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ABSTRACT

Background: Many students face difficulties with algebra. At the same time, it has been observed that fraction understanding
predicts achievements in algebra; hence, gaining a better understanding of how algebra understanding builds on fraction under-
standing is an important goal for research and educational practice.

Objectives: However, a wide range of algebra subtopics (e.g., Using formulas and Simplifying products in formulas) and fraction
subtopics (e.g., Adding and subtracting fractions, Multiplying and dividing fractions) exist, and little is known about which spe-
cific fraction subtopics matter most for (i.e., best predict) which specific algebra subtopics. In addition to addressing across-topic
subtopic correlations, a comprehensive understanding of within-topic subtopic correlations (i.e., among fraction subtopics and
algebra topics, respectively) has not yet been achieved.

Methods: Here, we leveraged a large data set (3158 students; 257,321 problem sets) from an intelligent tutoring system (ITS) and
employed state-of-the-art psychological network analysis to visualise and quantify interdependencies between students' perfor-
mance on different fractions and algebra subtopics.

Results and Conclusions: We observed one robust correlation between a specific fraction and a specific algebra subtopic
(Fractions and the order of operations and Using formulas). In addition, a larger number of within-topic subtopic correlations were
observed. Importantly, cross-topic correlations and most within-topic correlations seemed to be driven by shared mathematical
components (e.g., multiplication, operating rules or reading comprehension). Our findings advance the current understanding of
mathematics learning and have implications for the design and improvement of ITSs, such as for developing automatic sugges-
tions on which other subtopics to work on when a student encounters difficulties with a specific subtopic. Moreover, our study
highlights the potential of psychological network analysis for analysing learning data from ITSs.

1 | Introduction as it significantly predicts achievement on later, more ad-

vanced mathematical topics such as algebra (Bailey et al. 2012;
Over the past decade, numerous studies reported that fraction Booth and Newton 2012; McMullen and Van Hoof 2020; Mou
understanding is of utmost importance for learning mathematics et al. 2016; Park and Esposito 2024; Siegler et al. 2012; Spitzer
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Summary

« What is currently known about this topic?

o Fraction understanding significantly predicts later
algebra performance.

o Algebra serves as a gatekeeper for academic and pro-
fessional success.

o Intelligent tutoring systems (ITSs) collect fine-
grained learning process data.

o Psychological network analysis can reveal interde-
pendencies between topics.

« What does this paper add?

o Identifies Fractions and the order of operations as
predicting using formulas.

o Finds subtopics sharing mathematical components
correlate more strongly.

o Reveals stronger correlations within topics than
across topics.

o Applies psychological network analysis to process
data from an ITS.

« Implications for practice/or policy
o ITSs can suggest earlier subtopics when students
struggle with a given subtopic.
o Learning content can be structured based on shared
mathematical components.
o Developers should tag subtopics by skills like oper-
ating rules or multiplication.

and Moeller 2022; Torbeyns et al. 2015). Algebra achievement,
in turn, was argued to serve as a gatekeeper for subsequent aca-
demic success in mathematics and science. In fact, poor algebra
skills often preclude college acceptance and thus limit career
options and access to better-paying jobs that require advanced
mathematics skills (Murnane et al. 1995; National Mathematics

Advisory Panel 2008; Siegler et al. 2012). Accordingly, due to
the link between fraction performance and later algebra perfor-
mance, understanding fractions has been described as the ‘gate-
keeper's doorman’ (Booth and Newton 2012).

However, fractions are a complex topic that is typically broken
down into different subtopics such as Adding and subtract-
ing fractions, Multiplying and dividing fractions and Fractions
in context (see Table 1). The same is the case for algebra with
subtopics like Using formulas, Simplifying products in formu-
las and Single brackets in formulas (see Table 1). Importantly,
associations between fraction and algebra understanding are
well-established on the aggregate level (e.g., Bailey et al. 2012;
Booth and Newton 2012; Mou et al. 2016; Siegler et al. 2012;
Spitzer and Moeller 2022) and underpinned by theoretical con-
siderations, such as the integrated theory of numerical develop-
ment (e.g., Siegler and Lortie-Forgues 2014; Siegler et al. 2011).
Nevertheless, it remains to be investigated which specific frac-
tion subtopic(s) best predict(s) which specific algebra subtopic(s).
For example, it is unclear which fraction subtopic best predicts
understanding of the algebra subtopic Using formulas? Is it
Adding and subtracting fractions or rather Fractions in context,
or any other fraction subtopic? And in case a specific fraction
subtopic is identified as the strongest predictor of students’ un-
derstanding of the algebra subtopic Using formulas, does this
fraction subtopic also best predict performance in solving other
(more elaborate) algebra problems, such as Single brackets in
formulas? Or does another fraction subtopic best predict the al-
gebra subtopic Single brackets in formulas? As these examples
indicate, breaking down the known association of fraction and
algebra understanding to their individual subtopics not only al-
lows to tackle unsolved substantive questions but also poses an
interesting methodological challenge: which one out of multiple
predictor variables (fraction subtopics) presents the strongest
relationship to which one out of multiple outcome variables (al-
gebra subtopics)?

TABLE1 | Abbreviated book-subtopic ID and average days passed since F1.

ID Subtopic Components Days since F1
F1 Multiples and factors Multiplication; Reading comprehension 0

F2 Prime numbers Multiplication 3

F3 Forming and cancelling down fractions Multiplication; Fraction magnitudes 5.75

F4 Fractions and decimal numbers Fraction magnitudes 10

F5 Adding and subtracting fractions Addition and subtraction; Calculating fractions 15

Fo6 Multiplying and dividing fractions Multiplication and division; Calculating fractions 20

F7 Fractions in context exercises Calculating fractions; Reading comprehension 24

F8 Fractions and the order of operations Calculating fractions; Operating rules 26

F9 Fractions and powers Calculating fractions 28

Al Using formulas Multiplication; Operating rules 42

A2 Setting up formulas Operating rules; Reading comprehension 46

A3 Simplifying products Multiplication; Operating rules 48

A4 Like terms Addition and multiplication; Operating rules 53

A5 Single brackets Operating rules 61
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Importantly, more detailed insights into the pattern of in-
terdependencies between algebra and fraction subtopics can
feed back into the construction and development of the cur-
riculum of learning content embedded within digital learning
software. For example, software developers may organise the
content in a way that, when students struggle with specific
subtopics, earlier subtopics identified to predict understand-
ing of the target subtopic may be automatically assigned to
students for revision to ease their learning process for the tar-
get subtopic. Thus, guidance on which specific subtopics build
upon each other is important.

