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ABSTRACT

Aim: Functional traits help to understand the ecological processes underlying biological invasions. The extent to which trait
data are available for alien plants at the global scale is unknown. In this study, we assess the availability of trait data and identify
global gaps and biases.

Location: Global.

Time Period: Present.

Major Taxa Studied: Vascular plants.

Methods: We used the GIoNAF database to get a global list of plants naturalised outside their native range and their distribu-
tions. We combined data from the four largest trait databases: AusTraits, BIEN, GIFT, and TRY, on which we performed taxo-
nomic and trait harmonisation. We studied the availability of trait data. Then, based on the distribution data, we tested to what
extent trait knowledge was driven by ecological and socioeconomic variables.

Results: We found that the species-by-trait matrix (2764 traits for 14,539 species) was only 1.5% complete, with most traits
measured for very few species. Only ten traits were available for more than 50% of all alien plants. Four percent of the species
lacked all trait data, while 27% of species had data for the three key plant traits: leaf mass per area, seed mass, and plant height.
We observed a strong latitudinal gradient in trait knowledge, with tropical regions showing lower trait knowledge than higher
latitudes, particularly in the Northern Hemisphere. Growth form, range size, and invasion status were the strongest predictors of
trait knowledge, with widespread, invasive tree species being better recorded than other alien species.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.
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Main Conclusions: We identified large trait data gaps at a global scale for alien plants, which limits our ability to study func-

tional invasion ecology at large spatial scales. These gaps are partly driven by uneven sampling and a lack of trait data integration

across sources. We recommend prioritising the most invasion-relevant traits and coordinating community efforts of plant and
invasion scientists to sample them in a standardised way, which could help close these gaps.

1 | Introduction

Biological invasions are an important component of global
changes (IPBES 2023); we need a better understanding of their
underlying ecological processes for effective management (Diaz
et al. 2019; IPBES 2023). Plant invasions are known to cause
many long-lasting impacts on terrestrial and aquatic ecosys-
tems, above and below ground. Consequences include, for ex-
ample, severely changing ecosystem processes, leading to biotic
homogenisation of formerly distinct biotas, changing local
abundance and species richness of outcompeted native biota
(Pysek et al. 2012; D'Antonio and Flory 2017; Kumar Rai and
Singh 2020; Lazaro-Lobo et al. 2023; Dostdl 2024). Global inva-
sion of plants led to approximately 4% of the global flora being
established outside of its native range (van Kleunen et al. 2015),
becoming alien (i.e., non-native, exotic) somewhere on this
planet. Identifying plant traits promoting successful species
introductions, establishment and dispersal is one of the major
aims of plant invasion ecology (e.g., PySek et al. 2008; Drenovsky
et al. 2012; Knapp and Kiithn 2012; van Kleunen et al. 2015;
Gallien and Carboni 2017). With the knowledge of species traits,
the management and prediction of population dynamics of es-
tablished or future alien species can be much more effective.
This includes biological invasions: for example, species that are
able to self-fertilise are more likely to become naturalised than
outcrossing species (Razanajatovo et al. 2016).

Despite massive collaborative mobilisation efforts, large trait
data gaps remain for the global vascular plant flora (Kattge
et al. 2020; Visscher et al. 2022). Recent efforts have identi-
fied and systematically described such gaps (Hortal et al. 2015;
Cornwell et al. 2019; Rudbeck et al. 2022; Maitner et al. 2023).
For example, we observe a systematic lack of trait data for spe-
cies occurring in less studied regions such as in the Tropics or
Africa, while species in temperate regions have been studied
more intensely (Hortal et al. 2015). Geographical accessibility is
also known to drive data availability (Oliveira et al. 2016), which
means that we have greater trait knowledge of accessible regions
than less accessible ones. In addition, species in economically
wealthier areas show greater occurrence data coverage than
species in comparatively poorer areas (Meyer et al. 2016).

To embrace the context-dependency of traits in biological invasions
(Catford et al. 2022; Milanovi¢ et al. 2025), traits should be consid-
ered in conjunction to use them to manage alien species (Kiister
et al. 2008; Pysek et al. 2020). Traits have been used to assess the
risk of invasion of species, as well as the economic costs of invasion
(Keller and Drake 2009; Palma et al. 2021; Cuthbert et al. 2025).
For example, species with more acquisitive strategies, with small
seeds and high SLA, have been shown to be more invasive (Palma
et al. 2021). Thus, the trait availability of alien species is key to
using traits to explain idiosyncrasies associated with different in-
vasion syndromes (Kiister et al. 2008; Novoa et al. 2020) and across

environmental gradients (Golivets et al. 2024). Although one of the
holy grails of invasion ecology, there has been no universal set of
functional traits identified as being significantly associated with
successful plant invasions across different invasion stages, habi-
tats, regions, climates, propagule pressure, and residence time
(Gioria et al. 2023). Traits and trait states associated with inva-
sion success differ across studies and are always dependent on the
availability of trait measures, which is limited as we show here.

