

Khalid J. Kazim

Towards a Unified Approach for
Path-following and Force-feedback
Using Nonlinear Model Predictive
Control

Towards a Unified Approach for
Path-following and Force-feedback

Using
Nonlinear Model Predictive Control

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von
Khalid J. Kazim

geboren am 5. Juni 1981 im Bagdad

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik der
Otto-von-Guericke-Universität Magdeburg

Gutachter:
Prof. Dr.-Ing. Rolf Findeisen

Prof. Dr. rer. nat. Frank Ortmeier
Prof. Dr.-Ing. Sandra Hirche

eingereicht am 22. Juni 2016
Promotionskolloquium am 14. Februar 2017

Acknowledgements
This thesis is the result of my PhD research work conducted in the Systems and Control
Group of Prof. Dr.-Ing. Rolf Findeisen at the Institute for Automation Engineering,
Faculty of Electrical Engineering and Information Technology at Otto-von-Guericke-
Universität Magdeburg, Germany.
Firstly, I would like to express my gratitude to my supervisor Prof. Dr.-Ing. Rolf

Findeisen for the support of my PhD study, for his motivation, and immense knowl-
edge. His advises helped me all the time during research and writing of this thesis.
Furthermore, I would like to thank Prof. Dr.-Ing. Sandra Hirche from Technical
University of Munich, Germany, and Prof. Dr. rer. nat. Frank Ortmeier from Otto-
von-Guericke-Universität Magdeburg, Germany for their willingness to act as reviewers
of this thesis.
The members of the Systems and Control group have been a source of good advice

and collaboration. I would especially like to acknowledge Dr. Philipp Rumschinski. I
am grateful for the time spent with my colleagues, Janine Matschek, Petar Andonov,
Juan Pablo Menendez Zometa, Markus Kögel and Tobias Bäthge.
I am grateful to our group’s administrative assistants Ulrike Thürmer and Peggy

Stein who kept us organized and were always there to help.
I gratefully acknowledge the funding sources, I was funded by Iraqi-German schol-

arship program, which is managed jointly by the Ministry of Higher Education and
Scientific Research in Iraq and the German Academic Exchange Service (DAAD).
I would like to thank my family; my parents and to my brothers and sisters for

supporting me spiritually throughout writing this thesis and my life in general.

February 2017 Khalid J. Kazim

v

Contents

Abstract III

Deutsche Kurzfassung V

List of abbreviations and symbols VII

1 Introduction 1
1.1 Overview of Path-following with Force Feedback 1
1.2 Path-following and Force-feedback Based-on Predictive Control 4
1.3 Contributions . 5
1.4 Thesis Outline . 6

2 Review of Nonlinear Model Predictive Path Following Control 7
2.1 Principle of Model Predictive Control 7

2.1.1 Mathematical Setup . 8
2.1.2 Sampled-data Realization . 9
2.1.3 Stability . 11
2.1.4 Control Problems Handled By Nonlinear Model Predictive Con-

troller . 13
2.2 Nonlinear Model Predictive Path-following Controller 15

2.2.1 Predictive Path-following in the State-space 15
2.2.2 Predictive Path-following in The Output-space 18
2.2.3 Exact Followabililty Conditions 22

2.3 Challenges . 26
2.3.1 State-estimation . 26
2.3.2 Measurement and Computational Delays 31

3 Force Feedback Basics 33
3.1 Introduction . 33
3.2 Impedance-based Force-Feedback Control 34

3.2.1 Task space dynamic model . 35
3.2.2 Computed-torque control . 37
3.2.3 Implementation challenges of impedance-based control 39

3.3 Admittance-based Force-Feedback Control 41

I

Contents

3.4 Environment Modeling . 42
3.5 Choosing Parameters Based-on The Duality Principle 43
3.6 Optimization-based Force-Feedback Control 44

3.6.1 Predictive Force Feedback Control 47

4 A Unified Approach for Path-following and Force-feedback 50
4.1 Combined Path-following and Force Control Based-on Feedback Lin-

earization . 50
4.2 Predictive Path-Following Force-Feedback Control in The Output-space 54

4.2.1 Extension Towards Admittance Force Control 55

5 Validation 63
5.1 Simulation Experiment . 63

5.1.1 Modeling of Robot Dynamics and Desired Admittance 63
5.1.2 Nominal Simulations . 65
5.1.3 Non-nominal Simulations . 77

5.2 Experimental Validation . 80
5.2.1 Estimation of unmeasured states 81
5.2.2 Environmental parameters . 82

5.3 Discussion . 87

6 Safety of Manipulation Processes 90
6.1 Obstacle avoidance in the framework of predictive control 90

6.1.1 Computation of the unreachable set 92
6.1.2 Computation of the inevitable set 94

7 Conclusion and Future Perspectives 100
7.1 Directions for Future Research . 101

Bibliography 102

Appendix A Mathematical definitions 112

Appendix B Big-M Method 114

Appendix C Tables 115

Appendix D The second and third parts of the proof of theorem 2.1 118

II

Abstract

In many robotics tasks, one needs to follow a specified path while applying a controlled
force. Typically, these tasks are handled by controlling motion and force separately.
Existing approaches that solve the path-following and force-control problems simulta-
neously do not consider constraints explicitly. In addition, these approaches require
often a special structure of the dynamic system.
In this work, we propose a unified approach to handle path-following and force-

control subject to input and state constraints. To this end, we extend an existing
nonlinear model predictive path-following control scheme to include force control.
In the standard nonlinear model predictive path-following control scheme, a timing

law is added to the optimal control problem that decides which point on the path is set
as the current reference. To realize additionally a desired force, a so-called admittance
dynamics is added to the optimal control problem as a secondary constraint (virtual
state). The force error, that drives this dynamic, updates the followed path to achieve
the desired force. Since both the timing law and the admittance dynamics are included
as constraints in the optimization problem, the nonlinear model predictive controller
works as a coordinator between path-following and force-control. Hence, the proposed
scheme allows to compromise between both tasks by tuning the corresponding weights
in the cost function of the optimal control problem.
The approach is tested, in simulation and furthermore experimentally validated in

real-time with a lightweight robot arm. Simulation and experimental validation un-
derpin the applicability of the proposed concept. The presented approach sets the
basis for completely new force feedback control strategies, reaching from cooperative
control towards man-machine interaction subjected to constraints.
Uncontrolled contact of the robot with the environment has to be avoided, because

this can generate undesired forces, which may lead to instability. Therefore, we pro-
pose an approach to determine the set of initial conditions for which an uncontrolled
collision occurs no matter which input is applied. To this end, we developed a set-
based recursive procedure to compute the inevitable set. The applicability of this set
is not limited to robotic manipulator systems, but can be used in mobile swarm robots
and unmanned aerial vehicles.

III

Deutsche Kurzfassung

In vielen Aufgaben in der Robotik z.B. im häuslichen, industriellen und medizinis-
chen, Umfeld soll ein bestimmter Pfad verfolgt werden, während eine kontrollierte
Kraft auf die Umgebung ausgeübt wird. Existierende Regelungsstrategien betrachten
dabei Bewegung und Kraft getrennt voneinander, was jedoch die Regelgüte begrenzt.
Es existieren zwar bereits Ansätze, die die Pfadverfolgungs und Kraftregelungs auf-
gabe gleichzeitig lösen, jedoch erlauben diese keine explizite Berücksichtigung von
Beschränkungen.
Zusätzlich erfordern diese Ansätze eine spezielle Struktur des betrachteten dynamis-

chen Systems, da sie auf Linearisierungstechniken beruhen. Aufgrund von Sicherheit-
sanforderungen, ist es jedoch notwendig die auferlegten Beschränkungen unbedingt
einzuhalten. In dieser Arbeit wird ein Ansatz zur kombinierten Kraft- und Pfadver-
folgungsregelung unter Beschränkungen vorgeschlagen. Zu diesem Zweck ergänzen
wir einen nichtlinearen modell-prädiktiven Pfadverfolgungsansatz um eine Kraftfor-
mulierung unter Beschränkungen. Hierbei wird die gewünschte Admittanz −die Dy-
namik der Kraftregelung− dem Optimalsteuerungsproblem als zusätzlicher virtueller
Zustand hinzugefügt. Die Admittanz wird hierbei dynamisch über einen Kraftfehler
bestimmt, um eine (virtuelle) Referenzbahn zu erzeugen. Somit wird der Pfad dem der
Roboter folgen soll, durch eine virtuelle Referenzbahn vorgegeben. Im Fall präzisem
Vorwissens kann die Kraftsteuerung entlang des aktualisierten Pfads exakt erreicht
werden.
Im vorgeschlagenen Ansatz übernimmt die nichtlineare modell-prädiktive Regelung

die Koordination zwischen Pfadverfolgung und Kraftregelung, da sowohl die zeitliche
Taktung der Pfadverfolgung als auch die Admittanz-Dynamik als Beschränkungen
im Optimierungsproblem berücksichtigt werden. Die Formulierung als nichtlineare
modell-prädiktive Regelung erlaubt einen Kompromiss zwischen der Positionsregelung
und der Erreichung der Kontaktkraft, da die Gewichtungen zwischen Kraft und Pfad
in der Kostenfunktion des Optimalsteuerungsproblems eingestellt werden können.
Der vorgeschlagene Ansatz wird zunächst in Simulationen am Modell eines Leicht-

bauroboters getestet. In einem zweiten Schritt werden die Ergebnisse mittels Echtzeit-
Experimenten an einem realen Roboter validiert. Die simulierten und experimentellen
Ergebnisse zeigen die echtzeitfähige Anwendbarkeit des vorgeschlagenen Konzeptes.
Ungeregelter Kontakt des Roboters mit der Umgebung muss vermieden werden, da

dies zu Instabilitäten führen kann. Deshalb schlagen wir einen Ansatz vor, um die
Anfangsbedingungen zu bestimmen, für die eine Kollision nicht vermieden werden

V

Contents

kann egal welches Eingangssignal gewählt wird. Zu diesem Zweck wird eine mengen-
basierte Methode entwickelt, die diese Anfangsbedingungen bestimen. Dieser Ansatz
ist nicht auf Roboter beschränkt, sondern kann für mobile Schwärme und unbemannten
Flugzeuge verwendet werden.

VI

List of abbreviations and symbols

Abbreviations and Acronyms

B&B Branch and Bound Algorithm
LP Linear Program
MPC Model Predictive Control
MPFC Model Predictive Path-following Control
NMPC Nonlinear Model Predictive Control
MILP Mixed-integer Linear Program
OCP Optimal Control Problem
ODE Ordinary Differential Equation
QP Quadratic Program

Symbols

t Time variable
ti Recalculation time instant
θ Scalar path parameter
nx Dimension of the real valued state vector
ny Dimension of the real valued output vector
nu Dimension of the real valued input vector
x State vector x ∈ Rnx

y Output vector y ∈ Rny

u Input vector u ∈ Rnu

x0 Vector of the real valued initial state
x̂ Vector of the real valued virtual state
f Vector field for the system dynamics
x(τ, u(·)|x(t0)) The state trajectory starting from x0 at time t0 driven by an input

signal u(·) : [t0, t1]→ U and τ ∈ [t0, t1]
X Set defining the state constraints X ⊆ Rnx

U Set defining the input constraints U ⊆ Rnu

X̂ Set defining the virtual state constraints X̂ ⊆ Rr̂+1 where is a well-
defined vector relative degree

In×n Identity matrix with dimension Rn×n

0n×m Zero matrix with dimension Rn×m

Ck Set of k-times continuously differentiable functions

VII

List of abbreviations and symbols

intA Interior of a set A
∂A Boundary of a set A
K Set of class K functions, see Appendix A
L Set of class L functions, see Appendix A
KL Set of class KL functions, see Appendix A
Lfh Lie derivative of h along f , i.e. the directional derivative of h along

f

Q ≥ 0 Positive semi-definite matrix Q, see Appendix A
R > 0 Positive semi-definite matrix Q, see Appendix A
‖x‖ L2-norm of a vector x ∈ Rn

‖x‖2
Q Notation for xTQx, Q ≥ 0

x̄ Predicted states vector
ȳ Predicted output vector
ū Predicted inputs vector
J(·) Cost-function of an optimal control problem
V (x(ti)) Optimal value of the cost-function for a measured state x at time ti
u∗(τ, x(ti)) Optimal input sequence, with τ ∈ [ti, tii] , tii > ti starting at initial

state x(ti)
Li The set of all points on link i

VIII

1 Introduction

1.1 Overview of Path-following with Force Feedback
To perform many of their assigned tasks, industrial and domestic robots must follow
a specific path while applying a force on or along this path. For example, during
machining processes, such as sawing, deburring, grinding, soldering, gluing and milling;
robots are normally required to follow a defined path and maintaining a desired force.
Another example is a humanoid hand, where the fingers of the robot hand should grasp
an object and move it along a specified path, (see Figure 1.1), and e.g. for writing
(see Figure 1.2). Similar tasks also appear in cooperative robotics tasks, for instance,
when two robot arms cooperatively should move an object along a specific path while
grabbing it with a controlled force.
Typically, manipulation tasks during interaction with an environment are described

in terms of position and force. In general, methods to control constrained manipulators
can be classified into two main categories: hybrid controls and impedance controls (for
more details see Chapter 3). Hybrid position/force control allows a robot to apply
forces to a constrained direction while moving along a specified path in free direction.
Such that, the task space is divided into orthogonal subspaces, each of which is either
assigned as a position or a force control subspace [30]. Impedance control methods
provide a dynamic relation between the robot’s end-effector and the environment,
i.e. the desired impedance. Hence, the main objective in impedance control is to
control in each direction on the task space the dynamic relation between motion error
and contact force. Impedance controllers have an intrinsic robustness to environment
modeling mismatch [23, 78].

(a) (b)

Figure 1.1: Examples of KUKA LWR IV manipulating an object.

1

1 Introduction

Figure 1.2: KUKA LWR IV writing. [38]

These outlined methods can be used to control along each direction either position
or force or a compromise between them. Alternatively, [46] proposed a simultaneous
approach controls independently transversal and tangential forces to the path. This is
achieved by decomposing the system into linear transversal and tangential subsystems
using feedback linearization. As stated in 2014 by Flixeder et al. [46]: “To the authors
knowledge, no attempt has been made so far to independently control both, the force
transversal and tangential to the machining path”. While [46] controls both forces
along the path, constraints can only be considered indirectly.
We present a unified approach to the path-following and force-feedback control

problems simultaneously using model predictive control. In our approach, constraints
on states and inputs are considered. The solution is preformed within an optimization
setting. To present the approach, we describe the components used. We begin by a
summary of the advantages of Nonlinear Model Predictive Control, Path-following and
Force-feedback Control. Then, we describe the proposed approach, which combines
these three control strategies to solve path-following and force-feedback simultaneously.

Nonlinear Model Predictive Control
Nonlinear Model Predictive Control (NMPC) [20, 51, 79, 84, 86] is an advanced

control method that has been used majorly for process control applications, i.e. oil
refineries, reactors, and chemical plants. In NMPC, optimization techniques are used
to solve an optimal control problems within a specified period of time, the so-called
prediction window or horizon. In this strategy, the current time horizon is optimized
while taking the future system evolution into account. This can be done by using the
system model to simulate - i.e. predict - the future system behavior. According to
these predictions the input is optimized, so as to minimize a control objective while
still meeting the constraints. The initially obtained optimal input is applied, and the

2

1.1 Overview of Path-following with Force Feedback

procedure of optimization/prediction is repeated at each sampling instant using the
new measurements or estimations as an initial condition (for more detail see Chapter
2).
MPC has been used in the field of robotics, e.g. in robot locomotion [49, 63, 81, 117,

124], in robot manipulation [73], or controlling a parallel manipulator [32].
The main advantages of NMPC compared to other control strategies are: It allows

to handle highly nonlinear and stiff dynamics, treats explicitly states and inputs
constraints and its ease-to-use for multivariable processes [58, 79, 84]. Furthermore, it
allows to online improving performance based-on cost function criterion, and achieves
robustness with respect to changes in system parameters [1, 58, 97].

Path-following
In path-following problem, the system output is supposed to follow a geometric

path without a prespecified time reference. The time-evolution along the path is
considered as an additional degree of freedom [5, 34–37, 55, 74, 89, 111, 127]. Path-
following problems appear in a wide range of applications e.g. process engineering [50],
robotics [26, 109, 113], and autonomous aircrafts [25], ships [52, 87], and vehicles [4].
Path-following has, compare to reference tracking several advantages. As known,

good tracking can be achieved when there is no unstable zero-dynamics (i.e. non-
minimum phase systems). If a system is non-minimum phase, then the tracking error
is no longer achievable, since part of the energy is required for stabilization [3]. This
limitation is structural. It can be only overcome when the structure of the system
is changed or the tracking problem is reformulated [3]. One possible reformulation
of the tracking problem is to decompose it into two sub-problems: first, a geometric
path-following problem, second, following the path with satisfaction of time, speed,
or acceleration assignment along the path [3, 111]. The main idea, is to use a path-
parameter −which is used to parametrize the geometric path− as a new additional
virtual control input to stabilize the non-minimum phase dynamics, while the system
control variables drive the system on the path. However, the dominant methods
for solving path-following problems are geometric and Lyapunov based nonlinear
feedback control [11, 88, 111]. Basically, These methods do not allow to consider the
constraints on states and inputs in a structured way [34]. Alternatively, predictive
control can be used to solve the path-following problem while taking stability and
constraints into account [34, 36, 127] (for more details see Chapter 2).

Force Feedback Control
Force feedback control aims to control the force applied to an (possibly soft) object.

In the force feedback control two major approaches exist: Passive Compliance and Ac-
tive Compliance control [110]. Passive compliance control is induced inherently by the
structural mechanical compliance of the robot manipulator, i.e. finite stiffness of the

3

1 Introduction

links, grippers, joints, and actuators. Normally, in passive compliance, the measure-
ment of force is not needed [10, 110]. In active compliance, the interaction between
the end-effector and the environment is controlled by changing the joint stiffness using
a user-defined control law.
Active-interaction control can be classified into two groups: indirect-force control and

direct-force control [53, 108, 110, 128]. In indirect-force control the control is achieved
implicitly by motion control, without an explicit force feedback loop. Whereas, in the
direct force control, the contact force with respect to the desired value is controlled
using a force feedback control loop (for more detail see Chapter 3). Indirect force
control approach is typically realized by so-called impedance/admittance control. The
aim of the impedance/admittance control is to design a desired dynamic interaction
between the end-effector and the environment [24, 57, 70, 107]. Any active compliance
approach receives both motion and force errors, to provide the proper input to the
robot joint actuators.
Impedance/admittance control is realized by a virtual mass−spring−damper dy-

namic system with adjustable parameters [57, 107, 110]. The active (indirect) compli-
ance is an impedance if the control reacts to the position error by generating forces,
while it is called an admittance if the control complies to contact forces by producing
a deviation from the desired position. We adopt admittance force control, as our ap-
proach updates the desired position based on the measured force. Admittance control
is well suited for applications where position accuracy is relevant and the environment
is not highly stiff [6]. For low stiffness environment, admittance control can be only
used if the damping coefficient is significantly increased, However, to avoid unsta-
ble behavior −due to low bandwidth− during interaction with stiff environment, the
velocity (of the robot) needs to be excessively reduced [6].

1.2 Path-following and Force-feedback Based-on Predictive
Control

We propose a unified approach to handle both path-following and force-feedback prob-
lems simultaneously. To achieve this, we reformulate the Nonlinear Model Predictive
Path-following Control scheme introduced in [34, 36, 127] by including a desired admit-
tance dynamics as an additional constraint (virtual state). The admittance is driven
by the force error to generate a (virtual) reference trajectory, which updates the path
to be followed by the robot. Considering a perfect following of the path, force control
is then achieved by following the updated path.
The inaccuracy in the modeling of both the robot dynamic model and the environ-
ment are making trajectory-tracking of a desired position or force challenging or even
impossible. Therefore, considering path-following instead of trajectory-tracking (see

4

1.3 Contributions

Chapter 2, Section 2.1.4), provides the freedom to additionally change the timing along
the desired path. This freedom in time facilitates the tasks of real-time adaptive mo-
tion control during interaction while applying a desired force. The proposed approach
is discussed in detail in Chapter 4.

1.3 Contributions
The main contributions of this thesis are:

1. We designed a unified approach to handle path-following and force control prob-
lems simultaneously considering constraints on state and input.

2. Both force regulation and path-following problems are solved within one opti-
mization problem.

3. The proposed approach can be used during free motion and constrained mo-
tion, i.e. interaction with the environment, as well as, for known and unknown
environments as explained in Chapter 4& 5.

4. By using a MPC strategy, the future evolutions of a parametrized-path, the
force trajectory, and the dynamic system are taking into account during the
optimization problem. By observing the proposed optimization problem, the
performance index penalizes the deviations of the system output from the path
and the parametrization variable from its final value. Increasing the weight in the
performance index on the deviation from the path, one can prioritize convergence
to the path, i.e. the evolution of parametrization variable slows down when the
deviation from the path is big. This property ensures fast convergence to the
desired force as shown in the simulation and experimental results.

5. The receding horizon feature of the predictive scheme provides fast and stable
convergence, since, the dynamic model is used to predict the future evolution and
the force effect.

6. The proposed approach can be used to control the force along a normal, tangen-
tial, and bi-normal vector to the path, by imposing a desired admittance dynamic
along a corresponding direction.

7. The proposed approach can be expanded to handle time delays in measurements
as validated in the simulation and experimental studies.

8. Both tangential and transversal forces can be controlled while moving the robot
arm manually along a specified path by a human operator e.g. master and slave
robotics systems.

5

1 Introduction

9. We furthemore propose an approach to determine the set of initial conditions the
so-called −inevitable set− for which an uncontrolled collision occurs no matter
which input is applied. By knowing this set a priori, one can avoid it. To this
end, we developed a new set-based recursive procedure to compute the inevitable
set. This set is not limited to robotic manipulators, it can be used in cooperation
of swarm of mobile robots and swarm of unmanned aerial vehicles (UAV).

1.4 Thesis Outline
Chapter 2, presents the predictive control basics used in our approach. Basically,
we briefly review the principle and the mathematical description of NMPC. Then
we discuss how the controller parameters effects both the stability and performance.
Additionally, we comment on problem of stability for NMPC. Afterwards, we present
a brief overview of the predictive path-following problem in state- and output-space.
Then, we present their solutions in the NMPC framework, as well as, the conditions of
path followability are discussed for unconstrained and constrained dynamics system.
Finally, we outline the effects of state-estimation and time delays on the stability of
NMPC.
In Chapter 3, we give a brief overview on force feedback control. We outline active

and passive compliance-based control methods, in particular, impedance and admit-
tance force control. We comment on their advantages and limitations, as well as,
the issue of the environment identification. In addition, the way of choosing the ad-
mittance parameters based-on duality principle is explained. Then, we survey briefly
optimization-based force control approaches, with emphasis on model predictive con-
trol schemes.
In Chapter 4, we present the main contribution of this thesis. First, we review the

existing approach for combined path-following and force-feedback control using a feed-
back linearization method. Then, we explain our approach, which exploits the model
predictive control scheme to solve path-following and force feedback simultaneously
within one optimization problem.
In Chapter 5, we verify the proposed approach in simulation and experimental vali-

dations. First, we present the model of the robot, which is adopted in simulation and
experimental work. Then we perform simulation results for predictive path-following.
Third, we test the applicability of the proposed approach (i.e. path-following and force
feedback problem) using different desired paths, contact-forces and different degrees of
environment stiffness in simulations. Finally, we conduct the experimental validation.
In Chapter 6, We solve the obstacle avoidance problem and compute the set of

inevitable initial states. Additionally, we illustrate the applicability of these methods
with examples. Then both problems are included in the MPC framework. In the last
chapter, concluding remarks with future perspective are provided.

6

2 Review of Nonlinear Model Predictive Path
Following Control

In this chapter the basic concept of Nonlinear Model Predictive Control (NMPC)
is reviewed. Basically, we outline its key advantages to control nonlinear systems
subjected to constraints on state and input, and show the differences between sampled-
data open-loop NMPC − which is adopted in the next chapters− and instantaneous
NMPC. This chapter does not provide a comprehensive review of NMPC; it rather
provides the basis for the following chapters. For more complete reviews we refer to [7,
21, 29, 41, 42, 54, 80, 92, 96]. We first present a mathematical setup of sampled-data
open-loop NMPC, and provide some remarks on the stability of NMPC. Furthermore,
the predictive path-following problem is introduced. Lastly, we discuss two challenges
in NMPC, namely state estimation and the handling of measurement delays.

2.1 Principle of Model Predictive Control
Model predictive control (MPC) belongs to the family of model-based control [20, 51,
79, 84, 86]. In MPC, open-loop optimal control problems are solved repeatedly mini-
mizing an objective function while considering constraints on inputs and states. One
speaks of nonlinear model predictive control if the model and/or the constraints in the
optimization problem are nonlinear. The model in the NMPC controller describes the
controlled plant and is used to produce a predicted trajectory starting from a mea-
sured (estimated) initial state with the optimized input. In principle, the optimization
problem should be solved over infinite horizon. Solving infinite horizon optimization
problem is however time consuming if possible at all. Therefore, many approaches
have been proposed to use a finite instead of an infinite horizon NMPC.
Choosing a finite horizon leads to sacrificing global optima and stability. Furthermore,
there will be a mismatch between the real trajectory and predicted one. In addition,
in practice, there exist external disturbances and model plant mismatch leading to
differences between true system state and predicted state. Thus, to overcome this
deviation and to eliminate the disturbances it is required to incorporate feedback. This
is achieved in NMPC by applying the calculated optimal open-loop input just until
the next recalculation time. Then the complete process prediction and optimization is
repeated along the same prediction horizon N . For this reason NMPC is also known
as Moving Receding Horizon Control, (see Figure 2.1). One can summarize model

7

2 Review of Nonlinear Model Predictive Path Following Control

predictive control procedure in the following algorithm:

1. Obtain the current state of the dynamic system.

2. Calculate an admissible optimal-input by solving an open-loop optimal control
problem over the prediction horizon using the system model and the current state
for prediction.

3. Applying the obtained optimal-input until the next recalculation time.

4. Goto to 1.

Figure 2.1: Concept of model predictive control.

2.1.1 Mathematical Setup
In this section, we provide a formal mathematical description of NMPC similar to [41,
48]. Consider a nonlinear system of the form

ẋ(t) = f(x(t), u(t)), x(t0) = x0 ∈ X0, (2.1a)
x ∈ X ⊆ Rnx, (2.1b)
u ∈ U ⊆ Rnu. (2.1c)

Where x(t) ∈ X ⊆ Rnx is the system state, u(t) ∈ U ⊂ Rnu is the input applied
to the system. (2.1b), and (2.1c) are of constraints on state and input. The initial
condition is denoted by x0, the state trajectory starting from x0 at time t0 is defined
by x(τ, u(·)|x(t0)), where u(·) : [t0, t1]→ U and τ ∈ [t0, t1]. it is assumed the maps f :
Rnx × Rnu → Rnx is sufficiently often continuously differentiable, satisfies f(0, 0) = 0,
and is locally Lipschitz in x. Note that X ,X0,U are assumed such that X is simply
connected, X0 ⊆ X , U is compact, and (0, 0) ∈ X × U .

8

2.1 Principle of Model Predictive Control

To counteract disturbances feedback in NMPC, the above an open-loop optimal control
problem is solved repeatedly. The mathematical formulation for this is as follows

min
ū(.)∈PC(U)

J(x̄(·), ū(·)) (2.2a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (2.2b)
x̄(τ) ∈ X , τ ∈ [t, t+N] , (2.2c)
ū(τ) ∈ U , τ ∈ [t, t+N] , (2.2d)

x̄(t+N) ∈ Ω, (2.2e)

where the cost functional J has to be minimized over the prediction horizon N

J(x̄(·), ū(·)) =
∫ t+N

t
L(x̄(τ), ū(τ))dτ + E(x̄(t+N)). (2.2f)

Here L,E are the stage cost function and stability terminal penalty term respectively,
which can be formed to achieve the desired performance. The symbol ·̄ in (2.2) refers
to the predicted variables (internal controller variables). This is necessary as one
needs to distinguish between the real system variables and the controller variables,
because there will be a mismatch between them even in nominal case due to the finite
optimization horizon. As common in NMPC the stage cost function L : Rnx × Rnu →
R+

0 is assumed to be continuous, fulfills L(0, 0) = 0, and is lower bounded by a class K-
function1 αL, i.e. αL(x) ≤ L(x, u). The terms in L are added depending on the desired
performance has to be achieved, e.g. economical −minimize cost or maximize profit−
and safety considerations. Often, a quadratic form adopted for the cost function, i.e.
L(x, u) = xTQx+ uTRu, with weighting matrices Q > 0 (positive definite) and R ≥ 0
(semi-positive definite), (see Appendix A).
The optimal cost of (2.2) as a function of the state is called value function:

V (x(t)) = J(x(·; ū∗(·;x(t)) | x(t)), ū∗(·;x(t))). (2.3)

2.1.2 Sampled-data Realization
In sampled-data open-loop NMPC (for a sake of simplicity, we use NMPC interchange-
ably with sampled-data open-loop NMPC), the optimal control problem (2.2) is solved
at fixed recalculation instants. The resulting optimal input is applied open-loop to the
system. We refer to the recalculation instants by tk. The time in-between recalculation
instants can vary for practical reasons, i.e. the state information is often determined
externally and might vary. The recalculation instants tk are defined by a partition π
of the time axis [41].

