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A B S T R A C T

Sensor-based soil analysis methods, particularly optical spectroscopy, have gained as efficient alternatives to 
labor-intensive laboratory analyses for assessing soil properties. Especially in-situ measurements with mobile 
sensors streamline data collection, reducing both time and costs. This approach hinges on correlating sensor 
signals with laboratory-derived soil physico-chemical properties using mathematical calibration models. The 
models are trained and their parameters fine-tuned using a training dataset. It is best practice to evaluate the 
performance of calibration models by a test dataset, which is independent from the training dataset. However, 
certain commonly applied data preprocessing procedures can unintentionally introduce unwanted dependencies 
between the training and the test dataset. This is called data leakage. A model trained on these datasets will 
perform very well on both the training and test sets. However, it will show much poorer performance when tested 
on a truly independent dataset. Thus, the calibration model overfits via data leakage. In this study, we illustrate 
the consequences of data leakage by two common preprocessing procedures in soil sensing, namely principle 
component analysis (PCA) and spatial interpolation through ordinary kriging, on the prediction of soil properties 
by near infrared (NIR) spectroscopy. The NIR spectra were obtained in the laboratory and in the field. Laboratory 
measurements by standard wet-chemistry methods of soil pH value, total organic carbon (TOC) and total ni
trogen (TN) content of 159 soil samples were used as target variables. Based on the results of this study, PCA and 
spatial interpolation led to data leakage when executed before data splitting. To avoid data leakage, we 
encourage researchers to carefully design leak-free data processing pipelines. These pipelines should encapsulate 
preprocessing methods, model fitting, and (if needed) spatial interpolation, ensuring that training and test sets 
are completely independent.

1. Introduction

In recent decades, soil sensing technologies have emerged as a 
compelling alternative to traditional soil analysis methods. These tech
niques offer several advantages, including rapid analysis, cost- 
effectiveness, and minimal sample preparation. Moreover, many soil 
sensing methods can be conducted directly on-site, enabling spatially 
high-resolution mapping of soil properties (Viscarra Rossel and Bouma, 
2016). A sensor detects physical or chemical stimuli, such as heat, light, 
or electrochemical potential, and typically converts them into a variable 
voltage. This voltage is digitized, allowing computer processing. Suc
cessful sensing relies on a strong relationship between the measured 
stimuli and the property of interest, which is established through cali
bration. Calibration is an operation that, under specified conditions, in a 

first step, establishes a “relation” between the quantity values with 
measurement uncertainties provided by measurement standards and 
corresponding indications with associated measurement uncertainties 
and, in a second step, uses this information to establish a relation for 
obtaining a measurement result from an indication (BIPM et al., 2012). 
This “relation” is typically represented by a mathematical function 
known as a calibration model or calibration function. Various methods, 
including statistics, chemometrics, machine learning, and geostatistics, 
are employed to establish these calibration models. While a simple 
linear regression modeling was a common approach in the past, spectral 
sensors and sensor combinations often require the use of more complex 
multivariate machine learning methods.

Since calibration is subjected to uncertainty, which we will briefly 
discuss below, the performance of calibration models must be evaluated. 
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In machine learning, model evaluation by using independent training 
and test datasets is regarded as the standard (Ge et al., 2020; Hastie 
et al., 2009; Héberger et al., 2017; Joseph, 2022). The training dataset is 
used for model selection and model parameter tuning. The test dataset is 
used for assessing the model performance when applied to a new data 
domain. The resulting prediction error is also called test error or 
generalization error. In general, it is an indication of overfitting when 
models demonstrate good performance within the training set but 
exhibit poorer performance with unseen data in a test set (Ying, 2019). 
To obtain a reliable test error, it is important that the test samples are 
independent from the training set to avoid any influence of the test 
samples on the model training process and thus reduce the risk of 
overfitting on the training set (Kapoor and Narayanan, 2023; Zhu et al., 
2023).

One cause of dependency in the data is the spatial and / or temporal 
dependency in the observations of a particular domain. However, de
pendencies can also be introduced by preprocessing of the data. Pre
processing methods (also called feature engineering), such as denoising, 
data transformation, and dimensionality reduction, are applied to 
spectral data to improve model calibration and prediction performance 
by removing physical interferences, fulfilling model assumptions, 
extracting and generating new features, or ensuring alignment 
(Mitchell, 2010; Rinnan et al., 2009; Xu et al., 2020; Zheng and Casari, 
2018). Some of these methods work over the variables (features, col
umns) of a dataset. For example, spectra can be standardized by mean 
centering and/or variance scaling before multivariate modeling (Leone 
et al., 2012; Zhang and Hartemink, 2020; Baumann et al., 2021). Data 
standardization involves removing the mean (centering) and division by 
variance (scaling) of a feature to generate transformed data with zero 
mean and unit variance. However, this process introduces dependencies 
between observations, as each standardized value is influenced by the 
overall dataset statistics, such as the feature mean and variance. If 
standardization is applied before splitting the data into training and test 
sets, it can lead to unintended dependencies between the two sets (we 
provided an example of data leakage caused by centering and scaling in 
Supplementary File S1, using the LUCAS dataset). This phenomenon is 
known as “data leakage”, where information from the test set has leaked 
into the training process (Kapoor and Narayanan, 2023; Kaufman et al., 
2011; Zhu et al., 2023). Kaufman et al. (2011) were the first who 
analyzed this problem systematically and coined the name “data 
leakage”. This term emerged after the phenomenon was previously 
referred as “leak from the future” in time series modeling, as described 
by Nisbet et al. (2018). Preventing data leakage is a good scientific 
practice, and most machine-learning practitioners are well aware of 
non-leaky workflow pipelines (Ge et al., 2020; Joseph, 2022; Yang et al., 
2023). However, data leakage is a widespread problem in various fields, 
including medicine, genomics, and engineering, and any misused ma
chine/deep learning technique can induce it (Hosseini et al., 2020; 
Kapoor and Narayanan, 2023; Kaufman et al., 2011; Rosenblatt et al., 
2024; Yang et al., 2023; Zhu et al., 2023). Based on a literature survey in 
17 fields of machine learning application Kapoor and Narayanan (2023)
stated that data leakage has contributed to a “reproducibility crisis in 
ML-based data science”. According to Yang et al. (2023), nearly 30 % of 
100,000 public Python notebooks show data leakage. This problem 
affected codes from all experience levels, including tutorials widely used 
for education. In a review of machine learning applications in environ
mental research by Zhu et al. (2023) data leakage was identified as a 
common pitfall in 148 highly influential papers. Data leakage can lead to 
models that do not generalize well and are prone to overfitting. 
Consequently, model performance metrics on the test set can be overly 
optimistic and may not reflect the true performance of the model on new 
and unseen data, potentially reducing confidence in their implementa
tion (Kapoor and Narayanan, 2023; Muralidhar et al., 2021; Samala 
et al., 2021). One reason for problems in applying mathematical cali
bration methods in environmental sciences, including soil sensing, 
might be the confusing terminology. The methods are drawn from 

several disciplines such as chemometrics, multivariate statistics, geo
statistics, pedometrics, machine learning, artificial intelligence, and 
data science. Consequently, there is no uniform body of theory and 
terminology.

In soil sensing, machine learning for sensor calibration is highly 
important because of the complexity and the huge uncertainties in the 
relationship between the original sensor signal and the target properties. 
Complexity arises through heterogeneity in the composition of the soil 
and its variability in space and time. Therefore, there is a multitude of 
possibly interfering factors, which is called matrix effect in chemo
metrics. Sensors showing a high selectivity are not strongly affected by 
the matrix. Selectivity is the extent to which a sensor can determine a 
particular analyte without interference from other components of the 
sample (Bănică, 2012). Among the common sensors used in proximal 
soil sensing, which include electrical resistivity meters, gamma-ray 
spectrometers, visible and near-infrared (Vis-NIR) spectrometers and 
cameras, as well as pH potentiometers (Gebbers, 2018), only the mobile 
potentiometric pH sensor (Adamchuk et al., 1999) shows high selec
tivity. On the contrary, the popular geoelectrical sensors show low 
selectivity since apparent electrical conductivity/resistivity, as 
measured by geoelectrical sensors, is affected by several soil properties 
like water content, texture, salinity, temperature, and bulk density 
(Corwin and Lesch, 2003). The laboratory methods, which are used to 
produce the reference data, try to deal with matrix effects by sample 
preprocessing (e.g., drying, sieving), homogenization, and extraction 
with buffered extractants over a longer extraction time. However, 
reproducibility within and between laboratories can sometimes be poor 
(Analytical Methods Committee, 2012). Even worse, the definition of 
certain target parameters, such as plant available phosphorous, is rela
tively vague and there are several different laboratory methods for 
assessing these parameters (Yli-Halla et al., 2016).

