

RESEARCH

Open Access

Management of Dupuytren disease of the little finger

Melinda Moscovici¹, Valerio Pace², Fabrizio Marzano³, Francesco Bronzini³, Giacomo Placella⁴, Dario Perugia⁵, Nicola Maffulli^{5,6,7}, Filippo Migliorini^{8,9,10*} and Riccardo Maria Lanzetti¹¹

Abstract

Background The surgical management of Dupuytren disease (DD) is associated with a high rate of complications. Recurrences are relatively common and may result in permanent disability, particularly when the little finger (LF) is involved. This study aims to provide both objective and subjective information, along with professionals' experiences.

Methods A questionnaire survey, comprising both open and closed questions, was distributed to hand surgeons, physiotherapists, and occupational therapists engaged in the management of DD across five continents. The involvement and role of the LF in DD were extensively highlighted and emphasised. Only consistent answers were included. A total of 588 questionnaires were completed.

Results 50% ($n=294$) of the answers were from hand surgeons, 24% ($n=141$) from physiotherapists and 26% ($n=153$) from occupational therapists. 76.5% ($n=153$) of the healthcare professionals (HCP) agreed that: "The LF does not necessarily benefit from good results. Rehabilitation, just like surgery, can be delicate and difficult." Different agreements were found between surgeons and occupational therapists ($p=0.007$) and among surgeons, depending on their surgical experience ($p=0.008$). No significant differences were seen between surgeons and physiotherapists.

Conclusions The LF in Dupuytren's disease requires special attention during surgery and rehabilitation. All healthcare professionals (HCPs) should invest in patient education to ensure early referral and optimal adherence to treatments. Further high-quality research is warranted to achieve a definitive consensus on optimal treatment and rehabilitation.

Keywords Dupuytren's contracture, Dupuytren's disease, Little finger, Little finger contracture, Hand surgery

*Correspondence:

Filippo Migliorini
filippo.migliorini@uk-halle.de

¹ Université Grenoble Alpes (UGA), Grenoble, Saint-Martin-d'Hères 38400, France

² Department of Trauma and Orthopaedics, "MVT-Pantalla" Hospital, ULS Umbria 1, Umbria 06059, Italy

³ Department of Trauma and Orthopaedics, University of Perugia, Perugia 06100, Italy

⁴ San Raffaele Hospital Università (IRCCS), Milan 20132, Italy

⁵ Faculty of Medicine and Psychology, University La Sapienza, Rome 00185, Italy

⁶ School of Pharmacy and Bioengineering, Faculty of Medicine, Keele University, Stoke On Trent ST4 7QB, UK

⁷ Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK

⁸ Department of Trauma and Reconstructive Surgery, University Hospital of Halle, Martin-Luther University Halle-Wittenberg, Ernst-Grube-Street 40, Halle (Saale) 06097, Germany

⁹ Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, Bolzano 39100, Italy

¹⁰ Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V, Rome 00165, Italy

¹¹ Orthopaedics and Traumatology Unit, Department of Emergency and Acceptance, Hospital San Camillo-Forlanini, Rome 00152, Italy

Background

Dupuytren's disease (DD) affects the palmar fascia and can lead to pronounced flexion contracture and disability. Recurrence and postoperative complications are common and often challenging to manage [1]. Dupuytren's contracture frequently affects the ulnar digits, resulting in significant impairment of hand grip and function. The cause of Dupuytren contracture remains unknown, although a familial component has been reported in several studies. It is also noted that DD is more prevalent in men than in women [2]. DD affecting the little finger (LF) presents management challenges due to the presence of the abductor digiti minimi (ADM), the risk of iatrogenic injury, and a recurrence rate ranging from 16.7% to 39.4%, depending on surgical technique and follow-up duration [3, 4]. Several studies indicate that the most challenging DD cases occur when it affects the little finger [5]. The contracture of the proximal interphalangeal joint (PIPJ) can be severe and complex to correct and is generally more problematic for the LF than for the other fingers [6, 7]. The PIPJ is unforgiving and may progress to non-functional arthrodesis after prolonged involvement, necessitating amputation in some patients [8]. Alternative surgical treatments for DD of the LF do not always guarantee favourable functional or aesthetic outcomes [9, 10]. There remains a lack of scientific evidence regarding the optimal approach and treatment algorithm for DD affecting the LF, indicating substantial room for improvement. Further research with a high level of evidence is certainly needed in this field. The scarcity of knowledge and evidence presents a real challenge for surgeons dealing with such heterogeneous and complex conditions. Furthermore, the outcomes of surgical treatment options are often reported as less than satisfactory, with a high rate of complications and recurrence [7–10].

