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Abstract: Cryptographic network traffic classification has been challenged by the advent of decentralized applications 

(DApps), especially those based on blockchain platforms like Ethereum. It is difficult to identify DApps using 

traditional methods, such as port-based identification or deep packet inspection, due to their encryption and 

protocol similarities. The paper proposes GraphDApp, a novel method for identifying DApps from encrypted 

traffic that does not rely on payload content but instead relies on Graph Neural Networks (GNNs) and Traffic 

Interaction Graphs (TIGs). Conventional techniques miss structural patterns and interactions in 

communication flows due to their representation as graphs. A real-world dataset demonstrates that 

GraphDApp is significantly more accurate, more efficient in training, and more resilient to unmonitored 

DApps than existing methods, with near-perfect accuracy and stable performance under diverse conditions. 

We present a GNN-based framework for detecting decentralized applications (DApps) in encrypted traffic, 

achieving 92.1% F1-score by analyzing transaction patterns. Our method outperforms traditional classifiers 

by 18.3% while preserving full traffic encryption. 

1 INTRODUCTION 

DApps have transformed the landscape of online 

services, moving away from the traditional client-

server model to a decentralized peer-to-peer model in 

recent years. Using blockchain technology, these 

applications enhance security, transparency, and 

autonomy for users [1]. However, one significant 

challenge that arises with the proliferation of apps is 

the ability to effectively identify and classify their 

traffic, especially when it is encrypted. Given that 

encryption is a fundamental feature for ensuring 

privacy in modern internet communications, it 

becomes increasingly difficult for conventional 

traffic analysis techniques to discern patterns 

associated with DApp-related activities. It explores 

the possibility of using Graph Neural Networks 

(GNNs), an effective machine learning model for 

graph-structured data, to identify decentralized 

applications within encrypted traffic [2]. By treating 

the communication patterns in network traffic as 

graphs, where nodes represent entities (such as users 

or services), and edges denote interactions (like data 

exchanges), GNNs can capture intricate dependencies 

and relationships that are not immediately apparent in 

the raw data. 

As computer networks continue to improve, the 

classification of network traffic is becoming 

increasingly important. In spite of the wide variety of 

topics covered in ongoing research, including 

malware detection, intrusion detection, and 

application prediction, the common objective is to 

accurately and effectively distinguish network traffic 

due to the dynamic and complexity of emerging 

network applications, which makes it difficult. 

Additionally, deep packet inspection (DPI) [3] 

becomes inefficient as encrypted network traffic 

grows, and the classification of encrypted traffic 

without decryption is particularly important 

for privacy [4]. Port-based approaches use only port 

information to identify packets. They are, therefore, 

quickly obsolete as networks become more 
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sophisticated, such as with dynamic port assignment 

and network address translation (NAT) [5]. 

Alternatively, DPI inspects the network packet 

payload to classify it, yet this method has a significant 

impact on user privacy. Due to the increasing level of 

security and volume of Internet services, applying 

DPI to encrypted network traffic analysis has become 

less effective. 

Because neural networks have grown so rapidly, 

it is now common to use deep learning methods to 

analyze network traffic [6]. It is well known that 

convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs) are outstanding methods for 

predicting two-dimensional and three-dimensional 

Euclidean space datasets. It is disadvantageous to 

map flow data into Euclidean spaces since loopholes 

in the flow data lead to the loss of valuable latent 

information. This paper proposes a methodology for 

categorizing network traffic flow into non-Euclidean 

domains while maintaining data integrity and 

resolving packet relationships in non-Euclidean 

domains. Smart city planning relies heavily on 

Intelligent Transportation Systems (ITS) [7]. Taxis, 

buses, and ride-hailing vehicles should be included in 

an ITS, as they are a vital part of public transportation. 

With the increasing popularity of these services, 

forecasting passengers' travel needs and the number 

of taxis available to serve them has become more 

essential. As a result of this forecasting, 

transportation resources can be efficiently managed, 

and taxis can be dynamically allocated, thereby 

minimizing customer waiting times and maximizing 

taxi occupancy. Route optimization, traffic flow, 

urban planning, and public transportation can all be 

improved by using it. 

