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Sensor-based soil analysis methods, particularly optical spectroscopy, have gained as efficient alternatives to
labor-intensive laboratory analyses for assessing soil properties. Especially in-situ measurements with mobile
sensors streamline data collection, reducing both time and costs. This approach hinges on correlating sensor
signals with laboratory-derived soil physico-chemical properties using mathematical calibration models. The
models are trained and their parameters fine-tuned using a training dataset. It is best practice to evaluate the
performance of calibration models by a test dataset, which is independent from the training dataset. However,
certain commonly applied data preprocessing procedures can unintentionally introduce unwanted dependencies
between the training and the test dataset. This is called data leakage. A model trained on these datasets will
perform very well on both the training and test sets. However, it will show much poorer performance when tested
on a truly independent dataset. Thus, the calibration model overfits via data leakage. In this study, we illustrate
the consequences of data leakage by two common preprocessing procedures in soil sensing, namely principle
component analysis (PCA) and spatial interpolation through ordinary kriging, on the prediction of soil properties
by near infrared (NIR) spectroscopy. The NIR spectra were obtained in the laboratory and in the field. Laboratory
measurements by standard wet-chemistry methods of soil pH value, total organic carbon (TOC) and total ni-
trogen (TN) content of 159 soil samples were used as target variables. Based on the results of this study, PCA and
spatial interpolation led to data leakage when executed before data splitting. To avoid data leakage, we
encourage researchers to carefully design leak-free data processing pipelines. These pipelines should encapsulate
preprocessing methods, model fitting, and (if needed) spatial interpolation, ensuring that training and test sets
are completely independent.

1. Introduction

In recent decades, soil sensing technologies have emerged as a
compelling alternative to traditional soil analysis methods. These tech-
niques offer several advantages, including rapid analysis, cost-
effectiveness, and minimal sample preparation. Moreover, many soil
sensing methods can be conducted directly on-site, enabling spatially
high-resolution mapping of soil properties (Viscarra Rossel and Bouma,
2016). A sensor detects physical or chemical stimuli, such as heat, light,
or electrochemical potential, and typically converts them into a variable
voltage. This voltage is digitized, allowing computer processing. Suc-
cessful sensing relies on a strong relationship between the measured
stimuli and the property of interest, which is established through cali-
bration. Calibration is an operation that, under specified conditions, in a
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first step, establishes a “relation” between the quantity values with
measurement uncertainties provided by measurement standards and
corresponding indications with associated measurement uncertainties
and, in a second step, uses this information to establish a relation for
obtaining a measurement result from an indication (BIPM et al., 2012).
This “relation” is typically represented by a mathematical function
known as a calibration model or calibration function. Various methods,
including statistics, chemometrics, machine learning, and geostatistics,
are employed to establish these calibration models. While a simple
linear regression modeling was a common approach in the past, spectral
sensors and sensor combinations often require the use of more complex
multivariate machine learning methods.

Since calibration is subjected to uncertainty, which we will briefly
discuss below, the performance of calibration models must be evaluated.
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In machine learning, model evaluation by using independent training
and test datasets is regarded as the standard (Ge et al., 2020; Hastie
etal., 2009; Héberger et al., 2017; Joseph, 2022). The training dataset is
used for model selection and model parameter tuning. The test dataset is
used for assessing the model performance when applied to a new data
domain. The resulting prediction error is also called test error or
generalization error. In general, it is an indication of overfitting when
models demonstrate good performance within the training set but
exhibit poorer performance with unseen data in a test set (Ying, 2019).
To obtain a reliable test error, it is important that the test samples are
independent from the training set to avoid any influence of the test
samples on the model training process and thus reduce the risk of
overfitting on the training set (Kapoor and Narayanan, 2023; Zhu et al.,
2023).

One cause of dependency in the data is the spatial and / or temporal
dependency in the observations of a particular domain. However, de-
pendencies can also be introduced by preprocessing of the data. Pre-
processing methods (also called feature engineering), such as denoising,
data transformation, and dimensionality reduction, are applied to
spectral data to improve model calibration and prediction performance
by removing physical interferences, fulfilling model assumptions,
extracting and generating new features, or ensuring alignment
(Mitchell, 2010; Rinnan et al., 2009; Xu et al., 2020; Zheng and Casari,
2018). Some of these methods work over the variables (features, col-
umns) of a dataset. For example, spectra can be standardized by mean
centering and/or variance scaling before multivariate modeling (Leone
et al., 2012; Zhang and Hartemink, 2020; Baumann et al., 2021). Data
standardization involves removing the mean (centering) and division by
variance (scaling) of a feature to generate transformed data with zero
mean and unit variance. However, this process introduces dependencies
between observations, as each standardized value is influenced by the
overall dataset statistics, such as the feature mean and variance. If
standardization is applied before splitting the data into training and test
sets, it can lead to unintended dependencies between the two sets (we
provided an example of data leakage caused by centering and scaling in
Supplementary File S1, using the LUCAS dataset). This phenomenon is
known as “data leakage”, where information from the test set has leaked
into the training process (Kapoor and Narayanan, 2023; Kaufman et al.,
2011; Zhu et al., 2023). Kaufman et al. (2011) were the first who
analyzed this problem systematically and coined the name “data
leakage”. This term emerged after the phenomenon was previously
referred as “leak from the future” in time series modeling, as described
by Nisbet et al. (2018). Preventing data leakage is a good scientific
practice, and most machine-learning practitioners are well aware of
non-leaky workflow pipelines (Ge et al., 2020; Joseph, 2022; Yang et al.,
2023). However, data leakage is a widespread problem in various fields,
including medicine, genomics, and engineering, and any misused ma-
chine/deep learning technique can induce it (Hosseini et al., 2020;
Kapoor and Narayanan, 2023; Kaufman et al., 2011; Rosenblatt et al.,
2024; Yang et al., 2023; Zhu et al., 2023). Based on a literature survey in
17 fields of machine learning application Kapoor and Narayanan (2023)
stated that data leakage has contributed to a “reproducibility crisis in
ML-based data science”. According to Yang et al. (2023), nearly 30 % of
100,000 public Python notebooks show data leakage. This problem
affected codes from all experience levels, including tutorials widely used
for education. In a review of machine learning applications in environ-
mental research by Zhu et al. (2023) data leakage was identified as a
common pitfall in 148 highly influential papers. Data leakage can lead to
models that do not generalize well and are prone to overfitting.
Consequently, model performance metrics on the test set can be overly
optimistic and may not reflect the true performance of the model on new
and unseen data, potentially reducing confidence in their implementa-
tion (Kapoor and Narayanan, 2023; Muralidhar et al., 2021; Samala
et al.,, 2021). One reason for problems in applying mathematical cali-
bration methods in environmental sciences, including soil sensing,
might be the confusing terminology. The methods are drawn from
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several disciplines such as chemometrics, multivariate statistics, geo-
statistics, pedometrics, machine learning, artificial intelligence, and
data science. Consequently, there is no uniform body of theory and
terminology.

In soil sensing, machine learning for sensor calibration is highly
important because of the complexity and the huge uncertainties in the
relationship between the original sensor signal and the target properties.
Complexity arises through heterogeneity in the composition of the soil
and its variability in space and time. Therefore, there is a multitude of
possibly interfering factors, which is called matrix effect in chemo-
metrics. Sensors showing a high selectivity are not strongly affected by
the matrix. Selectivity is the extent to which a sensor can determine a
particular analyte without interference from other components of the
sample (Banica, 2012). Among the common sensors used in proximal
soil sensing, which include electrical resistivity meters, gamma-ray
spectrometers, visible and near-infrared (Vis-NIR) spectrometers and
cameras, as well as pH potentiometers (Gebbers, 2018), only the mobile
potentiometric pH sensor (Adamchuk et al., 1999) shows high selec-
tivity. On the contrary, the popular geoelectrical sensors show low
selectivity since apparent electrical conductivity/resistivity, as
measured by geoelectrical sensors, is affected by several soil properties
like water content, texture, salinity, temperature, and bulk density
(Corwin and Lesch, 2003). The laboratory methods, which are used to
produce the reference data, try to deal with matrix effects by sample
preprocessing (e.g., drying, sieving), homogenization, and extraction
with buffered extractants over a longer extraction time. However,
reproducibility within and between laboratories can sometimes be poor
(Analytical Methods Committee, 2012). Even worse, the definition of
certain target parameters, such as plant available phosphorous, is rela-
tively vague and there are several different laboratory methods for
assessing these parameters (Yli-Halla et al., 2016).

Among the abovementioned soil sensors, Vis-NIR spectroscopy
combined with multivariate modeling techniques has gained a lot of
interest because of its potential to predict a wide set of relevant soil
properties (Ge et al., 2020; Hong et al., 2018; Stenberg et al., 2010). Soil
organic matter (SOM), texture and nutrient content have been the pri-
mary targets (Stenberg et al., 2010). Soil Vis-NIR spectroscopy can be
performed in the laboratory and in the field (Hong et al., 2018; Liu et al.,
2017; Stenberg et al., 2010). However, Vis-NIR spectroscopy for soil
analysis has two fundamental drawbacks: First, it is an indirect method.
Many soil properties of interest show no absorption in the Vis-NIR range,
and they are only assessed via cross-correlation with other soil proper-
ties that have absorption bands. These absorption bands are usually very
wide and the bands are overlapping. Consequently, Vis-NIR spectra
show only a few distinct features that can unequivocally be linked to soil
properties of interest. This necessitates extra efforts for preprocessing
spectra and the use of complex multivariate calibration techniques.
Second, field spectral data is very susceptible to interference from
external environmental factors, such as ambient light, temperature, soil
moisture, soil structure, dust, stones, soil surface conditions, excessive
crop residues, etc. (Hong et al., 2018; Stenberg et al., 2010). Although
this results in mobile Vis-NIR spectroscopy being less accurate than
predictions based on measurements of soil samples in the laboratory
under standardized conditions, in-situ measurements still provide ben-
efits due to their high spatial resolution and high measurement speed
(Bonecke et al., 2021; Gebbers, 2018; Hong et al., 2018; Kodaira and
Shibusawa, 2020; Vogel et al., 2022).

