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Zusammenfassung

Der Simplex-Algorithmus ist einer der bekanntesten und am häufigsten verwendeten
Algorithmen zur Lösung von linearen Optimierungsproblemen. Obwohl er in der
Praxis sehr effizient ist, wurde keine Version des Simplex-Algorithmus jemals theo-
retisch als ein Polynomialzeitalgorithmus nachgewiesen, im Gegensatz zu seinem
Hauptkonkurrenten, der Interior-Point-Methode. Die beiden Rivalen unterscheiden
sich in ihrer Ideologie: Während die Interior-Point-Methode, wie der Name schon
verrät, durch das Innere des Polyeders der zulässigen Lösungen läuft, bewegt sich der
Simplex-Algorithmus entlang der Kanten dieses Polyeders.

Es gibt viele vorangegangene Arbeiten, die zeigen, dass jede bekannte Version des
Simplex-Algorithmus auf Instanzen stößt, bei denen der von ihm gefolgte Pfad im
zulässigen Polyeder eine exponentielle Anzahl von Kanten enthält. Noch problema-
tischer ist, dass trotz Jahrzehnten der Forschung immer noch nicht bekannt ist, ob
der Durchmesser jedes Polytops durch ein Polynom in seiner Dimension und der
Anzahl der Facetten begrenzt werden kann (eine Annahme, die als polynomiale Hirsch-
Vermutung bekannt ist), was eine notwendige Bedingung für die Existenz einer Poly-
nomialzeitversion des Simplex-Verfahrens darstellt.

In Kapitel 2 dieser Arbeit beschreiben wir eine Konstruktion, die eine Umgehungslö-
sung für dieses Problem bietet. Wir präsentieren eine erweiterte Formulierung, die
eine bestimmte entspannte Version der Hirsch-Vermutung etabliert. Wir verbessern
unsere Konstruktion für nieder-dimensionale Polytope, passen sie an, um Monotonie
zu berücksichtigen, und stellen sicher, dass alle beschriebenen Erweiterungen in
stark polynomialer Zeit berechnet werden können. Darüber hinaus reduzieren wir
das allgemeine lineare Optimierungsproblem auf Optimierung über den vorgestell-
ten Erweiterungen. Damit beweisen wir, dass, wenn es eine Pivotregel für den
Simplex-Algorithmus gibt, bei der man die Anzahl der Schritte durch ein Polynom im
Durchmesser des Polyeders der zulässigen Lösungen begrenzen kann, das allgemeine
lineare Optimierungsproblem in stark polynomialer Zeit gelöst werden kann.

Zusätzlich zu dem oben erwähnten Problem der exponentiell langen Pfade wird der
Simplex-Algorithmus durch Degeneration behindert. In der Tat kann er an einer
degenerierten Ecke des zulässigen Polyeders für exponentiell viele aufeinanderfolgen-
den Iterationen „festhängen“. Während es viele vorangegangene Arbeiten gibt, die
zeigen, wie dieses Phänomen für verschiedene spezielle Klassen von linearen Opti-
mierungsproblemen vermieden werden kann, wurde noch kein einheitlicher Ansatz
vorgeschlagen.

In Kapitel 3 beweisen wir, dass es immer möglich ist, die Anzahl der aufeinanderfol-
genden degenerierten Pivots, die der Simplex-Algorithmus ausführt, auf n −m − 1
zu begrenzen, wobei n die Anzahl der Variablen und m die Anzahl der Gleichungen
eines gegebenen linearen Programms im Gleichungsformat ist. Wir erhalten auch eine
Schranke für die Gesamtanzahl der Simplex-Pivots und zeigen, dass diese in der Tat
stark polynomial für bestimmte Klassen von kombinatorischen LPs ist.
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Abstract

The simplex algorithm is one of the most popular and widely used algorithms for
solving linear programming problems. Although being very efficient in practice, no
version of the simplex was ever proven to be a polynomial time algorithm from the
theoretical prospective, in contrast to its main competitor, the interior point method.
The two rivals differ in ideology; while the interior point method, as the name suggests,
runs through the interior of the polyhedron of feasible solutions, the simplex proceeds
along the edges of it.

There has been a lot of prior work showing that every popular simplex version runs
into instances where the path that it follows on the feasible polyhedron contains an
exponential number of edges. Ever worse than that, despite decades of research,
is is still not known whether the diameter of every polytope can be bounded by a
polynomial in its dimension and the number of facets (an assumption known as the
polynomial Hirsch conjecture), which is a necessary condition for the existence of a
polynomial time simplex method.

In Chapter 2 of this work, we describe a construction that offers a workaround for the
latter issue. We present an extended formulation that establishes a certain relaxed
version of the Hirsch conjecture. We improve our construction for low-dimensional
polytopes, modify it to account for monotonicity, and ensure that all described exten-
sions can be computed in strongly polynomial time. Moreover, we reduce the general
linear programming problem to optimization over the presented extensions. With that
we prove that if there is a pivot rule for the simplex algorithm for which one can bound
the number of steps by a polynomial in the diameter of the polyhedron of feasible
solutions, then the general linear programming problem can be solved in strongly
polynomial time.

In addition to the issue of exponentially long paths mentioned above, the simplex
algorithm is obstructed by degeneracy. In fact, it can “get stuck” at a degenerate vertex
of the feasible polyhedron for exponentially many consecutive iterations. While there
have been many prior works showing how to avoid this phenomenon for a number of
special classes of linear programs, no unified approach has ever been suggested.

In Chapter 3 we prove that it is always possible to limit the number of consecutive
degenerate pivots that the simplex algorithm performs to n −m −1, where n is the
number of variables and m is the number of equality constraints of a given linear
program in standard equality form. We also obtain a bound on the total number of
simplex pivots and show that it is, in fact, strongly polynomial for certain classes of
combinatorial LPs.
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1
Introduction and motivation

Linear programming (LP) is the problem of finding a point within a given polyhedral

region that optimizes a specified linear function. Mathematically we write

min cT x

s.t. Ax ≤ b
(1.1)

where x ∈ IRd is a variable vector, c ∈ IRd is the objective vector, and A ∈ IRm×d and

b ∈ IRm are the system matrix and the right hand side, respectively, of the system of

linear inequalities Ax ≤ b. The feasible region {x ∈ IRd | Ax ≤ b} of a linear programming

problem is a polyhedron (a finite intersection of closed half-spaces induced by the row

inequalities of the system). The polyhedral structure of the feasible region, together

with the linearity of the objective function, calls for the invention of optimization

techniques specifically tailored for linear programming. Historically the first, and still

one of the most widely used methods for solving linear programming problems is the

simplex algorithm introduced by Dantzig (1951).

Geometrically, the simplex algorithm proceeds from vertex to vertex of the feasible

polyhedron along the edges of it, improving the objective function value with each

move, until it reaches an optimal vertex. See Figure 1.1 for an illustration.

Behind the scenes, the simplex algorithm relies on the concept of basis, where a basis

corresponds to an inclusion-wise minimal set of tight inequalities which defines a

vertex of the underlying feasible polyhedron. In each step, it performs a basis exchange

by replacing one constraint currently in the basis with a different one. Such an exchange

is called a pivot. From a geometric perspective, a basis exchange identifies a direction

to move from the current vertex. The simplex algorithm only considers pivots that

yield an improving direction, with respect to the objective function to be optimized. As

the result of pivoting, it is possible for the algorithm to either stay at the same vertex,

or to move to an adjacent vertex of the underlying polyhedron with a better objective

function value. We refer to a pivot of the former type as degenerate, in contrast to a

pivot of the latter type, which will be called non-degenerate. Refer to Figure 1.2 for an

illustration of the both types of pivots. The decision on how to perform these basis

1



K. KUKHARENKO CHAPTER 1. INTRODUCTION AND MOTIVATION

Fig. 1.1: A simplex path in orange on a polytope. Image: Prof. Dr. Marc Pfetsch, TU Darmstadt.

exchanges (i.e., which inequality leaves and which inequality enters the basis) is made

by the pivot rule which constitutes the core of the simplex algorithm.

Even though the simplex algorithm performs as a linear time algorithm for many real

world linear programming models (see, e.g., the survey of Shamir, 1987), none of the

numerous pivot rules that have been introduced over decades yields a polynomial time

version of it. It should be noted, that a variant of the simplex algorithm, the shadow

simplex, has been shown to have polynomial smoothed complexity
(
see, e.g., Bach

and Huiberts (2025); Borgwardt (1987, 1999); Dadush and Huiberts (2020); Megiddo

(1986a); Spielman and Teng (2004); Vershynin (2009)
)
.

The search for a polynomial time pivot rule is also considered highly relevant in light

of the question of whether there is a strongly polynomial time algorithm for linear

programming (i.e., an algorithm for which not only the number of bit-operations can

be bounded by a polynomial in the entire input length, but also the number of its

arithmetic operations can be bounded by a polynomial in the number of inequalities

and in the number of variables), which is most prominent in Smale’s list of 18 open

problems for the 21st century (Smale, 1998).

What does actually prevent the simplex from being a polynomial time algorithm? The

two main obstructions are

(1) the length (i.e., the number of edges) of a path that the simplex takes on the

feasible polyhedron might be exponential,

(2) degeneracy, causing so-called cycling and stalling.

2



K. KUKHARENKO

Fig. 1.2: The simplex algorithm optimizing the depicted optimization direction opt is cur-
rently at the vertex u of the pyramid with the basis consisting of the three inequalities cor-
responding to the colored facets. Here will we refer to an inequality by the color of the
corresponding facet. If the blue inequality leaves the basis, the simplex “slides down” the
edge formed by the green and the orange facets until it “bumps” into the lower facet of the
pyramid at the vertex v . The new basis obtained by this non-degenerate pivot is comprised of
the inequalities defining the green, the orange, and the lower facets. If, on the other hand,
the orange inequality leaves the basis, the simplex tries to move along the direction z formed
by the green and the blue inequalities. However this direction is outside of the feasible poly-
hedron, and the movement along it is obstructed by the white facet located in between the
orange and the blue ones. Therefore the simplex stays at the vertex u. The inequality defining
the said white facet, together with the green and the blue inequalities constitute the new basis
after this degenerate pivot.

The first issue is known to affect all popular pivot rules. They are cleverly tricked into

visiting an exponential number of vertices of some concrete “twisted” polytopes (see,

e.g., Avis and Friedmann (2017); Black (2024); Disser and Hopp (2019); Goldfarb (1994);

Goldfarb and Sit (1979); Hansen and Zwick (2015); Klee and Minty (1972); Terlaky and

Zhang (1993); Zadeh (2009) and the references therein) before reaching an optimal one.

Even worse than that, it is not known whether a path of polynomial (in the dimension

and the number of facets) length between the starting vertex and an optimal one

always exists in polytopes.

The second point refers to situations when the linear programming problem is de-

generate, meaning the feasible polyhedron has at least one degenerate vertex, i.e., a

vertex, such that the number of facets that contain it is larger than the dimension of the

polyhedron (the apex of the pyramid in Figure 1.2 is an example for that). Whenever the

3



K. KUKHARENKO CHAPTER 1. INTRODUCTION AND MOTIVATION

simplex algorithm encounters such a vertex, it can potentially fall into an exponentially

long sequence of degenerate pivots, termed stalling or, even worse, loop indefinitely, a

phenomenon called cycling.

Our work, titled Short Paths for the Simplex Algorithm, is dedicated to studying the

two mentioned issues and obtaining results that at least somewhat lower the hurdles

preventing the simplex from becoming a (strongly) polynomial time algorithm. This

work is structured as follows. We work on problem (1) in Chapter 2 by introducing

a construction that allows us to guarantee the existence of a path of linear (in the

number of inequalities) length between the starting vertex and an optimal vertex of a

feasible polyhedron, without resorting to degeneracy or blowing up the problem size

too much. We modify our construction to account for monotonicity and improve it

for two- and three-dimensional polytopes. Moreover, we prove that if there is a pivot

rule for the simplex algorithm for which one can bound the number of steps by a

polynomial in the diameter of the polyhedron of feasible solutions, then the general

linear programming problem can be solved in strongly polynomial time. After that, we

switch to the problem (2) in Chapter 3. We show that it is always possible to bound

the number of consecutive degenerate pivots that the simplex algorithm performs

by n −m − 1, where n is the number of variables and m is the number of equality

constraints of a given linear program in standard equality form (which will be formally

defined later). As a result, we ensure the existence of a short (monotone) path leading

out of degeneracy in the basis exchange graph of a polytope. Moreover, we provide a

bound on the total number of simplex pivots and test our pivot rule on a benchmark

LP dataset.

Chapter 2 is based on the work of Kaibel and Kukharenko (2024) while most of the

results in Chapter 3 are presented in Kukharenko and Sanità (2024).

In the remainder of this chapter, the reader will find notations and definitions used

throughout this work.

1.1 Preliminaries

In this section we introduce our basic notations without going into much detail. If

appropriate, we point the reader to the relevant literature. Concepts that are only

relevant for certain parts of the work may be defined locally.

Throughout this work, we assume familiarity with basic facts about linear algebra,

graph theory, optimization, and polyhedra. For detailed background information

we refer to the books of Schrijver (1986) and Ziegler (1994). The basic concepts of

algorithm complexity follow the standard textbook of Garey and Johnson (1990).

4



1.1. PRELIMINARIES K. KUKHARENKO

We useOd and 1d for the all-zeros and all-ones vectors in IRd , respectively. When the

subscript is clear from the context, it will be dropped. For a row-vector α ∈ IR1×d \ {OT }

and a number β ∈ IR we call the sets H≤(α,β) := {x ∈ IRd |αx ≤β} and H=(α,β) := {x ∈
IRd |αx =β} a halfspace and a hyperplane, respectively. Moreover, we naturally extend

the above notation by Hσ(α,β) to denote the set {x ∈ Rd |αxσβ} where σ ∈ {<,>}.

For A ∈ IRm×d and b ∈ IRm we use P≤(A,b) to denote the polyhedron {x ∈ IRd | Ax ≤ b}.

For a matrix A ∈ IRm×d , a row subset I ⊆ [m], and a column subset J ∈ [d ], we use AI ,J

to denote the submatrix of A indexed by the corresponding rows and columns. Instead

of AI ,[d ] and A[m],J we also write AI ,⋆ and A⋆,J , respectively, and for I = {i }, J = { j }

where i ∈ [m] and j ∈ [d ] we use Ai ,⋆, A j ,⋆, and Ai j . We use ∆A for the largest absolute

value of a sub-determinant of A and ∆A,k with 1 ≤ k ≤ min{m,d} when restricted to

k ×k sub-determinants. Similarly, for a vector b ∈ IRm and I ⊆ [m], the notation bI is

used to denote a vector consisting of the entries of b indexed by I . We use ||b||1 and

||b||2 to denote the 1-norm and the Euclidean norm of b, respectively. The Euclidean

(straight line) distance between two points u, v ∈ IRd is given by ||u − v ||2.

We use the concept of encoding size in accordance with Schrijver (1986)[p.15].

A polyhedron that has vertices is called pointed. A bounded polyhedron is called

a polytope. Note that every polytope is naturally a pointed polyhedron. We call a

d-dimensional polytope a d-polytope. A d-dimensional polytope P ⊂ IRd is called

full-dimensional. A d-polytope is called simple if each of its vertices is contained in

exactly d facets. We denote the convex hull of a set S ⊆ IRd by conv{S}.

The diameter of a polytope P is the smallest number κ such that in the graph of P

formed by its vertices and one-dimensional faces (edges) of P every pair of vertices is

connected by a path with at most κ edges.

The next concept play a central role in this work. Extended formulation of a polytope

P ⊆ IRd is a pair (Q,π), where Q is a higher-dimensional polyhedron called an extension

of P and π is an affine map called projection, such that π(Q) = P . For an illustration

see Figure 1.3. Extended formulations play an important role in “reducing complexity”

of linear programming problems in various ways, since the lifted problem might be

easier, in some sense, than the original one.

In this work we write linear programming problems in inequality form (1.1) in Chapter

2 and in the so-called standard equality form

min cT x

s.t . Ax = b

x ≥ 0

(1.2)

in Chapter 3. Although many authors define LP in standard equality form as a max-

imization problem, we still use this wording for (1.2), since simply multiplying our

5



K. KUKHARENKO CHAPTER 1. INTRODUCTION AND MOTIVATION

Fig. 1.3: A three-dimensional simple extension Q of the two-dimensional P . Note that the
diameter of Q is by one smaller than the diameter of the original polytope P .

objective c by −1 brings our LP to this standard representation. Note that (1.2) is a spe-

cial case of (1.1) (after writing Ax = b as Ax ≤ b and −Ax ≤−b, and the non-negativity

constraint as −x ≤ 0). Conversely, a problem in the inequality form can be transformed

into the standard equality form by splitting the unknowns x = x+−x−, where x+, x− ≥ 0

and introducing a slack variable for each inequality.

When dealing with both forms of linear programs, (1.1) and (1.2), we naturally work

with two types of systems of linear inequalities and equalities:

Ax ≤ b (1.3a)

Ax = b, x ≥ 0 (1.3b)

Both of these systems have their own concepts of basis and basic feasible or infeasible

solution. We introduce these notions next. A basis, also called a row basis, of a system

(1.3a)/of an LP (1.1) with an m ×d-matrix A and rank(A) = d is a subset B ⊆ [m] with

|B | = d such that the submatrix AB ,⋆ of A formed by the rows of A indexed by B is

non-singular. Such a basis defines the basic solution xB = A−1
B ,⋆bI of the system (1.3a).

A basis, also called a column basis, of a system (1.3b)/of an LP (1.2) with an m×n-matrix

A and rank(A) = m is a subset B ⊆ [n] with |B | = m and A⋆,B being non-singular. The

6



1.1. PRELIMINARIES K. KUKHARENKO

point x ∈ IRn with xB = A−1
⋆,B b, xN =O where N := [n] \ B is a basic solution of (1.3b)

with basis B .

