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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Presentation of a new multifunctional 
SDSS for agriculture in West Africa.

• Participative approach to select in-
dicators relevant for stakeholders using 
a nine-step interaction protocol.

• Broad range of easy-to-understand 
climate, crop, and remote sensing in-
dicators publicly and freely available.

• Results easily scalable from individual 
grid boxes to various administrative 
levels.

• Information on the signal-to-noise-ratio 
of climate change signals within a 
large model ensemble.
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A B S T R A C T

This paper presents a Spatial Decision Support System (SDSS) designed to assist stakeholders in West Africa in 
analysing critical climate and land use indicators for risk management in agriculture and further sectors being 
affected by extreme precipitation and temperature events. Developed as part of the WASCAL WRAP 2.0 project 
LANDSURF, the SDSS makes scientific data accessible and comprehensible to non-scientific audiences, facili-
tating informed decision-making among communities affected by climate change. From the beginning of the 
development process, the web portal was co-designed with relevant West African stakeholders. Due to the 
challenging conditions during the COVID-19 pandemic, alternative online communication tools, e.g. ZOOM, 
online surveys and email, successfully were utilized to interact with stakeholders instead of on-site activities. The 
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co-design process carried out with stakeholders includes several steps such as stakeholder analysis, identification 
of their information needs using specific climate, crop and remote sensing indicators, and the evaluation of the 
SDSS in a dedicated workshop. In total, the co-design process involved nine different steps, recorded and 
described in a stakeholder interaction protocol.

The SDSS integrates observational data, including CHIRPS and ERA5-Land datasets, and state-of-the-art high- 
resolution climate model outputs under two greenhouse gas concentration scenarios (RCP2.6 and RCP8.5) and 
remote sensing data. It enables the comparison of model outputs with observations and facilitates the assessment 
of regional climate variability and trends. Two concept studies illustrate the SDSS’s functionality: one focusing 
on a farmer in Burkina Faso assessing irrigation needs for millet cultivation, and another involving a regional 
planner analysing drought and heat wave impacts in coastal West Africa. These examples highlight the SDSS’s 
usability in supporting adaptive strategies and enhancing resilience to climate-related challenges, underscoring 
the importance of integrating local knowledge with scientific data for effective climate adaptation and 
mitigation.

1. Introduction

West Africa faces growing challenges from climate change, particu-
larly in its agriculture-dependent economies. The region, characterized 
by its reliance on rain-fed farming systems, is especially vulnerable to 
shifts in climate. Recent research highlights the increased severity, fre-
quency, and intensity of extreme weather events such as droughts and 
heatwaves, which are amplified by higher precipitation variability and 
evapotranspiration rates (Masih et al., 2014; Thomas & Nigam, 2018; 
IPCC, 2021). These climatic stressors, coupled with rapid population 
growth and rising pressure on natural resources, pose significant risks to 
regional food security (Herrmann et al., 2020; Beltran-Peña & D’Odor-
ico, 2022).

The agricultural impacts of climate change in West Africa are pro-
jected to be profound. Staple crops such as maize, millet, and sorghum 
are expected to experience significant yield reductions due to incon-
stancy of rainfall, changing growing seasons, increased water stress, and 
the compounding effects of heat and drought (Roudier et al., 2011, 
Waha et al., 2013; Bangelesa et al., 2023; Gbode et al., 2025). For 
example, areas impacted by overlapping heat and drought events are 
anticipated to expand substantially by the late 21st century, intensifying 
the challenges of maintaining crop productivity (Wang et al., 2023). 
These impacts are expected to worsen under both low- and high- 
concentration scenarios, underscoring the urgent need for adaptive 
strategies (IPCC, 2022).

While Global Climate Models (GCMs) and Regional Climate Models 
(RCMs) have been instrumental in projecting these changes, they exhibit 
notable differences in their ability to simulate key climatic phenomena. 
GCMs provide valuable large-scale insights but struggle with regional 
details, such as the onset and variability of rainy seasons (Ayugi et al., 
2020; Du et al., 2022). RCMs, with their higher spatial resolution, offer 
an improved representation of localized climatic processes, such as 
land–atmosphere interactions and precipitation variability 
(Rummukainen et al., 2015; Prein et al., 2016; Giorgi & Gao 2018), 
which are critical for calculating agricultural indices like crop water 
needs and irrigation requirements (Abel et al., 2024). However, RCM 
outputs also often exhibit systematic biases due to factors such as 
simplified physical processes or uncertainties in boundary conditions. As 
a result, expert knowledge about bias correction methods that are 
commonly applied to RCM data to adjust for these systematic errors 
before the data are used in impact assessments or as input for other 
models is necessary.

Climate adaptation and enhanced resilience of the local population 
requires that information on regional to local climate change is available 
in a form that is technically low-threshold, free of charge, easy to un-
derstand for non-academics, and relevant for decision making. Decision 
Support Systems (DSS) and web-based Geographic Information Systems 
(GIS) have emerged as vital tools to bridge the gap between climate data 
and actionable decision-making (Palutikof et al., 2019a; Talari et al., 
2022). These spatial DSS (SDSS) integrate climate and land use data in a 
processed and simplified way to transfer complex information on their 

change in a low-threshold and concise manner to provide a decision 
basis for stakeholders in various fields. These systems can be designed 
for specific target groups, e.g. agriculture (Paeth et al., 2023), forestry 
(Czimber & Gálos, 2016), water management (Xia et al. 2014), and 
health (Fünfgeld et al., 2019), or for a broader audience (Bonfante et al. 
2024). Such services are particularly required on the African continent 
where exposure and vulnerability to climate change is large while the 
population’s resilience is low (Lumbroso et al., 2024).

In the meantime, several DSSs have been developed and opened to 
the public. To acknowledge this excellent previous work, we mention a 
few of these approaches, characterizing their strengths and limitations. 
A benchmark certainly is the Hand-in-Hand Geospatial Platform provided 
by the FAO (https://www.fao.org/hih-geospatial-platform/en/). This 
platform combines geospatial data with economic and agricultural sta-
tistics to assist stakeholders in identifying opportunities for agricultural 
development, particularly in vulnerable regions. It offers detailed visu-
alizations and analyses of climatic impacts on agriculture, focusing on 
productivity and food security metrics. However, its global focus implies 
a limited granularity for region-specific factors in West Africa and does 
not incorporate local knowledge from smallholder farmers. In addition, 
(compound) extreme events are underrepresented. The ClimDev-Africa 
Initiative developed under the African Union Commission supports 
decision-making in climate adaptation by providing data and tools 
tailored to Africa. Its platform integrates climate projections with sector- 
specific analyses, enabling targeted interventions in agriculture, water 
resources, and disaster management (https://www.climdev-africa. 
org/). Constraints pertain to the data accessibility and usability, 
particularly for stakeholders with limited technical capacity, and to the 
low resolution of climate data that may lack sufficient resolution to 
address smallholder farming needs. While promoting capacity building, 
implementation at the community level has been slow. The EU Coper-
nicus Climate Change Service (C3S) delivers open-access tools and data-
sets for analysing climate impacts across sectors, including agriculture 
(https://atlas.climate.copernicus.eu/atlas, https://cds.climate.coperni 
cus.eu/). Its Climate Data Store offers user-friendly interfaces to 
explore temperature trends, water balance indices, and growing season 
projections for specific regions, including parts of Africa. The platform 
provides high-quality data but lacks a focus on specific crops or agri-
cultural practices dominant in West Africa and requires technical 
expertise for processing and interpretation, making it less accessible to 
users outside academia or government institutions, such as local stake-
holders in West Africa. The AGRHYMET Regional Centre in Niger pro-
vides climate, hydrological, and agricultural data tailored to the 
Sahelian region (https://agrhymet.cilss.int/). Its tools support agricul-
tural planning and drought monitoring by delivering seasonal forecasts 
and early warning information for food security and water resource 
management. While this service is regionally focused, its tools rely 
heavily on seasonal averages and forecasts and do not adequately 
address extreme weather or compound events. The platform also 
struggles to provide localized solutions for individual farmers or specific 
micro-climates across West Africa and accessibility remains a challenge 
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for stakeholders without significant training in the platform’s use. 
Finally, the Famine Early Warning Systems Network (FEWS NET) is widely 
used in the region for food security monitoring. It combines climate 
data, agricultural outputs, and socio-economic factors to provide 
detailed analyses of potential famine risks and resource needs (https:// 
fews.net/). While effective for famine prediction, FEWS NET does not 
provide tools for proactive farm-level decisions, such as when to plant or 
irrigate crops. Its focus on food security at the macro-scale means less 
emphasis on localized agricultural interventions. Moreover, the system 
relies on external funding and partnerships, which can limit its opera-
tional scope or sustainability in certain regions.

