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SUMMARY

We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method de

signed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representa

tion space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation. 

Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art 

supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent 

performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as 

we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction re

sults indicate that our method has superior performance in reconstructing the volumes in both single-particle 

datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of 

self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and 

cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.

INTRODUCTION

Cryoelectron microscopy (cryo-EM) has transformed structural 

biology by facilitating the imaging of biological macromolecules 

at near-atomic resolution. In a standard cryo-EM experimental 

protocol, a purified protein sample is rapidly frozen in a thin layer 

of vitreous ice, to preserve their native structures and minimize 

radiation damage. The frozen sample is then imaged in an 

MOTIVATION Cryoelectron microscopy (cryo-EM) has become a vital technique in structural biology, 

enabling the determination of protein structures at high resolution. A critical step in this process is ‘‘particle 

picking,’’ which involves the localization of protein particles in cryo-EM micrographs. The accuracy of particle 

picking strongly influences the quality of the 3D protein structure, since the identified particle projections are 

used to reconstruct the 3D electron density map. To date, all automated machine learning-based methodol

ogies for this crucial task are based on techniques that rely on human supervision thus leading to three main 

limitations, namely that systems (1) require costly annotated datasets, (2) cannot generalize to unseen data 

distributions such as different proteins or cryo images captured under different laboratory settings, and (3) 

demand fine-tuning and further supervision to adapt to unseen data. To overcome these challenges, we pro

pose cryo-EMMAE, the first self-supervised particle picker that entirely eliminates the need for annotations 

while demonstrating strong generalization capabilities, even in the context of highly heterogeneous speci

mens, such as native cell extracts. 
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electron microscope, producing two-dimensional (2D) projec

tions of the protein randomly distributed in images called micro

graphs. Each micrograph contains numerous randomly oriented 

copies of the molecule of interest, the so-called particles.1–3

Despite its importance, the analysis of cryo-EM data presents 

several unique challenges that arise from the nature of the imag

ing technique and the biological samples being studied.4,5

One of the most critical steps in cryo-EM data processing is 

particle picking,6 the process of selecting individual particles 

from noisy and heterogeneous micrographs. This step is chal

lenging due to several inherent factors in cryo-EM data. First, 

Cryo-EM micrographs typically exhibit a low signal/noise ratio 

due to the low electron dose that is used during imaging to mini

mize radiation damage on the delicate biological samples.7

Consequently, the high noise levels make the particles almost 

indistinguishable from the background.8 Second, the appear

ance of particles in cryo-EM micrographs is highly variable. 

This variability is a result of differences such as particle orienta

tion, conformational states, micrographs with multi-proteins 

samples9 and the presence of artifacts such as ice contamina

tion. The heterogeneity of particle appearance further compli

cates the particle-picking, as it becomes more challenging to 

establish consistent criteria for identifying and selecting parti

cles. Third, cryo-EM datasets often have different parameters 

during data collection, such as the accelerating voltage, the total 

electron exposure dose, and vitreous ice thickness. These vari

ations can lead to deviations in the appearance and contrast of 

particles across different datasets. Additionally, manual annota

tion of particles is a time-consuming, laborious, and prone to hu

man bias and inconsistencies process.

The main objective of cryo-EM analysis is to produce the high

est possible resolution for the protein’s 3D density map from a 

given dataset of micrographs. A high-resolution 3D map provides 

more detailed atomic positions of the protein, increases the cer

tainty of the atomic structure, and thus enhances its credibility. 

Various computational approaches have been proposed to auto

mate particle picking from developing traditional methods that are 

either template based10,11 or template free,12–16 to supervised 

deep learning techniques that are based on one of semantic seg

mentation,17–21 classification,22–27 or object detection.28–30 How

ever, these methods (1) still require a substantial amount of manu

ally picked particles for training and fine-tuning, thus creating a 

fundamental bottleneck in the cryo-EM workflow. Along with this 

demand for costly expert annotated data, we empirically observe 

that state-of-the-art approaches based on classification or object 

detection (2) struggle to generalize to unseen data and experi

mental conditions. Additionally, all existing deep learning-based 

methods are designed to (3) work on micrographs containing pu

rified samples of a single protein. This constraint prevents their 

application to more challenging and promising scenarios involving 

multi-protein micrographs, which could reveal complex interac

tions inherent to intracellular processes.9,31,32 These three core 

challenges render existing methods unsuitable for real-world ap

plications, especially in laboratory settings where data availability 

is limited. In such cases, practitioners are unable to effectively use 

pre-trained networks or train models from scratch.

In this work, we make a first step toward alleviating the reliance 

on annotations and provide a potential alternative to this limited 

resource setup. We introduce cryoelectron microscopy masked 

autoencoder (cryo-EMMAE), the first self-supervised particle 

picking method. This approach, as illustrated in Figure 1, lever

ages a masked autoencoder (MAE) to segment micrographs 

by clustering the MAE latent representation space. Our method’s 

self-supervised nature arises from the learning process of MAE, 

which reconstructs masked patches of input micrographs using 

only the original images as both input and target data. Through 

this process of image reconstruction, without requiring any la

bels or annotations, the model learns useful features and pat

terns, distilling this information into a latent representation. At 

inference time, these distilled representations, learned purely 

from unlabeled micrographs, are utilized for micrograph seg

mentation. Initially, a clustering algorithm trained on the training 

data is used to differentiate the background from the particle 

latent space shared across all micrographs. Subsequently, hier

archical clustering is applied to each micrograph to progres

sively filter micrograph-specific noise from particles.

We trained cryo-EMMAE along two state-of-the-art deep 

learning methods, Topaz23 and crYOLO,28 from scratch using 

four annotated EMPIAR datasets provided by CryoPPP.33 The 

models were then evaluated on these datasets as well as 10 

additional EMPIAR datasets, which were not seen during 

training. These evaluation datasets were chosen to represent a 

wide variety of protein types, functions, subcellular locations, or

ganism origins, shapes, sizes, noise characteristics, and protein 

concentrations in the micrographs.

Results show that, unlike existing methods, cryo-EMMAE ex

hibits excellent generalization, delivering stable performance 

across all evaluation sets, regardless of the pretraining data.

Additionally, we report that, for a given dataset, cryo-EMMAE 

converges toward its optimal performance with just 5 micro

graphs (equivalent to 1,280 training images for the MAE), indi

cating that using more data from the same data source does 

not significantly improve performance. This makes our method 

annotation-free, independent of the pretraining data types, and 

trainable with a minimal number of micrographs. We further 

demonstrate that protein reconstructions generated using parti

cles picked by cryo-EMMAE outperform those produced by cry

oSPARC’s Blob Picker,15 Topaz, and crYOLO, even for proteins 

not encountered during training. Finally, we present promising 

results on experiments based on cell extracts, when methods 

are trained with extended training dataset.

The main contributions of this paper are summarized as 

follows.

(1) We introduce cryo-EMMAE the first self-supervised 

method for particle picking in cryo-EM data that does 

not require any form of annotation.

