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Abstract

BioModelKit – A Framework for Modular Biomodel-Engineering

Dipl.-Ing. Mary-Ann Blätke

Systems biology employs models to increase the systems-level understanding of living organisms.
Models allow to analyse and predict the behaviour of a biological system and thus help us to understand
the underlying mechanisms and the impact of perturbations by e.g. drug treatment. Integrating the
quantities of data produced by high-throughput omic technologies and disperse knowledge into models
is a challenge. Other challenges arise from the integration of different biomolecular network types,
missing model documentations, and the representation of multiscale aspects. The application of traditional
modelling approaches results into large and complex monolithic models. As suggested by classical
engineering, modularization is a concept to reduce the complexity of a system.

This thesis aims to establish a modular modelling framework for biomodel engineering, called BioMod-
elKit, where modules are designed for the purpose of model composition. A module is a molecule-centred
Petri net model representing the functionality and interactions of a biomolecule. We purposefully defined
mechanistic and causal module types, to capture the different types of networks and omic fields. Next
to the underlying model, each module is equipped with rich annotations. Defined interfaces among the
modules allow the modular composition of models without manual adjustments and thus, the integration
of different network types and omic data. The algorithmic model mutation of composed models allows
mimicking the effect of gene knock-outs and structural mutations of a biomolecule. Modularly composed
models can also be transformed into spatial models to represent the movement of biomolecules, the cell
geometry, compartments, and the distribution of molecules. Modules can be constructed using direct and
reverse engineering approaches. Existing models, e.g SBML or Boolean models, can also be a source to
obtain modules. The integration of omic data into mechanistically defined models by reverse engineered
modules, as well as modules obtained from established models, greatly increases the general applicability
of our framework, but also encourages the reuse of data and models.

The BioModelKit framework is supported by a relational database that acts as a file manager, but also
explicitly stores the model and the annotation of each module, which facilitates the module versioning.
Different module versions representing e.g. competitive hypothesis or abstraction levels of a molecular
mechanism can be stored. Through a web-interface, the user can browse, search and inspect modules.
Furthermore, the modular model composition, as well as the algorithmic model mutation and spatial
transformation can be applied to an ad hoc chosen set of modules. Modules can also be submitted, curated
and annotated through the website.

The case studies discussed in this thesis demonstrate the applicability and capabilities of our framework
to cope with current challenges in computational systems biology. The proposed concepts can be particu-
larly helpful for the integration of omic data into models, in silico rewiring of models in synthetic biology
and in silico mutations studies, as well as for model-driven personalized medicine. In summary, the BioMod-
elKit framework is an integrative, universally applicable and versatile framework for biomodel-engineering,
which supports advanced modelling and simulation approaches including multiscale modelling, spatial
modelling, automatic model generation and mutation at a genome-wide scale.





Zusammenfassung

BioModelKit – A Framework for Modular Biomodel-Engineering

Dipl.-Ing. Mary-Ann Blätke

System Biologie verwendet Modelle, um lebende Organismen in einem integrativen Kontext zu ver-
stehen. Die Repräsentation von "Omic"-Daten, verstreuten Wissen, und verschiedenen Netzwerktypen
stellen große Herausforderungen in der Modellierung dar. Weitere Herausforderungen ergeben sich
aus der mangelhaften Dokumentation bestehender Modelle und der Darstellung von multiskalen As-
pekten. Dabei erzeugen traditionelle Modellierungsansätze hochkomplexe monolithische Modelle. Eine
klassische ingenieurwissenschaftliche Methode die Komplexität solcher Probleme zu reduzieren ist die
Modularisierung.

Mit dieser Arbeit soll ein modulares Modellierungsframework für Biomodelle etabliert werden, genannt
BioModelKit, in dem Module speziell für den Zweck der Modelkomposition entworfen werden. Ein
Modul ist ein Petri Netz Modell, das die Funktionalität und Interaktionen eines Biomoleküls.Es wurden
mechanistische und kausale Modultypen definiert, um die unterschlichen Netzwerktypen und "Omic"
Level abzudecken. Neben dem unterliegenden Modell verfügt jedes Modul auch über weitreichende
Annotationen. Die definierten Schnittstellen der Modulen ermöglichen die Modelkomposition ohne
manuelle Korrekturen und somit die Integration verschiedener Netzwerktypen und "Omic"-Daten. Die
Einführung der Modellmutation erlaubt es, den Effekt von Gen Knock-outs und strukturellen Mutationen
eines Biomoleküls im Modell abzubilden. Die erzeugten Modelle lassen sich um räumliche Aspekte
erweitern, sodass die Bewegung von Biomolekülen, Zellgeometrie, Kompartmentalisierung und räum-
lichen Verteilung der Biomoleküle dargestellt werden kann. Module können durch "direct" und "reverse
engineering" Ansätze erzeugt werden, sowie durch die Transformation von bestehenden Modellen, z.B.
SBML oder Boolsche Modelle. Die Integration von Modulen erzeugt durch die Modeltransformation
und "Omic" Daten in mechanistisch Modelle durch "reverse engineered" Module steigert die universelle
Anwendbarkeit unseres Frameworks, und fördert die Wiederverwendung von Daten und Modellen. Das
BioModelKit Framework wird unterstützt durch eine Datenbank, welche explizit das Model und An-
notationen der Module speichert. Dies ermöglicht verschiedene Modulversionen zu speichern, erzeugt
aufgrund von z.B. konkurrierenden Hypothesen zu einem molekularen Mechanismus oder verschiedenen
Abstraktionsebenen. Über die Webschnittstelle hat der Nutzer Zugriff auf die Module. Module können für
die Veröffentlichung über die Webschnittstelle eingereicht oder kuriert werden. Die Webschnittstelle dient
auch der Modelkomposition, sowie der Anwendung der algorithmischen Modelmutation und räumlichen
Transformation. Die Fallstudien in dieser Arbeit verdeutlichen die Anwendbarkeit unseres Frameworks
und dessen Stärken im Zusammenhang mit den aktuellen Herausforderungen in der System Biologie. Die
vorgestellten Konzepte können besonders hilfreich sein, um "Omic"-Daten zu integrieren, synthetische biol-
ogische Modelle zuerstellen und in silico Modellmutagenese durchzuführen, sowie um die modell-gestützte
personalisierte Medizin anzuwenden. Das BioModelKit Framework ein integratives, universelles und viel-
seitiges Framework zur Erstellung von Biomodellen, welches auch Aspekte der multiskalen Modellierung
adressiert.
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1
Introduction

1.1 Motivation

In the mid-1990s, systems biology [31] emerged as a new scientific
discipline in bioscience research aiming to achieve a systems-level
understanding of living organisms. The application of the obtained
knowledge facilitates advances in various fields, including biotechnol-
ogy and medicine. In this context, systems-level approaches presume
a holistic viewpoint to investigate complex interactions among com-
ponents and their resulting behaviour. Such investigations require the
in-depth analysis of molecular and genetic findings. Based on those
requirements, systems biology mainly encouraged the development
of high-throughput ’omic’ technologies, such as genomics, proteomics,
and metabolomics. The main challenges arising in systems biology
are the complexity of investigated systems, the tremendous quantities
of data produced by omic technologies, and scattered pieces of knowl-
edge; which all need to be integrated. [110] Two approaches tackling
these challenges are databases and models integrating complex data
and knowledge. Besides, models enable the analysis and prediction
of the systems behaviour to explain the underlying molecular mecha-
nisms and estimate the impact of perturbations, e.g. mutations, drug
treatments, environmental changes, in a biological system in silico.

In many cases, models restrict themselves to a particular network
type, e.g. protein-protein interactions networks, gene regulatory net-
works, metabolic networks or signalling networks. But for a true
systems-level understanding which systems biology aims at, models
need to integrate information on different classes of biomolecules (the
genome, the transcriptome, the proteome, the metabolome, etc.) and
molecular interaction (e.g. protein-protein or protein-DNA interac-
tions) to obtain a comprehensive view of cellular regulation based on
dynamic models with predictive power.

With increasing amounts of data and unravelled magnitude of
interactions, models, as monolithic entities, become larger and more
complex. Also, the underlying molecular mechanism of a model can-
not be considered as hard-wired. Several factors like environmental
(experimental) conditions, the cell type, the impact stimulus sensing
and responses, or the history of an individual cell might alter the
gene expression pattern and thus, the wiring of a molecular network
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by adding, deleting or modifying components (see [17] for example).
Integrating all these information in a monolithic model is a tremen-
dous challenge. Understanding a model, maintaining and reusing
it requires a readily accessible and compact model representation,
which also must include reasonable annotations to document and
reference a model [54].

There exists a large variety of modelling methods, such as ordi-
nary differential equations, Boolean networks and Petri nets to name
only a few, which have already been applied to model numerous
biomolecular systems (see [87] for a review). Among them, Petri
nets [4] are particularly suitable for modelling molecular networks.
Their operational semantics allows for the unambiguous representa-
tion of concurrent, asynchronous and dynamic behaviour, which is
characteristic for most biomolecular systems. Since the introduction
of Petri nets to model metabolic pathways by Reddy et al. [19], Petri
nets have been successfully used in many case studies (see [82] for a
review). The attractiveness of Petri nets results from:

• the intuitive and graphically appealing modelling language;
• the operational semantics to directly execute a model;
• the option to hierarchically structure models of complex systems;
• the variety of mathematically founded qualitative and quantita-

tive analysis techniques, including different simulation paradigms
(stochastic, deterministic, hybrid), structural and behavioural prop-
erties; and

• the support by a wealth of computer tools for modelling, simulation
and analysis, see also Section 2.4 for popular Petri net tools.

Coloured Petri nets [13] are an extension of standard Petri nets by the
properties of a programming language, which even allow to represent
complex molecular multiscale networks in a compact and scalable
way.

Since the number of models representing functional aspects of
a living cell is steadily increasing [53], it is advisable to store and
organise models in databases. Storing models in databases facili-
tates to access models publicly, to reuse and to exchange them in
the scientific community. There already exits a number of databases
providing quantitative models of biomolecular networks, such as the
CellML repository [84], JWS Online [49], SenseLab ModelDB [42],
the Database of Quantitative Cellular Signalling (DOCQS) [44], Sig-
Path [45], and BioModels Database [62]. Typically, these databases
permit to store models, supplementary files, and related metadata
to retrieve models and to assist model versioning. However, models
stored in a database are not necessarily well-documented or peer-
reviewed, i.e., curated by experts [54].

Modularisation is a fundamental concept in engineering to reduce
the complexity of problems by decomposing a system into functional
parts with interfaces. Functional parts, called modules, can be created
independently of each other; they can be reused and recombined in
different regimes, and are in general easier to handle and to maintain.



introduction 23

In systems biology, there are two types of modularisation approaches
used: the a posteriori decomposition of monolithic models into modu-
lar parts is currently the most common one, while the composition of
models from ab initio designed modular elements has been established
only recently [97, 131].

A posteriori decomposition has been performed by modularising
existing models according to specific criteria. These criteria might
be either defined functionally (physiological phenomenon, common
genetic or signal-transduction units, etc.) [55] or arise from the struc-
tural features of the network (units without retroactive effects [55],
strongly connected components [10], or network invariants [80], etc.).
However, a posteriori decomposition mainly aims at the analysis rather
than at the modelling of complex systems. With the approaches intro-
duced by [92, 103] or [125], the resulting modules can be reused after
appropriate manual adjustment.

In the context of synthetic biology Cooling et al. [97] suggested
a modular approach, where in silico biomodels are composed of ab
initio built standard virtual parts (SVPs) of rather a general structure
that refer to standard biological parts (SBPs) and bio-environmental
processes. The SVPs are stored as ordinary differential equations
(ODEs) with input and output variables in the CellML database [84]
for reuse purposes. But because of the general structure of those
modules, input and output variables have to be manually matched to
compose synthetic network models.

Likewise, the composition of new models from existing models
stored in the above-mentioned computational model databases is ham-
pered by various granularities, different modelling formalisms, the
lack of strict vocabulary, naming convention, and model ontologies.
Also, the lack of accurate and compatible model interfaces hampers
the coupling of individual models.

1.2 Contributions

The aim of this thesis was to establish an integrative modular
modelling framework for biomodel engineering, named

BioModelKit, where modules in the form of Petri nets are
designed for the purpose of model composition and organised in

a database.

In particular, the contributions of this thesis are as follows.

Contribution 1: Modular Modelling Concept

The BioModelKit (BMK) framework originally developed during my
preceding Diploma thesis was validated in terms of applicability and
usefulness. It uses a modular approach to compose coherent mod-
els. Modules are biomolecule-centred Petri net models, which are
specifically designed for the purpose of model composition. The use
of shared interface networks within modules prevents false or error-
prone coupling of modules and highlights interactions of molecules
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that do occur in the modularly composed model. This allows the
generation of composed models by incorporation of alternative, e.g.
tissue-specific interactions of biomolecules. The rigorous reuse and re-
combination of modules greatly facilitates the construction of complex
models. Modules can be easily added to or removed from a modularly
composed model. Modules in a modularly composed model can also
be exchanged by alternative module versions representing competing
hypotheses or different abstraction levels, reengineered or rewired
modules for example.

Modules can be classified according to their biomolecular compo-
nent or process they represent. The definition of different module
types provides at the same time standardisation and extensive flexi-
bility for the integration of genomic, transcriptomic, proteomic, and
metabolomic components in a modularly composed model. Ad-
ditional module types that represent causal interactions are useful
when molecular mechanisms of causal interactions between model
components are not or not sufficiently known.

Contribution 2: Module Annotation

Each module is documented as suggested by [54]. The module an-
notation is encoded in the BMK mark-up language and includes
a main reference and information about the modelling process, in-
volved persons, the meaning of nodes used in the Petri net graph,
references to publications or other relevant databases, kinetics, and
initial conditions. The rich annotation facilitates the understanding
of the biomolecular content of a module and provides sufficient in-
formation for the execution of the underlying model in a simulation
environment.

Contribution 3: Module Construction Approaches

Next to the classical direct engineering approach, modules can be
obtained by the transformation of Boolean models of genetic networks
or models encoded in the SBML format. The automatic generation
of such modules that was implemented during this thesis allows to
import existing models into the module repository of the BMK frame-
work and make those models and their parts reusable by integrating
them into modularly composed models. The use of prototype mod-
ules and causal interaction modules in combination with reverse en-
gineering approaches fosters the generation of new modules through
different means and even by automatically compiling genome-wide
data sets (omics data sets) obtained by high-throughput approaches.

Contribution 4: Algorithmic model mutation

We have also implemented algorithmic mutation of modules and of
models derived thereof, which allows mimicking different kinds of
mutations such as gene deletions or protein structure mutations. The
algorithmic model mutation is designed to deliver exclusively models
which are biochemically realistic. Moreover, annotations provided
for the nodes of the underlying Petri net model of a module can be
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read during the process of model mutation to generate very specific
mutations.

Contribution 5: Spatial model transformation

In addition, a modularly composed model can be transformed into
a spatial model to account for geometric and spatial properties of
a cell, as well as its physical structure with respect to membranes,
compartments, pools, etc. Spatially transformed models can be sim-
ulated using Snoopy [120] or Marcie [129], and are computationally
manageable.

Contribution 6: Web tool including a model database

A web-tool consisting of a database and web-interface supports the
BMK framework and provides public access to the concepts and meth-
ods introduced in this thesis. The database takes over the handling of
modules and organises the module repository by explicitly storing the
underlying model structure and related annotations of a module. The
database also keeps track of the module versioning. The web-interface
accesses the database and provides diverse functionality to the user,
e.g. browsing, searching and inspecting modules, but also compos-
ing models from a set of chosen modules, applying the algorithmic
model mutation or spatial transformation of a module. Trough the
web-interface the user can also submit and curate modules.

Prospects.
The BMK framework might be beneficial for several applications, such
as the automatic generation of models based on high-throughput data
sets, the rewiring and reengineering of models for synthetic biology
purposes, and the performance of extensive mutation studies. In
particular, integrating rewired modules and high-throughput data
using reverse engineering approaches facilitates the generation of
personalised, respectively individualised, models. Such models might
be of importance in personalised medicine in the near future.

In summary, the proposed BMK framework covers all major types
of modelling paradigms (discrete, deterministic, stochastic, hybrid)
in systems biology, and allows to integrate all common types of
biomodels including Boolean networks. Therefore, the BMK frame-
work is widely if not universally applicable in the field of biomodel
engineering in a very versatile manner.

All of the approaches introduced in this thesis have been imple-
mented with the help of Snoopy [120], Charlie [141], and Marcie [129];
and successfully tested for their executability. In particular, this thesis
had a significant impact on the consistent further development of
Snoopy [120].
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1.3 Fundamental Basics

This thesis incorporates concepts and theories from different fields to
establish the BMK framework and a supportive web-tool. Through-
out this thesis, we chose Petri nets as modelling language to create
modules as defined in the BMK framework. But we also relate to
Boolean networks representing gene regulatory processes as an input
for the module construction. The web-tool is implemented using
HyperText Markup Languages (HTML), Cascading Style Sheets

(CSS), Hypertext Preprocessor (PHP), and Javascript. As a rela-
tional database management system MySQL has been used to design
and administrate the database holding modules defined in the BMK
framework. Modelling biomolecular systems at a macro-molecular
level also requires knowledge about:

• Biochemistry - Study of chemical components and processes vital in
live organisms with a focus on the roles, functions and structures
of the involved components.

• Genetics - Study of the effect of genetic differences on organisms.
• Molecular Biology - Study of the molecular fundamentals of the

processes of replication, transcription, translation, and cell function
to understand live.

We also incorporate general concepts employed in systems and com-
putational biology to model and analyse biomolecular systems. This
includes standards like the Minimum Information Requested In the

Annotation of biochemical Models (MIRIAM) and the Systems

Biology Markup Language (SBML). Working with SBML requires
knowledge about the concepts of the eXtensible Markup Languages

(XML) [22].
A basic understanding of these concepts and theories is needed

to conceive the complex relations in the BMK framework. As far as
necessary and relevant, we provide a basic introduction to the used
concepts and give references for further reading.

1.4 Organisation of Thesis

Since the definition of the modular modelling concept mainly relies
on Petri nets, we start with a short but comprehensive introduction
of the Petri net framework in Chapter 2. In the following, we will
define the modular modelling concept used in the BMK framework
in Chapter 3 and then introduce the supportive web-tool, including
the BMK database and web-interface in Chapter 4. We separately
present additional case studies in Chapter 5 and discuss examples of
application in Chapter 6 to allow a continuous reading of the formal
concepts and their implementation in the chapters before. At the end
in Chapter 7, we provide a conclusion and a short outlook.

Since the BMK framework integrates several concepts in a complex
context to establish a general and versatile framework for biomodel
engineering, the complete overall picture may not become evident
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before the end of this thesis, when the elements are discussed in
relation to each other.

Below, we summarise the content of each chapter in more detail:

Chapter 2 We give a short introduction into Petri nets, which is
the modelling language of choice used in this thesis due to their
operational semantics and outstanding facilities to model and analyse
biological systems.

Chapter 3 We introduce the BMK framework for biomodel engineer-
ing, where models are composed of a set of molecule-centred models,
called modules. We first give a definition of our modularization
concept and the underlying Petri net model of a module. Also, we de-
scribe the extension of a module with annotations for documentation
and reference purposes by proposing the BMK mark-up language.
We then explain the modular model composition and variations of it,
including the algorithmic mutation of models and spatial extension of
modularly composed models. Last, we describe different approaches
for the module construction, including direct and reverse engineering
approaches, as well as the modular transformation of Boolean and
SBML models.

Chapter 4 We present the BMK web-tool consisting of a database
and a web-interface to support the automatisation of the BMK frame-
work. Here, the database explicitly stores the underlying model and
annotations of a module and keeps track of the module versioning.
Through the web-interface, the user can access the modules stored in
the database by querying for specific modules or browsing through
the module repository. The user can submit and curate modules
through the BMK web-tool. The BMK web-tool also provides features
to create modularly composed models and to apply the algorithmic
model mutation or spatial model transformation to the modularly
composed models.

Chapter 5 We give three case studies on JAK-STAT signalling, noci-
ception, and the phosphate regulatory network in enterobacteria to
demonstrate the proposed modularization concept.

Chapter 6 We first provide a general overview on generation of
alternative modularly composed models by steadily reusing modules
in variable combination. Next, we explain more detailed approaches
on how to apply the BMK framework to integrate omic data into
modularly composed models, and to support the investigation of
synthetic and synthetically rewired networks, as well as the mutation
studies. Last, we also provide a short prospect on applications in
personalised medicine.

Chapter 7 We summarise the features and merits of the BMK frame-
work for the modular composition of biomodels and give an outlook.





2
Petri Nets

Petri nets are a formal modelling language to describe distributed
systems in any field of application from technical to biological sys-
tems. Carl Adam Petri invented Petri nets in August 1939 at the age
of 13 and finally documented them as a part of his dissertation "Kom-
munikation mit Automaten (communication with automata)" in 1962.
Using Petri nets to model a system allows representing concurrent,
asynchronous and non-deterministic processes in an unambiguous
way. In this chapter, we will explain only the basics of Petri nets, a
more comprehensive introduction on Petri nets can be found in [133,
138]. In particular, we refer to [82] for terminology and formal defini-
tions on Petri nets. These references do also argue on the applicability
and advantageous of Petri nets for modelling and analysing biological
systems supported by several examples.

2.1 The Basics

Mathematically, a Petri net is a well-defined directed graph using
two sets of nodes, places and transitions, which are connected by
directed arcs, see Figure 2.1. Places are the passive nodes of a Petri
net representing conditions (objects), where transitions are active
nodes representing events (activities). In-going arcs of a transition
indicate all conditions (places) acting as a source for the encoded
event. Out-going arcs of a transition denote, which conditions (places)
are products of the event. Thus, arcs indicate in which direction a
process evolves. The arc-weight of an arc defines the quantity that is
required or produced of a condition (place) by an event (transition).
Tokens define the value of each condition modelled by a place. The
token distribution over all places is called marking and represents the
current state of the modelled system.

The Petri net formalism employs operational semantics to execute
the modelled events and processes. To run an event encoded by a
transition all pre-places of a transition must host a sufficient amount of
tokens according to the arc-weight, called enabledness. If an enabled
transition runs its event, called firing, it deletes the tokens on its
pre-places according to the arc-weights and produces new tokens on
its post-places, again according to the arc-weights, see Figure 2.1(D).
Thus, the firing of a transition updates the current marking to a
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Figure 2.1: Petri net formalism. (A)
Elements of a Petri net are places,

transitions, arcs and tokens. (B)
Only places can host tokens. (C)

Nodes of the same type cannot be
connected. (D) The Petri net mod-

els the chemical formation of water
through oxygen (atoms shown in
red) and hydrogen (atoms shown

in grey). The stoichiometry is given
by the arc-weights of the reaction. A
transition is enabled and may fire if

pre-places host sufficient amounts
of tokens. (adapted from [133])

(a) (d)

(b) (c)

Before firing of t: After firing of t:

newly reachable one. The firing process itself is an atomic event
and consumes no time. The repeated firing of transitions translates
into the behaviour of the Petri net. The set of all reachable markings
from the initial marking constitutes the state space of the Petri net.
Accordingly, qualitative Petri nets (QPN ) are defined as [82]:

Definition 2.1 (Qualitative Petri net). A qualitative Petri net is a
5-tuple N = {P, T, F, f , m0}, where:

• P is a finite, non-empty set of places.
• T is a finite, non-empty set of transitions.
• F is a finite set of directed arcs.
• f : F →N0 is a function that assigns a non-negative integer to each

arc f (x, y) ∈ F; x, y ∈ P ∪ T.
• m0: P→N0 gives the initial marking.

So far, there exist several extensions of the QPN [82]. Regulatory
arcs are one of them, which either increase the expressiveness of the

Figure 2.2: Regulatory arcs. Left side
shows net before firing of transition
t (only transitions marked in red are
enabled). Right side shows net after

firing of enabled transitions. (A) Read
arc - transition t can only fire, if the

marking on place p1 is equal to or
greater than the arc-weight. (B) In-

hibitory arc - transition t can only fire,
if the marking on place p1 is less than
the arc-weight. (C) Equal arc - transi-
tion t can only fire, if the marking on
place p1 is equal to the arc-weight. In

(A)-(C) token remain on place p1 after
firing of transition t. (D) Reset arc -

transition t can fire independent of the
marking on place p1. The firing of tran-

sition t deletes all tokens on place p1.

(A) Read arc
p1 p2

p2p1
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Petri net formalism or allow a more compact representation. Here,
we consider four types of regulatory arcs: read arcs, inhibitory arcs,
equal arcs, and reset arcs. All of the regulatory arcs are only allowed
to lead from a place p to a transition t. Read, inhibitory, and equal
arcs introduce additional constraints to the enabledness of a transition
t. In the case of these three arc types, the marking of the respective
place m(p) is not affected by the firing of transition t.

• The read arc [21] requires that the marking of place p is not less
than the arc-weight to enable transition t, see Figure 2.2(A).

• The inhibitory arc [7] reverses the logic of the read arc. The marking
of place p must be less than the arc-weight to enable transition t,
see Figure 2.2(B).

• The equal arc [104] narrows the precondition implied by the read
arc. Accordingly, the connected transition t may only fire if the
marking of place p is equal to the arc-weight, see Figure 2.2(C).

• The reset arc [9] adds no precondition to transition t, the firing of
transition t empties place p, see Figure 2.2(D).

Based on Defintion 2.1 for QPN , we define qualitative Petri nets
extended by regulatory arcs (XPN ) as [82]:

Definition 2.2 (Extended Petri net). A qualitative Petri net is a 5-tuple
N = {P, T, F, f , m0}, where:

• P is a finite, non-empty set of places.
• T is a finite, non-empty set of transitions.
• F is a finite set of directed arcs. F is defined as the union of five

disjunctive arc sets, i.e. F := FSA ∪ FRA ∪ FIA ∪ FEA ∪ FXA with:

– FSA ⊆ (P× T) ∪ (T × P) is the set of standard arcs,
– FRA ⊆ P× T is the set of read arcs,
– FIA ⊆ P× T is the set of inhibitory arcs,
– FEA ⊆ P× T is the set of equal arcs, and
– FXA ⊆ P× T is the set of reset arcs.

• f : F →N0 is a function that assigns a non-negative integer to each
arc f (x, y) ∈ F; x, y ∈ P ∪ T.

• m0: P→N0 gives the initial marking.

For simplicity we do not further distinguish QPN and XPN , and
refer to XPN also as QPN . Based on the Definition 2.1 and 2.2,
we introduce notations about the marking and pre-sets, respectively
post-sets, of nodes. The notation m(p) refers to the number of tokens
on place p in the marking m. Place p is clean (empty, unmarked) in
m if m(p) = 0. A set of places is called clean if all places are clean,
otherwise the set is marked. The pre- and postset of a node x ∈ P∪ T,
is defined as:

• Preset:·x := {y ∈ P ∪ T | f (y, x) 6= 0}
• Postset: x·:= {y ∈ P ∪ T | f (x, y) 6= 0}
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For places and transitions, we get four types of sets:

• ·t - pre-places of transition t
• t·- post-places of transition t
• ·p - pre-transitions of place p
• p·- post-transitions of place p

For a set of nodes X ⊆ P∪ T,·X :=
⋃

x∈X •x is the set of pre-nodes
and X·:= ⋃

x∈X •x is the set of post-nodes.
Based on the Definition 2.2 and the notation of pre- and post-sets

of nodes, the firing rule of a QPN can be defined as:

Definition 2.3 (Firing Rule). Let N = (P, T, F, f , m0) be a Petri net:

• A transition t is enabled in marking m, written as m [t〉, if

– ∀p ∈·t : m(p) ≥ f (p, t), if f (p, t) ∈ FSA,
– ∀p ∈·t : m(p) ≥ f (p, t), if f (p, t) ∈ FRA,
– ∀p ∈·t : m(p) < f (p, t), if f (p, t) ∈ FIA, and
– ∀p ∈·t : m(p) = f (p, t), if f (p, t) ∈ FEA;

else transition t is disabled.
• A transition t, which is enabled in m, may fire.
• When t in m fires, a new marking m′ is reached, written as m [t〉m′,

with ∀p ∈ P :

m′(p) =



m(p)− f (p, t) + f (t, p) , if f (p, t) ∈ FSA

m(p) + f (t, p) , if f (p, t) ∈ FRA

m(p) + f (t, p) , if f (p, t) ∈ FIA

m(p) + f (t, p) , if f (p, t) ∈ FEA

f (t, p) , if f (p, t) ∈ FXA

Additional Visual Features

In addition to the standard Petri net elements and regulatory
arcs, some Petri net tools, e.g. Snoopy [120], support two additional
distinguished features for the design and systematic construction of
larger Petri nets:

• Coarse Nodes allow to structure a Petri net hierarchically, see
Figure 2.3(A)-(B). There are two types of coarse nodes. Coarse
transitions (two centric squares) stand for transition-bordered sub-
nets (i.e. subnets having only transitions as an interface to the
supernet). Likewise, coarse places (two centric circles) stand for
place-bordered subnets (i.e. subnets having only places as an
interface to the supernet).

• Logical nodes (shaded in grey), also called fusion nodes, allow to
represent identical copies of one and the same node, i.e. logical
nodes with the same name are logically identical, see Figure 2.3(C)-
(D). Logical nodes can exist in two forms: logical places and logical
transition. They can be applied to connect remote parts of a net
or to split nodes with a high connectivity into copies of identical
logical nodes to sort out superimposed arcs.
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(A) Coarse Transition
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Figure 2.3: Coarse Nodes and Logical
Nodes. Coarse transitions (A) and
coarse places (B) yield hierarchically
structured nets. Logical transitions (C)
and logical places (D) connect remote
parts of a net.

Both, coarse nodes and logical nodes allow to structure complex
Petri nets in a compact and neatly arranged way.

2.1.1 Qualitative Petri Net Properties

In the following, we list elementary graph properties of a Petri net
to reflect the modelling approach and qualitatively characterize the
graph structure, see [82] for detailed explanations of the following
notions:

• A Petri net is:

. . . pure if ∀x, y ∈ P ∪ T : f (x, y) 6= 0⇒ f (y, x) = 0.

. . . ordinary if ∀x, y ∈ P ∪ T : f (x, y) = 1.

. . . homogeneous if ∀p ∈ P : t, t′ ∈ p·⇒ f (p, t) = f (p, t′).

. . . free of blocking multiplicity if
∀p ∈ P :·p 6= ∅ ∧min{ f (t, p) | ∀t ∈·p} ≥ max{ f (p, t) | ∀t ∈ p·}.

. . . conservative if ∀t ∈ T : ∑p∈·t f (p, t) = ∑p∈t· f (t, p).

. . . static conflict free if ∀t, t′ ∈ T : t 6= t′ ⇒·t ∩·t′ = ∅.

. . . connected if it holds for every two nodes x and y, x, y ∈ P∪ T,
that there is an undirected path between x and y.

. . . strongly connected if it holds for every two nodes x and y,
x, y ∈ P ∪ T, that there is a directed path from x to y.

• A Petri net has

. . . input transitions (transitions without pre-places) if·t = ∅.

. . . output transitions (transitions without post-places) if t·= ∅.

. . . input places (places without pre-transitions) if·p = ∅.

. . . output places (places without post-transitions) if p·= ∅.

In Addition to the elementary graph properties, place invariants
(P-invariants) and transition invariants (T-invariants) are essential
structural features of a Petri net graph, which have a major impact
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on the model behaviour. In general, an invariant is a predicate of a
system, which is not changed by the processes involved in the system.
Concerning places, a P-invariant represents a set of places over which
the weighted sum of tokens is constant and independent of any firing.
In the case of transitions, a T-invariant stands for a set of transitions.
The partially ordered firing of transitions in a T-invariant reproduces
the initial state, which enabled the firing of the transitions in the
T-invariant. The total effect of the T-invariant on a marking is zero.
Below, we give the formal definitions for P- and T-invariants, consider
also [82] for more details.

Definition 2.4 (P-invariants, T-invariants).

• The incidence matrix of N is a matrix C : P× T → Z, indexed by
P and T, such that C(p, t) = f (t, p)− f (p, t).

• A place vector (transition vector) is a vector x : P→ Z, indexed by
P (y : T → Z, indexed by T)

• A place vector (transition vector) is called P-invariant (T-invariant)
if it is a non-trivial non-negative integer solution of the linear
equation system x ·C = 0 (C · y = 0).

• The set of nodes corresponding to an invariant’s non-zero entries
are called the support of this invariant x, written as supp(x).

• An invariant x is called minimal, if 6 ∃ invariant z: supp(z) ⊂
supp(x), i.e., its support does not contain the support of any other
invariant z, and the greatest common divisor of all non-zero entries
of x is 1.

• A net is covered by P-invariants (T-invariants), if every place (tran-
sition) belongs to a P-invariant (T-invariant).

The general behaviour of a Petri net can be characterized by three
properties:

• Boundedness - For each place it holds that: Whatever happens, the
maximum number of tokens on this place is bounded by a constant.
This constraint precludes overflow by an unlimited increase of
tokens.

• Liveness - For every transition it holds that: Whatever happens,
it will always be possible to reach a state, where this transition
gets enabled. In a live net, all transitions can contribute to the net
behaviour forever, which precludes dead states, i.e., states where
none of the transitions is enabled.

• Reversibility - For every state it holds that: Whatever happens, the
net will always be able to reach this state again. So the net has the
capability of self-reinitialization.

These properties can be formulated independently of the special
function of the network under consideration. Below, we give the
formal notations of these notions, see [82] for detailed explanations.
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Definition 2.5 (Boundedness).

• A place p is k-bounded if there exists a positive integer number k,
which represents an upper bound for marking of this place in all
reachable markings of the Petri net:
∃k ∈N0 : ∀m ∈ [m0〉 : m (p) ≤ k.

• A Petri net is k-bounded if all its places are k-bounded.
• A Petri net is structurally bounded if it is bounded in any initial

marking.

Definition 2.6 (Liveness).

• A transition t is dead in the marking m if it is not enabled in any
marking m′ reachable from: 6 ∃m′ ∈ [m〉 : m′(t).

• A transition t is live, if it is not dead in any marking reachable
from m0.

• A marking m is dead, if there is no transition enabled in m.
• A Petri net is deadstate-free, if there are no reachable dead mark-

ings.
• A Petri net is live, if each transition is live.

Definition 2.7 (Reversibility). A Petri net is reversible if the ini-
tial marking can be reached again from each reachable marking:
∀m ∈ [m0〉 : m0 ∈ [m〉.

2.2 Petri Net Framework

So far, we considered qualitative Petri nets (QPN ) as time-free, i.e.
neither are transitions associated with time nor are tokens assigned
with a sojourn time. Thus, QPN consider all possible behaviour
under any timing. The extension of QPN in a quantitative man-
ner by integrating time aspects allows the introduction of extended
stochastic Petri nets (SPN ), extended continuous Petri nets (CPN ),
and generalised hybrid Petri nets (HPN ), see Figure 2.4.

2.2.1 Stochastic Petri Nets

SPN are an extension of QPN [82]. In an SPN , see Figure 2.4, each
transition of the respective QPN is associated with a firing rate. The
firing rate is a random variable defined by an exponential distribution.
The semantics of an SPN are thus equivalent to a continuous-time
Markov chain (CTMC), which can be obtained from the reachability
graph of the underlying QPN , where arcs connecting two states
are labelled with the transition rate, see also [89] for more details.
The QPN is an abstraction of the SPN , meaning all qualitative
properties valid for the QPN are valid for the SPN as well, and
vice versa. An SPN is defined as [89]:
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Figure 2.4: Conceptual Framework.
The standard low-level Petri net for-

malism comprises four net classes,
qualitative Petri nets (QPN ), stochas-

tic Petri nets (SPN ), continuous
Petri nets (CPN ), and generalised

hybrid Petri nets (HPN ). The Petri
net classes differ in their type of state

space and their relation in respect
to time. Each Petri net class can be

derived from one of the others by
abstraction, extension, or approxi-

mation. Also, all standard Petri net
classes can be projected to the high-
level coloured Petri net framework.

Coloured Petri nets can be obtained
by folding of the corresponding stan-
dard Petri net class, respectively un-

folding a coloured Petri nets yields a
standard Petri nets. (taken from [121])
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Definition 2.8 (Stochastic Petri Net). A stochastic Petri net is a 6-tuple
N = {P, T, F, f , v, m0}, where:

• P is a finite, non-empty set of places.
• T is a finite, non-empty set of transitions.
• F is a finite set of directed arcs. F is defined as the union of five

disjunctive arc sets, i.e. F := FSA ∪ FRA ∪ FIA ∪ FEA ∪ FXA with:

– FSA ⊆ (P× T) ∪ (T × P) is the set of standard arcs,
– FRA ⊆ P× T is the set of read arcs,
– FIA ⊆ P× T is the set of inhibitory arcs,
– FEA ⊆ P× T is the set of equal arcs, and
– FXA ⊆ P× T is the set of reset arcs.

• f : F →N0 is a function that assigns a non-negative integer to each
arc f (x, y) ∈ F; x, y ∈ P ∪ T.

• v: T → H is a function that assigns a stochastic hazard function h(t)
to each transition t ∈ T, whereby H :=

⋃
t∈T{h(t) | h(t) : N·t0 → R+}

is the set of all stochastic hazard functions, and v(t) = h(t) for all
transitions T.

• m0: P→N0 gives the initial marking.

2.2.2 Continuous Petri Nets

In the CPN , see Figure 2.4, each transition of the respective QPN
is associated with a deterministic rate, and the discrete values of the
places are replaced with continuous values. Thus, the CPN gives
a structured description of a set of ordinary differential equations
(ODEs), which describes the overall behaviour of a modelled system.
Accordingly, the state space of a CPN is continuous and linear [67].
An CPN is defined as [89]:
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Definition 2.9 (Continuous Petri Net). A continuous Petri net is a
6-tuple N = {P, T, F, f , v, m0}, where:

• P is a finite, non-empty set of places.
• T is a finite, non-empty set of transitions.
• F is a finite set of directed arcs. F is defined as the union of five

disjunctive arc sets, i.e. F := FSA ∪ FRA ∪ FIA ∪ FEA ∪ FXA with:

– FSA ⊆ (P× T) ∪ (T × P) is the set of standard arcs,
– FRA ⊆ P× T is the set of read arcs,
– FIA ⊆ P× T is the set of inhibitory arcs,
– FEA ⊆ P× T is the set of equal arcs, and
– FXA ⊆ P× T is the set of reset arcs.

• f : F → R+
0 is a function that assigns a non-negative real value to

each arc f (x, y) ∈ F, x, y ∈ P ∪ T.
• v: T → H is a function that assigns a firing-rate function h(t) to

each transition t ∈ T, whereby H :=
⋃

t∈T{h(t) | h(t) : R·t → R}
is the set of all stochastic hazard functions, and v(t) = h(t) for all
transitions T.

• m0: P→ R+
0 gives the initial marking.

2.2.3 Generalised Hybrid Petri Nets

In the HPN , see Figure 2.4, the aspects of SPN and CPN are joined.
Nodes in a HPN can either be considered as part of an SPN or
CPN . There are strict rules on how to connect nodes of different
origin, see Definition 2.10. The resulting state space is a combination
of a discrete state space of an SPN and the continuous state space of
an CPN , where the CTMC is connected through Markov jumps. An
HPN is defined as [130]:

Definition 2.10 (Generalised Hybrid Petri Net). A hybrid Petri net is a
6-tuple
N = {P, T, F, f , V, m0}, where:

• P is a finite, non-empty set of places with P = {Pcont ∪ Pdisc},
whereby Pcont is the set of continuous places to which non-negative
real values can be assigned and Pdisc is the set of discrete places to
which non-negative integer values can be assigned.

• T is a finite, non-empty set of transitions with T = {Tcont ∪ Tstoch},
whereby Tcont is the set of continuous transitions, which fire con-
tinuously over time and Pstoch is the set of stochastic transitions,
which fire stochastically with exponentially distributed waiting
times.

• F is a finite set of directed arcs. F is defined as the union of five
disjunctive arc sets, i.e. F := FSA ∪ FRA ∪ FIA ∪ FEA ∪ FXA with:

– FSA,cont ⊆ (Pcont × T) ∪ (T × Pcont) is the set of standard arcs,
– FSA,disc ⊆ (P× T) ∪ (T × P) is the set of standard arcs,
– FRA ⊆ P× T is the set of read arcs,
– FIA ⊆ P× T is the set of inhibitory arcs,
– FEA ⊆ P× T is the set of equal arcs, and
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– FXA ⊆ P× Tstoch is the set of reset arcs.

• f : is a function that assigns the following values to each arc
f (x, y) ∈ F, x, y ∈ P ∪ T:

– FSA,cont → R+
0 ;

– FSA,disc →N0;
– FRA → R+ if P ∈ Pcont or FRA →N+ if P ∈ Pdisc;
– FEA → R+

0 if P ∈ Pcont or FEA →N+
0 if P ∈ Pdisc; and

– FIA → R+ ∪ {0+} if P ∈ Pcont or FIA → N+ if P ∈ Pdisc, where
0+ means a very small positive real number but not zero.

• V is a set of functions with V = {vcont, vstoch}
– vcont: Tcont → Hcont is a function that assigns a firing-rate func-

tion hcont(t) to each transition t ∈ Tcont, whereby
Hcont :=

⋃
t∈Tcont{hcont(t) | hcont(t) : R·t → R} is the set of all

stochastic hazard functions, and vcont(t) = hcont(t) for all transi-
tions Tcont.

– vstoch: Tstoch → Hstoch is a function that assigns a stochastic
hazard function hstoch(t) to each transition t ∈ Tstoch, whereby
Hstoch :=

⋃
t∈Tstoch

{hstoch(t) | hstoch(t) : N·t0 → R+} is the set of
all stochastic hazard functions, and vstoch(t) = hstoch(t) for all
transitions Tstoch.

• m0 = m0,cont ∪ m0,stoch: gives the initial marking for continuous
places Pcont and discrete places Pdisc, whereby m0,cont : Pcont → R+

0
and m0,cont : Pcont →N0

2.3 Coloured Petri Nets

Coloured Petri nets [11, 12, 13] are the coloured extension of the
standard Petri net classes. Like the hierarchical structuring using
coarse nodes, the colouring concept facilitates a compact model design.
Coloured Petri nets extend the strength of standard Petri nets with the
expressiveness of a programming language allowing the definition
of data types. In addition to the elements of a standard Petri net, a
coloured Petri net model is characterised by colour sets, each defined
by a datatype. As common for programming languages, a data type
is a set of values obeying certain properties, e.g. integer numbers,
Boolean values or strings [15].

As explained in [121]: "In a coloured Petri net, a colour set is
assigned to each place. A place in a coloured Petri net may host
distinguishable coloured tokens, whose colours are comprised in the
colour set assigned to the place. Each arc carries an arc-expression. Its
result type is a multiset over the colour sets of the connected places,
see [122] for an explanation on multisets. Thus, variables associated
with a transition originate either from the guard of the transition
or the arc-expressions of in- or out-going arcs. An arc-expression
can only be evaluated if values with suitable data types are assigned
to each variable. This process is called binding [70]. A particular
binding of a transition defines a transition instance. Each transition is
equipped with a guard, which is a Boolean expression over defined
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variables. The guard determines whether a transition instance for
a particular binding exists or not. If the guard is not specified in
any other way, it is set to the default value "true", which is not
explicitly given. If the guard of a transition is evaluated to false, the
transition can not be enabled. Both the guard and the arc-expression
of the in-going arcs of a transition for a particular binding must be
evaluated to true to enable the corresponding transition instance.
Only enabled transition instances may fire. The firing of an enabled
transition instance removes coloured tokens from the pre-places and
adds coloured tokens to the post-places according to the specified
arc-expressions."

For each of the four standard Petri net classes, see previous Section
and Figure 2.4 exists a coloured Petri net equivalent, see Figure 2.4. A
coloured qualitative Petri net (QPN C ) is defined as:

Definition 2.11 (Coloured Qualitative Petri Net). A hybrid Petri net is
a 9-tuple N (Gcol) = {PGcol , TGcol , FGcol , WGcol , ψGcol , gGcol , f Gcol , mGcol

0 },
where:

• P is a finite, non-empty set of places.
• T is a finite, non-empty set of transitions.
• F is a finite set of directed arcs. F is defined as the union of five

disjunctive arc sets, i.e. F := FSA ∪ FRA ∪ FIA ∪ FEA ∪ FXA with:

– FSA,cont ⊆ (Pcont × T) ∪ (T × Pcont) is the set of standard arcs,
– FSA,disc ⊆ (P× T) ∪ (T × P) is the set of standard arcs,
– FRA ⊆ P× T is the set of read arcs,
– FIA ⊆ P× T is the set of inhibitory arcs,
– FEA ⊆ P× T is the set of equal arcs, and
– FXA ⊆ P× Tstoch is the set of reset arcs.

• W is a finite, non-empty set of colour sets.
• ψ: P → W is a colour function that assigns to each place p ∈ P a

colour set ψ(p) ∈W.
• g: T → EXP is a guard function that assigns to each transition

t ∈ T a guard expression of Boolean type.
• f : F → EXP is an arc function that assigns to each arc f (x, y) ∈ F,

x, y ∈ P ∪ T an arc-expression of a multiset type ψ(p)MS.
• m0: P→ EXP is an initialization function that assigns to each place

p ∈ P an initialization expression of a multiset ψ(p)MS.

The definitions of the coloured Petri net equivalents for the remain-
ing three Petri net classes SPN , CPN and HPN have to be defined
accordingly. For the sake of simplicity, they are not explicitly given,
see [121] and [122] for more details.

Colour sets can be defined using different data types, depending
on the data type, we distinguish simple and compound colour sets:

• Simple types:

– int (non-negative integers), e.g. colour set CS1 := 1, 2, 3
– string (sequences of printable ASCII characters),

e.g. colour set CS2 := a, b, c
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Figure 2.5: Coloured Petri net basics.
For each of the three cases (A)-(C),
a colour set "CS" has been defined

with two colours of type integer: "1"
and "2" and a variable x bound to the

colour set "CS", see (D). The colour
"1" represents the subnet with p1 and
t1, whereas colour "2" represents the
subnet with p2 and t2. In cases (A)-
(C) the left net shows the standard

Petri net and the right net illustrates
the coloured Petri net equivalent. The

additional notations of the coloured
Petri net are given as follows: arc-

expressions in blue, markings in red,
colour sets in maroon, and guards in
purple. (A) The net to be folded con-

sists of two identical isolated subnets,
resulting into the arc-expression x.

(B) The net to be folded has two extra
arcs (p1 to t2; p2 to t1), resulting into

the arc-expression x + +(+x). The
operator "+" in (+x) returns the suc-

cessor of x in an ordered finite colour
set. The operator "++" is the mul-

tiset addition operator. (C) The net
to be folded has one extra arc (p2 to
t1), resulting into the arc-expression
[x = 1](x + +(+x)) + +[x = 2]x.

The expression in square brackets [. . .]
defines a predicate (if-statement) fol-
lowed by an instruction, see text for

more details. (adapted from [121])

(A)

p1 p2

CS

p

t1 t2

[true]

t

x

1’all()

(B)
CS

pp2p1

[true]

tt2t1

x ++ (+x)

1’all()

(C)
CS

pp2p1

[true]

tt2t1

1’all()

[x=1] (x ++ (+x)) 
++
[x=2] x

(D)
Declarations:
colour set CS := int with 1,2;
variable x:= CS;

1

Note: In contrast to standard Petri
nets, the graph of a coloured Petri net
has additional annotations with the
following colour code:

• arc-expressions (blue)
• guards (purple)
• markings (red)
• colour sets (maroon)

– bool (Boolean values are true and false),
e.g. colour set CS3 := true, f alse

– . . .

