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Quantitative assessment of the structural quality of quasicrystals is a challenging
task. Whereas diffraction techniques are a powerful tool for the coherently
scattering regions, only diffuse scattering addresses structural inhomogeneities.
Alternatively, local imaging techniques allow for direct inspection of the
structures and for statistical evaluation of tiling elements. In both cases,
inspecting the internal space characteristic for quasicrystals offers an additional,
more sensitive perspective. Here, we analyze atomically resolved scanning
tunneling microscopy images for three dodecagonal oxide quasicrystal (OQC)
systems. Upon uplifting the 2D coordinates into a 4D hyperspace, the quasi-
crystal structure can be discussed in the internal space as well as in the physical
space. The quasicrystal acceptance domain in internal space of all three OQCs
increases logarithmically with the system size. From the acceptance domain
expansion we determine the effective phason elastic constants, which reflect
phason disorder within their square—triangle-rhombus tiling.

1. Introduction

Quasicrystals represent a unique state of matter owing to their
unconventional symmetries, allowing e.g. five-, eight-, ten- or
12-fold rotational diffraction patterns. Although they are
aperiodic in physical space, quasicrystals are periodic in a
higher-dimensional space called superspace. As a consequence
of this superspace description, all vertices of the high-dimen-
sional lattice can be represented either in the physical space,
where they are aperiodically arranged, or in an internal space,
which is a space of the same dimensions perpendicular to the
physical space. Inspection of the internal space offers a unique
tool for the structural analysis of quasicrystals. An ideal
quasicrystal appears as a dense set of points in the internal
space that defines its window or acceptance domain (AD).
Any defects in the quasicrystal will cause points to scatter
outside this acceptance domain. In this way, phason disorder,
dislocations, phason strain and topological defects can be
revealed (Socolar et al., 1986; He et al., 1991; Hory et al., 1999;
Edagawa et al., 2000; Edagawa et al., 2002; Blunt et al., 2008;
Lifshitz, 2011; Korkidi et al., 2013; Sandbrink & Schmiedeberg,
2014; Ishimasa et al., 2015; Hielscher et al., 2017; Hielscher et
al., 2020).

The internal space analysis enables random quasicrystals to
be distinguished. To this end, the variance or mean-squared
expansion 4; of the internal space distribution is investigated
as a function of system size N (Henley, 1991; Goldman &
Kelton, 1993; Joseph & Baake, 1996). It is defined as

RX(N) = 1/N Z(h,- — hy’ (1)

according to Joseph & Baake (1996). The following cases can
be distinguished. The variance h*(N) is a constant for a
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deterministic quasicrystal. It grows in a parabolic fashion in
the case of linear phason strain, which describes periodic
quasicrystal approximants. For random tiling quasicrystals the
variance grows differently depending on the internal space
dimensions. In 1D, the problem is equivalent to a random
walk, meaning the variance is proportional to the chain length.
In 2D, as concluded from the hydrodynamic approximation,
the variance should scale as

() = In(N) + b )

27K g

with an effective elastic constant K., the number of vertices
N and an integration constant b. For 3D a power-law finite-size
scaling is expected (Joseph & Baake, 1996). An analysis of the
scaling of the internal space variance has been applied
previously to a number of systems, including decagonal Al-
Ni-Co and Al-Cu-Ce quasicrystals, dodecagonal molecular
self-assemblies and dodecagonal Mn-Cr-Ni-Si (Chen et al.,
1990; He et al., 1991; Joseph et al., 1997; Blunt et al., 2008;
Ishimasa et al., 2015). Most recently, it has been applied to
dodecagonal pentablock quarterpolymers (Matsushita et al.,
2024).

A more subtle analysis of the tiling can be derived from the
Fourier transform (FT) of the internal space distribution
(Joseph & Baake, 1996). The advantage of the FT is that it uses
all the statistical moments of the point cloud in space; the
variance ﬁ, on the other hand, is equivalent to the second
moment only. In the case of an ideal quasicrystal, the absolute
value of the discrete FT of the internal space point cloud is
expected to have a central Gaussian peak surrounded by
oscillations. In contrast, there are no oscillations for the
random tiling (Joseph & Baake, 1996).

