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Abstract
1. New technological developments open novel possibilities for widely applicable 

methods of ecosystem analyses. We investigated a novel approach using 
smartphone- based 3D scanning for non- destructive, high- resolution monitoring 
of above- ground plant biomass.

2. This method leverages Structure from Motion (SfM) techniques with widely 
accessible smartphone apps and subsequent computing to generate detailed 
ecological data. By implementing a streamlined pipeline for point cloud processing 
and voxel- based analysis, we enable frequent, cost- effective and accessible 
monitoring of vegetation structure and plant community biomass.

3. Conducted in long- term experimental grasslands, our study reveals a high 
correlation (R2 up to 0.9) between traditional biomass harvesting and 3D volume 
estimates derived from smartphone- generated point clouds, validating the 
method's accuracy and reliability. Additionally, results indicate significant effects 
of plant species richness and fertilization on biomass production and volume 
estimates, underscoring the potential for high- resolution temporal and spatial 
analyses of vegetation dynamics.

4. This method's innovation extends beyond traditional practices with implications 
for future integration of AI to automate species segmentation, ecological trait 
extraction and predictive modelling. The simplicity and accessibility of the 
smartphone- based approach facilitate broader engagement in ecosystem 
monitoring, encouraging citizen science participation and enhancing data 
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1  |  INTRODUC TION

Biodiversity is declining dramatically due to the effects of 
global change, with unknown consequences for human life on 
Earth (Cardinale et al., 2012; Habibullah et al., 2022; Keesing & 
Ostfeld, 2021). In recent years, more and more research has been 
carried out on this topic in order to better predict the conse-
quences of global change and to understand its underlying pro-
cesses. Flagships of such research are biodiversity experiments, 
such as Cedar Creek (Tilman et al., 1997) and the Jena Experiment 
(Weisser et al., 2017), globally distributed experimental studies in 
natural grasslands, such as Drought Network (Smith et al., 2024) 
or the Nutrient Network (Borer et al., 2014), and research infra-
structures along natural diversity or land- use gradients such as 
the Biodiversity Exploratories (Fischer et al., 2010) or TERENO in 
Germany (Zacharias et al., 2024) and eLTER in Europe (Mollenhauer 
et al., 2018; Ohnemus et al., 2024). All of these platforms share a 
common focus on conducting long- term research on fundamen-
tal ecological and ecosystem processes, as well as the impacts of 
global environmental change. This research is crucial for improv-
ing our understanding of how the environment is changing and 
how our life on Earth may be affected in the near future. A com-
mon variable studied in these research facilities is above- ground 
plant biomass, serving as a proxy for plant productivity, which is a 
fundamental component of ecosystem functioning. The most fre-
quent method to determine above- ground biomass is to harvest 
the plants at ground level on a defined area, followed by drying 
and weighing (there are also alternative non- destructive methods 
(López- Díaz et al., 2011), which are, however, used comparatively 
rarely).

Despite its simplicity and relatively low cost, the harvest method 
has notable limitations: Repeated destructive biomass harvest can 
change plant growth and can therefore not be repeated in short 
time intervals on permanent plots. Estimating actual productivity, 
which entails measuring rates of biomass change rather than just the 
standing stock, however, requires long- term series of biomass data 
over multiple seasons. Furthermore, destructive sampling offers 
only a coarse temporal and spatial resolution, limiting the ability to 
capture detailed variation in vegetation structure.

In recent years, advanced and modern techniques for measuring 
plant productivity have emerged, allowing for higher resolution tem-
poral and spatial measurements through 3D scanning and computa-
tional analysis of resulting digital point clouds (Kolhar & Jagtap, 2023; 

Lausch et al., 2020). Active sensing methods are often summarized 
as ‘LiDAR’ (Light Detection And Ranging) and include among oth-
ers airborne (ALS), mobile (MLS) and terrestrial laser scanning (TLS), 
which have become well- established for high- precision 3D vegeta-
tion mapping, especially in forestry applications (Bienert et al., 2021, 
2024; Demol et al., 2022; Richter & Maas, 2022). However, laser 
scanning has one decisive disadvantage: The required equipment 
and software are prohibitively expensive and often inaccessible to 
many researchers. Passive/optical sensing methods using cameras 
are of particular interest in today's on- site crop growth monitoring. 
Alternative optical methods include the light- field measurement ap-
proach (Hu et al., 2023; Schima et al., 2016), which, while innova-
tive, currently lacks commercially available cameras suitable for this 
purpose. Another approach is stereoscopy, which derives structural 
vegetation properties, although it requires calibrated permanent in-
stallations and continuous power supply (Dandrifosse et al., 2020; 
Kobe et al., 2024).