1See Appendix A for the definition of K-function

9

2 Review of Nonlinear Model Predictive Path Following Control

Definition 2.1 (Partition)
Consider that π = (tk) is a series, with k ∈ N of (finite) positive real numbers such that
t0 = 0, tk < tk+1 and tk →∞ for k →∞. Furthermore, π̄ = supk∈N(tk+1− tk) denotes
the longest recalculation time of π and π = infk∈N(tk+1 − tk) denotes the shortest
recalculation time of π.

In the following, we define the sampling time as follows:

Definition 2.2 (Sampling Time)
The sampling time tk ∈ π is given by

δk = tk+1 − tk. (2.4)

Such that, state measurements are calculated at times tk = t0 + kδ where t0 is the
starting time and k = 0, 1, 2,

The solution of (2.2) initialized at x(tk) is denoted by ū∗(·;x(tk)) : [tk, tk +N] →
Rnu. The applied (sub-)optimal open-loop input until the next sampling instant tk+1
is defined as:

u(t;x(tk)) = ū∗(t;x(tk)), t ∈ [tk, tk+1) . (2.5)

If the open-loop optimal control problem is solved at all time instants is instantaneous
NMPC. While, it is called sampled-data open-loop NMPC, if the open-loop optimal
control problem is solved only at discrete feedback time instants, then the resulting
optimal control signal is applied open-loop in between. The applied input and nominal
closed-loop for both schemes shown in Table 2.1.

Table 2.1: Comparison between Instantaneous and Sampled-data open-loop NMPC

NMPC Scheme The applied input Nominal closed-loop
Instantaneous NMPC u(t) = ū∗(τ ;x(t)) ẋ = f(x(t), ū∗(t;x(t)))
Sampled-data open-loop NMPC u(t) = ū∗(τ ;x(tk)) ẋ = f(x(t), ū∗(t;x(tk)))

Optimization Parameters
Although the optimal control problem (2.2) is solved on-line at any recalculation in-
stant tk ∈ π, the problem is parametrized by a set of offline defined parameters. They
have an effect on stability and performance of the closed-loop system. These parame-
ters are:

• the cost functional J(·) parametrized by
– the integral cost function L(x(t), u(t)) : Rnx × Rnu → R+

0 .

10

2.1 Principle of Model Predictive Control

– the terminal cost E(x(·)) : Rnx → R+
0 .

• the terminal region Ω ⊆ X .

• the prediction horizon N ∈ R+.

• the sampling time δ.

Efficient tuning of these parameters influences the performance and constraints sat-
isfaction. To do so, compromise between performance and computation burden are
needed. Intuitively the prediction horizon should be as long as possible. This renders
solving the optimal control problem in real-time very difficult or infeasible. Further-
more, by properly choosing the weight matrices in the cost function L(·) the control
performance can be improved. As common, the stability of the optimal control prob-
lem is ensured by adding the terminal cost E(·) and terminal region Ω as explained in
the next section. Regarding the sampling time, typically the best choice is as long as
possible while achieving all performance demands. In fact, the controller computation-
time bounds the minimum value of the sampling time. However, a faster sampling rate
is best for disturbance rejection, but it increases the computation-time, we will discuss
this issue in detail in Section 2.3.

2.1.3 Stability
We consider the nominal optimal control problem, i.e., there is no model-plant mis-
match and no disturbance interfering the controlled system. For this setup, we classify
the stability approaches of a sampled-data open-loop NMPC scheme into two cat-
egories: (i) Stability of the infinite horizon NMPC, and (ii) Stability of the finite
horizon NMPC [47, 61, 84].
Stability of The Infinite Horizon NMPC:
By considering an infinite prediction horizon (i.e. N = ∞), obtains in the nominal
case the whole information about the system evolution. According to the princi-
ple of optimality [17], the calculated and measured trajectories coincide, since there
is no model-plant mismatch. The main disadvantage of this approach, it increases
computation-time, which is clearly undesirable and is problematic with disturbances
and model plant mismatch.
For an infinite horizon NMPC, the cost function of the optimal control problem (2.2)
is given by

J(x̄(·), ū(·)) =
∫ ∞
t
L(x̄(τ), ū(τ)) dτ, instantaneous NMPC (2.6a)

J(x̄(·), ū(·)) =
∫ t∞

t0
L(x̄(τ), ū(τ)) dτ, sampled-data open-loop NMPC. (2.6b)

11

2 Review of Nonlinear Model Predictive Path Following Control

The basic idea of an infinite horizon NMPC stability is to use the value function as
a Laypunov-function [83, 84].

Stability of Finite Horizon NMPC Schemes:
For a finite horizon the following approaches are often used to achieve stability of a
NMPC controller.

1. Zero-terminal constraint:
In this approach, the stability is achieved by forcing the system states to be zero
at the end of the prediction horizon [41, 47, 68, 83], i.e.

x(tk +N) = 0, ∀tk ∈ π, (2.7)

during any step of solving the optimal control problem. This approach sets
a strong constraint (equality constraint), which leads to numerical difficulties.
This could easily reducing the feasible solutions, (i.e. the solution of the optimal
control problem satisfying all constraints).

2. Dual-mode control:
Assuming there is a local -linear- controller stabilizing the system inside a set
around the origin. The stability in this approach is achieved by forcing the
system state to end in a terminal region for which the local stability exists. Once
the system state trajectory enters the terminal region, the local linear controller
is used to keep the system state inside the terminal region. Convergence to the
set is achieved by adding a terminal penalty E, which ensures the decreasing of
the value function [85, 105].

3. Lyapunov-function based NMPC approach:
In this approach a terminal cost or terminal region (terminal inequality con-
straint) are used as a Lyapunov function [64, 116]. If the terminal cost is a
global Lyapunov function, then the terminal region constraint is not neces-
sary. For a local Lyapunov control function, the global convergence to the
origin can be achieved by increasing the horizon. However, it is not easy to
find a control Lyapunov function considering constraints on the states and inputs.

4. Direct contraction condition:
To achieve stability the so-called contraction constraint is added to the open-loop
optimal control problem [27, 93]. This constraint explicitly enforces the states to
contract at the recalculation instants by adding a constraint of the form

‖x̄(tk+1)‖ ≤ β ‖x(tk)‖ , β ∈ (0, 1).

12

2.1 Principle of Model Predictive Control

The main disadvantage of this approach is that recursive-feasibility is not guar-
anteed, so other assumptions on the system need to be added.

5. Quasi-Infinite Horizon:
In this method the closed-loop stability is guaranteed to both stable and unstable
systems subject to input constraints [22]. Basically, the cost functional has two
parts, first part is a finite horizon integral square error, and a quadratic terminal
cost represents a second part. Additionally, the penalty matrix of the terminal
cost is found by solving an appropriate Lyapunov equation. A terminal inequality
constraint ensures that the terminal state lies inside a specified terminal region
constraint.

Typically the terminal region Ω and terminal penalty E are determine offline such that
the cost functional

J(x̄(·), ū(·)) =
∫ t0+N

t0
L(x̄(τ), ū(τ)) + E(x̄(t+N)), (2.8)

sets an upper bound on the infinite horizon cost and therefore ensures the value func-
tion decreases as the horizon recedes in time. Theorem A.1 in Appendix A gives
sufficient conditions for convergence of the closed-loop state towards the origin.

2.1.4 Control Problems Handled By Nonlinear Model Predictive
Controller

NMPC can handle many control problems. We consider three types: set-point sta-
bilization, trajectory tracking, and path-following. We do not comment on so called
economic MPC approaches. Next, we give a mathematical description of these prob-
lems.

• Set point stabilization:
To define this control problem mathematically, consider we have a dynamic sys-
tem (2.1) with a reference state

x = xr, (2.9)

where the state xr ∈ Rnx is a desired reference. In the point stabilization problem,
the controller objective is to drive the state of the dynamic system (2.1) from
initial state x0 to the set-point xr using the feedback controller µc(x) = x 7→ u,
such that

lim
t→∞
‖x(t)− xr‖ = 0. (2.10)

The set-point stabilization problem is well known in control theory, for instance,
feedback and feed-forward controllers and appears in a wide range of systems e.g.

13

2 Review of Nonlinear Model Predictive Path Following Control

(continuous and discrete, linear and nonlinear); and applications e.g. temperature
control and many others.

• Trajectory tracking:
In the case that the reference state trajectory is a function of time, i.e. xr(t) :
[t0,∞) 7→ Rn, the control objective is to track online the reference evolution,
such that

lim
t→∞
‖x(t)− xr(t)‖ = 0. (2.11)

The velocity of the reference, i.e. ẋr(t) is determined offline to when to be where
on the reference trajectory. According to this setup, this control problem is called
a trajectory-tracking problem.

• Path-following:
If we consider the reference state trajectory as a function of time, i.e. xr(t) :
[t0,∞) 7→ Rn, but the time evolution of the reference is not preassigned. Then,
the reference can be defined as a geometric reference path without given the
timing along it a priori. Assuming the geometric path is defined as follows

P = {x ∈ Rnx | θ(t) ∈ Θ 7→ x = p(θ)} , (2.12)

where p : R → Rnx is a parametrization of P (2.12), θ(t) ∈ Θ ⊆ R is called the
path-parameter, which is time dependent, but its time evolution is not specified
a priori, and Θ is a compact set. In this control problem, the controller objective
is to move the system state along the path, such that

lim
t→∞
‖x(t)− p(θ(t))‖ = 0, (2.13a)

θ̇(t) ≥ 0. (2.13b)

According to (2.13a), the objective is to move the system state toward the current
state of the parametrized-path. While, the constraint on the path-parameter
evolution (2.13b) ensures the forward motion along the path.

With a little investigation, one can see that the set-point stabilization and trajec-
tory tracking problems are special cases of the path-following problem. Setting the
parametrization variable to be a constant, i.e. θ(t) = c for all t, the path-following
problem turns into the set-point stabilization problem. While, by defining the time
evolution of the parametrization variable θ(t) a priori, the path-following problem
turns into the tracking problem. As one can see the freedom to design a timing of the
parametrization variable is an advantage of path-following. To illustrate these three
control problems, consider that the objective of an unmanned Helicopter is to fly to a

14

2.2 Nonlinear Model Predictive Path-following Controller

specific point and stay hovering there, this objective represents a set-point stabiliza-
tion problem. However, if the objective of the unmanned Helicopter is to fly along a
specified path and reaching points on the path with preassigned time, then the objec-
tive is a trajectory tracking. Whereas, if the objective of the unmanned Helicopter is
to fly as precise as possible along a path, this objective is a path-following problem
(see Figure 2.2). In the next section, we describe predictive path-following controllers
in state-space and output-space.

(a) Set-point tracking (b) Trajectory tracking (c) Path-following

Figure 2.2: Types of control problems.

2.2 Nonlinear Model Predictive Path-following Controller
Here, we give a formal description of the path-following control adopted in our proposed
approach. Namely, we describe a tailored NMPC formulation for solving the path-
following problem as introduced in [34]. Among other controllers used to tackle the
path-following problem [5, 55, 56, 89], predictive path-following [34–37, 127] has the
advantage, that it can consider constraints on states and inputs. First, we describe
a predictive path-following problem when the reference path is defined in the state-
space. Second, we expand the path-following problem to a generic and more applicable
problem, when the reference path is defined in the output-space.

2.2.1 Predictive Path-following in the State-space
To illustrate the predictive path-following controller, we assume that both the system
states and the followed path live in the same space, i.e. state-space. This assump-
tion makes the problem simpler, where we can compare the system states with the
parametrized path coordinates without mapping each of them to a different space,
e.g. output-space. Here, we consider the dynamic system (2.1). The followed path is
defined for simplicity in the state space such that the final value of the path-parameter
is 0,

P = {x ∈ Rnx | θ ∈ [θmin, 0] 7−→ x = p(θ)} , (2.14)

where θmin ∈ (−∞, 0], and p(0) = 0; these assumptions are needed to ensure that
both the system state and the parametrized path end up at the origin when t → ∞.

15

2 Review of Nonlinear Model Predictive Path Following Control

Furthermore, the parametrization p is assumed to be sufficiently often continuously
differentiable. The path parameter θ(t), which is time dependent, but its time evolu-
tion is not specified a priori. Furthermore, the path evolution is driven by a virtual
input û(t) such that

θ̇(t) = g(θ, û), û ∈ Û ⊆ R, (2.15)

the last virtual dynamic system is called a timing law, which gives an additional degree
of freedom to the controller. Here, the timing law is designed for simplicity as a first
order dynamic system.

Assumption 2.1 The reference path P is within the feasible set of the system states,
i.e. P ⊆ X .

The Assumption 2.1 is necessary to ensure that there exists at least one x ∈ X coin-
ciding every point on the reference path P .

Problem 2.1 (Predictive Path-following Problem)
Given system (2.1), and an a priori known geometric path P (2.14), design a controller
that drives the system state to fulfill:

• Convergence to path: The system state x(t) moves toward the path P such
that, limt→∞ ‖x(t)− p(θ(t))‖ = 0.

• Convergence on path: The system state keeps going along the path mono-
tonically in increasing direction of θ(t) s.t. θ̇(t) > 0 holds for almost all
θ(t) ∈ [θmin, 0) and limt→∞ θ(t) = 0.

• Feasibility: The constraints on the states x(t) ∈ X and on the inputs u(t) ∈ U
are satisfied for all time t ≥ t0.

�

The geometric interpretation of the two convergence objectives of the Problem 2.1 is
shown in Figure 2.3. To solve Problem 2.1, we use the approach proposed in [34].
There, a Nonlinear Model Predictive Control (NMPC) scheme is introduced to solve
the constrained path following problem. Basically, the optimal control problem (OCP)
is solved at each instant tk = t0 + kδ, with k ∈ N0, and a fixed sampling period δ > 0,
the cost functional is defined as follows

J(x(tk), ēx(·), ū(·), θ̄(·), ¯̂u(·)) =∫ tk+N

tk
L(ēx(τ), ū(τ), θ̄(τ), ¯̂u(τ))dτ + E(x̄(tk +N), θ̄(tk +N)). (2.16)

16

2.2 Nonlinear Model Predictive Path-following Controller

As common in NMPC the function L : Rnx × Rnu × R× R→ R+
0 is assumed to be

continuous. The cost function is assumed to

lim
t→∞

L(·) = 0 −→ ‖ex‖ = 0 ∧ θ → 0,

L(·) is lower bounded by a class K function αL(
∥∥∥(ex, θ)T ∥∥∥), N ∈ (δ,∞) represents the

prediction horizon, and E : X × [θmin, 0]→ R+
0 is the terminal penalty.

Figure 2.3: Geometric interpretation of Problem 2.1

The open-loop optimal input applied in-between the sampling instants is given by
the solution of the following optimal control problem OCP:

min
(ū(.),¯̂u(.))∈(U×Û)

J(x(tk), ēx(·), ū(·), θ̄(·), ¯̂u(·)) (2.17a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk), (2.17b)
˙̄θ(τ) = g(θ̄(τ), ¯̂u(τ)), θ̄(tk) = θ(tk), (2.17c)
ēx(τ) = x̄(τ)− p(θ̄(τ)), (2.17d)
x̄(tk +N) ∈ Ω ⊆ X ⊆ Rn, (2.17e)
x̄(τ) ∈ X , ū(τ) ∈ U , (2.17f)
θ̄(τ) ∈ X̂ , ¯̂u(τ) ∈ Û , (2.17g)

where ·̄ symbol denotes predicted variables (internal variables of the controller), the
solution of (2.17b) is denoted by x̄(t, ū(·)|x(tk)), which is controlled by the input
ū(·) : [tk, tk + N] → U with initial condition x(tk). The prediction process needs the
system model to simulate the future of the system, therefore, the dynamic system (2.1)
is used as dynamic constraints (2.17b)- (2.17c). The terminal constraint (2.17e) forces
the predicted state x̄(tk + N) to be in the terminal region Ω at the end of each
prediction. The virtual state θ̄ is constrained by (2.17g) where the set X̂ is defined as

X̂ := [θmin, 0]. (2.18)

17

2 Review of Nonlinear Model Predictive Path Following Control

This constraint keeps the path-parameter θ̄ ∈ [θmin, 0]. To keep the solution of (2.17c)
within moderate values, the virtual input ¯̂u is constrained by Û = [ûmin, ûmax] ⊂ R
where, ûmin ≤ 0 ≤ ûmax. Solving the differential equation (2.17c) requires an initial
condition θ(tk) at every sampling instant. If the initial point on the reference path
is specified p(θ(t0)), then the corresponding path-parameter is chosen as an initial
condition θ̄(t0) at the initial sampling instant. If no initial point is specified a priori,
it is possible to choose the path-parameter as the point corresponding to the point
on the path, which is closest to the initial state of the system x(tk) by solving the
following minimum distance problem [34]

θ̄(tk) = argmin
θ∈[θmin,0]

‖x(tk)− p(θ)‖ . (2.19)

This minimization problem might have more than one optimal solution. In this case
we can pick one of them to serve as an initial condition of the timing-law equation. For
each next sampling instant, i.e. k > 0 the new measured or estimated state x(tk) acts
as initial condition for (2.17b). However, the initial condition of timing law (2.17c) is
the last predicted value at time tk, i.e. θ(tk) = θ̄(tk, ¯̂uk−1(·) | θ̄(tk−1)). The solution of
the OCP (2.17) is denoted by ū∗(·;x(tk)) and ¯̂u∗(·; θ(tk)). Where, ū∗(·;x(tk)) represents
the (sub-)optimal open-loop input that is applied to the system until the next sampling
instant tk+1:

u(t;x(tk)) = ū∗(t;x(tk)), t ∈ [tk, tk+1). (2.20)

While ¯̂u∗(·; θ(tk)) is used to generate the new initial condition of the virtual system as
well as to control the path dynamics, i.e. t→ p(θ(t)) ∈ P .

Assumption 2.2 The first solution of (2.17) exists, i.e. there are input signals
(u(·), û(·)) such that all constraints are fulfilled.

The motivation behind Assumption 2.2 is to achieve −with other conditions− the
recursive feasibility of NMPC, similar to the one outlined in Section 2.1.3. In the next
section, we discuss the predictive following problem in output-space.

2.2.2 Predictive Path-following in The Output-space
So far we described the predictive path-following problem in state-space. Here, we
extend predictive path following problem to more application-relevant setup when the
reference path is defined in an output-space, which is in general a sub-space of the
state space. To do so, it is needed to map the states to the output-space, as well as,
the path smoothness is govern by the relative degree of the dynamic system as will be
explained in the following. First we extend the dynamic system (2.1) by adding the

18

2.2 Nonlinear Model Predictive Path-following Controller

output function as follows

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (2.21a)
y(t) = h(x(t)), y ∈ Rny (2.21b)
x ∈ X ⊂ Rnx, (2.21c)
u ∈ U ⊂ Rnu, (2.21d)

where x(t), u(t), x0, f(·, ·),X ,U are defined as before. y(t) ∈ Rny is the output of
the system and its trajectory defined by y(τ |x(t0)) = h(x(τ, u(·)|x(t0))). For sake of
simplicity, we assume that the system is square, i.e. nu = ny.

we furthermore consider that, we have a parametrized geometric curve defined
in output-space

P = {y ∈ Rny ; θ ∈ [θmin, θmax] | y = p(θ)} , (2.22)

where p(θ) is a parametrization of P in the output-space. While the parameter θ(t)
is a function of time, the time evolution t→ θ(t) is not known a priori. Furthermore,
the system input u : [t0,∞) → U and the time evolution of θ(t) have to be chosen
such that the system output follows the specified path as precise as possible.
In the following, we consider the problem of driving the system output (2.21b) to the
reference path (2.22), as well as keeping it moving along the path in the increasing
direction.

Problem 2.2 (Predictive Output Path-following Problem)
Given system (2.21), and an a priori known geometric path P (2.22), design a con-
troller that drives the system output (2.21b) to fulfill:

• Convergence to path: The system output y = h(x) moves toward the path P
such that

limt→∞ ‖h(x(t))− p(θ(t))‖ = 0.

• Convergence on path: The system output keeps going along the path mono-
tonically in the increasing direction of θ(t), i.e. θ̇(t) ≥ 0 holds and limt→∞ θ(t) =
θmax.

• Feasibility: The constraints on states x(t) ∈ X and on inputs u(t) ∈ U are
satisfied for all time t ≥ t0.

�

We choose as the timing law to move along P a simple integrator chain

θ(d+1)(t) = û(t), (2.23)

19

2 Review of Nonlinear Model Predictive Path Following Control

where d is sufficiently large as detailed later. It is supposed that, the timing law input
û(t) is piece-wise continuous and bounded, i.e. û(·) ∈ Û ⊂ R. Defining

x̂(t) :=
[
θ, θ̇, · · · , θ(d)

]T
we augment (2.21), by the timing law equation as followsẋ˙̂x

 =
f(x, u)
g(x̂, û)

 ,
x(t0)
x̂(t0)

 =
x0
x̂0

 , (2.24a)
ey
θ

 =
h(x)− p(θ)

x̂1

 , (2.24b)

where the state space form ˙̂x = g(x̂, û) is added to the system dynamics (2.21a). The
output of the augmented system (2.24) consists of two parts. The first part represents
the path following error in output-space ey = h(x)−p(θ), while the second part stands
for the first state in the timing law, i.e. θ = x̂1. According to this new formulation,
the path following controller task is to achieve the convergence of both ey to 0 and θ
to θmax.
To solve Problem 2.2, likewise the path following problem in state-space, i.e. 2.1, we
use NMPC. The optimal control problem is solved at each instant tk = t0 + kδ, with
k ∈ N0, and sampling period δ > 0, while the cost functional is defined as follows

J(x(tk), ēy(·), ū(·), θ̄(·), ¯̂u(·)) =
∫ tk+N

tk
L(ēy(τ), ū(τ), θ̄(τ), ¯̂u(τ))dτ. (2.25)

As before the cost function L : Rny × R× U × Û → R+
0 is assumed to be continuous,

and to fulfill
lim
t→∞

L(·) = 0 limt→∞−−−−→ ‖ey‖ = 0 ∧ θ → θmax

L(·) is lower bounded by a class K function αL
(∥∥∥(ey, θ)T ∥∥∥), and N ∈ (δ,∞) represents

the prediction horizon. The open-loop optimal input applied in-between the sampling

20

2.2 Nonlinear Model Predictive Path-following Controller

instants is the solution of the following OCP [34]:

min
(ū(.),¯̂u(.))∈(U×Û)

J(x(tk), ēy(·), ū(·), θ̄(·), ¯̂u(·)), (2.26a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk), (2.26b)
˙̂̄x(τ) = g(¯̂x(τ), ¯̂u(τ)), ¯̂x(tk) = x̂(tk), (2.26c)
ēy(τ) = h(x̄p(τ))− p(¯̂x1(τ)), (2.26d)
x̄(tk +N) ∈ Ω ⊆ X ⊆ Rnx, (2.26e)
θ̄ = ¯̂x1(τ), (2.26f)
x̄(τ) ∈ X , ū(τ) ∈ U , (2.26g)
¯̂x(τ) ∈ X̂ , ¯̂u(τ) ∈ Û . (2.26h)

The prediction process needs the system model to simulate the future of the system,
therefore, the augmented system (2.26) is used as dynamic constraints (2.26b)−(2.26f).
The terminal constraint (2.26e) forces the predicted state x̄(tk+N) to be in the terminal
region Ω at the end of each prediction. Here, the solution of (2.26b) is denoted by
x̄(t, ū(·)|x(tk)), which is controlled by the input ū(·) : [tk, tk + N] → U with initial
condition x(tk). The virtual states x̂ are constrained by (2.26h) where the set X̂ is
defined as

X̂ := [θmin, θmax]× [0,∞]× Rd−1. (2.27)

This constraint keeps θ̄ = ¯̂x1 ∈ [θ0, 0], and ˙̄θ ≥ 0. To keep the solution of (2.26c)
within moderate values, the virtual input ¯̂u is constrained by Û = [ûmin, ûmax] ⊂ R
where, ûmin ≤ 0 ≤ ûmax.

As in (2.17), the initial condition of differential equation (2.26c), i.e. x̂(tk) needs to
be provide at every sampling instant. Therefore, if the initial point on the reference
path, i.e. p(θ(t0)) is given a priori, then the corresponding path-parameter is chosen
as an initial condition at the initial sampling instant. If there is no initial point on
the path specified, one can choose ¯̂x(t0) as the point corresponding to the point on
the path, which is closest to the initial state of the system x(tk) by solving similar to
before the following minimum distance problem [34]

¯̂x(t0) = argmin
x̂∈[θmin,θmax]

‖h(x(t0))− p(θ)‖ . (2.28)

This minimization problem might have more than one optimal solution. In this case
we can pick one of them to serve as an initial condition of the timing-law equation. For
each next sampling instant, i.e. k > 0 the new measured or estimated state x(tk) acts
as initial condition for (2.26b). However, the initial condition of timing law (2.26c) is
the last predicted value at time tk, i.e. x̂(tk) = ¯̂x(tk, ¯̂uk−1(·) | ¯̂x(tk−1)).

21

2 Review of Nonlinear Model Predictive Path Following Control

2.2.3 Exact Followabililty Conditions
Since we use indirect force control in our approach, the accuracy of the force control
depends on the position controller, i.e. the predictive path-following controller. Here,
we discuss a sufficient condition that ensures that the dynamic system follows the
reference path exactly and hence the desired force is applied. First, we define the
followability condition, then we check whether a given dynamic system follows the
reference path, i.e. satisfaction of the followability condition.

Definition 2.3 (Path followability conditions) [34]
The path P is exactly followable by the system (2.2), if there exist admissible inputs
u ∈ U and û ∈ Û , such that the continuous trajectories x(t, t0, u(·) | x0) ∈ X and
θ(t, t0, û(·) | θ0) ∈ Θ and their time derivatives lead the path-following error

e = x(t, t0, u(·) | x0)− p(θ(t, t0, û(·) | θ0)),

and its time derivative

ė(t) = f(x(t, t0, u(·) | x0), u(·))− ∂p(θ(t, t0, û(·) | θ0))
∂θ

θ̇(t, t0, û(·) | θ0)

to zero for all t ≥ t0.

The question is, how can one check whether the given dynamic system follows the
reference path exactly or not?
The answer of this question depends on the type of the dynamic system and the shape
of the reference path. To explain that, firstly, we add the following assumptions and
definitions.

Assumption 2.3 (Regular path)
The parametrization p(θ(t)) ∈ Rny in 2.22 is an embedded submanifold2, which means
that the reference path P has no self-intersections [56, 89].

Assumption 2.4 (Smooth and square-structure system)
f(x, u) and h(x) are smooth vector fields, as well as the system (2.21) has a square
input-output structure, i.e. nu = ny.

Definition 2.4 (Vector relative degree)
A multivariable nonlinear system 2.21 has a vector relative degree {r1, . . . , rm} at point
x0 if
(i)

∂

∂uj
Lkfhi(x) = 0

2See Appendix A for the definition of embedded submanifold

22

2.2 Nonlinear Model Predictive Path-following Controller

for all 1 ≤ j ≤ m, for all k < ri−1, for all 1 ≤ i ≤ m, and for all x in a neighborhood
of x0,
(ii) the m×m matrix

A(x) =

∂
∂u1
Lr1−1
f h1(x) . . . ∂

∂um
Lr1−1
f h1(x)

∂
∂u1
Lr2−1
f h2(x) . . . ∂

∂um
Lr2−1
f h2(x)

.
∂
∂u1
Lrm−1
f hm(x) . . . ∂

∂um
Lrm−1
f hm(x)

is nonsingular at x = x0.

Where Lfh is a Lie derivative, which is the directional derivative of h along f . Here
we consider a nonlinear system of form ẋ = f(x, u) as in [34, 90] instead of an input
affine MIMO system ẋ = f(x) + g(x)u as in the standard definition [62]. Actually, the
relative degree for SISO systems is exactly equal to the number of times one has to
differentiate the output at t = t0 in order to have the input explicitly appearing [62].