Despite the general usability of DSSs, the understanding of the 
stakeholders’ and practitioners’ perspective and how these groups are 
using the DSS is differently represented when designing such systems 
(Teucher et al., 2014; Palutikof et al., 2019a; Webb et al., 2019). In 
addition, some platforms are constrained by their spatiotemporal reso-
lution and the number of available key indicators relevant to agricul-
ture, such as crop water needs and irrigation requirements. Typical key 
challenges of DSSs are: 

● the data accessibility for stakeholders with limited technical capacity 
and expertise,

● the assumption of expertise knowledge when interpreting the dis-
played information,

● the presentation of too coarse datasets not meeting the resolution 
relevant for local stakeholders,

● the lack of relevant indices tailored to specific decision-making 
processes and stakeholder groups,

● the non-involvement of stakeholders and their specific needs prior to 
and during the development process of the DSS.

The novel SDSS introduced here aims at addressing most of these 
challenges. It is designed to provide climate change information to 
stakeholders from various administrative levels between below-district 
and international scales across West Africa. The presented SDSS is 
characterized by basically four innovative elements: (1) It is based on a 
participative approach to select climate indicators relevant for stake-
holders using a thoroughly elaborated nine-step interaction protocol. (2) 
A broad range of easy-to-understand climate, crop, and remote sensing 
indicators has been made publicly and freely available, when at least 50 
% of the involved stakeholders marked them as being of relevance for 
their decision making. (3) Results are easily scalable from individual 
grid boxes to various administrative levels. (4) Information is given on 
the signal-to-noise-ratio and statistical significance of climate change 
signals within a large ensemble of high-resolution climate models.

In particular, the SDSS meets the requirements by stakeholders 
dealing with issues in the climate change-agriculture nexus. However, a 
broad potential for other sectors of economic, political and social ac-
tivity is inherent to this system. Note that our SDSS does not provide 
information on impacts, adaptation, engagement, e.g. in the form of 
adapted agricultural practices such as crop and seed recommendations, 
as it is done by some DSSs (e.g., Adaptation Wizard or CoastAdapt). The 
relevance of the SDSS to the target groups is achieved by a structured 
participative process that has started in the earliest stage of the project, 
selecting the information displayed in the SDSS as well as its design 
(Section 2). By using high resolution climate projections and calculating 
climate, agricultural, and remote sensing indices, a wide range of 
stakeholder needs could be addressed (Section 3). The technical 
implementation with a focus on accessibility, sustainability, and func-
tionality is described in Section 4. In Section 5, two concept studies 
demonstrate potential use cases of the SDSS before conclusions are 
drawn (Section 6).

2. Participative approach

The WASCAL WRAP 2.0 LANDSURF project aimed to make scientific 

data available and applicable to stakeholders in West Africa in a user- 
friendly way through a SDSS. As the scientific data are mainly of use 
to the agricultural sector, providing information on, for example, the 
characteristics of the rainy seasons or the frequency and intensity of 
precipitation and temperature extremes, the potential stakeholders are 
decision makers in regional and local government administrations, non- 
governmental organisations, scientists from various non-climatic disci-
plines, and farmers. Consequently, this information may also be relevant 
to decision-makers working in water and risk management who are 
directly affected by climate change and need to maintain mitigation and 
adaptation measures in their sector. To shape the SDSS according to the 
needs of stakeholders, a participatory approach was adopted, involving 
them in the co-development and co-design of the SDSS from the 
beginning of the project (Webb et al., 2019). It further ensures that the 
SDSS is not only scientifically sound but also practically relevant and 
applicable in terms of real-world questions and scenarios (Palutikof 
et al., 2019b; Williams & Jacobs, 2021).

To facilitate this, we used online tools such as ZOOM, email, Google 
Forms, and Google Jamboard to interact with stakeholders in West Af-
rica. In addition, to facilitate stakeholder involvement in future project 
planning to co-develop and co-design a similar SDSS or another type of 
web portal, the different steps taken in this project were documented in 
an ’interaction protocol’ (Weber et al., 2023).

Nine steps of the co-development and co-design process, involving 
the stakeholders of the LANDSURF SDSS, are described in the following 
(taken from Weber et al., 2023) (Fig. 1): First, we defined the purpose of 
the SDSS. This can be done by answering the questions: What kind of 
information should the SDSS provide and for which sector? And more 
importantly, to whom should the SDSS be addressed? This was con-
ducted in the second step, where we decided to contact the following 
stakeholders with a specific contact form: Governmental representa-
tives, who are contact people for the National Adaptation Plans (NAP) to 
the United Nations Framework Convention on Climate Change 
(UNFCCC), National Meteorological Services, National Emergency 
Management Agencies, National Hydrological Agencies, Environment 
Protection Agencies, National Ministries of Environment and National 
Ministries of Agriculture, universities in West Africa, and farmers.

To obtain basic information from the stakeholders, a contact form 
was developed (step three). They were asked for the name of the orga-
nisation/company and the name of a contact person, the sector they 
work in, their level of knowledge about climate and initial questions 
about their needs for climate information/data. For reasons of effi-
ciency, we used Google Form to develop a questionnaire, which facili-
tated the stakeholder analysis. The contact form (in English and French) 
was emailed to potential stakeholders using the network of the project 
partners and the WASCAL Competence Centre, along with a brief 
description of the project, explaining the aim of the project, the role of 
the stakeholders, and the benefits of their involvement.

In total, we received 55 responses from stakeholders from countries 
in West Africa and beyond, which were analysed to provide detailed 
information about the stakeholders involved (step four). The majority of 
the stakeholders were from governmental institutions and universities in 
the fields of agriculture, environment, and risk management. This 
database of stakeholders served as a network through which we con-
ducted surveys and invited people to workshops to co-develop and co- 
design the SDSS. Many stakeholders had little or limited knowledge of 
climate change and are active in different sectors. Therefore, in step five, 
we build a reference database of different climate indicators collected 
from the literature relevant to agriculture, food security, and risk 
management, before asking stakeholders about their climate informa-
tion needs. In total, we collected 59 indicators, including those sug-
gested by stakeholders in the first stakeholder workshop (step six).