Here, we present an internal space analysis of three
different oxide quasicrystal (OQC) systems. OQCs are 2D
ternary oxides on a metal support that exhibit a dodecagonal
square—triangle-rhombus tiling (Forster et al., 2013; Forster et
al., 2020). The most thoroughly investigated OQC system is
Ba-Ti—O/Pt(111). In this materials system OQCs have been
discovered and their growth has been optimized to the highest
level of structural perfection (Zollner et al., 2020). Further-
more, the physical space of Ba-Ti-O/Pt(111) has previously
been analyzed in great detail in terms of tiling statistics and its
hyperslope as calculated from the tiling element distribution
(Schenk et al., 2019; Zollner et al., 2020; Imperor-Clerc et al.,
2024). One important finding is that this square—triangle—
rhombus tiling obeys the statistics of the ideal Niizeki-Gédhler
tiling (NGT) with respect to the allowed vertex configurations
and the relative frequencies of the prototiles (Schenk et al.,
2019; Niizeki & Mitani, 1987; Géhler, 1988). However,
systematic variations in the orientational distribution of larger
clusters, namely the characteristic dodecagon consisting of two
rhombuses, five squares and 12 triangles, were reported for the
Ba-Ti—O/Pt(111) system (Schenk et al., 2019). In addition to
this prototypical OQC system, we perform the internal
analysis for Eu and Sr atoms in a quasicrystalline network
formed on Pd(111) (Schenk et al., 2022; Haller et al., 2025). We
observe a significant scattering of points outside the AD for all

three dodecagonal structures. From the scaling of the mean-
squared expansion when plotted against the number of
vertices, we obtain a limited size for the well ordered quasi-
crystal patches and determine an effective phason elastic
constant K.

2. Experimental

The Ba-Ti-O/Pt(111) OQC has been prepared by depositing
ultrathin BaTiO5; films via magnetron sputtering and
annealing at 1150 K in ultrahigh vacuum (UHV). The struc-
tural aspects as determined by low-energy electron diffraction
(LEED) and scanning tunneling microscopy data have been
discussed previously (Schenk et al., 2019). For Sr-Ti-O and
Eu-Ti-O OQCs on Pd(111), monolayers of TiO, were
prepared by molecular beam epitaxy of Ti and post-oxidation.
Subsequently, Sr/Eu were deposited to an extent that the
entire oxide monolayer transforms into the dodecagonal
OQCs (Haller et al., 2025).

Scanning tunneling microscopy (STM) data were acquired
at 77 K. The raw data were corrected for piezo creep and
thermal drift and afterwards were processed using Mathema-
tica (Schenk et al., 2019). A custom analysis pipeline was used
to determine the Ba, Sr and Eu vertex positions. First, the
STM images were binarized and gradients were applied to the
resulting vertex discs. Then, a watershed segmentation algo-
rithm partitioned the image into vertex regions. Finally, the
vertex coordinates were refined by fitting 2D Gaussian func-
tions to the segmented regions. After extracting the exact
positions, the vertices were indexed using a 4D basis. In an
ideal quasicrystal, the coordinates of the vertices are restricted
to integers, providing a constraint for the indexing procedure.
To initiate this process, a list of neighboring vertices was
generated and the mean nearest-neighbor distance was
computed. This characteristic length was then used to
normalize all pairwise distances in the dataset. An arbitrary
vertex located near the center of the STM image was selected
as the origin and given the index (0, 0, 0, 0). The remaining
vertices were ordered according to their distance from the
origin; those closer were given higher priority. Indexing was
then performed iteratively. Starting with the origin, each
vertex was evaluated in turn. If neighboring vertices had not
yet been indexed, it was determined whether their positions
could be reached by adding a unit vector to the reference
vertex’s index. If this condition was satisfied, the neighbor was
assigned the corresponding 4D index. This neighbor-based,
iterative indexing scheme assigns unique integer coordinates
to all vertices using only local geometric information. Since it
relies exclusively on local neighborhoods, the method remains
robust against global distortions of the STM images.