If a basis B with a basic solution x of a system (1.3a) or (1.3b) satisfies all inequalities

of the said system, both the basic solution x and the basis B are called feasible, and

infeasible otherwise. Note that the feasible basic solutions are exactly the vertices of

the polyhedra defined by (1.3a) and (1.3b), respectively.

Since a basis of a system (1.3a)/(1.3b) depends only on the matrix A, sometimes we

will refer to it as simply a basis of A, if the associated system is clear from the context.

Note that bases of systems (1.3a) and (1.3b) differ in concept. While a basis of (1.3a)

only contains inequalities, that are tight at the defined vertex, a basis of (1.3b) can

be associated with a subset of variables having their non-negativity constraints not

(necessarily) tight. To avoid confusion, from now on we will refer to a basis of Ax ≤ b

as a row basis. The word basis will be reserved for column bases of systems (1.3b).

A row/an inequality of (1.3a) is called redundant, if its deletion does not affect the

feasible set. A system Ax ≤ b without redundant rows is called irredundant. Observe

that a d-dimensional polytope in IRd defined by an irredundant system Ax ≤ b is

simple if and only if each vertex of it is defined by exactly one row basis.

Let xB be a basic feasible solution of (1.3a) with basis B , then E qAx≤b(xB ) := {i ∈ [m] |
Ai ,⋆xB = bi }. The feasible and the basic cones at xB are the sets C

(
E qAx≤b(xB )

)
:= {x ∈

IRd | AE qAx≤b(xB ),⋆x ≤O} and C (B) := {x ∈ IRd | AB ,⋆x ≤O}, respectively.

Finally, we briefly turn to the concept of LP duality. For more information see, e.g.,

Dantzig (1963). For a pair of primal and dual problems

max cT x

(P) s.t . Ax ≤ b
(1.4)

min yT b

(D) s.t . AT y = c

y ≥ 0

(1.5)

we use the concept of weak duality: cT x = yT Ax ≤ yT b holds for any pair (x, y) of

feasible solutions to (P) and (D), respectively. If the latter inequality is tight, then x and

y are optimal solutions to (P) and (D), respectively.

7



2
Polytope extensions with linear diameters

2.1 Introduction

As we’ve already mentioned in the previous chapter, the simplex algorithm proceeds

along (monotone) paths in the graph of a polytope. And therefore, for each polytope

P the worst-case running time of the simplex algorithm (over all linear objective

functions) is bounded from below by the diameter of P . Hence, the diameter of

polytopes is necessarily bounded by a polynomial in the number of its facets if a

polynomial time pivot rule for the simplex algorithm for linear programming exists.

Warren M. Hirsch conjectured in 1957 (see, e.g., Ziegler, 1994) that the diameter of each

d-dimensional polytope with n facets is bounded from above by n−d . Disproving this

bound took substantial effort and was achieved only 53 years later by Santos (2012)

using a polytope in dimension 43 with 86 facets and diameter 44. Today, it is known

that no upper bound better than 21
20 (n−d) is valid in general (Matschke et al., 2015). The

belief, that the diameter of polytopes is bounded by a polynomial in d and n is called

polynomial Hirsch conjecture. The best-known upper bounds in terms of n and d are

are derived from a result by Kalai and Kleitman (1992), who presented an upper bound

of nlog2 d+2. Todd (2014) improved the latter bound to (n −d)log2 d , which was further

refined by Sukegawa (2019) to (n−d)log2 O(d/log2 d). Another line of research, which was

carried out by Bonifas, di Summa, Eisenbrand, Hähnle, and Niemeier (2014), lead to

the upper bound O
(
∆2

An3.5 log2(n∆A)
)
, where A is the integral coefficient matrix of

some inequality description of a rational polytope P . The latter result was improved to

O
(
n3∆2

A ln(n∆A)
)

by Dadush and Hähnle (2016).

While not presenting a new bound on the diameters of polytopes, the first main con-

tribution (see Theorem 2.7, and in particular Corollary 2.8) we make is to prove the

following: for each d-dimensional polytope P in IRd with n facets that satisfies a certain

non-degeneracy assumption there is a simple (d +1)-dimensional extension Q with

n + 1 facets and diameter at most 2(n −d). We further show in Theorem 2.14 that

such an extension Q is even computable in strongly polynomial time if a vertex of P is

specified within the input.

8
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We remark that without requiring the number of facets and the dimension of Q to be

polynomially bounded in n and d , the polytope Q can trivially be chosen as a high-

dimensional simplex (which even has diameter one). However, the number of facets of

that simplex equals the number of vertices of P (which might easily be exponential in n

and d). Similarly, without the requirement of Q being simple such a construction can

trivially be obtained by forming a pyramid over P (which has diameter at most two).

On the other hand, the results in Kaibel and Walter (2015) show that the combination

of those two requirements on Q implies some (non-degeneracy) condition on P .

Our second main contribution is to use the extensions of small diameters that we

described in the first part in order to show the following: in order to devise a strongly

polynomial time algorithm for the general linear programming problem it suffices

to find a polynomial time pivot rule for the simplex algorithm just for the class of

linear programs whose feasible region is a simple polytope whose diameter is bounded

linearly in the number of inequalities (see Theorems 2.21 and 2.24). Thus, even if

it turns out that the polynomial Hirsch conjecture fails, it still might be possible to

come up with a strongly polynomial time algorithm for general linear programming by

devising a polynomial time pivot rule for only that special class of problems.

This chapter is organized as follows. Section 2.2 introduces a special type of extended

formulations that we call rock extensions which will allow us to realize the claimed

diameter bounds. Special properties of rock extensions for two- and three-dimensional

polytopes are discussed in Section 2.3. In Section 2.4 we ensure that the procedure we

devise in Section 2.2 for obtaining a rock extension with certain additional properties

(that we need to maintain in our inductive construction) can be adjusted to produce a

rational extension having its encoding size polynomially bounded in the encoding size

of the input. We consider a reduction of the general linear programming problem to its

special case for rock extensions in Section 2.5 and upgrade our extensions to allow for

short monotone paths in Section 2.6.

2.2 Rock extensions

Let Ax ≤ b be a system of linear inequalities with A ∈ IRm×d ,b ∈ IRm . Then we call

the family of hyperplanes H=(A1,⋆,b1), . . . , H=(Am,⋆,bm) the hyperplane arrangement

associated with Ax ≤ b and denote it by H(A,b). Vertices and lines of a hyperplane

arrangement are 0-dimensional and 1-dimensional intersections of its hyperplanes,

respectively. The polyhedron P≤(A,b) is called a chamber of H(A,b).

9
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2.2.1 Foundations

We start by introducing two types of systems of linear inequalities which will be crucial

throughout this chapter.

Definition 2.1. A feasible system of linear inequalities Ax ≤ b with A ∈ IRm×d , b ∈ IRm

is said to be non-degenerate if each vertex of H(A,b) is contained in exactly d of the

m hyperplanes. The system is called totally non-degenerate if, for any collection of k

hyperplanes of H(A,b), their intersection is a (d −k)-dimensional affine subspace for

1 ≤ k ≤ d and the empty set for k > d.

Note that total non-degeneracy implies non-degeneracy. Additionally, observe that

non-degeneracy can be achieved using perturbation arguments. We elaborate on that

in Section 2.5 in more detail. We introduce corresponding notions for polytopes in the

following way.

Definition 2.2. A polytope is called strongly non-degenerate, respectively, totally non-
degenerate if there is a non-degenerate, respectively, totally non-degenerate system of

linear inequalities defining it.

We observe that each strongly non-degenerate polytope is full-dimensional and simple.

Definition 2.3. A non-degenerate system Ax ≤ b with A ∈ IRm×d ,b ∈ IRm is said to

be simplex-containing if there exists a subset I ⊆ [m] of with |I | = d + 1 such that

P≤(AI ,⋆,bI ) is a d-simplex.

Note that each strongly non-degenerate polytope P can be described by a simplex-

containing non-degenerate system Ax ≤ b. This is due to the fact that one can add d+1

redundant inequalities defining a simplex S ⊇ P to any non-degenerate description of

P without violating non-degeneracy (in fact, later we establish that a single auxiliary

inequality is enough to ensure the simplex-containing property). In addition, it turns

out that any totally non-degenerate system defining a polytope is simplex-containing.

We proceed with a proof of this fact.

Proposition 2.4. Let P ⊆ IRd be a d-polytope given by a totally non-degenerate system

Ax ≤ b of m linear inequalities. There exists a subset I ⊆ [m] with |I | = d +1 such that

the polyhedron P≤(AI ,⋆,bI ) is bounded.

Proof. Consider an inequality Ai ,⋆x ≤ bi that defines a facet Fi of P . First, we show

that the vertex v ∈ P that minimizes Ai ,⋆x over P is unique. For the sake of contra-

diction, assume that a k-dimensional face F with k ≥ 1 minimizes Ai ,⋆. Note that

F ̸⊂ Fi holds due to full-dimensionality of P , and hence the intersection of d −k hyper-

planes H=(A j ,⋆,b j ), j ∈ J ⊆ [m], |J | = d −k,k ≥ 1, i ∉ J containing F and the hyperplane

10
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H=(Ai ,⋆,bi ) is empty, which contradicts total non-degeneracy. Then, the d inequali-

ties in Ax ≤ b satisfied at equality by v and the inequality Ai ,⋆x ≤ bi define a simplex

around P , since each edge containing v is Ai ,⋆-increasing and therefore each extreme

ray of the feasible cone emanating from v intersects H=(Ai ,⋆,bi ).

Next, we introduce a special type of extensions we will be working with.

Definition 2.5. Let P be the polytope defined by a system Ax ≤ b with A ∈ IRm×d ,b ∈ IRm .

Any polytope Q := {(x, z) ∈ IRd+1 | Ax +az ≤ b, z ≥ 0} with a ∈ IRm
>0 will be called a rock

extension of P.

Fig. 2.1: A rock extension with diameter eight of the regular 20-gon.

Note that a rock extension Q together with the orthogonal projection onto the first d

coordinates indeed provides an extended formulation of P . We henceforth assume

that P is a full-dimensional d-polytope. Then Q is a (d +1)-dimensional polytope that

has at most m +1 facets, including the polytope P itself (identified with P × {0}) as the

facet defined by the inequality z ≥ 0. In case Ax ≤ b is an irredundant description of

P , a rock extension Q has exactly m +1 facets defined by z ≥ 0 and Ai ,⋆x + ai z ≤ bi

for i ∈ [m], where the latter m inequalities are in one-to-one correspondence with the

facets of P . See Figure 2.1 for an illustration.

We call the facet P of Q the base and partition the vertices and edges of Q into base and

non-base vertices and edges accordingly. A vertex of Q with maximal z-coordinate is

called a top vertex. A path in the graph of a rock extension will be called z-increasing

if the sequence of z-coordinates of vertices along the path is strictly increasing. To

shorten our notation, we denote a hyperplane {(x, z) ∈ IRd+1 | z = h} and a halfspace

{(x, z) ∈ IRd+1 | z ≤ h} by {z = h} and {z ≤ h}, respectively. We also use the notation

B d
ϵ (q) for the d-dimensional open Euclidean ball of radius ϵ centered in q ∈ IRd .

11
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Definition 2.6. Let ϵ> 0 be a positive number. We say that a rock extension Q of P is

ϵ-concentrated around (o,h) ∈ IRd × IR>0 if

1. (o,h) is the unique top vertex of Q,

2. B d
ϵ (o) ⊆ P, and

3. all non-base vertices of Q are contained in the open ball B d+1
ϵ

(
(o,h)

)
.

It turns out that maintaining the ϵ-concentrated property opens the door for inductive

constructions of “well-behaved” rock extensions.

2.2.2 The main theorem of rock extensions

We proceed with the result that provides the foundation for the further development of

the theory of rock extensions.

Theorem 2.7. For every d-polytope P given by a simplex-containing non-degenerate

system Ax ≤ b of m linear inequalities, every ϵ> 0, and every point o with B d
ϵ (o) ⊆ P,

there exists a simple rock extension Q that is ϵ-concentrated around (o,1) so that for

each vertex of Q there exists a z-increasing path of length at most m −d to the top vertex

(o,1).

For totally non-degenerate polytopes the latter result immediately implies the follow-

ing bound that is only twice as large as the bound originally conjectured by Hirsch.

Corollary 2.8. Each totally non-degenerate d-polytope P with n facets admits a simple

(d +1)-dimensional extension Q with n +1 facets and diameter at most 2(n −d).

For a more general result for all strongly non-degenerate polytopes along with algorith-

mic considerations see Section 2.5. Now we turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. We proceed by induction on the number m of linear inequalities

in Ax ≤ b.

Suppose first that we have m = d +1. Then the polytope P is a d-simplex and hence

the (d +1)-dimensional pyramid Q over P with (o,1) as the top vertex has the required

properties.

So let us consider the case m ≥ d +2. Since Ax ≤ b is simplex-containing, there exists

an inequality Ai ,⋆x ≤ bi (i ∈ [m]\ I can be chosen arbitrarily for some I as in Definition

2.3), whose deletion from Ax ≤ b yields a system of linear inequalities defining a

polyhedron P̃ . Note that P̃ is bounded due to the simplex-containing property of

Ax ≤ b. By the induction hypothesis and due to B d
ϵ (o) ⊆ P ⊆ P̃ , for every 0 <µ≤ ϵ the

12
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polytope P̃ defined by the simplex-containing non-degenerate system A J ,⋆x ≤ b J with

J := [m]\{i } admits a simple rock extension Q̃ that is µ-concentrated around (o,1) with

each vertex having a z-increasing path of length at most m −d −1 to the top vertex

(o,1) of Q̃.

To complete the proof we pick a certain 0 <µ< ϵ and add the inequality Ai ,⋆x+ai z ≤ bi

with an appropriate choice of ai to the inequality description of the µ-concentrated

extension Q̃ of P̃ in order to obtain a simple rock extension Q of P that is ϵ-concentrated

around (o,1). We then show that the vertices of Q admit similar paths to the top vertex

as the vertices of Q̃ do.

Here we choose the coefficient ai > 0 that determines the “tilt angle” of the correspond-

ing hyperplane in such a way that H=(
(Ai ,⋆, ai ),bi

)
is tangential to B d+1

µ

(
(o,1)

)
with

B d+1
µ

(
(o,1)

)⊆ H≤(
(Ai ,⋆, ai ),bi

)
, which is possible since B d

µ (o)⊊B d
ϵ (o) ⊆ P due to µ< ϵ.

Then the inequality Ai ,⋆x +ai z ≤ bi will not cut off any non-base vertices from Q̃ (as

they are all contained in B d+1
µ

(
(o,1)

)
), and hence (o,1) is the unique top vertex of Q as

well. Note that each “new” non-base vertex of Q is the intersection of H=(
(Ai ,⋆, ai ),bi

)
with the relative interior of some non-base edge of Q̃ connecting a base vertex of Q̃

cut off by H≤(
(Ai ,⋆, ai ),bi

)
to a non-base vertex contained in B d+1

µ

(
(o,1)

)
. We use the

following statement, which will be proven separately.

Claim 2.9. There exists a number D ≥ 7 such that for every 0 < µ ≤ 1
2 with µ < ϵ the

Euclidean distance from any “new” non-base vertex of Q to (o,1) is less than µD.

Hence by choosing any 0 <µ≤ min
{1

2 , ϵD
}

(in particular, µ< ϵ), we guarantee that all

non-base vertices of Q (including the “new” ones) are contained in B d+1
ϵ

(
(o,1)

)
.

As Q̃ is simple, every base vertex of Q has exactly one edge not lying in the base, which

will be called the increasing edge (since the z-coordinate of its non-base endpoint is

greater than 0, the z-coordinate of its base endpoint). Note that a z-increasing path

connecting a base vertex u to the top vertex necessarily contains the increasing edge

incident to u.

Now suppose v is a (base or non-base) vertex of Q, that is a vertex of Q̃ as well, then v ∈
H<(

(Ai ,⋆, ai ),bi
)

holds, which for the non-base vertices follows from their membership

in B d+1
µ

(
(o,1)

)
and the choice of ai , and for the base vertices this is due to Ax ≤ b being

non-degenerate. In particular, v is still contained in exactly d facets of Q. Hence v has

the same z-increasing path of length at most m −d −1 to the top vertex in Q as in Q̃,

since v itself and all non-base vertices of Q̃ are contained in H<(
(Ai ,⋆, ai ),bi

)
.

Finally consider a “new” base vertex v of Q, which is the intersection of the hyperplane

H=(
(Ai ,⋆, ai ),bi

)
with the relative interior of some base edge e of Q̃ (again due to the

non-degeneracy of Ax ≤ b). Denote the endpoint of e contained in H>(
(Ai ,⋆, ai ),bi

)
by u. Since u is a base vertex of Q̃, it has a unique increasing edge which we denote by

13
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Fig. 2.2: Visualization of the proof of Theorem 2.7 for two-dimensional polytopes. Illustrated
by Maryia Kukharenka.

g . Lets denote the other endpoint of g by w . Then, since w ∈ Bµ

(
(o,1)

)
, the hyperplane

H=(
(Ai ,⋆, ai ),bi

)
intersects g in a relative interior point that we denote by y . As Q̃ is

simple, both v and y are contained in exactly d facets of Q and there exists a 2-face F of

Q̃ containing both edges e and g incident to u. Since the hyperplane H=(
(Ai ,⋆, ai ),bi

)
intersects both edges e and g in points v and y , respectively, it intersects F in the

edge {v, y} of the rock extension Q. Since there exists a z-increasing path of length at

most m −d −1 connecting u and the top vertex (o,1) in Q̃, the same path with only

the edge {w,u} replaced by the two edges {w, y}, {y, v} (which are both z-increasing

since u is a base vertex and y is contained in the relative interior of the increasing edge

{w,u}) connects the base vertex v to (o,1) in Q and has length at most m −d . Note

that every “new” non-base vertex of Q arises like the vertex y described above, thus

admitting a z-increasing path to the top vertex (o,1) of length at most m −d (in fact at

most m −d −1). Therefore, Q is indeed a simple rock extension that is ϵ-concentrated

around (o,1) with each vertex of Q admitting a z-increasing path to the top vertex of

length at most m −d . See Figure 2.2 for an illustration.

