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Abstract: The purpose of this paper is to construct a novel system of discontinuous piecewise constant orthogonal 
functions that is complete with respect to the measure on 4-adic-type Cantor-like sets, particularly on a 
rescaled Cantor set. The construction process is rigorously developed, and an accurate method for generating 
these functions is presented. This orthogonal function system is then applied within the framework of an 
orthogonal multiplexing scheme, providing a practical solution for communication systems. A numerical 
example illustrates the use of the proposed system as a communication carrier signal designed to reduce 
multiple access interference in communication channels. The input signal is approximated using these 
piecewise constant functions, which are naturally computed through a specific Fourier series expansion. 
Following a formal introduction of this Fourier series, the procedure for obtaining the corresponding Fourier 
coefficients of the input signal is detailed. These coefficients are then transmitted through the designed 
multiplexing system to enable efficient and interference-free communication.

1 INTRODUCTION 

In 1875, the British mathematician Henery J.S. Smith 

[24] was first defined the Cantor set which was

studied and first published by the German

mathematician Geroge Cantor, in 1883 [25]. It was an

important example of a perfect nowhere dense set in

the real line.  There were many authors interested in

construction of Cantor set such as : Robert D. and

Wilfredo O. discussed several variations and

generalizations of the Cantor set and studied some of

their properties [26]. Also, for each of those

generalizations a Cantor-like function can be

constructed from the set. They  discussed  briefly the

possible construction of those functions. Alireza

Khalili Golmankhaneh, Arran Fernandez, Ali Khalili

Golmankhaneh  and Dumitru Baleanu [27] had

generalized the Cζ -calculus on the generalized Cantor

sets known as middle ξ- Cantor sets. They had

suggested a calculus on the middle ξ- Cantor sets for

different values of ξ with 0 < ξ < 1. In the problem of

approximation in the Cantor set [28] showed that the

behavior when they consider dyadic approximation in

the Cantor set was substantially different to

considering triadic approximation in the Cantor set.

The orthogonal system consists of three kinds of 

systems: first, the sinusoidal (Fourier-Hartley) 

system, second, the nonsinusoidal (piecewise 

constant namely Haar, Walsh, and Block-pulse) 

system, third, the class of orthogonal polynomials 

such as: Legendre, Hermite, Laguerre, Jacobi, 

Tchebcheff (first and second kinds), and Gegenbauer 

which are very important to study. Historically, the 

beginnings of the discontinuous piecewise constant 

orthogonal functions began when the Hungarian 

mathematician, Alfred Haar suggested a system of 

orthogonal functions in 1910 [16]. In 1923, the 

American mathematician J.L. Walsh published an 

article entitled "A closed set of normal orthogonal 

functions" [17] in which he described a system of 

complete orthonormal functions over the normalized 

interval [0,1), each function taking only the values +1 

or -1, except at a finite number of discontinuity 

points, where take the value 0. Block-Pulse functions 

were introduced by Harmuth [19], when he used the 

Walsh-Fourier series in the communication system. 

Each function takes one value +1 in each subinterval 

of [0,1] and otherwise takes the value 0 as well as 

these functions formed an orthonormal system on 
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[0,1] but many authors proved Block-Pulse system 

was incomplete in Hilbert space L2[0,1] [18].  

Many of the advantages of Walsh, Haar and 

Block-Pulse systems in many real life problems such 

as: series representation [1]-[6], spectroscopy [7]-[9], 

speech processing [10]-[12], multiplexing system 

[13]-[15], and other applications. 

The proposed system in this paper belongs to 

piecewise constant orthogonal systems. A different 

complete orthonormal system of discontinuous 

piecewise with them proves on 4 –adic-type Cantor –

like sets is considered. 

2 SOME BASIC DEFINITIONS 

AND CONCEPTS 

In this part, we give some basic definitions and 

concepts which are related to the complete 

orthonormal system on [0,1] and a vector space over 

the Gailos field 𝔾 = {0,1}  in linear block codes. 

Definition 2.1 [22]: A system of functions 

{𝒱𝑖(𝓍)}𝑖∈∆ (where ∆ is finite or infinite or infinite

countable set) is orthogonal on (0,1) if 

∫ 𝒱i(𝓍)𝒱j(𝓍)d𝓍 = 0
1

0
 i ≠ j ∀i, j ∈ ∆

Definition 2.2 [23]: A system of functions 

{𝒱𝑖(𝓍)}𝑖∈∆is called an orthonormal system if

∫ 𝒱𝑖(𝓍)𝒱𝑗(𝓍)𝑑𝓍 = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

1

0
 for all 𝑖, 𝑗 ∈ ∆. 