3. Results

Fig. 1(a) shows the point cloud of vertex positions in the 2D
internal space, which is derived from a four-tuple indexing of
the physical space vertices in Ba-Ti—O/Pt(111). The same
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physical space dataset was used previously for the statistical
analysis of the physical space tiling (Schenk et al., 2019).

All points within the AD are colored black in Fig. 1(a).
Outside the AD, a color gradient ranging from blue to yellow
to red indicates an increasing distance from the AD. Starting
from 2.5 times the length of the projected unit vectors span-
ning the internal space, the vertices turn red. As Fig. 1(a)
shows, the OQC is far from being an ideal quasicrystal.
Despite the dense cloud of vertices in the center, additional
vertices scatter homogeneously outside the AD. In addition,
the density distribution in the internal space can be judged by
its radial distribution function (RDF) for different numbers of
vertices surrounding the central vertex in the physical space,
as shown in Fig. 1(b). The data are derived from the area-
weighted integration of the vertices in rings of constant width.
For an ideal quasicrystal, one would expect a step-like func-

VLR

."-'.. .
. ¥ .
vl ot
¢ N
— )
@ 2500
L .I - - ™
S omoof® .e e T . NGT
2 . | 7600
= n \
= 1500F %
5 s o 1 * 7800
= . ©
2 1000f weay, 4000
@ o" '-[#.. * 2000
- e
— 500 ® 1000
T e
(] Y, b
14 it 2P o SB20s, _
0.0 05 1.0 15 20 2.5 an
Internal Space expansion
© 10
o
2 08
2 = NGT
w -
2 08 200
E- = 400
T 04 = 800
& == 1000
E 02 = 1500
s = 2000
= S
0.0 0.5 1.0 15 20
Internal Space expansion
Figure 1

(a) 7800 vertices of the OQC in Ba-Ti-O/Pt(111) represented in internal
space. The AD of the NGT is plotted in white in (a). The color gradient
represents the internal space distance of points beyond the AD. (b)
Evolution of the RDF in dependence of the number of vertices
surrounding the center of the physical space image shown in Fig. 3. (¢)
Comparison of the normalized fits for different numbers of vertices.

tion with constant vertex density up to the edge of the AD and
zero density outside, as plotted for the NGT by black squares
in Fig. 1(b). The experimental data show that the vertex
density is highest at the origin of the internal space where the
AD is centered. However, we observe a plateau of constant
vertex density only for a total size of 1000 vertices (orange
diamonds). For larger system sizes, the cloud of points smears
out more rapidly around the AD boundary. These curves can
be perfectly described by a Fermi-Dirac distribution (FDD).
The solid lines in (b) are fits through the data. To facilitate
comparison, Fig. 1(c) shows the normalized FDDs for smaller
system sizes. The ideal NGT is described by an RDF that is
symmetric about 1.05. It is not a step function because the AD
is not a perfect circle. The star shape leads to a subtle
broadening in the RDF. In all cases, the experimental data are
symmetric to an internal space distance of 1.0. Increasing the
size to 2000 vertices yields a constant decrease in relative
vertex density between distances of 0.5 and 1 with respect to
the AD center. Concurrently, an increasing vertex density
appears at distances between 1 and 1.5 with respect to the AD
center.

