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Quantitative assessment of the structural quality of quasicrystals is a challenging

task. Whereas diffraction techniques are a powerful tool for the coherently

scattering regions, only diffuse scattering addresses structural inhomogeneities.

Alternatively, local imaging techniques allow for direct inspection of the

structures and for statistical evaluation of tiling elements. In both cases,

inspecting the internal space characteristic for quasicrystals offers an additional,

more sensitive perspective. Here, we analyze atomically resolved scanning

tunneling microscopy images for three dodecagonal oxide quasicrystal (OQC)

systems. Upon uplifting the 2D coordinates into a 4D hyperspace, the quasi-

crystal structure can be discussed in the internal space as well as in the physical

space. The quasicrystal acceptance domain in internal space of all three OQCs

increases logarithmically with the system size. From the acceptance domain

expansion we determine the effective phason elastic constants, which reflect

phason disorder within their square–triangle–rhombus tiling.

1. Introduction

Quasicrystals represent a unique state of matter owing to their

unconventional symmetries, allowing e.g. five-, eight-, ten- or

12-fold rotational diffraction patterns. Although they are

aperiodic in physical space, quasicrystals are periodic in a

higher-dimensional space called superspace. As a consequence

of this superspace description, all vertices of the high-dimen-

sional lattice can be represented either in the physical space,

where they are aperiodically arranged, or in an internal space,

which is a space of the same dimensions perpendicular to the

physical space. Inspection of the internal space offers a unique

tool for the structural analysis of quasicrystals. An ideal

quasicrystal appears as a dense set of points in the internal

space that defines its window or acceptance domain (AD).

Any defects in the quasicrystal will cause points to scatter

outside this acceptance domain. In this way, phason disorder,

dislocations, phason strain and topological defects can be

revealed (Socolar et al., 1986; He et al., 1991; Hory et al., 1999;

Edagawa et al., 2000; Edagawa et al., 2002; Blunt et al., 2008;

Lifshitz, 2011; Korkidi et al., 2013; Sandbrink & Schmiedeberg,

2014; Ishimasa et al., 2015; Hielscher et al., 2017; Hielscher et

al., 2020).

The internal space analysis enables random quasicrystals to

be distinguished. To this end, the variance or mean-squared

expansion hi of the internal space distribution is investigated

as a function of system size N (Henley, 1991; Goldman &

Kelton, 1993; Joseph & Baake, 1996). It is defined as

h2ðNÞ ¼ 1=N
XN

i

ðhi �
�hÞ

2
ð1Þ

according to Joseph & Baake (1996). The following cases can

be distinguished. The variance h2ðNÞ is a constant for a
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deterministic quasicrystal. It grows in a parabolic fashion in

the case of linear phason strain, which describes periodic

quasicrystal approximants. For random tiling quasicrystals the

variance grows differently depending on the internal space

dimensions. In 1D, the problem is equivalent to a random

walk, meaning the variance is proportional to the chain length.

In 2D, as concluded from the hydrodynamic approximation,

the variance should scale as

hh2i ¼
1

2�Keff

lnðNÞ þ b ð2Þ

with an effective elastic constant Keff , the number of vertices

N and an integration constant b. For 3D a power-law finite-size

scaling is expected (Joseph & Baake, 1996). An analysis of the

scaling of the internal space variance has been applied

previously to a number of systems, including decagonal Al–

Ni–Co and Al–Cu–Ce quasicrystals, dodecagonal molecular

self-assemblies and dodecagonal Mn–Cr–Ni–Si (Chen et al.,

1990; He et al., 1991; Joseph et al., 1997; Blunt et al., 2008;

Ishimasa et al., 2015). Most recently, it has been applied to

dodecagonal pentablock quarterpolymers (Matsushita et al.,

2024).

A more subtle analysis of the tiling can be derived from the

Fourier transform (FT) of the internal space distribution

(Joseph & Baake, 1996). The advantage of the FT is that it uses

all the statistical moments of the point cloud in space; the

variance h2, on the other hand, is equivalent to the second

moment only. In the case of an ideal quasicrystal, the absolute

value of the discrete FT of the internal space point cloud is

expected to have a central Gaussian peak surrounded by

oscillations. In contrast, there are no oscillations for the

random tiling (Joseph & Baake, 1996).