(2) Cryo-EMMAE demonstrates stable generalization capa

bilities when applied to unseen data distributions and out

performs supervised methods, highlighting the effective

ness of our unsupervised approach in handling diverse 

cryo-EM datasets.

(3) Our method achieves exceptional generalization even 

when trained on a limited number of micrographs. This 

is especially beneficial in situations where annotated 

data are limited or difficult to acquire.
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(4) We are the first to apply our method to micrographs with 

samples from cell extracts, i.e., multi-particle samples 

that have not undergone any over-expression and purifi

cation. In this challenging setup, we demonstrate the su

perior performance of cryo-EMMAE.

(5) We show the effectiveness of segmenting through clus

tering latent representations learned from cryo-EM data. 

By incorporating the representation clustering, cryo-EM

MAE can effectively distinguish the underlying protein 

structure and patterns in the presence of noise.

RESULTS

In this section, we compare three commonly used methods for 

particle picking: (1) Blob Picker,15 a traditional template-free 

approach that picks particles by searching for Gaussian signals 

and does not rely on annotated data but requires active human 

supervision in hyper-parameter searching, (2) Topaz,23 a state- 

of-the-art classification-based method, and (3) crYOLO,28 the 

highest-performing object detection-based method across 

various particle picking tasks and setups. For evaluation, we 

use subsets of the CryoPPP dataset for training and testing, as 

described in Dhakal et al.33 Experimental details are listed in 

experimental setup. Our experimental results involve training 

on four different datasets separately and evaluating the perfor

mance of each model on 14 datasets, as detailed in Tables 1

and S1 and illustrated in Figure S2. Additionally, we report results 

on a particularly challenging dataset (EMPIAR: 10892), which 

contains data from cell extracts,9 with the machine learning 

methods trained on 20 EMPIAR datasets in total. Finally, we 

apply cryo-EMMAE to real-world scenarios using the complete 

set of micrographs from 6 EMPIAR experiments and compare 

the resulting 3D reconstructions against published maps.

Comparison under the supervised setup

An initial point of interest is the supervised scheme, where each 

method is evaluated on the dataset (one of EMPIAR: 10291, 

10077, 10590, 10816) that it has been trained on. First, results 

from Table 1 indicate that our method demonstrates superior per

formance over Topaz with respect to the F1 metric. Additionally, it 

B

A

C D

Figure 1. The cryo-EMMAE pipeline 

The cryo-EMMAE pipeline starts with an input micrograph and follows these steps: 

(A) Pre-processing: the micrograph undergoes normalization of background noise to minimize correlation with experimental parameters and is filtered to enhance 

particle contrast. 

(B) Micrograph representation: patches are extracted from the pre-processed micrograph and used to map it onto the MAE representation space. 

(C) Denoising: the resulting embeddings form a smaller image where a k-means trained on the train set identifies pixels with the lowest noise levels. These images 

undergo further denoising through micrograph-specific hierarchical clustering. 

(D) Post-processing: convolution-based smoothing is applied on the predictions of the particle centers with greater accuracy.
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closely matches crYOLO in three out of the four cases, with the 

exception being dataset EMPIAR: 10291. However, both super

vised methods outperform cryo-EMMAE in the Intersection over 

Union (IoU) metric. Therefore, in the supervised setting, while 

our method is comparable in identifying particles with good preci

sion, it exhibits inferior performance in predicting particles and 

their centers (IoU) compared with the supervised methods.

Generalization ability

The results reported in Table S1 and Figure S2 suggest that su

pervised methods struggle to generalize to unseen data distribu

tions. Across all metrics reported, their performance frequently 

drops to exceptionally low levels. Notably, both Topaz and crY

OLO often exhibit near-zero values for F1 score, IoU, precision, 

or recall metrics. Even for cases of non-zero performance, they 

are still inferior to the ones obtained with supervised training. 

In contrast, cryo-EMMAE demonstrates notable cross-dataset 

generalization capabilities. Its performance consistently remains 

nearly stable across various evaluation datasets and models 

trained on different datasets.

This suggests that our method effectively mitigates the impact 

of dataset-specific noise levels and characteristics in micro

graphs. These findings imply that cryo-EMMAE can learn the 

necessary invariances irrespective of the experimental nuances 

inherent in cryo-EM procedures. As shown in Table 1, cryo-EM

MAE’s mean F1 and precision scores across all four training par

adigms are superior to both Topaz and crYOLO. However, while 

the mean IoU and recall values are comparable across all three 

methods, cryo-EMMAE lags behind in three out of four training 

setups.

Performance scaling vs. training set size

In Figure 2A, we highlight an interesting characteristic of cryo- 

EMMAE: our approach achieves strong performance after 

training on just 5 micrographs. Each micrograph is divided into 

256 images (since they are resized to a 1,024 × 1,024 shape), 

meaning that, when trained on 5 micrographs, our method is 

effectively trained on 1,280 images in total. We hypothesize 

that this behavior results from the randomness inherent in the 

masking process during our preprocessing pipeline, which helps 

mitigate the influence of experimental factors, such as ice thick

ness, on micrograph noise. This noise normalization makes the 

data less variable at a local scale, while reconstructing random 

patches can amplify this variability.

Role of micrograph-specific clustering

In Figure 2B, we illustrate the impact of the number of clusters 

that are used in the micrograph-specific clustering process by 

reporting aggregated results (IoU, recall, precision, and F1 

averaged across the 14 datasets) for cryo-EMMAE trained on 

the dataset EMPIAR: 10029. Our ablation study reveals that 

different number of clusters directly affects the final perfor

mance. These findings highlight two observations: (1) as the 

number of clusters increases, precision improves while recall 

decreases, indicating that the clustering process filters out 

more background pixels but also eliminates some particle posi

tions and (2) the selection of five clusters for the micrograph- 

specific clustering process (described in detail in inference) op

timizes the F1 score.

Latent space analysis

The latent representations of a micrograph are the feature vec

tors extracted from each micrograph patch by the MAE (see 

Figure 1B for the encoder output of the MAE). These latent rep

resentations, which are vectors of length 192, encode essential 

information about the input patches and are used to cluster 

and segment the micrograph into particles and background re

gions. Latent representations extracted from a specific micro

graph tend to be more similar to each other than to those from 

different micrographs, as they originate from the same experi

mental conditions, including imaging parameters, noise charac

teristics, and particle distributions.

To visualize the discriminative capability of the latent space 

for micrograph pixels, we performed principal-component anal

ysis on the latent representations of particle and background 

pixels. The first two principal components were plotted for six 

micrographs from different EMPIAR datasets. The results, 

shown in Figure 3, clearly demonstrate separation between 

background and particle pixels. To ensure visual balance, an 

equal number of data points were sampled from particles and 

background. These latent representations were obtained from 

the cryo-EMMAE model trained on the EMPIAR: 10291 dataset. 

In Table S3, we compute the Euclidean distances between 

latent representations of particles and background within the 

same micrographs and across two selected micrographs 

(A and B). The results show that particle regions within a micro

graph have significantly lower distances between themselves 

than when compared with background regions, and vice versa. 

Additionally, intra-micrograph distances are consistently lower 

than inter-micrograph distances, indicating greater similarity 

within each micrograph. This supports the notion of micro

graph-specific latent representations.

