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1 | INTRODUCTION

Fredholm operators are often called nearly invertible operators. They admit dimension formulae similar to linear operators
between finite dimensional spaces. Because of this they play an important role in the field of partial differential equations in order
to get existence and uniqueness results. Great effort was already spent to get conditions for the Fredholmness of smooth pseudod-
ifferential operators with symbols in the Hormander-class .S ;’”(S(R" X R") 1= pren S::,l&(R" X R"; M), where 0 < p,6 < 1 and
m € R. Here the symbol-class .§ Za(R" X R"; M) consists of all M -times continuous differentiable functions a : R” X R" — C
that are smooth with respect to the spatial variable such that for all k € N,

|a|§(m) = max sup
|a<min{k.M}.|81<k x seRr

()g()f:a(x, §)|<§>—(m—ﬂ|a|+5|ﬁ|) < o0.

For every symbol a € S;" 5(R" X R"; M) we define the associated pseudodifferential operator via

OP(a)u(x) := a(x, D, )u(x) := /ei"'éa(x, &ag)ac for allu € S(R"),x € R", (1.1)
Rﬂ
where d¢ := L g & and S(R") denotes the Schwartz space, i.e., the space of all rapidly decreasing smooth functions and # is

T Q)
the Fourier transformation of u.

In [9] Kohn and Nirenberg showed, that the ellipticity of a classical smooth pseudodifferential operator is necessary for its
Fredholm property. Apart from necessary conditions Kumano-go gave in [11, Chapter III, Theorem 5.16] sufficient conditions
for the Fredholmness of smooth pseudodifferential operators. He showed that pseudodifferential operators with so called slowly
varying smooth symbols a of order m are Fredholm operators from H. é"(IR") to L?(R") under certain ellipticity conditions. The
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ellipticity conditions are satisfied if a is uniformly elliptic in the sense that
la(x, &)| = C|&E|™ for all x, & € R" with |x| + [€] > R 1.2)

for some R,C > 0. Here H ; (R™) denotes a Bessel Potential Space for p € (1, ) and s € R, defined in Section 2. Moreover,
ae S;"(S(R" X R") is slowly varying if for all a, f € NS with f # 0 we have

080la(x. )] < C, 01+ 1el)"

for a bounded function C, 4 : R" — R with C, 4(x) = 0 if |[x| — oco. In [18] Schrohe extended the result of Kumano-go as
follows: Smooth pseudodifferential operators with slowly varying symbols of the order zero are Fredholm operators on the
weighted Sobolev spaces H. ;’(R"), see [18] for the definition, if and only if its symbol is uniformly elliptic.

In applications (e.g. to non-linear PDEs) also non-smooth pseudodifferential operators appear naturally. Therefore we are
interested in sufficient conditions for non-smooth pseudodifferential operators to become a Fredholm operator from H ;”([R”)
to LP(R"), where m € R, 1 < p < o0. For non-smooth differential operators the Fredholm property can be characterized by the
uniform ellipticity of its symbol. This was announced by Cordes in [3], completed by Illner in [8] and partially recovered by Fan
and Wong in [5]. This characterization of the Fredholm property was extended to the matrix-valued case in [6] for p = 2 and in
[19] for general p € (1, 00). In the case p = 2 an alternative proof by means of the tool of C*-algebras, was given by Taylor in
[20]. The goal of this paper is to give sufficient conditions for the Fredholm property of pseudodifferential operators a(x, Dx)
with a symbol a in the non-smooth symbol-class C'h*TS;'f(S(R” xR M; Z(CN)),0<p,6 <1, M €NyU {0}, m € R. For
the definition of the Holder space C™7 of the order m € N, with Holder regularity 0 < 7 < 1 we refer to Section 2 below. A
function a : R" x R" — C is an element of the symbol-class C"™7.S Zﬁ(IR" X R"; M), m € R, if the following properties hold
foralle, p € NS with |f| < mand |a| < M:

i) da(x,.) € CMR") forall x € R,
.. p 0
ii) d9¢ofa € CO(R] xR}),

iii)

ota(x, 5)’ < ¢ (&ymrlal for all x, & € R,

oza(.8)| < €, (&)ymrlal+o0D) for gl & € R,

iv)

Cr?l,r(Rn)

Moreover, a : R" X R" — Q(CN) is an element of the symbol-class C’hJS;"&(R" X R”;M;Z(CN)), meR, NeN,
if and only if a;, EC’F”TS/’)"(S(IR”xR”;M) for all j,k=1,...,N, where we identify A€ Z(C") with a matrix

(a j,k)j.\sz | € CN*N in the standard way. For a given symbol a we define the associated pseudodifferential operator as in
the smooth case, cf. (1.1). We remark that in the literature there are also some results concerning the Fredholm property of
pseudodifferential operators on compact manifolds, see e.g. [7], [15]. Nistor even gave some criteria for the Fredholmness of
pseudodifferential operators on non-compact manifolds in [16].

In the present paper we proceed as follows: We give a short summary of all notations and function spaces needed in Section 2.
Moreover we introduce the space of amplitudes and the oscillatory integrals. In Section 3 we define all symbol-classes of pseu-
dodifferential operators needed later on and present their properties. In particular we extend the concept of symbol-smoothing
presented in [21, Section 1.3]. Together with the extension of the symbol reduction result of [2] for non-smooth double symbols,
see Subsection 3.2 below, the symbol-smoothing becomes the main ingredient in order to verify the main result of our paper:

Theorem 1.1. Let i, N €N, 0<7<1,0<6<p<I,meR M eNyU {oo}and p € (1,c0) withp =2 if p # 1. Addition-
ally we choose an arbitrary 6 € (0; min{(m + 7)(p — 6); 1}) and & € (0,min{(p — 6)7;(p — 6)(Im + t) — 0;0)}). Moreover let
ae C’h’TS’;"é(IR” X R"; M; Z(CN)) be a symbol fulfilling the following properties for some R > 0 and Cy > 0:

1) | det(a(x,E)EY™N > C, for all x,& € R" with |x| + |£] > R.
2) a(x, &) 2%, 4(c0, &) forall & € R”.

Then forall M > (n+2)+n-max{1/2,1/p} and s € R with

(1—p)g—(l—a)(m+1)+0+g<s<rh+f
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the operator

a(x,D,) : H;””([R”)N N H;(R”)N
is a Fredholm operator.

As in the smooth case, we restrict ourselves to the case of slowly varying symbols in order to show the Fredholm property. As
Schrohe already wrote in [18] for a parameter construction of non-classical smooth symbols more than invertibility of the symbol
is needed and the parametrix can differ from the Fredholm inverse. We see, that many conditions are needed in Theorem 1.1
to show the Fredholm property of a non-smooth pseudodifferential operator. Hence the question arises which of them are of
technical nature and which of them are really necessary. In the smooth case Schrohe showed in [18] that the uniform ellipticity
of a zero order symbol a is a necessary condition for a(x, Dx) being a Fredholm operator. By means of the composition with
order reducing operators one easily obtains that the uniform ellipticity of a smooth symbol a of arbitrary order is also a necessary
condition for a(x, Dx) being a Fredholm operator. Uniform ellipticity for systems is equivalent to condition 1). For non-smooth
differential operators this condition is also necessary, cf. [19]. Therefore 1) is necessary at least if a is smooth or a(x, Dx) is
a differential operator. Additionally in the smooth case, also the condition 0 < § < p < 1 arises. Since each Fredholm operator
T : HIT“(R”) - H;(IR”) is continuous, it is natural to impose

i) M>max{§ ﬂ}
ii) rh+r>iﬁ-zlfp<1andﬁ1+’r>0ifp=1respectively,
iii) (1—p)§—(1—5)(rh+r)<s<rh+r

in order to apply the known results on mapping properties of non-smooth pseudodifferential operators. In order to prove the claim
of Theorem 1.1, we need to strengthen condition iii) due to technical reasons. Finally, also condition 2) is of technical nature.

Theorem 1.1 will be proved in Section 4. For the definition of the symbol-class C™7.§ ,’:5 (IR" XR" M; &L (CN )) we refer to
Definition 3.5 in Subsection 3.1.

2 | NOTATIONS, DEFINITIONS AND FUNCTION SPACES

The set of all natural numbers without 0 is denoted by N. Unless otherwise noted we consider n € N during the whole paper.
We define

(x) := (1 + |x|2)1/2 for each x € R” and dé = Q2r)"dé.
Moreover
. 2 2\1/2 n
(x3p) 1= (1+ |xI° + |y°) for all x, y € R".
Additionally we set for each x € R
x| :=max{/le Z : 1< x} and [x] :=min{/ € Z : | > x}.

For each multi-index a = (al, s an) € Njj we use the notations 97 := 6;: afj: and DY := (—i)'“'dfc‘.

Assuming two Banach spaces X, Y the set of all linear and bounded operators A : X — Y is denoted by Z (X, Y). In case
X =Y, we just write Z(X).

For s € (0, 1] the set of all functions f : R" — C fulfilling

170 = Wfllcony 3= sup 1760l +sup LEII <
X#£Y | yl

is called Holder space C%5(R") of the order O with Holder continuity exponent s. A function f : R” — C is in the Holder
space C™S(R") of the order m € Ny if we have 97 f € COs(R") for each a € Ng with |a| < . Note that all Holder spaces are
Banach spaces.

