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invade early in the growing season, suppressing diversity. The positive effects
of late invasion increased in magnitude with spatial grain and were higher for
taxonomic than phylogenetic and functional facets of diversity. This was
largely due to the dominance of the focal invasive, negatively affecting diver-
sity within specific plant families or functional phenotypes across treatments.
Under early invasion, nutrients had a negative effect, particularly at local
scales, inflating beta diversity in this treatment and resulting in negative to no
effect of late invasion on many aspects of beta diversity. Our results demon-
strate the importance of looking at a multitude of different measures of diver-
sity to understand the relative effects of ecological restoration treatments
combined with invasion timing. Efforts to keep noxious plant invaders out of a

system early in restoration approaches better allow desirable, native plants to
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INTRODUCTION

As the human impact on and degradation of biodiversity
continues to expand, it becomes increasingly crucial for
ecologists to comprehensively quantify and understand
the full extent of the effects of human-related distur-
bances such as nutrient depletion or pollution, invasive
species, and land degradation so that effective action can
be taken (Diaz & Malhi, 2022; Magurran & McGill, 2010).
Quantifying diversity across different scales, metrics, and
facets allows us to better identify the most damaging
drivers of diversity change (Gonzalez et al.,, 2023),
develop predictions about future changes, and devise
actions for conserving and restoring diversity (Leclére
et al., 2020; Loreau et al., 2022). The field of restoration
ecology aims to create conditions that allow degraded
landscapes to transition from degraded conditions to
states with higher levels of diversity and ecosystem func-
tioning (Carlucci et al., 2020; Ladouceur et al., 2022;
Temperton et al., 2019) and has become increasingly rele-
vant as international agreements have declared restoring
degraded habitats as a priority (UNEA, 2019).

While simply ceasing the activities that cause habitat
degradation is an important part of habitat restoration,
this is often not enough (Ladouceur et al, 2023;
Temperton et al., 2004). First, the abiotic conditions of
degraded habitats (e.g., soil chemistry, nutrient availabil-
ity) often require amelioration to allow more natural
communities and ecosystems to recover and develop
(e.g., Bischoff et al., 2009; Sdez-Sandino et al., 2023).
Likewise, exotic invasive species often become dominant
in degraded habitats, and removing the drivers of

establish and can have long-term benefits for multiple aspects of diversity.

biodiversity change, disturbance, diversity, grassland restoration, Hill numbers, rarefaction,

degradation alone is often not enough to allow the native
community to rebound without simultaneous direct man-
agement of the established exotic invasive species
(Crandall & Knight, 2015; Weidlich et al., 2021; Young
et al., 2017; Yu et al., 2020). Thus, the complexity of
developing optimal restoration protocols has led to exper-
imental work aimed at understanding how manipula-
tions of abiotic conditions and exotic invasive species
management can best restore diversity (Brudvig, 2011;
Humphries et al., 2022; Wohlwend et al., 2019).

Rather than being a single quantity, biodiversity and
diversity are catchall terms that describe dozens of met-
rics that quantify different aspects of numbers and types
of species. Biodiversity metrics do not always respond
to ecological drivers by the same magnitude or even
direction at different spatial and temporal scales
(Blowes, Daskalova, et al., 2022; Chase et al.,, 2018,
2019). Therefore, it is important to consider a variety of
diversity features when evaluating diversity change in
response to global change drivers. This includes (1) spa-
tial scale: species diversity increases non-linearly with
increasing sampling effort (or area), and biodiversity
change depends on the scale at which diversity is mea-
sured/observed, the species abundances, and spatial dis-
tributions at that scale (Chase et al., 2018; He &
Legendre, 2002; McGill, 2011; McGlinn et al., 2021).
(2) Metrics: measures that explicitly incorporate species’
relative abundances and give different weights to com-
monness and rarity (e.g., Shannon, Simpson, Hill num-
ber order g=1 or 2) help to understand effective
numbers of dominant/highly abundant species (Chao
et al., 2021). Lastly, (3) the facets: taxonomic makeup of
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the assemblage (i.e., the species names), as well as
other biological features, including functional traits
(i.e., functional diversity; Cadotte et al., 2011), and phy-
logenetic relationships (i.e., phylogenetic diversity;
Barber et al.,, 2017; Khalil et al., 2017) help to under-
stand structural relationships from different perspec-
tives. Leveraging these aspects, we can better quantify
and understand the multifaceted nature of the effects of
disturbance and restoration on diversity.