The first stakeholder workshop was held in the initial year of the 
project using the videoconferencing platform ZOOM. The stakeholders 
were asked to participate in ZOOM surveys and to fill out a prepared 
Google Jamboard to indicate their information needs and the desired 
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features of the planned SDSS. We received a lot of valuable information 
from the stakeholders in the virtual workshop format. In principle, an 
on-site workshop with face-to-face contact to get to know each other 
better would be preferable to build trust between scientists and stake-
holders. However, the virtual format of the workshop facilitated the 
participation of a greater number and wider range of stakeholders from 
different countries and professional backgrounds, eliminating the bar-
riers of travel and related expenses. This inclusive approach represents 
an advantage independent of the pandemic situation prevailing during 
that time of the project’s funding period.

In step seven, we developed an online survey using Google Forms to 
prioritise the indicators collected from the literature (step five) and 
those identified by stakeholders in the first stakeholder workshop (step 
six). This was necessary for the clarity of the SDSS given the large 
number of climate indicators we collected. In the survey, climate in-
dicators were categorised into different groups such as rainfall, rainy 
season and drought indicators, temperature and extreme temperature 
indicators, irrigation and crop indicators, and other indicators. This 
made it possible to limit the choice of climate indicators by stakeholders, 
who were asked to select only certain indicators from a larger number in 
each category. Respondents were also asked more detailed questions 
about the design and operation of the SDSS. The bilingual (English/ 
French) survey was then distributed by email to the members of our 
stakeholder database. Based on the results of the survey, a total of 28 
climate indices were selected and processed for the SDSS, with a selec-
tion rate of at least 50 % from the stakeholders’ perspective.

The co-development and co-design of the LANDSURF SDSS was an 
ongoing process with stakeholders. Thus, we kept in touch with our 
stakeholders throughout the project (step eight). To bridge the time 
between the survey of the indicator prioritisation and the upcoming 
SDSS evaluation workshop, we distributed a project news update (in 
English and French). After incorporating the indicators and the char-
acteristics of the SDSS identified by the stakeholders, we organised and 
conducted a virtual SDSS evaluation workshop with 28 participants 
from Burkina Faso, Ghana, Niger, Nigeria, Togo, and Germany (step 
nine).

Stakeholders had the opportunity to test a beta version of the SDSS 
prior to the workshop and to comment on the content and usability of 
the system on a Google Jamboard. The workshop was divided into three 
parts. First, the results of the stakeholder surveys and the development 

status of the SDSS were presented to the participants. This was followed 
by an introduction to the content of the SDSS and a demonstration of the 
potential applications of the SDSS through individual use cases. The 
third part of the workshop was a moderated interactive session to get 
feedback from the users of the SDSS. Starting point for the discussion 
was the Google Jamboard, where users of the SDSS had previously 
shared their experiences with the system. In addition, several ZOOM 
surveys were used during the workshop to get answers to specific 
questions and to assess user satisfaction with the SDSS. For example, 
users indicated that 2/3 of them had already tested the SDSS before the 
workshop, and practically all users liked the visualisation of the results, 
rating it a 4 on a scale of 1 to 5 on average.

Finally, feedback from users on their opinions and experiences with 
the beta version of the SDSS received during the evaluation workshop 
was incorporated into the system. We included trend and uncertainty 
information, removed bugs related to displayed content as well as the 
underlying data structure, and provided a short but conclusive docu-
mentation on the indicators and the underlying data designed for non- 
scientific users. The final SDSS-version (https://landsurf.geo.uni-halle. 
de) was launched and presented to the stakeholders in summer 2024. 
According to comparable initiatives, we can confirm that the number of 
stakeholder responses decreased over the course of the project. It is not 
clear whether this is due to the virtual communication we used, or to the 
’stakeholder fatigue’ that is increasingly common as stakeholder 
engagement increases.

In general, stakeholders from government organisations are easier to 
address via the virtual/electronic nature of stakeholder communication 
that we had to choose due to the pandemic situation. However, they are 
in close contact with farmers and have shared their needs with us during 
the SDSS development stages. The now available SDSS is easily acces-
sible by smartphones that are wide-spread among farmers and other 
individuals in West Africa. The tool is free and open for everyone to use.

3. Data and indices

To achieve the presented goals and fulfil the stakeholders’ needs, a 
broad range of data and indices was considered. By integrating obser-
vational data with climate model outputs under two greenhouse gas 
concentration scenarios, we provide a comprehensive analysis of climate 
indices and their trends and implications for West Africa during past 

Fig. 1. Interaction protocol diagram.
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decades and until the end of the 21st century. This methodological 
framework not only enhances the understanding of climate dynamics 
but also supports the development of effective strategies for climate 
adaptation and mitigation. The climate data as well as the derived 
indices and the climate model validation are described in more detail in 
Abel et al. (2024) while Ziegler et al. (2024c) analysed how the 
respective climate indices develop under the greenhouse gas concen-
tration scenarios available in the SDSS during the 21st century. The 
processed data and indices as described subsequently are published by 
Ziegler et al. (2024a, 2024b).

3.1. Data

The calculation of indices is based on two data families: observa-
tional and model-derived data. The observational data are further 
separated into remote sensing and climate data. The first relies on op-
tical satellite images with various spatiotemporal resolutions, i.e., 
Moderate Resolution Imaging Spectroradiometer (MODIS; Didan, 2021) 
and Advanced Very High Resolution Radiometer (AVHRR; Earth Re-
sources Observation and Science (EROS) Center, 2018). While spatially 
higher resolved MODIS data is available since 2003, utilized AVHRR 
data, which comes in a more coarse spatial resolution, reaches back until 
1981. The second incorporates Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS; Funk et al., 2015) and reanalysis 
data from the European ReAnalysis 5 Land (ERA5-Land; Muñoz-Sabater 
et al., 2021). CHIRPS provides high-resolution precipitation estimates 
by combining satellite-based observations with ground-based rain gauge 
measurements, offering a robust representation of precipitation patterns 
across various regions at 0.05◦ resolution. This dataset is particularly 
valuable for understanding historical precipitation trends and anoma-
lies. In addition, we incorporate ERA5-Land which is a comprehensive 
climate dataset that includes a wide array of variables such as temper-
ature, precipitation, humidity, and more at a resolution of 0.1◦. This 
dataset is a reanalysis, where a weather forecast model is nudged to 
actual multi-source measurements, ensuring a high degree of accuracy 
and reliability. The combination of these two datasets allows for a 
detailed examination of climate patterns over time. These observational 
climate data are displayed in the SDSS for the period 1981–2010.