We still have to prove Claim 2.9. For that, recall the notions of a row basis and a basic

solution of a system Ax ≤ b.

Definition 2.10. Let δ1 denote the maximum Euclidean distance from any (feasible or

infeasible) basic solution of the system Ax ≤ b to the point o. And let δ2 be the minimum

nonzero Euclidean distance from any (again feasible or infeasible) basic solution u of

Ax ≤ b to any hyperplane induced by a row of Ax ≤ b.

Proof of Claim 2.9. Let u be a base vertex of Q̃ cut off by H≤(
(Ai ,⋆, ai ),bi

)
. We denote

the other vertex of the increasing edge of u by w . Note that the following argumenta-

tion only relies on w ∈ Bµ

(
(o,1)

)
and the fact that w doesn’t lie above {z = 1}, which

will be useful for considerations in Section 2.4. Let y be the intersection point of

H=(
(Ai ,⋆, ai ),bi

)
with the edge {u, v}. We aim to bound the distance from y to (o,1).

14
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Fig. 2.3: Objects of dimensionality d +1, d , 1, and 0 are depicted in gray, black, light green,
and orange respectively. The gray ball has radius µ. The points w , w ′, y , y ′, and u are
contained in a two-dimensional plane, which, however, in general does not contain r and t .

Note that y lies below {z = 1} because w ∈ {z ≤ 1}. Furthermore, due to the choice

of ai , the hyperplane H=(
(Ai ,⋆, ai ),bi

)
is tangential to B d+1

µ

(
(o,1)

)
at a point we de-

note by t . Note that t lies above {z = 1} since we have B d
µ (o) ⊊ B d

ϵ (o) ⊆ P . Thus the

line through t and y intersects {z = 0} in a point r . Since both t and y are contained

in H=(
(Ai ,⋆, ai ),bi

)
, so is that line. We denote the angles ∠r yu =∠t y w ,∠w t y , and

∠yur by α, γ, and δ, respectively. See Figure 2.3 for an illustration.

For the sake of readability, we further use |ab| for the length of the line segment

[a,b] (the Euclidean distance) between any two points a and b. Applying the law of

sines to △r yu we obtain sinα
|ur | = sinδ

|yr | . On the other hand, for △t y w the same implies
sinα
|t w | =

sinγ
|w y | . Solving both equations for sinα we get |ur |

|yr | sinδ= |t w |
|w y | sinγ. Then, solving

the last equality for |w y | we obtain

|w y | = |t w | · |yr |
|ur |

sinγ

sinδ
≤ 2µ(|yu|+ |ur |)|yu|

|ur | ·hy,[u,r ]
, (2.1)

where the last inequality holds since |t w | ≤ dist
(
t , (o,1)

)+dist
(
w, (o,1)

)≤ 2µ, sinγ≤ 1,

|yr | ≤ |yu|+ |ur |, and sinδ= hy,[u,r ]

|yu| , where hy,[u,r ] is the height of vertex y in △r yu.

We denote the orthogonal projections of y and w to the hyperplane {z = 0} by y ′ and w ′,
respectively. Since |y y ′| is the distance between y and the hyperplane {z = 0} containing

both u and r , we conclude hy,[u,r ] ≥ |y y ′|. Moreover, the triangles △yuy ′ and △wuw ′

are similar and therefore hy,[u,r ] ≥ |y y ′| = |yu|
|yu|+|w y | |w w ′| ≥ |yu|

|yu|+|w y |(1−µ), where the

last inequality follows from the fact that W ∈ Bµ

(
(o,1)

)
. Plugging that estimate into

(2.1) gives
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|w y | ≤ 2µ(|yu|+ |ur |)|yu|(|yu|+ |w y |)
|ur |(1−µ)|yu| = 2µ(|yu|+ |w y |)

1−µ
(
1+ |yu|

|ur |
)

. (2.2)

Finally we bound the length of all the remaining line segments appearing in the

right-hand side of (2.2) to obtain an upper bound on |w y |. First, we observe |yu| ≤
|yu|+ |w y | ≤ dist

(
u, (o,1)

)+µ≤
√
δ2

1 +1+µ. Second, |ur | ≥ dist(u, H=(
Ai ,⋆,bi )

)≥ δ2.

Plugging those inequalities into (2.2) we obtain

|w y | ≤
2µ(

√
δ2

1 +1+µ)

1−µ
(
1+

√
δ2

1 +1+µ
δ2

)
≤ 4µ(δ1 +1.5)

(
1+ δ1 +1.5

δ2

)
,

(2.3)

where for the last inequality we used µ ≤ 0.5 and
√
δ2

1 +1 ≤ δ1 + 1. It follows that

dist
(
(o,1), y

)<µ+|w y | ≤µD , with D := 4
(
δ1 +1.5

)(
1+ δ1+1.5

δ2

)
+1 ≥ 7.

2.2.3 Paths in hyperplane arrangements

In this subsection, we briefly elaborate on some properties of paths on rock extensions

and establish a connection to paths on hyperplane arrangements.

By the definition of a rock extension Q of P = P≤(A,b), the orthogonal projection of any

path on Q that does not only use the base edges onto the original space runs through

the interior of P for at least some part. Therefore, it is hard to interpret the projected

path in terms of the original system Ax ≤ b.

However, if we restrict the scope to the simple rock extensions Q and totally non-

degenerate systems Ax ≤ b, a different relation to the original space can be observed.

In fact, every path on Q can be associated with a path in the hyperplane arrangement

H(A,b) where it is allowed to take “long steps” along the lines of the arrangement. Let

us elaborate on how the said correspondence works. Firstly, all the base edges of Q are

naturally contained in the lines of H(A,b). Secondly, since each non-base edge of Q

is contained in d facets of it, the intersection of the corresponding d hyperplanes in

IRd is a basic (feasible or infeasible) solution of Ax ≤ b due to total non-degeneracy.

Moreover, for any two consecutive non-base edges e1 and e2 on a path T in Q let us

denote the sets of d facets of Q containing e1 and e2 by U1 and U2, respectively. Let

U := U1 ∩U2, then |U | = d −1 since Q is simple. Again, the hyperplanes of H(A,b),

corresponding to facets of U intersect along the line l of the arrangement, that contains

the two (feasible or infeasible) basic solutions u1 and u2 of Ax ≤ b associated with e1

ans e2, respectively. Therefore, moving from e1 to e2 along the path T in Q corresponds
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Fig. 2.4: An orange path on a rock extension (top view) and the associated blue path on the
hyperplane arrangement in the original space. The correspondence of edges of the orange
path to vertices of the blue path is visualized by dotted lines.

to taking a “long step” from u1 to u2 along the line l possibly “jumping” over vertices

of H(A,b). See Figure 2.4 for an illustration.

Note that by allowing for such “long steps” along the lines of a hyperplane arrangement

H(A,b) in IRd associated with a totally non-degenerate system of linear inequalities

Ax ≤ b, one can get between any two vertices u and v of H(A,b) in at most d steps in

fact. This is due to the fact that given the sets U and V of hyperplanes containing u

and v , respectively (recall |U | = |V | = d due to total degeneracy), we can, starting at u,

follow any line of the arrangement until it intersects a hyperplane from |V \U | (which

is bound to happen due to total non-degeneracy). We denote the found vertex by w

with W being the set of hyperplanes that contain it and repeat the latter for w and v .

Note that |V \W | = |V \U |−1. The rest follows by induction.

2.3 Low-dimensional polytopes

This section improves the diameter bound from the last section for rock extensions of

two- and three-dimensional polytopes.

Let us consider again the setting of the proof of Theorem 2.7. The main source of

improvement for d ∈ {2,3} originates from applying the induction hypothesis to a

polytope obtained by deleting a batch of inequalities defining pairwise disjoint facets

of the original polytope. It turns out that subsequently constructing a rock extension

by adding all of the batch inequalities back one after another (with coefficients a as in
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the proof of Theorem 2.7) has the effect of increasing the combinatorial distances to

the top vertex by at most one overall. Next we elaborate on the latter fact.

Let Ax ≤ b be a simplex-containing non-degenerate system of m ≥ d +3 inequalities

defining a polytope P = P≤(A,b) with an interior point o, and let ϵ be a positive number

such that B d
ϵ (o) ⊆ P . Furthermore, let the inequalities Ai ,⋆x ≤ bi and A j ,⋆x ≤ b j with

i , j ∈ [m] \ I (where, again, I is as in Definition 2.3) and i ̸= j define disjoint facets

Fi and F j of P , respectively. Note that each vertex of F j is contained in H<(Ai ,⋆,bi )

and vice versa. Consider the polytopes P J := P≤(A J ,⋆,b J ) with J := [m] \ {i } and PK =
P≤(AK ,bK ) with K := [m] \ {i , j }. Theorem 2.7 establishes that for a positive number

ν := min{ 1
2D , ϵ

D2 } < ϵ with D as in Claim 2.9, the polytope PK admits a simple rock

extension QK that is ν-concentrated around (o,1) such that for every vertex of QK there

exists a z-increasing path of length at most m −d −2 to the top vertex (o,1). Now we

argue that adding the inequality A j ,⋆x +a j z ≤ b j to a system describing QK (with a j

chosen as discussed in the proof of Theorem 2.7, where we use µ := min{ 1
2 , ϵD } for ϵ

in said theorem), and then further adding Ai ,⋆x +ai z ≤ bi (with ai as in the proof of

Theorem 2.7 again) yields a simple rock extension Q of P that is ϵ-concentrated around

(o,1) and has diameter at most 2(m −d −1). In other words, despite subsequently

adding two cutting halfspaces, the length of all paths to the top has increased by at

most one.

Let v be a “new” base vertex of Q J , which is the intersection of H=(
(A j ,⋆, a j ),b j

)
with the relative interior of some base edge e of QK , admitting a z-increasing path

to the top vertex of Q J of length at most m −d − 1 as in the proof of Theorem 2.7.

Since v is identified with a vertex of facet F j of P and since Fi and F j are disjoint,

v ∈ H<(
(Ai ,⋆, ai ),bi

)
holds and hence v is a vertex of Q as well. Moreover, recall that

all non-base vertices of Q J are vertices of Q since they are contained in B d+1
µ

(
(o,1)

)⊆
H<(

(Ai ,⋆, ai ),bi
)

and hence they admit an increasing path of length at most m −d −2

to the top of Q. Therefore, v admits the very same z-increasing path of length at most

m −d −1 to the top vertex of Q as in Q J . On the other hand any “old” base vertex u of

Q J (which is a base vertex of QK too) admits a path to the top vertex of Q J of length at

most m −d −2. Since the vertices of the latter kind are the only ones that could be cut

off by Ai ,⋆x +ai z ≤ bi when constructing Q, all the “new” base and non-base vertices

of Q admit an increasing path of length at most m−d −1, respectively, m−d −2 to the

top vertex of Q.

Note that the above argumentation naturally extends to any number of inequalities,

defining pairwise disjoint facets of P where the sequence µ = min{ 1
2 , ϵD }, ν = µ

D is

extended to µ, µD , µ

D2 , µ

D3 , . . . .

We now exploit the latter consideration to improve the diameter bounds for rock

extensions of two- and three-dimensional polytopes. Let us also note upfront that
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any non-degenerate system of m inequalities Ax ≤ b defining a d-polytope P can be

augmented to a non-degenerate simplex-containing system describing P by adding a

single redundant inequality to Ax ≤ b as follows.Let v be a vertex of P . Then the redun-

dant inequality αx ≤β can be chosen in such a way that together with d inequalities

defining v it defines a simplex containing P and so that the system Ax ≤ b ,αx ≤β is

non-degenerate. We will elaborate on how to choose α and β in Section 2.5 in more

detail.

The following statement holds for polygons .

Theorem 2.11. Each n-gon admits a simple three-dimensional extension with at most

n +2 facets and diameter at most 2log2(n −2)+4.

Proof. We start with the observation that any irredundant system of inequalities de-

scribing an n-gon P is non-degenerate, since no three distinct edge-containing lines

intersect in a point. Hence, as discussed above, P can be described by a non-degenerate

system Ax ≤ b of m = n +1 inequalities, consisting of n edge-defining inequalities for

P and an artificially added inequality. Two inequalities defining edges incident to a

vertex of P and the auxiliary inequality, such that the three of them form a simplex

containing P , are indexed by I ⊆ [m]. As in Theorem 2.7, we prove by induction that

for any interior point o of P and every ϵ> 0 with B d
ϵ (o) ⊆ P there exists a simple rock

extension Q of P that is ϵ-concentrated around (o,1) such that for each vertex of Q

there exists a z-increasing path of length at most log2(m − 3)+ 2 to the top vertex.

Clearly Q then has diameter at most 2log2(n −2)+4.

It is easy to see that the claim holds for m = 4,5. Note that ⌈n−2
2 ⌉ = ⌈m−3

2 ⌉ of the facets

defined by inequalities from [m] \ I are pairwise disjoint. For that we just pick every

second edge while traversing the graph of the (not necessarily bounded) polygon

P≤(A[m]\I ,⋆,b[m]\I ) since the corresponding edges are pairwise disjoint in P as well.

Deleting the inequalities corresponding to all those facets at once yields a polygon P̃

described by a system of m̃ := ⌊m+3
2 ⌋ ≤ m+3

2 inequalities. By the induction hypothesis

for µ := D−⌈n−2
2 ⌉min{ D

2 ,ϵ} with D as in Claim 2.9 there exists a simple rock extension

Q̃ of P̃ that is µ-concentrated around (o,1) so that for each vertex of Q̃ there exists

a z-increasing path of length at most log2(m̃ −3)+2 to the top vertex. Subsequently

adding all ⌈n−2
2 ⌉ deleted inequalities back one by one with appropriate a-coefficients

yields a sequence of ⌈n−2
2 ⌉ rock extensions λk-concentrated around (o,1) with λ0 =

µ,λk+1 = Dλk ,k = 1, ..,⌈n−2
2 ⌉− 1. Note that λ0 < λ1 < ·· · < λ⌈n−2

2 ⌉ ≤ ϵ. According to

the arguments discussed above, the last rock extension Q of the latter sequence is

a simple extension of P that is ϵ-concentrated around (o,1) such that each vertex of

Q admits a z-increasing path to the top vertex of length at most log2(m̃ −3)+2+1 ≤
log2( m+3

2 −3)+2+1 = log2(m −3)+2 = log2(n −2)+2.
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Figure 2.5 illustrates how a rock extension from the latter theorem drastically reduces

the diameter of a 400-gon.

Fig. 2.5: The graph of a rock extension Q of a 400-gon P . The paths of length 200 and 24
determining the diameters of P and Q are highlighted in red and green, respectively.

Similarly, we prove the following bound for three-dimensional polytopes (recall that

each strongly non-degenerate polytope with n facets can be described by a non-

degenerate simplex-containing system of at most m = n +1 inequalities).

Theorem 2.12. Each three-dimensional polytope P described by a non-degenerate

simplex-containing system with m inequalities admits a simple four-dimensional ex-

tension with at most m +1 facets and diameter at most 2log 4
3

(m −4)+4

Proof. Once more, the set of indices of four inequalities defining the simplex con-

taining P is referred to as I . To estimate the number of pairwise disjoint facets of

P , consider the graph GF whose vertices are the facets of P where two vertices are

adjacent if and only if the corresponding facets are non-disjoint. Since P is simple,

two facets are non-disjoint if and only if they share an edge. Therefore GF is the graph

of the polar polytope P◦. Since P◦ is three-dimensional, G(P◦) is planar, and so is

20



2.4. RATIONAL POLYTOPES AND ENCODING SIZES K. KUKHARENKO

the graph G ′
F :=G(P◦) \V (I ), where V (I ) contains vertices of G(P◦) corresponding to

the facets of P defined by the inequalities indexed by I . It is a consequence of the

four-color theorem (Appel and Haken, 1977; Appel et al., 1977; Robertson et al., 1997)

that any planar graph G admits a stable set of cardinality at least |V (G)|
4 . Let S ⊆V (G ′

F )

be a stable set in G ′
F of cardinally at least

|V (G ′
F )|

4 = m−4
4 . By deleting the inequalities

that correspond to the vertices in S from Ax ≤ b, applying the induction hypothesis

as in Theorem 2.11, and subsequently adding these deleted inequalities back with

appropriate a-coefficients we again obtain a simple rock extension with diameter at

most 2
(

log 4
3

( 3m+4
4 −4)+2+1

)= 2
(

log 4
3

3(m−4)
4 +2+1

)= 2log 4
3

(m −4)+4.

To conclude this section, we note that similar argumentation does not work for some

(strongly non-degenerate) polytopes in dimension four and higher. An example of that

is the polar dual of the cyclic polytope, since any pair of its facets intersect (as any two

vertices of the cyclic polytope of dimension at least four are adjacent). Furthermore,

the dual of the cyclic polytope is simple, since the cyclic polytope is simplicial. A

mild perturbation would even make it strongly non-degenerate (and again by adding

redundant inequalities one can achieve simplex-containment). Therefore, since the

(perturbed) polar of the cyclic polytope of dimension at least four does not even have

two disjoint facets, the same line of reasoning yielding logarithmic bounds in two- and

three-dimensional cases cannot be applied here.

