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Abstract
In this paper we prove sufficient conditions for the Fredholm property of a

non-smooth pseudodifferential operator 𝑃 which symbol is in a Hölder space

with respect to the spatial variable. As a main ingredient for the proof we use a

suitable symbol-smoothing.
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1 INTRODUCTION

Fredholm operators are often called nearly invertible operators. They admit dimension formulae similar to linear operators

between finite dimensional spaces. Because of this they play an important role in the field of partial differential equations in order

to get existence and uniqueness results. Great effort was already spent to get conditions for the Fredholmness of smooth pseudod-

ifferential operators with symbols in the Hörmander-class 𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛) ∶=

⋂
𝑀∈ℕ 𝑆𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀), where 0 ≤ 𝜌, 𝛿 ≤ 1 and

𝑚 ∈ ℝ. Here the symbol-class 𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) consists of all 𝑀-times continuous differentiable functions 𝑎 ∶ ℝ𝑛 ×ℝ𝑛 → ℂ

that are smooth with respect to the spatial variable such that for all 𝑘 ∈ ℕ0

|𝑎|(𝑚)
𝑘

∶= max|𝛼|≤min{𝑘,𝑀},|𝛽|≤𝑘
sup

𝑥,𝜉∈ℝ𝑛

|||𝜕𝛼𝜉 𝜕𝛽𝑥𝑎(𝑥, 𝜉)|||⟨𝜉⟩−(𝑚−𝜌|𝛼|+𝛿|𝛽|) < ∞.

For every symbol 𝑎 ∈ 𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) we define the associated pseudodifferential operator via

OP(𝑎)𝑢(𝑥) ∶= 𝑎
(
𝑥,𝐷𝑥

)
𝑢(𝑥) ∶= ∫

ℝ𝑛

𝑒𝑖𝑥⋅𝜉𝑎(𝑥, 𝜉)𝑢̂(𝜉) đ𝜉 for all 𝑢 ∈ (ℝ𝑛), 𝑥 ∈ ℝ𝑛, (1.1)

where đ𝜉 ∶= 1
(2𝜋)𝑛 𝑑𝜉 and (ℝ𝑛) denotes the Schwartz space, i.e., the space of all rapidly decreasing smooth functions and 𝑢̂ is

the Fourier transformation of 𝑢.

In [9] Kohn and Nirenberg showed, that the ellipticity of a classical smooth pseudodifferential operator is necessary for its

Fredholm property. Apart from necessary conditions Kumano-go gave in [11, Chapter III, Theorem 5.16] sufficient conditions

for the Fredholmness of smooth pseudodifferential operators. He showed that pseudodifferential operators with so called slowly
varying smooth symbols 𝑎 of order 𝑚 are Fredholm operators from 𝐻𝑚

2 (ℝ
𝑛) to 𝐿2(ℝ𝑛) under certain ellipticity conditions. The
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ellipticity conditions are satisfied if 𝑎 is uniformly elliptic in the sense that

|𝑎(𝑥, 𝜉)| ≥ 𝐶|𝜉|𝑚 for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝑥| + |𝜉| ≥ 𝑅 (1.2)

for some 𝑅,𝐶 > 0. Here 𝐻𝑠
𝑝 (ℝ

𝑛) denotes a Bessel Potential Space for 𝑝 ∈ (1,∞) and 𝑠 ∈ ℝ, defined in Section 2. Moreover,

𝑎 ∈ 𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛) is slowly varying if for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with 𝛽 ≠ 0 we have

|||𝜕𝛼𝜉 𝜕𝛽𝑥𝑎(𝑥, 𝜉)||| ≤ 𝐶𝛼,𝛽(𝑥)
(
1 + |𝜉|)𝑚+𝛿|𝛽|−𝜌|𝛼|

for a bounded function 𝐶𝛼,𝛽 ∶ ℝ𝑛 → ℝ with 𝐶𝛼,𝛽(𝑥) → 0 if |𝑥| → ∞. In [18] Schrohe extended the result of Kumano-go as

follows: Smooth pseudodifferential operators with slowly varying symbols of the order zero are Fredholm operators on the

weighted Sobolev spaces 𝐻𝑠𝑡
𝛾 (ℝ

𝑛), see [18] for the definition, if and only if its symbol is uniformly elliptic.

In applications (e.g. to non-linear PDEs) also non-smooth pseudodifferential operators appear naturally. Therefore we are

interested in sufficient conditions for non-smooth pseudodifferential operators to become a Fredholm operator from 𝐻𝑚
𝑝 (ℝ

𝑛)
to 𝐿𝑝(ℝ𝑛), where 𝑚 ∈ ℝ, 1 < 𝑝 < ∞. For non-smooth differential operators the Fredholm property can be characterized by the

uniform ellipticity of its symbol. This was announced by Cordes in [3], completed by Illner in [8] and partially recovered by Fan

and Wong in [5]. This characterization of the Fredholm property was extended to the matrix-valued case in [6] for 𝑝 = 2 and in

[19] for general 𝑝 ∈ (1,∞). In the case 𝑝 = 2 an alternative proof by means of the tool of 𝐶∗-algebras, was given by Taylor in

[20]. The goal of this paper is to give sufficient conditions for the Fredholm property of pseudodifferential operators 𝑎
(
𝑥,𝐷𝑥

)
with a symbol 𝑎 in the non-smooth symbol-class 𝐶𝑚̃,𝜏𝑆𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

, 0 ≤ 𝜌, 𝛿 ≤ 1, 𝑀 ∈ ℕ0 ∪ {∞}, 𝑚 ∈ ℝ. For

the definition of the Hölder space 𝐶𝑚̃,𝜏 of the order 𝑚̃ ∈ ℕ0 with Hölder regularity 0 < 𝜏 ≤ 1 we refer to Section 2 below. A

function 𝑎 ∶ ℝ𝑛 ×ℝ𝑛 → ℂ is an element of the symbol-class 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀), 𝑚 ∈ ℝ, if the following properties hold

for all 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃ and |𝛼| ≤ 𝑀 :

i) 𝜕
𝛽
𝑥𝑎(𝑥, .) ∈ 𝐶𝑀 (ℝ𝑛) for all 𝑥 ∈ ℝ𝑛,

ii) 𝜕
𝛽
𝑥𝜕

𝛼
𝜉
𝑎 ∈ 𝐶0(ℝ𝑛

𝑥 ×ℝ𝑛
𝜉

)
,

iii)
|||𝜕𝛼𝜉 𝑎(𝑥, 𝜉)||| ≤ 𝐶𝛼⟨𝜉⟩𝑚−𝜌|𝛼| for all 𝑥, 𝜉 ∈ ℝ𝑛,

iv)
‖‖‖𝜕𝛼𝜉 𝑎(., 𝜉)‖‖‖𝐶𝑚̃,𝜏 (ℝ𝑛)

≤ 𝐶𝛼⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿(𝑚̃+𝜏) for all 𝜉 ∈ ℝ𝑛.

Moreover, 𝑎 ∶ ℝ𝑛 ×ℝ𝑛 → ℒ
(
ℂ𝑁
)

is an element of the symbol-class 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

, 𝑚 ∈ ℝ, 𝑁 ∈ℕ,

if and only if 𝑎𝑗,𝑘 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) for all 𝑗, 𝑘 = 1,… , 𝑁 , where we identify 𝐴 ∈ ℒ

(
ℂ𝑁
)

with a matrix(
𝑎𝑗,𝑘
)𝑁
𝑗,𝑘=1 ∈ ℂ𝑁×𝑁 in the standard way. For a given symbol 𝑎 we define the associated pseudodifferential operator as in

the smooth case, cf. (1.1). We remark that in the literature there are also some results concerning the Fredholm property of

pseudodifferential operators on compact manifolds, see e.g. [7], [15]. Nistor even gave some criteria for the Fredholmness of

pseudodifferential operators on non-compact manifolds in [16].

In the present paper we proceed as follows: We give a short summary of all notations and function spaces needed in Section 2.

Moreover we introduce the space of amplitudes and the oscillatory integrals. In Section 3 we define all symbol-classes of pseu-

dodifferential operators needed later on and present their properties. In particular we extend the concept of symbol-smoothing

presented in [21, Section 1.3]. Together with the extension of the symbol reduction result of [2] for non-smooth double symbols,

see Subsection 3.2 below, the symbol-smoothing becomes the main ingredient in order to verify the main result of our paper:

Theorem 1.1. Let 𝑚̃,𝑁 ∈ ℕ, 0 < 𝜏 < 1, 0 ≤ 𝛿 < 𝜌 ≤ 1, 𝑚 ∈ ℝ, 𝑀 ∈ ℕ0 ∪ {∞} and 𝑝 ∈ (1,∞) with 𝑝 = 2 if 𝜌 ≠ 1. Addition-
ally we choose an arbitrary 𝜃 ∈ (0;min{(𝑚̃ + 𝜏)(𝜌 − 𝛿); 1}) and 𝜀̃ ∈ (0,min{(𝜌 − 𝛿)𝜏; (𝜌 − 𝛿)(𝑚̃ + 𝜏) − 𝜃; 𝜃)}). Moreover let
𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

be a symbol fulfilling the following properties for some 𝑅 > 0 and 𝐶0 > 0:

1) | det(𝑎(𝑥, 𝜉))|⟨𝜉⟩−𝑚𝑁 ≥ 𝐶0 for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝑥| + |𝜉| ≥ 𝑅.

2) 𝑎(𝑥, 𝜉)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎(∞, 𝜉) for all 𝜉 ∈ ℝ𝑛.

Then for all 𝑀 ≥ (𝑛 + 2) + 𝑛 ⋅max{1∕2, 1∕𝑝} and 𝑠 ∈ ℝ with

(1 − 𝜌)𝑛
2
− (1 − 𝛿)(𝑚̃ + 𝜏) + 𝜃 + 𝜀̃ < 𝑠 < 𝑚̃ + 𝜏
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824 ABELS AND PFEUFFER

the operator

𝑎
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑚+𝑠

𝑝 (ℝ𝑛)𝑁 → 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁

is a Fredholm operator.

As in the smooth case, we restrict ourselves to the case of slowly varying symbols in order to show the Fredholm property. As

Schrohe already wrote in [18] for a parameter construction of non-classical smooth symbols more than invertibility of the symbol

is needed and the parametrix can differ from the Fredholm inverse. We see, that many conditions are needed in Theorem 1.1

to show the Fredholm property of a non-smooth pseudodifferential operator. Hence the question arises which of them are of

technical nature and which of them are really necessary. In the smooth case Schrohe showed in [18] that the uniform ellipticity

of a zero order symbol 𝑎 is a necessary condition for 𝑎
(
𝑥,𝐷𝑥

)
being a Fredholm operator. By means of the composition with

order reducing operators one easily obtains that the uniform ellipticity of a smooth symbol 𝑎 of arbitrary order is also a necessary

condition for 𝑎
(
𝑥,𝐷𝑥

)
being a Fredholm operator. Uniform ellipticity for systems is equivalent to condition 1). For non-smooth

differential operators this condition is also necessary, cf. [19]. Therefore 1) is necessary at least if 𝑎 is smooth or 𝑎
(
𝑥,𝐷𝑥

)
is

a differential operator. Additionally in the smooth case, also the condition 0 ≤ 𝛿 < 𝜌 ≤ 1 arises. Since each Fredholm operator

𝑇 ∶ 𝐻𝑚+𝑠
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is continuous, it is natural to impose

i) 𝑀 > max
{

𝑛

2 ,
𝑛

𝑝

}
,

ii) 𝑚̃ + 𝜏 >
1−𝜌

1−𝛿
⋅ 𝑛

2 if 𝜌 < 1 and 𝑚̃ + 𝜏 > 0 if 𝜌 = 1 respectively,

iii) (1 − 𝜌) 𝑛
𝑝
− (1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏

in order to apply the known results on mapping properties of non-smooth pseudodifferential operators. In order to prove the claim

of Theorem 1.1, we need to strengthen condition 𝑖𝑖𝑖) due to technical reasons. Finally, also condition 2) is of technical nature.

Theorem 1.1 will be proved in Section 4. For the definition of the symbol-class 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

we refer to

Definition 3.5 in Subsection 3.1.

2 NOTATIONS, DEFINITIONS AND FUNCTION SPACES

The set of all natural numbers without 0 is denoted by ℕ. Unless otherwise noted we consider 𝑛 ∈ ℕ during the whole paper.

We define

⟨𝑥⟩ ∶= (1 + |𝑥|2)1∕2 for each 𝑥 ∈ ℝ𝑛 and đ𝜉 ∶= (2𝜋)−𝑛𝑑𝜉.

Moreover

⟨𝑥; 𝑦⟩ ∶= (1 + |𝑥|2 + |𝑦|2)1∕2 for all 𝑥, 𝑦 ∈ ℝ𝑛.

Additionally we set for each 𝑥 ∈ ℝ

⌊𝑥⌋ ∶= max{𝑙 ∈ ℤ ∶ 𝑙 ≤ 𝑥} and ⌈𝑥⌉ ∶= min{𝑙 ∈ ℤ ∶ 𝑙 ≥ 𝑥}.

For each multi-index 𝛼 =
(
𝛼1,… , 𝛼𝑛

)
∈ ℕ𝑛

0 we use the notations 𝜕𝛼𝑥 ∶= 𝜕
𝛼1
𝑥1
… 𝜕

𝛼𝑛
𝑥𝑛

and 𝐷𝛼
𝑥 ∶= (−𝑖)|𝛼|𝜕𝛼𝑥 .

Assuming two Banach spaces 𝑋, 𝑌 the set of all linear and bounded operators 𝐴 ∶ 𝑋 → 𝑌 is denoted by ℒ(𝑋, 𝑌 ). In case

𝑋 = 𝑌 , we just write ℒ(𝑋).
For 𝑠 ∈ (0, 1] the set of all functions 𝑓 ∶ ℝ𝑛 → ℂ fulfilling

‖𝑓‖𝐶0,𝑠 ≡ ‖𝑓‖𝐶0,𝑠(ℝ𝑛) ∶= sup
𝑥∈ℝ𝑛

|𝑓 (𝑥)| + sup
𝑥≠𝑦

|𝑓 (𝑥) − 𝑓 (𝑦)||𝑥 − 𝑦|𝑠 < ∞

is called Hölder space 𝐶0,𝑠(ℝ𝑛) of the order 0 with Hölder continuity exponent 𝑠. A function 𝑓 ∶ ℝ𝑛 → ℂ is in the Hölder

space 𝐶𝑚̃,𝑠(ℝ𝑛) of the order 𝑚̃ ∈ ℕ0 if we have 𝜕𝛼𝑥𝑓 ∈ 𝐶0,𝑠(ℝ𝑛) for each 𝛼 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑚̃. Note that all Hölder spaces are

Banach spaces.

On account of the definition of the Hölder spaces and the Leibniz-rule we obtain:
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Lemma 2.1. Let 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1 and 𝑓, 𝑔 ∈ 𝐶𝑚̃,𝜏 (ℝ𝑛). Then

‖𝑓𝑔‖𝐶𝑚̃,𝜏 ≤ ∑
𝑚̃1+𝑚̃2=𝑚̃

𝐶𝑚̃

{‖𝑓‖
𝐶

𝑚̃1
𝑏

‖𝑔‖𝐶𝑚̃2 ,𝜏 + ‖𝑓‖𝐶𝑚̃1 ,𝜏‖𝑔‖𝐶𝑚̃2
𝑏

}
.

The Bessel Potential space 𝐻𝑠
𝑝 (ℝ

𝑛), 𝑠 ∈ ℝ and 1 < 𝑝 < ∞, will play a central role in this paper. The set 𝐻𝑠
𝑝 (ℝ

𝑛) is

defined by

𝐻𝑠
𝑝 (ℝ

𝑛) ∶=
{
𝑓 ∈  ′(ℝ𝑛) ∶ ⟨𝐷𝑥⟩𝑠𝑓 ∈ 𝐿𝑝(ℝ𝑛)

}
, (2.1)

where ⟨𝐷𝑥⟩𝑠 ∶= 𝑂𝑃
(⟨𝜉⟩𝑠).

For the convenience of the reader we mention an interpolation result needed in this paper:

Lemma 2.2. Let 𝑘, 𝑚 ∈ ℕ with 𝑘 ≤ 𝑚, 0 < 𝜏 < 1 and 𝜃 ∶= 𝑘

𝑚+𝜏
. Then

‖𝑓‖𝐶𝑘
𝑏
(ℝ𝑛) ≤ 𝐶‖𝑓‖1−𝜃

𝐶0
𝑏
(ℝ𝑛)
‖𝑓‖𝜃

𝐶𝑚,𝜏 (ℝ𝑛) for all 𝑓 ∈ 𝐶𝑚,𝜏 (ℝ𝑛).

Proof. For all 𝑝 ∈ [1,∞] we denote the real interpolation spaces by
(
𝐶0

𝑏
(ℝ𝑛), 𝐶𝑚+1

𝑏
(ℝ𝑛)

)
𝜃,𝑝

, cf. e.g. [12]. An application of the

reiteration theorem, c.f. [13, Theorem 1.2.15], and of Proposition 1.20 in [12] provides(
𝐶0

𝑏
(ℝ𝑛), 𝐶𝑚+1

𝑏
(ℝ𝑛)

)
𝜃,1 ⊆

(
𝐶0

𝑏
(ℝ𝑛), 𝐶𝑚+1

𝑏
(ℝ𝑛)

)
𝑘

𝑚+1 ,1
⊆ 𝐶𝑘

𝑏
(ℝ𝑛).

This yields the claim. For more details we refer to [17, Lemma 2.41]. □

Since this paper deals with the Fredholm property of pseudodifferential-operators, we finally add the definition of an Fredholm

operator:

Definition 2.3. Let 𝑋, 𝑌 be Banach spaces and let 𝑇 ∈ ℒ(𝑋, 𝑌 ). Then 𝑇 is called a Fredholm operator if 𝒩(𝑇 ) is finite

dimensional and ℛ(𝑇 ) is closed and has finite co-dimension, i.e., there is a finite dimensional subspace 𝑍 ⊆ 𝑌 such that

𝑌 = ℛ(𝑇 )⊕ 𝑍.

The following characterization is fundamental for our purposes.