There is no assessment of the availability of trait data for alien
plant species. To better understand potential biases or vice versa
to identify collection priorities in trait data of alien plants, we
need to identify the factors determining the trait knowledge
of alien plants, spatially and taxonomically. Given the previ-
ous studies on biases in plant trait data (Cornwell et al. 2019;
Gallagher et al. 2020; Kattge et al. 2020; Maitner et al. 2023),
we know that species with larger ranges have greater data avail-
ability than species with smaller ranges because they are more
likely to be sampled. In addition, we expect that species occur-
ring in wealthier countries (in either their native or naturalised
range) have more trait data present in databases than species
in poorer countries. We also expect invasive (i.e., species with
ecological and/or negative economic impacts) species to have
data available for more traits than naturalised species that were
never recorded as invasive because the impacts of invasiveness
should incentivise trait research on invasive plants.

Scientists rarely leverage multiple trait databases, which would
likely improve trait coverage (Feng et al. 2022). This is because
plant trait databases are often not directly interoperable and do
not follow commonly defined standards. As a result, most trait
studies do not use the full range of available trait data (Feng
et al. 2022). The lack of shared trait definitions impedes the
reuse of plant traits across databases (Garnier et al. 2017), while
the combination of traits coming from different databases re-
quires care and specific expertise (Keller et al. 2023), but ensures
a greater trait coverage and reduces the potential taxonomic and
spatial biases (Maitner et al. 2023).

Here, we map and quantify the trait knowledge for alien plants
at a global scale, using the largest trait dataset for non-native
species assembled to date, by combining four major plant trait
databases. We then assess the main ecological and socioeco-
nomic factors driving the data availability of plant traits.

2 | Methods
2.1 | Alien Plants List
We extracted a list of alien vascular plants from the Global

Naturalised Alien Flora (GloNAF) database v.2.0 (van Kleunen
et al. 2019) that is being continuously updated by the database
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creators (accessed 2024-05-30). We extracted the list of species
in GloNAF that were labelled as ‘naturalised’ or ‘invasive’. Our
list of alien species comprised 16,044 taxonomic names of vas-
cular plants before taxonomic harmonisation. We also extracted
the naturalised geographic distribution (at TDWG4 resolution
level) of each taxon from the GloNAF database.

2.2 | Taxonomic Harmonisation

We gathered trait data from four different plant trait databases:
AusTraits (Falster et al. 2021), BIEN (Enquist et al. 2016), GIFT
(Weigelt et al. 2020), and TRY (Kattge et al. 2020). We used
these databases because they represent the largest and most
accessible trait databases for plants globally (Feng et al. 2022).

As the different databases used different taxonomic backbones
to standardise species names, we performed a full taxonomic
harmonisation workflow (Grenié et al. 2022). For the four trait
databases as well as GIoNAF, we referred to the raw available
names with authors and subspecific epithets if available (i.e.,
the name from the original source). We leveraged the speed and
reliability of the Taxonomic Name Resolution Service (TNRS,
v.5.1 Boyle et al. 2021, Boyle et al. 2013) with its R package
TNRSVv.0.3.6 (Maitner 2024) to match all of these names against
the World Checklist of Vascular Plants (Govaerts 2023). We set
TNRS to only return the best match. To merge all datasets, we
only retained the accepted binomial names for all species. In the
end, we had 14,073 matched species names between GloNAF
and all trait databases (see Data S2 and Figure S1).

2.3 | Trait Data

For each trait database, we counted the number of measured
traits for each species. Some traits may have more than one ob-
servation. We, however, decided to be the least conservative for
our analyses: we considered as ‘measured’ a trait that was at least
measured once across all databases. We did so as any single mea-
sured trait gives greater alien species trait knowledge than no ob-
servation. We didn't consider the geographical provenance of our
data, though available for all of AusTraits and BIEN data, because
it is only available for 42% of TRY data (Kattge et al. 2020), and
isn't easily tractable in GIFT as the trait measurements are coming
from floras.

2.3.1 | AusTraits

We extracted all traits available for species referenced in
GloNAF from AusTraits version 6.0 (Falster et al. 2021). We
obtained data for 33,494 taxa (including infraspecific ones)
and 497 traits.

2.3.2 | BIEN

We queried all traits available in BIEN through the BIEN R
package (Maitner et al. 2018). We used BIEN version 4.2.6 (re-
leased 2022-08-09, Enquist et al. 2016). We obtained data for
109,394 species and 52 traits.

2.3.3 | GIFT

We used the GIFT database (Weigelt et al. 2020) as it offers com-
plimentary traits from global databases and notably contains the
growth form for most plant species. We used GIFT version 3.1,
including both public and private records through the GIFT R
package (Denelle et al. 2023). We obtained data for 287,229 spe-
cies and 106 traits.

234 | TRY

We queried all publicly available traits in TRY v6.0 (Kattge
et al. 2020). We obtained data for 301,799 species and 2460 traits.

A list of all of the used original data sources is found in Data S1.

2.3.5 | Aligning Common Trait Definitions

We created a single species-by-trait matrix from all trait databases
after harmonising the traits across them (see details in Data S2)
to make correspondence tables for all possible pairwise database
combinations. We leveraged the Australian Plant Trait Dictionary
(APD) v2.0.0 (Wenk et al. 2024), which provides trait correspon-
dence between AusTraits and all three other databases we used.

