounding 
boxes of the study sites. From this set, we kept those that we could 
precisely locate within the circular boundary of a site via a 
point-of-interest-level place tag or precise coordinates. If a geotweet 
contained both, we geolocated the tweet using precise coordinates.

The availability of sufficiently precise geotweets varied over time, 
likely due to changes in Twitter’s API, applications, and policies, or user 
preferences. Of 14,391,264 geotweets initially returned by the query, we 
discarded those with insufficient spatial precision (coarser than point-of- 
interest-level) and excluded accounts producing many geotweets with 
clear evidence of automation (unusually high user activity, speed, and 
concurrency of tweets, compare Petutschnig et al., 2020; Lemoine-Ro-
dríguez, Mast, et al., 2024; Mast et al., 2024). This resulted in a final 
total of 6,997,346 geotweets for the 135 sites. No metadata was recor-
ded other than account ID and the calendar year in which each geotweet 
was posted. We integrated the geotweet and remote sensing datasets by 
annotating each geotweet with the construction year of the built-up 

pixel at its location. Geotweets posted from non-built-up pixels were 
excluded from the analysis.

3. Analysis strategy

After the datasets were thusly integrated, the disparity in geotweet 
activity between OBAs and NBAs could be addressed analytically. The 
simple distinction between OBA and NBA permitted limited nuance, 
thus, we instead treated built-up age as a continuum. Along this con-
tinuum, the disparity in geotweet density was quantified and evaluated 
with significance tests at the site-level to answer research question 1 
(Fig. 3). Subsequently, research questions 2–4 were tested by relating 
the significance and magnitude of the disparity to geographic regions, 
site-level planning, and spatial metrics of settlement structure, as 
explained in sections 3.4–3.6.

3.1. Geotweet density

We sought to attain a general understanding of the relationship be-
tween built-up age and geotweet activity in our study sites. Therefore, 
we combined information on geotweets and on the spatial dynamic of 
settlement expansion. We operationalized this for the geotweets by 
weighting them by their impacts. We structured each AOI into a spatial 
grid of 100-m-wide square cells and computed the weight for each 
geotweet as: 

Wtweet =
1

nper user
+ nretweets + nreplies 

with nper user being the amount of geotweets posted by a given account 
within the same month in the same grid cell, nretweets being the number of 
times the geotweet was re-tweeted and nreplies the amount of replies the 

Fig. 1. Overview of the 135 study sites (left) and the primary data sets: geotweets (lower right) and built-up areas with construction year (upper right), mapped by 
the World Settlement Footprint Evolution (WSFEvo) and the Do-it-yourself built-up (DIY-BU) mapping tool.

Fig. 2. Examples of urban expansion in study sites.
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tweet generated. In this way, we reduced the local impact of highly 
active users and shifted the focus from the geotweets’ production to 
their visibility, assuming that a retweet, quote, or reply of a geotweet 
increases the digital representation of an area just like a new geotweet 
would.

From the geotweet data, we associated the weight of the geotweet, its 
geolocation and its publication date. With this, from the built-up 
expansion data, we retrieved the date of construction of the built-up 
environment of the tweets’ geolocation to compute the age of the 
built-up environment at the publication date of each tweet. After 
aggregating this information by publication year of the geotweets and by 
age of the built-up environment, we computed the weighted density of 
geotweets as: 

densityage
X =

Ntw*age
X

areaage
X 

with Ntw*age
X being the count of tweets adjusted by their weights for the 

year X (between 1985 and 2019) for the category of built-up age of their 
geolocation, denoted age. Accordingly, areaage

X is the surface occupied by 
the built-up environment of the category of built-up age age as of the 
year X of the geotweet publication. In other words, for each site, we 
computed the distribution of the weighted geotweet counts across built- 
up age of the settlement in the period 1985–2019 (see Fig. 4).