Soil Vis-NIR spectra can contain hundreds of highly correlated
reflection bands, with many of them being overlapping or non-
informative (Hidalgo et al., 2021; Hong et al., 2018; Liu et al., 2017).
Therefore, one of the main steps in hyperspectral data processing is
dimensionality reduction (DR) (Hidalgo et al., 2021; Hong et al., 2018;
Liu et al., 2017). Many techniques have been developed for this purpose;
however, principal component analysis (PCA) is one of the oldest and
most widely used (Jolliffe and Cadima, 2016); especially in the context
of optical spectroscopy (Xu et al., 2020). PCA projects high-dimensional
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data to the direction of greatest variance by simultaneously satisfying
the conditions of minimum error and maximum variance (Xu et al.,
2020). In the case of spectral data, the original data matrix is converted
to a group of new variables that are linear combinations of all wave-
lengths, namely principal components (PCs). A key step in PCA is the
calculation of the covariance matrix, which contains all possible
covariance values between each of the predictor variables. If PCA is
done as DR strategy before data splitting, these covariances are
involving the entire dataset including the test set, which may lead to
data leakage.

In proximal soil sensing, a simple case of data leakage by pre-
processing is the spatial alignment of geo-referenced data by interpo-
lation. Spatial alignment is necessary if observations of predictor and
dependent variables are not co-located, e.g., if sensor measurements and
reference samples are not taken at the exact same positions. Spatial
interpolation is used to estimate values at common positions. Since
interpolation relies on information from neighboring observations, de-
pendencies are introduced. Among spatial interpolation methods, ordi-
nary kriging (OK) has traditionally been one of the most commonly used
techniques in soil sensing (Gia Pham et al., 2019; Hengl, 2009; Schloeder
et al., 2001). In recent years, machine learning and deep learning-based
approaches for spatial interpolation have been proposed (Tziachris
et al., 2020; Boumpoulis et al., 2023; Nwaila et al., 2024). However, a
comprehensive review of these new methods is beyond the scope of this
paper.

Data leakage is a well-studied topic in medicine, genomics, and en-
gineering. However, no comprehensive survey or study on data leakage
in soil science, particularly within soil proximal sensing, appears to exist
in the current literature. This study aims to illustrate the consequences
of data leakage on both laboratory- and field-based soil NIR spectros-
copy. To investigate this, we conducted experiments with laboratory and
field soil NIR data to explore how data leakage affects model training for
predicting soil pH, total organic carbon (TOC), and total nitrogen (TN)
content. As supplementary results and to generalize our illustration, we
also used the Land Use/Land Cover Area Frame Survey (LUCAS) 2009
database, which includes laboratory-based Vis-NIR soil spectra and
reference data from topsoil samples collected across different countries
in the European Union (Nocita et al., 2014; Stevens et al., 2013)
(Supplementary File S2). We also discussed the often-overlooked inter-
action between model complexity, data leakage, and spatial autocorre-
lation, factors that can significantly impact model reliability,
particularly in the context of proximal soil sensing.. Finally, we provided
some practical recommendations for evaluating data leakage risks in
pipeline design.

2. Materials and methods

In this study, we calibrated regression models under various data
leakage scenarios, utilizing spectral data collected from an agricultural
study area in Germany (Supplementary Fig. S1). One dataset represents
the case of field level calibration of spatially correlated data including in-
situ and laboratory sensor measurements. It consists of field-collected
NIR spectra captured by a mobile sensor platform (Tavakoli et al.,
2022) and laboratory-measured NIR spectra from 159 soil samples. This
dataset is named “Boofien”. We evaluated the models’ ability to predict
key soil properties, including pH, total organic carbon (TOC), and total
nitrogen (TN) content.

Additionally, we used a second dataset to illustrate the case of cali-
brating sensor measurements obtained in the laboratory under
controlled conditions from wide-area data. It consists of data from the
Land Use/Land Cover Area Frame Survey (LUCAS) 2009 database,
which contains laboratory-based Vis-NIR soil spectra and reference data
from topsoil samples collected across multiple European Union coun-
tries (Nocita et al., 2014; Stevens et al., 2013) (Section 2.4 and Sup-
plementary File S1 and S2).
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2.1. Study site and data collection

The study area of the BooBen dataset encompasses approximately
18.7 ha of agricultural land (52°23'38.69”N, 14°27'38.84"E) in eastern
Brandenburg, Germany (Supplementary Fig. S1). Geologically, the
parent material consists of end moraine glacial till, with Luvisol and
Regosol as the dominant soil types. The soils are predominantly sandy,
except for an area with higher clay content in the center of the field,
probably representing deposits from an ancient stream (Schmidinger
et al., 2024a). According to the German soil classification system KA5
(Eckelmann et al., 2005), the soil textures range mainly from slightly
silty sand (Su2) to slightly loamy sand (S12). The elevation varies be-
tween 50 and 80 m.a.s.l., and the climate is characterized by 550 mm of
annual rainfall and an average temperature of 9 °C (Schmidinger et al.,
2024b). The sampling process took place along three parallel lines (12 m
apart) running from the south-west to the northeast, capturing the main
gradient of soil variability of the field (Schmidinger et al., 2024a). Along
each transect line, 53 sample points were placed at 15-meter intervals,
resulting in a total of 159 sampling points. Sampling was conducted
between September 27 and 4%, 2020. Sampling depth was 0 to 30 cm.
The samples were analyzed in the laboratory for total nitrogen (TN, %),
total organic carbon content (TOC, %) and soil pH (in CaCly). TN was
determined according to DIN ISO 13878, TOC according to DIN ISO
10694, and soil pH (in CaCly) according to DIN ISO 10390. Descriptive
statistics of the target variables are listed in Table 1.

Soil near infrared (NIR) diffuse reflectance was measured both in-situ
in the field and on the 159 samples in the laboratory. In both cases, a NIR
spectrometer (model C11118GA, Hamamatsu Photonics K. K., Shizuoka
Pref., Japan) was used, covering the nominal spectral range of
860-2550 nm with an average resolution of 15 nm.

In December 2020, the laboratory measurements with the spec-
trometer were conducted after drying the samples, sieving them to less
than 2 mm, and then filling them into a petri dish. Four halogen lamps at
45° illuminated the samples under controlled conditions inside a black
box. The reflected light was guided to the spectrometer through an
optical fiber. For each soil sample, the spectral data was collected with
four replications, by mixing the soil in the petri dish and repeating the
measurement. The spectrometer system was calibrated by measuring a
certified reflection standard. The spectrum from the reference standard
was used to obtain reflectance spectra from the samples by dividing the
raw spectra by the reference spectrum. The average reflectance spec-
trum of each sample was then used for modeling. Because of the pres-
ence of noise, we had to remove some of the wavelengths at the two
edges of the spectra. The final spectra had a range of 1,000 to 2,450 nm,
which were interpolated to a resolution of 1 nm. The NIR spectra were
preprocessed using the standard normal variate (SNV) transformation
for each measurement. This carries no risk of data leakage as it involves
row-wise transformations.

In-situ soil NIR measurements were conducted using a furrow-
opening ‘shoe’ attached to a multi-sensor platform, as detailed in
Tavakoli et al. (2024). These measurements were carried out during
March and April 2020 (Supplementary Fig. S1). The shoe was pulled
through the soil at an average speed of 2.5 km/h, allowing the mea-
surement of subsurface soil reflectance at a depth of 10-15 cm. The
measurements were carried out along parallel transects, about 25 m
apart. The frequency of data collection was 1 Hz, which resulted in
18,906 measurement points. We applied the same edge removal pro-
cedure used for the laboratory data to the field spectra. The resulting
spectra were in a range of 1,000 to 2,400 nm, which were also inter-
polated to a spectral resolution of 1 nm. We applied SNV normalization
to each sensor measurement point individually.

2.2. Data analysis and data leakage scenarios

To investigate the impact of data leakage, laboratory- and field-based
soil NIR spectroscopy data were calibrated to three target soil properties
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Table 1
Descriptive statistics for the laboratory-measured target soil properties of the 159 soil samples taken at the test field.
Soil target property Minimum Q1 Median Mean SD Q3 Maximum
TN (%) 0.04 0.07 0.09 0.11 0.06 0.14 0.28
TOC (%) 0.47 0.77 0.98 1.19 0.59 1.36 2.87
pH 5.03 5.74 6.15 6.32 0.74 7.14 7.54

Q1: first quartile; SD: standard deviation; Q3: third quartile.

across different leakage scenarios. PCA and kriging interpolation were
applied either before or after data splitting, as shown in Table 2 and
Figs. 1-7.