• Compound types:

– product (tuple of previously declared colour sets)

(1, a), (1, b), (1, c),

e.g. CSproduct
1,2 := CS1 × CS2 ≡ (2, a), (2, b), (2, c),

(3, a), (3, b), (3, c)

– union (disjoint union of previously declared colour sets)

e.g. CSunion
1,2 := CS1, CS2 ≡ 1, 2, 3, a, b, c

Coloured and standard Petri nets can be converted into each other
by folding and unfolding. The unfolding of the coloured Petri net
model, as well as the computation of its state space, allows for the ap-
plication of all analysis techniques of the standard Petri net classes [70,
91].

Figure 2.5 demonstrates the notions and use of coloured Petri nets
on a set of small examples, see also text below for more details about
the examples.

Example. Figure 2.5 shows three small examples of standard Petri
nets and their coloured equivalents. For each case (A)-(C) the net
on the left shows the standard Petri net and the net on the right
the coloured Petri net equivalent 1. Each of the standard Petri nets
consists of two places p1 and p2, as well as two transitions t1 and
t2. The examples only differ in the arcs connecting the places and
transitions. For the coloured Petri net equivalents, we defined a colour
set "CS" of type int (see above) with two colours "1" and "2" and a
variable x, which is bound to colour set "CS", see Figure 2.5(D). The
graph of each coloured Petri nets consists only of a coloured place p
bound to the colour set "CS" (maroon notation), a coloured transition
t with its guard set to "true" (purple notation) and an arc connecting
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the coloured place and transition. The differences in the connection
between places and transitions in the corresponding standard Petri
nets are realised through arc-expressions (blue notations). Thus,
colour "1" represents the subnet with p1 and t1, whereas colour "2"
represents the subnet with p2 and t2. Since the places p1 and p2
are each marked with one token, the marking of the coloured place
p is set to 1′all() (red notation). The symbol "′" in the marking
expression separates coefficient (number of tokens) and colour. The
function all() returns all colours from the colour set bound to the
corresponding place. In this case, colours "1" and "2" are returned. In
total, the coloured place p has one token of colour "1" and another
token of colour "2". The tokens or number directly displayed on a
coloured place always indicates the total number of tokens over all
place instances; here two tokens are shown. The arc-expressions for
the coloured Petri nets are derived as follows:

• Figure 2.5(A), the net to be folded consists of two identical isolated
subnets, resulting into the arc-expression x. Depending on the
colour that is bound to variable x, either one token of colour "1"
(representing the firing of transition t1) or "2" (representing the
firing of transition t2) must be subtracted from the coloured place
p.

• Figure 2.5(B), the net to be folded has two extra arcs (p1 to t2; p2
to t1) compared to Figure 2.5(A), resulting into the arc-expression
x + +(+x). The operator "+" in (+x) returns the successor of
x in an ordered finite colour set. If x is bound to colour "1",
the expression (+x) is evaluated to colour "2", otherwise if x is
bound to colour "2", it returns colour "1". The operator "++" is
the multiset addition operator, see [122] for more explanations on
multisets. Here, the multiset addition operator creates a set of
differently coloured tokens, which run along the corresponding
arc. Thus, if x is bound to colour "1", the arc-expression x ++(+x)
claims that one token of colour "1" and "2" must be subtracted from
the coloured place p (representing the enabling of transition t1).
Vice versa, if x is bound to colour "2", the arc-expression x ++(+x)
claims that one token of colour "2" and "1" must be subtracted from
the coloured place p (representing the enabling of transition t2).

• Figure 2.5(C), the net to be folded has one extra arc (p2 to t1)
compared Figure 2.5(A), resulting into the arc-expression [x =

1](x + +(+x)) + +[x = 2]x. The expression in square brackets
[. . .] defines a predicate. A predicate is a Boolean expression,
which subtracts a subset of colours from the actual colour set.
The predicate [x = 1] subtracts colour "1" form the colour set CS,
where the predicate [x = 2] subtracts colour "2". An arc-expression
follows each predicate. If the predicate is evaluated to true for
a particular binding, then the corresponding arc-expression is
applied. The notation of a predicate followed by an arc-expression
is similar to an if-statement followed by an instruction. Here,
the multiset addition operator "++" allows to list a number of
different predicates with their corresponding arc-expression. Thus,
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if x is bound to colour "1", the notation (x + +(+x)) is valid.
Accordingly, a token of colour "1" and "2" must be subtracted from
the coloured place p (representing the enabling of transition t1),
see also Figure 2.5(B). Otherwise, if x is bound to colour "2", the
notation x is valid. Accordingly, a token of colour "2" must be
subtracted from the coloured place p (representing the enabling of
transition t2), see also Figure 2.5(A).

2.4 Tools

As already mentioned in the introduction, Petri nets are supported by
a wealth of computer tools. Most popular Petri net tools in the context
of biological applications are Snoopy [120] with its close friends
Charlie [141] and Marcie [129], GreatSPN [144], CPN Tools [43], Cell
Illustrator [102], and the two analysis tools INA [28] and TINA [57].
A comparison of these tools can be found in [120, 129, 141].

In this thesis, we used the toolkit consisting of Snoopy [120], Char-
lie [141] and Marcie [129] for their outstanding facilities in modelling
and analysing biochemical networks, which are summarised below:

Snoopy [120] offers a unifying Petri net framework constituted of
a coloured and an uncoloured level of Petri net classes. The un-
coloured level comprises qualitative (time-free) Place/Transition Petri
nets (QPN ) as well as quantitative (time-dependent) Petri nets such
as stochastic Petri nets (SPN ), continuous Petri nets (CPN ), and
generalised hybrid Petri nets (GHPN ). The coloured level pro-
vides coloured counterparts of the uncoloured level, and comprises
coloured qualitative Petri nets (QPN C ), coloured stochastic Petri
nets (SPN C ), coloured continuous Petri nets (CPN C ) and coloured
generalised hybrid Petri nets (GHPN C ). Petri nets of all Petri net
classes within one level can be converted into each other. Meaning
the resulting Petri nets share the same structure and are only distinct
in their kinetic information. Through user-guided folding, a coloured
Petri net can be obtained from an uncoloured Petri net. Coloured Petri
nets can be automatically unfolded to uncoloured Petri nets. Again,
changing the level only alters the presentation style but not the actual
net structure of the Petri net. Snoopy supports the simultaneous use
of different Petri net classes. The user-interface adapts automatically
to the current Petri net class. Depending on the Petri net class built-in
animations and simulations can be performed to investigate the be-
haviour of models. By changing the level and net classes, a model can
be simultaneously investigated by deploying different mathematical
modelling paradigms in various complementary ways [82, 111, 122].
Snoopy supports the hierarchical structuring of Petri nets and logi-
cal (fusion) nodes to ease the design and systematic construction of
complex models, and thus, to master large networks. It also supports
regulatory arcs shown in Figure 2.2, which increase the expressiveness
of Petri nets. Snoopy supports the export to several analysis tools,
among them are Charlie [141] and Marcie [129] (see Snoopy’s website



petri nets 43

www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy for a
full list). Snoopy also provides other export formats e.g. to capture
and document the Petri net graph, simulation results and extract the
ODE from an CPN . In particular, the human-readable text file for-
mats ANDL (Abstract Net Description Language) [120] and CANDL
(Coloured Abstract Net Description Language) [121] are an input
format for the analysis tools Charlie [141] and Marcie [129]. Snoopy
also allows the export and import of the standard format SBML
(Systems Biology Markup Language), which makes it even more ver-
satile for modelling and analysing biochemical models. Snoopy’s rich
modelling and simulation capabilities yield a very powerful and ex-
ceptional tool for Petri nets, particularly for the application in systems
and synthetic biology, see [120] for a detailed review. Comparable
tools to Snoopy are GreatSPN [144], CPN Tools [43], and Cell Illus-
trator [102], which all to some extent have the same capabilities, but
none of them support as many net classes and features as Snoopy
does, see [120] for a more detailed comparison.

Charlie [141] is a place/transition net analyser, which supports the
analysis of standard Petri nets and extended Petri nets with (weighted)
regulatory arcs (see Figure 2.2). Thus, Charlie supports the import
of the four uncoloured Petri net classes (QPN , SPN , CPN , HPN )
in the Snoopy-file format, as well as in the human-readable text file
format ANDL (Abstract Net Description Language) [120], the file
format APNN (Abstract Petri Net Notation) [24], and INA’s PNT files
(plain text file) [28]. Firing rates defined in the quantitative Petri net
classes are ignored, only the net structure including regulatory arcs
and the initial marking are considered during the analysis. The basic
functionality of Charlie supports:

• the structural analysis of standard graph properties;
• the incidence matrix based analysis to e.g. compute p- and t-

invariants and check for structural boundedness;
• the siphon/trap based analysis to compute siphons and traps and

to check for the siphon-trap property (see [99] for more details
about siphons and traps);

• the reachability/coverability graph construction to analysis the
analytically constructed state space of the model, in the case of a
bounded Petri net, the reachability graph is constructed, otherwise
the coverability graph (see [82] for more details about reachabili-
ty/coverability graphs);

• model checking of the computed state space based on Linear Time
Logic (LTL) [14] or Computation Tree Logic [16]; and

• the search for a path in the computed state space.

Additional analysers can be added through Charlie’s plug-in system,
see [141] for more details. Thus, the analysis results provided by
Charlie is valuable to verify and validate models, such as biochemical
networks modelled by e.g. Snoopy [120]. The design of Charlie
has been build on the experiences on the Integrated Net Analyser

www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
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(INA) [28], other than that there exist no comparable analysis tool,
see [141] for more details.

Marcie [129] is a tool for the analysis of qualitative Petri nets (QPN)
extended with read and inhibitor arcs and stochastic Petri nets SPN ,
respectively generalised stochastic Petri nets GSPN with immediate
transitions (no waiting time). SPN and GSPN can be augmented
by rewards. Rewards specify additional measures for a probabilis-
tic model. The models can be submitted through Marcie in the
human-readable text file format ANDL (Abstract Net Description
Language) [120] and the XML-based PNML (Petri Net Markup Lan-
guage) format [90]. Marcie supports the analysis of qualitative and
quantitative standard properties, as well as model checking based on
established temporal logics, like Computation Tree Logic (CTL) [16],
Continuous Stochastic Logic (CSL) [26], Continuous Stochastic Re-
ward Logic (CSRL) [58] and Probabilistic Linear-Time Temporal Logic
(PLTLc) [77]. The analysis engines for bounded Petri net models
are based on Interval Decision Diagrams. They are complemented
by simulative and approximative engines to allow for quantitative
reasoning on unbounded models. Marcie features allow individualis-
ing the analysis workflow in various ways by defining and checking
specific properties of a system based on temporal logics, which is
necessary for an in-depth analysis of models in the context of systems
and synthetic biology. The multi-threaded implementation of Marcie
is a huge benefit for the quantitative model analysis, which is of par-
ticular interest in the case of complex networks, such as biochemical
systems. Related tools are Prism [60], MRMC [112], Smart [35], and
Möbius [86], which again only partly support the analysis capabilities
of Marcie, see [129] for a more detailed comparison.

In summary, the tool-kit of Snoopy [120], Charlie [141] and Mar-
cie [129] is perfectly geared together and especially powerful for the
modelling and analysis of biochemical networks. All three tools have
been downloaded several times and successfully used for teaching
and research, particularly in the field of technical and biochemical
systems [120, 129, 141].



1 BMKfr - BioModelKit framework

3
BioModelKit (BMK) Framework

Figure 3.1: The BMK framework is
a modular modelling framework for
biomodel engineering based on Petri
nets. Modules represent individual
molecular components and their in-
teractions. The module type depends
on the biological classification of the
represented component, process, and
available mechanistic information.
Depending on the module type and
available resources forward or reverse
engineering can be used to construct
modules. Modules can also be gener-
ated by transforming existing models
into modules. Modules are stored in
a web-accessible database. Through a
web-interface modules can be accessed
and integrated into modularly com-
posed models. During the composition,
model mutation algorithms or a spa-
tial transformation algorithm can be
applied. By submitting the composed
models to an analysis workflow, exten-
sive in silico studies can be performed.
(adapted from [139])

The BMKfr
1 is a tool for modular biomodel engineering [126],

see also Figure 3.1. The main motivation behind the BMKfr was
to develop a modelling framework, where modules are specifically
designed for the purpose of model composition. The modularisa-
tion approach defined in the BMKfr was inspired by the natural
composition of biomolecular processes, where molecular components
with genetic information (genes, mRNAs, and proteins) are the nat-
ural building blocks. Thus, each of those molecular components is
represented as a self-contained module, describing the functionality
of the molecular components by using the formal language of Petri
nets. We defined mechanistic module types according to the various
types of genetic components. Causal module types were developed
to capture also processes with missing mechanistic description [116,
124]. Interface networks, which are part of each module describe the
interactions with other molecular components and are fundamental to
automatically couple modules of interacting molecular components.
The formalisation of the modularization concept of the BMKfr is
explained in Section 3.1.
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2 BMKml - BioMod-
elKit mark-up language

3 BMKdb - BioModelKit database
4 BMKwi - BioModelKit web-interface,

accessible at www.biomodelkit.com

A module consists not only of its underlying model in the form of a
Petri net, but also of a model annotation. The annotation is defined in
the BMKml format 2, see Section 3.2, and documents the elements of
the module and references considered during the construction process.
The annotation of a module is vital to understand the modelled
molecular mechanisms and to execute the module in a simulation
environment.

The modular model composition using interface networks is ex-
plained in Section 3.3. Here, we also introduce the concept of algo-
rithmic model mutation to generate alternative model structures with
biochemically meaningful mutations. The algorithmic model muta-
tion allows mimicking gene knock-outs and structural mutations of
genetic components. The set of alternative models generated through
algorithmic model mutation can be employed to identify models with
desired behaviour. Such approaches might help to increase the un-
derstanding of the modelled system and thus to predict the possible
phenotypes of real world mutants. Another concept introduced in
this section is the spatial model transformation. Modular composed
models can be extended with spatial information, which allows (1)
mapping components to the cellular structure; (2) describing their
movement or translocation; and (3) integrating geometric properties
of a cell, membranes, compartment, pools etc. [139].

In Section 3.4, we describe how modules can be generated by for-
ward engineering and reverse engineering approaches, as well as by
transforming existing models, e.g. Boolean models or SBML models.
In particular, reverse engineering approaches and the algorithmic
transformation of models into modules might considerably increase
the module repository and thus, the universal applicability of the
BMKfr.

Forestalling, the BMKfr is supported by a web-tool, which consists
of the BMKdb

3 and the BMKwi
4 [126]. Both will be introduced in

Chapter 4. The organization of modules in the BMKdb allows the
versioning of modules. Different module versions with competing
hypotheses on the molecular mechanism or with alternative granu-
larities can be stored in the BMKdb. Through the BMKwi the user
can interact with the content stored in the BMKdb, which includes (1)
browsing, searching and inspecting modules; (2) composing modular
models, which includes the algorithmic model mutation and spatial
extension of models; and (3) submitting and curating modules.

Running Example. To illustrate our approach, we employ a small
running example describing the ligand-controlled expression of a
receptor, see Figure 3.2. The binding of the ligand to the receptor
activates the catalytic domain of the receptor, which in turn phos-
phorylates the tyrosine residue at the receptor. The phosphotyrosine
residue acts as a docking site for an adaptor protein. After docking
of the adaptor protein to the phosphotyrosine residue at the recep-
tor, the catalytic domain of the receptor phosphorylates the tyrosine
residue of the adaptor protein. The phosphorylation of the adaptor

www.biomodelkit.com
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Figure 3.2: Molecular mechanism of
the running example. The running
example describes the regulated
biosynthesis of a receptor protein
(blue), which involves a ligand (or-
ange) and an adaptor protein (green).
The ligand bound to the receptor
protein activates the catalytic domain.
In turn, the tyrosine at the receptor
protein gets phosphorylated. The
SH2 domain of the adaptor protein
binds to the phosphotyrosine of the
receptor protein, which results in the
phosphorylation of the tyrosine of the
adaptor protein. The phosphotyrosine
of the adaptor protein activates the
DNA binding domain, which interacts
with the receptor-encoding gene and
initiates the transcription and transla-
tion of the receptor protein. Both the
receptor protein and mRNA can be
degraded.

protein exposes its DNA binding domain. Thus, the adaptor protein
can bind to the regulatory region of the receptor gene and start the
transcription of the receptor-encoding mRNA. The receptor mRNA is
translated into the receptor protein. Both, the receptor protein and
the mRNA can be degraded.
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3.1 BMK - Module Definition

The formalisation of the modularisation concept is the firmament
of the BMKfr. Only based on a consistent formal mathematical
representation it is possible:

. . . to discriminate different module types;

. . . to define structural properties for the validation of the module
structure;
. . . to define a suitable MIRIAM-compliant [54] annotation format
for modules;
. . . to algorithmically process modules to generate modularly com-
posed models;
. . . to algorithmically mutate composed models;
. . . to transform composed models into spatial models;
. . . to define a suitable database scheme for the BMKfr holding all
information about a module including its annotations; and
. . . to develop a web-interface to make modules and the modu-
lar model composition, including the model mutation and spatial
transformation of composed models accessible to the systems biol-
ogy community.

In Section 3.1.1, we provide a formal definition of a module. Next,
we introduce the different types of modules in the BMKfr, see Sec-
tion 3.1.2. In Section 3.1.3, we define the relation between the intro-
duced module terminology and the Petri net formalism. Furthermore,
we specify interface subnetworks in the Petri net representation of
a module to couple modules. Then, we demonstrate the relation
between the module definition and standard graph properties of a
Petri net, see Section 3.1.4.

3.1.1 Module Definition and Terminology

Below we introduce the formalization of the modularization concept
and necessary terminology.

Component

A biomolecular component, in short component, is any chemical
component that contributes to a biological process at a molecular
level.

Genetic Component

Components with genetic information like genes, mRNAs, and
proteins, are called genetic components.

Non-genetic Component

Components without genetic information like second-messengers,
energy equivalents, ions, etc., are called non-genetic components.
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5 E.g. a structural domain, a protein
fold, a structural motif, a secondary
structure, an amino acid sequence
motif or a single amino acid of a
protein, or a sequence motif, a codon,
or a single base of the DNA/RNA (see
Table 3.1)

6 E.g. conformational state of a protein
domain, covalent modification or non-
covalent association of a component
etc.

Module

In our definition a module M describes the functionality of a
particular genetic component c0, called main component, including
its interactions with nIC other components, nIC ≥ 0. The total set of
components of a module M is given by C(M) = {c0, . . . , cnIC}.

Example: The module for the receptor protein in Figure 3.2 includes
the receptor protein as the main component. Here, the ligand and the
adaptor protein are interacting components.

Functional Unit

A functional unit u is a defined part of a component c ∈ C(M)

with an assigned function that is of importance for the functionality
of the component 5. A genetic component c ∈ C(M) consists of nFU

functional units, nFU ≥ 1. We assume that non-genetic components
cannot be decomposed into more than one functional unit. Therefore,
a non-genetic component is defined by only one functional unit. The
total set of functional units of a component c ∈ C(M) is given by
U(c) = {u1, . . . , unFU}. The summation of all sets U(c) over the set of
components C(M) gives the total set of functional units in module
M, U (M) =

⋃
c∈C(M) U(c).

Example: The receptor protein in Figure 3.2 consists of three func-
tional units: ligand binding domain, tyrosine residue, and catalytic
domain.

Molecular State

A molecular state s describes a specific physical constitution of
a functional unit u ∈ U (M). A functional unit u ∈ U(c) can adopt
nMS different molecular states, nMS ≥ 1. 6 The total set of molecular
states of a functional unit u ∈ U(c) is given by S(u) = {s1, . . . , snMS}.
The summation of all sets S(u) over u ∈ U (M) defines the set
S(M) =

⋃
u∈U (M) S(u).

Example: The tyrosine residue of the receptor protein in Fig-
ure 3.2 can exist in three different molecular states: unphosphorylated,
phosporylated, or phosphorylated and bound to the SH2 domain of
the adaptor protein.

Each molecular state s ∈ S(M) can be mapped to a single func-
tional unit or to a subset of functional units according to the relation
λu(s) = {u ∈ U (M) | s ∈ S(u)}. Accordingly, the mapping of a
molecular state s ∈ S(M) to components is defined by the relation
λc(s) = {c ∈ C(M) | s ∈ ⋃

U(c) S(u)}. A molecular state s ∈ S(M) is
called interaction state sIS if it can be mapped to more than one
component |λc(s)| > 1 defining a complex k = λc(s). The total set of
interaction states is defined as SIS(M) = {s ∈ S(M) | |λc(s)| > 1},
SIS(M) ⊆ S(M).

Example: The molecular state of the phosphorylated tyrosine residue
bound to the SH2 domain of the adaptor protein, see receptor protein
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Table 3.1: Examples of functional
units. (A) Functional units of
proteins, (B) functional units
of genes (DNA) and mRNA.

Functional Unit Description
(A) Protein
structural domain self-stabilizing domain as independently folding element of

a protein, e.g. src-homology domain, pleckstrin homology
domain, phosphotyrosine domain, etc.

protein fold general protein architectures, e.g. helix bundle, beta barrel,
Rosman fold, etc.

structural motif short segment of the three-dimensional structure, e.g. β-
hairpin, α-helix-hairpin, greek key, ω-loop, helix-loop-helix,
zinc-finger, helix-turn-helix, etc.

secondary structures defined structural elements, e.g. α-helix, π-helix, 310-helix, β-
strain, β-turn, random-coil, etc.

amino acid sequence stretch short segments of the amino acid sequence, e.g. N-
glycosylation site motif, IQ motif, cytokine binding motif,
phosphorylation motif, etc.

amino acid single amino acid residue, e.g. tyrosine, serine, threonine, etc.

(B) Gene (DNA), mRNA , etc.

DNA/RNA sequence motif short segment of the DNA/RNA sequence, e.g. promotor,
operator, enhance region, TATA-Box, etc.

DNA/RNA codon three DNA/RNA bases encoding a specific amino acid

DNA/RNA base single DNA/RNA base e.g. adenin, cytosin, guanin, thymin
(DNA)/uracil(RNA), etc.

in Figure 3.2, represents an interaction state, which can be mapped to
the receptor protein and the adaptor protein.

Each functional unit u ∈ U (M) can only exist in one specific
molecular state at each time point, this molecular state is called
active molecular state, given by the relation α : s → [0, 1]. If
α(s) = 1 the molecular state s is active, otherwise if α(s) = 0 the
molecular state s is inactive. In addition, the relation ∑s∈S(u) α(s) = 1
has to be true.

Example: If the ligand-binding domain of the receptor protein in
Figure 3.2 is currently not occupied by a ligand, the molecular state
of the unbound ligand binding domain is the active molecular state.

To initialise a module, we need to specify an initially active molec-
ular state for each functional unit u ∈ U(c0) of the main component
c0 called home state s0,u ∈ S(u) with α(s0,u) = 1. We define that
a home state s0,u ∈ S(u) is not allowed to be an interaction state,
such that s0,u /∈ SIS(M). This assumption is necessary to exclude
inconsistencies during the modular model composition. The union of
all home states is given by S0(M) =

⋃
u∈U(c0)

s0,u.

Example: We assume that the receptor protein in Figure 3.2 is in
its initial state catalytically inactive, not phosphorylated and not in-
teracting with any other component. Thus, the unbound state of the
ligand binding domain, the unphosphorylated state of the tyrosine
residue and the inactive state of the catalytic domain have to be de-
clared as home states. According to the assumption above, both the
ligand-bound state of the ligand binding domain and the phosphory-
lated state of the tyrosine interacting with the adaptor protein are not
allowed to be home states of the corresponding functional units.

Molecular Event

The relations between molecular states in S(M) are described by
nME molecular events, nME ≥ 1. A molecular event e represents an
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7 E.g. a bio-chemical reaction, a
covalent or non-covalent binding
reaction, a conformational change, a
transport process etc.

action changing the molecular states of the functional units. 7 The
total set of molecular events is given by E(M) = {e1, . . . , enME}.

Example: The transition from the unbound state to the ligand-
bound state of the ligand-binding domain of the receptor protein in
Figure 3.2 happens through the molecular event of ligand binding.

The stoichiometry with which a molecular state s ∈ S(M) me-
diates a molecular event e ∈ E(M) is given by the stoichiometric

coefficient ν(e, s) ∈ N0 (educts) and ν(s, e) ∈ N0 (products). The
set of molecular states participating at a molecular event e can be dis-
tinguished into a set of educts, given by·e = {s ∈ S(M) | ν(s, e) 6= 0},
and a set products, given by e·= {s ∈ S(M) | ν(e, s) 6= 0}.

Example: The molecular event of ligand binding in Figure 3.2 in-
volves three molecular states: the unbound ligand binding domain,
the ligand-bound ligand binding domain and the ligand. The molec-
ular states of the unbound ligand binding domain and the ligand
are the educts of the molecular event. The molecular state of the
ligand-bound ligand binding domain is the product of the molecular
event. The Stoichiometric coefficients of all attending molecular states
are set to "1".

Vice versa,·s = {e ∈ E(M) | ν(e, s) 6= 0} defines the set of
molecular events, where the molecular state s is a product, and
s·= {e ∈ E(M) | ν(s, e) 6= 0} defines the set of molecular events,
where molecular state s is an educt.

Example: The molecular state of the unbound ligand binding do-
main of the receptor protein in Figure 3.2 is a product of the molecular
event of ligand dissociation and educt of the molecular event of ligand
binding.

A molecular event e ∈ E(M) can be defined as
e = {(ε(·e), ε(e·)), ε(·e) → ε(e·)}, where ε(·e) = ∑·e ν(s, e) · s and
ε(e·) = ∑e·ν(e, s) · s. Each molecular event e ∈ E(M) occurs with a
rate r(e).

A molecular event e is called interaction event eIS if it involves
more than one component, |λc(·e∪ e·)| > 1. The total set of interaction
events is given by EIA(M) = {e : |λc(·e ∪ e·)| > 1}.

Example: The molecular events of ligand binding and dissociation
in Figure 3.2, as well as the binding and dissociation of the adaptor
protein to the phosphorylated tyrosine are interaction events, which
either involve the receptor protein and ligand or the receptor protein
and the adaptor protein.

Molecular Process

A molecular process E(u) defines the set of molecular events
changing the molecular state of a functional unit u ∈ U(c), such that
E(u) =

⋃
S(u)((·s ∪ s·) \ (·s ∩ s·)).

Example: The molecular events of ligand binding and dissociation
in Figure 3.2 define a molecular process.
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Properties of Molecular Events

Depending on the type and reversibility of a molecular event,
different properties can be defined. A molecular event e ∈ E(M) rep-
resenting a degradation process might have an empty set of products
e·6= ∅ if the products are not modelled. A set of molecular states
S(u) of a functional unit u ∈ U(c) that is degraded by a molecular
event e ∈ E(M) cannot share any molecular state s ∈ S(u) with the
product set of the molecular event e, such that S(u) ∩ e·= ∅.

Example: Assuming that the receptor protein in Figure 3.2 is de-
graded as a whole protein, all its functional units must be removed.
After degradation, none of the functional units can be left. We neglect
any by-products. The molecular states representing the functional
units of the receptor protein can only be educts of the molecular event
of degradation, and none of them can be a product.

In contrast, a molecular event e ∈ E(M) representing a synthesis
process might have an empty set of educts·e 6= ∅ if educts are not
modelled. A set of molecular state S(u) of a functional unit u ∈ U(c)
that is synthesised by a molecular event e ∈ E(M) cannot share any
molecular state s ∈ S(u) with the educt set of the molecular event e,
such that S(u) ∩·e = ∅.

Example: We neglect the amino acids necessary to compose a
protein and assume that none of the functional units exists before the
synthesis of the receptor protein. Thus, none of the molecular states
of the receptor protein in Figure 3.2 can be an educt of the molecular
event of receptor protein synthesis, they can only be products.

If the molecular event e ∈ E(M) does neither include degradation
nor synthesis of a functional unit u ∈ U (M), it must have a non-
empty set of products e·6= ∅ and educts·e 6= ∅. In this case, each
functional unit u ∈ U(c) attending a molecular event e ∈ E(M) must
share one molecular state s ∈ S(u) with the set of products of the
molecular event e, such that |S(u) ∩ e·| = 1, and one molecular state
s′ ∈ S(u) with the set of educts of the molecular event e, such that
|S(u) ∩·e| = 1.

Example: The molecular event of activating the catalytic domain
of the receptor protein in Figure 3.2 involves two functional units,
the catalytic domain and the ligand binding domain. Both have
one molecular state in the set of products (inactive catalytic domain,
ligand-bound ligand binding domain) and one molecular state in the
set of products (active catalytic domain, ligand-bound ligand binding
domain) of the molecular event. If one of the molecular states were
missing, the corresponding functional unit would be either degraded
or synthesised.

If a molecular event e ∈ E(M) is reversible, there must exist another
molecular event e′ ∈ E(M), such that e′ = {(ε(e·), ε(·e)), ε(e·) →
ε(·e)}.

Example: The molecular event representing the ligand binding to
the receptor protein in Figure 3.2 (forward reaction) has a correspond-
ing back reaction representing the dissociation of the ligand from the
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This section requires:

• Module definition, Section 3.1.1

receptor. The educt and product sets are transposed.

Furthermore, at least one functional unit of the main component
u ∈ U(c0) has to attend at each molecular event e ∈ E(M), such that⋃

u∈U(c0)
S(u) ⊆ e·∪·e.

Example: The receptor protein in Figure 3.2 (corresponding func-
tional units are given in braces) attends at the molecular events for:

• binding and dissociation of the ligand (ligand binding domain),
• activation and inactivation of its catalytic domain (catalytic domain,

ligand binding domain),
• phosphorylation and dephosphorylation of its tyrosine residue

(tyrosine residue, catalytic domain),
• binding and dissociation of the adaptor protein (tyrosine residue),

and
• the phosphorylation of the tyrosine residue of the adaptor protein

(tyrosine residue, catalytic domain).

Other molecular events are not part of the receptor protein module.

3.1.2 Module Types

According to the different types of genetic components and involved
processes, we define four types of modules [116]:

1. A Gene Module Mg,c0 represents the transcriptional activity of
a gene, which is controlled by the formation of the regulatory
landscape and the pre-initiation complex. These processes include
complex non-covalent interactions with transcriptions factors or
other regulatory proteins interacting with silencer or enhancer
sequences of the gene.

↪→ Minimal requirements:

– The module Mg,c0 must contain at least two molecular states
representing the transcriptional active sact

g,c0
∈ S(Mg,c0) and

inactive state sinact
g,c0
∈ S(Mg,c0) of the gene.

2. An mRNA Module Mm,c0 represents the biosynthesis of a par-
ticular mRNA by transcription of the respective gene; the post-
transcriptional modification of the mRNA including capping, (al-
ternative) splicing and polyadenylation; the translation into the
proteins encoded by the processed mRNA; and the degradation of
the mRNA including its potential control through proteins or small
interfering anti-sense RNA molecules. These processes include
covalent modification and non-covalent interactions of the mRNA.

↪→ Minimal requirements:

– According to its definition, the module Mm,c0 must contain
at least one molecular state smRNA

m,c0
representing the mRNA,

which is translated into a protein and three molecular events
representing the synthesis of the mRNA, the degradation of
the mRNA and the synthesis of the respective protein given
by Mp,c′0

.
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– For a molecular event e ∈ E(Mm,c0) representing the tran-
scription of a gene defined by module Mg,c′0

it must be true:

* S0(Mm,c0) ⊆ e·- a home state s ∈ S0(Mm,c0) of the main
component c0 defined by module Mm,c0 must be a product
of the molecular event e.

* S(Mm,c0)∩·e = ∅ - no molecular state s ∈ S(Mm,c0) of the
main component c0 defined by module Mm,c0 is an educt
of the molecular event e.

* sact
g,c0∗ ∈·e, e·- a molecular state sact

g,c0∗ representing a tran-
scriptionally active state of the gene defined by module
Mg,c0∗ must be an educt and a product of the molecular
event e.

– For a molecular event e ∈ E(Mm,c0) representing the trans-
lation into a protein defined by module Mp,c′0

it must be
true:

* S0(Mp,c′0
) ⊆ e·- a home state s ∈ S0(Mp,c′0

) of the main
component c′0 defined by module Mp,c′0

must be a product
of the molecular event e.

* S(Mp,c′0
) ∩·e = ∅ - no molecular state s ∈ S(Mp,c′0

) of the
main component c′0 defined by module Mp,c′0

is an educt
of the molecular event e.

* smRNA
m,c0

∈·e, e·- a molecular state smRNA
m,c0

representing the
mRNA defined by module Mm,c0 must be an educt and a
product of the molecular event e.

3. A Protein Module Mp,c0 describes the functionality of a partic-
ular protein (single poly-peptide chain), including changes of the
protein conformation, non-covalent interactions with other com-
ponents and covalent modifications that regulate the functionality.
Thus, a protein module represents the formation and cleavage
of covalent and non-covalent bonds, as well as conformational
changes of the protein structure. Covalent modifications include:

• Post translational modification, the addition of functional groups
(most often using enzymes) during or after protein biosynthesis,
e.g.:

– hydrophobic groups for membrane localisation;
– cofactors for enhanced enzymatic activity;
– modifications of translation factors;
– smaller chemical groups;
– etc.

• Covalent linkage of peptides, e.g.:

– ISGylation, the covalent linkage to the ISG15 protein (Interferon-
Stimulated Gene 15);

– SUMOylation, the covalent linkage to the SUMO protein
(Small Ubiquitin-related Modifier);

– ubiquitination, the covalent linkage to the protein ubiquitin;
– neddylation, the covalent linkage to Nedd;
– pupylation, the covalent linkage to the Prokaryotic ubiquitin-

like protein
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• Chemical modification of amino acids, e.g.:

– citrullination, or diminution, the conversion of arginine to
citrulline;

– deamination, the conversion of glutamine to glutamic acid or
asparagine to aspartic acid;

– eliminylation, the conversion to an alkene by beta-elimination
of phosphothreonine and phosphoserine, or dehydration of
threonine and serine, as well as by decarboxylation of cys-
teine;

– carbamylation, the transfer of the carbamoyl from a carbamoyl-
containing molecule (carbamoyl phosphate) to an acceptor
moiety such as an amino group

• Structural changes, e.g.:

– proteolytic cleavage, cleavage of a protein at a peptide bond;
– racemization, conversion of an enantiomerically pure mixture

(one where only one enantiomer is present) into a mixture
where more than one of the enantiomers are present;

– protein splicing, self-catalytic removal of intense analogous
to mRNA processing

The protein module also represents non-covalent functional interac-
tions, irrespective of the life-time of complexes formed with other
components including:

• electrostatic interactions, the attraction of ions or molecules with
full permanent charges of opposite signs;

• van der Waals forces, the attraction and repulsions between
atoms, molecules, and surfaces, as well as other intermolecular
forces, caused by correlations in the fluctuating polarisations of
nearby particles in contrast to covalent and ionic bonding;

• π-effects, the non-covalent interaction of electron-rich π-system
with a metal (cationic or neutral), an anion, another molecule
and even another π-system (pivotal to protein-ligand recogni-
tion; and

• hydrophobic effects, the desire for non-polar molecules to aggre-
gate in aqueous solutions by separation of water.

↪→ Minimal requirements:

– A molecular event e ∈ E(Mg,c′0
) representing the switch be-

tween the transcriptionally active sact
g,c′0
∈ S(Mg,c′0

) and inac-

tive state sinact
g,c′0
∈ S(Mg,c′0

) of a gene, defined by module Mg,c′0
,

and triggered by a molecular state s ∈ S(Mp,c0), where s ∈·e
and s ∈ e·, is not represented in the protein module Mp,c0 ,
e 6∈ E(Mp,c0). Meaning, the transition between the active and
inactive state of a gene due to a common interaction state
of the gene and the protein is not modelled in the protein
module Mp,c0 .

4. A Protein Degradation Module Md,c0 represents the degrada-
tion of a protein by proteolysis in lysosomes, ubiquitin-dependent
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degradation by the proteasome, or degradation by digestive en-
zymes or by any other possible mechanism that may lead to the
degradation or inactivation of the protein. The post-translational
proteolytic processing is described in the corresponding protein
module. Complex processes like the proteolytic processing can
be summarised in a few steps if molecular events and states are
defined accordingly.

↪→ Minimal requirements:

– The module Md,c0 must contain at least one molecular event e
representing the degradation of the respective protein defined
by Mp,c0 .

– The educts·e of a molecular event e ∈ E(Md,c0) represent-
ing the degradation of the respective protein (or parts of the
protein) given by Mp,c0 are limited to those molecular states
of the respective main component c0, which are no interac-
tion states·e ∩ SIS(Mp,c0) = ∅. Otherwise, functional units
of interacting components would be degraded as well and
disappear in the composed model, which might result in
inconsistencies in particular if such an effect is unintended.

The introduction of gene modules and mRNA modules allows
modeling regulated gene expression and protein biosynthesis. The
gene expression pattern of a cell is not constant and can drastically
change dependent on the cell type, physiological state, or experimen-
tal conditions. As a result, cells are equipped with specific sets of
proteins of variable relative abundance. By introducing gene modules
into the model, differentially regulated gene activity and the resulting
gene expression patterns translate into the available quantities of
mRNA and protein molecules. The rates of biochemical reactions
always depend on both, the kinetic rate constants and the concen-
trations of the reactants. Thus, a change in the gene expression may
effect the rates of biochemical reactions, which in turn may drastically
alter the dynamic behaviour of a regulatory network. Moreover, al-
tered concentrations of regulatory proteins (e.g. transcription factors)
may feedback in a complex manner onto the gene level by changing
the gene expression profiles. This circuitry of interwoven regula-
tory control becomes systematically accessible through the composed
model [116].

The module types introduced above exclusively rely on known
molecular mechanisms, even though mechanistic details may not nec-
essarily be considered. To model possible influences on a molecular
network through yet unknown molecular mechanisms or complex
processes that cannot be represented in detail, we introduced two
more module types [116]:

5. An Allelic Influence Module Mai,c0 represents the effect of alle-
les (mutated versions of a gene) on molecular processes. In contrast
to gene modules, the described effects are causal influences, which
might be directly or indirectly mediated by unknown processes.
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6. A Causal Influence Module Mci,c0 describes the influence of
arbitrary entities, others than alleles, on molecular processes.

The introduction of causal and allelic influence modules extends
the modelling power of the BMKfr by disclaiming, in a formally
correct manner, the need of known molecular mechanisms. Causal
and allelic influence modules allow to include levels of abstraction
required to cope with complex entities, mechanisms, or phenomena,
while the corresponding model parts are restricted to accordingly
defined modules. The formal framework facilitates the reverse en-
gineering of biomodels from complex phenotype data sets resulting
from genotypic variation e.g. by employing Petri net compatible algo-
rithms [88, 108, 109]. It is obvious that such types of models have a
high potential for the application to various areas from basic research
to synthetic biology or personalized medicine [116].

Running Example. The running example in Figure 3.2 consists of
four genetic components (receptor protein, receptor-encoding mRNA,
receptor-encoding gene, adaptor protein) and one non-genetic com-
ponent (ligand). Accordingly, the modularized system consists of
two protein modules to represent the receptor MpR and adaptor pro-
tein MpA, one mRNA module for the receptor mRNA MmR, one
gene module for the receptor gene MgR and one protein degradation
module for the receptor protein MdR.

The receptor protein consists of three functional units (1) ligand
binding domain, which exists in two molecular states: free or bound
to its ligand; (2) catalytic domain, which exists in two molecular states:
inactive or active; (3) tyrosine residue, which exists in three molecular
states: unphosphorylated, phosphorylated or phosphorylated and
bound to the SH2 domain of the adaptor protein. The sequence
of the receptor mRNA is not resolved by explicitly representing its
nucleotide sequence and is thus be defined by only one functional
unit with one molecular state. The receptor gene consists of two
functional units: (1) coding sequence, which exists in two molecular
states: inactive or active regarding being transcribed; (2) adaptor
protein binding sequence, which exists in two molecular states: free
or bound to the DNA binding site of the adaptor protein. The adaptor
protein consists of three functional units (1) SH2 domain, which exists
in two molecular states: free or bound to the phosphotyrosine of
the receptor protein; (2) DNA binding domain, which exists in three
molecular states: inactive, active and free or active and bound to the
adaptor protein binding sequence of the receptor gene; (3) tyrosine
residue, which exists in two molecular states: unphosphorylated or
phosphorylated. The ligand as a non-genetic component is defined
by only one functional unit, which exists in two molecular states: free
or bound to the ligand binding domain of the receptor. In Table 3.2,
we summarised the molecular structure of each module with its
associated components, their functional units and molecular states.
We also indicated the main component of each module, as well as the
home states of the functional units and interaction states among the
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Component Functional Unit Molecular State HS IS

(A) Receptor protein module MpR

receptor protein (pR)*

ligand binding domain (LBD) u
MpR
pR,1

free x
bound to ligand x1

catalytic domain (CD) u
MpR
pR,2

inactive x
active

tyrosine (Y) u
MpR
pR,3

unphosphorylated x
phosphorylated
phosphorylated, bound to SH2 of adap-
tor protein

x2

adaptor protein (pA)
SH2 domain (SH2) u

MpR
pA,1 = u

MpA
pA,1

free
bound to phosphorylated Y of receptor
protein

x2

tyrosine (Y) u
MpR
pA,2 = u

MpA
pA,2

unphosphorylated
phosphorylated

ligand (L) ligand (L) u
MpR
L,1

free
bound to LBD of the receptor protein x1

(B) Adaptor protein module MpA

adaptor protein (pA)*

SH2 domain (SH2) u
MpA
pA,1

free x
bound to phosphorylated Y of receptor
protein

x2

tyrosine (Y) u
MpA
pA,2

unphosphorylated x
phosphorylated

DNA binding site (DNA BS) u
MpA
pA,3

inactive x
active
active, bound to the receptor gene x3

receptor protein (pR)
catalytic domain (CD) u

MpA
pR,1 ⊂ u

MpR
pR,2 active

tyrosine (Y) u
MpA
pR,2 ⊂ u

MpR
pR,3

phosphorylated
phosphorylated, bound to SH2 of adap-
tor protein

x2

receptor gene (gR) adaptor protein binding sequence (ABS) u
MpA
gR,1 = u

MgR
gR,1

free
bound to the DNA BS of the adaptor pro-
tein

x3

(C) Receptor gene module MgR

receptor gene (gR)*
adaptor protein binding sequence (ABS) u

MgR
gR,1

free x
bound to the DNA BS of the adaptor pro-
tein

x3

DNA coding sequence of receptor protein u
MgR
gR,2

inactive x
active

adaptor protein (pA) DNA binding site (DNA BS) u
MgR
pA,1 = u

MpA
pA,3

active
active, bound to the receptor gene x3

(D) Receptor mRNA module MmR

receptor mRNA (mR)* mRNA coding sequence of receptor protein uMmR
mR,1 (not further specified)

receptor gene (gR) DNA coding sequence of receptor protein uMmR
gR,1 ⊂ u

MgR
gR,1 active

receptor protein (pR)
ligand binding domain (LBD) uMmR

pR,1 ⊂ u
MpR
pR,1 free

catalytic domain (CD) uMmR
pR,2 ⊂ u

MpR
pR,2 inactive

tyrosine (Y) uMmR
pR,3 ⊂ u

MpR
pR,3 unphosphorylated

(E) Receptor degradation module MdR

receptor protein (pR)*

ligand binding domain (LBD) u
MdR
pR,1 ⊂ u

MpR
pR,1 free

catalytic domain (CD) u
MdR
pR,2 ⊂ u

MpR
pR,2

inactive
active

tyrosine (Y) u
MdR
pR,3 ⊂ u

MpR
pR,3

unphosphorylated
phosphorylated

Table 3.2: Molecular structure of the
modules in the running example. Each
module is characterized by its compo-

nents, their functional units and molec-
ular states. A component indicated

with a "*" is the main component of
the module. Home states are given in

the column "HS" and interaction states
in column "IS", identical superscripts

indicate identical interaction states.

modules.
All molecular events are assumed to be reversible, except degra-

dation processes, transcription, and translation. The binding of the
ligand to the ligand-binding domain of the receptor results in the
activation of the catalytic domain of the receptor protein. The active
catalytic domain of the receptor protein can phosphorylate the ty-



biomodelkit (bmk) framework 59

Molecular Event MpR MpA MgR MmR MdR
Binding of the ligand and the ligand binding do-
main of the receptor protein

x

Unbinding of the ligand and the ligand binding do-
main of the receptor protein

x

Activation of the catalytic domain of the receptor
protein

x

Inactivation of the catalytic domain of the receptor
protein

x

Phosphorylation of the tyrosine residue of the re-
ceptor protein by its active catalytic domain

x

Dephosphorylation of the phosphotyrosine residue
of the receptor protein

x

Binding of the SH2 domain of the adaptor protein
to the phosphotyrosine residue of the receptor pro-
tein

x x

Unbinding of the SH2 domain of the adaptor pro-
tein to the phosphotyrosine residue of the receptor
protein

x x

Phosphorylation of the tyrosine residue of the
adaptor protein by the active catalytic domain of
the receptor

x x

Dephosphorylation of the phosphotyrosine residue
of the receptor protein

x

Activation of the DNA binding site of the adaptor
protein by its phosphotyrosine residue

x

Deactivation of the DNA binding site of the adap-
tor protein

x

Binding of the DNA binding site of the adaptor pro-
tein and the adaptor protein binding sequence of
the receptor gene

x x

Unbinding of the DNA binding site of the adaptor
protein and the adaptor protein binding sequence
of the receptor gene

x x

Basal activation of the receptor gene x
Basal inactivation of the receptor gene x
Adaptor-Protein dependent activation of the recep-
tor gene

x

Adaptor-Protein dependent inactivation of the re-
ceptor gene

x

Synthesis of the receptor mRNA induced by the ac-
tive receptor gene

x

Degradation of the receptor mRNA x
Synthesis of the receptor protein x
Degradation of the receptor protein x

Table 3.3: Molecular events of the
modules in the running example.
The molecular events of the running
example are listed in association with
their appearance in the modules.
(MpR - receptor protein module;
MpA - adaptor protein module; MgR -
receptor gene module; MmR - receptor
mRNA module; MdA - receptor protein
degradation module)

This section requires:

• Petri nets [82], Section 2.1

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

rosine residue of the receptor protein. The phosphotyrosine of the
receptor protein acts as a binding site for the SH2 domain of the
adaptor protein. The active catalytic domain of the receptor protein
phosphorylates the tyrosine of the bound adaptor protein. If the
tyrosine of the adaptor protein is phosphorylated, its DNA binding
domain gets activated and binds to the adaptor protein binding se-
quence of the receptor gene. The occupied adaptor protein binding
sequence activates the coding sequence of the receptor gene. The
spontaneous activation of the receptor gene yields in a low basal
level of activity. If the receptor gene is active, the transcription of
the mRNA starts, which is translated into the receptor protein. Here,
we do not consider the mRNA processing and the regulation of its
stability. Both the receptor protein and mRNA are degraded. For
all molecular events, we assume mass-action kinetics. The molecu-
lar events and their assignments to the above-defined modules are
summarised in Table 3.3.