Drivers of biodiversity change can affect different
scales, metrics, and facets of diversity in surprisingly
diverging ways. The effect of a driver can increase with
scale if it reduces site-to-site variation in composition,
causing the loss of low-occupancy species and/or decreas-
ing spatial clumping. Alternatively, the effect of a driver
can decrease with scale if it increases local variation
(Chase et al., 2018, 2019). For example, in a ~30-year
grazing experiment in Kansas tallgrass prairie, bison had
a more positive effect at local scales, increasing variation
and reducing dominant grasses (Ratajczak et al., 2022)
and influencing local dynamics like coexistence and turn-
over of species. Likewise, a driver can have larger effects
on patterns of species richness than metrics that weight
common species more heavily if it influences rarer spe-
cies, whereas similar effects emerge if the driver equally
influences all species (Chao, Chiu, et al., 2014). For
example, in oak-prairie savannas in Minnesota, species
richness recovered better than measures that account for
community evenness after 80-100 years since agricultural
abandonment due to rare species (Isbell et al., 2019;
Ladouceur et al., 2023). Finally, if a driver has a larger
effect on taxonomic diversity than on functional or phy-
logenetic relationships, species responses might have
been mediated by their traits and relationships. For
example, in restored grasslands in Illinois, the time since
restoration negatively affected plant taxonomic diversity
but positively influenced functional and phylogenetic
diversity at local scales (Guiden et al., 2021). In restora-
tion, small scales are relevant for understanding regener-
ation and local community dynamics, and larger scales
are relevant for understanding the big picture, the ulti-
mate goal of restoration outcomes worldwide. Abun-
dance weightings are valuable for wunderstanding
dominance and rarity in reassembly, and facets reveal if
treatments affect particular families or functional pheno-
types differentially.

In many parts of the world, as in North American
prairies, native grasslands have been degraded by agricul-
tural activities that deplete soil nutrients and then are
often invaded by exotic plant species (Humphries
et al., 2021; Kindscher & Tieszen, 1998). When
establishing restoration protocols for these habitats, abi-
otic conditions (e.g., soil nutrients) and local exotic

invasive species must be considered concomitantly
(Bardgett et al., 2021). In this study, we focused on differ-
ent actions relevant to restoration on a nutrient-poor prai-
rie recovering after agriculture, prone to invasion by a
common exotic N-fixing legume, Lespedeza cuneata. We
implemented a factorial restoration experiment that
seeded a diversity of native grasses and forbs, manipulated
soil nutrients, as well as the timing of native species
seeding and L. cuneata invasion (Wohlwend et al., 2019).
L. cuneata is an N-fixer and a fast-growing but long-lived
perennial that rapidly spreads both by rhizomes and
seeds. We hypothesized that the invaders dominance
would be reduced when nutrients were added to the sys-
tem and even further if native species were able to estab-
lish first (Weidlich et al.,, 2021). We confirmed in a
previous study that the late invasion timing treatment
suppressed the abundance of L. cuneata in a way that
persisted for 7 years and resulted in different composi-
tions of species across treatments (Wohlwend et al., 2019).
We now compare these treatments to focus on the relative
success of each for diversity to inform applied manage-
ment actions relevant to ecological restoration.

Here, we consider the relative responses of multiple
facets of diversity to these factorial treatment combina-
tions aimed at restoring native diversity and suppressing a
problem invader in the same 7-year-long experiment. Spe-
cifically, we asked the following questions: (1) Is there
spatial-scale dependence in the diversity response to
adding nutrients and/or the timing of invasion by
L. cuneata? We addressed this by comparing the responses
of multiple diversity components measured at the small,
within-plot scale, as well as the accumulation of diversity
across all plots within a treatment. (2) Do diversity metrics
vary in their responses to the addition of nutrients and/or
the timing of invasion? We addressed this by calculating
metrics that differentially weight rare and common species
(i.e., Hill numbers, Hill, 1973, as emphasized by Chao,
Gotelli, et al., 2014; Jost, 2006). (3) Do diversity facets vary
in their responses to the addition of nutrients and/or the
timing of invasion? We addressed this by quantifying met-
rics that include information on the taxonomic, functional,
and phylogenetic diversity. By knowing the interactive
effects of management actions across scales, metrics, and
facets, we can better understand the outcomes relevant to
ecological restoration.

METHODS
Study system

Our experiment was conducted in a 0.5-ha field located
at the Tyson Research Centre of Washington University
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in Missouri, USA (38°30'31.1” N and 90°34'21.6” W). The
area has a warm and temperate climate with an annual
precipitation of 897 mm and an average annual tempera-
ture of 13.7°C. The soils are derived from limestone and
are rich in clay. The study area was used as an experi-
mental corn field from 1984 to 1989, after which it was
left fallow with intermittent mowing to prevent tree inva-
sion. Prior to our experiment, L. cuneata was found in
the site and in areas around it (more details in Wohlwend
et al., 2019).