As a calibration modeling method we have chosen principal
component regression (PCR) for this study to investigate the risk of data
leakage associated with dimensionality reduction (DR) techniques like
PCA. PCR integrates principal component analysis PCA (the DR step)
followed by linear regression, making it ideal for simulating data
leakage scenarios. PCR is less commonly used as compared to partial
least squares regression (PLSR), which also relies on PCA and has a long
history of successful applications in chemometrics (Geladi and Kowalski,
1986; Wold et al., 1993; Ngrgaard et al., 2000; Wold et al., 2001) and is
widely used in soil Vis-NIR spectroscopy (Brown et al., 2006; Mouazen
et al., 2010). However, we restrict the investigation to PCR and do not
include other calibration methods, such as PLSR, for the sake of clarity.
Furthermore, PCR in our setting has proven to be significantly faster
than PLSR during training, nearly three times faster, even when using a
higher number of components, while resulting comparable predictive
performance on our datasets. We selected 10-fold cross-validation to
balance model performance and computational cost, given the charac-
teristics of our dataset. Our data includes 159 reference samples and NIR
spectra with 1,500 predictors measured across 18,000 geographical
points, influencing our choice of data splitting strategy. K-fold cross-
validation reduces variance in performance estimates, compared to a
single hold-out set, especially with small datasets (Bishop, 2006). While
leave-one-out cross-validation (LOO-CV) minimizes bias, it increases
computational costs (Hastie et al., 2009), making it impractical for our

Table 2

field scenarios, which involves independent kriging for each predictor
within each fold. For example, using a single hold-out set with 90 % of
the data for training and 10 % for testing (15 samples in our case) can
result in high variation in performance estimates due to the small size of
the test set. K-fold cross-validation mitigates this variance by averaging
performance over k different partitions, making the estimates less sen-
sitive to data partitioning. However, a significant limitation of cross-
validation is the substantial increase in computational cost associated
with the k-fold training process. This is particularly true for our field
scenarios, where we performed independent kriging for each of the
1,500 predictors within each fold. Therefore, to ensure a reliable eval-
uation of our models while keeping computational costs reasonable, we
employed 10-fold cross-validation across all data leakage scenarios.
With our dataset size of 159 samples, 10-fold cross-validation provides a
good balance between accuracy and efficiency. In our dataset
(Supplementary Fig. S2 and Table S1), as k increases, spatial interpo-
lation execution time rises proportionally, despite fewer points per fold
(Supplementary Table S1).The prediction error on the test set, RMSE,
decreases with larger k values, with stability observed for k > 8
(Supplementary Fig. S2). However, each additional fold adds approxi-
mately 1 h to interpolation time. Using k = 10 strikes a balance between
reducing variance and limiting computational demands, offering more
reliable performance estimates than k < 10 while avoiding excessive
costs associated with higher k values, especially during the kriging
interpolation.

Overview of laboratory- and field-based data leakage scenarios in soil NIR spectroscopy workflows using the BooRen dataset. See Figs. 1-7 for details.

Feature Data leakage scenarios
L1 - Lab: PCA L2 - Lab: PCA in L3 - Lab: PCA in F1 - Field: Full F2 - Field: Partial F3 - Field: Full
Before Split Pipeline (No Pipeline (Tuning) Interpolation Independence Independence
Tuning)
NIR Spectroscopy Laboratory- Laboratory-based Laboratory-based Field-based (mobile in- Field-based (mobile in- Field-based (mobile in-
Setting based situ) situ) situ)
Cross-Validation 10-fold CV 10-fold CV Nested CV (outer + Nested CV (outer + Nested CV (outer + Nested CV (outer +
Design inner) inner) inner) inner)
Spatial Interpolation =~ — — — Before all splitting After outer split; before After all splitting
Timing inner split
Spatial Interpolation  — — — Whole dataset Per outer split Per inner and outer fold
Scope
Train/Test CV folds: x CV folds: v Outer: v Inner: v/ Outer: x Inner: x Outer: v Inner: x Outer: v Inner: v
Independence
PCA Application Before CV split After CV split (in After inner split (in After outer and inner After outer and inner After outer and inner
(leaky) pipeline) pipeline) split (in PCR pipeline) split (in PCR pipeline) split (in PCR pipeline)
Hyperparameter None None Grid search Grid search on leaky Grid search with partial Grid search on fully
Tuning data leakage independent folds
Components Used 15 fixed PCs 15 fixed PCs Optimal q (tuned) Optimal q (tuned) Optimal q (tuned) Optimal g (tuned)
Risk of Data Yes No No Yes Yes No

Leakage?®

“Note that that other upstream processes in the pipeline, which are not considered in this work, may also contribute to data leakage. These risks may arise during
measurement due to duplicate readings, during sensor data processing, or because of spatial autocorrelation within the study area.

CV: Cross-validation.

x: Non-independent datasets.

v: Independent datasets.

PCA: Principal Component Analysis.

PCR: Principal Component Regression

PCs: Principal Components.

g: Optimal number of principal components.
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the NIR spectra.

a) Leave fold k as the cv-test set.

variables.

.

1. Perform PCA on NIR data of the entire dataset before splitting the data.

2. Set the number of components to 15, which captures approximately 99.99% of the total variance of

3. Use the resulting 15 components as new predictor variables.

4. Perform a 10-fold cv by randomly shuffling the dataset (15 components and one soil target variable)
and dividing it into 10 complementary folds of approximately 10% of the total data each.

5. (Loop for model evaluation) For fold & in the 10 folds:

b) Use the remaining nine folds as the cv-training set.

as predictor variables to predict the soil target variable.

f c) Fita PCR model on the cv-training set using a linear regression with the 15 components
d) Test the trained PCR model using the 15 components of the cv-test set as predictor

Complete dataset (100%) |

!

PCA(n_components =

15) |

Loop for model
evaluation: 10-fold cv

P o o o

[
15 components

------- |---

A

1stcv-ter. | 1 2 3 4 5

cv-training set: 90%

:

cv-test set: 10%

LinearRegression()

|

PCR trained on cv-training !
set and fitted with 15 il
cv-test set
components

Fig. 1. Scenario L1: PCA before data splitting and without hyper-parameter tuning. A: Steps for model training and testing via a 10-fold cross-validation (cv). B: A
diagram showing the first iteration of cross-validation loop, in which 10% of the data (fold 10, black square) was left as the cv-test set. The remaining 90% of the data
(folds 1-9, white squares) was left as the cv-training set. PCA: principal component analysis. PCR: principal component regression.

2.2.1. Data leakage scenarios for laboratory-based soil NIR spectroscopy

2.2.1.1. Scenario L1: PCA before data splitting and without hyper-
parameter tuning. Scenario L1 assesses the prediction performance of a
model trained and tested under a risk of data leakage. For that, an in-
dividual PCA was applied on the reflectance values of the entire dataset.
The number of components was heuristically set to 15. They explained
more than 99.99 % of the variance of the NIR spectra (Supplementary
Fig. S3). Then, using these 15 PCs as predictor variables, a linear

regression was trained and tested via 10-fold cross-validation. Fig. 1
shows the different steps of this scenario in details.

2.2.1.2. Scenario L2: PCA pipelined into a PCR model without hyper-
parameter tuning. In the L2 scenario, both cross-validation training
and test sets were independent from each other to prevent data leakage.
In each cv-iteration, a PCA was applied only on the NIR spectra of the
cross-validation training set. As in scenario L1, the number of compo-
nents was set to 15 and used as predictor variables for a linear
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PCR Pipeline

StandardScaler()

!

Standardized X

}

PCA(n_components = q)

}

q principal components

}

LinearRegression()

Fig. 2. Diagram of a pipeline for a principal component regression (PCR)
model. The name of each function refers to the Python Scikit-learn library
(version 0.23.1).

regression, which was validated on the cv-test set during each cv-
iteration (Table 2). For this scenario, the PCA was encapsulated into a
PCR pipeline as shown in Fig. 2. First, the spectra with n samples and p
wavelength bands, X(,.p), are standardized using normal scores trans-
formation. Mean and variance from standardizing the training set were
stored for later application to the test set, ensuring consistent pre-
processing (Pedregosa et al., 2011). The standardized X 5. was used as
input for a principal component analysis (PCA) to obtain q = 15 prin-
cipal components. After that, the g principal components and the soil
target variable y,,,, of the same samples were used as predictor and
target variables, respectively, for creating a simple linear regression.
Finally, the predicted soil property, ¥(:x1), was obtained as output. In
summary, a pipeline is a sequence of data preprocessing and modeling
steps that can be treated as a single unit. Thus, during the whole cross-
validation loop, 10 PCAs were fitted on the cv-training set. Fig. 3 shows
the different steps of this scenario in details.

2.2.1.3. Scenario L3: PCA pipelined into a PCR model with hyper-
parameter tuning. Similar to scenario L2, this scenario assesses the pre-
diction performance of a model trained and tested under a no data
leakage condition. However, unlike scenarios L1 and L2, the optimal
number of components in this scenario was tuned via a nested cross-
validation (hyper-parameter tuning). Fig. 4 provides a detailed over-
view of the steps in scenario L3, while Table 2 highlights the key dif-
ferences compared to the previous scenarios.. A nested cross-validation
has an inner-cv and an outer-cv. The inner-cv serves to carry out the
hyper-parameter tuning, while performance of the trained and tuned
model is evaluated within each iteration of the outer-cv. For that, the
dataset was randomly divided into 10 folds. During each outer-iteration,
one fold was left as an outer-test set and the remaining nine as an outer-
training set (Fig. 4). The optimal number of components was determined
by fitting PCR models with 1 to 60 components within the inner-training
set through a nine-fold inner cross-validation. Then the trained and
tuned model was tested on the outer-test set. In this way, the test and
training sets within each iteration of the cross-validation were inde-
pendent from each other, at least in terms of PCA.
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2.2.2. Data leakage scenarios for field-based (in-situ) soil NIR spectroscopy

The field NIR data was collected with high spatial resolution using a
mobile sensor platform (Tavakoli et al., 2022). Since positions of the
reference samples and the NIR measurements were not always exactly
co-located, spatial interpolation of the NIR data to the reference sam-
pling points was necessary (Supplementary Fig. S1). Therefore, we
performed ordinary block kriging using the ‘gstat’ library in R (Pebesma,
2004) with a block size of 10 x 10 m2. To expedite the interpolation
process, we considered only the 500 measurement points that were
spatially closest to each soil sampling point. Due to the large number of
variables (ca. 1,400 wavelenghts), a variogram model (for kriging) was
automatically fitted for each predictor variable using the ‘automap’ li-
brary of R (Hiemstra et al., 2009). The performance of kriging interpo-
lation using 10-fold cross-validation for each field scenario is
summarized in Supplementary Fig. S4.