3.1.3 Module Transformation in Petri Nets

The formal description of a module M can be translated into the
structural components of a Petri net N = {P, T, F, f , v, m0}. Molec-
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ular states are represented by places. A place p ∈ P is mapped to
a molecular state s ∈ S(M) according to the relation $p→s : p → s.
Molecular events are encoded by transitions. A transition t ∈ T is
mapped to a molecular event e ∈ E(M) according to the relation
$t→e : t→ e.

The Petri net graph N (Mc0) = {P, T, F, f , v, m0} of a module Mc0

is defined as:

• Set of places P =
⋃

C(Mc0 )
Pc,

– where Pc =
⋃

U(c) Pu is the set of places representing a compo-
nent c ∈ C(Mc0) and

– Pu = {p : $p→s(p) ∈ S(u)} is the set of places representing a
functional unit u ∈ U (Mc0)

• Set of transitions T =
⋃

C(Mc0 )
Tc, where

– Tc =
⋃

U(c) Tu is the set of transitions related to a component
c ∈ C(Mc0) and

– Tu = {t : $t→e(t) ∈ E(u)} is the set of transitions related to a
functional unit u ∈ U (Mc0)

• Set of arcs F := FSA ⊆ (P× T) ∪ (T × P)
• Arc-weights f : F →N0, where

– ∀s ∈ S(Mc0), e ∈ E(Mc0) with s ∈·e: fSA($
−1
p→s(s), $−1

t→e(e)) =

ν(s, e) (input arc)
– ∀s ∈ S(Mc0), e ∈ E(Mc0) with s ∈ e·: fSA($

−1
t→e(e), $−1

p→s(s)) =

ν(e, s) (output arc)

• Set of firing rates v : T → H with H =
⋃

t∈T{h(t), where:

– ∀e ∈ E(Mc0) : h($−1
t→e(e)) = r(e)

• Initial Marking m0: P→N0:

1. Case: Mc0 is a gene, protein, causal or allelic influence module:

– ∀s ∈ S0(Mc0) : m0($p→s(p)) = nc0

– ∀s ∈ S(Mc0) \ S0(Mc0) : m0($p→s(p)) = 0

2. Case: Mc0 is a protein degradation or mRNA module:

– ∀s ∈ S(Mc0) : m0($p→s(p)) = 0

A special case are protein degradation module Md,c0 concerning
the use of arcs. Assuming a transition t ∈ T representing the molec-
ular event of protein degradation e = $t→e(t) of the protein defined
by Mp,c′0

. The set of places PnonIS
Mp,c′0

= $−1
p→s(

⋃
U(c′0)

S(u) \ SIS(Mp,c′0
) ⊆)

representing non-interaction states are connected with transition t
using reset arcs fXA(PnonIS

Mp,c′0
, t) = 1, and marking-dependent stan-

dard arcs fSA(t, PnonIS
Mp,c′0

) = m(PnonIS
Mp,c′0

). The set of places PIS
Mp,c′0

=

$−1
p→s(

⋃
U(c′0)

S(u)∩SIS(Mp,c′0
)) representing interaction states are con-

nected with transition t using inhibitory arcs f IA(PIS
Mp,c′0

, t) = 1. This

transformation ensures that proteins are only degraded if they are
not interacting with other components and that only one copy of the
protein is degraded.
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Interface Networks

A set of related modules I = {M1, . . . , Mn} share an interface net-
work, defined by NI(M) = {PI , T I , FI , f I , vI , mI

0(M)}, where
NI(M) ⊆ N (M), M ∈ I. The interface networks are crucial for
the modular composition of models, see Section 3.3.1. All nodes in
an interface network NI(M) are declared as logical (fusion) nodes.
In the case of an interface network, the set of transitions T I can be
empty, but not the set of places PI .

The sets of nodes PI , T I shared through the interface network
NI(M) by a set of modules I depend on the correlation among the
modules in I. Here, we have to distinguish four cases:

1. Interface network describing the genetic correlation among compo-
nents:

• mRNA synthesis: To connect a gene module Mg,c0 with its re-
lated mRNA module Mm,c′0

, I = {Mg,c0 , Mm,c′0
}, the mRNA mod-

ule reuses places representing molecular states that indicate the
transcriptionally active state sact

g,c′0
∈ S(Mg,c0) with sact

g,c′0
= sact

g,c0

of the main component c0 of the gene module Mg,c0 . Thus, the
set of transitions T I is empty. The set of places is determined by
PI = {p ∈ P | $p→s(p) = sact

g,c′0
}. The resulting interface network

NI(M) must be an instance in the gene and the mRNA module,
NI(M) ⊆ N (Mg,c0),N (Mm,c0).

• Protein synthesis: To connect a mRNA module Mm,c0 with its
related protein module Mp,c′0

, I = {Mm,c0 , Mp,c′0
}, the mRNA

module reuses all places of the protein module representing
home states of its main components c0′ . Thus, the set of tran-
sitions T I is also empty, and the set of places determined by
PI = {p ∈ PMp,c′0

| $p→s(p) ∈ ⋃
U(c0′ )

s0,u}. The resulting inter-

face network NI(M) must be an instance in the mRNA and the
protein module, NI(M) ⊆ N (Mm,c0),N (Mp,c′0

).
• Protein degradation: To connect a protein module Mp,c0 with

its related protein degradation module Md,c′0
, I = {Mp,c0 , Md,c′0

}
the protein degradation module reuses all places of the protein
module. The set of places is determined by PI = PMp,c0

. The
set of transitions T I is empty. The resulting interface network
NI(M) must be instances of the protein and protein degradation
module, NI(M) ⊆ N (Mp,c0),N (Md,c′0

).

2. Interface networks describing (non-)covalent interaction among
a particular set of genetic components, which might also involve
non-genetic components:

• Protein-protein interactions (protein to protein modules),
• Protein-gene interactions (protein to gene modules),
• Protein-mRNA interaction (protein to mRNA modules).

The resulting interface networkNI(M) is defined by the set of inter-
acting components K = Kg ∪ Kng, where the subset
Kg = {cg

1,0, . . . , cg
n,0} holds the set of genetic components and the

subset Kng = {cng
1 , . . . , cng

n′ } holds the of non-genetic components,
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I = {Mcg
1,0

, . . . , Mcg
n,0
}. The set of transitions T I has to contain all

transitions that involve the components in K,
T I = {t ∈ T : λc(·$t→e(t) ∪·$t→e(t)) = K} and the set of places
PI has to contain all places connected to those transitions in
T I , PI = {p ∈ P : p ∈ ·t ∪ t· | t ∈ T I}. The interface net-
work NI(M) must be an instance in all modules given by I,
NI(M) ⊆ N (Mc1), . . . ,N (Mcn).

3. Interface networks describing interaction among modules through
shared non-genetic components:
The resulting interface network NI(M) is defined by the set of indi-
rectly interacting genetic components Kg with Kg = {cg

1,0, . . . , cg
n,0},

I = {Mcg
1,0

, . . . , Mcg
n,0
}. The main component cg

i,0 ∈ Kg of each mod-

ule M ∈ I is interacting with a non-genetic component cng through
distinct molecular events. Thus, the set of transitions T I is empty,
and the set of places is determined by
PI = {p ∈ P : λc($p→s(p)) = cng}.

4. Interface networks of causal/allelic influence modules:
The interface network NI(M) of a causal/allelic influence module
M and any other module M′, I = {M, M′}, is not strictly defined.
To connect a causal/allelic influence module M to another module
M′, either the sets of places PM ∩ PM′ := PI and/or the sets of
transitions TM ∩ TM′ := T I have to share a subset of nodes, such
that NI(M′) ⊆ N (M′) and NI(M′′) ⊆ N (M′′).

So far, we only defined the set of places PI and transitions T I of an
interface network NI(M) = {PI , T I , FI , f I , vI , mI

0(M)} shared by the
modules in I = {M1 . . . Mn} in module M ∈ I. Below, we define arcs,
firing rates and the markings of an interface network NI(M):

• Set of firing rates vI : T I → H I with H I =
⋃

t∈T I{hI(t), where
hI(t) = hM1(t) = . . . = hMn(t)

• Set of arcs FI = ((PI × T I) ∪ (PI × T I)), where FI ⊆ FM1 , . . . , FMn

• Arc-weights f : F → N0, where ∀x, y ∈ PI ∪ T I : f I(x, y) =

f M1(x, y) = . . . = f Mn(x, y)
• Initial marking mI

0: P→N0, where ∀p ∈ PI : mI
0(p, M) = mM

0 (p)

The redundancy introduced by the interface networks might appear
unnecessarily complicated, but for modules with complex interaction
sites, the approach offers tremendous benefits in securing the correct
functioning of modules in a composed model, see Section 3.3.1. Even
more, it ensures that in the composed model, a module can only
execute a particular interaction if the modules of the involved genetic
components are included in the model. Like in the real world system,
components can only interact if they are available.

Running Example. Using the Tables 3.3 and 3.2 allows to con-
struct the Petri net graphs, see Figure 3.3, for each module specified
in Section 3.1.1. The relation between molecular states and places,
respectively molecular events and transitions is given in Tables 3.4
and 3.5. Places representing home states of the respective main com-
ponents are initially marked, see Table 3.2.
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(A) Protein Module: Receptor Protein

pR_CD_act

pR_Yp

pA_SH2

pA_SH2__pR_YppA_Y

pA_Yp

pA_DNA_BS_inact pA_DNA_BS_act

gR_ABS

pA_DNA_BS_act__gR_ABS

pA_pR__t1 pA_pR__t2

pA_pR__t3pA__t1

pA__t2

pA__t3

pA_gR__t1

pA_gR__t2

(B) Protein Module: Adaptor Protein

pA_DNA_BS_act

gR_ABS

pA_DNA_BS_act__gR_ABS

gR_inact gR_act

pA_gR__t1

pA_gR__t2

gR__t1

gR__t2

pA_gR__t3

pA_gR__t4

(C) Gene Module: Receptor Gene

pR_LBD

mR

pR_CD_inact

pR_Y

gR_act

gR_mR__t1 mR_pR__t1

mR__t1

(D) mRNA Module: Receptor mRNA (E) Protein Degrdation Module: Receptor Protein

L

pR_LBD

pR_LBD__L

pR_CD_actpR_CD_inact

pR_Y

pR_Yp

pA_SH2

pA_SH2__pR_YppA_Y

pA_Yp

pR_L__t1 pR_L__t2

pR__t1

pR__t2

pR__t3 pR__t4

pA_pR__t1 pA_pR__t2

pA_pR__t3

pR_LBD__L

pA_SH2__pR_Yp

pR_LBD

pR_CD_act

pR_CD_inact

pR_Y

pR_Yp

dR__t1

pR CD act-1

pR Y-1

pR LBD-1

pR CD inact-1

pR Yp-1

Figure 3.3: Petri net modules of the
running example. According to the
genetic components of the molecular
network in Figure 3.2 two protein
modules for the receptor and adaptor
protein, one mRNA module for the
receptor mRNA, one gene module
for the receptor gene and one protein
degradation module for the receptor
protein have been constructed. The
interface network shared by the
modules of the involved components
are indicated by logical nodes with
coloured lines: receptor and adaptor
protein (red), receptor gene and
adaptor protein (blue), receptor gene
and mRNA (yellow), receptor protein
and mRNA (green), receptor protein
and degradation (orange). (See text for
more details.)

Each module depicted in Figure 3.3 is equipped with interface
networks to connect to its related modules in the composed model.
Nodes that are part of an interface network are defined as logical
nodes and are visually distinguishable by their grey shading. The
interface network NI(M) of:

• Receptor gene and mRNA module, I = {MgR, MmR}, is given by
(yellow nodes, see Figure 3.3):

– PI = {gR_act} (transcriptional active state of the receptor gene),
– T I = ∅

• Receptor mRNA and protein module, I = {MmR,MpR}, is given
by (green nodes, see Figure 3.3):

– PI = {pR_LBD, pR_CD_inact, pR_Y} (home states of the receptor pro-
tein)

– T I = ∅

• Receptor protein and protein degradation module, I = {MpR,MdR},
is given by (orange nodes, see Figure 3.3):

– PI = {pR_LBD, pR_CD_act, pR_CD_inact, pR_Y, pR_Yp} (non-interaction
states of the receptor protein)

– T I = ∅

• Receptor protein and adaptor protein module, I = {MpR, MpA}, is
given by (red nodes, see Figure 3.3):

– PI = {pR_CD_act, pR_Yp, pA_SH2, pA_SH2__pR_Yp, pA_Y, pA_Yp}
– T I = {pA_pR__t1, pA_pR__t2, pA_pR__t3}
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• Receptor gene and adaptor protein module, I = {MgR, MpA}, is
given by (blue nodes, see Figure 3.3):

– PI = {gR_ABS, pA_DNA_BS_act__gR_ABS, pA_DNA_BS_act}
– T I = {pA_gR__t1, pA_gR__t2, pA_pR__t3}

Table 3.4: Mapping of places and
molecular states of the running ex-
ample. Molecular states that have

been marked as identical interaction
states, see Table 3.2, are represented

by logical places with identical names.

Functional Unit Molecular State Place Name
(A) Receptor protein

ligand binding domain (LBD) free pR_LBD
bound to ligand pR_LBD__L

catalytic domain (CD) inactive pR_CD_inact
active pR_CD_act

tyrosine (Y)
unphosphorylated pR_Y
phosphorylated pR_Yp
phosphorylated, bound to
SH2 of adaptor protein

pA_SH2__pR_Yp

(B) Adaptor protein

SH2 domain (SH2) free pA_SH2
bound to phosphorylated Y
of receptor protein

pA_SH2__pR_Yp

tyrosine (Y) unphosphorylated pA_Y
phosphorylated pR_Yp

DNA binding domain (DNA
BS)

inactive pA_DNA_BS_inact
active pA_DNA_BS_act
active, bound to the receptor
gene

pA_DNA_BS_act__gR_ABS

(C) Receptor gene
adaptor protein binding
sequence (ABS)

free gR_ABS
bound to the DNA BS of the
adaptor protein

pA_DNA_BS_act__gR_ABS

DNA coding sequence of
receptor protein

inactive gR_inact
active gR_act

(D) Receptor mRNA
mRNA coding sequence of
receptor protein

(not further specified) mR

Table 3.5: Mapping of transi-
tions and molecular events

of the running example.

Molecular Event Transition Name
Binding of the ligand and the ligand binding domain of the receptor
protein

pR_L__t1

Unbinding of the ligand and the ligand binding domain of the receptor
protein

pR_L__t2

Activation of the catalytic domain of the receptor protein pR_L__t1
Inactivation of the catalytic domain of the receptor protein pR_L__t2
Phosphorylation of the tyrosine residue of the receptor protein by its
active catalytic domain

pR__t3

Dephosphorylation of the phosphotyrosine residue of the receptor pro-
tein

pR__t4

Binding of the SH2 domain of the adaptor protein to the phosphotyrosine
residue of the receptor protein

pA_pR__t1

Unbinding of the SH2 domain of the adaptor protein to the phosphoty-
rosine residue of the receptor protein

pA_pR__21

Phosphorylation of the tyrosine residue of the adaptor protein by the
active catalytic domain of the receptor

pA_pR__t3

Dephosphorylation of the phosphotyrosine residue of the receptor pro-
tein

pA__t1

Activation of the DNA binding site of the adaptor protein by its phos-
photyrosine residue

pA__t2

Deactivation of the DNA binding site of the adaptor protein pA__t3
Binding of the DNA binding site of the adaptor protein and the adaptor
protein binding sequence of the receptor gene

pA_gR__t1

Unbinding of the DNA binding site of the adaptor protein and the adap-
tor protein binding sequence of the receptor gene

pA_gR__t2

Basal activation of the receptor gene gR__t1
Basal inactivation of the receptor gene gR__t2
Adaptor-protein-dependent activation of the receptor gene pA_gR__t3
Adaptor-protein-dependent inactivation of the receptor gene pA_gR__t4
Synthesis of the receptor mRNA induced by the active receptor gene mR_pR_t1
Degradation of the receptor mRNA mR_t1
Synthesis of the receptor protein mR_pR_t1
Degradation of the receptor protein dR_t1
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3.1.4 Relation Between Graph Properties Emerging from the Module
Definition

In Section 2.1.1, we introduced graph properties that we are now
using to characterise the Petri net graph of a module N (M). Due
to the congruence between the module definition and the Petri net
terminology, the properties of a molecular event and molecular state
directly relate to graph properties. We assume conservation of mass
for all molecular events, expect those representing the synthesis or
degradation of a component.

The Petri net graph of a module N (M) must be connected and has:

. . . input transitions if there exits a molecular event e ∈ E(M)

involving the synthesis of a component c ∈ C(M), where the
set of educts is empty·e = ∅, such that·$−1

t→e(e) = ∅.
. . . output transitions if there exits a molecular event e ∈ E(M)

including the degradation of a component c ∈ C(M), where
the set of products is empty e·= ∅, such that $−1

t→e(e)·= ∅.
. . . input places if there exists a molecular state s ∈ S(M) that

is not a product of any molecular event·s = ∅, such that·$−1
p→s(s) = ∅.

. . . output places if there exists a molecular state s ∈ S(M) that
is not an educt of any molecular event s· = ∅, such that
$−1

p→s(s)·= ∅.

The Petri net graph of a module N (M) cannot be:

. . . pure, if there exists a molecular state s ∈ S(M) that is product
and educt of a molecular event e ∈ E(M), s ∈ e·and s ∈·e,
such that f ($−1

t→e(e), $−1
p→s(s)) 6= 0 and f ($−1

p→s(s), $−1
t→e(e)) 6= 0.

. . . ordinary if there exists a molecular event e ∈ E(M) and a
molecular state s ∈ S(M) with a stoichiometric coefficient
greater one, ν(e, s) > 1 (respectively ν(s, e) > 1), such that
f ($−1

p→s(s), $−1
t→e(e)) > 1 and/or f ($−1

t→e(e), $−1
p→s(s)) > 1.

. . . homogeneous if there exists a molecular state s ∈ S(M) that is
educt of at least two molecular events e, e′ ∈ E(M), s ∈·e and
s ∈ ·e′, with different stoichiometric coefficients
ν(s, e) 6= νin(s, e′), such that:

0 < max{ f ($−1
t→e(e), $−1

p→s(s)) | $−1
t→e(e) ∈ ($−1

p→s(s)·}.
. . . non-blocking multiplicities free if there exists a molecular state

s ∈ S(M) that is not an educt of any molecular event
e ∈ E(M),·s = ∅, such that·$−1

p→s(s) = ∅. The property can
also not be fulfilled if there exist a molecular state s ∈ S(M),
where the minimum of the stoichiometric coefficients with the
molecular state s being a product min{ν(e, s) | ∀e ∈ ·s} is
smaller than the maximum of the stoichiometric coefficients
with the molecular state s being an educt max{ν(s, e) | ∀e ∈ s·},
such that:

min{ f ($−1
t→e(e), $−1

p→s(s)) | ∀$−1
t→e(e) ∈·($−1

p→s(s)}

< max{ f ($−1
p→s(s), $−1

t→e(e)) | ∀$−1
t→e(e) ∈ ($−1

p→s(s)·}
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. . . conservative, if there exists a molecular event e ∈ E(M) repre-
senting a covalent or non-covalent binding or unbinding, where
the number of molecular states on the product and educt site
multiplied by their stoichiometric coefficients are not equal,
ε(·e) 6= ε(e·), such that:

∑
$−1

p→s(s)∈$−1
t→e(e)·

f ($−1
t→e(e), $−1

p→s(s))

= ∑
$−1

p→s(s)∈·$−1
t→e(e)

f ($−1
p→s(s), $−1

t→e(e))

. . . static conflict free if there exists a molecular state s ∈ S(M) that
is an educt of at least two molecular events e, e′ ∈ E(M), s ∈·e
and s ∈·e′, such that·$−1

t→e(e) ∪·$−1
t→e(e

′) 6= ∅.
. . . strongly connected and reversible if there exists an irreversible

molecular event e ∈ E(M), such that no molecular event
e′ /∈ E(M) exits, where e′ = {(ε(e·), ε(·e)), ε(e·)→ ε(·e)}.

. . . k-bounded and structurally bounded if there exits a functional unit
u ∈ U (M) attending at a molecular event e ∈ E(M), where the
intersection of the set of molecular states S(u) of the functional
unit u with the product set of the molecular event e·results
into a molecular state s, S(u) ∩ e·= s, but the intersection with
the educt set is empty, S(u) ∩·e = ∅, which happens in the
case of the synthesis.

. . . live if there exists a molecular event e ∈ E(M) that represents
an interaction of the main component c0 and at least one other
component c ∈ C(M), which is the case for each molecular
event e ∈ EIA(M). A molecular event e ∈ EIA(M) causes a
dead transition, such that 6 ∃m′ ∈ [m〉 : m′[$−1

t→e(e)〉.
. . . reversible if there exists a molecular state s ∈ S(M) that is not

a product (educt) of any molecular event e ∈ E(M), such that
∃m ∈ [m0〉 : m0 6∈ [m〉.

Due to the assumed mass conservation, each functional unit
u ∈ U(M) represents a minimal P-invariant, Pu ·C(N (M)) = 0, if no
molecular event e ∈ ⋃

S(u)(·s ∪ s·) involves degradation
S(u) ∪ e· 6= ∅ or synthesis S(u) ∪·e 6= ∅. The Petri net graph of
the module N (M) is covered by P-invariants, if this condition holds
for all functional units in U(M)

The molecular process E(u) of a functional unit u ∈ U(M) corre-
sponds to a T-invariant, not necessarily minimal, C(N (M)) · E(u) = 0,
if for each molecular state s ∈ S(u) it is true that it is a product of at
least one molecular action e ∈ E(u), s ∈ e·, and an educt of at least one
molecular action e′ ∈ E(u), s ∈·e′. In other words, if the subnetwork
induced by the molecular process E(u) is strongly connected (closed),
E(u) defines a T-invariant. Otherwise, if the subnetwork induced by
the molecular process E(u) is not strongly connected (open), E(u)
defines no T-invariant. The Petri net graph of the module N (M)

is covered by T-invariants, if this condition holds for all molecular
processes in E(u).

The defined relations between the module definition and Petri
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8 Qualitative graph analysis of
Petri nets with reset arcs and self-
referencing standard arcs is not
established in Charlie [141] and Mar-
cie [129]

net graph can be used for the validation of the constructed modules.
Thus, modules have to adhere to a particular set of properties de-
pending on their module type and involved molecular events. The
structural validation of modules is necessary to exclude modelling
faults and inconsistencies. Only successfully validated modules can
be integrated into modularly composed models, see Section 3.3, to ob-
tain a comprehensive and consistent model. False validated modules
might introduce incorrect molecular mechanisms into the model and
thus, interfere with the model behaviour.

Running Example. The Petri net graphs of all modules, see Fig-
ure 3.2, expect the receptor degradation module MdR

8, have been
subjected to the qualitative graph analysis. The results have been
summarised in Table 3.6.

Property MpR MpA MgR MmR

Pure N N N N

Ordinary Y Y Y Y

Homogeneous Y Y Y Y

Non-blocking Multiplicity N Y Y Y

Conservative N N N N

Static Conflict Free N N N N

Input Transition N N N N

Output Transition N N N Y

Input Places Y N N N

Output Places Y N N Y

Connected Y Y Y Y

Strongly Connected N Y Y N

Covered by P-invariants Y Y Y N

Covered by T-invariants N Y Y N

Structurally Bounded Y Y Y N

k-Bounded Y (k=1) Y (k=1) Y (k=1) Y (k=0)

Dead States 1 1 0 1

Dead Transitions Y Y Y Y

Liveness N N N N

Reversibility N N Y N

Table 3.6: Graph properties of the
running example. The computed
graph properties of the modules
confirm the observations described in
this section.

Since all of the modules contain molecular states functioning as
a product and educt at the same time, none of the modules is pure.
In the modelled example, the stoichiometric coefficients of all molec-
ular events are assumed to be one. Thus, all modules are ordinary
and homogeneous. The tyrosine residue of the adaptor protein is an
input place in the receptor protein module MpR, which causes the
module to have blocking multiplicities in contrast to the remaining
modules. Binding and unbinding processes due to interaction among
the components cause the modules to be not conservative. Also, all
modules contain molecular states that are educts of more than one
molecular event. Thus, all modules contain static conflicts. In the
receptor protein module MpR, the molecular state of the phosphoty-
rosine residue of the adaptor protein causes an output place. Places
representing the home states of the receptor protein in the receptor
mRNA module MmR are also output places. None of the modules has
input or output transitions. The output places of the receptor protein
module MpR and mRNA module MmR, as well as the input place of
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Module P-invariants T-invariants

MpR PINV,1(MpR) = {pR_LBD, pR_LBD__L}
↪→ = u

MpR
pR,1

TINV,1(MpR) = {pR_L__t1, pR_L__t2}
↪→ = E(u

MpR
pR,1 ) = E(u

MpR
L,1 )

PINV,2(MpR) = {pR_CD_act, pR_CD_inact}
↪→ = u

MpR
pR,2

TINV,2(MpR) = {pR__t1, pR__t2}
↪→ = E(u

MpR
pR,2 )

PINV,3(MpR) = {pR_Y, pR_Yp, pA_SH2__pR_Yp}
↪→ = u

MpR
pR,3

TINV,3(MpR) = {pR__t3, pR__t4}
↪→ ⊂ E(u

MpR
pR,3 )

PINV,4(MpR) = {L, pR_LBD__L}
↪→ = u

MpR
L,1

TINV,4(MpR) = {pA_pR__t1, pA_pR__t2}
↪→ ⊂ E(u

MpR
pR,3 ),

↪→ = E(u
MpR
pA,1 )

PINV,5(MpR) = {pA_SH2, pA_SH2__pR_Yp}

↪→ = u
MpR
pA,1 = u

MpA
pA,1

PINV,6(MpR) = {pA_Y, pA_Yp}

↪→ = u
MpR
pA,2 = u

MpA
pA,1

MpA PINV,1(MpA) = {pA_SH2, pA_SH2__pR_Yp}

↪→ = u
MpA
pA,1

TINV,1(MpA) = {pA_pR__t1, pA_pR__t2}

↪→ = E(u
MpA
pA,1 ) = E(u

MpA
pR,2 )

PINV,2(MpA) = {pA_Y, pA_Yp}

↪→ = u
MpA
pA,2

TINV,2(MpA) = {pA_pR__t3, pA__t1}

↪→ = E(u
MpA
pA,2 )

PINV,3(MpA) = {pA_DNA_BS_inact, pA_DNA_BS_act,
pA_DNA_BS_act__gR_ABS}
↪→ = u

MpA
pA,3

TINV,3(MpA) = {pA__t2, pA__t3}

↪→ ⊂ E(u
MpA
pA,3 )

PINV,4(MpA) = {pR_CD_act}

↪→ = u
MpA
pR,1 ⊂ u

MpR
pR,2

TINV,4(MpA) = {pA_gR__t1, pA_gR__t2}

↪→ ⊂ E(u
MpA
pA,3 ),

↪→ = E(u
MpA
gR,1 )

PINV,5(MpA) = {pR_Yp, pA_SH2__pR_Yp}

↪→ = u
MpA
pR,2 ⊂ u

MpR
pR,3

PINV,6(MpA) = {gR_ABS, pA_DNA_BS_act__gR_ABS}

↪→ = u
MpA
gR,1 = u

MgR
gR,2

MgR PINV,1(MgR) = {gR_ABS, pA_DNA_BS_act__gR_ABS}
↪→ = u

MgR
gR,1

TINV,1(MgR) = {pA_gR__t1, pA_gR__t2}
↪→ = E(u

MgR
gR,1 ) = E(u

MgR
pA,1 )

PINV,2(MgR) = {gR_act, gR_inact}
↪→ = u

MgR
gR,2

TINV,2(MgR) = {gR__t1, gR__t2}
↪→ ⊂ E(u

MgR
gR,2 )

PINV,3(MgR) = {pA_DNA_BS_act__gR_ABS, pA_DNA_BS_act}

↪→ = u
MgR
pA,1 ⊂ u

MpA
pA,3

TINV,3(MgR) = {pA_gR__t3, pA_gR__t4}
↪→ ⊂ E(u

MgR
gR,2 )

TINV,4(MgR) = {pA_gR__t4, gR__t1}
↪→ ⊂ E(u

MgR
gR,2 )

TINV,5(MgR) = {pA_gR__t3, gR__t2}
↪→ ⊂ E(u

MgR
gR,2 )

MmR PINV,1(MmR) = {gR_act}
↪→ = uMmR

gR,1 ⊂ u
MgR
gR,1

TINV,1(MmR) = {mR__t1, gR_mR__t1}
↪→ = E(uMmR

mR,1 )

Table 3.7: P- and T-invariants
of the running example.

the receptor protein module MpR, cause these two modules to be not
strongly connected. Since the receptor mRNA module MmR contains
molecular events representing the synthesis of the receptor mRNA
and protein it is not bounded. According to the assumption on mass
conservation, all other modules are structurally and k-bounded. In
the uncoupled modules, transitions representing molecular events of
interacting components are dead. Thus, none of the modules is live.
In the receptor gene module MgR, the two transitions representing the
reversible basal activation process of the gene can be enabled, which
causes the module to be reversible in contrast to all other modules.
In consequence, the receptor gene module MgR is the only module
with no dead states.
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Table 3.7 lists all P-invariants and T-invariants of the modules.
Each functional unit of a component in the receptor gene module
MgR, the receptor protein module MpR, and the adaptor protein
module MpA is represented by a minimal P-invariant. In the receptor
mRNA module MmR only the involved functional unit of the receptor
gene is given by a minimal P-invariant, since all other functional
units of the receptor mRNA and protein are involved in synthesis
and degradation processes. Thus, expect the receptor mRNA module
MmR, all modules are covered by P-invariants. Each molecular process
with a closed functional unit subnetwork is represented by a minimal
T-invariant or a linear combination of minimal T-invariant. The linear
combination of minimal T-invariants is necessary for the molecular
processes given by:

• E(uMpR
pR,3) = {pR__t3, pR__t4, pA_pR__t1, pA_pR__t2}

↪→ TINV,3(MpR) + TINV,4(MpR)

• E(uMpA
pA,3) = {pA__t2, pA__t3, pA_gR__t1, pA_gR__t2}

↪→ TINV,3(MpA) + TINV,4(MpA)

• E(uMgR
gR,1) = {gR__t1, gR__t2, pA_gR__t3, pA_gR__t4}

↪→ TINV,2(MgR) + TINV,3(MgR), or TINV,4(MgR) + TINV,5(MgR)

All remaining molecular processes with an open functional unit sub-
network cannot be represented by a T-invariant, which includes the

molecular process E(u
MpR
pA,2) in the receptor protein module MpR and

E(uMmR
pR,1 ), E(uMmR

pR,2 ), E(uMmR
pR,3 ) in the receptor mRNA module MmR. As

a result, the receptor protein module MpR and the receptor mRNA
module MmR are not covered by T-invariants, where the receptor gene
module MgR and the adaptor protein module MpA are covered by
T-invariants.
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This section requires:

• XML [22]

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

3.2 BMK - Module Annotation

As discussed by Le Novère et al. in [54] most published biological
models are lost due missing access or insufficient characterisation.
Le Novère et al. proposed standards for reference correspondence
concerning the encoding of a model, its structure, and behaviour
obtained from an instantiated simulation. Furthermore, Le Novère
et al. suggested information to provide with the encoded model to
be able to trace its origin and the people who were involved in its
creation. These two requirements define a standard for curating and
encoding models called MIRIAM (Minimum Information Requested
In the Annotation of Models) [54]. We integrate the ideas proposed
in MIRIAM [54] into the BMKfr by defining the module annotation
format, called BioModelKit mark-up language (BMKml). The module
annotation provides a sufficient characterisation of each module to
allow its reuse and the assessment of its visibility by other users.
The BMKml is a machine-readable Extensible Markup Language
(XML) [22], defined by an XML Schema Definitions (XSD) and is
MIRIAM compliant [54]. All valid BMKml documents must begin
with an XML declaration <?xml . . ./>, which specifies the attribute
of the XML version (1.0) and the attribute of the document character
encoding (UFT-8). Below, we explain the structure and elements
defined in the BMKml.

The root element module, see XSD code snippet in Figure 3.4, of
the XML annotation file has seven attributes:

Figure 3.4: XSD code snippet
for the XML element module.

1 <xs:element name=" module ">
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element name=" i n f o L i s t " type=" bmk:infoListType "></xs:element>
5 <xs:element name=" p l a c e L i s t " type=" bmk:placeListType "></xs:element>
6 <xs:element name=" t r a n s i t i o n L i s t " type=" bmk: t rans i t ionLis tType "></xs:element>
7 <xs:element name=" parameterLis t " type=" bmk:parameterListType "></xs:element>
8 </xs:sequence>
9 < x s : a t t r i b u t e name="dbName" use=" required " type=" x s : s t r i n g " f i x e d=" Ensembl "></

x s : a t t r i b u t e >
10 < x s : a t t r i b u t e name=" id " use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
11 < x s : a t t r i b u t e name="name" use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
12 < x s : a t t r i b u t e name=" type " use=" required ">
13 <xs:simpleType>
14 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
15 <xs:enumeration value=" prote in module "></xs:enumeration>
16 <xs:enumeration value=" prote in degradation module "></xs:enumeration>
17 <xs:enumeration value=" gene module "></xs:enumeration>
18 <xs:enumeration value="mRNA module "></xs:enumeration>
19 <xs:enumeration value=" causa l i n t e r a c t i o n module "></xs:enumeration>
20 <xs:enumeration value=" a l l e l i c i n f l u e n c e module "></xs:enumeration>
21 </ x s : r e s t r i c t i o n >
22 </xs:simpleType>
23 </ x s : a t t r i b u t e >
24 </xs:complexType>
25 </xs:element>

• dbName identifies the name of the reference database in which
the modelled genetic component is specified and referenced. The
value is fixed to "Ensembl" [78], see also Table 3.8.

• id specifies a unique identifier for the genetic component repre-
sented by the module in respect to the Ensembl database [78]
(required). Since each modularized genetic component can be
traced back to its gene, we use the Ensembl identifier for genes
(ENSG. . .) [78] independent of the module type.

• name specifies the name of the model, which can for example be
the HGNC symbol [140] of the related gene (required).
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• type specifies the module type according to the choice (required):

– gene module
– mRNA module
– protein module
– protein degradation module
– causal interaction module
– allelic influence module

• xmlns declares the XML namespaces applied within the module

element:

– xmlns:xs with URI http://www.w3.org/2001/XMLSchema-instance
(required)

– xmlns:bmk with URI http://www.biomodelkit.org (required)

• xs:schemaLocation with URI http://www.biomodelkit.org~module_

metadata.xsd (required)

Figure 3.5 (B) illustrates an example of the corresponding BMKml

code. In addition, the root element module holds the four child-
elements infoList, placeList, transitionList, and parameterList

(all required). They provide information on different scopes of the
model annotation, which will be explained in detail in the paragraphs
below.

The element infoList provides general information using four
more child-elements to define the terms of use, the authors, the date
of creation and last modification, and a description of the module,
as well as a list of incorporated publication references, see XSD code
snippet in Figure 3.5(A) and (B) for an example:

• terms element specifies the terms of use.
• authorList element specifies a separate child element author for

each person involved in the modelling process.

– author element includes three attributes to hold the most rele-
vant contact information of each person:

* firstName specifies the first name of the author (required).

* lastName specifies the last name of the author (required).

* email specifies a valid email address of the author (required).

• date element specifies the date of creation and last modification
using two attributes:

– creationDate specifies the date of creation in the format
"CCYY-MM-DD" (required)

– modificationDate specifies the date of last modification in the
format "CCYY-MM-DD" (required).

• description element provides a free text description of the compo-
nent given by the module (required).

• pubRefList element provides a list of incorporated publication
references (required), see paragraphs below and XSD code snippet
in Figure 3.9.

http://www.w3.org/2001/XMLSchema-instance
http://www.biomodelkit.org
http://www.biomodelkit.org~module_metadata.xsd
http://www.biomodelkit.org~module_metadata.xsd
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Figure 3.5: (A) XSD code snippet
for the XML element infoList,

(B) corresponding BMKml code
snippet of the IL6 module in-
cluding the module element.

(A)

1 <xs:complexType name=" infoLis tType ">
2 <xs:sequence>
3 <xs:element name=" terms " type=" s t r i n g "></xs:element>
4 <xs:element name=" a u t h o r L i s t " type=" bmk:authorListType "></xs:element>
5 <xs:element name=" date " type=" bmk:dateType "></xs:element>
6 <xs:element name=" d e s c r i p t i o n " type=" x s : s t r i n g "></xs:element>
7 <xs:element name=" pubRefList " type=" bmk:pubRefListType "></xs:element>
8 </xs:sequence>
9 </xs:complexType>

10 <xs:complexType name=" dateType ">
11 < x s : a t t r i b u t e name=" creat ionDate " use=" required " type=" x s : d a t e "></ x s : a t t r i b u t e >
12 < x s : a t t r i b u t e name=" modif icat ionDate " use=" required " type=" x s : d a t e "></ x s : a t t r i b u t e >
13 </xs:complexType>
14 <xs:complexType name=" authorListType ">
15 <xs:sequence>
16 <xs:element name=" author " maxOccurs=" unbounded ">
17 <xs:complexType>
18 < x s : a t t r i b u t e name=" firstName " use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
19 < x s : a t t r i b u t e name=" lastName " use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
20 < x s : a t t r i b u t e name=" email " use=" required ">
21 <xs:simpleType>
22 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
23 < x s : p a t t e r n value=" [^@]+@[ ^ \ . ] + \ . . + "/>
24 </ x s : r e s t r i c t i o n >
25 </xs:simpleType>
26 </ x s : a t t r i b u t e >
27 </xs:complexType>
28 </xs:element>
29 </xs:sequence>
30 </xs:complexType>

(B)

1 <bmk:module dbName=" Ensembl " id=" ENSG00000136244 " name=" IL6 " type=" prote in module " xmlns:xs="
h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e " xs:schemaLocation=" h t t p : //www. biomodelkit . org

module_metadata . xsd " xmlns:bmk=" h t t p : //www. biomodelkit . org ">
2 <bmk:infoList>
3 <bmk:terms>copyright , f r e e l y d i s t r i b u t a b l e </bmk:terms>
4 <bmk:authorList>
5 <bmk:author f irstName="Mary−Ann" lastName=" Blaetke " email=" mary−ann . blaetke@ovgu .

de "></bmk:author>
6 </bmk:authorList>
7 <bmk:date creat ionDate=" 2012−02−03 " modif icat ionDate=" 2014−11−06 " ></bmk:date>
8 <bmk:description>Prote in module of I n t e r l e u k i n 6</bmk:description>
9 <bmk:pubRefList>

10 <bmk:pubRef dbName="PubMed" id=" 9712900 "></bmk:pubRef>
11 <bmk:pubRef dbName="PubMed" id=" 9973404 "></bmk:pubRef>
12 <bmk:pubRef dbName="PubMed" id=" 7744001 "></bmk:pubRef>

. . .
13 </bmk:pubRefList>
14 </bmk:infoList>

. . .
15 </bmk:module>

The element placeList contains a number of place child elements
according to the number of places in the module given by N (M), see
XSD code snippet and example in Figure 3.6. Each place element has
a single attribute:

• name specifies the name of the place (required)

and comprises three child elements to provide a description of the
place, a list of components specified by the place, and a list of reference
publications, see XSD code snippet in Figure 3.6:

• description element provides a descriptive interpretation of the
place.

• componentList element provides a list of components which are
represented by the place. The list of components is separated into
two list for genetic and non-genetic components using the child
elements:

– gComponentList, which contains a number of gComponent

child elements. If the place does not represent any genetic com-
ponent, the number of child elements is zero. Each gComponent

element has the following attributes:

* dbName specifies the name of the reference database, which
is fixed to "Ensembl" [78], see also Table 3.8.
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(A)

1 <xs:complexType name=" placeLis tType ">
2 <xs:sequence>
3 <xs:element name=" place " maxOccurs=" unbounded ">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name=" d e s c r i p t i o n " type=" x s : s t r i n g "></xs:element>
7 <xs:element name=" componentList " type=" bmk:componentListType "></xs:element

>
8 <xs:element name=" pubRefList " type=" bmk:pubRefListType "></xs:element>
9 </xs:sequence>

10 < x s : a t t r i b u t e name="name" use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>
15 <xs:complexType name=" componentListType ">
16 <xs:sequence>
17 <xs:element name=" gComponentList " type=" bmk:gComponentListType "></xs:element>
18 <xs:element name=" ngComponentList " type=" bmk:ngComponentListType "></xs:element>
19 </xs:sequence>
20 </xs:complexType>
21 <xs:complexType name=" gComponentListType ">
22 <xs:sequence>
23 <xs:element name=" gComponent " minOccurs=" 0 " maxOccurs=" unbounded ">
24 <xs:complexType>
25 <xs:sequence>
26 <xs:element name=" dbRefList " type=" bmk:dbRefListType "></xs:element>
27 </xs:sequence>
28 < x s : a t t r i b u t e name="dbName" use=" required " f i x e d=" Ensembl "></ x s : a t t r i b u t e >
29 < x s : a t t r i b u t e name=" id " use=" required "></ x s : a t t r i b u t e >
30 < x s : a t t r i b u t e name="name" use=" required "></ x s : a t t r i b u t e >
31 < x s : a t t r i b u t e name=" type " use=" required ">
32 <xs:simpleType>
33 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
34 <xs:enumeration value=" prote in "></xs:enumeration>
35 <xs:enumeration value=" gene "></xs:enumeration>
36 <xs:enumeration value="mRNA"></xs:enumeration>
37 </ x s : r e s t r i c t i o n >
38 </xs:simpleType>
39 </ x s : a t t r i b u t e >
40 </xs:complexType>
41 </xs:element>
42 </xs:sequence>
43 </xs:complexType>
44 <xs:complexType name=" ngComponentListType ">
45 <xs:sequence>
46 <xs:element name=" ngComponent " minOccurs=" 0 " maxOccurs=" unbounded ">
47 <xs:complexType>
48 <xs:sequence>
49 <xs:element name=" dbRefList " type=" bmk:dbRefListType "></xs:element>
50 </xs:sequence>
51 < x s : a t t r i b u t e name="dbName" use=" required " f i x e d="PubChem"></ x s : a t t r i b u t e >
52 < x s : a t t r i b u t e name=" id " use=" required " ></ x s : a t t r i b u t e >
53 < x s : a t t r i b u t e name="name" use=" required "></ x s : a t t r i b u t e >
54 </xs:complexType>
55 </xs:element>
56 </xs:sequence>
57 </xs:complexType>

(B)

1 <bmk:place name=" IL6_siteI : IL6R_CBM ">
2 <bmk:description>
3 cytokine binding module (CBM) of IL6R bound to binding site I (siteI) of IL6

4 </bmk:description>
5 <bmk:componentList>
6 <bmk:gComponentList>
7 <bmk:gComponent dbName=" Ensembl " id=" ENSG00000160712 " type=" prote in " name="

IL6R_CBM">
8 <bmk:dbRefList>
9 <bmk:dbRef dbName=" Uniprot " id=" P08887 "></bmk:dbRef>

10 <bmk:dbRef dbName=" I n t e r P r o " id=" IPR003961 "></bmk:dbRef>
11 <bmk:dbRef dbName=" Pfam " id=" PF00041 "></bmk:dbRef>

. . .
12 </bmk:dbRefList>
13 </bmk:gComponent>
14 <bmk:gComponent dbName=" Ensembl " id=" ENSG00000136244 " type=" prote in " name="

I L 6 _ s i t e I ">
15 <bmk:dbRefList>
16 <bmk:dbRef dbName=" Uniprot " id=" P05231 "></bmk:dbRef>
17 <bmk:dbRef dbName=" I n t e r P r o " id=" IPR009079 "></bmk:dbRef>
18 <bmk:dbRef dbName=" I n t e r P r o " id=" IPR012351 "></bmk:dbRef>

. . .
19 </bmk:dbRefList>
20 </bmk:gComponent>
21 </bmk:gComponentList>
22 <bmk:ngComponentList></bmk:ngComponentList>
23 </bmk:componentList>
24 <bmk:pubRefList>
25 <bmk:pubRef dbName="PubMed" id=" 12829785 "></bmk:pubRef>
26 <bmk:pubRef dbName="PubMed" id=" 2261637 "></bmk:pubRef>
27 <bmk:pubRef dbName="PubMed" id=" 8706672 "></bmk:pubRef>

. . .
28 </bmk:pubRefList>
29 </bmk:place>

Figure 3.6: (A) XSD code snippet
for the XML element placeList, (B)
corresponding BMKml code for place
IL6_siteI__IL6R_CBM.

* id specifies a unique identifier for the corresponding gene of
the genetic component (Ensembl identifier for genes (ENSG. . .) [78],
required).

* name specifies the sub-string of the place name representing
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the genetic component (required).

* type specifies the genetic type according to the choice (re-
quired): gene, mRNA and protein.

– ngComponentList, which contains a number of ngComponent

child elements. If the place does not represent any non-genetic
component, the number of child elements is zero. Each ngCom-
ponent element has the following attributes:

* dbName specifies the name of the reference database, which
is fixed to "PubChem" [75], see also Table 3.8.

* id specifies a unique identifier for the corresponding gene of
the non-genetic component (PubChem identifier (CID) [75],
required).

* name specifies the sub-string of the place name representing
the non-genetic component (required).

Both elements gComponent, ngComponent have a single child
element:

* dbRefList element provides a list of references to other rele-
vant biomolecular databases, see paragraphs below and XSD
code snippet in Figure 3.10.

• pubRefList element provides a list of reference publications, see
paragraphs below and XSD code snippet in Figure 3.9.

Figure 3.7: (A) XSD code snippet
for the XML element transition-

List, (B) corresponding BMKml code
for transition IL6_IL6R_IL6ST_t2.

(A)

1 <xs:complexType name=" t r a n s i t i o n L i s t T y p e ">
2 <xs:sequence>
3 <xs:element name=" t r a n s i t i o n " maxOccurs=" unbounded ">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name=" d e s c r i p t i o n " type=" x s : s t r i n g "></xs:element>
7 <xs:element name=" dbRefList " type=" bmk:dbRefListType "></xs:element>
8 <xs:element name=" pubRefList " type=" bmk:pubRefListType "></xs:element>
9 </xs:sequence>

10 < x s : a t t r i b u t e name="name" use=" required " type=" x s : s t r i n g "></ x s : a t t r i b u t e >
11 </xs:complexType>
12 </xs:element>
13 </xs:sequence>
14 </xs:complexType>

(B)

1 <bmk:transit ion name=" IL6_IL6R_IL6ST_t2 ">
2 <bmk:description>
3 dissociation of the complex between the CBM of IL6ST, binding site IIa of IL6 and binding site IIb of IL6R
4 </bmk:description>
5 <bmk:dbRefList>
6 <bmk:dbRef dbName="GO" id=" GO:0005515 "></bmk:dbRef>
7 </bmk:dbRefList>
8 <bmk:pubRefList>
9 <bmk:pubRef dbName="PubMed" id=" 9712900 "></bmk:pubRef>

10 <bmk:pubRef dbName="PubMed" id=" 9973404 "></bmk:pubRef>
11 <bmk:pubRef dbName="PubMed" id=" 7744001 "></bmk:pubRef>

. . .
12 </bmk:pubRefList>
13 </bmk:transit ion>

The element transitionList contains a number of transition

child elements according to the number of transitions in the module
given by N (M), see XSD code snippet and example in Figure 3.7.
Each transition element has a single attribute:

• name specifies the name of the transition (required)

and comprises three child elements to provide a description of the
transition, a list of reference publications and other used database
entries, see XSD code snippet in Figure 3.7:
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(A)

1 <xs:complexType name=" parameterListType ">
2 <xs:sequence>
3 <xs:element name=" parameter " minOccurs=" 0 " maxOccurs=" unbounded ">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name=" d e s c r i p t i o n " type=" x s : s t r i n g "></xs:element>
7 <xs:element name=" dbRefList " type=" bmk:dbRefListType "></xs:element>
8 <xs:element name=" pubRefList " type=" bmk:pubRefListType "></xs:element>
9 </xs:sequence>

10 < x s : a t t r i b u t e name="name" use=" required " type=" x s : s t r i n g "></xs:complexType>
11 </xs:element>
12 </xs:sequence>
13 </xs:complexType>

(B)

1 <bmk:parameter name=" k ">
2 <bmk:description>constant</bmk:description>
3 <bmk:dbRefList></bmk:dbRefList>
4 <bmk:pubRefList></bmk:pubRefList>
5 </bmk:parameter>

Figure 3.8: (A) XSD code snippet for
the XML element parameterList,
(B) corresponding BMKml code for
parameter k.