Definition 2.3 [23]: An orthonormal system of 

functions {𝒱𝑖(𝓍)}𝑖=0
∞  is complete on (0,1) if 

∫ 𝒱(𝓍)𝒱𝑖(𝓍)𝑑𝓍 = 0
1

0
, ∀𝑖 implies  𝒱 ≡ 0. 

Lemma 2.1: An orthonormal system {𝒱𝑖(𝓍)}𝑖∈∆ is

linearly independent on (0,1). 

Definition 2.4 [19]: Consider an ordered sequence 

of 𝛼-symbols as a vector with 𝛼-components: 𝛼 =

{𝛼1, 𝛼2, ⋯ , 𝛼𝛾}, 𝛼𝓇 ∈ 𝔾 for each 𝓇 = 1,2, ⋯ , 𝛾,

where 𝛾 is a positive integer. 

Definition 2.5 [18]: The sequence 

𝛼 = {𝛼1, 𝛼2, ⋯ , 𝛼𝛾},

is an 𝛾-tuple over 𝔾. The set of all 2𝛾 possible 𝛾-

tuples is called a vector space over {0,1}and we can 

denote it as 𝔉2
𝛾

= 𝔾𝛾.

Definition 2.6 [18]: The addition and inner 

product of a binary 𝛾-tuple via a symbol over 𝔾 are 

introduced as follows:  

𝓂 ⊕ 𝓅 = {𝓂1, 𝓂2, ⋯ , 𝓂𝛾} ⊕ {𝓅1, 𝓅2, ⋯ , 𝓅𝛾} =

 = {𝓂1 ⊕ 𝓅1, 𝓂2 ⊕ 𝓅2, ⋯ , 𝓂𝛾 ⊕ 𝓅𝛾}

𝓂⨀𝓅 = {𝓂1, 𝓂2, ⋯ , 𝓂𝛾}⨀{𝓅1, 𝓅2, ⋯ , 𝓅𝛾}

= (𝓂1⨀𝓅1) ⊕ (𝓂2⨀𝓅2) ⊕ ⋯ ⊕ (𝓂𝛾⨀𝓅𝛾)

= ∑ (𝓂𝓇⨀𝓅𝓇)
𝛾

⊕𝓇=1
. 

Definition 2.7 [18]: for each 𝓇 ≥ 𝓃 − 1, 𝓃 ∈ Ν , 

we write the binary of 𝓇 as: 

𝓌𝓇 = {𝓇𝛾 , 𝓇𝛾−1, ⋯ , 𝓇1, 𝓇0} ≡ ∑ 2𝒹𝓇𝒹

𝛾

𝒹=0

, 

where, 𝓇𝒹 ∈ 𝔾, ∀𝒹: 𝒹 = 0,1, ⋯ , 𝛾, then the Gray

code representation of 𝓇 is defined via: 

𝓌𝓇
𝐺 = {𝓇𝛾 ⊕ 𝓇𝛾+1, 𝓇𝛾−1 ⊕ 𝓇𝛾 , ⋯ , 𝓇1 ⊕ 𝓇2, 𝓇0 ⊕

𝓇1}, 

where, 𝓇𝛾+1 = 0.

3 RESCALING CANTOR SET 

(R.C.S.) CONSTRUCTION 

R.C.S. is one of the most important kinds and

generalizations of Cantor ternary set. It was first

introduced by Tsang K.Y. [21], when he used them as

the analytical method to compute the dimensionality

of strange attractors in two dimensional maps. His

construction can be explained via the following

relation:

Rescaling Cantor set is the sub set 𝒦 of ℛ given 

via:  

𝒦 = ⋂ 𝒦𝓇

∞

𝓇=0

, 

where, 𝒦0, 𝒦1, ⋯ are computed via the following

processing: begin with the closed interval 

𝒦0 = [0,1], and 𝛾 ∈ 𝛮. The set 𝒦1 is constructed

from  𝒦0 via removing 𝛾 − 1 open intervals so the

𝛾- closed intervals each of length 𝒮𝓈 greater than zero

(𝓈 = 1,2, ⋯ , 𝛾) of the interval remain. Another set 

𝒦2 is constructed via repeating the above processing

with each of the 𝓀- intervals in 𝒦1. 
Definition (3.1): Let 𝓀 ∈ 𝛮, with 𝓀 > 2 and 1 <

𝛾 < 𝓀. If 𝒮𝓈 = 1/𝓀, for each 𝓈 = 1,2, ⋯ , 𝛾, then the

set 𝒦 is called the 𝓀- adic- type Cantor-like set [21]. 
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In order to reduce the effort required to construct 

a R.C.S., we give a new method to represent it in the 

case  𝓀 = 4. This method is illustrated in the 

following formation: 

For each 𝓋 ∈ Ν0 = Ν ∪ {0}, generating the

closed intervals: 

𝒦ℓ
4 = [

3ℯ

4𝓋 ,
3ℯ+1

4𝓋 ], 0 ≤ 𝒸 < 2𝓋, 

where, ℓ = 2𝓋 + 𝒸, and ℯ = ∑ 4𝓉ℯ𝓉
∞
𝓉=0 , where, ℯ𝓉

being the dyadic coefficients of 𝒸 in binary system: 

𝒸 = ∑ 2𝓉𝒸𝓉
∞
𝓉=0  , 𝒸𝓉 ∈ 𝔾. It can be shown that for any

integer ℓ there exists a unique integer 𝓋 and a unique 

integer 𝒸, 𝒸 ∈ {0,1, ⋯ , 2𝓋 − 1} such that ℓ = 2𝓋 + 𝒸. 

