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MOTIVATION Cryoelectron microscopy (cryo-EM) has become a vital technique in structural biology,
enabling the determination of protein structures at high resolution. A critical step in this process is “particle
picking,” which involves the localization of protein particles in cryo-EM micrographs. The accuracy of particle
picking strongly influences the quality of the 3D protein structure, since the identified particle projections are
used to reconstruct the 3D electron density map. To date, all automated machine learning-based methodol-
ogies for this crucial task are based on techniques that rely on human supervision thus leading to three main
limitations, namely that systems (1) require costly annotated datasets, (2) cannot generalize to unseen data
distributions such as different proteins or cryo images captured under different laboratory settings, and (3)
demand fine-tuning and further supervision to adapt to unseen data. To overcome these challenges, we pro-
pose cryo-EMMAE, the first self-supervised particle picker that entirely eliminates the need for annotations
while demonstrating strong generalization capabilities, even in the context of highly heterogeneous speci-
mens, such as native cell extracts.

SUMMARY

We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method de-
signed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representa-
tion space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation.
Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art
supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent
performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as
we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction re-
sults indicate that our method has superior performance in reconstructing the volumes in both single-particle
datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of
self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and
cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.

INTRODUCTION at near-atomic resolution. In a standard cryo-EM experimental

protocol, a purified protein sample is rapidly frozen in a thin layer
Cryoelectron microscopy (cryo-EM) has transformed structural  of vitreous ice, to preserve their native structures and minimize
biology by facilitating the imaging of biological macromolecules radiation damage. The frozen sample is then imaged in an
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electron microscope, producing two-dimensional (2D) projec-
tions of the protein randomly distributed in images called micro-
graphs. Each micrograph contains numerous randomly oriented
copies of the molecule of interest, the so-called particles.'™
Despite its importance, the analysis of cryo-EM data presents
several unique challenges that arise from the nature of the imag-
ing technique and the biological samples being studied.**

One of the most critical steps in cryo-EM data processing is
particle picking,® the process of selecting individual particles
from noisy and heterogeneous micrographs. This step is chal-
lenging due to several inherent factors in cryo-EM data. First,
Cryo-EM micrographs typically exhibit a low signal/noise ratio
due to the low electron dose that is used during imaging to mini-
mize radiation damage on the delicate biological samples.’
Consequently, the high noise levels make the particles almost
indistinguishable from the background.® Second, the appear-
ance of particles in cryo-EM micrographs is highly variable.
This variability is a result of differences such as particle orienta-
tion, conformational states, micrographs with multi-proteins
samples® and the presence of artifacts such as ice contamina-
tion. The heterogeneity of particle appearance further compli-
cates the particle-picking, as it becomes more challenging to
establish consistent criteria for identifying and selecting parti-
cles. Third, cryo-EM datasets often have different parameters
during data collection, such as the accelerating voltage, the total
electron exposure dose, and vitreous ice thickness. These vari-
ations can lead to deviations in the appearance and contrast of
particles across different datasets. Additionally, manual annota-
tion of particles is a time-consuming, laborious, and prone to hu-
man bias and inconsistencies process.

The main objective of cryo-EM analysis is to produce the high-
est possible resolution for the protein’s 3D density map from a
given dataset of micrographs. A high-resolution 3D map provides
more detailed atomic positions of the protein, increases the cer-
tainty of the atomic structure, and thus enhances its credibility.
Various computational approaches have been proposed to auto-
mate particle picking from developing traditional methods that are
either template based'®"" or template free,''® to supervised
deep learning techniques that are based on one of semantic seg-
mentation,' " classification,” " or object detection.”®>° How-
ever, these methods (1) still require a substantial amount of manu-
ally picked particles for training and fine-tuning, thus creating a
fundamental bottleneck in the cryo-EM workflow. Along with this
demand for costly expert annotated data, we empirically observe
that state-of-the-art approaches based on classification or object
detection (2) struggle to generalize to unseen data and experi-
mental conditions. Additionally, all existing deep learning-based
methods are designed to (3) work on micrographs containing pu-
rified samples of a single protein. This constraint prevents their
application to more challenging and promising scenarios involving
multi-protein micrographs, which could reveal complex interac-
tions inherent to intracellular processes.”*'"*? These three core
challenges render existing methods unsuitable for real-world ap-
plications, especially in laboratory settings where data availability
is limited. In such cases, practitioners are unable to effectively use
pre-trained networks or train models from scratch.

In this work, we make a first step toward alleviating the reliance
on annotations and provide a potential alternative to this limited
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resource setup. We introduce cryoelectron microscopy masked
autoencoder (cryo-EMMAE), the first self-supervised particle
picking method. This approach, as illustrated in Figure 1, lever-
ages a masked autoencoder (MAE) to segment micrographs
by clustering the MAE latent representation space. Our method’s
self-supervised nature arises from the learning process of MAE,
which reconstructs masked patches of input micrographs using
only the original images as both input and target data. Through
this process of image reconstruction, without requiring any la-
bels or annotations, the model learns useful features and pat-
terns, distilling this information into a latent representation. At
inference time, these distilled representations, learned purely
from unlabeled micrographs, are utilized for micrograph seg-
mentation. Initially, a clustering algorithm trained on the training
data is used to differentiate the background from the particle
latent space shared across all micrographs. Subsequently, hier-
archical clustering is applied to each micrograph to progres-
sively filter micrograph-specific noise from particles.

We trained cryo-EMMAE along two state-of-the-art deep
learning methods, Topaz?® and crYOLO,?® from scratch using
four annotated EMPIAR datasets provided by CryoPPP.*® The
models were then evaluated on these datasets as well as 10
additional EMPIAR datasets, which were not seen during
training. These evaluation datasets were chosen to represent a
wide variety of protein types, functions, subcellular locations, or-
ganism origins, shapes, sizes, noise characteristics, and protein
concentrations in the micrographs.

Results show that, unlike existing methods, cryo-EMMAE ex-
hibits excellent generalization, delivering stable performance
across all evaluation sets, regardless of the pretraining data.

Additionally, we report that, for a given dataset, cryo-EMMAE
converges toward its optimal performance with just 5 micro-
graphs (equivalent to 1,280 training images for the MAE), indi-
cating that using more data from the same data source does
not significantly improve performance. This makes our method
annotation-free, independent of the pretraining data types, and
trainable with a minimal number of micrographs. We further
demonstrate that protein reconstructions generated using parti-
cles picked by cryo-EMMAE outperform those produced by cry-
0SPARC’s Blob Picker, '° Topaz, and crYOLO, even for proteins
not encountered during training. Finally, we present promising
results on experiments based on cell extracts, when methods
are trained with extended training dataset.

The main contributions of this paper are summarized as
follows.

(1) We introduce cryo-EMMAE the first self-supervised
method for particle picking in cryo-EM data that does
not require any form of annotation.

(2) Cryo-EMMAE demonstrates stable generalization capa-

bilities when applied to unseen data distributions and out-

performs supervised methods, highlighting the effective-
ness of our unsupervised approach in handling diverse
cryo-EM datasets.

