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In wilderness is the preservation of the world.
— Henry David Thoreau, Walden, 1854
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Summary

Water management faces increasing challenges due to environmental changes and competing human
demands. In this context, environmental flows (e-flows) are of critical importance as they define the water
regimes necessary for maintaining riverine ecosystems. Models have become crucial tools for supporting
decision-making in river basin management by enabling sustainable resource allocation considering
ecological needs. Optimization modeling is one such approach for addressing the challenges of sustainable
resource allocation, although the development of these models faces several obstacles. This thesis

investigates the following research topics:

1. Trade-offs in scale representation in optimization modeling for water resource management;
2. Suitability of optimization models for mediating the incorporation of e-flows into management at
different scales to support the implementation of adaptive management implementation;

3. Applicability of optimization models at the basin scale under future change.

This dissertation is based on three consecutive articles:

The first research topic is addressed in Chapter 2 (Paper 1). The chapter presents a literature review to
understand and acknowledge the trade-offs in decision-making when applying optimization models for
water management at different spatial and temporal scales. It outlines a framework that ties all model-
related decisions into practical steps for optimization model development and emphasizes the need for a
shift to model perception and model formulation stages, away from solely result-oriented approaches.
The chapter provides a series of key questions to support the problem perception and formulation stages

to ensure transparency during model development.

The second research topic is expanded in Chapter 3 (Paper 2) and builds on insights from an optimization
assessment developed for a pilot application at various river water diversion sites in the Pas River basin
(Northern Spain). The presented study shows how ecological requirements derived by experts can be
translated into model parameters to achieve diversion objectives. The procedure can be used to identify
the temporal scales in which the major trade-offs in water availability manifest themselves, thus guiding
management efforts. In addition, the chapter provides suggestions for the most common challenges and

limitations in applicability.

The second and last research topics are addressed in Chapter 4 (Paper 3), which further evaluates the use

of optimization to balance water diversion for human consumption and ecosystem services. This chapter



also examines the potential to integrate future environmental scenarios, such as climate and land use
change. An evolutionary optimization model is proposed to guide diversion management in the Pas River
basin. The findings from the study can help managers identify and track hotspots in the basin where
ecological needs are being lost over different time periods. The chapter provides recommendations to

enable the adoption of adaptive management through optimization modeling.

Overall, this thesis provides new insights into the use of optimization modeling to solve problems of
sustainable water resource allocation, including the consideration of e-flows. Combining a comprehensive
review with a hands-on learning-by-practice modeling approach, the major challenges and limitations in
applying optimization models to water resource management are explored with the goal of improving

decision-making processes at modeling-management interface.



Zusammenfassung

Das Wasserressourcenmanagement steht zunehmend vor Herausforderungen, die durch
Umweltveranderungen und konkurrierende menschliche Anspriiche entstehen. In diesem
Zusammenhang spielen 06kologische Mindestabfliisse (e-flows) eine zentrale Rolle, da sie die
Abflussregimes definieren, die notwendig sind, um Flussékosysteme zu schiitzen und zu erhalten. Modelle
haben sich dabei zu wichtigen Werkzeugen entwickelt, um die Entscheidungsfindung im
Flussgebietsmanagement zu unterstitzen und eine nachhaltige Verteilung der Ressourcen unter
Bericksichtigung 6kologischer Anforderungen zu gewahrleisten. Optimierungsmodelle stellen eine
vielversprechende Herangehensweise dar, um die komplexen Herausforderungen bei der
Ressourcenverteilung zu bewaltigen. lhre Entwicklung ist jedoch noch immer mit einer Vielzahl von

Herausforderungen verbunden. Diese Dissertation behandelt daher drei zentrale Themen:

- Abwiagungen bei der Skalenreprdsentation in der Optimierungsmodellierung fir das
Wassermanagement;

- Eignung von Optimierungsmodellen zur Integration von 6kologischen Mindestabflissen in das
Wassermanagement auf verschiedenen MaRstabsebenen;

- Anwendbarkeit von Optimierungsmodellen auf Einzugsgebietsebene fiir ein adaptives

Management unter zuklnftigen Umweltveranderungen.
Die Dissertation basiert auf drei aufeinander aufbauenden wissenschaftlichen Studien:

Das erste Forschungsthema wird in Kapitel 2 (Paper 1) behandelt. Dieses Kapitel bietet eine
Literaturlibersicht, um die Abwagungen bei der Entscheidungsfindung durch Optimierungsmodelle, die
flr das Wassermanagement auf verschiedenen raumlichen und zeitlichen Skalen angewendet werden, zu
verstehen und anzuerkennen. Die Studie stellt einen integrativen Rahmen vor, der modellbezogene
Entscheidungen in praktische Schritte fir die Entwicklung von Optimierungsmodellen Uberfihrt.
Besonders hervorgehoben wird die Notwendigkeit eines Paradigmenwechsels, weg von rein
ergebnisorientierten Ansatzen hin zu einer bewussten Modellwahrnehmung und -formulierung. Das
Kapitel stellt Schliisselfragen bereit, welche die Transparenz und Nachvollziehbarkeit wahrend der

Modellentwicklung gewahrleisten.

Die Erkenntnisse aus der ersten Studie flieBen direkt in das zweite Paper (Kapitel 3) ein. Die Studie basiert
auf Erkenntnissen aus einer Optimierungsbewertung, die fir eine Pilotanwendung an verschiedenen

Wasserumleitungsstandorten im Einzugsgebiet des Pas-Flusses (Nordspanien) entwickelt wurde. Die



vorgestellte Studie zeigt, wie von Experten gestellte 6kologische Anforderungen in Modellparameter
Ubersetzt werden kdnnen, um Umleitungsziele zu erreichen. Das Verfahren kann verwendet werden, um
die zeitlichen Skalen zu ermitteln, in denen sich die wichtigsten Kompromisse bei der Wasserverfligbarkeit
manifestieren, um so die BewirtschaftungsmaBnahmen besser steuern zu kénnen. Dariliber hinaus zeigt

das Kapitel die Herausforderungen und Grenzen der Anwendbarkeit.

Das zweite sowie das letzte Forschungsthema werden in Kapitel 4 (Paper 3) behandelt, in dem die
Verwendung von Optimierungsmodellen zur Abwagung der Anforderungen an die Wasserumleitung, den
menschlichen Verbrauch und den Erhalt von Okosystemdienstleistungen weiter untersucht wird. Dies
erfolgt durch die Untersuchung der Auswirkungen zukiinftiger Szenarien von Klima- und
Landnutzungsanderungen. Es wird ein evolutiondres Optimierungsmodell vorgeschlagen, um das
Wasserumleitungsmanagement im Pas-Einzugsgebiet zu steuern. Die Ergebnisse der Studie kdnnen den
zustindigen Amtern und Behérden dabei helfen, kritische Bereiche oder "Hotspots" im Einzugsgebiet zu
identifizieren, in denen 6kologische Bediirfnisse liber verschiedene Zeitraume hinweg verloren gehen. Das
Kapitel enthdlt Empfehlungen, die die Einfihrung eines adaptiven Managements durch

Optimierungsmodellierung ermdéglichen sollen.

Insgesamt bietet die Dissertation neue Erkenntnisse zur Anwendung von Optimierungsmodellen bei der
Bewiltigung von Problemen bei der Umsetzung von Strategien der nachhaltigen Verteilung von
Wasserressourcen, einschlieBlich der Bericksichtigung von e-flows. Durch die Kombination einer
umfassenden Uberpriifung mit einem praxisorientierten, lernenden Modellierungsansatz werden die
wichtigsten Maoglichkeiten, Herausforderungen und Einschrankungen bei der Anwendung von
Optimierungsmodellen im Wassermanagement untersucht, mit dem Ziel, Entscheidungsprozesse an der

Schnittstelle von Modellierung und Management zu verbessern.
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Thesis at a Glance

This thesis explores the role of optimization modeling in addressing water allocation problems and resources for

environmental flows (e-flows) and its applicability to river management across various scales.

Paper 1
Aim: Investigate the stages of optimization problem development for water management from a scale-wise
perspective, focusing on trade-off decisions linked with data availability and modeling and the implications of each
choice.

Method: Literature review of multi-objective optimization studies that address water management problems

considering environmental flows.

Conclusions: The proposed framework helps clarify the role of scale in water management and emphasizes the need
for transparency. At the same time, it provides clear steps for defining the optimization problem and implementing
the desired assessment scales.

Paper 2
Aim: Demonstrate how an optimization assessment can be integrated into the adaptive management cycle to
effectively incorporate environmental flow requirements into water diversion management. The approach is

designed to balance ecological conservation needs with human water demands.

Method: Multi-objective optimization (NSGA-III), hydrological scenarios, and e-flow requirements for three key

biological groups within the case study area (Pas River segments).

Conclusions: Optimization assessments can facilitate the incorporation of e-flows into water management plans.
Water management must take into account seasonal variations in water availability for diversion. The proposed

methodology can be applied to other river basins; however, detailed monitoring and flexible thresholds are required.

