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Abstract

Aim: To assess the range size patterns of ferns and lycophytes along elevational gra-
dients at different latitudes in an ecographical transition zone and search for predic-
tors of range size from a set of environmental factors.

Location: Mexico, from 15° to 23° N.

Taxon: Ferns and lycophytes.

Methods: All terrestrial and epiphytic species were recorded in 658 plots of 400 m?
along eight elevational gradients. To test whether the range size within assemblages in-
creases with elevation and latitude, we calculated the latitudinal range using the north-
ern and southern limits of each species and averaged the latitudinal range of all species
within assemblages weighted by their abundances. We related climatic factors and the
changes with latitude and elevation with range size using linear mixed-effects models.
Results: Species richness per plot increased with elevation up to about 1,500-
2,000 m, with strong differences in overall species richness between transects and
a reduction with increasing latitude. The mean weighted range size of species within
assemblages declined with elevation, and increased with latitude, as predicted by
theory. However, we also found marked differences between the Atlantic and Pacific
slopes of Mexico, as well as low range size in humid regions. The best models de-
scribed about 76%-80% of the variability in range size and included the seasonality
in both temperature and precipitation, and annual cloud cover.

Main conclusion: Latitudinal and elevational patterns of range size in fern assemblages
are driven by an interplay of factors favouring wide-ranging species (higher latitudes with
increasing temperature seasonality; dryer habitat conditions) and those favouring spe-
cies with restricted ranges (higher elevations; humid habitat conditions), with additional
variation introduced by the specific conditions of individual mountain ranges. Climatically
stable, humid habitats apparently provide favourable conditions for small-ranged fern

species, and should accordingly be given high priority in regional conservation planning.
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1 | INTRODUCTION

One of the most striking patterns in nature is the enormous variation
of range sizes of species, ranging from species which occur only in a
few square meters to others that are found across the entire globe
(Brown, Stevens, & Kaufman, 1996; Gaston, 1998). This variation is
not random, but shows distinct patterns related to environmental
and geographical conditions as well as the evolutionary history and
ecological requirements of the taxa (Kreft, Jetz, Mutke, & Barthlott,
2010; Lomolino, Riddle, Brown, & Brown, 2006; Smith, 1993).
Accordingly, a number of ecogeographical rules have been devel-
oped to capture these relationships.

One of these rules is Rapoport's rule (RR), which proposes that the
latitudinal range size of species is greater at higher latitudes, and that
tropical species tend to have smaller ranges allowing more species to
coexist in tropical versus temperate regions (Stevens, 1989). Originally
conceived for latitudinal gradients, the idea that range sizes may be
determined by climatic seasonality was later extended to elevational
gradients as well (Stevens, 1992, climatic variability hypothesis). While
these patterns have been documented for a wide range of taxa in
many regions (Addo-Bediako, Chown, & Gaston, 2000: insects; Ribas
& Schoereder, 2006: many groups; Morin & Lechowicz, 2011: trees;
Pintor, Schwarzkopf, & Krockenberger, 2015: lizards; TomasSovych
et al., 2016: birds and marine bivalves), there are also a good number of
studies, mainly along elevational gradients in animals but also in plants,
that do not corroborate the rule or even reporting a reverse pattern
or mixed results suggesting that it varies between taxa and continents
(Bhattarai & Veetas, 2006; Pintor et al., 2015; Ribas & Schoereder,
2006; Rohde & Heap, 1996; Rohde, Heap, & Heap, 1993; Ruggiero,
1994; Zhou et al., 2019). Support for the rule is also scarce in the trop-
ics (Blackburn & Gaston, 1996; Rhode, 1996).

Even if a pattern of range size distribution accords to RR, there are
a number of complications in understanding the underlying processes.
The classic assumption is that temperature conditions are more sea-
sonal at higher latitudes (Stevens, 1989, 1992). When species adapt to
these conditions, they widen their niche breadth (tolerance breadth;
Slatyer, Hirst, & Sexton, 2013; Stevens, 1992) and thus attain wider
geographical ranges. However, the spatial distribution of climatic con-
ditions may vary with latitude or elevation so that even if species have
constant niche breadths, this will result in different range size pat-
terns. Furthermore, the classical interpretation of RR focusses only on
temperature seasonality, even though seasonal variations in humidity
may be equally important for explaining the range size distributions
(Gaston & Chown, 1999; Pintor et al., 2015). Especially in the tropics,
where there is little seasonal variation in temperatures, variations in
precipitation patterns may play an important role. Finally, latitudinal
and elevational climatic gradients, while sharing many similarities, also

have crucial differences. For instance, elevational ranges (amplitudes)