Our method achieves exceptional generalization even

when trained on a limited number of micrographs. This

is especially beneficial in situations where annotated
data are limited or difficult to acquire.
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The cryo-EMMAE pipeline starts with an input micrograph and follows these steps:
(A) Pre-processing: the micrograph undergoes normalization of background noise to minimize correlation with experimental parameters and is filtered to enhance

particle contrast.

(B) Micrograph representation: patches are extracted from the pre-processed micrograph and used to map it onto the MAE representation space.
(C) Denoising: the resulting embeddings form a smaller image where a k-means trained on the train set identifies pixels with the lowest noise levels. These images

undergo further denoising through micrograph-specific hierarchical clustering.

(D) Post-processing: convolution-based smoothing is applied on the predictions of the particle centers with greater accuracy.

(4) We are the first to apply our method to micrographs with
samples from cell extracts, i.e., multi-particle samples
that have not undergone any over-expression and purifi-
cation. In this challenging setup, we demonstrate the su-
perior performance of cryo-EMMAE.

We show the effectiveness of segmenting through clus-
tering latent representations learned from cryo-EM data.
By incorporating the representation clustering, cryo-EM-
MAE can effectively distinguish the underlying protein
structure and patterns in the presence of noise.

—
)

RESULTS

In this section, we compare three commonly used methods for
particle picking: (1) Blob Picker,'® a traditional template-free
approach that picks particles by searching for Gaussian signals
and does not rely on annotated data but requires active human
supervision in hyper-parameter searching, (2) Topaz,23 a state-
of-the-art classification-based method, and (3) crYOLO,?® the
highest-performing object detection-based method across

various particle picking tasks and setups. For evaluation, we
use subsets of the CryoPPP dataset for training and testing, as
described in Dhakal et al.*® Experimental details are listed in
experimental setup. Our experimental results involve training
on four different datasets separately and evaluating the perfor-
mance of each model on 14 datasets, as detailed in Tables 1
and S1 and illustrated in Figure S2. Additionally, we report results
on a particularly challenging dataset (EMPIAR: 10892), which
contains data from cell extracts,” with the machine learning
methods trained on 20 EMPIAR datasets in total. Finally, we
apply cryo-EMMAE to real-world scenarios using the complete
set of micrographs from 6 EMPIAR experiments and compare
the resulting 3D reconstructions against published maps.

Comparison under the supervised setup

An initial point of interest is the supervised scheme, where each
method is evaluated on the dataset (one of EMPIAR: 10291,
10077, 10590, 10816) that it has been trained on. First, results
from Table 1 indicate that our method demonstrates superior per-
formance over Topaz with respect to the F1 metric. Additionally, it
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Table 1. Each method is trained on four different datasets, and
their generalization performance is evaluated on 14 EMPIAR
experiments

Trained on  Method loU Recall  Precision F1
10291 Topaz 0.425 0.446 0.238 0.276
CrYOLO 0.447 0.467  0.404 0.372
cryo-EMMAE 0.567 0.585  0.481 0.512
10077 Topaz 0.612 0.651 0.258 0.362
CrYOLO 0.322 0.285 0.279 0.255
cryo-EMMAE  0.575 0.596  0.482 0.518
10590 Topaz 0.481 0.512 0.322 0.300
CrYOLO 0.551 0.558 0.376 0.397
cryo-EMMAE  0.470 0.479 0.444 0.444
10816 Topaz 0.515 0.320 0.053 0.090
CrYOLO 0.644 0.645 0.254 0.346
cryo-EMMAE  0.554 0.573  0.492 0.514

The table reports the mean values of four evaluation metrics across the
test set: (1) Intersection over Union (loU), (2) recall (a prediction is a true
positive if loU > 0.6), (3) precision, and (4) F1 score. For complete per-
experiment results, refer to Table S1. Bold values indicate the best perfor-
mance for each metric.

closely matches crYOLO in three out of the four cases, with the
exception being dataset EMPIAR: 10291. However, both super-
vised methods outperform cryo-EMMAE in the Intersection over
Union (loU) metric. Therefore, in the supervised setting, while
our method is comparable in identifying particles with good preci-
sion, it exhibits inferior performance in predicting particles and
their centers (loU) compared with the supervised methods.

Generalization ability

The results reported in Table S1 and Figure S2 suggest that su-
pervised methods struggle to generalize to unseen data distribu-
tions. Across all metrics reported, their performance frequently
drops to exceptionally low levels. Notably, both Topaz and crY-
OLO often exhibit near-zero values for F1 score, loU, precision,
or recall metrics. Even for cases of non-zero performance, they
are still inferior to the ones obtained with supervised training.
In contrast, cryo-EMMAE demonstrates notable cross-dataset
generalization capabilities. Its performance consistently remains
nearly stable across various evaluation datasets and models
trained on different datasets.

This suggests that our method effectively mitigates the impact
of dataset-specific noise levels and characteristics in micro-
graphs. These findings imply that cryo-EMMAE can learn the
necessary invariances irrespective of the experimental nuances
inherent in cryo-EM procedures. As shown in Table 1, cryo-EM-
MAE’s mean F1 and precision scores across all four training par-
adigms are superior to both Topaz and crYOLO. However, while
the mean loU and recall values are comparable across all three
methods, cryo-EMMAE lags behind in three out of four training
setups.

Performance scaling vs. training set size

In Figure 2A, we highlight an interesting characteristic of cryo-
EMMAE: our approach achieves strong performance after
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training on just 5 micrographs. Each micrograph is divided into
256 images (since they are resized to a 1,024 x 1,024 shape),
meaning that, when trained on 5 micrographs, our method is
effectively trained on 1,280 images in total. We hypothesize
that this behavior results from the randomness inherent in the
masking process during our preprocessing pipeline, which helps
mitigate the influence of experimental factors, such as ice thick-
ness, on micrograph noise. This noise normalization makes the
data less variable at a local scale, while reconstructing random
patches can amplify this variability.

Role of micrograph-specific clustering

In Figure 2B, we illustrate the impact of the number of clusters
that are used in the micrograph-specific clustering process by
reporting aggregated results (loU, recall, precision, and F1
averaged across the 14 datasets) for cryo-EMMAE trained on
the dataset EMPIAR: 10029. Our ablation study reveals that
different number of clusters directly affects the final perfor-
mance. These findings highlight two observations: (1) as the
number of clusters increases, precision improves while recall
decreases, indicating that the clustering process filters out
more background pixels but also eliminates some particle posi-
tions and (2) the selection of five clusters for the micrograph-
specific clustering process (described in detail in inference) op-
timizes the F1 score.

Latent space analysis

The latent representations of a micrograph are the feature vec-
tors extracted from each micrograph patch by the MAE (see
Figure 1B for the encoder output of the MAE). These latent rep-
resentations, which are vectors of length 192, encode essential
information about the input patches and are used to cluster
and segment the micrograph into particles and background re-
gions. Latent representations extracted from a specific micro-
graph tend to be more similar to each other than to those from
different micrographs, as they originate from the same experi-
mental conditions, including imaging parameters, noise charac-
teristics, and particle distributions.