Theorem 2.4. Let 𝑋, 𝑌 be Banach spaces. Then 𝑇 ∈ ℒ(𝑋, 𝑌 ) is a Fredholm operator if and only if there are some operators
𝐵,𝐶 ∈ ℒ(𝑋, 𝑌 ) and some compact operators 𝐾1 ∈ ℒ(𝑋), 𝐾2 ∈ ℒ(𝑌 ) such that

𝐵𝑇 = 𝐼𝑋 −𝐾1 𝑇𝐶 = 𝐼𝑌 −𝐾2,

where 𝐼𝑋 respectively 𝐼𝑌 are the identity operators on 𝑋 respectively 𝑌 .

The proof can e.g. be found in [4, Theorem 3.15].

2.1 Space of amplitudes and oscillatory integrals
The aim of the present paper is to define and discuss some properties of oscillatory integrals for all elements of the space

of amplitudes 𝒜𝑚,𝑁
𝜏,𝑀

(ℝ𝑛 ×ℝ𝑛). Here 𝒜𝑚,𝑁
𝜏,𝑀

(ℝ𝑛 ×ℝ𝑛), 𝑁,𝑀 ∈ ℕ0 ∪ {∞}, 𝑚, 𝜏 ∈ ℝ is the set of all continuous functions 𝑎 ∶
ℝ𝑛 ×ℝ𝑛 → ℂ such that for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑁 , |𝛽| ≤ 𝑀 we have

i) 𝜕𝛼𝜂 𝜕
𝛽
𝑦 𝑎(𝑦, 𝜂) ∈ 𝐶0(ℝ𝑛

𝑦 ×ℝ𝑛
𝜂

)
,

ii)
|||𝜕𝛼𝜂 𝜕𝛽𝑦 𝑎(𝑦, 𝜂)||| ≤ 𝐶𝛼,𝛽(1 + |𝜂|)𝑚(1 + |𝑦|)𝜏 for all 𝑦, 𝜂 ∈ ℝ𝑛,

where all derivatives are well defined in the sense of distributions. For all elements 𝑎 ∈ 𝒜𝑚,𝑁
𝜏,𝑀

(ℝ𝑛 ×ℝ𝑛), 𝑁,𝑀 ∈ ℕ0 ∪ {∞},

𝑚, 𝜏 ∈ ℝ the oscillatory integral is defined by

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎(𝑦, 𝜂) dy đ𝜂 ∶= lim
𝜀→0∬ 𝜒(𝜀𝑦, 𝜀𝜂)𝑒−𝑖𝑦⋅𝜂𝑎(𝑦, 𝜂) dy đ𝜂, (2.2)

where 𝜒 ∈ (ℝ𝑛 ×ℝ𝑛) with 𝜒(0, 0) = 1.
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826 ABELS AND PFEUFFER

Defining for all 𝑚 ∈ ℕ

𝐴𝑚
(
𝐷𝑥, 𝜉

)
∶= ⟨𝜉⟩−𝑚⟨𝐷𝑥⟩𝑚 if 𝑚 is even, (2.3)

𝐴𝑚
(
𝐷𝑥, 𝜉

)
∶= ⟨𝜉⟩−𝑚−1⟨𝐷𝑥⟩𝑚−1 − 𝑛∑

𝑗=1
⟨𝜉⟩−𝑚

𝜉𝑗⟨𝜉⟩ ⟨𝐷𝑥⟩𝑚−1𝐷𝑥𝑗
else, (2.4)

we can extend some properties of the oscillatory integral proved in Section 2.3 of [2] as follows:

Theorem 2.5. Let 𝑚, 𝜏 ∈ ℝ and 𝑁,𝑀 ∈ ℕ0 ∪ {∞} with 𝑁 > 𝑛 + 𝜏. Moreover let 𝑙, 𝑙′ ∈ ℕ with 𝑁 ≥ 𝑙′ > 𝑛 + 𝜏 and
𝑀 ≥ 𝑙 > 𝑛 + 𝑚. Then the oscillatory integral (2.2) exists for all 𝑎 ∈ 𝒜𝑚,𝑁

𝜏,𝑀
(ℝ𝑛 ×ℝ𝑛) and we have for all 𝑙1, 𝑙2 ∈ ℕ0 with 𝑙1 ≤ 𝑁

and 𝑙2 ≤ 𝑙:

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎(𝑦, 𝜂) dy đ𝜂 = ∬ 𝑒−𝑖𝑦⋅𝜂𝐴𝑙′(𝐷𝜂, 𝑦
)
𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝑎
(
𝑦, 𝜂
)

dy đ𝜂,

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎(𝑦, 𝜂) dy đ𝜂 = Os -∬ 𝑒−𝑖𝑦⋅𝜂𝐴𝑙1
(
𝐷𝜂, 𝑦

)
𝐴𝑙2
(
𝐷𝑦, 𝜂

)
𝑎
(
𝑦, 𝜂
)

dy đ𝜂.

Proof. The claim can be verified in the same way as in Theorem 2.10 and Theorem 2.12 of [2], if one takes care of ii) just

holding for |𝛽| ≤ 𝑙. □

Theorem 2.6. Let 𝑚, 𝜏 ∈ ℝ, 𝑚𝑖, 𝜏𝑖 ∈ ℝ for 𝑖 ∈ {1, 2} and 𝑁 ∈ ℕ0 ∪ {∞} such that there is a 𝑙′ ∈ ℕ with 𝑁 ≥ 𝑙′ > 𝑛 + 𝜏.
Moreover let 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀̃ , where 𝑀̃ ∶= max{𝑚̂ ∈ ℕ0 ∶ 𝑁 − 𝑚̂ > 𝑛 + 𝜏} and 𝑙 ∈ ℕ with 𝑙 > 𝑚 + 𝑛. Considering
𝑎 ∈ 𝐶0(ℝ𝑛

𝑦 ×ℝ𝑛
𝑦′
×ℝ𝑛

𝜂 ×ℝ𝑛
𝜉

)
with

• |||𝐴𝑙′
(
𝐷𝜂, 𝑦

)
𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝑎
(
𝑦, 𝑦′, 𝜂, 𝜉

)||| ≤ 𝐶𝑙,𝑙′⟨𝑦⟩𝜏−𝑙′⟨𝜂⟩𝑚−𝑙⟨𝑦′⟩𝜏1⟨𝜉⟩𝑚1 ,

• |||𝐴𝑙′
(
𝐷𝜂, 𝑦

)
𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝜕𝛼
𝜉
𝜕
𝛽

𝑦′
𝑎
(
𝑦, 𝑦′, 𝜂, 𝜉

)||| ≤ 𝐶𝑙,𝑙′,𝛼,𝛽⟨𝑦⟩𝜏−𝑙′⟨𝜂⟩𝑚−𝑙⟨𝑦′⟩𝜏2⟨𝜉⟩𝑚2

for all 𝑦, 𝑦′, 𝜂, 𝜉 ∈ ℝ𝑛 we have for all 𝑦′, 𝜉 ∈ ℝ𝑛:

𝜕𝛼
𝜉
𝜕
𝛽

𝑦′
Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎

(
𝑦, 𝑦′, 𝜂, 𝜉

)
dy đ𝜂 = Os -∬ 𝑒−𝑖𝑦⋅𝜂𝜕𝛼

𝜉
𝜕
𝛽

𝑦′
𝑎
(
𝑦, 𝑦′, 𝜂, 𝜉

)
dy đ𝜂.

Proof. This result can be verified similarly to [2, Theorem 2.11]. □

Corollary 2.7. Let 𝑚, 𝜏 ∈ ℝ and 𝑁 ∈ ℕ0 ∪ {∞} such that there is some 𝑙′ ∈ ℕ with 𝑁 ≥ 𝑙′ > 𝑛 + 𝜏. Moreover let 𝑙 ∈ ℕ with
𝑙 > 𝑛 + 𝑚. Additionally let 𝑎𝑗, 𝑎 ∈ 𝐶0(ℝ𝑛 ×ℝ𝑛), 𝑗 ∈ ℕ0 such that for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑁 and |𝛽| ≤ 𝑙 the derivatives
𝜕𝛼𝜂 𝜕

𝛽
𝑦 𝑎𝑗 , 𝜕

𝛼
𝜂 𝜕

𝛽
𝑦 𝑎 exist in the classical sense and

• |||𝜕𝛼𝜂 𝜕𝛽𝑦 𝑎𝑗(𝑦, 𝜂)||| ≤ 𝐶𝛼,𝛽⟨𝜂⟩𝑚⟨𝑦⟩𝜏 for all 𝜂, 𝑦 ∈ ℝ𝑛, 𝑗 ∈ ℕ0,

• |||𝜕𝛼𝜂 𝜕𝛽𝑦 𝑎||| ≤ 𝐶𝛼,𝛽⟨𝜂⟩𝑚⟨𝑦⟩𝜏 for all 𝜂, 𝑦 ∈ ℝ𝑛,

• 𝜕𝛼𝜂 𝜕
𝛽
𝑦 𝑎𝑗
(
𝑦, 𝜂
) 𝑗→∞
←←←←←←←←←←←←←←←←←←←←→ 𝜕𝛼𝜂 𝜕

𝛽
𝑦 𝑎
(
𝑦, 𝜂
)

for all 𝜂, 𝑦 ∈ ℝ𝑛.

Then

lim
𝑗→∞

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎𝑗
(
𝑦, 𝜂
)

dy đ𝜂 = Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎
(
𝑦, 𝜂
)

dy đ𝜂.

Proof. The claim can be shown similarly to [2, Corollary 2.13]. □

Another property of oscillatory integral needed later on is:

Remark 2.8. Assuming 𝑢 ∈ 𝐶∞
𝑏
(ℝ𝑛) and 𝑥 ∈ ℝ𝑛 we obtain

Os -∬ 𝑒𝑖(𝑥−𝑦)⋅𝜂𝑢(𝑦) dy đ𝜂 = 𝑢(𝑥).

For the proof see e.g. [1, Example 3.11].
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ABELS AND PFEUFFER 827

3 PSEUDODIFFERENTIAL OPERATORS AND THEIR PROPERTIES

Throughout this section we summarize all properties of pseudodifferential operators needed later on. Additionally we define all

symbol-classes of pseudodifferential operators needed in this paper.

On account of Lemma 2.2 with 𝜃 ∶= 𝑚̃+𝑠

𝑚̃+1 if 𝑠 < 1 and by means of 𝐶𝑘+1
𝑏

(ℝ𝑛) ⊆ 𝐶𝑘,1(ℝ𝑛) else we can show

𝑆𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
⊆ 𝐶𝑚̃,𝑠𝑆𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
, (3.1)

for all 0 < 𝑠 ≤ 1, 𝑚̃ ∈ ℕ0, 𝑚 ∈ ℝ, 𝑀 ∈ ℕ0 ∪ {∞} and 0 ≤ 𝜌, 𝛿 ≤ 1.

For more details see, [17, Remark 4.2].

Additionally we get by means of interpolation, c.f. Lemma 2.2, the next estimate for non-smooth symbols:

Remark 3.1. Let 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 0 ≤ 𝛿, 𝜌 ≤ 1, 𝑚 ∈ ℝ and 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
. Then we get for all 𝛼 ∈ ℕ𝑛

0 with|𝛼| ≤ 𝑀 and 𝑘 ∈ ℕ0 with 𝑘 ≤ 𝑚̃:

‖‖‖𝜕𝛼𝜉 𝑎(., 𝜉)‖‖‖𝐶𝑘
𝑏
(ℝ𝑛)

≤ 𝐶𝛼⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿𝑘 for all 𝜉 ∈ ℝ𝑛.

Pseudodifferential operators are bounded as maps between several Bessel Potential spaces. For the proof we refer to

[2, Theorem 3.7].

Theorem 3.2. Let 𝑚 ∈ ℝ, 0 ≤ 𝛿 ≤ 𝜌 ≤ 1 with 𝜌 > 0, 1 < 𝑝 < ∞ and 𝑀 ∈ ℕ0 ∪ {∞} with 𝑀 > 𝑚𝑎𝑥
{

𝑛

2 ,
𝑛

𝑝

}
. Addition-

ally let 𝑚̃ ∈ ℕ0 and 0 < 𝜏 ≤ 1 such that 𝑚̃ + 𝜏 >
1−𝜌

1−𝛿
⋅ 𝑛

2 if 𝜌 < 1 and 𝑚̃ ∈ ℕ0, 𝜏 > 0 if 𝜌 = 1 respectively. Moreover let

ℬ ⊆ 𝐶𝑚̃,𝜏𝑆
𝑚−𝑘𝑝
𝜌,𝛿

(ℝ𝑛 ×ℝ𝑛;𝑀) be bounded with 𝑘𝑝 ∶= (1 − 𝜌)𝑛 |1∕2 − 1∕𝑝| and let (1 − 𝜌)𝑛∕𝑝 − (1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏.
Then there is some 𝐶𝑠 > 0, independent of 𝑎 ∈ ℬ, such that

‖‖𝑎(𝑥,𝐷𝑥

)
𝑓‖‖𝐻𝑠

𝑝 (ℝ𝑛) ≤ 𝐶𝑠‖𝑓‖𝐻𝑠+𝑚
𝑝 (ℝ𝑛) for all 𝑎 ∈ ℬ and 𝑓 ∈ 𝐻𝑠+𝑚

𝑝 (ℝ𝑛).

3.1 Symbol-smoothing
A well-known tool for proving some properties of non-smooth pseudodifferential operators of the symbol class 𝑋𝑆𝑚

1,𝛿(ℝ
𝑛 ×ℝ𝑛)

for certain Banach spaces 𝑋 is the symbol-smoothing, see e.g. [21, Section 1.3]. In order to prove the Fredholm property of non-

smooth pseudodifferential operators, we now generalize the tool of symbol-smoothing for pseudodifferential operators which

are non-smooth with respect to the second variable and for 𝜌 ≠ 1. To this end we fix two functions 𝜙, 𝜓0 ∈ 𝐶∞
0 (ℝ𝑛) till the end

of this section with the following properties:

• 𝜙(𝜉) = 1 for all |𝜉| ≤ 1,

• 𝜓0 ≥ 0, 𝜓0(𝜉) = 1 for all |𝜉| ≤ 1 and 𝜓0(𝜉) = 0 for all |𝜉| ≥ 2.

Then we define for all 𝑗 ∈ ℕ the functions 𝜓𝑗 via

𝜓𝑗(𝜉) ∶= 𝜓0
(
2−𝑗𝜉

)
− 𝜓0

(
2−𝑗−1𝜉

)
for all 𝜉 ∈ ℝ𝑛.

Using that for any 𝑎 ∈ ℝ there are 𝐶1, 𝐶2 > 0 such that

𝐶1⟨𝜉⟩−𝑎 ≤ 2−𝑗𝑎 ≤ 𝐶2⟨𝜉⟩−𝑎 for all 𝜉 ∈ supp
(
𝜓𝑗

)
, 𝑗 ∈ ℕ, (3.2)

we can show the following properties of the functions 𝜓𝑗 for all 𝛼 ∈ ℕ𝑛
0:

‖‖‖𝜕𝛼𝜉 𝜓𝑗
‖‖‖∞ ≤ 𝐶𝛼⟨𝜉⟩−|𝛼|. (3.3)

Additionally we define for all 𝜀 > 0 the operator 𝐽𝜀 by

𝐽𝜀 ∶= 𝜙
(
𝜀𝐷𝑥

)
.
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828 ABELS AND PFEUFFER

Note, that for each 𝛼 ∈ ℕ𝑛
0:

𝜕𝛼
𝜉
𝐽𝜀 = 𝐽𝜀𝜕

𝛼
𝜉
. (3.4)

The operator 𝐽𝜀 has the following properties:

Lemma 3.3. For 𝜀 > 0, 0 < 𝜏 < 1 and 𝑚̃ ∈ ℕ0 we have for all 𝑓 ∈ 𝐶𝑚̃,𝜏 (ℝ𝑛):

i) ‖‖‖𝐷𝛽
𝑥𝐽𝜀𝑓

‖‖‖∞ ≤ 𝐶‖𝑓‖𝐶𝑚̃,𝜏 (ℝ𝑛) for all 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃.

ii) ‖‖‖𝐷𝛽
𝑥𝐽𝜀𝑓

‖‖‖∞ ≤ 𝐶𝜀−(|𝛽|−𝑚̃−𝜏)‖𝑓‖𝐶𝑚̃,𝜏 (ℝ𝑛) for all 𝛽 ∈ ℕ𝑛
0 with |𝛽| > 𝑚̃.

iii) Let 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃ and 𝑡 ≥ 0 with 𝑚̃ + 𝜏 − 𝑡 − |𝛽| > 0 and 𝑚̃ + 𝜏 − 𝑡 − |𝛽| ∉ ℕ. Then we have for 𝑚̃1 ∈ ℕ0 and

0 < 𝑠 < 1 with 𝑚̃1 + 𝑠 = 𝑚̃ + 𝜏 − |𝛽| − 𝑡:‖‖‖𝐷𝛽
𝑥

(
1 − 𝐽𝜀

)
𝑓
‖‖‖𝐶𝑚̃1 ,𝑠(ℝ𝑛)

≤ 𝐶𝜀𝑡‖𝑓‖𝐶𝑚̃,𝜏 (ℝ𝑛).

iv) ‖‖‖𝐷𝛽
𝑥

(
1 − 𝐽𝜀

)
𝑓
‖‖‖∞ ≤ 𝐶𝑚̃,𝜏𝜀

𝑚̃+𝜏−|𝛽|‖‖‖𝐷𝛽
𝑥𝑓
‖‖‖𝐶𝑚̃−|𝛽|,𝜏 (ℝ𝑛)

for all 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃.

Proof. On account of [21, Lemma 1.3C] the claims i), ii) and claim iv) in the case |𝛽| = 0 hold true. An application of the

case |𝛽| = 0 on 𝑔 ∶= 𝐷
𝛽
𝑥𝑓 ∈ 𝐶𝑚̃−|𝛽|,𝜏 (ℝ𝑛) provides the general case of claim iv). Because of [21, Lemma 1.3.A] we addition-

ally obtain claim iii) for the case |𝛽| = 0. It remains to verify claim iii) for general 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃. This can be done

similarly to the proof of the case |𝛽| = 0. For the convenience of the reader we give a short proof of claim iii) for arbitrary

𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃, now. Due to the boundedness of

{
𝜀−𝑡⟨𝜉⟩−𝑡(1 − 𝜙(𝜀𝜉)) ∶ 𝜀 ∈ (0, 1]

}
⊆ 𝑆0

1,0
(
ℝ𝑛

𝑥 ×ℝ𝑛
𝜉

)
and due to

𝜉𝛽⟨𝜉⟩|𝛽| ∈ 𝑆0
1,0
(
ℝ𝑛

𝑥 ×ℝ𝑛
𝜉

)
we get the boundedness of{

𝜀−𝑡𝜉𝛽⟨𝜉⟩−𝑡(1 − 𝜙(𝜀𝜉)) ∶ 𝜀 ∈ (0, 1]
}
⊆ 𝑆

|𝛽|
1,0
(
ℝ𝑛

𝑥 ×ℝ𝑛
𝜉

)
.