3.2. Quantifying disparity

This procedure yielded a sequence of geotweet density values for 
each site and year, which can be seen as a distribution of density by age 
of construction (Fig. 4f). Our first research question concerned the bal-
ance of this distribution, which we hypothesized to be skewed towards 

the new or old areas. In order to compare this age-related digital 
disparity across study sites, we designed a new measure. This measure is 
similar to skewness metrics and represents the degree to which the 
measured density disparity approaches the theoretically maximum 
possible disparity. We refer henceforth to this measure as the digital 
density skew (DDS) and describe its computation in detail in Supplement 
B where we also compare it with alternative measures. The DDS is 
bounded between − 1 and 1, respectively corresponding to the cases 
where all tweets posted for a given year are located only in the newest 
(DDS = − 1) or the oldest parts (DDS = 1) of a settlement (in the year the 
tweets were posted). Accordingly, a value of 0.5 indicates that the 
disparity is half of its theoretical maximum. The value of zero indicates 
balanced geotweet density between older built-up areas and newer 
built-up areas of the site (relatively to the other values in the observed 
sequence). While this interpretation of new and old built-up as relative 
to the observed sequence is not necessarily appropriate in the historical 
context of every site, it is consistent and comparable. Fig. 5 illustrates 
how the DDS responds to various distributions.

After calculating the DDS separately for each of the 10 calendar years 
of the study period, we calculated the overall DDS for each study site as 
the mean DDS over all years, excluding years that did not contain at least 
100 geotweets produced by at least 10 different accounts. Further, we 
excluded study sites that did not contain tweets by at least 100 different 
accounts overall.

Additionally, we tested the robustness of the DDS towards GPS- 
inaccuracies, low numbers of geotweets, low numbers of users, and 
the impact of highly active accounts (Supplement C).

Fig. 3. Schematic workflow of the study.
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3.3. Testing disparity at site level

The magnitude of the DDS indicates the degree to which there is an 
observed association between age and geotweet activity within a site, 
but it does not indicate its statistical significance.

To assess the significance, we compared the DDS against a null dis-
tribution. Because the weighting approach and topologic effects might 
affect new areas differently than older ones, the probability distribution 
of the DDS is not necessarily symmetric and centered on zero. Thus, to 

create a null distribution that accounts for these effects, we used a 
permutation test (Supplement D). We used the R package spatstat to 
model the spatial distribution of geotweets for each site as a clustered 
point process with a Cauchy distribution (Baddeley & Turner, 2005). 
Unlike a completely random spatial sampling, modeling the geotweet 
distribution as a clustered point process reflected empirical observations 
about the distribution of tweets (Steiger et al., 2015).

From the model, we simulated 1000 spatial point patterns for each 
site, each having a spatial overall clusteredness similar to the original 

Fig. 4. Derivation of density distribution for the year 2014 in a single site (Abuja, Nigeria). Items (a) and (b) display the two input data sets used to compute the 
built-up area (c) and the geotweet count (d & e) per construction year, which are joined to compute the geotweet density across construction years, where the 
geotweet density is higher in older areas (left) than newer areas (right).

Fig. 5. Several fictive tweet density distributions (compare Fig. 4 above) and their quantification by the disparity measure digital density skew (DDS).
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distribution, but with different locations of clusters. Reassigning the 
geotweets to these new coordinate-pairs, we repeated the process of 
extracting the built age, the geotweet density, and the DDS, resulting in 
1000 reference DDS values which approximate a null-distribution of 
DDS values for each site. On this basis, we assessed the significance of 
the DDS via a right-tailed p-value (fraction of permutations whose DDS 
value was at least as high as the observed DDS) and a left-tailed p-value 
(fraction of permutations whose mean DDS value was at least as low or 
lower than the observed mean DDS), applying a significance threshold of 
95 %.

A positive DDS indicated that geotweet activity was denser in older 
parts of settlements and a significant right-tailed test for the DDS indi-
cated that this is higher than could be caused by chance. Conversely, a 
negative DDS along with a significant left-tailed test indicated that the 
activity was significantly denser in newer settlements.

3.4. Comparing across African regions

We tested whether digital disparity varies significantly across 
geographic regions. We followed the UN geoscheme to group sites into 
five geographic regions: Northern Africa, Eastern Africa, Middle Africa, 
Western Africa, and Southern Africa (United Nations Statistical Office, 
1982; Fig. 1). These regions are one of many possible geographical 
stratifications, and like any, cannot accurately represent all cultural, 
historical, or ethnic divisions. Acknowledging this limitation, we still 
considered these regions the best suiting available systematic division 
scheme to the best of our knowledge, corresponding to United Nations 
standards, and being widely used for statistical purposes.

We applied both parametric and non-parametric ANOVAs of the DDS 
values over the five regions. The non-parametric ANOVA is a robust 
alternative that does not, like the parametric version, assume normality 
(assessed with a Shapiro-Wilk test (Royston, 1982; Razali and Yah 2011) 
and heterogeneity of variances across groups (assessed with a Levene, 
1960). We report p-values and ω2 and η2 as effect sizes for the parametric 
and non-parametric ANOVA, respectively. We also applied post-hoc 
two-sample t-tests to identify between which regions differences can 
be found.

