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ABSTRACT

The trend toward high-quality, low-volume and higihded value production has put more
emphasis on batch and semi-batch processing dite iacreased flexibility of operations.
Dynamic optimization plays an important role towamtproving the operation of batch and
semi-batch processes. In addition, nonlinear mpagictive control (NMPC) is an important
tool for the real-time optimization of batch andrsdatch processes under uncertainty.
However, the fact that the transient behaviour a as the flexibility decrease with respect

to time leads to very challenging optimization peobs.

The preferred strategy to solve constrainedlinear dynamic optimization problems is
usually to use a so-called direct method. Nevezglbased on the problem type at hand and
the solution algorithm used, direct methods mayd lé@ computational complexity. In
particular, the large prediction horizons requiiadthe NMPC of batch and semi-batch
processes increase the real-time computationalrtefi@cause of expensive matrix
factorizations in the solution steps, especially taé beginning of the batch. The
computational delay associated with advanced cbntethods is usually underestimated in
theoretical studies. However, this delay may cbnta to suboptimal or, worse, infeasible

operation in real-life applications.

Alternatively, indirect methods based on Pgadin’s Minimum Principle (PMP) could
efficiently deal with the optimization of batch asedmi-batch processes. In fact, the interplay
between states and co-states in the context of RiMBt turn out to be computationally quite
efficient. The main indirect solution techniquethe shooting method, which however often
leads to convergence problems and instabilitiesezhlby the integration of the co-state
equations forward in time. It has been extensiatyued that indirect methods are usually
non-convergent and inefficient for constrained peots. This study proposes an alternative,
convergent and effective indirect solution techeigimstead of integrating the states and co-
states simultaneously forward in time, the proposigdrithm parameterizes the inputs and
integrates the state equations forward in time thedco-state equations backward in time,
thereby leading to a gradient-based optimizatiqgr@gch. Constraints are handled by indirect
adjoining to the Hamiltonian function, which allowseeting the active constraints explicitly
at every iteration step. The performance of thatsm strategy is compared to direct methods
through three different case studies. The reshitsvsthat the proposed PMP-based quasi-
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Newton strategy is effective in dealing with conospted constraints and is quite competitive

computationally.

In addition, this work suggests using theppesed indirect solution technique in the
context of shrinking-horizon NMPC under uncertairityhcertainties can be handled by the
introduction of time-varying backoff terms for thmath constraints. The resulting NMPC
algorithm is applied to a two-phase semi-batch tozafor the hydroformylation of 1-
dodecene in the presence of uncertainty, and if®rpeance is compared to that of NMPC
that uses a direct simultaneous optimization methidee results show that the proposed
algorithm (i) results in feasible operation forfdient uncertainty realizations both within
batch or from batch to batch, and (ii) is much dasthan direct simultaneous NMPC,
especially at the beginning of the batch. In additia modification of the PMP-based NMPC
scheme is proposed to enforce the active constréinteduce the real-time computational

effort further.

This thesis also details the combination mfiradirect solution scheme together with an
alternative parameterization scheme. The idea patameterize the sensitivity-seeking input
arcs in a parsimonious way so as to decrease thputational load of constrained nonlinear
dynamic optimization problems. The proposed meikddsted on the simulated examples of
a batch binary distillation column with terminalrfiy constraints and a two-phase semi-batch
hydroformylation reactor with a complex path coastt. The performance of the proposed
indirect parsimonious solution scheme is comparih those of a fully parameterized PMP-
based and a direct simultaneous solution approadhissobserved that the combination of
the indirect approach with parsimonious input patamzation can result in significant
reduction in computational time. Finally, in thi©mk, the application of parsimonious input
parameterization to the shrinking-horizon NMPC igygested in order to minimize the
computational delay in feedback. The proposed aubras illustrated on two case studies in
the presence of uncertainty. The results show tiiratsuggested parsimonious shrinking-
horizon NMPC performs very similarly to the stardiahrinking-horizon NMPC in terms of
cost, is computationally much faster than the satash@hrinking-horizon NMPC especially at

the beginning of the batch and is robust to plaoteh mismatch.



ZUSAMMENFASSUNG

Der Trend zu einer qualitativ hochwertigen, kleilwnigen und wertschdpfungsintensiven
Produktion hat Semi-Batch-Prozesse aufgrund ihidreren Flexibilitat der Betriebsweise
starker in den Vordergrund gerlckt. Dynamische i@igtiung spielt eine wichtige Rolle bei
der Verbesserung der Fahrweise von Batch und SeatehBProzessen. Dariiber hinaus ist die
nichtlineare modellpradiktive Regelung (NMPC) eirichtiges Werkzeug zur Echtzeit-
Optimierung von Batch und Semi-Batch-Prozessen ruktesicherheit. Das transiente
Verhalten sowie die zeitlich abnehmende Flexiliilitétnren jedoch zu sehr anspruchsvollen

Optimierungsproblemen.

Die bevorzugte Strategie zur LOsung von Ryolen im Zusammenhang mit der
nichtlinearen dynamischen Optimierung ist normalseelie Verwendung einer sogenannten
direkten Methode. Dennoch konnen direkte Methodsasierend auf dem vorliegenden
Problemtyp und dem verwendeten Losungsalgorithmms, einer Komplexitat der
Berechnungen fuihren. Insbesondere die grol3en Psegoozonte, die im NMPC von Semi-
Batch-Prozessen bendtigt werden, erhéhen den HeRgehenaufwand durch teure
Matrixfaktorisierungen in den Losungsschritten, besondere zu Prozessbeginn. Die
Verzogerung aufgrund der Berechungzeit, die mit enoein Regelungsmethoden verbunden
ist, wird in der Regel in theoretischen Studienewsthétzt. Diese Verzégerung kann jedoch

zu einem suboptimalen oder sogar nicht realisierb&etrieb in der Praxis fuhren.

Alternativ kdnnten indirekte Methoden, dief &ontryagin's Minimum Prinzip (PMP)
basieren, effizient mit der Optimierung von BatchduSemi-Batch-Prozessen umgehen.
Tatsachlich kdonnte sich das Zusammenspiel von zdstdund Ko-Zustdnden im Rahmen
von PMP rechnerisch als effizient erweisen. Diehtigste indirekte Losungsmethode ist das
Schiess-Verfahren, das jedoch haufig zu Konvergedm@men und Instabilitaten fuhrt, die
durch die Vorwarts-Integration der Gleichungen d&r-Zustanden verursacht werden.
Generell wurde ausgiebig argumentiert, dass intdrellethoden in der Regel nicht
konvergent und ineffizient fur beschrankte Problesimal. Diese Arbeit schlagt jedoch eine
alternative, konvergente und effektive indirektesiudgstechnik vor. Anstatt die Zustande und
Ko-Zustande gleichzeitig vorwarts in der Zeit zutegrieren, parametrisiert der
vorgeschlagene Algorithmus die Eingéange und ingggdie Zustandsgleichungen vorwarts in
der Zeit und die Ko-Zustandsgleichungen ruckwantsler Zeit, was zu einem Gradienten-
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basierten Optimierungsansatz fiihrt. Nedenbedingungeerden durch die indirekte

Anbindung an die Hamilton-Funktion behandelt, dies eerlaubt, die aktiven

Nedenbedingungen bei jedem Iterationsschritt eit@iz erfullen. Die Leitungs-fahigheit der
Losungsstrategie wird anhand von drei verschieddradistudien mit direkten Methoden
verglichen. Die Ergebnisse zeigen, dass die vohjegene PMP-basierte Quasi-Newton-
Strategie effektiv im Umgang mit komplizierten Nafledingungen ist und rechnerisch
durchaus konkurrenzfahig ist.

Dartber hinaus schlagt diese Arbeit die Vewuang der vorgeschlagenen indirekten
Losungstechnik im Rahmen der shrinking horizon NMR@ter Unsicherheit vor.
Unsicherheiten konnen durch die Einfuhrung von vasidblen Backoffs fiur die
Pfadbeschrankungen beseitigt werden. Der resultderédlMPC-Algorithmus wird auf einen
zweiphasigen Semi-Batch-Reaktor fur die Hydrofoierying von 1-dodecen in Gegenwart
von Unsicherheit angewendet und seine Leistungemém NMPC-Algoritmus verglichen,
der eine direkte simultane Optimierungsmethode gadet. Die Ergebnisse zeigen, dass der
vorgeschlagene Algorithmus Ergebnisse im machbarBetrieb fir verschiedene
Unsicherheits realisierungen erzielt und zwar sdvimmierhalb des Batch oder von Batch zu
Batch. Er ist viel schneller als der direkte siranéé NMPC- Algoritmus, vor allem zu Beginn
des Batch. Daruber hinaus wird eine Modifikations d@MP-basierten NMPC-Schemas
vorgeschlagen, um die aktiven Nedenbedingungen hdusetzen und den Echtzeit-

Berechnungsaufwand weiter zu reduzieren.

Diese Arbeit beschreibt auch die Kombinateines indirekten Losungsschemas mit
einem alternativen Parametrierungsschema. Die ldeees, die sensitivitditssuchenden
Eingédnge in einer sparsamen Art zu parametrisienem,die rechnerische Belastung von
nichtlinearen dynamischen OptimierungsproblemereruNiedenbedingungen zu verringern.
Die vorgeschlagene Methode wird am simulierten fdelsn einer Batch-
Binardestillationskolonne mit endstandigen Reirdaiforderungen und einem zweiphasigen
Semi-Batch-Hydroformylierungsreaktor mit komplex&fadbeschrankung getestet. Die
Leistung des vorgeschlagenen indirekten sparsanisungsschemas wird mit der eines
vollstandig parametrisierten PMP-basierten und sidieekten simultanen Lésungsansatzes
verglichen. Es wird gezeigt, dass die Kombinati@s ¢hdirekten Ansatzes mit sparsamer

Eingabeparametrierung zu einer signifikanten Verkiig der Rechenzeit fihren kann.
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Schlief3lich wird in dieser Arbeit die Kombtima von einfachen Lésungsmodellen mit
sparsamer Eingangsparametrierung im Rahmen dexkstgihorizon NMPC vorgeschlagen,
um die rechnerische Verzégerung der Ruckkopplungumieren. Lésungsmodelle nutzen
die nominale optimale Losung, um sparsame Paran@tgen (insbesondere flr sensitiv-
suchende Loésungs-bereiche) vorzuschlagen, dienar schnellen Optimierung fuhren. Der
vorgeschlagene Ansatz wird anhand von zwei Falistuth Gegenwart von Unsicherheit

veranschaulicht.
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Chapter 1: Introduction

Science cannot solve the ultimate mystery of
nature. And that is because, in the last
analysis, we ourselves are a part of the
mystery that we are trying to solve.

Max Planck (1858 — 1947)

1 INTRODUCTION

1.1 Motivation and Scope

Batch and semi-batch processes have wide applicatgas in the specialty industries for the
production of low-volume, high-added-value product$ypical examples are the
pharmaceutical, food, fine chemical and microetettr industries. Batch processing has
often been used to scale-up processes from theal@oy to large-scale industrial facilities.
However, in recent years, the trends in the proceisstry toward high-tech, low-volume and
high-added-value products boosted the interesemi-batch processing. In addition, these
processes often represent flexible production enwrents. Accordingly, the optimal
operation of semi-batch processes has moved frohedséing (better flexibility) to
optimization (better profitability) (Bonvin, 199&rinivasan et al., 2003b; Bonvin, 2006;
Marchetti et al., 2006; Nagy et al., 2007).

The optimal operation of batch and semi-bgtcbcesses requires overcoming many
challenges. Unlike continuous operation, batch sewmhi-batch processes exhibit inherently
transient behaviour as well as strong nonlineaiitge the process does not operate around a
steady operating point. In other words, batch apthisatch processes have start-up
behaviour. Moreover, the presence of both pathtandinal constraints and tight product
quality limits result in challenging and non-convegtimization problems. In addition, the
lack of accurate models due to the limited amotieixperimental data results in considerable
uncertainty and hence hinders the usage of offtomeputed optimal profiles. Furthermore,

batch and semi-batch processes usually have cmstran end-product quality, and the



ability to influence the process (or flexibilityjten decreases with time. If there is a deviation
in product quality, the charge has to be almostagbvdiscarded (Terwiesch et al., 1994;
Bonvin, 1998; Srinivasan et al., 2003b; Jung et &015). Hence, the open-loop
implementation of off-line computed optimal contpiofiles may result in sub-optimal, or
worse, infeasible operation and the loss of thethaMoreover, the operating conditions
might change from batch to batch and cause unaadeptariations of product quality.
Consequently, the application of online, measurdrbased, optimizing feedback schemes is
of great importance for the optimal operation ofchaand semi-batch processes (Eaton and
Rawlings, 1990; Ruppen et al., 1995; Ruppen efl@P8; Bonvin et al., 2001; Bonvin, 2006;
Kadam et al., 2007; Welz et al., 2008; Mesbah.ef8ll1; Bonvin and Francois, 2017).

In summary, the important challenges related the optimal control (dynamic

optimization) of batch and semi-batch processedeastated as follows:

» Transient start-up behaviour

» Strong nonlinearity

* No-steady state, classical PID methods are notcaiyhé
» Tight product-quality limits

* Reduction of flexibility with time

* Irreversible behaviour

» Considerable plant-model mismatch

The nonlinear dynamic optimization of bateid aemi-batch processes is becoming more
and more popular due to industrial competitiveraass strict environmental regulations. If a
reliable dynamic process model is available, dywaaptimization (or optimal control) is
considered as a promising method for reducing pribolu costs, improving product quality
and meeting safety as well as environmental reiguist Moreover, nonlinear dynamic
optimization is at the core of nonlinear model pecgde control (NMPC) and plays an
important role in terms of feedback optimizing dohtThe available methods in the literature

to solve dynamic optimization problems can be digssas direct and indirect methods.

Direct methods are usually the selected mlaee to solve the constrained nonlinear
dynamic optimization problems. Basically, they ceriihe dynamic optimization problems

into nonlinear programming problems (NLPs). However large time horizons (which is the
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case for the batch and semi-batch processes)tahdasd NLP algorithms might turn out to
be computationally demanding due to the requiredrimmdactorizations related with the
solution steps (Cannon et al., 2008; Biegler, 20T0)s issue will be discussed in greater

detail in the next sections.

Model predictive controller (MPC) has beerdi®xtensively in industry (Garcia et al.,
1989; Qin and Badgwell, 2003). On the basis of asfnoften linear) process model, these
controllers predict the future behaviour of thetedaand outputs. At each iteration, the
algorithm updates the initial conditions using meaments and solves a dynamic
optimization problem for some cost function suchresminimization of a tracking stage cost
or the maximization of a final cost. Only the figgart of the computed optimal inputs is
implemented, then the horizon is shifted by one@erg time and the procedure is repeated
iteratively. Since MPC is capable of addressingtivaliable constrained nonlinear systems
and can use different types of models and perfoceanmiteria, it possesses a suitable and
flexible structure for real-time optimizing contr@Diehl et al., 2002; Adetola and Guay,
2010; De Souza et al., 2010; Huang et al., 2010idet al., 2014). A detailed discussion and

survey on MPC can be found in (Morari and Lee, 3999

Due to the strong nonlinear behaviour of batnd semi-batch processes, linear MPC is
often not the method of choice. Moreover, batch senhi-batch processes usually require
strictly constrained operation since the abilityinluence the performance and feasibility of
the process decreases with time (Bonvin, 1998)s Wotivates the use of shrinking-horizon
nonlinear model predictive controllers (NMPC), fehnich the optimization is performed with
respect to the full time horizon and includes bpé#th and terminal constraints (Nagy and
Braatz, 2003; Nagy et al., 2007).

Several studies on the applicability of NM#@atch and semi-batch processes have been
reported in the literature. (Lakshmanan and Arkli899) used linear parameter-varying
models for the estimation and control of nonlinéatch processes. (Seki et al., 2001)
proposed an NMPC structure for the industrial agpion on polymerization reactors. (Nagy
and Braatz, 2003) studied a robust NMPC schemebtfich crystallization, whereby
parametric uncertainties are taken into accounti@tp. (Valappil and Georgakis, 2002)
suggested a min-max NMPC scheme with successigarliration for the control of the end-
point properties in batch reactors. (Nagy et &1Q7) studied the real-time implementation of
sh-NMPC to industrial batch reactors. (Mesbah et26111) compared different optimization
algorithms for sh-NMPC of a semi-batch crystallizgmucia et al., 2013) suggested a multi-



stage NMPC scheme to deal with uncertainties, asdeaario-tree approach was used to
optimize a semi-batch polymerization reactor. RégefJang et al., 2016) proposed a multi-
stage NMPC scheme for semi-batch reactors usinkpffacon path constraints. (Binette and
Srinivasan, 2016) compared the performance ofiffietracking objectives for the NMPC of
batch processes without parameter adaptation. Zwboal., 2017) discussed the online

implementation of NMPC to a semi-batch pilot-plaapolymerization reactor.

Shrinking-horizon nonlinear model predictiv@ntrol (sh-NMPC) has been proposed as a
successful platform for the optimal operation ofmséatch processes, with the prediction
horizon always being until the final batch time §Bxy and Edgar, 1992; Bonvin, 1998, 2006;
Aydin et al., 2017a). The idea of sh-NMPC is ilhaséd in Fig. 1.1. The nonlinear dynamic
optimization problem is solved always until theafitime, but only the first parts of the inputs
are implemented. Then, the states are measurestiorated, the horizon is shrunk by the

sampling time and the same procedure is repeatddhenend of the batch.

Unlike its linear counterpart MPC, NMPC takiet account a nonlinear model (usually
first-principles models) to perform dynamic optiin, which results in challenging, non-
convex and constrained nonlinear optimization peotd (NLP). Moreover, as mentioned
before, to solve these problems using direct methed-NMPC requires expensive matrix
factorizations due to large prediction and controtizons (Cannon, 2004; Cannon et al.,
2008).

