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Wuppermann. Through our frequent discussions on the topics we worked on, they helped

me develop as a researcher — now capable of presenting and promoting new ideas, valuing

feedback, and working in a progressive team. A special and heartfelt mention goes to

Amelie. In addition to always lending an ear to my struggles, ideas and suggestions, she

did not only pave the way for my thesis, but she also consistently fought for my university

contracts to be extended in both duration and scope. In that sense I always felt my work

to be appreciated. These are just some of the reasons why I’m more than happy to call

her my Doktormutter (doctoral mother).

I’m also deeply thankful to Felix, who not only gave constructive feedback (sometimes

asking the seemingly simplest of questions, which in hindsight turned out not to be simple

at all, but very fruitful), but who also welcomes any exchange of thoughts about anything

related to our work — including the good, the bad, and the ugly.

A second group I want to thank are my colleagues, and from this group, I want to start
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1 General Introduction

The COVID-19 pandemic, which began in 2020, led to significant disruptions worldwide,

a!ecting public health, economies, and societies in general. Early on in the pandemic,

estimates underscored not only its immediate health risks but also its far-reaching eco-

nomic and social repercussions. For example, Bethune and Korinek (2020) estimated

as early as April 2020 that the cost of an additional COVID-19 infection in the U.S.

at that time was approximately $80,000, with total social costs (including externalities)

exceeding $286,000 per case. Similarly, in July 2020, Dobson et al. (2020) projected that

the global cost of the pandemic would likely fall between $8.1 trillion and $15.8 trillion.

These estimates continued to rise in the following months. By October 2020, after the

first global wave, Cutler and Summers (2020) estimated the total cost of COVID-19 for

the United States alone at $16 trillion, with roughly half attributed to income losses

from the recession and the other half to reduced life expectancy and declining health.

Fueled by the scale of these estimates, and building on prior research — such as the

work of economists1, the pandemic expanded interest beyond epidemiology, prompting

investigations into potential factors facilitating viral spread across the (social) sciences.

From the outset of the pandemic, researchers have particularly examined how events

and social gatherings contribute to the spread of infectious airborne diseases. For the pur-

pose of this thesis, the research in this context is categorized into two groups based on the

necessity of the events: non-critical events and critical events. The first category includes

events and social gatherings that are not essential for the fundamental functioning of a

(democratic) society. For example, Ahammer et al. (2023) investigate the impact of NBA

and NHL games on COVID-19 spread in the U.S., finding that each additional game led

to a 10.3% increase in cumulative COVID-19 deaths in a!ected urban areas, with a total

increase of 36% in counties hosting multiple games. Their results indicate that banning

indoor sport events is an e!ective non-pharmaceutical intervention to curb virus transmis-

sion. Similarly, Mangrum and Niekamp (2022) explore how university spring break timing

influenced COVID-19 transmission, showing that counties with more early spring break

students experienced higher case growth rates, peaking two weeks after spring break.

1For instance, Adda (2016) examines the unintended consequences of economic activity on the spread
of viral infections, the e!ectiveness of measures limiting interpersonal contact, and the optimal allocation
of resources to control disease transmission using high-frequency data from France over 25 years.
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Their findings indicate that (mass) gatherings of students, particularly in locations that,

at the time exhibited high COVID-19 spread dynamics played a significant role in both

primary and secondary transmission. Additionally, those gatherings increased mortality

rates in the communities surrounding university campuses. Furthermore, Whaley et al.

(2021) examine the role of informal social gatherings in COVID-19 transmission by an-

alyzing whether household COVID-19 infections increased after a birthday celebration.

Their study of 2.9 million U.S. households finds that in counties with high COVID-19

prevalence, households with a birthday had a 31% higher infection rate, with child birth-

days associated with a greater increase in cases than adult birthdays, highlighting the

role of small gatherings in virus spread.

Although this strain of the literature explores a variety of specific questions2, its

overarching aim is to examine how non-critical events contribute to public health risks

through the spread of the respiratory viruses in order to evaluate whether canceling or

postponing such events during periods of heightened viral transmission is justified.3

The second category comprises critical events that are di”cult to cancel or postpone

due to their significant public interest. One such set of events that hold fundamental

importance in democratic societies are elections. Canceling of elections violates each in-

dividuals human right to participate in her country’s government according to Article

21(3) of the Universal Declaration of Human Rights (see United Nations, 1948). Ad-

ditionally, while elections were postponed during the COVID-19 pandemic (Lee, 2024),

democratic societies have strong incentives to maintain the originally scheduled election

dates or, if postponed, to minimize delays. Beyond practical concerns, such as country-

specific legal requirements for election timing (Ellena, 2020) or the increasing challenges

associated with implementing postponed elections4, there is also the risk of alienating

voters. Postponing an election can be perceived by both the political opposition and the

2For example, Mangrum and Niekamp (2022) additionally highlight the role of universities in making
decisions that a!ect the health of their surrounding communities.

3For instance, research in this field led the German Robert Koch-Institute to recommend that policy-
makers closely assess the necessity of non-critical events in the context of the COVID-19 pandemic (RKI,
2020b). Moreover, the World Health Organization (WHO) advocated for a risk-based approach based
on that research, emphasizing precautionary measures such as physical distancing, mask-wearing, and
proper ventilation while urging decision-makers to continuously reassess and adapt mitigation strategies
based on evolving epidemiological conditions (WHO, 2021).

4For instance, the postponement of the English local elections in 2020 led to their concurrent schedul-
ing with a broad array of other elections in 2021, including those for the Scottish and Welsh parliaments,
English councils, police and crime commissioners, the London mayor and assembly, as well as regional
and local mayors. The diversity in legal frameworks and electoral systems governing these elections raised
concerns about potential voter confusion and administrative complexities (James & Alihodzic, 2020).
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public as an attempt by the incumbent government to extend its tenure (Egmont Insti-

tute, 2020; Zamfir & Fardel, 2020). From a di!erent perspective, Bol et al. (2021) show

that holding elections during a pandemic may benefit the reigning government. They an-

alyze data from a representative web-based survey conducted in Western Europe during

March and April 2020, comparing political support for incumbents among respondents

surveyed just before and after the start of lockdowns. Their findings indicate that lock-

downs increased voter intentions to support the party of the Prime Minister or President

and boosted trust in their government. Similarly, Frank et al. (2020) examine the Ger-

man municipal elections in the state of Bavaria in March 2020 and show that declaring a

state of emergency between the first and second round resulted in a 10-percentage-point

increase in voter turnout compared to previous elections. Additionally, Leininger and

Schaub (2023) investigate the causal e!ect of COVID-19 cases on electoral outcomes for

the same election across Bavarian districts, demonstrating that the pandemic consistently

favors the dominant regional party, the center-right Christian Social Union (CSU), and

its candidates.

In addition to elections, natural disasters represent another type of critical event,

as they lead to essential gatherings that typically cannot be prohibited or postponed,

because these gatherings are directly tied to providing assistance to those in urgent need

of help. They involve sheltering displaced residents and aid workers assisting in a!ected

regions, along with collaborative e!orts within and between both groups to reinstate

livable conditions.

Another key reason for closely examining these events is that, unlike non-critical

events, which are primarily assessed based on whether they should be canceled or post-

poned, pivotal events carry distinct policy implications. Given the reasons outlined above,

justified countermeasures are unlikely to include postponing or canceling these events and

their associated gatherings. Instead, they may prioritize alternative strategies, such as

distributing face masks or implementing targeted monitoring of disease transmission.

Furthermore, a significant link between such events and the spread of respiratory

diseases could lead to unintended and undesirable behavioral changes. In the context of

elections, these increases risks might discourage vulnerable populations from exercising

their fundamental right to vote due to health concerns. Similarly, in the aftermath of

natural disasters, the increased risk of infection could reduce the willingness of aid workers
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to help, thereby hampering critical relief e!orts. Anticipating these potential risks enables

societies to develop e!ective strategies in advance, ensuring both a better public health

protection and the continuity of essential social functions.

While non-critical events have been studied to some extend, much less is known about

how critical events impact respiratory health and as for the literature of non-critical

events, a majority of the literature for elections so far is conducted in the context of the

COVID-19 pandemic with mixed results. Bernheim et al. (2020) find that Trump cam-

paign rallies held between June and September 2020 led to over 250 additional COVID-19

cases per 100,000 residents. Mello and Moscelli (2022) show that in-person voting during

the Italian regional elections in September 2020 contributed to the spread of COVID-19,

with each additional percentage point of voter turnout leading to a 1.1% increase in new

infections. Similarly, Cipullo and Le Moglie (2022) find that electoral campaigns pre-

ceding this election in Italy significantly worsened the public health situation, causing a

7% rise in new infections, a 15% increase in the percentage of positive tests, a 24% rise

in hospitalizations, a 5.3% increase in ICU admissions, and a 0.6% increase in deaths.

Furthermore, the evidence from the March 2020 elections in France is also mixed: Bach

et al. (2021) and Zeitoun et al. (2020) find no impact on excess mortality or case numbers,

while Bertoli et al. (2020) and Cassan and Sangnier (2022) link higher voter turnout to

increased mortality among the elderly and hospitalizations in high-case areas. Conflicting

results also emerge for the Wisconsin primary in April 2020. Cotti et al. (2021) associate

in-person voting with a 17.7% rise in the positive test rate, while Berry et al. (2020) find

no e!ect. For the Czech Republic, Palguta et al. (2022) find that Senate elections in Oc-

tober 2020 accelerated infection rates and hospitalizations, particularly among younger

individuals.

Aside from the literature on elections as one type of critical event, most studies

on natural disasters and the spread of respiratory diseases primarily employ descriptive

analyses, yielding mixed results. Murray et al. (2009) and Rath et al. (2011) observe

increased respiratory symptoms after Hurricane Katrina in 2005. Mavroulis et al. (2021)

report a rise in COVID-19 cases only after Cyclone Ianos in Greece, while other disasters

they examine show no e!ect. Similarly, Frausto-Mart́ınez et al. (2020) find no clear surge

in COVID-19 cases during tropical storms. Likewise, Čivljak et al. (2020) and Ćurković

et al. (2021) observe no immediate increase in cases following earthquakes in Croatia in
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March 2020.

Thus, this thesis contributes to the literature on the impact of critical events on the

spread of respiratory diseases in four distinct ways. First, it examines the municipal

election in the German state of Bavaria, which took place early in the pandemic in Ger-

many when knowledge of virus transmission and prevention was still limited. Unlike

later elections and campaigns, where precautionary measures were widely adopted, this

case o!ers valuable insights into how elections may influence the spread of respiratory

infections in the absence of su”cient countermeasures. Second, it broadens the scope

beyond COVID-19 by analyzing other respiratory tract infections, thereby exploring the

potential link between elections and the spread of airborne diseases. Third, it inves-

tigates the relationship between elections and infectious diseases in periods less severe

than a pandemic, providing further insights into the potential health risks associated

with elections under milder baseline conditions. Finally, the thesis aims to deepen the

understanding of how natural disasters influence the spread of airborne diseases. Using a

causal approach, it monitors the weekly progression of the COVID-19 pandemic around

the onset of Storm Bernd on July 14 and the subsequent flooding in Western Germany.

This quasi-experimental setting may enable a causal analysis of the post-disaster phases

that contribute to increased respiratory disease transmission.

All analyses presented in the thesis are based on data on either the district or the

federal-level from Germany, which was selected as the primary data focus for three main

reasons: First, infectious disease surveillance, particularly during the COVID-19 pan-

demic, is highly active, largely due to the strong e!orts of the Robert Koch-Institute

(RKI) in close cooperation with the regional health authorities. Second, Germany’s

mandatory health insurance system covers a significant portion of the population, allow-

ing for an analysis of both infection rates and sick leaves (see second study), which also

enables rough cost estimations related to increased absences from work. Third, beyond

infectious disease data, several providers o!er extensive datasets covering economic and

sociodemographic characteristics for Germany that serve as valuable sources for control

variables.

With this data established, the thesis incorporates a methodological framework de-

signed to isolate the causal e!ects of critical events on respiratory health outcomes. It

primarily employs the Synthetic Control Method (SCM). Since its first application by
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Abadie and Gardeazabal (2003), SCM has become a widely recognized method in empir-

ical economics and beyond. In their study on the state of the econometric policy eval-

uation, Susan Athey and Guido Imbens describe synthetic controls as “[. . . ] the most

important innovation in the policy evaluation literature in the last 15 years” (Athey &

Imbens, 2017, p. 9). SCM builds on a di!erence-in-di!erences framework but, instead

of relying on a single control unit or a simple average of multiple units, it constructs a

weighted combination of control units to create a synthetic counterpart that more closely

resembles the treated unit’s outcome trajectory. Its straight forward to interpret out-

put, combined with its transparency in revealing both unit and predictor weights, has

contributed to its widespread application across diverse empirical research fields.5 While

individual-level data is crucial in epidemiology for studying the spread of infectious dis-

eases — such as measuring incubation periods (see Lauer et al. (2020) for COVID-19 and

Jhung et al. (2013) for Influenza) — it is often inaccessible due to, for instance, data

protection regulations. In contrast, aggregated data is often more readily available, for

which SCM is a well-established method (Abadie, 2021). As a result, SCM has gained

traction in epidemiological research. For example, Bruhn et al. (2017) apply it to assess

the impact of pneumococcal conjugate vaccines on pneumonia-related hospitalizations,

while Sun et al. (2024) use it to evaluate the e!ect of gastric cancer screening programs

on age-standardized mortality and other upper gastrointestinal diseases.6 Overall, SCM

serves as a valuable tool when more granular data is unavailable and pure randomization

is not applicable.

This thesis investigates the relationship between critical events and respiratory dis-

eases through three essays and is structured as follows: Chapter 2 presents the first study,

which examines whether the regional elections in the German federal state of Bavaria on

March 15, 2020, contributed to the spread of COVID-19. The results indicate that over

a third of the increase in positive cases cannot be explained by demographic, economic,

health, or tourism-related factors, and that districts with higher voter participation ex-

perienced a steeper rise in cases and deaths. The results suggest that the timing of the

elections played a significant role in spreading the SARS-CoV-2 virus. While these find-

ings are intriguing in their own right for reassessing early responses to the COVID-19

5For an overview of the various research areas utilizing SCM, see Abadie (2021, Chapter 2).
6Other applications of SCM by epidemiologists can be found in Casey et al. (2023), Nianogo et al.

(2024), and Prunas et al. (2022).
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pandemic, they also raise questions for research with relevance beyond crisis periods.

Bavaria, along with other German states, has long held elections in March or even ear-

lier in the year, coinciding with Influenza seasons. Thus, the second essay presented in

Chapter 3 investigates whether regional elections held outside of pandemic periods con-

tribute to the spread of respiratory infections. Using sick leave data from the German

health insurance provider Barmer, it analyzes elections in Bavaria, Hesse, and Thuringia.

While no transmission e!ects are found for the 2018 Bavarian election, the 2018 Hes-

sian and 2019 Thuringian elections show a significant impact on respiratory sick leaves.

The third essay in Chapter 4 examines whether the severe flood in Germany in July

2021 contributed to the spread of COVID-19. It compares COVID-19 case numbers and

ICU admissions in flood-a!ected districts with una!ected counterparts, finding a positive

divergence in cases but less conclusive e!ects on intensive care admissions. Finally, Chap-

ter 5 discusses overarching conclusions, o!ers directions for future research and provides

policy implications.



The toll of voting in a pandemic? Regional elections

and the spread of COVID-19 in Bavaria

Jochen Güntner Gerrit Stahn Amelie Wuppermann Felix Zwies

Abstract

This study investigates whether the regional elections held in Bavaria on March

15 of 2020 — shortly after the WHO declared COVID-19 a global pandemic —

contributed to the spread of COVID-19 cases and COVID-related deaths in this

German state. Constructing synthetic controls for each of Bavaria’s 96 districts

based on non-Bavarian German districts, we find that over a third of the increase

in positive test results cannot be explained by district-level demographic, economic,

health or child care characteristics, nor by the distance to Ischgl — a proxy for skiing

tourism associated with the first COVID-19 wave in Germany. Within Bavaria,

districts with higher voter participation witnessed a steeper increase in COVID-19

cases and deaths after the election, while controlling for alternative drivers, such

as the distance to Ischgl and the number of strong-beer festivals. Our results are

highly robust and suggest that an unfortunate timing of elections contributed to

the spreading of an infectious disease.

Keywords: COVID-19, municipal elections, pandemic, synthetic control method

JEL classification: H11, H12, I12, I18
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2.1 Introduction

Elections are the backbone of democracy. When they take place in precarious environ-

ments, however, voting may come along with nontrivial risks, which can lead to a trade-o!

between the right to vote and the right to maintain a healthy life. Some of those health

risks became salient during the COVID-19 pandemic. As a consequence, many countries

deferred national and subnational elections or switched to postal ballots.1 The German

state of Bavaria instead called close to 10 million voters to cast their vote in the regional

elections on March 15 of 2020, when only a few precautionary measures were already in

place. In calendar week 13 — two weeks after the election indicated by the vertical dashed

line in Figure 1 — Bavaria left behind all other German states in terms of COVID-19

cases per 100,000 residents reported and was one of the federal states with the highest

number of deaths per 100,000 residents.2

In this study, we investigate the e!ects of the regional election on the spread of

COVID-19 cases and deaths using two econometric approaches. First, we use synthetic

controls matched on a host of district-level demographic, economic, health care and child

care characteristics as well as the distance to Ischgl to proxy for skiing tourism, which

was identified as an early driver of COVID-19 in Germany (Felbermayr et al., 2021), and

find that Bavarian districts su!ered an unexpectedly large increase in COVID-19 cases

and deaths after March 15. To further isolate the e!ects of the elections, we then regress

the post-election di!erences in cases and deaths on voter participation as a measure

of the “treatment intensity” of the elections across Bavaria’s 96 districts, while again

controlling for demographic, economic, health care and child care characteristics as well

as the distance to Ischgl and the number of confirmed strong-beer festivals held in March

in several districts. In the most conservative specification, which includes administrative

and structural district-type dummy variables, a 1 p.p. increase in voter participation

across Bavarian districts is associated with an additional 12.8 positive test results and

1.8 deaths per 100,000 inhabitants. Sensitivity analyses show that the results of both

approaches are highly robust.

Since the start of the pandemic, a host of contributions has investigated the relation-

1The International Institute for Democratic and Electoral Assistance (IDEA) provides a global
overview of the impact of COVID-19 on national and subnational elections.

2Cases are defined according to the Robert Koch-Institute. In this paper we use the terms infections,
cases and tested positive as synonyms.

https://www.idea.int/news-media/multimedia-reports/global-overview-covid-19-impact-elections
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Falldefinition
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Figure 1: Weekly COVID-19 cases and deaths by German state

(a) Reported cases per week

(b) Reported deaths per week

Notes: Figure 1 displays weekly COVID-19 cases (panel a) and deaths (panel b) per 100,000 inhabitants
across the 16 German federal states. The development in Hamburg, Baden-Württemberg, Bavaria, and
Saarland are highlighted as they had the highest reported numbers at that time. The dashed vertical
line marks calendar week 11, when the Bavarian election occurred.
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ship between social factors, political measures, and the spread of COVID-19 cases and

deaths (see, e.g., Ahammer et al., 2023; Allcott et al., 2020; Andersen, 2020; Mangrum

& Niekamp, 2022; Whaley et al., 2021). Focusing on German districts, Alipour et al.

(2023, 2021) and Felbermayr et al. (2021) analyze the e!ect of working from home and

the proximity to the Austrian ski resort Ischgl, respectively, while Mitze et al. (2020)

study the containment e!ect of wearing face masks in public.

There is also growing but mixed empirical evidence on the health risks of holding

elections in a pandemic. Bernheim et al. (2020) investigate the e!ect of eighteen Trump

campaign rallies (held between June 20 and September 22 of 2020) on the spread of

COVID-19. By applying the synthetic control method, they report an average treatment

e!ect across the events suggesting an increase of more than 250 confirmed COVID-19

cases per 100,000 residents. Similarly, Cipullo and Le Moglie (2022) show that electoral

campaigns preceding the regional elections in Italy in September 2020 significantly wors-

ened the spread of COVID-19, finding a 7% increase in new infections, a 15% increase

in the percentage of positive tests, a 24% increase in hospitalizations, a 5.3% increase in

intensive care unit (ICU) admissions, and a 0.6% increase in deaths. These findings align

with evidence on in-person voting for the same election, as Mello and Moscelli (2022)

demonstrate that each additional percentage point of voter turnout led to a 1.1% rise in

new infections.

On the same day as the elections in Bavaria, on March 15 of 2020, regional elections

also took place in France. Bach et al. (2021) find no e!ect of this election on the excess

mortality of 163,000 male candidates aged above 60 relative to the general population,

regardless of the intensity of the election race and how candidates fared in the 2014

elections. Similarly, Zeitoun et al. (2020) find no e!ect on COVID cases. However,

Bertoli et al. (2020) find that higher voter turnout did increase the mortality risks of

the generation 80+ and Cassan and Sangnier (2022) report that higher voter turnout

is related to increases in hospitalizations in departments, in which there were already

relatively many cases at the time of the election.

Similarly, conflicting results exist for the Wisconsin primary that took place on April 7

of 2020. Cotti et al. (2021) find a statistically significant relationship between in-person

voting and the spread of COVID-19 two to three weeks after the Wisconsin primary,

where a 10% di!erence in average in-person voters per polling location is associated with



The toll of voting in a pandemic? 12

a 17.7% increase in the positive test rate across counties, suggesting that the primary

was related to about 700 additional cases in Wisconsin. On the contrary, Berry et al.

(2020) find no e!ect of the Wisconsin primary on COVID-19 cases. An analysis in the

Economist links higher in-person voting in the U.S. federal election on November 3 of

2020 to an increase in COVID-19 cases (The Economist, 2021).

Palguta et al. (2022) leverage a natural experiment for the Czech Republic, where one-

third of Senate constituencies hold elections every two years, to estimate how the Senate

elections in October 2020 influenced COVID-19 infection rates. They find that voting

constituencies experienced significantly faster growth in COVID-19 infections compared

to non-voting constituencies in the weeks following the elections as well as an increase

in hospital admissions, indicating that the acceleration of infections was not only due to

stricter testing regimens. The e!ects are most pronounced among individuals below 65,

possibly due to the strategic absenteeism of senior voters.

We add to the literature by examining an election that took place at the start of

the COVID-19 pandemic, aligning with studies on the election in France. Unlike the

elections held later in the pandemic, where precautionary measures were already in place,

the Bavarian (as well as the French) election took place, when knowledge of the virus

transmission and prevention methods was still limited. At the time of the Bavarian

election, mask-wearing was even discouraged in Germany to avoid depleting supplies

needed for hospitals and medical sta! (Bayerische Staatszeitung, 2020; Tagesschau, 2020).

Analyzing an election held at the onset of the pandemic yields insights into how the virus

spreads in the absence of suitable precautionary measures.

While most related studies primarily examine in-person voting, we analyze the e!ect

of overall voter turnout for two reasons. First, obtaining ballot papers before the election

is a necessary condition for voting by mail. However, the number of voters who receive

ballot papers does not perfectly indicate the proportion of those who vote in-person versus

by mail, as some voters may still choose to vote in person despite having obtained their

ballot papers in advance.3 Second, while in-person voting may contribute to the spread of

COVID-19 through direct interactions among voters at polling stations, overall turnout

could also play a role in transmission. A higher turnout necessitates more election workers

to process and count the votes. Additionally, increased voter participation may reflect

3Nonetheless, we attempt to disentangle the e!ects of di!erent types of voter turnout in some of our
specifications.
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heightened interest in the election, which could be linked to more intensive campaigning

in the lead-up to the vote.

Our results strongly and robustly indicate that the Bavarian regional elections con-

tributed to the spread of COVID-19 in Bavaria. These results suggest more generally

that the timing of elections within the year, which often take place in spring or fall, may

foster the spread of other seasonal infectious diseases, such as Influenza. We leave this

question for future research.

The rest of the paper is structured as follows. Section 2.2 gives information on the

Bavarian district elections and the timing of events. Sections 2.3 and 2.4 describe the

data and empirical approaches, respectively. Section 2.5 presents the results and section

2.6 concludes.

2.2 Background

Starting in 1946, after the end of the Second World War, Bavaria held municipal elec-

tions in intervals of two to four years. In 1960, the election period was extended to six

years and has not been modified since. The last seven municipal elections took place in

March of an election year, indicating that the polls on March 15 did not deviate from

the regular schedule. In contrast to prior polls, however, the district elections in 2020

took place “at the dawn of a global pandemic” (Leininger & Schaub, 2023). The first

known German case of COVID-19 occurred in the Bavarian district of Starnberg, where

a 33-year-old male employee of the automotive supplier Webasto was infected by a mildly

symptomatic Chinese colleague, who was tested positive after returning to China. Sub-

sequently, 13 colleagues at Webasto or their relatives were tested positive. Unrelated to

the Webasto outbreak, a German women was infected, while staying at the Dortmunder

Hütte, an alpine cottage in Tirol, Austria, during January 24–26. In both cases, the in-

fected individuals were isolated and the outbreaks seemed to be under control. By March

1, the cumulated number of proven COVID-19 cases in Bavaria had increased to a mere

25, and the potential health risks were widely considered as minor.4

In predominantly Catholic Bavaria, the period of Lent (between Ash Wednesday and

Holy Saturday) is also a high season for the state’s famous strong-beer festivals. Several

4Bavaria’s public broadcasting service BR interviewed “patient zero” after quarantine on February
28, who said that “Although it is a new virus, it is not as bad as the flu.”.

https://www.br.de/nachrichten/bayern/coronavirus-patient-nummer-1-wie-ich-die-quarantaene-erlebte,Rrm4Ul8
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such events took place in early March, mainly in the administrative regions of Oberbay-

ern, Niederbayern, and Oberpfalz, while others were canceled due to increasing COVID-19

concerns. Two large and now infamous festivals took place in the districts Tirschenreuth

and Rosenheim, with 1,400 and 1,500 visitors, respectively.5 Another 1,500 visitors at-

tended a festival in Straubing on March 7. It did not go unnoticed by the media that

these and their neighboring districts were also most strongly a!ected by COVID-19 cases

and deaths afterwards (Lill, 2020). Given that an earlier outbreak in the North Rhine-

Westphalian district of Heinsberg had been traced back unambiguously to an indoor event

with a mere 300 visitors on February 15, the health risks of mass gatherings were already

known by the beginning of March.6

First signs of rising COVID-19 cases induced the Bavarian government to send an

email to district and community o”ces on March 4, urging election workers to “adhere

to standard practices for protection against infectious diseases such as hand hygiene,

keeping physical distance as well as cough and sneeze hygiene” (Bayerisches Staatsminis-

terium des Innern, für Sport und Integration, 2020b, p. 2). A second email on March 11

pointed out the procedures for recruiting election workers and the possibility of consoli-

dating polling locations in the event of excess absenteeism on short notice (Bayerisches

Staatsministerium des Innern, für Sport und Integration, 2020a, pp. 2–3). While the first

email leaves the provision of disinfectants at the discretion of the local health authorities,

facial masks or other protective gear are not mentioned in either email.

On March 11, the World Health Organization (WHO) publicly assessed that “COVID-

19 can be characterized as a pandemic” (WHO, 2020). At the same time, an exceptionally

close race for mayor’s o”ces in many Bavarian city and town halls spurred voters’ interest

ahead of the elections.7 Rather than shying away from the polls on March 15, voter

participation in the elections increased for the first time since 1990, from 54.7% in 2014

5The festival in Mitterteich (Tirschenreuth) took place on Saturday, March 7. The festival in Rosen-
heim was discontinued after three days on March 9. Table A.1 in the appendix lists Bavarian districts,
where at least one strong-beer festival took place in early March, as well as the estimated number of
visitors.

6Through April 2020, eight of the ten districts with the highest number of COVID-10 cases per
100,000 inhabitants are located in Bavaria. The two remaining districts are Hohenlohekreis (Baden-
Württemberg) and Heinsberg (North Rhine-Westphalia). All eight of those districts had either hosted a
strong-beer festival or are directly adjacent to one that did. (Source: Own calculations)

7According to a survey published by BR on March 14, 2020, 79% of survey participants displayed
“strong or very strong interest” in the elections, an increase of 9 percentage points relative to the elections
in 2014 (Bayerischer Rundfunk, 2020). Indeed, 16 out of 24 races for city halls, among them the five
most populous Bavarian cities, and 46% of the races for town halls were only decided in a run-o! ballot
on March 29, 2020.
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to 58.8% in 2020.

One might argue that neither the strong-beer festivals nor the district elections seemed

particularly risky at the time. While the first COVID-19 victim in Bavaria, an 80-year-old

resident of a nursing home in Würzburg, Unterfranken, died on March 12 (Bayerisches

Staatsministerium für Gesundheit und Pflege, 2020a), deaths in Rosenheim, Straubing,

and Tirschenreuth did not start to cluster until after the elections.8 The day after the vot-

ing, however, public life in Bavaria was restricted immediately. On March 16, the Bavar-

ian government declared a state-wide emergency, which eventually lasted for three months

until June 16, prohibiting public gatherings and events and closing all non-essential shops

and amenities (Bayerische Staatsregierung, 2020). Two days later, Mitterteich was sub-

jected to the first German curfew under the Infection Prevention Law, anticipating a

state-wide lockdown, which came into e!ect on March 21 and was initially foreseen to

last for only two weeks until April 3 (Bayerisches Staatsministerium für Gesundheit und

Pflege, 2020b).9

2.3 Data

The analyses presented in this paper are based on district-level (Kreis) data from Ger-

many. In 2020 the Federal Republic of Germany comprised 16 states and 401 districts, of

which 294 were rural and 107 were urban districts. The Free State of Bavaria comprised

96 districts, of which 71 were rural and 25 were urban districts, including the state capital

Munich.