A multidisciplinary questionnaire was developed and administered to professionals handling cases of developmental disabilities (DD) affecting the lower limb (LF). The primary aim of this study was to provide both objective and subjective information, along with professionals' experiences in managing DD involving the LF, to shed light on current knowledge regarding management options, rehabilitation, and outcomes, as well as to offer insights for future research. The secondary aim of this study was to identify gaps in the literature and gather data on the challenges faced by professionals in managing the LF in cases of DD.

Methods

A multidisciplinary questionnaire was developed by a diverse team with expertise in managing DD. Surgeons, physiotherapists, and occupational therapists working

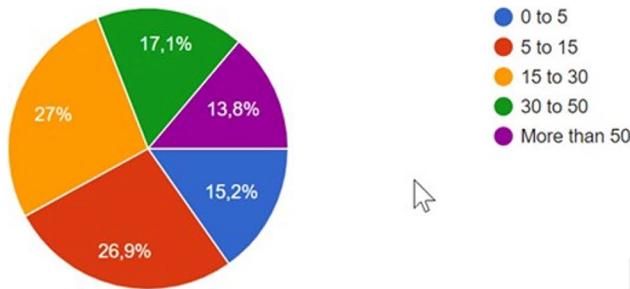
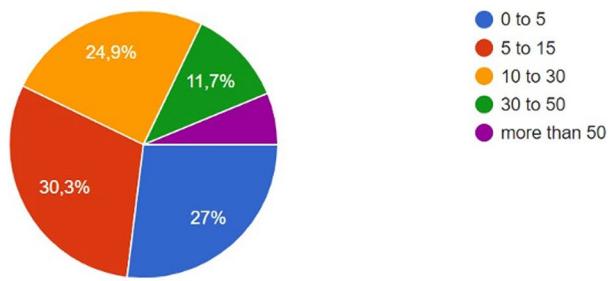
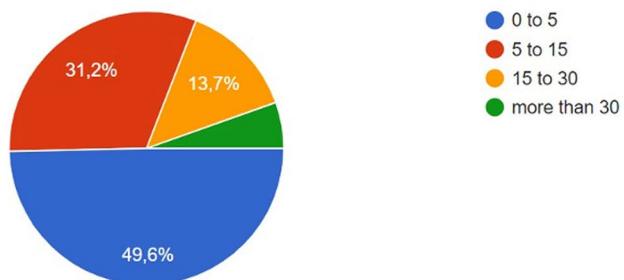
in hand surgery worldwide were asked both open and closed questions. The full text of the survey can be found in Appendix 1. It gathered pertinent information about the surgeon or therapist being questioned, including their country of origin, occupation type (surgeon, physiotherapist, etc.), the average number of patients with DD treated each year, the average number of patients with DD affecting the LF treated annually, the number of isolated little finger contractures, agreement with the statement "5th finger does not necessarily benefit from good results. Rehabilitation, just like surgery, can be delicate and difficult" along with an explanation for their answer, and interest in knowing the questionnaire results. The keyword coding tables and word clouds used are detailed in Appendix 2. The survey was created and distributed via Google Forms over a set timeframe of six months. It was disseminated through professional channels to healthcare professionals. To maximise response rates, the survey was available in both English and French, allowing respondents to answer in their preferred language. Responses were subsequently translated using the free DeePL Translator (<https://www.deepl.com/translator>). The survey was shared on social media platforms (Facebook, LinkedIn, Twitter) and through personal networking. Each question required a mandatory response to progress to the next one and complete the questionnaire. Incongruous answers that attempted to bypass the requirement to answer each question were excluded.

The survey was based on the following key statement: "The little finger does not necessarily benefit from good results. Rehabilitation, just like surgery, can be delicate and difficult. Do you agree with this point of view?". To quantify the practitioners' experience, the column "number of patients with Dupuytren Disease treated in 1 year" was used, with the following mapping: 0–15, low volume; 15–30, intermediate volume; and >30, high volume. Participants were asked to agree or disagree with the statement and provide an explanation for their response, specifically about their professional field. The distribution of answers was analysed by country and professional experience. Participants were asked to enter their country of work and clarify their professional experience, specifying the number of DD patients they treated on average over the past year. Moreover, the frequency of isolated LF involvement was reported. Current knowledge and evidence on the treatment and rehabilitation of DD involving the LF were also searched on PubMed and Cochrane databases, to be then analysed, integrated, and discussed concerning our results. We therefore highlighted the level of evidence and the lack of evidence of the main related aspects, underlining the weaknesses and debates still to be resolved.

