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ABSTRACT
Aim: Functional traits help to understand the ecological processes underlying biological invasions. The extent to which trait 
data are available for alien plants at the global scale is unknown. In this study, we assess the availability of trait data and identify 
global gaps and biases.
Location: Global.
Time Period: Present.
Major Taxa Studied: Vascular plants.
Methods: We used the GloNAF database to get a global list of plants naturalised outside their native range and their distribu-
tions. We combined data from the four largest trait databases: AusTraits, BIEN, GIFT, and TRY, on which we performed taxo-
nomic and trait harmonisation. We studied the availability of trait data. Then, based on the distribution data, we tested to what 
extent trait knowledge was driven by ecological and socioeconomic variables.
Results: We found that the species-by-trait matrix (2764 traits for 14,539 species) was only 1.5% complete, with most traits 
measured for very few species. Only ten traits were available for more than 50% of all alien plants. Four percent of the species 
lacked all trait data, while 27% of species had data for the three key plant traits: leaf mass per area, seed mass, and plant height. 
We observed a strong latitudinal gradient in trait knowledge, with tropical regions showing lower trait knowledge than higher 
latitudes, particularly in the Northern Hemisphere. Growth form, range size, and invasion status were the strongest predictors of 
trait knowledge, with widespread, invasive tree species being better recorded than other alien species.
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Main Conclusions: We identified large trait data gaps at a global scale for alien plants, which limits our ability to study func-
tional invasion ecology at large spatial scales. These gaps are partly driven by uneven sampling and a lack of trait data integration 
across sources. We recommend prioritising the most invasion-relevant traits and coordinating community efforts of plant and 
invasion scientists to sample them in a standardised way, which could help close these gaps.

1   |   Introduction

Biological invasions are an important component of global 
changes (IPBES 2023); we need a better understanding of their 
underlying ecological processes for effective management (Díaz 
et  al.  2019; IPBES 2023). Plant invasions are known to cause 
many long-lasting impacts on terrestrial and aquatic ecosys-
tems, above and below ground. Consequences include, for ex-
ample, severely changing ecosystem processes, leading to biotic 
homogenisation of formerly distinct biotas, changing local 
abundance and species richness of outcompeted native biota 
(Pyšek et  al.  2012; D'Antonio and Flory  2017; Kumar Rai and 
Singh 2020; Lázaro-Lobo et al. 2023; Dostál 2024). Global inva-
sion of plants led to approximately 4% of the global flora being 
established outside of its native range (van Kleunen et al. 2015), 
becoming alien (i.e., non-native, exotic) somewhere on this 
planet. Identifying plant traits promoting successful species 
introductions, establishment and dispersal is one of the major 
aims of plant invasion ecology (e.g., Pyšek et al. 2008; Drenovsky 
et  al.  2012; Knapp and Kühn  2012; van Kleunen et  al.  2015; 
Gallien and Carboni 2017). With the knowledge of species traits, 
the management and prediction of population dynamics of es-
tablished or future alien species can be much more effective. 
This includes biological invasions: for example, species that are 
able to self-fertilise are more likely to become naturalised than 
outcrossing species (Razanajatovo et al. 2016).

Despite massive collaborative mobilisation efforts, large trait 
data gaps remain for the global vascular plant flora (Kattge 
et  al.  2020; Visscher et  al.  2022). Recent efforts have identi-
fied and systematically described such gaps (Hortal et al. 2015; 
Cornwell et al. 2019; Rudbeck et al. 2022; Maitner et al. 2023). 
For example, we observe a systematic lack of trait data for spe-
cies occurring in less studied regions such as in the Tropics or 
Africa, while species in temperate regions have been studied 
more intensely (Hortal et al. 2015). Geographical accessibility is 
also known to drive data availability (Oliveira et al. 2016), which 
means that we have greater trait knowledge of accessible regions 
than less accessible ones. In addition, species in economically 
wealthier areas show greater occurrence data coverage than 
species in comparatively poorer areas (Meyer et al. 2016).

To embrace the context-dependency of traits in biological invasions 
(Catford et al. 2022; Milanović et al. 2025), traits should be consid-
ered in conjunction to use them to manage alien species (Küster 
et al. 2008; Pyšek et al. 2020). Traits have been used to assess the 
risk of invasion of species, as well as the economic costs of invasion 
(Keller and Drake 2009; Palma et al. 2021; Cuthbert et al. 2025). 
For example, species with more acquisitive strategies, with small 
seeds and high SLA, have been shown to be more invasive (Palma 
et al.  2021). Thus, the trait availability of alien species is key to 
using traits to explain idiosyncrasies associated with different in-
vasion syndromes (Küster et al. 2008; Novoa et al. 2020) and across 

environmental gradients (Golivets et al. 2024). Although one of the 
holy grails of invasion ecology, there has been no universal set of 
functional traits identified as being significantly associated with 
successful plant invasions across different invasion stages, habi-
tats, regions, climates, propagule pressure, and residence time 
(Gioria et  al.  2023). Traits and trait states associated with inva-
sion success differ across studies and are always dependent on the 
availability of trait measures, which is limited as we show here.

There is no assessment of the availability of trait data for alien 
plant species. To better understand potential biases or vice versa 
to identify collection priorities in trait data of alien plants, we 
need to identify the factors determining the trait knowledge 
of alien plants, spatially and taxonomically. Given the previ-
ous studies on biases in plant trait data (Cornwell et  al.  2019; 
Gallagher et  al.  2020; Kattge et  al.  2020; Maitner et  al.  2023), 
we know that species with larger ranges have greater data avail-
ability than species with smaller ranges because they are more 
likely to be sampled. In addition, we expect that species occur-
ring in wealthier countries (in either their native or naturalised 
range) have more trait data present in databases than species 
in poorer countries. We also expect invasive (i.e., species with 
ecological and/or negative economic impacts) species to have 
data available for more traits than naturalised species that were 
never recorded as invasive because the impacts of invasiveness 
should incentivise trait research on invasive plants.

