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Sign changes in heat, spin, and orbital magnon transport coefficients in Kitaev ferromagnets
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Both Kitaev and Dzyaloshinskii-Moriya interactions (DMI) are known to promote intrinsic contributions to
the magnon Hall effects such as the thermal Hall and the spin Nernst effects in collinear magnets. Previously,
it was reported that a sign change in those transversal transport coefficients only appears in the presence of
Kitaev interaction, but not for DMI, which qualitatively distinguishes both kinds of spin-anisotropic interactions
in ferromagnets. Herein, we systematically study how the magnon-mediated heat, spin, and orbital transport
in longitudinal and transverse geometries evolves with a continuously varying Kitaev-to-DMI ratio, but a fixed
magnon band structure. We show that several transport coefficients feature temperature-driven sign changes in
the presence of Kitaev interaction, which are absent for DMI. In particular, we find a sign change in longitudinal
orbital transport, the magnon orbital Seebeck effect, which is absent in the transverse geometry, the magnon
orbital Nernst effect. This sets the orbital transport apart from the heat and spin transport, where we only find
sign changes promoted by the Kitaev interaction in transverse, but not in the longitudinal geometry.

DOI: 10.1103/PhysRevB.111.214404

I. INTRODUCTION

The Kitaev model, a compass-type Hamiltonian for 1/2

spins arranged on the honeycomb lattice, has become a
paradigmatic example of a quantum spin liquid [1,2]. It has
attracted much attention since it hosts anyons that are con-
ceived to be relevant for (topological) quantum computing
[3,4]. Among the candidate materials that realize the Ki-
taev interaction are the iridates Na2IrO3 and Li2IrO3 [5–11],
the cobaltates Na2Co2TeO6 and Na3Co2SbO6 [12–15], the
transition-metal halide α-RuCl3 [16–19], and the van der
Waals chromium trihalide CrI3 [20–24]. Because these mate-
rials also exhibit Heisenberg interactions, the magnetic ground
state remains ordered down to very low temperatures, giving
rise to collective spin excitations known as magnons. The
Kitaev interaction is imprinted on the magnon band structure
and their wave functions. Conventionally, inelastic neutron
scattering has been employed to experimentally determine the
spin interactions including the Kitaev interaction. However,
it has been noticed that Dzyaloshinskii-Moriya interaction
(DMI) [25,26] appears naturally in these honeycomb lattices
and can give rise to similar features in the band structure
complicating the quantification of the Kitaev interaction.

For ferromagnets, the thermal Hall effect (THE) and the
spin Nernst effect (SNE) were suggested as probes to dis-
tinguish both interactions based on the presence or absence
of a temperature-driven sign change [27]. In this work, we
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compare the consequences of the DMI and the Kitaev inter-
action on the heat, spin, and, orbital transport in longitudinal
and transverse geometries. As an example, we consider the
ferromagnet CrI3, which we describe by a series of parameter
combinations involving varying ratios of DMI and Kitaev
interaction by fitting its experimentally obtained magnon band
structure. Considering the transport of the magnon orbital
moment, we predict that the longitudinal (transverse) cur-
rents may be antiparallel (parallel) in the cases of Kitaev
interaction and DMI [cf. Fig. 1(a)]. In general, we find that
no temperature-driven sign changes appear with DMI, while
the Kitaev interaction promotes sign changes for the trans-
verse heat [thermal Hall effect (THE)] and spin transport
[spin Nernst effect (SNE)], as well as for the longitudinal
orbital transport [orbital Seebeck effect (OSE)]. In contrast,
the longitudinal heat (Fourier’s law) and spin transport [spin
Seebeck effect (SSE)] and the transverse orbital transport [or-
bital Nernst effect (ONE)] do not change sign. These findings
are summarized in Fig. 1(b).

We trace back the sign change in the THE to the Berry
curvature, which qualitatively changes in the presence of Ki-
taev interaction by developing a low-energy contribution of
opposite sign close to �. By decomposing the Berry curvature
into its contributions originating from the other bands, we
demonstrate the vital role of the virtual holelike bands that
result from the breaking of magnon number conservation due
to the Kitaev interaction.

A previous study has shown a behavior of the SNE very
similar to the THE [27]. However, below we contrast those
findings with our results indicating a strong suppression of the
sign change in the SNE. We explain the difference by contrast-
ing the Berry curvature with the spin Berry curvature, which
we compute to account for the breaking of spin conservation.

While the sign change of the spin Berry curvature is not
pronounced but exists, it is completely absent in the orbital
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FIG. 1. (a) Orbital moment currents of magnons (yellow arrows)
induced by a temperature gradient in honeycomb ferromagnets host-
ing Kitaev (red/blue/green-colored hexagons) and Dzyaloshinksii-
Moriya interactions (transparent hexagons). For the selected mean
temperature, the longitudinal currents are antiparallel, while the
transverse currents are parallel in the two cases. (b) Table of heat,
spin, and orbital transport coefficients in longitudinal (long.) and
transverse (transv.) geometries. Check marks ( ) and cross marks
( ) indicate the presence and absence of a temperature-driven sign
change in the corresponding transport coefficient, respectively. For
the transversal spin transport, the sign change is strongly suppressed.