Table 1. Each method is trained on four different datasets, and 

their generalization performance is evaluated on 14 EMPIAR 

experiments

Trained on Method IoU Recall Precision F1

10291 Topaz 0.425 0.446 0.238 0.276

CrYOLO 0.447 0.467 0.404 0.372

cryo-EMMAE 0.567 0.585 0.481 0.512

10077 Topaz 0.612 0.651 0.258 0.362

CrYOLO 0.322 0.285 0.279 0.255

cryo-EMMAE 0.575 0.596 0.482 0.518

10590 Topaz 0.481 0.512 0.322 0.300

CrYOLO 0.551 0.558 0.376 0.397

cryo-EMMAE 0.470 0.479 0.444 0.444

10816 Topaz 0.515 0.320 0.053 0.090

CrYOLO 0.644 0.645 0.254 0.346

cryo-EMMAE 0.554 0.573 0.492 0.514

The table reports the mean values of four evaluation metrics across the 

test set: (1) Intersection over Union (IoU), (2) recall (a prediction is a true 

positive if IoU ≥ 0:6), (3) precision, and (4) F1 score. For complete per- 

experiment results, refer to Table S1. Bold values indicate the best perfor

mance for each metric.
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Single-particle 3D reconstructions

To further assess the particle-picking performance of each 

method, we performed 3D reconstructions on eight test datasets 

using models trained on two datasets (EMPIAR: 10291, 10077). 

The evaluation included reconstructions using blob picking, which 

resembles an unsupervised approach, and reconstructions based 

on CryoPPP annotation particles. All electron density maps were 

generated using CryoSPARC v.4.4.0.15 Two workflows were 

used: the first involved ab initio 3D reconstruction followed by ho

mogeneous refinement using the complete set of picked particles, 

while the second included 2D classification and selection of the 

best classes before reconstruction and refinement. For test data

sets EMPIAR: 10081, 10017, 10289, 10291, the corresponding 

symmetries C4, D2, C8, and C8 were imposed during homoge

neous refinement. For more details in 3D reconstruction proced

ures see 3D reconstruction methodology.

The best-resolution reconstruction for each method across 

eight different EMPIAR datasets is reported in Table 2, while 

the number of particles used to produce these reconstructions 

are presented in Table S4. Resolutions of 3D density maps that 

failed to reconstruct the volumes correctly are underlined, while 

the best resolution reconstructions for each test set and work

flow (with and without 2D classification) are highlighted in bold. 

In Table 2 the average resolution across all reconstructions is 

calculated in the Mean row, by assigning a penalty value of 

10 Å for test sets that were not correctly reconstructed. The 

Rec. Mean row reports the average resolution using only 

correctly reconstructed sets and indicates the percentage of 

successful reconstructions. Reconstructions using ground truth 

particles from CryoPPP do not involve 2D classification or class 

selection, as these particles are provided as a pre-filtered, 

optimal particle set, that is clean of any noise.

The results in Table 2 indicate that cryo-EMMAE not only picks 

particles that are used to successfully reconstruct most 3D den

sity maps for both workflows but also reports the best mean res

olution, significantly outperforming the second-best method, 

Blob Picker. On average, the differences in resolution between 

cryo-EMMAE and Topaz are approximately 2.9 and 1.2 Å for 

the EMPIAR: 10291, 10077 training schemes, respectively. 

These values were computed as the average resolution differ

ences between the methods, both with and without 2D classifi

cation. Similarly, the corresponding differences with crYOLO 

A B Figure 2. Performance metrics of the abla

tion study for cryo-EMMAE 

The model was trained on the EMPIAR: 10291 

dataset and evaluated across 14 datasets, with 

the mean values computed. 

(A) The mean IoU, recall, precision, and F1 scores are 

plotted against the number of training micrographs. 

(B) Presents the mean IoU, recall, precision, and F1 

scores relative to the number of clusters (K) used 

during post-processing.

are approximately 1.7 and 3.7 Å. An inter

esting result is that, when reconstructing 

using 2D classification, cryo-EMMAE re

constructions exhibit higher resolution 

compared with the ground truth picks provided by CryoPPP’s 

annotation dataset, by reporting a difference of 1.71 and 

1.05 Å for EMPIAR: 10291, 10077, respectively. Additionally, 

the CryoPPP particle set failed to reconstruct correctly two out 

of eight EMPIAR datasets. When these CryoPPP particle sets 

were 2D classified and further cleaned, the reconstructions 

were corrected, reaching resolutions of 3.65 Å for EMPIAR: 

10289 and 5.29 Å for EMPIAR: 10077, with particles retention 

rates of 49% and 84%, respectively. This phenomenon probably 

occurs because CryoPPP annotations aim to include as many 

particles as possible, even those of lower resolution, prioritizing 

the training of machine learning algorithms over the reconstruc

tion resolution of the particle set. In the discussion, we further 

elaborate on our opinion regarding annotations of particles.

Figure S4 presents 6 different 3D reconstructions across the 4 

methods, along with ground truth volumes (produced using the 

entire EMPIAR datasets, rather than a subset of 300 micro

graphs) and CryoPPP reconstructions. The figure also highlights 

failed reconstructions for CryoPPP (EMPIAR: 10289), Blob 

Picker (EMPIAR: 10289), and crYOLO (EMPIAR: 10017, 10291). 

cryo-EMMAE on the other hand demonstrates consistent recon

struction performance across the 6 test datasets.

Finally, we performed 3D reconstructions on four EMPIAR da

tasets using Topaz, crYOLO, and cryo-EMMAE models trained 

on 20 EMPIAR datasets provided by CryoPPP, the results are 

presented in Figure S6 and Table S6. The reported resolutions 

in Table S6 indicate that Topaz and cryo-EMMAE perform simi

larly, while crYOLO ranks last, with a small difference of 0.26 Å. In 

Figure S6, we present the visualization of 3D reconstructions for 

the three methods compared with the published structures. The 

figure reveals minor differences between the reconstructions, 

except for EMPIAR: 10049, where cryo-EMMAE appears to 

reconstruct the density map more accurately than Topaz and 

crYOLO. Notably, for EMPIAR: 10049, Topaz required two 

rounds of classification to properly reconstruct the density 

map. Overall, we observed that Topaz selected substantially 

more particles than the other two methods, making the analysis 

significantly more time-consuming.

In conclusion, our experiments show that cryo-EMMAE, 

Topaz, and crYOLO achieve comparable performance when 

trained on the same extended training set. The key difference 

is that Topaz and crYOLO require annotated data, which can 
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be difficult to obtain in large quantities. In contrast, our main 

contribution is demonstrating that cryo-EMMAE can match the 

performance of these state-of-the-art supervised methods 

without relying on labeled data, making it a more practical and 

scalable solution.

