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Zusammenfassung

Der Simplex-Algorithmus ist einer der bekanntesten und am héufigsten verwendeten
Algorithmen zur Losung von linearen Optimierungsproblemen. Obwohl er in der
Praxis sehr effizient ist, wurde keine Version des Simplex-Algorithmus jemals theo-
retisch als ein Polynomialzeitalgorithmus nachgewiesen, im Gegensatz zu seinem
Hauptkonkurrenten, der Interior-Point-Methode. Die beiden Rivalen unterscheiden
sich in ihrer Ideologie: Wéahrend die Interior-Point-Methode, wie der Name schon
verrdt, durch das Innere des Polyeders der zuldssigen Losungen lduft, bewegt sich der
Simplex-Algorithmus entlang der Kanten dieses Polyeders.

Es gibt viele vorangegangene Arbeiten, die zeigen, dass jede bekannte Version des
Simplex-Algorithmus auf Instanzen stof3t, bei denen der von ihm gefolgte Pfad im
zuldssigen Polyeder eine exponentielle Anzahl von Kanten enthélt. Noch problema-
tischer ist, dass trotz Jahrzehnten der Forschung immer noch nicht bekannt ist, ob
der Durchmesser jedes Polytops durch ein Polynom in seiner Dimension und der
Anzahl der Facetten begrenzt werden kann (eine Annahme, die als polynomiale Hirsch-
Vermutung bekannt ist), was eine notwendige Bedingung fiir die Existenz einer Poly-
nomialzeitversion des Simplex-Verfahrens darstellt.

In Kapitel 2 dieser Arbeit beschreiben wir eine Konstruktion, die eine Umgehungslo-
sung fiir dieses Problem bietet. Wir prasentieren eine erweiterte Formulierung, die
eine bestimmte entspannte Version der Hirsch-Vermutung etabliert. Wir verbessern
unsere Konstruktion fiir nieder-dimensionale Polytope, passen sie an, um Monotonie
zu berticksichtigen, und stellen sicher, dass alle beschriebenen Erweiterungen in
stark polynomialer Zeit berechnet werden konnen. Dariiber hinaus reduzieren wir
das allgemeine lineare Optimierungsproblem auf Optimierung iiber den vorgestell-
ten Erweiterungen. Damit beweisen wir, dass, wenn es eine Pivotregel fiir den
Simplex-Algorithmus gibt, bei der man die Anzahl der Schritte durch ein Polynom im
Durchmesser des Polyeders der zuldssigen Losungen begrenzen kann, das allgemeine
lineare Optimierungsproblem in stark polynomialer Zeit gelost werden kann.

Zusétzlich zu dem oben erwidhnten Problem der exponentiell langen Pfade wird der
Simplex-Algorithmus durch Degeneration behindert. In der Tat kann er an einer
degenerierten Ecke des zulédssigen Polyeders fiir exponentiell viele aufeinanderfolgen-
den Iterationen ,festhdangen“. Wihrend es viele vorangegangene Arbeiten gibt, die
zeigen, wie dieses Phdnomen fiir verschiedene spezielle Klassen von linearen Opti-
mierungsproblemen vermieden werden kann, wurde noch kein einheitlicher Ansatz
vorgeschlagen.

In Kapitel 3 beweisen wir, dass es immer méglich ist, die Anzahl der aufeinanderfol-
genden degenerierten Pivots, die der Simplex-Algorithmus ausfiihrt, auf n —m—1
zu begrenzen, wobei n die Anzahl der Variablen und m die Anzahl der Gleichungen
eines gegebenen linearen Programms im Gleichungsformat ist. Wir erhalten auch eine
Schranke fiir die Gesamtanzahl der Simplex-Pivots und zeigen, dass diese in der Tat
stark polynomial fiir bestimmte Klassen von kombinatorischen LPs ist.

vii






Abstract

The simplex algorithm is one of the most popular and widely used algorithms for
solving linear programming problems. Although being very efficient in practice, no
version of the simplex was ever proven to be a polynomial time algorithm from the
theoretical prospective, in contrast to its main competitor, the interior point method.
The two rivals differ in ideology; while the interior point method, as the name suggests,
runs through the interior of the polyhedron of feasible solutions, the simplex proceeds
along the edges of it.

There has been a lot of prior work showing that every popular simplex version runs
into instances where the path that it follows on the feasible polyhedron contains an
exponential number of edges. Ever worse than that, despite decades of research,
is is still not known whether the diameter of every polytope can be bounded by a
polynomial in its dimension and the number of facets (an assumption known as the
polynomial Hirsch conjecture), which is a necessary condition for the existence of a
polynomial time simplex method.

In Chapter 2 of this work, we describe a construction that offers a workaround for the
latter issue. We present an extended formulation that establishes a certain relaxed
version of the Hirsch conjecture. We improve our construction for low-dimensional
polytopes, modify it to account for monotonicity, and ensure that all described exten-
sions can be computed in strongly polynomial time. Moreover, we reduce the general
linear programming problem to optimization over the presented extensions. With that
we prove that if there is a pivot rule for the simplex algorithm for which one can bound
the number of steps by a polynomial in the diameter of the polyhedron of feasible
solutions, then the general linear programming problem can be solved in strongly
polynomial time.

In addition to the issue of exponentially long paths mentioned above, the simplex
algorithm is obstructed by degeneracy. In fact, it can “get stuck” at a degenerate vertex
of the feasible polyhedron for exponentially many consecutive iterations. While there
have been many prior works showing how to avoid this phenomenon for a number of
special classes of linear programs, no unified approach has ever been suggested.

In Chapter 3 we prove that it is always possible to limit the number of consecutive
degenerate pivots that the simplex algorithm performs to n — m — 1, where n is the
number of variables and m is the number of equality constraints of a given linear
program in standard equality form. We also obtain a bound on the total number of
simplex pivots and show that it is, in fact, strongly polynomial for certain classes of
combinatorial LPs.
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Introduction and motivation

Linear programming (LP) is the problem of finding a point within a given polyhedral
region that optimizes a specified linear function. Mathematically we write

min clx

1.1
s.t. Ax<b (1.1)

where x € R? is a variable vector, ¢ € R? is the objective vector, and A € R”*? and
b € R™ are the system matrix and the right hand side, respectively, of the system of
linear inequalities Ax < b. The feasible region {x € R | Ax < b} of a linear programming
problem is a polyhedron (a finite intersection of closed half-spaces induced by the row
inequalities of the system). The polyhedral structure of the feasible region, together
with the linearity of the objective function, calls for the invention of optimization
techniques specifically tailored for linear programming. Historically the first, and still
one of the most widely used methods for solving linear programming problems is the
simplex algorithm introduced by Dantzig (1951).

Geometrically, the simplex algorithm proceeds from vertex to vertex of the feasible
polyhedron along the edges of it, improving the objective function value with each
move, until it reaches an optimal vertex. See Figure 1.1 for an illustration.

Behind the scenes, the simplex algorithm relies on the concept of basis, where a basis
corresponds to an inclusion-wise minimal set of tight inequalities which defines a
vertex of the underlying feasible polyhedron. In each step, it performs a basis exchange
by replacing one constraint currently in the basis with a different one. Such an exchange
is called a pivot. From a geometric perspective, a basis exchange identifies a direction
to move from the current vertex. The simplex algorithm only considers pivots that
yield an improving direction, with respect to the objective function to be optimized. As
the result of pivoting, it is possible for the algorithm to either stay at the same vertex,
or to move to an adjacent vertex of the underlying polyhedron with a better objective
function value. We refer to a pivot of the former type as degenerate, in contrast to a
pivot of the latter type, which will be called non-degenerate. Refer to Figure 1.2 for an
illustration of the both types of pivots. The decision on how to perform these basis
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Fig. 1.1: A simplex path in orange on a polytope. Image: Prof. Dr. Marc Pfetsch, TU Darmstadt.

exchanges (i.e., which inequality leaves and which inequality enters the basis) is made
by the pivot rule which constitutes the core of the simplex algorithm.

Even though the simplex algorithm performs as a linear time algorithm for many real
world linear programming models (see, e.g., the survey of Shamir, 1987), none of the
numerous pivot rules that have been introduced over decades yields a polynomial time
version of it. It should be noted, that a variant of the simplex algorithm, the shadow
simplex, has been shown to have polynomial smoothed complexity (see, e.g., Bach
and Huiberts (2025); Borgwardt (1987, 1999); Dadush and Huiberts (2020); Megiddo
(1986a); Spielman and Teng (2004); Vershynin (2009)).

The search for a polynomial time pivot rule is also considered highly relevant in light
of the question of whether there is a strongly polynomial time algorithm for linear
programming (i.e., an algorithm for which not only the number of bit-operations can
be bounded by a polynomial in the entire input length, but also the number of its
arithmetic operations can be bounded by a polynomial in the number of inequalities
and in the number of variables), which is most prominent in Smale’s list of 18 open
problems for the 21st century (Smale, 1998).

What does actually prevent the simplex from being a polynomial time algorithm? The
two main obstructions are

(1) the length (i.e., the number of edges) of a path that the simplex takes on the
feasible polyhedron might be exponential,
(2) degeneracy, causing so-called cycling and stalling.

2
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Fig. 1.2: The simplex algorithm optimizing the depicted optimization direction opt is cur-
rently at the vertex u of the pyramid with the basis consisting of the three inequalities cor-
responding to the colored facets. Here will we refer to an inequality by the color of the
corresponding facet. If the blue inequality leaves the basis, the simplex “slides down” the
edge formed by the green and the facets until it “bumps” into the lower facet of the
pyramid at the vertex v. The new basis obtained by this non-degenerate pivot is comprised of
the inequalities defining the green, the , and the lower facets. If, on the other hand,
the inequality leaves the basis, the simplex tries to move along the direction z formed
by the green and the blue inequalities. However this direction is outside of the feasible poly-
hedron, and the movement along it is obstructed by the white facet located in between the

and the blue ones. Therefore the simplex stays at the vertex u. The inequality defining
the said white facet, together with the green and the blue inequalities constitute the new basis
after this degenerate pivot.

The first issue is known to affect all popular pivot rules. They are cleverly tricked into
visiting an exponential number of vertices of some concrete “twisted” polytopes (see,
e.g., Avis and Friedmann (2017); Black (2024); Disser and Hopp (2019); Goldfarb (1994);
Goldfarb and Sit (1979); Hansen and Zwick (2015); Klee and Minty (1972); Terlaky and
Zhang (1993); Zadeh (2009) and the references therein) before reaching an optimal one.
Even worse than that, it is not known whether a path of polynomial (in the dimension
and the number of facets) length between the starting vertex and an optimal one
always exists in polytopes.

The second point refers to situations when the linear programming problem is de-
generate, meaning the feasible polyhedron has at least one degenerate vertex, i.e., a
vertex, such that the number of facets that contain it is larger than the dimension of the
polyhedron (the apex of the pyramid in Figure 1.2 is an example for that). Whenever the

3
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simplex algorithm encounters such a vertex, it can potentially fall into an exponentially
long sequence of degenerate pivots, termed stalling or, even worse, loop indefinitely, a
phenomenon called cycling.

Our work, titled Short Paths for the Simplex Algorithm, is dedicated to studying the
two mentioned issues and obtaining results that at least somewhat lower the hurdles
preventing the simplex from becoming a (strongly) polynomial time algorithm. This
work is structured as follows. We work on problem (1) in Chapter 2 by introducing
a construction that allows us to guarantee the existence of a path of linear (in the
number of inequalities) length between the starting vertex and an optimal vertex of a
feasible polyhedron, without resorting to degeneracy or blowing up the problem size
too much. We modify our construction to account for monotonicity and improve it
for two- and three-dimensional polytopes. Moreover, we prove that if there is a pivot
rule for the simplex algorithm for which one can bound the number of steps by a
polynomial in the diameter of the polyhedron of feasible solutions, then the general
linear programming problem can be solved in strongly polynomial time. After that, we
switch to the problem (2) in Chapter 3. We show that it is always possible to bound
the number of consecutive degenerate pivots that the simplex algorithm performs
by n—m -1, where n is the number of variables and m is the number of equality
constraints of a given linear program in standard equality form (which will be formally
defined later). As a result, we ensure the existence of a short (monotone) path leading
out of degeneracy in the basis exchange graph of a polytope. Moreover, we provide a
bound on the total number of simplex pivots and test our pivot rule on a benchmark
LP dataset.

Chapter 2 is based on the work of Kaibel and Kukharenko (2024) while most of the
results in Chapter 3 are presented in Kukharenko and Sanita (2024).

In the remainder of this chapter, the reader will find notations and definitions used
throughout this work.

1.1 Preliminaries

In this section we introduce our basic notations without going into much detail. If
appropriate, we point the reader to the relevant literature. Concepts that are only
relevant for certain parts of the work may be defined locally.

Throughout this work, we assume familiarity with basic facts about linear algebra,
graph theory, optimization, and polyhedra. For detailed background information
we refer to the books of Schrijver (1986) and Ziegler (1994). The basic concepts of
algorithm complexity follow the standard textbook of Garey and Johnson (1990).

4
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We use O and 14 for the all-zeros and all-ones vectors in R%, respectively. When the
subscript is clear from the context, it will be dropped. For a row-vector a € R"*%\ {DT}
and a number B € R we call the sets H=(a, 8) := {xe R? |ax < 8} and H™ (a, f) := {x €
R? | ax = B} a halfspace and a hyperplane, respectively. Moreover, we naturally extend
the above notation by H? (@, ) to denote the set {x € R? | ax o B} where o € {<,>}.

For A€ R™*% and b e R™ we use P=(A, b) to denote the polyhedron {x € RY | Ax < b}.

For a matrix A € R"*4

, arow subset I < [m], and a column subset J € [d], we use Aj ;
to denote the submatrix of A indexed by the corresponding rows and columns. Instead
of Ay g and Apmy,; we also write Aj . and Ay j, respectively, and for I = {i}, ] = {j}
where i € [m] and j € [d] we use A; &, Aj s, and Ajj. We use Ay for the largest absolute
value of a sub-determinant of A and A 4y with 1 < k < min{m, d} when restricted to
k x k sub-determinants. Similarly, for a vector b € R and I < [m], the notation by is
used to denote a vector consisting of the entries of b indexed by I. We use ||b||; and
[|bll2 to denote the 1-norm and the Euclidean norm of b, respectively. The Euclidean
(straight line) distance between two points u, v € R is given by ||u — v|[,.

We use the concept of encoding size in accordance with Schrijver (1986)[p.15].

A polyhedron that has vertices is called pointed. A bounded polyhedron is called
a polytope. Note that every polytope is naturally a pointed polyhedron. We call a
d-dimensional polytope a d-polytope. A d-dimensional polytope P c R? is called
full-dimensional. A d-polytope is called simple if each of its vertices is contained in
exactly d facets. We denote the convex hull of aset S < R4 by conv{S}.

The diameter of a polytope P is the smallest number x such that in the graph of P
formed by its vertices and one-dimensional faces (edges) of P every pair of vertices is
connected by a path with at most « edges.

The next concept play a central role in this work. Extended formulation of a polytope
P c R%is a pair (Q, ), where Q is a higher-dimensional polyhedron called an extension
of P and 7 is an affine map called projection, such that 7(Q) = P. For an illustration
see Figure 1.3. Extended formulations play an important role in “reducing complexity”
of linear programming problems in various ways, since the lifted problem might be
easier, in some sense, than the original one.

In this work we write linear programming problems in inequality form (1.1) in Chapter
2 and in the so-called standard equality form

T

min c¢'x
s.t. Ax=b (1.2)
x=0

in Chapter 3. Although many authors define LP in standard equality form as a max-
imization problem, we still use this wording for (1.2), since simply multiplying our
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Fig. 1.3: A three-dimensional simple extension Q of the two-dimensional P. Note that the
diameter of Q is by one smaller than the diameter of the original polytope P.

objective c by —1 brings our LP to this standard representation. Note that (1.2) is a spe-
cial case of (1.1) (after writing Ax = b as Ax < b and —Ax < —b, and the non-negativity
constraint as —x < 0). Conversely, a problem in the inequality form can be transformed
into the standard equality form by splitting the unknowns x = x*—x~, where x*,x~ =0
and introducing a slack variable for each inequality.