To eliminate L. cuneata from the site and prepare
the area for our experimental restoration treatments,
we applied broadcast treatments of 40% glyphosate her-
bicide (July 2007, June 2008). Additionally, the field
was mowed in July 2008, disked in August 2008, and
tilled in February 2009 to deplete the seed bank of
L. cuneata. The field was managed with common prai-
rie restoration practices used in the region, detailed
below, throughout the experiment, which took place
from 2009 to 2016. In June and August 2009, the entire
field was mowed to remove dead biomass. In 2011,
2013, and 2016, late winter or early spring burns were
conducted, which are part of the natural disturbance
regime of prairies. Three non-native species that are
known to exhibit invasive behavior, Carduus nutans,
Vicia villosa, and Sorghum halepense, were either manu-
ally removed or spot-targeted with a 40% glyphosate
herbicide.

Focal invasive species

L. cuneata, commonly also known as Sericea lespedeza,
is a perennial plant in the family Fabaceae. It is native
to China, Japan, and Korea but has been widely intro-
duced for erosion control and as a forage crop, which is
able to grow in nutrient-poor soils and harsh conditions
(Ohlenbusch et al., 2007). It has become naturalized in
many parts of the world, including the United States.
Young plants provide valuable forage, but mature
plants have a high concentration of condensed tannins
and lignin and are avoided by grazers (Tracy
et al., 2022). The plant grows to be approximately a
meter tall, with small white or pink flowers that bloom
from July to September. Plants produce new sprouts
arising from root nodes, and many small seeds can last
in the soil seed bank for several years (Ohlenbusch
et al., 2007). Numerous factors are thought to contrib-
ute to the invasiveness of L. cuneata, such as its ability
to thrive in nutrient-poor soils, its rapid growth, its alle-
lopathy, and enemy release (Allred et al., 2010;
Kalburtji et al., 2001; Schutzenhofer et al., 2009;
Schutzenhofer & Knight, 2007).

EXPERIMENTAL DESIGN
Treatments

In 2009, we established one hundred and two 10-m?
(3.16 m x 3.16 m) restoration plots in a 7x15 cell
design, with a 2-meter separation between plots. The field
was split into four blocks that represented a slight mois-
ture gradient. We studied the effects of seeding native
species, nutrient addition, and invasion timing on forb
diversity to overcome nutrient depletion and invasion
typical of degraded prairies in the region. Each plot
received a random combination of three treatment cate-
gories: nutrients, manipulated invasion timing, and
assembly of seeded forbs and grasses. In 2009, all plots
were hand-broadcasted with 25 Missouri ecotype native
forb and 5 grass species typical of prairie restorations in
the region. We initially considered an additional treat-
ment of “assembly” to vary the order of forb and grass
seeding, and while this treatment had effects on the
invader (Wohlwend et al., 2019), it had minor effects on
forb diversity and thus was excluded from presentation
here for clarity (see Data preparation for more detail).
The nutrient treatments were control (not fertilized) and
nutrients added, with the latter plots receiving a slow-
release fertilizer (Scotts Osmocote Classic) containing
6 gNm™2 year™ ', 2.7 g ammoniacal nitrogen, 3.2 g nitrate
nitrogen, 2 g phosphorus (as P,O,4), and 4 g potassium
(as K,0), applied annually in June from 2009 to 2015.
The invader was seeded by hand into experimental plots,
once in 2009 (early treatment), at the same time as
seeding native forbs and grasses, and once in 2012 (late
invasion treatment). The late invasion treatments
required the use of spot spraying of emerging L. cuneata
with glyphosate to maintain its integrity until seeding
2012. All plots were invaded successfully.

Plant community surveys

In 2016, we comprehensively sampled the plant commu-
nity within each plot. To achieve this, we established a
grid of nine subplots within each plot, each subplot mea-
suring 0.5 by 0.5m (0.25 m?), with a buffer of 0.5m
between each subplot. This resulted in 864 subplots
across 102 plots, equaling 72 subplots per treatment com-
bination. Within each of these subplots, we carefully
documented the identity of each forb species and identi-
fied grasses as a single group to estimate the percentage
of ground cover that each represented visually. As a
result, here we focus on forb diversity as a measure of
interest for prairie restoration in this region. After the
sampling of all nine subplots was complete, we continued
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the survey by walking the perimeter of the plot. Our
objective was to identify any rare forb species that were
present within the plot but not observed in the subplots.
These rare species were documented and recorded as pre-
sent to ensure a complete inventory of the forb plant
community within each plot.

