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ABSTRACT 

 

The trend toward high-quality, low-volume and high-added value production has put more 

emphasis on batch and semi-batch processing due to its increased flexibility of operations. 

Dynamic optimization plays an important role toward improving the operation of batch and 

semi-batch processes. In addition, nonlinear model predictive control (NMPC) is an important 

tool for the real-time optimization of batch and semi-batch processes under uncertainty. 

However, the fact that the transient behaviour as well as the flexibility decrease with respect 

to time leads to very challenging optimization problems. 

      The preferred strategy to solve constrained nonlinear dynamic optimization problems is 

usually to use a so-called direct method. Nevertheless, based on the problem type at hand and 

the solution algorithm used, direct methods may lead to computational complexity. In 

particular, the large prediction horizons required in the NMPC of batch and semi-batch 

processes increase the real-time computational effort because of expensive matrix 

factorizations in the solution steps, especially at the beginning of the batch. The 

computational delay associated with advanced control methods is usually underestimated in 

theoretical studies. However, this delay may contribute to suboptimal or, worse, infeasible 

operation in real-life applications. 

      Alternatively, indirect methods based on Pontryagin’s Minimum Principle (PMP) could 

efficiently deal with the optimization of batch and semi-batch processes. In fact, the interplay 

between states and co-states in the context of PMP might turn out to be computationally quite 

efficient. The main indirect solution technique is the shooting method, which however often 

leads to convergence problems and instabilities caused by the integration of the co-state 

equations forward in time. It has been extensively argued that indirect methods are usually 

non-convergent and inefficient for constrained problems. This study proposes an alternative, 

convergent and effective indirect solution technique. Instead of integrating the states and co-

states simultaneously forward in time, the proposed algorithm parameterizes the inputs and 

integrates the state equations forward in time and the co-state equations backward in time, 

thereby leading to a gradient-based optimization approach. Constraints are handled by indirect 

adjoining to the Hamiltonian function, which allows meeting the active constraints explicitly 

at every iteration step. The performance of the solution strategy is compared to direct methods 

through three different case studies. The results show that the proposed PMP-based quasi-
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Newton strategy is effective in dealing with complicated constraints and is quite competitive 

computationally. 

      In addition, this work suggests using the proposed indirect solution technique in the 

context of shrinking-horizon NMPC under uncertainty. Uncertainties can be handled by the 

introduction of time-varying backoff terms for the path constraints. The resulting NMPC 

algorithm is applied to a two-phase semi-batch reactor for the hydroformylation of 1-

dodecene in the presence of uncertainty, and its performance is compared to that of NMPC 

that uses a direct simultaneous optimization method. The results show that the proposed 

algorithm (i) results in feasible operation for different uncertainty realizations both within 

batch or from batch to batch, and (ii) is much faster than direct simultaneous NMPC, 

especially at the beginning of the batch. In addition, a modification of the PMP-based NMPC 

scheme is proposed to enforce the active constraints to reduce the real-time computational 

effort further.  

      This thesis also details the combination of an indirect solution scheme together with an 

alternative parameterization scheme. The idea is to parameterize the sensitivity-seeking input 

arcs in a parsimonious way so as to decrease the computational load of constrained nonlinear 

dynamic optimization problems. The proposed method is tested on the simulated examples of 

a batch binary distillation column with terminal purity constraints and a two-phase semi-batch 

hydroformylation reactor with a complex path constraint. The performance of the proposed 

indirect parsimonious solution scheme is compared with those of a fully parameterized PMP-

based and a direct simultaneous solution approaches. It is observed that the combination of 

the indirect approach with parsimonious input parameterization can result in significant 

reduction in computational time. Finally, in this work, the application of parsimonious input 

parameterization to the shrinking-horizon NMPC is suggested in order to minimize the 

computational delay in feedback. The proposed approach is illustrated on two case studies in 

the presence of uncertainty. The results show that the suggested parsimonious shrinking-

horizon NMPC performs very similarly to the standard shrinking-horizon NMPC in terms of 

cost, is computationally much faster than the standard shrinking-horizon NMPC especially at 

the beginning of the batch and is robust to plant-model mismatch. 
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ZUSAMMENFASSUNG 

 

Der Trend zu einer qualitativ hochwertigen, kleinvolumigen und wertschöpfungsintensiven 

Produktion hat Semi-Batch-Prozesse aufgrund ihrer höheren Flexibilität der Betriebsweise 

stärker in den Vordergrund gerückt. Dynamische Optimierung spielt eine wichtige Rolle bei 

der Verbesserung der Fahrweise von Batch und Semi-Batch-Prozessen. Darüber hinaus ist die 

nichtlineare modellprädiktive Regelung (NMPC) ein wichtiges Werkzeug zur Echtzeit-

Optimierung von Batch und Semi-Batch-Prozessen unter Unsicherheit. Das transiente 

Verhalten sowie die zeitlich abnehmende Flexibilität führen jedoch zu sehr anspruchsvollen 

Optimierungsproblemen. 

      Die bevorzugte Strategie zur Lösung von Problemen im Zusammenhang mit der 

nichtlinearen dynamischen Optimierung ist normaleweise die Verwendung einer sogenannten 

direkten Methode. Dennoch können direkte Methoden, basierend auf dem vorliegenden 

Problemtyp und dem verwendeten Lösungsalgorithmus, zu einer Komplexität der 

Berechnungen führen. Insbesondere die großen Prognosehorizonte, die im NMPC von Semi-

Batch-Prozessen benötigt werden, erhöhen den Echtzeit-Rechenaufwand durch teure 

Matrixfaktorisierungen in den Lösungsschritten, insbesondere zu Prozessbeginn. Die 

Verzögerung aufgrund der Berechungzeit, die mit modernen Regelungsmethoden verbunden 

ist, wird in der Regel in theoretischen Studien unterschätzt. Diese Verzögerung kann jedoch 

zu einem suboptimalen oder sogar nicht realisierbaren Betrieb in der Praxis führen. 

      Alternativ könnten indirekte Methoden, die auf Pontryagin's Minimum Prinzip (PMP) 

basieren, effizient mit der Optimierung von Batch und Semi-Batch-Prozessen umgehen. 

Tatsächlich könnte sich das Zusammenspiel von zuständen und Ko-Zuständen im Rahmen 

von PMP rechnerisch als effizient erweisen. Die wichtigste indirekte Lösungsmethode ist das 

Schiess-Verfahren, das jedoch häufig zu Konvergenzproblemen und Instabilitäten führt, die 

durch die Vorwärts-Integration der Gleichungen der Ko-Zuständen verursacht werden. 

Generell wurde ausgiebig argumentiert, dass indirekte Methoden in der Regel nicht 

konvergent und ineffizient für beschränkte Probleme sind. Diese Arbeit schlägt jedoch eine 

alternative, konvergente und effektive indirekte Lösungstechnik vor. Anstatt die Zustände und 

Ko-Zustände gleichzeitig vorwärts in der Zeit zu integrieren, parametrisiert der 

vorgeschlagene Algorithmus die Eingänge und integriert die Zustandsgleichungen vorwärts in 

der Zeit und die Ko-Zustandsgleichungen rückwärts in der Zeit, was zu einem Gradienten-
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basierten Optimierungsansatz führt. Nedenbedingungen werden durch die indirekte 

Anbindung an die Hamilton-Funktion behandelt, die es erlaubt, die aktiven 

Nedenbedingungen bei jedem Iterationsschritt explizit zu erfüllen. Die Leitungs-fähigheit der 

Lösungsstrategie wird anhand von drei verschiedenen Fallstudien mit direkten Methoden 

verglichen. Die Ergebnisse zeigen, dass die vorgeschlagene PMP-basierte Quasi-Newton-

Strategie effektiv im Umgang mit komplizierten Nedenbedingungen ist und rechnerisch 

durchaus konkurrenzfähig ist. 

      Darüber hinaus schlägt diese Arbeit die Verwendung der vorgeschlagenen indirekten 

Lösungstechnik im Rahmen der shrinking horizon NMPC unter Unsicherheit vor. 

Unsicherheiten können durch die Einführung von zeitvariablen Backoffs für die 

Pfadbeschränkungen beseitigt werden. Der resultierende NMPC-Algorithmus wird auf einen 

zweiphasigen Semi-Batch-Reaktor für die Hydroformylierung von 1-dodecen in Gegenwart 

von Unsicherheit angewendet und seine Leistung mit einem NMPC-Algoritmus verglichen, 

der eine direkte simultane Optimierungsmethode verwendet. Die Ergebnisse zeigen, dass der 

vorgeschlagene Algorithmus Ergebnisse im machbarem Betrieb für verschiedene 

Unsicherheits realisierungen erzielt und zwar sowohl innerhalb des Batch oder von Batch zu 

Batch. Er ist viel schneller als der direkte simultane NMPC- Algoritmus, vor allem zu Beginn 

des Batch. Darüber hinaus wird eine Modifikation des PMP-basierten NMPC-Schemas 

vorgeschlagen, um die aktiven Nedenbedingungen durchzusetzen und den Echtzeit-

Berechnungsaufwand weiter zu reduzieren.  

      Diese Arbeit beschreibt auch die Kombination eines indirekten Lösungsschemas mit 

einem alternativen Parametrierungsschema. Die Idee ist es, die sensitivitätssuchenden 

Eingänge in einer sparsamen Art zu parametrisieren, um die rechnerische Belastung von 

nichtlinearen dynamischen Optimierungsproblemen unter Nedenbedingungen zu verringern. 

Die vorgeschlagene Methode wird am simulierten Beispielen einer Batch-

Binärdestillationskolonne mit endständigen Reinheitsanforderungen und einem zweiphasigen 

Semi-Batch-Hydroformylierungsreaktor mit komplexer Pfadbeschränkung getestet. Die 

Leistung des vorgeschlagenen indirekten sparsamen Lösungsschemas wird mit der eines 

vollständig parametrisierten PMP-basierten und eines direkten simultanen Lösungsansatzes 

verglichen. Es wird gezeigt, dass die Kombination des indirekten Ansatzes mit sparsamer 

Eingabeparametrierung zu einer signifikanten Verkürzung der Rechenzeit führen kann.  
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      Schließlich wird in dieser Arbeit die Kombination von einfachen Lösungsmodellen mit 

sparsamer Eingangsparametrierung im Rahmen der shrinking horizon NMPC vorgeschlagen, 

um die rechnerische Verzögerung der Rückkopplung zu minimieren. Lösungsmodelle nutzen 

die nominale optimale Lösung, um sparsame Parametrierungen (insbesondere für sensitiv-

suchende Lösungs-bereiche) vorzuschlagen, die zu einer schnellen Optimierung führen. Der 

vorgeschlagene Ansatz wird anhand von zwei Fallstudien in Gegenwart von Unsicherheit 

veranschaulicht. 
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• The application of the proposed fully parameterized indirect algorithm to the shrinking 
horizon NMPC (sh-NMPC) discussed in Chapter 5 has been published in (Aydin et 
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parameterization, which is detailed in Chapter 6, has been submitted as (Aydin et al., 
2018a). 
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2018c). 
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NOTATION 

 �� Final time h, min, s � Objective function mol, kmol, mol/L 
x State equations mol, kmol, mol/L � Time  h, s, min ��  Dynamics of the system equations mol/h, kmol/h, mol/s, mol/min �� Initial conditions of the states mol, kmol, mol/L � Inputs of the optimization problem K, mol/h, kmol/h, mol/s, mol/min 

S Inequality Path constraints 
J/h, kmol/h, mol/s, mol/h, kmol/min, 
L 

T Inequality Terminal constraints kmol/kmol 
f Objective function of an NLP - 
g Inequality constraints - 
h Equality constraints - 
L Lagrangian - 

F 
Right hand side of the dynamics  
of the state equations 

J/h, kmol/h, mol/s, mol/min, kmol/h, 
L/min �	, �� 

Normalized right hand sides of the  
dynamics of the state equations 

J, kmol, mol, mol, mol, kmol, L 

� Lagrange multipliers for equality  
constraints (co-states) 

- 

G 
Right hand side of the dynamics of  
the co-state equations 

- 
 Lagrange multipliers for inequality  
constraints 

- 

� Lagrange multipliers for terminal  
constraints 

- 

z Slack variables - ∇� Gradient - ∇�� Hessian - ��, �� Change of variables in an iteration - 

e Identity matrix - 
s Switching function - 
U Augmented input matix K, mol/h, kmol/h, mol/s, mol/min 
n Relative degree of a path constraint - 
H Hamiltonian - 
N Discretization level for the inputs - 
h Number of iterations - 
M Augmented constraint matrix J/h, kmol/h, mol/s, mol/h, kmol/h, L �� Initial step size - 
K Penalty parameter - 
ε Optimality threshold value - 
B Approximated Hessian - � BFGS parameter - 
V Reactor volume L 
qrx Heat release from the reactor J/h 

T (t) Temperature K 
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1 INTRODUCTION  

1.1 Motivation and Scope  
 

Batch and semi-batch processes have wide application areas in the specialty industries for the 

production of low-volume, high-added-value products. Typical examples are the 

pharmaceutical, food, fine chemical and microelectronic industries. Batch processing has 

often been used to scale-up processes from the laboratory to large-scale industrial facilities. 

However, in recent years, the trends in the process industry toward high-tech, low-volume and 

high-added-value products boosted the interest in semi-batch processing. In addition, these 

processes often represent flexible production environments. Accordingly, the optimal 

operation of semi-batch processes has moved from scheduling (better flexibility) to 

optimization (better profitability) (Bonvin, 1998; Srinivasan et al., 2003b; Bonvin, 2006; 

Marchetti et al., 2006; Nagy et al., 2007). 

      The optimal operation of batch and semi-batch processes requires overcoming many 

challenges. Unlike continuous operation, batch and semi-batch processes exhibit inherently 

transient behaviour as well as strong nonlinearity since the process does not operate around a 

steady operating point. In other words, batch and semi-batch processes have start-up 

behaviour. Moreover, the presence of both path and terminal constraints and tight product 

quality limits result in challenging and non-convex optimization problems. In addition, the 

lack of accurate models due to the limited amount of experimental data results in considerable 

uncertainty and hence hinders the usage of offline-computed optimal profiles. Furthermore, 

batch and semi-batch processes usually have constraints on end-product quality, and the 

Science cannot solve the ultimate mystery of 
nature. And that is because, in the last 
analysis, we ourselves are a part of the 
mystery that we are trying to solve. 

              Max Planck (1858 – 1947) 
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ability to influence the process (or flexibility) often decreases with time. If there is a deviation 

in product quality, the charge has to be almost always discarded (Terwiesch et al., 1994; 

Bonvin, 1998; Srinivasan et al., 2003b; Jung et al., 2015). Hence, the open-loop 

implementation of off-line computed optimal control profiles may result in sub-optimal, or 

worse, infeasible operation and the loss of the batch. Moreover, the operating conditions 

might change from batch to batch and cause unacceptable variations of product quality. 

Consequently, the application of online, measurement-based, optimizing feedback schemes is 

of great importance for the optimal operation of batch and semi-batch processes (Eaton and 

Rawlings, 1990; Ruppen et al., 1995; Ruppen et al., 1998; Bonvin et al., 2001; Bonvin, 2006; 

Kadam et al., 2007; Welz et al., 2008; Mesbah et al., 2011; Bonvin and François, 2017).  

      In summary, the important challenges related to the optimal control (dynamic 

optimization) of batch and semi-batch processes can be stated as follows: 

 

• Transient start-up behaviour  

• Strong nonlinearity 

• No-steady state, classical PID methods are not applicable 

• Tight product-quality limits 

• Reduction of flexibility with time 

• Irreversible behaviour 

• Considerable plant-model mismatch 

 

      The nonlinear dynamic optimization of batch and semi-batch processes is becoming more 

and more popular due to industrial competitiveness and strict environmental regulations. If a 

reliable dynamic process model is available, dynamic optimization (or optimal control) is 

considered as a promising method for reducing production costs, improving product quality 

and meeting safety as well as environmental regulations. Moreover, nonlinear dynamic 

optimization is at the core of nonlinear model predictive control (NMPC) and plays an 

important role in terms of feedback optimizing control. The available methods in the literature 

to solve dynamic optimization problems can be classified as direct and indirect methods. 

      Direct methods are usually the selected procedure to solve the constrained nonlinear 

dynamic optimization problems. Basically, they convert the dynamic optimization problems 

into nonlinear programming problems (NLPs). However, for large time horizons (which is the 
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case for the batch and semi-batch processes), the standard NLP algorithms might turn out to 

be computationally demanding due to the required matrix factorizations related with the 

solution steps (Cannon et al., 2008; Biegler, 2010). This issue will be discussed in greater 

detail in the next sections. 

      Model predictive controller (MPC) has been used extensively in industry (García et al., 

1989; Qin and Badgwell, 2003). On the basis of a (most often linear) process model, these 

controllers predict the future behaviour of the states and outputs. At each iteration, the 

algorithm updates the initial conditions using measurements and solves a dynamic 

optimization problem for some cost function such as the minimization of a tracking stage cost 

or the maximization of a final cost. Only the first part of the computed optimal inputs is 

implemented, then the horizon is shifted by one sampling time and the procedure is repeated 

iteratively. Since MPC is capable of addressing multivariable constrained nonlinear systems 

and can use different types of models and performance criteria, it possesses a suitable and 

flexible structure for real-time optimizing control (Diehl et al., 2002; Adetola and Guay, 

2010; De Souza et al., 2010; Huang et al., 2010; Lucia et al., 2014). A detailed discussion and 

survey on MPC can be found in (Morari and Lee, 1999). 

      Due to the strong nonlinear behaviour of batch and semi-batch processes, linear MPC is 

often not the method of choice. Moreover, batch and semi-batch processes usually require 

strictly constrained operation since the ability to influence the performance and feasibility of 

the process decreases with time (Bonvin, 1998). This motivates the use of shrinking-horizon 

nonlinear model predictive controllers (NMPC), for which the optimization is performed with 

respect to the full time horizon and includes both path and terminal constraints (Nagy and 

Braatz, 2003; Nagy et al., 2007).  

      Several studies on the applicability of NMPC to batch and semi-batch processes have been 

reported in the literature. (Lakshmanan and Arkun, 1999) used linear parameter-varying 

models for the estimation and control of nonlinear batch processes. (Seki et al., 2001) 

proposed an NMPC structure for the industrial application on polymerization reactors. (Nagy 

and Braatz, 2003) studied a robust NMPC scheme for batch crystallization, whereby 

parametric uncertainties are taken into account explicitly. (Valappil and Georgakis, 2002) 

suggested a min-max NMPC scheme with successive linearization for the control of the end-

point properties in batch reactors. (Nagy et al., 2007) studied the real-time implementation of 

sh-NMPC to industrial batch reactors. (Mesbah et al., 2011) compared different optimization 

algorithms for sh-NMPC of a semi-batch crystallizer. (Lucia et al., 2013) suggested a multi-
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stage NMPC scheme to deal with uncertainties, and a scenario-tree approach was used to 

optimize a semi-batch polymerization reactor. Recently, (Jang et al., 2016) proposed a multi-

stage NMPC scheme for semi-batch reactors using backoffs on path constraints. (Binette and 

Srinivasan, 2016) compared the performance of different tracking objectives for the NMPC of 

batch processes without parameter adaptation. (Zubov et al., 2017) discussed the online 

implementation of NMPC to a semi-batch pilot-plant copolymerization reactor. 

      Shrinking-horizon nonlinear model predictive control (sh-NMPC) has been proposed as a 

successful platform for the optimal operation of semi-batch processes, with the prediction 

horizon always being until the final batch time (Bosley and Edgar, 1992; Bonvin, 1998, 2006; 

Aydin et al., 2017a). The idea of sh-NMPC is illustrated in Fig. 1.1. The nonlinear dynamic 

optimization problem is solved always until the final time, but only the first parts of the inputs 

are implemented. Then, the states are measured or estimated, the horizon is shrunk by the 

sampling time and the same procedure is repeated until the end of the batch. 