of species typically increase with elevation (Janzen, 1967; Kessler,
2001; McCain, 2009; Sklenar & Jgrgensen, 1999; Stevens, 1989,
1992), which would support RR. However, geographical range sizes
(total area) on average decrease with an increase in elevation (Kessler,
2000, 2002, 2010; Kessler & Kluge, 2008; Steinbauer et al., 2016). One
explanation is that rugged mountainous terrain habitats with patchy
distributions (‘'sky islands’) support fragmented species populations
that are more prone to speciation than species inhabiting extensive
habitats without geographical barriers (Antonelli, Nylander, Persson,
& Sanmartin, 2009; Kessler, 2001; Kruckeberg & Rabinovitz, 1985;
McCormack, Huang, Knowles, Gillespie, & Clague, 2009). Besides,
past climatic fluctuations determining the connectivity between sky
islands may be an important driver of diversification by leading to suc-
cessive cycles of population expansion and fragmentation (‘flickering
connectivity systems’; Flantua & Hooghiemstra, 2018; Flantua, O'dea,
Onstein, Giraldo, & Hooghiemstra, 2019). Clearly, understanding the
spatial variation of species range sizes along latitudinal or elevational
gradients requires more detailed understanding than suggested by the
conceptually simply RR.

Thus, putting species range sizes into a broader context, range
sizes are influenced by a wide range of geographical and evolution-
ary factors. For instance, species with restricted range sizes are often
found in localized habitats, either geographically such as on oceanic
islands or environmentally, such as on specialized geological sub-
strates (Carlquist, 1974; Kier et al., 2009; Kruckeberg & Rabinovitz,
1985; Major, 1988). In addition, the geological and evolutionary his-
tory of a region also plays an important role in determining current
species distributions (Brown et al., 1996; Lomolino et al., 2006). For
example, Mexico is exceptionally rich in endemic species in numerous
taxonomic groups, which is related to its high geological and environ-
mental heterogeneity (Brummitt, Aletrari, Syfert, & Mulligan, 2016;
Myers, Mittermeier, Mittermeier, Fonseca, & Kent, 2000; Rzedowski,
1962, 2006; Tryon, 1972). In particular, dry forest and desert areas are
characterized by high endemism and super-endemism (high levels of
neo- and paleo-endemics; Sosa & De Nova, 2012; Sosa, De-Nova, &
Vasquez-Cruz, 2018). Accordingly, the arid Pacific side of the country is
a centre of endemism for many groups of plants and animals, presum-
ably due to the long-term environmental stability of the region (Lott &
Atkinson, 2006; Rzedowski, 2006). To a lesser degree, endemism has
also been associated with humid forests, which in Mexico are distrib-
uted as habitat islands forming an intracontinental habitat archipelago
(Llorente-Bousquets, Escalante-Pliego, Darwin, & Welden, 1992).

Determining the causes of the geographical distribution of range
sizes is important in a conservational context because a small range
size is one of the main predictors of extinction risk of species (Purvis,
Gittleman, Cowlishaw, & Mace, 2000). In this sense, the current avail-
ability of large databases of species distributions and occurrence re-

cords offers outstanding opportunities to document and understand
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range size patterns and other large-scale patterns of biodiversity
across geographical and environmental gradients. Nevertheless, many
biases have been detected in large data banks, such as gaps in the
available information, uncertainties in species identification/taxon-
omy and distributional information, errors in occurrence coordinates,
and incomplete species richness for poorly explored regions (Meyer,
2016; Meyer, Weigelt, & Kreft, 2016; Qian et al., 2018). Yet, the im-
provement of these databases in the last years, and their careful and
critical use, depending on the study objectives and region, make them
an important tool in macroecology and biogeography.

Ferns and lycophytes (hereafter jointly referred as ‘ferns’ for sim-
plicity) are taxonomically well-studied and well-suited groups to in-
vestigate biogeographical questions because of their spore dispersal
(wind-borne), which makes them largely independent from biotic dis-
persal agents (Barrington, 1993), and thus links patterns of range sizes
and endemism mainly to abiotic factors. Additionally, ferns are a mod-
erately species-rich group, still manageable to handle when seeking to
conduct a full census within a study area, but diverse enough to show
a wide range of range size patterns and to allow for quantitative anal-
yses. With more than 1,088 recorded species (J. D. Tejero-Diez, pers.
com., 2019), they are well represented in Mexico, which has one of
the best-documented fern floras in the world (Mickel & Smith, 2004).
Generally speaking, ferns are physiologically more limited by drought
and low temperatures than angiosperms (Brodribb & McAdam, 2011;
Brodribb, McAdam, Jordan, & Field, 2009) so that their diversity de-
clines more steeply towards arid and cold climatic conditions (Kreft
et al., 2010). As a result, fern diversity peaks in tropical montane cloud
forests and declines towards lower and higher elevations and higher lat-
itudes (Kessler, Kluge, Hemp, & Ohlemidiller, 2011; Khine, Kluge, Kessler,
Miehe, & Karger, 2019; Salazar et al., 2015).