Since ⟨𝐷𝑥⟩−𝑡 and 𝐷
𝛽
𝑥 commute, we obtain claim iii) in the general case. □

Definition 3.4. Let 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑀 ∈ ℕ0 ∪ {∞}, 𝑚 ∈ ℝ and 0 ≤ 𝛿 ≤ 𝜌 ≤ 1. For 𝛾 ∈ (𝛿, 1) we set 𝜀𝑗 ∶= 2−𝑗𝛾 . For each

𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) we define

• 𝑎♯(𝑥, 𝜉) ∶=
∞∑
𝑗=0

𝐽𝜀𝑗
𝑎(𝑥, 𝜉)𝜓𝑗(𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛,

• 𝑎𝑏(𝑥, 𝜉) ∶= 𝑎(𝑥, 𝜉) − 𝑎♯(𝑥, 𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛.

Our aim is to verify useful properties of the functions 𝑎♯ and 𝑎𝑏 needed later on. To this end two new symbol-classes are

needed, which we define, now.

Definition 3.5. Let 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑚 ∈ ℝ, 0 ≤ 𝛿, 𝜌 ≤ 1 and 𝑀 ∈ ℕ0 ∪ {∞}. Then 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) belongs to

the symbol-class 𝐶𝑚̃,𝜏 𝑆̇𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀), if for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃ we have

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎(𝑥, 𝜉)

||| ≤ 𝐶𝛼,𝛽(𝑥)⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽| for all 𝑥, 𝜉 ∈ ℝ𝑛,

where 𝐶𝛼,𝛽(𝑥) is a bounded function, which converges to zero, as |𝑥| → ∞.

Moreover, 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) belongs to the symbol-class 𝐶𝑚̃,𝜏 𝑆̃𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀), if for all 𝛽 ∈ ℕ𝑛

0 with |𝛽| ≤ 𝑚̃ and|𝛽| ≠ 0 we have

𝐷𝛽
𝑥𝑎(𝑥, 𝜉) ∈ 𝐶𝑚̃−|𝛽|,𝜏 𝑆̇𝑚+𝛿|𝛽|

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀).

We call the elements of 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) slowly varying symbols. Moreover, 𝑎 ∶ ℝ𝑛 ×ℝ𝑛 → ℒ

(
ℂ𝑁
)

is an element

of the symbol-class 𝐶𝑚̃,𝜏 𝑆̇𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

respectively 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

, 𝑚 ∈ ℝ, 𝑁 ∈ ℕ, if and

only if 𝑎𝑗,𝑘 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) respectively 𝑎𝑗,𝑘 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) for all 𝑗, 𝑘 = 1,… , 𝑁 , where we identify

𝐴 ∈ ℒ
(
ℂ𝑁
)

with a matrix
(
𝑎𝑗,𝑘
)𝑁
𝑗,𝑘=1 ∈ ℂ𝑁×𝑁 in the standard way.
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ABELS AND PFEUFFER 829

The properties of the functions 𝑎♯ and 𝑎𝑏 are summarized in the next three lemmas:

Lemma 3.6. Let 0 ≤ 𝛿 < 𝜌 ≤ 1, 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑀 ∈ ℕ ∪ {∞}, 𝑚 ∈ ℝ and 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀). Moreover let

𝛾 ∈ (𝛿, 𝜌). Then we have for 𝜀̃ ∈ (0, (𝛾 − 𝛿)𝜏):

i) 𝐷
𝛽
𝑥𝑎

𝑏(𝑥, 𝜉) ∈ 𝐶𝑚̃−|𝛽|,𝜏𝑆𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝛾|𝛽|
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛;𝑀) for all 𝛽 ∈ ℕ𝑛

0 with |𝛽| ≤ 𝑚̃,

ii) 𝑎𝑏(𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏 𝑆̃
𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝜀̃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛;𝑀) if 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀),

iii) 𝑎𝑏(𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏 𝑆̇
𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝜀̃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛;𝑀) if 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀).

Proof. We begin with the proof of 𝑖). We choose an arbitrary 𝜉 ∈ ℝ𝑛 and set 𝑁 ∶=
{
𝑗 ∈ ℕ0 ∶ 𝜉 ∈ supp 𝜓𝑗

}
. Then ♯𝑁 ≤ 5.

Using 𝑎♯(., 𝜉) =
∑

𝑗∈𝑁 𝐽𝜀𝑗
𝑎(., 𝜉)𝜓𝑗(𝜉) and the Leibniz rule yields for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)||| = ||||||𝜕𝛼𝜉 𝐷𝛽
𝑥

∞∑
𝑗=0

(
1 − 𝐽𝜀𝑗

)(
𝑎(𝑥, 𝜉)𝜓𝑗(𝜉)

)||||||
≤ ∑

𝑗∈𝑁

∑
𝛼1+𝛼2=𝛼

𝐶𝛼
‖‖‖(1 − 𝐽𝜀𝑗

)(
𝜕
𝛼1
𝜉
𝐷𝛽

𝑥𝑎(𝑥, 𝜉)𝜕
𝛼2
𝜉
𝜓𝑗(𝜉)

)‖‖‖𝐿∞(ℝ𝑛
𝑥)
.

An application of Lemma 3.3 iv), (3.2) and (3.3) to the previous estimate provides:|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)||| ≤ ∑
𝑗∈𝑁

∑
𝛼1+𝛼2=𝛼

𝐶𝛼𝜀
𝑚̃+𝜏−|𝛽|
𝑗

‖‖‖(𝜕𝛼1𝜉 𝐷𝛽
𝑥𝑎(𝑥, 𝜉)𝜕

𝛼2
𝜉
𝜓𝑗(𝜉)

)‖‖‖𝐶𝑚̃+𝜏−|𝛽|(ℝ𝑛
𝑥)

≤ ∑
𝑗∈𝑁

∑
𝛼1+𝛼2=𝛼

𝐶𝛼⟨𝜉⟩−𝛾(𝑚̃+𝜏−|𝛽|)|||𝜕𝛼2𝜉 𝜓𝑗(𝜉)
|||‖‖‖𝜕𝛼1𝜉 𝐷𝛽

𝑥𝑎(𝑥, 𝜉)
‖‖‖𝐶𝑚̃+𝜏−|𝛽|(ℝ𝑛

𝑥)

≤ 𝐶𝛼,𝑚̃,𝜏⟨𝜉⟩𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝛾|𝛽|−𝜌|𝛼| for all 𝑥, 𝜉 ∈ ℝ𝑛. (3.5)

Similarly we get by means of (3.4), the Leibniz rule, Lemma 3.3 iii) and (3.3) for all 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃:‖‖‖𝜕𝛼𝜉 𝐷𝛽

𝑥𝑎
𝑏(., 𝜉)‖‖‖𝐶𝑚̃−|𝛽|,𝜏 (ℝ𝑛)

≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝛾|𝛽|−𝜌|𝛼|+𝛾(𝑚̃−|𝛽|+𝜏) (3.6)

for all 𝜉 ∈ ℝ𝑛. On account of (3.6) and (3.5) claim i) holds.
Our next goal is show 𝑖𝑖) and 𝑖𝑖𝑖). In order to prove the claim, we assume 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) or

𝑎 ∈𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀). Additionally we fix some arbitrary 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 , |𝛽| ≤ 𝑚̃ and |𝛽| ≠ 0 if

𝑎 ∈𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀). We choose an arbitrary 𝜀 > 0. As before we fix an arbitrary 𝜉 ∈ ℝ𝑛 and set

𝑁 ∶=
{
𝑗 ∈ℕ0 ∶ 𝜉 ∈ supp 𝜓𝑗

}
. (13)

Moreover we define for all 𝑗 ∈ ℕ0 the functions 𝜑𝜀𝑗
, 𝑔𝜀𝑗 , 𝑔 ∶ ℝ𝑛 → ℂ via

• 𝜑𝜀𝑗
∶= 𝛿0 −ℱ−1

𝜉→𝑥

[
𝜙
(
𝜀𝑗𝜉
)]

in  ′(ℝ𝑛),

• 𝑔𝜀𝑗 (𝑥) ∶= ℱ−1
𝜉→𝑥

[
𝜙
(
𝜀𝑗𝜉
)]

(𝑥) for all 𝑥 ∈ ℝ𝑛,

• 𝑔(𝑥) ∶= ℱ−1
𝜉→𝑥

[𝜙(𝜉)] (𝑥) for all 𝑥 ∈ ℝ𝑛.

By means of integration by parts and the Theorem of Fubini, we obtain for each 𝑗 ∈ ℕ[
1 − 𝜙

(
𝜀𝑗𝐷𝑥

)]
𝑓 = 𝜑𝜀𝑗

∗ 𝑓 (𝑥) for all 𝑓 ∈ 𝐶0
𝑏
(ℝ𝑛). (3.7)

Since we can change the order of the two operators 𝐷
𝛽
𝑥 and

(
1 − 𝐽𝜀𝑗

)
an straight forward calculation yields if we use

𝑎♯(., 𝜉) =
∑

𝑗∈𝑁 𝐽𝜀𝑗
𝑎(., 𝜉)𝜓𝑗(𝜉) and (3.7):

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)||| = ||||||𝜑𝜀𝑗
∗

{∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(., 𝜉)𝜓𝑗(𝜉)
]}

(𝑥)
||||||. (3.8)
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830 ABELS AND PFEUFFER

Our task is to use the previous equality in order to show for 𝜀̃ ∈ (0, (𝛾 − 𝛿)𝜏):

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)||| ≤ 𝐶𝛼,𝛽(𝑥)⟨𝜉⟩𝑚+𝛿|𝛽|−(𝛾−𝛿)(𝑚̃−|𝛽|+𝜏)+𝜀̃−𝜌|𝛼| |𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0. (3.9)

Then a combination of (3.6), (3.5) and (3.9) yields claim 𝑖𝑖) and 𝑖𝑖𝑖). It remains to verify (3.9). The properties of the Fourier

transform imply 𝑔𝜀𝑗 , 𝑔 ∈ (ℝ𝑛) for all 𝑗 ∈ ℕ0. Consequently ⟨𝑦⟩𝑛+1𝑔𝜀𝑗 (𝑦) ∈ (ℝ𝑛
𝑦

)
for all 𝑗 ∈ 𝑁 . On account of the choice of

𝑎 we get using (3.3): ∑
𝑗∈𝑁

|||𝜕𝛼𝜉 {𝐷𝛽
𝑥𝑎(𝑥, 𝜉)𝜓𝑗(𝜉)

}||| ≤ 𝐴1⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽| (3.10)

where 𝐴1 is independent of 𝑥, 𝜉 ∈ ℝ𝑛. Due to ⟨𝑦⟩𝑛+1𝑔𝜀𝑗 (𝑦) ∈ (ℝ𝑛
𝑦

)
for all 𝑗 ∈ 𝑁 we can choose an 𝑅 > 1 such that for

𝐴2 ∶= ∫
ℝ𝑛

⟨𝑦⟩−𝑛−1 dy we have

|||⟨𝑦⟩𝑛+1𝑔𝜀𝑗 (𝑦)||| < 𝜀

2𝐴1𝐴2
for all 𝑦 ∈ ℝ𝑛∖𝐵𝑅−1(0) and 𝑗 ∈ 𝑁. (3.11)

In addition we choose an 𝜂 ∈ 𝐶∞
0 (ℝ𝑛) such that 𝜂(𝑥) ∈ [0, 1], 𝜂(𝑥) = 1 if |𝑥| ≤ 𝑅 − 1 and 𝜂(𝑥) = 0 if |𝑥| ≥ 𝑅. Then we obtain

for all 𝑥 ∈ ℝ𝑛 by means of Lemma 3.3 iv), (3.10) and (3.11):||||||
[
𝜑𝜀𝑗

(1 − 𝜂) ∗
∑
𝑗∈𝑁

𝜕𝛼
𝜉

{
𝐷𝛽

𝑥𝑎(., 𝜉)𝜓𝑗(𝜉)
}]

(𝑥)
||||||

≤ ∫
ℝ𝑛∖𝐵𝑅−1(0)

|||𝜑𝜀𝑗
(𝑦)||||(1 − 𝜂)(𝑦)| ⋅ ‖‖‖‖‖‖

∑
𝑗∈𝑁

𝜕𝛼
𝜉

{
𝐷𝛽

𝑥𝑎(., 𝜉)𝜓𝑗(𝜉)
}
(𝑥 − 𝑦)

‖‖‖‖‖‖𝐿∞(ℝ𝑛
𝑥)

dy

≤ 𝜀

2
⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽|. (3.12)

On account of the properties of the Fourier transform and due to the definition of 𝜑𝜀𝑗
we get using 𝑔 ∈ (ℝ𝑛):

∫
ℝ𝑛∖𝐵𝑅−1(0)

|||𝜑𝜀𝑗

||| dy ≤ ∫
ℝ𝑛

𝜀−𝑛
𝑗

|||||𝑔
(

𝑦

𝜀𝑗

)|||||dy ≤ max
⎧⎪⎨⎪⎩1,∫ℝ𝑛

|𝑔(𝑧)| dz

⎫⎪⎬⎪⎭ =∶ 𝐵1 < ∞, (3.13)

where 𝐵1 is independent of 𝑗 ∈ ℕ. The choice of the symbol 𝑎 and the multi-index 𝛽 gives us the existence of an 𝑅̃ > 0 such

that for all |𝑥| ≥ 𝑅̃ + 𝑅 we have ||||||
∑
𝑗∈𝑁

𝜕𝛼
𝜉

{
𝐷𝛽

𝑥𝑎(., 𝜉)𝜓𝑗(𝜉)
}
(𝑥)
|||||| ≤ 𝜀

4𝐵1
⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽|. (3.14)

Using (3.8) we obtain for all 𝑥 ∈ ℝ𝑛 with |𝑥| ≥ 𝑅̃ + 𝑅:

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)||| ≤
|||||||∫ℝ𝑛

𝜀−𝑛
𝑗 𝑔

(
𝑦

𝜀𝑗

)
𝜂(𝑦)

∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥 − 𝑦, 𝜉)𝜓𝑗(𝜉)
]
dy
|||||||

+
||||||
∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥, 𝜉)𝜓𝑗(𝜉)
]|||||| +

|||||||∫ℝ𝑛

𝜑𝜀𝑗
(𝑦)[1 − 𝜂](𝑦)

∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥 − 𝑦, 𝜉)𝜓𝑗(𝜉)
]
dy
|||||||.

Now we use (3.12) in order to estimate the third summand of the previous inequality and (3.14) to estimate the second summand

of the previous inequality. The integrand of the first summand is always 0 if |𝑦| ≥ 𝑅. Hence we can estimate the first summand

of the previous inequality by means of (3.14) and (3.13). Then we get
|||𝜕𝛼𝜉 𝐷𝛽

𝑥𝑎
𝑏(𝑥, 𝜉)||| ≤ 𝜀⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽| for all 𝑥 ∈ ℝ𝑛 with
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|𝑥| ≥ 𝑅̃ +𝑅. Hence

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)|||⟨𝜉⟩−𝑚+𝜌|𝛼|−𝛿|𝛽| ≤ 𝐶𝛼,𝛽(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0. (3.15)

Now let 𝜀̃ be as in the assumptions. Setting 𝜃 ∶= (𝛾−𝛿)(𝑚̃−|𝛽|+𝜏)−𝜀̃

(𝛾−𝛿)(𝑚̃−|𝛽|+𝜏) we get by means of interpolation with (3.5) and (3.15), that

estimate (3.9) holds:

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎

𝑏(𝑥, 𝜉)|||⟨𝜉⟩−𝑚+(𝛾−𝛿)(𝑚̃−|𝛽|+𝜏)−𝜀̃+𝜌|𝛼|−𝛿|𝛽| ≤ 𝐶𝛼,𝛽(𝑥)1−𝜃𝐶𝜃
𝛼,𝑚̃,𝜏

|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

Hence the lemma is proved. □

Lemma 3.7. Let 0 ≤ 𝛿 < 𝜌 ≤ 1, 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑀 ∈ ℕ ∪ {∞}, 𝑚 ∈ ℝ and 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀). Moreover let

𝛾 ∈ (𝛿, 𝜌). Then we have for all 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃:

i) 𝐷
𝛽
𝑥𝑎

♯(𝑥, 𝜉) ∈ 𝑆
𝑚+𝛿|𝛽|
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
,

ii) if 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
or if |𝛽| ≠ 0 and 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
then 𝐷

𝛽
𝑥𝑎

♯(𝑥, 𝜉) ∈ 𝑆̇
𝑚+𝛿|𝛽|
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
.

Proof. Note that, because of
‖‖‖ℱ−1(𝜙(𝜀.))‖‖‖𝐿1(ℝ𝑛)

= ‖‖‖ℱ−1(𝜙)‖‖‖𝐿1(ℝ𝑛)
=∶ 𝐶 ,

‖‖𝜙(𝜀𝐷𝑥

)‖‖ℒ(𝐿∞(ℝ𝑛)) = sup‖𝑓‖∞≤1
‖‖‖ℱ−1(𝜙(𝜀.)) ∗ 𝑓

‖‖‖∞ ≤ 𝐶 for all 𝜀 ∈ (0, 1].

