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ABSTRACT
Anterior vertebral body tethering (VBT) is a promising technique for the treatment of adolescent idiopathic scoliosis. However, 
the segments directly treated with VBT can experience substantial loads resulting from the tether pretension, which may alter 
internal stresses and potentially compromise structures such as the intervertebral discs (IVDs) and facet joints. We aim to inves-
tigate the effects of tether within the VBT on the L1–L2 IVD stresses and contact forces of the facet joints, using an extensively 
calibrated and validated finite element model of the T10–S1 spine. The implant was inserted on the left side of the T10–L3 and 
tensioned up to 300 N representing the tether pretension applied during surgery and the case of the postoperative neutral posi-
tion. Subsequently, the spine was tested under an external pure moment of 8 Nm. The tether pretension resulted in a significant 
increase in the IVD stresses. In the neutral position, a gradual increase in intervertebral pressure (IDP) at the center of the IVD of 
0.094, 0.181, and 0.267 MPa was observed after applying forces of 100, 200, and 300 N to the tether, respectively. The contact force 
of the left facet joint also increased with pretension. It was 12.5 N for the native spine and gradually increased to 49.5, 82.0, and 
100.9 N for tether pretensions of 100, 200, and 300 N, respectively, during extension. These results indicate that tether pretension 
is a key parameter that increases the internal stresses of the IVD and the contact forces of the facet joints at the implant side.

1   |   Introduction

Adolescent idiopathic scoliosis (AIS) is a three-dimensional 
spinal deformity that occurs at an early age of approximately 
11–18 years old [1]. The spine develops a lateral curvature, usu-
ally in an elongated “S” or “C” shape in the frontal plane, instead 
of growing straight [2]. A common conservative treatment for 
AIS is external bracing, which is recommended by the Scoliosis 
Research Society for curves between 25° and 40° [3]; it is efficient 
to alter the natural history of AIS [4, 5]. However, a literature 

review found low evidence that bracing could be an alternative 
treatment option for patients above 40° who refused surgery [6]. 
Moreover, there is still a remarkable percentage of patients who 
will not benefit from bracing, for many reasons such as pain, 
skin irritation, and psychosocial issues [6].

Surgery is recommended for patients with severe curves greater 
than 40°–50° [7]. Posterior fusion is the gold standard for the 
surgical treatment of AIS, but it has disadvantages such as lim-
iting spinal growth if done before skeletal maturity is achieved, 
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and movement of the fused spinal segments which may contrib-
ute to the degeneration of the adjacent segments [8–11]. A sys-
temic review and meta-analysis found that nearly half of AIS 
patients following spinal fusion surgery developed adjacent seg-
ment degeneration [12]. The underlying mechanisms of adjacent 
segment degeneration are not yet fully understood. It has been 
suggested that, after surgery, patients attempt to regain the same 
range of motion as before [13], which requires increased motion 
at the adjacent segments to compensate for the reduced mobility 
at the fused levels. Adjacent segment degeneration may result 
from this increased mechanical demand, including abnormal 
stresses such as increased intradiscal pressure (IDP) on adjacent 
segments, or it may be a natural aging process not associated 
with surgery [12, 13].

Anterior vertebral body tethering (VBT) is a novel fusionless 
technique for the surgical management of skeletally immature 
patients with AIS [14, 15]. The technique involves the placement 
of vertebral body screws linked and then tensioned by a flexible 
cord (tether) to the convexity of the curve to correct the defor-
mity [16]. The system is designed to modulate spinal growth of 
vertebral bodies according to the Hueter–Volkmann principle, 
which proposes that growth is retarded by increased mechanical 
compression and accelerated by reduced loading compared to 
normal values [17, 18]. With VBT, growth on the tethered convex 
side of the scoliotic curve is suppressed, while continued growth 
in the concavity of the curve aims at continued postoperative 
deformity correction [16]. In addition, VBT surgery is typically 
performed using an endoscopic technique, which provides pa-
tients with a shorter recovery time when compared with poste-
rior spinal fusion [16].