• description element provides a descriptive interpretation of the
transition.

• dbRefList element provides a list of references to other relevant
biomolecular databases, see paragraphs below and XSD code snip-
pet in Figure 3.10.

• pubRefList element provides a list of reference publications, see
paragraphs below and XSD code snippet in Figure 3.9.

The element parameterList contains a number of parameter

child elements according to the number of parameters defined in the
module given by N (M), see XSD code snippet in Figure 3.8. Each
parameter element has a single attribute:

• name specifies the name of the parameter (required)

and comprises three child elements to provide a description of the
parameter, a list of publication references and other cross-references:

• description element provides a descriptive interpretation of the
parameter.

• dbRefList element provides a list of reference to other relevant
biomolecular databases, see paragraphs below and XSD code snip-
pet in Figure 3.10.

• pubRefList element provides a list of reference publications, see
paragraphs below and XSD code snippet in Figure 3.9.

1 <xs:complexType name=" pubRefListType ">
2 <xs:sequence>
3 <xs:element name=" pubRef " maxOccurs=" unbounded ">
4 <xs:complexType>
5 < x s : a t t r i b u t e name="dbName" use=" required " f i x e d="PubMed"></ x s : a t t r i b u t e >
6 < x s : a t t r i b u t e name=" id " use=" required "></ x s : a t t r i b u t e >
7 </xs:complexType>
8 </xs:element>
9 </xs:sequence>

10 </xs:complexType>

Figure 3.9: XSD code snippet for the
XML element pubRefList.

The element pubRefList contains a number of pubRef child ele-
ments, see XSD code snippet and example in Figure 3.9 (examples
can be found in Figures 3.5, 3.6 and 3.7). Each pubRef element has
two attributes:
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Figure 3.10: XSD code snippet
for the XML element dbRefList.

1 <xs:complexType name=" dbRefListType ">
2 <xs:sequence>
3 <xs:element name=" dbRef " maxOccurs=" unbounded ">
4 <xs:complexType>
5 < x s : a t t r i b u t e name="dbName" use=" required ">
6 <xs:simpleType>
7 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
8 <xs:enumeration value="Gene3D"></xs:enumeration>
9 <xs:enumeration value="HAMAP"></xs:enumeration>

10 <xs:enumeration value=" I n t e r P r o "></xs:enumeration>
11 <xs:enumeration value="PANTHER"></xs:enumeration>
12 <xs:enumeration value=" Pfam "></xs:enumeration>
13 <xs:enumeration value=" PIRSF "></xs:enumeration>
14 <xs:enumeration value="PRINTS"></xs:enumeration>
15 <xs:enumeration value="ProDom"></xs:enumeration>
16 <xs:enumeration value="PROSITE"></xs:enumeration>
17 <xs:enumeration value="SMART"></xs:enumeration>
18 <xs:enumeration value="SUPFAM"></xs:enumeration>
19 <xs:enumeration value="TIGRFAMs"></xs:enumeration>
20 <xs:enumeration value=" GlycoSuiteDB "></xs:enumeration>
21 <xs:enumeration value=" PhosphoSite "></xs:enumeration>
22 <xs:enumeration value=" PhosSi te "></xs:enumeration>
23 <xs:enumeration value="GO"></xs:enumeration>
24 <xs:enumeration value=" Ensembl "></xs:enumeration>
25 <xs:enumeration value=" Uniprot "></xs:enumeration>
26 </ x s : r e s t r i c t i o n >
27 </xs:simpleType>
28 </ x s : a t t r i b u t e >
29 < x s : a t t r i b u t e name=" id " use=" required "></ x s : a t t r i b u t e >
30 </xs:complexType>
31 </xs:element>
32 </xs:sequence>
33 </xs:complexType>

• dbName specifies the name of the reference database, which is
fixed to "PubMed" [32](required), see also Table 3.8.

• id specifies a unique identifier of publication in the PubMed
database "PMID" [32] (required).

The element dbRefList contains a number of dbRef child elements,
see XSD code snippet in Figure 3.10 (examples can be found in
Figures 3.5, 3.6 and 3.7). Each dbRef element has two attributes:

• dbName specifies the name of the reference database according
to the choice of databases specified in Table 3.8, excluding the
PubMed database [32](required). The value is set to the abbrevia-
tion of the chosen database, compare Figure 3.10 and Table 3.8.

• id specifies a unique identifier of the reference according to the
chosen database (required).

MIRIAM compliance

As already mentioned at the beginning of this section, MIRIAM
is a standard format for the Minimum Information Requested In the
Annotation of biochemical Models to improve the quality of a unevo-
cal model documentation and reusability, which has been proposed
by Le Novère et al. [54]. First of all, models must be encoded in
a public, machine-readable format, which is given for the modules
defined in the BMKfr, since we are using Snoopy [120] to define the
underlying Petri net model. Snoopy [120] is publicly available and
employs a machine-readable XML format to store models, but also
supports the export and import of SBML. Thus, each module inher-
ently obeys the standards and syntax of Petri nets. Since modules
represent a particular genetic component, we decided to provide the
corresponding Ensembl id [78] as the main reference. The module
reflects the biological processes listed for the corresponding Ensembl
id, respectively given in cross-references that can be approached from
the web-site of the corresponding Ensembl id. With the module, we
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Name (Abbreviation) Reference
Gene3D Structural and Functional Annotation of Protein Families
(Gene2D)

[65]

HAMAP database of protein families (HAMAP) [38]

Integrated resource of protein families, domains and functional sites (In-
terPro)

[72]

The PANTHER Classification System (PANTHER) [71]

Pfam protein domain database (Pfam) [59]

PIRSF; a whole-protein classification database [50]

Protein Motif fingerprint database; a protein domain database (PRINTS) [34]

ProDom; a protein domain database (ProDom) [52]

PROSITE; a protein domain and family database (PROSITE) [61]

Simple Modular Architecture Research Tool; a protein domain database
(SMART)

[63]

Superfamily database of structural and functional annotation (SUPFAM) [30]

TIGRFAMs; a protein family database (TIGRFAMs) [73]

GlycoSuiteDB; an annotated and curated relational database of glycan
structures (GlycoSuiteDB)

[36]

Phosphorylation site database (PhosphoSite) [47]

Phosphorylation site database for Archaea and Bacteria (PhosSite) [51]

Gene Ontology (GO) [79]

Genome annotation databases (Ensembl) [78]

Protein Knowledgebase UniprotKB (Uniprot) [143]

PubChem; database of chemical molecules and their activities against bi-
ological assays (PubChem)

[75]

US National Library of Medicine National Institutes of Health (PubMed) [32]

Table 3.8: External reference databases.

do also provide all relevant information to instantiate its simulation,
including all initial conditions, marking, parameter values, and ki-
netic expressions. Thus, the behaviour of the genetic component
represented by the module, which is given by the Ensembl reference
description can be reproduced. The annotation file of a module, which
is also written in the machine-readable BMKml-format (see above),
specifies a preferred module name and lists reference publications
using PubMed identifiers [32]. The listed reference publications give
a complete mechanistic description of the components represented by
the module. Even more, each place and each transition are linked to
a set of reference publications and entries in other relevant biomolec-
ular databases, see Table 3.8. Also, the annotation file includes all
persons involved in the model creation, the date of creation and last
modification, as well as a statement about the terms of distribution. In
summary, modules defined in the BMKfr comply with the standards
postulated by MIRIAM [54].
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This section requires:

• Petri nets [82], Section 2.1

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

3.3 BMK - Modular Model Composition

As introduced in Section 3.1.1, modules of interacting components
are inherently equipped with redundant interface networks, which
are required to modulary compose models. During the modular
composition redundant interface networks are automatically matched
due to the use of logical (fusion) nodes, making manual modifica-
tions and manual matching of nodes dispensable, see Section 3.3.1
and 3.3.2. Based on the modular model composition, we introduce
the algorithmic model mutation inin Section 3.3.3 and the spatial
transformation of modularly composed models in Section 3.3.4. All of
the algorithms to compose, mutate, and spatially transform modularly
composed models can be fully automatized by organising modules in
the BMKdb, see Section 4.

3.3.1 Modular Model Composition

A set of modules G = {M1, . . . , MnM}, nM ≥ 1, defines a mod-
ularly composed model defined by the Petri net graph N (G) =

(PG, TG, FG, f G, vG, mG
0 ). The set of modules G can also be written as

G = Gg ∪ Gm ∪ Gp ∪ Gd ∪ Gai ∪ Gci, where:

• Gg = {Mg,c0,1 , . . . , Mg,c0,ng
} - subset of gene modules

• Gm = {Mm,c0,1 , . . . , Mm,c0,nm
} - subset of mRNA modules

• Gp = {Mp,c0,1 , . . . , Mp,c0,np
} - subset of protein modules

• Gd = {Md,c0,1 , . . . , Md,c0,nd
} - subset of protein degradation modules

• Gai = {Mai,c0,1 , . . . , Mai,c0,nai
} - subset of allelic influence modules

• Gci = {Mci,c0,1 , . . . , Mci,c0,nci
} - subset of causal influence modules

All module subsets Gg, Gm, Gp, Gd, Gai, and Gci are distinct.
The Petri net graph of the composed modelN (G) = (PG, TG, FG, f G, vG, mG

0 )

is given by:

• Set of places PG =
⋃

M∈G P,
• Set of transitions TG =

⋃
M∈G T,

• Set of arcs FG =
⋃

M∈G F,
• Arc-weights f G: FG →N0

– f G ∈ FG, where f G ∈ FM1 , . . . , FMm with {M1, . . . , Mm} ⊆ G:
f G = f M1 = . . . = f Mm

• Firing rates vG: TG → HG, HG =
⋃

M∈G H
• Initial marking: mG

0 : PG →N0, where

– ∀e ∈ PG with $p→s(p) ∈ ⋃
M∈G S0(M): mG

0 (p) = nc0 with
c0 = λc($p→s(p))

– ∀e ∈ PG with $p→s(p) /∈ ⋃
M∈G S0(M): mG

0 (p) = 0

Furthermore, we introduce the following notations for the composed
model N (G):

• CG =
⋃

M∈G C(M) - the total set of components,
• SG =

⋃
M∈G S(M) - the total set of molecular states,

• SG
0 =

⋃
M∈G S0(M) - the total set of home states,
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Figure 3.11: A modularly composed
model of the running example. The
individual modules of the running
example, see Figure 3.3, are now
connected in a comprehensive mod-
ular model. Nodes in the interface
networks among the modules are
automatically matched. The marking
has been set according to the defined
rules. The interface networks shared
by the modules of the involved com-
ponents are indicated by logical nodes
with coloured borders: receptor and
adaptor protein (red), receptor gene
and adaptor protein (blue), receptor
gene and mRNA (yellow), receptor
protein and mRNA (green), receptor
protein and degradation (orange).

• SG
IS =

⋃
M∈G SIS(M) - the total set of complexes,

• EG
IA =

⋃
M∈G EIA(M) - the total set of all interactions,

• k = λc(s), s ∈ SG
IS - a complex of mapped components, and

• KG =
⋃

s∈SG
IS

k - total set of different complexes.

The modular model composition builds the foundation of the
algorithmic model mutation and spatial transformation of modularly
composed models, see Section 3.3.3 and 3.3.4.

Running Example. From the set of modules defined by
G = {MgR, MmR, MpR, MdR, MpA} in Figure 3.3, we generated the
composed model N (G), compare Figure 3.11. Nodes part of an in-
terface network are automatically matched in order to connect the
modules in G. Places representing home states of a module shared
by interface networks are consistently marked in all modules in the
composed model:

• NI(M) with I = {MgR, MmR}:
– does not include places representing home states

• NI(M) with I = {MmR, MpR}:
– mG(pR_LBD) = 1
– mG(pR_CD_inact) = 1
– mG(pR_Y) = 1

• NI(M) with I = {MpR, MdR}:
– mG(pR_LBD) = 1
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This section requires:

• Petri nets [82], Section 2.1

• Coloured Petri nets [122], Sec-

tion 2.3

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

• Modular model composition, Sec-

tion 3.3.1

– mG(pR_CD_inact) = 1
– mG(pR_Y) = 1

• NI(M) with I = {MpR, MpA}:
– mG(pA_Y) = 1
– mG(pA_Yp) = 1
– mG(pA_SH2) = 1

3.3.2 Instantiation of Modularly Composed Models

Hitherto, we assumed only a single instance for each main component
c0 represented by a module Mc0 by setting nc0 = 1. For a biomolec-
ular system, this might not always be true. In a single cell, usually,
multiple copies of proteins and mRNAs exist, which is even more
true for non-genetic components. Considering a multi-cellular or a
polynuclear organism, multiple copies of a gene must be considered.
Thus, the instantiation of a modularly composed model N (G) needs
to be changed, which can be accomplished by two approaches. The
approach to choose depends on whether the copies of components
should be indistinguishable from each other in the modularly com-
posed model N (G) or not. It might be necessary to distinguish copies
of a component in the composed model, if the structural aspects of
the cell like pools, compartments and membranes are considered, if
single cells should be differentiated from each other, or if the move-
ment or behaviour of single components is of interest rather than
the overall behaviour of the represented molecular network. If the
copies of components are assumed to be not distinguishable in the
modularly composed model N (G), the instantiation can be adjusted
solely by the marking. Otherwise, if the copies of components are
distinguishable from each other, it is not sufficient to solely change the
marking. The components represented in the modularly composed
model N (G) need to be equipped with an additional attribute to
differentiate each copy of a component from each other. The instan-
tiation is accomplished by transforming the modularly composed
model into a coloured Petri net, where the copies of a component
are handled by component specific colour sets. Thus, each copy of a
component is defined by a colour of the component specific colour
set, which allows distinguishing copies of components.

Instantiation by Adjusting the Marking

The most convenient way to instantiate the modularly composed
model N (G) is to individually adjust the marking of components
if instances should be indistinguishable. In the case of genetic com-
ponents, the parameter nc0 determining number of copies of a main
component c0 ∈ CG can be set to any other value greater one. The
marking of places representing home states of component c0 is auto-
matically adjusted. Otherwise, in the case of non-genetic components,
we first need to define a parameter ncng → N for each non-genetic
component cng ∈ CG. The set of places representing a non-genetic
component cng, Pcng = {p ∈ P : λc($p→s(p)) = cng}, should be
marked according to the rule ∑p∈Pcng m0(p) = ncng .
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The expression all() is a function

filtering all colours of a colour set.

Instantiation by Applying Coloured Petri Nets

The transformation of the modularly composed model
N (G) = (PG, TG, FG, f G, vG, mG

0 ) into a coloured Petri net
N (Gcol) = {PGcol , TGcol , FGcol , WGcol , ψGcol , gGcol , f Gcol , vGcol , mGcol

0 } is nec-
essary, if the identity of components instances should be distinguish-
able. Algorithm 3.1 summarizes the steps of the coloured Petri net
transformation. The model instantiation by applying coloured Petri
nets is also a part of the spatial transformation algorithm, see Sec-
tion 3.3.4.

For each component c ∈ CG we need to specify an upper bound
for the number of possible instances, nmax,c → N, as well as an
initial value nini,c → N, nini,c ≤ nmax,c. The coloured Petri net
N (Gcol) = {PGcol , TGcol , FGcol , WGcol , ψGcol , gGcol , f Gcol , vGcol , mGcol

0 } is de-
fined as follows:

• PGcol = PG ∪PC - set of coloured places, where PC = {pc1 , . . . , pc|CG |
}.

Each component of c ∈ CG is represented by an additional place
pc, called component place.

• TGcol = TG - set of coloured transitions
• FGcol = FG - set of coloured arcs
• WGcol = Wsimple ∪Wcompound - set of colour sets

– Wsimple = {w′c1
, . . . , w′c|CG |

} - set of simple colour sets, where

each component of c ∈ CG is represented by a simple colour set
w′c = 1− nmax,c with nmax,c colours.

– Wcompound = {w′′sis ,1, . . . , w′′sis,|KG |
} - set of compound colour sets,

where each complex sis ∈ SG
IS is represented by a product colour

set based on the set of components λc(sis) defining the complex,
such that w′′k = ∏c∈λc(sis)

w′c.

• ψGcol : PGcol →WGcol - colour function:

– ψ(p) = w′c if c = λc($p→s(p)),
– ψ(pc) = w′c, and
– ψ(p) = w′′k if k = λc($p→s(p))

• gGcol : TGcol → ∅ - guard function
• f Gcol : FGcol → EXP - arc function:

– All outgoing and ingoing arcs, f (p, t) and f (t, p), of a place
p ∈ PGcol with ψ(p) = w′c are extended to the multiset expression
f (p, t)Gcol = f (p, t)‘ac, or respectively f (t, p)Gcol = f (t, p)‘ac,
where t ∈ TGcol , where ac is defined as a variable of the simple
colour set w′c.

– All outgoing and ingoing arcs, f (p, t) and f (t, p), of a place p ∈
PGcol with ψ(p) = w′′k are extended to the multiset expression
f (p, t)Gcol = f (p, t)‘

⋃
c∈k ac, or respectively

f (p, t)Gcol = f (t, p)‘
⋃

c∈k ac. In case for inhibitory arcs f IA(p, t),
the multiset expression must be composed as follows:

f Gcol
IA (p, t) = f IA(p, t)‘

⋃
c∈λc($p→s(p))

ac, c = c′

all(), c 6= c′

• vGcol : TGcol → HG - firing rate function:
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– hGcol (t) = h(t)‘all()

• mGcol
0 : PGcol → EXP - marking initialization function:

– ∀pc ∈ PC: mGcol
0 (pc) = 1‘1 + . . . + 1‘nini,c=̂1‘all()„

– ∀p ∈ ⋃
s∈SG

0
$−1

p→s(s) with c = λc($p→s(p)) and c is a genetic

component: mGcol
0 (p) = 1‘1 + . . . + 1‘nini,c=̂1‘all()

* ∀p ∈ PGcol with λc($p→s(p)) = c and c is a non-genetic
component: mGcol

0 (p) = 1‘1 + . . . + 1‘nini,c=̂1‘all()

– ∀p ∈ ⋃
s∈SG

0
$−1

p→s(s) and
c = λc($p→s(p)) if c is a genetic component, and

– mGcol
0 (p) = 1‘1 + . . . + 1‘nini,c=̂1‘all(), c = λc($p→s(p)) if c is

non-genetic component.

Modifications are necessary if the composed model contains transi-
tions describing the synthesis or degradation of a component. Indeed,
this is the case for mRNA modules and protein degradation mod-
ules. A transition t ∈ TGcol representing the synthesis of a component
c ∈ CG, such that c 6∈ ⋃

p∈·t λc($p→s(p)) and c ∈ ⋃
p∈t·λc($p→s(p)),

is connected to the component place pc ∈ PC via an inhibitory arc
f Gcol
IA (pc, t) = 1‘ac and a standard arc f Gcol

SA (t, pc) = 1‘ac. The addi-
tional arcs ensure, that if an instance of a component already ex-
ists, it cannot be synthesised a second time. In reverse, a transition
t ∈ TGcol representing the degradation of a component c ∈ CG, such
that c 6∈ ⋃

p∈t·λc($p→s(p)) and c ∈ ⋃
p∈·t λc($p→s(p)), is connected

to the component place pc ∈ PC via an additional standard arc
f Gcol
SA (pc, t) = 1‘ac.

There might exist other situations that have not been covered so far.
Below, we introduce two more cases, which need further intention:

Special Case 1. Another case that implies further modifications
are molecular events that are involved in homodimerization or -
multimerisation processes, where the respective transitions represent
interaction among several instances of the same component or com-
plex, see Figure 3.13(A) for illustration. Such transitions can be identi-
fied through arcs connecting a place p ∈ PG with a transition t ∈ TG,
that has an arc-weight greater than one, f (x, y) ≥ 1, x, y ∈ PG ∪ TG.
Meaning, two or more instances of a component or complex interact
with each other through a particular molecular state s of the same func-
tional unit. If the molecular state s represented by the place p can only
be mapped to a single component c = λc(s) with |λc(s)| = 1, f (x, y)
additional variables a1

c , . . . , a f (x,y)
c need to be defined for the simple

colour set w′c of component c. In the coloured model the correspond-
ing arc-expression is changed to f G

col(x, y) = 1‘a1
c + . . . + 1‘a f (x,y)

c . If
the molecular state s represented by the place p defines a complex
(set of components) k = λc(s), |λc(s)| > 1, f (x, y) additional vari-
ables a1

c , . . . , a f (x,y)
c need to be defined for the simple colour set w′c

of each component c ∈ k. In the coloured model the corresponding
arc-expression is f G

col(x, y) = 1‘
⋃

c∈k a1
c + . . . + 1‘

⋃
c∈k a f (x,y)

c .
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Algorithm 3.1: Coloured Petri net trans-
formation of modularly composed mod-
els.Require: modularly composed model N (G) = {PG , TG , FG , f G , vG , mG

0 }

1: PGcol = PG

2: TGcol = TG

3: FGcol = FG

4: WGcol = ∅
5: gGcol : T → ∅

6: PC = ∅
7: AC = ∅
8: for all c ∈ CG do
9: Define nmax,c . define maximum number of component instances

10: Define nini,c . define initial number of component instances
11: PC = PC ∪ pc . create component place
12: AC = AC ∪ ac . create component variable
13: w′c = {1, . . . , nmax,c} . create component colour set
14: WGcol = WGcol ∪ w′c
15: ψ(pc) = w′c . assign colour set to component place
16: mGcol

0 (pc) = mG
0 (p)‘1 + . . . + mG

0 (p)‘nini,c . set m0 of component place
17: for all p ∈ PGcol do
18: if c = λc($p→s(p)) then
19: ψ(p) = w′c . assign colour set to respective places
20: for all t ∈ TGcol do
21: f Gcol

SA (p, t) = f G
SA(p, t)‘ac

22: f Gcol
SA (t, p) = f G

SA(t, p)‘ac

23: f Gcol
RA (p, t) = f G

RA(p, t)‘ac

24: f Gcol
EA (p, t) = f G

EA(p, t)‘ac

25: f Gcol
IA (p, t) = f G

IA(p, t)‘ac
26: end for
27: mGcol

0 (p) = mG
0 (p)‘1 + . . . + mG

0 (p)‘nini,c . set m0
28: end if
29: end for
30: end for
31: PGcol = PGcol ∪ PC

32: for all k ∈ KG do
33: Ak = ∅
34: A′k = ∅
35: w′′k = ∅
36: for all c ∈ k do
37: w′′k = w′′k × w′c

. create product colour set based on simple colour set of involved components
38: Ak = Ak ∪ ac

. create variable set based on variables of involved components
39: if c = c0 then
40: A′k = A′k ∪ ac
41: else
42: A′k = A′k ∪ all()
43: end if
44: end for
45: WGcol = WGcol ∪ w′′k
46: for all p ∈ PGcol do
47: if k = λc($p→s(p)) then
48: ψ(p) = w′′k
49: for all t ∈ TGcol do
50: f Gcol

SA (p, t) = f G
SA(p, t)‘Ak

51: f Gcol
SA (t, p) = f G

SA(t, p)‘Ak

52: f Gcol
RA (p, t) = f G

RA(p, t)‘Ak

53: f Gcol
EA (p, t) = f G

EA(p, t)‘Ak

54: f Gcol
IA (p, t) = f G

IA(p, t)‘A′k
55: end for
56: mGcol

0 (p) = mG
0 (p)‘1 + . . . + mG

0 (p)‘nini,c . set m0
57: end if
58: end for
59: end for

. adjust arc-expression
according to colour set
of the place

. adjust arc-expression
according to product
colour set of the place

. initialization of the coloured Petri net
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Algorithm 3.1: Coloured Petri net trans-
formation of modularly composed mod-
els (cont.). 60: for all t ∈ TGcol do

61: hGcol (t) = hG(t)‘all() . set firing-rates of transitions
62: end for

63: for all c ∈ CG do
64: for all t ∈ TGcol do
65: if c 6∈ ⋃

p∈·t λc($p→s(p)) & c ∈ ⋃
p∈t·λc($p→s(p)) then

. find transition representing the synthesis of a component
66: f Gcol

IA (pc, t) = 1‘ac

67: f Gcol
SA (t, pc) = 1‘ac

68: end if
69: if c 6∈ ⋃

p∈t·λc($p→s(p)) & c ∈ ⋃
p∈·t λc($p→s(p)) then

. find transition representing the degradation of a component
70: f Gcol

SA (pc, t) = 1‘ac
71: end if
72: end for
73: end for

Result: A set of variables Ac and the coloured modularly composed model
N (Gcol) = {PGcol , TGcol , FGcol , WGcol , ψGcol , gGcol , f Gcol , vGcol , mGcol

0 }

Special Case 2. The model instantiation using coloured Petri nets
allows to differentiate between the intermolecular and intramolec-
ular interaction of one particular component. In general, we de-
fine an intermolecular interaction as an interaction among different
components or different copies of a particular component, see Fig-
ure 3.13(A) and (B) for illustration. If the interacting functional units
are identical as well, the scenario described in the last paragraph
can be applied. In contrast, we define an intramolecular interaction,
as an interaction among the functional units of one and the same
copy of a particular component. Here, we want to discuss inter-
molecular interaction among copies of one particular component and
intramolecular interaction of the same copy of one particular com-
ponent. For both types of interaction, we can further distinguish
whether the involved functional units form a complex, and thus have
a common interaction state, or not. Since, we did not distinguish
component instances so far, all intermolecular interactions among
copies of a particular component are unintentionally considered as
intramolecular interactions. A potential transition t ∈ TG involves
a set of places·t ∪ t· that represents molecular states of different
functional units U′(c) =

⋃
p∈·t∪t·⋃(u∈λu($p→s(p)))∧(c∈λc($p→s(p))) u of

the same component U′(c) ⊆ U(c). The following steps have to
be performed to transform an intramolecular interaction into an
intermolecular interaction: For each functional unit u ∈ U′(c), an
additional variable au

c needs to be defined for the simple colour set
w′c of component c. The arc-expression of each arc connecting the
transition t with a place p ∈·t ∪ t· representing a single compo-
nent, where $p→s(p) ∈ S(u) and |λc(s)| = 1, is set to f (p, t) = 1‘au

c ,
respectively f (t, p) = 1‘au

c . The arc-expression of the arc connect-
ing the transition t with a place p ∈·t ∪ t·representing a complex,
where $p→s(p) ∈ S(u) and |λc(s)| >= 1, is set to f (p, t) = 1‘

⋃
c∈k au

c ,
respectively f (t, p) = 1‘

⋃
c∈k au

c .
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The scenarios explained in the last two paragraphs cannot be
automated so far. Additional detailed biological knowledge about the
respective molecular events and involved components is necessary,
that might not be included in the module annotation. It might be even
necessary to modify the arc-expression of neighbouring transitions as
well, see Figure 3.13(A) and (B) again for illustration. The observations
above only show, how to detect scenarios that need to be treated
separately and give some recommended instructions. Of course it
might be necessary to make individual adaptations.

Running Example. The result of the model instantiation using
coloured Petri nets applied to the composed model of the running
example, see Figure 3.11, is shown in Figure 3.12. According to
Algorithm 3.1, we defined a maximum and initial number of instances
for each component:

• nmax,pR = 10, nini,pR = 1
• nmax,pA = 10, nini,pA = 5
• nmax,gR = 1, nini,gR = nmax,gR
• nmax,mR = 3, nini,mR = 0
• nmax,L = 10, nini,L = 5

First, we added the component places named comp_pR, comp_gR,
comp_mR, comp_pA, and comp_L, see Figure 3.12(2). For each com-
ponent, we defined a simple colour set

• cs_pR := 1− nmax,pR

↪→ assigned to all places representing molecular states of functional
units of the receptor protein, except places pA_SH2__pR_Yp and
pR_LBD__L representing interaction states, see Table 3.4(A).

• cs_pA := 1− nmax,pA

↪→ assigned to all places representing molecular states of functional
units of the receptor protein, except places pA_SH2__pR_Yp and
pA_DNA_BS_act__gR_ABS representing interaction states, see
Table 3.4(B).

• cs_gR := 1− nmax,gR

↪→ assigned to all places representing molecular states of functional
units of the receptor gene, except place pA_DNA_BS_act__gR_ABS
representing an interaction state, see Table 3.4(C).

• cs_mR := 1− nmax,mR

↪→ assigned to all places representing molecular states of functional
units of the receptor mRNA, see Table 3.4(D).

• cs_L := 1− nmax,L

↪→ assigned to place L.

as well as a variable bound to the colour set:

• pR := cs_pR
• pA := cs_pA
• gR := cs_gR
• mR := cs_mR
• L := cs_L
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Figure 3.12: Model instantiation of the
running example using coloured Petri

nets. (1) Coloured Petri net represen-
tation of the modules, (2) component

place, (3) additional modifications
for the synthesis and degradation

of the receptor mRNA and protein.
(colour set of a place is given maroon
letters; marking of a place is given in
red letters; arc-expressions are given

in blue letters, only non-trivial arc-
expression are shown for clearness)

Since we can determine three different complexes (interaction
states) given by the places pR_LBD__L, pA_SH2__pR_Yp and
pA_DNA_BS_act__gR_ABS, we need to define three compound
colour sets of type product:

• cs_pR_L := cs_pR× cs_L
↪→ assigned to place pR_LBD__L

• cs_pA_pR := cs_pA× cs_pR
↪→ assigned to place pA_SH2__pR_Yp

• cs_pA_gR := cs_pA× cs_gR
↪→ assigned to place pA_DNA_BS_act__gR_ABS

The arc-expression of an in-going or out-going arc of a place is set to
the variable bound to the colour set of the place.

Transitions describing the synthesis and degradation of the re-
ceptor protein and mRNA have to be connected with their corre-
sponding component places, as explained in the previous section, see
Figure 3.12(3).

To illustrate the handling of dimerization processes and intramolec-
ular versus intermolecular interaction, we exemplarily introduce the
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following assumptions on the molecular mechanism depicted in Fig-
ure 3.2:

1. Assumption: The ligand-binding domain of the receptor has to
dimerize with a second copy of the receptor protein before binding
the ligand, compare Figure 3.13(A) (modifications are shaded in
green):

• add two places pR_LBD__pR_LBD and pR_LBD__pR_LBD__L
to represent the molecular states of the complex between the
ligand binding domains of the two receptor protein copies and
the complex of the ligand binding domains of two receptor
protein copies with the ligand

• delete place pR_LBD__L (the molecular state does not exist
anymore)

• add two transitions representing the binding of the ligand bind-
ing domains of two receptor protein copies pR__t5 and their
dissociation pR__t6.

• reconnect the places and transitions in the receptor protein
module as shown in Figure 3.13(A) to assign the correct educts
and products to the added molecular events

• define two additional compound colour sets of type product to
provide an appropriate colour set for the added molecular states
(places):
– cs_pR_pR := cs_pR× cs_pR

↪→ assigned to place pR_LBD__pR_LBD
– cs_pR_pR_L := cs_pR× cs_pR× cs_L

↪→ assigned to place pR_LBD__pR_LBD__L

• define two additional variables to distinguish between receptor
protein copies:
– pR1 := cs_pR
– pR2 := cs_pR

• set arc-expression as shown in Figure 3.13(A) to be consistent
with the added colour sets and assumptions

• set nini,pR = 2 to initially define two copies of the receptor
protein (at least two receptor protein copies are needed for the
interaction assumed above)

2. Assumption: The phosphorylation of the receptor protein tyrosine
happens in trans by a second bound receptor protein copy, compare
Figure 3.13(A) (modifications are shaded in orange):

• define two additional variables according to the involved func-
tional units to distinguish between receptor protein copies:
– pR_CD := cs_pR
– pR_Y := cs_pR

• set arc-expression as shown in Figure 3.13(A) to be consistent
with the added colour sets and assumptions

3. Assumption: The phosphotyrosine of the adaptor protein has to
be bound by an SH2 domain of another adaptor protein copy
before activating the DNA binding site, compare Figure 3.13(A)
(modifications are shaded in yellow ):
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Figure 3.13: Discrimination of com-
ponent instances involved in homod-

imerization and intermolecular in-
teractions. The instantiation of the

composed model using coloured Petri
net transformation, allows distinguish-

ing component instances involved in
dimerization processes and intermolec-

ular interaction between instances
of the same component. Therefore,
in the receptor protein module (A),

the dimerization of the ligand bind-
ing domain (shaded in green) and
the trans-phosphorylation (shaded

in orange) of the receptor protein
tyrosine have been introduced. In

the adaptor protein module (B), the
binding of the phosphotyrosine of
the adaptor protein to an SH2 do-

main of another adaptor protein
copy has been added to activate the

DNA binding site (shaded in yellow).

• add a place pA_SH2__pA_Yp representing the molecular state
of the complex between the SH2 domain and the phosphotyro-
sine of the two different adaptor protein copies

• add two transitions representing the binding of the SH2 domain
and the phosphotyrosine of the adaptor protein pA__t4 and
their dissociation pA__t5

• disconnect place pA__Yp and transition pA__t2, pA__Yp does
not trigger the activation of the DNA binding site according to
the new assumption above

• reconnect the places and transitions in the receptor protein
module as shown in Figure 3.13(B) to assign the correct educts
and products to the added molecular events

• define an additional compound colour set of type product to
represent the complex of two different copies of the adaptor
protein:

– cs_pA_pA := cs_pA× cs_pA
↪→ assigned to place pA_SH2__pA_Yp

• define two additional variables according to the involved func-
tional units to distinguish between adaptor protein copies:

– pA_SH2 := cs_pA
– pA_Y := cs_pA

• set arc-expression as shown in Figure 3.13(B) to allow the inter-
action of the two different adaptor protein copies
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This section requires:

• Petri nets [82], Section 2.1

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

• Modular model composition, Sec-

tion 3.3.1

3.3.3 Algorithmic Model Mutation

Life sciences showed that it is necessary to not only investigate the
native state of a system but also alterations due to e.g. genetic dif-
ferences, which are naturally occurring or have been experimentally
introduced. Therefore, the mutation of the nucleotide sequence of
genomes is a fundamental method. Experimentally induced muta-
tions may abolish the gene function. Thus, the encoded protein is
either missing or completely inactive (gene knock-outs). But mu-
tations might also affect the function of a protein qualitatively or
quantitatively by altering the protein structure. Structural alterations
might cause a gain of function, a loss of function or potentially affect
the substrate specificity. We integrated the idea of mutation stud-
ies into the BMKfr by defining algorithms to conveniently mimic
different mutation types in silico based on the modular modelling
concept and model composition. In the BMKfr, gene knock-outs
either caused by deletion of the gene or by a loss of function muta-
tion are modelled by the deletion of entire modules, while structural
alterations of a gene, mRNA, or protein are mimicked by modifying
the Petri net structure of the respective module, see Table 3.9. Using
the suggested algorithmic model mutation allows generating sets of
alternative models for an extensive analysis of the effects of structural
alterations on the performance and behaviour of the model.

Mutation Type Biological Effect In Silico Realisation
gene deletion no protein synthesised delete module
protein structure muta-
tion

loss of function, gain of
function, indifferent

modify Petri net struc-
ture of the module

Table 3.9: Mutation types.

The large number of alternative models generated by the algo-
rithmic model mutation demands powerful and sophisticated high-
throughput tools for the efficient analysis of the models’ behaviour.
A promising approach to explore a complex and high-dimensional
solution space relies on machine learning [123]. It yields temporal
logic classifications of the behaviours generated by a huge number of
models in high-throughput simulations. Applying this machine learn-
ing approach to models obtained by algorithmic module mutation
produces clusters and classifies them according to their behaviour by
temporal logic properties, and thus reveals characteristic phenotypes
of mutations that had been introduced in silico. The systematic muta-
tion of modules together with high-throughput analysis frameworks
might reveal fundamental insights by investigating and comparing
alternative models to identify components that are crucial determi-
nants of the often complicated and unintuitive behaviour of a system.
We will now provide algorithms for in silico introducing different
mutation types into modularly composed models.

Knock-out of Genes: Deletion of Proteins

In our modular approach, the in silico equivalent of a gene knock-
out is to eliminate modules from the unmodified modularly composed
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model N (G). In the case of a single knock-out, all modules with
the same main component c0 have to be deleted. In some cases,
single gene knock-outs might only insufficiently block a specific
functionality due to redundancy in the gene function. Thus, double or
even multiple gene knock-outs have to be performed to address genes
complementing each other for a single cellular function. Algorithm 3.2
encodes the systematic single and double knock-out of modules in
the unmodified modularly composed model N (G) based on their
main components.

Algorithm 3.2: Module knock-out. Require: Set of modules G.
1: visitedSKO = ∅
2: ComposeModel(N (G)); . unmodified model
3: for i := 1 to |G| do
4: if Mi 6∈ visitedModulesSKO then
5: GSKO = G \ {Mg,c0,i , Mm,c0,i , Mp,c0,i , Md,c0,i};
6: ComposeModel(N (GSKO)); . single module knock-out
7: visitedSKO = visitedSKO ∪ {Mg,c0,i , Mm,c0,i , Mp,c0,i , Md,c0,i};
8: visitedDKO = ∅,
9: for j := i + 1 to |GSKO| do

10: if Mi 6∈ visitedDKO then
11: GDKO = GSKO \ {Mg,c0,j , Mm,c0,j , Mp,c0,j , Md,c0,j};
12: ComposeModel(N (GDKO)); . double module knock-out
13: visitedDKO = visitedDKO ∪ {Mg,c0,j , Mm,c0,j , Mp,c0,j , Md,c0,j};
14: end if
15: end for
16: end if
17: end for

Modification of Protein Structure and Function by Mutation

Point mutations (single nucleotide exchanges), insertions or dele-
tions, can affect the protein structure and hence alter function and
activity of a genetic component qualitatively or quantitatively. The
effect of point mutations can be a gradual gain or loss of function,
which might be evoked for instance by the deletion of structural units
of the protein, exchange of amino acids, freezing of a specific con-
formational state of a protein, or the loss of interactions with other
proteins or small molecules.

Since a protein module represents the functional units of the struc-
ture of a protein and hence determines its functionality within the
model, we can mimic structural alterations of a protein in silico by
modifying the Petri net structure of the corresponding module. This
approach can be applied to all other module types as well. We propose
two algorithms to alter modules of any type systematically in the un-
modified modularly composed model N (G) to cover the most preva-
lent and functionally relevant mutations, see Algorithm 3.3 and 3.4.

Algorithm 3.3 systematically deletes one or two transitions at a
time from the unmodified modularly composed model N (G). By
deleting transitions, the affected functional units can only adopt a
subset of molecular states, which might influence the functionality
of the respective component. The functionality might be increased,
decreased or remain unchanged by the mutation.

In addition, Algorithm 3.4 restricts the set of transitions by the
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Algorithm 3.3: Transition knock-out.
Require: Set of modules G

1: ComposeModel(N (G)) . unmodified model
2: for all t ∈ TGpr do
3: N (GSM) = N (G);
4: TGSM = TG \ t;
5: HGSM = HG \ h(t);
6: f GSM (PGSM , t) = 0;
7: f GSM (t, PGSM ) = 0;
8: ComposeModel(N (GSM)) . single transition knock-out
9: for all t′ ∈ TGpr \ t do

10: N (GDM) = N (GSM);
11: TGDM = TGSM \ t′;
12: HGDM = HGSM \ h′;
13: f GDM (PGDM , t′) = 0;
14: f GDM (t′, PGDM ) = 0;
15: ComposeModel(N (GDM)) . double transition knock-out
16: end for
17: end for

Algorithm 3.4: Annotated transition
knock-out.Require: Set of modules G, A(t) = {a1, . . . anAt

} for each transition t ∈ TG , set of

annotations AMUT = {aMUT
1 , . . . aMUT

nAMUT
} to filter transitions

1: ComposeModel(N (G)) . unmodified model
2: N (GAM) = N (G);
3: for all t ∈ TGpr do
4: if A(t) ∩ AMUT 6= ∅ then
5: N (GSM) = N (G);
6: TGSM = TG \ t;
7: HGSM = HG \ h(t);
8: f GSM (PGSM , t) = 0;
9: f GSM (t, PGSM ) = 0;

10: ComposeModel(N (GSM)) . single transition knock-out
11: for all t′ ∈ TGpr \ t do
12: if A(t′) ∩ AMUT 6= ∅ then
13: N (GDM) = N (GSM);
14: TGDM = TGSM \ t′;
15: HGDM = HGSM \ h′;
16: f GDM (PGDM , t′) = 0;
17: f GDM (t′, PGDM ) = 0;
18: ComposeModel(N (GDM)) . double transition knock-out
19: end if
20: end for
21: TGAM = TG \ t;
22: HGAM = HG \ h(t);
23: f GAM (PGAM , t) = 0;
24: f GAM (t, PGAM ) = 0;
25: end if
26: end for
27: ComposeModel(N (GAM)) . all transition knock-out

use of cross-references mapped to the transitions by BMKml model
annotation. Each transition t ∈ TG is annotated with a set of cross-
references A(t) = {a1, . . . anAt

}, where nAt ≥ 1. The set
AMUT = {aMUT

1 , . . . aMUT
nAMUT

} defines the cross-references, which will

be applied to filter transitions from TG. A transition t ∈ TG is deleted
if A(t) ∩ AMUT 6= ∅. One, two or all affected transitions can be
deleted from the unmodified modularly composed model at a time.

Running Example. Here, we apply the model mutation algorithms
to the running example, see Figure 3.11 for the unmodified modularly
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(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

(4a) (4b) (4c)

Figure 3.14: Model mutation applied
to the running example. (1) Mod-

ule knock-out: (1a) single knock-out
of the receptor protein, (1b) single

kock-out of the adaptor protein, (1c)
double knock-out of receptor and

adaptor protein; (2) Single transition
knock-out (exemplified, not com-

plete); (3) Double transition knock-
out (exemplified, not complete); (4)
Annotated transition knock-out of
transitions representing the phos-
phorylation of tyrosine residues.

composed model. The set of alternative models produced by the
model mutation algorithms can be submitted to a high-throughput
analysis workflow, to cluster and identify models with desired be-
haviour.

Applying the module knock-out, Algorithm 3.2, results into two al-
ternative models for the single module knock-out with
GSKO,1 = {MpA} and GSKO,2 = {MgR, MmR, MpR, MdR} and an empty
model for the double module knock-out GDKO,1 = ∅, see Figure 3.14(1a)-
(1c).

According to the number of transitions in the unmodified mod-
ularly composed model N (G), the single knock-out of transitions,
Algorithm 3.4, results in 25 alternative models, Figure 3.14(2a)-(2c)
provides some examples. The double knock-out of transitions yields



biomodelkit (bmk) framework 93

9 GO - Gene Ontology [79]

This section requires:

• Petri nets [82], Section 2.1

• Coloured Petri nets [122], Sec-

tion 2.3

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

• Modular model composition, Sec-

tion 3.3.1

300 additional alternative models, see Figure 3.14(3a)-(3c) for some
examples.

In the case of annotated transition knock-out, Algorithm 3.3, we
assume that all transitions are mapped to specific GO identifiers 9 [79]
according to their corresponding molecular events. For example
transition pR_t3 and pA_pR_t4 represent the phosphorylation of a
tyrosine residue, which corresponds to the identifier GO : 0018108.
In this example only transitions with the annotation GO : 0018108
should be knocked out. Accordingly, the algorithm generates two
alternative models for the single transition knock-out. Only one of
the annotated transitions pR_t3 and pA_pR_t4 is knocked out in
each model. Another alternative model is generated for the double
transition knock-out, where both annotated transitions pR_t3 and
pA_pR_t4 are knocked out, see Figure 3.14(4a)-(4c). In this case, the
double transition knock-out of the annotated transitions is equivalent
to the knock-out of all transitions annotated with GO : 0018108.

3.3.4 Spatial Model Transformation

Next to the mechanistic and temporal aspects of a biomolecular sys-
tem, spatial aspects are also essential, like the distribution of the
involved components, the position of cells and components, com-
partmentalization, cell size, and shape. Those aspects determine the
correct functioning of a biomolecular system.

Integrating spatial information into models and allowing biomolec-
ular components to move in a defined grid, in particular in the case of
existing models, is a challenging task. Regarding biochemical systems
represented as Petri nets, coloured Petri nets have been applied to
incorporate spatial aspects and the movement in space as shown
in [128]. Therefore, space is discretized into a grid of one, two or
three dimensions. A single place encodes the position on the grid.
This approach works well if the components in the model do not
need to be distinguished on each grid position, e.g. as in the case of
the diffusion of a component, as presented in [128]. This concept
can even be applied to more complex reaction-diffusion systems, as
shown in [135]. More examples on how to use coloured Petri nets
to incorporate spatial aspects of biomolecular systems can be found
in [127, 132].

All models of the examples mentioned above have in common
that they model space by discretization into a grid and having one
subnet (ranging from a single place to a complex network) per grid
position. This approach is handy for models with components having
no internal behaviour or state, and components that do not need to
be distinguished as well. Otherwise, if components have an internal
network that needs to move on the grid, this approach is not suitable
due to several arising modelling and simulation issues. Using this
method would drastically increase the size of the unfolded model,
which impacts the analysis and simulation of the model and may lead
to inconvenient run times.
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Figure 3.15: Representing biomolecular
mechanisms and movement in one

coherent model is a challenging task.
The use of Petri nets allows describ-

ing biomolecular mechanisms next to
the movement on a defined grid. The
resulting model can be divided into a

mechanistic model and a spatial model.
The mechanistic model represents the
biomolecular mechanisms involved in
the modelled system, which can later

be replaced by a modularly composed
model. The spatial model encodes the

positions of the involved component,
the spatial constraints applied to the

interactions, as well as the movement
of components, respectively complexes

formed due to interactions. Interac-
tions can only occur, if components
fulfil a defined neighbourhood con-

dition, e.g. stay at the same position.
Encoding multiple copies of compo-

nents and their individual movement
requires the use of coloured Petri nets
to instantiate the model. In the Exam-
ple, the mechanistic model describes
the binding of A and B to form com-

plex AB, and its dissociation. The
spatial model provides places encod-
ing the (x, y)-coordinates of A and B,

the marking of those places reflects the
position on the grid, which is defined

by the parameters (xDimL, xDimU)
and (yDimL, yDimU) (lower/upper

bound at the x/y-axis). Also, the spa-
tial model encodes spatial constraints
to locally restrict interactions among

A and B. Therefore, the transitions
AB_t1 and AB_t2 are connected with

the coordinates places by read arcs.
The firing rates are multiplied by a

Boolean expression evaluating whether
A and B are at the same position. Only

if A and B stay at the same position,
the interaction can be executed in

the model. In the spatial model, A
and B can either move as single en-
tities or as complex AB. Thus, they
can either move towards the lower

bound of an axis (t{x, y}L_{A, B, AB})
or the upper bound of an axis

(t{x, y}U_{A, B, AB}). The marking
of the coordinate place must always be

greater than xDimL/yDimL, to move
towards the lower bound of an axis.