Then the 4-adic-type Cantor-like set is :  

𝒦4 = ⋂ ⋃ 𝒦ℓ
4

2𝓋−1

𝒸=0

∞

𝓋=0

, 

while the middle open intervals deleted in the above 

construction are introduced as: 

𝒵4 = ⋃ ⋃ 𝒵ℓ
4

2𝓋−1

𝒸=0

∞

𝓋=0

, 

where, 

𝒵ℓ
4 = (

12ℯ + 1

4𝓋+1
,
12ℯ + 3

4𝓋+1
). 

With the measure of 𝒦ℓ
4 is equal to 2−𝓋. Table 1

shows the first 15-closed intervals with their 7-open 

intervals of 4-adic-type Cantor-like sets. 

The set 𝒦4 can be associated with a monotone 

non decreasing continuous function called 𝒦4-

Devil's staircase function and defined as: 

Let 𝒥0
4(𝓍) = 𝓍 , 𝓍 ∈ 𝒦1

4 = [0,1]and for each 𝓋 ∈ 𝛮:

𝒥𝓋
4 (𝓍) = {

4𝓋𝓍 + ℊ

2𝓋
𝓍 ∈ 𝒦ℓ

4

2𝒸 + 1

2𝒷
𝓍 ∈ 𝒵ℓ∗

4

, 

where, ℊ = 𝒸 − 3ℯ , ℓ∗ = 𝒸 + 2𝒷−1,  0 ≤ 𝒸 < 2𝒷−1, 

and 1 ≤ 𝒷 ≤ 𝓋. 

For example, let 𝓋 = 1: {𝒸: 0 ≤ 𝒸 < 2𝓋} = {0,1}, 

then: 𝒸 = 0 ≡ 0. 20, ℯ = ∑ 4𝓉ℯ𝓉
∞
𝓉=0 = 0. 40 = 0 and 

when 𝒸 = 1 ≡ 1. 20, ℯ = ∑ 4𝓉ℯ𝓉
∞
𝓉=0 = 1. 40 = 1, we 

have 

𝒥1
4(𝓍) = {

2𝓍 𝓍 ∈ 𝒦2
4

2𝓍 − 1 𝓍 ∈ 𝒦3
4

2−1 𝓍 ∈ 𝒵1
4

. 

4 𝓝𝟒-FOURIER SERIES

In this section, we will introduce an important kind of 

orthogonal system called 𝒩4-system. The 

representation and some properties for this system 

with their proofs are given. Finally, defining a  𝒩4-

Fourier transform for an absolutely integrable 

function on [0,1] concerning to the measure of 𝒦4-

Devil's staircase function on R.C.S. 

For each 𝓋 ∈ Ν0, 0 ≤ 𝒸 < 2𝓋, we write the

dyadic expansion of 𝒸: 

𝒸 = ∑ 2𝓋𝒸𝓉

𝛾

𝓉=0

, 

with its Gray code 

𝓌𝒸
𝐺 = {𝒸𝛾 ⊕ 𝒸𝛾+1, 𝒸𝛾−1 ⊕ 𝒸𝛾 , ⋯ , 𝒸1 ⊕ 𝒸2, 𝒸0 ⊕

𝒸1} = {𝒸𝛾
∗ , 𝒸𝛾−1

∗ , ⋯ , 𝒸1
∗, 𝒸0

∗}, 𝒸𝛾+1 = 0.

Then, we obtain 𝒫4 = {𝒫𝓋
4(𝓍)}𝓋=0

∞ -system:

𝒫0
4(𝓍) ≡ 1, ∀ 𝓍 ∈ [0,1]

𝒫𝓋
4(𝓍) = {(−1)∑ 𝒸𝓉

∗𝓋
𝓉=0 𝓍 ∈ 𝒦ℓ

4

0 𝑜. 𝑤.

Lemma 4.1: 

1) The integral of 𝒫4-system is zero concerning to

the measure of 𝒦4-Devil's staircase function

on R.C.S. i.e.:

∫ 𝒫𝓋
4(𝓍) 𝑑𝜇

1

0
= 0, ∀ 𝓋: 𝓋 ∈ 𝛮. 

