PLO\S\*\'- One

L)

Check for
updates

E OPEN ACCESS

Citation: Porthun J, Wienke A (2025)
Comparison of multivariable methods for
determining cutpoints of biomarkers in the
context of survival time analyses: A simulation
study with practical applications to survival
data. PLoS One 20(12): e0338425. https://doi.
0rg/10.1371/journal.pone.0338425

Editor: Vidhura S Tennekoon, Indiana University
Indianapolis, UNITED STATES OF AMERICA

Received: July 7, 2025
Accepted: November 22, 2025
Published: December 5, 2025

Copyright: © 2025 Porthun, Wienke. This is an
open access article distributed under the terms
of the Creative Commons Attribution License,
which permits unrestricted use, distribution,
and reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All relevant data
are within the manuscript.

Funding: The author(s) received no specific
funding for this work.

RESEARCH ARTICLE

Comparison of multivariable methods for
determining cutpoints of biomarkers in the
context of survival time analyses: A simulation
study with practical applications to survival data

Jan Porthun@®'?*, Andreas Wienke(?

1 Norwegian University of Science and Technology, Gjgvik, Norway, 2 Institute of Medical Epidemiology,
Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany

* jan.porthun@ntnu.no

Abstract

Introduction

Survival time models are commonly employed in medicine and health sciences when
analysing data. In these time-to-event analyses, it is often necessary to dichotomise
variables that are metrically measured. One example could be to assign patients to
different risk groups based on an occurring event. Besides univariable methods, mul-
tivariable approaches also exist for establishing cutpoints. Up to now, these multivari-
able approaches have hardly been investigated.

Methods

Using a Monte Carlo simulation study, we analysed eight multivariable methods from the
literature to establish a cutpoint of a biomarker in the context of a semiparametric Cox
regression model. The methods are the following: maximising the chi-square statistic,
maximising the chi-square statistic with a split-sample approach, maximising the c-index
using either the AddFor- or Genetic algorithm, maximising the concordance probability
estimator (CPE) with the AddFor- or Genetic algorithm, and minimising the Akaike infor-
mation criterion (AIC). We compared these methods with each other and in addition with
the univariable log-rank minimum p-value approach. The simulation parameters analysed
included the cutpoint’s distance from the biomarker’'s median, sample size, total cen-
soring, censoring before the end of the follow-up time (drop-outs), and the survival time
distribution. Bias and empirical standard error were used as the primary performance
measures. Furthermore, each method is illustrated using two practical data examples.

Results

All analysed methods are biased towards the biomarker’s median. Multivariable
methods that estimate the cutpoint by using the lowest AIC or the maximum of the
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chi-square statistic have the lowest bias and empirical standard error in most simu-
lation scenarios. The difference in bias between the methods based on maximising
the c-index or maximising the CPE is minimal. Regardless of the distribution used
(Weibull, Gompertz, or exponential), the respective bias shows similar dependencies
on the simulation parameters.

Conclusions

Multivariable methods to estimate a biomarker’s cutpoint in survival time analyses
using the Cox regression model may represent a good alternative to univariable
methods. Our simulation has shown that methods maximising the chi-square statistic
or minimising the AIC, respectively, perform better than the univariable method using
the minimum p-value approach and outperform multivariable methods based on the
c-index or CPE.

Introduction

Survival models are regularly used in medical research as well as in research within
the field of health sciences [1]. Their usage refers not only to analyses concerning
the survival of patients over a certain period, but also to other time-to-event analy-
ses. One example could be the time span of release from the hospital after surgery;
another the time period between an intervention and the absence of symptoms
afterwards. The semiparametric Cox proportional hazards model is often applied
here [1,2]. It is not bound to specific distribution parameters, and estimated hazard
ratios (HRs) allow reliable conclusions to be drawn, provided that the effect remains
constant over time [3]. In relation to survival models, cutpoints of metrical biomarkers
are regularly established [4—6]. Cutpoints are used, for instance, to divide patients
into groups with different survival expectations depending on the levels of a spe-
cific biomarker [7]. This is utilised in clinical studies in which stratification is based

on covariates [8,9]. In the literature, the terms ‘threshold’ or ‘changepoint’ are also
used instead of cutpoint [10—12]. Cutpoints are also important in everyday clinical
work. The interpretation of metric biomarkers is often done via established cutpoints.
One of the most known illustrations is the category for which systolic and diastolic
blood pressure is interpreted. According to the Guideline for the Prevention, Detec-
tion, Evaluation, and Management of High Blood Pressure in Adults of the American
College of Cardiology and the American Heart Association, a systolic blood pressure
<120 mmHg combined with a diastolic blood pressure <80 mmHg is considered
‘normal’ [13]. An exemplification of the formation of cutpoints in the context of survival
time analyses is the study of Otten et al. with advanced-stage non-small cell lung
cancer patients. They investigated the prognostic potential of immune checkpoint
inhibitor clearance and determined the cutpoint for nivolumab clearance at 27.3mL/h
at first dose. Patients whose nivolumab clearance was below the cutpoint had a
higher risk of death [14].
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The dichotomisation or stratification of metric variables with the help of cutpoints is associated with a loss of information
and power in the context of statistical analyses. Therefore, it should always be carefully weighed up, whether the forma-
tion of cutpoints is necessary [15,16].

