Bull. London Math. Soc. 51 (2019) 836-852 do0i:10.1112/blms.12282

Parity as Zs-valued spectral flow

Nora Doll, Hermann Schulz-Baldes and Nils Waterstraat

ABSTRACT

This note is about the topology of the path space of linear Fredholm operators on a real Hilbert
space. Fitzpatrick and Pejsachowicz introduced the parity of such a path, based on the Leray—
Schauder degree of a path of parametrices. Here an alternative analytic approach is presented
which reduces the parity to the Zs-valued spectral flow of an associated path of chiral skew-
adjoints. Furthermore, the related notion of Zs-index of a Fredholm pair of chiral complex
structures is introduced and connected to the parity of a suitable path. Several non-trivial
examples are provided. One of them concerns topological insulators, another an application to
the bifurcation of a non-linear partial differential equation.

1. Introduction

The spectral flow for paths of self-adjoint Fredholm operators on a complex Hilbert space is
a well-known homotopy invariant [1, 11, 17, 19]. It plays a role in numerous other fields, for
example, index theory [1, 6, 8, 20], bifurcation theory [11, 13] and solid state physics [9]. For
R-linear operators on a real Hilbert space Hg, spectral flow is still a well-defined and useful
object. Moreover, for paths [0,1] 3 ¢ — B, of arbitrary (not necessarily self-adjoint) Fredholm
operators on Hg a Zs-valued parity o has been introduced by Fitzpatrick and Pejsachowicz
[11], and for paths [0, 1] 3 t — T} of skew-adjoint real Fredholm operators a Zs-valued spectral
flow Sfs has also been studied [7]. This note presents the parity of a path [0,1] 3 ¢t — B; of real
Fredholm operators as the Zo-valued spectral flow of an associated path of chiral skew-adjoint
Fredholm operators on Hg @ Hg:

a([O,l]3t|—>Bt):Sf2<[0,1]9tn—> (%? %)). (1)

This provides a new perspective on parity and also allows to deduce its main properties directly
from known facts on the Zs-valued spectral flow. We also believe that the presented approach
makes the parity more accessible for computations. A new result for the parity is an index
formula for paths between conjugate Fredholm pairs of complex structures, see Section 6. This
corresponds to analogous results for the spectral flow between conjugate Fredholm pairs of
projections [20] as well as the Zs-valued spectral flow [7].

To further stress the similarities between spectral flow, Zs-valued spectral flow and parity,
let us consider the classifying spaces for real K-theory as introduced by Atiyah and Singer [2].
Let F* = F¥(Hg) denote the space of skew-adjoint Fredholm operators on a real separable
Hilbert space Hr which anticommute with representations Iy, ..., I;_1 of the generators of a
real Clifford algebra of signature (0,k — 1) [2]. By reducing out these relations in a concrete
representation, it is possible (but tedious) to identify each F* with a set of Fredholm operators
on Hg having certain supplementary symmetry relations. Relevant for the following is that
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FO = F8 is isomorphic to the set of all Fredholm operators on Hg, F' is isomorphic to the
set of skew-adjoint Fredholm operators while F7 is isomorphic to the self-adjoint Fredholm
operators on Hg with positive and negative essential spectrum. Furthermore, F? is isomorphic
to the set of those elements of F7 that are linear over the quaternions. Atiyah and Singer [2]
found that the homotopy groups of these spaces satisfy

i (F') = mo(F' ) = mji(FO),
and are given explicitly by

7 01| 2 3 4 5|67
To(FV|| Z |Z2 |Z2| O [2Z]0[0]0 @)

The components my(F?) in the second row are labelled by the index (for i = 0,4) and the
Zs-index is given by the nullity modulo 2 (for ¢ = 1,2). The spectral flow provides an explicit
isomorphism from 71 (F7) to Z, and also from 71 (F?) to 2Z. Here the factor 2 merely stresses
that eigenvalues of self-adjoint quaternionic operators are always of even multiplicity. More
precisely, if a self-adjoint quaternionic matrix is written as a complex matrix of double size,
then this complex matrix has a symmetry leading to even-dimensional eigenspaces (just like
time reversal for fermions with half-integer spin leads to Kramers’ degeneracy). Therefore, also
the spectral flow along paths of quaternionic operators is even. Furthermore, the parity gives
the isomorphism m (FY) & Zy [13] and the Zy-valued spectral flow provides the isomorphism
71 (F1) 2 Zs [7]. Hence the spectral flow, parity and Zs-valued spectral flow allow to detect the
topology in the last row of (2). Furthermore, in view of table (2), one does not expect there to be
any other flow of interest. Let us also note that (1) results from realizing " as those elements
of F! that anticommute with the representation J of the generator of a real Clifford algebra of
signature (1,0). Explicitly, J = diag(1, —1) in its spectral representation and elements 7' € F*
with the so-called chiral symmetry JT'J = —T are off-diagonal as on the right-hand side of
(1). This reduction is in the opposite direction than the one considered in [2]. Moreover,
chiral skew-adjoints often also appear in different guise in applications. An example are chiral
self-adjoints, see Section 4, which are naturally associated to chiral topological insulators, see
Section 8. Finally, let us stress that while table (2) only concerns closed loops, the definition
of spectral flow, Zo-valued spectral flow and parity apply to arbitrary (open) paths.

In Section 5 a Zs-index of a Fredholm pair of chiral complex structures is introduced. This
is the parity version of Kato’s index of a Fredholm pair of projections [15] as further studied
by Avron, Seiler and Simon [3]. This is closely tied to the parity, as explained in Section 5
and of particular interest and importance for Fredholm pairs given by unitary conjugates. This
leads to an index formula proved in Section 6. Finally Sections 8 and 9 give two applications
of the parity.

2. Parity in finite dimension

The characterizing features of the parity can best be understood in finite dimension. Hence
let us consider a (continuous) path [0,1] 5 ¢ — B, of real N x N matrices acting on the real
Hilbert space Hg = RY. Furthermore, let the path be admissible in the sense that its endpoints
By and Bj are invertible, namely are in the general linear group GI(N,R). This group has two
components, specified by either a positive or a negative determinant. The parity of the path
[0,1] ¢ — By is simply 1 if the endpoints are in the same component and —1 if they are in
the two different components. The following provides an analytic formula for this.