To visualize the discriminative capability of the latent space
for micrograph pixels, we performed principal-component anal-
ysis on the latent representations of particle and background
pixels. The first two principal components were plotted for six
micrographs from different EMPIAR datasets. The results,
shown in Figure 3, clearly demonstrate separation between
background and particle pixels. To ensure visual balance, an
equal number of data points were sampled from particles and
background. These latent representations were obtained from
the cryo-EMMAE model trained on the EMPIAR: 10291 dataset.
In Table S3, we compute the Euclidean distances between
latent representations of particles and background within the
same micrographs and across two selected micrographs
(A and B). The results show that particle regions within a micro-
graph have significantly lower distances between themselves
than when compared with background regions, and vice versa.
Additionally, intra-micrograph distances are consistently lower
than inter-micrograph distances, indicating greater similarity
within each micrograph. This supports the notion of micro-
graph-specific latent representations.
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Figure 2. Performance metrics of the abla-
tion study for cryo-EMMAE
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The model was trained on the EMPIAR: 10291
dataset and evaluated across 14 datasets, with
the mean values computed.

(A) The mean loU, recall, precision, and F1 scores are
plotted against the number of training micrographs.
(B) Presents the mean loU, recall, precision, and F1
scores relative to the number of clusters (K) used
during post-processing.
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Single-particle 3D reconstructions

To further assess the particle-picking performance of each
method, we performed 3D reconstructions on eight test datasets
using models trained on two datasets (EMPIAR: 10291, 10077).
The evaluation included reconstructions using blob picking, which
resembles an unsupervised approach, and reconstructions based
on CryoPPP annotation particles. All electron density maps were
generated using CryoSPARC v.4.4.0."°> Two workflows were
used: the first involved ab initio 3D reconstruction followed by ho-
mogeneous refinement using the complete set of picked particles,
while the second included 2D classification and selection of the
best classes before reconstruction and refinement. For test data-
sets EMPIAR: 10081, 10017, 10289, 10291, the corresponding
symmetries C4, D2, C8, and C8 were imposed during homoge-
neous refinement. For more details in 3D reconstruction proced-
ures see 3D reconstruction methodology.

The best-resolution reconstruction for each method across
eight different EMPIAR datasets is reported in Table 2, while
the number of particles used to produce these reconstructions
are presented in Table S4. Resolutions of 3D density maps that
failed to reconstruct the volumes correctly are underlined, while
the best resolution reconstructions for each test set and work-
flow (with and without 2D classification) are highlighted in bold.
In Table 2 the average resolution across all reconstructions is
calculated in the Mean row, by assigning a penalty value of
10 A for test sets that were not correctly reconstructed. The
Rec. Mean row reports the average resolution using only
correctly reconstructed sets and indicates the percentage of
successful reconstructions. Reconstructions using ground truth
particles from CryoPPP do not involve 2D classification or class
selection, as these particles are provided as a pre-filtered,
optimal particle set, that is clean of any noise.

The results in Table 2 indicate that cryo-EMMAE not only picks
particles that are used to successfully reconstruct most 3D den-
sity maps for both workflows but also reports the best mean res-
olution, significantly outperforming the second-best method,
Blob Picker. On average, the differences in resolution between
cryo-EMMAE and Topaz are approximately 2.9 and 1.2 A for
the EMPIAR: 10291, 10077 training schemes, respectively.
These values were computed as the average resolution differ-
ences between the methods, both with and without 2D classifi-
cation. Similarly, the corresponding differences with crYOLO

3 5 5 3
Number of Clustering Centers (K)

[

are approximately 1.7 and 3.7 A. Aninter-
esting result is that, when reconstructing
using 2D classification, cryo-EMMAE re-
constructions exhibit higher resolution
compared with the ground truth picks provided by CryoPPP’s
annotation dataset, by reporting a difference of 1.71 and
1.05 A for EMPIAR: 10291, 10077, respectively. Additionally,
the CryoPPP particle set failed to reconstruct correctly two out
of eight EMPIAR datasets. When these CryoPPP particle sets
were 2D classified and further cleaned, the reconstructions
were corrected, reaching resolutions of 3.65 A for EMPIAR:
10289 and 5.29 A for EMPIAR: 10077, with particles retention
rates of 49% and 84 %, respectively. This phenomenon probably
occurs because CryoPPP annotations aim to include as many
particles as possible, even those of lower resolution, prioritizing
the training of machine learning algorithms over the reconstruc-
tion resolution of the particle set. In the discussion, we further
elaborate on our opinion regarding annotations of particles.

Figure S4 presents 6 different 3D reconstructions across the 4
methods, along with ground truth volumes (produced using the
entire EMPIAR datasets, rather than a subset of 300 micro-
graphs) and CryoPPP reconstructions. The figure also highlights
failed reconstructions for CryoPPP (EMPIAR: 10289), Blob
Picker (EMPIAR: 10289), and crYOLO (EMPIAR: 10017, 10291).
cryo-EMMAE on the other hand demonstrates consistent recon-
struction performance across the 6 test datasets.

Finally, we performed 3D reconstructions on four EMPIAR da-
tasets using Topaz, crYOLO, and cryo-EMMAE models trained
on 20 EMPIAR datasets provided by CryoPPP, the results are
presented in Figure S6 and Table S6. The reported resolutions
in Table S6 indicate that Topaz and cryo-EMMAE perform simi-
larly, while crYOLO ranks last, with a small difference of 0.26 A.ln
Figure S6, we present the visualization of 3D reconstructions for
the three methods compared with the published structures. The
figure reveals minor differences between the reconstructions,
except for EMPIAR: 10049, where cryo-EMMAE appears to
reconstruct the density map more accurately than Topaz and
crYOLO. Notably, for EMPIAR: 10049, Topaz required two
rounds of classification to properly reconstruct the density
map. Overall, we observed that Topaz selected substantially
more particles than the other two methods, making the analysis
significantly more time-consuming.

In conclusion, our experiments show that cryo-EMMAE,
Topaz, and crYOLO achieve comparable performance when
trained on the same extended training set. The key difference
is that Topaz and crYOLO require annotated data, which can
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Figure 3. Latent space visualization through principal-component analysis for cryo-EMMAE’s latent representations projected onto the first

two principal components

The subplots correspond to different micrographs from six datasets (EMPIAR: 10028, 10017, 10077, 10081, 10406, 10184). Latent representation data points for
background pixels are shown in cyan, while those for particle pixels are shown in orange.

be difficult to obtain in large quantities. In contrast, our main
contribution is demonstrating that cryo-EMMAE can match the
performance of these state-of-the-art supervised methods
without relying on labeled data, making it a more practical and
scalable solution.