When dealing with both forms of linear programs, (1.1) and (1.2), we naturally work
with two types of systems of linear inequalities and equalities:

Ax<b (1.3a)
Ax=b,x=0 (1.3b)

Both of these systems have their own concepts of basis and basic feasible or infeasible
solution. We introduce these notions next. A basis, also called a row basis, of a system
(1.3a)/of an LP (1.1) with an m x d-matrix A and rank(A) = d is a subset B < [m] with
|B| = d such that the submatrix Ag . of A formed by the rows of A indexed by B is
non-singular. Such a basis defines the basic solution xB = AE}* by of the system (1.3a).

A basis, also called a column basis, of a system (1.3b)/of an LP (1.2) with an m x n-matrix
A and rank(A) = mis a subset B < [n] with |B| = m and A4, p being non-singular. The

6
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point x € R"” with xp = A;IB b, xy = O where N := [n] \ B is a basic solution of (1.3b)
with basis B.

If a basis B with a basic solution x of a system (1.3a) or (1.3b) satisfies all inequalities
of the said system, both the basic solution x and the basis B are called feasible, and
infeasible otherwise. Note that the feasible basic solutions are exactly the vertices of
the polyhedra defined by (1.3a) and (1.3b), respectively.

Since a basis of a system (1.3a)/(1.3b) depends only on the matrix A, sometimes we
will refer to it as simply a basis of 4, if the associated system is clear from the context.
Note that bases of systems (1.3a) and (1.3b) differ in concept. While a basis of (1.3a)
only contains inequalities, that are tight at the defined vertex, a basis of (1.3b) can
be associated with a subset of variables having their non-negativity constraints not
(necessarily) tight. To avoid confusion, from now on we will refer to a basis of Ax<b
as a row basis. The word basis will be reserved for column bases of systems (1.3b).

A row/an inequality of (1.3a) is called redundant, if its deletion does not affect the
feasible set. A system Ax < b without redundant rows is called irredundant. Observe
that a d-dimensional polytope in R? defined by an irredundant system Ax < b is
simple if and only if each vertex of it is defined by exactly one row basis.

Let xB be a basic feasible solution of (1.3a) with basis B, then EqAxsb(xB) ={ie[m]]|
Aj « x8 = b;}. The feasible and the basic cones at xP are the sets C (E qAx< b(xB)) ={xe
R? | Agg,, B« X=Oland C(B) :={x € R? | Ap 4 x < D}, respectively.

Finally, we briefly turn to the concept of LP duality. For more information see, e.g.,
Dantzig (1963). For a pair of primal and dual problems

max c’x (1.4)
(P) s.t. Ax<b :
min y'b
(D) s.t. ATy=c (1.5)
y=0

we use the concept of weak duality: ¢’ x = yT Ax < y b holds for any pair (x, y) of
feasible solutions to (P) and (D), respectively. If the latter inequality is tight, then x and
y are optimal solutions to (P) and (D), respectively.



Polytope extensions with linear diameters

2.1 Introduction

As we've already mentioned in the previous chapter, the simplex algorithm proceeds
along (monotone) paths in the graph of a polytope. And therefore, for each polytope
P the worst-case running time of the simplex algorithm (over all linear objective
functions) is bounded from below by the diameter of P. Hence, the diameter of
polytopes is necessarily bounded by a polynomial in the number of its facets if a
polynomial time pivot rule for the simplex algorithm for linear programming exists.

Warren M. Hirsch conjectured in 1957 (see, e.g., Ziegler, 1994) that the diameter of each
d-dimensional polytope with 7 facets is bounded from above by n — d. Disproving this
bound took substantial effort and was achieved only 53 years later by Santos (2012)
using a polytope in dimension 43 with 86 facets and diameter 44. Today, it is known
that no upper bound better than % (n—d) is valid in general (Matschke et al., 2015). The
belief, that the diameter of polytopes is bounded by a polynomial in d and n is called
polynomial Hirsch conjecture. The best-known upper bounds in terms of n and d are
are derived from a result by Kalai and Kleitman (1992), who presented an upper bound
of n'°829+2_ Todd (2014) improved the latter bound to (n — d)!°%¢, which was further
refined by Sukegawa (2019) to (n— d)108:0(d/og, d) - Another line of research, which was
carried out by Bonifas, di Summa, Eisenbrand, Hihnle, and Niemeier (2014), lead to
the upper bound O (A% n3°log,(nA 4)), where A is the integral coefficient matrix of
some inequality description of a rational polytope P. The latter result was improved to
0 (ngA?4 In(nA 4)) by Dadush and Héhnle (2016).

While not presenting a new bound on the diameters of polytopes, the first main con-
tribution (see Theorem 2.7, and in particular Corollary 2.8) we make is to prove the
following: for each d-dimensional polytope P in R? with 7 facets that satisfies a certain
non-degeneracy assumption there is a simple (d + 1)-dimensional extension Q with
n + 1 facets and diameter at most 2(n — d). We further show in Theorem 2.14 that
such an extension Q is even computable in strongly polynomial time if a vertex of P is
specified within the input.
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We remark that without requiring the number of facets and the dimension of Q to be
polynomially bounded in n and d, the polytope Q can trivially be chosen as a high-
dimensional simplex (which even has diameter one). However, the number of facets of
that simplex equals the number of vertices of P (which might easily be exponential in n
and d). Similarly, without the requirement of Q being simple such a construction can
trivially be obtained by forming a pyramid over P (which has diameter at most two).
On the other hand, the results in Kaibel and Walter (2015) show that the combination
of those two requirements on Q implies some (non-degeneracy) condition on P.

Our second main contribution is to use the extensions of small diameters that we
described in the first part in order to show the following: in order to devise a strongly
polynomial time algorithm for the general linear programming problem it suffices
to find a polynomial time pivot rule for the simplex algorithm just for the class of
linear programs whose feasible region is a simple polytope whose diameter is bounded
linearly in the number of inequalities (see Theorems 2.21 and 2.24). Thus, even if
it turns out that the polynomial Hirsch conjecture fails, it still might be possible to
come up with a strongly polynomial time algorithm for general linear programming by
devising a polynomial time pivot rule for only that special class of problems.

This chapter is organized as follows. Section 2.2 introduces a special type of extended
formulations that we call rock extensions which will allow us to realize the claimed
diameter bounds. Special properties of rock extensions for two- and three-dimensional
polytopes are discussed in Section 2.3. In Section 2.4 we ensure that the procedure we
devise in Section 2.2 for obtaining a rock extension with certain additional properties
(that we need to maintain in our inductive construction) can be adjusted to produce a
rational extension having its encoding size polynomially bounded in the encoding size
of the input. We consider a reduction of the general linear programming problem to its
special case for rock extensions in Section 2.5 and upgrade our extensions to allow for
short monotone paths in Section 2.6.

2.2 Rock extensions

Let Ax < b be a system of linear inequalities with A € R”*%,b € R™. Then we call
the family of hyperplanes H™ (A1 «, b1),..., H (Am «, bm) the hyperplane arrangement
associated with Ax < b and denote it by H(A, b). Vertices and lines of a hyperplane
arrangement are 0-dimensional and 1-dimensional intersections of its hyperplanes,
respectively. The polyhedron P=(A, b) is called a chamber of H(A, b).

9



K. KUKHARENKO CHAPTER 2. POLYTOPE EXTENSIONS WITH LINEAR DIAMETERS

2.2.1 Foundations

We start by introducing two types of systems of linear inequalities which will be crucial
throughout this chapter.

Definition 2.1. A feasible system of linear inequalities Ax < b with A€ R4, be R™
is said to be non-degenerate if each vertex of H(A, b) is contained in exactly d of the
m hyperplanes. The system is called totally non-degenerate if, for any collection of k
hyperplanes of H(A, b), their intersection is a (d — k)-dimensional affine subspace for
1 < k < d and the empty set for k > d.

Note that total non-degeneracy implies non-degeneracy. Additionally, observe that
non-degeneracy can be achieved using perturbation arguments. We elaborate on that
in Section 2.5 in more detail. We introduce corresponding notions for polytopes in the
following way.

Definition 2.2. A polytope is called strongly non-degenerate, respectively, totally non-
degenerate if there is a non-degenerate, respectively, totally non-degenerate system of
linear inequalities defining it.

We observe that each strongly non-degenerate polytope is full-dimensional and simple.

Definition 2.3. A non-degenerate system Ax < b with A € R™% b e R™ is said to
be simplex-containing if there exists a subset I < [m] of with |I| = d + 1 such that
P=(Aj,by) is ad-simplex.

Note that each strongly non-degenerate polytope P can be described by a simplex-
containing non-degenerate system Ax < b. This is due to the fact that one can add d +1
redundant inequalities defining a simplex S 2 P to any non-degenerate description of
P without violating non-degeneracy (in fact, later we establish that a single auxiliary
inequality is enough to ensure the simplex-containing property). In addition, it turns
out that any totally non-degenerate system defining a polytope is simplex-containing.
We proceed with a proof of this fact.

Proposition 2.4. Let P < R? be a d-polytope given by a totally non-degenerate system
Ax < b of m linear inequalities. There exists a subset I < [m] with|I| = d + 1 such that
the polyhedron P=(A I,%,» br) is bounded.

Proof. Consider an inequality A; «x < b; that defines a facet F; of P. First, we show
that the vertex v € P that minimizes A; . x over P is unique. For the sake of contra-
diction, assume that a k-dimensional face F with k = 1 minimizes A; ». Note that
F ¢ F; holds due to full-dimensionality of P, and hence the intersection of d — k hyper-
planes H=(Aj «,bj),je J<[m],|J| =d—k,k =1, i ¢ ] containing F and the hyperplane

10
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H=(A; &, b;) is empty, which contradicts total non-degeneracy. Then, the d inequali-
ties in Ax < b satisfied at equality by v and the inequality A; »x < b; define a simplex
around P, since each edge containing v is A; x-increasing and therefore each extreme
ray of the feasible cone emanating from v intersects H~ (4; «, b;). O

Next, we introduce a special type of extensions we will be working with.

Definition 2.5. Let P be the polytope defined by a system Ax < b with A R™*%, be R™.
Any polytope Q :={(x,z) € R4+1 | Ax+az<b,z=0} withac IRT0 will be called a rock
extension of P.

Fig. 2.1: A rock extension with diameter eight of the regular 20-gon.

Note that a rock extension Q together with the orthogonal projection onto the first d
coordinates indeed provides an extended formulation of P. We henceforth assume
that P is a full-dimensional d-polytope. Then Q is a (d + 1)-dimensional polytope that
has at most m + 1 facets, including the polytope P itself (identified with P x {0}) as the
facet defined by the inequality z = 0. In case Ax < b is an irredundant description of
P, arock extension Q has exactly m + 1 facets defined by z= 0 and A; xx+ a;z < b;
for i € [m], where the latter m inequalities are in one-to-one correspondence with the
facets of P. See Figure 2.1 for an illustration.

We call the facet P of Q the base and partition the vertices and edges of Q into base and
non-base vertices and edges accordingly. A vertex of Q with maximal z-coordinate is
called a top vertex. A path in the graph of a rock extension will be called z-increasing
if the sequence of z-coordinates of vertices along the path is strictly increasing. To
shorten our notation, we denote a hyperplane {(x, z) € R4+1 | z= h} and a halfspace
{(x,2) € R%*! | z < h} by {z = h} and {z < h}, respectively. We also use the notation
B%(q) for the d-dimensional open Euclidean ball of radius e centered in g € R%.

11
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Definition 2.6. Lete > 0 be a positive number. We say that a rock extension Q of P is
¢-concentrated around (o, h) € R x R-o if

1. (o, h) is the unique top vertex of Q,
2. Bg(o) c P, and

3. all non-base vertices of Q are contained in the open ball Bf“ ((0, h)).

It turns out that maintaining the e-concentrated property opens the door for inductive
constructions of “well-behaved” rock extensions.

2.2.2 The main theorem of rock extensions

We proceed with the result that provides the foundation for the further development of
the theory of rock extensions.

Theorem 2.7. For every d-polytope P given by a simplex-containing non-degenerate
system Ax < b of m linear inequalities, every e > 0, and every point o with B (0) < P,
there exists a simple rock extension Q that is e-concentrated around (o, 1) so that for
each vertex of Q there exists a z-increasing path of length at most m — d to the top vertex
(0,1).

For fotally non-degenerate polytopes the latter result immediately implies the follow-
ing bound that is only twice as large as the bound originally conjectured by Hirsch.

Corollary 2.8. Each totally non-degenerate d-polytope P with n facets admits a simple
(d +1)-dimensional extension Q with n+ 1 facets and diameter at most2(n— d).

For a more general result for all strongly non-degenerate polytopes along with algorith-
mic considerations see Section 2.5. Now we turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. We proceed by induction on the number m of linear inequalities
in Ax<b.

Suppose first that we have m = d + 1. Then the polytope P is a d-simplex and hence
the (d + 1)-dimensional pyramid Q over P with (o, 1) as the top vertex has the required
properties.

So let us consider the case m = d + 2. Since Ax < b is simplex-containing, there exists
an inequality A; »x < b; (i € [m]\ I can be chosen arbitrarily for some I as in Definition
2.3), whose deletion from Ax < b yields a system of linear inequalities defining a
polyhedron P. Note that P is bounded due to the simplex-containing property of
Ax < b. By the induction hypothesis and due to B¢ (0) < P < P, for every 0 < y < € the

12
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polytope P defined by the simplex-containing non-degenerate system A; . x < by with
J := [m]\ {i} admits a simple rock extension Q that is y-concentrated around (o, 1) with
each vertex having a z-increasing path of length at most m — d — 1 to the top vertex
(0,1) of Q.

To complete the proof we pick a certain 0 < p < € and add the inequality A; xx+a;z < b;
with an appropriate choice of a; to the inequality description of the u-concentrated
extension Q of P in order to obtain a simple rock extension Q of P that is e-concentrated
around (o, 1). We then show that the vertices of Q admit similar paths to the top vertex
as the vertices of Q do.

Here we choose the coefficient a; > 0 that determines the “tilt angle” of the correspond-
ing hyperplane in such a way that H=((A; «, @), b;) is tangential to Bﬁ“ ((0,1)) with
Bff“ ((0,1)) € H%((Ai «, a;), b;), which is possible since Bﬁ(o) C B4 o0)cPduetopu<e.
Then the inequality A; »x + a;z < b; will not cut off any non-base vertices from Q (as
they are all contained in Bff“ ((0,1))), and hence (0, 1) is the unique top vertex of Q as
well. Note that each “new” non-base vertex of Q is the intersection of H~ ((Ai,*, ai), b,-)
with the relative interior of some non-base edge of Q connecting a base vertex of Q
cut off by H=((A;,«, ), b;) to a non-base vertex contained in B{**((o0,1)). We use the
following statement, which will be proven separately.

Claim 2.9. There exists a number D = 7 such that for every 0 < u < % with u < € the
Euclidean distance from any “new” non-base vertex of Q to (0,1) is less than uD.
Hence by choosing any 0 < ¢ < min {%, %} (in particular, u <€), we guarantee that all
non-base vertices of Q (including the “new” ones) are contained in B¢*!((0,1)).

As Q is simple, every base vertex of Q has exactly one edge not lying in the base, which
will be called the increasing edge (since the z-coordinate of its non-base endpoint is
greater than 0, the z-coordinate of its base endpoint). Note that a z-increasing path
connecting a base vertex u to the top vertex necessarily contains the increasing edge
incident to u.