We further compared prevalence (number of sites) and frequency 
(proportion of sites) of significant disparity for each region.

3.5. Comparing across intensity of plannedness

According to the intensity of plannedness (IoP) ontology (Debray 
et al., 2023), we assessed the IoP of each site using experts’ knowledge 

supported by visual inspection of up-to-date aerial imagery, Open-
StreetMap data and Google Street View imagery.

The assessment was firstly performed individually by the authors 
and, in a subsequent step, differences between the authors’ assessments 
were discussed until an agreement was reached. Each site was assigned 
one of the five IoP degrees ranging from completely spontaneous to 
completely planned at block level and at street-level separately with 
respect to the morphologic and structural appearance in the image data. 
Fig. 6 shows examples for each of the five IoP degrees.

To test RQ3, similarly as for RQ2, we performed both nonparametric 
and a parametric ANOVA of the DDS by the five IoP degrees.

3.6. Modeling the relationship between disparity and the spatial structure 
of settlements

Finally, we assess whether digital disparity varied significantly ac-
cording to the spatial structure of the built-up area in each site. This 
spatial arrangement can indicate socioeconomic processes that may 
affect digital disparities but are challenging to analyze directly due to a 
lack of data. Thus, to explore whether any links exist between spatial 
structure and digital disparities, we used spatial metrics to quantify the 
spatial structure of built-up areas in the sites. We calculated the metrics 
for the built-up area in 2019. The selected metrics have been shown to 
successfully quantify urban morphology (Sapena et al., 2020). These 
metrics focus on the size, shape, distribution, and connectivity of 
built-up areas. Metrics such as mean patch size (MPS), urban density 
(UD), and object density (OD) describe the extent and concentration of 
built-up patches, while the shape index (SI) and urban compactness (UC) 
capture the complexity and cohesion. Measures like the Euclidean 
nearest-neighbor distance (ENND) and area-weighted standard distance 
(AWSD) describe the spatial arrangement and centrality of built-up 
patches. Additionally, the porosity index (PI), effective mesh size 
(EMS), and dispersion index (DI) quantify fragmentation, openness, and 
distribution patterns, offering a comprehensive view of how built-up 
areas are organized within the sites (see Supplement E for a detailed 
description of the metrics).

Additionally, we calculated the spatial partial information (SPI) 
component of entropy, as described by Altieri and Cocchi (2022) in the 
analysis of urban fragmentation patterns. Compared to the spatial 
metrics suggested by Sapena et al. (2022), the SPI can be calculated at 
arbitrary scales, parametrized by distance ranges, and it is inherently 
scaled between 0 and 1, allowing us to compare built-up compactness at 
various scales. A high SPI, especially at short distance ranges, corre-
sponding to fine scales, hints at compact urban structure. Using the R 

Fig. 6. Example sites with varying intensity of plannedness (IoP) (similar for both street-level and block level). Data: Microsoft (Bing Maps).
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package SpatEntropy (Altieri et al., 2021), we calculated the SPI at four 
scales based on the distance-ranges: less than 100 m; 100–500 m; 
500–2000 m; 2000 m and more.

To test for a relationship between the DDS and the spatial metrics, we 
fitted a series of linear regression models between DDS and each metric. 
We report the significance of the relationships and the coefficients of 
determination (R2) of these models. We fitted three different models. 
First, we used all sites regardless of the significance of the DDS to model 
the one-to-one relationship between the DDS and the spatial metrics and 
assess their relationship. Second, we repeated this only for the sites with 
significant DDS and explored the intensity of the relationship. And third, 
as a single metric can only represent a single aspect of urban form, we 
fitted a multiple regression model to uncorrelated metrics using a for-
ward stepwise regression approach to receive a simpler model with only 
the significant metrics.

4. Results

4.1. Disparity at site level

We quantified the digital disparity using the DDS measure to test 
whether geotweet density varies by built-up age (RQ1). Overall, the 
mean DDS was measured at 0.201 (standard deviation = 0.16), signifi-
cantly higher than the mean of any of the 1000 permutations (right- 
tailed p-value = 0.000), making it very unlikely to result from spatial 
randomness. Similarly, the mean DDS for significant sites was measured 
with 0.308, i.e., 30.8 % of the theoretical maximum disparity. Both 
perspectives support the hypothesis of an overall trend towards disparity 
between OBA and NBA. With the mean DDS being significantly higher 
than the distribution of mean DDS under the null, the results provide 
unambiguous evidence of a widespread, but not uniform, disparity (see 
examples in Fig. 7).

