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ABSTRACT

Biodiversity is under increasing pressure from environmental change, although the scope and severity of these impacts remain in-
completely understood. For many species, a lack of information about population-specific responses to future environmental change
hinders the development of effective conservation strategies. Here, we use an East African reed frog species complex as a model to
explore spatial variation in vulnerability to future environmental changes. Our sampling across two threatened biodiversity hotspots
spans the entire geographic range of H. mitchelli and H. rubrovermiculatus in Kenya, Tanzania, and Malawi. Using genome-wide
(ddRAD-seq) data, we evaluate levels of neutral genetic diversity and local adaptations across sampling localities. We then integrate
spatial approaches (genomic offset, modeled dispersal barriers, and Species Distribution Models) to predict how populations may re-
spond differently to future environmental changes, such as climate warming and predicted land use changes. Based on our analyses,
we characterize population structure and identify region-specific management needs that reflect genetic variation among populations
and the uneven impacts of predicted change across the landscape. Peripheral populations are most vulnerable to future environmen-
tal changes due to (i) low levels of neutral genetic diversity (Malawi and Pare mountains in Tanzania), (i) putative signals of local
adaptation to wetter conditions with predicted disruptions to genotype-environment associations (i.e., high genomic offset, Kenya
and Northern Tanzania), and (iii) the projected contraction of suitable habitat, which is a pervasive threat to the species complex in
general. Populations in Northern, Central, and Southern Tanzania show the lowest vulnerability to environmental change and may
serve as important reservoirs of genetic diversity for potential future genetic rescue initiatives. Our study highlights how populations
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across different parts of species ranges may be unevenly affected by future global changes and provides a framework to predict which

conservation actions may help mitigate these effects.

1 | Introduction

Halting catastrophic biodiversity loss in the face of global change
is a central tenet of conservation. In addition to the natural frag-
mentation of species ranges due to long-term climatic processes
(e.g., glacial and interglacial cycles), the distribution of biodiver-
sity across the Earth has become further fragmented due to a
combination of human-induced habitat destruction and more re-
cent climate change (Haddad et al. 2015; Frankham et al. 2019).
However, the extent, intensity, and conservation implications of
this remain incompletely understood across most species’' ranges
(Wilson et al. 2016; Fahrig 2017; Fletcher et al. 2018; IPCC 2022).
Providing information about spatial variation in the effects of
global change improves our ability to predict which manage-
ment strategies may be most suitable across different parts of
species' ranges (Aguirre-Liguori et al. 2021; Urban et al. 2024).

1.1 | Global Change Impacts Vary Across
Geographic Space

Species with spatially fragmented geographic distributions (ei-
ther metapopulations that exhibit gene flow between demes or
non-interacting spatially isolated populations) offer a substan-
tial challenge for conservation efforts, as these often represent a
mixture of different conservation requirements. This is particu-
larly true in under-sampled tropical regions, where comprehen-
sive spatial sampling often reveals structured populations due
to the legacy of past climatic processes (e.g., Vieites et al. 2009;
Funk, Caminer, and Santiago 2012; Barratt, Bwong, et al. 2017).
Such fragmented distributions often correlate with vulnerability
to local extinctions in vertebrates (Crooks et al. 2017) and am-
phibians in particular (Cushman 2006), outlining the need for
conservation assessments that provide information below the
species level. Amplifying the effects of past climate changes on
already fragmented species ranges, land use change (including
habitat fragmentation and destruction) is a major driver of re-
cent biodiversity declines worldwide (IPBES 2019). Diminished
habitat quantity and quality hinders gene flow and can reduce
effective population size, leading to the erosion of standing ge-
netic diversity through genetic drift and an accumulation of
deleterious mutations through inbreeding, potentially resulting
in fitness reductions (Frankham 1995; van Oosterhout 2020;
Bertorelle et al. 2022; Dussex et al. 2023). In addition, rapid cli-
mate change and extreme weather events can drastically alter
local environmental conditions, potentially disrupting local
genotype-environment associations that have evolved in popu-
lations over longer periods of time (Fitzpatrick and Keller 2015).
Combined with reduced standing genetic diversity, this may
lead to maladaptation of populations to their local environment
(Carlson et al. 2014) and, in the worst case, local extirpation.

In conservation planning for spatially structured populations,
it is often assumed that small, isolated populations are the most
vulnerable to local extinction due to the accentuated effects of
climate change and habitat fragmentation (Lynch et al. 1995;

Frankham 2015; Willi et al. 2006, 2013). However, larger and
highly connected populations may also be at risk of declines,
but are underestimated when ignoring metapopulation effects
(Higgins and Lynch 2001). A growing body of work suggests
that metapopulation structure with significant gene flow and
high genome-wide genetic diversity is likely key to maintain-
ing the ecological resilience of smaller populations (Hanski
and Simberloff 1997; Mills 2012; Lawson et al. 2019; Kardos
et al. 2021). Thus, larger populations should also be considered
in conservation decisions, as they safeguard smaller populations
against the negative impacts of habitat fragmentation and cli-
mate change (Hoffmann et al. 2021).

Underpinning intraspecific conservation efforts at the intraspe-
cific level is the consideration of population structure and the de-
lineation of boundaries or zones of gene flow among populations
(Ryder 1986; Moritz 1994; Avise 2004; Funk, McKay, et al. 2012;
Hoelzel 2023; Turbek et al. 2023). In addition to neutral population
structure, adaptive differences across populations (i.e., differential
local adaptations to the environment) must also be accounted for
when making management decisions (Funk, McKay, et al. 2012;
Razgour et al. 2019; Aguirre-Liguori et al. 2021; Forester
et al. 2022). In response to years of neglecting genetic diversity in
conservation policy (Hoban et al. 2021), global initiatives, such as
the Convention on Biological Diversity (CBD), now specifically
target the maintenance of genetic diversity of wild and domesti-
cated species to minimize the risk of extirpation and extinction
(CBD 2022a). The global biodiversity framework, for example,
now includes a genetic indicator focusing on the proportion of
populations within species with an effective population size > 500
(CBD 2022b; Mastretta-Yanes et al. 2024).

1.2 | African Amphibians as a Model System to
Understand Idiosyncratic Population Management
Requirements

Africa, with its rich biodiversity, growing human population (ap-
proaching 2.5 billion by 2050, World Bank 2024), and rapid climate
change predictions (between 2°C and 3°C, IPCC 2022) is a con-
tinent facing exceptional future challenges (Chapman et al. 2022;
IPCC 2023). Rich in biodiversity and supporting the largest num-
ber of threatened species of any land region (n=11,043, 24% glob-
ally, IUCN 2023), sub-Saharan Africa is home to almost a fifth of
the world's biodiversity hotspots (Myers et al. 2000). A number
of ecoregions, particularly in Eastern and Western Africa, are
regarded as ‘Vulnerable’, ‘Endangered’, or ‘Threatened’ (Brooks
et al. 2002; Burgess et al. 2004), and are priority regions for pre-
dicting the effects of future global change on biodiversity and for
mitigating these with relevant conservation actions.