2.4 Rational polytopes and encoding sizes

In this section we consider rational polytopes. We revisit Theorem 2.7 and adjust

its proof to ensure that for a rational polytope P defined by A ∈ Qm×d ,b ∈ Qm the

constructed rock extension Q is rational as well. We also show that the encoding size of

Q (with respect to the inequality description) is polynomially bounded in the encoding

size of P , denoted by 〈A,b〉.
We can assume that A and b are integral, since one can multiply the system Ax ≤ b

by the least common denominator of entries of A and b (which has encoding size

polynomially bounded in 〈A,b〉). We now adjust the proof of Theorem 2.7 so that the

extension Q being constructed meets the additional requirements.

Theorem 2.13. For each polynomial q1(·) there exists a polynomial q2(·) such that for

every simplex-containing non-degenerate system defining a d-polytope P = P≤(A,b)

with A ∈Zm×d ,b ∈Zm , every rational ϵ> 0, and every rational point o such that B d
ϵ (o) ⊆

P with 〈ϵ〉 ,〈o〉 ≤ q1(〈A,b〉), there exists a simple rational rock extension Q that is ϵ-

concentrated around (o,1) such that for each vertex of Q there exists a z-increasing path

of length at most m−d to the unique top vertex, and such that 〈a〉 ≤ q2(〈A,b〉) holds for

the coefficient vector a corresponding to the additional variable in the description of Q.
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Proof. Without loss of generality we assume that o =O ∈ int(P ), which implies b > 0.

Again, for m = d +1 the statement trivially holds true for Q = conv
{
P ∪ {(O,1)}

}= {x ∈
IRd | Ax +bz ≤ b, z ≥ 0}. Now we consider the induction step.

First, let us obtain explicit bounds on δ1 and δ2 (from Definition 2.10). Due to Cramer’s

rule and the integrality of A and b each coordinate of any basic solution of Ax ≤ b

is at most ∆(A,b),d in absolute value. Moreover, since 〈det(M)〉 ≤ 2〈M〉 holds for any

rational square matrix M (Schrijver, 1986, Theorem 3.2), we have ∆(A,b),d ≤ 22〈A,b〉, and

therefore

δ1 ≤∆(A,b),d

p
d ≤ 22〈A,b〉d . (2.4)

Now assume that a basic solution u and a hyperplane H=(Ai ,⋆,bi ) corresponding to a

row of Ax ≤ b with u ∉ H=(Ai ,⋆,bi ) have the Euclidean distance
|Ai ,⋆u−bi |
||Ai ,⋆||2 = δ2. Since

the least common denominator of all entries of u is at most ∆(A,b),d (due to Cramer’s

rule again), and since |Ai ,⋆u − bi | ̸= 0 and due to integrality of Ai ,⋆,bi , we obtain

|Ai ,⋆u −bi | ≥ 1
∆(A,b),d

. Therefore,

δ2 ≥ 1

∆(A,b),d ||Ai ,⋆||2
≥ (22〈A,b〉d∆(A,b),1)−1 , (2.5)

where the last inequality follows from the aforementioned bound on ∆(A,b),d and from

||Ai ,⋆||2 ≤∆(A,b),1
p

d ≤ d∆(A,b),1.

Now we can adjust the choice of the constant D from Claim 2.9. We plug (2.4) and (2.5)

into the upper bound on the Euclidean distance between the top vertex (O,1) and a

“new” non-basic vertex y of Q (see the proof of Theorem 2.7 and Claim 2.9 for more

details):

dist((O,1), y) < µ+|w y |
(2.3)≤ µ+4µ(δ1 +1.5)

(
1+ δ1+1.5

δ2

)
(2.4)(2.5)≤ µ+4µ(22〈A,b〉d +1.5)

(
1+ (22〈A,b〉d +1.5)(22〈A,b〉d∆(A,b),1)

)
≤ µ ·25d 3∆(A,b),126〈A,b〉︸ ︷︷ ︸

=:D̂

Additionally, later in the proof we will use the fact that µ does not exceed either 1
4d or

4dbi
||Ai ,⋆||1+bi

for any i ∈ [m]. Therefore, we choose

µ := min
{{ 4dbi

||Ai ,⋆||1 +bi

}
i∈[m]

,
1

4d
,
ϵ

D̂

}
.

Note that this choice guarantees µ ≤ 1
2 and µ < ϵ as well as that µ is rational with

〈µ〉 = O(〈A,b〉+〈ϵ〉).
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In the proof of Theorem 2.7 we chose ai such that H=(
(Ai ,⋆, ai ),bi

)
is tangential to

B d+1
µ

(
(O,1)

)
. We now want to quantify this value. Once again, we denote the tangential

point of the ball by t ∈ IRd+1. We have (Ai ,⋆, ai )t = bi since t ∈ H=(
(Ai ,⋆, ai ),bi

)
and

t = (O,1)+ (Ai ,⋆,ai )T

||(Ai ,⋆,ai )||2µ since t lies on the boundary of B d+1
µ

(
(O,1)

) ⊆ H≤(
(Ai ,⋆, ai ),bi

)
.

Plugging the second equality into the first one, we obtain

(Ai ,⋆, ai )(O,1)+ ||(Ai ,⋆, ai )||22
||(Ai ,⋆, ai )||2

µ= ai +µ
√

||Ai ,⋆||22 +a2
i = bi .

Note that bi ≥ bi − ai > 0 holds. By taking ai to the right in the last equation and

squaring both sides we get

µ2(||Ai ,⋆||22 +a2
i ) = b2

i +a2
i −2ai bi .

After rearranging the terms we obtain a quadratic equation

a2
i (1−µ2)−2ai bi +b2

i −µ2||Ai ,⋆||22 = 0

with roots

a+,−
i =

bi ±
√

b2
i − (1−µ2)(b2

i −µ2||Ai ,⋆||22)

1−µ2

=
bi ±µ

√
(1−µ2)||Ai ,⋆||22 +b2

i

1−µ2 .

We deduce that ai = ai (µ) := a−
i , since a+

i ≥ bi
1−µ2 ≥ bi . Unfortunately, ai (µ) is not

necessarily rational. However, we will show that one can use the rational number

âi (µ) := bi − µ
2d

(||Ai ,⋆||1 +bi
)

1−µ2 ,

whose encoding size is polynomially bounded in 〈A,b〉+ 〈µ〉 instead of ai (µ) when

constructing the rock extension. This is due to a crucial fact that âi (µ) satisfies

ai (µ′) ≥ âi (µ) ≥ ai (µ) , (2.6)

with µ′ := µ
4d , which will be shown at the end of this section. Note that due to 〈µ′〉 =

〈µ〉+O(〈d〉) (and the above estimate 〈µ〉 = O(〈A,b〉+ 〈ϵ〉)), throughout all less than

m recursive steps the encoding length of µ′ will be bounded by O(m〈A,b〉 + 〈ϵ〉) =
O(〈A,b〉+〈ϵ〉) with the “original” ϵ.

Then, in order to construct a rational rock extension Q of P , we use a recursively

constructed rational rock extension Q̃ of P̃ that is in fact µ′-concentrated around (O,1)
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and add the inequality Ai ,⋆x+âi (µ) ≤ b. Due to B d+1
µ′

(
(O,1)

)⊆ H≤(
(Ai ,⋆, ai (µ′),bi

)
and

ai (µ′) ≥ âi (µ), we have B d+1
µ′

(
(O,1)

)⊆ H≤(
(Ai ,⋆, âi (µ)),bi

)
. Therefore, the argument for

the existence of z-increasing paths to the top vertex of length at most m −d in Q is the

same as in the proof of Theorem 2.7. On the other hand, since âi (µ) ≥ ai (µ), all “new”

non-base vertices of Q are contained in B d+1
ϵ

(
(O,1)

)
. Let us prove the latter. Consider

Figure 2.3 once again. The point w is now contained in a smaller ball B d+1
µ′

(
(O,1)

)⊆
Bµ

(
(O,1)

)
and lies in {z ≤ 1}. Since âi (µ) ≥ ai (µ), the hyperplane H≤(

(Ai ,⋆, âi (µ),bi
)

intersects the edge {u, w} in a point ŷ that lies on the line segment [w, y]. Therefore

|w ŷ | ≤ |w y | and hence ŷ ∈ B d+1
ϵ

(
(O,1)

)
as well. It remains to prove (2.6).

We start with a sequence of estimations:

µ
4d

√(
1− ( µ

4d )2
)||Ai ,⋆||22 +b2

i

µ≥0≤ µ
4d

√
||Ai ,⋆||22 +b2

i
2||Ai ,⋆||2bi≥0≤ µ

4d

(||Ai ,⋆||2 +bi
)

||·||2≤||·||1≤ µ
4d

(||Ai ,⋆||1 +bi
)

.

(2.7)

Furthermore, we have

µ
2d

(||Ai ,⋆||1 +bi
) ||·||1≤d ||·||2≤ µ

2d

(
d ||Ai ,⋆||2 +bi

)
bi≥0≤ µ

2

(||Ai ,⋆||2 +bi
)

= µ
2

√
||Ai ,⋆||22 +b2

i +2||Ai ,⋆||2bi

2x y≤x2+y2

≤ µ
2

√
2(||Ai ,⋆||22 +b2

i )

4(1−µ2)≥4 3
4=3≥2

≤ µ
2

√
4(1−µ2)||Ai ,⋆||22 +2b2

i

≤ µ
√

(1−µ2)||Ai ,⋆||22 +b2
i ,

(2.8)

where 1−µ2 ≥ 3
4 since µ≤ 1

2 . Finally, let us prove (2.6), where we exploit the inequalities

µ≤ 4dbi
||Ai ,⋆||1+bi

for all i ∈ [m].
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ai ( µ
4d ) = bi− µ

4d

√(
1−( µ

4d )2
)
||Ai ,⋆||22+b2

i

1−( µ
4d )2

(2.7)≥ bi− µ
4d

(
||Ai ,⋆||1+bi

)
1−( µ

4d )2

= 1−µ2

1−( µ
4d )2 ·

bi− µ
4d

(
||Ai ,⋆||1+bi

)
1−µ2︸ ︷︷ ︸
≥0

1
4d ≥µ≥0

≥ 1− µ
4d

1 · bi− µ
4d

(
||Ai ,⋆||1+bi

)
1−µ2

= bi− µ
4d bi−(1− µ

4d ) µ
4d

(
||Ai ,⋆||1+bi

)
1−µ2

µ≥0≥ bi− µ
4d bi− µ

4d

(
||Ai ,⋆||1+bi

)
1−µ2

µ≥0≥ bi− µ
2d

(
||Ai ,⋆||1+bi

)
1−µ2 = âi (µ)

(2.8)≥ bi−µ
√

(1−µ2)||Ai ,⋆||22+b2
i

1−µ2

= ai (µ) .

2.5 Algorithmic aspects of rock extensions

In this section we show how to compute rock extensions efficiently and how to utilize

them in order to solve general linear programming problems. We first give an explicit

algorithm for constructing a simple rock extension with linear diameter, assuming

some prior information about the polytope. In the second part of this section we

discuss a strongly polynomial time reduction of general (rational) linear programming

to optimizing linear functions over rock extensions.

2.5.1 Computing rock extensions

The proof of Theorem 2.13 shows that for any rational simplex-containing non-

degenerate system Ax ≤ b of m linear inequalities defining a (full-dimensional and

simple) d-polytope P it is possible to construct a simple rational rock extension Q of P

with diameter at most 2(m −d) in strongly polynomial time if the following additional

information is available: an interior point o of P (with 〈o〉 bounded polynomially in

〈A,b〉) and a subsystem AI ,⋆x ≤ bI of d +1 inequalities defining a simplex containing

P . Having that information at hand, we can shift the origin to o, scale the system to

integrality, and then construct Q by choosing a-coefficients in accordance with the

proof of Theorem 2.13. For that we explicitly state Algorithm 2.1. Note that it runs in

strongly polynomial time.
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We also need some ϵ> 0 with encoding size polynomially bounded in 〈A,b〉 and such

that B d
ϵ (O) ⊆ P . We make the following explicit choice for ϵ. For B d

ϵ (O) ⊆ P to hold, ϵ

should not exceed the minimum distance fromO to a hyperplane corresponding to a

facet of P . To achieve polynomial encoding size we bound this value from below and

choose ϵ := mini∈[m]
bi

d∆(A,b),1
≤ mini∈[m]

bi
||Ai ,⋆||2 = mini∈[m] dist

(
O, H=(Ai ,⋆,bi )

)
.

Algorithm 2.1 carries out the iterative construction of a rock extension described in the

proof of Theorem 2.13. It starts with a pyramid over the given simplex P≤(AI ,⋆,bI ) and

adds the inequalities indexed by [m] \ I one by one. Note that we compute coefficients

a j in the reverse order of the iterative construction.

Algorithm 2.1 Computing a rock extension Q of P .

Input: A non-degenerate system A ∈Zm×d ,b ∈Zm defining a polytope P withO ∈ int(P ) and

a subset I ⊆ [m] , |I | = d +1 with P≤(AI ,⋆,bI ) bounded.

Output: A vector a ∈Qm
>0 with 〈a〉 polynomially bounded in 〈A,b〉 such that Q = {x ∈ IRd |

Ax +az ≤ b, z ≥ 0} is a simple extension of P having diameter at most 2(m −d).

1: aI := bI

2: D := 25d 3∆(A,b),126〈A,b〉

3: ϵ := mini∈[m]
bi

d∆(A,b),1

4: for j ∈ [m] \ I do

5: µ := min
{
{ 4dbi
||Ai ,⋆||1+bi

}i∈[m],
1

4d , ϵD
}

6: a j := b j− µ
2d

(
||A j ,⋆||1+b j

)
1−µ2

7: ϵ := µ
4d

8: end for

What can we do if no interior point o of P is known (such that we could shift P to P −o

in order to have O in the interior), and neither is the set I ? For now let us assume

we are given a vertex xU of a strongly non-degenerate polytope P = P≤(A,b) with

integral A and b, and let U ⊆ [m] be the corresponding row basis of xU . Then the point

o(λ) := xU + λ
||(AU ,⋆)−11||1 (AU ,⋆)−11 is an interior point of P for a small enough positive λ.

This is due to the fact that P is simple and hence the extreme rays of the feasible cone of

P at u are the columns of (AU ,⋆)−1. Hence, the sum of the extreme rays emanating from

xU points into the interior of P . By choosing λ := 1
2 (22〈A,b〉d∆(A,b),1)−1 ≤ 1

2δ2 (recall δ2

from Definition 2.10 and the last inequality is due to (2.5) again), we guarantee that

o(λ) ∈ int(P ). Of course, before making this choice of λ one has to scale Ax ≤ b to

integrality first.
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The knowledge of xU and U as above also enables us to come up with the set I required

by Algorithm 2.1. Indeed, the inequalities AU ,⋆x ≤ bU together with one additional

redundant inequality 1T (AU ,⋆)−T x ≤ d22〈A,b〉||(AU ,⋆)−11||1 + 1, denoted by αx ≤ β,

form a simplex containing P . In fact, H<(α,β) contains any basic (feasible or infeasible)

solution xV of Ax ≤ b (and hence the whole of P as well), since the sum of entries of

xV is at most d∆(A,b),d . Hence Ax ≤ b,αx ≤ β is a non-degenerate system whenever

Ax ≤ b is one as well. Then I can be chosen as the union of U and the index of αx ≤β.

Note that o(λ) and the coefficients of the above inequality αx ≤β have their encoding

sizes polynomially bounded in 〈A,b〉.
Now, after shifting the origin to o(λ) and scaling the system to integrality we can

apply Algorithm 2.1 to construct a rock extension of P . Thus we have established the

following.

Theorem 2.14. Given A ∈ Qm×d , b ∈ Qm , and xU ∈ Qd such that Ax ≤ b is non-

degenerate, P = P≤(A,b) is bounded, and xU is a vertex of P, one can construct a

matrix AQ ∈Q(m+2)×(d+1) and a vector bQ ∈Qm+2 in strongly polynomial time such that

Q = P≤(AQ ,bQ ) is a simple rational rock extension of P with at most m +2 facets and

diameter at most 2(m −d +1).

2.5.2 Application to linear programming

Now we discuss rock extensions in the context of solving general (rational) linear pro-

gramming problems. Since the previously described construction of rock extensions

works only for the case of non-degenerate systems and requires knowing a vertex of

the polytope, we introduce the following definition.

Definition 2.15. We call a pair (S,u) a strong input if S is a rational non-degenerate

system Ax ≤ b defining a polytope P and u is a vertex of P.

The following result provides the lever that allows us to use rock extensions in the

theory of linear programming.

Theorem 2.16. If there is a strongly polynomial time algorithm for finding optimal

basic solutions for linear programs with strong inputs and rational objective functions,

then all rational linear programs can be solved in strongly polynomial time.

In order to prove the above theorem we first state and prove the following technical

lemma.

Lemma 2.17. For all A ∈Zm×d with rank(A) = d, b ∈Zm , c ∈Zd such that P := P≤(A,b)

is a pointed polyhedron and for every positive ϵ≤ (3d ||c||125〈A,b〉)−1 the following holds

for P ϵ := P≤(A,b +bϵ), where bϵi := ϵi , i ∈ [m].
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(1) P ̸= ; if and only if P ϵ ̸= ;. If P is non-empty, then P ϵ is full-dimensional.

(2) For each row basis U feasible for Ax ≤ b +bϵ, the basic solution A−1
U bU is a vertex

of P.

(3) For each vertex v of P there is a row basis U of Ax ≤ b with v = A−1
U ,⋆bU such that

A−1
U ,⋆(b +bϵ)U is a vertex of P ϵ.

(4) If W is an optimal feasible row basis for min{cT x | x ∈ P ϵ}, then W is an optimal

feasible row basis for min{cT x | x ∈ P } as well.