Berry curvature, which undergoes only minor corrections if
DMI is substituted by Kitaev interaction. Notwithstanding, the
magnon orbital moment texture in reciprocal space features
both signs for the Kitaev interaction and thereby distinguishes
between DMI and Kitaev interaction. This texture is shown to
be responsible for the observed sign change of the OSE.

II. RESULTS

We consider a monolayer of a stacked honeycomb ferro-
magnet as realized in, e.g., van der Waals magnets. Typically,
the symmetry of these materials admits both DMI and Kitaev
interactions [26,28,29]. Thus, we study the Hamiltonian

H =
3∑

r=1

Jr

2h̄2

∑
〈i j〉r

Si · S j + 1

2h̄2

∑
〈i j〉2

Di j · (Si × S j )

+ K

2h̄2

∑
〈i j〉1

(Si · γ̂ i j )(S j · γ̂ i j ) + A

h̄2

∑
i

(
Sz

i

)2
. (1)

It comprises Heisenberg exchange up to third-nearest neigh-
bors 〈i j〉r (r = 1, 2, 3), DMI with Di j = ±Dẑ, where the +
(−) sign holds for counterclockwise (clockwise) bond orien-
tation [cf. Fig. 1(a)], pointing perpendicular to the lattice. The
Kitaev interaction K is defined with respect to the orthogo-
nal axes γ̂ i j , whose directions are locked to the respective
bond directions.1 Furthermore, the easy-axis anisotropy A < 0
stabilizes the spins along the out-of-plane direction in their

1In the monolayer of CrI3, the vectors γ̂ i j are defined as the normal
vectors of the corresponding Cr2I2 plaquette [27,37,42].

ferromagnetic ground state. Note that we omit Γ and Γ ′
interactions that generally accompany the Kitaev interaction
[10,30,31], whose effect on the magnon band structure can
alternatively be obtained by renormalizing the remaining pa-
rameters for out-of-plane polarized magnets [29].

The Hamiltonian is recast using the truncated Holstein-
Primakoff transformation [32]

S+
i

h̄
=

√
2Sai,

S−
i

h̄
=

√
2Sa†

i ,
Sz

i

h̄
= S − a†

i ai, (2)

which, after Fourier transformation, results in a bilinear
bosonic Bogoliubov-de Gennes Hamiltonian

H = 1

2

∑
k

φ†
kHkφk (3)

with φ†
k = (a†

1k · · · a†
Nk a1(−k) · · · aN (−k) ) being a

Nambu spinor and N being the number of bands. Note that
the Nambu-space description becomes necessary only in the
presence of Kitaev interaction because the off-diagonal blocks
of Hk, which correspond to the anomalous pairing terms
amkan,−k and a†

mka†
n,−k, vanish for K = 0. Thus, K breaks the

conservation of the particle number. The analytic expression
of Hk for the Hamiltonian in Eq. (1) is given in Appendix A.
Then, a Bogoliubov transformation [33–36]

T †
kHkT k = Ek = diag(ε1k · · · εNk ε1(−k) · · · εN (−k) ),

(4a)

T †
kGT k = G = diag(1 · · · 1 − 1 · · · − 1) (4b)

defines new eigenmodes as ψ†
k = φ†

k(T †
k)−1 = (α†

1k · · ·
α

†
Nk α1(−k) · · · αN (−k) ) and transforms the Hamiltonian

into H = ∑
k

∑N
n=1 εnkα

†
nkαnk. Constants have been omitted

because they solely shift the ground-state energy.
Henceforth, the parameters of CrI3 are chosen. For all

investigated parameter sets, we fix S = 3/2. The material’s
magnon band structure has been described both using DMI
and Kitaev interactions [21,24,37–40]. As a starting point,
we use the parameters J1 = −0.2 meV, K = −5.2 meV,
A = −0.1 meV, and D = J2 = J3 = 0 [37]. As D = 0,
we refer to this parameter set as Heisenberg-Kitaev or, in
short, Kitaev model. Its magnon band structure, shown in
red in Fig. 2(a), is not exclusive to this particular model.
We have identified a range of parameter sets combining
DMI and Kitaev interaction, which approximately preserve
the band structure. They have been obtained by varying
K and fitting J1, J2, J3, and D such that the magnon
energies at the high-symmetry points �, M, and K are
retained. (A was left unchanged because it is uniquely
determined by the spin-wave gap.) In particular, a parameter
set involving no Kitaev interaction was determined as
J1 = −2.076 meV, J2 = 0.169 meV, J3 = 0.143 meV, A =
−0.1 meV, D=0.289 meV, and K=0 meV. This Heisenberg-
DMI or, in short, DMI model reproduces the same band
structure apart from minor deviations [blue curve in Fig. 2(a)].
As depicted in the inset, the band structures of the mixed
parameter sets lie between these limiting cases. In Appendix B
we give the complete list of parameters and show how the
parameters evolve with K .