Multi-particle 3D reconstructions
To further show the generalization ability of our method on un-
seen setups, we evaluated the four methods on a significantly
challenging dataset that includes micrographs from cell extracts
of Chaetomium thermophilum presented in Skalidis et al. °
(EMPIAR: 10892). In this case, Topaz, crYOLO, and cryo-EM-
MAE were trained on an extensive dataset comprising 20
EMPIAR datasets from cryoPPP, in contrast to the single-parti-
cle 3D reconstruction experiments, where each method was
trained separately on a single EMPIAR dataset. In this study,
we reconstructed four different proteins: the pre-60S ribosomal
subunit, fatty acid synthase (FAS), the E2 core of the oxogluta-
rate dehydrogenase complex (OGDHCc), and the E2 core of the
pyruvate dehydrogenase complex (PDHc). Using 2,808 micro-
graphs, the study achieved resolutions of 4.52, 4.47, 4.38, and
3.84 A for the pre-60S, FAS, OGDHc, and PDHc, respectively.
For our evaluation, a subset of 854 micrographs was selected
from the original dataset. These were chosen as the top 300 mi-
crographs containing most of the particles for each protein.
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Some micrographs overlapped across proteins, leading to a total
of 854 instead of 1,200 micrographs (4 x 300). The three ma-
chine learning methods were trained on a large training dataset
of 1,950 micrographs from 20 different EMPIAR datasets. Data
preprocessing steps, the number of training epochs, and check-
point selection follow the methodology detailed in experimental
setup.

The resolution results of the 3D reconstructions are presented
in Table 3, while visualizations of the 3D electron density volumes
are illustrated in Figure 4. For the reconstructions, we performed
two rounds of classification and selection with 300 classes each
to better isolate the protein classes. The total number of particles
selected by each method was 747,225 for blob picking, 249,473
for Topaz, 92,595 for crYOLO, and 253,045 for cryo-EMMAE.
The two classification rounds required approximately 25.5,
10.3, 4.5, and 10.5 GPU hours, respectively, using CryoSPARC
v.4.4.0."°

As shown in Table 3, cryo-EMMAE not only, unlike other
methods, successfully reconstructs all protein densities but
also achieves the best mean resolution of 5.89 A, outperforming
the second-best, Topaz (6.91 A). The average resolution per
method incorporates a penalty of 10 A for each unreconstructed
entry. Furthermore, cryo-EMMAE achieves the best resolution
for three out of four proteins, with its reconstruction of the
pre-60S ribosomal subunit even surpassing the reconstruction
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Table 2. Resolution per reconstruction for eight different test datasets, comparing four methods: Blob Picker, Topaz, crYOLO, and
cryo-EMMAE, the last three trained on datasets EMPIAR: 10291, 10077

Without 2D classification (A)

With 2D classification (A)

Without 2D classification

Test sets Blob Picker Topaz crYOLO  cryo-EMMAE Blob Picker Topaz crYOLO  cryo-EMMAE CryoPPP GT
Trained on EMPIAR: 10291

10028 4.28 - 5.86 4.13 4.31 - 6.07 4.14 4.22
10081* 5.63 4.25 4.61 4.24 4.18 3.94 3.97 3.78 4.08
10017 4.56 6.65 >20 4.55 4.53 6.33 >20 4.50 4.38
11183 6.10 7.89 9.62 7.03 6.92 9.24 6.93 4.65 7.15
10289 16.10 6.97 6.49 7.92 7.32 3.77 3.63 3.95 8.27
10406 2.93 - 3.15 2.93 2.93 - 3.23 2.94 2.97
10077 6.09 - 8.02 7.62 7.46 - 9.28 6.81 5.20
Mean 6.77 8.70 7.61 6.13 6.20 7.72 6.26 4.40 6.11

Rec. Mean 4.35 (4/7) 5.45 (2/7) 5.81 (4/7) 4.58 (5/7) 4.68 (5/7) 4.68 (3/7) 4.77 (5/7) 4.40(7/7) 4.67 (5/7)
Trained on EMPIAR: 10077

10028 4.28 4.12 4.16 4.13 4.31 4.07 412 4.14 4.22
10081* 5.63 6.90 10.61 4.56 4.18 4.36 9.85 3.94 4.08
10017 4.56 10.05 >20 4.65 4.53 14.09 17.14 4.49 4.38
11183 6.10 7.49 19.19 6.87 6.92 7.36 19.42 4.53 7.15
10289 16.10 9.46 13.28 9.69 7.32 3.77 7.76 3.68 8.27
10406 2.93 2.91 2.91 2.90 2.93 2.90 2.93 2.93 2.97
10291~ 3.96 3.66 8.19 3.62 3.65 3.59 8.30 3.48 3.43
Mean 5.91 6.36 8.71 5.20 5.66 5.15 7.81 3.88 4.93

Rec. Mean 4.27 (5/7) 5.76 (6/7) 7.74 (4/7) 5.20(7/7) 3.92 (5/7) 5.17 (6/7) 6.17 (4/7) 3.88 (7/7) 4.37 (6/7)

Reconstructions were computed both with and without 2D classification on picked particles, from approximately 300 micrographs per dataset, pro-
vided by CryoPPP, EMPIAR: 10017 includes only 84 micrographs. Reconstructions that falsely reconstructed the original density map are underlined.
For each test dataset, the best reconstruction resolution is highlighted in bold. Reconstructions were also performed using ground truth particles pro-
vided by cryoPPP without 2D classification. Symmetry was imposed on datasets EMPIAR: 10081, 10017, 10289, 10291, corresponding to C4, D2, C8,
and C8 symmetries, respectively. The Mean row averages resolution values, assigning 10 Aas penalty for failed reconstructions. The Rec. Mean row
averages only correct reconstructions and notes the success ratio. GT, ground truth. The best resolutions are highlighted in bold. Asterisks denote
imposed symmetries: C4 (EMPIAR: 10081), D2 (EMPIAR: 10017), C8 (EMPIAR: 10289, 10291).

obtained from the ground truth particles. Notably, all four
methods struggled to reconstruct the E2 core of the OGDHc at
a high resolution, likely due to the low particle count of this pro-
tein in the micrographs.

Real case studies

We further conducted a complete 3D reconstruction pipeline for
six EMPIAR datasets to provide a direct comparison with the
originally reported resolutions. These datasets include a wide va-
riety of structures. For these reconstructions, we used the com-
plete available datasets from the EMPIAR database. The acces-
sion numbers are EMPIAR: 10005, 10028, 10049, 10291, 10433,
10955, with corresponding number of micrographs 771, 1,081,
680, 300, 1,280, and 270, respectively; in total 4,382 micro-
graphs were processed and picked.

In Table S2 we report the resolutions, and in Figure S1 we
compare the published 3D density maps with those generated
using cryo-EMMAE for particle picking. The cryo-EMMAE model
used for particle picking was trained on the 20 EMPIAR datasets
from cryoPPP, including 180 micrographs from each of the EM-
PIAR: 10028, 10291 datasets.

For the 3D reconstructions, we imported the particles into
CryoSparc v.4.4.0 and performed a single round of 2D classifica-

tion, then executed ab initio reconstruction using the selected
particles, followed by homogeneous refinement. When appli-
cable, symmetry was imposed in alignment with the published
structures.

