

Impact of fibroblastic FGFBP2 mutation on pancreatic carcinogenesis

Dissertation
zur Erlangung des akademischen Grades
Doktor der Medizin (Dr. med.)

vorgelegt
der Medizinischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg

Von Xing Wu

Betreuer*in:

Prof. Dr. Jörg Kleeff
PD Dr. Bogusz Trojanowicz

Gutachter*innen:

Prof. Dr. Jonas Rosendahl, Halle (Saale)
PD Dr. Daniel Hartmann, Tübingen

Datum der Verteidigung: 01.12.2025

Referat

Bauchspeicheldrüsenkrebs ist eine der aggressivsten Formen bösartiger Erkrankungen mit einer extrem schlechten Prognose. Die Mikroumgebung von Tumoren ist ein komplexes zelluläres Netzwerk, in dem krebsassoziierte Fibroblasten (CAFs) eine zentrale Rolle bei der Auslösung und dem Fortschreiten der Krankheit spielen. In dieser Studie wird die Rolle des Fibroblasten-Wachstumsfaktor-Bindeproteins 2 (FGFBP2) und seiner Mutation in Fibroblasten bei Bauchspeicheldrüsenkrebs untersucht. Die Analyse der Expression von Aktivierungsmarkern und Zytokinen ergab, dass die FGFBP2-Mutation die Fibroblastenaktivierung fördert. Außerdem zeigte die Untersuchung der mutierten Fibroblasten, dass sie eine erhöhte Proliferation und Migration aufweisen. Behandlung mit konditioniertem Medium (CM) aus mutierten Fibroblasten konnte das Wachstum der Pankreaskarzinom Zelllinie PANC-1 steigern. Die RNA-Sequenzierungsanalyse (RNA-Seq) von PANC-1-Zellen, die mit konditioniertem Medium aus mutierten Fibroblasten behandelt wurden, ergab u.a. eine Hochregulierung des Gens ETS homologous factor (EHF) und die Förderung der Zellzyklusprogression. Die Analyse der Einzelzell-RNA-Sequenzierung (scRNA-seq) zeigte, dass EHF vor allem in duktalen Zellen exprimiert ist und die Fibroblasten über den PDGF-Signalweg (Platelet-Derived Growth Factor) reguliert. Die Expression von FGF2 ist in mutierten Fibroblasten vermindert. Darüber hinaus verstärkt die Behandlung von PANC-1-Zellen mit CM oder CM, das mit rekombinantem humanem Fibroblasten-Wachstumsfaktor 2 (rhFGF2) ergänzt wurde, die Aktivierung des kanonischen ERK1/2-Signalwegs durch Förderung der Phosphorylierung. Die Phosphorylierung in konditioniertem Medium aus FGFBP2-mutierten Fibroblasten führt zu einer erhöhten Aktivierung des ERK1/2-Signalwegs im Vergleich zum Wildtyp. Zusammenfassend zeigt unsere Studie das FGFBP2-Punktmutation eine Fibroblastenaktivierung, und verstärkte Tumorprogression zum größten Teil über ERK1/2-Signalweg in Pankreaskarzinomzellen fördert.

Abstract

Pancreatic cancer (PDAC) is one of the most aggressive forms of malignant diseases, with an extremely poor prognosis. The tumor microenvironment is a complex cellular network, with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease initiation and progression. Somatic CAF mutations identified by our group may have functional consequences and affect PDAC. One of them is replacement of guanine (G) to cytidine (C) in Fibroblast Growth Factor Binding Protein 2 (FGFBP2) causing an amino acid change from threonine to serine. Fibroblast Growth Factors (FGFs), a family of more than 20 proteins, are involved in tumor growth, progression and angiogenesis. The central question of my thesis is to investigate how this somatic mutation in FGFBP2 affects fibroblast functions in the pancreatic cancer microenvironment and how these interactions contribute to tumor progression. The analysis of the expression of activation markers and cytokines revealed that the FGFBP2 mutation promotes fibroblast activation. Furthermore, the investigation of mutant fibroblasts showed that they exhibit increased fibroblast proliferation and migration. Moreover, conditioned medium (CM) derived from mutant fibroblasts promoted the growth of pancreatic cancer cells. RNA sequencing (RNA-Seq) analysis of PANC-1 cells treated with conditioned media derived from mutant fibroblasts revealed the upregulation of the ETS homologous factor (EHF) gene and the promotion of cell cycle progression. Single-cell RNA sequencing (scRNA-seq) analysis showed that EHF is primarily expressed in tumor cells, and it regulated fibroblasts through the platelet-derived growth factor (PDGF) signaling pathway. The expression of FGF2 is decreased in mutant fibroblasts. Additionally, treatment of PANC-1 cells with CM or CM supplemented with recombinant human fibroblast growth factor 2 (rhFGF2) enhanced the activation of the canonical ERK1/2 signaling pathway by promoting phosphorylation. Phosphorylation in conditioned medium derived from FGFBP2 mutant fibroblasts resulted in increased activation of the ERK1/2 signaling pathway as compared to wildtype. In conclusion, our study shows that FGFBP2 point mutation promotes fibroblast activation which trigger the enhancement of the tumor progression, partly by activating the ERK1/2 signaling pathway in pancreatic cancer cells.

Table of Contents

Abstract	I
Abbreviations	IV
1. Introduction	1
1.1 Pancreatic ductal adenocarcinoma	1
1.2 The Tumor Microenvironment	2
1.3 Fibroblasts	3
1.4 Biomarkers of Cancer-associated fibroblasts	4
1.4.1 α SMA	4
1.4.2 FAP	4
1.5 Activation of Fibroblasts and its functions	5
1.6 FGFBP2	6
1.7 FGF2 and pathway	7
1.7.1 FGF2	7
1.7.2 ERK1/2	7
1.7.3 AKT	8
1.8 EHF	8
2. Aim	10
3. Materials and Methods	11
3.1 Materials	11
3.2 Methods	17
3.2.1 Cell Culture	17
3.2.2 Cell transfection	18
3.2.3 RNA isolation, cDNA synthesis and qPCR	20
3.2.4 Protein extraction and Western blot	21
3.2.5 MTT -TEST	24
3.2.6 Transwell assay	25
3.2.7 Conditioned medium	25
3.2.8 FGF2 and EGF treatment	25
3.2.9 RNA-Seq	26
3.2.10 Expression and Survival analysis	27
3.2.11 scRNA-seq data integration and cluster annotation analysis	27
3.2.12 KEGG analysis	28
3.2.13 Copy Number Variation (CNV) estimation Tumor and pancreatic ductal cells	28
3.2.14 Cell-cell communication analysis	28
3.2.15 Statistical Analysis	29
4. Results	30
4.1 FGFBP2 mutation regulates fibroblast activation	30
4.2 FGFBP2 mutation promotes the proliferation and regulates cell cycle of PDAC cancer cells	34

4.3 Expression of EHF in pancreatic cancer cell clusters and its role in regulation of signaling pathways	39
4.4 EHF regulates fibroblast signaling through the PDGF pathway	45
4.5 The expression of FGF2 is suppressed in fibroblasts carrying FGFBP2-mutation	48
4.6 Pancreatic cancer cells are affected by fibroblastic FGFBP2 mutation in ERK1/2 signaling manner.....	49
5. Discussion	53
5.1 Mutation in fibroblastic FGFBP2 and activation of the cells	53
5.2 Functional consequences of FGFBP2 mutation in the fibroblasts.....	54
5.3 Relations between fibroblastic FGFBP2 and EHF in pancreatic cancer	55
5.4 Association with FGF signaling.....	57
5.5 Relations to ERK1/2 signaling.....	58
6. References.....	60
7. Theses	66
Affidavit.....	VIII
Acknowledgements.....	IX

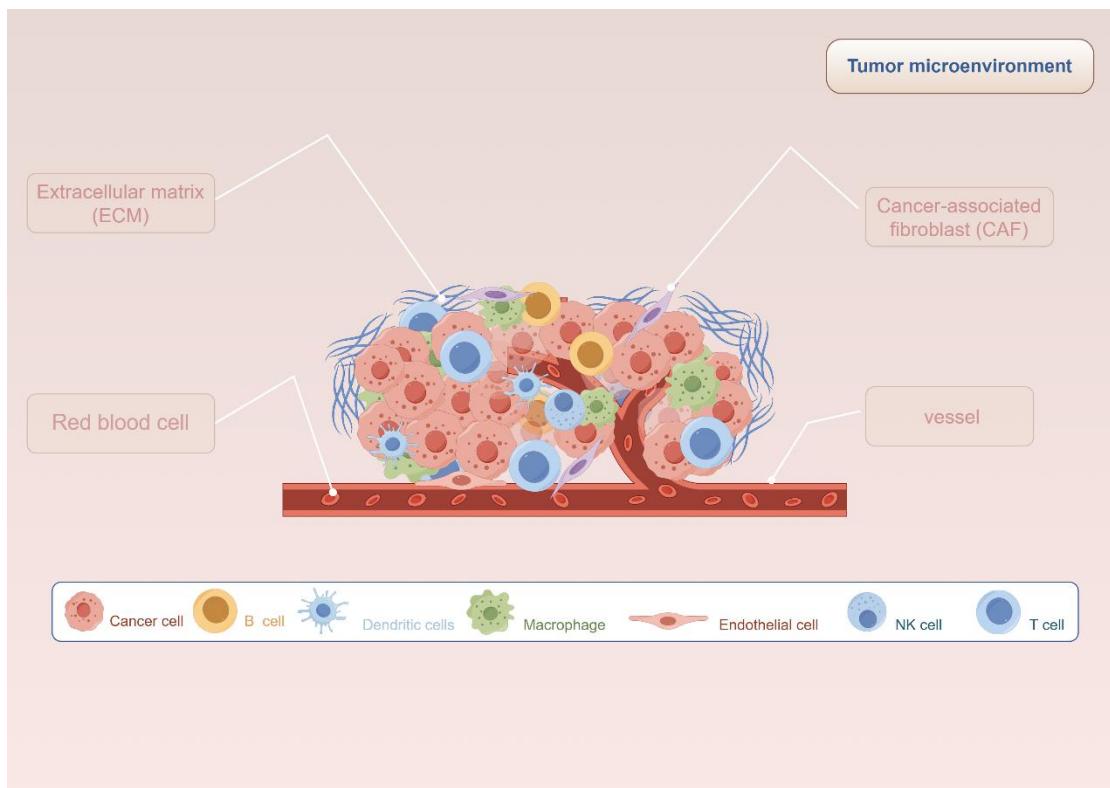
Abbreviations

AKT	Serine/Threonine Kinase
ANXA1	Annexin A1
apCAFs	antigen-presenting CAFs
APS	Ammonium Persulfate
α -SMA	Alpha-Smooth Muscle Actin
CCR7	C-C motif chemokine receptor 7
CDKN2A	Cyclin Dependent Kinase Inhibitor 2A
cDNA	Complementary DNA
CDX1	Caudal type homeobox 1
CFTR	Cystic Fibrosis Transmembrane Conductance Regulator
CHAPS	3-Cholamidopropyltrimethylammonio-1-propanesulfonate
CM	Conditioned medium
CNV	Copy Number Variation
COL1A1	Collagen type I alpha 1 chain
COL11A1	Collagen type XI alpha 1 chain
CXCR2	C-X-C Motif Chemokine Receptor 2
DMSO	Dimethyl Sulfoxide
DTT	Dithiothreitol
ECM	Extracellular matrix
EGFR	Epidermal Growth Factor Receptor
EHF	ETS Homologous Factor
EMT	Epithelial-mesenchymal transition
EPA	Eicosatetraenoic acid
EREG	Epiregulin
ERK1/2	Extracellular signal-regulated kinase 1/2
PDGF	Platelet-derived growth factor

ETS1	ETS Proto-Oncogene 1, Transcription Factor
FAP	Fibroblast Activation Protein
FBS	Fetal Bovine Serum
FDR	False Discovery Rate
FGF2	Fibroblast Growth Factor 2
FGFBP2	Fibroblast Growth Factor Binding Protein 2
FGFRs	Fibroblast Growth Factor Receptors
FOLFIRINOX	fluorouracil, leucovorin, irinotecan, and oxaliplatin
FOXP3	Forkhead box P3
FPKM	Fragments Per Kilobase of transcript per Million mapped reads
Gal-1	Galectin-1
GEPIA	Gene Expression Profiling Interactive Analysis
GNLY	Granulysin
GO	Gene Ontology
GTEx	Genotype-Tissue Expression
GZMA	Granzyme A
GZMH	Granzyme H
GZMK	Granzyme K
HER	Human epidermal growth factor receptor
iCAFs	Inflammatory CAFs
IGF1R	Insulin-like growth factor 1 receptor
IGF2	Insulin-like growth factor2
IL-1	Interleukin-1
IL-1 α	Interleukin 1 Alpha
IL-6	Interleukin 6
IL-1 β	Interleukin 1 Beta
IPF	Idiopathic pulmonary fibrosis
JUK	c-Jun N-terminal kinase
KEGG	Kyoto Encyclopedia of Genes and Genomes

KRAS	KRAS Proto-Oncogene, GTPase
KRT19	Keratin 19
LAM	Lymphangioleiomyomatosis
Lin-28b	Lin-28 homolog b
MAPK	Mitogen-activated protein kinase
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
MVs	Macrovesicles
myCAFs	myofibroblastic CAFs
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NCAM1	Neural Cell Adhesion Molecule 1
p38 MAPK	p38 mitogen-activated protein kinase
PAAD	Pancreatic Adenocarcinoma
PanIN	Pancreatic intraepithelial neoplasia
PBS	Phosphate-Buffered Saline
Pcsk9	Proprotein convertase subtilisin/kexin type 9
PDAC	Pancreatic ductal adenocarcinoma
CAFs	Cancer-associated fibroblasts
PDGFA	Platelet-derived growth factor alpha
PDGFB	Platelet-derived growth factor beta
PDGFR α	platelet-derived growth factor receptor alpha
PDGFR β	Platelet-derived growth factor receptor beta
PFA	Paraformaldehyde
POSTN	Periostin
PSC	Pancreatic stellate cell
qPCR	Quantitative Polymerase Chain Reaction
RGS5	Regulator of G-protein signaling 5
rhEGF	Recombinant human epidermal growth factor
rhFGF2	Recombinant human fibroblast growth factor 2

SDS	Sodium Dodecyl Sulfate
SMAD4	SMAD Family Member 4
SOX9	SRY-box transcription factor 9
TBS	Tris-Buffered Saline
TCGA	The Cancer Genome Atlas
TEMED	Tetramethylethylenediamine
TGF- β	Transforming Growth Factor Beta
TME	The tumor microenvironment
TNF- α	Tumor Necrosis Factor
TP53	Tumor Protein P53
TRIS	Trishydroxymethylaminomethane
UMAP	Uniform Manifold Approximation and Projection
Wnt5a	Wnt family member 5a
YAP	Yes-associated protein
ZEB	Zinc Finger E-Box Binding Homeobox 1


1. Introduction

1.1 Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor, which is the fourth leading cause of cancer-related death in the USA¹. It remains one of the most aggressive solid tumors, which is predicted to become the second leading cause of cancer-related death in the Western world by 2030². Despite advances, current treatment options - including surgery, chemotherapy regimens such as fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX), radiotherapy for local control, and novel approaches such as targeted therapy and immunotherapy - have shown limited success^{3, 4}. The stroma in PDAC, which consists of a dense extracellular matrix, plays a key role in shielding tumor cells from therapeutic intervention^{5, 6}. In addition, the pancreatic tumor microenvironment contains several immune cells, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and macrophages, all of which contribute to immune evasion and therapy resistance⁷. The presence of these cells and the cross-talk between tumor cells and stromal components create a barrier to effective treatment⁸. Thus, this dismal outcome is largely attributed to the highly complex tumor microenvironment, which plays a pivotal role in tumor progression and mediating resistance to therapy⁹. PDAC develops from the pancreatic ductal epithelium and is often preceded by precursor lesions such as pancreatic intraepithelial neoplasia (PanIN)¹⁰. Molecularly, PDAC is driven by frequent mutation in genes such as KRAS, TP53, CDKN2A, and SMAD4, which contribute to its unique biological behavior¹¹. Fibroblasts have been identified as playing a role in the pancreatic cancer tumor microenvironment, through complex interactions between immune cells and cancer cells. These interactions foster an immunosuppressive environment, promote angiogenesis, and facilitate invasion and metastasis.

1.2 The Tumor Microenvironment

The tumor microenvironment (TME) is a complex and dynamic system made up of various cell types, signaling molecules, and interactions that influence tumor growth, progression, and metastasis. It includes fibroblasts, immune cells, endothelial cells, pericytes, and other stromal cells, as well as the extracellular matrix (ECM) and secreted factors like growth factors and cytokines, which play key roles in regulating communication between tumor and surrounding cells (Figure 1). Pancreatic cancer is characterized by massive proliferation of fibrous tissue that produces excessive amounts of ECM¹². The ECM remodeling, particularly through collagen cross-linking, promotes tumor invasion, and growth factor signaling by enhancing focal adhesions and activating PI3K activity¹³. Among the various cellular components of the tumor microenvironment, cancer-associated fibroblasts (CAFs) are key contributors to the initiation and progression of pancreatic cancer¹⁴. ECM is produced primarily by fibroblasts in the tumor microenvironment, particularly by activated myofibroblasts expressing α SMA, which remodel the ECM and support tumor growth¹⁵⁻¹⁷. A deeper understanding of the mechanisms by which CAFs influence tumor biology is essential for the identification of novel therapeutic targets.

Figure 1. Composition of the tumor microenvironment. The tumor microenvironment is composed of cancer cells, various immune cells, cancer-associated fibroblasts, the extracellular matrix, and blood vessels, all interacting within this complex environment. Image created by Figdraw(<https://www.figdraw.com>).

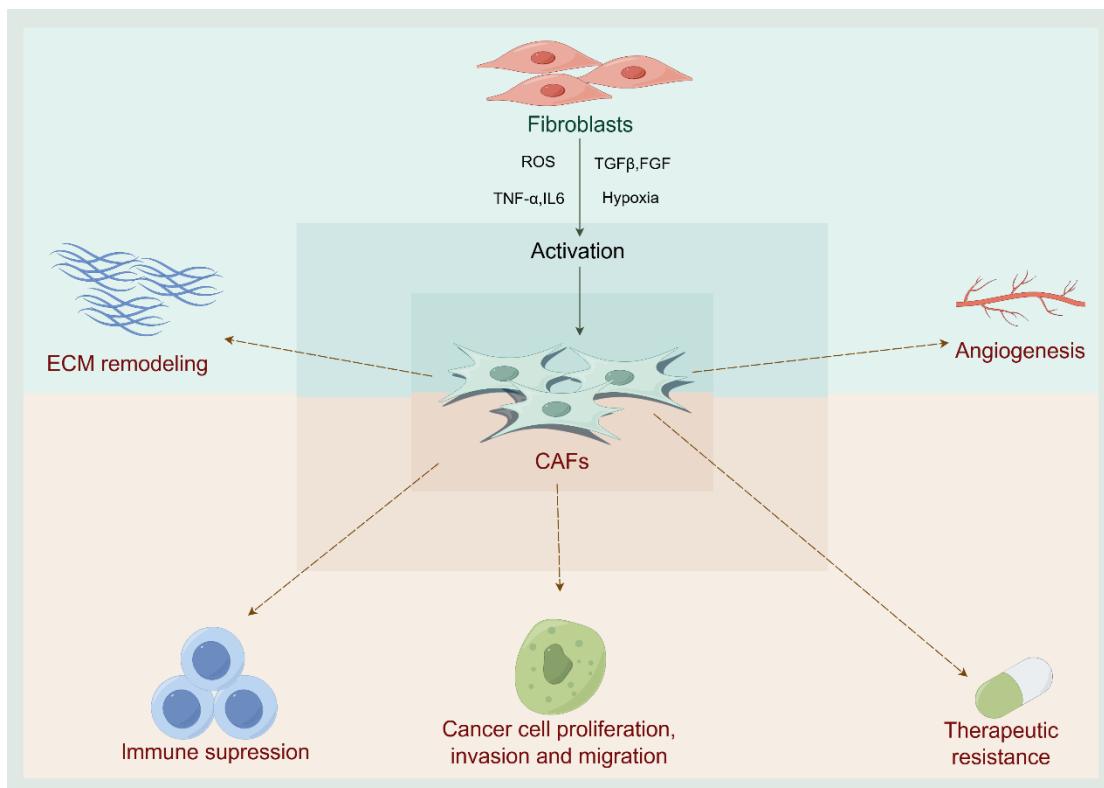
1.3 Fibroblasts

Fibroblasts are spindle-shaped non-epithelial, non-immune cells of most likely mesenchymal origin¹⁸. Fibroblast infiltration and activation in the proximity of early precursor lesions is a long-known phenomenon. In pancreatic cancer, two distinct subtypes of cancer-associated fibroblasts (CAFs) are identified: inflammatory CAFs (iCAFs), which produce cytokines and chemokines, and myofibroblastic CAFs (myCAFs), which exhibit high levels of α -SMA and are predominantly located near neoplastic cells¹⁶. In addition, Elyada and colleagues identified a novel subtype of CAFs, termed antigen-presenting CAFs (apCAFs), characterized by MHC class II expression and the ability to interact with CD4+ T cells, potentially influencing immune

regulation¹⁹. The molecular networks that contribute to fibroblast activation have been defined in many studies^{20, 21}. Recent research efforts have focused on understanding the molecular and cellular mechanisms underlying fibroblast activation in PDAC carcinogenesis and development^{22, 23}. We hypothesize that several cytokines and chemokines induce fibroblast activation in pancreatic cancer.