Recent developments in psychological network analysis offer
an ideal approach for easily addressing such questions, as they
allow for visually representing and quantifying intricate in-
terdependencies among various variables within a single easy-
to-access illustration (Borsboom and Cramer 2013; Borsboom
et al. 2021; Cramer et al. 2010; Epskamp et al. 2018; Spitzer,
Bardach, et al. 2024). In particular, psychological network
analysis with partial correlations allows for evaluating the
contribution of a specific variable while controlling for the in-
fluence of other variables (Epskamp and Fried 2018). However,
as the interdependencies between many different variables
are considered, psychological network analysis requires large
datasets to ensure sufficient statistical power (Epskamp and
Fried 2018).

Recently, there has been a surge in the number of students
worldwide learning mathematics through digital learning
platforms, such as intelligent tutoring systems (ITSs), partly
driven by the global impact of the COVID-19 pandemic (e.g.,
Meeter 2021; Spitzer et al. 2023; Tomasik et al. 2020). This
presents an ideal opportunity to apply psychological net-
work analysis, particularly because ITSs continuously collect
vast amounts of process data as students learn (Koedinger
et al. 2023; Ritter et al. 2007; Spitzer, Ruiz-Garcia, et al. 2025;
Spitzer et al. 2023). In the present study, we seized this oppor-
tunity and evaluated a large dataset (n=3158 students who
worked on n=257,321 problem sets) from an ITS for learn-
ing mathematics. The ITS provides a personalised learning
environment in which students work on different fractions
and algebra subtopics (see Section 3 for more details on the
ITS). We used this rich dataset to evaluate which fraction sub-
topic(s) best predicted which algebra subtopic(s). We also ad-
dressed within-topic correlations (i.e., between fraction and
algebra subtopics, respectively). Our study was guided by the
assumption that shared basic mathematical components (e.g.,
whether two subtopics both require multiplication skills) may
drive stronger correlations in both across-topic and within-
topic performance.

2 | Scientific Background
2.1 | Fractions: The Gatekeeper's Doorman

The integrated theory of numerical development suggests that
fraction understanding is a cornerstone for students when learn-
ing algebra (Siegler and Lortie-Forgues 2014; Siegler et al. 2012).
This theory posits that mathematical concepts develop interde-
pendently and scaffold upon one another, realising a hierarchy

in the development of mathematical skills and concepts (Siegler
and Braithwaite 2017; Siegler and Lortie-Forgues 2014). In the
context of algebra, fraction understanding serves as a founda-
tional element, aiding in the transition to more complex algebraic
concepts (Siegler et al. 2012). In particular, Siegler et al. (2012)
argue that understanding fractions enhances problem-solving
abilities, as many algebraic word problems involve fractions
(e.g., 1/3xx=2/3 Xy, where y is two times as much as x). Thus,
understanding the concept of fractions per se seems like a pre-
requisite for such formula problems.

The propositions of the integrated theory of numerical develop-
ment are substantiated by longitudinal studies observing that
understanding fractions is indeed important for learning alge-
bra. In fact, it was repeatedly found that students with better
fraction understanding also performed better on algebra later on
(Bailey et al. 2012; Booth and Newton 2012; Siegler et al. 2012;
Spitzer and Moeller 2022). For instance, Siegler et al. (2012)
analysed data from more than 4000 students from the United
Kingdom and the United States and observed that students' frac-
tion understanding at the age of 10years significantly predicted
their performance in algebra as well as overall mathematical
attainment 6years later—even after controlling for whole num-
ber knowledge, reading skills, working memory, family income
and general cognitive abilities. Another study with a sample of
212 students indicated that students’ fraction understanding in
sixth grade significantly predicted their mathematics achieve-
ment, including algebra, 1 year later in seventh grade (Bailey
et al. 2012). Again, this result held when controlling for work-
ing memory, general cognitive ability, seventh-grade fractions
comparison performance and sixth-grade overall mathematics
achievement (Bailey et al. 2012; see also Mou et al. 2016 for a
similar prediction from eighth to ninth grade). In summary, lon-
gitudinal evidence from studies with in-person testing provides
converging evidence indicating that fraction understanding
feeds into later algebra performance.

2.2 | Interdependencies Between Fractions
and Algebra Observed in ITSs

ITSs have emerged as a tool to facilitate mathematical learn-
ing (Anderson et al. 1985, 1995; Khazanchi et al. 2024;
Koedinger et al. 2023; Mavrikis et al. 2022; Ritter et al. 2007;
Spitzer 2022; VanLehn 2011). Through their adaptive nature,
ITSs offer the opportunity to scaffold tailored learning expe-
riences and provide real-time feedback to students (Corbett
et al. 2001; Koedinger et al. 2023; Ritter et al. 2007). In par-
ticular, the use of ITSs was found to facilitate mathematical
learning by adapting learning content to the learner's needs,
thereby optimising learning trajectories and outcomes (e.g.,
Rau et al. 2009; Rittle-Johnson and Koedinger 2009, 2005).
Importantly, these systems log all interaction data while stu-
dents engage with the learning materials. This process data
can be evaluated to advance our understanding of numeri-
cal development and to improve these systems (e.g., Ritter
et al. 2007). With respect to advancing current understand-
ing of numerical development, studies using data from ITSs
can complement and extend existing research on the relation-
ships between fraction and algebra performance, which have
largely relied on in-person testing. First, it is informative to
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test whether findings obtained with in-person testing can be
replicated using data obtained from ITSs. Second, due to the
fine-grained data collected while large numbers of students
work on multiple algebra and fraction subtopics over expanded
periods of time within the ITSs, further highly relevant ques-
tions pertaining to the complex interdependencies between a
range of different topics can be addressed.

For instance, recent work by Spitzer and Moeller (2022) used a
large dataset of n=75294 students who worked on n=1,050,897
problem sets. They demonstrated that students’ average algebra
performance across different algebra subtopics was significantly
predicted by average fraction performance across different frac-
tion subtopics. Although this study contributes to the current
understanding by replicating findings from previous longitudi-
nal in-person assessments, it also raises the question of which
specific fraction subtopics are most predictive of which specific
algebra subtopics.