Assumption 2.5 (Well-defined vector relative degree)
The dynamic system (2.21) has a vector relative degree r = (r1, r2, . . . , rny), such that

r̂ = max
{
r1, r2, . . . , rny

}
ρ =

ny∑
i=1

ri ≤ n. (2.29)

If the system (2.21) has a well-defined vector relative degree, it is possible to find a
map Φ : x 7→ z, which qualifies as a local coordinate transformation in a neighborhood
of x0. If ρ < n, it is always possible to find n − ρ more functions φr̂+1(x), . . . , φn(x)
such that the coordinates transformation matrix Φ has a nonsingular Jacobian matrix
at x0 [62]. If the relative degree of the system (2.21) is equal to the system’s order,
i.e. ρ = n, then the system (2.21) does not have an internal dynamics. Thus, any
nonlinear system that has a well-defined (vector) relative degree at some point x0 can
be transformed into a normal form system, which is linear and controllable [62] in a
neighborhood of the point z0 = Φ(x0).
As we mentioned that the path-parameter θ(t) evolution is governed by an ODE system
driven by the virtual input û. Since the path-parameter appears in the output of the
augmented dynamic system (2.24), so to achieve the coordinate transformation, it is
needed that the output function to be smooth at least C r̂. So we consider that the
following assumption holds.

Assumption 2.6 (Path parametrization smoothness)
i) The timing-law is a sufficiently long integrator chain

θr̂+1 = û θ(t0) = θ0 ∀i ∈ 1, . . . , r̂ : θ(i)(t0) = 0, (2.30)

23

2 Review of Nonlinear Model Predictive Path Following Control

(ii) The path parametrization (2.22) is p(θ) ∈ C r̂.
Where r̂ from (2.29).

According to the Assumption 2.6 it is possible to write the state space representation
of the timing law as follows:

˙̂x = A x̂+ B û := g(x̂, û), x̂(t0) = (θ0, 0, . . . , 0) ∈ Rr̂+1 (2.31a)
θ = Cx̂ = x̂1. (2.31b)

Where

C = (1, 0, . . . , 0) ∈ R1×n, and

A :=
 0r̂×1 Ir̂×r̂

0 01×r̂

 ∈ R(r̂+1)×(r̂+1), B := (0, . . . , 0, 1) ∈ R(r̂+1).

Lemma 2.1 (Local transverse normal form existence [34])
Consider the augmented system (2.24) and Assumptions 2.4−2.6, then the following
statements hold:
i) For all (x, x̂)T ∈ X0 × X̂ system (2.24) has a well-defined vector relative degree
r̃ = (r1, . . . , rny , r̂ + 1), where r1, . . . , rny and r̂ from (2.29).
ii) For all (x, x̂)T ∈ X′ × X̂ there exists a local diffeomorphism (ξ, η) = Φ(x, x̂)
s.t. (2.24) is equivalent to a transverse normal form

ξ̇i =
 0ri−1×1 Iri−1×ri−1

0 01×ri−1

 ξi +
 0ri−1×1

αi(ξ1, . . . , ξny , η1, η2, u)

, (2.32a)

η̇ = β(ξ, η, u, û), (2.32b)

where

ξ =
(e1, ė1, . . . , e

(r1−1)
1︸ ︷︷ ︸

ξ1

,e2, ė2, . . . , e
(r2−1)
2︸ ︷︷ ︸

ξ2

, ...
...
,eny , ėny , . . . , e

(rny−1)
ny︸ ︷︷ ︸

ξny

)
∈ Rρ (2.33)

with ρ = ∑ny
i=1 ri and η ∈ Rn+r̂+1−ρ.

Proof The detailed proof is given in [34].

According to Lemma 2.1, it is possible to map the coordinates (x, x̂) ∈ X0 × X̂ into
new coordinates (ξ, η), which are valid locally. In this case, the feedback transformation
of the system (2.24) maps and decomposes into a transversal ξ and tangential η linear
subsystem with respect to the reference path P (2.22) (see Figure 2.4).

24

2.2 Nonlinear Model Predictive Path-following Controller

Figure 2.4: The geometric interpretation of new coordinates

To study the local coordinates (2.32) geometrically, we follow [34, 46]. First, we de-
fine the projection of the augmented states, i.e. (x, x̂) from (2.24) onto the x coordinate
as follows

$: (x, x̂)T 7→ x. (2.34)

Using this projection one can map the augmented system (2.24) to the original sys-
tem (2.21). Now consider the following subset Γ, which represents all the points in
the new local coordinates (ξ, η), which correspond to the local solutions of the sys-
tem (2.21), such that the output (2.21b) is moving along P exactly

Γ =
{
(ξ, η) ∈ Rn+r̂+1 | ξ = 0

}
, (2.35)

where ξ represents the path error and its derivatives as in (2.33). So Γ is the subset
when the path error and its derivatives are zero. Then we can describe the subset Γ
in the original output system manifold (2.21b) by using the inverse of transformation
map Φ, then projecting the result onto the x coordinates

Ψ = $(Φ−1(Γ)). (2.36)

Note that this inverse exists since Φ is a diffeomorphism. Moving toward the refer-
ence path P and traveling along it is equivalent to stabilize the submanifold Ψ (see
Figure 2.4). Since this submanifold is not invariant [56, 89], it is possible only to stabi-
lize the maximum controlled invariant subset Ψ∗ of Ψ. Where Ψ∗ means all solutions
for which the system output (2.21b) is driven to travel along P for all times by an
admissible control input u. However, Theorem A.2 in Appendix A presents sufficient
condition of local unconstrained path followability.
So far we discussed the followability condition satisfaction for unconstrained dynamic

systems. However, to deal with constrained dynamics system, we introduce here the
term Static State Feedback Control. If the value of the feedback input at time t depends
only on the current values of the state and perhaps external target input, then the
feedback control is called a Static State Feedback Control[62]. Basically, if the nonlinear

25

2 Review of Nonlinear Model Predictive Path Following Control

dynamic system has a (vector) relative degree equal to the dimension of the state
space, i.e. ρ = n, then it can be transformed into a system linear and controllable
using a static feedback control. Also, if the (vector) relative degree equal to the
dimension of the state space, then there is no internal dynamics will appear in normal
form. This property can be used to ensure that there is no internal dynamics of the
augmented system (2.24) in the transverse normal form (2.32) [34]. However, if the
normal form includes internal states, then which may have unstable zero dynamics.
As shown in [34] and references therein that the static feedback linearization control
is a sufficient condition for differentially flat systems. Thus using flatness, sufficient
conditions for exact path following of constrained systems can be set, for more details
about this approach see [34].

2.3 Challenges
So far we assumed that there is a nominal NMPC setup, which means, full-state
feedback and no measurement delay. In real-time applications of the NMPC scheme,
some states are likely to be unmeasurable and have measurement delay. So one has to
estimate the unmeasured states using observers or filters. In the following, we study
briefly state-estimation and measurement delays and their effects on the stability and
the performance of NMPC controllers.

2.3.1 State-estimation
As common in NMPC, the full state information is assumed to be available as initial
condition for the prediction process, and can be measured. In practice, some states
usually can not be measured and only an output is provided for feedback. Thus
the application of NMPC based on a state space model needs an estimator to the
unmeasurable states form the measured output using state observers. The main
disadvantage of using the estimation process in the NMPC scheme is that nominal
stability no longer can be guaranteed [45, 100]. One of the possible approaches to
achieve closed-loop stability in the presence of observer errors, is to exploit robustness
of the MPC [100]. In [45], it is pointed out, despite of the state feedback NMPC
controller and the used observer being both stable, that there is no guarantee that
the overall closed-loop is stable even with small region of attraction. As for nonlinear
systems no separation principle holds.

There are two main approaches −and a combination of both− to recover a non-local
stability of the observer-based output feedback NMPC controller [44, 61]. The
first approach uses the certainty-equivalence principle. As a result, the stability
can be achieved by separation of the observer error from the state feedback. This

26

2.3 Challenges

separation can be done by time-scaling, i.e. the observer error needs to converge
faster than the loop control response time and semi-regional stability can be achieved.
The second approach includes the observer error inside the NMPC controller,
commonly by bounding the observer error. This approach is equivalent to design-
ing a robust NMPC by bounding and rejecting the disturbance. For a review of
the existing observer-based output feedback NMPC approaches, we refer to [2, 45, 100]

To study the stability of the output feedback sampled-data NMPC, we follow the
lines [45]. There the setup exploits the fact that sampled-data NMPC controllers have
a continuous value function are inherently robust to small disturbances. The main
idea is to consider the estimation error as a disturbance acting on the closed-loop.
Then by using the inherent robustness of the sampled-data NMPC, the observer error
effect can be tolerated.

To distinguish between the real state and the estimated one, we refer to the estimated
state by x̃(t). Here, at each sampling instant only the estimated state x̃(t) is fed to
the controller. Thus the applied optimal-input is also a function of the estimated state
instead of the real state as in (2.5), so the new −disturbed− feedback control law is
defined as follows:

u(t; x̃(ti)) = ū∗(t; x̃(ti)), t ∈ [ti, ti+1) . (2.37)

It is possible that the estimated state x̃(ti) is outside the region of attraction of the
state feedback. In this case, to keep the feasibility of the solution, we assume as in [45]
that the input is fixed and bounded. Furthermore, we assume that the conditions
of Theorem A.1 are achieved by the sampled-data NMPC controller. To counter
the effect of the estimation error on the stability conditions, we adopt the following
assumptions [45].

Assumption 2.7
For the nominal region of attraction < ⊆ X ⊆ Rn the following holds
(i) Starting at a sampling instant ti at x(ti) ∈ <, along solution trajectories, the value
function satisfies for all positive σ

V (x(ti + σ))− V (x(ti)) ≤ −
∫ ti+σ

ti
L(x(s), u(s;x(si))) ds. (2.38)

(ii) The value function V (x) is assumed to be uniformly continuous.
(iii) For all compact subsets S ⊂ < there is at least one level set

£c = {x ∈ < | V (x) ≤ c}

such that S ⊂ £c.

27

2 Review of Nonlinear Model Predictive Path Following Control

Assumption 2.7(i) ensures the stability of the state feedback sampled-data NMPC
according to the Theorem A.1, since the value function is decreasing with time. Ac-
tually, the inequality in the Assumption 2.7(i) is analogous to the negative semi-
definite time-derivative of a Lyapunov function, in this case the convergence to the
origin can be proved using Barbalat’s lemma. While the uniform continuity means
that there exists a K-function for any compact subset S ⊂ < such that for any
a, b ∈ S , ‖V (a)− V (b)‖ ≤ αS (‖a− b‖).

Assumption 2.8 (Observer error convergence)
The maximum value of the estimation error εmax > 0 is given, and there exist observer
parameters, such that

‖x(ti)− x̃(ti)‖ ≤ εmax, ∀ ti ≥ kobsδ (2.39)

where kobs > 0 can be chosen freely, but it should satisfy (2.39) after a fixed number of
sampling instants.

There are a group of observers that allow to satisfy Assumption 2.8 e.g. moving
horizon observers with contraction constraint and high-gain observers. Since As-
sumption 2.8 does not allow that the observer error goes to zero, thus neither the
asymptotic stability nor rendering the whole region of attraction invariant can be
achieved. [45]

The question is, can we render the system closed-loop to be semi-globally practically
stable based on the Assumption 2.8? To answer the last question, we review the
proposed approach in [45]. Then we show the challenge of bringing the observer-based
feedback NMPC to be stable. Firstly, we start the answer by defining the semi-globally
practically stability as desired stability property

Definition 2.5 (Semi-globally practically stability)
Assume there exist sets ψa ⊂ ψb ⊂ ψc ⊂ <, 0 < a < b < c, with observer parameters
and a maximum sampling time δ such that ∀x(0) ∈ ψb:

1. x(t) ∈ ψc, t > 0,

2. ∃ ta > 0 s.t. x(t) ∈ ψa, ∀ t > ta.

Figure 2.5 simplifies the Definition 2.5. The main idea of the proposed approach
is based on the proportional relationship between state-estimation error and the
predicted-trajectory error due to difference between estimated and real states. Which
means, a small estimation error leads to a small predicted trajectory difference be-
tween estimated and real states if both of them stay in the set ψc. The effect of the

28

2.3 Challenges

Figure 2.5: Set of initial conditions ψb, desired maximum attainable set ψc and desired region
of convergence ψa [45].

estimation error when using the observer can be bounded by

V (x(ti)) − V (x(ti+1)) ≤ eobs(‖x(ti)− x̃(ti)‖)

−
∫ ti+1

ti
L(x(τ ;u∗(·; x̃(ti)), x(ti)), u∗(τ ; x̃(ti))) dτ, (2.40)

where eobs represents the state estimation error interference. Since the integral term
in (2.40) is strictly negative, and eobs is proportional to the size of the observer error
and the sampling time. Then the contraction of the value function is attainable.
According to Assumption 2.8, the upper bound on eobs is achievable after a specified
time, i.e. (kobsδ). To keep the system state within the set ψc until reaching this time,
we must decrease the sampling time δ or use an adaptive sampling time. While for
bounding the integral term in (2.40), we consider the following:
Fact 1. For any c > a > 0 with ψc ⊂ <, N > δ > 0 (N is the prediction horizon) the
lower bound Vmin(c, a, δ) on the value function exists and is non-trivial ∀x0 ∈ ψc/ψa :

Vmin(c, a, δ) := min
x0∈ψc/ψa

∫ δ
0 L(x̄(s; ū∗(·;x0), x0), ū∗(s;x0)) ds <∞.

Note that the function L(·, ·) is assumed to be lower bounded by K−function. Now,
we finish the answer to the raised question by the following theorem.

Theorem 2.1 [45]
If Assumptions 2.7 and 2.8 hold then arbitrary level sets ψa ⊂ ψb ⊂ ψc ⊂ < are given,
and there exists a maximum allowable observer error εmax and a maximum sampling
time δmax, such that for all states x(0) ∈ ψb the state x(τ) does not leave the set ψc
and converges within finite time to the set ψa.

Proof :
As outlined in [45], the proof of Theorem 2.1 consists of three parts. Here we do

not review a complete proof, instead we show only the first part of the proof, since it
is important to show the tradeoff between the sampling time and computation time

29

2 Review of Nonlinear Model Predictive Path Following Control

of the controller to achieve stability of the observer-based output feedback NMPC
controller, as we will see this issue in later chapters.
In the first part of the proof, we prove that the system state stays in the maximum
admissible set ψc until convergence time kobsδ is reached. We want to achieve that
(x(τ) ∈ ψc∀x(0) ∈ ψb, τ ∈ [0, kobsδ)), where ψb ⊂ ψc. We assume there are sets such
that,

(ψb ⊂ ψc1 ⊂ ψc2 ⊂ ψc), with c1 := b+ (c− b/2) and c2 := c1 + (c− c1/2).

Accordingly, there exists a time tb−c1 such that

x(τ) ∈ ψc1,∀ 0 ≤ τ ≤ tb−c1.

This time can be guaranteed by considering that

x(τ) ∈ ψc, ‖x(τ)− x(0)‖ ≤ ∫ τ
0 ‖f(x(s), u(s))‖ ds ≤ kψcτ ,

here kψc is a constant related to the Lipschitz constant of f and the limits on u. tb−c1 is
considered as the smallest time to touch the boundary of set ψc1 for any point starting
at ψb driven by any admissible input value u ∈ U . Using the same arguments, there
exists a time tc2−c such that

∀x(ti) ∈ ψc2, x(τ)ψc, ∀τ ∈ [ti, ti + tc2−c).

Then the maximum sampling time δmax can be chosen such that:

δmax ≤ min {tb−c1/kobs, tc2−c} . (2.41)

It is assumed that the sampling time δ to be less or equal to the maximum sampling
time δmax. The remaining two parts of the proof are similar to [45] and can be found
in Appendix D

For stability according to this result, there is an upper bound on the maximum
sampling time (2.41). While the lower bound on the sampling time is the computation
time of the controller and observer. Which means that, before the next recalculation
instant starts, the controller has to provide an input to the system. As shown in the
Figure 2.6, we denote the controller computation time by Tc, the observer calculation
time Tobs, and the system evolution time between each two recalculation instants Tsys,
which is identical to the sampling time δ.

30

2.3 Challenges

Figure 2.6: Closed-loop system

Then we conclude that the sampling time is bounded as follows:

(Tc + Tobs) < δ ≤ δmax. (2.42)

As discussed in Section 2.1.2 a long predication horizon is better for achieving stability,
but it increases the computation time of the NMPC controller. Therefore reducing the
computation time of the NMPC controller is necessary to make the lower bound on
the sampling time smaller. This ensures the convergence of the observer-based output
feedback NMPC controller. In the next section, we discuss the problem measurement
delays and its effect on the stability and performance of the NMPC controller.

2.3.2 Measurement and Computational Delays
In this section we briefly discuss the measurement and computational delays and their
effect on the stability and the performance of NMPC controller. There are many
sources of delay e.g. using state observer, sensors, real-time scheduling [41]. Actually,
small time delays can be considered as a disturbance, which can be rejected by the
inherent robustness of NMPC controllers. However, it is not a trivial task to specify
the degree of robustness a priori or even existence of inherent robustness to deal with
delays [41, 43]. It is important to specify delays, since unknown delays might lead
to bad performance or instability of the closed-loop. For the sake of simplicity, we
assume a constant sampling time δ, and a constant time delay denoted by δd. Basi-
cally, the effect of measurement and computational delays is the same, which lead to
input trajectory that different to the current state. Therefore, this discrepancy might
introduce instability of the closed-loop system.
It is assumed that the maximum time delay for both computations and measurements
to be strictly less than the sampling time δd ≤ δ. To deal with delays, first we give the
mathematical representation. In measurement delays the measured state is provided
at time ti but it is actually measured at time ti − δd, i.e. xti = x(ti − δd). While
in computational delays the open-loop feedback trajectory for time instant ti is only
available at time ti + δd. To overcome the effect of delays in both cases, one can use
the feedforward simulation of the dynamic system (assuming no disturbance is acting

31

2 Review of Nonlinear Model Predictive Path Following Control

on the system) over the delay time to estimate the system state, which fits with the
current state. Then the estimated state is provided to the controller for computing a
corrected or shifted input trajectory to compensate the delay effect [41]. For measure-
ment delays, we assume that the open-loop optimal input from previous time instants
is stored, i.e. u(·;x(ti−1), ti−1), such that the estimated state can be produced using
forward simulation of the dynamic system as follows:

˙̃x = f(x̃(τ), u(τ ;x(ti−1), ti−1)), x̃(ti − δd) = x(ti − δd), τ ∈
[
ti − δd, ti

]
.

For computational delays, one requires a shift of the applied input by time delay δd.
This can be achieved by shifting the initial states forward using open-loop simulation
of dynamic system using previous optimal open-loop input u(·;x(ti−1 + δd), ti−1 + δd),
such that

˙̃x = f(x̃(τ), u(τ ;x(ti−1 + δd), ti−1 + δd)), x̃(ti) = x(ti), τ ∈
[
ti, ti + δd

]
.

When controlling fast dynamic systems with measurements delay less than the sam-
pling time, NMPC controller can cope with this delay depending on inherent robust-
ness of the MPC. So far we assumed that the time delay is constant. However, in [75],
NMPC controller subject to time-varying measurement delays is studies. In this ap-
proach, the stability of the system subject to time varying measurement delays can
be recovered by modifying the constraints of the Lyapunov-based model predictive
controller.

Summary
In this chapter, we reviewed briefly the principle and the mathematical description of
NMPC controllers. Then we discussed the controller parameters effect on both the
stability and performance. Additionally, we reviewed the existing methods of stability.
Afterwards, we presented a brief overview of predictive path-following problem in state
and output spaces, as well as, the conditions for path followability for unconstrained
and constrained dynamics system. Finally, we outlined the effects of state-estimation
and delays on the stability of NMPC. So far, in this chapter, the position control
part of our unified path-following force-feedback controller is presented. In the next
chapter, we discuss existing force-feedback control schemes.

32

3 Force Feedback Basics

In this chapter, we give a brief overview on force feedback control. We outline ac-
tive and passive compliance-based control methods. We focus on active compliance
methods, in particular, impedance and admittance force control, with notes about
their advantages and limitations. In addition, we discuss the environment identifica-
tion −any object/surface with which the robot makes contact−, and explain the way
of choosing admittance parameters based-on the duality principle. We furthermore
review optimization-based force feedback control approaches.

3.1 Introduction
Many manipulation tasks of robotic manipulators require an interaction with the
environment. Examples are milling, deburring, welding/soldering, twisting, grinding,
pounding, polishing, and cutting. Using a motion control strategy alone, i.e. neglect-
ing the force, is insufficient or even leads to an unstable control system, unless the
interaction captured by a model accurately [15]. Both the robot manipulator model
and the environment model need to be rather exact. In practice this is seldom the
case, basically, a manipulator model might be known with an acceptable accuracy, but
an accurate model of the environment is not in general easy to obtain. The interaction
-compliant behavior- can be classified into two categories: Passive Compliance and
Active Compliance [110], leading to passive and active compliance control.

Passive compliance is induced by the structural mechanical compliance of the
robot manipulator. Here compliance is defined by the finite stiffness of the links, grip-
pers, joints, actuators, and the manipulated objects. In classical passive compliance
control/design, the measurement of force is not required [10, 110]. In active compli-
ance, the interaction between the end-effector and the environment is controlled by
changing the "joint stiffness" by an user-defined control law such that the interaction
between a manipulator’s end-effector and the environment is considered virtually as
a general mass−spring−damper system driven by the contact force. Hence, a force
measurement is required in the active compliance approach. The measured force is fed
back to the controller and compared with the desired force to update the trajectory.
In the field of robotics, there exist two major approaches for active compliance control:
indirect-force control and direct-force control [53, 108, 110, 128]. Indirect force control
is achieved implicitly by motion control, without an explicit force feedback loop. In

33

3 Force Feedback Basics

contrast, direct force control employs a force feedback loop. To this end, the indirect
force control approach is realized by using so-called impedance (or admittance)
control. The aim of impedance/admittance control is to design a desired dynamic
interaction between the end-effector position and the environment, which is controlling
the position and the force, whether the contact exists or not [24, 57, 70, 107]. Namely,
any active compliance approach receives both motion and force errors, to provide the
proper input to the robot.

Impedance/admittance control is often realized in form of a mass−spring−damper
dynamic system with adjustable parameters [57, 107, 110]. The active (indirect)
compliance is an impedance if the control reacts to the position error by generating
forces. It is called an admittance if the controller complies to contact forces by
producing a deviation from the desired position. We use admittance force control, as
our approach updates the desired position based on the measured force.

One can classify force control methods according to the desired region of interest
in the system response, i.e. static (steady-state response) and dynamic (transient
response) model-based force control methods [24, 39]. Static model-based control
methods are easier to implement, as they often only include the gravity term and
do not rely on the dynamic models. Impedance static model-based control is called
stiffness force control, while the admittance static model-based control is denoted by
compliance force control [39]. The dynamic model-based force control methods include
in-direct-force control (i.e impedance and admittance), and direct-force control (i.e.
hybrid position/force control [53]). Dynamic model-based control methods require a
dynamic model of the system -robot- which leads to additional complexity in design
and implementation.

Remark 3.1 (Actuator Bandwidth)
Actuator bandwidth specifies the frequency range at which the commanded forces can
be tracked accurately by the robot. A perfect actuator for achieving force control is
one that can be considered as an ideal force source, which means that it generates the
commanded force exactly. However, this is infeasible practically, since the moving load
produces an additional force to the actuator output [39].

3.2 Impedance-based Force-Feedback Control
We now outline a mathematical setup for impedance control. As mentioned, the aim
of impedance control is to establish a dynamic relation between the end-effector and
the environment. The objective of impedance control is to control in each direction
of the task space the dynamic relation between motion error and contact force. First,

34

3.2 Impedance-based Force-Feedback Control

we will describe the model of the manipulator dynamics in the task space coordinates.
Then we add a desired impedance at the end-effector of the manipulator by exploiting
the computed-torque control method.

3.2.1 Task space dynamic model
In general, a dynamic model of n-DOF robotic system in joint-space can be written
as [102]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τF (q̇) = τe − JT (q)fe. (3.1)

Here q ∈ Rn
x is the vector of joint angular positions, and its time derivatives q̇ and

q̈ represent the angular velocity and angular acceleration respectively. The vector
τe ∈ Rn

x refers to the applied torques on the corresponding joints. The inertia
matrix M(q) ∈ Rnx×nx is a symmetric positive definite matrix; C(q, q̇) ∈ Rnx×nx

are the Coriolis and centrifugal effects; g(q) ∈ Rnx represents the gravitational
torque; and τF (q̇) ∈ Rnx is the friction torque in the joints, while JT is the trans-
posed Jacobian matrix, which maps the Cartesian external force fe into the joint-space.

Remark 3.2 (Geometric and Analytical Jacobians)
The manipulator Jacobian matrix J(q) ∈ R6×n maps the joint displacement dq to the
corresponding end-effector displacement dy [102]:

dy = J(q)dq. (3.2)

Commonly, the Jacobian matrix follows from the geometry by computing the contri-
bution of each joint velocity to the linear and angular velocities of the end-effector.
Therefore, the Jacobian can also be termed as the geometric Jacobian Jg(q) of the
manipulator. If the end-effector position and orientation are represented by the ma-
nipulator parameters in the task space using a forward kinematics map Tca : Rn

x → Rny ,
the joint positions of the robot in Cartesian space are given by

y = Tca(q). (3.3)

Thus is possible to compute the Jacobian matrix by direct differentiation of the forward
kinematic equation, i.e.

ẏ = Ja(q)q̇, (3.4)

where the matrix Ja(q) = ∂T
∂q is the analytical Jacobian [28]. The relationship between

the geometric and the analytical Jacobians is found as follows

Jg(q) = Ta(φe)Ja(q), (3.5)

35

3 Force Feedback Basics

where Ta(φe) is a transformation matrix, which depends on the set of parameters rep-
resenting the end-effector orientation [28].
One can see that the two Jacobians are in general not the same, however, the two
Jacobians are identical for the linear part. Regarding their implementation, the geo-
metric Jacobian is used when physical quantities are important, while the analytical
Jacobian is chosen when the task space quantities are of interest. It is possible to
transform one Jacobian into the other, if and only if the transformation matrix Ta(φe)
is non-singular [28].

We use the analytical Jacobian Ja(q), thus the model (3.1) can be rewritten as follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τF (q̇) = τe − JTa (q)fe. (3.6)

The interaction between the manipulator and the environment takes place in the task-
space. Therefore, we express the model of manipulator dynamics in task-space coordi-
nates. To this end, first, we need to take the second time derivative of (3.4) to obtain
the map between the Cartesian acceleration and joint acceleration:

ÿ = Ja(q)q̈ + J̇a(q)q̇. (3.7)

Substituting (3.7) into (3.6) gives the dynamic model in the task-space coordinates:

My(q)ÿ + Cy(q, q̇)ẏ + gy(q) + τFy(q̇) = J−Ta (q)τe − fe (3.8)

where
My(q) = Ja(q)−TM(q)J−1

a ,

Cy(q, q̇) = Ja(q)−TC(q, q̇)J−1
a −My(q)J̇a(q)J−1

a ,

gy(q) = J−Ta (q)g(q),
τFy(q̇) = J−Ta (q)τF (q̇).

As one can see the arguments of the nonlinear terms in (3.8) remain in (q, q̇).
However, it is possible to transform them into the coordinates (y, ẏ) using the inverse
kinematics transformation. Keeping these arguments dependent on the joint variables
is often better from computational perspective [28].

The end-effector’s contact force vector with the environment is defined as
fe = [fTn fTt]T , where fn stands for the normal contact force, while ft represents the
tangential contact force due to a friction contact with the environment. When a
contact force arises during interaction, then the convergence to the desired trajectory
is no longer ensured. Basically, there will be a steady-state offset which is a trade-off
between the force and position error convergence.

36

3.2 Impedance-based Force-Feedback Control

In general, perfect modeling of the contact between the end-effector and the environ-
ment is difficult due to uncertainties in the robot dynamics and the imprecise knowl-
edge of the environment stiffness. For simplicity the environment deformation model is
assumed to be given by a linear spring with symmetric stiffness matrix Ke ∈ Rny×ny .
Let ye ∈ Rny be the position of the undeformed environment. According to these
assumptions, when the end-effector is in contact with the environment, a generalized
normal force

fn = Ke(h(q)− ye); y(t) = Tca(q) ≥ ye, (3.9)

is exerted at the end-effector, where (h(q) − ye) represents the penetration depth.
Note, however, that we are expressing all output and force variables relative to a fixed
reference frame. The tangential contact force ft is modeled, as proposed in [13, 126]:

ft = µ |fn| sgn(ẏ), (3.10)

where µ is the dry friction coefficient between the end-effector and the environment,
and ẏ the unconstrained velocity state. The aim of impedance control is to establish
a desired dynamic interaction between the manipulator end-effector and the environ-
ment. Next, we describe the acceleration-resolved approach, the computed-torque
control method, which is used to decouple and linearize the nonlinear dynamics of the
manipulator at the acceleration level.