Little is known about the distribution of range sizes in ferns. In
Costa Rica, Bolivia and Kenia (Kessler, 2001; Kluge & Kessler, 2006;
Zhou et al., 2019), fern ranges tend to decrease with elevation, but
the latitudinal patterns and the relationship to climatic factors remain
unexplored. Nevertheless, considering that fern diversity peaks in the
most humid habitats, and that such very wet habitats have a local-
ized and patchy distribution (Killeen, Douglas, Consiglio, Jargensen, &
Mejia, 2007; Llorente-Bousquets et al., 1992; Sanginés-Franco et al.,
2015), it seems reasonable to expected that fern species adapted to
such conditions have similarly localized and patchy ranges.

In this study, we explored the patterns of latitudinal range size of
ferns along eight elevational gradients located at different latitudes in
the Mexican transition zone from the tropics (south of Mexico) to the
subtropics (30 km south of the Tropic Cancer Line), which is considered
a global biodiversity hotspot (Myers et al., 2000) and a centre of fern en-
demism (Brummitt et al., 2016). We asked whether mean range sizes of
fern assemblages vary with latitude and elevation, specifically hypoth-
esizing that mean range sizes increase with latitude as Rapoport's rule
proposes (H1) and decrease with elevation (H2). We further hypoth-
esized that mean range sizes increase with increasing environmental
stress factors such as low temperature, precipitation, humidity and high
climatic seasonality (H3a). Conversely, we predict that mean range sizes

decrease with increasing humidity due to the water dependency of the
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study group, related to the geographical fragmentation of environmen-
tally suitable areas for specialized ferns (H3b).

2 | MATERIALS AND METHODS
2.1 | Study area

The Mexican transition zone is the complex area where the
Neotropical and Nearctic biotas overlap, and in a strict sense corre-
sponds to the mountain highlands of Mexico, Guatemala, El Salvador
and Nicaragua (Halffter & Morrone, 2017). We here present data
from eight elevational gradients at a range of O to 3,500 m elevation
at 15-23° latitude N on both the Pacific and Atlantic (Gulf of Mexico)
sides of Mexico (Figure 1; Table S4). Three transects have been con-
sidered in previous studies: Los Tuxtlas (Acebey, Krémer, & Kessler,
2017; Kromer, Acebey, Kluge, & Kessler, 2013), Perote (Carvajal-
Hernandez & Kromer, 2015; Carvajal-Hernandez, Krémer, Lépez-
Acosta, Gémez-Diaz, & Kessler, 2017) and Oaxaca (Hernandez-Rojas
et al., 2018). Los Tuxtlas including abundances was not published
before (‘Los Tuxtlas a'). Both transects from Los Tuxtlas were com-

bined for the majority of the analysis.

2.2 | Fernsampling

On each gradient, we sampled the fern assemblages at regular eleva-
tional intervals of 100-300 m (every 500 m at Perote), depending on
accessibility. At each elevation, depending on the suitability of the
slope, 4-8 plots of 20 x 20 m (400 m?) were sampled with a consist-
ent, standardized methodology (Karger et al., 2014; Kessler & Bach,
1999). The plots were established in natural zonal forest, avoiding
special structural features like canopy gaps, ridges, ravines, riparian
areas, tree fall gaps, landslides and other disturbed areas whenever
possible, which all change microenvironmental conditions and have
special fern assemblages. In each plot, all fern species and their abun-
dances were recorded for terrestrial (soil, rocks and dead wood) and
for epiphytic substrates. Species with long creeping rhizomes were
counted as patches. Epiphytes were sampled up to heights of 8 m
with trimming poles and recorded at greater heights using binocu-
lars, climbing lower parts of trees, and searching recently fallen trees
and branches within and adjacent to the plots (Gradstein, Nadkarni,
Krémer, Holz, & Noske, 2003; Sarmento Cabral et al., 2015).
Samples of all fern species were collected and deposited in the
University Herbarium, University of California (UC) in Berkeley,
USA, herbarium XAL of the Instituto de Ecologia, A. C. (Xalapa,
Mexico), MEXU of the Universidad Autonoma de México (Mexico
City, Mexico), CIB of the Instituto de Investigaciones Bioldgicas
(Universidad Veracruzana, Xalapa, Mexico), HEM of the Universidad
de Ciencias y Artes de Chiapas (Tuxtla Gutiérrez, Mexico) and UAMIZ
of the Universidad Autonoma Metropolitana-lztapalapa (Mexico
City, Mexico). Collections were identified by A. R. Smith (UC), A.

Hernandez-Rojas and C. Carvajal-Hernandez. Taxonomy primarily
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followed Mickel and Smith (2004) and the current classification for
ferns and lycophytes established by the Pteridophyte Phylogeny
Group (PPG 1, 2016). Species names and authors were checked on

the International Plant names Index (IPNI).

