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ABSTRACT
A recent increase in targeted attacks using chemical warfare agents by dictators and authoritarian regimes against politicians, 
journalists, and other civilians is a major concern. To aid the civil investigators in identifying poisonous substances in such cases, 
we developed an algorithm and a lightweight and simple- to- use software, ����������������, with a database of 400 electron 
ionization mass spectra entries, which include many poisonous and explosive agents. The identification relies on a window- based 
reduction of the experimental spectra and four statistical metrics that are combined into a single metametric. The software also 
features automatic spectral background removal. Furthermore, we provide the workflow for increasing the size of this database 
by performing theoretical calculations of mass spectra with a molecular dynamics- based approach. The accuracy of both the 
theoretical prediction workflow and ���������������� is validated on the experimental spectra. Our results demonstrate that 
the proposed software package can aid in the preliminary identification of traces of poisonous and explosive substances.

1   |   Introduction

The Chemical Weapons Convention  [1], which entered into 
force in 1997, marked a breakthrough in a long- standing ef-
fort to end the production, storage, and eventual deployment 
of poisoning agents in a military setting. Despite its nearly 
universal adoption, multiple large- scale assaults involving 

chemical weapons have occurred in the decades after the 
adoption, most notably in Syria (before  [2] and after  [3] its 
accession to the convention) and Iraq  [4]. In a concerning 
development, nerve combat agents, originally designed for in-
discriminate large- area use, have been employed in attempts 
on the lives of individuals in urban environments. The most 
well- known case is the Tokyo subway sarin attack, performed 
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in 1995 by the Aum Shinrikyo cult, that killed 13 and injured 
more than 6000 people  [5, 6]. In recent years, authoritarian 
regimes in Russia and North Korea [7, 8] have made targeted 
attempts at using various poisons to assassinate dissidents 
and critics [9, 10]. Thus, Russian democratic opposition leader 
Alexei Navalny  [11, 12] and former Russian spy and double 
agent for British intelligence Sergei Skripal  [13] were noto-
riously poisoned with the Novichok nerve agent, Ukrainian 
president Viktor Yushchenko was poisoned during his presi-
dential campaign of 2004 by the TCDD agent [14], and an ex-
iled relative of North Korea's supreme leader Kim Jong Un, 
Kim Jong- nam  [15], was killed using the VX nerve agent. 
Months after the attempt on Skripal, an unrelated British cou-
ple was poisoned with Novichok [16], apparently as collateral 
from a Russian attack.

Although in the aforementioned high- profile cases the specific 
nerve agents were reliably identified, investigations into other 
apparent poisonings did not produce conclusive results on the 
nature of the chemical agents used. In cases of Russian regime 
critics Pyotr Verzilov  [17], Dmitry Bykov [18], Vladimir Kara–
Murza [19], the latter being poisoned on two separate occasions, 
or in a recent chain of poisonings of dissident Russian jour-
nalists and activists after the outbreak of Russian aggression 
against Ukraine [20], the used substances were not definitively 
established, which might be due to delays in samples collection 
and their analysis.

A range of methods exists to identify the presence of chemical 
warfare agents in the laboratory or the field. The most sensitive 
and informative of these are non- portable techniques: Mass 
spectrometry (MS), nuclear magnetic resonance (NMR), and 
chromatographic methods, such as gas chromatography (GC) 
or high- pressure liquid chromatography (HPLC), coupled to MS 
[21–25]. In their review on the detection and destruction of chem-
ical warfare agents, Kim et al. [26] provide numerous examples 
of MS techniques being used to identify organophosphorus nerve 
agents and other toxins at very low concentrations, in some cases 
in vivo. In most MS techniques, the molecules present in the sam-
ple undergo fragmentation upon ionization, which makes inter-
pretation of mass spectra a cumbersome task even when dealing 
with a clean individual substance, increasing the likelihood of 
failure to identify a compound in the probe. In real- world forensic 
samples, often heavily contaminated and containing only traces 
of compounds, reliable identification becomes an exceedingly dif-
ficult task. Thus, a method to automatically identify poisons or 
other dangerous chemical compounds in mass spectra of impure 
samples is of great interest to a broad community of forensic ex-
perts, medical professionals, as well as independent sleuths. Since 
investigations are often conducted by individuals and teams with 
no technical education and at their own risk, we also note that a 
software piece to implement this method must be easy to install 
and operate without MS specialist knowledge.

Focusing on MS as the prime method to identify various species 
in experimental mixtures, we find ourselves with a wide selec-
tion of program tools for analyzing mass spectra. First of all, 
many producers of MS equipment provide accompanying soft-
ware to be used with it. The ���������� code by Agilent [27] is 
one such example. Secondly, the analysis software developed by 
the National Institute of Standards and Technology (NIST), such 

as the ����� (Automated Mass Spectrometry Deconvolution 
and Identification System) and �������� [28–32] are com-
monly used. The drawback of these programs is that they are 
proprietary. As an alternative, there are also open- source soft-
ware, such as the ProteoWizard [33], matchms  [34, 35], 
OpenMS/pyOpenMS [36, 37], and FastEI [38]. However, most 
of these packages require both advanced user experience and 
proficiency in MS. Therefore, these software packages can be 
hard to use for non- experts.

Finding the reference spectra in the existing literature might 
also present a challenging problem. In the publicly accessible 
databases, such as those by The NIST Chemistry WebBook [39] 
or National Institute of Advanced Industrial Science and 
Technology (AIST) [40], experimental data for many substances 
are not present, for instance for the compounds described in the 
book by Mirzayanov [41]. There are some attempts to combine 
personal libraries of spectra, for example, FederEI [42], a federated 
library matching framework for EI- MS. Another possible solu-
tion to this problem is to predict spectra from theory. Nowadays, 
various methods for such prediction exist. Among those are the 
machine- learning- based prediction algorithms, such as com-
petitive fragmentation modeling (CFM)  [43–45], rapid approx-
imate subset- based spectra prediction (RASSP) [46], and neural 
electron- ionization mass spectrometry (NEIMS) [47]. In recent 
years, an algorithm to compute mass spectra by means of molec-
ular dynamics (MD) simulations was proposed by Grimme [48]. 
This algorithm was used to predict the MS spectra, among oth-
ers, of Tabun [49] and Novichok [50], experimental work there-
with being greatly hindered by the inherent danger.