2.3 | Specifying Interdependencies Between
Fraction and Algebra Subtopic

Siegler et al. (2012) argued that algebra problems involving frac-
tions can only be solved by students who understand fractions
(e.g., 1/3X=2/3Y, with X twice as large as Y) and thus, fraction
understanding predicts algebra understanding. However, algebra
problems may not only draw on fractions, but may also build on
other mathematical concepts and procedures such as basic arith-
metic (e.g., addition, subtraction, multiplication and division), op-
erating rules (e.g., brackets before multiplication/division before
addition/subtraction), but also topic-general skills such as read-
ing comprehension (e.g., when working on word problems). For
instance, working with formulas in algebra often requires mas-
tery of basic arithmetic skills and understanding operating rules
(e.g., 9+3xXp—9xq where p=4 and gq=>5). Students must also
successfully apply these skills and rules when processing specific
fraction problems (e.g., 9+ 3% 1/3 —9x 1/2=7?). Therefore, we pro-
pose that students’ performance on fraction subtopics that share
such (mathematical) components with later algebra subtopics is
more likely to be associated with performance on corresponding
algebra subtopics sharing the same (mathematical) components.
Moreover, we propose that the same principle should hold when
looking at within-topic correlations. Specifically, relationships
between specific fraction subtopics and specific algebra subtop-
ics, respectively, should be stronger for subtopics building on the
same mathematical component.

To the best of our knowledge, such fine-grained interdepen-
dencies between mathematical subtopics have not been in-
vestigated thus far. However, a better understanding of these
interdependencies seems pivotal for understanding developmen-
tal trajectories of mathematical skills and, more practically, for
optimising the design of ITS to better motivate revision sugges-
tions. Specifically, by identifying the fraction subtopic(s) most
predictive of later algebra subtopic(s), future iterations of ITSs
can be refined to emphasise these critical subtopics, thereby
improving the efficacy of mathematics education in digital en-
vironments. Importantly, psychological network analysis offers
the possibility to evaluate such interdependencies between the
fraction and algebra subtopics.

2.4 | Psychological Network Analysis

Psychological network analysis seeks to conceptualise be-
haviour as a multifaceted interplay of psychological and
other components (Borsboom and Cramer 2013; Borsboom
et al. 2021; Cramer et al. 2010; Epskamp et al. 2018). On a meth-
odological level, psychological network analysis represents an
advanced visualisation of a correlation matrix and is most suit-
able for large (i.e., many participants) and complex (i.e., many
variables) datasets. In this case, psychological network analysis
can help identify a possible framework for understanding how
psychological and other components may interact by represent-
ing observed variables as nodes and the correlations between
these variables as edges, with the width of these edges reflecting
the strength of the association between the respective variables
(Epskamp and Fried 2018; Epskamp et al. 2018).

The nodes of psychological networks can be illustrated using
a force-directed layout, displaying nodes with strong correla-
tions closer together and nodes with weaker correlations farther
apart. This way, it is easy to identify clusters or communities of
variables within the psychological network (Fruchterman and
Reingold 1991).

In sum, the application of psychological network analysis is
a data-driven approach to explore complex relationships be-
tween multiple observable variables by illustrating and quan-
tifying their interdependencies. This allows one to reflect,
comprehend and interpret complex patterns of interdepen-
dencies of observed variables. Due to this promising feature
of psychological network analysis and its simple implementa-
tion within a few lines of code (see https://osf.io/avq2d/), this
method has gained increasing attention recently. For exam-
ple, psychological network analysis was successfully applied
in a variety of disciplines, such as personality research (e.g.,
Costantini et al. 2015; Cramer et al. 2012), clinical psychol-
ogy (e.g., Boschloo et al. 2015), social psychology (e.g., Dalege
et al. 2016) and educational research (e.g., Bower et al. 2022;
Malmberg et al. 2022; Spitzer, Bardach, et al. 2024; Spitzer,
Ruiz-Garcia, et al. 2025; Tang et al. 2022; van Hoogmoed
et al. 2024). However, to the best of our knowledge, there is
a lack of research adopting psychological network analysis
to investigate large data sets obtained from ITSs for learning
mathematics to better understand complex patterns of inter-
dependencies between mathematical (sub)topics. Accordingly,
this study applied psychological network analysis to pursue
questions about interdependencies and thus the prediction of
the performance of algebra subtopic(s) based on fraction sub-
topic(s) implemented in an ITS.

2.5 | Study Overview

We applied psychological network analysis to a large dataset
from an ITS to investigate which specific fraction subtopic(s)
best predict(s) which specific algebra subtopic(s). In doing so,
we also sought to gain insights into the potential of psycholog-
ical network analysis as a powerful method to evaluate process
data from ITSs in general that can benefit learning analytics
research. In particular, we evaluated process data from stu-
dents who used the ITS bettermarks in the Netherlands and
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(B) Fraction subtopics. (C) Problem sets within the subtopic Adding and subtracting fractions. (D) Example of the third problem from the problem set:

Adding fractions. This example problem comprises three procedural steps.

worked through fraction subtopics and algebra subtopics. The
considerations described above propose that students' perfor-
mance on fraction and algebra subtopics sharing the same
mathematical components (e.g., drawing on the same operat-
ing rules) should correlate relatively highly. Against this back-
ground, we pursued the following research question: Which
specific fraction subtopic(s) best predict(s) which specific al-
gebra subtopic(s)?

In addition, we formulated the following hypotheses:

Hypothesis 1. There are significant correlations between
fraction and algebra subtopics (across-topic-correlations),
whereby subtopics that share mathematical components (e.g.,
F8 & A1I; sharing operating rules) should correlate more strongly
than subtopics that do not share mathematical components.

Hypothesis 2. There are significant correlations among sub-
topics of the same topic (within-topic correlations), whereby sub-
topics that share mathematical components (e.g., F2 & F3; sharing
multiplication) should correlate more strongly than subtopics that
do not share mathematical components.

3 | Methods
3.1 | The ITS Bettermarks
The ITS bettermarks facilitates learning mathematics

through adaptive feedback and personalised instruction (e.g.,
Spitzer 2022; Spitzer, Bardach, et al. 2025; Spitzer, Ruiz-Garcia,

et al. 2025; Spitzer, Ruiz-Garcia, et al. 2024; Spitzer et al. 2023;
Stapel et al. 2016; Whalen et al. 2024). Bettermarks covers
curriculum-based topics (referred to as books within the ITS) for
students to work through in class or at home. It is used in several
countries, including the Netherlands, Germany and Uruguay
(Spitzer 2022).

The content of bettermarks is structured hierarchically accord-
ing to the respective mathematics curriculum. Different books
cover different topics, which are further divided into subtopics
called chapters in bettermarks. Each of the subtopics contains
several problem sets (see Figure 1). Problem sets comprise, on
average, eight mathematical problems.