2) Each 𝒫4-system takes on the value {+1,-1}

except at the jumps, where it takes the value 0.

3) 𝒫𝓋
4(0) = 1, ∀ 𝓋: 𝓋 ∈ 𝛮0.

Theorem 4.1: 𝒫4-system is orthonormal basis on

[0,1] with respect to measure of 𝒦4-Devil's staircase 

function on R.C.S. 

Proof: If 𝕚 ≠ 𝕛, (𝕛 > 𝕚), 

{𝒸𝕚: 0 ≤ 𝒸𝕚 < 2𝓋𝕚}, {𝒸𝕛: 0 ≤ 𝒸𝕛 < 2𝓋𝕛} ⊆ {𝒸: 0 ≤ 𝒸 <

2𝓋} and 

𝒦ℓ𝕚

4 = [
3ℯ𝕚

4𝓋 ,
3ℯ𝕚+1

4𝓋 ], 0 ≤ 𝒸𝕚 < 2𝓋𝕚 ,

𝒦ℓ𝕛

4 = [
3ℯ𝕛

4𝓋 ,
3ℯ𝕛+1

4𝓋 ], 0 ≤ 𝒸𝕛 < 2𝓋𝕛,

where, ℓ𝕚 = 2𝓋𝕚 + 𝒸𝕚, and ℓ𝕛 = 2𝓋𝕛 + 𝒸𝕛, then we

have the following cases: 
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Case 1: If ∃𝓋𝕚, 𝓋𝕛, ℯ𝕚,  and ℯ𝕛 satisfy 
3ℯ𝕚

4𝓋 =
3ℯ𝕛

4𝓋

Then, we get 𝒦ℓ𝕛

4 ⊆ 𝒦ℓ𝕚

4  with 𝒫𝕛
4(𝓍) = 1 and 𝒫𝕚

4(𝓍)

is non-zero along the interval 𝒦ℓ𝕚

4 .

Case 2: If ∃𝓋𝕚, 𝓋𝕛, ℯ𝕚,  and ℯ𝕛 satisfy the following

relation  
3ℯ𝕚+1

4𝓋 =
3ℯ𝕛+1

4𝓋  Then, we obtain 

𝒦ℓ𝕛

4 ⊆ 𝒦ℓ𝕚

4  ,

with 𝒫𝕛
4(𝓍) = −1, and 𝒫𝕚

4(𝓍) is non-zero along the

interval 𝒦ℓ𝕚

4 . Therefore, from case 1 and case 2, we

have 

∫ 𝒫𝕚
4(𝓍)𝒫𝕛

4(𝓍) 𝑑𝜇 = ∫ 𝒫𝕚
4(𝓍)𝒫𝕛

4(𝓍) 𝑑𝜇 = ∓
𝒦ℓ

4

1

0
∫ 𝒫𝕚

4(𝓍) 𝑑𝜇
𝒦ℓ𝕚

4 . 

By using Lemma 4.1 case 1, we get 

∫ 𝒫𝕚
4(𝓍)𝒫𝕛

4(𝓍) 𝑑𝜇 = 0
1

0
,  ∀𝕚 ≠ 𝕛 . 

If  𝕚 = 𝕛, then put 𝒯 = {𝒦∝
4, ∝= 2𝓋+1 + 𝒸 ,0 ≤ 𝒸 <

2𝓋+1 }, and 

∫ 𝒫𝕚
4(𝓍)𝒫𝕛

4(𝓍) 𝑑𝜇 = ∫ (
1

0

1

0
𝒫𝕚

4(𝓍))2𝑑𝜇 =

∑ ∫  𝑑𝜇
ℬℬ∈𝒯 = ∑ 𝜇(ℬ)ℬ∈𝒯 = 1 ∎.

Lemma 4.2: 𝒫4-system is linearly independent on 

[0,1]. 

We shall find that 𝒫4-system forms a sub set of 

𝒩4-system which is complete orthonormal system on 

[0,1]. Therefor the 𝒫4-system is in complete 

orthonormal on [0,1]. 

Remark: Paley [18], defined a new method to 

generate Walsh functions. His definition is based on 

the finite product of Rademacher functions. The 

Rademacher functions were described by the German 

mathematician H. Rademacher [18-19], in which he 

defined a system of orthogonal functions, each 

function taking only the values +1 or -1, except at 

jumps, where they take on the value zero. 

By using Paley sense, define 𝒩4-system: 

𝒫0
4(𝓍) = 𝒩0

4(𝓍) ≡ 1, ∀ 𝓍 ∈ [0,1].

For 𝓋 > 0, write the dyadic expansion of 𝓋: 

𝓋 = ∑ 2𝑡𝓋𝓉
𝓉𝓋
𝓉=0  .