DEFINITION 1. For an admissible path [0,1] © ¢ — B; of real N x N matrices, the parity is
defined as

0([0,1] o t — B;) = sgn(det(B1)) sgn(det(By)) € Za, (3)
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where Zo is viewed as the multiplicative group Zs = {—1,1}. As this only depends on the
endpoints, we will also simply write o(By, B1). After rescaling, all of this also applies to paths
[a,b] > t — B, with arbitrary endpoints a < b.

The definition directly implies that the parity ¢ of admissible paths of real matrices is
a homotopy invariant (under homotopies of the path keeping the endpoints fixed), it has a
concatenation property and it is normalized in the sense that the parity of a path in the
invertibles is 1. Furthermore, one has a multiplicativity property under direct sums, namely
for another admissible path [0,1] 5 ¢ — Bj of real L x L matrices, the definition directly implies
that

o([0,1] 3t B, @ B)) = o([0,1] 3t By) - o([0,1] 3 t = BY),

with multiplication in Zs.

For the generalization to infinite dimension there are several possibilities [17]. The route
taken by Fitzpatrick and Pejsachowicz [13] uses the fact that sgn(det(B)) can, under suitable
conditions, be extended to infinite dimensions as the Leray—Schauder degree, for details see
Section 3. In this note we elaborate on another possibility which consists in first rewriting
Definition 1 in terms of skew-adjoint matrices on a doubled Hilbert space, just as suggested
by Atiyah and Singer [2]. This has the advantage that tools from the spectral analysis of
skew-adjoint operators can be used and the connection to the Zs-valued spectral flow from
[7] is uncovered. Hence, let us use the real Hilbert space H = Hr & Hr equipped with the

Zso-grading J = diag(1, —1). Set
(0 B
(5 %)

These operators have a so-called chiral symmetry:
JT J = -Ty. (5)

Conversely, if one has a real Hilbert space Hj equipped with the Zs-grading given by a self-
adjoint unitary J = J* = J~! and a path [0, 1] > ¢ — T} of real chiral skew-adjoints, then going
to the spectral representation of J in which J = diag(1, —1) leads to the representation of T} in
the form (4). Hence (4) provides a bijection between the set of paths of operators on Hg and the
set of paths of chiral skew-adjoints on Hp. The chiral symmetry (5) implies that the spectrum
always satisfies spec(7T;) = —spec(T;) C +R. A non-trivial topology in the path is detected by
the Zs-valued spectral flow [7], the definition of which we recall next. For this purpose, let us
note that the endpoints Ty and T} are invertible (because the initial path was admissible) and
therefore there exists an invertible A such that Ty = A*TyA. Then, by definition [7],

St(0,1] 3+ T}) = sgn(det(A)) € Zo. (6)

As the definition of Sf2([0,1] > ¢+ T}) only depends on the endpoints we will also write
Sfy (T, T1). For Ty and T3 in the form (4) one has T} = A*TyA for A = diag((Bg) 'Bj,1).
This directly implies

o([0,1] 3t By) = Sf2([0,1] >t — T)) (7)

whenever the identification (4) holds. This explains why (1) holds in finite dimension. The
Zso-valued spectral flow given by (6) has an invariance property under conjugation, namely if
[0,1] 3 t — Oy is a path of orthogonals commuting with J, then

S£5([0,1] 3 t > O,T,07) = Sf([0,1] 5 t = T3).

This holds because 011107 = O1A*OF(O0To08)0gAOT and det(OgAOT) = det(A) since O
and Oy are in the same component of the orthogonal group. This transposes to an invariance
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property for the parity. Similarly, other properties of parity result from properties of the
Zo-valued spectral flow.

Let us next provide some examples that illustrate the topological stability associated to the
parity. For NV =1 we first consider two paths:

n=(08) m=(4 W), e ®

Clearly, these two paths are isospectral spec(T}) = spec(T}) for all t € [—1,1]. By (6) one finds
Sfy([=1,1] 3t — Ty) = —1 and Sfy([—1,1] 3 t — T}) = 1. This has spectral consequences. The
latter can be perturbed to Ty(s) (within the class of real chiral skew-adjoints) in such a way
that zero is not an eigenvalue for any t:

=g 1)

Indeed, the eigenvalues are then +(|t| + s) which both never vanish for positive s > 0. It is not
possible to construct such a perturbation for 7}, namely any real skew-adjoint perturbation
conserving the chiral symmetry can merely shift the eigenvalue crossing at 0.

Furthermore, let us double the non-trivial example in (8) via a direct sum to T} =T, & T}
which is chiral with respect to J & J = diag(1,—1,1,—1). Now 7} is block diagonal rather
than in the off-diagonal form (4). However, using the permutation U of the second and
third components one obtains the spectral representation U(J @ J)U* = diag(1, —1) and then
UT/[U* is of the form (4) with off-diagonal entry B; = diag(¢,t). Then by the multiplicativity
of the Zy-valued spectral flow, Sfa([—1,1] 3 ¢ — T}) = (—1)(—1) = 1. Again it is then possible
to lift the kernel along the whole path by a real chiral skew-adjoint perturbation. One such
perturbation is

0 0 t —s

" 0 s t
ULOU = 4 s 0 o
s —t 0 0

Indeed, the spectrum of T7(s) is {u(t2 + s2)z, —u(t2 + s%)2} with a double degeneracy. In
particular, for s # 0, T/(s) is invertible for all ¢ € [-1,1].