We use o”cial data on registered COVID-19 cases and deaths at the district level

for January 28, 2020 through August 20, 2024 from the SARS-CoV2-Github page of the

Robert Koch-Institute (RKI).10 For each positive test result reported to the RKI, the

data contain information on the state, district, age group, sex, reporting date, date of

the first symptoms and whether the person tested has recovered or died in the meantime.

8By March 15, the Robert Koch-Institute had documented zero COVID-19-related deaths in Rosen-
heim (urban and rural district) and Straubing, 2 in Tirschenreuth, and a maximum of 7 in Würzburg.

9The state-wide lockdown restricted leaving home to absolute necessities such as going to work,
shopping groceries, visiting pharmacies, doctors and partners as well as elderly, sick or people in need
outside of hospitals and nursing homes. The general decree also granted the right to spend time outside
for the sake of physical exercise, albeit only with pets or people of the same household. Violations could
be sanctioned according to the Infection Prevention Law up to a maximum fine of e25,000 (Stroh, 2020).

10We retrieved the data on August 21, 2024. Due to di!erent sources, these data deviate from those
reported by Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland
https://systems.jhu.edu/
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Figure 2: Occurrence of COVID-19 cases by German district

(a) Cumulated cases on March 15, 2020

(b) Cumulated cases on April 4, 2020

Notes: Maps visualize the cumulated number of reported COVID-19 cases per 100,000 residents until
March 10 and April 4, 2020 for each German district. The class breaks are based on the respective
25%, 50%, 75% and 90% percentiles. We do not report data for the two excluded districts Eisenach and
Wartburgkreis.
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We excluded observations with significant discrepancies between the date of a positive

test result and the onset of symptoms. This leads to the deletion of around 1.78% of

the COVID-19 cases and around 1.45% of the COVID-19 deaths.11 Panels (a) and (b) in

Figure 2 illustrate the occurrence of COVID-19 cases by German district on March 15,

the day of the district elections, and on April 4, two weeks after the state-wide lockdown

came into e!ect in Bavaria. Additionally, Table 1 highlights the development of COVID-

19 cases and deaths in Bavarian districts compared to non-Bavarian districts. Up to

March 15, the number of cases and deaths remained relatively low in all of Germany.

However, by April 4, there was a significant increase in the average number of COVID-

19 cases reported for Bavarian districts, reaching 195.52 cases per 100,000 inhabitants,

compared to 96.17 in non-Bavarian districts. This stark increase is a clear indicator

of the virus’s rapid spread after mid-March. Furthermore, the number of COVID-19-

related deaths increased rapidly at that time in comparison to all other non-Bavarian

districts, with Bavarian districts reporting 10.50 deaths per 100,000 inhabitants by April

4, compared to 3.86 in other regions.

We refrain from using daily reported cases and deaths due to fluctuations caused

by weekly variations in testing and reporting habits, such as on weekends. Instead, we

aggregate the data. Specifically, for our analysis, we sum the daily reported cases and

deaths for each calendar week for two reasons: First, compared to cumulative data, weekly

values allow for better control of short-term shifts, such as those caused by lockdowns

or mask mandates. Second, cumulative data continually increases, making it di”cult to

assess whether the rate of spread is accelerating or decelerating. Weekly figures provide

a clearer perspective on how the spread is evolving, particularly in relation to public

health measures and therefore o!er a more accurate reflection of the current state of the

pandemic in a specific region, as it is not dependent on the past severity of the outbreak

in that region.

Data on German demographic, economic, health care and child care characteristics at

the district level come from the Federal Statistical O”ce and from the Federal Institute for

Building and Regional Planning. Summary statistics for the full list of control variables

for Bavarian and non-Bavarian districts are reported in Table 1.

The Bavarian State O”ce for Statistics provided data on voter participation in 2020

11We believe these unusual delays are likely due to reporting errors to the RKI. We applied a threshold
of 14 days for cases and 60 days for deaths when excluding data.

https://www.destatis.de/EN/Home/_node.html
https://www.inkar.de
https://www.inkar.de
https://www.kommunalwahl2020.bayern.de/
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and 2014 as well as the number of voters with ballot papers (Wahlschein) in 2020. Getting

ballot papers before the election is a prerequisite for casting the vote by mail. Neverthe-

less, the number of voters with ballot papers is not perfect for constructing the share of

voters who voted in-person or by mail, as voters can also cast their vote in person after

having received the ballot papers beforehand. We therefore mainly focus on overall voter

participation, and then separate the share of voters with ballot papers and the remaining

voters to get an idea of whether voting by mail or in-person may be driving our results.

Table 1: Summary statistics for dependent and control variables at the district level

Districts in

Variable Bavaria all but Bavaria

C
O
V
ID

-1
9 Cases until March 15 per 100,000 inhabitants 8.08 ( 7.85) 7.38 ( 14.65)

Cases until April 5 per 100,000 inhabitants 175.27 ( 108.25) 88.40 ( 62.80)

Deaths until March 15 per 100,000 inhabitants 0.17 ( 0.71) 0.09 ( 0.45)

Deaths until April 5 per 100,000 inhabitants 10.50 ( 13.75) 3.86 ( 5.03)

D
em

og
ra
p
h
ic

Inhabitants per km2 of settlement and tra”c area 1745.45 ( 1028.40) 1849.25( 1088.98)

Age structure of population

% aged under 6 5.66 ( 0.44) 5.51 ( 0.51)

% aged 6–17 10.66 ( 0.85) 10.72 ( 0.82)

% aged 18–24 7.84 ( 1.09) 7.25 ( 1.65)

% aged 25–29 6.24 ( 1.26) 5.59 ( 1.57)

% aged 30–49 25.04 ( 1.59) 24.23 ( 1.67)

% aged 50–64 23.32 ( 1.87) 23.73 ( 2.16)

% aged ≥65 21.24 ( 2.00) 22.96 ( 3.09)

Population development per 1,000 inhabitants 4.41 ( 3.43) 3.99 ( 3.16)

Female share of population 50.37 ( 0.72) 50.65 ( 0.59)

Foreign share of population 11.59 ( 4.86) 10.61 ( 5.54)

Religion

Share of catholics 0.57 ( 0.19) 0.26 ( 0.22)

Share of protestants 0.23 ( 0.17) 0.34 ( 0.17)

(continues)
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Table 1: Summary statistics continued

Districts in

Variable Bavaria all but Bavaria

H
ea
lt
h
an

d
S
oc
ia
l
is
su
es Child care participation rates

% aged 0–2 years 27.23 ( 7.30) 36.96 ( 13.05)

Hospital beds per 10,000 inhabitants 65.38 ( 54.62) 62.11 ( 32.34)

Geriatric demand and supply per 10,000 inhabitants

Elderly in need of care 411.91 ( 102.32) 547.55 ( 110.77)

Nursing home places 109.27 ( 31.87) 114.61 ( 29.19)

General physicians per 100,000 inhabitants 65.65 ( 6.82) 62.14 ( 5.69)

E
co
n
om

ic

Unemployment

Unemployment rate in % 2.87 ( 1.00) 5.27 ( 2.03)

Share of unemployed aged 55–64 27.10 ( 4.19) 23.70 ( 4.57)

Unemployment rate women in % 2.67 ( 0.95) 4.99 ( 1.94)

Employment rate 64.45 ( 2.92) 61.75 ( 4.37)

Household income per capita per month 2080.75 ( 194.20) 1905.85 ( 187.45)

GDP per capita in EUR 1,000 44.85 ( 20.71) 37.05 ( 15.65)

Commuters

% out 45.91 ( 13.19) 41.39 ( 13.20)

% in 43.22 ( 15.36) 37.35 ( 13.60)

Share of workers with academic degree 14.02 ( 6.70) 14.00 ( 6.57)

Tourism

Stays in hotels per capita 7.16 ( 7.84) 5.66 ( 7.11)

Share of stays in hotels by foreigners 16.15 ( 9.49) 13.69 ( 9.20)

Share of workers working from home 23.51 ( 3.03) 23.54 ( 3.04)

Driving time to Ischgl (in hours) 4.11 ( 0.91) 6.85 ( 1.68)

B
av
ar
ia

Voter participation in 2020 47.22 ( 6.85) –

Share of in-person voters in 2020 18.07 ( 3.05) –

Share of ballot voters in 2020 29.14 ( 7.31) –

# of strong-beer festivals 0.14 ( 0.49) –

Notes: Unweighted sample means with standard deviation in parentheses. In the SCM analysis and
some regression specifications, we include administrative and structural district-type dummies.

Alipour et al. (2023, 2021) and Felbermayr et al. (2021) shared their data on the

share of employees working from home and di!erent measures of the distance to Ischgl

at the district level, respectively.12 For the analysis in this paper, we generated our own

measure of the driving time in hours between Ischgl and the administrative center of each

12We are grateful to the respective authors for sharing their data.
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German district based on the “preferred route” in openrouteservice.org. Its correlation

with the driving time measure in Felbermayr et al. (2021) is 0.99 for all German and 0.96

for Bavarian districts.

2.4 Methods

We use two di!erent approaches to investigate whether the Bavarian local elections in

March 2020 played a role in the disproportionate increase in COVID-19 cases in Bavaria

until mid-April.

2.4.1 Synthetic Control Method

We consider district-level data on COVID-19 cases per 100,000 residents as our outcome

and employ the Synthetic Control Method (SCM) for causal inference in comparative

case studies as developed in Abadie and Gardeazabal (2003), Abadie et al. (2010) and

Abadie et al. (2015). We define the potential e!ect of the election ϑi,t as

ϑi,t = Y Treat
i,t − Y C

i,t for all t > T0, (1)

where subscript i = 1, ...,K denotes theK Bavarian districts exposed to the intervention at

time t. We di!erentiate the time period t = 1, . . . , T in a pre-treatment period t = 1, . . . , T0

and a post-treatment period t = T0 + 1, . . . , T .13 Y Treat
i,t denotes the outcome for a district

i at time t that was exposed to the intervention, while Y C
i,t denotes the counterfactual

outcome without the intervention for district i at time t. Given that we do not observe

the counterfactual, we impute Y C
i,t by a weighted average of the outcomes from all non-

Bavarian districts j = 1, ..., J , which are also known as “donor units”:

Y
C
i,t=1 = J⩀

j=1
wj ⋊ Yj,t=1. (2)

The vector of weights W = {w1, . . . , wJ} is derived numerically by solving the following

minimization problem:

min ⌜ N⩀
m=1

vm(Xi,m −Xj,mW )2⌝ , (3)

13The pre-treatment period starts with calendar week 6, which is the first full week after the first
reported COVID-19 case in Germany on January 28. The post-treatment period ends with calendar
week 27 in 2020.

https://maps.openrouteservice.org
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where wj ≧ 0 for j = 1, . . . , J and ⊍J
j=1wj = 1. The factor vm is a weight that reflects

the importance of the mth variable from our set of predictor variables (Xm,with m =
1, . . . ,N) used to measure the distance between the treated and the control districts.

The predictor weights Vm = (v1, ..., vN) are determined by minimizing the mean squared

prediction error for the pre-treatment period, i.e.

min ⌜ T0⩀
t=1
(Yi,t − ( J⩀

j=1
wi(V )Yj,t))2⌝ . (4)

In addition to the variables shown in Table 1, we include the values of weekly cases and

deaths per 100,000 residents from the weeks leading up to the election day as additional

predictors in our SCM approaches.

Following Cavallo et al. (2013), we extend the one unit synthetical treatment analysis

by repeating the calculation for each Bavarian district i = 1, . . . ,K while excluding all

other treated districts from the pool of donor units. We then compute the average

treatment e!ect on the treated as follows:

ATTt = 1

K

K⩀
i=1

ϑi,t. (5)

To assess the statistical significance of our results, we conduct placebo tests and estimate

the same model for each untreated district, treating it as if it had received the intervention.

For better comparability, we standardize both the individual treatment e!ects and the

placebo e!ects by dividing all estimates by their corresponding pre-treatment match

quality, yielding standardized (studentized) measures. The resulting adjusted p-values

represent the proportion of placebo estimates that produce an e!ect at least as large as

the ATT.14

Another way to assess the validity of the measured e!ect is to analyze the ratio of

the root mean squared prediction error (RMSPE) from the pre-treatment period to the

RMSPE from the post-election period. This ratio provides a meaningful metric because,

as Abadie et al. (2015) states, ”[a] large post-intervention RMSPE is not indicative of

a large e!ect of the intervention if the synthetic control does not closely reproduce the

outcome of interest prior to the intervention. That is, a large post-intervention RMSPE

14For our SCM analysis, we use the STATA packages synth by Abadie et al. (2015) and synth runner
by Galiani and Quistor! (2017).
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is not indicative of a large e!ect of the intervention if the pre-intervention RMSPE is

also large.” (p. 505). To illustrate this, we present boxplots of these ratios for both the

placebo (non-Bavarian) districts and the Bavarian districts.

For our baseline analysis of COVID-19 cases and deaths, we limit our donor pool to

299 districts. We exclude Ludwigshafen am Rhein, Pirmasens, Germersheim, and Rhein-

Pfalz-Kreis due to missing data for some predictor variables. Additionally, we exclude

Stadtkreis Eisenach and Wartburgkreis because the former was merged into the latter in

July 2021, and some of our sources report data separately for both, while others report

only for Wartburgkreis. We also remove Stadtkreis Jena because this district was one

of the first to mandate face masks in public on April 2nd. Furthermore, we exclude all

Bavarian districts that hosted a strong-beer festival before the election (see Table A.1),

as we expect that the spread of COVID in these districts was significantly impacted by

the festivals. This leaves us with 87 treated units in our baseline specification.

2.4.2 Within-State Regression Analysis

In our second approach we restrict our analysis to data from within Bavaria and investi-

gate whether COVID-19 cases and deaths after the election on March 15, 2020 developed

di!erently depending on voter participation. Voter participation is meant to capture the

“intensity of the election” and the population’s exposure to physical interaction due to

the election. Importantly, our main measure comprises all voters (in-person and mail)

and it thus may not only capture the e!ect of casting the vote at the ballot box but could

also capture e!ects of other events surrounding the election that are related to higher

overall voter participation. In order to investigate whether the e!ect can be attributed

to casting the vote in person, we later include a proxy for the share of in-person voters.

The dependent variables are the number of COVID-19 cases and deaths, respectively,

between Sunday, March 15 and Sunday, April 5, two weeks after the state-wide lockdown

came into e!ect on March 21. To address the fact that di!erent districts were in di!erent

phases of the pandemic at the time of the election, we control for the number of of COVID-

19 cases and deaths per 100,000 inhabitants between March 1 and March 15. Like in the

SCM approach, we further control for di!erences in demographic, economic, health and

child care characteristics across districts and acknowledge findings in the literature on

drivers of COVID-19 cases and deaths across Germany by controlling for route distances
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to the Austrian ski resort Ischgl (Felbermayr et al., 2021), measured by the driving time

in hours, and the share of employees ever working from home (Alipour et al., 2023, 2021)

for each district.

In some specifications, we also include administrative (i.e. Kreisfreie Stadt or Land-

kreis) and structural dummy variables identifying district types (i.e. city, urban, ru-

ral, and sparse) according to the classification of the Federal Institute for Research on

Building, Urban A!airs and Spatial Development (Bundesinstitut für Bau-, Stadt- und

Raumforschung, BBSR). The final specifications control for the number of confirmed

strong-beer festivals held in Bavarian municipalities in early March 2020.15

This yields the following regression model for the di!erences in cases between March

15 and April 5 per 100,000 inhabitants for every Bavarian district i:

#Casesi,April 5⌐March 15 = ω+ε ⋊V oteri+ϖ ⋊#Casesi,March 15⌐March 1+Xi ⋊ϑ+ϱ ⋊Beeri+ςi, (6)
where ω denotes a common intercept, ε the coe”cient of interest on voter participation

in the Bavarian municipal elections, ϖ the coe”cient on the di!erence of known cases in

district i between March 1 and March 15, and ϑ a vector of coe”cients pertaining to the

district-level control variables in the matrix Xi. Equation 6 is estimated by ordinary least

squares (OLS) with White (1980) robust standard errors. In the model for COVID-19-

related deaths, we merely substitute #Casesi,April 5⌐March 15 for #Deathsi,April 5⌐March 15.

2.5 Results

This section presents the empirical evidence based on the econometric approaches dis-

cussed above.

2.5.1 Synthetic Control Results

Figure 3 displays the SCM results for the district elections in Bavaria on March 15 for

the number of weekly COVID-19 cases per 100,000. In panel a), the comparison of the

evolution of cases for an average Bavarian district with the evolution for an average

synthetic control district suggests a good fit (RMSPE=0.007) during the pre-treatment

period from calendar week 6 until 11 2020. At the same time, we observe a widening

15Table 1 and A.1 reports summary statistics for the control variables used in the regression analysis
and the Bavarian municipalities hosting strong-beer festivals in March 2020, respectively.
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Figure 3: SCM - Cases per 100,000 inhabitants

a) Development COVID-19 Cases Bavaria and Synthetic Control

b) Adjusted p-values

Notes: Graph in Panel a shows the development of COVID-19 cases per week per 100,000 residents
(black line) for each of the 87 Bavarian districts considered together with its synthetic counterpart
(dashed line). Panel b plots the adjusted p-values for every week after the election.



25

gap after calendar week 11. As expected, COVID-19 cases in Bavaria start to increase

relative to the respective synthetic control districts, albeit with some delay. This delay is

expected, as the estimated median incubation period for the then-dominant Alpha variant

of the virus is around five days. Furthermore, 97.5% of those who develop symptoms will

do so within around 12 days after an infection (see, e.g. Lauer et al., 2020; Linton et al.,

2020). Starting at one week after and clearly visible at two weeks after the election, we

observe an increasing di!erence, which may be interpreted as the treatment e!ect on

the treated. Regarding the estimated di!erence in calendar week 13, we find that about

20 per 100,000 or more than one-third of the total increase in COVID-19 cases are not

explained by district-level demographic, economic, health and child care characteristics,

nor the distance to Ischgl.

Table A.2 in the Appendix lists, for each Bavarian district, the three districts that

contribute the largest weights in the synthetic control. While most districts have more

than three contributing donors, the top three collectively account for at least two-thirds

of the total weight. Additionally, Table A.3 shows that districts in neighboring federal

states, such as Baden-Württemberg (BW) and Hesse (HE), frequently rank among the

top three donors. Districts from more distant states, including Lower Saxony (NS) and

Rhineland-Palatinate (RP), are also among the highest contributors.

Figure A.1 shows the estimated e!ect for each of the 87 Bavarian districts considered.

Although some districts (like Unterallgäu or Kempten) have no di!erence and one district

(Memmingen) reports a slightly negative di!erence around two weeks after the election,

most of the districts have a pattern comparable to the average treatment e!ect on the

treated observed in Figure 3.

To investigate whether the observed di!erence may result of chance, we ran placebo-

in-space tests. For these, the districts of the other 15 German states are treated as treated

units. These pseudo-treatment e!ects are then used to construct adjusted p-values that

capture the probability of a larger treatment e!ect than the one observed for Bavaria.

The adjusted p-values plotted in Figure 3, panel b) indicate that the increase in COVID-

19 cases in Bavarian districts did not happen by pure chance, but is likely related to an

event in mid-March of 2020.

Figure 4 presents two boxplots - one for the ratio from the placebo SCMs, where we

define the actually not a!ected districts as treated, and one from the SCMs for a!ected
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districts. Although some of the non-a!ected districts report a relatively high ratio, we

see that the quartiles of the Bavarian districts are always higher than the quartiles of

the non-a!ected districts. A one-sided t-test clearly rejects the null hypothesis that the

di!erence in the average of the ratios is equal to zero in favor of the alternative that the

ratio for Bavarian districts is on average higher (p-value=0.002).

As an additional sensitivity analysis, we assigned a hypothetical treatment date to

March 1, two weeks before the actual elections. As Figure A.2 indicates, there are no

di!erences between the average Bavarian district and the average synthetic control before

March 20 and a clear spread two weeks after the election, suggesting that the di!erence

occurred due to the election or other events close in time, and not due to earlier events.

In an additional placebo approach, we applied the same SCM procedure to a hypo-

thetical election set for mid-March 2022 in Bavaria.16 During this period, both the Delta

and Omicron variants of COVID-19 were spreading widely in Germany (Tolksdorf et al.,

2022). To account for these developments, we extended the pre-treatment period com-

pared to our main analysis to begin already in calendar week 40 of 2021. Figure A.3 in

the appendix shows no significant change in the number of registered COVID-19 cases

following the placebo election in mid-March 2022, though the overall pre-treatment fit

appears worse than in the baseline analysis. However, the ratio of post- to pre-RMSPE

is equal to 0.58. A potential limitation of this approach could be variations in testing

behavior. However, we do not anticipate significant di!erences in testing behavior in our

baseline setting, given the early stage of the pandemic in Germany in March 2020. Yet,

two years later, variations in testing practices across districts or federal states may have

emerged. Nevertheless, it seems unlikely that potential di!erences in testing behavior in

the spring of 2022 obscure systematic disparities in the spread of COVID-19 in Bavaria

compared to the rest of Germany after March 15, 2022.

A potential confounder for the e!ects of the election on March 15, 2020 could be other

super spreader events such as carnival parties or strong-beer festivals, that occurred close

in time to the election. Unfortunately, we lack reliable data to control for such other super

spreader events generally. However, we collected information on strong-beer festivals and

excluded districts with strong-beer festivals to avoid confounding the election e!ect with

16We selected mid-March 2022 (calendar week 11) instead of mid-March 2021 for this placebo election
because three federal states with the highest number of districts among the top three donors from the
baseline SCM analysis (Baden-Württemberg, Rhineland-Palatinate, and Hesse) held regional elections
in March 2021.
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Figure 4: Boxplots for the RMSPE-Ratio – cases

Notes: Graph includes two boxplots of the pre-treatment to post-treatment ratio of the RMSPE for all
donor districts and all Bavarian districts.

the e!ect of strong-beer festivals. When we instead include these districts, the average

treatment e!ects are larger, see Figure A.4 with an estimated e!ect of about 28 cases

per 100,000 residents two weeks after the election for districts with strong-beer festivals,

compared to an e!ect of 20 cases from the baseline analysis. This possibly indicates that

strong-beer festivals and elections had re-enforcing e!ects.17

Another robustness test aims to address the relatively short pre-treatment period in

our baseline setting (5 weeks) compared to the large number of potential donors. When

the pre-treatment period is limited and many donors are included, random events in the

data can create a misleading appearance of a good fit (Abadie, 2021). To reduce this risk

of over-fitting, we applied the SCM approach at the federal level rather than the district

level. Here, Bavaria serves as the treatment unit, while the donor pool consists of the

other 15 federal states. Figure A.5 shows a development comparable to the baseline and

to the specification including the strong-beer districts. The estimated e!ect two weeks

post-election is approximately 28 cases per 100,000 residents.

As a final robustness check, we applied the Synthetic Di!erence-in-Di!erences (SDiD)

17An analysis that includes the city of Jena in the donor pool yields results comparable to the baseline.
Results are available upon request.
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approach developed by Arkhangelsky et al. (2021). Like the SCM, SDiD reweights and

aligns pre-exposure trends, minimizing reliance on parallel trend assumptions. Similar

to di!erence-in-di!erences, it is una!ected by additive unit-level shifts and enables valid

inference in large-panel contexts.18 By reapplying our baseline setting (once again exclud-

ing districts with strong-beer festivals), Figure A.6 illustrates a widening gap following

the election held in calendar week 11. Note that the SDiD method does not require the

synthetic counterpart to be identical to the treated unit in the pre-treatment period.

The estimated di!erence two weeks post-election is approximately 33 cases per 100,000

people, and the treatment e!ect estimate for the entire post-treatment period suggests

that Bavarian districts faced about 24 additional cases in each post-treatment week.

Figure 5 illustrates the progression of weekly COVID-19-related deaths in the average

Bavarian district compared to the average synthetic control (panel a) and shows the

adjusted p-values for testing the null hypothesis of no systematic di!erence in trends

(panel b). Tables A.4 and A.5 in the appendix display the top three donors along with

their respective federal states. Contrary to expectations based on an estimated time-lag

of around 16 days (95% CI: 13–19 days) between infection and death due to COVID-19

(Khalili et al., 2020), Figure 5 suggests that COVID-19-related deaths begin to rise more

in Bavaria than in the average control district even before the election. Figure 5, panel b),

however, indicates that the observed di!erences for the COVID-19 related deaths could

just be appearing by chance and should not be interpreted as significant. This result may

be due to limitations of the synthetic control method in identifying appropriate control

districts for COVID-19 deaths, as there were very few deaths before March 15 — many

Bavarian districts had none — and the evolution of other predictors was insu”cient to

create reliable synthetic control units. This assumption is supported by examining the

results for each Bavarian district individually, as shown in Figure A.7 in the appendix.

While reported COVID-19 deaths in Germany increase noticeably after mid-March (see

Figure 1), nearly all Bavarian districts have synthetic counterparts with an almost flat

line of COVID-19 deaths.

Given the estimated lag between COVID-19 symptom onset and death, we conducted

an additional SCM analysis for COVID-19 deaths, designating the treatment period to

18Unlike the baseline procedure using the synth runner package, the Stata package sdid by Clarke et
al. (2023), employed for our SDiD analyses, first constructs an average Bavarian district before creating
a synthetic counterpart from other German districts for comparison. This feature serves as an additional
sensitivity aspect of the SDiD approach compared to the SCM.
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Figure 5: SCM – Deaths per 100,000 inhabitants

a) Development of COVID-19 Deaths Bavaria and Synthetic Control

b) Adjusted p-values

Notes: Graph in Panel a shows the development of COVID-19 deaths per week per 100,000 residents
(black line) for each of the 87 Bavarian districts considered together with its synthetic counterpart
(dashed line). Panel b plots the adjusted p-values for every week after the election.
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start two weeks after the election. We chose a two-week lag based on the lower boundary

of the time-lag estimated by Khalili et al. (2020) of 13 days. This approach further

enables us to incorporate the number of COVID-19-related deaths before calendar week

13 as an additional predictor. The results shown in Figure 6 are inconclusive. Although

panel a displays a noticeable divergence in deaths per 100,000 residents after calendar

week 13, the pre-treatment fit appears poor. Additionally, the adjusted p-values in panel

b suggest that the observed di!erences may be due to random variation. We interpret

these findings as being impacted by the low variation in the number of deaths per 100,000

residents at the beginning of the pandemic in Germany, where regional events likely have

a significant e!ect on the overall results.19

2.5.2 Within-State Regression Results

While the results based on the SCM in Section 2.5.1 strongly suggest an unexpectedly

large increase of COVID-19 cases in Bavaria relative to the synthetic control districts,

these di!erences may not necessarily be driven by the election but could reflect other

unobserved di!erences between the Bavarian districts and their synthetic controls. Fur-

thermore, the SCM approach was not able to deliver reliable results for e!ects of the

election on COVID-19-related deaths. In this section, we therefore try to isolate the ef-

fect of the municipal elections by regressing the increase in COVID-19 cases and deaths on

the number of voters per population as a measure of the elections’ “treatment intensity”,

while again controlling for demographic, economic, health and child care characteristics as

well as other candidate variables that may help explain the spread of COVID-19. Table 2

and Table 3 report the results for four di!erent specifications of Equation (6) for increase

in cases and deaths between March 15 and April 5 (three weeks after the election and two

weeks after the lockdown was imposed), respectively. All regressions are estimated by

OLS at the district level. Furthermore, Figure 7 explores the development of the election

e!ect over time for cases/100,000 (panel a) and deaths/100,000 inhabitants (panel b).

All specifications in Tables 2 and 3 include the number of COVID-19 cases between

March 1 and March 15 to control for the epidemiological state of a given district, the

share of employees ever working from home, and the driving time to Ischgl in hours.

The latter two have been shown to explain the spread of the pandemic across German

19Additional analyses in line with the sensitivity checks for COVID-19 cases were performed. They
align with the inconclusive results of the baseline specification. These results are available upon request.
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Figure 6: SCM for Deaths with two weeks time-lag

a) Development of COVID-19 Deaths Bavaria and Synthetic Control

b) Adjusted p-values

Notes: Graph in Panel a shows the development of COVID-19 deaths per week per 100,000 residents
(black line) for each Bavarian district considered together with its synthetic counterpart (dashed line).
Panel b plots the adjusted p-values for every week after the calendar week 13 2020.
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districts in Alipour et al. (2023, 2021) and Felbermayr et al. (2021), respectively. Note

that the coe”cient of main interest is on voter participation in the Bavarian municipal

elections on March 15, measured as the number of actual voters per population in percent.

Accordingly, the point estimate of this coe”cient can be interpreted as the increase in the

number of COVID-19 cases and deaths, respectively, per 100,000 inhabitants associated

with a 1 percentage point-increase in overall voter participation.