On account of the definition of the Holder spaces and the Leibniz-rule we obtain:
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Lemma2.l1. Leteme N, O0<r<land f,g € C™T(RM). Then
Ifgllene <Y, cm{ £ 1l gl e + 1 e e gl oo }
iy iy =m b b

The Bessel Potential space H;(R”), s€R and 1 < p < o0, will play a central role in this paper. The set H;(R”) is
defined by

H)R") :={f € S'(R") : (D,)*f € L"(R")}, 2.1
where (D, )’ := OP((é‘)S).
For the convenience of the reader we mention an interpolation result needed in this paper:

Lemma 2.2. Letk,m e Nwithk <m, 0<t < 1and := ﬁ Then

17 eteny < CNAN o 1 Wemeny — Jorall £ € C™RT).

Proof. For all p € [1, oo] we denote the real interpolation spaces by (C,?(IR”), C;”“(IR”)) 0 cf. e.g. [12]. An application of the
reiteration theorem, c.f. [13, Theorem 1.2.15], and of Proposition 1.20 in [12] provides ’

(CYRM, C I ®RM), | € (CRM, CZM(R"))%HJ C C{(R™).

This yields the claim. For more details we refer to [17, Lemma 2.41]. [l

Since this paper deals with the Fredholm property of pseudodifferential-operators, we finally add the definition of an Fredholm
operator:

Definition 2.3. Let X,Y be Banach spaces and let T € Z(X,Y). Then T is called a Fredholm operator if /' (T) is finite
dimensional and % (T) is closed and has finite co-dimension, i.e., there is a finite dimensional subspace Z C Y such that
Y=%T)® Z.

The following characterization is fundamental for our purposes.

Theorem 2.4. Let X,Y be Banach spaces. Then T € £ (X,Y) is a Fredholm operator if and only if there are some operators
B,C € Z(X.,Y) and some compact operators K; € L(X), K, € L(Y) such that

where Iy respectively Iy are the identity operators on X respectively Y.

The proof can e.g. be found in [4, Theorem 3.15].

2.1 | Space of amplitudes and oscillatory integrals

The aim of the present paper is to define and discuss some properties of oscillatory integrals for all elements of the space
of amplitudes .fo'";\]j(R” X R™). Here M;"AJ;(R” XR™), N,M € NyU {0}, m,7 € R is the set of all continuous functions a :
R"” x R" — C such that for all a, § € Ng with |a| < N, |f| < M we have

: 1/ 0 n n
i) 9%d)a(y.n) € CO(R! X RY),

ii)

020y a(y, m| < Cyp(1+ 1) (1 + 1y forall y,n € R",

where all derivatives are well defined in the sense of distributions. For all elements a € 52?;"1\7 (R"XR"), N,M € NyU {c0},
m, 7 € R the oscillatory integral is defined by

OS-// e Ma(y,n)dydn := lim // x(ey.eme™"""a(y,n) dydn, (22)
E—>

where y € S(R" x R") with 2(0,0) = 1.

85UB017 SUOLILLIOD AIN8.D) 3 (dedtdde 8y} Aq peuIeAob 86 S9d1LE VO '9SN J0 S8JNI 0} ARIq1T BUIIUO A1 UO (SUORIPUOD-PUE-SWUISIAL0 A8 | I ARe1q 1 BU1|UO//:SANLY) SUONPUOD PUe Swie 1 8y} 88S *[520Z/0T/T0] Uo ARiqi auliuo A8|im 'Biequanim-a|eH AseAIN JeyinT unie W Ag T9E008TOZ BUe/ZO0T OT/I0p/Lod™A8|im Ake.q 1ul|uo//:sdny wouy pepeoiumod 'S ‘0202 '9T9222ST



SZLI_ %ﬁgg&%ﬁ%@ﬁ}m ABELS AND PFEUFFER
NACHRICHTEN

Defining for allm € N

A"(D,, &) 1= (&)""(D )" if m is even, (2.3)
5

5 (D, y"! D, else, (2.4)

A™(D, &) 1= (&) (DY = Y (™
j=1

we can extend some properties of the oscillatory integral proved in Section 2.3 of [2] as follows:

Theorem 2.5. Let m,7 € R and N,M € Ny U {0} with N > n+ 1. Moreover let I,I' €N with N >1' >n+ 1 and
M > 1 > n+ m. Then the oscillatory integral (2.2) exists for all a € df’"}é}l(ﬂ%” X R") and we have foralll{,1, € Nywithl; < N
andly < I:

Os —//e‘iy'”a(y, n)dydn = //e_[y'"Al,(Dn’y)Al(Dy’")a(y»’?) dy i,
Os -// e gy, n)dydn = Os -// e~ Ah (Dn’ y)Al2 (Dy,n)a(y,n) dydn.

Proof. The claim can be verified in the same way as in Theorem 2.10 and Theorem 2.12 of [2], if one takes care of ii) just
holding for |B| < I. O

Theorem 2.6. Let m,t € R, m;,7; €R for i € {1,2} and N € Ny U {0} such that there is a '’ €N with N >1I' > n+ 7.
Moreover let a, f € Ng with |a| < M, where M := max{m € Ng: N—m>n+7}and | €N with | > m+ n. Considering
a € CO(R) X RY, xRy X RY) with

(D, y) A (Dyn)a(v, ' m.€)| < CLpn)™" (=) (™,

A'(D,,y) A (D) 320 a(y. ¥ 1. &) | < Crpap )" )™=y 4E)™

forall y,y',n, & € R" we have for all y', & € R":

agoﬁ,Os -// e_iy'”a(y, y, n,é) dydn = Os / e_iy"’agdf,a(y, v, '1,5) dydn.

Proof. This result can be verified similarly to [2, Theorem 2.11]. O

Corollary 2.7. Let m,7 € Rand N € Ny U {00} such that there is some I' € N with N > 1" > n+ t. Moreover let | € N with
I > n+ m. Additionally let a;,a € COR"XR"), j N such that for all a, f € Ng with |a| < N and |B| < I the derivatives

0305 a;, agaf a exist in the classical sense and

62‘(35@ (y,n)| S Cop{m)™(y)" foralln,y € R", j €N,

6:d£a| < Cop{m)™(y)* foralln,y € R",

e 070 (y,n)ﬂ» a}’;’()fa(y,n)forall 7,y € R".

n"y«j
Then
lim Os -ﬂ e_iy'"aj (J’JI) dydn = Os // e_iy'"a(y, ’7) dydn.
j—)m
Proof. The claim can be shown similarly to [2, Corollary 2.13]. O

Another property of oscillatory integral needed later on is:

Remark 2.8. Assuming u € Cb°°(IR”) and x € R" we obtain

Os —// I Ny(yy dy dn = u(x).

For the proof see e.g. [1, Example 3.11].
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3 | PSEUDODIFFERENTIAL OPERATORS AND THEIR PROPERTIES

Throughout this section we summarize all properties of pseudodifferential operators needed later on. Additionally we define all
symbol-classes of pseudodifferential operators needed in this paper.

On account of Lemma 2.2 with § := r’;’:f if s < 1 and by means of C;‘“(IRE”) C CkI(R™) else we can show

Sy (R X R M) € €S (RT X R M), 3.0

forall0<s <1, meN;,meR M eNyU{oo}and0<p,6 < 1.
For more details see, [17, Remark 4.2].
Additionally we get by means of interpolation, c.f. Lemma 2.2, the next estimate for non-smooth symbols:

Remark 3.1. Letme Ny, 0<7<1,0<6,p<l,meRanda € C’;”TS;"(S(IR” XR”;M). Then we get for all « € Ng with
|a] < M and k € N, with k < 7

aga(.,g“)HCk(W) < C gy Plalok  forall £ € R,
b

Pseudodifferential operators are bounded as maps between several Bessel Potential spaces. For the proof we refer to
[2, Theorem 3.7].

Theorem 3.2. Let meR, 0<56<p<1 with p>0, 1 <p<oo and M € NyU {0} with M > max{%,%}. Addition-

ally let me N, and 0 < 7 <1 such that m+ 7 > % . g if p<1land me Ny, 7>0 if p=1 respectively. Moreover let
. —k

% C C’"’TAS’:I{S P(R" x R™; M) be bounded with k,:=1=pn|1/2-1/p|andlet (1 —p)n/p— (1 =6)m+7)<s<m+r.

Then there is some C, > 0, independent of a € R, such that

lla(x, Dx)f||H;(Rn) < CS||f||H;+m(R,.) forallae B and f € H;”"(IR”).

3.1 | Symbol-smoothing

A well-known tool for proving some properties of non-smooth pseudodifferential operators of the symbol class X S;’?(S(R” x R™)
for certain Banach spaces X is the symbol-smoothing, see e.g. [21, Section 1.3]. In order to prove the Fredholm property of non-
smooth pseudodifferential operators, we now generalize the tool of symbol-smoothing for pseudodifferential operators which
are non-smooth with respect to the second variable and for p # 1. To this end we fix two functions ¢,y € C;°(R") till the end
of this section with the following properties:

o H)=1forall |§| <1,
oy, >0, yy(&) =1forall |£] < 1and yy(§) =0 forall [£] > 2.