Now suppose v is a (base or non-base) vertex of Q, that is a vertex of Q as well, then v €
H< ((A,-,*, a;), bi) holds, which for the non-base vertices follows from their membership
in Bﬁ“ ((0, 1)) and the choice of a;, and for the base vertices this is due to Ax < b being
non-degenerate. In particular, v is still contained in exactly d facets of Q. Hence v has
the same z-increasing path of length at most m — d — 1 to the top vertexin Q as in Q,
since v itself and all non-base vertices of @ are contained in H< ((A,-,*, a;), bl-).

Finally consider a “new” base vertex v of Q, which is the intersection of the hyperplane
H~ ((Ai,*, a;), bi) with the relative interior of some base edge e of @ (again due to the
non-degeneracy of Ax < b). Denote the endpoint of e contained in H” ((A; x, a;), b;)
by u. Since u is a base vertex of Q, it has a unique increasing edge which we denote by

13
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=

Fig. 2.2: Visualization of the proof of Theorem 2.7 for two-dimensional polytopes. [llustrated
by Maryia Kukharenka.

g. Lets denote the other endpoint of g by w. Then, since w € B,((0,1)), the hyperplane
H~ ((A,-,*, ai), bi) intersects g in a relative interior point that we denote by y. As Qis
simple, both v and y are contained in exactly d facets of Q and there exists a 2-face F of
@ containing both edges e and g incident to u. Since the hyperplane H~ ((Ai,*, a;), b,-)
intersects both edges e and g in points v and y, respectively, it intersects F in the
edge {v, y} of the rock extension Q. Since there exists a z-increasing path of length at
most m—d — 1 connecting u and the top vertex (o, 1) in @, the same path with only
the edge {w, u} replaced by the two edges {w, y},{y, v} (which are both z-increasing
since u is a base vertex and y is contained in the relative interior of the increasing edge
{w, u}) connects the base vertex v to (0,1) in Q and has length at most m — d. Note
that every “new” non-base vertex of Q arises like the vertex y described above, thus
admitting a z-increasing path to the top vertex (o, 1) of length at most m — d (in fact at
most m —d —1). Therefore, Q is indeed a simple rock extension that is e-concentrated
around (o, 1) with each vertex of Q admitting a z-increasing path to the top vertex of
length at most m — d. See Figure 2.2 for an illustration. O

We still have to prove Claim 2.9. For that, recall the notions of a row basis and a basic
solution of a system Ax < b.

Definition 2.10. Let; denote the maximum Euclidean distance from any (feasible or
infeasible) basic solution of the system Ax < b to the point o. And let 6, be the minimum
nonczero Euclidean distance from any (again feasible or infeasible) basic solution u of
Ax < b to any hyperplane induced by a row of Ax < b.

Proof of Claim 2.9. Let u be a base vertex of Q cut off by H=((A; «, a;), b;). We denote
the other vertex of the increasing edge of u by w. Note that the following argumenta-
tion only relies on w € Bﬂ((o, 1)) and the fact that w doesn’t lie above {z = 1}, which
will be useful for considerations in Section 2.4. Let y be the intersection point of
H:((A,-,*, ai), bi) with the edge {u, v}. We aim to bound the distance from y to (o, 1).

14
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(1)

w’ y r u

Fig. 2.3: Objects of dimensionality d + 1, d, 1, and 0 are depicted in gray, black, ,
and respectively. The gray ball has radius yu. The points w, w', y, y/, and u are
contained in a two-dimensional plane, which, however, in general does not contain r and ¢.

Note that y lies below {z = 1} because w € {z < 1}. Furthermore, due to the choice
of a;, the hyperplane H=((A; x,a:), b;) is tangential to B{*!((0,1)) at a point we de-
note by . Note that ¢ lies above {z = 1} since we have Bff(o) C B%(0) < P. Thus the
line through ¢ and y intersects {z = 0} in a point r. Since both ¢ and y are contained
in H=((Aj %, ai),b;), so is that line. We denote the angles Zryu = Ztyw,Zwty, and
Zyur by a, v, and 6, respectively. See Figure 2.3 for an illustration.

For the sake of readability, we further use |ab| for the length of the line segment
[a, b] (the Euclidean distance) between any two points a and b. Applying the law of

sines to Aryu we obtain SI3¢ = Sm5

Turl ~ Tyrl:
T%}‘T = |SLI/lyY| Solving both equations for sina we get lur]

the last equality for |wy| we obtain

On the other hand, for Atyw the same implies

ltw]
Twyl

ur|

V7] sind =

siny. Then, solving

[tw]|-|yr|siny - 2ullyul +lurlyul
lur| sind lurl-hy,ju,r

lwyl| =

) 2.1)

where the last inequality holds since |tw| < dist(¢, (0,1)) + dist(w, (0,1)) < 2y, siny <1,

lyr| < |yul +|ur|, and sind = lyy“”] where hy,;, 1 is the height of vertex y in Aryu.

We denote the orthogonal projections of y and w to the hyperplane {z = 0} by y' and v/,
respectively. Since | yy'| is the distance between y and the hyperplane {z = 0} containing
both u and r, we conclude hy,,,,; = |yy’'|. Moreover, the triangles Ayuy’ and Awuw’

. _ _ lyul lyul
are similar and therefore hy, ;) = |yy'| = iyl ww'l = iy (=1, where the
last inequality follows from the fact that W € By((o0,1)). Plugging that estimate into

(2.1) gives
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wyl < 2plyul +lurDlyul(yul +lwyl) _ 2p(yul+wyl) (1 N Iyul). (2.2)
lur|(1-wlyul 1-p lur|
Finally we bound the length of all the remaining line segments appearing in the
right-hand side of (2.2) to obtain an upper bound on |wy|. First, we observe |yu| <
lyul +|wyl| < dist(u, (0,1)) + p < /62 + 1 + p. Second, |ur| = dist(u, H=(A; «, bi)) = 6.
Plugging those inequalities into (2.2) we obtain

2u(1/83+1+p) VOi+1+p
= (1+ 5, )

601+1.5
1;2 ),

lwy| <
2.3)

<4u(d; + 1.5)(1 +

where for the last inequality we used p < 0.5 and /6%+1 < §; + 1. It follows that

dist((0,1),y) <u+|wyl < uD, with D := 4(6; + 1.5)(1 + 61;—21’5) +1=7. O

2.2.3 Paths in hyperplane arrangements

In this subsection, we briefly elaborate on some properties of paths on rock extensions
and establish a connection to paths on hyperplane arrangements.

By the definition of a rock extension Q of P = P=(A, b), the orthogonal projection of any
path on Q that does not only use the base edges onto the original space runs through
the interior of P for at least some part. Therefore, it is hard to interpret the projected
path in terms of the original system Ax < b.

However, if we restrict the scope to the simple rock extensions Q and totally non-
degenerate systems Ax < b, a different relation to the original space can be observed.
In fact, every path on Q can be associated with a path in the hyperplane arrangement
H(A, b) where it is allowed to take “long steps” along the lines of the arrangement. Let
us elaborate on how the said correspondence works. Firstly, all the base edges of Q are
naturally contained in the lines of #(A, b). Secondly, since each non-base edge of Q
is contained in d facets of it, the intersection of the corresponding d hyperplanes in
R is a basic (feasible or infeasible) solution of Ax < b due to total non-degeneracy.
Moreover, for any two consecutive non-base edges e; and e, on a path T in Q let us
denote the sets of d facets of Q containing e; and e; by U; and U, respectively. Let
U :=U;nU,, then |U| = d -1 since Q is simple. Again, the hyperplanes of H(A, b),
corresponding to facets of U intersect along the line / of the arrangement, that contains
the two (feasible or infeasible) basic solutions ©; and u, of Ax < b associated with e;
ans ey, respectively. Therefore, moving from e; to e» along the path T in Q corresponds
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Fig. 2.4: An path on a rock extension (top view) and the associated blue path on the
hyperplane arrangement in the original space. The correspondence of edges of the
path to vertices of the blue path is visualized by dotted lines.

to taking a “long step” from u; to u, along the line / possibly “jumping” over vertices
of H(A, b). See Figure 2.4 for an illustration.

Note that by allowing for such “long steps” along the lines of a hyperplane arrangement
H(A, b) in R? associated with a totally non-degenerate system of linear inequalities
Ax < b, one can get between any two vertices u and v of H (A, b) in at most d steps in
fact. This is due to the fact that given the sets U and V of hyperplanes containing u
and v, respectively (recall |U| = |V| = d due to total degeneracy), we can, starting at u,
follow any line of the arrangement until it intersects a hyperplane from |V \ U| (which
is bound to happen due to total non-degeneracy). We denote the found vertex by w
with W being the set of hyperplanes that contain it and repeat the latter for w and v.
Note that |[V'\ W| = |V \ U| - 1. The rest follows by induction.

2.3 Low-dimensional polytopes

This section improves the diameter bound from the last section for rock extensions of
two- and three-dimensional polytopes.

Let us consider again the setting of the proof of Theorem 2.7. The main source of
improvement for d € {2,3} originates from applying the induction hypothesis to a
polytope obtained by deleting a batch of inequalities defining pairwise disjoint facets
of the original polytope. It turns out that subsequently constructing a rock extension
by adding all of the batch inequalities back one after another (with coefficients a as in
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the proof of Theorem 2.7) has the effect of increasing the combinatorial distances to
the top vertex by at most one overall. Next we elaborate on the latter fact.

Let Ax < b be a simplex-containing non-degenerate system of m = d + 3 inequalities
defining a polytope P = P=(A, b) with an interior point o, and let € be a positive number
such that BY(0) < P. Furthermore, let the inequalities A; ,x < b; and A jxX < bjwith
i,j € [m]\ I (where, again, I is as in Definition 2.3) and i # j define disjoint facets
F;and F j of P, respectively. Note that each vertex of F | is contained in H< (Ai % bi)
and vice versa. Consider the polytopes Pj:= P=(Aj x, by) with J:= [m]\ {i} and Px =
P=(Ag, bg) with K := [m] \{i, j}. Theorem 2.7 establishes that for a positive number
V= min{%, #} < € with D as in Claim 2.9, the polytope Px admits a simple rock
extension Qg that is v-concentrated around (o, 1) such that for every vertex of Qg there
exists a z-increasing path of length at most m — d — 2 to the top vertex (0, 1). Now we
argue that adding the inequality A;j X+ a;jz < b; to a system describing Qk (with a;
chosen as discussed in the proof of Theorem 2.7, where we use p := min{%, 51} fore
in said theorem), and then further adding A; «x+ a;z < b; (with a; as in the proof of
Theorem 2.7 again) yields a simple rock extension Q of P that is e-concentrated around
(0,1) and has diameter at most 2(m — d — 1). In other words, despite subsequently
adding two cutting halfspaces, the length of all paths to the top has increased by at
most one.

Let v be a “new” base vertex of Qj, which is the intersection of H=((4; «,a;), b;)
with the relative interior of some base edge e of Qg, admitting a z-increasing path
to the top vertex of Q; of length at most m —d —1 as in the proof of Theorem 2.7.
Since v is identified with a vertex of facet F; of P and since F; and F; are disjoint,
veH <((Ai,*, ai), bi) holds and hence v is a vertex of Q as well. Moreover, recall that
all non-base vertices of Q; are vertices of Q since they are contained in Bﬁ*l ((0, 1)) c
H<((Aj %, ai), b;) and hence they admit an increasing path of length at most m — d — 2
to the top of Q. Therefore, v admits the very same z-increasing path of length at most
m—d —1 to the top vertex of Q as in Q;. On the other hand any “old” base vertex u of
Qy (which is a base vertex of Qg too) admits a path to the top vertex of Q; of length at
most m —d — 2. Since the vertices of the latter kind are the only ones that could be cut
off by A; «x+ a;z < b; when constructing Q, all the “new” base and non-base vertices
of Q admit an increasing path of length at most m — d — 1, respectively, m — d — 2 to the
top vertex of Q.

Note that the above argumentation naturally extends to any number of inequalities,

1 €

E’E}’ vV = £ is

defining pairwise disjoint facets of P where the sequence y = min{ b

extended to p, %, %, %, el

We now exploit the latter consideration to improve the diameter bounds for rock
extensions of two- and three-dimensional polytopes. Let us also note upfront that
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any non-degenerate system of m inequalities Ax < b defining a d-polytope P can be
augmented to a non-degenerate simplex-containing system describing P by adding a
single redundant inequality to Ax < b as follows.Let v be a vertex of P. Then the redun-
dant inequality ax < § can be chosen in such a way that together with d inequalities
defining v it defines a simplex containing P and so that the system Ax < b,ax < fis
non-degenerate. We will elaborate on how to choose a and £ in Section 2.5 in more
detail.

The following statement holds for polygons .

Theorem 2.11. Each n-gon admits a simple three-dimensional extension with at most
n+ 2 facets and diameter at most 21og,(n —2) +4.

Proof. We start with the observation that any irredundant system of inequalities de-
scribing an n-gon P is non-degenerate, since no three distinct edge-containing lines
intersect in a point. Hence, as discussed above, P can be described by a non-degenerate
system Ax < b of m = n+ 1 inequalities, consisting of n edge-defining inequalities for
P and an artificially added inequality. Two inequalities defining edges incident to a
vertex of P and the auxiliary inequality, such that the three of them form a simplex
containing P, are indexed by I < [m]. As in Theorem 2.7, we prove by induction that
for any interior point o of P and every e > 0 with B¢ (0) < P there exists a simple rock
extension Q of P that is e-concentrated around (o, 1) such that for each vertex of Q
there exists a z-increasing path of length at most log,(m — 3) + 2 to the top vertex.
Clearly Q then has diameter at most 2log, (n —2) + 4.

It is easy to see that the claim holds for m = 4, 5. Note that [”7_2] = [’”7_31 of the facets
defined by inequalities from [m] \ I are pairwise disjoint. For that we just pick every
second edge while traversing the graph of the (not necessarily bounded) polygon
P=(Aim) 1% bym\ 1) since the corresponding edges are pairwise disjoint in P as well.
Deleting the inequalities corresponding to all those facets at once yields a polygon P
described by a system of 71 := LmTJ“Q’J < mTJ“O’ inequalities. By the induction hypothesis
for p:= D7 min{%,e} with D as in Claim 2.9 there exists a simple rock extension
6 of P that is p-concentrated around (o, 1) so that for each vertex of 6 there exists
a z-increasing path of length at most log, (/m — 3) + 2 to the top vertex. Subsequently
adding all [”T_Z] deleted inequalities back one by one with appropriate a-coefficients
yields a sequence of [”7_2] rock extensions A;-concentrated around (o,1) with 1y =
t Aks1 = DAk, k =1,.,[%2] - 1. Note that A9 < A; < -+ < Arnz) < €. According to
the arguments discussed above, the last rock extension Q of the latter sequence is
a simple extension of P that is e-concentrated around (o, 1) such that each vertex of
Q admits a z-increasing path to the top vertex of length at most log, (m —3) +2+1 <
log, (243 —3) +2+ 1 =log,(m—3) +2 =log,(n—2) +2. O
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Figure 2.5 illustrates how a rock extension from the latter theorem drastically reduces
the diameter of a 400-gon.

Fig. 2.5: The graph of a rock extension Q of a 400-gon P. The paths of length 200 and 24
determining the diameters of P and Q are highlighted in red and green, respectively.

Similarly, we prove the following bound for three-dimensional polytopes (recall that
each strongly non-degenerate polytope with n facets can be described by a non-
degenerate simplex-containing system of at most m = n + 1 inequalities).