3. Construction of the parity in infinite dimension

In this section, the separable real Hilbert space Hg is now of infinite dimension and the
continuous path [0,1] 3¢+ B; € FV is within the Fredholm operators. For the sake of
simplicity, let us first suppose that it lies in the component of Fredholm operators with vanishing
index. (In a large part of the literature these are called Fredholm indices even though it was
actually F. Noether who first exhibited a Fredholm operator with non-vanishing index [10].)
The general case will then be dealt with towards the end of the section. In [11, 13], the
parity of an admissible path (namely with invertible endpoints) uses the Leray—Schauder degree
which is defined as follows. One first proves that there exists a second path of real invertibles
[0,1] 5 t — M, such that M;B; = 1 + K, with a real compact operator K;. Then, if n; denotes
the number of negative eigenvalues of 1 + K; counted with multiplicity, n; coincides with the
number of eigenvalues less than —1 of the compact operator K; and is therefore finite. The
(linear) Leray—Schauder degree is

degy(B;) = (=)™ € Zs. 9)
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Let us explain how this fits together with Definition 1. If B, is a matrix, one can choose M; = 1;
the spectrum of B; is symmetric with respect to the reflection on the real axis; now non-real
eigenvalues of B; come in complex conjugate pairs which do not contribute to sgn(det(Bi));
hence analysing the real eigenvalues immediately leads to deg,(B;) = sgn(det(B;)). For the
path, the parity is then as in Definition 1 given by ¢([0,1] 3 ¢ — B;) = deg,(B1)deg,(Bo) € Zs
[13]. One of the difficulties with this approach is that, in general, it is very hard to determine
the path M; and therefore also the parity by this procedure.

This work provides an alternative approach in which the parity is defined as the Zs-valued
spectral flow studied in [7] of a path of skew-adjoint operators on the doubled Hilbert space.
This is based on the passage (4) to chiral skew-adjoint operators. Hence let Hp = Hgr & Hr
be a real Hilbert space equipped with the Zo-grading J = diag(1,—1). Then (4) identifies
FO = FO(Hg) with

FO={T €B(H}) : T=-T" = ~JTJ Fredholm}.

Hence F0 is a subspace of F! = {T € B(H}) : T = —T* Fredholm}, and any path in F° can be
viewed as a path [0,1] >t — T} € F0in F'. This path has a supplementary chiral symmetry
JT;J = =T}, but this is irrelevant for the definition of its Zs-valued spectral flow that we
review next. Hence let now [0,1] >t +— T; € F'. As already mentioned, we will first deal with
an admissible path with invertible endpoints 7y and 7. Roughly, the idea is to reduce the
definition of the Zs-valued spectral flow to the finite-dimensional definition by extracting from
T, € F' only the finite-dimensional subspace corresponding to eigenvalues in a small interval
around 0, just as in [19]. Thus, for a > 0 let us set

Q(l (t) = X(—a,a) (Z ﬂ)7

where y; denotes the characteristic function on I C R. The projection @Q,(t) is of finite-
dimensional range for a sufficiently small by the Fredholm property of T;. Associated to these
projections, one has the restrictions Q,(t) Ty Q. (t) which are viewed as skew-adjoint matrices
on &,(t) = Ran(Q,(t)). By compactness (see the first lemma in [19]), it is possible to choose
a finite partition 0 =to < t; < -+ <tny_1 <ty =1 of [0,1] and a, >0, n=1,..., N, such
that each piece [t,—1,%n] D¢ — Qq, (t) is continuous and hence of constant finite rank, and,
moreover, for some e,

1Qa,, (1) = Qa, ()l <&V 4,8 € [tn1,tn]. (10)
Let V,, : &, (th—1) — &, (tn) be the orthogonal projection of &,, (t,—1) onto &,,, (t,), namely
Vov = Qq, (tn)v. Then V,, is a bijection allowing to identify &, (tn—1) with &, (t,). Now
each interval [t,_1,t,] leads to a path [t,—1,t,] D t — Qu, (t) T} Qq, (t) of chiral, skew-adjoint
matrices on &,, (t) = Ran(Q,,, (¢)), but this path may not be admissible. To lift the (even-

dimensional) kernel at the endpoint ¢,, one can add a skew-adjoint perturbation R, on the
kernel of Q,, (t) Tt, Qa, (tn) so that

T3 = Qu, (tn) Tr, Qu, (ta) + Ra (11)

are skew-adjoint invertible operators on &,(t). Clearly the choice of the R,, is largely arbitrary,
but it is part of Theorem 1 that the following definition is independent of the choice of the R,,.

DEFINITION 2. For an admissible path [0,1] 3 ¢t = T; € F!, let t,, and a,, as well as Tt("’)
and V,, be as above. Then the Z,-valued spectral flow is defined by
S0 5t T) = ] st(T) Vit 'v), (12)
n=1 N

where on the right-hand side the Sfy is the finite-dimensional Z,-valued spectral flow on
&a, (tn—1) as given in (6), and the product is in the multiplicative group (Zo, ).
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Let us stress that in infinite dimension, it is in general not possible to write Sfs (T, T) for
Sf2([0,1] > ¢ — T}) because the Zs-valued spectral flow depends on the choice of the path. The
basic result on the Zs-valued spectral flow is that it is well defined by the above procedure.

THEOREM 1 (Theorem 4.2 in [7]). Let [0,1] >t~ T; € F' be an admissible path. The
definition of Sf5([0,1] > t + T}) is independent of the choice of the partition 0 =ty < t] < -+- <
tn—1 <ty =1 of [0,1] and the values a,, > 0 such that [t,_1,t,] 3t — Qq,(t) is continuous
and satisfies (10), and also the choice of the R,, in (11).

AsFOc F 1 one can now use the Z,-valued spectral flow to define the parity.

DEFINITION 3. Let [0,1] 3 ¢ — B, € F° be an admissible path and [0,1] 3 ¢t — T; € F° be
the path associated by (4). Then the parity is defined by

a([0,1] 2t — B;) = Sf2([0,1] 2 t — Ty) € Zs. (13)

Let us stress again that T; € Fo implies the chiral symmetry JT;J = —T5, but this is not of
importance for the definition of the Zs-valued spectral flow on the right-hand side of (13). One
can, however, make more specific choices in the construction of Sfs above, notably the spectral
projections satisfy due to the symmetry of [—a, a)

Qa(t) = JQa(t)J,

and one can choose the skew-adjoint perturbations R,, to be chiral. Due to Definition 3, the
parity inherits from the Zo-valued spectral flow all of the properties stated in [7]. They are
collected in the following result. Most of these properties are already stated in [13, Chapter 6].

THEOREM 2. Let [0,1] > ¢+ B, € F° be an admissible path.