In the Netherlands, bettermarks is typically used by schools that
have digitised all their learning materials. Students in these
schools systematically work through the topics and subtopics
implemented in bettermarks, following the order in which these
materials are structured. This systematic usage provides an
ideal basis for scrutinising trajectories in mathematical learn-
ing, for instance, regarding the question of how performance
on worked-through content (e.g., fraction problems) predicts
performance on upcoming content (e.g., algebra). Thus, in this
study, we only considered students who used bettermarks in the
Netherlands.

The most frequent use case of bettermarks is that teachers as-
sign problem sets to their students (around 90% of the worked-
through problem sets in the Netherlands were assigned by
teachers). Students may work on these assignments either at
school or at home.
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bettermarks incorporates several adaptive features. For in-
stance, students and teachers receive immediate feedback on
average performance scores (i.e., on accuracy; see Spitzer, Ruiz-
Garcia, et al. 2025) for each assigned problem set. This enables
them to monitor their progress on worked-through problem sets.
In addition, when students commit specific errors, bettermarks
recommends revising additional problem sets to close identi-
fied knowledge gaps. Students can repeat problem sets as many
times as they wish; however, the parameterisation of problem
sets is changed for each attempt. This modification serves the
dual purpose of discouraging rote memorisation of previous re-
sults and encouraging active engagement with the problems.

In addition to receiving feedback upon completing entire prob-
lem sets, students are provided with immediate feedback after
each individual problem, indicating whether it was solved cor-
rectly. In instances of incorrect solutions on single problems,
students receive content-specific and error-contingent guidance,
such as “find the common denominator first and then add the
fractions,” when they erroneously attempted to add fractions
with different denominators without first establishing a com-
mon denominator. This feedback mechanism aids in addressing
specific errors and guides students toward the correct approach
without explicitly providing them with the correct answer.

3.2 | Process Data From Bettermarks

Bettermarks logs the identification number (ID) of problem
sets that users work through, as well as user ID, class ID and
whether a problem set was assigned by a teacher or whether stu-
dents self-selected the problem set. It also logs the ID of the book
(i.e., fractions or algebra) as well as the respective subtopic (e.g.,
addition and subtraction of fractions, called chapters within bet-
termarks) to which the problem set belongs. Finally, Bettermarks
logs the error rate on problem sets as well as the date and time
when problem sets were computed.

Importantly, all data are completely anonymous, and it is impos-
sible to trace back user data to any particular student using bet-
termarks. As all data are anonymous, no data on variables, such
as age, gender or socioeconomic status, are available. The devel-
opers of bettermarks share their anonymous data for scientific
purposes upon request. They had no role in the study design,
and the reported results may not reflect their opinion.

3.3 | Inclusion Criteria for Data Analysis

We applied the following inclusion criteria for our data analysis.
First, we only considered problems of two books used within
the bettermarks system in the Netherlands: Fractions (abbrevi-
ated with F when listing subtopics) and Algebra (abbreviated
with A when listing subtopics). These two books are usually
worked through in Grade 6 (12-13years of age). The data from
the two books were also considered in another study; however,
only data from students between January 2016 and December
2020 were used (Spitzer and Moeller 2022).! In the present study,
we included all problem sets that were worked through be-
tween 1 January 2016 and 1 September 2023. The fraction book
comprises nine subtopics, and the algebra book comprises five

subtopics (see Table 1). We only included problem sets assigned
by teachers, as we assume that teachers only assign problem sets
suited for their students' age range.

Another inclusion criterion was that we only included students
who worked through at least five fraction and algebra prob-
lem sets per subtopic (see Figure 5 for descriptive variables).
Additionally, we only considered algebra problem sets that were
completed after fraction problem sets to ensure the direction-
ality of our results (fraction performance predicting algebra
performance). Moreover, we checked whether students worked
through subtopics by subtopic by looking into the average days
passed between the first subtopic of the fraction book (F1) stu-
dents completed and each of the respective following subtopics
(see “Dayssince F1” in Table 1). For instance, the second subtopic
of the fraction book F2: Prime numbers was worked through
3days after students completed the first subtopic of the fraction
book F1: Multiples and factors. In contrast, the last subtopic of
the algebra book A5 Single brackets was completed 60 days after
students worked through F1. In case students repeated a prob-
lem set (average repetition rate: 1.57 repetitions per problem set;
also see Figure 5 for repetition rate distribution), we only con-
sidered their best result as a proxy for their performance. Please
also see the Supporting Information S1 for results on students’
first attempt, which did not differ substantially from the results
of their best attempt.

Finally, we only included students who worked through each
subtopic. Based on these inclusion criteria, our final sample com-
prised 3158 students (from 246 different classes) who worked on
121 different problem sets and a total of 257,321 problem sets.

3.4 | Included Subtopics

We considered the following subtopics of the fractions and al-
gebra book. The first four fraction subtopics, F1-F4, deal with
the acquisition of fundamental skills that are crucial for com-
prehending and manipulating fractions. For each subtopic, ex-
emplary problem sets are provided in Figure 2. In particular, F1
(Multiples and factors) encompasses a series of problems that re-
quire students to identify common multiples or the greatest com-
mon factors (requiring multiplication skills), in addition to word
problems (requiring reading comprehension skills). Building on
this, F2 (Prime numbers) comprises problem sets on how to dis-
cover prime numbers under particular circumstances, as well as
how to express numbers as products of prime factors, and there-
fore also requires multiplication skills. Students investigate con-
structing and simplifying fractions in subtopic F3: Forming and
cancelling down fractions, where they work on recognising, ex-
pressing, converting and simplifying improper and mixed frac-
tions using prime and common factors (requiring multiplication
skills and understanding of fraction magnitudes). Subtopic F4:
Fractions and decimal numbers proceeds with a bidirectional
conversion of decimals, mixed numbers and fractions, with an
additional focus on simplifying fractions (requiring understand-
ing fraction magnitudes).

The next five fraction subtopics (F5-F9) are illustrated in
Figure 3 and entail the application of fundamental arithmetic
principles and the accurate sequencing of arithmetic operations
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A B
Opgave 1 van 12 1.3 - 1TTOS Fractions Opgave 1van7 2.2-1TTO5 Fractions
The multiples of 3are:  3,6,9,12,15, ... )
The multiples of 4 are:  4,8,12,16,20, ... Express 22 as the product of two prime numbers.
Find all of the common multiples of 3 and 4 that are less than 17. A
A - Find multiples
22=(]

Insert any extra boxes you need:

B+

C D

Opgave 1 van 9 36-1TTO5 Fractions

Opgave 1 van 8 4.2-1TTOS Fractions

Which of the following mixed numbers is shown in the circles?