2.3.6 | Final Trait Dataset

We created three distinct trait datasets based on how stringent
we were to consider traits similar in their definition across our
correspondence tables. In the first option (‘full’ trait network),
we considered all traits that were exactly matching, close, or re-
lated as being the same. The second option (‘close’ trait network)
considered only traits that were exactly or closely matching. The
final option, the most stringent one (‘exact’ trait network), con-
sidered two traits the same only if they were exactly matching.
For example, in our network, AusTraits ‘Leaf lamina mass per
area’ trait (APD:0011231) was considered exactly matching with
the TRY SLA trait with petiole excluded (TRY:3115), closely
matching with the TRY SLA trait with petiole, midrib, and ra-
chis excluded (TRY:3086), and related to two other TRY SLA
traits where the petiole was included (TRY:3116) and where it
is undefined if the petiole was or was not included (TRY:3117).
In the ‘full’ network, all these traits would be lumped together,
while in the ‘close’ network, the trait from AusTraits would be
connected to TRY:3115 and TRY:3086; in the more stringent
‘exact’ network, only TRY:3115 would be connected to the leaf
lamina mass per area trait from AusTraits. We provide the ‘full’
network in the data supplements.

We performed our analyses with all three versions of the trait
networks but present only the ‘full’ option hereafter as the results
were quantitatively and qualitatively similar across all versions.
Our trait name network initially contained 3351 unique trait
names across databases and 804 links between exact, close, and
related matches of traits. Using our correspondence tables, con-
sidering the ‘full’ trait network, we obtained 2764 unique traits.
In the end, in the ‘full’ trait network, our combined trait dataset
contained 14,063 species (after taxonomic harmonisation) and
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2250 observed traits as 514 traits were never observed across our
set of target species.

2.4 | Trait Combinations

Because one can't measure all traits for all species to fully describe
phenotypes, researchers identified generic trait combinations re-
flecting major ecological trade-offs to compare as many species as
possible (Westoby 1998; Diaz et al. 2016; Bergmann et al. 2020).
We focused on three ecological trait trade-offs: the Leaf-Height-
Seed Mass (Westoby 1998), the global spectrum of plant form and
function (Diaz et al. 2016; aboveground spectrum traits hereaf-
ter), and the root economics space (Bergmann et al. 2020). See
Data S2 for a list of traits and extended justification.

2.5 | Modelling Trait Knowledge

We tested to what extent the determinants of other shortfalls of
biodiversity (Hortal et al. 2015; Rudbeck et al. 2022) correlated
with the number of measured traits per species (our response
variable). We extracted for each GloNAF region of alien plant
species occurrence several predictors provided in the GIFT data-
base: the average gross domestic product per capita (GDPpc) from
2015 (Kummu et al. 2018), the mean access time from major cit-
ies (Weiss et al. 2018), and the Human Influence Index (WCS and
CIESIN 2005), which aggregates and averages disparate sources
of anthropogenization (density of roads, density of population,
land use, etc.) per region. We computed the average of all predic-
tor variables across the entire range for each species. For GDPpc,
because we hypothesised that species occurring in wealthier
countries in their non-native range and/or their native range
would have more traits measured, we computed two GDPpc,
one across the native range of the species, the other across its
non-native range. As species with larger ranges are more likely
to have more traits measured, especially larger native ranges,
we considered separately the number of regions where a species
is native and the number of regions where it is non-native. We
assumed that species occurring in more diverse habitats have a
higher chance of being sampled, as they are more likely to occur
in a well-sampled environment; we thus counted the number of
biomes a species occurs in from Dinerstein et al. (2017). We also
included the simplified growth form of the species (tree, shrub,
herb, or other) extracted from GIFT as a predictor variable, avail-
able for all species.

2.5.1 | Final Data Subset

We only kept species for which all predictors were known for
at least 80% of the regions they occur in as naturalised species.
This led to a total of 13,253 species being included in the analy-
ses presented here.

2.5.2 | Statistical Model
Our response variable was the number of traits measured per

species out of our theoretical maximum of 2764 traits; we thus
performed a negative binomial generalised linear model that we

fit using the glm.nb() function in the MASS package (Venables
and Ripley 2002). We used the nine above-mentioned predictor
variables: species growth form, species total range size, species
non-native range size, the number of biomes a species occurs in,
the average Human Influence Index across its entire range, the
standard deviation of the Human Influence Index across its en-
tire range, the average GDP per capita across its native range, the
average GDP per capita across its non-native range, and the av-
erage accessibility across its entire range. All predictor variables
were centered to a 0 mean and scaled to a 1 standard deviation
prior to the analysis. All predictors showed low multicollinear-
ity with variance inflation factors all <5. The checks using the
check_model() function of the performance package (Liidecke
et al. 2021) showed normal residuals and no evidence for overdis-
persion or zero-inflation. We used Nagelkerke's pseudo-R-square
for GLMs through the r2_nagelkerke() function from the perfor-
mance package.

2.5.3 | Phylogenetic Model

Because our trait knowledge model was species-based, we
wanted to test the effect of adding phylogenetic correction to
the model. We fitted a Poisson phylogenetic regression model,
based on the same predictors as our non-phylogenetic model,
using the phyloglm() function in the phylolm package (Ho
and Ane 2014). We provided a phylogenetic tree of all of our
non-native species, assembled through the rtrees package
(Li 2023) using a reference global plant phylogeny (Smith and
Brown 2018).

All data extraction and analyses were done using R 4.2.2 (R Core
Team 2022).

3 | Results
3.1 | A Sparse Species X Traits Matrix

We obtained a species-traits table containing observations for
14,063 alien vascular plant species (out of 14,539 known at a
global scale) and 2250 different traits (out of 2764) (Figure 1A).
This gives a theoretical maximum of 40,185,796 possible species
by trait combinations, while our observed matrix only contained
622,513 (1.5%) of them. Narrowing on the 200 most frequently
measured traits (Figure 1B) gives 2,907,800 combinations, of
which 504,234 (17.3%) are observed.