      Unlike its linear counterpart MPC, NMPC takes into account a nonlinear model (usually 

first-principles models) to perform dynamic optimization, which results in challenging, non-

convex and constrained nonlinear optimization problems (NLP). Moreover, as mentioned 

before, to solve these problems using direct methods, sh-NMPC requires expensive matrix 

factorizations due to large prediction and control horizons (Cannon, 2004; Cannon et al., 

2008).   

      Advanced fast solution algorithms are essential in terms of the application of NMPC or 

moving horizon estimation (MHE) in real time. Fast real time update usually increases the 

performance of the closed-loop optimizing control either by tackling the effect of feedback 

delay or by enabling faster sampling to increase optimization frequency (Zavala et al., 2008a, 

2008b; Huang et al., 2009; Zavala and Biegler, 2009; Wolf et al., 2011; Wolf and Marquardt, 

2016; Cao et al., 2017). Note that it might sometimes be possible to find a compromise 

between computational time and performance between linear MPC and NMPC for steady-

state processes (Gros et al., 2016). Yet, for batch and semi-batch processes, linear MPC is 

usually not preferred. Unfortunately, there is always a certain computational time associated 

with the solution of the corresponding non-convex optimal control problems in real-time, 

which in turn may lead to non-negligible feedback delay in closed-loop operation. 
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Figure 1.1. The illustration of sh-NMPC. 

 

This delay may result in suboptimal, or worse, infeasible operation (Findeisen and Allgöwer, 

2004; Gros et al., 2016). Hence, it is of great importance, and still an open research field both 

in academia and industry, to reduce the CPU time needed for the efficient real-time 

implementation of NMPCs (Wolf and Marquardt, 2016). For a deep review of the broad class 

of fast computational methods for NMPC (suboptimal, explicit, hierarchical, sensitivity-

based), the reader is referred to (Wolf and Marquardt, 2016).  

      Indirect methods have been used to solve MPC problems in the literature. (Cannon et al., 

2008) designed a MPC strategy for input-constrained linear systems, whereby the inputs are 

represented in terms of co-states and the problem is solved using active-set methods. The 

matrix factorizations performed by general direct solvers can be efficiently replaced by the 

cooperation of states, co-states and Lagrange multipliers for the path constraints using PMP. 

This way, the complexity per iteration increases only linearly with the length of the time 

horizon, which can be a computational advantage for batch and semi-batch processes that 

typically have large prediction and control horizons due to the shrinking-horizon approach. 

However, until very recently, there did not exist a fast convergent method to solve path-

constrained optimal control problems using PMP (Hartl et al., 1995; Chachuat, 2007). In this 

thesis, firstly, an indirect, convergent and gradient-based dynamic optimization algorithm for 

past future

prediction horizon

final time 
objective
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the non-control affine and constrained batch and semi-batch processes is proposed. The 

algorithm uses indirect adjoining to deal with path constraints, which allows the explicit and 

fast computation of the inputs to meet the path constraints at each iteration step.  

      Here, in order to provide more insight about the relation between the discretization level 

and the computational time, a simple problem which includes only input bounds is solved 

using the proposed novel indirect algorithm. The corresponding computational times and the 

iteration profiles are given in Fig. 1.2 and Fig. 1.3, respectively. For more detail about the 

problem, the reader is referred to Appendix 1. Note that a fixed step size is used in this 

problem. Although the speed of the algorithm can be increased via adaptive line search 

algorithms, it is clear that the computational time increases almost linearly when the grid gets 

finer. In addition, all solutions exhibit almost the same optimal cost.  

      A direct algorithm might be faster than the PMP-based method for input discretizations 

less than 50 elements. However, if we need larger time horizons or finer input discretization 

levels to get more accurate solution (usually the case for path constrained batch and semi-

batch processes), PMP can turn out to be much more effective. Direct methods exhibit cubical 

increase for constrained problems in computational time as the time horizon or discretization 

level becomes larger. The computational performances of the direct and the proposed indirect 

methods will be compared in greater detail for more complex problems in the next sections. 

 

Figure 1.2. The corresponding CPU times as the input grid gets finer. 
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Figure 1.3. The convergence profiles for the toy example. 

      The computational advantage of the proposed PMP formulation in the context of 

shrinking horizon nonlinear model predictive control represents another main motivation of 

this study. It will be proposed to apply the novel and convergent PMP-based solution 

algorithm to the shrinking-horizon NMPC of nonlinear batch and semi-batch processes under 

uncertainty and in the presence of nonlinear pure-state and mixed-state path constraints. The 

effect of uncertainties is handled by the introduction of time-varying backoffs (Visser et al., 

2000; Srinivasan et al., 2003a; Shi et al., 2016). Since the prediction horizon is always until 

the final time, PMP can be expected to perform better than the classical direct methods, 

especially at the beginning of the batch. 

      The optimal inputs of batch and semi-batch processes can be characterized using different 

arcs. An optimal arc can be either on an input bound (�1�2, �1�� ), on a path constraint 

(�3�45), or inside the feasible region as a sensitivity-seeking arc (��62�). It is usually difficult 

to accurately compute the fine shapes of sensitivity-seeking arcs due to their lack of 

sensitivity. As a result, simplified solution models can be introduced, in which the inputs and 

most importantly the sensitivity-seeking arcs (��62�) are parameterized parsimoniously using 

switching times and low-order polynomials. This way, the number of decision variables and 

the complexity of the optimization problem can be reduced significantly. Thus, the required 

CPU time is expected to decrease significantly, with negligible reduction in the optimal cost 

(Welz et al., 2005; Schlegel et al., 2005; Welz et al., 2006; Aydin et al., 2017b). Another main 

contribution of this work is to detail the combination of these parsimonious solution models 

with indirect algorithms in the context of dynamic optimization and shrinking horizon NMPC. 
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In the sh-NMPC case, the optimization is performed at each sampling instant for the full time 

horizon but only the first part of the optimal inputs is applied to the process. Parsimonious sh-

NMPC approximates the fine shapes of the optimal inputs at each sampling instant. 

Nevertheless, the optimal closed-loop behaviour could be captured accurately. In addition, 

since the full time horizon is taken into account, the loss in ability to influence the batch 

outcome (the loss of flexibility), can be prevented while still having a significant reduction in 

CPU time. Such parsimonious input parameterization scheme will be documented to design a 

fast computation method for the optimal operation of batch and semi-batch processes using 

sh-NMPC and to reduce the deteriorating effect of the computational delay in closed-loop 

operation. 

 

1.2 Contribution of the Thesis 
 

The contributions of this thesis can be summarized as follows: 

• The algorithmic differences between the direct and indirect (PMP-based) dynamic 

optimization methods are compared in detail. 

• A convergent and effective PMP-based algorithm is proposed for the dynamic 

optimization of constrained batch and semi-batch processes. The algorithmic steps and 

details are discussed in detail. 

• The proposed indirect dynamic optimization method is extended to be used for the 

shrinking horizon NMPC for batch and semi-batch processes under parametric 

uncertainty.  

• Constraint tracking is combined with sh-NMPC structure in order to further reduce the 

corresponding real-time computational effort. 

• The proposed indirect dynamic optimization method is suggested to be united with an 

alternative and parsimonious input parameterization scheme in order to further 

decrease the computational complexity of the dynamic optimization problems.  

• The performance of the suggested parsimonious indirect method is tested for the sh-

NMPC of batch and semi-batch processes in the presence of parametric uncertainty. 
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1.3 Structure of the Thesis 
 

• Chapter 2 compares the direct and indirect methods as well as the available solution 

algorithms and provides background information about the proposed novel indirect 

algorithms in this thesis.  

• Chapter 3 suggests a convergent and effective indirect algorithm that is suited for the 

dynamic optimization of constrained batch and semi-batch processes. Detailed 

information and insight about the proposed algorithm is given and three different case 

studies are investigated to compare the computational performance of the proposed 

indirect method as opposed to a classical direct simultaneous method. 

• Chapter 4 discusses the combination of the proposed indirect algorithm with 

parsimonious input parameterization in order to reduce the computational complexity 

of the dynamic optimization problems. Detailed information about the proposed 

parsimonious indirect algorithm is documented. The two case studies given in Chapter 

3 are re-solved using the proposed parsimonious method. 

• Chapter 5 extends the PMP-based method given in Chapter 3 for the sh-NMPC for 

batch and semi-batch processes under uncertainty. One of the examples studied in 

Chapter 3 (Hydroformylation of 1-dodecene) is selected and the performance of the 

PMP-based NMPC is investigated through closed-loop simulations in terms of both 

computational speed and robustness to plant-model mismatch. 

• Chapter 6 incorporates the application of the proposed parsimonious indirect 

algorithm to the sh-NMPC for batch and semi-batch processes in order to decrease the 

computational complexity significantly. Two case studies are investigated under 

parametric uncertainty and the performance of the parsimonious and fully-

parameterized methods are compared through closed-loop simulations in terms of both 

computational speed and robustness to plant-model mismatch. 

• Chapter 7 summarizes and concludes this study and suggests further research areas as 

well as different types of applications. 
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2 DYNAMIC OPTIMIZATION : 
METHODS AND ALGORITHMS  

This chapter provides insight about the available dynamic optimization algorithms and 

methods in the literature.  

      The dynamic optimization problem for batch and semi-batch processes is often stated as 

follows (Srinivasan et al., 2003b):  

																																												 8,(49,:(4)						 = ∶= �(�(��)) 
s.t. 						�� = �(�, �, !),				�(0) = �� 

                                                     A(�, �, !) ≤ 0,							C(�(��)) ≤ 0 

        

(2.1) 

 

where J is a scalar performance index which can always be formulated with respect to the 

states at the final time ��, �  is the objective function, x is the nx-dimensional state vector with 

the corresponding initial conditions ��, u is the nu-dimensional input vector,	! is the vector of 

model parameters, S is the nS-dimensional vector of inequality path constraints that include 

input bounds, and T is the nT-dimensional vector of inequality terminal constraints. The 

nonlinear differential equations describing the system dynamics are included in the 

formulation as equality constraints. The solution methods that are available in the literature 

can be divided into two major categories, namely, the direct and indirect (or PMP-based) 

approaches (Srinivasan et al., 2003b).  

I believe in intuition and inspiration. 
Imagination is more important than 
knowledge. Knowledge is limited, whereas 
imagination embraces the entire world, 
stimulating progress, giving birth to 
evolution. 

           Albert Einstein (1879 – 1955) 
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2.1 Direct Methods 
 

In direct optimization approaches, the solution methodology is applied directly to the original 

optimization problem given by Eq. 2.1, by using either sequential or simultaneous numerical 

techniques.  

      In the class of direct sequential methods (named also as direct single shooting), the input 

vector is parameterized using polynomial functions, the state equations are integrated from the 

given initial conditions up to the final time, where the states are needed for evaluating the 

objective function. This way, the dynamic optimization problem is converted into a nonlinear 

programming problem (NLP). Then, the optimal input parameters are computed by a NLP 

solver (Vassiliadis et al., 1994;Schlegel and Marquardt, 2006b). The use of time integration is 

the reason for calling the sequential techniques as “feasible-path methods”. However, 

depending on the type of the problem and the NLP solver available, a sequential method can 

be slow and thus computationally expensive, in particular while dealing with state path 

constraints (Srinivasan et al., 2003b). Furthermore, in direct sequential methods, the input 

profiles are often represented using a coarse discretization grid to ensure computational 

efficiency (Schlegel and Marquardt, 2004). Nevertheless, please note that a fine input 

discretization might be needed to accurately detect switching times and satisfy path 

constraints.  

      Another direct solution algorithm is the direct multiple shooting approach, which 

represents a mid-way between sequential and simultaneous algorithms. In this approach, the 

time interval is divided into stages, and the initial conditions of the stages are taken as 

decision variables for the optimization problem. This procedure is an ‘infeasible-path’ method 

but the integration is as accurate as in sequential methods (Srinivasan et al., 2003b).   Direct 

multiple shooting has been used extensively in NMPC problems (Keil, 1999; Bock et al., 

2000; Diehl et al., 2002; Diehl et al., 2006; Schäfer et al., 2007; Findeisen et al., 2007). In 

addition, (Diehl et al, 2005) suggested an efficient real-time iteration scheme which uses the 

idea of direct multiple shooting. Nevertheless, direct multiple shooting is not in the scope of 

this thesis. 

      In contrast, in the class of direct simultaneous methods (DSM), the entire optimization 

problem (system equations, input profiles, objective function and constraints) is discretized 

with respect to time, using for example collocation techniques, thus resulting in a large system 

of algebraic equations. Then, an NLP solver simultaneously interpret the governing dynamic 
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system equations and optimizes the cost (Cervantes and Biegler, 1998; Biegler et al., 2002) 

(Biegler, 2007). Since the dynamic system equations are not integrated, but approximated at 

discrete time instants, this approach is referred as “infeasible-path method”. Although 

simultaneous techniques allow the efficient solution of large-scale optimization problems, the 

trade-off between approximation and optimization must be considered carefully (Srinivasan et 

al., 2003b). In addition, the method might require good initial guess so as to guarantee robust 

convergence due to the discretization of the states and constraints. The NLP solver ‘Ipopt’ is 

one of the state of the art for both sequential and simultaneous methods nowadays, and it 

implements an interior point NLP algorithm (Wächter and Biegler, 2009).   

      Direct simultaneous methods were reported to be effective for the optimization and 

NMPC of large-scale problems (Cervantes and Biegler, 1998; Biegler et al., 2002; Wächter 

and Biegler, 2006; Kameswaran and Biegler, 2006; Biegler, 2007; Huang et al., 2009; Jang et 

al., 2016). Moreover, (Zavala and Biegler, 2009) introduced an ‘advanced-step’ DSM to deal 

with the computational delay associated with the time required to compute the solution in 

real-time implementations. Later, (Huang et al., 2010) extended this method for the 

combination of NMPC and moving horizon estimation. 

2.1.1 NLP Solution Algorithms 
 

Upon applying the direct solution algorithms, the dynamic optimization problem given in Eq. 

2.1 is reformulated into the following general NLP (static) as follows: 

																																																														 8,(� 					 D(�) 												 
s.t. 						E(�) ≤ 0  

           ℎ(�) = 0 

        

 (2.2) 

where Dis the objective function, E the inequality constraints and ℎ the equality constraints. 

The Lagrangian � of the given NLP is defined by: 

                                 �(�, �, 
)	=D(�) + �(�, �, 
)	Hℎ(�) + 
	HE(�)                                   (2.3) 

where �  and 
  are the Lagrange multipliers of the equality and inequality constraints, 

respectively. Assuming that �∗ is a local minimizer, the first order necessary conditions of 

optimality (also referred as the Karush-Kuhn-Tucker, KKT, conditions) can be written as 

follows: 
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JK(�∗,L∗,M∗)J� = 0						  stationary conditions 

E(�) ≤ 0		                   primal feasibility conditions ℎ(�) = 0                     primal feasibility conditions 
∗ ≥ 0                         dual feasibility conditions 
∗H	E(�) = 0              complementarity slackness conditions 

 

        

  

   (2.4) 

and (�∗, �∗, 
∗) is referred as a KKT point assuming that conditions given in Eq. 2.4 hold 

(Sager, 2005; Fletcher, 2013). The two common solution algorithms for such NLP problems, 

sequential quadratic programming (SQP, active-set) and interior point (barrier-type), will be 

discussed in the next section. 

2.1.1.1 Sequential Quadratic Programming (SQP)  

 

The general idea of the SQP method is to solve approximate quadratic problems of the 

original NLP successively in order to converge to the optimal solution. This method can be 

categorized as an active-set type (Goldsmith, 1999; Boggs and Tolle, 2000; Sager, 2005). The 

NLP problem given in Eq. 2.2 can be reconstructed by adding the slack variables (z) for the 

inequality constraints as follows: 

 																																																 8,(�,� 												 D(�) 												 						 
  s.t. 													E(�) + P = 0, P ≥ 0  ℎ(�) = 0 

        

 (2.5a) 

 

      Upon defining the extended Lagrangian (ℒ), it can be shown that solving Eq. 2.5a is 

equivalent to solve the following system of equations: 

 8,(�,� 			 ℒ(�, P, �, �) = 	D(�) + �Hℎ(�) + �H(E(�) + P) 
s.t. 														E(�) + P = 0, P ≥ 0  ℎ(�) = 0 

        

 (2.5b) 

 

where � is also the Lagrange multiplier vector for the reformulated equality constraints. The 

standard approximation (linearization) method for the SQP is the Taylor series expansion to 

the original NLP. Given an arbitrary value of the variables (�� ,P� ) and the Lagrange 
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multiplier vectors	(��, ��), the approximated quadratic problem for a change (��, ��) can be 

written as follows: 

																																			 8,(RS,RT													 12 ��H ∇��ℒ(��, ��, ��)�� + ∇D(��)��												 						 
s.t. 														∇E(��)H�� + �� = −(E(��) + P�)  

                                                  ∇ℎ(��)H�� = −ℎ(��) 																																																									�� ≥ −P� 

        

  

 (2.6) 

 

Please note that in most cases the Hessian matrix ∇��ℒ(��, ��, ��)	is approximated using 

finite differences or BFGS-like algorithms to approximate the original Hessian as positive 

definite (Boggs and Tolle, 2000; Biegler, 2010). The problem given in Eq. 2.6 should be 

solved by applying Newton’s method, which requires solving the following linear system:  

 

VWW
X∇��ℒ(��, ��, ��) 0 ∇ℎ(��) ∇E(��)∇ℎ(��)H 0 0 0		∇E(��)H Y 0 00 �� 0 Z� [\\

] ^�����L�_
` = ^ −∇D(��)−ℎ(��)−E(��) − P�−Z���

` 
 

        

 (2.7) 

where �� and Z� are diagonal matrices including �� and P�. Then, the new iteration can be 

obtained as follows: 

 ��ab = �� + ��, P�ab = P� + �� , ��ab = �� + �L, ��ab = �� + �_ 

          

(2.8) 

       

      The steps given in Eq. 2.7 and Eq. 2.8 are followed recursively until the optimal solution 

is obtained. The reader is referred to (Biegler, 2010) for specially tailored SQP algorithms 

applicable to large-scale problems. Globalization of the algorithm can be carried out using 

line search and filter methods along with the differences computed from Eq. 2.7. 

2.1.1.2 Interior-Point Method 

 

      Interior-point methods represent an alternative to active-set strategies by relaxing the 

complementarity conditions and solving the relaxed problems. The basic idea is to include 
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log-based penalty terms to the objective function in order to force the convergence inside the 

feasible region (Wright, 1997). First of all, to illustrate the basic idea of the algorithm, the 

problem given by Eq. 2.2 is re-written by modifying the inequality constraints as follows 

(Biegler, 2010): 

 																																																																 8,(� 					 D(�) 									 
               s.t.						ℎ(�) = 0, � ≥ 0  

        

 (2.9) 

Then, the penalty term is included into the problem such as: 

																																															 8,(� 					 D26c(�) = 	D(�) − 
dln	(��)2S
�gb 											 

                                           s.t. 					ℎ(�) ≤ 0, � > 0  

      

(2.10) 

where (� is the number of inequality constraints in the original problem and 
 is the penalty 

term. Note that the log-barrier term becomes unbounded at � = 0. Thus, the path generated at 

each optimization iteration must lie in the strictly positive region for the reformulated 

inequality constraints. As the barrier-parameter value decreases, the solution approaches to 

the solution to the problem given by Eq. 2.9. This solution satisfies the first-order conditions 

given as follows: 																																																						 ∇D(�) +∇ℎ(�)� − 	
ijb+ = 0 

            ℎ(�) = 0  
(2.11) 

where i = �,/E{�}, + = [1,1, … . ,1]H. Eq. 2.11 is known as the primal optimality conditions. 