Multi-particle 3D reconstructions

To further show the generalization ability of our method on un

seen setups, we evaluated the four methods on a significantly 

challenging dataset that includes micrographs from cell extracts 

of Chaetomium thermophilum presented in Skalidis et al. 9

(EMPIAR: 10892). In this case, Topaz, crYOLO, and cryo-EM

MAE were trained on an extensive dataset comprising 20 

EMPIAR datasets from cryoPPP, in contrast to the single-parti

cle 3D reconstruction experiments, where each method was 

trained separately on a single EMPIAR dataset. In this study, 

we reconstructed four different proteins: the pre-60S ribosomal 

subunit, fatty acid synthase (FAS), the E2 core of the oxogluta

rate dehydrogenase complex (OGDHc), and the E2 core of the 

pyruvate dehydrogenase complex (PDHc). Using 2,808 micro

graphs, the study achieved resolutions of 4.52, 4.47, 4.38, and 

3.84 Å for the pre-60S, FAS, OGDHc, and PDHc, respectively.

For our evaluation, a subset of 854 micrographs was selected 

from the original dataset. These were chosen as the top 300 mi

crographs containing most of the particles for each protein. 

Some micrographs overlapped across proteins, leading to a total 

of 854 instead of 1,200 micrographs (4 × 300). The three ma

chine learning methods were trained on a large training dataset 

of 1,950 micrographs from 20 different EMPIAR datasets. Data 

preprocessing steps, the number of training epochs, and check

point selection follow the methodology detailed in experimental 

setup.

The resolution results of the 3D reconstructions are presented 

in Table 3, while visualizations of the 3D electron density volumes 

are illustrated in Figure 4. For the reconstructions, we performed 

two rounds of classification and selection with 300 classes each 

to better isolate the protein classes. The total number of particles 

selected by each method was 747,225 for blob picking, 249,473 

for Topaz, 92,595 for crYOLO, and 253,045 for cryo-EMMAE. 

The two classification rounds required approximately 25.5, 

10.3, 4.5, and 10.5 GPU hours, respectively, using CryoSPARC 

v.4.4.0.15

As shown in Table 3, cryo-EMMAE not only, unlike other 

methods, successfully reconstructs all protein densities but 

also achieves the best mean resolution of 5.89 Å, outperforming 

the second-best, Topaz (6.91 Å). The average resolution per 

method incorporates a penalty of 10 Å for each unreconstructed 

entry. Furthermore, cryo-EMMAE achieves the best resolution 

for three out of four proteins, with its reconstruction of the 

pre-60S ribosomal subunit even surpassing the reconstruction 

Figure 3. Latent space visualization through principal-component analysis for cryo-EMMAE’s latent representations projected onto the first 

two principal components 

The subplots correspond to different micrographs from six datasets (EMPIAR: 10028, 10017, 10077, 10081, 10406, 10184). Latent representation data points for 

background pixels are shown in cyan, while those for particle pixels are shown in orange.
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obtained from the ground truth particles. Notably, all four 

methods struggled to reconstruct the E2 core of the OGDHc at 

a high resolution, likely due to the low particle count of this pro

tein in the micrographs.

Real case studies

We further conducted a complete 3D reconstruction pipeline for 

six EMPIAR datasets to provide a direct comparison with the 

originally reported resolutions. These datasets include a wide va

riety of structures. For these reconstructions, we used the com

plete available datasets from the EMPIAR database. The acces

sion numbers are EMPIAR: 10005, 10028, 10049, 10291, 10433, 

10955, with corresponding number of micrographs 771, 1,081, 

680, 300, 1,280, and 270, respectively; in total 4,382 micro

graphs were processed and picked.

In Table S2 we report the resolutions, and in Figure S1 we 

compare the published 3D density maps with those generated 

using cryo-EMMAE for particle picking. The cryo-EMMAE model 

used for particle picking was trained on the 20 EMPIAR datasets 

from cryoPPP, including 180 micrographs from each of the EM

PIAR: 10028, 10291 datasets.

For the 3D reconstructions, we imported the particles into 

CryoSparc v.4.4.0 and performed a single round of 2D classifica

tion, then executed ab initio reconstruction using the selected 

particles, followed by homogeneous refinement. When appli

cable, symmetry was imposed in alignment with the published 

structures.

Results in Table S2 demonstrate that cryo-EMMAE not only 

generalizes well to unseen datasets but also achieves resolu

tions comparable to the published structures, with minimal pro

cessing limited to a single round of 2D classification. The mean 

resolution difference between the published structures and 

those obtained using cryo-EMMAE is 0.16 Å, with our method 

even surpassing the published resolution in two cases. Overall, 

all differences remain within 0.6 Å. An interesting observation is 

the number of particles used for 3D reconstruction. Both pub

lished maps and those with cryo-EMMAE utilize a similar number 

of particles, except for dataset EMPIAR: 10955, where our 

method employs a significantly lower number. However, the 

mean number of particles across all six datasets remains nearly 

identical.

The maps presented in Figure S1 qualitatively support the re

ported resolutions, demonstrating a close similarity to the pub

lished density maps in EMDB. A noteworthy case is EMPIAR: 

10433, which corresponds to the SARS-CoV-2 spike protein. In 

their analysis, the authors fine-tuned Topaz on the same dataset 

Table 2. Resolution per reconstruction for eight different test datasets, comparing four methods: Blob Picker, Topaz, crYOLO, and 

cryo-EMMAE, the last three trained on datasets EMPIAR: 10291, 10077

Without 2D classification (Å) With 2D classification (Å) Without 2D classification

Test sets Blob Picker Topaz crYOLO cryo-EMMAE Blob Picker Topaz crYOLO cryo-EMMAE CryoPPP GT

Trained on EMPIAR: 10291

10028 4.28 – 5.86 4.13 4.31 – 6.07 4.14 4.22

10081* 5.63 4.25 4.61 4.24 4.18 3.94 3.97 3.78 4.08

10017* 4.56 6.65 >20 4.55 4.53 6.33 >20 4.50 4.38

11183 6.10 7.89 9.62 7.03 6.92 9.24 6.93 4.65 7.15

10289* 16.10 6.97 6.49 7.92 7.32 3.77 3.63 3.95 8.27

10406 2.93 – 3.15 2.93 2.93 – 3.23 2.94 2.97

10077 6.09 – 8.02 7.62 7.46 – 9.28 6.81 5.20

Mean 6.77 8.70 7.61 6.13 6.20 7.72 6.26 4.40 6.11

Rec. Mean 4.35 (4/7) 5.45 (2/7) 5.81 (4/7) 4.58 (5/7) 4.68 (5/7) 4.68 (3/7) 4.77 (5/7) 4.40 (7/7) 4.67 (5/7)

Trained on EMPIAR: 10077

10028 4.28 4.12 4.16 4.13 4.31 4.07 4.12 4.14 4.22

10081* 5.63 6.90 10.61 4.56 4.18 4.36 9.85 3.94 4.08

10017* 4.56 10.05 >20 4.65 4.53 14.09 17.14 4.49 4.38

11183 6.10 7.49 19.19 6.87 6.92 7.36 19.42 4.53 7.15

10289* 16.10 9.46 13.28 9.69 7.32 3.77 7.76 3.68 8.27

10406 2.93 2.91 2.91 2.90 2.93 2.90 2.93 2.93 2.97

10291* 3.96 3.66 8.19 3.62 3.65 3.59 8.30 3.48 3.43

Mean 5.91 6.36 8.71 5.20 5.66 5.15 7.81 3.88 4.93

Rec. Mean 4.27 (5/7) 5.76 (6/7) 7.74 (4/7) 5.20 (7/7) 3.92 (5/7) 5.17 (6/7) 6.17 (4/7) 3.88 (7/7) 4.37 (6/7)

Reconstructions were computed both with and without 2D classification on picked particles, from approximately 300 micrographs per dataset, pro

vided by CryoPPP, EMPIAR: 10017 includes only 84 micrographs. Reconstructions that falsely reconstructed the original density map are underlined. 