Theorem 2.12. Each three-dimensional polytope P described by a non-degenerate
simplex-containing system with m inequalities admits a simple four-dimensional ex-
tension with at most m+ 1 facets and diameter at most2logs (m—4) +4

3

Proof. Once more, the set of indices of four inequalities defining the simplex con-
taining P is referred to as I. To estimate the number of pairwise disjoint facets of
P, consider the graph Gr whose vertices are the facets of P where two vertices are
adjacent if and only if the corresponding facets are non-disjoint. Since P is simple,
two facets are non-disjoint if and only if they share an edge. Therefore Gr is the graph
of the polar polytope P°. Since P° is three-dimensional, G(P°) is planar, and so is
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the graph G}; := G(P°)\ V(I), where V(I) contains vertices of G(P°) corresponding to
the facets of P defined by the inequalities indexed by I. It is a consequence of the
four-color theorem (Appel and Haken, 1977; Appel et al., 1977; Robertson et al., 1997)
that any planar graph G admits a stable set of cardinality at least m. Let SS V(G})
|V(f% i mT_‘l. By deleting the inequalities
that correspond to the vertices in S from Ax < b, applying the induction hypothesis
as in Theorem 2.11, and subsequently adding these deleted inequalities back with
appropriate a-coefficients we again obtain a simple rock extension with diameter at

most 2(logs (% —4) +2+1) =2(logs > +2+1) = 2logs (m — 4) +4. 0

be a stable set in G}, of cardinally at least

To conclude this section, we note that similar argumentation does not work for some
(strongly non-degenerate) polytopes in dimension four and higher. An example of that
is the polar dual of the cyclic polytope, since any pair of its facets intersect (as any two
vertices of the cyclic polytope of dimension at least four are adjacent). Furthermore,
the dual of the cyclic polytope is simple, since the cyclic polytope is simplicial. A
mild perturbation would even make it strongly non-degenerate (and again by adding
redundant inequalities one can achieve simplex-containment). Therefore, since the
(perturbed) polar of the cyclic polytope of dimension at least four does not even have
two disjoint facets, the same line of reasoning yielding logarithmic bounds in two- and
three-dimensional cases cannot be applied here.

2.4 Rational polytopes and encoding sizes

In this section we consider rational polytopes. We revisit Theorem 2.7 and adjust
its proof to ensure that for a rational polytope P defined by A € Q™4 b € ™ the
constructed rock extension Q is rational as well. We also show that the encoding size of
Q (with respect to the inequality description) is polynomially bounded in the encoding
size of P, denoted by (A, b).

We can assume that A and b are integral, since one can multiply the system Ax < b
by the least common denominator of entries of A and b (which has encoding size
polynomially bounded in (A, b)). We now adjust the proof of Theorem 2.7 so that the
extension Q being constructed meets the additional requirements.

Theorem 2.13. For each polynomial q, (-) there exists a polynomial q(-) such that for
every simplex-containing non-degenerate system defining a d-polytope P = P=(A, b)
with A€ Z™*%, b e Z™, every rationale > 0, and every rational point o such that B%(0) <
P with (e),{0) < q1((A, b)), there exists a simple rational rock extension Q that is €-
concentrated around (o, 1) such that for each vertex of Q there exists a z-increasing path
of length at most m — d to the unique top vertex, and such that {(a) < g2({A, b)) holds for
the coefficient vector a corresponding to the additional variable in the description of Q.
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Proof. Without loss of generality we assume that o = O € int(P), which implies b > 0.

Again, for m = d + 1 the statement trivially holds true for Q = conv{P U {(D,)}} = {x €
R? | Ax + bz < b, z = 0}. Now we consider the induction step.

First, let us obtain explicit bounds on 6, and 6, (from Definition 2.10). Due to Cramer’s
rule and the integrality of A and b each coordinate of any basic solution of Ax < b
is at most A4 p) 4 in absolute value. Moreover, since (det(M)) < 2(M) holds for any
rational square matrix M (Schrijver, 1986, Theorem 3.2), we have A4 ) 4 < 22<A'b>, and
therefore

81 <AapaVd=<2*Pq, (2.4)
Now assume that a basic solution u and a hyperplane H~(A; «, b;) corresponding to a
row of Ax < bwith u¢ H™(A; «, b;) have the Euclidean distance % =0,. Since

the least common denominator of all entries of u is at most A4 p),4 (due to Cramer’s
rule again), and since |A; «u — b;| # 0 and due to integrality of A; «,b; , we obtain

A; wu—b;| = ——. Therefore
| 1,% l| A(A,b),d ]

1

0, =
Aap),allAixll2

> 2%V AN Ay DY (2.5)

where the last inequality follows from the aforementioned bound on A4 p) 4 and from
1Aixll2 < AapyVd < dAap -

Now we can adjust the choice of the constant D from Claim 2.9. We plug (2.4) and (2.5)
into the upper bound on the Euclidean distance between the top vertex (O, 1) and a
“new” non-basic vertex y of Q (see the proof of Theorem 2.7 and Claim 2.9 for more
details):

dist((O, 1), y) < u+lwyl
[+ A, + 1.5)(1+ 51;%)

S
NS
&

(2.4

[z
—
!\7
a1
=

p+4uE*A0 d +1.5)(1+ 24P d +1.5)%4P dA o 1y 1)

INIA

=D

Additionally, later in the proof we will use the fact that u does not exceed either ﬁ or
4db;

T, L 75 for any i € [m]. Therefore, we choose

‘—min{{i} 1
= 147 2111 + by ictmr’ 3

b

Note that this choice guarantees pu < % and p < € as well as that p is rational with
() =O(A, b) +<€)).

w K
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In the proof of Theorem 2.7 we chose a; such that HZ((A,-,*, a;), bi) is tangential to
Bﬁ“ ((D,1)). We now want to quantify this value. Once again, we denote the tangential
point of the ball by ¢ € R?*!. We have (A; x,a;)t = b; since t € H=((A; «, a;), b;) and

Ai*) i r . . <
t=(D,1)+ H((Av',*—,zi))llz“ since ¢ lies on the boundary of BY*!((D,1)) € H=((A; x, a:), b).

Plugging the second equality into the first one, we obtain

1(Ai %, all5
(Aix, @) (O, 1) + mu = a; + /|| Ai <113+ a? = b;.
1,%» U1

Note that b; = b; — a; > 0 holds. By taking a; to the right in the last equation and
squaring both sides we get

2 2., 2 2., .2
(A 15 + ai) = bi + aj; —2a;b;.
After rearranging the terms we obtain a quadratic equation

a;(1—p®) —2a;b; + b — °|| i+ 113 =0

with roots
bt 02— (- g2 (bE — 211 Al D)
ai - 1— 'uz
bi+ 1y /(1= )11 Ay 13 + 2
= 2 .
We deduce that a; = a;(y) := as, since a;r > 13# > p;. Unfortunately, a;(u) is not

necessarily rational. However, we will show that one can use the rational number

bi — (11 Ai x|l + b;)
1—u?

a;(p) :=

)

whose encoding size is polynomially bounded in (A, by + () instead of a;(u) when
constructing the rock extension. This is due to a crucial fact that a;(u) satisfies

ai(W) = @ = a; (W), (2.6)

with ' := ﬁ, which will be shown at the end of this section. Note that due to (u') =
(w +0(d)) (and the above estimate (u) = O((A, b) + (€))), throughout all less than
m recursive steps the encoding length of ¢’ will be bounded by O(m(A, by + {€)) =
O(A, by + (e)) with the “original” €.

Then, in order to construct a rational rock extension Q of P, we use a recursively
constructed rational rock extension Q of P that is in fact 1'-concentrated around (O, 1)
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and add the inequality A; «x+a; (1) < b. Due to Bﬁ,“ ((O,1) = H=((Aj %, ai (i), b;) and
a; (1) = a;(u), we have Bﬁ,‘“l ((D,1)) = H=((Aj %, @i (), b;). Therefore, the argument for
the existence of z-increasing paths to the top vertex of length at most m — d in Q is the
same as in the proof of Theorem 2.7. On the other hand, since &; (1) = a; (), all “new”
non-base vertices of Q are contained in Bf +1 (((D, 1)). Let us prove the latter. Consider
Figure 2.3 once again. The point w is now contained in a smaller ball Bﬁ,” ((O,1) <
B,((D,1)) and lies in {z < 1}. Since &; () = a; (), the hyperplane H=((A; «, @i (1), b;)
intersects the edge {u, w} in a point y that lies on the line segment [w, y]. Therefore
|lwy| < |wy| and hence 7 € BI*! ((D,1)) as well. It remains to prove (2.6).

We start with a sequence of estimations:

u=0
12/ (1= G2 Akl + b7 < B JNA 13+ B2
2||Aj xll2b;=0
< L (11 Ai xll2 + bi) (2.7)
IRIPESIRIN
= L (1141, «111 + by).
Furthermore, we have
-1l =dll-ll2
2q(Il il + bi) = 24 (dll A 1> + bi)
b;=0
< S(I1Ai «ll2 + by)
= E\/IIA- 112+ b% +2|| A; «|12b;
2 %12 i i,x2Vi
2xy<x®+y? (2.8)
< V20 AL B+ )
4(1-pH)=z43 =322
< 4 S ) A B+ 2D
< /(A= )1 Ag £ + 12,

1
z.
forall i € [m].

where 1 - u? = 3 since p <
adb

< 77

K= TG Th+b;

Finally, let us prove (2.6), where we exploit the inequalities
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bi— 45/ (1= 1 A; 1B+

(A =
al(4d) 1- (4d)2
@7 b5 (I1Ai <l +b;)
= 1-(5)?
_ 12 b=t (1Al b))
1_(ﬁ)2 N 1—,,[,2 )
0
1
EZ;lZO 1_% bi—&(HAi,*HlJf‘bi)
= 1 1-p?
) bi_ﬁb,._u—ﬁ)ﬁ(||A,-,*||1+bi)
= 1_’u
H20 ()14 ||1+b)
2 \I 70 % = a;
> e =a; (W
@28)  bi—py/A—)|A; x| B+D?
= l_uz

= ai(y).

2.5 Algorithmic aspects of rock extensions

In this section we show how to compute rock extensions efficiently and how to utilize
them in order to solve general linear programming problems. We first give an explicit
algorithm for constructing a simple rock extension with linear diameter, assuming
some prior information about the polytope. In the second part of this section we
discuss a strongly polynomial time reduction of general (rational) linear programming
to optimizing linear functions over rock extensions.

2.5.1 Computing rock extensions

The proof of Theorem 2.13 shows that for any rational simplex-containing non-
degenerate system Ax < b of m linear inequalities defining a (full-dimensional and
simple) d-polytope P it is possible to construct a simple rational rock extension Q of P
with diameter at most 2(m — d) in strongly polynomial time if the following additional
information is available: an interior point o of P (with (0) bounded polynomially in
(A, by) and a subsystem Aj . x < by of d + 1 inequalities defining a simplex containing
P. Having that information at hand, we can shift the origin to o, scale the system to
integrality, and then construct Q by choosing a-coefficients in accordance with the
proof of Theorem 2.13. For that we explicitly state Algorithm 2.1. Note that it runs in
strongly polynomial time.
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We also need some ¢ > 0 with encoding size polynomially bounded in (A, b) and such
that Bed (O) < P. We make the following explicit choice for €. For Bgl (O)<c Ptohold, e
should not exceed the minimum distance from O to a hyperplane corresponding to a
facet of P. To achieve polynomial encoding size we bound this value from below and

. b: . b, . . -
choose € := min;e m < minje(m) 7,575 = Mibie(m) dist(O, H=(Aj %, bi)).

Algorithm 2.1 carries out the iterative construction of a rock extension described in the
proof of Theorem 2.13. It starts with a pyramid over the given simplex P=(A 1%, br) and
adds the inequalities indexed by [m] \ I one by one. Note that we compute coefficients
aj in the reverse order of the iterative construction.

Algorithm 2.1 Computing a rock extension Q of P.

Input: A non-degenerate system A € Z™*% b e 7™ defining a polytope P with O € int(P) and
asubset I < [m],|I| = d+1 with P=(Aj ,, b;) bounded.

Output: A vector a € Q;"O with (a) polynomially bounded in (A, b) such that Q = {x € R |
Ax+ az < b,z =0} is a simple extension of P having diameter at most 2(m — d).

—

capi= b[

2: D:=25d3A 4 1y, 254D
. b'

3: €:=minje(y) m

4: for je [m]\Ido
%}. 1 g}
TA; <L +b; ' i€mMb 34 D

hi—H~ A; «|l1+b;
6 aj:= j 2d( ix1l 1)

5. w:=min{{

1-p?
. — H
7 €=
8: end for

What can we do if no interior point o of P is known (such that we could shift P to P - o
in order to have O in the interior), and neither is the set I? For now let us assume
we are given a vertex xU of a strongly non-degenerate polytope P = P=<(A, b) with
integral A and b, and let U < [m] be the corresponding row basis of xU. Then the point
o(A):=xY+ m (Ay )~ 11 is an interior point of P for a small enough positive A.
This is due to the fact that P is simple and hence the extreme rays of the feasible cone of
P at u are the columns of (Ay «) ~!. Hence, the sum of the extreme rays emanating from
xY points into the interior of P. By choosing A := 1(2%4P dA 4 ) 1)7! < 16 (recall &>
from Definition 2.10 and the last inequality is due to (2.5) again), we guarantee that
o(A) € int(P). Of course, before making this choice of A one has to scale Ax < b to
integrality first.
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The knowledge of xV and U as above also enables us to come up with the set I required
by Algorithm 2.1. Indeed, the inequalities Ay «x < by together with one additional
redundant inequality 17 (Ay )~ T x < d2?4P||(Ay «)~'1||; + 1, denoted by ax < B,
form a simplex containing P. In fact, H=(a, §) contains any basic (feasible or infeasible)
solution xV of Ax < b (and hence the whole of P as well), since the sum of entries of
x" is at most dA(4 ) 4. Hence Ax < b,ax < f8 is a non-degenerate system whenever
Ax < bisone as well. Then I can be chosen as the union of U and the index of ax < 8.
Note that o(A) and the coefficients of the above inequality ax < f have their encoding

sizes polynomially bounded in (A, b).

Now, after shifting the origin to o(1) and scaling the system to integrality we can
apply Algorithm 2.1 to construct a rock extension of P. Thus we have established the
following.

Theorem 2.14. Given A € Q™% b e Q™, and xY € Q% such that Ax < b is non-
degenerate, P = P=(A, b) is bounded, and xY is a vertex of P, one can construct a
matrix Ag € QU2+ and a vector bg € Q™2 in strongly polynomial time such that
Q = P=(Aq, bq) is a simple rational rock extension of P with at most m+ 2 facets and
diameter at most2(m—-d +1).

2.5.2 Application to linear programming

Now we discuss rock extensions in the context of solving general (rational) linear pro-
gramming problems. Since the previously described construction of rock extensions
works only for the case of non-degenerate systems and requires knowing a vertex of
the polytope, we introduce the following definition.

Definition 2.15. We call a pair (S, u) a strong input if S is a rational non-degenerate
system Ax < b defining a polytope P and u is a vertex of P.

The following result provides the lever that allows us to use rock extensions in the
theory of linear programming.

Theorem 2.16. If there is a strongly polynomial time algorithm for finding optimal
basic solutions for linear programs with strong inputs and rational objective functions,
then all rational linear programs can be solved in strongly polynomial time.

In order to prove the above theorem we first state and prove the following technical
lemma.

Lemma 2.17. Forall A€ 7% withrank(A) = d, be Z™, c € Z% such that P := P=(A, b)
is a pointed polyhedron and for every positivee < (3d||c||12>4?) ™1 the following holds
for P€:= P<(A,b+ b°), where b¢ :=¢€',i € [m].
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(1) P # @ ifand only if P¢ # @. If P is non-empty, then P¢ is full-dimensional.

(2) For each row basis U feasible for Ax < b+ b, the basic solution Al"]1 by is a vertex
of P.

(3) For each vertex v of P thereis a row basis U of Ax < b with v = A‘U1 L bu such that
A&l* (b+ b®)y is a vertex of PE.

(4) IfW is an optimal feasible row basis for min{c? x| x € P}, then W is an optimal
feasible row basis formin{c’ x | x € P} as well.

(5) The system of linear inequalities Ax < b+ b° is non-degenerate.

Proof. A proof for statement (1) can be found in (Schrijver, 1986, Chapter 13).