In addition to this, we utilise climate model data covering the period 
1981–2100 (an overview table of used models in Supplementary S1). 
According to the stakeholders’ recommendation, they include Global 
Climate Models from the Coupled Model Intercomparison Project Phase 
5 (CMIP5; Taylor et al., 2012) and Regional Climate Models from the 
Coordinated Regional Climate Downscaling Experiment – Coordinated 
Output for Regional Evaluations (CORDEX-CORE; Giorgi et al., 2022) to 
highlight the added value of higher-resolution models. Both model 
families represent comprehensive physical models either directly 
calculating or parameterising atmospheric and land surface processes. 
GCMs from CMIP5 have a spatial resolution of 180 km to 250 km. Here, 
we only consider a subset of the CMIP5 ensemble, which was used to 
force the respective RCMs from CORDEX-CORE, to obtain comparability 
between the two model families. In fact, MPI-ESM (Giorgetta et al., 
2013) in low and medium vertical resolution as well as NorESM-M1 
(Bentsen et al., 2013) were used while HadGEM2-ES (Jones et al., 
2011) and the RCM simulations forced by this model were dismissed due 
to their reliance on a 360-day calendar being not in line with the 
examined indices acting on a daily scale. The used RCMs REMO (Jacob 
et al., 2012; Jacob & Podzun, 1997; Remedio et al., 2019), CLM (Sørland 
et al., 2021), and RegCM (Giorgi et al., 2012) have a common spatial 
resolution of 25 km. These models are particularly useful for capturing 
local climate characteristics due to their high spatial resolution. Addi-
tionally, their output acts on a spatial scale that is relevant for decision- 
makers, enabling responsible science and physically based decisions. 
The climate data covers the period 1981–2100 where the historical time 
1981–2010 acts as the reference period and 2011–2100 serves as future 
projection period. For the future, two different Representative 

Concentration Pathways (RCPs; van Vuuren et al. 2011) of greenhouse 
gases are assumed: RCP2.6, representing a low-concentration scenario, 
and RCP8.5, a high-concentration one. These scenarios are available for 
a large number of models in the database. They span the range of po-
tential future climate pathways and provide a framework for assessing 
the resulting climate impacts by informing decision-making processes 
based on the SDSS. Note that the involved stakeholders asked for the 
whole range of concentration scenarios to cover all potential future 
pathways of regional climate change in West Africa.

In total, the ensembles used within the SDSS are comparatively small 
with three GCM and six RCM simulations. Thus, the ensemble spread 
and variability as well as the mean are affected. Nonetheless, Abel et al. 
(2024) showed that the small ensembles simulate the climate in the 
study region with a good quality and, thus, may also offer reliable 
projections of the future.

3.2. Indices and data processing

As described in Section 2, the indicator selection for the SDSS was 
based on a stakeholder survey to display indicators that are of practical 
relevance. The indicators can be classified into the three categories 
‘climate’, ‘crop’, and ‘remote sensing’, resulting in 28 different in-
dicators (overview table in Supplementary S2).

3.2.1. Climate and crop indices
The climate and crop indices used in this study are derived from 

climate data, which can be categorised as either observational or model- 
based.

Preprocessing. It is important to note that for GCMs and observational 
data, the coordinates are regular and equidistant. However, this regu-
larity does not hold true for RCMs. In the case of RCMs, the variables for 
longitude and latitude coordinates are two-dimensional due to their 
conversion into a rotated coordinate system during modelling. This 
transformation results in an equidistant grid, but when the model output 
is re-rotated to a regular grid, the longitude and latitude coordinates 
become non-equidistant. Therefore, after calculating the corresponding 
index per model a spatial Nearest Neighbour interpolation to a common 
grid (NorESM for GCMs and CLM for RCMs) using the Climate Data 
Operators (CDO; Schulzweida, 2023) was necessary to be able to build 
coherent model ensembles.

Climate and crop indices. All indices (Supplementary S2) are calculated 
annually based on daily input data of precipitation amounts as well as 
maximum, minimum, and mean daily temperatures at each grid point. 
The requirement for multiple temperature variables explains why 
certain indices cannot be computed using the CHIRPS dataset, as it 
provides only precipitation data. In contrast, the ERA5-Land dataset 
offers observational input for all indices, making it a valuable resource 
for our analysis. Consequently, all indices only using precipitation as 
input data are available for two observational datasets, while the others 
are only available with ERA5-Land. Indices of temperature and precip-
itation which are either counting statistics of specific occurrences per 
time, like the number of rainy days (rd) per year or percentile-based 
ones (e.g., maximum temperatures exceeding the 90th percentile 
tx90p) are based on the Expert Team on Climate Change Detection 
Indices (ETCCDI; Zhang et al., 2011). Additionally, more complex 
indices of heat, like the Heat Wave Duration Index (HWDI; Frich et al., 
2002), and drought, like the Standardized Precipitation Index (SPI; 
McKee et al., 1993) and the Standardized Precipitation Evapotranspi-
ration Index (SPEI; Beguería et al., 2010; 2014; Vicente-Serrano et al., 
2010), are provided. Further, a selection of 12 different crops was made 
according to the stakeholders’ suggestions. The corresponding four 
growth stage parameters necessary for the crop indicators are depicted 
in table Supplementary S3 (Allen et al. 1998). The beginning of the first 
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growth stages depends on the onset of the first rainy season.

Calculation of the rainy season. For the calculation of the rainy season 
onset, we employed the method outlined by Dunning et al. (2016), a 
more specialised form of Liebmann et al. (2012), with modifications 
following Weber et al. (2018), as described in Abel et al. (2024). It is 
based on the calculation of accumulated daily precipitation anomalies, 
where the minimum (maximum) indicates the onset (cessation) of the 
rainy season. This approach allows for the detection of not only the first 
rainy season but also a second rainy season that may occur in certain 
regions by detecting a second minimum and maximum, respectively.

In the first step, the long-term mean cumulative sum of the daily 
rainfall anomaly is determined at each grid box and subsequently 
smoothed using a 30-day running mean. The minimum (maximum) of 
the mean cumulative daily rainfall anomaly is considered the onset 
(cessation) day of the mean rainy season when the onset (cessation) day 
is lower (higher) than the four preceding and four following days. If 
neither a minimum nor a maximum is identified, the smoothing period is 
extended by 15 days until an equal number of minima and maxima is 
detected. If this is not achieved, a 120-day running mean is applied. In 
this context, we assume that the first maximum following a preceding 
minimum defines a rainy season (Weber et al., 2018). If more than two 
rainy seasons are detected, only the two longest rainy seasons are 
considered. Additionally, if the number of days between two rainy 
seasons is less than 40 or if two rainy seasons overlap, only one rainy 
season is assumed.

In the second step, the onset and cessation of the rainy season are 
determined for each individual year. This is accomplished by calculating 
the cumulative rainfall anomaly (daily rainfall minus climatological 
daily mean rainfall over the period) and searching for the absolute 
minimum/maximum within a window of 20 days prior to the climato-
logical onset date and 20 days after the climatological cessation date for 
each year.

In addition to daily precipitation indices on the annual scale, as 
defined by the ETCCDI, we also calculate these indices for the rainy 
season, e.g. the number of rainy days within the rainy season rdrs (cf. 
Table S1). This allows a more detailed assessment of changes and pro-
vides deeper insights into this season being of major importance for 
agriculture and crop practices. For example, not only the information on 
how long dry periods without precipitation become during a year (cdd), 
mostly during the dry season, is provided, but also the length of a dry 
period within the rainy season (cddrs), adding substantial value for 
stakeholders with respect to potential breaks during the rainy season.

Post-Processing. Subsequently, the ensemble mean, minimum, 
maximum, and inter-model standard deviation were calculated for each 
pixel and each year. To reduce higher-frequency variability, facilitate 
the construction of climatologies (≥30 years) and improve comparisons 
among periods, a 30-year running mean (±15 years) was applied to the 
ensemble means. This is also important since the GCMs and the RCM 
simulations forced by GCMs don’t have a temporal phase relationship 
with observations due to their random initial conditions.