2.3 | Explanatory variables

Ferns are closely dependent on climatic variables related to humidity be-
cause their sexual reproduction is linked to the presence of water (Page,
2002) and because of their poor stomatal control (Brodribb & McAdam,
2011; Kessler, 2001). Because water stress is not only determined by
water input into a system (by precipitation or fog) but also by evapo-
transpiration which is related to high temperatures, we specifically in-
cluded energy- and humidity-related variables as predictors of species
distribution and their range size. Besides temperature and precipitation
and their temporal variability, cloud cover is also a suitable predictor in
this context because clouds reduce solar radiation and provide extra
‘occult’ precipitation (Bruijnzeel & Veeneklaas, 1998; Hartmann, 1993).
Thus, we extracted the following climatic variables per plot from the
global climate database set CHELSA (Karger et al., 2017): Annual mean
temperature and precipitation (Biol, Bio12), as well as temperature and

precipitation seasonality (Bio4, Bio15). From‘EarthEnv’, we extracted

annual cloud cover and its seasonality (CloudA, CloudS; Wilson & Jetz,
2016). We checked for collinearity between the climatic variables using
the Variance Inflation Factor (VIF; Naimi, Hamm, Groen, Skidmore, &
Toxopeus, 2014). Variables with values > 6 were not used in the same
model (e.g. elevation and annual temperature), but all variables were in-
cluded in different models of the same analysis. We also included the
position in the country (Pacific and Atlantic side) as a fixed factor be-
cause the sides are known to have different biogeographical histories
and habitat connectivity, leading to markedly different patterns of end-

emism for many groups of organisms (Rzedowski, 2006).

2.4 | Speciesranges

We used the latitudinal range (range between the northern and south-
ern range limits) of each species as a simple gradual measure of range
size. To quantify the latitudinal ranges of the species, we used American
species occurrences combined with our own records for a total of
173.110 species records. Data were obtained from the Biodiversity
Information Facility (Gbif, www.gbif.org, accessed August-September
2018) databank using the ‘reBIF’ package in r (R Core Team, 2019).
Coordinates of fossil records and specimens from botanical gardens

or herbaria were excluded. To detect errors and suspicious patterns
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(outliers) within the dataset, we mapped the coordinates and checked
the latitudinal range of each species using ‘mapTooLs’ (Bivand & Lewin-
Koh, 2019). Range sizes were checked against TROPICOS, Catalogue
of Life (Hassler 2020), Mickel and Smith (2004), Labiak and Prado
(2007), Vasco, Moran, and Rouhan (2009), Larsen, Martinez, and Ponce
(2010), Vasco (2011), Labiak (2011), Lehnert (2013), Smith and Tejero-
Diez (2014), Lériga, Vasco, Regalado, Heinrichs, and Moran (2014),
Arana, Larsen, and Ponce (2016), Barbosa-Silva et al. (2016), Villasefior
(2016), Kessler and Smith (2017), Ponce, Rio, Ebihara, and Dubuisson
(2017) and Smith et al. (2018), and suspicious and wrong observations
were corrected (e.g. coordinates in the sea).

With these latitudinal ranges, we calculated the mean range size
of all species (excluding species varieties and species identified only
up to genus) in each individual plot as an index of range size within
the assemblage (plot). To account for different species abundances
within assemblages, we also calculated a 'weighted mean' including
the number of individuals of the species, thus down-weighting rare
species. The aim of this weighting was to reduce the influence of spe-
cies that do not belong to the core communities at a site: Because of
their spore dispersal, many fern species can occasionally or temporar-
ily occur outside of their core ranges, and such sink populations can
strongly impact species richness patterns (Kessler, Hofmann, Krémer,
Cicuzza, & Kluge, 2011; Kessler, Salazar, Homeier, & Kluge, 2014).

2.5 | Statistical analysis

We used linear mixed-effects models (LMMs) to control for the non-
independence among data points in assessing changes in the species
ranges with elevation, latitude and in relation to climatic variables
(fixed effects) because these models allow for spatial autocorrelation
between neighbours (Crawley, 2007; Zuur et al., 2009), and likelihood
ratio tests (LRT) or ‘deviance tests’ to compare between a null model
without the term of interest and the model including this term to de-
termine if one is a better fit to the data than the other (Luke, 2017;
Winter, 2019). For the model including climatic variables or many fixed
effects, we used the mixed function in the package ‘afex’ that per-
forms a full suite of likelihood ratio tests for all fixed effects in a model
and constructs the correspondent comparison model providing p val-
ues for all fixed effects in a model (Singmann, Bolker, Westfall, Aust,
& Ben-Shachar, 2019; Winter, 2019). All variables used in the models
were scaled.

We also tested the random structure of our models using the
restricted maximum likelihood (Winter, 2019) choosing the different
transects and groups of plots in the same elevation (Transect/Step)
as random effects for the analysis of all transects together. The anal-
ysis by individual transects was performed using ‘Step’ or group of
plots in the same elevation as a random effect to avoid overfitting
the model with a complex random structure.

To evaluate the association between range size, latitude, eleva-
tion and the climatic variables, we calculated the Spearman correla-
tions. Because climatic variables interact in complex ways in relation

to latitude, elevation and position in the country (Atlantic and Pacific
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sides of Mexico, ‘Side’) and because our data were not perfectly bal-
anced with regard to these factors (e.g. different elevational spans of
the transects), we additionally ran a model with these climatic vari-
ables against the residual of the model including latitude, elevation
and side.