For each test dataset, the best reconstruction resolution is highlighted in bold. Reconstructions were also performed using ground truth particles pro

vided by cryoPPP without 2D classification. Symmetry was imposed on datasets EMPIAR: 10081, 10017, 10289, 10291, corresponding to C4, D2, C8, 

and C8 symmetries, respectively. The Mean row averages resolution values, assigning 10 Å as penalty for failed reconstructions. The Rec. Mean row 

averages only correct reconstructions and notes the success ratio. GT, ground truth. The best resolutions are highlighted in bold. Asterisks denote 

imposed symmetries: C4 (EMPIAR: 10081), D2 (EMPIAR: 10017), C8 (EMPIAR: 10289, 10291).
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for particle picking. This process required manually selecting 

particles, training Topaz, and subsequently using it for automated 

picking.34 In contrast, we applied cryo-EMMAE directly on the mi

crographs of the dataset without any fine-tuning or prior relation

ship between the initial training set of cryo-EMMAE and EMPIAR: 

10433, resulting in a highly similar structure both qualitatively and 

in terms of resolution.

DISCUSSION

In this work we present cryo-EMMAE, the first self-supervised 

method applied to the highly complex cryo-EM data. A MAE is 

initially trained to reconstruct patches of the initial micrographs. 

Multiple levels of clustering are then applied on the representa

tion space of MAE in order to hierarchically denoise the micro

graphs. The final denoised micrograph consists of a segmenta

tion of the particles from the background.

Our experimental evaluation shows that cryo-EMMAE exhibits 

stable generalization capabilities when applied to unseen data, 

significantly outperforming supervised methods. This suggests 

that our approach effectively reduces the impact of dataset-spe

cific noise and the inherent characteristics of micrographs. 

These results imply that cryo-EMMAE is able to learn the neces

sary invariances, regardless of the experimental variances that 

are common in cryo-EM procedures.

Notably, this generalization ability is maintained even when 

trained with only a small number of micrographs. We hypothe

size that this behavior stems from the standardization introduced 

during the micrograph normalization process in our pre-process

ing. This standardization helps reduce the influence of experi

mental factors, such as ice thickness, on micrograph noise. As 

a result, the noise is normalized, making the data less variable 

at a local scale. Additionally, reconstructing random patches 

during training MAE further enhances the model’s robustness 

to such experimental inconsistencies.

It is important to note that Topaz23 shows low precision, even 

when tested on the same dataset it was trained on. Particle-pick

ing models generally prioritize recall, as they are often used to 

assist lab practitioners in quickly annotating data.23 In this 

context, high recall is more critical, as annotators can manually 

filter out false positives through 2D classification. However, for 

fully automated systems, good precision is essential to ensure 

accuracy and minimize errors without the need for manual inter

vention. In contrast, cryo-EMMAE, with its strong generalization 

capabilities and stable precision, shows promise for improving 

automation in such tasks. Additionally, we demonstrate that, 

as the number of clusters increases, precision improves while 

recall decreases. This suggests that the clustering process filters 

out more background pixels, but also removes some true parti

cle positions. In our method, by selecting the optimal number of 

clusters, users can balance precision and recall according to 

their specific needs.

The superior generalization performance is also evident in the 

resolution of 3D reconstructions across the eight different test 

datasets, comparing four methods and the annotated particle 

sets from cryoPPP.33 cryo-EMMAE significantly outperforms 

the other two machine learning approaches and achieves 

mean resolution approximately 0.7 and 1.8 Å better than 

CryoSPARC’s Blob Picker, without and with 2D classification, 

respectively.

The results of CryoPPP particles, highlight the inherent biases of 

annotated datasets, which often fail to provide the optimal set of 

particles needed to achieve the best possible resolution for a 

given dataset of micrographs. This observation is apparent in 

two key comparisons within our work: (1) the major differences be

tween the metrics and the reconstruction evaluations of the 

methods, where the superiority of cryo-EMMAE becomes more 

evident on reconstructions studies and (2) the advantage of 

cryo-EMMAE’s reconstructions compared with the CryoPPP’s 

annotated particles. Consequently, our work underlines the 

importance of evaluating cryo-EM particle-picking methods 

based on the resolution of the resulting 3D density map. This 

objective should also be the end-to-end goal of any particle-pick

ing machine learning methodology.

Finally, cryo-EMMAE demonstrated its strength in practical 

and demanding scenarios, excelling in multi-particle micro

graphs. It outperformed all the methods compared and success

fully reconstructed correctly all four proteins from the original 

Table 3. Resolution and particle counts per reconstruction are presented for the four proteins from the 854-micrograph subset of 

EMPIAR: 10892

With 2D Classification 3D reconstruction resolution (Å) No. of particles

Proteins Blob Picker Topaz crYOLO cryo-EMMAE GT Blob Picker Topaz crYOLO cryo-EMMAE GT

Pre-60S ribosomal subunit 6.73 5.05 4.44 4.38 4.64 8,063 13,877 24,127 28,008 15,670

Fatty acid synthase* 4.44 5.73 6.41 5.01 4.43 2,808 1,353 767 1,135 2,567

OGDHc E2 core* 10.41 8.19 9.97 9.65 4.05 2,011 742 660 162 1,128

PDHc E2 core* – 6.86 – 4.53 3.96 0 623 0 1,139 3,782

Mean 7.79 6.91 7.70 5.89 4.27 4,294 4,149 8,518 10,094 5,787

Rec. Mean 5.59 (2/4) 5.88 (3/4) 6.94 (3/4) 5.89 (4/4)

Reconstructions for the four methods (Blob Picker, Topaz, crYOLO, and cryo-EMMAE) were computed using two rounds of 2D classification on picked 

particles, with failed reconstructions underlined. The best resolution per dataset is highlighted in bold. Reconstructions using ground truth particles 

were also performed. Symmetry was imposed during homogeneous refinement for FAS, OGDHc, and PDHc, corresponding to D3, O, and I symme

tries, respectively. The Mean row averages resolution values, assigning a penalty of 10 Å for failed reconstructions, and also computes the average 

particle count only for correctly reconstructed proteins per method. The Rec. Mean row averages only successful reconstructions and includes the 

success ratio. GT, ground truth. Best resolution results are shown in bold. Asterisks mark imposed symmetries: D2 (FAS), O (OGDHc), and I (PDHc).
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study. Notably, cryo-EMMAE surpassed the second-best 

method (Topaz) by more than 1 Å of mean resolution and even 

managed to surpass the resolution of ground truth particles for 

the pre-60S ribosomal subunit. Overall, our work helps reduce 

the heavy dependence on costly expert annotations—which 

are often not optimal—for cryo-EM data analysis, paving the 

way for more cost-effective and automated solutions in the field 

of cryo-EM analysis.