We start with the simple observation that U is a (feasible or infeasible) row basis for
Ax < b if and only if it is a row basis for Ax < b + b since both systems have the same
left-hand side matrix A. We will refer to any such U as a row basis of A. The following
property (P) turns out to be useful for the proof:

(P) Ifa basic (feasible or infeasible) solution xV := A{ﬁ Lbu of Ax < b with row basis
U is contained in H<(A;j x, b;) or H” (A; «, b;) for some i € [m], then the basic
(feasible or infeasible) solution xU€ := Al_f L(b+ D)y of Ax < b+ b° is contained
in HS(Aj «,(b+b%);) or H” (A %, (b+ b%);), respectively.

We later show that (P) holds for all small enough positive €, but first let us observe how
(2) and (3) follow from (P).

For (2), assume xY€ is a feasible basic solution of Ax < b + b€ with row basis U such

that xV := Ay, by is infeasible for Ax < b, i.e., there exists some i € [m] with xV €
H~”(Aj &, b;). If (P) holds, then the latter, however, contradicts the feasibility of xY€ for
Ax < b+ b¢. Thus (P) implies (2).

In order to see that (P) also implies (3), let Ag,)Xx < bg(y) consist of all inequalities
from Ax < b that are satisfied with equality at a vertex v of P. Note that the set of
feasible bases of Ag)x < (b + b°)g(y) is non-empty, since P=(Ag(), (b + b)pw)) is
pointed. The latter holds because of rank(Ag(,)) = d (as v is a vertex of P) and since
P=(Agw), (b+ D) g() itself is non-empty with v € P=(Ag(y), (b+b°) g(y)) (due to b€ = O).
We now can choose U as any feasible row basis of Ag)x < (b+ b®)g,). We clearly
have v = A;* by and Apm\Ew) U < bym)\E(v) by the definition of E(v). Hence the basic
solution A&l (b + b)y is feasible for Ax < b + b¢ due to (P).

Claim 2.18. The property (P) holds for 0 < e < (3d||c|12°4?)~1 (we clearly can assume
c#0O).
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Proof. Let xU = A{ﬁ . by be a basic (feasible or infeasible) solution of Ax < b with a
row basis U € [m], and let H=(A; «, b;) with i € [m] \ U be a hyperplane with xV ¢
H™(A; &, b;). Furthermore, let xVe = A{f (b + b°)y be the corresponding basic (feasi-
ble or infeasible) solution of the perturbed system. Consider the following expression:

d
AiexU€ = b+ b= ) Ajjx] " — b+
j=1

Y4 Ajpdet ALY — b+ 1) det Ay
B detAU'*

2.9)

=:hy,i(e),

where A{]:,f denotes the square d x d matrix arising from Ay . by replacing the j®
column by the vector q. Note that hy ;(€) is a univariate polynomial in € with its
free coefficient a¢ := hy ;(0) = Ai,*xU —b; #0 due to xY ¢ H= (A;, bi). Therefore the
property (P) holds if € > 0 is small enough, such that & ; (€) has the same sign as «ay.
We will need the following result on roots of univariate polynomials. See (Bienstock

et al., 2023, Lemma 4.2); a proof can be found in (Basu et al., 2006, Theorem 10.2).

Lemma 2.19 (Cauchy). Let f(x) = ayx" +---+ a1x + ag be a polynomial with real
coefficients and ay # 0. Let X # 0 be a root of f(x). Then (ls < |x| holds withd =1+
max{|&|,...,| %]},

Hence (P) holds forall 0 <€ < % (with 6 chosen as in the lemma with respect to Ay ;)
since there are no roots of hy ; (€) in the interval (—%, +%). To obtain an estimate on €
we have to bound 6 from above. Therefore, let us take a closer look at the coefficients of
hy,i(e). Due to Cramer’s rule, the integrality of A and b, and since |det Ay «| < Aap),d,

the absolute value of each non-vanishing coefficient of hy ; (€) is at least A(Alb) . On the

other hand, we claim that the magnitude of any coefficient h’f],i () of hy,;(€) that is not
the free coefficient is bounded from above by [1;, jyepmx(a) (1 + 1 j1) Tlie(m (1 + 1b;]) <
24D Observe that the latter product is the sum X over all subsets of indices of entries
of (A, b) with each summand being the product of (absolute values) of the entries in
question. Using column expansion for determinants in (2.9), one can come up with a
formula for coefficients h’f],i ke [m]:

1 yd 4. j=9

h’;]’i ={_1, fork=1i
0, for ke [m]\ (U u{i})

where A{]:\i denotes the square matrix obtained by deleting the jth column and the

kth row of Ay «. To upper bound Ihfj l.I , k € [m] we use the Leibniz formula for de-
terminants in the above equation, the triangle inequality for absolute value, and the
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fact m < 1. One can convince themselves that the upper bounding expression
obtained therein is, in fact, a subsum of X, and hence |h]f],,-| < 2{Ab) for each k € [m].
Therefore § < 1+ Ag p),q2P < 2.23(4D) holds, where the last inequality follows from
Aapya < 24P For 0 < e < (3d||c[[;254P)~! we thus indeed have € < 32734P < 1
(as ¢ # O is integral). Note that such a choice of € is in fact determined by a later
observation. O

Next, to show (5) (before we establish (4)) let us assume that Ax < b + b’ is not non-
degenerate for some ¢’ < (3d llcl]; 24P ~1 Hence, there is a row basis U < [m] of A
with corresponding (feasible or infeasible) basic solutions xU€ and xU of the perturbed
and the unperturbed system, respectively, such that there exists i € [m] \ U with xU€ e
H™(A; «, (b+ b),), thus hy,i(€") =0. Due to Lemma 2.19 (and the upper bound on ¢’)
this implies hy ;(0) = 0, thus xVeH (Ai x, b;). Since U is a row basis of A, there exists
some A € R? with AT Ay » = A; «. We have b; = A; «xV = AT Ay »xY = AThy. Then
hy,i(€) = AixxV €= (b+b9); = AT Ay 4 (Ay,») 7 (b+b°) y— (b+b°); = AT DS, —€¢’ where we
used A;j » = /’lTAU,* and xU¢ = (Ay ) "L (b + by for the first equality and AThy = b;
and b; = e’ for the second one. Hence hy ;(€) is not the zero polynomial because of
i ¢ U. Consequently, there exists a polynomial g ; () such that hy; ;(€) = €” gy i (€) with
r =1 and gy,;(0) # 0. Applying Lemma 2.19 to gy ,;(€) and bounding its coefficients
in exactly the same way as for hy ;(€) yields that there are no roots of gy ;(€), and
therefore no roots of &y ;(€), in the interval (0, %2‘3“"1’)), thus contradicting xUe €
H™(Ajx, (b+5%))).

Finally, in order to show (4), we first prove the following claim.

Claim 2.20. Let U < [m)] be a row basis of A with xU¢ and xV being the corresponding
(feasible or infeasible) basic solutions of Ax < b+ b® and Ax < b, respectively. Then

0 <e < (3d||c|12>AP) =1 implies|cTxV — cTxV €| < —2—
ZA(Ab)d

Proof. By Cramer’s rule and due to the triangle inequality, we have

j= b+b

d d detAf D _de tAl
T, .U U, U
c(x”—x"9)< cillx = c ‘ . 2.10
e ( )| jZ:lun] Z il detAU’* (2.10)
=:fl©

To prove the clalrn it sufﬁces to show that for all 0 < € < (3d||c||; 2> b =1 e have

IfU((-:)I 2|—2 = ,60 for each j € [d] with cj#0.In order to establish this, let j €
cjldIAg, b),d
)

[d] be an index with ¢; # 0. Due to fU(O) =0 we have fU(e) = @€' + -+ a1€ with some

ap,...,a; € Q. For fo:= m and f)*(e) := f}(e)+ B we have £/ (0) <0 < £/ (0).

Due to Lemma 2.19, the polynomials féi (€) thus have no roots in the interval (- 3, +3),
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where § = 1+ max{] ol %H Hence in order to establish | fé(e)l < [3{; it suffices to

show e < %. In order to prove this we bound 6 from above (thus % from below) by upper
bounding the coefficients a for all k € [/]. Using the same line of arguments as above
we once again conclude that ax <1 jemixia)(1 +1aijD) [iepm (1 +1bi]) < 204D e 1.

Hence % >(1 +2d|cj|A(2A b) d|2<A’b>)_1 > (E’)dl|c||125<A’b>)_1 > € as required. O

To complete the proof of claim (4) of Lemma 2.17, let x"V€ := Aﬂ} L(b+Db°)w be an
optimal feasible basic solution for min{c’ x | x € P} with an opti’mal row basis W.
Thus, due to (2), x" := A;VI, *bW is a feasible basic solution of Ax < b. Furthermore,
let v be an optimal vertex of P with respect to minimizing ¢ and let U be a row basis

of Awith v =xY = Aal*bU such that xY*€ := Azjl*(b + b))y is a vertex of P¢ (such a

row basis U exists by statement (3) of Lemma 2.17). Assume xW

min{c’ x| x € P}. Then we have ¢’ (x" — xV) = -1 —, since c is integral and the least

(Ab),d

common denominator of the union of the coordinates of x" and xV is at most A% Ab).d

(as the least common denominator of entries of x" is at most A4 5 4 by Cramer’s rule

is not optimal for

and so is the least common denominator of entries of xV). But this contradicts

1 <0 1 (Ab),d
2 2
M ab,d 2Aab),a

where we used Claim 2.20 for bounding the first and the third term and the optimality
of x"¢ for bounding the second one. O

Now we can finally return to the proof of Theorem 2.16.

Proof of Theorem 2.16. We can assume without loss of generality that the polyhedron
P of feasible solutions to a general linear program is pointed. Otherwise either the
objective function is contained in the orthogonal complement of the lineality space of
P (in which case one obtains a pointed feasible polyhedron by intersecting with the
latter), or the problem is unbounded. Let A be a strongly polynomial time algorithm
for finding optimal basic solutions for linear programs with strong inputs and rational
objective functions. We first use A to devise a strongly polynomial time algorithm A*
for finding optimal basic solutions for arbitrary rational linear programs min{c’ x |
Ax < b} if a non-degenerate vertex v of P := P=(A, b) is specified within the input, i.e., a
vertex for which there is a unique row basis U < [m] with xY=v.

In order to describe how A* works, we may assume that (after appropriate scaling) its
input data A, b, c are integral. With € := (3d||c|| 125440 "1 et pe = {x e R? | Ax < b+ b},
Due to the uniqueness property of U and part (3) of Lemma 2.17, U is also a feasible row
basis of the perturbed system. We scale that perturbed system to integrality, obtaining a
non-degenerate (part (5) of Lemma 2.17) system A’x < b’ with P¢:= {xe R? | A'’x < b/}
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and a vertex v’ = xY¢. Then, as discussed in the context of Theorem 2.14, we add the
inequality 17 (A}, )" "x < d22<A,’bl>||(A’U,*)_1]1||1 +1, denoted by ax < B, to A'x < b
and thus obtain a non-degenerate bounded system Ax < b with a simplex-defining
subsystem of d + 1 inequalities. Let P := P=(A4, b). Note that the problem min{c’ x| x €
P} is unbounded if and only if min{c? x | x € P¢} is unbounded since the polyhedra P
and P¢ have the same characteristic cone. Moreover, min{c’ x | x € P¢} is unbounded
if and only if an optimal row basis W (corresponding to any optimal vertex x") of
min{c’ x| x € P} contains the added inequality ax < 8 and the unique extreme ray of
the feasible cone of P at x" that is not contained in H=(«, 0) has positive scalar product
with c (recall that the polytope P is simple). Thus, in order to solve min{c’ x| x € P} in
strongly polynomial time, we can apply algorithm A to min{c” x | x € P} (providing the
algorithm with the vertex v’ of P). Any optimal row basis of the latter problem either
proves that the former problem is unbounded or is an optimal row basis of the former
problem due to part (4) of Lemma 2.17.

Finally, let us assume that we are faced with an arbitrary linear program in the form
min{c’x | Ax < b,x = 0} with A€ Z™% be 7™, and ¢ € Z¢ (clearly, each rational
linear program can be reduced to this form, for instance, by splitting the variables
into x* and x~ and scaling the coefficients to integrality) and let P := P=(A,b) N ]Rgo.
Due to parts (1) and (5) of Lemma 2.17 the perturbed system Ax < b+ b®,—x < of
with b? :=¢! forall i € [m] and 05 := e™m*J for all j € [d] is non-degenerate for € :=
3d||c||;25¢AD+(-1a.Day 1 \ith the polyhedron P¢ := {x € R? | Ax < b+ bf,—x < 0f}
being non-empty (in fact: full-dimensional) if P # @ and empty otherwise.

We follow a classical Phase I approach by first solving the auxiliary problem min{1} s |
(x, s) € G} with

G:={(x,s) e R | Ax—s< b+ b°,—-x <0, s= D).

Note that (%, §) with X; = —™*/, j € [d], and §; = max{} je(q) Aije™"/ —bi—€',0}, i €
[m], is a vertex of G, which is defined by a unique row basis U, |U| = [m+d] (containing
inequalities —x < 0¢ and for each i € [m] either A; . x—s; < b; +¢€! or s; = 0) since
Yjerd A,-je””f —b; —€' #£0 for any i € [m]. The latter is due to the fact that P¢ is
non-degenerate by Lemma 2.19, part (5). Hence we can apply algorithm .A* in order
to compute an optimal vertex (x*, s*) of the auxiliary problem min{ll,as | (x,s) € G}.
If 17s* # 0 holds, then we can conclude P¢ = @, thus P = @. Otherwise, x* is a
vertex of P¢ that clearly is non-degenerate (in fact, P¢ is simple). Thus we can solve
min{c’ x | x € P} by using algorithm .A* once more. If the latter problem turns out to
be unbounded, then so is min{c! x | x € P} (as P and P¢ have the same characteristic
cone). Otherwise, the optimal row basis of min{c’ x | x € P} found by .A* is an optimal

row basis for min{c? x | x € P} as well (due to part (4) of Lemma 2.17). O
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It is well known that any strongly polynomial time algorithm for linear programming
can be used to compute optimal basic solutions (if they exist) in strongly polynomial
time (see, e.g., (Schrijver, 1986, Chapter 10) for more details). Hence Theorems 2.16
and 2.14 allow us to conclude the following.

Theorem 2.21. If there exists a strongly polynomial time algorithm for linear program-
ming with rational data over all simple polytopes whose diameters are bounded linearly
in the numbers of inequalities in their descriptions, then all linear programs (with
rational data) can be solved in strongly polynomial time.

In fact, in order to come up with a strongly polynomial time algorithm for general
linear programming problems (under the rationality assumption again) it is enough to
devise a strongly polynomial time algorithm that optimizes linear functions over rock
extensions with linear diameters.

2.6 Extensions with short monotone paths

The results of the previous sections showed for every d-polytope P described by a non-
degenerate system of m linear inequalities the existence of a simple (d+1)-dimensional
rock extension Q with at most m + 2 facets, where each vertex admits a (z-increasing)
“canonical” path of length at most m — d + 1 to a distinguished vertex (the unique top
vertex) of Q. For the rest of this chapter we will refer to such a Q as a good rock extension
of P. Yet, no statement has been made so far regarding the potential monotonicity of
the “canonical” paths in Q with respect to linear objective functions. In this section we
build upon rock extensions in order allow for short monotone paths.

Without loss of generality we assume for the rest of the section that we are working
with minimization problems. Note that our results similarly hold for maximization
problems as well. For an objective function c we will call an optimal vertex of a polytope
P c-optimal. A path in the graph of P is said to be c-monotone if the sequence of c-
values of vertices along the path is strictly decreasing. To simplify our notation we
further identify a vertex u of P with the corresponding base vertex (u,0) of Q.