The explanation for the scattering across the AD boundary
is phason flips. Fig. 2 illustrates the simplest and most frequent
phason flips that occur in the characteristic dodecagons of
OQCs, as well as their consequences in the physical (a, b) and
the internal space (c, d). These clusters consist of 20 vertices
arranged into two rhombuses, five squares and 12 triangles.
The long axes of the rhombuses form an angle of 150°.
Because of this, a certain direction can be assigned to each
dodecagon, as indicated by the black arrow in Fig. 2(a). Each
vertex of the short axis of the rhombus is the inner vertex of a
shield element, which is formed by two triangles, one rhombus
and one square, as marked in orange in Fig. 2(a). This inner
vertex of the shield (red full circle) can flip between three
nearby positions without altering the tiling element statistics.
The possible new positions are marked as red open circles in
Fig. 2(a). As illustrated by the sequence of the three dode-
cagons, these phason flips correspond to 120° rotations of the
shield element. Upon comparing the three clusters, it is
evident that the central cluster is similar to the left one, but
rotated by 150°. The right cluster differs because one rhombus
moves to the periphery of the dodecagon when the shield is
rotated. Fig. 2(b) provides the coordinate system spanned by
the four unit vectors used for indexing the vertex positions.
The four-tuple coordinates of all vertices within a shield
element are given on the right side of Fig. 2(b). According to
this definition, the short-distance phason flips inside the
orange shield element correspond to moves along (1100)
vectors, flipping the (0000) vertex either to (1100) or to (0011).

In Fig. 2(c) the AD of the ideal NGT is subdivided into
differently colored areas corresponding to the four different
vertex configurations, which exist in this tiling. As an example,
in the green area in internal space all vertices are located that
are surrounded by three triangles and two squares, also called
3434 vertices. From the AD fraction of the green area the
frequency of 56.2% is derived for these vertices. Please note
that according to this subdivision 26.8% of all vertices are the
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ones forming the short axis of the rhombus and that those
vertices are located at the AD periphery. The black dots in Fig.
2(c) mark the positions of the 20 vertices of the characteristic
dodecagon. The cluster center is slightly shifted out of the AD
center. The inner ring of 12 vertices in internal space corre-
sponds to the outer vertices of the cluster in physical space.
Focusing on the AD coloring one can see that two of these 12
are vertices surrounded by four triangles, two rhombuses and
one square. The other ten are 3%434 vertices. The seven outer
vertices in internal space form the inner ring in the physical
space. Four out of these seven vertices are part of the short
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(a) Local triangle-square-rhombus tiling within the NGT. It consists of 20
vertices arranged in two rhombuses, five squares and 12 triangles. The
orange-marked shield element encloses one rhombus, one square and two
triangles with one vertex position inside the shield. A local mode or
phason flip might move the inner vertex of the shield to the open red
circle positions which does not change the tiling statistics. The sequence
of three dodecagons illustrates such phason flips. (b) The unit vector
definition in the physical space (left) and the corresponding four-tuple
notation for the vertex positions in the shield (right). (¢) The unit vectors
defined in the internal space and the dodecagonal AD of the NGT. The
latter is partitioned into colored areas depending on the local vertex
configuration, as indicated just below. The blue area describes vertices
within the shield that can undergo short-distance phason flips. The black
dots represent 20 vertices of the characteristic dodecagon of (a). (d) The
internal space representation of the area that hosts the vertices within the
shield element (filled blue parallelograms) inside the AD and their
potential flipped positions (empty parallelograms) outside the AD. The
red arrows indicate the two possible phason jumps of the short-axis vertex
labeled in (b).

axis of the rhombus and three are 3°434 vertices that cannot
perform the phason flip discussed in Fig. 2(a).