Follow-up studies in patients have shown that VBT is safe and 
can correct spinal deformity [19–27]. Biomechanical cadaveric 
tests and numerical studies have demonstrated that VBT with a 
tether pretension of 100 N can preserve some of the spinal mobil-
ity in flexion–extension and axial rotation [28–30]. The same is 
true for different VBT constructs, such as the double tether and 
the hybrid technique (one tether and a short rigid rod) consid-
ering the global spinal motion [28]. Studies in scoliosis patients 
indicate that VBT preserves flexion and extension motion at 
1 year postoperatively [31, 32]. For Wong et al. [33], VBT resulted 
in the correction of scoliosis deformity in the coronal and axial 
planes, with preservation of flexibility. As a motion-preserving 
technique, the segments adjacent to the VBT system are theo-
retically not overloaded and therefore their degeneration is not 
accelerated by mechanical stresses as it is in fusion. However, 
the segments directly treated with VBT can experience substan-
tial loads resulting from the tether pretension, with the apical 
segments being tightened with forces up to 300–400 N [17]. This 
redistribution may alter internal stresses and potentially com-
promise structures such as the intervertebral discs (IVDs) and 
facet joints. Compression of the IVD by tensioning the tether 
cord poses the theoretical risk of accelerating degenerative 
changes [34]. This hypothesis was supported by evidence of 
mild IVD degeneration in IVDs spanned by the tether in a clin-
ical study [34]. In addition, another follow-up study with nine 
patients found that one patient developed moderate facet osteo-
arthritis postoperatively [35]. IVD degeneration has been asso-
ciated with extreme spinal loading regimens [36] and facet joint 
degeneration is a known contributor to back pain [37]. Studies 

suggest that probably any abnormal loading condition, such as 
overloading, may induce tissue trauma and/or adaptive changes 
that may lead to IVD degeneration [38]. Therefore, it is import-
ant to investigate whether VBT modifies the internal stresses of 
the IVDs and the facet joints, as this topic needs further verifi-
cation [39].

We aim to investigate the effects of tether pretension within the 
VBT on the biomechanics of the spine, including the IDP of the 
nucleus pulposus, maximum principal stress at various locations 
of the annulus fibrosus, and contact forces of the facet joints. For 
that purpose, we used an extensively calibrated and validated 
finite element model of the spine to understand idiopathic scoli-
osis with VBT and its effects on the IVD and facet joints.

2   |   Materials and Methods

A finite element model of the T10–S1 (Figure  1) was used to 
perform the simulations and evaluate the effects of VBT with 
different pretensions.

To represent the nucleus pulposus, a compressible Mooney–
Rivlin hyperelastic model was adopted. Its strain energy density 
function is expressed as:

where I and II denote the first and second invariants of the mod-
ified (volume-preserving) right Cauchy–Green deformation ten-
sor while J represents the volume ratio. The coefficients C10n, C01n 
and Dn are the material constants defining matrix stiffness and 
compressibility [40].

For the annulus fibrosus, we employed the Holzapfel–Gasser–
Ogden formulation [41], where the total strain energy func-
tion combines an isotropic matrix term with nonlinear fiber 
contributions.

where C10 and D characterize the stiffness and compressibility of 
the annulus ground substance [41]. The fibers' nonlinear stress–
strain relationship is parameterized by K1 and K2, while � sets the 
fiber dispersion, and IV(��) is an invariant equal to the square of 
the stretch in fiber direction [42].

The model of L1–L2 was calibrated, verified, and validated 
against experimental cadaveric data  [30]. The calibration was 
performed individually for each spinal structure using exper-
imental data from resection flexibility studies and powerful 
optimization algorithms which reduced the error between the 
numerical and experimental results [30]. The model replicated 
flexion–extension, lateral bending, and axial rotation motions, 
achieving an average R2 value of 0.85 across all loading direc-
tions and resection stages. Under combined loading, the model 
provided an R2 ≥ 0.90. Tensile tests of single lamellae from dif-
ferent regions of the annulus fibrosus yielded an R2 value of 0.95, 
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closely aligning with experimental results. The model predicted 
fiber angles of 30° at the anterior aspect of the IVD and 42° at the 
posterior aspect, closely matching experimental values of 28° 
and 45°, respectively [43]. The material properties of the IVDs 
are within the Supporting Information.