For model selection, we used the dredge function in the R ‘MuMIN’'
package (Barton, 2019). To decide whether such a simplified model
was an enhancement to the previous model, we calculated the cAIC
(conditional Akaike Information Criterion; Saefken, Ruegamer, Kneib,
& Greven, 2018), with a lower cAlC indicating a better model. The
amount of variation explained by the fixed (marginal R?) and random
effects (conditional R?) of each model was calculated using the ‘MuMIn’
package (Barton, 2019; Nakagawa & Schielzeth, 2013). Residuals of
models were checked (see example in Appendices). All analyses were
performed with the statistical platform r (R Core Team, 2019), using
the packages ‘usbm’ (Naimi et al., 2014), ‘Lme4’ (Bates, Maechler, Bolker,
and Walker (2015), ‘arex’ (Singmann et al., 2019) ‘MuMIN’ (Barton,
2019), ‘cAlIC4’ (Saefken & Rueganer, 2018), ‘vecanN’ (Oksanen et al.,
2019) and ‘ceerrecTs’ (LUdecke, 2018, to plot the models).

3 | RESULTS

In total, in the 658 plots along the eight study transects, we re-
corded 410 fern species and 8 varieties, representing about 40%
of the Mexican fern flora (Mickel & Smith, 2004; Villasefior, 2016;
J. D. Tejero-Diez, 2019, pers. com., Table S3). Generally speak-
ing, species richness per plot increased with elevation up to about
1500-2000 m, but with strong differences in overall species rich-
ness between transects and a reduction with latitude (Figures 1 and
2). No fewer than 17.1% of the species were recorded in only one
plot, 26.2% in 2-5 plots, 22.5% in 6-15 plots and only 34.0% in 16 or
more plots. The most species-rich families were Polypodiaceae (97),
Dryopteridaceae (76), Pteridaceae (44) and Hymenophyllaceae (31).
Latitudinal range sizes of species ranged from 0.6° in Goniopteris
tuxtlensis, a localized endemic, to 138.3° in the widespread species
Cystopteris fragilis. Overall, mean latitudinal range size was 30.7°. The
family Dryopteridaceae presented the smallest mean range sizes
(19.3° + 17.7°SD, latitude), Polypodiaceae (24.7° + 19.2°), Pteridaceae
intermediate ranges (38.5° + 20.3°) and Hymenophyllaceae the larg-
est ones (45.1° £ 15.0°).

Mean latitudinal range sizes of species in an assemblage in-
creased with latitude (X?(1) = 7.71, p < .01) on both the Atlantic
and Pacific sides, and decreased with elevation on the Atlantic side
(X*(1) = 9.56, p <.01). Overall, Pacific and Atlantic sides differed, pre-
11.5,p < .01,

Figure 3). Including a random intercept and random slope models

senting smaller range sizes on the Atlantic side (X*(1) =

(Range size-Elevation) allowed us to see different tendencies be-
tween transects (Figure S5 in supplementary material).

The analysis of individual transects showed contrasting re-
sults with different climatic factors related to latitudinal range
size along each transect (Table 1; Figure 2). The same was true

when separating the data by side and by elevational group. When
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FIGURE 2 Richness and range size patterns of ferns, and environmental factors along eight elevational transects in Mexico at 15°-23° N.
Transects are ordered by continental sides (Atlantic, Pacific) and latitude (from south to north within each side)

separating sides, variables related to humidity were important for
the Pacific side, whereas the seasonal variability in temperature
and humidity were important on the Atlantic side. Incorporating
all transects and separating elevational groups, we found that
in the upper part of the mountains, temperature was crucial, in
the lowlands, precipitation and at intermediate elevations, the
seasonal variation of precipitation. Also, using these elevational
groups but separated by sides, we found that on the Atlantic side,
precipitation seasonality was important at all elevations, whereas
on the Pacific side seasonality in both precipitation and tempera-
ture was important.

The use of all transects together allowed us to find general patterns
and the explanatory power increased significantly in terms of the vari-
ance described by the fixed effects when combining all transects using
side (Pacific and Atlantic) as fixed effect in the models (Table 1).

Integrating all environmental variables in a global model (full
model) including all transects revealed that the most important
terms were side, precipitation seasonality annual cloud cover and
temperature seasonality (Figure 4b,c,f), this model explained 62%
of the variability in range size but even more (70%) when using
weighted values (Table 1 and Appendices). With this division, high
seasonality in temperature was related to larger range sizes on
both sides, whereas high precipitation seasonality was related to
small ranges on the Atlantic slope and large ranges on the Pacific
slope. Annual cloud cover showed a negative relationship to range
size on the Pacific side but not on the Atlantic side (Figure 4c).

When the effect of latitude, elevation and side of the country
was controlled using the residuals of this model (Model less) against
the climatic variables still some climatic variables remained import-
ant (Table 2), showing that they have strong effect on range size,
mainly the seasonality.