Advanced fast solution algorithms are esaéimi terms of the application of NMPC or
moving horizon estimation (MHE) in real time. Fasal time update usually increases the
performance of the closed-loop optimizing contribher by tackling the effect of feedback
delay or by enabling faster sampling to increagemopation frequency (Zavala et al., 2008a,
2008b; Huang et al., 2009; Zavala and Biegler, 2008If et al., 2011; Wolf and Marquardt,
2016; Cao et al., 2017). Note that it might sometinibe possible to find a compromise
between computational time and performance betvieear MPC and NMPC for steady-
state processes (Gros et al., 2016). Yet, for batch semi-batch processes, linear MPC is
usually not preferred. Unfortunately, there is glsva certain computational time associated
with the solution of the corresponding non-conveatiraal control problems in real-time,

which in turn may lead to non-negligible feedbaekag in closed-loop operation.
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Figure 1.1.The illustration of sh-NMPC.

This delay may result in suboptimal, or worse, asible operation (Findeisen and Allgéwer,
2004; Gros et al., 2016). Hence, it is of greatongnce, and still an open research field both
in academia and industry, to reduce the CPU timede@ for the efficient real-time
implementation of NMPCs (Wolf and Marquardt, 20169r a deep review of the broad class
of fast computational methods for NMPC (suboptimatplicit, hierarchical, sensitivity-
based), the reader is referred to (Wolf and Mardj,1&2016).

Indirect methods have been used to solve fBGlems in the literature. (Cannon et al.,
2008) designed a MPC strategy for input-constralirexhr systems, whereby the inputs are
represented in terms of co-states and the probdesolved using active-set methods. The
matrix factorizations performed by general direalvers can be efficiently replaced by the
cooperation of states, co-states and Lagrange pheis for the path constraints using PMP.
This way, the complexity per iteration increase$ydmearly with the length of the time
horizon, which can be a computational advantageb#ich and semi-batch processes that
typically have large prediction and control horigaue to the shrinking-horizon approach.
However, until very recently, there did not existast convergent method to solve path-
constrained optimal control problems using PMP (Hatral., 1995; Chachuat, 2007). In this

thesis, firstly, an indirect, convergent and gratieased dynamic optimization algorithm for



the non-control affine and constrained batch anui-batch processes is proposed. The
algorithm uses indirect adjoining to deal with patinstraints, which allows the explicit and
fast computation of the inputs to meet the pattstramts at each iteration step.

Here, in order to provide more insight abth# relation between the discretization level
and the computational time, a simple problem whiatludes only input bounds is solved
using the proposed novel indirect algorithm. Theesponding computational times and the
iteration profiles are given in Fig. 1.2 and Fig3,1respectively. For more detail about the
problem, the reader is referred to Appendix 1. Nt a fixed step size is used in this
problem. Although the speed of the algorithm canirfmeased via adaptive line search
algorithms, it is clear that the computational timereases almost linearly when the grid gets
finer. In addition, all solutions exhibit almosetsame optimal cost.

A direct algorithm might be faster than thdARbased method for input discretizations
less than 50 elements. However, if we need laigee horizons or finer input discretization
levels to get more accurate solution (usually tasecfor path constrained batch and semi-
batch processes), PMP can turn out to be much effaetive. Direct methods exhibit cubical
increase for constrained problems in computatitine as the time horizon or discretization
level becomes larger. The computational performantehe direct and the proposed indirect

methods will be compared in greater detail for mmplex problems in the next sections.
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Figure 1.2.The corresponding CPU times as the input grid hets.
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Figure 1.3.The convergence profiles for the toy example.

The computational advantage of the propos&tP Hormulation in the context of
shrinking horizon nonlinear model predictive cohtrepresents another main motivation of
this study. It will be proposed to apply the nowid convergent PMP-based solution
algorithm to the shrinking-horizon NMPC pnbnlinearbatch and semi-batch processes under
uncertainty and in the presence of nonlinear ptatesand mixed-state path constraints. The
effect of uncertainties is handled by the introdurctof time-varying backoffs (Visser et al.,
2000; Srinivasan et al., 2003a; Shi et al., 208@)ce the prediction horizon is always until
the final time, PMP can be expected to performebethan the classical direct methods,

especially at the beginning of the batch.

The optimal inputs of batch and semi-batatcpsses can be characterized using different
arcs. An optimal arc can be either on an input do@n,;,, Umax), ON @ path constraint
(upaen), OF inside the feasible region as a sensitivigksng arc ¢.,). It is usually difficult
to accurately compute the fine shapes of sensisgeking arcs due to their lack of
sensitivity. As a result, simplified solution mosl@an be introduced, in which the inputs and
most importantly the sensitivity-seeking ares,f;) are parameterized parsimoniously using
switching times and low-order polynomials. This w#ye number of decision variables and
the complexity of the optimization problem can leduced significantly. Thus, the required
CPU time is expected to decrease significantlyhwiggligible reduction in the optimal cost
(Welz et al., 2005; Schlegel et al., 2005; Welalet2006; Aydin et al., 2017b). Another main
contribution of this work is to detail the combiiwat of these parsimonious solution models

with indirect algorithms in the context of dynanaigtimization and shrinking horizon NMPC.



In the sh-NMPC case, the optimization is perforraedach sampling instant for the full time
horizon but only the first part of the optimal iripus applied to the process. Parsimonious sh-
NMPC approximates the fine shapes of the optimautsm at each sampling instant.
Nevertheless, the optimal closed-loop behaviouddcdne captured accurately. In addition,
since the full time horizon is taken into accouhie loss in ability to influence the batch
outcome (the loss of flexibility), can be preventedile still having a significant reduction in
CPU time. Such parsimonious input parameterizagireme will be documented to design a
fast computation method for the optimal operatiéhatch and semi-batch processes using
sh-NMPC and to reduce the deteriorating effecthef tcomputational delay in closed-loop

operation.

1.2 Contribution of the Thesis

The contributions of this thesis can be summaraztbllows:

» The algorithmic differences between the direct amtirect (PMP-based) dynamic
optimization methods are compared in detail.

A convergent and effective PMP-based algorithm ieppsed for the dynamic
optimization of constrained batch and semi-batdc@sses. The algorithmic steps and
details are discussed in detail.

* The proposed indirect dynamic optimization methedextended to be used for the
shrinking horizon NMPC for batch and semi-batch cggses under parametric
uncertainty.

» Constraint tracking is combined with sh-NMPC stanetin order to further reduce the
corresponding real-time computational effort.

* The proposed indirect dynamic optimization metr®duggested to be united with an
alternative andparsimoniousinput parameterization scheme in order to further
decrease the computational complexity of the dynaptimization problems.

» The performance of the suggested parsimoniousecidmethod is tested for the sh-

NMPC of batch and semi-batch processes in the peesef parametric uncertainty.
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1.3 Structure of the Thesis

» Chapter 2 compares the direct and indirect metlasdaell as the available solution
algorithms and provides background information @lbe proposed novel indirect
algorithms in this thesis.

» Chapter 3 suggests a convergent and effectiveeictdagorithm that is suited for the
dynamic optimization of constrained batch and skatch processes. Detailed
information and insight about the proposed algariih given and three different case
studies are investigated to compare the computdtiperformance of the proposed
indirect method as opposed to a classical directiséaneous method.

* Chapter 4 discusses the combination of the propasddect algorithm with
parsimonious input parameterization in order taioedthe computational complexity
of the dynamic optimization problems. Detailed mmfi@ation about the proposed
parsimonious indirect algorithm is documented. e case studies given in Chapter
3 are re-solved using the proposed parsimonioubadet

* Chapter 5 extends the PMP-based method given ipt€h8 for the sh-NMPC for
batch and semi-batch processes under uncertaimg. d the examples studied in
Chapter 3 (Hydroformylation of 1-dodecene) is sielécand the performance of the
PMP-based NMPC is investigated through closed-lsiopulations in terms of both
computational speed and robustness to plant-moidehatch.

 Chapter 6 incorporates the application of the psedo parsimonious indirect
algorithm to the sh-NMPC for batch and semi-batatesses in order to decrease the
computational complexity significantly. Two caseudies are investigated under
parametric uncertainty and the performance of thaesipmonious and fully-
parameterized methods are compared through clesgdsimulations in terms of both
computational speed and robustness to plant-moidehatch.

» Chapter 7 summarizes and concludes this study aggests further research areas as
well as different types of applications.
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Chapter 2: Dynamic Optimization: Methods and Altoris

| believe in intuition and inspiration.
Imagination is more important than
knowledge. Knowledge is limited, whereas
imagination embraces the entire world,
stimulating progress, giving birth to
evolution.

Albert Einstein (1879 — 1955)

2 DYNAMIC OPTIMIZATION
METHODS AND ALGORITHMS

This chapter provides insight about the availabj@adnic optimization algorithms and

methods in the literature.

The dynamic optimization problem for batcld eaemi-batch processes is often stated as

follows (Srinivasan et al., 2003b):

min ] := ¢(x(tf))

tf,u(t)

st. x=F(xu8), x(0)=x, (2.1)

S(,u,0) <0, T(x(tf))<0

whereJ is a scalar performance index which can alway$obmulated with respect to the

states at the final timg, ¢ is the objective function is then,-dimensional state vector with

the corresponding initial conditiong, u is then,-dimensional input vectog, is the vector of
model parameterss is thens-dimensional vector of inequality path constraititat include
input bounds, and is the nr-dimensional vector of inequality terminal congttai The
nonlinear differential equations describing the tsys dynamics are included in the
formulation as equality constraints. The solutioatimods that are available in the literature
can be divided into two major categories, hameig, direct and indirect (or PMP-based)

approaches (Srinivasan et al., 2003b).

11



2.1 Direct Methods

In direct optimization approaches, the solutionhodblogy is applied directly to the original
optimization problem given by Eq. 2.1, by usinghertsequential or simultaneous numerical
techniques.

In the class of direct sequential methodsn@ also as direct single shooting), the input
vector is parameterized using polynomial functidhs,state equations are integrated from the
given initial conditions up to the final time, wieethe states are needed for evaluating the
objective function. This way, the dynamic optimiratproblem is converted into a nonlinear
programming problem (NLP). Then, the optimal inparameters are computed by a NLP
solver (Vassiliadis et al., 1994;Schlegel and Mardy 2006b). The use of time integration is
the reason for calling the sequential techniques‘feasible-path methods”. However,
depending on the type of the problem and the NUPes@vailable, a sequential method can
be slow and thus computationally expensive, ini@agr while dealing with state path
constraints (Srinivasan et al., 2003b). Furthermoredirect sequential methods, the input
profiles are often represented using a coarse dization grid to ensure computational
efficiency (Schlegel and Marquardt, 2004). Nevddb®e please note that a fine input
discretization might be needed to accurately detitching times and satisfy path

constraints.

Another direct solution algorithm is the diremultiple shooting approach, which
represents a mid-way between sequential and sinadtes algorithms. In this approach, the
time interval is divided into stages, and the alitconditions of the stages are taken as
decision variables for the optimization problemisTirocedure is an ‘infeasible-path’ method
but the integration is as accurate as in sequemgdhods (Srinivasan et al., 2003b). Direct
multiple shooting has been used extensively in NM#?@blems (Keil, 1999; Bock et al.,
2000; Diehl et al., 2002; Diehl et al., 2006; Sehadt al., 2007; Findeisen et al., 2007). In
addition, (Diehl et al, 2005) suggested an effitieal-time iteration scheme which uses the
idea of direct multiple shooting. Neverthelessedirmultiple shooting is not in the scope of

this thesis.

In contrast, in the class of direct simul@me methods (DSM), the entire optimization
problem (system equations, input profiles, objectiunction and constraints) is discretized
with respect to time, using for example collocatiechniques, thus resulting in a large system

of algebraic equations. Then, an NLP solver sinmaitasly interpret the governing dynamic

12
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system equations and optimizes the cost (CervamesBiegler, 1998; Biegler et al., 2002)
(Biegler, 2007). Since the dynamic system equataresnot integrated, but approximated at
discrete time instants, this approach is referred“iafeasible-path method”. Although
simultaneous techniques allow the efficient solutab large-scale optimization problems, the
trade-off between approximation and optimizatiorstrhe considered carefully (Srinivasan et
al., 2003b). In addition, the method might req@omd initial guess so as to guarantee robust
convergence due to the discretization of the sttelsconstraints. The NLP solver ‘Ipopt’ is
one of the state of the art for both sequential sinmtlltaneous methods nowadays, and it

implements an interior point NLP algorithm (Wachaed Biegler, 2009).

Direct simultaneous methods were reportebdoeffective for the optimization and
NMPC of large-scale problems (Cervantes and Biedl@98; Biegler et al., 2002; Wachter
and Biegler, 2006; Kameswaran and Biegler, 2006gRr, 2007; Huang et al., 2009; Jang et
al., 2016). Moreover, (Zavala and Biegler, 200%)aduced an ‘advanced-step’ DSM to deal
with the computational delay associated with timeetirequired to compute the solution in
real-time implementations. Later, (Huang et al.1®0 extended this method for the

combination of NMPC and moving horizon estimation.

2.1.1NLP Solution Algorithms

Upon applying the direct solution algorithms, thy@amic optimization problem given in Eq.
2.1 is reformulated into the following general N{d®atic) as follows:

mxin f(x)
st. gx)<0 2.2)
h(x)=0

wherefis the objective functiory the inequality constraints atdthe equality constraints.

The Lagrangiark of the given NLP is defined by:

LCx, 2, 1) =f () + A0, A, 1) Th(x) + T g (x) (2.3)

where 1 andu are the Lagrange multipliers of the equality amequality constraints,
respectively. Assuming that is alocal minimizer the first order necessary conditions of
optimality (also referred as the Karush-Kuhn-Tucke€KT, conditions) can be written as

follows:

13



aL *’/1*’ * . .
QLA 0 stationary conditions

dx
gx) <0 primal feasibility conditions
h(x) =0 primal feasibility conditions (2.4)
u =0 dual feasibility condit®n
wT gx)=0 complementarity slackness conditions

and(x*, A%, u*) is referred as a KKT point assuming that condgigiven in Eq. 2.4 hold
(Sager, 2005; Fletcher, 2013). The two common swiwlgorithms for such NLP problems,
sequential quadratic programming (SQP, active-aed) interior point (barrier-type), will be

discussed in the next section.

2.1.1.1Sequential Quadratic Programming (SQP)

The general idea of the SQP method is to solvecaxppate quadratic problems of the

original NLP successively in order to convergehe optimal solution. This method can be
categorized as an active-set type (Goldsmith, 1B89gs and Tolle, 2000; Sager, 2005). The
NLP problem given in Eq. 2.2 can be reconstructea@diding the slack variablesg) (for the

inequality constraints as follows:

min  f(x)
s.t. gx)+z=0,2z=20 (2.59)
h(x)=0

Upon defining the extended Lagrangigl), (it can be shown that solving Eq. 2.5a is

equivalent to solve the following system of equasio

n;izn L(x,z,1,v) = f(x)+2ATh(x) + vT(g(x) + 2)

s.t. gx)+z=0,2z=20 (2.5b)

h(x)=0

wherev is also the Lagrange multiplier vector for theorefulated equality constraints. The
standard approximation (linearization) method fug SQP is the Taylor series expansion to

the original NLP. Given an arbitrary value of tharimables f,z,) and the Lagrange
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multiplier vectord4,, vy), the approximated quadratic problem for a chanrfed;,) can be

written as follows:

1
min - —dy' Ve L0t A viddy + Vf (1) dy
S.L. Vg(xk)de + dz = _(g(xk) + Zk) (2-6)

Vh(x,)"dy = —h(xy)

dz = —Zy

Please note that in most cases the Hessian nVatrix(x,, A, vi) is approximated using
finite differences or BFGS-like algorithms to apyiroate the original Hessian as positive
definite (Boggs and Tolle, 2000; Biegler, 2010).eTproblem given in Eq. 2.6 should be

solved by applying Newton’s method, which requsebring the following linear system:

[vxx['(xk; Ak) vk) 0 Vh(xk) Vg (xk)] dx _vf(xk)
| VA" 0 0 0 ||d. _ —h(xx) (2.7)
Vg ()T I 0 0 J da —g(xp) — 2
0 Vi 0 Z, 1ld, —Zy Vg

whereV,, andZ, are diagonal matrices including andz,. Then, the new iteration can be

obtained as follows:

X1 = Xp + dy,

Zxr1 = Zx + dy, (2.8)
A1 = A + dy,
Vks1 = VU + dy

The steps given in Eq. 2.7 and Eq. 2.8 ditevied recursively until the optimal solution
is obtained. The reader is referred to (Biegled@Oor specially tailored SQP algorithms
applicable to large-scale problems. Globalizatibrihe algorithm can be carried out using

line search and filter methods along with the défeces computed from Eqg. 2.7.

2.1.1.2Interior-Point Method

Interior-point methods represent an alteugatio active-set strategies by relaxing the

complementarity conditions and solving the relaypedblems. The basic idea is to include
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log-based penalty terms to the objective functiowrder to force the convergence inside the
feasible region (Wright, 1997). First of all, tdustrate the basic idea of the algorithm, the
problem given by Eq. 2.2 is re-written by modifyitige inequality constraints as follows
(Biegler, 2010):

min  f(x)
X
st h(x)=0,x=>0 2.9)
Then, the penalty term is included into the probkeroh as:
Ny
min 10 = £~ ) In(x) (2.10)
i=1

sth(x)<0,x>0
wheren, is the number of inequality constraints in thegmral problem ang is the penalty
term. Note that the log-barrier term becomes untedratx = 0. Thus, the path generated at
each optimization iteration must lie in the styciositive region for the reformulated
inequality constraints. As the barrier-parametduealecreases, the solution approaches to
the solution to the problem given by Eq. 2.9. Tdotution satisfies the first-order conditions
given as follows:

Vi(x) +Vh(x)A— uX~te=0 (2.11)

h(x)=0

whereX = diag{x},e = [1,1,...,1]7. Eq. 2.11 is known as the primal optimality corudis.
However, it is usually difficult to solve the ditdzarrier problem due to the high nonlinearity.

This motivates the introduction and solution ofrianal-dual system given as follows:

Vf(x) +Vh(x)A— u=0 2.12)
Xu= ue
h(x)=0
whereu are the strictly positive dual variables for tharrer problem replaced with the
barrier term. The substitutions and linearizatioralde the straightforward solution of the

problem (Biegler, 2010). Given an iterdte,, A, ux), the search directions can be computed

as follows:
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VixrL(Xpe, A, vi) - Vh(xy) —I]rd, VF(xx) + VRO ) A — uy
Vh(xk)T 0 0 dl] = — h(xk) (213)
Uty 0 X Ldy Xy — pe

where X = diag{x} andU = diag{u}. Afterwards, iterations are recursively performed,
similar to Eq. 2.8, until the optimal solution isuhd. Line search and filter algorithms are
very important for the efficient globalization amehplementation of the aforementioned
method. For more detailed information, the reasleeferred to (Biegler et al., 2002; Wéachter
and Biegler, 2006; Biegler, 2010).

