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Abstract

Large-scale genomic resources can place genetic variation into an ecologically informed context. To advance our understanding of the population
genetics of the fruit fly Drosophila melanogaster, we present an expanded release of the community-generated population genomics resource
Drosophila Evolution over Space and Time (DEST 2.0; https:/dest.bio/). This release includes 530 high-quality pooled libraries from flies collected
across six continents over more than a decade (2009 to 2021), most at multiple time points per year; 211 of these libraries are sequenced and
shared here for the first time. We used this enhanced resource to elucidate several aspects of the species’ demographic history and identify
novel signs of adaptation across spatial and temporal dimensions. For example, we showed that the spatial genetic structure of populations is
stable over time, but that drift due to seasonal contractions of population size causes populations to diverge over time. We identified signals
of adaptation that vary between continents in genomic regions associated with xenobiotic resistance, consistent with independent adaptation
to common pesticides. Moreover, by analyzing samples collected during spring and fall across Europe, we provide new evidence for seasonal
adaptation related to loci associated with pathogen response. Furthermore, we have also released an updated version of the DEST genome
browser. This is a useful tool for studying spatiotemporal patterns of genetic variation in this classic model system.

Keywords: Drosophila melanogaster, dataset, population structure, seasonal selection, local adaptation, ecological genomics

Introduction

Drosophila melanogaster is a foundational model system in
biology. Seminal studies in this species have played important
roles in the development of modern population genetics, from
empirical tests of genetic drift to classic examples of adaptation
(Buri 1956; Lewontin 1974; Parsons 1975; McDonald and
Kreitman 1991; Powell 1997; Casillas and Barbadilla 2017;
Flatt 2020). Beyond its role as a model genetic system (Hales
et al. 2015), D. melanogaster has a fascinating natural history
in its own right. The species originated in southern-central
Africa (Lachaise et al. 1988; Lachaise and Silvain 2004;
Sprengelmeyer et al. 2020), splitting from its sister taxon,
Drosophila simulans, between 1.4 and 3.6 Ma (Obbard et al.
2012; Suvorov et al. 2022). While the species may have origin-
ally been a marula fruit specialist in the seasonal woodlands of
southern-central Africa (Mansourian et al. 2018; Sprengelmeyer
et al. 2020), it later adapted as a human commensal, ultimately
developing a cosmopolitan distribution across all human-
inhabited continents (Kapun et al. 2021; Chen et al. 2024).

The recent development of genomic resources for D. mela-
nogaster has led to key discoveries about its phylogeography.
For example, demographic inference has revealed that fruit
flies expanded out of Africa after the last glacial maximum
~10,000 ya (Kapopoulou et al. 2020), entering Asia around
3 to 4 kya (Chen et al. 2024), and Europe around ~1,800 ya
(Sprengelmeyer et al. 2020). European populations split into
spatially defined clusters across Europe ~1,000 ya (Kapun
et al. 2020, 2021). In the past two centuries, African and
European populations experienced a secondary contact event
in North America and Australia, likely due to mercantile activ-
ities and immigration (Capy et al. 1986; David and Capy
1988; Caracristi and Schlotterer 2003; Kao et al. 2015;
Bergland et al. 2016). Unlike its sister species D. simulans,
D. melanogaster is capable of overwintering across a broad
swath of temperate habitats (Izquierdo 1991; Machado et al.
2016; but see Serga et al. 2015) and can establish resident pop-
ulations across its range (Ives 1945, 1970; Machado et al.
2016; Kapun et al. 2021; Nunez et al. 2024). In temperate re-
gions, D. melanogaster populations peak in size at least twice
during the growing season (June and September; Atkinson and
Shorrocks 1977) and drastically decrease upon the onset of
winter. These yearly boom-and-bust cycles are in part respon-
sible for estimates of “local” effective population size that are
orders of magnitude smaller than the “global” effective popu-
lation size (Duchen et al. 2013; Sprengelmeyer et al. 2020;
Nunez et al. 2024).

Over the past two decades, D. melanogaster has been the
subject of numerous population genomics studies, which
have collectively illuminated our general understanding of
the evolution, the demography, and the genetic basis of

adaptation (e.g. reviewed in Casillas and Barbadilla 2017;
Haudry et al. 20205 Guirao-Rico and Gonzalez 2019). Like
many other cosmopolitan drosophilids, D. melanogaster pop-
ulations commonly occur along spatially distributed environ-
mental gradients (e.g. latitudinal and altitudinal), leading to
the formation of clines, with a large body of work providing
evidence for spatially varying (clinal) selection (De Jong and
Bochdanovits 2003; Hoffmann and Weeks 2007; Fabian
et al. 2012; Adrion et al. 2015; Mateo et al. 2018; Flatt
2020). Moreover, populations of D. melanogaster are known
to experience strong fluctuating selection regimes across the
changing seasons (e.g. Schmidt and Conde 2006; Bergland
et al. 2014; Behrman et al. 2015; Rajpurohit et al. 2018;
Erickson et al. 2020; Machado et al. 2021; Rudman et al.
2022; Nunez et al. 2024; reviewed in Johnson et al. 2023).
For example, worldwide analyses of genetic variation have
found that chromosomal inversion polymorphisms are often
involved in both clinal and seasonal adaptation (Lemeunier
and Aulard 1992; Kapun et al. 2016a, 2023; Kapun and
Flatt 2019; Nunez et al. 2024). Likewise, several studies
have successfully linked clinally or seasonally varying poly-
morphisms in D. melanogaster to fitness-relevant phenotypes
(Lemeunier and Aulard 1992; Hoffmann and Weeks 2007;
Schmidt et al. 2008; Pitchers et al. 2013; Cogni et al. 2014;
Paaby et al. 2014; Kapun et al. 2016a, 2016b, 2023;
Durmaz et al. 2019; Kapun and Flatt 2019; Betancourt et al.
2021; Yu and Bergland 2022; Glaser-Schmitt et al. 2024;
Nunez et al. 2024). Populations of D. melanogaster can thus
be thought of as powerful “natural laboratories” to study
adaptation across time and space, and to disentangle the con-
tributions of selection and demography (Jensen et al. 20035;
Ometto et al. 2005; Teshima et al. 2006; Thornton and
Jensen 2007; Pavlidis et al. 2010).

Despite the status of D. melanogaster as a model organism,
generating genomic datasets that capture the breadth and
depth of genetic and phenotypic variation across the cosmo-
politan range of the species is a complex task for single re-
search groups. Furthermore, existing data for this species are
heterogeneous across studies: several studies use resequenced
inbred or isofemale lines (Langley et al. 2012; Mackay et al.
2012; Lack et al. 2015, 2016; Coughlan et al. 2022), while
others use sequencing of outbred individuals sequenced as a
pool (i.e. Pool-Seq, Schlotterer et al. 2014; e.g. Bergland
etal. 2014; Machado et al. 2021; Nunez et al. 2024). For these
reasons, we have previously developed the Drosophila
Evolution over Space and Time (DEST; https:/dest.bio/) re-
source, with the aim of facilitating collaborative population
genomic studies in D. melanogaster (Kapun et al. 2021). The
DEST resource is the result of the collaborative efforts of the
European Drosophila Population Genomics Consortium
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(DrosEU, https:/droseu.net/; Kapun et al. 2020) and the
Drosophila Real-Time Evolution Consortium, DrosRTEC
(Machado et al. 2021). DEST represents both a tool for mapping
genomic data and an open-access data repository of worldwide
genetic variation in the fruit fly. As a bioinformatics tool, DEST
is a pipeline for mapping Pool-Seq reads to a hologenome refer-
ence of fly (i.e. D. simulans and D. melanogaster) and microbial
genomes, as well as for removing contamination from other spe-
cies, such as D. simulans. The tool is a modular mapping pipeline
that uses a Docker image (Boettiger 2015) and Snakemake (Koster
and Rahmann 2012) to ensure independence of operating sys-
tems. As a genomic panel, the original release of the dataset
(DEST 1.0) consisted of 271 Pool-Seq D. melanogaster samples
(>13,000 flies) collected in >20 countries on four continents at dif-
ferent seasons and across multiple years. Using these data, we had
previously described general patterns of phylogeographic struc-
ture across four continents, developed a panel of geographically
informative markers (GIMs) to assess the provenance of fly sam-
ples with 90% accuracy, and inferred some basic demographic
features of population subdivision in Europe (Kapun et al. 2021).

Here, we introduce the second release of the DEST resource
(DEST 2.0), with expansions in several methodological and bio-
logical aspects. From a methodological perspective, we have
broadened the utility of our Docker application to allow for
single—end reads to be mapped, a change that allows for older
datasets to be integrated into DEST. We have explored levels
of contamination by other species in DEST pools using a highly
efficient k-mer-based approach (Gautier 2023). We have also es-
timated genome-wide rates of recombination using our Pool-Seq
data by applying a deep learning approach (ReLERNN; Adrion
etal. 2020). All data on genetic variation and population genetic
summary statistics can be visualized and retrieved using our new
and improved genome browser, which has been built with the
latest JBrowse version 2 (Diesh et al. 2023).

From a biological standpoint, DEST 2.0 includes a substantial
expansion of the size and scope of the initial dataset. The current
release includes 530 high-quality Pool-Seq samples (>32,000
flies), comprising a combination of the previous DEST release
with newly sequenced pools, collected between 2016 and 2021
by DrosEU, as well as publicly available Pool-Seq samples
from published studies of wild-derived D. melanogaster
(Hoffmann et al. 2002; Reinhardt et al. 2014; Svetec et al.
2016; Fournier-Level et al. 2019; Lange et al. 2022; Nunez
etal. 2024). To showcase the utility of DEST 2.0, we performed
several analyses to infer demography and selection, powered by
the rich spatial and temporal density of our dataset. Below, we
divide these analyses into two general categories: “spatial in-
sights” and “temporal insights.” For each category, we highlight
case studies of demographic inference and genome-wide scans
for adaptive differentiation. Our analyses provide novel insights
into patterns of demography and selection of natural D. mela-
nogaster populations and generate hypotheses that can be tested
with the power of the Drosophila genetics toolbox in future
work. In general, our work illustrates the value of DEST 2.0 as
an open resource for the Drosophila evolutionary genetics and
genomics community.

Results
DEST 2.0, an Expanded Drosophila Population
Genomics Resource

The current DEST release (version 2.0) includes 530 high-
quality samples as well as an additional 207 pools that fell
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below our quality thresholds and were excluded from the ana-
lysis (see supplementary table S1, Supplementary Material on-
line). In its totality, the 737 pooled libraries originated from
multiple sources, including both releases of the DEST dataset
(i.e. 1.0 and 2.0), the Drosophila Genome Nexus (DGN; Lack
et al. 2016; including one sample from D. simulans; see
Fig. 1a), as well as from previous publications (Hoffmann et
al. 2002; Reinhardt et al. 2014; Svetec et al. 2016;
Fournier-Level et al. 2019; Lange et al. 2022; Nunez et al.
2024). The 737 samples within DEST 2.0 vary in sequencing
characteristics, ranging from a read depth (RD) of 4x to
300x and from an effective haploid sample size (7.; the sample
size accounting for pool size and Pool-Seq sampling effects) of
3.7 to 77.2 (supplementary fig. S1 and text S1, Supplementary
Material online; see Kolaczkowski et al. 2011; Feder et al.
2012; Gautier et al. 2013).