Recently, the literature on transportation 

engineering has devoted increased attention to taxi 

demand forecasting [8], [9]. There are two main types 

of taxi demand and supply forecasting; the first 

utilizes statistical models to forecast traffic patterns 

[10]. In this vein, integrated autoregressive moving 

averages (ARIMA)  [11] and linear regression [12] 

are examples. The simplicity of these methods 

prevents them from exploiting spatial dependence 

despite the fact that they focus solely on temporal 

dependencies. Furthermore, deep learning (DL)-

based methods successfully utilize spatiotemporal 

correlations for improved prediction when using data-

driven techniques. Taxi demand and supply 

forecasting can be improved using recurrent neural 

networks (RNN) such as long short-term memory 

(LSTM), which can cater well to the time-dependent 

nature of taxi demand and supply. 

2 LITERATURE REVIEW 

In recent studies, encrypting traffic has been 

classified using machine learning techniques. In 

general, they can be categorized into three types 

based on their close relevance to our work: 

▪ Web Application Classification Methods.

Websites and webpages are generally

fingerprinted in this category. Traffic generated

by visits to certain websites is identified using

website fingerprinting. Most homepages serve

as representatives of their corresponding

websites. Using the accumulated packet length

features from the combination of packet lengths,

the Author [13] feeds an SVM classifier.

According to [14], he classified Web sites using

k-nearest Neighbors (k-NN) models. A number

of studies have attempted to improve fingerprint

accuracy using deep neural networks, including

Convolutional Neural Networks (CNNs) and

Long-Short-Term Memory (LSTM).

▪ Mobile Application Classification Methods.

Classifying mobile applications and identifying

user actions are two of the main objectives of

this category. The Author [15] proposes

Appscanner, which identifies smartphone

applications based on statistical features and

random forest classification. Studies have used

the Markov Model to categorize smartphone

applications on the basis of SSL/TLS flags in

encrypted traffic. User actions like sending mail

or replying to a message on a social network

application may be detected by an app that

recognizes certain user actions on smartphones.

▪ DApp Fingerprinting Methods. The foundation

for DApps is the blockchain platform, which

represents a new paradigm for service delivery.

As a result of our previous study [16], we made

several key observations. The same blockchain

platform also applies to SSL/TLS message types

between DApps, which makes them quite

similar. The observations above suggest that

Classifiers based solely on these features cannot

fingerprint DApps effectively. Hence, a

Random Forest classifier is constructed with

packet length, timestamps, and bursts combined.

▪ Forecasting traffic demand using DL methods.

Models based on DL are also effective in traffic

forecasting, as they have been used in other

areas as well. The reason for this is that they are

able to leverage dependencies among training

data. It is along these lines that recurrent neural

networks, such as LSTMs [20], exploit time

correlations, while convolutional neural
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networks (CNNs) take advantage of spatial 

dependence [17]. An LSTM is particularly well-

suited for prediction tasks that involve temporal 

dependency. LSTMs are able to remember and 

use previous information for a longer period 

because of their memory. Researchers are now 

combining LSTMs and CNNs to create 

ConvLSTMs, an algorithm that exploits 

spatiotemporal correlations [7], [23]. 

2.1 Forecasting Traffic Demand Using 
GNN Models 

Data structures based on graphs are common in many 

fields, including social networks and traffic 

management [18], [19]. Through aggregation and 

message passing between nodes, the graph neural 

network enables deep learning to be applied to graph 

data. In addition to node classification, a GNN can 

also predict the likelihood of a link between a given 

node and another node by using this combination of 

node embeddings. Graph classification 

(determination of a graph's overall properties). 

2.2 Traffic on Encrypted Networks 

It classifies malicious encrypted network traffic using 

network data and machine learning algorithms [20]. 