To investigate the potential for data leakage in in-situ soil NIR
spectroscopy, we designed three scenarios (shown in detail in Figs. 5-7
and summarized in Table 2) for interpolation either before or after data
splitting as outlined in the next paragraphs. For these three scenarios, a
pipelined PCR (Fig. 2) was trained using the interpolated NIR spectra as
the predictor variables and the soil property of interest as the target
variable. As the scenario L3, the optimal number of components was
determined by fitting PCR models with 1 to 60 components within the
inner-training set through a nine-fold inner cross-validation.

2.2.2.1. Scenario F1: Interpolation of the complete dataset as a whole. In
this scenario, the in-situ NIR data was interpolated to soil sampling
points using the entire dataset before data splitting. After the interpo-
lation, a pipelined PCR model was trained and tested on the data via a
nested cross-validation (Fig. 2). Fig. 5 gives details about the different
steps of this scenario.

2.2.2.2. Scenario F2: Independent interpolation of the training and test
sets. In this scenario, in each iteration of the outer cross-validation, the
outer-training and outer-test sets were independently interpolated
(Fig. 6). This means that two separate interpolations were applied to the
reflectance values of the training and test sets, ensuring that they
remained independent. Note that the hyper-parameter tuning is done on
interdependent folds, which are connected by a common interpolation
run. Fig. 6 shows the different steps of this scenario in detail.

2.2.2.3. Scenario F3: Independent interpolation within each fold of cross
validation. To prevent data leakage, separate kriging interpolations
were applied on the reflectance values of each of the 10 outer cross-
validation folds (Fig. 7). It is important to note that unlike scenario
F2, the hyper-parameter tuning was performed on completely discon-
nected folds that were not connected by a common interpolation run
(Table 2).

2.2.3. Spatial autocorrelation

Spatial autocorrelation (SAC) arises when measurements from
nearby locations exhibit higher similarity or lower dissimilarity
compared to those from distant locations (Beale et al., 2010; Hurlbert,
1984; Legendre, 1993; Tobler, 1970). SAC can lead to overfitting due to
data leakage (Karasiak et al., 2022) and artificially inflating model
performance (Kattenborn et al., 2022; Ploton et al., 2020). Hence,
assessing SAC is vital for accurate modeling and model validity. To
explore the degree of spatial autocorrelation of our results, the Moran’s I
autocorrelation coefficient (see Dormann et al. (2007)) was calculated
both for the residuals and target variables. The coefficient varies in the
range of — 1 to + 1. Positive and negative values indicate positive and
negative spatial autocorrelations, respectively. Zero value means no
spatial autocorrelation (null hypothesis). The closer the values to zero,
the less the spatial autocorrelation. The analysis was conducted using
the R package “ape” (Paradis and Schliep, 2018). For this purpose, the
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a) Leave fold k as the cv-test set.

1. Randomly shuffle and divide the entire dataset into 10 complementary folds of approximately 10%
of the total data each to perform a 10-fold cross-validation (cv).

2. (Loop for model evaluation) For fold % in the 10 folds:

b) Use the remaining nine folds as the cv-training set.

c) To predict the soil target using the NIR spectra of the cv-training set as predictors, apply
a PCR and set the number of components to 15 to capture approximately 99.99% of
the total variance of the NIR spectra.

d) Test the fitted PCR model on the cv-test set.

Complete dataset (100%)

Loop for model
evaluation: 10-fold cv

15t cv-iter. | 1 2| 3 4 5

v

(n_components =

|

cv-training set: 90%

PCR Pipeline
15)

cv-test set: 10%

components

PCR trained on cv-training
set and fitted with 15

Test fitted PCR on
cv-test set

Fig. 3. Scenario L2: PCA pipelined into a PCR model without hyper-parameter tuning. A: Steps for model training and testing via a 10-fold cross-validation (cv). B: A
diagram showing the first cv iteration in which 10% of the data was left as the cv-test set (fold 10, black square). The remaining 90% of the data was left as the cv-
training set (folds 1-9, white squares). The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).

elements of the matrix of spatial weights were obtained according to the
negative exponential function (more details can be found in Chen (2013)
and Chen (2016)). Additionally, model residuals were plotted on a map
to check possible patterns of spatial autocorrelation.

2.2.4. Example of PCA-mediated data leakage using the LUCAS dataset
(Supplementary File S2)

To exemplify the occurrence of overfitting arising from data leakage
during soil sensor calibration within a larger dataset, we employed the
comprehensive LUCAS dataset (Nocita et al., 2014; Stevens et al., 2013).
Three distinct scenarios were examined, each involving the application
of principal component analysis (PCA) on Vis-NIR spectra:

1. Scenario 1: Leaked PCA — PCA performed on the entire dataset
before data splitting, without hyper-parameter tuning for the
optimal number of components.

2. Scenario 2: Leaked PCA with Tuning — PCA was performed on the
entire dataset before data splitting, with the optimal number of

components determined through cross-validation on the entire
dataset.

3. Scenario 3: Non-Leaked PCA — PCA was integrated into a PCR model
using a pipeline.

In all scenarios, principal components were used as predictors within
a linear regression model. Subsequently, the trained models were eval-
uated on a completely independent dataset. Detailed methodological
descriptions for each step are provided in Supplementary File S2.

2.2.5. Model performance metrics

The prediction performance of the cross-validated models were
assessed using the ratio of performance to interquartile (RPIQ), the root
mean squared error (RMSE) and the coefficient of determination (Rz).
Those performance metrics are calculated as follows:

n S\2
RZ — 1_21:1(Y1‘}:i)2 )
2 (viY)
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1. Randomly shuffle and divide the entire dataset into 10 complementary folds of approximately 10% of
the total data each to perform a 10-fold cross-validation (cv).

2. (Outer loop for model evaluation) For fold k in the 10 folds:

a) Set fold i as the outer-test set.
b) Set the remaining nine folds as the outer-training set.

c) Tune the optimal number of components within the outer-training set via a nine-fold cv (the
inner-cv).

i. Setfold I as the inner-test set.
ii. Leave the eight remaining folds of the outer-training set as the inner-training set.

ili. Train PCRs with one to ¢ components on the inner-training set and test on the
inner-test set.

e) Select the optimal number of components as the one that presents the lowest average MSE
value among all the inner-iterations.

f) Train a PCR with the tuned number of components on the outer-training set and test on the
outer-test set.

Outer loop for model | Complete dataset (100%) |
evaluation: 10-fold cv

lﬁouter-iter.| 1 I zl 3

|
annann

outer-training set: 90% outer-test set: 10% i

Inner loop for hyper- ! | E
parameter tuning: 9-fold cv !

i N i
E E1ﬂnner-i0er.| 1 | 2 | 3 4 s | 3 | 7 | 8 | E E
i 1 k4 i
i 3 inner-training set inner-test set : Test PCR on E
i { : outer-test set E
5 E ' PCR Pipé]ine E 4 E
P _(n_components = q) _ ; i
P ! ["PCR trained on outer- ;
E ' PCR fitted with q Test fitted PCRon || training set and fitted !
[ components "1 inner-test set 71 with tuned number of ]
. s S J components |

Fig. 4. Scenario L3: PCA pipelined into a PCR model with hyper-parameter tuning. A: Steps for model training and testing via a nested cross-validation (cv). B: A
diagram showing the first outer-cv iteration in which 10% of the data was left as the outer-test set (fold 10, black square). The remaining 90% of the data was left as
the outer-training set (folds 1-9, white squares). In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training
set and the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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‘

1. Interpolate the NIR spectra to soil sample points using the entire dataset before data splitting.

2. Shuffle the interpolated spectra and soil target variable, and divide them into 10 complementary folds,
each containing approximately 10% of the total data.

a) Set fold k as the outer-test set.
b) Use the remaining nine folds as the outer-training set.

c) Tune the optimal number of components within the outer-training set via a nine-fold cv (the
inner-cv).

d) (Inner loop for hyper-parameter tuning) For fold / in outer-training set:

i. Set fold [ as the inner-test set.
ii. Leave the eight remaining folds of the outer-training set as the inner-training set.

iii. Train PCRs with one to ¢ components on the inner-training set and test on the
inner-test set.

e) Select the optimal number of components as the one that presented the lowest average
MSE value among all the inner-iterations.

f) Train a PCR with the tuned number of components on the outer-training set and test it on
the outer-test set.