1.4 Biomarkers of Cancer-associated fibroblasts

1.4.1 α SMA


α -SMA (Alpha-Smooth Muscle Actin) is a cytoskeletal protein and a specific marker of myofibroblasts and is most widely utilized marker for CAFs²⁴. An elevated expression of alpha-SMA is sufficient to promote enhanced contractile activity in fibroblasts²⁵. CAFs with high α SMA expression, often referred to as myCAF_s, play a critical role in wound contraction and extracellular matrix (ECM) deposition, thereby facilitating cancer cell migration²⁶. Additionally, α SMA-expressing cells contribute to an immunosuppressive tumor microenvironment (TME) through various mechanisms. NCAM1+ α SMA+ CAF_s, which express TGF- β , contribute to T cell inactivation and an immunosuppressive tumor microenvironment²⁷.

1.4.2 FAP

FAP (Fibroblast Activation Protein) is a type II integral serine protease²⁸ and is a protein found in activated fibroblasts, involved in tissue repair, fibrosis, and supporting tumor growth by remodeling the extracellular matrix^{29, 30}. FAP expression is upregulated in activated fibroblasts and is also detected in mesenchymal stem cells derived from bone marrow³¹. In pancreatic cancer, FAP-expressing CAF_s have a role in immunity through upregulation of pro-inflammatory genes and contribution to tumor immune evasion³².

1.5 Activation of Fibroblasts and its functions

Activated fibroblasts show rapid proliferation, increased migration and promote tumor formation and development (Figure 2). Activated CAFs express a variety of markers, including alpha-smooth muscle actin (α -SMA). Numerous factors, including signals from tumor cells, the surrounding microenvironment, and inflammatory mediators, have been shown to contribute to CAF activation³³⁻³⁵. Once activated, fibroblasts transition into a more dynamic state, characterized by the secretion of a diverse array of cytokines. These cytokines, transforming growth factor beta (TGF- β), tumor necrosis factor (TNF- α), interleukin 6 (IL-6), including interleukin 1 beta (IL-1 β) and interleukin 1 alpha (IL-1 α), play pivotal roles in modulating inflammation, promoting tissue remodeling, and contributing to pathological processes such as fibrosis and tumor progression³⁶⁻³⁸. Activated cancer-associated fibroblasts (CAFs) also secrete angiogenic molecules and extracellular matrix (ECM) components, which play crucial roles in promoting tumor metastasis^{39, 40}. In pancreatic cancer, studies have shown that EGFR-activated myofibroblasts facilitate metastasis by promoting tumor progression, invasion and remodeling of the pro-metastatic tumor microenvironment⁴¹.

Figure 2. Fibroblast activation and its functions. Fibroblasts are activated by factors such as ROS, TGF β and hypoxia, leading to their transformation into cancer-associated fibroblasts (CAFs). CAFs play a key role in the tumor microenvironment by promoting ECM remodeling, angiogenesis, immune suppression, cancer cell growth and therapy resistance. Image created by Figdraw(<https://www.figdraw.com>).

1.6 FGFBP2

FGFBP2 is a member of the fibroblast growth factor binding protein family. Growth factor signaling is known to play an important role in tumorigenesis and development. Among the growth factors and receptors involved in the malignant process, fibroblast growth factors (FGF), a family of more than 20 proteins, have been described to enhance tumor growth, angiogenesis, and progression^{42, 43}. FGFBP2 protein is constitutively secreted by Th1-type CD4-positive lymphocytes and lymphocytes with cytotoxic potential, and may be involved in an essential process of cytotoxic lymphocyte-mediated immunity⁴⁴. Yamanaka et al. found that high

FGFBP2 expression in high-grade gliomas was positively correlated with survival⁴⁵. In ovarian cancer, FGFBP2 showed higher levels in clear cell carcinoma stage I compared with the more advanced staged carcinoma, and correlated positively with an improved clinical outcome⁴⁶. FGFBP2 stabilizes and enhances the bioavailability of FGF2, facilitating its interaction with FGF receptors (FGFRs)^{47, 48}. Activation of FGFRs triggers downstream signaling cascades, including the ERK and AKT pathways, which regulate cell proliferation, and migration⁴⁹. Previous next-generation sequencing (NGS) studies performed on PCSSs originating from pancreatic cancer patients revealed that FGFBP2 bears a point guanine (G) to cytidine (C) mutation. This mutation was found particularly in pancreatic stellate cells (PSCs) and not in the peripheral blood DNA of pancreatic cancer patients⁵⁰.

1.7 FGF2 and pathway

1.7.1 FGF2

FGF2, also known as basic FGF (bFGF), is an important regulator of cell growth and differentiation under physiological and pathological conditions. FGF2 is an extracellular mitogen secreted by a variety of cell types⁵¹. In tumors, cancer cells release FGF2 to drive tumorigenesis and protect themselves from apoptosis through autocrine signalling^{52, 53}. To initiate signaling, FGF2 binds to the fibroblast growth factor receptor (FGFR) in a ternary complex, triggering a cascade of downstream signaling events through the Ras-Raf-MAPK-ERK pathway⁵².

1.7.2 ERK1/2

Extracellular signal-related kinase (ERK1/2) is a serine/threonine kinase and a key protein in the MAPK pathway, which is involved in the transmission of signals that regulate various cellular processes such as growth and differentiation. ERK1/2 are activated by phosphorylation

at specific residues (Thr202 and Tyr204 in ERK1; Thr185 and Tyr187 in ERK2) by the upstream kinase MEK1/2 in response to signals such as growth factors and cytokines⁵⁴. Their phosphorylated forms, p-ERK1/2, represent the active state that drives cell proliferation and survival⁵⁵. Overactivation of ERK1/2, often caused by mutation in upstream regulators such as RAS or RAF, is commonly observed in cancer. This dysregulation drives uncontrolled cell growth and survival, making the ERK1/2 signaling pathway a critical therapeutic target in cancer treatment⁵⁶.

1.7.3 AKT

AKT, also known as protein kinase B (PKB), is a serine/threonine kinase that plays a central role in cell signaling pathways. It is activated downstream of phosphatidylinositol 3-kinase (PI3K) and regulates processes such as cell growth, survival, metabolism and proliferation⁵⁷. Phosphorylation of S473 in the hydrophobic motif is essential for maximal AKT activation as it stabilizes the active state of AKT, whereas its absence significantly reduces AKT activity⁵⁸. AKT plays a critical role in cancer through amplification, overexpression or mutation, driving tumorigenesis, enhancing cancer cell survival, promoting uncontrolled proliferation, facilitating metastasis and contributing to therapy resistance⁵⁹.

1.8 EHF

EHF (ETS Homologous Factor) is a member of the transformation-specific (ETS) transcription factor family, a group of proteins defined by a highly conserved DNA-binding domain (the ETS domain) which controls critical cellular processes such as proliferation and differentiation. EHF is associated with epithelial cell characteristics, as it is primarily expressed in epithelial tissues and involved in regulating genes important for maintaining epithelial integrity⁶⁰. EHF plays a dual role in cancer, exhibiting both tumor-suppressive and tumor-promoting functions in varying conditions⁶¹. EHF inhibits cancer progression by downregulating ETS Proto-Oncogene

1, Transcription Factor (ETS1)-driven Zinc Finger E-Box Binding Homeobox 1(ZEB) expression, effectively preventing epithelial-mesenchymal transition (EMT) and limiting metastatic potential⁶². Increased EHF expression, driven by gene amplification, promoted HER family signaling, accelerated tumor growth and enhanced proliferative and metastatic processes, which correlated with poorer survival in gastric cancer and highlighted EHF as a potential therapeutic target⁶³.

2. Aim

Somatic CAF mutations identified by our group may have functional consequences and affect PDAC. One of them is replacement of guanine (G) to cytidine (C) in Fibroblast Growth Factor Binding Protein 2 (FGFBP2) causing an amino acid change from threonine to serine (FGFBP2 p.T186S).

The central question of my thesis is to investigate how this somatic mutation in FGFBP2 affects fibroblast functions in the pancreatic cancer microenvironment and how these interactions contribute to tumor progression.

This project will investigate the following aspects:

- a. The function of FGFBP2 mutant fibroblasts and particular molecular alterations.
- b. The effect of FGFBP2 mutant fibroblasts on the function and signaling pathway of pancreatic cancer cells.
- c. The molecular changes and mechanisms of pancreatic cancer cells treated with conditioned medium from FGFBP2 mutant fibroblasts investigated with RNA-Seq.

3. Materials and Methods

3.1 Materials

Table 1. Chemicals and Reagents

Chemicals and Reagents	Company, Location, Country
Tryptone	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Yeast extract	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
NaCl	Sigma-Aldrich GmbH, Steinheim, Germany
NaOH	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
DEPC-H ₂ O	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Ethanol ≥99,8%	Thermo Fisher Scientific GmbH, Dreieich, Germany
QIAzol® Lysis Reagent	QIAGEN GmbH, Hilden, Germany
HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX), 5x	Solis BioDyne OÜ, Tartu, Estonia
PCR-grade water	Jena Bioscience GmbH, Jena, Germany
Urea	Amersham Bioscience AB, Uppsala, Sweden
Thiourea	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
CHAPS	EMD Biosciences, Inc., La Jolla, USA
DTT	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Complete™, Mini, EDTA-free Protease-Inhibitor-Cocktail	Roche Diagnostics GmbH, Mannheim, Germany
Rotiphorese®NF-Acrylamid/Bis-	Carl Roth GmbH + Co. KG, Karlsruhe, Germany

Lösung 30% (29:1)	
TRIS	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
SDS	Amersham Bioscience AB, Uppsala, Sweden
APS	Merck KGaA, Darmstadt, Germany
TEMED	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
Glycine	SERVA Electrophoresis GmbH, Heidelberg, Germany
Methanol ≥99,8%	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
PBS buffer	AppliChem GmbH, Darmstadt, Germany
TBS buffer	AppliChem GmbH, Darmstadt, Germany
Tween 20	Amersham Bioscience AB, Uppsala, Sweden
Amersham™ ECL™ Rainbow™ Marker	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
MTT	Sigma-Aldrich, Munich, Germany
DMSO	Merck KGaA, Darmstadt, Germany
Paraformaldehyde (PFA)	Merck KGaA, Darmstadt, Germany
Hematoxylin	Merck KGaA, Darmstadt, Germany
HBSS (Hank's Balanced Salt Solution)	Thermo Fisher Scientific GmbH, Dreieich, Germany
FBS Superior, S0615	Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Penicillin-Streptomycin	Thermo Fisher Scientific GmbH, Dreieich, Germany
0,05% Trypsin-EDTA	Thermo Fisher Scientific GmbH, Dreieich, Germany
DMEM high glucose, D5796	Sigma-Aldrich Chemie GmbH, Steinheim, Germany

Geneticin disulphate (G418) solution	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Lipofectamine™ 3000 Transfection Reagent	Thermo Fisher Scientific GmbH, Dreieich, Germany
Opti-MEM® I (1X) Reduced Serum Medium	Thermo Fisher Scientific GmbH, Dreieich, Germany
pCMV6-AC-GFP Mammalian Expression Vector, PS100010	OriGene Technologies, Inc., Rockville, USA
FGFBP2 (NM_031950) Human Tagged ORF Clone, RG206392	OriGene Technologies, Inc., Rockville, USA
Mutate the FGFBP2 (NM_031950) Human Tagged ORF Clone, CW307647	OriGene Technologies, Inc., Rockville, USA
dam - /dcm - Competent E. coli, C2925H	New England Biolabs, Inc., Ipswich, USA
Corning® Matrigel® Growth Factor Reduced (GFR), # 354230	Merck KGaA, Darmstadt, Germany

Table 2. Instruments

Instruments	Company, Location, Country
Absorptions-Mikroplatten-Reader Sunrise	Tecan Group AG, Männedorf, Switzerland
Biometra® T3 Thermocycler	Analytik Jena AG, Jena, Germany
QuantStudio3 Real-Time-PCR-System	Thermo Fisher Scientific GmbH, Dreieich, Germany
NanoDrop™ One	Thermo Fisher Scientific GmbH, Dreieich, Germany
Mini-PROTEAN Tetra Vertical Electrophoresis for Handcast Gels (1.0 mm)	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
PowerPac 200 Power Supply	Bio-Rad Laboratories GmbH, Feldkirchen,

	Germany
PowerPac 300 Power Supply	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
Trans-Blot® transfer cell Tank-Blot-System	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
ChemiDoc™Touch Imaging System	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
Heracell 150i CO2 cell incubator	Thermo Fisher Scientific GmbH, Dreieich, Germany
Inverted fluorescence phase contrast microscope, BZ-X810	Keyence GmbH, Neu-Isenburg, Germany
Mikroskop Axiovert 25	Carl Zeiss Microscopy GmbH, Jena, Germany

Table 3. Consumables

Consumables	Company, Location, Country
Pipette tips Sapphire filter tips	Greiner Bio-One GmbH, Frickenhausen, Germany
Cell culture flask $25cm^2$, $75cm^2$	Greiner Bio-One GmbH, Frickenhausen, Germany
6-well plate	Greiner Bio-One GmbH, Frickenhausen, Germany
12-well plate	Greiner Bio-One GmbH, Frickenhausen, Germany
24-well plate	Greiner Bio-One GmbH, Frickenhausen, Germany
96-well plate	Greiner Bio-One GmbH, Frickenhausen, Germany
96-well PCR plate	NIPPON Genetics EUROPE GmbH, Düren, Germany

ThinCert® cell culture set 24-well, 8 μm pores	Greiner Bio-One GmbH, Frickenhausen, Germany
Amersham Hybond PVDF Blotting Membrane	GE Healthcare GmbH, Solingen, Germany
Eppendorf Safe-Lock Tubes	Eppendorf AG, Hamburg, Germany
CELLSTAR® tubes	Greiner Bio-One GmbH, Frickenhausen, Germany
Ampliseal™, transparent microplate cover film	Greiner Bio-One GmbH, Frickenhausen, Germany
CRYO.S™ cryotubes	Greiner Bio-One GmbH, Frickenhausen, Germany

Table 4. Kits

Kits	Company, Location, Country
ZymoPURE - Express™ Plasmid Midiprep Kit, D4213	ZYMO RESEARCH EUROPE GMBH, Freiburg, Germany
Direct-zol RNA Miniprep Kit, R2050	ZYMO RESEARCH EUROPE GMBH, Freiburg, Germany
High-Capacity cDNA Reverse Transcription Kit, 4368814	Thermo Fisher Scientific GmbH, Dreieich, Germany
Bio-Rad Protein Assay Kit II	Bio-Rad Laboratories GmbH, Feldkirchen, Germany
WesternBright™ ECL Western blotting detection Kit	Biozym Scientific GmbH, Hess. Oldendorf, Germany

Table 5. Human Primers

gene	Forward primer (5' \rightarrow 3')	Reverse primer (5' \rightarrow 3')	Company, Location, Country

FGFBP2	CTG CTG ACC CCA AAC CTT ACT	CCT TGA GGC TGG AAG TCA CC	Metabion international AG, Planegg, Germany
α -SMA	CTA TGC CTC TGG ACG CAC AAC T	CAG ATC CAG ACG CAT GAT GGC A	Metabion international AG, Planegg, Germany
TGF- β	TAC CTG AAC CCG TGT TGC TCT C	GTT GCT GAG GTA TCG CCA GGAA	Metabion international AG, Planegg, Germany
IL-1 β	CCA CAG ACC TTC CAG GAG AA	GTG CAG TTC AGT GAT CGT ACA GG	Metabion international AG, Planegg, Germany
IL-6	AGA CAG CCA CTC ACC TCT TCA G	TTC TGC CAG TGC CTC TTT GCT G	Metabion international AG, Planegg, Germany
TNF- α	CTC TTC TGC CTG CTG CAC TTT G	ATG GGC TAC AGG CTT GTC ACT C	Metabion international AG, Planegg, Germany
FGF2	AGC GGC TGT ACT GCA AAA ACG G	CCT TTG ATA GAC ACA ACT CCT CTC	Metabion international AG, Planegg, Germany
EHF	ATC AGA GGC AGT GGC TCA GCT A	ACC AGT CTT CGT CCA TCC ACA C	Metabion international AG, Planegg, Germany
β -Actin	AGG CAC CAG GGC GTG AT	GCC CACA TA GGA ATC CTT CTG AC	Metabion international AG, Planegg, Germany

Table 6. Antibodies

Antibodies	Host	Dilution	Catalog number	Company, Location, Country
FGFBP2	Rabbit	1:1000	PA5-113480	Thermo Fisher Scientific Inc., Waltham, USA
ERK1/2	Rabbit	1:2000	4695	Cell Signaling Technology, Inc., Danvers, USA
P -ERK1/2	Rabbit	1:2000	4370	Cell Signaling Technology, Inc., Danvers, USA
AKT	Rabbit	1:1000	4685	Cell Signaling Technology, Inc., Danvers, USA

P-Akt	Rabbit	1:1000	4060	Cell Signaling Technology
β-Actin	Mouse	1:10000	A5441	Merck KGaA, Darmstadt, Germany
α-Tubulin	Mouse	1: 5000	T5168	Merck KGaA, Darmstadt, Germany
Goat-anti-mouse IgG-HRP	Mouse	1:20000	sc-2004	Santa Cruz Biotechnology, Heidelberg, Germany
Goat-anti-rabbit IgG-HRP	Rabbit	1:20000	sc-2005	Santa Cruz Biotechnology, Heidelberg, Germany

Table 7. Human recombinant proteins

Recombinant proteins	Catalog number	Company, Location, Country
FGF2	100-18B	Thermo Fisher Scientific Inc., Waltham, USA
EGF	AF-100-15	Thermo Fisher Scientific Inc., Waltham, USA

3.2 Methods

3.2.1 Cell Culture

In this study, the SV80 fibroblast cell line and the PANC-1 pancreatic cancer cell line were used. The SV80 cells, which were immortalized by the SV40 virus, were derived from healthy adult female skin fibroblasts. SV80 cells were purchased from CLS Cell Lines Service GmbH (Eppelheim, Germany) and PANC-1 cells were purchased from American Type Culture Collection (Manassas, USA). Both SV80 and PANC-1 cells were cultured in an incubator at 37°C with 5% CO₂ and maintained in high-glucose Dulbecco's Modified Eagle's Medium (DMEM) (Sigma-Aldrich, Germany) supplemented with 10% fetal bovine serum (FBS), 100

U/mL penicillin, and 100 mg/mL streptomycin.

Ethics vote: all experiments in this study will not involve any patient material and any written consents. Animal testing approval: no animals will be used in this study.

3.2.2 Cell transfection

3.2.2.1 SV80 cell death curve

All plasmids used in this study contained a neomycin resistance gene. Selection of transfected cells was performed with the proper concentration of neomycin according to a cell death curve. SV80 cells were incubated in growth medium with different concentrations of neomycin (as detailed in Table 8) for 10 days. By day 10, almost all SV80 cells had died when exposed to 0.6 mg/ml neomycin. It was determined that 0.6 mg/ml was the lowest concentration that caused complete cell death, making it the optimal selection concentration. To prepare the selection medium for transfected SV80 cells, 0.6 mg/ml neomycin was added to the standard SV80 growth medium.