2.6.1 Changing the objective vector

It clearly does not hold that for every linear objective function ¢ € Q¢ with w being a
c-optimal vertex of a strongly non-degenerate d-polytope P and for any other vertex v
of P, both the “canonical” path from v to the top vertex ¢ of a good rock extension Q of
P and the “canonical” path w-t traversed backward from ¢ to w are c-monotone. Even
the path from ¢ to w itself is not always c-monotone, see Figure 2.6 for an example.
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Fig. 2.6: A rock extension (top view) of the quadrangle euwv constructed in the manner of
Algorithm 2.1 from the rock extension ef gt of the two-dimensional simplex e f g containing
euwv by consecutively adding the inequalities defining the blue the facets. Now w is
the c-optimal vertex of the rock extension for the objective function ¢ whose optimization
direction points to the right in the picture. However, the (reversed) “canonical” path ¢-r-y-w
is not c-monotone.

However, the latter issue can be handled by defining a new objective vector ¢ := (c, c;) €
R%*! with ¢, being a large enough positive number, such that all “canonical” paths
in Q, including the one for the c-optimal vertex w, are c-monotone when traversing
them from the top. If follows from the result that we prove next and the fact, that
z-coordinates of vertices of a top-down “canonical” path build a strictly decreasing
sequence.

Lemma 2.22. Let Q € R%*! be a rock extension defined by an integral system A(x,z) < b
with A€ 72™@*D b e 7™ x € R% z € R. Then for every vector ¢ € R? and for any
number c, > 2||c||1284Y) every path on Q with the next vertex having a strictly lower
z-coordinate than its predecessor is (c, c;) -monotone.

Proof. Let u with row basis U and v with row basis V be two vertices of Q with v, < u.
The statement follows from a more general fact, that (c,c;)’ (v — u) < 0, which we
show next. On the one hand ¢’ (v, — uy) < |cT (v, — vy)| < Zj?:l lcjllv; — uj| by the
triangle inequal_igy. Using Eramer’s rule as in the previous chapter we conclude that
lvj—ujl = Ijzttﬁ%: -~ jzti{;: <202, ) ap1 S2% 24AD) for any j € [d]. The latter yields
cT(vy = uy) < 2|c]|; 244D On the other hand, due to the choice of u and v, v, — u, <
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—Az; < —2744b) holds by the Cramer’s rule again. Using the above bound for ¢, we

Ad+1
obtain ¢, (u, — v;) < —2||c||;2*4P) which concludes the proof. ]

(Aaby+e) | 1, where ¢ =

((Og4,-1),0) is the encoding size of the system (04, —1) T(x,z) <0, we ensure that the

Note, that by choosing c; from the latter lemma as 2||c|| 128(<

encoding size of the new objective vector ¢ is polynomial in the encoding size of the
input (A, b, ¢) with Ax < b defining the polytope P, whose rock extension Q = {(x, z) €
R4 | Ax+ az < b, z = 0} was constructed by Algorithm 2.1.

Obtaining the monotonicity property for all top-down “canonical” path in this way is
justified by the fact that the top vertex of a rock extension constructed by Algorithm 2.1
is known (its row basis is defined by the d + 1 inequalities indexed by I). Therefore one
could start the simplex algorithm at the top vertex of the rock extension and it could in
theory even follow the top-down “canonical” path of the c- and ¢-optimal vertex w.

2.6.2 Ridge extension

The sole change to the objective function, described in the previous subsection, how-
ever, does not offer a short monotone path from any vertex v to the optimal vertex w,
since the “canonical” path from v to ¢ is not ¢c-monotone (the sequence of c-values
along the path is, in fact, strictly increasing).

In order to incorporate it in a certain way we are going to spend one more dimension
by building a crooked prism over the rock extension. Let P be a d-polytope defined
by a system Ax < b of m inequalities, and let Q := {(x,z) € R4+1 | Ax+az<b,z=0}
be a rock extension of P e-concentrated around (o,1) € R%*! for some e >0 and o € P.
Consider the prism Q x [0, 1]. We now tilt the facets Q x {0} and Q x {1} toward each other
such that the (Euclidean) distance between two copies of a point in Q is reduced by
some factor that is proportional to its z-coordinate. We rigorously define the described
polytope as follows

A ]Rd+2

1 1
Q:={x,z,y € |Ax+azsb,zzO,y—gzzo,y+§zs1}.

We call Q a ridge extension of P. See Figure 2.7 for an illustration.

We would like to note that the above construction is a special case of the de-
formed product (X) introduced by Amenta and Ziegler (1999). More precisely
Q = (Q,(/)((x, z)))N([O,l], [%,%]) with ¢((x,z)) = z. Observe that if Q is simple, so
is Q , since it is combinatorially equivalent to the prism over Q and prisms preserve
simplicity. We will denote the two facets of Q defined by inequalities y — %z >0 and

y+3z=1byQ°and Q', respectively. Note that both Q° and Q' are isomorphic to Q.
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Fig. 2.7: The d + 2-dimensional simple ridge extension Q of a d-polytope P. P is represented
here by the line segment [0, wo. Triangles t°uw? 209w, and vl w! represent a rock
extension Q of P with the top vertex t, and facets Q° and Q' of Q, both isomorphic to Q,
respectively. Path v°-£°-¢!-w! is ¢-monotone for an auxiliary objective ¢ such that a ¢-optimal
vertex w! is a preimage of a c-optimal vertex w° of P under the orthogonal projection onto
X-axis.

Thus each vertex u of Q corresponds to two vertices of Q° and Q! denoted by u° and

ul, respectively.

Now, let Q be a good rock extension of P. Let ¢ € R? be alinear objective function and w
be a c-optimal vertex of P, and let v be some other vertex of P. Then for the “canonical”
path from v to the top vertex t of Q there exists an isomorphic path from v° to ¢° of
Q". Since the “canonical” v-t-path in Q is z-increasing and due to Q° = f°(Q) with
fO (x,2) — (x, 2, %z), the corresponding vo-to-path in QO is y-increasing. Similarly,
there exists a y-increasing ¢! -w!-path in Q! isomorphic to the backward traversal of the
z-increasing “canonical” w-t-path in Q, since Q' = f1(Q) with f': (x,2) — (x,2,1-32).
Together with the edge °t!, the two aforementioned paths comprise a v°-w!-path
of length at most 2(m —d + 1) + 1 in Q that is ¢-monotone for the objective function
c:=(c,0,¢cy) € R%*2 with large enough positive cy. Note that w! is a ¢-optimal vertex
of @ and a preimage of a c-optimal vertex w of P under the affine map 74 : (x,2,y) — x
projecting Q down to P. In fact, similar to the proof of Lemma 2.22, it can be shown
that choosing ¢, as 6/|c| |128<(§> +1 (after scaling the system, defining Q to integrality) is
enough to guarantee ¢-monotonicity of any v°-t°-¢1-u!-path of the above mentioned
type for any two vertices u, v of Q. Thus, with the help of Theorem 2.14 we derive
the following statement, where 7, denotes the orthogonal projection on the first k
coordinates.
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Theorem 2.23. Let A€ Q™% and b € Q™ define a non-degenerate system of linear
inequalities such that P = P=(A, b) is bounded. Then there exists a (d + 2)-dimensional
simple extension Q with n4(Q) = P having at most m + 4 facets such that for any linear
objective function ¢ € Q% there is a positive number cy such that for any vertex v of
P there exists a (c,0, cy) -monotone path from the vertex (v,0,0) to a (c,0, cy)-optimal
vertex w of Q of length at most 2(m — d + 1) + 1 with n4(w) being a c-optimal vertex
of P. A system of linear inequalities defining Q and the number cy are computable in
strongly polynomial time if a vertex of P is specified within the input.

To state the concluding result of this chapter we introduce the following notion. The
minimum length of a c-monotone path in the graph of a polytope P between a given
vertex v and a c-optimal vertex of P is called the monotone c-distance of v in the graph
of P. Then, combining Theorems 2.23 and 2.16 we conclude the following.

Theorem 2.24. If there is a pivot rule for the simplex algorithm that requires only a
number of steps (executable in strongly polynomial time) that is bounded polynomially
in the monotone c-distance of v in the graph of P for every simple polytope P, objective
function vector c, and starting vertex v, then the general (rational) linear programming
problem can be solved in strongly polynomial time.

2.7 Discussion

In this section we mention some open questions that appear to be interesting for future
research.

The dimension of the rock extension exceeds that of the original polytope just by one.
This leaves open the question whether it is possible to obtain extensions with better
diameter bounds by using additional dimensions.

In Section 2.3 we showed that two- and three-dimensional (strongly non-degenerate)
polytopes allow for rock extensions with logarithmic diameter and noted that the same
argumentation does not work for some (strongly non-degenerate) four-dimensional
polytope. The crucial property (£) that we used in the two- and three-dimensional
cases was the existence of a constant ratio of the polytope facets that are pairwise
disjoint. Moreover, the new polytope obtained by removing the inequalities corre-
sponding to these facets from the polytope description had to satisfy (£) again. In fact,
it was necessary to be able to iteratively repeat this procedure (of removing at least

I™ of the inequalities corresponding to pairwise disjoint facets of the polytope at

one
once) until the remaining inequality system consist of d + C inequalities where d is the
dimension of the (original) polytope and C is a constant. An interesting question is

whether there are known classes of polytopes in dimension four and higher (maybe
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originating from combinatorial optimization problems) that allow for such iterative
constructions.

The most intriguing question, of course, is whether for simple d-polytopes with n facets
and diameter at most 2(n — d) there exists a pivot rule for the simplex algorithm that is
guaranteed to produce a (c-monotone) path to an optimal vertex of length bounded
polynomially in d and n, as this would imply that the general linear programming
problems can be solved in strongly polynomial time according to the results presented
above. We would like to point out that Cardinal and Steiner (2023) showed that if
P # NP holds, then for every simplex pivot rule executable in polynomial time and for
every constant k € N there exists a linear program on a perfect matching polytope and
a starting vertex of the said polytope such that the optimal solution can be reached
in two c-monotone non-degenerate steps from the starting vertex, yet the pivot rule
will require at least k non-degenerate steps to reach the optimal solution. This result,
however, even under the assumption P # NP does not rule out the existence of a pivot
rule for which one can bound the number of steps by a polynomial in the diameter plus
the number of facets, not even for general (rather than just simple) polytopes. Again,
by the results presented above, such a pivot rule would imply a strongly polynomial
time algorithm for general linear programming problems.

In an attempt to investigate the latter, we tried applying the celebrated shadow simplex
algorithm (see, e.g., Bach and Huiberts (2025); Black et al. (2024); Borgwardt (1999);
Dadush and Huiberts (2020); Megiddo (1986a); Spielman and Teng (2004); Vershynin
(2009)) to rock extensions. Observe that starting the algorithm at the top vertex of a
rock extension naturally calls for a shadow formed by the vectors (Dg, 1), (c,0) € R4*+!
(optimizing the staring vertex and the optimal vertex, respectively), where c € R? is
the original objective vector. However, we did not find a way to sensibly bound the
number of vertices (of the c-monotone path of) the shadow due to lack of control over
coordinates of the non-base vertices of a rock extension.

Alternatively, instead of trying to make the simplex algorithm follow a short path
on a rock extension, one could investigate a corresponding path in the hyperplane
arrangement associated with the LP in question (recall Subsection 2.2.3). Similarly
to the previous case, given a vertex of the arrangement and an objective vector, it is
highly unclear whether it is possible to create a simplex-type algorithm based on the
hyperplane arrangement that would somewhat follow a short path on the arrangement
to an optimal solution of the LP. The rest of this section aims to present some of the
authors thoughts on the topic.

One line of reasoning is to allow such an algorithm to switch between the neighboring
chambers of the arrangement under a certain condition (e.g., the algorithm always tries
to perform the longest possible step along the c-monotone lines of the arrangement).
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However, in this way, the algorithm might significantly drift away from the original
chamber represented in the LP, especially if the reduction of the objective function
value is disallowed. To enable “going back” one could alternate between the primal
problem (1.4) and the dual (1.5). It might work as follows; once the primal simplex
optimality criterion is satisfied at some vertex of the currently considered chamber of
the arrangement (which might be different from the initial chamber), the framework
would switch to the dual problem. One would repeat the latter, with the roles of the
primal and the dual being switched. Perhaps some sort of dichotomy on the objective
function value could provide control over the number of switches from the primal to
the dual and back.

Alternating between the primal and the dual is also how the solvers for linear program-
ming seem to work (Sophie Huiberts, personal communication). Moreover, a couple
of algorithms for LP that make use of primal and dual information at the same time
are already known (see e.g. Belahcene et al. (2018); Dantzig et al. (1956); Gabasov et al.
(1979, 1981)). Therefore, this direction seems to be worth investigating.
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Escaping degeneracy in linear time

3.1 Introduction

In the previous chapter we have shown how linear programming problems profit from
perturbations and extended formulations, which help to guarantee the existence of
short (monotone) paths for polyhedra of feasible solutions, while guarding the property
of being simple.

However, even in the case where a short path between the starting vertex and an op-
timal one exists, it is not clear how the simplex algorithm would be bound to follow
it (e.g., any two vertices of the famous cube of Klee and Minty (1972), which pro-
vides an exponential lower bound on the performance of the Dantzig pivot rule, can be
connected by a path of linear length). Moreover, especially when dealing with combina-
torial or 0/1 linear programming problems, a perturbation might break the underlying
structure of the problem, which could otherwise assist in solving it. Therefore, efficient
handling of degeneracy is of utmost importance when dealing with these types of
problems.

In presence of degeneracy, an extreme point solution might have exponentially many
distinct bases defining it, and so the simplex algorithm might perform an exponential
number of consecutive degenerate pivots, staying in the same vertex, (see, e.g., Cun-
ningham, 1979). Such behavior is referred to as stalling. In some pathological cases,
certain pivot rules might even provide an infinite sequence of consecutive degenerate
pivots at a degenerate vertex, a phenomenon called cycling. Although cycling can be
easily avoided by employing, for instance, Bland’s rule (due to Bland, 1977) or a lexico-
graphic rule Terlaky, 2009, there is no known pivot rule that prevents stalling. As stated
in several papers (e.g., Megiddo, 1986b; Murty, 2009), solving a general LP in strongly
polynomial time can be reduced to finding a pivot rule that prevents stalling for general
polyhedra. However, there are a few cases for which it is known that the issue of stalling
can be handled. The most famous example is the class of transportation polytopes, for
which pivot rules with polynomial bounds on the number of consecutive degenerate
pivots were introduced by Cunningham (1979) and further developed by Ahuja et al.
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(2002); Goldfarb et al. (1990); Rooley-Laleh (1981). See also the work of Orlin (1997) for
a strongly polynomial version of the primal network simplex.

The results of this chapter are inspired to a great extent by the work of Kabadi and
Punnen (2008). They show that, given an LP in standard equality form with a totally
unimodular coefficient matrix A€ {—1,0,1}"**", a vertex solution x and an improving
feasible circuit direction for x, one can construct a pivot rule which performs at most
m consecutive degenerate pivots. We generalize their proof, and show that one can
employ any improving direction at a vertex x of a general polyhedron, to avoid stalling.
Our result, proved in Section 3.2, is summarized in the following theorem.

Theorem 3.1. Given any LP of the formmin{c” x: Ax = b, x = 0} with A€ R™ ", there
exists a pivot rule that limits the number of consecutive degenerate simplex pivots at any
non-optimal extreme solution to at most n—m— 1.

We stress here that the pivots considered in Theorem 3.1 are degenerate simplex
pivots, meaning that each of them yields an improving direction at the given extreme
point, though this direction is not feasible. It is important to point out that in general,
given two adjacent extreme points x, x" of a linear program, one can easily perform
a sequence of basis exchanges that yield x’ from x by identifying the common tight
linearly independent constraints, and introducing each of them to the current row
basis in any order, until the direction x’ — x is seen. However, we here want a strategy
that guarantees that each basis exchange is realizable by the simplex algorithm and
hence defines an improving direction.