An additional promising method is Structure from Motion (SfM), 
which uses standard cameras to derive the structural properties 
of plant communities (Cooper et al., 2017; Enterkine et al., 2025; 
Kröhnert et al., 2018). This technique holds significant potential 
for extracting structural features of plant communities at the plot 
level (Enterkine et al., 2025). There are already some approaches 
using this technique for ecosystem monitoring, but they usually in-
volve expensive cameras (e.g. DSLR cameras) and rather complex 
processing methods (Enterkine et al., 2025). Here, we present a 
new approach that makes the SfM method easily accessible (i.e. 
inexpensive and simple to implement) to everyone (e.g. researchers 
with limited funding, graduate workers, citizen scientists and farm-
ers) by using a smartphone and freely available 3D scanning apps. 
Given that nearly everyone owns a smartphone, and that smart-
phone camera technology has seen rapid advancements in recent 
years, we see huge potential for ecosystem monitoring. Modern 
smartphones come with features such as multiple lenses, image 
stabilization, autofocus and cameras with at least 40 megapixels, 
capable of producing high- resolution images comparable to those 
taken with SLR cameras.

Modern smartphone cameras enable photogrammetric image 
processing, such as SfM, widely applied in geosciences. Even 
low- resolution smartphones (e.g. 5 MP) can achieve centimetre- 
precision terrain models, particularly in small- scale applications 
(Micheletti et al., 2015). Higher resolution cameras and post- 
processing enhance accuracy, making smartphones viable for 

collection efforts. Future research will make it possible to refine the accuracy of 
point cloud processing, expand applications across diverse vegetation types and 
explore new possibilities in ecological monitoring, modelling and its application in 
ecosystem analyses and biodiversity research.

K E Y W O R D S
biodiversity, photogrammetry, Scaniverse, vegetation height, vegetation structure
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close- range surveying. The integration of LiDAR sensors in con-
sumer smartphones, such as the iPhone 12 Pro, has improved 
topographic surveying, enabling ±1- cm accuracy for small objects 
and ±10 cm for larger structures (Luetzenburg et al., 2021). While 
LiDAR enhances depth perception, smartphones without it still 
achieve accurate 3D reconstructions via image- based depth esti-
mation. Chiappini et al. (2024) compared smartphone- based SfM, 
LiDAR and Neural Radiance Fields (NeRF) to professional MLS, 
analysing tree height, canopy base height and canopy volume. 
Smartphone- based methods underestimated larger trees due to 
MLS's greater acquisition range, though this limitation may be 
less relevant for small- scale plant monitoring. Despite these con-
straints, smartphone- based techniques remain cost- effective al-
ternatives for urban tree assessments, balancing accessibility and 
accuracy.

Beyond the hardware, the software side has also evolved sig-
nificantly. Freely available apps such as Scaniverse (Niantic Inc., San 
Francisco, CA, US) or Polycam (Polycam, San Francisco, CA, USA) 
now enable users to perform 3D scans of above- ground vegetation. 
The process is straightforward: users simply open the app, scan the 
vegetation and the app processes the captured images (which takes 
about 1–2 min) before generating a point cloud. This point cloud can 
then be used to estimate vegetation variables, such as growth height 
and biomass production. This approach allows for repeated, low- 
cost and non- invasive data collection at daily, weekly or monthly 
intervals, providing a more accurate and detailed monitoring of plant 
communities. This can be, for example,

• temporal dynamics—regular or even automated sampling enables 
estimates of biomass production rates and growth strategies over 
time,

• vegetation structure and spatial variation—3D point clouds en-
able a detailed analysis of vegetation structure, including spatial 
heterogeneity,

• phenological patterns—by capturing changes in colour, greening 
and flowering phenology can be quantified.