Data preparation

We standardized plant taxonomy nomenclature using
The Plant List version 1.0 in 2022 (Knight &
Ladouceur, 2025; The Plant List, 2013). All data prepara-
tion and wrangling, metric quantification, statistics, and
visualization of results described and presented below
were conducted in the R for Statistical Computing and
Graphics environment (v.4.2.3; Ladouceur, 2025; R Core
Development Team, 2019). Data wrangling was
conducted using the tidyverse package (Wickham et al.,
2019) and visualization in ggplot2 (Wickham, 2009).

For these analyses, we considered four unique treat-
ment combinations (2 nutrient X 2 invasion timing) and
only used treatment plots where grasses and forbs were
seeded together from the assembly treatment (Knight &
Ladouceur, 2025). We considered the rare species perime-
ter walk as a tenth subplot for every plot (see more details
below). This resulted in 32 plots and 320 subplots for pre-
sentation here. This amounts to 80 subplot samples per
unique treatment combination. We removed the assem-
bly treatment from the presentation here for clarity, as
this treatment affected outcomes in the cover of our focal
invader (Wohlwend et al., 2019) but did not affect diver-
sity outcomes. Therefore, it brought the treatment combi-
nations from 12 down to 4, allowing clearer presentation
and understanding of main results important for forb
diversity outcomes.

Functional traits

We requested data on 11 continuous plant and regenera-
tion traits for 122 standardized forb species names from
the TRY global plant trait database (Kattge et al., 2011).
We requested trait data for commonly studied traits
found to be important for the leaf economic (Wright
et al, 2004), the global plant (Diaz et al, 2016;
Reich, 2014), and the regeneration trait spectrum
(Fernandez-Pascual et al., 2021; Ladouceur et al., 2019).
Regeneration traits are important to the trajectory and
functioning of restored systems (Cadotte et al., 2011).
Overall, we obtained species-level values for the follow-
ing traits: leaf area (in square millimeters, LA), specific
leaf area (in square millimeters per milligram, SLA), leaf

dry matter content (in grams of dry mass per gram of
fresh mass, LDMC), leaf nitrogen (in milligrams per
gram, LN), vegetation plant height (in meters, PH), soil
seed bank longevity (in years, SSBL), seed dry mass
(in  milligrams, SDM), seed germination rate
(in percentage, SGR), seed number per reproduction unit
(number, SN), stem specific density (in grams per cubic
centimeter, SSD), and plant vegetative reproduction: lat-
eral spread (PVR). Plant vegetative reproduction did not
have enough data coverage for the species list we submit-
ted, so we did not include it in our analyses and used
10 traits for our final trait dataset. We used standardized
units for single traits and best estimate measurements
from the TRY database for all species and traits requested
and took the mean trait value for each species and each
trait where multiple values were returned.

Phylogenetic trees and trait imputation

We generated a phylogenetic tree for our list of species
based on a backbone plant mega phylogenetic tree based
on the botanical nomenclature of the World Plants
(WP database; https://worldplants.de), using V.
PhyloMaker, which generates multiple trees based on
various established methods (Jin & Qian, 2019; Smith &
Brown, 2018; Zanne et al., 2014). We used the third
default phylogenetic scenario generated, in which the tip
for a new genus is bound to the 1/2 point of the family
branch unless the family branch is longer than 2/3 of the
whole family branch length and the tip of the new genus
is bound to the upper 1/3 point of the whole family
branch length (Jin & Qian, 2022).

We estimated the proximity of tips of our phylogeny
using Abouheif’s proximity without diagonal and no nor-
malization. Based on this phylogenetic distance matrix,
we quantified Moran eigenvectors and used the first
30 values; we then used this phylogenetic correlation
structure, our list of species, and their traits to predict
missing trait values (Debastiani et al., 2021; Penone
et al, 2014). We predicted missing trait values by
performing nonparametric missing value imputation for
species and their traits using random forest models
(Penone et al., 2014; Stekhoven & Buhlmann, 2012). The
eigenvectors contribute to this by eliminating features
that have a strong correlation between them to help
reduce the overfitting of imputed values (Penone
et al., 2014). We re-iterated the estimation of phyloge-
netic eigenvectors 25 times for 100 random forest trees
with variable-wise imputation. We selected values for
traits and species that minimized out-of-bag (OOB) impu-
tation error, a measure of prediction error in random for-
est models, for each species and trait. We took the