Then we define for all j € N the functions y; via
wi(&) 1=y (2778) —yy(27771¢) for all £ € R".
Using that for any a € R there are C;, C, > 0 such that
Ci{E)™9 <2779 < Cy(E)™ for all & € supp (w;).j €N, (3.2)

we can show the following properties of the functions y/; for all a € N

oty < Cute (3.3)

Additionally we define for all € > 0 the operator J, by
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Note, that for each @ € Ng:
05J, = J.0;. 3.4

The operator J, has the following properties:

Lemma 3.3. Fore > 0,0 < 7 < 1 and i € Ny we have for all f € CT(RM):

i) |plas
ii) ‘ Dl f Lo < Ce VPO £ || e uny for all p € N2 with | B > i

iii) LetﬂENg with |fl <m and t >0 with m+7—1t—|f| >0 and m+ 7 —1t—|f| € N. Then we have for m; € N, and
O<s<lwithm +s=m+7—|f|—1:

| < ClS e for all § € Ny with 1] < .

pr(l —Jé)f|

: )
cmsn = C& M llene@n.-

iv) |

Di(1=J.)f| < Cpee™ 01| DLy

n . ~
cﬁl—lﬁl-f(R")for all f € Ny with | f| < .

Proof. On account of [21, Lemma 1.3C] the claims 1), ii) and claim iv) in the case |#| = 0 hold true. An application of the
case |[fl =0ong := Df? f e cnIflT(rm provides the general case of claim iv). Because of [21, Lemma 1.3.A] we addition-
ally obtain claim iii) for the case |f| = 0. It remains to verify claim iii) for general f§ € Ng with |#| < m. This can be done
similarly to the proof of the case |#| = 0. For the convenience of the reader we give a short proof of claim iii) for arbitrary
p €N? with [f] <, now. Due to the boundedness of {&~/(&)7'(1 — (&) : € € (0,11} C S?,O(Ri X Rg) and due to

é)% es ?,O(R:'c X Rg) we get the boundedness of

(7)1 - ped) 1 £ € (0, 11} € SV} (RE X RY).

Since (D,.)~" and Df commute, we obtain claim iii) in the general case. O

Definition 3.4. Letm € N, 0 <7 <1, M € NyU {oo},meRand0 <5 <p<1.Fory € (s, 1)wesete; := 27J7 For each
a€ C’T“'TS;"&(IR” x R"; M) we define

. an(x, & = § Jgja(x, é‘)l//j(f) for all x, & € R”,
Jj=0

o a’(x,&) :=a(x, &) — db(x, &) for all x, & € R".

Our aim is to verify useful properties of the functions a* and a’ needed later on. To this end two new symbol-classes are
needed, which we define, now.

Definition 3.5. Letm e N;,0<7<1,meR,0<6,p<1and M €NyU {c0}. Thena € C’i”TS;"{S([R” X R"; M) belongs to
the symbol-class C’;”TSZ’(S([R” X R"; M), if forall a, f € Ng with || < M and |f| < /i we have

02 Dla(x, g)' < C, ()PP for all x, & € R,

where C,, ﬂ(x) is a bounded function, which converges to zero, as |x| — oo.
Moreover, a € C’h’TS;”(S(R" x R"™; M) belongs to the symbol-class C’h’TSZ“(S(R" X R"; M), if for all § € Ng with || < mand
|#| # 0 we have

Dla(x,&) € ™ r gVl R R M),

We call the elements of C™7.S ;”5(R" X R™; M) slowly varying symbols. Moreover, a : R" XR" - & (CN ) is an element
of the symbol-class C’h’TSZ’a(R” X R"; M; Z(CV)) respectively Cm’TS’/T(S(R" xR M;Z(CN)), meR, N €N, if and
only if aj; € C’h’TS;”(S(R" X R"; M) respectively aj; € C’h’TS‘;"&(R" X R"; M) for all j,k=1,..., N, where we identify

A € Z(CV) with a matrix (aj’k);vkzl € CN*N in the standard way.
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The properties of the functions a* and a® are summarized in the next three lemmas:

Lemma 3.6. Let 0<6<p<1, meN, 0<7r<], MeNU{xo}, meR and a e C’h’TS;"(S(R” X R"; M)). Moreover let
y € (6, p). Then we have for € € (0, (y — 6)7):

i) Dia(x,&) € Iy =Dt R s R M) for all § € NI with | ] < i
ii) a’(x,&) € Cr SO R X R M) if a € CT ST (R X R M),
iii) a’(x,&) € CT ST IO (R S R M) if a € CrS™ (R X R"; M).

Proof. We begin with the proof of i). We choose an arbitrary £ € R"” and set N := {j eNj : &esupp l[/j}. Then N < 5.
Using aﬁ(.,f) = ZJEN Jgj a(.,f)y/j(é) and the Leibniz rule yields for all a, f € Ng with |a| < M and |f| < m

angjab(x, §)| = i( J. ) a(x, Ey; (&)

)

JEN aj+ar,=a

(1= ., ) (0 Dlatx, 992w, 0)|

LoD

An application of Lemma 3.3 iv), (3.2) and (3.3) to the previous estimate provides:

Dl o)< Y Y Gl (08 Dlatx )02y (&)

JEN aj+ay=a

SZ Z Ca<§>—7(’h+f—|ﬁ|)

JEN a1+tar=a

Crh+r—|ﬂ|(RZ)

RG]

o7 Dla(x, §)|

crt=IpI(R)

< Cy i AEYm =07 Bl=plal for all x, & € R™. (3.5)

Similarly we get by means of (3.4), the Leibniz rule, Lemma 3.3 iii) and (3.3) for all a, § € Ng with |a| £ M and |f| < m:

w6 (r=0)(m+)+y|fl=plal+y (=] f|+7) (3.6)

o: DY)

ci=IBl, (R

for all £ € R”. On account of (3.6) and (3.5) claim i) holds. o
Our next goal is show ii) and iii). In order to prove the claim, we assume aEC’”’TSl’)"é([R{”XR";M) or

a GC’?’”S‘;”&(R” X R"; M). Additionally we fix some arbitrary a,f € Ng with |a| <M, |[p|<m and |[B]| #0 if
a eC’“’TS‘;”(S(R” X R"; M'). We choose an arbitrary € > 0. As before we fix an arbitrary £ € R” and set
N :={jeNy:éesuppy;}. (13)

Moreover we define for all j € N, the functions Pe 88 R" — C via

o ¢ =8~ F [b(e;¢)] in SR,
° g () =F [¢>( £)] (x) for all x € R”,
o g(x) :=F . [¢p(E)](x) forall x € R".

€—>x

By means of integration by parts and the Theorem of Fubini, we obtain for each j € N
[1-¢(e;D,)|f = @, * f(x)  forall f € c}j(R"). 3.7
Since we can change the order of the two operators Df: and (1 - J&i> an straight forward calculation yields if we use

a*(.&)= X ey Je,a(. Ow;(&) and B.7):

0 Dlab(x, 5)| - (3.8)

P, * { Y o [DlaC. ;)] }(x) .

JjEN
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Our task is to use the previous equality in order to show for & € (0, (y — 6)7):

| |x]—00
R

95 Dla’(x,8)| < C, p(x)(&)" OGPl erl (3.9)

Then a combination of (3.6), (3.5) and (3.9) yields claim ii) and iii). It remains to verify (3.9). The properties of the Fourier
transform imply 8,8 € S(R") for all j € N. Consequently ( y)”+1g£j »nes (R’y’) for all j € N. On account of the choice of
a we get using (3.3):

2

jEN

o¢ { Dlatx, ;@) < Ay gyl (3.10)

where A, is independent of x,& € R". Due to (y)"*! g, (MES (Rg) for all j € N we can choose an R > 1 such that for
A, := [(y)™""!dy we have
Rn

&
24,4,

’(y)"+1g£j(y) < forally € R"\Bg_,(0)and j € N. 3.11)

In addition we choose an n € C(‘)’°([R”) such that n(x) € [0, 1], n(x) = 1 if [x] £ R— 1 and #(x) = 0if |x| > R. Then we obtain
for all x € R" by means of Lemma 3.3 iv), (3.10) and (3.11):

l(pgj(l —nx Yy ag{Dfia(.,:)w,(f)}] ()

JEN
< / ¢, I =ml - || Y 0z{ Dlat. ;O x - y) dy
RN\B ) jeN Le(RY)

R-1
< §<§>m—p|a|+5|ﬁ|. (312)

On account of the properties of the Fourier transform and due to the definition of @, We get using g € S(R"):

[ kil )

R"™\Bg_;(0) R
where B, is independent of j € N. The choice of the symbol a and the multi-index f gives us the existence of an R > 0 such
that for all |x| > R + R we have

@,

dy < max 1,/|g(z)|dz =! B <, (3.13)
R}'I

Y o {DlaC.ow;©} )

jeN

< ﬁ@m—pmwm. (3.14)
1

Using (3.8) we obtain for all x € R” with |x| > R+ R:

97 Dla"(x, 5)] < / e;"g(f)n(y) Z of [Dla(x = y, Ow;(&)]dy
Rn J JEN

+| Y o[ Dlatx, ;)]

+ /(pgj(y)[l — ) Y, o[ DlaCx - y, Oy, (©)]dy|.
JjEN

jeN

Rn

Now we use (3.12) in order to estimate the third summand of the previous inequality and (3.14) to estimate the second summand
of the previous inequality. The integrand of the first summand is always O if |y| > R. Hence we can estimate the first summand
of the previous inequality by means of (3.14) and (3.13). Then we get |0§‘D£ab(x, 5)’ < g(g)ym=rlel+3I8l for all x € R" with
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|x| > R+ R. Hence

| x| >0

0D a’(x, z;)|<§)—’"+f’|“"5“’| < Cpp()—= 0. 3.15)

— =8)(n—|pl+7)—-¢

Now let € be as in the assumptions. Setting 6 : G IAIrD)

estimate (3.9) holds:

we get by means of interpolation with (3.5) and (3.15), that

x| >0

02 Dl (x. (&) NIl < €, )10l

m,t

Hence the lemma is proved. |
Lemma 3.7. Let 0<6<p<1 meN;, 0<7r<1l, M eNU{o}, mER and a C’h'TS;”&(R" X R"; M. Moreover let
y € (6, p). Then we have for all p € Ng with || < m:

i) Dlat(x,&) € SV (R x R M),

ii) ifa € C™S" (R" X R" M) or if || # 0 and a € C™*S" (R" X R"; M) then Didt(x,&) € SV (R x R™; M).