To address the outlined difficulties, we present a simple- to- use 
software package, ����������������, for the analysis of mass 
spectra, together with a database compiled from both MS exper-
iments and theoretical computations, as well as the workflow for 
producing the theoretical mass spectra. We do not aim to out-
perform existing identification methods and libraries but rather 
to provide a simple and robust tool for preliminary substance 
identification that can aid low- budget analytical laboratories 
and civil investigators. The article has the following structure. 
First, in Section 2, we introduce the methodology: The structure 
and sources of the database, the digital formats of the data, and 
algorithms and workflows to compute and assign mass spectra, 
including the spectral similarity metrics. Secondly, we discuss 
the theoretical computation of mass spectra and demonstrate 
applications of the methodology in Section  3. Finally, conclu-
sions are outlined in Section 4.

2   |   Methods

2.1   |   Mass- Spectroscopic Database

2.1.1   |   Database Structure and File Formats

Our database has to be easy to extend even by inexperienced 
users. Therefore, we store it as a set of nested directories with the 
structure shown in Figure 1. The top- level directory (“database”) 
contains the subdirectories that name the class of substances 
(“class #1”, “class #2”, etc.). Each of the subdirectories (“sub-
stance #1”, “substance #2”, etc.) contains folders with data on the 
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specific substance. The recommended naming of these folders 
is “[Brutto chemical formula in the Hill nota-
tion]_[common name of the substance].” For every 
substance, the “���.��” file is required, which contains the ref-
erence mass spectrum of the given compound. It is optional but 
strongly suggested to supplement an entry with a file “����.���” 
that contains information about the substance, for example, com-
mon names, molar mass, links to substance Wikipedia and/or 
PubChem webpage, etc.

The classes of substances in the presented database and the 
number of entries in each are shown in Table 1. While the classi-
fication of substances is almost always self- explanatory, assum-
ing their separation into different chemical weapon agent types 
(blister agents, blood agents, chocking agents, lachrymators, 
and nerve agents) [51], environmental pollutants (such as poly-
cyclic aromatic hydrocarbons (PAHs) [52, 53], per-  and polyflu-
oroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), 
and dioxines [54, 55]), a separate category (miscellaneous) had 
to be made to store different substances that did not fit into this 
arguably rigid framework.

The reference spectra of the molecules in the database (files 
“���.��”) are formatted as two- column text files with pairs of 
numbers (x, y) in rows, where x is the integer mass- over- charge 
(m∕z) position of the ion and y is the normalized intensity of the 
given ionic fragment in the MS; this format is usually denoted 
with an .�� file extension. The spectra in the “���.��” files have 
different normalization and are to be treated as not normalized, 
while normalization happens during runtime. For a molecule 
with a spectrum of N fragment ions {(x1, y1), (x2, y2),…, (xN , yN )}, 
the intensities are normalized such that 

2.1.2   |   Sources of Experimental Mass Spectra

Our database of molecular species borrowed mainly from the 
following sources: The NIST Chemistry WebBook [39], Spectral 
Database for Organic Compounds SDBS  [40] organized by 
the AIST, Japan, and University of Rhode Island Explosives 
Database [56]. Since the Chemistry WebBook removed the op-
tion to download numerical MS data, most of the information 
from this database was extracted by manually digitizing the 
graphs (for details of this procedure, see ESI). The spectra for 
the two Novichok species, A- 230 and A- 232, were digitized from 
[57] using WebPlotDigitizer software [58].

2.1.3   |   Sources of Theoretical Mass Spectra

Theoretical mass spectra were computed using the workflow 
shown in Figure  2. All quantum chemical calculations, includ-
ing conformational search and the MS calculation, were done 
with the GFN2- xTB method [59] as implemented in the xTB soft-
ware [60], version 6.6.1. First, the initial molecular structure, ob-
tained either from the NIST Chemistry WebBook, PubChem, or 
drawn in Jmol [61], was optimized with the xTB software. Then, 
conformational search was performed for this structure using 
CREST (version 2.12)  [62, 63], except for conformationally- rigid 

(1)
N∑

i= 1

yi = 100%

FIGURE 1    |    Schematic structure of the database with reference MS. 
The symbol “…” denotes similarly repeated structure.

TABLE 1    |    Classes of substances present in the database and the 
number of substances in each category (Nsub).

Class of substances Nsub

AcidContaminants 9

Bisphenols 3

BlisterAgents 15

BloodAgents 6

Chlorophenols 7

ChokingAgents 9

Dioxines 15

Explosives 59

Herbicides 7

Lachrymators 5

Miscellaneous 169

NerveAgents 43

PAHs 16

PCBs 2

Pesticydes 31

PFASs 2

Phthalates 2

Note: In total, the database contains 400 entries, a few of which represent the 
same substances but different spectra.
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molecules. Subsequently, two augmented Born–Oppenheimer 
molecular dynamics (aBOMD) program packages were applied to 
calculate the theoretical mass spectrum of the lowest energy con-
former: QCxMS (version 5.2.1) [48, 64, 65], an original approach 
by S. Grimme, and DissMD, a software [66–68] based on the same 
idea. A detailed comparison of those approaches can be found in 
Section 3. Finally, the spectra obtained by the two theoretical ap-
proaches described above were combined as arithmetic means.