(5) The system of linear inequalities Ax ≤ b +bϵ is non-degenerate.

Proof. A proof for statement (1) can be found in (Schrijver, 1986, Chapter 13).

We start with the simple observation that U is a (feasible or infeasible) row basis for

Ax ≤ b if and only if it is a row basis for Ax ≤ b +bϵ since both systems have the same

left-hand side matrix A. We will refer to any such U as a row basis of A. The following

property (P) turns out to be useful for the proof:

(P) If a basic (feasible or infeasible) solution xU := A−1
U ,⋆bU of Ax ≤ b with row basis

U is contained in H<(Ai ,⋆,bi ) or H>(Ai ,⋆,bi ) for some i ∈ [m], then the basic

(feasible or infeasible) solution xU ,ϵ := A−1
U ,⋆(b +bϵ)U of Ax ≤ b +bϵ is contained

in H<(Ai ,⋆, (b +bϵ)i ) or H>(Ai ,⋆, (b +bϵ)i ), respectively.

We later show that (P) holds for all small enough positive ϵ, but first let us observe how

(2) and (3) follow from (P).

For (2), assume xU ,ϵ is a feasible basic solution of Ax ≤ b +bϵ with row basis U such

that xU := A−1
U ,⋆bU is infeasible for Ax ≤ b, i.e., there exists some i ∈ [m] with xU ∈

H>(Ai ,⋆,bi ). If (P) holds, then the latter, however, contradicts the feasibility of xU ,ϵ for

Ax ≤ b +bϵ. Thus (P) implies (2).

In order to see that (P) also implies (3), let AE(v)x ≤ bE(v) consist of all inequalities

from Ax ≤ b that are satisfied with equality at a vertex v of P . Note that the set of

feasible bases of AE(v)x ≤ (b + bϵ)E(v) is non-empty, since P≤(AE(v), (b + bϵ)E(v)) is

pointed. The latter holds because of rank(AE(v)) = d (as v is a vertex of P ) and since

P≤(AE(v), (b+bϵ)E(v)) itself is non-empty with v ∈ P≤(AE(v), (b+bϵ)E(v)) (due to bϵ ≥O).

We now can choose U as any feasible row basis of AE(v)x ≤ (b +bϵ)E(v). We clearly

have v = A−1
U ,⋆bU and A[m]\E(v)v < b[m]\E(v) by the definition of E(v). Hence the basic

solution A−1
U (b +bϵ)U is feasible for Ax ≤ b +bϵ due to (P).

Claim 2.18. The property (P) holds for 0 < ϵ≤ (3d ||c||125〈A,b〉)−1 (we clearly can assume

c ̸=O).
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Proof. Let xU = A−1
U ,⋆bU be a basic (feasible or infeasible) solution of Ax ≤ b with a

row basis U ⊆ [m], and let H=(Ai ,⋆,bi ) with i ∈ [m] \U be a hyperplane with xU ∉
H=(Ai ,⋆,bi ). Furthermore, let xU ,ϵ := A−1

U ,⋆(b +bϵ)U be the corresponding basic (feasi-

ble or infeasible) solution of the perturbed system. Consider the following expression:

Ai ,⋆xU ,ϵ− (b +bϵ)i =
d∑

j=1
Ai j xU ,ϵ

j − (b +bϵ)i

=
∑d

j=1 Ai j det A j=b+bϵ

U − (b +bϵ)i det AU ,⋆

det AU ,⋆
=: hU ,i (ϵ) ,

(2.9)

where A j=q
U ,⋆ denotes the square d ×d matrix arising from AU ,⋆ by replacing the j th

column by the vector q . Note that hU ,i (ϵ) is a univariate polynomial in ϵ with its

free coefficient α0 := hU ,i (0) = Ai ,⋆xU −bi ̸= 0 due to xU ∉ H=(Ai ,bi
)
. Therefore the

property (P) holds if ϵ> 0 is small enough, such that hU ,i (ϵ) has the same sign as α0.

We will need the following result on roots of univariate polynomials. See (Bienstock

et al., 2023, Lemma 4.2); a proof can be found in (Basu et al., 2006, Theorem 10.2).

Lemma 2.19 (Cauchy). Let f (x) = αn xn + ·· · +α1x +α0 be a polynomial with real

coefficients and α0 ̸= 0. Let x̄ ̸= 0 be a root of f (x). Then 1
δ ≤ |x̄| holds with δ = 1+

max
{∣∣α1
α0

∣∣, . . . ,
∣∣αn
α0

∣∣}.

Hence (P) holds for all 0 < ϵ< 1
δ (with δ chosen as in the lemma with respect to hU ,i )

since there are no roots of hU ,i (ϵ) in the interval (− 1
δ ,+ 1

δ). To obtain an estimate on ϵ

we have to bound δ from above. Therefore, let us take a closer look at the coefficients of

hU ,i (ϵ). Due to Cramer’s rule, the integrality of A and b, and since |det AU ,⋆| ≤∆(A,b),d ,

the absolute value of each non-vanishing coefficient of hU ,i (ϵ) is at least 1
∆(A,b),d

. On the

other hand, we claim that the magnitude of any coefficient hk
U ,i (ϵ) of hU ,i (ϵ) that is not

the free coefficient is bounded from above by
∏

(i , j )∈[m]×[d ](1+|ai j |)∏i∈[m](1+|bi |) ≤
2〈A,b〉. Observe that the latter product is the sum Σ over all subsets of indices of entries

of (A,b) with each summand being the product of (absolute values) of the entries in

question. Using column expansion for determinants in (2.9), one can come up with a

formula for coefficients hk
U ,i ,k ∈ [m]:

hk
U ,i =


1

det AU ,⋆

∑d
j=1 Ai j det A j=;

U \k , for k ∈U

−1, for k = i

0, for k ∈ [m] \ (U ∪ {i })

where A j=;
U \k denotes the square matrix obtained by deleting the j th column and the

kth row of AU ,⋆. To upper bound |hk
U ,i | ,k ∈ [m] we use the Leibniz formula for de-

terminants in the above equation, the triangle inequality for absolute value, and the
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fact 1
|det AU ,⋆| ≤ 1. One can convince themselves that the upper bounding expression

obtained therein is, in fact, a subsum of Σ, and hence |hk
U ,i | ≤ 2〈A,b〉 for each k ∈ [m].

Therefore δ≤ 1+∆(A,b),d 2〈A,b〉 ≤ 2 ·23〈A,b〉 holds, where the last inequality follows from

∆(A,b),d ≤ 22〈A,b〉. For 0 < ϵ ≤ (3d ||c||125〈A,b〉)−1 we thus indeed have ϵ < 1
2 2−3〈A,b〉 ≤ 1

δ

(as c ̸= O is integral). Note that such a choice of ϵ is in fact determined by a later

observation.

Next, to show (5)
(
before we establish (4)

)
let us assume that Ax ≤ b +bϵ

′
is not non-

degenerate for some ϵ′ ≤ (3d ||c||125〈A,b〉)−1. Hence, there is a row basis U ⊆ [m] of A

with corresponding (feasible or infeasible) basic solutions xU ,ϵ′ and xU of the perturbed

and the unperturbed system, respectively, such that there exists i ∈ [m] \U with xU ,ϵ′ ∈
H=(Ai ,⋆, (b +bϵ

′
)i ), thus hU ,i (ϵ′) = 0. Due to Lemma 2.19 (and the upper bound on ϵ′)

this implies hU ,i (0) = 0, thus xU ∈ H=(Ai ,⋆,bi ). Since U is a row basis of A, there exists

some λ ∈ IRd with λT AU ,⋆ = Ai ,⋆. We have bi = Ai ,⋆xU = λT AU ,⋆xU = λT bU . Then

hU ,i (ϵ) = Ai ,⋆xU ,ϵ−(b+bϵ)i =λT AU ,⋆(AU ,⋆)−1(b+bϵ)U −(b+bϵ)i =λT bϵU −ϵi where we

used Ai ,⋆ =λT AU ,⋆ and xU ,ϵ′ = (AU ,⋆)−1(b +bϵ)U for the first equality and λT bU = bi

and bϵi = ϵi for the second one. Hence hU ,i (ϵ) is not the zero polynomial because of

i ∉U . Consequently, there exists a polynomial gU ,i (ϵ) such that hU ,i (ϵ) = ϵr gU ,i (ϵ) with

r ≥ 1 and gU ,i (0) ̸= 0. Applying Lemma 2.19 to gU ,i (ϵ) and bounding its coefficients

in exactly the same way as for hU ,i (ϵ) yields that there are no roots of gU ,i (ϵ), and

therefore no roots of hU ,i (ϵ), in the interval (0, 1
2 2−3〈A,b〉), thus contradicting xU ,ϵ′ ∈

H=(Ai ,⋆, (b +bϵ
′
)i ).

Finally, in order to show (4), we first prove the following claim.

Claim 2.20. Let U ⊆ [m] be a row basis of A with xU ,ϵ and xU being the corresponding

(feasible or infeasible) basic solutions of Ax ≤ b +bϵ and Ax ≤ b, respectively. Then

0 < ϵ≤ (3d ||c||125〈A,b〉)−1 implies |cT xU − cT xU ,ϵ| < 1
2∆2

(A,b),d
.

Proof. By Cramer’s rule and due to the triangle inequality, we have

|cT (xU −xU ,ϵ)| ≤
d∑

j=1
|c j ||xU

j −xU ,ϵ
j | =

d∑
j=1

|c j |
∣∣∣ det A j=b

U ,⋆−det A j=b+bϵ

U ,⋆

det AU ,⋆︸ ︷︷ ︸
=: f

j
U (ϵ)

∣∣∣ . (2.10)

To prove the claim it suffices to show that for all 0 < ϵ ≤ (3d ||c||125〈A,b〉)−1 we have

| f j
U (ϵ)| < 1

2|c j |d |∆2
(A,b),d

=:β j
0 for each j ∈ [d ] with c j ̸= 0. In order to establish this, let j ∈

[d ] be an index with c j ̸= 0. Due to f j
U (0) = 0 we have f j

U (ϵ) =αlϵ
l +·· ·+α1ϵ with some

α1, . . . ,αl ∈Q. Forβ0 := 1
2|c j |d∆2

(A,b),d
and f j±

U (ϵ) := f j
U (ϵ)±β j

0 we have f j−
U (0) < 0 < f j+

U (0).

Due to Lemma 2.19, the polynomials f j±
U (ϵ) thus have no roots in the interval

(− 1
δ ,+ 1

δ

)
,
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where δ= 1+max
{∣∣α1
β0

∣∣, . . . ,
∣∣αl
β0

∣∣}. Hence in order to establish | f j
U (ϵ)| <β j

0 it suffices to

show ϵ< 1
δ . In order to prove this we bound δ from above (thus 1

δ from below) by upper

bounding the coefficients αk for all k ∈ [l ]. Using the same line of arguments as above

we once again conclude that αk ≤∏
(i , j )∈[m]×[d ](1+|ai j |)∏i∈[m](1+|bi |) ≤ 2〈A,b〉, k ∈ [l ].

Hence 1
δ ≥ (1+2d |c j |∆2

(A,b),d |2〈A,b〉)−1 > (3d ||c||125〈A,b〉)−1 ≥ ϵ as required.

To complete the proof of claim (4) of Lemma 2.17, let xW,ϵ := A−1
W,⋆(b +bϵ)W be an

optimal feasible basic solution for min{cT x | x ∈ P ϵ} with an optimal row basis W .

Thus, due to (2), xW := A−1
W,⋆bW is a feasible basic solution of Ax ≤ b. Furthermore,

let v be an optimal vertex of P with respect to minimizing c and let U be a row basis

of A with v = xU = A−1
U ,⋆bU such that xU ,ϵ := A−1

U ,⋆(b +bϵ)U is a vertex of P ϵ (such a

row basis U exists by statement (3) of Lemma 2.17). Assume xW is not optimal for

min{cT x | x ∈ P }. Then we have cT (xW −xU ) ≥ 1
∆2

(A,b),d
, since c is integral and the least

common denominator of the union of the coordinates of xW and xU is at most ∆2
(A,b),d

(as the least common denominator of entries of xW is at most ∆(A,b),d by Cramer’s rule

and so is the least common denominator of entries of xU ). But this contradicts

cT (xW −xU ) = cT (xW −xW,ϵ)︸ ︷︷ ︸
< 1

2∆2
(A,b),d

+cT (xW,ϵ−xU ,ϵ)︸ ︷︷ ︸
≤0

+cT (xU ,ϵ−xU )︸ ︷︷ ︸
< 1

2∆2
(A,b),d

< 1

∆2
(A,b),d

, (2.11)

where we used Claim 2.20 for bounding the first and the third term and the optimality

of xW,ϵ for bounding the second one.

Now we can finally return to the proof of Theorem 2.16.

Proof of Theorem 2.16. We can assume without loss of generality that the polyhedron

P of feasible solutions to a general linear program is pointed. Otherwise either the

objective function is contained in the orthogonal complement of the lineality space of

P (in which case one obtains a pointed feasible polyhedron by intersecting with the

latter), or the problem is unbounded. Let A be a strongly polynomial time algorithm

for finding optimal basic solutions for linear programs with strong inputs and rational

objective functions. We first use A to devise a strongly polynomial time algorithm A⋆

for finding optimal basic solutions for arbitrary rational linear programs min{cT x |
Ax ≤ b} if a non-degenerate vertex v of P := P≤(A,b) is specified within the input, i.e., a

vertex for which there is a unique row basis U ⊆ [m] with xU = v .

In order to describe how A⋆ works, we may assume that (after appropriate scaling) its

input data A,b,c are integral. With ϵ := (3d ||c||125〈A,b〉)−1 let P ϵ := {x ∈ IRd | Ax ≤ b+bϵ}.

Due to the uniqueness property of U and part (3) of Lemma 2.17, U is also a feasible row

basis of the perturbed system. We scale that perturbed system to integrality, obtaining a

non-degenerate (part (5) of Lemma 2.17) system A′x ≤ b′ with P ϵ := {x ∈ IRd | A′x ≤ b′}
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and a vertex v ′ = xU ,ϵ. Then, as discussed in the context of Theorem 2.14, we add the

inequality 1T (A′
U ,⋆)−T x ≤ d22〈A′,b′〉||(A′

U ,⋆)−11||1 +1, denoted by αx ≤ β, to A′x ≤ b′

and thus obtain a non-degenerate bounded system Ãx ≤ b̃ with a simplex-defining

subsystem of d +1 inequalities. Let P̃ := P≤(Ã, b̃). Note that the problem min{cT x | x ∈
P } is unbounded if and only if min{cT x | x ∈ P ϵ} is unbounded since the polyhedra P

and P ϵ have the same characteristic cone. Moreover, min{cT x | x ∈ P ϵ} is unbounded

if and only if an optimal row basis W (corresponding to any optimal vertex xW ) of

min{cT x | x ∈ P̃ } contains the added inequality αx ≤β and the unique extreme ray of

the feasible cone of P̃ at xW that is not contained in H=(α,0) has positive scalar product

with c (recall that the polytope P̃ is simple). Thus, in order to solve min{cT x | x ∈ P } in

strongly polynomial time, we can apply algorithm A to min{cT x | x ∈ P̃ } (providing the

algorithm with the vertex v ′ of P̃ ). Any optimal row basis of the latter problem either

proves that the former problem is unbounded or is an optimal row basis of the former

problem due to part (4) of Lemma 2.17.

Finally, let us assume that we are faced with an arbitrary linear program in the form

min{cT x | Ax ≤ b, x ≥ 0} with A ∈ Zm×d ,b ∈ Zm , and c ∈ Zd (clearly, each rational

linear program can be reduced to this form, for instance, by splitting the variables

into x+ and x− and scaling the coefficients to integrality) and let P := P≤(A,b)∩ IRd
≥0.

Due to parts (1) and (5) of Lemma 2.17 the perturbed system Ax ≤ b +bϵ,−x ≤ oϵ

with bϵi := ϵi for all i ∈ [m] and oϵj := ϵm+ j for all j ∈ [d ] is non-degenerate for ϵ :=
(3d ||c||125(〈A,b〉+〈−Id ,Od 〉))−1 with the polyhedron P ϵ := {x ∈ IRd | Ax ≤ b +bϵ,−x ≤ oϵ}

being non-empty (in fact: full-dimensional) if P ̸= ; and empty otherwise.

We follow a classical Phase I approach by first solving the auxiliary problem min{1T
m s |

(x, s) ∈G} with

G := {(x, s) ∈ IRd+m | Ax − s ≤ b +bϵ ,−x ≤ oϵ , s ≥O}.

Note that (x̃, s̃) with x̃ j = −ϵm+ j , j ∈ [d ], and s̃i = max{
∑

j∈[d ] Ai j ϵ
m+ j −bi − ϵi ,0}, i ∈

[m], is a vertex of G , which is defined by a unique row basis Ũ , |Ũ | = [m+d ] (containing

inequalities −x ≤ oϵ and for each i ∈ [m] either Ai ,⋆x − si ≤ bi + ϵi or si ≥ 0) since∑
j∈[d ] Ai j ϵ

m+ j − bi − ϵi ̸= 0 for any i ∈ [m]. The latter is due to the fact that P ϵ is

non-degenerate by Lemma 2.19, part (5). Hence we can apply algorithm A⋆ in order

to compute an optimal vertex (x⋆, s⋆) of the auxiliary problem min{1T
m s | (x, s) ∈ G}.