3.2.2 Computed-torque control
To control the interaction between the robot and the environment at the contact point,
first we decouple and linearize the closed-loop dynamics in the task-space such that

ÿ = uc, (3.11)

where uc is an admissible control delivered from a controller. To this end, the complete
dynamic model of the manipulator is used to cancel the effect of Coriolis and centrifugal
force, gravity, friction, and the manipulator inertia tensor. Normally, the estimation of
robotic arm parameters are used to implement computed-torque control. By assuming
that

{
M̃y(q), C̃y(q, q̇), g̃y(q), τ̃Fy(q̇)

}
are the estimated values of the robot dynamics,

then the feedback linearization control law is given by [102]

τe = JTa (q)[M̃y(q)uc + C̃y(q, q̇) + g̃y(q) + τ̃Fy(q̇) + fe]. (3.12)

By applying (3.12) to (3.6) we obtain

My(q)ÿ = M̃y(q)uc + r̃, (3.13)

37

3 Force Feedback Basics

where r̃ is the residual due to the mismatch between real and estimated dynamic
parameters, which is defined as

r̃ = [Cy(q, q̇)− C̃y(q, q̇)]ẏ + [gy(q)− g̃y(q)] + [τFy(q̇)− τ̃Fy(q̇)]. (3.14)

If the robotic arm parameters are estimated correctly, then (3.13) becomes a linear
second-order equation, independent of the robotic arm parameters. The nonlinear
terms in (3.13) are completely compensated.
As common, the desired impedance is modeled as a second order mass-spring-damper

system [108, 122]:

Md[ÿ(t)− ÿd(t)] +Bd[ẏ(t)− ẏd(t)] +Kd[y(t)− yd(t)] = Ef (t), (3.15)

where y(t) ∈ Rny is the current desired Cartesian position of the end-effector based
on the impedance dynamic, and yd(t) ∈ Rny represents the desired position trajectory,
Md, Bd, and Kd are diagonal Rny×ny positive definite matrices of desired mass, damp-
ing, and stiffness gains respectively, defined by the user, and Ef (t) = F d − fe where
F d is a desired force vector.
To achieve a desired mechanical impedance, the control input can be chosen fol-
lows [102, 121],

uc = ÿd(t) +M−1
d [Bd(ẏd(t)− ẏ(t)) +Kd(yd(t)− y(t)) + Ef (t)] . (3.16)

If we substitute (3.16) in (3.11), then, the closed-loop system becomes

Md ëd(t) +Bd ėd(t) +Kd ed(t) = −Ef (t), (3.17)

where ed = (yd(t)− y(t)).

Figure 3.1: Computed-torque based impedance control.

In Figure 3.1 a schematic diagram of the computed-torque control based impedance
is sketched. Basically, the impedance control delivers the input (acceleration) accord-

38

3.2 Impedance-based Force-Feedback Control

ing to (3.16) based on the current information of the position and orientation, in
addition to the force and moment measurements. Then, the computed-torque control
law computes the torques for the joint actuators according to (3.12). In the case that
there is no interaction, this control approach guarantees that the end-effector asymp-
totically converges to the desired position. In the presence of interaction with the
environment, a virtual dynamic compliance is imposed on the end-effector, i.e. the
desired impedance (3.15) as well as, a force/torque sensor is needed to measure the
contact force and moment.

3.2.3 Implementation challenges of impedance-based control
As shown in the previous section, for implementing the control scheme, it is required
that both the model of the environment and the robot dynamics are accurately known.
However, choosing good impedance parameters achieving the desired performance is
not in general an easy task, the closed-loop dynamics differs in case an interaction
exists. Control objective during interaction is to achieve the best compliance. While
during free motion, the objective is to track the desired trajectory and reject the dis-
turbance. Also, the coupling between the manipulator dynamics and the environment
dynamic model exists during the interaction [39, 121]. To investigate these problems,
we follow [121]. For simplicity, we assume that the environment is modeled as a linear
spring:

Definition 3.1 (Mechanical Springs) [121]
Assuming there are two elastically coupled rigid bodies B1 and B2 attached to the
reference frames Σ1 and Σ2, respectively. Consider that the frames Σ1 and Σ2 coincide
at the equilibrium, then one can describe the compliant behavior in the vicinity of the
equilibrium by

f2
1 = K δy2

21 =
Kt Kc

KT
c Kr

 δy2
21, (3.18)

where f2
1 is the elastic wrench applied to the body B1 expressed in the frame Σ2, when

there is an infinitesimal movement δy2
21 of the frame Σ2 with respect to the frame

Σ1. The elastic wrench and the infinitesimal movement in (3.18) can also be defined
interchangeably in the frame Σ1, since Σ1 and Σ2 are identical at the equilibrium point.
In this case, f1

1 = f2
1 and δy1

21 = δy2
21 as well as the elastic wrench applied to body

B2, f2
2 = Kt δy

2
12 = −f1

1 implies that δy1
21 = −δy2

12. This property of (3.18) is called
a port symmetry. Here, K ∈ R6×6 is the symmetric positive semidefinite stiffness
matrix. The symmetric matrices (Kt, Kr) ∈ R3×3 are called the translational stiffness
and rotational stiffness respectively. While, Kc ∈ R3×3 is called the coupling stiffness.
If the matrix Kc is symmetric, then there exists a maximum decoupling between the
translation and rotation. Accordingly the point of coinciding origins of the frames Σ1

39

3 Force Feedback Basics

and Σ2 is denoted by the center of stiffness.

In the following, we study the interaction between the manipulator’s end-effector and
the environment using Definition 3.1. The frame attached to the manipulator’s end-
effector is denoted by Σm and the frame attached to the origin of the environment
by Σe. Based on (3.18), the wrench applied by the end-effector on the environment
corresponding to the infinitesimal movement δyeme can be given by

fme = K δymme. (3.19)

It is worth to mention that the model (3.19) holds only during an interaction, while
in free motion of the end-effector the contact wrench is equal to zero.
The effects of disturbances on the robot manipulator and the uncertainties may be

considered as additive disturbances on the right-hand side of the dynamic model (3.1).
This represents a disturbance wrench D applied on the end-effector and appears as
well on the right-hand side of (3.11). Then, by applying the control law (3.12), as a
result the closed-loop impedance will be as follows:

Md ë
m
d (t) +Bd ė

m
d (t) +Kd e

m
d (t) = fme (t) +MdDm, (3.20)

here, for simplicity, the desired force is assumed to be zero, i.e. F d = 0. Substitut-
ing (3.19) into (3.20) we obtain

Md ë
m
d (t) +Bd ė

m
d (t) + (Kd +K) δymdm(t) = Kδymde +MdDm, (3.21)

where δ ymdm = δ ymde− δ ymme. The model (3.21) is valid when interaction exists (K 6= 0)
or not (K = 0). The transient behavior of the error ed(t) can be chosen by tuning
the matrices Md, Bd, and Kd. Assuming that all the matrices are diagonal, one can
decouple (3.21) for the six dynamic sub-systems corresponding to the infinitesimal
twist displacement. Accordingly, the transient of each dynamic sub-system can be
specified by choosing the natural frequency and the damping ratio using the following
equations

ωn =
√
kd + k

m
, ζ = bd

2
√
m(kd + k)

, (3.22)

where kd, bd, k, m are the diagonal elements of the matrices Kd, Bd, K, Md respec-
tively. Due to the contribution of k in the last equations, even if the gains are designed
to give adequate natural frequency and damping ratio during the interaction, these
values are no longer the same when the end-effector moves in free space, i.e. for k = 0.

40

3.3 Admittance-based Force-Feedback Control

The steady-state position error and contact force can be defined as follows

δyssdm = k

kd + k
δyde + m

kd + k
D

f ss = kd k

kd + k
δyde −

mk

kd + k
D.

The last relations show that by setting the active stiffness kd low the contact force
gets also small but the position steady-state error becomes large. Furthermore, the
disturbance term increases both the position error and contact force for low active
stiffness. However, the effect of external disturbance still exists on the steady-state
error position even when there is no interaction, i.e. k = 0. In the next section, we
introduce an approach to overcome the last drawbacks in impedance control.

3.3 Admittance-based Force-Feedback Control
In this section, we review how to overcome the interference of force control with
motion control. One can separate them by using the impedance control as a generator
of a desired position based on the measured force and -virtual- reference position,
which depends on the desired contact force, environment position, and environment
stiffness, as will be shown later. The desired position is then delivered to a motion
controller. Here, the measured force is used to compute the desired position. This
scheme is called admittance control (see Figure 3.2). In the literature, admittance
control is also called indirect impedance [125]/ position-based impedance [115]. As
these names indicate, the principle of admittance control is to modify the desired
position of the end-effector, such that the desired robot-environment interaction force
is achieved.

Figure 3.2: Computed-torque control based admittance.

41

3 Force Feedback Basics

To this end, we define the admittance control law as follows

Md [ÿd(t)− ÿr(t)] +Bd [ẏd(t)− ẏr(t)] +Kd [yd(t)− yr(t)] = −fe(t), (3.23)

where yd(t) ∈ Rny is the current desired Cartesian position of the end-effector based on
the admittance dynamic, and yr(t) ∈ Rny represents the reference position trajectory
-virtual trajectory- that depends on the desired contact force, environment position,
and environment stiffness.
Then, the current desired position is delivered to the motion controller, based on the
computed-torque control, the end-effector drives to the desired position. The stability
of the overall system, can be ensured if the bandwidth of the motion controller is
higher than the bandwidth of the admittance controller [121]. Figure 3.2 shows that,
if there is no interaction, then the virtual reference is equal to the desired position.
Accordingly, the disturbance rejection depends entirely on the motion controller.

3.4 Environment Modeling
As outlined indirect force control schemes require a model of the environment. This
model must be accurate to be able to govern the interaction between the robot and the
environment. Normally, a linear model so-called Kevin-Volgt model is chosen, which
is similar to a linear spring (see (3.9) and Figure 3.3). Figure 3.3 shows the concept,
such that a manipulator touches the environment and exerting normal force, i.e. in
y1-direction while moving towards the desired position yr, which is corresponding to
the desired force.

(a) Before interaction (b) After interaction

Figure 3.3: Environment modeling

For stiff and soft environment, other models exist, e.g. the Hunt-Crossley [31, 39]
model. This model describes the nonlinear behavior of the environment. It can be
computed on-line, since it does not require expensive computations. This model is
given by,

fe(t) = α1 y
n(t) + α2 y

n(t) ẏ(t), y ≥ 0, (3.24)

42

3.5 Choosing Parameters Based-on The Duality Principle

where n is a real number related to the geometry of the contact surface. However, to
achieve the force control objective when using the impedance/admittance controller, it
is necessary to have a perfect model of the environment. There are many approaches
to estimate the parameters of the environment in real-time. For example, in [77, 106]
adaptive impedance controllers are used to compensate the uncertainties in both the
robot model and environment parameters, as well as, imperfect force sensor measure-
ments. In [106] the impedance/admittance reference trajectory is driven by estimation
of both the environment stiffness and undeformed position. Then, this trajectory is
used to track the desired contact-force. In [33, 66] methods based-on neural networks
are used, e.g. in [66] a neural network is used to tackle uncertainties in the modeling,
and the force sensor noise is compensated. In [112] a Kalman filter is used to estimate
the environment parameters in real-time. We adopt in the following the Kevin-Volgt
model.

3.5 Choosing Parameters Based-on The Duality Principle
In this section, we describe the duality principle, which is used to select a de-
sired manipulator impedance in order to achieve a trade-off between position and
force tracking [30]. Basis of the duality principle is that the manipulator desired
impedance/admittance has to be designed as the dual to the environment [9]. This
principle is used intuitively by humans, e.g. when someone throws a heavy object
(stiff) to another person, the catcher will be non-stiff, i.e. move his hands along the
object course to avoid huge impacts. To minimize the position and contact force er-
rors, the manipulator desired impedance should theoretically be designed equal to the
environment admittance [57]. We denote the environment impedance as Ze(ω), which
is characterized as:

|Ze(0)| = 0, for inertial,
|Ze(0)| = αz, 0 < αz <∞ for resistive,
|Ze(0)| =∞, for capacitive.

At steady-state ω = 0, an inertial environment impedance behaves as a force source,
while a capacitive impedance is considered as a position source. Therefore, both
inertial and capacitive environments are dual to each other. According to the dual
principle, the position control is realized when the environment impedance is inertial,
i.e. Ze(0) = 0, and the manipulator/desired impedance is capacitive, i.e. Zm(0) =∞.
The force control can be achieved when the environment impedance is capacitive, i.e.
Ze(0) = ∞, and the manipulator/desired impedance is inertial, i.e. Zm(0) = 0. A
resistive environment is position controlled when Zm(0) =∞, and considered as force
controlled Zm(0) = 0. Based-on the duality principle, the tracking of position or force

43

3 Force Feedback Basics

trajectory in Cartesian space can be done by choosing a desired impedance based on
the measured environment impedance.
So far, we discussed the duality principle for passive impedances. To extend the duality
principle to variable environment impedances, [30] used optimization techniques to
minimize the sum of position and force tracking errors, for compromising between
position and force tracking. This approach is discussed in the following section.

3.6 Optimization-based Force-Feedback Control
Optimization-based force control approaches can be classified into two main categories:

• Optimal impedance in the Joint-space: In this approach, the coordinated
joint impedance trajectories with desired joint velocities are optimized using an
optimal policy. Furthermore, transmission stiffness is chosen to ensure a mini-
mum implementation time of the robot task, while achieving an intrinsic safety
for any undesired interaction with the environment or a human operator [119].

• Optimal impedance in the Configuration-space: Commonly, optimization-
based force control research is using an optimal policy, which is minimizing the
error of the force/force time-derivative or compromising between force and posi-
tion error metric [13, 19, 30, 82, 94, 95].

We control the contact force applied on the robot’s end-effector, therefore, we focus
on the second category, which we further detail in the following.

• Minimization of force error and (its time derivative)
In [94] the admittance controller is obtained as the solution of a dynamic op-
timization problem. There, the optimization problem is used to minimize the
force error and its time derivative. In [13] a fuzzy predictive algorithm computes
an optimized virtual trajectory for the impedance controller on-line, where the
virtual trajectory is optimized by using the force error as a performance index.
The approach proposed in [95] minimizes the interaction force error at the robot
end effector, while constraining undesired interaction forces. Since the force time
derivative is normally an noisy signal, it is not desirable to use the force time-
derivative. Some approaches overcome this drawback depending on the inherent
filtering properties of the time integration [94].

• Optimization of a combined position and force trajectory error metric:
The numerical optimization results are used to determine a desired impedance
parameters based on the environment and manipulator dynamics [30, 82]. In [82]
the parameters of the target impedance are determined analytically and on-line

44

3.6 Optimization-based Force-Feedback Control

by solving a quadratic optimal control problem. There, the performance index is
formulated as the integral of the position error and the force error.

Choosing a cost function to optimize is challenging. To show the challenge of using
a cost function compromising between position and force errors, we follow the lines
of [30]. There, the desired impedance parameters are chosen depending on an optimal
performance using a geometric view. To do so, the impedance controller is assumed
to implement the desired dynamics ideally. The environment is assumed to be highly
stiff, which is modeled as a linear spring system (3.9).
To this end, a trade-off between position and force errors can be found by minimiz-

ing the sum of squared position and force errors (3.25) with respect to the desired
impedance function.

min J = c (yd − y)2 + (fd − fe)2. (3.25)

Here, the scalar c is used as a weighting to shift the relative sensitivity between position
and force errors. Considering a static condition, the desired impedance is reduced to

(fd − fe) = −Kd(y − yd). (3.26)

Substituting (3.26) into (3.9), the end-effector position and applied contact force can
be written as functions of the desired position, force, environment stiffness, and active
stiffness as follows

y = 1
kd + ke

fd + kd
kd + ke

yd, (3.27a)

fe = ke
kd + ke

fd + kekd
kd + ke

yd. (3.27b)

Accordingly, the cost function (3.25) becomes

J = c

(
fd − keyd
kd + ke

)2
+
(
kd(fd − keyd)

kd + ke

)2
. (3.28)

By minimizing this cost function with respect to kd, i.e. dJ
dkd = 0, the optimal solution

is
kd = c

ke
. (3.29)

The optimal solution confirms the duality principle, where the active stiffness kd is
inverse proportional to the environment stiffness. It is obvious that the duality of
both ke ≈ 0 and ke = ∞ is fulfilled. For intermediate values of stiffness [30] defines
a moderate stiffness kmod :=

√
c to govern the relation between the active and envi-

ronment stiffness. It means that when the environment is stiffer than the moderate
stiffness, i.e. ke > kmod the active stiffness becomes softer than for the moderate stiff-
ness kd < kmod and vice versa. While the trivial solution would be fd = ke yd. For

45

3 Force Feedback Basics

the trivial solution, the cost function is always equal to zero, since the relationship
between desired position yd and desired force fd is consistent all the time.
In Figure 3.4 (which is a modified version of figure in [30]) the compromise between

position and force in optimal impedance control and the influence of the moderate
stiffness is investigated. Here, the loci of the optimal values of (y, fe) are repre-
sented as solid lines for different moderate environments, i.e. kmod1 < kmod2 < kmod3
with ke ranging from zero to infinity. The desired position and force are set as
yd = 2 [m] and fd = 60, 000 [N]. To show the relation between the moderate
the static environment stiffness, two dot-dashed lines are drawn for two values of
ke = 8, 000 and 80, 000 [N/m]. The variable impedance controller behaves like a force
controller and a position controller for stiff and soft environments, respectively. As
can be seen, the solid lines for moderate stiffness, all of them pass through points
(0, fd), (yd, 0), and (yd, fd). Actually, the last three points lie on the ellipses defined as
follows

(
fe − fd

2

)2(
f2
d+k2

mody
2
d

4

) +
(
y − yd

2

)2(
f2
d+k2

mody
2
d

4k2
mod

) = 1 (3.30)

Figure 3.4: Geometric explanation of static-impedance control. [30]

For lower values of kmod the controller is shifted towards force control, since the
range of all degrees of the environment stiffness above moderate stiffness is considered
as stiff, hence for lower moderate stiffness the stiff range will be wider [30].
To overcome the disadvantages of optimization-based impedance, i.e. noise of

(derivative) force signal and trade-off between position and force errors, we use the
desired admittance dynamics as a constraint in the optimal control problem instead
of including the force error in the cost function (see Chapter 4). This is analogous to

46

3.6 Optimization-based Force-Feedback Control

overcome the interference of force feedback and motion control in impedance control
as explained in the previous section.

3.6.1 Predictive Force Feedback Control
As shown in Chapter 2, model predictive control minimizes a cost function over a
prediction horizon, while using the system dynamics model to predict the future of
the output-trajectory. At each sampling instant, the predicted output-trajectory is
calculated using the current initial state of the dynamic system and the (sub)-optimal
input sequence, which is predicted over a control horizon. In the previous section, we
classified the optimization-based force feedback approaches into two classes, similarly,
the model predictive force feedback control can be classified into these two classes.
For the first case, i.e. joint impedance level, Model Predictive Impedance Control is
used as a general method by [120] for modeling the control system of different human
movements. There, the features of this method for modeling different movements is
shown, e.g. elbow joint tracking of a periodic or a non-periodic trajectory. While, for
the second class, i.e. Cartesian impedance level, in [91] a nonlinear model predictive
control scheme based-on neural networks maintains a stable grasp during Hold-state
of the prosthetic device. There, Neural networks are used to identify the dynamics
model of each finger of the prosthetic hand. Then, this model is used in a predictive
control scheme to predict the required grasping force to be exerted by the prosthetic
hand. Where, a nonlinear model predictive control scheme is selected based on its
ability to tackle challenges in nonlinearities produced by the motor dead bands, gear
ratios, friction. In [65] a single-time-step model predictive controller is used to control
the interaction between the robot and the environment. This controller depends on
a quasi-static mechanical interaction model. This controller drives the robot to the
target locations while keeping contact forces low. In this scheme, the robot is equipped
with tactile sensors along the whole-arm and compliant joints. The same approach is
extended to a multi-time-step MPC formulation in [71].
Normally, the classical approaches of impedance control compute the virtual

reference position in the constrained direction to control the force indirectly. Hence, a
linear/nonlinear model of the environment is crucial to compute this virtual position.
For simplicity, the environment model is considered as a linear model. However, for
soft environments which typically have a nonlinear behavior, nonlinear models are
required to preserve its characteristics. In [12] an approach to derive the virtual
trajectory using model predictive control is proposed.

This approach is designed by combining both the classical impedance controller
and a model predictive controller for the force. In this force control strategy, the
predictive controller produces the virtual position and velocity references in the

47

3 Force Feedback Basics

constrained direction, which correspond to a desired contact-force [12]. In this control
strategy, the environment and impedance models are considered to be linear [12],
the reason is, an analytical solution can be obtained by solving an unconstrained
optimization with less computation time. However, for non-rigid environments,
commonly, the environment deforms nonlinearly. Therefore, a nonlinear model of the
environment needs to be considered. Hence, the constrained optimization control
problem solved by the MPC scheme is non-convex. In [13] this problem is solved
using a discrete search techniques, i.e. branch-and-bound (B&B) algorithm. There,
a tradeoff between the number of discrete actions and the performance due to the
discretization by the B&B algorithm is achieved by using a fuzzy scaling machine.
This machine is based on a fuzzy criterion to produce an adaptive set of discrete
alternatives. Figure 3.5 shows the concept of predictive impedance control. In this
approach, the cost function (3.31) to be minimized by MPC consists of the force error.

min J(yr) =
N∑
i=1

(
fd(k + i)− f̂e(k + i)

)2
, (3.31)

where fd represents the desired force, and f̂e is the predicted contact-force.

Figure 3.5: Prediction of virtual position using force error.

The MPC controller minimizes the cost function (3.31), to obtain the sequence of
predicted virtual refernce positions (ŷr(k), ŷr(k+1), . . . , ŷr(k+N−1)). Then, the new
optimal virtual references within the prediction horizon lead to a new current desired
trajectory from the impedance control law (3.16).

Summary
In this chapter, we gave a brief overview on force feedback control. We have outlined
active and passive compliance-based control methods, in particular, Impedance and

48

3.6 Optimization-based Force-Feedback Control

Admittance force control. Furthermore, we described the issue of environment iden-
tification and modeling. In addition, the way of choosing the admittance parameters
based-on the duality principle is explained. Then, we reviewed optimization-based
force control approaches, with an emphasis on model predictive control schemes. In
the next chapter, we will outline the main contribution of this thesis designing a unified
approach to solve the path-following and force control problems simultaneously.

49

4 A Unified Approach for Path-following and
Force-feedback

In this chapter, we outline a unified approach to combine path-following and force
control problems using predictive control. First, we review briefly the existing approach
to combine path-following and force control based on feedback linearization, introduced
in [46]. Then, we design a novel predictive control framework to solve these problems in
a unified way. To this end, we define an admittance dynamics to generate a reference
trajectory proportional to the desired force. Afterwards, we update a given path
using the output of the admittance dynamics. In short, we rewrite the predictive
path-following optimization problem by including the admittance dynamics and the
updated path.

4.1 Combined Path-following and Force Control Based-on
Feedback Linearization

In this section, we describe the approach proposed in [46] to simultaneously, but inde-
pendently, control the forces transversal and tangential to the path. This is achieved by
decomposing a nonlinear dynamic system into transversal and tangential linear subsys-
tems using feedback linearization. This allows to control the contact-force along these
directions. Assuming that the Assumptions 2.1, 2.3, 2.6 and the following assumption
hold for the path P (2.22)

Assumption 4.1
There is a smooth function Y(·) : Rny → R, where the path P is a zero-manifold of
Y(·).

The dynamic system is defined as follows

ẋ(t) =
 xv
f(x) + g(x)u− fe

 , (4.1a)

y(t) = h(xp), (4.1b)

where the system states are defined as x = [xp, xv]T , with the position xp and the
velocity xv. u(t) and y(t) are the input and output of the system, respectively, while
fe represents the external force. Moving towards and following the path P can be

50

4.1 Combined Path-following and Force Control Based-on Feedback Linearization

achieved by stabilizing the sub-manifoldMY := {y ∈ Rn | Y ◦ h(xp) = 0}. SinceMY
is not invariant [56, 89], therefore it is only possible to stabilize the maximum controlled
invariant subset M∗

Y of MY . Where, M∗
Y includes the states for which there exists

an admissible input such that the output stays on P for all times. The set M∗
Y can

be used to achieve the path followability of path following problem, see Definition 2.3
for sufficient conditions of path followability.
Feedback linearization is used to decompose and linearize a nonlinear system by

mapping it into new coordinates using a transformation T : y → (η, ξ), defined in
a neighborhood of P . Consequently, the nonlinear system (4.1) is transformed and
decomposed into ξ−transversal (normal) and η−tangential subsystems with respect
to P .
Let Br be the set of points around the path P within a distance r such that

Br =
{
(y, p) | y ∈ R2 ∧ p(θ) ∈ P | ‖y − p(θ)‖ ≤ r

}
. (4.2)

Here, we consider the path as a closed curve, i.e.

θ ∈ [θ0, θf] , p(θ + θf) = p(θ).

First, the tangential coordinate is defined by using the equation (2.28) to map any
point y ∈ Br into a corresponding value of path-parameter θ∗ ∈ [θ0, θf), where θ∗ is
defined as follows

Θ(y) := θ∗(t) = argmin
θ∈[θ0,θf)

‖y(t)− p(θ(t))‖ . (4.3)

Equation (4.3) can have more than one solution, however, we can pick one of them.
Here, Θ(y) refers to a path-parameter corresponding to the point on the path, which
is nearest to the point y ∈ Br. To derive the tangential state η1, which represents
the traveled distance of θ from θ0 to θ∗ along the path P . To this end, we define
p′(θ) = ∂p(θ(t))

∂θ , then the tangential coordinate along the path is

η1 = tang(y) :=
∫ θ∗

θ0
‖p′(s)‖ ds

∣∣∣
θ∗=Θ(y) . (4.4)

Hence, the tangential unit-vector on the path corresponding to η1 can be found as
follows:

V̂η(θ∗) = p′(θ∗)
‖p′(θ∗)‖ . (4.5)

Accordingly, the transversal (normal) unit-vector V̂ξ(θ∗) can be derived by rotating
the vector V̂η(θ∗) 90◦ counter-clockwise such that

V̂ξ(θ∗) = R(π/2)V̂η(θ∗), (4.6)

51

4 A Unified Approach for Path-following and Force-feedback

where R(·) is a rotation matrix.

Figure 4.1: Path description [46]

Then, the current state of the output, i.e. y = h(xp) ∈ Rny , can be represented
by shifting the point on the parametrized-path corresponding to θ∗, i.e. p(θ∗) by the
distance ∆y = h(xp)− p(θ∗) parallel to the unit-vector V̂ξ(θ∗), that is

y = p(θ∗) + V̂ξ(θ∗) ∆y, (4.7)

where,
∆y = trans(y) = V̂ξ(θ∗)T (y − p(θ∗)), (4.8)

represents the shortest distance of the output state from the curve P along the unit-
vector V̂ξ(θ∗). Hence, ∆y is nothing else but the first transversal state ξ1. To complete
the coordinate transformation, the time derivatives of η1 and ξ1 are required. Despite
of that θ∗ form (4.3) can only be computed numerically, however, the time deriva-
tive of θ∗ can be calculated analytically from (4.3) using the necessary condition of
optimality [46]. According to the necessary condition of optimality of (4.3),

(y − p(θ∗))Tp′(θ∗) = 0. (4.9)

By taking the time derivative of (4.9) as follows

(ẏ − p′(θ∗)θ̇∗)Tp′(θ∗) + (y − p(θ∗))Tp′′(θ∗)θ̇∗ = 0,

then rewrite (4.6) and (4.8) to get (y − p(θ∗)) = R(π/2)Vη(θ∗)∆y and take the time
derivative of (4.4) to obtain

η̇1 = ‖p′(θ∗)‖ θ̇∗ = 1
1− ϑ′∆y

(p′(θ∗))T
‖p′(θ∗)‖ ẏ, (4.10)

where
ϑ′ = (R(π/2) p′(θ∗))T p′′(θ∗)

‖p′(θ∗)‖3 .