Amphibians, due to their high species numbers and intra-
specific diversity, and sensitivity to changes in their envi-
ronment, are a highly suitable model to predict the effects of
global change (Cushman 2006; Wake and Vredenburg 2008;
Luedtke et al. 2023; Pottier et al. 2025). In sub-Saharan Africa,
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there are 1169 recognized species, 33% of which (n=372) are
listed as threatened (IUCN 2023). In the last decade, descrip-
tions from sub-Saharan African biodiversity hotspots and
their surrounding landscapes of new species (e.g., Loader
et al. 2015; Barratt, Lawson, et al. 2017; Conradie et al. 2018;
Lawson et al. 2023; Malonza and Wasonga 2023; Griesbaum
et al. 2023; Malonza 2023; du Preez et al. 2024), new genera
(Necas et al. 2021; Liedtke et al. 2023), and even entire new
families (Barej et al. 2014) have enhanced our understanding
of taxonomy and systematics. However, due to incomplete
sampling across most species ranges, our understanding of
population-level intraspecific diversity and associated con-
servation needs remains limited to only a few taxa. Novel
genomic technologies over the past decade have led to im-
proved insights about the systematics and population genet-
ics of several widespread amphibian species in this region,
generally revealing high population structuring and varying
demographic histories across populations due to the combined
effects of geology, historical forest dynamics, climatic and
riverine barriers (Bell et al. 2015; Portik et al. 2017; Barratt
et al. 2018; Charles et al. 2018; Reyes-Velasco, Manthey,
Bourgeois, et al. 2018; Reyes-Velasco, Manthey, Freilich, and
Boissinot 2018; Leaché et al. 2019; Bwong et al. 2020; Jaynes
et al. 2022; Miller et al. 2024; Lawson et al. 2025).

Building on these data, predicting how populations may respond
to future changes is a crucial next step for evidence-based con-
servation (Capblancq et al. 2020; Capblancq and Forester 2021;
Aguirre-Liguori et al. 2021; Bay et al. 2018; Forester et al. 2023;
Razgour et al. 2019; Ruegg et al. 2018; Barratt, Onstein,
et al. 2024; Barratt, Preifiler, et al. 2024; Carneiro et al. 2025).
To this end, creating an integrative understanding of how eco-
logical and evolutionary processes may be affected by future
environmental changes is imperative for effective predictive
modeling. For example, across different parts of a species range,
are populations able to stay in place or migrate as a response
to changes in their environment? And if they are unable to mi-
grate to track suitable environmental conditions, do populations
possess sufficient genetic diversity and evolutionary potential to
adapt to these changes in the short- and long-term? Addressing
these knowledge shortfalls with empirical data and real-world
examples will improve our ability to make informed decisions
about how best to implement conservation efforts.

In this work, we combine spatial and genomic evidence to
help formulate and direct conservation strategies in an East
African reed frog species complex (Hyperolius mitchelli and
H. rubrovermiculatus), hereafter referred to as the H. mitchelli
complex (Conradie et al. 2018; Bwong et al. 2020). We use this
species complex, distributed across two biodiversity hotspots
(the Eastern Afromontane Region and the Coastal Forests of
Eastern Africa) in Kenya, Tanzania, and Malawi, as a model
system to predict how forthcoming global change effects may
vary across geographic space. Given our evidence-based ap-
proach, we evaluate which management strategies are most
appropriate to mitigate these predictions. Hyperolius mitchelli,
Loveridge 1953, and H. rubrovermiculatus, Schietz 1975 (the
latter restricted to the Shimba Hills and surrounding areas in
Kenya), share a recent common ancestor (estimated 2.72 mya di-
vergence, Portik et al. 2019) but are clearly distinct from one an-
other in terms of their coloration and geographic distributions.

Hyperolius mitchelli, throughout its wide range in Tanzania and
Malawi, demonstrates a wide variety of color patterning, mainly
with a brownish dorsum and yellow to orange ventral surface,
whereas H. rubrovermiculatus tends to have a darker colored
dorsum with red vermiculations. Both H. mitchelli and H. ru-
brovermiculatus possess a characteristic light spot on the heel.
Previous studies identified phylogeographic structure within
this complex (Barratt, Bwong, et al. 2017; Bwong et al. 2020),
but incomplete spatial sampling and mitochondrial-only (matri-
lineally inherited) data sets left uncertainty in the conservation
implications. Hyperolius mitchelli is listed as Least Concern on
the IUCN red list, whereas H. rubrovermiculatus is listed as
Endangered (IUCN 2023). Using newly collected field samples,
environmental, and high-resolution genome-wide ddRAD-seq
data, we ask: (i) Does population genetic structure exist? If so,
how is it distributed geographically and are there natural bar-
riers to gene flow? (i) What levels of genetic diversity, includ-
ing effective population size, exist within each population? (iii)
Which genomic regions are involved in local adaptation to cli-
mate, and how are these local adaptations distributed among
populations across geographic space? and (iv) Which parts of
the geographic range are most at risk of local extirpation based
on the predicted effects of future global change, in terms of their
genetic composition (genomic offset), and predicted habitat suit-
ability and range shifts?

2 | Methods and Materials

2.1 | Sampling, Genomic Library Preparation,
and Data Processing

Between 2009 and 2023, H. mitchelli complex reed frog leg mus-
cle tissue (adults) and tail fin clips (tadpoles) were collected at
24 sampling localities across Kenya, Tanzania, and Malawi
(Figure 1). Tissue samples were stored at room temperature
after collection in 96% ethanol at the Natural History Museum
(London, UK), the Museo delle Scienze (MUSE; Trento, Italy),
the Field Museum of Natural History (Chicago, USA), and the
Museum of Comparative Zoology (Harvard, USA). Genomic
DNA was extracted for a total of 115 individuals using the
DNeasy Blood & Tissue Kit (Qiagen). DNA isolates were quan-
tified using a Qubit fluorometer (Invitrogen), equalized to a
working concentration of 10ng/uL when possible, and stored at
—20°C. Retaining all samples that met this DNA working con-
centration to prepare genomic libraries resulted in 55 individu-
als across 20 unique sampling localities across Kenya, Tanzania
and Malawi (ranging between 1 and 6 individuals per locality,
see Table S1). Double digest RAD-seq (ddRAD-seq, Peterson
et al. 2012) libraries were prepared by LGC Genomics (Berlin,
Germany) using PstI and ApekI restriction enzymes, barcoding
individual samples, and paired-end sequencing (2x150bp) on a
single lane of a NovaSeq6000.

We used Stacks v.2.62 (Rochette et al. 2019) to process ddRAD-
seq data and produce SNP data sets, using the process_radtags
module to demultiplex individuals based on their individ-
ual barcodes. Following best practices (Paris et al. 2017) for
Stacks, we first explored our data set using a subset of individ-
uals (n=38) from across our geographic sampling to optimize
parameter settings before further analyses (see Figure S1 for
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FIGURE 1 | Population structure and genetic diversity across 20 sampling localities of H. mitchelli and H. rubrovermiculatus. (A) Population

structure based on PCA in PLINK. (B) Admixture (k=2), fastStructure (k=3) and corresponding SNMF (k=4) analyses, geography of sampling

localities is noted to the right of the barplots, and a key to sampling localities on maps (1-20) is shown. (C) Spatial visualization of SNMF population

structure at k=4, colors of clusters in pie charts at each sampling locality matching SNMF outputs. The three major population clusters identified

across analyses are demarcated (thicker dotted polygons), with the population substructure in Tanzania demarcated with thinner dotted polygons.