Now let 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃. We show, that for all 𝛽, 𝛼 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀

‖‖‖𝐷𝛽
𝑥𝜕

𝛼
𝜉
𝐷𝛽

𝑥𝑎
♯(., 𝜉)‖‖‖∞ ≤ 𝐶𝛼,𝛽,𝛽⟨𝜉⟩𝑚+𝛿|𝛽|−𝜌|𝛼|+𝛾|𝛽| for all 𝜉 ∈ ℝ𝑛. (3.16)

This implies claim i). First of all we verify (3.16) for 𝛽 ∈ ℕ𝑛
0 with ||𝛽|| ≤ 𝑚̃ − |𝛽|. To this end we choose an arbitrary 𝜉 ∈ ℝ𝑛 with

𝑁 ∶=
{
𝑗 ∈ ℕ0 ∶ 𝜉 ∈ supp 𝜓𝑗

}
. Then ♯𝑁 ≤ 5. Using 𝑎♯(., 𝜉) =

∑
𝑗∈𝑁 𝐽𝜀𝑗

𝑎(., 𝜉)𝜓𝑗(𝜉), the Leibniz rule, (3.3) and Lemma 2.2

yields for 𝜃 ∶= |𝛽|
𝑚̃+𝜏−|𝛽|‖‖‖𝐷𝛽

𝑥𝜕
𝛼
𝜉
𝐷𝛽

𝑥𝑎
♯(., 𝜉)‖‖‖∞ ≤ 𝐶𝛼

∑
𝑗∈𝑁

∑
𝛼1+𝛼2=𝛼

⟨𝜉⟩−𝜌|𝛼2|‖‖‖𝜕𝛼1𝜉 𝐷𝛽
𝑥𝑎(., 𝜉)

‖‖‖𝐶 |𝛽|
𝑏

(ℝ𝑛)

≤ 𝐶𝛼

∑
𝛼1+𝛼2=𝛼

⟨𝜉⟩−𝜌|𝛼2|‖‖‖𝜕𝛼1𝜉 𝐷𝛽
𝑥𝑎(., 𝜉)

‖‖‖1−𝜃

𝐶0
𝑏
(ℝ𝑛)
‖‖‖𝜕𝛼1𝜉 𝐷𝛽

𝑥𝑎(., 𝜉)
‖‖‖𝜃𝐶𝑚̃−|𝛽|,𝜏 (ℝ𝑛)

≤ 𝐶𝛼,𝛽,𝛽⟨𝜉⟩𝑚+𝛿|𝛽|−𝜌|𝛼|+𝛾|𝛽|, (3.17)

where 𝐶𝛼,𝛽,𝛽 is independent of 𝜉 ∈ ℝ𝑛. Now let 𝛽 ∈ ℕ𝑛
0 with |𝛽| + |𝛽| ≥ 𝑚̃. Using 𝑎♯(., 𝜉) =

∑
𝑗∈𝑁 𝐽𝜀𝑗

𝑎(., 𝜉)𝜓𝑗(𝜉), the Leibniz

rule and (3.3) again, we obtain‖‖‖𝐷𝛽
𝑥𝜕

𝛼
𝜉
𝐷𝛽

𝑥𝑎
♯(., 𝜉)‖‖‖∞ ≤ 𝐶𝛼

∑
𝑗∈𝑁

∑
𝛼1+𝛼2=𝛼

⟨𝜉⟩−𝜌|𝛼2|‖‖‖𝐷𝛽
𝑥𝐽𝜀𝑗

𝜕
𝛼1
𝜉
𝐷𝛽

𝑥𝑎(., 𝜉)
‖‖‖∞.

Now we can prove (3.16) by means of the previous inequality since 𝜕
𝛼1
𝜉
𝐷

𝛽
𝑥𝑎(., 𝜉) ∈ 𝐶𝑚̃−|𝛽|,𝜏 (ℝ𝑛) using Lemma 3.3 ii) and (3.2).

It remains to prove claim ii). We again assume 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃. Moreover let 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) or |𝛽| ≠ 0 and

𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀).

Similarly to the proof of (3.15) we will now show for 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃ − |𝛽|:

|||𝐷𝛽
𝑥𝜕

𝛼
𝜉
𝐷𝛽

𝑥𝑎
♯(., 𝜉)||| ≤ 𝐶𝛼,𝛽,𝛽(𝑥)⟨𝜉⟩𝑚+𝛿|𝛽|−𝜌|𝛼|+𝛾|𝛽| for all 𝑥, 𝜉 ∈ ℝ𝑛. (3.18)

Here 𝐶𝛼,𝛽,𝛽(𝑥) is bounded and 𝐶𝛼,𝛽,𝛽(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0. In order to prove (3.18) for 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 and |𝛽|+ |𝛽|≥ 𝑚̃

we choose an arbitrary but fixed 𝜉 ∈ ℝ𝑛 and define 𝑁 as before. Additionally let 𝜀 > 0 be arbitrary. Since
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𝑎∈𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀

)
we get by means of the Leibniz rule and by (3.3) the existence of a constant 𝐴1 > 0 with∑

𝑗∈𝑁

|||𝜕𝛼𝜉 {𝐷𝛽
𝑥𝑎(𝑥, 𝜉)𝜓𝑗(𝜉)

}||| ≤ 𝐴1⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽|. (3.19)

Defining 𝑔(𝜉) ∶= 𝜉𝛽𝜙(𝜉) for all 𝜉 ∈ ℝ𝑛 we obtain for all 𝑗 ∈ ℕ and 𝑓 ∈ 𝐶0
𝑏
(ℝ𝑛) due to the Theorem of Fubini:

𝜀
|𝛽|
𝑗

𝐷𝛽
𝑥𝐽𝜀𝑗

(
𝐷𝑥

)
𝑓 (𝑥) = ∫

ℝ𝑛

ℱ−1
𝜉→𝑥

[
𝑔
(
𝜀𝑗𝜉
)]
(𝑥 − 𝑦)𝑓 (𝑦) dy. (3.20)

Since 𝜙
(
𝜀𝑗𝜉
)
∈ (ℝ𝑛

𝜉

)
, there is an 𝑅 > 1 such that for all |𝑦| ≥ 𝑅 − 1

|||ℱ−1
𝜉→𝑥

[
𝑔
(
𝜀𝑗𝜉
)]
(𝑦)⟨𝑦⟩𝑛+1||| < 𝜀

2𝐴1𝐴2
for all 𝑗 ∈ 𝑁, (3.21)

where 𝐴2 ∶= ∫ ⟨𝑦⟩−𝑛−1 dy. Moreover we get on account of the properties of the Fourier transformation, change of variable and

due to 𝑔 ∈ (ℝ𝑛):

𝐵3 ∶= ∫
ℝ𝑛

|||ℱ−1
𝜉→𝑥

[
𝑔
(
𝜀𝑗𝜉
)]
(𝑦)||| dy = ∫

ℝ𝑛

|||ℱ−1[𝑔](𝑧)||| dz < ∞. (3.22)

The choice of the symbol 𝑎 and of the multi-index 𝛽 gives us the existence of an 𝑅̃ > 0 such that for all |𝑥| ≥ 𝑅̃ +𝑅 − 1 and

for all 𝑦 ∈ 𝐵𝑅−1(0) we have||||||
∑
𝑗∈𝑁

𝜕𝛼
𝜉

{
𝐷𝛽

𝑥𝑎(𝑥 − 𝑦, 𝜉)𝜓(𝜉)
}|||||| ≤ 𝜀

2𝐵3
⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽| for all |𝛽| ≠ 0. (3.23)

Now let 𝜂 ∈ 𝐶∞
0 (ℝ𝑛) with 𝜂(𝑥) ∈ [0, 1] for all 𝑥 ∈ ℝ𝑛, 𝜂(𝑥) = 0 for all |𝑥| ≥ 𝑅 and 𝜂(𝑥) = 1 for all |𝑥| ≤ 𝑅 − 1. By means

of (3.19) and (3.21) we have

𝐵1 ∶= ∫
ℝ𝑛∖𝐵𝑅−1(0)

|||ℱ−1
𝜉→𝑥

[
𝑔
(
𝜀𝑗𝜉
)]
(𝑦)||||(1 − 𝜂)(𝑦)|||||||

∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥 − 𝑦, 𝜉)𝜓𝑗(𝜉)
]|||||| dy

≤ 𝜀

2
⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽|. (3.24)

Additionally a combination of (3.22) and (3.23) yields

𝐵2 ∶= ∫
𝐵𝑅(0)

|||ℱ−1
𝜉→𝑥

[
𝑔
(
𝜀𝑗𝜉
)]
(𝑦)||||𝜂(𝑦)|||||||

∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥 − 𝑦, 𝜉)𝜓𝑗(𝜉)
]|||||| dy

≤ 𝜀

2
⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽|. (3.25)

Using 𝑎♯(., 𝜉) =
∑

𝑗∈𝑁 𝐽𝜀𝑗
𝑎(., 𝜉)𝜓𝑗(𝜉), (3.20) and the definition of 𝜀𝑗 first and (3.24), (3.25) and (3.2) afterwards, we obtain for all|𝑥| ≥ 𝑅̃ +𝑅 − 1:

|||𝐷𝛽
𝑥𝜕

𝛼
𝜉
𝐷𝛽

𝑥𝑎
♯(𝑥, 𝜉)||| = 𝜀

−|𝛽|
𝑗

||||||𝜀|𝛽|𝑗
𝐷𝛽

𝑥𝐽𝜀𝑗

{∑
𝑗∈𝑁

𝜕𝛼
𝜉

[
𝐷𝛽

𝑥𝑎(𝑥, 𝜉)𝜓𝑗(𝜉)
]}|||||| ≤ 2𝑗𝛾|𝛽|(𝐵1 + 𝐵2

)
≤ 2𝑗𝛾|𝛽|𝜀𝐶⟨𝜉⟩𝑚+𝛿|𝛽|−𝜌|𝛼| ≤ 𝜀𝐶⟨𝜉⟩𝑚+𝛿|𝛽|−𝜌|𝛼|+𝛾|𝛽|.

Hence (3.18) also holds for 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑀 and ||𝛽|| + |𝛽| ≥ 𝑚̃. This provides ii). □
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Lemma 3.8. Let 0 ≤ 𝛿 < 𝜌 ≤ 1, 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑀 ∈ ℕ ∪ {∞}, 𝑚 ∈ ℝ and 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) such that

𝑎(𝑥, 𝜉)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎(∞, 𝜉) for all 𝜉 ∈ ℝ𝑛.

Moreover we set 𝑏(𝑥, 𝜉) ∶= 𝑎(𝑥, 𝜉) − 𝑎(∞, 𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛. Additionally we define 𝑎♯, 𝑎𝑏, 𝑎♯(∞, .) and 𝑎𝑏(∞, .) as in Defini-
tion 3.4. Then we have for 𝛾 ∈ (𝛿, 𝜌) and 𝜀̃ ∈ (0, (𝛾 − 𝛿)𝜏):

i) 𝑎♯(∞, 𝜉) = 𝑎(∞, 𝜉) ∈ 𝑆𝑚
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 0

)
,

ii) 𝑎𝑏(∞, 𝜉) = 0 for all 𝜉 ∈ ℝ𝑛,
iii) 𝑎𝑏(𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏 𝑆̃

𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝜀̃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛;𝑀) ∩ 𝐶𝑚̃,𝜏 𝑆̇

𝑚−(𝛾−𝛿)(𝑚̃+𝜏)+𝜀̃
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛; 0

)
,

iv) 𝑎♯(𝑥, 𝜉) = 𝑎(∞, 𝜉) + 𝑏♯(𝑥, 𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛.

Proof. First of all we verify claim 𝑖). Since 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) we have

‖𝑎(𝑥, 𝜉)⟨𝜉⟩−𝑚‖
𝐶0,𝜏
𝑏

(
ℝ𝑛

𝜉

) ≤ ‖𝑎(𝑥, 𝜉)⟨𝜉⟩−𝑚‖
𝐶1
𝑏

(
ℝ𝑛

𝜉

) ≤ 𝐶 for all 𝑥 ∈ ℝ𝑛 and

|𝑎(𝑥, 𝜉)⟨𝜉⟩−𝑚| ≤ 𝐶 for all 𝑥, 𝜉 ∈ ℝ𝑛. (3.26)

Hence the definition of 𝐶0,𝜏 (ℝ𝑛) provides

|⟨𝜉1⟩−𝑚𝑎(𝑥, 𝜉1) − ⟨𝜉2⟩−𝑚𝑎(𝑥, 𝜉2)| ≤ 𝐶|𝜉1 − 𝜉2|𝜏 𝜉1→𝜉2
←←←←←←←←←←←←←←←←←←←←←←←←→ 0, (3.27)

where 𝐶 is independent of 𝑥 ∈ ℝ𝑛. Taking |𝑥| → ∞ on both sides and using ⟨𝜉⟩−𝑚 ∈ 𝐶∞(ℝ𝑛) yields 𝑎(∞, 𝜉) ∈ 𝐶0(ℝ𝑛
𝜉

)
. Taking|𝑥| → ∞ on both sides of (3.26) provides

|𝑎(∞, 𝜉)| ≤ 𝐶⟨𝜉⟩𝑚 for all 𝜉 ∈ ℝ𝑛.

Together with (3.27) we therefore get

𝑎(∞, 𝜉) ∈ 𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛; 0).

By means of Remark 2.8 we can show for all 𝜉 ∈ ℝ𝑛

𝐽𝜀𝑎(∞, 𝜉) = 𝑎(∞, 𝜉) ⋅ Os -∬ 𝑒−𝑖𝑧⋅𝜂𝜙(𝜀𝜂) dz đ𝜂 = 𝑎(∞, 𝜉).

Hence we obtain for all 𝜉 ∈ ℝ𝑛

𝑎♯(∞, 𝜉) = 𝑎(∞, 𝜉) and 𝑎𝑏(∞, 𝜉) = 𝑎(∞, 𝜉) − 𝑎♯(∞, 𝜉) = 0.

This provides 𝑖), 𝑖𝑖) and 𝑖𝑣). It remains to verify claim 𝑖𝑖𝑖). On account of the definition of 𝑎(∞, 𝜉) and 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀)

we have for all 𝛽 ∈ ℕ𝑛
0 with |𝛽| ≤ 𝑚̃

|||𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

||| ≤ 𝐶𝛽(𝑥)⟨𝜉⟩𝑚+𝛿|𝛽| for all 𝜉 ∈ ℝ𝑛, (3.28)

where 𝐶𝛽(𝑥) → 0 if |𝑥|→ ∞. Moreover

‖𝑎(∞, 𝜉)‖𝐶𝑚̃,𝜏 (ℝ𝑛
𝑥) ≤ |𝑎(∞, 𝜉)| = |||| lim|𝑥|→∞

𝑎(𝑥, 𝜉)
|||| ≤ 𝐶⟨𝜉⟩𝑚 for all 𝜉 ∈ ℝ𝑛,

we get ‖𝑏(., 𝜉)‖𝐶𝑚̃,𝜏 (ℝ𝑛) ≤ ⟨𝜉⟩𝑚+𝛿⋅(𝑚̃+𝜏). Together with (3.28) this yields

𝑏(𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛; 0).

Consequently Lemma 3.6 and 𝑎𝑏(𝑥, 𝜉) = 𝑏𝑏(𝑥, 𝜉) provides claim 𝑖𝑖𝑖). □
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834 ABELS AND PFEUFFER

3.2 Symbol reduction
In this subsection we prove a formula representing an operator with a non-smooth double symbol as an operator with a

non-smooth single symbol. Non-smooth double symbols are defined in the following way:

Definition 3.9. Let 𝑚̃ ∈ ℕ0, 0 < 𝜏 < 1, 𝑚1, 𝑚2 ∈ ℝ, 0 ≤ 𝛿, 𝜌 ≤ 1 and 𝑀1,𝑀2 ∈ ℕ0 ∪ {∞}. Then a continuous function

𝑎 ∶ ℝ𝑛
𝑥 ×ℝ𝑛

𝜉
×ℝ𝑛

𝑥′
×ℝ𝑛

𝜉′
→ ℂ belongs to the non-smooth double symbol-class 𝐶𝑚̃,𝜏𝑆

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
if

i) 𝜕𝛼
𝜉
𝜕
𝛽′

𝑥′
𝜕𝛼

′

𝜉′
𝑎 ∈ 𝐶𝑚̃,𝜏

(
ℝ𝑛

𝑥

)
and 𝜕

𝛽
𝑥𝜕

𝛼
𝜉
𝜕
𝛽′

𝑥′
𝜕𝛼

′

𝜉′
𝑎 ∈ 𝐶0(ℝ𝑛

𝑥 ×ℝ𝑛
𝜉
×ℝ𝑛

𝑥′
×ℝ𝑛

𝜉′

)
,

ii)
|||𝜕𝛽𝑥𝜕𝛼𝜉 𝜕𝛽′𝑥′ 𝜕𝛼′𝜉′ 𝑎(𝑥, 𝜉, 𝑥′, 𝜉′)||| ≤ 𝐶𝛼,𝛽,𝛽′,𝛼′ (𝑥)𝐶̃𝛼,𝛽,𝛽′,𝛼′ (𝑥′)⟨𝜉⟩𝑚1−𝜌|𝛼|+𝛿|𝛽|⟨𝜉′⟩𝑚2−𝜌|𝛼′|⟨𝜉; 𝜉′⟩𝛿|𝛽′|,

iii)
‖‖‖𝜕𝛼𝜉 𝜕𝛽′𝑥′ 𝜕𝛼′𝜉′ 𝑎(., 𝜉, 𝑥′, 𝜉′)‖‖‖𝐶𝑚̃,𝜏 (ℝ𝑛)

≤ 𝐶𝛼,𝛽′,𝛼′⟨𝜉⟩𝑚1−𝜌|𝛼|+𝛿(𝑚̃+𝜏)⟨𝜉′⟩𝑚2−𝜌|𝛼′|⟨𝜉; 𝜉′⟩𝛿|𝛽′|,
for all 𝑥, 𝜉, 𝑥′, 𝜉′ ∈ ℝ𝑛 and arbitrary 𝛽, 𝛼, 𝛽′, 𝛼′ ∈ ℕ𝑛

0 with |𝛽| ≤ 𝑚̃, |𝛼| ≤ 𝑀1 and |𝛼′| ≤ 𝑀2. Here the constants

𝐶𝛼,𝛽,𝛽′,𝛼′ (𝑥), 𝐶𝛼,𝛽′,𝛼′ and 𝐶̃𝛼,𝛽,𝛽′,𝛼′ (𝑥′) are bounded and independent of 𝜉, 𝑥′, 𝜉′ ∈ ℝ𝑛 respectively 𝜉, 𝑥, 𝜉′ ∈ ℝ𝑛.