In specification (1) in Table 2, this point estimate equals 15.0 cases per 100,000 inhab-

itants and is statistically significant at the 5% level. While the coe”cient on the working

from home index is positive and not statistically di!erent from zero, the estimate for

distance to Ischgl has the expected negative sign and is statistically significant at the

10% level, indicating that a 1-hour-increase in the driving time to Ischgl reduces the

increase in COVID-19 cases by 49.1 cases per 100,000 inhabitants.

In specification (2), we furthermore account for unobserved characteristics that may

be common to Kreisfreie Städte as opposed to Landkreise or common to city, urban,

rural, and sparsely populated districts, respectively. When including administrative and

structural district-type dummies, the coe”cient estimate on voter participation stays

almost the same, while its standard error increases slightly. In Table 3 the point estimate

decreases from 2.19 to 1.98 COVID-19-related deaths per 100,000 inhabitants, when

adding administrative and structural district-type dummies, without any e!ect on the

level of statistical significance.

In specification (3), we add the number of confirmed strong-beer festivals held in sev-

eral Bavarian municipalities in early March (see Table A.1). While this reduces the point

estimate of the coe”cients on voter participation in Tables 2 and 3, it also accounts for

some of the unexplained variance in the regressions and reduces thus the standard error

of the coe”cients, which remain statistically significant at the 5%, respectively. It is im-

portant to note the large positive and statistically significant coe”cient on beerfestival,

which suggests that one such event raised the number of COVID-19 cases and deaths

between March 15 and April 5 in the hosting district by 97.1 and 9.04, respectively, per

100,000 inhabitants. Note also that the coe”cient estimate associated with the distance

to Ischgl in both tables reduces drastically and becomes statistically insignificant, sug-

gesting that within Bavaria the distance to Ischgl (as a proxy for skiing tourism) is not

as important as in the Germany-wide analysis conducted by Felbermayr et al. (2021).
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Table 2: Increase in COVID-19 cases/100,000 between March 15 and April 5

(1) (2) (3) (4)

#CasesMarch15⌐March1 4.35* (2.44) 4.54* (2.44) 4.30* (2.26) 4.19* (2.44)

V oters ⌜ pop. 15.0** (6.35) 15.0** (6.44) 12.8** (5.10)

In ⌐ person voters ⌜ pop. 10.7 (8.59)

Ballot papers ⌜ pop. 12.8** (5.10)

Working from home 2.39 (10.91) 3.98 (11.55) 2.99 (8.31) 2.84 (8.44)

Distance from Ischgl -49.1* (25.45) -45.8* (26.82) -20.5 (22.07) -23.9 (24.53)

Beer festival 97.1*** (24.92) 97.7*** (25.07)

N 96 96 96 96

adj. R2 0.236 0.252 0.459 0.451

Demographic Y Y Y Y

Economic Y Y Y Y

H&C care Y Y Y Y

District type dummies N Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. #CasesMarch 15- March 1 denotes the number of COVID-19 cases per
100,000 residents up to date x. Beer festival measures the number of confirmed strong-beer festivals
held in a given district in March 2020 (see Table A.1). V oter⌜pop. denotes the number of voters in the
Bavarian municipal elections on March 15, 2020 relative to the population. Demographic, Economic,
and H&C care denote demographic, economic, health care and social care controls at the district level.
District type dummies denotes administrative and structural classifications by the Bundesinstitut fuer
Bau-, Stadt- und Raumforschung (BBSR). The complete set of control variables is listed in Table 1. We
do not report the intercept in the table.

Based on specification (3) Figure 7 explores the development of the association of

voter participation and COVID-19 cases (panel a) and deaths (panel b) over time. The

figure displays coe”cient estimates and 90% confidence intervals of the voter participation

variable for the di!erence in cases (deaths) of any day between March 10 and April 05

and March 15, i.e., election day. The results align nicely with the ones reported in Section

2.5.1. For cases, the association is significantly di!erent from zero at the 10%-level on

March 24 and for all days after March 26. For deaths, the association is significant

at the 10%-level after April 01. That the associations are only continuously significant

starting roughly two weeks after the election for cases and three weeks later for deaths

is as expected given the incubation time of the virus and the time lag between infection

and death.
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Figure 7: E!ect of voter participation over time

a) COVID-19 Cases/100,000 inhabitants

b) COVID-19-related Deaths/100,000 inhabitants

Notes: The figure displays coe”cient estimates and 90% confidence intervals of the voter participation
variable for the di!erence in cumulated cases (deaths) of any day after March 15 and April 05.
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Table 3: Increase in COVID-19 deaths/100,000 between March 15 and April 5

(1) (2) (3) (4)

#CasesMarch15⌐March1 0.42 (0.37) 0.43 (0.37) 0.40 (0.35) 0.40 (0.37)

V oters ⌜ pop. 2.19** (0.87) 1.98** (0.92) 1.78** (0.83)

In ⌐ person voters ⌜ pop. 1.75 (1.24)

Ballot papers ⌜ pop. 1.78** (0.83)

Working from home -0.15 (1.29) -0.41 (1.53) -0.51 (1.32) -0.51 (1.33)

Distance from Ischgl -2.51 (3.06) -3.35 (3.15) -0.99 (2.77) -1.03 (2.97)

Beer festival 9.04*** (2.94) 9.05*** (2.94)

N 96 96 96 96

adj. R2 0.219 0.245 0.350 0.339

Demographic Y Y Y Y

Economic Y Y Y Y

H&C care Y Y Y Y

District type dummies N Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. #CasesMarch 15- March 1 denotes the number of COVID-19 cases per
100,000 residents up to date x. Beer festival measures the number of confirmed strong-beer festivals
held in a given district in March 2020 (see Table A.1). V oter⌜pop. denotes the number of voters in the
Bavarian municipal elections on March 15, 2020 relative to the population. Demographic, Economic,
and H&C care denote demographic, economic, health care and social care controls at the district level.
District type dummies denotes administrative and structural classifications by the Bundesinstitut fuer
Bau-, Stadt- und Raumforschung (BBSR). The complete set of control variables is listed in Table 1. We
do not report the intercept in the table.

In order to quantify the potential e!ects of the regional elections, consider specification

(3), which includes all district-level control and dummy variables as well as the number of

beer festivals. The coe”cient estimates in Tables 2 and 3 imply that a 1 percentage point

increase in voter participation is associated with an additional 12.8 COVID-19 cases and

1.8 COVID-19-related deaths per 100,000 inhabitants, translating to roughly 1,680 cases

and 236 deaths at the state level between March 15 and April 5.

In order to interpret our results causally, we have to assume that the variation in

voter participation across districts was exogenous and not related to unobservable factors

that also influenced the number of COVID-19 cases and deaths. For example, a potential

worry is that in districts in which people were more concerned about or aware of the

virus, voter participation could have been lower and at the same time, the virus spread
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less quickly because people were more prudent. If this was the case, our coe”cient would

be biased upwards. However, as we focus on overall voter participation and voters had

the option of casting their vote by mail, this worry seems less important. Quite to the

contrary, one might argue that voter participation is generally higher in areas in which

people are more law-abiding and thus also more likely to abide to lockdown measures,

which would bias our estimate downward. This argument is further supported by results

presented in Appendix Table A.6. This table displays the conditional association of voter

participation in the run-o! ballots that took place exclusively by mail-in voting in 84 of

the 96 districts on March 29 and the development of cases and deaths in the 20 days

following the run-o!s. Controlling for the development of cases up to the date of the

run-o! ballot in addition to the controls of our main specification, we see a negative

association between voter participation and the development of cases and deaths in the

20 days following the run-o!. This may be driven by higher participation in districts

with more law-abiding inhabitants.

As a placebo analysis, we further tested our analysis by examining the relationship

between voter participation in the main election on March 15 and the progression of

COVID-19 cases and deaths between June 7 and 21, 2020, using the same control variables

as in our main estimation. We find no statistically significant association between voter

participation and COVID-19 cases (column (3b) in Table 4) or deaths (column (3b) in

Table 5).20

Another interesting aspect is how di!erent age groups were a!ected by the election.

Figure 8 reports the estimated coe”cients and their 90%-confidence intervals of the voter

participation variable on the development of COVID-19 cases and deaths for di!erent

age groups. Tables A.7 and A.8 in the Appendix display the full regression results. Panel

a) shows that the e!ect on cases is significantly di!erent from 0 at the 10%-level only

for the age group from 35 to 59 years. The e!ects on deaths are only significant for the

oldest (aged 80+) which is not surprising given the higher death rate in this group. As

Table A.8 in the Appendix indicates, for other age groups there are no significant e!ects

on death at the 10% -level.

20We have thought about and tried various instruments in order to account for the potential endo-
geneity of our main variable of interest. Unfortunately, all of our potential instruments, which were
voter participation in the last Bavarian municipal elections in 2014, weather on election day, and ex-
pected tightness of the election outcome, turned out to be weak instruments. Given that we only have
96 observations, we thus refrained from further pursuing this route.
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Figure 8: Heterogeneity by age of e!ect of voter participation over time

a) COVID-19 Cases/100,000 inhabitants

b) COVID-19-related Deaths/100,000 inhabitants

Notes: The figure presents coe”cient estimates and 90% confidence intervals for the voter participation
variable, showing the di!erence in cases (deaths) for each day after March 15 and April 5 across age
groups. As no COVID-19-related deaths were observed among children under 15, the two youngest age
groups are not relevant for COVID-19 mortality outcomes.
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Table 4: Robustness checks of specification (3) for COVID-19 cases

(3) (3a) (3b) (3c)

#CasesMarch 15- March 1 4.30* 3.26***

(2.26) (0.35)

#CasesJune 07- May 24 0.36***

(0.12)

ln(#CasesMarch 15- March 1) 0.014

(0.08)

V oters ⌜ pop. 12.8** 8.23** 0.24 0.075***

(5.10) (3.76) (0.25) (0.02)

Working from home 2.99 13.0** 0.52 -0.0081

(8.31) (6.40) (0.47) (0.06)

Distance from Ischgl -20.5 -19.9 -0.35 -0.19

(22.07) (16.68) (1.81) (0.16)

Beer festival 97.1*** 59.2*** 1.08 0.40***

(24.92) (17.31) (0.94) (0.12)

N 96 96 96 90

adj. R2 0.459 0.736 0.108 0.448

Demographic Y Y Y Y

Economic Y Y Y Y

H&C care Y Y Y Y

District type dummies Y Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. (3) repeats the main results from Table 2. (3a) replicates (3) for the
day of first symptoms reported by the RKI. (3b) represents a Placebo test of (3), where we consider a
counterfactual election day on June 7, 2020. (3c) replicates (3) in logarithms rather than levels of the
cumulated increase of COVID-19 cases between March 15 and April 5 of 2020, i.e. the dependent variable
is log (#CasesApril 5−March 15). We do not report the intercept in the table.



39

Table 5: Robustness checks of specification (3) for COVID-19 deaths

(3) (3a) (3b) (3c)

#CasesMarch 15- March 1 0.40 0.41***

(0.35) (0.10)

#CasesJune 07- May 24 0.0040

(0.01)

ln(#CasesMarch 15- March 1) -0.093

(0.15)

V oters ⌜ pop. 1.78** 0.94 -0.0063 0.15**

(0.83) (0.59) (0.01) (0.06)

Working from home -0.51 0.55 0.027 -0.015

(1.32) (1.08) (0.03) (0.14)

Distance from Ischgl -0.99 -0.95 0.067 -0.19

(2.77) (2.77) (0.06) (0.34)

Beer festival 9.04*** 5.53*** 0.023 0.61***

(2.94) (1.84) (0.03) (0.19)

N 96 96 96 87

adj. R2 0.350 0.652 0.018 0.303

Demographic Y Y Y Y

Economic Y Y Y Y

H&C care Y Y Y Y

District type dummies Y Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. (3) repeats the main results from Table 2. (3a) replicates (3) for the
day of first symptoms reported by the RKI. (3b) represents a Placebo test of (3), where we consider
a counterfactual election day on June 7, 2020. (3c) replicates (3) in logarithms rather than levels of
the cumulated increase of COVID-19 deaths between March 15 and April 5 of 2020, i.e. the dependent
variable is log (#DeathsApril 5−March 15). We do not report the intercept in the table.
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So far, we have only looked at the e!ect of overall voter participation, which includes

voters voting in person and voting by mail. In specification (4), we separately include the

share of voters with ballot papers (i.e., those who may have voted by mail) and the the

share of voters who voted in person (all voter minus those with ballot papers). As column

(4) of Tables 2 and 3 shows both voter participation measures are positively associated

with the increase in cases and deaths after the election. We interpret these results to

suggest that not only the act of casting the vote in person but also likely other events

surrounding the election, such as more intense election campaigning (in line with the

results of Cipullo & Le Moglie, 2022) in districts with higher voter participation or more

intense interactions while counting votes in districts with higher voter participation may

be captured in the estimated e!ect.

As a robustness check, we consider the date of first symptoms reported to the RKI

rather than the reporting date as the relevant time for computing the increase in COVID-

19-related cases and deaths. Although the date of first symptoms might seem preferable

from a medical perspective, as it is arguably closer to the date of the infection, it is

also subject to larger measurement error for at least three reasons. First, the dating

hinges on the patients’ ability to recollect and correctly judge the beginning of COVID-

19 symptoms. Second, the date of first symptoms reported to the RKI is likely based

on information by third parties, such as family members or nursing home sta!, in case

of a medical emergency. Third, when persons without symptoms are tested positively,

the date of first symptoms is not meaningful and coincides with the reporting date by

definition. These caveats are illustrated in Figure A.8 in the Appendix, which plots

the absolute number of cases and deaths by the delay in days between the date of first

symptoms and the reporting date for cases in Germany. When the delay is positive,

this indicates that symptoms started before the person was tested positive. For both

cases and deaths, there is a pronounced peak at 0. This arises as the reporting date is

used as date of first symptoms if the latter is unknown. In the vast majority of cases,

the date of first symptoms occurred fewer than ten days before a positive test result.

Column (3a) in Table 4 and Table 5 presents the regression results for COVID-19 cases

and deaths, respectively, using the same control variables as in our baseline specification.

The findings for cases reinforce the previous results, showing a positive e!ect significant

on the 5%-level. However, the estimator for deaths decreases in magnitude and loses
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significance at any conventional level. This is likely because, at that time, the day of

infection is probably not closely aligned with the day of death but rather with the onset

of symptoms in the deceased individual. This could also explain why the pre-election

di!erence in deaths now becomes significant.

The remaining columns of Tables 4 and 5 report results of a placebo analysis in

time, already discussed above (columns, 3b in each Table), and use the logarithm of the

outcome instead of the absolute change in cases and deaths. It’s reassuring to see no

association of voter participation in March and development of cases/deaths in June of

2020 as this suggests that voter participation is not taking up some other unobserved

factor at the district level that determines the spread of COVID. At the same time, the

results are robust to the log-transformation of the dependent variable.

In further analyses not reported here, we explore whether there is spatial dependence

between the error terms across districts. As the lockdown became e!ective not long after

election day, it’s not surprising that Moran’s I test suggests no spatial correlation.21

2.6 Conclusion

This paper quantifies the toll of voting in a pandemic by considering the case of the

Bavarian municipal elections on March 15, 2020. In contrast to the subsequent run-o!

ballots, which were held on March 29 using postal ballots only, a substantial share of the

ten million eligible voters voted at local polling stations, while public life was severely

restricted on the very next day.

Using synthetic controls matched on a host of district-level demographic, economic,

health care and child care characteristics as well as the distance to Ischgl, we show

that Bavaria su!ered an unexpectedly large increase in COVID-19 cases after March

15. To closer link the e!ect to the election, we further regress the increase in cases and

deaths on voter participation as a measure for the “treatment intensity” of the elections

across Bavaria’s 96 districts, while again controlling for demographic, economic, health

care and child care characteristics as well as the distance to Ischgl and the number of

confirmed strong-beer festivals held in March in several municipalities. In the most con-

servative specification, which includes administrative and structural district-type dummy

variables, our OLS analysis reveals a 1 percentage point increase in voter participation

21Results available upon request.
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across Bavarian districts is associated with an additional 12.8 positive test results and

1.8 deaths per 100,000 inhabitants or 1,680 positive test results and 236 deaths at the

state level between March 15 and April 5. Importantly, di!erent from other papers, our

measure of voting intensity does not only capture in-person voting but relies on overall

voter participation, including in-person and voting by mail. When we include the two

separately, both seem to be positively related to the spread of COVID-19. This suggests

that not only the act of casting the vote but also other events related to the election

on election day or closely before or after – possibly interaction between election workers

counting the votes or campaigning e!orts shortly before election day – have contributed

to the spread of COVID 19 in Bavaria.

We conclude that the unfortunate timing of the municipal elections “at the dawn of

a global pandemic” (Leininger & Schaub, 2023) has likely contributed to the spread of

the at that time novel corona virus in Bavaria.
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Appendix

Table A.1: Bavarian municipalities hosting strong-beer festivals in March 2020

Municipality Type Venue Date Visitors

Neustadt a. d. Waldnaab Landkreis Flossenbürg March 7 —

Neustadt a. d. Waldnaab Landkreis Pressath March 7 —

Mühldorf a. Inn Landkreis Neumarkt-Sankt Veit March 7 —

Rosenheim Kreisfreie Stadt Rosenheim March 6–8 1,500/day

Rosenheim Landkreis Rosenheim March 6–8 1,500/day

Rottal-Inn Landkreis Pfarrkirch March 7 —

Schwandorf Landkreis Wackersdorf March 7 —

Straubing Kreisfreie Stadt Straubing March 7 1,500

Tirschenreuth Landkreis Mitterteich March 7 1,400

Wunsiedel i. Fichtelgebirge Landkreis Niederlamitz March 7 —

Notes: — indicates no information on the estimated number of visitors, which is likely small. The strong-
beer festival in Rosenheim was discontinued by the organizers after three days. A team of German-French
broadcaster ARTE attended the festival in Niederlamitz (Theodor, 2020).
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Table A.2: Weights for cases

Bavarian district First Second Third Donors

Ingolstadt Frankfurt a.M., SK (.427) Wolfsburg, SK (.311) Potsdam, SK (.124) 6

München, SK Stuttgart, SK (.57) Frankfurt a.M., SK (.32) Leipzig, SK (.11) 3

Altötting Birk. (.298) Biberach (.247) Rottweil (.185) 10

Bercht. Land Suhl, SK (.253) Bernkastel-W. (.153) Waldshut (.134) 11

Bad Tölz-W. Biberach (.352) Konstanz (.163) Osterholz (.124) 11

Dachau Teltow-Fläming (.355) Vechta (.341) Frankfurt a.M., SK (.24) 6

Ebersberg Vechta (.441) Potsdam-M. (.239) Potsdam, SK (.167) 5

Eichstätt Vechta (.55) Teltow-Fläming (.177) Frankfurt a.M., SK (.157) 5

Erding Vechta (.415) Alzey-W. (.227) Frankfurt a.M., SK (.221) 5

Freising Vechta (.452) Frankfurt a.M., SK (.385) Heinsberg (.133) 4

Fürstenfeldbruck Alb-Donau-K (.302) Main-Taunus-K (.271) Sächsische Schweiz (.165) 8

Garmisch Schwarzwald-Baar-K (.365) Suhl, SK (.257) Ahrweiler (.174) 13

Landsberg am Lech Potsdam-M. (.241) Vechta (.228) Olpe (.168) 8

Miesbach Bodenseek. (.253) Hohenlohek. (.2) Baden-B., SK (.181) 9

München Main-Taunus-K (.255) Vechta (.214) Dresden, SK (.212) 6

Neuburg-S. Biberach (.221) Olpe (.217) Vechta (.207) 7

Pfa!enhofen Alzey-W. (.415) Frankfurt a.M., SK (.291) Vechta (.185) 5

Starnberg Hochtaunusk. (.422) Lippe (.411) Heinsberg (.097) 5

Traunstein Schwarzwald-Baar-K (.209) Rottweil (.172) Biberach (.11) 13

Weilheim-Schongau Coesfeld (.281) Rottweil (.2) Biberach (.156) 11

Landshut, SK Heilbronn, SK (.23) Frankfurt a.M., SK (.163) Braunschweig, SK (.158) 10

Passau, SK Heidelbg., SK (.534) Wilhelmsh., SK (.462) Suhl, SK (.004) 3

Deggendorf Trier, SK (.284) Merzig-Wadern (.257) Olpe (.224) 8

Freyung-Grafenau Alzey-W. (.405) St. Wendel (.26) Südwestp. (.175) 5

Kelheim Vechta (.312) Alzey-W. (.2) Potsdam-M. (.187) 9

Landshut Alzey-W. (.461) Vechta (.271) Frankfurt a.M., SK (.144) 4

Passau Hildburghausen (.223) Sigmaringen (.203) Merzig-Wadern (.157) 12

Regen Südwestp. (.283) Eifelk. Bitburg-Prüm (.163) Hildburghausen (.161) 10

Straubing-Bogen Alzey-W. (.5) Potsdam-M. (.205) Vechta (.116) 6

Dingolfing-Landau Alzey-W. (.684) Frankfurt a.M., SK (.181) Trier, SK (.1) 4

Amberg Braunschweig, SK (.356) Vulk. (.106) Dessau-Roßlau, SK (.103) 10

Regensburg, SK Mainz, SK (.6) Stuttgart, SK (.206) Frankfurt a.M., SK (.102) 4

Weiden Koblenz, SK (.3) Main-Tauber-K (.16) Neunkirchen (.118) 12

Amberg-Sulzbach Alzey-W. (.637) Südwestp. (.186) Landau, SK (.111) 5

Cham Coesfeld (.201) Ludwig.-P. (.178) Trier, SK (.175) 11

Neumarkt Alzey-W. (.72) Vechta (.117) Trier, SK (.112) 5

Regensburg Alzey-W. (.577) Potsdam-M. (.15) Frankfurt a.M., SK (.111) 6

Bamberg, SK Braunschweig, SK (.429) Kiel, SK (.319) Mainz, SK (.143) 5

Bayreuth, SK Flensburg, SK (.607) Wilhelmsh., SK (.207) Heidelbg., SK (.187) 3

Coburg, SK Braunschweig, SK (.378) Landau, SK (.206) Suhl, SK (.192) 6

Hof, SK Salzgitter, SK (.35) Suhl, SK (.227) Heidelbg., SK (.174) 8

Bamberg Alzey-W. (.858) Frankfurt a.M., SK (.11) Vechta (.032) 3

Bayreuth Oldenburg (.233) Potsdam-M. (.202) St. Wendel (.11) 9

Coburg Südwestp. (.333) Dahme-Spreewald (.212) Alzey-W. (.151) 10

Forchheim Alzey-W. (.739) Olpe (.098) Trier, SK (.044) 7

(continues)
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Table A.2, contin-
ued

Bavarian district First Second Third Donors

Hof Vogelsbergk. (.305) Südwestp. (.276) Uelzen (.137) 9

Kronach Südwestp. (.459) St. Wendel (.243) Börde (.139) 7

Kulmbach Merzig-Wadern (.41) Südwestp. (.288) Landau, SK (.118) 6

Lichtenfels Südwestp. (.483) Ludwig.-P. (.157) Trier, SK (.11) 9

Ansbach, SK Kaiserslautern (.281) Wolfsburg, SK (.216) Birk. (.159) 9

Erlangen Darmstadt, SK (.661) Stuttgart, SK (.188) Kiel, SK (.096) 5

Fürth, SK Frankfurt a.M., SK (.408) Alzey-W. (.32) Ludwig.-P. (.138) 6

Nürnberg Frankfurt a.M., SK (.26) Düsseldorf, SK (.144) Pforzheim, SK (.143) 12

Schwabach Kaiserslautern (.328) O!enbach (.232) Enzk. (.116) 11

Ansbach Olpe (.232) Biberach (.23) Alzey-W. (.211) 9

Erlangen-H. Gifhorn (.372) Teltow-Fläming (.194) Main-Taunus-K (.179) 10

Fürth Kaiserslautern (.4) Dahme-Spreewald (.366) Landau, SK (.072) 8

Nürnberger Land Enzk. (.358) Dahme-Spreewald (.287) Biberach (.081) 13

Neustadt a.d.Aisch Alzey-W. (.289) Biberach (.194) Hildburghausen (.148) 10

Roth Alzey-W. (.443) Teltow-Fläming (.172) Kaiserslautern (.15) 7

Weißenburg-G. Biberach (.294) Osnabrück (.204) Birk. (.172) 8

Ascha!enburg, SK Frankfurt a.M., SK (.248) Südwestp. (.178) Neunkirchen (.134) 10

Schweinfurt, SK Salzgitter, SK (.251) Chemnitz, SK (.235) Flensburg, SK (.2) 7

Würzburg, SK Heidelbg., SK (.685) Wilhelmsh., SK (.306) Heinsberg (.01) 3

Ascha!enburg Alzey-W. (.435) Südwestp. (.179) Rhein-Neckar-K (.113) 10

Bad Kissingen Waldeck-Frankenberg (.249) Südwestp. (.173) Sonneberg (.114) 12

Rhön-Grabfeld Südwestp. (.247) Rottweil (.244) Olpe (.19) 9

Haßberge Alzey-W. (.697) Südwestp. (.165) Viersen (.065) 5

Kitzingen Alzey-W. (.289) Eifelk. Bitburg-Prüm (.195) Südwestp. (.183) 10

Miltenberg Enzk. (.172) Olpe (.169) Neckar-Odenwald-K (.142) 13

Main-Spessart Südwestp. (.443) Eifelk. Bitburg-Prüm (.136) Dahme-Spreewald (.093) 10

Schweinfurt Alzey-W. (.233) Eifelk. Bitburg-Prüm (.194) Südwestp. (.173) 8

Würzburg Coesfeld (.287) Kaiserslautern (.196) Südwestp. (.138) 11

Augsburg, SK Mainz, SK (.345) Frankfurt a.M., SK (.187) Suhl, SK (.112) 10

Kaufbeuren Pforzheim, SK (.396) Birk. (.135) Suhl, SK (.114) 11

Kempten (Allgäu) Koblenz, SK (.582) Pforzheim, SK (.178) Chemnitz, SK (.076) 9

Memmingen Rottweil (.291) Heilbronn, SK (.151) Braunschweig, SK (.146) 11

Aichach-Friedberg Gifhorn (.242) Vechta (.239) Teltow-Fläming (.218) 8

Augsburg Dahme-Spreewald (.247) Biberach (.188) Kaiserslautern (.185) 11

Dillingen
a.d.Donau

Olpe (.345) Biberach (.258) Vechta (.125) 8

Günzburg Olpe (.578) Frankfurt a.M., SK (.121) Vechta (.088) 7

Neu-Ulm Alb-Donau-K (.302) G.-Gerau (.191) Sonneberg (.139) 8

Lindau (Bodensee) Bodenseek. (.339) Konstanz (.126) Bergstraße (.107) 12

Ostallgäu Biberach (.473) Breisgau-H. (.234) Kaiserslautern (.115) 9

Unterallgäu Biberach (.457) Ahrweiler (.156) Konstanz (.123) 9

Donau-Ries Biberach (.272) Marburg-Biedenkopf (.27) Potsdam-M. (.214) 9

Oberallgäu Ahrweiler (.377) Kaiserslautern (.136) Biberach (.129) 8

Note: The table reports up to three of the biggest non-Bavarian districts (column two until four), receiving the
biggest weights for each treated Bavarian district (column one) for the SCM of the COVID-19 cases per 100,000
residents. Column five includes the overall number districts receiving a weight bigger than 0.
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Table A.3: Federal states with the highest number of districts among the top three
donors

SH NS NW HE RP BW SL BB MV SN SA TH

4 35 18 29 74 53 7 19 3 5 2 12

Note: Table includes the number of districts for specific German federal states (BW for Baden-Würt-
temberg, BY for Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, HE
for Hesse, NS for Lower Saxony, MV for Mecklenburg-Vorpommern, NW for North Rhine-Westphalia,
RP for Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-
Holstein, and TH for Thuringia) contributing to the three largest donors in the baseline specification
for cases per 100,000 residents. Federal states without districts ranked among the top three donors are
omitted.