85U8017 SUOWILIOD BAEaID 3|edljdde auy Aq peusench ae Sapiie YO ‘SN JO S9N 10} A%Iq1T 8UIIUQ AB|IAN UO (SUONIPUOD-PUR-SLLIBILID A 1M ARIq U1 UO//SANY) SUORIPUOD PUe SWiB | 8L 88S [5202/80/50] U0 ArIqITauliuO A8|IM ‘Biequenim-|eH AIsRAIUN BUINT UnRN A 29002 dea/Z00T 0T/I0P/W0 A8 | IM AfeIq Ul |UO'S feuINO fess//SdY WOy pepeolumoq ‘Y ‘G202 ‘Z85S656T


https://worldplants.de

6 of 14 |

LADOUCEUR ET AL.

number of eigenvectors that minimized these errors for
the species traits of interest. Phylogenetically corrected
trait imputation was quantified using the adephylo
(Jombart et al., 2010; Jombart & Dray, 2008) and the
missForest packages (Stekhoven, 2022; Stekhoven &
Buhlmann, 2012).

Quantifying diversity

We quantified forb diversity for two metrics (Hill num-
bers ¢ = 0 and g = 2) across multiple scales and for three
facets of diversity (taxonomic, phylogenetic, functional)
(Chao et al., 2021; Chao, Chiu, et al., 2014; Chao, Gotelli,
et al., 2014; Hill, 1973). When conducting diversity sur-
veys in grasslands, recording species incidence (detec-
tion/non-detection) is more pragmatic than quantifying
the number of individuals (abundance) (Chao
et al., 2021), so here we have used sample-based rarefac-
tion with incidence data to quantify forb diversity appro-
priate for our mesic grassland system.

Novel approaches with hill numbers provide unified
measures of diversity within assemblages, where the
order g determines the sensitivity of the measure to
the (incidence-based) relative abundance of species
(Chao et al., 2021; Hill, 1973). To assess diversity across
restoration treatments, we focus on Hill numbers g = 0
and 2 to unify three indices of diversity. Taxonomic diver-
sity (TD) of g = 0 reduces to species richness, and TD of
g =2 reduces to Simpson diversity, which can be
interpreted as the effective number of dominant or highly
abundant species.

To unify Hill numbers with phylogenetic (PD) and
functional (FD) facets of diversity, we used an attribute-
diversity approach (Chao et al., 2010, 2019, 2021). For
example, a taxonomic attribute represents a species in
TD, whereas a phylogenetic attribute represents an effec-
tive number of equally divergent lineages (meanPD) in
our selected phylogenetic tree (default third scenario) for
PD (Chao et al., 2010). An effective number of equally
divergent lineages is quantified as the effective total
branch length divided by the tree depth (Hu &
Chao, 2022). A functional attribute represents a virtual
functional group in FD (Chao et al., 2021), quantified as
the FD under specified threshold values (tau values). We
set our tau values threshold to NULL, which is quantified
as the mean distance between any two individuals ran-
domly selected from the pooled assemblage (Hu &
Chao, 2022). We quantified functional distances in our
FD approach for all species and traits from our imputed
trait matrix, using a species pairwise distance matrix,
with Gower’s dissimilarity as our distance metric
(Pavoine et al., 2009).

For rarefaction of diversity estimates, we treated each
subplot (0.25 m?, 0.5 X 0.5 m) as a sampling unit, and we
quantified the “rare species survey around the perimeter
of each plot” as a 10th subplot sample for each plot. We
extracted the species incidence in each subplot to obtain
an occurrence count (incidence-based frequency) of each
species in 80 samples for each treatment. We extrapolate
estimates out to 120 subplot samples and quantify 95%
CIs based on 50 bootstrap samples for every sample size
across rarified (<80), observed (80 samples), and extrapo-
lated (>80) numbers of sampling units. Each treatment
combination selected for this analysis contained at least
80 subplots nested within 32 plots.

For all quantification of Hill numbers, sample-based
incidence occurrence rarefaction, and extrapolation for
all facets of diversity, we used the “INEXT.3D” package
(Hu & Chao, 2022). To quantify Gower’s dissimilarity
and produce a distance matrix based on our imputed
traits for the estimation of FD, we used the cluster pack-
age (Maechler et al., 2022).