Among the abovementioned soil sensors, Vis-NIR spectroscopy 
combined with multivariate modeling techniques has gained a lot of 
interest because of its potential to predict a wide set of relevant soil 
properties (Ge et al., 2020; Hong et al., 2018; Stenberg et al., 2010). Soil 
organic matter (SOM), texture and nutrient content have been the pri
mary targets (Stenberg et al., 2010). Soil Vis-NIR spectroscopy can be 
performed in the laboratory and in the field (Hong et al., 2018; Liu et al., 
2017; Stenberg et al., 2010). However, Vis-NIR spectroscopy for soil 
analysis has two fundamental drawbacks: First, it is an indirect method. 
Many soil properties of interest show no absorption in the Vis-NIR range, 
and they are only assessed via cross-correlation with other soil proper
ties that have absorption bands. These absorption bands are usually very 
wide and the bands are overlapping. Consequently, Vis-NIR spectra 
show only a few distinct features that can unequivocally be linked to soil 
properties of interest. This necessitates extra efforts for preprocessing 
spectra and the use of complex multivariate calibration techniques. 
Second, field spectral data is very susceptible to interference from 
external environmental factors, such as ambient light, temperature, soil 
moisture, soil structure, dust, stones, soil surface conditions, excessive 
crop residues, etc. (Hong et al., 2018; Stenberg et al., 2010). Although 
this results in mobile Vis-NIR spectroscopy being less accurate than 
predictions based on measurements of soil samples in the laboratory 
under standardized conditions, in-situ measurements still provide ben
efits due to their high spatial resolution and high measurement speed 
(Bönecke et al., 2021; Gebbers, 2018; Hong et al., 2018; Kodaira and 
Shibusawa, 2020; Vogel et al., 2022).

Soil Vis-NIR spectra can contain hundreds of highly correlated 
reflection bands, with many of them being overlapping or non- 
informative (Hidalgo et al., 2021; Hong et al., 2018; Liu et al., 2017). 
Therefore, one of the main steps in hyperspectral data processing is 
dimensionality reduction (DR) (Hidalgo et al., 2021; Hong et al., 2018; 
Liu et al., 2017). Many techniques have been developed for this purpose; 
however, principal component analysis (PCA) is one of the oldest and 
most widely used (Jolliffe and Cadima, 2016); especially in the context 
of optical spectroscopy (Xu et al., 2020). PCA projects high-dimensional 
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data to the direction of greatest variance by simultaneously satisfying 
the conditions of minimum error and maximum variance (Xu et al., 
2020). In the case of spectral data, the original data matrix is converted 
to a group of new variables that are linear combinations of all wave
lengths, namely principal components (PCs). A key step in PCA is the 
calculation of the covariance matrix, which contains all possible 
covariance values between each of the predictor variables. If PCA is 
done as DR strategy before data splitting, these covariances are 
involving the entire dataset including the test set, which may lead to 
data leakage.

In proximal soil sensing, a simple case of data leakage by pre
processing is the spatial alignment of geo-referenced data by interpo
lation. Spatial alignment is necessary if observations of predictor and 
dependent variables are not co-located, e.g., if sensor measurements and 
reference samples are not taken at the exact same positions. Spatial 
interpolation is used to estimate values at common positions. Since 
interpolation relies on information from neighboring observations, de
pendencies are introduced. Among spatial interpolation methods, ordi
nary kriging (OK) has traditionally been one of the most commonly used 
techniques in soil sensing (Gia Pham et al., 2019; Hengl, 2009; Schloeder 
et al., 2001). In recent years, machine learning and deep learning-based 
approaches for spatial interpolation have been proposed (Tziachris 
et al., 2020; Boumpoulis et al., 2023; Nwaila et al., 2024). However, a 
comprehensive review of these new methods is beyond the scope of this 
paper.

Data leakage is a well-studied topic in medicine, genomics, and en
gineering. However, no comprehensive survey or study on data leakage 
in soil science, particularly within soil proximal sensing, appears to exist 
in the current literature. This study aims to illustrate the consequences 
of data leakage on both laboratory- and field-based soil NIR spectros
copy. To investigate this, we conducted experiments with laboratory and 
field soil NIR data to explore how data leakage affects model training for 
predicting soil pH, total organic carbon (TOC), and total nitrogen (TN) 
content. As supplementary results and to generalize our illustration, we 
also used the Land Use/Land Cover Area Frame Survey (LUCAS) 2009 
database, which includes laboratory-based Vis-NIR soil spectra and 
reference data from topsoil samples collected across different countries 
in the European Union (Nocita et al., 2014; Stevens et al., 2013) 
(Supplementary File S2). We also discussed the often-overlooked inter
action between model complexity, data leakage, and spatial autocorre
lation, factors that can significantly impact model reliability, 
particularly in the context of proximal soil sensing.. Finally, we provided 
some practical recommendations for evaluating data leakage risks in 
pipeline design.

2. Materials and methods

In this study, we calibrated regression models under various data 
leakage scenarios, utilizing spectral data collected from an agricultural 
study area in Germany (Supplementary Fig. S1). One dataset represents 
the case of field level calibration of spatially correlated data including in- 
situ and laboratory sensor measurements. It consists of field-collected 
NIR spectra captured by a mobile sensor platform (Tavakoli et al., 
2022) and laboratory-measured NIR spectra from 159 soil samples. This 
dataset is named “Booßen”. We evaluated the models’ ability to predict 
key soil properties, including pH, total organic carbon (TOC), and total 
nitrogen (TN) content.

Additionally, we used a second dataset to illustrate the case of cali
brating sensor measurements obtained in the laboratory under 
controlled conditions from wide-area data. It consists of data from the 
Land Use/Land Cover Area Frame Survey (LUCAS) 2009 database, 
which contains laboratory-based Vis-NIR soil spectra and reference data 
from topsoil samples collected across multiple European Union coun
tries (Nocita et al., 2014; Stevens et al., 2013) (Section 2.4 and Sup
plementary File S1 and S2).

2.1. Study site and data collection

The study area of the Booßen dataset encompasses approximately 
18.7 ha of agricultural land (52◦23′38.69′’N, 14◦27′38.84′’E) in eastern 
Brandenburg, Germany (Supplementary Fig. S1). Geologically, the 
parent material consists of end moraine glacial till, with Luvisol and 
Regosol as the dominant soil types. The soils are predominantly sandy, 
except for an area with higher clay content in the center of the field, 
probably representing deposits from an ancient stream (Schmidinger 
et al., 2024a). According to the German soil classification system KA5 
(Eckelmann et al., 2005), the soil textures range mainly from slightly 
silty sand (Su2) to slightly loamy sand (Sl2). The elevation varies be
tween 50 and 80 m.a.s.l., and the climate is characterized by 550 mm of 
annual rainfall and an average temperature of 9 ◦C (Schmidinger et al., 
2024b). The sampling process took place along three parallel lines (12 m 
apart) running from the south-west to the northeast, capturing the main 
gradient of soil variability of the field (Schmidinger et al., 2024a). Along 
each transect line, 53 sample points were placed at 15-meter intervals, 
resulting in a total of 159 sampling points. Sampling was conducted 
between September 2nd and 4th, 2020. Sampling depth was 0 to 30 cm. 
The samples were analyzed in the laboratory for total nitrogen (TN, %), 
total organic carbon content (TOC, %) and soil pH (in CaCl2). TN was 
determined according to DIN ISO 13878, TOC according to DIN ISO 
10694, and soil pH (in CaCl2) according to DIN ISO 10390. Descriptive 
statistics of the target variables are listed in Table 1.

Soil near infrared (NIR) diffuse reflectance was measured both in-situ 
in the field and on the 159 samples in the laboratory. In both cases, a NIR 
spectrometer (model C11118GA, Hamamatsu Photonics K. K., Shizuoka 
Pref., Japan) was used, covering the nominal spectral range of 
860–2550 nm with an average resolution of 15 nm.

In December 2020, the laboratory measurements with the spec
trometer were conducted after drying the samples, sieving them to less 
than 2 mm, and then filling them into a petri dish. Four halogen lamps at 
45◦ illuminated the samples under controlled conditions inside a black 
box. The reflected light was guided to the spectrometer through an 
optical fiber. For each soil sample, the spectral data was collected with 
four replications, by mixing the soil in the petri dish and repeating the 
measurement. The spectrometer system was calibrated by measuring a 
certified reflection standard. The spectrum from the reference standard 
was used to obtain reflectance spectra from the samples by dividing the 
raw spectra by the reference spectrum. The average reflectance spec
trum of each sample was then used for modeling. Because of the pres
ence of noise, we had to remove some of the wavelengths at the two 
edges of the spectra. The final spectra had a range of 1,000 to 2,450 nm, 
which were interpolated to a resolution of 1 nm. The NIR spectra were 
preprocessed using the standard normal variate (SNV) transformation 
for each measurement. This carries no risk of data leakage as it involves 
row-wise transformations.