Fig. 2(d) illustrates how the vertices are redistributed in the
internal space upon short-distance (1100) phason jumps. The
filled parallelograms show the AD area fraction for the
vertices of the short axes of the rhombuses. The empty
parallelograms indicate the target regions outside the AD that
are accessible for all possible rotations of rhombuses upon
flipping. The two possible jumps discussed in (a) are marked in
red in the internal space. These geometric considerations
directly affect the RDF of the internal space. As the black
arrows in (¢) indicate, jumps of this type will cause a depletion
of the vertex density in the AD above an internal space
distance of 0.82 with respect to the AD origin, and an increase
in density up to a value of 1.42. This trend is clearly evident in
the experimentally derived RDF. Stronger evidence of the
dominance of this mechanism in redistributing vertices in

Figure 3

(a) 7800 vertex positions of the OQC in Ba-Ti—O/Pt(111) represented in
physical space. The coloring of the vertices represents their internal space
distance from the origin of the AD, as shown in Fig. 1(a). The red circle
encloses 1800 vertices for which the internal space variance is presented
in Fig. 4. (b) Enlarged view of the area inside the red rectangle in (a).
Some characteristic dodecagons are marked as a guide to the eye.
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internal space comes from applying the internal space coloring
to the physical space tiling, as shown in Fig. 3(a).

At first glance, the dark colors in the center of the physical
space image reveal an ordered quasicrystal patch. Zooming
into the region within the red rectangle of Fig. 3(a), as shown
in Fig. 3(b), reveals that black vertices are often mixed with
blue and green ones. This creates a central black dot
surrounded by black, green and blue vertices inside a dode-
cagon made from 12 black vertices. This coloring depicts the
physical space signature of the phason flips shown in Fig. 2.
These occur frequently in OQCs and are a signature of local
phason strain, as reported earlier in an extended statistical
analysis (Schenk et al., 2019).

More abrupt changes in the physical space coloring indicate
a rapid movement over large distances in internal space. This
may result from phason strain in an extended region or, in
other words, from local inclusions of periodic approximant
domain. Regions with red vertices appearing in the upper right
and upper left parts of Fig. 3(a) illustrate this. Sudden jumps to
red vertex colors in the central bottom or top parts are more
likely to be related to topological defects, or dislocations, in
the quasicrystal. These dislocations are associated with a
Burgers vector, which defines an internal space length. Along
this length, the vertex positions move away from the AD
center (Lifshitz, 2011; Korkidi et al., 2013).

The internal space variance W(N ) is shown as a function of
system size N in Fig. 4. The black horizontal line indicates the
constant variance of the ideal NGT, whereas the experimental
data (blue circles) show a logarithmic increase up to a sample
size of about 2000 vertices. Using equation (2), a logarithmic
slope of 0.0620 £ 0.0004 is obtained, which translates to an
effective phason elastic constant of 2.567 &£ 0.016. From a size
of about 2000 vertices, the curve continues with a much larger
slope. For the Ba-Ti—O dataset presented here, about 2000
vertices is the typical size of the well ordered quasicrystal
patch. The red circle in Fig. 3(a) indicates the perimeter of this
patch. The large number of yellow and red vertices beyond the
red circle explains the change in slope with increasing system
size. However, this evaluation depends only slightly on the
starting point for indexing. Here the central vertex was used.

1.5}
@
3]
C
K
g 10}
@
5]
@ .
Q .
2 ‘e
§ 0.5} ° e NGT 1
g
z .o

0.0k

1 10 100 1000

System size N

Figure 4

Variance of the internal space in dependence of the system size N for the
OQC in Ba-Ti-O. The indexing started in the center of the red circle in
Fig. 3(a). The black horizontal line represents the variance of the ideal
NGT. The red line is a fit to the data between 10 and 1800 vertices.

Varying the starting vertex for this analysis, e.g. by picking the
center of the extended dark area in the lower right of Fig. 3(a),
yields a similar result.

The second OQC system to be discussed is Eu-Ti-O/
Pd(111) (Schenk et al., 2022). This system was fabricated by
depositing Eu on a TiO,/Pd(111) precursor, which was
prepared by molecular beam epitaxy of Ti and post-oxidation.
The Eu-Ti—O/Pd(111) system exhibits a dodecagonal square—
triangle-rhombus tiling similar to that of Ba-Ti-O/Pt(111).
However, the average pore size of the Ti,O3 network hosting
the Eu atoms is slightly smaller than that in Ba-Ti-O/Pt(111)
(Schenk et al., 2022).

