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Inflammation and limited adaptive
immunity predict worse outcomes on
immunotherapy in head and neck cancer
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Most patientswith relapsedormetastatic head andneck squamouscell carcinoma (rmHNSCC) donot
experience durable responses to PD-1 immune checkpoint inhibitors. PD-L1 tissue expression is the
most commonly assessed response marker, but an insufficient predictor of treatment outcome. To
identify suitable response biomarkers, we profiled the FOCUS trial (Registered at ClinicalTrials.gov:
NCT05075122) cohort for several blood- and tissue-basedmarkers. PD-L1 levels in the tumoror tumor
microenvironment were not associated with treatment benefit. In contrast, inflammation-related
markers such as IL-6, sCD25, and sTIM-3, as well as high peripheral neutrophils, cell-free DNA levels,
and T cell receptor repertoire clonality, were associated with poor clinical outcomes. Patients lacking
these high-risk markers performed remarkably well on inhibition of immune checkpoints with
pembrolizumab. Biomarker-guided patient selection for pembrolizumab monotherapy or novel
combinatorial approaches—potentially including anti-inflammatory agents—for patients with
immune-impaired, inflammatory profiles may be the next step in personalizing immunotherapy for
these hard-to-treat patients.

Head and neck squamous cell carcinomas (HNSCC), primarily originating
from the squamous epithelium of the oral cavity, pharynx, and larynx, rank
as the sixth most prevalent cancer globally, with nearly 900,000 new cases
and ~45,000 deaths per year1–4. HNSCC predominantly affects males and is
causally linked to tobacco and alcohol consumption aswell as infectionwith
human papillomavirus (HPV) strains 16 and 181,2,5–7. Early-stage locor-
egional disease can often be cured, butmore than half of these cases relapse,
and around 15-30% develop metastatic disease (rmHNSCC)1,8,9. Survival
time for patients with rmHNSCC has doubled over the past decade, pri-
marily due to advances in systemic treatment1,4,10–12. Despite this progress,

themedian overall survival (OS) for these patients remains limited to 12–14
months12,13.

Preclinical data indicate that HNSCC is highly immunosuppressive,
marked by abnormal proinflammatory cytokine secretion and impaired
immune effector cell function14,15. Therefore, one of the major advances in
systemic treatment of rmHNSCC was the introduction of immu-
notherapies. Landmark phase III trials have led to the approval of two anti-
programmed cell death-1 (PD-1) antibodies—pembrolizumab and nivo-
lumab—for use in this indication16,17. More recently, pembrolizumab also
received approval as a first-line treatment with or without concomitant
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chemotherapy18. Despite these advancements, only a subset of patients
with rmHNSCC benefit from immunotherapy, underscoring the urgent
need to identify novel biomarkers to optimize treatment strategies. PD-L1
positivity measured as combined positive score (CPS; The number of PD-
L1 positive cells relative to all cells in a given section) is currently the only
predictive biomarker for response to immune checkpoint inhibitors in
rmHNSCC in routine clinical practice, but there is still an important subset
of patients with PD-L1 positive disease that does not derive benefit from
these drugs19,20.

In this study, we conducted comprehensive biomarker analyses using
biomaterial from patients enrolled in the FOCUS trial, all of whom received
pembrolizumab21. Our objective was to identify simple, clinically applicable
markers to predict the outcome of checkpoint inhibitor treatment. Our
findings demonstrate that patients with a high-inflammation and impaired
T cell profile experience suboptimal outcomes with immune checkpoint
inhibition alone, indicating the need for additional or alternative therapeutic
approaches.

Results
Patient characteristics, study treatment, and survival outcomes
in the cohort
The FOCUS trial enrolled 75 evaluable patients from August 2021 to July
2023. 25 were enrolled into the calibration arm receiving pembrolizumab
monotherapy and 50 into an experimental arm receiving pembrolizumab in
combination with the hTERT vaccine UV1. Detailed patient characteristics
are described in ref. 21. The study populationwas representative for patients
with rmHNSCC in that it also included 18% of patients with an ECOG
performance score of 2.