Table A.4: Weights for deaths

Bavarian district First Second Thrid Donors

Ingolstadt Frankfurt a.M., SK (.42) Wolfsburg, SK (.303) Biberach (.113) 7

München, SK Stuttgart, SK (.542) Frankfurt a.M., SK (.334) Leipzig, SK (.125) 3

Altötting Biberach (.575) Birk. (.182) Suhl, SK (.144) 7

Bercht. Land Schwarzwald-Baar-K (.501) Suhl, SK (.165) Leipzig, SK (.151) 7

Bad Tölz-W. Biberach (.274) Konstanz (.19) Böblingen (.188) 9

Dachau Teltow-Fläming (.374) Vechta (.347) Frankfurt a.M., SK (.237) 5

Ebersberg Vechta (.452) Potsdam-M. (.251) Potsdam, SK (.173) 5

Eichstätt Vechta (.56) Teltow-Fläming (.193) Frankfurt a.M., SK (.152) 5

Erding Vechta (.415) Alzey-W. (.264) Frankfurt a.M., SK (.218) 4

Freising Vechta (.453) Frankfurt a.M., SK (.382) Heinsberg (.111) 5

Fürstenfeldbruck Main-Taunus-K (.387) Alb-Donau-K (.184) Dresden, SK (.145) 9

Garmisch Schwarzwald-Baar-K (.324) Ahrweiler (.293) Suhl, SK (.223) 8

Landsberg am Lech Vechta (.223) Potsdam-M. (.217) Oldenburg (.172) 8

Miesbach Bodenseek. (.508) Hohenlohek. (.177) Dahme-Spreewald (.161) 8

München Hochtaunusk. (.358) Vechta (.235) Potsdam, SK (.199) 5

Neuburg-S. Biberach (.354) Olpe (.153) Teltow-Fläming (.105) 8

Pfa!enhofen Alzey-W. (.423) Frankfurt a.M., SK (.29) Vechta (.185) 4

Starnberg Hochtaunusk. (.437) Lippe (.422) Heinsberg (.076) 5

Traunstein Schwarzwald-Baar-K (.446) Rottweil (.24) Sonneberg (.062) 10

Weilheim-Schongau Rottweil (.227) Osterholz (.184) Bodenseek. (.166) 11

Landshut, SK Braunschweig, SK (.165) Heilbronn, SK (.165) Frankfurt a.M., SK (.164) 11

Passau, SK Heidelbg., SK (.535) Wilhelmsh., SK (.462) Suhl, SK (.003) 3

Deggendorf Trier, SK (.277) Merzig-Wadern (.266) Olpe (.206) 7

Freyung-Grafenau Alzey-W. (.397) St. Wendel (.396) Landau, SK (.162) 5

Kelheim Vechta (.277) Alzey-W. (.22) Potsdam-M. (.178) 9

Landshut Alzey-W. (.46) Vechta (.271) Frankfurt a.M., SK (.144) 4

Passau Merzig-Wadern (.258) Alb-Donau-K (.209) Sonneberg (.111) 10

Regen Südwestp. (.237) Cochem-Zell (.214) Hohenlohek. (.141) 10

Straubing-Bogen Alzey-W. (.539) Potsdam-M. (.192) Vechta (.11) 6

(continues)
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Table A.4, contin-
ued

Bavarian district First Second Thrid Donors

Dingolfing-Landau Alzey-W. (.687) Frankfurt a.M., SK (.18) Trier, SK (.101) 5

Amberg Braunschweig, SK (.446) Ostholstein (.222) Neustadt a.d.W., SK (.121) 8

Regensburg, SK Mainz, SK (.586) Stuttgart, SK (.222) Heidelbg., SK (.101) 4

Weiden Koblenz, SK (.27) Baden-B., SK (.263) Main-Tauber-K (.119) 10

Amberg-Sulzbach Alzey-W. (.642) Südwestp. (.191) Landau, SK (.112) 5

Cham Alzey-W. (.198) Südwestp. (.193) Hohenlohek. (.171) 9

Neumarkt Alzey-W. (.734) Münster, SK (.116) Vechta (.091) 4

Regensburg Alzey-W. (.581) Potsdam-M. (.146) Vechta (.111) 7

Bamberg, SK Braunschweig, SK (.397) Kiel, SK (.363) Stuttgart, SK (.137) 4

Bayreuth, SK Flensburg, SK (.572) Wilhelmsh., SK (.222) Heidelbg., SK (.206) 3

Coburg, SK Braunschweig, SK (.282) Suhl, SK (.2) Südwestp. (.197) 7

Hof, SK Suhl, SK (.252) Salzgitter, SK (.222) Flensburg, SK (.215) 9

Bamberg Alzey-W. (.859) Frankfurt a.M., SK (.11) Vechta (.031) 3

Bayreuth Merzig-Wadern (.323) Oldenburg (.277) Hildburghausen (.166) 8

Coburg Südwestp. (.332) Dahme-Spreewald (.234) Alzey-W. (.143) 10

Forchheim Alzey-W. (.81) Merzig-Wadern (.073) Südwestp. (.039) 7

Hof Südwestp. (.289) Vogelsbergk. (.283) Ostholstein (.166) 8

Kronach St. Wendel (.651) Ludwig.-P. (.122) Landau, SK (.071) 7

Kulmbach Merzig-Wadern (.383) Südwestp. (.19) Landau, SK (.129) 6

Lichtenfels Südwestp. (.512) Alzey-W. (.115) Trier, SK (.084) 10

Ansbach, SK Kaiserslautern (.357) Wolfsburg, SK (.285) Darmstadt, SK (.108) 8

Erlangen Darmstadt, SK (.655) Stuttgart, SK (.187) Kiel, SK (.104) 5

Fürth, SK Frankfurt a.M., SK (.408) Alzey-W. (.32) Ludwig.-P. (.14) 5

Nürnberg Pforzheim, SK (.221) Düsseldorf, SK (.184) Braunschweig, SK (.171) 10

Schwabach Kaiserslautern (.346) O!enbach (.165) Böblingen (.155) 9

Ansbach Alzey-W. (.375) Biberach (.295) Landau, SK (.107) 10

Erlangen-H. Biberach (.233) Dahme-Spreewald (.22) Gifhorn (.169) 9

Fürth Kaiserslautern (.442) Dahme-Spreewald (.372) Suhl, SK (.051) 7

Nürnberger Land Enzk. (.539) Dahme-Spreewald (.267) Schmalkalden-M. (.071) 9

Neustadt a.d.Aisch Alzey-W. (.346) Enzk. (.244) Hildburghausen (.128) 8

Roth Alzey-W. (.476) Dahme-Spreewald (.133) Landau, SK (.101) 8

Weißenburg-G. Enzk. (.261) Biberach (.236) Birk. (.167) 9

Ascha!enburg, SK Frankfurt a.M., SK (.257) Neunkirchen (.203) Eifelk. Bitburg-Prüm (.121) 9

Schweinfurt, SK Chemnitz, SK (.26) Salzgitter, SK (.224) Flensburg, SK (.2) 7

Würzburg, SK Heidelbg., SK (.7) Wilhelmsh., SK (.3) - 2

Ascha!enburg Alzey-W. (.383) Eifelk. Bitburg-Prüm (.168) St. Wendel (.131) 12

Bad Kissingen Rottweil (.196) Südwestp. (.193) Höxter (.134) 8

Rhön-Grabfeld Südwestp. (.359) Rottweil (.268) Grafs.-Bentheim (.109) 9

Haßberge Alzey-W. (.709) Südwestp. (.173) Landau, SK (.064) 5

Kitzingen Alzey-W. (.322) Eifelk. Bitburg-Prüm (.241) Südwestp. (.153) 8

Miltenberg Olpe (.21) Enzk. (.172) Neckar-Odenwald-K (.167) 11

Main-Spessart Südwestp. (.448) Eifelk. Bitburg-Prüm (.135) Coesfeld (.084) 9

Schweinfurt Eifelk. Bitburg-Prüm (.363) Kaiserslautern (.216) Südwestp. (.194) 7

Würzburg Dahme-Spreewald (.228) Coesfeld (.221) Eifelk. Bitburg-Prüm (.166) 8

Augsburg, SK Mainz, SK (.39) Frankfurt a.M., SK (.185) Leipzig, SK (.09) 11

(continues)
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Table A.4, contin-
ued

Bavarian district First Second Thrid Donors

Kaufbeuren Pforzheim, SK (.424) Biberach (.126) Ahrweiler (.126) 8

Kempten (Allgäu) Koblenz, SK (.515) Frankenthal (Pfalz), SK (.158) Leipzig, SK (.109) 8

Memmingen Rottweil (.275) Braunschweig, SK (.201) Waldshut (.141) 9

Aichach-Friedberg Gifhorn (.413) Vechta (.195) Teltow-Fläming (.18) 8

Augsburg Biberach (.298) Teltow-Fläming (.224) Kaiserslautern (.213) 9

Dillingen
a.d.Donau

Olpe (.378) Biberach (.299) Enzk. (.148) 8

Günzburg Olpe (.367) Alzey-W. (.244) Biberach (.163) 8

Neu-Ulm Biberach (.363) Alb-Donau-K (.18) Heidelbg., SK (.151) 10

Lindau (Bodensee) Ravensburg (.36) Bodenseek. (.119) Suhl, SK (.103) 12

Ostallgäu Biberach (.449) Ahrweiler (.16) Breisgau-H. (.128) 9

Unterallgäu Biberach (.418) Ahrweiler (.226) Konstanz (.191) 9

Donau-Ries Emsland (.289) Potsdam-M. (.224) Biberach (.195) 8

Oberallgäu Ahrweiler (.432) Kaiserslautern (.182) Böblingen (.104) 10

Note: The table reports up to three of the biggest non-Bavarian districts (column two until four), receiving the biggest
weights for each treated Bavarian district (column one) for the SCM of the COVID-19 deaths per 100,000 residents.
Column five includes the overall number districts receiving a weight bigger than 0.

Table A.5: Federal states with the highest number of districts among the top three
donors

SH NS NW HE RP BW SL BE BB MV SN SA TH

6 33 17 25 83 45 9 2 20 6 5 1 7

Note: Table includes the number of districts for specific German federal states (BW for Baden-Würt-
temberg, BY for Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, HE
for Hesse, NS for Lower Saxony, MV for Mecklenburg-Vorpommern, NW for North Rhine-Westphalia,
RP for Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-
Holstein, and TH for Thuringia) contributing to the three largest donors in the baseline specification for
deaths per 100,000 residents. Federal states without districts ranked among the top three donors are
omitted.
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Figure A.1: Development COVID-19 Cases All Bavarian districts
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Figure A.1 continued

Notes: Graphs show the development of COVID-19 cases per week per 100,000 residents (black line)
for each of the 87 Bavarian districts considered together with its synthetic counterpart (dashed line).
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Figure A.2: Placebo-in-time for a placebo election two weeks prior - cases

Notes: Graph shows the development of COVID-19 cases per week per 100,000 residents (black line)
for each of the 87 Bavarian districts considered together with its synthetic counterpart (dashed line) -
assuming a election was held two weeks earlier.
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Figure A.3: Placebo election in March 2022

a) Development COVID-19 cases

b) Adjusted p-values

Notes: Panel (a) displays the average weekly development of COVID-19 cases per 100,000 residents
(solid black line) across 87 Bavarian districts, along with its synthetic counterpart (dashed line) for a
placebo election conducted in mid-March 2022. Panel (b) shows the corresponding adjusted p-values for
each week following the placebo election.
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Figure A.4: Sensitivity analysis including districts with strong-beer festivals – cases

a) Development COVID-19 cases

b) Adjusted p-values

Notes: Graph in Panel a shows the average development of COVID-19 cases per week per 100,000
residents (black line) for all 96 Bavarian districts (including those who held strong-beer festivals close
to the election date) together with its synthetic counterpart (dashed line). Panel b plots the adjusted
p-values for every week after the election.
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Figure A.5: SCM for federal states - cases

a) Development COVID-19 cases - Bavaria and Synthetic Bavaria

b) Adjusted p-values

Notes: Graph in Panel a shows the development of COVID-19 cases per week per 100,000 residents
(black line) for Bavaria together with its synthetic counterpart (dashed line). Panel b plots the adjusted
p-values for every week after the election.
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Figure A.6: SDiD - cases

Notes: Graph shows the average development of COVID-19 cases per week per 100,000 residents (black
line) across 87 Bavarian districts together with its synthetic counterpart (dashed line).
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Figure A.7: Development COVID-19 Deaths All Bavarian districts
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Figure A.7 continued

Notes: Graphs show the development of COVID-19 deaths per week per 100,000 residents (black line)
for each of the 87 Bavarian districts considered together with its synthetic counterpart (dashed line).
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Table A.6: Regression results for voter participation in run-o! elections on March 29

Cases per 100k Deaths per 100k

#CasesMarch 29- March 1 1.21*** 0.14***

(0.13) (0.04)

V oters ⌜ pop. -0.76* -0.083*

(0.38) (0.05)

Working from home 18.2* -0.77

(9.12) (1.32)

Distance from Ischgl 5.25 2.70

(17.53) (3.34)

Beer festival 21.7 1.74

(14.14) (2.41)

N 84 84

adj. R2 0.712 0.603

Demographic Y Y

Economic Y Y

H&C care Y Y

District type dummies Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statis-
tical significance at the 1⌜5⌜10% level. Casesper100k denotes the number of COVID-19 infections.
Deathsper100k denotes the number of COVID-19 deaths. Beer festival measures the number of con-
firmed strong-beer festivals held in a given district in March 2020 (see Table A.1). V oter participation

denotes the number of voters in the Bavarian run-o! elections on March 29, 2020 relative to the popu-
lation. Demographic, Economic, and H&C care denote demographic, economic, health and child care
controls at the district level. District type dummies denotes administrative and structural classifica-
tions by the Bundesinstitut fuer Bau-, Stadt- und Raumforschung (BBSR). The complete set of control
variables is listed in Table 1.
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Table A.7: Regression results for increase in COVID-19 infections by age group

A00-A04 A05-A14 A15-A34 A35-A59 A60-A79 A80+

#CasesMarch 15- March 1 -1.72* -0.47*** 3.17*** 1.86 7.56** -0.33**

(0.99) (0.14) (0.94) (1.54) (3.03) (0.14)

V oters ⌜ pop. 0.21 -0.058 2.38* 6.25** 1.50 -0.20

(0.13) (0.17) (1.26) (2.61) (0.92) (0.47)

Working from home 0.22 0.38 -0.65 3.16 1.42 -0.063

(0.19) (0.38) (1.95) (3.95) (1.88) (0.72)

Distance from Ischgl -1.30 1.30 -8.41* -9.28 4.18 2.03

(0.91) (1.08) (5.00) (10.84) (5.98) (1.67)

Beer festival -0.49 0.13 20.9*** 47.8*** 21.2*** 1.81

(0.36) (0.69) (5.31) (11.91) (5.46) (1.69)

N 96 96 96 96 96 96

adj. R2 -0.025 0.184 0.481 0.412 0.470 0.156

Demographic Y Y Y Y Y Y

Economic Y Y Y Y Y Y

H&C care Y Y Y Y Y Y

District type dummies Y Y Y Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. Casesx denotes the number of COVID-19 infections up to date x. Beer

festival measures the number of confirmed strong-beer festivals held in a given district in March 2020
(see Table A.1). V oter participation denotes the number of voters in the Bavarian municipal elections
on March 15, 2020 relative to the population. Demographic, Economic, and H&C care denote demo-
graphic, economic, health and child care controls at the district level. District type dummies denotes
administrative and structural classifications by the Bundesinstitut fuer Bau-, Stadt- und Raumforschung
(BBSR). The complete set of control variables is listed in Table 1.
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Table A.8: Regression results for increase in COVID-19 deaths by age group

A15-A34 A35-A59 A60-A79 A80+

#casesMarch 15- March 1 0.00038 0.013 -0.46 0.32

(0.00) (0.02) (0.43) (0.27)

V oters ⌜ pop. 0.000073 -0.0081 0.032 1.01**

(0.00) (0.02) (0.13) (0.43)

Working from home -0.00020 -0.012 -0.22 -0.089

(0.00) (0.04) (0.28) (0.82)

Distance from Ischgl 0.0012 0.031 -0.083 -2.28

(0.00) (0.12) (0.77) (1.81)

Beer festival -0.00086 -0.27** 0.97* 6.84***

(0.00) (0.10) (0.50) (2.08)

N 96 96 96 96

adj. R2 0.572 0.051 -0.102 0.407

Demographic Y Y Y Y

Economic Y Y Y Y

H&C care Y Y Y Y

District type dummies Y Y Y Y

Notes: Coe”cient estimates with robust standard errors in parentheses. ⌐⌐⌐⌜⌐⌐⌜⌐ indicates statistical
significance at the 1⌜5⌜10% level. casesx denotes the number of COVID-19 infections up to date x. Beer

festival measures the number of confirmed strong-beer festivals held in a given district in March 2020
(see Table A.1). V oter participation denotes the number of voters in the Bavarian municipal elections
on March 15, 2020 relative to the population. Demographic, Economic, and H&C care denote demo-
graphic, economic, health and child care controls at the district level. District type dummies denotes
administrative and structural classifications by the Bundesinstitut fuer Bau-, Stadt- und Raumforschung
(BBSR). The complete set of control variables is listed in Table 1.
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Figure A.8: Delay between date of first symptoms and reporting date

(a) Cases

(b) Deaths



Epidemics at the Polls? The Role of Election Dates in

the Spread of Respiratory Tract Infections

Gerrit Stahn

Abstract

This study examines whether regional elections facilitate the spread of respiratory

infections. Mainly building on previous research conducted in the context of the

COVID-19 pandemic, we explore whether similar e!ects can be observed for other

acute respiratory infections in non-pandemic periods. The analysis uses the number

of sick leaves per 1,000 insured individuals as the outcome variable, leveraging data

from the German health insurance provider Barmer. By applying the Synthetic

Control Method, we investigate potential e!ects of federal elections held in the

German states of Bavaria, Hesse, and Thuringia. While we find no evidence of

virus transmission for the 2018 Bavarian election, the 2018 Hessian election and

the 2019 Thuringian election indicate a significant impact on respiratory infection

rates.

Key words: Elections, respiratory tract infections, sick leave

JEL classification: H11, I12, I18
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3.1 Introduction

Respiratory tract viruses and their associated diseases account for a significant share of

global health care expenditures. Substantial evidence is available for Influenza, its most

prominent representative, highlighting both direct costs (e.g., outpatient services, hospi-

talizations and medications (Federici et al., 2018)) and indirect costs (e.g., productivity

losses resulting from sick leave (de Courville et al., 2022)). Consequently, a considerable

body of literature seeks to identify social events that may drive the spread of such viruses.

Elections, even at the regional level, can be seen as potential contributors to this spread,

as they often involve large gatherings of people on a single day to cast their votes, lead-

ing to close contact with other voters or election helpers. During periods of heightened

viral activity, voting may entail considerable risks, potentially creating a tension between

exercising the right to vote and maintaining a healthy life.

This study investigates the e!ect of federal elections on the spread of respiratory tract

infections using the Synthetic Control Method (SCM). The analysis focuses on the state

elections held in October 2018 in Bavaria and Hesse, as well as the October 2019 state

election in Thuringia. The outcome variable is the number of sick leaves due to respiratory

infections among individuals insured by the German health insurance provider Barmer.

By constructing synthetic controls based on a wide range of federal-level demographic,

economic, healthcare, and childcare characteristics, we find mixed evidence of a significant

rise in sick leaves in the weeks following these elections across the three states and two

Influenza seasons.

The literature presents a broad range of estimates regarding the economic burden of

Influenza.1 A study by Ozawa et al. (2016), based on a sample of the U.S. population in

2015, estimate the total economic burden of Influenza at approximately $15.35 billion.2

Gil-de-Miguel et al. (2022) estimate the total cost of Influenza for the adult population

(aged 18 and older) in Spain during the 2017/2018 flu season at approximately $4.20

billion3, highlighting the substantial financial impact of the disease. For Germany, Haas et

al. (2016) analyze claims data from the Health Risk Institute, which includes records from

around 80 German health insurance providers, and estimate the total cost of Influenza

1All costs mentioned in this section are adjusted to 2024 dollars.
2Equivalent to 0.3% of total U.S. health care spending in 2024 (Source: Own calculation).
3Equivalent to 0.2% of total health care spending in Spain in 2024 (Source: Own calculation).
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during the 2012/13 season at $501.42 million (≈ e464.28 million).4 Further insights

come from Ehlken et al. (2015), who use longitudinal patient-level data from electronic

medical records of o”ce-based physicians in Germany (covering the period from May

2010 to April 2012) to estimate an average cost per Influenza case of $713.74 (≈ e660.87)
based on 21,039 influenza-attributable cases.

The overall cost of Influenza comprises multiple contributing factors. For instance,

Gasparini et al. (2012) emphasize the substantial societal and economic costs of Influenza,

which include healthcare expenditures, lost productivity, and the strain on medical re-

sources. The authors highlight that seasonal Influenza epidemics, though generally less

severe than pandemics, still result in significant costs due to hospitalizations, outpatient

visits, and missed workdays. In a systematic review of the economic burden of seasonal

Influenza in high-income countries, Federici et al. (2018) analyze 27 studies published

between January 2000 and December 2016. The review reveals a wide range of cost

estimates per Influenza case, with inpatient services comprising a significant portion of

these costs, followed by outpatient services and medications. More recent findings by

de Courville et al. (2022) indicate that, among individuals aged 18 to 64, up to 88% of

the economic burden of Influenza arises from indirect costs, while hospitalizations ac-

count for up to 75% of total direct costs. Furthermore, influenza-related expenses in this

demographic tend to increase with age and the presence of underlying medical condi-

tions. Complementing these findings, Villani et al. (2022) review the costs of Influenza in

children, highlighting substantial variations in estimates due to di!erences in healthcare

systems, study designs, and age groups. Their study underscores the significant financial

strain that Influenza imposes on healthcare systems and families, particularly for children

under five years of age, who represent the highest cost group.

These cost estimates underscore the importance of understanding the factors that

drive the transmission of respiratory diseases. Therefore, a specific strain of the liter-

ature focuses on the role of social gatherings in that context. For example, the paper

by Al-Tawfiq et al. (2016) concerns the Hajj pilgrimage, which is the largest recurring

mass gathering in the world. The authors highlight that respiratory infections, including

Influenza, are the most common illnesses spread during such gatherings. Crowded condi-

tions, the diverse health status of attendees, and the di”culty of implementing infection

4Equivalent to 0.15% of total health care spending in Germany in 2013 (Source: Own calculation).
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control measures contribute to the rapid transmission of viruses. Additionally the work by

Rainey et al. (2016) analyzes the frequency and characteristics of mass gathering-related

respiratory disease outbreaks in the U.S. from 2005 to 2014. Using a systematic literature

review and data from the National Outbreak Reporting System, the authors identify 72

respiratory disease outbreaks, the majority associated with Influenza A transmitted at

agricultural fairs and camps. The study concludes that while outbreaks at mass gath-

erings are in general relatively uncommon, large events such as agricultural fairs, where

attendees have close contact with each other and with animals, pose a noticeable risk for

zoonotic disease transmission.

The role of (mass) gatherings on the spread of diseases was further promoted by the

recent COVID-19 pandemic. Since the start of the pandemic, a host of contributions has

investigated the relationship between social factors, political measures, and the spread

of COVID-19 cases and deaths. Ahammer et al. (2023) examine the impact of mass

gatherings, specifically NBA and NHL games for the 2019-2020 season, on the early

spread of COVID-19 in the United States, finding that each additional game increased

cumulative COVID-19 deaths by 10.3% in a!ected counties. The study by Mangrum

and Niekamp (2022) investigates how the timing of university spring breaks in the U.S.

in March 2020 influenced the spread of COVID-19, revealing that counties with early

breaks experienced significantly higher growth in cases and mortality due to increased

student travel and subsequent secondary spread. Using smartphone mobility data, it

highlights that destinations like New York City and Florida and modes of travel like air

had a pronounced impact on infection rates. Furthermore, Whaley et al. (2021) observe

that households in the top decile of county COVID-19 prevalence in 2020 with recent

birthdays, particularly those involving children, experienced significantly higher COVID-

19 diagnoses, indicating that even small gatherings posed an underestimated transmission

risk.

A majority of the sparse literature on respiratory diseases and elections concerns the

potential e!ect of pandemic events on voter turnout as well as election results. Urbatsch

(2017) explores the relationship between Influenza outbreaks and voter turnout in Finland

and the United States from 1995 to 2015. The results show that regions with higher

local Influenza prevalence experienced lower voter turnout during elections. The article

highlights that both the people feeling sick and those around them, such as caregivers or
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people concerned about exposure, are less likely to vote during Influenza outbreaks. The

paper suggests that seasonal Influenza contributes to an underrepresentation of vulnerable

populations, including the elderly and those with lower socioeconomic status, as they are

more a!ected by illness. Additionally, Bauernschuster et al. (2023) examine the political

impact of the 1918 Influenza pandemic on voting behavior in the Weimar Republic.

Using constituency-level mortality data to measure the intensity of the pandemic, the

authors analyze its influence on voting outcomes, particularly the shift towards left-wing

parties. The study finds that constituencies more severely a!ected by the Influenza

pandemic saw a significant increase in vote shares for left-leaning parties, particularly

the Social Democratic Party (SPD). The authors argue that this shift was driven by the

public’s perception of the SPD’s historical engagement with health issues, rather than

dissatisfaction with incumbent parties. The paper underscores the long-term political

consequences of pandemics and how health crises can reshape political landscapes by

bringing public health into the political agenda. In the context of COVID-19, Picchio

and Santolini (2022) investigate the impact of the pandemic on voter turnout in the 2020

local government elections in Italy. The study analyzes data from 702 municipalities,

focusing on the elderly mortality rate as a proxy for the intensity of the pandemic’s

impact. The authors find that a 1% increase in elderly mortality leads to a 0.5% decrease

in voter turnout. The e!ect is more pronounced in densely populated areas, leading

to a 1.2% decrease. In contrast, Frank et al. (2020) demonstrate that for the 2020

municipal elections in Bavaria, Germany, the declaration of a state of emergency between

the first and second ballots resulted in a 10 percentage point increase in voter participation

compared to prior elections.

The studies concerned with the potential e!ect of elections on the spread of infectious

diseases mainly look at voting events in the context of the COVID-19 pandemic. Cotti

et al. (2021) explore the impact of in-person voting during the April 7, 2020, Wisconsin

primary election on the spread of COVID-19. The study examines county-level voting

data and COVID-19 test results, finding a significant association between in-person vot-

ing density and increased COVID-19 cases two to three weeks following the election.

Specifically, a 10% increase in in-person voters per polling location led to an 18.4% rise

in positive COVID-19 test rates. Additionally, Palguta et al. (2022) examine the causal

impact of large-scale, in-person elections on the spread of COVID-19. The study utilizes a
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natural experiment in the Czech Republic, where one-third of Senate constituencies hold

elections every two years, to estimate how the 2020 Senate elections influenced COVID-19

infection rates. The researchers find that voting constituencies experienced significantly

faster growth in new COVID-19 infections compared to non-voting constituencies in the

weeks following the elections. The study also observed a corresponding rise in hospital

admissions, suggesting that the acceleration in infections resulted from genuine pandemic

spread rather than increased testing. The e!ects are most pronounced among individuals

under 65, likely due to strategic avoidance by elderly voters. Güntner et al. (Forthcom-

ing) investigate the impact of the Bavarian municipal elections held on March 15, 2020,

on the spread of COVID-19. Using a synthetic control method, the authors compare

infection rates in Bavaria’s 96 districts with control groups from other German districts

outside of Bavaria. The estimates suggest that over a third of the increase in positive

test results during the study period (March 15–April 4) cannot be explained by other

demographic or economic factors. Additionally, the study reveals that districts with

higher voter participation saw a larger increase in COVID-19 cases and deaths after the

elections.

Our paper contributes to the existing literature in three distinct ways. First, by ex-

amining respiratory tract infections, we explore a potential link between elections and the

spread of infectious diseases besides COVID-19. Second, we investigate the relationship

between elections and infectious diseases during periods less severe than a global pan-

demic, providing further insights into the potential health risks associated with elections

during less dynamic times. Therefore, we can evaluate whether the heightened risk of

contracting a respiratory disease exists not only during pandemics but also during epi-

demic periods outside of a pandemic context. Finally, by utilizing unique data on sick

leave occurrences, we are able to o!er a estimation of the partial economic burden caused

by infectious diseases potentially exacerbated by elections.

The remainder of the paper is organized as follows: Section 3.2 provides details on

the data used in the analyses. Section 3.3 o!ers background information on the selected

elections. Section 3.4 explains the empirical methodology, while Section 3.5 presents the

results. Section 3.6 discusses the findings, and Section 3.7 concludes.
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3.2 Data

For our analyses we retrieved data from the Barmer Institut für Gesundheitsförderung

(bifg), which provides among other things detailed information on sickness absenteeism

in Germany for people insured by the Barmer Ersatzkasse.5 Barmer Ersatzkasse is the

second largest health insurance provider in Germany, with around 7.35 million individuals

insured across all federal states in 2019 (see Statista, 2023).6 This database includes

weekly reported sick leave rates across Germany’s federal states, covering the period from

calendar week 1 of 2018 to calendar week 52 of 2019. The data is collected from health

insurance records and reflects individuals who are o”cially registered as unable to work

due to respiratory illnesses. The denominator of the rate is defined as all persons “[...] who

are in principle entitled to sickness benefit [...]. This includes, for example, employees,

recipients of unemployment benefit, self-employed persons in their main occupation as

well as those in temporary and short-term employment [...].” (bifg, 2024). For further

convenience, we use the term sick leaves per 1,000 insured for the rate.

When examining German elections, other datasets might appear suitable as sources

for potential outcome variables. One such dataset is SurvStat 2.0, an online database

provided by the Robert Koch-Institute (RKI) (see RKI, 2024), which grants access to

infectious disease surveillance data in Germany.7 This database enables users to query

data on diseases that are mandatorily notifiable under the Infektionsschutzgesetz (IfSG,

or Infection Protection Act). However, there are at least two reasons why this dataset

is unsuitable for our analyses. First, not all respiratory tract diseases, such as paranasal

sinus inflammation, are subject to mandatory notification. Second, certain notifiable

diseases, like Influenza, are only reported when the presence of the respective virus is

confirmed through testing. Diagnoses made without conducting a test are not recorded.