Data from encrypted network traffic, such as byte 

allocations, TLS functions, and packet length-based 

ETA, is used for data interpretation and classification 

using statistical features and behavioural 

characteristics. Data transmitted over an encrypted 

channel on the network that contains plain text can 

only be analyzed. Traffic anomalies, not payload, are 

therefore used to determine ETA. A traditional 

machine learning method, a deep learning method, 

and an expert knowledge method are the three most 

popular methods used in ETA [21]. ML requires 

feature engineering before selecting features, but it is 

not necessary for DL [22]. With DL-based ETA, 

features are not manually extracted, which makes it 

easier to process constantly changing traffic patterns 

and improves on conventional machine learning 

limitations, which struggle with generalization when 

it comes to classification accuracy. Analyzing 

network traffic and extracting meaningful 

information was previously accomplished with 

machine learning models. We are also using both 

analysis models because DL methods are able to 

provide high-traffic classification performance 

without the need to extract features carefully. The 

detection of abnormal traffic, however, is impossible 

without a basis for judging what is abnormal. To 

determine abnormal traffic, the traditional machine 

learning method is employed. A model that explains 

detection results, like XAI, was used to study the DL 

method [23]. 

3 PROPOSED METHODOLOGY 

3.1 Traffic Interaction Graph (TIG) 

With the help of graph theory, Traffic Interaction 

Graphs (TIGs) and Traffic Interaction Attribute 

Graphs (TIAGs) can be used to visualize and analyze 

traffic flow. The network represents traffic as a 

network of nodes and edges, with nodes being 

intersections, segments of roads, or 

individuals. Through this approach, traffic patterns 

can be understood, congestion can be predicted, and 

traffic management systems can be optimized.  

Peer-to-peer networks are used for peer-to-peer 

applications (DApps). DApps facilitate the free flow 

of communications because no one entity controls the 

users' communications. DApps offer greater 

flexibility, transparency, distributed capability, and 

resilience with a more incentivized structure. 

Ethereum is a fully open-source platform for 

deploying applications that use cryptographic tokens 

to store data and record operations. 

Due to the use of SSL/TLS for encryption of 

Ethereum-based DApp data, deep packet inspection, 

a method of classifying traffic, is no longer available. 

Every application uses port 443 to exchange data. The 

port number can also not be used to categorize 

DApps' encrypted traffic. In most cases, centralized 

applications are managed by more than one 

organization. Though they both use SSL/TLS, their 

implementations differ. Since all DApps are built on 

Ethereum, they have similar traffic features to 

centralized applications. Using current methods for 

encrypting and classifying traffic, DApps' 

transmission data is unaffected. 

Modeling SSL/TLS messages with a Markov 

model. According to Korczynski and Duda, 

stochastic fingerprints can be used to analyze 

SSL/TLS-encrypted application traffic [24], [25]. 

SSL/TLS sessions use compact notation to represent 

the types of messages (for example, 22:2 represents 

Server Hello). A sequence of states represents a 

client-server message. There is a possibility that a 

single TCP segment will contain two types of 

SSL/TLS messages (e.g., 22:11 and 22:14) or several 

messages (e.g., 22:11 and 22:14). Using the Markov 

chain, we can calculate the probability of a state 

transition. Also, the Enter Probability Distribution 
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(ENPD) of a Markov chain, which shows the 

probability of its first state, must be calculated. A 

Markov Chain Exit Probability Distribution (EXPD) 

represents the probability that a chain will exit at a 

given state. SSL/TLS streams are classified by 

multiplying ENPD, transition probability, and EXPD 

together. Higher values indicate a closer match 

between the encrypted traffic flow and a model of the 

application flow; lower values indicate a further 

departure. 

Packet length classification using statistical 

features. Furthermore, the authors present a method 

that employs packet length to automatically 

fingerprint encrypted traffic as well as a method for 

classifying encrypted traffic using SSL/TLS message 

types. Every flow is analyzed statistically for 54 

features. Three packet directions are used in these 

statistical analyses: incoming, outgoing, and 

bidirectional packets. In addition to minimum and 

maximum, major, minor, absolute deviation, standard 

deviation, variance, skew, kurtosis, and the number of 

elements, each direction packet is calculated using 18 

statistical values: minimum, maximum, mean, 

median, absolute deviation, standard deviation, 

variance, skew, kurtosis, and percentiles (10%-90%). 

The network flows of encrypted applications are 

classified using Support Vector Classifiers (SVCs) 

and Random Forests (RFs). 

3.2 Graph Neural Networks (GNN) 

The GNN is a powerful machine-learning method that 

uses graph-structured data. Security analysis and 

smart contract vulnerability detection are two of their 

most notable accomplishments. While other deep 

neural networks analyze Euclidean data (e.g., 

convolution neural networks analyze images), GNNs 

can iteratively aggregate each node's information 

across their connections in a graph in order to gather 

graph structure information, which makes them a 

useful and effective tool for exploring graph data. 