2.1.2Computational Aspects

The iteration steps related to the direct methedgiire the solution to the equation systems
given in Eg. 2.7 and in Eq. 2.13, which might tout to be relatively expensive to factorize
for certain types of problems and constraints amddrge discretization levels, although the
system is linear. This holds for using both acse¢-and barrier type methods. The compexity
of the iteration usually increases cubically asttime horizon or the input discretization level
increases due to the expansion of the matrix sys{gannon, 2004; Cannon et al., 2008).
Several sensitivity-based methods have been prdpasethe literature to reduce the
computational requirements of NLPs in the contéxXXIMIPC. These methods usually rely on
previously computed solutions and NLP sensitiviti@iehl et al., 2002) suggested a real-
time iteration scheme, in which, at each samplimgtinstead of a full NLP, only a quadratic
problem around the solution of a previous QP igexhl Another sensitivity-based method of
choice is the advanced-step NMPC, which was prapbse(Zavala and Biegler, 2009). In
this method, the NLP is solved in advance with eespo a predicted initial state. Then, as
soon as the new state measurements (or estimatespt@ined, the NLP solution is updated
using a fast sensitivity-update step and the IP&&er (Wéachter and Biegler, 2006; Jaschke
et al., 2014; Suwartadi et al., 2017). Successfiplementations have been documented in the
literature, in particular for large-scale procesgésvala et al., 2008b; Huang et al., 2009).
However, the performance of these sensitivity-basethods is still an open question for
batch and semi-batch processes that are characteoyz high nonlinear effects and large
perturbations. For a detailed review on the ree@vances in the sensitivity-based NMPC,

the reader is referred to (Biegler et al., 2015).
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In contrast, indirect-based methods can lagted to avoid these expensive factorizations
by interplaying the inputs and Lagrange multipliers andy, instead of recursively updating
the Lagrange multipliers through Newton-type salutsteps. Consequently, the complexity
of the optimization can be tailored to increaseaatiinearly with increasing horizon lengths
(Cannon et al., 2008; Aydin et al., 2017a). Indirewethods will be detailed in the next

section.

2.2 Indirect Methods

In indirect optimization methods, the optimizatigproblem is reformulated as the
minimization of a Hamiltonian function (Bryson, 17 The reformulated problem is then
solved to satisfy the necessary conditions of oglitgn(NCO) using Pontryagin’s Minimum

Principle (PMP). This reformulation results in nidoint boundary value problems (MT-
BVP) for constrained problems. For simple problethg, optimal solution can usually be
computed analytically. More complex and, in pafacu constrained problems require a
numerical solution which is often computed using #nhooting method (Miele, 1978). The

necessary conditions of optimality can be stateflésys:

Assuming Problem 2.1 has a feasible optimal saluti@.) with state profilex*(.), it is
stated that there exist Lagrange multipli@éfg.), u*(.) andv* such that following equations
hold fort e (to, tf):

H*(x*(6),u"(®), '), w* (@) = 2TF(x* (), w* (1)) + wT (&) S(x*(6), u* (1)),

x*(t) = Hy(x*(t), u"(t), A" (1), u*(t)), states

AT () = —H, (x*(t), u*(£), 1 (t), u*(t)), co-states

x*(ty) = xg, initial conditions

2T () = Z—fo + v*T %Lf, terminal sensitivities

0 = Hy,(x*(t), u"(t), A" (t), u* (1)), path sensitivities (stationarity)
0=>S(x"(t),u (1), path feasibility (2.14)
0 = wT(t) S(x*(t), u* (), path feasibility (compl. slackness)

0 < u*(t), dual path feasibility

0 = T(x*(tf)), terminal feasibility

0 = v T(x*(tr)), terminal feasibility (compl. slackness)
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0<v5 dual terminal feasibility

H(tf) =0, transversality condition

whereH is the Hamiltonian function) is then,-dimensional vector of Lagrange multipliers
(also called co-states or adjoints) for the systequations,® is the vector of model

parametersy is thens-dimensional vector of Lagrange multipliers for th&th constraints,

andv is thenr-dimensional vector of Lagrange multipliers for tieeminal constraints. For

the detailed derivation of NCO, the reader is ref@to (Biegler, 2010).

The PMP approach has been applied to vaBagsmeering optimization problems since
the 70’s. (Jaspan and Coull, 1971) suggested adaoyrcondition iteration (BCI) solution
scheme for unconstrained chemical reactor optimozgtroblems. For input-affine systems,
(Visser et al., 2000) proposed an online optimizstigicture that uses a switching function
along with the PMP-based optimality conditions;ntha cascade optimization scheme that
tracks the necessary conditions of optimality wesighed and tested on a fed-batch penicillin
fermentation process. (Cannon et al., 2008) dedignmodel predictive control strategy for
input-constrained linear systems using PMP. Indbpisroach, the inputs can be represented in
terms of co-states, and the problem can then hedalsing active-set methods. This work
represents a nice example for the interplay betvleerstates and co-states in order to reduce
the complexity of the optimization problem. (KimdaRousseau, 2012) used PMP for the
optimal control of hybrid electric vehicles. (Pataand Vemuri, 2005) proposed an end-point
dynamic optimization scheme using PMP for semiiibgitocesses with a single reaction.
(Roubos et al., 1997) studied the use of PMP witlhuraconstrained gradient-based solution
technique for the optimization of fed-batch biokmagji problems. In order to account for path
constraints, they penalized the value of the objedtinction in case of a constraint violation.
(Ali and Wardi, 2015) implemented a shooting methadhere the inputs are expressed
analytically in terms of the states and co-stagannemann-Tamas and Marquardt, 2012)
used PMP to verify the inputs computed by a dissgjuential method. For a given optimal
control problem, they computed “the true solutiarsing a PMP-based multiple shooting
algorithm for the purpose of verifying the resulif the direct sequential optimization
algorithm. Recently, (Zhang et al., 2017) appliedFPin the context of MPC for a plug-in
vehicle. In this method, the values of the co-statee determined by trial and error, which

may turn out to be non-convergent for some problems
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Tracking the necessary conditions of optitpgdNCO tracking) has also been proposed as
a real-time optimization algorithm (Srinivasan &mian, 2007). The optimal inputs are first
computed via off-line optimization of the nominabdel. The main assumption is that the
solution structure (sequence and types of arcsy e change with uncertainty. Hence,
instead of performing online explicit optimizatiothe necessary conditions of optimality,
given by PMP (computed off-line), are tracked wvitie help of feedback controllers. In other
words, the optimization problem is converted intmadel-free control problem (Srinivasan
and Bonvin, 2007; Srinivasan et al., 2008; Chackuat., 2009; Ebrahim et al., 2016).

PMP has been applied to various type of exgging optimization problems (Palanki;
Jaspan and Coull, 1971; Visser et al., 2000; Thostad., 2004; Palanki and Vemuri, 2005;
Kim and Rousseau, 2012; Ali and Wardi, 2015; Zhahgl., 2017; Aydin et al., 2018b). It
can be used to generate input and state trajestasidunctions of initial and terminal states
(Bryson, 1975). It is worth noting again that fample problems, the optimal solution to the
indirect problem can usually be computed analyijaad by solving a standard BVP problem
numerically. On the other hand, indirect formulatieesults in multi-point boundary value

problems for constrained systems, which may bécdiffto solve.

Solving dynamic optimization problems thatlude nonlinear path constraints is a
challenging task for PMP-based (indirect) approachi&e convergence of existing shooting-
type and gradient methods depends on many congli{f@hachuat, 2007; Biegler, 2010). In
fact, the main problem of the shooting methodé&ias the integration of the co-state equations
forward in time may introduce instabilities thasué in convergence problems, especially in
the absence of a good initial guess. However, fadignt-based type algorithms, initial guess
is not required for convergence, but might be Usefspeed up convergence. Hence, instead
of integrating the states and co-states simultasigolorward in time, the inputs can be
parameterized (or discretized) and then, sequéntitie state equations are integrated
forward in time and the co-states backward in tirB@entually, optimization can be
performed using a gradient-based algorithm, forclla good initial guess is not required for
convergence (Bryson, 1975; Hartl et al., 1995; igasan et al.,, 2003b; Chachuat, 2007).
Graichen and Kéapernick (2012) proposed a similacadled ‘gradient projection’ approach
for input-constrained problems, which possess amtabmputational advantages as opposed

to classical direct optimization methods.

The computational advantage of indirect méshis the main motivation for this work. A

convergent quasi-Newton and PMP-based method @&oftimization of path and terminal
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constrained batch and semi-batch processes wilitbeduced in % Chapter. In particular,
indirect adjoining will be used to reformulate tHamiltonian function with mixed state-input
constraints. This allows computing certain inpwplieitly so as to satisfy the infeasible path
constraints. This way, the Lagrange multiplierstfar path constraints can be eliminated from
the optimization steps. As a result, the complegitthe solution algorithm can be reduced to
the size of the inputs and, hence, only the inghtsuld be updated using Newton iteration
steps. This would be an important advantage forréag-time application of model-based
optimizing control in the presence of large timeribans or in the necessity of fine

discretization levels.

The numerical algorithms present in the dtere are summarized in Fig. 2.1 (Biegler,
2010):
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Dynamic Optimization | using PMP
Problen

Indirect Approac

e requires good initial guess
for shooting-type methods

» fast convergence for
unconstrained problems

* convergence problems for
path constraints

» slow convergence for path

constraint
discretize
inputs .
Direct NLP Approacl ) Sequent|all
(Single Shooting)
discretize discretize + expensive for path
inputs state constraint
Simultaneous Multiple Shooting
provide
initial
- efficient for large-scale  states for
problems the stages

» trade-off between
approximation and
optimization

Figure 2.1.Dynamic optimization methods in the literature (@es, 2010).

For a comprehensive overview of the dynanptinoization literature until 2003, the
reader is referred to (Srinivasan et al., 2003lb/m& more recent publications are given in
Table 2.1.
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Table 2.1.Selected recent publications.

Publication Method of Choice Subject
(Schlegel et al., . . Reducing the problem size using adaptive
Direct Sequential
2005) control vector

(Schlegel and

Marquardt, 2006a) . . Reducing the problem size using adaptive
Direct Sequential o
(Schlegel and switching times and structures

Marquardt, 2004)

(Kadam et al., _ Robust optimization using measurements
NCO Tracking _
2007) and solution models
(Srinivasan et al., ) NCO Tracking using barrier-functions for
NCO Tracking _ .
2008) active constraints

(Biegler, 2007)
_ . Overview of recent direct simultaneous
(Kameswaran and Direct Simultaneous

strategies
Biegler, 2006)
. Direct Multiple Robust, multi-objective dynamic
(Logist et al., 2011) . o
Shooting optimization
(Assassa and Direct Multiple ) _ _
_ Adaptive multiple shooting
Marquardt, 2014) Shooting

23



PART Il

Efficient Dynamic
Optimization

Using Indirect Methods



Chapter 3: Dynamic Optimization of Constrained Baiod Semi-batch Processes using Indirect Methods

Everything has been thought of before, but
the problem is to think of it again.

Johann Wolfgang von Goethe (1749 — 1832)

3 DYNAMIC OPTIMIZATION OF
CONSTRAINED BATCH AND
SEMI -BATCH PROCESSES
USING INDIRECT METHODS

This chapter investigates the numerical dynamiamapation of constrained batch and semi-
batch processes based on indirect methods. Diretttatds are often the methods of choice to
solve the constrained dynamic optimization probleous they may exhibit certain limitations
related to the compromise between feasibility amtigutational load. Indirect methods, such
as Pontryagin’s Minimum Principle (PMP), reformeldhe dynamic optimization problem.
This reformulation may turn out to be computatibnaldvantageous. The main solution
technique related with the indirect methods is sheoting method, which however often
results in convergence problems and instabilitéssed by the integration of the co-state

equations forward in time (Srinivasan et al., 2Q@3bachuat, 2007).

This chapter introduces an alternative, @éffec and convergent indirect solution
technique for the dynamic optimization of consteainbatch and semi-batch processes.
Specifically, instead of integrating the states aodstates forward in time, the proposed
algorithm parameterizes or discretizes the inpuiggrates the state equations forward in
time and the co-state equations backward in tintechvin turn, leads to a gradient-based
optimization approach. Constraints are handledgusidirect adjoining to the Hamiltonian

function, which allows meeting the active constisexplicitly at every iteration step.
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3.1 Solution Methodology

The necessary conditions of optimality given in Rdl4 (in the context of PMP) can be

summarized as follows (Srinivasan et al., 2003b):

min  H(t) = ATF(x,u,0) + u'S(x,u,0)
tru(t)

st. X =F(x,u,0); x(0)=x;

iT _ __0H T _9¢ T7IT| .
A=—g A (tf)_ax|tf+v afo’
WS =0;vTT=0 (3.1)

whereH is the Hamiltonian function] is then,-dimensional vector of Lagrange multipliers
for the system equation8,is the vector of model parametets,is thensdimensional vector
of Lagrange multipliers for the path constraintada is the nr-dimensional vector of
Lagrange multipliers for the terminal constraintg’S =0 and v"T =0 are the
complementary slackness conditions that will besBatl at the optimum. Moreover, the
following necessary conditions must hold at angdlpoptimum:

OH(t) _ 7 OF T9S _
ou =4 6u+'u au_o 3.

H(ty) = (A'F + 17S)|,, = 0 (3.3)

Eq. 3.2 indicates that the partial derivativd the Hamiltonian function with respect to
the inputs must all be equal to zero to be at ammap solution. If the final time of the
dynamic optimization problem is fixed, then Eq.,3mich is the transversality condition, is
not necessary (Biegler, 2010). Note that, for eagitu;, the first term on the right-hand

side of Eq. 3.2 is the switching functiof,: = AT% , which is useful to determine whether a

given optimal input are; (t) is constraint-seeking{, # 0) or sensitivity-seekings(, = 0).
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Assuming that the state and co-state (adjoint) teaps are differentiable, the proposed

solution steps can be listed as follows:

1)

2)

Build the problem as the solution of differentigjuations for both the states and the
co-states. This can be done by the differentiabbthe Hamiltonian function with
respect to the states as given in Eqg. 35. The kl&lanbolic Toolbox can be used for
this purpose. This step is only necessary forrftmlization of the problem.

Indirect adjoining should be used to deal with pstae path constraints of the form
SXx) < 0. In this method, the state constraints are wdiffeated with respect to time
until at least one of the inputs appears explicithartl et al., 1995). The resulting
expression iS" (x,u) < 0, wheren represents the relative degree of a constrairht wit
respect to an input, that is, the number of difiegions required for an input to
appear explicitly (Srinivasan and Bonvin, 2007)efhinstead of the original state
constraintsy(x) < 0, the differentiated versio&™ (x,u) < 0 is used to construct the
Hamiltonian. This way, it is more effective to death path constraints when they
become active. Usually, the corresponding pathtcains can be activated via a single
explicit calculation when the iteration is infedsibIf the constraint cannot be
activated via a single step computation, then &-finding algorithm should be
considered. Consequently, the Hamiltonian functimads H(t) = ATF(x,u) +
uTSs™(x,u). Because of the complementary slackng8s™ (x,u) = 0, the penalty
termu” S (x, u) vanishes when all the constraints are satisfiesteNkeless, if some
of the constraints are not satisfied during thenogation iteration, the penalty term
uT s (x, w) will be positive, which in turn forces the convenge inside the feasible
region. A restoration phase might be necessary if a fdagilproblem between the

inputs and constraints occurs (Miele, 1978).

Remark 3.1.Inputsaturation can be implemented such that:

3)

Umin, if alower constraint is violated
Umax, if an upper constraint is violated

u(t) = {
Discretize the input profiles agt) = U(U), whereU is a @y x N) matrix that contains

N discrete input values for the, inputs. For example, the input profiles can be
approximated by piecewise-constant functions. Thawoe ofN depends on the nature

of the problem.
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4) Initialize U corresponding to the initial input profiles, andstf integrate the state
equationsx = F(x,u) forward in time. Then, integrate the co-state ¢éiqual =
G(x,u, M,v) backward in time. Please note that the final @wml of the co-states
eguations can be obtained through the PMP fornuuats given in Eq. 3.1.

5) Discretize the Lagrange multiplier vectors/ag) = M (M), whereM is a sx N)

matrix. If the conditiorS]-{"}(x, U(.,k)) < 0is not satisfied at the discrete time instant
k, setM (j,k) =K > 0, and compute the value &f(.,k) that make§]-{”}(x, U(., k) =
0. Otherwise, set/ (j,k) = 0.

Remark 3.2.Here, the choice of the value of K is arbitrarytMeis suggested to chooge

as large as possible to guarantee the feasibflityeopath constraints.

6) Update the input valudd via a Quasi-Newton step (or steepest-descent)) aie-
defined optimality criterion is satisfied, suchtase threshold value fornorm(z—z).

Adjoining the inequality path constraints into tHamiltonian enables the original
constrained optimization problem to be solved as wmtonstrained problem.
Furthermore, the penalty term$s™ (x,u) ensure that the update direction goes
through the feasible region. Since the use of ttadyéic Hessian might be problematic
and results in singularities, a robust BFGS updégerithm that ensures the positive-
definiteness of the Hessian matrix is used (Bieg?éx10). In addition, the Hessian

matrix is updated if the iteration is inside thadible region. Otherwise, the Hessian
matrix remains the same, and the optimization toacis set as (Z—z), that is, a

steepest-descent algorithm is used. Applying treespiential steps, the states and
Lagrange multipliers are interplayed so that thénoigation is performed with respect
to the inputs only. As a result, the cubic compateatl complexity increase for finer

input discretization levels related with the sadatof direct method steps is avoided.

Remark 3.3. Steps 2, 5 and 6 represent together the interpfagtaies, co-states and

Lagrange multipliers, which reduces the complerityhe solution steps. While the co-states
are handled via integration (as given by PMP), Hagrange multipliers for the path

constraints are eliminated from the optimizatiomtiyh Step 2.
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Remark 3.4. Since the choice oK is arbitrary, the computed gradients might be ill
conditioned. To avoid this, the gradients usededptimization are normalized. An adaptive
line-search algorithm is employed as opposed taedl fstep size. In this line-search, Wolfe
conditions are followed as long as the iteratiom&de the feasible region (Wolfe, 1971).