I Complete dataset (100%) |

Outer loop for model
evaluation: 10-fold cv

18t outer-iter. | 1

PCR trained on outer-

.| training set and fitted

with tuned number of
components

PCR fitted with g Test fitted PCR on
components inner-test set

E 2 3 4 B . 7 s ® ;
: | :
i Inner loop for hyper- outer-training set: 90% outer-test set: 10% "
; parameter tuning: 9-fold cv g oe .
E E 1% inner-iter | 1 2 | 3 " 5 . 7 N E E
e 1 v '
‘o inner-training set inner-testset | TestPCR on 5
5 { : outer-test set ]
1 5 PCR Pipeline E i
! : (n_components = q) ! '

Fig. 5. Scenario F1: Interpolation of the complete dataset as a whole. A: Steps for model training and testing via a nested cross-validation (cv). B: A diagram showing
the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1-9, white squares) was
left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training set and the inner-test
set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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\

1. Randomly shuffle the complete dataset and divide it into 10 complementary folds, each containing
approximately 10% of the total data, to perform a 10-fold cv (outer-cv).

a) Set fold k as the outer-test set.

b) Use the remaining nine folds as the outer-training set.

c) Interpolate NIR spectra to soil sample points using the outer-training set as a whole.
d) Interpolate NIR spectra to soil sample points using the data of the outer-test set.

e) Tune the optimal number of components within the outer-training set via a nine-fold cv
(inner-cv).

i. Set fold I as the inner-test set.
ii. Leave the eight remaining folds of the outer-training set as the inner-training set.

iii. Train PCRs with one to ¢ components on the inner-training set and test on the
inner-test set.

g) Select the optimal number of components as the one that presented the lowest average
MSE value among all the inner-iterations.

h) Train a PCR with the tuned number of components on the outer-training set and test it on
the outer-test set.

Outer loop for model | Complete dataset (100%) |
_Svamston: ihdaacy - e | ....................................

1“outer-iter.|1|:|a|‘ slolvlclo

e
Inner loop for hyper-

PCR trained on outer-

training set and fitted

with tuned number of
components

PCR fitted with g Test fitted PCR on
components inner-test set

parameter tuning: 9-fold cv outer-training set: 90% outer-test set: 10%
; :
E 18t inner-iter. | 1 | 2 l 3 I s | s | . I 7 | s | E
i :
i inner-training set inner-test set . Test PCR on
! ! outer-test set
i e l ,,,,,,,,,,, :
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' ' ' '
! i (n_components = g) ; :
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i :
H ]
i :
i '
; :
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Fig. 6. Scenario F2: Independent interpolation for the training and test sets. A: Steps for model training and testing via a nested cross-validation (cv). B: A diagram
showing the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1-9, white
squares) was left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training set and
the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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w

1. Shuffle and divide the complete dataset into 10 complementary folds, each containing about 10% of
the total data, for performing a 10-fold cross-validation (the outer-cv) before spectra interpolation.

2. Interpolate the sensor NIR spectra to soil sample points within each fold.
3. (Outer loop for model evaluation) For fold & in the 10 folds:

a) Setfold k as the outer-test set.
b) Use the remaining nine folds as the outer-training set.

c) Tune the optimal number of components within the outer-training set via a nine-fold cv
(inner-cv).

d) (Inner loop for hyper-parameter tuning) For fold ! in outer-training set:

i. Set fold 1 as the inner-test set.
ii. Leave the eight remaining folds of the outer-training set as the inner-training set.

ili. Train PCRs with one to ¢ components on the inner-training set and test on the
inner-test set.

e) Select the optimal number of components as the one that presented the lowest average
MSE value among all the inner-iterations.

f) Train a PCR with the funed number of components on the outer-training set and test it on
the outer-test set.

|  Complete dataset (100%) |

$
5
4
¥

Outer loop for model
evaluation: 10-fold cv

Inner loop for hyper-
parameter tuning: 9-fold cv

7
"W-"ef-l'I*l'l‘l]l-l'l'|°

outer-training set: 90% outer-test set: 10%

)
'
'
'
'
'
'
'
'
'
]
'
'
]
'
]
'
'
]
'
'
'
'
'
'
'
'
'
'
'
]
'
'
]
'
'
'
]
'
'
'
]
'
'
'
'
'
'
'
'
'
'
'
'
'
]
'
'
'
'
'
]
]
'
'
'
]
'
'
]

.

inner-training set inner-test set Test PCR on
PYSIRRSS. OS—— outer-test set
- PCR Pipeline
] (n_components = q) : T
PCR trained on outer-

PCR fitted with q .| Testfitted PCR on
components inner-test set

| training set and fitted
with tuned number of
components

cesedescsssssnnssnssnnssnnnnnmee

........................................................................

(caption on next page)
11



J. Correa et al.

Computers and Electronics in Agriculture 239 (2025) 110920

Fig. 7. Scenario F3: Independent interpolation within each fold of cross-validation. A: Steps for model training and testing via a nested cross-validation (cv). B: A
diagram showing the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1-9,
white squares) was left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training
set and the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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where n is the number of testing samples; y; is the observed value for the

target variable y of the soil sample i; J; is the predicted values of the

sample i; ¥ is the mean of the observed values of the samples (y =
15 ,v1); IQR is the interquartile range of the observed values.

2.2.6. Software and hardware platform

Data management and plotting were done in R (R Core Team, 2019)
using packages from ‘tidyverse’ (Wickham et al., 2019). Models were
calibrated using the Scikit-learn (version 0.23.1; (Pedregosa et al.,
2011)) library of Python (v3.7.10; https://www.python.org). Model
training and data analyses were done on a single machine with the
following specifications: Intel Core i7-10850H, 2.70 GHz, 6 cores, 12
logical processors; 16 GB RAM; Windows 10.

3. Results and discussion
3.1. Results for lab-based soil NIR spectroscopy

The results obtained for predicting the soil properties, total nitrogen
(TN), total organic carbon (TOC) and pH by applying the three labora-
tory scenarios are presented in Table 3. In addition, Fig. 8 illustrates
scatterplots of measured soil properties versus predicted ones for each
model on the test set. To summarize the results, the predictions on the 10
training and test sets of the cross-validation were pooled to calculate
performance metrics and graph the scatterplots. In all cases across the
laboratory scenarios, the models performed better in the training set
than in the test set (on average 0.90 and 0.50 in terms of RZ, respec-
tively). This large difference indicates overfitting in certain scenarios
(Table 3).

Among all the scenarios, in general, the best performances on the test
set were attributed to scenario L3 (mean R? of 0.94, 0.88 and 0.85 for
TN, TOC and pH, respectively) followed by scenario L1 (mean R? of
0.91, 0.88 and 0.80 for TN, TOC and pH, respectively) (Table 3). In
contrast, scenario L2 exhibited the poorest performance across all target
soil properties, with R? values of 0.91 and —0.24 on training and test
sets, respectively. This discrepancy is further highlighted by the
considerably higher average RMSE on the test set for L2, which was two
to five times greater than that of L1 and L3 (Table 3). A negative R?
indicates that the difference between the true values and the predictions
(residual sum of squares) is greater than the difference between the true
values and the mean (total sum of squares; (see Eq. (1). In the present
study, scenario L2 showed a highly negative R? value and high RMSE
values in the test set, indicating that this model is overfitted and has poor
predictive performance (Table 3 and Fig. 8). RPIQ was consistent across
the scenarios for different soil target variables, with scenario L2 having
the highest RPIQ in the training set and the lowest RPIQ in the test set,
indicating overfitting. In contrast, scenarios L1 and L3 consistently
performed well on both training and testing sets.

In scenario L1, PCA was done before data splitting and no informa-
tion about the target variable was considered to tune the number of
components (Table 2). This introduced a dependency between the
training and test sets. Under this scenario, the good performance
observed on the test set is due to data leakage. This becomes evident
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Table 3
Mean model performance on cross-validation test and training sets for each soil
target variable under the three laboratory scenarios (mean =+ std).

Soil target Scenario* Set RPIQ** RMSE RP
variable
TN (%) L1 Training 4.71 + 0.01 + 0.94 +
0.45 0.00 0.00
Test 3.93 + 0.02 + 0.91 +
1.89 0.00 0.04
L2 Training  4.84 + 0.01 + 0.95 +
0.53 0.00 0.00
Test 0.99 + 0.07 + —0.34 +
0.49 0.02 0.70
L3 Training  7.01 £ 0.01 + 0.97 +
0.89 0.00 0.00
Test 4.54 + 0.01 + 0.94 +
2.00 0.00 0.02
TOC (%) L1 Training  3.94 + 0.16 + 0.93 +
0.30 0.01 0.01
Test 3.60 + 0.18 + 0.88 +
1.70 0.05 0.08
L2 Training  4.00 + 0.15 + 0.93 +
0.34 0.01 0.01
Test 0.98 + 0.66 + -0.36 +
0.52 0.20 0.70
L3 Training 4.73 + 0.13 + 0.95 +
0.38 0.01 0.01
Test 345+ 0.18 + 0.88 +
1.66 0.04 0.07
pH L1 Training  5.03 £ 0.28 + 0.86 +
0.14 0.00 0.01
Test 3.77 + 0.31 + 0.80 +
1.77 0.05 0.07
L2 Training  5.07 + 0.28 + 0.86 =
0.18 0.01 0.01
Test 1.69 + 0.71 + —-0.01 +
0.54 0.27 0.81
L3 Training 6.29 + 0.22 + 0.91 +
0.36 0.01 0.01
Test 4.27 + 0.28 + 0.85 +
1.90 0.05 0.06

* In the L3 scenario, the mean performance is calculated based on the outer-
training set for the training set and the outer-test set for the test set.