To ensure the highest possible quality of each sample, we cal-
culated a suite of sequencing statistics, including the PCR dupli-
cation rate, fraction of missing data, coverage, and number of
private SNPs across the totality of the dataset (all 737 pools).
In addition, we also estimated the pn/ps statistic (i.e. the ratio
of the number of genome-wide nonsynonymous polymorphisms
to the number of genome-wide synonymous polymorphisms, as
in Kapun et al. 2021; supplementary fig. S2, Supplementary
Material online), and assessed non-D. melanogaster contamin-
ation through competitive mapping and k-mer approaches
(Kapun et al. 2021; Gautier 2023; supplementary fig. S3,
Supplementary Material online). Next, we used a principal com-
ponent analysis (PCA) on all quality control metrics to assess
whether samples should be included or excluded from down-
stream analyses (see Fig. 2a and supplementary fig. S4,
Supplementary Material online; see the “Estimation of
Nucleotide Diversity” section in Materials and Methods).
Finally, 136 samples that consisted of multiple replicates from
the same locality, each with low coverage, were collapsed into
a single sample. For a more detailed description of data filtering
procedures and recommendations for users, see supplementary
text S2, Supplementary Material online. Based on the results of
these analyses, we obtained a final high-quality dataset of 530
samples and 4,789,696 SNPs across autosomes and the X
chromosome for downstream analyses. The high-quality dataset
contains representative samples from 45 countries across all con-
tinents (22 from Africa, 40 from Asia, 302 from Europe, 141
from North America, 17 from Australia, and 7 from South
America; Fig. 1a) and across a time span of 12 years (2009 to
2021). In total, our 530 high-quality samples represent 164 local-
ities; of these, 112 were sampled only in 1 year (68%), 18 were
sampled across 2 years (11%), and the rest (34; 21%) were
sampled multiple times across several years (Fig. 1b). Overall, de-
scriptions and basic subsetting of SNP statistics for DEST 2.0 are
shown in Table 1. Unless stated otherwise, all of the following
analyses are based on the 530 high-quality samples.

Estimates of Nucleotide Diversity and
Recombination Rates

To describe patterns of genetic variation in the DEST 2.0 data,
we analyzed nucleotide diversity 7 (Tajima 1983, 1989) esti-
mated with npStat (Ferretti et al. 2013). This analysis was con-
ducted on a subset of 504 samples with masked BAM files (see
the “Masked gSYNC Files” section in Materials and Methods).
As previously observed (Begun and Aquadro 1993; Andolfatto
2001; Mackay et al. 2012; Kapun et al. 2021; Coughlan et al.
2022), we found that sub-Saharan African populations had
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Fig. 1. Spatial and temporal scales of DEST. a) World map showing 530 high-quality samples part of DEST 1.0 (Kapun et al. 2020), DEST 2.0 (this study),
and the DGN (Lack et al. 2016). b) Sampling density across years of sampling contained in the DEST dataset. The colors are consistent with (a).

higher levels of genetic variation than other populations
(Fig. 2b), consistent with out-of-Africa demography (Li and
Stephan 2006; Lack et al. 2016; Arguello et al. 2019;
Kapopoulou et al. 2020; Kapun et al. 2021).

We inferred levels of genome-wide recombination across 74
samples representative of the populations analyzed (see the
“Recombination Landscape” section in Materials and
Methods), using the deep learning method ReLERNN (Adrion
et al. 2020; see Fig. 2c; supplementary fig. S5, Supplementary
Material online). Overall, recombination rate is highly heteroge-
neous among samples and among chromosomes (two-way
ANOVA, F73,9,=19.7, P<1.0x 107, and Fj 59, =1,599.4,
P<1.0x107% , respectively; Tukey’s HSD tests, all pairwise
comparisons between chromosomes P < 1.0 x 1077, except for
3R vs. 2R, where P =0.074). In most populations, there is a sig-
nificant positive correlation between recombination rate and
genetic diversity, consistent with recurrent genetic hitchhiking
and background selection (Begun and Aquadro 1993;
supplementary table S2, Supplementary Material online).

The presence of common cosmopolitan inversions had a no-
ticeable impact on the recombination landscape. Average recom-
bination rates were significantly lower around the inversion
breakpoints for six out of the seven inversions analyzed
(Wilcoxon test, P<0.01; for inversions In(2L)t, In(2R)NS,
In(3L)P, In(3R)Payne, In(3R)C and In(3R)K; supplementary
table S3, Supplementary Material online). Recombination was
also lower for those regions spanning five of these inversions
than for the rest of the chromosome (Wilcoxon test, P < 0.01;
for inversions In(2L)t, In(2R)NS, In(3R)Payne, In(3R)C, and
In(3R)K; supplementary table S3, Supplementary Material
online).

PCAs showed that populations belonging to the same geo-
graphic region share similar recombination landscapes

(supplementary fig. S6 and table S1, Supplementary Material
online for metadata). The geographic pattern is more evident
when considering relative values of recombination, i.e. the ra-
tio of the average recombination rate of each window to the
average recombination across the respective chromosome,
and is therefore informative on the recombination landscape
rather than the absolute recombination rate (compare panels
A and B with panels C and D in supplementary fig. Sé6,
Supplementary Material online).

Spatial Population Structure is Defined by
Latitudinal and Longitudinal Clines

To investigate patterns of population structure in the DEST
2.0 dataset, we performed PCA on all 530 samples that passed
quality filters. We used biallelic SNPs from the euchromatic re-
gions of the four major autosome arms (Fig. 3a; also see
supplementary fig. S7, Supplementary Material online).
When all autosomes are considered, PC1 divides samples
from sub-Saharan Africa from all other continents. At the level
of individual regions, PC1 is correlated with both latitude and
longitude in North America (r=-0.7; P<2x107'® and
r=-0.60; P<2.2x107'°, respectively) and longitude in
Europe (r=-0.80; P <2.2x 10~'%; Fig. 3b and c). These pat-
terns of population structure were consistent with previously
published studies (Kapun et al. 2020, 2021; Machado et al.
2021). Notably, both PC1 and PC2 primarily divided
African samples from all other clusters, and PC2 also sepa-
rated samples in Europe from samples in North America,
South America, and Australia.

The patterns seen across chromosome-specific PCA were
strongly correlated to that of the other chromosomes for both
PCs 1 and 2 (731 -other chr.=0.906 to 0.957, 2R _other chr. = 0.933
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Fig. 2. Patterns of filtering, genetic variation, and recombination in DEST 2.0. a) Visualization of filtering information of samples using PCA. Each dot is a
sample’s QC metric, and the color indicates the filtering decision (legend: Pass: samples that pass the filter and are used in downstream analyses;
Collapse: biological and/or technical replicates collapsed into a single representative sample; otherwise, samples were excluded due to abnormal pn/ps
levels of high levels of missing data or contamination). b) Autosomal nucleotide diversity () calculated across continents (see the “Estimation of
Nucleotide Diversity” section in Materials and Methods for details). c) Recombination landscape of chromosome 2L in samples representative of the 74
D. melanogaster populations analyzed (one gray line per sample). Light blue area highlights the region spanning the In(2L)t inversion. Average (black line)

and overall distribution envelope (orange shaded ribbon; delineated by the average values +1.96 SD) are shown.

Table 1 SNP calling information for DEST 2.0 across major autosomes and chromosome X

SNP type 2L 2R 3L 3R X
Total (all) 1,080,586 901,878 1,069,441 1,212,752 525,039
Bi-allelic 1,048,510 877,852 1,039,460 1,182,310 516,077
Inside inversions 569,713 228,826 631,556 159,598 NA

In recombining regions (¢ > 0) 997,162 836,457 976,915 1,074,768 482,162
Protein coding 796,420 731,794 793,866 944,372 40,4881
Intergenic 828,039 659,966 824,903 929,539 401,586
Synonymous 95,275 91,052 90,635 101,504 49,055
Nonsynonymous 71,534 75,921 72,843 90,905 25,072
Proportion of missing data 0.0511 0.0507 0.0508 0.0493 0.0533

SNPs inside the inversion are estimated for In(2L)t for 2L, In(2R)NS for 2R, In(3L)P for 3L, and the joint region among [n(3R)K, In(3R)P, and In(3R)Mo.
Estimated recombination rates (i.e. rate of cross-over; ¢”). Functional annotations are only reported for biallelic sites.

t0 0.967, 731 -other chr.=0.912 to 0.967, 73R other chr. = 0.906 to
0.967; note that all P-values are <1.0 x 10~'%). PC3 is peculiar
in that the whole-genome results were similar only for the
2R-3L comparison (r=-0.923; P<1.0x107"%) and the
2L-3R comparison (r=0.287; P=1.77x10"""), but not
for the other comparisons (supplementary table $4,
Supplementary Material online). Notably, we observe that pat-
terns in PC3, specifically within 2L and 3R, were strongly

influenced by the frequencies of In(2L)t and In(3R)Payne, two
large adaptive cosmopolitan inversion polymorphisms (Kapun
et al. 2023; Nunez et al. 2024).

We investigated clines in the frequencies of cosmopolitan in-
version polymorphisms in DEST 2.0 using inversion-specific
SNPs that are in strong linkage disequilibrium with the inversion
breakpoints (Kapun et al. 2014; supplementary fig. S8,
Supplementary Material online). Many inversions showed
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significant clinal patterns along latitude or longitude that were
consistent across different continents (see supplementary table
S5, Supplementary Material online for statistical details). Our re-
sults are in line with previous observations, in particular for
In(3R)Payne (Lemeunier and Aulard 1992; Anderson et al.
2005; Kapun et al. 2016b, 2020, 2023; Kapun and Flatt 2019),
which showed significant latitudinal clines in North America,
Europe, and along the Australian east coast. Latitudinal clines
were also significant for In(2L)t and In(3R)Mo in North
America and Australia and for I#(2R)NS and In(3L)P in North
America, Australia, and Europe. Additionally, while overall
not being very frequent, I(2R)NS exhibited a highly significant
longitudinal cline across European populations.

Characterizing Population Structure in European
and North American Populations

We applied k-means clustering analysis on the first three auto-
somal PCs to identify spatially defined clusters. First, with k =4
clusters, we fully recapitulated the results of DEST 1.0
(Fig. 4a), with clusters composed of sub-Saharan African sam-
ples, the Americas, and two clusters in Europe [as in Kapun
et al. 2021; “Europe West” (EU-W) and “Europe East”
(EU-E)]. North African and West Asian samples clustered with
EU-W. Australian samples were split between the clusters that
contain Western Europe and the Americas. We also estimated
population clusters using k = 8, which was estimated to be the op-
timal value based on the gap statistic (Tibshirani et al. 2001;
Fig. 4b-inset). For k=8, new hypotheses of structure emerged
(Fig. 4b). In Europe, the previously known EU-W and EU-E clus-
ters appeared, separated by a putative third cluster at the bound-
ary between EU-E and EU-W (i.e. an “overlapping zone”;
Fig. 4c). Newer populations (namely the Americas and
Australia), previously grouped as a single cluster, were divided
into three clusters: the Caribbean and most of South America,

a southeast US coastal group, and all other samples from main-
land North America (see green, yellow, and pink points, respect-
ively, in Fig. 4b). Notably, samples from Australia do not show
any new levels of clustering when k=8, relative to k=4.
Instead, they retain their original cluster association, whereby
samples from the south of the continent cluster with samples
from EU-W, and those from the north cluster with North
American populations (Fig. 4a and b).

While the gap statistic showed that k = 8 was the optimal num-
ber of clusters, the difference between k=4 and k=8 was mar-
ginal (see Fig. 4b-inset). To test whether the additional clusters
provide novel biological insights, we assessed the support for
each set of clusters using model-based demographic inference
with moments (Jouganous et al. 2017). Specifically, we aimed
to determine whether these clusters represent distinct population
introductions into Europe (in the case of the overlap zone, poten-
tially indicating an alternative out-of-Africa migration) or into
the Americas (in the case of the Caribbean cluster), relative to
the known demographic clusters at these sites. We fit neutral
models of population history that we call “one-population,”
“split,” “admixture,” and “two-splits” (see supplementary fig.
S9, Supplementary Material online; see description in the
“Demographic Model Selection with Moments” section in
Materials and Methods) to subsets of the DEST 2.0 variant
data consisting of the clusters identified in k=8
(supplementary table S6, Supplementary Material online). We
used this framework primarily for model selection among the
proposed demographic histories, rather than for estimating spe-
cific demographic parameters. We expect the analysis to remain
robust across model selection, and note that the models we com-
pared mainly differ in the topology of the graph summarizing
population histories (see Discussion).