If 1T s⋆ ̸= 0 holds, then we can conclude P ϵ = ;, thus P = ;. Otherwise, x⋆ is a

vertex of P ϵ that clearly is non-degenerate (in fact, P ϵ is simple). Thus we can solve

min{cT x | x ∈ P ϵ} by using algorithm A⋆ once more. If the latter problem turns out to

be unbounded, then so is min{cT x | x ∈ P } (as P and P ϵ have the same characteristic

cone). Otherwise, the optimal row basis of min{cT x | x ∈ P ϵ} found by A⋆ is an optimal

row basis for min{cT x | x ∈ P } as well (due to part (4) of Lemma 2.17).
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It is well known that any strongly polynomial time algorithm for linear programming

can be used to compute optimal basic solutions (if they exist) in strongly polynomial

time (see, e.g., (Schrijver, 1986, Chapter 10) for more details). Hence Theorems 2.16

and 2.14 allow us to conclude the following.

Theorem 2.21. If there exists a strongly polynomial time algorithm for linear program-

ming with rational data over all simple polytopes whose diameters are bounded linearly

in the numbers of inequalities in their descriptions, then all linear programs (with

rational data) can be solved in strongly polynomial time.

In fact, in order to come up with a strongly polynomial time algorithm for general

linear programming problems (under the rationality assumption again) it is enough to

devise a strongly polynomial time algorithm that optimizes linear functions over rock

extensions with linear diameters.

2.6 Extensions with short monotone paths

The results of the previous sections showed for every d-polytope P described by a non-

degenerate system of m linear inequalities the existence of a simple (d+1)-dimensional

rock extension Q with at most m +2 facets, where each vertex admits a (z-increasing)

“canonical” path of length at most m −d +1 to a distinguished vertex (the unique top

vertex) of Q. For the rest of this chapter we will refer to such a Q as a good rock extension

of P . Yet, no statement has been made so far regarding the potential monotonicity of

the “canonical” paths in Q with respect to linear objective functions. In this section we

build upon rock extensions in order allow for short monotone paths.

Without loss of generality we assume for the rest of the section that we are working

with minimization problems. Note that our results similarly hold for maximization

problems as well. For an objective function c we will call an optimal vertex of a polytope

P c-optimal. A path in the graph of P is said to be c-monotone if the sequence of c-

values of vertices along the path is strictly decreasing. To simplify our notation we

further identify a vertex u of P with the corresponding base vertex (u,0) of Q.

2.6.1 Changing the objective vector

It clearly does not hold that for every linear objective function c ∈Qd with w being a

c-optimal vertex of a strongly non-degenerate d-polytope P and for any other vertex v

of P , both the “canonical” path from v to the top vertex t of a good rock extension Q of

P and the “canonical” path w-t traversed backward from t to w are c-monotone. Even

the path from t to w itself is not always c-monotone, see Figure 2.6 for an example.
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Fig. 2.6: A rock extension (top view) of the quadrangle euw v constructed in the manner of
Algorithm 2.1 from the rock extension e f g t of the two-dimensional simplex e f g containing
euw v by consecutively adding the inequalities defining the blue the orange facets. Now w is
the c-optimal vertex of the rock extension for the objective function c whose optimization
direction points to the right in the picture. However, the (reversed) “canonical” path t-r -y-w
is not c-monotone.

However, the latter issue can be handled by defining a new objective vector c̃ := (c,cz) ∈
IRd+1 with cz being a large enough positive number, such that all “canonical” paths

in Q, including the one for the c̃-optimal vertex w , are c̃-monotone when traversing

them from the top. If follows from the result that we prove next and the fact, that

z-coordinates of vertices of a top-down “canonical” path build a strictly decreasing

sequence.

Lemma 2.22. Let Q ∈ IRd+1 be a rock extension defined by an integral system A(x, z) ≤ b

with A ∈ Zm×(d+1),b ∈ Zm , x ∈ IRd , z ∈ IR. Then for every vector c ∈ IRd and for any

number cz > 2||c||128〈A,b〉 every path on Q with the next vertex having a strictly lower

z-coordinate than its predecessor is (c,cz)-monotone.

Proof. Let u with row basis U and v with row basis V be two vertices of Q with vz < uz .

The statement follows from a more general fact, that (c,cz)T (v −u) < 0, which we

show next. On the one hand cT (vx −ux) ≤ |cT (vx − vx)| ≤ ∑d
j=1 |c j ||v j −u j | by the

triangle inequality. Using Cramer’s rule as in the previous chapter we conclude that

|v j −u j | = |det A
j=b
V ,⋆

det AV ,⋆
− det A

j=b
U ,⋆

det AU ,⋆
| ≤ 2∆2

(A,b),d+1 ≤ 2×24〈A,b〉 for any j ∈ [d ]. The latter yields

cT (vx −ux) ≤ 2||c||124〈A,b〉. On the other hand, due to the choice of u and v , vz −uz ≤
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− 1
∆2

A,d+1
≤−2−4〈A,b〉 holds by the Cramer’s rule again. Using the above bound for cz we

obtain cz(uz − vz) <−2||c||124〈A,b〉 which concludes the proof.

Note, that by choosing cz from the latter lemma as 2||c||128
(
〈(A,a),b〉+ℓ

)
+1, where ℓ=

〈(Od ,−1),0〉 is the encoding size of the system (Od ,−1)T (x, z) ≤ 0, we ensure that the

encoding size of the new objective vector c̃ is polynomial in the encoding size of the

input 〈A,b,c〉 with Ax ≤ b defining the polytope P , whose rock extension Q = {(x, z) ∈
IRd | Ax +az ≤ b, z ≥ 0} was constructed by Algorithm 2.1.

Obtaining the monotonicity property for all top-down “canonical” path in this way is

justified by the fact that the top vertex of a rock extension constructed by Algorithm 2.1

is known (its row basis is defined by the d +1 inequalities indexed by I ). Therefore one

could start the simplex algorithm at the top vertex of the rock extension and it could in

theory even follow the top-down “canonical” path of the c- and c̃-optimal vertex w .

2.6.2 Ridge extension

The sole change to the objective function, described in the previous subsection, how-

ever, does not offer a short monotone path from any vertex v to the optimal vertex w ,

since the “canonical” path from v to t is not c̃-monotone (the sequence of c̃-values

along the path is, in fact, strictly increasing).

In order to incorporate it in a certain way we are going to spend one more dimension

by building a crooked prism over the rock extension. Let P be a d-polytope defined

by a system Ax ≤ b of m inequalities, and let Q := {(x, z) ∈ IRd+1 | Ax +az ≤ b , z ≥ 0}

be a rock extension of P ϵ-concentrated around (o,1) ∈ IRd+1 for some ϵ> 0 and o ∈ P .

Consider the prism Q×[0,1]. We now tilt the facets Q×{0} and Q×{1} toward each other

such that the (Euclidean) distance between two copies of a point in Q is reduced by

some factor that is proportional to its z-coordinate. We rigorously define the described

polytope as follows

Q̂ := {(x, z, y) ∈ IRd+2 | Ax +az ≤ b , z ≥ 0, y − 1

3
z ≥ 0, y + 1

3
z ≤ 1} .

We call Q̂ a ridge extension of P . See Figure 2.7 for an illustration.

We would like to note that the above construction is a special case of the de-

formed product (1) introduced by Amenta and Ziegler (1999). More precisely

Q̂ =
(
Q,φ

(
(x, z)

))
1

(
[0,1], [ 1

3 , 2
3 ]

)
with φ

(
(x, z)

) = z. Observe that if Q is simple, so

is Q̂ , since it is combinatorially equivalent to the prism over Q and prisms preserve

simplicity. We will denote the two facets of Q̂ defined by inequalities y − 1
3 z ≥ 0 and

y + 1
3 z ≤ 1 by Q0 and Q1, respectively. Note that both Q0 and Q1 are isomorphic to Q.
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Fig. 2.7: The d +2-dimensional simple ridge extension Q̂ of a d-polytope P . P is represented
here by the line segment [v0, w 0]. Triangles t v0w 0, t 0v0w 0, and t 1v1w 1 represent a rock
extension Q of P with the top vertex t , and facets Q0 and Q1 of Q̂, both isomorphic to Q,
respectively. Path v0-t 0-t 1-w 1 is ĉ-monotone for an auxiliary objective ĉ such that a ĉ-optimal
vertex w 1 is a preimage of a c-optimal vertex w 0 of P under the orthogonal projection onto
x-axis.

Thus each vertex u of Q corresponds to two vertices of Q0 and Q1 denoted by u0 and

u1, respectively.

Now, let Q be a good rock extension of P . Let c ∈ IRd be a linear objective function and w

be a c-optimal vertex of P , and let v be some other vertex of P . Then for the “canonical”

path from v to the top vertex t of Q there exists an isomorphic path from v0 to t 0 of

Q0. Since the “canonical” v-t-path in Q is z-increasing and due to Q0 = f 0(Q) with

f 0 : (x, z) 7→ (x, z, 1
3 z), the corresponding v0-t 0-path in Q0 is y-increasing. Similarly,

there exists a y-increasing t 1-w1-path in Q1 isomorphic to the backward traversal of the

z-increasing “canonical” w-t-path in Q, since Q1 = f 1(Q) with f 1 : (x, z) 7→ (x, z,1− 1
3 z).

Together with the edge t 0t 1, the two aforementioned paths comprise a v0-w1-path

of length at most 2(m −d +1)+1 in Q̂ that is ĉ-monotone for the objective function

ĉ := (c,0,cy ) ∈ IRd+2 with large enough positive cy . Note that w1 is a ĉ-optimal vertex

of Q̂ and a preimage of a c-optimal vertex w of P under the affine map πd : (x, z, y) 7→ x

projecting Q̂ down to P . In fact, similar to the proof of Lemma 2.22, it can be shown

that choosing cy as 6||c||128〈Q̂〉+1 (after scaling the system, defining Q̂ to integrality) is

enough to guarantee ĉ-monotonicity of any v0-t 0-t 1-u1-path of the above mentioned

type for any two vertices u, v of Q. Thus, with the help of Theorem 2.14 we derive

the following statement, where πk denotes the orthogonal projection on the first k

coordinates.
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Theorem 2.23. Let A ∈Qm×d and b ∈Qm define a non-degenerate system of linear

inequalities such that P = P≤(A,b) is bounded. Then there exists a (d +2)-dimensional

simple extension Q̂ with πd (Q̂) = P having at most m +4 facets such that for any linear

objective function c ∈Qd there is a positive number cy such that for any vertex v of

P there exists a (c,0,cy )-monotone path from the vertex (v,0,0) to a (c,0,cy )-optimal

vertex w of Q̂ of length at most 2(m −d +1)+1 with πd (w) being a c-optimal vertex

of P. A system of linear inequalities defining Q̂ and the number cy are computable in

strongly polynomial time if a vertex of P is specified within the input.

To state the concluding result of this chapter we introduce the following notion. The

minimum length of a c-monotone path in the graph of a polytope P between a given

vertex v and a c-optimal vertex of P is called the monotone c-distance of v in the graph

of P . Then, combining Theorems 2.23 and 2.16 we conclude the following.

Theorem 2.24. If there is a pivot rule for the simplex algorithm that requires only a

number of steps (executable in strongly polynomial time) that is bounded polynomially

in the monotone c-distance of v in the graph of P for every simple polytope P, objective

function vector c, and starting vertex v, then the general (rational) linear programming

problem can be solved in strongly polynomial time.

2.7 Discussion

In this section we mention some open questions that appear to be interesting for future

research.

The dimension of the rock extension exceeds that of the original polytope just by one.

This leaves open the question whether it is possible to obtain extensions with better

diameter bounds by using additional dimensions.

In Section 2.3 we showed that two- and three-dimensional (strongly non-degenerate)

polytopes allow for rock extensions with logarithmic diameter and noted that the same

argumentation does not work for some (strongly non-degenerate) four-dimensional

polytope. The crucial property (L) that we used in the two- and three-dimensional

cases was the existence of a constant ratio of the polytope facets that are pairwise

disjoint. Moreover, the new polytope obtained by removing the inequalities corre-

sponding to these facets from the polytope description had to satisfy (L) again. In fact,

it was necessary to be able to iteratively repeat this procedure (of removing at least

one l th of the inequalities corresponding to pairwise disjoint facets of the polytope at

once) until the remaining inequality system consist of d +C inequalities where d is the

dimension of the (original) polytope and C is a constant. An interesting question is

whether there are known classes of polytopes in dimension four and higher (maybe
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originating from combinatorial optimization problems) that allow for such iterative

constructions.

The most intriguing question, of course, is whether for simple d-polytopes with n facets

and diameter at most 2(n −d) there exists a pivot rule for the simplex algorithm that is

guaranteed to produce a (c-monotone) path to an optimal vertex of length bounded

polynomially in d and n, as this would imply that the general linear programming

problems can be solved in strongly polynomial time according to the results presented

above. We would like to point out that Cardinal and Steiner (2023) showed that if

P ̸= NP holds, then for every simplex pivot rule executable in polynomial time and for

every constant k ∈N there exists a linear program on a perfect matching polytope and

a starting vertex of the said polytope such that the optimal solution can be reached

in two c-monotone non-degenerate steps from the starting vertex, yet the pivot rule

will require at least k non-degenerate steps to reach the optimal solution. This result,

however, even under the assumption P ̸= NP does not rule out the existence of a pivot

rule for which one can bound the number of steps by a polynomial in the diameter plus

the number of facets, not even for general (rather than just simple) polytopes. Again,

by the results presented above, such a pivot rule would imply a strongly polynomial

time algorithm for general linear programming problems.

In an attempt to investigate the latter, we tried applying the celebrated shadow simplex

algorithm
(
see, e.g., Bach and Huiberts (2025); Black et al. (2024); Borgwardt (1999);

Dadush and Huiberts (2020); Megiddo (1986a); Spielman and Teng (2004); Vershynin

(2009)
)

to rock extensions. Observe that starting the algorithm at the top vertex of a

rock extension naturally calls for a shadow formed by the vectors (Od ,1), (c,0) ∈ IRd+1

(optimizing the staring vertex and the optimal vertex, respectively), where c ∈ IRd is

the original objective vector. However, we did not find a way to sensibly bound the

number of vertices (of the c-monotone path of) the shadow due to lack of control over

coordinates of the non-base vertices of a rock extension.

Alternatively, instead of trying to make the simplex algorithm follow a short path

on a rock extension, one could investigate a corresponding path in the hyperplane

arrangement associated with the LP in question (recall Subsection 2.2.3). Similarly

to the previous case, given a vertex of the arrangement and an objective vector, it is

highly unclear whether it is possible to create a simplex-type algorithm based on the

hyperplane arrangement that would somewhat follow a short path on the arrangement

to an optimal solution of the LP. The rest of this section aims to present some of the

authors thoughts on the topic.

One line of reasoning is to allow such an algorithm to switch between the neighboring

chambers of the arrangement under a certain condition (e.g., the algorithm always tries

to perform the longest possible step along the c-monotone lines of the arrangement).
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However, in this way, the algorithm might significantly drift away from the original

chamber represented in the LP, especially if the reduction of the objective function

value is disallowed. To enable “going back” one could alternate between the primal

problem (1.4) and the dual (1.5). It might work as follows; once the primal simplex

optimality criterion is satisfied at some vertex of the currently considered chamber of

the arrangement (which might be different from the initial chamber), the framework

would switch to the dual problem. One would repeat the latter, with the roles of the

primal and the dual being switched. Perhaps some sort of dichotomy on the objective

function value could provide control over the number of switches from the primal to

the dual and back.

Alternating between the primal and the dual is also how the solvers for linear program-

ming seem to work (Sophie Huiberts, personal communication). Moreover, a couple

of algorithms for LP that make use of primal and dual information at the same time

are already known
(
see e.g. Belahcene et al. (2018); Dantzig et al. (1956); Gabasov et al.

(1979, 1981)
)
. Therefore, this direction seems to be worth investigating.
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3
Escaping degeneracy in linear time

3.1 Introduction

In the previous chapter we have shown how linear programming problems profit from

perturbations and extended formulations, which help to guarantee the existence of

short (monotone) paths for polyhedra of feasible solutions, while guarding the property

of being simple.

However, even in the case where a short path between the starting vertex and an op-

timal one exists, it is not clear how the simplex algorithm would be bound to follow

it (e.g., any two vertices of the famous cube of Klee and Minty (1972), which pro-

vides an exponential lower bound on the performance of the Dantzig pivot rule, can be

connected by a path of linear length). Moreover, especially when dealing with combina-

torial or 0/1 linear programming problems, a perturbation might break the underlying

structure of the problem, which could otherwise assist in solving it. Therefore, efficient

handling of degeneracy is of utmost importance when dealing with these types of

problems.

In presence of degeneracy, an extreme point solution might have exponentially many

distinct bases defining it, and so the simplex algorithm might perform an exponential

number of consecutive degenerate pivots, staying in the same vertex, (see, e.g., Cun-

ningham, 1979). Such behavior is referred to as stalling. In some pathological cases,

certain pivot rules might even provide an infinite sequence of consecutive degenerate

pivots at a degenerate vertex, a phenomenon called cycling. Although cycling can be

easily avoided by employing, for instance, Bland’s rule (due to Bland, 1977) or a lexico-

graphic rule Terlaky, 2009, there is no known pivot rule that prevents stalling. As stated

in several papers (e.g., Megiddo, 1986b; Murty, 2009), solving a general LP in strongly

polynomial time can be reduced to finding a pivot rule that prevents stalling for general

polyhedra. However, there are a few cases for which it is known that the issue of stalling

can be handled. The most famous example is the class of transportation polytopes, for

which pivot rules with polynomial bounds on the number of consecutive degenerate

pivots were introduced by Cunningham (1979) and further developed by Ahuja et al.

40



3.1. INTRODUCTION K. KUKHARENKO

(2002); Goldfarb et al. (1990); Rooley-Laleh (1981). See also the work of Orlin (1997) for

a strongly polynomial version of the primal network simplex.