We then discuss some byproducts of our result in Section 3.3. In particular, we revise
the analysis of the simplex algorithm by Kitahara and Mizuno (2013, 2014) who bound
the number of non-degenerate pivots in terms of n, m and the maximum and the mini-
mum non-zero coordinate of a basic feasible solution. Their analysis combined with
our degeneracy-escaping technique show that the fotal number of simplex pivots (both
degenerate and non-degenerate) can be bounded in a similar way. As a consequence,
one can have a strongly-polynomial number of simplex pivots for several combina-
torial LPs. In addition, we perform some computational experiments to evaluate the
performance of the antistalling pivot rule in practice, reported in Section 3.4.

Of course the drawback of the whole machinery is that it requires an improving feasible
direction at a given vertex. Though it is efficiently computable, this is in general as
hard as solving a general linear programming problem, see Theorem 3.3 for a proof
of the latter. For some classes of polytopes though (e.g., matching or flow polytopes)
finding such a direction can be easier, thus making it worthwhile to apply our pivot
rule. Most importantly, we think that the main importance of our result is from a
theoretical perspective: it shows that, for several polytopes, not only a short path on
the 1-skeleton exists, but a short sequence of simplex pivots always exists (and can
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also be efficiently computed). That is, a short sequence of basis exchanges that follow
improving directions, when performing both degenerate and non-degenerate pivots.

3.2 Antistalling pivot rule

The goal of this section is to prove Theorem 3.1. Before doing that, we state some
preliminaries, and also give a geometric intuition behind the result.

3.2.1 Foundations

In this chapter we use the algebraic view on the simplex algorithm. We will give a brief
review of it here. The algebraic simplex algorithm works with LP in standard equality
form (1.2) that we repeat here:

min c¢’x
s.t. Ax=b (3.1
x=0

Note that any LP can be put into this form (e.g., by splitting variables x = x™ — x~ and
by introducing slack variables).

For the sake of completeness let us reiterate the following definition. A basis of (3.1)
with an m x n real matrix A, rank(A) = m is a subset B < [n] with |B| = m and A4 p
being non-singular. The point x with x5 = A;}B b, xy = O where N := [n] \ B is a basic
solution of (3.1) with basis B. If additionally xg = 0, both the basic solution x and
the basis B are feasible. If x; > 0 for all i € B, then B and x are called non-degenerate
and degenerate otherwise, i.e., if x; = 0 for some i € B. We let A := A;}BA*, ~ and
E]{, = c]:'\} - cg A. In particular, cy € RY is the vector of so-called reduced costs for the
basis B. The coordinates of the reduced cost vector will be addressed as cy,;, where

the first subscript will be dropped if the basis B = [n] \ N is clear from the context.

The simplex algorithm considers in each iteration a feasible basis B. If all elements of
¢y are non-negative, then the basis B and the corresponding basic feasible solution
x are known to be optimal. Otherwise, the algorithm pivots by choosing a non-basic
coordinate with negative reduced cost to enter the basis, say f. It then performs a
minimum ratio test to compute an index i that minimizes x; / A; r among all indices i €
B for which A4; £>0. Such index i will be the one leaving the basis, and it corresponds
to a basic coordinate which hits its bound first when moving along the direction given
by the tight constraints indexed by B\ {f}. At each iteration there could be multiple
candidate indices for entering the basis (all the ones with negative reduced cost), as well
as multiple candidate indices to leave the basis (all the ones for which the minimum
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ratio test value is attained). The choice of the entering and the leaving coordinates is the
essence of a pivot rule (see Terlaky and Zhang (1993) for a survey). A pivot is degenerate
if the attained minimum ratio test value is 0 (hence, the extreme point solution x does
not change), and non-degenerate otherwise. Note that only coordinates with negative
reduced cost are considered for entering the basis, since only such a choice guarantees
the simplex algorithm to make progress when a non-degenerate pivot occurs. To later
emphasize that we only refer to that kind of (potentially) improving pivots, we will call
them simplex pivots.

Finally, we let kern(A) := {y € R"” : Ay = 0}. Given (3.1), we call a vector y € kern(A)
with ¢Ty < 0 an improving direction. Such a y is said to be feasible at a basic feasible
solution x if x + ey = 0 for sufficiently small positive €. Note that for any y € kern(A)
and any basis B of A, the following holds:

cly= C£y3+c}f,yN: cg(—ZyN)+c]€yN:EIY\}yN (3.2)

3.2.2 A geometric intuition

Before providing a formal proof, we give a geometric intuition on how our pivot rule
works. For this, it will be easier to abandon the standard equality form and go back
to the inequality form (1.1). In particular, consider a degenerate vertex x € R of a
d-polytope P defined by a system Ax < b of linear inequalities with A € R"*%, b e R".
In this setting, degeneracy means that more than d inequalities are tight at x. Consider
a subset N of the set of indices of all inequalities that are tight at x with |N| = d
and let B := [n] \ N. Note that here we intentionally redefine a notation used in the
standard equality form, where non basic coordinates always have their corresponding
constraints tight. Since x is degenerate, there is at least one inequality with its index in
B that is tight at x . We denote the set of such inequalities by W < B. Finally, assume
x is not an optimal vertex of P when minimizing an objective function ¢ € R? over
P, and let yo € R be an improving feasible direction at x, i.e., such that x + eyo epP
for a sufficiently small positive € and ¢’ y° < 0. In order to find an improving edge of
P at x, we look at the directions given by the extremal rays of the basic cone C(N) :=
{xe R"| A;j «x <0,i € N}. If there is an improving feasible direction among them,
we are done. Otherwise, we reduce the dimension of the polytope in the following
way. We pick an extremal ray z € C(N) such that ¢’z < 0. Note that z is formed by
d — 1 inequalities from N. Let f € N be the only inequality index not used to define
z. Consider a vector combination y° + az where a = 0 and note that it provides an
improving direction for any non-negative a. Since y° is contained in the feasible
cone C(NUW) ={xeR"| A; +x<0,i € NUW} but z is not, the vector yo + az leaves
C(N u W) for sufficiently large a. Hence there has to be a number a! = 0 such that
y° + alz is contained in a facet of C(IN U W). Without loss of generality assume that
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the latter facet is defined by the g inequality. Note that g € W since y° and z are
both contained in the basic cone C(N) and so is y° + az for any non-negative a.
Then, we define a new improving feasible direction y' := y° + a'z, N= (N\ {f}) u{g},
B = (B\{g})u{f} and continue searching for an improving edge inside the facet defined
by the g inequality. Since x + ey! belongs to this facet for an e > 0 small enough, the
letter yields dimension reduction. After at most d — 1 such steps we are bound to
encounter a one-dimensional face of P containing x + €)', where y' is an improving
feasible direction at x. For an illustration see Figure 3.1.

Fig. 3.1: To the left, facets corresponding to inequalities in N and W are colored in navy and
white, respectively. To the right, the gray fading facet is defined by the f™ inequality and the
green one corresponds to the g

3.2.3 Proofof Theorem 3.1

Proof. Let x be a degenerate basic feasible solution of (3.1) with basis B. Without loss
of generality, assume B = [m]. Then, x; =0 for i € N = [n] \ [m]. Assume also that x; =0
foriekl]withl<k<mandx;>0fori=k+1,...,m. Let S(B) :={i € N | ¢; <0}. Since
x is not optimal, S(B) # @.

It is well known, that a basic feasible solution x of (3.1) with basis B is not optimal if
and only if there exists an improving feasible direction, i.e., there exists yO € R" such
that Ay® =0, ¢’y° <0 and y? >0 for all i € [k] U ([n]\ [m]). Consider any such y°.
Let Qi(y°,B) :={i € [k] | y? > 0} and Q2(y°,B) :={i € [n] \ [m] | y? > 0}. Without loss
of generality, let Q; (y°,B) = [r] with0 < r < k and Q»(y°,B) = {m +1,...,m + t} with
1<t < n-— m. See Table 3.1 for an illustration.

Since ¢7y® =Ty% < 0 due to (3.2), it follows that S(B) n Q2(3°, B) # @. We choose
the entering index to be a non-basic one with the most negative reduced cost! in
the support of y°, that is f = argmin,, S(B)nQ»(,°,B) Ci- To detect the leaving index, we

1 We would like to point out that to prove the theorem, it suffices to choose any non-basic index with negative
reduced cost in the support of y° as the entering index. The fact that f has the most negative reduced cost
among such indices will only be used for the results in the next section.
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1 eee T ek . m| f . mH+t n

X o o ... 00 ... O+ ... +]0 0 ... 0 0 0
y° + o+ ..+ 0 0k x|+ o+ + |0 0
z - % ... x| 0 ... Op|x ... k|1 0 ... 0 0 0
y0+az 0 0 ... 04|04 ... Op|* ... x|+ + ... + 0 0

Table 3.1: An illustration of entries of x, y°, z and y! := y° + az. A positive, a non-negative, a
negative, and a sign-arbitrary entry is denoted by +, 0., — and *, respectively. Without loss of
generality, we here assumed that the entering index f is m + 1, and that an index g for which
the minimum in Case III is attained is 1.

consider the following case distinction. Note that the case distinction depends on the
basis B and the improving feasible direction y°.

Casel: Thereis no i € [k] with Zl- £>0.In this case, the minimum ratio test for f is
strictly positive, that is:

. Xi > s —
(%) min —— >0 where Eq (f).—{le[m]lA,-f>0}.
i€Eq> () Ay
In particular, this means Eq~ (f) < [m] \ [k]. We perform a non-degenerate pivot, by
selecting an index that minimizes (*) as the leaving index.

Case I1: Zi >0 for some i € [k]\ [r]. In this case, we perform a degenerate pivot by
selecting i as the leaving index. Let B’ := BU{f}\ {i}. Because of degeneracy, the basic
solution associated with B’ is still x, and hence y° is still an improving feasible direction
for x. Note that |Q» (yo, B)| = IQg(yO,B)I—l since y;)c > 0 but y? = 0 by definition. Repeat

the same for B’ and °.

CaseIII: Zif <0 forallie[k]\[r] andﬁif > 0 for somei € [r]. In this case, we are going
to change our improving feasible direction. Consider the following vector z € R" which
is, in fact, an improving (though not feasible) direction for the entering variable x Iz

—Z,-f, for i e [m]
zi =11, fori=f 3.3)
0, otherwise
Note that Az=0and ¢z = ¢y < 0. Moreover z; = 0 for each i € ([r]\ Eq” (f)) U ([k] \
[r]) U ([n]\[m]) and z; < 0 for i € Eq” (f) by definition. Set
0
y':=y'+az with a:= min - >0.

i€eEq” (f)nlr] | z;|
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Observe that y1 is a feasible direction for x, since A(y+ az) =0, and yl.1 >0forie
[k]uU ([n]\ [m]), because of the choice of z and a. Furthermore, y! is an improving
direction, because ¢’ z < 0 and hence

clyl=cTy+aclz< ey’ <o0. (3.4)

Note that Q;(y}, B) = Q2()°, B). Furthermore, let g € Eq”(f) n [r] be the index for
which the value of a is attained. We have yél, =0and Zg £ > 0. We now repeat the case
distinction above for B and y'.

The key observation is that when the third case of the above case distinction has
occurred, repeating the same for B and yl falls into the second case (because the basis
B has not changed, meanwhile yé = Xg =0 with g € B and Zg 7> 0). Therefore, after
each degenerate pivot, the cardinality of the support of the improving feasible direction
in the non-basic indices decreases. Hence, a sequence of | Q2 ( yo, B)| degenerate pivots
would yield an improving feasible direction y’ and a basis B’ of x with Q,(y, B’) =0,
which in turn implies 0 = Elj\}, Yy = ¢’y due to (3.2), yielding a contradiction. Hence
the number of consecutive degenerate pivots with the suggested pivot rule cannot
exceed n—m—1. O

The next remark will be useful in the next section.

Remark 3.2. Let x be the currently considered basic feasible solution with basis B. If y°
is chosen to be equal to % — x for some basic feasible solution X of our LP with ¢ % > ¢ x,
then one can observe that |Q»( yo, B)| < m because X has at most m non-zero coordinates.
By the proof of Theorem 3.1 above, the latter value strictly decreases with each degenerate
step produced by the antistalling pivot rule. Hence, the total number of consecutive

degenerate pivots at the vertex x can be strengthened to be at most min{n—m—1,m—1}.

We finish this section with the previously announced result on the hardness of finding
improving feasible directions.

Theorem 3.3. Finding an improving feasible direction at a given vertex of a feasible
polyhedron is as hard as solving a general linear programming problem.

Proof. Let us consider a pair of feasible primal and dual problems (1.4, 1.5) and build
the following LP by combining both of them:

max 1 (3.5)

s.t. c'x = yTb (3.6)
Ax<Ab Aly=2Ac 3.7)
y=0 (3.8)
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0< A =<1 (3.9)

with A € R"*", rank(A) = n,b € R, c € R" and variables x € R"”,y € R™, and 1 € R.
The point z° := (x°, y°,A°%) = O+ m+1 is a vertex of the feasible polyhedron of (3.5-3.9),
since all inequities but A < 1 are tight at z° and it is not hard to construct a correspond-
ing (row) basis. Note that every improving feasible direction Az = (Ax,Ay,AA) at z°
satisfies AA > 0 and (3.6-3.8). Therefore, the point z:= (%, y, /T) =z%+ ﬁAz is feasible
for (3.5-3.9). Due to feasibility of Z and since 1 = 1, (%, J) = ﬁ(Ax, Ay) comprise a pair
of optimal solutions for the primal and the dual problems (1.4, 1.5). Therefore, finding
such Az is at least as hard as solving both for the primal and the dual problems. O

3.3 Exploiting the antistalling rule for general bounds

Here we combine the result of the previous section with the analysis of Kitahara and
Mizuno (2013, 2014). The authors of the latter works give a bound on the number
of non-degenerate simplex pivots that depends on 7, m and the maximum and the
minimum non-zero coordinate of basic solutions. The combined analysis yields a
similar bound on the total number of (both degenerate and non-degenerate) simplex
pivots.

We need a few additional notations. For any vector x, we let supp(x) denote its support.
We denote the smallest and the largest non-zero coordinate of any basic feasible
solution of (3.1) by § and A, respectively. We let x* be an optimal basic feasible solution
of (3.1). Finally, for a generic iteration g of the simplex algorithm with basis BY and an
improving feasible direction y7, we let Ag = MAX e o)y 950) —Cna,i. Note that Ag is the
absolute value of the reduced cost of the entering variable according to the antistalling
pivot rule defined in the previous section when using y9.

We make use of the following result from Kitahara and Mizuno (2014).
Lemma 3.4 (Lemma 4 of Kitahara and Mizuno, 2014). Ifthere exists a constant A >0

such that ]
™ -xM<(1 —E)CT(x"—x*) (3.10)

holds for any consecutive distinct basic feasible solutions x9 # x9*! generated by the
simplex algorithm (with any pivot rule), the total number of distinct basic feasible
solutions encountered is at most

(n—m) [/lloge mTA" ;

Given (3.1), apply the simplex algorithm with the antistalling pivot rule described in the
previous section. In particular, at a general iteration ¢ of the algorithm, let B, x*, and
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y" be respectively the basis, the basic solution, and the improving feasible direction
considered by the algorithm. Let N*:= [n] \ B%. If x* # x'~! (i.e., we encounter x! for
the first time, as a result of a non-degenerate pivot) let y? := x* — x’. Observe that, once
this is specified, the improving feasible direction is determined by the antistalling rule
for all remaining degenerate pivots at x’.

Lemma 3.5. Let x' = x'** be the basic feasible solution associated with bases B' and

B™*, and assume x'** # x'***1, The following holds:

t+k < ¢

(a) CTy Tyt.

(b) y!**=y! forallie N"** n supp(y'*F).