Here, we present an internal space analysis of three

different oxide quasicrystal (OQC) systems. OQCs are 2D

ternary oxides on a metal support that exhibit a dodecagonal

square–triangle–rhombus tiling (Förster et al., 2013; Förster et

al., 2020). The most thoroughly investigated OQC system is

Ba–Ti–O/Pt(111). In this materials system OQCs have been

discovered and their growth has been optimized to the highest

level of structural perfection (Zollner et al., 2020). Further-

more, the physical space of Ba–Ti–O/Pt(111) has previously

been analyzed in great detail in terms of tiling statistics and its

hyperslope as calculated from the tiling element distribution

(Schenk et al., 2019; Zollner et al., 2020; Imperor-Clerc et al.,

2024). One important finding is that this square–triangle–

rhombus tiling obeys the statistics of the ideal Niizeki–Gähler

tiling (NGT) with respect to the allowed vertex configurations

and the relative frequencies of the prototiles (Schenk et al.,

2019; Niizeki & Mitani, 1987; Gähler, 1988). However,

systematic variations in the orientational distribution of larger

clusters, namely the characteristic dodecagon consisting of two

rhombuses, five squares and 12 triangles, were reported for the

Ba–Ti–O/Pt(111) system (Schenk et al., 2019). In addition to

this prototypical OQC system, we perform the internal

analysis for Eu and Sr atoms in a quasicrystalline network

formed on Pd(111) (Schenk et al., 2022; Haller et al., 2025). We

observe a significant scattering of points outside the AD for all

three dodecagonal structures. From the scaling of the mean-

squared expansion when plotted against the number of

vertices, we obtain a limited size for the well ordered quasi-

crystal patches and determine an effective phason elastic

constant Keff .

2. Experimental

The Ba–Ti–O/Pt(111) OQC has been prepared by depositing

ultrathin BaTiO3 films via magnetron sputtering and

annealing at 1150 K in ultrahigh vacuum (UHV). The struc-

tural aspects as determined by low-energy electron diffraction

(LEED) and scanning tunneling microscopy data have been

discussed previously (Schenk et al., 2019). For Sr–Ti–O and

Eu–Ti–O OQCs on Pd(111), monolayers of TiOx were

prepared by molecular beam epitaxy of Ti and post-oxidation.

Subsequently, Sr/Eu were deposited to an extent that the

entire oxide monolayer transforms into the dodecagonal

OQCs (Haller et al., 2025).

Scanning tunneling microscopy (STM) data were acquired

at 77 K. The raw data were corrected for piezo creep and

thermal drift and afterwards were processed using Mathema-

tica (Schenk et al., 2019). A custom analysis pipeline was used

to determine the Ba, Sr and Eu vertex positions. First, the

STM images were binarized and gradients were applied to the

resulting vertex discs. Then, a watershed segmentation algo-

rithm partitioned the image into vertex regions. Finally, the

vertex coordinates were refined by fitting 2D Gaussian func-

tions to the segmented regions. After extracting the exact

positions, the vertices were indexed using a 4D basis. In an

ideal quasicrystal, the coordinates of the vertices are restricted

to integers, providing a constraint for the indexing procedure.

To initiate this process, a list of neighboring vertices was

generated and the mean nearest-neighbor distance was

computed. This characteristic length was then used to

normalize all pairwise distances in the dataset. An arbitrary

vertex located near the center of the STM image was selected

as the origin and given the index (0, 0, 0, 0). The remaining

vertices were ordered according to their distance from the

origin; those closer were given higher priority. Indexing was

then performed iteratively. Starting with the origin, each

vertex was evaluated in turn. If neighboring vertices had not

yet been indexed, it was determined whether their positions

could be reached by adding a unit vector to the reference

vertex’s index. If this condition was satisfied, the neighbor was

assigned the corresponding 4D index. This neighbor-based,

iterative indexing scheme assigns unique integer coordinates

to all vertices using only local geometric information. Since it

relies exclusively on local neighborhoods, the method remains

robust against global distortions of the STM images.

3. Results

Fig. 1(a) shows the point cloud of vertex positions in the 2D

internal space, which is derived from a four-tuple indexing of

the physical space vertices in Ba–Ti–O/Pt(111). The same
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physical space dataset was used previously for the statistical

analysis of the physical space tiling (Schenk et al., 2019).

All points within the AD are colored black in Fig. 1(a).