The trial did not meet its primary endpoint21. UV1 treatment did not
result in higher-than-expected rate of progression-free survival (PFS) at
6 months. Therefore, we combined both pembrolizumab-containing study
arms for the biomarker analysis reported here (Fig. 1A). To avoid any
potential biases from the experimental UV1 vaccination, all analyses were
additionally plotted by treatment arm as shown in the supplementary data
section. PFS and overall survival (OS) are shown in Fig. 1B, C. With a
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Fig. 1 | Efficacy of pembrolizumab (±UV1) treatment in patients with rmHNSCC
and as a function of PD-L1 CPS in the FOCUS trial. A Schematic workflow of the
FOCUS study and the performed biomarker analysis. Kaplan–Meier estimates of

progression-free (B) and overall survival (C), and according to PD-L1CPS subgroup
(cut-off 20) in patients with completed PD-L1 screening (D). HR hazard ratio.
Statistic: log-rank test.
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median follow-up of 11.3 months, the median PFS and OS were very
comparable to the pembrolizumab armof theKEYNOTE-048 trial that had
enrolled only patients up to anECOGperformance score of 118. Themedian
PFS of 3.4 months compared to 2.3 months for patients with PD-L1 CPS 1
or more and 3.4 months for patients with PD-L1 CPS 20 or more in the
KEYNOTE-048 trial18. The median OS of 13.1 months compared to
13.0 months in the KEYNOTE-048 trial18.

Efficacy as a function of PD-L1 CPS
PD-L1 expression is an established prognostic biomarker in HNSCC22,23.
Interestingly, in the PD-L1 positive population studied in the FOCUS trial,
high or low PD-L1 combined positivity scores (PD-L1 CPS below or above
20) did not appear to segregate patient subsets with higher or lower clinical
benefit (Fig. 1D and Supplementary Fig. 1A, B).

T cell receptor repertoire profiling
Previous studies fromour group had shown that T cell repertoiremetrics, as
indicators of an individual’s immune system composition and capacity to
mount a tumor-specific response, may be a strong predictive biomarker for
immune checkpoint blockade in distinct disease settings24–28.We assessed T
cell immune repertoires bynext-generation sequencingof theTcell receptor
beta (TRB) locus frompatient blood at baseline (BL) and prior to the second
pembrolizumab dose in both arms (follow-up; FU). As controls, we used a
selection of age-matched healthy controls from previous studies (n = 78; 54
male, 24 female; median age: 59, range 44–87)29–31. Patient immune reper-
toires showed differences in global T cell immune metrics to healthy age-
matched control individuals (Fig. 2A). While BL T cell metrics did not
appear to determine outcomes on pembrolizumab (data not shown), the
dynamics of T cell repertoire clonality correlated with overall survival.
Patients with increasing T cell repertoire restriction (increase of T cell
repertoire clonality >20% above BL) showed unfavorable outcomes on
pembrolizumab compared to patients with stable repertoires (Fig. 2B and
Supplementary Fig. 2A, B).

Blood soluble factor analysis
HNSCC ismarked by abnormal proinflammatory cytokine secretion32. As a
proxy of the degree of inflammation, we assessed cytokine patterns in the
blood of our patients. Moreover, we were interested in the levels of circu-
lating checkpoint molecules, some of which had been found to counteract
immune checkpoint inhibition in other disease settings33,34. Blood testing
was performed at BL andbefore the second treatment cycle (follow-up, FU).
Twenty randomly selected healthy individuals were used as controls35. As

shown in Fig. 3A, B, most of the analyzed inflammatory factors displayed
high plasma levels at both sampling time points as compared to healthy
individuals. Notable exceptions were IL-1β, IL-17A, IFN-γ, and GM-CSF
(Fig. 3A).Whilemean levels of TNF, IL-6, and IL-23 trended towards lower
levels at FU, IL-10, IFN-β, and IP-10 showed the opposite pattern (Fig. 3A).
IFN-λ1 and IFN-α2 were only elevated at FU but not at BL time points
(Fig. 3A).