In-situ soil NIR measurements were conducted using a furrow- 
opening ‘shoe’ attached to a multi-sensor platform, as detailed in 
Tavakoli et al. (2024). These measurements were carried out during 
March and April 2020 (Supplementary Fig. S1). The shoe was pulled 
through the soil at an average speed of 2.5 km/h, allowing the mea
surement of subsurface soil reflectance at a depth of 10–15 cm. The 
measurements were carried out along parallel transects, about 25 m 
apart. The frequency of data collection was 1 Hz, which resulted in 
18,906 measurement points. We applied the same edge removal pro
cedure used for the laboratory data to the field spectra. The resulting 
spectra were in a range of 1,000 to 2,400 nm, which were also inter
polated to a spectral resolution of 1 nm. We applied SNV normalization 
to each sensor measurement point individually.

2.2. Data analysis and data leakage scenarios

To investigate the impact of data leakage, laboratory- and field-based 
soil NIR spectroscopy data were calibrated to three target soil properties 
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across different leakage scenarios. PCA and kriging interpolation were 
applied either before or after data splitting, as shown in Table 2 and 
Figs. 1-7.

As a calibration modeling method we have chosen principal 
component regression (PCR) for this study to investigate the risk of data 
leakage associated with dimensionality reduction (DR) techniques like 
PCA. PCR integrates principal component analysis PCA (the DR step) 
followed by linear regression, making it ideal for simulating data 
leakage scenarios. PCR is less commonly used as compared to partial 
least squares regression (PLSR), which also relies on PCA and has a long 
history of successful applications in chemometrics (Geladi and Kowalski, 
1986; Wold et al., 1993; Nørgaard et al., 2000; Wold et al., 2001) and is 
widely used in soil Vis-NIR spectroscopy (Brown et al., 2006; Mouazen 
et al., 2010). However, we restrict the investigation to PCR and do not 
include other calibration methods, such as PLSR, for the sake of clarity. 
Furthermore, PCR in our setting has proven to be significantly faster 
than PLSR during training, nearly three times faster, even when using a 
higher number of components, while resulting comparable predictive 
performance on our datasets. We selected 10-fold cross-validation to 
balance model performance and computational cost, given the charac
teristics of our dataset. Our data includes 159 reference samples and NIR 
spectra with 1,500 predictors measured across 18,000 geographical 
points, influencing our choice of data splitting strategy. K-fold cross- 
validation reduces variance in performance estimates, compared to a 
single hold-out set, especially with small datasets (Bishop, 2006). While 
leave-one-out cross-validation (LOO-CV) minimizes bias, it increases 
computational costs (Hastie et al., 2009), making it impractical for our 

field scenarios, which involves independent kriging for each predictor 
within each fold. For example, using a single hold-out set with 90 % of 
the data for training and 10 % for testing (15 samples in our case) can 
result in high variation in performance estimates due to the small size of 
the test set. K-fold cross-validation mitigates this variance by averaging 
performance over k different partitions, making the estimates less sen
sitive to data partitioning. However, a significant limitation of cross- 
validation is the substantial increase in computational cost associated 
with the k-fold training process. This is particularly true for our field 
scenarios, where we performed independent kriging for each of the 
1,500 predictors within each fold. Therefore, to ensure a reliable eval
uation of our models while keeping computational costs reasonable, we 
employed 10-fold cross-validation across all data leakage scenarios. 
With our dataset size of 159 samples, 10-fold cross-validation provides a 
good balance between accuracy and efficiency. In our dataset 
(Supplementary Fig. S2 and Table S1), as k increases, spatial interpo
lation execution time rises proportionally, despite fewer points per fold 
(Supplementary Table S1).The prediction error on the test set, RMSE, 
decreases with larger k values, with stability observed for k > 8 
(Supplementary Fig. S2). However, each additional fold adds approxi
mately 1 h to interpolation time. Using k = 10 strikes a balance between 
reducing variance and limiting computational demands, offering more 
reliable performance estimates than k < 10 while avoiding excessive 
costs associated with higher k values, especially during the kriging 
interpolation.

Table 1 
Descriptive statistics for the laboratory-measured target soil properties of the 159 soil samples taken at the test field.

Soil target property Minimum Q1 Median Mean SD Q3 Maximum

TN (%) 0.04 0.07 0.09 0.11 0.06 0.14 0.28
TOC (%) 0.47 0.77 0.98 1.19 0.59 1.36 2.87
pH 5.03 5.74 6.15 6.32 0.74 7.14 7.54

Q1: first quartile; SD: standard deviation; Q3: third quartile.

Table 2 
Overview of laboratory- and field-based data leakage scenarios in soil NIR spectroscopy workflows using the Booßen dataset. See Figs. 1-7 for details.

Feature Data leakage scenarios

L1 – Lab: PCA 
Before Split

L2 – Lab: PCA in 
Pipeline (No 
Tuning)

L3 – Lab: PCA in 
Pipeline (Tuning)

F1 – Field: Full 
Interpolation

F2 – Field: Partial 
Independence

F3 – Field: Full 
Independence

NIR Spectroscopy 
Setting

Laboratory- 
based

Laboratory-based Laboratory-based Field-based (mobile in- 
situ)

Field-based (mobile in- 
situ)

Field-based (mobile in- 
situ)

Cross-Validation 
Design

10-fold CV 10-fold CV Nested CV (outer +
inner)

Nested CV (outer +
inner)

Nested CV (outer +
inner)

Nested CV (outer +
inner)

Spatial Interpolation 
Timing

— — — Before all splitting After outer split; before 
inner split

After all splitting

Spatial Interpolation 
Scope

— — — Whole dataset Per outer split Per inner and outer fold

Train/Test 
Independence

CV folds: × CV folds: ✓ Outer: ✓ Inner: ✓ Outer: × Inner: × Outer: ✓ Inner: × Outer: ✓ Inner: ✓

PCA Application Before CV split 
(leaky)

After CV split (in 
pipeline)

After inner split (in 
pipeline)

After outer and inner 
split (in PCR pipeline)

After outer and inner 
split (in PCR pipeline)

After outer and inner 
split (in PCR pipeline)

Hyperparameter 
Tuning

None None Grid search Grid search on leaky 
data

Grid search with partial 
leakage

Grid search on fully 
independent folds

Components Used 15 fixed PCs 15 fixed PCs Optimal q (tuned) Optimal q (tuned) Optimal q (tuned) Optimal q (tuned)
Risk of Data 

Leakagea
Yes No No Yes Yes No

aNote that that other upstream processes in the pipeline, which are not considered in this work, may also contribute to data leakage. These risks may arise during 
measurement due to duplicate readings, during sensor data processing, or because of spatial autocorrelation within the study area.
CV: Cross-validation.
×: Non-independent datasets.
✓: Independent datasets.
PCA: Principal Component Analysis.
PCR: Principal Component Regression
PCs: Principal Components.
q: Optimal number of principal components.
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2.2.1. Data leakage scenarios for laboratory-based soil NIR spectroscopy

2.2.1.1. Scenario L1: PCA before data splitting and without hyper- 
parameter tuning. Scenario L1 assesses the prediction performance of a 
model trained and tested under a risk of data leakage. For that, an in
dividual PCA was applied on the reflectance values of the entire dataset. 
The number of components was heuristically set to 15. They explained 
more than 99.99 % of the variance of the NIR spectra (Supplementary 
Fig. S3). Then, using these 15 PCs as predictor variables, a linear 

regression was trained and tested via 10-fold cross-validation. Fig. 1
shows the different steps of this scenario in details.

2.2.1.2. Scenario L2: PCA pipelined into a PCR model without hyper- 
parameter tuning. In the L2 scenario, both cross-validation training 
and test sets were independent from each other to prevent data leakage. 
In each cv-iteration, a PCA was applied only on the NIR spectra of the 
cross-validation training set. As in scenario L1, the number of compo
nents was set to 15 and used as predictor variables for a linear 

Fig. 1. Scenario L1: PCA before data splitting and without hyper-parameter tuning. A: Steps for model training and testing via a 10-fold cross-validation (cv). B: A 
diagram showing the first iteration of cross-validation loop, in which 10% of the data (fold 10, black square) was left as the cv-test set. The remaining 90% of the data 
(folds 1–9, white squares) was left as the cv-training set. PCA: principal component analysis. PCR: principal component regression.
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regression, which was validated on the cv-test set during each cv- 
iteration (Table 2). For this scenario, the PCA was encapsulated into a 
PCR pipeline as shown in Fig. 2. First, the spectra with n samples and p 
wavelength bands, X(n×p), are standardized using normal scores trans
formation. Mean and variance from standardizing the training set were 
stored for later application to the test set, ensuring consistent pre
processing (Pedregosa et al., 2011). The standardized X(n×p) was used as 
input for a principal component analysis (PCA) to obtain q = 15 prin
cipal components. After that, the q principal components and the soil 
target variable y(n×1) of the same samples were used as predictor and 
target variables, respectively, for creating a simple linear regression. 
Finally, the predicted soil property, ŷ(n×1), was obtained as output. In 
summary, a pipeline is a sequence of data preprocessing and modeling 
steps that can be treated as a single unit. Thus, during the whole cross- 
validation loop, 10 PCAs were fitted on the cv-training set. Fig. 3 shows 
the different steps of this scenario in details.