52

4.1 Combined Path-following and Force Control Based-on Feedback Linearization

Similarly, the time derivative of ξ1 is derived as follows

ξ̇1 = ξ2 = (R(π/2) p′(θ∗))T
‖p′(θ∗)‖ ẏ. (4.11)

Hence, the coordinate transformation T becomes:

T =

η1
η2
ξ1
ξ2

 =

tang ◦ h(xp)

dη1 dh ẋ
trans ◦ h(xp)

dξ1 dh ẋ

 . (4.12)

The new virtual output following [46, 56] is chosen as

ỹ =
 tang ◦ h(xp)
trans ◦ h(xp)

 =
Λη(xp)
Λξ(xp)

 . (4.13)

Then, the feedback linearization can be derived by taking the first and second time
derivative of (4.13):

˙̃y =
Λ′η(xp)xv
Λ′ξ(xp)xv

 , (4.14)

where Λ′(xp) = ∂Λ(xp)
∂xp

and

¨̃y =
Λ̇′η(xp) xv + Λ′η(xp) f(x)

Λ̇′ξ(xp) xv + Λ′ξ(xp) f(x)

︸ ︷︷ ︸

A1(x)

+
Λ′η(xp) g(x)
Λ′ξ(xp) g(x)

︸ ︷︷ ︸

A2(x)

u −
Λ′η(xp)
Λ′ξ(xp)

︸ ︷︷ ︸
A3(x)

fe. (4.15)

By choosing ¨̃y as
¨̃y =

ũη
ũξ

 = ũ, (4.16)

where ũ is the new input vector, the linearizing feedback is as follows

u = A−1
2 (x) [−A1(x) + A3(x) fe + ũ] |x=T −1(η, ξ) . (4.17)

By substituting (4.17) and (4.12) into (4.1), which gives linearized and decoupled
tangential and transversal subsystems respectively as follows

η̇1 = η2, η̇2 = ũη, ξ̇1 = ξ2, ξ̇2 = ũξ.

53

4 A Unified Approach for Path-following and Force-feedback

To control forces along tangent and transversal (normal) direction with respect to a
given path, the contact-force fe is projected along these directions, i.e.

f̂e =
f̂eη
f̂eξ

 =
 V̂ T

η (θ∗) fe
V̂ T
ξ (θ∗) fe

 , (4.18)

and the position errors along these unit-vectors are defined as eη = yη − ydη and eξ =
yξ − ydξ , where the ydη and ydξ refer to the tangential and transversal desired state,
respectively. The desired impedance (admittance) dynamic law is then given bymη 0

0 mξ

︸ ︷︷ ︸

Md

ëη
ëξ

 +
bη 0

0 bξ

︸ ︷︷ ︸

Bd

ėη
ėξ

 +
kη 0

0 kξ

︸ ︷︷ ︸

Kd

eη
eξ

 = f̂e. (4.19)

As one can see, in this approach the locally invertible transformation matrix is neces-
sary to achieve linearization and decomposition of the nonlinear system along a given
path. In the following, we describe our approach to solve the path-following and
force control problem simultaneously in a model predictive scheme while considering
constraints on states and input.

4.2 Predictive Path-Following Force-Feedback Control in
The Output-space

Here, we describe the solution of the path-following and force control problems using
nonlinear model predictive control. First, we define the admittance dynamics, which
governs the interaction between the robot and the environment. Second, we explain
the proposed method to update the followed path depending on the output of the
desired admittance law. Based on that, we rewrite the optimal control problem (2.26)
by including the admittance dynamics in the augmented dynamic system and using
the new updated path. Consider a nonlinear system of the form

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (4.20a)
y(t) = h(xp(t)), y ∈ Rny (4.20b)
x ∈ X ⊆ Rnx, (4.20c)
u ∈ U ⊆ Rnu, (4.20d)

where x(t), y(t), u(t) are defined as before. The sets (4.20c), and (4.20d) are constraints
on state and input. The initial condition is denoted by x0. The state trajectory
starting from x0 at time t0 is defined by x(τ, u(·)|x(t0)), where u(·) : [t0, tf] → U

and τ ∈ [t0, tf], tf refers to a final time, which is not necessarily specified a priori.

54

4.2 Predictive Path-Following Force-Feedback Control in The Output-space

The output trajectory is defined by y(τ |xp(t0)) = h(xp(τ, u(·)|x(t0))). The maps f :
Rnx ×Rnu → Rnx and h : Rnx → Rny are sufficiently often continuously differentiable.
For the sake of simplicity, we assume the system is square, i.e. nu = ny.

4.2.1 Extension Towards Admittance Force Control
In this section, we briefly mention the principle of admittance control. Then, we
derive the admittance dynamics. Furthermore, we describe in detail the proposed
approach to include force control in the predictive path-following controller. Basically,
this approach can be summarized as, using the trajectory generated by the desired
admittance dynamics to update the followed path.

4.2.1.1 Admittance Control

As we mentioned in Chapter 3, the principle of admittance control is to modify the
position of the end-effector, such that the desired robot-environment interaction is
achieved. The contact-force in a space is represented by a tangent, normal, and bi-
normal direction with respect to a given path. We can extend the map (4.18) to include
the vector that is bi-normal to the tangent and the normal vector (see Figure 4.2). The
motivation behind this extension is that some robotics tasks require following a path
in a plane while controlling the force in a direction perpendicular to this plane, e.g.
writing on a board needs to follow a path in the board-plane while controlling the force
in the normal direction on the board-plane. To this end, the bi-normal unit-vector is
derived by preforming the cross-product of the tangent (4.5) and the normal (4.6)
unit-vectors,

V̂ν(θ∗) = V̂η(θ∗)× V̂ξ(θ∗), (4.21)

where the bi-normal unit-vector is normal to the plane containing V̂η(θ∗) and V̂ξ(θ∗),
i.e. V̂ν(θ∗) is parallel to the y3−axis in Figure 4.1. To define the third coordinate,
the displacement along the bi-normal unit-vector V̂ν(θ∗), which is identical to the
projection of vector (y−p(θ∗)) on the unit-vector V̂ν(θ∗), so the first lateral coordinate
along the unit-vector V̂ν(θ∗) is chosen as

ν1 = lat(y) = V̂ν(θ∗)T (y − p(θ∗)). (4.22)

The forces along the tangent, transversal (normal), and lateral (bi-normal) direction
with respect to a given path can be done by projecting the contact-force fe along these
directions

f̂e =

f̂eη
f̂eξ
f̂eν

 =

V̂ T
η (θ∗) fe
V̂ T
ξ (θ∗) fe
V̂ T
ν (θ∗) fe

 (4.23)

55

4 A Unified Approach for Path-following and Force-feedback

Figure 4.2: Force mapping

and the position errors along these unit-vectors are defined as eη = yη−ydη , eξ = yξ−ydξ ,
and eν = yν−ydν , where the ydη , ydξ and ydν refer to the tangential, transversal, and lateral
desired state, respectively. As common, the desired admittance is modeled as a second
order mass-spring-damper system [108, 122]. The desired admittance dynamics can
be written as

mη 0 0
0 mξ 0
0 0 mν

︸ ︷︷ ︸

Md

ëη
ëξ
ëν

 +

bη 0 0
0 bξ 0
0 0 bν

︸ ︷︷ ︸

Bd

ėη
ėξ
ėν

 +

kη 0 0
0 kξ 0
0 0 kν

︸ ︷︷ ︸

Kd

eη
eξ
eν

 = f̂e, (4.24)

where Md, Bd, and Kd are diagonal Rny×ny positive definite matrices of the desired
mass, damping, and stiffness gains defined by the user. To achieve force regulation, the
desired force vector F d ∈ Rny is defined as a constant. Hence, the admittance dynamics
is driven by the force error Ef = F d − f̂e. We write the admittance dynamics along
one-dimension as

mi (ÿi(t)− ÿdi (t))+bi (ẏi(t)− ẏdi (t))+kdi (yi(t)−ydi (t)) = efi(t), i ∈ {η, ξ, ν} , (4.25)

wherem, b, kd, ef are the diagonal elements of the matricesMd, Bd, Kd, Ef , respectively.
yi(t) ∈ Rny is the current desired Cartesian position of the end-effector based on the
admittance dynamics, and ydi (t) ∈ Rny represents the reference position trajectory
-virtual trajectory- that depends on the desired contact force, environment position,
and environment stiffness, as shown later. In addition, to achieve passivity of the
system during interaction with the environment, the first and second time derivatives
of the reference position ydi are set to zero [8, 24]. Hence, the admittance along the

56

4.2 Predictive Path-Following Force-Feedback Control in The Output-space

one-dimensional Cartesian coordinate is reduced to

mi ÿi(t) + bi ẏi(t) + kdi (yi(t)− ydi (t)) = efi(t), i ∈ {η, ξ, ν} . (4.26)

We follow the lines of [108] to study the convergence of the last equation to the
steady-state. First, we write the environment model (3.9) with yi as a function of efi
remembering that the output function h(xp) maps the states to the output space as

yi = 1
ke
f̂ei + yei = 1

ke

[
F d
i − efi

]
+ yei. (4.27)

Combining (4.26) - (4.27) yields

miëfi + biėfi + (kdi + ke)efi = miF̈
d
i + biḞ

d
i + kdiF

d
i − kekdi(ydi − yei). (4.28)

As mentioned above, F d
i is a constant, therefore, the steady-state force tracking error

is inferred from (4.28) as

essfi = k

kdi + ke

[
F d
i + ke(yei − ydi)

]
= keq

[
F d
i

ke
+ yei − ydi

]
, (4.29)

where keq = kdike
kdi+ke is the equivalent stiffness of the environment and the desired admit-

tance dynamics. To this end, careful investigation of (4.29) suggests that by setting
the -virtual- reference trajectory ydi as

ydi = yei + F d
i

ke
(4.30)

yields

essfi = keq

[
F d
i

ke
+ yei − (yei + F d

i

ke
)
]

= 0. (4.31)

That is, if both position and stiffness of the environment are known precisely, one
can use (4.30) to calculate the reference trajectory ydi to apply the desired contact
force F d

i on the environment. However, this is not the case in practice, where the
values of ke and yei are not known accurately, so the desired force will not be achieved.
There are many approaches to deal with robustness and parameter uncertainties of the
admittance/impedance control, see, e.g., [67, 108]. In [108], the authors use two online
schemes for generating the reference position ydi without needing a priori knowledge of
the position and stiffness of the environment. While, in [67], the stiffness term of the
desired impedance/admittance is equated to zero, hence the error force goes to zero
for any ke. In this formulation the reference trajectory in (4.25) is replaced by the
environment position yei such that

mi ÿi(t) + bi ẏi(t) + kdi ei(t) = efi(t), i ∈ {η, ξ, ν} , (4.32)

57

4 A Unified Approach for Path-following and Force-feedback

where ei = (yi − yei). In [67], the proposed scheme consists of a two-phase control
algorithm; the first is free-motion control, i.e. before the interaction, the second, which
starts when contact with the environment is established. During the free-motion phase,
the force control law is reduced to

mi ÿi(t) + bi ẏi(t) + kdi ei(t) = F d
i , i ∈ {η, ξ, ν} , (4.33)

since the contact-force equals zero, i.e. f̂ei = 0. Obviously, if we want to bring the
robot to only make contact with the environment we have to set the desired force to
zero and assuming that the exact environment position is given. However, in (4.33),
the desired force specifies the force exerted on the environment by penetrating the
environment with a depth (yi − yei) > 0 proportional to the desired force. During the
interaction phase, [67] proposes that the stiffness term of the desired admittance kd is
equated to zero, hence the force error goes to zero, i.e. f̂ei = F d

i for any ke. Then, the
desired admittance becomes

mi ÿi(t) + bi ẏi(t) − F d
i + f̂ei = 0, i ∈ {η, ξ, ν} . (4.34)

By substituting f̂ei = ke (yi − yei) in (4.34), the desired admittance becomes,

mi ÿi(t) + bi ẏi(t) + ke ei(t) = F d
i , i ∈ {η, ξ, ν} . (4.35)

We denote this admittance as zero-stiffness admittance to distinguish it from the nom-
inal admittance (4.26). The dynamic system (4.35) is asymptotically stable despite
that ke is not known accurately, and the tuning of gains m and b allows a smooth
convergence [67]. The simulation and experimental validations in Chapter 5 show that
the robustness and stability of this approach are fine and practice.

Remark 4.1 (Tuning parameters of the admittance dynamic)
As mentioned in Section 3.5, the desired impedance/admittance parameters are chosen
such that the response is dual to the environment [9], e.g. if the environment is stiff,
then the admittance dynamics is designed to be non-stiff. In general, for achieving fast
and smooth convergence to the desired force, the other parameters of the admittance
(i.e. mass and damping coefficient) are chosen such that the dynamic response is
critically damped.

4.2.1.2 Updating the Path Using the Desired Admittance Dynamics

So far, we derived the desired admittance dynamics to govern the dynamic interaction
of the robot with the environment. As mentioned before, in the admittance control
scheme the desired position is updated according to the measured force using the
admittance dynamics. In our case, we are using the predictive path-following controller

58

4.2 Predictive Path-Following Force-Feedback Control in The Output-space

Figure 4.4: Illustration of scaling of the geometric path by the admittance dynamics.

as a position controller to keep the robot’s end-effector moving along the desired path
P . Assuming perfect path-following, the force tracking is achieved by updating the
path P using the trajectory generated by the admittance dynamics, see Figure 4.3.

Figure 4.3: The robot’s end-effector follows a circular path while applying a force.

In the following, we present an approach to update the geometric path based on the
admittance dynamics. To this end, we present the following definition and assump-
tions.

Definition 4.1 (Shrunken/extended parametrized-path)
p̃ : [θ0, θf] → P̃ is called a geometric shrunken/extended parametrized-path such that
each point on the path p : [θ0, θf] → P shifted along the normal vector of the tangent
at this point to a specified value γ defined as follows

∀θ ∈ [θ0, θf], ‖p̃(θ)− p(θ)‖ = γ, (4.36)

holds.

Assumption 4.2 The parametrizations p(·) and p̃(·) are smooth and embedded sub-
manifolds of R2.

59

4 A Unified Approach for Path-following and Force-feedback

Figure 4.5: Following an updated geometric path.

Furthermore, we consider that the tangential (4.5) and the normal (4.6) unit-vectors
are given. Here, we consider the path as a closed curve, i.e.

θ ∈ [θ0, θf] , p(θ + θf) = p(θ).
Now, to control the force along the transversal unit-vector, we use admittance dynam-
ics along this direction as follows

md γ̈ + b γ̇ + f̂eξ = F d
ξ , (4.37)

where γ ∈ [0, γd] and γd = F d
ξ /ke, which represents the depth of penetration corre-

sponding to the desired force. Furthermore, the desired force is assumed to fulfill the
following assumption
Assumption 4.3 The desired force F d

ξ is a constant and chosen such that Assump-
tion 4.2 holds.
The state space representation of (4.37) can be written as

γ̇ = Π(γ, F d
ξ) =

 γ2
1/md

(
− b γ2 − f̂eξ

) +
 0
1/md

 F d
ξ , (4.38)

where γ = [γ1, γ2]T = [γ, γ̇]T . Hence, based on the Definition 4.1 we can scale the
geometric path P by shifting each point on the path along the normal unit-vector (4.6)
by γ (see Figure 4.5) as follows

p̃(θ, γ) : [θ0, θf]× [0, γd]→ P̃ := p(θ) + n̂(θ) γ. (4.39)

The first argument of p̃(θ, γ) controls the evolution along the path (i.e. path-following),
while the second one changes the path’s coordinates (i.e. force control).
Problem 4.1 (Path Following Force Regulation Problem)
Given a system (4.20), and a path P̃ (4.39), design a controller that drives the system
output (4.20b) to fulfill:

60

4.2 Predictive Path-Following Force-Feedback Control in The Output-space

• Convergence to path: The system output y = h(xp) moves toward the updated-
path P̃ such that

limt→∞ ‖h(xp(t))− p̃(θ, γ)))‖ = 0.

• Convergence on path: The system output keeps going along the path monoton-
ically in the increasing direction of θ(t), i.e. θ̇(t) ≥ 0 holds and limt→∞ θ(t) = θf .

• Feasibility: The constraints on the states x(t) ∈ X and on inputs the u(t) ∈ U
are satisfied for all time t ≥ t0. �

To solve Problem 4.1, we reformulate the augmented system (2.24) to include the
desired admittance dynamics (4.38). That can be done by adding (4.38) to (2.24a),

ẋ
˙̂x
ẏi

 =

f(x, u)
g(x̂, û)

Π(γ, F d
ξ)

x(t0)
x̂(t0)
γ(t0)

 =

x0
x̂0
γ0

 (4.40a)

ẽ
θ

 =
h(xp)− p̃(θ(t), γ(t))

x̂1

 . (4.40b)

Where ẽ is the new path-following error based on the updated path. We rewrite (2.26)
using (4.40) instead of (2.24), then, the new optimization problem is written as

min
u,v

∫ ti+N

ti
L
(
ȳ − p̃(θ, γ), θ̄ − θf , ū, v̄

)
dτ + E

(
x̄(ti +N), θ̄(ti +N)

)
(4.41a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk) (4.41b)
˙̂̄x(τ) = g(¯̂x(τ), ¯̂u(τ)), ¯̂x(tk) = x̂(tk) (4.41c)

˙̄γ = Π(γ̄, F d
ξ), γ̄(tk) = γ(tk) (4.41d)

¯̃e(τ) = h(x̄p(τ))− p̃(¯̂x1(τ), γ̄1(τ)) (4.41e)
x̄(τ) ∈ X , ū(τ) ∈ U (4.41f)
¯̂x(τ) ∈ X̂ , ¯̂u(τ) ∈ Û . (4.41g)

In (4.41) the desired admittance dynamics (4.41d) is included as a constraint. The evo-
lution of the desired admittance γ(t) appears as a second argument of the parametrized
path p̃(θ, γ). Hence, by following the updated path p̃(θ, γ), the desired force on the
environment is applied.

61

4 A Unified Approach for Path-following and Force-feedback

Summary
In this chapter, we outlined the main contribution of this thesis. First, we showed
the existed approach for combined path-following and force-feedback control using
feedback linearization. Then, we explained our approach, which is exploiting the
model predictive control scheme to solve the path-following and the force feedback
problems simultaneously within an one optimization problem. In the next chapter, we
present simulations and experimental work for verifying the proposed approach.

62

5 Validation

In this chapter, we give a description of simulation and experimental studies, which are
carried out to verify the proposed approach. Before performing the experimental work,
the proposed approach is tested via simulation. The simulations were performed in two
steps. The first step was performed assuming full-state measurement without feedback-
delay. In contrast, the second step assumed that the velocity state is not measured, so
it has to be estimated. Furthermore, we assumed that there exists a feedback-delay for
the measurements. Here, the second step emulates the real experimental setup. The
comparison between the two simulation steps gives us the ability to tune and safely
test the proposed controller before connecting it to the real robotic system.

5.1 Simulation Experiment
As we mentioned above, we have tackled the simulation verification via two steps.
First, we tested the proposed algorithm in MATLAB assuming full-state measure-
ment using the identified model [14] of the robot used in the real experiment, i.e.
KUKA LWR IV robot arm. Second, we used an open-source toolbox providing
emulation of the robot arm and its communication system [14]. Moreover, the
velocity state is estimated and a delay in force sensor measurement is considered.
To achieve this, we derive the dynamic model and the kinematics transformation
of the robot. Afterwards, we sketch the predictive path-following problem (2.26)
and the predictive path-following with force feedback problem (4.41) for the robot arm.

5.1.1 Modeling of Robot Dynamics and Desired Admittance
To keep the formulation simple, we just consider two degrees of freedom of the KUKA
LWR IV robot arm, i.e. joint 2 and 4 are actuated while the others are kept fixed,
(see Figure 5.1). In general, a model of a robotic system can be written in joint space
as follows (see Chapter 3),

M(q)q̈ + C(q, q̇)q̇ + g(q) + τF (q̇) = τe − JTa (q)F̂ . (5.1)

Here q = [q2, q4]T is the vector of joint angular positions of joints 2 and 4, and their
time derivatives q̇ and q̈ represent the angular velocity and acceleration, respectively.
The vector τe = [τe2, τe4] refers to the applied torques on the corresponding joints.

63

5 Validation

The inertia matrix M(q) is a symmetric positive definite matrix; C(q, q̇) stands for
the Coriolis and centrifugal effects; g(q) represents the gravitational torque; and τF (q̇)
is the friction torque in the joints, while Ja is the Jacobian matrix, which maps the
Cartesian external force F̂ into the joint-space (see Section 3.2.1).
The parameters of (5.1) are taken from the open-source toolbox [14], and the kinemat-
ics parameters are provided in Table C.1 in the Appendix C. To include the model (5.1)
in the controller framework, we formulate (5.1) in the state space, setting x1 = q,
x2 = q̇, and u = τe. This yields,

ẋ1
ẋ2

 =
 x2
M(x1)−1

(
u− C(x1, x2)x2 − g(x1)− τF (x2)− JTa (q)F̂

) (5.2a)

y = Tca(x1), (5.2b)

Figure 5.1: Joints of KUKA LWR IV

where the output (5.2b) maps the joint positions of the robot into Cartesian space
using the forward kinematic transformation Tca : R2 → R2 defined by

Tca(x1) =
l1 cos(q2) + l2 cos(q1 − q2)
l1 sin(q2) + l2 sin(q1 − q2)

 , (5.3)

64

5.1 Simulation Experiment

where li, i ∈ {1, 2} represent the lengths of the robot’s links. To engage the path
following problem (2.26), we construct the augmented model (4.40) using the robot
model (5.2) and the timing law dynamics (2.15) designed as a second order integrator
chain.
The cost function is identical for both path-following (2.26) and path-following with
force feedback (4.41) problems, except in (4.41) the error term is ẽ. So, the cost
function is written as follows

L(e, θ, u, û) =
∥∥∥ (e , θ − θf)T

∥∥∥2
W

+
∥∥∥ (u , û)T

∥∥∥2
R
, (5.4)

where the weighting matrices W and R are symmetric and positive definite. In cost
function (5.4), the first term penalizes the output error e to achieve the convergence to
the path, while by penalizing (θ− θf) the convergence on the path is achieved. In the
second term of (5.4), the system input and the virtual input are penalized to ensure
smooth convergence.
To verify our approach, we have used simple paths, e.g. sine- and circular-path. The
mathematical representation of these parametrized paths are as follows

Sine-path

 y1 = y01 + a sin(θ),
y2 = y02 (1− θ/2π) + yf2 θ/2π,

θ ∈ [−2π, 0], (5.5a)

Circular-path

 y1 = y1c + rc sin(θ),
y2 = y2c + rc cos(θ),

θ ∈ [−2π, 0]. (5.5b)

where y1 and y2 are the Cartesian coordinates; (y01, y02) and (yf1, yf2) are the initial
and final points of the path, respectively, and a is a constant. While (y1c, y2c) and rc
are the center and the radius of the circle, respectively.

5.1.2 Nominal Simulations
In this step, the proposed approach is tested on an industrial robot arm, specifically,
we used the identified dynamic model of the robot used in the real experiment, namely,
the KUKA LWR IV robot arm from [14] with the parameters provided therein.
The tasks of the robot are, first to follow a desired path, i.e. Problem 2.2, and

second to follow a path while applying a desired force on the environment, i.e.
Problem 4.1. The optimal control problems (2.26) and (4.41) are solved using the
ACADO Toolkit [59], which is a software environment and algorithm collection for
automatic control and dynamic optimization.

As we discussed in Chapter 2, the computation time of the NMPC problem is
the lower bound on the sampling time (2.42) and typically a small sampling time

65

5 Validation

is desirable. To achieve fast computation times, we used the so-called ACADO
Code Generation tool [59, 60, 123], which exports highly efficient C-code for solving
NMPC problem via a real-time iteration algorithm with Gauss-Newton Hessian
approximation [123]. To this end, the continuous ODEs are discritized using shoot-
ing methods. Then the resulting sparse large quadratic program is passed to the
qpOASES solver [40], which is a dense linear algebra quadratic program solver using
an active set method. However, to employ this solution strategy the optimal control
problem has to be written in a specific form, namely

min
x0, · · · , xN
u0, · · · , uN

N−1∑
k=0

∥∥∥L(xk, uk)− yrefk

∥∥∥2
Wk

+
∥∥∥LN(xN)− yrefN

∥∥∥2
WN

(5.6a)

s.t. x0 = x̃0 (5.6b)
xk+1 = f(xk, uk, sk), for k = 0, · · · , N − 1 (5.6c)
xk ≤ xk ≤ xk, for k = 0, · · · , N (5.6d)
uk ≤ uk ≤ uk, for k = 0, · · · , N − 1 (5.6e)
rk ≤ rk(xk, uk) ≤ rk, for k = 0, · · · , N − 1 (5.6f)
rN ≤ rN(xn) ≤ rN . (5.6g)

Here, x ∈ Rnx represents the state, u ∈ Rm is the control input, s ∈ Rns denotes
the algebraic variable, and x̃0 denotes the current state measurement. The reference
functions in (5.6a) are denoted with L ∈ Rnl and LN ∈ Rnl,N , whereN is the prediction
horizon, and the weighting matrices are called Wk ∈ Rnl×nl and WN ∈ Rnl,N×nl,N .
yrefk ∈ Rnl and yrefN ∈ Rnl,N represent time-varying references. (5.6e) and (5.6d),
with u ≤ u and x ≤ x, are constraints on control inputs and states, respectively.
Equations (5.6f) and (5.6g) are the new representations of the path and terminal
region, respectively, with rk ∈ Rnr,k and rN ∈ Rnr,N being some constraint functions.
The function f represents the discretization of the ordinary differential model.
After reformulating (2.26) and (4.41) in the form (5.6), the code-generation tool is

automatically generating a complete real-time iteration algorithm [60, 72] with opti-
mized C-code of specified dimensions and static memory requirements. In addition,
it chooses constant step-sizes, which ensures a deterministic run-time of the integra-
tion [59].
We use the prediction horizon N = 30 ms and a sampling rate δ = 3 ms. The weight

matrices in the cost function, i.e. W and R, and the constraint sets (box constraints)
on input and state variables are listed in Appendix C.
For this setup, the solution of the path following problem (2.26) is tested and the

results are depicted in Figure 5.3 and 5.2. In Figure 5.2 the end-effector follows a

66

5.1 Simulation Experiment

circular-path, while in Figure 5.3 the end-effector follows a sine-path. This step is
necessary to tune the OCP parameters and check the path followability accuracy before
adding the admittance dynamics as a constraint in the OCP. The results of Figures 5.2
and 5.3 show the desired path is followed while the imposed constraints on states,
inputs and path parameters are respected. The average value of the path following
errors after converging to the path (after 0.1 [s]) for both circular- and sine-path are
listed in Table 5.1. The parameters of the path-following problem are provided in
Appendix C.

Table 5.1: Path-following average error

Circular-path 3.444 e-6
Sine-path 1.284 e-6

0.25 0.3 0.35 0.4 0.45 0.5
0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[m

]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 12 sec ←

 Time = 14 sec ←
 Time = 16 sec ←

Desired path
Robot path

(a) Desired and robot path.

5 10 15
0.01

0.02

0.03

0.04

Time [s]

C
o
m
p
u
ta
ti
o
n
-T

im
e
[m

s]

(b) Computation time for solving the OCP.

0 5 10 15

−5

0

5

Time [s]

τ
e
2
[N

m
]

(c) Torque of joint2.

0 5 10 15
−4

−2

0

2

4

Time [s]

τ
e
4
[N

m
]

(d) Torque of joint4.

0 5 10 15

0

0.1

0.2

0.3

0.4

Time [s]

θ̇
[s
−
1
]

(e) Evolution of path-parameter w.r.t. time.

0 5 10 15
−10

0

10

Time [s]

V
ir
tu
a
l
in
p
u
t

(f) Virtual input of timing-law.

Figure 5.2: The robot’s end-effector follows a circular-path.

67

5 Validation

0 5 10 15

−2

−1

0

1

2

Time [s]

q
2
[r
ad

]

(g) Position of joint2.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
2
[r
ad

/s
]

(h) Velocity of joint2.

0 5 10 15

−2

−1

0

1

2

Time [s]

q
4
[r
ad

]

(i) Position of joint4.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
4
[r
ad

/s
]

(j) Velocity of joint4.

Figure 5.2: The robot’s end-effector follows a circular-path. (Cont.)

68

5.1 Simulation Experiment

0.4 0.45 0.5
0.4

0.45

0.5

0.55

y1 [m]

y
2
[m

]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 12 sec ←

 Time = 14 sec ←
 Time = 15 sec ←

Desired path
Robot path

(a) Desired and robot path.

5 10 15
0.01

0.02

0.03

Time [s]

C
o
m
p
u
ta
ti
o
n
-T

im
e
[m

s]

(b) Computation time for solving the OCP.