As part of our research, we were preoccupied with the question of estimating cutpoints in the context of survival analy-
ses using the Cox regression model. We focused on application areas, where data sets of up to 1000 patients are avail-
able. In these cases, Al-based analyses have been only helpful to a limited extent due to the small number of subjects.

In the following, we always refer to the scenario, that a cutpoint of a biomarker is determined in the context of survival
analysis using Cox regression for right-censored data.

Different methods are suggested for this purpose in the literature. One classic method uses the biomarker’s median
or quartile boundaries as a cutpoint [17]. Another frequently applied method is the minimum p-value approach [18]. Two
subgroups are formed at all potential cutpoints of the biomarker. Based on these two groups, a log-rank test is executed.
The value of the biomarker, at which the p-value of the log-rank test is the smallest, is used as the cutpoint. This approach
considers the observation time and status in addition to the distribution of the biomarker.

Studies published from 2003 to 2022 dealt with the formation of cutpoints in a multivariable setting within the frame-
work of Cox regression. The researchers who published these studies suggested to consider not only the biomarker to
be dichotomised but also other relevant covariates [19-22]. Thus, the determination of the cutpoint is carried out within
the framework of a multivariable setting. Different procedures have been proposed for this. The authors of these multi-
variable methods argue that multivariable methods are superior to univariable methods that only consider the biomarker
itself. They explain this by stating that a more precise estimate of the true cutpoint is expected. This is the case because
the model includes other variables that contribute to the variability of the dependent variable [22]. All multivariable meth-
ods have in common that the biomarker, for which a cutpoint is to be determined, is included with other cofactors in a
multivariable Cox regression model. Based on these Cox regression models, different parameters are used to determine
and choose the cutpoint within the framework of the methods proposed in the literature. The different methods are listed
below, having been added with abbreviations.

Method A) Maximising the chi-square statistic with a twofold cross-validation approach (max x?)

Separate Cox regression models are calculated for all possibilities to dichotomise the biomarker under consideration. The
cutpoint is used, for which the Cox regression model’s chi-square statistic assumes the largest value. This method is a
modification of the approach described by Mazumdar et al. The corresponding p-values and hazard ratios are determined
through a twofold cross-validation [22].

Method B) Maximising the chi-square statistic with a split-sample approach (max x? split-sample)

This method also determines the cutpoint based on the maximum chi-square value. However, only half of the data set is
used for this purpose. The p-values and hazard ratios are estimated with the other half of the dataset [22].

Method C) Maximising the c-index with the AddFor- or Genetic algorithm (c-index AddFor/ Genetic)

The cutpoint, for which the c-index takes the largest value, is chosen. Either the AddFor (method C1) or genetic algorithm
(method C2) can be used [19].

Method D) Maximizing of the concordance probability estimator (CPE) with the AddFor- or Genetic algorithm
(CPE AddFor/ Genetic)

The maximum of the CPE is the basis for determining the cutpoint. When using the CPE, either the AddFor (method D1)
or genetic algorithm (method D2) can be used [19].
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Method E) Minimum of the AIC (min AIC)

The cutpoint of the biomarker is the value, at which the AIC has its lowest value for the respective Cox regression model.
The dichotomised variable can be included in the Cox regression model either as a covariate (method E1) or as a strata
variable (method E2) [21].

The authors of the described methods (A, B, C1, C2, D1, D2, E1, and E2) have investigated them in the context of sim-
ulation studies [19,21,22]. Mazumdar et al. compared methods A and B with each other; additionally with the univariable
minimum p-value approach. They conclude that the multivariable method A (max x?) is more efficient in finding the cutpoint
than the univariable method [22]. In the context of the multivariable methods, they prefer the cross-validation approach to
estimate HRs and p-values and not method B (max x? split-sample). In the latter only half of the dataset is used to deter-
mine the cutpoint. The authors generated the survival times utilising an exponential distribution. Barrio and colleagues
compared the Genetic algorithm-based methods C2 and D2 [19]. They did not examine the AddFor algorithm. Based on
their simulation study, these authors recommend using either the c-index or CPE for less than 50% censoring rates and
the c-index for higher censoring rates. In their simulation, the survival times were generated using a Weibull distribution.

According to our research, no study has been published concerning the determination of a cutpoint for a metric bio-
marker within the context of survival analyses, wherein various variants of multivariable methods (A to E2) are compared
to one another. Furthermore, in the existing simulation studies, the generated survival times are solely based on one
specific distribution: either an exponential or a Weibull distribution.

Our main objective is to compare all methods identified in the literature for determining a cutpoint based on a metric
biomarker within a Monte Carlo simulation study. These include the methods previously described (A, B, C1, C2, D1, D2,
E1 and E2). We aim to ascertain whether it is feasible to identify a cutpoint using these methods. Additionally, we will
compare these methods to the univariable approach using the minimum p-value method (method F). We also illustrate all
methods on two real clinical data examples.

Materials and methods

The simulation study follows the recommendations by Morris et. al. [23].