These results demonstrate that it cannot be concluded if
Kitaev interaction is actually present in the system and how
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FIG. 2. (a) The magnon band structure, (b) the Berry curvature, (c) the spin, (d) the spin Berry curvature, (e) the orbital moment, and (f)
the orbital Berry curvature along a high-symmetry path in k space for the DMI (blue curves) and Kitaev models (red curves). In (b)–(f) only
the lowest band is depicted. In both models, the Chern numbers are +1 and −1 for the lower and the upper band, respectively. The parameters
for the DMI model read J1 = −2.076 meV, J2 = 0.169 meV, J3 = 0.143 meV, A = −0.1 meV, D = 0.289 meV, K = 0 meV, and those of the
Kitaev model are J1 = −0.2 meV, J2 = 0 meV, J3 = 0 meV, A = −0.1 meV, D = 0 meV, K = −5.2 meV. Here, a is the lattice constant.

large it is based on the magnon band structure, which is in
agreement with previous studies [24,27,41]. Despite the lack
of differences in the band structure between DMI and Kitaev
interaction, it has been pointed out that the DMI and the
Kitaev interaction can be distinguished based on the thermal
Hall effect [27,29,42]. In the following, we systematically
study the evolution of the magnon transport coefficients along
the path in parameter space while leaving the band structure
unchanged.

In linear response theory, the heat, spin, and orbital currents
are written as

jh = κ(−∇T ), (5a)

js = ϒ(−∇T ), (5b)

jo = α(−∇T ), (5c)

where jh, js, and jo correspond to the heat, spin, and orbital
current densities, respectively, which are driven by a tem-
perature gradient ∇T . For spin and orbital currents, the spin
and orbital polarizations are taken along the z axis. The heat
conductivity

κ =
(

κxx κxy

−κxy κxx

)
(6)

only features two independent elements corresponding to
Fourier’s law (κxx) and the thermal Hall effect (κxy) due to
the threefold rotational symmetry, which also applies to the
thermal spin conductivity ϒ featuring the spin Seebeck (ϒxx)
and the spin Nernst effects (ϒxy), and the thermal orbital con-

ductivity α featuring the orbital Seebeck (αxx) and the orbital
Nernst effect (αxy) [43].

First, we focus on the heat transport. The two independent
transport coefficients can be computed as [44–49]

κxx = τ

V T

∑
n=1N

∑
k

ε2
nkv

2
x,nk

(
−∂ρ

∂ε

)∣∣∣∣∣
εnk

, (7a)

κxy = −k2
BT

V h̄

N∑
n=1

∑
k

�nkc2[ρ(εnk )], (7b)

where h̄ is the Planck constant, τ is the (constant) relax-
ation time,2 V is the system’s total volume/area, vx,nk =
(1/h̄)∂εnk/∂kx is the group velocity along x, ρ is the
Bose distribution, and c2(ρ) = (1 + ρ) ln2( 1+ρ

ρ
) − ln2(ρ) −

2Li2(−ρ) with the dilogarithm Li2. κxy involves the Berry
curvature defined as [48,50,51]

�nk =
2N∑

m=1
n �=m

�nmk, (8a)

�nmk = ih̄2
∑

μ,ν=x,y

εμν

(Gvμ,k)nm(Gvν,k)mn

(ε̃nk − ε̃mk)2
, (8b)

where εμν is the Levi-Civita symbol, vλk = (1/h̄)
T †

k(∂kλ
Hk)T k are the matrix elements of the group velocity

2In the following, we estimate the phenomenological relaxation
time for heat, spin, and orbital transport coefficients to be 100 ps.
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FIG. 3. Heat, spin, and orbital transport coefficients versus temperature. (a), (b) The longitudinal and transverse heat conductivities for
different parameter sets from Table I. (c), (d) The spin Seebeck and Nernst coefficients. (e), (f) The orbital magnon Seebeck and Nernst
coefficients. The blue and red curves refer to the DMI and Kitaev models, respectively. For the relaxation time, we assume τ = 100 ps.

operator in the eigenbasis of H , and ε̃lk = (GEk)ll are the
signed magnon energies.

Because the expression for κxx only contains properties
that depend on the magnon band structure, which are nearly
identical [cf. Fig. 2(a)], we can expect κxx to be similar for all
parameter sets. Indeed, as presented in Fig. 3(a), κxx increases
monotonically with temperature and does not qualitatively
differ between the parameter sets. Quantitative differences
solely originate from the imperfect agreement of the band
structures.