At the level of individual sites, 63 of 135 showed a significant right- 
tailed test and a positive DDS, indicating higher digital density in OBA. 
For 55 sites, the result was not significant, and 17 sites were excluded 
because twitter data was insufficient for most years. Few sites were 
measured with a negative DDS, and their left-tailed tests were not sig-
nificant, such as Zango, Angola (− 0.272), Lumpundu, Congo (− 0.217), or 
Al-Fashir, Sudan (− 0.195), suggesting that there were no cases where 
geotweet activity was higher in newer areas. Results for all sites are 
listed in Supplement F.

The sensitivity analyses indicate that the reported results of the 
significance tests are robust towards realistic magnitudes of GPS inac-
curacy and the impact of highly active accounts (see Supplement C for 
details).

To complement these overall statistics, we provide detailed 
description of sites which exemplify different cases. Firstly, an example 
of a site where twitter activity is far denser in OBAs is Nador, Morocco 
(DDS = 0.367, p = 0.01, B2 in Fig. 7). This mediterranean city is sur-
rounded by a lagoon to the east and mountains on the other sides. The 
majority of Nador’s built-up area originated before the start of our study 
period and forms a consistently settled core area. Recent expansion 
occurred predominantly in A) the western suburbs in the form of scat-
tered rows of connected houses, or in B) a highly planned area on the 
south-eastern shore, where many hotels and restaurants suggest a 
touristic focus. While this new planned area contains several hundred of 
the city’s geotweets, the aforementioned suburbs contain very few. The 
vast majority of the 17 K tweets were distributed throughout the core, 
with geotweet density increasing along the main roads and declining 
towards the edges.

Ginti, Nigeria (B1 in Fig. 7), is the site with the largest settlement 
expansion in our study. A moderate disparity was measured here (DDS 
= 0.257, p = 0). Located in Ikorodu, north-east of Lagos, the site displays 
a continuous settlement expansion that extends outwards from the main 
road and is only roughly bounded by green spaces and wetlands. In 
contrast to Nador, almost all expansion occurred in recent decades. The 

roughly 62 K geotweets were distributed throughout all the built-up 
area, but most densely in the central area near the roads, which are 
spaces of social and commercial activity. Notable was a single concen-
tration of 17 K geotweets in one location close to the center of the site, 
but from different accounts and with different content. While the con-
centration of tweets along the core areas resembles Nador, many of the 
core areas in Ginti are more recent, leading to a weaker measurement of 
disparity.

In Sheikh Zayed City, Egypt (B3 in Fig. 7), west of Cairo, large 
neighborhoods were developed in recent decades in a comparatively 
brief time and highly planned manner. The 110 K geotweets were 
distributed fairly evenly across the built-up area, with notable concen-
trations in malls (the two largest built around 2010) and a high-tech 
business district in the north (built around 2000). As these sites were 
built-up throughout the study period, no significant disparity was 
measured for this site (DDS = − 0.093, p = 0.85).

Bani Walid, Libya (B4 in Fig. 7) is an oasis town divided by a valley 
into a northern and a southern half. Despite heavy fighting in the 
aftermath of the Libyan civil war in 2012 (Gumuchian, 2012), the town 
has expanded in south-western, south-eastern, and northern direction. 
Although the built-up area has doubled during the study period, almost 
all of the 2.5 K geotweets are located in the OBAs. There, they were 
highly concentrated, and in some cases, dozens of tweets were attached 
to the same precise coordinate. This phenomenon was occasionally 
observed in other sites, but particularly impactful here due to the 
comparative sparsity of tweets. Coupled with the low number of users, 
this led to a high variance of the permuted disparity. Consequently, the 
measured disparity, although moderately high, was not significant (DDS 
= 0.281, p = 0.22).

4.2. Disparity across African regions

Both parametric and non-parametric ANOVA tests for geographical 
differences in digital disparity were significant (with p-values of 0.002 
and 0.001, respectively), at a moderately high effect size (ω2 = 0.108 
and η2 = 0.1295, respectively). There were no extreme outliers, and the 
distributions of sites’ DDS were approximately normal (Shapiro-Wilk 
test p-value>0.05) within each of the five regions, but evidence of 
heterogeneity of variances was found across regions (Levene-test p- 
value = 0.012). Altogether, this provides compelling evidence of dif-
ferences between some, but not all, regions.