The results of this chapter are inspired to a great extent by the work of Kabadi and

Punnen (2008). They show that, given an LP in standard equality form with a totally

unimodular coefficient matrix A ∈ {−1,0,1}m×n , a vertex solution x and an improving

feasible circuit direction for x, one can construct a pivot rule which performs at most

m consecutive degenerate pivots. We generalize their proof, and show that one can

employ any improving direction at a vertex x of a general polyhedron, to avoid stalling.

Our result, proved in Section 3.2, is summarized in the following theorem.

Theorem 3.1. Given any LP of the form min{cT x : Ax = b, x ≥ 0} with A ∈ IRm×n , there

exists a pivot rule that limits the number of consecutive degenerate simplex pivots at any

non-optimal extreme solution to at most n −m −1.

We stress here that the pivots considered in Theorem 3.1 are degenerate simplex

pivots, meaning that each of them yields an improving direction at the given extreme

point, though this direction is not feasible. It is important to point out that in general,

given two adjacent extreme points x, x ′ of a linear program, one can easily perform

a sequence of basis exchanges that yield x ′ from x by identifying the common tight

linearly independent constraints, and introducing each of them to the current row

basis in any order, until the direction x ′−x is seen. However, we here want a strategy

that guarantees that each basis exchange is realizable by the simplex algorithm and

hence defines an improving direction.

We then discuss some byproducts of our result in Section 3.3. In particular, we revise

the analysis of the simplex algorithm by Kitahara and Mizuno (2013, 2014) who bound

the number of non-degenerate pivots in terms of n,m and the maximum and the mini-

mum non-zero coordinate of a basic feasible solution. Their analysis combined with

our degeneracy-escaping technique show that the total number of simplex pivots (both

degenerate and non-degenerate) can be bounded in a similar way. As a consequence,

one can have a strongly-polynomial number of simplex pivots for several combina-

torial LPs. In addition, we perform some computational experiments to evaluate the

performance of the antistalling pivot rule in practice, reported in Section 3.4.

Of course the drawback of the whole machinery is that it requires an improving feasible

direction at a given vertex. Though it is efficiently computable, this is in general as

hard as solving a general linear programming problem, see Theorem 3.3 for a proof

of the latter. For some classes of polytopes though (e.g., matching or flow polytopes)

finding such a direction can be easier, thus making it worthwhile to apply our pivot

rule. Most importantly, we think that the main importance of our result is from a

theoretical perspective: it shows that, for several polytopes, not only a short path on

the 1-skeleton exists, but a short sequence of simplex pivots always exists (and can
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also be efficiently computed). That is, a short sequence of basis exchanges that follow

improving directions, when performing both degenerate and non-degenerate pivots.

3.2 Antistalling pivot rule

The goal of this section is to prove Theorem 3.1. Before doing that, we state some

preliminaries, and also give a geometric intuition behind the result.

3.2.1 Foundations

In this chapter we use the algebraic view on the simplex algorithm. We will give a brief

review of it here. The algebraic simplex algorithm works with LP in standard equality

form (1.2) that we repeat here:

min cT x

s.t . Ax = b

x ≥ 0

(3.1)

Note that any LP can be put into this form (e.g., by splitting variables x = x+−x− and

by introducing slack variables).

For the sake of completeness let us reiterate the following definition. A basis of (3.1)

with an m ×n real matrix A, rank(A) = m is a subset B ⊆ [n] with |B | = m and A⋆,B

being non-singular. The point x with xB = A−1
⋆,B b, xN =Owhere N := [n] \ B is a basic

solution of (3.1) with basis B . If additionally xB ≥ 0, both the basic solution x and

the basis B are feasible. If xi > 0 for all i ∈ B , then B and x are called non-degenerate

and degenerate otherwise, i.e., if xi = 0 for some i ∈ B . We let A := A−1
⋆,B A⋆,N and

cT
N := cT

N − cT
B A. In particular, cN ∈ IRN is the vector of so-called reduced costs for the

basis B . The coordinates of the reduced cost vector will be addressed as cN ,i , where

the first subscript will be dropped if the basis B = [n] \ N is clear from the context.

The simplex algorithm considers in each iteration a feasible basis B . If all elements of

cN are non-negative, then the basis B and the corresponding basic feasible solution

x are known to be optimal. Otherwise, the algorithm pivots by choosing a non-basic

coordinate with negative reduced cost to enter the basis, say f . It then performs a

minimum ratio test to compute an index i that minimizes xi
/

Ai f among all indices i ∈
B for which Ai f > 0. Such index i will be the one leaving the basis, and it corresponds

to a basic coordinate which hits its bound first when moving along the direction given

by the tight constraints indexed by B \ { f }. At each iteration there could be multiple

candidate indices for entering the basis (all the ones with negative reduced cost), as well

as multiple candidate indices to leave the basis (all the ones for which the minimum
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ratio test value is attained). The choice of the entering and the leaving coordinates is the

essence of a pivot rule (see Terlaky and Zhang (1993) for a survey). A pivot is degenerate

if the attained minimum ratio test value is 0 (hence, the extreme point solution x does

not change), and non-degenerate otherwise. Note that only coordinates with negative

reduced cost are considered for entering the basis, since only such a choice guarantees

the simplex algorithm to make progress when a non-degenerate pivot occurs. To later

emphasize that we only refer to that kind of (potentially) improving pivots, we will call

them simplex pivots.

Finally, we let kern(A) := {y ∈ IRn : Ay = 0}. Given (3.1), we call a vector y ∈ kern(A)

with cT y < 0 an improving direction. Such a y is said to be feasible at a basic feasible

solution x if x + ϵy ≥ 0 for sufficiently small positive ϵ. Note that for any y ∈ kern(A)

and any basis B of A, the following holds:

cT y = cT
B yB + cT

N yN = cT
B (−AyN )+ cT

N yN = cT
N yN (3.2)

3.2.2 A geometric intuition

Before providing a formal proof, we give a geometric intuition on how our pivot rule

works. For this, it will be easier to abandon the standard equality form and go back

to the inequality form (1.1). In particular, consider a degenerate vertex x ∈ IRd of a

d-polytope P defined by a system Ax ≤ b of linear inequalities with A ∈ IRn×d ,b ∈ IRn .

In this setting, degeneracy means that more than d inequalities are tight at x. Consider

a subset N of the set of indices of all inequalities that are tight at x with |N | = d

and let B := [n] \ N . Note that here we intentionally redefine a notation used in the

standard equality form, where non basic coordinates always have their corresponding

constraints tight. Since x is degenerate, there is at least one inequality with its index in

B that is tight at x . We denote the set of such inequalities by W ⊆ B . Finally, assume

x is not an optimal vertex of P when minimizing an objective function c ∈ IRd over

P , and let y0 ∈ IRd be an improving feasible direction at x, i.e., such that x + ϵy0 ∈ P

for a sufficiently small positive ϵ and cT y0 < 0. In order to find an improving edge of

P at x, we look at the directions given by the extremal rays of the basic cone C (N ) :=
{x ∈ IRn | Ai ,⋆x ≤ 0, i ∈ N }. If there is an improving feasible direction among them,

we are done. Otherwise, we reduce the dimension of the polytope in the following

way. We pick an extremal ray z ∈ C (N ) such that cT z < 0. Note that z is formed by

d −1 inequalities from N . Let f ∈ N be the only inequality index not used to define

z. Consider a vector combination y0 +αz where α ≥ 0 and note that it provides an

improving direction for any non-negative α. Since y0 is contained in the feasible

cone C (N ∪W ) = {x ∈ IRn | Ai ,⋆x ≤ 0, i ∈ N ∪W } but z is not, the vector y0 +αz leaves

C (N ∪W ) for sufficiently large α. Hence there has to be a number α1 ≥ 0 such that

y0 +α1z is contained in a facet of C (N ∪W ). Without loss of generality assume that
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the latter facet is defined by the g th inequality. Note that g ∈ W since y0 and z are

both contained in the basic cone C (N ) and so is y0 +αz for any non-negative α.

Then, we define a new improving feasible direction y1 := y0 +α1z, N = (
N \ { f }

)∪ {g },

B = (
B \{g }

)∪{ f } and continue searching for an improving edge inside the facet defined

by the g th inequality. Since x +ϵy1 belongs to this facet for an ϵ> 0 small enough, the

letter yields dimension reduction. After at most d − 1 such steps we are bound to

encounter a one-dimensional face of P containing x +ϵy ′, where y ′ is an improving

feasible direction at x. For an illustration see Figure 3.1.

Fig. 3.1: To the left, facets corresponding to inequalities in N and W are colored in navy and
white, respectively. To the right, the gray fading facet is defined by the f th inequality and the
green one corresponds to the g th.

3.2.3 Proof of Theorem 3.1

Proof. Let x be a degenerate basic feasible solution of (3.1) with basis B . Without loss

of generality, assume B = [m]. Then, xi = 0 for i ∈ N = [n]\[m]. Assume also that xi = 0

for i ∈ [k] with 1 ≤ k ≤ m and xi > 0 for i = k+1, . . . ,m. Let S(B) := {i ∈ N | c i < 0}. Since

x is not optimal, S(B) ̸= ;.

It is well known, that a basic feasible solution x of (3.1) with basis B is not optimal if

and only if there exists an improving feasible direction, i.e., there exists y0 ∈ IRn such

that Ay0 = 0, cT y0 < 0 and y0
i ≥ 0 for all i ∈ [k]∪ (

[n] \ [m]
)
. Consider any such y0.

Let Q1(y0,B) := {i ∈ [k] | y0
i > 0} and Q2(y0,B) := {i ∈ [n] \ [m] | y0

i > 0}. Without loss

of generality, let Q1(y0,B) = [r ] with 0 ≤ r ≤ k and Q2(y0,B) = {m +1, . . . ,m + t } with

1 ≤ t ≤ n −m. See Table 3.1 for an illustration.

Since cT y0 = cT
N y0

N < 0 due to (3.2), it follows that S(B)∩Q2(y0,B) ̸= ;. We choose

the entering index to be a non-basic one with the most negative reduced cost1 in

the support of y0, that is f = argmini∈S(B)∩Q2(y0,B)c i . To detect the leaving index, we

1 We would like to point out that to prove the theorem, it suffices to choose any non-basic index with negative
reduced cost in the support of y0 as the entering index. The fact that f has the most negative reduced cost
among such indices will only be used for the results in the next section.
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1 . . . r . . . k . . . m f . . . m + t . . . n

x 0 0 . . . 0 0 . . . 0 + . . . + 0 0 . . . 0 0 . . . 0

y0 + + . . . + 0 . . . 0 ⋆ . . . ⋆ + + . . . + 0 . . . 0

z – ⋆ . . . ⋆ 0+ . . . 0+ ⋆ . . . ⋆ 1 0 . . . 0 0 . . . 0

y0 +αz 0 0+ . . . 0+ 0+ . . . 0+ ⋆ . . . ⋆ + + . . . + 0 . . . 0

Table 3.1: An illustration of entries of x, y0, z and y1 := y0 +αz. A positive, a non-negative, a
negative, and a sign-arbitrary entry is denoted by +, 0+, − and ⋆, respectively. Without loss of
generality, we here assumed that the entering index f is m +1, and that an index g for which
the minimum in Case III is attained is 1.

consider the following case distinction. Note that the case distinction depends on the

basis B and the improving feasible direction y0.

Case I: There is no i ∈ [k] with Ai f > 0. In this case, the minimum ratio test for f is

strictly positive, that is:

(∗) min
i∈E q>( f )

xi

Ai f

> 0 where E q>( f ) := {i ∈ [m] | Ai f > 0} .

In particular, this means E q>( f ) ⊆ [m] \ [k]. We perform a non-degenerate pivot, by

selecting an index that minimizes (∗) as the leaving index.

Case II: Ai f > 0 for some i ∈ [k] \ [r ]. In this case, we perform a degenerate pivot by

selecting i as the leaving index. Let B ′ := B ∪ { f } \ {i }. Because of degeneracy, the basic

solution associated with B ′ is still x, and hence y0 is still an improving feasible direction

for x. Note that |Q2(y0,B ′)| = |Q2(y0,B)|−1 since y0
f > 0 but y0

i = 0 by definition. Repeat

the same for B ′ and y0.

Case III: Ai f ≤ 0 for all i ∈ [k]\[r ] and Ai f > 0 for some i ∈ [r ]. In this case, we are going

to change our improving feasible direction. Consider the following vector z ∈ IRn which

is, in fact, an improving (though not feasible) direction for the entering variable x f :

zi =


−Ai f , for i ∈ [m]

1, for i = f

0, otherwise

(3.3)

Note that Az = 0 and cT z = c f < 0. Moreover zi ≥ 0 for each i ∈ (
[r ] \ E q>( f )

)∪ (
[k] \

[r ]
)∪ (

[n] \ [m]
)

and zi < 0 for i ∈ E q>( f ) by definition. Set

y1 := y0 +αz with α := min
i∈E q>( f )∩[r ]

y0
i

|zi |
> 0.
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Observe that y1 is a feasible direction for x, since A(y +αz) = 0, and y1
i ≥ 0 for i ∈

[k]∪ (
[n] \ [m]

)
, because of the choice of z and α. Furthermore, y1 is an improving

direction, because cT z < 0 and hence

cT y1 = cT y0 +αcT z < cT y0 < 0. (3.4)

Note that Q2(y1,B) = Q2(y0,B). Furthermore, let g ∈ E q>( f )∩ [r ] be the index for

which the value of α is attained. We have y1
g = 0 and Ag f > 0. We now repeat the case

distinction above for B and y1.

The key observation is that when the third case of the above case distinction has

occurred, repeating the same for B and y1 falls into the second case (because the basis

B has not changed, meanwhile y1
g = xg = 0 with g ∈ B and Ag f > 0). Therefore, after

each degenerate pivot, the cardinality of the support of the improving feasible direction

in the non-basic indices decreases. Hence, a sequence of |Q2(y0,B)| degenerate pivots

would yield an improving feasible direction y ′ and a basis B ′ of x with Q2(y ′,B ′) = 0,

which in turn implies 0 = cT
N ′ y ′

N ′ = cT y ′ due to (3.2), yielding a contradiction. Hence

the number of consecutive degenerate pivots with the suggested pivot rule cannot

exceed n −m −1.

The next remark will be useful in the next section.

Remark 3.2. Let x be the currently considered basic feasible solution with basis B. If y0

is chosen to be equal to x̃ −x for some basic feasible solution x̃ of our LP with cT x̃ > cT x,

then one can observe that |Q2(y0,B)| ≤ m because x̃ has at most m non-zero coordinates.

By the proof of Theorem 3.1 above, the latter value strictly decreases with each degenerate

step produced by the antistalling pivot rule. Hence, the total number of consecutive

degenerate pivots at the vertex x can be strengthened to be at most min{n−m−1,m−1}.

We finish this section with the previously announced result on the hardness of finding

improving feasible directions.

Theorem 3.3. Finding an improving feasible direction at a given vertex of a feasible

polyhedron is as hard as solving a general linear programming problem.

Proof. Let us consider a pair of feasible primal and dual problems (1.4, 1.5) and build

the following LP by combining both of them:

max λ (3.5)

s.t . cT x = yT b (3.6)

Ax ≤λb AT y =λc (3.7)

y ≥ 0 (3.8)
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0 ≤ λ ≤ 1 (3.9)

with A ∈ IRm×n , rank(A) = n,b ∈ IRm ,c ∈ IRn and variables x ∈ IRn ,y ∈ IRm , and λ ∈ IR.

The point zo := (xo , yo ,λo) =On+m+1 is a vertex of the feasible polyhedron of (3.5-3.9),

since all inequities but λ≤ 1 are tight at zo and it is not hard to construct a correspond-

ing (row) basis. Note that every improving feasible direction ∆z = (∆x,∆y,∆λ) at zo

satisfies ∆λ> 0 and (3.6-3.8). Therefore, the point z̃ := (x̃, ỹ , λ̃) = zo + 1
∆λ∆z is feasible

for (3.5-3.9). Due to feasibility of z̃ and since λ̃= 1, (x̃, ỹ) = 1
∆λ(∆x,∆y) comprise a pair

of optimal solutions for the primal and the dual problems (1.4, 1.5). Therefore, finding

such ∆z is at least as hard as solving both for the primal and the dual problems.

3.3 Exploiting the antistalling rule for general bounds

Here we combine the result of the previous section with the analysis of Kitahara and

Mizuno (2013, 2014). The authors of the latter works give a bound on the number

of non-degenerate simplex pivots that depends on n,m and the maximum and the

minimum non-zero coordinate of basic solutions. The combined analysis yields a

similar bound on the total number of (both degenerate and non-degenerate) simplex

pivots.

We need a few additional notations. For any vector x, we let supp(x) denote its support.

We denote the smallest and the largest non-zero coordinate of any basic feasible

solution of (3.1) by δ and∆, respectively. We let x⋆ be an optimal basic feasible solution

of (3.1). Finally, for a generic iteration q of the simplex algorithm with basis B q and an

improving feasible direction y q , we let ∆q
c

:= max{i∈N q |y q
i >0}−cN q ,i . Note that ∆q

c
is the

absolute value of the reduced cost of the entering variable according to the antistalling

pivot rule defined in the previous section when using y q .

We make use of the following result from Kitahara and Mizuno (2014).

Lemma 3.4 (Lemma 4 of Kitahara and Mizuno, 2014). If there exists a constant λ> 0

such that

cT (xq+1 −x⋆) ≤ (
1− 1

λ

)
cT (xq −x⋆) (3.10)

holds for any consecutive distinct basic feasible solutions xq ̸= xq+1 generated by the

simplex algorithm (with any pivot rule), the total number of distinct basic feasible

solutions encountered is at most

(n −m)
⌈
λ loge

m∆

δ

⌉
.

