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1 | INTRODUCTION

wheat floral biology and enhance the likelihood of ovaries being fertilized by air-
borne pollen so breeders can select and utilize male and female parents for resilient,
scalable, and cost-effective hybrid seed production. Advances in understanding the
wheat genomes and pangenome will aid research into the underlying floral organ
development and fertility with the aim to stabilize pollination and fertilization under
a changing climate. The purpose of this position paper is to highlight priority areas
of research to support hybrid wheat development, including (1) structural aspects of
florets that affect stigma presentation, longevity, and receptivity to airborne pollen,
(2) pollen release dynamics (e.g., anther extrusion and dehiscence), and (3) the effect
of heat, drought, irradiation, and humidity on these reproductive traits. A combined
approach of increased understanding built on the genomic resources and advanced
trait evaluation will deliver to robust measures for key floral characteristics, such that
diverse germplasm can be fully exploited to realize the yield improvements and yield
stability offered by hybrids.

Plain Language Summary

Hybrid wheat (Triticum aestivum L.) development is crucial for sustainable food
production but faces challenges due to wheat’s self-pollinating nature. This paper
identifies key research priorities to improve wheat’s outcrossing efficiency and sup-
port scalable hybrid seed production. The study highlights three focus areas: floral
structures affecting pollen reception, pollen release dynamics, and environmental
impacts on reproductive traits. It also emphasizes the need for high-throughput meth-
ods to evaluate floral characteristics. Advancing knowledge of wheat floral biology
and improving breeding strategies will enhance both hybrid seed production and line
variety development, ultimately helping to increase and secure yields in a changing

climate.

et al., 2013; Longin et al., 2015; Longin et al., 2012; Miih-
leisen et al., 2014; Schneider, Frels, et al., 2024). Despite
the potential benefits of hybrid wheat, implementation of this

Bread wheat (Triticum aestivum L.) is vital for the global diet,
providing grain that accounts for ~20% of our protein and
calories (Erenstein et al., 2022). Breeding and agronomy have
more than doubled grain production from the 1960s to 2010
(Fischer et al., 2014). However, a recent stagnation in yield
gains (<1% globally) necessitates the adoption of innovative
approaches to achieve the estimated 60%—70% productivity
increase required by 2050 to sustain global food security (Ger-
ber et al., 2024; Van Dijk et al., 2021). Hybrid breeding has
proven exceptionally successful in driving yield increases for
crops like rice (Oryza sativa L.) and maize (Zea mays L.);
maize production, for example, has doubled since the 1960s,
representing an annual 2% yield improvement (Fischer &
Edmeades, 2010). Surveys of experimental wheat hybrids in
central Europe and the United States conservatively estimate
that 10%—24% yield increases and doubling yield stability are
achievable (Easterly et al., 2020; Gowda et al., 2012; Longin

technology has been hampered by the complexity of cross-
pollination, which impedes efficient hybrid seed production.
An important note is that the “seed,” we discuss here, is in
fact a fruit-like structure, called caryopsis, and is therefore
correctly referred to as grain; however, given industry com-
monly defines grain for consumption and seed for sowing a
crop, we will proceed with using “seed.”

The commercial production and deployment of wheat
hybrids demands three prerequisites to be developed: (1) an
effective pollination control system that facilitates obligate
outcrossing between selected parents, (2) an economically
viable production of hybrid seeds at scale, and (3) maximal
heterotic yield advantage in the hybrids. Revell et al. (2025)
have recently reviewed the options for robust and practicable
pollination control, such as chemical hybridizing agents
(CHAs; such as Croisor 100, Genesis) and cytoplasmic and
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nuclear controlled male sterility systems (cytoplasmic male
sterility [CMS] and nuclear male sterility [NMS], respec-
tively) (Darvey et al., 2019; Revell et al., 2025; Singh et al.,
2021; Singh et al., 2018). Clearly, NMS is a leading system, as
it limits the number of cross-pollination steps in hybrid pro-
duction, no longer necessitating cross-pollination for sterile
parent maintenance as does CMS, and is also not dependent
on specific environmental cues (Revell et al., 2025). While
these pollination control systems enable the production of
intended hybrids with acceptable heterosis levels of 10%—20%
(Gupta et al., 2019; Longin et al., 2013; Schneider, Hinter-
berger, et al., 2024), wheat’s self-pollinating florets restrict
the large-scale and economically feasible production of hybrid
seed (Selva et al., 2020; Whitford et al., 2013).

