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Cryptographic network traffic classification has been challenged by the advent of decentralized applications
(DApps), especially those based on blockchain platforms like Ethereum. It is difficult to identify DApps using
traditional methods, such as port-based identification or deep packet inspection, due to their encryption and
protocol similarities. The paper proposes GraphDApp, a novel method for identifying DApps from encrypted
traffic that does not rely on payload content but instead relies on Graph Neural Networks (GNNSs) and Traffic
Interaction Graphs (TIGs). Conventional techniques miss structural patterns and interactions in
communication flows due to their representation as graphs. A real-world dataset demonstrates that
GraphDApp is significantly more accurate, more efficient in training, and more resilient to unmonitored
DApps than existing methods, with near-perfect accuracy and stable performance under diverse conditions.
We present a GNN-based framework for detecting decentralized applications (DApps) in encrypted traffic,
achieving 92.1% F1-score by analyzing transaction patterns. Our method outperforms traditional classifiers
by 18.3% while preserving full traffic encryption.

1 INTRODUCTION

DApps have transformed the landscape of online
services, moving away from the traditional client-
server model to a decentralized peer-to-peer model in
recent years. Using blockchain technology, these
applications enhance security, transparency, and
autonomy for users [1]. However, one significant
challenge that arises with the proliferation of apps is
the ability to effectively identify and classify their
traffic, especially when it is encrypted. Given that
encryption is a fundamental feature for ensuring
privacy in modern internet communications, it
becomes increasingly difficult for conventional
traffic analysis techniques to discern patterns
associated with DApp-related activities. It explores
the possibility of using Graph Neural Networks
(GNNSs), an effective machine learning model for
graph-structured data, to identify decentralized
applications within encrypted traffic [2]. By treating
the communication patterns in network traffic as

graphs, where nodes represent entities (such as users
or services), and edges denote interactions (like data
exchanges), GNNs can capture intricate dependencies
and relationships that are not immediately apparent in
the raw data.

As computer networks continue to improve, the
classification of network traffic is becoming
increasingly important. In spite of the wide variety of
topics covered in ongoing research, including
malware detection, intrusion detection, and
application prediction, the common objective is to
accurately and effectively distinguish network traffic
due to the dynamic and complexity of emerging
network applications, which makes it difficult.
Additionally, deep packet inspection (DPI) [3]
becomes inefficient as encrypted network traffic
grows, and the classification of encrypted traffic
without  decryption is particularly important
for privacy [4]. Port-based approaches use only port
information to identify packets. They are, therefore,
quickly obsolete as networks become more
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sophisticated, such as with dynamic port assignment
and network address translation (NAT) [5].
Alternatively, DPI inspects the network packet
payload to classify it, yet this method has a significant
impact on user privacy. Due to the increasing level of
security and volume of Internet services, applying
DPI to encrypted network traffic analysis has become
less effective.

Because neural networks have grown so rapidly,
it is now common to use deep learning methods to
analyze network traffic [6]. It is well known that
convolutional neural networks (CNNSs) and recurrent
neural networks (RNNs) are outstanding methods for
predicting two-dimensional and three-dimensional
Euclidean space datasets. It is disadvantageous to
map flow data into Euclidean spaces since loopholes
in the flow data lead to the loss of valuable latent
information. This paper proposes a methodology for
categorizing network traffic flow into non-Euclidean
domains while maintaining data integrity and
resolving packet relationships in non-Euclidean
domains. Smart city planning relies heavily on
Intelligent Transportation Systems (ITS) [7]. Taxis,
buses, and ride-hailing vehicles should be included in
an ITS, as they are a vital part of public transportation.
With the increasing popularity of these services,
forecasting passengers' travel needs and the number
of taxis available to serve them has become more
essential.  As a result of this forecasting,
transportation resources can be efficiently managed,
and taxis can be dynamically allocated, thereby
minimizing customer waiting times and maximizing
taxi occupancy. Route optimization, traffic flow,
urban planning, and public transportation can all be
improved by using it.