**RPIQ: ratio of performance to interquartile range; RMSE: root mean squared
error; R% the coefficient of determination. L1: PCA before data splitting and
without hyper-parameter tuning; L2: PCA pipelined into a PCR model without
hyper-parameter tuning; L3: PCA pipelined into a PCR model with hyper-
parameter tuning.

when comparing the results with those of scenario L2 (Table 3). The only
difference between these two scenarios is that L1 used a leaky pipeline
while L2 was based on a non-leaky pipeline (Table 2). Both scenarios
had the same number of untuned components. In both scenarios, linear
regression was trained and tested using 15 PCs as predictor variables.
However, in scenario L2, the cv-training and cv-test sets at each cross-
validation iteration were not subjected to a common PCA to avoid any
dependency between them. Despite this, scenario L2 showed the worst
performance. This means that the determination of the optimal number
of components is a key to achieve a good performance and that their
heuristic determination fails to generalize well in unseen data. This
observation is consistent with the findings obtained through the analysis
of the larger, more general LUCAS dataset. As elaborated in Supple-
mentary File S2, applying PCA to the entire dataset prior to data split-
ting, as exemplified in LUCAS scenarios 1 and 2, leads to the creation of
non-independent training and test sets. This consequently results in
overfitted regression models characterized by artificially high test
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Fig. 8. Prediction performance of trained models on the test set under the three laboratory scenarios for A) soil total nitrogen (TN), B) soil total organic carbon
(TOCQ), and C) soil pH (pH). L1: PCA before data splitting and without hyper-parameter tuning; L2: PCA pipelined into a PCR model without hyper-parameter tuning;
L3: PCA pipelined into a PCR model with hyper-parameter tuning. RPIQ: ratio of performance to interquartile range; RMSE: root mean squared error; R% the co-

efficient of determination. The black and dashed line is the 1:1 line.

performance while demonstrating poor generalization capabilities when
confronted with completely independent data. Moreover, the process of
hyper-parameter tuning, such as the selection of the optimal number of
components, is also compromised in LUCAS scenario 2, ultimately
leading to models that exhibit poor performance when evaluated on
unseen datasets.

The performance of the PCR model on the test set in scenario L1 was
inferior to that observed in scenario L3. This may be attributed to the
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fixed number of components (15), which may have been insufficient to
overfit the data to the fullest extent possible. It is well known that
increasing the number of components can lead to a higher degree of
overfitting. Hence, while the use of a larger number of components is
likely to improve the performance of the model, it is also expected to
result in a greater degree of overfitting, particularly in scenario L1
compared to scenario L3.

Within scenario L2, PCA was done after data splitting but no
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information about the target variable was considered for tuning the
number of components (Table 2). This led to independency between the
training and test sets, however resulting in a model not being general
enough to predict new data. According to Table 3 and Fig. 8, models
trained under this scenario suggest overfitting. While they performed
well on the training data, their performance on the unseen test data was
significantly worse, particularly compared to scenarios L1 and L3. In
both L2 and L3, no hyperparameter tuning was performed, and both
models shared the same number of components (Table 2). Comparing
these scenarios highlights the impact of data leakage, as seen in the
higher test-set performance of L1 (Table 3), where data leakage was
present, compared to L2, which follows a no data leakage approach.

In scenario L3, PCA was pipelined into a PCR model (Fig. 2). This
way, the test and training sets within each iteration of the cross-
validation were independent of each other, at least in terms of stan-
dardization and PCA (Figs. 3 and 4). As implemented in scikit-learn, if
correctly pipelined, standardization first computes the mean and stan-
dard deviation from the training set and stores them for later use in
centering and scaling the test set (Pedregosa et al., 2011). Since the
tuning of the optimal number of components was based on a PCR, the
information on the target variable was considered. This is an additional
reason why the performance of the model under this scenario was better
as compared to scenario L1. Since the training and hyper-parameter
tuning steps were done in independent data sets, the tuned model of
scenario L3 was much better than the other scenarios in predicting the
target variable in the outer-test set (Table 3 and Fig. 8). Thus, optimal
hyper-parameter tuning should be done using independent data sets to
prevent data leakage. Additionally, when data leakage is not an issue,
hyper-parameter tuning is preferred over heuristic methods for deter-
mining the number of components. Similar results were observed using
the LUCAS dataset (Supplementary File S2). In the non-leaked LUCAS
scenario 3, where PCA was integrated into a PCR model within a pipe-
line, independence between training and test sets was maintained dur-
ing each cross-validation iteration. By performing model training and
hyper-parameter tuning on independent datasets, scenario 3 demon-
strated superior predictive performance on unseen data compared to the
scenarios involving data leakage.

The performance of L1 is attributed to data leakage, as evidenced by
its comparison with L2. However, despite suffering from overfitting due
to leakage, L1 still performed slightly worse than L3. This suggests that
L3's superior performance is not solely due to its lack of data leakage but
also because it incorporates appropriate hyperparameter tuning, which
enhances model generalization. Furthermore, the lower performance of
L1 may be attributed to the small number of PCA components selected
for this scenario, which restricted the model’s ability to further overfit
and, at least artificially, outperform L3.

Since L2 and L3 are both no leakage scenarios (Table 2), L2's poor
test-set performance is due to its selected number of components lacking
generalization for accurate predictions. Hyperparameter tuning is
essential to prevent overfitting, as evidenced by L3's improved perfor-
mance (Table 3). Therefore, optimal hyperparameter tuning should al-
ways be conducted on independent datasets to prevent data leakage and
ensure that the tuned hyperparameters are general enough to predict
unseen data, avoiding overfitting.

Results of the BooBen laboratory scenarios are consistent with those
obtained using the LUCAS dataset (Supplementary File S2): Data leakage
occurs during the calibration of soil Vis-NIR spectra to target soil
properties using principle component analysis (PCA) when the trained
model performs better on datasets that share a common PCA with the
training set. This PCA-mediated data leakage leads to over-fitted models
that perform poorly on unseen and independent datasets. Data leakage
also affects hyper-parameter tuning.

When comparing our study with other laboratory-based studies
which utilized the LUCAS dataset, such as Tavakoli et al. (2023) and
Zhong et al. (2021) or those found in the Supplementary File S2, our
model shows better performance in terms of R? for TN under the L3
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scenario (0.94 versus 0.88-0.93). However, our results suggest that the
models developed by Tavakoli et al. (2023), in which similar pipeline
has been used, have a superior overall fit to the data for TOC and pH
compared to our models (R2 ~ 0.88 versus 0.95 and 0.85 versus 0.94,
respectively). In terms of R? values, the models developed by Tavakoli
et al. (2023) can explain a larger proportion of the variability observed
in the target variables in the LUCAS dataset. Nonetheless, it is important
to bear in mind that comparing R? values across different datasets has
limitations since it strongly depends on the statistical distribution of the
values (Alexander et al., 2015), and factors such as the sample size,
geographic distribution, and measurement techniques can influence the
model’s performance.

3.2. Results from calibrating field-based (in-situ) soil NIR spectroscopy

In this research we did not the address to what extent the parame-
terization of kriging may influence model’s performance and contribute
to data leakage. Settings such as the number of nearest neighbors used
for interpolating (e.g., the ‘nmax’ argument in the ‘gstat::krige’ function
in R) could affect results and merit further investigation in a dedicated
study.

Table 4 presents the results of predicting the soil properties for the
three field scenarios on both outer-test and outer-training sets. More-
over, scatterplots of measured soil properties versus predicted ones for
each model on the outer-test set are shown in Fig. 9. For presenting the

Table 4
Mean model performance on outer-test and outer-training sets for each soil
target variable under the three field scenarios (mean =+ std).

Soil target Scenario  Set RPIQ* RMSE : 4
variable
TN (%) F1 Training 6.21 + 0.01 + 0.97 £
0.47 0.00 0.00
Test 4.16 + 0.02 + 0.93 +
1.64 0.00 0.02
F2 Training 6.09 + 0.01 + 0.97 +
0.54 0.00 0.01
Test 2.83 + 0.02 + 0.83 +
1.20 0.01 0.10
F3 Training  4.57 £ 0.01 + 0.94 +
0.37 0.00 0.00
Test 3.89 + 0.02 + 0.91 +
2.31 0.00 0.04
TOC (%) F1 Training  5.07 + 0.12 + 0.96 +
0.57 0.01 0.01
Test 3.58 + 0.17 + 0.90 +
1.60 0.05 0.05
F2 Training  5.72 + 0.11 &+ 0.97 &+
1.04 0.02 0.01
Test 2.56 + 0.25 + 0.78 +
1.39 0.07 0.13
F3 Training  3.79 + 0.16 &+ 0.92 +
0.52 0.02 0.01
Test 3.27 + 0.20 + 0.87 +
1.96 0.09 0.07
pH F1 Training 5.59 + 0.26 + 0.88 +
0.95 0.04 0.04
Test 3.01 + 0.38 + 0.70 +
0.96 0.07 0.14
F2 Training  6.57 £ 0.23 + 0.90 +
2.22 0.05 0.04
Test 22+ 0.52 + 0.46 &+
0.51 0.15 0.26
F3 Training  4.69 £ 0.31 + 0.81 +
1.11 0.07 0.09
Test 2.4+ 0.48 + 0.55 +
0.59 0.12 0.19

* RPIQ: ratio of performance to interquartile range; RMSE: root mean squared
error; R% the coefficient of determination. F1: Interpolation on the complete
dataset as a whole; F2: Independent interpolation for the training and test sets;
F3: Independent interpolation within each fold of cross-validation.
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Fig. 9. Prediction performance of the models on the outer-test set under the three field scenarios for A) soil total nitrogen (TN), B) soil total organic carbon (TOC),
and C) soil pH (pH). F1: Interpolation on the complete dataset as a whole; F2: Independent interpolation for the training and test set; F3: Independent interpolation
within each fold of cross-validation. RPIQ: ratio of performance to interquartile range; RMSE: root mean squared error; R%: the coefficient of determination. The black

and dashed line is the 1:1 line.
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results, the predictions on the 10 outer-test sets of the cross-validation
were pooled to calculate performance metrics and create scatterplots.