First, we fit the “one-population” and two-population
“split” models to the Southeastern North America
clusters (i.e. cluster 6 vs. cluster 4 in Fig. 4b) to conclude
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Fig. 4. Spatial population structure and admixture in worldwide Drosophila. a) Clustering map, based on PCA projections 1 to 3 built using k=4 (as
reported in DEST 1.0). b) Same as (a) but with k=8 (the optimal number of clusters as defined by a heuristic Gap statistic search, as shown in the inset).
¢) Zoom view of k=8 into Europe to show the hypothetical overlap zone. d) Zoom view of k=8 into North America showing the hypothetical

“Latin America” cluster (green) and Southeast cluster (yellow).

that “one-population” better describes the region (Wilcoxon
signed-rank test on model likelihoods, P=7.02x107";
supplementary fig. S10a, Supplementary Material online).
This result, in which there is no strong evidence of historic di-
vergence between the two clusters, along with low Fs (0.034),
supports the parsimony of clustering at k=4. Similarly, our
analysis also showed that Caribbean populations (cluster 5
in Fig. 4b) are not a distinct cluster relative to the rest of the
Americas (clusters 4 and 6 in Fig. 4b; supplementary fig.
S10b, Supplementary Material online).

In Europe, we conducted model comparisons among a two-
population “split” model, three variants of the three-
population “admixture” model in which EU-W, the overlap
region, and EU-E (clusters 2, 7, and 8, respectively, in
Fig. 4b) are treated as the admixed population, and three var-
iants of the three-population “two-splits” model in which
EU-W, the overlap region, and EU-E are, respectively, treated
as a sister group to the other two populations. We found
support for the two-population models that do not include
the overlap zone as a discrete population (Dunn’s tests on
model likelihoods, six corrected P-values <3.3x1077;
supplementary fig. S10c, Supplementary Material online).
This result and the low three-way Fst (0.036), indicate that
only the EU-E and EU-W clusters are distinguished as discrete
populations and that the overlap zone may simply be an active
area of gene flow between EU-W and EU-E. Overall, these
findings suggest that the optimal demographic partitioning
of the data coincides with clustering at k=4, as reported in
the original DEST release (Kapun et al. 2021).

Next, we investigated the signals in the data that may have
given rise to the clusters proposed by k=8. We focused our
analyses on the role of African-European admixture in the
samples, as this is a primary driver of standing genetic variation
in recently expanded populations. To achieve this, we esti-
mated admixture levels in the Americas and Australian popula-
tions using a two-pronged approach: a model-based method
implemented with moments, and a linear modeling approach
that has been previously applied in Drosophila, as described
by Alkorta-Aranburu et al. (2012) and Bergland et al. (2016;
see supplementary dataset Sla and b, Supplementary
Material online). Results from both methods are highly corre-
lated (r=0.9, P <2x 107'%; Fig. 5a); however, the linear meth-
od consistently produces higher estimates of African ancestry
relative to moments [concordance correlation p=0.59, 95%
confidence interval (CI)=0.53 to 0.66]. We investigated this
systematic discordance among the inference methods using
population genetic simulations with SLiM (Haller and Messer
2023; see “Population Genetics Simulations with SLiM” sec-
tion in Materials and Methods). We simulated a stepping-stone
model resulting from secondary contact and evaluated the per-
formance of the two admixture-estimation methods. Both
methods capture the overall clinal pattern of admixture; how-
ever, neither consistently recovers the true ancestry proportions
(correlation with simulated ancestry: 71 incar = 0.79, moments =
0.80, both P<2.0x107'%; supplementary fig. Slla,
Supplementary Material online). However, the two methods
exhibit distinct error profiles. The moments-based approach
is generally more precise, consistently overestimating ancestry
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Fig. 5. Patterns of admixture across the Americas and Australia. a) Correlation between admixture estimates obtained using moments as well as with the
linear modeling method. b) Coefficients of linear admixture for Australia and North America, inferred using moments. c) Map projection of levels of African

ancestry in North American samples (moments estimate).

by only 2% to 10% on average. In contrast, the linear modeling
approach shows greater variability, either overestimating or
underestimating ancestry depending on simulation parameters,
with errors ranging from 10% to 20% (supplementary fig.
S11b, Supplementary Material online). We also evaluated the
slope of the ancestry cline across the stepping-stone model
(Bancestry) for both methods. Consistent with the ancestry propor-
tion results, both methods underestimated the steepness of the
ancestry cline (supplementary fig. Sllc, Supplementary
Material online); however, the moments-based approach more
closely approximated the true slope observed in the simulations
(supplementary fig. S11d and e, Supplementary Material online).

Based on the simulation results, we conducted all subsequent
analyses using the moments-based estimates. Overall, our esti-
mates of African admixture were consistent with previously pub-
lished findings (i.e. a significant negative pattern in North
America, Bafrican anc. = —0.0044, P <2.2x 107", and a positive
correlation between African admixture and latitude in
Australia, PBafrican anc.=0.0036, P=0.0019, see Fig. S5b;
Bergland et al. 2016; Corbett-Detig and Nielsen 2017,
Coughlan et al. 2022). Analyses on South American samples re-
vealed no significant correlation, likely due to limited sample size,
yet showed considerable variation in admixture levels (9% to
28%). We also estimated the relationship between levels
of admixture and longitude in North America. Here, we identi-
fied a significant association between longitude and ancestry
(Bafrican anc.=0.0007, P=1.96x107°). This was evidenced
when levels of African ancestry were projected onto a map of
North America (Fig. 5c), revealing that West Coast samples
have lower levels of African ancestry when compared with sam-
ples in the eastern seaboard at comparable latitudes. These re-
sults suggest that, in North America, the patterns seen under k

=8 emerge due to the different levels of African admixture
(Fig. 4d, also supplementary fig. S11f, Supplementary
Material online).

Lastly, we conducted a survey of genetic differentiation
across the demographic clusters (see “Estimation of
Noucleotide Diversity” in Materials and Methods). The overall
differentiation was Fsr=0.050+0.001 for autosomes and
nearly twice as high for the X chromosome (0.092 +0.004;
Fig. 6a). These results were robust to the removal of hetero-
chromatic regions and low-frequency alleles [minimum allele
frequency (MAF)<0.05; supplementary fig.  S12,
Supplementary Material online]. To quantify the level of differ-
entiation between population groups defined by their continen-
tal cluster (Fig. 4a), we used a hierarchical Fst (hFst) model
(Nei 1973) that decomposes the total differentiation into
across-group (Fgr) and within-group components (i.e. a com-
posite label of continent and cluster; Fsg) contributions, using
unbiased estimators developed for Pool-Seq data (Gautier et al.
2024 ). Note that here we refer to the overall differentiation
under the hierarchical model as hFgy [with (1 —hFg)=(1—
Fsg)(1 — Fgr)] to distinguish it from the standard Fst defined
under a model without population groups. As shown in
Fig. 6a, Fsg was always lower than Fgr, demonstrating that
there is less differentiation within than between most clusters.
We evaluated the level of differentiation across all cluster-
continent pairs by computing pairwise Fgt. For each pair of
regions, the underlying populations were analyzed under a
hierarchical Fst model with two groups, as shown in Fig. 6b
(see results for k=8 in supplementary fig. S13,
Supplementary Material online). In general, all clusters involv-
ing Africa were consistently more differentiated than
non-African groups. The highest level of differentiation was

G20Z 18qo100 gz uo Jasn Biaquanip-o|[eH 18 lISISAIUN-IYINT-UILIBI\ Jop SneyusyuBIyIyaT seyosiwapeqy Aq €61/E28/2€ LIesW/g/Zy/a1oie/aquw,/woo dno olwapese//:sdiy wolj papeojumoqd


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data

10

@) 0.125 (b) .-..

0.100
g ¢
S
60'075 EE‘I'I
> 0050 g
0025 T T T T
Fst hFst Fer  Fse
(©)
— Autosomes
n 0.15 X
w
EO'1O
pus
=
o 0.05
£
=1
& YRR
o S 28852538
S« &t @ & & £ T
S I < 0 S < H QO
w® | gw 3 1 3 E
| -G Gl - GP-¢
S 3
<]
z @
< <«

Nunez et al. - https://doi.org/10.1093/molbev/msaf132

0.03 0.07 0.04 0.09 2-Europe

0 .0.16 0.18 013 0.16 0.1 1-Africa
>
g8 ¢ .0.03 0.05 0.07 3-Asia
&
R . 0.04 0.04 3-Africa
=
8 @ 004 0.05 3-Australia
>
Fer a .
= s 1 0.03 ' 0.02 4-Australia
Hoz2 5 Z
5 % 10.04 4-North America
0.15 5 3
S % 4-South America
0.1 z 9
2 5
0.05 1
| g
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as the cluster number identified in Fig. 4a.

observed between Africa and EU-E (Fgr=0.22; Fig. 6b).
Despite being located geographically between EU-W and
EU-E, samples from the overlapping zone in Europe and Asia
were more similar to EU-W than to EU-E (Fig. 6b). All popula-
tions in the Americas and Australia (i.e. “recent expansion”
populations) were more similar to each other than to Africa
or Europe. These findings align with previously published
work (Bergland et al. 2016), indicating that flies in Australia
and the Americas are subject to admixture from a recent sec-
ondary encounter between European and African populations.
Finally, we estimated the differentiation (i.e. standard Fsr)
within each cluster-continent level (Fig. 6¢). Europe (cluster
2r—4) exhibited the lowest levels of differentiation, and
South America (cluster 4, _ 4) the highest, which was essentially
driven by a Brazilian and an Ecuadorian sample (Fig. 4c).

Updated Geographically Informative Markers
Improve Predictive Resolution of Samples

Our previous release of DEST generated a panel of GIMs
(Kapun et al. 2021). The second release of our data gives us
the unique opportunity to test the accuracy of our previously
published markers. To this end, we applied our previous DEST
1.0 GIMs to our new data, and we assessed the distance (dpay;
as great circle distance, see the “GIM Predictive Models™ sec-
tion in Materials and Methods) between the predicted locality
and the “real” locality as recorded in the metadata. Overall,
both DEST 1.0 models trained at the level of “city” and “re-
gion” (i.e. resolution at the level of state or province) perform
similarly well on the new data (r=0.995, P=2.2x10""%
Fig. 7a). Next, we aggregated the d,,,, estimates at the level
of continents. We did this to assess whether the quality of
our predictions varies as a function of continent. Overall,
the best performance was observed in European samples (me-
dian resolution of ~409 km to real location; Fig. 7b), followed
by the North American samples, with a resolution of 794 km.

Unsurprisingly, the worst predictions from the DEST 1.0
markers occurred when deployed on samples from South
America and Australia, two locations that were not included
in the first release (Fig. 7b).

While our published markers performed well on samples
from regions present in DEST 1.0, the addition of new regions
to DEST required the generation of new GIMs. As such,
we trained a new demographic model (DEST-GIM 2.0) in-
cluding the new samples reported in this paper. Our new mod-
el was trained using the same workflow as DEST-GIM 1.0 (i.e.
by retaining 40 PCs). Yet, the models differ in that DEST-GIM
2.0 was created by exclusively using noncoding SNPs as well
as loci outside genomic regions spanning major cosmopolitan
inversions. This new panel of GIMs is composed of 29,952
SNPs across all autosomes. Performance assessment of the
new model by the dj,,, analysis shows that DEST-GIM 2.0 per-
forms similarly to the 1.0 version for existing locales (e.g.
Europe or North America; Fig. 7b), yet they provide improved
prediction accuracy for new regions (Fig. 7b and c¢).

Winter Severity Drives Year-to-Year Levels of
Genetic Variation in Overwintering Populations

While much of demographic research in D. melanogaster has
focused on spatial patterns of genetic variation, there is strong
evidence that temporal demography, driven by yearly cycles of
summer “booms” and winter “busts,” can have strong and
quantifiable effects on the frequency and levels of standing
genetic variation in wild populations (Bergland et al. 2014;
Nunez et al. 2024). For example, levels of postoverwintering
(i.e. year-to-year) Fsr are generally higher than Fst between
samples collected within a growing season, even though over-
wintering Fs captures a smaller number of generations (1 to 2
generations) than comparisons within a growing season (ca.
10 generations). This observation has led to the hypothesis
that strong bottlenecks due to overwintering alter the genetic
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composition of fly populations, both due to changes in the
amount of genetic drift (Nunez et al. 2024) and due to season-
ally varying selection (Bergland et al. 2014; Machado et al.
2021; Behrman and Schmidt 2022; Johnson et al. 2023). A
prediction of this hypothesis is that the strength and intensity
of winter, an ecological driver of yearly population busts,
should be correlated with the levels of overwintering Fsr
from 1 year to the next. To test this prediction, we investigated
patterns of temporal structure in worldwide DEST samples
and asked whether latitude (a proxy for winter severity) is cor-
related with the levels of year-to-year Fsr.