We listed 25 most frequently measured traits. More than 90%
of alien plant species had data available for each of the fol-
lowing three traits: growth form, woodiness, and life history
(Figure 1C). Close to 75% of the alien species had two other
traits measured at least once: plant height, which is fundamen-
tal to understanding the ecology of species, and leaf type, distin-
guishing between a broad leaf or a needle. Five other traits were
available for more than half of the species: leaf compoundness
(compound or simple leaf), dispersal syndrome (anemochor-
ous, etc.), seed mass, photosynthetic pathway (C3, C4, or other),
and flowering phenology. The remaining 15 traits are available
for less than half of the species. Most of those traits describe
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FIGURE1 | (A) Species-by-trait matrix for alien vascular plants of the 200 most measured traits. Each pixel represents the measurement of one
trait for one species. Traits are ordered on the x-axis from most to least measured. Species are ordered in columns ordered from most to least mea-
sured (bottom to top). The colour of the pixel shows whether the trait was ever measured for this species (dark grey) or never (white). (B) shows the
same figure with all 2250 measured traits. (C) Proportion of species covered by the 25 most frequently measured traits. The x-axis shows the number

of species with the given trait measured (the top x-axis gives the corresponding proportion). The y-axis shows the different traits with their names as

labels, the labels indicate whether the traits are continuous (cont.), categorical (cat.), or binary (bin.). The points are the proportions of alien species

with at least one trait value for the trait indicated on the y-axis. The proportions are displayed above the points. The red dashed line represents 100%

cover of the alien species (14,539 in our dataset), while the blue dashed line represents 50%.

fundamental ecological characteristics, nitrogen fixation, fruit
type, leaflet number per leaf, leaf length, leaf phenology, species
tolerance to frost, leaf phyllotaxis, leaf width, pollination syn-
drome, fruit length, plant sex type, flower colour, leaf mass per
area, leaf area, and seed germination rate. Among the 25 most
frequently measured traits, the different databases had various
unique contributions (Figure S2). For plant growth form (avail-
able for 13,991 species), TRY covered 13,622 species, and 3309
species were found in common in all four databases; but GIFT
was the greatest provider of unique species-trait observations
unavailable in other databases (290 species out of 13,991). The
contribution of AusTraits for plant growth form, though smaller,
mostly brought unique observations (39 species unobserved in
other databases). Species-traits observations in BIEN were gen-
erally also available in TRY, but BIEN had some unique contri-
butions for certain traits, for example for pollination syndrome
(114 species uniquely in BIEN versus 559 in AusTraits, 948 in
GIFT, and 985 in TRY for a total of 5487 species). These contri-
butions only consider unique species-trait combinations across
databases and do not consider the availability of different trait
measurements for the same species.

3.2 | Uneven Proportion of Measured
Combination of Traits

We mapped species for which we had the measured combinations
of traits (see details in Table S1): Leaf-Height-Seed Mass (LHS),
aboveground spectrum traits, and root traits. For only 3.3% of
alien species, not a single trait measurement exists (476 species,
Figure 2A), which means that 96% of alien plant species have at
least one trait measured in our consolidated dataset. However,
to compare species or compute functional diversity metrics, the
traits measured across species need to be the same. 29.1% of the
species with non-native occurrences have a measured LHS com-
bination (4227 species), 14.3% have the aboveground spectrum
traits fully described (2079 species), and root traits are measured
for only 1.8% (266 species). When jointly considering multiple
combinations, the numbers drop further: 1.7% of species (244
species) have measured LHS and root traits, while 1.5% of species
(216 species) have both the full aboveground spectrum and root
combinations measured.

The available trait combinations show strong taxonomic biases
(Figure 2B). While we expect families with a larger number
of alien species to show a higher proportion of trait combi-
nations available, smaller families like Myrtaceae have trait
data for most of their alien species, while the bigger families
like Poaceae show a lack of trait combinations for most alien
species.

3.3 | Combinations of Traits Are Poorly
Represented Across the World

We mapped the alien species richness and the proportion of
alien species with measured trait combinations (Figure 3). The
latter measure varied strongly depending on which particular
traits we combined (Figure 3B). Most regions showed trait cov-
erage over 80% when considering single traits. The LHS traits
show the highest degrees of coverage variation of all trait com-
binations considered. Some regions with higher alien species
richness also showed high LHS coverage like the north of North
America or different regions in Russia. Regions with very low
alien species richness (fewer than 10 alien species) showed a
high LHS coverage (over 80%). We observed a strong latitudinal
gradient in trait coverage. Temperate regions showed an LHS
trait coverage over 60%, while most tropical regions showed LHS
trait coverage below 60% (with the notable exception of Brazil
with several regions over 60% coverage). For both aboveground
and especially root traits, most regions showed coverage below
20% of the species, except for regions with low alien species
richness. Some regions of North America, South America, and
Central Asia, however, showed coverage between 20% and 40%
for aboveground spectrum traits.