Data analysis was performed using Microsoft Excel and Python. T-test and Chi-Square calculations were performed. Statistical significance was set at $p < 0.05$.

Results

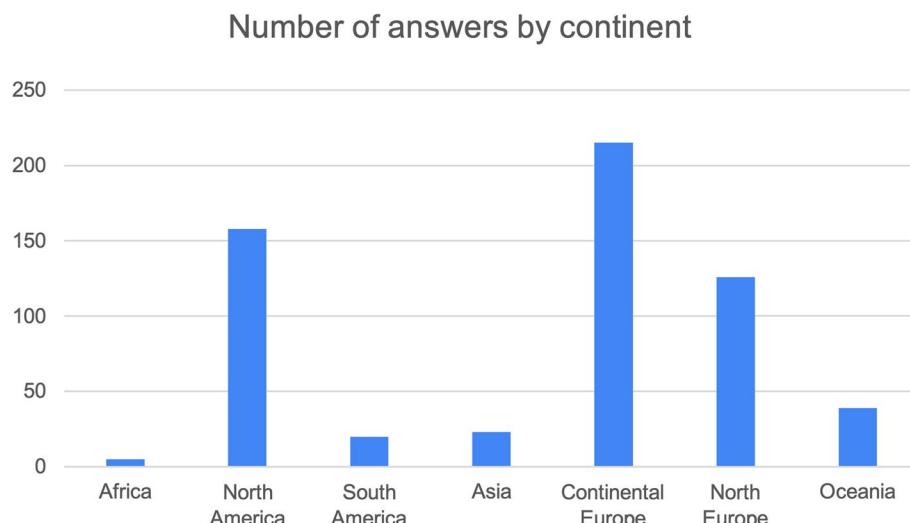
We distributed the survey to 1,000 HCPs and received a total of 588 responses: 50% (294) from hand surgeons, 24% (141) from physiotherapists, and 26% (153) from occupational therapists. The number of DD patients treated over the course of one year with LF or isolated LF is summarised in Fig. 1 a-c. The responses obtained from various countries were grouped by continent: Africa, North America, South America, Asia, Continental Europe, Northern Europe, and Oceania (Fig. 2). We observed the percentage of isolated DD of the LF by continent to provide a general idea of the prevalence of isolated LF (Fig. 3). Regarding the key statement (Question 6), 75.7% (445) of professionals agreed. 445 of the participants in the survey agreed with the key main statement: "The LF does not necessarily benefit from good results. Rehabilitation, just like surgery, can be delicate and difficult." Most responses came from North America, Oceania, and Europe (Continental and Northern Europe) (Fig. 2). To observe the distribution of agreement and disagreement with the statement in Question 6 by profession and continent, we only included continents with a minimum of 15 responses. Figure 4 a-c shows the percentage of agreement (yes) and disagreement (no) among physical therapists, surgeons, and occupational therapists.




The T-test revealed significant differences among professional categories concerning agreement with the key statement ($p = 0.019$). A notable difference existed between hand surgeons and occupational therapists who concurred with the statement ($p = 0.007$). Additionally, a significant difference was observed among surgeons based on their level of experience ($p = 0.008$). There was no significant difference between surgeons and physical therapists ($p = 0.28$) or between physical therapists and occupational therapists ($p = 0.184$). No significant difference was noted among physical therapists ($p = 0.416$) and occupational therapists ($p = 0.754$) based on their experience level. The most frequently mentioned words by participants who disagreed with the statement are presented in descending order for each professional category. Similarly, the most commonly mentioned words used by participants who agreed with the statement are also presented in descending order for each professional category (Supplementary Material: Table 2 a-b).