In the PCA (A), localities 8 and 19 are shaded in a grey ellipse due to their unclear position between Northern, Central and Southern Tanzania. Major
rivers and mountains are shown on the map. (D) Nucleotide diversity (7) and (E) Observed heterozygosity (H, ) calculated across sampling localities

based on 3849 unlinked genome-wide SNPs (red =low, green =high).

a summary of data exploration). As sequencing effort across
samples was relatively even (see Results), we ran denovo_
map.pl with all samples using our optimized parameters of
m=>5 and M =2, retaining only a single SNP per RAD locus,
and only present in 80% of all individuals processed. For all
downstream bioinformatic analyses, specific output file for-
mats (*.map, *.ped, *.raw, *vcf) as required for each analysis
were generated by iteratively rerunning the populations mod-
ule of Stacks. To verify that there was no bias in our combined
SNP dataset for both species, we performed an additional SNP
discovery step on each species separately using the same pipe-
line but without applying a minor allele frequency (MAF) fil-
ter. This allowed us to compare the extent of species-specific
vs. shared SNPs and to evaluate how much of the diversity
in each species is represented in the final filtered SNP set
used in our analyses (3849 SNPs, filtered at MAF > 0.05). The

procedure and results for this can be found in Supporting
Information Text S1.

2.2 | Population Structure and Genetic Diversity

To investigate broad-scale population structure across sam-
pling localities, we used a standard PCA approach in PLINK
(Purcell et al. 2007) and a maximum likelihood approach in
Admixture (Alexander et al. 2009), where a range of popula-
tion clusters (k) was defined between 2 (to account for the two
known species, H. mitchelli and H. rubrovermiculatus) and 10
(a reasonable maximum number of clusters based on mtDNA
research, Barratt, Bwong, et al. 2017; Bwong et al. 2020). We
determined the most likely number of clusters represented by
our data using the 10-fold cross validation (CV) procedure.
To complement the admixture analysis, we also used a sparse
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non-negative matrix factorization approach (sSNMF R pack-
age, Frichot et al. 2014) and a Bayesian approach (fastStruc-
ture, Raj et al. 2014) with the same range of k (2-10) evaluated
using the cross-entropy approach of 10 replicates for each it-
eration. We generated genetic diversity metrics per sampling
locality (nucleotide diversity 7, inbreeding coefficient F g, ob-
served (H,) and expected heterozygosity H ) based on an 80%
complete SNP data matrix using the --fstats option in Stacks
for all sites (i.e., fixed and variant) and for variant sites only.
Furthermore, we approximated effective population size (N,)
by calculating the site frequency spectrum (SFS) from Stacks
output files (without a minor allele filter, to maximize repre-
sentation of rare alleles) using easySFS (Overcast 2021) and
then running this in momi2 (MOran Models for Inference,
Kamm et al. 2019). We calculated N, as the mean of 100 rep-
etitions using the momi.model.get.params() function for each
of the major clusters identified from the population structure
analyses, as well as for within-cluster population substructure
and per sampling locality.

2.3 | Landscape Barriers and Genetic
Differentiation

We used EEMS (Estimated Effective Migration Surfaces)
v.0.0.0.9000 (Petkova et al. 2016) to visualize potential land-
scape barriers and connectivity between sampling localities
based on genetic dissimilarity. The method is purely based on
the genetic data and GPS coordinates of samples and high-
lights geographic areas where genetic similarity is higher (i.e.,
a signal of increased gene flow) or lower (i.e., geographic bar-
riers) than expected under isolation-by-distance using spatial
and SNP data. Using a PLINK (Purcell et al. 2007) format
input file (generated using the populations module in Stacks),
we set the number of cells in the modeling area (termed
‘demes’ in EEMS) to 500 based on the size of our sampling
area and the number of demes representing realistic units
required to fill that habitat. This data set was then run with
the SNP version of EEMS (runeems snps). We used an MCMC
length of 1,000,000 with a burn-in of 100,000 for each of three
replicates and verified that the MCMC chains had converged.
We combined results using the EEMS R plotting (rEEMSplot)
package and plotted surfaces of effective migration and diver-
sity rates separately. To aid interpretation of the EEMS analy-
ses, we calculated pairwise genetic differentiation (Fg;) using
the diffCalc function of the diveRsity R package (Keenan
et al. 2013) with sample sizes corrected following Weir and
Cockerham (1984), at an alpha significance level of 0.05 across
100 bootstrap replicates.

2.4 | Species Distribution Modelling

To predict the habitat suitability for H. mitchelli and H. rubrover-
miculatus across their geographic ranges, we used species dis-
tribution models (SDMs) for present environmental conditions
as well as three different shared socioeconomic pathways (SSP)
scenarios (SSP1—‘Sustainability’, SSP2—‘Middle of the road’,
and SSP5—‘Fossil-fuelled development’) and three future time
periods (2021-2040, 2041-2060, and 2061-2080). This enables
direct comparisons of the species’ current habitat suitability

with a total of nine future climate change scenarios that incor-
porate both climate and land use change scenarios using inte-
grated assessment models (IAMs).

To prepare presence data for our SDMs, we integrated our geo-
referenced data with occurrence records from Barratt, Bwong,
et al. (2017) and Bwong et al. (2020), along with data down-
loaded from the Global Biodiversity Information Facility and
iNaturalist (search terms; species = ‘Hyperolius mitchelli’ OR
‘Hyperolius rubrovermiculatus’, GBIF 2024), recorded no earlier
than 2009 to match the temporal timescale of our genomic data
and to give an accurate depiction of the species’ current ranges.
We cleaned our occurrence data from GBIF and iNaturalist by
using the R package ‘CoordinateCleaner’ (Zizka et al. 2019) to
detect any spatial outliers, transversed coordinates, country
centroids, or biodiversity institutes (e.g., museums, zoos, etc.).
We then spatially rarefied our presence data to account for spa-
tial autocorrelation (retaining only presence points within a
geographic buffer of 10km using the spThin R package (Aiello-
Lammens et al. 2015)). Pseudoabsence (background) points
(n=10,000) were selected from a buffer of 2 degrees around
presence points to capture potential suitable environmental
conditions for the species where it has not yet been recorded.
The buffer also excluded a radius of 0.1 degrees around each
presence point to avoid selecting background points within
an area where the same population may be present. We down-
loaded temperature and precipitation-related bioclim variables
1-19 from the Worldclim 2 data set (Fick and Hijmans 2017)
and prepared a raster representing slope (i.e., topographic
heterogeneity), which was calculated using a digital elevation
model based on SRTM data (also available at the Worldclim2,
https://www.worldclim.org/), and a map of land cover
(Schipper et al. 2020). Land cover was re-categorized into nine
classes following Razgour et al. (2019) to reduce complexity in
the models. Before building SDMs, we used the vif{) function
of the usdm R package (Naimi 2012) to exclude variables with
high Variance Inflation Factors that were highly collinear (VIF
> 5) with one another. From the initial 21 predictor variables,
11 were found to have a high collinearity. We thus retained
10 predictors for SDMs, which represented temperature and
precipitation-related variables, as well as slope and land cover.
Predictor spatial resolution across all time periods was 30arc
sec (~1km? pixels). We used the biomod2 R package (Thuiller
et al. 2009, 2024) to build SDMs firstly using five iterations
of three algorithms (Random Forest, Generalized Additive
Models, and Maxent), which were then evaluated with the
get_evaluations() function based on the balance of true vs. false
positives represented by their receiver operating characteristic
(ROC) curve. Models that passed our threshold of a ROC met-
ric > 0.75 were carried forward to build a final ensemble SDM,
weighted by the ROC of each individual model, where we sum-
marized variable importances across all model runs. To eval-
uate predicted loss and gain of suitable habitat in the future,
we performed a quantitative analysis using raster algebra for
the SDMs between the present and each of the nine modelled
scenarios (SSP1, SSP2, and SSP5 across each of the three time
periods). Quantitative calculations of habitat suitability change
were summarized in a 10 km buffer around each population be-
tween time periods. We represented habitat suitability change
for each population compared to the current baseline model
in terms of ‘loss’ (i.e., a decrease in habitat suitability), being
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‘stable’ (i.e., no change), or ‘gain’ (i.e., an increase in habitat
suitability).