In general, small values of range size were found at intermediate val-
ues of precipitation seasonality, low temperature seasonality and a high
annual cloud cover. The humid Atlantic side presented a higher propor-
tion of small range size species relative to the dry Pacific side (Figure 4).

All models were checked and no pattern was left in the residuals.

4 | DISCUSSION

The main results of our study can be summarized in the follow-
ing five points. First, overall latitudinal range size increased with
increasing latitude. Second, range size decreased with elevation
on the Atlantic slope but not on the Pacific slope. Third, range size
decreased in areas with high humidity, low temperature seasonal-
ity and intermediate precipitation seasonality, as well as constant
cloud cover. Fourth, there was a strong difference in range size be-
tween the Pacific and Atlantic sides that was not captured by the
climatic factors, with ranges on the Pacific side being much broader.

Fifth, we found great variation between individual transects.

Our results confirm the first hypothesis, that on average, lat-
itudinal species ranges become wider at higher latitudes, which
is in accordance with Rapoport's Rule (Stevens, 1989). This pat-
tern has been previously documented for algae (Santelices &
Marquet, 1998) and other plant (Stevens, 1992) and animal groups
(Stevens, 1996: marine fishes; Fleishman, Austin, & Weiss, 1998:
butterflies; Swaegers et al., 2014: dragonflies; Bohm et al., 2017:
snakes) mainly in the northern hemisphere, and while not funda-
mentally novel, it is confirmative for ferns and reflects the repre-
sentativeness of our data. Because temperature and precipitation
seasonality showed a linear trend with latitude, we can exclude
the possibility that this pattern was driven by a spatially unequal
distribution of climatic seasonality, which would result in differ-
ent range sizes despite equal climatic niche breadths (Gaston &
Chown, 1999; Tomasovych, Jablonski, Berke, Krug, & Valentine,
2015). Rather, it seems likely that increasingly stressful and vari-
able climatic conditions require broader climatic tolerances of the
species, resulting in wider climatic niches and accordingly larger
ranges (Janzen, 1967; Stevens, 1989).

In contrast, our second hypothesis that range sizes of ferns
should decrease with elevation (Zhou et al., 2019) was supported
only on the Atlantic (Gulf of Mexico and Caribbean) side of Mexico,
whereas on the drier Pacific side we detected no elevational trend.
A decrease in range size with elevation has also been found in ferns
in Costa Rica (Kluge & Kessler, 2006) and Bolivia (Kessler, 2002),
as well as in other plants and animals (e.g. Gifford & Kozak, 2012;
Steinbauer et al., 2016), and is likely linked to topographic complex-
ity, leading to geographically fragmented species ranges which fos-
ter allopatric speciation (Antonelli et al., 2009; Kessler, 2001). This
effect appears to be most pronounced in wet tropical climates (Kier
et al., 2009) or areas of favourable ocean currents that create refu-
gia for endemics (Harrison & Noss, 2017), as found on the Atlantic
slope. In addition, formation of endemic species might also be re-
lated to past climatic fluctuations that led to successive periods of
habitat connectivity and disruption (Flantua & Hooghiemstra, 2018),
although this remains to be tested for the Mexican mountains.

The lack of this pattern on the Pacific side is puzzling, but may
be related to its overall aridity, since we found that fern range
sizes increase with increasing aridity (Figure 4e,f). Interestingly, for
drought-adapted plant groups such as Bursera (Rzedowski, 2006),
Ipomoea (Lott & Atkinson, 2006) or many ferns that prefer arid con-
ditions such as Anemia or cheilantoid ferns like Argyrochosma, Gaga,
Myriopteris and Notholaena (Mickel & Smith, 2004), the Pacific slope
of Mexico is a well-known centre of endemism. The same is true for
insect groups like bees that thrive in arid environments (Bye, Lot,
Fa, & Conzalez-Montagut, 1993). It thus appears that in the case of
ferns on the Pacific slope of Mexico, the expected elevational effect
on species range sizes is overridden by stressful climatic factors.

In this regard, we found overall that latitudinal range sizes of

ferns were smallest in areas of high precipitation and cloud cover.
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FIGURE 3 Relationship between latitudinal range size of ferns,
latitude and elevation along eight elevational transects in Mexico
between 15° and 23° N (Spearman correlation). Pacific side, black
circles; Atlantic side, gray triangles. For weighted range sizes, only
the seven transects were included

Ferns are well known to have highest diversity in wet habitats
(Hemp, 2001; Hietz, 2010; Kessler, Kluge, et al., 2011; Kluge &
Kessler, 2005), presumably as a result of their less efficient control
of stomatal transpiration as compared to angiosperms (Brodribb &
McAdams, 2011; Brodribb et al., 2009; Page, 2002). Accordingly,
it is reasonable to propose that wet habitats, which in Mexico
are present mainly on the Atlantic side (e.g. 4,000-7,000 mm/a
at Los Tuxtlas; Gutiérrez-Garcia & Ricker, 2011 or La Chinantla;
Meave, Rincén-Gutiérrez, lbarra-Manriquez, Gallardo-Hernandez,
& Romero-Romero, 2017) and whose distribution decreases north-
wards, act as localized refuges for many fern species that depend on
such conditions. Because of the localized distribution of the habi-
tats, the species will accordingly have localized ranges. In contrast,
species capable of surviving in dryer, more widespread habitats will
have broader ranges. Species range sizes decreased in areas with
less seasonality of both precipitation and cloud cover only on the
Atlantic side. This may reflect the generally more favourable condi-
tions for ferns on this side (Figure 4).