Examining the frequencies illustrated in Fig. 8, we found that the 
frequency of disparity varies by region. In Western Africa, the DDS was 
significant for most sites (23 of 29). In Northern and Southern Africa, the 
majority of sites did not display significant DDS. In addition, data 
availability varied across regions. In Eastern and Middle Africa, more 
than a fifth of sites provided insufficient data, meaning that in no year, 
more than 100 geotweets from at least 10 accounts were available.

4.3. Disparity across degrees of IoP

Regarding the digital disparity between different levels of sponta-
neous and planned settlements, significant differences in DDS were 
found between degrees of IoP, both at street-level and at block-level 
(Fig. 9).

Firstly, at street-level, the ANOVA test for differences across degrees 
of IoP was significant (p = 0.003) with a moderate effect size (ω2 =

0.099). There were no extreme outliers, and no evidence of unequal 
variances (Levene-test p-value = 0.593). The distributions of sites’ DDS- 
metrics were approximately normal except in IoP 1 (completely 
spontaneous)–a small group with only 6 sites of which half have suffi-
cient data. The nonparametric ANOVA confirmed the differences be-
tween groups (Kruskal test p-value = 0.004, η2 = 0.1016). The post-hoc 
two-sample t-test found the strongest evidence of differences between 
IoP 4 and IoP 2 (p = 0.0006), as well as between IoP 5 and IoP 2 (p =
0.0027).
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The frequency of disparity varied across street-level IoP degrees. 
While for the predominantly spontaneous sites (IoP 2), 16 out of 24 sites 
(~67 %) showed significant disparity, only 9 out of 28 (~32 %) of the 
more planned sites with IoP 4–5 did.

At block-level, results were similar. The ANOVA of DDS by degrees of 
IoP was significant (p = 0.002) with a medium effect size (ω2 = 0.109). 
There was no evidence of unequal variances (Levene-test p-value =
0.607), but IoP 2 had one extreme outlier (Zango, Angola, in IoP 2) and 
evidence of non-normality. Hence, we refer to the nonparametric 
ANOVA which found similar differences between groups (Kruskal test p- 
value = 0.001, η2 was moderate at 0.1354). In the post-hoc two-sample 
t-test, the most significant differences were found between IoP 5 and IoP 

2 (p = 0.00096), although differences also existed between IoPs 4 and 2 
(p = 0.01670), IoPs 3 and 2 (p = 0.01145), IoPs 3 and 5 (p = 0.02260), 
and IoPs 2 and 1 (p = 0.03601), although the latter should be interpreted 
with caution because of the small size of group 1, of which only 4 sites 
had sufficient data.

Just like at street level, the frequency of disparity varied across block 
levels (Fig. 10). While for the predominantly spontaneous sites (IoP 2) 
almost three quarters showed significant disparity, only 1 out of the 7 
highly planned sites did. Altogether, the tests strongly indicate that 
digital disparity differs across IoP degrees.

Fig. 7. Results of the significance test. Top (A): Mean DDS across all sites (blue line) compared to simulated null distribution (gray). B1-B4: Four example sites with 
geotweet distribution. Tweets are clustered for visualisation, with the number of tweets in a cluster indicated as white numbers. The curve below each map displays 
the simulated reference distribution (gray) relative to the measured disparity (blue line), with values to the left indicating higher density in newer built-up areas and 
values to the right indicating higher density in older built-up areas. Numbers above the curve indicate left-tailed, and right-tailed p-value respectively. Middle (C): 
Distribution of DDS values across study sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.)

Fig. 8. Comparison of digital disparity (DDS) by UN regions. Top: Comparison of intensity via parametric ANOVA. DDS between regions was assessed with a t-test 
and are encoded as ns: no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Bottom: Prevalence (number of sites) and frequency 
(proportion of sites) of significant tests within each group.
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4.4. Disparity’s relationship with the spatial structure of settlements

Out of the fourteen models between metrics and DDS, eleven were 
significant at the 95 % confidence level (Fig. 11), indicating that the 
digital disparity is linked to aspects of the built-up spatial structure. 
However, the significant models had limited explanatory power (R2 =

0.09–0.20), suggesting that other factors also influence DDS. Focusing 
on sites with significant disparity, only 9 out of the 14 models were 
significant (R2 = 0.04–0.22).