For a given site, we assessed levels of Fs between samples col-
lected in two consecutive years (i.e. growing seasons) from the
same locality. We implemented this analysis across 43 localities
and estimated the relationship between mean year-to-year Fst
and latitude. We tested the prediction that higher latitude popu-
lations with stronger winter conditions exhibit higher levels of
year-to-year Fgr. Indeed, we found a significant positive correl-
ation between overwintering Fst and latitude, yet the correlation
is not monotonic. Using “broken-stick” regression (Muggeo
2003), we identified a change in the latitude—Fsr relationship at
50.3°N (Fig. 8aand e). Samples below 50.3°N tend to have lower
values of year-to-year Fst when compared with those above

50.3°N (Fig. 8b), and the magnitude of correlation between
latitude and Fgy varies before and after this latitude mark
(Fig. 8b; 71=0.182, 7~ 50 12=0.333, 750 m=0.117; all
P=2.2x107"'%). These correlations are statistically significant
and outperform 500 random permutations where latitude
is shuffled.

A second finding of our year-to-year Fsranalysis was the dis-
covery that several samples collected from Yesiloz, Turkey, are
outliers (red dots in Fig. 8b) among samples below the 50.3 lati-
tude mark (see Fig. 8a and b). This pattern was most apparent
when considering samples between 2020 and 2021 (Fig. 8d)
relative to comparisons at other years (Fig. 8c). This signal in
Turkey appears to be associated with a historical heatwave
and unusually warm winters in 2021 (see Discussion; Fig. 8d).

Footprints of Adaptive Differentiation to Insecticides
in Europe

The broad sampling inherent to DEST allows us to test hy-
potheses about spatial adaptation in wild flies. We first took
a heuristic approach where we extracted all regions of the gen-
ome with high across-cluster differentiation (i.e. Fgp > 0.2; see
“Characterizing Population Structure in European and North
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function of the mean temperature in Turkey (Yesiloz) samples collected between 2015 and 2020 (logit transformed; correlation between Fsr and mean
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habitats.

American Populations” section above) and performed a
gene-ontology enrichment analysis of genes located in these re-
gions of high differentiation (Kofler and Schlotterer 2012).
Overall, we found an enrichment of genes associated with en-
vironmental adaptation, such as responses to oxidative stress,
metal ions, and pesticides (supplementary table S7,
Supplementary Material online). One of the strongest signals
of population differentiation was observed for the region sur-
rounding the gene Cyp6gl, a cytochrome P450 (Cyp) gene
(supplementary fig. S14, Supplementary Material online; a re-
sult also observed in DEST 1.0), a well-known gene involved
in resistance to DDT and neonicotinoid insecticides (Le Goff
and Hilliou 2017). This signal was particularly high when
comparing North American and European samples. Elevated
Fgt was also observed when comparing South American
and North American samples, but not when comparing
South American and European samples (supplementary fig.
S14, Supplementary Material online). These signatures of dif-
ferentiation suggest different adaptations likely driven by dis-
tinct environmental pressures and insecticide exposure levels
in each continent.

To formally detect footprints of adaptive differentiation in
our dataset, we applied the “Bayesian Population Association
Analysis” framework, BayPass (Gautier 2015; Olazcuaga
et al. 2020) to DEST samples from European localities (irre-
spective of sampling year or season; 138 samples in total;
Fig. 9a) and relied on the estimated X#X* statistic to identify
overly differentiated SNPs. The analysis identified two regions
in chromosome 2R as candidates of local adaptation

(12,188,558 to 12,126,181 and 14,826,182 to 14,976,108,
Fig. 9d). Both these regions harbor several Cyp genes. For ex-
ample, the window at ~12 Mb contains Cyp6g2, and Cypé6t3,
whereas the window at ~14 Mb contains Cyp6a22, Cyp6al9,
Cyp6a9, Cyp6a20, Cyp6a2l, Cyp6a8, and Cyp317al. These
genes are associated with hormonal metabolism as well as re-
sponses to insecticides (Danielson et al. 1995; Le Goff and
Hilliou 2017). We performed gene-ontology enrichment ana-
lysis of genes within all XtX* outlier regions and found an en-
richment of terms such as “oxidation-reduction process,”
“cellular response to radiation,” and “amide biosynthetic pro-
cess,” reflecting results from Fgr outlier regions above
(supplementary table S8, Supplementary Material online).

Antimicrobial Peptides are Enriched Among
Continent-Wide Targets of Seasonal Adaptation

We explored signals of seasonal evolution in DEST using
paired spring-fall collections from Europe. In order to ensure
that this test was not influenced by signals from previously an-
alyzed data, we only used samples that were not included in
previously published analyses (i.e. Bergland et al. 2014;
Machado et al. 2021; Nunez et al. 2024; Fig. 9a). First, we
ran the BayPass model, including both the Q matrix as a
demographic prior as well as categorical “spring” or “fall” la-
bels (defined by the first and last sample collected in a locality
within a year) in a contrast analysis. Under these conditions,
BayPass outputs the C, statistic (Olazcuaga et al. 2020) that
quantifies the degree of association of allele frequency with
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Fig. 9. Local and seasonal adaptation in Drosophila. a) Schematic of sampling for the local and seasonal analysis. In total, we used 138 samples collected in 26
European localities across an 8-year period. We selected localities where there was more than one sample per year and designated the first sample as “spring”
and the last sample as “fall.” There is no overlap between the samples used here and the samples used in seasonal analysis in Machado et al. (2021), Bergland
etal. (2014), and Nunez et al. (2024). b) Results of the GLMM analysis. The permutations are shown in gray (95% Cls) and the real data in red. There are more
SNPs with low seasonal P-values than expected by permutations. c) We performed the contrast analysis using BayPass 2.4. The contrast score (C, statistic) is
the test statistic for the seasonal term and follows a y? distribution with 1 degree of freedom. The x-axis is the —log; o{ P-value) from the GLMM. The red horizontal
line represents the 99.9% significance threshold from the pseudo-observed data (POD) for ~10 M simulated sites. The red vertical line represents the 99.9%
significance threshold from the permutations of the GLM analysis. d) Bayesian local adaptation scan. The plot shows the logy transformed wZa P-value of the

local adaptation (XtX*) BayPass analysis. For d, e, and f, regions of interest are highlighted in yellow. Inversions are demarcated along the top of the figure.

e) Bayesian seasonal adaptation scan. The plot shows the logqo transformed wZa P-value of the contrast (C,) adaptation BayPass analysis. f) GLMM seasonal
adaptation scan. The plot shows the logo transformed wZa P-value of the LRT of base and seasonal models.
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season. We identified significant C, values using a simulation
approach that is part of the BayPass workflow (see the “Scans
for Adaptive Differentiation” section in Materials and
Methods; supplementary dataset S2, Supplementary
Material online). We observe that several regions across the
Drosophila genome are enriched for signals of parallel season-
al evolution (Fig. 9e and f). A notable example appears in
chromosome 3L (3,222,669 to 3,422,464), inside the region
spanned by the inversion In(3L)P, where we observe the anti-
microbial peptide Drosomycin (Drs) as well as several
Drs-associated genes (i.e. Drsl2, Drsl3, Drsl4, Drsl5, and
Drsl6). In view of previous observations of seasonal allele fre-
quency oscillations in several immune genes, this result might
imply functional shifts in immune tolerance and resistance
across seasons in natural populations (Behrman et al. 2018).
We performed gene-ontology enrichment analysis of all genes
within C, outlier regions (supplementary table S9,
Supplementary Material online). We found an enrichment
of, among other terms, genes associated with “alcohol de-
hydrogenase (NAD) activity,” including the gene Adb itself
(supplementary table S10, Supplementary Material online).

We conducted an enrichment analysis comparing our C,
SNPs (in the top 0.0001%) with loci reported in previous sea-
sonal studies, done mostly in North American populations
(i.e. FDR<0.3 in Bergland et al. 2014; top 1% SNPs in
Machado et al. 2021), to assess whether seasonal SNPs in
Europe are also likely to be seasonal in North America. Our re-
sults indicate no significant enrichment of North American sea-
sonal SNPs among our European C, SNPs (supplementary fig.
S15, Supplementary Material online). Indeed, when compared
with Pennsylvania data from Bergland et al. (2014), we observed
a significant deficiency of these targets at both a global level
(P=0.024; supplementary fig. S15a, Supplementary Material
online) and specifically on chromosome 3L (P=0.0055).

Beyond the C, analysis, we implemented a generalized lin-
ear mixed model (GLMM) using the spring-fall seasonal la-
bels, showing a global enrichment of seasonal SNPs relative
to permutations (Fig. 9b). Comparing GLMM and BayPass
results, we found a large number of SNPs exceeding the simu-
lated 99.9% significance threshold for the C, statistic (Fig. 9c,
vertical line), with the C, and GLMM models producing a
similar set of candidate SNPs (Fig. 9¢c, red horizontal line).
Likewise, a sliding window wZa analysis (Booker et al.
2024) of the GLMM results (window size of 100 kb, step
size of 50 kb) identified the Drs region as a hotspot of seasonal
adaptation (as in the C, analysis), and also revealed a second
region of interest on chromosome 2R (18,376,129 to
18,475,992). This region contains several Bomanin genes
(abbr. Bom; e.g. BomBcl, BomT1, BomS1, BomBc2,
BomS6) known to play key roles in Drosophila antifungal re-
sponses (Xu et al. 2023). A region on 3L, near 20,172,964 to
20,271,926 bp, notable for harboring adjacent signal peaks
across analyses of seasonal and local adaptation (see Fig. 9d
to f; yellow band), contains obstructor-F (obst-F), a gene pre-
viously reported as a candidate of insecticide adaptation
(Campo et al. 2013; Bogaerts-Madrquez et al. 2021).

Discussion

A Unified Resource for Wild Drosophila Genomics

Drosopbila melanogaster is a cosmopolitan species with resident
populations across all human-inhabited continents that evolve
adaptively in response to spatially and temporally varying
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selection in the wild (clinal patterns reviewed in Adrion et al.
2015; seasonal patterns reviewed in Johnson et al. 2023). To
achieve a comprehensive understanding of the evolutionary pat-
terns within this species, we need to create panels of variation
sampled across wide geographical scales and densely across
time. This is not a trivial undertaking for any single lab to achieve.
The original impetus behind DEST was to generate a unified da-
taset and workflow that would capitalize on the collaborative ef-
forts of labs and consortia around the world (Kapun et al. 2021).
DEST 2.0 builds on the original release by adding twice as many
new samples, significantly expanding the dataset.

Opverall, the incorporation of the aforementioned data into the
dataset showcases the flexibility and capacity for growth of
DEST, as a centralized and well-annotated repository of
Drosophila genomics. Furthermore, the DEST 2.0 Dockerized
pipeline now allows for pools generated using single-end (SE) se-
quencing approaches to be incorporated into its workflow, hence
allowing for older pooled datasets to be included in DEST ana-
lyses. We plan to continue maintaining and updating the DEST
workflow, with potential future expansions to explore other
Drosophila species and additional data types. To keep pace
with the influx of new genomic data, we have upgraded the
DEST genome browser to the latest version of JBrowse, which
has better scalability and performance when displaying large da-
tasets (Diesh et al. 2023).

Heterogeneous Patterns of Recombination in DEST
Samples

This release also includes genome-wide recombination rate esti-
mations for 74 representative populations. In comparison with
the findings of previous studies (Comeron et al. 2012; Adrion
et al. 2020), our own estimates show a reduction of ~3-fold.
This discrepancy may be attributed to the combination of our
methodological approach and the nature of our data. The
deep learning approach of ReLERNN (Adrion et al. 2020) is de-
pendent on allele frequencies, and it is thus possible that levels of
genetic polymorphism may affect the estimation of levels of re-
combination rate. In our analyses, we estimated allele frequen-
cies on SNPs that were called with very conservative and
stringent filtering methods. Furthermore, the polymorphism
data were obtained from Pool-seq data from derived
European and North American populations, which exhibit low-
er levels of genetic polymorphism (~2- to 3-fold; e.g. Ometto
et al. 2005) than the ancestral African populations used in
Adrion et al. (2020). Accordingly, there is a strong and signifi-
cant correlation between the number of SNPs and the average
recombination across the 74 populations (Spearman’s
p=0.821, §=12,074, P<1.0x107>; R*=0.667). Notice
that for this analysis, we estimated the population-scaled effect-
ive recombination rate (p), rather than the actual crossing-over
rate (r, where, e.g. in autosomes, p=4N,r). A comparable find-
ing was observed in the case of wild barley (Dreissig et al. 2019).
It seems also probable, however, that our populations can in-
deed be characterized by heterogeneous levels of recombination,
as has been reported by numerous studies in Drosophila (Hunter
et al. 2016; Samuk et al. 2020; Wang et al. 2023).