Paper 3
Aim: Explore the application of the optimization approach for river water diversion at the basin scale under future
climate and land use change scenarios to identify modeling options and management practices that best facilitate

the implementation of adaptive management.

Method: Multi-objective optimization (NSGA-III), land use and climate scenarios (BAU and nature-based), and e-flow

requirements for three Supporting ES within the case study area (Pas River basin, 500-m segment resolution).

Conclusions: Seasonal shifts and spatial heterogeneity in diversion volumes challenge future management of water
diversion; adaptive management is better promoted by reviewing seasonal planning and setting local diversion

targets.

The conclusion section examines the key challenges and limitations of the optimization approach and integrates a

comprehensive review with practical insights for improving water management decision-making.



1. Introduction

As a renewable resource, the availability of water resources is highly variable in quantity and unevenly
distributed across the landscape (Ciampittiello et al., 2024; Feng et al., 2017). Climatic and environmental
factors, such as precipitation patterns and landscape features, significantly influence the timing of water
flows and the location of natural reservoirs (Mittal et al., 2016; Sabater et al., 2023; Zolfagharpour et al.,
2022). In an attempt to control this natural variability in supply and meet societal needs, water resource
management and planning involve implementing various actions across the riverscape, including water
impoundments, flow diversions, and flow regulation infrastructures or water pumping and transferring (A.
C. Horne, Morris, Fowler, et al., 2017; Zeiringer et al., 2018). However, water availability is often limited in
both time and space compared to human consumption demands while remaining essential for supporting
ecological processes and sustaining species (Derepasko, Guillaume, et al., 2021; Docker & Johnson, 2017;

Poff & Zimmerman, 2010).

In the context of rivers, the understanding that both river and adjacent land ecosystems need adequate
water flows to function properly was formally recognized with the introduction of the concept of
environmental flows (e-flows) during the “10th International River Symposium and International
Environmental Flows Conference” that took place in 2007 in Brisbane (Australia) and ever since known as
the “Brisbane Declaration”. The concept of e-flows emphasizes the intricate connection between
ecosystem processes and river flow dynamics, including elements like base flows, high flows, and water
temperature. Recognizing these components is essential to maintaining ecosystem health and
conservation. The most recent definition of e-flows (Arthington et al., 2018) states that e-flows correspond
with "the quantity, timing, and quality of water flows required to sustain freshwater and estuarine

ecosystems and the human livelihoods and well-being that depend on these ecosystems."

The acknowledgment of e-flows importance also marks a significant milestone in river flow preservation
and restoration efforts. It is key in shaping protection measures and policies for rivers and related water
bodies, such as the European Water Framework Directive. This is particularly relevant for many rivers
worldwide, which face intense exploitation to meet human demands. In fact, it is well established that
heavy river regulation can cause various negative impacts on river ecosystems and habitats, threatening
the survival of species and communities while disrupting ecosystem services that benefit society (Ekka et

al., 2020; Nilsson & Berggren, 2000; Opperman et al., 2019). The most evident impacts of river regulation
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and water management in river basins stem from damming and impoundment infrastructure able to
drastically alter flow regimes, though the full extent of these impacts is not fully understood (Brown et al.,
2024; Olden & Naiman, 2010; Zargari et al., 2023). While damming significantly disrupts natural flow
patterns, other perturbations like weirs, water abstraction through pumping, and flow diversion also affect
ecosystem integrity by reducing flow magnitude and hampering peak flow events (Brown et al., 2024;
McKay & King, 2006; Olden & Naiman, 2010; Yu et al., 2020; Zargari et al., 2023). These disturbances can
interfere with the environmental cues that trigger phenological responses in certain species, as supported

by evidence (Bunn & Arthington, 2002; Lytle & Poff, 2004).

Several approaches have been developed to capture the fundamental components of the relationship
between river ecosystems and river flows, referred to in this thesis as environmental water requirements
(sensu A. C. Horne, Webb, Stewardson, et al., 2017). Well-represented approaches in the literature are
primarily based on hydrologic and hydraulic modeling of flow regimes and habitat range, ecological
processes, phenological stages, and growth/richness indicators or indices (Webb, Arthington, et al., 2017).
While no single approach is definitive, they all share the understanding that the presence of specific
conditions is essential for sustaining the ecosystems (Poff et al.,, 2017). The most widely applied
approaches for ecological conservation in rivers are based on two main concepts: the "natural flow
regime" and the "designer flow." The former emphasizes the need to allow the river to flow according to
its natural conditions (e.g., peak flows, low flows, and their timing), reducing the interference to a
minimum (Poff et al., 1997). At the same time, the latter involves the artificial delivery of appropriate
water volumes at specific times (frequency) to mimic the natural flow of the river but with the ultimate
goal of achieving desired outcomes such as particular ecosystem services (Acreman et al., 2014). The
"designer flow" approach is particularly suited for regulated and heavily regulated rivers, such as those

impaired by dams or artificial impoundments.

In view of the urgent need for sustainable river water allocation, research has recently focused heavily on
strategies for incorporating environmental flows (e-flows) into regulated river management decisions.
However, despite their crucial role in promoting the well-being of both ecosystems and society, the
practical application of this concept remains limited (Arthington et al., 2024). This gap is further
compounded by the complex array of often conflicting objectives that water management must balance.
Most river management efforts prioritize ensuring sufficient water for drinking, industrial use, and
agriculture. Achieving these objectives demands decision-making across different scales and involves

coordination across multiple levels of governance (Docker & Johnson, 2017; L. O’Donnell & E. Garrick,
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2017). For instance, local governance includes municipalities' responsibilities to protect water diversions
from river segments, while basin-scale governance offers a broader perspective on the watershed cycle,

encompassing all institutions involved in water use and allocation.

To achieve these management objectives, different approaches are used to implement e-flows depending
on the governance level (local, regional, or national). These include demand-based strategies, such as caps
on water abstraction, and ecosystem-based strategies, such as allocating certain amounts of water to the
environment (Docker & Johnson, 2017). Both strategies fall under the broader framework of Integrated
Water Resource Management (IWRM), which marks a pivotal shift in water management history—from
traditional methods to a more holistic approach that considers society, the economy, and ecosystems as

interconnected components (lbisch et al., 2016).

Nearly two decades have passed since adaptive water management emerged as a promising paradigm for
sustainable water resource management, offering an alternative to the traditional IWRM approach (Pahl-
Wostl, 2006; Webb, Watts, et al., 2017). At its core, it involves continuously monitoring the outcome of
decisions and adjusting actions to better achieve desired goals, making it especially effective at managing
uncertainties and changing environmental conditions. In this way, adaptive water management provides
a flexible framework for sustainable water resource management that allows for adjustments and
improvements in each management cycle. However, despite its promise, there is currently no clear
guidance on how to integrate adaptive management into practical water management practices
successfully (Webb, Watts, et al., 2017). Consequently, water managers must monitor outcomes closely
to ensure set goals are pursued as expected, especially in relation to maintaining ecosystem functions and
integrity while balancing the diverse water needs of multiple stakeholders. This underscores the
importance of tools that support informed decision-making before implementation takes place and

facilitate a sustainable balance among competing demands.

Among the plethora of decision support tools available to address river water resource management
problems (Wardropper & Brookfield, 2022), optimization provides the technical structure for navigating
complex and often conflicting objectives (Derepasko, Guillaume, et al., 2021; Horne et al., 2016; Horne et
al., 2017) such as water supply for human consumption, agricultural irrigation, industrial use, and the
protection of aquatic ecosystems. Unlike most decision support tools that focus on a single component or
management goal, multi-objective optimization allows decision-makers to consider multiple criteria

simultaneously, capturing the nuanced trade-offs between them. For example, maximizing water
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allocation for agriculture may conflict with the goal of preserving environmental flows essential for aquatic
ecosystems. To address these challenges, multi-objective optimization generates a range of optimal
solutions, known as the Pareto front. Each point on this front represents a scenario where improving one
objective necessitates sacrificing another. Decision-makers can then assess these trade-offs to identify a

solution that aligns with their priorities and overarching management goals.

One of the key strengths of the optimization approach is its flexibility, allowing the incorporation of data
from different spatial and temporal scales. This adaptability makes it especially valuable for addressing
environmental conservation challenges in river management. For example, during water scarcity,
managers must balance limited resources while maintaining the ecological integrity of the river system.
Multi-objective optimization models can simulate various scenarios, accounting for factors such as
seasonal water availability, sector-specific demands, and ecosystem requirements. By offering a range of
feasible allocation strategies, these models help decision-makers assess trade-offs and identify solutions

that optimally balance competing needs.

This approach is beneficial when implementing management strategies in the context of climate change,
where traditional methods based on historical data may no longer be reliable (Derepasko et al., 2023). By
incorporating optimization into management frameworks, decision-makers can better navigate future

uncertainties and make informed decisions that align immediate needs with long-term sustainability.