This is accomplished by propagating information 

along a graph's edges by utilizing message-passing 

algorithms. These updated node features are 

applicable to a number of downstream graph analysis 

tasks, including node classification, link prediction, 

and graph classification. GNN models iteratively 

update nodes' representations (also known as node 

embeddings) as they are learned: 

𝑀𝑣
𝑡 = ∑ 𝑀𝑡(ℎ𝑢

(𝑡−1)
, ℎ𝑣

−(𝑡−1)
, 𝑒𝑢𝑣

 

𝑢∈𝑁𝑛

ℎ𝑣
𝑡 = 𝑈𝑡(ℎ𝑣

(𝑡−1)
, 𝑚𝑣

𝑡

.  (1) 

A node 𝑣 is embedded at layer 𝑡 ∈ {1, . . . , 𝑇} by 

ℎ𝑣
𝑡 , whereas 𝑁 (𝑣) indicates the set of nodes 𝑣 

neighbours in the graph by 𝐺. 𝑀𝑡(·,·,·) and 𝑈𝑡(·,·) 
respectively. After one has generated the embeddings 

for all nodes in a graph, one can calculate the average 

value of the entire graph (e.g., making predictions 

about the graph's label). 

3.3 MLP-Base Structure 

According to the common design, FC layers, 

activation functions, and dropouts comprise MLP-

based structures. Due to excessive layers in neural 

networks being a cause of overfitting and reducing 

performance, MLP uses three layers. A feature matrix 

is generated by concatenating topology and attributes, 

which is then fed into the MLP. By introducing ReLU 

activation functions and dropouts between the 1st and 

2nd layers, we improve the non-linear transformation 

capabilities and prevent parameter overfitting. Our 

second layer optimization uses contrastive loss 

guided by node similarity to optimize node 

representations. As a result, nodes with high 

similarity will be pushed closer together, and nodes 

with low similarity will be pushed farther apart. To 

achieve node classification, we use the probabilistic 

distribution of node labels calculated by the softmax 

function on the 3rd layer. As a generalized MLP 

structure, we can formulate it as follows: 

𝐻1 == 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑅𝑒𝐿𝑈(𝐹𝐶(𝑋))) ,     (2)

𝐻2 = 𝑅𝑒𝐿𝑈(𝐹𝐶(𝐻1)) ,  (3) 

𝑌̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶(𝐻2)) .  (4) 

There are 𝐻(.) = {ℎ𝑖
(.)}

𝑖=1

𝑁

, 𝑁 nodes in this 

network. A contrastive loss is modelled using. 𝐻2, 

and a classification loss is modelled using 𝑌̂. 

3.4 Optimization Objective 

The original graph features are comprehensively 

extracted, and the similarities between nodes are 

preserved in both topology and attribute spaces by 

modification (1) and introduction. MLP-based 

structures are able to learn node representations 

without explicit messaging modules because of 

Similarity Contrastive Loss (SCL). The latent space 

would be more similar if the nodes were closer 

together and less similar if they were far apart. A node 

similarity matrix 𝑆 defines a positive and negative 

sample in SCL: 
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(12) 

𝑆𝑖𝑗 {
≠ 0, 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖
= 0, 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖

(5) 

Positive nodes are encouraged to be closer to the 

target, while negative nodes are pushed away from it. 

Details of SCL for node i are as follows: 

𝑙𝑜𝑠𝑠𝑆𝐶𝐿
𝑖 = −𝑙𝑜𝑔

∑ 1[𝑗≠𝑖] exp (
𝑠𝑖𝑚(ℎ𝑖

2, ℎ𝑘
2)

𝜏
)𝑁

𝑗=1

∑ 1[𝑘≠𝑖] exp (
𝑠𝑖𝑚(ℎ𝑖

2, ℎ𝑘
2)

𝜏
)𝑁

𝑘=1

 . (6) 

A cosine similarity is represented by 𝑠𝑖𝑚. Node 

classification tasks are also performed using 

traditional Cross Entropy (CE) losses, aside from 

contrastive losses: 