The economics of hybrid wheat for a breeder are primar-
ily determined by the cost of producing hybrid seed and the
expected seeding rate used by the grower. Hybrid seed pro-
duction, whether for test crosses or commercial production,
depends on synchronizing female receptivity with the avail-
ability of airborne pollen from a chosen male donor (termed
nicking). Ideally, the female parent flowers 2-5 days earlier
than the male parent (Schmidt et al., 2024), and the male
is taller than the female genotype to enable pollen flow;
height can be manipulated through exploitation of Rht genes
(Wiirschum et al., 2018), for example. Hybrid seed production
that harnesses CMS/NMS pollination control systems is more
cost-effective than CHA-controlled systems, but all require
favorable floral morphologies.

Often, hybrid seed production is done in isolated strip
planting with male and (male-sterile) female parental lines
planted next to each other (and isolated from other sources of
wheat pollen). Other approaches to improve the affordability
of hybrid seed production include blended hybrids (Wilson,
1997), where seeds from a male-sterile female and a fertile
male are mixed, resulting in hybrid seeds that contain a small
fraction of inbred males. In such a mixed planting, the distance
required for pollen to travel is less than in a strip planting.
However, such blended hybrid seed must pass official vari-
etal testing requirements, which vary between countries. A
third approach to hybrid seed production involves the applica-
tion of collected and stored pollen to female acceptor lines at
the peak of their receptivity, such as in hybrid rice and maize
(Brena et al., 2019; www.powerpollen.com).

In the CMS-based, three-line pollination control sys-
tems, cross-pollination is not only required to create the F1
hybrids but also for the maintenance and multiplication of
the CMS line (A-line) by an isogenic fertile maintainer (B-
line). The relative seed set in CMS maintenance can vary
widely and yields less on average compared to self-pollination
(Figure 1A). In an independent data set, the variation in seed
set among six A x B pairs suggested a trend that spike emer-

Core Ideas

* Wheat pollination in line and hybrid varieties
needs to be secured in a changing climate.

e Cost-effective hybrid wheat seed production
requires selection for outcrossing floral organs.

* Wheat breeding companies and researchers are
calling for adequate funding for wheat floral biol-
ogy research.

gence in the CMS line (A-line) needs to be a few days ahead
of the B-line for better seed set (Figure 1B). However, addi-
tional factors are likely to influence seed set in the CMS
lines, which could be environmental factors, such as tem-
perature, rain, and wind, and phenotypical factors, such as
female receptivity, anther extrusion, pollen quantity and qual-
ity. While breeders typically select lines for excellent pollen
shed and good seed set after cross-pollination, during CMS
maintenance, earlier gaping of the A-line and full flowering of
the B-line need to be achieved in a near-isogenic background
(same nuclear background) that limits the genetic options for
improving cross-pollination as well as preventing the utility
of mixed planting.

Hybrid seed production in cross-pollinating settings is chal-
lenging regardless of the pollination control and production
system. Again, breeders select lines to be engaged in test cross
hybrids or hybrids by ensuring excellent pollen shed in the
male pool and good seed set in the female pool. Still, for exam-
ple, in a large set of CMS females, <50% seed set in hybrid
productions was observed across multiple locations and years
compared to self-fertile check genotypes (Figure 2A). This
again demonstrates that factors other than nicking, gaping
of the CMS line, and anther extrusion in the male seem
to influence effective seed set in the female. Also, seed set
in CHA-controlled test crosses ranges from 25% to 130%,
relative to seed set in benchmarking hybrids (Figure 2B). Fur-
ther, seed set strongly varies with environmental conditions
encountered during flowering, as shown with 50 identical
hybrid production trials across years (Figure 2C).

Furthermore, a recent study on CHA-controlled hybrid
seed yield could only explain one-third of the genetic vari-
ation in hybrid seed yield with plant height and flowering
time but failed to identify any other significant marker-trait
associations, suggesting hybrid seed yield is subject to highly
polygenic control (Schneider, Hinterberger, et al., 2024).