Proof. The statement (a) follows from (3.4). The statement (b) follows from the con-
struction of our antistalling rule by induction: if Case III never occurs during the k
degenerate pivots, then y’** = y? and the statement holds trivially. Suppose that the
situation of Case III appears for B/*/, y'*/. The improving feasible direction changes
(as yt+ Jjt+1

value of y]tfj *1 (where f is the entering index). Immediately after, Case II occurs

= y'*J + @z), but among the non-basic coordinates this only affects the

and f gets pivoted in, while a basic index i with y;+j 1= gets pivoted out, i.e.,

B = (BM\{i})u{f}and N/ = (NT+/\{f})u{i}. Hence, the statement holds. [J

The next result, which establishes (3.10) with A := % for the simplex algorithm
with the antistalling pivot rule, is inspired by Kitahara and Mizuno (2014)[Theorem 3].

Lemma 3.6. Let x' = x'*¥ be the basic feasible solution associated with bases B and
Btk Assume x'! # x' and x'** # x5 We have

Txt+k+1 _ T x

c ¢ x*< )(eTxF—cTx).

(-
(n—m)A

Proof. The optimality gap for x’** can be bounded as follows:

cTxt+k _ o T y* T T

clx clxt—clx*

_CTyt
—cTy“*

=T
‘CNHkyf\ﬁ'fk (3.11)

=T t+k
D ieNitk “Cpr+k ;Y

i In

=T t+k
ZiEN”klyin>0 _CNH’C,iyi

< (n- m)AykA,

where we used Lemma 3.5(a) for the first inequality, and (3.2) for the third equality.
The last equality follows from y/** = 0,i € N*** which is implied by feasibility of
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y™*k at x™*k The last inequality in turn follows from MaX;j¢ yr+k|yt+0) —Cprvkj =

A%*k, the fact that IN"*¥| = n— m, and since y!** = y! = x* - x! < A holds for any
i € N"™**n supp(y'*%), using Lemma 3.5(b).

Let x.t* denote the entering variable at (¢ + k) iteration. Note that x.*¥*! # 0 since
f 8 f
xt+k £ xt+k+1. Then,

CTxt+k_CTxt+k+1 t+k_xt+k+1)NHk

=T
= CNt+k (x
= —ENHk'fx}“Lk“
> At+k6
-
)
= (n—-m)A

CT ( xt+k _ x*)

hold, where we used (3.2) for the first equality, A?k = —Cpr+k, f and 6 < x}*k” for the
second inequality, and (3.11) for the last inequality. Rearranging the terms yields the
lemma statement. ]

Now, combining Lemma 3.4 and Lemma 3.6 allows to conclude that the simplex
algorithm with the antistalling pivot rule described in Section 3.2 encounters at most
(n—m) [%loge (m%)] distinct basic feasible solutions. Since Theorem 3.1 and
Remark 3.2 in turn bound the number of consecutive degenerate steps by min{n — m —
1, m —1} (again, due to the choice of the improving feasible direction), combining it
with the latter result yields a bound on the total number of pivots required to reach
an optimal vertex. However, this bound does not take into account the number of
(degenerate) pivots that might have to be performed at an optimal vertex to encounter
a basis satisfying the optimality criterion. This is due to the fact that the antistalling
pivot rule requires an improving feasible direction, which we do not have at an optimal
vertex. Hence, we have to handle this case separately.

Let B and B* be a non-optimal and an optimal basis, both associated with an optimal
basic feasible solution x* of (3.1). Assume B is the basis of x* obtained by the anti-
stalling pivot rule. Since B is not optimal, there exists f € N with ¢y, ¢ = cTz<0with z
asin (3.3). Observe that there exists i € BN N* with A; £>0and x; = 0: otherwise, all co-
ordinates of zy« would be non-negative and hence z € Cy+ := {x € R" | Ax =0, x5~ = 0}.
The latter however contradicts the fact that all extreme rays of the above cone Cy»
have non-negative scalar products ¢y« with ¢ due to optimality of B*. Hence one
could perform a simplex pivot on B with entering variable f and leaving variable i. Let
B':=(B\{i})u{f}and N':= (N \{f}) u{i}. Note that ¢ ; = 0 and i € N'n N*. Either
B' is an optimal basis and we stop, or there exists j € N\ {i} with ¢ ; < 0. In the
latter case, however, we can enforce the constraint x; = 0 by removing the variable x;
together with the corresponding column of A and entry c; of ¢ from (3.1). By doing so
we obtain a new LP with the number of variables smaller by one that has B’ and B*
as a non-optimal and an optimal basis, respectively, since ¢y, j <0 and ¢cyx\; = 0.
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We can set B = B’ and repeat the process. Since at each iteration a variable with index
from N* gets removed, after at most n — m iterations B = B*. Since the number of
degenerate pivots at an optimal vertex is bounded by n — m, we can state the following
result.

Theorem 3.7. Given an LP (3.1) and an initial feasible basis, there exists a pivot rule
that makes the simplex algorithm reach an optimal basis in at most

(n—m)A A)-‘

5 log, (m—

min{n—m, m}(n—m)[ 5

simplex pivots.

In general, the value of 6 is NP-hard to compute (Kuno et al., 2018). However, observe
that for integral A and b (which can be assumed without loss of generality for rational
LPs), one can bound A < ||b]||1;A4 and 6 = ALA due to Cramer’s rule (recall that A 4 is
the largest absolute value of a sub-determinant of A). Then the next statement is a
straightforward corollary of the above theorem.

Corollary 3.8. For any basic feasible solution of an LP (3.1) with integral A and b, there
exists a sequence of at most

min{n — m, m}(n - m)[(n—m)AZ|bll log, (mAZ11bl1)]

simplex pivots leading to an optimal basis.

3.3.1 Application to combinatorial LPs

We conclude this section by observing that, using the latter corollary, one can prove the
existence of short sequences of simplex pivots (that is, of length strongly-polynomial
in n, m) between any two extreme points of several combinatorial LPs, that is, LPs
modeling the set of feasible solutions of famous combinatorial optimization problems.
We report a few examples below.

(a) LPs modeling matching/vertex-cover/edge-cover/stable-set problems in bipartite
graphs. For matchings, the LP maximizes a linear function over a set of constraint of
the form {A’x < 1, x = 0}, where the coefficient matrix A’ is the node-edge incidence
matrix of an undirected bipartite graph. After putting the LP in standard equality form
by adding slack variables, we get constraints of the form {Ax =1, x = 0}, where Ais a
totally unimodular matrix (and so A 4 = 1). The result then follows from Corollary 3.8.
The same holds for vertex-cover (minimizing a linear function over constraints of the
form {A’ Ty> 1, x = 0}), edge-cover (minimizing a linear function over constraints of
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the form {A'x = 1, x = 0}), stable-set (maximizing a linear function over constraints of
the form {A'Tx <1, x> 0}).

(b) LPs modeling optimization over the fractional matching/vertex-cover/edge-cover/ sta-
ble-set polytopes. These correspond to the natural LP relaxations of the problems
discussed in (a), for general graphs. The same LPs as in (a), in non-bipartite graphs,
have a constraint matrix A’ (resp. A’ Ty that is not totally unimodular. However, the set
of constraints defines half-integral polytopes (see Appa and Kotnyek, 2006; Nemhauser
and Trotter, 1974). Note that, after putting the LPs in standard equality form, the slack
variables can be loosely bounded from above by the number of variables n. Hence,

A<nandéd = %, and the result follows from Theorem 3.7.

(c) LP for the stable marriage problem. The classical stable marriage problem is defined
on a bipartite graph where each node has a strict preference order over the set of its
neighbours. One looks for a matching that does not contain any blocking pair, that s, a
pair of nodes that mutually prefer each other with respect to their matched neighbour.
There is an (exact) LP formulation for the problem (Rothblum, 1992; Vande Vate, 1989),
that has constraints of the form {A’x < 1, B’x = 1, x = 0}. Here A’ is again the node-edge
incidence matrix of an undirected bipartite graph, while B’ is a matrix that stems from
imposing an additional constraint for each edge {uv}, that essentially prevents {uv}
from being a blocking pair:

Xup+ Y. Xuwt Y, Xpw=1

w:w>y, v w:w>yu

In the above expression, w >, v (resp. w >, u) means that u prefers w over v (resp. v
prefers w over u). After putting the LP in standard equality form, the slack variables
can be bounded by 1. Hence, A =6 = 1, and the result follows from Theorem 3.7.

(d) LPs modeling various flow problems (such as max flows, min cost flows, flow circula-
tions) with unit (or bounded) capacity values. Flow problems in capacitated graphs
are modeled using LPs with constraints of the form {A'x = b,l < x < u} where the
constraint matrix A’ is here a node-arc incidence matrix of a directed graph, which is
totally unimodular (see Schrijver, 2003). The right-hand side vectors (b, [, u) can be
bounded in terms of the total capacity values. Therefore, assuming these are bounded
integers, one can rely on Corollary 3.8 to get the result, similarly to (a).

One can compute the corresponding pivot sequence for the problems mentioned in
(a)-(d) by running the simplex with the antistalling pivot rule. However, one needs to
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presolve the LP and obtain an optimal basic solution in order to use it to guide the
antistalling pivot rule.

We remark that the existence of a strongly polynomial sequence of pivots for general
min-cost flows (hence for problems in (d)), was already known, as it follows from the
fundamental work of Orlin (1997), which applies even in the case of large capacity
values. In comparison, our bound is weaker, as it requires the capacity values to be
bounded.

On the other hand, despite being known to be solvable in strongly polynomial time,
to the best of our knowledge, the problems in (a)-(c) were not previously known to
admit strongly polynomial bounds on the number of simplex pivots for their natural
LP formulations.

3.4 Computational experiments

In this section we report the computational experiments that we conducted to evaluate
the performance of the antistalling pivot rule when applied to actual linear programs.

For the implementation, we used the python package CyLP by Towhidi and Orban
(2016) which wraps COIN-OR’s CLP solver and provides tools for implementing a
preferred pivot rule in python to substitute CLP’s built-in ones. For the tests, we used
the benchmark Netlib LP dataset containing 93 LPs of various dimensions and sparsity.
All our experiments were conducted on a laptop with Intel Core i7-13700H 2.40GHz
CPU and 32GB RAM.

For each of the aforementioned LPs, we ran the simplex algorithm with our antistalling
pivot rule, and compare it with other 5 well-known pivot rules (which Towhidi and
Orban (2016) provide implementations for). These are:

* Dantzig’s rule: the entering variable is the one with the most negative reduced
cost;

* Steepest edge: the entering variable is the one which yields a direction z max-
—CTZ
12112

imizing (i.e., maximizing the improvement normalized according to the

2-norm);

e LIFO: the entering variable is the one that minimizes the number of iterations
that have past since the variable left the basis;

* Most Frequent: the entering variable is the one that maximizes the number of
times it was previously chosen as the entering variable;

 Bland’s rule: the entering variable is the one with the lowest index.
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We tracked the number of pivots required by each of the above rules. For our antistalling
pivot rule, we guided it using the feasible direction y = x* — x at any non-optimal vertex
x of the LP, for a pre-computed optimal basic solution x* (in particular, the one founded
by Dantzig’s pivot rule). Intuitively, this represents the best direction that can possibly
guide our rule, as it is the direction leading immediately to an optimal solution. Our
objective with the computational experiments was to see whether this choice translates
into fewer pivots in practice, since y might change during the degenerate steps and
therefore in reality we do not have control on the actual edge-direction we end up
moving along.

Among the 93 instances in the dataset, there were 84 LPs for which each of the pivot
rules was able to find an optimal solution with 30 minutes of timeout. We restrict
our report to these LPs. For the sake of graphical representation, we further divided
these 84 problems into 2 groups of 42 LPs each, by considering the maximum number
of iterations required by any of the 6 tested pivot rules. In particular, the first group
contains 42 LPs for which all pivot rules were able to compute an optimal solution
within 2369 pivots. The second group contains the remaining 42 LPs. Figure 3.2 shows
the results.

The computational experiments showed that the antistalling pivot rule, guided by a
known optimal solution, actually performs quite well, and most often manages to find
a relatively short sequence of pivots to an optimal basis compared to other pivot rules.
We highlight in particular the problem 25fv47, where any other pivot rule required at
least 7892 pivots whereas the antistalling only needed 1468. On the other hand, there
are instances where the antistalling pivot rule actually showed the worse performance
compared to all its competitors. Those are the LPs fit2p and seba: 69711 and 976 pivots
against at most 61925 and 873, respectively.
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Fig. 3.2: Both the upper and the lower plots show the number of iterations required by each
of the 6 considered pivot rules to solve the LPs. The 42 LPs in the upper plot are the ones
solved within 2369 pivots by all pivot rules. The remaining 42 LPs are considered in the lower
plot. Each of the so-called violin plot visualizes the distribution of the corresponding 42
numbers. White dots depict means, thick black dashes represent the intervals between 0.25-
and 0.75-quantiles.
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3.5 Discussion

We conclude this chapter with some remarks and potential research directions that
originate from our findings.

Our results show the existence of a short sequence of degenerate simplex pivots that
leads out of degeneracy. It would be interesting to show that similar results can be
achieved through perturbations. Informally, perturbing the right-hand side of the
constraints has the effect of “splitting” a degenerate vertex into a set of (possibly expo-
nentially many) distinct vertices, each associated with a distinct basis. It is legitimate
to ask whether every new vertex allows for a short monotone path (where monotonic-
ity is with respect to the linear objective function of the LP), which leads to a vertex
outside of this set. Note that the existence of the short degeneracy-escaping sequence
of simplex pivots showed in this work, generally does not answer the latter question
since some bases used in the sequence might become infeasible after perturbation.

At this point, we would like to connect to the results of Chapter 2. Given a basis B
defining a degenerate vertex v, one could imagine to separate v from all its neigh-
bouring vertices by a hyperplane: this way, one obtains a pyramid (with v at its apex).
Suppose this pyramid is full-dimensional and is described by some Ax < b: then, the
above question is equivalent to perturbing the side facets of the pyramid to allow for
a short monotone path from the new apex defined by the given basis B, to any of the
vertices in the base of the pyramid. Observe that if the monotonicity assumption is
relaxed, the letter can be done relying on the results of Section 2.5 (when viewing the
base of the pyramid as the d — 1-dimensional original polytope, and the pyramid as its
d-dimensional extension). By Theorem 2.14, such rock extension has the property that
the apex is connected to any base vertex by a path of at most linear length. However,
these paths are not necessarily monotone for a given linear objective function, as
discussed in Section 2.6, and moreover, the construction of the rock extension requires
not only perturbing the right-hand side b but the left-hand side A as well.

Another future research direction, that seems to be supported by the performed compu-
tational experiments, would be to analyze the relation between the improving feasible
direction y that is required by our antistalling pivot rule, and the actual edge-direction
z along which one ends up moving after all the degenerate pivots. It would be very
interesting to identify some conditions which ensure that z is a good approximation of
¥, e.g., in terms of the objective function’s improvement.

Furthermore, as mentioned in Section 3.2, in order for our bound on the number of
consecutive degenerate pivots to hold, the only requirement we need to impose when
performing a pivot is that the entering variable lies in the support of the improving
feasible direction y (besides, of course, having negative reduced cost). In order to
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obtain the results from Section 3.3, where both degenerate and non-degenerate pivots
have to be taken into account, we chose the entering variable to be the one with the
most negative reduced cost, i.e., we used Dantzig’s rule just restricted to the coordinates
in supp(y). Of course, one could think of analyzing the performance of the antistalling
pivot rule with other choices of entering coordinates from supp(y), e.g., according to
steepest edge or shadow vertex. Variations of these latter two rules, in particular, have
been shown to play a key role in the context of 0/1 polytopes (Black et al., 2024).

Finally, we are curious if the presented antistalling pivot rule can be applied in practice
in any way. Clearly, the dependence on an improving feasible direction y, which can
be quite hard to compute, is the main obstacle for that. One line of thought is to run
the simplex algorithm with the antistalling pivot rule in parallel to the interior point
method. Whenever the current interior point method solution x? has better objective
function value than the current simplex solution x*, one could compute y needed for
the antistalling pivot rule as x’ — x°. The hope is, that if the interior point method slows
down in the neighborhood of an optimal vertex (or an optimal face), the simplex can
maybe reach it faster along the edges.
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