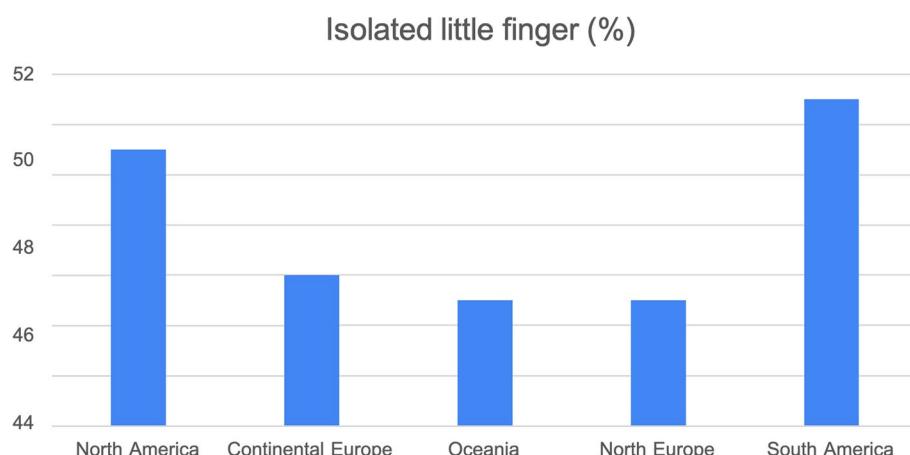
Discussion

The most important finding of the present investigation is that the DD of the LF needs special attention both during surgery and rehabilitation. All HCPs should invest in patient education to ensure early referral and optimal treatment adherence. Further high-quality research is warranted to achieve a definitive consensus on optimal treatment and rehabilitation.

The prevalence of Dupuytren's Disease (DD) ranges from 3 to 42% in the adult population [3–5]. The prevalence of isolated LF's DD is around 45%, which is higher than expected given the published evidence [11–13]. The LF is the second most commonly affected finger in DD after the ring finger, and managing DD in this location can be challenging. The fibrous contracture of the palmar fascia often includes the tendon of the abductor digiti minimi (ADM), and this process leads to both a flexion contracture at the MCP joint and an abduction contracture [6, 9, 14]. The functional outcomes of managing DD in the LF depend on the degree of the PIP joint contracture. All healthcare professionals (HCPs) concur that PIPJ contracture is the principal factor contributing to the difficulty in managing LF DD, whether through surgical or rehabilitative means. The contracture of the PIPJ tends to persist even after surgical release and rehabilitation. The recurrence rate of DD in the LF ranges from 0 to 100%, indicating a high recurrence rate [15–17]. Physiotherapists (PTS) and occupational therapists (OTS) tend to use the term "chronic" more frequently than surgeons to describe a residual and persistent condition. In contrast, surgeons emphasise the concept of recurrence. Recurrence refers to the formation of a new cord following excision, while "chronic" denotes the duration of the condition according to surgeons. In this context (as all professionals mentioned), the LF continues to exhibit a range of motion (ROM) deficit in both flexion and extension. More than 20 degrees of contracture is considered recurrence in any treated joint one year post-treatment, as compared to six weeks post-treatment. Recurrence appears to be less common if good correction is attained during surgery [15]. However, no surgical technique demonstrates more favourable recurrence rates [18–24].


Another significant factor highlighted by the three professions is skin complications [25, 26]. During surgery, skin deficiency on the LT often necessitates the use of skin grafts to reduce the risk of suturing skin under tension and to avoid neurovascular complications. In rehabilitation, slower skin healing, scar adhesion, and denser, more prominent scar tissue over a small area frequently restrict movement. Furthermore, surgeons refer to both rehabilitation and surgery. Rehabilitation is deemed essential for a successful outcome, yet it is simultaneously blamed for unsatisfactory results. A lack of hand

a- DD patients treated over 1-year**b- DD patients with LF treated over 1-year****c- DD patients with isolated LF treated over 1-year**


Fig. 1 The number of DD patients treated over the course of one year with LF (a) or isolated LF (b)

therapists and rehabilitation protocols has been identified as potential causes. Concerning surgery, the issues raised relate to the timing of the operation, the selection of the appropriate technique, the challenge of releasing and excising all the pathological tissue in a small area, and the difficulty in maintaining surgical correction

postoperatively. A crucial point emphasised by physical therapists is finger exclusion. In the LF, exclusion seems linked to the marginal position of the finger, making it easier to avoid using in daily activities. Finger exclusion is detrimental both pre- and post-surgery. Before surgery, it distorts patients' perception of the problem, resulting in