Proof. Note that, because of ||3~‘-1(¢(e.)))| = ||:¥ 1(¢>)|| . C,

LY(R") Ll([R")

16D | o poogny = s “9—1@(6.)) x f“oo <C  foralle € (0,1].

Now let § € Nij with |f| < . We show, that for all f.ae Ng with |a| < M
||D§agpfaﬁ(.,g)“ < Cyj p(Eym VIRl AL for all £ € R (3.16)

This implies claim i). First of all we verify (3.16) for § € Ng with | i} | < i — | B]. To this end we choose an arbitrary & € R” with
N := {j €Ny : & € supp wj} . Then #N < 5. Using a®(., &) = ZjeN Jsja(., & ;(§), the Leibniz rule, (3.3) and Lemma 2.2

. . __1Al
yields for 0 := Frw—
|plozptacol <c. X 3 @ relo plat. o e,
© JEN aj+ar=a
< plasl|| 5% pb “ pp
Ca Z ©r 9; Dyal. é)HCOGR) 9 Dyl tf)|C'" 117 (R
a1+a2 =a
< Caﬁ’ﬂ<§>m+5lﬂ|—p|a|+y|ﬂ~|’ (3.17)

where C, j 5 is independent of £ € R". Now let fe N(’; with |f] + |B| > m. Using al(., &) = ZjeN Jgja(.,g‘)tpj(é‘), the Leibniz
rule and (3.3) again, we obtain

HDfangan(-,f)Hm <C, Z Z (&y~rlol

JEN aj+ar=a

ot 5 ..

Now we can prove (3.16) by means of the previous inequality since agl fo a(., &) € C1Plr(Rrm) using Lemma 3.3 ii) and (3.2).
It remains to prove claim ii). We again assume § € Ng with |f| < m. Moreover let a € Cm’TS;(’é(R" X R™; M) or |B| # 0 and
ae C’”’TS;’fé(R” X R"; M).

Similarly to the proof of (3.15) we will now show for a, f§ € Ng with |a| < M and |f| < m — |f]:

Dfa“D/’ FLO| < C,p (e rolAI- plalvIBl for all x, & € R". (3.18)

Here C, ; 7(x) is bounded and Ca’ﬂﬁ(x)m 0. In order to prove (3.18) for a, f € N7 with |a| < M and ||+ |p| >
we choose an arbitrary but fixed £ € R” and define N as before. Additionally let € >0 be arbitrary. Since
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aeC™s ;"5 (IR" XR"; M ) we get by means of the Leibniz rule and by (3.3) the existence of a constant A; > 0 with

2

JEN

o { Dla(x, Oy, &)} | < A gymrletal, (3.19)
Defining g(¢) := 55 @(&) for all £ € R” we obtain for all j € Nand f € CS(R") due to the Theorem of Fubini:

e”'Dly, (D,)f(x) = / = 8(e,8)] = nrody. (3.20)

Rn

Since ¢(¢;¢) € S(Rg), there is an R > 1 such that for all [y| > R — 1

|&‘§jx [g(sjdf)](y)<y)”+l| < forall j € N, (3.21)

24, A,

where A, = f (y)~"~! dy. Moreover we get on account of the properties of the Fourier transformation, change of variable and
dueto g € S(R"):

By := / |7 [5(e;6)] 0| v = / |7~ 181(2)] dz < oo. (3.22)
R» R7

The choice of the symbol a and of the multi-index f gives us the existence of an R > 0 such that for all |x| > R+ R — 1 and
for all y € Br_(0) we have

D o {Dla(x -y, £ _(gymrlal+dIBl for all |B| # 0. (3.23)

Fr - 2B

Now let 7 € C(‘)"’(R") with 7(x) € [0, 1] for all x € R", n(x) = 0 for all |[x| > R and 5(x) = 1 for all |[x|] < R — 1. By means
of (3.19) and (3.21) we have

By := / |7 Je(e,6)] ]I = I

R"\BR_I(O)

Y of[Dlatx -y, &w;(9)]|d

JEN

< §<§>m—ﬂ|a|+5lﬁl. (3.24)

Additionally a combination of (3.22) and (3.23) yields

/|9 Je(e,6)] ]Il

Br(0)

Z o [Dla(x ~ y.O)w;

£ m=pla|+6|p|_
2<> ? (3.25)

Using an(., &) = ZJEN Jgj a(., H)w;(£), (3.20) and the definition of ¢ firstand (3.24), (3.25) and (3.2) afterwards, we obtain for all
x| >R+ R—-1:

< 21'7”5'(31 +B,)

Dﬂ ﬁ(x §)| = 6

le¥ply, { Y o¢[Dlatx, O, ()] }

jEN

< 2Bl eC(gymolBl-slal < go(gymtolpl-plal+y1Al

Hence (3.18) also holds for a, § € N} with |a| < M and || + || > /. This provides ii). O
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Lemma38. Let0<6<p<1],meEN;,0<7t<], M eNU{w}, meRanda € C’h’TS‘Z'&(R”xR”;M)suchthat

4 &%, 4(c0.8)  forall € € R,

Moreover we set b(x, &) .= a(x, &) — a(o0, &) for all x, & € R". Additionally we define a*,a’, a*(c0,.) and a®(co, .) as in Defini-
tion 3.4. Then we have fory € (6,p) and € € (0, (y — 6)7):

i) a*(c0,&) = a(c0,&) € S;;j&(R" X R";0),

ii) ab(c0,&) =0 forall ¢ € R",
iii) ab(x,&) € C™r S IO (R R M) n €T S U TOHEIE (R R 0),
) aﬁ(x, &) =a(c0, &) + bﬁ(x, &) forall x,& € R".

Proof. First of all we verify claim ). Since a € CW"TSI’)"(S(R” x R"; M) we have

a0, EX) ™l or () < 106 EHE ey () SC - forallx € R and

R?) :
la(x, E)E™ < C  forall x,& € R™. (3.26)

Hence the definition of C%7(R") provides

—¢
(&) ™a(x, &) — (&) "a(x.&)] < ClE — &~ o, (3.27)

where C is independent of x € R”. Taking |x| — oo on both sides and using (£)™" € C®(R") yields a(c0, &) € C° (Rg) Taking
|x] = oo on both sides of (3.26) provides

|a(oo, &)| < C(EY" for all £ € R".
Together with (3.27) we therefore get
a(o, &) € SZ(S(R" X R™; 0).
By means of Remark 2.8 we can show for all § € R"
Jea(0,8) = a(,) - Os // e F(en) dzdn = a(e0,£).
Hence we obtain for all £ € R”
d'(00,8) = a(c0,&)  and  d’(00,8) = a(c0,&) — a*(c0,&) = 0.

This provides i), ii) and iv). It remains to verify claim iii). On account of the definition of a(co, ) and a € C’h’TSI’)”é(R” X R"; M)
we have for all f € Ng with || < m

|D§b(x, 5)] < CyxNE™ forall & € R”, (3.28)

where Cy(x) — 0if |x| — co. Moreover

lla(oo, O)ll cinr @y < la(o0,&)| =

|llirn a(x, f)‘ < C{E™ for all ¢ € R”,
X[—00

we get [|b(., &)l e my < (€)™ M), Together with (3.28) this yields
b(x,&) € C’F’”S/’)"(s(R” x R 0).

Consequently Lemma 3.6 and a®(x, &) = b®(x, &) provides claim iii). O
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3.2 | Symbol reduction

In this subsection we prove a formula representing an operator with a non-smooth double symbol as an operator with a
non-smooth single symbol. Non-smooth double symbols are defined in the following way:

Definition 3.9. Let me Ny, 0<z<1, m;,myeR,0<L6,p<1 and M;, M, € NyU {oo}. Then a continuous function
a:REX Rg X RZ, X Rg, — C belongs to the non-smooth double symbol-class C’;Z’TAS’;"(IS’M2 (R” X R" X R" X R"; M|, M2) if

i) 070)0%a € C (R") and 0020”,0%/a € CO (R x RZ X R”, X RY,),

/ 5/ / 5/
ii) [ofoza, 0 < Cuppra¥Cp pr r (XNEYM PPl ymamrlel (2, )10,
iy - S(i+t - . £I\S
i) oo /a?/a@f’f’f') ety S G (QmPlabs 0 g ymamslel 1)1,

for all x,&x',¢' €R" and arbitrary f,a,f'.a’ €N with |f| <7, |a| <M, and |a'| < M,. Here the constants
Coppar(X), Cy pr oo and Ca yya a/(x ) are bounded and 1ndependent of &, x',&" € R" respectively &, x, & € R".