In contrast, plasma levels of most soluble immune checkpoints were
actually diminished compared to the levelsmeasured in the20healthy blood
donors (sCD25, sPD-L1, sCTLA-4, sLAG-3 and sGalectin-9; Fig. 3A).
Exceptionswere sTIM-3whichwas slightly elevated at both time points and
sPD-1 which was highly elevated after only one dose of the PD-1-directed
checkpoint inhibitor at FU(Fig. 3A).Next,we assessed the clinical courses in
patients with high levels of selected soluble factors. Individuals with levels in
the upper quartile were considered high level. When testing these patients
against the rest, we observed that patients with high cytokine plasma levels
had a lower survival probability on pembrolizumab as compared to patients
with lower levels (Fig. 3B). This was especially true for patients with elevated
levels of sCD25, sTIM-3, IL-6 and sGalectin-9 and more pronounced after
the first dose of the immune checkpoint inhibitor (FU) than at BL assess-
ment (Fig. 3B; Supplementary Fig. 3A, B). Interestingly, this was reversed in
patients with high IFN-λ2/3 levels (Fig. 3B). Notably, the beneficial effect of
high IFN-λ2/3 levels was mainly driven by samples from the initial study
arm A (pembrolizumab only), which implies a potential effect of the vac-
cination approach on IFN-λ2/3 plasma levels (Supplementary Fig. 3).

Cell-free DNA levels and neutrophil-to-lymphocyte ratios (NLR)
In the inflammatory context of cancer, high levels of DNA seem to be
released into theblood, resulting in elevated cell-freeDNA(cfDNA) levels in
cancer patients as compared to healthy individuals. The majority (roughly
75%) of this DNA has been found to derive from neutrophils rather than
from the tumor itself or its immediate environment36. Given the inflam-
matory signature of HNSCC in general and the unfavorable outcomes on
immune checkpoint inhibition observed with this signature in our FOCUS
trial, we wished to analyze cfDNA levels along with the NLR as potentially
predictive biomarkers. We reasoned that lower cfDNA levels and lower
NLR may define a patient subpopulation that might benefit from pem-
brolizumab monotherapy without the need for additional, e.g., che-
motherapy. cfDNA levels of normal individuals have been shown to have
cfDNA levels around 4.3 ng/ml, while patients with stage I-III cancer have
levels around 12.6 ng/ml36. In line with this, our patients had elevated
cfDNA levels with a median of 11.9 ng/ml (Fig. 4A).
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Also,NLRwere elevated in our cohort (median of 6.18) as compared to
healthy individuals that typically have a ratio of 1–3 (Fig. 4B). Patients with
cfDNA in the lower quartile of our cohort (below 7.9 ng/ml) and/or NLR in
the lower quartile (below 4.1) had favorable clinical courses on pem-
brolizumab (Fig. 4C and Supplementary Fig. 4A, B). Yet, these two features
—cfDNA levels andNLR—did not show any obvious correlation (Table 1).

Immunotypes and biomarker importance tested in the
FOCUS trial
We performed a broader unsupervised cluster analysis in all patients who
had matched and complete BL and FU data for all analyzed factors (TCR,
NLR, cfDNA, cytokines/soluble factors) to understand potential immuno-
types beyond individual markers. All biomarkers that had shown correla-
tion with OS in the individual analyses were included. We identified
essentially three clusters (Fig. 5A): One group of patients was mainly
characterized by secretion of the soluble immune molecules sTIM-3 and
sCD25 at FU (red), another group showed high levels of IFN-λ2/3 at FU
(green), and a third group showed neither of these features (violet). Overall
survival was short in the sTIM-3/sCD25 group, long in the IFN-λ2/3 group
and intermediate in the group without these features (Fig. 5B). A compre-
hensive analysis including all of these biomarkers suggested a positive
correlation of the sTIM-3/sCD25 cluster with high sGalectin-9 and—to a
lesser extent—with sPD-L1 levels (Fig. 5C). There was some correlation of
sPD-L1 levels with IL-6 levels measured at FU. All other biomarkers tested
did not show significant correlation with this or other clusters.