Fig. 2 The Number of answers by various continent

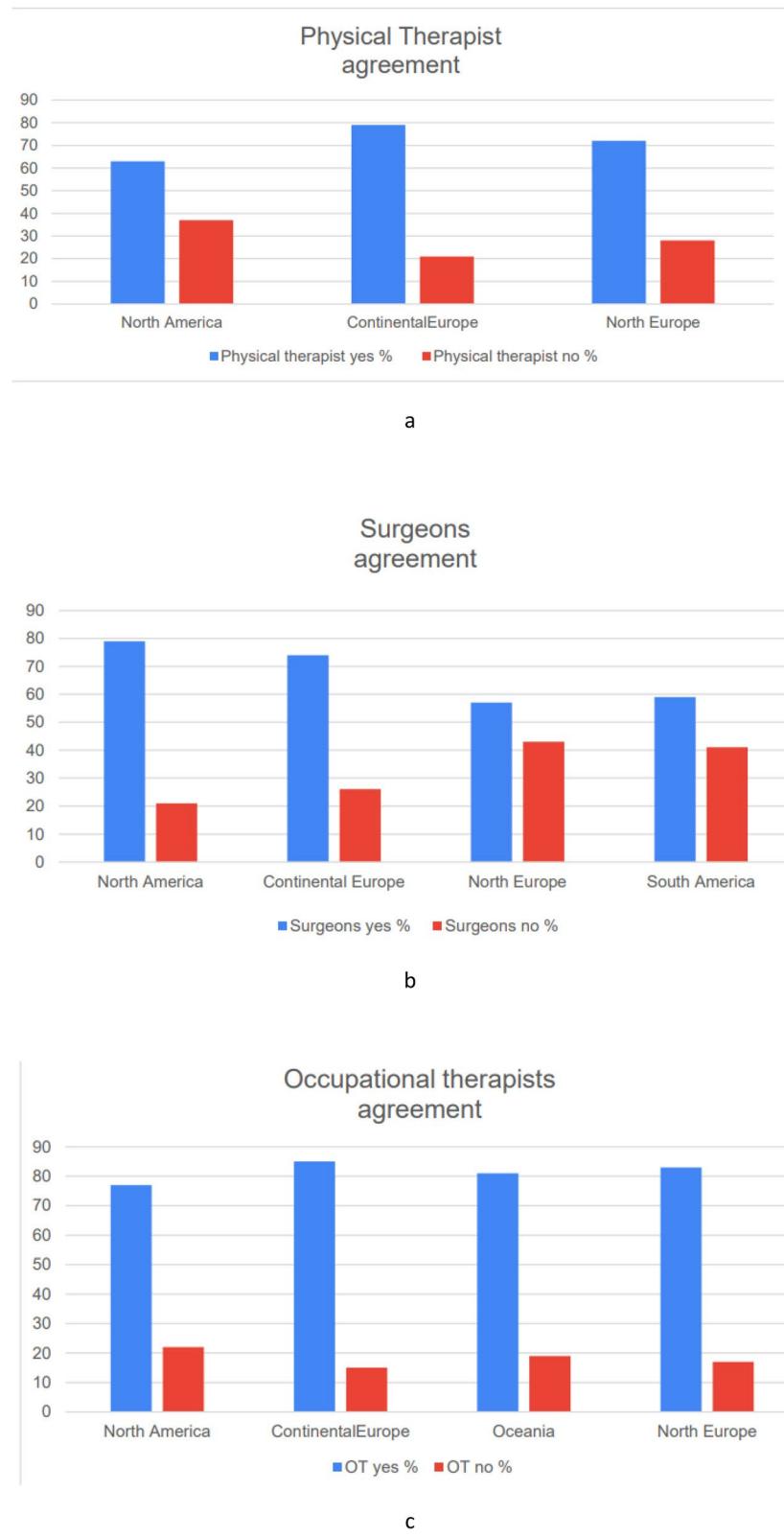


Fig. 3 The percentage of isolated DD of the LF by continent

delayed consultations and poor compliance after surgery. This undermines postoperative rehabilitation, as patients are less cooperative with treatment, and a finger not integrated into the motor schema will create greater difficulty in achieving correct motion. Occupational therapists highlight extension deficit and secondary contracture. The primary reasons could be: (1) the tendency for the MCPJ of the LF to hyperextend; (2) chronic stretching of the extensor tendon, leading to active extensor lag even when fully released; (3) contracture of the flexor tendons and volar periartricular structures, resulting in increased force required to achieve extension. Professionals who disagreed with the statement argued that the management of DD of the LF yields good results and patient satisfaction when there is strong patient compliance