Outside the AD, a color gradient ranging from blue to yellow

to red indicates an increasing distance from the AD. Starting

from 2.5 times the length of the projected unit vectors span-

ning the internal space, the vertices turn red. As Fig. 1(a)

shows, the OQC is far from being an ideal quasicrystal.

Despite the dense cloud of vertices in the center, additional

vertices scatter homogeneously outside the AD. In addition,

the density distribution in the internal space can be judged by

its radial distribution function (RDF) for different numbers of

vertices surrounding the central vertex in the physical space,

as shown in Fig. 1(b). The data are derived from the area-

weighted integration of the vertices in rings of constant width.

For an ideal quasicrystal, one would expect a step-like func-

tion with constant vertex density up to the edge of the AD and

zero density outside, as plotted for the NGT by black squares

in Fig. 1(b). The experimental data show that the vertex

density is highest at the origin of the internal space where the

AD is centered. However, we observe a plateau of constant

vertex density only for a total size of 1000 vertices (orange

diamonds). For larger system sizes, the cloud of points smears

out more rapidly around the AD boundary. These curves can

be perfectly described by a Fermi–Dirac distribution (FDD).

The solid lines in (b) are fits through the data. To facilitate

comparison, Fig. 1(c) shows the normalized FDDs for smaller

system sizes. The ideal NGT is described by an RDF that is

symmetric about 1.05. It is not a step function because the AD

is not a perfect circle. The star shape leads to a subtle

broadening in the RDF. In all cases, the experimental data are

symmetric to an internal space distance of 1.0. Increasing the

size to 2000 vertices yields a constant decrease in relative

vertex density between distances of 0.5 and 1 with respect to

the AD center. Concurrently, an increasing vertex density

appears at distances between 1 and 1.5 with respect to the AD

center.

The explanation for the scattering across the AD boundary

is phason flips. Fig. 2 illustrates the simplest and most frequent

phason flips that occur in the characteristic dodecagons of

OQCs, as well as their consequences in the physical (a, b) and

the internal space (c, d). These clusters consist of 20 vertices

arranged into two rhombuses, five squares and 12 triangles.

The long axes of the rhombuses form an angle of 150�.

Because of this, a certain direction can be assigned to each

dodecagon, as indicated by the black arrow in Fig. 2(a). Each

vertex of the short axis of the rhombus is the inner vertex of a

shield element, which is formed by two triangles, one rhombus

and one square, as marked in orange in Fig. 2(a). This inner

vertex of the shield (red full circle) can flip between three

nearby positions without altering the tiling element statistics.

The possible new positions are marked as red open circles in

Fig. 2(a). As illustrated by the sequence of the three dode-

cagons, these phason flips correspond to 120� rotations of the

shield element. Upon comparing the three clusters, it is

evident that the central cluster is similar to the left one, but

rotated by 150�. The right cluster differs because one rhombus

moves to the periphery of the dodecagon when the shield is

rotated. Fig. 2(b) provides the coordinate system spanned by

the four unit vectors used for indexing the vertex positions.

The four-tuple coordinates of all vertices within a shield

element are given on the right side of Fig. 2(b). According to

this definition, the short-distance phason flips inside the

orange shield element correspond to moves along h1�100i

vectors, flipping the (0000) vertex either to (1100) or to (0011).

In Fig. 2(c) the AD of the ideal NGT is subdivided into

differently colored areas corresponding to the four different

vertex configurations, which exist in this tiling. As an example,

in the green area in internal space all vertices are located that

are surrounded by three triangles and two squares, also called

32434 vertices. From the AD fraction of the green area the

frequency of 56.2% is derived for these vertices. Please note

that according to this subdivision 26.8% of all vertices are the
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Figure 1
(a) 7800 vertices of the OQC in Ba–Ti–O/Pt(111) represented in internal
space. The AD of the NGT is plotted in white in (a). The color gradient
represents the internal space distance of points beyond the AD. (b)
Evolution of the RDF in dependence of the number of vertices
surrounding the center of the physical space image shown in Fig. 3. (c)
Comparison of the normalized fits for different numbers of vertices.



ones forming the short axis of the rhombus and that those

vertices are located at the AD periphery. The black dots in Fig.

2(c) mark the positions of the 20 vertices of the characteristic

dodecagon. The cluster center is slightly shifted out of the AD

center. The inner ring of 12 vertices in internal space corre-

sponds to the outer vertices of the cluster in physical space.