When the iteration is infeasible, the initial stpe Qo) is used.

Remark 3.5. Constraint relaxation is highly recommended, beeagrsors stemming from

numerical integration or round off might contribtiselarger convergence times.

Remark 3.6. Regarding the choice of the initial step stg values between 0.01 and 0.05

are usually quite effective for fully normalizedoptems.

Remark 3.7. The optimal solutions of batch and semi-batch pses often contain active
constraints. However, if the proposed algorithm patasM; = 0 at the first iteration, it is
likely that the iterative scheme converges to aaptimal solution with all the constraints
satisfied but inactive. To prevent this, a thredhamh the number of iterations (e.h.> 10) is
used, which would enable the algorithm to searchafitive constraints. With the examples
given in this thesis, it is yielded that 10 iteoas suffice with a proper line search algorithm;

however, for more difficult problems, larger valuaght be necessary.

The idea of indirect adjoining and constraiativation is illustrated in Fig. 3.1. Fig. 3.1.a
shows the original problem with a pure-state pathstraint, while Fig. 3.1.b illustrates the
new optimization problem after indirect adjoiningtwthe new constrair@™ (x,ug) < 0 and
the new objective functioH’(t). Fig. 3.1.c and Fig. 3.1.d represent the locatérthe
infeasible iterate and the activation of the caistr The following remarks can be made at

this point:

1) Although the original optimization problem is contesl into a different problem, the
optimal cost values are expected to be very clétetl et al., 1995; Aydin et al.,
2017a).

2) In Fig. 3.1.d, the arrow illustrates the activatiohthe path constraint. Here, it is
assumed that both inputs; @nd @) become explicit simultaneously through indirect
adjoining. Yet, the method can also be appliednfycone input is explicit after
indirect adjoining. In that case, the arrow wouktl feerpendicular to the axes of the

implicit inputs.
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Figure 3.1.lllustration of the proposed indirect adjoining aaativation steps.
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Assuming that the system and adjoint equateme differentiable, the algorithmic steps

proposed for solving the indirect problem can bemmarized as follows:

PMP-based Solution Algorithm

Select values for the penalty teKr0, the initial step size, the coefficients, the threshold
g the number of discrete input valuBsand the maximal number of iteratioiier_max

Initialize the input matri,, M,, v, and the Hessian matrix corresponding to kb time

instant, BY := I,, . Discretize the Lagrange multipliers for the patbnstraints as
4(t) = M(M), whereM is a fsx N) matrix. Finally, let us write the co-states /s

G(x,u, M,v).

doh=0 - iter_max

1) Solve the state equations= F(x,u) by forward integration and the co-state
equationsi = G(x,u, M,v) by backward integration and compute the constrain
matrix M as follows: if the/-th constraint is satisfied at theth discrete time instant,
setM;, (j,k) := 0, otherwise seM,, (j,k) := K.

2) Evaluate the matrix of first-order gradielits; H); by using pre-computed analytical
expressions.

3) if [[(VyH)pll<e, setUyy: := Uy, STOP
4) Compute the next inputs as follows:

dok=1 >N,
uf = U, (., k)
ViH:= (Vy(H),
if thei,; terminal constraint is such tHB"t(x(tf)) <0,
setv, (i) = 0. Otherwise, set, (i) =K, for i=1,...,nr.
end if
if S(x,u’,ﬁ,@) <0
4.1. Apply line search fog and estimater
4.2. Computd,, =uf —a(BF) VEH
4.3 Update the Hessian mami, , as follows:
Si=Ufy — U yi=ViH—ViH

T k. .Tpk
ifsTy > BlIs||?, setBf,, := BF + Yy _ Bpss By

sTy  sTBKs

elsesetBf, , := B¥
end if

elsecomputeuf, that givesS™ (x,uf,,,6) = 0 and seBf, , := Bf

end if

Ups1 (o )z = uffyy
end do
end do
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3.2 Case Studies

For illustrating the application of the proposedtimelology to the dynamic optimization of
constrained batch and semi-batch processes, thssestudies are presented in this section.
The first problem is a dynamic reactor optimizatiaken directly from (Srinivasan et al.,
2003b). The second problem is the dynamic optinturadf a batch binary distillation column
with terminal purity constraints. Finally, the tthiproblem involves the dynamic optimization

of a complex fed-batch chemical process taken fiidentschel et al., 2015).

All problems were solved using both a diotultaneous method and the indirect PMP-
based quasi-Newton proposed in this work. The Caséd@box (Andersson and Diehl, 2012)
was applied for the implementation of the direahuianeous method, along with the
nonlinear programming solver IPOPT (Wachter andgle 2006). In this thesis, for the
direct simultaneous methods, collocation on fimtements method with a uniform grid is
used for discretization. The degree of the intafod polynomial is 4. The input
discretization levels are problem specific andrtieiues are given in the next sectioA8.
computational results were obtained with an Int8t{2100 machine (CPU 3.10 GHz 4 GB
RAM). Please note that the initializations of theolgems are also considered in the

computational results.

3.2.1Non-isothermal semi-batch reactor with a heat-remoal constraint

Consider a fed-batch reactor in which the followsggies reactions take place:
A+B3c5p
The objective is to maximize the molar contehthe desired produ¢t at a specified
final time (Srinivasan et al., 2003b). The two itgare the feedrate &f u(t), and the reactor
temperatureT (t). The path constraints include input bounds as a&lupper limits on the
heat generated by the chemical reactiogps,and the reactor volum¥, Note that an energy
balance is not considered explicitly, but the terapee effect is included igy as proposed

by (Srinivasan et al., 2003b). The final timds fixed at 0.5 h. Accordingly, the optimization

problem can be formulated as follows:
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Jhax ] =tV (L)
st. ¢4 = —kycycp —%CA; ca(0) = cap ;
Cp = —kicacp +%(CB,in —cg);  cg(0) =cp;
Cc = kicacp — kpcc — %Cc ;o cc(0) =cco;

V=u; V(0O0)=V,;

—E —Ez
kl = k1oe RT kz = kzoe RT

Tinin < T(t) < Tinax ;

Umin < U() < Upax

(=AH)k1ca(©)cp()V (t) + (=AH)ky cc(O)V(E) < Gramax;
V() < Viax (3.4)

The model parameters, initial conditions and camsts are given in Table 3.1

Table 3.1.Model parameters, initial conditions and constsafot Problem 3.2.1.

Parameter Value Parameter Value
k1o 4 I/(mol h) Tpin 293.15 K
koo 800 I/h Toax 323.15K
E, 6x10° J/mol Vinax 11 L
E, 20x10° J/mol Qrxmax 1.5x10° J/h
R 8.314 J/(mol K) Cao 10 mol/L
AH, -3x10"  J/mol CBo 1.1685 mol/L
AH, -10*  J/mol Cco 0 mollL
Umin 0 L/h Vs 1 L
Umax 1 L/h CBin 20 mol/L

33



3.2.1.1Computed optimal solutions

In this problem, there are several local solutidhsee of which are given analytically by

(Binette et al., 2016). In fact, any feasible comnaltion of the arcsufuin, Upath Umax) @and [Tmin,

Tpath Tsens Tmay) described in that paper can be a local solutiaihé problem.

The optimal input and state profiles computath different numerical techniques are

given in Figs 3.2.a and 3.2.b. Fig. 3.2.a showsPli>-based solutions for the discretization
levels N=50 and N=500, along with the analyticaluson 2 (Binette et al., 2016). The

parameter valuest = 0.01,K = 50 ande= 0.05 are used in the PMP-based approach.

Similarly, Fig. 3.2.b shows the direct simultanegosution for N=50 and N=500 along with

the analytical solution 3 (Binette et al., 2016)ccArdingly, some remarks are given as

follows:

1.

34

In the PMP-based algorithm, the heat removal caimgtrs adjoined indirectly into the
Hamiltonian function, but it is activated througlhoat finding algorithm; because, it is
not straightforward to activate this constraint @rdy one explicit computation due to
the logarithmic rate terms.

Although all strategies converge to a solution witharly the same cost (between
2.050 and 2.053 moles of reactant B, as given iblelr8.2), there are significant
differences in the computed optimal profiles, whishan indication that the two
numerical strategies convergedifferentlocal solutions.

The heat-removal constraint is active during thet fpart of the run. The volume
constraint is active in the second part of the(haich mode without feeding).

With the PMP-based solution strategy, the inpufil@®are not very similar with the
analytical solution 2 in the second arc charaoteriayTs,,. This is due to the lack of
sensitivity of the objective function with respéatthe sensitivity-seeking inputs.

In the direct simultaneous solution for N=50, tleatiremoval constraint is not active
initially because the time discretization is relaty coarse. However, the constraint
becomes active when finer input discretizationssdi This shows the necessity of the
finer input discretization to get more reliable wgans. It should also be noted that

coarser discretization results in infeasible solubf the original problem.
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Figure 3.2.a Optimal input and state profiles computed via tMPPbased method and the

analytical solution 2.
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Figure 3.2.b.Optimal input and state profiles computed via timead simultaneous method
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The switching functions, ands; computed at the optimal solution are given in RBd®
and 3.4 for the PMP-based solution and the dirmstilsaneous solution, respectively. It is
seen thas, is never zero, which means that the feed waig never sensitivity seeking. In

contrasts; = 0 in certain intervals, which are thus sensitiviégking.

80 ‘ ‘ ‘ ‘ 100
60 —— PMP-Based-N=500
80 — Analytical 2
40 . — -
_ 20 60
wn =
)
0 ] 40
-20
40| —— PMP-Based-N=500 20
— Analytical 2
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0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time (h) Time (h)

Figure 3.3.a.Switching functiors, for the Figure 3.3.b.Switching functiors; for the

PMP-based solution and the analytical PMP-based solution and the analytical
solution 2. solution 2.
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Figure 3.4.a.Switching functiors, for the Figure 3.4.b.Switching functiorsr for the

direct simultaneous solution and the  direct simultaneous solution and the analytical

analytical solution 3. solution 3.
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Table 3.2.Comparison of the indirect PMP-based, direct siamdbus and analytical solution

strategies for Problem 3.2.1.

Solution Structure

Optimization Strategy

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5
Indirect PMP-based:
N=50, J=2.050

upath upath Umin Umin Umin
N=500, J=2.052

T, T T, T, T.
Analytical Solution 2: max sens path max sens
J=2.050
Direct simultaneous:
N=50, J=2.051

Umax upath Umin Umin Umin
N=500, J=2.053

Tpath Tmin Tpath Tmax Tsens

Analytical Solution 3:

J=2.053

The comparison of the cost values and solusittuctures obtained with the various
strategies are summarized in Table 3.2. The twoemal schemes converge to different
solutions, which are in fact the analytical solat® and 3 given in Binette et al. (2016). The
PMP-based solution suggests that the reactor teryperprofile starts at its upper limit, with
the feed rateu(t) adjusted to satisfy the heat-removal constrairiten, the temperature
follows Tsens(t) to find a compromise between producing mucthefdesired C and minimize
the undesired by-product D. Once the reactor isptetaly filled, the feed rate is set to zero
and the temperature is adjusted to still keep #Hth ponstraint active. Whehyay iS reached,
the temperature is kept there until there is sodwamtage in reducing it and followifgendt)
again. Although the input profiles of the PMP-basetution and the analytical solution 2
(Binette et al., 2016) are a bit different, the tyqmes and sequence are exactly the same.

On the other hand, the direct simultaneodstisa with the Ipopt solver comes fairly
close to the analytical solution 3. Optimal openatstarts with maximal feeding of reactant B,

with the temperature being used to meet the heabval constraint. When the minimal
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temperature is reached, it is kept there, andebd fate is adjusted to keep the path constraint
active. Once the reactor is filled, the feed ratsat to zero and the temperature is increased to
still keep the path constraint active. From thahpon, the sequence of arcs is the same as for
the PMP-based solution.

120 T T
— Direct simult.
‘» 100f| —— PMP-Based ,
[b)
e
= 80r 1
©
[
2 60" 8
©
2
E 407 B
@)
@)
20r .
/
O | | | |
0 100 200 300 400 500

Discretization Level

Figure 3.5.Computational times for different discretizatioméés Nof Problem 3.2.1.

Fig. 3.5 shows the computational times remuito obtain the solution with the PMP-
based and direct simultaneous methods. It is glesaén that the PMP-based method requires
significantly less computational time when the ggets finer, because the direct method

becomes more expensive due to the factorizatidheoéxpanding matrices.

3.2.2Batch binary distillation column with terminal puri ty constraints

The optimization of batch distillation columns ugi?MP has been documented in the
literature. For example, (Coward, 1967) solvednaetoptimal problem for a batch binary
distillation column using PMP. The solution is bés® an adaptive shooting strategy that
requires good initial guesses for the adjoints. yiitaand Jackson, 1971) studied PMP for
binary and multicomponent batch distillation prabte with adaptive solution techniques.
(Welz et al.,, 2005) used the necessary conditioh®ptimality to design an implicit

optimization scheme for a batch binary distillatmelumn. In this section of the thesis, it is
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proposed to compare the PMP-based quasi-Newtonochetfith a direct simultaneous

approach to optimize the operation of a batch lyidastillation column.

Consider a batch distillation column with yprthree equilibrium plates, in which the
components A and B (more volatile) are separatech feach other. The objective is to
maximize the molar amount of B in the distillate &ogiven batch time, while satisfying the
terminal purity constraints of at least 80 mol ¥Boh the distillate and at most 20 mol% of B
in the bottom product. The final tintg is fixed at 3.0 h. The only path constraints dre t

input bounds on the reflux ratio.

A schematic of the column is given in Figs,3with the molar amoun#® andD in the
bottoms and in the distillate tank, respectiveliie vapor flow rate is represented Ibyand
the liquid flow rate is given b¥. The internal reflux ratie = é is the only input variable.

Assuming perfect mixing on all stages, negligibdéper hold-up, constant vapor flow through
the column, total condensation in the condenseiegfigible hold-up, constant liquid hold-up
on all trays and constant relative volatility, thgtimization problem can be stated as follows

(Note that the material balances are written imgeof more volatile component B):

max [ = D(tr)

st. D=V({@-r); D(0) =D,
B=V(@-1); B(0)=B,

ng = %gB + Bxg = V(—yp +1x1); np(0) = Np,
iy = MH = V(yg —y1 +7(x2 — x1)); 1 (0) =y,
fly = %,MH = V(yy — yo +7(x3 — x3)); n2(0) = np,

ng = x3MH = V(}’z —y3+r(ys; — x3)); n3(0) = nz,

np = V(1 —1r)ys; np(0) = Npy
axXm . _
ym—m, m—B,l,...,3

xp(tr) = np(tr)/D(t) = 0.8
x5(tr) = ng(tr)/B(tr) < 0.2

o<r) <1 (3.5)
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whereB, is the initial chargeng,the moles of B in the charge,, the moles of B in the
liquid phase on then-th tray,xz, the mole fraction of B in the initial charge, the mole
fraction of B in the liquid phase of tle-th tray,y,, the mole fraction of B in the vapor phase
leaving them-th tray,x;, the mole fraction of B in the distillate tank; the mole fraction of B

in the bottomsy; the mole fraction of B in the vapor leaving thettbms,a the relative
volatility, andMH the liquid hold-up on each tray. The trays are berad from the bottom to
the top of the column. Because of total condensatlte composition of the refluxed liquid is
equal to the vapor composition leaving the uppateplit is also assumed that all plates are
initially charged with the same liquid mixture & treboiler and thus the initial concentration
of B on each tray isz,. The dynamic column model has 7 state variabléeisaasingle input.

The model parameters and initial conditions areigiv Table 3.3.

Table 3.3.Model parameters and initial conditions for Probl&s2.2.

Parameter Value
Vapor flow rateV 50 kmol/h
Relative volatility,a 2.35
Initial charge,B, 115 kmol
Concentration of B in the charge;, 0.4
Molar hold-up per platef H 5 kmol
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V3 V-L, y3

Figure 3.6.Schematic of the batch distillation column.

3.2.2.1Computed optimal solutions

The input vector is parameterized usiNgequidistant piecewise-constant elements. The
terminal constraints are enforced in the PMP-basdation by setting the final values of the
adjoints as stated in Eqg. 3.1. The parameter valyes).1,K = 100 ance = 0.05 are used in
the PMP-based approach.

Fig. 3.7 shows the optimal input and staiiles computed with the two strategies for
the discretization level N=500. Both PMP-based d&hd direct simultaneous solutions
converge to a 3-arc solution. They suggest tothllixein the beginning of the batch to
increase the composition at the top of the colufimen, they both follow a sensitivity-
seeking arc to produce as much distillate as plessilth the required purity. Finally, a short

third arc with zero reflux is used to recover thghhpurity material that is still in the column.
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The corresponding switching functions are showfig 3.8. The following remarks can be

made:

1. Since there are no path constraints besides thg Ibqunds, the only possible arcs are
Tmax: Tmin @NATsens.

2. Although the two numerical schemes lead to the sseagiences and types of arcs,
namelyr,, ., followed byr,,.,, andr,,;,, and nearly the same optimal cpgtf. Table
3.4), the computed input profiles are noticeablifedent. This is due to the lack of
sensitivity of the objective function with respdot the inputr,,.(t). As discussed
earlier, this is a common feature of sensitivitgldag arcs, which significantly

complicates the numerical computation of optimadlisons.
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Figure 3.7.0Optimal input and state profiles computed via tMPPbased method and the
direct simultaneous strategy.
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Figure 3.8.Switching functiors..

Table 3.4.Comparison of the indirect PMP-based and direcuianeous strategies for
Problem 3.2.2.

Solution Structure

Optimization Strategy

Arc 1 Arc 2 Arc 3
Indirect PMP-based
N=50, J=40.01 kmol I max lsens I'min
N=500, J=40.02 kmol
Direct simultaneous
N=50, J=40.02 kmol I'max I'sens I'min

N=500 J=40.03 kmol

Finally, Fig. 3.9 compares the computatiotiales required for the two numerical
schemes as functions of the discretization levak €ees that the indirect PMP-based method

has a clear advantage when finer grids are applied.
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Figure 3.9: Computational times for different discretizationdés of Problem 3.2.2.