Results in Table S2 demonstrate that cryo-EMMAE not only
generalizes well to unseen datasets but also achieves resolu-
tions comparable to the published structures, with minimal pro-
cessing limited to a single round of 2D classification. The mean
resolution difference between the published structures and
those obtained using cryo-EMMAE is 0.16 A, with our method
even surpassing the published resolution in two cases. Overall,
all differences remain within 0.6 A. An interesting observation is
the number of particles used for 3D reconstruction. Both pub-
lished maps and those with cryo-EMMAE utilize a similar number
of particles, except for dataset EMPIAR: 10955, where our
method employs a significantly lower number. However, the
mean number of particles across all six datasets remains nearly
identical.

The maps presented in Figure S1 qualitatively support the re-
ported resolutions, demonstrating a close similarity to the pub-
lished density maps in EMDB. A noteworthy case is EMPIAR:
10433, which corresponds to the SARS-CoV-2 spike protein. In
their analysis, the authors fine-tuned Topaz on the same dataset
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Table 3. Resolution and particle counts per reconstruction are presented for the four proteins from the 854-micrograph subset of

EMPIAR: 10892

With 2D Classification 3D reconstruction resolution (A)

No. of particles

Proteins Blob Picker Topaz crYOLO cryo-EMMAE GT  Blob Picker Topaz crYOLO cryo-EMMAE GT
Pre-60S ribosomal subunit 6.73 5.05 4.44 4.38 4.64 8,063 13,877 24,127 28,008 15,670
Fatty acid synthase* 4.44 5.73 6.41 5.01 4.43 2,808 1,353 767 1,135 2,567
OGDHc E2 core* 10.41 8.19 9.97 9.65 4.05 2,011 742 660 162 1,128
PDHc E2 core*® - 6.86 - 4.53 396 0 623 0 1,139 3,782
Mean 7.79 6.91 7.70 5.89 4.27 4,294 4,149 8,518 10,094 5,787
Rec. Mean 5.59 (2/4) 5.88 (3/4) 6.94 (3/4) 5.89 (4/4)

Reconstructions for the four methods (Blob Picker, Topaz, crYOLO, and cryo-EMMAE) were computed using two rounds of 2D classification on picked
particles, with failed reconstructions underlined. The best resolution per dataset is highlighted in bold. Reconstructions using ground truth particles
were also performed. Symmetry was imposed during homogeneous refinement for FAS, OGDHc, and PDHc, corresponding to D3, O, and | symme-
tries, respectively. The Mean row averages resolution values, assigning a penalty of 10 A for failed reconstructions, and also computes the average
particle count only for correctly reconstructed proteins per method. The Rec. Mean row averages only successful reconstructions and includes the
success ratio. GT, ground truth. Best resolution results are shown in bold. Asterisks mark imposed symmetries: D2 (FAS), O (OGDHCc), and | (PDHc).

for particle picking. This process required manually selecting
particles, training Topaz, and subsequently using it for automated
picking.>" In contrast, we applied cryo-EMMAE directly on the mi-
crographs of the dataset without any fine-tuning or prior relation-
ship between the initial training set of cryo-EMMAE and EMPIAR:
10433, resulting in a highly similar structure both qualitatively and
in terms of resolution.

DISCUSSION

In this work we present cryo-EMMAE, the first self-supervised
method applied to the highly complex cryo-EM data. A MAE is
initially trained to reconstruct patches of the initial micrographs.
Multiple levels of clustering are then applied on the representa-
tion space of MAE in order to hierarchically denoise the micro-
graphs. The final denoised micrograph consists of a segmenta-
tion of the particles from the background.

Our experimental evaluation shows that cryo-EMMAE exhibits
stable generalization capabilities when applied to unseen data,
significantly outperforming supervised methods. This suggests
that our approach effectively reduces the impact of dataset-spe-
cific noise and the inherent characteristics of micrographs.
These results imply that cryo-EMMAE is able to learn the neces-
sary invariances, regardless of the experimental variances that
are common in cryo-EM procedures.

Notably, this generalization ability is maintained even when
trained with only a small number of micrographs. We hypothe-
size that this behavior stems from the standardization introduced
during the micrograph normalization process in our pre-process-
ing. This standardization helps reduce the influence of experi-
mental factors, such as ice thickness, on micrograph noise. As
a result, the noise is normalized, making the data less variable
at a local scale. Additionally, reconstructing random patches
during training MAE further enhances the model’s robustness
to such experimental inconsistencies.

It is important to note that Topaz®® shows low precision, even
when tested on the same dataset it was trained on. Particle-pick-
ing models generally prioritize recall, as they are often used to
assist lab practitioners in quickly annotating data.?® In this
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context, high recall is more critical, as annotators can manually
filter out false positives through 2D classification. However, for
fully automated systems, good precision is essential to ensure
accuracy and minimize errors without the need for manual inter-
vention. In contrast, cryo-EMMAE, with its strong generalization
capabilities and stable precision, shows promise for improving
automation in such tasks. Additionally, we demonstrate that,
as the number of clusters increases, precision improves while
recall decreases. This suggests that the clustering process filters
out more background pixels, but also removes some true parti-
cle positions. In our method, by selecting the optimal number of
clusters, users can balance precision and recall according to
their specific needs.

The superior generalization performance is also evident in the
resolution of 3D reconstructions across the eight different test
datasets, comparing four methods and the annotated particle
sets from cryoPPP.*® cryo-EMMAE significantly outperforms
the other two machine learning approaches and achieves
mean resolution approximately 0.7 and 1.8 A better than
CryoSPARC’s Blob Picker, without and with 2D classification,
respectively.

The results of CryoPPP particles, highlight the inherent biases of
annotated datasets, which often fail to provide the optimal set of
particles needed to achieve the best possible resolution for a
given dataset of micrographs. This observation is apparent in
two key comparisons within our work: (1) the major differences be-
tween the metrics and the reconstruction evaluations of the
methods, where the superiority of cryo-EMMAE becomes more
evident on reconstructions studies and (2) the advantage of
cryo-EMMAE’s reconstructions compared with the CryoPPP’s
annotated particles. Consequently, our work underlines the
importance of evaluating cryo-EM particle-picking methods
based on the resolution of the resulting 3D density map. This
objective should also be the end-to-end goal of any particle-pick-
ing machine learning methodology.

Finally, cryo-EMMAE demonstrated its strength in practical
and demanding scenarios, excelling in multi-particle micro-
graphs. It outperformed all the methods compared and success-
fully reconstructed correctly all four proteins from the original
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Figure 4. Visualized reconstructed density maps of the four proteins from EMPIAR: 10892 are shown for ground truth and the four tested

methods

Each protein in the dataset is represented by a distinct color. The learning-based methods (Topaz, crYOLO, and cryo-EMMAE) were trained using 20 different
EMPIAR datasets. The volumes reconstructed by the four methods (Blob Picker, Topaz, crYOLO, and cryo-EMMAE) include two 2D classification-class selection
steps, whereas the reconstructions using ground truth particles from the original study do not incorporate this step. Density values for all maps range from —1to 3,

with thresholds applied close to 1.

study. Notably, cryo-EMMAE surpassed the second-best
method (Topaz) by more than 1 A of mean resolution and even
managed to surpass the resolution of ground truth particles for
the pre-60S ribosomal subunit. Overall, our work helps reduce
the heavy dependence on costly expert annotations—which
are often not optimal—for cryo-EM data analysis, paving the
way for more cost-effective and automated solutions in the field
of cryo-EM analysis.