In QCxMS, the default settings were applied. The molecules were 
ionized by electron ionization (EI) with kinetic energy of elec-
trons equal to 70 eV. The spectra were then collected by PlotMS 
(version 6.1.0). Since DissMD only simulates laser ionization, the 
ionization of molecules was modeled with an extreme ultraviolet 
(XUV) photon of 70 eV energy. In both QCxMS and DissMD cal-
culations, the GFN2- xTB method was used to provide the poten-
tial energy surfaces for the aBOMD simulations, as this method 
was shown to be sufficiently accurate and computationally feasi-
ble for the mass spectra prediction [64, 69].

2.2   |   Mass- Spectra Assigning Algorithm

2.2.1   |   Window- Function Based Assignment

The assignment was based on the assumption that there might 
be more than one species in the MS, which can be the case if the 
mixtures were not properly separated by chromatography or an 
alternative technique applied before the MS analysis. Therefore, 
the procedure involves finding only the relevant peaks in the 
tested spectrum to be compared with the reference database. For 
this, the window- based metrics were employed as described in 
more detail in the following.

Let us assume that we are interested in the possibility of 
species A with known reference spectrum of N(A) peaks 
{(x1, y1), (x2, y2),…, (xN(A), yN(A))} to be present in the mixture. 
Intensities yi can be represented as an N(A)- dimensional vector 
y(A) = (y1, y2,…, yN(A)). Note that we require all intensities to be 
positive (yi > 0 for i = 1,…,N(A)) and normalized to 100% as seen 
from Equation (1). To make the comparison, we need to reduce 
the experimental dataset to an analogous N(A)- dimensional vec-
tor of experimental intensities ỹ(B|A) = (ỹ1, ỹ2,…, ỹN(A)), where 
ỹi is the spectral intensity around xi = mi∕zi in experimentally- 
measured MS I(x) of unknown species or mixture B. To that 
end, we integrate the raw experimental MS I(x) with a window 

function w(x|xi) for a given position xi = mi∕zi and obtain non- 
normalized intensities (Y1,Y2,…,YN(A)) as 

where w(x|xi) is nonzero only in the vicinity of xi. This math-
ematical operation essentially sums up the spectral intensity 
near an expected position xi into a single value. Applying this 
transformation to every peak i in the reference spectrum I(x) 
and subsequently normalizing resulting values Yi such that 

we obtain experimental intensities ỹi at the discretized positions 
xi = mi∕zi of the reference dataset.

Alternatively, if the experimental MS is presented in the form 
of discrete peaks, the integration procedure is replaced by the 
summation, namely 

where index k runs over all M peaks with intensities I(xk) = Ik 
identified in the experimental MS by the spectrometer's software.

In our program code, we implemented two types of window 
functions w(x|xi): A rectangular window, 

and Gaussian window 

where � is the width of the given window in m/z units. By de-
fault, the Gaussian window with � = 1∕2 is employed.

2.2.2   |   Assignment Metric

After defining the window- based reduction scheme of experimen-
tal data, we can discuss the route to identifying chemical species in 
our spectrum. To that end, we rely on a metametric, which is com-
posed of several deterministic metrics. Thus, the simplest metric 
N(B|A) that can be defined for a given reference spectrum A is the 
number of lines present in both A and B. It reads 

where c > 0 is a small threshold (in our case, c = 10− 15) for nu-
merical comparison of real numbers and �(x) is the Heaviside 
step function of the form 

(2)Yi =

+∞

∫
0

I(x) ⋅ w(x|xi)dx

(3)ỹi = 100% ×
Yi

∑N(A)
j=1

Yj

(4)Yi =

M∑

k= 1

Ik ⋅ w(xk|xi)dx

(5)w(x|xi) =
{
1, |x − xi|≤𝜎∕2

0, |x − xi|>𝜎∕2

(6)w(x|xi) = exp

(
−
(x − xi)

2

2�2

)

(7)N(B|A) =
N(A)∑

i= 1

�(ỹi − c)

FIGURE 2    |    A general workflow scheme applied for the theoretical 
MS prediction for a given molecule.
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The expression in Equation (7) can be normalized by the total 
number of lines in the reference spectrum N(A) to produce the 
relative number of lines, that is, 

More sophisticated metrics should also account for the distribu-
tion of fragment intensities. For this purpose, two sets of nor-
malized values y(A) and ỹ(B|A) can be treated as probability 
distributions. Thus, standard statistical distances for probability 
distributions can be employed. We chose four such measures: 
Kullback–Leibler divergence (DKL) [70], Bhattacharyya distance 
(DB) [71], Hellinger distance (DH) [72], and cosine distance (DC). 
In our case of two spectra, A and B, these four measures are given 
as [73, 74] 

respectively. In Equations  (11) and (12), BC is the so- called 
Bhattacharyya dimensionless coefficient [71, 75] given by 

Here, the division by 100% is motivated by the fact that BC is 
defined for probability distributions normalized to 1. The three 
chosen measures of similarities for probability distributions 
from Equations  (9–12) require that components of the vector 
ỹ(B|A) are non- negative. Note that Equations (10–12) are unde-
fined for N(B|A) = 0, which corresponds to the case of the spe-
cies not being present in the spectrum.

The combined metametric is then constructed from 
Equations (9–13) such that 

where Yj is the non- normalized experimental intensity given by 
Equations (2) or (4) and �X is the standard deviation of the given 
metric X = KL, B, H, and C, computed over the whole available 
dataset as 

where index A runs over all spectra in the database and Nd 
is the number of such spectra. The value of Dmeta(B|A) from 
Equation (15) tends to zero if the two spectra A and B are similar 
and increases with the growing dissimilarity of the experimen-
tal spectrum from the reference. Although Bhattacharyya and 
Hellinger distances provide the same relative ranking of sub-
stances, it can be advantageous to use both in the metametric, 
as they might have different sensitivity at different values of the 
Bhattacharyya dimensionless coefficient BC.