In addition, we also found transect-specific patterns that are
not captured by the general relationships discussed so far. This
supports the idea that individual mountain ranges are unique de-
pending on their geology, topographical profiles and past climatic
fluctuations, resulting in individual ‘mountain fingerprints’ (Flantua
& Hooghiemstra, 2018). We refrain from discussing the individual
transect patterns in more detail pending replicated sampling in the
different mountain ranges to confirm the patterns, but point out
that there appear to be range-specific patterns that merit future
investigation.

Based on all of the above, we conclude that the distribution of
range size of Mexican ferns is driven by an interplay of factors favour-
ing wide-ranging species (higher latitudes with increasing temperature
seasonality; dryer habitat conditions) and those favouring species with
restricted ranges (higher elevations; more humid habitat conditions),
with additional variation introduced by the specific conditions of the
individual mountain ranges. The interactions of these factors are com-
plex and are strikingly different between the Atlantic and Pacific slopes
of Mexico so that under certain conditions, specific relationships may
be overshadowed by other relationships (Tejero-Diez, Torres-Diaz, &
Gual-Diaz, 2014). This shows that understanding the distribution of
species range sizes should not be simplified too much and that under-
standing the distribution of range sizes must take into consideration
a wide range of factors at various spatial scales. This is also relevant
for conservation action, in which range-restricted or endemic species
are frequently given priority due to their higher extinction risks (Purvis

et al., 2000). Since climatic conditions are currently strongly changing,
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TABLE 1 Likelihood ratio test results with p values for all fixed effects in the Linear mixed models (Coefficients), by transects, sides

(A = Atlantic and P = Pacific) and elevational groups, using Step or group of plots in the same elevation as a random factors. For all transects
together, the Transect/Step random factor structure was used. Similar values in the marginal (R?m) and conditional R? (R%c) indicates that a
linear model is the adequate model with the same coefficients. Biol, Bio4: annual mean temperature and its seasonality, Bio12, Bio15: annual
precipitation and its seasonality and CloudA, CloudS: annual cloud cover and its seasonality. Significance codes: ***p < .001, **p < .01, *p < .05

Transect Side Biol Bio4 Bio12 Biol5 CloudA Clouds R’m R%c
Triunfo (16.5) 490.06*** 80.92*** -15.85"**  0.21 0.34
Manantlan (19.6) -113.45* -25.92*** 0.38 0.38
Nayarit (21.4) 80.88*** 187.77* 156.06** -219.29** 0.41 0.59
ChiapasN (17.1) -14.94** -13.03* -73.85** 0.55 0.55
Oaxaca (17.5) 38.22%** -95.07*** 11.14* 0.64 0.83
Tuxtlas a(18.5) 72.28* -22.82** -462.44** 0.34 0.34
Tuxtlas b(18.5) 38.21* 99.60* 0.45 0.45
Perote (19.4) 23.24* 46.97* 0.58 0.62
Cielo (23.1) -82.21* -242.12* -83.17** 0.38 0.57
Pacific: all plots -15.48* -10.22*** -12.99***  0.23 0.35
Atlantic: all plots -3.66* —5.49*** -7.06** -8.09** 0.56 0.77
Atlantic per elevational groups
0-700 -33.51*** -14.98*** -7.08* -12.84*** -44.82***  0.40 0.40
701-1300 19.66** 10.12* -11.35** 10.36* 0.76 0.82
1301-1800 -23.48** -56.58* 0.86 0.86
1801-1400 -17.88* -9.15** -10.56** -33.46** -40.44** 0.71 0.71
2401-3500 73.30* -52.53*** 0.92 0.92
Pacific per elevational groups
0-700 138.13* 920.32* 824.89* -152.64** -222.10** 0.68 0.68
701-1300 -188.60* -189.81* 0.24 0.24
1301-1800 -15.60** -18.95* 0.30 0.34
1801-1400 66.37*** 179.57*** 63.85%** -119.05*** 0.45 0.58
2401-3500 0.46 0.46
By elevational groups (no division between Atlantic and Pacific)
0-700 -11.09** -8.14*** -9.68** 0.33 0.33
701-1300 -7.48** 0.58 0.85
1301-1800 -9.46*** -6.94* 0.46 0.68
1801-1400 -8.69** -6.87** 5.90** 0.50 0.71
2401-3500 32.66** 47.91** 0.76 0.83
All transects (no -5.04** -10.12* -5.40*** -5.7** 0.23 0.93
division between
Atlantic and
Pacific)
All transects (Step as random effect)
A: 49.55*** -3.63* -10.88** -5.34*** -5.583***  0.62 0.81
Best model P: 47.95*** 5.62*** -10.85*** -2.96*** 0.59 0.76
(climatic
variables
Random effect:
Step)

understanding the underlying causal relationships rather than only
the current patterns of the distribution of range-restricted species is

crucial to making informed predictions about the future of many plant

edging regional variation.