Where, 𝓉𝓋 = [𝑙𝑜𝑔2𝓋], 𝓋𝓉 ∈ 𝔾, and

𝒩𝓋
4(𝓍) = 𝒫𝓉𝓋+1

4 (𝓍) ∏ (𝒫𝓉+1
4 (𝓍))𝓋𝓉 .

𝓉𝓋−1
𝓉=0 (1) 

Table 1: 4-adic-type Cantor-like sets. 

𝓋 {𝒸: 0 ≤ 𝒸

< 2𝓋}
𝒸 = ∑ 2𝓉𝒸𝓉

∞

𝓉=0

ℯ = ∑ 4𝓉ℯ𝓉

∞

𝓉=0

𝒦ℓ
4 𝒵ℓ

4

0 0 𝒸 =0. 20 ℯ =0. 40 = 0 𝒦1
4 = [0,1]

1 0 

1 

𝒸 =0. 20 = 0

𝒸 =1. 20 = 1

ℯ =0. 40 = 0

ℯ =1. 40 = 1

𝒦2
4 = [0,1/4]

𝒦3
4 =[3/4,1]

𝒵1
4 =(1/4,3/4)

2 0 

1 

2 

3 

𝒸 =0. 20 = 0

𝒸 =1. 20 = 1

𝒸 =0. 20 + 1. 21 = 2

𝒸 =1. 20 + 1. 21 = 3

ℯ =0. 40 = 0

ℯ =1. 40 = 1

ℯ =0. 40 + 1. 41 = 4

ℯ =1. 40 + 1. 41 = 5

𝒦4
4 = [0,1/42]

𝒦5
4 =[3/42,4/42]

𝒦6
4 = [12/42,13/42]

𝒦7
4 =[15/42,1]

𝒵2
4 =(1/42,3/42)

𝒵3
4 =(13/42,15/42)

3 0 

1 

2 

3 

4 

5 

6 

7 

𝒸 =0. 20 = 0

𝒸 =1. 20 = 1

𝒸 =0. 20 + 1. 21 = 2

𝒸 =1. 20 + 1. 21 = 3

𝒸 =0. 20 + 0. 21 + 0. 22 = 4 

𝒸 =1. 20 + 0. 21 + 1. 22 = 5 

𝒸 =0. 20 + 1. 21 + 1. 22 = 6 

𝒸 =1. 20 + 1. 21 + 1. 22 = 7 

ℯ =0. 40 = 0

ℯ =1. 40 = 1

ℯ =0. 40 + 1. 41 = 4

ℯ =1. 40 + 1. 41 = 5

ℯ =0. 40 + 0. 41 + 1. 42 = 16

ℯ =1. 40 + 0. 41 + 1. 42 = 17

ℯ =0. 40 + 1. 41 + 1. 42 = 20

ℯ =1. 40 + 1. 41 + 1. 42 = 21

𝒦8
4 = [0,1/43]

𝒦9
4 =[3/43,4/43]

𝒦10
4 = [12/43,13/43]

𝒦11
4  =[15/43,16/43]

𝒦12
4 = [48/43,49/43]

𝒦13
4  =[51/43,52/43]

𝒦14
4 = [60/43,61/43]

𝒦15
4  =[63/43,1]

𝒵4
4 =(1/43,3/43)

𝒵5
4 =(13/43,15/43)

𝒵6
4 =(49/43,51/43)

𝒵7
4 =(61/43,63/43)
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Equation (1) has the advantage that, since 𝒫4-

system is regular and periodic, it is easy to remember 

them and their products are easy form. 

Lemma 4.3: 

i) 𝒩𝓋
4(𝓍) = [ℋ𝒽]𝓋𝓏 =

1

√𝒽
𝑐𝑎𝑠 (

2𝓋𝓏

𝒽
) , 0 ≤ 𝓋, 𝓏 <

𝒽 − 1, 

where, 𝒽- is the order of Hartley transform of type 

ℋ𝐼 [20] and 𝑐𝑎𝑠(𝓍) = sin(𝓍) + cos (𝓍), for 

each 𝓍 =
3ℯ

4𝓋 , 𝓋 ∈ 𝛮0, where, ℯ = ∑ 4𝓉ℯ𝓉
∞
𝓉=0 ,

with ℯ𝓉 being the dyadic coefficients of 𝒸 in binary

system:  

𝒸 = ∑ 2𝓉𝒸𝓉
∞
𝓉=0 , 𝒸𝓉 ∈ 𝔾.

ii) 𝒩𝓋
4(0) = 1, for all 𝓋: 𝓋 ∈ 𝛮0.

iii) 𝒩4 = {𝒩𝓋
4(𝓍)}𝓋=0

∞ -system forms a group with

respect to multiplication.

iiii) ∫ 𝒩𝓋
4(𝓍)𝑑𝜇 = 0

1

0
. 