Fig. 5 shows the internal and physical space of the OQC in
Eu-Ti-O/Pt(111). This dataset contains 4800 vertices. Again

Figure 5

4800 vertex positions of the OQC in Eu-Ti-O/Pt(111) represented in
internal space (a) and physical space (b). The border of the AD of the
NGT is plotted in white in (a). The color gradient represents again the
internal space distance of points outside the AD. The orange, red, pink
and blue circles label the different central vertices for evaluating the
internal space variance plotted in Fig. 6. (¢) Enlarged view of the region
inside the red rectangle in (b) emphasizing the position of rhombus pairs
inside characteristic dodecagons.
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the internal space vertex representation in Fig. 5(a) is a
compact cloud with a certain fraction of vertex positions
located outside the AD. The region directly around the AD,
colored in blue and green, is densely populated, and the vertex
density fades out towards yellow and red. Few red vertices are
found at distances larger than twice the unit vector (radius of
the AD) in three distinct directions. In physical space, Fig.
5(b), dark colors dominate a central strip from top to bottom.
Towards the right, some colorful areas indicate larger phason
strain. To the left, two red patches embedded in a high density
of black vertices indicate a sudden jump in internal space.
Upon closer inspection, rings of 12 black vertices surrounding
a black center vertex indicate the characteristic dodecagon of
the NGT and are present everywhere in the well ordered OQC
patch. This is emphasized in the enlarged region of the red
rectangle in Fig. 5(c). Unlike in Ba-Ti-O, phason flips result in
configurations in which the rhombuses no longer point to the
center of the dodecagon, but instead are flipped to positions
on the periphery. However, these flips result in the same
internal space scattering out of the AD, as discussed before
[Fig. 2(c)].

When evaluating the internal space variance for this
dataset, we find that the system’s size dependence now
strongly varies according to the starting vertex chosen. We
illustrate this with four examples, indicated by colored circles
in Fig. 5(b). The four curves showing the evolution of the
variance with the system size are plotted in Fig. 6. The pink
curve shows a rapid increase in variance that saturates at
around 200 vertices, slowly decreasing to 1000 vertices before
a significant increase. The red and orange curves show inter-
mediate initial linear slopes, and the blue curve shows the
slowest linear growth of variance in this system. By fitting the
blue curve with equation (2) between 10 and 1000 vertices, we
obtain a slope of 0.0668 £ 0.0005. This translates to an effec-
tive phason elastic constant of 2.383 £ 0.015, which is close to
the value obtained for Ba-Ti-O.

The third system to be discussed is the OQC in Sr-Ti-O/
Pd(111) (Haller et al., 2025). Fig. 7 shows internal and physical
space images of a dataset comprising 3600 vertex positions.

1.4}
1.2¢
1.0
0.8}
06F « ° 4
0.4f
0.2f

0.0F . 0 A A A
10 100 1000

System size N

Internal space variance

Figure 6

Variance of the internal space in dependence of the system size N for the
OQC in Eu-Ti-O. The different traces are obtained by using different
vertices as starting points for indexing. The starting vertices are labeled in
Fig. 5 in the colors of the traces. The black horizontal line represents the
variance of the ideal NGT. The red line is a fit to the data between 10 and
1000 vertices of the blue trace.

The wide spread in the internal space indicates that this
dataset shows less perfect quasicrystalline ordering. The
regular distribution of red vertices surrounding the AD
suggests that the presence of extended patches of quasicrys-
talline approximants is responsible for this. In physical space,
Fig. 7(b), a strong separation into compact red and black
regions is clearly visible. In the bottom left part of the image,
the domain boundaries appear quite sharp due to a sudden
jump in the vertex color. As was also the case in the other
OQC systems, this jump corresponds to an extended shift
vector in perpendicular space when crossing the domain
boundary. The open line in the top left part of Fig. 7(b) shows
that the indexing was not possible in this region, with gaps
occurring in the tiling that cannot be bridged by the edge
length of the prototiles. However, as indicated by the red
circle, a continuous OQC patch of 700 vertices can be found in
this dataset. The evaluation of the system-size dependent
internal space variance shown in Fig. 8 started from the center
of this circle. The curve bears a strong resemblance to the
growth of the variance in the other two OQC systems. Up to
700 vertices, a logarithmic growth variance is obtained that can