Optimization has been widely applied to managing water infrastructure, such as dams, reservoirs, and
irrigation systems (Derepasko, Guillaume, et al., 2021). These infrastructures often serve multiple
purposes, including flood control, hydropower generation, and water supply, each with distinct objectives.
For example, a dam may be operated to maximize hydropower output while also ensuring sufficient flow
downstream to support fish populations and aquatic ecosystems. Optimization models can be used to
determine the ideal operational schedule for such infrastructure and balance these competing objectives.
By simulating various operational strategies, these models can identify schedules that offer the best trade-

offs between hydropower generation, flood risk reduction, and environmental sustainability.

In addition to their technical benefits, optimization assessments can enhance decision-making in river
basin management by fostering transparency and stakeholder engagement. Defining objectives and
evaluating trade-offs require input from diverse stakeholders, including government agencies, local

communities, industry representatives, and environmental groups (Horne et al., 2016; Horne et al., 2017).

22



Optimization models can provide a structured framework for incorporating these varied perspectives,
ensuring that all relevant interests are taken into account (Castelletti et al., 2008; Mayer & Mufoz-

Hernandez, 2009; Nikoo et al., 2017).

By offering decision-makers a range of potential solutions rather than a single "ideal" outcome, these
models encourage a more inclusive approach to river management. Stakeholders gain insight into how
different priorities can be balanced and actively participate in discussions about which trade-offs are most
acceptable. This inclusive process improves the quality of decisions and increases their legitimacy and
acceptance among affected communities, leading to more sustainable and widely supported management

outcomes (Whitley et al., 2024).

Although optimization assessments provide a flexible technical structure for tackling the complex and
interconnected challenges of river basin management—allowing a comprehensive overview of the trade-
offs associated with various management decisions and enabling the development of strategies that
effectively balance competing demands—several research questions remain unresolved. This thesis
explores gaps related to scale, model reproducibility, and practical support for adaptive management
strategies. Addressing these issues is essential for developing reliable optimization assessments and
improving water management practices, ultimately enhancing the resilience and sustainability of water

resource management.

One of the primary challenges for water management research is the issue of scale. There is a significant
lack of understanding of the scales at which water management problems should be addressed, leading
to inconsistencies in the input and output data (Lovell et al., 2002). This inconsistency affects the accurate
representation of real-world conditions in simulated models. For example, management decisions made
at the local level may overlook broader regional or even global impacts. At the same time, optimization
models developed at larger scales may fail to capture critical local nuances. A unified approach is necessary
for scaling results and, consequently, for the reliability and applicability of models used to inform water
management policies (Cilliers et al., 2013). To meet this challenge, it is crucial to analyze the impact of
modeling decisions at the model scales to avoid trade-offs between modeling capability and management
needs. This thesis addresses the issue of trade-offs in scale representability within optimization modeling
for water resource management and contributes to supporting model accuracy and relevance, ultimately
enabling more effective decision-making that better reflects the complexities of real-world water

management scenarios.
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Another critical gap in water management research is the lack of flexible, easy-to-apply models. The
increasing complexity of environmental systems and the necessity for effective decision-making have
highlighted the need for structured modeling frameworks that enhance models' comparability,
transparency, and transferability. In water resources management, such frameworks are essential for
developing robust and adaptable strategies; however, many models lack the technical structure to
accommodate diverse data types and outputs tailored to specific management needs. This results in using
various methodologies, assumptions, and datasets or customizing indicators to fit modeling needs. Such a
lack of versatility complicates the comparison of results across studies, reducing their applicability in
decision-making. Additionally, the absence of a standardized framework for optimization model
development hinders the reproducibility of results and limits the adaptability of models to different
contexts. Since optimization offers flexibility in problem formulation and can efficiently process
information in formats relevant to water management, this thesis explores the suitability of optimization

models for integrating environmental flows (e-flows) into management practices at different scales.

Lastly, a major challenge in water management research is identifying practical tools that enable the
implementation of adaptive management strategies. While adaptive management is necessary for
handling uncertain future environmental conditions (Williams & Brown, 2016), there is scarce evidence on
how optimization approaches can facilitate its application. Optimization techniques, which focus on
efficiently allocating resources and achieving specific objectives, have the potential to play a key role in
adaptive management implementation by identifying optimal strategies under changing conditions.
However, the integration of optimization methods into adaptive management practices has not yet been
fully researched. To address this gap, future research must focus on developing and testing optimization
frameworks that can be easily integrated into adaptive management processes. This thesis addresses this
gap by extending the applicability of optimization models across different scales and analyzing the spatial
and temporal information generated by these models to determine how they can best support adaptive

management in the face of future environmental changes.

Overall, this thesis aims to contribute to innovation in water resource management by advancing
knowledge and providing new insights into the applicability of optimization models to solving sustainability
problems in water resource allocation. It focuses on critical challenges in water resource management,
such as incorporating e-flows, solving scale issues, and supporting adaptive management strategies. To

achieve this, the dissertation is organized around three core research questions:
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1. What are the implications of model development choices on spatial and temporal scales when

optimization models are used to reconcile e-flows with human water needs?

2. How can optimization approaches mediate the incorporation of e-flows into water diversion
management? How can the resulting information support the implementation of adaptive

management?

3. How can optimization models for river water diversion at the basin scale take future

environmental changes into account while ensuring essential ecosystem services?

To address these questions, both innovative descriptive and experimental approaches were used. The
descriptive approach consisted of a comprehensive review of studies that apply optimization in water
management with a focus on environmental aspects to evaluate modeling decisions and their implications
for spatial and temporal scales. The experimental component, based on a "learning by doing" method, was
conducted at two spatial levels (river segment and river basin) and was critical for evaluating the
opportunities and limitations of optimization models use in integrating environmental flows (e-flows) and

evaluating their potential to support adaptive water management practices.

1.1 Thesis structure

The structure of the dissertation is organized as follows:

e Chapter 2: lays the foundation of my research by providing a comprehensive literature review that
addresses the first research question and aims to deepen the understanding of trade-offs involved
in decision-making when applying optimization models for water management at different spatial
and temporal scales. It introduces a framework that harmonizes all model-related decisions into
practical steps for optimizing model development. This framework emphasizes the importance of
moving from result-oriented approaches to holistic strategies focused on model perception and
formulation. Additionally, the chapter outlines key considerations and presents a series of critical
questions designed to support the problem perception and formulation stages. These elements
are essential for ensuring transparency and robustness in model development, ultimately
enhancing the effectiveness of optimization models in addressing complex water management
challenges and setting the stage for the subsequent exploration of optimization models in real-

world scenarios addressed in later chapters.
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Chapter 3: builds on the framework from Chapter 2 by partially addressing the second research
question by exploring the role of optimization within an environmental management cycle. While
optimization is used to solve resource allocation problems as part of an integrated resource
management approach, this chapter shows its potential for effectively incorporating
environmental flows into decision-making processes. The chapter builds on the findings of an
optimization assessment conducted at various river water diversion locations within the Pas River
basin in Northern Spain. It demonstrates how expert-based ecological requirements can be
translated into model parameters to achieve specific diversion goals, ensuring that human needs
and ecological health are addressed. The approach presented identifies the temporal scales at
which significant trade-offs in water availability occur and provides valuable insights to guide
management action. In addition, the chapter examines the challenges and limitations of the
optimization approach and offers practical suggestions for overcoming common obstacles that
arise during its implementation. In this way, the potential of optimization methods to support
adaptive management practices is emphasized, ultimately promoting a more sustainable balance
between water resource use and environmental conservation. The insights generated here
directly inform the broader-scale applications discussed in Chapter 4, providing a critical bridge
between localized analysis and basin-wide strategies.

Chapter 4: expands on the second research question while addressing the third research
question. It investigates the suitability of optimization models for identifying appropriate scales
for implementing adaptive water management approaches, which aid water managers in reducing
uncertainty in decision outcomes. Implementing these strategies at larger scales—e.g., at basin or
multi-basin levels—is a major challenge. This chapter explores the use of optimization models to
balance water diversion needs for human consumption with the provision of ecosystem services,
considering future environmental scenarios, including climate and land use changes. It proposes
an evolutionary optimization model to guide diversion management, specifically in the Pas River
basin. By incorporating these future scenarios, the model helps identify critical areas or "hotspots"
in the basin where ecological needs could be at risk over various time periods. In addition, this
chapter explains the key elements of the modeling process and provides recommendations for
improving model development and adopting adaptive management strategies by water managers.
The results show how optimization can play a crucial role in addressing the complex challenges of
water resource management, ultimately promoting a more sustainable balance between human

demands and ecological preservation. The recommendations presented here for improving model
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development and adopting adaptive strategies connect back to the foundational framework
established in Chapter 2 and the practical insights generated in Chapter 3, forming a cohesive
progression toward addressing complex water management challenges.