The model predicted forces at the facet joints of 0 N for flexion, 
5 N for extension, and 4 N for lateral bending, which were within 
the standard deviation of the experimental values of 2 ± 5, 
13 ± 14, and 11 ± 11 N for the respective movements [44]. For 
axial rotation, the numerical force at the facet joint (79 N) did not 
match the experimental result (56 ± 17 N) of Niosi et al. [44] but 
agreed with the result of one specimen (80 N) tested by Wilson 
et al. [45]. Differences between the numerical and experimental 
values were expected since they used a different spinal segment 
(L3–L4) than in our study (L1–L2) and the geometry signifi-
cantly affects the biomechanics of the spine. Unfortunately, to 
the best of our knowledge, no experimental study measured the 
contact forces of the L1–L2 facet joints, which could allow veri-
fication of the computational model.

The L1–L2 segment was selected for the analysis of VBT effects 
because it has been extensively calibrated and validated against 
in vitro biomechanical data, particularly, for isolated structures 
such as the IVD, ensuring high simulation accuracy [30, 46, 47]. 
Moreover, AIS curves frequently apex at L1–L2, highlighting its 
clinical relevance [28, 48, 49].

The material properties of the L1–L2 segment were extrap-
olated to other spinal segments, which were then calibrated 
by adjusting the material parameters of the soft tissue until 
reaching a good agreement with experimental data from the 
literature [30, 50–59] (Supporting Information). The VBT sys-
tem (Globus Medical Inc., Pennsylvania, USA) was inserted 
into the left side of the spine from T10 to L3 (Figure 1). The 
tether of 4 mm diameter, made of polyethylene-terephthalate 
(PET), was modeled using a bar element with a Young's mod-
ulus of 1500 MPa in tension and negligible resistance to com-
pression [30, 60].

In the first part of this study, the IVD IDP values of the L1–L2 
computational model were compared with the experimental 
data [61] to validate the model. To reproduce the in vitro tests 
[61] the posterior elements of the vertebrae were removed, the 
lower endplate of the L2 vertebra was kept fixed, and the mid-
plane of the L1–L2 disc was adjusted to the horizontal. The L1 
vertebra was allowed to move only in the vertical direction while 
loaded in pure axial compression up to 2000 N.

In the second part of this study, simulations were performed 
to evaluate the effects of VBT following a method as described 
previously [30, 60]. First, the tether was tensioned, repre-
senting the tether pretension applied during surgery and the 
case of the postoperative neutral position. Operationally, this 
was performed by translating the force displacement curve 
representing the material properties of the tether in the dis-
placement axis until it could provide a desired pretension for 
testing. After applying tether pretensions of 100, 200, or 300 N, 
the sacrum was kept fixed, and the spine was tested under an 

FIGURE 1    |    Perspective view of the finite element model of the T10–
S1 spine with schematic of the boundary conditions. The sacrum was 
kept fixed while a pretension is applied to the tether. Subsequently, a 
pure moment is applied to the T10 vertebra using a point coupled to the 
vertebra endplate. Flexion–extension, lateral bending, and axial rota-
tion occur about the x, z, and y axis, respectively.
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external pure moment of 8 Nm to simulate movements of flex-
ion–extension, lateral bending, and axial rotation (Figure 1). 
In contrast to our previous studies [30, 60] we incorporated 
multiple spinal segments to better replicate a VBT condition 
and explored its impact on new variables (IDP and forces at 
the facet joints).

The nucleus is a gel-like substance which the internal pressure 
exerted by the nucleus pushes the inner margin of the annu-
lus outward during compression [62], caused by body weight 
and muscle loads. For this reason, the IDP was analyzed at the 
center of the IVD, as it is widely considered in biomechanical 
studies [61]. The annulus fibrosus is composed of concentric 
lamellae of oriented collagen fibers embedded in a hydrated 
proteoglycan matrix [63] and provides the primary resistance 
to tensile stress [64]. Therefore, in the present study, we ana-
lyzed the maximum principal stress in different locations of 
the annulus fibrosus (Figure 2).

3   |   Results

3.1   |   Validation of Computational Model

The numerical values of the IDP were 0.31, 0.91, and 1.85 MPa 
when a pure compressive axial load of 300, 1000, and 2000 N, 
respectively, was applied. These results agree with experimental 
data in which the median IDP of 15 lumbar spines were 0.33, 
0.95, and 1.85 MPa for the respective load cases [61], correspond-
ing to relative errors of 6.1%, 4.2%, and 0%. Therefore, the model 
is considered valid for the cases mentioned.