Scientists rarely leverage multiple trait databases, which would 
likely improve trait coverage (Feng et al. 2022). This is because 
plant trait databases are often not directly interoperable and do 
not follow commonly defined standards. As a result, most trait 
studies do not use the full range of available trait data (Feng 
et  al.  2022). The lack of shared trait definitions impedes the 
reuse of plant traits across databases (Garnier et al. 2017), while 
the combination of traits coming from different databases re-
quires care and specific expertise (Keller et al. 2023), but ensures 
a greater trait coverage and reduces the potential taxonomic and 
spatial biases (Maitner et al. 2023).

Here, we map and quantify the trait knowledge for alien plants 
at a global scale, using the largest trait dataset for non-native 
species assembled to date, by combining four major plant trait 
databases. We then assess the main ecological and socioeco-
nomic factors driving the data availability of plant traits.

2   |   Methods

2.1   |   Alien Plants List

We extracted a list of alien vascular plants from the Global 
Naturalised Alien Flora (GloNAF) database v.2.0 (van Kleunen 
et al. 2019) that is being continuously updated by the database 
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creators (accessed 2024-05-30). We extracted the list of species 
in GloNAF that were labelled as ‘naturalised’ or ‘invasive’. Our 
list of alien species comprised 16,044 taxonomic names of vas-
cular plants before taxonomic harmonisation. We also extracted 
the naturalised geographic distribution (at TDWG4 resolution 
level) of each taxon from the GloNAF database.

2.2   |   Taxonomic Harmonisation

We gathered trait data from four different plant trait databases: 
AusTraits (Falster et al. 2021), BIEN (Enquist et al. 2016), GIFT 
(Weigelt et  al.  2020), and TRY (Kattge et  al.  2020). We used 
these databases because they represent the largest and most 
accessible trait databases for plants globally (Feng et al. 2022).

As the different databases used different taxonomic backbones 
to standardise species names, we performed a full taxonomic 
harmonisation workflow (Grenié et al. 2022). For the four trait 
databases as well as GloNAF, we referred to the raw available 
names with authors and subspecific epithets if available (i.e., 
the name from the original source). We leveraged the speed and 
reliability of the Taxonomic Name Resolution Service (TNRS, 
v.5.1 Boyle et  al.  2021, Boyle et  al.  2013) with its R package 
TNRS v.0.3.6 (Maitner 2024) to match all of these names against 
the World Checklist of Vascular Plants (Govaerts 2023). We set 
TNRS to only return the best match. To merge all datasets, we 
only retained the accepted binomial names for all species. In the 
end, we had 14,073 matched species names between GloNAF 
and all trait databases (see Data S2 and Figure S1).

2.3   |   Trait Data

For each trait database, we counted the number of measured 
traits for each species. Some traits may have more than one ob-
servation. We, however, decided to be the least conservative for 
our analyses: we considered as ‘measured’ a trait that was at least 
measured once across all databases. We did so as any single mea-
sured trait gives greater alien species trait knowledge than no ob-
servation. We didn't consider the geographical provenance of our 
data, though available for all of AusTraits and BIEN data, because 
it is only available for 42% of TRY data (Kattge et al. 2020), and 
isn't easily tractable in GIFT as the trait measurements are coming 
from floras.

2.3.1   |   AusTraits

We extracted all traits available for species referenced in 
GloNAF from AusTraits version 6.0 (Falster et al. 2021). We 
obtained data for 33,494 taxa (including infraspecific ones) 
and 497 traits.

2.3.2   |   BIEN

We queried all traits available in BIEN through the BIEN R 
package (Maitner et al. 2018). We used BIEN version 4.2.6 (re-
leased 2022-08-09, Enquist et  al.  2016). We obtained data for 
109,394 species and 52 traits.

2.3.3   |   GIFT

We used the GIFT database (Weigelt et al. 2020) as it offers com-
plimentary traits from global databases and notably contains the 
growth form for most plant species. We used GIFT version 3.1, 
including both public and private records through the GIFT R 
package (Denelle et al. 2023). We obtained data for 287,229 spe-
cies and 106 traits.

2.3.4   |   TRY

We queried all publicly available traits in TRY v6.0 (Kattge 
et al. 2020). We obtained data for 301,799 species and 2460 traits.

A list of all of the used original data sources is found in Data S1.

2.3.5   |   Aligning Common Trait Definitions

We created a single species-by-trait matrix from all trait databases 
after harmonising the traits across them (see details in Data S2) 
to make correspondence tables for all possible pairwise database 
combinations. We leveraged the Australian Plant Trait Dictionary 
(APD) v2.0.0 (Wenk et al. 2024), which provides trait correspon-
dence between AusTraits and all three other databases we used.

2.3.6   |   Final Trait Dataset

We created three distinct trait datasets based on how stringent 
we were to consider traits similar in their definition across our 
correspondence tables. In the first option (‘full’ trait network), 
we considered all traits that were exactly matching, close, or re-
lated as being the same. The second option (‘close’ trait network) 
considered only traits that were exactly or closely matching. The 
final option, the most stringent one (‘exact’ trait network), con-
sidered two traits the same only if they were exactly matching. 
For example, in our network, AusTraits ‘Leaf lamina mass per 
area’ trait (APD:​0011231) was considered exactly matching with 
the TRY SLA trait with petiole excluded (TRY:3115), closely 
matching with the TRY SLA trait with petiole, midrib, and ra-
chis excluded (TRY:3086), and related to two other TRY SLA 
traits where the petiole was included (TRY:3116) and where it 
is undefined if the petiole was or was not included (TRY:3117). 
In the ‘full’ network, all these traits would be lumped together, 
while in the ‘close’ network, the trait from AusTraits would be 
connected to TRY:3115 and TRY:3086; in the more stringent 
‘exact’ network, only TRY:3115 would be connected to the leaf 
lamina mass per area trait from AusTraits. We provide the ‘full’ 
network in the data supplements.