If we even have C, 5 . a/(x)—> Oforall B,a,f,a € N" with |ﬂ| <, |al £ M| and |a’| < M,, then a is an element of
c'hafs;’g""z (R"XR" x R" X R"; M|, M,). If we have C,  pr o (x' )——-> 0 for all ,a, f',a" € Ny with |§| <, |a| < M,

and |a’| < M, instead, then a is an element of C’F”T.SA‘;"(;""2 (R"XR"x R" X R"; M|, M,).

For each double symbol a € C ’h’TS;n('S’mz ([R" XR"XR"xR"; M|, M 2) we define the associated pseudodifferential operator
P by ’

Pu(x) :=0Os —//// e_i(y'5+yl'§,)a(x, Ex+y,Eux+y+y)dydy déag'

for all u € S(R").

In the smooth case, i.e.if M|, M, = oo the symbol-reduction is well-known, cf. e.g. [11, Lemma 2.4]. For non-smooth double
symbols of the symbol-class C™ TSp (R" X R" x R" X R"; N, 00) the symbol smoothing was proved in [10, Theorem 3.33]
in the case N = oo and in [2, Section 4.2] in the case (p, §) = (0, 0). As an ingredient for the proof of the Fredholm property of
non-smooth pseudodifferential operators, we need the symbol reduction in a more general setting.

Theorem 3.10. Let 0 < s <1, m € Ny and m;,m, € R. Additionally we choose Ni, N, € Ny U {co} such that there is an
I € Nwith N; > | > n. Moreover, we define N := min{Nl —(n+1), Nz}. Furthermore, let

B CC™S"M(R" X R X R" X R"; Ny, N,)
X

be bounded. If we define for each a € B and 6 € [0, 1] the function a‘i :R"XR" - C by

ai(x, &) :=0s —"// eV Ma(x,0n + & x +y,E) dydn forall x,& € R",

we get with m := m, + m, that ai S C’h’sS;" (R” X R"; N )for all a € B and 0 € [0, 1] and the existence of a constant C,,
independent of a € % and 0 € [0, 1], such that for all a, p € Ng with |a| < N and |B| < i

Ca<§>m—pla|+5(ﬁl+5) forall £ € R" (3.29)

Ccm. S(Rl‘l

ozdl (. 0)|

and

0taldl (x, §)| < Cyp @I forall g € R, (3.30)

where C, (x) is bounded and independent of a € B, £€R" and 6 €[0,1]. This implies the boundedness of
{a‘z tae€ 3AB,0e]0, 1]} C C’i’""S;"&(R" X R";N). If B is even a bounded set in C’h"YS;"é’mz(R" X R" x R" x R";Nl,Nz)

[x[=

orin crﬁ»‘S;”(;””z (R"XR" x R" X R"; N|, N,), then C, ,,(x)—» 0.
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We combine the ideas of the smooth symbol reduction in [11, Lemma 2.4] and that one in [2, Section 4.2] in order to

get the boundedness of {aeL ca€eB,0€(0,1]} C C'h*SS;”&(R” x R"; N'). To show C, ﬂ(x)m 0 additionally some new
arguments are needed. Unfortunately one looses some regularity with respect to the second variable of the order n + 1 in the
proof. The ability to treat the even and odd space dimensions in the same way is based on the next remark:

Remark 3.11. Let ! € N be arbitrary. Then

/

iy :{ (1+ <5>25|y|2)—(l+1)(1 + (&) (-4,))

<§>6J’j
(1+(&)%1y?)

+ 3 (1 g p) S+ (-,) @D, }eiy-n
j=1

and we have forall I, € N, y € N

07 (14+4@2112) "] < €, 4O (14 ©P1yP) ™ forall ¢ €R". (3.31)

We additionally have for all y € Ng:

Y% <§>5yj'

< (&Y, (3.32)
T+ @2 112)

1/2

Definition 3.12. Let / € N be arbitrary. Then we define

B(y.,) = (1+@2P) " (1+@ (-a,))"
if 1 is even, and
B, A, =(1+ &%) (14 @2 (-a,))
(&°y;
(1+&)% 1)

+ Z{ (1+@>P) ™" (1 @25(_An))a—l)/z(g)éDnj

J
else for all y, & € R".
In order to improve the symbol reduction, we need the next result:

Proposition 3.13. Let 0<6<p<1withé#1, 0<7<1, m&Nyand m,m, €R. Additionally let N;, N, € Ny U {0}
be such that there is an | € N with n <1 < N,. Moreover, let a € C'h’TS;n(‘s’m2 (R" X R" X R" x R"; Nl,Nz). Considering an
Iy € Ny withn < 1y < Ny, we define r’ : R" x R" X R" X R" — C for all € [0, 1] by

r(x,& y,n) 1= Bl (y, A,,)a(x,é +0n,x+ y,f)

forall x,&,n,y € R". Then we have w0 (x, g, y,n) el! (R;’}) forall x,&,n € R" and f ey (x, g, y,n) dy € L! (RZ) for all
x, & € R". Moreover we obtain

OS-//e‘iy‘”rg(x,é,y,n)dydn=/ [/ eV (x, &, y,n) dy| dn.

Proof. First of all we prove the claim for even /; and use 2/, instead of /. Let x, § € R” be arbitrary. We define m := m| + m,.
For every 7 € N{j we get due to a € C’i”TSZ'('S’m2 (IR” X R" X R" x R™; Nl,Nz), the Leibniz rule and (& + 6#5; &) < (€)(n) for

ITeNy, <l

{17 (=8,)] Ja(x. &+ on.x +5.2) }| < Cpmim o gyt (3:33)
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for all y,n € R", where Ci,7 is independent of x, y, &, n € R”, 8 € [0, 1]. Now the Leibniz rule provides for all / € N, by means
of (3.33) and (3.31) the existence of a C; > 0, independent of x, y, &, n € R", 8 € [0, 1], such that

('7)‘21(Dy>21r9(x, gy, 71)| < C,<n>—21(1 + <§>25|y|2>_10<n>|m1|+215<§>m+215+2105
< Cl(y)_ZIU (n)lm1=21(1=0) ( 2ym+216+215

forall &,7 € R".
Assuming an arbitrary y € S(R") with y(0) = 1, we get for fixed x,n,& € R":

. -0 .
eV y(en)r? (x, €, y.m) LT emivmyd (x,& y,n) pointwise for all y € R". (3.34)
Now let 0 < € < 1. Using the Leibniz rule and y € S(R") C C§°(R”) we have
|y (DY [ (x, &, y.m) ]| < Coy)2loylmI =21 (=00 gymelo+2iod, (333)

for all I’ €N, uniformly in x,&,5,y € R" and in 0 <& < 1. Integration by parts yields for arbitrary # € N, with
|m| =201 —-6) < —n:

[ (st ds = [ €D [rtenn ] (336

Using y € S(R") C C;"(IR”) and (3.36) first and (3.35) afterwards provides for fixed x, & € R":

‘){(6'7) / e y(ey)r? (x, &, y.1) dy‘ < Cppe(m)mI=270=9 € LI(RY). (3.37)

Here the constant C, , - is independent of £ € (0, 1] and x € R". Setting / "= 01n (3.35) we obtain for each fixed x, &, € R”,
that

{ye 2ENP(x,Eyn) i 0<e < 1}

hasa L' (IR;) -majorant. Together with (3.34) and (3.37) we have verified all assumptions of Lebesgue’s theorem. An application
of Lebesgue’s theorem two times provides

o '//e_iy'"’g(x’é, yon) dydn =/ [/ e (x, &, y,n) dy| dn.