Given (3.1), apply the simplex algorithm with the antistalling pivot rule described in the

previous section. In particular, at a general iteration t of the algorithm, let B t , x t , and
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y t be respectively the basis, the basic solution, and the improving feasible direction

considered by the algorithm. Let N t := [n] \ B t . If x t ̸= x t−1 (i.e., we encounter x t for

the first time, as a result of a non-degenerate pivot) let y t := x⋆−x t . Observe that, once

this is specified, the improving feasible direction is determined by the antistalling rule

for all remaining degenerate pivots at x t .

Lemma 3.5. Let x t = x t+k be the basic feasible solution associated with bases B t and

B t+k , and assume x t+k ̸= x t+k+1. The following holds:

(a) cT y t+k ≤ cT y t .

(b) y t+k
i = y t

i for all i ∈ N t+k ∩ supp(y t+k ).

Proof. The statement (a) follows from (3.4). The statement (b) follows from the con-

struction of our antistalling rule by induction: if Case III never occurs during the k

degenerate pivots, then y t+k = y t and the statement holds trivially. Suppose that the

situation of Case III appears for B t+ j , y t+ j . The improving feasible direction changes

(as y t+ j+1 = y t+ j +αz ), but among the non-basic coordinates this only affects the

value of y t+ j+1
f (where f is the entering index). Immediately after, Case II occurs

and f gets pivoted in, while a basic index i with y t+ j+1
i = 0 gets pivoted out, i.e.,

B t+ j+1 = (
B t+ j \{i }

)∪{ f } and N t+ j+1 = (
N t+ j \{ f }

)∪{i }. Hence, the statement holds.

The next result, which establishes (3.10) with λ := (n−m)∆
δ for the simplex algorithm

with the antistalling pivot rule, is inspired by Kitahara and Mizuno (2014)[Theorem 3].

Lemma 3.6. Let x t = x t+k be the basic feasible solution associated with bases B t and

B t+k . Assume x t−1 ̸= x t and x t+k ̸= x t+k+1. We have

cT x t+k+1 − cT x⋆ ≤ (
1− δ

(n −m)∆

)
(cT x t+k − cT x⋆) .

Proof. The optimality gap for x t+k can be bounded as follows:

cT x t+k − cT x⋆ = cT x t − cT x⋆

= −cT y t

≤ −cT y t+k

= −cT
N t+k y t+k

N t+k

= ∑
i∈N t+k −cT

N t+k ,i
y t+k

i

= ∑
i∈N t+k |y t+k

i >0−cT
N t+k ,i

y t+k
i

≤ (n −m)∆t+k
c

∆ ,

(3.11)

where we used Lemma 3.5(a) for the first inequality, and (3.2) for the third equality.

The last equality follows from y t+k
i ≥ 0, i ∈ N t+k which is implied by feasibility of
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y t+k at x t+k . The last inequality in turn follows from max{i∈N t+k |y t+k
i >0}−cN t+k ,i =

∆t+k
c

, the fact that |N t+k | = n −m, and since y t+k
i = y t

i = x⋆i − x t
i ≤ ∆ holds for any

i ∈ N t+k ∩ supp(y t+k ), using Lemma 3.5(b).

Let x t+k
f denote the entering variable at (t +k)th iteration. Note that x t+k+1

f ̸= 0 since

x t+k ̸= x t+k+1. Then,

cT x t+k − cT x t+k+1 = cT
N t+k (x t+k −x t+k+1)N t+k

=−cN t+k , f x t+k+1
f

≥∆t+k
c

δ

≥ δ
(n−m)∆cT (x t+k −x⋆)

hold, where we used (3.2) for the first equality, ∆t+k
c

=−cN t+k , f and δ≤ x t+k+1
f for the

second inequality, and (3.11) for the last inequality. Rearranging the terms yields the

lemma statement.

Now, combining Lemma 3.4 and Lemma 3.6 allows to conclude that the simplex

algorithm with the antistalling pivot rule described in Section 3.2 encounters at most

(n −m)⌈ (n−m)∆
δ loge

(
m∆

δ

)⌉ distinct basic feasible solutions. Since Theorem 3.1 and

Remark 3.2 in turn bound the number of consecutive degenerate steps by min{n−m−
1,m −1} (again, due to the choice of the improving feasible direction), combining it

with the latter result yields a bound on the total number of pivots required to reach

an optimal vertex. However, this bound does not take into account the number of

(degenerate) pivots that might have to be performed at an optimal vertex to encounter

a basis satisfying the optimality criterion. This is due to the fact that the antistalling

pivot rule requires an improving feasible direction, which we do not have at an optimal

vertex. Hence, we have to handle this case separately.

Let B and B⋆ be a non-optimal and an optimal basis, both associated with an optimal

basic feasible solution x⋆ of (3.1). Assume B is the basis of x⋆ obtained by the anti-

stalling pivot rule. Since B is not optimal, there exists f ∈ N with cN , f = cT z < 0 with z

as in (3.3). Observe that there exists i ∈ B∩N⋆ with Ai f > 0 and xi = 0: otherwise, all co-

ordinates of zN⋆ would be non-negative and hence z ∈CN⋆ := {x ∈ IRn | Ax = 0, xN⋆ ≥ 0}.

The latter however contradicts the fact that all extreme rays of the above cone CN⋆

have non-negative scalar products cN⋆ with c due to optimality of B⋆. Hence one

could perform a simplex pivot on B with entering variable f and leaving variable i . Let

B ′ := (
B \ {i }

)∪ { f } and N ′ := (
N \ { f }

)∪ {i }. Note that cN ′,i ≥ 0 and i ∈ N ′∩N⋆. Either

B ′ is an optimal basis and we stop, or there exists j ∈ N ′ \ {i } with cN ′, j < 0. In the

latter case, however, we can enforce the constraint xi = 0 by removing the variable xi

together with the corresponding column of A and entry ci of c from (3.1). By doing so

we obtain a new LP with the number of variables smaller by one that has B ′ and B⋆

as a non-optimal and an optimal basis, respectively, since cN ′\{i }, j < 0 and cN⋆\{i } ≥ 0.
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We can set B = B ′ and repeat the process. Since at each iteration a variable with index

from N⋆ gets removed, after at most n −m iterations B = B⋆. Since the number of

degenerate pivots at an optimal vertex is bounded by n −m, we can state the following

result.

Theorem 3.7. Given an LP (3.1) and an initial feasible basis, there exists a pivot rule

that makes the simplex algorithm reach an optimal basis in at most

min{n −m,m}(n −m)
⌈(n −m)∆

δ
loge

(
m
∆

δ

)⌉
simplex pivots.

In general, the value of δ is NP-hard to compute (Kuno et al., 2018). However, observe

that for integral A and b (which can be assumed without loss of generality for rational

LPs), one can bound ∆ ≤ ||b||1∆A and δ ≥ 1
∆A

due to Cramer’s rule (recall that ∆A is

the largest absolute value of a sub-determinant of A). Then the next statement is a

straightforward corollary of the above theorem.

Corollary 3.8. For any basic feasible solution of an LP (3.1) with integral A and b, there

exists a sequence of at most

min{n −m,m}(n −m)⌈(n −m)∆2
A||b||1 loge

(
m∆2

A||b||1
)⌉

simplex pivots leading to an optimal basis.

3.3.1 Application to combinatorial LPs

We conclude this section by observing that, using the latter corollary, one can prove the

existence of short sequences of simplex pivots (that is, of length strongly-polynomial

in n,m) between any two extreme points of several combinatorial LPs, that is, LPs

modeling the set of feasible solutions of famous combinatorial optimization problems.

We report a few examples below.

(a) LPs modeling matching/vertex-cover/edge-cover/stable-set problems in bipartite

graphs. For matchings, the LP maximizes a linear function over a set of constraint of

the form {A′x ≤ 1, x ≥ 0}, where the coefficient matrix A′ is the node-edge incidence

matrix of an undirected bipartite graph. After putting the LP in standard equality form

by adding slack variables, we get constraints of the form {Ax = 1, x ≥ 0}, where A is a

totally unimodular matrix (and so ∆A = 1). The result then follows from Corollary 3.8.

The same holds for vertex-cover (minimizing a linear function over constraints of the

form {A′T x ≥ 1, x ≥ 0}), edge-cover (minimizing a linear function over constraints of
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the form {A′x ≥ 1, x ≥ 0}), stable-set (maximizing a linear function over constraints of

the form {A′T x ≤ 1, x ≥ 0}).

(b) LPs modeling optimization over the fractional matching/vertex-cover/edge-cover/ sta-

ble-set polytopes. These correspond to the natural LP relaxations of the problems

discussed in (a), for general graphs. The same LPs as in (a), in non-bipartite graphs,

have a constraint matrix A′ (resp. A′T ) that is not totally unimodular. However, the set

of constraints defines half-integral polytopes (see Appa and Kotnyek, 2006; Nemhauser

and Trotter, 1974). Note that, after putting the LPs in standard equality form, the slack

variables can be loosely bounded from above by the number of variables n. Hence,

∆≤ n and δ≥ 1
2 , and the result follows from Theorem 3.7.

(c) LP for the stable marriage problem. The classical stable marriage problem is defined

on a bipartite graph where each node has a strict preference order over the set of its

neighbours. One looks for a matching that does not contain any blocking pair, that is, a

pair of nodes that mutually prefer each other with respect to their matched neighbour.

There is an (exact) LP formulation for the problem (Rothblum, 1992; Vande Vate, 1989),

that has constraints of the form {A′x ≤ 1,B ′x ≥ 1, x ≥ 0}. Here A′ is again the node-edge

incidence matrix of an undirected bipartite graph, while B ′ is a matrix that stems from

imposing an additional constraint for each edge {uv}, that essentially prevents {uv}

from being a blocking pair:

xuv +
∑

w :w>u v
xuw + ∑

w :w>v u
xv w ≥ 1

In the above expression, w >u v (resp. w >v u) means that u prefers w over v (resp. v

prefers w over u). After putting the LP in standard equality form, the slack variables

can be bounded by 1. Hence, ∆= δ= 1, and the result follows from Theorem 3.7.

(d) LPs modeling various flow problems (such as max flows, min cost flows, flow circula-

tions) with unit (or bounded) capacity values. Flow problems in capacitated graphs

are modeled using LPs with constraints of the form {A′x = b, l ≤ x ≤ u} where the

constraint matrix A′ is here a node-arc incidence matrix of a directed graph, which is

totally unimodular (see Schrijver, 2003). The right-hand side vectors (b, l ,u) can be

bounded in terms of the total capacity values. Therefore, assuming these are bounded

integers, one can rely on Corollary 3.8 to get the result, similarly to (a).

One can compute the corresponding pivot sequence for the problems mentioned in

(a)-(d) by running the simplex with the antistalling pivot rule. However, one needs to
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presolve the LP and obtain an optimal basic solution in order to use it to guide the

antistalling pivot rule.

We remark that the existence of a strongly polynomial sequence of pivots for general

min-cost flows
(
hence for problems in (d)

)
, was already known, as it follows from the

fundamental work of Orlin (1997), which applies even in the case of large capacity

values. In comparison, our bound is weaker, as it requires the capacity values to be

bounded.

On the other hand, despite being known to be solvable in strongly polynomial time,

to the best of our knowledge, the problems in (a)-(c) were not previously known to

admit strongly polynomial bounds on the number of simplex pivots for their natural

LP formulations.

3.4 Computational experiments

In this section we report the computational experiments that we conducted to evaluate

the performance of the antistalling pivot rule when applied to actual linear programs.

For the implementation, we used the python package CyLP by Towhidi and Orban

(2016) which wraps COIN-OR’s CLP solver and provides tools for implementing a

preferred pivot rule in python to substitute CLP’s built-in ones. For the tests, we used

the benchmark Netlib LP dataset containing 93 LPs of various dimensions and sparsity.

All our experiments were conducted on a laptop with Intel Core i7-13700H 2.40GHz

CPU and 32GB RAM.

For each of the aforementioned LPs, we ran the simplex algorithm with our antistalling

pivot rule, and compare it with other 5 well-known pivot rules (which Towhidi and

Orban (2016) provide implementations for). These are:

• Dantzig’s rule: the entering variable is the one with the most negative reduced

cost;

• Steepest edge: the entering variable is the one which yields a direction z max-

imizing −cT z
||z||2 (i.e., maximizing the improvement normalized according to the

2-norm);

• LIFO: the entering variable is the one that minimizes the number of iterations

that have past since the variable left the basis;

• Most Frequent: the entering variable is the one that maximizes the number of

times it was previously chosen as the entering variable;

• Bland’s rule: the entering variable is the one with the lowest index.
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We tracked the number of pivots required by each of the above rules. For our antistalling

pivot rule, we guided it using the feasible direction y = x⋆−x at any non-optimal vertex

x of the LP, for a pre-computed optimal basic solution x∗ (in particular, the one founded

by Dantzig’s pivot rule). Intuitively, this represents the best direction that can possibly

guide our rule, as it is the direction leading immediately to an optimal solution. Our

objective with the computational experiments was to see whether this choice translates

into fewer pivots in practice, since y might change during the degenerate steps and

therefore in reality we do not have control on the actual edge-direction we end up

moving along.

Among the 93 instances in the dataset, there were 84 LPs for which each of the pivot

rules was able to find an optimal solution with 30 minutes of timeout. We restrict

our report to these LPs. For the sake of graphical representation, we further divided

these 84 problems into 2 groups of 42 LPs each, by considering the maximum number

of iterations required by any of the 6 tested pivot rules. In particular, the first group

contains 42 LPs for which all pivot rules were able to compute an optimal solution

within 2369 pivots. The second group contains the remaining 42 LPs. Figure 3.2 shows

the results.

The computational experiments showed that the antistalling pivot rule, guided by a

known optimal solution, actually performs quite well, and most often manages to find

a relatively short sequence of pivots to an optimal basis compared to other pivot rules.

We highlight in particular the problem 25fv47, where any other pivot rule required at

least 7892 pivots whereas the antistalling only needed 1468. On the other hand, there

are instances where the antistalling pivot rule actually showed the worse performance

compared to all its competitors. Those are the LPs fit2p and seba: 69711 and 976 pivots

against at most 61925 and 873, respectively.
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Fig. 3.2: Both the upper and the lower plots show the number of iterations required by each
of the 6 considered pivot rules to solve the LPs. The 42 LPs in the upper plot are the ones
solved within 2369 pivots by all pivot rules. The remaining 42 LPs are considered in the lower
plot. Each of the so-called violin plot visualizes the distribution of the corresponding 42
numbers. White dots depict means, thick black dashes represent the intervals between 0.25-
and 0.75-quantiles.
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3.5 Discussion

We conclude this chapter with some remarks and potential research directions that

originate from our findings.

Our results show the existence of a short sequence of degenerate simplex pivots that

leads out of degeneracy. It would be interesting to show that similar results can be

achieved through perturbations. Informally, perturbing the right-hand side of the

constraints has the effect of “splitting” a degenerate vertex into a set of (possibly expo-

nentially many) distinct vertices, each associated with a distinct basis. It is legitimate

to ask whether every new vertex allows for a short monotone path (where monotonic-

ity is with respect to the linear objective function of the LP), which leads to a vertex

outside of this set. Note that the existence of the short degeneracy-escaping sequence

of simplex pivots showed in this work, generally does not answer the latter question

since some bases used in the sequence might become infeasible after perturbation.

At this point, we would like to connect to the results of Chapter 2. Given a basis B

defining a degenerate vertex v , one could imagine to separate v from all its neigh-

bouring vertices by a hyperplane: this way, one obtains a pyramid (with v at its apex).

Suppose this pyramid is full-dimensional and is described by some Ax ≤ b: then, the

above question is equivalent to perturbing the side facets of the pyramid to allow for

a short monotone path from the new apex defined by the given basis B , to any of the

vertices in the base of the pyramid. Observe that if the monotonicity assumption is

relaxed, the letter can be done relying on the results of Section 2.5 (when viewing the

base of the pyramid as the d −1-dimensional original polytope, and the pyramid as its

d-dimensional extension). By Theorem 2.14, such rock extension has the property that

the apex is connected to any base vertex by a path of at most linear length. However,

these paths are not necessarily monotone for a given linear objective function, as

discussed in Section 2.6, and moreover, the construction of the rock extension requires

not only perturbing the right-hand side b but the left-hand side A as well.

Another future research direction, that seems to be supported by the performed compu-

tational experiments, would be to analyze the relation between the improving feasible

direction y that is required by our antistalling pivot rule, and the actual edge-direction

z along which one ends up moving after all the degenerate pivots. It would be very

interesting to identify some conditions which ensure that z is a good approximation of

y , e.g., in terms of the objective function’s improvement.

Furthermore, as mentioned in Section 3.2, in order for our bound on the number of

consecutive degenerate pivots to hold, the only requirement we need to impose when

performing a pivot is that the entering variable lies in the support of the improving

feasible direction y (besides, of course, having negative reduced cost). In order to
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obtain the results from Section 3.3, where both degenerate and non-degenerate pivots

have to be taken into account, we chose the entering variable to be the one with the

most negative reduced cost, i.e., we used Dantzig’s rule just restricted to the coordinates

in supp(y). Of course, one could think of analyzing the performance of the antistalling

pivot rule with other choices of entering coordinates from supp(y), e.g., according to

steepest edge or shadow vertex. Variations of these latter two rules, in particular, have

been shown to play a key role in the context of 0/1 polytopes (Black et al., 2024).

Finally, we are curious if the presented antistalling pivot rule can be applied in practice

in any way. Clearly, the dependence on an improving feasible direction y , which can

be quite hard to compute, is the main obstacle for that. One line of thought is to run

the simplex algorithm with the antistalling pivot rule in parallel to the interior point

method. Whenever the current interior point method solution xi has better objective

function value than the current simplex solution xs , one could compute y needed for

the antistalling pivot rule as xi −xs . The hope is, that if the interior point method slows

down in the neighborhood of an optimal vertex (or an optimal face), the simplex can

maybe reach it faster along the edges.
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