To individually assess the combined predictive power of biomarkers
associated with OS, we next performed a multivariate Cox regression. To
address feature correlation and reduce overfitting, we applied Lasso reg-
ularization. Using a 3-fold cross-validation approach, the model selected
four biomarkerswithnon-zero coefficients from the initial set of 10 (Fig. 5A,
C): sCD25_FU, sTIM-3_FU, IL-6_FU, and clonality_FU/BL, highlighting

their collective associationwithOS. These featureswere then selected to refit
an unpenalized model for interpretability. In this model, clonality_FU/BL
and IL-6_FU were significantly associated with reduced survival, whereas
sCD25_FU, sTIM-3_FU were not. Given the observed correlation between
sCD25_FU, sTIM-3_FU(Fig. 5C),we refined themodel by removing sTIM-
3_FU, resulting in a more stable and interpretable final model. This final
model achieved a concordance index (C-index) of 0.774, indicating good
discriminatory ability. All three biomarkers were significantly associated
with reducedOS: sCD25_FU (HR = 1.001, 95%CI: 1.000–1.002, p = 0.007),
IL-6_FU (HR = 1.040, 95% CI: 1.002–1.080, p = 0.042), and clonality_FU/
BL (HR = 2.056, 95% CI: 1.415–2.988, p < 0.001). These findings are con-
sistent with trends observed in earlier univariate analysis.

Finally, we computed time-dependent ROC curves based on predicted
risk scores at 6, 12, 18, and 24 months to evaluate the prognostic perfor-
mance of our final Cox model. Notably, this analysis was restricted to 47
patients with complete data availability. Nevertheless, the model achieved
AUCs of 0.95, 0.85, 0.81 and 0.76, respectively, indicating a good predictive
and relatively stable discriminatory performance over time (Fig. 5D). Fur-
thermore, Kaplan–Meier analysis of patients stratified into predicted high
and low risk revealed a significant difference in OS between groups
(p < 0.001), further supporting the prognostic utility of the findings
(Fig. 5E).

Discussion
Immune checkpoint inhibitors have significantly expanded the treatment
options for rmHNSCC. However, the ideal treatment schedules and com-
bination partners are still uncertain. In fit patients with relapsed or refrac-
tory PD-L1-positive HNSCC, pembrolizumab as a monotherapy or in
combination with chemotherapy has demonstrated comparable effective-
ness in broad, unselected cohorts13,17. It is likely that specific patient sub-
groups benefit more from the addition of chemotherapy, while others may
achieve sufficient responses with pembrolizumab alone. Furthermore, cer-
tain patients may require completely different therapeutic approaches
altogether. This question is critical, as head and neck cancer patients often
present with comorbidities, and the addition of chemotherapy can sig-
nificantly increase treatment-related toxicities.

In our study, we treated a cohort of patients with up to and including
ECOG 2 performance status using pembrolizumab. In the study arm B,
patients received an hTERT vaccine in addition to the pembrolizumab
backbone, but this combination failed to meet the primary endpoint of PFS
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Table 1 | Patient subsets from the FOCUS trial displaying high
or low cfDNA and/or NLR at baseline assessment