2.2.1.3. Scenario L3: PCA pipelined into a PCR model with hyper- 
parameter tuning. Similar to scenario L2, this scenario assesses the pre
diction performance of a model trained and tested under a no data 
leakage condition. However, unlike scenarios L1 and L2, the optimal 
number of components in this scenario was tuned via a nested cross- 
validation (hyper-parameter tuning). Fig. 4 provides a detailed over
view of the steps in scenario L3, while Table 2 highlights the key dif
ferences compared to the previous scenarios.. A nested cross-validation 
has an inner-cv and an outer-cv. The inner-cv serves to carry out the 
hyper-parameter tuning, while performance of the trained and tuned 
model is evaluated within each iteration of the outer-cv. For that, the 
dataset was randomly divided into 10 folds. During each outer-iteration, 
one fold was left as an outer-test set and the remaining nine as an outer- 
training set (Fig. 4). The optimal number of components was determined 
by fitting PCR models with 1 to 60 components within the inner-training 
set through a nine-fold inner cross-validation. Then the trained and 
tuned model was tested on the outer-test set. In this way, the test and 
training sets within each iteration of the cross-validation were inde
pendent from each other, at least in terms of PCA.

2.2.2. Data leakage scenarios for field-based (in-situ) soil NIR spectroscopy
The field NIR data was collected with high spatial resolution using a 

mobile sensor platform (Tavakoli et al., 2022). Since positions of the 
reference samples and the NIR measurements were not always exactly 
co-located, spatial interpolation of the NIR data to the reference sam
pling points was necessary (Supplementary Fig. S1). Therefore, we 
performed ordinary block kriging using the ‘gstat’ library in R (Pebesma, 
2004) with a block size of 10 × 10 m2. To expedite the interpolation 
process, we considered only the 500 measurement points that were 
spatially closest to each soil sampling point. Due to the large number of 
variables (ca. 1,400 wavelenghts), a variogram model (for kriging) was 
automatically fitted for each predictor variable using the ‘automap’ li
brary of R (Hiemstra et al., 2009). The performance of kriging interpo
lation using 10-fold cross-validation for each field scenario is 
summarized in Supplementary Fig. S4.

To investigate the potential for data leakage in in-situ soil NIR 
spectroscopy, we designed three scenarios (shown in detail in Figs. 5-7
and summarized in Table 2) for interpolation either before or after data 
splitting as outlined in the next paragraphs. For these three scenarios, a 
pipelined PCR (Fig. 2) was trained using the interpolated NIR spectra as 
the predictor variables and the soil property of interest as the target 
variable. As the scenario L3, the optimal number of components was 
determined by fitting PCR models with 1 to 60 components within the 
inner-training set through a nine-fold inner cross-validation.

2.2.2.1. Scenario F1: Interpolation of the complete dataset as a whole. In 
this scenario, the in-situ NIR data was interpolated to soil sampling 
points using the entire dataset before data splitting. After the interpo
lation, a pipelined PCR model was trained and tested on the data via a 
nested cross-validation (Fig. 2). Fig. 5 gives details about the different 
steps of this scenario.

2.2.2.2. Scenario F2: Independent interpolation of the training and test 
sets. In this scenario, in each iteration of the outer cross-validation, the 
outer-training and outer-test sets were independently interpolated 
(Fig. 6). This means that two separate interpolations were applied to the 
reflectance values of the training and test sets, ensuring that they 
remained independent. Note that the hyper-parameter tuning is done on 
interdependent folds, which are connected by a common interpolation 
run. Fig. 6 shows the different steps of this scenario in detail.

2.2.2.3. Scenario F3: Independent interpolation within each fold of cross 
validation. To prevent data leakage, separate kriging interpolations 
were applied on the reflectance values of each of the 10 outer cross- 
validation folds (Fig. 7). It is important to note that unlike scenario 
F2, the hyper-parameter tuning was performed on completely discon
nected folds that were not connected by a common interpolation run 
(Table 2).

2.2.3. Spatial autocorrelation
Spatial autocorrelation (SAC) arises when measurements from 

nearby locations exhibit higher similarity or lower dissimilarity 
compared to those from distant locations (Beale et al., 2010; Hurlbert, 
1984; Legendre, 1993; Tobler, 1970). SAC can lead to overfitting due to 
data leakage (Karasiak et al., 2022) and artificially inflating model 
performance (Kattenborn et al., 2022; Ploton et al., 2020). Hence, 
assessing SAC is vital for accurate modeling and model validity. To 
explore the degree of spatial autocorrelation of our results, the Moran’s I 
autocorrelation coefficient (see Dormann et al. (2007)) was calculated 
both for the residuals and target variables. The coefficient varies in the 
range of − 1 to + 1. Positive and negative values indicate positive and 
negative spatial autocorrelations, respectively. Zero value means no 
spatial autocorrelation (null hypothesis). The closer the values to zero, 
the less the spatial autocorrelation. The analysis was conducted using 
the R package “ape” (Paradis and Schliep, 2018). For this purpose, the 

Fig. 2. Diagram of a pipeline for a principal component regression (PCR) 
model. The name of each function refers to the Python Scikit-learn library 
(version 0.23.1).
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elements of the matrix of spatial weights were obtained according to the 
negative exponential function (more details can be found in Chen (2013)
and Chen (2016)). Additionally, model residuals were plotted on a map 
to check possible patterns of spatial autocorrelation.

2.2.4. Example of PCA-mediated data leakage using the LUCAS dataset 
(Supplementary File S2)

To exemplify the occurrence of overfitting arising from data leakage 
during soil sensor calibration within a larger dataset, we employed the 
comprehensive LUCAS dataset (Nocita et al., 2014; Stevens et al., 2013). 
Three distinct scenarios were examined, each involving the application 
of principal component analysis (PCA) on Vis-NIR spectra: 

1. Scenario 1: Leaked PCA − PCA performed on the entire dataset 
before data splitting, without hyper-parameter tuning for the 
optimal number of components.

2. Scenario 2: Leaked PCA with Tuning − PCA was performed on the 
entire dataset before data splitting, with the optimal number of 

components determined through cross-validation on the entire 
dataset.

3. Scenario 3: Non-Leaked PCA – PCA was integrated into a PCR model 
using a pipeline.

In all scenarios, principal components were used as predictors within 
a linear regression model. Subsequently, the trained models were eval
uated on a completely independent dataset. Detailed methodological 
descriptions for each step are provided in Supplementary File S2.

2.2.5. Model performance metrics
The prediction performance of the cross-validated models were 

assessed using the ratio of performance to interquartile (RPIQ), the root 
mean squared error (RMSE) and the coefficient of determination (R2). 
Those performance metrics are calculated as follows: 

R2 = 1-
∑n

i=1(yi-ŷi)
2

∑n
i=1(yi-y)

2 (1) 

Fig. 3. Scenario L2: PCA pipelined into a PCR model without hyper-parameter tuning. A: Steps for model training and testing via a 10-fold cross-validation (cv). B: A 
diagram showing the first cv iteration in which 10% of the data was left as the cv-test set (fold 10, black square). The remaining 90% of the data was left as the cv- 
training set (folds 1–9, white squares). The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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Fig. 4. Scenario L3: PCA pipelined into a PCR model with hyper-parameter tuning. A: Steps for model training and testing via a nested cross-validation (cv). B: A 
diagram showing the first outer-cv iteration in which 10% of the data was left as the outer-test set (fold 10, black square). The remaining 90% of the data was left as 
the outer-training set (folds 1–9, white squares). In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training 
set and the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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Fig. 5. Scenario F1: Interpolation of the complete dataset as a whole. A: Steps for model training and testing via a nested cross-validation (cv). B: A diagram showing 
the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1–9, white squares) was 
left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training set and the inner-test 
set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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Fig. 6. Scenario F2: Independent interpolation for the training and test sets. A: Steps for model training and testing via a nested cross-validation (cv). B: A diagram 
showing the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1–9, white 
squares) was left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training set and 
the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).
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MSE =
1
n
∑n

i=1
(yi-ŷi)

2 (2) 

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(3) 

RPIQ =
IQR

RMSE
(4) 

where n is the number of testing samples; yi is the observed value for the 
target variable y of the soil sample i; ŷi is the predicted values of the 
sample i; y is the mean of the observed values of the samples (y =

1
n
∑n

i=1yi); IQR is the interquartile range of the observed values.

2.2.6. Software and hardware platform
Data management and plotting were done in R (R Core Team, 2019) 

using packages from ‘tidyverse’ (Wickham et al., 2019). Models were 
calibrated using the Scikit-learn (version 0.23.1; (Pedregosa et al., 
2011)) library of Python (v3.7.10; https://www.python.org). Model 
training and data analyses were done on a single machine with the 
following specifications: Intel Core i7-10850H, 2.70 GHz, 6 cores, 12 
logical processors; 16 GB RAM; Windows 10.