(i) The parity is homotopy invariant under homotopies in the paths of Fredholm operators
keeping the endpoints fixed.
(i) If B, is invertible for all t € [0,1], then ¢([0,1] > t — B;) = 1.
(iii) The parity has a concatenation property, namely if [0,2] > t — B, € F° is a path such
that B, is invertible, then

O'([O, ].] St Bt) . 0'([1,2] St— Bt) = O'([O,2] St Bt)
(iv) The parity is independent of the orientation of the path:
0([0,1] 5t +— B,) = 0o([0,1] 3¢t — Bi_4).

(v) The parity has a multiplicativity property under direct sums, namely if [0,1] > ¢ +—
B, € F° is a second admissible path,

a([0,1] >t~ B, ® B)) =0([0,1] 2t~ By) - 0([0,1] >t — By).
(vi) The parity is invariant under the conjugation by a path [0,1] 3 ¢t — O, of orthogonals:
a([0,1] 3 t — O:B:O;) = o([0,1] 2 ¢t — By).
In particular, the parity is independent under reflection of the path:

o([0,1] 5t By) =0([0,1] > t — —By).

The following result is already stated in [13].
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THEOREM 3. The map o on loops in F° is a homotopy invariant and induces an isomorphism
of w1 (F°) with Zs.

Proof. As 71 (F°) = Z, is already known [2] and o is homotopy invariant, one only has to
check that o takes two different values on the two different components of the based loop space
in FO. For constant paths (and thus all contractible ones) the parity vanishes. An example
with a parity equal to —1 is given in Section 7. O

Up to now, only paths [0,1] 3 ¢t — B; in the component of F’ with vanishing index were
considered. For general paths, one has

dim (Ker (7)) — |Ind(B;)| € 2No.

In particular, for non-vanishing Ind(B;) the dimension of the kernel of T; is positive for all ¢ and
thus there are no admissible paths. However, there are several possibilities to reduce this case
to the prior one. For that purpose, let us now call a path admissible if dim(Ker(7;)) = |Ind(B;)]
for i = 0,1. Recall that Ker(T}) is J-invariant. Let now [0,1] > ¢ — P; be a continuous path of
J-invariant orthogonal projections onto parts of the kernel of 7T}, and being of the dimension of
Ker(T;) for ¢ = 0,1. Then follow the constructions and arguments from above for T} restricted
to the range of 1 — P;. This construction is independent of the choice of [0,1] > ¢ — P; for,
if [0,1] > ¢ — P/ is another projection with the above properties, then P/ = O;P,O; for a
path [0,1] 3 ¢t — O; of orthogonals commuting with J. Hence, it follows from property (vi) of
Theorem 2 that one obtains the same parity. All properties of Theorem 2 transpose directly,
except for (ii) which now states that paths with constant nullity have a parity equal to 1.

4. Reformulation with chiral self-adjoints

Given an admissible path [0, 1] 3 ¢ — B; of Fredholm operators on Hg, it is possible to associate
self-adjoint real operators on Hp = Hr & Hr via

H, = (g; %). (14)

This identifies F° with the set F° of chiral self-adjoint Fredholm operators
FY={H € B(M}) : H=H* = —JHJ Fredholm}.
A Dbijection between FO and FO is given by
FO=0J2 FO(J2)",
where J2 = diag(1,:1) is the square root of J. In some applications (as in Section 8) one

rather finds admissible paths [0,1] 3t — H; € FO of chiral self-adjoint real operators. Such
paths then have a parity given by

o([0,1] > t s H,) = ng([o, 15t J% H, (J%)*).

A further modification concerns a setting with complex Hilbert spaces and a reality condition
involving another symmetry. Suppose thus that one has a complex Hilbert space H¢ with a
real structure given by a (anti-linear involutive) complex conjugation C : H¢ — Hc, naturally
extended to Hi = He @ He. For any linear operator A on Hc or Hi let us set A=CAC.
Further suppose given a real self-adjoint involution K on Hf,, namely K = K* = K and K? =1
which, moreover, commutes with J. Then an operator A is called K-real if K*AK = A. Now
one considers admissible paths [0,1] ¢ — H; of K-real self-adjoint chiral operators, namely

K*EK = Ht, Ht* = Ht, J*Hte] = —Ht.
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Also for such paths one can define the parity. Indeed, let L be the root of K with spectrum
{1,2}. It commutes with J. Then set

H, = L*H,L.

It can be checked that ﬁt is real, self-adjoint and chiral with respect to J. Consequently, I;Tt
can be restricted to an R-linear operator on Hp = Ker(C — 1) C H¢. Thus it is within the
class of paths considered above and the parity of [0,1] © ¢t — H; can be defined as that of
(0,1] 3¢ — H,.

5. Fredholm pairs of chiral complex structures

The aim of this section is to construct an alternative formula for the parity. This will first be
done for special paths between complex structures that are close in the Calkin algebra, then
later on it will also be extended to general paths. Recall that a complex structure I on Hf, is a
linear, skew-adjoint and unitary operator on Hp. It is called chiral if, moreover, JIJ = —I for
a symmetry J, namely J = J* = J . Hence, any chiral complex structure is an element of F°.
The following definition is motivated by [5, 7], as well as Kato’s Fredholm pair of projections
and its index [3, 15].

DEFINITION 4. A pair (I, [;) of chiral complex structures on Hy, is called a Fredholm pair
of chiral complex structures if ||7(Ip — I1)||o < 2. The Zg-index of (Iy, 1) is then defined by

Inds (1o, I1) = (3 dimp(Kerg(Io + I1)))mod 2 € Z,. (15)

The index is indeed well defined because Iy + Iy = 2 Iy + (11 — Ip) has no essential spectrum
at 0 and it will be shown in the proof of Theorem 4 that the kernel of I + I; is even-dimensional.
On the right-hand side of (15) the additive version of Zy was used and is tacitly identified with
the multiplicative one. The following justifies Definition 4.