3.2.3Fed-batch hydroformylation reactor with path constraints

Due to their chemical nature, long-chain olefing @otential renewable feedstock to be
integrated into existing petrochemical productiatworks. Hydroformylation is a suitable
way of converting these feedstocks into valuabkermediates like aldehydes. A carbon
double bond can be converted into an aldehyde gwaitlp the addition of{, andCO in

hydroformylation using a homogeneous catalyst (kidel et al., 2015; Kaiser et al., 2016).

Consider the optimization of a fed-batch teado maximize the production of n-
tridecanal (nC13al) from 1-dodecene (nCl2en) tlegicts with syngasH, + C0O). The
reaction network is illustrated in Fi§.10 (Hentschel et al., 2015). A stirred tank reaetith
gas feeding is used in semi-batch mode of operafitve input variables are the reactor
temperaturd'(t) and the feedrate(t) of syngagH, + C0O) The gas and liquid phases are
modeled as ideally mixed phases. The model parasnbte/e been estimated and validated
using experimental data (Hentschel et al., 201B& dim is to maximize the concentration of
n-tridecanal (nC13al) at a specified final time. dddition to the bounds on the input

variables, the total pressure of the gas phase Ipeustépt within the specified limits.
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Figure 3.10.Hydroformylation reaction network.

The dynamic optimization problem is formulated alfofvs:

max | = Cnc13al(tf)

u(t),T(t)
St Clgi = Ji" + ccarMear DjerViiti 5 Cugi(0) = Cligios =1, 2,...,7
pi = VIZS (wx; = Vig ji") (i€ gas); pi(0) =pio;
x; = 0.5 (E_ZD =1,2;

ot = (kLa)i(ci* = cliqi), (if i € gas); i=1,2
' 0, (else); i=34,..,7 ’

kl,O(T)Cn61ZenCH2 Cco

T1 = H
1+ Ky 1¢ncizen + Ki26nc13a + K1 3Ch,
k (T) _ Cic12en
2,0 (CnC1Zen K )
r, = P2
2 — )
1+ K3 1¢nc12en + K22Cic12en
Cnci12an
k3,O(T)(Cn61ZenCH2 - Kp3
T3 - ;

1+ K31¢nci2en + K32Cnc13an + K3 3CH,
Ty =kyp (T)Cic12enCH2 ;
s = ks0(T)Cic12enCH,Cco 5

Te = Keyo (T)Cnc12enCHZ Cco s
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E,i(1 1
- sum((-2)
re

—AG,
Ko = exP( RT )

—AG] = ao,]- + al,]-T + az,]-TZ 5

)

Ccat,tot

Ccat ;
K, ’
CCO cat,3

K
1+ Kcat,lcCO cat3 + Kcat,z Cy

2

—Ex
He = exp (75

Ptotal(t) = Pu,(t) + Pco(t) ;

1 bar < protar(t) < 20 bar ;

0 <u(t);

368.15K < T(t) < 388.15K (3.6)

wherei represents the component index (i=1,2,...,7 for itp@id phase and i=1,2 for the gas
phase)j stands for the reaction index aRds the reaction set. The final timeis fixed at 80
min. All related model parameters are given in ApperliEqual molar content €O and
H2 in the syngas is assumed. The liquid volufpgand the gas volumig,, inside the reactor
are assumed constant, namely 900 mL each. Thalimtlar amount of the main reactant 1-
dodecene is 0.85 mol, while all other initial cdratis for the chemical species in the liquid
phase are set to zero. The initial partial pressofeheCO andH; in the gas phase are 10

bar.
3.2.3.1Computed optimal solutions

The parameter values = 0.02,K = 100 anck = 0.05 are used in the PMP-based approach.
Due to the lack of sensitivity of the cost functisith respect to the fine shape of the input
profiles in some of the arcs, a relatively fineunpliscretization (N> 100) is necessary for
accurate results. The optimal input trajectoried #re corresponding concentration of the
desired product and total pressure are given in Bifjl for N=500. The temperature is

initially at the lower bound to favor the desiredction.
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With the effect of gas feeding, the concentratidntlee desired product increases and

approaches its maximal value after about 50 mirenThhe temperature is set to its upper

limit to suppress the undesired side reactionss Tésults in a relatively small increase in the

concentration of n-tridecanal in the last partha batch run.

The switching functions, ands; are illustrated in Fig. 3.12. The solution struetand

the performance of both numerical schemes for tigoretization levels are given in Table

3.5.

Table 3.5.Comparison of the indirect PMP-based and direcukaneous strategies for

Problem 3.2.3

Solution Structure

Algorithm
Arc 1 Arc 2 Arc 3
Indirect PMP-based
upath upath upath
N=100, J=0.593 mol/L
Toin T T
N=500, J=0.595 mol/L min Sens max
Direct simultaneous
upath upath upath
N=100, J=0.595 mol/L
Tmin Tsens Tmax

N=500, J=0.596 mol/L
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Figure 3.11.Optimal input and state profiles computed via tMPPbased method and the

direct simultaneous strategy.
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A few remarks are made at this point:

1. Both numerical schemes exhibit a 3-arc solutiondifflerent discretization levels as
shown in Table 3.5.

2. The pressure upper bound is active throughout #tehbrun. This is enforced by
adjusting the gas feed ratgt), which is therefore constraint seeking througho
Toward the end of the batch, the feed rate is gkrse, but not exactly equal, to zero.

3. There is a significant difference in the two samsgit-seeking temperature profiles.

Again, this is due to the lack of sensitivity oéthbjective function with respect to the

temperaturd,,;(t).
100
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Figure 3.12.Switching functions,, and sy .
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Figure 3.13.Computational times for different discretizationdés.

Fig. 3.13 shows that the computational timhéhe PMP-based strategy is significantly

shorter than that of the direct simultaneous method

3.3 Summary

A PMP-based quasi-Newton algorithm has been prapésesolving constrained dynamic
optimization of batch and semi-batch chemical psees. This algorithm constructs the
Hamiltonian function by indirectly adjoining theequality path constraints via their time
derivatives so that the inputs can be easily eefbto satisfy the active path constraints at
each iteration step. Symbolic differentiation oé tHamiltonian function with respect to the
states is only necessary at the initialization .ste results show that the proposed PMP-
based quasi-Newton algorithm can solve the invatgd) constrained optimization problems
significantly faster than direct simultaneous methas the discretization grid gets finer.

This chapter also shows that, although tlaeeeonly negligible differences between the
optimal costs determined with various strategidee #ctual input profiles can differ
significantly and even correspond to different losalutions. The main reason for this
observation is the lack of sensitivity of the olbjee function with respect to the sensitivity-
seeking parts of certain inputs. Hence, it may $eful to parameterize these input profiles in
a so-called parsimonious way, for example by usswgtching times and low-order
polynomial approximations rather than piecewisestamt or piecewise-linear
approximations. In the next chapter, the proposgiPPased solution method is combined
with such parsimonious parameterization schemepéed-up the numerical solution of the

dynamic optimization problems of constrained seatth processes.
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Chapter 4: Dynamic Optimization Combining PontryegyMinimum Principle and Parsimonious Input
Parameterization

The only thing that will redeem mankind is
cooperation.

Bertrand Russell (1872 — 1970)

4 DYNAMIC OPTIMIZATION
COMBINING PONTRYAGIN 'S
MINIMUM PRINCIPLE AND
PARSIMONIOUS |NPUT
PARAMETERIZATION

In dynamic optimization problems, the optimal inppitofiles consist of various arcs
(Srinivasan et al., 2003b). These arcs can be aaregl depending on their characteristics as
follows: An optimal input arc might be on a lower @n upper boundu(,;, Oru,.x), oOn a
path constraint #,,,) (which activates the corresponding path condiyain inside the
feasible region and behaving as a sensitivity-seghrc {i,.,s). Accurate computation of a
sensitivity-seeking arc can be burdensome sincéiriaeconfiguration of a sensitivity-seeking
arc advances the optimal cost negligibly. Accortinghost solution schemes (direct as well
as indirect) demand significantly finer input distization levels to obtain accurate solutions.
On the other hand, as an alternative to full discaéon/parameterization, the sensitivity-
seeking arcs can be parameterized alternatively parsimoniousmanner. This way, the
number of decision variables in the dynamic optatian problem can be reduced
significantly (Welz et al., 2005; Schlegel et &005; Welz et al., 2006). This chapter details
the combination of the proposed efficient PMP-baseldition algorithm in Chapter 3 with
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such parsimonious input parameterizations so adutther reduce the corresponding

computational load of constrained nonlinear dynampigmization problems.

4.1 Solution Methodology

The proposed indirect solution algorithm can bedusesolve the constrained problem given
in Eq. 2.1. It parameterizes the inputs ushgiecewise-constant elements, integrates the
state equations forward in time and the co-stateaans backwards in time, leading to a
gradient-based control vector iteration approaaire Btate path constraints are handled by
indirect adjoining into the Hamiltonian functiorat enables the explicit computation of the
values of the inputs to activate the infeasiblehpainstraints in the iteration. If a path or
terminal constraint is violated, the correspondiragrange multiplier is penalized so as to
keep the optimization iterates within the feasit#gion. This way, the complexity of the
optimization problem can be reduced.

Although indirect-based methods have beenwshto be efficient for the dynamic
optimization of batch and semi-batch processesgtigestill the requirement of fine input
discretization to obtain reliable solutions. Thisquirement might result in significant
computational effort for small as well as largealsc problems. Nevertheless, a
parameterization of the sensitivity-seeking arcéhwespect to switching times can decrease
the computational complexity of the problem furtlifersser et al., 2000; Welz et al., 2006;
Kadam et al., 2007; Aydin et al., 2017Db).

Given the optimal solution structure (thedypnd sequence of arcs), an alternative and
parsimonious parameterization of the faurtt) = U (77) can be postulated to reformulate the
problem. Then, the effective indirect solution altfon can be applied to the reformulated

parsimonious problem.

For example, a sensitivity-seeking input @ be expressed as a linear arc between the
two valuesu; and u, at the two adjustable switching timgsandt,, which represent the
beginning and the end of the arc, thus resultinthennew input vectar = (¢, t,, us, u,)’.

This reformulation allows applying the NCO as falk
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min  H(t) = ATF(x,m) + u’S(x,m)
T

s.t. x = F(x,m); x(0) = xo;

ST oH __ 09
AT = —a, }LT(tf) = a|tf +v

rof
0x

~ ! (4.1)
pu'S(x,m) =0; v T(x(ty)) = 0;

OH(t) _ o OF (x,m) T aS(x,m) _ 0
am on am

If the solution structure consists of ther@sa,,,x, Usens aNduyin, the sensitivity-seeking
arcug.ns Can be approximated using linear interpolatiorwieen the two switching times

andt, thus giving:

Umax if 0<5t<ty;
Upin—U ,
ﬁ(t) = usens(t) = Umax t mltnftmax (t - tl) lf t1 =t <ty (4.2)
27t
Umin if t,<t< tr

Then, the problem given by Eq. 4.4 is solved usigproposed PMP-based algorithm given
in Chapter 3.

Remark 4.1. The proposed algorithm requires an initial soluttonthe problem given by
Eq.2.1, using either a direct or an indirect methndrder to decide on the parameterization
scheme. However, this solution need not be obtaumdg fine discretization to ensure

feasibility. It is only a pre-analysis step fortsinle parameterization candidates.

Remark 4.2. The parsimonious parameterization is usually problgpecific. It can be
extended to more complex problems by using higheeropolynomials or multiple switching

times instead of linear relations.

Remark 4.3. Parsimonious parameterization was found particulaffective for problems

with a small number of inputs.

Remark 4.4. The inputs that activate the path constraifig, can usually be computed

using the model equations, without any optimizatiSnnivasan et al., 2003b; Aydin et al.,
2018b). This will be detailed in the second caadyst

The overall indirect parsimonious algorithm carfdrenulated as follows:
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Parsimonious PMP-based Solution Algorithm

Consider the optimization problem given by Ed., withN discrete time instants between
0 and tr. Let us discretize the Lagrange multipliers fore tipath constraints as

4 (t) = M(M), whereM is a fsx N) matrix. Finally, let us write the co-states /as

G(x,m, M,v).

Select values for the penalty teKkr0O, maximum iteratioriter_max the step sizer, the
thresholdg, the number of discrete input valuls Initialize the iteration countér = 0 and
the input vectorr,, M, v,

doh=1 - iter_max

<

end do

Solve the state equations by forward integration of F (x, ), and the co-state
equations by backward integration bf= G (x, w, M, v).

if the jth path constraint is such tha/ (x,7) < 0 at the time instank, set

My, (j,k) = 0.Otherwise, seM;, (j,k) =K, up(j,k) = upqn, for j=1,..ns,
k=1,..,N.

end if

if the i, terminal constraint is such thdti(x(tf)) <0, setuv, (i)
= 0. Otherwise, set, (i) = K, for i=1,...,nr.

end if

Evaluate the value of the gradie{%g)h using analytical expressions given by
Eq. 4.1.

. o0H
if ”a(ﬁ)h” <& stop,set oy, = Ty

elseset 1 = mp — a(Z—:)h , Wherea=0.05. Go to |
end if

Remark 4.5 Constant step-sizex{ is being used for the parsimonious indirect methdote

that an adaptive line search, e.g. Wolfe crite(MMolfe, 1971), could speed up the method.
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4.2 Computation of Gradients

The parsimonious parameterization results in discecision variables along the time
horizon that include the switching times as wellb#ser input parameters. Since the general

PMP algorithm defines the sensitivity of the Haomian with respect to the input variables,
one needs to evalua%%? in order to perform the optimization shown in thgogsithm. This

can be done by considering each arc individually performing a time transformation of the

system equations as detailed next.
Consider the system equation in Problem 4.1:
x = F(x,m), for te [ty tf] (4.3)

For simplicity of presentation, let us assume that optimal solution consists of the three

following arcs:

1 if to<t<ty;
a(t) =4 o if t1 <t<ty (4.4)
0 if t,<t<ts

whereu, is a scalar decision variable, along withandt,. Henceyt = (t;,t;5,uy) T, and we

aH oH oH
need to compute=,——, —.
1 2 0

Let us consider the first arc with the single decisvariablet; and introduce the
dimensionless time valid betweert, andt,. Timet relates to the dimensionless timas

follows:
t(t) :=to + t(ty — ty), T€[0,1] (4.5)
which allows writing the states, their derivativaesd the system equations in termg of
x(1):= x(t(r))
%5&(1) = %x(t) % = %x(t) t,
F(2() :=Fx@®),u=1) (4.6)

Repeating this procedure for the second and thasl gives:
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t, F,(2(0)) if 0<t<ty;

< 2(1) =1 (t — t1) B (R(1), uo) if t,<t<ty 4.7)
(tr — t,) F:(2(0)) if t,<t<t

wheref; (2(1)) := F(x(),u = 1), F,(2(1),uo) := F(x(1),u = u,) and
F5(2(7)) := F(x(1),u = 0).

Finally, differentiating Eq. 4.7 with respectto= (t;,t,, uy) T gives:

oF A

a—tl = Fl(f(‘[)) - Fz(f(‘[)ruO);

oF A

o = BGE@®,u) - F(2);
2

oF  0F,(£(1),uo) (4.8)

du, du,

aﬁ(t) B TaF"(x, ) T6§(x, ) B
omr A on K omr 0

Note that the gradielgé can be obtained in a similar way.
4.3 Case Studies

To investigate the application of the proposed wdttogy to the dynamic optimization of
constrained semi-batch processes, two case stadeepresented. The first problem is the
dynamic optimization of a batch binary distillaticolumn with terminal purity constraints
given in Chapter 3 and in (Aydin et al., 2017a)eT™econd problem, which deals with the
dynamic optimization of a complex fed-batch chemipeocess in the presence of path

constraints, which is discussed also in Chapterd3isitaken from Hentschel et al. (2015).

The two problems are solved using both actisamultaneous method and the indirect
(PMP-based) parsimonious method proposed in thik.wihe CasADi toolbox (Andersson
and Diehl, 2012) is used for the implementatiothefdirect simultaneous method, along with

the NLP solver IPOPT (Wachter and Biegler, 2006).
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4.3.1Batch binary distillation with terminal purity cons traints

Consider Problem 3.2.3, which is a batch binaryilidison column with three equilibrium
plates, in which the components A and B (more Vle)atre separated from each other. The
objective is to maximize the molar amountDoin the distillate for the given fixed batch time
tr = 3 h, while satisfying the terminal purity constrairaf at least 80 mol % of B in the
distillate (xp) and at most 20 mol % of B in the bottom produgt). The internal reflux ratio

r = L/V is the input variable. The reader is referred hayiter 3 for more detail related to the
case study and model parameters. The optimizatmisigm can be summarized as follows:

max J =D(tf)

s.t. dynamic model eqgns. (from Eq. 3.5); (4.9)

xo; xp(tr) = 0.8, x5(t) <02;0<r(t) <1

The optimal solutions computed by the diotultaneous (DS) method (500 piecewise-
continuous input parameterization and collocatiom finite elements) and the fully
parameterized PMP (500 piecewise-continuous inptameterization) are given in Fig. 4.1.
As discussed in Chapter 3, both solutions suggést teflux at the beginning of the batch to
enhance the composition at the top of the colunfren] the sensitivity-seeking arg,,
produces maximum distillate with the required purfinally, a quick third arc with zero
reflux is followed to recover the high-purity magdrthat is still present at the top of the

column.