Focusing on the AD coloring one can see that two of these 12

are vertices surrounded by four triangles, two rhombuses and

one square. The other ten are 32434 vertices. The seven outer

vertices in internal space form the inner ring in the physical

space. Four out of these seven vertices are part of the short

axis of the rhombus and three are 32434 vertices that cannot

perform the phason flip discussed in Fig. 2(a).

Fig. 2(d) illustrates how the vertices are redistributed in the

internal space upon short-distance h1�100i phason jumps. The

filled parallelograms show the AD area fraction for the

vertices of the short axes of the rhombuses. The empty

parallelograms indicate the target regions outside the AD that

are accessible for all possible rotations of rhombuses upon

flipping. The two possible jumps discussed in (a) are marked in

red in the internal space. These geometric considerations

directly affect the RDF of the internal space. As the black

arrows in (c) indicate, jumps of this type will cause a depletion

of the vertex density in the AD above an internal space

distance of 0.82 with respect to the AD origin, and an increase

in density up to a value of 1.42. This trend is clearly evident in

the experimentally derived RDF. Stronger evidence of the

dominance of this mechanism in redistributing vertices in
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Figure 3
(a) 7800 vertex positions of the OQC in Ba–Ti–O/Pt(111) represented in
physical space. The coloring of the vertices represents their internal space
distance from the origin of the AD, as shown in Fig. 1(a). The red circle
encloses 1800 vertices for which the internal space variance is presented
in Fig. 4. (b) Enlarged view of the area inside the red rectangle in (a).
Some characteristic dodecagons are marked as a guide to the eye.

Figure 2
(a) Local triangle–square–rhombus tiling within the NGT. It consists of 20
vertices arranged in two rhombuses, five squares and 12 triangles. The
orange-marked shield element encloses one rhombus, one square and two
triangles with one vertex position inside the shield. A local mode or
phason flip might move the inner vertex of the shield to the open red
circle positions which does not change the tiling statistics. The sequence
of three dodecagons illustrates such phason flips. (b) The unit vector
definition in the physical space (left) and the corresponding four-tuple
notation for the vertex positions in the shield (right). (c) The unit vectors
defined in the internal space and the dodecagonal AD of the NGT. The
latter is partitioned into colored areas depending on the local vertex
configuration, as indicated just below. The blue area describes vertices
within the shield that can undergo short-distance phason flips. The black
dots represent 20 vertices of the characteristic dodecagon of (a). (d) The
internal space representation of the area that hosts the vertices within the
shield element (filled blue parallelograms) inside the AD and their
potential flipped positions (empty parallelograms) outside the AD. The
red arrows indicate the two possible phason jumps of the short-axis vertex
labeled in (b).



internal space comes from applying the internal space coloring

to the physical space tiling, as shown in Fig. 3(a).

At first glance, the dark colors in the center of the physical

space image reveal an ordered quasicrystal patch. Zooming

into the region within the red rectangle of Fig. 3(a), as shown

in Fig. 3(b), reveals that black vertices are often mixed with

blue and green ones. This creates a central black dot

surrounded by black, green and blue vertices inside a dode-

cagon made from 12 black vertices. This coloring depicts the

physical space signature of the phason flips shown in Fig. 2.

These occur frequently in OQCs and are a signature of local

phason strain, as reported earlier in an extended statistical

analysis (Schenk et al., 2019).

More abrupt changes in the physical space coloring indicate

a rapid movement over large distances in internal space. This

may result from phason strain in an extended region or, in

other words, from local inclusions of periodic approximant

domain. Regions with red vertices appearing in the upper right

and upper left parts of Fig. 3(a) illustrate this. Sudden jumps to

red vertex colors in the central bottom or top parts are more

likely to be related to topological defects, or dislocations, in

the quasicrystal. These dislocations are associated with a

Burgers vector, which defines an internal space length. Along

this length, the vertex positions move away from the AD

center (Lifshitz, 2011; Korkidi et al., 2013).