THEOREM 4. The map (I, 1) — Indy(Ip, I1) € Zs is a homotopy invariant on the set of
Fredholm pairs of chiral symmetries. Moreover, for both signs one has

Inds (1o, I;) = dimg (Kerg(Ip — Iy £ 2:1)) mod 2. (16)

Before going into the proof, let us elaborate on the connection to the index of a Fredholm
pair of projections [3]. Here there are two projections Py = £ (:Ip +1) and Py = $(u1; + 1)
associated to the complex structures. The property ||7(Ip — I1)|o < 2 is equivalent to |7 (Py —
Py)]lg <1 and thus to (Py, P;) being a Fredholm pair. Furthermore, these two projections
satisfy P; =1 — P; and JP;J = P;. In the terminology of [14] this means that the P; are even
real and even Lagrangian projections. These symmetries imply that the index of the Fredholm
pair (Pp, P1) vanishes, namely the two signs on the right-hand side of (16) lead to the same
dimension (compare with [3, equation (3.1)]). Hence one sees that the Zs-index Inds (1o, )
is a secondary invariant associated to the Fredholm pair (P, P;) which is well defined due to
Theorem 4.

The proof of Theorem 4 will be based on the following lemma in which the chiral
symmetry and reality are irrelevant. The lemma can be traced back to [5] and is stated
as [7, Lemma 5.3]. An equivalent algebraic fact has also been used for pairs of orthogonal
projections [3, Theorem 2.1].

5UB011] SUOLLILIOD SAIER.0 3 et jdde au) Aq pousBAOB 18 D011 WO 88N JO S3|N1 10J AIRIGITBUIIUO A3]1M UO (SUO1IPUGO-PUB-SLLIBIALICO"AB| W ARIGIPUIIUO//SCIL) SUOIIPUOD PUE SWLR L 8U) 89 *[Z02/0T/T0] U0 AXeidii ] auIluO 411 ‘BGUBNIM-IRH AISAIN JBUINT U AQ Z822T SWIG/ZTTT OT/I0P/AU0Y" A8 |IM ARG BUIIUO™00SUIBWUO//SAY Wo1) Papeolumoq] ‘G ‘6T0Z ‘0ZT2697T



844 NORA DOLL, HERMANN SCHULZ-BALDES AND NILS WATERSTRAAT

LEmMA 1. Let Iy and I; be complex structures. Set
To = 5 (I + Ih), Ty = 5 (Io — I).
Then the following identities hold:
0Ty + IT7Th =1 =TTy + Th 17y, 5T + 17Ty = 0 =TTy + Th 17},
as well as

Tolo = Ii'To, Tol = T, Ty =—1Th, i =—IT.
Proof. Everything is verified by straightforward computations. ]

Proof of Theorem 4. First of all, as noted above Ty = Iy + %(Il —Ip) is a skew-adjoint
Fredholm operator by the assumption that (Iy, ;) is a Fredholm pair so that there is only
discrete spectrum in a neighbourhood of 0. The idea of the proof is to show that every (small)
eigenvalue of Tj of finite multiplicity has even multiplicity. As T} is chiral and its spectrum
satisfies spec(Tp) = —spec(Tp), this then implies that the nullity of Ty only changes by multiples
of 4 under homotopic changes of Ty (induced by a homotopy of Iy and I;). The main tool
is to view Iy as a complex structure on Hy. Now (T3Ty)lo = —Tol1To = Io(T3Ts) so that
T5T) is a complex linear operator on Hp viewed as complex Hilbert space (using the complex
structure Ip). Consequently the real multiplicity of all eigenvalues of T Ty is even. In particular,
Indy (1o, I;) given by (15) indeed takes values in {0, 1}. Next let us show that for A € (0, 1), the
complex multiplicity of the eigenspaces of T Ty is a multiple of 2 (then the real multiplicity is a
multiple of 4). Suppose that T Tov = Av for some non-vanishing vector v. Then set w = T} Tyv.
First of all, its norm does not vanish:

|w[]? = v* Ty T Ty Tov = v* T (1 — ToTy ) Tov = A(1 = \)||v]|.
It is also an eigenvector of TjTp:

TST()’U) = TgTonTo’() = —TJTlTJTQU = Tl*TOTO*TOU = Aw.
Moreover, it is complex linearly independent of v. In fact, suppose the contrary, namely that
w = (po + p1lo)v for some g, 1 € R. Multiplying this with T;fT) leads to

)\(1 — )\)’U = T;TleTo’U = TS‘le = TJTl(/LO + ILL1.[0)’U = _(,LLO — mIO)w,
where in the last equality the identity TgT11y = —IoT311 was used. Multiplying now by
(‘LLO + /,Llfo) shows
A1 = Nw = —(ug + pi)w,
that is, a contradiction. If there are further eigenvectors of 75Ty with eigenvalue A, one can
restrict to the orthogonal complement and iterate the above argument.
As to the alternative formula for Inds (I, I1), let us note that the kernel of T§T, coincides

with the eigenspace of 1711 to the eigenvalue 1, which in turn is given by the direct sum of
the eigenspaces of T for the eigenvalues + and —:. This proves the formula. Let us comment

that another proof of the homotopy invariance uses the chiral symmetry of 77 and checks the
double degeneracy of all eigenvalues of T in (0,1), excluding 1. |

The following result establishes the link of Inda ([, I1) with the Zs-valued spectral flow of
the straight line connecting Iy and I;, which indeed lies in F° c F'.

PROPOSITION 1. For any Fredholm pair of chiral complex structures (Iy,I;) on Hp, one
has

Sf2([0,1] 3¢t~ (1—t) Iy + t 1) = Inds(Io, I).
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Proof. This is essentially identical to the argument leading to [7, Proposition 6.2] so let
us just give a sketch. The operators T; = (1 —t)Iy + tI; are indeed Fredholm because, for
te0,3], T, = Io + t(I; — Ip) is a perturbation of an operator Iy with spectrum {—1,2} by an
operator with bound 1 in the Calkin algebra so that T; has its essential spectrum bounded away
from 0. For ¢ € [$,1], this holds by the same argument as T; = I + (1 — t)(Io — I). Moreover,
T; is invertible except possibly at t = % Hence in Definition 2 it is sufficient to work with three
intervals [0, 2 — €], [3 — €, 2 + €] and [1 + ¢, 1] for some € > 0. Only the middle interval has a
possibly non-vanishing contribution coming from the parity of the nullity of T% = %(IU + ).

But this is precisely the definition (15) of the Zg-index. O
Further following [20] or [7], one can go on and rewrite the definition of the parity.