3. Results and discussion

3.1. Results for lab-based soil NIR spectroscopy

The results obtained for predicting the soil properties, total nitrogen 
(TN), total organic carbon (TOC) and pH by applying the three labora
tory scenarios are presented in Table 3. In addition, Fig. 8 illustrates 
scatterplots of measured soil properties versus predicted ones for each 
model on the test set. To summarize the results, the predictions on the 10 
training and test sets of the cross-validation were pooled to calculate 
performance metrics and graph the scatterplots. In all cases across the 
laboratory scenarios, the models performed better in the training set 
than in the test set (on average 0.90 and 0.50 in terms of R2, respec
tively). This large difference indicates overfitting in certain scenarios 
(Table 3).

Among all the scenarios, in general, the best performances on the test 
set were attributed to scenario L3 (mean R2 of 0.94, 0.88 and 0.85 for 
TN, TOC and pH, respectively) followed by scenario L1 (mean R2 of 
0.91, 0.88 and 0.80 for TN, TOC and pH, respectively) (Table 3). In 
contrast, scenario L2 exhibited the poorest performance across all target 
soil properties, with R2 values of 0.91 and − 0.24 on training and test 
sets, respectively. This discrepancy is further highlighted by the 
considerably higher average RMSE on the test set for L2, which was two 
to five times greater than that of L1 and L3 (Table 3). A negative R2 

indicates that the difference between the true values and the predictions 
(residual sum of squares) is greater than the difference between the true 
values and the mean (total sum of squares; (see Eq. (1). In the present 
study, scenario L2 showed a highly negative R2 value and high RMSE 
values in the test set, indicating that this model is overfitted and has poor 
predictive performance (Table 3 and Fig. 8). RPIQ was consistent across 
the scenarios for different soil target variables, with scenario L2 having 
the highest RPIQ in the training set and the lowest RPIQ in the test set, 
indicating overfitting. In contrast, scenarios L1 and L3 consistently 
performed well on both training and testing sets.

In scenario L1, PCA was done before data splitting and no informa
tion about the target variable was considered to tune the number of 
components (Table 2). This introduced a dependency between the 
training and test sets. Under this scenario, the good performance 
observed on the test set is due to data leakage. This becomes evident 

when comparing the results with those of scenario L2 (Table 3). The only 
difference between these two scenarios is that L1 used a leaky pipeline 
while L2 was based on a non-leaky pipeline (Table 2). Both scenarios 
had the same number of untuned components. In both scenarios, linear 
regression was trained and tested using 15 PCs as predictor variables. 
However, in scenario L2, the cv-training and cv-test sets at each cross- 
validation iteration were not subjected to a common PCA to avoid any 
dependency between them. Despite this, scenario L2 showed the worst 
performance. This means that the determination of the optimal number 
of components is a key to achieve a good performance and that their 
heuristic determination fails to generalize well in unseen data. This 
observation is consistent with the findings obtained through the analysis 
of the larger, more general LUCAS dataset. As elaborated in Supple
mentary File S2, applying PCA to the entire dataset prior to data split
ting, as exemplified in LUCAS scenarios 1 and 2, leads to the creation of 
non-independent training and test sets. This consequently results in 
overfitted regression models characterized by artificially high test 

Fig. 7. Scenario F3: Independent interpolation within each fold of cross-validation. A: Steps for model training and testing via a nested cross-validation (cv). B: A 
diagram showing the first outer-cv iteration in which 10% of the data (fold 10, black square) was left as the outer-test set. The remaining 90% of the data (folds 1–9, 
white squares) was left as the outer-training set. In the first iteration of the inner loop, the outer training set was further divided into two subsets: the inner-training 
set and the inner-test set. The model training was based on a principal component analysis (PCA) pipelined into a principal component regression (PCR).

Table 3 
Mean model performance on cross-validation test and training sets for each soil 
target variable under the three laboratory scenarios (mean ± std).

Soil target 
variable

Scenario* Set RPIQ** RMSE Rb

TN (%) L1 Training 4.71 ±
0.45

0.01 ±
0.00

0.94 ±
0.00

Test 3.93 ±
1.89

0.02 ±
0.00

0.91 ±
0.04

L2 Training 4.84 ±
0.53

0.01 ±
0.00

0.95 ±
0.00

Test 0.99 ±
0.49

0.07 ±
0.02

− 0.34 ±
0.70

L3 Training 7.01 ±
0.89

0.01 ±
0.00

0.97 ±
0.00

Test 4.54 ±
2.00

0.01 ±
0.00

0.94 ±
0.02

TOC (%) L1 Training 3.94 ±
0.30

0.16 ±
0.01

0.93 ±
0.01

Test 3.60 ±
1.70

0.18 ±
0.05

0.88 ±
0.08

L2 Training 4.00 ±
0.34

0.15 ±
0.01

0.93 ±
0.01

Test 0.98 ±
0.52

0.66 ±
0.20

− 0.36 ±
0.70

L3 Training 4.73 ±
0.38

0.13 ±
0.01

0.95 ±
0.01

Test 3.45 ±
1.66

0.18 ±
0.04

0.88 ±
0.07

pH L1 Training 5.03 ±
0.14

0.28 ±
0.00

0.86 ±
0.01

Test 3.77 ±
1.77

0.31 ±
0.05

0.80 ±
0.07

L2 Training 5.07 ±
0.18

0.28 ±
0.01

0.86 ±
0.01

Test 1.69 ±
0.54

0.71 ±
0.27

− 0.01 ±
0.81

L3 Training 6.29 ±
0.36

0.22 ±
0.01

0.91 ±
0.01

Test 4.27 ±
1.90

0.28 ±
0.05

0.85 ±
0.06

* In the L3 scenario, the mean performance is calculated based on the outer- 
training set for the training set and the outer-test set for the test set.
**RPIQ: ratio of performance to interquartile range; RMSE: root mean squared 
error; R2: the coefficient of determination. L1: PCA before data splitting and 
without hyper-parameter tuning; L2: PCA pipelined into a PCR model without 
hyper-parameter tuning; L3: PCA pipelined into a PCR model with hyper- 
parameter tuning.
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performance while demonstrating poor generalization capabilities when 
confronted with completely independent data. Moreover, the process of 
hyper-parameter tuning, such as the selection of the optimal number of 
components, is also compromised in LUCAS scenario 2, ultimately 
leading to models that exhibit poor performance when evaluated on 
unseen datasets.

The performance of the PCR model on the test set in scenario L1 was 
inferior to that observed in scenario L3. This may be attributed to the 

fixed number of components (15), which may have been insufficient to 
overfit the data to the fullest extent possible. It is well known that 
increasing the number of components can lead to a higher degree of 
overfitting. Hence, while the use of a larger number of components is 
likely to improve the performance of the model, it is also expected to 
result in a greater degree of overfitting, particularly in scenario L1 
compared to scenario L3.

Within scenario L2, PCA was done after data splitting but no 

Fig. 8. Prediction performance of trained models on the test set under the three laboratory scenarios for A) soil total nitrogen (TN), B) soil total organic carbon 
(TOC), and C) soil pH (pH). L1: PCA before data splitting and without hyper-parameter tuning; L2: PCA pipelined into a PCR model without hyper-parameter tuning; 
L3: PCA pipelined into a PCR model with hyper-parameter tuning. RPIQ: ratio of performance to interquartile range; RMSE: root mean squared error; R2: the co
efficient of determination. The black and dashed line is the 1:1 line.
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information about the target variable was considered for tuning the 
number of components (Table 2). This led to independency between the 
training and test sets, however resulting in a model not being general 
enough to predict new data. According to Table 3 and Fig. 8, models 
trained under this scenario suggest overfitting. While they performed 
well on the training data, their performance on the unseen test data was 
significantly worse, particularly compared to scenarios L1 and L3. In 
both L2 and L3, no hyperparameter tuning was performed, and both 
models shared the same number of components (Table 2). Comparing 
these scenarios highlights the impact of data leakage, as seen in the 
higher test-set performance of L1 (Table 3), where data leakage was 
present, compared to L2, which follows a no data leakage approach.

In scenario L3, PCA was pipelined into a PCR model (Fig. 2). This 
way, the test and training sets within each iteration of the cross- 
validation were independent of each other, at least in terms of stan
dardization and PCA (Figs. 3 and 4). As implemented in scikit-learn, if 
correctly pipelined, standardization first computes the mean and stan
dard deviation from the training set and stores them for later use in 
centering and scaling the test set (Pedregosa et al., 2011). Since the 
tuning of the optimal number of components was based on a PCR, the 
information on the target variable was considered. This is an additional 
reason why the performance of the model under this scenario was better 
as compared to scenario L1. Since the training and hyper-parameter 
tuning steps were done in independent data sets, the tuned model of 
scenario L3 was much better than the other scenarios in predicting the 
target variable in the outer-test set (Table 3 and Fig. 8). Thus, optimal 
hyper-parameter tuning should be done using independent data sets to 
prevent data leakage. Additionally, when data leakage is not an issue, 
hyper-parameter tuning is preferred over heuristic methods for deter
mining the number of components. Similar results were observed using 
the LUCAS dataset (Supplementary File S2). In the non-leaked LUCAS 
scenario 3, where PCA was integrated into a PCR model within a pipe
line, independence between training and test sets was maintained dur
ing each cross-validation iteration. By performing model training and 
hyper-parameter tuning on independent datasets, scenario 3 demon
strated superior predictive performance on unseen data compared to the 
scenarios involving data leakage.