2.2.3   |   Background Removal Algorithm

Experimentally measured spectra can contain signals from 
the background. This may result in empty areas of a spectrum 
producing negative intensities when using Equations (2) and 
(4). To avoid that, basic filtering of the experimental MS signal 
I(x) can be performed. The simplest and most robust approach 
is probably a visual determination of the noise threshold level 
Ithr, and setting all the values I(x) ≤ Ithr to zero. However, a 
crude automatic routine can also be designed (e.g., see [76]) 
assuming that non- zero peaks occupy only a minor part of 
the spectrum in all available m/z ranges and that the base-
line signal is I = 0. To that end, we represent a spectrum in 
a discretized form with lines I1, I2,…, IM. Then, the following 
procedure can be employed.

1. Calculate the standard deviation of I(x) from baseline 
(I = 0) as SD0 =

�
1

M

∑M
k=1 I

2
k

.

2. Consider only values Ik < q ⋅ SD0, with q ≥ 1 being 
an arbitrary selectivity coefficient, forming a new set 
I (1)
1
, I (1)
2
,…, I (1)

M1
, where the upper index “(1)” indicates the 

iteration number and M1 ≤M is the number of elements in 
the new set.

3. Calculate the new standard deviation as 
SD1 =

�
1

M1

∑M1

k=1
(I (1)
k
)2.

4. Repeat steps 2 and 3 until the number of elements in the set 
remains constant or a maximum number of iterations p is 
reached.

5. Set values of the original mass spectrum below the final 
threshold q ⋅ SDp to zero.

This automatic background removal procedure is implemented 
in our program code, with the default number of steps p = 3 and 
selectivity coefficient q = 1. 5.

(8)𝜃(x) =

{
1, x>0

0, x≤0

(9)P(B|A) = N(B|A)
N(A)

(10)DKL(B|A) =
N(A)∑

i= 1

ỹi ⋅ ln

(
ỹi
yi

)

(11)DB(B|A) = − ln
(
BC(B|A)

)

(12)DH(B�A) =
√
1−BC(B�A)

(13)
DC(B�A) = 1−

∑N(A)
i=1

yiỹi��∑N(A)
i=1

ỹ2
i

�
⋅

�∑N(A)
i=1

y2
i

�

(14)BC(B�A) = 1

100%

N(A)�

i= 1

√
ỹi ⋅ yi

(15)

Dmeta(B�A) =
1

P(B�A)×
N(A)∑
j=1

Yj

×

�
DKL(B�A)

�KL
+
DB(B�A)

�B
+
DH(B�A)

�H
+
DC(B�A)

�C

�

(16)

�X =

�
⟨D2

X
⟩− ⟨DX ⟩2

=

����� 1

Nd

�

A

D2
X
(B�A)−

�
1

Nd

�

A

D2
X
(B�A)

�2
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2.3   |   Software

The program code called ���������������� is written in 
Python version 3.8 for the Linux, MacOS, and MS Windows 
operational systems, distributed under an open source 
Apache License version 2.0 [77], and is managed using the 
version control system GIT [78] by the provider GitLab  [79]. 
The source code is available in the Gitlab repository [80]. 
The list of program requirements includes Python packages 
such as Numpy  [81] and Matplotlib  [82]. The code has a 
clear version number and is accompanied by two types of 
documentation: (i) a README file in the Markdown format 
outlining external dependencies, package structure as well 
as the installation procedure and (ii) an automatically gen-
erated Doxygen  [83] code documentation describing all con-
stituting objects and functions. The package- management 
system PIP3  [84] governs the installation procedure. The 
code is aimed to be fully unit- tested. To that end, the package 
Unittest [85] is employed. The current code design enables 
the use of our program as an external Python library as well as 
through a command- line interface.

The flowchart of the ���������������� work and usage is 
given in Figure 3. First, the user needs to provide a spectrum, 
which can then be passed, by request, through the background 
removal procedure described in Section 2.2.3. Then, the data-
base is loaded, and the comparison of the unknown spectrum 
with the database entry begins. During this step, the four 
metrics described in Section 2.2.2 are computed for each sub-
stance. After all the metrics are known, the metametric from 
Equation (15) for each database substance is computed, as it 
requires a spread of each metric throughout every database 
entry as seen from Equation (16). Finally, the database entries 
are sorted by the metametric value, and the best matching 
substance is given.

2.4   |   Statistical Analysis of Results

Let us assume that the user is interested in testing Ntrials number 
of different mixtures B. Each such ith mixture Bi contains a com-
pound Ai

true, which is also present in the database. Furthermore, 
we assume that for each sample Bi, the top- K matching candi-
dates Ai = {Ai

1
,Ai

2
,…,Ai

K
} are suggested by our algorithm based 

on the metrics introduced above in Section  2.2.2. Here, each 
set Ai is sorted in descending order such that its first element is 
the most probable match. Therefore, index j denotes the rank of 
compound Ai

j
, that is, j = R(Ai

j
), with lower ranks being prefer-

able. Then, the following scores can be introduced to assess the 
performance of our algorithm.

1. Top- K accuracy (also known as Hit rate at rank K), which 
is equal to the number of trials with the correctly identified 
compound being present in top- best K candidates Nin top-K 
divided by the total number of trials Ntrials and multiplied 
by 100%, that is, 

2. Mean reciprocal rank (MRR), defined as 

where R(Ai
true) is the rank of the correctly identified com-

pound Ai
true in trial i.