3.4 | Traits of Widespread Invasives Are Measured
More Often

The species’ invasion status influenced the knowledge of trait
combinations (Figure 4A). Non-native species referred to as
invasive in at least one region in GIoNAF (‘invasive’ in this
section) had a greater coverage in all trait combinations than
non-native species never reported as invasive (‘non-invasive’ in
this section), which themselves showed higher coverage than
species never referenced as non-natives (‘natives’ in this sec-
tion). We found strong evidence that LHS traits are more fre-
quently measured for invasive species (48.2% of species) than for
non-invasive species (24.8%; y*>=325, df=1, p<0.001). We ob-
served similar differences for aboveground traits and root traits
(26.9% vs. 11.3% for aboveground traits and 3.9% vs. 1.3% for root
traits). Even when considering any trait, invasive species were
better measured than non-invasives (respectively 99.1% had at
least one measured trait vs. 96.1%). The number of traits avail-
able per species followed the same pattern; invasive species had
74.8 traits available on average, while non-invasives had 34.7
and native ones 7.44 (All pairwise t-tests showed p <0.001).

We also observed a difference in trait knowledge depending on
the geographical spread of species. The 100 most widespread
species in GlIoNAF consistently showed higher trait-combination
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FIGURE 2 | Shares of alien vascular plant species covered by different trait combinations for all alien species (A) and per plant family (B). The
area of rectangles is directly proportional to the number of species in each category. The numbers show the number of species and in (A) additionally
respective proportion of species compared to the global number of alien species (14,539). In (B), the blocks contained within thick white borders rep-
resent botanical families ordered by decreasing number of alien species (e.g., Asteraceae has the most aliens). The numbers depicted are the number
of species of the family with the given trait combination. Areas are coloured depending on measured trait combinations. The colours correspond to
different trait combinations: light grey, no measured trait; grey, at least one measured trait; light purple, LHS; dark purple, aboveground spectrum
traits; bright orange; root traits; darker orange, LHS and root traits; brown, aboveground spectrum and root traits. For ease of navigation and read-
ing, an interactive online version of this figure is available at: https://rekyt.github.io/alientraitgaps/, archived for long-term on Zenodo doi: 10.5281/
zenodo.13940200.

knowledge than less widespread species (81% vs. 27.5% for LHS the most widespread and other species was when considering
traits; 59% vs. 13.5% for aboveground traits; and 18% vs. 1.7% for whether they had data on at least one trait (96% vs. 85.3%, re-
root traits). The only case where we found no difference between spectively, y2=0.57, df=1, p=0.45).
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data were available. (B) Proportions of alien species in each region with measured trait combination (at least one trait; Leaf-Height-Seed Mass, LHS;

aboveground spectrum; and root traits). Empty circles represent islands and are not scaled for readability reasons. All maps are projected in Equal

Earth projection (EPSG: 8857).

3.5 | Plant Growth Form and Range Size Predict
Trait Knowledge

We modelled the number of traits measured per species as a func-
tion of predictors averaged over the entire range size of the spe-
cies as well as the growth form of species. We found evidence for
effects of all our tested variables (p <0.001, Figure 5, see partial
residual plots in Figure S3). Our model had a Nagelkerke's pseu-
do-R? of 62.7%. The strongest variable explaining the number of
measured traits was growth form: measured as trees, shrubs,
herbs, and others. Trees had on average more trait information
than shrubs (56.5 on average versus 37.4 traits), which had more
than herbs (33.3), which had more than species of other growth
forms (19.7). The next predictor with the strongest effect was the
species total range size, with a positive effect meaning that for
every factor of 10 increase in the range (in km?), there was an
85% increase in the number of traits for a species. The number
of biomes a species occurs in and the human influence index av-
eraged across its range also had a positive effect on the number
of measured traits per species. The other variables all decreased
the number of measured traits per species, with GDPpc in the
native range having a stronger negative effect (decreasing the
number of traits by 20%) than the non-native range size (19%),

GDPpc in the non-native range (9%), and as well as the acces-
sibility of the range (9%). The analyses were performed con-
sidering species for which the predictors were available for at
least 80% of their total range; we obtained similar results when
performing the same analyses with a threshold of 70% and 90%
(Figure S4). Considering the phylogeny in the model didn't af-
fect the direction of the effect of all of the variables, which all
remained with p <0.001 (Figure S5).

4 | Discussion

We assembled the largest collection of traits for alien vascu-
lar plant species worldwide from the four biggest global plant
trait databases and systematically assessed the completeness
of available information. We showed that the global alien
species-by-trait matrix was mostly empty and that the most
well-measured traits were categorical. When considering mul-
tiple traits together, we found that only a fraction of species
had ‘classical’ trait combinations measured. The knowledge
of traits was mostly driven by plant growth form, invasiveness
status, and range size. Furthermore, when considering these
combinations across space, we identified that most regions in
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the world showed consistently low trait coverage for alien plant
species. The huge gaps in global trait availability of plants in
general and, in particular, of alien plants might prevent us from
identifying potentially important traits for invasion processes
at large scales.