cfDNA high cfDNA low

NLR high 38 15 53

NLR low 15 2 17

53 17 70
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and was therefore deemed ineffective21. Nonetheless, we identified several
intriguing biomarkers in this cohort that correlate with clinical outcomes.
These markers were associated with inflammatory processes (e.g., elevated
cytokine levels, high cfDNA concentrations, increased neutrophil-to-
lymphocyte ratios) or impaired T cell immunity (e.g., high T cell reper-
toire clonality, which likely indicates a lack of sufficient repertoire breadth to
mount a strong anti-tumor response, secretion of immune checkpoint
molecules). Multivariate modeling identified sCD25, IL-6, and TCR clon-
ality as the most robust correlates of OS. Patients exhibiting a pronounced
inflammatory profile or restricted T cell repertoire with high immune
checkpoint molecule secretion experienced poor outcomes on pem-
brolizumab, similar to observations in colorectal end esophagogastric can-
cer patients under checkpoint blockade24,27,28,37. However, due to the study
design, it remains unclear whether these factors are predictive or merely
prognostic in HNSCC.

Nevertheless, their detected activity provides some mechanistic
insights underlying the observed pembrolizumab efficacy. Elevated IL-6,
commonly found in HNSCC, is known to promote JAK/STAT-dependent
tumor cell proliferation38. Chronic IL-6 exposure has also been linked to T
cell exhaustion and resistance to checkpoint blockade39–41. Interestingly, our
data indicate that increased levels of IFN-λ2/3—a type III interferon which
also signals via the JAK/STAT pathway—are associated with improved
pembrolizumab efficacy, even in the presence of elevated IL-6. This may be
explained by IFN-λ-mediated upregulation of MHC-I42 and PD-L1/PD-
L243, enhancing tumor visibility and responsiveness to PD-1 blockade. The
fact that expression of the IFN-λ2/3 receptor (IFNLR1) is mostly restricted
to epithelial cells, mucosal surfaces, and dendritic cell subsets also highlights
the potential relevance of this signaling axis in HNSCC44. Importantly, the
beneficial effects of IFN-λ2/3wereprimarily observed inpatients fromstudy
arm A (pembrolizumab only), suggesting that UV1 vaccination may
influence IFN-λ2/3 plasma levels. This hypothesis is particularly compelling

given that UV1 is designed for uptake by dendritic cells21, key responders to
type III interferons at barrier surfaces. In addition, we found that patients
with high levels of sCD25 and sTIM-3 exhibited poor survival on PD-1
blockade.Although theprecise biologyof these two solublemarkers remains
incompletely understood, both have been associated with impaired T cell
effector function and resistance to immune checkpoint blockade45,46, high-
lighting the prominent multifactorial role of T cell immune regulation for
checkpoint efficacy.

The role of inflammation in HNSCC as a resistance mechanism to
immunotherapy, or as a direct driver of tumor progression, remains
unresolved14,15. This observation raises the important question of whether
combining immunotherapy with chemotherapy or other agents, such as
anti-inflammatory drugs, could enhance treatment efficacy and improve
patient outcomes.One potential approach could involve the combination of
immune checkpoint inhibitors with JAK inhibitors, which target signaling
pathways downstream of interferon and type 1 cytokine receptors on
immune cells. Recent studies have shown success with this concept in non-
small cell lung cancer and Hodgkin’s lymphoma47,48. In these models, JAK
inhibition with ruxolitinib or itacitinib reversed CD8+ T cell exhaustion
driven by myeloid-derived suppressor cell (MDSC)-mediated IFN-JAK/
STAT signaling. While MDSCs are also present in HNSCC tumors, their
infiltration is not yet linked to disease etiology, though infiltration rates do
correlate with clinical stage49. Notably, elevated NLRs have been associated
with higher MDSC frequencies and worse prognosis across several cancer
types50–53.

Furthermore, JAK inhibition could offer the added benefit of direct
anti-tumor activity, given the reliance of many HNSCC tumors on JAK-
STAT signaling pathways54. This dual-action approach—targeting both
immune modulation and tumor signaling—holds promise for improving
outcomes in this challenging patient population.However, it is important to
recognize that disruptions in JAK-STATsignaling, or the acquisitionof loss-
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of-function mutations in this pathway, are well-established mechanisms of
resistance to immune checkpoint blockade55. In addition, JAK-STAT sig-
naling plays a crucial role in maintaining T cell survival and function56.
Thus, any potential therapeutic benefit from JAK inhibition must be care-
fully weighed against the risk of impairing T cell-mediated immunity, and
further validation is needed to support its use alongside PD-1 inhibitors in a
given setting.