3. Mean rank (MR), defined as 

The top- K score from Equation  (17) shows how often the cor-
rectly identified compound was present in the K most probable 
candidates predicted by the program code, whereas MRR from 
Equation  (18) evaluates the ability of the code to assign low 
ranks to relevant chemical compounds. In the case of an ideal 
assignment, when correct compounds always occupy the very 
top of the suggestion list, both scores are equal to 100%. The MR 
score from Equation (19) is closely related to MRR, but is equal 
to or greater than 1.0 and tends toward 1.0 for better- performing 
recommendation systems.

3   |   Results and Discussion

3.1   |   Mass- Spectra Prediction Workflow

Predicted mass spectra presented in this work were computed 
using either QCxMS or DissMD. The latter is a part of the 
PyRAMD package [66, 86, 87]. Both algorithms employ Born–
Oppenheimer molecular dynamics (BOMD), as proposed by 
S. Grimme in his seminal paper [48]. Before discussing our re-
sults, we first compare the two approaches.

(17)top−K accuracy =
Nin top-K

Ntrials

× 100%

(18)MRR =
1

Ntrials

Ntrials∑

i= 1

1

R(Ai
true)

× 100%

(19)MR =
1

Ntrials

Ntrials∑

i= 1

R(Ai
true)

FIGURE 3    |    Flowchart of the ���������������� software work-
flow. Details are given in the text.
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7 of 15

A graphical representation of an aBOMD- based theoret-
ical workflow for an MS spectrum prediction is depicted in 
Figure 4. First, multiple molecular geometries are generated, 
representing the gaseous ensemble of molecules in the spec-
trometer. Those structures are then used as initial points to 
start BOMD dynamics for ions. To include electronic excitation 
effects, the BOMD dynamics are perturbed (or augmented) by 
the kinetic energy influx from an external energy reservoir, 
producing an BOMD trajectory. This energy, referred to as the 
internal excess energy (IEE), and the ion charge are ascribed 
according to the ionization procedure. If, upon the aBOMD 
trajectory propagation, a dissociation of the molecule is de-
tected, the parent ion trajectory is stopped, and new aBOMD 
trajectories for the products are initiated by sharing the charge 
and IEE of the parent ion between fragments. Then, these tra-
jectories of the daughter ions are propagated further. Finally, 
the mass spectra are computed from the ensemble of MD tra-
jectories by counting the final products.

Despite this scheme's general simplicity, a few crucial com-
ponents in the algorithm define the simulation behavior. The 
QCxMS and DissMD use two completely different approaches 
to generate initial conditions. In the QCxMS, the thermo-
stated MD of the neutral molecule is performed to sample 
the initial structures and their velocities. In the DissMD, the 
simplified Wigner sampling  [87, 88] approach from a user- 
provided geometry is used, which, in principle, can include 
some of the nuclear quantum effects [89] for the lighter nuclei 
such as hydrogens. Furthermore, these two approaches also 
differ greatly in the ionization procedure and the assignment 
of the IEE. In QCxMS, an arbitrary Poisson- like distribution 
is employed [64, 90] 

where P(IEE) is the probability of the ion to have the value 
of IEE upon ionization, whereas a = 0. 2 eV, b = 1 eV, and 
c = 1∕Nve are pre- defined parameters with Nve being the num-
ber of valence electrons in the system. In the DissMD, how-
ever, an approach based on the electronic density of the states 
is used. Upon applying the maximum entropy principle and 
energy conservation to molecular ionization, one arrives at 
the following distribution [67]: 

where DoS(IEE) is the electronic density of states of the ion, Ei is 
the total energy of the ionization event, IP is the sum of ionization 
potentials to reach a given ionization state, and Nf is the number 
of degrees of freedom for the leaving particles. For the photoion-
ization, which is the only available case in DissMD, Ei = mh� and 
Nf = 3 ⋅ Nre. In these expressions, m is the number of absorbed 
photons, h = 6. 626× 10− 34 J ⋅ s is the Planck constant, � is the 
photons' frequency, and Nre is the number of electrons removed 
upon ionization (Nf = 3 for single ionization, Nf = 6 for double ion-
ization, etc.). Note, however, that Equation (21) can still be applied 
for the electron impact ionization. In this case, Ei is the kinetic en-
ergy of the electrons and Nf is set to 3 ⋅ (Nre + 1) to account for the 
leaving ionizing particle's degree of freedom. Unlike in the first 
version of the software, in which the explicitly computed excited 
states were used to obtain the electronic density of states [86], the 
current version of the DissMD uses a simplified heuristic model 
based on the Van- der- Waals volume and surface to approximate 
DoS(IEE) ∝ IEEn as a power function with a single parameter n. In 
this case, Equation (21) reduces to a beta- distribution [67].

The third crucial component of the simulation is the rate of in-
ternal conversion (IC), showing how fast the IEE decays into nu-
clear motions. For this purpose, the QCxMS uses the energy- gap 
law in the form [64] 

where kh = 2 ps and � = 0. 5 eV− 1 are constrants, �i is the energy 
of an i- th orbital, and M is the total number of orbitals. Contrary 
to that, in the DissMD, a classical model of hot electrons with ki-
netic energy of IEE colliding with motionless nuclei is employed. 
In the DissMD prototype, a similar algorithm, based on an idea 
of electron- nuclear collision- induced IC, was used to compute 
the IC rates using the atomic electronic densities through the 
plasma frequency estimated from atomic charges [67]. However, 
in the newer code, it was replaced with a simplified model for 
the rate of such collisions is given as [68] 

(20)P(IEE) =
exp

(
c ⋅ IEE ⋅ (1 + ln

(
b∕(c ⋅ IEE)

)
− b

)

a ⋅ IEE + 1

(21)P(IEE) = DoS(IEE) ⋅
(
Ei − IP− IEE

) Nf
2
− 1

(22)k − 1
IC =

M∑

j> i

kh
Nve

exp
(
𝛼(𝜀i − 𝜀j)

)

(23)kIC = �

√
meIEE

mamu(L0 + Lmol)
NnNe

FIGURE 4    |    Graphical representation of a mass spectra simulation using aBOMD approach.
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8 of 15 Journal of Computational Chemistry, 2025

where Ne and Nn are the total number of electrons and nuclei in 
the ion, respectively, me is the electron mass, mamu is the atomic 
mass unit (dalton), Lmol is the molecular length (atomic- charge- 
product- weighted sum of all chemical bonds, determined from 
the covalent radii of atoms), L0 = 5 Å is the regularizing param-
eter, and � ≈ 1. 28 is the fitted parameter based on the available 
experimental data [68].