3.2   |   Nucleus Pulposus

In the neutral position, a gradual increase in IDP of 0.094, 
0.182, and 0.268 MPa was observed at the center of the IVD 
after applying forces of 100, 200, and 300 N directly to the 
tether, respectively (Figure  3). It represents a linear behav-
ior (R2 = 1) where the IDP increases at a rate of 0.0009 MPa 
(0.9 kPa) per unit of force applied to the tether in the neutral 
position.

FIGURE 2    |    Transverse view of the middle cross-sectional area of 
the intervertebral disc showing the five locations (center, left lateral 
side, right lateral side, ventral side, and dorsal side) considered for anal-
ysis. The nucleus pressure and the maximum principal stresses of the 
annulus fibrosus were evaluated.

FIGURE 3    |    Pressure (MPa) at the center of the L1–L2 intervertebral 
disc caused by the increase of tether tension within the vertebral body 
tethering in the neutral position.

FIGURE 4    |    Pressure (MPa) at the center of the intervertebral disc after testing the L1–L2 segment instrumented with different tether pretensions 
within the vertebral body tethering. The segment was loaded with a pure moment of 8 Nm; except for the neutral position, where no external load 
was applied.
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The increase in tether pretension resulted in an increase in 
IDP at the center of the IVD not only in the neutral position but 
also for flexion–extension, lateral bending, and axial rotation 
(Figure 4 and Table 1). For instance, for extension, the IDP at 
the center of the L1–L2 IVD was 0.0428 MPa in the native state 
and gradually increased to 0.0837, 0.146, and 0.209 MPa for ini-
tial tether pretensions of 100, 200, and 300 N within the VBT, re-
spectively. The only exception for the IDP increase pattern was 
the instrumented spine with 100 N in left lateral bending when 
compared to the native spine. This occurs because the external 
moment of 8 Nm bent the spine toward the implant side, reduc-
ing to zero the tether force and thus its effects on the IDP.

Figure 5 shows an example of the effects of VBT with a tether pre-
tension of 300 N. In the neutral position, the native spine remained 
undeformed as no external load was considered (Figure 5a). Under 
a pure moment of 8 Nm in flexion, the native spine bends forward 
where the moment induces positive pressure at the mid-anterior 
aspect of the IVD (Figure 5). In the neutral position, when a force 
of 300 N is applied to the tether, the spine bends to the left side 
(implant side) creating an IVD bulge and significantly altering the 
pressure field of the IVD (Figure 5c). This pressure field modifies 
as the spine undergoes flexion (Figure 5d).

3.3   |   Annulus Fibrosus

The maximum principal stresses at different locations within the 
annulus fibrosus increased with increasing force applied directly 
to the tether in the neutral position (Figure 6). For all positions 
analyzed, the maximum value was 1.456 MPa and occurred on the 
right lateral side (opposite to the tether). The maximum principal 
stress values for the other spine motions are shown in Table 2.

3.4   |   Facet Joints

The contact forces acting on the facet joints for different levels of 
tether pretension and motion directions are shown in Figure 7 

and Table 3. For the native spine, the facet joints are unloaded 
during flexion due to the applied pure moment, which tends to 
increase the joint gaps. In contrast, during extension, the applied 
moment approximates the articular surfaces of the facet joints, 
resulting in contact forces of 12.5 N on the left side and 7.2 N on 
the right side. The most substantial facet joint loads were ob-
served during axial rotation. In left axial rotation, the right facet 
joint bears a considerable force (76.6 N), while the left side re-
mains unloaded. Conversely, in right axial rotation, the left facet 
joint is loaded (80.8 N), with the right side unloaded, indicating a 
contralateral facet engagement. The insertion of the VBT system 
alters the facet joint contact forces, as further discussed.

4   |   Discussion

This is the first study to analyze the effects of different tether 
pretension within VBT on the biomechanics of the L1–L2 spine, 
including the stresses in the IVD and contact forces of the facet 
joints. For that purpose, we used an extensively calibrated and 
validated finite element model of the spine in terms of kinemat-
ics, material properties, and contact forces acting on the facet 
joints. Furthermore, our analysis showed that the average error 
between the numerical and experimental IDPs at the IVD center 
was less than 4% (Section 3.1). Therefore, we consider that the 
computational model provided reliable data for this study.