and early intervention with a lesser degree of PIP joint involvement. Good surgical skills have also been cited as prerequisites for positive outcomes. Unlike other professions, surgeons demonstrate marked differences in their responses, depending on their experience level. Less experienced surgeons tend to be more reluctant to assert that surgery on the LF in DD is more challenging. Multidisciplinary treatment guidelines, developed through a European Delphi consensus strategy, agreed that a surgeon's experience is a crucial factor in selecting the surgical technique [27].

There is no evidence regarding the relative superiority of needle and open fasciotomy, as well as limited fasciotomy and dermofasciotomy [28–30]. However, experts agree that considerable experience is required, regardless

Fig. 4 The percentage of agreement (yes) and disagreement (no) among physical therapists, surgeons, and occupational therapists

of the technique. The influence of a surgeon's experience on the choice of surgical technique may be even more apparent in more complex surgeries. Ullah et al. concluded that since skin grafting is more likely to be performed by a senior surgeon, the lower rate of recurrence could be associated with a more expert and complete excision of the contracted fascia [20]. Incomplete correction of a PIPJ deformity increased the likelihood of worse postoperative contracture [10]. However, the greater the surgical correction, the greater the chance of losing some of that correction at follow-up [31, 32]. A complete release may be harmful and unnecessary, especially when a given technique is not well mastered.

It is crucial to reintegrate the LF into the motor scheme through activities of daily living to promote its functional use. Motor imagery may be helpful in patients with painful and stiff fingers. Patients should incorporate the use of LF into their daily life to remain compliant with their treatment. Regarding splinting, difficulty in managing the short lever on the LF was mentioned, as well as the lack of established splinting protocols. There is still no consensus, despite a tendency to use static over dynamic splints having emerged. A palmar splint could be preferable to a dorsal splint. Isolated full extension of the long extensors of the fingers results in hyperextension of the MP joints but incomplete extension of the PIP and DIP joints [33, 34]. A Yoke splint that prevents MP hyperextension could allow the long extensors and the intrinsic muscles to fully extend the IP joints.

There is a delicate balance between the surgical and functional outcomes in the LF in DD. Functional improvement should be the primary purpose of corrective DD surgery. The anatomy and cortical representation are different in each finger. Expected outcomes after treatment vary from individual to individual. Any research should not only measure a range of motion but also the effect of that intervention on hand function [35, 36]. This implies using a common functional outcomes measure that best fits the specific needs of DD patients. To our knowledge, such a PROM (patient-reported outcome measure) has not yet been developed.

This study aimed to collect data on the difficulties faced by professionals in managing the LF in DD. The present study does carry limitations. For example, distributing the questionnaire through social media may have biased the participant population, favouring those who are more accustomed to using such media. The questionnaire did not collect data on age, seniority in practice, place of professional activity (hospital specialised in hand surgery or rehabilitation clinic), and educational background (whether participants have specialised hand surgery training). The limited number

of answers and their geographic distribution may have been influenced by the ease of access to European professionals compared to those on other continents. Nevertheless, the present investigation may form the basis for further research to translate these preliminary findings into actionable advice for surgeons and therapists, ultimately leading to an international consensus on the optimal treatment and rehabilitation for DD of the LF. Surgeons should be aware of the anatomical and functional peculiarities of DD and the involvement of the LF in DD. In addition, they should be mindful that surgery in DD, though common, can be technically demanding. Physical and occupational therapists play a key role in optimising surgical outcomes and the early detection and management of postoperative complications. The effectiveness of splinting should be investigated further. Additionally, rehabilitation should focus on the cortical reintegration of the LF. Education of general practitioners and patients is to be promoted to ensure early referral and better compliance with treatment and rehabilitation.

Supplementary Information

The online version contains supplementary material available at <https://doi.org/10.1186/s13018-025-06176-2>.

Supplementary Material 1.

Acknowledgements

None.

Authors' contributions

Conceptualization: V.P and M.M.; Methodology, F.M. and R.M.L.; Surgical intervention: V.P. and F.B.; investigation: M.M. and V.P.; data curation M.M. and F.M.; writing original draft preparation, V.P and M.M.; writing—review and editing, D.P and N.M.; supervision, F.M. and N.M.. All authors have agreed to the final version to be published and agree to be accountable for all aspects of the work.