Notably, the spatial metrics Urban Density, Porosity Index, and SPI 
(>2 km) showed no significant relationship with DDS at the 95 % level. 
This indicates that built-up density and connectivity are not directly 
related to the digital density disparity. In contrast, DDS demonstrated a 
strong correlation with Area-Weighted Standard Distance (R2 = 0.17, p 
< 0.01), Dispersion Index (R2 = 0.20, p < 0.01), Urban Compactness (R2 

= 0.18, p < 0.01), Object Density (R = 0.09, p < 0.01), Mean Patch Size 
(R2 = 0.09, p < 0.01), Effective Mesh Size (R2 = 0.07, p < 0.01), and the 
SPI at <100 m (R2 = 0.12, p < 0.01), 100–500 m (R2 = 0.14, p < 0.01), 
500–2000 m (R2 = 0.12, p < 0.01). This suggests that a higher degree of 
built-up centrality, compactness, and larger and thus less contiguous 

patches are associated with higher values of DDS, while a higher degree 
of disaggregation, dispersion, and more numerous smaller built-up areas 
are associated with lower DDS.

The model resulting from the stepwise multiple linear regression 
procedure (Fig. 12 and Table 1) showed that the metrics DI, Euclidean 
Nearest Neighbor-Distance, and Urban Compactness together explained 
around a quarter of the variance in disparity (p < 0.001, multiple R2 =

0.2911, adjusted R2 = 0.2724). When only including significant sites, 
the only significant metric was Area-Weighted Standard Distance. The 
model performed better than single metric models, suggesting that a 
combination of complementary metrics has a higher association with 
DDS.

This set of metrics suggests that more compact settlements (high 
Urban Compactness and SPI, low Dispersion Index) with greater dis-
tance between built-up clusters (high Euclidean Nearest Neighbor Dis-
tance) and less open spaces (low Urban Density) are associated with 
greater disparity in digital density. Overall, an urban form which is 
linked to high digital disparity is characterized by a large and dense 
compact urban core, with several isolated settlements in the immediate 
periphery, but far from each other.

Fig. 9. Comparison of disparity by degrees of intensity of plannedness (IoP) at street-level. Top: Comparison of intensity via the parametric ANOVA test. Differences 
in disparity (DDS) between degrees of IoP was assessed with a t-test and are encoded as: ns = no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001. Bottom: Prevalence (number of sites) and frequency (fraction of sites) of significant tests within each group.
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Fig. 10. Comparison of disparity by degrees of intensity of plannedness (IoP) at block-level. Top: Comparison of intensity via ANOVA. Differences in disparity (DDS) 
between degrees of IoP was assessed with a t-test and are encoded as: ns: no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Bottom: 
Prevalence (number of sites) and frequency (fraction of sites) of significant tests within each group.
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5. Discussion

This analysis of geotweet distribution in old and new built-up areas 
across Africa revealed a hitherto undocumented form of multi-faceted 
urban digital divide. First, in many of the fastest expanding sites 
across Africa, we found that digital representation increases with built- 
up age, at least insofar as measured by geotweet density. Second, this 
disparity varies in intensity across geographic regions, being strongest in 

West Africa and weakest in Northern and Southern Africa. Third, this 
urban digital divide is related to plannedness of the urban structure, 
with a higher intensity of plannedness linking to lower disparity. And 
fourth, it is related to the two-dimensional structure of the settlement, 
particularly built-up fragmentation.

The first observation, that a significant disparity exists in many study 
sites, is the most robust and has two main implications: From a data 
perspective, it indicates that geotweets, and perhaps GSM in general, are 
a scarcer data source in new neighborhoods compared to old ones. This 
does not discourage the use of GSM data altogether, as for 63 of our 135 
sites, we find more than 10 K geolocated tweets in the areas that were 
built-up since 1985. Clearly, data scarcity is not a general rule. There-
fore, our conclusion is not that NBAs are digital deserts (Taubenböck 
et al., 2018), but A) that NBAs may be underrepresented in urban studies 
relying on GSM; B) that data availability should not be taken for granted 
when designing studies based on GSM; and C) that biases resulting from 
unequal data coverage should be considered.