Together, these data highlight floral architecture and
fertility-related traits as key targets for research and develop-
ment activities that aim to enhance hybrid seed production.
Our alliance of commercial companies, which are committed
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Variation in cross-pollination seed set in cytoplasmic male sterility (CMS) line maintenance. (A) Meta-analysis summarizing seed

set of a test set of CMS females (A-lines) as percent of self-fertile B-lines seed set from Limagrain 2020-2023 CMS maintenance across German

research locations. (B) Seed set of six different CMS (A-lines) pollinated by the respective near-isogenic maintainer (B-line), as observed in RAGT

trials. The bar chart represents the average seed set per genotype =+ standard deviation. The solid line represents the difference in spike emergence

date in the A-line and the B-line. The dashed line represents the difference between the start of gaping in the A-line and the start of flowering in the

B-line.
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FIGURE 2

Percentage cross-pollination seed set relative to check (%)

Variation in cross-pollination seed set in hybrid production. (A) Meta-analysis summarizing cross-pollination seed set on

cytoplasmic male sterility (CMS) females as percent of self-fertile female maintainer seed set from Corteva 2022-2024 hybrid productions across

North American research locations. (B—C) seed set from top crosses using a chemical hybridizing agent (CHA). (B) Seed set was measured in the

breeding program of KWS on a total of 1185 CHA-treated parental genotypes (594 females, 591 males) after cross-pollination with a tester from the

opposite pool. Cross-pollination seed set is expressed relative to hybrids involving genotypes KWS Ultim (Q) and Apache (3). (C) Seed set of 50

hybrid combinations was repeatedly measured in the breeding program of BASF across the years 2022, 2023, and 2024. Cross-pollination seed set is

expressed relative to the hybrid with the highest seed yield.

to hybrid wheat utilizing diverse pollination control systems,
agree that cross-pollination seed set limits the number of
candidate hybrid parents available, imposing a restriction
on the diversity of germplasm entering advanced stages of
breeding programs. This represents a significant improve-
ment opportunity for enabling maximum heterosis and crop
performance for farmers as well as reasonable costs of goods
to better encourage continued private investment in wheat
crop enhancement. We propose that wheat’s floral morphol-
ogy needs to be modified to optimize outcrossing efficacy,

with female and male traits, as outlined below. An enhanced
understanding of these floral traits and their responses to
diverse environmental conditions will likely benefit sustained
productivity of hybrid and inbred genotypes in a changing
environment, especially in warmer and drier conditions.
Encouragingly, recent advances in our understanding of
wheat genomes (Jiao et al., 2025; Tiwari et al., 2024) will
provide new opportunities to decipher the genetic variation
underlying diversity in floral organ traits. For example, under
a conservatively estimated rise of 1.5°C in the near future,
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production for the male pollinator (B) and the sterile female seed parent (C) (De Vries, 1971; Khan et al., 1973; Kirby, 2002; Okada et al., 2018;

Waddington et al., 1983).

grain yields are predicted to decrease by 7%—12% (Zaveri &
Lobell, 2019). This impact will involve water and heat stress
that have already been demonstrated to reduce seed produc-
tion by 54% in one out of 3 years for hybrid seed set evaluation
of 72 winter wheat lines (Schneider, Frels, et al., 2024).

2 | CURRENT UNDERSTANDING OF
FLORAL ORGAN DEVELOPMENT AND
POLLINATION

The wheat inflorescence is composed of sessile spikelets that
are alternately distichously arranged along a central axis,
called a rachis (Figure 3A). Each spikelet is enclosed by two
bract-like glumes and contains several florets. Each floret is
comprised of two bract-like protective structures known as
a lemma (abaxially) and palea (adaxially), which safeguard
a pair of lodicules (homologous to eudicot petals) and the
sexual organs, three stamens, and a pistil. The pistil is com-
prised of three fused carpels surrounding a single ovule. The
apical region of the pistil bifurcates into two styles with feath-
ery stigmas. Given this enclosed floret structure, wheat is
strongly autogamous. In self-fertile plants, pollination occurs
early inside the opening, yet still closed floret, almost concur-
rent with anther dehiscence, lodicule swelling, and filament

elongation, which ultimately results in anther extrusion if
palea and lemma gape (Figure 3B; Zajaczkowska et al., 2021).
Pollen that is not released in the floret is then shed outside
at maximum anther extrusion and dispersed by wind. As a
result of these events, self-fertile wheat cross-pollinates at a
low frequency (Boeven et al., 2016; Wiirschum et al., 2018;
Zajaczkowska et al., 2021). In male-sterile plants, florets first
open as the lodicules enlarge, and they continue to a “second
opening” through the action of circumferential ovary swelling
that only occurs in the absence of fertilization, often described
as floret gaping (Figure 3C; Okada et al., 2018; Schmidt
et al., 2024). Gaping proceeds from central to distal spikelets
(Figure 3C). When successfully cross-pollinated, hybrid seeds
are set on this female parent. Ideal cross-pollinators should
possess high anther extrusion, facilitated by long filaments,
large lodicules, and soft pliable paleae, lemmas, and glumes
(Whitford et al., 2013). Anthers should produce abundant,
long-lived pollen that is easily dispersed, with inflorescences
positioned higher than the female to promote greater wind-
driven pollen dispersal and capture (Denisow et al., 2022;
Whitford et al., 2013).