Table 8. Neomycin concentration gradient

0mg/ml	0.2mg/ml	0.4mg/ml	0.5 mg/ml	0.6 mg/ml	0.7 mg/ml
0mg/ml	0.2mg/ml	0.4mg/ml	0.5 mg/ml	0.6 mg/ml	0.7 mg/ml
0.8mg/ml	1.0mg/ml	1.5 mg/ml	2.0mg/ml	4.0 mg/ml	
0.8 mg/ml	1.0mg/ml	1.5 mg/ml	2.0mg/ml	4.0 mg/ml	

3.2.2.2 Plasmid transformation and extraction

Plasmid DNA was prepared by transformation using dam-/dcm- competent E. coli cells and plasmid extraction using the ZymoPURE - ExpressTM Plasmid Midiprep Kit. A tube of dam-/dcm- competent E. coli cells was removed from storage and placed on ice to thaw. Once thawed, 1 μ l of plasmid DNA (containing 100 ng) was added to the cells and mixed well before returning

the tube to ice for 30 minutes. The mixture was then subjected to a heat shock at exactly 42°C for 30 seconds and returned to ice for a further 5 minutes.

To amplify the target bacterial population and express the plasmid-encoded resistance gene, the plasmid-cell mixture was transferred into LB medium (as detailed in Table 9) and ampicillin was added. The culture was incubated on a shaker at 37°C and 200 rpm for 16-18 hours. Plasmid extraction was performed according to the manufacturer's protocol using the ZymoPURE - Express™ Plasmid Midiprep Kit and plasmid DNA was stored at -80°C.

NanoDrop™ One was used for concentration determination. For pure plasmid DNA samples, the A260/A280 ratio was approximately 1.8-2.0 and the A260/A230 ratio was not less than 2.0; only samples meeting these quality criteria were used for further analysis.

Table 9. LB Medium

Substance	Required amount
Tryptone	10 g
Yeast extract	24 g
NaCl	5 g
NaOH	1 mL

3.2.2.3 Cell transfection procedure

To construct wild-type and mutant FGFBP2 gene expression in SV80 cells, Lipofectamine® 3000 reagent was used to transfet plasmid DNA into the cells via a liposome-mediated method. The empty vector was used as a control group. This technique relies on the formation of complexes between liposomes and DNA, allowing the DNA to efficiently cross the cell membrane and express the target gene.

The day before transfection, SV80 cells were seeded in a 24-well plate at a density of 6×10^5 cells per well. Prior to transfection, the medium was replaced with serum-free medium. Lipofectamine® 3000 and plasmid DNA (with pT3000 reagent) were each diluted in Opti-MEM®, then combined and incubated for 15 minutes at room temperature to allow DNA-lipid

complex formation. The mixture was then added to each well. After 8 hours, the medium was replaced with fresh growth medium and the cells were monitored daily by fluorescence microscopy. After 72 hours, the cells were passaged at a ratio of 1:10 and selection medium was added to maintain selective pressure. Finally, monoclonal colonies were isolated and expanded, and FGFBP2 expression was confirmed by qPCR and Western blot analysis.

3.2.3 RNA isolation, cDNA synthesis and qPCR

For RNA extraction and purification, cells were lysed with TRIZOL reagent and the resulting solution was diluted 1:1 with 96% ethanol and mixed thoroughly by vortexing. RNA was extracted using the Direkt-zol™ RNA Miniprep Kit according to the manufacturer's protocol. The purified RNA was then stored at -80°C. Its concentration was measured using NanoDrop™. One and only samples with an A260/A280 ratio between 1.8 and 2.0 and an A260/A230 ratio of at least 2.0 were selected for further analysis.

For cDNA synthesis, the High-Capacity cDNA Reverse Transcription Kit was used. The reaction mixture was prepared as described in Table 10. 1 µg RNA was added to a tube and the volume was adjusted to 10 µL with DEPC-treated water. After adding another 10 µL of the prepared cDNA synthesis mixture, the tube was placed in a thermocycler according to the conditions given in Table 11. cDNA was then stored at -20°C.

Table 10. Complete cDNA synthesis Mixture

Substance	Required amount
1 µg RNA	10 µl
10X RT Buffer	2 µl
25X dNTP Mix 100mM	0.8 µl
10X RT Random Primer	2 µl
MultiScribe™ Reverse Transcriptase	1 µl
DEPC-H ₂ O	4.2 µl

Table 11. cDNA Synthesis thermocycler Profile

Temperature	Time
25°C	10 mins
37°C	120 mins
85°C	5 mins
4°C	final hold

Gene expression analyses were performed with qPCR by employment of HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX) and the QuantStudio 3 Real-Time PCR system. A mixture was prepared by combining 4 µl of qPCR ROX, 0.5 µl each of forward and reverse primers, and 13 µl of PCR-grade water. A total of 18 µl of this mixture was dispensed into each well of a 96-well plate, followed by the addition of 2 µl of cDNA. The housekeeping gene β-actin was used as an internal control and reference. Each sample was tested in duplicate, with PCR-grade water serving as a negative control. The plate was centrifuged at 2,000 x g for 10 minutes and placed into the QuantStudio 3 system. The initial activation step was carried out at 95°C for 15 minutes, followed by 41 amplification cycles consisting of 95°C for 15 seconds, 60°C for 20 seconds, and 72°C for 20 seconds.

3.2.4 Protein extraction and Western blot

3.2.4.1 Protein extraction

After aspirating the culture medium, cells were immediately placed on ice and washed with cold PBS. Protein Lysis Buffer (see Table 12) was added, and the protein was rapidly transferred to the pre-cooled tube. The sample was placed on ice and lysed for 15 minutes. The mixture was centrifuged for 15 minutes at 4°C and transferred to a new pre-cooled tube. Protein was stored at -20°C. All procedures were performed on ice. To measure protein concentration for subsequent studies, the Bio-Rad Protein Assay Kit II was used according to the manufacturer's

protocol. The measurement was carried out at a wavelength of 595 nm. BSA was used as the standard protein for calibration, and the protein concentration in the samples was calculated based on this standard.

Table 12. Protein Lysis Buffer

Substance	Required amount
Urea	4.2 g
Thiourea	1.524 g
CHAPS	0.4 g
DTT	0.0616 g
Proteinase inhibitor	1 tablet
Double-distilled water	fill to 10 mL

3.2.4.2 Western blot

Western blot integrates electrophoretic separation, membrane transfer and antibody detection to allow both qualitative and semi-quantitative analysis of protein expression. The separating and stacking gels were prepared according to the formulations given in Tables 13 and 14. Protein samples were thawed, mixed, briefly centrifuged and heated to 95°C before loading onto the gel using running buffer (Table 15). Electrophoresis was performed at 10 mA per gel, increasing to 20 mA as bands aligned. Proteins were transferred to a PVDF membrane for 120 minutes at 6°C using the Trans-Blot® transfer cell tank blot system filled with transfer buffer (Table 16). The membrane was then blocked with 5% milk in TBS/T (Table 17) for one hour and incubated with the primary antibody overnight at 4°C. After washing with TBS/T, a compatible secondary antibody was applied for one hour at room temperature and the protein bands were visualized by enhanced chemiluminescence. The membrane was stored in TBS at 4°C to maintain moisture.

Table 13. Separating Gel (12%)

Component	Volume (mL)
Double-distilled water	3.3
30% Acrylamide mix	4.0
1.5M Tris (pH 8.8)	2.5
10% SDS	0.1
10% APS	0.1
TEMED	0.004

Table 14. Stacking Gel (4%)

Component	Volume (mL)
Double-distilled water	1.4
30% Acrylamide mix	0.33
1.5M Tris (pH 6.8)	0.25
10% SDS	0.02
10% APS	0.02
TEMED	0.002

Table 15. Running buffer

Substance	Required amount
TRIS	144 g
Glycine	30 g
SDS	6 g
Double-distilled water	Fill to 1 liter

Table 16. Transferring buffer

Substance	Required amount
Glycine	42 g
TRIS	9 g
Methanol	600 mL
Double-distilled water	Fill to 3 liters

Table 17. TBS/T buffer

Substance	Required amount
TBS (10X)	100 mL
Tween 20	1 mL
Double-distilled water	Fill to 1 liter

3.2.5 MTT -TEST

This study evaluated the effects of FGFBP2 mutation in SV80 cells and the effects of conditioned medium on proliferation of PANC-1 cells using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. In the experiment, a control group, three FGFBP2 wild-type groups and three FGFBP2 mutant groups were analyzed.

Cells were seeded in a 96-well plate at a density of 3×10^3 cells/ml and incubated at 37°C with 5% CO₂ for 24 hours. After incubation, the medium was replaced with either fresh growth medium or conditioned medium. At 24, 48 and 72 hours, 20 μ l of MTT solution (prepared by dissolving 25 mg MTT in 5 ml HBSS) was added to each well. The plate was then returned to the incubator for a further 4 hours, after which 100 μ l of DMSO was added to each well to dissolve the formazan crystals. Absorbance was measured at 570 nm using a Sunrise Absorbance Microplate Reader.

3.2.6 Transwell assay

To investigate the migration and invasion of FGFBP2 mutant SV80 cells, a transwell assay was performed. In the experiment, a control group, three FGFBP2 wild type groups and three FGFBP2 mutant groups were analyzed. For the invasive experiment, an appropriate amount of Matrigel was applied to the upper chamber in advance. Cells (1×10^4 in 200 μ L serum-free medium) were seeded onto each transwell insert, which was then placed in a 24-well plate containing 500 μ L of medium with 10% FBS and incubated at 37°C with 5% CO₂ for 24 hours. After incubation, the cells were fixed with 4% paraformaldehyde and stained with hematoxylin to visualize migrated and invaded cells. The upper surface of the insert was gently cleaned and the inserts were then examined under a microscope to assess the number of migrated cells. Images were captured from five random areas using inverted fluorescence phase contrast microscopy, and the number of cells per field was counted and analyzed using ImageJ (v.1.5.3).

3.2.7 Conditioned medium

This experiment was designed to investigate the effects of conditioned medium derived from transfected cells on PANC-1 cells. To prepare the conditioned medium, 3×10^5 cells were passaged into a culture medium containing 10% FBS and maintained under standard conditions. After 24 hours, the cells were washed with PBS and provided with serum-free medium (0% FBS). The cells were then cultured for a further 48 hours, after which the culture medium was collected. This medium was then centrifuged to remove any cell debris and stored at -80°C until further use.

3.2.8 FGF2 and EGF treatment

To investigate the effects of conditioned medium (CM) and CM combined with FGF2 or EGF on ERK1/2 and AKT phosphorylation, PANC-1 cells were seeded in a medium containing 10% FBS and incubated for 24 hours. The medium was then replaced with serum-free medium, and

the cells were cultured for an additional 12 hours. Recombinant FGF2 or EGF was added directly to the culture to achieve a final concentration of 10 ng/ml, and the cells were treated for 0, 5, and 20 minutes.

3.2.9 RNA-Seq

The sequencing of RNA samples from the PANC-1 cells treated with conditioned medium from transfected SV80 cells was carried out by Novogene. In the experiment, PANC-1 cells treated with conditioned medium were analyzed, including a control group, three FGFBP2 wild type groups, and three FGFBP2 mutant groups, with untreated PANC-1 cells serving as the negative control. At least 200 ng per sample was sent in, which was subjected to quality control before further processing. The integrity and purity of the RNA were ensured using agarose gel electrophoresis, NanoDrop™ and the Agilent 2100 Bioanalyzer. This was followed by library preparation and further quality control before the actual paired-end sequencing of the 150 bp fragments was carried out using Illumina PE150 technology. At least 20 million reads were read out per sample. This also allowed the transcriptome of cells to be compared under different conditions. The abundance of transcript reflected the gene expression level directly.

In the RNA-seq experiment, gene expression levels were estimated by the abundance of transcripts (count of sequencing) that mapped to the genome or exon. Reads count was proportional to gene expression level, gene length and sequencing depth. FPKM (Fragments Per Kilobase of transcript sequence per Million base pairs sequenced) was the most common method of estimating gene expression levels, which took the effects of both sequencing depth and gene length on the counting of fragments into consideration. To avoid errors, the raw reads were filtered to obtain clean reads. The procedure for raw reads filtering was as follows: (1) Reads containing adapters were removed; (2) Reads containing $N > 10\%$ (N represents base that could not be determined) were removed; (3) Low-quality reads were removed, where the Qscore (Quality value) of over 50% of the bases was ≤ 5 . Mapping the clean reads to the reference genome or the transcriptome was the basis for the following analysis. HISAT2 was used to accomplish the mapping. To avoid losing a lot of effective junction reads, HISAT2

software was used for RNA-seq sequencing data analysis, and the junction reads were positioned precisely.

The input data for differential gene expression analysis consisted of read counts from gene expression level analysis. Differential gene expression analysis generally included three steps: 1) Read counts normalization; 2) Model-dependent p-value estimation; 3) FDR value estimation based on multiple hypothesis testing. Through the enrichment analysis of the differentially expressed genes, biological functions or pathways significantly associated with the differentially expressed genes were identified. Several popular gene functional enrichment analyses were provided to help researchers infer the biological processes of RNA-seq experiments. A common way for searching shared functions among genes was to incorporate the biological knowledge provided by biological ontologies. Gene Ontology (GO) annotates genes to biological processes, molecular functions, and cellular components in a directed acyclic graph structure, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotates genes at the pathway level.

3.2.10 Expression and Survival analysis

GEPIA (<http://gepia.cancer-pku.cn/index.html>) was used to analyze the expression of EHF in The Cancer Genome Atlas Program (TCGA) and The Genotype-Tissue Expression (GTEx) datasets⁶⁴. The prognostic significance of EHF in PDAC was assessed through Kaplan-Meier survival analysis. Kaplan-Meier curves, generated using the survival package, were utilized to compare overall survival between groups with high and low EHF expression. The samples were divided into high and low expression groups according to the median EHF expression level.

3.2.11 scRNA-seq data integration and cluster annotation analysis

The filtered count matrices were transformed into sparse matrices using the Seurat package (v5.1.0)⁶⁵. Single-cell data integration was carried out using Seurat's canonical correlation analysis (CCA) method. Cells were filtered based on the following criteria: fewer than 500

genes per cell, more than 25% mitochondrial genes, or fewer than 1000 transcripts per cell. Additionally, genes expressed in fewer than 3 cells were removed from downstream analysis. Raw expression data were normalized using the NormalizeData function and scaled using the ScaleData function. Principal component analysis (PCA) was performed using the RunPCA function with default parameters, and dimensionality reduction was performed using the RunUMAP function. Cell clustering was performed using the FindClusters function with a resolution of 0.7. The FindAllMarkers function was used to identify specific genes for each cell subset, and gene marker signatures were used to define cell identities.

3.2.12 KEGG analysis

Differentially expressed genes (DEGs) were identified using the 'FindAllMarkers' function in Seurat, with a $|\log_2 \text{FC}| > 1$ and an adjusted p-value < 0.05 as the threshold for significance. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis was performed using the R-package "clusterProfiler"⁶⁶.

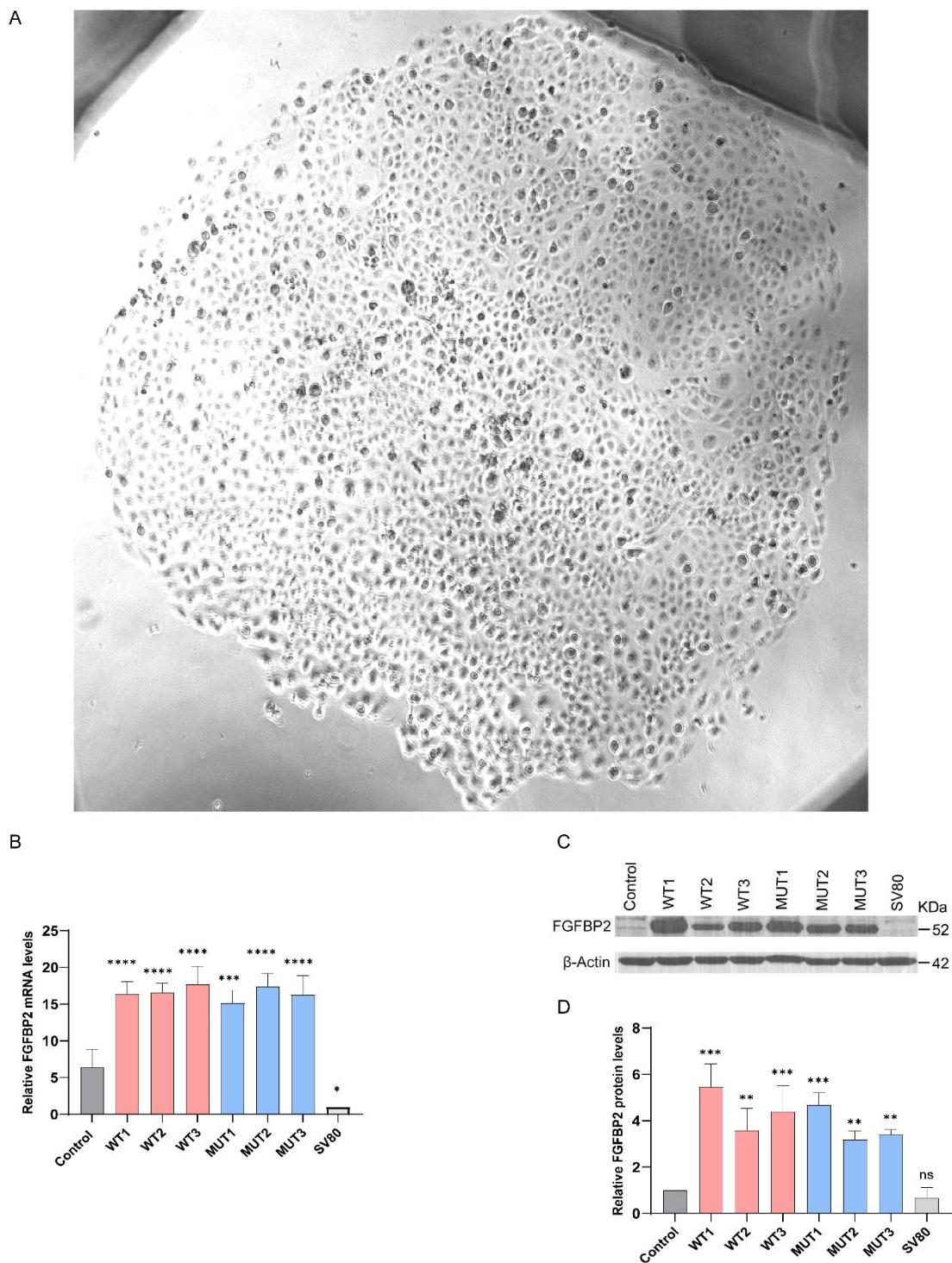
3.2.13 Copy Number Variation (CNV) estimation Tumor and pancreatic ductal cells

To detect large-scale chromosomal CNVs, the InferCNV package (version 1.22.0) was used to infer CNVs in ductal cells and identify tumor cells with the default parameters⁶⁷. Macrophages and NK cells served as the reference normal set.