Secondly, our findings can be seen as indication of a digital divide 
between new and older neighborhoods of African cities. In other words, 
new neighborhoods are less represented online than older neighbor-
hoods in the same city. There is no single reason for this, as many factors 
can play a role, from socioeconomic to technical. Based on inspection of 
our study sites, we assume major influences by density of activity, 
population, and infrastructure. Unfortunately, there is no sufficiently 
fine-grained data capturing population density and infrastructure 
development at Africa-wide scale. Thus, we cannot assess these factors 
in our study. Even if data were available, the large range of potential 
factors and the diversity of urban spaces in Africa would require a larger 
sample than 135 sites to analyze. Our results, however, provide some 
initial indications which can guide future research: Disparity differs 
between regions, being greater and more frequent in the study sites of 
Western Africa than in other parts of Africa, and least frequent in 
Northern and Southern Africa. Possibly, the higher penetration of 
internet and communication technologies (Nchake & Shuaibu, 2022) 
and the slower pace of urbanization in Northern and Southern Africa 
(UN DESA 2019) have a mitigating effect on the disparity. There is likely 
some link to the intensity of plannedness, as the disparity is lower and 
less frequent in more intensely planned sites, which are more common in 

Fig. 11. Relationship between Digital Density Skew (DDS) and spatial metrics of settlement structure, reported by the coefficient of determination (R2) and p-value 
(p) of their linear regression. Significance is encoded as × p < 0.05; **p < 0.01; ***p < 0.001. Values in parentheses refer to models that only include significant DDS 
as observations.

Table 1 
Coefficients of the multiple linear regression between DDS and spatial metrics. 
Significance encodes the p-value as: *p < 0.05; **p < 0.01; ***p < 0.001. 
Multiple R2 = 0.2911, Adjusted R2 = 0.2724.

term coefficient std. 
error

t value p-value 
(significance)

Intercept 0.296 0.113 2.626 0.0098 **
Dispersion Index − 0.005 0.001 − 4.077 0.0001 ***
Euclidean Nearest 

Neighbor Distance
0.007 0.003 2.218 0.0290 *

Urban Compactness 4.000 1.845 2.168 0.0320 *

Fig. 12. Observed versus predicted DDS using a multiple linear regression.
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Northern and Southern Africa. While our approach is insufficient to 
determine causalities in the relationship, it is possible that the unifor-
mity in design simplifies the provision of infrastructural resources across 
the settlement. Further, we find that settlement structure is likely to play 
a role in the magnitude of the digital divide, although the models’ 
explanatory power is limited. Our interpretation is that there are other 
(confounding) factors linked to plannedness and settlement structure 
which influence the magnitude of digital disparity. Almost certainly, the 
availability of infrastructure and the density of population and cultural 
or financial capital play a role. Given sufficient data, statistical ap-
proaches could disentangle the causal relationships between the phys-
ical form of settlements, their built-up age, their socioeconomic 
structure, and their visibility in the digital sphere. As our study shows, 
time-series of the settlements’ physical form and digital activity already 
exist at an Africa-wide scale and intra-urban resolution. Unfortunately, 
it is unlikely that socioeconomic data can be gathered consistently at this 
scale. Instead, interview-based surveys remain relevant for the study of 
digital divides. Existing surveys could be expanded to inquire about 
barriers to social media use and preferences if they do not already do so. 
Additionally, the inclusion of data on urban functions, land cover, and 
land use is a promising next step. Such data have been used to assess the 
impact of local urban functions on digital urban vibrancy (e.g., Lang 
et al., 2022). The combination of remotely-sensed settlement age with 
land cover and land use classifications has revealed that the land cover 
of recently urbanized area differs substantially from older urban areas 
and between geographic regions (Taubenböck et al., 2025). It will be 
worth investigating whether the divide between the digital and physical 
frontier on the African continent is caused by such differences in urban 
function and land use between newer and older urban areas.