Proof: one can simply show that i), ii), and iiii) 

from definition of Hartley transform of type ℋ𝐼, 

relation (1),  and in relation (1)  respectively. 

iii) For each 𝑖, 𝑗 ≥ 0, we write the binary number

of  𝑖, 𝑗 as: (𝑖)𝑏 = {𝜆𝜉𝑖
, ⋯ , 𝜆0} and (𝑗)𝑏 =

{𝛿𝜃𝑗
, ⋯ , 𝛿0}, where, the digits 𝜆𝜉𝑖

, ⋯ , 𝜆0 , 𝛿𝜃𝑗
, ⋯ , 𝛿0

are in 𝔾. We define the multiplication as:

𝒩(𝑖)𝑏

4 (𝓍). 𝒩(𝑗)𝑏

4 (𝓍) = 𝒩(𝑖)𝑏⨁(𝑗)𝑏

4 (𝓍) = 

𝒩(𝑗)𝑏

4 (𝓍). 𝒩(𝑖)𝑏

4 (𝓍), ∀ 𝓍 ∈  𝒦1
4.

𝒩0
4(𝓍) is the identity element of 𝒩4-system:

𝒩(0)𝑏

4 (𝓍). 𝒩(𝑗)𝑏

4 (𝓍) = 𝒩(0)𝑏⨁(𝑗)𝑏

4 (𝓍) = 𝒩(𝑗)𝑏

4 (𝓍)

For each 𝒩(𝑗)𝑏

4 (𝓍) ∈ 𝒩4-system.

The inverse element of 𝒩𝑗
4(𝓍) is 𝒩𝑗

4(𝓍) it self:

𝒩(𝑗)𝑏

4 (𝓍). 𝒩(𝑗)𝑏

4 (𝓍) = 𝒩(𝑗)𝑏⨁(𝑗)𝑏

4 (𝓍) = 𝒩(0)𝑏

4 (𝓍) =

𝒩0
4(𝓍) = 1.

is associative: For each 𝑖, 𝑗, 𝑝 ≥ 0, we have 

(𝒩(𝑖)𝑏

4 (𝓍). 𝒩(𝑗)𝑏

4 (𝓍)). 𝒩(𝑝)𝑏

4 (𝓍) = (𝒩(𝑖)𝑏⨁(𝑗)𝑏

4 (𝓍)) 

. 𝒩(𝑝)𝑏

4 (𝓍) = 𝒩(𝑖)𝑏⨁(𝑗)𝑏⨁(𝑝)𝑏

4 (𝓍) = 

(𝒩(𝑖)𝑏

4 (𝓍)). 𝒩(𝑗)𝑏⨁(𝑝)𝑏

4 = 

𝒩(𝑖)𝑏

4 (𝓍)(𝒩(𝑗)𝑏

4 (𝓍). 𝒩(𝑝)𝑏

4 (𝓍)).

Therefore (𝒩4, . )  is a group which is abelian as it a 

obvious from the definition of  associative. 

Theorem 4.2: 𝒩4-system is orthonormal basis on 

[0,1] concerning to measure of 𝒦4-Devil's staircase 

function on R.C.S. 

Proof: For each 𝑖, 𝑗 ≥ 0, we write the binary 

number of  𝑖, 𝑗 as: 

(𝑖)𝑏 = {𝜆𝜉𝑖
, ⋯ , 𝜆0} and (𝑗)𝑏 = {𝛿𝜃𝑗

, ⋯ , 𝛿0}, where,

the digits 𝜆𝜉𝑖
, ⋯ , 𝜆0 , 𝛿𝜃𝑗

, ⋯ , 𝛿0 are in 𝔾 and via

lemma 4.3 iii), we obtain: 

If 𝑖 = 𝑗, then, we have 

∫ 𝒩𝑖
4(𝓍)

1

0
𝒩𝑗

4(𝓍) 𝑑𝜇 = ∫ 𝒩(𝑖)𝑏

4 (𝓍)
1

0
𝒩(𝑗)𝑏

4  𝑑𝜇 =

∫ 𝒩(𝑖)𝑏⨁(𝑗)𝑏

4 (𝓍)
1

0
𝑑𝜇 = ∫ 𝒩(𝑖)𝑏⨁(𝑖)𝑏

4 (𝓍)
1

0
𝑑𝜇 =

∫ 𝒩(0)𝑏

4 (𝓍)𝑑𝜇
1

0
= ∫ 𝑑𝜇

1

0
 = 𝒥0

4(1) − 𝒥0
4(0) = 1

If 𝑖 ≠ 𝑗, then 

∫ 𝒩𝑖
4(𝓍)

1

0
𝒩𝑗

4(𝓍) 𝑑𝜇 = ∫ 𝒩(𝑖)𝑏

4 (𝓍)
1

0
𝒩(𝑗)𝑏

4  𝑑𝜇 =

∫ 𝒩(𝑖)𝑏⨁(𝑗)𝑏

4 (𝓍)
1

0
𝑑𝜇 

From section 2, there exist a unique natural 

number 𝜁 such that : 