This is checked by the read arcs with
the arc-weight xDimL + 1/yDimL + 1.

Also, the marking of the coordinate
place must always be less equal than

xDimU/yDimU, to move towards
the upper bound of an axis. This is
checked by the inhibitory arcs with
the arc-weight xDimU/yDimU. In

addition, A and B are only allowed
to move as a single entity if the place

AB is empty. This is checked by the
inhibitory arcs connecting the place
AB with transitions t{x, y}L_{A, B}

and t{x, y}U_{A, B, }. In contrast, to
move A and B as a complex, place AB
must not empty. This is checked by the

read arcs connecting place AB with
transitions t{x, y}U_AB/ tyU_AB.
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Since in our modularization approach components are charac-
terised by complex subnets with an internal behaviour and single
copies of a component need to be distinguished, the approach above
is not practical. The key of our concept is to represent space by
adding coordinate places for each component in the modular com-
posed model. The marking of the coordinate places of a component
indicates its position on a defined grid. The size of the grid is encoded
by the minimal and maximal number of tokens, which are allowed
to stay on a coordinate place. Depending on the dimensionality of
the grid, one, two, or three coordinate places have to be added per
component. In contrast, in the previous approach each position of
each component on a grid was defined by one place. Assuming a
model with 3 components and a 2-dimensional grid of size 5× 5, in
our approach we need 6 places to encode the grid of the components
(2 coordinate places per component), where in the previous approach
we need 75 places ( 5× 5 = 25 places per component). Based on our
idea, the modular approach defined in the BMKfr allows to extend
modularly composed models with spatial aspects, to represent the
local positioning and movement of components, and to constrain
interactions based on the local positioning of components [139]. In
Figure 3.15, we illustrate our approach using a very simple example.
The following steps transform a modularly composed model into a
spatial model:

1. Components have to be equipped with individual spatial attributes
by adding coordinate places representing their current position on
a defined grid.

2. The interaction among the components have to be constrained.
Therefore, the firing rate of a transition representing an interac-
tion event is multiplied by a Boolean function to check, whether
the interacting components fulfil a pre-defined neighbourhood
conditions, e.g. components must have the same coordinate values.

3. The movement of a component has to be realised by adding addi-
tional transitions, which remove and add tokens to the coordinate
places. Components are only allowed to move as single entities if
they are not interacting with any other component, e.g. all places
representing interaction states must be empty. To move compo-
nents forming a complex, all places representing corresponding in-
teraction states involved in the complex formation must be marked,
where places representing other interaction states must be empty.
The localisation of components in a complex needs to be changed
simultaneously.

4. The modified model has to be transformed into a coloured Petri net
according to Algorithm 3.1 in Section 3.3.2 to represent multiple
instances of each component.

5. Additional compartments according to the compartmentalization
and structural composition of the cell (e.g. pools, membrane, etc.)
can be introduced into the grid. For each component, it must be
specified, in which compartments it is allowed to stay. The firing-
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rate of a transition describing the movement of a component or
complex has to be multiplied by a Boolean expression; that evalu-
ates whether the respective component stays within its assigned
compartments or not. Only if the Boolean expression is evaluated
to true, the movement can be executed.

Below, we formally describe the five steps above of the spatial model
transformation in more detail. Each step is followed by the running
example introducing the previous formalization into the model.

Explicit Encoding of Local Positions.
The explicit encoding of local positions of components in the com-

posed model N (G) is given in detail in Algorithm 3.5.
For each component c ∈ CG its local position is encoded by d

coordinate places given by Pc
ax = {pc

ax,1, . . . pc
ax,d}, where d ≥ 1 defines

the number of axes of the assumed grid. For each coordinate place
pc

ax,i ∈ Pc
ax, a lower mL(pc

ax,i) and upper bound mU(pc
ax,i) define the

size of the component specific grid, such that mL/U(pc
ax,i) > 0 and

mL(pc
ax,i) < mU(pc

ax,i). The initial position of the component c is
defined by a tuple of coordinates oc = (xc

1, . . . , xc
3), where mL(pc

ax,i) ≤
xc

i ≤ mU(pc
ax,i). The initial marking of a coordinate place pc

ax,i of
component c is set to m0(pc

ax,i) = xc
i .

The entire set of coordinate place for all component in CG is defined
by Pax =

⋃
c∈CG Pc

ax. Therefore, the set of places PG is now defined as
PG = PG ∪ Pax.

Algorithm 3.5: Explicit encoding of local
positions. Require: N (G) = {PG , TG , FG , f G , vG , mG

0 }, dimensionality d, set of initial coordinates
for each component OG =

⋃
c∈CG oc with oc = (xc

1, . . . , xc
d)

1: Pax = ∅
2: PG

org = PG

3: for all c ∈ CG do
4: for i = 1 to d do
5: Pc

ax = Pc
ax ∪ pc

ax,i . add coordinate places
6: mG

0 (pc
ax,i) = xc

i . initialize marking with coordinate value
7: end for
8: Pax = Pax ∪ Pc

ax
9: end for

10: PG = PG ∪ Pax

Result: N (Gstep1) = {PG , TG , FG , f G , vG , mG
0 }

Running Example. To transform the modularly composed model
of the running example, see Figure 3.11, we assume a two-dimensional
grid of the same size for each all component:

• Lower Bound:

– xDimL_pR = xDimL_gR = xDimL_mR = xDimL_pA = xDimL_L = 1
– yDimL_pR = yDimL_gR = yDimL_mR = yDimL_pA = yDimL_L = 1
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x pR
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y pR
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y gR
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x pA
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Coordinates Receptor Protein Coordinates Receptor Gene Coordinates Receptor mRNA Coordinates Adaptor Protein Coordinates Ligand

Figure 3.16: Definition of coordinate
places. For each component coordinate
places have to be defined, e.g. places
x_pR and y_pR representing the x-
and y-coordinates of the receptor
protein. The initial marking of the
coordinate places is set according to
the initial position assumed for each
component, see text. Note: logical
nodes have been used for a decluttered
representation.

• Upper Bound:

– xDimU_pR = xDimU_gR = xDimU_mR = xDimU_pA = xDimU_L = 20
– yDimU_pR = yDimU_gR = yDimU_mR = yDimU_pA = yDimU_L = 20

For each component in the composed model, two coordinate places
are added, representing the x- and y-coordinates in a Cartesian coor-
dinate system, see Figure 3.16(1):

• receptor protein→ x_pR, y_pR with m0(x_pR) = m0(y_pR) = 4
• receptor gene→ x_gR, y_gR with m0(x_gR) = m0(y_gR) = 13
• receptor mRNA→ x_mR, y_mR with m0(x_mR) = m0(y_mR) = 0 (recep-

tor mRNA does initially not exist)
• adaptor protein→ x_pA, y_pA with m0(x_pA) = m0(y_pA) = 7
• ligand→ x_L, y_L with m0(x_L) = m0(y_L) = 2

Local Constraint of Interactions.
The local constrains of interactions in the composed model N (G)

is given in detail in Algorithm 3.6.
To constrain the executability of each transition t ∈ TG representing

an interaction among components, $t→e(t) ∈ EG
IA, the firing rate h(t)

must be multiplied by a Boolean function b(t) describing a defined
neighbourhood relation: h′(t) = b(t) ∗ h(t). If the neighbourhood re-
lation claims that the distance between interacting components must
be zero, b(t) is defined as:

b(t) =

1, l(t) = 0

0, l(t) 6= 0
with

l(t) = ∑
|λc($p→s(·t∪t·))|−1
i=1 ∑

|λc($p→s(·t∪t·))|
j=i+1 ∑d

k=1(m(pci
ax,k) − m(p

cj
ax,k))

2.
In addition, read arcs, connecting transition t and the coordinate
places of each participating component c ∈ λc($p→s(·t ∪ t·), have to
be added, such that fRA(

⋃
c∈λc($p→s(·t∪t·)) Pc

ax, t) = 1.

Algorithm 3.6: Local restriction of inter-
actions.Require: N (Gstep1) = {PG , TG , FG , f G , vG , mG

0 } with PG = PG
org ∪ Pax , a set of neigh-

bourhood functions B = {b1, . . . , b|EG
IA |
} (Boolean expressions)

1: TG
IA = $−1

t→e(EG
IA)

2: for all t ∈ TG
IA do

3: for all c ∈ λc($p→s(·t ∪ t·)) do
4: for i = 1 to d do
5: f G

RA(t, pc
ax,i) = 1 . connect transitions with coordinate places

6: end for
7: end for
8: hG(t) = hG(t) ∗ bi . multiply firing rate with neighbourhood function
9: end for

Result: N (Gstep3) = {PG , TG , FG , f G , vG , mG
0 }
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Figure 3.17: Local constraint of inter-
action in the running example. Coor-

dinate places are linked to transitions
representing interactions via read

arcs, e.g. coordinate places of the re-
ceptor protein (x_pR and y_pR) and

ligand (x_L and y_L) are linked to
transitions pR_L__t1 and pR_L__t2
representing the interaction of the

receptor protein and the ligand. The
firing rates of those transitions are

multiplied by a Boolean function to
evaluate whether the involved compo-

nents stay one the same position. Thus,
interactions can only be executed if

the coordinate places of the involved
components have identical mark-

ings. Note: logical nodes have been
used for a decluttered representation.

Running Example. The coordinate places of all components in-
volved in the interaction are added via read arcs to each transition
representing an interaction in Figure 3.11, see Figure 3.17:

• pR_L__t1, pR_L__t2→ x_pR, y_pR, x_L, y_L
• pA_pR__t1, pA_pR__t2, pA_pR__t3→ x_pR, y_pR, x_pA, y_pA
• pA_gR__t1, pA_gR__t2, pA_pg__t3, pA_gR__t4

→ x_pA, y_pA, x_gR, y_gR

The firing rates of these transitions are multiplied by a Boolean func-
tion evaluating the distance between the interacting components:

• b(pR_L__t1) = b(pR_L__t2) = {x_pR = x_L & y_pR = y_L}
• b(pA_pR__t1) = b(pA_pR__t2) = b(pA_pR__t3) =

{x_pA = x_pR & y_pA = y_pR}
• b(pA_gR__t1) = b(pA_gR__t2) = b(pA_gR__t3) = b(pA_gR__t3) =

{x_pA = x_gR & y_pA = y_gR}

Explicit Encoding of Local Position Changes.
To encode the position changes (movement) of a component c ∈ CG,

three scenarios have to be considered dependent on the state of
interaction:

1. components with no active interaction, which move as single enti-
ties, e.g. all places representing an interaction state of component
c have to be empty;

2. components with a single active interaction site, e.g. all places
representing one particular complex (might involve one or more
interaction states) of component c have to be marked, places repre-
senting other complexes of component c have to be empty; and

3. components with multiple active interaction sites, e.g. all places
representing a subset of possible complexes of component c have
to be marked, places representing other complexes of component c
have to be empty.

For each case, we need to ensure that the corresponding molecular
conditions are fulfilled. Thus, components can only move as a single
entity if they have no active interaction state, where components
forming a complex are only allowed to move simultaneously if the
corresponding interaction states are active. Below, we describe how
to proceed in each case.



biomodelkit (bmk) framework 99

1. Local position change of individual components, see Algorithm 3.7:
For each component c ∈ CG and each coordinate place pc

ax,i ∈ Pc
ax

two transitions tc
i,L and tc

i,U are needed to incrementally decrease
or increase the amount of tokens. Thus, the movement of compo-
nent c is described by set of transitions Tc

move = Tc
move,L ∪ Tc

move,U ,
where Tc

move,L = {tc
1,L, . . . , tc

d,L} and Tc
move,U = {tc

1,U , . . . , tc
d,U}. The

transition tc
j,L with the firing rate h(tc

j,L) subtracts tokens from the
coordinate place pc

ax,i till the lower bound of the grid is reached,
m(pc

ax,i) = mL(pc
ax,i). Accordingly, the following arcs have to be

introduced f G
SA(pc

ax,i, tc
i,L) = 1 and f G

RA(pc
ax,i, tc

i,L) = mL(pc
ax,i) + 1.

The transition tc
i,U with the firing rate h(tc

j,U) adds tokens to the
coordinate place pc

ax,i till the upper bound of the grid is reached,
m(pc

ax,i) = mU(pc
ax,i). Consequently, the following arcs have to be

introduced f G
SA(t

c
i,U , pc

ax,i) = 1 and f G
IA(pc

ax,i, tc
i,U) = mU(pc

ax,i). The
total set of transition describing the movement of components is
given by Tmove1 =

⋃
c∈CG Tc

move. Therefore, the set of places TG is
now defined as TG = TG ∪ Tmove1.
Each component c ∈ CG can only move as a single entity if all
places representing an interaction state of component c are empty,
m0(Pc

IS) = 0 with Pc
IS = {p | c ∈ λc($p→s(p)) ∧ |λc($p→s(p))| >

1}, Pc
IS ⊆ PG. Therefore, an additional inhibitory arc for each

transition t ∈ Tc
move and each place p ∈ Pc

IS has to be introduced
f G
IA(p, t) = 1 have to introduced.

In addition, we have to introduce component places, as in Algo-
rithm 3.1, to check whether a component exist before moving it.
For each component c ∈ CG, we introduce a component place pc,
the set of all component places is given by Pcomp =

⋃
c∈CG pc. There-

Algorithm 3.7: Local position change of
components as single entities.Require: N (Gstep2) = {PG , TG , FG , f G , vG , mG

0 } with PG = PG
org ∪ Pax

1: Tc
move = ∅

2: Tmove1 = ∅
3: Pcomp = ∅

4: for all c ∈ CG do
5: Pc = Pc ∪ pc
6: for i = 1 to d do
7: Tc

move = Tc
move ∪ {tc

i,L, tc
i,U} . define transitions for movement

8: f G
SA(pc

ax,i , tc
i,L) = 1

9: f G
RA(pc

ax,i , tc
i,L) = mL(pc

ax,i) + 1
10: f G

SA(t
c
i,U , pc

ax,i) = 1
11: f G

IA(pc
ax,i , tc

i,L) = mU(pc
ax,i)

12: for all p ∈ PG
org do

13: if c ∈ λc($p→s(p)) & |λc($p→s(p))| > 1 then
14: f G

IA(p, tc
i,L) = 1

15: f G
IA(p, tc

i,U) = 1
16: end if
17: end for
18: end for
19: Tmove1 = Tmove1 ∪ Tc

move
20: end for
21: PG = PG ∪ Pcomp
22: TG = TG ∪ Tmove1

Result: N (Gstep3.1) = {PG , TG , FG , f G , vG , mG
0 }

. connect coordinate places and test for
lower/upper bound

. test if places representing interactions of the
component are empty
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Figure 3.18: Movement of components
of the running example as single en-

tities (top - x-axis, bottom - y-axis).
For each axis and component, two

transitions are added to increase and
decrease the marking of the coordinate

place. Places representing an interac-
tion of a component must be empty,

which is tested by inhibitory arcs. For
example, in the case of the movement

of the receptor protein along the x-axis,
the transition txL_pR removes tokens

from the coordinate place x_pR as
long as the marking is greater than the

lower bound of the grid defined for
the receptor protein given by the arc-
weight xDim_LpR + 1 of the read arc.

The transition txU_pR can add tokens
to the coordinate place x_pR as long as

the marking is less or equal than the
upper bound of the grid defined for

the receptor protein given by the arc-
weight xDim_U of the inhibitory arc.
The receptor protein can only move

as a single entity if it is not bound to
the ligand and the adaptor protein.
Therefore, the places pR_LBD__L,

pA_SH2__pR_Yp need to be empty.
This is checked by linking those places

via inhibitory arcs to the transitions
txL_pR and txU_pR, which can now

only remove or add tokens if those
places pR_LBD__L, pA_SH2__pR_Yp

are empty. To ensure that the receptor
protein exists before moving it along

the x-axis, the component place of the
receptor protein comp_pR is connected

with txL_pR and txU_pR via a read
arc. Note: logical nodes have been

used for a decluttered representation.

fore, the set of places PG is now defined as PG = PG ∪ Pcomp. The
component place pc of component c is connected with each transi-
tion t ∈ Tc

move via a read arc, such that f G
RA(pc, t) = 1. The initial

number of instances of component c is defined by the parameter
nini,c. The marking of the component place pc is set mG

0 (pc) = nini,c.

Running Example. To represent the movement of components as
single entities, see Figure 3.18, we added two transitions for each
coordinate place of each component in Figure 3.11 to increase and
decrease the coordinate values:

• x_pR → txL_pR, txU_pR;
y_pR → tyL_pR, tyU_pR

• x_gR → txL_gR, txU_gR;
y_gR → tyL_gR, tyU_gR

• x_mR → txL_mR, txU_mR;
y_mR → tyL_mR, tyU_mR

• x_pA → txL_pA, txU_pA;
y_pA → tyL_pA, tyU_pA

• x_L → txL_L, txU_L;
y_L → tyL_L, tyU_L

The marking of the coordinate places can only be changed if the
respective component stays in its defined grid. Also, components
can only move as single entities if they are not interacting with other
components. Places representing an interaction state of a component
are added to the respective transitions above via inhibitory arcs:

• receptor protein→ pR_LBD__L, pA_SH2__pR_Yp
• receptor gene→ pA_DNA_BS_act__gR_ABS
• adaptor protein→ pA_SH2__pR_Yp, pA_DNA_BS_act__gR_ABS
• ligand→ pR_LBD__L
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To move a component as a single entity, we also must ensure that it
actually exists. Therefore, the component places (comp_pR, comp_gR,
comp_mR, comp_pA, comp_L) are connected via read arcs with the
corresponding transitions from above:

• comp_pR → txL_pR, txU_pR, tyL_pR, tyU_pR
• comp_gR → txL_gR, txU_gR, tyL_gR, tyU_gR
• comp_mR → txL_mR, txU_mR, tyL_mR, tyU_mR
• comp_pA → txL_pA, txU_pA, tyL_pA, tyU_pA
• comp_L → txL_L, txU_L, tyL_L, tyU_L

2. Local position change of single interaction site complexes, see Al-
gorithm 3.8:
For each single interaction site complex k ∈ KG and each dimension
i, 1 ≤ i ≤ d, two transitions tk

i,L and tk
i,U are needed to incremen-

tally decrease or increase the amount of tokens on the respective
coordinate places given by Pk

ax,i =
⋃

c∈k pc
ax,i. Thus, the movement

of the single interaction site complex k is described by set of transi-
tions Tk

move = Tk
move,L ∪ Tk

move,U , where Tk
move,L = {tk

1,L, . . . , tk
d,L} and

Tk
move,U = {tk

1,U , . . . , tk
d,U}. The transition tk

i,L with the firing rate
h(tk

i,L) removes tokens from the set of coordinate places Pk
ax,i till

at least one component c ∈ k reached the lower bound of its grid,
m(pc

ax,i) = mL(pc
ax,i). Accordingly, for each place pc

ax,i ∈ Pk
ax,i the

arcs f G
SA(pc

ax,i, tk
i,L) = 1 and f G

RA(pc
ax,i, tk

i,L) = mL(pc
ax,i) + 1 have to

be introduced for each component c ∈ k. The transition tk
i,U with

the firing rate h(tk
j,U) adds tokens to the set of coordinate places

Pk
ax,i till at least one component c ∈ k reached the lower bound of its

grid m(pc
ax,i) = mU(pc

ax,i). Accordingly, for each place pc
ax,i ∈ Pk

ax,i
the arcs f G

SA(t
k
i,U , pc

ax,i) = 1 and f G
IA(pc

ax,i, tk
i,U) = mU(pc

ax,i) have
to be introduced for each component c ∈ k. The total set of
transition describing the movement of components is given by
Tmove2 =

⋃
k∈KG Tk

move. Therefore, the set of places TG is now de-
fined as TG = TG ∪ Tmove2.
A single interaction site complex k ∈ KG can only move if all places
representing the respective interaction are marked, m(Pk

IS) 6= 0
with Pk

IS = {p | k = λc($p→s(p))}, Pk
IS ⊆ PG. This condition is

tested for each transition t ∈ Tk
move and each place p ∈ Pk

IS through
a read arc fRA(p, t) = 1.
Furthermore, a single interaction site complex k ∈ KG can only
move if all places representing other interaction of a component c ∈
k in the single interaction site complex k are empty, m(Pk

coexIS) = 0
with Pk

coexIS = {p : λc($p→s(p)) = k′, k′ ∈ Kk
coex} and Kk

coex =

{k′ ∈ KG : k ∩ k′ 6= ∅ | k 6= k′}. This condition is tested for
each transition t ∈ Tk

move and each place p ∈ Pk
coexIS through an

inhibitory arc f IA(p, t) = 1.

Running Example. To represent the movement of the single in-
teraction site complexes, see Figure 3.19, we added two transitions
for each axis of each single interaction site complex to increase and
decrease the coordinate values:

• receptor protein and ligand:
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Algorithm 3.8: Local position change of
single interaction site complexes. Require: N (Gstep3.1) = {PG , TG , FG , f G , vG , mG

0 } with PG = PG
org ∪ Pax ∪ Pcomp and

TG = TG
org ∪ Tmove1

1: Tk
move = ∅

2: Tmove2 = ∅

3: for all k ∈ KG do
4: for i = 1 to d do
5: Tk

move = Tk
move ∪ {tk

i,L, tk
i,U} . define transitions for movement

6: for all c ∈ k do
7: f G

SA(pc
ax,i , tk

i,L) = 1
8: f G

RA(pc
ax,i , tk

i,L) = mL(pc
ax,i) + 1

9: f G
SA(t

k
i,U , pc

ax,i) = 1
10: f G

IA(pc
ax,i , tk

i,L) = mU(pc
ax,i)

11: for all k′ ∈ KG \ k do
12: if k ∩ k′ 6= ∅ then
13: for all p ∈ PG

org do
14: if k′ = λc($p→s(p)) then
15: f G

IA(p, tk
i,L) = 1

16: f G
IA(p, tk

i,U) = 1
17: end if
18: end for
19: end if
20: end for
21: end for
22: for all p ∈ PG

org do
23: if k = λc($p→s(p)) then
24: f G

RA(p, tk
i,L) = 1

25: f G
RA(p, tk

i,U) = 1
26: end if
27: end for
28: end for
29: Tmove2 = Tmove2 ∪ Tk

move
30: end for
31: TG = TG ∪ Tmove2

Result: N (Gstep3.2) = {PG , TG , FG , f G , vG , mG
0 }

. connect coordinate places and test
for lower/upper bound

. test if places representing the respec-
tive interaction are marked

. test if places representing other interactions of
the involved components are empty

x_pR, x_L → txL_pR_L, txU_pR_L;
y_pR, y_L → tyL_pR_L, tyU_pR_L

• receptor protein and adaptor protein:
x_pR, x_pA → txL_pR_pA, txU_pR_pA;
y_pR, y_pA → tyL_pR_pA, tyU_pR_pA

• adaptor protein and receptor gene:
x_pA, x_gR → txL_pA_gR, txU_pA_gR;
y_pA, y_gR → tyL_pA_gR, tyU_pA_gR

The marking of the coordinate places can only be changed if the
components of the single interaction site complex stay in their defined
grid. Single interaction site complexes can only move if all places
representing the respective complex are marked. Those places are
added to the respective transitions above via read arcs:

• receptor protein and ligand: pR_LBD__L
• receptor protein and adaptor protein: pA_SH2__pR_Yp
• adaptor protein and receptor gene: pA_DNA_BS_act__gR_ABS

Also, single interaction site complexes can only move if all places
representing other complexes of the involved components in the
single interaction site complex are empty. Those places are added to
the respective transitions above via inhibitory arcs:
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Figure 3.19: Movement of single
interaction site complexes of the
running example (top - x-axis, bottom
- y-axis). For each axis and each
single interaction site complex, two
transitions are added to increase
and decrease the marking of the
coordinate place. Places representing
the interaction of the single interaction
site complex must be marked, which is
tested by read arcs. Places representing
other interactions of components
not part of the single interaction site
complex must be empty, which is
tested by inhibitory arcs. Three single
interaction site complexes can be
determined in the running example:
receptor protein and ligand; receptor
protein and adaptor protein; adaptor
protein and receptor gene. Compare
also with Figure 3.18 on how to read
the Petri net graphs. Note: logical
nodes have been used for a decluttered
representation.

• receptor protein and ligand: pA_SH2__pR_Yp
• receptor protein and adaptor protein: pR_LBD__L,

pA_DNA_BS_act__gR_ABS
• adaptor protein and receptor gene: pA_SH2__pR_Yp

3. Local position change of multi interaction site complexes, see
Algorithm 3.9:
A multi interaction site complex Kcoex is defined as a combination

of co-existing single interaction site complexes, where Kcoex ⊆ KG

and |Kcoex| > 1. For each single interaction site complex k ∈ Kcoex

it must be true, that there exists another single interaction site
complex k′ ∈ Kcoex, k′ 6= k, that shares a least one component c
with k, k ∩ k′ 6= ∅. The set of components involved in the multi
interaction site complex Kcoex is given by CKcoex =

⋃
k∈Kcoex

⋃
c∈k c.

For each multi interaction site complex Kcoex ⊆ KG, and each di-
mension i, 1 ≤ i ≤ d, two transitions tKcoex

i,L and tKcoex
i,U are needed

to incrementally decrease or increase the amount of tokens of the
respective coordinate places given by PKcoex

ax,i =
⋃

k∈Kcoex

⋃
c∈k pc

ax,i.
Thus, the movement of the multi interaction site complex Kcoex

is described by set of transitions TKcoex
move = TKcoex

move,L ∪ TKcoex
move,U , where

TKcoex
move,L = {tKcoex

1,L , . . . , tKcoex
d,L } and TKcoex

move,U = {tKcoex
1,U , . . . , tKcoex

d,U }. The

transition tKcoex
i,L with the firing rate h(tKcoex

i,L ) removes tokens from

the set of coordinate places PKcoex
ax,i till at least one component

c ∈ CKcoex reached the lower bound of its grid, m(pc
ax,i) = mL(pc

ax,i).

Thus, for each component c ∈ CKcoex the arcs f G
SA(pc

ax,i, tKcoex
i,L ) = 1
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Algorithm 3.9: Local position change of
multi interaction site complexes. Require: N (Gstep3.2) = {PG , TG , FG , f G , vG , mG

0 } with PG = PG
org ∪ Pax ∪ Pcomp and

TG = TG
org ∪ Tmove1 ∪ Tmove2

1: TKcoex
move = ∅

2: Tmove3 = ∅
3: K′ = KG

4: for all k ∈ KG do . determine all possible combinations of co-existing complexes
5: Kk

coex = k
6: K′ = K′ \ k
7: for all k′ ∈ K′ do
8: if k ∩ k′ 6= ∅ & k 6⊆ k′ & k′ 6⊆ k & k′ ∈ Kall

coex then
9: Kk

coex = Kk
coex ∪ k′

10: end if
11: end for
12: generateMovement(1,∅,Kk

coex)
13: end for
14: TG = TG ∪ Tmove3

Result: N (Gstep3.3) = {PG , TG , FG , f G , vG , mG
0 }

15: function generateMovement(z,Kcurr
coex ,Kk

coex)
. encode movement of each possible combination of co-existing complexes

16: for i = z to |Kk
coex | do

17: Kcurr′
coex = Kcurr

coex ∪ kcoex,i
18: if z > 1 then
19: for j=1 to d do

20: TKcoex
move = TKcoex

move ∪ {t
Kcurr′

coex
j,L , tKcurr′

coex
j,U }

21: for all k ∈ Kcurr′
coex do

22: for all c ∈ k do

23: f G
SA(pc

ax,j, tKcurr′
coex

j,L ) = 1

24: f G
RA(pc

ax,j, tKcurr′
coex

j,L ) = mL(pc
ax,j) + 1

25: f G
SA(t

Kcurr′
coex

j,U , pc
ax,j) = 1

26: f G
IA(pc

ax,j, tKcurr′
coex

j,L ) = mU(pc
ax,j)

27: for all k′ ∈ KG \ Kcurr′
coex do

28:
29: for all k′′ ∈ Kcurr′

coex do
30: if k′′ ∩ k′ 6= ∅ then
31: for all p ∈ PG

org do
32: if k′ = λc($p→s(p)) then

33: f G
IA(p, tKcurr′

coex
i,L ) = 1

34: f G
IA(p, tKcurr′

coex
i,U ) = 1

35: end if
36: end for
37: end if
38: end for
39: end for
40: end for
41: for all p ∈ PG

org do
42: if k = λc($p→s(p)) then

43: f G
RA(p, tKcurr′

coex
i,L ) = 1

44: f G
RA(p, tKcurr′

coex
i,U ) = 1

45: end if
46: end for
47: end for
48: end for
49: Tmove3 = Tmove3 ∪ TKcoex

move
50: TKcoex

move = ∅
51: end if
52: generateMovement(i,Kcurr′

coex ,Kk
coex)

53: end for
54: end function

. connect coordinate
places and test for low-
er/upper bound

. test if places representing
the respective interaction are
marked

. test if places rep-
resenting other in-
teractions of the in-
volved components
are empty
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and f G
RA(pc

ax,i, tK′coex
i,L ) = mL(pc

ax,i) + 1 have to be introduced. The

transition tKcoex
i,U with the firing rate h(tKcoex

i,U ) adds tokens to the set

of coordinate places PKcoex
coor,i till at least one component c ∈ CKcoex

reached the upper bound of its grid, m(pc
ax,i) = mU(pc

ax,i). Accord-

ingly, for each component c ∈ CKcoex the arcs f G
SA(t

Kcoex
i,U , pc

ax,i) = 1

and f G
IA(pc

ax,i, tKcoex
i,U ) = mU(pc

ax,i) have to be introduced. The total
set of transition describing the movement of components is given
by Tmove3 = {TKcoex,1

move , . . . , TKcoex,n
move . Therefore, the set of places TG is

now defined as TG = TG ∪ Tmove3.
A multi interaction site complex Kcoex ⊆ KG can only move if all
places representing the respective interactions involved in multi in-
teraction site complex are marked, m(PKcoex

IS ) 6= 0 with
PKcoex

IS = {p ∈ PG : k = λc($p→s(p)) ∧ k ∈ Kcoex}. This condition is
tested for each transition t ∈ TKcoex

move and each place p ∈ PKcoex
IS

through a read arc fRA(p, t) = 1.
Furthermore, a multi interaction site complex Kcoex ⊆ KG can only
move if all places representing other interactions of a component
c ∈ CKcoex are empty, m(PKcoex

coexIS) = 0 with
PKcoex

coexIS = {p ∈ PG : k = λc($p→s(p)) ∧ k ∈ KKcoex
coex } and

KKcoex
coex = {k ∈ KG : k 6∈ Kcoex ∧ ∃k′ ∈ K′coex : k ∩ k′ 6= ∅, k 6= k′}.

This condition is tested for each transition t ∈ TKcoex
move and each place

p ∈ PKcoex
coexIS through an inhibitory arc f IA(p, t) = 1.

The local position change of individual components, single and
multi interaction site components can either be regarded in a discrete
or deterministic manner that may occur stochastically or deterministi-
cally, respectively. According to the choice, the introduced coordinate
places Pax, see Algorithm 3.5, and transitions representing the local po-
sition change Tmove = Tmove1 ∪ Tmove2 ∪ Tmove3, see Algorithm 3.7- 3.9,
have to be declared as discrete or as continuous nodes. Theoreti-
cally, the firing rates of the transitions representing the local position
change h(t), t ∈ Tmove, can be specified as mass-action kinetics, a
Brownian motion kinetics, diffusion kinetics according to Fick’s laws
of diffusion [1] or any other kinetics compatible with the modelled
system and assumptions.

Running Example. As before, to represent the movement of the
multi interaction site complexes, see Figure 3.20, we added two tran-
sitions for each axis of each multi interaction site complex to increase
and decrease the coordinate values:

• receptor protein, adaptor protein and ligand:
x_pR, x_pA, x_L → txL_pR_pA_L, txU_pR_pA_L;
y_pR, y_pA, y_L → tyL_pR_pA_L, tyU_pR_pA_L

• receptor protein, adaptor protein and receptor gene:
x_pR, x_pA, x_gR → txL_pR_pAgR, txU_pR_pAgR;
y_pR, y_pA, y_gR → tyL_pR_pAgR, tyU_pR_pAgR

• receptor protein, adaptor protein, receptor gene and ligand:
x_pR, x_pA, x_L, x_gR → txL_pR_pA_gR_L, txU_pR_pA_gR_L;
y_pR, y_pA, y_L, y_gR → tyL_pR_pA_gR_L, tyU_pR_pA_gR_L
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Figure 3.20: Movement of multi inter-
action site complexes of the running

example (top - x-axis, bottom - y-axis).
For each axis and multi interaction site

complex, two transitions are added
to increase and decrease the mark-
ing of the coordinate place on the

defined grid size. Places representing
the interaction of the multi interac-
tion site complex must be marked,

which is tested by read arcs. Places
representing other interactions of com-

ponents part of the multi interaction
site complex must be empty, which

is tested by inhibitory arcs. Three
multi interaction site complexes can
be determined in the running exam-

ple: receptor protein, adaptor protein
and ligand; receptor protein, adaptor

protein and receptor gene; receptor
protein, adaptor protein, receptor gene

and ligand. Compare also with Fig-
ure 3.18 on how to read the Petri net

graphs. Note: logical nodes have been
used for a decluttered representation.

The marking of the coordinate places can only be changed if the
components of the multi interaction site complex stay in their defined
grid. Multi interaction site complexes can only move if all places
representing the respective complex are marked. Those places are
added to the respective transitions above via read arcs:

• receptor protein, adaptor protein and ligand: pR_LBD__L, pA_SH2__pR_Yp
• receptor protein, adaptor protein and receptor gene: pA_SH2__pR_Yp,

pA_DNA_BS_act__gR_ABS
• receptor protein, adaptor protein, receptor gene and ligand: pR_LBD__L,

pA_SH2__pR_Yp, pA_DNA_BS_act__gR_ABS

Also, multi interaction site complexes can only move if all places
representing other complexes of the involved components in the
multi interaction site complex are empty. Those places are added to
the respective transitions above via inhibitory arcs:

• receptor protein, adaptor protein and ligand: pA_DNA_BS_act__gR_ABS
• receptor protein, adaptor protein and receptor gene: pR_LBD__L
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Extended Model Instantiation using Coloured Petri Nets.
The encoding of component instances has already been introduced

in Section 3.3.2. In order to represent the movement of a number
of instances of each component, Algorithm 3.1 needs to be applied
to the original modularly composed model and to be extended to
capture the modifications that have been introduced in the previous
steps, which include:

Algorithm 3.10: Encoding of Compo-
nent Instances by applying coloured
Petri nets.Require: N (Gstep3.3) = {PG , TG , FG , f G , vG , mG

0 } with TG = TG
org ∪ Tmove,

TG
move = Tmove1 ∪ Tmove2 ∪ Tmove3 and PG = PG

org ∪ Pax ∪ Pcomp

1: Run Algorithm 3.1 for N (G) = {PG , TG , FG , f G , vG , mG
0 }

2: PGcol = PGcol ∪ Pax
3: TGcol = TGcol ∪ Tmove

4: for all pc
ax,i ∈ Pax do

5: ψ(pc
ax,i) = w′c . assign colour set to respective coordinate places

6: for all t ∈ TGcol do
7: f Gcol

SA (pc
ax,i , t) = f G

SA(pc
ax,i , t)‘ac

8: f Gcol
SA (t, pc

ax,i) = f G
SA(t, pc

ax,i)‘ac

9: f Gcol
RA (pc

ax,i , t) = f G
RA(pc

ax,i , t)‘ac

10: f Gcol
IA (pc

ax,i , t) = f G
IA(pc

ax,i , t)‘ac
11: end for
12: mGcol (pc

ax,i) = mG(pc
ax,i)‘1 + . . . + mG(pc

ax,i)‘nini,c
. adjust marking according to colour set of the coordinate place

13: end for

14: for all pc ∈ Pc do
15: for i = 1 to d do
16: f Gcol

RA (pc, tc
i,L) = 1‘ac

17: f Gcol
RA (pc, tc

i,U) = 1‘ac
18: end for
19: end for

20: for all pc
ax,i ∈ Pax do

21: for all t ∈ TGcol do
22: if c 6∈ ⋃

p∈·t λc($p→s(p)) & c ∈ ⋃
p∈t·λc($p→s(p)) then

23: f Gcol
SA (t, pc

ax,i) = xc
i ‘ac

24: end if
25: if c 6∈ ⋃

p∈t·λc($p→s(p)) & c ∈ ⋃
p∈·t λc($p→s(p)) then

26: f Gcol
XA (pc

ax,i , t) = ac
27: end if
28: end for
29: end for

30: for all {tc
i,L ∪ tc

i,U} ∈ TGcol
move1 do

31: for all p ∈ PGcol
org do

32: if c ∈ λc($p→s(p)) & |λc($p→s(p))| > 1 then
33: A = ∅
34: for all c′ ∈ λc($p→s(p)) do
35: if c′ = c then
36: A = A ∪ ac′

37: else
38: A = A ∪ ”all()”
39: end if
40: end for
41: f Gcol

IA (p, tc
i,L) = f G

IA(p, tc
i,L)‘A

42: f Gcol
IA (p, tc

i,U) = f G
IA(p, tc

i,U)‘A
43: end if
44: end for
45: end for

. connect compo-
nent places to tran-
sitions representing
the local position
change of individ-
ual components.

. adjust arc-expression according to
colour set of the coordinate place

. connect coordi-
nate places of a
component to transi-
tions describing its
synthesis or degra-
dation

. adjust arc-expression of in-
hibitory arcs
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Algorithm 3.10: Encoding of component
instances by applying coloured Petri
nets (cont.). 46: for all {tk

i,L ∪ tk
i,U} ∈ TGcol

move2 do
47: for all k′ ∈ KG \ k do
48: if k ∩ k′ 6= ∅ then
49: for all p ∈ PGcol

org do
50: if k′ = λc($p→s(p)) then
51: A = ∅
52: for all c ∈ k′ do
53: if c ∈ k then
54: A = A ∪ ac
55: else
56: A = A ∪ ”all()”
57: end if
58: end for
59: f Gcol

IA (p, tk
i,L) = f G

IA(p, tk
i,L)‘A

60: f Gcol
IA (p, tk

i,U) = f G
IA(p, tk

i,U)‘A
61: end if
62: end for
63: end if
64: end for
65: end for

66: for all {tKcoex
i,L ∪ tKcoex

i,U } ∈ TGcol
move3 do

67: for all k′ ∈ KG \ Kcoex do
68: for all k ∈ Kcoex do
69: if k ∩ k′ 6= ∅ then
70: for all p ∈ PGcol

org do
71: if k′ = λc($p→s(p)) then
72: A = ∅
73: for all c ∈ k′ do
74: if c ∈ k then
75: A = A ∪ ac
76: else
77: A = A ∪ ”all()”
78: end if
79: end for
80: f Gcol

IA (p, tKcoex
i,L ) = f G

IA(p, tKcoex
i,L )‘A

81: f Gcol
IA (p, tKcoex

i,U ) = f G
IA(p, tKcoex

i,U )‘A
82: end if
83: end for
84: end if
85: end for
86: end for
87: end for

Result: N col(Gstep4) = {PGcol , TGcol , FGcol , WGcol , ψGcol , gGcol , f Gcol , vGcol , mGcol
0 }

. adjust arc-expression of inhibitory
arcs

. adjust arc-expression of inhibitory
arcs

• Extending the set of coloured places PGcol = PGcol ∪ Pax ∪ Pcomp

• Setting the marking for each coordinate place pc
ax,i ∈ Pax,

mGcol (pc
ax,i) = mG(pc

ax,i)‘1 + . . . + mG(pc
ax,i)‘nini,c

• Mapping of a coordinate place pc
ax,i ∈ Pax of component c ∈ CG to

the simple colour set ψ(pc
ax,i) = w′c

• Connecting each coordinate place pc
ax,i ∈ Pax of a component c ∈

CGto the transitions representing its synthesis or degradation:

– Synthesis: For each t ∈ TGcol , where c 6∈ ⋃
p∈·t λc($p→s(p)) and

c ∈ ⋃
p∈t·λc($p→s(p)) set the arc-expression to

f Gcol
SA (t, pc

ax,i) = xc
i ‘ac

– Degradation: For each t ∈ TGcol , where c 6∈ ⋃
p∈t·λc($p→s(p))

and c ∈ ⋃
p∈·t λc($p→s(p)) set the arc-expression to

f Gcol
XA (pc

ax,i, t) = ac
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• Extending the set of coloured transitions TGcol = TGcol ∪ Tmove,
where TG

move = Tmove1 ∪ Tmove2 ∪ Tmove3

• Setting the firing rates for each transition t ∈ TG
move, such that

hGcol (t) = h(t)‘all()
• Setting the arc-expression for in-going and out-going arcs of a coor-

dinate place pc
ax,i ∈ Pax of a component c to

f Gcol (pc
ax,i, t) = f G(pc

ax,i, t)‘ac and f Gcol (t, pc
ax,i) = f G(t, pc

ax,i)‘ac,
where t ∈ TGcol

• Setting the arc-expression of read arcs connecting a component
place pc ∈ Pcomp with a transition t ∈ Tmove1 to f Gcol

RA (pc, t) f G(pc, t)‘ac

• Setting the arc-expression for newly introduced in-going and out-
going arcs for each place p ∈ PG

org with ψ(p) = w′′k :

1. f Gcol
RA (p, t) = f G

RA(p, t)‘
⋃

c∈k ac, where t ∈ TG
move

2. f Gcol
IA (p, t) = f G

IA(p, t)‘A, where t ∈ TG
move:

– A =
⋃

c∈λc($p→s(p))

{
ac, c = c′

all(), c 6= c′
if tc′

i,L/U ∈ Tmove1

– A =
⋃

c∈λc($p→s(p))

{
ac, c ∈ k

all(), c 6∈ k
if tk

i,L/U ∈ Tmove2

– A =
⋃

c∈λc($p→s(p))

{
ac, c ∈ ⋃

k∈Kcoex

⋃
c′∈k c′

all(), c 6∈ ⋃
k∈Kcoex

⋃
c′∈k c′

if tKcoex
i,L/U ∈ Tmove3

Running Example. Transforming the he spatial model into a
coloured Petri net to represent multiple instances of components
requires inheriting the declarations defined for the running example
in Section 3.3.2, compare also Figure 3.21 and 3.22:

• simple colour sets:

– cs_pR := 1− nmax,pR

– cs_pA := 1− nmax,pA

– cs_gR := 1− nmax,gR

– cs_mR := 1− nmax,mR

– cs_L := 1− nmax,L

• compound colour sets:

– cs_pR_L := cs_pR× cs_L
– cs_pA_pR := cs_pA× cs_pR
– cs_pA_gR := cs_pA× cs_gR

• constants:

– nmax,pR = 10, nini,pR = 1
– nmax,pA = 10, nini,pA = 5
– nmax,gR = 1, nini,gR = nmax,gR

– nmax,mR = 3, nini,mR = 0
– nmax,L = 10, nini,L = 5

• variables:

– pR := cs_pR
– pA := cs_pA
– gR := cs_gR
– mR := cs_mR
– L := cs_L
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Figure 3.21: Spatial model of the run-
ning example (Part I), see also Fig-

ure 3.22 (Part II). (A) declaration of
simple and compound colour sets,

constants and variables; (B) modular
composed model representing the

molecular mechanism as described in
Figure 3.2, compare also Figure 3.3;

(C) component places, compare Fig-
ure 3.12; (D) coordinate places, com-
pare Figure 3.16; (E) local restriction
of molecular events representing in-
teractions, compare Figure 3.17; (F)

additional modifications for the syn-
thesis and degradation of the receptor

mRNA and protein; compare Fig-
ure 3.12. Note: logical nodes have been

used for a decluttered representation;
colour set of a place is given maroon
letters; marking of a place is given in
red letters; arc-expressions are given

in blue letters (only non-trivial arc-
expression are shown for clearness)

(A)
• simple colour sets:

– cs_pR := 1− nmax,pR
– cs_pA := 1− nmax,pA
– cs_gR := 1− nmax,gR
– cs_mR := 1− nmax,mR
– cs_L := 1− nmax,L

• compound colour sets:

– cs_pR_L := cs_pR× cs_L
– cs_pA_pR := cs_pA× cs_pR
– cs_pA_gR := cs_pA× cs_gR

• constants:

– nmax,pR = 10, nini,pR = 1
– nmax,pA = 10, nini,pA = 5
– nmax,gR = 1, nini,gR = nmax,gR
– nmax,mR = 3, nini,mR = 0
– nmax,L = 10, nini,L = 5

• variables:

– pR := cs_pR
– pA := cs_pA
– gR := cs_gR
– mR := cs_mR
– L := cs_L

(B)
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cs mR
gR mR t1 mR pR t1

mR t1

pR CD act

cs pR
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5
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cs pA
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L
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pR LBD
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(A) Protein Module: Receptor Protein (B) Protein Module: Adaptor Protein

pA DNA BS act

cs pA
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1‘1
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cs pA gR

gR inact
1‘1
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(C) Gene Module: Receptor Gene (D) mRNA Module: Receptor mRNA (E) Protein Degrdation Module: Receptor Protein

(1)

pR_LBD__L
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(pR,all())

(all(),pR)

cs_pR_L

cs_pA_pR

(C)
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(D)
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Coordinates Receptor Protein Coordinates Receptor Gene Coordinates Receptor mRNA Coordinates Adaptor Protein Coordinates Ligand

(E)
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4
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4

4‘1

cs pR
y pR

4

4‘1

cs pR
y pR

4

4‘1

cs pR
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13‘all()

cs gR
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35
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cs pA
x pA
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7‘all()

cs pA
x pA
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cs pA
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cs L
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Interaction Receptor Protein and Ligand Interaction Receptor Protein  and Adaptor Protein Interaction Receptor Gene and Adaptor Protein

(F)

comppR 1‘1
cs pR

comppR 1‘1
cs pR

compmR

cs mR

compmR

cs mR

x pR

4 4‘1

cs pR
y pR

4 4‘1

cs pR
x mR
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Synthesis/Degradation of Receptor mRNA Synthesis/Degradation of Receptor Protein
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(G)
Movement Receptor Gene Movement Receptor mRNA Movement Ligand

pR LBD L

cs pR L

pR LBD L

cs pR L

pR LBD L

cs pR L

pR LBD L

cs pR L

pA SH2 pR Yp

cs pA pR

pA SH2 pR Yp
cs pA pR

pA SH2 pR Yp

cs pA pR

pA SH2 pR Yp

cs pA pR

pA DNA BS act gR ABS

cs pA gR

pA DNA BS act gR ABS

cs pA gR

pA DNA BS act gR ABS

cs pA gR

pA DNA BS act gR ABS

cs pA gR

x pR

4

4‘1

cs pR

y pR

4

4‘1

cs pR
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13‘all()
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Movement Adaptor ProteinMovement Receptor Protein
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Movement Receptor Protein + Ligand Movement Receptor Protein + Adaptor Protein Movement Adaptor Protein + Receptor Gene
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Figure 3.22: Spatial model of the
running example (Part II), see also
Figure 3.21 (Part I). (G) movement
of components as single entities,
compare Figure 3.18; (H) movement
of single interaction site complexes,
compare Figure 3.19; (J) movement
of multi interaction site complexes,
compare Figure 3.20 Note: logical
nodes have been used for a decluttered
representation; colour set of a place
is given maroon letters; marking of
a place is given in red letters; arc-
expressions are given in blue letters
(only non-trivial arc-expression are
shown for clearness). See also text for
an explanation of arc-expression of
type (x, all()).
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All subnets defined in Figure 3.21 and 3.22 are connected via the
use of logical nodes and thus, have to be interpreted as one single
coherent coloured Petri net model.