4.1 | Biasesin Trait Knowledge

Several dimensions of biodiversity are known for showing strong
geographic, taxonomic, and trait biases (Tyler et al. 2012; Hortal
et al. 2015; Cornwell et al. 2019; Webb and Vanhoorne 2020;
Hughes et al. 2021; Rudbeck et al. 2022). Traits of alien plants are
no exception. The lack of trait data, the so-called Raunkieerian
shortfall, is characterised by several biases. First comes the trait
bias; although many traits have been measured, and around 70%
of species have at least 10 traits measured (Figure S6), only a
few traits are consistently measured across species. Second, the
taxonomic bias: when traits are measured, we found that even
the common ones are not measured uniformly across species
within botanical families (Figure 2, Figure S7). Third, regarding
the biogeographic bias, we identified a strong latitudinal gradi-
ent in trait knowledge (Figure 3, Figure S8), with greater trait
knowledge for species occurring in temperate regions than for
species occurring in tropical regions. Finally, for the invasion
and range-related biases, we identified that the invasion sta-
tus and widespreadness of species strongly correlated with the

knowledge of their traits. Accounting for these trait, taxonomic,
biogeographic, and spatial biases requires careful analyses.
They call for greater attention to data collection, mobilisation,
and integration to compensate for biases (See ‘How to fill the
trait data gap’ section).

As we expected, we found that non-native plants with larger
ranges and occurring in more biomes had more traits measured
across the databases. Opposite to our expectations, we found
negative relationships between the number of traits measured
and the average GDP in countries in both their native and
non-native ranges. While average GDP should correlate with
research effort, and as such collection effort, this negative re-
lationship could be due to the relationships between average
GDP over species ranges and the area of their ranges. Large-
range species, which tend to have more traits measured, will
show lower average GDP over their ranges. Small-range species
may occur over higher GDP areas, but show a lower number of
traits measured because of their overall smaller range. These
findings call for additional studies on the determinants of trait
knowledge for both native and non-native plants.

4.2 | Trait Relevance

We decided to focus on commonly used and clearly defined
trait combinations, namely LHS traits from Westoby (1998),
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FIGURE5 | Summary plot showing the incidence rate ratios for variables explaining number of traits measured per alien vascular plant species.

Variables with blue dots increase the number of traits measured per species, while variables in red decrease it. All tested variables showed p <0.0001.

the global spectrum of plants form and functions (GSPFF) from
Diaz et al. (2016), and root traits from Bergmann et al. (2020)
and Weigelt et al. (2021). These three trait-combination frame-
works are easy to interpret, allowing us to compare species at
a global scale. LHS was one of the first clearly defined combi-
nations compared across species (1998), while later the GSPFF
traits (2016) extended the LHS set of traits with the two main
dimensions being size and the leaf economics spectrum; finally,
the root traits (2020; 2021) add information regarding resource
acquisition versus conservation and collaboration with soil
microbes (mycorrhizal fungi). They all measure aspects of the
strategies of plant species globally and position them across eco-
logical gradients. Invasion ecology relies heavily on these gen-
eral ecological trait frameworks, and given the sparsity of data
available for these trait combinations, our understanding of the
roles of traits in plant invasions can only advance if we identify
the most ecologically relevant traits and fill the data gaps.

Although we know that the provenance of the traits, that is,
where the measurements come from (e.g., native or non-native
range), is relevant in invasion ecology (e.g., Parker et al. 2013),
we could not consider this factor. The main reason is the lack of
georeferenced measures (e.g., only 42% of trait observations are
georeferenced in TRY v.5.0; Kattge et al. 2020). Additionally, we
wanted to include as many trait data as possible in our gap anal-
ysis. Identifying if trait measurements are from native or non-
native rangesis challenging. Species can show very different trait
values between their native and non-native ranges (Leishman
et al. 2014). Those differences can potentially point to underly-
ing ecological plasticity, evolutionary processes, or non-random
selection of phenotypes at introduction, which are important

to understand when managing invasions. Representing natu-
ralised species’ trait variability requires measuring them in both
the non-native and the native range.

We here made the simplifying assumption that all trait measure-
ments were perfectly recorded, with no measurement nor re-
porting errors. Considering these errors would certainly reduce
even further our trait knowledge. It was recently shown for the
TRY database that only 23% of the original SLA measurements
from TRY were actually original, representative, logical, compa-
rable, and traceable (Augustine et al. 2024). While we know the
ecological importance of intraspecific trait variation for plants
(Westerband et al. 2021), we also simplified our trait matrix by
considering any single trait measurement for a single species
enough to know the trait value for the species. Our study could
be further extended by studying the number of trait measure-
ments known for each trait and each species to estimate how
well we know the intraspecific variation for each species.

4.3 | The Challenges of Integrating Trait Databases

Even though there are efforts in unifying the format of plant
trait databases, they are far from being interoperable or even au-
tomatically integrable, both of which are criteria to follow FAIR
principles (i.e., Findability, Accessibility, Interoperability, and
Reusability) in data stewardship (Wilkinson et al. 2016; Keller
et al. 2023). One of the challenges we faced in our study was
to combine data from heterogeneous trait sources. The four da-
tabases we used are complementary in terms of species cover-
age, and using all four increased data coverage (Figure S2) but
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posed serious conceptual and analytical challenges. First, trait
data are increasingly shared openly, which means a greater trait
coverage for species but scattering into multiple data sources
(Gallagher et al. 2020). This problem calls for more attention
for data integration and better data sharing practices (Feng
et al. 2022). Second, even though the databases are open, they
may not be easily accessible. We focused on four trait databases
(AusTraits, BIEN, GIFT, and TRY) because all of them offer an
R package to access and/or clean their data (Maitner et al. 2018;
Falster et al. 2021; Lam et al. 2022; Weigelt and Denelle 2022).
Third, the trait and distribution databases all used different
taxonomies, which is a known issue when combining data
(Grenié et al. 2022); this emphasises the importance of preserv-
ing original species names when aggregating data. In princi-
ple, one would even need to know the taxonomic concept used
(Berendsohn 1995). Fourth, we had to align the trait definitions
across databases. Thankfully, standard vocabularies, thesauri,
and ontologies facilitate this integration (Garnier et al. 2017;
Wenk et al. 2024), but only AusTraits and TRY provided links
to trait ontologies. For all other comparisons, the first author
manually paired the traits from all the databases. Our proposed
correspondence method and cross-database table are available
as Supporting Information in the hope that it would be use-
ful for other studies. Community-developed trait correspon-
dence schemes, for example through the OpenTrait Network
(Gallagher et al. 2020), would help enforce interoperability of
trait databases so that definitions would be more consensus-
driven and openly discussed (Wenk et al. 2024). In a world of
increasing automatic algorithms matching data or looking for
patterns, an expert-driven unifying global plant trait correspon-
dence scheme is the only way to minimise errors in those auto-
matic processes.