In contrast, the expression for κxy additionally contains
the Berry curvature, which we plot in Fig. 2(b). We restrict
ourselves to the lower band in the following because those
states govern the transport at low temperatures. In the DMI
model, the Berry curvature is exclusively negative in the vicin-
ity of the K points and vanishes around �. In the Kitaev
model, the Berry curvature additionally exhibits a positive
contribution in the vicinity of �, which is absent in the DMI
model. Hence, while in the DMI model the Berry curvature
possesses only one sign, it exhibits both signs in the Kitaev
model. Although the negative Berry curvature is larger and
determines the Chern number C1 = − 1

2π

∫
BZ �1kd2k, which

are identical for the DMI and Kitaev models as they are
adiabatically connected (i.e., the band gap does not close), the
positive Berry curvature is located at lower energies, which
may open up the possibility to probe it at low temperatures.

To understand the qualitative differences in the Berry cur-
vatures �nk between the DMI and the Kitaev models, we have
decomposed it into its individual contributions �nmk induced
by the other bands m. Note that the bands 3 and 4 are virtual
copies of bands 1 and 2 that emerge due to the Bogoliubov-de
Gennes formalism [cf. Eq. (4a)]. Focusing on the lower band
(n = 1), in the DMI model the Berry curvature is only induced

by the particle bands (m � 2), but has no contributions from
hole bands (m > 2). This is because the DMI model does not
break the conservation of the magnon number rendering the
Nambu-space description redundant. In other words, the DMI
model can exactly be described as a two-band model. On the
other hand, in the Kitaev model �1k features both negative
contributions from particle and positive contributions from
hole bands. More details can be found in Appendix C.

The hole-band induced contributions to the Berry curva-
ture are reflected in the thermal Hall effect [cf. Fig. 3(b)].
κxy increases monotonically for the DMI model, but features
a minimum and a sign change for the Kitaev model. For
intermediate models combining the DMI and the Kitaev in-
teraction, the minimum is more pronounced the larger the
Kitaev-to-DMI ratio. As the minimum becomes deeper, it is
shifted towards higher temperatures. The c2 function acts as
a modified occupation function, due to which the positive
Berry curvature states in the Kitaev model are favored at
temperatures up to around 9 K. Above, the larger negative
contributions stemming from higher-energy magnon states are
no longer frozen out, thus resulting in a sign change of κxy.
Hence, above a certain activation temperature, the negative
Berry curvature, which governs C1, eventually dominates κxy.
This temperature-driven sign change sets the DMI and the
Kitaev interaction apart.

Next, we analyze the spin transport. Here, the transport
coefficients are computed as [28,49,52–54]

ϒxx = τ

2V T

2N∑
n=1

∑
k

Gnn
(
J [Sz]

x,k

)
nn

εnkvx,nk

(
−∂ρ

∂ε

)∣∣∣∣∣
Gnnεnk

,(9a)

ϒxy = kB

V h̄

N∑
n=1

∑
k

�
[Sz]
nk c1[ρ(εnk)], (9b)
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with c1(x) = (1 + x) ln(1 + x) − x ln x. We have introduced
the O-current density operator, whose matrix elements J[O]

β,k =
(OkGvβ,k + vβ,kGOk)/2 (β = x, y) enter the generalized O-
Berry curvature [52,54]

�
[O]
nk = −h̄2Im

∑
μ,ν=x,y

εμν

2N∑
m=1
m �=n

(
GJ[O]

μ,k

)
nm

(Gvν,k)mn

(ε̃nk − ε̃mk)2 . (10)

Note that contrary to the conventional Berry curvature
[Eq. (8)] that enters the Chern number, the generalized
Berry curvature is generally not associated with a topological
invariant.

For the spin Seebeck (ϒxx) and spin Nernst effects
(ϒxy), O is substituted by Sz whose matrix elements in the
Hamiltonian’s eigenbasis read Ok = Sz,k = −h̄T †

kT k [55]. In
Fig. 2(c), we present the spin expectation values Sz,nk :=
(Sz,k)nn for the lower band. While the z component of the
total spin operator commutes with the Hamiltonian in the
DMI model [28], it is not conserved in the presence of Kitaev
interaction. Consequently, the magnons have a quantized spin
expectation value of Sz,nk ≡ −h̄ in the DMI model, but a non-
quantized expectation value of up to 2h̄ in the Kitaev model.
This also shows in the microscopic spin current, which is up to
two times larger (cf. Appendix D). Therefore, one can expect
a relatively higher efficiency for longitudinal spin transport in
the Kitaev model.

In Fig. 3(c) we have plotted ϒxx as a function of temper-
ature, which increases monotonically. ϒxx is larger for the
Kitaev than for the DMI model and the difference is more
pronounced than for κxx, which demonstrates that this differ-
ence cannot be exclusively explained by deviations in the band
structures, but is related to the spin.