Across all models and field scenarios, the best predicted soil property
was TN followed by TOC and pH, respectively. Scenario F1 showed the
best performance on the test set, with mean R%0£0.93, 0.90, and 0.71 for
TN, TOC, and pH, respectively. This was followed by scenario F3 with
mean R? of 0.91, 0.87, and 0.55 and scenario F2 with mean R? of 0.83,
0.78, and 0.46 for TN, TOC, and pH, respectively. In general, the RMSE
values of scenario F2 on the test set were about 10 to 30 % higher than
those of scenarios F1 and F3. These results illustrate that the perfor-
mance of the models was different depending on the data leakage sce-
narios. Comparing the results of lab- and field-based scenarios revealed
that they are comparable, especially for TN and TOC, and even in some
cases, the field results were even better (Tables 3 and 4). Field-based soil
spectroscopy is susceptibility to ambient interferences, and thus, model
predictions relying on field spectra are anticipated to exhibit lower
performance compared to those based on laboratory spectral analysis
(Bonecke et al., 2021; Hong et al., 2018; Kodaira and Shibusawa, 2020;
Stenberg et al., 2010; Vogel et al., 2022). This suggests that the relatively
good performances of our field scenarios F1 and F2 may be attributed to
the impact of data leakage caused by interpolation.

It should also be considered that the only equivalent scenarios be-
tween the laboratory and field analyses are scenarios L3 and F3
(Table 2). In both of them, PCA was pipelined and applied to the training
set during cross-validation. Furthermore, each data fold under scenario
F3 was interpolated independently from other folds. Therefore, the
differences in the performance of these scenarios can explain the dif-
ferences between the predictions of laboratory and field measurements
using mobile sensors. As expected, lab scenario L3 had better perfor-
mances on the test set than field scenario F3. Scenario L3 achieved R?
(RMSE) values of 0.94 (0.01), 0.88 (0.18), and 0.85 (0.28), while sce-
nario F3 gave the R? (RMSE) values of 0.91 (0.02), 0.87 (0.20), and 0.55
(0.48), for TN, TOC, and pH, respectively. The high difference observed
for pH is due to the fact that this soil property can be considered much
more dynamic compared to TN and TOC (Zhang et al., 2019). Note that
the pH values of the soil samples were obtained in December 2020,
whereas the sensor measurements were conducted in March and April
2020. Additionally, soil pH does not exhibit a direct spectral response
within the Vis-NIR region (Stenberg et al., 2010). Thus, these factors
collectively increase the complexity of accurately predicting pH using
only a mobile NIR sensor.

In scenario F1, the models achieved the best performances of all field
scenarios for all the three soil properties (Table 4 and Fig. 9). This may
be mainly due to data leakage as the PCA was pipelined into a PCR
model, which helped encapsulating the preprocessing and training steps
into the cross-validation. However, due to the interpolation step applied
to the entire dataset before splitting, the 10 folds in this scenario may be
dependent (as shown in Fig. 5).

Within scenario F2, two independent interpolations were applied on
the reflectance values of the training and test sets in each of the 10 outer
cross-validation iterations. However, the inner-training and inner-test
sets within each inner cross-validation iteration were dependent. They
were spatially connected by the interpolation step during the outer
iteration (Fig. 6). Thus, the number of components and models were not
general enough to predict unseen data of the outer-training set.
Furthermore, scenario F2 exhibited the highest discrepancy in model
performances between the outer-training and the outer-test sets, with
relative differences in R? of approximately 14, 20, and 49 % for TN, TOC,
and pH, respectively (Table 4). This disparity suggests that the models of
scenario F2 may led to stronger overfitting as compared to those of
scenarios F1 and F3. Since scenario F2 utilizes independent outer-
training and outer-test sets, the high performance observed in scenario
F1, where both outer and inner sets are interdependent, can be directly
attributed to data leakage. Similarly, in LUCAS scenario 2
(Supplementary File S2), where PCA was applied before data splitting,
hyper-parameter tuning was performed on interdependent cross-
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validation folds, as in scenario F2. This resulted in poor generaliza-
tion, highlighting the crucial role of truly independent inner-sets for
optimal hyper-parameter tuning. Our findings emphasize that even with
independent training and test sets, the lack of independent inner-sets for
hyper-parameter tuning can lead to suboptimal model performance and
poor generalization to unseen data.

In scenario F3, to ensure complete independence between the data-
sets, separate interpolation steps were applied on each of the 10 cross-
validation folds (Fig. 7). Hence, the PCR performance on unseen data
increased compared to scenario F2, for all the three soil properties. This
improvement, in terms of R? was 9, 10, and 16 %, for TN, TOC, and pH,
respectively (Table 4 and Fig. 9). This is further illustrated by the non-
leaked LUCAS scenario 3 (Supplementary File S2) and the BoofBen lab-
oratory scenario L3. By performing model training and hyper-parameter
tuning on both independent outer and inner datasets, these non-leaked
scenarios yielded models that outperformed their leaked counterparts
in predicting the target variables on unseen data. These results highlight
the crucial importance of proper pipelining when employing nested
cross-validation. This ensures not only the independence of outer-
training and outer-test sets but also the independence of inner-training
and inner-test sets, effectively mitigating the risk of overfitting.

Upon analyzing Tables 3 and 4, it is apparent that the RMSE values
for different soil properties vary depending on the data leakage across
the scenarios. The laboratory measurements had higher prediction ac-
curacy as compared to field measurements. In terms of R%, TN and TOC
measurements showed more accurate predictions than pH measure-
ments. Notably, scenario L2 for both TN and TOC measurements had
negative R? values, which suggests that the models performed worse
than the baseline model (using the mean value of the target variable as
the prediction). Furthermore, we discovered that our models consis-
tently produced lower RMSE values than the standard deviation of the
target soil property, except for scenario L2 (Table 1, Figs. 8 and 9).
Hence, it is evident that a model trained under data leakage, such as
those in scenario L2, is insufficiently generalizable to make precise
predictions on unseen data.

As PCR can be seen as a stacked algorithm in which a PCA is incor-
porated, it is very easy to encapsulate it with other training workflow
steps, such as other preprocessing/feature engineering methods (data
scaling, transformation, etc.) and model fitting, into one callable func-
tion, also known as pipeline. Thus, a pipeline is a sequence of data
preprocessing and modeling steps that can be manipulated as a single
unit (Fig. 2). In this way, pipelines help preventing data leakage by
ensuring that only those samples from the training set are used for data
preprocessing and model fitting (Pedregosa et al., 2011). E.g., when a
pipeline with the trained model is applied to the test set, also new and
independent preprocessing steps are applied on the test set (Figs. 2-4).
To avoid data leakage, we encourage researchers to design leak-free
pipelines. These pipelines should encapsulate all preprocessing
methods (such as data normalization, scaling, dimensionality reduction,
etc.), model training and (if needed) spatial interpolation. A leak-free
pipeline ensures that the training and test sets are completely indepen-
dent of each other.

3.3. Results for spatial autocorrelation (SAC)

Spatial autocorrelation (SAC) may cause dependence between
training and test sets used for model calibration, since nearby mea-
surements are dependent (Karasiak et al., 2022).

Randomly assigning samples and measurements to different folds
during data splitting can result in nearby samples being placed in
different folds, introducing some degree of interdependence between
folds.

Models affected by SAC exhibit residuals that are dependent of each
other. Therefore, when employing random cross-validation, which does
not account for spatial autocorrelation between training and test data,
the model’s performance might be artificially inflated (Kattenborn et al.,
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2022; Ploton et al., 2020).

Therefore, a data splitting design ensuring spatial independence
between the training and test sets should be the standard approach for
validation of models using spatial data (Karasiak et al., 2022). One
possible way to address this issue is to segregate the training and test sets
into spatial blocks or clusters during the data-splitting procedure (Meyer
et al., 2019; Karasiak et al., 2022). Under this strategy, distance-based
buffers around hold-out samples are defined to ensure the learning
model uses only spatially independent data. These distances can be
determined using a variogram based on the target variable or predictors.
This means the minimal spatial distance between the training and test
sets should be larger than the largest variogram range obtained among
the target variable and predictors. Incorporating spatial dependence
(autocorrelation) into the model specifications is another strategy
(Hurlbert, 1984; Dormann et al., 2007; Liu et al., 2022).

However, spatial cross-validation can lead to pessimistic map accu-
racy assessments without notable benefits over standard -cross-
validation methods, and both approaches have the potential to intro-
duce bias into map accuracy estimates (Wadoux et al., 2021).

Despite using random cross-validation, we generally did not find
strong evidence of spatial autocorrelation (SAC) in our results, as
assessed through Moran’s I on model residuals (see Table 5 and Sup-
plementary Figs. S5 and 56). Notably, the Moran’s I values for the actual
target soil variables, measured in the soil samples, were significantly
higher than those for model residuals. In the plots, this difference
appeared as a gradient across the field, with the highest target variable
values concentrated in a specific area, while the model residuals
exhibited a more random distribution without any clear pattern.

Field scenarios, interestingly, displayed lower Moran’s I values and
variogram ranges than laboratory scenarios, with F3 exhibiting the
lowest Moran’s I. This arises from the lower degree of SAC between the
outer-training and outer-test sets in F3 compared to other field sce-
narios, as these sets lacked a common spatial interpolation (Fig. 7).
However, it is essential to note that the variogram ranges were typically
smaller than the mean distance between sampling points and even
smaller than 25 % of the smallest distances. In practical terms, this
suggests that in the case of TN and TOC in scenario F3, fewer than four
samples per fold might exhibit SAC. Conversely, in scenario F3, pH
displayed a notable high absolute Moran’s I value, potentially attributed
to the model’s relatively lower performance, which could amplify the
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presence of autocorrelation when other sources of data leakage are ab-
sent. Consistent with this observation, scenario L2, characterized by PCA
applied to independent fold sets without hyper-parameter tuning and
displaying the poorest test performance, also exhibited the highest ab-
solute Moran’s I values. Additionally, L2 had the largest variogram
range, indicating a trend where higher Moran’s I values corresponded to
larger ranges.