Related work

Cryo-EM particle localization is a crucial step in cryo-EM particle
analysis. This is apparent considering the variety of approaches
that have been proposed. These approaches range from tradi-
tional computer vision techniques to more advanced machine
and deep learning methods. Traditional methods are generally
categorized into two main approaches. The first, known as the
template-based methods, '*'" relies on projections of a given pro-
tein structure to match in experimental micrographs. While this
method provides a solid framework, it introduces human bias
through the selection of the template protein, potentially losing
different projections and conformations, or even leading to the
Einstein-from-noise effect.*>>” On the other hand, template-free

approaches offer more flexibility and ease of implementation.
Techniques such as Laplacian of Gaussian,'*'® Difference of
Gaussians,'* and Blob Picker'® are among the most commonly
used. Despite their ease of use, these methods often prioritize
picking as many particles as possible, which leads to high false-
positive rates. These inaccuracies can negatively impact subse-
quent analysis steps, increasing processing times and potentially
introducing noise into the final reconstructed volume.

Deep learning methods have shown success in particle picking.
All methods in the literature to date rely on annotated datasets, fall-
ing under the supervised learning scheme. These methods
address particle picking from three primary perspectives, predom-
inantly employing convolutional neural networks.*® First, binary
classification of micrograph windows as either containing particles
or not has been implemented by methods such as DeepEM,?
Topaz,”® Warp,>* and DeepCryoPicker.”® Second, segmentation
of micrographs into background and particle classes has been
addressed by methodologies such as DeepPicker,'” Pixer,'®
PARSED,'® DRPnet,”® and CryoSegNet.”' Finally, for object
detection, a less common yet fitting approach, methodologies
such as crYOLO,?® EPicker,” and CryoTransformer®° have been
developed.
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The methods that are mostly used in practice are Topaz® and
crYOLO?® in which researchers typically manually annotate a
small number of experimental micrographs with particles to
refine pretrained models. The fine-tuned models are then used
to predict particles in experimental micrographs. However, this
process is time-consuming and relies on experienced annota-
tors, who may introduce bias during the selection of particles.
Previous studies have observed that crYOLO?® often misses
true protein particles, while Topaz®® picks a lot of duplicate par-
ticles and false positives.?'?"2%:30

Future work and broader impact

From a technical perspective, cryo-EMMAE introduces an
effective method for representation learning on images with
extremely low signal/noise ratios, coined specifically for seg-
mentation tasks. This approach can be extended to various
challenges in other scientific domains that share similar charac-
teristics. For instance, our pipeline can be easily adapted to
other biomedical image segmentation tasks, such as localizing
protein complexes within cells or organelles using cryoelectron
tomography, performing multipurpose segmentation (e.g.,
multi-organ, multi-disease, and multi-phase) with computed to-
mography and magnetic resonance imaging, localizing cells in
microscopy data, or detecting and segmenting pathological
features in histopathology,®°~*® among others. Although certain
parameters, such as image patching, number of clustering cen-
ters, and post-processing steps, would require further hyper-
parameter search to be in line to the characteristics of the target
domain, the overall pipeline of the methodology remains
unchanged.

A potential extension, inspired by cryo-EMMAE could be the
integration of particle picking and 3D reconstruction steps into
an end-to-end self-supervised framework. This coupling has
the potential to transform cryo-EM analysis by reducing the
dependence on extensive expert supervision and facilitating a
more efficient, higher-throughput unsupervised workflow.
Consequently, researchers could focus on more critical tasks,
such as improving experimental protocols and interpreting re-
sults, instead of the labor-intensive data analysis.

From a broader perspective, the automation of cryo-EM
analysis can enhance scientific research across four key areas:
(1) accelerating the determination of high-resolution protein
structures, (2) advancing our understanding of disease mecha-
nisms and promoting drug discovery, (3) helping healthcare
innovation through personalized medicine and faster vaccine
designing, and (4) influencing cross-disciplinary field with
similar computational needs, such as nanotechnology and ma-
terial science.

Our work hopefully contributes to these advancements by
pushing forward automation in cryo-EM data analysis.

Limitations of the study

While cryo-EMMAE demonstrates strong performance across
unseen cryo-EM datasets, certain limitations remain. Our method
struggles with highly crowded micrographs, low contrast, and
large particles, situations where accurately segmenting individual
particles, in general, becomes more challenging; these difficulties
are universal to other literature methods.
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Furthermore, increasing the amount of training data for cryo-
EMMAE has shown limited impact on improving performance,
suggesting that cryo-EMMAE’s scalability with larger datasets
needs further investigation; one potential reason for that limita-
tion might be the preprocessing steps, which remove a signifi-
cant amount of high-frequency information from the micro-
graphs. As a result, our method focus on the low-frequency
components—common across all micrographs—which might
contribute to its stable performance across the test datasets.
However, this focus on low frequencies may limit its ability to
learn more highly variable characteristics of the data.

The primary goal of our empirical evaluations was to assess
the generalization capabilities of all models, specifically to deter-
mine if they can be applied directly to unannotated laboratory
data to accelerate structural biology research. However, in
cases where annotated data are available, supervised methods
may outperform our approach on those specific datasets. Our
study is limited in this regard, as it does not evaluate perfor-
mance under these conditions.

We further did not perform ablation studies to evaluate the
impact of our preprocessing pipeline on the supervised
methods. We speculate that incorporating this preprocessing
would improve their absolute performance, although not neces-
sarily their generalization ability. Instead, we chose to reproduce
their original methodology, where this preprocessing step is not
included.
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https://www.ebi.ac.uk/empiar/EMPIAR-10017/
https://www.ebi.ac.uk/empiar/EMPIAR-10760/
https://www.ebi.ac.uk/empiar/EMPIAR-10061/
https://www.ebi.ac.uk/empiar/EMPIAR-10075/
https://www.ebi.ac.uk/empiar/EMPIAR-10184/
https://www.ebi.ac.uk/empiar/EMPIAR-10532/

EMPIAR: 10669 Dong et al.® https://www.ebi.ac.uk/empiar/EMPIAR-10669/
CryoPPP annotated dataset Dhakal et al.** https:/calla.rmet.missouri.edu/cryoppp/
EMPIAR: 10892 (cell extracts dataset) Skalidis et al.’ https://www.ebi.ac.uk/empiar/EMPIAR-10892/
Software and Algorithms

cryo-EMMAE This study https://doi.org/10.5281/zenodo. 15542966
Topaz Bepler et al.”® https://github.com/tbepler/topaz

crYOLO Wagner et al.?® https://cryolo.readthedocs.io/

Blob Picker Punjani et al."® https://cryosparc.com/

ChimeraX v.1.8 Meng et al.®” https://www.cgl.ucsf.edu/chimerax/
CryoSPARC v.4.4.0 Punjani et al.’® https://cryosparc.com/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
This study did not use experimental models commonly employed in life sciences.
METHOD DETAILS

Micrograph preprocessing

Protein projections within cryo-EM micrographs are essentially 2D representations of the protein under investigation; it is necessary
for these projections to capture high-frequency details for revealing details of the protein’s 3D structure. However, these images suf-
fer from varying degrees of high-frequency noise, obscuring the structural clarity of the data. Therefore, it is vital to devise a filtering
process, to enhance the distinction of such information during picking.