The performance of L1 is attributed to data leakage, as evidenced by 
its comparison with L2. However, despite suffering from overfitting due 
to leakage, L1 still performed slightly worse than L3. This suggests that 
L3′s superior performance is not solely due to its lack of data leakage but 
also because it incorporates appropriate hyperparameter tuning, which 
enhances model generalization. Furthermore, the lower performance of 
L1 may be attributed to the small number of PCA components selected 
for this scenario, which restricted the model’s ability to further overfit 
and, at least artificially, outperform L3.

Since L2 and L3 are both no leakage scenarios (Table 2), L2′s poor 
test-set performance is due to its selected number of components lacking 
generalization for accurate predictions. Hyperparameter tuning is 
essential to prevent overfitting, as evidenced by L3′s improved perfor
mance (Table 3). Therefore, optimal hyperparameter tuning should al
ways be conducted on independent datasets to prevent data leakage and 
ensure that the tuned hyperparameters are general enough to predict 
unseen data, avoiding overfitting.

Results of the Booßen laboratory scenarios are consistent with those 
obtained using the LUCAS dataset (Supplementary File S2): Data leakage 
occurs during the calibration of soil Vis-NIR spectra to target soil 
properties using principle component analysis (PCA) when the trained 
model performs better on datasets that share a common PCA with the 
training set. This PCA-mediated data leakage leads to over-fitted models 
that perform poorly on unseen and independent datasets. Data leakage 
also affects hyper-parameter tuning.

When comparing our study with other laboratory-based studies 
which utilized the LUCAS dataset, such as Tavakoli et al. (2023) and 
Zhong et al. (2021) or those found in the Supplementary File S2, our 
model shows better performance in terms of R2 for TN under the L3 

scenario (0.94 versus 0.88–0.93). However, our results suggest that the 
models developed by Tavakoli et al. (2023), in which similar pipeline 
has been used, have a superior overall fit to the data for TOC and pH 
compared to our models (R2 ~ 0.88 versus 0.95 and 0.85 versus 0.94, 
respectively). In terms of R2 values, the models developed by Tavakoli 
et al. (2023) can explain a larger proportion of the variability observed 
in the target variables in the LUCAS dataset. Nonetheless, it is important 
to bear in mind that comparing R2 values across different datasets has 
limitations since it strongly depends on the statistical distribution of the 
values (Alexander et al., 2015), and factors such as the sample size, 
geographic distribution, and measurement techniques can influence the 
model’s performance.

3.2. Results from calibrating field-based (in-situ) soil NIR spectroscopy

In this research we did not the address to what extent the parame
terization of kriging may influence model’s performance and contribute 
to data leakage. Settings such as the number of nearest neighbors used 
for interpolating (e.g., the ‘nmax’ argument in the ‘gstat::krige’ function 
in R) could affect results and merit further investigation in a dedicated 
study.

Table 4 presents the results of predicting the soil properties for the 
three field scenarios on both outer-test and outer-training sets. More
over, scatterplots of measured soil properties versus predicted ones for 
each model on the outer-test set are shown in Fig. 9. For presenting the 

Table 4 
Mean model performance on outer-test and outer-training sets for each soil 
target variable under the three field scenarios (mean ± std).

Soil target 
variable

Scenario Set RPIQ* RMSE Rb

TN (%) F1 Training 6.21 ±
0.47

0.01 ±
0.00

0.97 ±
0.00

Test 4.16 ±
1.64

0.02 ±
0.00

0.93 ±
0.02

F2 Training 6.09 ±
0.54

0.01 ±
0.00

0.97 ±
0.01

Test 2.83 ±
1.20

0.02 ±
0.01

0.83 ±
0.10

F3 Training 4.57 ±
0.37

0.01 ±
0.00

0.94 ±
0.00

Test 3.89 ±
2.31

0.02 ±
0.00

0.91 ±
0.04

TOC (%) F1 Training 5.07 ±
0.57

0.12 ±
0.01

0.96 ±
0.01

Test 3.58 ±
1.60

0.17 ±
0.05

0.90 ±
0.05

F2 Training 5.72 ±
1.04

0.11 ±
0.02

0.97 ±
0.01

Test 2.56 ±
1.39

0.25 ±
0.07

0.78 ±
0.13

F3 Training 3.79 ±
0.52

0.16 ±
0.02

0.92 ±
0.01

Test 3.27 ±
1.96

0.20 ±
0.09

0.87 ±
0.07

pH F1 Training 5.59 ±
0.95

0.26 ±
0.04

0.88 ±
0.04

Test 3.01 ±
0.96

0.38 ±
0.07

0.70 ±
0.14

F2 Training 6.57 ±
2.22

0.23 ±
0.05

0.90 ±
0.04

Test 2.2 ±
0.51

0.52 ±
0.15

0.46 ±
0.26

F3 Training 4.69 ±
1.11

0.31 ±
0.07

0.81 ±
0.09

Test 2.4 ±
0.59

0.48 ±
0.12

0.55 ±
0.19

* RPIQ: ratio of performance to interquartile range; RMSE: root mean squared 
error; R2: the coefficient of determination. F1: Interpolation on the complete 
dataset as a whole; F2: Independent interpolation for the training and test sets; 
F3: Independent interpolation within each fold of cross-validation.
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Fig. 9. Prediction performance of the models on the outer-test set under the three field scenarios for A) soil total nitrogen (TN), B) soil total organic carbon (TOC), 
and C) soil pH (pH). F1: Interpolation on the complete dataset as a whole; F2: Independent interpolation for the training and test set; F3: Independent interpolation 
within each fold of cross-validation. RPIQ: ratio of performance to interquartile range; RMSE: root mean squared error; R2: the coefficient of determination. The black 
and dashed line is the 1:1 line.
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results, the predictions on the 10 outer-test sets of the cross-validation 
were pooled to calculate performance metrics and create scatterplots.

Across all models and field scenarios, the best predicted soil property 
was TN followed by TOC and pH, respectively. Scenario F1 showed the 
best performance on the test set, with mean R2 of 0.93, 0.90, and 0.71 for 
TN, TOC, and pH, respectively. This was followed by scenario F3 with 
mean R2 of 0.91, 0.87, and 0.55 and scenario F2 with mean R2 of 0.83, 
0.78, and 0.46 for TN, TOC, and pH, respectively. In general, the RMSE 
values of scenario F2 on the test set were about 10 to 30 % higher than 
those of scenarios F1 and F3. These results illustrate that the perfor
mance of the models was different depending on the data leakage sce
narios. Comparing the results of lab- and field-based scenarios revealed 
that they are comparable, especially for TN and TOC, and even in some 
cases, the field results were even better (Tables 3 and 4). Field-based soil 
spectroscopy is susceptibility to ambient interferences, and thus, model 
predictions relying on field spectra are anticipated to exhibit lower 
performance compared to those based on laboratory spectral analysis 
(Bönecke et al., 2021; Hong et al., 2018; Kodaira and Shibusawa, 2020; 
Stenberg et al., 2010; Vogel et al., 2022). This suggests that the relatively 
good performances of our field scenarios F1 and F2 may be attributed to 
the impact of data leakage caused by interpolation.

It should also be considered that the only equivalent scenarios be
tween the laboratory and field analyses are scenarios L3 and F3 
(Table 2). In both of them, PCA was pipelined and applied to the training 
set during cross-validation. Furthermore, each data fold under scenario 
F3 was interpolated independently from other folds. Therefore, the 
differences in the performance of these scenarios can explain the dif
ferences between the predictions of laboratory and field measurements 
using mobile sensors. As expected, lab scenario L3 had better perfor
mances on the test set than field scenario F3. Scenario L3 achieved R2 

(RMSE) values of 0.94 (0.01), 0.88 (0.18), and 0.85 (0.28), while sce
nario F3 gave the R2 (RMSE) values of 0.91 (0.02), 0.87 (0.20), and 0.55 
(0.48), for TN, TOC, and pH, respectively. The high difference observed 
for pH is due to the fact that this soil property can be considered much 
more dynamic compared to TN and TOC (Zhang et al., 2019). Note that 
the pH values of the soil samples were obtained in December 2020, 
whereas the sensor measurements were conducted in March and April 
2020. Additionally, soil pH does not exhibit a direct spectral response 
within the Vis-NIR region (Stenberg et al., 2010). Thus, these factors 
collectively increase the complexity of accurately predicting pH using 
only a mobile NIR sensor.

In scenario F1, the models achieved the best performances of all field 
scenarios for all the three soil properties (Table 4 and Fig. 9). This may 
be mainly due to data leakage as the PCA was pipelined into a PCR 
model, which helped encapsulating the preprocessing and training steps 
into the cross-validation. However, due to the interpolation step applied 
to the entire dataset before splitting, the 10 folds in this scenario may be 
dependent (as shown in Fig. 5).