Chapter 5: summarizes the research conducted and the most important results in relation to each
research question and topic covered, highlighting each chapter's contribution to advancing
optimization modeling in water resource management. It reflects on the limitations encountered
and identifies opportunities for future research, ensuring that the insights gained throughout the

dissertation are both actionable and forward-looking.
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2. Considering scale within optimization

procedures for water management decisions:

Balancing environmental flows and human

needs

This chapter was published in Environmental Modelling & Software

Derepasko, D., Guillaume, J. H. A., Horne, A. C., & Volk, M. (2021).
Considering scale within optimization procedures for water
management decisions: Balancing environmental flows and human
needs. Environmental Modelling & Software, 139, 104991.
https://doi.org/10.1016/j.envsoft.2021.104991

Analyzed studies for this review can be found in Appendix A attached to this thesis.

2.1 Summary (abstract)

A key issue in optimization model development is the selection of spatial and temporal scale representing
the system. This chapter proposes a framework for reasoning about scale in this context, drawing on a
review of studies applying multi-objective optimization for water management involving environmental
flows. In the chapter it is suggested that scale is determined by the management problem, constrained by
data availability, computational, and model capabilities. There is therefore an inherent trade-off between
problem perception and available modelling capability, which can either be resolved by obtaining data
needed or tailoring analysis to the data available. In the interest of fostering transparency in this trade-off
process, this chapter hence outlines phases of model development, associated decisions, and available
options, and scale implications of each decision. The problem perception phase collects system
information about objectives, limiting conditions, and management options. The problem formulation

phase collects and uses data, information, and methods about system structure and behaviour.

2.2 Introduction

Water management is challenged by socio-economic (e.g. rising demand, sectoral competition) and
climate change pressures (e.g. droughts, extreme events) (EEA, 2017; Grizzetti et al., 2017; Tonkin et al.,
2019) threatening water security (Kennen et al., 2018) and river biodiversity (Vorosmarty et al., 2010).

Despite increasing awareness of river ecosystems' needs (Angela H Arthington et al., 2018), water
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allocation goals typically still aim “to provide water to people when and where they most need it and not
when and where it would naturally be available” (Daniell & Barreteau, 2014). However, addressing the
challenges of climate change and increasing demand will require a range of strategic actions, including
those that directly protect and restore the environment (Liu et al., 2016; Pittock & Lankford, 2010; Salik et
al., 2016; Thompson et al., 2014). Failing to adequately incorporate ecosystem values and underestimating
the potential cross-scale impacts of water use and climate change on freshwater ecosystems (McCluney
et al., 2014) fails to acknowledge the benefits that freshwater systems generate for the wider community

(Richter, 2009).

The implementation of environmental flows is one action that is already applied (A. C. Horne, O’Donnell,
& Tharme, 2017; King et al., 2015; Le Quesne et al., 2010; Mendoza & Martins, 2006; N. L. Poff et al., 2010)
to better protect freshwater and related ecosystems from modifications caused by river regulation (e.g.
dams, weirs, diversion channels) (Arthington, 2012; N. L. Poff et al., 1997) and high-intensity use (EEA,
2012). The approach to implementing environmental flows and the accompanying water management
decisions varies according to governance level, spatial extent and temporal scale of the desired outcome:
broad-scale long term environmental flows (e-flows) management typically employs a ‘top-down’
approach by imposing limits to additional hydrological alteration (e.g. caps on water abstraction, license
conditions for water users, environmental water rights, see Horne et al., (2018), whereas a ‘bottom-up’
strategy (e.g. conditions on storage operators, environmental reserve established legally) that considers
ecologically-relevant components of the flow regime and their ranges is implemented at finer scales and
generally prioritizes short term effects (Gopal, 2016; A. C. Horne, Webb, Stewardson, et al., 2017; Pahl-
Wostl, Arthington, et al.,, 2013). Current incorporation of e-flows within integrated water resource
management (IWRM) expresses environmental water requirements as quantity, quality and timing of
water flows, in the short term at point-scale to limit impact propagation towards broader spatial scales in
the long term (Vorésmarty et al., 2013; Evers, 2016; Angela H. Arthington et al., 2018). As a consequence,
water governance seeks to implement enhanced management and infrastructure systems that can
regulate river flow at multiple spatial and/or temporal levels (Daniell & Barreteau, 2014; Stewardson et

al., 2017) in the light of changing consumptive water needs.

Scale-specific investigation tools are often used to inform successful river management (Volk et al., 2008).
Case study-level applications show that some management problems envisage several objectives and
hence multi-objective optimization can be used to address water management needs at different spatial

scales, such as hydropower facility, reservoir, reach, sub-basin and basin and different temporal horizons
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(e.g. Shang, 2015; Yin et al., 2015; Fallah-Mehdipour, Bozorg-Haddad and Lodiciga, 2018). The optimization
of a set of desired objectives related to water abstraction or release (e.g. species survival, hydropower
production, domestic supply, irrigation) seeks to find optimal solutions. These solutions are searched
across a range of criteria that allow the identification of trade-offs and synergies, and, as a result, the
definition of compromises among conflicting goals (Cord et al., 2017; Gunantara, 2018; A. Horne et al.,
2016). The opportunity to explore compromise solutions might better support decision-making processes
than single-objective modelling, as it has been shown in other resource allocation problems (e.g.

(Lautenbach et al., 2013; Kaya et al., 2016; Kaim, Cord and Volk, 2018).

However, modelling these decisions in water management is made challenging by the fragmentation and
hierarchy of hydrological scales (Moss & Newig, 2010). A key obstacle is related to the consideration of
the different scale-specific hydrological and ecological characteristics and processes (P. M. Davies et al.,
2014; Thorp, 2014; Volk & Ewert, 2011). Indeed, the effective representation of connections (e.g.
ecological, hydrological and geomorphological) on each temporal and spatial scale of the river network
remains a core challenge in e-flow assessments (N. L. Poff et al., 2017). Another problem is related to the
reference hydrological scales used in the classification of river spatial extent. The spatial mismatch
between physical and socio-political boundaries poses a challenge for the definition and implementation
of management objectives (Daniell & Barreteau, 2014; Moss & Newig, 2010; Opperman et al., 2018; van
den Belt & Blake, 2015); Lastly, chosen e-flow parameters can be employed for studies at small scales and
can show effects in the short term (e.g. population size), but can also be ecologically relevant for wider
areas (e.g. basin-scale) and support processes that manifest at longer temporal scales (e.g. nutrient
cycling) (N. L. Poff et al., 2017). This requires the consideration of a range of flow events (e.g. pulses, 30-
day minimum flow) and diverse processes (e.g. water production, sediment delivery and vegetation

dynamics, ecological stages, land cover influence) (Gurnell et al., 2016; Opperman et al., 2018).

In this paper, we present a framework that describes the conceptual and operational steps of optimization
model development to support e-flows and the related spatial and temporal scale considerations. The
framework draws on a review of the state-of-art in this field of water research. Clarity about the role of
scale improves our ability to model across scales and as a consequence, provide more reliable predictions

of decision outcomes at the scales of interest.

The chapter first introduces water management decisions and their translation into optimization models

(see Box 1 for the definition of terms) and provides the outline of the proposed framework showing the
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stages of optimization problem development (i.e. problem perception phase and problem formulation
phase) (Section 2.3 of this paper). The framework, mapping the scale-related decisions and options linked
to each development phase, is further described with reference to results from the review of selected
studies in Section 2.5 of this paper. Section 2.6 discusses the need for clarity of problem definition,
strategies to implement desired assessment scales, and explicit discussion of trade-offs in problem
development. Lastly, in Section 2.7 we provide recommendations to foster transparency throughout the

optimization problem development phases.
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Box 1. Definition of terms

Environmental
flow

Management
objective

Optimization
objective

Management
decision

Optimization
decision
variable

Problem
perception
phase

Problem
formulation
phase

Optimization
problem

Optimization
framework

Optimization
scenario

Infrastructure
operation

Planning
horizon

The quantity, timing, and quality of freshwater flows and levels necessary to sustain aquatic
ecosystems which, in turn, support human cultures, economies, sustainable livelihoods, and
well-being (Angela H. Arthington et al., 2018).

Specific statement about the intents of the water management approach (e.g. in relation to
ecosystem services, processes and components) as a result of engagement between multiple
stakeholders and managers. In the case flow management it relates to water allocation for
environmental purposes. (adapted from Horne, Konrad, et al., 2017)

Function to be either maximized or minimized, corresponding with ‘outcomes of interest’ of the
optimization problem. Depending on the problem formulation, optimization problem
constraints can substitute/complement objectives. (adapted from Maier et al., 2019)

Mechanism through which a management objective is achieved (e.g. control of diversion and
release, flow alteration reduction). High-level management decisions are tied to larger scales
(e.g. provided through planning or regulatory instruments) while implementation decisions
reflect management choices for periodic objectives at finer spatial and temporal scales. (adapted
from Horne et al., 2018)

Input parameter of the optimization problem that is measurable and controllable (e.g. reservoir
water level, release timing, energy production), providing a quantitative representation of a
management decision (adapted from Coello, Lamont and Veldhuizen, 2007).

The stage consisting of the consideration and interpretation of all the factors and processes (i.e.
spatial, temporal, environmental and operational) involved with the implementation of the
considered management decision (adapted from Beven, 2012).