The required tether pretension within the VBT is defined based 
on the characteristics of the patient's spine, such as its flexibility 
and curvature [39]. Our results showed that the tether tension 
leads to a significant increase in the IDP in the IVD center. For 
instance, compared to the native spine, an increase in IDP of 
0.267 MPa was observed for the neutral position and 0.294 MPa 
for the extension when instrumented with 300 N of pretension 
within the VBT (Table 1). For all tested spinal movements, the 
highest IDP (0.488 MPa) occurred in flexion, which was also the 
case for the native spine during experimental tests [65, 66]. In 
addition, it was found that the tether pretension leads to bend-
ing of the spine toward the implant side, compresses the IVD, 
and significantly alters its pressure field (Figure 5). It is expected 
that the increase in pressure due to the tether will add up to the 
physiological loads of the patient [39]. Therefore, a significant 
change in the IDP is expected in patients who underwent VBT 
surgery, mainly for those who required a relatively large tether 
pretension within the VBT.

In vivo studies have measured the IDP in the center of the L4–
L5 IVD and obtained values of 0.5 MPa for the neutral position, 
0.6 MPa for extension, and 1.1 MPa for flexion of the spine [67]. 
Our study showed that, compared to the native spine, the pre-
tension of 300 N resulted in an IDP increase of 0.267 MPa for 
the neutral position, 0.166 MPa for extension, and 0.294 MPa 
for flexion. One may take the in vivo values as a reference and 
consider that the tether adds pressure to the IVD, assuming the 
superposition principle. In this case, a tether tension force of 
300 N within the VBT would increase the in vivo IDP by 53% for 
the neutral position, 28% for extension, and 27% for flexion of 
the spine. However, it is important to acknowledge that the su-
perposition principle is an approximation that assumes linear-
ity in the biomechanical response of the spine. While the linear 
relationship between tether pretension and IDP in the neutral 

TABLE 1    |    Pressure (MPa) at the center of the intervertebral disc 
after testing the L1–L2 segment instrumented with different tether 
pretensions within the vertebral body tethering.

Movement

Pressure for different 
conditions (MPa)

Native 
spine 100 N 200 N 300 N

Neutral position 0 0.0944 0.1815 0.2674

Extension 0.0428 0.0837 0.1459 0.2085

Flexion 0.1945 0.3187 0.4114 0.4884

Left lateral bending 0.1131 0.1131 0.1528 0.2650

Right lateral 
bending

0.1139 0.2811 0.3408 0.3870

Left axial rotation 0.0894 0.2121 0.2786 0.3415

Right axial rotation 0.0893 0.1645 0.2485 0.3231
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position of the L1–L2 segment (as observed in Figure 3) may jus-
tify its use for pressure estimation within the tested range, this 
assumption may not be applicable for other parameters, such as 
the maximum principal stress within the IVD or mechanical re-
sponses at different spinal levels—particularly, in the thoracic 
spine, where the presence of the ribcage introduces nonlinear 
behavior and additional biomechanical constraints.

To achieve the aforementioned in vivo IDP values, in vitro sim-
ulations predicted forces in the muscle erector spine of 170, 100, 
and 600 N for standing, extension, and flexion of the spine, re-
spectively, while the force in the muscle rectus abdominis of-
fers approximately 20 N [67]. On top of that, the local muscles 
and the weight of the upper body add a compressive force to the 
lumbar spine of approximately 200 and 220 N, respectively [67]. 
Summing up all these loads, the lumbar spine is exposed to com-
pressive forces of approximately 610 N, 540 N, and 1040 N for the 
cases of standing, extension, and flexion, respectively [68]. Thus, 

assuming the superposition principle, a tether tension force of 
300 N would increase the compressive force acting on the IVD 
by approximately 49% for the neutral position, 56% for extension, 
and 29% for flexion. Therefore, from this perspective, the tether 
can exert a significant compressive force on the IVD.

As an eccentric force, the tether pretension generates not only 
compression on the IVD but also a moment. It causes lateral 
bending of the spine and compression of the IVD on the implant 
side (left side in our study) and traction on the opposite side. 
Consequently, the maximum principal stresses are relatively 
large on the right side of the IVD, where the fibers resist trac-
tion. On the other hand, the stresses at the dorsal and ventral lo-
cations are smaller because they are located close to the neutral 
line of the moment.