However, it is usually difficult to solve the direct barrier problem due to the high nonlinearity. 

This motivates the introduction and solution of a primal-dual system given as follows: 

 																																																													 ∇D(�) +∇ℎ(�)� − 	� = 0 

              i� = 	
+ 

              ℎ(�) = 0  

 (2.12) 

where �  are the strictly positive dual variables for the barrier problem replaced with the 

barrier term. The substitutions and linearization enable the straightforward solution of the 

problem (Biegler, 2010). Given an iterate (��, ��, ��), the search directions can be computed 

as follows: 
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q∇��ℒ(��, ��, ��) ∇ℎ(��) −Y∇ℎ(��)H 0 0rH� 0 i�
s t���L�:u = − q∇D(��) + ∇ℎ(��)�� − ��ℎ(��)i��� − 
+ s         

 (2.13) 

where i = �,/E{�}  and r = �,/E{�} . Afterwards, iterations are recursively performed, 

similar to Eq. 2.8, until the optimal solution is found. Line search and filter algorithms are 

very important for the efficient globalization and implementation of the aforementioned 

method.  For more detailed information, the reader is referred to (Biegler et al., 2002; Wächter 

and Biegler, 2006; Biegler, 2010). 

2.1.2 Computational Aspects 
 

The iteration steps related to the direct methods require the solution to the equation systems 

given in Eq. 2.7 and in Eq. 2.13, which might turn out to be relatively expensive to factorize 

for certain types of problems and constraints and for large discretization levels, although the 

system is linear. This holds for using both active-set and barrier type methods. The compexity 

of the iteration usually increases cubically as the time horizon or the input discretization level 

increases due to the expansion of the matrix systems (Cannon, 2004; Cannon et al., 2008). 

Several sensitivity-based methods have been proposed in the literature to reduce the 

computational requirements of NLPs in the context of NMPC. These methods usually rely on 

previously computed solutions and NLP sensitivities. (Diehl et al., 2002) suggested a real-

time iteration scheme, in which, at each sampling time, instead of a full NLP, only a quadratic 

problem around the solution of a previous QP is solved. Another sensitivity-based method of 

choice is the advanced-step NMPC, which was proposed by (Zavala and Biegler, 2009). In 

this method, the NLP is solved in advance with respect to a predicted initial state. Then, as 

soon as the new state measurements (or estimates) are obtained, the NLP solution is updated 

using a fast sensitivity-update step and the IPOPT solver (Wächter and Biegler, 2006; Jäschke 

et al., 2014; Suwartadi et al., 2017). Successful implementations have been documented in the 

literature, in particular for large-scale processes (Zavala et al., 2008b; Huang et al., 2009). 

However, the performance of these sensitivity-based methods is still an open question for 

batch and semi-batch processes that are characterized by high nonlinear effects and large 

perturbations. For a detailed review on the recent advances in the sensitivity-based NMPC, 

the reader is referred to (Biegler et al., 2015).  
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      In contrast, indirect-based methods can be adapted to avoid these expensive factorizations 

by interplaying the inputs u and Lagrange multipliers � and 
, instead of recursively updating 

the Lagrange multipliers through Newton-type solution steps. Consequently, the complexity 

of the optimization can be tailored to increase almost linearly with increasing horizon lengths 

(Cannon et al., 2008; Aydin et al., 2017a). Indirect methods will be detailed in the next 

section. 

2.2 Indirect Methods 
 

In indirect optimization methods, the optimization problem is reformulated as the 

minimization of a Hamiltonian function (Bryson, 1975). The reformulated problem is then 

solved to satisfy the necessary conditions of optimality (NCO) using Pontryagin’s Minimum 

Principle (PMP). This reformulation results in multi-point boundary value problems (MT-

BVP) for constrained problems. For simple problems, the optimal solution can usually be 

computed analytically. More complex and, in particular, constrained problems require a 

numerical solution which is often computed using the shooting method (Miele, 1978). The 

necessary conditions of optimality can be stated as follows: 

Assuming Problem 2.1 has a feasible optimal solution �∗(. ) with state profiles �∗(. ), it is 

stated that there exist Lagrange multipliers �∗(. ), 
∗(. ) and v∗ such that following equations 

hold for �	w (��, ��): 

 													�∗x�∗(�), �∗(�), �∗(�), 
∗(�)y = �∗H�x�∗(�), �∗(�)y + 
∗H(�)	A(�∗(�), �∗(�)), 													 �� ∗(�) = �L(�∗(�), �∗(�), �∗(�), 
∗(�)),   states 										 			��∗H(�) = −��(�∗(�), �∗(�), �∗(�), 
∗(�)),   co-states 										 			�∗(��) = ��,      initial conditions 													 �∗H(��) = JzJ�{49 + v∗H JHJ�{49,     terminal sensitivities 

												 	0 = �:(�∗(�), �∗(�), �∗(�), 
∗(�)),    path sensitivities (stationarity) 													 0 ≥ A(�∗(�), �∗(�)),      path feasibility                                (2.14) 										 			0 = 
∗H(�)	A(�∗(�), �∗(�)),     path feasibility (compl. slackness) 													 0 ≤ 
∗(�),       dual path feasibility 										 			0 ≥ C(�∗x��y),      terminal feasibility 

         			0 = v∗HC(�∗(��)),     terminal feasibility (compl. slackness) 
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													0 ≤ v∗,		     dual terminal feasibility 													�x��y = 0,			     transversality condition 

 

where H is the Hamiltonian function, λ  is the nx-dimensional vector of Lagrange multipliers 

(also called co-states or adjoints) for the system equations, !  is the vector of model 

parameters, µ  is the nS-dimensional vector of Lagrange multipliers for the path constraints, 

and v  is the nT-dimensional vector of Lagrange multipliers for the terminal constraints. For 

the detailed derivation of NCO, the reader is referred to (Biegler, 2010). 

      The PMP approach has been applied to various engineering optimization problems since 

the 70’s. (Jaspan and Coull, 1971) suggested a boundary condition iteration (BCI) solution 

scheme for unconstrained chemical reactor optimization problems. For input-affine systems, 

(Visser et al., 2000) proposed an online optimizing structure that uses a switching function 

along with the PMP-based optimality conditions; then, a cascade optimization scheme that 

tracks the necessary conditions of optimality was designed and tested on a fed-batch penicillin 

fermentation process. (Cannon et al., 2008) designed a model predictive control strategy for 

input-constrained linear systems using PMP. In this approach, the inputs can be represented in 

terms of co-states, and the problem can then be solved using active-set methods. This work 

represents a nice example for the interplay between the states and co-states in order to reduce 

the complexity of the optimization problem. (Kim and Rousseau, 2012) used PMP for the 

optimal control of hybrid electric vehicles. (Palanki and Vemuri, 2005) proposed an end-point 

dynamic optimization scheme using PMP for semi-batch processes with a single reaction. 

(Roubos et al., 1997) studied the use of PMP with an unconstrained gradient-based solution 

technique for the optimization of fed-batch biological problems. In order to account for path 

constraints, they penalized the value of the objective function in case of a constraint violation. 

(Ali and Wardi, 2015) implemented a shooting method, where the inputs are expressed 

analytically in terms of the states and co-states. (Hannemann-Tamás and Marquardt, 2012) 

used PMP to verify the inputs computed by a direct sequential method. For a given optimal 

control problem, they computed “the true solution” using a PMP-based multiple shooting 

algorithm for the purpose of verifying the results of the direct sequential optimization 

algorithm. Recently, (Zhang et al., 2017) applied PMP in the context of MPC for a plug-in 

vehicle. In this method, the values of the co-states are determined by trial and error, which 

may turn out to be non-convergent for some problems. 
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      Tracking the necessary conditions of optimality (NCO tracking) has also been proposed as 

a real-time optimization algorithm (Srinivasan & Bonvin, 2007). The optimal inputs are first 

computed via off-line optimization of the nominal model. The main assumption is that the 

solution structure (sequence and types of arcs) does not change with uncertainty. Hence, 

instead of performing online explicit optimization, the necessary conditions of optimality, 

given by PMP (computed off-line), are tracked with the help of feedback controllers. In other 

words, the optimization problem is converted into a model-free control problem (Srinivasan 

and Bonvin, 2007; Srinivasan et al., 2008; Chachuat et al., 2009; Ebrahim et al., 2016).  

      PMP has been applied to various type of engineering optimization problems (Palanki; 

Jaspan and Coull, 1971; Visser et al., 2000; Thomas et al., 2004; Palanki and Vemuri, 2005; 

Kim and Rousseau, 2012; Ali and Wardi, 2015; Zhang et al., 2017; Aydin et al., 2018b). It 

can be used to generate input and state trajectories as functions of initial and terminal states 

(Bryson, 1975). It is worth noting again that for simple problems, the optimal solution to the 

indirect problem can usually be computed analytically or by solving a standard BVP problem 

numerically. On the other hand, indirect formulation results in multi-point boundary value 

problems for constrained systems, which may be difficult to solve. 

      Solving dynamic optimization problems that include nonlinear path constraints is a 

challenging task for PMP-based (indirect) approaches. The convergence of existing shooting-

type and gradient methods depends on many conditions (Chachuat, 2007; Biegler, 2010). In 

fact, the main problem of the shooting methods is that the integration of the co-state equations 

forward in time may introduce instabilities that result in convergence problems, especially in 

the absence of a good initial guess. However, for gradient-based type algorithms, initial guess 

is not required for convergence, but might be useful to speed up convergence. Hence, instead 

of integrating the states and co-states simultaneously forward in time, the inputs can be 

parameterized (or discretized) and then, sequentially, the state equations are integrated 

forward in time and the co-states backward in time. Eventually, optimization can be 

performed using a gradient-based algorithm, for which a good initial guess is not required for 

convergence (Bryson, 1975; Hartl et al., 1995; Srinivasan et al., 2003b; Chachuat, 2007). 

Graichen and Käpernick (2012) proposed a similar so-called ‘gradient projection’ approach 

for input-constrained problems, which possess similar computational advantages as opposed 

to classical direct optimization methods.  

      The computational advantage of indirect methods is the main motivation for this work. A 

convergent quasi-Newton and PMP-based method for the optimization of path and terminal 
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constrained batch and semi-batch processes will be introduced in 3rd Chapter.  In particular, 

indirect adjoining will be used to reformulate the Hamiltonian function with mixed state-input 

constraints. This allows computing certain inputs explicitly so as to satisfy the infeasible path 

constraints. This way, the Lagrange multipliers for the path constraints can be eliminated from 

the optimization steps. As a result, the complexity of the solution algorithm can be reduced to 

the size of the inputs and, hence, only the inputs should be updated using Newton iteration 

steps. This would be an important advantage for the real-time application of model-based 

optimizing control in the presence of large time horizons or in the necessity of fine 

discretization levels. 

      The numerical algorithms present in the literature are summarized in Fig. 2.1 (Biegler, 

2010): 
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reformulate 
using PMP 

• efficient for large-scale 
problems 

• trade-off between 
approximation and 
optimization 

provide 
initial 
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• expensive for path 
constraints 

• requires good initial guess 
for shooting-type methods 

• fast convergence for 
unconstrained problems 

• convergence problems for 
path constraints 

• slow convergence for path 
constraints 

 

discretize 
inputs 
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Figure 2.1. Dynamic optimization methods in the literature (Biegler, 2010). 

      For a comprehensive overview of the dynamic optimization literature until 2003, the 

reader is referred to (Srinivasan et al., 2003b). Some more recent publications are given in 

Table 2.1. 
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Table 2.1. Selected recent publications. 

Publication Method of Choice Subject 

(Schlegel et al., 

2005) 
Direct Sequential 

Reducing the problem size using adaptive 

control vector 

(Schlegel and 

Marquardt, 2006a) 

(Schlegel and 

Marquardt, 2004) 

Direct Sequential 
Reducing the problem size using adaptive 

switching times and structures 

(Kadam et al., 

2007) 
NCO Tracking 

Robust optimization using measurements 

and solution models 

(Srinivasan et al., 

2008) 
NCO Tracking 

NCO Tracking using barrier-functions for 

active constraints 

(Biegler, 2007) 

(Kameswaran and 

Biegler, 2006) 

Direct Simultaneous 
Overview of recent direct simultaneous 

strategies 

(Logist et al., 2011) 
Direct Multiple 

Shooting 

Robust, multi-objective dynamic 

optimization 

(Assassa and 

Marquardt, 2014) 

Direct Multiple 

Shooting 
Adaptive multiple shooting 
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3 DYNAMIC OPTIMIZATION OF 
CONSTRAINED BATCH AND 
SEMI -BATCH PROCESSES 
USING INDIRECT METHODS  

This chapter investigates the numerical dynamic optimization of constrained batch and semi-

batch processes based on indirect methods. Direct methods are often the methods of choice to 

solve the constrained dynamic optimization problems, but they may exhibit certain limitations 

related to the compromise between feasibility and computational load. Indirect methods, such 

as Pontryagin’s Minimum Principle (PMP), reformulate the dynamic optimization problem. 

This reformulation may turn out to be computationally advantageous. The main solution 

technique related with the indirect methods is the shooting method, which however often 

results in convergence problems and instabilities caused by the integration of the co-state 

equations forward in time (Srinivasan et al., 2003b; Chachuat, 2007). 

      This chapter introduces an alternative, effective and convergent indirect solution 

technique for the dynamic optimization of constrained batch and semi-batch processes. 

Specifically, instead of integrating the states and co-states forward in time, the proposed 

algorithm parameterizes or discretizes the inputs, integrates the state equations forward in 

time and the co-state equations backward in time, which in turn, leads to a gradient-based 

optimization approach. Constraints are handled using indirect adjoining to the Hamiltonian 

function, which allows meeting the active constraints explicitly at every iteration step.  

Everything has been thought of before, but 
the problem is to think of it again. 

Johann Wolfgang von Goethe (1749 – 1832) 
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3.1 Solution Methodology 
 

The necessary conditions of optimality given in Eq. 2.14 (in the context of PMP) can be 

summarized as follows (Srinivasan et al., 2003b): 

 

																																		 min49,:(4) 						�(�) ≔ �H�(�, �, !) +	
HA(�, �, !) 
                                s.t. 								�� = �(�, �, !); 			�(0) = ��; 
																																																			��H = − J�J� ,				�Hx��y = JzJ�{49 + vH JHJ�{49; 

                                            	
HA = 0;	vHC = 0                                                          (3.1) 

 

where H is the Hamiltonian function, λ  is the nx-dimensional vector of Lagrange multipliers 

for the system equations, ! is the vector of model parameters, µ  is the nS-dimensional vector 

of Lagrange multipliers for the path constraints, and v   is the nT-dimensional vector of 

Lagrange multipliers for the terminal constraints. 
HA = 0	 and vHC = 0  are the 

complementary slackness conditions that will be satisfied at the optimum. Moreover, the 

following necessary conditions must hold at any (local) optimum: 

 

                                            
J�(4)J: = �H J�J: + 
H J�J: = 0                                                 (3.2) 

                                       					�(��) = (�H� + 
HA)|49 = 0                                        (3.3) 

       

      Eq. 3.2 indicates that the partial derivatives of the Hamiltonian function with respect to 

the inputs must all be equal to zero to be at an optimal solution. If the final time of the 

dynamic optimization problem is fixed, then Eq. 3.3, which is the transversality condition, is 

not necessary (Biegler, 2010). Note that, for each input ��, the first term on the right-hand 

side of Eq. 3.2 is the switching function, �:�: = �H J�J:� , which is useful to determine whether a 

given optimal input arc ��(�) is constraint-seeking (�:� ≠ 0) or sensitivity-seeking (�:� = 0). 
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Assuming that the state and co-state (adjoint) equations are differentiable, the proposed 

solution steps can be listed as follows: 

1) Build the problem as the solution of differential equations for both the states and the 

co-states. This can be done by the differentiation of the Hamiltonian function with 

respect to the states as given in Eq. 35. The Matlab Symbolic Toolbox can be used for 

this purpose. This step is only necessary for the initialization of the problem.  

2) Indirect adjoining should be used to deal with pure-state path constraints of the form 

S(x) ≤ 0. In this method, the state constraints are differentiated with respect to time 

until at least one of the inputs appears explicitly (Hartl et al., 1995). The resulting 

expression is S{n} (x,u) ≤ 0, where n represents the relative degree of a constraint with 

respect to an input, that is, the number of differentiations required for an input to 

appear explicitly (Srinivasan and Bonvin, 2007). Then, instead of the original state 

constraints S(x) ≤ 0, the differentiated version S{n} (x,u) ≤ 0 is used to construct the 

Hamiltonian. This way, it is more effective to deal with path constraints when they 

become active. Usually, the corresponding path constraint can be activated via a single 

explicit calculation when the iteration is infeasible. If the constraint cannot be 

activated via a single step computation, then a root-finding algorithm should be 

considered. Consequently, the Hamiltonian function reads �(�) = �H�(�, �) +	
HA{2}(�, �). Because of the complementary slackness, 
HA{2}(�, �) = 0, the penalty 

term 
HA{2}(�, �)	vanishes when all the constraints are satisfied. Nevertheless, if some 

of the constraints are not satisfied during the optimization iteration, the penalty term 
HA{2}(�, �)	will be positive, which in turn forces the convergence inside the feasible 

region. A restoration phase might be necessary if a feasibility problem between the 

inputs and constraints occurs (Miele, 1978). 

 

Remark 3.1. Input saturation can be implemented such that: 

	�(�) = � �1�2, if	a	lower	constraint	is	violated�1�� , if	an	upper	constraint	is	violated  

 

3) Discretize the input profiles as u(t) = U(U), where U is a (nu x N) matrix that contains 

N discrete input values for the nu inputs. For example, the input profiles can be 

approximated by piecewise-constant functions. The choice of N depends on the nature 

of the problem.  
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4) Initialize U corresponding to the initial input profiles, and first integrate the state 

equations �� = �(�, �)  forward in time. Then, integrate the co-state equations �� =�(�, �,�, v) backward in time. Please note that the final condition of the co-states 

equations can be obtained through the PMP formulation as given in Eq. 3.1. 

5) Discretize the Lagrange multiplier vectors as µ (t)  =  M (M),   where M is a (nS x N) 

matrix. If the condition A�{2}(�, r(. , �)) ≤ 0 is not satisfied at the discrete time instant 

k, set Μ (j,k) =K > 0, and compute the value of U(.,k) that makes A�{2}(�, r(. , �)) =0.  Otherwise, set Μ (j,k) = 0. 

 

Remark 3.2. Here, the choice of the value of K is arbitrary. Yet, it is suggested to choose K 

as large as possible to guarantee the feasibility of the path constraints.  

 

6) Update the input values U via a Quasi-Newton step (or steepest-descent) until a pre-

defined optimality criterion is satisfied, such as the threshold value ε  for (��8(J�J�). 
Adjoining the inequality path constraints into the Hamiltonian enables the original 

constrained optimization problem to be solved as an unconstrained problem. 

Furthermore, the penalty terms 
HA{2}(�, �)  ensure that the update direction goes 

through the feasible region. Since the use of the analytic Hessian might be problematic 

and results in singularities, a robust BFGS update algorithm that ensures the positive-

definiteness of the Hessian matrix is used (Biegler, 2010). In addition, the Hessian 

matrix is updated if the iteration is inside the feasible region. Otherwise, the Hessian 

matrix remains the same, and the optimization direction is set as � �J�J��, that is, a 

steepest-descent algorithm is used. Applying these sequential steps, the states and 

Lagrange multipliers are interplayed so that the optimization is performed with respect 

to the inputs only. As a result, the cubic computational complexity increase for finer 

input discretization levels related with the solution of direct method steps is avoided. 