PROPOSITION 2. Let [0,1] 3 ¢t — B; € F° be an admissible path and associated T, € F° to
By by (4). Let I, be chiral complex structures obtained by completing the phase T;|T;|~! on
the kernel. Then, for a sufficiently fine partition 0 =ty < t;--- < ty = 1 satisfying |7 (I, —
I,_1)|| < 2, one has for the parity

o([0,1] 5t B)=| >  Indy(L,_,,I;,) | mod2.

Proof. Let us begin by rewriting Definition 2. One can choose R,, in (11) sufficiently small
and the partition to =0 < t; < --- < ty = 1 sufficient fine such that a, from Definition 2 is
not in the spectrum of (1 —¢)¢ (T3, _, + Rn—1) + t2 (T3, + Ry) for any t € [0, 1]. By definition

n—1

St, (Tt(ffl), V;Tffj">vn) = 8£,((0,1] 3t (1= 1) (T4, , + Ry 1)+t (Th, + Ry))

and
Sta([0,1] 5t = T) = [ Sf2(00,1] 3t (1=8)(Ty,_, + Ru1) +t(Th, + Ry)).
n=1,...,N
By identifying T}, + R, with T}, we can from now on assume that 7}  is invertible. Next let
us claim that for each n =1,..., N one has

St2([0,1] 3t (1 —8) Ty, , +tTy,) =Sf2([0,1] 5t — (L —t) Iy, _, +t1;,).

Indeed, as T}, and T}, _, are both invertible,

0,1]3s=0=)T, ,|Th, ,["°+tT, |T:,[°

deforms the initial path into the path [0,1] > ¢+ (1 —¢) Iy, , + tI;, . During this homotopy
the endpoints remain invertible so that the Zs-valued spectral flow is unchanged. Now the
assertion follows from Proposition 1. O

6. Parity of paths between unitary conjugates
Let Hp = Hr @ Hgr be equipped with the Zs-grading J = diag(1,—1). The orthogonal group
preserving J is
O(Hp,J) ={0 € O(Hp) : O*JO = J}.
This is a subgroup of O(Hp) naturally identified with O(Hr) x O(Hr) because O*JO = J is

equivalent to JOJ = O which requires O to be diagonal in the grading of J. For any real chiral
complex structure I, let us set

OI(H]/R7 J)={0¢€ O(H]/Rv J):[0,1] € ’C(HI/R>}7 (17)
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where K(Hf) denotes the compact operators on Hp. This is a subgroup of O(Hg, J). Let us
note that for O € O;(Hg,J) one has 7(O*I0) = n(I) in the Calkin algebra. Furthermore,
recall the definition of the based loop space Q;F° of F° based at I:

Qlﬁoz{[o,l}9t»—>Tte]:"°:T1:T0:I}.

THEOREM 5. For any chiral complex structure I on Hp, the group Or(Hg, J) is homotopy
equivalent to Q;F°. In particular, mo(O;(Hp, J)) = Zs.

As a preparatory result for the proof, let us state the following.
PROPOSITION 3. The space F° = FOis homotopy equivalent to the space
C(Hp) ={n(I) € Q : w(I) chiral complex structure}.

Proof. We closely follow the proof of [7, Theorem 7.1] which in turn is based on [2, 20].
Let p: FO — FO be the (non-linear and discontinuous) map sending 7" to the partial isometry
I =T|T|7! in the polar decomposition. If 7 denotes as before the quotient map onto the
Calkin algebra Q = Q(H}) over H, then the map p = 7 o p sends FO surjectively onto C(Hf).
Indeed, any chiral complex structure w(I) € C(Hp) has a chiral and skew-adjoint lift I’ for
which (I")*I' — 1 is compact; then the Riez projections P} on the positive and negative
spectral projections of —uI’ lead to a lift I = 2P| — P’ for which I*I — 1 is a finite-dimensional
projection (on the kernel of I"). The Bartle-Graves selection theorem [4] now provides a right
inverse 60 : C(Hg) — FO to p, namely po 6 = 1. Moreover, 8o p is homotopic to the identity
via [0,1] 2t tT+ (1 —t)0(p(T)). As 0(p(T)) = T|T|~* + K for some chiral skew-adjoint
compact K, this is a homotopy in FO. Thus p is actually a homotopy equivalence so that Fo
and C(Hf) are homotopy equivalent. O

Proof of Theorem 5. Due to Proposition 3 it is sufficient to show the homotopy equivalence
of O;(Hp, J) and Q1 )C(Hy). Here, the chiral complex structure I on Hp, also specifies a base
point p(1) in C(H). Associated to I, one can define a map B : O(Hg, J) = C(Hg) via 8;(0) =
p(OIO0*) = w(OI0*). This map is actually a Serre fibration by the argument in Theorem 3.9 of
[18]. The fibre over the base point p(I) = w(I) is precisely the set O;(Hg, J) from (17). Hence
one can use the long exact sequence of homotopy groups, which due to the triviality of the
homotopy groups of O(Hy, J) implies that the set Q;;)C(Hp) of based loops in the base space
is homotopy equivalent to the fibre over the base point which here is O;(Hp, J). Because the
loop functor respects homotopy, we conclude from the above that the based loop space (2 1 FO
is homotopy equivalent to O7(Hf, J). The last claim follows from 1 (F°) & Z,. O

It is possible to use the index map j; : O (Hk, J) — Zo defined by
jr(0) =Inds(I1,010%)

to distinguish the two components of O;(Hg,J). Furthermore, applying Theorem 4 and
Proposition 1 to Iy = I and I; = OIO* leads to the following.

COROLLARY 1. For any chiral complex structure I, j; is a homotopy invariant homomor-
phism labelling the two components of Or(Hg,J). One has

Jj1(0) =Sf3([0,1] 2t — (1 —t) I + tOIO").
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The (Noether) index of a Toeplitz operator associated to a given index pairing can always
be expressed as a spectral flow [8, 19, 20]. The following result is the parity version of this
result, similar to [7] which contains a corresponding result for the Zs-valued spectral flow.