Many floral characteristics, such as anther extrusion,
anther length, pollen mass, duration of floret opening, floret
openness, and stigma length, are heritable and exhibit geno-
typic variance (El Hanafi et al., 2020). Pollen mass and anther
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extrusion were found repeatedly to correlate highly with seed
yield (Boeven et al., 2018; El Hanafi et al., 2022; Garst et al.,
2023), and similarly, they were also found to correlate with
the duration of floret openness (Schmidt et al., 2024).

Our current understanding of the importance that male
organs play in hybrid seed set mainly relates to pollen shed
as a function of anther extrusion and the associated traits of
anther size, pollen number per anther, and collected pollen
mass (Langer et al., 2014; Nguyen et al., 2015). Schieren-
beck et al. (2024) showed that green revolution wheat varieties
(genotypes carrying Rht semi-dwarfing alleles) inherently
display poor male floral characteristics (i.e., anther extrusion)
(Schierenbeck et al., 2024), which is supported by multiple
independent genome-wide association studies and analyses of
biparental mapping populations (Boeven et al., 2016; Buerst-
mayr & Buerstmayr, 2016; Garst et al., 2023; He, Lillemo,
et al., 2016; He, Singh, et al., 2016; Langer et al., 2014; Lu
etal., 2013; Mugaddasi et al., 2017; Okada et al., 2019, 2018,
2020; Sade et al., 2022). The proportion of extruded anthers
also strongly associates with post-anthesis filament length
(Denisow et al., 2022).

Few studies have implicated the importance of female
organs in the efficiency of hybrid seed production. Studies
across genotypically diverse (Schneider, Hinterberger, et al.,
2024) and small panels of elite females (Boeven et al., 2018;
Schneider et al., 2021) have demonstrated that pollen recep-
tivity is critical for hybrid seed set, although no clear links to
observable female phenotypes have been drawn. Spikes with
a lax arrangement of spikelets, however, have been shown to
improve floret opening and enhance accessibility of stigmas
to airborne pollen, which facilitated cross-pollination relative
to plants with more compact spikelets (Pickett, 1993). The
length and structure of the stigma also influence receptivity
(Pickett, 1993; Whitford et al., 2013).

Stigmas undergo three stages of development: growth to
reach ~85% of maximum size; peak, lasting until stigma
area decreases 15% from maximum; and then deterioration,
characterized by gradual senescence (Millan-Blanquez et al.,
2022). The phases of stigma development are guided by
morphological cues, and significant transcriptional changes
associated with these cues may provide leads for targeted
genetic modulation to fine tune different aspects of stigma
biology (Millan Blanquez, 2023; Millan-Bldnquez et al.,
2022). Independent of being CMS or NMS, different male-
sterile varieties show distinct developmental rates across these
phases and form different-sized stigmas. Stigma longevity
limits seed set; however, ensuring pollen can access stigmas
is of higher importance for improving hybrid seed produc-
tion under field conditions (Millan-Blanquez et al., 2025).
The Rht14 dwarfing locus, derived from durum wheat Italo
(Triticum durum Desf.), has also been shown to improve
stigma presentation in hexaploid bread wheat (Pallotta et al.,
2024).

While studies have addressed male and female organs
in isolation, the synchronization and interaction of gametes
determine the reproductive success that goes beyond the per-
fect overlap in flowering (nick). We propose to focus on this
interaction, and we introduce the term “effective pollination
period” (EPP) to the wheat community (Figure 4). The EPP
refers to the phase during which male and female gametes are
viable and capable of facilitating gamete fusion and fertiliza-
tion, which can be enhanced by organ morphology (Sanzol &
Herrero, 2001; Williams, 1965). In cross-pollination, anther
extrusion and dehiscence outside the floret need to be syn-
chronized with peak stigma exertion and female receptivity.
Male and female development may be or become asyn-
chronous within a floret and certainly across different florets
on (female and male) plants in a cross-pollination setting,
each of these being exacerbated under stress such as heat or
drought (Lukac et al., 2011). Such male to female asynchrony
(within a floret) occurs in the naturally outcrossing cereal rye
(Secale cereale L.) (Bennett et al., 1973), showing that organ
development could potentially shift toward beneficial states
in only one organ, for example, later anther dehiscence when
cross-pollination needs to be met.