 

Remark 3.3. Steps 2, 5 and 6 represent together the interplay of states, co-states and 

Lagrange multipliers, which reduces the complexity of the solution steps. While the co-states 

are handled via integration (as given by PMP), the Lagrange multipliers for the path 

constraints are eliminated from the optimization through Step 2.  
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Remark 3.4. Since the choice of K is arbitrary, the computed gradients might be ill 

conditioned. To avoid this, the gradients used in the optimization are normalized. An adaptive 

line-search algorithm is employed as opposed to a fixed step size. In this line-search, Wolfe 

conditions are followed as long as the iteration is inside the feasible region (Wolfe, 1971). 

When the iteration is infeasible, the initial step size (α0) is used. 

Remark 3.5. Constraint relaxation is highly recommended, because errors stemming from 

numerical integration or round off might contribute to larger convergence times. 

Remark 3.6. Regarding the choice of the initial step size α0, values between 0.01 and 0.05 

are usually quite effective for fully normalized problems. 

Remark 3.7. The optimal solutions of batch and semi-batch processes often contain active 

constraints. However, if the proposed algorithm computes �b = 0	at the first iteration, it is 

likely that the iterative scheme converges to a sub-optimal solution with all the constraints 

satisfied but inactive. To prevent this, a threshold on the number of iterations (e.g., ℎ > 10) is 

used, which would enable the algorithm to search for active constraints. With the examples 

given in this thesis, it is yielded that 10 iterations suffice with a proper line search algorithm; 

however, for more difficult problems, larger values might be necessary. 

      The idea of indirect adjoining and constraint activation is illustrated in Fig. 3.1. Fig. 3.1.a 

shows the original problem with a pure-state path constraint, while Fig. 3.1.b illustrates the 

new optimization problem after indirect adjoining with the new constraint S{n} (x,u,!) ≤ 0 and 

the new objective function H�(�) . Fig. 3.1.c and Fig. 3.1.d represent the location of the 

infeasible iterate and the activation of the constraint. The following remarks can be made at 

this point: 

1) Although the original optimization problem is converted into a different problem, the 

optimal cost values are expected to be very close (Hartl et al., 1995; Aydin et al., 

2017a).  

2) In Fig. 3.1.d, the arrow illustrates the activation of the path constraint. Here, it is 

assumed that both inputs (u1 and u2) become explicit simultaneously through indirect 

adjoining. Yet, the method can also be applied if only one input is explicit after 

indirect adjoining. In that case, the arrow would be perpendicular to the axes of the 

implicit inputs. 
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Figure 3.1. Illustration of the proposed indirect adjoining and activation steps. 
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      Assuming that the system and adjoint equations are differentiable, the algorithmic steps 

proposed for solving the indirect problem can be summarized as follows: 

PMP-based Solution Algorithm 

Select values for the penalty term K>0, the initial step size α0, the coefficient β, the threshold 

ε,  the number of discrete input values N and the maximal number of iterations iter_max. 
Initialize the input matrix r�, ��, v� and the Hessian matrix corresponding to the k-th time 

instant,  �� ∶= Y2¡ . Discretize the Lagrange multipliers for the path constraints as 

µ (t)  =  M (M),   where M is a (nS x N) matrix. Finally, let us write the co-states as �� =�(�, �,�, v). 

do h = 0  � iter_max 

1) Solve the state equations �� = �(�, �)  by forward integration and the co-state 
equations �� = �(�, �,�, v ) by backward integration and compute the constraint 
matrix M as follows: if the ¢-th constraint is satisfied at the k-th discrete time instant, 
set �5	(¢,k)  ∶= 0, otherwise set �5 (¢,k) ∶=	K.  

2) Evaluate the matrix of first-order gradients (∇��)5 by using pre-computed analytical 
expressions. 

3) if 				‖(∇��)5‖< ε ,  set  r¤34 ∶= 	r5	, STOP 
4) Compute the next inputs as follows: 

      do � = 1  � N,  

  �5� ≔ r5(. , �) 
  ∇5��:= x∇�(.,�)�y5 

       if the ,45 terminal constraint is such that C�(�(��)) < 0,  

       set v5(i)  	= 0. Otherwise, set v5(i) =	K, for i=1,…, nT. 
                   end if 

  if Ax�, �5�, !y ≤ 0  
                   4.1.  Apply line search for α0 and estimate � 

                   4.2.  Compute �5ab� 	= �5� − �x 5�yjb∇5��  
       4.3   Update the Hessian matrix  5ab�  as follows: 

   																																	� ∶= �5ab� − �5�; 				¦ ∶= ∇5ab� � − ∇5��  

                   if  �H¦ ≥ �‖�‖%, set  5ab� ∶=  5� + §§¨�¨§ − ©ª«��¨©ª«�¨©ª«�   

                   else set  5ab� ∶=  5�  

                   end if 

else compute �5ab� 	that gives S{2}x�, �5ab� , !y = 0 and set  5ab� ∶=  5� 

end if 

  r5ab(. , �): = �5ab�  

                        end do 

end do 
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3.2 Case Studies 
 

For illustrating the application of the proposed methodology to the dynamic optimization of 

constrained batch and semi-batch processes, three case studies are presented in this section. 

The first problem is a dynamic reactor optimization taken directly from (Srinivasan et al., 

2003b). The second problem is the dynamic optimization of a batch binary distillation column 

with terminal purity constraints. Finally, the third problem involves the dynamic optimization 

of a complex fed-batch chemical process taken from (Hentschel et al., 2015).  

      All problems were solved using both a direct simultaneous method and the indirect PMP-

based quasi-Newton proposed in this work. The CasADi toolbox (Andersson and Diehl, 2012) 

was applied for the implementation of the direct simultaneous method, along with the 

nonlinear programming solver IPOPT (Wächter and Biegler, 2006). In this thesis, for the 

direct simultaneous methods, collocation on finite elements method with a uniform grid is 

used for discretization. The degree of the interpolating polynomial is 4. The input 

discretization levels are problem specific and their values are given in the next sections. All 

computational results were obtained with an Intel i-3-2100 machine (CPU 3.10 GHz 4 GB 

RAM). Please note that the initializations of the problems are also considered in the 

computational results. 

3.2.1 Non-isothermal semi-batch reactor with a heat-removal constraint 
 

Consider a fed-batch reactor in which the following series reactions take place:       

­ +   �®→ & �°→± 

      The objective is to maximize the molar content of the desired product & at a specified 

final time (Srinivasan et al., 2003b). The two inputs are the feedrate of  , �(�), and the reactor 

temperature, C(�). The path constraints include input bounds as well as upper limits on the 

heat generated by the chemical reactions, qrx, and the reactor volume, V. Note that an energy 

balance is not considered explicitly, but the temperature effect is included in qrx as proposed 

by (Srinivasan et al., 2003b). The final time	�� is fixed at 0.5 h. Accordingly, the optimization 

problem can be formulated as follows: 
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																																					 max:(4),H(4)								 = = -³(��)�(��) 
  s.t.        -́ � = −�b-́ -© − :µ -́ ; 								-´(0) = -́ � ; 

                              	-©� = −�b-́ -© + :µ x-©,�2 − -©y; 							-©(0) = -©� ; 

                       	-¶� = �b-́ -© − �%-¶ − :µ -¶ 	; 						-¶(0) = -¶� ;  

                                                   �� = �	;     �(0) = �� ; 

           �b = �b�+·¸®¹¨  ;            �% = �%�+·¸°¹¨  ; 

                                                   C1�2 ≤ C(�) ≤ C1�� ; 

                                                   �1�2 ≤ �(�) ≤ �1�� ; 

                                                 		(−∆�b)�b-́ (�)-©(�)�(�) + (−∆�%)�%	-¶(�)�(�) ≤ »¼�,1��;  
                                                   �(�) ≤ �1��                                                                       (3.4) 

The model parameters, initial conditions and constraints are given in Table 3.1 

 

Table 3.1. Model parameters, initial conditions and constraints for Problem 3.2.1. 

 

Parameter Value Parameter Value 

�b� 4    l/(mol h) C1�2 293.15  K 

�%� 800    l/h C1�� 323.15 K 

½b 6×103    J/mol �1�� 1.1    L 

½% 20×103    J/mol »¼�,1�� 1.5×105    J/h 

¿ 8.314 J/(mol K) -́ � 10    mol/L 

∆�b -3×104    J/mol -©� 1.1685    mol/L 

∆�% -104    J/mol -¶� 0    mol/L 

�1�2 0    L/h �� 1    L 

�1�� 1    L/h -©,�2 20    mol/L 
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3.2.1.1 Computed optimal solutions 

 

In this problem, there are several local solutions, three of which are given analytically by 

(Binette et al., 2016). In fact, any feasible combination of the arcs (umin, upath, umax) and (Tmin, 

Tpath, Tsens, Tmax) described in that paper can be a local solution to the problem.  

      The optimal input and state profiles computed with different numerical techniques are 

given in Figs 3.2.a and 3.2.b. Fig. 3.2.a shows the PMP-based solutions for the discretization 

levels N=50 and N=500, along with the analytical solution 2 (Binette et al., 2016). The 

parameter values α = 0.01, Κ = 50 and ε = 0.05 are used in the PMP-based approach. 

Similarly, Fig. 3.2.b shows the direct simultaneous solution for N=50 and N=500 along with 

the analytical solution 3 (Binette et al., 2016). Accordingly, some remarks are given as 

follows: 

1. In the PMP-based algorithm, the heat removal constraint is adjoined indirectly into the 

Hamiltonian function, but it is activated through a root finding algorithm; because, it is 

not straightforward to activate this constraint via only one explicit computation due to 

the logarithmic rate terms.  

2. Although all strategies converge to a solution with nearly the same cost (between 

2.050 and 2.053 moles of reactant B, as given in Table 3.2), there are significant 

differences in the computed optimal profiles, which is an indication that the two 

numerical strategies converge to different local solutions.  

3. The heat-removal constraint is active during the first part of the run. The volume 

constraint is active in the second part of the run (batch mode without feeding). 

4. With the PMP-based solution strategy, the input profiles are not very similar with the 

analytical solution 2 in the second arc characterized by C�62�. This is due to the lack of 

sensitivity of the objective function with respect to the sensitivity-seeking inputs. 

5. In the direct simultaneous solution for N=50, the heat-removal constraint is not active 

initially because the time discretization is relatively coarse. However, the constraint 

becomes active when finer input discretization is used. This shows the necessity of the 

finer input discretization to get more reliable solutions. It should also be noted that 

coarser discretization results in infeasible solution of the original problem.  
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Figure 3.2.a. Optimal input and state profiles computed via the PMP-based method and the 

analytical solution 2. 
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Figure 3.2.b. Optimal input and state profiles computed via the direct simultaneous method 

and the analytical solution 3. 
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      The switching functions �: and �H computed at the optimal solution are given in Figs 3.3 

and 3.4 for the PMP-based solution and the direct simultaneous solution, respectively. It is 

seen that �:	is never zero, which means that the feed rate u is never sensitivity seeking. In 

contrast, �H = 0 in certain intervals, which are thus sensitivity seeking.  

 
Figure 3.3.a. Switching function su for the 

PMP-based solution and the analytical 
solution 2. 

 

Figure 3.3.b. Switching function sT for the 
PMP-based solution and the analytical 

solution 2. 
 

 

 
Figure 3.4.a. Switching function su for the 

direct simultaneous solution and the 
analytical solution 3. 

 

Figure 3.4.b. Switching function sT for the 
direct simultaneous solution and the analytical 

solution 3. 
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Table 3.2. Comparison of the indirect PMP-based, direct simultaneous and analytical solution 

strategies for Problem 3.2.1.  

Optimization Strategy 
Solution Structure 

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 

Indirect PMP-based: 

N=50, J=2.050 

N=500, J=2.052 

Analytical Solution 2: 

J=2.050 

upath 

Tmax 

upath 

Tsens 

umin 

Tpath 

umin 

Tmax 

umin 

Tsens 

Direct simultaneous: 

N=50, J=2.051 

N=500, J=2.053 

Analytical Solution 3: 

J=2.053 

umax 

Tpath 

upath 

Tmin 

umin 

Tpath 

umin 

Tmax 

umin 

Tsens 

 

      The comparison of the cost values and solution structures obtained with the various 

strategies are summarized in Table 3.2. The two numerical schemes converge to different 

solutions, which are in fact the analytical solution 2 and 3 given in Binette et al. (2016). The 

PMP-based solution suggests that the reactor temperature profile starts at its upper limit, with 

the feed rate u(t) adjusted to satisfy the heat-removal constraint. Then, the temperature 

follows Tsens (t) to find a compromise between producing much of the desired C and minimize 

the undesired by-product D. Once the reactor is completely filled, the feed rate is set to zero 

and the temperature is adjusted to still keep the path constraint active. When Tmax is reached, 

the temperature is kept there until there is some advantage in reducing it and following Tsens(t) 

again. Although the input profiles of the PMP-based solution and the analytical solution 2 

(Binette et al., 2016) are a bit different, the arc types and sequence are exactly the same.  

      On the other hand, the direct simultaneous solution with the Ipopt solver comes fairly 

close to the analytical solution 3. Optimal operation starts with maximal feeding of reactant B, 

with the temperature being used to meet the heat-removal constraint. When the minimal 
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temperature is reached, it is kept there, and the feed rate is adjusted to keep the path constraint 

active. Once the reactor is filled, the feed rate is set to zero and the temperature is increased to 

still keep the path constraint active. From that point on, the sequence of arcs is the same as for 

the PMP-based solution.  

 

Figure 3.5. Computational times for different discretization levels N of Problem 3.2.1. 

      Fig. 3.5 shows the computational times required to obtain the solution with the PMP-

based and direct simultaneous methods. It is clearly seen that the PMP-based method requires 

significantly less computational time when the grid gets finer, because the direct method 

becomes more expensive due to the factorization of the expanding matrices.  

3.2.2 Batch binary distillation column with terminal puri ty constraints 
 

The optimization of batch distillation columns using PMP has been documented in the 

literature. For example, (Coward, 1967) solved a time-optimal problem for a batch binary 

distillation column using PMP. The solution is based on an adaptive shooting strategy that 

requires good initial guesses for the adjoints. (Mayur and Jackson, 1971) studied PMP for 

binary and multicomponent batch distillation problems with adaptive solution techniques. 

(Welz et al., 2005) used the necessary conditions of optimality to design an implicit 

optimization scheme for a batch binary distillation column. In this section of the thesis, it is 
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proposed to compare the PMP-based quasi-Newton method with a direct simultaneous 

approach to optimize the operation of a batch binary distillation column. 

      Consider a batch distillation column with only three equilibrium plates, in which the 

components A and B (more volatile) are separated from each other. The objective is to 

maximize the molar amount of B in the distillate for a given batch time, while satisfying the 

terminal purity constraints of at least 80 mol % of B in the distillate and at most 20 mol% of B 

in the bottom product. The final time	�� is fixed at 3.0 h. The only path constraints are the 

input bounds on the reflux ratio. 

       A schematic of the column is given in Fig. 3.6, with the molar amounts  	and ± in the 

bottoms and in the distillate tank, respectively. The vapor flow rate is represented by � and 

the liquid flow rate is given by �. The internal reflux ratio � = Kµ is the only input variable. 

Assuming perfect mixing on all stages, negligible vapor hold-up, constant vapor flow through 

the column, total condensation in the condenser of negligible hold-up, constant liquid hold-up 

on all trays and constant relative volatility, the optimization problem can be stated as follows 

(Note that the material balances are written in terms of more volatile component B): 

                            		 max¼(4) 		 					 = = ±(��) 
                                s.t.        ±� = �(1 − �); 				±(0) = ±� 																																																			 � = �(� − 1	); 				 (0) =  � 
                                   (�© = ��© 	 +  � �© = 	�(−¦© + ��b)	;		(©(0) = (©� 																																(�b = ��b�� = 	�(¦© − ¦b + �(�% − �b));	(b(0) = (b� 
                                   (�% = ��%�� = 	�x¦b − ¦% + �(�À − �%)y;	(%(0) = (%� 
                                   (�À = ��À�� = 	�x¦% − ¦À + �(¦À − �À)y;	(À(0) = (À� 
                                   (�Á = �(1 − �)¦À;        		(Á(0) = (Á� 
                                  	¦1 = Â�Ãba(Âjb)�Ã ; 			8 =  , 1, . . . ,3 

                                   �Áx��y = (Á(��)/±(��) ≥ 0.8 

                                   �©x��y = (©(��)/ (��) ≤ 0.2 

                               						0 ≤ �(�) ≤ 1                                                           (3.5)       
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where  � is the initial charge, (©�	the moles of B in the charge, (1 the moles of B in the 

liquid phase on the 8-th tray, �©�	the mole fraction of B in the initial charge, �1 the mole 

fraction of B in the liquid phase of the	8-th tray, ¦1 the mole fraction of B in the vapor phase 

leaving the m-th tray, �Á the mole fraction of B in the distillate tank, �© the mole fraction of B 

in the bottoms, ¦© the mole fraction of B in the vapor leaving the bottoms, � the relative 

volatility, and �� the liquid hold-up on each tray. The trays are numbered from the bottom to 

the top of the column. Because of total condensation, the composition of the refluxed liquid is 

equal to the vapor composition leaving the upper plate. It is also assumed that all plates are 

initially charged with the same liquid mixture as the reboiler and thus the initial concentration 

of B on each tray is �©�. The dynamic column model has 7 state variables and a single input. 

The model parameters and initial conditions are given in Table 3.3.  

 

Table 3.3. Model parameters and initial conditions for Problem 3.2.2. 

Parameter Value 

Vapor flow rate, V 50 kmol/h 

Relative volatility, � 2.35 

Initial charge,  � 115 kmol 

Concentration of B in the charge, �©� 0.4 

Molar hold-up per plate, �� 5 kmol 
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Figure 3.6. Schematic of the batch distillation column. 

 

3.2.2.1 Computed optimal solutions 

 

The input vector is parameterized using N equidistant piecewise-constant elements. The 

terminal constraints are enforced in the PMP-based solution by setting the final values of the 

adjoints as stated in Eq. 3.1. The parameter values α0 = 0.1, Κ = 100 and ε = 0.05 are used in 

the PMP-based approach. 

      Fig. 3.7 shows the optimal input and state profiles computed with the two strategies for 

the discretization level N=500. Both PMP-based and the direct simultaneous solutions 

converge to a 3-arc solution. They suggest total reflux in the beginning of the batch to 

increase the composition at the top of the column. Then, they both follow a sensitivity-

seeking arc to produce as much distillate as possible with the required purity. Finally, a short 

third arc with zero reflux is used to recover the high-purity material that is still in the column.  
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The corresponding switching functions are shown in Fig. 3.8. The following remarks can be 

made: 

1. Since there are no path constraints besides the input bounds, the only possible arcs are �1��, �1�2 and ��62�. 
2. Although the two numerical schemes lead to the same sequences and types of arcs, 

namely �1��, followed by ��62� and �1�2, and nearly the same optimal cost = (cf. Table 

3.4), the computed input profiles are noticeably different. This is due to the lack of 

sensitivity of the objective function with respect to the input ��62�(�). As discussed 

earlier, this is a common feature of sensitivity-seeking arcs, which significantly 

complicates the numerical computation of optimal solutions. 

 

 

Figure 3.7. Optimal input and state profiles computed via the PMP-based method and the 

direct simultaneous strategy. 
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Figure 3.8. Switching function sr. 

 

Table 3.4. Comparison of the indirect PMP-based and direct simultaneous strategies for 

Problem 3.2.2.  