Moreover, the ability to scan plants with smartphones opens up 
numerous possibilities for citizen science, since people can collect 
data and provide important additional quantitative and qualitative 
information (Koedel et al., 2022; von Gönner et al., 2023). Other 
conceivable uses would be the investigation of protected or sen-
sitive plant communities through time (Tirrell et al., 2023) where 
harvesting is not permitted or possible, or for teaching, in order to 
better explain structural interrelationships.

In the present work, we tested whether 3D scans with smart-
phones generally produce similar results to those of traditional 
biomass harvesting in a long- term grassland experiment. As part 
of this research, we aim to provide initial guidance on optimal 
ways to scan vegetation with a smartphone and, in particular, how 
to subsequently process the resulting point clouds to generate 
biomass- like data.

2  |  MATERIAL S AND METHODS

In the following, we analyse vegetation structure and biomass pro-
duction in the DivResource Experiment (Bad Lauchstädt, Germany) 
as a case study to outline our use of consumer- grade 3D scanning 
via Scaniverse for scaled vegetation modelling, forming our basis for 
biomass quantification.

2.1  |  Study site

The study was conducted in experimental grasslands (DivResource 
Experiment) established at the Feld Station of the Helmholtz 
Centre for Environmental Research (UFZ) in Bad Lauchstädt, 
Germany (51°23′38″ N, 11°52′45″ E, 118 m a.s.l.) in 2011 
(Siebenkäs et al., 2016). The site has an average annual tempera-
ture of 9.5°C and 492 mm of precipitation (1981–2010). Eight per-
ennial plant species (four forbs, four grasses), typical of Central 
European mesophilic grasslands, were selected and divided into 
two independent species pools. Sown species richness levels are 
1, 2 and 4 with paired fertilized and unfertilized experimental 
plots, respectively. Plots of 2 × 2 m area (later reduced to 1 × 1 m) 
and arranged in four experimental blocks were weeded three 
times per year to maintain the sown species combinations. The 
experiment was mown twice annually (early June, September), 
and the mown biomass was removed. Fertilization (NPK as pellets, 
120:52:100 kg ha−1 year−1) was applied distributed with two even 
doses (March and June after first mowing) from 2012 to 2023. 
Permission for fieldwork was not required.

2.2  |  3D scans and biomass sampling

On 4 September 2024, we scanned the vegetation in the mono-
cultures and four- species plots from a single species pool, that is 
two monoculture plots of Lolium perenne L., Dactylis glomerata L., 
Prunella vulgaris L. and Knautia arvensis (L.) Coulter, respectively, 
and four plots containing all four species (Siebenkäs et al., 2016). 
To do this, we used a wooden frame with a 0.3 × 0.3 m inner sur-
face (made of 0.25- m- wide planks; Figure 1a) to define a specific 
sub- area per plot (position was randomly chosen in the plot with 
a sufficient distance from the plot margin). We then used an iP-
hone 15 Pro and the app Scaniverse to scan the defined area. The 
Scaniverse app, which is available for free download from the 
Apple Store and Google Play Store, was chosen over alternatives 
due to ease of use, fast scanning speed and high- quality results. 
Scaniverse leverages the advantages of LiDAR on compatible de-
vices such as iPhones, while also being fully functional on Android 
devices without LiDAR, utilizing alternative onboard sensors. This 
flexibility makes it broadly accessible across different smartphone 
models, and the technical distinctions are explored in detail in the 
following section.
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2.2.1  |  Technical architecture of Scaniverse

Scaniverse enables users to create high- quality 3D scans of envi-
ronments and objects using modern smartphones, including iPhones 
with LiDAR and Android devices capable of real- time multi- view 
stereo (MVS) processing. It captures RGB images and depth data, 
reconstructing 3D geometry via MVS techniques, which compute 
a dense point cloud or triangulated mesh from multiple viewpoints 
(Sayed et al., 2022, 2024; Van Brummelen et al., 2024).