Simulation design

The entire simulation was performed for a Cox proportional hazard model with right-censored data. The corresponding
model is

h(t, X, Z'; BX, B') =hO(t) exp {BX X + B Z‘}, (1)

with h(t) as baseline hazard function at time t and the predictor variables X and Z". For the simulation, right-censored
survival times T, with max=1 were generated with the help of the R-Package Simsurv [24]. According to Bender et al.,
Weibull and Gompertz distributions were also considered in addition to exponential distribution [25]. For the associ-

ated formulas to determine T, the detailed descriptions are referred to [25]. Four variables were included in the model
(Formula 1). The continuous biomarker X, a binary covariate Z,, and two continuous covariates Z, and Z, (See Fig 1).
The associated betas are: g, =In(3), 8,,=In(2), B,,=In(0.5) and B,,=In(2). A true cutpoint 6 was used to dichotomise the
biomarker X in a binary variable X, with X, =0 if X<6 and X,=1 if X>6. The individual censoring times C have a uniform
distribution U[M. The parameter pc, was used to control the total number of censoring proportion. To distinguish between
administrative censoring before the end of the follow-up time and at the end of the follow-up time, the parameter pc, is
used. The final follow-up times are T=min(T, C). An overview of the simulation parameters can be found in the flow
diagram (Fig 1). The combination of all these parameters results in a total of 162 simulation scenarios. Fig 2 shows three
examples of generated censored survival times (Fig 2).
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:
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‘:o . 6a = Maximizing chi-square statistic culpoint
é’ 'g s = Maximizing chi-square statistic (split-sample approach)
= =
% § ) B¢+ = Maximizing c-index with AddFor algorithm
8% 2 Oc2 = Maximizing c-index with Genetic algorithm
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-g g o Op2 = Maximizing CPE with Genetic algorithm
gos
o g -
3 % g1 = Minimum AIC
L. A » o cutpoint
s 02 = Minimum AIC with biomarker X as strata
=T
(7} =
9 w ) O = Univariable, minimum p-value approach | maxstat

Fig 1. Flow diagram of the simulation study and software used. AIC; Akaike information criterion; cp, cutpoint; CPE, concordance probability estima-
tor; n .., sample size; pc, total censoring; pc,, censoring before end of follow-up time in percent of total censoring (pc); n,, repetitions; 6, true cutpoint.

obs’ sim’

https://doi.org/10.1371/journal.pone.0338425.9001
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Kaplan-Meier survival estimates
100% A

—~
°

Gompertz Simulation parameters:
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~

Censoring:  pct = 20%
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75% pcr =50% of pce

50% Sample size nobs = 500
True cutpoint® =0.7

25%

Cumulative Survival
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Fig 2. Examples of Kaplan-Meier curves with 95% CI for the three types of distributions. Gompertz distribution with a=0.003, b=0.098; Weibull
distribution with y=1.5, A=0.1; Exponential distribution with scale parameter=0.2; Cl, Confidence interval; n ,, sample size, pc, total censoring; pc,
censoring before end of follow-up time in percent of total censoring (pc)); 6, true cutpoint.

https://doi.org/10.1371/journal.pone.0338425.9002

The generated datasets contain the variables follow-up time, event (no=0, yes=1), the biomarker Xin its original con-
tinuous form, and the covariates Z,, Z, and Z_. All datasets are employed to estimate the true cutpoint 6 of the biomarker
X using the multivariable methods mentioned above (A, B, C1, C2, D1, D2, E1, and E2) as well as the univariable mini-
mum p-value approach (method F) (see Table 1). The estimated cutpoints are referred to as Oa, O, Oc1, Oca, b1, o2, OEn,
fg2 and G — following the methods’ names and introduced above (see Table 1 and Fig 1).

The respective cutpoints 6 for the methods C1, C2, D1, and D2 are estimated using the R-package CatPredi [26]. For the
calculation of the cutpoint 0 of the univariate method (minimum p-values approach), the R package maxstat, was used [27].
Cutpoints for methods A, B, E1, and E2 were estimated using the R package cutpoint [28]. The Cox regression models were
calculated for all possible variants to dichotomise the biomarker. The covariates Z,, Z,, and Z, are part of the Cox regression
models. éA and éB are estimated from the Cox regression model with the highest chi-square statistic. For method B, only half
of the data set was included. In the context of methods E1 and E2, the corresponding cutpoints fg4 and fg, were estimated
from this Cox regression model with the lowest AIC. For method E1, X, was a variable in the Cox regression model. For
method E2, X was used as a strata variable. The performance metrics — derived from the simulations — are presented in
both tabular and graphical formats. In addition to boxplots, we utilised a nested loop plot for our visual representation [29].

Performance measures

We assessed the bias, empirical standard error (EmpSE), mean squared error (MSE), and relative precision gain versus
the method with the lowest EmpSE. The corresponding Monte Carlo Standard errors (MCSEs) were determined for all
performance measures. The estimated performance measures are defined as follows:

Bias — —— SOm G — 4.

Nsim
1 Nsim (. _ 2
EmpSE = \/nm_1 = (6,-9)"

Relative % increase in precision (e.g., method A vs method B) = 100 <

~ 2
EmpSE,\
EmpSEj
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Table 1. Overview and brief description of the simulation methods used.