Encompasses all the actions related to the translation and modelling of the perceived problem
into functions (i.e. objectives and constraints). Involves also the consideration of data needs to
appropriately represent the area of interest of the water management problem (adapted from
Maier et al., 2014, 2019).

Or optimization model is the formulation of the management problem within a
simulation/modelling context. This is the mathematical formulation of the water management

problem.

Structured set of steps and considerations used for the formulation of an optimization problem.
In this study it is applied in support of optimization problem definition for environmental water
management, highlighting the role of each step in defining the resulting scale of the assessment.

Captures a degree of variability in the optimisation problem to reproduce system behaviour
under different possible circumstances (e.g. operational, climatic, and hydrological). The
concept of an optimization scenario is intended to capture variations of the decision problem
formulation, which can include alternative climate projections or decision variables, and their
resulting outcomes.

The time steps of the scheduling (frequency) of infrastructure operations’ set.

The timeframe upon which management decisions are taken. From a water management
perspective, it usually corresponds with one management cycle and is linked with the previous
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(management objectives) and the following (monitoring outcomes) management cycles
(adapted from (Horne et al., 2018). From an infrastructure management perspective, can also
be associated with the frequency of updating an operational management plan.

Spatial scale The spatial bounds of the events and processes considered in the optimization problem (in
relation to a management problem) (lwanaga et al., 2021). Common spatial scales used in water
management related to hydrological units and flow altering structures (see Table 2 and Figure

4).
Temporal The temporal horizons of the events and processes of the considered optimization problem (in
scale relation to a management problem) (Iwanaga et al., 2021). Levels of temporal scale (e.g. days,

months, years) can relate to the temporal resolution of hydrological data (adapted from Daniell
and Barreteau, 2014). In water management optimization it can also refer both to the
infrastructure operation cycle time steps and the planning horizon time window.

2.3 A framework for incorporating scale within optimization modelling to support e-
flows water management decisions

An optimization approach offers the opportunity to explore compromise solutions to support decisions
about scarce water resources (A. Horne et al., 2016). It can be used to support environmental water
management decisions while meeting conflicting water use objectives (e.g. hydropower generation,
domestic supply, industrial supply, irrigation water). Environmental water objectives drive management
actions that can be implemented at broader (e.g. control of diversion) or finer target scales (e.g. need to
control reservoir releases). The timeframe of implementation also varies based on the management

decision.

Water resources management, and in particular e-flows, sit within an adaptive management framework
that reflects these different temporal and spatial scales (Webb, Watts, et al., 2017). The selection of
objectives and high-level policy decisions are made at a longer time scale and often for larger catchments
or whole basins (Horne, Webb, et al., 2017). However, implementation decisions are made at a shorter
time scale and often for a specific site or location. Optimization to support these decisions therefore also
lends itself to be framed within an adaptive management framework, providing the structure and technical
capacity to support trade-offs and decision making at different scales (Figure 1). Each stage of the adaptive
management cycle has its own technical challenges. Similarly, the translation of management decisions
into an optimization procedure needs to consider a range of factors to ensure the context and system is
realistically represented. Table 1 uses a number of examples to demonstrate the importance of the type
of management approach being considered (the columns in Table 1) for informing the approach to

optimization model development. For instance, the decision to set a cap on abstraction can be tied to
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optimization at basin scale considering an annual or seasonal time frame; the optimization of release
timing (at seasonal, monthly or daily scale) in response to the need to meet downstream ecological
needs/target ecological indicators will be preferred for management decisions at smaller spatial scales
(e.g. reaches or sub-basins) to match species ecological response timeframes and local hydrological
conditions; at sub-daily scale it could be applied to reduce hydropeaking impacts at target locations. The
specific decision context dictates the target scales. However, translation of real-world management
problems into a modelling framework presents some inherent challenges, either related to data
availability, modelling or computational ability. The water management analyst dealing with optimization
model development hence faces a range of trade-offs in model representation, in particular linked with
choices of scale associated with the targeted problem and resulting modelled representation. Any
optimization model development procedure to support e-flows decisions and water resource
management will need to explicitly consider the implication and magnitude of these trade-offs for the

spatial and temporal scales of the assessment, to foster transparency and understandability.

Real system
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Figure 1 Position of the optimization process within the adaptive water management framework (yellow triangle indicates the
starting point for each management cycle)
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Table 1 Overview of water management decisions underpinning optimization procedure definition. The table shows for every
decision examples of the corresponding approach undertaken during optimization procedure development and the temporal and
spatial scales of the corresponding approach undertaken during optimization procedure development and the temporal and
spatial scales of implementation. Note that in some cases also mixed approaches can be used.

Management Control of Management Control of Impacts reduction
Decisions diversion planning releases
Examples Setting a cap on Incorporation of Optimization of Hydropeaking impacts
maximum diversion minimum environmental reservoir release reduction
flow regimes into existing  timing
or new management plan
Description Specification of the Incorporation of e-flow Release timing Limitation of excessive
maximum volume of regimes into water adjustment to meet water volume discharge
diverted water that management plan while ecological water downstream of the
would allow meeting societal needs demand needs reservoir to mitigate
maintaining the river and/or reduce adverse human and
regime at targeted natural water flow ecological effects
levels alteration
Type and e Definition of ¢ Testing the feasibility of e Minimization of e Operational scheme

frequency of
flow
modification

Targeted
temporal scale

Targeted spatial
scale

Targeted
ecological
effects

Comments

specific % limits on
the degree of
allowable natural
flow alteration

e Definition of
period-specific
thresholds on river
volume diversion

* Seasonal

e Annual

® Basin

¢ Long term effects at
the ecosystem scale

Participatory and/or
multi-disciplinary
workshops needed to
define appropriate
flow alteration

incorporating different
minimum e-flows regimes
into current schemes
against a range of climatic
or supply reliability
scenarios

e Annual

® Basin

¢ Long term effects at the
ecosystem scale

Would need the
definition of plausible
minimum e-flow regimes

the deviation from
reservoir storage and
rule curves

® Prescription of
releases to meet
specific downstream
ecological needs

* Reduction of the
gap between natural
flow and outflows

¢ Daily
e Monthly

¢ Point scale
(reservoir)
* Multi-reservoir

* Population
structure and size

¢ Non-native species
reduction

Needs the definition
of appropriate
ecological indicators

synchronization of peak
water volume releases
with natural flooding or
pulses

e Monthly
* Seasonal

® Basin
e Sub-basin

e Native community
composition
¢ Sediment budget

Especially meaningful for
large infrastructure
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A general optimization process (showed in Figure 2, left-hand side) first involves problem identification (or
contextualization) and subsequently, requires input parameters definition and optimization environment
creation (Maier et al., 2014). As a first step, the system domain is defined by the water management
problem and decisions which underpin the relevant objectives, constraints, and scenarios of the targeted
spatial and temporal scales of assessment (Figure 2, right-hand side). Once defined, the system
characteristics, hydrological data, and other relevant information (e.g. ecological) are gathered to meet
the requirements for representation at the targeted scales. Given that optimization assessments need to
inform a decision making process (hence the output), the final scales of the assessment should
appropriately match decision conditions and scales. Trade-offs in system representation arise when
moving from problem perception phase to problem formulation phase as a consequence (see Section 2.5).
Specifically, the trade-off can be resolved either by seeking additional information required to implement
or by altering the problem perception to suit the information available. The precise process of achieving a
trade-off is not well understood, and a variety of approaches and intermediate solutions may be possible
(Fuetal., 2015). Figure 2, together with Tables 3-7 in Section 2.5, provide a framework in support of model
development in the interest of fostering transparency in the trade-off process around decision making and

option selection during these two distinct phases of optimization model development.
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Studies applying multi-objective optimization for water management
objectives considering environmental flow regimes

Problem perception phase

e Physical system
Problem identification e Management objectives

e Objective functions and decisions
e Constraint functions

e Solution methods

e Optimization scenarios

;.: | e Limiting conditions A

%) 1

: : 5
3 . g
N 1

£ 2 Problem formulation phase é
= I R

e L

R Input parameters definition e Hydrological state and indicators 77
@ o

=

(]

G}

Optimization environment
creation

----------------------------------------- Simulation  -----------smmseme e

Decision and options mapping, highlighting assessment scales implications

Recommendations to foster transparency in optimization problem development

Figure 2 Conceptualisation of optimization process, as adopted in this analysis. Scheme of a stepwise general optimization
procedure (left-hand side); Structure of the analysis applied in this paper (right-hand side): analysis of optimization procedure
development for water management problems focused on two distinct phases, problem perception phase and problem
formulation phase

2.4 Data collection

The proposed framework (see Tables 3-7 in Section 2.5) for assessing scale within optimization modelling
to support e-flows was developed through a detailed review of existing literature that applied optimization
in this context. We analysed existing literature and the options presented for each modelling element in

the framework (Figure 2), the targeted spatial and temporal scales, and the assets considered.