Assessing differences in diversity

To quantify the effect of restoration treatments on diver-
sity, we focus on two spatial scales. Our smallest alpha-
scale (hereafter a-scale) is two subplots (0.5 m?®) because,
for incidence-based rarefaction where order g =2, we
required a minimum of two samples to account for abun-
dance. Second, our large (hereafter y-scale) is 80 subplots
(20 m?), the total number of observed subplots within
treatments. To quantify the relative effect of Lespedeza
invasion timing on each scale («, y), each metric (g = 0,
g = 2), and each facet (TD, PD, and FD), we took rarefied
diversity estimates at our a-scale, within two subplots,
and observed diversity estimates at our y-scale for every
metric and facet. From o and y estimates, we estimated
Whittaker’s multiplicative p-diversity (Whittaker, 1972)
(B = y/m) to quantify subplot variation or the heterogene-
ity of subplots within treatments. We then subtracted
estimates in “early invasion” treatments from estimates
in “late invasion” treatments for the mean and CIs to
quantify an effect size and confidence around each treat-
ment effect. Lastly, we plot diversity estimates of all four
treatments and their CIs against one another for compar-
ison of treatment effects on each scale, metric, and facet.

RESULTS

Overall, we found that at both o- and y-scales, for all
facets of diversity, the late invasion of the invasive species
L. cuneata had the most positive effect on diversity
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compared to other treatments, especially when combined
with nutrient addition (Figure la-f, Appendix S1:
Table S1). Additionally, across both metrics (g =0,
q = 2) and all facets (TD, FD, and PD) of diversity, we

found that the effect size of the timing in which
L. cuneata invaded the community generally increased
with the increasing spatial scale in which diversity is
measured, except for functional diversity when common
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(late—early) of Lespedeza cuneata on forb diversity within nutrient treatments associated with the row it is in line with. Points indicate mean

effect; lines indicate 95% CIs. Colors denote factorial nutrient treatments. Y-axes are varied for clarity.
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effect; lines indicate 95% CIs. Colors denote factorial nutrient treatments. Y-axes are varied for clarity.

and rare species were weighted equally (Figures 2-4). and metrics of diversity, but notable exceptions emerged.
The effect of late invasion for control and nutrients was  The positive effect of late invasion was largest on taxo-
positive overall for small and large scales, across all facets nomic diversity (Figure 2). Rare species drove the positive
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effect of nutrients on late invasion at larger scales
(y-scale), as the effect disappeared when metrics were
corrected for more abundant species (q = 2) (Figure 2).
While functional diversity was the least affected by our
treatments, the combination of late invasion and nutrient
addition had a positive effect on phylogenetic and func-
tional diversity at the small and larger scales for both
q =0 and g = 2 (Figures 3 and 4). This indicates a posi-
tive result for rare and more abundant species identities,
phylogenetic relationships, and functional structure
overall.

For taxonomic diversity (Figure 2), the effect of late
invasion increased diversity at order g = 0 (equivalent to
species richness) at small and large scales, more so at
large scales (a, b, d). However, Whittaker’s p-diversity
(g = 0) was negatively affected by late invasion and nutri-
ent addition because a-diversity was lowest under
nutrient addition (a) and early invasion, leading to the
largest ratio between the large and small scales (c, d).
Late invasion and nutrients affected the effective number
of dominant species positively at the a-scale (a, h) but
negatively at the y-scale compared to the control (f, h).
This positive difference due to nutrients is only due to
diversity being so low under early invasion and nutrient
addition (a, e), also inflating p-diversity for this treatment
(c, g). Late invasion positively increased more evenly
abundant species (order g = 2) (h). p-diversity saw a posi-
tive increase under late invasion in the control treatment
but no effect under nutrient addition (g, h), as p-diversity
was similarly high in both treatments (g).

For phylogenetic diversity (Figure 3), the effect of late
invasion increased diversity at order ¢ =0 at small and
large scales (a, ¢, d) for rare and common species (e, f, h).
Nutrient addition added to this effect at small scales for
q =0 (a, d) and at small and large scales for abundant spe-
cies (e, f, h). Phylogenetic B-diversity responded positively
to late invasion in the control but had no effect under nutri-
ent addition for both rare and common species (d, h), as
B-diversity was also high under early invasion with nutri-
ents due to very low a-diversity in this treatment (c, g).

Functional diversity (Figure 4) was affected similarly
positively by late invasion at small scales (a, e) for both
orders g = 0 and 2 (d, h). At larger scales, nutrient addition
affected ¢ = 0 but negatively in the control treatment (b,
d), but for g = 2, more equally abundant functional pheno-
types were affected positively at larger scales by late inva-
sion and notably by nutrient addition (f, h). Functional
B-diversity saw no effect of late invasion under nutrient
addition and had a negative effect in the control treatment
for ¢ =0 (c, g, d, h). Rare species largely drove this nega-
tive effect, as p-diversity was affected very little by late inva-
sion for ¢ =2 in controls lacking nutrient addition (h).
Full results are found in Appendix S1: Tables S1-S3.