Write the following decimal number as a fraction.
A - Write as a fraction

A - Give the mixed number

Write the fraction in simplest form.

Select from:

7 12 4 1 0,7=D
0127 O4W O‘”? 045

FIGURE2 | Exemplary problem sets of the first four fraction subtopics. (A) In subtopic F1 (Multiples and factors), the focus is on finding common
multiples of two given numbers. (B) Drawing from subtopic F2 (Prime numbers), this problem involves expressing a number as the product of two
prime numbers. (C) Based on F3 (Forming and cancelling down fractions), this problem requires selecting the mixed number that corresponds to
the visual representation provided. (D) The solution to this problem, as part of subtopic F4 (Fractions and decimal numbers), is to convert a decimal
number into a fraction in its simplest form.

A B

Calculate the sum:

111 Calcul 4 7
e PR —
Al alculate: o

A-Finding the lowest common denominator

A -Finding the reciprocal value
B - Adding fractions with a common denominator

C- Cancelling a fraction down 10 lowest terms B - Multiplying fractions

C D E

Justin is shopping for his grandfather. E )
1 1 Opgave 1van6 8.4-1TTO05 Fractions Opgave 1van 6 9.1-1TTOS5 Fractions
He buys 3 ? kg of apples, 2 ;— kg of bananas and 250 g of grapes.

Calculate the following: Write the following as a power.

How many kilos of fruit does Justin buy in total?

A - Follow the correct order of operations A - Collect the factors to form a power

Justin buys a total of | kg of fruit.

FIGURE 3 | Exemplary problem sets of the latter five fraction subtopics. (A) In F5 (Adding and subtracting fractions), the exemplary problem
requires calculating the sum of three fractions by finding a common denominator and simplifying the result. (B) Subtopic F6 (Multiplying and di-
viding fractions) focuses on multiplying fractions, requiring the reciprocal to be found before performing the multiplication. (C) Drawing from F7
(Fractions in context exercises), this problem presents a real-world scenario in which various fractions must be combined to determine a total weight.
(D) The example from subtopic F8 (Fractions and the order of operations) emphasises the relevance of the correct sequence of operations, involving
brackets, multiple fractions and negative values. (E) An exemplary problem from subtopic F9 (Fractions and Powers) involving raising fractions to
a power.
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involving fractions (i.e., they all require the mathematical com-
ponent calculating fractions). The subtopic F5: Adding and
subtracting fractions is on the addition and subtraction of frac-
tions. It involves understanding how to handle different types
of fractions, including whole numbers, negative fractions and
mixed numbers. The subsequent subtopic is on multiplying and
dividing fractions, as outlined in F6: Multiplying and dividing
fractions. Subtopics F5 and F6 also comprise the conversion of
mixed fractions and the cancellation of fractions, where feasible.
Furthermore, subtopic F7: Fractions in context exercises intro-
duces more challenging word problems that apply all previously
practised arithmetic operations within practical scenarios (re-
quiring reading comprehension skills in addition to calculating
with fractions). Building on these skills, subtopic F8: Fractions
and the order of operations presents more complex tasks requir-
ing attention to the correct order of operations, including cal-
culations involving multiple fractions, brackets and negative
values (requiring calculating fractions skills and knowledge
on operating rules). Finally, subtopic F9: Fractions and powers

A

Calculate the value of the expressior
7(-2-3m)(8-3n)-2

form=0andn=4

7(-2-3x[ ) (8-3x )»2

A- Substituting values in expressions
B - Calculate the brackets in expressions
C - Performing multiplication in expressions

D - Calculation of the expression value

C

Opgave 1van 6 3.2-1TT06 Formulas (#] Probleem

Match the simplified expression to its correct unsimplified form.

A - Simplify as much as possible

18xbx13xm =

13xqx12%xp

10xax11xt =

10xmx10xx =

100mx l234bm‘ “ISqu‘ ’110at‘

extends these concepts by introducing exponent rules applied
to fractions, covering tasks such as raising fractions to powers
and simplifying the resulting expressions (requiring calculating
fractions skills).

With respect to algebra (for exemplary problems see Figure 4),
subtopic Al: Using formulas introduces substituting values into
formulas and calculating the resulting expressions while apply-
ing the distributive law and following the correct order of oper-
ations (requiring operating rules). The following subtopic, A2:
Setting up formulas, requires the reverse process of putting to-
gether algebraic formulas from word or real-world problems by
identifying relationships between variables (requiring operating
rules and reading comprehension skills). Subtopic A3: Simplifying
products focuses on simplifying algebraic products by combining
products (requiring multiplication skills and operating rules). In
subtopic A4: Like terms, problems involve identifying and com-
bining like terms, with a similar goal of further simplifying ex-
pressions (requiring addition and multiplication skills as well as

B

Opgave 1van7 2.1-1TT06 Formulas

() Probleem / feedback X

simplify (~4c> +11¢) +(17¢-7¢%)

The Martinez family wants to rent a car for their vacation. They have to pay $ 70 per day. They
also have to pay a one-time fee of $ 30.

Follow the steps below to calculate how much it costs to rent the car for 15 days.
A - Set up the formula
Set up the formula for the total cost of renting for a number of days.

-0-0-0

‘number of days | | cost ; price per day | | 30 70 ‘ 100

D

Opgave 1 van7 4.8-1TT06 Formulas

Simplify the expression as much as possible.

A - Collect the like terms

5p+14+6q+3+7q=m

Simplify the expression so that it does not contain brackets.

O -4c? +11c-17c+7¢2
O -4¢% +11c-17c-7¢?
O 4c? +11c+17¢c-7¢*

O -4c® +11c+17¢-7¢?