In the native spine, the external moment load causes stretching 
of the fibers on the ventral side during extension, on the dorsal 

FIGURE 5    |    Native spine in the neutral position (a) and under flexion (b). The stress field of the central cross-sectional area of the L1–L2 interver-
tebral disc is modified after insertion of a tether pretension of 300 N within vertebral body tethering changes in the neutral (c) and flexion position 
(d). The tether is represented by a thin line (bar element) connecting the screw heads but was modeled with a diameter of 4 mm.
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side during flexion, on the right side during left lateral bending, 
and at the left side during right lateral bending, leading to an 
increase in the maximum principal stresses (Table 2). The tether 
pretension generally accentuates these values. The maximum 
value was 3.122 MPa and occurred on the right lateral side of 
the IVD during right axial rotation for the instrumented spine 
with a tether pretension of 300 N within the VBT. It is significant 
compared to the maximum principal stress of the native spine 
(1.037 MPa). For right lateral bending, the instrumentation led 
to a reduction in the maximum principal stress at the left lateral 
side of the IVD. This could be explained by the tether resisting 
most of the stress instead of the left portion of the IVD during 
right lateral bending.

The insertion of the implant and the application of tether pre-
tension lead to notable modification of the facet joint contact 
forces, depending on the direction of motion. For the neutral 
position, the tension applied directly to the tether resulted in 
left lateral bending of the spine, reducing the gap between the 
left facet joints and increasing their contact forces. The con-
tact forces at the left facet joint (implant side) increased to 4.3, 
15.4, and 29.6 N under pretensions of 100, 200, and 300 N, re-
spectively. In contrast, the right (contralateral) facet joint pre-
sented negligible forces (up to 0.5 N). In extension, the tether 
force substantially modified the contact forces of the left facet 
joint. It was 12.5 N for the native spine and gradually increased 
to 49.5, 82.0, and 100.9 N for tether pretensions of 100, 200, and 
300 N, respectively (Figure 7a, Table 3). Similarly, during right 
lateral bending, a substantial increase in contact force at the left 
facet joint is observed as the pretension escalates, highlighting 
the asymmetrical nature of loading introduced by the tether 
system. It was 2.2 N for the native spine and went up to 56.9 N 
for the maximum tested VBT pretension. A significant contact 
force was also observed at the left facet joint for the instru-
mented spine within VBT during right axial rotation. However, 
it represents an increase of less than 6 N compared to the na-
tive situation (Figure 7a, Table 3); that means a variation of 7%. 
This implies that in right axial rotation, a relatively large force 

at the left facet joint is naturally occurring in the native spine, 
and VBT, when inserted on the left side, does not significantly 
intensify this demand. In contrast, movements such as flexion 
and left axial rotation result in minor contact forces in the left 
facet joint, even under maximum pretension. Furthermore, for 
most of the spinal movements, the increase of the tether preten-
sion tends to decrease the contact force of the right facet joint, 
since it increases its gap. Overall, the results indicate that while 
VBT is designed as a motion-preserving technique, it can intro-
duce considerable posterior joint loading alteration in specific 
motions, particularly extension and lateral bending, depending 
on the pretension applied. On the other hand, pretension serves 
as the primary mechanical driver of spinal remodeling in VBT, 
where insufficient tension may lead to hypocorrection of spinal 
curve, while excessive tension can result in overcorrection, de-
pending on the patient-specific factors.

Facet joint degeneration is a common condition associated with 
aging and increased joint loading [69]. Studies have shown that 
facet joint degeneration can be influenced by factors such as facet 
tropism, asymmetry of the facet joints, and alterations in biome-
chanics [46, 47]. The degenerative cascade in the lumbar spine 
typically involves initial degeneration of the IVD followed by facet 
joint degeneration [70]. Additionally, facet joint degeneration has 
been linked to changes in articular cartilage, cellular properties 
of cartilage tissue, and alterations in subchondral bone struc-
ture [48, 49]. High stress on the facet joint has been identified as a 
factor that can induce lumbar facet joint degeneration [71].

The simulated facet joint forces (0–100.9 N) fell within a com-
parable range (0–171 N) for the L1–L2 presented by other finite 
element models [72, 73]. This suggests that the simulated facet 
loads are within physiological limits. However, a limitation of 
this study is that it remains unknown whether the increase in 
facet joint forces due to tether pretension could contribute to 
degeneration.