Another consequence of broken spin conservation is that
the spin Berry curvature �

[Sz]
nk is not merely a product of the

spin expectation value and the Berry curvature in the Kitaev
model [cf. Fig. 2(d)]. Although this is correct for the DMI
model, in the Kitaev model the sign change in �

[Sz]
1k is strongly

suppressed and one observes a deviation between both models
at M. If one would simply compute the product between spin
expectation value and Berry curvature, one would obtain a
larger spin Berry curvature at M for the Kitaev model than
for the DMI model, which is in contradiction to our findings.
Accordingly, the nondiagonal elements of the spin current
operator strongly modify �

[Sz]
1k for the Kitaev model. The de-

composition of the spin Berry curvature demonstrates that the
difference at M originates from a positive hole band-induced
contribution (cf. Appendix C). Hence, despite the larger spin
expectation value of the magnon states in the Kitaev model,
the spin Berry curvature is smaller.

As a result, ϒxy is smaller for the Kitaev model than for
the DMI model [cf. Fig. 3(d)]. This observation could already
be expected from the behavior of κxy. However, in contrast to
κxy, there is no pronounced sign change in ϒxy for the Kitaev
model, which obstructs the possibility of qualitatively discern-
ing both kinds of spin-anisotropic interactions. Instead, within
the two-current model, in which the spin Berry curvature is
replaced by the product of spin expectation value and Berry
curvature, the sign change is clearly resolvable [27].

The orbital Seebeck and orbital Nernst effects [56–59]

αxx = τ

2V T

2N∑
n=1

∑
k

Gnn
(
J [Lz]

x,k

)
nn

εnkvx,nk

(
−∂ρ

∂ε

)∣∣∣∣∣
Gnnεnk

,(11a)

αxy = kB

h̄V

N∑
n=1

∑
k

c1[ρ(εnk)]�[Lz]
nk (11b)

are calculated in close analogy to ϒxx and ϒxy apart from the
spin operator, which is substituted by the matrix elements

(Lz,k)nm =
∑

μ,ν=x,y

ih̄εμν

2

2N∑
l=1

n �=l �=m

(
1

ε̃lk − ε̃mk
+ 1

ε̃lk − ε̃nk

)

× GnnGll
(
vμ,k

)
nl

(vν,k)lm, (12)

of the orbital moment operator L = (r × v − v × r)/2
[57–60].3

In Fig. 2(e) we show the orbital moment Lz,nk := (Lz,k)nn

of the lowest band along a high-symmetry path in the first
Brillouin zone. In case of the DMI model, Lz,1k vanishes at �,
has a saddle point at M, an extremum at K and only features
the negative sign. For the Kitaev model, it changes to positive
values at and close to �. This sign change does not carry
over to the orbital Berry curvature, shown for the lowest band
in Fig. 2(f). Here, �

[Lz]
1k exclusively assumes positive values

for both models and there is no trace of the sign change
in Lz,1k. This qualitatively distinguishes the orbital from the
conventional and the spin Berry curvatures.

Turning to the transport coefficients, the sign change in
Lz,1k manifests in a sign change in αxx for the Kitaev model,
while it is monotonic for the DMI model. This is because
the orbital moment enters αxx via the orbital current, which
can be qualitatively distinct from the group velocity (cf. Ap-
pendix D).

On the other hand, αxy is governed by the orbital Berry
curvature and, hence, does not exhibit the sign change as seen
in Fig. 3(f); it increases monotonically with temperature for
both the DMI and Kitaev models. Although the DMI curve is
suppressed for a larger temperature range, a qualitative feature
distinguishing both curves is missing.

Our findings on the orbital Berry curvature are in part in
agreement with the work by An and Kim [60]. They also
find low-energy peaks in �

[Lz]
1k in the presence of Kitaev in-

teraction, however, their sign is anisotropic and depends on
the direction of k. Moreover, their orbital Berry curvature
breaks the threefold rotational symmetry, while it is preserved
in our calculations. Furthermore, they find that αxy may have
a different sign in the Kitaev and the DMI models. These
differences are potentially caused by (i) an additional metric

3Note that our definition of the orbital moment operator of magnons
deviates from Refs. [59,60] by an additional bosonic metric Gnn. It
ensures that the operator Lz is particle-hole symmetric, i.e., Lz,k =
ΣxLᵀ

z,−kΣx , where Σx = σx ⊗ I is the 2N × 2N matrix that inter-
changes particle and hole sectors. Here, σx is the 2 × 2 Pauli matrix
and I is the N × N identity matrix. The particle-hole symmetry is
enforced to restore the analogy to the spin operator, which is also
particle-hole symmetric, and adopt its linear-response expressions.
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FIG. 4. Evolution of the parameters of the spin Hamiltonian [cf. Eq. (1)] (a) D, (b) J1, (c) J2, and (d) J3 with K . The parameters are
determined to (approximately) yield the same magnon band structures as in Fig. 2(a).

in Eq. (12) and (ii) and the definition of the generalized Berry
curvature in Eq. (10), where we compute the full cross prod-
uct (expressed by the Levi-Civita symbol) of the generalized
current and the group velocity. Modification (i) restores the
particle-hole symmetry of L so that the linear response expres-
sions derived for spin transport can be applied [See footnote
3]. Modification (ii) is implemented to extract the antisym-
metric component of the transport tensors, e.g., (αxy − αyx )/2,
which is associated with the Hall effect, while the symmetric
component, e.g., (αxy + αyx )/2, is related to an anisotropic
longitudinal conductivity and corresponds to a pseudo-Hall
effect [61,62].