If we even have 𝐶𝛼,𝛽,𝛽′,𝛼′ (𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 for all 𝛽, 𝛼, 𝛽′, 𝛼′ ∈ ℕ𝑛

0 with |𝛽| ≤ 𝑚̃, |𝛼| ≤ 𝑀1 and |𝛼′| ≤ 𝑀2, then 𝑎 is an element of

𝐶𝑚̃,𝜏 𝑆̇
𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
. If we have 𝐶̃𝛼,𝛽,𝛽′,𝛼′ (𝑥′)

|𝑥′|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 for all 𝛽, 𝛼, 𝛽′, 𝛼′ ∈ ℕ𝑛

0 with |𝛽| ≤ 𝑚̃, |𝛼| ≤ 𝑀1

and |𝛼′| ≤ 𝑀2 instead, then 𝑎 is an element of 𝐶𝑚̃,𝜏 𝑆̂
𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
.

For each double symbol 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆
𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
we define the associated pseudodifferential operator

𝑃 by

𝑃𝑢(𝑥) ∶= Os -⨌ 𝑒−𝑖(𝑦⋅𝜉+𝑦′⋅𝜉′)𝑎(𝑥, 𝜉, 𝑥 + 𝑦, 𝜉′)𝑢(𝑥 + 𝑦 + 𝑦′) dy dy′ đ𝜉 đ𝜉′

for all 𝑢 ∈ (ℝ𝑛).
In the smooth case, i.e. if 𝑀1,𝑀2 = ∞, the symbol-reduction is well-known, cf. e.g. [11, Lemma 2.4]. For non-smooth double

symbols of the symbol-class 𝐶𝑚̃,𝜏𝑆𝑚,𝑚′

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁,∞) the symbol smoothing was proved in [10, Theorem 3.33]

in the case 𝑁 = ∞ and in [2, Section 4.2] in the case (𝜌, 𝛿) = (0, 0). As an ingredient for the proof of the Fredholm property of

non-smooth pseudodifferential operators, we need the symbol reduction in a more general setting.

Theorem 3.10. Let 0 < 𝑠 < 1, 𝑚̃ ∈ ℕ0 and 𝑚1, 𝑚2 ∈ ℝ. Additionally we choose 𝑁1, 𝑁2 ∈ ℕ0 ∪ {∞} such that there is an
𝑙 ∈ ℕ with 𝑁1 ≥ 𝑙 > 𝑛. Moreover, we define 𝑁̃ ∶= min

{
𝑁1 − (𝑛 + 1), 𝑁2

}
. Furthermore, let

ℬ ⊆ 𝐶𝑚̃,𝑠𝑆
𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁1, 𝑁2

)
be bounded. If we define for each 𝑎 ∈ ℬ and 𝜃 ∈ [0, 1] the function 𝑎𝜃

𝐿
∶ ℝ𝑛 ×ℝ𝑛 → ℂ by

𝑎𝜃
𝐿
(𝑥, 𝜉) ∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎(𝑥, 𝜃𝜂 + 𝜉, 𝑥 + 𝑦, 𝜉) dy đ𝜂 for all 𝑥, 𝜉 ∈ ℝ𝑛,

we get with 𝑚 ∶= 𝑚1 + 𝑚2 that 𝑎𝜃
𝐿
∈ 𝐶𝑚̃,𝑠𝑆𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃

)
for all 𝑎 ∈ ℬ and 𝜃 ∈ [0, 1] and the existence of a constant 𝐶𝛼 ,

independent of 𝑎 ∈ ℬ and 𝜃 ∈ [0, 1], such that for all 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑁̃ and |𝛽| ≤ 𝑚̃

‖‖‖𝜕𝛼𝜉 𝑎𝜃𝐿(., 𝜉)‖‖‖𝐶𝑚̃,𝑠(ℝ𝑛)
≤ 𝐶𝛼⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿(𝑚̃+𝑠) for all 𝜉 ∈ ℝ𝑛 (3.29)

and |||𝜕𝛼𝜉 𝜕𝛽𝑥𝑎𝜃𝐿(𝑥, 𝜉)||| ≤ 𝐶𝛼,𝛽(𝑥)⟨𝜉⟩𝑚−𝜌|𝛼|+𝛿|𝛽| for all 𝜉 ∈ ℝ𝑛, (3.30)

where 𝐶𝛼,𝛽(𝑥) is bounded and independent of 𝑎 ∈ ℬ, 𝜉 ∈ ℝ𝑛 and 𝜃 ∈ [0, 1]. This implies the boundedness of{
𝑎𝜃
𝐿
∶ 𝑎 ∈ ℬ, 𝜃 ∈ [0, 1]

}
⊆ 𝐶𝑚̃,𝑠𝑆𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃

)
. If ℬ is even a bounded set in 𝐶𝑚̃,𝑠𝑆̇

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁1, 𝑁2

)
or in 𝐶𝑚̃,𝑠𝑆̂

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁1, 𝑁2

)
, then 𝐶𝛼,𝛽(𝑥)

|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.
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ABELS AND PFEUFFER 835

We combine the ideas of the smooth symbol reduction in [11, Lemma 2.4] and that one in [2, Section 4.2] in order to

get the boundedness of
{
𝑎𝜃
𝐿
∶ 𝑎 ∈ ℬ, 𝜃 ∈ [0, 1]

}
⊆ 𝐶𝑚̃,𝑠𝑆𝑚

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃

)
. To show 𝐶𝛼,𝛽(𝑥)

|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 additionally some new

arguments are needed. Unfortunately one looses some regularity with respect to the second variable of the order 𝑛 + 1 in the

proof. The ability to treat the even and odd space dimensions in the same way is based on the next remark:

Remark 3.11. Let 𝑙 ∈ ℕ be arbitrary. Then

𝑒𝑖𝑦⋅𝜂 =
{(

1 + ⟨𝜉⟩2𝛿|𝑦|2)−(𝑙+1)(1 + ⟨𝜉⟩2𝛿(−Δ𝜂

))𝑙
+

𝑛∑
𝑗=1

(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−(2𝑙+1)∕2 ⟨𝜉⟩𝛿𝑦𝑗(

1 + ⟨𝜉⟩2𝛿|𝑦|2)1∕2 (1 + ⟨𝜉⟩2𝛿(−Δ𝜂

))𝑙⟨𝜉⟩𝛿𝐷𝜂𝑗

}
𝑒𝑖𝑦⋅𝜂

and we have for all 𝑙0 ∈ ℕ, 𝛾 ∈ ℕ𝑛
0|||𝜕𝛾𝑦(1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0 ||| ≤ 𝐶𝑙0,𝛾

⟨𝜉⟩𝛿|𝛾|(1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0 for all 𝑦, 𝜉 ∈ ℝ𝑛. (3.31)

We additionally have for all 𝛾 ∈ ℕ𝑛
0:

||||||𝜕𝛾𝑦
⟨𝜉⟩𝛿𝑦𝑗(

1 + ⟨𝜉⟩2𝛿|𝑦|2)1∕2
|||||| ≤ ⟨𝜉⟩𝛿|𝛾|. (3.32)

Definition 3.12. Let 𝑙 ∈ ℕ be arbitrary. Then we define

𝐵𝑙
(
𝑦,Δ𝜂

)
∶=
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙∕2(1 + ⟨𝜉⟩2𝛿(−Δ𝜂

))𝑙∕2
if 𝑙 is even, and

𝐵𝑙(𝑦,Δ𝜂) ∶=
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙∕2−1∕2(1 + ⟨𝜉⟩2𝛿(−Δ𝜂

))(𝑙−1)∕2
+

𝑛∑
𝑗=1

(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙∕2 ⟨𝜉⟩𝛿𝑦𝑗(

1 + ⟨𝜉⟩2𝛿|𝑦|2)1∕2 (1 + ⟨𝜉⟩2𝛿(−Δ𝜂

))(𝑙−1)∕2⟨𝜉⟩𝛿𝐷𝜂𝑗

else for all 𝑦, 𝜉 ∈ ℝ𝑛.

In order to improve the symbol reduction, we need the next result:

Proposition 3.13. Let 0 ≤ 𝛿 ≤ 𝜌 ≤ 1 with 𝛿 ≠ 1, 0 < 𝜏 < 1, 𝑚̃ ∈ ℕ0 and 𝑚1, 𝑚2 ∈ ℝ. Additionally let 𝑁1, 𝑁2 ∈ ℕ0 ∪ {∞}
be such that there is an 𝑙 ∈ ℕ with 𝑛 < 𝑙 ≤ 𝑁1. Moreover, let 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁1, 𝑁2

)
. Considering an

𝑙0 ∈ ℕ0 with 𝑛 < 𝑙0 ≤ 𝑁1, we define 𝑟𝜃 ∶ ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 → ℂ for all 𝜃 ∈ [0, 1] by

𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂) ∶= 𝐵𝑙0
(
𝑦,Δ𝜂

)
𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
for all 𝑥, 𝜉, 𝜂, 𝑦 ∈ ℝ𝑛. Then we have 𝑟𝜃

(
𝑥, 𝜉, 𝑦, 𝜂

)
∈ 𝐿1(ℝ𝑛

𝑦

)
for all 𝑥, 𝜉, 𝜂 ∈ ℝ𝑛 and ∫ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃

(
𝑥, 𝜉, 𝑦, 𝜂

)
dy ∈ 𝐿1(ℝ𝑛

𝜂

)
for all

𝑥, 𝜉 ∈ ℝ𝑛. Moreover we obtain

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂) dy đ𝜂 = ∫
[
∫ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂) dy

]
đ𝜂.

Proof. First of all we prove the claim for even 𝑙0 and use 2𝑙0 instead of 𝑙0. Let 𝑥, 𝜉 ∈ ℝ𝑛 be arbitrary. We define 𝑚 ∶= 𝑚1 + 𝑚2.

For every 𝛾̃ ∈ ℕ𝑛
0 we get due to 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑁1, 𝑁2

)
, the Leibniz rule and ⟨𝜉 + 𝜃𝜂; 𝜉⟩ ≤ ⟨𝜉⟩⟨𝜂⟩ for

𝑙 ∈ ℕ0, 𝑙 ≤ 𝑙0:

||||𝜕𝛾̃𝑦{[⟨𝜉⟩2𝛿(−Δ𝜂

)]𝑙)
𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)}|||| ≤ 𝐶𝑙,𝛾̃⟨𝜂⟩|𝑚1|+𝛿|𝛾̃|⟨𝜉⟩𝑚+𝛿|𝛾̃|+2𝑙𝛿 (3.33)
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836 ABELS AND PFEUFFER

for all 𝑦, 𝜂 ∈ ℝ𝑛, where 𝐶𝑙,𝛾̃ is independent of 𝑥, 𝑦, 𝜉, 𝜂 ∈ ℝ𝑛, 𝜃 ∈ [0, 1]. Now the Leibniz rule provides for all 𝑙 ∈ ℕ0 by means

of (3.33) and (3.31) the existence of a 𝐶𝑙 > 0, independent of 𝑥, 𝑦, 𝜉, 𝜂 ∈ ℝ𝑛, 𝜃 ∈ [0, 1], such that

|||⟨𝜂⟩−2𝑙⟨𝐷𝑦⟩2𝑙𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂)||| ≤ 𝐶𝑙⟨𝜂⟩−2𝑙(1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0⟨𝜂⟩|𝑚1|+2𝑙𝛿⟨𝜉⟩𝑚+2𝑙𝛿+2𝑙0𝛿
≤ 𝐶𝑙⟨𝑦⟩−2𝑙0⟨𝜂⟩|𝑚1|−2𝑙(1−𝛿)⟨𝜉⟩𝑚+2𝑙𝛿+2𝑙0𝛿

for all 𝜉, 𝜂 ∈ ℝ𝑛.

Assuming an arbitrary 𝜒 ∈ (ℝ𝑛) with 𝜒(0) = 1, we get for fixed 𝑥, 𝜂, 𝜉 ∈ ℝ𝑛:

𝑒−𝑖𝑦⋅𝜂𝜒(𝜀𝑦)𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

) 𝜀→0
←←←←←←←←←←←←←←←←←→ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃

(
𝑥, 𝜉, 𝑦, 𝜂

)
pointwise for all 𝑦 ∈ ℝ𝑛. (3.34)

Now let 0 < 𝜀 ≤ 1. Using the Leibniz rule and 𝜒 ∈ (ℝ𝑛) ⊆ 𝐶∞
𝑏
(ℝ𝑛) we have

|||⟨𝜂⟩−2𝑙′⟨𝐷𝑦⟩2𝑙′[𝜒(𝜀𝑦)𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂)]||| ≤ 𝐶𝑙⟨𝑦⟩−2𝑙0⟨𝜂⟩|𝑚1|−2𝑙′(1−𝛿)⟨𝜉⟩𝑚+2𝑙′𝛿+2𝑙0𝛿, (3.35)

for all 𝑙′ ∈ ℕ0 uniformly in 𝑥, 𝜉, 𝜂, 𝑦 ∈ ℝ𝑛 and in 0 < 𝜀 ≤ 1. Integration by parts yields for arbitrary 𝓁 ∈ ℕ0 with|𝑚1|−2𝓁(1 − 𝛿) < −𝑛:

∫ 𝑒−𝑖𝑦⋅𝜂𝜒(𝜀𝑦)𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy = ∫ 𝑒−𝑖𝑦⋅𝜂⟨𝜂⟩−2𝓁⟨𝐷𝑦⟩2𝓁[𝜒(𝜀𝑦)𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂)] dy. (3.36)

Using 𝜒 ∈ (ℝ𝑛) ⊆ 𝐶∞
𝑏
(ℝ𝑛) and (3.36) first and (3.35) afterwards provides for fixed 𝑥, 𝜉 ∈ ℝ𝑛:

||||𝜒(𝜀𝜂)∫ 𝑒−𝑖𝑦⋅𝜂𝜒(𝜀𝑦)𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy
|||| ≤ 𝐶𝑙,𝑚,𝜉⟨𝜂⟩|𝑚1|−2𝓁(1−𝛿) ∈ 𝐿1(ℝ𝑛

𝜂

)
. (3.37)

Here the constant 𝐶𝓁,𝑚,𝜉 is independent of 𝜀 ∈ (0, 1] and 𝑥 ∈ ℝ𝑛. Setting 𝑙′ = 0 in (3.35) we obtain for each fixed 𝑥, 𝜉, 𝜂 ∈ ℝ𝑛,

that {
𝑦 → 𝜒(𝜀𝑦)𝑟𝜃(𝑥, 𝜉, 𝑦, 𝜂) ∶ 0 < 𝜀 ≤ 1

}
has a 𝐿1(ℝ𝑛

𝑦

)
-majorant. Together with (3.34) and (3.37) we have verified all assumptions of Lebesgue’s theorem. An application

of Lebesgue’s theorem two times provides

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy đ𝜂 = ∫

[
∫ 𝑒−𝑖𝑦⋅𝜂𝑟𝜃

(
𝑥, 𝜉, 𝑦, 𝜂

)
dy
]

đ𝜂.

If 𝑙0 is odd, we can prove the claim in the same way, using Remark 3.11. □

Proposition 3.14. Let 0 < 𝛿 < 1, 𝑚1, 𝑚2 ∈ ℝ, 𝑢 ≥ 0 and 𝜃 ∈ [0, 1]. Additionally let 𝑋 be a Banach space such that 𝑋 ⊆ 𝐶0
𝑏
(ℝ𝑛).

Considering 𝑙0 ∈ ℕ0 with −𝑙0 < −𝑛, we choose a set ℬ of functions 𝑟 ∶ ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 → ℂ such that the next inequality
holds for all 𝑙 ∈ ℕ0:

|||(−Δ𝑦

)𝑙
𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)||| ≤ 𝐶𝑙(𝑥)𝐶̃𝑙(𝑥 + 𝑦)
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0∕2⟨𝜉 + 𝜃𝜂⟩𝑚1⟨𝜉⟩𝑚2⟨𝜉 + 𝜃𝜂; 𝜉⟩2𝑙𝛿+𝑢,

‖‖‖(−Δ𝑦

)𝑙
𝑟𝜃
(
., 𝜉, 𝑦, 𝜂

)‖‖‖𝑋 ≤ 𝐶̂𝑙

(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0∕2⟨𝜉 + 𝜃𝜂⟩𝑚1⟨𝜉⟩𝑚2 ⋅ ⟨𝜉 + 𝜃𝜂; 𝜉⟩2𝑙𝛿+𝑢.

Here the constants 𝐶𝑙(𝑥), 𝐶̃𝑙(𝑥 + 𝑦), 𝐶̂𝑙 are bounded and independent of 𝜉, 𝜂 ∈ ℝ𝑛, 𝜃 ∈ [0, 1] and of 𝑟 ∈ ℬ. 𝐶̂𝑙 is also
independent of 𝑥 and 𝑦. If we denote the sets Ω1 ∶=

{
𝜂 ∈ ℝ𝑛 ∶ |𝜂| ≤ 1

2 ⟨𝜉⟩𝛿}, Ω2 ∶=
{
𝜂 ∈ ℝ𝑛 ∶ 1

2 ⟨𝜉⟩𝛿 ≤ |𝜂| ≤ 1
2 ⟨𝜉⟩} and

Ω3 ∶=
{
𝜂 ∈ ℝ𝑛 ∶ |𝜂| ≥ 1

2 ⟨𝜉⟩} first and define

𝐼𝜃
𝑖 (𝑥, 𝜉) ∶= ∫

Ω𝑖

∫
ℝ𝑛

𝑒−𝑖𝑦⋅𝜂𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy đ𝜂 for 𝑖 ∈ {1, 2, 3}
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ABELS AND PFEUFFER 837

for arbitrary 𝑥, 𝜉 ∈ ℝ𝑛 afterwards, then there are constants 𝐶(𝑥), 𝐶̂ , bounded and independent of 𝜉 ∈ ℝ𝑛, 𝜃 ∈ [0, 1] and 𝑟 ∈ ℬ,
such that |||𝐼𝜃

𝑖 (𝑥, 𝜉)
||| ≤ 𝐶(𝑥)⟨𝜉⟩𝑚, ‖‖‖𝐼𝜃

𝑖 (⋅, 𝜉)
‖‖‖𝑋 ≤ 𝐶̂⟨𝜉⟩𝑚 for 𝑖 ∈ {1, 2, 3}, (3.38)

where 𝑚 ∶= 𝑚1 + 𝑚2 + 𝑢. Here 𝐶̂ is independent of 𝑥. If 𝐶𝑙(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 or 𝐶̃𝑙(𝑥 + 𝑦)

|𝑥+𝑦|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 for all 𝑙 ∈ ℕ, then

𝐶(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

Proof. First of all we prove the claim for even 𝑙0 and use 2𝑙0 instead of 𝑙0. Let 𝜉 ∈ ℝ𝑛. In the following we will for simplicity

write ‖ ⋅ ‖ for |.| or ‖.‖𝑋 .