3.2.14 Cell-cell communication analysis

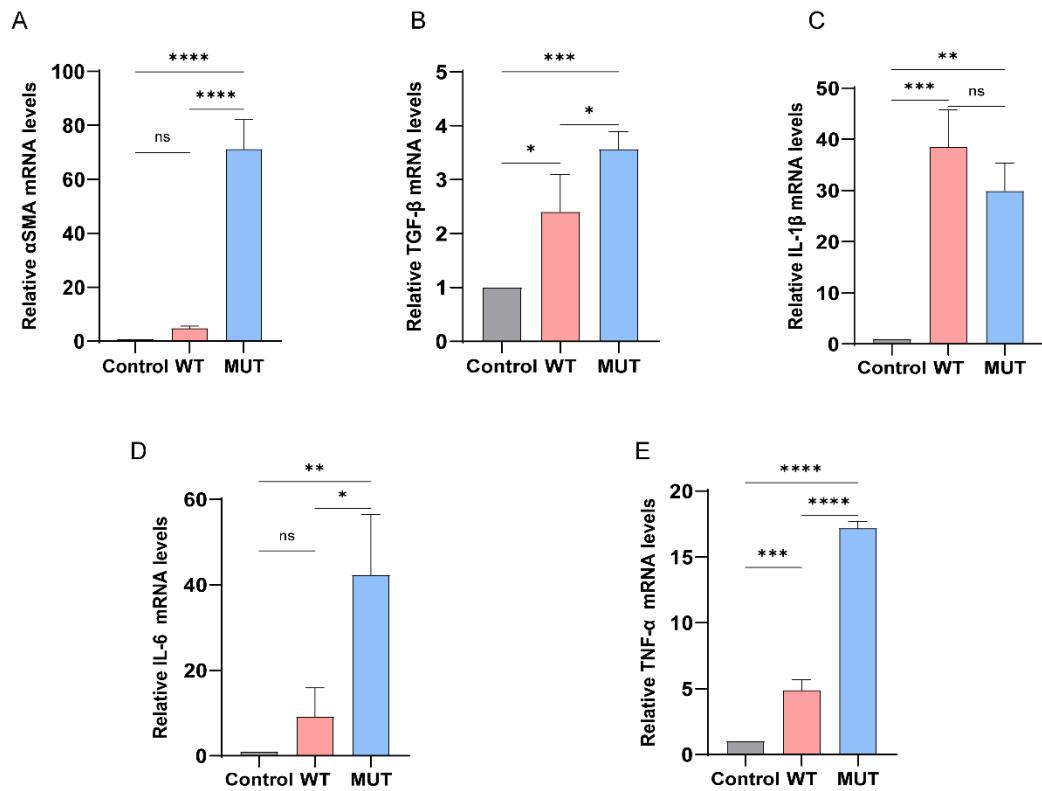
Cell-cell communication network inference and analysis were performed using CellChat (version 2.1.2)⁶⁸ and visualized intercellular communication interactions between cell subsets at the single-cell level.

3.2.15 Statistical Analysis


All bioinformatics analyses and visualizations were conducted using R (v4.4.2). Statistical analyses were performed with Prism (v10), using one-way ANOVA with Tukey's test for multiple group comparisons and two-tailed unpaired Student's t-tests for two-group comparisons. A P-value < 0.05 was statistically significant.

4. Results

4.1 FGFBP2 mutation regulates fibroblast activation


To investigate the role of FGFBP2 p.T186S mutation in SV80 fibroblasts, we transfected control group with empty plasmid (Control), wild type group (WT1, WT2, WT3) with plasmid overexpressing native FGFBP2 and mutant group (MUT1, MUT2, MUT3) with plasmid overexpressing FGFBP2 carrying the p. T186S mutation. Monoclonal cells were selected based on their morphological characteristics (Fig. 3A). QPCR was used to confirm overexpression of FGFBP2 in WTs and MUTs groups as compared to the control group (Fig. 3B). The transfection effect was further verified at the protein level (Fig. 3C, D).

Investigations of α -SMA which is a key marker of fibroblast activation, revealed its upregulation in fibroblasts carrying FGFBP2-mutation (Fig. 4A). Activated fibroblasts secreted pancreatic inflammatory cytokines, such as IL-1 β , IL-6, TNF- α , and TGF- β ⁶⁹. Importantly, fibroblasts carrying FGFBP2-mutation had upregulated IL-6, TNF- α and TGF- β levels (Fig. 4B-E), which are critical in shaping the inflammatory tumor microenvironment and driving tumor initiation and progression^{70, 71}. In the next steps we focused on cell proliferation and migration which are key characteristics of fibroblast activation. We conducted MTT and migration assays to assess the effects of FGFBP2 mutation on fibroblast function. The MTT assays showed that FGFBP2 mutation enhanced cell proliferation, and consistent with this, the migration assay confirmed that the mutation also increased fibroblast motility (Fig. 5A, B). Taken together, these results indicated that FGFBP2 mutation contributed to fibroblast activation.

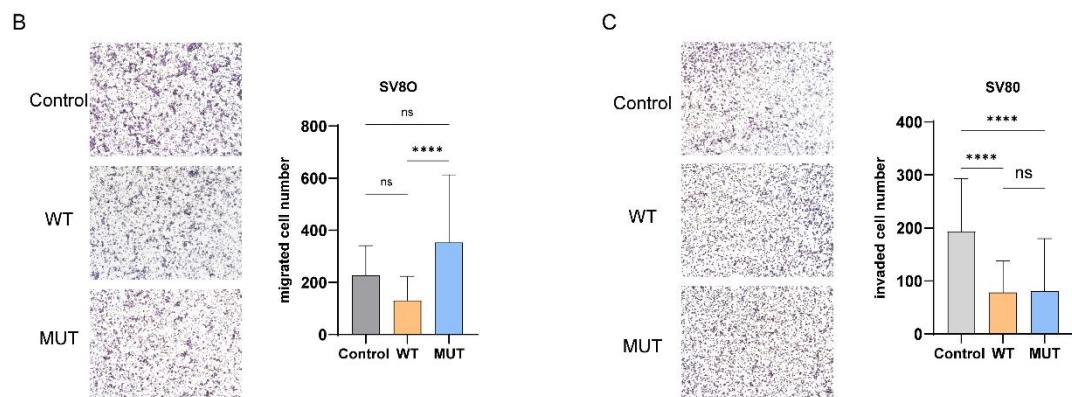
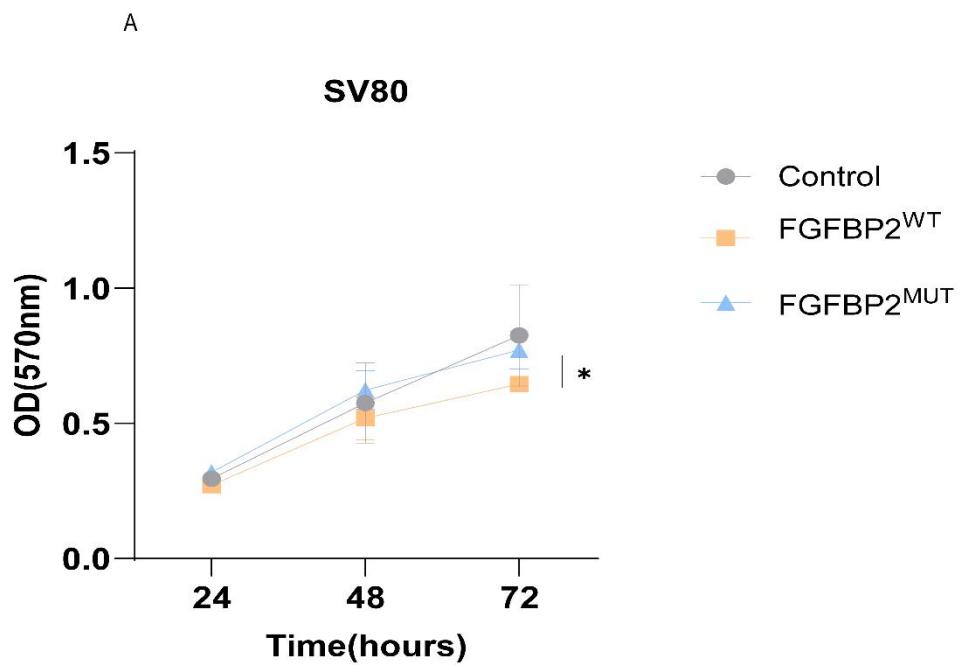



Figure 3. Cell transfection and verification. (A) The morphological characteristics of the monoclonal cells. (B) SV80 were transfected with empty (Control), wild type FGFBP2 (WT1, WT2, WT3) and FGFBP2-Mutation (MUT1, MUT2, MUT3) plasmid and verified by qPCR. The qPCR results showed that the FGFBP2 wild type and mutant groups are significantly higher than the FGFBP2 control. (C, D) Western blot images and quantifications of FGFBP2

expression in control, wild type and mutant groups. The Western blot results showed that the FGFBP2 wild type and mutant groups were significantly higher than the FGFBP2 control; means with SD;(*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

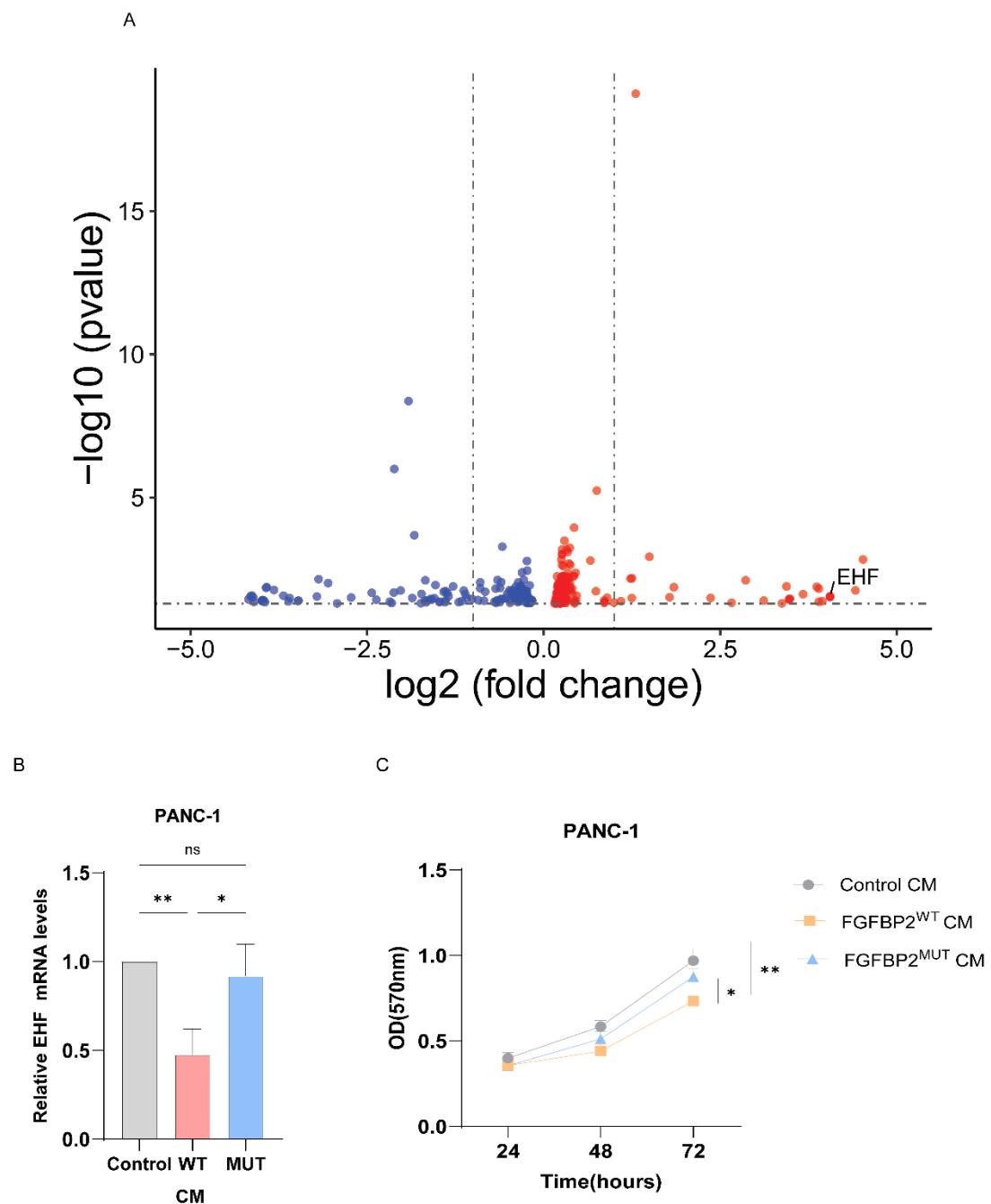

Figure 4. The expression of fibroblast activation markers and cytokines. (A) α -SMA expression levels were verified by qPCR in FGFBP2 control, wild type (WT), and mutant (MUT) groups; (B)TGF- β expression levels were verified by qPCR in FGFBP2 control, wild-type, and mutant groups; (C) IL-1 β expression levels were verified by qPCR in FGFBP2 control, wild-type, and mutant groups; (D) IL-6 expression levels were verified by qPCR in FGFBP2 control, wild-type, and mutant groups; (E)TNF- α expression levels were verified by qPCR in FGFBP2 control, wild-type, and mutant groups; The results showed that the expression of α -SMA, TGF- β , IL-6 and TNF- α was significantly higher in the mutant groups than in the wild-type groups; results of WT and MUT are presented as means. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

Figure 5. Functional experiments on transfected cells. (A) Proliferation of FGFBP2 control, wild type (FGFBP2^{WT}) and mutant (FGFBP2^{MUT}) groups. MTT assay showed that the cells with FGFBP2 mutation have increased proliferation ability compared to the wild type cells. (B) Cell migration ability of FGFBP2 control, wild type and mutated cells. The transwell migration assay showed that the cells with FGFBP2 mutation have an increased ability to migrate compared to the wild type cells. (C) Cell invasion ability of FGFBP2 control, wild type and mutated cells. The transwell invasion assay showed that the FGFBP2 control cells had an increased ability to invade compared to the wild type and mutated cells; results of WT and MUT are presented as means. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

4.2 FGFBP2 mutation promotes the proliferation and regulates cell cycle of PDAC cancer cells

It was acknowledged that activated fibroblasts promoted the initiation and progression of tumor cells. We performed MTT assay on PANC-1 cells treated with conditioned media, revealing that medium derived from the FGFBP2-mutated fibroblasts enhanced the proliferation of pancreatic cancer cells (Fig.6C). For further mechanistic insights, RNA-Seq analysis was conducted on PANC-1 cells treated with conditioned media. Differential analysis revealed that EHF was upregulated in PANC-1 cells treated with conditioned medium from FGFBP2mutated fibroblasts (Fig.6A and Table 18). ETS homologous factor (EHF) plays a pivotal and diverse role in the regulation of epithelial cell differentiation, influencing several molecular pathways that controlled cell proliferation and the maintenance of epithelial homeostasis^{60, 72}. The results were validated by measuring EHF expression levels using qPCR (Fig.6B). Comparison of EHF expression between pancreatic cancer tumors and normal tissues showed significantly higher expression of EHF in tumor tissues, which was associated with poorer prognosis (Fig.7A, B). In addition, KEGG analysis revealed that FGFBP2 mutation promoted cell cycle in pancreatic cancer cells (Fig.8). Effective cell cycle control is crucial for maintaining cellular homeostasis and preventing cancer, as dysregulation of cell cycle proteins could lead to uncontrolled cell proliferation by enabling cells to bypass critical checkpoints⁷³. Thus, FGFBP2 mutation in fibroblasts affected the progression of pancreatic cancer cells by modulating the cell cycle pathway and enhancing EHF expression.

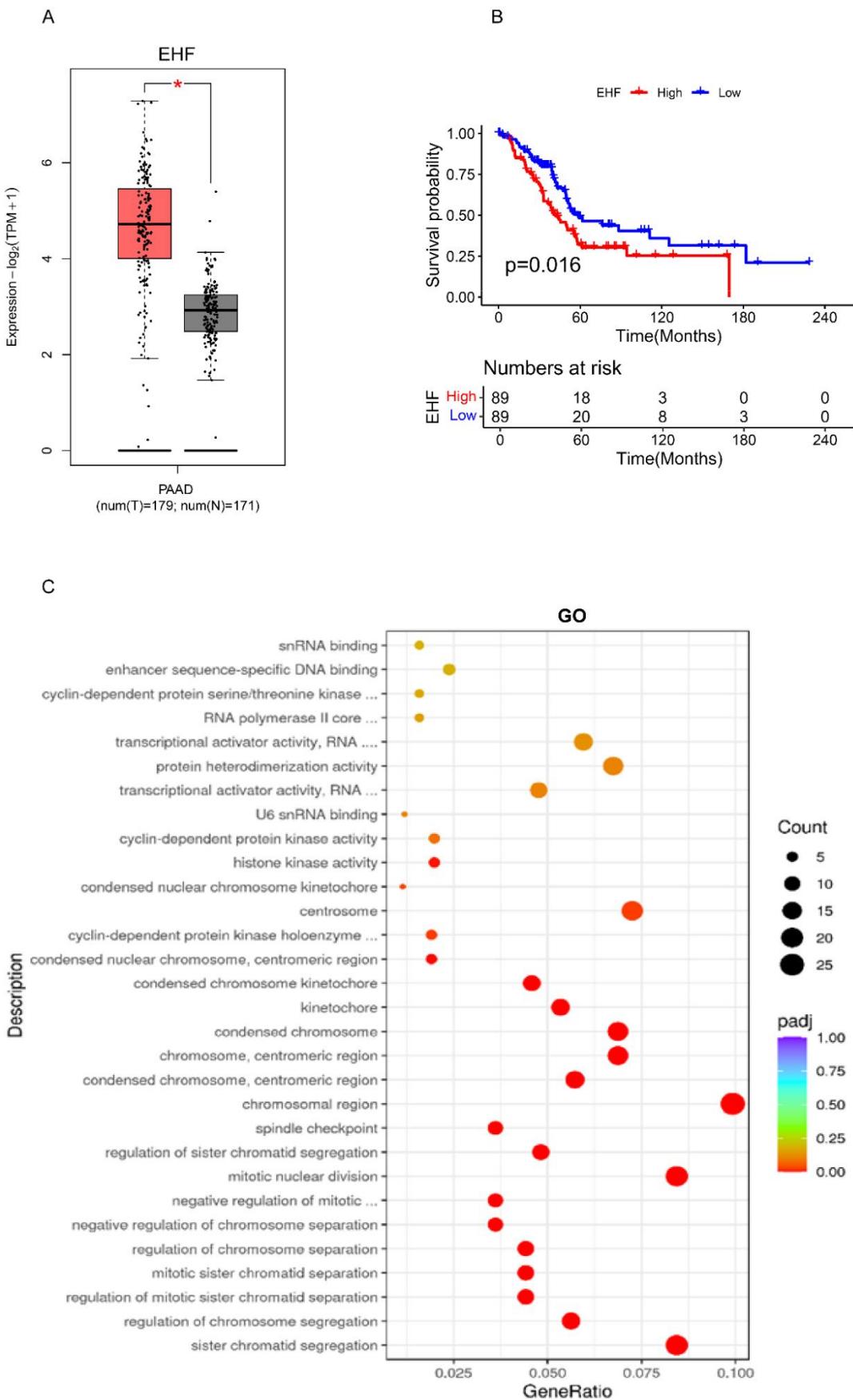
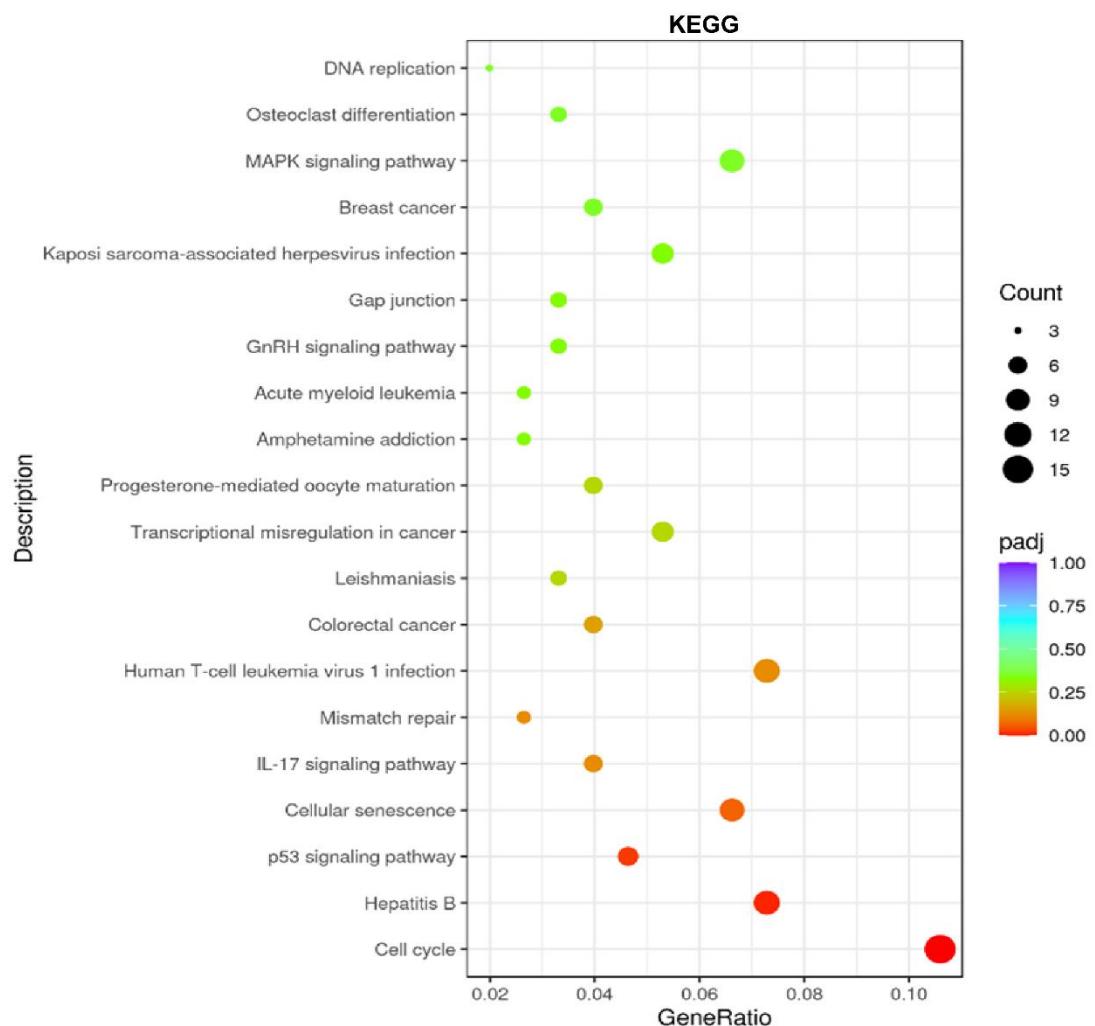