In the context of this complex immune environment, our findings also
emphasize the limitations of relying on single biomarkers likeCPS topredict
response to immune checkpoint blockade. Although all patients in the
FOCUS study had CPS≥ 1, the quantitative CPS value showed no asso-
ciation with outcome. This may reflect confounding by intratumoral het-
erogeneity, dynamic regulation of PD-L1 expression, or insufficient T cell
infiltration. Similarly, cfDNA is not a categorical marker but may reflect a
mix of tumor burden, systemic inflammation, and treatment response. The
weak correlation between cfDNA and NLR in our cohort underscores this
complexity.

Given that neutrophils are adominant source of cfDNA36, the datamay
suggest a greater relative contribution from tumor cells in HNSCC com-
pared to other cancers.However, activated lymphocytes and impairedDNA
clearance in inflammatory settings may also play a role36,57–59. The associa-
tion of high cfDNA and NLR with poorer survival likely reflects the con-
vergence of tumor progression and immune dysregulation, reinforcing the
need for integrated immune profiling over single-marker approaches.

Taken together, these findings suggest that rmHNSCC subsets with
dismal outcomeson immune checkpoint inhibition asmonotherapymaybe
identifiable by blood-baseddiagnostics. In particular, our analysis highlights
sCD25, IL-6, andTCRclonality as the strongest predictorsof overall survival
in patients receiving PD-1 blockade. While promising, these findings
require validation in larger, independent cohorts. Refining immunother-
apeutic strategies for these patients, possibly through combination with
chemotherapy or other anti-inflammatory agents,may overcome resistance
mechanisms and ultimately improve outcomes in rmHNSCC.

Methods
Biomaterial from the FOCUS clinical trial
This study is based on participants of the FOCUS trial (NCT05075122)60,
which was conducted at 10 centers in Germany under approval of the local
ethics committees and in compliance with the Declaration of Helsinki. The
study was approved by the ethics committee (EC) of theMedical Faculty of
theMartin-Luther-University Halle-Wittenberg, the EC ofMedical Faculty
of the University of Leipzig, the EC of the Landesärztekammer Rheinland-
Pfalz, the EC of the Medical Faculty of the RWTH Aachen, the EC of the
Landesärztekammer Baden-Württemberg, the Landesamt für Gesundheit
und Soziales (LAGeSo Berlin), the EC of the Ärztekammer Hamburg, the
EC of the Medical Faculty of the University of Würzburg, the EC of the
University Medicine of Greifswald and the EC of the Sächsischen Land-
esärztekammer. Primary outcomedata for the tested interventionhave been
published21. All participants provided written informed consent. Patients
enrolled in the FOCUS clinical trial (NCT05075122) donated 20mL of
peripheral blood, whichwas collected in STRECKcell-free DNABCT tubes
(STRECK, Cat. no. 218997), at baseline assessment and prior to the second
pembrolizumab dose for translational research. Collection and analysis of
blood samples and anonymized patient data were approved by the local
ethics committees of the collection sites, in compliancewith theDeclaration
of Helsinki and local regulations.

Survival analysis
Kaplan–Meier estimates were calculated using Cox proportional hazards
models with p-values derived from log-rank test and hazard ratios derived
from Cox regressions. Missing values were excluded. All comparative tests
should be considered exploratory. Statistical significance was defined as
p < 0.05. All analyses and plots were generatedwith R (v4.3.3, RCore Team,
2024), RStudio (v2024.12.1), and packages survminer (v0.4.9)61 and survival
(v3.5.8)62.