Simulation | Estimated | Short description
method cutpoints

A a Maximising the chi-square statistic involves selecting the cutpoint that yields the
highest chi-square from a multivariable Cox model. The statistic is computed
for all potential cutpoints of the variable, and the optimal one maximises the
chi-square. [22]

B g Maximising chi-square statistic on half the data set
(split-sample approach). [22]

C1 The c-index, also known as Harrell's C, serves as a global measure of concor-
dance probability. The optimal cutpoint is the value where the c-index reaches

its maximum. For this, the AddFor algorithm is used. [19]

Cc2 ) Maximising Harrell's C (c-index) using the Genetic algorithm. [19]

D1 ) Maximising the concordance probability estimator (CPE) using the AddFor
algorithm. This method determines the cutpoint at which the CPE attains its
maximum value. [19]

D2 ) Maximising the concordance probability estimator (CPE) using the Genetic
algorithm. [19]

E1 e Minimum AIC. The cutpoint is the value at which the Akaike information criterion
(AIC) reaches its minimum in the multivariable Cox model. To determine this,
the metric variable is dichotomised at all possible cutpoints. The resulting
binary variable replaces the original continuous variable as a covariable in the
model. [21]

E2 ) Minimum AIC, with the biomarker as strata. The procedure is similar to that of
method E1. However, the dichotomised variable is utilised as a strata variable
in the Cox regression model. [21]

F O Minimum p-value approach (univariable). A systematic cutpoint search is used
in a univariable setting to determine the cutpoint, which is related to the small-
est p-value of the log-rank test. [18]

The table presents the acronyms of various simulation methods used, along with a brief description and
their reference numbers.

https://doi.org/10.137 1/journal.pone.0338425.t001

MSE — —— s (- 9)2

Nsim

For details on the estimates of the performance measures and their Monte Carlo Standard Error, see [23]. Our most
important performance measures are the bias and the EmpSE. Barrio and colleagues, who investigated the methods C2
and D2 in their simulation study, reported standard deviations (SDs) ranging from 0.010 to 0.096 for the means of their
cutpoint estimates [19]. Following the practical example of Morris et al. [23], we also have decided that the Monte Carlo
SE of the bias should be lower than 0.005. Applying the formula in the same way as Morris et al. for calculating n_, and
using the maximum SD of Barrio et al. (SD=0.096), we get a required number of simulations n__of 369. As we do not
know the SDs for the other methods, we have opted for a conservative approach and set n_,_=500.

Results

In the 81,000 datasets (500 simulations x 162 scenarios), a maximum of 60 values for each method is missing for f.1n
these cases, no cutpoints were found using the R package CatPredi. The missing ones are distributed among the meth-
ods as followed: C1: 19, C2: 48, D1: 18, D2: 60, meaning 0.022 to 0.074 percent per method. Methods A and E1 yield
similar results concerning the performance measures, except for minimal differences (Tables 2 and 3). Therefore, the
results for method E1 are presented in the following, but not additionally the results for method A.
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Table 2. Performance measures of all simulation scenarios with their Monte Carlo standard error in parentheses.

Performance True cut- | Method to estimate the cutpoint 8
Measure point 6 . R R R R R R N R
A eB 961 662 601 9D2 6E1 0E2 eF
max y? max y? c-index c-index CPE CPE min AIC | min AlIC min
split sample | AddFor | Genetic Addfor Genetic with Strata | p-Value

Bias 0.2 -0.0005 -0.0037 -0.0107 -0.0091 -0.0111 -0.0137* -0.0005 |0.0104 -0.0093
(distance to true (2.3e-05) | (4.7e-05) (5.0e-05) | (4.5e-05) |(9.2e-05) |(8.7e-05) | (2.3e-05) |(0.0002) (5.7e-05)
cutpoint 6) 1.2 -0.0207 -0.1058 -0.1480 -0.1425 -0.1463 -0.1494 -0.0206 | -1.1026" -0.0546

(0.0002) (.0007) (0.0009) | (0.0008) (0.0009) (0.0009) (0.0002) | (0.0004) (0.0003)
Empirical standard | 0.2 0.0038 0.0078 0.0082 0.0073 0.0150 0.0143 0.0038 0.0260" 0.0094
error (1.7e-05) | (3.3e-05) (3.5e-05) | (3.2e-05) | (6.5e-05) |(6.1e-05) | (1.7e-05) |(0.0001) (4.0e-05)
(EmpSE) 1.2 0.0297 0.1119 0.1420 01368 | 0.1525° | 0.1525° | 0.0297 | 0.0586 0.0547

(0.0001) (0.0005) (0.0006) | (0.0006) (0.0007) (0.0007) (0.0001) | (0.0003) (0.0002)
Mean squared error | 0.2 1.5e-05 7.4E-05 0.0002 0.0001 0.0004 0.0004 1.5e-05 | 0.0008" 0.0002
(MSE) (1.5e-07) | (1.0e-06) (1.9e-06) | (1.4e-06) | (5.4e-06) |(5.8e-06) |(1.5e-07) | (8.0e-06) (2.3e-06)

1.2 0.0013 0.0237 0.0421 0.0390 0.0447 0.0456 0.0013 1.2192" 0.0060

(1.9e-05) | (0.0002) (0.0004) |(0.0004) |(0.0005) |(0.0005) | (1.9e-05) | (0.0008) (6.3e-05)
Relative precision |0.2 0 -75.57 -77.98 -72.65 -93.49 -92.76 Reference | -97.82" -83.19
gain vs method E1 (0) (0.24) (0.27) (0.33) (0.07) (0.08) (0.02) (0.16)
(min AIC) 1.2 0.08 -92.95 -9562 | -9528 |-96.20° |-96.20° |Reference -74.26 -70.49

(0.01) (0.03) (0.02) (0.02) (0.02) (0.02) (0.28) (0.13)

The table shows the performance measures with their corresponding Monte Carlo Standard Error (MCSE) in parentheses. The smallest value per row is
marked in bold, whereas the highest is marked with an asterisk (*).

https://doi.org/10.1371/journal.pone.0338425.t002

Table 3. Bias for the Weibull distribution.