Optimization Strategy 
Solution Structure 

   Arc 1    Arc 2    Arc 3 

Indirect PMP-based 

N=50, J=40.01 kmol 

N=500, J=40.02 kmol 

rmax rsens rmin 

Direct simultaneous 

N=50, J=40.02 kmol 

N=500  J=40.03 kmol 

rmax rsens rmin 

 

      Finally, Fig. 3.9 compares the computational times required for the two numerical 

schemes as functions of the discretization level. One sees that the indirect PMP-based method 

has a clear advantage when finer grids are applied. 
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Figure 3.9: Computational times for different discretization levels of Problem 3.2.2. 

3.2.3 Fed-batch hydroformylation reactor with path constraints 
 

Due to their chemical nature, long-chain olefins are potential renewable feedstock to be 

integrated into existing petrochemical production networks. Hydroformylation is a suitable 

way of converting these feedstocks into valuable intermediates like aldehydes. A carbon 

double bond can be converted into an aldehyde group with the addition of �%  and &' in 

hydroformylation using a homogeneous catalyst (Hentschel et al., 2015; Kaiser et al., 2016).  

      Consider the optimization of a fed-batch reactor to maximize the production of n-

tridecanal (nC13al) from 1-dodecene (nC12en) that reacts with syngas (�% + &' ). The 

reaction network is illustrated in Fig. 3.10 (Hentschel et al., 2015). A stirred tank reactor with 

gas feeding is used in semi-batch mode of operation. The input variables are the reactor 

temperature C(�) and the feedrate �(�) of syngas (�% + &') The gas and liquid phases are 

modeled as ideally mixed phases. The model parameters have been estimated and validated 

using experimental data (Hentschel et al., 2015). The aim is to maximize the concentration of 

n-tridecanal (nC13al) at a specified final time. In addition to the bounds on the input 

variables, the total pressure of the gas phase must be kept within the specified limits. 
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Figure 3.10. Hydroformylation reaction network. 

 

The dynamic optimization problem is formulated as follows: 

															 max:(4),H(4)	 = = -2³bÀ��(��) 
                 s.t.    -����,� = ¢�ÆK + -³�4�³�4 ∑ ��,����∈R 	 ; 						-���,�(0) = -���,��;    i=1, 2,…,7; 
																													É�� = ¿C���� x�	�� − ����	¢�ÆKy			(, ∈ E/�)	; 			É�(0) = É��	; 
                        		�� 	= 	0.5	 �ËÌÍËÌÍ� ; 			i = 1, 2; 
																													¢�ÆK = Î(�K/)�x-�∗ − -���,�y, (,D	,	 ∈ E/�); 			i = 1, 20,												(+0�+); 			i = 3,4, … ,7  ; 

																													�b = �b,�(C)-2¶b%62-�°-¶Ñ1 + Òb,b-2¶b%62 + Òb,%-2¶bÀ�� + Òb,À-�° 	 ; 
																													�% = �%,�(C)(-2¶b%62 − -�¶b%62Ò3,% )1 + Ò%,b-2¶b%62 + Ò%,%-�¶b%62 	 ; 
																													�À = �À,�(C)(-2¶b%62-�° − -2¶b%�2Ò3,À )1 + ÒÀ,b-2¶b%62 + ÒÀ,%-2¶bÀ�2 + ÒÀ,À-�° 	 ; 																													�Ó = �Ó,�(C)-�¶b%62-�° 	; 																													�Ô = �Ô,�(C)-�¶b%62-�°-¶Ñ	; 																													�Õ = �Õ,�(C)-2¶b%62-�°-¶Ñ	; 
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																													��(C) = ��,� exp Ö− ½́ ,�¿ ×1C − 1C¼6�ØÙ	;	 
																												Ò3,� = exp Ú−Δ��¿C Ü ; 
                         −Δ�� = /�,� + /b,�C + /%,�C%	; 
																												-³�4 = -³�4,4¤41 + Ò³�4,b-¶ÑÝÞßà,á + Ò³�4,% -¶ÑÝÞßà,á-�°

	 ; 
																												-�∗ = É��� 	 ; 
																												�� = ��� exp Ú−½́ ,�,�¿C Ü ; 
																												É4¤4��(�) = É�°(�) + É¶Ñ(�) ; 																												1	$/� ≤ É4¤4��(�) ≤ 20	$/� ; 																												0	 ≤ �(�)	; 
                         368.15	K		 ≤ C(�) ≤ 388.15	K                                                                    (3.6) 

 

where i represents the component index (i=1,2,…,7 for the liquid phase and i=1,2 for the gas 

phase), j stands for the reaction index and R is the reaction set. The final time	�� is fixed at 80 

min. All related model parameters are given in Appendix 2. Equal molar content of CO and 

H2 in the syngas is assumed. The liquid volume ���� and the gas volume ���� inside the reactor 

are assumed constant, namely 900 mL each. The initial molar amount of the main reactant 1-

dodecene is 0.85 mol, while all other initial conditions for the chemical species in the liquid 

phase are set to zero. The initial partial pressures of the CO and H2 in the gas phase are 10 

bar. 

 

3.2.3.1 Computed optimal solutions 

 

The parameter values α0 = 0.02, Κ = 100 and ε = 0.05 are used in the PMP-based approach. 

Due to the lack of sensitivity of the cost function with respect to the fine shape of the input 

profiles in some of the arcs, a relatively fine input discretization (N ≥ 100) is necessary for 

accurate results. The optimal input trajectories and the corresponding concentration of the 

desired product and total pressure are given in Fig. 3.11 for N=500. The temperature is 

initially at the lower bound to favor the desired reaction.  
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With the effect of gas feeding, the concentration of the desired product increases and 

approaches its maximal value after about 50 min. Then, the temperature is set to its upper 

limit to suppress the undesired side reactions. This results in a relatively small increase in the 

concentration of n-tridecanal in the last part of the batch run.  

      The switching functions �:	and	�H are illustrated in Fig. 3.12. The solution structure and 

the performance of both numerical schemes for two discretization levels are given in Table 

3.5. 

 

Table 3.5. Comparison of the indirect PMP-based and direct simultaneous strategies for 

Problem 3.2.3 

Algorithm  
Solution Structure 

   Arc 1    Arc 2    Arc 3 

Indirect PMP-based 

N=100, J=0.593 mol/L 

N=500, J=0.595 mol/L 

upath 

Tmin 

upath 

Tsens 

upath 

Tmax 

Direct simultaneous 

N=100, J=0.595 mol/L 

N=500, J=0.596 mol/L 

upath 

Tmin 

upath 

Tsens 

upath 

Tmax 
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Figure 3.11. Optimal input and state profiles computed via the PMP-based method and the 

direct simultaneous strategy. 
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 A few remarks are made at this point: 

1. Both numerical schemes exhibit a 3-arc solution for different discretization levels as 

shown in Table 3.5. 

2. The pressure upper bound is active throughout the batch run. This is enforced by 

adjusting the gas feed rate u(t), which is therefore constraint seeking throughout. 

Toward the end of the batch, the feed rate is very close, but not exactly equal, to zero. 

3. There is a significant difference in the two sensitivity-seeking temperature profiles. 

Again, this is due to the lack of sensitivity of the objective function with respect to the 

temperature C�62�(�). 
 

 

 

Figure 3.12. Switching functions �:	and 	�H . 
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Figure 3.13. Computational times for different discretization levels. 

      Fig. 3.13 shows that the computational time of the PMP-based strategy is significantly 

shorter than that of the direct simultaneous method. 

3.3 Summary 
 

A PMP-based quasi-Newton algorithm has been proposed for solving constrained dynamic 

optimization of batch and semi-batch chemical processes. This algorithm constructs the 

Hamiltonian function by indirectly adjoining the inequality path constraints via their time 

derivatives so that the inputs can be easily enforced to satisfy the active path constraints at 

each iteration step. Symbolic differentiation of the Hamiltonian function with respect to the 

states is only necessary at the initialization step. The results show that the proposed PMP-

based quasi-Newton algorithm can solve the investigated constrained optimization problems 

significantly faster than direct simultaneous methods as the discretization grid gets finer.  

      This chapter also shows that, although there are only negligible differences between the 

optimal costs determined with various strategies, the actual input profiles can differ 

significantly and even correspond to different local solutions. The main reason for this 

observation is the lack of sensitivity of the objective function with respect to the sensitivity-

seeking parts of certain inputs. Hence, it may be useful to parameterize these input profiles in 

a so-called parsimonious way, for example by using switching times and low-order 

polynomial approximations rather than piecewise-constant or piecewise-linear 

approximations. In the next chapter, the proposed PMP-based solution method is combined 

with such parsimonious parameterization schemes to speed-up the numerical solution of the 

dynamic optimization problems of constrained semi-batch processes. 
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4  DYNAMIC OPTIMIZATION 
COMBINING  PONTRYAGIN ’S 
M INIMUM PRINCIPLE AND 
PARSIMONIOUS INPUT 
PARAMETERIZATION  

In dynamic optimization problems, the optimal input profiles consist of various arcs 

(Srinivasan et al., 2003b). These arcs can be categorized depending on their characteristics as 

follows: An optimal input arc might be on a lower or an upper bound (�Ëäå or �Ëæç), on a 

path constraint (�èæéê ) (which activates the corresponding path constraint) or inside the 

feasible region and behaving as a sensitivity-seeking arc (�ëìåë). Accurate computation of a 

sensitivity-seeking arc can be burdensome since the fine configuration of a sensitivity-seeking 

arc advances the optimal cost negligibly. Accordingly, most solution schemes (direct as well 

as indirect) demand significantly finer input discretization levels to obtain accurate solutions. 

On the other hand, as an alternative to full discretization/parameterization, the sensitivity-

seeking arcs can be parameterized alternatively, in a parsimonious manner. This way, the 

number of decision variables in the dynamic optimization problem can be reduced 

significantly (Welz et al., 2005; Schlegel et al., 2005; Welz et al., 2006). This chapter details 

the combination of the proposed efficient PMP-based solution algorithm in Chapter 3 with 

The only thing that will redeem mankind is 
cooperation. 

           Bertrand Russell (1872 – 1970) 
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such parsimonious input parameterizations so as to further reduce the corresponding 

computational load of constrained nonlinear dynamic optimization problems.  

 

4.1 Solution Methodology  
 

The proposed indirect solution algorithm can be used to solve the constrained problem given 

in Eq. 2.1. It parameterizes the inputs using N piecewise-constant elements, integrates the 

state equations forward in time and the co-state equations backwards in time, leading to a 

gradient-based control vector iteration approach. Pure state path constraints are handled by 

indirect adjoining into the Hamiltonian function, that enables the explicit computation of the 

values of the inputs to activate the infeasible path constraints in the iteration. If a path or 

terminal constraint is violated, the corresponding Lagrange multiplier is penalized so as to 

keep the optimization iterates within the feasible region. This way, the complexity of the 

optimization problem can be reduced. 

      Although indirect-based methods have been shown to be efficient for the dynamic 

optimization of batch and semi-batch processes, there is still the requirement of fine input 

discretization to obtain reliable solutions. This requirement might result in significant 

computational effort for small as well as larger-scale problems. Nevertheless, a 

parameterization of the sensitivity-seeking arcs with respect to switching times can decrease 

the computational complexity of the problem further (Visser et al., 2000; Welz et al., 2006; 

Kadam et al., 2007; Aydin et al., 2017b). 

      Given the optimal solution structure (the types and sequence of arcs), an alternative and 

parsimonious parameterization of the form u (t)  =  U (π ) can be postulated to reformulate the 

problem. Then, the effective indirect solution algorithm can be applied to the reformulated 

parsimonious problem.  

      For example, a sensitivity-seeking input arc can be expressed as a linear arc between the 

two values �b	 and  �%	at the two adjustable switching times �b and �%, which represent the 

beginning and the end of the arc, thus resulting in the new input vector í = (�b, �%, �b, �%)H. 

This reformulation allows applying the NCO as follows: 
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																																									minî 					 �ï(�) ≔ �H�	(�, í) +	
HAð(�, í) 
                                     s.t. 						�� = �	(�, í); 			�(0) = ��; 																			��H = − J�ñJ� ,				�Hx��y = JzJ�{49 + vH JH	J�{49; 

															
HAð(�, í) = 0;						vHC(�(��)) = 0; 

																						ò�ï(�)òí = �H ò�	(�, í)òí + 
H òAð(�, í)òí = 0 

              

(4.1) 

 

      If the solution structure consists of the 3 arcs �Ëæç, ��62� and �Ëäå, the sensitivity-seeking 

arc ��62� can be approximated using linear interpolation between the two switching times �b 

and �%, thus giving: 

   �ó(�) = ô	�Ëæç																																																																											,D			0 ≤ � < �b;	��62�(�) = �1�� + :Ã�õj:ÃßS4°j4® (� − �b)														,D		�b ≤ � < �%;�Ëäå																																																																												,D			�% ≤ � < ��                         (4.2) 

Then, the problem given by Eq. 4.4 is solved using the proposed PMP-based algorithm given 

in Chapter 3.  

Remark 4.1. The proposed algorithm requires an initial solution to the problem given by 

Eq.2.1, using either a direct or an indirect method, in order to decide on the parameterization 

scheme. However, this solution need not be obtained using fine discretization to ensure 

feasibility. It is only a pre-analysis step for suitable parameterization candidates. 

Remark 4.2. The parsimonious parameterization is usually problem specific. It can be 

extended to more complex problems by using higher-order polynomials or multiple switching 

times instead of linear relations.  

Remark 4.3. Parsimonious parameterization was found particularly effective for problems 

with a small number of inputs. 

Remark 4.4. The inputs that activate the path constraints �èæéê  can usually be computed 

using the model equations, without any optimization (Srinivasan et al., 2003b; Aydin et al., 

2018b). This will be detailed in the second case study. 

The overall indirect parsimonious algorithm can be formulated as follows: 
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Parsimonious PMP-based Solution Algorithm  

     Consider the optimization problem given by Eq. 4.1, with N discrete time instants between 
0 and 	�� . Let us discretize the Lagrange multipliers for the path constraints as 

µ (t)  =  M (M),   where M is a (nS x N) matrix. Finally, let us write the co-states as �� =�	(�, í,�, v). 

     Select values for the penalty term K>0, maximum iteration iter_max, the step size α, the 

threshold ε, the number of discrete input values N. Initialize the iteration counter ℎ = 0 and 
the input vector í�, ��, v� 

do h = 1  �  iter_max 
I. Solve the state equations by forward integration of �� = �	(�, í),	and the co-state 

equations  by backward integration of  �� = �	(�, í,�, v).  
II.  if  the jth path constraint is such that  Að�(�, í) ≤ 0 at the time instant k, set    �5	 (j,k)  =  0. Otherwise, set �5  (¢, �)  =	K,  �5(¢, �) = �3�45 , for j=1,..,nS, 

k=1,..,N.  
end if 

III.  if  the ,45  terminal constraint is such that C�(�(��)) < 0 , set v5 (i) 

 	= 0. Otherwise, set v5(i) =	K, for i=1,…, nT. 
end if 

IV.  Evaluate the value of the gradient (J�ïJî)5 using analytical expressions given by 

Eq. 4.1. 

V.         if ö�(J�ïJî)5ö < ε, stop, set  ÷øùú ∶= 	÷û	 
        else set 	í5ab ∶= í5 − �(J�ïJî)5  , where �=0.05. Go to I 

        end if    

end do 

 

Remark 4.5 Constant step-size (�) is being used for the parsimonious indirect method. Note 

that an adaptive line search, e.g. Wolfe criterion (Wolfe, 1971), could speed up the method. 
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4.2 Computation of Gradients 
 

The parsimonious parameterization results in discrete decision variables along the time 

horizon that include the switching times as well as other input parameters. Since the general 

PMP algorithm defines the sensitivity of the Hamiltonian with respect to the input variables, 

one needs to evaluate 
J�ï(4)Jî  in order to perform the optimization shown in the algorithm. This 

can be done by considering each arc individually and performing a time transformation of the 

system equations as detailed next. 

Consider the system equation in Problem 4.1: 

                                                       �� = �	(�, í),			for		�	w	ü��, ��ý                                         (4.3) 

For simplicity of presentation, let us assume that the optimal solution consists of the three 

following arcs: 

                      �ó(�) = 	þ					1																																																														,D			�� < � ≤ �b;			��																																																													,D		�b < � ≤ �%;			0																																																														,D			�% < � ≤ ��                 (4.4) 

where ��	is a scalar decision variable, along with  �b and �%. Hence, í = (�b, �%, ��)	H, and we 

need to compute 
J�ïJ4® , J�ïJ4° , J�ïJ:�.  

Let us consider the first arc with the single decision variable �b  and introduce the 

dimensionless time �	valid between �� and �b. Time � relates to the dimensionless time �	as 

follows: 

�(�) ∶= �� + �(�b − ��),											�	w	[0,1]	          (4.5) 

which allows writing the states, their derivatives and the system equations in terms of �: 
                                   � (�):= �x�(�)y	 
																																							 R	R� � (�) = R	R4 �(�) R4	R� = R	R4 �(�) �b 

                                  	��bx� (�)y ∶= �	(�(�), � = 1)                                                             (4.6) 

Repeating this procedure for the second and third arcs gives: 
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																																		 R	R� � (�) = ô�b	��bx� (�)y																																				,D			0 < � ≤ �b;	(�% − �b)	��%(� (�), ��)																	,D		�b < � ≤ �%;x�� − �%y	��Àx� (�)y																								,D			�% < � ≤ ��                (4.7) 

where ��bx� (�)y ∶= �	(�(�), � = 1), ��%(� (�), ��) ∶= �	(�(�), � = ��) and 

 ��Àx� (�)y ∶= �	(�(�), � = 0). 
Finally, differentiating Eq. 4.7 with respect to í = (�b, �%, ��)	H gives: 

ò��ò�b =	��bx� (�)y − ��%(� (�), ��);	 
				ò��ò�% =	��%(� (�), ��) − ��Àx� (�)y;						 

																																															 ò��ò�� = ò��%(� (�), ��)ò�� ;	 
											ò�ï(�)òí = �H ò�	(�, í)òí + 
H òAð(�, í)òí = 0 

            

(4.8) 

 

Note that the gradient 
J��Jî can be obtained in a similar way.  

4.3 Case Studies 
 

To investigate the application of the proposed methodology to the dynamic optimization of 

constrained semi-batch processes, two case studies are presented. The first problem is the 

dynamic optimization of a batch binary distillation column with terminal purity constraints 

given in Chapter 3 and in (Aydin et al., 2017a). The second problem, which deals with the 

dynamic optimization of a complex fed-batch chemical process in the presence of path 

constraints, which is discussed also in Chapter 3 and is taken from Hentschel et al. (2015).  

      The two problems are solved using both a direct simultaneous method and the indirect 

(PMP-based) parsimonious method proposed in this work. The CasADi toolbox (Andersson 

and Diehl, 2012) is used for the implementation of the direct simultaneous method, along with 

the NLP solver IPOPT (Wächter and Biegler, 2006).  
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4.3.1 Batch binary distillation with terminal purity cons traints 
 

Consider Problem 3.2.3, which is a batch binary distillation column with three equilibrium 

plates, in which the components A and B (more volatile) are separated from each other. The 

objective is to maximize the molar amount of ± in the distillate for the given fixed batch time �� = 3	h, while satisfying the terminal purity constraints of at least 80 mol % of B in the 

distillate (�Á) and at most 20 mol % of B in the bottom product (�©). The internal reflux ratio � = �/� is the input variable. The reader is referred to Chapter 3 for more detail related to the 

case study and model parameters. The optimization problem can be summarized as follows: 

																																					 max¼(4) 					 = = ±(��) 
s.t.    dynamic	model	eqns. (from	Eq. 3.5); 

                       ��; 	�Áx��y ≥ 0.8; ��x��y ≤ 0.2; 0 ≤ �(�) ≤ 1 

              

(4.9) 

      The optimal solutions computed by the direct simultaneous (DS) method (500 piecewise-

continuous input parameterization and collocation on finite elements) and the fully 

parameterized PMP (500 piecewise-continuous input parameterization) are given in Fig. 4.1. 