A-Expanding the brackets in a sum of algebraic expressions

B - Collecting the like terms in an algebraic expressions

FIGURE4 | Exemplary problems of Algebra subtopics. (A) Problems in subtopic A1 (Using formulas) focus on calculating the value of an expres-
sion by substituting values for variables and following the correct order of operations. (B) Subtopic A2 (Setting up formulas) involves problems that
require setting up a formula to calculate costs for a rental scenario and identify relationships between variables. (C) For subtopic A3 (Simplifying
products), the exemplary problem illustrates multiplication of terms and constants to achieve the correct simplified expression. (D) Problems in sub-

topic A4 (Like terms) involve simplifying an expression by combining like terms. (E) In subtopic A5 (Single brackets), problems require expanding

brackets and combining like terms, resulting in a simplified expression without brackets.
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requiring operating rules). In the last algebra subtopic A5: Single
brackets, building on previous skills, the focus shifts to more ad-
vanced expanding and simplifying bracketed expressions, involv-
ing numbers, variables, powers, negatives and combining like
terms (requiring operating rules). Critically, none of the algebra
problems across all subtopics included in the algebra topic com-
prises problems involving fractions. Thus, all problems within the
algebra book could be solved without understanding fractions.

3.5 | Data Analysis

Data analysis was conducted using R (R Core Team 2013). We
computed the average error rate for each student on each sub-
topic and normalised error rates by applying a z-transformation
for our psychological network analysis. This data table served as
the basis for running the psychological network analysis.

Before conducting the psychological network analysis and mov-
ing to our main research questions, we computed students’ aver-
age performance in fractions and algebra at the topic level rather
than the subtopic level, and looked at the correlation between
these two aggregate measures. This served as a check to exam-
ine whether the correlation between overall fraction and alge-
bra performance that has been repeatedly observed in previous
studies also emerges in our data set.

We used the R packages qgraph with the EBICglasso method to
conduct the network analysis (Epskamp et al. 2012) and the boot-
net package for bootstrapping analysis (Epskamp et al. 2018).
EBICglasso estimates sparse and interpretable psychological
networks by shrinking small partial correlations toward zero
(via graphical LASSO) and selecting the optimal model based on
a complexity-penalised fit criterion (via EBIC). This approach
retains only the most robust relationships between variables, re-
ducing noise and overfitting, and is particularly well suited for
high-dimensional data.

Nodes in the resulting network plots represent fraction subtopics
(coloured in blue ink) or algebra subtopics (coloured in red ink).
Edge width represents the strength of the partial correlation,
with thicker edges reflecting larger partial correlations. The
weights of the edges connecting nodes (representing correlation
strength) are estimated, and the accuracy of these estimates in-
creases with increasing sample size (Epskamp and Fried 2018).
We applied a threshold to only consider partial correlations of
r=0.1 or higher, as we were only interested in correlation coef-
ficients representing at least small effect sizes. In addition, the
95% confidence intervals (see description below) of correlations
below r=0.1 may overlap with 0, challenging the robustness
of correlation estimates. We, therefore, selected a threshold of
r=0.1. We considered this threshold before data analysis. We
further provided the actual partial correlation as labels on the
edges. In addition, we applied the Fruchterman-Reingold al-
gorithm to our network layout, which places nodes that highly
correlate with each other closer together, whereas nodes that
correlate less are presented further apart (Fruchterman and
Reingold 1991). This aligns well with our goal of facilitating
intuitive visual interpretation of the network structure. Other
layouts, such as the spring layout, do not arrange variables ac-
cording to their correlations and were therefore not applied.

Finally, we also ran a bootstrapping procedure to evaluate the
robustness of the estimated edges and whether they differed sig-
nificantly from zero. The bootstrapping procedure estimated the
95% confidence intervals (95% CIs) for each edge, allowing us to
quantify whether each edge significantly differed from zero. It
also allowed us to compare the difference in correlation strength
between correlations. In other words, the first bootstrapping
procedure allowed us to estimate the robustness of a correlation
against zero, and the second bootstrapping procedure allowed
us to quantify whether each correlation is significantly larger
or smaller compared to each of the other possible correlations.
This allowed us to evaluate relative differences between correla-
tions (for in-depth details on controlling for alpha inflation, see
Epskamp and Fried 2018).

4 | Results

Figure 5 shows descriptive statistics. In general, the Pearson
correlation between the fraction topic and the algebra topic was
r=0.74, with p<0.001, suggesting a strong correlation at the
aggregate level. The following psychological network analysis
evaluated associations between fractions and algebra subtopics.

The psychological network analysis is shown in Figure 6,
and the results of the bootstrapping analysis are depicted in
Figures 7 and 8. Table 1 lists all subtopics in the fraction (F)
and algebra (A) books, including the average days that passed
between the completion of the first subtopic of the fraction book
by the students and each subsequent subtopic in the two books.
It indicates that students computed on average each subtopic in
the order of their appearance and that teachers tended to stick
to the order in which the subtopics were presented within the
ITS and assigned (all worked-through problems were assigned
to students by their teachers). Finally, we further substantiated
the analysis by providing centrality measures, such as strength,
closeness and betweenness in Figure S6.

4.1 | Descriptive Results

The descriptive results indicated that the students computed
more than 80 problem sets and at least 40 problem sets, on
average (see Figure 5A). Repetitions of problem sets were rare,
with an average repetition rate of 1.5 problem sets per student
(see Figure 5B). For each subtopic, over 5000 problem sets
were worked on (see Figure 5C). Furthermore, the average
error rate for each subtopic is given in Figure 5D. We observed
considerable variance in error rates between subtopics, with
the highest error rate of 50% for the subtopic F7 Fractions in
context exercises, which comprises fraction word problems,
and the lowest error rate of 2% for the subtopic F4 Fractions
and decimal numbers.

4.2 | Psychological Network Analysis

With respect to our research question “Which specific fraction
subtopic(s) best predict(s) which specific algebra subtopic(s)?’,
our results on students’ best attempt revealed one partial cor-
relation of r=0.12 between the fraction subtopic F8 Fractions
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titions for each student. (C) Number of completed problem sets for each subtopic. (D) Average error rate for each subtopic. Vertical red dashed lines
indicate the average number of problem sets students completed (A) and the average number of problem sets students repeated (B).
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FIGURE 6 | Psychological network plot depicting subtopics as nodes and partial correlations of ¥=0.1 or higher as edges. Green numbers on edg-
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FIGURES8 | Relative difference in correlation strength. Black squares indicate a significant difference between one partial correlation and anoth-

er partial correlation, while grey squares indicate no significant difference between two partial correlations.

and the order of operations and the algebra subtopic A1 Using
formulas (see Figure 6). Importantly, the bootstrapping proce-
dure indicated that this partial correlation was significantly
different from zero (see Figure 7) and was also significantly
higher compared to the other correlations between fraction
subtopics and the first algebra subtopic Al Using formulas (ex-
cept the subtopic F1 Multiples and factors and F6 Multiplying
and dividing fractions; see Figure 8). The two subtopics F8 and
A1l both share the same mathematical component (operating
rules; see Table 1). This finding therefore provides support for
our hypothesis that fraction subtopics sharing the same math-
ematical components as algebra subtopics should be positively
associated.