True cut- n, | Total Method to estimate the cutpoint §
point 6 censoring | R . R N R R R R
pc ¢ aA 93 9c1 acz 901 002 951 652 GF
max x? | max x? c-index c-index CPE AddFor | CPE min AIC | min AIC min
split-sample | AddFor Genetic Genetic with Strata | p-Value
0.2 250 (0.2 -0.0044 | -0.0105 -0.0191 -0.0181 -0.0110 -0.0151 -0.0044 | -0.0258" -0.0212
0.8 0.0083 |0.0046 -0.0319 -0.0284 -0.0455 -0.0418 | 0.0083 0.0577" -0.0084
500 (0.2 0.0003 | -0.0038 -0.0091 -0.0081 -0.0083 -0.0100° | 0.0003 0.0093 -0.0079
0.8 -0.0071 | -0.0515 -0.0775 -0.0716 -0.0902 -0.0931 -0.0069 | -1.1090" -0.0307
750 |0.2 -0.0010 | -0.0006 -0.0022 -0.0021 0.0008 -0.0042 | -0.0010 |-0.0091* -0.0051
0.8 0.0014 | -0.0006 -0.0054 -0.0044 -0.0085 -0.0091 0.0014 0.0285 -0.0047
0.7 250 (0.2 -0.0023 | -0.0227 -0.0114 -0.0126 -0.0116 -0.0152 | -0.0022 | -0.5346" -0.0142
0.8 -0.0034 | -0.0743 -0.0814 -0.0803 -0.1257 -0.1273 | -0.0034 | -0.2037" -0.0351
500 (0.2 -0.0031 | -0.0040 -0.0126 -0.0143 -0.0051 -0.0097 | -0.0031 | -0.5642" -0.0122
0.8 0.0025 | -0.0151 -0.0181 -0.0131 -0.0343 -0.0360 | 0.0025 -0.1899" -0.0098
750 |0.2 -0.0008 | -0.0030 -0.0049 -0.0060 0.0006 -0.0045 | -0.0008 | -0.5783" -0.0063
0.8 —-0.0004 | -0.0066 -0.0094 -0.0053 -0.0167 -0.0172 | -0.0004 | -0.1679" -0.0083
1.2 250 (0.2 -0.0350 | -0.1599 -0.2187 -0.2149 -0.1798 -0.1785 | -0.0350 | -1.1555" -0.1018
0.8 -0.0921 | -0.3233 -0.4321 -0.4327 -0.4840 -0.4957 | -0.0921 | -1.0086" -0.1825
500 (0.2 -0.0093 | -0.0169 -0.0379 -0.0367 -0.0233 -0.0272 | -0.0093 | -1.1675 -0.0236
0.8 -0.0035 | -0.0818 -0.1226 -0.1116 -0.1808 -0.1810 | -0.0035 | -1.0459" -0.0411
750 |0.2 —-0.0042 | -0.0085 -0.0227 -0.0253 -0.0101 -0.0169 | -0.0042 | -1.1651" -0.0132
0.8 -0.0025 | -0.0207 -0.0762 -0.0649 -0.0713 -0.0886 | -0.0025 | -1.0531" -0.0242
n ... number of observations (for example, number of patients); pc, total censoring in percent. The smallest bias per row is marked in bold, whereas the

highest is marked with an asterisk (*).

https://doi.org/10.1371/journal.pone.0338425.t003
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Bias

All methods — according to the true cutpoints 6 — apart from one exception, have a bias with a negative sign (Fig 3). This
corresponds to a tendency towards the median of biomarker X. Method E1 shows the lowest bias in most scenarios,
regardless of the true cutpoint. All methods have a stronger bias, depending on how far the true cutpoint fis from the
median (Table 2 and Fig 5). This is mostly distinctive in method E2. The AddFor algorithm and the Genetic algorithm each
have a different bias for the methods C1, C2, and D1, D2. However, neither of these algorithms is associated with lower
bias in general. (Tables 2 and 4). Table 3 shows the bias values separated by the values for 6, n , , and pc, (Table 3). In
three scenarios, method B (max x? split sample) has a lower bias than method E1. In one scenario, it is method D1 (CPE
AddFor) (Table 3). Regardless of the distribution used (Weibull, Gompertz, or exponential), there are similar dependencies
of the respective bias on the simulation parameters (Figs 4 and 5, Table 4). For all methods, the bias increases, the lower
the sample size n ,_and the greater the total censoring rate pc, is (Figs 4 and 5). There is also a larger bias, if n, =250 or
n_,.=500 and simultaneously pc, and pc, are 0.8 and 0.25 (Fig 4 and Table 4). For censoring before the end of follow-up
time in percent of total censoring (pc,), there are minor effects on the bias depending on the parameters used for pc, in the
simulation (Fig 5). If the methods are sorted according to the lowest to highest bias, the order for 6=0.2 is: E1, B, C2, F,
E2, C1, D1, and D2 (Table 2). In the case of 6=1.2, the order is different: E1, F, B, C2, D1, C1, D2, and E2. Table 4 shows
the bias for all simulation parameters for method E1 (Table 4). The lowest absolute bias for method E1 is 0.0001, and the
largest is found at n , =250, pc,=0.8, pc,=0.25 with 0.1164. Table 4 also shows that for method E1, there are no particu-
larly low or high bias values in any of the distributions used (Table 4).