Simultaneous Localization and Mapping (SLAM) ensures spa-
tial coherence and device tracking (e.g. Davison, 2003), possibly 
leveraging Niantic's Lightship ARDK for pose estimation (Niantic 
Inc, 2023). Real- time visual feedback, such as rendered meshes and 
feature overlays, improves usability and scan completeness (Numan 
et al., 2025). Scaniverse integrates efficient mobile processing, in-
cluding sparse inference to reduce computational load and light-
weight neural networks, allowing initial scene understanding with 
minimal manual input (Van Brummelen et al., 2024). Advances such 
as SimpleRecon enhance high- fidelity 3D reconstruction using opti-
mized metadata and cost volume computation, avoiding heavy 3D 
convolutions (Sayed et al., 2022).

2.2.2  |  Scan modes and processing

Scaniverse offers two scan modes: ‘Splat’ and ‘Mesh’. The ‘Splat’ 
mode likely applies Gaussian splatting, representing 3D space with 
modifiable splats containing colour and depth attributes, but lacks 
measurable 3D data. Mesh- based scans, however, define geometry 
explicitly using points, edges and surfaces, ensuring higher point 
density.

For scanning, we used ‘Mesh’ mode with ‘Small Object’, pre-
defined for objects such as flowers, toys and pets. The vegetation 
was scanned from multiple angles until no red- marked areas re-
mained (visual feedback). Each plot was scanned three times, taking 
1–2 min depending on density.

In ‘Detail’ processing mode, the workflow follows a SfM + MVS 
workflow, as indicated by the status messages displayed during the 
processing on the device:

1. Aligning images: SFM—determining image orientation parameters.
2. Computing depth: MVS—dense matching to compute depth infor-

mation, that is 3D points.
3. Texturing: applying image colour information to calculated points.

SfM does not inherently provide scale information. On LiDAR- 
equipped devices, scale can be derived from the time- of- flight scan-
ning principle, where SLAM incorporates depth data, allowing each 
image's pose to be estimated within a metric coordinate system. On 
devices without LiDAR, such as most Android smartphones, scale 
information is likely obtained from built- in inertial sensors, which 
can be integrated into SLAM- based pose estimation (e.g. Hamadi 
and Latoui (2025)). These pose estimations provide an initial guess 
in SfM, facilitating the determination of image trajectory in a scaled 
coordinate system, ensuring true- to- scale 3D points. The final 3D 
point cloud was exported in .ply format via ‘Share’ (Figure 1b), widely 
used for 3D visualization.

After scanning, the maximum height of the vegetation in the 
0.3 × 0.3 m sub- plot was measured (vegetation height), and finally 
plants were harvested 3 cm above the ground (i.e. at height of the 
wooden frame; which is common for harvesting biomass in such 
grassland experiments). Biomass was weighed before (fresh bio-
mass) and after (dry biomass) drying for 48 h at 60°C.

2.3  |  Point cloud and voxel space processing

First, the 3D point clouds were processed using CloudCompare, a 
free software for visualizing and editing point clouds (CloudCompare 
(version 2.13.2) [GPL software], 2024, retrieved from http:// www. 
cloud compa re. org/ ). Each point cloud was manually clipped to focus 
on the region of interest, specifically removing all 3D points associ-
ated with the structure of the wooden frame and all extraneous 3D 
points (Figure 2). In addition, 3D points with height values below 
the height of the top board layer were excluded to focus only on 
3D points on plant parts at least 3 cm above soil surface consistent 
with the cutting height of biomass (Figure 1c). Future versions of this 
process could be automated, possibly using, for example the Python 
wrapper CloudComPy.