We performed our analyses with all three versions of the trait 
networks but present only the ‘full’ option hereafter as the results 
were quantitatively and qualitatively similar across all versions. 
Our trait name network initially contained 3351 unique trait 
names across databases and 804 links between exact, close, and 
related matches of traits. Using our correspondence tables, con-
sidering the ‘full’ trait network, we obtained 2764 unique traits. 
In the end, in the ‘full’ trait network, our combined trait dataset 
contained 14,063 species (after taxonomic harmonisation) and 
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2250 observed traits as 514 traits were never observed across our 
set of target species.

2.4   |   Trait Combinations

Because one can't measure all traits for all species to fully describe 
phenotypes, researchers identified generic trait combinations re-
flecting major ecological trade-offs to compare as many species as 
possible (Westoby 1998; Díaz et al. 2016; Bergmann et al. 2020). 
We focused on three ecological trait trade-offs: the Leaf-Height-
Seed Mass (Westoby 1998), the global spectrum of plant form and 
function (Díaz et al. 2016; aboveground spectrum traits hereaf-
ter), and the root economics space (Bergmann et al.  2020). See 
Data S2 for a list of traits and extended justification.

2.5   |   Modelling Trait Knowledge

We tested to what extent the determinants of other shortfalls of 
biodiversity (Hortal et al. 2015; Rudbeck et al. 2022) correlated 
with the number of measured traits per species (our response 
variable). We extracted for each GloNAF region of alien plant 
species occurrence several predictors provided in the GIFT data-
base: the average gross domestic product per capita (GDPpc) from 
2015 (Kummu et al. 2018), the mean access time from major cit-
ies (Weiss et al. 2018), and the Human Influence Index (WCS and 
CIESIN 2005), which aggregates and averages disparate sources 
of anthropogenization (density of roads, density of population, 
land use, etc.) per region. We computed the average of all predic-
tor variables across the entire range for each species. For GDPpc, 
because we hypothesised that species occurring in wealthier 
countries in their non-native range and/or their native range 
would have more traits measured, we computed two GDPpc, 
one across the native range of the species, the other across its 
non-native range. As species with larger ranges are more likely 
to have more traits measured, especially larger native ranges, 
we considered separately the number of regions where a species 
is native and the number of regions where it is non-native. We 
assumed that species occurring in more diverse habitats have a 
higher chance of being sampled, as they are more likely to occur 
in a well-sampled environment; we thus counted the number of 
biomes a species occurs in from Dinerstein et al. (2017). We also 
included the simplified growth form of the species (tree, shrub, 
herb, or other) extracted from GIFT as a predictor variable, avail-
able for all species.

2.5.1   |   Final Data Subset

We only kept species for which all predictors were known for 
at least 80% of the regions they occur in as naturalised species. 
This led to a total of 13,253 species being included in the analy-
ses presented here.

2.5.2   |   Statistical Model

Our response variable was the number of traits measured per 
species out of our theoretical maximum of 2764 traits; we thus 
performed a negative binomial generalised linear model that we 

fit using the glm.nb() function in the MASS package (Venables 
and Ripley  2002). We used the nine above-mentioned predictor 
variables: species growth form, species total range size, species 
non-native range size, the number of biomes a species occurs in, 
the average Human Influence Index across its entire range, the 
standard deviation of the Human Influence Index across its en-
tire range, the average GDP per capita across its native range, the 
average GDP per capita across its non-native range, and the av-
erage accessibility across its entire range. All predictor variables 
were centered to a 0 mean and scaled to a 1 standard deviation 
prior to the analysis. All predictors showed low multicollinear-
ity with variance inflation factors all < 5. The checks using the 
check_model() function of the performance package (Lüdecke 
et al. 2021) showed normal residuals and no evidence for overdis-
persion or zero-inflation. We used Nagelkerke's pseudo-R-square 
for GLMs through the r2_nagelkerke() function from the perfor-
mance package.

2.5.3   |   Phylogenetic Model

Because our trait knowledge model was species-based, we 
wanted to test the effect of adding phylogenetic correction to 
the model. We fitted a Poisson phylogenetic regression model, 
based on the same predictors as our non-phylogenetic model, 
using the phyloglm() function in the phylolm package (Ho 
and Ane 2014). We provided a phylogenetic tree of all of our 
non-native species, assembled through the rtrees package 
(Li 2023) using a reference global plant phylogeny (Smith and 
Brown 2018).

All data extraction and analyses were done using R 4.2.2 (R Core 
Team 2022).

3   |   Results

3.1   |   A Sparse Species × Traits Matrix

We obtained a species-traits table containing observations for 
14,063 alien vascular plant species (out of 14,539 known at a 
global scale) and 2250 different traits (out of 2764) (Figure 1A). 
This gives a theoretical maximum of 40,185,796 possible species 
by trait combinations, while our observed matrix only contained 
622,513 (1.5%) of them. Narrowing on the 200 most frequently 
measured traits (Figure  1B) gives 2,907,800 combinations, of 
which 504,234 (17.3%) are observed.