Recently, the literature on transportation
engineering has devoted increased attention to taxi
demand forecasting [8], [9]. There are two main types
of taxi demand and supply forecasting; the first
utilizes statistical models to forecast traffic patterns
[10]. In this vein, integrated autoregressive moving
averages (ARIMA) [11] and linear regression [12]
are examples. The simplicity of these methods
prevents them from exploiting spatial dependence
despite the fact that they focus solely on temporal
dependencies. Furthermore, deep learning (DL)-
based methods successfully utilize spatiotemporal
correlations for improved prediction when using data-
driven techniques. Taxi demand and supply
forecasting can be improved using recurrent neural
networks (RNN) such as long short-term memory
(LSTM), which can cater well to the time-dependent
nature of taxi demand and supply.

2 LITERATURE REVIEW

In recent studies, encrypting traffic has been
classified using machine learning techniques. In
general, they can be categorized into three types
based on their close relevance to our work:
= Web Application Classification Methods.
Websites and webpages are generally
fingerprinted in this category. Traffic generated
by visits to certain websites is identified using
website fingerprinting. Most homepages serve
as representatives of their corresponding
websites. Using the accumulated packet length
features from the combination of packet lengths,
the Author [13] feeds an SVM classifier.
According to [14], he classified Web sites using
k-nearest Neighbors (k-NN) models. A number
of studies have attempted to improve fingerprint
accuracy using deep neural networks, including
Convolutional Neural Networks (CNNs) and
Long-Short-Term Memory (LSTM).
= Mobile Application Classification Methods.
Classifying mobile applications and identifying
user actions are two of the main objectives of
this category. The Author [15] proposes
Appscanner, which identifies smartphone
applications based on statistical features and
random forest classification. Studies have used
the Markov Model to categorize smartphone
applications on the basis of SSL/TLS flags in
encrypted traffic. User actions like sending mail
or replying to a message on a social network
application may be detected by an app that
recognizes certain user actions on smartphones.
= DApp Fingerprinting Methods. The foundation
for DApps is the blockchain platform, which
represents a new paradigm for service delivery.
As a result of our previous study [16], we made
several key observations. The same blockchain
platform also applies to SSL/TLS message types
between DApps, which makes them quite
similar. The observations above suggest that
Classifiers based solely on these features cannot
fingerprint DApps effectively. Hence, a
Random Forest classifier is constructed with
packet length, timestamps, and bursts combined.
= Forecasting traffic demand using DL methods.
Models based on DL are also effective in traffic
forecasting, as they have been used in other
areas as well. The reason for this is that they are
able to leverage dependencies among training
data. It is along these lines that recurrent neural
networks, such as LSTMs [20], exploit time
correlations, while convolutional neural

192



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), July 2025

networks (CNNs) take advantage of spatial
dependence [17]. An LSTM is particularly well-
suited for prediction tasks that involve temporal
dependency. LSTMs are able to remember and
use previous information for a longer period
because of their memory. Researchers are now
combining LSTMs and CNNs to create
ConvLSTMs, an algorithm that exploits
spatiotemporal correlations [7], [23].

2.1 Forecasting Traffic Demand Using
GNN Models

Data structures based on graphs are common in many
fields, including social networks and traffic
management [18], [19]. Through aggregation and
message passing between nodes, the graph neural
network enables deep learning to be applied to graph
data. In addition to node classification, a GNN can
also predict the likelihood of a link between a given
node and another node by using this combination of
node embeddings. Graph classification
(determination of a graph's overall properties).

2.2 Traffic on Encrypted Networks

It classifies malicious encrypted network traffic using
network data and machine learning algorithms [20].
Data from encrypted network traffic, such as byte
allocations, TLS functions, and packet length-based
ETA, is used for data interpretation and classification
using  statistical  features and  behavioural
characteristics. Data transmitted over an encrypted
channel on the network that contains plain text can
only be analyzed. Traffic anomalies, not payload, are
therefore used to determine ETA. A traditional
machine learning method, a deep learning method,
and an expert knowledge method are the three most
popular methods used in ETA [21]. ML requires
feature engineering before selecting features, but it is
not necessary for DL [22]. With DL-based ETA,
features are not manually extracted, which makes it
easier to process constantly changing traffic patterns
and improves on conventional machine learning
limitations, which struggle with generalization when
it comes to classification accuracy. Analyzing
network traffic and extracting meaningful
information was previously accomplished with
machine learning models. We are also using both
analysis models because DL methods are able to
provide high-traffic classification performance
without the need to extract features carefully. The
detection of abnormal traffic, however, is impossible
without a basis for judging what is abnormal. To

determine abnormal traffic, the traditional machine
learning method is employed. A model that explains
detection results, like XAl, was used to study the DL

method [23].