F I G U R E  1  Vegetation in the field with the wooden frame around (a), original point cloud from Scaniverse (b), clipped point cloud (c) used 
for voxel space calculation (d). Illustrated is a fertilised 4- species mixture plot (voxel size 5 mm).
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2.4  |  Voxel data analyses

To quantify spatial distributions and characteristics within 3D point 
clouds, we implemented a voxel- based analysis using Open3D (ver-
sion 0.18.0) in Python (version 3.10, Figure 2). Each point cloud was 
processed into a voxel grid representation at a resolution of 2.5, 5.0, 
7.5 and 10.0- mm3 per voxel (Figure 1d). The voxel size is directly 
related to derived geometric quantities such as volume and height, 
which is why different voxel sizes were tested, and the derived sta-
tistical parameters were compared with conventional measurements 
to find the most suitable size (Enterkine et al., 2025). The voxel grid 
was generated, respectively, by dividing the spatial domain into 
cubic voxels of the defined size. The number of points contained 
within each voxel was then calculated and stored, facilitating density 
analysis across the scanned region.

Voxel- based statistics were computed, including mean, median 
and standard deviation of the point count per voxel to describe 
spatial distribution patterns. Estimates of total volume were de-
rived based on the number of occupied voxels (of known volume—
volume is the biomass- like variable), while the maximum vertical 
height of occupied voxels along the z- axis within each voxel data 
set was measured to indicate the height of the structure. For vi-
sualization, voxel data that met certain density thresholds were 
rendered using Python's Matplotlib, with a colour map repre-
senting voxel point densities. The approach enabled an efficient 
analysis of point cloud density and volumetric characteristics, 
providing insights into spatial heterogeneity within the scanned 
region. In terms of reliability, we averaged the heights and vol-
umes determined per plot (from the three repeated scans) and 
voxel size for the statistical analyses. The original image data, the 
clipped image data, as well as the data processing scripts within a 
Jupyter Notebook are published under a CC BY 4.0 licence at Elias 
et al. (2024) and can be reused accordingly.

2.5  |  Statistical analyses

First, we tested whether biomass (fresh/dry) and determined volumes 
(derived from voxel sizes 2.5, 5, 7.5 and 10 mm3) as well as the meas-
ured height and the determined height obtained from the 3D scans 
show significant positive relationships. To assess these relationships, 
we applied linear mixed- effects models with block included as a ran-
dom effect. For the biomass–volume analysis, fresh or dry biomass 
was used as the response variable, while voxel- based volume (with 

resolutions of 2.5, 5, 7.5, and 10 mm3) served as the fixed effect. For 
plant height, measured height was set as the response variable and 
height estimated from 3D scans was included as the fixed effect. By 
visually analysing the regression between measured and determined 
height, we recognized a potential outlier (one grass monoculture). For 
this reason, we conducted the height analysis once with and once 
without this plot. Mixed- effects models were fitted with maximum 
likelihood (ML), and likelihood ratio tests were used to compare mod-
els and assess the significance of the fixed effects.

In a second step, we tested whether species richness and 
fertilization history have the same effects on sampled biomass 
(fresh/dry) and on the determined volumes obtained from the 
3D scans (with different voxel size). For this, we also used linear 
mixed- effects models with biomass or volume (derived from voxel 
sizes 2.5, 5, 7.5 and 10 mm3) as response variable (in single mod-
els), species richness, fertilization history and their interaction as 
fixed effects and block as random effect. We started with a null 
model with the random effect only, and then extended the model 
stepwise by adding the fixed effects (first species richness, then 
fertilization history and finally the interaction of species richness 
and fertilization history).

All analyses were performed with the statistical software R (ver-
sion 3.6.1, R Development Core Team, http:// www. R-  proje ct. org). 
The R code along with the data on height, biomass, and volume are 
provided in Supporting Information (Text S1; Table S1). For linear 
mixed- effects models, we used the lmer function in the R package 
lme4 (Bates et al., 2014). To calculate R2 of regressions, we used 
the r.squaredGLMM function of the R package MuMIn (Barton & 
Barton, 2015).