We listed 25 most frequently measured traits. More than 90% 
of alien plant species had data available for each of the fol-
lowing three traits: growth form, woodiness, and life history 
(Figure  1C). Close to 75% of the alien species had two other 
traits measured at least once: plant height, which is fundamen-
tal to understanding the ecology of species, and leaf type, distin-
guishing between a broad leaf or a needle. Five other traits were 
available for more than half of the species: leaf compoundness 
(compound or simple leaf), dispersal syndrome (anemochor-
ous, etc.), seed mass, photosynthetic pathway (C3, C4, or other), 
and flowering phenology. The remaining 15 traits are available 
for less than half of the species. Most of those traits describe 
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FIGURE 1    |     Legend on next page.
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fundamental ecological characteristics, nitrogen fixation, fruit 
type, leaflet number per leaf, leaf length, leaf phenology, species 
tolerance to frost, leaf phyllotaxis, leaf width, pollination syn-
drome, fruit length, plant sex type, flower colour, leaf mass per 
area, leaf area, and seed germination rate. Among the 25 most 
frequently measured traits, the different databases had various 
unique contributions (Figure S2). For plant growth form (avail-
able for 13,991 species), TRY covered 13,622 species, and 3309 
species were found in common in all four databases; but GIFT 
was the greatest provider of unique species-trait observations 
unavailable in other databases (290 species out of 13,991). The 
contribution of AusTraits for plant growth form, though smaller, 
mostly brought unique observations (39 species unobserved in 
other databases). Species-traits observations in BIEN were gen-
erally also available in TRY, but BIEN had some unique contri-
butions for certain traits, for example for pollination syndrome 
(114 species uniquely in BIEN versus 559 in AusTraits, 948 in 
GIFT, and 985 in TRY for a total of 5487 species). These contri-
butions only consider unique species-trait combinations across 
databases and do not consider the availability of different trait 
measurements for the same species.

3.2   |   Uneven Proportion of Measured 
Combination of Traits

We mapped species for which we had the measured combinations 
of traits (see details in Table S1): Leaf-Height-Seed Mass (LHS), 
aboveground spectrum traits, and root traits. For only 3.3% of 
alien species, not a single trait measurement exists (476 species, 
Figure 2A), which means that 96% of alien plant species have at 
least one trait measured in our consolidated dataset. However, 
to compare species or compute functional diversity metrics, the 
traits measured across species need to be the same. 29.1% of the 
species with non-native occurrences have a measured LHS com-
bination (4227 species), 14.3% have the aboveground spectrum 
traits fully described (2079 species), and root traits are measured 
for only 1.8% (266 species). When jointly considering multiple 
combinations, the numbers drop further: 1.7% of species (244 
species) have measured LHS and root traits, while 1.5% of species 
(216 species) have both the full aboveground spectrum and root 
combinations measured.

The available trait combinations show strong taxonomic biases 
(Figure  2B). While we expect families with a larger number 
of alien species to show a higher proportion of trait combi-
nations available, smaller families like Myrtaceae have trait 
data for most of their alien species, while the bigger families 
like Poaceae show a lack of trait combinations for most alien 
species.

3.3   |   Combinations of Traits Are Poorly 
Represented Across the World

We mapped the alien species richness and the proportion of 
alien species with measured trait combinations (Figure 3). The 
latter measure varied strongly depending on which particular 
traits we combined (Figure 3B). Most regions showed trait cov-
erage over 80% when considering single traits. The LHS traits 
show the highest degrees of coverage variation of all trait com-
binations considered. Some regions with higher alien species 
richness also showed high LHS coverage like the north of North 
America or different regions in Russia. Regions with very low 
alien species richness (fewer than 10 alien species) showed a 
high LHS coverage (over 80%). We observed a strong latitudinal 
gradient in trait coverage. Temperate regions showed an LHS 
trait coverage over 60%, while most tropical regions showed LHS 
trait coverage below 60% (with the notable exception of Brazil 
with several regions over 60% coverage). For both aboveground 
and especially root traits, most regions showed coverage below 
20% of the species, except for regions with low alien species 
richness. Some regions of North America, South America, and 
Central Asia, however, showed coverage between 20% and 40% 
for aboveground spectrum traits.

3.4   |   Traits of Widespread Invasives Are Measured 
More Often

The species' invasion status influenced the knowledge of trait 
combinations (Figure  4A). Non-native species referred to as 
invasive in at least one region in GloNAF (‘invasive’ in this 
section) had a greater coverage in all trait combinations than 
non-native species never reported as invasive (‘non-invasive’ in 
this section), which themselves showed higher coverage than 
species never referenced as non-natives (‘natives’ in this sec-
tion). We found strong evidence that LHS traits are more fre-
quently measured for invasive species (48.2% of species) than for 
non-invasive species (24.8%; χ2 = 325, df = 1, p < 0.001). We ob-
served similar differences for aboveground traits and root traits 
(26.9% vs. 11.3% for aboveground traits and 3.9% vs. 1.3% for root 
traits). Even when considering any trait, invasive species were 
better measured than non-invasives (respectively 99.1% had at 
least one measured trait vs. 96.1%). The number of traits avail-
able per species followed the same pattern; invasive species had 
74.8 traits available on average, while non-invasives had 34.7 
and native ones 7.44 (All pairwise t-tests showed p < 0.001).

We also observed a difference in trait knowledge depending on 
the geographical spread of species. The 100 most widespread 
species in GloNAF consistently showed higher trait-combination 

FIGURE 1    |    (A) Species-by-trait matrix for alien vascular plants of the 200 most measured traits. Each pixel represents the measurement of one 
trait for one species. Traits are ordered on the x-axis from most to least measured. Species are ordered in columns ordered from most to least mea-
sured (bottom to top). The colour of the pixel shows whether the trait was ever measured for this species (dark grey) or never (white). (B) shows the 
same figure with all 2250 measured traits. (C) Proportion of species covered by the 25 most frequently measured traits. The x-axis shows the number 
of species with the given trait measured (the top x-axis gives the corresponding proportion). The y-axis shows the different traits with their names as 
labels, the labels indicate whether the traits are continuous (cont.), categorical (cat.), or binary (bin.). The points are the proportions of alien species 
with at least one trait value for the trait indicated on the y-axis. The proportions are displayed above the points. The red dashed line represents 100% 
cover of the alien species (14,539 in our dataset), while the blue dashed line represents 50%.
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knowledge than less widespread species (81% vs. 27.5% for LHS 
traits; 59% vs. 13.5% for aboveground traits; and 18% vs. 1.7% for 
root traits). The only case where we found no difference between 

the most widespread and other species was when considering 
whether they had data on at least one trait (96% vs. 85.3%, re-
spectively, χ2 = 0.57, df = 1, p = 0.45).