Related work

Cryo-EM particle localization is a crucial step in cryo-EM particle 

analysis. This is apparent considering the variety of approaches 

that have been proposed. These approaches range from tradi

tional computer vision techniques to more advanced machine 

and deep learning methods. Traditional methods are generally 

categorized into two main approaches. The first, known as the 

template-based methods,10,11 relies on projections of a given pro

tein structure to match in experimental micrographs. While this 

method provides a solid framework, it introduces human bias 

through the selection of the template protein, potentially losing 

different projections and conformations, or even leading to the 

Einstein-from-noise effect.35–37 On the other hand, template-free 

approaches offer more flexibility and ease of implementation. 

Techniques such as Laplacian of Gaussian,12,13 Difference of 

Gaussians,14 and Blob Picker15 are among the most commonly 

used. Despite their ease of use, these methods often prioritize 

picking as many particles as possible, which leads to high false- 

positive rates. These inaccuracies can negatively impact subse

quent analysis steps, increasing processing times and potentially 

introducing noise into the final reconstructed volume.

Deep learning methods have shown success in particle picking. 

All methods in the literature to date rely on annotated datasets, fall

ing under the supervised learning scheme. These methods 

address particle picking from three primary perspectives, predom

inantly employing convolutional neural networks.38 First, binary 

classification of micrograph windows as either containing particles 

or not has been implemented by methods such as DeepEM,22

Topaz,23 Warp,24 and DeepCryoPicker.26 Second, segmentation 

of micrographs into background and particle classes has been 

addressed by methodologies such as DeepPicker,17 Pixer,18

PARSED,19 DRPnet,20 and CryoSegNet.21 Finally, for object 

detection, a less common yet fitting approach, methodologies 

such as crYOLO,28 EPicker,29 and CryoTransformer30 have been 

developed.

Figure 4. Visualized reconstructed density maps of the four proteins from EMPIAR: 10892 are shown for ground truth and the four tested 

methods 

Each protein in the dataset is represented by a distinct color. The learning-based methods (Topaz, crYOLO, and cryo-EMMAE) were trained using 20 different 

EMPIAR datasets. The volumes reconstructed by the four methods (Blob Picker, Topaz, crYOLO, and cryo-EMMAE) include two 2D classification-class selection 

steps, whereas the reconstructions using ground truth particles from the original study do not incorporate this step. Density values for all maps range from − 1 to 3, 

with thresholds applied close to 1.
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The methods that are mostly used in practice are Topaz23 and 

crYOLO28 in which researchers typically manually annotate a 

small number of experimental micrographs with particles to 

refine pretrained models. The fine-tuned models are then used 

to predict particles in experimental micrographs. However, this 

process is time-consuming and relies on experienced annota

tors, who may introduce bias during the selection of particles. 

Previous studies have observed that crYOLO28 often misses 

true protein particles, while Topaz23 picks a lot of duplicate par

ticles and false positives.21,27,29,30

Future work and broader impact

From a technical perspective, cryo-EMMAE introduces an 

effective method for representation learning on images with 

extremely low signal/noise ratios, coined specifically for seg

mentation tasks. This approach can be extended to various 

challenges in other scientific domains that share similar charac

teristics. For instance, our pipeline can be easily adapted to 

other biomedical image segmentation tasks, such as localizing 

protein complexes within cells or organelles using cryoelectron 

tomography, performing multipurpose segmentation (e.g., 

multi-organ, multi-disease, and multi-phase) with computed to

mography and magnetic resonance imaging, localizing cells in 

microscopy data, or detecting and segmenting pathological 

features in histopathology,39–43 among others. Although certain 

parameters, such as image patching, number of clustering cen

ters, and post-processing steps, would require further hyper- 

parameter search to be in line to the characteristics of the target 

domain, the overall pipeline of the methodology remains 

unchanged.

A potential extension, inspired by cryo-EMMAE could be the 

integration of particle picking and 3D reconstruction steps into 

an end-to-end self-supervised framework. This coupling has 

the potential to transform cryo-EM analysis by reducing the 

dependence on extensive expert supervision and facilitating a 

more efficient, higher-throughput unsupervised workflow. 

Consequently, researchers could focus on more critical tasks, 

such as improving experimental protocols and interpreting re

sults, instead of the labor-intensive data analysis.

From a broader perspective, the automation of cryo-EM 

analysis can enhance scientific research across four key areas: 

(1) accelerating the determination of high-resolution protein 

structures, (2) advancing our understanding of disease mecha

nisms and promoting drug discovery, (3) helping healthcare 

innovation through personalized medicine and faster vaccine 

designing, and (4) influencing cross-disciplinary field with 

similar computational needs, such as nanotechnology and ma

terial science.

Our work hopefully contributes to these advancements by 

pushing forward automation in cryo-EM data analysis.

Limitations of the study

While cryo-EMMAE demonstrates strong performance across 

unseen cryo-EM datasets, certain limitations remain. Our method 

struggles with highly crowded micrographs, low contrast, and 

large particles, situations where accurately segmenting individual 

particles, in general, becomes more challenging; these difficulties 

are universal to other literature methods.

Furthermore, increasing the amount of training data for cryo- 

EMMAE has shown limited impact on improving performance, 

suggesting that cryo-EMMAE’s scalability with larger datasets 

needs further investigation; one potential reason for that limita

tion might be the preprocessing steps, which remove a signifi

cant amount of high-frequency information from the micro

graphs. As a result, our method focus on the low-frequency 

components—common across all micrographs—which might 

contribute to its stable performance across the test datasets. 

However, this focus on low frequencies may limit its ability to 

learn more highly variable characteristics of the data.

The primary goal of our empirical evaluations was to assess 

the generalization capabilities of all models, specifically to deter

mine if they can be applied directly to unannotated laboratory 

data to accelerate structural biology research. However, in 

cases where annotated data are available, supervised methods 

may outperform our approach on those specific datasets. Our 

study is limited in this regard, as it does not evaluate perfor

mance under these conditions.

We further did not perform ablation studies to evaluate the 

impact of our preprocessing pipeline on the supervised 

methods. We speculate that incorporating this preprocessing 

would improve their absolute performance, although not neces

sarily their generalization ability. Instead, we chose to reproduce 

their original methodology, where this preprocessing step is not 

included.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study did not use experimental models commonly employed in life sciences.

METHOD DETAILS

Micrograph preprocessing

Protein projections within cryo-EM micrographs are essentially 2D representations of the protein under investigation; it is necessary 

for these projections to capture high-frequency details for revealing details of the protein’s 3D structure. However, these images suf

fer from varying degrees of high-frequency noise, obscuring the structural clarity of the data. Therefore, it is vital to devise a filtering 

process, to enhance the distinction of such information during picking.