2.5 | Assessing Local Adaptation and Calculating
Genomic Offset per Population

Candidate SNPs putatively involved in local adaptation were iden-
tified using redundancy analysis (RDA, Oksanen et al. 2012), based
on recommended best practices for the rda function (Capblancq
and Forester 2021). To conduct our analyses, we extracted envi-
ronmental data relevant to each sampling locality based on their
geographic coordinates and selected four uncorrelated climate
variables (VIF <5) that showed the highest variable importances
based on SDM outputs (bioclim 14—Precipitation of Driest
Month, bioclim 7—Temperature Annual Range, bioclim 12—
Annual Precipitation, and bioclim 19—Precipitation of Coldest
Quarter). As well as their importance in explaining model variance
in the SDMs, we regard these predictors as particularly ecologically
relevant to represent climatic extremes faced by the H. mitchelli
complex in East Africa during the dry season. This is typically be-
tween June and September but has more recently extended into
the rainy seasons due to climate change (Funk et al. 2023). We fol-
lowed Razgour et al. (2019) to optimize our analyses, identifying
putatively adaptive SNPs with a standard deviation of >3 from the
mean RDA loadings. Although we could have been less stringent
in our criteria for categorizing putatively adaptive SNPs, we opted
to be more conservative by using a threshold of three standard de-
viations from the mean loadings to categorize adaptive SNPs (two-
tailed p-value =0.0027), thus attempting to minimize false positive
rates at the expense of missing out on true positives (Capblancq
and Forester 2021). We then used the approach of Barratt, Onstein,
et al. (2024) to categorize individuals using only putatively adap-
tive SNPs (i.e., by plotting the position of all individuals in the RDA
space relative to the biplot arrows of each of the four predictors).
We mapped the proportions of individuals in each sampling lo-
cality that fall in defined adaptive categories using the ‘mapPies’
function of the rworldmap R package (South 2011), providing an
overview of the degree of putative local adaptation at each sam-
pling locality across the four predictors.

Based on the identified putatively adaptive SNPs and the geog-
raphy of sampling localities, we quantified genomic offset per
sampling locality, a metric reflecting potential vulnerability to
predicted global change through a disruption of genotype-en-
vironment associations. To do this, we used a machine learn-
ing approach that detects non-linear relationships between
genotypes and local environmental conditions. We estimated
current allelic frequency-climate relationships for putatively
adaptive SNPs using the approach developed by Fitzpatrick
et al. (2021), implemented in the gradientForest R package (Ellis
et al. 2012). Genomic offsets were then computed as Euclidean
distances, representing the genomic mismatch between cur-
rent and future climatic conditions based on the gradient forest
model predictions (Fitzpatrick and Keller 2015). Present en-
vironmental conditions (over the 1981-2010 period) were ex-
tracted per sampling locality from each climatic raster using
the terra R package (Hijmans 2020), considering bioclimatic
variables (Worldclim?2). Genomic offsets were calculated using
predictions from the gradient forest model and raster values

representing future climate conditions projected for each of the
scenarios used for the SDMs (three time periods: 2021-2040,
2041-2060, and 2061-2080; and three shared socioeconomic
pathways: SSP1, SSP2, SSP5).

3 | Results
3.1 | Genomic Data Processing and SNP Filtering

After demultiplexing and filtering our raw Illumina sequences,
we retained a total of 186.29 million reads (mean per sam-
ple=3.39 million, range=1.59-6.78 million). With our opti-
mized Stacks parameters of m=5, M=2, and retaining only
SNPs present in 80% of all individuals processed, we generated a
final data set of 3849 unlinked SNPs genotyped in our H. mitch-
elli complex samples (n=55).

3.2 | Population Structure and Genetic Diversity

The PCA revealed three main population clusters for the sam-
ples from Kenya, Malawi, and Tanzania, with the Tanzanian
cluster demonstrating some geographical population substruc-
ture. Localities 8 (Kimboza) and 19 (Kiwengoma) were located
in a ‘grey zone’ (marked by a grey ellipse) between the Northern,
Central, and Southern Tanzanian clusters (Figure 1A). Admixture,
fastStructure, and SNMF analyses were congruent that the popu-
lation structure exhibited by our sampling is between k=2 and
k=4 based on cross-validation (CV), log likelihoods, and cross-
entropy (CE), respectively, and the same geographic population
substructure from the PCA is visible at higher values of k across
all three analyses (see Figures 1B and S2). Due to the general con-
gruence in population structure between the PCA, Admixture,
and fastStructure with the SNMF analyses, we conclude that three
broad population clusters are a reasonable representation of the
underlying sampling. We further tested the validity of population
clustering from k=2 to 5, as suggested by our population struc-
ture analyses using AMOVA in the poppr R package (Kamvar
et al. 2014, 2015), which also supported three population clusters
as the most likely explanation for the data (see ®_ST=0.339 at
k=3, Table S2). However, given the clearly defined geographical
population substructure in the Tanzanian cluster, we believe that
it likely represents a large metapopulation.

Geographically, the analyses showed that population structure
across iterations of k often coincides with potential riverine (Rufiji,
Kilombero, Great Ruaha, and Wami rivers) and montane barriers
(Eastern Arc mountains), largely matching the structure defined
in a previous phylogeographic study (Bwong et al. 2020) except in
terms of subdivision of the Tanzanian cluster. Across population
clusters, there was some degree of shared co-ancestry or gene flow,
particularly in SNMF analyses, suggesting potential hybrid zones
with admixture between identified clusters and lower admixture
forisolated peripheral sampling localities (Figure 1C). Pare (18) and
Kiwengoma (19) in Tanzania, as well as Luwawa (20) in Malawi,
shared substantial co-ancestry or gene flow with all four clusters
based on sSNMF analyses and often split into separate clusters at
higher values of k (Figure S2). In terms of standing neutral genetic
diversity, both nucleotide diversity and observed heterozygosity
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FIGURE2 | Estimated effective migration and diversity surfaces across H. mitchelli and H. rubrovermiculatus sampling localities (black dots). (A)

Blue represents areas of higher than predicted migration (i.e., connectivity), orange represents areas of lower than predicted migration (i.e., barriers).
(B) Darker purple areas represent areas of higher effective diversity. (C) Rainfall map (annual precipitation in mm, downloaded from Worldclim2,
Fick and Hijmans 2017) for the study region, dark blue colors are areas of lower precipitation, light green/yellow colors are areas of higher precipita-
tion. (D) Genetic differentiation (F,) across sampling localities with at least two individuals was calculated using the sample size corrected approach

of Weir and Cockerham (1984).

were generally lowest (7=0-0.05, H =0.0005-0.001) in Malawi
(20) and Pare (18), average (7r=0.05-0.1, H,=0.001-0.002) in
Kenya (1-4), and highest (7>0.1, H =0.002-0.003) throughout
the remainder of Tanzania (5-19) (Figure 1D). Detailed per-locality
estimates of H, H,, F¢, and 7 can be found in Table S3. Effective
population size (Ne), calculated in momi2 based on population-
level site frequency spectra, supported the genetic diversity anal-
yses, with larger and more genetically diverse population clusters
having higher N, (Table S4). Relatively, the Tanzanian cluster sug-
gests a much larger effective population size (N,=5053) than the
Kenya (N, =1479) and the Malawi cluster (N, =620), and Northern
and Central Tanzania suggest higher N, than Southern Tanzania
(N,=1727, 2237, and 826, respectively). Per locality estimates of N,
are much smaller, ranging from 72 (Kivumoni in Kenya) to 492
(Kimboza in Tanzania), with a mean N, of 258.