4.4 | How to Fill the Trait Data Gap?
4.4.1 | Prioritising Trait Acquisition

It seems unrealistic to expect all trait gaps to be filled with
in situ measurements in the near future. Given the immense
diversity of the plant traits reported here (more than 2764 differ-
ent traits), prioritising the most commonly studied traits would
seem more tractable. Adopting a prioritisation framework sim-
ilar to the one used in conservation biology would be more re-
alistic (Arponen 2012). Prioritisation schemes use well-defined
criteria on species, traits, or regions to target data sampling or
data integration and increase their trait coverage. The prioritisa-
tion depends on the aims and purpose of the sampling.

Any prioritisation approach would have to make a decision on
the origin of the respective trait measure (native or non-native
range). Traits of alien species can be measured anywhere in
their range, but this would limit their ecological applicability,
as discussed before. In an ideal world, traits are measured in
both the native and alien range equally (which is frequently
not the case; see Parker et al. 2013). New trait measures should
come with a clear georeferenced locality information, including
habitat characteristics and a note on the invasion status of the
species. For example, we could prioritise species to be sampled
based on their impact through their (potential) invasiveness
(e.g., with their Environmental Impact Classification for Alien

Taxa—EICAT—score; Blackburn et al. 2014). Such a prioritisa-
tion, however, risks reinforcing the gap in trait knowledge be-
tween invasive and non-invasive species that we have identified
in this study.

We showed greater gaps in trait knowledge of alien plant species
in the Tropics than in temperate regions, which suggests a need
for a geographic prioritisation scheme. Areas richer in alien spe-
cies could be targeted, as these are more likely to harbour many
invasive species (Chytry et al. 2012) and suffer from the impacts
of invasion. Another region-based approach would prioritise re-
gions with the highest potential increase in projected new alien
species in relation to the existing trait knowledge (e.g., Seebens
et al. 2021). Finally, because it is likely that many of the trait
gaps will not be filled soon, we could rely on methods to priori-
tise species/traits/locations that would minimise the error from
trait imputation methods (Penone et al. 2014; Schrodt et al. 2015;
Joswig et al. 2023). Then species and traits would be prioritised
to reduce the uncertainty of the imputation the most. For exam-
ple, we could prioritise species from families where only a few
species have been sampled.

4.4.2 | Closing the Trait Gaps

Once species, traits and locations have been prioritised, we need
to find ways to close the trait gaps. In this section, we list poten-
tial solutions to do so. They fall into two categories: mobilisation
of existing data and collecting new data. Major gaps in trait data
that we identified do not necessarily mean that the traits have
never been sampled. Potentially, these traits were measured but
never contributed and aggregated into databases. There may
be solutions to get these data from previously acquired sources
(Figure 6).

Trait data are increasingly shared openly in the literature. The
four trait databases we used do not continuously monitor the
published articles for trait data (pers. comm. from database
managers). Targeted literature searches for specific species and
traits could give access to more trait data than available in data-
bases. LT-Brazil is a recent successful example of this strategy
(Mariano et al. 2021), where researchers more than doubled
the coverage for leaf traits of Brazilian vascular plant species
in TRY (i.e., LT-Brazil is now included in TRY) through a well-
crafted literature search. Recent advancements in natural lan-
guage processing might, in addition, reduce the manual effort
needed for mobilising traits from the literature (Domazetoski
et al. 2023).

If the traits are not available in databases nor directly from the
literature, they may well be privately available from research-
ers. A targeted call for data can help increase data coverage of
some areas and species (Newbold et al. 2012; Kattge et al. 2020).
For example, the manager of the PREDICTS database issued a
call for data in Frontiers of Biogeography that successfully in-
creased data coverage in under-represented regions (Newbold
et al. 2012). The calls could be publicly made or through direct
contacts with researchers who mobilised the data, like GIoNAF
did (van Kleunen et al. 2019). These calls should always be ac-
companied by incentives for data providers, like specific citation
requirements.
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FIGURE 6 | Strategies to increase alien species trait knowledge.