THEOREM 6. Let I be a real chiral complex structure on Hy and O € Op(Hp,J). If P is
the spectral projection onto the positive imaginary spectrum of I where I was extended to a
skew-adjoint operator on Hj ® C, then

St2([0,1] >t — (1 —t)I + tOIO™) = dim¢ (Kerc(POP + 1 — P)) mod 2.

Proof. First of all, the Zs-index on the right-hand side is of the type (j,d) = (1,8) in [14,
Theorem 1]. Indeed, P satisfies P =1— P and JPJ =1 — P (namely, P is even real and
even Lagrangian in the terminology of [14]) as well as JOJ = O. In particular, the index
pairing on the right-hand side is a homotopy invariant under variations of O and P respecting
all the properties mentioned above. Now given I, the set O;(Hg, J) has two components by
Theorem 5. The proof of Theorem 6 is thus remarkably simple. Both sides of the equality are
homotopy invariants and lie in Zs. Hence it is sufficient to verify equality on both components.
For O = 1, both sides vanish. For the other component, the equality is verified for a non-trivial
example in the next section. O

7. A non-trivial example

Let p be a one-dimensional projection on an infinite-dimensional Hilbert space Hgr. We consider

(0 1 _(1-=2p O
=5 0) o= )
Then all conditions in Theorem 6 are satisfied. One has
1/1 -
P=3 (zl 1 ) ’
and

POP+(1—P):1—1<p ﬂp).
2\w »p

In particular, dim(Ker(POP)) = dim(p) = 1. Hence the index on the right-hand side of
Theorem 6 is equal to 1. On the other hand, the straight-line path is

It_(l—t)I+tOIO—<_1+2tp 0 )

Hence this contains exactly one copy of the example (8), and so Sfo([0,1] 3t ;) = —1
(notably, the non-trivial value).

The above path can be completed to a loop with [1,2] 3 ¢ — I, = O IO, where [1,2] 5 t —
O; is a Kuipers path connecting O to 1. As this second path is in the invertibles it has trivial
Zg-valued spectral flow. Therefore [0,2] 5 ¢ +— I, is a loop with non-trivial Zs-valued spectral
flow. This provides the example needed in the proof of Theorem 3.

Let us also calculate the parity of [0,1] > ¢t — I; as in [13]. One needs to look at the off-
diagonal entry B; as in (4), and determine an invertible operator M; such that M;B; — 1 = K,
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is compact. Clearly, M; = 1 will do, and then Ky = 0 and K; = —2p so that deg,(7p) = 1 and
deg,(T1) = —1. Thus one finds again that the parity of the path is —1.

8. Application to a topological insulator

In the following the reformulation with chiral self-adjoints from Chapter 4 is used. Let
He = (*(Z) @ CN and consider the following operator on Hf = He @ He:

°— 0 (SH)F @ 1N
TS ey 0 ’

where k € Z and S; is the bilateral shift perturbed on one link from 1 to cos(wt), namely in
Dirac notation

Sy = Z [n)(n + 1| + cos(nt) |0) (1].
n#0

The Hamiltonian has the chiral symmetry (5) and is real as well as self-adjoint for all ¢:
H,=H = H, = —JH,J.
Thus it is possible to consider the parity of the path [0,1] 5 ¢t — H;. One finds
o([0,1] 3t = Hy) = (—1)*V.

This property is now stable under any kind of perturbations not closing the spectral gap
of Hy, such as a chiral disordered potential V, = —JV,,J of moderate strength. Here w is a
point in a compact W*-dynamical system (Q,T,Z,P) given by the shift action 7" of Z and an
invariant and ergodic probability measure P. Let us comment that the non-triviality of the
path [0,1] 3 ¢t — H; has nothing to do with the strong invariants appearing in the periodic
table of topological insulators. The Hamiltonian has an even time-reversal symmetry and a
chiral symmetry. Hence, it lies in the so-called BDI class. As such, in dimension d = 1 there are
infinitely many distinct phases labelled by the strong invariant, which in the above example
is the number kN specifying the winding of the off-diagonal entry of H,. For each k, the
Hamiltonian is then in the corresponding component of Fredholm operators and stays within
it along the path [0,1] 3 ¢ — H; because it resulted from a merely local perturbation of Hy. It
is now a fact that such paths can be topologically non-trivial because the fundamental group
of F is Zy. The parity detects this topology.

Let us now come to the physical implications of the non-trivial parity. One can directly
conclude that H; has to have an eigenvalue crossing through 0 at some ¢ € [0, 1]. However,
more can be said, namely one such eigenvalue crossing has to take place at half-flux.

THEOREM 7. If kN is odd, then H% has an odd number of evenly degenerate zero modes,
namely the multiplicity of zero as eigenvalue is 2 modulo 4.

Proof. Let us introduce the gauge transformation

G=YIn)n| = In){nl.

n>0 n<0

Then GS;G = S1_; so that GH;G = H,_;. Consequently, the zero eigenvalue crossings for
t lead to zero eigenvalue crossings for 1 —¢. As the parity is invariant under a change
of orientation and also unitary conjugations, these eigenvalue crossing cancel and do not
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lead to a net parity, except at t = % This implies that at t:% one has to have an odd
number of eigenvalue crossings. Consequently, the multiplicity of the zero eigenvalue is 2

modulo 4. 0

Note that at half-flux, the shift does not connect left and right half-space so that H 1 is a
direct sum of a left and a right half-space Hamiltonian. Each has to have a zero mode, leadlng
to the twofold symmetry. Let us further add a few comments on how to interpret Theorem 7
against the background of the periodic table of topological insulators. As already stated, all
the above Hamiltonians are from the BDI class of chiral Hamiltonians with an even time-
reversal symmetry (integer spin). Also the Hamiltonian H 1 is within this class. If one extracts
only the low lying spectrum (eigenvalues in the vicinity of 0), this reduced Hamiltonian is a
finite-dimensional matrix and hence represents a system of dimension d = 0 (corresponding to
the local defect induced by a half-flux). The set of zero-dimensional BDI Hamiltonians has
two components which are distinguished by the parity of the zero modes (of each half-sided
Hamiltonian). Theorem 7 states that H1 is in the non-trivial component of the zero-dimensional
BDI Hamiltonians always having a zero mode.