Coordinate places must also be connected to all transitions rep-
resenting the synthesis or degradation of a component, see Fig-
ure 3.21(F). The coordinate places of the receptor mRNA x_mR, y_mR
are post-places of the transition gR_mR_t1 (synthesis) connected by
standards arcs, and are pre-places of the transition mR_t1 (degra-
dation) connected by a reset arcs. In case of the receptor protein,
the coordinate places x_pR, y_pR are post-places of the transition
mR_pR_t1 (synthesis) connected by standards arcs, and are pre-places
of the transition dR_t1 (degradation) connected by a reset arcs.

Additional arc-expressions have to be introduced in Figure 3.18 -
3.18 for the inhibitory arcs connecting transitions representing the
movement of a component or complex and places representing inter-
action states that block the corresponding movement, compare Fig-
ure 3.22. For example, each transition describing the movement of the
receptor protein as a single entity (txL_pR, txU_pR, tyL_pR, tyU_pR)
is blocked by the interaction states pR_LBD__L, pA_SH2__pR_Yp.
Due to the instantiation using coloured Petri nets, we assumed that
the receptor protein, ligand, adaptor protein can exits in multiple
copies. Thus, the instances 1, . . ., 10 of the receptor protein can in-
teract with instance 1, 2, . . ., 10 of the ligand and/or with instance
1, 2, . . ., 10 of the adaptor protein. An instance of the receptor pro-
tein is only allowed to move as a single entity if it does not interact
with any instance of the ligand or adaptor protein. Therefore, the
arc-expression (pR, all()) (order of terms must be set according to
order of simple colour sets in the corresponding compound set, here
cs_pR_L := cs_pR× cs_L) is applied to the inhibitory arcs connect-
ing the place pR_LBD__L with transitions txL_pR, txU_pR, tyL_pR,
tyU_pR. The arc-expression (pR, all()) is a short notation for the mul-
tiset (pR, 1) + +(pR, 2) + + . . . ++(pR, 10), where the first record in
each tuple defines the instance of the receptor protein and the second
record defines the instance of the ligand. Thus, the inhibitory arc now
blocks the movement of an instance of the receptor protein given by
pR as a single entity if it is in complex with any instance of the ligand.
The arc-expression (all(), pR) (order of terms must be set according to
order of simple colour sets in the corresponding compound set, here
cs_pA_pR := cs_pA× cs_pR) is applied to the inhibitory arcs con-
necting the place pA_SH2__pR_Yp with transitions txL_pR, txU_pR,
tyL_pR, tyU_pR. The arc-expression (all(), pR) is a short notation for
the multiset (1, pR) + +(2, pR) + + . . . ++(10, pR), where the first
record in each tuple defines the instance of the adaptor protein and
the second record defines the instance of the receptor protein. Thus,
the inhibitory arc now blocks the movement of an instance of the
receptor protein given by pR as a single entity if it is in complex with
any instance of the adaptor protein. All similar arc-expression in
Figure 3.22 have to be interpreted accordingly.
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Definition of Compartments

The spatial transformation algorithm generates an unwrought spa-
tial configuration of the modularly composed model. It might be
necessary to adapt or modify the generated spatial model according
to the spatial properties of the considered molecular network. Modifi-
cation might include the variation of the size or form of the grid to
represent different cell sizes and shapes. The compartmentalisation
of the grid allows adapting cellular compartments, membranes, pools,
and any other intracellular structure.

Therefore, a number of compartments Ω = Ω1, . . . , Ωn and their
position on the grid has to be defined. For each compartment Ωi

a boundary has to be given, e.g. in the case of a rectangular the x-
intercept is defined by xΩi

L and xΩi
U , and the y-intercept by yΩi

L and yΩi
U .

For each component c ∈ CG it must be specified, in which compart-
ments the component is allowed to stay Ω(c) ⊆ Ω. Each firing-rate
h(t) of a transition t describing the movement of component c has to
be multiplied by a Boolean expression ω(Ω(c)) evaluating, whether
the respective component stays within its assigned compartments or
not. Only if the Boolean expression is evaluated to true, the transition
might fire, and the movement will be executed.
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1 Figure 3.23: Definition of nested

compartments in the grid defined
for the spatial model of the running
example. The grid is divided into five
nested compartments: extracellular
space (Ω1), membrane (Ω2), intracel-
lular space (Ω3), near nucleus (Ω4),
nucleus (Ω5). The ligand can stay in
the extracellular space and access
the membrane region. The receptor
protein is only allowed to stay in the
membrane. The adaptor protein can
move in all compartments inside the
membrane. The receptor mRNA is
allowed to stay in the region near
the nucleus, and the receptor gene
stays inside the nucleus. Note: logical
nodes have been used for a decluttered
representation.

Running Example. According to the initial assumption, all com-
ponents can move over the entire grid. In the biomolecular system,
the movement of components might be restricted by the compartmen-
talization of a cell, e.g. ligands of membrane receptors stay in the
extracellular space, membrane receptors themselves are located in
the membrane, signal molecules downstream of membrane receptors
move inside the cell, and genes are part of the DNA that stays in the
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nucleus. For the running example, we assume that the grid can be
divided into five nested compartments (see also Figure 3.23): extra-
cellular space (Ω1), membrane (Ω2), intracellular space (Ω3), near the
nucleus (Ω4), and nucleus (Ω5). The x-intercept of a compartment Ωi

is defined by xΩi
L and xΩi

U , and the y-intercept by yΩi
L and yΩi

U .
The ligand is allowed to move in the extracellular space. The

receptor protein can only move within the membrane. For the adaptor
protein, we assume that it can move in the entire intracellular space
including the nucleus, and the region near the nucleus. Both, adaptor
protein and ligand are allowed to access the membrane to interact with
the receptor. We assume that the receptor mRNA stays in the region
near the nucleus, where the nucleus hosts the receptor gene. Due
to the assumed compartmentalisation, none of the multi interaction
site complexes can exist. Thus, we can neglect the subnetworks
introduced in Figure 3.22(J). The firing rates of transitions representing
the movement of components as single entities and single interaction
site complexes must be multiplied by a Boolean expression to evaluate,
whether a component stays in its assigned compartments or not. If
the Boolean expression is evaluated to f alse, the respective firing rate
is set to zero. The transition cannot fire, if the component is not
allowed to move to the new position. The new firing rates are defined
as follows:

• receptor protein:

– h′(txL_pR) = ωxL(pR, Ω2, Ω3) ∗ h(txL_pR)
– h′(txU_pR) = ωxU(pR, Ω2, Ω3) ∗ h(txU_pR)
– h′(tyL_pR) = ωyL(pR, Ω2, Ω3) ∗ h(tyL_pR)
– h′(tyU_pR) = ωyU(pR, Ω2, Ω3) ∗ h(tyU_pR)

• receptor gene:

– h′(txL_gR) = ωxL(gR, Ω5) ∗ h(txL_gR)
– h′(txU_gR) = ωxU(gR, Ω5) ∗ h(txU_gR)
– h′(tyL_gR) = ωyL(gR, Ω5) ∗ h(tyL_gR)
– h′(tyU_gR) = ωyU(gR, Ω5) ∗ h(tyU_gR)

• receptor mRNA:

– h′(txL_mR) = ωxL(mR, Ω4, Ω5) ∗ h(txL_mR)
– h′(txU_mR) = ωxU(mR, Ω4, Ω5) ∗ h(txU_mR)
– h′(tyL_mR) = ωyL(mR, Ω4, Ω5) ∗ h(tyL_mR)
– h′(tyU_mR) = ωyU(mR, Ω4, Ω5) ∗ h(tyU_mR)

• adaptor protein:

– h′(txL_pA) = ωxL(pA, Ω2) ∗ h(txL_pA)

– h′(txU_pA) = ωxU(pA, Ω2) ∗ h(txU_pA)

– h′(tyL_pA) = ωyL(pA, Ω2) ∗ h(tyL_pA)

– h′(tyU_pA) = ωyU(pA, Ω2) ∗ h(tyU_pA)

• ligand:

– h′(txL_L) = ωxL(L, Ω1, Ω3) ∗ h(txL_L)
– h′(txU_L) = ωxU(L, Ω1, Ω3) ∗ h(txU_L)
– h′(tyL_L) = ωyL(L, Ω1, Ω3) ∗ h(tyL_L)
– h′(tyU_L) = ωyU(L, Ω1, Ω3) ∗ h(tyU_L)

• receptor protein and ligand complex:

– h′(txL_pR_L) = ωxL(pR, Ω2, Ω3) ∗ωxL(L, Ω1, Ω3) ∗ h(txL_pR_L)
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– h′(txU_pR_L) = ωxU(pR, Ω2, Ω3) ∗ωxU(L, Ω1, Ω3) ∗ h(txU_pR_L)
– h′(tyL_pR_L) = ωyL(pR, Ω2, Ω3) ∗ωyL(L, Ω1, Ω3) ∗ h(tyL_pR_L)
– h′(tyU_pR_L) = ωyU(pR, Ω2, Ω3) ∗ωyU(L, Ω1, Ω3) ∗ h(tyU_pR_L)

• receptor protein and adaptor protein complex:

– h′(txL_pR_pA) = ωxL(pR, Ω2, Ω3) ∗ωxL(pA, Ω2) ∗ h(txL_pR_pA)

– h′(txU_pR_pA) = ωxU(pR, Ω2, Ω3) ∗ωxU(pA, Ω2) ∗ h(txU_pR_pA)

– h′(tyL_pR_pA) = ωyL(pR, Ω2, Ω3) ∗ωyL(pA, Ω2) ∗ h(tyL_pR_pA)

– h′(tyU_pR_pA) = ωyU(pR, Ω2, Ω3) ∗ωyU(pA, Ω2) ∗ h(tyU_pR_pA)

• adaptor protein and receptor gene complex:

– h′(txL_pA_gR) = ωxL(pA, Ω2) ∗ωxL(gR, Ω5) ∗ h(txL_pA_gR)
– h′(txU_pA_gR) = ωxU(pA, Ω2) ∗ωxU(gR, Ω5) ∗ h(txU_pA_gR)
– h′(tyL_pA_gR) = ωyL(pA, Ω2) ∗ωyL(gR, Ω5) ∗ h(tyL_pA_gR)
– h′(tyU_pA_gR) = ωyU(pA, Ω2) ∗ωyU(gR, Ω5) ∗ h(tyU_pA_gR)

The Boolean functions ωxL(c, a, b), ωxU(c, a, b), ωyL(c, a, b), and
ωyU(c, a, b), where c ∈ CG defines the component, a ∈ Ω the outer
boundary compartment, and b ∈ Ω the inner boundary compartment,
are evaluated to 1 (true) or 0 (false) and are defined as follows:

ωxL(c, a, b) =


(((y_{c} >= ya

L & y_{c} <= ya
U) & !(y_{c} >= yb

L & y_{c} <= yb
U)) & (x_{c} > xa

L & x_{c} <= xa
U)) |

((y_{c} >= yb
L & y_{c} <= yb

U) & ((x_{c} > xa
L & x_{c} <= xa

U − 1) & !(x_{c} >= xb
L & x_{c} <= xb

U + 1)))
if b 6= ∅

(y_{c} >= ya
L & y_{c} <= ya

U) & (x_{c} > xa
L & x_{c} <= xa

U) if b = ∅

ωxU(c, a, b) =


(((y_{c} >= ya

L & y_{c} <= ya
U) & !(y_{c} >= yb

L & y_{c} <= yb
U)) & (x_{c} >= xa

L & x_{c} < xa
U)) |

((y_{c} >= yb
L & y_{c} <= yb

U) & ((x_{c} >= xa
L & x_{c} < xa

U − 1) & !(x_{c} >= xb
L − 1 & x_{c} <= xb

L)))
if b 6= ∅

(y_{c} >= ya
L & y_{c} <= ya

U) & (x_{c} >= xa
L & x_{c} < xa

U) if b = ∅

ωyL(c, a, b) =


(((x_{c} >= xa

L & x_{c} <= xa
U) & !(x_{c} >= xb

L & x_{c} <= xb
U)) & (y_{c} > ya

L & y_{c} <= ya
U)) |

((x_{c} >= xb
L & x_{c} <= xb

U) & ((y_{c} > ya
L & y_{c} <= ya

U − 1) & !(y_{c} >= yb
L & y_{c} <= yb

U + 1)))
if b 6= ∅

(x_{c} >= xa
L & x_{c} <= xa

U) & (y_{c} > ya
L & y_{c} <= ya

U) if b = ∅

ωyU(c, a, b) =


(((x_{c} >= xa

L & x_{c} <= xa
U) & !(x_{c} >= xb

L & x_{c} <= xb
U)) & (y_{c} >= ya

L & y_{c} < ya
U)) |

((x_{c} >= xb
L & x_{c} <= xb

U) & ((y_{c} >= ya
L & y_{c} < ya

U − 1) & !(y_{c} >= yb
L − 1 & y_{c} <= yb

U)))
if b 6= ∅

(x_{c} >= xa
L & x_{c} <= xa

U) & (y_{c} >= ya
L & y_{c} < ya

U) if b = ∅
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This section requires:

• Petri nets [82], Section 2.1

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

3.4 BMK - Module Construction

The application of direct engineering and reverse engineering ap-
proaches allows generating modules. In general, direct engineering
is the most common way to construct models. In Section 3.4.1, we
shortly discuss how to construct modules by applying direct engi-
neering approach. Reverse engineering approaches allow generating
models from experimental data sets. In Section 3.4.2, we show how to
integrate such data into modules. The reverse engineering approach
is often inevitable, especially in the case of genome-wide (omics)
data analysis, where molecular details on regulatory mechanisms are
simply not known. In this context, the generation of gene modules by
transforming Boolean models into Petri net modules is particularly
powerful, see Section 3.4.3 for details. But also SBML models are
a valuable source for the generation of gene, mRNA, protein, and
protein degradation modules by algorithmically decomposing them
into modules, see Section 3.4.4.

3.4.1 Direct Engineering Approach

The most convenient way to construct modules of any type is the
application of a direct engineering approach. Therefore, collected
knowledge about a component, its molecular mechanisms, and kinet-
ics are translated in modules of appropriate type. The information
used to construct modules can be taken from, e.g. literature, relevant
biomolecular databases as given in Table 3.8, or experimental data. In
this case, experimental data might include data on:

• molecular structures of components and their conformational
changes due to regulatory mechanisms;

• interactions with other components;
• molecular mechanisms;
• gene, mRNA and protein expression;
• kinetics;
• . . .

Certainly, hypotheses on molecular mechanisms or kinetics can be
integrated into a module as well and marked as such in the BMKml

module annotation. In Chapter 5, we provide more case studies for
directly engineered modules.

3.4.2 Reverse Engineering Approach

Reverse engineered modules allow the fully automated generation of
models from complex experimental data sets for the application in
genome-wide (omics) approaches. This allows to employ and account
for genotype/phenotype relationships for modelling and simulation.
For example, reverse engineered modules of gene expression data
can directly be linked to bottom-up models of protein-protein interac-
tions. Here, we introduce approaches to integrate reverse engineered
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#G - HGNC symbol of gene

#TF1/2/3 - HGNC symbol of transcription factor

g - gene

m -mRNA

p - protein

Figure 3.24: Gene prototype modules
for eukaryotes. The prototype
module of a gene shown here
defines the regulation of the gene
activity by transcription factors.
First, the transcription factor
p<#TF1> binds to the gene promoter
g<#G>_Promoter forming the com-
plex g<#G>_Promoter__p<#TF1>.
Next, the transcription factor
p<#TF2> binds to the previ-
ous complex forming the complex
g<#G>_Promoter__p<#TF1>__p<#TF2>.
The transcription factor p<#TF3>
binds to the enhancer element
of the gene g<#G>_Enhancer
forming the complex
g<#G>_Enhancer__p<#TF3>.
The two complexes form
the transcription complex
g<#G>_Enhancer__g<#G>_Promoter
__p<#TF1>__p<#TF2>__p<#TF3>
(all of the bindings are reversible). Th
transcription complex triggers the gene
to switch from its transcriptionally
inactive state g<#G>_inact to
the transcriptionally active state
g<#G>_act, and inhibits the
deactivation of the gene. There are also
two molecular events representing the
basal activation and inactivation of
the gene. Note: Logical nodes indicate
interface networks used to connect
the gene module with corresponding
protein and mRNA modules. (adapted
from [116])

experimental data by (1) using prototype modules to model genes
and mRNAs and (2) generating allelic and causal influence modules.

Reverse Engineering using Gene/mRNA Prototype Modules

Because of their standardised, generally applicable format, gene
and mRNA prototype modules permit the fully automated generation
of modules, e.g. from a list of gene names [116]. Figure 3.24 and 3.25

show examples for gene and mRNA prototype modules valid for
eukaryotes. In the standard cases, it might be sufficient to match
gene names to the pre-defined prototype modules. Otherwise, if
prototype modules need to be customized to represent individual
regualory mechanisms, a list with all relevant information needs to be
algorithmically processed. Such a list might contain information on
e.g. transcription factors, splice factors or other regulatory proteins
etc., next to the list of gene and mRNA names. According to the
provided information places and transitions need to be added to
describe additional components and molecular events involved in the
regulatory processes of the gene or mRNA.

Such approaches allow the automatic construction of models repre-
senting hundreds or even thousands of genes, their mRNAs and the
mere presence of the proteins they form. Through the possibility to
import e.g. transcriptomic or proteomic data sets obtained in high-
throughput experiments [115], regulatory mechanisms can be reverse
engineered based on the modular modelling concept. A modularly
composed model obtained this way may predict changes in the pro-
teome in response to differential gene regulation. Such models might
also be useful to support the interpretation of phenomena observed
in systematic RNAi screens, where individual genes are knocked
down [64, 96, 98].

Reverse Engineering using Allelic/Causal Influence Modules

Allelic influence modules differ from gene modules in representing
the regulatory effects exerted by an allele on cellular processes by
controlling the firing activities of respective transitions through read
or inhibitory arcs in the Petri net graph. Regarding molecular mech-
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Figure 3.25: mRNA prototype modules
for eukaryotes. The mRNA proto-

type module defines the synthesis of
the mRNA (primary transcript) if its

gene is transcriptionally active. De-
pendent on splice factors, the primary

transcript is processed into mature
transcripts. Transcripts may also in-

teract with other regulatory proteins.
Here, the transcriptionally active state
of a gene g<#G>_act triggers the syn-

thesis of an mRNA m<#G>. Splice
factor p<#SF1> triggers the process-

ing of the mRNA m<#G> into the
product m<#G>_seq1, which can ei-

ther be degraded or start the synthesis
of protein p<#G>_seq1. Splice factor

p<#SF2> triggers the processing of
the mRNA m<#G> into the product

m<#G>_seq2, which can either be
degraded, start the synthesis of pro-
tein p<#G>_seq2, or interact with a
regulatory protein p<#RP> to form
a complex m<#G>_seq2__p<#RP>

(reversible). In this state, the processed
mRNA cannot be translated. Note:

Logical nodes indicate interface net-
works used to connect the mRNA mod-

ule with corresponding protein and
gene modules. (adapted from [116])

m<#G>

m<#G>_seq1

m<#G>_seq2

m<#G>_seq2

__p<#RP>

p<#RP>

p<#SF1>

p<#SF2>

p<#G>_seq1

p<#G>_seq2

#G - HGNC symbol of gene

#RP - HGNC symbol of regulatory protein

#SF1/2 - HGNC symbol of splice factor

g - gene

m -mRNA

p - protein

This section requires:

• Petri nets [82], Section 2.1

• Boolean networks [8, 23], see

text

• Module definition, Section 3.1.1

• Petri net representation of mod-

ules, Section 3.1.3

• Modular model composition, Sec-

tion 3.3.1

anisms, regulatory influences might be rather indirect by involving
numerous other, potentially unknown components. Accordingly, the
allelic influence module may represent the control of molecular events
like the biosynthesis of RNA by transcription or even more complex
processes of potentially unknown molecular mechanism as inferred
from functional studies. Figure 3.26 shows, how a mutated allele of a
gene might affect the regulation of other genes. In this context, causal
influence modules might represent all other kinds of factors like envi-
ronmental conditions or individual correlations among components,
that have a known impact on certain molecular events without being
mechanistically defined.

Figure 3.26: Allelic influence mod-
ules. The allelic influence module
indicates the effect of the mutated

allele of gene g<#G1_#Mut> on the
(de-)activation of other genes (red

transitions with inhibitory arcs - in-
hibition; green transitions with read

arcs - activation). The regulatory effect
also affects the expression of the gene-
specific mRNAs. (adapted from [116])

t<#G1‘>_inact

t<#G1‘>_inact

3.4.3 Transformation of Boolean Gene Regulatory Network Models
into Modules and a Modular Network

In systems biology, Boolean models are widely used to describe
gene regulatory networks qualitatively to understand the diverse
functionalities of a given network under different conditions [83]. It
has already been shown, that Petri nets offer another complementary
framework to express gene regulatory networks by systematically
rewriting the logical expressions of the Boolean model into a Petri net
model [46]. The rigorous transformation preserves the representation
of dynamical roles of specific feedback structures in a gene regulatory
network and facilitates the application of algebraic tools in the Petri
net framework to study fundamental dynamical properties [74, 76].

The modular Petri net transformation of gene regulatory networks
is based on the formal concepts described in [74, 76], who apply the
Quine-McClusky algorithm and logic minimization in their trans-
formation. To be consistent with the modular idea of the BMKfr,
we represent the regulation of each gene involved in a specific gene
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regulatory network as a Boolean gene module, which can be inter-
preted as a special type of gene module as defined in Section 3.1.2.
Using the concept of the modular model composition described in
Section 3.3, the set of generated Boolean gene modules reconstitutes
the gene regulatory network that served as input. Also, due to the
principle of modular compositionality, the generated Boolean gene
modules can also be reused and recombined in any other combination
of modules with matching interface networks. Thus, the modular
Petri net transformation of gene regulatory networks increases the
universal applicability of the BMKfr, but also facilitates the reuse of
gene regulatory networks and their integration with other network
types.

Algorithms for the automatic transformation of Boolean-type gene
regulatory networks into modularly composed Petri net models
have been elaborated and implemented in the master thesis of Lisa
Jehrke [134], which was supervised as part of this thesis. An addi-
tional important part of her master thesis was the implementation of
algorithms for the mutation of gene regulatory networks as originally
performed by Krumsiek et al. [113] for the Petri net formalism. As
has already been discussed in Section 3.3.3, the model mutation al-
gorithms allow the systematic and exhaustive generation of in silico
mutation experiments to investigate the effect of perturbations on
the behaviour of components, which often interact in a complicated
and non-obvious manner. These analyses are especially valuable to
predict phenotypes expected to be obtained in mutational screens
performed in the wet-lab.

Before specifying the details of the transformation of gene regula-
tory networks into modularly composed Petri net model and the mu-
tation algorithms, we will briefly recapitalize the formal description of
gene regulatory networks as well as the Quine-McClusky algorithm.
For demonstration purposes, we refer to the case study of hierarchical
differentiation of myeloid progenitors from Krumsiek et al. [113],
which has been adopted in the master thesis of Lisa Jehrke [134].
The Boolean model of the hierarchical differentiation of myeloid pro-
genitors from Krumsiek et al. [113] describes the differentiation of a
hematopoietic stem cell (HSC) to a common myeloid progenitor cell
(CMP), which proliferates into megakaryocyte-erythrocyte (MegE)
progenitors and granulocyte-monocyte (GM) progenitors, which fur-
ther give rise to megakaryocytes, erythrocytes, granulocytes, mono-
cytes and others. The modules obtained from the modular Petri net
transformation of a model describing the hierarchical differentiation
of myeloid progenitors from Krumsiek et al. [113] is given in the
running example at the end of this section, see also Figure 3.31 for
the resulting state space of the modularly composed model.
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Figure 3.27: Boolean model. (A) Sim-
ple example of a Boolean model
B(C, F) with three components c1,

c2, c3 represented as network graph
and set of equations. In the network

graph, components with a positive
regulatory effect (activation) are indi-

cated by −→ and components with
a negative regulatory effect (inhibi-

tion) are indicated by a. The dashed
arch connecting two arcs represent

the Boolean conjunction operator
AND. (B) The truth table shows the
dynamic evolution of the model for
each possible initial state (23 = 8).

(A) Boolean model B(C, F)

c
1

c
2

c
3

AND

AND

c1 = c2

c2 = c1 · c3

c3 = c1 · c3

(B) Truth Table
τ τ + 1

c1 c2 c3 c′1 c′2 c′3
0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 0

10 QMC algorithm has been devel-
oped by W.V. Quine and extended

by Edward J. McCluskey [2, 3]

Boolean Network Models of Gene Regulatory Networks

A Boolean network B(C, F) [8, 23] is defined as a set of n binary-
valued nodes (components, here in particular genes) C = {c1, . . . , cn},
ci ∈ {0, 1}, and a list of Boolean functions F = ( f1, . . . , fn). Each node
ci has ki parent nodes (regulators) chosen from C, and its value at
time τ + 1 is determined by its parent nodes at τ through a Boolean
function fi, ci(τ + 1) = fi(C′i(τ)), C′i ⊆ C, see also Figure 3.27. If
component ci ∈ C′i , then fi includes the auto-regulation of component
ci.

The notation c̄, c + c′ and c · c′ represent the Boolean operators
NOT, OR, and AND [81]. Semantically, the dynamic behaviour of
a Boolean model can be interpreted as either asynchronous, where
genes update their state independently; or synchronous where all
genes update their state together [33]. In our approach, we focus on
the asynchronous behaviour.

In contrast to the Petri net representation of a gene regulatory
network model, the Boolean network graph is only definite if a set of
Boolean equations is provided.

Quine-McClusky Algorithm

The Quine-McCluskey algorithm10 is a minimization method for
Boolean functions to obtain prime implicants. In general, a "covering"
(sum term or product term) of one or more minterms in a sum of
products (or max terms in a product of sums) of a Boolean function
is called an implicant. More formally, an implicant of the Boolean
function f (Boolean function with n variables) is given by a product
term I in a sum of products. The implicant I (product term) implies
f . The Boolean function f takes the value 1 (0) whenever I is 1 (0). A
prime implicant of a Boolean function f is an implicant that cannot
be covered by a more general (more reduced - meaning with fewer
literals) implicant. According to W.V. Quine a prime implicant of a
Boolean function f is defined as an implicant that is minimal - that
is, the removal of any literal from I results in a non-implicant for the
Boolean function f .

In the first step of the Quine-McCluskey algorithm, the prime
implicants of the Boolean function are determined. Afterwards, the
prime implicant chart allows identifying essential prime implicants
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of the Boolean function, as well as other prime implicants that are
necessary to cover the function, resulting into a list of final prime
implicants Pr = {Pri | i = 1, . . . n}, of the Boolean function f , where

Pri = ∏c∈C′i

c , if c = 1

c̄ , if c = 0
, C′i ⊆ C′.

Modular Petri Net Transformation of Boolean Networks

Let B(C, F) be a Boolean model of a gene regulatory network, each
component (gene) ci ∈ C and its related Boolean function ci = fi(C′i),
C′i ⊆ C and fi ∈ F yield one Boolean gene module Mg,c0,i (c0,i = ci)
with its Petri net representation N (Mg,c0,i ). To transform the Boolean
function c0,i = fi(C′i) into a Petri net, the Quine-McClusky algorithm
has to be applied to determine the final list of prime implicants
Prc0,i , which can be divided into two list of prime implicants, see also
Figure 3.28:

• activating component c0,i (positive regulation), where fi(C′i) = 1:
Prc0,i ,1 = {Prc0,i

j ∈ Prc0,i | Prc0,i
j → fi(C′i) = 1}, and

• inactivating component c0,i (negative regulation), where fi(C′i) = 0:
Prc0,i ,0 = {Prc0,i

j ∈ Prc0,i | Prc0,i
j → fC′i

= 0}

Accordingly, the Petri net graph of the Boolean gene module
N (Mg,c0,i ) = {P, T, F, f , v, m0} can be defined as follows:

• Set of places P = Pon ∪ Po f f , where

– Pon = {pc0,i
on ,

⋃
c∈C′i

pc
on}, and

– Po f f = {pc0,i
o f f ,

⋃
c∈C′i

pc
o f f }

• Set of transitions T = Ton ∪ To f f , where

– Ton =
⋃

Pr
c0,i
j ∈Prc0,i ,1

tj
on, and

– To f f =
⋃

Pr
c0,i
j ∈Prc0,i ,0

tj
o f f

• Set of arcs F = FSA ∪ FRA, where

– FSA ⊆ (P× T) ∪ (T × P)
– FRA ⊆ (P× T)

• Arc-weights f : F →N0

– ∀tj
on ∈ Ton: fSA(pc0,i

o f f , tj
on) = 1 and fSA(t

j
on, pc0,i

on ) = 1

– ∀tj
o f f ∈ To f f : fSA(pc0,i

on , tj
o f f ) = 1 and fSA(t

j
o f f , pc0,i

o f f ) = 1

– ∀tj
on/o f f ∈ T with Prc0,i

j :

* ∀c ∈ C′j:

 fRA(pc
on, tj

on/o f f ) = 1 , if c = 1

fRA(pc
o f f , tj

on/o f f ) = 1 , if c = 0
, C′i ⊆ C′

• Firing rates v: T → H, H =
⋃

t∈T h(t)

– ∀t ∈ T : h(t) = 1

• Initial marking m0: P→N0

– pc0,i
o f f ∈ P: m0(pc0,i

o f f ) = 1,
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Figure 3.28: Modular Petri net trans-
formation of a Boolean network. The

Boolean model of Figure 3.27 has been
transformed into three modules in the

form of Petri nets for components c1,
c2 and c3. Transitions with a green
outline represent prime implicants

with positive regulation, whereas
transitions with a red outline repre-

sent prime implicants with negative
regulation. Places outlined in blue

represent the main component that
is regulated in each module. Note:

Logical nodes are used for a declut-
tered representation of the modular

composed model of the Boolean gene
modules of components c1, c2 and c3.

(A) Boolean Gene Module Mg,c1

c1 = c2


Prc1,1 =

Prc1
1︷︸︸︷

c2

Prc1,0 = c2︸︷︷︸
Prc1

2

c1 on c1 o�t1 c1

t2 c1c2 on c2 o�

(B) Boolean Gene Module Mg,c2

c2 = c1 · c3


Prc2,1 =

Prc2
1︷ ︸︸ ︷

c1 · c3

Prc2,0 = c1︸︷︷︸
Prc2

2

+ c3︸︷︷︸
Prc2

3

c3 o�c3 on

c2 o�c2 on

c1 o�c1 on

t3 c2

t1 c2

t2 c2

(C) Boolean Gene Module Mg,c3

c3 = c1 · c3


Prc3,1 =

Prc3
1︷ ︸︸ ︷

c1 · c3

Prc3,0 = c1︸︷︷︸
Prc3

2

+ c3︸︷︷︸
Prc3

3

c1 on c1 o�

c3 on c3 o�

t2 c3

t3 c3

t1 c3

– ∀p ∈ P, p 6= pc0,i
o f f : m0(p) = 0

The set of Boolean gene modules G = {Mg,c0,1 , . . . , Mg,c0,n} gener-
ated from the Boolean model B(C, F) of a gene regulatory network,
can be committed to the modular model composition explained Sec-
tion 3.3.1. To experience the behaviour of the model, the initial mark-
ing of the modular composed model N (G) needs to be systematically
pertubated, under the assumption that
∀c ∈ C: mG

0 (pc
on) + mG

0 (pc
o f f ) = 1, which yields 2n different markings

according to the state space of the Boolean model [23]. Also, the
generated Boolean gene modules can also be recombined with other
modules.

Boolean Model Mutation

Krumsiek et al. [113] suggested three types of mutations of Boolean
models: factor knock-out, factor over-expression, and interaction
knock-out. We analogously implemented the suggested model muta-
tion types for the Petri net representation of Boolean models:

1. The factor knock-out is performed in the Boolean model B(C, F)
by setting the Boolean equation of a component ci ∈ C to zero,
such that fi = 0 → ci = 0. In the Petri net representation, we
have to exclude the respective Boolean gene module Mg,ci ∈ G
before the modular model composition, similar to Algorithm 3.2,
and we also need to ensure that in the composed model N (GKO),
GKO = G \Mg,ci , the initial marking of mG

0 (pc
on) = 0 and mG

0 (pc
o f f ) =

1, see Figure 3.29(A).
2. The factor over-expression is performed in the Boolean model
B(C, F) by setting the Boolean equation of a component ci ∈ C to
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(A) Factor Knock-out of c1

c1 = 0

c2 = c1 · c3

c3 = c1 · c3

(B) Factor Overexpression of c1

c1 = 1

c2 = c1 · c3

c3 = c1 · c3

(C) Interaction Knock-out of c3 and c1

c1 = c2

c2 = c1 · c3

c3 = 0 · c3

c1 on c1 o�t1 c1

t2 c1c2 on c2 o�

c3 o�c3 on

c2 o�c2 on

c1 o�c1 on

t3 c2

t1 c2

t2 c2 c1 on_mut c1 o�_mut

c3 on c3 o�

t2 c3

t3 c3

t1 c3

Figure 3.29: Boolean model mutation.
The Figure shows how to perform the
Boolean model mutation on the Petri
net level. (A) The factor knock-out
of c1 in the Boolean model requires
to delete the module of Mg,c1 (faded
module) and to set the marking of
place c1_o f f to 1 (red tokens) in the
composed model. (B) The factor
over-expression of c1 in the Boolean
model requires to delete the module
of Mg,c1 (faded module) and to set
the marking of place c1_on to 1 (red
tokens) in the composed model. (C)
The interaction knock-out of c3 and
c1 requires to rename the places of
component c1 in module of Mg,c3
(c1_on_mut,c1_o f f _mut, red labels)
and to to set the marking of place
c1_o f f _mut to 1 (red token). For each
mutation, the tokens indicated in red
are set according to the requirements
of the specific mutation scenarios as
described in text. Due to the resulting
structure of the modules, the marking
of places holding the red token is
permanently fixed to 1. Note: Logical
nodes are used for a decluttered
representation and to distinguish the
Boolean gene modules of components
c1, c2 and c3.

one, such that fi = 1 → ci = 1. In the Petri net representation,
we have to exclude the respective Boolean gene module Mg,ci ∈ G
in the modular model composition, similar to Algorithm 3.2, and
we also need to ensure that in the composed model N (GOE),
GOE = G \Mg,ci , the initial marking of mG

0 (pc
on) = 1 and mG

0 (pc
o f f ) =

0, see Figure 3.29(B).
3. interaction knock-out in a Boolean model B(C, F) between to

components ci, cj ∈ C, where cj ∈ Ci is performed by setting com-
ponent cj in the Boolean equation fi to zero. In the Petri net repre-
sentation, we have to modify the respective Boolean gene module
Mg,ci ∈ G in the modular model composition, such that place p

cj
on is

renamed to p
cj,mut
on and place p

cj
o f f is renamed to p

cj,mut
o f f . Afterwards,

the marking of the renamed places is set to mG
0 (p

cj,mut
on ) = 0 and

mG
0 (p

cj,mut
o f f ) = 1. The renaming ensures, that marking of p

cj,mut
on/o f f is

fixed, but only affects the respective interaction in module Mg,ci ,
see Figure 3.29(C).

Running Example. To demonstrate the modular Petri net transfor-
mation of gene regulatory networks, we investigated the Boolean
model of hierarchical differentiation of myeloid progenitors con-
trolled by mutual regulation of transcription factors from Krumsiek et
al. [113]. All mature blood cells (megakaryocytes, erythrocytes, granu-
locytes and monocytes) emerge through a hierarchical series of lineage
decisions via different progenitor cells from a single hematopoietic
stem cell (HSC). The common myeloid progenitor (CMP) is one of
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(A) Boolean Equation

GATA− 2 = GATA− 2 · (GATA− 1 · FOG− 1) · PU.1

GATA− 1 = (GATA− 1 + GATA− 2 + Fli− 1) · PU.1

FOG− 1 = GATA− 1

EKLF = GATA− 1 · Fli− 1

Fli− 1 = GATA− 1 · EKLF

SCL = GATA− 1 · PU.1

CEBPα = CEBPα · (GATA− 1 · FOG− 1 · SCL)

PU.1 = (CEBPα + PU.1) · GATA− 1 + GATA− 2

cJun = PU.1 · G f i− 1

ErgNab = (PU.1 · cJun) · G f i− 1

G f i− 1 = CEBPα · EgrNab

(B) Boolean Gene Modules

EKLF on

Fli1 o�Fli1 on

GATA1 onFOG1 o�

PU1 o�

GATA2 on

CEBPa o�

cJun o�

Gfi1 on Gfi1 o�

EgrNab on

SCL o�

EKLF o�

EKLF o�

EKLF on

Fli1 o�

Fli1 o�

Fli1 on

Fli1 on

GATA1 o�

GATA1 o�

GATA1 o�GATA1 o� GATA1 o�

GATA1 o�

GATA1 o�

GATA1 o�

GATA1 on

GATA1 on

GATA1 onGATA1 on GATA1 on

GATA1 on

GATA1 on

FOG1 onFOG1 on

FOG1 on

FOG1 o�FOG1 o�

PU1 on PU1 on

PU1 on

PU1 on

PU1 on

PU1 on

PU1 o� PU1 o�

PU1 o�

PU1 o�

PU1 o�

GATA2 on GATA2 onGATA2 o� GATA2 o�

GATA2 o�

SCL on

SCL on

CEBPa on CEBPa on

CEBPa on

CEBPa o� CEBPa o�

cJun on cJun oncJun o�

Gfi1 on

Gfi1 on

Gfi1 o�

Gfi1 o�

EgrNab on EgrNab o�

EgrNab o�

SCL o�

M4 t1 pos

M4 t1 neg

M4 t2 neg

M5 t2 neg

M5 t1 neg

M5 t1 pos

M3 t1 neg

M3 t1 pos

M1 t3 neg

M1 t2 neg

M1 t1 neg

M1 t2 pos

M1 t1 pos

M2 t2 neg

M2 t1 neg

M2 t3 pos

M2 t2 pos

M2 t1 pos

M6 t2 neg

M6 t1 neg

M6 t1 pos

M7 t2 neg

M7 t1 neg

M7 t3 pos

M7 t2 pos

M7 t1 pos
M8 t3 neg

M8 t2 neg

M8 t1 neg

M8 t2 pos

M8 t1 pos

M9 t2 neg

M9 t1 neg

M9 t1 pos

M10 t3 neg

M10 t2 neg

M10 t1 neg

M10 t1 pos

M11 t2 neg

M11 t1 neg

M11 t1 pos

(1) GATA-2 (2) GATA-1 (3) FOG-1 (4) EKLF

(5) Fli-1 (6) SCL (7) CEBPα

(9) cJun (10) EgrNab (11) G�1

(8) PU.1

Figure 3.30: (A) Boolean model for
hierarchical differentiation of myeloid
progenitors, describing the interaction
and behaviour of 11 genes. (B) Boolean

gene modules of the Boolean model
shown in (A). For each gene defined

by its corresponding Boolean equation
one Boolean gene module has been
generated. Transitions with a green
outline represent prime implicants

with positive regulation, whereas tran-
sitions with a red outline represent

prime implicants with negative regula-
tion. Places outlined in blue represent
the main component that is regulated
in each module. (adapted from [134])

the intermediate cellular states in the differentiation process that
proliferates into megakaryocyte-erythrocyte (MegE) progenitors and
granulocyte-monocyte (GM) progenitors, which further give rise to
megakaryocytes, erythrocytes, granulocytes, monocytes and others.

Experimental setups unravelled several important transcription
factors that control the differentiation process of myeloid progenitors,
see [69] for a review. The model of the hierarchical differentiation
of myeloid progenitors has been initially generated by investigating
potential regulatory interactions proposed by the Bibliosphere [56]
text-mining tool, see [113] for detailed instructions and references
used to construct the model. The Boolean equations in Figure 3.30(A)
define the model of the hierarchical differentiation of myeloid pro-
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Figure 3.31: State space representing
the hierarchical differentiation of
myeloid progenitors. As described
in [113], we observed a hierarchical
partitioning with subsequent splits
between the granulocyte-monocyte
(GMP) and megakaryocyte-erythrocyte
(MEP) lineages from the hematopoietic
stem cells (HSP) over the common
myeloid progenitor lineages (CMP),
followed by splits of the granulocyte
and monocyte lineages, and the
erythrocyte and megakaryocyte
lineages, respectively. Arrows in
the diagram represent expression
changes on the respective branch of
the differentiation tree. Components
highlighted in green have to be active,
where components highlighted in
red have to be inactive. (adapted
from [134])

This section requires:

• Petri nets [82], Section 2.1

• XML [22]

• SBML[40], see text

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

• Modular model composition, Sec-

tion 3.3.1

genitors [113].
Each Boolean function represents the regulation of one particular

component and defines a Boolean gene module, see Figure 3.30(B).
By composing the modules shown in Figure 3.30(B) to the modular
model composition as described in Section 3.3.1, we obtained the
composed modular Petri net representation of the Boolean model for
the regulation of myeloid progenitor differentiation as shown above.

With eleven different genes that regulate each other, the state
space for each possible initial marking (211 = 2048) of the composed
modular Petri net model has been computed with Marcie [129]. For
analysis purposes, we focused on the early, unstable undifferentiated
state, where only GATA-2, C/EBPa, and PU.1 are active (see [66, 85]
for experimental evidence) as Krumsiek et al. [113]. We were able
to reproduce the state space of the Boolean network as described
by Krumsiek et al. [113] with its five non-trivial attractors, of which
four attractors are thought to represent the cell lineages of granulocyte,
monocyte, erythrocyte and megakaryocyte, see Figure 3.31. The fifth
attractor is not of relevance in this work; it cannot be reached from
the assumed early state as described above.

By applying the model mutation for factor knock-out, factor over-
expression and interaction knock-out on a Petri net level, we could
also confirm the results reported by Krumsiek et al. [113]; details are
documented in [134].

3.4.4 Modular Transformation of SBML Models

In systems biology, many models are described as a system of or-
dinary differential equations (ODEs) and are encoded in systems
biology mark-up language (SBML) [40], which is a common standard
format to store models of biological systems [48]. Thus, there already
exists a large number of SBML models. A majority of them are stored
in model repositories like KEGG [27], BioModels Database [101], and
cellML [37] to name only a few. In the context of our BMKfr, SBML
models are a valuable source for the generation of modules. But be-
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fore integrating an SBML model into the BMKfr, the model needs to
be transformed into modules according to definitions in Section 3.1.1.
Since SBML models might describe and integrate different biologi-
cal network types, the transformation might generate gene, mRNA,
protein and protein degradation modules. Modules that have been
generated from an SBML model can be integrated into the BMKfr,
and can thus also be recombined with other modules. The modular
Petri net transformation of SBML models increases the universal ap-
plicability of the BMKfr, but also facilitates the reuse of SBML models
and their integration into new modularly composed models.

Algorithms for the automatic transformation of SBML models into
Petri net modules have been elaborated and implemented in the
master thesis of Maxi Soldmann [136], which was supervised as part
of this thesis.

Before, specifying the details of the transformation of SBML models
into sets of Petri net modules, we will briefly recapitalize the structure
of SBML to explain subsequently the steps of the SBML preprocessing
and the decomposition into modules.

SBML
SBML is an XML [22] based data exchange format, which allows to
store and exchange models of molecular networks of any desired
complexity. Each element (components, reactions, compartments,
functions, units, etc.) part of the modelled molecular network is
delineated by a specific data object, that keeps track of all relevant
information about the element. The sbml root element contains the
child element model, which itself might include one or more of the
lists specified by the element ListOf[Object]. Objects defined in
SBML are:

• Functions,
• Units,
• CompartmentTypes,
• SpeciesTypes,
• Compartments,
• Species,

• Parameters,
• InitialAssignments,
• Constraints,
• Rules,
• Reactions, and
• Events.

All elements included in the SBML body can be attached with
child-elements metadata, note and annotation. In particular the
annotation element allows to embed distinct XML specifications,
that are not compliant with the SBML format but with other external
standards. A detailed documentation of the XML scheme of SBML 3.1.,
the latest SBML version, can be found in Hucka et al. [142].

Modular Petri Net Transformation of SBML Models

In our interpretation molecular states in the SBML model are rep-
resented by the SBML species elements. Since, the modularisation
approach of the BMKfr is based on components, each SBML species

element must be assigned to a set of components in order to transform
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an SBML model into modules. Thus, we defined XML elements of
the BMK namespace and appended them to annotation element in
the SBML model and species elements.

In the annotation element of the SBML model element, we intro-
duce the compList element, which holds a number of component

child-elements, according to the number of components defined in
the SBML listOfSpecies element. The component element has five
attributes, see also Figure 3.32(A):

• type specifies the component type: gene, mRNA, protein, non-
genetic component or pseudo component (if its neither a genetic,
nor a non-genetic component, e.g. pH-value, temperature, arti-
ficial components, components without detailed reference, etc.;
required).

• name specifies the name of the component (required):

– genetic-components - HGNC symbol [140]
– non-genetic components - offical PubChem synonym [75]
– pseudo componets - an abbreviation uniquely describing the

component in the context of the current SBML model

• dbName specifies the reference database (required):

– genetic-components - Ensembl [78]
– non-genetic components - PubChem [75]
– pseudo components - Pseudo

• id specifies a unique id according to the related database and type
of component (required):

– genetic-components - Ensembl id (ENSG. . . -genes, ENST. . . -
mRNAs, ENSPG. . . - proteins ) [78]

– non-genetic components - PubChem id (CID) [75]
– pseudo components - Pseudo id (unique numeric value in the

context of current SBML model)

• iid specifies the internal identifier (unique numeric value in the
context of current SBML model)

In the annotation element of each SBML species element, we
introduce the compListOfSpecies element, which holds a number of
compOfSpecies child-elements, according to the number of compo-
nents defined by the species element. The compOfSpecies element
has a single attribute, see also Figure 3.32(B):

• iid specifies the internal identifier, which refers to the component
defined in the compList element.