FIGURE 2    |    Shares of alien vascular plant species covered by different trait combinations for all alien species (A) and per plant family (B). The 
area of rectangles is directly proportional to the number of species in each category. The numbers show the number of species and in (A) additionally 
respective proportion of species compared to the global number of alien species (14,539). In (B), the blocks contained within thick white borders rep-
resent botanical families ordered by decreasing number of alien species (e.g., Asteraceae has the most aliens). The numbers depicted are the number 
of species of the family with the given trait combination. Areas are coloured depending on measured trait combinations. The colours correspond to 
different trait combinations: light grey, no measured trait; grey, at least one measured trait; light purple, LHS; dark purple, aboveground spectrum 
traits; bright orange; root traits; darker orange, LHS and root traits; brown, aboveground spectrum and root traits. For ease of navigation and read-
ing, an interactive online version of this figure is available at: https://​rekyt.​github.​io/​alien​trait​gaps/​, archived for long-term on Zenodo doi: 10.5281/
zenodo.13940200.
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3.5   |   Plant Growth Form and Range Size Predict 
Trait Knowledge

We modelled the number of traits measured per species as a func-
tion of predictors averaged over the entire range size of the spe-
cies as well as the growth form of species. We found evidence for 
effects of all our tested variables (p < 0.001, Figure 5, see partial 
residual plots in Figure S3). Our model had a Nagelkerke's pseu-
do-R2 of 62.7%. The strongest variable explaining the number of 
measured traits was growth form: measured as trees, shrubs, 
herbs, and others. Trees had on average more trait information 
than shrubs (56.5 on average versus 37.4 traits), which had more 
than herbs (33.3), which had more than species of other growth 
forms (19.7). The next predictor with the strongest effect was the 
species total range size, with a positive effect meaning that for 
every factor of 10 increase in the range (in km2), there was an 
85% increase in the number of traits for a species. The number 
of biomes a species occurs in and the human influence index av-
eraged across its range also had a positive effect on the number 
of measured traits per species. The other variables all decreased 
the number of measured traits per species, with GDPpc in the 
native range having a stronger negative effect (decreasing the 
number of traits by 20%) than the non-native range size (19%), 

GDPpc in the non-native range (9%), and as well as the acces-
sibility of the range (9%). The analyses were performed con-
sidering species for which the predictors were available for at 
least 80% of their total range; we obtained similar results when 
performing the same analyses with a threshold of 70% and 90% 
(Figure S4). Considering the phylogeny in the model didn't af-
fect the direction of the effect of all of the variables, which all 
remained with p < 0.001 (Figure S5).

4   |   Discussion

We assembled the largest collection of traits for alien vascu-
lar plant species worldwide from the four biggest global plant 
trait databases and systematically assessed the completeness 
of available information. We showed that the global alien 
species-by-trait matrix was mostly empty and that the most 
well-measured traits were categorical. When considering mul-
tiple traits together, we found that only a fraction of species 
had ‘classical’ trait combinations measured. The knowledge 
of traits was mostly driven by plant growth form, invasiveness 
status, and range size. Furthermore, when considering these 
combinations across space, we identified that most regions in 

FIGURE 3    |    Maps of alien vascular plant species richness and proportion of aliens with measured trait combinations. (A) Alien species richness 
based on GloNAF. For readability reasons, the richness scale has been discretised in four colours following a log10 scale. Grey areas show where no 
data were available. (B) Proportions of alien species in each region with measured trait combination (at least one trait; Leaf-Height-Seed Mass, LHS; 
aboveground spectrum; and root traits). Empty circles represent islands and are not scaled for readability reasons. All maps are projected in Equal 
Earth projection (EPSG: 8857).
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the world showed consistently low trait coverage for alien plant 
species. The huge gaps in global trait availability of plants in 
general and, in particular, of alien plants might prevent us from 
identifying potentially important traits for invasion processes 
at large scales.

4.1   |   Biases in Trait Knowledge

Several dimensions of biodiversity are known for showing strong 
geographic, taxonomic, and trait biases (Tyler et al. 2012; Hortal 
et  al.  2015; Cornwell et  al.  2019; Webb and Vanhoorne  2020; 
Hughes et al. 2021; Rudbeck et al. 2022). Traits of alien plants are 
no exception. The lack of trait data, the so-called Raunkiærian 
shortfall, is characterised by several biases. First comes the trait 
bias; although many traits have been measured, and around 70% 
of species have at least 10 traits measured (Figure  S6), only a 
few traits are consistently measured across species. Second, the 
taxonomic bias: when traits are measured, we found that even 
the common ones are not measured uniformly across species 
within botanical families (Figure 2, Figure S7). Third, regarding 
the biogeographic bias, we identified a strong latitudinal gradi-
ent in trait knowledge (Figure 3, Figure S8), with greater trait 
knowledge for species occurring in temperate regions than for 
species occurring in tropical regions. Finally, for the invasion 
and range-related biases, we identified that the invasion sta-
tus and widespreadness of species strongly correlated with the 

knowledge of their traits. Accounting for these trait, taxonomic, 
biogeographic, and spatial biases requires careful analyses. 
They call for greater attention to data collection, mobilisation, 
and integration to compensate for biases (See ‘How to fill the 
trait data gap’ section).