Figure 6. Differential gene expression and functional experiments on transfected cells impact on PANC-1 cells. (A) Volcano plot showing significantly altered genes (upregulation or downregulation) in PANC-1 cells treated with conditioned medium from FGFBP2 mutated and wild type cells. (B) qPCR analysis of EHF expression in PANC-1 cells treated with conditioned medium from FGFBP2 mutated and wild-type cells. (C) Cell proliferation of PANC-1 cells treated with conditioned medium from FGFBP2 control, wild type and mutated cells. MTT assay showed that the PANC-1 cells treated with conditioned medium from

FGFBP2 control and mutated cells have increased proliferation ability compared to PANC-1 cells treated with conditioned medium from FGFBP2 wild type cells. results of WT and MUT are presented as means. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)


Table 18. List of the top 25 differentially expressed genes in PANC-1 cells treated with conditioned medium from FGFBP2 mutated cells (in comparison to PANC-1 cells treated with conditioned medium from FGFBP2 wild type cells)

Genes	Log2 FC	P value
BOLA2B	4.524257	0.001452
AC073592.6	4.416684	0.017535
SOX7	4.057016	0.027718
AC008073.1	4.055854	0.029652
EHF	4.055854	0.029652
AL121829.1	3.945054	0.041583
BX255925.2	3.89824	0.015112
RPL10P19	3.897264	0.043446
C9orf131	3.868507	0.013141
MT-TK	3.674913	0.023737
RN7SL473P	3.489197	0.033895
AC008758.4	3.476591	0.035348
C4orf54	3.47574	0.036683
MT1JP	3.440079	0.012687
TATDN1P1	3.375421	0.049534
AC007881.3	3.118752	0.039749
AC007216.2	2.861564	0.007761
AL627230.3	2.661553	0.047256
HRAT5	2.36468	0.032021
RBMS2P1	1.844506	0.013563
FOS	1.783995	0.030258
FAM157C	1.496892	0.001174
EGR1	1.303457	7.96E-20
CKMT1B	1.251069	0.006557
HINT2	1.248283	0.032309

Figure 7. Expression and prognostic analysis of EHF in pancreatic cancer and GO analysis.

(A) Correlation of EHF expression with pancreatic tumor and normal tissue. EHF was expressed at higher levels in pancreatic tumor tissue than in normal tissue. (B) The overall survival analysis of the expressed EHF. (C) Gene Ontology (GO) analysis revealed significant associations with key biological processes in PANC-1 cells treated with conditioned medium from FGFBP2 mutant and wild-type groups. The high expression of EHF was associated with a worse prognosis.

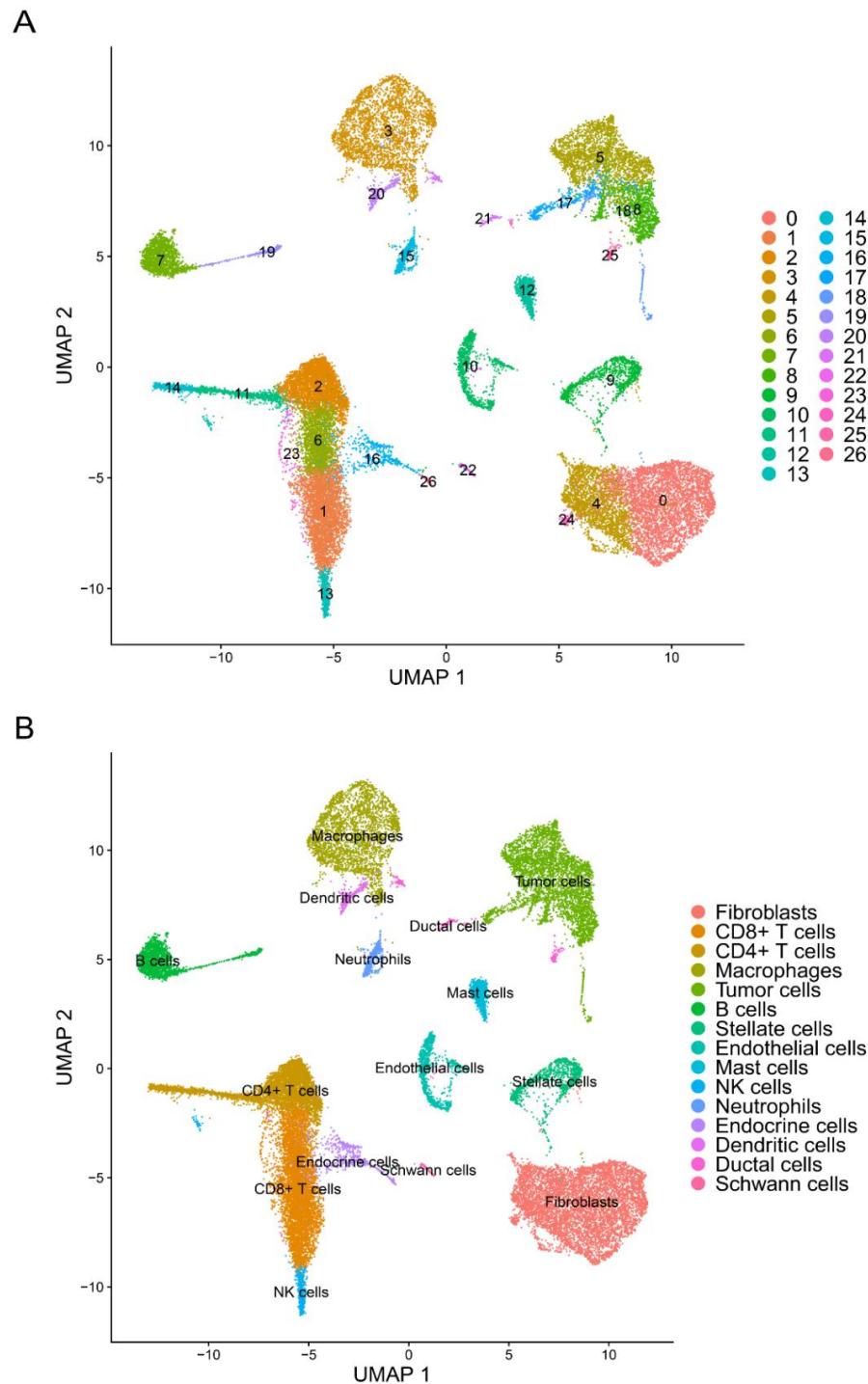
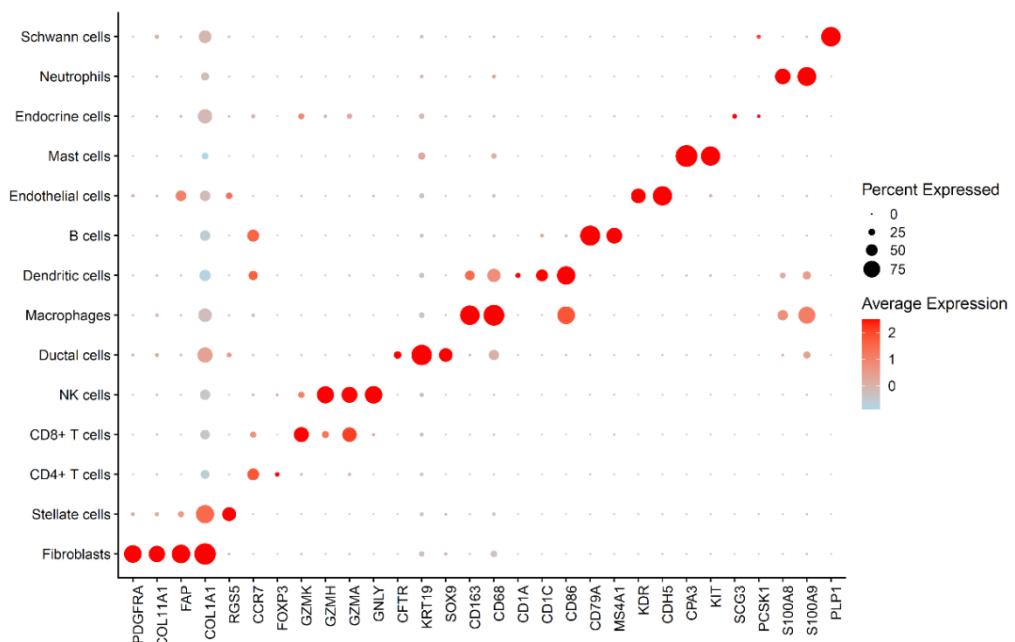
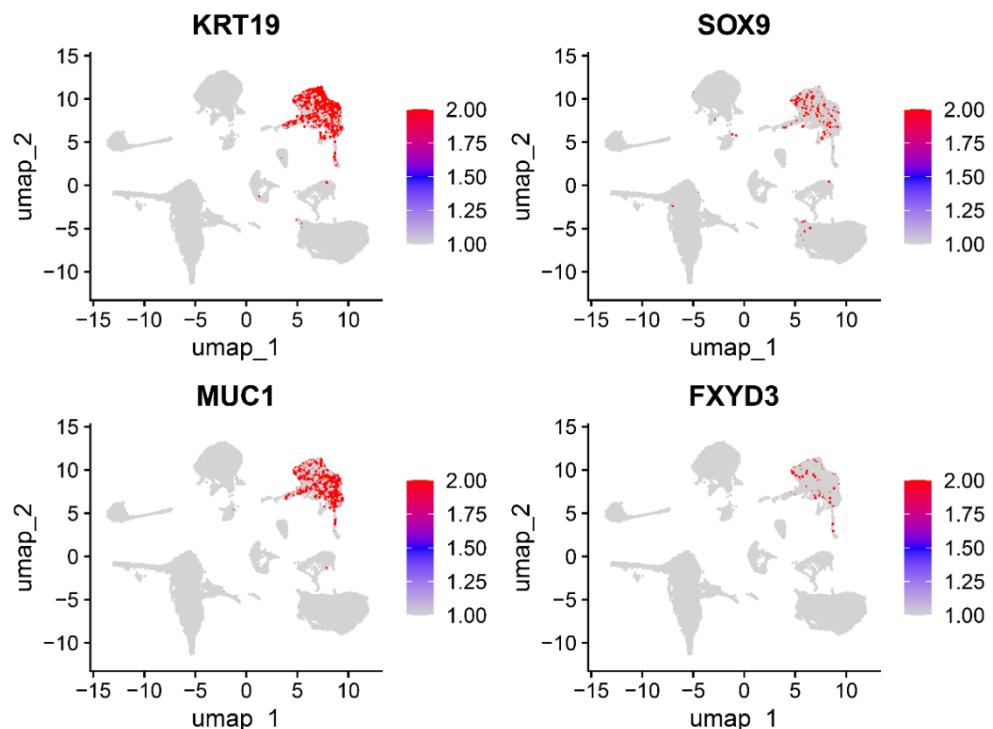


Figure 8. KEGG enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis PANC-1 cells treated with conditioned medium from FGFBP2 mutated and wild-type cells. The results showed a positive correlation with cell cycle progression.



4.3 Expression of EHF in pancreatic cancer cell clusters and its role in regulation of signaling pathways

To investigate the expression and function of EHF in different cell types, the public single-cell dataset GSE2122966 was analyzed⁷⁴. This analysis identified 27 cell clusters (Fig.9A). The clusters were then annotated using cell cluster-specific marker genes, assigning them to 15 major cell clusters (Fig.9B). The common marker genes included: Fibroblasts (PDGFRA, COL11A1, FAP, COL1A1), Stellate cells (RGS5), CD4+ T cells (CCR7, FOXP3), CD8+ T cells (GZMK, GZMH, GZMA), NK cells (GNLY), Ductal cells (CFTR, KRT19, SOX9), Macrophages (CD163, CD68), Dendritic cells (CD1A, CD1C, CD86), B cells (CD79A, MS4A1), Endothelial cells (KDR, CDH5), Mast cells (CPA3, KIT), Endocrine cells (SCG3, PCSK1), Neutrophils (S100A8, S100A9), and Schwann cells (PLP1) (Fig.10A). To identify different cell types within ductal clusters, KRT19 and SOX9 were used to represent ductal cells, while FXYD3 and MUC1 were used to represent cancer cells⁷⁵⁻⁷⁷. Furthermore, CNV analysis was used to assess the malignancy of ductal cell clusters, with macrophages and NK cells serving as the reference normal set. The expression of FXYD3 and MUC1 was predominantly observed in clusters 5, 8, 17, and 18 (Fig.10B). Similarly, CNV analysis revealed that these clusters exhibited higher CNV scores compared to normal cells, leading to their classification as tumor cells (Fig.11A, B). EHF was primarily expressed in tumor cells and ductal cells, whereas its expression was almost absent in immune and stromal cells (Fig.12A, B). To analyze EHF expression in tumor cell clusters, tumor cell clusters were extracted and divided into 7 clusters. Based on the expression levels of the EHF gene, clusters 0, 1, 2, 3, 4, 5, and 6 were defined as EHF+ tumor cells, whereas cluster 7, which shows almost no expression, was defined as EHF- tumor cells (Fig.13A, B). KEGG analysis of EHF revealed significant enrichment in the PI3K-AKT signaling pathway, ECM-receptor interactions and cell adhesion molecules (Fig.14). The PI3K-AKT pathway was essential for cell growth, while ECM-receptor interactions were critical for cell adhesion and migration⁷⁸. These results suggested that EHF might have played a role in regulating these pathways involved in pancreatic cell proliferation

and tumor progression.

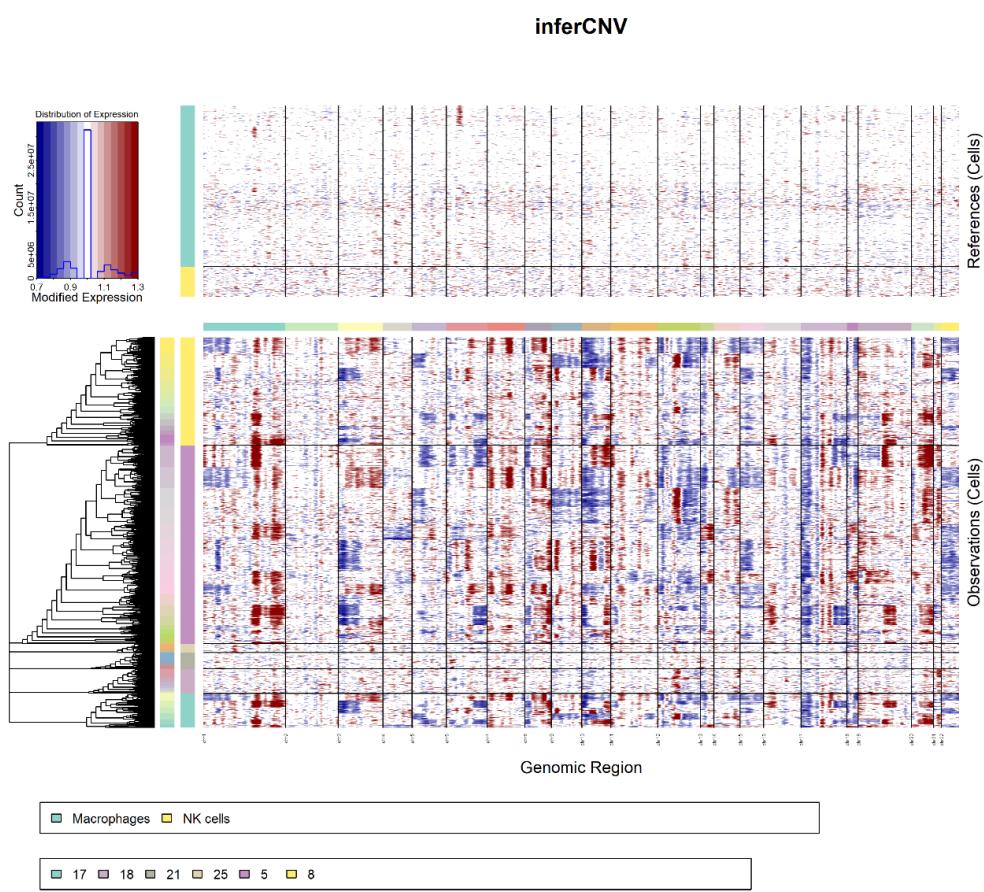


Figure 9. Single-cell RNA sequencing integration and annotation. (A) Uniform Manifold Approximation and Projection (UMAP) plot displays an integrated cellular map composed of 27 cell clusters. (B) UMAP plot displays an integrated cellular map composed of 15 annotated cell types.