If I, is odd, we can prove the claim in the same way, using Remark 3.11. O

Proposition3.14. Let0 < 6 < 1, m;,my € R, u > 0and 0 € [0, 1]. Additionally let X be a Banach space such that X C C[?([R{”).
Considering I, € N with —Iy < —n, we choose a set B of functions r : R" X R" X R" X R" — C such that the next inequality
holds for all | € N:

! ~ —1y/2 "
|(_Ay) "g(x’ g, y,n)| <SCEC(x+y)(1+ (5)25|y|2) o/ (€ + On)™ (EY™2 (& + On; )+,
i A —ly/2
(=8, (ym)|| < G+ @2 112) e+ oy (& - (e + o205,
Here the constants Cj(x), é,(x + ), C‘, are bounded and independent of £,n € R", § € [0,1] and of r € A. C’, is also

independent of x and y. If we denote the sets Q, := {11 eR"”:|n| < %(5)5}, Q, := {;7 eR": %(5)5 <Inl £ %(5)} and
Q3 1= {;1 eR": |n| > %(é‘)}firstanddefine

I,»G(X,é:) 3=//e_iy'”r0(x,§,y,n) dydn  forie{1,2,3)}
Q, R
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for arbitrary x, € € R" afterwards, then there are constants C(x), C, bounded and independent of ¢ € R”, 0 € [0,1] and r € B,
such that

(o) scor. 1o, <Ce@m  forie(1.2.3), (3.38)

A — ~ +y|—00
where m :=m; +my +u. Here C is independent of x. If C,(x)L 0 or C,(x+y)L 0 for all 1 €N, then

Cn==
Proof. First of all we prove the claim for even /; and use 2/ instead of /. Let £ € R". In the following we will for simplicity
write || - || for |.| or [|.]| . )

The assumptions and (& + 0#; &) < (£){(n) give us the existence of bounded constants C;(x), C;(x + y), independent of
&,n eR", re R andin the case ||.|| = ||.|| x also independent of x and y, such that

[(=8,)' (eovm)| < GGG+ 1) (1+ @ 19P) & + Om)™1 ()& + O )10+ (3:39)

< C,(x)C',(x + y)<y>—210<§>m1+m2+215+u<n>|m1|+215+u = Ll(R;) (3.40)

for all £&,neR"0€[0,11,1 €Ny For all n€Q,UQ, and m; € R the estimates (&+0n)™ < le(i)’"l and
(& +On; €Yo+ < C(£)?/9+ hold. Now let m := m; + m, + u. Then we can simplify (3.39) for all € Q, U Q, to

|(=2,)"7 (~evn)| < i+ (1 + @©P1y17) gy (3.41)

forall £,y € R", ] € N, where C(x), C‘l(x + y) are bounded and independent of 8 € [0, 1], &, € R", r € 9B and in the case
[[.Il = II.ll x also independent of x and y. In order to estimate ||/, ||, we also need the following calculation, which can be verified
by means of the change of variables 7j : = (£)~%#:

dn = (&) / dn < C, (&) (3.42)
In<0.5(&)8 171<0.5
Thus a combination of (3.41) and (3.42) concludes together with a change of variable w := (£)%y:
1o < cioer=n [ [ ot @)1+ k) Mdwdn < € ater,
Q R7

where C|(x) is bounded and independent of £ € R”, r € 98 and in the case that ||.|| = ||.|| y also independent of x and y. For the
estimate of || I, || and || I;|| we choose I € N,, with =2/ < —n. Together with the equation e™"" = |n|_2’(—Ay)le‘iy"7 we obtain
by integration by parts:

—iy- _ —iy. !
/e ¢ ”rg(x, & y.n)dy = n| 21/e ’y"(—Ay) rf (x,& y.n) dy. (3.43)
R" R"
Additonally we have
/ In|~* dn=C, / P dr| = €, (&) (3.44)
In1>0.5(¢)° 0.5(£)0

If we utilize (3.43) and (3.41) first, and (3.44) afterwards, we obtain
- - ~ _ -1
18] < caterm=n [ [ et @) (14 1) dwan < € 006"
Q, R"

where C, (x) is bounded and independent of ¢ € R”, 0 € [0, 1], r € & and in the case ||.|| = ||.|| x also independent of x and
y. It remains to estimate “If” For each 1 € Q5, we have (£ + 65) < (&) + || < 3|y| and (& + On; &) < /13|n|. Denoting
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k, :=max{0,k} and k_ :=min{0, k} this provides together with (3.39) the existence of some constants C;(x), Cix+y),
bounded and independent of £ € R", n € Q3, 0 € [0, 1], r € % and in the case ||.|| = ||.|| x also independent of x and y, such
that
_ 1 P =l —2I(1—
12| (=8,) ' (& yom) | < CUOCi e+ 3 (14 (&2 1pI2) ™ gm0+ =0 gy (3.45)

for all £, y € R" and n € Q3. Analog to the calculation of (3.44) we get

/ |n|(m1)++u—21(1—5) di’] < C<§>(m1)+—2l(1—6)+n—ml (§)m1+u+5n < C<é>ml+u+§n’ (346)
Q

if we choose an/ € Ny with —(m)_ + u — 2/(1 — §) < —n. Finally a combination of (3.43), (3.45) and (3.46) concludes similarly
to the estimates of ||129 [|:

|19 < e

Here C5(x) is bounded and independent of £ € R”, § € [0, 1], r € 98 and in the case ||.|| = ||.|| x also independent of x and y.

Il = 1] and Cl(x)m 0 for all / € N, we get by verifying the proof, that C(x)—>|X|_)00 0.

[x+y|—o0

Now assume, that ||.|[ = |.| and that for all / € N, we have C’,(x +y)—— 0 and C‘,(x +y) < B, forall x,ye R". In

order to verify that C (x)m 0 in estimate (3.38), we choose an arbitrary / € N and € > 0. Additionally let £ > 0 with
—ly < =l + & < —n be arbitrary but fixed. Defining A := [ (w) 0 dw we obtain due to (w)~¢ € S(R") the existence of a

RV!
R > 0 such that
-z €
(w)™* < 74, for all w € R™\ Bx(0). (3.47)
. ~ [x+y| =00 L~
Since C;(x + y)— 0, there is a R > 0 such that
Cx+y) < % for all x, y € R" with |x + y| > R. (3.48)

Using (3.47) and (3.48) we obtain for all x € R"” with |x| > R+ R:

/ C(x+ (5)_5w)(w)_lo dw

Rl‘l

= / C(x + (&) Pw)(w) H(w) ™0 dw + / C(x + (&) Pw)(w)y Hw) 0 dw < e.

R"\ B (0) Br(0)

Using the previous estimate while verifying the norm-estimates of |I 1.9 (x, f)’ foralli € {1,2,3} we obtain C(x)m 0in the
inequality (3.38).
If [, is odd, we can proof the claim in the same way, using Remark 3.11. O

The previous results enable us to show Theorem 3.10, now:

Proof of Theorem 3.10. We prove the claim in several steps: First we verify (3.30) in the case || = 0. Then we show (3.29) in
the case |f#| = 0 and ag sza‘z € CO(R" x R™). Afterwards on can use the cases || = 0 in order to verify (3.30) and (3.29) in
the general case, which concludes the theorem. We obtain all those results by means of Proposition 3.13 and Proposition 3.14,
which are modifications of the proofs of Proposition 4.8 and Proposition 4.6 in [2]. To this end we need to modify the analogous
results of [2, Section 4.2] as already done in the proofs of Proposition 3.13 and Proposition 3.14. Note, that the generalized
properties of the oscillatory integrals of Subsection 2.1 are needed for the proofs. The details are left to the reader. O
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4 | FREDHOLM PROPERTY OF NON-SMOOTH PSEUDODIFFERENTIAL
OPERATORS

The present section serves to show the main goal of this paper: The Fredholm property of non-smooth pseudodifferential oper-
ators fulfilling certain properties. For the proof of that statement we use the following compactness properties of non-smooth
pseudodifferential operators verified by Marschall. They are special cases of Theorem 3 and Theorem 4 of [14].

Lemma4.l. Leem e R, 0<6<p<1, M € NyU {0} withM > g.Moreoverletrh € Nyand0 < v < 1 be suchthat i + 7 >
% . g in case p < 1. Additionally let a € C’h’TS/’)"(S(R” X R"™; M) be such that

lim (14 |&)™a(x, &) =0.

[x[+]€[ >0

Thenfor(l—p)g—(l—5)(r71+r)<s<rh+r

a(x,D,) : Hy*"(R") - H;(R") is compact.

)

< -
.

Lemma4.2. Leem eR,0<6 <1, 1< p<oo,m&Nyand0 <t < 1. Moreoverlet M € NU {oo} with M > n -max{
Additionally let a € C’h’TSi"a(R” X R™; M) be such that

=

lim 1+ |&)a(x, &) =0.

[x|+[&]—o00
Thenfor —(1 —=6)m+71)<s<m+7
a(x, Dx) : H;er(R”) - H;(IR") is compact.

By means of those two lemmas we obtain the next two corollaries:

Proposition4.3. Let0 <56 <p<1l,meR M > gande > 0. Moreoverletin € Nyand0 < 7 < 1 be such that i + © > 1=

n
- e -5 2
if p < 1. Additionally let a € C’"’TSZ'(;S([R" XR"; M)n C’"*TS;"(;E(IR" X R";0). Then for all s € R with

52

(1—p)-g—(l—&)(ﬁl+r)<s<ﬁl+r,

the operator
a(x,Dy) : H)™(R") » H)(R") is compact.

7 . +|&| =00
Proof. Since a € C"“’TS;"(;E(R" X R";0) implies |a(x, §)|(§)‘m&> 0, the claim is a consequence of Lemma 4.1.  []

Proposition4.4. Let0 <6 <1, meR, M >n- max{%, i} where 1 < p < oo and g > 0. Moreover letin € Nyand 0 < v < 1.
Additionally let a € C’h’TSI'gf(R” XR"; M)N C’;”TSK'(;&(R” X R";0). Then for all s € R with
—(1=-0)(m+r)<s<m+r,
the operator
a(x,Dy) : H;"“([R”) — H;(IR”) is compact.