To standardize the background noise in micrographs, we employ a normalization technique outlined in'" that results in a zero-
mean and unit standard deviation noise by adjusting for noise variations according to the particle diameter which is a known exper-
imental parameter. At each position 7 within the micrograph, we subtract the mean and divide by the the standard deviation.

1

u(r) = EFW {FT(X)FT(M,)"} (Equation 1)
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o(T) = \/A;OFT1{FT(X2)FT(M0)*} —w3(T) (Equation 2)

Here, X is a matrix representing the micrograph, My is a circular mask based on the particle diameter, while FT( -) is the Fourier
transform. This normalization procedure mitigates the influence of fluctuations in ice thickness, exposure, and other uncontrollable
experimental variables, thereby enhancing the consistency of micrograph analysis.

Additionally, we adhere to a common procedure®'*° where a Wiener filter is applied for denoising and Contrast Limited Adaptive
Histogram Equalization (CLAHE) is used to enhance contrast by addressing non-uniform illumination and low contrast. Finally, guided
filtering is applied using the CLAHE-enhanced image as a reference. This process selectively smooths the image while retaining
important structural details, striking a balance between noise reduction and preservation of critical information. Allimages are resized
to a shared dimension of 1024 x 1024. The steps above are summarized in Figure 1A.

Representation learning

Several families of self-supervised methods, such as Contrastive Learning,®® Self-Distillation,®* and Canonical Correlation,® rely on
data augmentations that preserve the semantic content of data instances. Masked autoencoding, however, takes a completely
different approach. We hypothesize that learning to reconstruct randomly masked patches of a micrograph can produce represen-
tations that capture particle-oriented local invariances without relying on augmentations. Consequently, the 1024 x 1024 resized mi-
crographs are divided into 64 x 64 patches, generating 256 smallerimages that cover the full micrograph. This approach addresses a
key difference between cryo-EM and real-world images: micrographs lack the global spatial correlation seen in natural images. By
focusing on smaller regions, the model emphasizes particles and preserves local context. Reducing the masking during training from
75% to 50% ensures that no particles are fully masked, while independent masking within each patch guarantees that masking is
evenly spread across the micrograph. This prevents any single region from being completely masked or entirely visible, ensuring
that the model receives balanced and representative input from all regions of the micrograph. Based on this, we propose the use
of Masked Autoencoders (MAEs),?® which have demonstrated the capability to learn representations encompassing a broad range
of semantics relevant to downstream tasks, for representation learning on micrographs. During training, MAEs randomly mask a per-
centage of the input image, which is first divided into patches. The unmasked patches are processed by the encoder, which gener-
ates a latent representation for each patch. In the latent space, representations for the masked patches are added as empty place-
holders. During the decoding step, the masked patches are predicted based on the latent information captured by the encoder from
the unmasked patches. The learning objective of an MAE is to reconstruct the input image as faithfully as possible, achieved through
the mean squared error (MSE) averaged per each image’s patch: MSE = %Z,Nﬂ (Yi — )7,-)2. A perfect encoder should remain
invariant across various levels of noise. Consequently, when clustering the representation space, distinct clusters are expected to
emerge corresponding to different noise levels and distances from the particle centers. The micrograph representation step is illus-
trated in Figure 1B.

Implementation details
We use the ViT encoder®’ to learn the semantic information of micrograph patches at the embedding level. This is achieved through
the Mean Squared Error (MSE) loss of the reconstructed patch provided by a ViT decoder:

1 & 52
MSE —N;(Y/* Yi)

Details of the architectural configurations, learning settings and image dimensions are provided in Table S5. To retain sufficient
resolution at the latent embedding for the segmentation step, we patchify the original image before passing it through the model.

Inference

Dealing with various levels and noise fluctuations in micrographs complicates the accurate prediction of particles. Given an unseen
micrograph, the inference process is performed in two stages (i) clustering based on the learned representation space and (ii)
smoothing and filtering of predictions.

First, we address common high-frequency patterns and features of the non-particle regions shared across different micrographs
by identifying these regions through the clustering derived from the latent representations of the training set. The choice of four clus-
ters is the minimum required, as demonstrated in the ablations Figure 2B. A detailed explanation of clustering centers selection is
provided in Subsection Ablations. After this initial filtration step, we address variations in noise levels across micrographs by applying
clustering to the micrograph-specific latent representations. This approach allows dealing with different noise characteristics on the
micrograph level. The clustering process is performed in three steps based on different number o cluster centers k = i, wherei = 3,
4.5. At each clustering step, the cluster with the highest affinity to the previous step’s particle cluster is selected. This process begins
by defining the particle cluster using the latent representations of the training set through k-means clustering with four centers
(computed once). A reference micrograph and its corresponding particle mask are used to identify the particle cluster. To segment
each micrograph, we apply hierarchical clustering: first, using k-means with three clusters and selecting the one with the highest
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overlap with the training-set-derived particle cluster, then repeating the process with four and five clusters, each time selecting the
cluster with the highest similarity to the previous step’s particle cluster. This process is illustrated in Figure 1C and displayed algo-
rithmically in Algorithm 1 and Algorithm 2.

Algorithm 1. Train Set Clustering

Require: D: Set of feature representations from the training set
Mi,et: Reference micrograph and its segmentation mask
1: Apply k-means clustering with 4 clusters on D.
2: Use M to assign the particle cluster in the clustering of D.
3: return Cp: set of cluster centers (including the particle cluster cp).

Algorithm 2. Micrograph-Specific Hierarchical Clustering

Require: M: Set of feature representations from the micrograph
Cp: Set of cluster centers from the training set clustering
Cp: Particle cluster of Cp
max_iters: Maximum number of clustering levels (default = 5)
1:p<3, cp,<Cp
2: for i = 3 to max_iters do
3:  Apply k-means clustering with i clusters on M
4:  Setcp,,, to the cluster with the greatest overlap with cp,
5: end for
6: return Indices of pixels that belong to the final particle cluster ¢, ...

The initial predicted particle mask for the micrograph undergoes post-processing to extract the final predictions. First, convolution
with a 3x3 kernel is applied to smooth the predictions, in order and fill occasional holes in the segmented particle masks. Then,
bilinear interpolation restores the image to a higher resolution, for more accurate localization of the particles. Subsequently, a
threshold is applied to the smoothed predictions to prune away low confidence segmentation masks. However, this threshold is
contingent upon the unique experimental parameters and characteristics of each dataset and micrograph. Therefore, finding the
optimal threshold for each micrograph is imperative. To accomplish this, predicted segmentation masks are computed using various
thresholds within the [0, 1] range. The optimal threshold is determined by ensuring that the resulting segmentation mask aligns with
the statistical properties of the training data, specifically ensuring that particles occupy approximately 4% of the micrograph. Finally,
further post-processing is performed to filter out (i) neighboring predictions based on particle diameter (ii) filter predictions whose
radius exceeds by a threshold the particle radius, and (i) remove predictions at the borders of the micrographs, since at these po-
sition particles are usually partitioned. These steps are depicted in Figure 1D.