Our psychological network analysis results also indicated that
subtopics of the same topic that share mathematical components
correlate relatively highly. In particular, we observed that the
first two fraction subtopics F1 and F2, sharing the multiplication
component, correlated relatively highly (r=0.25) and F2 and F3,
which also shared the multiplication component, also correlated
relatively highly (r=0.15, compared to the applied threshold of
0.1 and correlations between other variables assessed in this
study). F3 was further associated with F4, and both subtop-
ics shared the fraction magnitude understanding component
(r=0.31). Furthermore, the three fraction subtopics F5, F6 and
F8 all shared the same component of calculating fractions, and
they were all relatively highly correlated with each other (F5 and
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F6: r=0.31; F5 and F8: r=0.20; F6 and F8: r=0.26), while F9,
which was on calculating with powers, was only associated with
F8 (r=0.12). Finally, F7, which required reading comprehension
skills when calculating fractions, was connected with F1 (which
shared the reading comprehension component; r=0.15) and F8
(which shared the calculating fractions component; r=0.12). F2
also correlated with F7, but both subtopics shared no compo-
nents (r=0.14). We also observed a partial correlation of r=0.16
between F1, which was on multiplication and knowledge of fac-
tors, and F5, which was on adding and subtracting fractions—
sharing no components.

Considering correlations between algebra subtopics, we observed
relatively high correlations between Al and A2 (r=0.26) and Al
and A4 (r=0.11). All three subtopics required students to success-
fully apply operating rules. In addition, A1 and A4 also require
multiplication skills. We also observed a relatively high correla-
tion between A2 and A3 (r=0.18) as well as between A2 and A4
(r=0.15). Again, A2, A3 and A4 required students to successfully
apply operating rules. In addition, A3 correlated relatively high
with A4 (r=0.17), and both subtopics also share the multiplica-
tion component. Finally, A4 and A5 correlated relatively high
(r=0.40), and both shared the operating rules component.

In sum, the results of the psychological network analysis in-
dicated that fraction subtopics clustered together and algebra
subtopics clustered together, as indicated by edges primarily
connecting nodes among fraction and algebra subtopics, respec-
tively. Furthermore, we observed relatively high partial cor-
relations between subtopics that shared similar mathematical
components.

5 | Discussion

We applied psychological network analysis to a large dataset ob-
tained from an ITS to evaluate predictions of specific fraction
subtopics on specific algebra subtopics. This provided a more
differentiated picture of relations between algebra and fraction
performance and thus expands on previous results indicating
an association between these two topics on the aggregate level
(Bailey et al. 2012; Barbieri et al. 2021; Booth and Newton 2012;
McMullen and Van Hoof 2020; Mou et al. 2016; Park and
Esposito 2024; Siegler et al. 2012; Spitzer and Moeller 2022;
Torbeyns et al. 2015). In addition to investigating across-topic
associations, we also examined within-topic associations to
contribute to a comprehensive understanding of mathemat-
ics learning. Our study was guided by the assumption that
both across- and within-topic correlations should be more pro-
nounced for subtopics which share similar basic mathematical
components (e.g., multiplication or operating rules).

With regard to across-topic correlations, the results from our
psychological network analysis revealed a significant associa-
tion between the fraction subtopic F8 Fractions and the order
of operations and the algebra subtopic A1 Using formulas. Thus,
we were able to identify a specific fraction subtopic that statis-
tically significantly predicted a specific algebra subtopic while
controlling for the influence of all other subtopics within the
psychological network analysis.

In addition, the strength of the partial correlation between the
fraction subtopic F8 Fractions and the order of operations and
the algebra subtopic A1 Using formulas was significantly larger
compared to the correlation strength between most of the other
fraction subtopics and the first algebra subtopic Al Using for-
mulas (except the subtopic F1 Multiples and factors and F6
Multiplying and dividing fractions; see Figure 8). This indicates
that the fraction subtopic F8 Fractions and the order of operations
seem to include important learning content that helps students
to master the first algebra subtopic A1 Using formulas. Overall,
this finding highlights the value of investigating correlations be-
tween fraction and algebra subtopics, as this approach enables a
more fine-grained understanding of the importance of specific
subtopics—an insight that cannot be captured by examining
correlations at the aggregate level.

Our study also sheds light on within-topic correlations. We ob-
tained a number of significant associations between specific
fraction subtopics and specific algebra subtopics, respectively.
These within-topic correlations underline the interdependencies
between subtopics within each topic. Given that within-topic
subtopics all address the same overarching mathematical topic
(i.e., fractions or algebra), the greater number of effects observed
for within-topic correlations compared to across-topic correla-
tions is conceptually consistent and supports the validity of the
structure within the ITSs (for a similar finding, also see Spitzer,
Bardach, et al. 2024).

While documenting the existence of relationships between spe-
cific subtopics, both across and within topics, adds to the current
understanding, it does not yet offer insights into the mechanisms
driving these associations. Specifically, what factors might ex-
plain why some subtopics exhibit significant associations with
each other, while others do not? Our study largely supported
the hypothesis that subtopics including the same mathematical
component (e.g., multiplication) should be correlated. This held
both for the one significant across-topic correlation and for most
of the within-topic correlations. This finding advances knowl-
edge of mathematical learning and highlights the importance of
basic mathematical operations in fostering stronger connections
between specific subtopics.

These findings align with and extend existing research empha-
sising the foundational role of basic mathematical skills and
concepts for later mathematical achievement. In particular,
previous studies indicated that proficiency in basic arithmetic
operations, such as multiplication and division, significantly
predicts students’ ability to learn more complex mathematical
concepts, including fractions and algebra (e.g., Bailey et al. 2014;
Siegler et al. 2012). By demonstrating that subtopics sharing the
same underlying mathematical components are correlated more
strongly, our results provide further empirical support for the
idea that conceptual coherence and transferability of procedural
knowledge are critical mechanisms in mathematical learning.
This reinforces theoretical frameworks—such as the integrated
theory of numerical development—proposing that the develop-
ment of advanced mathematical competencies is scaffolded by
mastery of more fundamental operations (Bailey et al. 2012;
Libertus et al. 2011; Rittle-Johnson et al. 2001; Siegler et al. 2011)
and highlights the importance of explicitly structuring curricula
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to build on these shared components (National Mathematics
Advisory Panel 2008).