3.3 | Landscape Barriers and Genetic
Differentiation

Landscape barriers analysis in EEMS supported population
structure analyses and suggested that although most coastal
and lowland sampling localities are potentially well connected
(high effective migration, blue in Figure 2A), several barriers
(low effective migration, orange in Figure 2A) coinciding with
areas west of Eastern Arc mountain blocks with lower rainfall
levels (see darker blue regions in Figure 2C) exist that poten-
tially hinder gene flow. Effective diversity surfaces calculated
in EEMS (Figure 2B) also suggested that hotspots of higher ef-
fective diversity mainly coincided with those reflected by higher
observed heterozygosity (Kenyan (1-4) and Tanzanian (7, 8, 9,
10-13, 14-17)). Genetic differentiation (Fg;) ranged from 0.02
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to 0.67 (mean =0.32), with Malawi (0.38-0.67, mean =0.47) and
Kenya (0.32-0.67, mean=0.51) being the most differentiated
from the remaining sampling localities. Sampling localities near
the Udzungwa Mountains in Tanzania (10, 11, 13) showed a
lower variance in Fg; (0.02-0.38, mean=0.25) with the excep-
tion of Kihansi (10) (0.04-0.55, mean =0.29) and those in south-
ern Tanzania Makangaga (14), Noto (16), and Makangala (17)
(0.04-0.55, mean=0.32, Figure 2D).

3.4 | Species Distribution Modelling

From an initial 307 presence records (55 from our genomic sam-
ples and 252 from GBIF, iNaturalist, and Bwong et al. 2020),
we discarded five records flagged by CoordinateCleaner (Zizka
et al. 2019) as country centroids or museum/biodiversity insti-
tutes, as well as those far outside (>250km) of the known range.
We retained a total of 44 unique presence records after controlling
for spatial autocorrelation (spatial thinning within a radius of
10km). These were then used as presence points for SDMs. Our
study uses a relatively modest number of presence records, but
these fall within the range where previous work has shown that
reliable SDMs can still be generated (Pearson et al. 2007; Van
Proosdij et al. 2015). The predictive power of our models is further
strengthened by the ensemble framework, which integrates multi-
ple algorithms to reduce individual biases and improve robustness
(Breiner et al. 2015; Aratjo et al. 2019). Combined with the spatial
scale and ecological relevance of the study area, this approach en-
sures that our models provide meaningful and reliable predictions
despite modest sample sizes. Species Distribution Models ranked
bioclim 7 (Temperature annual range), bioclim 12 (Annual precip-
itation), bioclim 14 (Precipitation of driest month), and bioclim 19
(Precipitation of coldest quarter) as the predictors with the mean
highestvariable importance across all SDM model runs (Figure S3).
The SDM for the current time period (Figure 3A) demonstrated
large areas of high suitability (probability > 0.75) surrounding the
known presences of H. mitchelli and H. rubrovermiculatus, encom-
passing the coastal regions of Kenya and Tanzania as well as the
known mountain blocks of the Eastern Afromontane biodiver-
sity hotspot (i.e., the Eastern Arc Mountains) where the species
have been recorded (Pare, Usambara, Nguu, Nguru, Uluguru, and
Udzungwa). Isolated areas of high habitat suitability were also
predicted around the edges of Lake Malawi and Lake Victoria, the
Mulanje and Mabu massifs in Mozambique, as well as areas of
coastal forest around Cabo Delgado and Zambezia provinces in
central Mozambique.

Future predictions of habitat suitability estimated that al-
though much of the core distribution of the H. mitchelli species
complex will remain mostly unchanged under future scenar-
ios up to the year 2061-2080 based on SSP1 (‘sustainability’),
increased range contraction and reduction in habitat suitabil-
ity are predicted for SSP2 and SSP5 during all future time pe-
riods. For example, under SSP5 (‘Fossil-fueled development’),
most suitable habitats in Malawi and Mozambique will have
almost entirely disappeared, and all remaining suitable habi-
tat will be highly fragmented, with the contiguous distribu-
tion of the species likely broken in many coastal and lowland
regions where temperature and aridity extremes are predicted
to be highest (Figures 2 and S4). We summarize these changes
in Figure 3.

3.5 | Candidate SNPs, Local Adaptation,
and Genomic Offset

Genotype-environment association analysis performed using
redundancy analysis (RDA) identified 90 genome-wide SNPs
with putative signals of local adaptation to the tested climatic
variables related to precipitation and temperature (bioclim 7,
bioclim 12, bioclim 14, and bioclim 19). Plotting the sampled in-
dividuals relative to the environmental data revealed that popu-
lations mostly occupy unique environmental space (Figure 4A).
Considering candidate SNPs involved in local adaptation, most
were temperature-related (bioclim 7, n=77), and the remainder
were precipitation-related (9 to bioclim 14, 3 to bioclim 19, and 1
to bioclim 12, Figure 4B).

Categorizing individuals based on the allele frequencies of pu-
tatively adaptive SNPs from the RDA analysis suggests spatially
structured local adaptation across geographic space. Although
bioclim 7 showed the highest number of SNP associations in-
volved in putative local adaptation to temperature, only three in-
dividuals were categorized as being positively associated with this
predictor. A larger number of individuals were positively associ-
ated with the remaining precipitation-related variables (22 indi-
viduals to bioclim 12, 22 individuals to bioclim 14, 16 individuals
to bioclim 19, Figure 4C,D). Spatial mapping of these putatively
adapted individuals as a proportion of each sampling locality in-
dicates that all individuals associated with bioclim 7 (temperature
range) are found in Luwawa (20), and that individuals adapted
to bioclim 14 (precipitation of driest month) are found across all
Kenyan (1-4) and Tanzanian (5-19) populations (Figure 4C,D).
Similarly, putative adaptations to bioclim 19 (precipitation of the
coldest quarter) are largely in the same sampling localities (with
the exception of Pare (18) and Kimboza (19)). Putative adapta-
tions to bioclim 12 (annual precipitation) include all individuals
from near the Udzungwa Mountains in Central Tanzania (10-13),
Uluguru Mountains (8), and Kiwengoma (19) and Pare (18). It is
noteworthy that sampling localities in southern Tanzania (14-17)
show no local adaptations to any of the tested variables.

Modelled genomic offset between current and future environmen-
tal conditions suggested that though the majority of sampling lo-
calities, particularly in Malawi and central and southern Tanzania
(5,6,10-17, 19, 20), will likely experience low genomic offsets, the
northern part of the study region Kenya (1-4) as well as northern
Tanzania (7-9, 18), will experience much higher genomic offset
(Figure 5). These estimates remain consistent across all modelled
SSP scenarios and future time periods (Figures S5 and S6).