As we expected, we found that non-native plants with larger 
ranges and occurring in more biomes had more traits measured 
across the databases. Opposite to our expectations, we found 
negative relationships between the number of traits measured 
and the average GDP in countries in both their native and 
non-native ranges. While average GDP should correlate with 
research effort, and as such collection effort, this negative re-
lationship could be due to the relationships between average 
GDP over species ranges and the area of their ranges. Large-
range species, which tend to have more traits measured, will 
show lower average GDP over their ranges. Small-range species 
may occur over higher GDP areas, but show a lower number of 
traits measured because of their overall smaller range. These 
findings call for additional studies on the determinants of trait 
knowledge for both native and non-native plants.

4.2   |   Trait Relevance

We decided to focus on commonly used and clearly defined 
trait combinations, namely LHS traits from Westoby  (1998), 

FIGURE 4    |    (A) Effect of invasiveness on measured trait combinations across species. The x-axis shows the proportion of species with the given 
trait combination. The y-axis shows the different trait combinations. Shapes and colours distinguish species based on their invasion status: orange 
squares are for species mentioned as invasive at least once, blue triangles for the ones never mentioned as invasive, and green circles for the natives 
ones. (B) Effect of range size (over 100 GloNAF regions from which the species is reported) on trait combination knowledge across species. The x-
axis shows the proportion of species with the given trait combination, the y-axis shows different trait combinations. The points and lines of different 
shapes and colours distinguish species based on their widespreadness: whether they are part of the 100 most widespread species (expressed as the 
number of GloNAF regions) or not.
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the global spectrum of plants form and functions (GSPFF) from 
Díaz et al.  (2016), and root traits from Bergmann et al.  (2020) 
and Weigelt et al. (2021). These three trait-combination frame-
works are easy to interpret, allowing us to compare species at 
a global scale. LHS was one of the first clearly defined combi-
nations compared across species (1998), while later the GSPFF 
traits (2016) extended the LHS set of traits with the two main 
dimensions being size and the leaf economics spectrum; finally, 
the root traits (2020; 2021) add information regarding resource 
acquisition versus conservation and collaboration with soil 
microbes (mycorrhizal fungi). They all measure aspects of the 
strategies of plant species globally and position them across eco-
logical gradients. Invasion ecology relies heavily on these gen-
eral ecological trait frameworks, and given the sparsity of data 
available for these trait combinations, our understanding of the 
roles of traits in plant invasions can only advance if we identify 
the most ecologically relevant traits and fill the data gaps.

Although we know that the provenance of the traits, that is, 
where the measurements come from (e.g., native or non-native 
range), is relevant in invasion ecology (e.g., Parker et al. 2013), 
we could not consider this factor. The main reason is the lack of 
georeferenced measures (e.g., only 42% of trait observations are 
georeferenced in TRY v.5.0; Kattge et al. 2020). Additionally, we 
wanted to include as many trait data as possible in our gap anal-
ysis. Identifying if trait measurements are from native or non-
native ranges is challenging. Species can show very different trait 
values between their native and non-native ranges (Leishman 
et al. 2014). Those differences can potentially point to underly-
ing ecological plasticity, evolutionary processes, or non-random 
selection of phenotypes at introduction, which are important 

to understand when managing invasions. Representing natu-
ralised species' trait variability requires measuring them in both 
the non-native and the native range.

We here made the simplifying assumption that all trait measure-
ments were perfectly recorded, with no measurement nor re-
porting errors. Considering these errors would certainly reduce 
even further our trait knowledge. It was recently shown for the 
TRY database that only 23% of the original SLA measurements 
from TRY were actually original, representative, logical, compa-
rable, and traceable (Augustine et al. 2024). While we know the 
ecological importance of intraspecific trait variation for plants 
(Westerband et al. 2021), we also simplified our trait matrix by 
considering any single trait measurement for a single species 
enough to know the trait value for the species. Our study could 
be further extended by studying the number of trait measure-
ments known for each trait and each species to estimate how 
well we know the intraspecific variation for each species.

4.3   |   The Challenges of Integrating Trait Databases

Even though there are efforts in unifying the format of plant 
trait databases, they are far from being interoperable or even au-
tomatically integrable, both of which are criteria to follow FAIR 
principles (i.e., Findability, Accessibility, Interoperability, and 
Reusability) in data stewardship (Wilkinson et al. 2016; Keller 
et  al.  2023). One of the challenges we faced in our study was 
to combine data from heterogeneous trait sources. The four da-
tabases we used are complementary in terms of species cover-
age, and using all four increased data coverage (Figure S2) but 

FIGURE 5    |    Summary plot showing the incidence rate ratios for variables explaining number of traits measured per alien vascular plant species. 
Variables with blue dots increase the number of traits measured per species, while variables in red decrease it. All tested variables showed p < 0.0001.
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posed serious conceptual and analytical challenges. First, trait 
data are increasingly shared openly, which means a greater trait 
coverage for species but scattering into multiple data sources 
(Gallagher et  al.  2020). This problem calls for more attention 
for data integration and better data sharing practices (Feng 
et al. 2022). Second, even though the databases are open, they 
may not be easily accessible. We focused on four trait databases 
(AusTraits, BIEN, GIFT, and TRY) because all of them offer an 
R package to access and/or clean their data (Maitner et al. 2018; 
Falster et al. 2021; Lam et al. 2022; Weigelt and Denelle 2022). 
Third, the trait and distribution databases all used different 
taxonomies, which is a known issue when combining data 
(Grenié et al. 2022); this emphasises the importance of preserv-
ing original species names when aggregating data. In princi-
ple, one would even need to know the taxonomic concept used 
(Berendsohn 1995). Fourth, we had to align the trait definitions 
across databases. Thankfully, standard vocabularies, thesauri, 
and ontologies facilitate this integration (Garnier et  al.  2017; 
Wenk et al. 2024), but only AusTraits and TRY provided links 
to trait ontologies. For all other comparisons, the first author 
manually paired the traits from all the databases. Our proposed 
correspondence method and cross-database table are available 
as Supporting Information in the hope that it would be use-
ful for other studies. Community-developed trait correspon-
dence schemes, for example through the OpenTrait Network 
(Gallagher et  al.  2020), would help enforce interoperability of 
trait databases so that definitions would be more consensus-
driven and openly discussed (Wenk et al. 2024). In a world of 
increasing automatic algorithms matching data or looking for 
patterns, an expert-driven unifying global plant trait correspon-
dence scheme is the only way to minimise errors in those auto-
matic processes.