Available statistical values in the SDSS. The SDSS provides several key 
values that are essential for interpreting climate data and their impli-
cations. These values are derived through a series of steps to ensure 
stakeholders’ needs: 

● Absolute Values (only for observations): The absolute values repre-
sent the yearly value of each index at every pixel within the obser-
vational datasets. These values are calculated after the post- 
processing steps, providing a clear representation of the data for 
each year.

● Historical Mean of Absolute Values: This metric is the average of the 
absolute values over the period 1981–2010 for each index and data 

family. It serves as a baseline for comparison, allowing researchers to 
assess changes over time relative to historical data.

● Difference to Historical Value: This value is calculated by subtracting 
the historical mean (1981–2010) of the absolute values from the 
yearly absolute values for each index and data family. It highlights 
the deviation of annual data from the climate during this reference 
period, providing insight into trends and anomalies in the past and 
future.

● Bias-Adjusted Absolute Value for Model Data: To remove systematic 
errors (biases) in both GCMs and RCMs, all model data undergo a 
bias adjustment. This is achieved by using the Delta Change 
Approach (Maraun & Widmann, 2018) which adds the difference 
between the future mean model data and the historical mean model 
data to the historical mean of the reference data, ERA5-Land. This 
method assumes that the model bias at each pixel remains constant 
over time. By subtracting the historical mean, we eliminate these 
biases and present adjusted values that emphasise the modelled 
change over time. This approach allows for a clearer understanding 
of projected changes while maintaining the integrity of historical 
observational data. The ERA5-Land data serves as a baseline for 
representing absolute values, with modelled changes added to reflect 
absolute future projections rather than merely showing differences 
since these absolute values typically are the basis for planning 
initiatives.

● Trend (only for model data): The linear trend is represented by the 
regression coefficient b in the equation y = b⋅x + a, derived from 
annual values spanning the years 2001 to 2100 for each pixel and 
index. It is computed using non-bias-adjusted model data, with time 
serving as the independent variable and the corresponding index 
value as the dependent variable. To evaluate the significance of the 
trend, the slope b, is subjected to a two-sided hypothesis t-test at a 
significance level of 95 % (Wilks, 2020). It is important to note that 
only statistically significant values of b are displayed in the DSS; the 
trend for all other pixels is assigned a value of zero.

● Trend-to-Noise Ratio (TNR) (only for model data): TNR serves as a 
measure of uncertainty within the ensemble of climate change pro-
jections. It is defined as the ratio of the trend, the so-called signal, to 
the ensemble standard deviation. The strength of the trend is quan-
tified through the division of the trend by the standard deviation of 
the model ensemble, facilitating the comparison of trends across 
different indices by eliminating the influence of unit magnitude. The 
classification of the Trend-to-Noise Ratio (TNR) is based on the 
works of Rapp (2000) and Land and Büter (2023). The TNR serves as 
an indicator of confidence in the projected changes: a higher positive 
or negative TNR classification signifies a higher probability of 
change (Supplementary S4), as it indicates consensus among all 
models contributing to the analysis regarding the direction of the 
trend. Further insights into the TNR can be found in Hennemuth et al. 
(2013).

3.2.2. Remote sensing indices
To identify and analyse patterns of changing land cover properties, 

monthly information with a high spatial resolution is necessary. As such 
a remote sensing dataset did not exist previously in a sufficient spatio-
temporal resolution, two remote sensing datasets were combined and 
harmonized to derive monthly time series of various remote sensing 
indices. Two of them, namely the Normalized Difference Vegetation 
Index (NDVI) and the Leaf area index (LAI) (Supplementary S2), are 
implemented in the SDSS. The NDVI is a normalized difference between 
red and near infra-red reflectance and gives information on the green-
ness of vegetation. It ranges between − 1 and +1 with dense green 
vegetation having positive values close to 1, while negative values 
characterize clouds, water, ice, and snow (Supplementary S5a). The 
NDVI can be utilized for estimating the healthiness of vegetation. The 
LAI represents the projected foliage area above a given unit area of 
ground (Watson, 1947) and is critical for understanding light 
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interception by the canopies as it determines the amount of photosyn-
thetically active radiation and consequently vegetation growth (value 
explanation see Supplementary S5b).

For generating those indices, daily data from AVHRR − with a pixel 
size of 5.5 km since 1981 − and daily data of MODIS − with a pixel size 
of 500 m since 2003 − were used as input variables in machine learning 
(ML) models that iteratively estimate extrapolate the spatially higher 
resolved MODIS data to time periods before 2003, where only the 
coarser AVHRR data is available. This extrapolation is grounded in the 
statistical relationship assessed during the temporal overlap of the 
datasets. All data (pre-)processing as well as the ML modelling was 
carried out in the Python programming language on a high-performance 
computing server environment. For preparation and pre-processing, the 
Nearest Neighbour method was applied for resampling the MODIS 
datasets from a horizontal resolution of 500 m to a pixel size of 1 km. For 
each month of the year, a composite layer (arithmetic mean) was built 
for the existing data from 2003 to 2022 to ensure that seasonal fluctu-
ations had no influence. XGBoost and Random Forest algorithms were 
tested as base for the ML models, as both of them are known for their 
effectiveness in analysing large spatio-temporal datasets.

From the twelve monthly composites, training and testing datasets 
were created to train the ML models, utilising MODIS data values and 
the corresponding month as features. The performance of the tested ML 
models was assessed using accuracy metrics, including Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2). Ul-
timately, only the XGBoost model was retained for further analysis, as it 
demonstrated superior efficiency compared to the Random Forest 
model. Utilising the XGBoost model, MODIS-like datasets at a spatial 
resolution of 1 km were predicted from historical AVHRR data, resulting 
in monthly raster predictions for the period from 1981 to 2022.

This structured methodology has provided a dataset of unprece-
dented spatiotemporal resolution, temporal extent, and range of avail-
able land surface parameters. It ensures that the values provided in the 

SDSS are both reliable and informative, facilitating better decision- 
making in climate research and policy.

4. Technical implementation

While keeping the requirements, ideas, and needs of the partici-
pating stakeholders taken from the co-development and co-design phase 
with surveys and workshops in mind, the implementation of the SDSS 
aims to create a technically robust and functional web portal grounded 
in classic client–server architecture, emphasising high reusability, cross- 
platform responsiveness (smartphones and computers with different 
operating systems), and ease of maintainability. This approach seeks to 
establish a foundation for long-term sustainability and an extended 
service life. The development leverages a wide array of open-source 
software components and libraries, ensuring flexibility and adapt-
ability in the portal’s functionality and agreeing with the international 
FAIR principles (Wilkinson et al., 2016). According to the stakeholder 
demands, the SDSS is designed for both English- and French-speaking 
users, promoting accessibility and inclusivity.

The resulting technical components and used software of the SDSS 
are summarised in Fig. 2. The technical implementation is structured 
around a multi-tier architecture that facilitates efficient data manage-
ment, user interaction, and asynchronous processing. This section out-
lines the key components of the system, including the frontend web 
interface, the GeoServer for data hosting, and the R Plumber API for 
background calculations.

4.1. Frontend / user interface

At the heart of the SDSS frontend are JavaScript, CSS, and HTML, 
which work together to create a dynamic and interactive user experi-
ence. The OpenLayers third-party JavaScript library is the primary 
component used for creating maps and displaying raster and vector 

Fig. 2. Overview of the SDSS’s components and used software.
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layers sourced from Web Map Service (WMS) and Web Feature Service 
(WFS) in the web portal. Notably, no specific JavaScript framework is 
employed, allowing for seamless integration of OpenLayers and other 
third-party libraries. This flexibility enables continuous modifications 
and enhancements.