4 | Discussion

In this study, we demonstrate how multiple lines of evidence
can be integrated to predict future responses of intraspecific
biodiversity to human-induced habitat fragmentation and cli-
mate change. Our spatial and genomics-informed insights into
the Hyperolius mitchelli species complex suggest the existence
of multiple population clusters, many with idiosyncratic con-
servation requirements. We show that, although understanding
population structure and patterns of genetic diversity is a reliable
guiding basic principle for prioritizing conservation efforts, mod-
eling climate change and using genomic indicators can provide
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FIGURE3 | Predicted habitat suitability change over time for the H. mitchelli complex. Sampling locality numbers labelled (1-20). (A) Current en-
semble SDM (scale bar denotes habitat suitability from 0 to 1). (B) Predicted habitat suitability loss (orange) and gain (blue) based on ensemble model
SDM predictions. For each time period and SSP (Shared Socioeconomic Pathway), the habitat suitability change is represented, relative to the present
SDM prediction (continuous scale, —1 =total loss of habitat suitability, 0 =no change, 1 =gain of new suitable habitat). (C) Summaries of proportional

habitat suitability loss (orange), gain (blue), and no change (white) per sampling locality calculated in a 10km? buffer around the sampling localities.

SDM output maps for each time period can be found in Figure S4.

additional powerful insights to understand the different con-
servation contexts and requirements across geographic space.
Specifically, determining the degree of local adaptation and land-
scape connectivity, as well as predicting future habitat suitability
and potential maladaptation using genomic offset, are important
factors when considering and planning conservation manage-
ment strategies. Below, we discuss how these considerations
can be applied to non-model species such as H. mitchelli and H.

rubrovermiculatus, providing management recommendations for
population clusters, as well as describing how the general prin-
ciples of our work can be expanded to other taxonomic groups
in different geographic settings with relevant modifications. In
addition, we review caveats and potential limitations of our data
and findings, suggesting further improvements when selecting
suitable strategies to manage biodiversity using approaches with
multiple lines of evidence such as ours.
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FIGURE 4 | Summaries of local adaptation analyses. (A) Individual samples plotted in RDA space relative to environmental predictors
(Eigenvalues for RDA are inset), with designations of sampling localities matching (Figure 1). (B) Candidate SNPs identified with genotype-envi-
ronment associations, identified with RDA. SNP correlations with environmental predictors are colored according to legend. (C) Individual catego-
rization of local adaptations to bioclim 12 and bioclim 19, and (D) Individual categorization of local adaptations to bioclim 7 and bioclim 14. (E and
F) Mapped distributions of locally adapted individuals across sampling localities.
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FIGURE 5 | Genomic offsets for the Hyperolius mitchelli species complex based on allele frequency and climate change projections. (A) Maps of
predicted genomic offset, clipped to a 2° buffer around sampling localities. Projections for SSP2, 2021-2040, 2041-2060, and 2061-2080 are shown
in the three panels. (B) Dotplots of offsets per sampling locality matching (A). Additional genomic offset maps and associated dotplots per sampling

locality for all nine future scenarios can be found in Figures S5 and S6.

4.1 | Population Structure With Gene Flow and ‘Malawi’) across the range of the H. mitchelli species
Highlights Ongoing Low-Level Genetic Exchange complex should be maintained as separate management units

(Figure 6). For the purpose of conservation, these genomic

Based on our combined analyses and sampling, we recom-  clusters should be considered as the coarsest scale, but low lev-
mend that the three discrete clusters (‘Kenya,” ‘Tanzania,’ els of shared ancestry or gene flow should be acknowledged as
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FIGURE6 | Population cluster characteristics for the H. mitchelli complex based on estimates of population structure, genetic diversity and differ-

entiation, modelled landscape connectivity, local adaptations, genomic offsets, and SDM predictions. Three main population clusters (k=3—Kenya,

Malawi, Tanzania) were identified consistently across all population structure analyses, with substructure potentially representing three geographi-

cally separated localities in Tanzania (also visualized described on the right side of the plot, but not statistically supported by AMOVA, see Table S2).

Note that localities 8 (Kimboza) and 19 (Kiwengoma) do not fall in any of the defined clusters due to their unclear ‘grey zone’ status between north-

ern, central and southern Tanzanian population clusters. For each cluster, the results of the analyses are summarized for ease of interpretation. All
known presence records collected from iNaturalist (2024) and GBIF (2024) for H. mitchelli, H. rubrovermiculatus, and the congeneric H. stictus are
plotted to represent additional known occurrences that are not covered by our genomic sampling.

part of the population substructuring. Our results are in con-
trast to previous studies based on mitochondrial data (Barratt,
Bwong, et al. 2017; Portik et al. 2019; Bwong et al. 2020),
which showed a cluster of H. rubrovermiculatus and northern
Tanzanian H. mitchelli,and a central Tanzanian and Malawian
joint cluster. This discrepancy appears to stem from gene flow
between clusters (Figure 1B), resulting in admixture between
H. rubrovermiculatus and northern Tanzanian localities of H.
mitchelli (red) and between central Tanzania and Malawi H.
mitchelli (grey) seen primarily in monophyletic mitochondrial
clusters that are not present in our genomic assessment. One
possible explanation is sex-biased dispersal: the stronger sig-
nal of gene flow in the matrilineally inherited mitochondrial
data set (Bwong et al. 2020) compared to our nuclear data
set suggests that females may exhibit different dispersal pat-
terns than males, creating divergent connectivity signals. A
similar result was seen in the congeneric and co-distributed
Hyperolius substriatus system (Lawson et al. 2025). These
areas of potential gene flow occur along corridors of suitable
habitat for the Kenyan and northern Tanzanian clusters, but
span a significant environmental gap (Makambako Gap) be-
tween the Udzungwa Mountains in central Tanzania, which
impacts a wide variety of vertebrates (Burgess et al. 2007).

Our genomic-based results suggest that the Tanzanian cluster is
potentially a large metapopulation with three subclusters also
exhibiting gene flow (‘Northern Tanzania’, ‘Central Tanzania),
and ‘Southern Tanzania’). However, locations that lie in between
the main three ‘Northern’, ‘Central’, and ‘Southern’ clusters (i.e.,
localities 8 and 19) may constitute a fourth genetic cluster or

represent a hybrid zone. To understand this population substruc-
ture in more detail and ensure that all clusters and populations
are characterized will require denser sampling of localities, espe-
cially around the peripheral areas of sampling in this work.