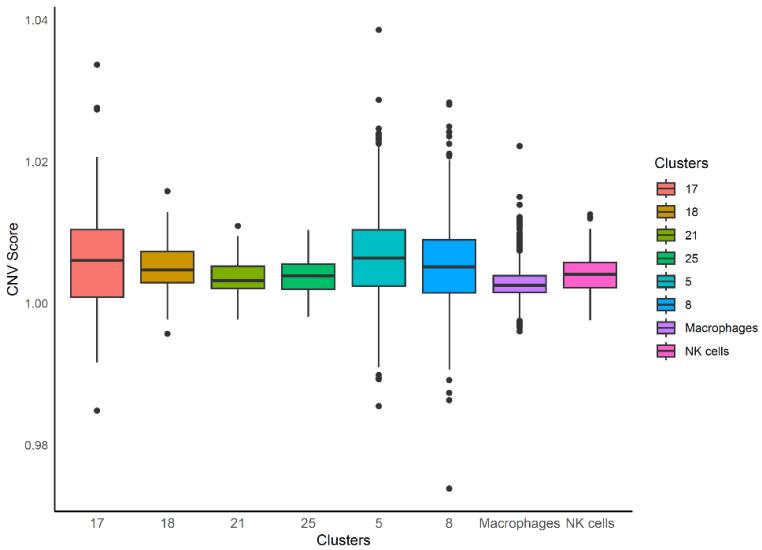
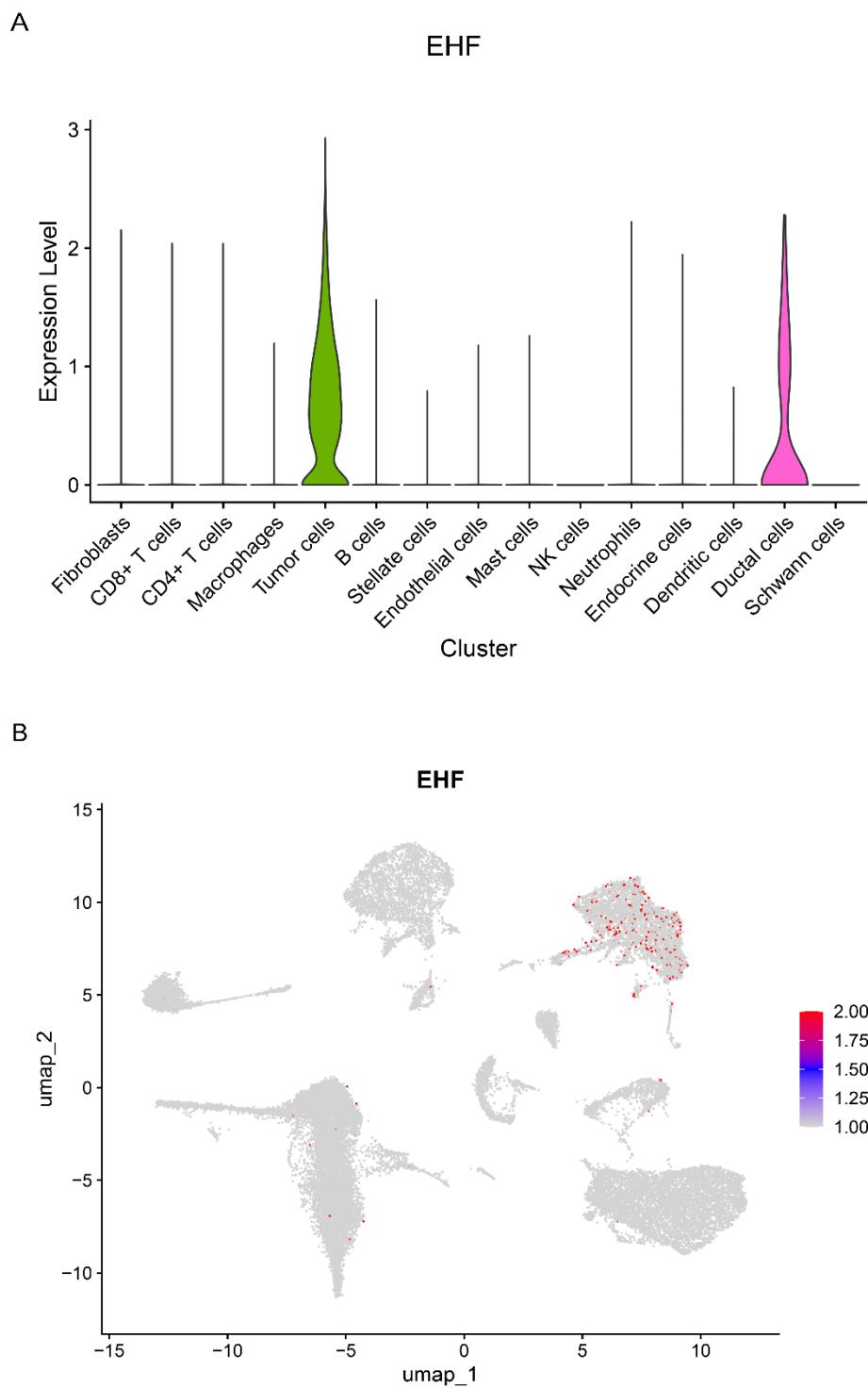
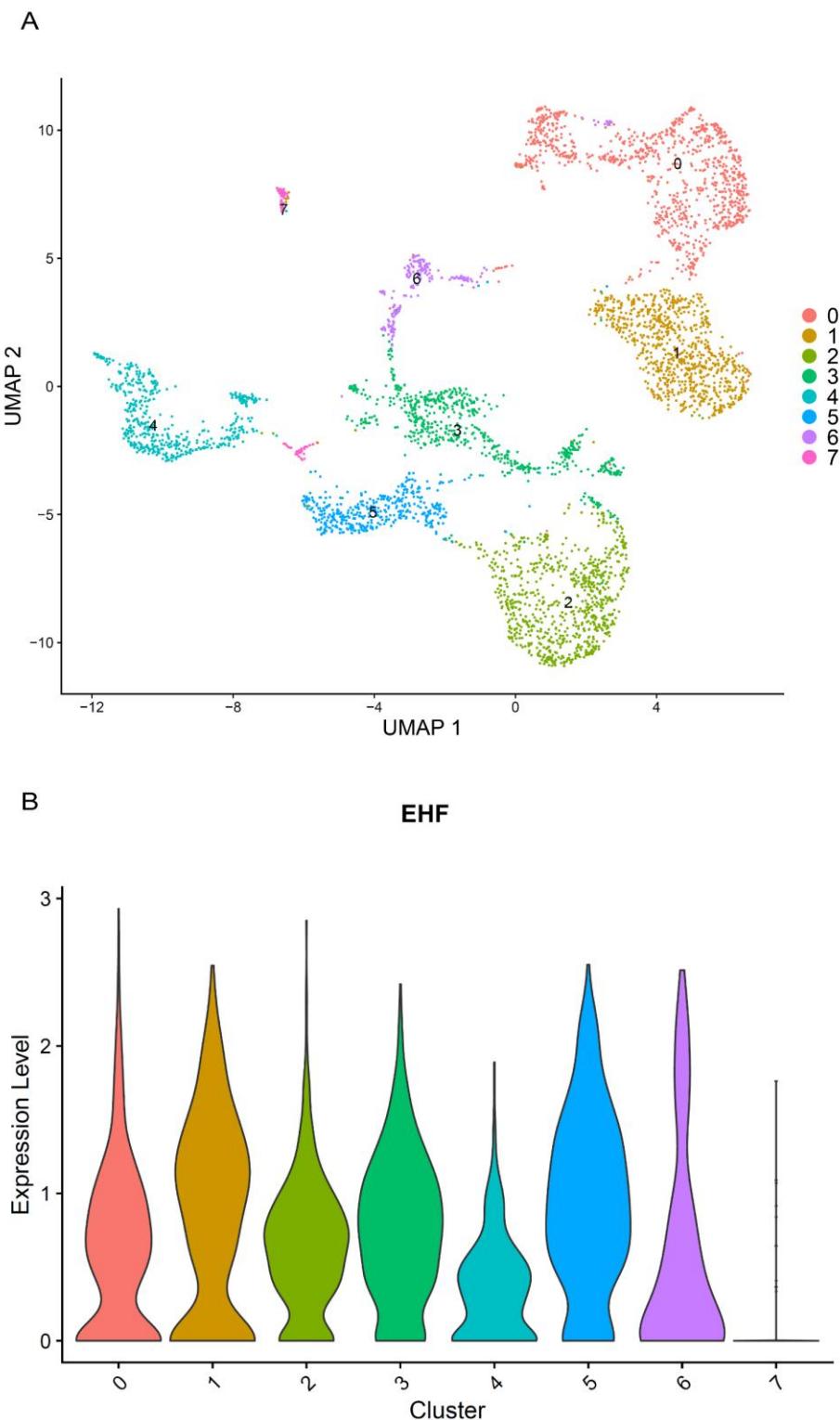

A**B**

Figure 10. Single-cell RNA sequencing marker gene annotation. (A) Dot plot showing representative common marker genes in cell types. (B) UMAP shows ductal cell markers and cancer cell markers. The results showed that the expression of FXYD3 and MUC1 was predominantly observed in clusters 5, 8, 17, and 18.


A


B

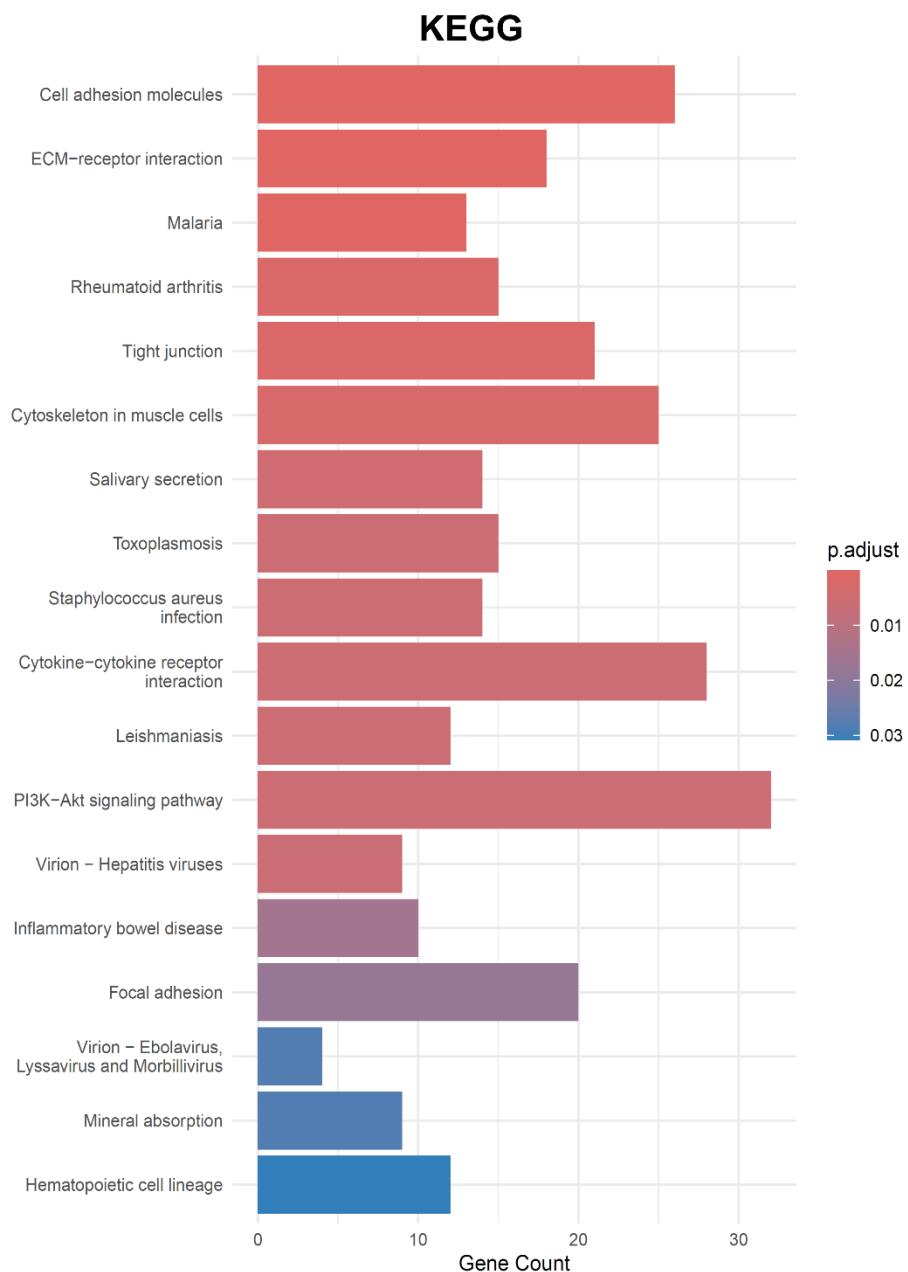

Figure 11. Assessment of CNV in ductal cells. (A) Heatmap showing ductal cells with different CNV levels. (B) Box Plot showing ductal cells with CNV scores. The ductal cells in clusters 5, 8, 17, and 18 had higher CNV scores compared to the macrophages and NK cells that served as the reference normal set.

Figure 12. Expression of EHF in different cell types. (A) VIInPlot showing EHF expression in each cell type. (B) UMAP showing EHF expression in each cell type. EHF was primarily expressed in tumor cells and ductal cells.

Figure 13. Tumor cell clustering and EHF expression. (A) UMAP showing seven tumor cell clusters. (B) VlnPlot showing EHF expression in tumor cell clusters.

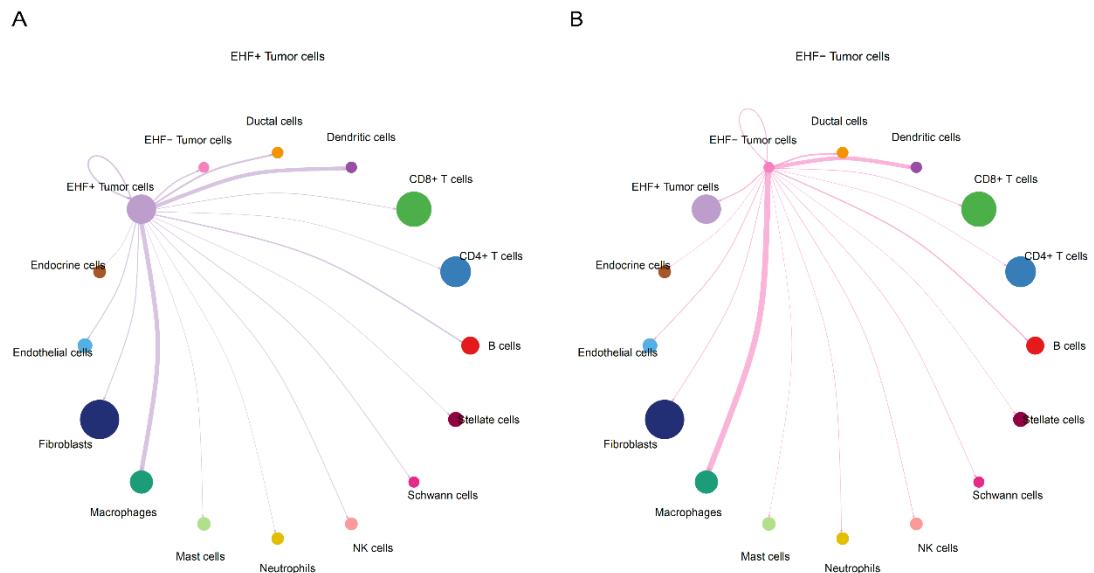


Figure 14. KEGG enrichment analysis. Barplot showing the KEGG enrichment analysis of EHF+ tumor cells and EHF- tumor cells. The results showed a positive correlation with PI3K-AKT signaling pathway, ECM-receptor interactions and cell adhesion molecules.

4.4 EHF regulates fibroblast signaling through the PDGF pathway

To further explore the role of EHF in pancreatic cancer and fibroblasts, CellChat was used to

analyze the intercellular signaling pathways and ligand–receptor interactions (Fig.15A, B). In the PDGF signaling pathway, EHF+ tumor cells regulated fibroblasts through PDGF/PDGFR interactions (Fig.15A, B and Fig.16A-D). EHF primarily drove its effects through interactions between platelet-derived growth factor alpha (PDGFA)/platelet-derived growth factor beta (PDGFB) ligands in tumor cells and PDGFRB receptors in fibroblasts (Fig.16B, D). PDGFA/B are expressed in a broad range of cell types and utilize autocrine or paracrine mechanisms to perform their biological functions^{79, 80}. Tumor cells released paracrine signals, including transforming growth factor (TGF- β) and platelet-derived growth factor (PDGF), which activated fibroblasts^{41, 81}. Platelet-derived growth factor receptor alpha (PDGFR α) and platelet-derived growth factor receptor beta (PDGFR β), predominantly expressed in fibroblasts, serve as key markers for these cells⁸². Moreover, PDGFR α controlled the fibroblast-to-myofibroblast transition during wound healing⁸³. These results suggested that EHF might have driven fibroblast and remodeling of the tumor microenvironment by modulating PDGF signaling.

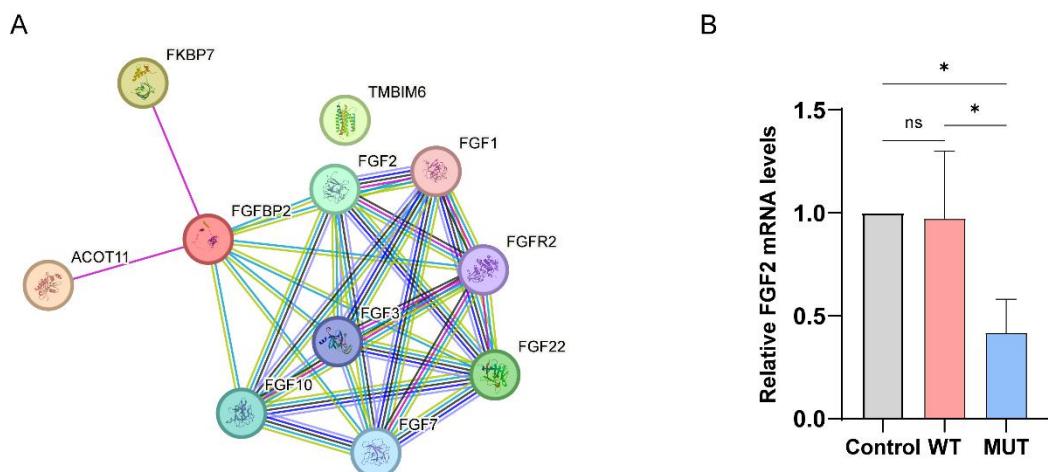
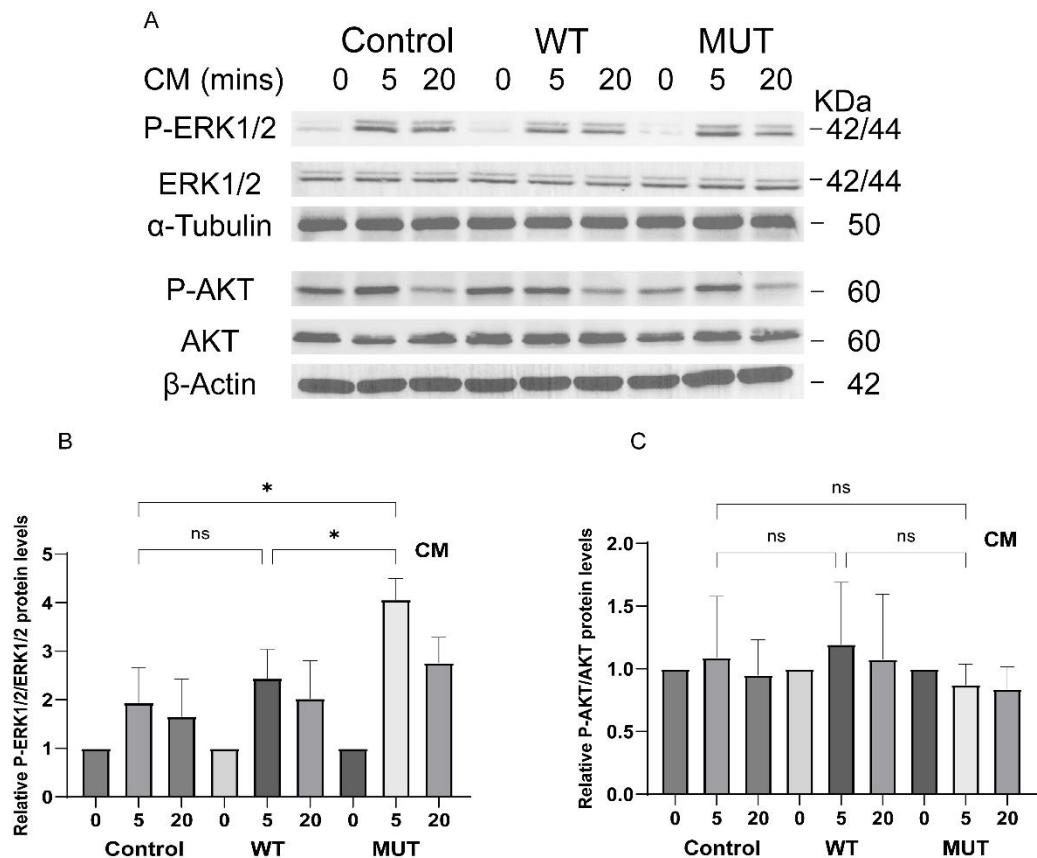
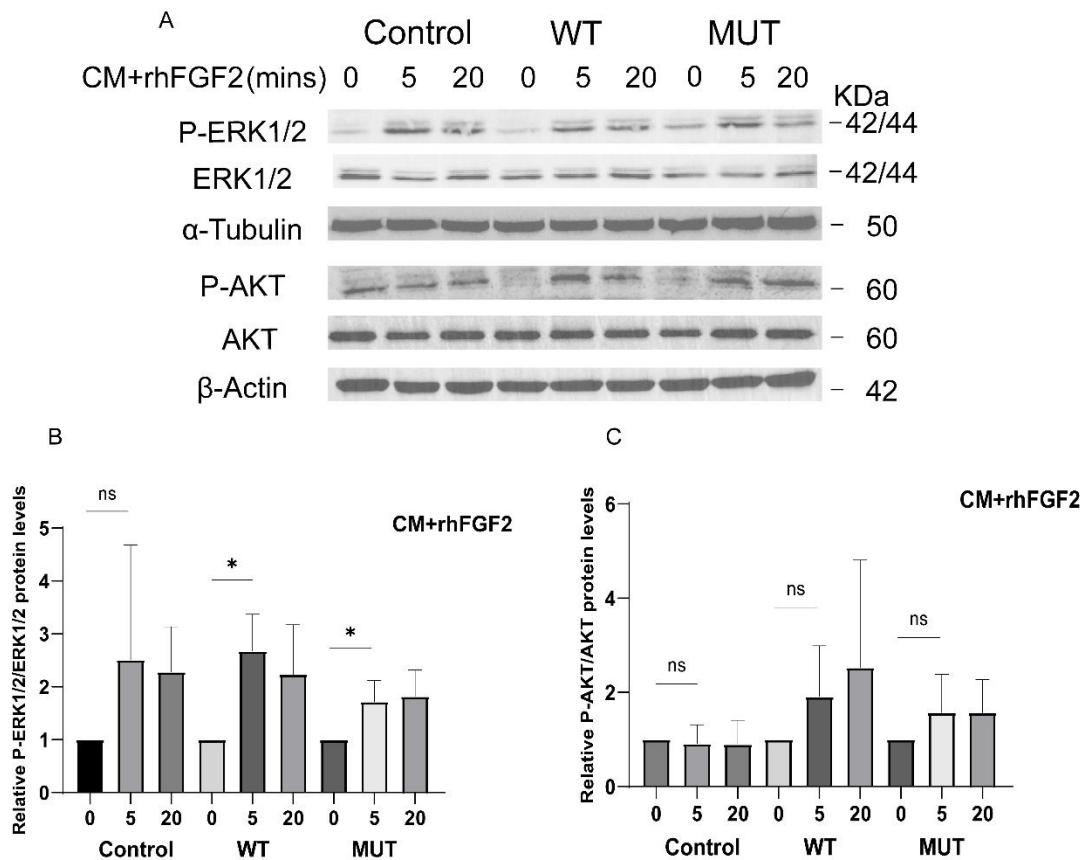

Figure 15. Interaction between EHF + tumor cells and fibroblasts. (A) Circle plot of the cell–cell communication network among EHF+ tumor cells and other cell types, with edge widths representing the strength of the interactions. (B) Circle plot of the cell–cell communication network among EHF- tumor cells, and other cell types, with edge widths representing the strength of the interactions.