species. Our study points to the overriding importance of climatically

humid and stable habitat islands for fern conservation while acknowl-
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FIGURE 4 Relationship between climatic variables and range size of ferns along eight elevational transects in Mexico between 15° and
23° N (Spearman correlation). Pacific side, black circles; Atlantic side, gray triangles

TABLE 2 Model selection table derived from the model including the residuals of range size (and weighted range size)
explained by latitude, elevation and Side (Model les) using as random effect the transect. Full model: Residuals of model

les ~ Biol+Bio4 + Bio12+Bio15 + CloudA+CloudS. Biol, Bio4: annual mean temperature and its seasonality, Bio12, Bio15: annual
precipitation and its seasonality and CloudA, CloudS: annual cloud cover and its seasonality

Model Response variable Fixed effects df AlCc Delta Weight

1 Residual of non-weighted Biol5 + Bio4+ CloudA 7 4,306.3 0.00 0.25

2 range size Bio15 + Bio4+CloudA + Bio12 8 4,306.3 0.04 0.25

8 Residual of weighted range CloudS + CloudA+Bio4 + Biol 8 4,186.0 00.0 0.45

4 S CloudA + CloudS+Bio4 7 4,186.4 0.42 0.37
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TABLE A1 (Continuation) Likelihood ratio test results (Non-weighted range sizes), with p values for all fixed effects in the linear mixed
models (Coefficients), by transects, sides (A = Atlantic and P = Pacific) and elevational groups, using step or group of plots in the same
elevation as a random factors. For all transects together the Transect/Step random factor structure was used. Similar values in the marginal
(R2m) and conditional R? (ch) indicate that a linear model is the adequate model with the same coefficients. Biol, Bio4: annual mean
temperature and its seasonality, Bio12, Bio15: annual precipitation and its seasonality and CloudA, CloudS: annual cloud cover and its

seasonality. Significance codes: *** p <.001, * *p < .01, *p < .05

Transect (latitude) Side Biol Bio4 Bio12 Bio15 CloudA CloudsS R’m R%c
Triunfo (16.5) 196.28** 0.32 0.39
Manantlan (19.6) -100.21** 50.15* -19.52*** 0.31 0.31
Nayarit (21.4) 48.16*** 75.36** -112.83** 0.60 0.72
ChiapasN (17.1) ~7.45%* -37.43*** 0.48 0.48
Oaxaca (17.5) 0.46 0.62
Tuxtlas (18.5)b 72.28* -22.82** -462.44** 0.34 0.34
Perote (19.4) 23.24* 46.97* 0.58 0.62
Cielo (23.1) -77.93* -200.12* -56.49* 0.29 0.53
Pacific: all plots -8.21*** =7.40*** 0.40 0.52
Atlantic: all plots -3.64*** 0.22 0.63
Atlantic per elevational groups
0-700 -14.97** -27.99** -13.66*** -10.30** 0.47 0.58
701-1300 -5.16*** 3.73* 5.06** 0.56 0.65
1301-1800 0.54 0.58
1801-1400 0.31 0.65
22.24* -29.39* 0.54 0.64
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TABLE A1 (Continued)
Transect (latitude)  Side Biol Bio4 Bio12 Bio15 CloudA CloudS R’m R%c

Pacific per elevational groups

0-700 -62.97* 0.63 0.63
701-1300 81.45* 42.98 -62.16* 0.79 0.79
1301-1800 -6.39* 0.56 0.56
1801-1400 30.76*** 91.91*** 29.59** —67.49*** 0.36 0.67
2401-3500 0.38 0.38

By elevational groups (no division between Atlantic and Pacific)

0-700 -8.63* -7.19** -6.01* 0.31 0.59
701-1300 -2.53* 0.48 0.75
1301-1800 -2.17* -4.66** 0.50 0.59
1801-1400 -2.19* 0.17 0.43
2401-3500 6.46* 0.43 0.64
All transects -2.25** 0.18 0.67
(no division
between
Atlantic and
Pacific)
All transects (transect/step as random effects)
A: 19.20*** 3.7** -4.83* -2.49** 0.31 0.65
Best model P: 17.16*** 3.45%** -4.11%** -2.36*** 0.28 0.62
(climatic
variables
random effect:
STEP)
Latitude model
A:7.39* 3.42* 0.24 0.61
Elevation model
-1.65** 0.13 0.62
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