In that regard, the German guidelines for treating patients with conditions such as sore

throat (DGHNO-KHC, 2024, p. 13), pneumonia (Ewig et al., 2021, p. 33), and cough

(Kardos et al., 2019, p. 63) do not recommend microbiological diagnostics for non-severe

cases. As a result, the dataset is likely to underrepresent the prevalence of respiratory

diseases. This underreporting is evident in Tables A.1 to A.3 in the appendix. Despite

5The data is available via https://www.bifg.de.
6The average percentage of Barmer-insured individuals relative to the total population across all

federal states was 11% in 2019 (Rädel et al., 2021).
7The data can be accessed via https://survstat.rki.de.

https://www.bifg.de/daten-und-analysen/arbeitsunfaehigkeiten/arbeitsunfaehigkeiten-atemwegserkrankungen-raten
https://survstat.rki.de
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the fact that all three elections under consideration (see section 3.3) took place during the

annual Influenza season, the number of reported cases being tested positive for Influenza

per 100,000 inhabitants at that times was noticeably low.

Another potentially relevant dataset is the year-round syndromic surveillance of acute

respiratory diseases (ARE-Konsultationsinzidenz) conducted by the RKI (Goerlitz et al.,

2024). This dataset systematically collects information on symptoms and diagnoses from

a voluntary sentinel network of primary care practices across Germany. These practices,

comprising general and pediatric clinics, actively contribute to population-level disease

surveillance, prevention, and control in addition to their routine patient care. However,

data at the federal level is only available from the 2022/2023 Influenza season onward.

As additional predictors for our SCM analyses we use data on German demographic,

economic, health care and child care characteristics at the federal level from the Federal

Institute for Building and Regional Planning. Summary statistics for the full list of

control variables separated by each election are reported in the Tables A.1, A.2 and A.3

in the appendix.

3.3 Elections

To identify the elections of relevance, we use an exploratory approach. Based on our

assumption that the impact of elections on disease transmissions is influenced by the

baseline spread of such viruses, we examine elections held outside pandemic periods

but during the respiratory infection season. Since no season is defined for all respiratory

infections, we stick with the yearly Influenza season. According to the RKI, the Influenza

season runs from the 40th calendar week of one year to the 20th calendar week of the

following year (Buda et al., 2019). The earliest available data point outlined in Section

3.2 begins in the first calendar week of 2018. Therefore, we focus on elections held during

the 2018/2019 season and the first half of the 2019/2020 season, excluding the latter half

due to the onset of the COVID-19 pandemic in Germany in January 2020 (Schilling et al.,

2021).

https://www.inkar.de
https://www.inkar.de
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Figure 1: Occurrence of sick leaves per 1,000 insured

(a) Season 2018/2019

(b) First half of season 2019

Note: Panel A plots the number of sick leaves reported per 1,000 people insured by the Barmer GEK
for the Influenza season 2018/2019. The first season week refers to calendar week 40 in 2018 and the last
season weeks to calendar week 20 in 2019. Panel B represents the same number for the first half of the
season 2019/2020, including all calendar weeks of the season in 2019. The vertical dashed lines indicate
the calendar weeks, in which the elections conducted.
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Panel A of Figure 1 depicts the trajectory of sick leaves during the 2018/2019 season.

In the first half of the season, sick leaves show a moderate week-to-week increase. The

Barmer data for Germany indicate a peak around season week 20, corresponding to

calendar week 8 in 2019. Although the prevalence of more severe Influenza subtypes, such

as A(H1N1)pdm09 and A(H3N2), was rising at that time (Baldo et al., 2016; Buda et al.,

2019; Jhung et al., 2013), the overall severity of the season remains comparatively lower

than in preceding years (Buda et al., 2019). Two regional elections occurred during this

season. The Bavarian state election was held on October 14, at the end of calendar week

41, drawing over 6.8 million voters (72.3% voter turnout) (Bayerisches Landesamt für

Statistik, 2019). The Hessian state election followed on October 28, during calendar week

43, with approximately 3 million voters (67.3% voter turnout) (Hessisches Statistisches

Landesamt, 2019). As shown in Panel A of Figure 1, these elections took place at the start

of the 2018/2019 season, during a period of relatively low reported sick leave numbers.

The first half of the 2019 season is depicted in Panel B of Figure 1. The season 2019/2020

is again considered less severe compared to previous years (RKI, 2020a). The only election

held early in this period was the Thuringian state election on October 27, 2019 (calendar

week 43). Of the approximately 1.7 million eligible voters, about 1.1 million (64.78%)

participated (Thüringer Landesamt für Statistik, 2020). In terms of total number of

voters, the Thuringian state election was significantly smaller compared to the elections

held a year earlier in Bavaria and Hesse.

Given the generally low prevalence of respiratory infections during both seasons, this

context in general provides a rather restrictive setting for testing whether elections held

outside of pandemic periods influence the transmission of infectious diseases.
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3.4 Method

We analyze federal-level data on sick leaves per 1,000 insured as the outcome variable,

applying the SCM for causal inference in comparative case studies, as proposed by Abadie

and Gardeazabal (2003), Abadie et al. (2010) and Abadie et al. (2015). The potential

e!ect of the election, ϑi,t, is defined as:

ϑi,t = Y Treat
i,t − Y C

i,t for all t > T0, (1)

where i = 1, . . . ,K represents the K federal states (here: Bavaria, Hesse or Thuringia)

exposed to the intervention at calendar week t. The time frame t = 1, . . . , T is divided

into a pre-treatment period (t = 1, . . . , T0) and a post-treatment period (t = T0+1, . . . , T ).
For each election, the pre-treatment period begins six weeks before the election, while

the post-treatment period concludes two weeks afterward. The post-treatment dura-

tion is selected based on the median incubation periods of the predominant subtypes

A(H1N1)pdm09 and A(H3N2), which are approximately 2 days and 3 days (Cao et al.,

2009; Jhung et al., 2013), together with a reasonable time required for potentially infected

individuals to seek medical attention. The pre-treatment period is set to six weeks prior

to the election (but including the week of the election) to ensure a su”cient number of

observations for the analysis (Abadie, 2021). Y Treat
i,t represents the observed outcome for

federal state i at time t after exposure to the intervention, while Y C
i,t denotes the counter-

factual outcome for state i at time t in the absence of the intervention. For the elections

held in 2018, the donor pool consists of 14 units, as either Bavaria or Hesse are excluded

from respective donor pools. For the Thuringian election in 2019, the donor pool includes

15 federal states. Since the counterfactual outcome is unobservable, Y C
i,t is approximated

using a weighted average of outcomes from the non-treated states (j = 1, . . . , J), referred
to as ”donor units”:

Y
C
i,t = J⩀

j=1
wj ⋊ Yj,t. (2)

The weights W = {w1, . . . , wJ} are determined by solving the following minimization

problem subject to wj ≥ 0 for all j = 1, . . . , J and ⊍J
j=1wj = 1:

⌝⌝⌝⌝⌝⌝
N⩀

m=1
vm ⌝Xi,m − ⌝ J⩀

j=1
wjXj,m⌞⌞

2⌞⌞⌞⌞⌞⌞
1
2

. (3)
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Here, vm reflects the relative importance of the m-th predictor variable Xm (m = 1, . . . ,N)

in assessing the similarity between treated and control districts. Predictor weights Vm =
(v1, . . . , vN) are optimized to minimize the mean squared prediction error during the

pre-treatment period:
T0⩀
t=1
⌝Yi,t − ⌝ J⩀

j=1
wj(Vm)Yj,t⌞⌞

2

. (4)

In addition to the predictors listed in the Tables A.1 to A.3 in the appendix, our

SCM approach incorporates weekly values of the sick leaves leading up to the election as

additional predictors.

Inferential statistics are obtained by comparing the observed di!erence between the

actual treated unit and its synthetic control with the di!erences between each unit from

the donor pool (serving as a placebo) and its respective synthetic control. The rarity of

the observed e!ect relative to placebo e!ects reflects the likelihood of observing such an

e!ect by chance.

In this framework, inference relies on the ratio of the mean squared prediction error

(MSPE) in the post-treatment period to that in the pre-treatment period:

Ratio = MSPEPost

MSPEPre
.

This ratio reflects the extent to which the pre-treatment fit diverges from the post-

treatment trends (i.e., the causal e!ect). A strong pre-treatment fit indicates that the

observed and synthetic control trends align closely before the intervention (Abadie et

al., 2015). Divergence in the post-treatment period highlights the intervention’s impact.

A high ratio indicates substantial divergence between the two trends, suggesting a more

pronounced causal e!ect. Conversely, a poor pre-treatment fit or minimal post-treatment

divergence results in a lower ratio, indicating a weaker or less reliable e!ect.8 9

Given that we utilize data on the number of sick leaves, we can calculate a rough

estimate of the total costs associated with an increase in sick leaves following the election

as follows:

∅#Total costsi,t = ϑi,t ⋉ Popi ⋉EmployRatei

1000
⋉Costs per leave (5)

8We do not report Fisher’s exact p-values for the ranked ratios, as the maximum of 15 donor units
is insu”cient to achieve meaningful significance levels.

9For our SCM analysis, we use the R package tidysynth by Dunford (2023).
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Here, Total costs represents the estimated additional costs caused by sick leaves in

federal state i during week t. The term ϑi,t is the treatment e!ect for federal state i

in week t, Popi denotes the population of state i, and EmployRatei is the employment

rate in that state. Costs per leave refers to the estimated costs of an Influenza episode

in Germany as provided by Ehlken et al. (2015), because this is the only estimate for a

respiratory disease known to us. The estimated costs per case is $713.74 in 2024 dollars.

3.5 Results

This section provides the empirical findings derived from the econometric approach out-

lined earlier, applied to each of the three elections under consideration.

3.5.1 Bavarian election in October 2018

Figure 2 displays the results of the synthetic control estimation for the Bavarian state

elections on October 14, focusing on weekly sick leaves per 1,000 insured individuals.

The graph contrasts the trends in sick leaves for Bavaria with those of its synthetic coun-

terpart, showing a moderate alignment (MSPE=0.10) during the pre-treatment period

(calendar weeks 36 to 41 in 2018). The estimated e!ect, calculated as the di!erence

between actual sick leaves in Bavaria and the synthetic control, is approximately 0.87

per 1,000 insured in calendar week 42 and around 0.36 in week 43. Interestingly, a slight

divergence can already be observed roughly three weeks prior to the election.

Panel (a) of Figure 3 further contextualizes these e!ects by presenting the di!er-

ences between observed sick leaves and their synthetic counterparts for each federal state

(excluding Hesse). Bavaria is represented by the black line, while the grey lines corre-

spond to the remaining 14 states, which serve as placebo comparisons. Relative to these

placebo-in-space e!ects, Bavaria’s di!erences, while positive, are not notably distinct.

This interpretation is reinforced by Panel (b), which shows that Bavaria’s ratio of post-

to pre-treatment MSPE of 4.49 is not the largest, indicating no sizable divergence between

the observed and synthetic trends compared to the other states.

A potential concern regarding the SCM results is the possibility of spillover e!ects

between Bavaria and its neighboring states. If elections result in an increase in infections,

spillover e!ects could dampen the estimated di!erence, as neighboring states might report

a higher number of sick leaves in response. This concern is particularly relevant given that
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Baden-Württemberg, a neighboring state, contributes a weight of 0.92 to the baseline

results (see Table A.4 in the appendix). To address this, we conducted an additional

SCM specification excluding not only Hesse but also the other neighboring states of

Baden-Württemberg, Saxony, and Thuringia. However, excluding donors with previously

substantial weights can compromise the pre-treatment fit, as seen in Figure A.1 in the

appendix. While the estimated di!erence after the election increased compared to the

baseline results, the pre-treatment fit deteriorated (MSPE=2.36). This is likely because

Bavaria, as a federal state, lies outside the convex hull of the remaining non-neighboring

states (Abadie, 2021).

Figure 2: Bavarian election in October 2018: Development in sick leaves

Note: The graph depicts the weekly trend of sick leave cases due to respiratory diseases per 1,000
individuals insured by Barmer in Bavaria (solid black line) alongside its synthetic counterpart (dashed
line). The vertical dashed line indicates calendar week 41, the week of the election.
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Figure 3: Bavarian election in October 2018 - Placebos in space

(a) Di!erence in sick leaves for Bavaria and other states

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) shows the di!erences between each federal state and its synthetic counterpart, with the
black line indicating the di!erence for Bavaria and the grey lines representing placebo comparisons for
other federal states. The vertical dashed line indicates calendar week 41, the week of the election. Panel
(b) includes the ratios of the post- to pre-treatment mean squared prediction error (MSPE) for Bavaria
(BY, red) and all other federal states except Hesse (BW for Baden-Württemberg, BE for Berlin, BB for
Brandenburg, HB for Bremen, HH for Hamburg, NS for Lower Saxony, MV for Mecklenburg-Western
Pomerania, NW for North Rhine-Westphalia, RP for Rhineland-Palatinate, SL for Saarland, SN for
Saxony, SA for Saxony-Anhalt, SH for Schleswig-Holstein, and TH for Thuringia).
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Overall, the absence of a sizable e!ect for the Bavarian election in October 2018,

which took place at the onset of the Influenza season in Germany, suggests that elections

may have a negligible impact on the spread of respiratory diseases when the baseline

virulence is low.

3.5.2 Hessian election in October 2018

Figure 4 illustrates the trend in sick leaves for Hesse compared to its synthetic counterpart.

The graph demonstrates a strong pre-treatment fit from calendar week 38 up to the

election week 43 (MSPE=0.05). Starting in calendar week 42, the upward trend in

reported sick leaves for Hesse remains even after the election. In contrast, the number of

sick leaves for the Synthetic Hesse decreases sharply in the week following the election,

leading to a significant estimated e!ect. The di!erence in sick leaves is estimated at

approximately 2.69 per 1,000 insured for week 44 and about 1.34 for week 45. Based on

these estimates, the corresponding back-of-the-envelope calculations suggest additional

weekly costs of around $9.8 million for week 44 and $4.9 million for week 45. The

corresponding weights for the donors can be seen in Table A.5 in the appendix.

Figure 5 shows that the observed di!erence for Hesse is highly unusual compared

to the placebo estimates. Panel (a) reveals that the di!erence for Hesse is near zero

during the pre-treatment period but rises sharply after calendar week 43. Moreover,

Hesse exhibits by far the largest MSPE ratio of 90.85 among all states.

As shown in Figure A.2, the estimated e!ect is robust to the exclusion of the neighbor-

ing states Bavaria, Baden-Württemberg, North Rhine-Westphalia, Rhineland-Palatinate,

and Thuringia. In this scenario, the estimated di!erence for week 44 is 2.38 additional

sick leaves per 1,000 insured, and for week 45, it is 1.62. This suggests that spillover

e!ects on the federal state level, if present, play only a minor role.

Another potential concern in this context is the impact of school holidays on the spread

of infections. While empirical evidence suggests that summer holidays can facilitate the

spread of infectious diseases (Plümper & Neumayer, 2021), we anticipate the opposite

e!ect on reported sick leave numbers. During school holidays, many parents take time

o! to be with their children, and those who fall ill are less likely to visit a doctor and

report being sick. Consequently, we hypothesize that fall holidays in at least one donor
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state could lead to an overestimation of the election e!ect.10 To address this, we excluded

five federal states with fall holidays in the post-treatment period (Baden-Württemberg,

Bavaria, Berlin, Brandenburg, and Mecklenburg-Western Pomerania) from the donor

pool. The adjusted results in Panel (a) and (b) of Figure A.3 show only minor changes

compared to the baseline, with an estimated di!erence of 2.65 cases per 1,000 insured in

calendar week 44 and 0.90 in week 45.

Figure 4: Hessian election in October 2018: Development in sick leaves

Note: The graph depicts the weekly trend of sick leave cases due to respiratory diseases per 1,000
individuals insured by Barmer in Hesse (solid black line) alongside its synthetic counterpart (dashed
line). The vertical dashed line indicates calendar week 43, the week of the election.

10The same reasoning applies to Bavaria, Hesse, and Thuringia, where holidays could have resulted in
an underestimation of the actual election e!ect. However, none of these states had fall holidays during
the respective election periods.
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Figure 5: Hessian election in October 2018 - Placebos in space

(a) Di!erence in sick leaves Hesse and other federal states as placebos

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) shows the di!erences in sick leaves per 1,000 insured between each federal state and
its synthetic counterpart, with the red line indicating the di!erence for Hesse, the black line revealing
the di!erence for Thuringia and the grey lines representing placebo comparisons for all other federal
states (except Bavaria). The vertical dashed line indicates calendar week 43, the week of the election.
Panel (b) includes the corresponding ratios of the post- to pre-treatment mean squared prediction error
(MSPE) for Hesse (HE, red), Thuringia (TH, black) and all other federal states except Bavaria (BW
for Baden-Württemberg, BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS
for Lower Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for
Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt and SH for Schleswig-
Holstein).
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A placebo-in-time analysis, where a hypothetical election is assigned to a period with

no actual election, can further investigate the link between elections and the spread of

infections. If no e!ect is observed for this placebo election, it suggests that other events

during that time of the year do not significantly influence the spread of respiratory diseases

and, consequently, sick leaves. To explore this, we reference the placebo-in-space analysis

conducted for the Thuringian election, which occurred in the same calendar week but

one year after the Hessian election. The black line in Panel (a) of Figure 7 indicates

a noticeable di!erence in reported sick leaves for Hesse following calendar week 43 in

2019. However, the pre-treatment fit decreases (MSPE=0.08), resulting in a lower yet

still noticeable ratio of 34.74, as shown in Panel (b).

As an additional sensitivity analysis concerning the timing of the election, we assigned

a hypothetical treatment date of calendar week 41, two weeks prior to the actual election,

while keeping the number of pre-treatment weeks constant. This included two additional

weeks (calendar weeks 36 and 37). Figure A.4 shows little to no di!erences between the

hypothetical treatment in week 41 and the actual election week (43). This suggests that

the observed di!erences are attributable to the election or events occurring close to it,

rather than earlier events.

Additionally, using an extended pre-treatment period from the placebo-in-time anal-

ysis, the results remain consistent. The estimated di!erences for week 44 (2.77) and week

45 (1.30) show minimal change, reinforcing the robustness of the findings.

Any variation in vaccination uptake against respiratory diseases could account for

di!erences observed in the baseline results. To address this, we finally incorporated the

per capita vaccine consumption data for each federal state, as published by the Associa-

tions of Statutory Health Insurance Physicians (in German: Kassenärztliche Vereinigun-

gen) through the Atlas of Medicinal Products (in German; Arzneimittel-Atlas) for 2018

(Häussler & Höer, 2019).11 The results presented in Figure A.6 show only slight changes

compared to the baseline analysis. Specifically, the estimated di!erences for week 44 are

approximately 2.72 and 1.35 for week 45.

11The data is initially provided for 17 regional associations. However, 15 of these associations corre-
spond directly to the areas of 15 federal states. For North Rhine-Westphalia, which has two associations,
both reported the same per capita uptake in 2018 (0.45). Consequently, we used the value of 0.45 for
North Rhine-Westphalia.
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3.5.3 Thuringian election in October 2019

Figure 6 illustrates the trend in sick leaves for Hesse compared to its synthetic counterpart.

The graph demonstrates a strong pre-treatment fit (MSPE=0.04) from calendar week 38

up to calendar week 41 week. Between week 41 and 43 the fit deteriorates slightly. After

calendar week 43 both numbers drop significantly, with a bigger downward slope for

Synthetic Thuringia. The resulting di!erence of 1.10 in calendar week 44 and 1.54 in

calendar week 45 results in total costs of $1.44 million and $2.02 million in the respective

weeks.

Figure 7 shows that the observed di!erence for Thuringia is highly unusual compared

to the placebo estimates. Panel (a) reveals that the di!erence for Thuringia is near zero

during the pre-treatment period but rises sharply after calendar week 43. Moreover,

Thuringia exhibits by far the largest MSPE ratio of 44.94 among all states.

The estimated e!ect reduces in size when excluding neighboring states (Bavaria,

Hesse, Lower Saxony, Saxony and Saxony-Anhalt) as shown in Figure A.7. In this sce-

nario, the estimated di!erence for week 44 is 0.29 additional sick leaves per 1,000 insured,

and for week 45, it is 1.13. However, the pre-treatment e!ect deteriorates again due to

exclusion of the neighboring states, since the excluded states Saxony and Saxony-Anhalt

contribute to a huge share of the weight in the baseline analysis (see Table A.6).

As part of the sensitivity analysis addressing the fall holidays in 2019, we removed

Baden-Württemberg, Bavaria, and Mecklenburg-Western Pomerania from the donor pool.

Panels (a) and (b) of Figure A.8 indicate a reduced estimated e!ect, with 0.71 additional

sick leaves per 1,000 insured in calendar week 44 and 1.36 in calendar week 45.

The placebo-in-time analysis presented in Figure 5 reveals an increase in the di!erence

following the placebo treatment. However, it also highlights that the pre-treatment fit

remains relatively weak, leading to a lower MSPE ratio, as depicted in Panel (b).

We again assigned a hypothetical treatment date of calendar week 41 in 2019, two

weeks prior to the actual election, while keeping the number of pre-treatment weeks

constant. Figure A.9 results again in a reduction of the estimated di!erence of 0.24 in

calendar week 44 and 0.90 in calendar week 45.

Additionally, using an extended pre-treatment period from the placebo-in-time anal-

ysis, the estimated e!ects are again lower compared to the baseline. The estimated

di!erences for week 44 is 0.24 and 0.90 for week 45.
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Finally, the results shown in Figure A.11, incorporating vaccination consumption as

an additional predictor variable, are largely consistent with the baseline results, with an

estimated di!erence of approximately 0.95 in calendar week 44 and 1.62 in calendar week

45.

Figure 6: Thuringian election in October 2019 - Development in sick leaves

Note: The graph depicts the weekly trend of sick leave cases due to respiratory diseases per 1,000
individuals insured by Barmer in Thuringia (solid black line) alongside its synthetic counterpart (dashed
line). The vertical dashed lines indicate calendar week 43, the week of the election.
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Figure 7: Thuringian election in October 2019 - Placebos in space

(a) Di!erence in sick leaves Thuringia and other states

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) shows the di!erences in sick leaves per 1,000 insured between each federal state and its
synthetic counterpart, with the red line indicating the di!erence for Thuringia, the black line presents
the di!erence for Hesse and the grey lines representing placebo comparisons for other federal states.
The vertical dashed line indicates calendar week 43, the week of the election. Panel (b) includes the
corresponding ratios of the post- to pre-treatment mean squared prediction error (MSPE) for Thuringia
(TH, red), Hesse (HE, black) and all other federal states (BW for Baden-Württemberg, BY for Bavaria,
BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS for Lower Saxony, MV for
Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for Rhineland-Palatinate, SL for
Saarland, SN for Saxony, SA for Saxony-Anhalt and SH for Schleswig-Holstein).
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3.6 Discussion

The findings indicate a moderate increase in sick leaves in Bavaria following the October

2018 election, closely aligning with trends observed in placebo states. Conversely, the

Hessian election during held shortly after exhibited a noticeable increase in sick leaves.

The results of the analyses highlight significant costs and robust findings across di!erent

sensitivity specifications. The Thuringian election in October 2019 demonstrated smaller

yet distinct e!ects, diverging clearly from placebo trends. Robustness tests, including

evaluations of spillover e!ects and neighboring state dynamics, confirmed the reliabil-

ity of these results, despite occasional reductions in pre-treatment fit. Together, these

findings underscore a connection between election events and post-election health-related

absenteeism due to respiratory infections.

When combined with research on elections during the COVID-19 pandemic (Cotti

et al., 2021; Güntner et al., Forthcoming; Palguta et al., 2022), these results suggest

that electoral o”cers and administrators should exercise greater caution regarding public

health risks. Although elections during pandemics or Influenza seasons may facilitate

disease spread, we refrain from advocating for a blanket postponement of elections to

periods of less virulent dynamics for three reasons: First, no existing studies have exam-

ined elections conducted during periods of typically low respiratory disease activity, such

as summer, making such a recommendation premature. Second, election dates are often

legally determined, and rescheduling could result in significant economic and social costs,

likely exceeding the public health costs of holding elections during infectious seasons.

Third, delaying an election could be perceived by both the political opposition and the

public as an illegitimate e!ort by the incumbent government to extend its time in power

(see e.g. Egmont Institute, 2020; Zamfir & Fardel, 2020).

Instead, we propose enhancing the provision of face masks at polling stations. Masks

have proven e!ective and cost-e”cient in preventing the spread of airborne diseases like

Influenza and COVID-19 (Bartsch et al., 2022; Mitze et al., 2020; Sharma et al., 2024;

Van Dyke, 2020; Wang et al., 2020). While the pandemic demonstrated the feasibility

of rapidly distributing large quantities of masks, providing masks to all voters could still

be expensive. An even better approach may involve distributing masks only to electoral

sta!, who act as potential transmission agents during in-person voting. By mitigating



85

transmission at this critical juncture, masks for electoral sta! could significantly reduce

the health risks (and therefore the economic burden) associated with elections.

While the proposed measures provide practical solutions, it is equally crucial to dis-

cuss the potential limitations of this study. One potential issue not yet addressed is the

possibility that other concurrent events may have contributed to the spread of infections,

thereby influencing the observed increase in reported sick leaves. For example, the Ok-

toberfest, held annually in Munich, the capital of Bavaria, beginning in mid-September,

draws millions of visitors as the world’s largest folk festival. This event could potentially

explain the slight upward trend in sick leaves observed in Figure 2 after calendar week 38.

Similarly, recurring events leading to large-scale gatherings (for example the Frankfurt

Book Fair) might also account for the increase in sick leaves noted in the placebo analysis

of Hesse around calendar week 43 in 2019 (see Figure 7).

An additional potential concern arises from the literature indicating a negative im-

pact of pandemic events on voter turnout (Bauernschuster et al., 2023; Picchio & San-

tolini, 2022; Urbatsch, 2017). Based on this reasoning, voters—particularly those with

preexisting health conditions—might choose to abstain from voting due to the perceived

heightened risk of infection, potentially leading to an underestimation of the actual e!ect.

However, since both Influenza seasons in question were considered relatively mild (Buda

et al., 2019; RKI, 2020a), we expect at most a minimal impact from such anticipatory

concerns.

Another potential source of bias in the estimated e!ects could stem from di!erences

uncontrolled by our SCM approach in the workforce insured by Barmer across federal

states.12 For example, the group of Barmer-insured individuals in Bavaria, Hesse, and

Thuringia might include a relatively higher proportion of individuals at greater risk of

contracting respiratory diseases during the season, such as healthcare workers. However,

since our approach also matches donor states based on pre-trends in sick leave numbers,

we anticipate this issue to have only a minimal impact on the results.

A related concern involves potential unobserved di!erences between Barmer-insured

individuals and the general German population, which could a!ect the external validity

of the findings. Nonetheless, given the large number of people insured by Barmer in

Germany, we expect the results to be externally valid, at least for the statutorily insured

12An initial indication of this can be seen in the variation of the proportion of Barmer-insured indi-
viduals relative to the total population across German states, as presented in Table A.7 in the appendix.
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population.13

3.7 Conclusion

This study examined the potential relationship between elections and the spread of acute

respiratory diseases. Using an SCM approach, we find evidence suggesting an increase in

reported sick leaves from work following regional elections. These findings highlight how

elections may contribute to health risks and associated economic costs from respiratory

tract infections, even outside pandemic contexts. However, it is important to emphasize

that the results for the Bavarian election in October 2018 reveal no sizable e!ect, and

alternative explanations for the findings related to the Hessian election in 2018 and the

Thuringian election in 2019 cannot be entirely ruled out.

Future research could further investigate the connection between elections and disease

transmission. One promising avenue would be to focus on elections held during periods

with an even a lower baseline prevalence of respiratory viruses, such as the summer

months. The absence of any sizable e!ect for the Bavarian election in October 2018, held

at the very start of the Influenza season in Germany, may indicate that elections have a

minimal impact on the spread of highly virulent diseases during such times. Additionally,

expanding this analysis to include elections in other regions worldwide could provide

valuable insights into the generalizability of these findings.

Another promising research direction would be to move beyond examining respira-

tory diseases as a whole and instead di!erentiate between specific illnesses based on

distinct virus strains, such as those of the Influenza virus, Rhinovirus, or Adenovirus.

This approach would o!er a clearer understanding of which viruses in particular pri-

marily contribute to heightened health risks associated with elections, facilitating the

development of more targeted countermeasures. Moreover, it could enhance estimates of

the overall economic burden. Given that much of the existing literature focuses on the

economic impact of individual diseases or pathogens, such di!erentiation could provide a

more nuanced assessment of election-related e!ects in this context.