DISCUSSION

It has become more evident in recent years that different
ways of looking at diversity are important to be consid-
ered to gain a more complete picture of the multifaceted
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nature of diversity change. In this study, we found that
comparative responses of diversity to restoration treat-
ments are strongly influenced by the spatial scale in
which diversity is measured, the weighting of diversity
measures to common versus rare species, and which facet
of diversity (e.g., functional and phylogenetic) is mea-
sured. We found that treatments manipulating invasion
timing and nutrient addition in former agricultural fields,
vulnerable to an invader, are relevant not only for
invader cover and community composition (Wohlwend
et al., 2019) but also to the multifaceted aspects that
encapsulate diversity. We found that the most dramatic
results are observed for the effect of invasion timing at
larger spatial scales, particularly for taxonomic diversity.

Across both metrics (g = 0, ¢ = 2) and all facets (TD,
FD, and PD) of diversity, we found that the effect of late
L. cuneata invasion generally increased with spatial scale,
except in the case of functional diversity when common
and rare functional phenotypes were weighted equally
(see below). The majority of our understanding of the
effects of different drivers on grassland communities
comes from small-scale plots similar in size to those that
we used here at our a-scale (e.g., 1 m?) (Isbell et al., 2019;
Ladouceur et al., 2023). However, it is clear that the out-
comes depend critically on the spatial scale in which
grassland diversity is measured, and effects can either be
magnified or reversed at larger scales (Chalcraft
et al., 2008; Ladouceur et al., 2023; Seabloom et al., 2021).
Larger scales can add valuable perspectives to restoration
approaches, given that the goals of restoration are aimed
at large-scale beneficial effects and the big picture.

When effect sizes increase with increasing scale, it
implies that the community is becoming more homoge-
nous in the presence of a given driver (in this case, timing
and subsequent dominance L. cuneata), and p-diversity is
lower (Chase et al., 2018, 2019; Chase & Knight, 2013).
Homogenization is a frequently suggested response to the
presence of dominant invasive plants (Stotz et al., 2019).
This can occur if species that are relatively low in occu-
pancy (e.g., rare species) decrease in their occupancy or if
species that are relatively higher in their occupancy
(e.g., widespread and invasive species) increase their
abundance (Blowes, McGill, et al., 2022; Socolar
et al., 2016). In this case, L. cuneata became dominant in
the early invasion treatment, especially when nutrients
were added (Wohlwend et al., 2019), reducing a-scale
diversity. Native species increased in the late invasion
treatment, showing more plot-to-plot turnover in their
diversity, leading to a negative to little effect of late inva-
sion on p-diversity relative to comparative treatments.
The dominance of the invader contributed to the suppres-
sion of particular plant families and functional pheno-
types, lowering phylogenetic and functional diversity

compared to taxonomic measures. For example, some
important seeded species that are indicative of native
prairies, such as Echinacea spp., were able to establish in
the late, but not early, invasion treatment.

While we observed homogenization in the face of
invasive L. cuneata dominance and higher effect sizes
of invasion timing on the y-scale compared to the a-scale,
this is by no means the only outcome that can occur in
the face of intense invasions. For example, Powell
et al. (2011, 2013) showed that the effects of invasive spe-
cies on diversity can be intense within local plots when
the invasive dominates but much less intense at the
y-scale, as often individuals of many native species can
be present across replicate plots. Likewise, it has been
suggested that in many cases, invasive species can instead
create differentiation among local communities when
low-occupancy species increase and/or high-occupancy
species decrease in abundance (Blowes, McGill,
et al., 2022; Socolar et al., 2016). In this case, effect sizes
can even decrease with increasing scale.

Importantly, when we compared effects on each of the
diversity metrics when common and rare species were
weighted equally (g = 0), we found similar effects to when
common and dominant species were given much greater
weight (q = 2) along the Hill number continuum in most
cases. This suggests that the effects of invasion timing had
equal effects on both the most common species in the
community, like those discussed above, as well as several
of the rarer species in the community that only make up a
small percentage of the total community (but a much
larger percentage of species richness estimates). In cases
where these metrics differed, it was due to a combination
of differences in rare and common species under early and
late invasion, usually due to diversity being affected more
negatively under early invasion and nutrient addition.