To standardize the background noise in micrographs, we employ a normalization technique outlined in11 that results in a zero- 

mean and unit standard deviation noise by adjusting for noise variations according to the particle diameter which is a known exper

imental parameter. At each position r
→

within the micrograph, we subtract the mean and divide by the the standard deviation.

μ( r
→
) =

1

Mo

FT − 1{FT(X)FT(Mo)
∗
} (Equation 1) 
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Software and Algorithms

cryo-EMMAE This study https://doi.org/10.5281/zenodo.15542966

Topaz Bepler et al.23 https://github.com/tbepler/topaz

crYOLO Wagner et al.28 https://cryolo.readthedocs.io/

Blob Picker Punjani et al.15 https://cryosparc.com/

ChimeraX v.1.8 Meng et al.62 https://www.cgl.ucsf.edu/chimerax/

CryoSPARC v.4.4.0 Punjani et al.15 https://cryosparc.com/
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Here, X is a matrix representing the micrograph, M0 is a circular mask based on the particle diameter, while FT( ⋅) is the Fourier 

transform. This normalization procedure mitigates the influence of fluctuations in ice thickness, exposure, and other uncontrollable 

experimental variables, thereby enhancing the consistency of micrograph analysis.

Additionally, we adhere to a common procedure21,30 where a Wiener filter is applied for denoising and Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is used to enhance contrast by addressing non-uniform illumination and low contrast. Finally, guided 

filtering is applied using the CLAHE-enhanced image as a reference. This process selectively smooths the image while retaining 

important structural details, striking a balance between noise reduction and preservation of critical information. All images are resized 

to a shared dimension of 1024 × 1024: The steps above are summarized in Figure 1A.

Representation learning

Several families of self-supervised methods, such as Contrastive Learning,63 Self-Distillation,64 and Canonical Correlation,65 rely on 

data augmentations that preserve the semantic content of data instances. Masked autoencoding, however, takes a completely 

different approach. We hypothesize that learning to reconstruct randomly masked patches of a micrograph can produce represen

tations that capture particle-oriented local invariances without relying on augmentations. Consequently, the 1024 × 1024 resized mi

crographs are divided into 64 × 64 patches, generating 256 smaller images that cover the full micrograph. This approach addresses a 

key difference between cryo-EM and real-world images: micrographs lack the global spatial correlation seen in natural images. By 

focusing on smaller regions, the model emphasizes particles and preserves local context. Reducing the masking during training from 

75% to 50% ensures that no particles are fully masked, while independent masking within each patch guarantees that masking is 

evenly spread across the micrograph. This prevents any single region from being completely masked or entirely visible, ensuring 

that the model receives balanced and representative input from all regions of the micrograph. Based on this, we propose the use 

of Masked Autoencoders (MAEs),66 which have demonstrated the capability to learn representations encompassing a broad range 

of semantics relevant to downstream tasks, for representation learning on micrographs. During training, MAEs randomly mask a per

centage of the input image, which is first divided into patches. The unmasked patches are processed by the encoder, which gener

ates a latent representation for each patch. In the latent space, representations for the masked patches are added as empty place

holders. During the decoding step, the masked patches are predicted based on the latent information captured by the encoder from 

the unmasked patches. The learning objective of an MAE is to reconstruct the input image as faithfully as possible, achieved through 

the mean squared error (MSE) averaged per each image’s patch: MSE = 1
N

∑N
i = 1 (Yi − Ŷ i)

2
. A perfect encoder should remain 

invariant across various levels of noise. Consequently, when clustering the representation space, distinct clusters are expected to 

emerge corresponding to different noise levels and distances from the particle centers. The micrograph representation step is illus

trated in Figure 1B.

Implementation details

We use the ViT encoder67 to learn the semantic information of micrograph patches at the embedding level. This is achieved through 

the Mean Squared Error (MSE) loss of the reconstructed patch provided by a ViT decoder:

MSE =
1

N

∑N

i = 1

(Yi − Ŷ i)
2 

Details of the architectural configurations, learning settings and image dimensions are provided in Table S5. To retain sufficient 

resolution at the latent embedding for the segmentation step, we patchify the original image before passing it through the model.

Inference

Dealing with various levels and noise fluctuations in micrographs complicates the accurate prediction of particles. Given an unseen 

micrograph, the inference process is performed in two stages (i) clustering based on the learned representation space and (ii) 

smoothing and filtering of predictions.

First, we address common high-frequency patterns and features of the non-particle regions shared across different micrographs 

by identifying these regions through the clustering derived from the latent representations of the training set. The choice of four clus

ters is the minimum required, as demonstrated in the ablations Figure 2B. A detailed explanation of clustering centers selection is 

provided in Subsection Ablations. After this initial filtration step, we address variations in noise levels across micrographs by applying 

clustering to the micrograph-specific latent representations. This approach allows dealing with different noise characteristics on the 

micrograph level. The clustering process is performed in three steps based on different number o cluster centers k = i, where i = 3;

4;5. At each clustering step, the cluster with the highest affinity to the previous step’s particle cluster is selected. This process begins 

by defining the particle cluster using the latent representations of the training set through k-means clustering with four centers 

(computed once). A reference micrograph and its corresponding particle mask are used to identify the particle cluster. To segment 

each micrograph, we apply hierarchical clustering: first, using k-means with three clusters and selecting the one with the highest 
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overlap with the training-set-derived particle cluster, then repeating the process with four and five clusters, each time selecting the 

cluster with the highest similarity to the previous step’s particle cluster. This process is illustrated in Figure 1C and displayed algo

rithmically in Algorithm 1 and Algorithm 2.

The initial predicted particle mask for the micrograph undergoes post-processing to extract the final predictions. First, convolution 

with a 3x3 kernel is applied to smooth the predictions, in order and fill occasional holes in the segmented particle masks. Then, 

bilinear interpolation restores the image to a higher resolution, for more accurate localization of the particles. Subsequently, a 

threshold is applied to the smoothed predictions to prune away low confidence segmentation masks. However, this threshold is 

contingent upon the unique experimental parameters and characteristics of each dataset and micrograph. Therefore, finding the 

optimal threshold for each micrograph is imperative. To accomplish this, predicted segmentation masks are computed using various 

thresholds within the [0, 1] range. The optimal threshold is determined by ensuring that the resulting segmentation mask aligns with 

the statistical properties of the training data, specifically ensuring that particles occupy approximately 4% of the micrograph. Finally, 

further post-processing is performed to filter out (i) neighboring predictions based on particle diameter (ii) filter predictions whose 

radius exceeds by a threshold the particle radius, and (iii) remove predictions at the borders of the micrographs, since at these po

sition particles are usually partitioned. These steps are depicted in Figure 1D.

Experimental set-up

The rationale behind comparing with Topaz and crYOLO is obvious within the cryo-EM research community, where these two 

methods stand out as the most widely used deep learning tools for particle picking in Single Particle Analysis (SPA) of cryo-EM mi

crographs. Topaz and crYOLO also represent two distinct approaches: the former as an image classification model and the latter as 

an object detection model. Both utilize convolutional neural networks to learn features from the cryo-EM micrographs.