The internal space variance h2ðNÞ is shown as a function of

system size N in Fig. 4. The black horizontal line indicates the

constant variance of the ideal NGT, whereas the experimental

data (blue circles) show a logarithmic increase up to a sample

size of about 2000 vertices. Using equation (2), a logarithmic

slope of 0:0620 � 0:0004 is obtained, which translates to an

effective phason elastic constant of 2:567� 0:016. From a size

of about 2000 vertices, the curve continues with a much larger

slope. For the Ba–Ti–O dataset presented here, about 2000

vertices is the typical size of the well ordered quasicrystal

patch. The red circle in Fig. 3(a) indicates the perimeter of this

patch. The large number of yellow and red vertices beyond the

red circle explains the change in slope with increasing system

size. However, this evaluation depends only slightly on the

starting point for indexing. Here the central vertex was used.

Varying the starting vertex for this analysis, e.g. by picking the

center of the extended dark area in the lower right of Fig. 3(a),

yields a similar result.

The second OQC system to be discussed is Eu–Ti–O/

Pd(111) (Schenk et al., 2022). This system was fabricated by

depositing Eu on a TiOx/Pd(111) precursor, which was

prepared by molecular beam epitaxy of Ti and post-oxidation.

The Eu–Ti–O/Pd(111) system exhibits a dodecagonal square–

triangle–rhombus tiling similar to that of Ba–Ti–O/Pt(111).

However, the average pore size of the Ti2O3 network hosting

the Eu atoms is slightly smaller than that in Ba–Ti–O/Pt(111)

(Schenk et al., 2022).

Fig. 5 shows the internal and physical space of the OQC in

Eu–Ti–O/Pt(111). This dataset contains 4800 vertices. Again
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Figure 5
4800 vertex positions of the OQC in Eu–Ti–O/Pt(111) represented in
internal space (a) and physical space (b). The border of the AD of the
NGT is plotted in white in (a). The color gradient represents again the
internal space distance of points outside the AD. The orange, red, pink
and blue circles label the different central vertices for evaluating the
internal space variance plotted in Fig. 6. (c) Enlarged view of the region
inside the red rectangle in (b) emphasizing the position of rhombus pairs
inside characteristic dodecagons.

Figure 4
Variance of the internal space in dependence of the system size N for the
OQC in Ba–Ti–O. The indexing started in the center of the red circle in
Fig. 3(a). The black horizontal line represents the variance of the ideal
NGT. The red line is a fit to the data between 10 and 1800 vertices.



the internal space vertex representation in Fig. 5(a) is a

compact cloud with a certain fraction of vertex positions

located outside the AD. The region directly around the AD,

colored in blue and green, is densely populated, and the vertex

density fades out towards yellow and red. Few red vertices are

found at distances larger than twice the unit vector (radius of

the AD) in three distinct directions. In physical space, Fig.

5(b), dark colors dominate a central strip from top to bottom.

Towards the right, some colorful areas indicate larger phason

strain. To the left, two red patches embedded in a high density

of black vertices indicate a sudden jump in internal space.

Upon closer inspection, rings of 12 black vertices surrounding

a black center vertex indicate the characteristic dodecagon of

the NGT and are present everywhere in the well ordered OQC

patch. This is emphasized in the enlarged region of the red

rectangle in Fig. 5(c). Unlike in Ba–Ti–O, phason flips result in

configurations in which the rhombuses no longer point to the

center of the dodecagon, but instead are flipped to positions

on the periphery. However, these flips result in the same

internal space scattering out of the AD, as discussed before

[Fig. 2(c)].

When evaluating the internal space variance for this

dataset, we find that the system’s size dependence now

strongly varies according to the starting vertex chosen. We

illustrate this with four examples, indicated by colored circles

in Fig. 5(b). The four curves showing the evolution of the

variance with the system size are plotted in Fig. 6. The pink

curve shows a rapid increase in variance that saturates at

around 200 vertices, slowly decreasing to 1000 vertices before

a significant increase. The red and orange curves show inter-

mediate initial linear slopes, and the blue curve shows the

slowest linear growth of variance in this system. By fitting the

blue curve with equation (2) between 10 and 1000 vertices, we

obtain a slope of 0:0668 � 0:0005. This translates to an effec-

tive phason elastic constant of 2:383� 0:015, which is close to

the value obtained for Ba–Ti–O.

The third system to be discussed is the OQC in Sr–Ti–O/

Pd(111) (Haller et al., 2025). Fig. 7 shows internal and physical

space images of a dataset comprising 3600 vertex positions.