Data collection for the analysis was carried out by performing a literature search. The focus was set on
studies that applied optimisation of water diversion or impoundment to environmental water
management decisions while meeting human water needs at different spatial and temporal scales.
Keyword combinations were used in the “Web of Science’ search engine (i.e. multi-objective optimization,

multi-criteria optimization, optimization, environmental flows, e-flows) to generate the initial set of
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literature. The collected studies were filtered for water management and the final selection was based on
the criterion that they had to address both ecological and societal water use. Studies were excluded
mainly due to their character (e.g. framework, review) or because of the study objective (e.g. focused on
land use). In a few cases, studies focusing only on a single objective function but considering both needs
(i.e. ecological and anthropogenic) have been included in the analysis, due to their compliance with the
aim of the review and to stimulate discussion. A final collection of 27 case studies applying optimization
procedures at different targeted scales was analysed (see references in Table Al, in the Annex). The overall
objective of the review process was to highlight existing decisions and options for each phase of model

development and to feed into the guidance framework for scale implications of modelling decisions.

2.4.1 Definitions of scales in multi-objective optimization procedures for water management
Defining comprehensible scales and their consistent use is still a key issue in systems modelling (lwanaga
et al., 2021). The interdisciplinary nature of water resource management exacerbates this with different
spatial and temporal boundaries related to the multiple aspects of water management (i.e. administrative,
hydrologic, management, etc.) (Daniell & Barreteau, 2014; Gleeson & Paszkowski, 2014; Moss & Newig,
2010). As policy decisions can be defined based on model outputs, (Dabiri and Blaschke, 2019)
distinguished between the policy and the modelling scales, and associated the latter with the “dimension
at which the data is acquired or derived” and in strict connection with the mathematical expression;
similarly, (Moss and Newig, 2010) distinguish the ‘hydrological’ and the ‘political’ scales as central
dimensions for water management modelling. On the other hand, in landscape ecology, scales are usually
associated with patch extent or duration and grain or resolution (Withers & Meentemeyer, 1999). Most
studies related to socio-environmental modelling consider the extent and resolution to define spatial and
temporal scales (Dabiri & Blaschke, 2019; Daniell & Barreteau, 2014; Gleeson & Paszkowski, 2014; lwanaga
et al., 2021; Moss & Newig, 2010). Both spatial and temporal scale resolution is linked with data: grain size
or cell size represent the smallest features of the spatial scale (particularly if the modelling is spatially-
explicit); while time-steps represent the levels of the temporal scale (e.g. hours, days). In this study, we
consider these notions to define spatial and temporal scales for optimization modelling for water

management (see Box 1).

Studies optimizing water management usually indicate the targeted area for the assessment. Table 2
shows the spatial scale definitions we retrieved from the analysed studies. For each we provided a
description of the features of the considered scales. While these definitions were linked with the focused

assessment area and thus presumably belong to the ‘problem perception phase’, we found an ambiguity
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in the use of the terms sub-basin, multi-reach and river section scale. In fact they seem to be used
interchangeably and possibly relate to modeller’s understanding of the system. However, this seems to be
in accordance with the conclusions of (Gleeson and Paszkowski, 2014) who found that hydrological scales
definitions are not used consistently among researchers. We use the definitions provided in Table 2 as

mean of comparison throughout the paper.

Table 2 Spatial scales used for optimization modelling applied to waterFigure 3 Position of the optimization process within the
adaptive water management framework (yellow triangle indicates the starting point for each management cycle) management.
We identified a set of recurrent definitions in the reviewed studies that refer to the targeted assessment areas and their meaning.

Definition Description
Multi-basin A series of adjacent basins.
Basin The hydrological delimitation of the river domain, formally defined as the land area that

collects the rain or snow water generating the flow and the river network. Can refer to
the whole river network.

Sub-basin An area of the river network (as part of a defined basin) that encompasses a series of
adjacent and interconnected reaches. The latter can eventually merge with a bigger
tributary.

Multi-reach Several reach sections of the same river. It can encompass multiple tributaries

throughout the river network. Depending on the number of considered reaches (and
their proximity) this may be similar to a sub-basin scale or river section.

Reach A section of the river that presents similar hydrological characteristics (e.g. discharge,
depth). Usually it represents short river portions or small tributaries. Sometimes it can
be associated with the river section scale.

River section A portion of the river network of variable length that is arbitrarily defined by the user.
It could encompass the portion of the river stretch included two key points (e.g. gauging
stations, dam, and connection to another tributary).

Reservoir Body of water artificially impounded by a dam, commonly with potential for controlled
releases

Infrastructure Human assets linked to the river flow (e.g. dams, reservoirs, weirs) that are used to
supply water or energy for human consumption, regulate the floods or provide
navigation.

Multi-infrastructure A series of infrastructure located in different sites of the river network. Can refer to a

number of in-series infrastructures (i.e. consecutively positioned on the same river
section) or on multiple reaches.
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2.5 Lessons from the literature: scales in multi-objective optimization procedures for
water management

Environmental water management problems in regulated rivers can represent different issues related to
the delivery of e-flows. For example, e-flows can be incorporated into an existing operational plan or
infrastructure operation can be modified to reduce flow alteration (see Table 1 in Section 2.3). Modelling
these management problems requires the definition of the targeted area and the available information
during the ‘problem perception phase’ (Section 2.5.1) and the selection of the modelling approach in the
‘problem formulation phase’ (Section 2.5.2). Both phases are exposed to scale issues related with the data
resolution, the temporal horizon for the operation plan and spatial boundaries of the system. Box 1 and
Box 2 describe two example case studies. In the following sections, we elaborate on the framework by
drawing on the considered literature to discuss the different stages within each phase with the aim of

understanding the trade-offs between the management problem scales and the modelling problem scales.
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Box 1. Case study: the Luis L. Leon reservoir (Big Bend reach) (Porse et al., 2015)

Management problem
(perception phase)

Considered system:

Operational timescale
Planning horizon

E-flow approach:

Optimization problem
(formulation phase)

Input data

Optimisation approach

Scenarios

Our comments on
spatial scale

Our comments on
temporal scale

Incorporation of environmental flow requirements into reservoir operation. Respect
of supply requirements subject to international treaty. Demonstrating that
environmental flow allocations can be increased.

River segment delimited by two reservoirs, with releases from one reservoir, tributary
inflows, water extractions, flow at multiple gauges, inflows to second reservoir.
Existing environmental flow requirements for basin and longer river segments could
also have been used.

Monthly reservoir releases, flows, and water extractions
Multi-year; treaty works on 5 year cycles not explicitly modelled here.

Prescribed hydrograph describing environmental flows monthly targets (base-flows,
high flows and small/large floods developed from statistical analysis of hydrological
record), scaled to vary total environmental flow volumes

Decision variables: monthly reservoir releases in two reservoirs

Objectives: Minimization of total environmental flow deficits for all months
Constraints: monthly mass balance continuity equations, total flow and minimum
storage requirements approximating treaty stipulations; limits to storage and change
in storage between months for operational constraints.

Flow record, water demands data, infrastructure operations from a prior water
allocation model (1969 to 2009), e-flow requirements (literature) for BB reach

Linear programming

Water availability scenarios — total environmental flow used to scale monthly
environmental flow targets: (a) 600; (b) 800; (c) 1000; (d) 1100; and (e) 1200 mcm.

Flows at one gauge assumed to be representative of environmental flow requirements
along entire river section. Full implementation of treaty requirements and trade-offs
with upstream and downstream EF requirements would need expansion of spatial
scale. River segment focus demonstrates feasibility of local changes all else being
equal.

Multi-year management cycles are not explicitly modeled (management-
implementation scale mismatch). Monthly rather than daily time step may not capture
shorter term breaches of operational constraints. Expression of environmental flow as
monthly average discharge conditions may not capture requirements at shorter
timescales. Analysis assumed to make convincing case despite simplifications.
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Box 2. Case study: the Peishih Creek (Shiau & Wu, 2013)

Management problem
(perception phase)

Considered system:

Operational timescale

Planning horizon

E-flow approach:

Optimization problem
(formulation phase)

Input data
Optimisation approach

Scenarios

Output

Our comments on
spatial scale

Our comments on
temporal scale

Plan release environmental water for three interconnected reaches (subject to various
degree of hydrological alteration) while ensuring domestic water supply and
hydropower production

Reservoir connected to river section (with weir diversion), performance measured for
1, 2 and all 3 reaches

Hourly flows, with release decisions spread through the day, and flow indices
aggregated to multiple scales

Multi-year

Measurement of natural flow alteration through 5 hydrological indices: RBF*, daily
flow, monthly flow, annual 7-day minimum flow and 5-year floods.

Decision variables (15): 2 environmental flow proportions, 3 three-period release
parameters, 3 hedging coefficients, and 7 compelling release parameters.

Objectives: TOPSIS (technique for order preference by similarity to ideal solution)
transforms multi-objective problem into single objective

Reservoir performance objectives: minimization of long term shortage ratio, mean
annual deficit duration, maximum 1-day shortage ratio; maximization of mean annual
hydropower production, flood attenuation.