13In 2019, approximately 88% of employees in Germany were covered by statutory health insurance,
while the remaining individuals were primarily covered by private insurance (Statistisches Bundesamt,
2024).
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Appendix

Table A.1: Bavarian election October 2018: Summary of Key Variables

Variable Bavaria Other States

M
or
b
id
it
y Influenza cases in calendar week 40∗ 0.030589 0.01293 (0.01907)

Influenza cases in calendar week 42∗ 0.05353 0.03927 (0.06854)

Sick leaves in calendar week 40† 11.22 12.10 (1.63)

Sick leaves in calendar week 42† 14.63 13.73 (1.97)

D
em

og
ra
p
h
ic

Inhabitants per km2 of settlement and tra”c area 1536.20 2037.73 (1407.59)

Age structure of population

% aged under 6 5.70 5.49 (0.44)

% aged 6–17 10.70 10.41 (0.50)

% aged 18–24 7.98 7.01 (1.28)

% aged 25–29 6.64 5.96 (1.23)

% aged 30–49 26.15 25.24 (1.91)

% aged 50–64 22.46 23.20 (2.03)

% aged ≥65 20.36 22.68 (2.62)

Population development†† 6.60 4.62 (2.16)

Female share of population 50.42 50.72 (0.21)

Foreign share of population 13.21 10.39 (5.28)

H
ea
lt
h
an

d
S
oc
ia
l
is
su
es Child care participation rates

% aged 0–2 years 26.88 40.74 (12.60)

Hospital beds†† 5.81 6.29 (0.77)

Geriatric demand and supply

Elderly in need of care‡ 3.41 4.92 (0.76)

Nursing home places§ 98.11 113.29 (17.67)

General physicians§ 6.55 6.37 (0.25)

Note: Table continues on the next page.
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Table A.1: Bavarian election October 2018: Summary continued

Variable Bavaria Other States
E
co
n
om

ic
Unemployment rates

% unemployed 2.90 6.36 (1.67)

% unemployed aged 55–64 3.93 6.86 (1.48)

% unemployed women 2.78 5.95 (1.54)

Employment rate 6.55 6.37 (0.25)

Household income per capita per month 2137.62 1826.67 (143.74)

GDP per capita⋊ 47.43 37.52 (10.22)

Commuters

% out 45.08 35.10 (11.04)

% In 46.05 36.15 (7.43)

Share of workers with academic degree 16.87 16.07 (5.20)

Tourism

Stays in hotels per capita 7.55 6.42 (4.28)

Share of stays in hotels by foreigners 20.76 15.68 (11.30)

Note: Unweighted sample means with standard deviation in parentheses. The other states

include all non-bavarian federal states in Germany except for Hesse.

∗ per 100,000 inhabitants, † per 1,000 insured, †† per 1,000 inhabitants, ‡ per 100 inhabitants,

§ per 10,000 inhabitants, ⋊ in EUR 10,000
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Table A.2: Hessian election October 2018: Summary of Key Variables

Variable Hesse Other States

M
or
b
id
it
y Influenza cases in calendar week 42∗ 0.00000 0.03927 (0.06854)

Influenza cases in calendar week 44∗ 0.00000 0.06042 (0.11667)

Sick leaves in calendar week 42† 13.54 13.73 (1.97)

Sick leaves in calendar week 44† 16.15 13.56 (1.99)

D
em

og
ra
p
h
ic

Inhabitants per km2 of settlement and tra”c area 1861.38 2037.73 (1407.59)

Age structure of population

% aged under 6 5.73 5.49 (0.44)

% aged 6–17 10.99 10.41 (0.50)

% aged 18–24 7.93 7.01 (1.28)

% aged 25–29 6.44 5.96 (1.23)

% aged 30–49 25.83 25.24 (1.91)

% aged 50–64 22.44 23.20 (2.03)

% aged ≥65 20.63 22.68 (2.62)

Population development†† 4.76 4.62 (2.16)

Female share of population 50.64 50.72 (0.21)

Foreign share of population 16.17 10.39 (5.28)

H
ea
lt
h
an

d
S
oc
ia
l
is
su
es Child care participation rates

% aged 0–2 years 30.15 40.74 (12.60)

Hospital beds†† 5.78 6.29 (0.77)

Geriatric demand and supply

Elderly in need of care‡ 4.57 4.92 (0.76)

Nursing home places§ 97.37 113.29 (17.67)

General physicians§ 6.10 6.37 (0.25)

Note: Table continues on the next page.
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Table A.2: Hessian election October 2018: Summary continued

Variable Hesse Other States
E
co
n
om

ic
Unemployment rates

% unemployed 4.59 6.36 (1.67)

% unemployed aged 55–64 4.79 6.86 (1.48)

% unemployed women 4.45 5.95 (1.54)

Employment rate 6.10 6.37 (0.25)

Household income per capita per month 1985.83 1826.67 (143.74)

GDP per capita⋊ 45.66 37.52 (10.22)

Commuters

% out 45.90 35.10 (11.04)

% In 48.65 36.15 (7.43)

Share of workers with academic degree 18.36 16.07 (5.20)

Tourism

Stays in hotels per capita 5.54 6.42 (4.28)

Share of stays in hotels by foreigners 23.30 15.68 (11.30)

Note: Unweighted sample means with standard deviation in parentheses. The other states

include all non-hessian federal states in Germany except for Bavaria.

† per 1,000 inhabitants or per 1,000 insured, †† per 1,000 inhabitants, ‡ per 100 inhabitants, §

per 10,000 inhabitants, ⋊ in EUR 10,000
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Table A.3: Thuringian election October 2019: Summary of Key Variables

Variable Thuringia Other States

M
or
b
id
it
y Influenza cases in calendar week 42∗ 0.5156 0.12710 (0.12634)

Influenza cases in calendar week 44∗ 0.04687 0.11726 (0.13755)

Sick leaves in calendar week 42† 15.19 14.64 (1.19)

Sick leaves in calendar week 44† 14.94 13.70 (1.94)

D
em

og
ra
p
h
ic

Inhabitants per km2 of settlement and tra”c area 1120.26 2053.25 (1351.60)

Age structure of population

% aged under 6 5.13 5.60 (0.44)

% aged 6–17 10.08 10.53 (0.43)

% aged 18–24 5.71 7.21 (1.09)

% aged 25–29 4.17 5.91 (1.29)

% aged 30–49 24.42 25.26 (1.90)

% aged 50–64 24.26 23.06 (1.85)

% aged ≥65 26.23 22.43 (2.63)

Population development†† 1.58 3.97 (2.39)

Female share of population 50.50 50.71 (0.21)

Foreign share of population 5.21 11.65 (5.16)

H
ea
lt
h
an

d
S
oc
ia
l
is
su
es Child care participation rates

% aged 0–2 years 56.64 39.73 (12.43)

Hospital beds†† 7.48 6.17 (0.70)

Geriatric demand and supply

Elderly in need of care‡ 6.36 5.15 (0.83)

Nursing home places§ 125.55 110.85 (18.18)

General physicians§ 6.70 6.32 (0.23)

Note: Table continues on the next page.
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Table A.3: Thuringian election October 2019: Summary continued

Variable Thuringia Other States
E
co
n
om

ic

Unemployment rates

% unemployed 5.27 5.80 (1.82)

% unemployed aged 55–64 6.22 6.17 (1.54)

% unemployed women 4.89 5.39 (1.68)

Employment rate 6.70 6.32 (0.23)

Household income per capita per month 1735.63 1907.35 (147.67)

GDP per capita⋊ 29.91 40.61 (10.24)

Commuters

% out 38.76 36.23 (11.32)

% In 34.33 37.69 (8.10)

Share of workers with academic degree 13.33 17.06 (5.22)

Tourism

Stays in hotels per capita 4.53 6.91 (4.55)

Share of stays in hotels by foreigners 6.05 16.99 (10.63)

Note: Unweighted sample means with standard deviation in parentheses. The other states

include all 15 non-thuringian federal states in Germany.

† per 1,000 inhabitants or per 1,000 insured, †† per 1,000 inhabitants, ‡ per 100 inhabitants, §

per 10,000 inhabitants, ⋊ in EUR 10,000
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Table A.4: Donor weights: Bavaria 2018, Sick leaves

States Weight

1 Schleswig-Holstein 0.00

2 Hamburg 0.00

3 Lower Saxony 0.00

4 Bremen 0.00

5 North Rhine-Westphalia 0.00

6 Rhineland-Palatinate 0.00

7 Baden-Württemberg 0.92

8 Saarland 0.00

9 Berlin 0.00

10 Brandenburg 0.08

11 Mecklenburg-Western Pomerania 0.00

12 Saxony 0.00

13 Saxony-Anhalt 0.00

14 Thuringia 0.00

Table A.5: Donor weights: Hesse 2018, Sick leaves

States Weight

1 Schleswig-Holstein 0.00

2 Hamburg 0.00

3 Lower Saxony 0.00

4 Bremen 0.12

5 North Rhine-Westphalia 0.04

6 Rhineland-Palatinate 0.60

7 Baden-Württemberg 0.00

8 Saarland 0.00

9 Berlin 0.15

10 Brandenburg 0.09

11 Mecklenburg-Western Pomerania 0.00

12 Saxony 0.00

13 Saxony-Anhalt 0.00

14 Thuringia 0.00
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Table A.6: Donor weights: Thuringia 2019, Sick leaves

States Weight

1 Schleswig-Holstein 0.00

2 Hamburg 0.00

3 Lower Saxony 0.00

4 Bremen 0.00

5 North Rhine-Westphalia 0.00

6 Hesse 0.00

7 Rhineland-Palatinate 0.00

8 Baden-Württemberg 0.14

9 Bavaria 0.00

10 Saarland 0.00

11 Berlin 0.00

12 Brandenburg 0.00

13 Mecklenburg-Western Pomerania 0.00

14 Saxony 0.33

15 Saxony-Anhalt 0.53
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Figure A.1: Bavarian election in October 2018 - No neighboring states

(a) Sick leaves for Bavaria and Synthetic Bavaria

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Bavaria (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all federal states that do not border Bavaria. The vertical dashed line marks
calendar week 41, the week of the election. Panel (b) includes the ratios of the post- to pre-treatment
mean squared prediction error (MSPE) for Bavaria (BY, red) and all other federal states that do not
border Bavaria (BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS for Lower
Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for Rhineland-
Palatinate, SL for Saarland, SA for Saxony-Anhalt and SH for Schleswig-Holstein).



Epidemics at the Polls? 96

Figure A.2: Sick leaves for Hessian election in October 2018 - No neighboring states

(a) Sick leaves for Hesse and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Hesse (solid black line) compared to its synthetic counterpart (dashed line), which is constructed as a
weighted average of all federal states that do not border Hesse. The vertical dashed line marks calendar
week 43, the week of the election. Panel (b) includes the ratios of the post- to pre-treatment mean squared
prediction error (MSPE) for Hesse (HE, red) and all other federal states that do not border Hesse (BE for
Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, MV for Mecklenburg-Western Pomerania,
SL for Saarland, SN for Saxony, SA for Saxony-Anhalt and SH for Schleswig-Holstein).
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Figure A.3: Sick leaves for Hessian election in October 2018 - No states with holidays

(a) Sick leaves for Hesse and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Hesse (solid black line) compared to its synthetic counterpart (dashed line), which is constructed as a
weighted average of all federal states that did not have fall holidays in the post-treatment period. The
vertical dashed line marks calendar week 43, the week of the election. Panel (b) includes the ratios of the
post- to pre-treatment mean squared prediction error (MSPE) for Hesse (HE, red) and all other federal
states that did not have fall holidays in the post-treatment period (HB for Bremen, HH for Hamburg,
NS for Lower Saxony, NW for North Rhine-Westphalia, RP for Rhineland-Palatinate, SL for Saarland,
SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-Holstein and TH for Thuringia).
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Figure A.4: Sick leaves for Hessian election in October 2018 - Placebo election two
weeks earlier

(a) Sick leaves for Hesse and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Hesse (solid black line) compared to its synthetic counterpart (dashed line), which is constructed as
a weighted average of all federal states. The vertical dashed line marks calendar week 41, the week of
the placebo election. The vertical black line indicates calendar week 43, the week of the actual election.
Panel (b) includes the corresponding ratios of the post- to pre-treatment mean squared prediction error
(MSPE) for Hesse (HE, red) and all other federal states except Bavaria (BW for Baden-Württemberg,
BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS for Lower Saxony, MV for
Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for Rhineland-Palatinate, SL for
Saarland, SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-Holstein and TH for Thuringia).
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Figure A.5: Sick leaves for Hessian election in October 2018 - Longer pre treatment
period

(a) Sick leaves for Hesse and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Hesse (solid black line) compared to its synthetic counterpart (dashed line), which is constructed as
a weighted average of all other federal states. The vertical dashed line indicates calendar week 43, the
week of the election. Panel (b) includes the corresponding ratios of the post- to pre-treatment mean
squared prediction error (MSPE) for Hesse (HE, red) and all other federal states except Bavaria (BW
for Baden-Württemberg, BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS
for Lower Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for
Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-Holstein
and TH for Thuringia).
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Figure A.6: Sick leaves for Hessian election in October 2018 - Vaccinations per capita
as predictor

(a) Sick leaves for Thuringia and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: The graph illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Hesse (solid black line) compared to its synthetic counterpart (dashed line), which is constructed as
a weighted average of all other federal states. For this analysis the number of vaccinations per capita
was added as an additional predictor. The vertical dashed line indicates calendar week 43, the week of
the election. Panel (b) includes the corresponding ratios of the post- to pre-treatment mean squared
prediction error (MSPE) for Hesse (HE, red) and all other federal states (BW for Baden-Württemberg,
BY for Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HH for Hamburg, NS for Lower
Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for Rhineland-
Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt, SH for Schleswig-Holstein and TH
für Thuringia).
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Figure A.7: Sick leaves for Thuringian election in October 2019 - No neighboring states

(a) Sick leaves for Thuringia and Synthetic Thuringia

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Thuringia (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all federal states that do not border Thuringia. The vertical dashed line marks
calendar week 43, the week of the election. Panel (b) includes the corresponding ratios of the post- to
pre-treatment mean squared prediction error (MSPE) for Thuringia (TH, red) and all other federal states
that do not border Thuringia (BW for Baden-Württemberg, BE for Berlin, BB for Brandenburg, HB for
Bremen, HH for Hamburg, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia,
RP for Rhineland-Palatinate, SL for Saarland and SH for Schleswig-Holstein.
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Figure A.8: Sick leaves for Thuringian election in October 2019 - No states with holidays

(a) Sick leaves for Hesse and Synthetic Hesse

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Thuringia (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all federal states that did not have fall holidays in the post-treatment period.
The vertical dashed line marks calendar week 43, the week of the election. Panel (b) includes the ratios
of the post- to pre-treatment mean squared prediction error (MSPE) for Thuringia (TH, red) and all
other federal states that did not have fall holidays in the post-treatment period (BE for Berlin, BB for
Brandenburg, HB for Bremen, HE for Hesse, HH for Hamburg, NS for Lower Saxony, NW for North
Rhine-Westphalia, RP for Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt
and SH for Schleswig-Holstein).
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Figure A.9: Sick leaves for Thuringian election in October 2019 - Placebo election two
weeks earlier

(a) Sick leaves for Thuringia and Synthetic Thuringia

(b) Ratios of post- to pre-treatment MSPE

Note: Panel (a) illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Thuringia (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all federal states. The vertical dashed line marks calendar week 41, the week of
the placebo election. The vertical black line indicates calendar week 43, the week of the actual election.
Panel (b) includes the corresponding ratios of the post- to pre-treatment mean squared prediction error
(MSPE) for Thuringia (TH, red) and all other federal states (BW for Baden-Württemberg, BY for
Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HE for Hesse, HH for Hamburg, NS
for Lower Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-Westphalia, RP for
Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt and SH for Schleswig-
Holstein).
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Figure A.10: Sick leaves for Thuringian election in October 2019 - Longer pre treatment
period

(a) Sick leaves for Thuringia and Synthetic Thuringia

(b) Ratios of post- to pre-treatment MSPE

Note: The graph illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Thuringia (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all other federal states. The vertical dashed line indicates calendar week 43,
the week of the election. Panel (b) includes the corresponding ratios of the post- to pre-treatment mean
squared prediction error (MSPE) for Thuringia (TH, red) and all other federal states (BW for Baden-
Württemberg, BY for Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HE for Hesse, HH
for Hamburg, NS for Lower Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-
Westphalia, RP for Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt and
SH for Schleswig-Holstein).
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Figure A.11: Sick leaves for Thuringian election in October 2019 - Vaccinations per
capita as predictor

(a) Sick leaves for Thuringia and Synthetic Thuringia

(b) Ratios of post- to pre-treatment MSPE

Note: The graph illustrates the weekly trend in sick leave cases per 1,000 individuals insured by Barmer
in Thuringia (solid black line) compared to its synthetic counterpart (dashed line), which is constructed
as a weighted average of all other federal states. For this analysis the number of vaccinations per
capita was added as an additional predictor. The vertical dashed line indicates calendar week 43, the
week of the election. Panel (b) includes the corresponding ratios of the post- to pre-treatment mean
squared prediction error (MSPE) for Thuringia (TH, red) and all other federal states (BW for Baden-
Württemberg, BY for Bavaria, BE for Berlin, BB for Brandenburg, HB for Bremen, HE for Hesse, HH
for Hamburg, NS for Lower Saxony, MV for Mecklenburg-Western Pomerania, NW for North Rhine-
Westphalia, RP for Rhineland-Palatinate, SL for Saarland, SN for Saxony, SA for Saxony-Anhalt and
SH for Schleswig-Holstein).
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Table A.7: Percentage of Barmer-insured individuals relative to the total population in
German states as of December 31, 2019.

State Percentage (%)

Baden-Württemberg 7.2

Bavaria 9.3

Berlin 12.8

Brandenburg 17.9

Bremen 5.7

Hamburg 9.9

Hesse 12.2

Lower Saxony 10.7

Mecklenburg-Western Pomerania 16.9

North Rhine-Westphalia 12.5

Rhineland-Palatinate 11.2

Saarland 12.4

Saxony 8.6

Saxony-Anhalt 12.5

Schleswig-Holstein 13.3

Thuringia 10.2

Note: The table shows the proportion of BARMER-insured individuals as a percentage of the total population in each
federal state (Bundesland) in Germany as of December 31, 2019. Source: BARMER Daten 2019 and Destatis 2020,
(Rädel et al., 2021).
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Abstract

On July 14, 2021, central and Western Europe experienced heavy rainfall, lead-

ing to severe floodings in multiple regions. This study examines whether the re-

sulting floodings contributed to the spread of COVID-19 in the a!ected areas of

Germany. Our research expands the existing literature on the impact of natural dis-

asters on disease transmission and the dynamics of COVID-19 spread during mass

gatherings. Using a synthetic control approach, we compare the average weekly

number of newly reported COVID-19 cases and the weekly averages of intensive

care unit patients across flood-a!ected German districts with a synthetic control

group composed of una!ected districts. Our findings show that COVID-19 case

trends diverged between a!ected districts and their synthetic counterparts - indi-

cating a positive e!ect of natural disasters on the spread of respiratory diseases.

However, the impact on ICU admissions is less conclusive.

Keywords: COVID-19, Natural disasters, Floods, Pandemic, Compound hazards, Synthetic

control method

JEL classification: H12, I12, I18, Q54
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4.1 Introduction

As our world continues to evolve and faces challenges such as climate change and ur-

banization, the severity of natural disasters has increased (Paprotny et al., 2018). The

concentrated clustering of population and infrastructure in vulnerable areas increases

their susceptibility to the adverse consequences of these catastrophes (Tate et al., 2021).

As a result, these disruptions create favorable conditions for the spread of infectious dis-

eases (Suk et al., 2020). Understanding the dynamics of compound hazards, including

how natural disasters amplify the spread of infectious diseases, such as COVID-19, and

their implications, is crucial (Ford et al., 2022), because their understanding enables

targeted interventions, resource allocation, and risk mitigation for a!ected populations

while enhancing our comprehension of the complex interactions between natural and

social systems. It guides strategies for resilient communities and can minimize future

adverse impacts (Zscheischler et al., 2018). Given these considerations the consequences

of natural disasters and infectious diseases have become an important research topic in

social sciences, like economics.

A notable example of a compound hazard connecting the two areas of research oc-

curred on July 14, 2021, when heavy rainfalls hit Central and Western Europe, leading

to a devastating flood that caused destruction in several areas. Germany, in particular,

experienced the major burden of storm Bernd, with over 180 lost lives, 766 injured, and

severe damage to the infrastructure. The estimated damage to the insured property alone

is projected to range between e4.5 and e5.5 billion (GDV, 2022). This flood not only

caused immediate devastation but also raised concerns about the potential exacerbation

of the at that time ongoing COVID-19 pandemic.

Our research seeks to understand the relationship between natural disasters and the

transmission of viral diseases like COVID-19. Therefore, we utilize the Synthetic Control

Method (SCM) to examine the transmission dynamics of COVID-19 in Germany fol-

lowing a severe flood, using o”cial epidemiological data from the Robert Koch-Institute

(RKI) and the German Interdisciplinary Association for Intensive Care and Emergency

Medicine (German: Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedi-

zin, DIVI).

Despite the tragedy of this natural disaster, it o!ers valuable insights into the complex
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dynamics of disease transmission in its aftermath. We take advantage of the unanticipated

nature of this natural disaster, which provides us with a quasi-experimental design and

allows us to compare a!ected districts with una!ected districts. In addition, our study

benefits from its timing, which occurred in the middle of the pandemic in Germany,

in contrast to previous research that focused on the onset of the pandemic. Given the

availability of data covering a substantial part of the pandemic period before the disaster,

we expect it to enhance the reliability of our results once the SCM e!ectively aligns the

outcome variables for treated and untreated districts prior to the flooding.

Our work contributes to two distinct strands of literature: First, research that has

been conducted on the dynamics of COVID-19 transmission at social events characterized

by mass gatherings. At these events, the virus can potentially spread more easily due to

close interactions and shared environments. Several such instances have been described

in the literature that contributed to the spread of COVID-19, or at least raised concerns

about transmission of the SARS-CoV-2 virus. These include festivals (e.g., Domènech-

Montoliu et al., 2021), sporting events (e.g., Ahammer et al., 2023), elections (e.g., Cassan

and Sangnier, 2022; Güntner et al., Forthcoming; Mello and Moscelli, 2022; Palguta et

al., 2022), weddings (e.g., Yusef et al., 2020), family gatherings (e.g., Whaley et al.,

2021), cruise ship tours (e.g., Willebrand et al., 2022), as well as vacations and tourism

(e.g., Felbermayr et al., 2021; Isphording et al., 2021; Mangrum and Niekamp, 2022).

Despite not being considered ”social events”, natural disasters may increase transmission

rates by prompting gatherings, such as those between helpers and victims, or due to the

necessity of emergency shelters. Thus, analyzing natural disasters in this context can

provide valuable insights.

Second, we contribute to the literature that directly examines the impact of natural

disasters on the emergence and spread of infectious diseases. For instance, Berariu et

al. (2015) highlight that the destruction of public health infrastructure and emergency

response systems can leave a!ected populations more vulnerable by limiting resources

and restricting access to healthcare services. Additionally, psychological stress induced

by disasters may weaken individuals’ immune systems, increasing their susceptibility to

infections (Esterwood and Saeed, 2020). Moreover, displacement due to infrastructure

damage often leads to overcrowding in emergency shelters, resulting in higher population

density and an elevated risk of disease transmission (Charnley et al., 2021). In their
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review, Suk et al. (2020) analyze the e!ects of earthquakes and floods in Europe on in-

fectious disease outbreaks. Reports link earthquakes to outbreaks of Salmonella enterica

(Nigro et al., 2016), chickenpox (Pérez-Mart́ın et al., 2017), and infectious diseases more

broadly (Petrazzi et al., 2013). Similarly, floods are associated with outbreaks of gas-

trointestinal (Gertler et al., 2015; Harder-Lauridsen et al., 2013; Schmid et al., 2005) and

zoonotic (Christova and Taseva, 2016; Desai et al., 2009; Radl et al., 2011; Socolovschi

et al., 2011) infectious diseases. Furthermore, Shukla et al. (2018) find that endemic

pathogens spread more frequently during hurricanes.

The extent to which natural disasters influence the spread of respiratory diseases like

COVID-19 remains largely unclear due to the scarcity of empirical evidence. Murray

et al. (2009) and Rath et al. (2011) detect a rise in respiratory symptoms following

Hurricane Katrina’s impact on the southeastern United States in August 2005. Most

existing studies examining the relationship between natural disasters and COVID-19

rely primarily on descriptive analyses.1 For example, Mavroulis et al. (2021) observe an

increase in reported COVID-19 cases only after Cyclone Ianos struck Greece in September

2020, whereas no significant changes are detected following the earthquakes and floods

they study. Similarly, Frausto-Mart́ınez et al. (2020) find no direct evidence of a surge in

COVID-19 cases during tropical storms. Likewise, Čivljak et al. (2020) and Ćurković et

al. (2021) report no immediate rise in COVID-19 cases after earthquakes struck Croatia

in March 2020.

Building on the existing literature, our study aims to provide a more comprehensive

understanding of how natural disasters influence the spread of airborne diseases. This

knowledge is crucial for developing e!ective risk reduction and resilience strategies for

future societies facing both an epidemic and a natural disaster simultaneously.

Our empirical approach monitors the severity of the COVID-19 pandemic in Germany

on a weekly basis around the onset of Storm Bernd on July 14, enabling us to examine

which phase of the disaster may contribute to worsening respiratory disease transmission.

In this context, we propose two potential mechanisms that could facilitate virus spread.

First, during and in the immediate aftermath of the storm, individuals may be compelled

to stay indoors longer or gather in emergency shelters, potentially creating conditions

1Some simulation-based studies have explored the interaction between natural disasters and COVID-
19, focusing on forecasting potential scenarios rather than establishing causal links (see Pei et al., 2020;
Quigley et al., 2020; Silva and Paul, 2021; Van Wyk de Vries and Rambabu, 2021), as they assume a
connection between natural disasters and COVID-19.
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that enhance viral spread. Second, the influx of volunteers from outside the a!ected

areas in the subsequent weeks — despite their good intentions — may inadvertently pose

an additional health risk to local communities. As demonstrated by Bier et al. (2025,

2022) in their large-scale survey of 2,500 volunteers, approximately 75% began working in

the a!ected areas four days after the flood. Given the average incubation period of 4.41

days (Wu et al., 2022), if volunteers contribute to the severity of COVID-19, we would

expect an increase in cases starting around two weeks after the flood.

Our analyses can serve as an initial step in evaluating the economic feasibility of

potential countermeasures, such as distributing masks to evacuees and volunteers, to

determine whether they can be implemented cost-e!ectively.

The baseline analysis, which examines COVID-19 cases per 100,000 residents as the

outcome variable, indicates that the number of new weekly cases increased by approx-

imately 36% to 93% following the flood in the a!ected districts. These results suggest

that the spread of COVID-19 was more influenced by the influx of helpers rather than the

prolonged indoor stay at home or with other evacuees in emergency shelters. However,

an alternative specification, which focuses on the daily number of patients in intensive

care—chosen to be less susceptible to unobserved influences—does not provide robust

evidence of a significant worsening in the severity of the COVID-19 pandemic.

The remainder of the paper is organized as follows: Section 4.2 introduces the data,

followed by Section 4.3, which details our methodological approaches. Section 4.4 presents

the analysis results, while Chapter 4.5 discusses the findings. Finally, Chapter 4.6 pro-

vides the conclusion.
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4.2 Data

The analyses presented in this paper are based on district (Kreis) level data from Ger-

many. Until July 2021 the Federal Republic of Germany comprised 16 federal states and

401 districts, of which we consider 3952 for our analyses. Of those 395 districts 289 are

rural and 106 are urban districts. 29 of these districts from three di!erent states were

marked as a!ected by the flood by the Federal O”ce for Civil Protection (Bundesamt für

Bevölkerungsschutz und Katastrophenhilfe, BBK): Bavaria (2)3, North Rhine-Westphalia

(22)4 and Rhineland-Palatinate (5).5 Of those a!ected, 10 are urban and 19 are rural

districts.

Our data was retrieved from di!erent sources. One dataset consists of COVID-19

cases6 and deaths at the district level for January 2, 2020 through November 28, 2021

from the COVID-19-Dashboard of the RKI.7 For each positive test result reported to the

RKI, the data carry information on the state, district, age group, sex, reporting date,

and whether the person tested has recovered or deceased in the meantime. In addition,

we use the o”cial data on registered COVID-19 vaccinations from the RKI.

The second dataset records the daily number of COVID-19 patients receiving treat-

ment in intensive care units at the district level from December 27, 2020, to November

28, 20218 and was provided by the DIVI.

Rather than relying on cumulative data for daily reported cases, deaths, and ICU pa-

2In July 2021 the Stadtkreis Eisenach integrated in the Wartburgkreis. We excluded those two
districts, since some of our resources reported data for both districts individually and some for the
Wartburgkreis only. We expect no drawbacks, because analyses for an earlier draft of the paper based
on datasets, which reported the two districts separately, show that both districts don’t contribute to
any synthetic control. Results for those analyses can be provided on request. We had to further exclude
four districts for the ICU-specifications (Rheinland-Pfalz-Kreis, Neustadt an der Waldnaab, Landkreis
Coburg and Landkreis Fürth), because they did not report any ICU cases over the whole duration of the
available observed time periods.

3The a!ected districts in Bavaria are Berchtesgadener Land and Hof.
4The a!ected districts in North Rhine-Westphalia are Städteregion Aachen, Bottrop, Ennepe-

Ruhr-Kreis, Hochsauerlandkreis, Oberbergischer Kreis, Rhein-Sieg-Kreis, Mettmann, Heinsberg, Düren,
Rheinisch-Bergischer Kreis, Wuppertal, Rhein-Erft-Kreis, Hagen, Mülheim an der Ruhr, Euskirchen,
Essen, Köln, Leverkusen, Solingen, Märkischer Kreis, Oberhausen and Düsseldorf.

5The a!ected districts in Rhineland-Palatinate are Ahrweiler, Vulkaneifel, Bitburg-Prühm, Trier-
Saarburg and Bernkastel-Wittlich.

6Cases are defined according to the RKI. The terms cases and positively tested are therefore used
synonymously in this paper.