When the dissociation is detected, the QCxMS and DissMD 
again proceed in a different fashion. The DissMD follows a 
direct route: Upon the detection of dissociation of ion Mq+ 
into fragments A and B, it calculates the energies of several 
channels 

that satisfy the charge conservation qA + qB = q. Upon disso-
ciation, the channels with non- negative kinetic energy release 
(KER) are assigned a probability proportional to this KER value. 
Subsequently, one of these channels is randomly chosen accord-
ing to those probabilities. This leads to a speedup in the calcu-
lation, as the neutral fragments are not propagated. However, 
this approach requires a larger number of trajectories to be com-
puted. In the QCxMS, a concept of statistical charge, or statis-
tical weighing, is used. In this approach, the MD is carried out 
for all fragments, but their associated intensities depend on the 
weight, which is determined as [64] 

with indices i and j running over the number of fragments, 
IPj being the ionization potential of a given fragment, kB being 
Boltzmann constant, and T = KE∕(3kBNn) being the instant 
temperature of nuclei, as computed from their kinetic energy 
(KE). With these fragment weights, it is also possible to di-
rectly apply the isotopic distribution in the post- analysis, 
while the DissMD requires running simulations with differ-
ent isotopes.

To demonstrate the predictive capabilities of the aBOMD- based ap-
proach for computing the mass spectra, we took four molecules, for 
which we had the available spectra: Methanol (CH3OH), novichok 
A- 230 (C7H16FN2OP), o- chlorophenoxyacetic acid (C8H7ClO3), 
and vinclozolin (C12H9Cl2NO3). Structures of the most stable con-
formers of these molecules, according to CREST, can be found 
in Figure  5. As a metric to judge the similarity between spec-
tra, we chose the number of peaks from the reference spectrum 
from Equation  (7), the Kullback–Leibler divergence given in 
Equation (10), and the Bhattacharyya distance from Equation (11).

The results of our comparison are demonstrated in Figures  6 
and 7, and in Table  2. It is clear that the QCxMS, as the soft-
ware specifically designed for EIMS predictions, outperforms 
DissMD. Nevertheless, in three out of four cases, DissMD pro-
vided extra fragments that were missing in the QCxMS predic-
tions. In all cases, the combination of both methods allowed 
us to cover more than 80% of lines from experimental spectra. 
However, the relative intensities of the peaks are not always 

perfect, which can be a result of wrong ionization conditions in 
the simulations. Nevertheless, we can confirm the conclusions 
from previous studies in [49, 50], stating that it is possible to use 
theoretically predicted mass spectra for the assignment of spe-
cies with absent experimental reference spectra.

However, we would also claim that new software is probably due 
to development that would take the best algorithmic solutions 
from the QCxMS and DissMD. For the ionization stage, it makes 
more sense to assign the IEE from a physically sound model 
from Equation (21). For computing the IC rate, one might use 
a better model of the electron- phonon coupling. One such pos-
sibility is demonstrated in [91, 92], where the rate is calculated 
based on the Fermi–Dirac distribution and orbital overlaps for 
the two consecutive MD steps. For the treatment of dissociation, 
the QCxMS approach appears more suitable. However, instead 
of using the heuristically defined weights from Equation (25), it 
would make more sense to use a modified version of the model 
introduced in [93], as it takes into account not only the ioniza-
tion energies of fragments, but also the electron affinities, and 
the dissociation energies.

3.2   |   Performance Tests With Simulated Data

The ���������������� features are subject to unit tests, en-
suring the code works as expected. One of the production test 
trials the performance of the code in the presence of noise and 
additional substances. Here, we perform the testing based on 
the undecayed substances in our database, simulating mixtures 
taken directly from the environment, rather than from biologi-
cal samples. This is due to the fact that the analysis of biological 
substances usually requires the use of liquid chromatography 
and searching for metabolites, which can be known only from 
in  vitro studies (see, e.g., [24]). The biochemical degradation 
pathways of such compounds are highly unlikely to be found 
in publicly available literature in sufficient amounts to train 

(24)Mq+
→ AqA+ + BqB+

(25)Ci =
exp

�
−

IPj

kBT

�

∑
j exp

�
−

IPj

kBT

�

FIGURE 5    |    The most stable conformers of four test molecules used 
in the theoretical mass- spectra prediction.
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9 of 15

FIGURE 6    |    Comparison of the two theoretical mass spectra computed with QCxMS or DissMD software, for four test molecules (methanol, novi-
chok A- 230, o- chlorophenoxyacetic acid, and vinclozolin from Figure 5).

FIGURE 7    |    Comparison of the combined theoretical mass spectrum with the experimental one from the database for four test molecules (meth-
anol, novichok A- 230, o- chlorophenoxyacetic acid, and vinclozolin from Figure 5).
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10 of 15 Journal of Computational Chemistry, 2025

empirical models. The theoretical prediction of those products 
from first principles is doubtful due to the sheer complexity of 
the problem. Therefore, without a proper database, we do not an-
ticipate using ���������������� directly for biological samples.