Empirical standard error (EmpSE) and mean squared error (MSE)

In an evaluation, in which only the true cutpoint 6=0.2 or 6=1.2 is distinguished, method E1 has the lowest EmpSE and
MSE for both 6. The largest EmpSE for 6=0.2 is obtained using the E2 method. At a 6=1.2, methods D1 and D2 provide

2 I .
= T T

N 0 %%% %ﬂ%ﬁf% %% :% ‘ % ]i% Simulation
@ 2 B - s T method
.§ -2 [ [[]1 B -max chi-square (split-sample)
= NN - - of@] ¢ o Yo 399 @9 © @ N =[o] © © C1 - max c-index AddFor
3 4 é%éégi‘é’_ §8§.§§E§.J§ §§§§3§§. B C2 - max c-index Genetic
g cecesldes <eecldge <eescslie D1 - max CPE AddFor
g - 6 ‘ ] D2 - max CPE Genetic
§ " ' [ E1-min AIC
2 ] E2 -min AIC, biomarker as strata
% A4 | __ | F -min p-value (univariable)
@ .
o 3 ,.}

-1.24 i T

1.4 % J

0.2 0.7 1.2
True cutpoint 6

Fig 3. Bias shown by method categorised according to the three true cutpoints 6. Boxplot without outliers. The estimates shown are the means of
the bias, categorised after the three true cutpoints 6 used in the simulation (0.2, 0.7, 1.2). The smallest values in each group are framed. Method A is not
shown because the results are identical to method E1.

https://doi.org/10.1371/journal.pone.0338425.9003
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Table 4. Bias for the method E1 (min AIC).

n,. pc, pc; Weibull Gompertz Exponential distribution
distribution distribution
0=0.2 6=1.2 6=0.2 6=1.2 6=0.2 0=1.2
250 0.2 0.25 -0.0059 -0.0366" -0.0077 -0.0276 -0.0031 -0.0259
0.50 -0.0030 -0.0334" 0.0016 -0.0275 -0.0066 -0.0294
0.5 0.25 -0.0074 -0.0354 -0.0016 -0.0429" -0.0078 -0.0338
0.50 -0.0023 -0.0354 -0.0037 -0.0600" -0.0087 -0.0253
0.8 0.25 0.0104 -0.1164 0.0033 -0.1099 0.0068 -0.1156
0.50 0.0063 -0.0677 -0.0045 -0.0655 0.0095 -0.0785"
500 0.2 0.25 -0.0023 -0.0112 -0.0011 -0.0029 -0.0021 -0.0038
0.50 -0.0012 -0.0074 -0.0001 -0.0116" -0.0018 -0.0034
0.5 0.25 0.0007 -0.0041 -0.0025 -0.0070" 0.0017 0.0031
0.50 -0.0012 -0.0129 0.0002 -0.0034 -0.0014 -0.0042
0.8 0.25 0.0066 -0.0140 0.0015 -0.0161" -0.0002 -0.0056
0.50 -0.0008 0.0070 0.0014 -0.0126" -0.0012 -0.0024
750 0.2 0.25 -0.0005 -0.0045 -0.0029 -0.0018 0.0013 -0.0033
0.50 -0.0016 -0.0038 -0.0015 -0.0041" 0.0004 -0.0031
0.5 0.25 0.0013 -0.0030" -0.0008 -0.0013 0.0008 -0.0004
0.50 0.0012 -0.0021 0.0005 -0.0037" -0.0037" -0.0022
0.8 0.25 0.0003 -0.0003 0.0013 —0.0007 0.0004 0.0041
0.50 0.0026 —-0.0048" 0.0007 -0.0023 0.0014 0.0006

The table shows the bias (distance to the true cutpoint 6) for all simulation scenarios for method E1 (min AIC). n_, , the number of observations (for ex-
ample, the number of patients); pc, the total censoring in percent; pc, the censoring before the end of the follow-up time in percent of total censoring pc..
The smallest bias per row is marked in bold, whereas the highest is marked with an asterisk (*).

https://doi.org/10.1371/journal.pone.0338425.t004

the largest EmpSE (Table 2). The largest MSE, regardless of the cutpoint, occurs using method E2. Sorting the methods
used from lowest to largest EmpSE, for 6=0.2, the results are: E1, C2, B, F, C1, D2, D1, and E2. For 6=1.2, as for the
bias, the order is also different for the EmpSE: E1, F, E2, B, C2, C1 and D1, D2. Therefore, the relative precision gain
with method E1 as a reference shows, that method E2 for 6=0.2, along with methods D1 and D2 for 6=1.2, each have
the greatest precision loss compared to the reference (E1). All methods indicate that the greater the deviation of the true
cutpoint 6 from the median, the larger the EmpSE becomes.