Within scenario F2, two independent interpolations were applied on 
the reflectance values of the training and test sets in each of the 10 outer 
cross-validation iterations. However, the inner-training and inner-test 
sets within each inner cross-validation iteration were dependent. They 
were spatially connected by the interpolation step during the outer 
iteration (Fig. 6). Thus, the number of components and models were not 
general enough to predict unseen data of the outer-training set. 
Furthermore, scenario F2 exhibited the highest discrepancy in model 
performances between the outer-training and the outer-test sets, with 
relative differences in R2 of approximately 14, 20, and 49 % for TN, TOC, 
and pH, respectively (Table 4). This disparity suggests that the models of 
scenario F2 may led to stronger overfitting as compared to those of 
scenarios F1 and F3. Since scenario F2 utilizes independent outer- 
training and outer-test sets, the high performance observed in scenario 
F1, where both outer and inner sets are interdependent, can be directly 
attributed to data leakage. Similarly, in LUCAS scenario 2 
(Supplementary File S2), where PCA was applied before data splitting, 
hyper-parameter tuning was performed on interdependent cross- 

validation folds, as in scenario F2. This resulted in poor generaliza
tion, highlighting the crucial role of truly independent inner-sets for 
optimal hyper-parameter tuning. Our findings emphasize that even with 
independent training and test sets, the lack of independent inner-sets for 
hyper-parameter tuning can lead to suboptimal model performance and 
poor generalization to unseen data.

In scenario F3, to ensure complete independence between the data
sets, separate interpolation steps were applied on each of the 10 cross- 
validation folds (Fig. 7). Hence, the PCR performance on unseen data 
increased compared to scenario F2, for all the three soil properties. This 
improvement, in terms of R2, was 9, 10, and 16 %, for TN, TOC, and pH, 
respectively (Table 4 and Fig. 9). This is further illustrated by the non- 
leaked LUCAS scenario 3 (Supplementary File S2) and the Booßen lab
oratory scenario L3. By performing model training and hyper-parameter 
tuning on both independent outer and inner datasets, these non-leaked 
scenarios yielded models that outperformed their leaked counterparts 
in predicting the target variables on unseen data. These results highlight 
the crucial importance of proper pipelining when employing nested 
cross-validation. This ensures not only the independence of outer- 
training and outer-test sets but also the independence of inner-training 
and inner-test sets, effectively mitigating the risk of overfitting.

Upon analyzing Tables 3 and 4, it is apparent that the RMSE values 
for different soil properties vary depending on the data leakage across 
the scenarios. The laboratory measurements had higher prediction ac
curacy as compared to field measurements. In terms of R2, TN and TOC 
measurements showed more accurate predictions than pH measure
ments. Notably, scenario L2 for both TN and TOC measurements had 
negative R2 values, which suggests that the models performed worse 
than the baseline model (using the mean value of the target variable as 
the prediction). Furthermore, we discovered that our models consis
tently produced lower RMSE values than the standard deviation of the 
target soil property, except for scenario L2 (Table 1, Figs. 8 and 9). 
Hence, it is evident that a model trained under data leakage, such as 
those in scenario L2, is insufficiently generalizable to make precise 
predictions on unseen data.

As PCR can be seen as a stacked algorithm in which a PCA is incor
porated, it is very easy to encapsulate it with other training workflow 
steps, such as other preprocessing/feature engineering methods (data 
scaling, transformation, etc.) and model fitting, into one callable func
tion, also known as pipeline. Thus, a pipeline is a sequence of data 
preprocessing and modeling steps that can be manipulated as a single 
unit (Fig. 2). In this way, pipelines help preventing data leakage by 
ensuring that only those samples from the training set are used for data 
preprocessing and model fitting (Pedregosa et al., 2011). E.g., when a 
pipeline with the trained model is applied to the test set, also new and 
independent preprocessing steps are applied on the test set (Figs. 2-4). 
To avoid data leakage, we encourage researchers to design leak-free 
pipelines. These pipelines should encapsulate all preprocessing 
methods (such as data normalization, scaling, dimensionality reduction, 
etc.), model training and (if needed) spatial interpolation. A leak-free 
pipeline ensures that the training and test sets are completely indepen
dent of each other.

3.3. Results for spatial autocorrelation (SAC)

Spatial autocorrelation (SAC) may cause dependence between 
training and test sets used for model calibration, since nearby mea
surements are dependent (Karasiak et al., 2022).

Randomly assigning samples and measurements to different folds 
during data splitting can result in nearby samples being placed in 
different folds, introducing some degree of interdependence between 
folds.

Models affected by SAC exhibit residuals that are dependent of each 
other. Therefore, when employing random cross-validation, which does 
not account for spatial autocorrelation between training and test data, 
the model’s performance might be artificially inflated (Kattenborn et al., 

J. Correa et al.                                                                                                                                                                                                                                  Computers and Electronics in Agriculture 239 (2025) 110920 

16 



2022; Ploton et al., 2020).
Therefore, a data splitting design ensuring spatial independence 

between the training and test sets should be the standard approach for 
validation of models using spatial data (Karasiak et al., 2022). One 
possible way to address this issue is to segregate the training and test sets 
into spatial blocks or clusters during the data-splitting procedure (Meyer 
et al., 2019; Karasiak et al., 2022). Under this strategy, distance-based 
buffers around hold-out samples are defined to ensure the learning 
model uses only spatially independent data. These distances can be 
determined using a variogram based on the target variable or predictors. 
This means the minimal spatial distance between the training and test 
sets should be larger than the largest variogram range obtained among 
the target variable and predictors. Incorporating spatial dependence 
(autocorrelation) into the model specifications is another strategy 
(Hurlbert, 1984; Dormann et al., 2007; Liu et al., 2022).

However, spatial cross-validation can lead to pessimistic map accu
racy assessments without notable benefits over standard cross- 
validation methods, and both approaches have the potential to intro
duce bias into map accuracy estimates (Wadoux et al., 2021).

Despite using random cross-validation, we generally did not find 
strong evidence of spatial autocorrelation (SAC) in our results, as 
assessed through Moran’s I on model residuals (see Table 5 and Sup
plementary Figs. S5 and S6). Notably, the Moran’s I values for the actual 
target soil variables, measured in the soil samples, were significantly 
higher than those for model residuals. In the plots, this difference 
appeared as a gradient across the field, with the highest target variable 
values concentrated in a specific area, while the model residuals 
exhibited a more random distribution without any clear pattern.

Field scenarios, interestingly, displayed lower Moran’s I values and 
variogram ranges than laboratory scenarios, with F3 exhibiting the 
lowest Moran’s I. This arises from the lower degree of SAC between the 
outer-training and outer-test sets in F3 compared to other field sce
narios, as these sets lacked a common spatial interpolation (Fig. 7). 
However, it is essential to note that the variogram ranges were typically 
smaller than the mean distance between sampling points and even 
smaller than 25 % of the smallest distances. In practical terms, this 
suggests that in the case of TN and TOC in scenario F3, fewer than four 
samples per fold might exhibit SAC. Conversely, in scenario F3, pH 
displayed a notable high absolute Moran’s I value, potentially attributed 
to the model’s relatively lower performance, which could amplify the 

presence of autocorrelation when other sources of data leakage are ab
sent. Consistent with this observation, scenario L2, characterized by PCA 
applied to independent fold sets without hyper-parameter tuning and 
displaying the poorest test performance, also exhibited the highest ab
solute Moran’s I values. Additionally, L2 had the largest variogram 
range, indicating a trend where higher Moran’s I values corresponded to 
larger ranges.

As expected, F1 and F2 (both characterized by spatially dependent 
folds) exhibited relatively high absolute Moran’s I values, highlighting 
the connection between data leakage, spatial interpolation, and, 
notably, hyper-parameter tuning (as evidenced in F2), leading to 
increased spatial autocorrelation (SAC). While we mostly observed no 
significant SAC in model residuals, we cannot entirely rule it out. 
Although non-overlapping points among folds might mitigate autocor
relation, inter-fold distances may remain too small to eliminate it.

The lack of significant spatial autocorrelation (SAC) in model re
siduals could also be attributed to the specific characteristics of our 
datasets. Supplementary Fig. S1 illustrate the even distribution of 
measurement points from south to north across a rectangular area with 
three columns (transects) and 53 rows. This design increases the average 
distance between sampling points compared to a square or circular 
layout, helping to reduce spatial dependency between data points when 
points with large separation distances were selected. By assigning each 
sampling point to cross-validation folds, the average spatial distance 
between folds becomes sufficiently large to partially mitigate autocor
relation. While some points in different folds may still exhibit spatial 
dependence, the majority is spaced far enough apart to minimize this 
effect.

Further research is needed to comprehensively investigate and 
manage potential autocorrelation within our dataset. Despite numerous 
publications addressing this issue, particularly in remote sensing 
(Kattenborn et al., 2022; Meyer and Pebesma, 2022; Milà et al., 2022; 
Ploton et al., 2020; Rocha et al., 2018; Wadoux et al., 2021), none, to the 
best of our knowledge, have addressed it within the context of proximal 
soil sensing modeling yet.