New Insights into Ancestral and Recent Fly
Phylogeography

The prior releases of DEST and similar datasets (Kapun et al.
2020, 2021; Machado et al. 2021) characterized patterns of
population structure within North America and Europe.
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In this paper, we expand the repertoire of samples available for
demographic inference and phylogeographic analysis and pro-
vide novel insight into colonization patterns in Australia and
South America, as well as the genetic structure of Europe.

Our analyses provide new insights into the colonization his-
tory of the Americas and Australia. First, our analyses recapitu-
late published signals of a cline in African ancestry in North
America (Kao et al. 2015; Bergland et al. 2016; Corbett-Detig
and Nielsen 2017; Coughlan et al. 2022), with higher African
ancestry in tropical versus temperate populations. These results
support the hypothesis that African admixture is higher in equa-
torial populations, likely due to two separate introductions of
D. melanogaster to the Americas: one from Europe and one
from Africa. African ancestors likely entered through the
Caribbean, with the earliest records of the species appearing in
Cuba in 1862 (Sturtevant 1921). Introduction of the species,
however, is documented in historical records starting in 1875
in New York. This suggests that African—European admixture
in the eastern United States may have developed around 1876
(Lintner 1882, p. 217; Keller 2007).

Although the South American samples do not display a sig-
nificant ancestry cline, the observed variation (9% to 28%) in-
dicates the possibility that clinal patterns could emerge with
broader sampling. Our results from Australia, on the other
hand, revealed a reversed latitudinal trend compared with
North America (Fig. 5b). This is consistent with previous
work that has demonstrated clines in African/European ancestry
across Australia (Bergland et al. 2016). Taken together, our re-
sults suggest that additional sampling is warranted in Australia
and South America to further resolve these recent migrations.

Second, previous analysis of population structure in Europe
(Kapun et al. 2020 , 2021) identified two phylogeographic
clusters, referred to as Europe East” and “Europe West”.
Here, we identify a potential third cluster occupying the over-
lap zone between these clusters (in the k = 8 analysis; Fig. 4b).
This cluster is notable since its placement closely mirrors the
“suture zones” (Remington 1968) of other species, such as
Bombina toads (Hofman et al. 2007), Leuciscus cephalus
(Hewitt 2011), and Mus musculus (Dureje et al. 2012). In
our analyses, we tested whether this overlap zone is a zone
of admixture between EU-E and EU-W or if it is a separate
cluster, perhaps reflecting expansion of a Middle Eastern sub-
population. We show that the overlapping zone is not a dis-
tinct cluster (supplementary fig. S10c, Supplementary
Material online) supporting k =4. It is possible that the over-
lap zone is an artifact of the data that appears due to asymmet-
rical levels of migration between clusters, as reported
previously (EU-W — EU-E as 0.209 flies/gen vs. EU-E—
EU-W as 0.178 flies/gen; Kapun et al. 2021). These findings
are further supported by our supplementary Fsr analyses
that include the overlap zone [e.g. Fst (EU-W vs. overlap) =
0.00; Fst (EU-E vs. overlap) = 0.01]. Third, it is also possible
that these patterns may arise from the action of a non-neutral
force confounded with the complex demographic history of
D. melanogaster in Europe. These hypotheses will be explored
in deeper detail in future work.

To better explore these patterns of phylogeography, we imple-
mented a variety of methods, including F-statistic comparisons,
linear modeling of ancestry proportions, and model-based infer-
ence using the program moments (Jouganous et al. 2017). Each
of these methods has its own strengths and weaknesses, especially
in the context of Pool-Seq data. Our analysis with moments
builds on our previous efforts to test demographic inference

methods on Pool-Seq data (Kapun et al. 2021). However, these
analyses should be interpreted with caution. Unlike most other
methods in this paper, which directly or indirectly account for
the inherent error structure of Pool-Seq datasets, our demograph-
ic inference approach using moments does not fully accommo-
date the unique biases of Pool-Seq. We highlight three aspects
that influence our interpretation of the results:

First,asin DEST 1.0, we used the PoolSNP program to call SNPs
in our dataset. Like many widely used Pool-Seq variant calling
tools (Koboldt et al. 2009; Kofler et al. 2011), PoolSNP identifies
polymorphisms by integrating evidence from multiple samples.
This approach produces a high-quality SNP panel enriched for
common mutations but comes at the cost of excluding rare and pri-
vate mutations within pools (Kapun et al. 2021). While common
SNPs are sufficient for most analyses presented here, the loss of
rare variants can impact demographic inference—a challenge
not unique to Pool-Seq (Gravel et al. 2011). Indeed, comparative
studies have shown that rare variants are critical for detecting
fine-scale population structure and recent demographic events,
whereas common variants are more informative for older demo-
graphic events (O’Connor et al. 2015). Here, we aimed to test
models that reflect relatively ancient events, such as out-of-Africa
migrations, where common variants (i.e. of older origin) are
more informative than rare variants (i.e. of very recent origin
and likely geographically restricted). In other words, following a
graph interpretation of population histories, we focused on the
deeper part of the topology, for which common variants have al-
ready proven to be highly informative (Patterson et al. 2012).

Second, the current implementation of moments does not
account for any source of noise in site frequency spectra. In
the context of Pool-Seq, errors may arise from factors such
as unequal DNA contributions from individuals, variation in
sequencing error rates, and differences in effective coverage
(Carvalho et al. 2023).

Third, we used forward-time population genetic simula-
tions in SLiM to assess the performance of our admixture in-
ference methods on discretized allele count data derived from
estimated allele frequencies. While none of the methods per-
fectly recovered the true ancestry proportions, all were able
to detect the general pattern of the admixture cline resulting
from secondary contact. Notably, the method implemented
in moments demonstrated higher precision and lower error
rates compared with the linear modeling approach
(supplementary fig. S11, Supplementary Material online).
Furthermore, our admixture estimates aligned closely with
findings from previously published studies (Bergland et al.
2016; Corbett-Detig and Nielsen 2017; Coughlan et al. 2022).

These results underscore the potential for integrating Pool-Seq
data with model-based demographic inference methods to inves-
tigate complex population histories. Yet, a systematic evaluation
of key parameters and known sources of variation—such as dif-
ferences in effective coverage—is essential for improving the ac-
curacy and reliability of future demographic inferences. We
acknowledge these limitations and encourage cautious interpret-
ation of our model-based results. Nonetheless, the moments-
based analyses yielded valuable insights into population structure
and admixture dynamics of the DEST 2.0 samples.

Inferring Targets of Adaptation Across Time and
Space

The complex patterns of spatial population structure that we
have described above are likely to alter the adaptive capacity
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of fly populations. Indeed, a recent genomic analysis of the sib-
ling species D. simulans across continents revealed that demo-
graphic ancestry, and not shared selection regime, is a better
predictor for the genetic basis of local adaptation to thermal
stressors (Otte et al. 2021). These results highlight that assess-
ing footprints of adaptation requires robust controls for the
complex demographic structure of species. We implemented
the BayPass framework (Gautier 2015; Olazcuaga et al.
2020) to discover targets of spatially and temporally fluctuat-
ing selection across Europe. This framework is flexible, as it
incorporates priors from population structure (via the Q ma-
trix) and, optionally, environmental variables (either as fac-
tors or covariates).

Our analyses of spatial adaptation reveal signatures of
continent-wide differentiation around cytochrome P450 genes
(e.g. Cyp genes) in 2R (Fig. 9). Follow-up analyses using esti-
mates of across-group differentiation (Fgt) revealed that these
genes are highly differentiated in comparisons between North
American populations versus both European and South
American populations (supplementary fig. S14, Supplementary
Material online). Given that Cyp genes are important players
in insect detoxification pathways and have been implicated in
the evolution of insecticide resistance (Le Goff and Hilliou
2017), these findings suggest that flies have experienced
continent-wide adaptation to different histories of land and
pesticide use (see also Kapun et al. 2020). While further experi-
mental validation is needed to disentangle the particular gene
targets and drivers of selection, these data highlight the power
of DEST to reveal the genetic bases of local adaptation to paral-
leled stressors.

We also explored patterns of temporal divergence in re-
sponse to seasonality. Previous work has shown that seasonal
adaptation, via adaptive tracking (Botero et al. 2015), is a ubi-
quitous and important evolutionary force affecting patterns of
genetic variation across the genome of Drosophila (Bergland
et al. 2014; Kapun et al. 2016a; Machado et al. 2021;
Rudman et al. 2022; Bitter et al. 2024; Nunez et al. 2024).
Here, we used the DEST 2.0 data to revisit footprints of sea-
sonal adaptation across samples not used in previous analyses.
Using this dataset, we tested the hypothesis that seasonal
adaptive tracking is a general phenomenon of European tem-
perate Drosophila. One challenge associated with testing this
hypothesis is determining the appropriate covariate (e.g. tem-
perature, humidity, and rainfall) and the timeframe of selec-
tion (e.g. 0 to 15, 0 to 30 d prior to collection) to use in the
model. For example, Nunez et al. (2024) showed that, for
the inversion In(2L)¢ in Virginia, the best seasonal model
used the temperature 0 to 15 d prior to collection as a covari-
ate. Yet, in Europe, Nunez et al (2024) showed that humidity 0
to 30 and 0 to 60 d prior to collection were the best models for
EU-E and EU-W, respectively. Therefore, we used a contrast
framework using the seasonal labels (i.e. “spring” and
“fall”) as comparison factors. This approach had been suc-
cessfully used in the past by Bergland et al. (2014) and
Machado et al. (2021) and allowed us to surmount the chal-
lenge of covariate selection.

We implemented a test of seasonality in a two-pronged ap-
proach using both the BayPass and the GLMM framework.
Our results show multiple regions of interest across the gen-
ome, which are concordant across both BayPass and
GLMM. For example, it highlights a region on 3L that enco-
des for Drosomycin and Drosomycin-like genes (Fig. 9e), ca-
nonical antifungal defense loci (Zhang and Zhu 2009), as a
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continent-wide hotspot of seasonal adaptation (Figs. 9¢ and f).
These findings are noteworthy, as fungal communities are
known to vary drastically across seasons, driven by changes in
soil moisture, temperature, and carbon availability (Schadt
et al. 2003). Furthermore, the analysis also reveals a region of
interest on chromosome 2R containing Bomanin genes that
are also associated with antifungal defense (Xu et al. 2023).
Another gene of interest is Obstructor-F, a gene that has several
functions and that has been associated with pesticide response
(Campo et al. 2013).

Our gene-ontology enrichment analysis for targets of season-
ality highlighted “alcohol dehydrogenase activity”—including
the gene Adb itself—as being enriched among outlier regions.
This is significant because patterns of genetic variation in
Adb have long been recognized as classical examples of eco-
logical adaptation (Kreitman 1983; Berry and Kreitman
1993). However, recent discussions have emphasized that the
specific agents of selection acting on this gene remain unclear
(Siddig and Thornton 2019). We also assessed whether the sea-
sonal SNPs observed in our C, analysis from Europe are en-
riched in seasonal datasets generated mostly from North
American populations (Bergland et al. 2014; Machado et al.
2021). Our results showed no enrichment (see supplementary
fig. S15, Supplementary Material online) between the datasets
compared. In other words, these results suggest that the genetic
basis of seasonality is different between continents. As men-
tioned above, this finding is consistent with previous studies
positing that population ancestry is a more important predictor
of adaptive genetic architecture than the existence of paralleled
selection regimes (Otte et al. 2021).