Funding

Open Access funding enabled and organized by Projekt DEAL. The authors received no financial support for the research, authorship, and publication of this article.

Data availability

The datasets generated during are available under reasonable request to (valeriopace@doctors.org.uk).

Declarations

Ethics approval and consent to participate

The study was approved by the local Internal Review Board. All patients had signed a written informed consent.

Consent for publication

All patients give consent to publish.

Competing interests

The authors declare no competing interests.

Received: 16 April 2025 Accepted: 1 August 2025
Published online: 22 August 2025

References

1. Trobet Y, Deck D, Vichard P. Lesions of the little finger in Dupuytren's disease. *Annales De Chirurgie De La Main Et Du Membre Supérieur: Organe Officiel Des Societes De Chirurgie De La Main* = Annals of Hand and Upper Limb Surgery. 1994;13(2):101–6.
2. Goubier JN, Le Bellec Y, Cottias P, Ragois P, Alnot JY, Masmejean E. Isolated fifth digit localization in Dupuytren's disease. *Chir Main.* 2001;20(3):212–7.
3. Ross DC. Epidemiology of Dupuytren's disease. *Hand Clin.* 1999;15(1):53–62, vi.
4. Degreef I, De Smet L. A high prevalence of Dupuytren's disease in Flanders. *Acta Orthop Belg.* 2010;76(3):316–20.
5. Barton NJ. Dupuytren's disease arising from the abductor digiti minimi. *J Hand Surg (Edinburgh, Scotland).* 1984;9(3):265–70.
6. Lamb DW, Hooper G. The Practice of hand surgery (K. Kuczynski, Ed.; Subsequent edition). Blackwell Science Inc. 1989.
7. Legge JW, McFarlane RM. Prediction of results of treatment of Dupuytren's disease. *J Hand Surg.* 1980;5(6):608–16.
8. Jensen CM, Haugegaard M, Rasmussen SW. Amputations in the treatment of Dupuytren's disease. *J Hand Surg (Edinburgh, Scotland).* 1993;18(6):781–2.
9. Raimbeau G, Bigorre N, Balti W, Rabarin F, Jeudy J, Fouque P-A, Cesari B, Saint-Cast Y. Middle phalangectomy with shortening fusion of the fifth finger in Dupuytren's digital hooks. *Hand Surg Rehabil.* 2019;38(2):108–13.
10. Misra A, Jain A, Ghazanfar R, Johnston T, Nanchahal J. Predicting the outcome of surgery for the proximal interphalangeal joint in Dupuytren's disease. *J Hand Surg.* 2007;32(2):240–5.
11. Mansur HG, de Oliveira ER, Gonçalves CB. Epidemiological analysis of patients with Dupuytren's disease. *Revista Brasileira de Ortopedia.* 2017;53(1):10–4.
12. Hindocha S, McGruther DA, Bayat A. Epidemiological evaluation of Dupuytren's disease incidence and prevalence rates in relation to etiology. *Hand.* 2009;4(3):256–69.
13. Hahn P. Epidemiology of Dupuytren's disease. *Orthopade.* 2017;46(4):298–302.
14. Meathrel KE, Thoma A. Abductor digiti minimi involvement in dupuytren's contracture of the small finger1 1no benefits in any form have been received or will be obtained from a commercial party related directly or indirectly to the subject of this article. *J Hand Surg.* 2004;29(3):510–3.
15. Kan HJ, Verrijp FW, Huisstede BMA, Hovius SER, van Nieuwenhoven CA, Selles RW. The consequences of different definitions for recurrence of Dupuytren's disease. *J Plast Reconstr Aesthet Surg.* 2013;66(1):95–103.
16. Tubiana R, Fahrer M, McCullough CJ. Recurrence and other complications in surgery of Dupuytren's contracture. *Clin Plastic Surg.* 1981;8(1):45–50.
17. Hueston JT. Recurrent dupuytren's contracture. *Plast Reconstr Surg.* 1963;31:66–9.
18. Dias JJ, Braybrooke J. Dupuytren's contracture: an audit of the outcomes of surgery. *J Hand Surg (Edinburgh, Scotland).* 2006;31(5):514–21.