We model the species' spectra with Gaussian- shaped peaks 
with randomly chosen standard deviation, that is, in the range 
between 0.05 and 0. 1 m/z. We take the mass spectrum of a 
randomly chosen species from the database and generate a spec-
trum in the m/z range from 0 to 500 with 2000 points. Then, we 
add a background that consists of two components. First, the 
signal of the substance is mixed with a spectrum composed of 
signals from benzene (C6H6), oxygen (O2), nitrogen (N2), carbon 
dioxide (CO2), and farnesene (C15H24), one of sesquiterpenes. 
The relative amounts of the background species are randomly 

chosen between 0.1 and 0.2. Then, a random uniformly distrib-
uted noise is added on top of that with a signal- to- noise (S/N) 
level randomly chosen from the interval between S/N=100 and 
S/N = 1000. Then, this generated spectrum is passed through 
our assignment algorithm, including the background removal 
and the rating of the actual compound, which is stored. The 
mean rating of the spectra upon multiple trials should not exceed 
an MR (Equation 19) threshold, which, in our case, is set to five. 
The current version of the software routinely passes this test.

To further demonstrate the performance of our code and com-
pare different metrics, we carried out assignments of 500 ran-
domly generated spectra. To that end, we modified the settings 
described above by lowering the allowed signal- to- noise level 
to 5 ≤ S∕N ≤ 100, and additionally allowing peak intensities to 
vary by ± 50% and their positions to be shifted by ± 0. 2 m/z. The 
assignment was repeated 48 times, leading to 24,000 trials in 
total and allowing us to compute the mean values and standard 
deviations for statistical parameters from Equations (17–19). The 
results of this analysis are shown in Table  3. As can be seen, 
the worst top- 1 result is obtained using the cosine distance DC, 
reaching an accuracy level of only about 30%. The performance 
of other metrics is much higher and varies from about 55% to 
91%. Similar trends are observed for the MRR and MR scores. 
The use of the proposed metametric Dmeta was found to produce 
results of the highest quality in all cases.

3.3   |   Performance Test With Experimental Noisy 
Dataset

As an example of the mass spectra with noisy background, we took 
the strong- field- induced mass spectra of a tree- ring PAH fluorene 
(C13H10), which are openly available from [94]. Since fluorene is in 
the database, and the laser- induced fragmentation patterns look 
similar to those obtained with EI, we simply tested the identifica-
tion of the species with the mass spectra obtained using different 
laser peak powers (from 1. 5× 1013 to 6. 8× 1013 W∕cm2). In all of 
the cases, the automatic background removal was applied.

The background removal results are shown in Figure 8. As one 
can see, the background is indeed removed quite efficiently, 
leaving only the signals from the ion fragments. The cleaning 
in the range of higher masses is somewhat less effective, which 
is due to the overall background level increase, as clearly seen 
in a logarithmic plot. Nevertheless, such background removal 
was sufficient to identify fluorene in the case of all experimental 

TABLE 2    |    Comparison of theoretically predicted mass spectra 
with their experimental reference counterparts from the database. The 
number of lines Nlines is calculated via Equation  (7), while Nref is the 
total number of peaks in the reference spectrum. The metrics DKL and 
DB are those given in Equations (10) and (11).

Spectrum Nlines∕Nref P, % DKL, % DB

Methanol (CH3OH)

QCxMS 9/16 56.2 109.90 0.47

DissMD 10/16 62.5 29.02 0.06

Combined 13/16 81.2 36.98 0.10

Novichok A- 230 (C7H16FN2OP)

QCxMS 46/52 88.5 90.34 0.24

DissMD 17/52 32.7 180.01 0.60

Combined 46/52 88.5 117.12 0.32

o- Chlorophenoxyacetic acid (C8H7ClO3)

QCxMS 118/129 91.5 104.03 0.28

DissMD 30/129 23.3 137.05 0.56

Combined 120/129 93.0 98.48 0.30

Vinclozolin (C12H9Cl2NO3)

QCxMS 84/105 80.0 122.95 0.42

DissMD 19/105 18.1 235.75 0.85

Combined 86/105 81.9 166.31 0.50

TABLE 3    |    Performance of ���������������� for simulated data. Results for the top- K from Equation (17) and MRR from Equation (18) scores 
are given in %. The MR is given according to Equation (19).

Top- 1 Top- 3 Top- 5 Top- 10 MRR MR

Dmeta 91± 1 98. 6± 0. 6 98. 8± 0. 4 99. 0± 0. 3 94. 9± 0. 8 1. 8± 0. 4

DKL 55± 2 87± 2 94± 1 96. 9± 0. 9 72± 2 3. 3± 0. 7

DB 61± 2 92± 1 97. 0± 0. 9 98. 7± 0. 7 77± 1 2. 1± 0. 3

DH 61± 2 92± 1 97. 0± 0. 9 98. 7± 0. 6 77± 1 2. 1± 0. 3

DC 30± 2 69± 2 84± 2 95± 1 53± 2 4. 1± 0. 5
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spectra considered in this work. The results for the highest peak 
power spectrum are shown in Figure 9.

3.4   |   Performance Tests With an Experimental 
Dataset of Cleaned Spectra

The mass spectra of 64 substances were recorded using GC 
(HP6890, Agilent Technologies) coupled to a single quadrupo-
lar MS (HP5972A or HP5973, Agilent Technologies) or with 
GC (Trace 1310) coupled to MS (TSQ Duo Triple Quadrupole, 
Thermo Scientific). Helium was used as a carrier gas, and the 
spectra were measured in the range of 50–500  m/z. The EI was 

used to ionize species with an electron KE of 70 eV. More details 
on the measurement parameters are available in ESI.