The synchrony and duration of the EPP are variable under
changing weather conditions. Understanding genetic com-
ponents that reduce this variability is essential for robust
control of the EPP to maximize hybrid seed set across environ-
ments and seasons. It is well documented that pollen viability
decreases under warmer (over 32°C) and drier conditions
(De Storme & Geelen, 2014; Fabian et al., 2019; Saini &
Aspinall, 1982). However, we also need to understand the
processes that trigger pollen release and whether they can be
adjusted to occur during cooler parts of the day, maximising
pollen fertility; the circadian regulation of floral organ devel-
opment has been reported in other species (Marshall et al.,
2023). The environment also impacts other phases of repro-
ductive development that will influence effective pollination;
for example, temperature and day length affect early spikelet
and floret development, and flowering time is delayed when
the cooler temperatures of winter and early spring, needed for
vernalization and flowering in winter cultivars, are interrupted
with a higher temperature (Dixon et al., 2019). Understanding
the changes impacting EPP, together with the environmental
impact on stem elongation and floral emergence, will help
breeders optimize cross-pollination seed set and therefore
production efficiencies.

3 | RESEARCH NEEDED FROM A
BREEDER’S PERSPECTIVE

1. Effective phenotyping of female receptivity: Research is
needed to describe female reproductive organ develop-
ment, including the alignment of gamete development
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FIGURE 4 Effective pollination period (EPP). The effective pollination period differs in self- and cross-pollinating scenarios. In selfing,
pollen is shed on the receptive stigma within a yet closed floret. In cross-pollination, pollen needs to be available outside the floret to shed on a
male-sterile stigma and usually coincides with a gaping, receptive female. The dynamics of anther extrusion and pollen shedding, as well as stigma
growth, presentation, and receptivity, differ widely across genotypes (Millan-Blanquez et al., 2022; Milldn-Bldnquez et al., 2025; Pallotta et al.,
2024). Anther dehiscence (rupture of anther lobes and pollen release) marks the start of the EPP in the male organs, while it stops when all pollen are
non-viable, as can be determined by staining. The female EPP is less well understood, but stigma/styloid protrusion or exposure to outside the
palea/lemma in sterile florets marks the onset, with stigma hair atrophication marking the loss of the stigma vitality. A quantitative scale is provided
based on previously published developmental scales (W: Waddington; Z: Zadoks; DAW9.5: Days After Waddington 9.5). The last Zadoks stage
(Z53), useful for developmental staging in practical breeding settings prior to the first Waddington stage, is indicated tentatively, as this varies across
genotypes. Images not to scale. Images adapted from Millan Blanquez (2023).

and the interaction of female and male organs throughout
pollination and fertilization. A comprehensive under-
standing will extend the current Waddington scale and
Waddington+ scales (Schmidt et al., 2024; Waddington
et al., 1983) and establish a common framework, scale,
and terminology for key molecular and biological events
that underpin fertility. The fundamental understanding
should aid development of a much-needed practical phe-
notyping method for receptivity that can exploit diverse
genetic resources. An example includes linking the recep-
tivity from fine-scale experimentation to macroscopically
observable changes, such as glume flaring or peduncle
length.

. Stigma receptivity: Breeders indirectly select for receptiv-
ity through seed set by cross-pollination, but this assay
is biased by their choice of a tester genotype, agronomic
practice, and climatic conditions. More direct targets for
selection of favorable stigma characteristics are desirable;
however, quantitative trait loci (QTL) for stigma receptiv-
ity or floret openness have yet to be identified in wheat. In
rice, stigma presentation (exertion) outside the lemma and

palea is a significant contributor to airborne pollen cap-
ture and hybrid seed production yields (Xie, 2009; Zhou
etal., 2017), with outcrossing rates largely correlating with
stigma and style length (Kato & Namai, 1987; Marathi &
Jena, 2015; Virmani, 1994). To date, genes underlying four
stigma length QTL in rice have been identified and shown
to encode molecular functions related to gene transcription
as well as hormone biosynthesis and signaling (Dang et al.,
2022; Guo et al., 2022; Liu et al., 2015; Xu et al., 2019).
Thanks to cereal genome research advances, these genes
can now be assessed in a directed way, also in wheat (Yao
etal., 2025). However, what genes control lodicule, carpel,
and styloid development? How is stigma development and
onset of receptivity coordinated up and down the spike and
between florets?