The user interface is built using the open source front-end develop-
ment tool Bootstrap, which provides a responsive design framework for 
the creation of websites and web apps to ensure best cross-platform 
performance either using smaller devices like smartphones or devices 
with bigger screens (e.g. laptop). jQuery is utilised to simplify JavaScript 
interactions. Additionally, various third-party libraries are incorporated 
to enhance functionality and streamline coding processes. Users can 
navigate through a decision tree-like menu to select from a range of data 
types, including climate, crop, and remote sensing indicators. Upon 
selecting an indicator for a specific time step, the corresponding WMS is 
retrieved from the GeoServer and visualised on the map using 
OpenLayers.

The system also offers the capability to download any dataset as 
GeoTIFF or netCDF data from the raw data storage. Users can analyse the 
currently visible dataset or indicator by creating a time series or trend 
line. To do this, they must select a polygon (representing a predefined 
administrative boundary) or a point (by clicking on the map) for which 
the chart will be generated. A request containing all relevant informa-
tion for the API – such as the dataset, selected region or point, and plot 
type – is then sent to the R Plumber API (Schloerke & Allen, 2024). The 
API calculates statistics (e.g., mean values) for each year of the selected 
region and returns the results as an array. The ChartJS library is 
employed to create various interactive charts from the returned data, 
enhancing the user’s ability to visualise trends and patterns. Created 
charts are freely available and can be downloaded by the users, without 
any registration. Results of the conducted plot or regional analysis are 
presented in the mapview, by interactive charts and are directly usable 
through print-ready figures, that the system provides.

4.2. API environment

The R Plumber API plays a crucial role in the SDSS by extracting 
annual averages for a selected region or point from the raw data for each 
year within a specified time span, e.g., 1981–2010 for recent data and 
1981–2100 for climate model data. Built on the R Plumber library, the 
API allows for the definition of endpoints where data can be posted and 
processed.

The entire API environment is set up within a Docker container that 
runs a nginx web server, ensuring that the API operates continuously 
and reliably. The API includes different functions tailored to the type of 
data being analysed—such as climate, drought, crop, or remote sensing 
indicators—since each data type is structured differently. The API ac-
cesses the same raw data repository as the frontend web portal, ensuring 
consistency and coherence in data handling. Upon processing, the API 
returns an array of data to the frontend web interface for further analysis 
and visualisation.

4.3. Development environment and Versions

The SDSS is developed within a robust environment that ensures 
compatibility and performance. The basis of the system is built on an 
Ubuntu environment (version 20.04.6). This environment supports the 
various technologies and software components used in the SDSS, 
providing a stable platform for development and deployment. By inte-
grating these components, the SDSS provides a comprehensive and 
efficient platform for climate and land use data analysis and visual-
isation. The architecture not only supports user interaction but also 
ensures that data processing and management are handled effectively, 
paving the way for informed decision-making in climate services. At the 
landing page the user is welcomed with the selection of language pref-
erences and the option to use an interactive tutorial to get started with 

the SDSS. At any time users have access to the documentation and help 
section of the system, where data selection, concentration scenario, 
preprocessing, and scientific details are findable and described in a plain 
language.

The design like colormaps, legends, available indices, and docu-
mentation was constantly updated with inputs from the project mem-
bers and stakeholders. The final version of the web portal is currently 
hosted at https://landsurf.geo.uni-halle.de/ and the code of the DSS web 
portal is freely available (König et al. 2024) which is also true for all data 
displayed there (Ziegler et al. 2024b).

5. Demonstration cases

The following two fictional concept studies demonstrate the func-
tionality, usability, and benefits for stakeholders of the created SDSS:

5.1. Concept study I − Farmer: Impact of climate change on irrigation 
needs in a district in Burkina Faso

This first concept study examines the usage of the SDSS by a farmer 
in Burkina Faso to analyse the NDVI and irrigation water requirements 
for millet cultivation. The virtual backstory of this case study is sum-
marized in Supplementary S6. The agricultural sector in Burkina Faso 
faces significant challenges due to climate variability and change. Un-
derstanding the relationship between vegetation indices and irrigation 
requirements is crucial for optimising water use in crop production. This 
fictional study illustrates how a farmer employs the SDSS to assess his-
torical NDVI data (1981–2021) and projected future irrigation needs 
based on the climate scenarios RCP2.6 and RCP8.5.

Initially, the farmer accesses the SDSS to evaluate the NDVI for his 
fields over a historical period. He selects the data category “Remote 
Sensing Indicators” and visualises the NDVI on a map (Fig. 3a). By 
clicking on the pixel corresponding to his field’s coordinates (lon 
− 1.416◦ / lat 11.723◦), he retrieves a monthly time series of NDVI 
values from 1982 to 2021, revealing inner- and interannual fluctuations 
in vegetation greenness (Fig. 3b). Note that missing values are not 
interpolated in the time series for reasons of transparency.

Subsequently, the farmer examines the “Irrigation Water Require-
ment” indicator using ERA5-Land observations for the growth phases of 
millet. To gain a broader perspective, he expands his analysis to the 
entire region of Centre-Sud Bazega in Burkina Faso (Fig. 4). He notes an 
increase of irrigation demand over the years 1981–2010 mainly during 
the crop development stage (CDS); the latter two (MSS − Mid-Season 
Stage and LSS − Late Season Stage) remain constant. The farmer 
brings these findings in line with his knowledge of local characteristics, 
e.g., related to soil or the availability of groundwater, to enhance his 
understanding of crop growth dynamics over past decades.

The farmer is also interested in the potential impact of future climate 
change on his irrigation needs. Therefore, in the next step he selects the 
“Projection” data type, opting for the “Difference” projection type and 
“Regional Climate Model” for the highest spatial resolution. He com-
pares the growth phases under the available concentration scenarios: 
RCP2.6 and RCP8.5. The results in Fig. 5 reveal that under the RCP2.6 
scenario, the two early stages, IS and CDS, are projected to reach a 
maximum increase of +0.35 and +0.7 mm/day by 2055, respectively. 
The MSS shows a positive trend as well. The irrigation requirements 
show a peak after the middle of the 21st century which, however, re-
quires adaptation measures. In contrast, under RCP8.5 all four growth 
phases show a strongly increasing trend exceeding +1 mm/day already 
around 2050 while especially CDS and MSS can reach an enhanced 
irrigation requirement of +2 mm/day by the end of the century 
compared with present-day.

Having these strong changes in mind, the farmer utilises the 
comparative analysis of crops to evaluate the implications of cultivating 
short versus long millet varieties (Fig. 6a). He concludes that there is 
small difference in irrigation requirements between the two lengths. The 

K. Ziegler et al.                                                                                                                                                                                                                                  Climate Services 39 (2025) 100585 

8 

https://landsurf.geo.uni-halle.de/


change signal clearly depends on the RCP scenario. Thus, the crop with 
the shorter growing season might be preferred from this point of view 
since the time over which it has to be irrigated is shorter and, conse-
quently, less water is needed. With this knowledge, the question arises 

whether other crops might have a lower irrigation requirement than 
millet. Hence, he selects the class of wheat, oat, and barley together with 
sorghum and two types of maize (sweet, grain) during CDS, the stage 
affected by the overall strongest increases (Fig. 6b). It turns out that the 

Fig. 3. Map for August 2021 (a) and time series (1982–2020) (b) of absolute values of NDVI (interpretation for this value see Supplementary S5a) for the district 
Centre-sud Bazega in Burkina Faso.