There is a well-known positive relationship between model 
complexity and the risk of overfitting (Hawkins, 2004). Highly flexible 
and overparameterized models, such as polynomial models, may 
incorporate irrelevant predictors that allow them to fit complex, 
nonlinear patterns. However, this flexibility can become a liability when 

Table 5 
Moran’s I and variogram parameters for model residuals across laboratory and field scenarios for each soil target variable.

Soil target variable Scenario* Moran’s I Variogram**

Observed p value Model Psill Range Kappa

TN L1 0.0005 0.181 Sph 0.000 46.2 –
L2 0.0721 0.000 Ste 0.003 74.0 10.0
L3 − 0.0067 0.937 Sph 0.000 48.2 –
F1 − 0.0087 0.649 Ste 0.000 14.0 1.0
F2 − 0.0107 0.396 Sph 0.001 20.1 –
F3 − 0.0032 0.545 Ste 0.000 20.0 0.3

TOC L1 − 0.0046 0.732 Sph 0.010 47.3 –
L2 0.0609 0.000 Ste 0.310 93.3 1.4
L3 − 0.0052 0.821 Ste 0.005 21.0 10.0
F1 − 0.0102 0.450 Sph 0.033 21.3 –
F2 − 0.0072 0.869 Ste 0.070 9.2 10.0
F3 − 0.0065 0.979 Ste 0.049 11.8 0.7

pH L1 − 0.0005 0.259 Ste 0.064 56.9 1.3
L2 0.0184 0.000 Gau 0.349 77.9 –
L3 − 0.0048 0.764 Ste 0.043 58.0 0.2
F1 − 0.0079 0.761 Ste 0.027 65.0 10.0
F2 − 0.0054 0.852 Ste 0.302 13.2 0.6
F3 0.0087 0.003 Ste 0.184 92.9 0.6

* L1: PCA before data splitting and without hyper-parameter tuning; L2: PCA pipelined into a PCR model without hyper-parameter tuning; L3: PCA pipelined into a PCR 
model with hyper-parameter tuning; F1: Interpolation on the complete dataset as a whole; F2: Independent interpolation for the training and test sets; F3: Independent 
interpolation within each fold of cross-validation.
** Sph: Spherical model; Ste: Matérn model with M. Stein’s Parameterization; Gau: Gaussian model; Psill: partial sill (psill = sill − nugget); Kappa: Smoothness 
parameter for the Matérn models.
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the model begins to capture noise rather than true signal, leading to 
strong performance on training data but poor generalization to unseen 
samples. To address complexity-induced overfitting, machine and deep 
learning algorithms commonly employ regularization techniques such 
as penalization, dropout, weight decay, pruning, and others (Zou and 
Hastie, 2005; Srivastava et al., 2014; Manzali and Elfar, 2023; Parhi and 
Nowak, 2023). In the past year, increasingly complex nonlinear algo
rithms, such as tree-based methods and deep learning models, have 
gained popularity in soil sciences (Padarian et al., 2020; Wadoux et al., 
2020). However, pipelines prone to overfitting due to high model 
complexity may be further compromised by data leakage or spatial 
autocorrelation. It is therefore essential to design pipelines with 
algorithm-specific regularization parameters carefully. Improper tuning 
of these settings may result in models that are especially vulnerable to 
overfitting. Understanding the combined impact of model complexity, 
data leakage, and spatial autocorrelation effects in soil spectroscopy 
warrants further investigation.

The concern with leaky pipelines goes beyond overly optimistic 
performance metrics. By failing to reflect how a model would behave on 
truly unseen data, they compromise reproducibility, which is essential 
for the reliable deployment of machine learning models in real-world 
applications. With growing concerns about reproducibility in the prac
tical use of machine learning-based solutions (Kapoor and Narayanan, 
2023), addressing data leakage explicitly contributes not only to meth
odological rigor but also to the credibility of machine learning appli
cations in agricultural production systems.

4. Conclusions

Despite recognition and study of data leakage in fields such as 
medicine, genomics, and engineering, no comprehensive survey or study 
has been specifically addressing this issue in soil science, particularly 
within soil proximal sensing. This paper aims to illustrate the conse
quences of data leakage on predicting soil properties using both labo
ratory- and field-based soil NIR spectroscopy. We explored the risk of 
data leakage caused by PCA and spatial interpolation during the cali
bration of models using soil NIR spectra to predict soil properties, 
including total nitrogen (TN), soil organic carbon (SOC), and pH. To 
enhance the generalizability of our findings, we further investigated 
spectral data from soil samples collected across various geographic re
gions within the European Union, using the LUCAS dataset 
(Supplementary File S2). This study emphasizes that preprocessing 
methods, like dimensionality reduction applied to the entire dataset 
prior to data splitting, compromise the independence of training and test 
sets. To prevent data leakage, proper pipelining facilitates the inde
pendent application of preprocessing methods to training and test sets, 
thereby ensuring that models generalize effectively to unseen data. The 
following conclusions are drawn from the findings of this study: 

• Applying preprocessing methods such as PCA and spatial interpola
tion on soil NIR spectral data before data splitting may result in data 
leakage and model overfitting.

• In a PCR calibration of laboratory-based soil NIR spectra, tuning the 
optimal number of components (hyper-parameters) is a key to ach
ieve a good performance on the test set. The heuristic determination 
of the number of components fails to generalize well in unseen data. 
In particular, hyper-parameter tuning under data leakage generates 
poor results. Even when training and test sets are independent, 
hyper-parameter tuning on leaky folds leads to suboptimal param
eter values that fail to generalize, ultimately reducing model per
formance on an independent test set.

• Since field-based spectral data is highly susceptible to interference 
from external environmental factors and shows a lower signal-to- 
noise ratio compared to lab-based spectral data, model predictions 
based on field spectra generally perform worse than laboratory 
analysis on standardized samples. For in-situ soil NIR spectroscopy, 

data leakage due to spatial interpolation must be considered as an 
additional factor that can negatively affect the generality of the 
predictions.

• To avoid data leakage, we encourage researchers to design leak-free 
pipelines. These pipelines should encapsulate preprocessing 
methods, model fitting, and if needed spatial interpolation, ensuring 
that training and test sets are completely independent.

• While significant SAC was generally not observed in model residuals 
without data leakage, it cannot be entirely ruled out. Despite having 
non-overlapping points among folds, limited inter-fold distances may 
still contribute. The model’s reduced performance can accentuate 
SAC when other data leakage sources are absent. Furthermore, under 
data leakage, hyper-parameter tuning based on dependent folds may 
exacerbate spatial autocorrelation.

Since data leakage significantly affects model performance across 
machine learning applications, emphasizing this issue in soil proximal 
sensing could encourage future studies to refine their methodologies and 
generate results that are more reliable. For future works, we suggest 
studies on investigating the risk of data leakage on other types of 
proximal soil sensing data. It is crucial to be aware of the potential for 
data leakage when using preprocessing methods on soil spectral data, 
and to ensure that these methods are only applied after data splitting to 
prevent overfitting. To evaluate potential data leakage risks, we 
recommend the following points for consideration: 

• Avoid preprocessing before data splitting
• Design leak-free pipelines 

o Encapsulating preprocessing, model fitting, and spatial interpola
tion within a pipeline, ensuring it is applied only to training data.

• Ensure proper hyper-parameter tuning 
o Note that tuning on leaky cross-validation folds produces hyper- 

parameter values that fail to generalize.
• Avoid interpolation as much as possible 

o Interpolation is sometimes necessary to achieve spatial alignment 
of data. Since interpolation relies on information from neighboring 
data points, it can introduce data leakage and reduce model 
generalizability.

o Interpolation must be done separately for training and test sets.
o Consider spatial autocorrelation (SAC) effects. SAC can contribute 

to data leakage leading to overfitting and artificially inflated 
performance.

o Limited spatial distances between cross-validation folds can 
contribute to SAC.
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Schmidinger, J., Schröter, I., Bönecke, E., Gebbers, R., Ruehlmann, J., Kramer, E., 
Mulder, V.L., Heuvelink, G.B.M., Vogel, S., 2024a. Effect of training sample size, 
sampling design and prediction model on soil mapping with proximal sensing data 
for precision liming. Precis. Agric.

Schmidinger, J., Barkov, V., Tavakoli, H., Correa, J., Ostermann, M., Atzmueller, M., 
Gebbers, V., S.,, 2024b. Which and how many soil sensors are ideal to predict key 
soil properties: a case study with seven sensors. Geoderma 450, 117017. https://doi. 
org/10.1016/j.geoderma.2024.117017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. 
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. 
Res. 15 (56), 1929–1958. https://jmlr.org/papers/v15/srivastava14a.html.

Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J., 2010. Chapter five - 
Visible and Near Infrared Spectroscopy in Soil Science. In: Sparks, D.L. (Ed.), 
Advances in Agronomy. Academic Press, pp. 163–215.
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Vogel, S., Bönecke, E., Kling, C., Kramer, E., Lück, K., Philipp, G., Rühlmann, J., 
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