The assumptions and ⟨𝜉 + 𝜃𝜂; 𝜉⟩ ≤ ⟨𝜉⟩⟨𝜂⟩ give us the existence of bounded constants 𝐶𝑙(𝑥), 𝐶̃𝑙(𝑥 + 𝑦), independent of

𝜉, 𝜂 ∈ ℝ𝑛, 𝑟 ∈ ℬ and in the case ‖.‖ = ‖.‖𝑋 also independent of 𝑥 and 𝑦, such that‖‖‖(−Δ𝑦

)𝑙
𝑟𝜃
(
., 𝜉, 𝑦, 𝜂

)‖‖‖ ≤ 𝐶𝑙(𝑥)𝐶̃𝑙(𝑥 + 𝑦)
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0⟨𝜉 + 𝜃𝜂⟩𝑚1⟨𝜉⟩𝑚2⟨𝜉 + 𝜃𝜂; 𝜉⟩2𝑙𝛿+𝑢 (3.39)

≤ 𝐶𝑙(𝑥)𝐶̃𝑙(𝑥 + 𝑦)⟨𝑦⟩−2𝑙0⟨𝜉⟩𝑚1+𝑚2+2𝑙𝛿+𝑢⟨𝜂⟩|𝑚1|+2𝑙𝛿+𝑢 ∈ 𝐿1(ℝ𝑛
𝑦

)
(3.40)

for all 𝜉, 𝜂 ∈ ℝ𝑛, 𝜃 ∈ [0, 1], 𝑙 ∈ ℕ0. For all 𝜂 ∈ Ω1 ∪ Ω2 and 𝑚1 ∈ ℝ the estimates ⟨𝜉 + 𝜃𝜂⟩𝑚1 ≤ 𝐶𝑚1
⟨𝜉⟩𝑚1 and⟨𝜉 + 𝜃𝜂; 𝜉⟩2𝑙𝛿+𝑢 ≤ 𝐶⟨𝜉⟩2𝑙𝛿+𝑢 hold. Now let 𝑚 ∶= 𝑚1 + 𝑚2 + 𝑢. Then we can simplify (3.39) for all 𝜂 ∈ Ω1 ∪ Ω2 to‖‖‖(−Δ𝑦

)𝑙
𝑟𝜃
(
., 𝜉, 𝑦, 𝜂

)‖‖‖ ≤ 𝐶𝑙(𝑥)𝐶̃𝑙(𝑥 + 𝑦)
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0⟨𝜉⟩𝑚+2𝑙𝛿 (3.41)

for all 𝜉, 𝑦 ∈ ℝ𝑛, 𝑙 ∈ ℕ0, where 𝐶𝑙(𝑥), 𝐶̃𝑙(𝑥 + 𝑦) are bounded and independent of 𝜃 ∈ [0, 1], 𝜉, 𝜂 ∈ ℝ𝑛, 𝑟 ∈ ℬ and in the case‖.‖ = ‖.‖𝑋 also independent of 𝑥 and 𝑦. In order to estimate ‖𝐼1‖, we also need the following calculation, which can be verified

by means of the change of variables 𝜂̃ ∶= ⟨𝜉⟩−𝛿𝜂:

∫|𝜂|≤0.5⟨𝜉⟩𝛿
đ𝜂 = ⟨𝜉⟩𝛿𝑛 ∫|𝜂̃|≤0.5

đ𝜂 ≤ 𝐶𝑛⟨𝜉⟩𝛿𝑛. (3.42)

Thus a combination of (3.41) and (3.42) concludes together with a change of variable 𝑤 ∶= ⟨𝜉⟩𝛿𝑦:

‖‖‖𝐼𝜃
1
‖‖‖ ≤ 𝐶1(𝑥)⟨𝜉⟩𝑚−𝛿𝑛 ∫

Ω1

∫
ℝ𝑛

𝐶̃0
(
𝑥 + ⟨𝜉⟩−𝛿𝑤

)(
1 + |𝑤|2)−𝑙0d𝑤 đ𝜂 ≤ 𝐶1(𝑥)⟨𝜉⟩𝑚,

where 𝐶1(𝑥) is bounded and independent of 𝜉 ∈ ℝ𝑛, 𝑟 ∈ ℬ and in the case that ‖.‖ = ‖.‖𝑋 also independent of 𝑥 and 𝑦. For the

estimate of ‖𝐼2‖ and ‖𝐼3‖ we choose 𝑙 ∈ ℕ0 with −2𝑙 < −𝑛. Together with the equation 𝑒−𝑖𝑦⋅𝜂 = |𝜂|−2𝑙(−Δ𝑦

)𝑙
𝑒−𝑖𝑦⋅𝜂 we obtain

by integration by parts:

∫
ℝ𝑛

𝑒−𝑖𝑦⋅𝜂𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy = |𝜂|−2𝑙 ∫

ℝ𝑛

𝑒−𝑖𝑦⋅𝜂(−Δ𝑦

)𝑙
𝑟𝜃
(
𝑥, 𝜉, 𝑦, 𝜂

)
dy. (3.43)

Additonally we have

∫|𝜂|≥0.5⟨𝜉⟩𝛿
|𝜂|−2𝑙 đ𝜂 = 𝐶𝑛

||||||||
∞

∫
0.5⟨𝜉⟩𝛿

𝑟𝑛−1−2𝑙 dr

|||||||| = 𝐶𝑛,𝑙⟨𝜉⟩(−2𝑙+𝑛)𝛿. (3.44)

If we utilize (3.43) and (3.41) first, and (3.44) afterwards, we obtain

‖‖‖𝐼𝜃
2
‖‖‖ ≤ 𝐶2(𝑥)⟨𝜉⟩𝑚+2𝑙𝛿−𝛿𝑛 ∫

Ω2

|𝜂|−2𝑙 ∫
ℝ𝑛

𝐶̃𝑙

(
𝑥 + ⟨𝜉⟩−𝛿𝑤

)(
1 + |𝑤|2)−𝑙0d𝑤 đ𝜂 ≤ 𝐶2,𝑙(𝑥)⟨𝜉⟩𝑚,

where 𝐶2,𝑙(𝑥) is bounded and independent of 𝜉 ∈ ℝ𝑛, 𝜃 ∈ [0, 1], 𝑟 ∈ ℬ and in the case ‖.‖ = ‖.‖𝑋 also independent of 𝑥 and

𝑦. It remains to estimate
‖‖‖𝐼𝜃

3
‖‖‖. For each 𝜂 ∈ Ω3, we have ⟨𝜉 + 𝜃𝜂⟩ ≤ ⟨𝜉⟩ + |𝜃𝜂| ≤ 3|𝜂| and ⟨𝜉 + 𝜃𝜂; 𝜉⟩ ≤√13|𝜂|. Denoting
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838 ABELS AND PFEUFFER

𝑘+ ∶= max{0, 𝑘} and 𝑘− ∶= min{0, 𝑘} this provides together with (3.39) the existence of some constants 𝐶𝑙(𝑥), 𝐶̃𝑙(𝑥 + 𝑦),
bounded and independent of 𝜉 ∈ ℝ𝑛, 𝜂 ∈ Ω3, 𝜃 ∈ [0, 1], 𝑟 ∈ ℬ and in the case ‖.‖ = ‖.‖𝑋 also independent of 𝑥 and 𝑦, such

that

|𝜂|−2𝑙‖‖‖(−Δ𝑦

)𝑙
𝑟𝜃
(
., 𝜉, 𝑦, 𝜂

)‖‖‖ ≤ 𝐶𝑙(𝑥)𝐶̃𝑙(𝑥 + 𝑦)
(
1 + ⟨𝜉⟩2𝛿|𝑦|2)−𝑙0 |𝜂|(𝑚1)++𝑢−2𝑙(1−𝛿)⟨𝜉⟩𝑚2 (3.45)

for all 𝜉, 𝑦 ∈ ℝ𝑛 and 𝜂 ∈ Ω3. Analog to the calculation of (3.44) we get

∫
Ω3

|𝜂|(𝑚1)++𝑢−2𝑙(1−𝛿) đ𝜂 ≤ 𝐶⟨𝜉⟩(𝑚1)+−2𝑙(1−𝛿)+𝑛−𝑚1⟨𝜉⟩𝑚1+𝑢+𝛿𝑛 ≤ 𝐶⟨𝜉⟩𝑚1+𝑢+𝛿𝑛, (3.46)

if we choose an 𝑙 ∈ ℕ0 with−(𝑚1)− + 𝑢 − 2𝑙(1 − 𝛿) ≤ −𝑛. Finally a combination of (3.43), (3.45) and (3.46) concludes similarly

to the estimates of ‖𝐼𝜃
2 ‖:

‖‖‖𝐼𝜃
3
‖‖‖ ≤ 𝐶3(𝑥)⟨𝜉⟩𝑚.

Here 𝐶3(𝑥) is bounded and independent of 𝜉 ∈ ℝ𝑛, 𝜃 ∈ [0, 1], 𝑟 ∈ ℬ and in the case ‖.‖ = ‖.‖𝑋 also independent of 𝑥 and 𝑦.

If ‖.‖ = |.| and 𝐶𝑙(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 for all 𝑙 ∈ ℕ, we get by verifying the proof, that 𝐶(𝑥)

|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

Now assume, that ‖.‖ = |.| and that for all 𝑙 ∈ ℕ0 we have 𝐶̃𝑙(𝑥 + 𝑦)
|𝑥+𝑦|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 and 𝐶̃𝑙(𝑥 + 𝑦) ≤ 𝐵𝑙 for all 𝑥, 𝑦 ∈ ℝ𝑛. In

order to verify that 𝐶(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 in estimate (3.38), we choose an arbitrary 𝑙 ∈ ℕ0 and 𝜀 > 0. Additionally let 𝜀̃ > 0 with

−𝑙0 < −𝑙0 + 𝜀̃ < −𝑛 be arbitrary but fixed. Defining 𝐴 ∶= ∫
ℝ𝑛

⟨𝑤⟩−𝑙0+𝜀̃d𝑤 we obtain due to ⟨𝑤⟩−𝜀̃ ∈ (ℝ𝑛
𝑤

)
the existence of a

𝑅 > 0 such that

⟨𝑤⟩−𝜀̃ ≤ 𝜀

2𝐴𝐵𝑙

for all 𝑤 ∈ ℝ𝑛∖𝐵𝑅(0). (3.47)

Since 𝐶̃𝑙(𝑥 + 𝑦)
|𝑥+𝑦|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0, there is a 𝑅̃ > 0 such that

𝐶̃𝑙(𝑥 + 𝑦) ≤ 𝜀

2𝐴
for all 𝑥, 𝑦 ∈ ℝ𝑛 with |𝑥 + 𝑦| ≥ 𝑅̃. (3.48)

Using (3.47) and (3.48) we obtain for all 𝑥 ∈ ℝ𝑛 with |𝑥| ≥ 𝑅̃ + 𝑅:

∫
ℝ𝑛

𝐶̃𝑙

(
𝑥 + ⟨𝜉⟩−𝛿𝑤

)⟨𝑤⟩−𝑙0 d𝑤

= ∫
ℝ𝑛∖𝐵𝑅(0)

𝐶̃𝑙

(
𝑥 + ⟨𝜉⟩−𝛿𝑤

)⟨𝑤⟩−𝜀̃⟨𝑤⟩−𝑙0+𝜀̃ d𝑤 + ∫
𝐵𝑅(0)

𝐶̃𝑙

(
𝑥 + ⟨𝜉⟩−𝛿𝑤

)⟨𝑤⟩−𝜀̃⟨𝑤⟩−𝑙0+𝜀̃ d𝑤 ≤ 𝜀.

Using the previous estimate while verifying the norm-estimates of
|||𝐼𝜃

𝑖
(𝑥, 𝜉)||| for all 𝑖 ∈ {1, 2, 3} we obtain 𝐶(𝑥)

|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 in the

inequality (3.38).

If 𝑙0 is odd, we can proof the claim in the same way, using Remark 3.11. □

The previous results enable us to show Theorem 3.10, now:

Proof of Theorem 3.10. We prove the claim in several steps: First we verify (3.30) in the case |𝛽| = 0. Then we show (3.29) in

the case |𝛽| = 0 and 𝜕𝛼
𝜉
𝐷

𝛽
𝑥𝑎

𝜃
𝐿
∈ 𝐶0(ℝ𝑛 ×ℝ𝑛). Afterwards on can use the cases |𝛽| = 0 in order to verify (3.30) and (3.29) in

the general case, which concludes the theorem. We obtain all those results by means of Proposition 3.13 and Proposition 3.14,

which are modifications of the proofs of Proposition 4.8 and Proposition 4.6 in [2]. To this end we need to modify the analogous

results of [2, Section 4.2] as already done in the proofs of Proposition 3.13 and Proposition 3.14. Note, that the generalized

properties of the oscillatory integrals of Subsection 2.1 are needed for the proofs. The details are left to the reader. □
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ABELS AND PFEUFFER 839

4 FREDHOLM PROPERTY OF NON-SMOOTH PSEUDODIFFERENTIAL
OPERATORS

The present section serves to show the main goal of this paper: The Fredholm property of non-smooth pseudodifferential oper-

ators fulfilling certain properties. For the proof of that statement we use the following compactness properties of non-smooth

pseudodifferential operators verified by Marschall. They are special cases of Theorem 3 and Theorem 4 of [14].

Lemma 4.1. Let 𝑚 ∈ ℝ, 0 ≤ 𝛿 ≤ 𝜌 ≤ 1, 𝑀 ∈ ℕ0 ∪ {∞} with 𝑀 > 𝑛

2 . Moreover let 𝑚̃ ∈ ℕ0 and 0 < 𝜏 < 1 be such that 𝑚̃ + 𝜏 >
1−𝜌

1−𝛿
⋅ 𝑛

2 in case 𝜌 < 1. Additionally let 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) be such that

lim|𝑥|+|𝜉|→∞
(1 + |𝜉|)−𝑚𝑎(𝑥, 𝜉) = 0.

Then for (1 − 𝜌) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏

𝑎
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑠+𝑚

2 (ℝ𝑛) → 𝐻𝑠
2(ℝ

𝑛) is compact.

Lemma 4.2. Let 𝑚 ∈ ℝ, 0 ≤ 𝛿 ≤ 1, 1 < 𝑝 < ∞, 𝑚̃ ∈ ℕ0 and 0 < 𝜏 < 1. Moreover let 𝑀 ∈ ℕ ∪ {∞} with 𝑀 > 𝑛 ⋅max
{

1
2 ,

1
𝑝

}
.

Additionally let 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚
1,𝛿(ℝ

𝑛 ×ℝ𝑛;𝑀) be such that

lim|𝑥|+|𝜉|→∞
(1 + |𝜉|)−𝑚𝑎(𝑥, 𝜉) = 0.

Then for −(1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏

𝑎
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑠+𝑚

𝑝 (ℝ𝑛) → 𝐻𝑠
𝑝 (ℝ

𝑛) is compact.

By means of those two lemmas we obtain the next two corollaries:

Proposition 4.3. Let 0 ≤ 𝛿 ≤ 𝜌 ≤ 1,𝑚 ∈ ℝ,𝑀 > 𝑛

2 and 𝜀 > 0. Moreover let 𝑚̃ ∈ ℕ0 and 0 < 𝜏 < 1 be such that 𝑚̃ + 𝜏 >
1−𝜌

1−𝛿
⋅ 𝑛

2
if 𝜌 < 1. Additionally let 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚−𝜀

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) ∩ 𝐶𝑚̃,𝜏 𝑆̇𝑚−𝜀

𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛; 0). Then for all 𝑠 ∈ ℝ with

(1 − 𝜌) ⋅ 𝑛
2
− (1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏,

the operator

𝑎
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑚+𝑠

2 (ℝ𝑛) → 𝐻𝑠
2(ℝ

𝑛) is compact.

Proof. Since 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚−𝜀
𝜌,𝛿

(ℝ𝑛 ×ℝ𝑛; 0) implies |𝑎(𝑥, 𝜉)|⟨𝜉⟩−𝑚
|𝑥|+|𝜉|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0, the claim is a consequence of Lemma 4.1. □

Proposition 4.4. Let 0 ≤ 𝛿 ≤ 1, 𝑚 ∈ ℝ, 𝑀 > 𝑛 ⋅max
{ 1
2 ,

1
𝑝

}
where 1 < 𝑝 < ∞ and 𝜀 > 0. Moreover let 𝑚̃ ∈ ℕ0 and 0 < 𝜏 < 1.

Additionally let 𝑎 ∈ 𝐶𝑚̃,𝜏𝑆𝑚−𝜀
1,𝛿 (ℝ𝑛 ×ℝ𝑛;𝑀) ∩ 𝐶𝑚̃,𝜏 𝑆̇𝑚−𝜀

1,𝛿 (ℝ𝑛 ×ℝ𝑛; 0). Then for all 𝑠 ∈ ℝ with

−(1 − 𝛿)(𝑚̃ + 𝜏) < 𝑠 < 𝑚̃ + 𝜏,

the operator

𝑎
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑚+𝑠

𝑝 (ℝ𝑛) → 𝐻𝑠
𝑝 (ℝ

𝑛) is compact.

Proof. Since 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̇𝑚−𝜀
𝜌,𝛿

(ℝ𝑛 ×ℝ𝑛; 0) implies |𝑎(𝑥, 𝜉)|⟨𝜉⟩−𝑚
|𝑥|+|𝜉|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0, the claim is a consequence of Lemma 4.2. □

In order to verify an asymptotic expansion of the product of two double symbols, we need the next theorem. It can be proved

by means of the usual verifications of the similar result in the smooth case, see e.g. [11, Theorem 3.1]. For the convenience of

the reader, we give a short sketch of the proof.
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840 ABELS AND PFEUFFER

Theorem 4.5. Let 0 ≤ 𝛿 ≤ 𝜌 ≤ 1, 𝑚1, 𝑚2 ∈ ℝ, 𝑀1,𝑀2 ∈ ℕ0 ∪ {∞} with 𝑀1 > 𝑛 + 1, 𝑚̃ ∈ ℕ0 and 0 < 𝜏 < 1. For
𝑎 ∈ 𝐶𝑚̃,𝜏𝑆

𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
we define

𝑎𝐿(𝑥, 𝜉) ∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎
(
𝑥, 𝜉 + 𝜂, 𝑥 + 𝑦, 𝜉

)
dy đ𝜂 for all 𝑥, 𝜉 ∈ ℝ𝑛.