Figure 7

3600 vertex positions of the OQC in Sr-Ti-O/Pt(111) represented in
internal space (a) and physical space (b). The AD of the NGT is plotted in
white in (a). The color gradient represents the internal space distance of
points beyond the AD. The red circle in (@) labels the largest well ordered
continuous OQC patch containing 700 vertices.
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Figure 8
Variance of the internal space in dependence of the system size N for the
OQC in Sr-Ti-O. The black horizontal line represents the constant
variance of the ideal NGT. The red line is a fit to the data between 10 and
700 vertices.

be fitted with a slope of 0.067 &£ 0.005, corresponding to an
effective phason elastic constant of 2.38 & 0.02. This value is
similar to that of Eu-Ti—O. Beyond 700 vertices, a significant
increase in the variance is obtained. As expected, given the
wide spread in the internal space, the variance maximum
for these 3600 vertices is much larger than for the previous
two systems. It differs by a factor of two. In this regard, the
Ba-Ti—-O OQC dataset comprising 7800 vertices is the most
compact in the internal space.

4. Discussion

The internal space inspection has allowed us to identify finite
patches of long-range ordered quasicrystals in all three
dodecagonal oxide systems: Ba-Ti—O, Eu-Ti-O and Sr-Ti-O.
In all cases, a logarithmic increase in variance was found as a
function of system size. Interestingly, the slopes of the Sr and
Eu OQCs are identical, while the slope of the Ba OQC is
lower. This result can be rationalized as follows. A larger slope
indicates a higher degree of phason disorder (Niizeki et al.,
1994), expressed by phason flips in physical space (Edagawa et
al., 2000; Edagawa et al., 2002). In the case of the OQCs, such
reconfigurations are associated with the transformation of the
underlying Ti-O ring network hosting Ba, Sr or Eu atoms
(Schenk et al., 2022; Cockayne et al., 2016). The driving force
behind this network reorganization is the electrostatic repul-
sion between neighboring host atoms. These atoms reside as
doubly positively charged ions in the layer (Schenk et al., 2022;
Haller er al, 2025). Therefore, the size of these ions, as
represented by their ionic radii, may be crucial for deter-
mining the degree of phason disorder in the network. While
the ionic radii of Eu and Sr are nearly identical (r; s, = 118 pm,
i gy = 117 pm), the ionic radius of Ba (r; g, = 135 pm) is about
15% larger. The epitaxial relation to the substrate may also
play a role. The lattice constant of Pd(111), as the template for
Eu-Ti-O and Sr-Ti-O, is 0.8% smaller than that of Pt(111),
the template for Ba-Ti—O. Consequently, the aperiodic Ti,O3
matrix hosting Eu, Sr or Ba ions expands from an average pore
size of 6.70 A on Pd(111) to ~6.85 A on Pt(111). These two

factors should affect the difference in the effective phason
elastic constants obtained for Eu-Ti-O and Sr-Ti-O with
respect to Ba-Ti-O.

Values for the phason elastic constant K. have been
derived by modeling e.g. randomized Penrose-like tilings
(Strandburg, 1989), a randomized Ammann-Beenker tiling
(Joseph & Baake, 1996), or by using the transfer matrix
approach (Widom et al, 1989). These studies reported
comparable values close to K. = 0.6. Experimentally, a value
of 0.58 £ 0.03 was derived for a molecular network described
by a rhombus tiling (Blunt et al., 2008). In all of these cases
binary tilings were studied. For an intermetallic quasicrystal
described by a Penrose-like tiling consisting of four prototiles,
a larger value of 2.5 was found (He et al., 1991). The small local
phason flips of (1100) character allow excitations of the
phason degrees of freedom with only a small expansion of the
internal space variance. The latter results in a rather stiff
effective elastic constant K. This is in contrast to larger
rearrangements of the tiling, which are expected to occur in
binary tilings.