Jackson et  al. [34] IVD health on magnetic resonance imag-
ing (MRI) at 1 year following VBT in AIS patients. Increased 
degenerative changes in the IVDs spanned by the tether were 
seen on MRI without evidence of adjacent segment disc disease. 
Specifically, the mean grade of Pfirrmann, which measures IVD 
degeneration, was 1.88 preoperatively and increased to 2.31 post-
operatively in the IVDs spanned by the tether. This difference 
was statistically significant (p = 0.0075), indicating a measur-
able change in IVD degeneration. However, the adjacent IVDs 
that were not directly impacted by the tether showed no signifi-
cant differences in Pfirrmann grades between preoperative and 
postoperative imaging. For the IVDs adjacent to the upper in-
strumented vertebra (UIV), the preoperative Pfirrmann grade 
was 1.42, which changed to 1.57 postoperatively (p = 0.6036). 
Similarly, for the IVDs adjacent to the lower instrumented ver-
tebra, the preoperative and postoperative Pfirrmann grades re-
mained the same at 2.14 (p = 1.000). This suggests that while the 
IVDs directly spanned by the VBT exhibited increased degener-
ation post-surgery, the adjacent IVDs did not show significant 
changes, indicating a localized impact of the tether on specific 
IVDs rather than a widespread effect on adjacent areas.

In our study, it was found that the tether pretension results in a 
significant increase in stresses within the IVD and well changes 

FIGURE 6    |    Maximum principal stress (MPa) at the left lateral, right 
lateral, ventral, and dorsal sides of the L1–L2 intervertebral disc after 
testing the spine with different tether pretensions within the vertebral 
body tethering in the neutral position.
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in the stress field. This may explain the increased degenerative 
changes in IVDs spanned by the tether found by Jackson et al. 
[34]. IVD degeneration has been linked in humans to extreme 
spinal loading regimens [36] and studies suggest that overload 
can produce tissue trauma and/or adaptive changes that may 
result in IVD degeneration [38]. Studies have indicated that 
high gradients of compressive stress within IVD are associ-
ated with progressive disc degeneration [55, 56] by altering 
disc metabolism [74]. This degeneration is characterized by a 
loss of cellularity, changes in composition, and loss of hydra-
tion, leading to changes in disc height and MRI signal density 
[75]. Furthermore, prolonged abnormal mechanical stress has 
been shown to accelerate disc cell senescence, impairing the 

structural and functional homeostasis of IVDs and contributing 
to IVD degeneration [76].

In contrast, the findings of Yucekul et al. [77] shed light on more 
comprehensive outcomes following VBT surgery in a larger co-
hort over a longer follow-up period of approximately 29 months. 
Among 21 patients studied in the second postoperative year, 
a substantial majority (84%) had normal preoperative and fol-
low-up IVD and facet joint scores across both the operated and 
adjacent levels. Specifically, 23 patients (92%) had normal inter-
mediate and adjacent IVD grades, suggesting positive outcomes 
in preserving these segments post-VBT surgery. While the 
majority showed stability or improvement, a small percentage 

TABLE 2    |    Maximum principal stress (MPa) at the left lateral, right lateral, ventral, and dorsal sides of the L1–L2 intervertebral disc after testing 
the spine with different tether pretensions within the vertebral body tethering.

Movement Position within disc

Maximum principal stress for different conditions (MPa)