Fig. 4. Time series (1981–2010) of absolute values of irrigation water requirement (ir in mm/day averaged over the indicated region) for four growing stages (IS −
Initial Stage, CDS − Crop Development Stage, MSS − Mid Season Stage, and LSS − Late Season Stage) using ERA5-Land for the district Centre-sud Bazega in 
Burkina Faso.
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respective crop does not play the major role since the irrigation re-
quirements show similar increases of up to +1.2 mm/day at the end of 
the century. It is slightly larger for maize grain compared with the other 
crops.

This concept study highlights the importance of utilising a SDSS for 
informed agricultural management in the face of climate change. By 
integrating climate model and remote sensing data with local knowl-
edge, farmers can better prepare for the challenges posed by climate 
variations and ensure sustainable agricultural practices. The farmer’s 
analysis demonstrates significant increases in irrigation needs under 
future climate scenarios, emphasising the necessity for adaptive strate-
gies in crop selection but mainly on water management practices. In 
consequence, mitigation and adaptation measures like reservoir con-
structions and fighting desertification could be realized to keep water 
from rainfall in natural and artificial storages so that it remains available 
to meet irrigation requirements.

5.2. Concept study II − Governmental authority (Planner): Impact of 
climate change on drought events and heat waves in the southern coastal 
region of West Africa

In a second study, a regional planner at the Ministry of Environment 
and Sustainable Development in Accra, Ghana, is running an interna-
tional project that focuses on analysing the impact of climate change on 
drought events and heat waves in the South Coastal Region of West 
Africa, which includes Guinea, Sierra Leone, Liberia, Côte d’Ivoire, 

Ghana, Togo, and Benin. This region is particularly vulnerable to climate 
variability, with increasing temperatures and changing precipitation 
patterns threatening agriculture, water resources, and public health. The 
backstory of this concept study is presented in Supplementary S7. To 
effectively address these challenges, the planner utilizes the SDSS that 
can provide comprehensive data analysis and useful information in a fast 
and efficient way. She assumes that the SDSS will enable her to identify 
trends, assess risks, and develop targeted strategies to mitigate the im-
pacts of droughts and heatwaves under climate change on regional to 
local scale and communities. The government is particularly interested 
in integrating local knowledge and scientific data to create actionable 
plans that empower communities to adapt to changing conditions.

The planner undertakes a systematic approach to analyse droughts 
based on the Standardized Precipitation Evaporation Index (SPEI) using 
ERA5-Land for the historical period (1981–2010). Initially, the SPEI for 
several countries, focusing on various accumulation periods of 3, 6, 9, 
and 12 months representing different types of droughts, is selected to 
create a time series (Fig. 7). Upon examining the resulting plots, the 
planner observes minor differences across the different accumulation 
periods averaged over the target countries. Consequently, she opts to 
utilize the 12-month accumulation interval, as it is more closely asso-
ciated with the characteristics of long-lasting groundwater droughts 
and, hence, socioeconomic drought, providing a relevant context for her 
analysis. In this regard, a drying trend is already detectable.

Following this historical assessment, the user proceeds to evaluate 
projected absolute values derived from the RCM ensemble under RCP8.5 

Fig. 5. Time series (1981–2100) of differences in irrigation water requirement (ir in mm/day averaged over the indicated region) for four growing stages (IS, CDS, 
MSS, and LSS) for RCP2.6 (a) and RCP8.5 (b) using the RCM ensemble mean (ensmean) for the district Centre-sud Bazega in Burkina Faso. Note the different scaling 
of the y-axis.
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for the time frame of 2070–2100. To visualize these projections, she 
generates a map that illustrates the anticipated changes in SPEI, high-
lighting the risk of severe droughts in southern West Africa (Fig. 8).

Additionally, the planner employs the ’compare scenario’ feature to 
assess the different implications of the two concentration scenarios 

(Fig. 9). The data reveals that the RCP plays a crucial role for droughts in 
the area. Using the SPEI classification table from the SDSS documenta-
tion (Supplementary S8) it can be concluded that the selected region will 
face enhanced drought conditions relative to today’s climate as pointed 
out by the ensemble mean and minimum values within the ensemble of 

Fig. 6. Time series (1981–2100) of differences in irrigation water requirement (ir in mm/day) for short and long millet for CDS with RCP2.6 and RCP8.5 (a) and for 
four different crops for short plant lengths and only rcp85 (b) both using the RCM ensemble mean (ensmean) for the district Centre-sud Bazega in Burkina Faso.

Fig. 7. Time series (1981–2010) of absolute values for SPEI accumulated over 3, 6, 9, and 12 months averaged over the countries Guinea, Sierra Leone, Liberia, Côte 
d’Ivoire, Ghana, Togo, and Benin.
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‘-3’ indicating extreme droughts almost every year towards the end of 
the century for RCP8.5. In contrast, RCP2.6 implies only slightly drier 
conditions until the middle of the century stabilizing at a ‘normal’ level 
of ‘+/-1’, with ensemble minima of moderate to extreme droughts (− 2) 
in individual years over the entire domain. However, keeping the 
generated SPEI map in mind (Fig. 8), the conditions will not be homo-
geneously distributed in space.

These substantial changes in the projected SPEI values highlight the 
potential impacts of climate change on water availability and drought 
conditions in the selected regions. In addition, the discrepancy between 
the concentration scenarios highlights the scope of action arising from 
an efficient climate mitigation policy. This comprehensive evaluation 
underscores the importance of considering both historical data and 
future projections in understanding the dynamics of drought and its 
socioeconomic implications.

In the context of the planner’s inquiry regarding the evolution of 

extreme temperatures projected by climate models, it is essential to 
incorporate specific temperature-based indices that provide insight into 
the potential impacts of climate change on vulnerable populations and 
agricultural systems. The previously depicted SPEI is based on temper-
ature and precipitation. Therefore, the next index of interest is tx35, 
indicating the frequency of days when the daily maximum temperature 
exceeds 35 ◦C. This threshold is particularly critical, as prolonged 
exposure to such high temperatures poses significant heat stress and 
risks to human health as well as to agricultural productivity, especially 
for crops like maize. Further, the heat wave duration index (HWDI) is 
informative for this analysis since it is widely utilized in health-related 
analyses due to its percentile-based calculation, adapting to local cli-
matic conditions. This index measures the longest duration of heat 
waves per year, together with tx35 providing a clearer understanding of 
the frequency and intensity of extreme heat events over time.

To assess these indices, the planner chooses the RCM ensemble under 

Fig. 8. Map of absolute values for SPEI accumulated over 12 months using the RCM ensemble with RCP8.5 for (2070–2100) (target regions are marked by blue 
borderlines: Guinea, Sierra Leone, Liberia, Côte d’Ivoire, Ghana, Togo, and Benin).