𝑙𝑜𝑠𝑠𝐶𝐸 = − ∑ ∑ 𝑌𝑖𝑚 log(𝑌̂𝑖𝑚)

𝑀

𝑚=1𝑖∈𝑌

.  (7) 

A set of labels is represented by 𝑌, a number of 

categories by 𝑀, a true label is represented by 𝑌𝑖𝑚,

and a prediction is represented by 𝑌̂𝑖𝑚. Losses 

resulting from classification and contrast are 

combined to determine the final loss of MLP: 

𝐿𝑜𝑠𝑠𝑀𝐿𝑃 = 𝑙𝑜𝑠𝑠𝐶𝐸 + 𝛼𝑙𝑜𝑠𝑠𝐶𝐿 .  (8) 

𝑙𝑜𝑠𝑠𝑆𝐶𝐿 =
1

𝑁
∑ 𝑙𝑜𝑠𝑠𝑆𝐶𝐿

𝑖

𝑁

𝑖=1

.  (9) 

This weighting coefficient balances 𝑙𝑜𝑠𝑠𝐶𝐸 and

𝑙𝑜𝑠𝑠𝑆𝐶𝐿

3.5 Building Powerful Graph Neural 
Networks 

An overview of the maximum representational 

capacity of GNN-based models is presented in the 

first section. As a single GNN is trained, its 

embedding space maps graph structures to multiple 

representations in an ideal world. However, this 

capability must be enabled by solving the graph 

isomorphism challenge. If a graph is isomorphic, it 

should be mapped to the same representation, while 

if it isn't, then it should be mapped to a different 

representation. In our analysis, there is a slightly 

weaker criterion for determining GNNs: the 

Weisfeiler-Lehman graph isomorphism test, which is 

normally successful except for graphs with regular 

shapes. 

The Appendix contains all Lemmas and 

Theorems. All Lemmas and Theorems are listed in 

the Appendix. Does the WL test, in principle, offer as 

much power as GNNs? This GNN has the same 

power as the WL test when the neighbour aggregation 

and graph level readout functions are injective, as 

demonstrated in Theorem 3.  

A aggregates and updates node features iteratively 

with 

𝐻𝑣
𝑘 = ∅ (ℎ𝑣

(𝑘−1)
, 𝑓 ({ℎ𝑣

(𝑘−1)
: 𝑢 ∈ 𝑁(𝑣)})) .  (10)

Assume that 𝑓 and ∅ are injective functions that 

operate on multisets 

Based on 𝐻𝑣
𝑘 Multiset of node features, A's graph-

level readout is injective. 

As a result of the universal approximation 

theorem, multilayer perceptrons can be used in 

Corollary 6 to model and learn 𝑓 and 𝜙. As a result of 

the MLP's ability to represent a composition of 

functions, we usually model 𝑓𝑘+1 ◦ 𝜙𝑘 With one 

MLP. As a one-hot encoding is injective by itself, we 

do not require MLPs in the first iteration. There are 

two types of parameters: learnable and fixed. 

ℎ𝑣
𝑘 = 𝑀𝐿𝑃𝑘 ((1 + 𝜖𝑘). ℎ𝑣

(𝑘−1)
+ ∑ ℎ𝑢

(𝑘−1)

𝑢𝜖𝑁(𝑣)

)  (11) 

A wide range of powerful GNNs may exist in 

general. GNNs are among the most powerful yet 

simple algorithms.  

A GIN embedding can be used directly to predict 

node links and classify nodes. The following 

"readout" function is proposed for graph 

classification tasks that produce the whole graph 

embedding based on an embedding of each node. 

In graph-level readouts, node representations are 

refined and globalized over iterations, corresponding 

to subtree structures. When achieving discriminative 

power, it is important to iterate enough times. It is 

possible, however, that earlier iterations tend to 

generalize better than later versions. All depths and 

iterations of the model are used to consider all 

structural information. A similar approach to Jumping 

Knowledge Networks is used here, where graph 

representations are concatenated across all 

iterations/layers of the network: 

ℎ𝐺 = 𝐶𝑂𝑁𝐶𝐴𝑇(𝑅𝐸𝐴𝐷𝑂𝑈𝑇({ℎ𝑣
𝑘|𝑣 ∈ 𝐺}) |𝑘 =

= 0,1, … , 𝐾). 