0 5 10 15

−5

0

5

Time [s]

τ
e
2
[N

m
]

(c) Torque of joint2.

0 5 10 15
−4

−2

0

2

4

Time [s]

τ
e
4
[N

m
]

(d) Torque of joint4.

0 5 10 15

0

0.2

0.4

Time [s]

θ̇
[s
−
1
]

(e) Evolution of path-parameter w.r.t. time.

0 5 10 15
−10

0

10

Time [s]

V
ir
tu
a
l
in
p
u
t

(f) Virtual input of timing-law.

0 5 10 15

−2

−1

0

1

2

Time [s]

q
2
[r
ad

]

(g) Position of joint2.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
2
[r
a
d
/
s]

(h) Velocity of joint2.

0 5 10 15

−2

−1

0

1

2

Time [s]

q
4
[r
ad

]

(i) Position of joint4.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
4
[r
a
d
/
s]

(j) Velocity of joint4.

Figure 5.3: The robot’s end-effector follows a sine-path.
69

5 Validation

Next, the solution of (4.41) (i.e. path-following and force control) is tested with
different desired forces and a wide range of stiffness degrees. Here, the zero-stiffness
admittance dynamics (4.35) is used. The desired admittance dynamics is designed
based on the duality principle (see Section 3.5) and tuned to be a second-order critically
damped system (see Remark 4.1). Which ensures smooth and fast convergence to the
desired force. The parameters of the desired admittance for the different simulation
setups are listed in Appendix C.
The first task is to follow a circular-path while applying a 10 [N] normal force (i.e.

normal on the tangent of the path) and the result is presented in Figure 5.4. As shown
in this figure, the updated-path (i.e. black-dashed line in Figure 5.4a) is followed,
consequently the desired force is achieved as depicted in Figure 5.4b. Furthermore,
the constraints on inputs (i.e. joint torques and virtual input of the timing-law)
are respected as shown in Figures 5.4c, 5.4d and 5.4k, respectively. In addition, the
position and velocity constraints are met (see Figures 5.4e- 5.4h). The path-parameter
θ is constrained to change from −2π to 0 as shown in Figure 5.4i. While, the speed
along the path, i.e. θ̇ is constrained between [0, 0.4], which ensures a forward motion
along the path, Figure 5.4j shows fulfillment of this limit. The computation time is
much less than the sampling time (i.e. δ = 3ms) as shown in Figure 5.4j, this ensures
feasibility of the real-time implementations and fast convergence of the state estimator
error (see Section 2.3.1).

0.3 0.35 0.4 0.45 0.5
0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[
m
]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 12 sec ←

 Time = 14 sec ←

 Time = 16 sec ←

Object surface
Robot path
Updated path

2

4

6

8

10

(a) Desired and robot path.

5 10 15

2

4

6

8

10

Time [s]

A
p
p
li
ed

F
o
rc
e
[
N
]

2

4

6

8

10

(b) Contact force.

0 5 10 15

−5

0

5

Time [s]

τ
e
2
[N

m
]

0 0.05 0.1
−5

0

5

(c) Torque of joint2.

0 5 10 15
−4

−2

0

2

4

Time [s]

τ
e
4
[N

m
]

(d) Torque of joint4.

Figure 5.4: The robot’s end-effector follows a circular-path and applying 10 [N] force.

70

5.1 Simulation Experiment

0 5 10 15

−2

−1

0

1

2

Time [s]

q
2
[r
a
d
]

(e) Angular position of joint2

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
2
[r
a
d
/
s]

(f) Angular velocity of joint2

0 5 10 15

−2

−1

0

1

2

Time [s]

q
4
[r
a
d
]

(g) Angular position of joint4.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
4
[r
a
d
/
s]

(h) Angular velocity of joint4.

0 5 10 15

−6

−4

−2

0

Time [s]

θ
[-
]

(i) Path-parameter variable.

0 5 10 15

0

0.1

0.2

0.3

0.4

Time [s]

θ̇
[s
−
1
]

(j) Evolution of path-parameter w.r.t. time.

0 5 10 15
−10

0

10

Time [s]

V
ir
tu
a
l
in
p
u
t

(k) Virtual input of the timing-law.

5 10 15

0.01

0.02

0.03

Time [s]

C
o
m
p
u
ta
ti
o
n
-T

im
e
[m

s]

(l) Computation of the OCP.

Figure 5.4: The robot’s end-effector follows a circular-path and applying 10 [N] force. (Cont.)

71

5 Validation

Alternatively, in Figure 5.5, the end-effector follows a sine-path and exerting a 5 [N]
force along the y1 direction, see Figure 5.5a. Here, we used the same constraints and
parameters as before for solving the OCP (4.41). Figure 5.5 shows the following of the
updated-path, cf. Figure 5.5a, when a 5 [N] force is applied, cf. Figure 5.5b. All other
constraints, i.e. states, inputs and parameters constraints, are fulfilled as depicted in
Figure 5.5.

0.4 0.45 0.5
0.4

0.45

0.5

0.55

y1 [m]

y
2
[
m
]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 12 sec ←

 Time = 14 sec ←

Object surface
Robot path
Updated path

1

2

3

4

5

(a) Desired and robot path.

5 10 15
0

2

4

6

Time [s]

A
p
p
li
ed

F
o
rc
e
[
N
]

1

2

3

4

5

(b) Contact force.

0 5 10 15

−5

0

5

Time [s]

τ
e
2
[N

m
]

0 0.05 0.1
−5

0

5

(c) Torque of joint2.

0 5 10 15
−4

−2

0

2

4

Time [s]

τ
e
4
[N

m
]

(d) Torque of joint4.

0 5 10 15

−2

−1

0

1

2

Time [s]

q
2
[r
a
d
]

(e) Position of joint2

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
2
[r
a
d
/
s]

(f) Velocity of joint2

Figure 5.5: The robot’s end-effector follows a sine-path and applying 5 [N] force.

72

5.1 Simulation Experiment

0 5 10 15

−2

−1

0

1

2

Time [s]

q
4
[r
a
d
]

(g) Position of joint4.

0 5 10 15
−0.5

0

0.5

Time [s]

q̇
4
[r
a
d
/
s]

(h) Velocity of joint4.

0 5 10 15

−6

−4

−2

0

Time [s]

θ
[-
]

(i) Path-parameter variable.

0 5 10 15

0

0.2

0.4

Time [s]

θ̇
[s
−
1
]

(j) Evolution of path-parameter w.r.t. time.

0 5 10 15
−10

−5

0

5

10

Time [s]

V
ir
tu
a
l
in
p
u
t

(k) Virtual input of the timing-law.

2 4 6 8 10 12 14

0.01

0.015

0.02

0.025

Time [s]

C
o
m
p
u
ta
ti
o
n
-T

im
e
[m

s]

(l) Computation of the OCP.

Figure 5.5: The robot’s end-effector follows a sine-path and applying 5 [N] force. (Cont.)

73

5 Validation

Figure 5.6 shows the applicability of the proposed approach for different degrees of
stiffness. Here, we assumed that the model of the environment is known inaccurately,
therefore, we used the zero-stiffness admittance dynamics (4.35). In addition, we
used the same constraints on states, inputs and parameters for all simulations in
Figure 5.6, are listed in Table C.2. As we mentioned in Section 4.2.1.1, the zero-stiffness
admittance (4.35) is asymptotically stable despite that the environment stiffness ke is
not known accurately, however, the tuning of gains m and b is required to achieve a
smooth convergence [67]. Therefore, we fixed the mass parameter to m = 1[kg], while
changing the damping parameter according to the rule

b = 2 ζ
√
kem,

where ζ is a dimensionless constant called the damping ratio. Here, we choose ζ =
3.25, which ensures overdamped behavior of the admittance dynamic system, which
is preferable, especially for stiff environments. The evolutions of states, inputs and
parameters were omitted in Figure 5.6, since all constraints are met. To exemplify
this, the evolutions for the case in Figure 5.6i and Figure 5.6j (i.e. for the environment
ke = 5×105 [N/m]) is depicted in Figure 5.7. Figure 5.6 depicts the results for different
degrees of environmental stiffness, i.e.

ke ∈
{
5× 103, 1× 104, 5× 104, 1× 105, and 5× 105

}
.

The comparative results, depicted in Figure 5.6, show the convergence to the de-
sired force can be achieved for a wide range of environments using the zero-stiffness
admittance approach. It is worth mentioning that in Figure 5.6 the time derivative of
the path-parameter (i.e. θ̇) is bounded between [0, 0.4] [s−1] (see Figure 5.7h).

74

5.1 Simulation Experiment

0.3 0.35 0.4 0.45 0.5 0.55
0.4

0.5

0.6

y1 [m]

y
2
[
m
]

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 14 sec ←

 Time = 16 sec ←
Object surface
Robot path
Updated path

2

4

6

8

10

0.495 0.5
0.52

0.54

0.56

0.58

(a) ke = 5× 103 [N/m]

5 10 15
0

5

10

Time [s]

A
p
p
li
ed

F
or
ce

[
N
]

2

4

6

8

10

(b) F d= 10 [N] and ke = 5× 103 [N/m]

0.3 0.35 0.4 0.45 0.5

0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[
m
]

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 14 sec ←

 Time = 16 sec ←

Object surface
Robot path
Updated path

2

4

6

8

10

0.495 0.5
0.52

0.54

0.56

0.58

(c) ke = 10× 104 [N/m]

0 5 10 15
0

5

10

Time [s]

A
p
p
li
ed

F
or
ce

[
N
]

2

4

6

8

10

(d) F d= 10 [N] and ke = 1× 104 [N/m]

0.3 0.35 0.4 0.45 0.5

0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[
m
]

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 14 sec ←

 Time = 16 sec ←

Object surface
Robot path
Updated path

2

4

6

8

10

0.498 0.499 0.5
0.54

0.55

0.56

(e) ke = 5× 104 [N/m]

5 10 15
0

5

10

Time [s]

A
p
p
li
ed

F
or
ce

[
N
]

2

4

6

8

10

(f) F d= 10 [N] and ke = 5× 104 [N/m]

0.3 0.35 0.4 0.45 0.5
0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[
m
]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 14 sec ←

 Time = 16 sec ←

Object surface
Robot path
Updated path

2

4

6

8

10

0.4998 0.5
0.54

0.55

0.56

(g) ke = 1× 105 [N/m]

0 5 10 15
0

5

10

Time [s]

A
p
p
li
ed

F
or
ce

[
N
]

2

4

6

8

10

(h) F d= 10 [N] and ke = 1× 105 [N/m]

0.3 0.35 0.4 0.45 0.5
0.45

0.5

0.55

0.6

0.65

y1 [m]

y
2
[
m
]

 Time = 0 sec ←

 Time = 2 sec ←

 Time = 4 sec ←

 Time = 6 sec ←

 Time = 8 sec ←

 Time = 10 sec ←

 Time = 14 sec ← Time = 16 sec ←

Object surface
Robot path
Updated path

8

10

12

14

0.4998 0.5
0.544

0.546

0.548

0.55

0.552

(i) ke = 5× 105 [N/m]

0 5 10 15
0

5

10

15

Time [s]

A
p
p
li
ed

F
or
ce

[
N
]

8

10

12

14

(j) F d= 15 [N] and ke = 5× 105 [N/m]

Figure 5.6: Comparison among different degrees of stiffness, (left) Cartesian path, (right) the
corresponding applied force.

75

5 Validation

0 5 10 15

−5

0

5

Time [s]

τ
e
2
[N

m
]

0 0.05 0.1

−2
0
2
4
6

(a) Torque of joint2.

0 5 10 15
−4

−2

0

2

4

Time [s]

τ
e
4
[N

m
]

(b) Torque of joint4.

0 5 10 15
0.8

1

1.2

1.4

Time [s]

q
2
[r
ad

]

(c) Angular position of joint2

0 5 10 15
−0.1

0

0.1

Time [s]

q̇
2
[r
a
d
/
s]

(d) Angular velocity of joint2

0 5 10 15
0.4

0.6

0.8

1

1.2

1.4

Time [s]

q
4
[r
ad

]

(e) Angular position of joint4.

0 5 10 15
−0.2

0

0.2

Time [s]

q̇
4
[r
a
d
/
s]

(f) Angular velocity of joint4.

0 5 10 15
−6

−4

−2

0

Time [s]

θ
[-
]

(g) Path-parameter variable.

0 5 10 15
0

0.1

0.2

0.3

0.4

Time [s]

θ̇
[s
−
1
]

(h) Evolution of path-parameter w.r.t. time.

0 5 10 15
−10

0

10

Time [s]

V
ir
tu
a
l
in
p
u
t

(i) Virtual input of the timing-law.

5 10 15
0.005

0.01

0.015

0.02

0.025

Time [s]

C
o
m
p
u
ta
ti
o
n
-T

im
e
[m

s]

(j) Computation of the OCP.

Figure 5.7: States, inputs and parameters evolutions corresponding to the environment stiff-
ness ke = 5× 105 in Figure 5.6i.

76

5.1 Simulation Experiment

5.1.3 Non-nominal Simulations
In the following simulation setup, we tested applicability of our approach when the
environment model is uncertain and a sensor-measurement delay exists. This setup
is important to study the effects of uncertainty and communication quality on the
stability and performance of the controller before the proposed approach is tested on
the real robot. Figure 5.8 shows the schematic of the second simulation setup, where
the toolbox [14] provides the emulation of the real robot arm as depicted in Figure 5.8.
This toolbox contains the identified model of the robot used in the real experiment,
i.e. KUKA LWR IV robot arm, as well as a library that emulates the communication
interface used in the real setup, i.e. the so-called Fast Research Interface [104]. The
comparison between the result of this simulation with the previous -ideal- simulation
step gives us the ability to tune and safely test the proposed controller.
In this step, we tackle the following issues:

1. Uncertain environment model.

2. Time-delayed and noisy measurements.

In the following we explain these issues in details.

Figure 5.8: Toolbox emulates the KUKA LWR IV robot arm [14].

5.1.3.1 Uncertain environment model

To show the robustness of our approach, we test the proposed optimal control problem
using nominal and zero-stiffness admittance under uncertain environment stiffness.
Where in this experiment, the environment stiffness is changing sinusoidally from 1000
to 1200 [N/m]. Figure 5.9 confirms the robustness of the zero-stiffness admittance
dynamics to the uncertainties in the environment model.

77

5 Validation

−6 −5 −4

1000

1100

1200

θ[-]

E
n
v
.
st
iff
n
es
s
[N

/
m
]

1 2 3 4 5

2

4

6

Time [s]

C
on

ta
ct

fo
rc
e
[N

]

Zero−Stiff. adm.
Nominal adm.
Desired force

Figure 5.9: Variable environment stiffness (left), contact force (right).

5.1.3.2 Time-delayed and noisy measurements.

Time-delays in measurement happen due to dropped packets during communication or
because of slow computations in the data acquisition process. In Figure 5.10, we show
that the proposed approach is robust to measurement time-delays. In Figure 5.10,
we assumed the sampling time is δ = 3 ms, while the time delay for the force sensor
equals 5 × δ and 10 × δ. The convergence to the desired force is achieved, however,
there is chattering in the force trajectory. This chattering is proportional to the time-
delay in the force measurement because the update of the followed path depends on
the admittance position trajectory, which is in turn depending on the measured force.
That is, if the force signal is delayed for td seconds, consequently the position and force
errors in the nominal admittance is kept constant for that time.

Remark 5.1 (Discrete force sensor model)
Recall that the admittance dynamics is just a virtual model, i.e. the coupling between
robot dynamic model and admittance dynamic model does not exist in reality. How-
ever, inside the controller both models are coupled. This coupling leads to incorrect
computations of the input because our controller is model-based. Actually, a simple
investigation of the OCP in (4.1) indicates that the coupling between models is due to
the force sensor model. Where, the force sensor model is a function of the end-effector
position. To decouple the dynamic models, we used a different sensor model. This
model delivers the current value of the force at each sampling time and keeps it con-
stant until the next sampling time. The new model of the force sensor is more realistic
since the measurement of the real force sensor is delivered to the controller at each
sampling time.

78

5.1 Simulation Experiment

0.44 0.445 0.45 0.455 0.46 0.465

0.4

0.45

0.5

0.55

y
1
 [m]

 y
2
 [
m

]

 Time = 0 sec ←

 Time = 1 sec ←

 Time = 3 sec ← Object surface
Updated path
Robot path

0

5

10

(a) Sensor time-delay = 5× δ = 0.015 [s]

0.5 1 1.5 2 2.5 3
0

5

10

Time [s]

F
o

rc
e

 [
N

]

0

5

10

(b) Sensor time-delay = 5× δ = 0.015 [s]

0.44 0.445 0.45 0.455 0.46 0.465

0.4

0.45

0.5

0.55

y
1
 [m]

 y
2
 [
m

]

 Time = 0 sec ←

 Time = 1 sec ←

 Time = 3 sec ← Object surface
Updated path
Robot path

2

4

6

8

10

(c) Sensor time-delay = 10× δ = 0.03 [s]

0.5 1 1.5 2 2.5 3
0

5

10

Time [s]

F
o

rc
e

 [
N

]

2

4

6

8

10

(d) Sensor time-delay = 10× δ = 0.03 [s]

Figure 5.10: Effect of force sensor time-delay while following a circular-path and applying 10
[N] with ke = 15× 102 [N/m]

With respect to the force sensor noise, we tested the robustness of the proposed ap-
proach by adding Gaussian noise to the measured force. For the nominal admittance
dynamics, cf. Figure 5.11 and the zero-stiffness admittance, cf. Figure 5.12 with pa-
rameters as listed in Table 5.2 and the other constraints/parameters as in Appendix C.
Both figures show the robustness for a 20% Gaussian noise with low environment stiff-
ness, i.e. ke = 2000 [N/m]. However, the zero-stiffness admittance is more robust
than the nominal admittance for the same environment stiffness and desired force,
cf. Figure 5.11 and Figure 5.12b. While for high environmental stiffness degrees,
both approaches are not robust, cf. Figures 5.12c and 5.12d. Basically, noisy force
measurements lead to a mismatch between real and estimated dynamic parameters,
consequently, the residual r̃ (3.14) becomes non-zero and becomes larger for high val-
ues of stiffness and forces. In general, the proposed NMPC scheme is robust against
uncertainties in the system model. Due to our observation, the effect of noisy measure-
ments can be eliminated by increasing the weight on the path-parameter error in the
objective function. This prioritizes the convergence on the path over the convergence
to the path, where the last is affected by the noisy measurements.

79

5 Validation

Table 5.2: Desired admittance parameters

Mass Damping Stiffness
Nominal Admittance 1 [kg] 440 [N.s/m] 300 [N/m]
Zero-stiffness Admittance 1 [kg] 6.5

√
kem [N.s/m] 0 [N/m]

0 2 4 6 8 10
0

5

10

15

20

Time [s]

M
ea

su
re

d
Fo

rc
e

[N
]

0

5

10

15

20

Measured force
Desired force

(a) Measured force with Gaussian-noise= 20 % .

0 2 4 6 8 10
0

5

10

15

20

Time [s]

Ap
pl

ie
d

Fo
rc

e
[N

]

0

5

10

15

20

Applied force
Desired force

(b) Applied force.

Figure 5.11: Compensating of measurement noise using nominal admittance, measured noisy
force signal (left), corresponding applied force (right).

0 1 2 3
0

5

10

15

20

25

Time [s]

M
ea

su
re

d
Fo

rc
e

[N
]

0

5

10

15

20

Measured force
Desired force

(a) Measured force with Gaussian-noise= 20 % .

0 1 2 3
0

5

10

15

20

Time [s]

Ap
pl

ie
d

Fo
rc

e
[N

]

5

10

15

20

Applied force
Desired force

(b) Applied force.

0 1 2 3
0

50

100

Time [s]

M
ea

su
re

d
Fo

rc
e

[N
]

0

50

100

Measured force
Desired force

(c) Measured force with Gaussian-noise= 20 %.

0 1 2 3
0

50

100

Time [s]

Ap
pl

ie
d

Fo
rc

e
[N

]

20

40

60

80

100

Applied force
Desired force

(d) Applied force.

Figure 5.12: Compensating of measurement noise using zero-stiffness admittance, measured
noisy force signal (left), corresponding applied force (right).

5.2 Experimental Validation
In this section, the real-time experimental validation of the proposed approach is
performed. To this end, we used the KUKA LWR IV robot arm (cf. Figure 5.1) to
test the implementation of the presented path-following (i.e. the OCP (2.26)) and
path-following with force feedback control (i.e. the OCP (4.41)). The task is to write

80

5.2 Experimental Validation

on a plastic ball (see Figure 5.13). Figure 5.14 shows the schematic of the experimental
setup. Where the controller send torques to the Fast Research Interface, which in turn
adds a gravity torque to the commanded torques and feeds back the real measured
torques and positions.

Figure 5.13: KUKA robot writing on a plastic ball.

Figure 5.14: Schematic of the experimental setup

5.2.1 Estimation of unmeasured states
In the experimental work, we can not measure all states. So to complete the initial
states vector

Xini = [q0︷ ︸︸ ︷
position

q̇0︷ ︸︸ ︷
velocity

x̂0︷ ︸︸ ︷
timing − law

γ0]︷ ︸︸ ︷
admittance

,

In the real experiment, we do not have velocity state measurement, therefore we must
estimate the velocity state using the measured position states. Since the position is
measured at each sampling instance, i.e. discrete-time variable, we use the difference
quotient method to estimate the velocity state:

q̇(tk) = ∂q

∂t
|t=tk ≈

qk − qk−1

tk − tk−1
.

The fast sampling rate and the small computation time of the controller allow to use
this simple estimation method. Furthermore, to overcome the noise effects, we add a

81

5 Validation

low-pass filter. Then, the estimated velocity state is delivered to the controller with
the other measured and constructed internal states, i.e. x̂0, δ0, which are constructed
using the timing-law and the desired admittance dynamics respectively.

5.2.2 Environmental parameters
To design the desired admittance, we need to know the environment parameters. First,
we measure the environment stiffness. To this end, we apply a force on the plastic ball
along x-axis (see Figure 5.15), where the Barrett 6-Axis Force/Torque sensor [118]
is used to measure the force. We repeat this experiment for different depths (i.e.
γ = {2, 4, 6, 8, 10, 15} [mm]) as shown in Figure 5.16. Then we use linear regression
method to estimate the environment stiffness from the measured force and correspond-
ing depth of penetrations. As shown in Figure 5.17, environment stiffness increases
with the depth of penetration, this is reasonable because the air pressure is increasing
proportionally to the depth of compression.

Figure 5.15: Measuring environment stiffness.

Figure 5.16: Measured forces corresponding to different depths.

82

5.2 Experimental Validation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

Penetration [cm]

E
nv

. s
tif

fn
es

s
k e [N

/m
]

Average Stiffness = 745.9 [N/m]

Figure 5.17: Average environment stiffness.

Second, we investigate the accuracy of the environment position (i.e. position of
ball’s surface). To this end, we perform an experiment for following a circular-path on
the ball’s surface while applying 0 [N]. Here, we use our approach with the zero-stiffness
admittance. This experiment shows that the radius of the ball is not homogenous (see
Figure 5.18).
These last two experiments show the inaccuracy in the environment parameters.

Next, we perform a task of writing on the plastic ball while maintaining a 2 [N] contact
force. Where, the pen attached to the robot’s end-effector moves along a circular-path
on the ball’s surface and keeping 2 [N] contact force (see Figure 5.13). To achieve this,
we used our proposed approach with nominal admittance (Figures 5.19−5.22) and
zero-stiffness admittance (Figures 5.23−5.26). The parameters of the experimental
work are listed in Table C.4.
As shown in Figure 5.19, the desired force is not achieved by using nominal ad-

mittance. The reason for that is due to inaccuracies in the environment parameters.
Where, as we discussed in Chapter 4, convergence of the nominal admittance dy-
namics requires accurate stiffness and position of the environment. In contrast, the
zero-stiffness admittance is achieved the desired force as shown in Figure 5.23. IN
these both experiments, the path-parameter θ is constrained to change from −1.65π
to −1.4π as shown in Figure 5.20 and Figure 5.24.

83

5 Validation

0.67 0.68 0.69 0.7

0.36

0.38

0.4

0.42

0.44

 Time = 0 sec ←

 Time = 4 sec ←

 Time = 8 sec ←

 Time = 12 sec ←

 Time = 20 sec ←

x [m]

 z
 [m

]

Object surface
Robot path
Updated path

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

Time [s]
M

ea
su

re
d

F
or

ce
 [N

]

Applied force
Desired force

Figure 5.18: Moving along the ball’s surface with 0 [N] desired force, followed path (left),
measured contact force (right).

0.67 0.68 0.69 0.7

0.35

0.4

0.45

 Time = 0 sec ←

 Time = 4 sec ←

 Time = 8 sec ←

x [m]

 z
 [m

]

Object surface
Robot path
Updated path

0 5 10

1

2

3

4

Time [s]

M
ea

su
re

d
F

or
ce

 [N
]

Figure 5.19: Moving along the ball’s surface with 2 [N] desired force , followed path (left),
measured contact force (right). (Nominal admittance)

84

5.2 Experimental Validation

Figure 5.20: Path-parameter (left), evolution of path-parameter (right). (Nominal admit-
tance)

Figure 5.21: Timing-law input (left), robot input torques (right). (Nominal admittance)

0 5 10

−1.5

−1

−0.5

0

Time [s]

A
ng

ul
ar

 p
os

iti
on

 [r
ad

]

q
2
 [rad]

q
4
 [rad]

0 5 10
−0.1

−0.05

0

0.05

0.1

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Velocity of J2 [rad/s]
Velocity of J4 [rad/s]

Figure 5.22: Angular positions (left), estimated angular velocity (right). (Nominal admit-
tance)

85

5 Validation

0.66 0.67 0.68 0.69
0.3

0.35

0.4

 Time = 0 sec ←

 Time = 4 sec ←

 Time = 12 sec ←

 Time = 16 sec ←

x [m]

 z
 [m

]

Object surface
Robot path
Updated path

0 5 10 15

0.5

1

1.5

2

Time [s]

M
ea

su
re

d
F

or
ce

 [N
]

Applied force
Desired force

Figure 5.23: Moving along the ball’s surface with 2 [N] desired force , followed path (left),
measured contact force (right). (Zero-stiffness admittance)

Figure 5.24: Path-parameter (left), evolution of path-parameter (right). (Zero-stiffness ad-
mittance)

Figure 5.25: Timing-law input (left), robot input torques (right). (Zero-stiffness admittance)

86

5.3 Discussion

Figure 5.26: Angular positions (left), estimated angular velocity (right). (Zero-stiffness ad-
mittance)

5.3 Discussion
Here, we discuss the main observations from the simulation and experimental results.
As described in Chapter 4, in our method the indirect force control approach
−admittance force control− is included inside the predictive path-following problem.
This led to solving the path-following and force control problem simultaneously in one
optimization problem within the model predictive scheme. Basically, we have exploited
the features of model predictive control and path-following to include the force control.

With respect to the model predictive control, as explained in Chapter 2, for obtaining
the optimal solution of the OCP the dynamic model of the system is used to predict the
future evolution of the system within the prediction horizon. Then, repeatedly solving
the optimal control problem using new measurements as initial states will cope with
disturbances or uncertainties in the dynamic model. Regarding the path-following,
the path-parameter evolution is left as a free variable to make the output error (??)
as small as possible.
In the following, we discuss the simulation results in detail.

Path-following and force-feedback

In (OCP) (4.41) when the path is updated using the desired admittance dynamics,
the output error increases, consequently, the evolution of the path-parameter slows
down to reduce the output error. This is due to the fact that the performance index
penalizes the deviations of the system output from the path and the distance of the
path-parameter from its final value. So, by increasing the weights in the performance
index on the deviation from the path, one can prioritize convergence to the path.

87

5 Validation

That is, the evolution of the path-parameter variable slows down when the deviation
from the path is large, (see Figure 5.27). This property ensures fast convergence to
the desired force as shown in the simulation results. Additionally, by including the
augmented system dynamics (4.40) (i.e timing-law (2.23), desired admittance (4.26),
and system model (2.21a)) as constraints in the OCP (4.41), the optimal solution will
compromise among these dynamics to follow the updated-path as precise as possible.
For example, Figures 5.4−5.5 show that the updated-path (i.e. black dashed-line in
Figures 5.4a−5.5a) is followed, hence, the desired contact force is achieved as well.

(a) (b) (c)

Figure 5.27: Priority of convergence to the path, in (a) the initial state is not on the path,
(b) the initial state is on the path, (c) the path-parameter evolutions corresponding to
(a) and (b)

Due to the very short sampling time, i.e. 3 [ms], the applied torques and the virtual
input of the timing law seem to chatter sharply, but if we zoom in the figures, the
trajectory changes smoothly as shown in Figure 5.28.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [s]

 τ
e2

 [N
m

]

0.05 0.1
−1

0

1

Figure 5.28: Torque1 zoomed in.