As expected, F1 and F2 (both characterized by spatially dependent
folds) exhibited relatively high absolute Moran’s I values, highlighting
the connection between data leakage, spatial interpolation, and,
notably, hyper-parameter tuning (as evidenced in F2), leading to
increased spatial autocorrelation (SAC). While we mostly observed no
significant SAC in model residuals, we cannot entirely rule it out.
Although non-overlapping points among folds might mitigate autocor-
relation, inter-fold distances may remain too small to eliminate it.

The lack of significant spatial autocorrelation (SAC) in model re-
siduals could also be attributed to the specific characteristics of our
datasets. Supplementary Fig. S1 illustrate the even distribution of
measurement points from south to north across a rectangular area with
three columns (transects) and 53 rows. This design increases the average
distance between sampling points compared to a square or circular
layout, helping to reduce spatial dependency between data points when
points with large separation distances were selected. By assigning each
sampling point to cross-validation folds, the average spatial distance
between folds becomes sufficiently large to partially mitigate autocor-
relation. While some points in different folds may still exhibit spatial
dependence, the majority is spaced far enough apart to minimize this
effect.

Further research is needed to comprehensively investigate and
manage potential autocorrelation within our dataset. Despite numerous
publications addressing this issue, particularly in remote sensing
(Kattenborn et al., 2022; Meyer and Pebesma, 2022; Mila et al., 2022;
Ploton et al., 2020; Rocha et al., 2018; Wadoux et al., 2021), none, to the
best of our knowledge, have addressed it within the context of proximal
soil sensing modeling yet.

There is a well-known positive relationship between model
complexity and the risk of overfitting (Hawkins, 2004). Highly flexible
and overparameterized models, such as polynomial models, may
incorporate irrelevant predictors that allow them to fit complex,
nonlinear patterns. However, this flexibility can become a liability when

Table 5
Moran’s I and variogram parameters for model residuals across laboratory and field scenarios for each soil target variable.
Soil target variable Scenario* Moran’s I Variogram**
Observed p value Model Psill Range Kappa

TN L1 0.0005 0.181 Sph 0.000 46.2 -
L2 0.0721 0.000 Ste 0.003 74.0 10.0
L3 —0.0067 0.937 Sph 0.000 48.2 -
F1 —0.0087 0.649 Ste 0.000 14.0 1.0
F2 —0.0107 0.396 Sph 0.001 20.1 -
F3 —0.0032 0.545 Ste 0.000 20.0 0.3

TOC L1 —0.0046 0.732 Sph 0.010 47.3 -
L2 0.0609 0.000 Ste 0.310 93.3 1.4
L3 —0.0052 0.821 Ste 0.005 21.0 10.0
F1 —0.0102 0.450 Sph 0.033 21.3 -
F2 —0.0072 0.869 Ste 0.070 9.2 10.0
F3 —0.0065 0.979 Ste 0.049 11.8 0.7

pH L1 —0.0005 0.259 Ste 0.064 56.9 1.3
L2 0.0184 0.000 Gau 0.349 77.9 -
L3 —0.0048 0.764 Ste 0.043 58.0 0.2
F1 —0.0079 0.761 Ste 0.027 65.0 10.0
F2 —0.0054 0.852 Ste 0.302 13.2 0.6
F3 0.0087 0.003 Ste 0.184 92.9 0.6

*L1: PCA before data splitting and without hyper-parameter tuning; L2: PCA pipelined into a PCR model without hyper-parameter tuning; L3: PCA pipelined into a PCR
model with hyper-parameter tuning; F1: Interpolation on the complete dataset as a whole; F2: Independent interpolation for the training and test sets; F3: Independent

interpolation within each fold of cross-validation.

** Sph: Spherical model; Ste: Matérn model with M. Stein’s Parameterization; Gau: Gaussian model; Psill: partial sill (psill = sill — nugget); Kappa: Smoothness

parameter for the Matérn models.
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the model begins to capture noise rather than true signal, leading to
strong performance on training data but poor generalization to unseen
samples. To address complexity-induced overfitting, machine and deep
learning algorithms commonly employ regularization techniques such
as penalization, dropout, weight decay, pruning, and others (Zou and
Hastie, 2005; Srivastava et al., 2014; Manzali and Elfar, 2023; Parhi and
Nowak, 2023). In the past year, increasingly complex nonlinear algo-
rithms, such as tree-based methods and deep learning models, have
gained popularity in soil sciences (Padarian et al., 2020; Wadoux et al.,
2020). However, pipelines prone to overfitting due to high model
complexity may be further compromised by data leakage or spatial
autocorrelation. It is therefore essential to design pipelines with
algorithm-specific regularization parameters carefully. Improper tuning
of these settings may result in models that are especially vulnerable to
overfitting. Understanding the combined impact of model complexity,
data leakage, and spatial autocorrelation effects in soil spectroscopy
warrants further investigation.

The concern with leaky pipelines goes beyond overly optimistic
performance metrics. By failing to reflect how a model would behave on
truly unseen data, they compromise reproducibility, which is essential
for the reliable deployment of machine learning models in real-world
applications. With growing concerns about reproducibility in the prac-
tical use of machine learning-based solutions (Kapoor and Narayanan,
2023), addressing data leakage explicitly contributes not only to meth-
odological rigor but also to the credibility of machine learning appli-
cations in agricultural production systems.

4. Conclusions

Despite recognition and study of data leakage in fields such as
medicine, genomics, and engineering, no comprehensive survey or study
has been specifically addressing this issue in soil science, particularly
within soil proximal sensing. This paper aims to illustrate the conse-
quences of data leakage on predicting soil properties using both labo-
ratory- and field-based soil NIR spectroscopy. We explored the risk of
data leakage caused by PCA and spatial interpolation during the cali-
bration of models using soil NIR spectra to predict soil properties,
including total nitrogen (TN), soil organic carbon (SOC), and pH. To
enhance the generalizability of our findings, we further investigated
spectral data from soil samples collected across various geographic re-
gions within the European Union, using the LUCAS dataset
(Supplementary File S2). This study emphasizes that preprocessing
methods, like dimensionality reduction applied to the entire dataset
prior to data splitting, compromise the independence of training and test
sets. To prevent data leakage, proper pipelining facilitates the inde-
pendent application of preprocessing methods to training and test sets,
thereby ensuring that models generalize effectively to unseen data. The
following conclusions are drawn from the findings of this study:

e Applying preprocessing methods such as PCA and spatial interpola-
tion on soil NIR spectral data before data splitting may result in data
leakage and model overfitting.

e In a PCR calibration of laboratory-based soil NIR spectra, tuning the

optimal number of components (hyper-parameters) is a key to ach-

ieve a good performance on the test set. The heuristic determination
of the number of components fails to generalize well in unseen data.

In particular, hyper-parameter tuning under data leakage generates

poor results. Even when training and test sets are independent,

hyper-parameter tuning on leaky folds leads to suboptimal param-
eter values that fail to generalize, ultimately reducing model per-
formance on an independent test set.

Since field-based spectral data is highly susceptible to interference

from external environmental factors and shows a lower signal-to-

noise ratio compared to lab-based spectral data, model predictions
based on field spectra generally perform worse than laboratory
analysis on standardized samples. For in-situ soil NIR spectroscopy,
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data leakage due to spatial interpolation must be considered as an
additional factor that can negatively affect the generality of the
predictions.

To avoid data leakage, we encourage researchers to design leak-free
pipelines. These pipelines should encapsulate preprocessing
methods, model fitting, and if needed spatial interpolation, ensuring
that training and test sets are completely independent.

While significant SAC was generally not observed in model residuals
without data leakage, it cannot be entirely ruled out. Despite having
non-overlapping points among folds, limited inter-fold distances may
still contribute. The model’s reduced performance can accentuate
SAC when other data leakage sources are absent. Furthermore, under
data leakage, hyper-parameter tuning based on dependent folds may
exacerbate spatial autocorrelation.

Since data leakage significantly affects model performance across
machine learning applications, emphasizing this issue in soil proximal
sensing could encourage future studies to refine their methodologies and
generate results that are more reliable. For future works, we suggest
studies on investigating the risk of data leakage on other types of
proximal soil sensing data. It is crucial to be aware of the potential for
data leakage when using preprocessing methods on soil spectral data,
and to ensure that these methods are only applied after data splitting to
prevent overfitting. To evaluate potential data leakage risks, we
recommend the following points for consideration:

e Avoid preprocessing before data splitting
e Design leak-free pipelines
o Encapsulating preprocessing, model fitting, and spatial interpola-
tion within a pipeline, ensuring it is applied only to training data.
e Ensure proper hyper-parameter tuning
o Note that tuning on leaky cross-validation folds produces hyper-
parameter values that fail to generalize.
e Avoid interpolation as much as possible
o Interpolation is sometimes necessary to achieve spatial alignment
of data. Since interpolation relies on information from neighboring
data points, it can introduce data leakage and reduce model
generalizability.
o Interpolation must be done separately for training and test sets.
o Consider spatial autocorrelation (SAC) effects. SAC can contribute
to data leakage leading to overfitting and artificially inflated
performance.
o Limited spatial distances between cross-validation folds can
contribute to SAC.
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