Fig. 9. Time series (1981–2100) of absolute values for SPEI accumulated over 12 months using the RCM ensemble mean under RCP2.6 and RCP8.5 scenario 
averaged over the countries Guinea, Sierra Leone, Liberia, Côte d’Ivoire, Ghana, Togo, and Benin.
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RCP8.5, focusing on the period from 2070 to 2100. As a next step, the 
trend option can be selected. With this, the planner generates maps 
illustrating the linear trend for the period 2001–2100 of the number of 
days exceeding the 35 ◦C threshold and the duration of heat waves, 
measured in days per decade. The resulting projections indicate that the 
entire West African region is expected to experience an increasing trend 
of 10 to 15 additional days per decade for both the tx35 (Fig. 10a) and 
the HWDI (Fig. 10b). Furthermore, by utilizing the ’Show Significance of 
Trend’ feature, our fictional planner can visualize the uncertainty 
associated with these changes. The results reveal a highly significant 
trend, indicating that all models consistently project an increase in the 
frequency and duration of heat days and waves which clearly exceeds 
today’s standard deviation (Fig. 10, right panels). This consensus among 
the models underscores the urgency of addressing the implications of 
rising temperatures on public health and agricultural resilience in the 
face of climate change. However, there are variables like the maximal 
precipitation amount on one day (RX1day) that do not show such ho-
mogenous trends (Supplementary S9). The trend shows a spatially 
separated pattern: a positive trend in the Northwest and a negative one 
in the Southeast. The time series of the absolute value of RX1day ex-
hibits a large model spread and both RCP scenarios differ considerably 
(Supplementary S10). Consequently, the resulting TNR pattern of rain-
fall extremes shows only some areas with significant trends and even less 
areas with robust trends which is in general contrast to the temperature 
indices.

6. Discussion and summary

This study describes the motivation behind the development of the 
SDSS, the participative approach by including stakeholder needs and 
feedback as well as the preparation of data and calculation of a broad 
range of indices being relevant for and in use in West Africa’s agricul-
tural sector. The accessibility, flexibility, and usability of the SDSS are 
demonstrated by two concept studies that underline the great potential 

for numerous stakeholders from different sectors. It gives deeper insights 
into climate change impact in their respective fields at various spatial 
scales or administrative levels.

The SDSS implies various benefits for stakeholders. In detail, data at 
the grid point level as well as for different administrative areas from the 
country to the district level can be accessed and analysed easily by the 
user. One or multiple areas can be selected and compared. The infor-
mation of interest can either be plotted as a map to underline spatial 
heterogeneities and variations or as time series for the temporal vari-
ability and trend. If multiple areas are selected the SDSS automatically 
calculates the mean of the selected area for the time series figure. Beside 
absolute values and differences, we also provide estimations of uncer-
tainty by showing ensemble means within the respective ensemble 
spread, reflecting the potential future pathways of climate until the end 
of the 21st century. A further uncertainty estimation is delivered by the 
inclusion of RCM and GCM ensembles. We focus on statistically signif-
icant trends and the TNR as a measure of how strong the trend is in 
relation to the standard deviation of the reference period. These 
methods make the information provided by the SDSS valuable to 
stakeholders as well as to students or researchers in a variety of 
disciplines.

To further support the user, we also provide three different base 
layers (OSM, ESRI Topographic Base, and ESRI Satellite) for the map 
display (e.g., Fig. 10a and b). This feature is helpful for specific use cases 
and orientations especially because the transparency and layer order of 
the data maps can be selected via a slider and the drag-and-drop method 
which simplifies the comparison of different time slices or maps. 
Another advantage of our SDSS is the automatic usage of running means. 
All climate data is already prepared in a scientific way that provides 
ready-to-use information. For non-scientific users this option reduces 
the potential of mistakes when being obliged to perform their own 
postprocessing of data and prevents misinterpretation of the provided 
data. For the scientific community we described the preparation process 
in the documentation and also provide the raw data, if another 

Fig. 10. Trend per decade for tx35 (a) and HDWI (b) using the RCM ensemble mean with RCP8.5 (left) and the corresponding TNR indicated by hatching (right) 
(target regions are marked by blue borderlines: Guinea, Sierra Leone, Liberia, Côte d’Ivoire, Ghana, Togo, and Benin).
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proceeding should be preferred.
The plots generated within the SDSS can be downloaded to be pre-

sented and distributed by the respective users. More advanced users can 
further download time series data in csv-format and maps in GeoTiff and 
NetCDF to perform their own analyses without downloading and pro-
cessing large data volumes from climate model simulations. The broad 
range of available indicators and crops makes the SDSS relevant for 
agricultural stakeholders at every level. Moreover, the indicator selec-
tion might also attract stakeholders beyond agriculture, e.g., from 
regional development, water administrations, migration offices, or 
educational institutions.

The format of the SDSS is advantageous compared with some exist-
ing data portals since the web-based approach enables an easy access 
which does not require any accounts, additional or even advanced skills, 
nor software to derive detailed and science-based information on 
climate and land use change. However, this web-based approach also 
comes with a small weakness as the user has to be online at least initially 
to access the portal and data but can download the desired information 
for further offline usage. Presenting the information in this way reduces 
accessibility barriers and is entirely free of charge. To provide the in-
formation to as many people as possible, the entire SDSS as well as its 
non-scientific documentation is available in English and French.

Finally, the code of the SDSS is freely available (König et al. 2024) 
which is also true for the data shown in the system (Ziegler et al. 2024b) 
and the intermediate data where the original ones are processed (Ziegler 
et al. 2024a).

In summary, we aimed at combining the strengths from previous 
SDSS approaches dedicated to climate impact research in Africa (cf. 
Section 1). Stress was laid on a stakeholder involvement prior to 
designing the SDSS, a high spatial resolution, a wide range of climate 
indicators of high practical relevance, a broad spectrum of statistical 
data processing, a free download of raw data and charts, and a barrier- 
free technical implementation in terms of the usability, interpretability, 
language and hardware compatibility. Another advantage compared 
with other systems is the easy-to-use comparison function among sce-
narios, indicators, regions, crops and growing stages. Our SDSS will be 
continuously maintained beyond the project’s funding period. In the 
meantime, it is also available via various institutional websites in West 
Africa.

There is still a large potential of improvement, depending on future 
funding and availability of new datasets. While using standard methods 
for the preparation of the remote sensing indices, we have detected some 
limitations (e.g., missing values, negative values, or ‘jumps’ due to the 
satellite input data) of those methods. Therefore, especially for these 
indices there is the need and potential for improvements, e.g. using 
newly developed methods like Deep Learning modules to get NDVI 
values from weather data (Janetzky et al., 2024). Further, the next 
generation of RCM simulations will expand to the convection-permitting 
scale, allowing an even better representation of local weather extremes. 
The spectrum of indicators is indeed of practical relevance but still 
confined to climatic and crop information. Socio-economic indicators 
like income, operating expenses for seeds, fertilizers, and pesticides as 
well as investments in irrigation systems or new cropping systems may 
enhance the user potential of the SDSS. The same is true for human 
health issues due to heat stress, malnutrition, enhanced UV exposure, 
and air pollution during dry episodes. Finally, the statistical toolbox of 
the SDSS can be extended, e.g., by a correlation analysis between 
climate, vegetation and crop indices or multiple regression models, 
enabling students and scientists to detect cause-and-effect chains be-
tween climate change and affected sectors in Africa. 

“During the preparation of this work the author(s) used ChatGPT in order 
to embellish and fill up the backstories of the persons from the two concept 
studies. After using this tool/service, the author(s) reviewed and edited 
the content as needed and take(s) full responsibility for the content of the 
publication.”
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