Each component child-element in the compList element yields
one module M. To construct the Petri net graph N (M), the modified
SBML model code needs to be decomposed, see also Algorithm 3.4.4.
First, all reaction child-element in the listOfReactions element
have to be determined, that involve any species representing a molec-
ular state of the respective component defined by the current compo-
nent element. Each of the determined reactions is translated into a
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(A) XSD of compList element

1 <xs:schema xmlns:xs=" h t t p : //www. w3 . org /2001/XMLSchema" at t r ibuteFormDefaul t=" unqual i f i ed " elementFormDefault=" q u a l i f i e d " targetNamespace=" h t t p : //www.
biomodelkit . de ">

2 <xs:element xmlns:BMK=" h t t p : //www. biomodelkit . de " name=" compList " type=" BMK:compListType "/>
3 <xs:complexType name=" compListType ">
4 <xs:sequence>
5 <xs:element xmlns:BMK=" h t t p : //www. biomodelkit . de " type=" BMK:componentType " name=" component " maxOccurs=" unbounded "/>
6 </xs:sequence>
7 </xs:complexType>
8 <xs:complexType name=" componentType ">
9 <xs:simpleContent>

10 <xs :ex tens ion base=" x s : s t r i n g ">
11 < x s : a t t r i b u t e name="name" use=" required "/>
12 < x s : a t t r i b u t e name=" type " use=" required ">
13 <xs:simpleType>
14 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
15 <xs:enumeration value=" gene "></xs:enumeration>
16 <xs:enumeration value="mRNA"></xs:enumeration>
17 <xs:enumeration value=" prote in "></xs:enumeration>
18 <xs:enumeration value=" non−g e n e t i c component "></xs:enumeration>
19 <xs:enumeration value=" pseudo component "></xs:enumeration>
20 </ x s : r e s t r i c t i o n >
21 </xs:simpleType>
22 </ x s : a t t r i b u t e >
23 < x s : a t t r i b u t e name="dbName" use=" required ">
24 <xs:simpleType>
25 < x s : r e s t r i c t i o n base=" x s : s t r i n g ">
26 <xs:enumeration value=" Ensembl "></xs:enumeration>
27 <xs:enumeration value="PubChem"></xs:enumeration>
28 <xs:enumeration value=" Pseudo "></xs:enumeration>
29 </ x s : r e s t r i c t i o n >
30 </xs:simpleType>
31 </ x s : a t t r i b u t e >
32 < x s : a t t r i b u t e name=" id " use=" required "/>
33 < x s : a t t r i b u t e name=" i i d " use=" required "/>
34 </xs :ex tens ion>
35 </xs:simpleContent>
36 </xs:complexType>
37 </xs:schema>

(B) XSD of compListofSpecies element

1 <xs:schema xmlns:xs=" h t t p : //www. w3 . org /2001/XMLSchema" at t r ibuteFormDefaul t=" unqual i f i ed " elementFormDefault=" q u a l i f i e d " targetNamespace=" h t t p : //www.
biomodelkit . de ">

2 <xs:element xmlns:BMK=" h t t p : //www. biomodelkit . de " name=" compListofSpecies " type=" BMK:compListofSpeciesType "/>
3 <xs:complexType name=" compListofSpeciesType ">
4 <xs:sequence>
5 <xs:element xmlns:BMK=" h t t p : //www. biomodelkit . de " type=" BMK:compOfSpeciesType " name=" compOfSpecies " maxOccurs=" unbounded "/>
6 </xs:sequence>
7 </xs:complexType>
8 <xs:complexType name=" compOfSpeciesType ">
9 <xs:simpleContent>

10 <xs :ex tens ion base=" x s : s t r i n g ">
11 < x s : a t t r i b u t e name=" i i d " use=" required "/>
12 </xs :ex tens ion>
13 </xs:simpleContent>
14 </xs:complexType>
15 </xs:schema>

Figure 3.32: XSD of additional SBML
elements for the modular Petri net
transformation. (A) compList and

(B) compListofSpecies element
transition. Afterwards, for each affected reaction, all of the involved
species acting as product, educt or modifier have to be detected. Each
of the identified species is translated into a place. The initial marking
of a place representing a particular species is set to the value of the
attribute initialAmount of the respective species element. A place p
representing a species element that is defined as product (educt) of
a particular reaction element given by a transition t are connected
by a standard arc fSA(t, p) ( fSA(p, t)). If the place p representing a
species element is defined as modifier of a particular reaction ele-
ment given by transition t, both are connected by a read arc fRA(p, t).
The arc-weight is set to the value of the attribute stoichiometry of
the reaction element. The firing rate of a transition t representing a
reaction element is set according to its child-element kineticLaw.
If the value of the attribute reversible of the respective reaction

element represented by a transition t is set to true, a transition trev

has to be added with reverse educt-product relation. The firing rate
of transition trev (backward reaction) has to be ascertained according
to transition t representing the forward reaction. In addition, the
specifications made for each module type in Section 3.1.1 and 3.1.3
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have to be considered. After the SBML model transformation, each
generated module needs to be checked if it is consistent with the
structural properties defined for the respective module types, see
Section 3.1.3. The validation can be either performed by the user by
validating the modules with an analysis tool, e.g. Charlie [141] or
Marcie [129], or by the administrator of the BMKdb after submitting
the modules. In a similar way, the transformation algorithm generates
modules for non-genetic components, called pseudo-modules.

Figure 3.33: KEGG map for inflam-
matory mediator regulation of TRP
channels (map04750). The PKCε
pathway (depicted in red) is used a
running example for the modular Petri
net transformation of SBML models.

Running Example. To demonstrate the modular Petri net trans-
formation of SBML models, we refer to a part of the KEGG map
for inflammatory mediator regulation of TRP channels (map04750)
describing the activation of PKCε, see Figure 3.33.

Ligand-bound GPCRs, such as the serotonin receptor HTR2, can
interfere with Gq-Proteins and induce the GDP/GTP exchange of their
Gqα subunits. The GTP-loaded Gqα subunit activates PLCβ, which
breaks down PIP2 into IP3 and DAG. The second messenger IP3

interacts with IP3 receptor channels in the endoplasmatic membrane,
which in turn release Ca2+ ions. Both, DAG and Ca2+ ions bind and
activate PKCε.

Before transforming the SBML model of the running example into
modules, the SBML model code needs to be equipped with the com-
pList element and each species element with the compListOfSpecies

element. In Figure 3.35, we show the compList and compListOf-
Species element. Based on the inserted code fragments, the trans-
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Algorithm 3.11: Modular Petri net trans-
formation of SBML models. Require: Modified SBML model code

1: function findComp(sid, reaction, listOfReactants)
2: for all speciesReference in listOfReactants do
3: s′id = species of speciesReference

4: R = ∅
5: if s′id = sid then
6: rid = id of reaction

7: R = R ∪ rid
8: end if
9: end for

10: return R
11: end function

12: for all component in compList do
13: cid = idd of component

14: S = ∅
15: for all species in listOfSpecies do
16: sid = id of species

17: for all compOfSpecies in compListOfSpecies do
18: c′id = idd of compOfSpecies

19: if c′id = cid then
20: for all reaction in listOfReactions do
21: RProduct = findComp(sid, reaction, listOfProducts)
22: REduct = findComp(sid, reaction, listOfEducts)
23: RModi f ier = findComp(sid, reaction, listOfModifiers)
24: R = RProduct ∪ REduct ∪ RModi f ier
25: end for
26: end if
27: end for
28: if R 6= ∅ then
29: S = S ∪ sid
30: end if
31: end for

32: Define N (Mcomponent) = {P, T, F, f , v, m0} with T = ∅ and P = ∅

33: for all rid ∈ R do
34: T = T ∪ trid
35: h(trid ) = kineticLaw of reaction with id = rid
36: rev = reversible of reaction with id = rid
37: if rev then
38: T = T ∪ trid ,rev
39: h(trid ,rev) = reversed kineticLaw of reaction with id = rid
40: end if
41: for all speciesReference in listOfProducts do
42: sid = species of speciesReference

43: P = P ∪ psid
44: fSA(trid , psid ) = stoichiometry of speciesReference

45: if rev then
46: fSA(psid , trid ,rev) = stoichiometry of speciesReference

47: end if
48: end for
49: for all speciesReference in listOfEducts do
50: sid = species of speciesReference

51: P = P ∪ psid
52: fSA(psid , trid ) = stoichiometry of speciesReference

53: if rev then
54: fSA(trid ,rev, psid ) = stoichiometry of speciesReference

55: end if
56: end for
57: for all speciesReference in listOfModifiers do
58: sid = species of speciesReference

59: P = P ∪ psid
60: fRA(psid , trid ) = stoichiometry of speciesReference

61: if rev then
62: fRA(psid , trid ,rev) = stoichiometry of speciesReference

63: end if
64: end for
65: end for

66: for all sid ∈ S do
67: m0(psid ) = initialAmount of species with id = sid
68: end for
69: end for

Result: GSBML = {Mi | i = 1, . . . , n} with N (Mi) = {P, T, F, f , v, m0}

. define the Petri net
module of the current
component

. find all species and
reactions of the current
component

. find all species that are
involved in a certain re-
action
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Figure 3.34: Modular Petri net transfor-
mation of the SBML model for PKCKε.
The algorithm generated five protein
modules (A)-(E), and seven pseudo
modules for non-genetic components
(F)-(L).

formation of the SBML model generated five protein modules, see
Figure 3.34(A)-(E):

• serotonin receptor HTR2A,
• Gqα subunit (GNAQ),
• PLCβ (PLCB1),
• IP3 receptor channel (ITPR1), and
• PKCε (PRKCA)

In addition, the transformation yielded seven pseudo-modules for the
non-genetic components, see Figure 3.34(F)-(L):

• GTP,
• GDP,
• PIP2,
• IP3,
• DAG, and
• Ca2+ ions
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(A) compList Element

1 <bmk:listOfComponents xmlns:bmk="www. biomodelkit . de ">
2 <bmk:component dbName=" Ensembl " name="HTR2A"
3 id=" ENSG00000102468 " type=" prote in " idd=" idd01 "/>
4 <bmk:component dbName="PubChem" name=" 5HT"
5 id=" CID5202 " type=" non−g e n e t i c component " idd=" idd02 "/>
6 <bmk:component dbName=" Ensembl " name="GNAQ"
7 id=" ENSG00000156052 " type=" prote in " idd=" idd03 "/>
8 <bmk:component dbName=" Ensembl " name="PLCB1"
9 id=" ENSG00000182621 " type=" prote in " idd=" idd04 "/>

10 <bmk:component dbName=" Ensembl " name="PRKCA"
11 id=" ENSG00000154229 " type=" prote in " idd=" idd05 "/>
12 <bmk:component dbName=" Ensembl " name=" ITPR1 "
13 id=" ENSG00000150995 " type=" prote in " idd=" idd06 "/>
14 <bmk:component dbName="PubChem" name=" PIP2 "
15 id=" CID5497157 " type=" non−g e n e t i c component " idd=" idd07 "/>
16 <bmk:component dbName="PubChem" name=" IP3 "
17 id=" CID55310 " type=" non−g e n e t i c component " idd=" idd08 "/>
18 <bmk:component dbName="PubChem" name="DAG"
19 id=" SID3465 " type=" non−g e n e t i c component " idd=" idd09 "/>
20 <bmk:component dbName="PubChem" name="Ca"
21 id=" CID5460341 " type=" non−g e n e t i c component " idd=" idd10 "/>
22 <bmk:component dbName="PubChem" name="GDP"
23 id=" CID8977 " type=" non−g e n e t i c component " idd=" idd11 "/>
24 <bmk:component dbName="PubChem" name="GTP"
25 id=" CID6830 " type=" non−g e n e t i c component " idd=" idd12 "/>
26 </bmk:listOfComponents>

(B) compListOfSpecies Elements

1 < l i s tOfSpecies>
. . .

2 <species id=" ID_10 " name="DAG" . . . >
3 <annotation>
4 <bmk:compListofSpecies xmlns:bmk="www. biomodelkit . de ">
5 <bmk:compOfSpecies idd=" idd09 "/>
6 </bmk:compListofSpecies>
7 </annotation>
8 </species>
9 <species id=" ID_11 " name=" PRKCA_inact " . . . >

10 <annotation>
11 <bmk:compListofSpecies xmlns:bmk="www. biomodelkit . de ">
12 <bmk:compOfSpecies idd=" idd05 "/>
13 </bmk:compListofSpecies>
14 </annotation>
15 </species>
16 <species id=" ID_12 " name="PRKCA__CA__DAG" . . . >
17 <annotation>
18 <bmk:compListofSpecies xmlns:bmk="www. biomodelkit . de ">
19 <bmk:compOfSpecies idd=" idd05 "/>
20 <bmk:compOfSpecies idd=" idd09 "/>
21 <bmk:compOfSpecies idd=" idd10 "/>
22 </bmk:compListofSpecies>
23 </annotation>
24 </species>

. . .
25 </ l i s tOfSpecies>

Figure 3.35: Modifications of the
PKC SBML model. (A) attached

compList element and (B) attached
compListofSpecies elements
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BioModelKit (BMK) Web-Tool

The BMKfr offers more than a repository of model files in the form
of modules. Modules are explicitly stored in a relational MySQL
database [20]. Both, the Snoopy file [120] of the Petri net graph
including places, transitions, arcs, firing rates, and markings and
the BMKml file holding the module annotation with all its content,
see Section 3.2, is stored in the BMKdb as displayed in Figure 4.1.
Storing modules in the BMKdb allows to keep track of their versioning,
changes and updates. Through the BMKwi the user can interact with
the BMKdb, which allows the user to browse and search for modules,
as well as to display the graph of a module and the annotations.
Also, detailed information about places and transitions can be shown
separately as well. The user can automatically compose a model
from a set of ad hoc chosen modules, which are stored in user-defined
collections. Also, the user can apply the variations of the algorithmic
model mutation to the model composition, see Section 3.3.3 or the
spatial model transformation, see Section 3.3.4. The submission and
curation of modules is supported by the BMKwi as well.

Figure 4.1: BMK database. The Snoopy
file [120] of the Petri net graph of a
module including places, transitions,
arcs, parameters, firing rates, and
markings and the BMKml file holding
the module annotation with all its
content, see Section 3.2, is stored in the
BMKdb.

In section 4.1 we introduce the general web-site structure of the
BMKwi and all of its features mentioned above in more detail. The
structure of the BMKdb to store the Petri net graph and annotations of
a module, as well as the module versioning is discussed in Section 4.2.
Afterwards, in Section 4.3, we explain how the Petri net graph and
annotations of a module are mapped to the structure of the BMKdb.
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This section requires:

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

4.1 BMK - Web-Interface

In order to publicly access the modules and annotations stored in
the BMKdb (see Section 4.2), a web-interface, BMKwi, has been im-
plement, which is accessible online at www.biomodelkit.com. The
BMKwi is running on a Linux/Apache 2.2.14 web server with MySQL
client version 5.1.67, PHP 5.2.0, and Javascript 1.8.5. The URL-based
and form-based navigation allows navigating hierarchically from a
list of modules to a particular module and nodes of the underlying
Petri net graph, as well as parameters. On each level, annotations of
the particular element are displayed, see below for more details. The
user can also query for modules matching his criteria through a form.
Each website in the BMKwi is equipped with the menu bar and a
log-in/registration menu, see Figure 4.2. The model and annotation
file of a module can be downloaded separately. Furthermore the
web-interface of the BMKdb facilitates the automatic composition
of models based on a set of ad hoc chosen modules, as well as the
algorithmic model mutation and spatial extension of composed mod-
els. The web-interface also provides features to submit and curate
modules.

Figure 4.2: Home view. Each web-
site in the BMKwi is equipped
with a menu bar and a log-in-

/registration menu like the home view. The menu bar allows the URL-based navigation to access the home
view via the "home" item, the module list view via the "Browse" item
and support sites (help, terms of use, about, and contact) via the
"Support" item. The "Profile" item in the menu bar is only displayed

www.biomodelkit.com
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Figure 4.3: Navigation scheme of
the BMK web-interface. The scheme
illustrates how the different features
(grey boxes), e.g. views and other web-
pages of the BMKwi can be accessed
from the items (green box) of the
menu bar (blue box) and how they
are linked to each other (black arcs).
The red arcs indicate the interaction
between the BMKwi hosted on a
web server, the BMKdb hosted by
a database server with a MySQl
Client, and the user. All views marked
in blue are generated by querying
the BMKdb. Using the curation
and submission features marked in
orange, new modules and annotations
can be stored in the BMKdb after
manual validation. Arcs in red indicate
additional user activities other than
navigating through the website, like
the up- and download of modules
and their annotation, performance of
the modular model composition, the
organization of the user profile and
collection, etc. Downloaded modules
and modularly composed models can
be directly executed in Snoopy [120]
and Marcie [129].

for registered users, that are logged in. Thus, the BMKwi is divided
into a public and a non-public area. In the public area of BMKfr,
the user can browse through the modules stored in BMKdb and
access the different views specified below and query for modules, see
also Figure 4.2. In the non-public area of the BMKwi, the user can
excess additional features. Through the log-in/registration panel at
the top of the site, the user can register as an active member of the
BMKfr. Now, using his registration data, the user can log-in to access
the non-public area of the BMKwi. After a successful log-in, the
"Profile" item in the menu bar is displayed. Via the "Profile" item the
user can access the profile view, the collection view with the model
composition features, the module submission feature, and curation
feature. Most importantly, only registered users can manage modules
in user-defined collections and thus, take advantage of the model
composition features, including the standard model composition (see
Section 3.3.1), three different approaches of the algorithmic model
mutation (see Section 3.3.3) and the spatial model transformation (see
Section 3.3.4). Also, only registered users are allowed to submit and
curate modules. The navigation through the BMKwi is summarized
in Figure 4.3. The functionality of the different views and features
accessible in the BMKwi are explained in detail below.

Module List View

The module list view displays the modules stored in the BMKdb, see
Figure 4.4. In the default setting, all modules are displayed. The
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Figure 4.4: Module list view.

view can be restricted to list only curated or uncurated modules.
Through form-based navigation, the module list view is restricted
to the search criteria. As mentioned above from the home view, the
user can access the search box and enter a search term. In the module
list view, all modules are displayed matching the search term. For
each module in the module list view the internal BMKid is displayed
next to the module name, a short description of the module, the
module type, release date, and curation state. The internal BMKid is
a stable identifier for each module stored in the BMKdb of the form
BMK-<module type symbol><id>, where <module type symbol> can be:

• GM - gene module
• MM - mRNA module
• PM - protein module
• DM - protein degradation module
• AM - allelic influence module
• CM - causal influence module

and <id> is a positive integer number assigned through the MySQL
database management system [20] of BMKdb.

By entering a search term like the HGNC symbol [140] or name
of a component in the search box at the home view, all modules
matching the search term are displayed. For example, by entering
the search term "IL-6", protein modules for the cytokine interleukin-
6, interleukin-6 receptor subunit alpha and interleukin-6 receptor
subunit beta are returned, see also the example in Section 5.1.

Module View

In the module view the user can view the module graph and the
module annotation. The name of the module is displayed, e.g. Il6,
next to its curation state (curated, yellow star) and the approved
full gene name by the HGNC [140] (interleukin 6), as well as the
corresponding gene Ensembl identifier [78] (ENSG00000136244), see
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Figure 4.5: Module view of IL6.
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Figure 4.5. The gene Ensembl identifier [78] allows to directly navigate
to the corresponding entry on the Ensembl website [78]. Further on,
the module view gives some general information containing a list of
submitters (modellers) and curators, the internal BMKid, the release
date, a short description of the modelled genetic component, and
its module type. The module view also provides an overview of all
places, transitions, and parameters with their respective name next
to a short description. By clicking on the name of a transition, place
or parameter, one can access detailed views of the corresponding
objects, see also below. From the module view the module file in the
Snoopy-file format [120] containing the Petri net graph, as well as
the annotation file, can be viewed or downloaded. The module view
also lists alternative module version of the respective module and
modules with matching interface networks. Again, by clicking on the
names, the user can access the module view of the chosen module.
A list of publications used to construct the module is also given in
the module view. The provided PubMed identifier allows navigating
directly to the corresponding publication on PubMed [32].

Place View

In the place view the name of the place, and the parent module is
displayed, e.g. place IL6_siteI : IL6R_CBM in the protein module for
IL6, see Figure 4.6. Through the name of the parent module, the user
can go back to the corresponding module view. Further on, the place
view provides a short description, specifies the marking of the place,
as well as its post- and pre-transitions. The place view states related
places and modules. Related places are places, which represent
other molecular states of the same functional unit represented by the
original place. Related modules are those modules containing the
original place as well. Thus, the user can quickly identify pre-and
post transitions, related places and modules of interest; and directly
view them by clicking on the displayed names. It also provides a list
of publications and cross-references to other relevant biomolecular
databases, see Table 3.8. The displayed reference identifiers allow
accessing the reference sources directly on the corresponding websites.

Transition View

In the transition view, the name of the transition and the parent
module is displayed, e.g. transition IL6_IL6R_Il6ST_t1 in the protein
module for IL6, see Figure 4.7. Through the name of the parent
module, the user can go back to the corresponding module view.
Further on, the transition view provides a short description, specifies
the firing-rate of the transition, as well as its post- and pre-places.
The transition view states related transitions and modules. Related
transitions are transitions, which represent other molecular events
of the same molecular process. Related modules are those modules
containing the original transition as well. Thus, the user can quickly
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Figure 4.6: Place view of place
IL6_siteI__IL6R_CBM of the Il6
module.
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Figure 4.7: Transition view of
transition IL6_IL6R_IL6ST_t1

in the Il6 module.
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identify related transitions and modules of interest; and directly view
them by clicking on the displayed names. It also provides a list
of publications and cross-references to other relevant biomolecular
databases, see Table 3.8. Again, the displayed reference identifiers
allow accessing the reference sources directly on the corresponding
websites.

Parameter View

In the parameter view, the name of the parameter and the parent
module is displayed. Further on, the parameter view provides a short
description and specifies the numeric value. The parameter view
states all modules, where the respective parameter appears. Thus,
the user can quickly identify modules of interest; and directly view
them by clicking on the displayed names. The parameter view also
provides a list of publications and cross-references to other relevant
biomolecular databases, see Table 3.8. As before, the displayed refer-
ence identifiers allow to access the reference sources directly on the
corresponding websites.

The following views can only be accessed by registered user, that
are logged in:

User Profile View

In the user profile the user might specify his name and contact in-
formation, but it is not mandatory to provide such information. The
information is not visible to other users.

Module Submission View

In the module submission view, the user can submit his modules,
including the Petri net graph and annotation, through the BMKfr and
thus, actively provide new content shared in the BMKfr community.
The first step in the module submission process is to upload the
Petri net graph of the module as a Snoopy-file format for uncoloured
Petri nets [120]. The first step in the module submission process
is to upload the Petri net graph of the module as a Snoopy-file for
uncoloured Petri nets [120]. During the upload, a parser generates
a form based on the respective Petri net graph to enter the module
annotation. Thus, the user must not already provide the module
annotation as a valid BMKml file, see Section 3.2. The prompted form
helps the user entering the relevant annotations. The XML-coding
of the BMKml file is done by a script. In addition, the user can also
upload an existing module annotation as a valid BMKml file. Both,
the model file and the annotation file are stored in a folder with a
unique auto-generated name on the BMK web-server. Successfully
approved modules by an administrator will be released and displayed
in the module view.

Module Curation View

The user can submit their comments by stating the respective module,
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1 Note: feature will be avail-
able in the next release.

2 The andl-format is an abstract
net description language for stan-
dard Petri net classes, where the

candl-format is used for coloured
Petri nets, which are compatible

with Snoopy [120] and Marcie [129].

node, or parameter via a form. The information helps to improve
modules. This feature aims at increasing the quality of the content
provided by the BMKfr.

Collection View

The collection view provides features to organise modules in col-
lections and to compose models from a set of modules stored in a
collection. A collection specifies a selection of modules, which can
either be pre-defined by the BMKfr or defined by the user. There
are two types of pre-defined collections, which cannot be changed
by the user, one holding submitted modules and the other holding
curated modules. The user can create user-defined collection by speci-
fying a collection name. User-defined collections can be renamed and
deleted. The user can add any number of modules to his user-defined
collections according to his personal criteria, e.g. this can be modules
of any interest, modules involved in a particular pathway, or modules
representing related isoforms of a protein, etc. To add modules to
collections, the module list view and the module view is extended
with a feature to store modules in the user-defined collections for
logged in users. Modules can also be deleted from a user-defined
collection if necessary. Form each displayed collection the user can
also access the modular model composition features, including:

• Composition of the unmodified model: The feature creates the
unmodified modularly composed model, see also Section 3.3.1.

• Composition of alternative (mutated) models: The feature creates
modified versions of the unmodified modularly composed model,
see Section 3.3.3. The user has the options to choose between
the module and transition knock-out. The transition knock-out
can be constrained by the module annotation. Such that, the user
has to specify cross-references that should be used to knock-out
transitions.

• Composition of the spatial model1: The modularly composed
model is extended with spatial information, to allow the move-
ment of involved components in a defined space and their locally
constrained interactions, see Section 3.3.4.

The output of each applied feature results in a zip-file that contains
the composed model(s) in the andl-format, respectively candl-format
(in case of a spatial model) 2, and a text file containing information
about the composition, modifications and resolved conflicts. Conflicts
during model composition might occur due to mismatched names or
the integration of different module version in one model.
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This section requires:

• Petri nets [82], Section 2.1

• MySQL [20], see text

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

4.2 BMK - Database

In general, a database is an organised collection of data to model
certain aspects of the reality and to support requiring information.
In other words, a database is a collection of schemas, tables, queries,
reports, views and other objects.

A database management system (DBMS) is a computer software
application that allows the interaction of the user or other applications
with the database itself to capture and analyse data. General tasks
of a DBMS are to define, create, query, update and administrate a
database. A Software system used to maintain relational databases
is called relational database management system (RDBMS), which is
the most popular database systems since the 1980s.

A relational database is a digital database that is organised accord-
ing to the relational model proposed by E. F. Codd in 1970 [6]. The
relational model uses a structure and language that is consistent with
first-order predicate logic. All data is represented in terms of tuples,
grouped into relations. It provides a declarative method for specifying
data and queries. Users can declare the information content of the
database and the information to retrieve from it. The RDBMS takes
care of all the actions and provides data structures for storing and
retrieving information.

A
1 ...

value

A
n Heading

Body

Relation 

(Table)

Attribute (column) {unordered}

Tuple (row) 

{unordered}

R

Relation variable

(table name)
Figure 4.8: Concepts of the Relational
Model. A table is relation and is repre-
sented by a relation variable, the table
name. A table consists of a heading
and a body. The heading consists of
an unordered set of attributes, the
columns of a table. An attribute is
defined by the attribute name and
type name, where type denotes a valid
domain or data-type. The body is a
set of n-tuples, the rows of a table,
where n is the number of attributes.
A tuple is an ordered set of attribute
values, where the attribute value must
be specific valid value for the type of
the attribute.

In a relational database, a table is a relation and is represented
by a relation variable, the table name. A table consists of a heading
and a body. The heading consists of an unordered set of attributes,
the columns of a table. An attribute is defined by the attribute name
and type name, where type denotes a valid domain or data-type.
The body is a set of n-tuples, the rows of a table, where n is the
number of attributes. A tuple is an ordered set of attribute values,
where the attribute value must be a specific valid value for the type
of the attribute. Figure 4.8 summarises the terms introduced above.
Additional constraints can be added to the attributes of a table, such
as primary and foreign keys. Usually, one attribute of a table is chosen
as a primary key. Meaning, the attribute values of an attribute selected
as the primary key must be unique, none of the values is allowed
to appear twice. Such that, a primary key is allowed to migrate to
other entities (tables) to define the relationships that exist among
the entities. In the migrated table, the primary key is now called
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foreign key. The schema of the database represents the tables in a
database and their relations to each other; it can be visualised using
e.g. an entity relationship model (ER model). In the ER model boxes
represent tables and their attributes, lines among the table indicate
how attributes are linked to each other by the use of primary and
foreign keys.

Most RDBMS employ SQL (Structured Query Language), which is
a special-purpose programming language to manage data, which is
originally based upon relational algebra and tuple relational calculus.
SQL consists of a data definition language, a data manipulation
language, and a data control language. In an SQL database schema,
a table represents a predicate variable; where the content of a table
corresponds to a relation; key constraints, other constraints, and SQL
queries can be interpreted as predicates. MySQL is one of the most
popular open-source RDBMS. Detailed specification on MySQL can
be found in [20].

The BMKdb is implemented using the RDBMS MySQL [20]. The
scheme of the BMKdb is shown by the ER model in Figure 4.9. The
"root" of the BMKdb is table ‘module‘, which provides a unique iden-
tifier (‘idModule‘) for each module. The ‘idModule‘ is the accession to
all nodes, arcs, parameters, annotations, and parts of a module. In the
BMKdb, the term "parts" comprises all molecular states of functional
units except interaction states. The tables depicted in the BMKdb

scheme in Figure 4.9 can be sub-divided into four types:

1. Main Tables store information about the objects of the model
and annotation of a module, including module instances, nodes,
arcs, parts, parameters, references, etc. They provide a unique
identifier (primary key) for the respective objects (depicted in red,
see Figure 4.9). The user is considered as an object as well.

2. Type Tables define all possible types that are allowed for the objects
represented by the main tables (depicted in green, see Figure 4.9‘).

3. Attribute Tables provide additional information of the objects
given by the main tables by using their primary key as a foreign
key (depicted in orange, see Figure 4.9).

4. Linkage Tables define the relation between two main tables or the
main table, e.g. table ‘module‘, and attribute tables (depicted in
grey, see Figure 4.9).

The complex structure of the BMKdb scheme allows the module
versioning. In the following, we provide a detailed description of the
tables given in Figure 4.9 in alphabetical order:

collection (main table) - stores information about user-defined
collections of modules by providing a unique collection identifier
(‘idCollection‘, primary key), the identifier of the user (‘idUser‘), and
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the name of the collection (‘name‘). The entity ‘idUser‘ is a foreign
key to access table ‘login‘.

edge (main table) - stores information about the arcs by providing a
unique identifier for each arc (‘idEdge‘, primary key), the identifier of
the start node (‘idStartNode‘), and end node (‘idEndNode‘), as well as
the identifier of the arc type (‘idEdgeType‘). The entries ‘idStartNode‘,
‘idEndnote‘, and ‘idEdgeType‘ are used as foreign keys to access table
‘node‘, and respectively table ‘edge_type‘.

edge_type (type table of table ‘edge‘) - stores information about
the arc types by providing a unique identifier for each arc type
(‘idEdgeType‘, primary key) and a descriptive name (‘name‘). Arc
types that are available are standard arc, read arc, inhibitory arc, reset
arc, equal arc, and modifier arc.

firingrate (attribute table of table ‘node‘) - stores information about
the firing-rates of the transitions by providing a unique identifier
for each firing-rate (‘idFiringrate‘, primary key), the identifier of the
referring node (‘idNode‘), and the firing-rate equation (‘function‘).
The entry ‘idNode‘ is a foreign key to access the table ‘node‘. Fur-
thermore in table ‘node‘, the corresponding entry of the node type
(‘idNodeType‘) has to refer to a transition.

institution (attribute table of table ‘login‘) - stores information about
the institution of the users by providing the identifier of the user
(‘idUser‘, primary key), the name of the institution (‘name‘), and the
address (‘street‘, ‘city‘, ‘postcode‘, ‘country‘). The entry ‘idUser‘ is a
foreign key to access table ‘login‘.

login (main table) - stores information about the user’s login details
by providing a unique user identifier (‘idUser‘, primary key), a unique
username (‘name‘), and password (‘passwordSHA‘), as well as the
registration date (‘date‘).

marking (attribute table of table ‘node‘) - stores information about
the marking of the places by providing a unique marking identifier
(‘idMarking‘, primary key), the identifier of the referring node (‘idNode‘),
and the marking value (‘value‘), which can either be an integer, a real
number, or a name of a parameter. The entry ‘idNode‘ is a foreign
key to access the table ‘node‘. Furthermore in table ‘node‘, the cor-
responding entry of the node type (‘idNodeType‘) has to refer to a
place.

module (main table) - stores information about modules by providing
a unique module identifier (‘idModule‘, primary key), the identifier
of the module type (‘idModuleType‘), a name (‘name‘)‘, the cura-
tion state (‘state‘), a short description (‘description‘), the release date
(‘releaseDate‘), creation date (‘creationDate‘), and last date of modi-
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fication (modificationDate‘), as well as the identifier of the module
type of the terms type (‘idTermsType‘). The value for entry ‘state‘ is
limited to 0 (not curated) and 1 (curated). The entries ‘idModuleType‘
and ‘idTermsType‘ are foreign keys to access table ‘module_type‘,
respectively table ‘terms_type‘.

module_type (type table of table ‘module‘) - stores information about
the module types by providing a unique identifier for each module
type (‘idModuleType‘, primary key) and a descriptive name (‘name‘).
Module types that are available are gene module, mRNA module,
protein module, protein degradation module, allelic influence module,
and causal influence module.

multiplicity (attribute table of table ‘node‘) - stores information
about the multiplicities of the arcs by providing a unique identifier
for each multiplicity (‘idMultiplicity‘, primary key), the identifier of
the arc (‘idEdge‘), and the value of the multiplicity (‘value‘), which
can either be an integer, a real number, or a name of a parameter. The
entry ‘idEdge‘ is a foreign key to access table ‘edge‘.

node (main table) - stores information about the nodes by providing
a unique node identifier (‘idNode‘, primary key), the identifier of the
node type (‘idNodeType‘), and the name of the node (‘name‘). The
entry ‘idNodeType‘ is a foreign key to access table ‘node_type‘.

node_desc (attribute table of table ‘node‘) - stores more detailed
description of each node by providing a unique identifier for each de-
scription (‘idDesc‘, primary key), the identifier of the node (‘idNode‘),
and description (‘description‘). The entry ‘idNode‘ is a foreign key to
access the table ‘node‘.

node_type (type table of table ‘node‘) - stores information about the
node type by providing a unique node type identifier (‘idNodeType‘,
primary key) and a descriptive name (‘name‘). Node types that are
available are place and transition.

parameter (main table) - stores information about the parameters
used in the module by providing a unique parameter identifier (‘id-
Parameter‘, primary key) and a name (‘name‘).

parameter_desc (attribute table of table ‘parameter‘) - stores more
detailed description for each parameter by providing a unique de-
scription identifier (‘idDesc‘, primary key), the parameter identifier
(‘idParameter‘), and a description (‘description‘). The entry ‘idParam-
eter‘ is a foreign key to access table ‘parameter‘.

parameter_value (attribute table of table ‘parameter‘) - stores infor-
mation about the parameter value by providing a unique parameter
value identifier (‘idValue‘, primary key), the parameter identifier (‘id-
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Parameter‘), and the value (‘value‘), which can either be an integer, a
real number, or a name of a parameter. The entry ‘idParameter‘ is a
foreign key to access table parameter.

part (main table) - stores information about parts by providing a
unique part identifier (‘idPart‘, primary key), the name of the part
(‘name‘), and the identifier of the part type (‘idPartType‘). The entry
‘idPartType‘ is a foreign key to access table ‘part_type‘.

part_type (type table of table ‘part‘) - stores information about the
part types by providing a unique part type identifier (‘idPartType‘,
primary key) and a descriptive name (‘name‘). Part types that are
available are gene, mRNA, protein, and chemical compound (non-
genetic components, i.e. small molecules).

reference (main table) - stores information about references by pro-
viding a unique reference identifier (‘idReference‘, primary key), the
identifier of the reference type (‘idReferenceType‘), and a unique iden-
tifier of the reference source (‘value‘). The entry ‘idReferenceType‘ is
a foreign key to access table ‘reference_type‘.

reference_type (type table of table ‘reference‘) - stores information
about the reference type, which specifies a cross-referenced database
by providing a unique reference type identifier (‘idReferenceType‘),
the name of the cross-referenced database (‘name‘), see Table 3.8, and
a valid url (‘url‘).

responsibility (attribute table of table ‘x_module_user‘) - stores
information about possible user roles on a module by providing a
unique responsibility identifier (‘idResponsibility‘, primary key) and a
descriptive name (‘responsibility‘). A user can be modeller, submitter,
or curator.

submission (main table) - stores information about the module sub-
missions by providing a unique submission identifier (‘idSubmission‘,
primary key), the user identifier (‘idUser‘), the name of the submitted
module (‘name‘), the submission date (‘date‘), and the submission
state (‘state‘), which can either be 0 (not released) or 1 (released). The
entry ‘idUser‘ is a foreign key to access table ‘login‘.

terms_type (type table of table ‘module‘) - stores information about
the terms of use by providing a unique identifier for each term type
(‘idTermType‘, primary key) and the term (‘term‘).

user (attribute table of table login) - stores more detailed information
about the user by providing the user identifier (‘idUser‘, primary
key), his name (‘firstName‘, ‘lastName‘), e-mail address (‘e-mail‘),
and phone number (‘phone‘). The entry ‘idUser‘ is a foreign key to
access table ‘login‘.
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x_module_collection (linkage table) - links entries in table ‘module‘
and table ‘collection‘ using the corresponding primary keys ‘idMod-
ule‘ and ‘idCollection‘ as foreign keys.

x_module_edge (linkage table) - links entries in table ‘module‘ and
table ‘edge‘ using the corresponding primary keys ‘idModule‘ and
‘idEdge‘ as foreign keys.

x_module_firingrate (linkage table) - links entries in table ‘module‘
and table ‘firingrate‘ using the corresponding primary keys ‘idModule‘
and ‘idFiringrate‘ as foreign keys.

x_module_marking (linkage table) - links entries in table ‘module‘
and table ‘marking‘ using the corresponding primary keys ‘idModule‘
and ‘idMarking‘ as foreign keys.

x_module_multiplicity (linkage table) - links entries in table ‘mod-
ule‘ and table ‘multiplicity‘ using the corresponding primary keys
‘idModule‘ and ‘idMultiplicity‘ as foreign keys.

x_module_node (linkage table) - links entries in table ‘module‘ and
table ‘node‘ using the corresponding primary keys ‘idModule‘ and
‘idNode‘ as foreign keys.

x_module_node_desc (linkage table) - links entries in table ‘mod-
ule‘ and table ‘node_desc‘ using the corresponding primary keys
‘idModule‘ and ‘idDesc‘ as foreign keys.

x_module_node_reference (linkage table) - links entries in table
‘module‘ and table ‘x_node_reference‘ using the corresponding pri-
mary keys ‘idModule‘ and ‘idNodeRef‘ as foreign keys.

x_module_parameter (linkage table) - links entries in table ‘mod-
ule‘ and table ‘parameter‘ using the corresponding primary keys
‘idModule‘ and ‘idParameter‘ as foreign keys.

x_module_parameter_desc (linkage table) - links entries in table
‘module‘ and table ‘parameter_desc‘ using the corresponding primary
keys ‘idModule‘ and ‘idDesc‘ as foreign keys.

x_module_parameter_reference (linkage table) - links entries in ta-
ble ‘module‘ and table ‘parameter_reference‘ using the corresponding
primary keys ‘idModule‘ and ‘idParaRef‘ as foreign keys.

x_module_parameter_value (linkage table) - links entries in table
‘module‘ and table ‘parameter_value‘ using the corresponding pri-
mary keys ‘idModule‘ and ‘idValue‘ as foreign keys.
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x_module_place_part (linkage table) - links entries in table mod-
ule and table ‘x_place_part‘ using the corresponding primary keys
‘idModule‘ and ‘idPlacePart‘ as foreign keys.

x_module_place_part_reference (linkage table) - links entries in
table ‘module‘ and ‘table‘ x_place_part_reference using the corre-
sponding primary keys ‘idModule‘ and ‘idPlacePartRef‘ as foreign
keys.

x_module_reference (linkage table) - links entries in table ‘module‘
and table ‘reference‘ using the corresponding primary keys ‘idModule‘
and ‘idPlacePartRef‘ as foreign keys.

x_module_submission (linkage table) - links entries in table ‘mod-
ule‘ and table ‘submission‘ using the corresponding primary keys
‘idModule‘ and ‘idSubmission‘ as foreign keys.

x_module_user (linkage table) - links entries in table ‘module‘, table
‘login‘, and table ‘responsibility‘ using the corresponding primary
keys ‘idModule‘, ‘idUser‘ and ‘idResponsibility‘ as foreign keys.

x_node_reference (linkage table) - links entries in table ‘node‘ and
table ‘reference‘ using the corresponding primary keys ‘idNode‘
and ‘idReference‘ as foreign keys. For each entry a unique iden-
tifier is defined (‘idNodeRef‘), which is used as foreign key in table
‘x_module_node_reference‘.

x_parameter_reference (linkage table) - links entries in table ‘param-
eter‘ and table ‘reference‘ using the corresponding primary keys ‘id-
Parameter‘ and ‘idReference‘ as foreign keys. For each entry a unique
identifier is defined (‘idParaRef‘), which is used as foreign key in table
‘x_module_parameter_reference‘.

x_part_reference (linkage table) - links entries in table ‘part‘ and
table ‘reference‘ using the corresponding primary keys ‘idPart‘ and
‘idReference‘ as foreign keys. For each entry a unique identifier is de-
fined (‘idPartRef‘), which is used as foreign key in table
‘x_place_part_reference‘.

x_place_part (linkage table) - links entries in table ‘node‘, where
‘idNodeType‘ refers to places, and table ‘part‘ using the corresponding
primary keys ‘idNode‘ (named ‘idPlace‘) and ‘idPart‘ as foreign keys.
For each entry a unique identifier is defined (‘idPlacePart‘), which is
used as foreign key in table ‘x_module_place_part‘.

x_place_part_reference (linkage table) - links entries in table ‘node‘,
where ‘idNodeType‘ refers to places, and table ‘x_part_reference‘
using the corresponding primary keys ‘idNode‘ (named ‘idPlace‘)
and ‘idPartRef‘ as foreign keys. For each entry a unique identifier
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This section requires:

• Petri nets [82], Section 2.1

• MySQl[20], Section 4.2

• Module definition, Section 3.1.1

• Module types, Section 3.1.2

• Petri net representation of mod-

ules, Section 3.1.3

• BMKml, Section 3.2

is defined (‘idPlacePartRef‘), which is used as foreign key in table
‘x_module_place_part_reference‘.

4.3 Relation between BMK Datbase and Module Definition

The BMKdb scheme in Section 4.2 holds information on the Petri net
graph and the annotation of a module Mc0 . Here, we explain in more
detail, how the physical instance of a module is matched with its
database instance. In the following a column of a table is specified by
‘table_name‘.‘column_name‘.