Overall, our seasonal analyses reveal two major takeaways.
First, they reveal that seasonal adaptive tracking is a detectable
phenomenon across the temperate range of D. melanogaster.
Yet, they also indicate that genetic ancestry may strongly influ-
ence the specific loci driving adaptation. And second, the data
highlight a large role of pathogen response genes as major
players in worldwide seasonality (Behrman et al. 2018).
These findings suggest that follow-up studies of seasonality
should take a more comprehensive approach to incorporate
both abiotic (e.g. temperature) and biotic (e.g. pathogen)
views of “seasonality.” Further expansions of the DEST data-
set will facilitate more granular exploration of adaptive track-
ing driven by spatially and temporally fluctuating selection.

The Impacts of Overwintering Demography on
Genetic Variation

The results highlighted above showcase the power of DEST to
examine fine-grained patterns of evolutionary change occur-
ring within each population. Yet, seasonal adaptive tracking
is not the only process at play in temperate habitats. As the sea-
sons change, Drosophila populations expand and contract de-
pending on resource availability (Atkinson and Shorrocks
1977). Indeed, the establishment and range limits of many in-
sect species are tied to their ability to survive winter (Lawton
et al. 2022). Previous work has suggested that local fly popu-
lations grow to their largest possible size during the summer
months (with peaks in June and September; see Atkinson
and Shorrocks 1977; Sanchez-Refusta et al. 1990; Gleason
et al. 2019; Bangerter 2021) and drastically decrease in size
following the onset of winter, when resources are scarce and
reproduction is suppressed, leading flies to enter dormancy
and overwinter until the next growing season. These seasonal
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demographic cycles, called “boom-and-bust” demography,
can result in yearly bottlenecks of up to ~97% in the “local”
population (Nunez et al. 2024), and thus are likely to have
fundamental consequences for standing genetic variation.

Consistent with studies on the impact of large overwintering
bottlenecks, previous research on temperate Drosophila pop-
ulations has revealed significant differences in genetic differen-
tiation when comparing patterns of variation within a year
and across years, a process likely driven by the effects of these
cyclical winter contractions (Nunez et al. 2024). However, a
key remaining question is whether these boom-and-bust dy-
namics correlate with winter severity: do harsher winters
lead to greater year-to-year genetic differentiation than milder
ones? We explored this question using year-to-year Fgt and
tested the hypothesis that populations with harsher winters
have, on average, larger levels of year-to-year Fst. Our results
support this hypothesis, revealing positive correlations be-
tween Fgr and latitude, particularly for samples collected at
latitudes higher than 50.3°N (Fig. 8a and e). These patterns
suggest that habitats with colder, harsher winters, typical of
higher latitude habitats, impose stronger bottlenecks on over-
wintering flies relative to lower latitude habitats. Nevertheless,
given that DEST presently includes only a limited number of
populations with >3 years of sampling, a systematic compari-
son of these dynamics requires an expansion of sampling ef-
forts. One notable exception to the pattern of both
year-to-year and multiyear Fst was found in the Turkish sam-
ples. There, populations in 2021 showed an unexpected posi-
tive correlation between Fst and temperature (Fig. 8d; relative
to patterns in previous years at the same site, Fig. 8c). These
patterns may have arisen as a result of the harsh weather con-
ditions of southern Europe in 2021. During that period, wea-
ther anomalies created unusually warm winters as well as the
hottest and longest summer heat waves in the region’s recent
history (Lhotka and Kysely 2022). These results, combined
with the observed differences in Fsr levels both within and
across multiple years at this site, suggest that extreme heat
waves may also influence the standing genetic variation of flies
in both tropical and temperate habitats. In this context, heat
waves may have affected flies both directly, through physio-
logical thermal challenges, and also indirectly by affecting
their food sources.

Overall, our findings provide three major insights into the
temporal structure of D. melanogaster populations. First, we
showed that overwintering bottlenecks are associated with
the severity of winter across habitats. Second, that there is a
predictable relationship between the strength of winter and
the genomic consequences of overwintering in fruit flies.
And third, that temperate fly populations exhibit spatially sta-
ble genetic structure and thus accumulate divergence due to
cyclical episodes of overwintering drift.

Future Directions

In conclusion, our findings not only highlight the power of
DEST as a resource for fly biologists but also its promise
and potential for growth. Indeed, as more temporal samples
continue to be added, more detailed gene-environment associ-
ation studies will undoubtedly shine a light on the drivers of
selection across worldwide habitats. Our data may also be
used in order to parameterize temporally and spatially explicit
population genetic simulations, which, combined with climate
change forecasting datasets, will help to model rapid evolu-
tionary responses under various climate scenarios. Lastly, as

our consortium continues to grow, we are working to include
a variety of other Drosophila species into DEST. Such multi-
species data will be pivotal to assess the evolutionary dynamics
of adaptive tracking across the phylogeny.

Materials and Methods

Sample Mapping and SNP Discovery Using the
DEST Mapping Pipeline

Samples were mapped to the D. melanogaster hologenome using
the pipeline described in our first release (Kapun et al. 2021).
This pipeline consists of a combination of genomic tools (fast-qc
[v0.12.1], Cutadapt [v2.3] (Martin 2011), BBMap [v38.80]
(Bushnell et al. 2017), BWA-mem [v0.7.15] (Li 2013), Picard
[v3.1.1], SAMtools [v1.9] (Li et al. 2009)) in a Docker container.
For our current release of DEST [v2.0], we have updated the
Docker container to enable mapping of reads sequenced in
both paired-end (PE) and SE configurations. This new version
of the pipeline can be found in Dockerhub (https:/hub.docker.
com/) as destbio/dest_freeze2:latest. SNP calling was performed
using the PoolSNP algorithm (Kapun et al. 2020). For SNP call-
ing, we used the default parameters optimized in the first release
of DEST (Kapun et al. 2021). Briefly, these parameters are: min-
imum allele count= 50, MAF =0.001, minimum coverage (per
pool) =4, max-Coverage =0.95, and missing Fraction (thresh-
old) = 50%. The SNP calling step, as well as genome annotation
with SNPEff (v5.2; Cingolani et al. 2012), was automated using
SnakeMake (Molder et al. 2021). We provide ready-to-use out-
puts of the DEST pipeline both in variant call format (VCF) as
well as in genomic data structure format (Zheng et al. 2012).
The entire DEST pipeline can be found on GitHub at https:/
github.com/DEST-bio/DESTv2.

Metadata for All DEST 2.0 Samples

Comprehensive metadata for all DEST 2.0 samples is included
in supplementary table S1, Supplementary Material online, in-
cluding collection information on sampling date and location.
Flies from the previous release (DEST 1.0) were collected in a
variety of methods, including aspirators, traps, and nets. New
samples reported here as part of the DrosEU3 collection were
sampled using standardized traps with a variety of baits (see
supplementary table S1, Supplementary Material online). All
newly acquired samples were collected in a coordinated manner
and processed following the protocols outlined in Kapun et al.
(2020). In brief, male flies were exclusively gathered from nat-
ural or seminatural habitats, such as orchards, vineyards, and
compost piles. In Europe, collections primarily used baited traps
with mashed banana or apples and live yeast, left at sampling
sites for several days, or were obtained via sweep netting
(Kapun et al. 2020). In North America, flies were collected using
sweep nets, aspiration, or baited traps over natural substrates
(Behrman et al. 2018; Machado et al. 2021; Nunez et al.
2024). All samples were preserved in 95% ethanol at =20 °C be-
fore DNA extraction. In addition, for the current release of
DEST, we incorporated data from previously published studies
(Hoffmann et al. 2002; Reinhardt et al. 2014; Svetec et al. 2016;
Fournier-Level et al. 2019; Lange et al. 2022; Nunez et al. 2024).
These data were added to DEST by processing the raw sequen-
ces using the Docker pipeline. These new samples include: 37
samples from Nunez et al. (2024), 16 samples from
Fournier-Level et al. (2019), 2 samples from Hoffmann et al.
(2002), 17 samples from Lange et al. (2022), 8 samples from
Reinhardt et al. (2014), and 1 sample from Svetec et al.
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(2016). Samples from Fournier-Level et al. (2019) consist of
multiple replicates from the same locality, each with low cover-
age. Accordingly, we collapsed all replicates from each site into a
single “consolidated” library (see “Collapse” category in
Fig. 2a), each with read depths (RDs) of ~60x.

Filtering Parameters

We filtered SNPs and samples using metrics and tools de-
scribed in our first release (Kapun et al. 2021). In brief, we
(i) calculated the levels of contamination by congenerics,
(i) levels of read duplication in the sequencing run, (iii) pro-
portion of SNPs with missing allele frequency data, (iv) ratio
of synonymous to nonsynonymous polymorphism (pn/ps),
(v) nominal coverage, and (vi) the effective coverage. Levels
of contamination by congenerics refer to the amount of
non-D. melanogaster flies that were accidentally sequenced
in pools.

We assessed contamination using a two-pronged approach.
First, we assessed the levels of competitive mapping of reads to
the genomes of D. melanogaster (RefSeq: GCF_000001215.4)
and D. simulans (RefSeq: GCF_016746395.2). Drosophila
simulans and D. melanogaster can be difficult to differentiate
in the wild, and the wrong species may be sequenced by acci-
dent. The specifics of competitive mapping were discussed pre-
viously (Kapun et al. 2021; Machado et al. 2021). Our second
approach uses a k-mer counting method that can be directly
applied to raw read files and is flexible for multiple species
that are represented or closely related to those represented in
the target k-mer dictionary (Gautier 2023). Next, we gener-
ated in silico pools consisting of mixtures of panels of inbred
D. melanogaster (Mackay et al. 2012) and D. simulans
(Signor et al. 2018). We generated these in silico pools by vary-
ing the mixture levels of the two species. By analyzing these
pools, we show that both the competitive mapping and the
k-mer approach are accurate (supplementary fig. S3a,
Supplementary Material online), with the competitive map-
ping approach slightly overestimating contamination (by
2.3% max) and the k-mer approach slightly underestimating
contamination (by 6% max).

The levels of read duplication were extracted directly from
the BAM files by mining the “mark_duplicates_report” output
using a custom R script. Missing data was assessed by count-
ing the number of sites reported as “NA” in a particular pool.
The pn/ps statistic was calculated using the SNP annotations
derived from SNPEff using a custom script (see GitHub).
The nominal, genome-wide, RD is extracted directly
from the BAM file using a custom script (see GitHub). Note
that the per-site RD is a standard output of PoolSNP.

Masked gSYNC Files

Prior to SNP calling, we masked positions in each gSYNC file,
which is a genome-wide extension of the SYNC file format
(Kapun et al. 2021) for each sample based on minimum and
maximum RD thresholds, as well as on proximity to putative
indel polymorphisms as identified by GATK IndelRealigner
[v3.8.1] (DePristo et al. 2011). In addition, we masked regions
associated with repetitive elements identified as fragments
of interrupted repeats by Repeat Masker (Smit et al. 1996;
Jurka 2000), microsatellites and simple repeats identified by
Tandem Repeat Finder (Benson 1999), repetitive windows
identified by Window Masker and SDust (Morgulis et al.
2006), and transposable elements and other repetitive elements
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identified by Repeat Masker (all obtained from the UCSC
Genome Browser), using the custom Python script
MaskSYNC_snape_complete.py, as previously described in
Kapun et al. (2021). Importantly, the positions of these masked
sites are stored in BED file format, which allows accounting for
masked sites both in mono- and polymorphic positions when
calculating unbiased site-specific averages for population genet-
ic statistics as described in the section “Estimation of
Nucleotide Diversity” (see also Kapun et al. 2020).

Effective Read Depth

In addition to the nominal RD, multiple downstream analyses
in this paper use the “effective RD” metric (7). This is a
Pool-Seq-specific metric that corresponds to the number of in-
dividually genotyped chromosomes, after accounting for the
double binomial sampling that occurs in Pool-Seq
(Kolaczkowski et al. 2011; Feder et al. 2012; Gautier et al.
2013). An estimate of 7, for a Pool-Seq sample can be defined as

_ Nc¢

" N+c-1
where N is the haploid sample size of the pool (i.e. number of
pooled chromosomes) and ¢ is the nominal RD at a given pos-
ition or average across the genome (see supplementary text S1,
Supplementary Material online for further details on the deriv-
ation of Equation (1) and for a more general formula applicable
to collapsed Pool-Seq sample).