9. Application to bifurcation theory

The aim of this final section is to apply the parity in the bifurcation theory of solutions to
non-linear operator equations depending on a real parameter. It was precisely for this purpose
that the parity was originally introduced and put to work [11-13]. The treatment given in
this note suggests to construct examples with a skew-adjoint linearization which has a chiral
symmetry built in. This is essentially what is done below.

Let us begin by exposing the theoretical framework of bifurcation theory and the main result
used later on. Given two real Banach spaces X and Y and an interval I C R, one considers
continuous maps F' : I x X — Y for which we assume throughout that F'(¢,0) =0 for all ¢ € I.
In this context, one then calls the set I x {0} the trivial branch of solutions of F(t,u) =0. A
bifurcation point for the family of equations F(t,u) =0, ¢t € I, is a parameter value t* where
a new branch of solutions appears.

DEFINITION 5. A parameter value t* € I is a bifurcation point for the family of equations
F(t,u) =0 if in every neighbourhood of (t*,0) € I x X there is some (¢, u) such that u # 0
and F'(t,u) = 0.

Let us now assume that the map F' is continuously differentiable in w. The implicit
function theorem then implies that if the linear map D, F(t*,0) : X — Y is invertible, there
is a neighbourhood of (¢*,0) in I x X for which there is a unique solution of the equation
F(t,u) =0. As F(t,0) =0 by assumption, we see that ¢t* cannot be a bifurcation point in
this case. Consequently, D, F(t*,0) must be singular if ¢* is a bifurcation point. Let us stress,
however, that not every t* for which D, F(¢*,0) is singular, is necessarily a bifurcation point.
The aim of bifurcation theory is to find sufficient conditions under which a singular point t* is a
bifurcation point. While such problems have been considered for centuries, topological criteria
for existence of bifurcations in an infinite-dimensional set-up were only made by Krasnoselskii
in the sixties [16].

One extension of his ideas is the work of Fitzpatrick and Pejsachowicz [12] which uses the
parity and is described next. For a continuously differentiable F' let us consider the bounded
linear operator B, = D, F(t,0) and suppose that their index vanishes. As I ¢+ B; is a
continuous path by assumption, its parity is defined.
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THEOREM 8 [12]. Suppose that I >t B, is an admissible path. If o(I >t +— By) = —1,
then there is a bifurcation point t* € I for the family of equations F(t,u) = 0.

In the following, we provide an example of a parameter-dependent system of partial
differential equations for which the parity can be calculated explicitly. On Q = (0,7) x (0, 7)
let us consider the family of elliptic systems parametrized by ¢ € R

—Au=tv+ f(t,z,u,v), in{,
—Av =tu+g(t,x,u,v), in Q, (18)
u=uv=0, on 0,
where u,v: Q - Rand f,g: R x Q x R? = R are continuously differentiable. We assume that
f(t,2,0,0) = g(t,2,0,0) =0 for all (¢,2) € R x Q so that (u,v) = (0,0) is a solution of (18)

for all t € R. Moreover, all partial derivatives of f and g with respect to u and v are supposed
to be bounded and satisfy

D(u,v)f(taxvovo) = D(u,v)g(tamvovo) =0, (t,.]?) eER x Q. (19)

As the Laplacian as operator on L?(Q) with domain H?(Q) N Hg () is invertible with compact
resolvent, one can transform the first two equations of (18) to the system

_(u Kv Kf(t,z,u,v)\
F(t’u’v)_(v)+t(Ku)+<Kg(t,x,u,v) =0,
where K = A~!: L?(Q) — L?(Q) is compact. The assumptions on f, g and the compactness

of K imply that F': R x L?(Q2) x L?(Q) — L*(Q,R?) is differentiable. Moreover, the derivative
at (0,0) of the non-linear part vanishes by (19) and therefore

Bu(u,0) = Dy F(1,0,0)(u,0) = (Z) 1 <§Z> .

By applying A to each component of the equation B;(u,v) = 0, one checks that
(u(z),v(x)) = (sin(z1) sin(xs), sin(z1) sin(z2)), z = (z1,22) € Q,

is in the kernel of By. To find out if ¢* = 2 is a bifurcation point of F(t,u,v) =0, let us now
compute o([2 — 6,2 + 0] o ¢t — By). First of all, one needs to consider the eigenvalue problem

0 B z\ _ z
-Bf 0 w) “HF\w)

By setting z = (u1,v1) and w = (us,v2) and applying the Laplace operator in each component,
this amounts to solve the system of equations

Aug + tvg = pAuy,  in Q,

Avg + tus = pAvy,  in Q,
—Auy — tvy = pAug,  in Q, (20)
—Avy — tu; = pAvg, in Q,

Uy =uy =v1 =v9 =0, on IN.
Setting for integer kj,m;,l;,n; where j = 1,2,
up(z) = sin(kix1) sin(kaz2), us(z) = sin(mxq) sin(maxs),

v1(z) = sin(lyzq) sin(laz2), va(z) = sin(nq 1) sin(nexs),
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the equations (20) are equivalent to

—(m? + m2)ug + tvg = —p(k? + k2)uy, i Q,

—(n? +n2)vy + tug = —p(l3 +13)vy, in Q,

) =

) =

(KT + k3)ur — toy = —p(m? + m3)us, in 9,
(I3 + 3)vy — tug = —pu(n] +n3)ve,  in Q.

It is readily seen that for ¢ close to 2, one can only have an eigenvalue crossing zero in
the subspace of L?(Q,C?) @ L?(2,C?) spanned by (u1,0,0,0), (0,v1,0,0), (0,0,us,0) and
(0,0,0,v2) when ki = ko =mq =mo =13 =ls =n1 =ny =1. The four eigenvalues in this
subspace are

)\1:7%@72), )\2:%(t72), )\3:*%(154’2), >\4:%(t+2)

The eigenvalue crossing is simple and analytic, and of the type of the first example in (8).
Consequently, o([2 — 8,2+ 8] 5t — B;) = —1 for all small § > 0 and thus t* = 2 is indeed a
bifurcation point for (18) by Theorem 8.

Acknowledgements. N. Waterstraat thanks the Friedrich-Alexander-Universtitat for a
Visiting Professorship.
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