88

5.3 Discussion

Notes on nominal and zero-stiffness admittance dynamics

As we described in the last chapters, the admittance dynamic is designed as a second-
order dynamic system. This system is non-homogeneous, since it is driven by the
force error (nominal admittance (4.26)) or the desired force (zero-stiffness admit-
tance (4.35)). In both cases the system is asymptotically stable as explained in Chapter
4. However, based on our observation, the response to the zero-stiffness admittance is
sensitive to the desired force. In essence, this input function is a step-function while
the input of the nominal admittance (i.e. force error) is decaying over time. Further-
more, for the nominal admittance, the position error and force error converge to zero
simultaneously. For the zero-stiffness admittance, the position error grows proportion-
ally to the desired force (see Section 4.2.1.1). Therefore, to achieve a good dynamic
response for the zero-stiffness admittance, it is required to tune the damping and mass
parameters.

Summary
In this chapter, we performed the practical work to verify the proposed approach for
solving path-following and force feedback using model predictive control. We presented
the model of the robot, which is adopted in simulation and experimental work. The
applicability of the proposed approach was demonstrated with simulation studies and
real experiments on a KUKA LWR IV robot arm. To do so, we employed different de-
sired paths and desired contact-forces with different degrees of environmental stiffness.
In the following chapter, we discuss safety conditions in manipulation processes.

89

6 Safety of Manipulation Processes

In this chapter, we discuss how the manipulation process performed the task safely.
Where the problems of collision avoidance and uncontrollable approach to the environ-
ment are discussed. The motivation behind the first problem, is that the redundant
robot can approach the same point with different configurations (see Figure 6.1), and
some of these configurations are infeasible kinematically or kinetically. Therefore, it
is required to avoid these kinds of configurations by including appropriately chosen
constraints in the optimization problem. While the motivation for the second prob-
lem is that avoiding of uncontrollable approaching of the environment is necessary
because this might be lead to instability. We solve the second problem by computing
the so-called inevitable set.

6.1 Obstacle avoidance in the framework of predictive
control

Obstacle avoidance control refers to the task of actively planning/controlling a
path/trajectory while avoiding collisions with stationary or moving objects. We uti-
lize an obstacle avoidance approach that is based on predictive control as presented in
[103]. In this approach, the dynamic or static obstacles are considered as additional
static or dynamic constraints in the optimal control problem.

Figure 6.1: Redundant configuration

However, the method presented in [103], does in general not guarantee repeated fea-
sibility for small prediction horizons, i.e. if the controller cannot foresee the complete
path to the goal. To achieve guaranteed repeated feasibility is in general a hard task.

90

6.1 Obstacle avoidance in the framework of predictive control

We tackle this problem by guaranteeing that for each final position achieved always a
feasible trajectory exists, which does not intersect with the obstacles. To this end, we
consider the following two sets/problems.

Problem 6.1 (Unreachable set)
Determine the set os states, which are unreachable by the system without hitting an
obstacle due to the kinematic and geometry constraints of the robot. �

Problem 6.2 (Inevitable set)
Determine the set of states, where a collision with an obstacle cannot be avoided. �

With unreachable set Problem 6.1, we denote the set that a robot cannot reach
without hitting the obstacle. As an example consider Figure 6.2 depicting a 2-DOF
robot. In Figure 6.2, the robot - denoted as Cartesian robot - can move link1 only
vertically, and link2 only horizontally. As can be seen, a Cartesian robot is unable to
reach any point, which is on the right hand side of the obstacle, since otherwise link2
hits the obstacle.

Figure 6.2: Sketch of a Cartesian 2-DOF robot. link 1 can only move vertically, and link2 can
only move horizontally. For the depicted obstacle the Cartesian robot is unable to reach
anything on the right hand side of the obstacle.

Problem 6.2 refers to the set of states for which the dynamic system will eventually
hit an obstacle no matter which input is applied. For example, when a robot arm
moves very fast and faces an obstacle at the end of the predicted field of vision, there
might not be enough space left to stop or maneuver around the obstacle, hence, a
collision will occur, cf. Figure 6.3.

91

6 Safety of Manipulation Processes

Figure 6.3: Inevitable set of initial conditions, for which a collision cannot be avoided. The
blue area represents the obstacle, the red encircled area the inevitable set. For any initial
condition taken from the inevitable set the robot will collide with the obstacle (red line),
while for any initial condition outside, it can be guaranteed that the robot will never
collide with the obstacle (green line).

Both sub-problems are described in more details in the next sections and illustrated
with examples. Solving Problems 6.1 and 6.2 is challenging. However, we can solve
Problem 6.1 using feasibility problems [16]. While Problem 6.2 can be solved by com-
puting the set of initial conditions for which the reachable set is inside of the obstacle
no matter what input is applied, i.e. one can employ the strategy of Rumschinski et al.
[101] for systems with disturbances as seen in the following.
To this end, we consider a linear time invariant system describing the discrete-time

dynamics of a robot

x(k + 1) = Ax(k) +B u(k), x(0) = x0 ∈ Rn,

y(k) = C x(k),
(6.1)

where x(k) ∈ X ⊂ Rnx denotes the states, e. g. the joint positions and their velocities,
u(k) ∈ U ⊂ Rnu the control input, e. g. applied torques or forces, y(k) ∈ Rny the
output, e. g. measured positions and velocities of the robot end-effector, and k ∈ N ∪
{0} the time index. The initial condition is denoted by x0, the state trajectory starting
from x0 at time k denoted by φ(k, uk|x0) for the input sequence uk = (u(0) = u0, u(1) =
u1, . . . , u(N) = uN) and the output trajectory by φy(k, uk|x0) = Cφ(k, uk|x0). The
real matrices A, B, C correspond to the physical connection of the states, input and
output and are of appropriate dimensions.

6.1.1 Computation of the unreachable set
The Problem 6.1 corresponds to joint positions of the robot for which a link between
the joints violates the obstacle, i.e. the obstacle is hit by a link. The main difficulty
to overcome is the needed guarantee that no points are missed. Therefore, sampling
based approaches, e. g. based on Monte Carlo experiments, are not satisfactory as one
would need to check an infinite amount of points to guarantee the safety.
In [101], a similar problem is solved for proving model consistency of discrete-time

92

6.1 Obstacle avoidance in the framework of predictive control

systems with measurements given as sets. It is shown that checking model consistency
can be reformulated as a feasibility problem. In other words, one is interested in
checking whether points fulfill all the constraints or not. We proposed a similar strategy
in which the computation of the unreachable set corresponds to a feasibility problem.
Basically, we compute the set of points for which the obstacle is violated by a part of
the robot’s link.
Before explaining the solution of Problem 6.1, we define the following sets. First, the
obstacle to be avoided, e. g. a second robot or a human operator, is defined as follows

O := {x ∈ Rnx|Hx ≤ h} ⊂ Rnx, (6.2)

where H ∈ RS×nx and h ∈ RS define the edges of a polytope.
The next equation corresponds to the geometry of the robot. Where, we define Li

to be the set of all points on link i, which connects the two joints denoted by i and
i+ 1. The position of joint i in Cartesian space is denoted by ji. The set Li is defined
as

Li = {x ∈ X : ∃(ji, ji+1) ∈ X | x = λ ji + (1− λ) ji+1; ∀λ ∈ [0, 1]} (6.3)

where Li for a specific value of λ indicates a point on link i of the robot arm. The
indices are such that i ∈ {1, ..., I}, the total number of links is I, and the total joints
number is I+1 including the end-effector. To prevent a violation of the obstacle w.r.t.
the links of the robot (cf. Problem 6.1), one has to ensure that there exists no point
x such that

Li ∩ O 6= ∅ (6.4)

holds. However, from a practical point of view, it is easier to derive first all the points
for which a collision occurs and then exclude this set from the control problem (similar
to an obstacle), cf. also to Section 6.1.2.1 for a more detailed discussion. Therefore,
Problem 6.1 is written as follows

Problem 6.3 (Points of collision) Determine the set S for which the (6.4) doesn’t
hold, where S is defined as follows

S := {li ∈ Li | li = x0; ∀ x0 ∈ O; ji, ji+1 ∈ X ; i ∈ {1, 2, · · · , I}} ⊇ O. (6.5)

�

To solve Problem 6.3, which corresponds to the geometry of a robot and is solved via

93

6 Safety of Manipulation Processes

the following feasibility problem.

find x,

s.t. li = x0,

x ∈ X ⊂ Rnx,

x0 ∈ O ⊂ X ,
li ∈ Li ⊂ X ∀ i ∈ {1, 2, · · · , I} ,

(6.6)

It can be shown that the solution space of (6.6) is equal to S. Thus, determining
the solution space of (6.6) corresponds to solving Problem 6.3 (resp. 6.1).
In the case of the Cartesian robot cf. Figure 6.2, the resulting feasibility problem is

linear and, therefore, convex. This allows us to compute the feasible set exactly with
the help of standard primal-dual solvers for linear programs using the Matlab toolbox
ADMIT [114]. The following Figure 6.4 illustrates the sets for the 2-DOF Cartesian
robot (see Figure 6.2). Here, a polytopic obstacle is considered as depicted in the
Figure 6.4. In the following, we consider the obstacle and the unreachable area as one
obstacle denoted by extended obstacle. In the next section, we compute the set of
inevitable states corresponding to the extended obstacle.

Figure 6.4: Unreachable subspace due to kinematics constraints. The gray area corresponds
to the considered polytopic obstacle, while the area between dashed-lines corresponds to
the unreachable set.

6.1.2 Computation of the inevitable set
We propose an approach to determine the set of initial conditions of a robot for which
a collision with an obstacle cannot be avoided. Determining the inevitable set directly
is, in general, difficult. Since one has to determine for an infinite amount of initial
conditions whether there exists a time for which a collision occurs no matter which
input is applied. To this end, we develop a new set-based recursive procedure based on
the results presented in [18]. As a first step, we determine the set of initial conditions
for which the robot collides with the obstacle in one-time step. Where, this set can
be computed by assuming the obstacle as a target set and calculating the so-called

94

6.1 Obstacle avoidance in the framework of predictive control

backward reachable set for one-time step employing the methods presented in [18].
However, the main problem in computing the backward reachable set is the condition
that for any input the system has to end up in the obstacle. To avoid this problem, we
treat the input as a disturbance and derive the so-called robust backward reachable
set following [69].
To determine the next inevitable set we repeat the previous procedure using the first
inevitable set as the new target set and again computing the backward reachable set
for one-time step. This is repeated until the newly computed set is a subset of the
previous one. It is obvious that if a collision can be in principle avoided, i.e. the
dynamic system is controllable, then this condition will hold after a finite amount of
repetitions and the procedure can be terminated. The inevitable set is formalized in
the subsequent definition.

Definition 6.1 (Inevitable collision set) The set Xinevitable is said to be an in-
evitable collision set, if for every initial condition x0 ∈ Xinevitable there exists t ∈ N∪{0}
such that x(t) ∈ O no matter what input sequence ū is applied, i.e.

Xinevitable := {x0 : ∃t s.t. φ(t, uk|x0) ∈ O,∀uk ∈ U}. (6.7)

�

Employing Definition 6.1, we can formalize Problem 6.2 as follows

Problem 6.4 Determine the set Xinevitable of system (6.1). �

To solve Problem 6.4, we start by defining the following set

X 1
inevitable := {x ∈ X : Ax+Bu ∈ S, ∀u ∈ U} . (6.8)

The set X 1
inevitable corresponds to the set of initial conditions for which the system (6.1)

collides with the extended obstacle S in one-time step. Similar to X 1
inevitable, we can

recursively define the sets of initial conditions for which a collision cannot be avoided
in k + i; i ∈ {1, 2, . . .} time steps, i.e.

X k+1
inevitable := {x ∈ X : Ax+Bu ∈ X k

inevitable, ∀u ∈ U}. (6.9)

there has to exist a time step k∗ ∈ N ∪ {0} for which

X k∗+1
inevitable ⊆ X k∗

inevitable, (6.10)

holds, i.e. it is sufficient to compute iteratively the first k∗ inevitable sets. The set
Xinevitable is then simply the union of all sets X k

inevitable, k ∈ {1, . . . , k∗}.
The main problem in computing X k

inevitable is the condition for all u ∈ U . To replace
this difficult condition, we follow here a similar strategy as proposed in [18, 69] for the

95

6 Safety of Manipulation Processes

computation of invariant sets, i.e.

X k+1
inevitable =

{
x : Ax ∈ X k

inevitable ∼ BU
}
, (6.11)

where ∼ is the Minkowski difference, which is defined as follows,

Definition 6.2 (Minkowski difference)
The Minkowski difference of two sets Q,W ⊆ Rn

Q ∼ W := {c ∈ Rn : c+ w ∈ Q, ∀w ∈ W} . (6.12)

This reformulation allows us to present the following algorithm for the computation of
X k
inevitable, where the implementation of the algorithm employs the toolbox presented

in [69].

[Inevitable Set Algorithm]

k ← 0
X k
inevitable = S

COM : Compute X k+1
inevitable =

{
x : Ax ∈ X k

inevitable ∼ BU
}

if X k+1
inevitable ⊆ X k

inevitable, then
terminate the algorithm and set Xinevitable = ⋃

k X k
inevitable

else
k ← k + 1
goto COM

end if
The result of the proposed algorithm is the union of all computed one-step inevitable
sets, which might be non-convex. This fact makes the solution of the optimal control
problem challenging. Therefore, only the convex hull of the inevitable sets is con-
sidered in Section 6.1.2.1. The convex hull is computed using the Matlab toolbox
YALMIP [76].
We illustrate the result of the proposed algorithm by computing the inevitable col-

lision set for the following Cartesian robot

Example 6.1 The dynamics of 2-DOF Cartesian robot is given by

x(k+1) =

1 0.05 0 0
0 1 0 0
0 0 1 0.05
0 0 0 1

x(k)+

0 0

0.0031 0
0 0
0 0.0016

u(k), x ∈ R4, u ∈ R2. (6.13)

Additionally, we consider the state constraints (x1, x3) ∈ [0.5, 1]; (x2, x4) ∈ [−0.2, 0.2],
the input constraint u ∈ [−4, 4] and the extended obstacle is considered see Figure 6.4.

96

6.1 Obstacle avoidance in the framework of predictive control

Due to the decoupled dynamic system (6.13), the inevitable set of each link can be
computed separately. The result is depicted in Figure 6.5 for one link of the robot.

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=0

X Set

X ∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=1

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=2

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=3

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=4

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=5

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=6

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=7

X Set

X
k

inve.

X
k

inve.
∼ BU

0.4 0.6 0.8 1

0

0.5

1

x1

x
2

k=8

X Set

X
k

inve.

X
k

inve.
∼ BU

Figure 6.5: The recursive computation of the inevitable set for the link1 of the 2-DOF Carte-
sian robot for 8 steps. The blue sets correspond to the inevitable sets. The white-blue
sets represent the obstacle, and the gray sets are the Minkowski difference between the
input set and the inevitable set.

The decoupling of the dynamic system (6.13) allows us, furthermore, to investigate
the influence of the velocity constraints on the size of the inevitable set as depicted in
Figure 6.6.

0.4 0.6 0.8 1
−0.5

0

0.5

x1

x
2

(a)

0.4 0.6 0.8 1
-0.5

0

0.5

x1

x
2

(b)

Figure 6.6: (a) Convex hull of the inevitable set when x2 ∈ [−0.2, 0.2], and (b) Convex hull
of the inevitable set when x2 ∈ [−0.4, 0.4]

Figure 6.6 illustrates nicely that if the robot is allowed to move faster, the inevitable
set becomes larger.

97

6 Safety of Manipulation Processes

6.1.2.1 Collision free, recursively feasible MPC

As mentioned before, MPC solves at each sampling instance a finite horizon control
problem over a certain prediction horizon capture the time varying obstacle, the un-
certainties in the dynamic model, and the path constraints. To guarantee collision
avoidance, we propose to augment the system by the inevitable set as constraints, i.e.
for a linear system leading to

minu
N−1∑
k=0

Jk(x(k), u(k)) (6.14a)

s.t. x(k + 1) = Ax(k) +Bu(k), k = {0, 1, ..., N − 1} , (6.14b)
x(0) = x0, xk+1(N) ∈ Ω, (6.14c)
x(k) ∈ X , u(k) ∈ U , (6.14d)
x(k) /∈ Xinevitable. (6.14e)

The constraint (6.14c) force the robot to start at the initial state x(0) (position,
velocity) and to reach the target set Ω ⊆ Rn at terminal time N . (6.14d) represents
state and input constraints. Safety of the robot’s motion is guaranteed by (6.14e),
where Xinevitable denotes the set of points possibly occupied by obstacles at time k or
the points from which a collision cannot be avoided. Finally, Jk denotes a cost function
representing a performance measure whose sum is to be minimized.
To solve the resulting optimization problem, we propose to reformulate the collision

constraint (6.14e) as Mixed-Integer linear inequalities using the big-M method1 [98].
The resulting optimization problem becomes a mixed-integer linear program (MILP).

minu
N−1∑
k=0

Jk(x(k), u(k)) (6.15a)

s.t. x(k + 1) = Ax(k) +Bu(k), k = {0, 1, ..., N − 1} , (6.15b)
x(0) = x0, xk+1(N) ∈ Ω, (6.15c)
x(k) ∈ X , u(k) ∈ U , (6.15d)

M

z
w

 ≤ d, (6.15e)

z ∈ {0, 1}p1 , (6.15f)
w ∈ Rp2, (6.15g)

where M ∈ Rr×(p1+p2), p1 is the number of binary variables, while p2 is the number of
real state variables, and d ∈ Rr. The inequality (6.15e) represents the reformulation

1See Appendix B for the definition of big-M method

98

6.1 Obstacle avoidance in the framework of predictive control

of Xinevitable using the big-M method.

Summary
We presented solutions for the obstacle avoidance problem and the set of inevitable
initial states. Where, the latter is important to avoid an uncontrolled approach of
the robot to a handled object. Additionally, we illustrated the applicability of the
proposed solutions with examples. Then we included the resulting sets in the MPC
framework. In the following chapter, concluding remarks with future perspective are
given.

99

7 Conclusion and Future Perspectives

In this work, we designed a unified approach to handle path-following and force control
problems simultaneously using predictive-optimization based control techniques. The
proposed approach considers imposed constraints on states and inputs. Basically, we
expanded the structure of predictive path-following control by force control law as a
constraint inside the optimization problem. As shown, path-following allows to include
indirect-force control and achieves convergence to the desired force. The receding
horizon feature of the predictive scheme ensures a fast and stable convergence, since
the augmented dynamic model (i.e. includes system dynamics, timing law and desired
admittance) is used to predict the future evolution of the updated-path due to the
force effect. Furthermore, the force along normal, tangential, and bi-normal direction
with respect to the followed path, can be controlled by imposing desired admittance
dynamics along corresponding directions. The proposed approach is applicable for
free and constrained motion subject to known and unknown environments. It allows
to compensate delays due to the sensor communication as shown in the simulation and
experimental work.
The proposed approach is tested for different degrees of environmental stiffness.

Challenges of the approach are, the nontrivial tuning of the parameters of the NMPC
and the desired admittance dynamics, to account for effects of measurement delay
and state estimation. While, in general, it is preferable to use a fast sampling rate,
however, this leads to larger computation times which contradicts with the need for
real-time implementation. This problem, was overcome using a real-time iteration
algorithm with Gauss-Newton Hessian approximation.
It is important to avoid uncontrolled contact of the robot with the environment

during an interaction. To achieve this, we proposed an approach to determine the
set of initial conditions for which an uncontrolled collision occurs no matter which
input is applied. After computing this set, which excluded from the set of initial
states guarantees obstacle avoidance. To this end, we developed a set-based recursive
procedure to compute the inevitable set, calculating the so called backward reachable
set for one or multiple time steps. The derived methods can be used for a wide field of
applications, spanning from direct force feedback control to man-machine interaction,
robot-robot cooperative control.

100

7.1 Directions for Future Research

7.1 Directions for Future Research
The proposed approach allows solving the path-following and force-feedback problems
simultaneously while meeting the constraints on states and inputs. However, still
several challenges remain that leave room for further research. Here, we refer to some
challenges that can be considered in the future:

• Strictly proving stability and recursive feasibility.

• Testing the proposed approach on different robotics system with different tasks
to show the reliability of the solution.

• Using robust NMPC methods to tackle the uncertainties arising from inaccurate
models of the robot and the environment, or uncertain environment positions.

• Using adaptive admittance control methods to improve the performance of the
force feedback process and to cope with a mismatch in the environment model.
Furthermore, the tuning parameters problem of the admittance dynamics could
be performed optimization-based.

• Since many environments are inconsistent, i.e. it varies from soft to stiff or has a
rough surface, it is preferable to use online identification techniques to get good
fitting model of the environment.

101

Bibliography

[1] M. Abu-Ayyad and R. Dubay. Real-time comparison of a number of predictive
controllers. ISA Transactions, 46(3):411–418, 2007.

[2] V. Adetola and M. Guay. Nonlinear output feedback receding horizon control
of sampled data systems. In Proceedings of the American Control Conference,
volume 6, pages 4914–4919, 2003.

[3] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović. Path-following for nonmin-
imum phase systems removes performance limitations. IEEE Transactions on
Automatic Control, 50(2):234–239, 2005.

[4] A. P. Aguiar, J. P. Hespanha, et al. Trajectory-tracking and path-following of
underactuated autonomous vehicles with parametric modeling uncertainty. IEEE
Transactions on Automatic Control, 52(8):1362–1379, 2007.

[5] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotović. Performance limitations in
reference tracking and path following for nonlinear systems. Automatica, 44(3):
598–610, 2008.

[6] A. Albu-Schäffer and G. Hirzinger. Cartesian impedance control techniques
for torque controlled light-weight robots. In IEEE International Conference on
Robotics and Automation, Proceedings. ICRA’02, volume 1, pages 657–663, 2002.

[7] F. Allgöwer and A. Zheng. Nonlinear Model Predictive Control, volume 26.
Birkhäuser, 2012.

[8] R. J. Anderson. Dynamic damping control: Implementation issues and simu-
lation results. In IEEE International Conference on Robotics and Automation,
pages 68–77, 1990.

[9] R. J. Anderson and M. W. Spong. Hybrid impedance control of robotic manip-
ulators. IEEE Journal of Robotics and Automation, 4(5):549–556, 1988.

[10] S. Arimoto. Control Theory of Nonlinear Mechanical Systems. Oxford University
Press, Inc., 1996.

[11] A. Banaszuk and J. Hauser. Feedback linearization of transverse dynamics for
periodic orbits in r 3 with points of transverse controllability loss. Systems &
Control Letters, 26(3):185–193, 1995.

[12] L. F. Baptista and J. M. S. da Costa. Force and position control of robotic
manipulators: An experimental approach. In 6th IFAC Workshop on Algorithms
and Architectures for real-time Control, page 19, 2000.

102

Bibliography

[13] L. F. Baptista, J. M. Sousa, and J. M. G. Sá da Costa. Fuzzy predictive al-
gorithms applied to real-time force control. Control Engineering Practice, 9(4):
411–423, 2001.

[14] V. Bargsten. Implementation of a model-based control scheme for a robotic arm.
Master’s thesis, Otto von Guericke Universität Magdeburg, 2012.

[15] G. Bastian et al. Theory of Robot Control. Springer, Berlin, 1996.
[16] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex

feasibility problems. SIAM review, 38(3):367–426, 1996.
[17] R. Bellman. Dynamic programming and lagrange multipliers. Proceedings of the

National Academy of Sciences, 42(10):767–769, 1956.
[18] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.
[19] M. Buss, B. Hashimoto, and J. B. Moore. Dextrous hand grasping force opti-

mization. IEEE Transactions on Robotics and Automation, 12(3):406–418, 1996.
[20] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science &

Business Media, 2013.
[21] E. F. Camacho and C. Bordons. Nonlinear model predictive control: An in-

troductory review. In Assessment and Future Directions of Nonlinear Model
Predictive Control, pages 1–16. Springer, 2007.

[22] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predic-
tive control scheme with guaranteed stability. In European Control Conference
(ECC), pages 1421–1426. IEEE, 1997.

[23] S. Chiaverini and L. Sciavicco. The parallel approach to force/position control
of robotic manipulators. IEEE Transactions on Robotics and Automation, 9(4):
361–373, 1993.

[24] S. Chiaverini, B. Siciliano, and L. Villani. A survey of robot interaction control
schemes with experimental comparison. IEEE/ASME Transactions On Mecha-
tronics, 4(3):273–285, 1999.

[25] L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques. Path following for the
pvtol aircraft. Automatica, 46(8):1284–1296, 2010.

[26] O. Dahl and L. Nielsen. Torque-limited path following by online trajectory time
scaling. IEEE Transactions on Robotics and Automation, 6(5):554–561, 1990.

[27] K. De Oliveira, L. Simone, and M. Morari. Contractive model predictive control
for constrained nonlinear systems. IEEE Transactions on Automatic Control, 45
(6):1053–1071, 2000.

[28] C. C. de Wit, B. Siciliano, and G. Bastin. Theory of Robot Control. Springer
Science & Business Media, 1996.

[29] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.

103

Bibliography

Real-time optimization and nonlinear model predictive control of processes gov-
erned by differential-algebraic equations. Journal of Process Control, 12(4):577–
585, 2002.

[30] S. P. DiMaio, K. Hashtrudi-Zaad, and S. E. Salcudean. Optimal selection of
manipulator impedance for contact tasks. In IEEE International Conference on
Robotics and Automation, volume 5, pages 4795–4801, 2004.

[31] N. Diolaiti, C. Melchiorri, and S. Stramigioli. Contact impedance estimation for
robotic systems. IEEE Transactions on Robotics, 21(5):925–935, 2005.

[32] V. Duchaine, S. Bouchard, and C. M. Gosselin. Computationally efficient predic-
tive robot control. IEEE/ASME Transactions on Mechatronics, 12(5):570–578,
2007.

[33] D. Erol, V. Mallapragada, and N. Sarkar. Adaptable force control in robotic
rehabilitation. In IEEE International Workshop on Robot and Human Interactive
Communication ROMAN, pages 649–654, 2005.

[34] T. Faulwasser. Optimization-based solutions to constrained trajectory-tracking
and path-following problems. PhD thesis, Otto-von-Guericke-Universität Magde-
burg, 2013.

[35] T. Faulwasser and R. Findeisen. Nonlinear model predictive path-following con-
trol. In Nonlinear Model Predictive Control, pages 335–343. Springer, 2009.

[36] T. Faulwasser and R. Findeisen. Predictive path following without terminal con-
straints. In Proc. of 20th Int. Symposium on Mathematical Theory of Networks
and Systems (MTNS), 2012.

[37] T. Faulwasser, B. Kern, and R. Findeisen. Model predictive path-following for
constrained nonlinear systems. In Proceedings of the 48th IEEE Conference on
Decision and Control, held jointly with the 28th Chinese Control Conference.
CDC/CCC, pages 8642–8647, 2009.

[38] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen. Implementation of
nonlinear model predictive path-following control for an industrial robot. IEEE
Transactions on Control Systems Technology, 2016.

[39] G. Fernández. Predictive context-based adaptive compliance for interaction con-
trol of robot manipulators. PhD thesis, Bremen University, 2010.

[40] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. qpoases:
A parametric active-set algorithm for quadratic programming. Mathematical
Programming Computation, 6(4):327–363, 2014.

[41] R. Findeisen. Nonlinear model predictive control: a sampled data feedback per-
spective. PhD thesis, University of Stuttgart, 2006.

[42] R. Findeisen and F. Allgöwer. An introduction to nonlinear model predictive
control. In 21st Benelux Meeting on Systems and Control, volume 11, pages

104

Bibliography

119–141, 2002.
[43] R. Findeisen and F. Allgöwer. Computational delay in nonlinear model predictive

control. In In Proceedings of the International Symposium on Advanced Control
of Chemical Processes, ADCHEM’03, pages 427–432, 2004.

[44] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss. Output feedback stabi-
lization of constrained systems with nonlinear predictive control. International
Journal of Robust and Nonlinear Control, 13(3-4):211–227, 2003.

[45] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss. State and output feedback
nonlinear model predictive control: An overview. European Journal of Control,
9(2):190–206, 2003.

[46] S. Flixeder, T. Gluck, M. Bock, and A. Kugi. Combined path following and com-
pliance control with application to a biaxial gantry robot. In IEEE Conference
on Control Applications (CCA), pages 796–801, 2014.

[47] F.A.C.C. Fontes. Overview of nonlinear model predictive control schemes leading
to stability. 2000.