Interestingly, we additionally observed that subtopics sharing
the same components correlated most strongly if they were se-
quential. For example, F8 shared the same components with A1l
but also with the other algebra subtopics. This is likely due to
the fact that all algebra topics require operating rules, which are
needed to process formulas. However, the strongest association
was found between F8 and Al, whereas the correlations be-
tween F8 and the other algebra subtopics were not substantial.
Considering the strong correlation between A1l and the other al-
gebra subtopics as well as the relatively strongest cross-topic cor-
relation between F8 and A1, we propose that A1 subsumes the
variance explained by F8 for all other subtopics built on A1l. This
pattern also aligns with theoretical accounts emphasising the
hierarchical and cumulative structure of mathematical learning
(Bailey et al. 2012; Rittle-Johnson et al. 2001; Siegler et al. 2011).
Taken together, our findings underscore the importance of both
component similarity and sequential structure in shaping math-
ematics learning trajectories.

5.1 | Implications

Importantly, our findings also have practical implications for
ITS developers. In particular, the results of our psychological
network analysis suggest that when students struggle with
a given subtopic, they may revisit specific previous subtop-
ics and the one they struggle with builds on most strongly.
Hence, we recommend implementing automatic dynamic
sequencing based on a model that considers interdependen-
cies between implemented subtopics to identify which prior
subtopics correlate most strongly with the subtopic students
struggle with. For instance, when a student struggles with
the algebra subtopic Al (Using formulas), the system should
automatically prompt the student to revisit fraction subtopic
F8 (Fractions and the order of operations), which our analy-
sis revealed as a strong predictor of success in Al. More gen-
erally, this approach would allow ITSs to dynamically map
learning trajectories by leveraging meaningful associations
between subtopics. By integrating a psychological network
analysis model into the ITS architecture, developers may well
create systems that (i) can diagnose student difficulties in real
time and (ii) deliver personalised, data-driven recommenda-
tions for additional learning materials for students to work
through to facilitate further learning. However, more research
is needed to develop such systems and evaluate whether such
dynamic and adaptive sequencing of mathematical subtopics
based on their observed interdependencies would indeed lead
to better learning outcomes.

In addition, our results emphasise the need for ITS developers
to track fine-grained and content-specific data, such as specific
mathematical components that learning materials comprise
(e.g., requiring reading comprehension skills). In particular, our
findings indicate that such data allow for a better understand-
ing of observed interdependencies between subtopics beyond
the mathematical content itself. For example, when students
struggle with the subtopic Al (Using formulas), they may have
difficulties understanding formulas in general, but they may

also struggle with procedures such as the order of operations
that they may not have fully understood in previous topics. As
such, revisiting and mastering previous learning materials on
fractions that also address the order of operations, such as F8
(Fractions and the order of operations), may help these students
to overcome their difficulties working on an already learnt and
thus more familiar topic (i.e., fractions). This, in turn, may ulti-
mately help students master specific algebra subtopics that re-
quire students to apply operating rules.

From a substantive-methodological perspective, our findings
point toward the considerable potential of using psychological
network analysis to advance research on understanding stu-
dents' engagement with ITS in general and research on math-
ematics learning in particular. Psychological network analysis
allows for quantifying process data with easy-to-access visuals
that reflect the quantitative relationships between variables
(Epskamp and Fried 2018; Epskamp et al. 2018). As such, psy-
chological network analysis seems well suited to reduce large
amounts of process data from ITS to identify meaningful and
interpretable patterns in the data and to address substantive
questions on learning processes within ITSs.

5.2 | Limitations and Directions for Future
Research

Although meaningful, there are nevertheless aspects to consider
when interpreting the results of the current study. The current
study builds upon a rich data set of process data. However, due
to the anonymisation of the data, we could not investigate the
role of individual differences with respect to learner charac-
teristics, as no participant-specific information was available.
Therefore, future research may expand on our study by con-
sidering individual learner characteristics such as motivation,
personality, cognitive abilities, prior academic achievement, so-
cioeconomic status, or math anxiety (e.g., Bardach et al. 2023;
Meyer et al. 2023) and their effects on learning trajectories
within ITSs (Hilz et al. 2023a, 2023b). In addition, it would be
illuminating to combine the process learning data used in our
study with students’ self-reported learning behaviour and emo-
tional dynamics during learning, as well as other behavioural
assessments (e.g., emotion recognition systems, eye-tracking,
heart rate variability and EEG data) to dig even deeper into the
details of mathematics learning with ITSs.

Another limitation may be that we used specific subtopics in-
tegrated within bettermarks, and other ITSs may have different
subtopics. However, the general approach of applying psycho-
logical network analysis should be transferable to and infor-
mative on the structure and associations of (sub)topics in other
ITSs—for learning mathematics, but also other content topics
with (sub)topics building on each other. We only included stu-
dents who worked through fraction problem sets before working
through algebra problems to ensure the directionality of our re-
sults (i.e., fraction performance predicts algebra performance).
However, we did not control for sequencing between the top-
ics. Therefore, the relatively high correlations between fraction
and algebra subtopics, respectively, could partially stem from
time effects as subtopics that are closer together in time might
correlate more due to time proximity, not because of feature
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proximity. However, we believe that the limitation of not con-
trolling for every possible sequence has to be viewed in light of
a trade-off between internal and external validity (evaluating
real-world data) and a large dataset.

5.3 | Conclusions

Taken together, the current study provides a first application
of psychological network analysis with partial correlations to
process data from an ITS. In particular, we observed relatively
high partial within-topic correlations among fractions as well
as among algebra subtopics. In addition, one fraction subtopic
(F8: Fractions and the order of operations) was identified to best
predict another algebra subtopic (Al: Using formulas). We fur-
thermore demonstrated that shared mathematical components
(e.g., operating rules) may largely drive within-topic and across-
topic correlations. In sum, these results highlight the potential
of psychological network analysis for identifying patterns of as-
sociations within subtopics of the same overarching topic as well
as between subtopics of different topics and for advancing our
understanding of mathematics learning.
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Endnotes

IThis study investigated whether average performance on five books
(i.e., Geometry, Basic Arithmetic, Units, Advanced arithmetic and
Fractions) students worked through before processing problem sets of
the algebra book, predicted their overall performance on the algebra
book. This study did not evaluate whether specific fraction subtopics
predict specific algebra subtopics and, if so, which ones.
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