(1)

Ne

Recombination Landscape

We inferred the genome-wide recombination landscape for 74
of our samples using ReLERNN [v1.0.0] (Adrion et al. 2020).
Samples were selected to cover the spatial distribution of the
DEST 2.0 dataset, with a particular focus on Europe and
North America. As ReLERNN has been shown to achieve mo-
dest accuracy when using allele frequencies derived from
Pool-Seq data sequenced at low depth, we selected those samples
with the highest possible coverage (mean sequencing depth =
68.8, SD=35.8, min=32, max=234; supplementary table
S1, Supplementary Material online). To further reduce any pos-
sible bias and to maximize the reliability of the allele frequency
used by ReLERNN to estimate recombination, we used
BCFtools (Danecek et al. 2021) to extract allele frequencies of
all biallelic SNPs with a frequency >0.01 and RD >10. The re-
sulting data was used to run ReLERNN. The parameters used in
ReLERNN simulate module were as follows: assumed per-base
mutation rate: —-assumedMu 3.27 x 10~%; assumed generation
time (in years): --gentime 0.08; and upper rho/theta ratio
--upperRhoThetaRatio 10. For the training module, we applied
a MAF of 0.01 (-maf). For the prediction module, we consid-
ered windows with a minimum number of 50 sites (—minsites).
Following the developers’ recommendation, we let the program
select the optimal size of the nonoverlapping windows on which
per-base recombination rates were predicted. Analyses were run
separately for autosomes and the X chromosome, to account for
their different ploidy in the male-only pooled samples. To allow
comparisons between samples, we estimated the average per-
base recombination rates in larger 200 kb nonoverlapping slid-
ing windows by combining the raw rates estimated in each
ReLERNN-selected window weighted by the fraction of the
overlap with the corresponding 200 kb sliding window. Using
the same approach, we also calculated the recombination land-
scape using the raw data of (Comeron et al. 2012), which are
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significantly correlated with our estimates for most of the popu-
lations (supplementary table S11, Supplementary Material on-
line). We note a weak negative correlation between the
coverage sequencing depth of a sample and the average CI of
the recombination rate values measured across the genome
(Spearman’s p=-0.330, S=89,820, P=0.0041; R*=0.018),
consistent with a greater accuracy in the estimates of recombin-
ation in samples with high-sequencing coverage. Recombination
rates are available in the genome browser.

Estimation of Nucleotide Diversity

We conducted population genetic analyses using npStat [v1.c]
(Ferretti et al. 2013). Out of the 530 high-quality samples, we
used a subset of 504 samples for which we also had the masked
BAM files, which were necessary to compute the statistics. The
remaining 26 samples do not have a masked BAM file, as they
were incorporated from the DGN data. For those samples, di-
versity statistics were re-computed from the masked gsync files
(see above) as described in DEST 1.0 data (Kapun et al. 2021).
Standard nucleotide diversity statistics were first directly esti-
mated from each BAM file, for nonoverlapping windows (10,
50, or 100 kb) over the whole genome, using the estimators for
Pool-Seq data developed by Ferretti et al. (2013). Only posi-
tions covered by at least two reads and <250 reads with a min-
imum quality >20 were considered in the computations
(-mincov 2 -maxcov 250 -minqual 20 options). We further cal-
culated genome-wide estimates for each sample (separating
autosomes and the X-chromosome) as the median window es-
timates (excluding windows with <75% coverage) for win-
dow sizes of 10, 50, or 100 kb (i.e. as displayed in the
genome browser). For the analysis of the X chromosome,
the haploid sample size was set for each and every Pool-Seq
sample to the number of flies included in the pool. Indeed,
most of them consist of only males and for the few samples in-
cluding females (i.e. samples included from: Reinhardt et al.
2014; Svetec et al. 2016; Fournier-Level et al. 2019; Lange
et al. 2022), the estimates were very similar to those obtained
when setting the haploid sample size to twice the number of
flies. For autosomes, the haploid sample size was set to twice
the number of flies, except for 13 DGN samples that consist
of pools of haploid embryos, for which the pool haploid sam-
ple size was set to the number of flies.

Analyses of Chromosomal Inversions

Based on previously identified inversion-specific marker SNPs
(Kapun et al. 2014), which are in tight linkage with the break-
points of the common cosmopolitan inversions In(2L)t,
In(2R)NS, In(3L)P, and In(3R)Payne and of the rare cosmo-
politan inversions In(3R)C, In(3R)K, and In(3R)Mo, we esti-
mated sample-specific inversion frequencies based on the
median of the frequencies of inversion-specific alleles across
SNP markers for a given inversion following the approach in
Kapun et al. (2014). To test for associations between inversion
frequencies and geographic variables, we partitioned the data
by continent and analyzed each inversion separately. We fit
general linear models including arcsine square-root trans-
formed inversion frequencies as dependent variables, which
accounts for the skewed variance distribution in binomial
data when normality is assumed. We included latitude, longi-
tude, and sampling year as independent variables and tested
for the effect of the independent variables and all possible in-
teractions with a likelihood ratio test. While we considered

latitude and longitude as continuous numerical variables, we
treated year as a categorical factor to account for the sparse
sampling across years at most locations.

Principal Component Analysis

Global population structure analyses were done using the PCA
algorithm implemented in the FactoMineR [v2.4] package (Lé
et al. 2008). For these analyses, we included all available sam-
ples that passed the filter in DEST 2.0. We include all biallelic
SNPs in autosomes provided they had <1.0% missing data
and a mean allele frequency >1.0% (across all samples). We
thinned the dataset by only selecting SNPs that were 500 bp
apart from each other, reducing the dataset to 168,408
SNPs. Note that we ensured that this PCA was robust to var-
iations in read coverage and haploid pool size by comparing
the estimated PCs with those obtained with a random allele
PCA, as implemented in randomallele.pca() from the R pack-
age poolfstat [v3.0.0] (Gautier et al. 2022, 2024
supplementary fig. S7, Supplementary Material online).

Admixture Estimates: Linear Modeling Method

We estimated the proportion of African and European admix-
ture in North and South America, as well as Australian sam-
ples using a linear regression framework (Alkorta-Aranburu
et al. 2012; Bergland et al. 2016). We modeled allele frequen-
cies in each “admixed population” (i.e. North America, South
America, and Australia) as a linear combination of the two
“ancestral populations” (i.e. Europe and Africa) using an
intercept-free linear model:

P i—admix = B (African ancestor)
+ B, (European ancestory) + € (2)

where p;_.amix is a vector of allele frequencies composed of
5,000 randomly sampled SNPs across autosomes in the ith ad-
mixed sample, B; represents the proportion of African ances-
try, and B, represents the proportion of European ancestry.
The model is iterated over every kth sample from Europe
and we used a sample from Zambia (sample ID=
ZM_Sou_Sia_1_2010-07-16) to represent the African ances-
tor. We report the mean ancestry coefficients for each admix
sample as the mean of B, for all iterations of European ances-
tors. For these admixture analyses, we omitted the “collapsed
samples” from the (Fournier-Level et al. 2019) dataset. We
performed this analysis by sampling SNPs across the entire
genome, as well as inside chromosomal inversions, outside
of inversions, and on noncoding mutations.

Admixture Estimates: Moments (Model-Based)

We also estimated the proportions of African and European
admixture in North and South American populations, as
well as in Australian samples, using the Python package
moments [v1.2.2] (Jouganous et al. 2017). We employed a
three-population model in which each pool from the
Americas or Australia was modeled as a descendant of one
African and one European source population. For this ana-
lysis, we used a pooled sample from Zambia (sample ID:
ZM_Sou_Sia_1_2010-07-16) to represent the African ances-
tral population and a pooled sample from France (sample
ID: FR_IlI_Sai_1_2017-09-16) as the European ancestral
population.
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Allele frequency data inferred from Pool-Seq were discretized
into allele counts using a probabilistic approach implemented
in the R package genomalicious [v0.7.11] (Thia 2024), with
the rounded-down estimate of 7. as the expected number of in-
dividuals per pool. The resulting data were imported into
Python (v3.12), and a folded allele frequency spectrum was
constructed. We then performed 10 rounds of optimization
for each population trio in moments to estimate admixture pro-
portions. Additional details for this analysis are given in
supplementary text S3, Supplementary Material online.

Population Genetics Simulations With SLiM

We used SLiM [v4.2.2] (Haller and Messer 2023) to simulate
999 stepping-stone populations resulting from the secondary
encounter of two anciently diverged populations, mirroring
the demographic history of D. melanogaster. We performed
simulations using a non-Wright-Fisher model to generate a
single chromosome of length 99,999 bp, with a mutation
rate of 1.5x 107° and a recombination rate of 1 x 1075,

The simulation consisted of three distinct epochs. In the first
epoch, a single ancestral population (p0) of size N=5,000
evolved neutrally for 7,999 generations, reaching an average
genetic diversity of 0~ 0.01. At generation 8,000 (Epoch 2), a
founder event initiated the formation of a new population
(p1) when 0.2% of individuals from p0 colonized a novel habi-
tat. This derived population had a smaller carrying capacity
(N =2,000) and experienced weak, asymmetric migration
with the ancestral population (#2p0_p1 = 10~ and Mip1p0 =
10~%). This epoch continued until generation 14,999, by which
time populations p0 and p1 had diverged to an Fst of ~0.2. At
generation 15,000 (Epoch 3), p0 and pl seeded opposite
ends of a linear stepping-stone cline (p2 and p8, respectively),
with ~0.2% of individuals from each parental population
initiating colonization. Prior to this event, genomes of
individuals contributing to gene flow were tagged with an
ancestry-informative mutation to enable downstream tracking
of true ancestry proportions. Following colonization, the two
populations expanded inward through six intermediate demes
(p3 to p7) arranged in a one-dimensional stepping-stone model.
Migration occurred only between neighboring demes, simulat-
ing a gradual secondary contact. The simulation proceeded
until generation 16,900, at which point allele frequencies were
estimated from populations p2 through p8. Prior to demograph-
ic inference, we discretized the allele frequencies as if they had
been sampled from 25 individuals. We used this data to evaluate
the accuracy and behavior of our admixture-estimation
methods.

Demographic Model Selection With Moments

We fit demographic models to subsets of the DEST 2.0 variant
data with the Python package moments [v1.2.2] (Jouganous
et al. 2017). We used a combination of custom code as well
as modified scripts adapted from moments code to construct
site frequency spectra (SFSs) from autosomal SNPs from the
Pool-Seq VCF file. First, we partition the DEST 2.0 VCF (in-
cluding all autosomes) file as a function of the demographic
clusters reported in the results. Each demographic cluster con-
tains a number of localities sampled across space and time. To
obtain a representative geographic sample from each cluster,
we selected one pooled sample per locality. We chose the
pooled sample with the highest 7. (Equation (1)) to represent
a given locality. We then constructed a folded SFS for each
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demographic cluster by averaging the allele frequency of all
constituent pools into 21 bins (i.e. discretizing the pool fre-
quencies into counts of 20 diploid chromosomes). The SFS es-
timation process was repeated 40 times per demographic
cluster using a jackknife approach whereby one sample was
excluded at random. These jackknifed samples were used for
demographic inference. Because the VCF files used to con-
struct these SFS were generated using the PoolSNP caller, we
expect that the SFS estimates will underestimate the number
of rare alleles across clusters (see Discussion).

Using these data, we constructed demes-type models (Gower
et al. 2022) dubbed “one-population,” “split,” “two-splits,”
and “admixture” (supplementary fig. S9, Supplementary
Material online) in order to perform likelihood-based model se-
lection of global Drosophila populations. A significant limita-
tion of SFS-based demographic inference (Gutenkunst et al.
2009) is that model likelihoods are calculated from element-
wise products of measures of deviations between data and
model SFSs, thus making the likelihoods dependent on the
number of elements of the SFS. This strategy inhibits compari-
son of models using classical approaches such as Akaike infor-
mation criterion or Bayesian information criterion, since our
models have different numbers of contemporary populations,
whose corresponding SFSs have different numbers of dimen-
sions (i.e. one dimension per population) and thus different
numbers of elements. We overcome this limitation by introdu-
cing collapsed log-likelihood (CLL), in which direct compari-
son is enabled by “collapsing the additional populations of
higher dimensional SFSs such that all SFSs to be compared
have identical minimal shapes. For example, in order to com-
pare three-population models of Europe that include the puta-
tive overlap zone (cluster 7 in Fig. 4b) to two-population
models of Europe, we independently fit models, then “collapse”
the data and model SFSs of the three-population models by
summing over the axis representing the overlap zone in order
to yield a 2D-SFS with the same shape as the SFSs in the two-
population models, and then recalculate the log-likelihood of
the collapsed data given the collapsed model SFS in order to
achieve the CLL. This method was replicated by collapsing
the populations from the Caribbean (cluster 5 in Fig. 4b) as
well as from the southern United States (cluster 6 in Fig. 4b)
in order to compare two- and one-population models relative
to other American populations (cluster 4 in Fig. 4b).
Simulated validation of CLL as a robust statistic for selection
between models of different dimensions is summarized at
supplementary text S4, Supplementary Material online.