Native spine 100 N 200 N 300 N

Neutral position Left lateral 0.000 0.045 0.109 0.179

Right lateral 0.000 0.288 0.782 1.456

Ventral 0.000 0.103 0.213 0.322

Dorsal 0.000 0.020 0.050 0.076

Extension Left lateral 0.124 0.177 0.274 0.383

Right lateral 0.119 0.209 0.565 1.140

Ventral 0.218 0.203 0.231 0.295

Dorsal 0.024 0.032 0.043 0.067

Flexion Left lateral 0.050 0.058 0.080 0.093

Right lateral 0.047 0.216 0.576 1.106

Ventral 0.037 0.160 0.284 0.401

Dorsal 0.551 0.345 0.328 0.374

Left lateral bending Left lateral 0.047 0.047 0.045 0.071

Right lateral 1.621 1.621 1.986 2.942

Ventral 0.485 0.485 0.507 0.591

Dorsal 0.167 0.167 0.169 0.188

Right lateral bending Left lateral 1.536 0.248 0.334 0.427

Right lateral 0.027 0.195 0.389 0.677

Ventral 0.508 0.328 0.297 0.303

Dorsal 0.167 0.030 0.042 0.061

Right axial rotation Left lateral 0.990 0.295 0.195 0.160

Right lateral 0.443 0.822 1.212 1.639

Ventral 1.016 1.468 1.401 1.327

Dorsal 0.054 0.014 0.039 0.064

Left axial rotation Left lateral 0.451 0.447 0.520 0.611

Right lateral 1.037 1.649 2.462 3.122

Ventral 0.985 0.710 0.507 0.439

Dorsal 0.080 0.037 0.061 0.086
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FIGURE 7    |    Contact force at the L1–L2 facet joints after testing the spine instrumented with different tether pretensions within the vertebral body 
tethering. The spine was loaded with a pure moment of 8 Nm except for the neutral position where no external load was applied.

TABLE 3    |    Contact forces of the L1–L2 facet joints after testing the native and instrumented spine with different tether pretension within the 
vertebral body tethering.

Movement Position of the facet joint

Force of facet joints (N)

Native spine 100 N 200 N 300 N

Neutral position Left 0.0 4.3 15.4 29.6

Right 0.0 0.1 0.4 0.5

Extension Left 12.5 49.5 82.0 100.9

Right 7.2 1.3 1.1 0.8

Flexion Left 0.0 0.0 0.5 4.8

Right 0.0 1.0 0.6 0.4

Left lateral bending Left 0.0 0.0 2.0 17.2

Right 2.0 2.0 1.6 1.2

Right lateral bending Left 2.2 35.7 46.8 56.9

Right 0.0 0.0 0.0 0.0

Left axial rotation Left 0.0 0.0 0.0 4.6

Right 76.6 59.5 37.9 23.3

Right axial rotation Left 80.8 83.1 83.9 86.6

Right 0.0 0.0 0.0 0.0
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showed concerning developments. One patient maintained 
Grade 4 degeneration in the apical segment, indicating the per-
sistence of severe degeneration. Another patient experienced a 
change from no preoperative facet degeneration to Grade 2 de-
generation in a single adjacent level.

In the study carried out by Yucekul et al. [77] while no new IVD 
degenerations were noted in most cases, there were cases of de-
terioration in preexisting degenerated IVDs. One patient had a 
shift from mild to moderate degeneration, while another patient 
showcased multilevel degeneration escalating from Grade 2 to 
Stage 3. The study underscored the need for further investiga-
tions in larger cohorts over longer periods of time to elucidate the 
nuanced effects of relative stabilization and altered biomechani-
cal loads following VBT surgery. Furthermore, Hoernschemeyer 
et al. [35] findings indicated that, at 2 years post-VBT, four out 
of nine patients had a shift of the nucleus pulposus toward the 
midline in multiple spinal levels, primarily within the tethered 
region. However, no significant degenerative changes were ob-
served in either the IVDs or posterior facets.

While this numerical study has several limitations mainly re-
garding the ability of the computational model to represent a 
scoliotic adolescent spine [30, 46] there is a lack of experimen-
tal studies on VBT that could enhance the translational impact. 
Most of the current literature focuses on clinical outcomes such 
as curve correction, overcorrection, loss of correction, pulmo-
nary complications, and tether breakage. Additionally, cadav-
eric biomechanical studies remained limited to changes in the 
correction of scoliosis and range of motion for different direc-
tions and VBT configurations. Therefore, further long-term ex-
perimental and clinical studies focusing on changes in the IVDs 
and facet joints after VBT with different pretensions are needed 
to provide clinical recommendations regarding tether preten-
sion to improve the outcome.

5   |   Conclusions

The tether pretension within VBT is a key parameter that mod-
ifies the stress field of the IVD. The tether pretension increases 
the IDP of the nucleus pulposus, the maximum principal stress 
of the annulus fibrosus, and the contact force of the facet joint at 
the implant side. Therefore, a significant change in the IVD and 
facet joints is expected for patients who underwent VBT surgery, 
mainly for those who required a relatively large tether preten-
sion within VBT.
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