3  |  RESULTS

3.1  |  Regressions between measured and 
determined variables

We found highly significant positive linear relationships between 
biomass (fresh/dry) and volume (Table 1; Figure 3). The coefficient of 
determination R2 was higher for fresh biomass (R2

mean
 = 0.85) than for 

dry biomass (R2
mean

 = 0.73; Table 1). R2 increased with larger voxel size, 
whereby this was more pronounced for dry biomass (from R2 = 0.64 
to R2 = 0.79) than for fresh biomass (from R2 = 0.82 to R2 = 0.86; 
Table 1; Figure 3). We also found a significant positive relationship 
between measured and determined height (Table 1; Figure 4). If we 

F I G U R E  2  Workflow description: After point cloud acquisition via smartphone, point clouds were clipped, voxel space was processed, 
and finally, relationships between resulting voxel volumes and the harvested biomass were evaluated.
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removed one outlier (grass monoculture) from the analysis, R2 was 
considerably higher (increase from R2 = 0.58 to R2 = 0.81; Table S2; 
Figure 4). An overview of the biomass, volume, and height charac-
teristics of the individual plant communities is provided in Figure S1. 
Additional results related to plant species richness and fertilization 
are also presented in Supporting Information.

4  |  DISCUSSION

Our study shows that traditional biomass harvesting and 3D scan-
ning of vegetation with a smartphone produce similar results. 
Importantly, we found similar results of 3D- derived volume and 
dried biomass, which is commonly used as an estimate of plant pro-
ductivity in ecological studies. High proportions of explained vari-
ation (R2 values between 0.7 and 0.9) show a good comparability 
between volume and dry biomass. The same applies to vegetation 
height. We conclude from our results that smartphone 3D scanning 
can be a very useful approach to estimate biomass production and 
vegetation height in a cheap, fast and almost non- destructive way. 
The method has several advantages, in particular the simplicity of 
implementation, the widespread availability of measurement devices 
(i.e. smartphones) as well as the free apps and analysis software.

From our experience, we can make the following recommenda-
tions regarding measurements in the field and the subsequent pro-
cessing of the point clouds:

• The frame is an important tool. Besides a well- defined area to 
scan, the frame also has the advantage that nothing has to be cut 
off around the vegetation for proper scanning—so the method is 
almost non- destructive. The frame should consist of wide boards 
so that the vegetation growing around the focus area can be com-
pressed (at least 25 cm wide).

• It is useful to scan the vegetation at least three times in a row 
because each scan produces slightly different volumes (data not 
shown). To reduce this variability, multiple scans are recommended.

• The processing of the point clouds is simple and can be realized 
with freely available software. The corresponding script can be 
found under Elias et al. (2024). This workflow, in its current form, 
can be used immediately as a standard protocol in research infra-
structures, long- term experiments or in citizen science projects. 
The only step that is not (yet) automated is the clipping of the 
point cloud to the region of interest.

• Our case study has shown that R2 increases with voxel size, in-
dicating that larger voxel sizes lead to more realistic results. 
However, we found different effects of fertilization history for 
voxel size 10 mm3 and fresh biomass. To increase certainty, we 
recommend using voxel sizes larger than 2.5 mm3 and smaller than 
10 mm3, similar to previous findings (Enterkine et al., 2025).

4.1  |  Outlook

Apart from biomass and height data, which can be reliably estimated 
with this technique, we see great potential in developing this ap-
proach to derive further vegetation- related variables, for example:

• segmentation of species in image data and semantic annotation 
including AI methods for deriving species to determine the bio-
mass production of individual species or functional groups (e.g. 
grasses, forbs, legumes) or to determine plant species richness;

• detailed analysis of individual species or specific structures, such 
as leaves, through ‘virtual sampling,’ which can yield insights into 
key ecological traits like leaf distribution and leaf functional traits 
(e.g. specific leaf area);

• vertical distribution of different plant species or compartments 
(i.e. biomass allocation) in a plant community; and

• assess the physiological state (e.g. drought response) of a plant 
community when dealing with global change drivers, e.g. by de-
riving the proportion of living and dead plant material.

This task will necessitate comprehensive research, including the 
modelling of the internal structure of point clouds, potentially le-
veraging artificial intelligence and utilizing high- resolution 3D scans 
of individuals from various species, encompassing different growth 
forms and functional groups. Additionally, the data foundation must 
be expanded. One approach could involve conducting measure-
ments across multiple time points in various long- term experiments, 
ideally within globally coordinated networks, to capture a diverse 
range of vegetation types.