4.4   |   How to Fill the Trait Data Gap?

4.4.1   |   Prioritising Trait Acquisition

It seems unrealistic to expect all trait gaps to be filled with 
in  situ measurements in the near future. Given the immense 
diversity of the plant traits reported here (more than 2764 differ-
ent traits), prioritising the most commonly studied traits would 
seem more tractable. Adopting a prioritisation framework sim-
ilar to the one used in conservation biology would be more re-
alistic (Arponen 2012). Prioritisation schemes use well-defined 
criteria on species, traits, or regions to target data sampling or 
data integration and increase their trait coverage. The prioritisa-
tion depends on the aims and purpose of the sampling.

Any prioritisation approach would have to make a decision on 
the origin of the respective trait measure (native or non-native 
range). Traits of alien species can be measured anywhere in 
their range, but this would limit their ecological applicability, 
as discussed before. In an ideal world, traits are measured in 
both the native and alien range equally (which is frequently 
not the case; see Parker et al. 2013). New trait measures should 
come with a clear georeferenced locality information, including 
habitat characteristics and a note on the invasion status of the 
species. For example, we could prioritise species to be sampled 
based on their impact through their (potential) invasiveness 
(e.g., with their Environmental Impact Classification for Alien 

Taxa—EICAT—score; Blackburn et al. 2014). Such a prioritisa-
tion, however, risks reinforcing the gap in trait knowledge be-
tween invasive and non-invasive species that we have identified 
in this study.

We showed greater gaps in trait knowledge of alien plant species 
in the Tropics than in temperate regions, which suggests a need 
for a geographic prioritisation scheme. Areas richer in alien spe-
cies could be targeted, as these are more likely to harbour many 
invasive species (Chytrý et al. 2012) and suffer from the impacts 
of invasion. Another region-based approach would prioritise re-
gions with the highest potential increase in projected new alien 
species in relation to the existing trait knowledge (e.g., Seebens 
et  al.  2021). Finally, because it is likely that many of the trait 
gaps will not be filled soon, we could rely on methods to priori-
tise species/traits/locations that would minimise the error from 
trait imputation methods (Penone et al. 2014; Schrodt et al. 2015; 
Joswig et al. 2023). Then species and traits would be prioritised 
to reduce the uncertainty of the imputation the most. For exam-
ple, we could prioritise species from families where only a few 
species have been sampled.

4.4.2   |   Closing the Trait Gaps

Once species, traits and locations have been prioritised, we need 
to find ways to close the trait gaps. In this section, we list poten-
tial solutions to do so. They fall into two categories: mobilisation 
of existing data and collecting new data. Major gaps in trait data 
that we identified do not necessarily mean that the traits have 
never been sampled. Potentially, these traits were measured but 
never contributed and aggregated into databases. There may 
be solutions to get these data from previously acquired sources 
(Figure 6).

Trait data are increasingly shared openly in the literature. The 
four trait databases we used do not continuously monitor the 
published articles for trait data (pers. comm. from database 
managers). Targeted literature searches for specific species and 
traits could give access to more trait data than available in data-
bases. LT-Brazil is a recent successful example of this strategy 
(Mariano et  al.  2021), where researchers more than doubled 
the coverage for leaf traits of Brazilian vascular plant species 
in TRY (i.e., LT-Brazil is now included in TRY) through a well-
crafted literature search. Recent advancements in natural lan-
guage processing might, in addition, reduce the manual effort 
needed for mobilising traits from the literature (Domazetoski 
et al. 2023).

If the traits are not available in databases nor directly from the 
literature, they may well be privately available from research-
ers. A targeted call for data can help increase data coverage of 
some areas and species (Newbold et al. 2012; Kattge et al. 2020). 
For example, the manager of the PREDICTS database issued a 
call for data in Frontiers of Biogeography that successfully in-
creased data coverage in under-represented regions (Newbold 
et al. 2012). The calls could be publicly made or through direct 
contacts with researchers who mobilised the data, like GloNAF 
did (van Kleunen et al. 2019). These calls should always be ac-
companied by incentives for data providers, like specific citation 
requirements.
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Distributed field campaigns could help to acquire a few traits 
of alien species. After trait and species prioritisation, a call 
for a global measurement campaign could be issued. The cam-
paign would require standard protocols distributed to partner 
labs across the world and then pooling their data, also to avoid 
the definition of new trait states, which is not necessary given 
> 2000 existing plant trait names already. This approach has 
been used successfully to perform experiments at a global 
scale on nutrient addition through the NutNet network for 
example (Borer et  al.  2014), but it has not been used to ac-
quire trait data to our knowledge. There is, though, a series 
of ‘Functional Plant Trait Courses’ organised by V. Vandvik 
and B. Enquist who organised several campaigns to acquire 
additional trait data (https://​plant​funct​ional​trait​scour​ses.w.​
uib.​no/​).