In this problem, since,, s does not start at the maximum value 1 and end itip tive
minimum value 0, we firstly postulate a constarfiuseratio (7}, ) for this sensitivity-seeking
arc. As a result, the decision variables for thesipagonious method become= (t,, t,,13)T.
Alternatively, the reflux ratio could also be defth as varying linearly between the two
switching times. Accordingly, the decision variablould readr = (ty, t5, 71, 72)7. The
solutions given by the two PMP-based parsimoni@rameterization methods are also given
in Fig. 4.1. These solutions result in fairly closptimal value of the fully parameterized
methods. Furthermore, the addition of one paran{ejelandr;, instead ofy)) increases the
optimal cost further. Fig. 4.2 shows that parsiroasiparameterization combined with PMP-

based method significantly reduces the computatiima, in particular with fine grids.
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Figure. 4.1.Fully parameterized DS and PMP as well as parsiousnparameterized PMP

results.
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Figure. 4.2.Computational times with different solution methods
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4.3.2Fed-batch hydroformylation reactor with path constraints

Consider Problem 3.2.3 given in Chapter 3, whicthés production of n-tridecanal (nC13al)
from 1l-dodecene (nCl2en) that reacts with syndggsHC0O). The model parameters are
given in Table 3.2. The operational aim is to maxenthe concentration of tridecanal
(nC13al) at the final timeg: = 80 min. In addition to the bounds on the input vaeabthe
total pressure of the gas phase must be kept wafienified limits for safety reasons.

u(rg,aT)((t) ] = Cnc13al(tf)

S.t. dynamic model eqns.; x;

gas — liquid mass transfer eqns. given by (Eq. 3.6); (4.10)

physical constraints; rate expressions;

0 <u(t); 368.15K < T(t) <388.15K
1 bar < protar(t) < 20 bar;

The solutions obtained using DS and fullyapaeterized PMP-based algorithms are given
in Fig. 4.3. As discussed earlier, both solutiomggest that the optimal temperature starts at
the minimum levelT,,;,, to favor the desired reaction. Then, it followe gensitivity-seeking
arcTs.,s t0 speed up the production of nC13al by boosthey forward reactiom,, while
restraining the equilibrium reaction to the product side. Finally, the optimal temperat
follows the upper level,,,, to suppress the undesired reactions. It is seanthie optimal
temperature profile consists of 3 arcs. Accordinglgan be postulated to parametefizg,
linearly between the two adjustable switching timddternatively, T,.,; can also be

parameterized using quadratic interpolation betvwbeniwo switching times.

Since the pressure constraint is active gjinout the batch, the optimal feedrate of syngas
can be determined by tracking the pressure patbtint. This is done analytically from Eq.
3.2, as follows:Proea;(t) = P1(£) + P2(6) = 0, which gives uyam (t) = Viig G2 (0) +
J2°H ().

It is observed that the cost values obtaioedhe different methods are very similar to

each other, as given in Fig. 4.3. Note that inadngathe order of the polynomial interpolation

results in a slightly better cost value.
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Fig. 4.4 compares the computational timesleddo solve the problem using the various
approaches. It is clear that both parsimonious PEised methods are much faster than the
fully parameterized ones.

=
g 4 T T T
© Full par. PMP - N=500
E Full par. DS - N=500
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Figure. 4.3.0Optimal solutions.
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| — Full par. DS
| — Full par. PMP /
f[— Pars. par. PMP - linear ] o 7

Pars. par. PMP - quadraticse];s

CPU Time [s]
S

r 1
10 150 200 250 30 35 400 450 500
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Figure. 4.4.Computational times of different solution methods.

4.4 Summary

This chapter details an alternative indirect solutmethod that parameterizes the sensitivity-
seeking inputs parsimoniously and uses a PMP-baskect method to solve the dynamic
optimization for constrained semi-batch procesSdwe performance of the algorithm is
compared with DS and fully parameterized PMP-basgdrithms. It is observed that the

proposed method can solve the corresponding prabiench faster for very similar optimal
cost values.

Indirect-based parsimonious methods may gessertain advantages for more complex
applications such as stochastic and multi-levehupation, real-time application of nonlinear
model predictive control and multi-stage algorithnvbere fast implementation are required.
In addition, application of indirect-based parsinoes algorithms to the large-scale

optimization problems can turn out to be promisimgj, is still an open field.
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Chapter 5: Nonlinear Model Predictive Control usia@ntryagin’s Minimum Principle

People are sometimes afraid to ask questions
out of fear of seeming “stupid”. Yet the
smartest people on the planet are often the
ones who ask the most questions.

Albert Einstein (1879 — 1955)

5 NONLINEAR M ODEL
PREDICTIVE CONTROL
USING PONTRYAGIN 'S
MINIMUM PRINCIPLE

Nonlinear model predictive control (NMPC) is an onf@ant tool for the real-time optimal
operation of batch and semi-batch processes. Dinetihods are often the methods of choice
to solve the corresponding optimal control problemsparticular for large-scale problems.
However, as discussed in Chapter 2, the matribofeetions associated with large prediction
horizons can be computationally demanding. In @stiras discussed in Chapter 3 and 4,
indirect methods can be competitive for small anid-scale problems. Furthermore, the
interplay between states, co-states and Lagrandfghaus for path constraints in the context
of Pontryagin’s Minimum Principle (PMP) might turout to be computationally quite
efficient (Cannon et al., 2008).

This chapter proposes to use the indirectt®ol technique discussed in Chapter 3 for the
shrinking-horizon NMPC (sh-NMPC) of semi-batch msses. In particular, the technique
deals with path constraints via indirect adjoininghich allows dealing with the path
constraints explicitly at each iteration. Uncertais are handled by introducing time-varying
backoff terms for the path constraints. The resgl8h-NMPC algorithm is tested on a two-

phase semi-batch reactor for the hydroformylatidn ledodecene in the presence of
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uncertainty, and its performance is compared tbdh&IMPC that uses a direct simultaneous

optimization method.

5.1 Shrinking-horizon NMPC Problem

In shrinking-horizon NMPC (sh-NMPC) of batch andnséatch processes, the optimal

control problem to be solved on-line at each iteratan be written as follows:

min ] = $(x(t7,6))

_ 51
st. x=F(xu,0), x(t,) =x, )

S(x,u,0) <0, T(x(t;),0) <0, tE€ /[ty ts]

wheret,, is thek-th sampling timeJ is a scalar performance index that depends omalues
of the states at the final tintg, @ is the objective functionx is the n,-dimensional state
vector with the corresponding initial conditiong u is theny-dimensional input vecto is
the ns-dimensional vector of inequality path constraihigt include input boundg, is theny-
dimensional vector of inequality terminal consttajrandd is the vector of parameters which
are uncertain and associated with plant-model ntidm&fter solving Problem (5.1), the first
partult, t, + 8] of the optimal inputs is implemented in the plahg horizon is shrunk by
the sampling intervad, and a new optimal control problem is solved. Tpiscedure is
repeated iteratively until the final batch timeeached. Sh-NMPC is illustrated in Fig.1.1

Several methods are available in the liteeata cope with uncertainties in the context of
stochastic programming or two-level approachesisdib, 2004; Li et al., 2008; Mesbah et
al., 2014; Puschke et al., 2016; Mesbah, 2016; lfkesand Mitsos, 2016). However, the
computational time associated with these methods stél be a limitation for real-time
optimization. To deal with the effect of uncertést time-varying backoffs will be
introduced (Visser et al., 2000; Srinivasan et2003a; Shi et al., 2016). Furthermore, it is
assumed that, can be measured or estimated using on-line semsuwtsstate estimation
(Allgbwer et al., 1999; Rao et al., 2001; Rao aravihgs, 2002; Schneider and Georgakis,
2013). Using small sampling times and frequentine-imeasurements, the conservatism

associated with the robust backoff approach cardheced.
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The optimal control problem given in Eg. ®dn be reformulated using PMP and the

constraint backoffs as follows:

min  H(t) = ATF(x,u,0) + uT[S(x,u,8) + b]

u(t)
sit. x=F(x,u,0); x(ty) = xx; t € [ty, tr]

it _ __OH T _9¢ Tﬂ| .
A= ox’ A(tf)_ax tf-l—U 6xtf’

T[T (x(tr),8) + by] = 0

OH(®) _ 47 OF L 705 _

ou ou ou 0 (5'2)

whereH is the Hamiltonian functiond the n,-dimensional vector of Lagrange multipliers
(also called co-states or adjoints) for the systeuationsd the estimated parameteys,the
ns-dimensional vector of Lagrange multipliers for tipath constraints, and the nr-
dimensional vector of Lagrange multipliers for ttegminal constraintsh; andb; are the
backoffs associated with the path and terminal ttaimds, respectively. The terms
u'[S(x,u,0) +bs] =0 and vT[T(x(tr),0) +br] are the complementary slackness
conditions that will be satisfied at the optimunddiionally, the partial derivatives of the

Hamiltonian function with respect to the inputs malsbe equal to zero at the optimum.
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Robust PMP-based Solution Algorithm for sh-NMPC

Select values for the penalty teK®»0, the step sizer, the coefficients, the threshold, the
number of discrete input valuds, the maximal number of iterationter_max andthe
backoffsh,. Initialize the input matrixty,, M,, v, and the Hessian matrix corresponding to
thek-th time instantB§ := 1, .

doh=0 - iter_max

1) Solve the state equations by forward integratiod #me co-state equatiors=
G(x,u, M,v) by backward integration and compute the condtraatrix M as follows:
if the j-th constraint is satisfied at theth discrete time instant, séf, (j,k)
= 0, otherwise seM,, (j k) := K.

2) Evaluate the matrix of first-order gradielitg, H), by using pre-computed analytical
expressions.

3) if [|[(VyH)pll<e, setUyy: := Uy, STOP

4) Compute the next inputs as follows:

dok=1 >N,
uf = U, (., k)
ViH:= (Vy(H),
if thei,; terminal constraint is such thﬁ"t(x(tf)) <0,
setv, (i) = 0. Otherwise, set, (i) =K, for i=1,...,nr.
end if
if S(x,uf,0)+bs <0
4.1. Apply line search fog and estimater
4.2. Computd,, =uf —a(BF) 'VkH
4.3 Update the Hessian mami,, as follows:
Si=ujq —up; yi=ViH—VEH

T k. Tpk
ifsTy > BlIs||?, setBk,, := B + 2 — Zn>S Bn

sTy  sTBKs

elsesetBy, | := Bf
end if

elsecomputeuf, , that givess™ (x,uf, ,,8) = 0 and seBf, , := Bf

end if

Ups1(, K): = ufyq
end do
end do

68



Chapter 5: Nonlinear Model Predictive Control usia@ntryagin’s Minimum Principle

5.2 Case Study: Two-phase Semi-batch Hydroformylation Bactor
under Uncertainty

5.2.1Problem formulation

Similar to Problem 3.2.1, consider the seaitb operation of hydroformylation in a two-
phase stirred-tank reactor. The objective is toimee the final concentration of n-tridecanal
(nC13al) from 1-dodecene (nCl12en) that reacts wytngas [, + CO). The final time is
fixed at 70 min. For more detail, the reader ienefd to Chapter 3.

The manipulated variables are the reactop&aturel (t) and the syngas feedratét).
Equimolar content oCO andH; in the syngas is assumed. The gas and liquid pharse
modeled as ideally mixed phases. Nominal model petars are given in Appendix 2
(Hentschel et al., 2015). In addition to boundgtminput variables, the total pressure of the
gas phase must be kept within specified limitsslseen from Eq. 3.6 that the first time
derivative of the total pressurey{;,;) contains the input(t) explicitly, thus implying
relative degree 1 for this constraint. As a reghlg constraint can be indirectly adjoined into
the Hamiltonian and will be activated at each isflel® iteration as illustrated in Fig. 3.1.
Concretely, if the constraii(x, 0) = piorai (%, 0) < (20 bar — by) is violated, the indirectly
adjoined constrair€? (x, u, 8) = Proea (%, u, ) Will be activated by computing the valuewf

that make®;,:q: (x,u,8) = 0.

Including the backoff terrhs, the optimal control problem to be solved on-lateeach

NMPC iteration is as follows:

Jhax ] = Cniza(ty) t € [ty, tr]
S.t dynamic model eqns.;
gas — liquid mass transfer eqns. given by (Eq. 3.6)
Cliq,i (tk) = Cuigiks Pi(te) =Dpiks =1, 2,....7
1 bar < Piorar(t) < 20 bar — bg(t);
0 mol/min < u(t) <7 mol/min;
368.15K < T(t) <388.15K

IT(®)-T (x|
t—ty

< AT,0x (5.3)
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wheret,, is the time at th&-th sampling instani, represents the component index (i=1,2,...,7
for the liquid phase and i=1,2 for the gas pha&g); is the estimated concentration of
component in the liquid phasey; ; is the partial pressure of gas1 the gas phasé; is the
time-varying backoff associated with the pressyspeu limit, whose value can be calculated
by open-loop Monte Carlo simulations (Shi et aQ1@). Parametric variations are given in
Table 5.1. The total partial pressure and the sgecbncentrations are assumed to be

measured at each NMPC iteration, e.g. using amnenHR spectroscopy.

The optimal reactor temperature calculatedNMPC serves as set point for a thermostat
that regulates the reactor temperature by adjudtiegflowrate of heating/cooling fluid.
Hence, a rate constraint on the temperature changatroduced AT,,,,) SO that the
controller is capable of reaching the set pointolefthe next NMPC iteration. This rate
constraint depends on the heating/cooling capadithe thermostat. On the other hand, the
optimal feed flowrate can be implemented direcBp€l et al., 2000; Abel and Marquardt,
2003). It was observed that a relatively fine ingigicretization (#100) is necessary to get
accurate and feasible optimal results, especiallly vegard to the pressure constraint (Aydin
et al., 2017a).

Remark 5.1. For steady-state problems, closed-loop stability lsa enforced by adding an
extra terminal constraint to the problem (Garcialgt1989; Diehl et al., 2011; Angeli et al.,
2012). The prescribed algorithm can also tackletémminal constraints. This serves as an
additional advantage of the proposed algorithm cmexb to other indirect methods in the

context of NMPC for continuous processes (Cannah. £2008).

Remark 5.2. To speed-up the real-time algorithm, NMPC can liglized att = O with the
nominal optimal control profiles as initial guess&ben, when the horizon shrinks at each
iteration, the last computed input profiles areraxolated linearly for the new horizon and

serve as initial guesses for the next optimization.

Remark 5.3. Since the proposed algorithm searches for a feagibint at each iteration, it
can be implemented in a sub-optimal fashion byirgeth minimal number of iterations to
further reduce the computational effort (Findeiseal., 2007). This can be beneficial for fast

processes.
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5.2.2Estimation of time-varying back-offs

Back-offs can be useful to enforce feasibility undarametric uncertainty. The conservative
nature of back-offs can be reduced through theotisenall sampling times. In order to decide
on the back-off ternis, the multi-step approach of (Shi et al., 2018)sed in this part. First,

the nominal optimal input profiles are computedisThas done in Chapter 3. Then, Monte-
Carlo simulations are performed using the optimpluts and sampling various uncertainties.
Finally, a time-varying back-off is determined frothe standard deviation of constraint
violations. Note that the Monte-Carlo approach rigkquire a significant computational

effort in the presence of multiple uncertaintias, this work is done off-line.

In this study, the rate constahtg and the catalyst activity are assumed to vary within a
certain range from batch to batch according toigotm distribution. On the other hand, the
gas-liquid mass-transfer coefficien&,a); are assumed to vary within a batch. The
uncertainty ranges for the parameters are givélrabie 5.1. The results of open-loop Monte
Carlo simulations for 40 realizations of multiplecertainties are depicted in Fig. 5.1

23
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Figure 5.1.a.0pen-loop Monte Carlo simulations of total presdoret0 uncertainty

realizations.
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Figure 5.1.b.Open-loop Monte Carlo simulations of product cortiion for 40 uncertainty

realizations.

Table 5.1 Parametric variationgk, a); vary within batch, whilé; , andy vary from batch

to batch.

Parameter Nominal Value Minimal Maximal
(Hentschel et al., 2015) Value Value

(k,a), 9.57 8.0 10.1
(k) 7.08 5.5 7.6
kio 4.904 2.9 5.2
k3o 4.878 3.8 5.8
ks 2.724 1.7 3.7
kao 2.958 1.9 3.9
ks, 3.702 2.7 4.7
ko 3.951 2.9 4.9

Y - 80 % 100 %

72



Chapter 5: Nonlinear Model Predictive Control usia@ntryagin’s Minimum Principle

Accordingly, the time-varying back-off is chosenfalbows:

1.3 if t <30
by(t)=<0.7 if30<t< 55
0 if t >55

Remark 5.4 The back-off values can also be updated on a hatblatch manner so as to
increase the performance of future batches (BoanthFrancois, 2017).

5.2.3NMPC for product maximization

The PMP-based algorithm for the NMPC was implenenrte the Matlab environment.

Simulink is used for closed-loop simulations. Albneputational results (excluding the
initializations of the problems) were obtained gsen Intel i-3-2100 machine (CPU 3.10
GHz 4 GB RAM). The tuning parameters for the DSMdzhand the PMP-based algorithms

are summarized in Table 5.2.

Table 5.2.Tuning parameters for the PMP-based and DSM-bdgedtams.

DSM-based Algorithm (with Ipopt) PMP-based Algorithm
control sampling time 15 s control sampling time 15 s
measurement sampling time = 30 s measurement sampling time = 30 s
measurement delay5 s measurement delay5 s
N =100; ipopt.max_iter = 100; a =0.05;4=0.1 £=0.01; N =100;
ipopt.tol = 1e-4; ipopt.mu_init = 1e-6 K=20; iter_max =15
AT, .= (0.35 K)/(155) AT, ..= (0.35 K)/(155)

As discussed by Remark 5.2, the input prefidemputed off-line using the nominal model
are used as initial guesses at the beginning dbabeh for both algorithms. Later, the optimal
inputs computed at a given iteration are used teigge by extrapolation the initial guesses
for the next optimization.

All measurements are corrupted with whiteseoiBecause the sampling times for the

measurements and the controller are not the samddanaaddition there is some measurement
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delay, an observer is designed to estimate theecwrations in the liquid phase using the

model equations and a linear update term:

Lk
X = fRu)dt + dj—y

tk-1 (5.4)
dy = L(xx — Xx)

whered,, is the linear update ternt, = ¢,k X, are the measured statdy, are the
estimated states antd= diag[0.75 0.75 0.65 0.75 0.75 0.75 0.75] is the observer gain
matrix. All concentrations in the liquid phase assumed to be measured every 30 sec (+ 5
sec delay) using an on-line FTIR, and the pressutige gas phase is assumed to be measured
every second with no delay. The NMPC algorithm sakeo account the estimated states at
each sampling time as the initial conditions of dipgimal control problem and the linear term
d, is updated as soon as the new measurements arn@eobtdhe performance of the

observer is given in Fig. 5.2.

0.5 I
---------- measured states
— true states

0.4r ™\ s estimated states

0 10 20 30 40 50 60 70
Time (min)

Figure 5.2.Performance of the observer for a single batch.