Experimental set-up

The rationale behind comparing with Topaz and crYOLO is obvious within the cryo-EM research community, where these two
methods stand out as the most widely used deep learning tools for particle picking in Single Particle Analysis (SPA) of cryo-EM mi-
crographs. Topaz and crYOLO also represent two distinct approaches: the former as an image classification model and the latter as
an object detection model. Both utilize convolutional neural networks to learn features from the cryo-EM micrographs.

Four separate training procedures, each using a different EMPIAR dataset, were conducted for each of the three methods. The
different EMPIAR datasets were provided by CryoPPP,*® selected to maximize diversity. These datasets include EMPIAR: 10291,
10077, 10590, 10816, which have proteins of different diameters (1 60/2\, 250A, 237A, and 180/1, respectively), each representing
different protein type and function. The evaluation procedure was performed on the test sets of these four datasets and an additional
set of 10 EMPIAR datasets, all annotated by CryoPPP. These datasets, include EMPIAR: 10028, 10081, 10096, 10240, 10406, 10289,
10737, 10059, 11183, 10017, have particle diameters ranging from 100A to 300A. For the results on the cell extracts of the EMPIAR:
10892 experiment, all three machine learning methods were trained on an extensive set of 20 EMPIAR datasets (EMPIAR: 10017,
10028, 10059, 10061, 10075, 10077, 10081, 10096, 10184, 10240, 10289, 10291, 10406, 10532, 10590, 10669, 10737, 10760,
10816, 11183) from cryoPPP*® to ensure maximum generalization capabilities of the models. These datasets, comprising approxi-
mately 300 micrographs, were randomly divided into three subsets: 60% for training, 20% for validation, and 20% for testing. This
diverse set of 20 EMPIAR datasets encompasses a wide range of protein types, functions, subcellular locations, organisms of origin,
shapes, sizes, noise characteristics, and concentrations within the micrographs.
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Particle picking can be perceived as an object detection problem, therefore we use the following common evaluation metrics in the
literature®”+?5; (i) Intersection over Union (loU) between annotated and predicted particles, using the particle diameter as the box size,
(i) recall, precision, and F1 score where true positives (TP) are only counted for predicted particles that uniquely overlap with ground
truth particles by more than 60% of their surface area, while all other predicted particles are classified as false positives (FP).

Micrographs used for training all three methods underwent identical preprocessing steps as discussed in Micrograph preprocess-
ing ensuring a fair comparison across the methodologies. For the training of Topaz, we employed the default ResNet8 model with the
default training parameters, running for 400 epochs. To be aligned with the original work, the epoch yielding the highest area under
the precision-recall curve on the validation set was selected. Micrographs were resized following the protocol outlined in.?® For the
training of the crYOLO, all micrographs were resized to the recommended resolution of 1024x1024, with anchor inputs based on the
protein particle size in each dataset relative to resolution. The number of epochs and model checkpoints is adjusted in the code
based on the reduction of validation set loss during training. cryo-EMMAE was trained for 400 epochs. Training cryo-EMMAE for
400 epochs takes about 2.5 hours per 100 micrographs. Inference takes around 130 seconds per 100 micrographs. Both computa-
tion times are reported on a system with an AMD Ryzen 7 5800X 8-Core Processor CPU and a single Nvidia RTX 4080 GPU. Further
implementation details of cryo-EMMAE are presented in the Table S5.

3D reconstruction methodology

For the single-particle reconstruction analysis, eight test datasets (EMPIAR: 10028, 10081, 10017, 11183, 10289, 10406, 10077,
10291) were selected. MRC motion-corrected files provided by CryoPPP*? were first imported into CryoSPARC, followed by patch
CTF estimation for each micrograph. Picked particle coordinates from each method were saved in an STAR-formatted file, which was
then imported into CryoSPARC for the 'Extract from Micrographs’ job. The extracted box sizes were consistent with those used in the
CryoPPP analysis. Two workflows were then employed. The first used all picked particles from the four methods for ab-initio recon-
struction followed by homogeneous refinement. The second workflow included a single round of 2D classification and 2D class se-
lection, followed by ab-initio reconstruction and homogeneous refinement. The 3D reconstructions of CryoPPP annotation particles
are reported from the first workflow, as they are provided as a noise-free set. For datasets EMPIAR: 10081, 10017, 10289, 10291, the
respective symmetries (C4, D2, C8, and C8) were imposed during homogeneous refinement, as suggested by their Electron Micro-
scopy DataBank (EMDB) entries (experimental metadata “applied_symmetry” field). All other CryoSPARC jobs were executed using
default parameters.

For the multi-particle reconstruction analysis, we first downloaded the multi-frame unaligned micrographs of entry EMPIAR: 10892.
The authors of the original paper kindly provided the STAR file containing the picked particle coordinates. Based on these coordi-
nates, we selected a subset of 854 micrographs from the initial 2808 unaligned micrographs. This subset included the top 300 mi-
crographs with the highest particle abundance for each of the four reconstructed structures presented in the paper: (i) the pre-60S
Ribosomal subunit, (i) Fatty Acid Synthase (FAS), (iii) the E2 core of the Oxoglutarate Dehydrogenase complex (OGDHc), and (iv) the
E2 core of the Pyruvate Dehydrogenase complex (PDHc). Due to overlaps in micrograph selection based on particle abundance, the
total number of micrographs was smaller than 1200 (4 x 300). These 854 unaligned micrographs were first imported into cryoSPARC,
followed by patch motion correction and patch CTF estimation. For each method, the picked particles were extracted using the
largest box dimension (384px) of the four proteins. Since the dataset contained projections from multiple proteins and various sour-
ces of noise, two consecutive rounds of 2D classification (300 classes) and 2D class selection were conducted to clean the dataset.
This step aimed to enrich abundant protein projections while removing low-abundance projections and noise. A final 2D classification
(100 classes) and 2D class selection were then performed on the selected classes from the previous two rounds. For each of the four
proteins, the corresponding projections were identified based on the ground truth particle classes and underwent ab-initio recon-
struction and homogeneous refinement. Symmetries were imposed for FAS (D3), OGDHc (O), and PDHc (l), as reported in the paper.
For the particle picks provided in the original paper, only the ab-initio reconstruction and homogeneous refinement steps were per-
formed, with the respective symmetries applied during homogeneous refinement. All other cryoSPARC parameters were left at their
default settings.

All the 3D reconstructed density maps presented at Figures 4, S5 and S6 are imaged with the use of ChimeraX v1.8-1.°> Upon
request to the lead contact, we can provide cryoSPARC jobs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data and results were analyzed using Python (version 3.10) and are presented as average values across different datasets. Principal
component analysis (PCA) was performed using the PCA function from the scikit-learn module (version 1.2.2).
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