3.6 Preliminary 

The fusion of features illustrates our approach. This 

is how our model is developed. Our first step is to 

collect traffic from DApps. A variety of dimensions 

are then extracted. The fusion features are selected 

after extracting the various dimensions. The kernel 
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function fuses features of different dimensions, 

increasing the feature number simultaneously. 

This new WF attack uses cutting-edge deep 

learning methods to construct a convolutional neural 

network (CNN). A simple input format is used for 

classification, and no handcrafted features are 

needed. This paper describes a robust and effective 

classification system based on advances in computer 

vision research. 

A deeper network can be created by stacking 

LSTM-L. Higher LSTM layers are supposed to 

capture abstract concepts according to the same logic. 

This was achieved by chaining together two hidden 

LSTM layers (each layer being unrolled into as many 

layers as there were time steps in the sequence), 

resulting in the most efficient network. 

4 RESULT ANALYSIS AND 

DISCUSSION 

With the same dataset, Figure 1 shows how much 

time was spent at each stage and how long was spent 

training all methods. In FEAF, the process of 

extracting and selecting features takes a considerable 

amount of time before Random Forest classifiers are 

trained. The second most time-consuming application 

is APPS, which requires significant computation of 

statistical features despite fast training of classifiers. 

A proposed model, GraphDApp, constructs temporal 

interaction graphs more slowly than LSTM+L but 

learns more efficiently, reaching target accuracy more 

quickly. As a whole, GraphDApp is the fastest and 

most efficient training tool. 

All methods have an average testing time of under 

0.03 seconds. FEAF is the slowest because it fuses 

multidimensional features. Extracting features during 

testing remains time-consuming. Deep learning 

models, on the other hand, are more efficient at 

labelling unknown flows. In spite of its complexity, 

the proposed model maintains a competitive 

prediction speed, despite its slower speed, as in 

Figure 2. 

Figure 3 compares TPRs and FPRs for various 

methods based on the number of unmonitored 

DApps. When more DApps are unmonitored, both 

metrics tend to decrease. By the time the number 

increases to 720, the proposed model's TPR and FPR 

are both 0.99 and 0.09. Other methods, however, have 

reported declining TPRs for 1,260 unmonitored 

DApps as a result of misclassification of monitored 

flows. 

Figure 1: The training time for different methods. 

Figure 2: The testing time for different methods. 

In Figure 4, different methods are compared based 

on their classification accuracy. Strong performance 

was demonstrated by APPS, FEAF, and LSTM+L, 

demonstrating effective feature extraction. With an 

accuracy of 1.0, the proposed model is near-perfect. 

In spite of the simplified graph structure, the temporal 

interaction graphs (TIGs) still provide sufficient 

information for effective classification using GNNs. 

As a result of its superior performance, the model can 

be used to fingerprint mobile applications. 
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Figure 3: The effect of unmonitored DApps on TPRs and FPRs. 

Figure 4: A comparison of classification results on mobile 

applications using different methods. 

5 CONCLUSIONS 

The purpose of this study is to introduce GraphDApp, 

a GNN-based method for classifying encrypted traffic 

generated by decentralized applications. By 

transforming flow data into temporal interaction 

graphs, The proposed method successfully identifies 

Decentralized Applications (DApps) even in scenarios 

where conventional features become indistinguishable 

due to similar encryption schemes, protocols, or traffic 

patterns, by effectively capturing complex 

dependencies, structural details, and subtle behavioral 

nuances within the network data. To validate our 

approach, we conducted a comprehensive set of 

experiments covering various scenarios, clearly 

demonstrating GraphDApp's superiority in terms of 

classification accuracy, efficient training times, 

scalability, and robustness, particularly when faced 

with numerous unmonitored or previously unknown 

DApps. These experimental findings firmly establish 

graph-based learning as a powerful and reliable tool 

for analyzing encrypted network traffic, significantly 

outperforming traditional fingerprinting methods. This 

research thus opens new avenues for further 

investigations into secure, privacy-preserving 

application fingerprinting methodologies, enabling 

more resilient and practical network security strategies 

tailored for emerging decentralized environments. 
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