The performance of the DSM-based and PMPebakgrithms for the same disturbance
realizations within a batch are compared in Fi§. 3he corresponding computational times
for the individual iterations are given in Fig. 58light variations between the true and
estimated concentrations do not affect the featsibibf the closed-loop operation.

Nevertheless, performance increases with better ssimation.
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Figure 5.3.NMPC profiles with DSM-based and PMP-based algorgtior a particular batch

and fixed final time.
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Figure 5.4.Computational times with DSM-based and PMP-basgaoréhms.

Fig. 5.3 shows that, with both methods, v&nyilar closed-loop performance in terms of
optimal cost can be achieved in the presence ainpatric plant-model mismatch. In addition,
the upper pressure limit is never violated thawokihe backoff term, and the rate constraint on
temperature is satisfied at each NMPC iterationh@&ligh the closed-loop input trajectories
are slightly different, the optimal costs are vemnilar. Finally, as seen in Fig. 5.4, PMP-
based NMPC is much faster than DSM-based NMPC cesjyeat the beginning of the batch.

Almost 70% of the CPU time required for tHdARbased method is used for integration
of the states and co-states. Hence, CPU time datedecrease significantly with PMP as the
horizon shrinks. Faster performance may be obtaimdg fast integration algorithms or
discretization methods. However, the speed angéehiermance of the PMP-based solution is

still an open issue for large-scale systems tleatire high computational time for integration.

In order to test the robustness of the PM&OANMPC, simulations were performed for
40 uncertainty realizations (Fig. 5.5). PMP-bas@dRC is able to sustain feasible operation
in all these batches in the presence of uncertamitih a mean final nC13al concentration of
0.554 mol/L. This indicates that, under closed-loperation, nearly 9% increase in the final
amount of the desired product can be obtained coedpa the infeasible (because of pressure

violation) operation in Fig. 5.1.
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Figure 5.5.NMPC profiles with PMP for 40 uncertainty realizats and fixed final time.
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5.2.4ANMPC for batch time minimization

Furthermore, to check the effect of closed-looprapen on batch time reduction, NMPC
problem is reformulated such that the open-loopintgdt concentration of tridecanal
(cnc1zar(tr) = 0.51 mol/L, Fig. 5.1.b) is given as a set-point to the cotarplvhile the final
time ¢, is let free. The corresponding closed-loop redoitsiO different batches are given in
Fig. 5.6, which shows that, with PMP-based NMP@, d¢werall batch time can be reduced
from 70 to 51.36 min, corresponding to a 26.5% c#da (Table 5.3).

Table 5.3.Performance of PMP-based NMPC for free final time.

meant,
Method median t; st. dev.t,

(for cper3a(ty) = 0.51 mol/L)

Open-loop nominal

optimization 70 min 70 min —
(infeasible)
NMPC 51.36 min 51 min 2.28 min
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Figure 5.6.NMPC profiles with PMP for 40 uncertainty realizats and batch time

minimization.



5.2.5NMPC with constraint tracking

Figs. 5.5 and 5.6 illustrate that the pressureery elose to the upper limit of 20 bar in all 80
batches. The optimal solution computed off-linelwmtihe nominal model also suggests that
this pressure constraint is active throughout fheration (Aydin et al., 2017a). Accordingly,
a constraint-tracking framework can be suggestedutther reduce the computational
complexity.

The syngas feedrat€t) is adjusted to keep the pressure at 20 badewhe temperature
T(t) is used to maximize the final concentratiom@fl3al. The control can be done implicitly
with the model, that igy(t) is computed to keef;,::(t) constant at 20 bar or, equivalently,
Protar(t) = p1(t) + po(t) = 0. From Eq. (3), this gives

u(t) = Vig (1540 + 12 ®), (5.5)

which keeps the total pressure constant. This wég), can be removed from the set of
decision variables in Eq. 5.3. Howevey,:,:(t) has to be kept constant at Bk bar, which

is done via PID control. As seen in Fig. 5.7, toatomller is able to keep the pressure very
close to the desired value. In addition, becauseptiessure limit is enforced by feedback
control, a coarser input discretization can be ulsedthe temperature (N=50 instead of
N=100). The performance of NMPC with constraintckiag is shown in Fig. 5.7 for 40
different uncertainty realizations, with the copesding computational times given in Fig.
5.8. This optimization scheme results in feasibferation, with a mean final nC13al
concentration of almost 0.531 mol/L and reduced patational effort. Table 5.4 compares
the performance of NMPC without and with constrairdcking. The introduction of

constraint tracking reduces performance only by 2%.
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Figure 5.7.NMPC with constraint tracking for 40 different umizenty realizations and fixed

final time.
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Table 5.4.Performance of PMP-based NMPC without and with traig tracking for fixed

final time.

Method

mean cnclSal(tf)

median ¢,c1341(tf)

st. deV.Cncl:;al(tf)

Open-loop nominal

optimization (nfeasible)

NMPC without tracking

NMPC with tracking

0.51 mol/L

0.554 mol/L

0.543 mol/L

0.511 mol/L

0.55 mol/L

0.539 mol/L

0.0126

0.010

0.014
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5.3 Summary

This chapter has proposed to extend the indirectPflslsed solution scheme for the
shrinking-horizon NMPC (sh-NMPC) of semi-batch pFsses. The application of sh-NMPC
to a two-phase semi-batch Hydroformylation reactader uncertainty is illustrated. A time-
varying backoff approach is used to deal with patim uncertainties. The pressure path
constraint is indirectly adjoined into the Hamiliam function and activated at each infeasible
iteration. Simulation results show that the compateal burden stemming from the matrix
factorization in large-horizon problems is succelgfreduced by the interplay of states, co-
states and Lagrange multipliers. Accordingly, PMBdd NMPC has a computational
advantage over direct simultaneous method-based ®JMBpecially at the beginning of the
batch. In addition, finer input discretization witlhe PMP-based NMPC can be expected to
increase the closed-loop performance but not tmepcdational time significantly, whereas
cubic increase in the computational time is ansitgpd with the DSM-based NMPC.
Furthermore, the PMP-based solution algorithm aaexiended to active constraint tracking.
For example, for the semi-batch hydroformylatioaater, further reduction in computational
time was obtained via tracking of the active pressionstraint. Note that the computational
speed of the PMP-based algorithms can be furtloeeased by discretizing the state and co-
state equations instead of relying on integratioet, it is still an open question how PMP-

based NMPC performs for large-scale problems, wimtegration requires more effort.
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Simple can be harder than complex: You have to
work hard to get your thinking clean to make it
simple. But it's worth it in the end because once y
get there, you can move mountains.

Steve Jobs (1955 — 2011)

6 NONLINEAR M ODEL
PREDICTIVE CONTROL
USING PARSIMONIOUS INPUT
PARAMETERIZATION

The optimal inputs of batch and semi-batch processeputed via dynamic optimization can
be characterized using different arcs. An optimal ean be either on an input bound
(Umin, Umax), ON @ path constraintuf,.,), or inside the feasible region as a sensitivity-
seeking arc us.,s). It is usually difficult and burdensome to compuhe fine shapes of
sensitivity-seeking arcs accurately due to theik laf sensitivity. To deal with this issue,
simplified solution models can be introduced, iniahhthe inputs and most importantly the
sensitivity-seeking arcs,,,s are parameterized parsimoniously using switchinges and
low-order polynomials. This way, the number of demm variables and the complexity of the
optimization problem can be reduced significantty.other words, instead of a full NLP, a
parsimoniously parameterized NLP can be solved, clwhreduces the load of the
corresponding non-convex dynamic optimization peanl Hence, the required CPU time is
expected to decrease significantly, without affegtmuch the optimal cost (Welz et al., 2005,
2006; Welz et al., 2008). This is also the motwatiof Chapter 4, in which such a
parsimonious scheme is combined with an indirecthot to be applied to dynamic

optimization.
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The main contribution of this chapter is tetall the application of the parsimonious
parameterization models in the context of sh-NMP@&rsimonious sh-NMPC approximates
the fine shapes of the optimal inputs at each sagpihstant. As stated earlier, the
optimization is performed at each sampling instanthe full time horizon but only the first
part of the optimal inputs is applied to the pracadevertheless, the optimal closed-loop
behavior might be captured accurately. In additgince the full time horizon is taken into
account, the loss in ability to influence the bateiticome (which is one of the most important
challenges in batch processing) can be preventei still having a significant reduction in
CPU time.

6.1 The Parsimonious Shrinking-Horizon NMPC

Direct and indirect methods exist in the literattioesolve the problem given by Eq. 5.1
(Srinivasan et al., 2003b; Biegler, 2007, 2010; iAydt al., 2017a). The input profiles are
typically discretized ag(t) = U(U), where U is arf,x N) input matrix that containd discrete
input values for the, inputs. In an earlier publication, it is observbdt at leasiN=100 is
required to obtain reliable offline optimal pro8ldor the batch and semi-batch problems
(Aydin et al., 2017a).

Accordingly, the standard sh-NMPC algorithm carfdrenulated as follows:

Standard sh-NMPC Algorithm

Setk = 0 and specify,.
while ty € [to, tr] doO

Measure/estimate, and assign(t;): = x

Solve Problem (5.1) for the decision varialdlgs, x N)

Injectulty, t, + 6]= U(U(nyx 1)) to the plant and wait fag,.; = t;, + 9§
Setk:=k+1

P w0 b

end do

Numerical optimization schemes often reqftiime input discretization levels to be able to

compute accurate solutions. In addition, as disalisearlier, the complexity of the
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optimization problem increases cubically with thend horizon due to the matrix
factorizations required in the solution steps. Remnore, it is sometimes necessary to include
additional terminal constraints to the NMPC proldefor continuous processes to guarantee
closed-loop stability (Mayne et al., 2000; Findeige al., 2007). This may increase the size of
the prediction horizon significantly. Consequentlye CPU time required to solve the sh-
NMPC problem may turn out to be large, especiallyha beginning of the batch when the
time horizon is the largest. On the other hand, gkpensive matrix factorizations can be
avoided by decreasing the number of decision vesabusing parsimonious
parameterizations, while keeping the full lengtrtted time horizon. Afterwards, the proposed
indirect algorithms can be applied to the problemhich decreases the computational

complexity significantly.

The strategy behind building the parsimonisakition models starts with computing the
offline solution to Problem 2.1. It is typically asmed that the uncertainty does not change
the types and sequence of optimal arcs in closepl-bperation, which is reasonable for batch
processes (Kadam et al., 2007; Srinivasan and Bora007). Given the optimal solution
structure, the input boundsif;,, unm.,) a@and the sensitivity-seeking arcsgf,;) can be
approximated using polynomial profiles and adjulgawitching times between arcs (Welz et
al., 2005, 2006; Schlegel and Marquardt, 2006b;2/¢lal., 2008). These solution models
have also been used recently in the context ofNB® tracking to design multivariable
controllers by pairing the inputs (MVs) with the tigse constraints and appropriate
sensitivities (CVs) using physical insight, relatigain analysis and sensitivity analysis
(Visser et al., 2000; Srinivasan et al., 2003a; \Bon2006; Srinivasan et al., 2008; Welz et
al., 2008; Ebrahim et al., 2016).

In this chapter, it is proposed to use thacept of parsimonious solution models for
solving the sh-NMPC Problem (1). As discussed irafiér 4, given the optimal solution
structure (the types and sequence of arcs), itossiple to reformulate the optimization
problem using a parsimonious input parameterizatfathe formu(t) = U( 7) . For example,

a sensitivity-seeking arc can be expressed asarliarc between the two switching tintes
andt, with the valuesi, anda, att, andt,, respectively. This results n= (t;,t,,a;,a,)7,

with the parsimonious input model:
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Umax if 0<t<ty
a, — a4 .
2 1
Umin if t,<t< tr

The reformulated optimal control problem to be sdlwnline at each sampling instant reads:

min ] = $x(t;,0))
(6.2)
st x(t) = F(x(b), U(m),0), x(t,) = x,

S(x(®),U(n),H) <0,
T(x(tf),0) <0, tE€ [ty tr]

wherer is the new vector of decision variabl@ég) the input vector given by Eq. 6.1,
represents the system of equations expressednis @it/ () instead ofu(t), ] is the scalar
performance index for Problem (8)js the vector of estimated parametérthe vector of
inequality path constraints expressed in termdigfr) instead ofu(t). Finally, the dynamic

optimization problem given by Eq. 6.2 can be solusohg the method given in Chapter 4.

Accordingly, the parsimonious sh-NMPC aldumtcan be formulated as follows:

Parsimonious sh-NMPC Algorithm

|. Solve Problem given in Eq. 2.1 numerically offlife the nominal values of the

parameter® = 6,.
Il. Build a parsimonious solution model by parametagzihe inputs with respect to the
switching times and low-order polynomials to obt#i(r).

[ll. Setk = 0 and specify,.

while ty € [to, tf] do

1. Measure/estimate, and assign(t;): = x;
2. Solve Problem 6.2 using indirect methods for theisien variablest
3. Injectulty, t, + 8]= U[ty, tx + 6] () to the plant and wait fag,,.; =t + 8
4. setk:=k+1
end do
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Remark 6.1. The polynomials used in the parsimonious models oditen very problem
specific, with piecewise-constant or piecewisedinéunctions often resulting in accurate
approximations to the sensitivity-seeking arcs.bnm-specific information regarding the

parsimonious parameterization will be detailedhi@ tase studies of next section.

Remark 6.2. As discussed in earlier chaptedgpending on their relative degree, the inputs
that activate the path constraimts,., can sometimes be computed online using the model
equations, that is, without any optimization (Srasan et al., 2003b; Aydin et al., 2017b).
Another alternative is to track the correspondiaghpconstraints with the help of feedback

controllers usingu,,., as manipulated variables (Srinivasan and Bon\d0,/2.

6.2 Case Studies

To illustrate the application of parsimoniaisNMPC to batch and semi-batch processes,
two case studies are selected. The first exampileeidatch binary distillation column with
terminal purity constraints and the second onehé gemi-batch hydroformylation reactor
with path constraints. In order to test the perfanoe and robustness of the controllers,
closed-loop simulations are performed under pamameincertainties. The standard sh-
NMPC cases are solved using a direct simultaneailod. The CasADI toolbox and Matlab
Simulink are used for both sh-NMPC methods (Wachtet Biegler, 2006; Andersson and
Diehl, 2012).

6.2.1Batch binary distillation with terminal purity cons traints under
uncertainty

Recall the batch distillation column with three gigpaum plates, in which components A and
B (more volatile) are separated from each othee dperational goal is the maximization of
the amount B in the distillate, while satisfyingawerminal constraints. The only path
constraint is on the input variable, namely, thigureratio. Accordingly, the optimal control
problem to be solved online in the context of shfBican be written as follows:
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max
T‘(t),tf

S.t.

] = D(tf)

dynamic model eqns. (from Eq. 3.5);

D(ty) = Dy; B(ty) = Bx; np(ty) = ng; ni(te) = nyy;

Ny (tr) = ngy; n3(te) = ngy; np(te) = np,,

3 AXy, _
1+ (a—1Dx,y,’

Ym

xp(tr) = np(ty)/D(tr) = 0.8
x5(tr) = ng(tr)/B(tr) < 0.2
3h<t;<325h

0<r(t)<1 , tE€[tt]

m=B,1,...

3

(6.3)

wheret, is the time at th&-th iteration, B, the chargeng, the moles of B in the charge,,

the moles of B in the liquid phase on theth tray,y,, the mole fraction of B in the vapor

phase leaving thetth tray,n, the moles of B in the distillate tank; the mole fraction of B

in the distillate tankng the moles of B in the bottoms; the mole fraction of B in the

bottoms,a the relative volatility MH the liquid hold-up on each tray, andthe free final

time. Because of the assumption of total condemsathe composition of the refluxed liquid

is equal to the vapor composition leaving the ugpate. It is also assumed that all plates are

initially charged with the same liquid mixture dtreboiler. The nominal model parameters

and the initial conditions are given in Table 6.1.
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Table 6.1.Nominal model parameters and initial conditionstfar batch distillation.

Parameter

Value

Vapor flowrateV

Relative volatility,a

Initial charge,B,

Concentration of B in the charge;

Molar hold-up per platay

50 kmol/h
2.35
115 kmol
0.4

5 kmol
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In this batch distillation study, state feadk information is assumed in order to focus
only on the computational aspects of the proposbeéme. This is a reasonable assumption
considering the advances in state estimation aritieospectroscopy (Rao and Rawlings,

2002; Zavala et al., 2008b; Schneider and GeorgaRis3).

6.2.1.1Nominal Open-loop Optimal Policy

The optimal control problem given by Eq. 2.1 issfisolved offline, using the estimated
parameters given in Table 6.1. The optimal profileemputed using a direct simultaneous
method and 100 piecewise-constant elements, aem @givFig. 6.1. The optimal cost is 44.69

[kmol].
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Figure 6.1.Optimalopen-loopprofiles for Problem 6.2.1 with a direct simultane method
(DSM) and parsimonious input model (PIM).

Fig. 6.1 shows that the solution structueetstwith total reflux to increase the purity at

the top of the column. Then, a sensitivity-seelkangrepresents the best compromise between

91



producing more distillate and satisfying the regdimpurity. Finally, a no-reflux third arc

recovers the high-purity material that is stiltla¢ top of the column.

Similar to Chapter 4, analysing the optinrgut profile, a parsimonious solution model
can be proposed, in which the sensitivity-seekimg \aaries linearly between the two
switching timest; andt,. Furthermore, the values naf, at the switching times are also
considered as the decision variabtgsandr;,, because,,,, does not start at 1 and end at 0.
Accordingly, the new vector of decision variables this parsimonious solution model is

T = (t1,t2, 71, Tha, tr)", @and the parameterized reflux ratio reads:

1 if 0<t< t1;
T2 — Tp1 .
r(n) =<{ 11+ ﬁ(t - tl) lf t1 <t <ty (64)
2 1
0 if t, <t< tf

The optimal profiles obtained with this sim@olution model are also shown in Fig. 6.1,
with an optimal cost of 44.56 [kmol]. It is obsedvihat the nominal and approximated open-

loop optimal profiles are very similar.

6.2.1.2Closed-loop Simulation with sh-NMPC

In order to check the performances of both sh-NMf@emes, uncertainty is added to the
relative volatility parametera(), which varies randomly from batch to batch betweEsf/o
and 0%. In addition, the vapor flowrat#)(is randomly perturbed b¥ 3 kmol/h within the

batch. The controller sampling time is 1 min.