Environmental water objectives: minimization of difference to pre-impact RBF,
difference to daily hydrograph, difference to pre-impact monthly flow, difference to
pre-impact annual 7-day minimum flow, difference to pre-impact 5-year floods.
Constraints: only limits on decision variables. Routing model used to simulate flow.

Flow record (1998 to 2008) of reservoir inflows and Nanshih Creek’s river flow.
Genetic algorithm in simulation-optimization framework

Operation scenarios: (a) 1-reach scenario with 10 objectives, (b) 2-reach scenario with
15 objectives, (c) 3-reach scenario with 20 objectives.

Hourly reservoir releases; weir diversion volumes at Nanshih Creek, and post-impact
flows at the three study reaches.

Exploration of multiple scales; bottom of system defined implicitly in figures as
junction with larger watercourse. Reaches defined based on nature of hydrological
alteration provides natural segmentation while recognizing that ecosystem response
has not been addressed. Selection of reaches significantly affected results.

Inclusion of hydrological alteration at multiple scales as objectives, then reduced to
single objective by comparison to ideal point such that trade-offs are not explicitly
explored. The planning horizon of infrastructure operations is not clear, especially in
relation to projected demand magnitude, as the only available information is the data
timeframe (10 years).

Notes: *Richards-Baker flashiness index (RBF);
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2.5.1 Problem perception phase

Physical system

The concept of ‘system’ is expanded in water management to include the geographical, temporal and the
socio-economic setting of the applied optimization procedure. The physical system can be defined in terms
of the spatial area, including that involved in the generation of the water flow and the structural limits of
the studied facility (e.g. a reservoir), and the temporal window of effect. Figure 3 illustrates systematically
the spatial and temporal scales that interest water management problems and highlights some of the
major factors that have scale implications, based on the reviewed papers. The definition of spatial area
and temporal window of effect provides the physical-temporal target reference for the following problem
formulation phase. Here, we split the decision related to physical system perception into multiple
decisions related to the flow alteration infrastructure: the type and number of flow altering
infrastructures, and its operations; the definition of environmental assets; and, the definition of the
management horizon (see Table 3). Temporal scales tend to be fairly well-defined by flow alteration type
(impoundment, diversions), the management horizon, and the points of interest (and hence spatial scale).
Points of interest include flow altering infrastructure, which affects how that infrastructure is operated, as

well as e-flow target locations (e.g. river reaches, environmental assets).

Optimization assessments are developed to reflect operational schemes of impoundment and diversion
structures at a range of management horizons. Considering all the resulting options related to the planning
horizon, the selected facilities and the spatial range of their impact inevitably leads to a series of possible
context-infrastructure combinations. In this case, system conceptualization benefits from the visualization
of connections between assets, especially in large highly regulated river systems, as in transboundary river
basins (e.g. Martin et al., 2017; Schliter et al., 2005). Such visualization enables the definition of points
where water movement is related to different causes (e.g. supply, inflow, storage), expressed as point
sources (e.g. tributaries), releasing points (e.g. dams, hydraulic structures), and gauging stations facilitating

optimization procedure development.

The wide variety of possible network configurations means that the targeted hydrological scale can range
spatially from reach or river sections (e.g. Mullick, Babel and Perret, 2013; Fleifle et al., 2014) to sub-basins
and multi-reach systems (e.g. Xevi and Khan, 2005; Shiau and Wu, 2013) or an entire basin (e.g. Suen and

Eheart, 2006; Shiau and Chou, 2016). The consideration of the number of assets and their location as well
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as the scale of effect influences the final size of the spatial domain. Figure 4 illustrates the different

targeted assessment scales as emerged from the analysed studies.

A key challenge in the problem formulation phase is articulating the target for environmental outcomes.
Environmental assets can include not only in-river values but also attributes of wetlands and floodplains
(e.g. Szemis, Maier and Dandy, 2012, 2014; Szemis, Dandy and Maier, 2013). The environmental objective
can be represented in several ways, for example as the provision of habitat or as the provision of
ecosystem services. This clear articulation of environmental outcomes (as opposed to hydrological
indicators) has been more evident in Australian case studies and management contexts. It is acknowledged
that this need to define a-priori the targeted environmental assets during the optimization model

procedure is a significant challenge, however, it represents good practice for system definition.

Lastly, management context decisions relate to operational horizon or release schedules. Infrastructure
operational horizon can be tailored both at sub-daily or daily scale as this supports the identification of
the best option based on hourly flows or how much water is to be allocated. The management horizon
should also be consistent with the frequency of need to update the management plan. We identified
studies using management horizon that were monthly, seasonal, single, and multi-year. When targeting
single or multi-year management horizon, water releases are assessed for different single years,
differentiating by wet, normal, dry, allowing to implement the best releases or abstraction operations
based on the yearly hydrological conditions type (e.g. Steinschneider et al., 2014; Chen and Olden, 2017;
Dai et al., 2017; Lewis and Randall, 2017). Policy testing could require the definition of multiple alternative
management horizons. Conception of alternative legislative contexts can consider the prioritization of

different combinations of objectives (e.g. Shiau and Wu, 2013).
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Scale Main factors that have an implication with the scale (y-axis) and the different scales (x-axis)

decisions
inrastucture [
Spatial
Gauging station
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boundaries
Single Multi- Single Multi- River ; i
facility facility reach reach section Sub-basin Basin
Point-scale
Facility
operational cycle [
Ecological
response |
Temporal
Planning
horizon E
teating .|
testing

Sub-daily Daily Weekly Monthly Seasonal Annual Multi-year

Figure 3 Temporal and spatial scales that define water management optimization problems. This figure is based on the results
of our analysis. It illustrates the different spatial and temporal scales in relation to certain factors which challenge optimization
procedure development by means of decision and option selection complexity, and definition of the resulting system boundaries.
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Figure 4 lllustration of different spatial scales considered in the reviewed studies. For description see Table 2.
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Table 3 Framework 1/5. Summary of the decisions and options, and related scale considerations for the ‘Physical system’ step during the ‘Problem perception phase’.

Assessment Modelling Decision Description Related Spatial scale Temporal scale Relationships
phase element options relation relation between

options
Problem Physical Definition of flow | Definition of the flow e Diversion Need to consider Need to consider | This step influences
perception system alteration type altering infrastructures | ¢ Impoundment the scale of effect | infrastructure the incorporation of
phase that belong to the and nature of flow | operations the management

considered regulative
unit and consideration
of their functioning

alteration

decision

Definition of the | Consideration of all the | ¢ Single- Affects the scale of | Need to consider | This step influences
number of flow assets in the target unit | infrastructure representation of | operative also the choice of
altering e Multi- the infrastructure | conditions the solution
infrastructures infrastructure network (schemes) of all approach (number
e Single with the assets. Hence | of decision variables
mixed-use (e.g. could affect the or objectives).
impoundment final timeframe. Requires awareness
with power of possible
generation) influences between
assets
Definition of Consideration of the e Monthly Spatial scale of This relates to the | Option selection
infrastructure operative scheme of * Daily effect is influenced | timeframe of the | could affect the
operations the selected e Sub-daily by timeframe operation cycle, choice of the

infrastructure

involving both
flow alteration
type and
configuration of
infrastructure
assets

scenario
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Definition of
environmental
assets

Consideration of the
type and characteristics
of the targeted
environmental assets

e Ecosystem type
(e.g. wetlands)

e Ecosystem
services (e.g.

Affects the scale of
representation

Needs to consider
infrastructure
operations and
flow alteration

This step could
influence scenario
definition

and their location habitat type
provisioning
areas)
Definition of the | Consideration of the e Monthly Spatial scale of Affected by This step could
management frequency of needsto | ® Seasonal effect is influenced | uncertainty influence the type
horizon update the e Annual by management in driving of scenarios and

management plan

e Intra-annual

timeframe

conditions and
system
knowledge, as
well as the ability
to adapt plans
over time

hence trade-offs
analysis
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Management objectives

The definition of optimization objectives reflects a range of management objectives or goals that can then
be assessed for compromises in water allocations or other water release variables (see Table 4). There is
a range of different formulations of system objectives, e.g. maximization satisfaction of consumptive
demand (or minimization of shortfalls), optimization of structural performance, the maximization of
economic benefit, or minimization of the hydrological disturbance. The way the objectives are expressed
is linked to the spatial extent but can reflect end-user needs. For example, the need for controlling floods
is more pressing at the basin scale and can be managed by considering the difference between inflows and

outflows (e.g. Porse, Sandoval-Solis and Lane, 2015; Shiau and Chou, 2016).

Studies aiming at maximizing water supply seek to ensure water supply maintenance over time by
adjusting to flow fluctuation, rather than aiming to abstract the greatest possible amount of water at a
single time-step. The operational scheme of the facility (i.e. impoundment or diversion) affects the
approach for the definition of supply reliability. Targeted reservoir releases for downstream ecological
needs are sought in the case of impoundment. In such cases water collection represents the prioritized
supply method for human use and optimization objectives aim to maximize the ‘collection capacity’ of the
reservoir. Water abstraction optimization, on the other hand, focuses on the withdrawal of water from
the flowing river (e.g. diversion). An alternative for assessments targeting large basins that encompass
several abstraction points is to define a ‘supply objective’ for each abstraction point in the considered

system before defining the cumulative objective.