Four separate training procedures, each using a different EMPIAR dataset, were conducted for each of the three methods. The 

different EMPIAR datasets were provided by CryoPPP,33 selected to maximize diversity. These datasets include EMPIAR: 10291, 

10077, 10590, 10816, which have proteins of different diameters (160Å, 250Å, 237Å, and 180Å, respectively), each representing 

different protein type and function. The evaluation procedure was performed on the test sets of these four datasets and an additional 

set of 10 EMPIAR datasets, all annotated by CryoPPP. These datasets, include EMPIAR: 10028, 10081, 10096, 10240, 10406, 10289, 

10737, 10059, 11183, 10017, have particle diameters ranging from 100Å to 300Å. For the results on the cell extracts of the EMPIAR: 

10892 experiment, all three machine learning methods were trained on an extensive set of 20 EMPIAR datasets (EMPIAR: 10017, 

10028, 10059, 10061, 10075, 10077, 10081, 10096, 10184, 10240, 10289, 10291, 10406, 10532, 10590, 10669, 10737, 10760, 

10816, 11183) from cryoPPP33 to ensure maximum generalization capabilities of the models. These datasets, comprising approxi

mately 300 micrographs, were randomly divided into three subsets: 60% for training, 20% for validation, and 20% for testing. This 

diverse set of 20 EMPIAR datasets encompasses a wide range of protein types, functions, subcellular locations, organisms of origin, 

shapes, sizes, noise characteristics, and concentrations within the micrographs.

Algorithm 2. Micrograph-Specific Hierarchical Clustering

Require: M: Set of feature representations from the micrograph

CD: Set of cluster centers from the training set clustering

cp: Particle cluster of CD

max iters: Maximum number of clustering levels (default = 5)

1: p←3, cp3
←cp

2: for i = 3 to max iters do

3: Apply k-means clustering with i clusters on M

4: Set cpi+1 
to the cluster with the greatest overlap with cpi

5: end for

6: return Indices of pixels that belong to the final particle cluster cpmax iters

Algorithm 1. Train Set Clustering

Require: D: Set of feature representations from the training set

Mref: Reference micrograph and its segmentation mask

1: Apply k-means clustering with 4 clusters on D.

2: Use Mref to assign the particle cluster in the clustering of D.

3: return CD: set of cluster centers (including the particle cluster cp).
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Particle picking can be perceived as an object detection problem, therefore we use the following common evaluation metrics in the 

literature27,28: (i) Intersection over Union (IoU) between annotated and predicted particles, using the particle diameter as the box size, 

(ii) recall, precision, and F1 score where true positives (TP) are only counted for predicted particles that uniquely overlap with ground 

truth particles by more than 60% of their surface area, while all other predicted particles are classified as false positives (FP).

Micrographs used for training all three methods underwent identical preprocessing steps as discussed in Micrograph preprocess

ing ensuring a fair comparison across the methodologies. For the training of Topaz, we employed the default ResNet8 model with the 

default training parameters, running for 400 epochs. To be aligned with the original work, the epoch yielding the highest area under 

the precision-recall curve on the validation set was selected. Micrographs were resized following the protocol outlined in.23 For the 

training of the crYOLO, all micrographs were resized to the recommended resolution of 1024x1024, with anchor inputs based on the 

protein particle size in each dataset relative to resolution. The number of epochs and model checkpoints is adjusted in the code 

based on the reduction of validation set loss during training. cryo-EMMAE was trained for 400 epochs. Training cryo-EMMAE for 

400 epochs takes about 2.5 hours per 100 micrographs. Inference takes around 130 seconds per 100 micrographs. Both computa

tion times are reported on a system with an AMD Ryzen 7 5800X 8-Core Processor CPU and a single Nvidia RTX 4080 GPU. Further 

implementation details of cryo-EMMAE are presented in the Table S5.

3D reconstruction methodology

For the single-particle reconstruction analysis, eight test datasets (EMPIAR: 10028, 10081, 10017, 11183, 10289, 10406, 10077, 

10291) were selected. MRC motion-corrected files provided by CryoPPP33 were first imported into CryoSPARC, followed by patch 

CTF estimation for each micrograph. Picked particle coordinates from each method were saved in an STAR-formatted file, which was 

then imported into CryoSPARC for the ’Extract from Micrographs’ job. The extracted box sizes were consistent with those used in the 

CryoPPP analysis. Two workflows were then employed. The first used all picked particles from the four methods for ab-initio recon

struction followed by homogeneous refinement. The second workflow included a single round of 2D classification and 2D class se

lection, followed by ab-initio reconstruction and homogeneous refinement. The 3D reconstructions of CryoPPP annotation particles 

are reported from the first workflow, as they are provided as a noise-free set. For datasets EMPIAR: 10081, 10017, 10289, 10291, the 

respective symmetries (C4, D2, C8, and C8) were imposed during homogeneous refinement, as suggested by their Electron Micro

scopy DataBank (EMDB) entries (experimental metadata ‘‘applied_symmetry’’ field). All other CryoSPARC jobs were executed using 

default parameters.

For the multi-particle reconstruction analysis, we first downloaded the multi-frame unaligned micrographs of entry EMPIAR: 10892. 

The authors of the original paper kindly provided the STAR file containing the picked particle coordinates. Based on these coordi

nates, we selected a subset of 854 micrographs from the initial 2808 unaligned micrographs. This subset included the top 300 mi

crographs with the highest particle abundance for each of the four reconstructed structures presented in the paper: (i) the pre-60S 

Ribosomal subunit, (ii) Fatty Acid Synthase (FAS), (iii) the E2 core of the Oxoglutarate Dehydrogenase complex (OGDHc), and (iv) the 

E2 core of the Pyruvate Dehydrogenase complex (PDHc). Due to overlaps in micrograph selection based on particle abundance, the 

total number of micrographs was smaller than 1200 (4 × 300). These 854 unaligned micrographs were first imported into cryoSPARC, 

followed by patch motion correction and patch CTF estimation. For each method, the picked particles were extracted using the 

largest box dimension (384px) of the four proteins. Since the dataset contained projections from multiple proteins and various sour

ces of noise, two consecutive rounds of 2D classification (300 classes) and 2D class selection were conducted to clean the dataset. 

This step aimed to enrich abundant protein projections while removing low-abundance projections and noise. A final 2D classification 

(100 classes) and 2D class selection were then performed on the selected classes from the previous two rounds. For each of the four 

proteins, the corresponding projections were identified based on the ground truth particle classes and underwent ab-initio recon

struction and homogeneous refinement. Symmetries were imposed for FAS (D3), OGDHc (O), and PDHc (I), as reported in the paper. 

For the particle picks provided in the original paper, only the ab-initio reconstruction and homogeneous refinement steps were per

formed, with the respective symmetries applied during homogeneous refinement. All other cryoSPARC parameters were left at their 

default settings.

All the 3D reconstructed density maps presented at Figures 4, S5 and S6 are imaged with the use of ChimeraX v1.8-1.62 Upon 

request to the lead contact, we can provide cryoSPARC jobs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data and results were analyzed using Python (version 3.10) and are presented as average values across different datasets. Principal 

component analysis (PCA) was performed using the PCA function from the scikit-learn module (version 1.2.2).
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