As discussed in Chapter 3, both solutions suggest total reflux at the beginning of the batch to 

enhance the composition at the top of the column. Then, the sensitivity-seeking arc ��62� 
produces maximum distillate with the required purity. Finally, a quick third arc with zero 

reflux is followed to recover the high-purity material that is still present at the top of the 

column.  

      In this problem, since ��62� does not start at the maximum value 1 and end up with the 

minimum value 0, we firstly postulate a constant reflux ratio ( �		) for this sensitivity-seeking 

arc. As a result, the decision variables for the parsimonious method become	í = (�b, �%, �	)H. 

Alternatively, the reflux ratio could also be defined as varying linearly between the two 

switching times. Accordingly, the decision variables would read í = (�b, �%, �	b, �	%)H. The 

solutions given by the two PMP-based parsimonious parameterization methods are also given 

in Fig. 4.1. These solutions result in fairly close optimal value of the fully parameterized 

methods. Furthermore, the addition of one parameter (�	b	and �	% instead of �	)	increases the 

optimal cost further. Fig. 4.2 shows that parsimonious parameterization combined with PMP-

based method significantly reduces the computational time, in particular with fine grids.  
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Figure. 4.1. Fully parameterized DS and PMP as well as parsimonious parameterized PMP 

results.      

 

Figure. 4.2. Computational times with different solution methods.  
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4.3.2 Fed-batch hydroformylation reactor with path constraints 
 

Consider Problem 3.2.3 given in Chapter 3, which is the production of n-tridecanal (nC13al) 

from 1-dodecene (nC12en) that reacts with syngas (�% + &'). The model parameters are 

given in Table 3.2. The operational aim is to maximize the concentration of tridecanal 

(nC13al) at the final time	�� = 80 min. In addition to the bounds on the input variables, the 

total pressure of the gas phase must be kept within specified limits for safety reasons. 

																										 max:(4),H(4) 				= = -2³bÀ��(��) 
                           s.t.      dynamic	model	eqns. ; ��; 

                         gas − liquid	mass	transfer	eqns. given	by	(Eq. 3.6); 
     physical	constraints; 	rate	expressions;  

                                      0	 ≤ �(�); 	368.15	K		 ≤ C(�) ≤ 388.15	K                                      																																											1	$/� ≤ É4¤4��(�) ≤ 20	$/�; 

  (4.10) 

      The solutions obtained using DS and fully parameterized PMP-based algorithms are given 

in Fig. 4.3. As discussed earlier, both solutions suggest that the optimal temperature starts at 

the minimum level  C1�2 to favor the desired reaction. Then, it follows the sensitivity-seeking 

arc C�62� to speed up the production of nC13al by boosting the forward reaction �b, while 

restraining the equilibrium reaction �% to the product side. Finally, the optimal temperature 

follows the upper level C1�� to suppress the undesired reactions. It is seen that the optimal 

temperature profile consists of 3 arcs. Accordingly, it can be postulated to parameterize C�62�	 
linearly between the two adjustable switching times. Alternatively,	C�62�	 can also be 

parameterized using quadratic interpolation between the two switching times.  

      Since the pressure constraint is active throughout the batch, the optimal feedrate of syngas 

can be determined by tracking the pressure path constraint. This is done analytically from Eq. 

3.2, as follows: É�4¤4��(�) = É�b(�) + É�%(�) = 0 , which gives �èæéê(�) = ����	(¢bÆK(�) +¢%ÆK(�)).  
      It is observed that the cost values obtained by the different methods are very similar to 

each other, as given in Fig. 4.3. Note that increasing the order of the polynomial interpolation 

results in a slightly better cost value. 



 

62   

      Fig. 4.4 compares the computational times needed to solve the problem using the various 

approaches. It is clear that both parsimonious PMP-based methods are much faster than the 

fully parameterized ones.  

 

Figure. 4.3. Optimal solutions.  
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Figure. 4.4. Computational times of different solution methods.  

 

4.4 Summary 
 

This chapter details an alternative indirect solution method that parameterizes the sensitivity-

seeking inputs parsimoniously and uses a PMP-based indirect method to solve the dynamic 

optimization for constrained semi-batch processes. The performance of the algorithm is 

compared with DS and fully parameterized PMP-based algorithms. It is observed that the 

proposed method can solve the corresponding problems much faster for very similar optimal 

cost values.  

      Indirect-based parsimonious methods may possess certain advantages for more complex 

applications such as stochastic and multi-level optimization, real-time application of nonlinear 

model predictive control and multi-stage algorithms, where fast implementation are required. 

In addition, application of indirect-based parsimonious algorithms to the large-scale 

optimization problems can turn out to be promising, but is still an open field.  
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5 NONLINEAR MODEL 
PREDICTIVE CONTROL 
USING PONTRYAGIN ’S 
M INIMUM PRINCIPLE  

Nonlinear model predictive control (NMPC) is an important tool for the real-time optimal 

operation of batch and semi-batch processes. Direct methods are often the methods of choice 

to solve the corresponding optimal control problems, in particular for large-scale problems.  

However, as discussed in Chapter 2, the matrix factorizations associated with large prediction 

horizons can be computationally demanding. In contrast, as discussed in Chapter 3 and 4, 

indirect methods can be competitive for small and mid-scale problems. Furthermore, the 

interplay between states, co-states and Lagrange multipliers for path constraints in the context 

of Pontryagin’s Minimum Principle (PMP) might turn out to be computationally quite 

efficient (Cannon et al., 2008). 

      This chapter proposes to use the indirect solution technique discussed in Chapter 3 for the 

shrinking-horizon NMPC (sh-NMPC) of semi-batch processes. In particular, the technique 

deals with path constraints via indirect adjoining, which allows dealing with the path 

constraints explicitly at each iteration. Uncertainties are handled by introducing time-varying 

backoff terms for the path constraints. The resulting sh-NMPC algorithm is tested on a two-

phase semi-batch reactor for the hydroformylation of 1-dodecene in the presence of 

People are sometimes afraid to ask questions 
out of fear of seeming “stupid”. Yet the 
smartest people on the planet are often the 
ones who ask the most questions. 

           Albert Einstein (1879 – 1955) 
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uncertainty, and its performance is compared to that of NMPC that uses a direct simultaneous 

optimization method.   

5.1 Shrinking-horizon NMPC Problem 
 

In shrinking-horizon NMPC (sh-NMPC) of batch and semi-batch processes, the optimal 

control problem to be solved on-line at each iteration can be written as follows: 

 

																											 min:(4) 							 = = �(�(�� , !	)) 
                          s.t. 					�� = �(�, �, !ó	),				�(��) = �� 

                                    Ax�, �, !	y ≤ 0,						C(�(��), !	) ≤ 0,				� ∈ [��, ��] 

  

(5.1) 

 

where �� is the k-th sampling time, J is a scalar performance index that depends on the values 

of the states at the final time �� , φ  is the objective function, x is the nx-dimensional state 

vector with the corresponding initial conditions ��,	u is the nu-dimensional input vector, S is 

the nS-dimensional vector of inequality path constraints that include input bounds, T is the nT-

dimensional vector of inequality terminal constraints, and !	 is the vector of parameters which 

are uncertain and associated with plant-model mismatch. After solving Problem (5.1), the first 

part �[��, �� + #] of the optimal inputs is implemented in the plant, the horizon is shrunk by 

the sampling interval # , and a new optimal control problem is solved. This procedure is 

repeated iteratively until the final batch time is reached. Sh-NMPC is illustrated in Fig.1.1 

      Several methods are available in the literature to cope with uncertainties in the context of 

stochastic programming or two-level approaches (Sahinidis, 2004; Li et al., 2008; Mesbah et 

al., 2014; Puschke et al., 2016; Mesbah, 2016; Puschke and Mitsos, 2016). However, the 

computational time associated with these methods can still be a limitation for real-time 

optimization. To deal with the effect of uncertainties, time-varying backoffs will be 

introduced (Visser et al., 2000; Srinivasan et al., 2003a; Shi et al., 2016). Furthermore, it is 

assumed that ��  can be measured or estimated using on-line sensors and state estimation 

(Allgöwer et al., 1999; Rao et al., 2001; Rao and Rawlings, 2002; Schneider and Georgakis, 

2013). Using small sampling times and frequent on-line measurements, the conservatism 

associated with the robust backoff approach can be reduced.  
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      The optimal control problem given in Eq. 5.1 can be reformulated using PMP and the 

constraint backoffs as follows:  

 

																													min:(4) 						 �(�) = �H�(�, �, !̅) +	
H[A(�, �, !̅) + $�] 
                           s.t. 						�� = �(�, �, !̅); 				�(��) = ��; 	� ∈ [��, ��] 
																																											��H = − J�J� ,				�Hx��y = JzJ�{49 + vH JHJ�{49; 

                                  				vH[C(�(��), !̅) + $H] = 0 

                                     
J�(4)J: = �H J�J: + 
H J�J: = 0                                                              (5.2) 

 

where H is the Hamiltonian function, λ  the nx-dimensional vector of Lagrange multipliers 

(also called co-states or adjoints) for the system equations,	!̅ the estimated parameters, µ  the 

nS-dimensional vector of Lagrange multipliers for the path constraints, and v  the nT-

dimensional vector of Lagrange multipliers for the terminal constraints, $�  and $H  are the 

backoffs associated with the path and terminal constraints, respectively. The terms 
H[A(�, �, !̅) + $�] = 0  and vH[C(�(��), !̅) + $H]  are the complementary slackness 

conditions that will be satisfied at the optimum. Additionally, the partial derivatives of the 

Hamiltonian function with respect to the inputs must all be equal to zero at the optimum. 
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Robust PMP-based Solution Algorithm for sh-NMPC 

Select values for the penalty term K>0, the step size α, the coefficient β, the threshold ε,  the 
number of discrete input values N, the maximal number of iterations iter_max, and the 
backoffs $�. Initialize the input matrix r�, ��, v� and the Hessian matrix corresponding to 
the k-th time instant,  �� ∶= Y2¡. 

do h = 0  � iter_max 

1) Solve the state equations by forward integration and the co-state equations �� =�(�, �,�, v) by backward integration and compute the constraint matrix M as follows: 
if the ¢ -th constraint is satisfied at the k-th discrete time instant, set �5	 (¢ ,k)  ∶= 0, otherwise set �5 (¢,k) ∶=	K.  

2) Evaluate the matrix of first-order gradients (∇��)5 by using pre-computed analytical 
expressions. 

3) if 				‖(∇��)5‖< ε ,  set  r¤34 ∶= 	r5	, STOP 
4) Compute the next inputs as follows: 

      do � = 1  � N,  

  �5� ≔ r5(. , �) 
  ∇5��:= x∇�(.,�)�y5 

       if the ,45 terminal constraint is such that C�(�(��)) < 0,  

       set v5(i)  	= 0. Otherwise, set v5(i) =	K, for i=1,…, nT. 
                   end if 

if Ax�, �5�, !̅y + $� ≤ 0  
                   4.1.  Apply line search for α0 and estimate � 

                   4.2.  Compute �5ab� 	= �5� − �x 5�yjb∇5��  
       4.3   Update the Hessian matrix  5ab�  as follows: 

   																																					� ∶= �5ab� − �5�; 				¦ ∶= ∇5ab� � − ∇5��  

                   if  �H¦ ≥ �‖�‖%, set  5ab� ∶=  5� + §§¨�¨§ − ©ª«��¨©ª«�¨©ª«�   

                  else set  5ab� ∶=  5�  

                  end if 

else compute �5ab� 	that gives S{2}x�, �5ab� , !̅y = 0 and set  5ab� ∶=  5� 

end if 

  r5ab(. , �): = �5ab�  

      end do 

end do 
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5.2 Case Study: Two-phase Semi-batch Hydroformylation Reactor 
under Uncertainty 

5.2.1 Problem formulation 
 

      Similar to Problem 3.2.1, consider the semi-batch operation of hydroformylation in a two-

phase stirred-tank reactor. The objective is to maximize the final concentration of n-tridecanal 

(nC13al) from 1-dodecene (nC12en) that reacts with syngas (�% + &'). The final time is 

fixed at 70 min. For more detail, the reader is referred to Chapter 3. 

      The manipulated variables are the reactor temperature C(�) and the syngas feedrate �(�). 
Equimolar content of CO and H2 in the syngas is assumed. The gas and liquid phases are 

modeled as ideally mixed phases. Nominal model parameters are given in Appendix 2 

(Hentschel et al., 2015). In addition to bounds on the input variables, the total pressure of the 

gas phase must be kept within specified limits. It is seen from Eq. 3.6 that the first time 

derivative of the total pressure (É�4¤4�� ) contains the input �(�)	explicitly, thus implying 

relative degree 1 for this constraint. As a result, this constraint can be indirectly adjoined into 

the Hamiltonian and will be activated at each infeasible iteration as illustrated in Fig. 3.1. 

Concretely, if the constraint A(�, !) = É4¤4��(�, !) ≤ (20	$/�	−	$�) is violated, the indirectly 

adjoined constraint Ab(�, �, !) = É�4¤4��(�, �, !) will be activated by computing the value of � 

that makes É�4¤4��(�, �, !) = 0. 
      Including the backoff term bs, the optimal control problem to be solved on-line at each 

NMPC iteration is as follows: 

                                 max:(4),H(4) 					= = -2³bÀ��(��)           � ∈ [��, ��] 
                                     s.t        dynamic	model	eqns. ; 

                               gas − liquid	mass	transfer	eqns. given	by	(Eq. 3.6)           
                     -���,�(��) = -̂���,�,�; 	É�(��) = É�,�;   i=1, 2,…,7; 

     1	$/� ≤ É4¤4��(�) ≤ 20	$/� −	$�(�); 
  0	mol/min	 ≤ �(�) 	≤ 7	mol/min; 

                                                368.15	K		 ≤ C(�) ≤ 388.15	K   

                                                
|H(4)jH(4«)|4j4« ≤ ∆C1��                                                               (5.3) 
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where �� is the time at the k-th sampling instant, i represents the component index (i=1,2,…,7 

for the liquid phase and i=1,2 for the gas phase), -̂���,�,�	is the estimated concentration of 

component i in the liquid phase, É�,�	is the partial pressure of gas i in the gas phase, $� is the 

time-varying backoff associated with the pressure upper limit, whose value can be calculated 

by open-loop Monte Carlo simulations (Shi et al., 2016). Parametric variations are given in 

Table 5.1. The total partial pressure and the species concentrations are assumed to be 

measured at each NMPC iteration, e.g. using an on-line IR spectroscopy. 

      The optimal reactor temperature calculated by NMPC serves as set point for a thermostat 

that regulates the reactor temperature by adjusting the flowrate of heating/cooling fluid. 

Hence, a rate constraint on the temperature change is introduced (∆C1��)  so that the 

controller is capable of reaching the set point before the next NMPC iteration. This rate 

constraint depends on the heating/cooling capacity of the thermostat. On the other hand, the 

optimal feed flowrate can be implemented directly (Abel et al., 2000; Abel and Marquardt, 

2003). It was observed that a relatively fine input discretization (N≥100) is necessary to get 

accurate and feasible optimal results, especially with regard to the pressure constraint (Aydin 

et al., 2017a).  

Remark 5.1. For steady-state problems, closed-loop stability can be enforced by adding an 

extra terminal constraint to the problem (García et al., 1989; Diehl et al., 2011; Angeli et al., 

2012). The prescribed algorithm can also tackle the terminal constraints. This serves as an 

additional advantage of the proposed algorithm compared to other indirect methods in the 

context of NMPC for continuous processes (Cannon et al., 2008). 

Remark 5.2. To speed-up the real-time algorithm, NMPC can be initialized at t = 0 with the 

nominal optimal control profiles as initial guesses. Then, when the horizon shrinks at each 

iteration, the last computed input profiles are extrapolated linearly for the new horizon and 

serve as initial guesses for the next optimization. 

Remark 5.3. Since the proposed algorithm searches for a feasible point at each iteration, it 

can be implemented in a sub-optimal fashion by setting a minimal number of iterations to 

further reduce the computational effort (Findeisen et al., 2007).  This can be beneficial for fast 

processes. 
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5.2.2 Estimation of time-varying back-offs 
 

Back-offs can be useful to enforce feasibility under parametric uncertainty. The conservative 

nature of back-offs can be reduced through the use of small sampling times. In order to decide 

on the back-off term bs, the multi-step approach of (Shi et al., 2016) is used in this part. First, 

the nominal optimal input profiles are computed. This was done in Chapter 3. Then, Monte-

Carlo simulations are performed using the optimal inputs and sampling various uncertainties. 

Finally, a time-varying back-off is determined from the standard deviation of constraint 

violations. Note that the Monte-Carlo approach might require a significant computational 

effort in the presence of multiple uncertainties, but this work is done off-line. 

      In this study, the rate constants ��,� and the catalyst activity � are assumed to vary within a 

certain range from batch to batch according to a uniform distribution. On the other hand, the 

gas-liquid mass-transfer coefficients (�K/)�  are assumed to vary within a batch. The 

uncertainty ranges for the parameters are given in Table 5.1. The results of open-loop Monte 

Carlo simulations for 40 realizations of multiple uncertainties are depicted in Fig. 5.1 

 

Figure 5.1.a. Open-loop Monte Carlo simulations of total pressure for 40 uncertainty 

realizations. 
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Figure 5.1.b. Open-loop Monte Carlo simulations of product concentration for 40 uncertainty 

realizations. 

 

Table 5.1. Parametric variations: (�K/)� vary within batch, while ��,� and � vary from batch 

to batch.  

Parameter 
Nominal Value 

(Hentschel et al., 2015) 

Minimal 

Value 

Maximal 

Value 

(�K/)b 9.57 8.0 10.1 

(�K/)% 7.08 5.5 7.6 

�b,� 4.904 2.9 5.2 

�%,� 4.878 3.8 5.8 

�À,� 2.724 1.7 3.7 

�Ó,� 2.958 1.9 3.9 

�Ô,� 3.702 2.7 4.7 

�Õ,� 3.951 2.9 4.9 

� - 80 % 100 % 
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Accordingly, the time-varying back-off is chosen as follows: 

$�(�) = þ1.3															,D	� ≤ 300.7								,D	30 < � ≤	0															,D	� > 55 55 

Remark 5.4 The back-off values can also be updated on a batch-to-batch manner so as to 

increase the performance of future batches (Bonvin and François, 2017). 

5.2.3 NMPC for product maximization 
 

The PMP-based algorithm for the NMPC was implemented in the Matlab environment. 

Simulink is used for closed-loop simulations. All computational results (excluding the 

initializations of the problems) were obtained using an Intel i-3-2100 machine (CPU 3.10 

GHz 4 GB RAM). The tuning parameters for the DSM-based and the PMP-based algorithms 

are summarized in Table 5.2.   

Table 5.2. Tuning parameters for the PMP-based and DSM-based algorithms.   

DSM-based Algorithm (with Ipopt) PMP-based Algorithm 

control sampling time = 15 s 

measurement sampling time = 30 s 

measurement delay = 5 s 

� =100; ipopt.max_iter = 100; 

ipopt.tol = 1e-4; ipopt.mu_init = 1e-6 

∆C1��= (0.35 K)/(15s) 

control sampling time = 15 s 

measurement sampling time = 30 s 

measurement delay = 5 s 

� = 0.05; β = 0.1; ε = 0.01; 	� =100;  

Κ=20; iter_max =15 

∆C1��= (0.35 K)/(15s) 

 

      As discussed by Remark 5.2, the input profiles computed off-line using the nominal model 

are used as initial guesses at the beginning of the batch for both algorithms. Later, the optimal 

inputs computed at a given iteration are used to generate by extrapolation the initial guesses 

for the next optimization.  