4.2 | Management Recommendations for the H.
mitchelli Species Complex

From a conservation perspective, improving and increasing
suitable habitats and their connectivity would assist the estab-
lishment of healthier and more resilient metapopulations for
the H. mitchelli species complex (Moor et al. 2024). This would
counter the effects of forest habitat fragmentation, genetic drift,
and low genetic diversity (a proxy for smaller effective popula-
tion sizes) generally driven by human activities and potentially
exacerbated by frequent droughts in East Africa over the past
decades (Funk et al. 2023). In the northernmost parts of the H.
mitchelli species complex range, Kenyan populations (1-4, i.e.,
H. rubrovermiculatus) were genetically distinct, with limited
admixture from the nearest adjacent populations in Northern
Tanzania (5-9, 18). Hyperolius rubrovermiculatus is endangered
(TUCN 2023) and known only from the Shimba Hills National
Reserve and surrounding coastal forest region in Kenya. Bwong
et al. (2020), using only mitochondrial DNA, showed that popu-
lations of H. mitchelli (Least Concern, IUCN 2023) from northern
Tanzania are phylogenetically clustered with H. rubrovermicu-
latus in Kenya. In our work, although habitat suitability from
SDMs between the populations appears to be highly contiguous,
the genomic dissimilarity and apparent barriers to gene flow
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suggest that they are most likely a closely related but distinct
taxon. Based on this information, and despite their matching
putative local adaptations to wetter conditions, similarly high
genomic offset predictions, moderate to high levels of genetic di-
versity, and high predicted habitat loss from SDMs, promoting
augmented gene flow between these two areas would not be ad-
vised. Doing so could potentially lead to hybrid incompatibility
or genetic swamping where genetic diversity in recipient popula-
tions is reduced due to an excess of hybrids (Todesco et al. 2016),
though this is not always the case (see Ottenburghs 2021).

Towards the central and southern parts of the H. mitch-
elli species complex range, Tanzanian localities close to the
Udzungwa Mountains (10-13, ‘Central Tanzania’ cluster) and
the Mozambique border (14-17, ‘Southern Tanzania’ cluster),
being highly genetically diverse with low differentiation from
most other localities throughout Tanzania, offer an intriguing
potential source for replenishing surrounding genetically impov-
erished areas via augmented gene flow. Their low genomic offset
and relative connectivity to other localities also lend support to
this idea. Similarly, many localities in the ‘Northern Tanzania’
cluster, including Segoma (7), Mabayani (9), Nguru (6), Nguu (5),
demonstrate a high degree of genetic diversity and are only mod-
erately differentiated from the remainder of the Tanzanian local-
ities. However, contrasting local adaptations between northern
and central/southern clusters suggest that promoting augmented
gene flow in some cases could compromise existing local adap-
tations across this climatic and floristic gradient (White 1983).
Furthermore, it remains to be seen clearly which population
cluster the Kimboza (8) and Kiwengoma (19) localities belong to.

In the south-westernmost part of our sampling, our single popu-
lation in Luwawa (‘Malawi’, 20) is highly differentiated with low
connectivity from all other populations in line with its geograph-
ical isolation at the periphery of the H. mitchelli complex range.
It is worth noting that this population is geographically closest to
the type locality of H. mitchelli. However, H. mitchelli is known
from more localities in Malawi (Bwong et al. 2020 and Figure 6)
that are not captured in our genomic sampling here due to low
DNA quality. Low levels of genetic diversity in Malawi, as with
those in northern Tanzania (i.e., Pare), suggest lower effective
population sizes in these populations, congruent with our esti-
mates of N, (Table S3), and they could be considered an immedi-
ate concern from a conservation perspective. Throughout Malawi,
further genetic screening of additional populations using higher
quality DNA could help to validate whether lower genetic diver-
sity and N, values in this region are a common pattern (as shown
for the congeneric H. substriatus, Lawson 2013). In Malawi, but
also in other populations and localities where genetic diversity is
particularly low, initiatives to create and improve habitats in an
attempt to establish new populations, as well as promoting habi-
tat connectivity among existing populations not captured by our
sampling (that may be genetically evaluated first), appear to be
the most appropriate strategy to maintain viable populations.

4.3 | Applications to New Species, System:s,
and Geographic Regions

Our approach demonstrates how the different lines of evidence
from molecular data, spatial distributions, and predictive

models can be combined to form species-specific management
plans to maintain or enhance genetic diversity and population
viability (see also Hoffmann et al. 2021; Lehnert et al. 2023;
Flanagan et al. 2018). As we have demonstrated with the H.
mitchelli species complex, ecologically sensitive, short-lived
explosive breeders with relatively large census population
sizes and limited dispersal abilities are highly suitable models
to investigate idiosyncratic responses of populations to envi-
ronmental changes across a large geographic range. Such an
approach may be applied to different biological systems and
co-occurring species when suitable data are collected to for-
mulate complementary multi-taxon management plans. For
example, our approach would easily lend itself to investi-
gating possible management approaches for other dispersal-
limited amphibians and reptiles of sub-Saharan Africa with
widespread sampling, cryptic diversity, and available georef-
erenced population genomic data sets (e.g., Portik et al. 2017;
Charles et al. 2018; Jaynes et al. 2022; Barratt et al. 2018;
Leaché et al. 2019; Bell et al. 2015; Reyes-Velasco, Manthey,
Bourgeois, et al. 2018; Reyes-Velasco, Manthey, Freilich, and
Boissinot 2018; Miller et al. 2024; Allen et al. 2021). However,
our approach is likely unsuitable for narrowly distributed
species with few viable populations, for example, the Kihansi
spray toad (Nectophrynoides asperginis) in central Tanzania
(Sewell et al. 2024) or small mammals highly restricted to par-
ticular habitats (Demos et al. 2015).

When adopting our approach for different taxonomic groups,
it should be noted that some analytical aspects may need to
be modified depending on the species’ biology. For migratory
species with higher dispersal capabilities, such as large mam-
mals (e.g., Bertola et al. 2024; Garcia-Erill et al. 2022; Garcia-
Erill et al. 2024; Quinn et al. 2023; Pecnerova et al. 2021;
Pedersen et al. 2018; Liu et al. 2024), population structure and
signals of local adaptation are likely to be weaker than those
we found in the H. mitchelli complex. In cases such as this,
genetic differentiation and local adaptation may be low, and
information at higher spatio-temporal resolution about the ex-
tent and connectivity of suitable habitat patches (e.g., using
landscape genetic approaches) could be more relevant to un-
derstand predictions of connectivity and barriers between pop-
ulations through time and space and how this could feed into
conservation strategies (e.g., McRae 2004; Antharaman and
Manel 2021; McGarigal and Marks 1995; McGuire et al. 2016).
Insights into how anthropogenic impacts and landscape use
changes are impeding potential gene flow and the potential
for evolutionary rescue to occur may be particularly useful to
account for. This may be especially relevant for longer-lived
species that are unable to adapt to rapidly changing environ-
mental conditions and are therefore much more reliant on dis-
persal as a means to counteract the negative impacts of global
change (Albaladejo-Robles et al. 2022). At the same time, with
higher resolution spatial modeling approaches, the feasibility
and practicality of habitat creation and restoration initiatives
need to be carefully considered.

4.4 | Limitations, Caveats, and Routes Forward

We present here a comprehensive approach to help formulate
management plans for conservation units within species and
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species complexes; however, there are some limitations and ca-
veats from our data, analyses, and results. First, for the H. mitch-
elli species complex, the numbers of sampled individuals are
relatively modest, with several localities represented by a sin-
gle individual, and some areas remain unsampled for potential
populations. Like many species with cryptic diversity, its distri-
bution in a highly biodiverse tropical region that is logistically
difficult to sample comprehensively makes complete biological
inventory nearly impossible (Reddy and Déavalos 2003; Hughes
et al. 2021). To overcome this challenge, we used published
occurrence records for all currently known populations of the
species complex to build our SDMs and to summarize informa-
tion for our localities (Figure 6). In doing so, the most complete
knowledge of the species’ distributions can be visualized with
reference to the population structure we define. Building on
these georeferenced localities, obtaining new high-quality ge-
nomic data for individuals from unsampled localities, especially
those in the borders between the population structure defined in
this work, will help to gain a more comprehensive overview of
where the geographic limits for the defined population clusters
exist. Second, we acknowledge that our sampling covers a fairly
large temporal range (2009-2023, see Table S1), which could po-
tentially incorporate shifts in the genetic composition of popu-
lations. Ideally, all samples would be from a single snapshot in
time; however, this is logistically difficult to coordinate across
multiple geographic locations and countries. We recommend
that future work should aim to have a shorter sampling period
across geographic space to minimize the risk of this bias being
introduced.