Figure 16. Interaction between the ligands and receptors of the PDGF pathway. (A) Circle plot of the cell-cell communication network among PDGF signaling pathway ligand-receptor pairs: PDGFA/PDGFR α . (B) Circle plot of the cell-cell communication network among PDGF signaling pathway ligand-receptor pairs: PDGFA/PDGFR β . (C) Circle plot of the cell-cell communication network among PDGF signaling pathway ligand-receptor pairs: PDGFB/PDGFR α . (D) Circle plot of the cell-cell communication network among PDGF signaling pathway ligand-receptor pairs: PDGFB/PDGFR β . Interaction of the PDGF signaling pathway was observed in EHF+ tumor cells and fibroblasts, whereas no interaction occurred in EHF- tumor cells.

4.5 The expression of FGF2 is suppressed in fibroblasts carrying FGFBP2-mutation


FGF2 plays a critical role in cell proliferation and cancer development, and studies showed that FGFBP2 interacts with FGF2 to enhance its biological activity⁴⁷. Using the STRING database, we identified interactions involving FGFBP2, but its function following mutation remains unclear (Fig.17A). Interestingly, FGF2 expression was also downregulated in fibroblasts with mutated FGFBP2 (Fig.17B). A mutation in the gene altered the DNA binding capacity, impairing the capacity of FGFBP2 to bind DNA and suggesting that FGFBP2 might regulate FGF2 expression⁸⁴. This suggested that the mutation of FGFBP2 might lead to a reduction in FGF2 expression, indicating a potential regulatory relationship between the two proteins.


Figure 17. FGFBP2 mutation downregulates FGF2. (A) STRING Analysis of the interaction between FGFBP2 and FGF2. (B) FGF2 expression levels were verified by qPCR in FGFBP2 control (Control), wild-type (WT), and mutant groups (MUT); means with SD; (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

4.6 Pancreatic cancer cells are affected by fibroblastic FGFBP2 mutation in ERK1/2 signaling manner

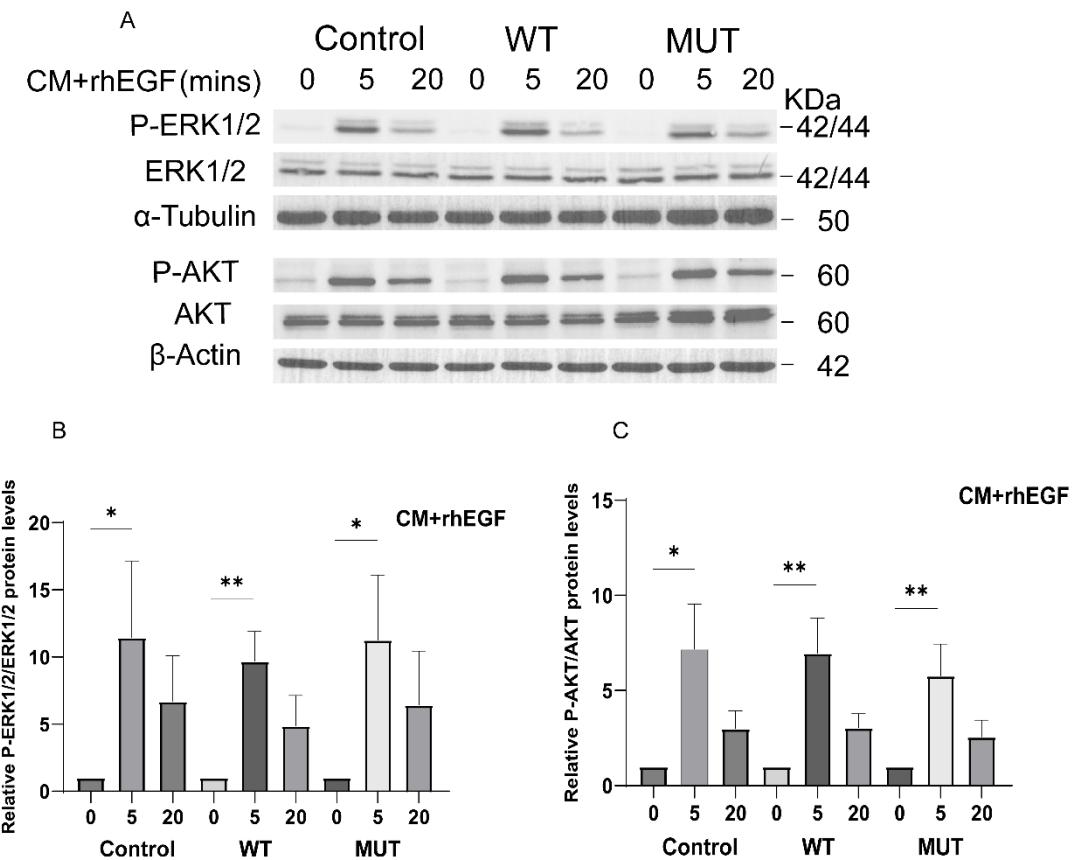

FGF2 regulated key biological processes such as cell proliferation and migration by activating FGFR and downstream pathways, including Ras-MAPK (ERK1/2, p38 MAPK, JNK) and PI3K-Akt⁴⁹. To investigate the effect of FGF2 on cancer cells, we cultured PANC-1 cells using conditioned medium (CM) supplemented with rhFGF2 or CM obtained from three groups of FGFBP2-transfected cells, with EGF as a control. Either CM or rhFGF2-CM and rhEGF-CM increased the activation of the canonical ERK1/2 signaling cascade by increasing phosphorylation (Fig.18A, B, Fig.19A, B and Fig.20A, B). In addition, rhEGF-CM promoted the activation of the canonical AKT signaling cascade through increased phosphorylation (Fig.20A, C), whereas CM or rhFGF2-CM did not significantly enhance AKT signaling activation through phosphorylation (Fig.18A, C and Fig.19A, C). Moreover, conditioned medium derived from FGFBP2-mutant cells enhanced ERK1/2 signaling activation via phosphorylation more significantly than that derived from wild-type cells (Fig.18A, B). It is known that inhibition of ERK1/2 suppressed EMT, upregulated cellular senescence markers and activated autophagy in cancer-associated PSCs, which in turn reduced pancreatic cancer cell proliferation⁸⁵. These results suggested that FGFBP2 mutation promoted pancreatic cancer cell progression through increased activation of ERK1/2 signaling through phosphorylation.

Figure 18. ERK1/2 and AKT signaling on PANC-1 treated with conditioned media derived from transfected fibroblasts. (A-C) Western blot for ERK1/2, P-ERK1/2, AKT, and P-AKT. in PANC-1 cells treated with conditioned medium of FGFBP2 control (Control), wild type (WT), and mutant groups (MUT). Phosphorylation upon treatment with conditioned medium derived from FGFBP2 mutant fibroblasts results in increased activation of the ERK1/2 signaling pathway compared to wild-type and control.; means with SD of three independent experiments; results are presented as ratios of phosphorylated and unphosphorylated forms of the proteins; (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

Figure 19. ERK1/2 and AKT signaling on PANC-1 treated with conditioned media derived from transfected fibroblasts supplemented with rhFGF2. (A-C) Western blot for ERK1/2, P-ERK1/2, AKT, and P-AKT. in PANC-1 cells treated with conditioned medium of FGFBP2 control (Control), wild type (WT), and mutant groups (MUT) supplemented with rhFGF2. The results showed that rhFGF2 activated the ERK1/2 pathway by promoting the phosphorylation of ERK1/2.; means with SD of three independent experiments; results are presented as ratios of phosphorylated and unphosphorylated forms of the proteins; (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

Figure 20. ERK1/2 and AKT signaling on PANC-1 treated with conditioned media derived from transfected fibroblasts supplemented with rhEGF. (A-C) Western blot for ERK1/2, P-ERK1/2, AKT, and P-AKT. in PANC-1 cells treated with conditioned medium of FGFBP2 control (Control), wild type (WT), and mutant groups (MUT) supplemented with rhEGF. The results showed that rhEGF activated the ERK1/2 and AKT pathways by promoting the phosphorylation of ERK1/2 and AKT.; means with SD of three independent experiments; results are presented as ratios of phosphorylated and unphosphorylated forms of the proteins; (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant)

5. Discussion

The poor prognosis of PDAC can be largely attributed to our limited understanding of the intricate interactions between molecular and cellular components within the TME. Cancer-associated fibroblasts (CAFs) play a critical role in the tumor microenvironment by modulating pro-tumorigenic processes and secreting various cytokines. Here we report the role of FGFBP2 mutation in facilitating fibroblast activation and promoting tumor progression.

5.1 Mutation in fibroblastic FGFBP2 and activation of the cells

Fibroblast activation is influenced by a variety of factors, including mechanical stress, inflammatory signals, and interactions with other cell types in the microenvironment⁸⁶. Transforming growth factor β (TGF- β) signaling is widely recognized as central of the activation of cancer-associated fibroblasts (CAFs) by promoting factors that enhanced cancer invasiveness^{87, 88}. In addition, TGF- β 1 could induce resident normal fibroblasts (NFs) to transform into CAFs in various tumor types, such as pancreatic cancer, underscoring that TGF- β 1-driven CAF generation is a common event during cancer development⁸⁹. Cancer-associated fibroblasts (CAFs) promote tumor growth by promoting angiogenesis, proliferation, invasion, and inflammation, a pro-inflammatory state that cancer cells can also induce in normal fibroblasts, while inflammatory modulators such as interleukin-1 (IL-1) activated CAFs via NF- κ B⁹⁰. In breast cancer progression, mechanical factors such as matrix stiffening activated Yes-associated protein (YAP) in cancer-associated fibroblasts. This activation then drove actomyosin contractility and extracellular matrix remodeling to enhance cancer cell invasion and angiogenesis. Meanwhile, transient Rho-associated coiled-coil containing protein kinase (ROCK) inhibition could disrupt this self-reinforcing loop and reverse the CAF phenotype⁹¹. In prostate cancer, overexpression of Yes-associated protein 1 (YAP1) in stromal cells converted normal fibroblasts into CAFs, promoting tumor progression and poor prognosis, whereas silencing YAP1 effectively inhibited tumor growth⁹².

This study demonstrated that FGFBP2 mutation promoted fibroblast activation through both direct mechanisms and the upregulation of various inflammatory factors. In previous pancreatic cancer studies, quiescent pancreatic stellate cells (PSCs) showed increased expression of the CAF-like surface marker α -SMA upon activation by TGF- β , resulting in their conversion to activated CAFs⁹³. Similarly, FGFBP2 mutation in fibroblasts led to upregulated expression of α -SMA, further supporting their transition to activated CAFs. Additionally, activated fibroblasts produce extracellular matrix (ECM) components and secrete a wide range of cytokines, including TGF- β , TNF- α , IL-6, and IL-1 β ^{36, 37, 40}. Our results indicated that FGFBP2 mutation in fibroblasts upregulates the production of TGF- β , TNF- α , and IL-6. Previous studies showed that activated fibroblasts exemplified the paracrine function of fibroblasts by secreting cytokines that created an IL-1 β -enriched microenvironment, which promoted ER $^+$ breast cancer cell proliferation and reduced tamoxifen efficacy⁹⁴. The crosstalk between CAFs and tumor cells mainly takes place through paracrine signaling, where CAFs secrete various growth factors and cytokines, such as FGF2, EGF, and TGF- β , which effectively promote tumor cell proliferation in vitro⁸².

5.2 Functional consequences of FGFBP2 mutation in the fibroblasts

Activated fibroblasts acquired enhanced proliferative, migratory, and secretory capabilities that not only drove extensive extracellular matrix remodeling and immunomodulatory functions, but also facilitated the development of drug resistance, collectively establishing a tumor microenvironment that impeded therapeutic efficacy. Within the tumor microenvironment, the reactive stroma was largely defined by cancer-associated fibroblasts (CAFs), also known as activated fibroblasts. These cells communicated directly with cancer cells through cell-cell adhesion, while also indirectly shaping tumor progression and modulating immune cell infiltration^{95, 96}. FGFBP2 mutation in fibroblasts led to enhanced proliferation and migration, reflecting characteristics consistent with those of activated fibroblasts. Cancer-associated fibroblasts (CAFs) influence cancer cell function by secreting excessive factors and activating

signaling pathways that regulate proliferation, migration and immune modulation, revealing the complex interactions between CAFs and cancer cells within the tumor microenvironment. In colorectal cancer, increased insulin-like growth factor 2 (IGF2) secretion by CAFs activated an IGF1R-YAP1 signaling cascade in cancer cells that drove tumor growth, migration, and invasion, while targeting insulin-like growth factor 1 receptor (IGF1R) and YAP1 enhanced anti-tumor efficacy⁹⁷. A study demonstrated that tumor-activated fibroblasts overexpressed Galectin-1 (Gal-1) and released macrovesicles (MVs) enriched with this protein, which, upon uptake by tumor cells, enhanced cancer cell migration⁹⁸. The secretory function of CAFs plays a critical regulatory role in tumor cells. A study showed that the lin-28b/let-7 signaling pathway regulated the expression of Wnt family member 5a (Wnt5a) in tumor epithelium. This in turn, upregulated lin-28 homolog b (lin-28b) in cancer-associated fibroblasts (CAFs) and promoted PDAC growth by inducing the production of the cytokine pro-protein convertase subtilisin/kexin type 9 (PCSK9)⁹⁹.

We treated PANC-1 cells with conditioned media and observed that medium derived from FGFBP2 mutant fibroblasts enhanced PANC-1 cell proliferation, suggesting that this mutation promoted tumor cell growth through paracrine signaling and intercellular crosstalk. Furthermore, RNA-Seq analysis of PANC-1 cells treated with conditioned medium revealed that FGFBP2-mutant fibroblasts regulated tumor cell proliferation by modulating cell cycle signaling pathways. The cell cycle signaling pathway involved a balance between cyclins and cyclin-dependent kinases, which regulated cell cycle progression and maintained cellular integrity. Dysregulation of these pathways leads to uncontrolled cell proliferation and tumor growth^{100, 101}.

5.3 Relations between fibroblastic FGFBP2 and EHF in pancreatic cancer

Fibroblasts secret various cytokines that regulated changes in tumor cell genes, thereby modulating tumor cell functions. These secreted factors could influence tumor cell proliferation,

play a critical role in the tumor microenvironment, and contribute to tumor progression. Feldmann et al.¹⁰² showed that the Prrx1 transcription factor was critical for tuning CAF activation, allowing a dynamic switch between dormant and activated states. Its regulation of CAF plasticity significantly impacted tumor differentiation, gemcitabine resistance, and metastasis in pancreatic ductal adenocarcinoma (PDAC). More importantly, we found that EHF expression was upregulated in cancer cells treated with conditioned medium from FGFBP2-mutant fibroblasts. EHF is a member of the ETS family of transcription factors, which regulate key processes such as differentiation, proliferation and epithelial homeostasis, and play diverse roles in cancer progression and the tumor microenvironment. In colorectal cancer, EHF activated TGF - β signaling, leading to tumor progression¹⁰³. Analysis of the TCGA data showed that EHF was highly expressed in pancreatic cancer tissue and was associated with a better prognosis. Analysis of single cell data further supported that EHF was predominantly highly expressed in pancreatic cancer cells. KEGG analysis indicated that EHF regulated the PI3K-AKT signaling pathway, ECM-receptor interactions and cell adhesion molecules. Therefore, FGFBP2 mutation in fibroblasts may lead to the upregulation of EHF in tumor cells, contributing to cancer cell progression. Tumor cells may further promote fibroblast activation. Chen et al.¹⁰⁴ reported that the loss of Annexin A1 (ANXA1) expression in epithelial cells during the progression of esophageal squamous cell carcinoma (ESCC) disrupted fibroblast homeostasis by activating the ANXA1/FPR2 signaling pathway. This led to the transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), thereby promoting tumor progression. Similar studies reported that EHF expression in pancreatic stellate cells (PSCs) influenced PDAC chemoresistance and tumor growth by activating PSCs through the transcription of α -SMA, collagen-I, and IL-1 β . IL-1 β further upregulated EHF in PSCs, and this IL-1 β /EHF feedback loop contributed to tumor progression¹⁰⁵. Moreover, our results showed that EHF regulated fibroblast signaling through the PDGF pathway, which influenced key cellular processes such as fibroblast proliferation and migration¹⁰⁶. The PDGF signaling pathway was essential for regulating fibroblast development and long-term homeostasis by supporting the self-renewal, proliferation and migration of fibroblast stem cells¹⁸. By interacting with PDGF receptors, EHF may regulate fibroblast activation and ECM production, promoting tumor cell progression¹⁰⁷.

5.4 Association with FGF signaling

Mutations generally resulted in significant changes in DNA, leading to alterations in numerous downstream molecules⁸⁴. FGFBP2 enhances FGF2 signaling by releasing FGF2 from the extracellular matrix, thereby promoting its biological activity⁴⁷. Through STRING data analysis, the direct connection between FGFBP2 and FGF2 suggested a physical or functional interaction, with FGFBP2 binding to FGF2 and facilitating its release from the extracellular matrix, thereby enhancing its signaling activity. However, the binding between these both factors after FGFBP2 mutation remains uncertain. Our results show that FGF2 expression was also downregulated in fibroblasts with mutated FGFBP2. Fibroblast growth factor (FGF) signaling plays a crucial role in the activation of fibroblasts^{18, 48}. Inoue et al.¹⁰⁸ found that mast cell-derived basic fibroblast growth factor (bFGF) promoted fibrogenic and proliferative effects on smooth muscle cell/myofibroblast-like cells in idiopathic pulmonary fibrosis (IPF) and lymphangioleiomyomatosis (LAM) through its receptors. Strutz et al¹⁰⁹ showed that FGF-2 expression correlated with interstitial scarring in the kidney and promoted fibroblast growth and proliferation, particularly in interstitial and tubular cells, which may have contributed to renal fibrosis. These results were opposite to ours, as FGF2 was downregulated in fibroblasts with FGFBP2 mutation. However, Ishiguro et al.¹¹⁰ identified that bFGF was a potent inhibitor of alpha-SMA expression in myofibroblasts, both in vitro and in vivo, likely through the activation of extracellular signal-regulated kinase 1/2 and the promotion of apoptosis, which led to a reduction in the myofibroblastic area. Dolivo et al.¹¹¹ reported that FGF2 inhibited TGF β -mediated fibroblast activation and myofibroblast transition, reduced the expression of myofibroblast markers and promoted more rapid cell proliferation. Interestingly, these results were consistent with ours. Bordignon et al.¹¹² demonstrated that FGF and TGF- β signaling opposed regulation of CAF effector genes in human dermal fibroblasts, with differential effects on cancer cell proliferation, invasion, epithelial-mesenchymal transition and macrophage infiltration, indicating distinct roles for these signaling pathways in cancer development. This

may explain why FGF2 has different effects on the formation of fibroblasts with different roles.