3 PROPOSED METHODOLOGY

3.1 Traffic Interaction Graph (TIG)

With the help of graph theory, Traffic Interaction
Graphs (TIGs) and Traffic Interaction Attribute
Graphs (TIAGS) can be used to visualize and analyze
traffic flow. The network represents traffic as a
network of nodes and edges, with nodes being
intersections, segments of roads, or
individuals. Through this approach, traffic patterns
can be understood, congestion can be predicted, and
traffic management systems can be optimized.

Peer-to-peer networks are used for peer-to-peer
applications (DApps). DApps facilitate the free flow
of communications because no one entity controls the
users' communications. DApps offer greater
flexibility, transparency, distributed capability, and
resilience with a more incentivized structure.
Ethereum is a fully open-source platform for
deploying applications that use cryptographic tokens
to store data and record operations.

Due to the use of SSL/TLS for encryption of
Ethereum-based DApp data, deep packet inspection,
a method of classifying traffic, is no longer available.
Every application uses port 443 to exchange data. The
port number can also not be used to categorize
DApps' encrypted traffic. In most cases, centralized
applications are managed by more than one
organization. Though they both use SSL/TLS, their
implementations differ. Since all DApps are built on
Ethereum, they have similar traffic features to
centralized applications. Using current methods for
encrypting and classifying traffic, DApps'
transmission data is unaffected.

Modeling SSL/TLS messages with a Markov
model. According to Korczynski and Duda,
stochastic fingerprints can be used to analyze
SSL/TLS-encrypted application traffic [24], [25].
SSL/TLS sessions use compact notation to represent
the types of messages (for example, 22:2 represents
Server Hello). A sequence of states represents a
client-server message. There is a possibility that a
single TCP segment will contain two types of
SSL/TLS messages (e.9., 22:11 and 22:14) or several
messages (e.g., 22:11 and 22:14). Using the Markov
chain, we can calculate the probability of a state
transition. Also, the Enter Probability Distribution
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(ENPD) of a Markov chain, which shows the
probability of its first state, must be calculated. A
Markov Chain Exit Probability Distribution (EXPD)
represents the probability that a chain will exit at a
given state. SSL/TLS streams are classified by
multiplying ENPD, transition probability, and EXPD
together. Higher values indicate a closer match
between the encrypted traffic flow and a model of the
application flow; lower values indicate a further
departure.

Packet length classification using statistical
features. Furthermore, the authors present a method
that employs packet length to automatically
fingerprint encrypted traffic as well as a method for
classifying encrypted traffic using SSL/TLS message
types. Every flow is analyzed statistically for 54
features. Three packet directions are used in these
statistical analyses: incoming, outgoing, and
bidirectional packets. In addition to minimum and
maximum, major, minor, absolute deviation, standard
deviation, variance, skew, kurtosis, and the number of
elements, each direction packet is calculated using 18
statistical values: minimum, maximum, mean,
median, absolute deviation, standard deviation,
variance, skew, kurtosis, and percentiles (10%-90%).
The network flows of encrypted applications are
classified using Support Vector Classifiers (SVCs)
and Random Forests (RFs).

3.2 Graph Neural Networks (GNN)

The GNN is a powerful machine-learning method that
uses graph-structured data. Security analysis and
smart contract vulnerability detection are two of their
most notable accomplishments. While other deep
neural networks analyze Euclidean data (e.g.,
convolution neural networks analyze images), GNNs
can iteratively aggregate each node's information
across their connections in a graph in order to gather
graph structure information, which makes them a
useful and effective tool for exploring graph data.
This is accomplished by propagating information
along a graph's edges by utilizing message-passing
algorithms. These updated node features are
applicable to a number of downstream graph analysis
tasks, including node classification, link prediction,
and graph classification. GNN models iteratively
update nodes' representations (also known as node
embeddings) as they are learned:

M= > MR ey
&, SN
hG = Uy(hy ™", m}

A node v is embedded at layer t € {1,...,T} by
hi, whereas N (v) indicates the set of nodes v
neighbours in the graph by G.M.(-,-,-) and U.(-,")
respectively. After one has generated the embeddings
for all nodes in a graph, one can calculate the average
value of the entire graph (e.g., making predictions
about the graph's label).