Third, in our analyses we do not account for the closely related
and recently described Hyperolius stictus from two geographi-
cally isolated populations in northern Mozambique (Conradie
et al. 2018), which has been suggested as a sister to the H. mitch-
elli population from Malawi (Bwong et al. 2020) based on mito-
chondrial DNA (see Figure 6). Given the geographic isolation
of this species compared with the rest of our sampling, and the
resolution of the phylogeny with genomic data, we are confident
that it does not form part of the Malawi population or Southern
Tanzania cluster we have defined. However, further genomic
sampling would help to comprehensively address this question.

We acknowledge that whole genome sequencing (WGS) ap-
proaches at high coverage for a higher number of individuals
per population (ideally >20) would be the gold standard for
estimating nucleotide diversity, observed heterozygosity, and
particularly gaining more robust N, estimates as opposed to our
ddRAD-seq strategy (i.e., a reduced representation library ap-
proach). We urge caution in interpreting the N, results due to
our limited sample size per locality and the reduced representa-
tion of the genome in our ddRAD-seq data, which likely under-
represents rare alleles (see Marandel et al. 2020). This method
captures only a small proportion (we estimate 5%-10% based on
the restriction site frequency of our selected enzymes PstI and
ApekI combined with our 300-500bp fragment size selection)
of the presumably large genome of H. mitchelli and H. rubrover-
miculatus (~5Gb), as seen in the congeneric H. riggenbachi
(https://www.genomeark.org/vgp-all/Hyperolius_riggenbachi.
html), and thus affects the completeness of allele frequencies
represented by the site frequency spectrum. These limitations
make it difficult to reliably report the proportion of populations

with N,> 500 for the CBD Global Biodiversity Framework pro-
hibiting reliable estimates of N, outside of approximate and rel-
ative interpretations. Interrogating WGS data for signatures of
local adaptation would also provide deeper knowledge of the
genomic regions involved in local adaptation, and if annotated
reference genomes are available, the identification of functional
genes that may be useful in mitigating the effects of global
change (Supple and Shapiro 2018; Theissinger et al. 2023). Such
reference genomes could also facilitate the quantification of
deleterious mutations (i.e., genetic load, Bertorelle et al. 2022;
van Oosterhout 2020) across different populations to measure
fitness. Future studies with comprehensive WGS data sets will
allow a significant improvement in the interpretations that can
be made for the conservation of this species complex.

Finally, simulation models are an extremely powerful tool
to predict the outcomes of conservation actions before a deci-
sion is taken (Hoban 2014; Haller and Messer 2017; Landguth
et al. 2017). Before conservation actions are taken, these mod-
els should be used to simulate potential outcomes that can then
be evaluated with follow-up monitoring to gauge the success of
conservation decisions and improve them if necessary.

5 | Conclusion

We used a widely distributed East African reed frog species com-
plex as a model to predict how structured populations may be id-
iosyncratically affected by future global changes (climate and land
use). By combining genome-wide (ddRAD-seq) data with spatial
occurrence data and predictive modeling, we characterized pop-
ulation structure and made conservation recommendations based
on population substructure and differentiation, genetic diversity,
landscape barriers and connectivity, signatures of local adaptation
and genomic offset, and species distribution models. Our approach
provides a framework to understand how populations within spe-
cies may be unevenly affected by future global changes, feeding
into the conservation decision-making process to increase popula-
tion and species resilience to global change. Our approach is gen-
eralized and can therefore be expanded with larger data sets and
new analytical approaches, as well as being applied in different
taxonomic and geographic contexts.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: Stacks parameter opti-
mization for all tested parameter combinations (m=3,4,5,6,7,8,9,10,
r=40,60,80). Panels show number of assembled sites, polymorphic
sites, percent polymorphic loci, new polymorphic sites, and total SNPs

across each of the 24 parameter combinations. Figure S2: Population
structure multi runs from k=2 to 10. Plots show individual ancestry
coefficients based on (A) Admixture, (B) fastStructure, and (C) SNMF
analyses, individuals are grouped by sampling locality. Broad geo-
graphic region per sample noted at the top of the first ancestry plots.
Figure S3: Predictor variable importances for species distribution mod-
els averaged across all model runs (models used in the final ensemble).
Figure S4: Ensemble Species Distribution Model outputs for all time
periods (2021-2040, 2041-2060, 2061-2080) and all shared socioeco-
nomic pathways (SSP1, SSP2, SSP5). Figure S5: Genomic offset predic-
tions (clipped to a 2° buffer around sampled localities) based on gradient
forest analysis for all time periods (2021-2040, 2041-2060, 2061-2080)
and all shared socioeconomic pathways (SSP1, SSP2, SSP5). Blue re-
gions represent low genomic offsets (i.e., negligible or low predicted
future disruption to genotype-environment associations), red regions
represent high genomic offsets (i.e., high predicted future disruptions to
genotype—environment associations). Sampling localities (1-20) match
Figure 1. Figure S6: Dotplots of genomic offset predictions (on the x
axis, identified in Figure 1) per sampling locality for different SSP and
future projections. (A) SSP1, (B) SSP2, (C) SSP5. Table S1: Sample infor-
mation for all tissue samples use in this study. Collector abbreviations:
LPL—Lucinda P. Lawson, JGL—Joanna G. Larson, CDB—Christopher
D. Barratt, BAB—Beryl A. Bwong, JVL—John V. Lyakurwa, MM—
Michele Menegon, SPL—Simon P. Loader, PKM—Patrick K. Malonza.
Institutional abbreviations: FMNH—Field Museum of Natural History
(Chicago, USA), MCZ—Museum of Comparative Zoology (Harvard,
USA), NHM—Natural History Museum (London, UK), MUSE—Museo
Delle Scienze (Trento, Italy). Table S2: AMOVA (Analysis of Molecular
Variance). Results of AMOVA tests for population clustering between
2 and 5 as suggested by Admixture, SNMF, fastStructure, and PCA.
Different groupings of population clusters were tested with 999 ran-
domizations of the data using the poppr R package (Kamvar et al. 2014,
2015), with k=3 being the most likely explanation of the data. Table S3:
Genetic diversity estimates per population, including observed het-
erozygosity (H,), expected heterozygosity (H,), inbreeding coefficient
(FIS), and nucleotide diversity (x). Metrics were calculated across all
sites (all genotyped loci, regardless of whether they are variable or not)
and fixed sites (loci where all individuals within a population carry the
same allele). Table S4: Effective population size (N,) estimates using
momi2 (Kamm et al. 2019). For each population unit (i.e., the three clus-
ters reported in the manuscript, the three subclusters in Tanzania, and
unique sampling locality) the site frequency spectrum (SFS) was calcu-
lated, downprojected to maximize the number of segregating sites, and
used to estimate the effective population size (N,).
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