. e o x| +1&]— ..
Proof. Since a € C’”’TS;"(S_E(IR” x R"; 0) implies |a(x, é)l(é)_mu 0, the claim is a consequence of Lemma 4.2. O
In order to verify an asymptotic expansion of the product of two double symbols, we need the next theorem. It can be proved
by means of the usual verifications of the similar result in the smooth case, see e.g. [11, Theorem 3.1]. For the convenience of
the reader, we give a short sketch of the proof.
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Theorem 4.5. Let 0<6<p<1 m,m R, M{,M, ENyU{oo} with M{>n+1, meN, and 0 <7 <1. For
ae C’h’TS;n(lS’m2 (IR" XR" X R" X R"; M|, M2) we define

ay(x,€) :=0s —"// e_iy'”a(x,f +n,x+ y,é’) dydn forall x,& € R".
Additionally we set for all 0 € [0,1] and y € Ng with |y| K My —(n+1)

r,o(x,&) 1= Os —// e_"y"’dj;Dga(x,é +0n,x + y,f) dydn forall x,& € R".

Moreover we define Mk = min{Ml —k—(m+1), Mz}forallk <M, —(n+1).Thenwegetforall N < M| — (n+ 1), that

1
a (8= Y, —3rDYa(x.&+n,x+1,€) |yymo + Ry(x.8) @.1)
laj<N %
where
1 N-1
1—-6 ) s, 3
RN(x,é) ‘=N . Z / %r%e(x,é)da c Cm,rS;rjlls+m2 (p—06) N(Rn x R";MN)
lyl=n /0 v
and

{r,o(x,&) 101 <1} € CMrsmM N (R R My ) s bounded.

Ifngza IS C’h'fﬁz(ls_p’mﬁé(ﬂ%” XR"XR"xR", M| — 1, Mz)for ly| = 1 then

RN(X 5) c Crh,TSm]+m2_(ﬂ_5)‘N

i (R"XR"; My)

forall N < M, —(n+1).

Proof. An application of the Taylor expansion formula to the second variable of a around £ and integration by parts provides

ap(x, &) = Z %Os —// e_iy'”D;c);a(x,f +n,x+y,&)dydn
| !

y|<N

1

R Y

+N ) 05-//e-ly'"%/(1—9)N-'a;a(x,§+9n,x+y,§)d9dyd;7.
ly|=N "0

Next we need to exchange the oscillatory integral with the integral in the second term of the right side of the previous equality.
Hence we choose an arbitrary y € S(R") with y(0) = 1 and let y € N{j with |y| = N. Now let/ = n + 1 and I=1+ [W;‘TJ;"]
Then we obtain due to the Theorem of Fubini and integration by parts using e~V = AT(Dy, n)Al (Dn’ y)e‘iy'”, see (2.3) and

(2.4) for the definition of A’ (D, ), for each € > 0:

1
/// e_iy'”)((ey))((en)ny(l - H)N_ldga(x,f +0n,x+y, §) dfdydn
R" R” 0
1
= /(1 —g)N-! // e_iy"’Al(Dy,n)A’(D,,,y) {)((en)D; [}((ey)d,};a(x,rf +6n,x+y, 5)] }dy dnde. 4.2)
0 R Rn

Here the assumptions of the Theorem of Fubini and of integration by parts can be verified. Since y € S(R"), D;’ x(ey) — 0O for
e — 0if |a| # 0. Hence we get by interchanging the limit and the integration on account of (4.2) and since the integrand has an
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L'-majorant:

1
. Y
Os // e~y /(1 - e)N—la;a(x,g +0n,x +y,&) do dydn

a-e~ )Nl —iyn 4T I
/ // 141D, 1) A (Dn,y){DW (x, §+9n,x+y,§)}dydnd0

R" R"
(1 - )N ! —iy-
Os-f| e y”Dgaf;a(x,é +0n, x + y,cf) dydnde,

where the last equality holds because of Theorem 2.5. Hence (4.1) holds. The rest of the claim is a consequence of
Theorem 3.10. O

As a consequence of the previous theorem, we obtain:

Corollary 4.6. Letn; € Ny, O0< 7 <1, m;,my €R,0L6<p<1; M|, M, € NyU {0} with M| > n+ 1. Additionally let
N := M, — (n+1). Fora, € C"7 S;"é(IR" X R"; Ml) and a, € S;";(IR” X R"; M2) we define

a(x,&) 1= Os // e May (x,& +n)ay(x + y, &) dydn
and forallk e Nwithk < N,y € Ng with |y| = N and 6 € [0, 1] we set

e aifiay(x.8) 1= ¥ Sdla(x.&)Dlay(x.8),
i<k "
o r,o(x.&) 1= Os -] e "0} a;(x.& + 0n) Diay(x + y.&)dydn

forall x,& € R". Moreover we define R, : R" X R" — C as in Theorem 4.5. Then

a(x,&) = afrar(x, &) + Ri(x, &) forall x,& € R"
and with M, := min{M1 —k+ 1;M2} and N, := min{Ml —k—(n+ 1);M2} we obtain
o afiiay(x,6) € CTIST (R X R M),

o Ry(x,£) € Cin gt O (R R N ).

In particular we have a(x,&) € C™: Sm1+m2(IR" XR";Ny). If we even have a, € S‘;";(IR” X R"; M,) or Dla, e
S"(R" X R"; My) forall f € Nj with |B] = 1, then Ry (x, &) € CTu-m1 §"HH" "0 (R s R1: Ny ) for all k € Nwith k < N.
Proof.  Since a;(x,&)a,(y, &) € C™-n kS’;"(‘s’m2 (R"XR"x R"XR"; M;,M,) we just need to show afl,a(x,&) €

ChT S;"(‘;'”Z (IR” x R": Mk), the rest is a consequence of Theorem 4.5. Let k € N with k < N be arbitrary and a, f,7 € N
with |y| < k, |f] < i, and |a| < M «- The choice of a; and a, provides by means of the Leibniz rule

0?D£{a§a1(x,f)D§a2(x,§)}| < aﬂy(x)<§>ml+m2 (p=0)ly|—plal+6|p] (43)

for all x, & € R”, where Ca,ﬂ,y(x) is bounded. On account of (3.1) we know, that Diaz(x, &) e c™mi S;";Jral}ll (R” X R"; Mz).
Hence an application of Lemma 2.1, Remark 3.1 and the Leibniz rule provides

<C

o1 { 9ay(x, O)DLax(x, )| <C,

) y<§>m1+mz—(p—5)|7/|—ﬂ|a|+5(f711+Tl). (4.4)

CTUTIH(RY)
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A combination of (4.3) and (4.4) yields
dLay(x,&)Dlay(x.¢) € cmemgmrm=(r=ollrl (R x R™; M)
C Cl’;ll,flsml+m2(Rl’l X Rn’ Mk)

N my+m v
Hence a,f,a,(x,&) € C™em18 0 (R" X R"; M}). O
With the previous corollary at hand, we now can show the next statement:

Theorem 4.7. Let i €Ny, i, €N, 0 < 1,7, <1, m,my €R and 0 <6 < p < 1. Furthermore let p=2 if p# 1 and
1 <p<oo else. We choose a 6 & Ny with 6 € (0, (rhz + 1'2)(p - 5)), £ € (0, min {(p —6)1y;(p— 5)(ﬁ12 + 1'2) - 0;0)})
and define (m,t) :=(|s],s — |s]), where s :=min{m, + 7|;m, + 1, — |8]}. Additionally let M, M, € Ny U {o0} with
M, >m+1)+[0] + nmax{%,%} and M, >n- max{— 1—)}. Moreover let a, € C’hl’flS;":s(R” XR" M) and a, €
C™m 8§ (R X R"; M) such that
p,0
| x| >0
ay(x,E)— ay(0, &) forall ¢ € R".
Then we get for each s € R fulfilling (1 — p)g —(1 =8y + 1) +O0+E<s+m <m+1,and (1 - p)g -1 =8m+1)+

T @ +&)<s<m+r, that
m2+12

a(x. D,)ay(x. D) = (afijn @) (x. D) + Hy"™ "™ (R") > Hy(R") is compact.

where alﬁm ay(x, &) is defined as in Corollary 4.6.

Remark 4.8. If we weaken the condition for the second symbol in the previous theorem to a, € C 13,72 S;né ([R" X R"; M 2), we
can show in the same way as in the proof of Theorem 4.7, the compactness of

a1 (. D )a(x.D,) — (ayByg1a2) (x. D) = HZ™ "R HARY)
for some € > 0.
_0+E
. Ty +iy
keN with k < M; —(n+1) and M, :=min{M, —k+1; M, } that the symbol a,#,a, has the following properties if
a, € S5 (R"XR"; M,):

Proof of Theorem 4.7. Let 1 <p<oo if p=1 and p=2 else. Setting y :=6+ £ Corollary 4.6 provides for

D) ayfia, € CTTLSTIT (R X R M),
i) o(a(x, Dy)as(x, Dy)) — ayfiga, € Cs1 S0k (R gy ),

where Ny :=min{M, —k — (n+1); M, } and

o-(al (x, Dx)az(x, Dx)) :=0s :// e Vg, (x,f + n)az(x +, 11) dydn.
Now let a, € C™™ S’;";(R” X R™; M2) be arbitrary. By means of Lemma 3.8 and Lemma 3.7 we get for all f € Ng with
0<|pl <y
i) @} € C™7 872 (R xR M,) n €228~ (R" x R™; 0),
iv) ag € S,2(R"x R"; M,) and Dfiag €S2 (R"x R"; M,),
V) ay(x, &) = ag(x, &)+ ag(x, &) for all x,¢& € R”,