First of all, only registered users, that are logged-in can submit a
module to the BMKdb. The log-in information (email, password) of
each registered user is stored in the ‘login‘ table, see Section 4.2, such
that
↪→ ‘login‘.‘idUser‘ = auto-index

‘login‘.‘name‘ = email of user
‘login‘.‘passwordSHA‘ = password of user
‘login‘.‘date‘ = time-stamp of registration date

Each submitted module Mc0 generates a new entry in table ‘sub-
mission‘, see Section 4.2, such that
↪→ ‘submission‘.‘idSubmission‘ = auto-index

‘submission‘.‘idUser‘ = ‘login‘.‘idUser‘ of user
‘submission‘.‘name‘ = auto-generated folder-name
‘submission‘.‘date‘ = time-stamp of submission date
‘submission‘.‘state‘ = 0 (must be approved by the administrator)

After manual curation of the model and annotation file by the
administrator, the files are processed and the content is stored in the
BMKdb. The processing starts with the model file holding the Petri
net graph N (Mc0) = {P, T, F, f , v, m0} of a module Mc0 :

• ∀p ∈ P a new entry in the table ‘node‘ is generated, such that
↪→ ‘node‘.‘idNode‘ = auto-index

‘node‘.‘idNodeType‘ = ‘node_type‘.‘idNodeType‘ of place
‘node‘.‘name‘ = name of p

• ∀t ∈ T a new entry in the table ‘node‘ is generated, such that
↪→ ‘node‘.‘idNode‘ = auto-index

‘node‘.‘idNodeType‘ = ‘node_type‘.‘idNodeType‘ of transition
‘node‘.‘name‘ = name of t

• x ∈ P ∪ T a new entry in the table ‘x_module_node‘ is generated,
such that
↪→ ‘x_module_node‘.‘idNode‘ = ‘node‘.‘idNode‘ of x

‘x_module_node‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

• ∀ ftype(x, y) ∈ F, x, y ∈ P ∪ T a new entry in the table ‘edge‘ and
‘multiplicity‘ is generated, as well as in table ‘x_module_edge‘ and
‘x_module_multiplicity‘, such that
↪→ ‘edge‘.‘idEdge‘ = auto-index,
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‘edge‘.‘idStartNode‘ = ‘node‘.‘idNode‘ of x
‘edge‘.‘idEndNode‘ = ‘node‘.‘idNode‘ of y
‘edge‘.‘idEdgeType‘ = ‘edge_type‘.‘idEdgeType‘ of type

↪→ ‘multiplicity‘.‘idMultiplicity‘ = auto-index
‘multiplicity‘.‘idEdge‘ = ‘edge‘.‘idEdge‘ of ftype(x, y)
‘multiplicity‘.‘value‘ = ftype(x, y)

↪→ ‘x_module_edge‘.‘idNode‘ = ‘edge‘.‘idEdge‘ of ftype(x, y)
‘x_module_edge‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

↪→ ‘x_module_multiplicity‘.‘idMultiplicity‘ = ‘multiplicity‘.‘idMultiplicity‘
of ftype(x, y)

‘x_module_multiplicity‘.‘idModule‘ = ‘module‘.‘idModule‘
of Mc0

• ∀h(t),t ∈ T a new entry in the table ‘firingrate‘ and ‘x_module_firingrate‘
is generated, such that
↪→ ‘firingrate‘.‘idFiringrate‘ = auto-index

‘firingrate‘.‘idNode‘ = ‘node‘.‘idNode‘ of t
‘firingrate‘.‘function‘ = h(t)

↪→ ‘x_module_firingrate‘.‘idFiringrate‘ = ‘firingrate‘.‘idFiringrate‘
‘x_module_firingrate‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

• ∀m0(p), p ∈ P a new entry in the table ‘marking‘ and ‘x_module_marking‘
is generated, such that
↪→ ‘marking‘.‘idMarking‘ = auto-index

‘marking‘.‘idNode‘ = ‘node‘.‘idNode‘ of p
‘marking‘.‘value‘ = m0(p)

↪→ ‘x_module_marking‘.‘idMarking‘ = ‘marking‘.‘idMarking‘
‘x_module_marking‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

• If a set of parameters K = {k1, . . . , kn}, n ≥ 1 is defined in the
Snoopy-file [120] holding the Petri net graph of a module (N)(M)

to specify the marking or to formulate the firing rates, each pa-
rameter k ∈ K generates a new entry in table ‘parameter‘, ‘parame-
ter_value‘, ‘x_module_parameter‘ and ‘x_module_parameter_value‘,
such that
↪→ ‘parameter‘.‘idParameter‘ = auto-index

‘parameter‘.‘name‘ = name of k
↪→ ‘parameter_value‘.‘idValue‘ = auto-index

‘parameter_value‘.‘idParameter‘ = ‘parameter‘.‘idParameter‘
‘parameter_value‘.‘value‘ = k

↪→‘x_module_parameter‘.‘idParameter‘ = ‘parameter‘.‘idParameter‘

‘x_module_parameter‘.‘idModule‘ = ‘module‘.‘idModule‘
of Mc0

↪→ ‘x_module_parameter_value‘.‘idValue‘ = ‘parameter_value‘.‘idValue‘
‘x_module_parameter_value‘.‘idModule‘ = ‘module‘.‘idModule‘

of Mc0

The BMKml of the module annotation file can be mapped to the
BMKdb scheme as follows (attributes of an element are printed in
bold):
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• The module element generates a new entry in table ‘module‘ and
‘reference‘, as well as in table ‘x_module_reference‘ table, such that
↪→ ‘module‘.‘idModule‘ = auto-index

‘module‘.‘name‘ = name of module element
‘module‘.‘state‘ = set by administrator
‘module‘.‘releaseDate‘ = time-stamp of the release date
‘module‘.‘idModuleType‘ = ‘module_type‘.‘idModuleType‘

of entry for type of module element
↪→ ‘reference‘.‘idReference‘ = auto-index

‘reference‘.‘idReferenceType‘ = reference_type.idReferenceType
of entry for dbName of module element

‘reference‘.‘value‘ = id of module element
↪→ ‘x_module_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘

‘x_module_reference‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

• The terms element, which is a child of the infoList element,
generates a new entry in the table ‘terms_type‘, and specifies the
value for entry ‘module‘.‘idTermsType‘, such that
↪→ ‘terms_type‘.‘idTermsType‘ = auto-index

‘terms_type‘.‘terms‘ = content of terms element
↪→ ‘module‘.‘idTermsType‘ = ‘terms_type‘.‘idTermsType‘

• The date element, which is also a child of the infoList ele-
ment, specifies the value for the ‘module‘.‘creationDate‘ and ‘mod-
ule‘.‘modificationDate‘, such that
↪→ ‘module‘.‘creationDate‘ = creationDate of date element

‘module‘.‘modificationDate‘ = modificationDate of date ele-
ment

• The authorList element is also a child of the infoList element.
Each author child element of authorList generates a new entry
in table ‘user‘ and ‘x_module_user‘, such that
↪→ ‘user.‘idUser‘ = auto-index

‘user‘.‘firstName‘ = firstName of author element
‘user‘.‘lastName‘ = lastName of author element
‘user‘.‘email‘ = email of author element

↪→ ‘x_module_user‘.‘idUser‘ = ‘edge‘.‘idUser‘
‘x_module_user‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

‘x_module_user‘.‘idResponsibility‘ = ‘responsibility‘.‘idResponsibility‘
of modeller

• The description element, which is also a child of the infoList

element, specifies the value for entry ‘module‘.‘description‘, such
that
↪→ ‘module‘.‘description‘ = content of description element

• Each place child element of placeList and each transition

child element of transitionList generates a new entry in table
‘node_desc‘ and ‘x_module_node_desc‘, such that
↪→ ‘node_desc‘.idDesc‘ = auto-index

‘node_desc‘.idNode‘ = ‘node‘.‘idNode‘ of name of place or
transition element
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‘node_desc‘.‘description‘ = content of description element
(child of place or transition element)

↪→ ‘x_module_node_desc‘.idDesc‘ = node_desc‘.idDesc‘
‘x_module_node_desc‘.idModule‘ = ‘module‘.‘idModule‘

of Mc0

• Each gComponent element (child of gComponentList element)
and ngComponent element (child of ngComponentList element),
both grandchildren of componentList element a child of each
place element, generates a new entry in table ‘part‘,‘x_place_part‘,
and ‘x_module_place_part‘, such that
↪→ ‘part‘.‘idPart‘ = auto-index

‘part‘.‘name‘ = name of gComponent or ngComponent ele-
ment

‘part‘.‘idPartType‘ = ‘part_type‘.‘idPartType‘ of type (gComponent

element) or non-genetic component (ngComponent ele-
ment)

↪→ ‘x_place_part‘.‘idPlacePart‘ = auto-index

‘x_place_part‘.‘idPart‘ = ‘part‘.‘idPart‘
‘x_place_part‘.‘idPlace‘ = ‘node‘.‘idNode‘ of name of place

element
↪→ ‘x_module_place_part‘.‘idPlacePart‘ = ‘x_place_part‘.‘idPlacePart‘

‘x_module_place_part‘.‘idModule‘ = ‘module‘.‘idModule‘
of Mc0

• Each parameter child of parameterList element generates a new
entry in table ‘parameter_desc‘ and ‘x_module_parameter_desc‘,
such that
↪→ ‘parameter_desc‘.idDesc‘ = auto-index

‘parameter_desc‘.idParameter‘ = ‘node‘.‘idParameter‘ of name
of parameter element

‘parameter_desc‘.‘description‘ = content of description ele-
ment (child of parameter element)

↪→ ‘x_module_parameter_desc‘.idDesc‘ = parameter_desc‘.idDesc‘
‘x_module_parameter_desc‘.idModule‘ = ‘module‘.‘idModule‘

of Mc0

• The dbRefList element is a child of gComponent and ngCompo-
nent elements, but also of transition and parameter element.
Each dbRef child of dbRefList element generates a new entry in
table ‘reference‘, such that
↪→ ‘reference‘.‘idReference‘ = auto-index

‘reference‘.‘idReferenceType‘ = reference_type.idReferenceType
of dbName of dbRef element

‘reference‘.‘value‘ = id of dbRef element

– In case of the parent elements gComponent and ngCompo-
nent an additional entry is generated in table ‘x_part_reference‘,
‘x_place_part_reference‘, and ‘x_module_place_part_reference‘,
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such that
↪→ ‘x_part_reference‘.‘idPartRef‘ = auto-index

‘x_part_reference‘.‘idPart‘ = ‘part‘.‘idPart‘ of name of
gComponent or ngComponent element

‘x_part_reference‘.‘idReference = ‘reference‘.‘idReference‘
↪→ ‘x_place_part_reference‘.‘idPlacePartRef‘ = auto-index

‘x_place_part_reference‘.‘idPartRef‘ = ‘x_part_reference‘.
‘idPartRef‘

‘x_place_part_reference‘.‘idPlace‘ = ‘node‘.‘idNode‘
of name of place element

↪→ ‘x_module_place_part_reference‘.‘idPlacePartRef‘ =
‘x_place_part_reference‘.‘idPlacePartRef‘

‘x_module_place_part_reference‘.‘idModule‘ =
‘module‘.‘idModule‘ of Mc0

– In case of the parent element transition an additional entry is
generated in table ‘x_node_reference‘ and ‘x_module_node_reference‘,
such that
↪→ ‘x_node_reference‘.‘idNodeRef‘ = auto-index

‘x_node_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘
‘x_node_reference‘.‘idNode‘ = ‘node‘.‘idNode‘ of name of

transition element
↪→ ‘x_module_node_reference‘.‘idNodeRef‘ = ‘x_node_reference‘.

‘idNodeRef‘
‘x_module_node_reference‘.‘idModule‘ = ‘module‘.‘idModule‘

of Mc0

– In case of the parent element parameter an additional entry is
generated in table ‘x_parameter_reference‘ and
‘x_module_parameter_reference‘, such that
↪→ ‘x_parameter_reference‘.‘idParaRef‘ = auto-index

‘x_parameter_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘
‘x_parameter_reference‘.‘idParameter‘ = ‘node‘.‘idParameter‘

of name of parameter element
↪→ ‘x_module_parameter_reference‘.‘idParaRef‘ =

‘x_node_parameter‘.‘idParaRef‘
‘x_module_parameter_reference‘.‘idModule‘ =

‘module‘.‘idModule‘ of Mc0

• The pubRefList element is a child of the infoList, place, transi-
tion, and parameter element. Each pubRef child of pubRefList

element generates a new entry in table ‘reference‘, such that
↪→ ‘reference‘.‘idReference‘ = auto-index

‘reference‘.‘idReferenceType‘ = reference_type.idReferenceType
of entry for dbName of pubRef element

‘reference‘.‘value‘ = id of pubRef element

– In case of the parent element infoList an additional entry is
generated in table ‘x_module_reference‘, such that
↪→ ‘x_module_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘

‘x_module_reference‘.‘idModule‘ = ‘module‘.‘idModule‘
of Mc0
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– In case of the parent elements place and transition an addi-
tional entry is generated in table ‘x_node_reference‘ and
‘x_module_node_reference‘, such that
↪→ ‘x_node_reference‘.‘idNodeRef‘ = auto-index

‘x_node_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘
‘x_node_reference‘.‘idNode‘ = ‘node‘.‘idNode‘ of entry

for name of place or transition element
↪→ ‘x_module_node_reference‘.‘idNodeRef‘ = ‘x_node_reference‘.

‘idNodeRef‘
‘x_module_node_reference‘.‘idModule‘ = ‘module‘.‘idModule‘

of Mc0

– In case of the parent element parameter an additional entry is
generated in table ‘x_parameter_reference‘ and
‘x_module_parameter_reference‘, such that
↪→ ‘x_parameter_reference‘.‘idParaRef‘ = auto-index

‘x_parameter_reference‘.‘idReference‘ = ‘reference‘.‘idReference‘
‘x_parameter_reference‘.‘idParameter‘ = ‘node‘.‘idParameter‘

of entry for name of parameter element
↪→ ‘x_module_parameter_reference‘.‘idParaRef‘ = ‘x_node_parameter‘.

‘idParaRef‘
‘x_module_parameter_reference‘.‘idModule‘ = ‘module‘.‘idModule‘

of Mc0

As has been mentioned before, the user can create collections and
store modules in collections, see Section 4.1. If the user adds a new
collection, a new entry in table ‘collection‘ will be added, such that
↪→ ‘collection‘.‘idCollection‘ = auto-index

‘collection‘.‘idUser‘ = ‘login‘.‘idUser‘ of user
‘collection‘.‘name‘ = collection_name

Each module Mc0 added to a collection generates a new entry in table
‘x_module_collection‘, such that
↪→ ‘x_module_collection‘.‘idCollection‘ = ‘collection‘.‘idCollection‘

‘x_module_collection‘.‘idModule‘ = ‘module‘.‘idModule‘ of Mc0

According to these relations between the BMKdb scheme and the
Petri net graph and annotation of a module, MySQL queries can be
designed to either select, insert or delete information. The BMKdb

scheme supports the versioning of modules and all its related content,
by linking each entry to the module instance of Mc0 in table ‘module‘.



5
Case Studies

So far, we introduced the modularization concept, module anno-
tation, model composition and module construction as part of the
BMKfr, as well the web-tool supporting the BMKfr. In this chapter,
we will present three case studies to demonstrate our approach on
experimental biological systems.

The first case study is the interleukin-6 induced JAK-STAT sig-
nalling in eukaryotes, which involves a negative gene regulatory
feedback loop. JAK-STAT signalling is involved in several essential
regulatory processes of human cells. The modular model is composed
of ten modules representing important key players of the interleukin-6
induced JAK-STAT signalling. The model composed of highly de-
tailed modules integrates different module types and reflects the
experimental data obtained for the JAK-STAT signalling.

The second case study models signalling processes involved in
nociception. Nociception is the encoding and processing of noxious
stimuli in the nervous system. Thus, nociception is the ability of a
body to sense potential harm, which might lead to the perception
of pain. On the molecular basis, nociception involves a plethora of
components like receptors, ion channels, kinases, signalling proteins,
second messengers, etc. The modular model is composed of a huge
number of modules. This case study demonstrates the advantageous
of an a priori modularization concept to model complex systems.

The third case study addresses the phosphate regulatory network
in enterobacteria. Inorganic phosphate is essential for the maintenance
of the biosynthesis of nucleic acids and other cellular components
in enteric bacteria like Escherichia coli by being involved in gene
regulatory processes. The composed model integrates of protein,
gene, mRNA, and protein degradation modules. Here, we show that
the modular modelling concept can also be applied to biomolecular
networks of prokaryotic organisms.

5.1 JAK-STAT Signalling

JAK-STAT signalling is of fundamental importance in regulatory
processes of human cells. A variety of cytokines such as inter-
leukins, interferons, and growth factors can activate the JAK-STAT
signalling [39, 41]. Thus, JAK-STAT signalling plays a significant role
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in development, cell proliferation, cell migration, and inflammatory
processes [25]. In particular, dysregulation, especially constitutive
activation of JAK-STAT signalling, was found in cancerous, autoim-
mune, and inflammatory diseases. In the following, we will first
explain the molecular mechanism of JAK-STAT signalling induced
by the cytokine interleukin-6. Next, we will introduce the modules
describing the mechanistic details of the components involved in JAK-
STAT signalling, and explain one of the components in more detail.
Finally, we show a simulation experiment describing the dynamic
behaviour of JAK/STAT signalling. We also refer to [118, 126], where
this case study has been published previously.

As mentioned above, we consider interleukin-6 induced JAK-SAT
signalling as shown in Figure 5.1. The cytokine interleukin-6 (IL-6)
signals through a type I cytokine transmembrane receptor complex
composed of the ligand binding IL-6 receptor-α chain (IL-6Rα) and the
signal-transducing glycoprotein gp130. Binding of IL-6 to its receptor
IL-6Rα and to gp130 (step 1 in Figure 5.1) causes the dimerization of
the IL6Rα-gp130 receptor complex which leads to the activation of the
JAK kinases by transphosphorylation (step 2). JAK is constitutively
bound to gp130 in both its active and its inactive form. Active JAK
phosphorylates several tyrosine residues of the cytosolic part of gp130

Figure 5.1: Molecular model of IL-6
induced JAK/STAT signalling. The

molecular mechanism is explained in
the text. Next to the involved protein,
we depict the respective protein mod-
ules, in the form of coarse place. The

gene and mRNA module of SOCS3

are also defined by a coarse place. The
protein degradation module of SOCS3

is given as a coarse transition. The
coarse nodes holding the Petri nets
describe the molecular mechanisms

of each component. In Figure 5.2
we exemplary depict the gp130 pro-

tein module. (adapted from [118])
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Figure 5.2: The gp130 protein module.
At the extracellular part, the gp130 gly-
coprotein contains an Ig-like domain
and a cytokine-binding module. Both
domains are responsible for forming
a complex with IL-6 and IL6-R. The
intracellular part of gp130 has an
interbox 1-2 region, where JAKs are
constitutively bound. Downstream of
this binding site the gp130 receptor
has five critical tyrosine residues (Y759,
Y767, Y814, Y905, Y915), which are
phosphorylated by activated JAK. The
phosphotyrosine pY759 is the binding
site of SHP2 and SOCS3 via their
SH2 domain, whereas STAT proteins
can interact via their SH2 domain
with the other phosphotyrosines in
gp130. In the corresponding Petri
net model of the gp130 protein, the
extracellular binding site of IL-6 and
the intracellular binding site of JAK1

to the Box 1 and Box 2 sites are rep-
resented as coarse transitions. Also,
coarse transitions describe the phos-
phorylation and dephosphorylation
reactions of the five tyrosines by JAK1

and SHP2, respectively. Specifically,
three coarse transitions are assigned to
each tyrosine residue downstream of
Y759 describing the phosphorylation
mechanism by JAK1, the dephos-
phorylation event by SHP2, and the
binding interaction with STAT3. To
the right of the coarse transitions
representing the phosphorylation and
dephosphorylation of Y759 (upper part
of the figure), the Y759-P place is also
connected with two coarse transitions
describing the binding interaction with
SHP2 and SOCS3. The boxes on the
right side of the figure exemplify four
interface networks that are included in
the corresponding coarse transitions
in the gp130 module. (text and figure
adapted from [126])

(step 3). The STAT transcription factor binds to phosphotyrosines
of gp130 and is subsequently phosphorylated by active JAK (step 4).
Phosphorylated STAT proteins dimerize and translocate to the nucleus
(step 5) to activate the transcription of multiple genes including
SOCS3 (step 6). SOCS3 acts as a negative feedback regulator of JAK
in binding to phosphorylated Y759 of gp130 (step 7) causing the
inactivation of the JAK kinase and in turn decreasing the rate of
STAT3 phosphorylation. The SHP2 phosphatase counteracts JAK by
dephosphorylating phosphotyrosines of gp130 (step 8), while JAK
phosphorylates SHP2, which releases SHP2 from the receptor complex
(step 9).

For each of the involved components (IL-6, IL-6RA, gp130, JAK,
STAT, SOCS, and SHP2), we created a protein module based on
detailed knowledge of their interactions described in the literature,
see Figure 5.1. In the case of SOCS3, we added a gene and an mRNA
module to define its biosynthesis, as well as a protein degradation
module. In Figure 5.2 we exemplary depict and expalin the gp130

protein module. The module of gp130 with its functional units (ligand
binding site, binding sites for JAK1 and phosphotyrosine motifs
representing binding sites for SHP2, STAT3 and SOCS3) is designed
according to the 3D structural model of the gp130 protein. For the
sake of a clearly readable model structure, we represent the crucial
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Figure 5.3: Simulation of the modu-
larly composed JAK/STAT signalling

model and comparison with experi-
mental data. To collect experimental
data, human embryonic kidney cells

(HEK293) stably expressing the human
IL-6 receptor a (gp80) were stimulated

with a 6 minutes pulse of IL-6 (20 ng
ml 1). Cells were harvested at the in-

dicated time points and subsequently
analysed by immunoblotting with

specific antibodies against pSTAT3,
pJAK1, pSHP2, and HSP70. The de-
tection of HSP70 served as loading
control. Data are presented as the

mean standard deviation from n = 5

to 10 independent experiments. Ab-
solute concentrations of pSTAT3 and

pSHP2 were analysed by quantitative
immunoprecipitation using recom-

binant STAT3 and SHP2 proteins as
calibrators (see [119] for original data.
In (A), (B), and (C) we plotted the ex-

perimental data next to the simulation
results for (A) the relative activation

of JAK1 (pJAK1), (B) pSTAT3, and
(C) pSHP2. The model output qual-

itatively matches the experimental
data on both the stimulus-induced

phosphorylation of JAK1, STAT3

and SHP2 and the plateaus reached
after removal of the IL-6 stimulus.

(text and figure adapted from [126])
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functional units and related molecular events by coarse transitions.
Each phosphotyrosine (see also Figure 5.1) is connected to at least
three coarse transitions, one describing the phosphorylation, another
describing the dephosphorylation of the receptor motif.

The remaining coarse transitions describe the binding of an interac-
tion partner to the respective phosphotyrosine motif. Phosphorylation
and dephosphorylation of the receptor motif, as well as binding of
a signalling component, occur in principle through the same mech-
anism for each phosphotyrosine motif within gp130. Because of
reoccurring motifs, the network structures describing the detailed
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kinetic mechanisms are represented as submodels of the respective
coarse transitions (Figure 5.2, boxes).

The constructed modules have been tested for their structural in-
tegrity using Charlie [141]. The structural analysis of the modules
confirmed the expected structural properties as given in Section 3.1.3.
In a next step, the set of constructed and validated modules yields
modularly composed model describing IL-6-induced JAK/STAT sig-
nalling. The behaviour of the composed model for IL-6-induced
JAK/STAT signalling was then tested against previously published
experimental data [119]. In the experimental set-up HEK293 cells
stably expressing gp80 were stimulated with a 6 minutes pulse of
IL-6. The cells were harvested in one minute time intervals to anal-
yse the initial activation of the JAK/STAT pathway in detail. The
dynamics of JAK1, STAT3 and SHP2 phosphorylation were measured
by quantitative immunoblotting as described earlier [119]. All three
species are not phosphorylated in the absence of IL-6. Stimulation
with IL-6 induces a fast increase of phosphorylation of JAK1, STAT3

and SHP2 within minutes. About one minute after the initial stimulus
has been removed by washing the cells, the phosphorylation of the
three proteins reaches a plateau and remains constant within the
experimentally analysed time frame. The model output qualitatively
matches the experimental data on both the stimulus-induced phos-
phorylation of JAK1, STAT3 and SHP2 and the plateaus reached after
removal of the IL-6 stimulus, see Figure 5.3.

5.2 Signal Components involved in Nociception

Pain is a complex phenomenon depending on physiological, psycho-
logical, and social aspects. On the physiological level, the sensation
of pain is a result of the integration of information from the cen-
tral, peripheral, and autonomous nervous system, as well as from
the immune system [29]. Describing pain on a physiological level
requires detailed knowledge about its molecular basis. A variety of
membrane components and intracellular signalling molecules have
been identified that play key roles in pain sensation, e.g. G-protein-
coupled receptors (GPCR), ion channels, receptor tyrosine kinases,
cytokine and hormone receptors. Those membrane components, in
turn, activate a plethora of signalling cascades like the cAMP path-
way and calcium signalling [29, 68]. However, the quantitative and
qualitative relationships between the different intracellular signalling
mechanisms acting downstream of the receptor to which those sub-
stances bind are still poorly understood [68]. Due to the complexity
of the various pain aspects and the lack of knowledge about the
involved molecular mechanisms, pain therapies are in many cases
not successful. A mechanism-based pain therapy is mostly missing,
rendering undertreated pain a serious public health issue (see [68]
and references therein).

In this case study, we focus on molecular components involved
in the peripheral nervous system, in particular in nociceptors, the
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Figure 5.4: Modular nociceptive sig-
nalling model. Each coarse place con-

tains a protein module of its related
nociceptive component, see text. The

oval grey shaded logical places rep-
resent the involved non-genetic com-
ponents. The modules are arranged

according to their localization (intracel-
lular, membrane components, extracel-
lular). The dashed arcs indicate the in-
teractions among the involved compo-
nents that are hidden on the top-level

due to the hierarchical structuring and
logical nodes. (adapted from [106])

peripheral terminals of dorsal root ganglion (DRG) neurones. Noci-
ceptors are responsible for the detection of noxious stimuli and their
transduction into electrical energy. An action potential is induced if
the electrical energy reaches a threshold value, which depends on
the sensitization of the nociceptors themselves. The case study on
nociceptive signalling describes a subset of pain-relevant (analgesia)
components involved in the excitation and inhibition of DRG neurons
and has been published previously in [93, 94, 95, 106, 117].

The latest version of the nociceptive signalling model comprises 38

protein modules, see Figure 5.4, including

• members of the G-protein-coupled receptor family (GPCRs) like
opioid, cannabinoid, muscarinic, prostaglandin, and β-2-adrenergic
receptors,

• adenylyl cyclases (Type VIII, V, I),
• numerous protein kinases, e.g. different subunits of PKA and their

isoforms, PKC (α, ε, ζ), and CaMK (II, IV)
• protein phosphatase 2A and calcineurin
• ion-channels, e.g. voltage-dependent calcium channels (CaV1.2,

CaV1.3, CaV3.3) and capsaicin receptor (TRPV1),
• Calmodulin, and
• phospholipase Cβ
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The protein modules describe the interaction with second messen-
ger like DAG, Ca2+ and cAMP, which play a major role in nociception.
The composed model consists of 713 places and 775 transitions spread
over 325 hierarchically nested pages, with a nesting depth of 4. The
modules have been constructed based on clinical pain literature (given
in [93]). Details of each module in Figure 5.4 can be looked up in [93].

5.3 Phosphate Regulatory Network in Enterobacteria

Inorganic phosphate (Pi) limits the biosynthesis of nucleic acids and
other cellular components of enteric bacteria like Escherichia coli (com-
pare Figure 5.5). Thus, Pi may turn into a growth-limiting factor if
its availability becomes low in the environment, even if sufficient
nutrients are offered [18].

Figure 5.5: Biochemical model for sens-
ing extracellular inorganic phosphate
(Pi) and transduction of the signal to
control gene expression. The PstSCAB
transmembrane complex serves as
an ABC transporter for the uptake of
environmental Pi . At high extracellular
Pi concentration, the binding protein
PstS is fully saturated, and this signal
is relayed to the cytoplasmic part of
the receptor that forms an inhibitory
complex with a second transmem-
brane protein, the PhoR kinase via
the cytoplasmic protein PhoU. If Pi
is low, the complex dissociates and
the autophosphorylating kinase PhoR
phosphorylates PhoB, which in its
phosphorylated form binds DNA
to induce gene expression. When Pi
subsequently increases, the complex
with PhoU has formed again, and
PhoBP is dephosphorylated. (redrawn
from [100])

An ABC transporter system, the PstSCAB transmembrane complex
(Figure 5.5 [100]), takes up external Pi. The PstSCAB complex actively
transports external Pi across the cell membrane into the cytoplasm if
sufficient amounts of Pi are available. In this case, the pstSCAB trans-
porter system forms a complex with the PhoU protein and the PhoR
histidine kinase [100]. Due to the complex formation, the autophos-
phorylation of PhoR is inhibited by PhoU. PhoU is a chaperone-like
PhoR/PhoB inhibitory protein. The PstSCAB complex becomes in-
active if the external amount of Pi is too low. In consequence, PhoU
dissociates from the complex and allows the autophosphorylation
of PhoR. PhoR then phosphorylates and thereby activates the tran-
scription factor PhoB. The phosphorylated form of PhoB, namely
PhoBP, activates the transcription of at least 31 genes organised into 9

transcriptional units (eda, phnCDEFGHIJKLMNOP, phoA, phoBR, phoE,
phoH, psiE, pstSCAB-phoU, and ugpBAECQ) [100]. One of the activated
genes, phoA, encodes the PhoA protein. PhoA is a bacterial alkaline
phosphatase that is exported across the membrane into the periplasm.
There, PhoA converts organic phosphorous compounds to Pi. The
produced Pi is then taken up into the cell to overcome the limitation.
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Figure 5.6: Modular phosphate regula-
tory network model. Each coarse place

in the modular model representation
contains a module. The grey shaded

places represent the non-genetic com-
ponents of the model e.g. ATP, ADP,

inorganic phosphate P_i, organic phos-
phate source P_org. The modular phos-

phate regulatory network model con-
sist of eight protein modules (PstS,

PstC, PstA, PstB, PhoR, PhoU, PhoA,
PhoB). In the case of PhoA, there ex-

ists also a gene module (gPhoA), a
mRNA module (mPhoA), and a pro-

tein degradation module (dPhoA). The
Petri net representation of the mod-

ules PhoB, gPhoA, mPhoA and dPhoA
is given in more detail on the right

side, see also text.(adapted from [116])
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If sufficient amounts of Pi are available, the system is switched off
again, and PhoBP is dephosphorylated.

In [114], we gave a monolithic Petri net of a simplified version of
the phosphate regulatory circuitry. For simplicity reasons, the model
considers only the synthesis of PhoA in response to the phosphory-
lated PhoB. The case study has been previously published in [116].
To cover the entire functionality, the modular Petri net model is
composed of eight protein modules (PstS, PstC, PstA, PstB, PhoR,
PhoU, PhoA, PhoB). In the case of PhoA, there exists a gene mod-
ule (gPhoA), a mRNA module (mPhoA), and a protein degradation
module (dPhoA), see Figure 5.6. The Petri net representation of the
modules PhoB, gPhoA, mPhoA and dPhoA is given in Figure 5.6.
The PhoB module models the interaction with PhoR including the
complex formation and the transfer of the phosphate residue from
PhoR to PhoB. It also represents the binding of PhoB to the regula-
tory site of the phoA gene if PhoB is phosphorylated. The gPhoA
module represents the activation of the phoA gene in response to its
interaction with the phosphorylated PhoB protein. The phoA gene
also has a low basal activity state that can be triggered even if the
phosphorylated PhoB protein is not present. The mPhoA module
models the transcription of the active phoA gene into the respective
mRNA and the translation of the mRNA into the PhoA protein. The
dPhoA module describes the degradation of the PhoA protein.
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Examples of Application

The applicability of the BMKfr relies on the generous reuse of mod-
ules in variable combination. The MIRIAM-compliant module anno-
tation, see Section 3.2, provides information to understand and to
execute the modelled molecular mechanisms described by a particular
module, respectively a modularly composed model. The MIRIAM-
compliance is a prerequisite to ease the reuse of models [54], and thus
of modules defined in the BMKfr. Modules defined in theBMKfr

can be recombined in any desired composition to create a modularly
composed model. This allows the automatic generation of alternative
models with variable module combinations, see Figure 6.1.

Modules and Annotations organised in the BMKdb

Forward EngineeringTransformation Transformation

Modular Model Composition

Reverse Engineering  

High-Throughput 

Experimental 

Data 

Standard 

Experimental 

Data 

Known 

Biochemical 

Reactions 

SBML

Model

Boolean

Model

Model 2 Model 1 Model 3 

 Algorithmic Model Mutation

Model 1’ Model 1’’ Model 1’’’ Figure 6.1: Generation of alternative
models. Alternative models can be
composed through the rigorous reuse
and recombination of modules from
different sources integrated into the
BMKfr. Applying the algorithmic
model mutation to modularly com-
posed models, allows to generate
even more version of alternative
models with biochemically realistic
modifications automatically. (adapted
from [124])

Composed models may be executed as continuous, stochastic, or
hybrid models or merely be used to simulate a causal sequence of
discrete events qualitatively or subjected to individualised analysis
workflows. Models of desired module combinations can be created
by choosing a respective set of modules from the BMKdb, which
holds a module repertoire of pre-existing, interchangeable, reusable,
and curated (approved) modules. The different module types pro-
vide extensive flexibility in considering components of the proteome,
the transcriptome, and the genome, but also of the metabolome.
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Figure 6.2: Alternative models of the
JAK-STAT pathway. As already men-

tioned in Section 5.1, JAK-STAT sig-
nalling can be activated by several cy-

tokines, interferons and growth factors
and thus, also interacts with other re-

ceptors. The figure shows how protein
modules of different cytokines, trans-

membrane receptors, and modules
representing alternative reaction mech-

anisms of JAK1 and SHP2 may (left
panel) be freely combined yielding al-

ternative modularly composed models
of reaction networks involving IL-6,

Il-11, or LIF signal transduction or
any combination thereof (right panel).

The modular model composition is
mediated through the interface net-

works, indicated by coarse transitions
(boxed squares). Nodes in the interface

networks are defined as logical nodes
to automatically couple matching in-
terface networks. (taken from [126])

Thus, the BMKfr can be applied to any molecular network, ranging
from metabolic to signalling to genetic networks. It even supports
the integration of the different network types due to interface net-
works among different module types. Using prototype modules and
causal/allelic influence modules in combination with reverse engi-
neering approaches, as explained in Section 3.4.2 helps to create new
modules easily and to integrate experimentally obtained data directly.
Also, modules can be generated from existing models, in particular
Boolean models of genetic networks and models defined in SBML [48],
see Section 3.4.3 and 3.4.4. The transformation of such models will
tremendously increase the number of modules available for the model
composition in the BMKdb. But on the other hand, the transformation
also augments the reuse of the source models in the form of modules
and their integration with other modules.

In composing a model from modules, one may choose interactively
and from case to case which components to include, whether or
not to consider protein degradation, RNA stability, or the regulation
of gene expression. During the interactive modular composition of
models one may also choose whether or not to consider alternative
regulatory mechanisms that are suggested by the database in the form
of alternative module versions, see Figure 6.1 and Figure 6.2 for an
example of JAK-STAT signalling as introduced in Section 5.1.
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6.1 Integration of Omic Data

The BMKfr opens exciting prospects regarding algorithmic genera-
tion of new modules. Places in a Petri net may in turn be initialised
by importing high-throughput omic data sets. As in the case of gene
expression data, thousands of genes can be considered in a mod-
ularly composed model by creating new modules from gene and
mRNA prototype modules with conserved graph structure, see Sec-
tion 3.4.2. Or as already explained in Section 3.4.2, high-throughput
omic data sets can be used to construct allelic or causal influence
modules, which allow integrating non-mechanistic correlations into
modularly composed models. Employing gene expression data to
generate modularly composed models allows to specifically consider
the protein composition of different cell types under given physiolog-
ical condition. The presence or absence of certain proteins described
by specific gene expression patterns has a direct impact on the struc-
ture and function of regulatory networks. The automatic generation
of models may provide a formal framework to evaluate correlations
between transcript and protein abundance systematically on a global
scale [115].

6.2 Synthetic Biology

The BMKfr might also apply to the generation of synthetically created
networks with desired properties. The combination of modules of
different organisms from a vast repertoire may provide an effective
and efficient way to search systematically for synthetically created
networks with desired properties.

Figure 6.3: Synthetic and synthetically
rewired by combing modules with
altered interface networks. Synthetic
and synthetically rewired networks
can be generated by re-engineering
modules through altering, adding, or
deleting the interface networks of a
module representing interaction with
other components. In silico rewired
networks can easily be queried for
pre-defined properties. Based on the
BMKdb supporting the BMKfr, such
approaches could be automatized by
integrating the module annotation.
The use of the module annotation
avoids combinatorial explosion by
only generating biochemically realistic
scenarios. (taken from [126])
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In this context, one visionary approach of the BMKfr is the syn-
thetic rewiring of modularly composed modules by altering the in-
teractions described by the interface networks shared among the
modules [126]. As shown in Figure 6.3, let us assume two naturally
occurring networks with hardly any crosstalk inheriting two different
kinases, Kinase 1 and Kinase 2, each phosphorylating three distinct
target proteins. From these two naturally occurring networks, we
want to design a new artificial network. In the artificial network, the
substrate specificity of Kinase 2 is altered to functionally couple the
natural networks. The Kinase 2 module now connects the two natural
networks by adopting the interface networks of Target 1 and Target
2. We also eliminate the interface networks of Target 5 in Kinase 2

for demonstration purposes. The structural modifications of Kinase
2 module alter the systems behaviours. In principle, re-engineering
modules by deleting existing and introducing new interface networks
specific to other modules could be performed entirely automatically
and systematically, while rigorously incorporating the module an-
notation. Here, the module annotation is essential for recombining
modules in the form of biochemically realistic scenarios.

The systematic exploration of the functional potential of re-engineered
(mutated) networks, could be an ongoing effort in combining the
steadily increasing biological knowledge with the steadily increasing
(distributed) computing power. Presumably, corresponding system-
atic experimental approaches will remain out of reach for the simple
reason that such experiments imply tremendous amounts of work.

The evolution of molecular networks in silico can be performed by
incorporating known mechanisms of molecular evolution (including
gene shuffling, etc.) and setting selection criteria.

6.3 Mutation Studies

Automatically generated models from modules may be used for in
silico mutant screens. Here, possible types of mutations could be
deletions or hyperactivations. By employing the module annotation,
in silico mutations might even consider changes in the specificity
of molecular interactions. The experimental random mutagenesis
screens might be complemented by in silico mutagenesis, see also Sec-
tion 6.2, to reveal and explain the occurrence of complex phenotypes.
Furthermore, in contrast to in silico mutagenesis, e.g. algorithmic
model mutation (see Section 3.3.3) or automatic rewiring/reengineer-
ing of modules (see Section 6.2), experimental mutagenesis will be
restricted to model organisms for ethical reasons. In the case of
multicellular organisms, in silico mutagenesis might be employed to
understand the consequences of somatic mutations or to overcome
the restrictions of embryonic lethality. Hence, the exhaustive rewiring
of networks in silico seems to be a promising approach to understand
the functionality of networks, see also Figure 6.4.
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Figure 6.4: In silico mutagenesis.
Alternative models for the in silico
mutagenesis can be constructed by the
algorithmic model mutation and by
integrating (automatically) rewired/re-
engineered modules in the modularly
composed models. Each alternative
model can be tested for defined
properties using model checking
methods. Therefore, it is necessary to
construct the state space of each model.
Models can be clustered according to
their properties, which might allow
identifying models with desired or
interesting behaviour.

6.4 Personalised Medicine

As a long-term prospect, such approaches may also have relevance
in the field of personalised medicine, e.g. by evaluating the conse-
quences of altered gene expression patterns. As described in the
Section 6.1, the integration of the gene expression data of a patient
might affect the selection of modules subjected to the modular model
composition and the initialisation of the model according to the ex-
pression level of genes, see also Figure 6.5 for illustration. Modules
can be modified to represent individual mutations of a patient, e.g. the
dysfunction of a particular protein due to germinal mutations (Hunt-
ington’s disease, cystic fibrosis, Marfan syndrome, etc.) or somatic
mutations (retinoblastoma, cancer, etc.). The reengineered modules
can be reused as alternative module version in the modular model
composition process. Again, approaches explained in the sections
before about the synthetic rewiring of modules can be incorporated.
Later on, the consequences of altered protein functions in a modularly
composed model can be evaluated in a suitable analysis workflow,
which might explain the patient’s symptoms and predict possible
targets for therapeutic mechanism-based interventions strategies.
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Figure 6.5: Design of patient-specific
models. Patient data can be used to
(1) rewire/re-engineer the structure

module structure according to the ef-
fect of a mutation, (2) select modules
according to gene expression data or

(3) to set the marking according to
gene expression data, other omic data,

or drugs to test in a model. Note: Mod-
ules are represented by coarse places.

Gene Mutation Gene Expression Data
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Other Omic Data
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7
Conclusion & Outlook

7.1 Conclusion

The thesis aims to establish a versatile and unifying modular mod-
elling framework for multi-scale biomodel engineering in systems
biology called BioModelKit framework (BMKfr), see Chapter 3. The
BMKfr integrates the ideas of modularization, redundant interface
networks for the model composition, and database management. The
overall benefits and advantages of the BMKfr will be summarised be-
low. In this context, we chose Petri nets, see Chapter 2, as a modelling
language due to its operational semantics and outstanding ability to
model and analyse biological systems.

Modularization is one general key concept in engineering, which
splits up a system into smaller parts called modules. Thus, a mod-
ularly composed system can be characterised by functionally parti-
tioned modules with well-defined interfaces. In general, modules
can be independently created, as well as reused and recombined in
different systems. Even more, modules as smaller parts of a system
are easier to handle and to maintain. Modularity mainly increases
the flexibility in systems design. It also eases the augmentation
and diminution of a system by adding or excluding modules. The
application of modularization to biomodel engineering reduces the
complexity of monolithic models and as a consequence thereof in-
creases the chance of reusing models, respectively submodels in the
form of modules.

The modularization concept suggested in this thesis aims at an
a priori construction of modules and the modular composition of
models. As opposed to other modularisation approaches, in our
approach modules are specifically designed for the purpose of au-
tomatic model composition in variable combination. Furthermore,
modules in our approach are defined on a macromolecular level, each
molecular component, in particular, components with genetic infor-
mation (gene, mRNAs, and proteins), are interpreted as a functional
module with interfaces to represent their interactions. The module
describes the functionality of a component and its interactions with
other components.

Based on the different types of genetic components four distinct
modules types have been defined to meet their specific requirements:
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protein modules, gene modules, mRNA modules and protein degra-
dation modules. The discrimination of these four different modules
types allows to separate different types of genetic components and
processes they are involved in, e.g. gene regulation, translation, tran-
scription, protein interactions, protein degradation, etc. The module
types above might exist in different versions to capture different levels
of abstraction or competitive hypothesis on molecular mechanisms.
So far, these four module types rely on detailed mechanistic infor-
mation about the respective components. We introduced two more
module types, causal and allelic influence modules, which can be
applied if the mechanistic information is missing. Causal and allelic
influence modules constructed by reverse engineering approaches are
especially valuable for directly integrating large datasets obtained by
high-throughput technologies into modularly composed models and
to test for the effect on the behaviour of the model.

In engineering, the redundancy of critical components or functions
of a system has the intention to increase the reliability of a system.
The interface networks shared among the modules introduce redun-
dant information. But the modular model composition as defined in
the BMKfr relies on redundant interface networks. In a modularly
composed model, only components specified by modules with match-
ing interface networks can interact in silico. Here, redundant interface
networks ensure the correct functioning of modularly composed mod-
els. Futhermore, interface networks can be employed to incorporate
tissue specificity into modularly composed models.

Modules can be obtained by direct and reverse engineering ap-
proaches, as well as by transforming existing models into modules.
The direct engineering approach is liable to a deep curation process
from literature, bio databases, experimentally obtained data and other
suitable resources. Modules constructed by this approach provide
a detailed representation of the structural organisation of the mod-
elled component (binding sites, functional sites, domains, sites for
post-translational modifications) in context with its function. Reverse
engineered modules rely on data-driven approaches. Mainly gene,
mRNA, causal and allelic influence modules can be constructed by
such approaches from large data sets as provided by the plethora of
high-throughput techniques in systems biology. In the case of SBML
models, models are decomposed into modules of different types ac-
cording to the nature of the involved components. Boolean models are
translated into an equivalent set of gene modules. The transformation
of models into modules increases the universal applicability of the
BMKfr, but also enhances the reusability of the source models and
facilitates their integration with other network types. Modules that
have been constructed by any of the approaches above have to pass
a validation test, where modules have to adhere certain structural
properties depending on the module type. The validation ensures a
uniform quality of the module structure.

As discussed by Le Novère et al. in [54] most published biological
models are lost due missing access or insufficient characterisation.
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Therefore, proposed a standard for curating and encoding models
called MIRIAM (Minimum Information Requested In the Annotation
of Models) [54]. We integrate the ideas outlined by MIRIAM [54] into
the BMKfr by defining an XML-based module annotation language
called BioModelKit mark-up language (BMKml), which allows pro-
viding a rich-annotation of each module to document the underlying
Petri net model and information sources incorporated during the
construction process. The rather compact form a module compared to
a monolithic biomodel combined with detailed annotations provided
by the definition of the BMKml eases the understanding of the mod-
elled components and molecular mechanism defined in the module.
By providing access to the modules through the BMKdb, see below,
and a MIRIAM compliant [54] documentation of the modules, we
accomplished the fundamental prerequisite to reuse models, here in
the form of defined modules, as suggested by Le Novère et al. in [54].

Based on the key principles of the modular model composition
from an ad hoc chosen set of modules, we introduced two possible vari-
ations of the modular model composition. The first one integrates the
idea of algorithmic model mutation. The algorithmic model mutation
allows mimicking single/double gene knock-outs by systematically
deleting modules from the modularly composed model. Another ap-
proach simulates structural mutations of a component by modifying
the underlying model structure of a module. This method can also
be guided by annotations mapped to the module. The application of
the algorithmic model mutation generates sets of alternative models,
which can be submitted to individual analysis workflows to identify
models with desired behaviours. Such models might be beneficial
to increase the understanding of the modelled systems and thus, to
make predictions about their behaviour.

The second variation extends the modularly composed model with
spatial information. Each component in the modularly composed
model is equipped with spatial attributes, to store its current location.
The spatial attributes of each component allow keeping track of its
movement depended on of its state of interaction. Based on the
spatial extension of modularly composed models important spatial
aspects of cells and tissues can be integrated into a model without
rebuilding it. Spatial aspects of cells and tissues might include the
cell size and geometric shape, the cellular compartmentalization, and
distribution of molecular components. Those spatial aspects might be
of importance for the behaviour of a system and can be investigated in
silico based on the proposed spatial extension of modularly composed
models.

Our de novo modularization approach facilitates the handling of
models. Since modules of biomolecular systems are easier to maintain
by steady curation processes and to update. The achieved modular
representation of models facilitates the integration of new experi-
mental insights and hypotheses. Modules defined in theBMKfr can
be recombined in any desired composition to create a modularly
composed model, which allows generating alternative models with
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variable module combinations automatically. Composed models may
be executed as continuous, stochastic, or hybrid models or merely be
used to simulate a causal sequence of discrete events qualitatively or
subjected to individualised analysis workflows. Through the coupling
of different module types in a composed model metabolic, signalling
and gene regulatory networks can be easily integrated with each other.
The different module types provide extensive flexibility in consider-
ing components of the proteome, the transcriptome, and the genome.
Thus, the user can decide, which processes to include, e.g. protein
degradation, RNA stability, or the regulation of gene expression, in
the composed model by interactively choosing a set of respective
modules. Alternative models can also be obtained by applying the
model mutation algorithms. Using prototype modules or allelic and
causal influence modules in combination with reverse engineering
approaches helps to create new modules easily and to integrate ex-
perimentally obtained data directly. During the interactive modular
composition of models, one may also choose whether or not to con-
sider alternative regulatory mechanisms that are suggested by the
database in the form of alternative module versions. Analysing the
set of alternative models due to the rigorous reuse of modules might
be extremely helpful to identify models with desired or interesting
behaviour.

Databases are vital for the handling of large datasets as they occur
in all fields, as well as in systems biology due to the high-throughput
technologies. In consequence, organising the growing number of
models in databases is inevitable. Therefore, we decided to ab initio
store modules defined in the BMKfr in a database, called biomodel
kit database (BMKdb), which is a relational MySQL database, see
Chapter 4. The BMKfr offers not only a repository for the model
and annotation files of a module. The BMKdb explicitly stores and
links the content of the model and annotation files. This allows
the strict organisation of modules. Modules can be retrieved by
any matching criteria from the BMKdb. The database structure also
supports the module versioning. Distinct modules of one and the
same component, due to different abstraction levels or competing
hypothesis on molecular mechanisms, can be integrated into the
BMKdb. Modules of different versions can be easily exchanged in the
modularly composed model.

A web-interface provides access to BMKdb, called BioModelKit
web-interface (BMKwi, www.biomodelkit.com), and facilitates other
interested users to work with the modules stored in the BMKdb.
Through the BMKwi the user can browse and search for modules.
Modules can be organised in user-defined collections. The BMKdb

supports the automatization of the modular model composition pro-
cess. From a module collection, the user can call the model composi-
tion, which comprises three different features: (1) modular composi-
tion of the unmodified model, (2) modular composition of algorithmi-
cally mutated models or (3) modular composition of the unmodified
model and its spatial extension. The user is also allowed to submit

www.biomodelkit.com
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modules, which are released after a manual curation process by the
administrator. Through the BMKwi the user gets also support to
prepare the model annotation of the submitted modules. Users, and
particularly experts on specific molecular components are asked to
provide comments to the released modules. This interaction hopefully
guarantees a high quality of the content offered by the BMKfr.

We proved the applicability of our proposed modular modelling
concept with three case studies investigating the interleukin-6 induced
JAK-STAT signalling, nociceptive mechanisms involved in the percep-
tion of pain, and the phosphate regulatory network in enterobacteria,
see Chapter 5. This case studies demonstrate how to handle large
networks with the proposed modularization concept of the BMKfr;
its power on integrating information on the metabolomic, proteomic,
transcriptomic, and genomic level; and its applicability to prokaryotic
and eukaryotic systems.

The BMKfr has great potentials within the cope of systems biology
based on the reusability of modules and their variable recombination,
see Chapter 6. The ideas introduced in this thesis support the inte-
gration different kinds of omic data into modularly composed models.
Approaches in synthetic biology can be supported by the in silico
generation of synthetic and synthetically rewired networks based on
the proposed modular modelling concept. The concept of synthetic
and synthetically rewired networks, as well as the algorithmic model
mutation, might also complement experimental mutagenesis studies.
Also, the BMKfr might have prospects in personalised medicine by
integrating patient specific data into modularly composed models.

Finally, the BMKfr with all its features introduced in this the-
sis is a versatile and unifying framework for multi-scale biomodel
engineering with excellent prospects in several examples of appli-
cation.

7.2 Outlook

The BMKfr introduced in this thesis offers a number of potential
areas for future research:

• We will continue to improve the implementation of the BMKfr,
which can be accessed through the BMKwi, by including more
features beneficial for the handling of modules and the modular
composition of models.

• We will insistently work on the release of more modules in the
BMKfr to capture a plethora of metabolic, gene regulatory and
signalling pathways in prokaryotes and eukaryotes.

• We will work on additional algorithms to support the reverse
engineering of modules and integration of those modules by the
use of the BMKwi.

• The naming of nodes in the Petri net graphs of modules is of
significant importance for the correct matching of interface network,
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and thus of the modular composition of models. We will work
on a model ontology to provide a strict naming convention for
nodes to ensure the correct composition of models. This might
also include the development of a plug-in for the modelling tool
Snoopy [120] to reuse content stored in the BMKdb while the
data-driven construction of modules.

• We will also work on the integration of patient specific data in the
modular model composition process to offer an in silico solution
for personalised medicine. Patient data will be integrated to in-
dividualise modularly composed models by either specifying the
set of modules to include in a composed model, to initialize the
marking of the composed model, or to design module versions of
altered components or molecular processes affected in a patient.
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