Distributed field campaigns could help to acquire a few traits
of alien species. After trait and species prioritisation, a call
for a global measurement campaign could be issued. The cam-
paign would require standard protocols distributed to partner
labs across the world and then pooling their data, also to avoid
the definition of new trait states, which is not necessary given
> 2000 existing plant trait names already. This approach has
been used successfully to perform experiments at a global
scale on nutrient addition through the NutNet network for
example (Borer et al. 2014), but it has not been used to ac-
quire trait data to our knowledge. There is, though, a series
of ‘Functional Plant Trait Courses’ organised by V. Vandvik
and B. Enquist who organised several campaigns to acquire
additional trait data (https://plantfunctionaltraitscourses.w.
uib.no/).

Participatory science has been rising across many fields in
ecology (Silvertown 2009), empowering large communities to
take part in and help science. With the rise of Al-driven plant
identification smartphone applications (Hart et al. 2023), it
would be possible to acquire trait data from these applications,
though limited on the type of traits that could be (easily) ac-
quired. It would require determining which data can be confi-
dently and accurately acquired by participants, through which
tools (e.g., photographs, manual measurements, apps such as
BioLeaf (Machado et al. 2016) or LeafByte (Getman-Pickering
et al. 2020)) with an appropriate protocol.

With the increasing coverage of satellite imagery, trait ecologists
leverage remotely sensed data (Homolova et al. 2013; Feilhauer
et al. 2018; Cherif et al. 2023). Recent studies extend their

io»

Remote
Sensing

approach to the traits of alien species, though at the community
rather than the species level (Huang and Asner 2009; Niphadkar
and Nagendra 2016). This approach is limited to traits that
can be remotely sensed for species occurring in open areas
(Niphadkar and Nagendra 2016). Those approaches also need
robust ground truthing data for model calibration (Dechant
et al. 2023). Remote-sensing trait distribution forms a dynamic
field with strong ongoing efforts to leverage its high resolution
capabilities (Torresani et al. 2024).

Several studies show that useful trait data can be extracted
from herbarium specimens (Davis 2022). Herbaria are glob-
ally underused resources and can help access useful trait data,
especially from difficult-to-acquire or rare species. While her-
barium specimens have been used to reconstruct the spread
history of alien species (Mandak et al. 2004; Williamson
et al. 2005; Fuentes et al. 2008), they have not been system-
atically mobilised for trait data. In particular, because many
herbaria provide digitised specimens, it would be possible
to acquire trait data semi-automatically from these images
(Davis 2022).

The above-mentioned strategies help fill the trait gaps by acquir-
ing new data. Trait imputation (also known as trait gap filling)
is a complementary strategy that leverages trait correlations as
well as additional data (whether spatial and/or phylogenetic de-
pends on the exact method) to infer the trait values for species
with missing values (Schrodt et al. 2015; Joswig et al. 2023).
Trait imputation should be performed carefully, considering the
strengths and weaknesses of the different imputation methods as
well as the ecological context of the original trait measurements
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used to fit the imputation models (Penone et al. 2014; Johnson
et al. 2021; Blomberg and Todorov 2025; Gorné et al. 2025).

Most solutions stated above require collective work from plant,
invasion, and remote sensing scientists, as well as funding
schemes which focus on pure data collection campaigns, which
rarely exist. We want to emphasise the importance of com-
munity building in this regard to tackle the issue of trait data
through community efforts. Potential routes to close the gaps in
trait knowledge rely on the goodwill of individual past or pres-
ent contributors (people who acquired the data, collected the
species for herbaria, citizen scientists, participating labs, etc.)
and research funders. We want to underline that any of these
scientific contributions should be valued and recognised as they
create a basis for progress in research.

5 | Conclusion

We identified large trait gaps for alien plant species at a global
scale. These gaps are partly driven by uneven sampling and
missing integration of data. With the distributed efforts of the
global community of plant and invasion scientists, these gaps
can be reduced. Our suggestions should encourage efforts to
harmonise plant trait information to be able to unify plant trait
databases. Such developments should result in FAIR and open
data, increasing incentives for people to deposit their trait data
in databases (Wilkinson et al. 2016; Islam et al. 2022). The ad-
vent of large-scale trait-based invasion ecology will improve the
understanding of biological invasions.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Data Sources S1: Additional refer-
ences for original data sources. Data Sources S2: The index for all of
the material available in the “DataS2” file, should be the following:
Supplementary Information S1: Details on the taxonomic harmo-
nization process (i.e., aligning the taxonomies of the different data-
bases used). Supplementary Information S2: Details on the trait
harmonization process (i.e., aligning the trait definitions across trait
databases). Supplementary Information S3: Ecological justification
on the used trait sets. Supplementary Table S3-1: Name, references
and traits contained in the used trait sets. Supplementary Figure S1:
Venn diagram of the number of shared species across the used data-
bases (GloNAF, AusTraits, BIEN, GIFT, and TRY). Supplementary
Figure S2: Euler diagrams showing the contribution in number
of unique and shared species of trait databases for the twenty traits
available for most species. Supplementary Figure S3: Partial re-
sidual plots of variables explaining the number of traits available per
species. Supplementary Figure S4: Estimated coefficients plots
for linear models explaining the number of available traits, with ex-
plaining variables available across at least 70%, 80% or 90% of the
range of the species. Supplementary Figure S5: Comparison of es-
timated coefficients across phylogenetic vs. non-phylogenetic mod-
els. Supplementary Figure S6: Cumulative number of species per
number of available traits. Supplementary Figure S7: Treemaps of
number of available traits per species and per family. Supplementary
Figure S8: Global map of the median and standard deviation of the
number of traits available per species.
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