Additionally we set for all 𝜃 ∈ [0, 1] and 𝛾 ∈ ℕ𝑛
0 with |𝛾| ≤ 𝑀1 − (𝑛 + 1)

𝑟𝛾,𝜃(𝑥, 𝜉) ∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝜕𝛾𝜂𝐷
𝛾
𝑦𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
dy đ𝜂 for all 𝑥, 𝜉 ∈ ℝ𝑛.

Moreover we define 𝑀̃𝑘 ∶= min
{
𝑀1 − 𝑘 − (𝑛 + 1);𝑀2

}
for all 𝑘 ≤ 𝑀1 − (𝑛 + 1). Then we get for all 𝑁 ≤ 𝑀1 − (𝑛 + 1), that

𝑎𝐿(𝑥, 𝜉) =
∑
|𝛼|<𝑁

1
𝛼!

𝜕𝛼𝜂𝐷
𝛼
𝑦𝑎
(
𝑥, 𝜉 + 𝜂, 𝑥 + 𝑦, 𝜉

) |||𝜂=𝑦=0 +𝑅𝑁 (𝑥, 𝜉) , (4.1)

where

𝑅𝑁 (𝑥, 𝜉) ∶= 𝑁 ⋅
∑
|𝛾|=𝑁

∫
1

0

(1 − 𝜃)𝑁−1

𝛾!
𝑟𝛾,𝜃(𝑥, 𝜉) d𝜃 ∈ 𝐶𝑚̃,𝜏𝑆

𝑚1+𝑚2−(𝜌−𝛿)⋅𝑁
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑁

)
and {

𝑟𝛾,𝜃(𝑥, 𝜉) ∶ |𝜃| ≤ 1
}
⊆ 𝐶𝑚̃,𝜏𝑆

𝑚1+𝑚2−(𝜌−𝛿)⋅𝑁
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑁

)
is bounded.

If 𝜕𝛾
𝜉
𝐷

𝛾
𝑦𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̂

𝑚1−𝜌,𝑚2+𝛿

𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1 − 1,𝑀2

)
for |𝛾| = 1 then

𝑅𝑁 (𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏 𝑆̇
𝑚1+𝑚2−(𝜌−𝛿)⋅𝑁
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑁

)
for all 𝑁 ≤ 𝑀1 − (𝑛 + 1).

Proof. An application of the Taylor expansion formula to the second variable of 𝑎 around 𝜉 and integration by parts provides

𝑎𝐿(𝑥, 𝜉) =
∑
|𝛾|<𝑁

1
𝛾!

Os -∬ 𝑒−𝑖𝑦⋅𝜂𝐷𝛾
𝑦𝜕

𝛾
𝜂𝑎
(
𝑥, 𝜉 + 𝜂, 𝑥 + 𝑦, 𝜉

)
dy đ𝜂

+𝑁
∑
|𝛾|=𝑁

Os -∬ 𝑒−𝑖𝑦⋅𝜂 𝜂
𝛾

𝛾!

1

∫
0

(1 − 𝜃)𝑁−1𝜕𝛾𝜂𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
d𝜃 dy đ𝜂.

Next we need to exchange the oscillatory integral with the integral in the second term of the right side of the previous equality.

Hence we choose an arbitrary 𝜒 ∈ (ℝ𝑛) with 𝜒(0) = 1 and let 𝛾 ∈ ℕ𝑛
0 with |𝛾| = 𝑁 . Now let 𝑙 = 𝑛 + 1 and 𝑙 = 1 + ⌈𝑚1+𝑛

1−𝛿
⌉.

Then we obtain due to the Theorem of Fubini and integration by parts using 𝑒−𝑖𝑦⋅𝜂 = 𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝐴𝑙
(
𝐷𝜂, 𝑦

)
𝑒−𝑖𝑦⋅𝜂 , see (2.3) and

(2.4) for the definition of 𝐴𝑙(𝐷., .), for each 𝜀 > 0:

∫
ℝ𝑛

∫
ℝ𝑛

1

∫
0

𝑒−𝑖𝑦⋅𝜂𝜒(𝜀𝑦)𝜒
(
𝜀𝜂
)
𝜂𝛾 (1 − 𝜃)𝑁−1𝜕𝛾𝜂𝑎

(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
d𝜃 dy đ𝜂

=
1

∫
0

(1 − 𝜃)𝑁−1 ∫
ℝ𝑛

∫
ℝ𝑛

𝑒−𝑖𝑦⋅𝜂𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝐴𝑙
(
𝐷𝜂, 𝑦

){
𝜒
(
𝜀𝜂
)
𝐷𝛾

𝑦

[
𝜒(𝜀𝑦)𝜕𝛾𝜂𝑎

(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)]}
dy đ𝜂 d𝜃. (4.2)

Here the assumptions of the Theorem of Fubini and of integration by parts can be verified. Since 𝜒 ∈ (ℝ𝑛), 𝐷𝛼
𝑦𝜒(𝜀𝑦) → 0 for

𝜀 → 0 if |𝛼| ≠ 0. Hence we get by interchanging the limit and the integration on account of (4.2) and since the integrand has an
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ABELS AND PFEUFFER 841

𝐿1-majorant:

Os -∬ 𝑒−𝑖𝑦⋅𝜂 𝜂
𝛾

𝛾!

1

∫
0

(1 − 𝜃)𝑁−1𝜕𝛾𝜂𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
d𝜃 dy đ𝜂

= ∫
1

0

(1 − 𝜃)𝑁−1

𝛾! ∫
ℝ𝑛

∫
ℝ𝑛

𝑒−𝑖𝑦⋅𝜂𝐴𝑙
(
𝐷𝑦, 𝜂

)
𝐴𝑙
(
𝐷𝜂, 𝑦

){
𝐷𝛾

𝑦𝜕
𝛾
𝜂𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)}
dy đ𝜂 d𝜃

=
1

∫
0

(1 − 𝜃)𝑁−1

𝛾!
Os -∬ 𝑒−𝑖𝑦⋅𝜂𝐷𝛾

𝑦𝜕
𝛾
𝜂𝑎
(
𝑥, 𝜉 + 𝜃𝜂, 𝑥 + 𝑦, 𝜉

)
dy đ𝜂 d𝜃,

where the last equality holds because of Theorem 2.5. Hence (4.1) holds. The rest of the claim is a consequence of

Theorem 3.10. □

As a consequence of the previous theorem, we obtain:

Corollary 4.6. Let 𝑚̃1 ∈ ℕ0, 0 < 𝜏1 < 1, 𝑚1, 𝑚2 ∈ ℝ, 0 ≤ 𝛿 < 𝜌 ≤ 1; 𝑀1,𝑀2 ∈ ℕ0 ∪ {∞} with 𝑀1 > 𝑛 + 1. Additionally let
𝑁 ∶= 𝑀1 − (𝑛 + 1). For 𝑎1 ∈ 𝐶𝑚̃1,𝜏1𝑆

𝑚1
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀1

)
and 𝑎2 ∈ 𝑆

𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
we define

𝑎(𝑥, 𝜉) ∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎1
(
𝑥, 𝜉 + 𝜂

)
𝑎2(𝑥 + 𝑦, 𝜉) dy đ𝜂

and for all 𝑘 ∈ ℕ with 𝑘 ≤ 𝑁 , 𝛾 ∈ ℕ𝑛
0 with |𝛾| = 𝑁 and 𝜃 ∈ [0, 1] we set

• 𝑎1♯𝑘𝑎2(𝑥, 𝜉) ∶=
∑
|𝛾|<𝑘

1
𝛾!𝜕

𝛾
𝜉
𝑎1(𝑥, 𝜉)𝐷

𝛾
𝑥𝑎2(𝑥, 𝜉),

• 𝑟𝛾,𝜃(𝑥, 𝜉) ∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝜕
𝛾
𝜂𝑎1
(
𝑥, 𝜉 + 𝜃𝜂

)
𝐷

𝛾
𝑦𝑎2(𝑥 + 𝑦, 𝜉) dy đ𝜂

for all 𝑥, 𝜉 ∈ ℝ𝑛. Moreover we define 𝑅𝑘 ∶ ℝ𝑛 ×ℝ𝑛 → ℂ as in Theorem 4.5. Then

𝑎(𝑥, 𝜉) = 𝑎1♯𝑘𝑎2(𝑥, 𝜉) + 𝑅𝑘(𝑥, 𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛

and with 𝑀̃𝑘 ∶= min
{
𝑀1 − 𝑘 + 1;𝑀2

}
and 𝑁̃𝑘 ∶= min

{
𝑀1 − 𝑘 − (𝑛 + 1);𝑀2

}
we obtain

• 𝑎1♯𝑘𝑎2(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
,

• 𝑅𝑘(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2−(𝜌−𝛿)𝑘
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃𝑘

)
.

In particular we have 𝑎(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃1

)
. If we even have 𝑎2 ∈ 𝑆̃

𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
or 𝐷

𝛽
𝑥𝑎2 ∈

𝑆̇
𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
for all 𝛽 ∈ ℕ𝑛

0 with |𝛽| = 1, then 𝑅𝑘(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1 𝑆̇
𝑚1+𝑚2−(𝜌−𝛿)𝑘
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃𝑘

)
for all 𝑘 ∈ ℕ with 𝑘 ≤ 𝑁 .

Proof. Since 𝑎1(𝑥, 𝜉)𝑎2(𝑦, 𝜉′) ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1,𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛 ×ℝ𝑛;𝑀1,𝑀2

)
we just need to show 𝑎1♯𝑘𝑎2(𝑥, 𝜉) ∈

𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
, the rest is a consequence of Theorem 4.5. Let 𝑘 ∈ ℕ with 𝑘 ≤ 𝑁 be arbitrary and 𝛼, 𝛽, 𝛾 ∈ ℕ𝑛

0
with |𝛾| < 𝑘, |𝛽| ≤ 𝑚̃1 and |𝛼| ≤ 𝑀̃𝑘. The choice of 𝑎1 and 𝑎2 provides by means of the Leibniz rule

|||𝜕𝛼𝜉 𝐷𝛽
𝑥

{
𝜕
𝛾
𝜉
𝑎1(𝑥, 𝜉)𝐷𝛾

𝑥𝑎2(𝑥, 𝜉)
}||| ≤ 𝐶𝛼,𝛽,𝛾 (𝑥)⟨𝜉⟩𝑚1+𝑚2−(𝜌−𝛿)|𝛾|−𝜌|𝛼|+𝛿|𝛽| (4.3)

for all 𝑥, 𝜉 ∈ ℝ𝑛, where 𝐶𝛼,𝛽,𝛾 (𝑥) is bounded. On account of (3.1) we know, that 𝐷
𝛾
𝑥𝑎2(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆

𝑚2+𝛿|𝛾|
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
.

Hence an application of Lemma 2.1, Remark 3.1 and the Leibniz rule provides

‖‖‖𝜕𝛼𝜉{𝜕𝛾𝜉 𝑎1(𝑥, 𝜉)𝐷𝛾
𝑥𝑎2(𝑥, 𝜉)

}‖‖‖𝐶𝑚̃1 ,𝜏1 (ℝ𝑛
𝑥)
≤ 𝐶𝛼,𝑚̃1,𝛾

⟨𝜉⟩𝑚1+𝑚2−(𝜌−𝛿)|𝛾|−𝜌|𝛼|+𝛿(𝑚̃1+𝜏1). (4.4)
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842 ABELS AND PFEUFFER

A combination of (4.3) and (4.4) yields

𝜕
𝛾
𝜉
𝑎1(𝑥, 𝜉)𝐷𝛾

𝑥𝑎2(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆𝑚1+𝑚2−(𝜌−𝛿)|𝛾|(ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
⊆ 𝐶𝑚̃1,𝜏1𝑆𝑚1+𝑚2

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
.

Hence 𝑎1♯𝑘𝑎2(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
. □

With the previous corollary at hand, we now can show the next statement:

Theorem 4.7. Let 𝑚̃1 ∈ ℕ0, 𝑚̃2 ∈ ℕ, 0 < 𝜏1, 𝜏2 < 1, 𝑚1, 𝑚2 ∈ ℝ and 0 ≤ 𝛿 < 𝜌 ≤ 1. Furthermore let 𝑝 = 2 if 𝜌 ≠ 1 and
1 < 𝑝 < ∞ else. We choose a 𝜃 ∉ ℕ0 with 𝜃 ∈

(
0,
(
𝑚̃2 + 𝜏2

)
(𝜌 − 𝛿)

)
, 𝜀̃ ∈

(
0,min

{
(𝜌 − 𝛿)𝜏2; (𝜌 − 𝛿)

(
𝑚̃2 + 𝜏2

)
− 𝜃; 𝜃

)})
and define (𝑚̃, 𝜏) ∶= (⌊𝑠⌋, 𝑠 − ⌊𝑠⌋), where 𝑠 ∶= min{𝑚̃1 + 𝜏1; 𝑚̃2 + 𝜏2 − ⌊𝜃⌋}. Additionally let 𝑀1,𝑀2 ∈ ℕ0 ∪ {∞} with

𝑀1 > (𝑛 + 1) + ⌈𝜃⌉ + 𝑛max
{

1
2 ,

1
𝑝

}
and 𝑀2 > 𝑛 ⋅max

{
1
2 ,

1
𝑝

}
. Moreover let 𝑎1 ∈ 𝐶𝑚̃1,𝜏1𝑆

𝑚1
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀1

)
and 𝑎2 ∈

𝐶𝑚̃2,𝜏2 𝑆̃
𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
such that

𝑎2(𝑥, 𝜉)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎2(∞, 𝜉) for all 𝜉 ∈ ℝ𝑛.

Then we get for each 𝑠 ∈ ℝ fulfilling (1 − 𝜌) 𝑛2 − (1 − 𝛿)(𝑚̃2 + 𝜏2) + 𝜃 + 𝜀̃ < 𝑠 + 𝑚1 < 𝑚̃ + 𝜏2 and (1 − 𝜌) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) +
𝑚̃+𝜏

𝑚̃2+𝜏2
(𝜃 + 𝜀̃) < 𝑠 < 𝑚̃ + 𝜏, that

𝑎1
(
𝑥,𝐷𝑥

)
𝑎2
(
𝑥,𝐷𝑥

)
−
(
𝑎1♯⌈𝜃⌉𝑎2)(𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1+𝑚2
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is compact.

where 𝑎1♯⌈𝜃⌉𝑎2(𝑥, 𝜉) is defined as in Corollary 4.6.

Remark 4.8. If we weaken the condition for the second symbol in the previous theorem to 𝑎2 ∈ 𝐶𝑚̃2,𝜏2𝑆
𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
, we

can show in the same way as in the proof of Theorem 4.7, the compactness of

𝑎1
(
𝑥,𝐷𝑥

)
𝑎2
(
𝑥,𝐷𝑥

)
−
(
𝑎1♯⌈𝜃⌉𝑎2)(𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1+𝑚2−𝜀
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛)

for some 𝜀 > 0.

Proof of Theorem 4.7. Let 1 < 𝑝 < ∞ if 𝜌 = 1 and 𝑝 = 2 else. Setting 𝛾 ∶= 𝛿 + 𝜃+𝜀̃

𝜏2+𝑚̃2
Corollary 4.6 provides for

𝑘∈ℕ with 𝑘 ≤ 𝑀1 − (𝑛 + 1) and 𝑀̃𝑘 ∶= min
{
𝑀1 − 𝑘 + 1;𝑀2

}
that the symbol 𝑎1♯𝑘𝑎2 has the following properties if

𝑎2 ∈ 𝑆̃
𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
:

i) 𝑎1♯𝑘𝑎2 ∈ 𝐶𝑚̃1,𝜏1𝑆
𝑚1+𝑚2
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛; 𝑀̃𝑘

)
,

ii) 𝜎
(
𝑎1
(
𝑥,𝐷𝑥

)
𝑎2
(
𝑥,𝐷𝑥

))
− 𝑎1♯𝑘𝑎2 ∈ 𝐶𝑚̃1,𝜏1 𝑆̇

𝑚1+𝑚2−(𝜌−𝛿)⋅𝑘
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃𝑘

)
,

where 𝑁̃𝑘 ∶= min
{
𝑀1 − 𝑘 − (𝑛 + 1);𝑀2

}
and

𝜎
(
𝑎1
(
𝑥,𝐷𝑥

)
𝑎2
(
𝑥,𝐷𝑥

))
∶= Os -∬ 𝑒−𝑖𝑦⋅𝜂𝑎1

(
𝑥, 𝜉 + 𝜂

)
𝑎2
(
𝑥 + 𝑦, 𝜂

)
dy đ𝜂.