Replicable fitting of each model necessitated thousands of rep-
licate runs of moments inference through several rounds of man-
ual adjustment of parameter space boundaries, optimization
algorithms, and other optimization parameters. The general
workflow for each model fit involved initially searching enor-
mous parameter spaces (i.e. spanning orders of magnitude in
each parameter’s dimension) with the Nelder—-Mead algorithm
(Nelder and Mead 1965), then performing targeted searches
with the BFGS algorithm (Fletcher 1987) until several runs
were found to have nonrandomly converged to the same point
in parameter space.

To validate model likelihoods and parameter estimates, we
employed a jackknifing strategy, in which, for 40 replicates for
each model fit to each region, we randomly removed one sam-
ple from each population. The hypothesis tests in the Results
section compare sets of 40 CLLs from model fits to jackknife
replicates.
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Population Differentiation

We analyzed patterns of population differentiation across
samples and clusters using the R package poolfstat [v3.0.0]
(Gautier et al. 2022, 2024). This analysis was performed for
528 samples that passed quality filtering and for 9 clusters
(clusters defined based on the spatial clustering using k=4
and continent), thus excluding the D. simulans sample and
“CN_Bei_Bei_1_1992-09-16,” on three set of polymor-
phisms: (i) all chromosomes including heterochromatin;
(ii) all chromosomes excluding heterochromatin; and (iii) all
chromosomes excluding heterochromatin and SNPs with
MAF<0.05. In all analyses, we considered autosomes and
X chromosomes separately to account for differences in pool
size between male and female pools. For female-only pools,
both autosomes and X chromosomes were counted as twice
the number of flies in the pool. For male-only pools (or hap-
loids), autosomes were counted as twice the number of flies,
while X chromosomes equaled the number of flies in
the pool. To examine pairwise population differentiation,
the samples were grouped based on their spatial clusterings
at k=4 and k=8 (k=38 clustering results shown in supple-
mentary fig. S13, Supplementary Material online). The
computeFST() function was first used to estimate the global
Fst across all worldwide samples and also within each geo-
graphical cluster using the ANOVA method (Hivert et al.
2018).

To further quantify the impact of the structuring of the gen-
etic diversity across continents, we used a hierarchical model-
ing of differentiation consisting of decomposing overall Fsr
(here denoted as hFgy) into an across-group (Fgrt) and
within-group (Fsg) contribution (Nei 1973; Gautier et al.
2024), as follows:

1 —hFst = (1 — Fsg)(1 = Fgr) (3)

with groups of population being defined a priori (e.g. accord-
ing to their continent of origin and the clustering results as we
did in the present study). We estimated these statistics using
the unbiased estimator developed for Pool-Seq data imple-
mented in the computeFST() function of poolfstat [v3.0.0]
(Gautier et al. 2024). In addition to whole-genome estimates,
window-wise hierarchical Fgt parameters were estimated
across windows of 10, 50, and 100 kb and are available in
the DEST 2.0 browser.

We also explored how recombination rates and gene density
correlate with the levels of differentiation (as measured with
Fg1). We used average recombination rates in 10 kb windows
(Comeron et al. 2012; retrieved from Rech 2022). For gene
density, we used gene counts in 10 kb windows. As previously
reported (Keinan and Reich 2010; Nachman and Payseur
2012), we observed a general negative correlation between
population differentiation and recombination rates across
most pairwise comparisons, while no clear pattern with gene
density (supplementary table S12, Supplementary Material
online).

GIM Predictive Models

GIM analyses were conducted in the R package adegenet
[v2.1.5] using discriminant analysis of the principal compo-
nent (DAPC) framework (Jombart et al. 2010). While the ori-
ginal GIM set from DEST 1.0 consisted of 30,000 loci, here we
use only 28,253 loci. This was done because some of the ori-
ginal markers were filtered out in the current DEST 2.0 panel.

We used these markers to train the DAPC model using the
sample’s state/province as the grouping prior. We retained
30 PCs from the DEST 1.0 model for the state/province model.
We retained PCs based on a leave-one-out analysis that mini-
mized the sum of squared errors (SSEs) of the model. In add-
ition, we also trained a second DEST-GIM 1.0 model using
city labels (20 PCs were retained for this model; based on min-
imum SSE). We used 232 samples from DEST 1.0 to train the
model and then predicted the provenance of all samples from
DEST 2.0.

DAPC models were trained using a cross-validation routine
where the data is subdivided into a training (90%) and a test-
ing set (10%) across 30 replicates. For simplicity, we only ex-
plored the first 300 PCs across iterations. Parameters were
optimized using the lowest mean square error statistic using
the xvalDapc function in adegenet. Predictive GIM models
were assessed by estimating the haversine distance (dy,,,) be-
tween the predicted and expected latitude and longitude
points. Haversine distances represent the lowest distance be-
tween two points across a spherical earth with a radius of
6,378.137 km using the R package geosphere [v.1.5-14]
(Hijmans et al. 2022).

Temporal Genetic Structure and Latitudinal Analysis

We assessed levels of temporal structure across DEST by esti-
mating Fst between samples at the same locality collected a
year apart from each other. These estimates of Fsy reflect dif-
ferentiation resulting from the overwintering population
“bust” across one winter. We call this summary statistic
“year-to-year Fsr” as it captures levels of genetic variation
for the population before and after a winter season. We corre-
lated this data to latitude and performed a broken-stick regres-
sion analysis using the segmented [v.2.0-4] R package
(Muggeo 2003).

Scans for Adaptive Differentiation

We tested for adaptive differentiation at ~908,543 SNPs that
were polymorphic in a set of seasonally collected samples from
across Europe (supplementary table S13, Supplementary
Material online). First, we implemented the BayPass [v2.4]
model for adaptive differentiation using the XzX* test statistic
(Olazcuaga et al. 2020) while controlling for population struc-
ture using a matrix of genetic relatedness (i.e. Q matrix). We
estimated the XtX* for every autosomal SNP in the genome
using five independent runs of BayPass and took the median
value per SNP. We also generated a null distribution of
XtX* using the POD method outlined in Gautier (2015) and
Olazcuaga et al. (2020). Briefly, we simulated allele frequen-
cies for ~9 M SNPs, ten times the number of observed SNPs
used in this analysis. We then generated empirical P-values
for the observed XtX* statistics by calculating the upper-tail
probability of the observed data relative to the simulated
POD data. We used the weighted Z analysis (wZa; Booker
et al. 2024) to identify windows of signal enrichment across
the genome. The wZa statistic combines the empirical
P-values within a window for each test using Stouffer’s meth-
od (Stouffer et al. 1949) weighted by average heterozygosity.
We applied this approach in a sliding window approach
with a window size of 100 kb and a step size of 50 kb.
Second, we ran the BayPass model including both the Q ma-
trix as a demographic prior as well as “spring” and “fall” la-
bels as a proxy for seasonal selection pressures. We designated
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the spring” sample as the first sample within a year, and the
“fall” sample as the last sample within the year. Several sam-
ples from DEST 1.0 were characterized by the collectors as
“spring” or “fall.” For those samples, this label was used in
the analysis. For more recent samples, including most sampled
in DEST 2.0, samples are labeled as a function of date of col-
lection. For such samples, we assigned seasonal labels by se-
lecting the first and last sample collected in a locality within
a year. For each SNP, we estimated the contrast statistics
(C,) with five independent runs of BayPass and took the me-
dian value. To generate a null distribution of C, statistics,
we used the simulated SNP data described above, and ran
BayPass five times. We took the median C, of the simulated
data as our null distribution and calculated empirical
P-values as described above. We performed a sliding window
analysis of these empirical P-values using the wZa method.

Third, we implemented a GLMM approach that is similar to
that applied previously by Machado et al. (2021). We modeled
allele frequency at each SNP ; using two models:

pi =a+ X(yeargy, : locality,.,) + € (4)

pi =a + Py (season) + X(yearf, : localityg,..) +€  (5)

Where p; is the allele frequency at the ith locus, o is the inter-
cept term, and B is the term associated with season, X is the
random effect term coded as an interaction term between the
year of collection and the locality where flies were collected,
and e is the binomially distributed error. We assessed the stat-
istical significance of the seasonal B; term using a likelihood
ratio test between Equations (4) and (5). GLMMs were fitted
using the glmer function of the Ime4 version [v1.1-35.5] pack-
age in R (Bates et al. 2015). We performed a permutation ana-
lysis following the methods outlined in Machado et al. (2021)
by shuffling the seasonal labels 100 times and rerunning the
GLMM analysis for each permutation. We conducted a sliding
window analysis of the GLMM.

GO-Term Enrichment Analysis

We performed gene-ontology enrichment analysis using
GOWINDA [v.1.12] (Kofler and Schlotterer 2012) in gene
mode (with parameters: --min-genes 5 --min-significance 1
--simulations 100,000) on genes located in 10 kb windows
of high differentiation (Fgt>0.2; supplementary table S7,
Supplementary Material online), —logio(wZa P-values)>
188.96 for the XtX* statistic (supplementary table S8,
Supplementary Material online), and —logio(wZa P-values)
>3.65 for the C, statistic (supplementary table S9,
Supplementary Material online), representing the 99.9th per-
centile from the simulated POD data (see above).

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online.

Ethics Statements

Fruit flies were collected either on public lands, where no per-
mits are needed, or in private lands with explicit permission
from the relevant stakeholders. To comply with the Nagoya
protocol, material transfer agreements (MTAs) were secured
and exchanged among researchers prior to transporting fly
samples (for all new samples reported here) across borders.
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Permit MAE-DNB-CM-2015-0030, from the Environmental
Ministry of Ecuador, was obtained by Vela to collect, export
and perform molecular analysis on samples.
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Data Availability

The DEST 2.0 browser is built on the latest version of
JBrowse 2 (Diesh et al. 2023), an enhanced successor to
JBrowse 1, which powered the original DEST 1.0 browser
(Kapun et al. 2021). JBrowse 2.0 offers improved perform-
ance through a modern software architecture that supports
parallel rendering of tracks and allows for the visualization
of new data types, such as VCF files. Similar to the first
DEST browser, it features a user-friendly data selector
that facilitates the selection of the multiple population

genetic metrics and statistics compiled for the DEST 2.0 re-
lease (supplementary fig. S16, Supplementary Material on-
line). Additionally, the browser provides a portal for
downloading allelic information and precomputed popula-
tion genetics statistics in multiple formats, along with a us-
age tutorial featuring worked examples. Bulk downloads
of all compiled tracks are available in BigWig format
(Kent et al. 2010), and Pool-Seq files (in VCF format) can
be accessed through a dedicated data directory. All data,
tools, and supporting resources for the DEST 2.0 release,
including reference tracks from FlyBase (v.6.12; Dos
Santos et al. 20135), are freely available through the website
(https:/dest.bio). The browser operates on an Apache ser-
ver running CentOS 7.2 Linux x64, powered by 16 Intel
Xeon 2.4 GHz processors and 32 GB of RAM. All new se-
quences reported here for the first time are available on the
SRA (https:/www.ncbi.nlm.nih.gov/sra) at PRJNA993612
and PRJNA1263695. Code is available in GitHub at:
https:/github.com/DEST-bio/DESTv2_data_paper  and
https:/github.com/DEST-bio/DESTv2. All outputs from
the DEST 2.0 pipeline can be found at https:/dest.bio.
Supplementary datasets can be found in Zenodo at
https:/doi.org/10.5281/zenodo.13731977.
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