While our big-data approach allowed a comparative study at 
continent-spanning scale, we acknowledge its limitations. The urban 
expansion maps are not perfectly accurate and do not distinguish built- 
up ages earlier than 1985. Data quality varies between regions, poten-
tially affecting cross-region comparisons of DDS. Hence, we imple-
mented a permutation-based test which provides robust estimates of 
significance. The precision of GPS devices used for the precise geo-
tagging is imperfect, with most studies finding horizontal errors of 5–20 
m, but such minor spatial errors lead only to minor errors in the deter-
mination of the construction year, and a minor shift in DDS (see Sup-
plement C). More concerning are cases where the number of geotweets 
and contributors for a site are low. This exacerbates the well- 
documented demographic bias of Twitter, where a vocal minority con-
tributes most of the tweets (Lemoine-Rodríguez, Biewer, & Taubenböck, 
2024; Wojcik & Hughes, 2019). We mitigate the impact of highly active 
accounts through a weighting procedure and confirm that their behavior 
is not substantially different from less active accounts for the purposes of 
this study (see Supplement D). Nevertheless, we acknowledge that 
geotweet density does not represent the entire digital skin of the urban 
areas but must be interpreted as a proxy for the online visibility on a 
particular platform. The choice of Twitter is sensible for our study 
because it is public and offers geotag functionality. However, in terms of 
market share, Facebook was found to be the leading social media plat-
form in Africa in 2022, and there are substantial regional variations in 
the use of platforms and penetration of web technologies in general 
(Bhanye et al., 2023). Consequently, researchers should choose the 
platform(s) to fit the geographic setting and goals of the study based on 
data access. If precise coordinates are not required, geoparsing ap-
proaches (Hu et al., 2024) can serve as an alternative to the use of 
geotags, and provide alternative perspectives. Additionally, the access 
modes and capabilities of Twitter’s API were substantially changed 
following the rebranding of the platform as “X”. As a consequence, the 
geotweet datasets used in our study can now only be reproduced 
imperfectly and at substantial cost (Davidson et al., 2023), highlighting 
the need to diversify web data sources in geographic research.

And just as one platform does not represent social media use as a 
whole, our selected study sites are not representative of all settlements. 

Rather, they exemplify the class of fast-growing settlements in Africa 
where the digital divide we investigated is most acute. Consequently, 
they are not a representative sample of all growing settlements, and it is 
possible that patterns might be different in areas of low to medium 
growth. We also acknowledge that assigning a single IoP or compactness 
value to each study site is a strong simplification of reality. Each site 
covers considerable heterogeneity in almost 80 km2 area and their cir-
cular boundary cannot be adapted to morphological subdivisions. 
Nevertheless, we consider it to be a suitable choice for this study because 
it is objective and can be derived for any location. Finally, our data is 
limited in that geotags primarily capture the attention given to a place 
by local people. While nothing prevents users from commenting on more 
distant places, the geotagging functionality of Twitter, for most of the 
study period, only allowed users to tag content with their current 
location. Consequently, geotagged data includes less content written 
about places from elsewhere, and thus provides only an incomplete 
picture of online representation. Geoparsing approaches (Hu et al., 
2024) could alleviate this issue by enabling the inclusion of text based on 
mentions of places. However, most of these approaches rely on existing 
datasets, such as gazetteers, knowledge-graphs, or training text corpora, 
which may be biased themselves (Graham and De Sabbata 2020), 
making them unsuitable for this study.

Our findings are plausible in the African context, and we do not 
expect them to generalize to the global level because geographic regions 
differ substantially in their urban history, planning, political systems, 
and telecommunication infrastructure.

In summary, despite limitations, the converging indications found in 
the study point strongly towards a first and clear indication of a type of 
digital urban divide at continental level: A divide between new and 
consolidated parts of African settlements.

6. Conclusion

By relating maps of urban expansion to GSM posts from Twitter, we 
find clear evidence of a hitherto undocumented type of digital divide-
–one that occurs between older and newer parts of the rapidly growing 
African settlements. Going forward, the perspective provided by GSM 
posts should be complemented by other information sources on local 
digitality, and further research with additional socioeconomic data is 
required to understand the underlying causalities of this digital divide. 
As a starting point, this study finds that settlements’ plannedness and 
structure are linked to the magnitude of this disparity, and that it should 
be considered a trend—rather than an inescapable fact—of urban 
development.

By documenting this disparity, we show that the “urban frontier”, 
which is expanding into the hinterland through the built landscape, 
often does not run parallel to the “social media frontier”, which is lag-
ging behind. It appears that it takes time for these new urban spaces to 
be filled with places, people, and activities that are representable on the 
web, and the population with the means and affinity to represent them. 
Thus, the study reveals a further layer—in the digital sphere—in ur-
banization processes and contributes to the inclusion of digital per-
spectives into the broader African Union led 2020–2030 digital 
transformation strategy, plans and programs, and actions for the trans-
formation and sustainability of Africa’s urban spaces.
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Taubenböck, H., Debray, H., Qiu, C., Schmitt, M., Wang, Y., & Zhu, X. X. (2020). Seven 
city types representing morphologic configurations of cities across the globe. Cities, 
105, Article 102814.
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