Now let s be as in the assumptions. Due to Proposition 4.4 and Proposition 4.3 we know that

alz’(x, Dx) : H;+m1+m2(|R") - H;+m' (R™ is compact.
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On account of the boundedness of a; (x, Dx) : H;+m1 (R™) —» H;(IR”), see Theorem 3.2, we obtain

ay(x,D,)ab(x,D,) : H,"" "R - HR") s compact. 4.5)

Then we obtain by means of the Leibniz rule, Lemma 2.1 and a} € C™2>% SZ§_0(R" X R";0) for all « € N with |a| < [6]:
dfa;(x,&)Did5(x, &) € c””s’"l*’"2 (R"x R";min{ M, — |a|; M,}) N c’h*fsl','ff'"ff’(uqa" x R”;0). (4.6)

Due to (4.6), Proposition 4.4 and Proposition 4.3 provides for all a € N with |a| < [6]:

<6galngag)(x, D,): H;+m'+m2([R") - H)(R") is compact. 4.7

#

Since a; € C"1-71 S;"l}l, (R" X R"; M 1) and (iv) holds, we obtain together with (v) and (i), (ii) applied on a, instead on a,

a; (x, Dx)az(x, Dx) - (alﬂm a2) (x, Dx)

1
= a(x, Dx)ag(x, D,) - Z ;(agalDzalz’)(x, D,) + Ryg(x,D,), (4.8)
lal<[0]

where
my,T) ¢ —(p—0)[6 n n. Ny
Ryg)(x.9) € €T 0 (R X R Nig).
Because of Proposition 4.4 and Proposition 4.3, we get
Rip(x, D) : S+m1+m2(R") - H[R") is compact. (4.9)

A combination of (4.8), (4.5), (4.7) and (4.9) yields the claim. O
In order to verify the main result of our paper, we use:

Lemmad4.9. Letin €N, N €N, 0<7<1,0<6<p<land M € NyU {co}. Leta € C™7S) (R" x R"; M; Z(C")) be

such that property 1) of Theorem 1.1 hold. Moreover let y € C.°(R") be such that w(x) = 0 if |x| < 1 and y(x) = 1 if x| = 2.
Then b : R" x R" = CVN*N defined by

b(x,&) :=w(RZ(IxI* + &%) a(x, &~ forallx,& € R"
is an element ofC’;”TSS’é(R” X R"; M; Sf(CN)).

Proof. First we assume that N = 1. We remark that b(x, &) is 0 if |x|? + |£]> < R? and b(x, &) = 1, if |x|*> + |£|> > 2R>. Using
property 1) of a we can verify

“a(.,df)_l” <C and ||a(.,§)_l|| <C (4.10)

CO(R") CO,T(RW)

for all |£| > R. Due to the product rule we can write each derivative dg Dfa(x, 1 (a,pe Ng with |a| < M, |B| < m) as the
sum of terms of the form

o' DY a(x, &) ... - 02 Da(x, &) - a(x, &),

where @) + - +a; =a and f; + - + f, = f € N, k,I € N. By means of Lemma 2.1, the inequality (4.10), property 1) and
ace C'h’fggé([R” X R"; M) we get

Ca,ﬁ<§>—p|al+5(|ﬂ|+f)’

9;" Dl a(x,¢) - akDﬂka(x &-ax.&” Hcof(R”

|a§1 Dlax,&)- ... agk D’a(x, &) - alx, 5)—1| < €, px)(E)Plel+olhl
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for all x, & € R" with |£] > R. Here C, ;(x) is bounded and C, ﬁ(x)m 0if | §] # 0. Hence we obtain for all a, f € N with
|| £ M and || £

Cy (&) 7P1EHO0HD for all ¢ € R” with |€] > R, @.11)

ofa(x.&)"!|

CT(RY)

anga(x, 5)—1) < C, p(x)(E)PHIPL for all x, & € R” with [x]* + |£]* > R%. (4.12)

Here C, 4(x) is bounded and C ﬁ(x)—> 0if |f| #0.Now lete, f € N" with || < M and |f| < m be arbitrary. On account
of the product rule and the definition of y, we obtain

angb(x, §)| =0 forall x,& € R” with |x|> + |¢|]> < R>. (4.13)

Now let & € R” with 0 < [&]* < 2R?. Then we have for all a, f; € N7, that (&)7111=91/1l < C. Together with (4.11) and (4.12)
an application of the product rule and Lemma 2.1 provides

< G,y p(E)PleltolPlD), (4.14)

02 DY b(x, g)”

CO7(RY)

where C, 4 g is independent of £ € R" with 0 < |& |2 <2R?. Moreover we obtain for all x, £ € R” with R> < |x|*> + |£|> < 2R*:
Eotss]s 3 C

ajtay=a

Pr1+br=p

o;' DLy (R (1 + 16P) )|

0 Da(x, &)

< C, pr(x)(E)Plalolll, (4.15)

where C, ; g(x) is independent of ¢ € R" with R* < |¢|* < 2R? and bounded with respect to x. Now let & € R” with |£|* > 2R?.
Then w (R™2(|x|*> + |£]*)) = 1. Hence we obtain by means of (4.11)

Cy p.g(E)~Plol¥olAIFD), (4.16)

02 Dl b(x. ‘5)”@1@"

where C, j g is independent of & € R" with |€]% > 2R%. Moreover (4.12) implies for all x, & € R” with |x|? + |£]? > 2R?

02 DY b(x, §)| -

0t Da(x,&)!| < Cppre)(E) 7V, (4.17)

where C, 5 r(x) is bounded, independent of & € R" with |€]> > 2R? and Cop. R(x)—> 0if |f| # 0. Now a combination of
(4.13), (4.14), (4.15), (4.16) and (4.17) provides the claim: For all a, § € Nj with |a| < N, || </ we have

- R<§>—p|a|+6(ﬁl+1)

0zb(x.9)|

x [0z Drbcx, 0|

C'7'~T([R{§) - |y|<m COT(RN)

for all £ € R” and

0L Db(x, )| < Cou g NE) I forall x, £ € R,
whete C, ;, p(x) is bounded and C, ; ()~ 0 if || 0.
Finally, let us consider the general case N € N. Then the case N = 1 implies that b defined by
b(x,&) 1= w(R7?(|x* + &%) )det(a(x, &)™ forall x,& € R”

is an element of C’h’fﬁg E(R” X R"; M'). Now the statement of the lemma easily follows from Cramer’s rule and the fact that

C’h’TS'I? s(RTXR"; M) is closed with respect to pointwise multiplication. O

Using the main idea of the analog result in the smooth case, see [11, Theorem 5.16], we now are able to verify Theorem 1.1:
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Proof of Theorem 1.1. First of all we assume, that m = 0. In order to prove the claim let us choose y € C°(R") such that
w(x)=0if |x| £ land w(x) = 1if |[x| > 2. Then b : R" X R" — E(CN) defined by

b(x,&) =y (R (Ix|* + [£7))a(x,&)~"  forallx,&é €R"

is an element of C’h’ffgé ([R" X R"; M, ff(CN)) on account of Lemma 4.9. Using Theorem 4.7 we obtain for all s € R with
(l—p)g—(1—5)(ﬁ1+1)+0+§<s<ﬁ1+rand1 <p<oowithp=2ifp#1:

i) a(x,D,)b(x,D,) = OP(ab) + Ry,
ii) b(x,D,)a(x,D,) = OP(ab) + R,,

where
R, R, : H;(R")N - H;(R”)N are compact.
By means of the Leibniz formula and Lemma 2.1 we get
a(x, E)b(x, &) — I € C'h’TSgﬁ(IR” xR"; M;Z(CV)).
An application of Lemma 4.1 in the case p # 1 and Lemma 4.2 else provides, that
OPab-1) : H;(IR")N - H;(R")N is compact (4.18)
for all (1 — 5)% —(1=-6)m+71)+0+E<s<m+t,where p=2if p # 1. Together with i) we obtain:
a(x,D,)b(x,D,) = OP(ab) — Id + 1d + R) = Id + [OP(ab—I) + R],
where
OP(ab—I)+ R, : H;(IR")N - H;(R")N is compact
for all (1 — 6)% —(1=-6)(m+1)+0+E&<s<m+r,where p=2if p # 1. Analogous we obtain on account of ii) and (4.18)
b(x,D,)a(x,D,) = OP(ab) — Id + Id + R, = Id + [OP(ab — 1) + R,],
where
OP(ab—I)+ R, : H;(R”)N - H;(IR“)N is compact

for all (1 — 5)% —(1=-6)(m+1)+0+&<s<m+rt, where p=2 if p # 1. This implies the claim for m = 0. For general
m € R, we use that (D )" : H;””(IR") — H;(R”) is a Fredholm operator for all s € R since it is invertible. An application of
the case m = 0 to

a(x, &) 1= a(x,E){EY ™ e c’ﬂvfjgﬁ(w xR M;Z(CV))

yields that @ (x, DX) : H;(IR”) - H;(IR") is a Fredholm operator. Since the composition of two Fredholm operators is a Fred-
holm operator again, we finally obtain the statement of this theorem on account of

a(x, D,) = d(x, D,)diag((D,)", ..., (D)") : H;"“(R")N - H;(R”)N ,
where diag((DX)’”, s (Dx>’") is the N X N diagonal operator matrix with diagonal entries (D, )". O
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