7We retrieved the data on November 30, 2021. The most recent data on registered COVID-19 cases
and deaths in Germany reported to the RKI are available on GitHub. Due to di!erent sources, these
data deviate from those reported by the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University.

8The data is available through the DIVI ICU register.

https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland/tree/master/Archiv
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Falldefinition
https://github.com/robert-koch-institut/SARS-CoV-2-Infektionen_in_Deutschland
https://systems.jhu.edu/
https://systems.jhu.edu/
https://github.com/robert-koch-institut/Intensivkapazitaeten_und_COVID-19-Intensivbettenbelegung_in_Deutschland
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tient numbers, we primarily aggregate these figures on a weekly basis for two key reasons.

First, daily data is subject to weekly fluctuations in testing and hospital admissions, such

as those influenced by weekends. Second, cumulative data continuously increase, making

it challenging to assess whether virus transmission is accelerating or decelerating. Weekly

figures, in contrast, provide a clearer view of the pandemic’s trajectory, particularly in

relation to public health measures. Since they are less depend on past infection levels,

they o!er a more accurate snapshot of the current state of the pandemic in a given region.

To operationalize this approach, we sum the daily reported cases and deaths over each

seven-day period, aligning them with the seven-day period of the flood that began on

July 14. To account for variations in district population sizes, we express these weekly

figures per 100,000 residents.

Unlike the COVID-19 case and death data, the DIVI dataset does not include infor-

mation on the number of newly admitted ICU patients per day. Consequently, for our

analysis, we construct the weekly average of daily COVID-19 ICU patients per 100,000

residents per district.

We use data on German demographic, economic, health care and child care charac-

teristics at the district level as our predictor variables. The data comes from the Federal

Statistical O”ce and the Federal Institute for Building and Regional Planning. Alipour

et al., 2023, 2021 shared their data on the share of employees working from home at the

district level.9 Summary statistics for the full list of variables separated by una!ected

districts and all a!ected districts are reported in Table 1.

9We are grateful to the respective authors for sharing their data.

https://www.destatis.de/EN/Home/_node.html
https://www.destatis.de/EN/Home/_node.html
https://www.inkar.de
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Table 1: Summary statistics for outcome and predictor variables at the district level

Districts

Variable All Una!ected All A!ected

C
O
V
ID

-1
9

Cases between July 13 and June 16† 21.23 ( 14.24) 27.62 ( 10.13)

Cases between August 10 and July 14† 58.66 ( 34.04) 101.20 ( 45.74)

Deaths between July 13 and June 16† 0.12 ( 0.39) 0.15 ( 0.25)

Deaths between August 10 and July 14† 0.25 ( 0.65) 0.58 ( 0.62)

ICU patients per day between July 13 and June 16† 0.68 ( 1.25) 0.64 ( 0.95)

ICU patients per day between August 10 and July 14† 0.36 ( 0.72) 0.57 ( 0.77)

Primary vaccinations between July 13 and June 16∗ 8.56 ( 3.50) 8.32 ( 1.82)

Secondary vaccinations between July 13 and June 16∗ 14.88 ( 5.58) 15.64 ( 3.04)

D
em

og
ra
p
h
ic

Inhabitants per km2 of settlement and tra”c area 1772.94 ( 1046.96) 2405.77( 1240.18)

Age structure of population

% aged under 6 5.57 ( 0.53) 5.69 ( 0.32)

% aged 6–17 10.74 ( 0.82) 10.84 ( 0.56)

% aged 18–24 7.29 ( 1.47) 7.30 ( 0.77)

% aged 25–29 5.53 ( 1.61) 5.85 ( 0.94)

% aged 30–49 24.41 ( 1.76) 24.08 ( 1.66)

% aged 50–64 23.61 ( 2.07) 23.87 ( 1.48)

% aged ≥65 22.85 ( 3.12) 22.37 ( 1.76)

Population development§ 3.35 ( 4.36) 3.47 ( 3.69)

Female share of population 50.57 ( 0.61) 50.87 ( 0.63)

Foreign share of population 10.94 ( 5.53) 13.42 ( 4.06)

Religion

Share of catholics 0.32 ( 0.25) 0.48 ( 0.19)

Share of protestants 0.32 ( 0.18) 0.25 ( 0.13)

H
ea
lt
h
an

d
S
oc
ia
l
is
su
es Child care participation rates

% aged 0–2 years 35.94 ( 12.84) 28.66 ( 5.41)

Hospital beds‡ 63.01 ( 39.73) 55.66 ( 16.17)

Geriatric demand and supply‡

Elderly in need of care 512.33 ( 125.95) 553.38 ( 83.39)

Nursing home places 113.79 ( 30.70) 107.54 ( 18.61)

General physicians† 63.04 ( 6.20) 60.65 ( 4.80)

(continues)
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Table 1: Summary statistics continued

Districts

Variable All Una!ected All A!ected

E
co
n
om

ic

Unemployment

Unemployment rate in % 5.40 ( 2.16) 6.75 ( 2.40)

Share of unemployed aged 55–64 24.02 ( 4.51) 22.25 ( 3.93)

Unemployment rate women in % 5.01 ( 2.05) 6.31 ( 2.30)

Employment rate 62.87 ( 4.05) 58.71 ( 4.28)

Household income per capita per month 1974.83 ( 192.23) 1967.44 ( 149.69)

GDP per capita⋊ 38.56 ( 16.25) 35.60 ( 11.91)

Commuters

% out 42.23 ( 13.08) 43.43 ( 13.64)

% in 38.64 ( 14.35) 39.11 ( 13.13)

Share of workers with academic degree 14.55 ( 6.87) 14.26 ( 6.32)

Tourism

Stays in hotels per capita 4.02 ( 5.64) 2.56 ( 4.01)

Share of stays in hotels by foreigners 10.15 ( 7.25) 13.89 ( 8.39)

Share of workers working from home 23.51 ( 3.04) 24.06 ( 3.16)

Note: Unweighted sample means with standard deviation in parentheses. June 16, 2021 (four full weeks
prior to the start of the flood) and August 10, 2021 (four full weeks after) serve as the reference dates
for the COVID-19 key figures. For instance, the average number of cases per 100,000 residents reported
between July 13 and June 16 for all a!ected districts is equal to 21.23. ICU patients per day refers to
the average number of ICU patients per day for the respective period. In the SCM analyses we include
administrative and structural district-type dummies. † per 100,000 inhabitants, § per 1,000 inhabitants,⌐ per 100 inhabitants, ‡ per 10,000 inhabitants, ⋊ in EUR 1,000
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Figure 1: Weekly average of COVID-19 cases per 100k

Notes: The y-axis represents the number of weekly registered COVID-19 cases per 100,000 residents
averaged over all German districts. The x-axis covers all weeks (starting every Wednesday) from January
6th until November 24th 2021 relative to the 7 day period of the floodings starting on July 14th. The
dashed vertical lines mark the end and the start of di!erent COVID-19 periods in 2021 defined by
Schilling et al. (2022). The gray area represents the considered period for the SCM analyses.

4.3 Methods

The key COVID-19 indicators presented in Table 1 suggest that, just before the onset of

the natural disaster, the spread and severity of the pandemic were relatively low. The

average number of COVID-19 cases, deaths, and ICU patients in the four weeks leading up

to the flood remained at low baseline levels, with no notable di!erences between a!ected

and una!ected districts. Following the flood, the average number of COVID-19 cases

and deaths increased significantly, at least doubling compared to the pre-flood period.

However, the average number of daily ICU patients declined in both groups, though the

decrease was less pronounced in the a!ected districts. Similarly, Figure 1 depicts the

di!erent phases of the COVID-19 pandemic in Germany throughout 2021 and shows that
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the flooding occurred between the conclusion of the third major wave in Germany and

the onset of the fourth wave, as defined by Schilling et al. (2022), during a period of

relatively low reported case numbers.

This low baseline of COVID-19 spread around the time of the flooding is also evident

in the four panels of Figure 2, which depicts the incidence of COVID-19 cases per 100,000

residents across German districts: one week before the floods began on July 14, during

the week of the natural disaster, one week after, and four weeks after. A fraction of the

a!ected districts (indicated by red dots) reported relatively high weekly case numbers per

100,000 residents already prior the catastrophe as can be seen in the first panel of Figure

2, which highlights a significant challenge for empirically analyzing the flood’s impact on

COVID-19 spread.

In total, those figures show that a causal analysis in that context has to account for

pre-existing di!erences in case numbers, as an initially high number of cases is likely to

result in higher case numbers in subsequent weeks. We propose that the SCM is a suitable

empirical tool for this analysis. SCM allows the construction of a synthetic comparison

district for each a!ected district, taking into account pre-flood values of the outcome

variable and a range of other predictor variables.

For our baseline analysis, we apply the SCM for causal inference in comparative case

studies, as developed by Abadie and Gardeazabal (2003), Abadie et al. (2010) and Abadie

et al. (2015). The potential e!ect of the floodings, ϑi,t, is defined as:

ϑi,t = Y Treat
i,t − Y C

i,t for all t > T0, (1)

where i = 1, ...,29 represents the 29 German districts identified by the BBK as a!ected

by the natural disaster at time t. The time period t = 1, . . . , T is divided into a pre-

treatment period, t = 1, . . . , T0, and a post-treatment period, t = T0 + 1, . . . , T . In the

framework of equation 1, Y Treat
i,t denotes the observed outcome for an a!ected district i at

time t, while Y C
i,t represents the counterfactual outcome for district i had the intervention

not occurred.
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Figure 2: Weekly number of COVID-19 cases per 100,000 residents per district

One week before Week of the flood

One week after Four weeks after

Notes: Red dots mark districts labeled as treated by the BBK. The class breaks are defined as the
respective 75%, 90%, 95% and 99% percentile. We do not report data for the excluded districts mentioned
in section 4.2.
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The pre-treatment period extends from Wednesday of calendar week 9 (March 3rd)

to Tuesday of calendar week 28 (July 13th), the day before the onset of storm Bernd.

This time frame is selected for two main reasons. First, the reliability of SCM hinges on

its capacity to accurately mirror the trajectory of the outcome variable over a su”ciently

long period prior to the intervention (Abadie, 2021; Abadie et al., 2010), which in this

case refers to the natural disaster. Second, this period fully captures the third COVID-19

wave as well as four of the seven weeks of the summer plateau (Schilling et al., 2022). As

illustrated in Figure 1, the dynamics of COVID-19 cases di!er between these phases, with

relatively high case numbers during the third wave and lower numbers during the summer

plateau. By covering both phases with di!erent underlying transmission dynamics, we

create a donor pool where a strong pre-treatment fit would enhance the reliability of the

results.

The post-treatment period ends on Tuesday of calendar week 39 (September 28th),

marking the conclusion of the summer COVID-19 wave (Schilling et al., 2022, see Fig-

ure 1). Extending the post-treatment period would not enhance our analysis, as any

observed di!erences in outcomes over a longer time frame are likely influenced by other

idiosyncratic changes.

Since the Y C
i,t of Equation 1 is unobservable, we approximate it by using a weighted

average of outcomes from una!ected districts, j = 1, . . . ,366 (referred to as donor units):

Y
C
i,t = 366⩀

j=1
wj ⋊ Yj,t. (2)

The weights {w1, . . . , w366} are determined for each a!ected district i by solving the

following minimization problem subject to wj ≥ 0 for j = 1, . . . ,366 and ⊍366
j=1wj = 1:

⌝⌝⌝⌝⌝⌝
N⩀

m=1
vm ⌝Xi,m − ⌝366⩀

j=1
wjXj,m⌞⌞

2⌞⌞⌞⌞⌞⌞
1
2

. (3)

Here, vm represents the importance of the mth variable in the set of N predictors

(Xm,with m = 1, . . . ,N) used to measure the similarity between treated and donor dis-

tricts. In addition to the variables listed in Table 1, lagged values of each outcome variable

are included as predictors. The matrix V , which reflects the relative importance of pre-

dictors, is estimated for each treated district by minimizing the mean squared prediction

error during the pre-treatment period:
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min ⌜ T0⩀
t=1
(Yi,t − (366⩀

j=1
wi(V )Yi,t))2⌝ . (4)

Following Cavallo et al. (2013), we extend the one-unit synthetic treatment analysis

by calculating results for each of the 29 a!ected districts, excluding them from the donor

pool during their respective analyses. We then compute the average treatment e!ect on

the treated (ATT) as:

ATTt = 1

29

29⩀
i=1

ϑi,t. (5)

The statistical significance of the results is evaluated through placebo tests by esti-

mating the model for each una!ected district as if it were treated. If the distribution of

placebo e!ects shows many e!ects as large as the ATT estimate for a!ected districts, the

observed e!ect is likely due to chance. The resulting p-values from the placebo test can be

quite large if the treated and donor units are not well matched during the pre-treatment

period. To mitigate this, we adjust (standardize) the estimated e!ects based on their

respective pre-treatment match quality.10

As a robustness check, we further examine the development of our outcome variables

using linear regression models. For these regressions, we classify the outcome variables

Y into two groups. The first group includes the di!erences (Yi;Tue) in the number of

newly reported COVID-19 cases per 100,000 residents between July 14 (the onset of the

flood) and each subsequent Tuesday until September 28.11 The second group comprises

the average daily number of ICU patients with COVID-19 per 100,000 residents for each

period between July 14 and any subsequent Tuesday until September 28.

To account for the varying pandemic phases across districts at the time of the natural

disaster, we control for the number of registered COVID-19 cases or ICU patients recorded

between June 16 and July 13 (the four weeks preceding the flood). Consistent with

the SCM approach, we also include controls for demographic, economic, health, and

childcare characteristics at the district level, the share of employees ever working from

home (Alipour et al., 2023, 2021), and the number of primary and secondary vaccinations

administered in each district. This leads to the following general regression model for

10For our SCM analysis, we use the STATA packages synth (Abadie et al., 2015) and synth runner
(Galiani & Quistor!, 2017).

11For example, Yi;2 includes all newly registered cases between July 14 and the second Tuesday (July
27) after.
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each district d:

Yd,Tue = ω + ε1 ⋊ trBBK + ϖ1 ⋊ Yd,June 16–July 13 + ϖ2 ⋊ Primaryd,June 16–July 13

+ ϖ3 ⋊ Secondaryd,June 16–July 13 +Xd ⋊ ϑ + ςd (6)

where ω represents a common intercept, ϖ denotes the coe”cients for the number

of COVID-19 cases or ICU patients between June 16 and July 13, as well as for the

primary and secondary vaccinations in district d during the same period, and ϑ is a

vector of coe”cients associated with the district-level control variables contained in Xd.

The coe”cient ε1 corresponds to the binary variable indicating whether a district d was

a!ected by the flood, as identified by the BBK. The models described in equation (6) are

estimated using ordinary least squares (OLS).

4.4 Results

This section presents the empirical evidence based on the econometric approaches dis-

cussed above.

Figure 3 displays the synthetic control estimation results for the districts a!ected by

flooding beginning on July 14 for the weekly number of COVID-19 cases per 100,000.12

Panel a) provides some insights: First, the development of the weekly COVID-19 cases

for the average of the a!ected districts as well as their synthetic counterparts does follow

the general average development of all German districts displayed in Figure 1. Second,

comparing the evolution of cases for an average a!ected district with the development for

an average synthetic control district shows small deviations between the average a!ected

and the average synthetic district during the pre-treatment period. The overall pre-

treatment root mean squared prediction error (RMSPE) is around 12.47. Third, we

observe a widening gap beginning two weeks after the onset of the flood. A delay of some

length between the start of the natural disaster and the rise in cases is expected, given

that the estimated median incubation period for the Delta variant of the SARS-CoV-2

virus is 4.41 days (Wu et al., 2022).13 Considering the incubation period, if events in

12The donors receiving the biggest weights for each a!ected district can be seen in Table A.1. While all
districts have more than three contributing donors, the top three mostly account for at least two-thirds
of the total weight.

13Around that time, the Delta variant was increasingly replacing the Alpha variant in Germany (see,
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the immediate aftermath of the disaster (such as prolonged indoor stays and gatherings

in emergency shelters) increased virus transmission, we would expect the gap to start

widening as early as week 0 (the week of the catastrophe) or at least in the week after.

However, the estimated e!ect, measured as the di!erence in the average number of weekly

reported cases between the a!ected districts and their synthetic counterparts, begins at

relatively low level of approximately 1.50 cases (compared to an average of 13.05 in the

synthetic districts) in week 0. The di!erence starts to increase to 5.80 cases only after

the second week after the onset of the flood (synthetic districts: 16.02), continues rising

to 19.53 cases by the fifth week (synthetic districts: 42.47), and peaks at 39.53 cases in

the sixth week (synthetic districts: 42.47) before declining sharply thereafter.

Similarly, the results from the permutation test presented in Panel b) of Figure 3 show

an immediate decline in the p-value to almost zero after two weeks, where it stays around

zero until 8 weeks after the floodings. The p-values together with the expected delay

between getting infected and getting tested positive suggest that an event was happening

in Mid-July 2021, which led to a significant increase of registered COVID-19 cases in the

a!ected areas.

Figure A.1 illustrates the estimated e!ects for each of the 29 a!ected districts con-

sidered. While most districts exhibit a pattern similar to Figure 3, some, such as Hof

and Oberbergischer Kreis, demonstrate a poor pre-treatment fit. Therefore, to further

assess the validity of the estimated e!ects, we utilize the ratio of the RMSPE from the

pre-treatment period to the RMSPE after the flood. This ratio serves as a robust measure

because, as noted by Abadie et al. (2015, p. 505), ”[a] large post-intervention RMSPE

is not indicative of a large e!ect of the intervention if the synthetic control does not

closely reproduce the outcome of interest prior to the intervention. That is, a large

post-intervention RMSPE is not indicative of a large e!ect of the intervention if the

pre-intervention RMSPE is also large.”

Figure 4 presents two boxplots: One for the ratio derived from the placebo SCMs,

where non-a!ected districts are treated as if they were a!ected, and one for the actual

a!ected districts. As shown in the left boxplot, approximately 75% of a!ected districts

have a ratio greater than or equal to 1, while around 25% exhibit a ratio suggesting a

twofold larger post-flood variation compared to pre-flood di!erences.

e.g. Schilling et al., 2022)
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Figure 3: COVID-19 cases per 100,000 residents

a) Averages of Weekly COVID-19 cases: A!ected and Synthetic Districts

b) Adjusted p-values

Note: Panel a) plots the weekly average of COVID-19 cases per 100,000 residents for all 29 a!ected
districts (straight line) against the same average from all synthetic counterparts (dashed line). The x-axis
represents the distance in weeks from the week of the flood (marked with a vertical dashed gray line).
Panel b) shows the weekly p-values for the estimated e!ect. The p-values represent the proportion of
average control units with an estimated e!ect at least as large as that of the average treatment unit.
The values are adjusted for the pre-treatment fit.
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Conversely, about 25% of a!ected districts report a ratio below 1, indicating that the

observed di!erences in COVID-19 cases between the district and its synthetic counterpart

after the flood are within the range of pre-flood deviations.

Moreover, some non-a!ected districts report relatively high ratios.14 Nonetheless, the

quartiles for a!ected districts are consistently higher than those for non-a!ected districts.

A one-sided t-test strongly rejects the null hypothesis that the mean ratios are equal,

supporting the alternative hypothesis that a!ected districts exhibit significantly higher

ratios (p-value = 0.0000).

Figure 4: Boxplots for the RMSPE-Ratio – COVID-19 cases

Notes: Graph includes two boxplots of the pre-treatment to post-treatment ratio of the RMSPE for all
donor districts and all a!ected districts.

14We explored potential factors contributing to increased case numbers in districts with high ratios
but found little anecdotal evidence. Local health o”ces and other sources, such as newspapers, primarily
reported raw COVID-19 case numbers without additional context. One exception was the health o”ce
of Landkreis Rosenheim, which reported the highest ratio (7.62). Their data indicated that the increase
in cases following the flood was due to returning travelers from Southeast Europe visiting family (see
Landratsamt Rosenheim, 2021). Since no substantial justification for exclusion was found, we retained
these outliers in the baseline analysis.
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Figure 5: Estimated Di!erences in COVID-19 Cases

Notes: This figure presents coe”cient estimates and 90% confidence intervals for a dummy variable
identifying the 29 districts impacted by the flood. The estimates represent the di!erence in cumulative
COVID-19 cases between July 14 and each subsequent Tuesday until September 28.

Building on the general model in Equation 6, Figure 5 illustrates how the association

between the treatment indicator and COVID-19 cases evolves over time. The figure

reports coe”cient estimates and 90% confidence intervals for the treatment variable,

measuring the di!erence in cases on each Tuesday from July 20 to September 28 relative

to July 14, the day storm Bernd began. The findings are in line with those presented in

Figure 3. Notably, the association becomes statistically significant at the 10% level on

August 3 and remains significant for all subsequent Tuesdays.

While using COVID-19 case numbers may initially appear to be a suitable choice for

assessing the impact of the flood on the severity of the pandemic, we chose not to adopt it

as our only outcome variable. This decision stems from our expectation that the number

of registered COVID-19 cases at this stage of the pandemic was heavily influenced by

varying testing behaviors across districts. This would be less of a concern if the flood had

no influence on any a!ected district. We consider this scenario unlikely for three reasons:

First, given the potential anticipation of a health threat resulting from the interaction

between the flood and the pandemic, increased emphasis may have been placed on testing

after the flood. Second, testing infrastructure was likely disrupted in the a!ected areas,

reducing the likelihood of detecting COVID-19 cases. Third, the opportunity costs of



Impacts of Natural Disasters on Infectious Diseases 126

testing positive may have risen for residents in the damaged regions. Faced with the

overwhelming burden of destruction, a!ected individuals may simply lacked the time to

get tested or to recover from COVID-19.

Another additional concern in this context is the influence of school holidays on infec-

tion dynamics. Empirical evidence indicates that summer breaks can contribute to the

spread of infectious diseases (Plümper & Neumayer, 2021). During the flood in calendar

week 28 (see Figure A.2 in the appendix), the federal states containing the a!ected dis-

tricts had either already started their summer school holidays (North Rhine-Westphalia)

or were set to begin in the subsequent weeks (calendar week 29 for Rhineland-Palatinate

and calendar week 31 for Bavaria).

One potential solution to address these issues would involve using a variable that

measures the number of SARS-CoV-2 tests performed. However, to the best of our

knowledge, such district-level data is unavailable.15 An alternative outcome variable that

may be less a!ected by testing discrepancies is the weekly number of COVID-19-related

deaths. Nevertheless, as shown in the maps in Figure A.3 in the appendix — and likely

due to the already high vaccination coverage among the German population at that

time, as reflected in Table 1— the overall baseline for reported deaths per week during

this period in Germany was low, with minimal variation across districts. Consequently,

any analysis based on COVID-19 death counts would rely disproportionately on a small

subset of districts, whether a!ected or una!ected, that reported slightly higher-than-zero

deaths.

Instead, we use the weekly average of COVID-19 patients receiving intensive care per

day as another outcome variable. We believe that hospital testing protocols during this

time were relatively consistent both over time and across districts. Patients hospitalized

with COVID-19 symptoms would have been tested for the virus regardless of whether

they had undergone testing prior to hospitalization. Figure 6 presents the weekly average

number of ICU patients per day per 100,000 inhabitants around the time of the flooding,

once again highlighting a highly conservative context for our research question given the

low number of ICU patients.

Figure 7 displays the SCM results for the districts a!ected beginning on July 14 for

15The German National Association of Statutory Health Insurance Physicians (Kassenärztliche Bun-
desvereinigung) provided some data on the number of tests conducted, which was available on their
website. However, this data on the federal level is no longer public.

https://www.kbv.de/html/53975.php
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the weekly average of registered COVID-19 patients per day in need of intensive health

care.16 Panel a) provides some insights: First, comparing the evolution of the average

number of ICU patients per day for an average a!ected district with the development

for an average synthetic control district suggests a good fit during the pre-treatment

period - especially for the weeks close to the week of the flood. The RMSPE for the

pre-treatment period is around 0.17. Second, we notice a growing disparity beginning

around the week of the flood. At 3 weeks post-flood, the measured average e!ect is

around 87% greater than the synthetic equivalent (0.53 observed patients on average per

day to 0.31 average synthetic patients per day), with approximately 0.27 more intensive

care patients per 100,000 inhabitants having COVID-19 in that week. The estimated

weekly e!ect increases in size until it peaks of around 0.60 six weeks after the start of

the flood.

To assess whether the observed di!erence could be due to chance, we again conducted

placebo-in-space tests. Panel b) reveals that the observed di!erence for the first two

weeks after the beginning of the flood is not unusual given the average of ICU patients

per day by the districts in the placebo pool. However, three weeks after the flood the

weekly adjusted p-values drop to around zero signaling significant e!ects. This is in line

with the di!erence between the average synthetic and average a!ected district becoming

more pronounced around three weeks after the start of the flood.

Although we argued that the number of reported ICU COVID-19 patients is more

robust against changes in the testing behavior, the variable could su!er from a particular

measurement error. As stated by DIVI (see DIVI, 2021), ICU patients with confirmed

positive COVID-19 tests could be counted multiple times when transferred from one ICU

to another. Each ICU admission, whether new or due to a transfer, is potentially included

in the count. While those multiple counts would not threaten our design in general, if

there would not be any di!erences in admission and readmission across a!ected and

una!ected districts, our results in Figure 7 would be biased if the flood itself changed

hospital discharge and transfer patterns in the a!ected regions. Unfortunately, due to

the flood, hospitals had to close.17 This is reflected in the data, as the average number of

16The donors receiving the biggest weights for each a!ected district can be seen in Table A.2 in the
appendix.

17In its Report on the 2021 Flood Disaster (Bericht zur Hochwasserkatastrophe 2021), the German
Ministry of the Interior states that five hospitals and two rehabilitation centers in Rhineland-Palatinate,
as well as three hospitals in North Rhine-Westphalia, were forced to shut down at least temporarily
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reporting units per 100,000 residents, shown in Figure A.4, drops sharply after the onset

of the flood, whereas no changes are observable for the averages of all other districts.

Consequently, patients requiring intensive care may have been transferred within the

a!ected district, potentially leading to an artificial increase in reported ICU COVID-19

cases. Additionally, Figure A.5 illustrates the average number of ICU beds occupied per

100,000 residents. Similar to the trend observed for reporting ICU units, the average

number of occupied ICU beds declines in the a!ected districts, while it remains largely

unchanged on average in all other districts.

At the same time, neighboring or other districts may have expanded their ICU capac-

ities to accommodate the influx of patients from a!ected areas. This could, in turn, lead

to an underestimation of the true e!ect (ceteris paribus), especially since a substantial

share of donors receiving the biggest weights in Table A.2 are neighboring at least one

of the a!ected districts. Although the weekly averages shown in Figure A.4 and Figure

A.5 do not provide descriptive evidence of an increase in ICU units or occupied ICU beds

per 100,000 residents, the counterfactual development of ICU capacities remains unob-

servable. Beyond this reasoning, excluding neighboring districts likely reduces potential

spillover e!ects. In the aftermath of the flood, a higher number of infections in the af-

fected districts could lead to increased infections — and consequently, more COVID-19

hospitalizations — in adjacent, una!ected districts.

To address these potential issues, we first identified and subsequently excluded all

districts where the number of reporting intensive care units changed in the DIVI data

within the three weeks before and after the onset of the flood. Districts that reported

changes in ICU units prior to the flood were also excluded to account for the possibility

that hospital executives immediately anticipated the e!ects of the flood and proactively

expanded capacity in preparation. Additionally we excluded all districts neighboring at

least one a!ected district. Those steps restrict the sample to 18 a!ected and 289 non-

a!ected districts. The results for the rerun of the SCM on this restricted pool of districts

can be seen in Figure 8. Given the restrictions imposed on the donor pool, the pre-

treatment fit only slightly decreases (Pre-RMSPE=0.23). This outcome is expected, as

the restrictions exclude districts located closer to the a!ected areas, which are arguably

more comparable to the a!ected districts in terms of the predictor variables used.18

(Bundesministerium des Innern und für Heimat, 2022).
18Table A.3 in the appendix again displays the top three donors for each remaining a!ected district.
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Figure 6: Weekly average of ICU patients per day per 100,000 residents per district

One week before Week of the flood

One week after Four weeks after

Notes: Red dots mark districts labeled as treated by the BBK. The class breaks are defined as the
respective 75%, 95% and 99% percentile. We do not report data for the excluded districts mentioned in
section 4.2.
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Figure 7: Weekly average of ICU patients per day per 100,000 residents

a) Averages of Weekly COVID-19 patients: A!ected and Synthetic Districts

b) Adjusted p-values

Note: Panel a) plots the weekly average of COVID-19 ICU patients per day per 100,000 residents for
all 29 a!ected districts (straight line) against the same average from all synthetic counterparts (dashed
line). The x-axis represents the distance in weeks from the week of the flood (marked with a vertical
dashed gray line). Panel b) shows the weekly p-values for the estimated e!ect. The p-values represent
the proportion of average control units with an estimated e!ect at least as large as that of the average
treatment unit. The values are adjusted for the pre-treatment fit.
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Figure 8: ICU patients per day - no changes in ICU units and no neighboring districts

a) Averages of Weekly ICU COVID-19 cases: A!ected and Synthetic Districts

b) Adjusted p-values

Note: Panel (a) displays the weekly average of COVID-19 ICU patients per day per 100,000 residents
across 18 a!ected districts that did not experience changes in the number of ICU units (solid line),
compared to the corresponding average from their synthetic counterparts (dashed line). To construct
the donor pool, all districts reporting changes in the number of ICU units, as well as those bordering at
least one a!ected district, were excluded. The x-axis represents the number of calendar weeks relative
to the week of the flood, indicated by a vertical dashed gray line. Panel (b) presents the p-values for the
estimated e!ect with adjustments made for pre-treatment fit.
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The estimated e!ects decrease in size. Compared to the previous three weeks post-

flood di!erence, the estimated average e!ect increases to a di!erence of around 137%

(ca. 0.37 more patients per day compared to an average of around 0.27 for all synthetic

counterparts) in that week. At the peak of the di!erence six weeks after the start of the

flood, the estimated di!erence is equal in size to around 109% of the synthetic average.