Next-generation T cell receptor repertoire sequencing
Leukocytes were pelleted from STRECK cell-free DNA BCT tubes
(STRECK, Cat. no 218997) and genomic DNA was isolated using the
GenElute Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich,
Taufkirchen, Germany, Cat. no. G1N70-1KT) according to the manu-
facturer’s instructions. To analyze blood immune cells throughout treat-
ment, amplification of the T cell receptor beta chain (TRB) repertoire from
circulating cells was performed as described elsewhere25,29,63–67. Sequencing
and de-multiplexing were performed on the Illumina MiSeq platform
(Illumina, San Diego, CA) with paired-end reads (2 × 301 cycles) at an
average coverage of 80,000 reads per sample. Alignment of rearranged TRB
lociwasperformedusingMiXCR(v3.0.12) and its default reference library68.
All analyses anddataplottingwere carried out usingR (v4.3.3,RCoreTeam,
2024)69 and the package tcR (v2.3.2)70. We calculated TCR richness, clon-
ality, and diversity as non-redundant but complementary metrics to assess
repertoire architectures. Richness refers to the total number of unique TCR
clonotypes. Clonality as indicator for potential tumor-reactive clonotype
expansion or proxy for oligoclonal repertoire with limited breadth is cal-
culated as 1-Pielou’s evenness71, which measures the dominance of clono-
types in a repertoire (0 refers to a maximally diverse TCR repertoire, 1 to a
repertoire dominated by one clonotype). Shannon entropywas calculated to
quantify TCR repertoire diversity by incorporating both the number of
unique TCR clonotypes (richness) and their relative frequencies (evenness).
It was computed using the formula H1 ¼ �PN

i¼1pi logðpiÞ, where pi
represents the proportional frequency of each clonotype71. Higher Shannon
entropy values indicate a more diverse and evenly distributed polyclonal/
polyreactive repertoire, while lower values suggest clonal dominance or
restricted diversity. Student’s t-test was used to compare two groups, and
ANOVAwas used to evaluatemultiple groups. All comparative tests should
be considered exploratory. Statistical significance was defined as p < 0.05.
The datasets generated in this study have been deposited in the European
Nucleotide Archive (ENA, ID: PRJEB80902).

cfDNA quantification
Isolation of cfDNA from blood plasma was performed using the QIAamp
Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany, Cat. no. 55114)
and quantified using Qubit dsDNA high-sensitivity assay (Thermo Fisher
Scientific, Waltham, USA, Cat. no. Q32854).

Soluble factor analysis
Plasma cytokines and other soluble factors were quantified using the
LEGENDplex Human Immune Checkpoint Panel (10-plex), Anti-Virus
Response Panel (13-plex), and the Human Inflammation Panel (13-plex)
(BioLegend, Cat. no. 740961, 741273, and 740809) according to the man-
ufacturer’s instructions. Readout of the LEGENDplex assayswas performed
on aCytoFLEXflow cytometer (BeckmanCoulter Life Science). Correlation
of plasma levels was calculated using the R package corrplot (v.0.92) with R
(v4.3.3) and RStudio (v2023.06.1).

Prognostic modeling
Multivariate analysis was performed using a Cox proportional hazards
model with LASSO regularization, implemented via the glmnet
package (v4.1-8)72. A 3-fold cross-validation approach was applied to
select optimal regularization parameter based on the concordance
index (C-index). Features with non-zero coefficients at the optimal
lambda were retained and used to refit an unpenalized Cox model for
interpretability. Predicted risk scores from the finalmodel were used to
asses survival stratification and prognostic performance. Time-
dependent ROC curves at 6, 12, 18, and 24 months were computed
using the timeROC package (v0.4)73 and corresponding AUC values
were reported.

Data availability
Data are available in the European Nucleotide Archive (ENA, ID:
PRJEB80902) or upon request.
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Code availability
Nocode has beengenerated for this study. All analyseswere performedwith
the referenced custom packages.
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