III. DISCUSSION

Our calculations demonstrate that the magnon thermal Hall
effect (κxy), the orbital Seebeck effect (αxx), and, at least in
principle, the spin Nernst effect (ϒxy) allow one to distinguish
DMI and Kitaev interaction based on the presence or absence
of a temperature-induced sign change, while Fourier’s law
(κxx), the spin Seebeck effect (ϒxx), and the orbital Nernst
effect (αxy) do not provide clear distinguishing features. In
principle, these results suggest that, for a given band structure,
one can quantify the magnitudes of the DMI and the Kitaev
interaction based on transport properties. For example, one
could relate the temperature T0 at which the sign change of
κxy takes place with the magnitude of the Kitaev interaction.
Generally, T0 increases with the Kitaev interaction. In prac-
tice, however, the exact details depend on the band structure
and magnons may not be the only heat carriers contributing to
κxy. Furthermore, other mechanisms such as skew scattering
or side jump due to impurities or many-body interactions exist

[63–66] and their dependence on the Kitaev-to-DMI ratio is
unclear. These limitations hamper the precise quantification
of the DMI and the Kitaev interaction.

Throughout this work, we have considered the particular
band structure of CrI3 as an example and have neglected Γ

and Γ ′ interactions, which can be expected to renormalize the
transport properties [67–73]. Reference [73] reports that the
sign change may be suppressed those interactions, although
the authors study the out-of-plane field-polarized phase of
α-RuCl3, which is a zigzag antiferromagnet in its ground
state without a magnetic field [74]. Still, κxy exhibits a non-
monotonic behavior with a negative minimum, which may
be the remainder of the sign change and is clearly different
from the results that we have obtained for the DMI. Additional
calculations are necessary to assess the robustness of the sign
change of the corresponding magnon transport coefficients
induced by the Kitaev interaction under various conditions.

Speculatively, one can expect that some qualitative features
of the Kitaev interaction survive as it brings about the anoma-
lous pairing terms that lift the magnon number conservation.
The resulting Bogoliubov-de Gennes Hamiltonian allows for
additional contributions to the conventional, spin, and orbital
Berry curvatures as well as the orbital moment. As we have
explicitly shown for the Berry curvature, these additional
contributions can be traced back to the virtual magnon bands
and may give rise to sign changes within one band for these
k-dependent quantities. These contributions fundamentally set
magnons apart from electrons, since the electron number is
conserved.

The absence of a clear distinguishing feature in the orbital
Nernst effect for the DMI and Kitaev interaction could
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intuitively be explained by the common wisdom that the
orbital Hall and orbital Nernst effects are known to exist even
without spin-orbit coupling [56,57,59,75–77]. However, this
does not imply that these two forms of spin-orbit coupling,
DMI and Kitaev interaction, are irrelevant for magnon
orbitronics. In fact, our calculations have revealed a complex
orbital texture featuring a sign change with Kitaev interaction
that is absent with DMI. Apart from the orbital Seebeck
effect, one could envision that this sign change in Lz,1k could
be also uncovered as a macroscopic net orbital moment in
thermal equilibrium [78] or in the orbital Edelstein effect of
magnons [79], thereby revealing its nontrivial texture for the
Kitaev model.

However, since magnons possess neither a charge nor a
mass, the orbital moment of magnons neither entails an or-
bital magnetic moment nor an orbital angular momentum.
Thus, it remains an open question of how to probe the orbital
moment of magnons. It has been suggested to employ the
electric polarization or the electrical voltage due to the orbital
motion of magnons as probe [46,59,80–82], however, this has
the shortcoming that it relies on relativistic magnetoelectric
coupling [83,84] and that it also includes contributions from
spin currents unrelated to the magnon orbital motion [85]. It
remains unclear whether the magnon orbital moment couples
to electronic orbital angular momentum or chiral phonons.
These are questions that should be addressed in future studies.
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APPENDIX A: MAGNON HAMILTONIAN

The matrix Hk can generally be written as

Hk =
(

Ak Bk

B∗
−k A∗

−k

)
, (A1)

where the relations Ak = A†
k and B†

k = B∗
−k ensure the Her-

miticity of the Hamiltonian. For the spin Hamiltonian in
Eq. (1), it can be written as

Ak = S

(
ak − iDdk (J1 + K/3) f1k + J3 f3k

(J1 + K/3) f ∗
1k + J3 f ∗

3k ak + iDdk

)
,

(A2)

Bk = S

(
0 Kbk/3

Kb−k/3 0

)
, (A3)

where
ak = −3J1 + J2( f2k − 6) − 3J3 − K + 2A (A4)

fik =
∑
δi

eik·δi , (A5)

dk =
∑
δ2

ν(δ2)eik·δ2 , (A6)

bk =
∑
δ1

ei[k·δ1−φ(δ1 )]. (A7)

TABLE I. Parameter sets for the Hamiltonian in Eq. (1) that ap-
proximately yield the same magnon band structure. The highlighted
parameter sets belong to the Kitaev (red) and the DMI model (blue).