The wide spread in the internal space indicates that this

dataset shows less perfect quasicrystalline ordering. The

regular distribution of red vertices surrounding the AD

suggests that the presence of extended patches of quasicrys-

talline approximants is responsible for this. In physical space,

Fig. 7(b), a strong separation into compact red and black

regions is clearly visible. In the bottom left part of the image,

the domain boundaries appear quite sharp due to a sudden

jump in the vertex color. As was also the case in the other

OQC systems, this jump corresponds to an extended shift

vector in perpendicular space when crossing the domain

boundary. The open line in the top left part of Fig. 7(b) shows

that the indexing was not possible in this region, with gaps

occurring in the tiling that cannot be bridged by the edge

length of the prototiles. However, as indicated by the red

circle, a continuous OQC patch of 700 vertices can be found in

this dataset. The evaluation of the system-size dependent

internal space variance shown in Fig. 8 started from the center

of this circle. The curve bears a strong resemblance to the

growth of the variance in the other two OQC systems. Up to

700 vertices, a logarithmic growth variance is obtained that can
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Figure 6
Variance of the internal space in dependence of the system size N for the
OQC in Eu–Ti–O. The different traces are obtained by using different
vertices as starting points for indexing. The starting vertices are labeled in
Fig. 5 in the colors of the traces. The black horizontal line represents the
variance of the ideal NGT. The red line is a fit to the data between 10 and
1000 vertices of the blue trace.

Figure 7
3600 vertex positions of the OQC in Sr–Ti–O/Pt(111) represented in
internal space (a) and physical space (b). The AD of the NGT is plotted in
white in (a). The color gradient represents the internal space distance of
points beyond the AD. The red circle in (a) labels the largest well ordered
continuous OQC patch containing 700 vertices.



be fitted with a slope of 0:067� 0:005, corresponding to an

effective phason elastic constant of 2:38� 0:02. This value is

similar to that of Eu–Ti–O. Beyond 700 vertices, a significant

increase in the variance is obtained. As expected, given the

wide spread in the internal space, the variance maximum

for these 3600 vertices is much larger than for the previous

two systems. It differs by a factor of two. In this regard, the

Ba–Ti–O OQC dataset comprising 7800 vertices is the most

compact in the internal space.

4. Discussion

The internal space inspection has allowed us to identify finite

patches of long-range ordered quasicrystals in all three

dodecagonal oxide systems: Ba–Ti–O, Eu–Ti–O and Sr–Ti–O.

In all cases, a logarithmic increase in variance was found as a

function of system size. Interestingly, the slopes of the Sr and

Eu OQCs are identical, while the slope of the Ba OQC is

lower. This result can be rationalized as follows. A larger slope

indicates a higher degree of phason disorder (Niizeki et al.,

1994), expressed by phason flips in physical space (Edagawa et

al., 2000; Edagawa et al., 2002). In the case of the OQCs, such

reconfigurations are associated with the transformation of the

underlying Ti–O ring network hosting Ba, Sr or Eu atoms

(Schenk et al., 2022; Cockayne et al., 2016). The driving force

behind this network reorganization is the electrostatic repul-

sion between neighboring host atoms. These atoms reside as

doubly positively charged ions in the layer (Schenk et al., 2022;

Haller et al., 2025). Therefore, the size of these ions, as

represented by their ionic radii, may be crucial for deter-

mining the degree of phason disorder in the network. While

the ionic radii of Eu and Sr are nearly identical (ri;Sr = 118 pm,

ri;Eu = 117 pm), the ionic radius of Ba (ri;Ba = 135 pm) is about

15% larger. The epitaxial relation to the substrate may also

play a role. The lattice constant of Pd(111), as the template for

Eu–Ti–O and Sr–Ti–O, is 0.8% smaller than that of Pt(111),

the template for Ba–Ti–O. Consequently, the aperiodic Ti2O3

matrix hosting Eu, Sr or Ba ions expands from an average pore

size of 6.70 Å on Pd(111) to �6.85 Å on Pt(111). These two

factors should affect the difference in the effective phason

elastic constants obtained for Eu–Ti–O and Sr–Ti–O with

respect to Ba–Ti–O.