lllustrations and applications with clinical examples of data

We also illustrate all methods on two freely available clinical data examples, which are available under a Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license. The first dataset consists of 312 patients with primary biliary cir-
rhosis (PBC) stages | to 1V, all of whom took part in a study conducted at the Mayo Clinic [30,31]. The data was collected
prospectively to evaluate the effectiveness of D-penicillamine in treating primary biliary cirrhosis. A liver biopsy was con-
ducted initially to assess the histological stage. Out of the initial 312 patients, 125 died, resulting in a median trial duration
of 39 months. Furthermore, 27 patients were either lost to follow-up or had undergone liver transplants. The remaining
160 patients were still alive and being monitored. According to Dickson and colleagues, we utilised relevant baseline
variables for the prognosis of survival time [32]. The variables comprise: serum albumin (mg/dl), total serum bilirubin (mg/
dl), age (years), and oedema. Prothrombin time was not included due to the significant variability inherent in the laboratory
measurements for this parameter [33]. The cutpoints were determined for the biomarker serum albumin. Serum bilirubin,
age, and oedema were used as covariates in the multivariable Cox regression model. The follow-up time was measured in
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Fig 4. Hybrid nested loop plot considering all 162 simulation scenarios for four simulation methods. A combination of trellis plot and nested
loop plot showing six scenarios per layer: pc, =total censoring in percent (0.2, 0.5, 0.8); pc,, =censoring before end of follow-up time in percent of total
censoring (0.25, 0.50).

https://doi.org/10.1371/journal.pone.0338425.9004

months, and the status was indicated as deceased or alive. The distribution of serum albumin is illustrated in figure 6
(Fig 6). This figure further indicates that low albumin levels correlate with an increased risk in the studied population.

The second freely available dataset, from the R package smoothHR referred to as WHAS500, contains data from 500
patients who participated in the Worcester Heart Attack Study [34]. The Worcester Heart Attack Study aimed to identify
factors related to trends of overall survival after hospital admission for acute myocardial infarction over time. From this
dataset, we used the variables Initial Heart Rate (HR) in beats per minute (bpm), age at hospital admission in years (age),
sex, body mass index (BMI) in kg/m?, follow-up time (time), and vital status at last follow-up (status). Cutpoints were esti-
mated for the biomarker initial heart rate. The mean of HR is 87, and the median is 85. For distribution of HR see Fig 6.
Covariates in the multivariable estimation model are age, gender, and BMI.

Results of the cutpoint estimations

Cutpoints for serum albumin in the first dataset and for Initial Heart Rate in the WHAS500 dataset could be estimated with
all multivariable methods (B, C1, C2, D1, D2, E1, E2) as well as with the univariable approach, method F (Fig 6).

The results for the CPE-based methods (D1 and D2) are identical (< 3.55 gm/dI for serum albumin and < 76 bpm for
HR). For initial heart rate, the cutpoints for methods C1, C2 and D1, D2 are equal. Methods E1 and E2 provide the same
cutpoint for serum albumin, but different cutpoints for heart rate. Except for the cutpoint for albumin according to method
C2, all cutpoints fall clearly within biomarker ranges where the relative hazard does not remain constant.
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Discussion

A review of the literature was conducted prior to our simulation study. Through this, we aimed to identify publications on
methods for determining cutpoints within the multivariate Cox regression framework. Four studies were identified, covering
a total of eight different methods. These methods were chosen, since they were the only ones to be found in the literature.
Under simulation, there were only 0.022 to 0.074 percent missing values for some methods, so we could compare
all the results without any restrictions. We couldn’t determine, however, why a few scenarios were aborted of the
R-package CatPredi. All procedures that have been reviewed are biased. In most simulated scenarios, all methods tend
towards the median (Tables 2—4, Figs 4 and 5). In our simulation, it has been shown that methods A (max x?) and E1
(min AIC), which lead to the same results, have both the lowest bias and the lowest EmpSE. This confirms the study
by Mazumdar et al., who found that the univariable method F is inferior to method A [22]. Method B (max x? split sam-
ple) performs worse than the univariable method F, if the cutpoint 6 is further away from the median. This is the case
both in terms of the bias and the EmpSE. Method E2, in which the biomarker to be dichotomised is used as a strata
variable in the Cox regression, performs well in this respect as the true cutpoint is close to the median. However, if the
cutpoint is not the median, this method (E2) has the most considerable bias. For the E2 method, the BIAS in some
scenarios is so large that the calculated cutpoint in our simulation deviates by more than one standard deviation from
the theoretical cutpoint in some cases. If the calculated cutpoint is used to stratify patients or make treatment decisions,
it could result in over 30% of patients being incorrectly classified or receiving the wrong treatment. The other multivar-
iate methods exhibit a low BIAS on average (Fig 3). However, the BIAS of these methods becomes clinically relevant
if the cutpoint is further from the mean, in cases where the sample size is smaller, and if the censoring rate is higher
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(Fig 4). Under these circumstances, the other methods also exhibit a BIAS that approaches or exceeds one standard
deviation. This could lead to a relevant misclassification rate of patients in a clinical setting. As shown in the clinical
examples, the cutpoints for both albumin and heart rate vary considerably depending on the chosen method. When
calculated with method B, the cutpoint for heart rate is <100 bpm, which clearly differs from the cutpoint calculated
with method E1 (HR <83 bpm) (Fig 6). This difference between methods B and E1 arises from the smaller sample size
in the split-sample approach. This would mean that if patients were classified in a clinical study, according to method
B, 125 patients would be placed in the above-cutpoint group, while 265 would be placed in that group using method
E1. Therefore, using method B, which shows a higher BIAS in our simulation than method E1 (Fig 3), could lead to
more than 100 of the 500 total patients being misclassified. By contrast, in both the albumin and heart rate examples,
it makes little clinical difference whether the cutpoint is based on method D1 or D2, as the cutpoints are the same for
both (HR <76 bpm and albumin < 3.55 gm/dl).