𝜁 ≡ (𝜁)𝑏 = (𝑖)𝑏⨁(𝑗)𝑏 , therefore

∫ 𝒩𝑖
4(𝓍)

1

0
𝒩𝑗

4(𝓍) 𝑑𝜇 = ∫ 𝒩(𝑖)𝑏⨁(𝑗)𝑏

4 (𝓍)
1

0
𝑑𝜇 = 

∫ 𝒩(𝜁)𝑏

4 (𝓍)
1

0
𝑑𝜇 = ∫ 𝒩𝜁

4(𝓍)
1

0
𝑑𝜇. 

Via using lemma 4.3 iiii), we obtain 

∫ 𝒩𝑖
4(𝓍)

1

0
𝒩𝑗

4(𝓍) 𝑑𝜇 = 0, ∀𝑖 ≠ 𝑗 ∎.

Theorem 4.3: 𝒩4-system is a complete orthonormal 

system concerning to measure on a  4-adic-type 

Cantor like set 𝒦4. 

Proof: Assume that 𝜓 is the integrable function, and  

∫ 𝜓(𝓍)𝒩𝑖
4(𝓍)𝑑𝜇 = 0

1

0
, 0 ≤ 𝑖 < 2𝓋 .    (2) 

Moreover, assume 

𝔑(𝓍) = ∫ 𝜓(𝑡)𝑑𝜇
𝓍

0
,     ∀ 𝓍 ∈  𝒦ℓ

4.

Therefore 𝔑(𝓍) have two properties [22] 

i) 𝔑(𝓍) is continuous on [0,1];

ii) 𝔑(𝓍) is differentiable at every 𝓍 ∈ [0,1] at

which 𝜓(𝓍) is continuous and 𝔑′(𝓍) = 𝜓(𝓍).

It then follows from our assumptions that 

∫ 𝜓(𝓍)𝒩𝑖
4(𝓍)𝑑𝜇 = ∑ ∫  𝜓(𝓍)𝒩𝑖

4 (
3ℯ

4𝓋) 𝑑𝜇
𝒦𝑟∗

4

2𝓋−1
𝜗=0

1

0
 , 

0 ≤ 𝑖 < 2𝓋 , 𝑟∗ = 2𝓋 + 𝜗 
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= ∑ ∫ 𝜓(𝓍)𝒩𝑖
4 (

3ℯ

4𝓋
) 𝑑𝜇

3ℯ+1
4𝓋

3ℯ
4𝓋

2𝓋−1

𝜗=0

= 0. 

From the property of linearly independent and 

lemma 4.3 i), we get 

𝒩𝑖
4 (

3ℯ

4𝓋) = [ℋ𝒽]𝓋𝓏 ≠ 0 , 0 ≤ 𝑖 < 2𝓋.

Also, the numbers [ℋ𝒽]𝓋𝓏 are linearly independent.

Therefore 

∫ 𝜓(𝓍)𝒩𝑖
4 (

3ℯ

4𝓋) 𝑑𝜇
3ℯ+1

4𝓋
3ℯ

4𝓋
= 0. (3) 

Assume that, the relation in (2). Using (3), we have 

𝔑 (
3ℯ

4𝓋
) = 𝔑 (

3ℯ + 1

4𝓋
). 

From which Alexits [23] concludes that 

𝔑(𝓍) = 0, and 𝔑′(𝓍) = 0, ∀𝓍 ∈ [0,1]. Since 

𝔑′(𝓍) = 𝜓(𝓍) at every 𝓍 ∈ [0,1] in which 𝜓(𝓍) is 

continuous implies that 𝜓(𝓍) = 0, at which 𝜓(𝓍) is 

continuous, then 𝜓 = 𝟎 in 𝒦ℓ
4  ∎.

Any absolutely integrable function ℱ on the 

interval [0,1] has a Fourier series in 𝒩4-system: 

ℱ(𝓍)~ ∑ 𝜔𝑖
∞
𝑖=0 𝒩𝑖

4(𝓍).    (4) 

where, 

𝜔𝑖 = ∫ ℱ(𝓍)𝒩𝑖
4(𝓍)𝑑𝜇

1

0
 . 

Are the 𝒩4-Fourier coefficients of ℱ(𝓍) and the 

series in relation (4) is called 𝒩4-Fourier series of 

ℱ(𝓍). 