      All measurements are corrupted with white noise. Because the sampling times for the 

measurements and the controller are not the same, and in addition there is some measurement 
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delay, an observer is designed to estimate the concentrations in the liquid phase using the 

model equations and a linear update term: 

� � = � D(� , �)�� + ��jb	4«
4«·®  

�� = �(�� − � �) 
 

(5.4) 

where ��  is the linear update term, � � =	 -̂���,�,  	��  are the measured states, � �  are the 

estimated states and � = �,/E[0.75	0.75	0.65	0.75	0.75	0.75	0.75]  is the observer gain 

matrix. All concentrations in the liquid phase are assumed to be measured every 30 sec (+ 5 

sec delay) using an on-line FTIR, and the pressure in the gas phase is assumed to be measured 

every second with no delay. The NMPC algorithm takes into account the estimated states at 

each sampling time as the initial conditions of the optimal control problem and the linear term ��	 is updated as soon as the new measurements are obtained. The performance of the 

observer is given in Fig. 5.2.  

 

Figure 5.2. Performance of the observer for a single batch. 

 

      The performance of the DSM-based and PMP-based algorithms for the same disturbance 

realizations within a batch are compared in Fig. 5.3. The corresponding computational times 

for the individual iterations are given in Fig. 5.4. Slight variations between the true and 

estimated concentrations do not affect the feasibility of the closed-loop operation. 

Nevertheless, performance increases with better state estimation.  
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Figure 5.3. NMPC profiles with DSM-based and PMP-based algorithms for a particular batch 

and fixed final time.  
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Figure 5.4. Computational times with DSM-based and PMP-based algorithms.  

   

      Fig. 5.3 shows that, with both methods, very similar closed-loop performance in terms of 

optimal cost can be achieved in the presence of parametric plant-model mismatch. In addition, 

the upper pressure limit is never violated thanks to the backoff term, and the rate constraint on 

temperature is satisfied at each NMPC iteration. Although the closed-loop input trajectories 

are slightly different, the optimal costs are very similar. Finally, as seen in Fig. 5.4, PMP-

based NMPC is much faster than DSM-based NMPC, especially at the beginning of the batch.  

      Almost 70% of the CPU time required for the PMP-based method is used for integration 

of the states and co-states. Hence, CPU time does not decrease significantly with PMP as the 

horizon shrinks. Faster performance may be obtained using fast integration algorithms or 

discretization methods. However, the speed and the performance of the PMP-based solution is 

still an open issue for large-scale systems that require high computational time for integration.  

      In order to test the robustness of the PMP-based NMPC, simulations were performed for 

40 uncertainty realizations (Fig. 5.5). PMP-based NMPC is able to sustain feasible operation 

in all these batches in the presence of uncertainty, with a mean final nC13al concentration of 

0.554 mol/L. This indicates that, under closed-loop operation, nearly 9% increase in the final 

amount of the desired product can be obtained compared to the infeasible (because of pressure 

violation) operation in Fig. 5.1. 
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Figure 5.5. NMPC profiles with PMP for 40 uncertainty realizations and fixed final time. 
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5.2.4 NMPC for batch time minimization 
 

Furthermore, to check the effect of closed-loop operation on batch time reduction, NMPC 

problem is reformulated such that the open-loop optimal concentration of tridecanal 

(-2³bÀ��(��) = 0.51	mol/L, Fig. 5.1.b) is given as a set-point to the controller, while the final 

time �� is let free. The corresponding closed-loop results for 40 different batches are given in 

Fig. 5.6, which shows that, with PMP-based NMPC, the overall batch time can be reduced 

from 70 to 51.36 min, corresponding to a 26.5% reduction (Table 5.3). 

 

Table 5.3. Performance of PMP-based NMPC for free final time. 

Method 
mean �� 

(for -2³bÀ��(��) = 0.51	mol/L) 
median �� st. dev. �� 

Open-loop nominal 

optimization 

(infeasible) 

70 min 70 min − 

NMPC 51.36 min 51 min 2.28 min 
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Figure 5.6. NMPC profiles with PMP for 40 uncertainty realizations and batch time 

minimization.  
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5.2.5 NMPC with constraint tracking 
 

Figs. 5.5 and 5.6 illustrate that the pressure is very close to the upper limit of 20 bar in all 80 

batches. The optimal solution computed off-line with the nominal model also suggests that 

this pressure constraint is active throughout the operation (Aydin et al., 2017a). Accordingly, 

a constraint-tracking framework can be suggested to further reduce the computational 

complexity.   

      The syngas feedrate u(t) is adjusted to keep the pressure at 20 bar, while the temperature 

T(t) is used to maximize the final concentration of nC13al. The control can be done implicitly 

with the model, that is, u(t) is computed to keep  �4¤4��(�) constant at 20 bar or, equivalently, É�4¤4��(�) = É�b(�) + É�%(�) = 0. From Eq. (3), this gives  

�(�) = ���� �	¢bÆK(�) + ¢%ÆK(�)�,   (5.5) 

which keeps the total pressure constant. This way, �(�) can be removed from the set of 

decision variables in Eq. 5.3. However, É4¤4��(�) has to be kept constant at 20-bs(t) bar, which 

is done via PID control. As seen in Fig. 5.7, the controller is able to keep the pressure very 

close to the desired value. In addition, because the pressure limit is enforced by feedback 

control, a coarser input discretization can be used for the temperature (N=50 instead of 

N=100). The performance of NMPC with constraint tracking is shown in Fig. 5.7 for 40 

different uncertainty realizations, with the corresponding computational times given in Fig. 

5.8. This optimization scheme results in feasible operation, with a mean final nC13al 

concentration of almost 0.531 mol/L and reduced computational effort. Table 5.4 compares 

the performance of NMPC without and with constraint tracking. The introduction of 

constraint tracking reduces performance only by 2%. 
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Figure 5.7. NMPC with constraint tracking for 40 different uncertainty realizations and fixed 

final time.  
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Figure 5.8. Computational times using PMP-based NMPC without and with constraint 

tracking.  

 

Table 5.4. Performance of PMP-based NMPC without and with constraint tracking for fixed 

final time. 

Method mean �������(��) median �������(��) 
 

st. dev. �������(��) 
 

Open-loop nominal 

optimization (infeasible) 
0.51 mol/L 0.511 mol/L 0.0126 

NMPC without tracking 0.554 mol/L 0.55 mol/L 0.010 

NMPC with tracking 0.543 mol/L 0.539 mol/L 0.014 
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5.3 Summary 
 

This chapter has proposed to extend the indirect PMP-based solution scheme for the 

shrinking-horizon NMPC (sh-NMPC) of semi-batch processes. The application of sh-NMPC 

to a two-phase semi-batch Hydroformylation reactor under uncertainty is illustrated. A time-

varying backoff approach is used to deal with parametric uncertainties. The pressure path 

constraint is indirectly adjoined into the Hamiltonian function and activated at each infeasible 

iteration. Simulation results show that the computational burden stemming from the matrix 

factorization in large-horizon problems is successfully reduced by the interplay of states, co-

states and Lagrange multipliers. Accordingly, PMP-based NMPC has a computational 

advantage over direct simultaneous method-based NMPC, especially at the beginning of the 

batch. In addition, finer input discretization with the PMP-based NMPC can be expected to 

increase the closed-loop performance but not the computational time significantly, whereas 

cubic increase in the computational time is anticipated with the DSM-based NMPC. 

Furthermore, the PMP-based solution algorithm can be extended to active constraint tracking. 

For example, for the semi-batch hydroformylation reactor, further reduction in computational 

time was obtained via tracking of the active pressure constraint. Note that the computational 

speed of the PMP-based algorithms can be further increased by discretizing the state and co-

state equations instead of relying on integration. Yet, it is still an open question how PMP-

based NMPC performs for large-scale problems, where integration requires more effort. 
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6 NONLINEAR MODEL 
PREDICTIVE CONTROL 
USING PARSIMONIOUS INPUT 
PARAMETERIZATION   

The optimal inputs of batch and semi-batch processes computed via dynamic optimization can 

be characterized using different arcs. An optimal arc can be either on an input bound 

(�1�2, �1�� ), on a path constraint (�3�45 ), or inside the feasible region as a sensitivity-

seeking arc (��62�). It is usually difficult and burdensome to compute the fine shapes of 

sensitivity-seeking arcs accurately due to their lack of sensitivity. To deal with this issue, 

simplified solution models can be introduced, in which the inputs and most importantly the 

sensitivity-seeking arcs ��62�  are parameterized parsimoniously using switching times and 

low-order polynomials. This way, the number of decision variables and the complexity of the 

optimization problem can be reduced significantly. In other words, instead of a full NLP, a 

parsimoniously parameterized NLP can be solved, which reduces the load of the 

corresponding non-convex dynamic optimization problem. Hence, the required CPU time is 

expected to decrease significantly, without affecting much the optimal cost (Welz et al., 2005, 

2006; Welz et al., 2008). This is also the motivation of Chapter 4, in which such a 

parsimonious scheme is combined with an indirect method to be applied to dynamic 

optimization. 

Simple can be harder than complex: You have to 
work hard to get your thinking clean to make it 
simple. But it’s worth it in the end because once you 
get there, you can move mountains. 

                       Steve Jobs (1955 – 2011) 
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      The main contribution of this chapter is to detail the application of the parsimonious 

parameterization models in the context of sh-NMPC. Parsimonious sh-NMPC approximates 

the fine shapes of the optimal inputs at each sampling instant. As stated earlier, the 

optimization is performed at each sampling instant for the full time horizon but only the first 

part of the optimal inputs is applied to the process. Nevertheless, the optimal closed-loop 

behavior might be captured accurately. In addition, since the full time horizon is taken into 

account, the loss in ability to influence the batch outcome (which is one of the most important 

challenges in batch processing) can be prevented, while still having a significant reduction in 

CPU time.  

6.1 The Parsimonious Shrinking-Horizon NMPC 
 

Direct and indirect methods exist in the literature to solve the problem given by Eq. 5.1 

(Srinivasan et al., 2003b; Biegler, 2007, 2010; Aydin et al., 2017a). The input profiles are 

typically discretized as u(t) = U(U), where U is a (nu x N) input matrix that contains N discrete 

input values for the nu inputs. In an earlier publication, it is observed that at least N=100 is 

required to obtain reliable offline optimal profiles for the batch and semi-batch problems 

(Aydin et al., 2017a).  

Accordingly, the standard sh-NMPC algorithm can be formulated as follows: 

 

Standard sh-NMPC Algorithm 

Set � = 0 and specify ��. 

while �� ∈ [��, ��] do 

1. Measure/estimate �� and assign �(��):= �� 

2. Solve Problem (5.1) for the decision variables U(nu x N) 

3. Inject �[��, �� + #]= U(U(nu x 1)) to the plant and wait for ��ab = �� + # 

4. Set � ≔ � + 1 

end do 

 

      Numerical optimization schemes often require fine input discretization levels to be able to 

compute accurate solutions. In addition, as discussed earlier, the complexity of the 
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optimization problem increases cubically with the time horizon due to the matrix 

factorizations required in the solution steps. Furthermore, it is sometimes necessary to include 

additional terminal constraints to the NMPC problems for continuous processes to guarantee 

closed-loop stability (Mayne et al., 2000; Findeisen et al., 2007). This may increase the size of 

the prediction horizon significantly. Consequently, the CPU time required to solve the sh-

NMPC problem may turn out to be large, especially at the beginning of the batch when the 

time horizon is the largest. On the other hand, the expensive matrix factorizations can be 

avoided by decreasing the number of decision variables using parsimonious 

parameterizations, while keeping the full length of the time horizon. Afterwards, the proposed 

indirect algorithms can be applied to the problem, which decreases the computational 

complexity significantly. 

      The strategy behind building the parsimonious solution models starts with computing the 

offline solution to Problem 2.1. It is typically assumed that the uncertainty does not change 

the types and sequence of optimal arcs in closed-loop operation, which is reasonable for batch 

processes (Kadam et al., 2007; Srinivasan and Bonvin, 2007). Given the optimal solution 

structure, the input bounds (�1�2, �1�� ) and the sensitivity-seeking arcs (��62� ) can be 

approximated using polynomial profiles and adjustable switching times between arcs (Welz et 

al., 2005, 2006; Schlegel and Marquardt, 2006b; Welz et al., 2008). These solution models 

have also been used recently in the context of the NCO tracking to design multivariable 

controllers by pairing the inputs (MVs) with the active constraints and appropriate 

sensitivities (CVs) using physical insight, relative gain analysis and sensitivity analysis 

(Visser et al., 2000; Srinivasan et al., 2003a; Bonvin, 2006; Srinivasan et al., 2008; Welz et 

al., 2008; Ebrahim et al., 2016).  

      In this chapter, it is proposed to use the concept of parsimonious solution models for 

solving the sh-NMPC Problem (1). As discussed in Chapter 4, given the optimal solution 

structure (the types and sequence of arcs), it is possible to reformulate the optimization 

problem using a parsimonious input parameterization of the form �(�)	= U(í). For example, 

a sensitivity-seeking arc can be expressed as a linear arc between the two switching times �b 

and �% with the values /b and /% at �b and �%, respectively. This results in í = (�b, �%, /b, /%)H, 

with the parsimonious input model:  
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																			�(í) = ô	�Ëæç																																																																						,D			0 ≤ � < �b;/b + /% − /b�% − �b (� − �b)																																							,D		�b ≤ � < �%;	�Ëäå																																																																						,D			�% ≤ � < �� 

         

(6.1) 

The reformulated optimal control problem to be solved online at each sampling instant reads: 

 

																							 min		î 							 =ð = �(�(�� , !̅)) 
                      s.t. 							��(�) = �ó(�(�),�(í), !�),				�(��) = �� 

                                   Að(�(�),�(í), !̅) ≤ 0,						 
																																							C(�(��), !̅) ≤ 0,				� ∈ [��, ��] 

         

(6.2) 

where í is the new vector of decision variables, �(í)	the input vector given by Eq. 6.1, �	 

represents the system of equations expressed in terms of �(í) instead of �(�), =ð is the scalar 

performance index for Problem (3),	!̅ is the vector of estimated parameters, Að	the vector of 

inequality path constraints expressed in terms of  �(í) instead of �(�). Finally, the dynamic 

optimization problem given by Eq. 6.2 can be solved using the method given in Chapter 4. 

      Accordingly, the parsimonious sh-NMPC algorithm can be formulated as follows: 

Parsimonious sh-NMPC Algorithm 

I. Solve Problem given in Eq. 2.1 numerically offline for the nominal values of the 

parameters !̅ = !�.  

II.  Build a parsimonious solution model by parameterizing the inputs with respect to the 

switching times and low-order polynomials to obtain �(í). 
III.  Set � = 0 and specify ��. 

while �� ∈ [��, ��] do 

1. Measure/estimate �� and assign �(��):= �� 

2. Solve Problem 6.2 using indirect methods for the decision variables í 

3. Inject �[��, �� + #]= U[��, �� + #] (í) to the plant and wait for ��ab = �� + #   

4. set k := k+1  

end do 
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Remark 6.1. The polynomials used in the parsimonious models are often very problem 

specific, with piecewise-constant or piecewise-linear functions often resulting in accurate 

approximations to the sensitivity-seeking arcs. Problem-specific information regarding the 

parsimonious parameterization will be detailed in the case studies of next section. 

Remark 6.2. As discussed in earlier chapters, depending on their relative degree, the inputs 

that activate the path constraints �3�45 can sometimes be computed online using the model 

equations, that is, without any optimization (Srinivasan et al., 2003b; Aydin et al., 2017b). 

Another alternative is to track the corresponding path constraints with the help of feedback 

controllers using �3�45 as manipulated variables (Srinivasan and Bonvin, 2007).  

6.2 Case Studies 
 

      To illustrate the application of parsimonious sh-NMPC to batch and semi-batch processes, 

two case studies are selected. The first example is the batch binary distillation column with 

terminal purity constraints and the second one is the semi-batch hydroformylation reactor 

with path constraints. In order to test the performance and robustness of the controllers, 

closed-loop simulations are performed under parametric uncertainties. The standard sh-

NMPC cases are solved using a direct simultaneous method. The CasADI toolbox and Matlab 

Simulink are used for both sh-NMPC methods (Wächter and Biegler, 2006; Andersson and 

Diehl, 2012). 

6.2.1 Batch binary distillation with terminal purity cons traints under 
uncertainty 

 

Recall the batch distillation column with three equilibrium plates, in which components A and 

B (more volatile) are separated from each other. The operational goal is the maximization of 

the amount B in the distillate, while satisfying two terminal constraints. The only path 

constraint is on the input variable, namely, the reflux ratio. Accordingly, the optimal control 

problem to be solved online in the context of sh-NMPC can be written as follows:        
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																										 max¼(4),49			 				= = ±(��) 
                          s.t.       dynamic	model	eqns. (from	Eq. 3.5); 
																																											±(��) = ±�;	 (��) =  �;   (©(��) = (©�; 	(b(��) = (b�; 

																																										(%(��) = (%�;	(À(��) = (À�;	(Á(��) = (Á� 

																																										¦1 = ��11 + (� − 1)�1 ; 			8 =  , 1, . . . ,3 

																																										�Áx��y = (Á(��)/±(��) ≥ 0.8 

																																										�©x��y = (©(��)/ (��) ≤ 0.2 

																																										3	ℎ ≤ �� ≤ 3.25	ℎ 

                           												0 ≤ �(�) ≤ 1    ,				� ∈ [��, ��]                                                          (6.3)                                 

where �� is the time at the k-th iteration, ,  � the charge, (©�	the moles of B in the charge, (1 

the moles of B in the liquid phase on the 8-th tray, ¦1 the mole fraction of B in the vapor 

phase leaving the m-th tray, (Á the moles of B in the distillate tank, �Á the mole fraction of B 

in the distillate tank, (©  the moles of B in the bottoms, �©  the mole fraction of B in the 

bottoms, � the relative volatility, �� the liquid hold-up on each tray, and ��  the free final 

time. Because of the assumption of total condensation, the composition of the refluxed liquid 

is equal to the vapor composition leaving the upper plate. It is also assumed that all plates are 

initially charged with the same liquid mixture as the reboiler. The nominal model parameters 

and the initial conditions are given in Table 6.1. 

 

Table 6.1. Nominal model parameters and initial conditions for the batch distillation. 

Parameter Value 

Vapor flowrate, � 50 kmol/h 

Relative volatility, � 2.35 

Initial charge,  � 115 kmol 

Concentration of B in the charge, �©� 0.4 

Molar hold-up per plate, � 5 kmol 
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      In this batch distillation study, state feedback information is assumed in order to focus 

only on the computational aspects of the proposed scheme. This is a reasonable assumption 

considering the advances in state estimation and online spectroscopy (Rao and Rawlings, 

2002; Zavala et al., 2008b; Schneider and Georgakis, 2013).  

 

6.2.1.1 Nominal Open-loop Optimal Policy 

 

The optimal control problem given by Eq. 2.1 is first solved offline, using the estimated 

parameters given in Table 6.1. The optimal profiles, computed using a direct simultaneous 

method and 100 piecewise-constant elements, are given in Fig. 6.1. The optimal cost is 44.69 

[kmol]. 

 

 

Figure 6.1. Optimal open-loop profiles for Problem 6.2.1 with a direct simultaneous method 

(DSM) and parsimonious input model (PIM).  

      Fig. 6.1 shows that the solution structure starts with total reflux to increase the purity at 

the top of the column. Then, a sensitivity-seeking arc represents the best compromise between 
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producing more distillate and satisfying the required purity. Finally, a no-reflux third arc 

recovers the high-purity material that is still at the top of the column.  