The experimental dataset consists of several classes of substances: 
Acid contaminants, chlorophenols, dioxins, PAHs, pesticides, 
and herbicides. For each of the compounds from this dataset, 
the reference spectrum was added to the database, and then 
���������������� was tested to provide the assignment results. 
We ranked the performance in each dataset using six scores: 
Top- 1, top- 3, top- 5, and top- 10 accuracies from Equation  (17), 
MRR from Equation (18), and MR from Equation (19). The results 
of the test are given in Table 4. As one can see, most of the species 
were correctly identified in the top- 3 best- matched substances, and 
the correct compound was the best- matched one 60% of the time, 
on average. With that, we conclude that the current performance 
allows the identification of species in unknown samples.

3.5   |   Testing Theoretical Reference Against 
Cleaned Experimental Data

In the dataset used in Section  3.4, there were three dioxines: 
1,2- Dichlorodibenzo- p- dioxin, 1,3- Dichlorodibenzo- p- dioxin, 
and 1,4- Dichlorodibenzo- p- dioxin. These compounds are suit-
able for testing the assignment of experimental spectra against 
theoretically predicted mass spectra. For that reason, we com-
puted the theoretical mass spectra of these three structural 
isomers using the workflow shown in Figure 2. In addition to 
that, in Section 3.1, we calculated theoretical mass spectra for 
o- chlorophenoxyacetic acid and vinclozolin, which were also 
present in the same database.

Thus, we took these five substances to test their identification 
with the ���������������� software. The resulting ranking of 
these theoretical spectra (R) against their experimental counter-
parts is given in Table 5 in columns Threshold = 0%. As one can 
see, the results are acceptable. However, upon examination of 

FIGURE 8    |    Experimental mass spectra of fluorene (C13H10) ob-
tained by strong- field ionization with ultrashort laser pulses of varied 
peak intensity. The top figure shows raw experimental spectra, while 
the bottom one is after background removal. Note that the logarithmic 
scale on the absolute intensity is used for the y- axis, and the curve disap-
pearance in the bottom figure means that the signal is zero.

FIGURE 9    |    Comparison of the experimental and reference spectrum of fluorene for the highest (6. 8× 1013 W∕cm2) peak power mass spectra.
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the theoretical spectra, one can see that the number of reference 
lines (Nlines) is much larger than usually available for experimen-
tal spectra taken from various databases (which is typically of 
the order of a few tens of data points). Therefore, we have tried 
to remove some of the fragments with lower intensities from the 
theoretical spectra to see the effect on the identification of sub-
stances. In particular, we removed every lower- intensity peak 
by setting a relative threshold with respect to the most intensive 
one. We tried two settings: Thresholds of 1% and 5%, which dras-
tically reduced the number of lines and had an effect on the pre-
diction performance (see Table 5). With a 1% threshold, the MR 
value for this set of five spectra was slightly lower than at the 0% 
and 5% settings, which indicates that there is an optimal number 
of lines to represent a species in the database, as too many or too 
few may lead to misidentification of the species. Therefore, we 
recommend removing the weak intensity fragments when using 
���������������� for predicting theoretical mass spectra, as 
this improves the identification probability P(B|A) (Equation 9). 
The importance of the latter can be seen from the definition of 
the metametric from Equation (15).

4   |   Conclusions

In this article, we have presented an algorithm and a computer 
program for identifying toxic and combat compounds using 
mass spectrometry, ����������������, that is easy to oper-
ate for nonprofessionals. An essential part of it is the data-
base of substances, assembled from multiple different sources, 

most prominently from databases like the NIST Chemistry 
WebBook and the SDBS of AIST, as well as from quantum 
chemical modeling. The use of theoretically predicted mass 
spectra allowed us to obtain reference data for poisonous sub-
stances for which no publicly accessible data exist. According 
to our tests against simulated and experimental datasets, 
���������������� with the database can facilitate prelimi-
nary identification of possible traces of poisonous and explo-
sive substances. However, the current approach implies that 
the best matching result is always given. This is due to the 
open problem of finding thresholds for the current definition 
of the metametric. Therefore, the identification results are al-
ways biased toward the available database. The preliminary 
analysis results should always invoke a manual inspection 
for a few of the best- matching substances, to check that the 
identified peaks are indeed present in the spectra. The final 
conclusions regarding substance identification should always 
be based on expert opinion and validated with other experi-
mental methods, such as NMR or rotational spectroscopy [95].
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TABLE 4    |    Performance of the ���������������� assignment algorithm on the experimental datasets of various classes of substances.

Substance class Nsubst Top- 1 Top- 3 Top- 5 Top- 10 MRR MR

Acid contaminants 9 44.4 55.6 55.6 66.7 52.8 17.0

Dioxins 4 75.0 100.0 100.0 100.0 87.5 1.2

PAHs 16 43.8 100.0 100.0 100.0 68.8 1.8

Pesticides 29 82.8 100.0 100.0 100.0 90.8 1.2

Herbicides 6 50.0 83.3 83.3 83.3 66.8 19.2

TABLE 5    |    Ranking (R) of and the number of lines (Nlines) in the theoretically predicted mass spectra of five substances against the experimental 
data. Different threshold values denote the removal of the weak intensity peaks from the reference dataset. 1,2- DpD, 1,3- DpD, 1,4- DpD, and o- CA 
denote 1,2- Dichlorodibenzo- p- dioxin, 1,3- Dichlorodibenzo- p- dioxin, 1,4- Dichlorodibenzo- p- dioxin, and o- chlorophenoxyacetic, respectively. The 
last row is the MR [see Equation (19)] values for the dataset of these five molecules at a given threshold.

Substance

Threshold = 0% Threshold = 1% Threshold = 5%

R Nlines R Nlines R Nlines

1,2- DpD 21 154 13 64 11 15

1,3- DpD 37 135 20 64 31 15

1,4- DpD 10 152 3 69 11 17

o- CA 5 140 3 45 3 19

Vinclozolin 2 201 14 26 36 7

MR 15.0 10.6 18.4
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