3.3 MLP-Base Structure

According to the common design, FC layers,
activation functions, and dropouts comprise MLP-
based structures. Due to excessive layers in neural
networks being a cause of overfitting and reducing
performance, MLP uses three layers. A feature matrix
is generated by concatenating topology and attributes,
which is then fed into the MLP. By introducing ReLU
activation functions and dropouts between the 1st and
2nd layers, we improve the non-linear transformation
capabilities and prevent parameter overfitting. Our
second layer optimization uses contrastive loss
guided by node similarity to optimize node
representations. As a result, nodes with high
similarity will be pushed closer together, and nodes
with low similarity will be pushed farther apart. To
achieve node classification, we use the probabilistic
distribution of node labels calculated by the softmax
function on the 3rd layer. As a generalized MLP
structure, we can formulate it as follows:

H' == Dropout (ReLu(FC(X))), ©)
H? = ReLU(FC(HY)), 3)
Y = softmax(FC(H?)). 4)

() N . .
There are HO = {hi'} ,N nodes in this
i=1
network. A contrastive loss is modelled using. H?,
and a classification loss is modelled using Y.

3.4 Optimization Objective

The original graph features are comprehensively
extracted, and the similarities between nodes are
preserved in both topology and attribute spaces by
modification (1) and introduction. MLP-based
structures are able to learn node representations
without explicit messaging modules because of
Similarity Contrastive Loss (SCL). The latent space
would be more similar if the nodes were closer
together and less similar if they were far apart. A node
similarity matrix S defines a positive and negative
sample in SCL:
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s {;ﬁ 0, node jis the positive sample of node i (5)
Y|=0, nodejisthenegative sample of node i

Positive nodes are encouraged to be closer to the

target, while negative nodes are pushed away from it.
Details of SCL for node i are as follows:

sim(h?, h?
Yy Lpje exp (#)

sim(h?,h2)
By Ty exp (ST

lossi., = —log

-(6)

A cosine similarity is represented by sim. Node
classification tasks are also performed using
traditional Cross Entropy (CE) losses, aside from
contrastive losses:

M
lossce == Y Y Yimlog(fin). ()

i€Y m=1

A set of labels is represented by Y, a number of
categories by M, a true label is represented by Y,
and a prediction is represented by ¥,,. Losses
resulting from classification and contrast are
combined to determine the final loss of MLP:

Lossyp = losscg + alossgy, . ®)
N
1 .
lossge, = NZ lossgey, - )
i=1

This weighting coefficient balances loss.; and
lossgcy,

3.5 Building Powerful Graph Neural
Networks

An overview of the maximum representational
capacity of GNN-based models is presented in the
first section. As a single GNN is trained, its
embedding space maps graph structures to multiple
representations in an ideal world. However, this
capability must be enabled by solving the graph
isomorphism challenge. If a graph is isomorphic, it
should be mapped to the same representation, while
if it isn't, then it should be mapped to a different
representation. In our analysis, there is a slightly
weaker criterion for determining GNNSs: the
Weisfeiler-Lehman graph isomorphism test, which is
normally successful except for graphs with regular
shapes.

The Appendix contains all Lemmas and
Theorems. All Lemmas and Theorems are listed in
the Appendix. Does the WL test, in principle, offer as
much power as GNNs? This GNN has the same

power as the WL test when the neighbour aggregation
and graph level readout functions are injective, as
demonstrated in Theorem 3.

A aggregates and updates node features iteratively
with

HE = ¢ (h,(,’"l), f({nSue N(v)})). (10)

Assume that f and @ are injective functions that
operate on multisets

Based on H¥ Multiset of node features, A's graph-
level readout is injective.

As a result of the universal approximation
theorem, multilayer perceptrons can be used in
Corollary 6 to model and learn f and ¢. As a result of
the MLP's ability to represent a composition of
functions, we usually model f*** - ¢k With one
MLP. As a one-hot encoding is injective by itself, we
do not require MLPs in the first iteration. There are
two types of parameters: learnable and fixed.

hk = MLP*| (1 + €%).h% ™V + RED ) (11)
ueN (v)

A wide range of powerful GNNs may exist in
general. GNNs are among the most powerful yet
simple algorithms.

A GIN embedding can be used directly to predict
node links and classify nodes. The following
"readout” function is proposed for graph
classification tasks that produce the whole graph
embedding based on an embedding of each node.