K D A J1 J2 J3

−5.2 0.000 −0.1 −0.200 0.000 0.000
−5.1 0.008 −0.1 −0.237 0.005 0.004
−5.0 0.016 −0.1 −0.274 0.010 0.008
−4.9 0.024 −0.1 −0.311 0.015 0.011
−4.8 0.032 −0.1 −0.348 0.020 0.015
−4.7 0.040 −0.1 −0.385 0.025 0.019
−4.6 0.048 −0.1 −0.422 0.030 0.023
−4.5 0.056 −0.1 −0.459 0.034 0.026
−4.4 0.064 −0.1 −0.496 0.039 0.030
−4.3 0.072 −0.1 −0.533 0.044 0.034
−4.2 0.079 −0.1 −0.570 0.049 0.037
−4.1 0.087 −0.1 −0.607 0.053 0.041
−4.0 0.095 −0.1 −0.644 0.058 0.045
−3.9 0.102 −0.1 −0.681 0.062 0.048
−3.8 0.110 −0.1 −0.718 0.067 0.052
−3.7 0.117 −0.1 −0.755 0.071 0.056
−3.6 0.125 −0.1 −0.792 0.076 0.059
−3.5 0.132 −0.1 −0.829 0.080 0.063
−3.4 0.140 −0.1 −0.866 0.084 0.066
−3.3 0.147 −0.1 −0.903 0.088 0.070
−3.2 0.154 −0.1 −0.939 0.093 0.073
−3.1 0.161 −0.1 −0.976 0.097 0.077
−3.0 0.168 −0.1 −1.013 0.101 0.080
−2.9 0.175 −0.1 −1.050 0.104 0.084
−2.8 0.181 −0.1 −1.086 0.108 0.087
−2.7 0.188 −0.1 −1.123 0.112 0.090
−2.6 0.194 −0.1 −1.159 0.116 0.093
−2.5 0.201 −0.1 −1.196 0.119 0.097
−2.4 0.207 −0.1 −1.232 0.123 0.100
−2.3 0.213 −0.1 −1.269 0.126 0.103
−2.2 0.219 −0.1 −1.305 0.130 0.106
−2.1 0.225 −0.1 −1.341 0.133 0.109
−2.0 0.230 −0.1 −1.378 0.136 0.112
−1.9 0.235 −0.1 −1.414 0.139 0.114
−1.8 0.241 −0.1 −1.450 0.142 0.117
−1.7 0.245 −0.1 −1.486 0.144 0.120
−1.6 0.250 −0.1 −1.521 0.147 0.122
−1.5 0.255 −0.1 −1.557 0.150 0.124
−1.4 0.259 −0.1 −1.593 0.152 0.127
−1.3 0.263 −0.1 −1.628 0.154 0.129
−1.2 0.267 −0.1 −1.664 0.156 0.131
−1.1 0.270 −0.1 −1.699 0.158 0.133
−1.0 0.273 −0.1 −1.734 0.160 0.134
−0.9 0.276 −0.1 −1.769 0.162 0.136
−0.8 0.279 −0.1 −1.804 0.164 0.138
−0.7 0.282 −0.1 −1.839 0.166 0.139
−0.6 0.284 −0.1 −1.873 0.167 0.140
−0.5 0.285 −0.1 −1.907 0.167 0.141
−0.4 0.287 −0.1 −1.941 0.168 0.142
−0.3 0.288 −0.1 −1.975 0.168 0.142
−0.2 0.289 −0.1 −2.009 0.168 0.143
−0.1 0.289 −0.1 −2.043 0.169 0.143
−0.0 0.289 −0.1 −2.076 0.169 0.143
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FIG. 5. Decomposition of the (a), (b) Berry curvature, (c), (d) spin Berry curvature, and (e), (f) orbital Berry curvature of the lowest band
n = 1 into its individual contributions from the three other bands m for (a), (c), (e) the DMI model and (b), (d), (f) the Kitaev model.

Here, the sum over δi runs over all ith nearest neigh-
bors of a spin on sublattice 1, ν(δ2) = ±1 depending on
whether the bond vector δ2 is oriented along the counter-
clockwise (+) or clockwise (−) sense of rotation, and φ(δ1)
is the azimuthal angle of the bond vector δ1, i.e., δ̂1 =
(cos φ(δ1) sin φ(δ1) 0)ᵀ.