The logarithmic increase of the internal space variance
might stem either from frozen-in phason waves or alter-
natively from a random tiling character. The detailed statis-
tical analysis of the Ba-Ti-O system reveals rather ideal NGT
properties when comparing especially the shared edges of
neighboring tiles (Schenk et al, 2019). This questions the
random nature of the system and points to well defined local
phason flips, which keep the number of shared edges
unchanged. An additional tool for addressing this issue is the
FT of the internal space distribution. The absolute value of the
discrete FT of the internal space distribution for the OQC in
Ba-Ti-O/Pt(111) is therefore shown in Fig. 9.

We observe a central Gaussian peak surrounded by a valley
and a subsequent minor elevation, which indicates the onset of
radial oscillations. Similar observations were made for the well
ordered OQC patches in Sr and Eu OQCs. No oscillations are
expected for a random tiling (Joseph & Baake, 1996; Joseph et
al., 1997). However, we also do not find coherent oscillations
beyond this initial onset. Joseph et al. did not discuss this
intermediate case, but other groups have reported it (Hory et
al., 1999; Soltmann & Beeli, 2001). These tilings were inter-
preted as being highly ordered, yet with some phason disorder.

Figure 9
Absolute value of the discrete FT of the internal space distribution for the
central 1800 vertices in Ba-Ti-O/Pt(111).
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It is instructive to compare this situation with the convolution
of the step function expected for the internal space vertex
density for the ideal NGT with a Gaussian. According to the
convolution theorem, the FT of the convolution is equivalent
to the product of the single FTs, which are the oscillating
function and the Gaussian. Consequently, the width of the
Gaussian determines how quickly the oscillations are damped.
A broader point cloud in internal space leads to a sharper
Gaussian after Fourier transformation, resulting in stronger
damping of the oscillations. In this case, the slope of h2(N) is
relatively large, resulting in a comparatively small phason
elastic constant K.¢. Conversely, if the slope of ﬁ(N) is small,
then a large phason elastic constant follows. Consequently, the
Gaussian in the Fourier-transformed internal space is broa-
dened and the damping of the oscillation is weaker. Accord-
ingly, the evolution of the RDF presented in Fig. 1(b) proves
the narrow width of the broadening of the AD boundary in the
Ba-Ti-O system, from which a weak damping of the oscilla-
tions in the FT follows. Thus, the increasing variance in the
OQC systems can be traced back to the presence of phason
disorder resulting predominantly from local (1100) jumps of
the vertex within the shields of the characteristic dodecagons.

5. Conclusion

We discuss the structure of dodecagonal oxide quasicrystals in
the Ba-Ti-O/Pt(111), Sr-Ti—O/Pd(111) and Eu-Ti-O/Pd(111)
material systems by uplifting the 2D physical space vertex
positions as determined by STM into a 4D hyperspace. The
internal space representation of the vertex positions reveals a
homogeneous scattering of points beyond the acceptance
domain, indicating the presence of phason disorder in these
OQCs. The variance of the internal space increases logarith-
mically with the system size within compact OQC patches in
all material systems. For the Sr—Ti—O and Eu-Ti—-O OQCs, the
logarithmically increasing variance translates to a common
effective phason elastic constant of 2.38. For the Ba-Ti-O/
Pt(111) OQC, a slightly larger value of 2.57 is obtained. This
suggests that the OQC in the Ba-Ti—O/Pt(111) system more
closely resembles the ideal square-triangle-rthombus tiling.
Phason disorder originates from (1100) jumps of the vertex
within the shields of the characteristic dodecagons in the tiling.
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