      Similar to Chapter 4, analysing the optimal input profile, a parsimonious solution model 

can be proposed, in which the sensitivity-seeking arc varies linearly between the two 

switching times �b and �%. Furthermore, the values of ��62�  at the switching times are also 

considered as the decision variables �	b and �	%, because ��62� does not start at 1 and end at 0. 

Accordingly, the new vector of decision variables for this parsimonious solution model is í = (�b, �%, �	b, �	%, ��)H, and the parameterized reflux ratio reads: 

 

																			�(í) = ô	1																																																																												,D			0 ≤ � < �b;�	b + �	% − �	b�% − �b (� − �b)																																			,D		�b ≤ � < �%;0																																																																												,D			�% ≤ � < �� 

        

(6.4) 

 

      The optimal profiles obtained with this simple solution model are also shown in Fig. 6.1, 

with an optimal cost of 44.56 [kmol]. It is observed that the nominal and approximated open-

loop optimal profiles are very similar. 

 

6.2.1.2 Closed-loop Simulation with sh-NMPC 

 

In order to check the performances of both sh-NMPC schemes, uncertainty is added to the 

relative volatility parameter (�), which varies randomly from batch to batch between -15% 

and 0%. In addition, the vapor flowrate (�) is randomly perturbed by ±	3 kmol/h within the 

batch. The controller sampling time is 1 min. 

      Firstly, the performances of standard and parsimonious sh-NMPC are compared for one 

particular batch. The optimal closed-loop behaviours are given in Fig. 6.2, which shows that 

very similar performance can be achieved with both methods. In other words, the closed-loop 

optimal behaviour can be approximated accurately by using the parsimonious solution model. 

Only a batch time difference of 3.5 min is required to have the same distillate amount at the 

end of the batch.  
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Figure 6.2. Optimal closed-loop profiles for Problem 6.2.1 with standard and parsimonious 

sh-NMPC. 

 

Figure 6.3. Computational times with standard and parsimonious sh-NMPC for the batch 

distillation. 
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On the other hand, it is observed that parsimonious sh-NMPC requires significantly less CPU 

time and is much faster than standard sh-NMPC, especially at the beginning of the batch (Fig. 

6.3).  

      Finally, to validate the robustness and check the performance of parsimonious sh-NMPC 

for different uncertainty realizations, 40 closed-loop simulations are performed. In all cases, 

the simulation is stopped as soon as the desired purity levels are achieved. The results are 

given in Fig. 6.4. It is observed that parsimonious sh-NMPC results in feasible operation. 

Furthermore, with CPU-time reduction at each iteration, faster sampling and control can be 

used, which in turn helps to deal with plant-model mismatch. This way, parsimonious sh-

NMPC can outperform standard sh-NMPC in real-life implementation. 

 

Figure 6.4. Optimal closed-loop profiles for Problem 6.3 with parsimonious sh-NMPC for 40 

different batches. 
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6.2.2 Semi-batch reactor for the hydroformylation of 1-dodecene under 
uncertainty 

 

This section investigates the application of sh-NMPC to a two-phase fed-batch reactor for the 

hydroformylation of 1-dodecene (nC12en) in the presence of uncertainty. Note that the same 

problem has been detailed in Eq. 3.6 and 5.3. 

A stirred-tank reactor with the dosing of syngas (H2 + CO) is used for the operation. The 

manipulated variables are the reactor temperature C(�) and the feedrate of syngas	�(�). The 

operational objective is to maximize the amount of n-tridecanal (nC13al) at the end of the 

batch. Fixed batch time is 70 min. Input bounds and limits on the total pressure in the gas 

phase represent the path constraints that should be satisfied throughout the operation. Earlier 

studies showed that plant-model mismatch affects the process conditions and feasibility 

significantly, and therefore should be taken into account (Kaiser et al., 2016; Aydin et al., 

2018b). For detailed information, the reader is referred to Chapter 3. 

 

Table 6.2. Nominal parameter values and corresponding variations for the hydroformylation 

process: (�K/)� varies within batch, while ��,� and � vary from batch to batch. 

 

Parameter 
Nominal Value 

(Hentschel et al., 2015) 

Minimal 
Value 

Maximal 
Value (�K/)b 9.57 8.57 10.57 

(�K/)% 7.08 6.08 8.08 

�b,� 4.904 3.8 6.0 

�%,� 4.878 3.78 5.98 

�À,� 2.724 1.72 3.72 

�Ó,� 2.958 1.8 4.0 

�Ô,� 3.702 2.6 4.8 

�Õ,� 3.951 2.8 5.0 

� 100 % 80 % 100 % 
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6.2.2.1 Nominal Open-loop Optimal Policy 

 

The optimal control problem given in Eq. 3.6 is solved offline for the nominal model 

parameters using a direct simultaneous method. The input parameterization uses 500 

piecewise-constant elements. The optimal profiles are given in Fig. 6.5. It is seen that (i) the 

optimal solution exhibits a single arc for the feedrate �, and (ii) the upper pressure limit is 

always active, É4¤4��(�) = 20 bar. Furthermore, the optimal temperature profile starts at the 

lower limit (CËäå	) to favor the desired reactions, then follows a sensitivity-seeking arc (Cëìåë) 
and ends up at the upper limit (CËæç	) to suppress the undesired reactions. The optimal cost 

with the fully parameterized NLP is 0.591 [mol/L]. 

      A parsimonious solution model can be introduced to reduce the computational load of the 

online control problem. In this model, the temperature C(�)  is parameterized using the 

switching times �b and �% and a linear profile between the lower and upper bounds between 

these switching times. On the other hand, the feedrate input � is set to keep the pressure at its 

upper limit. 

      As discussed in the previous chapters, Eq. 3.6 shows that the pressure constraint has 

relative degree of 1. In other words, the input becomes explicit after the first time derivative 

of this constraint. Hence, the value of �(�)	 that keeps the total pressure active can be 

computed from É�4¤4��(�) = É�b(�) + É�%(�) = 0, which gives �(�) = ���� �	¢bÆK(�) + ¢%ÆK(�)�. 

As a result, the vector of decision variables for the reformulated problem is í = (�b, �%)H. 

Accordingly, the parsimonious input model reads: 

 

�(í) =
��
�
��	 C	(í) =

��
�368.15																																																									,D			0 ≤ � < �b;368.15 + 20�% − �b (� − �b)																								,D		�b ≤ � < �%;388.15																																																										,D			�% ≤ � < ��	�(�) = 	���� �	¢bÆK(�) + ¢%ÆK(�)�																																		∀	� ∈ ü0, ��ý																			

	 
         

 (6.5) 

      The optimal profiles obtained via the simplified solution model are also shown in Fig.  

6.5. The optimal cost obtained using the parsimonious parameterization is 0.589 [mol/L]. 
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Figure 6.5. Optimal open-loop profiles for Problem 6.2.2 with a direct simultaneous method 

(DSM) and parsimonious input model (PIM).  

 

It is observed that, although the input profiles computed with both methods differ to some 

extend, very similar cost values can be achieved (Binette et al., 2016; Aydin et al., 2017a). On 

the other hand, note that the number of decision variables is reduced from 500 to 2 through 

the use of the parsimonious solution model, which proves the significant reduction in online 

computational effort. 
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6.2.2.2 Closed-loop Simulations with sh-NMPC 

 

The performance and robustness of both sh-NMPC schemes for the hydroformylation reactor 

are compared under the parametric variations given in Table 6.2. The controller sampling time 

is 30 s. It is assumed that the concentrations of each component can be measured via online 

spectroscopy every 30 s, with a 5 s measurement delay. The total pressure in the gas phase is 

assumed to be measured every second with no delay. Moreover, all measurements are 

corrupted with Gaussian white noise. The linear observer, which is given in Eq. 5.4, is used to 

estimate the concentrations of all species in the liquid phase at each sampling instant. 

Remark 6.3. The ∆C1��  constraint can be enforced directly with standard sh-NMPC. 

However, with parsimonious sh-NMPC, this constraint can be included in the optimization 

via a constraint on the two switching times, namely, �% − �b > 15 min. 

      Unlike Chapter 5, in order to reject the effects of parametric uncertainty on the pressure 

path constraint, a hierarchical control structure is recommended instead of a back-off 

approach. In this scheme, the total pressure in the gas phase (É4¤4�� ) computed via 

optimization is sent as setpoint to a low-level PID controller that tracks the pressure by 

adjusting the feedrate of syngas �(�). This way, the fast perturbations on the path constraint 

are rejected via the low-level controller, while the slow perturbations on the cost are reduced 

through the upper level sh-NMPC. Note that, similar to the nominal parsimonious 

optimization case, implicit control of this path constraint via the system equations is also 

possible as discussed in Chapter 5. The suggested hierarchical structure is illustrated in Fig. 

6.6, with the thermostat and the state estimator hidden inside the reactor. 

Figure 6.6. Hierarchical sh-NMPC structure for the semi-batch hydroformylation reactor. 
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      To be able to compare the performance of both sh-NMPC methods, closed-loop 

simulations are performed for a particular batch, in which the parametric variations are the 

same throughout the operation. Also, to have a fair comparison in terms of CPU times, the 

inputs of standard sh-NMPC are parameterized with 50 piecewise-constant elements. Here, 

note that feasibility is achieved via hierarchical control. However, finer input discretization is 

usually necessary to have reliable solutions for single stage problems, as discussed in Chapter 

3. The results are reported in Fig. 6.7.  

 

Figure 6.7. Optimal closed-loop profiles with standard and parsimonious sh-NMPC.  
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      As shown in Fig. 6.7, both control schemes contribute to very similar final concentrations 

of tridecanal (nC13al), even though the input profiles are different. Furthermore, it is 

observed that the temperature profiles exhibit the same 3-arc shape as the nominal solution. 

The resulting optimal costs are 0.5527 [mol/L] for standard sh-NMPC and 0.5525 [mol/L] for 

parsimonious sh-NMPC. On the other hand, parsimonious sh-NMPC is computationally far 

superior to standard sh-NMPC. For both methods, the CPU times at each sampling time are 

reported in Fig. 6.8. Also, one may expect that, due to the fact that the computational (or 

feedback) delay is reduced with parsimonious sh-NMPC, better closed-loop performance can 

be achieved in real-life operation. Additionally, faster sampling is enabled by fast 

computation, which may increase the performance of the closed loop by increasing 

optimization frequency. 

 

Figure 6.8. Computational times with standard and parsimonious sh-NMPC for the 

hydroformylation semi-batch reactor. 
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Figure 6.9. Optimal closed-loop profiles with parsimonious sh-NMPC for 40 different 

batches. 

      Finally, parsimonious sh-NMPC is tested for 40 different uncertainty realizations. The 

optimal profiles are given in Fig. 6.9. The parsimonious sh-NMPC scheme results in feasible 

operation, with a mean final concentration of tridecanal of 0.5562 [mol/L]. 
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6.3 Summary 
 

This part of the thesis has combined the use of simplified solution models with shrinking-

horizon NMPC for semi-batch processes. A parsimonious parameterization of the optimal 

inputs computed offline has been postulated, which reduces the complexity of the 

optimization problem and therefore also the CPU times at each sampling instant. This 

decrease in online computational effort is important in practice. Faster computation enables 

higher optimization frequencies, which in turn may lead to better closed-loop performance. 

The resulting scheme, labeled ‘parsimonious sh-NMPC’, has been applied to two case studies 

simulated in the presence of uncertainty.  

      Parsimonious sh-NMPC is compared to standard sh-NMPC in terms of both performance 

and robustness. It turns out that the performance of parsimonious sh-NMPC is very close to 

that of standard sh-NMPC. Significant reduction in real-time computational effort has been 

observed in both case studies. Although sh-NMPC only approximates the optimal input 

profiles, the closed-loop behavior is accurately captured, mostly because only the first part of 

the inputs is implemented at each iteration. The input profiles computed with parsimonious 

and standard sh-NMPC differ to some extend, but both schemes exhibit the same solution 

structures and arc types. It turns out that the performance of parsimonious sh-NMPC is very 

close to that of standard sh-NMPC in terms of optimal cost. 

      Furthermore, it can be stated that the computational superiority of the parsimonious sh-

NMPC scheme makes it very suited for real-time applications of optimizing control to batch 

and semi-batch processes. Finally, due to its fast-NMPC features, other application areas such 

as stochastic or multi-stage NMPC should be envisioned.  
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7 SUMMARY  AND OUTLOOK  

7.1 Summary  
 

In this thesis, a convergent PMP-based quasi-Newton algorithm is proposed for solving 

constrained batch semi-batch optimization problems. This algorithm reformulates the 

Hamiltonian function by indirectly adjoining the inequality path constraints so that the inputs 

can activate the path constraints at each infeasible iteration step via one single explicit 

computation. This way, the dynamic optimization algorithm can be tailored to have nearly 

linear increase in complexity with respect to increasing input discretization grids and time 

horizons.  

      The results in Chapter 3 indicate that the proposed PMP-based quasi-Newton algorithm 

can solve the corresponding constrained optimization problems significantly faster than direct 

simultaneous methods as the discretization grid gets finer. Chapter 3 also demonstrates that, 

although the differences between the optimal costs computed with various strategies are 

negligible, the actual input profiles can differ significantly and correspond to different local 

solutions. The main reason is the lack of sensitivity of the objective function with respect to 

the sensitivity-seeking parts of the optimal inputs. Therefore, it may be useful to parameterize 

these input profiles in an alternative way, for example by using switching times and low-order 

polynomial approximations rather than piecewise-constant or piecewise-linear 

approximations.  

      Following this idea, Chapter 4 details an alternative indirect solution method that 

parameterizes the sensitivity-seeking inputs parsimoniously and uses the PMP-based method 

If one day, my words are against science, choose 
science. 

                   M. Kemal Atatürk (1881 – 1938) 
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to solve the dynamic optimization of constrained batch and semi-batch processes. It is 

observed that the proposed parsimonious indirect method can solve the corresponding 

problems much faster for very similar optimal cost values.  

      Chapter 5 suggests using the indirect solution scheme proposed in Chapter 3 for the 

shrinking-horizon NMPC (sh-NMPC) for batch and semi-batch processes. The application of 

sh-NMPC to a two-phase semi-batch hydroformylation reactor under uncertainty is 

investigated. A time-varying backoff approach is used to deal with the effect of parametric 

uncertainties. The computational burden due to the matrix factorization in large-horizon 

problems is reduced through PMP via the interplay of states, co-states and Lagrange 

multipliers for path constraints. Accordingly, PMP-based NMPC has a clear computational 

advantage over NMPC based on direct simultaneous methods, especially at the beginning of 

the batch. Furthermore, the PMP-based solution algorithm can be extended to track the active 

constraints. This way, further reduction in computational time is possible. 

      Chapter 6 extends the use of parsimonious input parameterization together with the 

indirect solution algorithms for the shrinking-horizon NMPC for batch and semi-batch 

processes. As a result, the complexity of the optimization problem and, therefore, also the 

CPU times at each sampling instant can be reduced significantly. This decrease in online 

computational effort is important for real-life implementations of advanced control methods 

to tackle the effect of computational delay in feedback. In addition, the proposed method can 

be applied to real-time embedded systems, where time constants are much faster but there are 

limitations with respect to computational power due to short battery life. The resulting scheme 

is applied to two case studies simulated in the presence of uncertainty. The effect of 

parametric uncertainty is dealt with via hierarchical control. Parsimonious sh-NMPC is 

compared to standard sh-NMPC in terms of both performance and robustness. The 

performance of parsimonious sh-NMPC is very similar to that of standard sh-NMPC in terms 

of optimal cost. But, significant reduction in real-time computational effort can be observed 

through the use of parsimonious sh-NMPC in both case studies.  

      In conclusion, the computational advantage of the indirect methods for the dynamic 

optimization and nonlinear model predictive control for constrained batch and semi-batch 

processes represents the main outcome of this thesis. Especially for high input discretization 

levels and large time horizons (the case in batch and semi-batch processes), indirect methods 

exhibit certain advantages regarding the reduction of the computational complexity. In the 

dynamic optimization community, it has usually been reported that there were no convergent 
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indirect algorithm available for constrained problems. Nevertheless, this thesis shows that 

indirect methods can be tailored to be convergent and quite effective in terms of 

computational time for both dynamic optimization and sh-NMPC. 

 

7.2 Outlook 
 

First of all, the results given in this thesis are obtained in silico, in other words via 

simulations. In order to demonstrate the applicability and advantages of the proposed indirect 

methods, real-time applications should be performed. In addition, the effect of computational 

delay for nonlinear model predictive control strategies is still quite under-investigated, both in 

terms of applicability and closed-loop control performance for real-life problems.       

      It can be stated that the computational superiority of the parsimonious sh-NMPC scheme 

makes it very suited for industrial applications of optimizing control. On the other hand, we 

should also note that advanced estimation/measurement techniques are always as important as 

the optimal control algorithms and they have a vital impact on the closed-loop performance. 

Equal attention should also be paid to the development of more sophisticated and powerful 

estimation/measurement techniques, as well as new measuring devices. 

      Tailored indirect methods can exhibit certain advantages for more complex applications 

such as stochastic optimization, mixed-integer, multi-level optimization, moving horizon 

estimation and multi-stage algorithms where fast implementations are needed. Moreover, 

application of indirect-based algorithms to the large-scale optimization problems and optimal 

experimental design can also turn out to be promising. The computational speed of these 

algorithms can be further increased by discretizing the state and co-state equations or using 

collocation on finite elements instead of relying on integration. Yet, it is still an open question 

how PMP-based NMPC performs for large-scale problems, where the state and co-states 

equations are integrated. 

      Finally, we are still in need of advanced optimization algorithms requiring less 

computational effort, power and CPU time even though computers and parallelization 

algorithms are being improved every day. This requirement applies not only to dynamic 

optimization and NMPC for batch and semi-batch processes, but also for the currently popular 

artificial intelligence and machine learning strategies together with ‘smart manufacturing’ and 

‘ internet of things’. Wireless systems and connected networks may require reduced 
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computational effort for operational reasons such as limited battery life. Tailored indirect 

methods may possess computational benefits for these areas as well. 
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APPENDIX 1: SIMPLE CASE STUDY SOLVED WITH THE FULLY 
PARAMETERIZED PMP -BASED METHOD  

 

      Consider the optimization of a batch reactor which includes only input bounds, and is 

directly taken from (Biegler, 2010). The dynamic optimization problem is formulated as 

follows (�� = 1): 
 

																																																																					max:(4) 				�%(��) 
s.t.           �b� = − �� + :°% � �b; 								�b(0) = 1 ; 

                       �%� = ��b; 																	�%(0) = 0 ; 0 ≤ �(�) ≤ 5  
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APPENDIX 2: MODEL PARAMETERS FOR PROBLEM 3.2.3 

 

Reaction Kinetics 

component 
½́  

(kJ/mol) 
�� Unit 

Òb 

(mL/mol) 

Ò% 

(mL/mol) 

ÒÀ 

(mL/mol) 

�b 113.08 4.904×1016 mL3/(g.min.mol2) 574876 3020413 11732838 

�% 136.89 4.878×1016 mL/(g.min) 38632 226214  

�À 76.11 5.411×108 mL2/(g.min.mol) 2661.2 7100 1280 

�Ó 102.26 2.958×104 mL2/(g.min.mol)    

�Ô 120.84 7.619×1010 mL3/(g.min.mol2)    

�Õ 113.08 3.951×1010 mL3/(g.min.mol2)    

-³�4    3.041×104 0 0.644 

Equilibrium Constants 

component /� (kJ/mol) /b	(kJ/mol/K) /%	(kJ/mol/K2) 

Δ�% -11.0034 0 0 

Δ�À -126.275 0.1266 6.803×10-6 

Solubility  

component �� (bar.mL/mol) ½́ ,�(kJ/mol) �K/	(min-1) 

H% 66400 -3.06 9.57 

CO 73900 -0.84 7.08 
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