When using method C2 (c-index Genetic), the bias and EmpSE are lower than with methods C1, D1, and D2. Barrio et
al. pointed out, that the genetic algorithm is supposed to perform better than the AddFor algorithm when estimating two
cutpoints of a biomarker [19]. Our simulation did not demonstrate that the Genetic algorithm generally outperforms the
AddFor algorithm. Of these four methods, only if the true cutpoint is close to the median, method C2 is superior to the uni-
variable approach F regarding bias and EmpSE. Nevertheless, the difference between these four methods (C1, C2, D1,
and D2) is minimal. This can also be somewhat observed in the practical applications.

Table 2 shows that the MCSEs for the bias and EmpSE are so low, that this was no obstacle to meaningfully inter-
pret our obtained values for the bias and EmpSE (Table 2). The EmpSE and MSE do not show the same patterns when
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compared to the performance measures used in each method. Morris et al. have pointed out that the MSE is more sensi-
tive to n . than the EmpSE [23]. That is why we focused primarily on the Bias and EmpSE.

The initial selection of the regression coefficients (8 ,, B ,) was based on simulation studies from Barrio et al. and
Mazumdar et al., which used hazard ratios ranging from 0.5 to 4.0 [19,22]. Before running simulations, we performed
pre-tests to ensure that the betas were large enough to generate significant omnibus tests of model coefficients in Cox
regressions (p<0.05), even at a sample size of n=250. However, the specific beta values chosen may limit the gener-
alisability of our findings, as clinical studies often report hazard ratios closer to 1 for certain biomarkers. With respect to
all-cause mortality in cancer patients for example, Lena et al. reported hazard ratios of 0.91 for haemoglobin (per 1g/dL)
and 0.99 for the estimated glomerular filtration rate (GFR) (per 1 mL/min/1.73 m?) [35]. Since betas were held constant in
our simulation, we cannot evaluate in what way the bias depends on the beta values.

We used only one cutpoint in our simulation. In contrast to Barrio et al., who investigated the methods C1, C2, D1, and
D2 for the case of one, two, and three cutpoints per biomarker, we cannot make a statement for a scenario with several
cutpoints [19]. Besides, the existence of one or even several cutpoints in real data sets may be unknown.

Utilising the R-package CatPredi, the computation of a cutpoint employing the C2 or D2 method requires approximately
44 or 87 seconds, if N=500 and three covariates are included. In contrast to that, under identical conditions and hard-
ware specifications (Windows 11, x64-based, CPU 2.40 GHz, 8 cores), the R-package cutpoint needs approximately 12
seconds for method E1. In particular, the methods C2 and D2 require longer computing times, as Barrio et al. have also
pointed out [19]. This makes it difficult to carry out simulations with these methods, as they are associated with long com-
puting times. However, the time component should hardly be relevant for determining individual cutpoints.

Our goal was not to determine the hazard ratios of the dichotomised biomarker X and associated p-values. Method B
(max x? split-sample), used in the simulation study, offers the possibility to determine hazard ratios and the corresponding
p-values on the other half of the data. However, method B has a substantially higher bias and negative precision gain in
comparison with methods A and E1. Therefore, we recommend, as well as [22], the use of the cross-validation approach,
as the entire data set is used to determine the cutpoint.

As the determination of cutpoints in the practical examples and the simulation study has demonstrated, the cutpoints
can vary strongly depending on the method used. Therefore, examining spline plots and consulting with a medical spe-
cialist can be beneficial. Nevertheless, if the research areas have not been established for long, medical specialists or
physicians may have limited knowledge to contribute to the decision in favour of a cutpoint. However, the dichotomisation
of a metric variable should only be carried out if it cannot be avoided, as it is associated with a significant loss of informa-
tion and power [15,16,22].

Conclusions

Our simulation has shown that methods maximising the chi-square statistic or minimising the AIC, respectively, perform
better than the univariable method using the minimum p-value approach and outperform methods based on the c-index or
CPE. It remains unclear whether these two methods (A and E1) perform just as well when there are two or more cutpoints
per biomarker. The method in which the dichotomised variable is used as a strata variable in the Cox regression model, is
potentially associated with large bias.
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