Now let 𝑎2 ∈ 𝐶𝑚̃2,𝜏2 𝑆̃
𝑚2
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
be arbitrary. By means of Lemma 3.8 and Lemma 3.7 we get for all 𝛽 ∈ ℕ𝑛

0 with

0 < |𝛽| ≤ 𝑚̃2

iii) 𝑎𝑏2 ∈ 𝐶𝑚̃2,𝜏2 𝑆̃
𝑚2−𝜃
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
∩ 𝐶𝑚̃2,𝜏2 𝑆̇

𝑚2−𝜃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛; 0),

iv) 𝑎
♯

2 ∈ 𝑆
𝑚2
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
and 𝐷

𝛽
𝑥𝑎

♯

2 ∈ 𝑆̇
𝑚2
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀2

)
,

v) 𝑎2(𝑥, 𝜉) = 𝑎𝑏2(𝑥, 𝜉) + 𝑎
♯

2(𝑥, 𝜉) for all 𝑥, 𝜉 ∈ ℝ𝑛,

Now let 𝑠 be as in the assumptions. Due to Proposition 4.4 and Proposition 4.3 we know that

𝑎𝑏2
(
𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1+𝑚2
𝑝 (ℝ𝑛) → 𝐻

𝑠+𝑚1
𝑝 (ℝ𝑛) is compact.
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On account of the boundedness of 𝑎1
(
𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛), see Theorem 3.2, we obtain

𝑎1
(
𝑥,𝐷𝑥

)
𝑎𝑏2
(
𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1+𝑚2
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is compact. (4.5)

Then we obtain by means of the Leibniz rule, Lemma 2.1 and 𝑎𝑏2 ∈ 𝐶𝑚̃2,𝜏2 𝑆̇
𝑚2−𝜃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛; 0) for all 𝛼 ∈ ℕ𝑛

0 with |𝛼| < ⌈𝜃⌉:
𝜕𝛼
𝜉
𝑎1(𝑥, 𝜉)𝐷𝛼

𝑥𝑎
𝑏
2(𝑥, 𝜉) ∈ 𝐶𝑚̃,𝜏𝑆

𝑚1+𝑚2−𝜃
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛; min

{
𝑀1 − |𝛼|;𝑀2

})
∩ 𝐶𝑚̃,𝜏 𝑆̇

𝑚1+𝑚2−𝜃
𝜌,𝛾 (ℝ𝑛 ×ℝ𝑛; 0). (4.6)

Due to (4.6), Proposition 4.4 and Proposition 4.3 provides for all 𝛼 ∈ ℕ𝑛
0 with |𝛼| < ⌈𝜃⌉:(

𝜕𝛼
𝜉
𝑎1𝐷

𝛼
𝑥𝑎

𝑏
2

)(
𝑥,𝐷𝑥

)
∶ 𝐻

𝑠+𝑚1+𝑚2
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is compact. (4.7)

Since 𝑎1 ∈ 𝐶𝑚1,𝜏1𝑆
𝑚1
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛;𝑀1

)
and (iv) holds, we obtain together with (v) and (i), (ii) applied on 𝑎

♯

2 instead on 𝑎2

𝑎1
(
𝑥,𝐷𝑥

)
𝑎2
(
𝑥,𝐷𝑥

)
−
(
𝑎1♯⌈𝜃⌉𝑎2)(𝑥,𝐷𝑥

)
= 𝑎1

(
𝑥,𝐷𝑥

)
𝑎𝑏2
(
𝑥,𝐷𝑥

)
−

∑
|𝛼|<⌈𝜃⌉

1
𝛼!
(
𝜕𝛼
𝜉
𝑎1𝐷

𝛼
𝑥𝑎

𝑏
2
)(

𝑥,𝐷𝑥

)
+𝑅⌈𝜃⌉(𝑥,𝐷𝑥

)
, (4.8)

where

𝑅⌈𝜃⌉(𝑥, 𝜉) ∈ 𝐶𝑚̃1,𝜏1 𝑆̇
𝑚1+𝑚2−(𝜌−𝛿)⌈𝜃⌉
𝜌,𝛾

(
ℝ𝑛 ×ℝ𝑛; 𝑁̃⌈𝜃⌉).

Because of Proposition 4.4 and Proposition 4.3, we get

𝑅⌈𝜃⌉(𝑥,𝐷𝑥) ∶ 𝐻
𝑠+𝑚1+𝑚2
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is compact. (4.9)

A combination of (4.8), (4.5), (4.7) and (4.9) yields the claim. □

In order to verify the main result of our paper, we use:

Lemma 4.9. Let 𝑚̃ ∈ ℕ0, 𝑁 ∈ ℕ, 0 < 𝜏 < 1, 0 ≤ 𝛿 < 𝜌 ≤ 1 and 𝑀 ∈ ℕ0 ∪ {∞}. Let 𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

be
such that property 1) of Theorem 1.1 hold. Moreover let 𝜓 ∈ 𝐶∞

𝑏
(ℝ𝑛) be such that 𝜓(𝑥) = 0 if |𝑥| ≤ 1 and 𝜓(𝑥) = 1 if |𝑥| ≥ 2.

Then 𝑏 ∶ ℝ𝑛 ×ℝ𝑛 → ℂ𝑁×𝑁 defined by

𝑏(𝑥, 𝜉) ∶= 𝜓
(
𝑅−2(|𝑥|2 + |𝜉|2))𝑎(𝑥, 𝜉)−1 for all 𝑥, 𝜉 ∈ ℝ𝑛

is an element of 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

.

Proof. First we assume that 𝑁 = 1. We remark that 𝑏(𝑥, 𝜉) is 0 if |𝑥|2 + |𝜉|2 ≤ 𝑅2 and 𝑏(𝑥, 𝜉) = 1, if |𝑥|2 + |𝜉|2 ≥ 2𝑅2. Using

property 1) of 𝑎 we can verify ‖‖‖𝑎(., 𝜉)−1‖‖‖𝐶0(ℝ𝑛)
≤ 𝐶 and

‖‖‖𝑎(., 𝜉)−1‖‖‖𝐶0,𝜏 (ℝ𝑛)
≤ 𝐶 (4.10)

for all |𝜉| ≥ 𝑅. Due to the product rule we can write each derivative 𝜕𝛼
𝜉
𝐷

𝛽
𝑥𝑎(𝑥, 𝜉)−1 (𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 , |𝛽| ≤ 𝑚̃) as the

sum of terms of the form

𝜕
𝛼1
𝜉
𝐷

𝛽1
𝑥 𝑎(𝑥, 𝜉) ⋅… ⋅ 𝜕𝛼𝑘

𝜉
𝐷

𝛽𝑘
𝑥 𝑎(𝑥, 𝜉) ⋅ 𝑎(𝑥, 𝜉)−𝑙,

where 𝛼1 +⋯ + 𝛼𝑘 = 𝛼 and 𝛽1 +⋯ + 𝛽𝑘 = 𝛽 ∈ ℕ𝑛
0, 𝑘, 𝑙 ∈ ℕ. By means of Lemma 2.1, the inequality (4.10), property 1) and

𝑎 ∈ 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) we get

‖‖‖𝜕𝛼1𝜉 𝐷
𝛽1
𝑥 𝑎(𝑥, 𝜉) ⋅… ⋅ 𝜕𝛼𝑘

𝜉
𝐷

𝛽𝑘
𝑥 𝑎(𝑥, 𝜉) ⋅ 𝑎(𝑥, 𝜉)−𝑙‖‖‖𝐶0,𝜏 (ℝ𝑛

𝑥)
≤ 𝐶𝛼,𝛽⟨𝜉⟩−𝜌|𝛼|+𝛿(|𝛽|+𝜏),

|||𝜕𝛼1𝜉 𝐷
𝛽1
𝑥 𝑎(𝑥, 𝜉) ⋅… ⋅ 𝜕𝛼𝑘

𝜉
𝐷

𝛽𝑘
𝑥 𝑎(𝑥, 𝜉) ⋅ 𝑎(𝑥, 𝜉)−𝑙||| ≤ 𝐶𝛼,𝛽(𝑥)⟨𝜉⟩−𝜌|𝛼|+𝛿|𝛽|
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844 ABELS AND PFEUFFER

for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝜉| ≥ 𝑅. Here 𝐶𝛼,𝛽(𝑥) is bounded and 𝐶𝛼,𝛽(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 if |𝛽| ≠ 0. Hence we obtain for all 𝛼, 𝛽 ∈ ℕ𝑛

0 with|𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃: ‖‖‖𝜕𝛼𝜉 𝑎(𝑥, 𝜉)−1‖‖‖𝐶𝑚̃,𝜏 (ℝ𝑛
𝑥)
≤ 𝐶𝛼,𝑚̃⟨𝜉⟩−𝜌|𝛼|+𝛿(𝑚̃+𝜏) for all 𝜉 ∈ ℝ𝑛 with |𝜉| ≥ 𝑅, (4.11)

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎(𝑥, 𝜉)

−1||| ≤ 𝐶𝛼,𝛽(𝑥)⟨𝜉⟩−𝜌|𝛼|+𝛿|𝛽| for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝑥|2 + |𝜉|2 ≥ 𝑅2. (4.12)

Here 𝐶𝛼,𝛽(𝑥) is bounded and 𝐶𝛼,𝛽(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 if |𝛽| ≠ 0. Now let 𝛼, 𝛽 ∈ ℕ𝑛

0 with |𝛼| ≤ 𝑀 and |𝛽| ≤ 𝑚̃ be arbitrary. On account

of the product rule and the definition of 𝜓 , we obtain|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

||| = 0 for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝑥|2 + |𝜉|2 ≤ 𝑅2. (4.13)

Now let 𝜉 ∈ ℝ𝑛 with 0 ≤ |𝜉|2 ≤ 2𝑅2. Then we have for all 𝛼1, 𝛽1 ∈ ℕ𝑛
0, that ⟨𝜉⟩𝜌|𝛼1|−𝛿|𝛽1| ≤ 𝐶𝑅. Together with (4.11) and (4.12)

an application of the product rule and Lemma 2.1 provides‖‖‖𝜕𝛼𝜉 𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

‖‖‖𝐶0,𝜏 (ℝ𝑛
𝑥)
≤ 𝐶𝛼,𝛽,𝑅⟨𝜉⟩−𝜌|𝛼|+𝛿(|𝛽|+𝜏), (4.14)

where 𝐶𝛼,𝛽,𝑅 is independent of 𝜉 ∈ ℝ𝑛 with 0≤ |𝜉|2 ≤ 2𝑅2. Moreover we obtain for all 𝑥, 𝜉 ∈ ℝ𝑛 with 𝑅2 ≤ |𝑥|2 + |𝜉|2 ≤ 2𝑅2:

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

||| ≤ ∑
𝛼1+𝛼2=𝛼
𝛽1+𝛽2=𝛽

𝐶𝛼1,𝛽1
|||𝜕𝛼1𝜉 𝐷

𝛽1
𝑥 𝜓

(
𝑅−2(|𝑥|2 + |𝜉|2))||||||𝜕𝛼2𝜉 𝐷

𝛽2
𝑥 𝑎(𝑥, 𝜉)−1|||

≤ 𝐶𝛼,𝛽,𝑅(𝑥)⟨𝜉⟩−𝜌|𝛼|+𝛿|𝛽|, (4.15)

where 𝐶𝛼,𝛽,𝑅(𝑥) is independent of 𝜉 ∈ ℝ𝑛 with 𝑅2 ≤ |𝜉|2 ≤ 2𝑅2 and bounded with respect to 𝑥. Now let 𝜉 ∈ ℝ𝑛 with |𝜉|2 ≥ 2𝑅2.

Then 𝜓
(
𝑅−2(|𝑥|2 + |𝜉|2)) = 1. Hence we obtain by means of (4.11)

‖‖‖𝜕𝛼𝜉 𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

‖‖‖𝐶0,𝜏 (ℝ𝑛
𝑥)
≤ 𝐶𝛼,𝛽,𝑅⟨𝜉⟩−𝜌|𝛼|+𝛿(|𝛽|+𝜏), (4.16)

where 𝐶𝛼,𝛽,𝑅 is independent of 𝜉 ∈ ℝ𝑛 with |𝜉|2 ≥ 2𝑅2. Moreover (4.12) implies for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝑥|2 + |𝜉|2 ≥ 2𝑅2

|||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑏(𝑥, 𝜉)

||| = |||𝜕𝛼𝜉 𝐷𝛽
𝑥𝑎(𝑥, 𝜉)

−1||| ≤ 𝐶𝛼,𝛽,𝑅(𝑥)⟨𝜉⟩−𝜌|𝛼|+𝛿|𝛽|, (4.17)

where 𝐶𝛼,𝛽,𝑅(𝑥) is bounded, independent of 𝜉 ∈ ℝ𝑛 with |𝜉|2 ≥ 2𝑅2 and 𝐶𝛼,𝛽,𝑅(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 if |𝛽| ≠ 0. Now a combination of

(4.13), (4.14), (4.15), (4.16) and (4.17) provides the claim: For all 𝛼, 𝛽 ∈ ℕ𝑛
0 with |𝛼| ≤ 𝑁 , |𝛽| ≤ 𝑚̃ we have

‖‖‖𝜕𝛼𝜉 𝑏(𝑥, 𝜉)‖‖‖𝐶𝑚̃,𝜏 (ℝ𝑛
𝑥)
= max|𝛾|≤𝑚̃

‖‖‖𝜕𝛼𝜉 𝐷𝛾
𝑥𝑏(𝑥, 𝜉)

‖‖‖𝐶0,𝜏 (ℝ𝑛
𝑥)
≤ 𝐶𝛼,𝑚̃,𝑅⟨𝜉⟩−𝜌|𝛼|+𝛿(𝑚̃+𝜏)

for all 𝜉 ∈ ℝ𝑛 and |||𝜕𝛼𝜉 𝐷𝛾
𝑥𝑏(𝑥, 𝜉)

||| ≤ 𝐶𝛼,𝑚̃,𝑅(𝑥)⟨𝜉⟩−𝜌|𝛼|+𝛿|𝛽| for all 𝑥, 𝜉 ∈ ℝ𝑛,

where 𝐶𝛼,𝑚̃,𝑅(𝑥) is bounded and 𝐶𝛼,𝛽,𝑅(𝑥)
|𝑥|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0 if |𝛽| ≠ 0.

Finally, let us consider the general case 𝑁 ∈ ℕ. Then the case 𝑁 = 1 implies that 𝑏̃ defined by

𝑏̃(𝑥, 𝜉) ∶= 𝜓
(
𝑅−2(|𝑥|2 + |𝜉|2))det(𝑎(𝑥, 𝜉))−1 for all 𝑥, 𝜉 ∈ ℝ𝑛

is an element of 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀). Now the statement of the lemma easily follows from Cramer’s rule and the fact that

𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿
(ℝ𝑛 ×ℝ𝑛;𝑀) is closed with respect to pointwise multiplication. □

Using the main idea of the analog result in the smooth case, see [11, Theorem 5.16], we now are able to verify Theorem 1.1:
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ABELS AND PFEUFFER 845

Proof of Theorem 1.1. First of all we assume, that 𝑚 = 0. In order to prove the claim let us choose 𝜓 ∈ 𝐶∞
𝑏
(ℝ𝑛) such that

𝜓(𝑥) = 0 if |𝑥| ≤ 1 and 𝜓(𝑥) = 1 if |𝑥| ≥ 2. Then 𝑏 ∶ ℝ𝑛 ×ℝ𝑛 → ℒ
(
ℂ𝑁
)

defined by

𝑏(𝑥, 𝜉) ∶= 𝜓
(
𝑅−2(|𝑥|2 + |𝜉|2))𝑎(𝑥, 𝜉)−1 for all 𝑥, 𝜉 ∈ ℝ𝑛

is an element of 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

on account of Lemma 4.9. Using Theorem 4.7 we obtain for all 𝑠 ∈ ℝ with

(1 − 𝜌) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) + 𝜃 + 𝜀̃ < 𝑠 < 𝑚̃ + 𝜏 and 1 < 𝑝 < ∞ with 𝑝 = 2 if 𝜌 ≠ 1:

i) 𝑎
(
𝑥,𝐷𝑥

)
𝑏
(
𝑥,𝐷𝑥

)
= 𝑂𝑃 (𝑎𝑏) + 𝑅1,

ii) 𝑏
(
𝑥,𝐷𝑥

)
𝑎
(
𝑥,𝐷𝑥

)
= 𝑂𝑃 (𝑎𝑏) + 𝑅2,

where

𝑅1, 𝑅2 ∶ 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 → 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 are compact.

By means of the Leibniz formula and Lemma 2.1 we get

𝑎(𝑥, 𝜉)𝑏(𝑥, 𝜉) − 𝐼 ∈ 𝐶𝑚̃,𝜏𝑆0
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

.

An application of Lemma 4.1 in the case 𝜌 ≠ 1 and Lemma 4.2 else provides, that

OP(ab − 𝐼) ∶ 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 → 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 is compact (4.18)

for all (1 − 𝛿) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) + 𝜃 + 𝜀̃ < 𝑠 < 𝑚̃ + 𝜏, where 𝑝 = 2 if 𝜌 ≠ 1. Together with i) we obtain:

𝑎
(
𝑥,𝐷𝑥

)
𝑏
(
𝑥,𝐷𝑥

)
= OP(𝑎𝑏) − Id + Id +𝑅1 = Id +

[
OP(𝑎𝑏 − 𝐼) + 𝑅1

]
,

where

OP(𝑎𝑏 − 𝐼) + 𝑅1 ∶ 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 → 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 is compact

for all (1 − 𝛿) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) + 𝜃 + 𝜀̃ < 𝑠 < 𝑚̃ + 𝜏, where 𝑝 = 2 if 𝜌 ≠ 1. Analogous we obtain on account of ii) and (4.18)

𝑏
(
𝑥,𝐷𝑥

)
𝑎
(
𝑥,𝐷𝑥

)
= OP(ab) − Id + Id +𝑅2 = Id +

[
OP(ab − 1) +𝑅2

]
,

where

OP(𝑎𝑏 − 𝐼) + 𝑅2 ∶ 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 → 𝐻𝑠
𝑝 (ℝ

𝑛)𝑁 is compact

for all (1 − 𝛿) 𝑛2 − (1 − 𝛿)(𝑚̃ + 𝜏) + 𝜃 + 𝜀̃ < 𝑠 < 𝑚̃ + 𝜏, where 𝑝 = 2 if 𝜌 ≠ 1. This implies the claim for 𝑚 = 0. For general

𝑚 ∈ ℝ, we use that ⟨𝐷𝑥⟩𝑚 ∶ 𝐻𝑚+𝑠
𝑝 (ℝ𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is a Fredholm operator for all 𝑠 ∈ ℝ since it is invertible. An application of

the case 𝑚 = 0 to

𝑎̃(𝑥, 𝜉) ∶= 𝑎(𝑥, 𝜉)⟨𝜉⟩−𝑚 ∈ 𝐶𝑚̃,𝜏 𝑆̃0
𝜌,𝛿

(
ℝ𝑛 ×ℝ𝑛;𝑀 ;ℒ

(
ℂ𝑁
))

yields that 𝑎̃
(
𝑥,𝐷𝑥

)
∶ 𝐻𝑠

𝑝 (ℝ
𝑛) → 𝐻𝑠

𝑝 (ℝ
𝑛) is a Fredholm operator. Since the composition of two Fredholm operators is a Fred-

holm operator again, we finally obtain the statement of this theorem on account of

𝑎
(
𝑥,𝐷𝑥

)
= 𝑎̃(𝑥,𝐷𝑥)diag

(⟨𝐷𝑥⟩𝑚,… , ⟨𝐷𝑥⟩𝑚) ∶ 𝐻𝑚+𝑠
𝑝 (ℝ𝑛)𝑁 → 𝐻𝑠

𝑝 (ℝ
𝑛)𝑁,

where diag
(⟨𝐷𝑥⟩𝑚,… , ⟨𝐷𝑥⟩𝑚) is the 𝑁 ×𝑁 diagonal operator matrix with diagonal entries ⟨𝐷𝑥⟩𝑚. □
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