TA B L E  1  Results of mixed- effects model analyses testing for 
linear relationships between biomass (fresh or dry) and volume 
obtained from voxel analysis with voxel sizes of 2.5, 5, 7.5, and 
10 mm3, and between vegetation height measured in the field and 
height obtained from point cloud analysis. Shown are degrees 
of freedom (df), Chi2 values (χ2), p values, and coefficient of 
determination (R2).

df χ2 p R2

Fresh biomass

Biomass ~ Volume 2.5 1 19.80 <0.001 0.821

Biomass ~ Volume 5 1 21.81 <0.001 0.850

Biomass ~ Volume 7.5 1 22.01 <0.001 0.852

Biomass ~ Volume 10 1 22.64 <0.001 0.859

Dry biomass

Biomass ~ Volume 2.5 1 11.65 <0.001 0.641

Biomass ~ Volume 5 1 15.41 <0.001 0.741

Biomass ~ Volume 7.5 1 16.68 <0.001 0.767

Biomass ~ Volume 10 1 17.64 <0.001 0.785

Vegetation height

Measured 
height ~ determined 
height

1 9.89 0.002 0.583

Measured 
height ~ determined 
height (without one 
grass monoculture)

1 17.31 <0.001 0.808

 2041210x, 2025, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70084 by M
artin L

uther U
niversity H

alle-W
ittenberg, W

iley O
nline L

ibrary on [06/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1729DIETRICH et al.

F I G U R E  3  Relationship between plant biomass and volume determined from 3D scanning across different voxel sizes. Panels (a–d) show 
the relationship between fresh biomass (in g) and volume (scaled by 100), while panels (e–h) depict the relationship between dry biomass 
(in g) and volume. Each column represents a different voxel size (2.5, 5, 7.5, and 10 mm3, respectively). Dot shape indicates whether the 
community was a monoculture or a four- species mixture, while dot colour represents the functional composition: Grasses only, forbs only, 
or a combination of both. Linear regression lines are included in each panel, along with the coefficient of determination (R2), indicating the 
strength of the relationship.

F I G U R E  4  Relationship between measured plant height (cm) and estimated plant height derived from 3D scanning (“determined height”). 
Panel (a) includes all plots, while panel (b) excludes one outlier (grass monoculture). Dot shape indicates whether the community was a 
monoculture or a four- species mixture, while dot colour represents the functional composition: Grasses only, forbs only, or a combination 
of both. Linear regression lines are included in each panel, along with the coefficient of determination (R2), indicating the strength of the 
relationship.
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The direct next steps include further ‘ground- truthing’ to es-
timate biomass from 3D point cloud data, and to test reproduc-
ibility and comparisons to traditional methods, as well as scaling 
opportunities to various more remotely sensed imaging methods. 
Challenges are that the resolution of the 3D scans is not very high 
and strongly depends on the quality of the used smartphone (cam-
era). Furthermore, the point clouds are quite noisy and require 
some, for now, manual clipping and outlier removal. A contributing 
factor to the observed noise and outliers is the limited ability to 
accurately capture very fine, thin structures, such as grass leaves or 
inflorescences. Thus, further research and development is needed 
to improve both the scanning processes and the methods used for 
the automatic preprocessing and analysis of point cloud. In addi-
tion, while it is currently possible to detect effects of experimental 
treatments using volume data (e.g. differences in species richness 
or fertilization effect), further more comprehensive studies are 
needed to determine exact biomass data (if an exact biomass es-
timate is required for a project), that is to calibrate volume data 
(Enterkine et al., 2025).

5  |  CONCLUSION

Our pilot study demonstrates that the consumer- grade scanning of 
vegetation with a smartphone is a suitable alternative to conven-
tional biomass harvesting. At the same time, new insights can be 
gained, for example by measuring biomass production over short 
time intervals or, in future, non- destructive measurement of veg-
etation structure or plant functional traits. Because of the growing 
necessity for more and higher- quality vegetation data, we see har-
nessing these emerging technologies as an opportunity to meet the 
challenges of monitoring ecosystems, opening up new questions and 
novel data to old questions, as well as a way to increase inclusion and 
access to biodiversity science.
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