The 𝜌-th partial sum of the 𝒩4-Fourier series of a 

function ℱ(𝓍) will be represented via: 

Γ𝜌 = ∑ 𝜔𝑖
𝜌
𝑖=0 𝒩𝑖

4(𝓍).      (5) 

5 ORTHOGONAL 

MULTIPLEXING SYSTEM 

(O.M.S.) IN 𝓝𝟒-FOURIER

SERIES 

Since a 𝒩4-system forms complete orthonormal 

functions on R.C.S. takes only the values +1 and -1 

which are likely to be well suited to multiplexing 

systems as well as the numerical 𝒩4-Fourier 

transmission and numerical sequence shifting of 

signals require summations and subtraction only. 

The input signals ℱ𝑖 , 𝑖 = 0,1, ⋯ , 𝑘 − 1, 𝑘𝑧, 𝑧 is a

positive integer, passes first through filter. Then the 

set of functions 𝒩𝑖
4(𝓍) are multiplied via ℱ𝑖 via the

multipliers ℳ. The product is ℱ𝑖𝒩𝑖
4(𝓍) are summed

and transmitted to obtain a signal ℱ(𝓍): 

ℱ(𝓍) = ∑ ℱ𝑖
𝑘−1
𝑖=0 𝒩𝑖

4(𝓍).   (6) 

In order to recover ℱ𝑖, the signal ℱ(𝓍) is

multiplied by 𝒩𝑗
4(𝓍), where, 𝑗 = 0,1, ⋯ , 𝑘 − 1, and

integrating the product in the normalized interval 0 ≤

𝓍 ≤ 1: 

∫ ℱ(𝓍)𝒩𝑖
4(𝓍)𝑑𝜇

1

0
= ∫ ∑ ℱ𝑖

𝑘−1
𝑖=0 𝒩𝑖

4(𝓍)𝒩𝑗
4(𝓍)𝑑𝜇.

1

0

Figure 1: 𝒩4- carrier O.M.S. 
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By using theorem (4.2), the output of each de-

multiplexing channel 𝑖 = 𝑗, will be: 

∫ ℱ(𝓍)𝒩𝑖
4(𝓍)𝑑𝜇

1

0
= ℱ𝑖 .

Example 1: consider the input signals of ℱ(𝓍): 

ℱ0 = 0.5, ℱ1 = 0.1, ℱ2 = 1.5, ℱ3 = 0.8.

Each signal is multiplied via 4 − 𝒩4-functions of 

order 4: the situation is depicted in Figure 1, and the 

waveform details for each channel are shown in 

Table 2. The total signal ℱ(𝓍) in Table 2 and 

Figure 1 denotes the sum of all four active channel 

signals, and designed in Figure 2. 

Table 2: Detail of 𝒩4- carrier O.M.S. of Figure 1.

Time   → 𝓍 = 0 𝓍 = 1/4 𝓍 = 3/4 𝓍 = 1 

0.5𝒩0
4(𝓍) 0.5 0.5 0.5 0.5 

0.1𝒩1
4(𝓍) 0.1 0.1 -0.1 -0.1

1.5𝒩2
4(𝓍) 1.5 -1.5 1.5 -1.5

0.8𝒩3
4(𝓍) 0.8 -0.8 -0.8 0.8 

ℱ(𝓍) 2.9 -1.7 1.1 -0.3

Figure 2: Total multiplexing signal of example 1. 

6 CONCLUSIONS 

This paper introduces a novel construction of 

piecewise constant orthonormal functions based on 

the rescaling Cantor set (R.C.S.), particularly 

utilizing 4-adic-type Cantor-like sets. The developed 

orthogonal system demonstrates strong properties of 

completeness, orthonormality, and linear 

independence with respect to the measure defined by 

the –Devil’s staircase function. These foundational 

properties affirm the mathematical robustness and 

applicability of the constructed system. The paper 

presents the results of research on Rescaling Cantor 

set (R.C.S) of 4-adic-type Cantor-like set type. We 

obtained characteristic and in some cases criteria of 

completeness, orthonormality  and basis property of 

𝒩4-system concerning to measure of 𝒦4-Devil's 

staircase function on R.C.S. Many independent 

signals over communication channel in Multiplexing 

system are carried based on regularization of 

functions generating this system. Compared with the 

method of Fourier transform [18], the suggested 

approach is simpler in theory and easier in 

implementation. It  is believed that this is the first 

time in using the  𝒩4- series to approach the most 

interesting problem in O.M.S. In addition to all the 

possibilities discussed above, we shall also 

investigate more properties of the 𝒩4-system and try 

to form a construction for the 𝓀- adic- type Cantor-

like set. Also, we may try to extend our work to 

include 𝒩𝑛-system, where,  𝑛 ≥ 4. Compared with 

conventional Fourier-based methods, the –system 

offers theoretical simplicity, faster computational 

performance, and the potential for scalable extension 

to other adic-type Cantor sets. Moreover, this 

approach opens avenues for future research in signal 

processing, coding theory, and nonlinear dynamic 

analysis over fractal domains. 
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