Values for the phason elastic constant Keff have been

derived by modeling e.g. randomized Penrose-like tilings

(Strandburg, 1989), a randomized Ammann–Beenker tiling

(Joseph & Baake, 1996), or by using the transfer matrix

approach (Widom et al., 1989). These studies reported

comparable values close to Keff ¼ 0:6. Experimentally, a value

of 0:58� 0:03 was derived for a molecular network described

by a rhombus tiling (Blunt et al., 2008). In all of these cases

binary tilings were studied. For an intermetallic quasicrystal

described by a Penrose-like tiling consisting of four prototiles,

a larger value of 2.5 was found (He et al., 1991). The small local

phason flips of h1�100i character allow excitations of the

phason degrees of freedom with only a small expansion of the

internal space variance. The latter results in a rather stiff

effective elastic constant Keff . This is in contrast to larger

rearrangements of the tiling, which are expected to occur in

binary tilings.

The logarithmic increase of the internal space variance

might stem either from frozen-in phason waves or alter-

natively from a random tiling character. The detailed statis-

tical analysis of the Ba–Ti–O system reveals rather ideal NGT

properties when comparing especially the shared edges of

neighboring tiles (Schenk et al., 2019). This questions the

random nature of the system and points to well defined local

phason flips, which keep the number of shared edges

unchanged. An additional tool for addressing this issue is the

FT of the internal space distribution. The absolute value of the

discrete FT of the internal space distribution for the OQC in

Ba–Ti–O/Pt(111) is therefore shown in Fig. 9.

We observe a central Gaussian peak surrounded by a valley

and a subsequent minor elevation, which indicates the onset of

radial oscillations. Similar observations were made for the well

ordered OQC patches in Sr and Eu OQCs. No oscillations are

expected for a random tiling (Joseph & Baake, 1996; Joseph et

al., 1997). However, we also do not find coherent oscillations

beyond this initial onset. Joseph et al. did not discuss this

intermediate case, but other groups have reported it (Hory et

al., 1999; Soltmann & Beeli, 2001). These tilings were inter-

preted as being highly ordered, yet with some phason disorder.
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Figure 9
Absolute value of the discrete FT of the internal space distribution for the
central 1800 vertices in Ba–Ti–O/Pt(111).

Figure 8
Variance of the internal space in dependence of the system size N for the
OQC in Sr–Ti–O. The black horizontal line represents the constant
variance of the ideal NGT. The red line is a fit to the data between 10 and
700 vertices.



It is instructive to compare this situation with the convolution

of the step function expected for the internal space vertex

density for the ideal NGT with a Gaussian. According to the

convolution theorem, the FT of the convolution is equivalent

to the product of the single FTs, which are the oscillating

function and the Gaussian. Consequently, the width of the

Gaussian determines how quickly the oscillations are damped.

A broader point cloud in internal space leads to a sharper

Gaussian after Fourier transformation, resulting in stronger

damping of the oscillations. In this case, the slope of h2ðNÞ is

relatively large, resulting in a comparatively small phason

elastic constant Keff . Conversely, if the slope of h2ðNÞ is small,

then a large phason elastic constant follows. Consequently, the

Gaussian in the Fourier-transformed internal space is broa-

dened and the damping of the oscillation is weaker. Accord-

ingly, the evolution of the RDF presented in Fig. 1(b) proves

the narrow width of the broadening of the AD boundary in the

Ba–Ti–O system, from which a weak damping of the oscilla-

tions in the FT follows. Thus, the increasing variance in the

OQC systems can be traced back to the presence of phason

disorder resulting predominantly from local h1�100i jumps of

the vertex within the shields of the characteristic dodecagons.

5. Conclusion

We discuss the structure of dodecagonal oxide quasicrystals in

the Ba–Ti–O/Pt(111), Sr–Ti–O/Pd(111) and Eu–Ti–O/Pd(111)

material systems by uplifting the 2D physical space vertex

positions as determined by STM into a 4D hyperspace. The

internal space representation of the vertex positions reveals a

homogeneous scattering of points beyond the acceptance

domain, indicating the presence of phason disorder in these

OQCs. The variance of the internal space increases logarith-

mically with the system size within compact OQC patches in

all material systems. For the Sr–Ti–O and Eu–Ti–O OQCs, the

logarithmically increasing variance translates to a common

effective phason elastic constant of 2.38. For the Ba–Ti–O/

Pt(111) OQC, a slightly larger value of 2.57 is obtained. This

suggests that the OQC in the Ba–Ti–O/Pt(111) system more

closely resembles the ideal square–triangle–rhombus tiling.

Phason disorder originates from h1�100i jumps of the vertex

within the shields of the characteristic dodecagons in the tiling.
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