As for the specification concerning COVID-19 cases, we again illustrate the individual

trajectories of the mean weekly ICU patients per day for each of the 18 a!ected districts

against the development of their synthetic counterparts in Figure A.6. It reveals, while

certain districts (such as Wuppertal or Essen) follow a pattern similar to the average

treatment e!ect on the treated observed in Figure 8, others exhibit di!erences in the

pre-treatment fit, post-treatment e!ects, or both.

Those ambiguous results are further illustrated in Figure 9, which again displays

two boxplots of the RMSPE ratios: one for the donor pool districts serving as placebos

and another for the 18 a!ected districts. Although the one-sided t-test, testing the null

hypothesis that the mean di!erence in ratios is zero against the alternative that a!ected

districts have a higher average ratio, results in a p-value of 0.0115, only a small subset

of a!ected districts — Solingen, Essen, Wuppertal, and Rheinisch-Bergischer Kreis —

exhibit a ratio above 1. Consequently, 14 out of 18 a!ected districts report a ratio below

this threshold, indicating that a high post-intervention RMSPE does not necessarily

suggest a significant e!ect of the intervention given the relatively high pre-intervention

RMSPE.

Finally, expanding on the general model in Equation 6, Figure 10 depicts the evolu-

tion of the association between the treatment indicator and the average number of ICU

patients over time in this sample. The figure presents coe”cient estimates along with

90% confidence intervals for the treatment variable. While the average treatment e!ect

increases in magnitude two weeks after the flood, the confidence intervals indicate that

the estimated e!ects are not significantly di!erent from zero.
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Figure 9: Boxplots – ICU patients with no change in ICU units and no neighboring
districts

Notes: Graph includes two boxplots of the pre-treatment to post-treatment ratio of the RMSPE for all
donor districts and all a!ected districts.

Figure 10: Average in ICU patients per day

Notes: This figure presents coe”cient estimates and 90% confidence intervals for a dummy variable
identifying the 29 districts impacted by the flood. The estimates represent the di!erence in the average
of ICU patients per day per 100,000 residents for every period between July 14 and each subsequent
Tuesday until September 28.
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4.5 Discussion

Our data and methodological results provide insights into the potential impact of natural

disasters on the spread of infectious diseases during a pandemic. Regarding COVID-19

cases per 100,000 residents, the average di!erence following the flood that began on July

14 is moderate for the first two weeks (week 0 and week 1 in Figure 3). This suggests

either a lack of or a very small immediate direct influence from the catastrophe due to

factors such as people staying indoors for extended periods or evacuees being sheltered

in confined spaces.

However, a noticeable increase in cases emerges approximately two weeks after the

flood, with the magnitude continuing to rise until around week 8. This aligns with

our hypothesis that volunteers and aid workers arriving in the a!ected areas may have

contributed to the spread of the virus. After approximately eight weeks, the di!erence

declines sharply, which could be attributed to successful vaccination campaigns initiated

in the immediate aftermath of the disaster.19 Suppose that an individual receives her

first dose around one week after the flood and her second shot around six weeks later20,

full immunity against COVID-19 infection (see Andrews et al., 2022) would be reached

approximately eight weeks after the flood began.

As already discussed in Chapter 4.4, the results for COVID-19 cases may be a!ected

by unobserved variation in testing behavior. This could introduce bias in two directions:

First, restricted access to tests due to damage to testing centers, along with increased

opportunity costs of getting tested, may have discouraged individuals in the a!ected

regions from seeking tests. This would likely lead to an underestimation of the true

e!ect, particularly in the immediate weeks following the flood, as testing infrastructure

would not have been restored within just a few days. Second, both local authorities

and residents were likely aware of the potential threat posed by COVID-19 and may have

prioritized testing once the infrastructure was rebuilt. Furthermore, individuals who were

unable to get tested in the first week after the flood might have done so later (if they were

still symptomatic) once testing facilities reopened. These factors could contribute to an

19For instance, local authorities in the a!ected district of Ahrweiler began vaccinating residents as
early as July 20 using mobile vaccination units (eifelschau.de, 2021).

20This timeline follows the recommendation in e!ect at the time by the Standing Committee on
Vaccination at the Robert Koch-Institute (German: Ständige Impfkommission am Robert Koch-Institut)
for the widely used BioNTech/Pfizer vaccine in Germany (Wichmann et al., 2021).
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overestimation of the true e!ect, particularly in the weeks following the initial disruption.

Therefore, we used the average daily number of ICU patients per week as an alternative

measure of the severity of the COVID-19 pandemic. In our most conservative approach -

excluding neighboring districts that might be a!ected by spillovers and all districts that

experienced changes in the number of reporting ICU units around the time of the flood

- we find a small positive average treatment e!ect on the treated during the first two

weeks after the flood. Beyond this period, the ATT increases in magnitude, peaking

around the eighth week before gradually declining again. These results further support

the impression that the influx of emergency responders likely contributed to an initial

rise in pandemic severity, which was successfully mitigated by the immediate vaccination

campaigns. However, a closer examination of district-level e!ects reveals that the overall

e!ect is primarily driven by a small subset of the a!ected districts. A significant portion

of the 18 a!ected districts showed no unusual e!ects when compared to their synthetic

counterparts, given pre-treatment di!erences.

Moreover, the ICU-based severity measure may still be influenced by unobserved

factors. Although we excluded all neighboring districts not classified as a!ected by the

BBK to minimize potential spillover e!ects, this does not entirely eliminate the risk of

spillovers caused by patient transfers between or within a!ected districts. While we also

dropped districts that reported changes in the number of reporting ICU units, it is likely

that hospitals receiving patients from other clinics did not need to establish additional

ICU capacity in response to the flood, as the general number of COVID-19 ICU patients

was relatively low at that time.

Overall, the timing of the flood provided a highly conservative setting for our analysis.

While this was fortunate for those in the a!ected regions at the time, future natural

disasters occurring during periods of higher baseline infection rates or in the absence of

available vaccinations could have a much greater impact on the spread and severity of

infectious diseases.
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4.6 Conclusion

Our research has made contributions to understand the dynamics of infectious diseases

during natural disasters, with a particular focus on the relationship between floodings and

the spread of SARS-CoV-2. By controlling for factors such as demographics, economics,

health care, child care characteristics as well as the disaster’s intensity, our results imply

that floods can have varying degrees of impact on the spread of infectious diseases.

A central aspect of our study is the implementation of a unique design that enables

us to distinguish between treated and control districts a!ected by a flood in Germany.

The unexpected occurrence of the catastrophe during the pandemic provides a quasi-

experimental setting to compare a!ected and una!ected districts and benefits from ex-

tensive pre-disaster period to enhance result reliability. This approach allowed us to

assess the specific impact of flooding on COVID-19 transmission and severity. However,

due to the conservative nature of our setting and the limitations of the available data,

we refrain from interpreting these results as causal. Future research utilizing alternative

datasets, such as hospital statistics from the Research Data Center of the Statistical Of-

fices of the German Federal States (German: Forschungsdatenzentrum der Statistischen

Ämter der Länder), could help establish causal relationships.

Moreover, the hospital statistics could be leveraged to explore potential heterogeneity

in e!ects based on variations in damage intensity across a!ected regions. For exam-

ple, integrating claims data from the German Insurance Association (Gesamtverband

der Deutschen Versicherungswirtschaft, GDV) for insurances covering natural disaster

damages could provide deeper insights into the impact of natural disasters on disease

dynamics.

To ensure e!ective policy guidance for managing compound disasters, it is critical to

provide well-evidenced recommendations that take into account the complex dynamics

involved. Our research has expanded the knowledge base in this field by providing initial

evidence that, rather than gatherings occurring immediately around the time of a flood,

those taking place in the following weeks (potentially driven by the influx of aid workers)

may noticeably contribute to the spread of airborne diseases such as COVID-19. However,

further research should prioritize the exploration of underlying mechanisms to better

understand the complexity of transmission dynamics. This will require the establishment
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of reliable data frameworks and the implementation of rigorous monitoring systems during

future disasters and pandemics, ultimately improving the ability to measure disaster

preparedness and response. Additionally, exploring optimal strategies for monitoring such

complex events is an important area for future research. By continuing to deepen our

understanding of these dynamics, societies can improve their ability to develop e!ective

policies and strategies for managing compound disasters.
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Appendix

Table A.1: Weights for COVID-19 cases

A!ected district First Second Third Donors

Düsseldorf, SK. München, SK (.289) Berlin, SK. (.273) Frankfurt a.M. (.223) 7

Essen, SK. Gelsenkirch., SK.* (.275) Wilhelmsh., SK. (.212) Berlin, SK. (.184) 6

Mülheim, SK. Neustadt, SK (.588) O!enbach, SK. (.177) Wilhelmsh., SK. (.089) 8

Oberhausen, SK. Neunkirchen (.427) Gelsenkirch., SK.* (.288) Krefeld, SK. (.106) 8

Solingen, SK. Remscheid, SK.* (.319) Viersen* (.244) Krefeld, SK. (.155) 10

Wuppertal, SK. Gelsenkirch., SK.* (.259) Krefeld, SK. (.242) Heilbronn, SK. (.108) 12

Mettmann Kaiserslautern (.14) Greiz (.117) Salzgitter, SK. (.101) 16

Köln, SK. Frankfurt a.M. (.569) Oldenburg, SK. (.223) Kaiserslautern, SK (.072) 6

Leverkusen, SK. Krefeld, SK. (.341) Lörrach (.147) O!enbach, SK. (.146) 10

Aachen Landau, SK (.432) Marburg-Biedenkopf (.213) Flensburg, SK. (.138) 6

Düren Viersen* (.284) Neustadt (.176) Gelsenkirch., SK.* (.144) 13

Rhein-Erft-K. Rhein-K. Neuss* (.414) Gelsenkirch., SK.* (.19) Aichach-Friedberg (.146) 14

Euskirchen Viersen* (.532) Cloppenburg (.107) Stendal (.075) 11

Heinsberg Viersen* (.385) Coesfeld (.17) Erding (.122) 11

Oberbergischer K. Borken (.252) Wesermarsch (.244) Cloppenburg (.219) 7

Rhein.-Berg.K. Coesfeld (.19) Lippe (.188) Viersen* (.185) 12

Rhein-Sieg-K. Lippe (.186) Starnberg (.177) Viersen* (.173) 14

Bottrop, SK. Neunkirchen (.405) Mönchengladbach, SK.* (.159) Märkisch-Oder. (.116) 10

Hagen, SK Salzgitter, SK. (.437) Gelsenkirch., SK.* (.249) Krefeld, SK. (.137) 8

Ennepe-Ruhr-K. Bad Dürkheim (.213) Neunkirchen (.161) Wunsiedel* (.145) 14

Hochsauerlandk. Höxter* (.306) Freudenstadt (.194) Borken (.16) 9

Märkischer Kreis Viersen* (.284) Borken (.258) Salzgitter, SK. (.199) 6

Ahrweiler Wunsiedel* (.217) Cochem-Zell* (.187) Kaiserslautern (.141) 9

Bernkastel-W. Breisgau-H. (.236) Südwestp. (.164) Neustadt, SK (.148) 9

Eifelk. Bitburg-P. Borken (.443) Südwestp. (.246) Neustadt (.169) 6

Vulkaneifel St. Wendel* (.354) Höxter* (.329) Cochem-Zell* (.124) 11

Trier-Saarburg Lörrach (.416) Potsdam-M. (.192) St. Wendel* (.164) 6

Bercht. Land Garmisch (.45) Waldshut (.148) Chemnitz, SK. (.11) 9

Hof Wunsiedel* (.534) Kronach* (.274) Wesermarsch (.104) 5

Note: The table reports up to three of the biggest non-a!ected districts (column two until four), receiving the
biggest weights for each a!ected district (column one) for the SCM of the COVID-19 cases per 100,000 residents.
Column five includes the overall number districts receiving a weight bigger than 0. * marks districts neighboring
at least one a!ected district.
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Figure A.1: Development COVID-19 cases of all a!ected districts

Notes: Graphs show the development of COVID-19 cases per week per 100,000 residents (black line) for
each of the 29 a!ected districts together with its synthetic counterpart (dashed line). The gray vertical
dashed line marks the week of the flood.
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Figure A.2: Summer Holidays 2021 in Germany

Graph contains a bar chart representing the duration of the summer school holidays in 2021 for each of
the 16 German federal states. The x-axis contains the calendar weeks. The red vertical lines marks the
week of the flood.
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Figure A.3: Weekly number of COVID-19 deaths per 100,000 residents per district

One week before Week of the flood

Three weeks after Six weeks after

Notes: Red dots mark districts labeled as treated by the BBK. We do not report data for the excluded
districts mentioned in section 4.2.
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Table A.2: Weights for ICU patients

A!ected district First Second Third Donors

Düsseldorf, SK. Frankfurt a.M., SK. (.399) München, SK (.307) Uckermark (.114) 7

Essen, SK. Wilhelmsh., SK. (.251) O!enbach a.M., SK. (.229) Berlin, SK. (.229) 9

Mülheim, SK. Neustadt adW., SK (.607) O!enbach a.M., SK. (.122) Gelsenkirch., SK.* (.081) 9

Oberhausen, SK. Neunkirchen (.389) Gelsenkirch., SK.* (.257) O!enbach a.M., SK. (.119) 8

Solingen, SK. Rhön-Grabfeld (.386) Gelsenkirch., SK.* (.227) Viersen* (.213) 6

Wuppertal, SK. Gelsenkirch., SK.* (.362) Bonn, SK.* (.127) Lörrach (.123) 10

Mettmann Kaiserslautern (.237) Hochtaunusk. (.222) Pirmasens, SK (.098) 13

Köln, SK. Frankfurt a.M., SK. (.601) Oldenburg, SK. (.22) Kaiserslautern, SK (.08) 7

Leverkusen, SK. Krefeld, SK. (.254) Hochtaunusk. (.221) Neustadt adW., SK (.16) 9

Aachen Flensburg, SK. (.419) Landau, SK (.228) Steinburg (.167) 8

Düren Borken (.203) Viersen* (.148) Gelsenkirch., SK.* (.147) 13

Rhein-Erft-K. Rhein-K. Neuss* (.354) Gelsenkirch., SK.* (.185) Aichach-Friedberg (.145) 15

Euskirchen Viersen* (.455) Borken (.16) Stendal (.099) 10

Heinsberg Viersen* (.392) Kleve (.189) Cloppenburg (.104) 12

Oberbergischer K. Nienburg (Weser) (.398) Borken (.191) Kaiserslautern (.159) 8

Rhein.-Berg.K. Nienburg (Weser) (.162) Uckermark (.162) Coesfeld (.158) 11

Rhein-Sieg-K. Lippe (.286) Viersen* (.259) Mainz-Bingen (.154) 10

Bottrop, SK. Neunkirchen (.39) Gelsenkirch., SK.* (.164) Fürth, SK. (.14) 14

Hagen, SK Gelsenkirch., SK.* (.468) Salzgitter, SK. (.214) Rhön-Grabfeld (.129) 6

Ennepe-Ruhr-K. Neunkirchen (.274) Bad Dürkheim (.245) Recklinghausen* (.144) 10

Hochsauerlandk. Höxter* (.205) Steinburg (.204) Olpe* (.136) 10

Märkischer Kreis Steinburg (.213) Gelsenkirch., SK.* (.192) Borken (.154) 9

Ahrweiler Friesland (.253) Kusel (.235) Cochem-Zell* (.149) 10

Bernkastel-W. Südwestp. (.265) Waldshut (.158) Altötting (.144) 11

Eifelk. Bitburg-P. Borken (.348) Dingolfing-Landau (.29) Südwestp. (.215) 7

Vulkaneifel St. Wendel* (.294) Höxter* (.264) Cochem-Zell* (.19) 9

Trier-Saarburg Lörrach (.409) Potsdam-M. (.19) St. Wendel* (.168) 6

Bercht. Land Bodenseek. (.287) Kempten (Allgäu) (.282) Sonneberg (.121) 9

Hof Cochem-Zell* (.58) Südwestp. (.124) Saarpfalz-K. (.091) 7

Note: The table reports up to three of the biggest non-a!ected districts (column two until four), receiving the
biggest weights for each a!ected district (column one) for the SCM of the weekly average ICU patients per day
per 100,000 residents. Column five includes the overall number districts receiving a weight bigger than 0. * marks
districts neighboring at least one a!ected district.
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Figure A.4: Development Average of ICU units per 100,000 residents

Notes: Graph shows the weekly average or reporting ICU units per 100,000 residents before and after the
flood starting on July 14 (gray vertical dashed line) for all a!ected districts (black line), all neighboring
districts (black dashed line) and all others (black dotted line).

Figure A.5: Development Average of ICU beds used per 100,000 residents

Notes: Graph shows the weekly average of ICU beds used per 100,000 residents before and after the
flood starting on July 14 (gray vertical dashed line) for all a!ected districts (black line), all neighboring
districts (black dashed line) and all others (black dotted line).
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Table A.3: Weights for ICU patients - no changes in ICU units and no neighboring
districts

A!ected district First Second Third Donors

Essen, SK. Pirmasens, SK (.463) O!enbach, SK. (.215) München, SK (.193) 6

Mülheim, SK. Neustadt, SK (.561) Frankenthal, SK (.144) O!enbach, SK. (.109) 8

Solingen, SK. Rhön-Grabfeld (.362) Krefeld, SK. (.275) Borken (.109) 7

Wuppertal, SK. Krefeld, SK. (.366) Bremerhaven, SK. (.19) Lippe (.111) 9

Euskirchen Steinburg (.27) Borken (.26) Amberg-Sulzbach (.116) 10

Heinsberg Kleve (.185) Alzey-W. (.163) Steinburg (.153) 10

Rhein.-Berg.K. Steinburg (.241) Coesfeld (.199) Uckermark (.137) 11

Rhein-Sieg-K. Mainz-Bingen (.301) Lippe (.277) Krefeld, SK. (.115) 11

Bottrop, SK. Neunkirchen (.47) Fürth, SK. (.128) Krefeld, SK. (.094) 10

Hagen, SK Salzgitter, SK. (.387) Krefeld, SK. (.255) Bremerhaven, SK. (.154) 8

Ennepe-Ruhr-K. Neunkirchen (.311) Bad Dürkheim (.222) Neustadt, SK (.103) 12

Märkischer Kreis Steinburg (.386) Borken (.125) Krefeld, SK. (.122) 9

Bernkastel-W. Südwestp. (.294) Altötting (.174) Waldshut (.156) 11

Eifelk. Bitburg-P. Borken (.364) Dingolfing-Landau (.279) Südwestp. (.233) 6

Vulkaneifel Südwestp. (.319) Dithmarschen (.248) Steinburg (.166) 8

Trier-Saarburg Lörrach (.354) Dingolfing-Landau (.244) Potsdam-M. (.217) 5

Bercht. Land Kempten (Allgäu) (.336) Bodenseek. (.261) Nordfriesland (.145) 9

Hof Südwestp. (.479) Saarpfalz-K. (.133) Northeim (.13) 7

Note: The table reports up to three of the biggest non-a!ected districts (column two until four), receiving
the biggest weights for each a!ected district (column one) for the SCM of the weekly average ICU patients
per day per 100,000 residents. Column five includes the overall number districts receiving a weight bigger
than 0.
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Figure A.6: Development ICU patients per day of all a!ected districts - no changes in
ICU units and no neighboring districts

Notes: Graphs show the development of the weekly averages of ICU patients per day per 100,000
residents (black line) for each of the 18 a!ected districts together with its synthetic counterpart (dashed
line). The gray vertical dashed line marks the week of the flood.
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5 Overarching Conclusions

The thesis provides evidence that critical events, such as elections and natural disasters,

influence infectious disease transmission and therefore public health risks.

The first study quantifies the impact of the Bavarian municipal elections held on

March 15, 2020, on COVID-19 transmissions. Using the synthetic control method and

regression analysis, the study finds that voter participation was positively correlated with

COVID-19 cases and deaths. The findings further indicate that, in addition to in-person

voting, election-related activities occurring near election day — such as campaigning and

vote counting — may have also played a role in the spread of the disease.

The second study expands this analysis to elections outside of pandemic periods and

their role in the spread of respiratory diseases in general. It finds an increase in sick leaves

due to respiratory diseases following regional elections in Hesse and Thuringia, implying

a broader link between elections and disease transmission. However, the absence of an

e!ect for the Bavarian election in October 2018, right at the beginning of the Influenza

season in Germany, suggests that seasonality and baseline disease prevalence are key

factors in determining the risk associated with elections.

The third study examines the impact of natural disasters on the spread of COVID-

19. By comparing districts a!ected and non-a!ected by floodings while controlling for

demographic and economic factors, it finds evidence that natural disasters can influence

disease dynamics. While the results potentially do not establish causality, they emphasize

how natural disasters can heighten health risks associated with respiratory diseases by

facilitating transmission not only among a!ected victims but also, most likely, through

interactions with helpers.

While each study contributes specific insights, together they paint a broader picture of

how critical events can shape public health. These findings not only suggest that critical

events can contribute to the spread of airborne diseases (like COVID-19), but additionally

provide novel evidence that the mechanisms through which such events influence disease

transmission are context-dependent. This dependence is shaped by the specific (social)

gatherings that ensue. In the case of elections, not only the election day itself but

also related activities, such as campaign events and gatherings of election workers for

vote counting, can facilitate the spread. Evidence from the July 2021 flood in Western
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Germany suggests that the influx of volunteers in the aftermath of natural disasters

played a significant role in the spread of disease. Furthermore, the baseline transmission

of respiratory diseases, which influences the scale of the impact, does not necessarily

need to reach a severe outbreak level. The second study, which examines recurring

influenza seasons, and the third study, which analyzes data from a summer plateau of

the COVID-19 pandemic in Germany, both demonstrate that the influence of critical

events can remain significant even when baseline transmission rates are relatively low.

Consequently, the findings from these studies can be interpreted as lower-bound estimates

of the e!ect during periods of exceptionally high disease spread. Finally, the second essay

additionally provides evidence that the impact of elections extends beyond the widely in

the literature recognized respiratory disease, COVID-19, to other respiratory illnesses

such as Influenza.

While the findings provide valuable insights into the impact of critical events on the

spread of infectious diseases, some limitations must be considered when interpreting the

results. First, a potential bias produced by missing information about the tests conducted

can not be entirely ruled out. While the data provided by the RKI and DIVI was su”cient

for the analyses conducted in this thesis, the success of future empirical research - whether

focused on estimating causal e!ects, making reliable predictions or else - likely depends

on access to currently unavailable data. Without data on the number of PCR tests and

Rapid Antigen Tests conducted, analyses must either rely on in that regard less bias-prone

indicators (such as COVID-19 hospitalizations) or assume that testing behavior does not

vary systematically due critical events between treated and untreated units of interest.21

Secondly, it cannot be entirely ruled out that factors unrelated to the elections may have

influenced the results. However, since this thesis examines multiple elections occurring at

di!erent times and in the context of di!erent respiratory diseases, I am confident that the

findings provide substantial evidence of an e!ect. Thirdly, this thesis focuses on a specific

subset of critical events, while other occurrences — such as military defense activities or

21In theory, data on the number of tests conducted should be available for Germany, as most tests
during the COVID-19 pandemic were funded by the German federal budget. According to Article 7 (1)
of the Regulation on the Entitlement to Testing for Direct Detection of the SARS-CoV-2 Coronavirus
(German: Verordnung zum Anspruch auf Testung in Bezug auf einen direkten Erregernachweis des
Coronavirus SARS-CoV-2) from June 2021 (see Bundesministerium für Gesundheit, 2021), the German
National Association of Statutory Health Insurance Physicians (German: Kassenärztliche Bundesvere-
inigung) was responsible for collecting such data. However, despite numerous attempts to contact the
relevant authorities, my coauthors and I were unable to gain access.
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responses to other natural disasters like volcanic eruptions or earthquakes — may also

have an impact. Fourthly, the results do not always provide robust evidence of an e!ect

on hospitalizations or deaths due to COVID-19. This may be due to data limitations

related to hospital admissions, the e!ectiveness of COVID-19 vaccines that were already

widely distributed at the time the analyses were conducted (both in the third study)

or insu”cient pre-treatment COVID-19 death counts (study one). However, this does

not mean that no relationship exists. Further steps are already planned to address this

limitation.22

Despite its limitations, the insights presented o!er several important scientific im-

plications for future research. First, the extent of their impact depends on the timing

of such events relative to baseline disease prevalence. While it is clear that counter-

measures against disease transmission should be considered for elections and natural

disasters during pandemic periods, precise thresholds of disease prevalence for di!erent

events at which such measures become advisable remains an open question for future

research. Second, since the thesis examines only a subset of critical events that should

be taken into account, future studies could investigate whether empirical evidence sup-

ports a connection between disease transmission and events. Third, although the second

study provides broad estimates of the economic costs associated with holding elections

during periods of high virulence, further research is needed to assess not only indirect

costs, such as productivity losses due to absenteeism from work, but also direct costs,

including for example increased expenditures on outpatient and inpatient care. Finally,

building on the previous points, future research should explore cost-e!ective countermea-

sures for such events. For instance, while face masks have been shown to significantly

reduce the transmission of respiratory diseases (see, e.g., Mitze et al., 2020), research on

their cost-e!ectiveness remains scarce, particularly in the context of pandemics and even

more so for the seasonal spread of infectious diseases outside of pandemic scenarios. In

that regard, future research should pay attention to the di!erent contexts of di!erent

critical events. While distinguishing between non-critical and critical events in existing

research illustrates that postponement or cancellation is not a viable option for critical

22In the next phase of study three, my coauthor and I will analyze the German Hospital Statistics
(German: Krankenhausstatistik), an annual comprehensive survey of hospitals in Germany. This dataset
allows for a more detailed examination of morbidity and mortality related to respiratory diseases. Addi-
tionally, it enables us to account for organizational structures of German hospitals, sta”ng, equipment,
and provided services.
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events during a pandemic, it does not imply that all countermeasures against viral trans-

mission are equally suitable for every critical event. For instance, providing face masks

to election workers and in-person voters on voting days is likely an e!ective strategy to

limit the spread of Influenza and COVID-19, as this measure can be planned in advance.

However, in the context of natural disasters, distributing face masks may be less prac-

tical, as such events are unpredictable, and wearing masks while performing physically

demanding tasks — particularly for relief workers — may not be feasible. Instead, for

natural disasters, closely monitoring viral spread through frequent testing of all involved

individuals and immediately isolating those with symptoms or positive test results may

be a more reasonable approach. In addition, the results for the flood indicate that the

heightened focus on vaccination e!orts in the a!ected area successfully curbed the virus’s

spread within the expected timeframe. While vaccine distribution in response to such

unforeseen events can only mitigate long-term e!ects, these findings suggest that similar

intensified e!orts could help contain the spread foreseeable critical events, such as elec-

tions. Finally, enhancing airflow, such as through the use of ventilators (see Morawska

et al., 2024), could be an e!ective measure for elections — particularly in voting booths

— as well as for the sheltering of victims and aid workers following natural disasters.

Beyond its scientific contributions, this thesis also holds important implications for

policymakers and public health o”cials. The evidence of a potential link between critical

social events and the spread of infectious diseases could result in a trade-o! between the

societal relevance of such events (e.g., the human right to vote) and the public health.

While further research is needed to get more precise estimates, the findings indicate

that these dynamics could result in substantial social and economic costs. Policymak-

ers should therefore not only assess whether non-critical events should be postponed or

canceled but also explore measures to ensure the safe(r) execution of critical events. Ad-

ditionally, investing in research on this topic could enhance societies’ resilience to future

respiratory disease outbreaks by, for example, further examining the cost-e!ectiveness of

potential countermeasures to develop e!ective preparedness or response plans. Finally,

as previously discussed, e!ectively mitigating the spread of viral diseases depends on a

comprehensive analysis of the available data. Policymakers should prioritize making cur-

rently unavailable data, such as the number of tests conducted, accessible to researchers.

In this context, the continuous monitoring of such diseases and ensuring that this data
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is available to the research community will also provide significant benefits.
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Palguta, J., Lev́ınskỳ, R., & Škoda, S. (2022). Do elections accelerate the COVID-19

pandemic? Evidence from a natural experiment. Journal of Population Economics,

35, 197–240.

Paprotny, D., Sebastian, A., Morales-Nápoles, O., & Jonkman, S. N. (2018). Trends in

flood losses in Europe over the past 150 years. Nature Communications, 9, 1985.

Pei, S., Dahl, K. A., Yamana, T. K., Licker, R., & Shaman, J. (2020). Compound Risks

of Hurricane Evacuation Amid the COVID-19 Pandemic in the United States.

GeoHealth, 4 (12), 1–14.



Bibliography XII
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