[48] F.A.C.C. Fontes. A general framework to design stabilizing nonlinear model
predictive controllers. Systems & Control Letters, 42(2):127–143, 2001.

[49] P. J. From, J. T. Gravdahl, T. Lillehagen, and P. Abbeel. Motion planning
and control of robotic manipulators on seaborne platforms. Control Engineering
Practice, 19(8):809–819, 2011.

[50] M. Fujiwara, Z. K. Nagy, J. W. Chew, and R. D. Braatz. First-principles and di-
rect design approaches for the control of pharmaceutical crystallization. Journal
of Process Control, 15(5):493–504, 2005.

[51] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and
practice survey. Automatica, 25(3):335–348, 1989.

[52] R. Ghaemi, S. Oh, and J. Sun. Path following of a model ship using model pre-
dictive control with experimental verification. In American Control Conference
(ACC), pages 5236–5241. IEEE, 2010.

[53] P. B. Goldsmith, B. A. Francis, and A. A. Goldenberg. Stability of hybrid
position/force control applied to manipulators with flexible joints. International
Journal of Robotics and Automation, 14(4):146–160, 1999.

[54] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Springer, 2011.
[55] J. P. Hespanha, P. V. Kokotović, et al. Path-following for nonminimum phase sys-

tems removes performance limitations. IEEE Transactions on Automatic Con-
trol, 50(2):234–239, 2005.

[56] A. Hladio, C. Nielsen, and D. Wang. Path following controller design for a class
of mechanical systems. In 18th World Congress of the International Federation
of Automatic Control, page 10, 2011.

105

Bibliography

[57] N. Hogan. Impedance control: An approach to manipulation: Part II-
Implementation. Journal of Dynamic Systems, Measurement, and Control, 107
(1):8–16, 1985.

[58] K. S. Holkar and L. M. Waghmare. An overview of model predictive control.
International Journal of Control and Automation, 3(4):47–63, 2010.

[59] B. Houska, H. J. Ferreau, and M. Diehl. Acado toolkit an open source framework
for automatic control and dynamic optimization. Optimal Control Applications
and Methods, 32(3):298–312, 2011.

[60] B. Houska, H. J. Ferreau, and M. Diehl. An auto-generated real-time iteration
algorithm for nonlinear mpc in the microsecond range. Automatica, 47(10):2279–
2285, 2011.

[61] L. Imsland, R. Findeisen, E. Bullinger, F. Allgöwer, and B. A. Foss. A note
on stability, robustness and performance of output feedback nonlinear model
predictive control. Journal of Process Control, 13(7):633–644, 2003.

[62] A. Isidori. Nonlinear Control Systems. Springer Science & Business Media, 1995.
[63] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and G. Sandini. Ap-

proximate optimal control for reaching and trajectory planning in a humanoid
robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1290–1296, 2010.

[64] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding-horizon control of
nonlinear systems. IEEE Transactions on Automatic Control, 46(5):776–783,
2001.

[65] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp. Reaching in clutter with
whole-arm tactile sensing. The International Journal of Robotics Research, 2013.

[66] S. Jung and T. C. Hsia. Neural network impedance force control of robot ma-
nipulator. IEEE Transactions on Industrial Electronics, 45(3):451–461, 1998.

[67] S. Jung, T. C. Hsia, and R. G. Bonitz. Force tracking impedance control of
robot manipulators under unknown environment. IEEE Transactions on Control
Systems Technology, 12(3):474–483, 2004.

[68] S. A. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a
general class of constrained discrete-time systems: Stability and moving-horizon
approximations. Journal of Optimization Theory and Applications, 57(2):265–
293, 1988.

[69] E. C. Kerrigan. Robust constraint satisfaction: Invariant sets and predictive
control. PhD thesis, Cambridge University, 2000.

[70] O. Khatib. A unified approach for motion and force control of robot manipu-
lators: The operational space formulation. IEEE Journal of Robotics and Au-
tomation, 3(1):43–53, 1987.

106

Bibliography

[71] M. D. Killpack, A. Kapusta, and C. C. Kemp. Model predictive control for fast
reaching in clutter. Autonomous Robots, pages 1–24, 2015.

[72] P. Kühl, M. Diehl, T. Kraus, J. P Schlöder, and H. G. Bock. A real-time
algorithm for moving horizon state and parameter estimation. Computers &
Chemical Engineering, 35(1):71–83, 2011.

[73] P. Kulchenko and E. Todorov. First-exit model predictive control of fast discon-
tinuous dynamics: Application to ball bouncing. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2144–2151, 2011.

[74] D. Lam, C. Manzie, and M. Good. Model predictive contouring control. In 49th
IEEE Conference on Decision and Control (CDC), pages 6137–6142, 2010.

[75] J. Liu, D. Muñoz de la Peña, P. D. Christofides, and J. F. Davis. Lyapunov-based
model predictive control of nonlinear systems subject to time-varying measure-
ment delays. International Journal of Adaptive Control and Signal Processing,
23(8):788–807, 2009.

[76] J. Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In
International Symposium on Computer Aided Control Systems Design, pages
284–289, 2004.

[77] W. S. Lu and Q. H. Meng. Impedance control with adaptation for robotic
manipulations. IEEE Transactions on Robotics and Automation, 7(3):408–415,
1991.

[78] Z. Lu and A. A. Goldenberg. Robust impedance control and force regulation:
Theory and experiments. The International Journal of Robotics Research, 14(3):
225–254, 1995.

[79] J. M. Maciejowski. Predictive Control: with Constraints. Pearson education,
2002.

[80] L. Magni, D. M. Raimondo, and F. Allgöwer. Nonlinear Model Predictive Con-
trol. Springer, 2009.

[81] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake. Stable dynamic walking
over uneven terrain. The International Journal of Robotics Research, 2011.

[82] M. Matinfar. Optimization-based robot compliance control: Geometric and lin-
ear quadratic approaches. The International Journal of Robotics Research, 24
(8):645–656, 2005.

[83] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.
IEEE Transactions on Automatic Control, 35(7):814–824, Jul 1990.

[84] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814,
2000.

[85] H. Michalska and D. Q. Mayne. Robust receding horizon control of constrained

107

Bibliography

nonlinear systems. IEEE Transactions on Automatic Control, 38(11):1623–1633,
1993.

[86] M. Morari and J. H. Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23(4):667–682, 1999.

[87] L. Moreira, T. I. Fossen, and C. G. Soares. Path following control system for a
tanker ship model. Ocean Engineering, 34(14):2074–2085, 2007.

[88] C. Nielsen and M. Maggiore. Maneuver regulation via transverse feedback lin-
earization: Theory and examples. In Proceedings of the IFAC Symposium on
Nonlinear Control Systems (NOLCOS), Stuttgart, Germany, pages 59–66, 2004.

[89] C. Nielsen, C. Fulford, and M. Maggiore. Path following using transverse feed-
back linearization: Application to a maglev positioning system. Automatica, 46
(3):585–590, 2010.

[90] H. Nijmeijer and V. D. Schaft. Nonlinear dynamical control systems. Springer-
Verlag New York, 1990.

[91] C. Pasluosta, H. Tims, and L. Chiu. Slippage sensory feedback and nonlin-
ear force control system for a low-cost prosthetic hand. American Journal of
Biomedical Sciences, 1(4):295–302, 2009.

[92] A. A. Patwardhan, J. B. Rawlings, and T. F. Edgar. Nonlinear model predictive
control. Chemical Engineering Communications, 87(1):123–141, 1990.

[93] E. Polak and T. Yang. Moving horizon control of linear systems with input
saturation and plant uncertainty part 1. robustness. International Journal of
Control, 58(3):613–638, 1993.

[94] R. De J. Portillo-velez, A. Rodriguez-angeles, and C. A. Cruz-villar.
Optimization-based reactive force control for robot grasping tasks. pages 186–
191, 2012.

[95] R. De J. Portillo-Vélez, A. Rodriguez-Angeles, and C. A. Cruz-Villar. An
optimization-based impedance approach for robot force regulation with pre-
scribed force limits. Mathematical Problems in Engineering, 2015.

[96] S. J. Qin and T. A. Badgwell. An overview of nonlinear model predictive control
applications. In Nonlinear Model Predictive Control, pages 369–392. Springer,
2000.

[97] J. Richalet. Industrial applications of model based predictive control. Automat-
ica, 29(5):1251–1274, 1993.

[98] A. Richards and J. How. Mixed-integer programming for control. In Proceedings
of the American Control Conference, pages 2676–2683, 2005.

[99] A. Richards and J. How. Mixed-integer programming for control. In IEEE
Proceedings of the American Control Conference, pages 2676–2683, 2005.

108

Bibliography

[100] B. J. P. Roset, M. Lazar, W. P. M. H Heemels, and H. Nijmeijer. A stabilizing
output based nonlinear model predictive control. page 4627–4632, 2006.

[101] P. Rumschinski, S. Borchers, S. Bosio, R. Weismantel, and R. Findeisen. Set-base
dynamical parameter estimation and model invalidation for biochemical reaction
networks. BMC Systems Biology, 4(1):69, 2010.

[102] R. J. Schilling. Fundamentals of Robotics: Analysis and Control. Simon &
Schuster Trade, 1st edition, 1996.

[103] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming
for multi-vehicle path planning. In Proceedings of European Control Conference,
pages 2603–2608, 2001.

[104] G. Schreiber, A. Stemmer, and R. Bischoff. The fast research interface for the
kuka lightweight robot. In IEEE Workshop on Innovative Robot Control Ar-
chitectures for Demanding (Research) Applications How to Modify and Enhance
Commercial Controllers (ICRA), pages 15–21. Citeseer, 2010.

[105] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model pre-
dictive control (feasibility implies stability). IEEE Transactions on Automatic
Control, 44(3):648–654, 1999.

[106] H. Seraji and R. Colbaugh. Adaptive force-based impedance control. In In-
ternational Conference on Intelligent Robots and Systems Proceedings of the
IEEE/RSJ, volume 3, pages 1537–1544, 1993.

[107] H. Seraji and R. Colbaugh. Force tracking in impedance control. In IEEE
International Conference on Robotics and Automation, pages 499–506, 1993.

[108] H. Seraji and R. Colbaugh. Force tracking in impedance control. The Interna-
tional Journal of Robotics Research, 16(1):97–117, 1997.

[109] K. G. Shin and N. D. McKay. Minimum-time control of robotic manipulators
with geometric path constraints. IEEE Transactions on Automatic Control, 30
(6):531–541, 1985.

[110] B. Siciliano and L. Villani. Robot Force Control, volume 540. Springer Science
& Business Media, 2012.

[111] R. Skjetne, T. I. Fossen, and P. V. Kokotović. Robust output maneuvering for
a class of nonlinear systems. Automatica, 40(3):373–383, 2004.

[112] P. Slaets, J. Rutgeerts, K. Gadeyne, T. Lefebvre, H. Bruyninckx, and
J. De Schutter. Construction of a geometric 3-d model from sensor measure-
ments collected during compliant motion. In Experimental Robotics IX, pages
571–580. Springer, 2006.

[113] J. J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal path-
following algorithms. IEEE Transactions on Robotics and Automation, 5(1):
118–124, 1989.

109

Bibliography

[114] S. Streif, A. Savchenko, P. Rumschinski, S. Borchers, and R. Findeisen. Ad-
mit: A toolbox for guaranteed model invalidation, estimation and qualitative–
quantitative modeling. Bioinformatics, 28(9):1290–1291, 2012.

[115] D. Surdilovic and J. Kirchhof. A new position based force/impedance control for
industrial robots. In IEEE International Conference on Robotics and Automa-
tion, volume 1, pages 629–634, 1996.

[116] M. Sznaier, R. Suárez, and J. Cloutier. Suboptimal control of constrained non-
linear systems via receding horizon constrained control lyapunov functions. In-
ternational Journal of Robust and Nonlinear Control, 13(3-4):247–259, 2003.

[117] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4906–4913, 2012.

[118] Barrett Technology. The Barrett 6-Axis Force/Torque Sensor, (accessed May 23,
2016). URL http://www.barrett.com.

[119] G. Tonietti, R. Schiavi, and A. Bicchi. Optimal mechanical/control design for
safe and fast robotics. In Experimental Robotics IX, pages 311–320. Springer,
2006.

[120] F. Towhidkhah, R. E. Gander, and H. C. Wood. Model predictive impedance
control: A model for joint movement. Journal of Motor Behavior, 29(3):209–222,
1997.

[121] L. Villani and J. De Schutter. Force Control. Springer, 2008.
[122] R. Volpe and P. Khosla. The equivalence of second-order impedance control and

proportional gain explicit force control. The International Journal of Robotics
Research, 14(6):574–589, 1995.

[123] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl. Auto-generated
algorithms for nonlinear model predictive control on long and on short horizons.
In IEEE 52nd Annual Conference on Decision and Control (CDC), pages 5113–
5118, 2013.

[124] P. B. Wieber. Trajectory free linear model predictive control for stable walking in
the presence of strong perturbations. In 6th IEEE-RAS International Conference
on Humanoid Robots, pages 137–142, 2006.

[125] T. Winiarski and A. Woźniak. Indirect force control development procedure.
Robotica, 31(03):465–478, 2013.

[126] B. Yao and M. Tomizuka. Robust adaptive constrained motion and force control
of manipulators with guaranteed transient performance. In IEEE International
Conference on Robotics and Automation, volume 1, pages 893–898, 1995.

[127] S. Yu, X. Li, H. Chen, and F. Allgöwer. Nonlinear model predictive control for
path following problems. In Nonlinear Model Predictive Control, volume 4, pages

110

http://www.barrett.com

Bibliography

145–150, 2012.
[128] G. Zeng and A. Hemami. An overview of robot force control. Robotica, 15(05):

473–482, 1997.

111

A Mathematical definitions

Definition A.1 (Positive Definite Matrix)
A square, n × n symmetric matrix A is positive definite if, for all non-zero column
vector x ∈ Rn

xTAx > 0. (A.1)

Definition A.2 (Semi-Positive Definite Matrix)
A is called positive-semidefinite (or nonnegative-definite) if, for all column vector x ∈
Rn

xTAx ≥ 0. (A.2)

Definition A.3 (Negative Definite Matrix)
A matrix A is said to be negative-definite if, for all non-zero column vector x ∈ Rn

xTAx < 0. (A.3)

While it is called negative-semidefinite if, for all column vector x ∈ Rn

xTAx ≤ 0. (A.4)

Definition A.4 (K-function)
A continuous function α ∈ [0, a)→ [0,∞) is of class K if it is strictly increasing and
α(0) = 0. It belongs to K∞ if a =∞ ∧ α(r)→∞ when r →∞.

Definition A.5 (L-function)
A continuous function β ∈ [0,∞)→ [0,∞) is of class L if it is monotonically decreas-
ing and limt→∞ β(t) = 0.

Definition A.6 (KL-function)
A function is class K with respect to the first argument and is class L with respect to
the second argument belongs to class KL.

Definition A.7 (Submanifolds) Suppose that F : N →M be a smooth mapping of
manifolds [62]:

1. F is an immersion if rank(F) = dim(N) for all x ∈ N ,

112

2. F is an univalent immersion if F is an immersion and is injective,

3. F is an embedding if F is an univalent immersion and the topology induced on
F (N) by the one of N coincides with the topology of F (N) as a subset of M .

Theorem A.1 (Stability of sampled-data NMPC) [45]
Suppose that
(a) the terminal region Ω ⊆ X is closed with 0 ∈ Ω and that the terminal penalty
E(x) ∈ C1 is positive semi-definite,
(b) the terminal region and terminal penalty term are chosen such that ∀x ∈ Ω there
exists an admissible input uΩ : [0, δ]→ U such that x(τ) ∈ Ω ∀τ ∈ [0, δ] and

∂E

∂x
f(x(τ), uΩ(τ)) + L(x(τ), uΩ(τ)) ≤ 0, ∀τ ∈ [0, δ] (A.5)

(c) the NMPC open-loop optimal control problem is feasible at t = 0.
Then in the closed-loop system (2.1a) with (2.5) limt→∞ x(t) = 0, and the region of
attraction < consists of the states for which an admissible input exists.

Proof The detailed proof see [45].

Theorem A.2 (Sufficient condition of local unconstrained path followabil-
ity [34])
Consider system (2.21), a path P (2.22) and Assumptions 2.4−2.6 hold. Suppose
Φ : X0 × X̂ 7→ Rn × Rr̂+1 is a local diffeomorphism mapping to a transverse normal
form, and Γ, X̂ are defined in (2.35) and (2.27).
Then for any (x0, x̂0) ∈ X0 × X̂ with

Φ(x0, x̂0) ∈ Γ and x̂0 ∈ intX̂ , (A.6)

the path P is locally exactly followable by system (2.21) s.t. θ̇ > 0 holds.

Proof The detailed proof is given in [34].

113

B Big-M Method

As an example consider a rectangular object within a two-dimensional workspace. To
guarantee obstacle avoidance, at least one of the following constraints must be satisfied,
see Figure B.1.

x ≤ xmin (B.1a)
x ≥ xmax (B.1b)
y ≤ ymin (B.1c)
y ≥ ymax (B.1d)

Figure B.1: Simple example for obstacle avoidance.

Since at least one constraint is required to be satisfied at all times, up to three
constraints can be relaxed at any time. These modified constraints take the following
form (bi are binary variables, M is a constant) [99].

x ≤ xmin +Mb1, (B.2a)
−x ≤ xmax +Mb2, (B.2b)
y ≤ ymin +Mb3, (B.2c)
−y ≤ ymax +Mb4, (B.2d)

4∑
i=1
bi ≤ 3 (B.2e)

114

It is important that M is chosen to be larger than the object, so that when an
individual constraint is relaxed, it makes the entire workspace available [99]. Such
integer constraints can be easily integrated into predictive control approaches, leading
to mixed integer MPC formulations of obstacle avoidance. However, these methods do
not in general guarantee repeated feasibility, especially for insufficiently long prediction
horizons, i.e. if the controller cannot look around the obstacle.

115

C Tables

Table C.1: Denavit-Hartenberg parameters of KUKA LWR IV [14]

Joint a [m] d [m] α [rad]
1 0 0.31 π/2
2 0 0 −π/2
3 0 0.4 −π/2
4 0 0 π/2
5 0 0.39 π/2
6 0 0.078 −π/2
7 0 0 0

Table C.2: Comparison among different environments

Parameter name Path-following and Force Control
Length of horizon N 30 [ms]
Sampling period δ 3 [ms]
No. of iterations per N 10
W = diag(w1, w2, w3) w1 = 5× 1010, w2 = 5× 1010, w3 = 10
R = diag(r1, r2, r3) r1 = 0.5, r2 = 0.5, r3 = 1× 10−4

X = [x, x];x = −x = −(q2, q4, q̇2, q̇4)T q2 = q4 = 2.09 [rad]; q̇2 = 0.5 [rad/s],
q̇4 = 0.5 [rad/s]

U = [u, u], u = −u = −(τ e2, τ e4)T τ e2 = 6 [Nm], τ e4 = 3 [Nm]
x̂2 0 ≤ x̂2 ≤ 0.4
Û = [û, û], û = 10, û = −10
m 2 [kg] for ke ∈ [1000− 10000] and 1 [kg]

for ke ∈ [50000− 500000]
b 6.5

√
kem [N.s/m]

kd 0 [N/m]
Circular-path: rc = 0.1, y1c = 0.4, y2c = 0.55

116

Table C.3: Parameters of simulation studies

Parameter name Path-following Path-following
and Force
Control

Length of horizon N 30 [ms] 30 [ms]
Sampling period δ 3 [ms] 3 [ms]
No. of iterations per one horizon 10 10
W = diag(w1, w2, w3) w1 = 5× 108, w2 =

5× 108, w3 = 10
w1 = 5× 1010, w2 =

5× 1010, w3 = 10
R = diag(r1, r2, r3) r1 = 0.5, r2 =

0.5, r3 = 1× 10−4
r1 = 0.5, r2 =

0.5, r3 = 1× 10−4

X = [x, x];x = −x = −(q2, q4, q̇2, q̇4)T q2 = q4 = 2.09 [rad];
q̇2 = 0.5 [rad/s],
q̇4 = 0.5 [rad/s]

q2 = q4 = 2.09 [rad];
q̇2 = 0.5 [rad/s],
q̇4 = 0.5 [rad/s]

U = [u, u], u = −u = −(τ e1, τ e2)T τ e2 = 6 [Nm],
τ e4 = 3 [Nm]

τ e2 = 6 [Nm],
τ e4 = 3 [Nm]

θ̇ 0 ≤ θ̇ ≤ 0.4 0 ≤ θ̇ ≤ 0.4
Û = [û, û], û = −û û = 10 û = 10
Md − 1 [kg]
Bd − 6.5

√
kem [N.s/m]

Kd − 0 [N/m]
Sine-path: a = 0.01,

y01 = 0.45, y02 = 0.4
; yf1 = 0.45, yf2 =

0.55

a = 0.01,
y01 = 0.45, y02 = 0.4
; yf1 = 0.45, yf2 =

0.55
Circular-path: rc = 0.1,

y1c = 0.4, y2c = 0.55
rc = 0.1,

y1c = 0.4, y2c = 0.55

117

C Tables

Table C.4: Parameters of the Experimental work

Parameter name Nominal
admittance

Zero-stiffness
admittance

Length of horizon N 100 [ms] 100 [ms]
Sampling period δ 10 [ms] 10 [ms]
No. of iterations per one horizon 10 10
W = diag(w1, w2, w3) w1 = 4× 107, w2 =

4×107, w3 = 3×105
w1 = 7× 107, w2 =

7×107, w3 = 3×105

R = diag(r1, r2, r3) r1 = 5, r2 = 5, r3 =
10−6

r1 = 5, r2 = 5, r3 =
10−6

X = [x, x];x = −x = −(q2, q4, q̇2, q̇4)T q2 = q4 = 2.09 [rad];
q̇2 = 0.5 [rad/s],
q̇4 = 0.5 [rad/s]

q2 = q4 = 2.09 [rad];
q̇2 = 0.5 [rad/s],
q̇4 = 0.5 [rad/s]

U = [u, u], u = −u = −(τ e2, τ e4)T τ e2 = 10 [Nm],
τ e4 = 6 [Nm]

τ e2 = 6 [Nm],
τ e4 = 6 [Nm]

x̂2 −10−14 ≤ x̂2 ≤ 0.1 −10−14 ≤ x̂2 ≤
0.05

Û = [û, û], û = 0.05, û = −10 û = 0.05, û = −10
Md 1 [kg] 0.5
Bd 500 [N.s/m] 500[N.s/m]
Kd 5000 [N/m] 0
Ke 1000 [N/m] −
Circular-path: rc = 0.1, y1c =

0.6915, y2c = 0.4278
rc = 0.1, y1c =

0.6915, y2c = 0.4278

118

D The second and third parts of the proof of
theorem 2.1

Before start second part of the proof, which is required that for any x(ti) ∈c1 x̂(ti) ∈ ψc2

after convergence of the observer. Based on Assumption 2.8 there always can find
observer parameters such that after δmaxkobs the observer error will be smaller than
any desired emax. If we need that

αV (emax) ≤ c2 − c1 (D.1)

It is ensured that x̂(ti) ∈ ψc2 if x(ti) ∈ ψc1.

Second part: (decrease of the value function after the convergence of the observer
and finite time convergence of ψa/2): it is assumed that x(ti) ∈ ψc1 and for simplicity,
ux̂ represents the optimal input resulting from x̂(ti) and ux for the input resulting form
the real state x(ti). Also, xi = x(ti) and x̂i = x̂(ti). According on the first part of the
proof, when xi ∈ ψc1 implies that x̂i ∈ ψc2 and

x(τ) ∈c, x(τ ; x̂i, ux̂) ∈ ψ, x(τ ; xi, ux̂) ∈ ψc∀τ ∈ [ti, ti+1).

Based on these conditions the following equality is valid:

V (x(τ ;xi, ux̂))− V (xi) = V (x(τ ;xi, ux̂))− V (x(τ ; x̂i, ux̂)) + V (x(τ ; x̂i, ux̂))
−V (x̂i) + V (x̂i)− V (xi).

(D.2)

It can bound the last two terms since V is uniformly continuous in compact subsets
of < ⊃ ψc. As well as, the third and fourth term start from the same x̂i, and the first
term can be bound by αV :

V (x(τ ;xi, ux̂))−V (xi) ≤ αV (eLfx(τ−ti) ‖x̂i − xi‖)−
∫ τ

ti
F (x(s; x̂i, ux̂)) ds+αV (‖x̂i − xi‖).

(D.3)
Where, the Gronwall-Bellman lemma is used to set the upper bound for
‖x(τ ;xi, ux̂)− x(τ ; x̂i, ux̂)‖
Now, assuming that xi /∈ ψa/2 and that

αV (emax) ≤
α

4 , (D.4)

119

D The second and third parts of the proof of theorem 2.1

then it implies that x̂i /∈ ψa/4. Thus we get from (??)onsidering Fact 1 that

V (x(δ;xi, ux̂))−V (xi) ≤ −Vmin

(
c,
α

4 , δ
)

+αV
(
eLfxδ ‖x̂i − xi‖

)
+αV (‖x̂i − xi‖). (D.5)

The right-hand side needs to be less than zero to guarantee the decreasing of x from
sampling time to sampling time through the level sets, and to converge to the set ψa/2
within finite time. To achieve this, it is required that the observer parameters are
designed such that:

αV
(
eLfxδ ‖x̂i − xi‖

)
+αV (‖x̂i − xi‖)−Vmin

(
c,
α

4 , δ
)
≤ −Vmin

(
c,
α

4 , δ
)

+1
2Vmin

(
c,
α

4 , δ
)
.

(D.6)
If we choose the observer parameters as follows:

αV
(
eLfxδemax

)
+ αV (emax) ≤ 1

2Vmin

(
c,
α

4 , δ
)

and αV (emax) ≤ α

4 (D.7)

the finite time convergence can be achieved starting from any point in ψb to the set ψa/2.

Third part: (x(ti+1) ∈ ψa∀x(ti) ∈ ψa/2): If x(ti) ∈ ψa/2 equation (D.3) is still
fulfilled. Ignoring the integral part on the right we get:

V (x(τ ;xi, ux̂))− V (xi) ≤ αV (eLfx(τ−ti) ‖x̂i − xi‖) + αV (‖x̂i − xi‖). (D.8)

Assuming that
αV

(
eLfxδemax

)
+ αV (emax) ≤ α

2 . (D.9)

Then x(ti+1) ∈ ψa∀x(ti) ∈ ψa/2. By gathering all last three steps, we get the theorem
if

δmax ≤ min
{
tb−c1/kobs, tc2−c

}
. (D.10)

and the observer error emax is chosen such that:

αV
(
eLfxδemax

)
+ αV (emax) ≤ min

{1
2Vmni

(
c,
α

4 , δ
)
,
α

4

}
. (D.11)

120

	Abstract
	Deutsche Kurzfassung
	List of abbreviations and symbols
	Introduction
	Overview of Path-following with Force Feedback
	Path-following and Force-feedback Based-on Predictive Control
	Contributions
	Thesis Outline

	Review of Nonlinear Model Predictive Path Following Control
	Principle of Model Predictive Control
	Mathematical Setup
	Sampled-data Realization
	Stability
	Control Problems Handled By Nonlinear Model Predictive Controller

	Nonlinear Model Predictive Path-following Controller
	Predictive Path-following in the State-space
	Predictive Path-following in The Output-space
	Exact Followabililty Conditions

	Challenges
	State-estimation
	Measurement and Computational Delays

	Force Feedback Basics
	Introduction
	Impedance-based Force-Feedback Control
	Task space dynamic model
	Computed-torque control
	Implementation challenges of impedance-based control

	Admittance-based Force-Feedback Control
	Environment Modeling
	Choosing Parameters Based-on The Duality Principle
	Optimization-based Force-Feedback Control
	 Predictive Force Feedback Control

	A Unified Approach for Path-following and Force-feedback
	Combined Path-following and Force Control Based-on Feedback Linearization
	Predictive Path-Following Force-Feedback Control in The Output-space
	Extension Towards Admittance Force Control

	Validation
	Simulation Experiment
	Modeling of Robot Dynamics and Desired Admittance
	Nominal Simulations
	Non-nominal Simulations

	Experimental Validation
	Estimation of unmeasured states
	Environmental parameters

	Discussion

	Safety of Manipulation Processes
	Obstacle avoidance in the framework of predictive control
	Computation of the unreachable set
	Computation of the inevitable set

	Conclusion and Future Perspectives
	Directions for Future Research

	Bibliography
	Appendix Mathematical definitions
	Appendix Big-M Method
	Appendix Tables
	Appendix The second and third parts of the proof of theorem 2.1