Firstly, the performances of standard andgipasnious sh-NMPC are compared for one
particular batch. The optimal closed-loop behawsoane given in Fig. 6.2, which shows that
very similar performance can be achieved with bo#thods. In other words, the closed-loop
optimal behaviour can be approximated accuratelydigg the parsimonious solution model.
Only a batch time difference of 3.5 min is requitechave the same distillate amount at the
end of the batch.
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Figure 6.2.0Optimalclosed-loopprofiles for Problem 6.2.1 with standard and paiious

sh-NMPC.
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Figure 6.3.Computational times with standard and parsimongiuBIMPC for the batch
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On the other hand, it is observed that parsimonstuBIMPC requires significantly less CPU
time and is much faster than standard sh-NMPC cesheat the beginning of the batch (Fig.
6.3).

Finally, to validate the robustness and chibekperformance of parsimonious sh-NMPC
for different uncertainty realizations, 40 closed simulations are performed. In all cases,
the simulation is stopped as soon as the desireity pevels are achieved. The results are
given in Fig. 6.4. It is observed that parsimoniasNMPC results in feasible operation.
Furthermore, with CPU-time reduction at each ifergtfaster sampling and control can be
used, which in turn helps to deal with plant-modesmatch. This way, parsimonious sh-

NMPC can outperform standard sh-NMPC in real-ifgplementation.
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Figure 6.4.0Optimalclosed-looporofiles for Problem 6.3 with parsimonious sh-NMf€40

different batches.

94



Chapter 6: Nonlinear Model Predictive Control ugiaysimonious Input Parameterization

6.2.2Semi-batch reactor for the hydroformylation of 1-dalecene under
uncertainty

This section investigates the application of sh-NOViB a two-phase fed-batch reactor for the
hydroformylation of 1-dodecene (nC12en) in the pneg of uncertainty. Note that the same

problem has been detailed in Eqg. 3.6 and 5.3.

A stirred-tank reactor with the dosing of syngék ¢ CO) is used for the operation. The
manipulated variables are the reactor temperdt(reand the feedrate of syngaét). The
operational objective is to maximize the amounnéfidecanal (nC13al) at the end of the
batch. Fixed batch time is 70 min. Input bounds lmdis on the total pressure in the gas
phase represent the path constraints that shousdtisfied throughout the operation. Earlier
studies showed that plant-model mismatch affeces fglocess conditions and feasibility
significantly, and therefore should be taken intccaunt (Kaiser et al., 2016; Aydin et al.,
2018b). For detailed information, the reader iemefd to Chapter 3.

Table 6.2.Nominal parameter values and corresponding vanatfor the hydroformylation

process(ka); varies within batch, whil&; , andy vary from batch to batch.

Parameter Nominal Value Minimal Maximal
(Hentschel et al., 2015) Value Value

(k,a), 9.57 8.57 10.57
(k,a), 7.08 6.08 8.08
kio 4.904 3.8 6.0
ko 4.878 3.78 5.98
k3o 2.724 1.72 3.72
k40 2.958 1.8 4.0
ks,o 3.702 2.6 4.8
ke 3.951 2.8 5.0

14 100 % 80 % 100 %
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6.2.2.1Nominal Open-loop Optimal Policy

The optimal control problem given in Eq. 3.6 isveal offline for the nominal model
parameters using a direct simultaneous method. ifpet parameterization uses 500
piecewise-constant elements. The optimal profilesgiaven in Fig. 6.5. It is seen that (i) the
optimal solution exhibits a single arc for the femdu, and (ii) the upper pressure limit is
always activep;,:,;(t) = 20 bar. Furthermore, the optimal temperature proftirts at the
lower limit (T,,;,) to favor the desired reactions, then follows as#sfity-seeking arqTseps)
and ends up at the upper linft,.5) to suppress the undesired reactions. The optiostl c
with the fully parameterized NLP is 0.591 [mol/L].

A parsimonious solution model can be intraatlto reduce the computational load of the
online control problem. In this model, the temperatl'(t) is parameterized using the
switching times; andt, and a linear profile between the lower and uppmmbls between
these switching times. On the other hand, the Bgednputu is set to keep the pressure at its

upper limit.

As discussed in the previous chapters, E§.sBows that the pressure constraint has
relative degree of 1. In other words, the inputdmees explicit after the first time derivative

of this constraint. Hence, the value wft) that keeps the total pressure active can be

computed frompeocai(t) = p1 (&) + p(£) = 0, which givesu(t) = Viyq (j1°4(t) + 1°“(®)).
As a result, the vector of decision variables foe teformulated problem is= (t;,t,)7.

Accordingly, the parsimonious input model reads:

( 368.15 if 0<t<ty;
20
| T (m) =< 368.15 + (t—ty) if t1<t<ty (6.5)
U(m) = =t '
388.15 if t,<t<ts
L u(®) = Vig (1) + 1. (®)) vee (o]

The optimal profiles obtained via the simplif solution model are also shown in Fig.

6.5. The optimal cost obtained using the parsimamparameterization is 0.589 [mol/L].
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Figure 6.5.Optimalopen-loopprofiles for Problem 6.2.2 with a direct simultane method

(DSM) and parsimonious input model (PIM).

It is observed that, although the input profilesnpaited with both methods differ to some
extend, very similar cost values can be achievédet® et al., 2016; Aydin et al., 2017a). On
the other hand, note that the number of decisiorabkes is reduced from 500 to 2 through
the use of the parsimonious solution model, whidves the significant reduction in online

computational effort.
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6.2.2.2Closed-loop Simulations with sh-NMPC

The performance and robustness of both sh-NMPCnsefid¢or the hydroformylation reactor
are compared under the parametric variations givdiable 6.2. The controller sampling time
is 30 s. It is assumed that the concentrationsaoh @omponent can be measured via online
spectroscopy every 30 s, with a 5 s measuremeay.d€he total pressure in the gas phase is
assumed to be measured every second with no dblayeover, all measurements are
corrupted with Gaussian white noise. The lineareoler, which is given in Eq. 5.4, is used to

estimate the concentrations of all species inithed phase at each sampling instant.

Remark 6.3. The AT,,,, constraint can be enforced directly with standatdNMPC.
However, with parsimonious sh-NMPC, this constraiah be included in the optimization

via a constraint on the two switching times, namgly- t; > 15 min.

Unlike Chapter 5, in order to reject the eféeof parametric uncertainty on the pressure
path constraint, a hierarchical control structuse recommended instead of a back-off
approach. In this scheme, the total pressure in ghae phase #;,:q;) COmputed via
optimization is sent as setpoint to a low-level Ribntroller that tracks the pressure by
adjusting the feedrate of synga&@). This way, the fast perturbations on the path tamg
are rejected via the low-level controller, whiletblow perturbations on the cost are reduced
through the upper level sh-NMPC. Note that, simitar the nominal parsimonious
optimization case, implicit control of this pathnstraint via the system equations is also
possible as discussed in Chapter 5. The suggesteatrdhical structure is illustrated in Fig.

6.6, with the thermostat and the state estimatbddn inside the reactor.

ptotalSp
Lo
A sh-NMPC J >
6liq,i
Reactor Ptotal <

<
N

T*P
Figure 6.6.Hierarchical sh-NMPC structure for the semi-batgtrbformylation reactor.
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To be able to compare the performance of bstFNMPC methods, closed-loop
simulations are performed for a particular batchwhich the parametric variations are the
same throughout the operation. Also, to have adamparison in terms of CPU times, the
inputs of standard sh-NMPC are parameterized wittpigcewise-constant elements. Here,
note that feasibility is achieved via hierarchicahtrol. However, finer input discretization is
usually necessary to have reliable solutions foglsi stage problems, as discussed in Chapter
3. The results are reported in Fig. 6.7.

=
g | |
e 4 —— Standard sh-NMPC |
et — Parsimonious sh-NMPC
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& 380 .
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Figure 6.7.0ptimalclosed-loopprofiles with standard and parsimonious sh-NMPC.
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As shown in Fig. 6.7, both control schemesticbute to very similar final concentrations
of tridecanal (nC13al), even though the input pesfiare different. Furthermore, it is
observed that the temperature profiles exhibitdamme 3-arc shape as the nominal solution.
The resulting optimal costs are 0.5527 [mol/L] $teindard sh-NMPC and 0.5525 [mol/L] for
parsimonious sh-NMPC. On the other hand, parsimengh-NMPC is computationally far
superior to standard sh-NMPC. For both methods(R&J times at each sampling time are
reported in Fig. 6.8. Also, one may expect thae tlu the fact that the computational (or
feedback) delay is reduced with parsimonious sh-MiBetter closed-loop performance can
be achieved in real-life operation. Additionallyaster sampling is enabled by fast
computation, which may increase the performanceth& closed loop by increasing

optimization frequency.

I I
© Standard sh-NMPC
85 -] © Parsimonious sh-NMPC

N
(6]
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|
@)
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CPU time []

1.5%}—@%—%—

0.5F -

0 | ¥ e,
0 10 20 40 60 70

Time (min)

Figure 6.8.Computational times with standard and parsimongtusIMPC for the

hydroformylation semi-batch reactor.
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Figure 6.9.0ptimalclosed-loopprofiles with parsimonious sh-NMPC for 40 diffeten
batches.

Finally, parsimonious sh-NMPC is tested fd&r different uncertainty realizations. The
optimal profiles are given in Fig. 6.9. The parsmuus sh-NMPC scheme results in feasible

operation, with a mean final concentration of tcaleal of 0.5562 [mol/L].
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6.3 Summary

This part of the thesis has combined the use opldied solution models with shrinking-
horizon NMPC for semi-batch processes. A parsimsiparameterization of the optimal
inputs computed offline has been postulated, whieduces the complexity of the
optimization problem and therefore also the CPUesinat each sampling instant. This
decrease in online computational effort is impadrtanpractice. Faster computation enables
higher optimization frequencies, which in turn megd to better closed-loop performance.
The resulting scheme, labeled ‘parsimonious sh-NMR&s been applied to two case studies

simulated in the presence of uncertainty.

Parsimonious sh-NMPC is compared to standarMMPC in terms of both performance
and robustness. It turns out that the performarigesimonious sh-NMPC is very close to
that of standard sh-NMPC. Significant reductionreéal-time computational effort has been
observed in both case studies. Although sh-NMPG/ @mproximates the optimal input
profiles, the closed-loop behavior is accuratelgteeed, mostly because only the first part of
the inputs is implemented at each iteration. Thruirprofiles computed with parsimonious
and standard sh-NMPC differ to some extend, buh Ischemes exhibit the same solution
structures and arc types. It turns out that théopmiance of parsimonious sh-NMPC is very

close to that of standard sh-NMPC in terms of optioost.

Furthermore, it can be stated that the coatfmurtal superiority of the parsimonious sh-
NMPC scheme makes it very suited for real-time i@ptibns of optimizing control to batch
and semi-batch processes. Finally, due to itsNMRC features, other application areas such

as stochastic or multi-stage NMPC should be enwvesio
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Chapter 7: Summary and Outlook

If one day, my words are against science, choose
science.

M. Kemal Atatirk (1881 — 1938)

/ SUMMARY AND OUTLOOK

7.1 Summary

In this thesis, a convergent PMP-based quasi-Nevaigorithm is proposed for solving
constrained batch semi-batch optimization problembis algorithm reformulates the
Hamiltonian function by indirectly adjoining thedquality path constraints so that the inputs
can activate the path constraints at each infeagiration step via one single explicit
computation. This way, the dynamic optimizationoaithm can be tailored to have nearly
linear increase in complexity with respect to irasiag input discretization grids and time

horizons.

The results in Chapter 3 indicate that th@ppsed PMP-based quasi-Newton algorithm
can solve the corresponding constrained optimingii@blems significantly faster than direct
simultaneous methods as the discretization grid fieér. Chapter 3 also demonstrates that,
although the differences between the optimal cest®puted with various strategies are
negligible, the actual input profiles can diffegmificantly and correspond tifferentlocal
solutions. The main reason is the lack of sensytigf the objective function with respect to
the sensitivity-seeking parts of the optimal inpdiserefore, it may be useful to parameterize
these input profiles in an alternative way, formypde by using switching times and low-order
polynomial approximations rather than piecewisestamt or piecewise-linear

approximations.

Following this idea, Chapter 4 details anermative indirect solution method that

parameterizes the sensitivity-seeking inputs paseiously and uses the PMP-based method
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to solve the dynamic optimization of constrainedcbhaand semi-batch processes. It is
observed that the proposed parsimonious indirecthade can solve the corresponding
problems much faster for very similar optimal cesiues.

Chapter 5 suggests using the indirect salusoheme proposed in Chapter 3 for the
shrinking-horizon NMPC (sh-NMPC) for batch and sdraich processes. The application of
sh-NMPC to a two-phase semi-batch hydroformylatisractor under uncertainty is
investigated. A time-varying backoff approach i®digo deal with the effect of parametric
uncertainties. The computational burden due to riarix factorization in large-horizon
problems is reduced through PMP via the interpldystates, co-states and Lagrange
multipliers for path constraints. Accordingly, PMi@sed NMPC has a clear computational
advantage over NMPC based on direct simultaneoubaus, especially at the beginning of
the batch. Furthermore, the PMP-based solutiorrifthge can be extended to track the active

constraints. This way, further reduction in compiotzal time is possible.

Chapter 6 extends the use of parsimoniousitiigarameterization together with the
indirect solution algorithms for the shrinking-hmyn NMPC for batch and semi-batch
processes. As a result, the complexity of the aptition problem and, therefore, also the
CPU times at each sampling instant can be reduiggifisantly. This decrease in online
computational effort is important for real-life it@mentations of advanced control methods
to tackle the effect of computational delay in feack. In addition, the proposed method can
be applied to real-time embedded systems, wherm ¢onstants are much faster but there are
limitations with respect to computational power doeshort battery life. The resulting scheme
is applied to two case studies simulated in thesgmee of uncertainty. The effect of
parametric uncertainty is dealt with via hierarehicontrol. Parsimonious sh-NMPC is
compared to standard sh-NMPC in terms of both peroce and robustness. The
performance of parsimonious sh-NMPC is very simitathat of standard sh-NMPC in terms
of optimal cost. But, significant reduction in réahe computational effort can be observed
through the use of parsimonious sh-NMPC in botle caisdies.

In conclusion, the computational advantagetha indirect methods for the dynamic
optimization and nonlinear model predictive contfot constrained batch and semi-batch
processes represents the main outcome of thisstiespecially for high input discretization
levels and large time horizons (the case in batchseemi-batch processes), indirect methods
exhibit certain advantages regarding the reductibthe computational complexity. In the

dynamic optimization community, it has usually beeported that there were no convergent
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Chapter 7: Summary and Outlook

indirect algorithm available for constrained prabe Nevertheless, this thesis shows that
indirect methods can be tailored to be convergemd guite effective in terms of
computational time for both dynamic optimizatiordesh-NMPC.

7.2 Outlook

First of all, the results given in this thesis abtainedin silico, in other words via
simulations. In order to demonstrate the applitgband advantages of the proposed indirect
methods, real-time applications should be perforne@ddition, the effect of computational
delay for nonlinear model predictive control stgpés is still quite under-investigated, both in

terms of applicability and closed-loop control peniance for real-life problems.

It can be stated that the computational sapgr of the parsimonious sh-NMPC scheme
makes it very suited for industrial applicationsopitimizing control. On the other hand, we
should also note that advanced estimation/measutei@ehniques are always as important as
the optimal control algorithms and they have alvitgpact on the closed-loop performance.
Equal attention should also be paid to the devetynef more sophisticated and powerful

estimation/measurement techniques, as well as neasuning devices.

Tailored indirect methods can exhibit certadvantages for more complex applications
such as stochastic optimization, mixed-integer, trleNvel optimization, moving horizon
estimation and multi-stage algorithms where faspl@mentations are needed. Moreover,
application of indirect-based algorithms to theyéascale optimization problems and optimal
experimental design can also turn out to be promisThe computational speed of these
algorithms can be further increased by discretizing state and co-state equations or using
collocation on finite elements instead of relyingintegration. Yet, it is still an open question
how PMP-based NMPC performs for large-scale problewhere the state and co-states

equations are integrated.

Finally, we are still in need of advanced im#ation algorithms requiring less
computational effort, power and CPU time even thougpmputers and parallelization
algorithms are being improved every day. This rezraent applies not only to dynamic
optimization and NMPC for batch and semi-batch psses, but also for the currently popular
artificial intelligence and machine learning stgags together withsmart manufacturingand

‘internet of things’ Wireless systems and connected networks may reegueduced
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computational effort for operational reasons sushlimited battery life. Tailored indirect

methods may possess computational benefits foe thiesas as well.
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Chapter 9: Appendices

APPENDIX 1: SIMPLE CASE STUDY SOLVED WITH THE FULLY
PARAMETERIZED PMP -BASED METHOD

Consider the optimization of a batch reaatdich includes only input bounds, and is
directly taken from (Biegler, 2010). The dynamictiopzation problem is formulated as

follows (tr = 1):

t
max x2(tr)

2
S.t. .X:1 = - (u + 'U-7) X1, xl(O) =1 ;
Xy = UXy; x2(0) =0
0<u(t)<5
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APPENDIX 2:

M ODEL PARAMETERS FOR PROBLEM 3.2.3

Reaction Kinetics

component Fa ko Unit f K2 K
(kJ/mol) (mL/mol) (mL/mol) (mL/mol)
o 113.08 4.904x10° mL%(g.min.mof) 574876 3020413 11732838
T 136.89 4.878x10'°  mL/(g.min) 38632 226214
T3 76.11  5.41%x10° mL%(g.min.mol)  2661.2 7100 1280
Ty 102.26  2.95810" mL?%(g.min.mol)
Ts 120.84 7.619%10° mL%(g.min.mof)
Te 113.08 3.951x10° mL%(g.min.mof)
Ceat 3.041x10* 0 0.644
Equilibrium Constants
component a, (kd/mol) a; (kd/mol/K) a, (kJ/mol/K?)
AG, -11.0034 0 0
AG -126.275 0.1266 6.803L0°
Solubility
component H, (bar.mL/mol) E4 1(kd/mol) k,a (min™)
H, 66400 -3.06 9.57
co 73900 -0.84 7.08
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