Participatory science has been rising across many fields in 
ecology (Silvertown  2009), empowering large communities to 
take part in and help science. With the rise of AI-driven plant 
identification smartphone applications (Hart et  al.  2023), it 
would be possible to acquire trait data from these applications, 
though limited on the type of traits that could be (easily) ac-
quired. It would require determining which data can be confi-
dently and accurately acquired by participants, through which 
tools (e.g., photographs, manual measurements, apps such as 
BioLeaf (Machado et al. 2016) or LeafByte (Getman-Pickering 
et al. 2020)) with an appropriate protocol.

With the increasing coverage of satellite imagery, trait ecologists 
leverage remotely sensed data (Homolová et al. 2013; Feilhauer 
et  al.  2018; Cherif et  al.  2023). Recent studies extend their 

approach to the traits of alien species, though at the community 
rather than the species level (Huang and Asner 2009; Niphadkar 
and Nagendra  2016). This approach is limited to traits that 
can be remotely sensed for species occurring in open areas 
(Niphadkar and Nagendra  2016). Those approaches also need 
robust ground truthing data for model calibration (Dechant 
et al. 2023). Remote-sensing trait distribution forms a dynamic 
field with strong ongoing efforts to leverage its high resolution 
capabilities (Torresani et al. 2024).

Several studies show that useful trait data can be extracted 
from herbarium specimens (Davis  2022). Herbaria are glob-
ally underused resources and can help access useful trait data, 
especially from difficult-to-acquire or rare species. While her-
barium specimens have been used to reconstruct the spread 
history of alien species (Mandák et  al.  2004; Williamson 
et al. 2005; Fuentes et al. 2008), they have not been system-
atically mobilised for trait data. In particular, because many 
herbaria provide digitised specimens, it would be possible 
to acquire trait data semi-automatically from these images 
(Davis 2022).

The above-mentioned strategies help fill the trait gaps by acquir-
ing new data. Trait imputation (also known as trait gap filling) 
is a complementary strategy that leverages trait correlations as 
well as additional data (whether spatial and/or phylogenetic de-
pends on the exact method) to infer the trait values for species 
with missing values (Schrodt et  al.  2015; Joswig et  al.  2023). 
Trait imputation should be performed carefully, considering the 
strengths and weaknesses of the different imputation methods as 
well as the ecological context of the original trait measurements 

FIGURE 6    |    Strategies to increase alien species trait knowledge.
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used to fit the imputation models (Penone et al. 2014; Johnson 
et al. 2021; Blomberg and Todorov 2025; Gorné et al. 2025).

Most solutions stated above require collective work from plant, 
invasion, and remote sensing scientists, as well as funding 
schemes which focus on pure data collection campaigns, which 
rarely exist. We want to emphasise the importance of com-
munity building in this regard to tackle the issue of trait data 
through community efforts. Potential routes to close the gaps in 
trait knowledge rely on the goodwill of individual past or pres-
ent contributors (people who acquired the data, collected the 
species for herbaria, citizen scientists, participating labs, etc.) 
and research funders. We want to underline that any of these 
scientific contributions should be valued and recognised as they 
create a basis for progress in research.

5   |   Conclusion

We identified large trait gaps for alien plant species at a global 
scale. These gaps are partly driven by uneven sampling and 
missing integration of data. With the distributed efforts of the 
global community of plant and invasion scientists, these gaps 
can be reduced. Our suggestions should encourage efforts to 
harmonise plant trait information to be able to unify plant trait 
databases. Such developments should result in FAIR and open 
data, increasing incentives for people to deposit their trait data 
in databases (Wilkinson et al. 2016; Islam et al. 2022). The ad-
vent of large-scale trait-based invasion ecology will improve the 
understanding of biological invasions.
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available for most species. Supplementary Figure S3: Partial re-
sidual plots of variables explaining the number of traits available per 
species. Supplementary Figure S4: Estimated coefficients plots 
for linear models explaining the number of available traits, with ex-
plaining variables available across at least 70%, 80% or 90% of the 
range of the species. Supplementary Figure S5: Comparison of es-
timated coefficients across phylogenetic vs. non-phylogenetic mod-
els. Supplementary Figure S6: Cumulative number of species per 
number of available traits. Supplementary Figure S7: Treemaps of 
number of available traits per species and per family. Supplementary 
Figure S8: Global map of the median and standard deviation of the 
number of traits available per species. 

 14668238, 2025, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70131 by M

artin-L
uther-U

niversität, W
iley O

nline L
ibrary on [04/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Gaps in Global Alien Plant Trait Data and How to Fill Them
	ABSTRACT
	1   |   Introduction
	2   |   Methods
	2.1   |   Alien Plants List
	2.2   |   Taxonomic Harmonisation
	2.3   |   Trait Data
	2.3.1   |   AusTraits
	2.3.2   |   BIEN
	2.3.3   |   GIFT
	2.3.4   |   TRY
	2.3.5   |   Aligning Common Trait Definitions
	2.3.6   |   Final Trait Dataset

	2.4   |   Trait Combinations
	2.5   |   Modelling Trait Knowledge
	2.5.1   |   Final Data Subset
	2.5.2   |   Statistical Model
	2.5.3   |   Phylogenetic Model


	3   |   Results
	3.1   |   A Sparse Species × Traits Matrix
	3.2   |   Uneven Proportion of Measured Combination of Traits
	3.3   |   Combinations of Traits Are Poorly Represented Across the World
	3.4   |   Traits of Widespread Invasives Are Measured More Often
	3.5   |   Plant Growth Form and Range Size Predict Trait Knowledge

	4   |   Discussion
	4.1   |   Biases in Trait Knowledge
	4.2   |   Trait Relevance
	4.3   |   The Challenges of Integrating Trait Databases
	4.4   |   How to Fill the Trait Data Gap?
	4.4.1   |   Prioritising Trait Acquisition
	4.4.2   |   Closing the Trait Gaps


	5   |   Conclusion
	Author Contributions
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	References