5.5 Relations to ERK1/2 signaling

CAFs secreted cytokines that are taken up by cancer cells may promote effective proliferation in vitro by triggering critical signaling pathways, such as MAPK, through factors like IL-6, FGF and TGF- β ⁸². FGF2 bound to its receptor (FGFR), leads to the activation of the MAPK/ERK cascade, which promotes gene expression changes essential for growth and development⁴⁹. The ERK signaling pathway plays a critical and complex role in mediating interactions between cancer-associated fibroblasts (CAFs) and tumor cells. Neufert et al.¹¹³ showed that epiregulin (EREG) expression was upregulated in colitis-associated colorectal cancer, with tumor-associated fibroblasts being a major source of EREG, which promoted tumor growth through ERK activation and epithelial cell proliferation. Kikuchi et al.¹¹⁴ found that periostin (POSTN) produced by cancer-associated fibroblasts promoted gastric cancer growth by increasing cancer cell proliferation and activating the ERK pathway. Our investigations with conditioned medium revealed that ERK1/2 phosphorylation was significantly enhanced in PANC-1 cells treated medium derived from FGFBP2 mutant group. This suggested that cytokines secreted by FGFBP2-mutant fibroblasts altered cancer cell behavior through increased ERK1/2 phosphorylation. Although FGF2 expression was downregulated in the FGFBP2-mutant group, other cytokines could promote the observed changes in ERK1/2 phosphorylation. Ando et al.¹¹⁵ showed that eicosatetraenoic acid (EPA) reduced cancer angiogenesis in colon cancer-associated fibroblasts (CAFs) by inhibiting IL-6 and VEGF secretion and ERK phosphorylation. Further detailed studies are required to clarify these complex interactions and identify the key factors involved.

In conclusion, our results demonstrate that the analyzed FGFBP2 mutation promotes fibroblast activation and enhances pancreatic cancer cell proliferation. Mechanistically, this effect may be mediated through upregulation of EHF and activation of the cell cycle pathway in pancreatic cells. Additionally, fibroblastic FGFBP2 mutation appears to influence pancreatic cancer cells

by modulating ERK1/2 phosphorylation levels. Our study reveals a novel molecular mutation that drives the crosstalk between tumor cells and fibroblasts, promoting pancreatic cancer cells and supporting the development of more effective therapeutic strategies.

6. References

- 1.Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. *CA Cancer J Clin* 2022;72:7-33.
- 2.Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm. *Gut* 2015;64:1476-84.
- 3.Conroy T, Castan F, Lopez A, et al. Five-Year Outcomes of FOLFIRINOX vs Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. *JAMA Oncol* 2022;8:1571-1578.
- 4.Hu ZI, O'Reilly EM. Therapeutic developments in pancreatic cancer. *Nat Rev Gastroenterol Hepatol* 2024;21:7-24.
- 5.Lavania S. Delivering a Double Whammy: Targeting Stroma to Improve Immunotherapy Outcomes in Pancreatic Ductal Adenocarcinoma. *Gastroenterology* 2022;163:1159-1161.
- 6.Ahmad RS, Eubank TD, Lukomski S, et al. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. *Biomolecules* 2021;11.
- 7.Looi CK, Chung FF, Leong CO, et al. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. *J Exp Clin Cancer Res* 2019;38:162.
- 8.Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. *J Biomed Sci* 2022;29:83.
- 9.Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. *Nat Rev Clin Oncol* 2020;17:527-540.
- 10.Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. *Am J Surg Pathol* 2001;25:579-86.
- 11.Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. *Nat Rev Dis Primers* 2016;2:16022.
- 12.Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. *Nat Rev Gastroenterol Hepatol* 2020;17:487-505.
- 13.Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. *Cell* 2009;139:891-906.
- 14.Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. *Cancer Res* 2008;68:918-26.
- 15.Kalluri R. The biology and function of fibroblasts in cancer. *Nat Rev Cancer* 2016;16:582-98.
- 16.Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. *J Exp Med* 2017;214:579-596.
- 17.Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. *Adv Drug Deliv Rev* 2016;99:186-196.
- 18.Plikus MV, Wang X, Sinha S, et al. Fibroblasts: Origins, definitions, and functions in health and disease. *Cell* 2021;184:3852-3872.
- 19.Elyada E, Bolisetty M, Laise P, et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer Discov* 2019;9:1102-1123.
- 20.Liang G, Oh TG, Hah N, et al. Inhibiting stromal Class I HDACs curbs pancreatic cancer progression. *Nat Commun* 2023;14:7791.
- 21.Mazzeo L, Ghosh S, Di Cicco E, et al. ANKRD1 is a mesenchymal-specific driver of cancer-associated

fibroblast activation bridging androgen receptor loss to AP-1 activation. *Nat Commun* 2024;15:1038.

22. Dominguez CX, Müller S, Keerthivasan S, et al. Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15(+) Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. *Cancer Discov* 2020;10:232-253.

23. Raymant M, Astuti Y, Alvaro-Espinosa L, et al. Macrophage-fibroblast JAK/STAT dependent crosstalk promotes liver metastatic outgrowth in pancreatic cancer. *Nat Commun* 2024;15:3593.

24. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. *Exp Cell Res* 1999;250:273-83.

25. Hinz B, Celetta G, Tomasek JJ, et al. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. *Mol Biol Cell* 2001;12:2730-41.

26. Liu T, Han C, Wang S, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. *J Hematol Oncol* 2019;12:86.

27. Thinyakul C, Sakamoto Y, Shimoda M, et al. Hippo pathway in cancer cells induces NCAM1(+)αSMA(+) fibroblasts to modulate tumor microenvironment. *Commun Biol* 2024;7:1343.

28. Scanlan MJ, Raj BK, Calvo B, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. *Proc Natl Acad Sci U S A* 1994;91:5657-61.

29. Park JE, Lenter MC, Zimmermann RN, et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. *J Biol Chem* 1999;274:36505-12.

30. Franco OE, Shaw AK, Strand DW, et al. Cancer associated fibroblasts in cancer pathogenesis. *Semin Cell Dev Biol* 2010;21:33-9.

31. Bae S, Park CW, Son HK, et al. Fibroblast activation protein alpha identifies mesenchymal stromal cells from human bone marrow. *Br J Haematol* 2008;142:827-30.

32. Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. *Proc Natl Acad Sci U S A* 2013;110:20212-7.

33. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. *J Pathol* 2003;200:500-3.

34. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. *Nat Rev Mol Cell Biol* 2002;3:349-63.

35. Janbandhu V, Tallapragada V, Patrick R, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. *Cell Stem Cell* 2022;29:281-297.e12.

36. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. *Cell* 2010;140:883-99.

37. Biffi G, Oni TE, Spielman B, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGF β to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. *Cancer Discov* 2019;9:282-301.

38. Kalluri R, Zeisberg M. Fibroblasts in cancer. *Nat Rev Cancer* 2006;6:392-401.

39. De Francesco EM, Lappano R, Santolla MF, et al. HIF-1 α /GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). *Breast Cancer Res* 2013;15:R64.

40. Madsen CD, Pedersen JT, Venning FA, et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. *EMBO Rep* 2015;16:1394-408.

41. Mucciolo G, Araos Henríquez J, Jihad M, et al. EGFR-activated myofibroblasts promote metastasis of

pancreatic cancer. *Cancer Cell* 2024;42:101-118.e11.

42.Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. *Endocr Relat Cancer* 2000;7:165-97.

43.Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. *Cytokine Growth Factor Rev* 2005;16:159-78.

44.Ogawa K, Tanaka K, Ishii A, et al. A novel serum protein that is selectively produced by cytotoxic lymphocytes. *J Immunol* 2001;166:6404-12.

45.Yamanaka R, Arao T, Yajima N, et al. Identification of expressed genes characterizing long-term survival in malignant glioma patients. *Oncogene* 2006;25:5994-6002.

46.Elgaaen BV, Haug KB, Wang J, et al. POLD2 and KSP37 (FGFBP2) correlate strongly with histology, stage and outcome in ovarian carcinomas. *PLoS One* 2010;5:e13837.

47.Gibby KA, McDonnell K, Schmidt MO, et al. A distinct role for secreted fibroblast growth factor-binding proteins in development. *Proc Natl Acad Sci U S A* 2009;106:8585-90.

48.Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. *Signal Transduct Target Ther* 2020;5:181.

49.Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. *Wiley Interdiscip Rev Dev Biol* 2015;4:215-66.

50.Boker V, Haussler J, Baumann J, et al. Analysis of genomic alterations in cancer associated human pancreatic stellate cells. *Sci Rep* 2022;12:13532.

51.Parma L, Peters HAB, Sluiter TJ, et al. bFGF blockade reduces intraplaque angiogenesis and macrophage infiltration in atherosclerotic vein graft lesions in ApoE3*Leiden mice. *Sci Rep* 2020;10:15968.

52.Akl MR, Nagpal P, Ayoub NM, et al. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. *Oncotarget* 2016;7:44735-44762.

53.Noh KH, Kim SH, Kim JH, et al. API5 confers tumoral immune escape through FGF2-dependent cell survival pathway. *Cancer Res* 2014;74:3556-66.

54.Kraus I, Besong Agbo D, Otto M, et al. Detection and Differentiation of Threonine- and Tyrosine-Monophosphorylated Forms of ERK1/2 by Capillary Isoelectric Focusing-Immunoassay. *Sci Rep* 2015;5:12767.

55.Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? *Cell Cycle* 2009;8:1168-75.

56.Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. *Signal Transduct Target Ther* 2023;8:455.

57.Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. *Cell* 2017;169:381-405.

58.Yang J, Cron P, Good VM, et al. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. *Nat Struct Biol* 2002;9:940-4.

59.Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. *Oncogene* 2005;24:7455-64.

60.Sizemore GM, Pitarresi JR, Balakrishnan S, et al. The ETS family of oncogenic transcription factors in solid tumours. *Nat Rev Cancer* 2017;17:337-351.

61.Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. *Molecules* 2018;23.

62.Sakamoto K, Endo K, Sakamoto K, et al. EHF suppresses cancer progression by inhibiting ETS1-

mediated ZEB expression. *Oncogenesis* 2021;10:26.

63. Shi J, Qu Y, Li X, et al. Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. *Cell Death Dis* 2016;7:e2442.

64. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. *Nucleic Acids Res* 2017;45:W98-w102.

65. Hao Y, Stuart T, Kowalski MH, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. *Nat Biotechnol* 2024;42:293-304.

66. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. *Omics* 2012;16:284-7.

67. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* 2016;352:189-96.

68. Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. *Nat Protoc* 2025;20:180-219.

69. Caligiuri G, Tuveson DA. Activated fibroblasts in cancer: Perspectives and challenges. *Cancer Cell* 2023;41:434-449.

70. Bulle A, Lim KH. Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. *Signal Transduct Target Ther* 2020;5:249.

71. Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. *Signal Transduct Target Ther* 2021;6:263.

72. Reehorst CM, Nightingale R, Luk IY, et al. EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses Apc-initiated colonic tumorigenesis. *Development* 2021;148.

73. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. *Nat Rev Mol Cell Biol* 2022;23:74-88.

74. Chen K, Wang Q, Liu X, et al. Immune profiling and prognostic model of pancreatic cancer using quantitative pathology and single-cell RNA sequencing. *J Transl Med* 2023;21:210.

75. Xie Y, Zhou T, Li X, et al. Targeting ESE3/EHF With Nifurtimox Inhibits CXCR2(+) Neutrophil Infiltration and Overcomes Pancreatic Cancer Resistance to Chemotherapy and Immunotherapy. *Gastroenterology* 2024;167:281-297.

76. Oh K, Yoo YJ, Torre-Healy LA, et al. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. *Nat Commun* 2023;14:5226.

77. Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. *Cell Res* 2019;29:725-738.

78. Ge W, Wang Y, Quan M, et al. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib. *Mol Cancer* 2024;23:48.

79. Pandey P, Khan F, Upadhyay TK, et al. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. *Biomed Pharmacother* 2023;161:114491.

80. Manzat Saplakan RM, Balacescu L, Gherman C, et al. The Role of PDGFs and PDGFRs in Colorectal Cancer. *Mediators Inflamm* 2017;2017:4708076.

81. Ren X, Li L, Wu J, et al. PDGF-BB regulates the transformation of fibroblasts into cancer-associated fibroblasts via the lncRNA LURAP1L-AS1/LURAP1L/IKK/IkB/NF- κ B signaling pathway. *Oncol Lett* 2021;22:537.

82.Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. *Cell* 2023;186:1580-1609.

83.Yao L, Rathnakar BH, Kwon HR, et al. Temporal control of PDGFR α regulates the fibroblast-to-myofibroblast transition in wound healing. *Cell Rep* 2022;40:111192.

84.Okuyama K, Yamashita M, Koumoundourou A, et al. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. *Nat Immunol* 2024;25:2284-2296.

85.Yan Z, Ohuchida K, Fei S, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. *J Exp Clin Cancer Res* 2019;38:221.

86.Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. *Nat Rev Cancer* 2020;20:174-186.

87.Ringuette Goulet C, Bernard G, Tremblay S, et al. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGF β Signaling. *Mol Cancer Res* 2018;16:1196-1204.

88.Shangguan L, Ti X, Krause U, et al. Inhibition of TGF- β /Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. *Stem Cells* 2012;30:2810-9.

89.Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. *Semin Cancer Biol* 2014;25:15-22.

90.Erez N, Truitt M, Olson P, et al. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. *Cancer Cell* 2010;17:135-47.

91.Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. *Nat Cell Biol* 2013;15:637-46.

92.Shen T, Li Y, Zhu S, et al. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. *J Exp Clin Cancer Res* 2020;39:36.

93.Omary MB, Lugea A, Lowe AW, et al. The pancreatic stellate cell: a star on the rise in pancreatic diseases. *J Clin Invest* 2007;117:50-9.

94.Chatterjee S, Bhat V, Berdnikov A, et al. Paracrine Crosstalk between Fibroblasts and ER(+) Breast Cancer Cells Creates an IL1 β -Enriched Niche that Promotes Tumor Growth. *iScience* 2019;19:388-401.

95.Raghavan S, Winter PS, Navia AW, et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. *Cell* 2021;184:6119-6137.e26.

96.Yang D, Liu J, Qian H, et al. Cancer-associated fibroblasts: from basic science to anticancer therapy. *Exp Mol Med* 2023;55:1322-1332.

97.Zhang J, Chen B, Li H, et al. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. *J Pathol* 2023;259:205-219.

98.Toti A, Santi A, Pardella E, et al. Activated fibroblasts enhance cancer cell migration by microvesicles-mediated transfer of Galectin-1. *J Cell Commun Signal* 2021;15:405-419.

99.Shu Z, Fan M, Tu B, et al. The Lin28b/Wnt5a axis drives pancreas cancer through crosstalk between cancer associated fibroblasts and tumor epithelium. *Nat Commun* 2023;14:6885.

100.Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. *Int J Mol Sci* 2021;22.

101.Dang F, Nie L, Wei W. Ubiquitin signaling in cell cycle control and tumorigenesis. *Cell Death Differ*

2021;28:427-438.

102. Feldmann K, Maurer C, Peschke K, et al. Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology. *Gastroenterology* 2021;160:346-361.e24.
103. Luk IY, Jenkins LJ, Schoffer KL, et al. Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. *Cell Death Differ* 2022;29:2288-2302.
104. Chen Y, Zhu S, Liu T, et al. Epithelial cells activate fibroblasts to promote esophageal cancer development. *Cancer Cell* 2023;41:903-918.e8.
105. Zhao T, Xiao D, Jin F, et al. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1 β /NF- κ B/ESE3 signalling axis. *Br J Cancer* 2022;127:1461-1472.
106. Donovan J, Shiwen X, Norman J, et al. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. *Fibrogenesis Tissue Repair* 2013;6:10.
107. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis. *Nat Commun* 2020;11:5120.
108. Inoue Y, King TE, Jr., Barker E, et al. Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. *Am J Respir Crit Care Med* 2002;166:765-73.
109. Strutz F, Zeisberg M, Hemmerlein B, et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. *Kidney Int* 2000;57:1521-38.
110. Ishiguro S, Akasaka Y, Kiguchi H, et al. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. *Wound Repair Regen* 2009;17:617-25.
111. Dolivo DM, Larson SA, Dominko T. FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. *J Dermatol Sci* 2017;88:339-348.
112. Bordignon P, Bottone G, Xu X, et al. Dualism of FGF and TGF- β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. *Cell Rep* 2019;28:2358-2372.e6.
113. Neufert C, Becker C, Türeci Ö, et al. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. *J Clin Invest* 2013;123:1428-43.
114. Kikuchi Y, Kunita A, Iwata C, et al. The niche component periostin is produced by cancer-associated fibroblasts, supporting growth of gastric cancer through ERK activation. *Am J Pathol* 2014;184:859-70.
115. Ando N, Hara M, Shiga K, et al. Eicosapentaenoic acid suppresses angiogenesis via reducing secretion of IL-6 and VEGF from colon cancer-associated fibroblasts. *Oncol Rep* 2019;42:339-349.

7. Theses

1. Somatic point mutation p.T186S (replacement of guanine to cytidine) in Fibroblast Growth Factor Binding Protein 2 (FGFBP2) is related to increased expression of fibroblast activation marker α -SMA as well as cytokines IL-6, TNF- α , and TGF- β , indicating the activated state of mutated fibroblasts.
2. Fibroblasts carrying somatic point mutation p.T186S in FGFBP2 reveal augmented proliferation rates and increased motility.
3. Treatment of pancreatic cancer cells PANC-1 with conditioned medium derived from mutated fibroblasts leads to elevated proliferation rates, upregulation of cancer-associated ETS homologous factor (EHF) and alterations in cell cycle progression.
4. Somatic point mutation p.T186S in FGFBP2 leads to decreased expression of Fibroblast Growth Factor 2 (FGF2).
5. Treatment of pancreatic cancer epithelial cells PANC-1 with conditioned medium derived from mutated fibroblasts enhances ERK1/2 signaling activation through protein phosphorylation.
6. Bioinformatic analyses of intercellular signaling pathways and ligand–receptor interactions reveal that fibroblasts are affected by EHF in a Platelet Derived Growth Factor (PDGF) signaling manner.
7. Somatic point mutation p.T186S in FGFBP2 is related with altered cytokine expression which in turn may affect the tumor microenvironment and promote invasive potential of pancreatic cancer epithelial cells.

Affidavit

I hereby declare, the submitted thesis entitled "**Impact of fibroblastic FGBP2 mutation on pancreatic carcinogenesis**" is my work. The work presented in this thesis was carried out between 11/2021 and 11/2024 under the supervision of Prof. Dr. Jörg Kleeff, PD Dr. Bogusz Trojanowicz and Dr. Yoshiaki Sunami, Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle (Saale).

The data presented in this thesis is entirely original, collected by me, and has not been previously submitted or presented as part of any university examination. Furthermore, I declare that neither the thesis nor any part of it has been used for obtaining a degree at any other university. All data and materials from external sources have been properly referenced, with appropriate attribution provided wherever material has been cited or utilized.

Halle (Saale), 03.02.2025

Xing Wu _____

Place, date

Signature of the applicant

Acknowledgements

During my time living and studying in Germany, I would like to thank many people for joining me on my life's journey and for their help and guidance over these three years.

First, I would like to thank my supervisor, Prof. Dr. Jörg Kleeff, for giving me the opportunity to study in Germany. Throughout these three years, whenever I encountered problems in my experiments, he was always patient and provided meticulous guidance.

Many thanks to my co-supervisor, PD Dr. Bogusz Trojanowicz, for taking care of me in the laboratory, for his suggestions regarding the research project and for his experimental guidance. Many thanks also to Dr. Sunami for the guidance on the experimental. I would also like to special thanks to Bernadette Harwardt for her care in my daily life and for her guidance in my experimental steps. Many thanks to my group colleagues for their generous support and assistance throughout my work.

I would like to thank my parents and family for their constant and selfless support. I am especially grateful to my parents for their unconditional love, no matter where I am.

Many thanks to the Scholarship Council of the Ministry of China for funding my studies, and to the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for supporting my research through the research grant Foundation [GRK 2751 InCuPanC] 449501615.