We found that taxonomic diversity showed a much
greater response to the invasive timing treatment than
both phylogenetic and functional diversity. For phyloge-
netic diversity, for example, species in the mint family
(Lamiaceae) were 10 times more abundant in the late
invasion treatment than the early invasion treatment
(Appendix S1: Table S4). On the other hand, species in
the legume family (Fabaceae) were more common in the
early invasion treatment, almost entirely due to the domi-
nance of our focal invader, L. cuneata (Appendix S1:
Table S4). Despite these shifts, phylogenetic diversity
mostly remained similar between the invasion timing
treatments. For example, in the early invasion treatment,
the mint Teucrium canadense, which is indicative of dis-
turbed habitats, was common, whereas in the late inva-
sion treatment, T. canadense was present, but so were
other native mints including Monarda fistulosa, which
was seeded into the plots and an indicator species in
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prairie, savannas, and glade habitats (Appendix SI:
Table S4). Thus, while taxonomic diversity was higher in
the late invasion treatment, which had lower abundances
of L. cuneata, phylogenetic diversity was less affected
because the same plant families were represented by
more weedy relatives in the early invasion treatment that
was dominated by L. cuneata.

Functional diversity was the least affected by our
treatments. This is due to the most common plant species
across both invasion timing treatments all having rather
intermediate values for all the functional traits consid-
ered here rather than extreme values. Further, different
species with similar extreme values were present in
both invasion timing treatments. For example, both
Chenopodium album and Barbarea vulgaris have high
values for leaf nitrogen; the former is highly abundant in
the early invasion treatment, and the latter is highly
abundant in the late invasion treatment. Overall, our
results show that the early invasion and dominance of
L. cuneata into a restored prairie results in the loss of spe-
cies and thus losses of taxonomic diversity. However,
because there is enough redundancy in the community
among species at higher levels of organization, we see
less dramatic losses in phylogenetic and functional
diversity.

We expected that the addition of nutrients would
temper the effect of invasion timing on the abundance
and dominance of the invasive L. cuneata because its
advantage as a nitrogen-fixing legume would be reduced.
While this expectation was realized and L. cuneata was
not as dominant with nutrient additions (see results in
Wohlwend et al., 2019), the effect was not substantial
enough to have a strong influence on any of the patterns
of diversity that we analyzed here. At the a-scale, we see
an unexpected result that the effect size of invasion
timing is lower in plots where no nutrients were added
even when L. cuneata was more abundant at small scales
under this treatment (Wohlwend et al., 2019), and diver-
sity was higher than under nutrient addition. However,
this is because the effect of late invasion combined with
nutrient addition was very positive at large scales, indi-
cating that native species can still coexist with problem
invaders through plot-to-plot variation. Even if the effects
of an invader are devastating at small scales, large-scale
variation helps create refuges that could help rescue
diversity under future adaptive management actions.

IMPLICATIONS AND CONCLUSIONS

Biodiversity policy is shifting in focus from being purely
about the preservation of intact habitats to recognizing
that restoration of formerly degraded habitats is an

equally important goal (Possingham et al., 2015). Restora-
tion must be done right to be effective for diversity out-
comes (Bekessy et al., 2010). As a result, it is important to
be able to quantify just how diversity is changing in the
face of degrading factors, such as the invasive species in
this study, as well as in response to restoration actions
that seek to enhance diversity and its contributions to
ecosystem functions (Kollmann et al., 2016). Because
diversity is a scale-dependent and multifaceted concept,
its quantification in the context of treatments relevant to
restoration requires a scale-explicit and multifaceted
understanding as well.

We found that the spatial scale in which diversity is
measured is critical for understanding how diversity
responds to ecological restoration treatments that manip-
ulated the timing in which invasive species were allowed
to enter a community and nutrients. Importantly, we
were much more likely to be able to detect the negative
effects of the invader when diversity was quantified at
much larger spatial scales than are typically measured in
most grassland restoration experiments (see also
Ladouceur et al.,, 2023). Second, while we observed a
greater effect of our treatments on taxonomic diversity
than on other facets, understanding impacts on other
facets pointed to important compositional shifts taking
place. For example, by understanding the impacts on
phylogenetic diversity across scales, we better understood
the impacts of a few dominating families, pointing to
clear next steps in a potential adaptive management plan.
In all, our results show that understanding diversity
change can benefit from a multifaceted approach. Under-
standing how many aspects of diversity recover after agri-
culture, aided by treatments relevant for restoration, can
help us to better apply management actions at relevant
scales, targeting particular abundance dynamics across
taxonomic identities, functional phenotypes, and the phy-
logenetic tree of life.
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