19. Strömberg J, Ibsen Sørensen A, Fridén J. Percutaneous needle fasciotomy versus collagenase treatment for Dupuytren contracture: a randomized controlled trial with a two-year follow-up. *J Bone Joint Surg.* 2018;100(13):1079–86.
20. Ullah AS, Dias JJ, Bhowal B. Does a « firebreak » full-thickness skin graft prevent recurrence after surgery for Dupuytren's contracture? : A prospective, randomised trial. *J Bone Joint Surg. British Volume.* 2009;91(3):374–378.
21. Werker PMN, Pess GM, van Rijssen AL, Denkler K. Correction of contracture and recurrence rates of dupuytren contracture following invasive treatment: the importance of clear definitions. *J Hand Surg Am.* 2012;37A:2095–105.
22. Felici N, Marcoccio I, Giunta R, Haerle M, Leclercq C, Pajardi G, Wilbrand S, Georgescu AV, Pess G. Dupuytren contracture recurrence project: reaching consensus on a definition of recurrence. *Handchir Mikrochir Plast Chir.* 2014. <https://doi.org/10.1055/s-0034-1394420>.
23. Smeraglia F, Del Buono A, Maffulli N. Collagenase *clostridium histolyticum* in Dupuytren's contracture: a systematic review. *Br Med Bull.* 2016;118(1):149–58.
24. van Rijssen AL, Werker PM. Percutaneous needle fasciotomy in dupuytren's disease. *J Hand Surg Br.* 2006;31(5):498–501. <https://doi.org/10.1016/j.jhsb.2006.03.174>. Epub 2006 Jun 12.
25. Watson HK, Fong D. Dystrophy, recurrence, and salvage procedures in Dupuytren's contracture. *Hand Clin.* 1991;7(4):745–55. discussion 757–758.
26. Pillukat T, Walle L, Stüber R, Windolf J, van Schoonhoven J. Rezidiveingriffe beim Morbus Dupuytren. *Orthopade.* 2017;46(4):342–52.
27. Huisstede BMA, Hoogvliet P, Coert JH, Fridén J, European HANDGUIDE Group. Dupuytren disease : European hand surgeons, hand therapists, and physical medicine and rehabilitation physicians agree on a multidisciplinary treatment guideline: results from the HANDGUIDE study. *Plast Reconstr Surg.* 2013;132(6):964e–76e.
28. Grazina R, Teixeira S, Ramos R, Sousa H, Ferreira A, Lemos R. Dupuytren's disease: where do we stand? *EFORT Open Rev.* 2019;4(2):63–9.
29. Rodrigues JN, Becker GW, Ball C, Zhang W, Giele H, Hobby J, Pratt AL, Davis T. Surgery for Dupuytren's contracture of the fingers. *Cochrane Database Syst Rev.* 2015;12:CD010143.
30. Hassan R, Poku D, Miah N. High-volume injections in Achilles tendinopathy: a systematic review. *Br Med Bull.* 2024;152(1):35–47.
31. Donaldson OW, Pearson D, Reynolds R, Bhatia RK. The association between intraoperative correction of Dupuytren's disease and residual postoperative contracture. *J Hand Surg (European Volume).* 2010;35(3):220–3.
32. Macionis V. Flexor tendon repair with fast-absorbable sutures: a rupture incidence-focused analysis of a case series and a review. *Muscle Ligaments Tendons J.* 2024;14(01):219.
33. Von Schroeder HP, Botte MJ. The functional significance of the long extensors and juncutae tendinum in finger extension. *J Hand Surg.* 1993;18(4):641–7.
34. Hammond A, Prior Y. The effectiveness of home hand exercise programmes in rheumatoid arthritis: a systematic review. *Br Med Bull.* 2016;119(1):49–62.
35. Pace V, Sessa P, Guzzini M, Spoliti M, Carcangiu A, Criseo N, Via A, Giai, Meccariello L, Caraffa A, Lanzetti RM. Clinical, functional and radiological outcomes of the use of fixed angle volar locking plates in corrective distal radius osteotomy for fracture malunion. *Acta Biomed.* 2021;92(3):e2021180.
36. Pace V, Lanzetti RM, Venditto T, Park C, Kim WJ, Rinonapoli G, Caraffa A. Dorsally displaced distal radius fractures: introduction of Pacetti's line as radiological measurement to predict dorsal fracture displacement. *Acta Biomed.* 2021;92(3):e2021200.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.