In graph-level readouts, node representations are
refined and globalized over iterations, corresponding
to subtree structures. When achieving discriminative
power, it is important to iterate enough times. It is
possible, however, that earlier iterations tend to
generalize better than later versions. All depths and
iterations of the model are used to consider all
structural information. A similar approach to Jumping
Knowledge Networks is used here, where graph
representations are concatenated across all
iterations/layers of the network:

hg = CONCAT(READOUT ({h¥|v € G}) |k = (12)
=01,..,K).

3.6 Preliminary

The fusion of features illustrates our approach. This
is how our model is developed. Our first step is to
collect traffic from DApps. A variety of dimensions
are then extracted. The fusion features are selected
after extracting the various dimensions. The kernel
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function fuses features of different dimensions,
increasing the feature number simultaneously.

This new WF attack uses cutting-edge deep
learning methods to construct a convolutional neural
network (CNN). A simple input format is used for
classification, and no handcrafted features are
needed. This paper describes a robust and effective
classification system based on advances in computer
vision research.

A deeper network can be created by stacking
LSTM-L. Higher LSTM layers are supposed to
capture abstract concepts according to the same logic.
This was achieved by chaining together two hidden
LSTM layers (each layer being unrolled into as many
layers as there were time steps in the sequence),
resulting in the most efficient network.

4 RESULT ANALYSIS AND
DISCUSSION

With the same dataset, Figure 1 shows how much
time was spent at each stage and how long was spent
training all methods. In FEAF, the process of
extracting and selecting features takes a considerable
amount of time before Random Forest classifiers are
trained. The second most time-consuming application
is APPS, which requires significant computation of
statistical features despite fast training of classifiers.
A proposed model, GraphDApp, constructs temporal
interaction graphs more slowly than LSTM+L but
learns more efficiently, reaching target accuracy more
quickly. As a whole, GraphDApp is the fastest and
most efficient training tool.

All methods have an average testing time of under
0.03 seconds. FEAF is the slowest because it fuses
multidimensional features. Extracting features during
testing remains time-consuming. Deep learning
models, on the other hand, are more efficient at
labelling unknown flows. In spite of its complexity,
the proposed model maintains a competitive
prediction speed, despite its slower speed, as in
Figure 2.

Figure 3 compares TPRs and FPRs for various
methods based on the number of unmonitored
DApps. When more DApps are unmonitored, both
metrics tend to decrease. By the time the number
increases to 720, the proposed model's TPR and FPR
are both 0.99 and 0.09. Other methods, however, have

reported declining TPRs for 1,260 unmonitored
DApps as a result of misclassification of monitored
flows.
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Figure 1: The training time for different methods.
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Figure 2: The testing time for different methods.

In Figure 4, different methods are compared based
on their classification accuracy. Strong performance
was demonstrated by APPS, FEAF, and LSTM+L,
demonstrating effective feature extraction. With an
accuracy of 1.0, the proposed model is near-perfect.
In spite of the simplified graph structure, the temporal
interaction graphs (TIGs) still provide sufficient
information for effective classification using GNNs.
As aresult of its superior performance, the model can
be used to fingerprint mobile applications.
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Figure 3: The effect of unmonitored DApps on TPRs and FPRs.
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Figure 4: A comparison of classification results on mobile
applications using different methods.

5 CONCLUSIONS

The purpose of this study is to introduce GraphDApp,
a GNN-based method for classifying encrypted traffic
generated by decentralized applications. By
transforming flow data into temporal interaction
graphs, The proposed method successfully identifies
Decentralized Applications (DApps) even in scenarios
where conventional features become indistinguishable
due to similar encryption schemes, protocols, or traffic
patterns, by effectively capturing complex
dependencies, structural details, and subtle behavioral
nuances within the network data. To validate our
approach, we conducted a comprehensive set of
experiments covering various scenarios, clearly
demonstrating GraphDApp's superiority in terms of
classification accuracy, efficient training times,
scalability, and robustness, particularly when faced

with numerous unmonitored or previously unknown
DApps. These experimental findings firmly establish
graph-based learning as a powerful and reliable tool
for analyzing encrypted network traffic, significantly
outperforming traditional fingerprinting methods. This
research thus opens new avenues for further
investigations  into  secure,  privacy-preserving
application fingerprinting methodologies, enabling
more resilient and practical network security strategies
tailored for emerging decentralized environments.
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