. Enhanced pollen-related traits: Pollen abundance and

duration of pollen shedding are prerequisites for success-
ful fertilization and seed set of hybrids. So far, breeders
phenotypically select lines with good anther extrusion or
duration. Anther extrusion is a well-documented multi-
genic trait; however, the underlying genes, other than RAf,
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remain to be identified. Pollen viability and amenability
for wind dispersal need further assessment. An important
consideration for this analysis will be to understand that
pollen production cannot be selected for too strongly, as
it may divert resources to male organs at the expense of
yield. Developing approaches to effectively harvest, store,
and apply pollen at the required time is another possibility.

4. Gamete and organ interactions that drive fertilization
(EPP, Figure 4): Pollination and fertilization each con-
tribute to seed production, and further research that
disentangles these processes will inform directed breed-
ing or agronomic practices that target either process, either
independently or in conjunction. Regarding organs, the
interaction between stamens and pistils to coordinate opti-
mum fertility would help determine the ideal timing for
stigmas to be treated with airborne pollen. Pollen and pis-
tils also undergo a complex interaction when pollen arrives
on stigma hairs to promote pollen germination and then
pollen tube growth, which is vital for fertilization.

5. Climate effects on gamete development and fertility:
Gamete development, pollination, and fertilization are
affected by variable climatic conditions. Seasonally dis-
tant events, such as warmer future winters, may affect the
timing of gamete formation, while changes in irradiation
and temperature will alter flowering itself. Climatic con-
ditions are also expected to be more erratic, with wheat
reproduction likely to suffer from drought or high air
humidity and rain across different geographies (Pequeno
et al., 2021). To optimize the sustainability of fertilization
for self-pollinating and cross-pollinating seed production
systems, it is vital that we understand more about the
impacts of these environmental threats on gamete devel-
opment, pollination, and fertilization. In conjunction with
advances in identifying and phenotyping important traits
mentioned above, the ability to incorporate both genetic
and environmental data via crop growth models may
also provide greater insights into critical environmental
covariables important to maximize fertility under different
agroclimatic conditions.

6. Expanded genetic diversity: Given the well-described limi-
tations of wheat’s floral biology and its history as an inbred
cereal, it is possible that elite genotypes may not contain
the necessary genetic variation to enhance floral biology
traits for efficient outcrossing. Such restrictions in genetic
variation can now be directly informed through advances
in wheat genomics (Yao et al., 2025) and the availability
of pan-genome sequences (Tiwari et al., 2024). Increasing
the cross-pollination capacity in wheat may also require
floral architectures that are beyond the currently available
germplasm. Rye, as a cross-pollinating relative of wheat,
for example, possesses desirable outcrossing floral traits.
Unlike wheat, rye extrudes long anthers from the florets
and sheds a high amount of pollen (Lundqvist, 1957). Rye

anthers can grow to more than double the size of wheat
anthers (Athwal & Kimber, 1970; Pickett, 1993), suggest-
ing that anther size and timing of anther dehiscence are
likely selected features for successful cross-pollination in
rye. For example, wheat-rye 4R addition lines showed pos-
itive effects on anther size and pollen number (Nguyen
et al., 2015). Identifying and adopting wheat genotypes
with rye-like floral characters may help improve male traits
for higher seed set. Thus, there is a need to search for
new beneficial diversity in floral characteristics by screen-
ing diversity panels, wild wheats, or mutant collections
or creating novel variants through targeted modification
of key floral genes using gene editing tools such as the
CRISPR/Cas system.

The wheat breeding community is committed to supporting
research in reproductive biology to overcome challenges of
hybrid seed production, which will help transform breeding of
this staple crop for improved food production. It is the aim of
the wheat industry and wheat researchers to secure wheat pol-
lination and fertilization under changing climatic conditions
so that the benefits of inbred and hybrid wheat can be reaped
by farmers and society. While sustaining self-pollination
of (parental) lines, a robust cross-pollination success rate
exceeding 75% of self-pollination should be possible in an
ever-widening set of genetics and environments. Adequate
investment from funding bodies and proactive public-private
partnerships are necessary to meet these goals.
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