APPENDIX B: FITTED PARAMETER SETS

Taking the band structure of the Kitaev model as a starting
point, we have fitted the magnon energies at the high-
symmetry points �, K, and M by ramping down |K| from its
initial value (5.2 meV) to zero. Since only A determines the
spin-wave gap for the Hamiltonian in Eq. (1), it was fixed at
its initial value. Therefore, five energies (one at �, 2 at K and
M) have been fitted with four parameters (J1, J2, J3, and D).
The results are listed in Table I. Although the fitting procedure
was restricted to the high-symmetry points, the magnon band
structures of all parameter sets approximately coincide in
the entire Brillouin zone. The largest deviation is observed
between the DMI and the Kitaev models. Between the K and
the � point, where the deviations are the most prominent, the
energy difference is below 0.3 meV between all parameter sets
[cf. inset in Fig. 2(a)].

The interdependence of the parameters is visualized in
Fig. 4. As |K| is varied from 5.2 meV to 0 meV, D increases
from 0 meV to 0.3 meV, i.e., D substitutes K [Fig. 4(a)]. Al-
though both interactions open a Haldane gap between the
two magnon bands at K, K additionally increases the total
band width. In order to fix the total band width, |J1| needs
to increase as |K| decreases [Fig. 4(b)]. Furthermore, the
asymmetry between the upper and lower bands caused by K is
neither achieved by D nor J1. Hence, J2 and J3 have to fulfill
this role as K is replaced by D [Figs. 4(e) and 4(f)].

APPENDIX C: DECOMPOSITION
OF THE BERRY CURVATURE

As we write in the main text, the Hamiltonian of a N-
sublattice system (here N = 2) possesses 2N energies, the first
N of which correspond to the particle and the last N to the hole
bands. The energies of the hole bands at k are identical to the
energies of the particle bands at −k [cf. Eq. (4a)]. Although
the energies of the hole bands are positive, they are multiplied
with the bosonic metric in the expression of the conventional
and the generalized Berry curvature: ε̃nk = Gnnεnk. This is
related to the paraunitary normalization of the eigenvectors
[cf. Eq. (4b)], which can also be understood in the framework
of Krein spaces [36,87]. Because the completeness relation
in the Nambu space spans both particle and hole bands,∑2N

m=1 |mk〉〈mk| = 1, and the velocity operator is in general
not (block) diagonal in the eigenbasis of the Hamiltonian,
i.e., (vμ,k)n,m+N �= 0 for n, m � N , the Berry curvature of the
particle bands includes contributions from the hole bands.

We have decomposed the Berry curvature �nk into its
different contributions �nmk using the definitions in Eq. (8).
Focusing on the lower band (n = 1), the Berry curvature only
features contributions from the (particlelike) band m = 2 in
the DMI model [cf. Fig. 5(a)]. This is also true for the spin
and the orbital Berry curvatures [cf. Figs. 5(c) and 5(e)].
The reason is that for the DMI model, the magnon number
is conserved, which renders the description in Nambu space
redundant because the Hamiltonian can be mapped onto a
two-band model.

In contrast, for the Kitaev interaction, there are magnon
number nonconserving terms that promote additional contri-
butions from the holelike bands. For the Berry curvature, in
addition to the negative contribution from band 2, there is the
positive contribution from the holelike band 3, which peaks in
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FIG. 6. Expectation values of the (a), (b) spin current and (c), (d) orbital current along a path in the first Brillouin zone for the lower band.
(a), (c) [(b), (d)] display the x (y) components of the respective currents.

the vicinity of � and causes �1k to reverse [cf. Fig. 5(b)]. The
spin Berry curvature is also mainly dominated by the negative
contribution from band 2, but also has a positive contribution
from the holelike band 4 [cf. Fig. 5(d)]. Lastly, the orbital
Berry curvature has two contributions of the same sign from
bands 2 and 3 [cf. Fig. 5(f)].

APPENDIX D: SPIN AND ORBITAL CURRENTS

While for the transverse intrinsic transport coefficients the
nondiagonal elements of the current operators are essential,
the longitudinal transport coefficients only depend on their
expectation values (i.e., the diagonal elements). For the x and
y components of the spin current, they are shown in Figs. 6(a)
and 6(b), respectively, for the lower band. The spin current

expectation values in the Kitaev model are up to two times
larger than in the DMI model, which is caused by the larger
spin expectation value brought about by the breaking of spin
conservation in the former [cf. Fig. 2(c)]. The expectation
values of the x and y components of the orbital current op-
erator, shown in Figs. 6(c) and 6(d) for the lower band, do not
match the direction of the group velocity in general. This is
because of the complex orbital texture for the Kitaev model
that features sign changes [cf. Fig. 2(e)]. For both spin and
orbital currents, the x components vanish for both models
between M and K because the group velocity perpendicular
to the edge of the Brillouin zone is zero. Their y components
vanish between � and M since the combined time reversal
and twofold rotational symmetry forces the dispersion relation
to be even in ky [ε(kx, ky) = ε(kx,−ky )]. Thus, the group
velocity must be zero for ky = 0.
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