Hydropower generation objectives are typically considered for assessments targeting reservoir- (e.g.
(Shiau and Wu, 2013; Wang et al., 2015; Fallah-Mehdipour, Bozorg-Haddad and Loaiciga, 2018) or basin-
scales (e.g. (Paredes-Arquiola et al., 2013; Shiau and Chou, 2016; Hassanjabbar, Saghafian and Jamali,
2018). Hydropower production optimization objectives require the consideration of infrastructure
operations and the infrastructure capacity in energy generation. When optimization objectives are focused
on the economic aspect of hydropower generation from a reservoir, metrics such as net benefit or

revenues are considered.

Definition of environmental objectives within the optimization procedure is connected to the
environmental water management decisions (see Section 2.3) and usually considers the natural
hydrograph or specific water volumes for ecological processes. Compliance of the regulated hydrograph

with the natural discharge is based on the consideration of the natural flow regime as a pristine
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hydrological reference (Acreman, 2016). Despite increasing awareness of the need to advance the natural
flow regime paradigm, whether or not species can adapt or are already adapted to flow alteration caused
by man-made infrastructures (e.g. dams) remains difficult to assess and needs an ‘expanded e-flow science
foundation’ (N. L. R. Poff, 2018). This leaves the natural flow regime alteration reduction as the easiest
choice for many optimization assessments (Wang et al., 2015). Moreover, this approach does not explicitly
prioritize specific species over others as in the ecological flow regime paradigm (e.g. (Suen & Eheart, 2006).
Within the optimization procedure, gauge data at reference points can set the target conditions of the
ideal flow regime (e.g. Torabi Haghighi and Kigve, 2015). Shiau and Chou, (2016) for example minimized
the differences between the monthly flow hydrograph and the monthly discharge; similarly, Schliter et
al., (2005) minimized water flow changes across several intake points. However, the use of gauge data
should be based on appropriate considerations regarding the location of the gauging station and the river
section it is related to (e.g. drainage area or length of river segment), as this could affect the resulting scale
of the assessment. As alternative to real flow data and to the flow-alteration-reduction approach, simple
algorithms such as those in the Global Environmental Flow Calculator (GEFC) can rapidly calculate e-flow
requirements for the main rivers worldwide (e.g. Hassanjabbar, Saghafian and Jamali, 2018). This
information can be then used within the optimization problem for developing targeted releases or
‘designer flows’. The designer flows approach is gaining momentum for preservation of river ecosystems
(N. L. Poff & Olden, 2017) and has been embraced for example by Chen and Olden, (2017) to prioritize

native over non-native species in regulated rivers.

Limiting conditions

Decisions about the range of limiting conditions to consider for the targeted assessment system can be
distinguished based on their nature: (1) physical-environmental conditions, which refer to the
environmental status of the system, e.g. conservation of mass; (2) supply-related, linked to the magnitude,
timing, and type of demand; (3) infrastructure-related, that are influenced by the design or operational
capacity of the flow modification structure (e.g. dam, hydropower plant); and (4) regulative, which are

defined based on policies or normative requirements (see Table 4).

Physical-environmental limiting conditions reflect a certain environmental availability of water within the
considered system and are usually described using a water balance equation or hydrological model. Our
analysis showed that physical-environmental limitations are directly linked to the scale of the assessment.
The location of the facility (i.e. dam, reservoir, hydropower plant, and weir) within the assessed area (e.g.

basin, sub-basin, reach) influences the definition of the reference flow conditions and the number of inflow
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points. The targeted scale of the assessment is physically defined by the input location receiving the flow
and an output location releasing the flow following the course of the river. Continuity equations are often
used to capture and assure the balance between the inflows and the outflows (e.g. Xu et al., 2017;
Hassanjabbar, Saghafian and Jamali, 2018). The definition of the continuity equation requires the
consideration of the dynamics of inflows, hence of both location and timing. For example, the water
quantity in a reservoir (dam) at a certain point in time (that depends on the considered timescale) is a
function of the water contained in the reservoir (dam) at the previous time step (e.g. day, hour) and of the
outflow and inflow water quantity at the current time step (e.g., Chen and Olden, 2017). The ‘water
budget’ within a reservoir also needs to account for losses due to evaporation (e.g. (Porse, Sandoval-Solis
and Lane, 2015). This is particularly relevant if the system is exposed to severe temperature fluctuations,

dry conditions. Flows to and from groundwater systems and the hyporheic zone may also be relevant.

Limiting conditions can also reflect water or energy delivery requirements to meet sectoral needs (e.g.
domestic, industrial, agricultural). Infrastructure operations optimization requires consideration of
structural limitations on infrastructure capacity and releases. The number of infrastructure facilities and
their management influences required scale and the corresponding constraints. Minimum (maximum)
reservoir storage capacity or in- and outflow volumes are frequently implemented for water impoundment
management, for example to avoid reservoir wall overtopping. This suits a daily or sub-daily scale
optimization through the definition of the minimum and maximum allowable volume fluctuations (e.g.
Chen and Olden, 2017) with respect to demand magnitude and risk of downstream bankfull flows or floods

(e.g. Xu et al., 2017).

Water use agreements, treaty stipulations, and legal water rights can appear as limiting conditions
depending on how the river network intersects with national or other jurisdictional borders (e.g. Porse,
Sandoval-Solis and Lane, 2015; Wang et al., 2015). Quality standards (e.g. for irrigation, drinking water)

are also common.
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Table 4 Framework 2/5. Summary of the decisions and options, and related scale considerations for the ‘Assessment objectives’ and ‘Limiting conditions’ steps during the ‘Problem

perception phase’.

Assessment | Modelling Decision Description Related Spatial scale Temporal scale Relationships
phase element options relation relation between options
Problem Management | Classification of Define water use * Energy Some objectives Need to consider This decision can
perception objectives water uses objectives that are | generation can be more the management be influenced by
phase linked to the e Water supply strongly related to | horizon the decision on the
considered water ¢ Flood attenuation | one scale (e.g. extent of the
flow alteration * Environmental water supply or assessment scale
health flood attenuation)
Contextualization | Consideration of the | ® Participatory System boundaries | Could present /
of objectives implication of workshops with do not change but | different temporal
objectives relevant need to consider needs in resource
implementation stakeholders the spatial scale in | use (e.g. demand)
within the case * User-defined regulative terms
study area ¢ Regulations
¢ Treaty stipulation
Limiting Definition of the Definition of the ¢ Natural Physical parameters | Consider time- These conditions
conditions limiting conditions | factors that can phenomena (that can be dependence of border the search

affect the nature of
the considered
objectives or the
representability of
the target system

e Structural
limitations

¢ Operational limits
e Demand
fluctuations

¢ Hydrological
continuity

spatially bounded
e.g., hydrological
continuity
equation)

some variables
(especially demand,
hydrology)

space, allow the
output of more
realistic outcomes
and reduce
computational
time
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2.5.2 Problem formulation phase

Hydrological state and indicators

The decisions within the problem formulation phase specifically account for model, data, and
computational limitations, contrasting with the ideal problem perception that stakeholders might prefer
in absence of these limitations. In this phase, the definition of environmental water requirements
establishes limits to the modification of water flows. We identified a series of crucial decisions related to
the setting of environmental water requirements: the consideration of the preferred e-flow assessment
approach, the inventory of the available sources of information, environmental water requirements
establishment, and the location of the gauging stations and selection of the hydrological metric (see Table

5 for summary).

Environmental water requirements definition through empirical estimation of e-flow ranges is an option
at finer scales (e.g. reach) and on short term planning (e.g. seasonal) when direct data (e.g., species,
habitat-level data) is accessible. These ranges reflect hydrological or habitat needs (e.g. Mullick, Babel and
Perret, 2013) of key species and can be defined through hydro-ecological models or regression techniques:
for example, regression-based approaches to define fish-flow relationships for native and non-native
species preferences (e.g. Chen and Olden, 2017) or by using the physical habitat simulation models (e.g.
PHABSIM, (K. Bovee et al., 1998) to retrieve minimum e-flows requirements for phenological stages (e.g.
(Shang, 2015). Mixed assessment approaches are more complex to implement as exploit multi-disciplinary
instruments based on collaborative interactions between scientists, management analysts, and

stakeholders (e.g. Porse, Sandoval-Solis and Lane, 2015).

Once the preferred approach is identified, multiple methods can be applied to obtain the necessary eco-
hydrological information. Literature review and experts’ involvement in the definition of water
requirements for targeted species can be used for modelling and optimization of spatially complex systems
(e.g. involving non-linear relationships and multiple predictors) as alternatives to massive data collection.
Participatory workshops to set hydrological thresholds are underpinned by knowledge coming from
different sources (e.g. Paredes-Arquiola et al., 2013), possibly measured at different scales in different
locations, and hence require a more careful statement of the final scale of applicability of the assessment.
Another option is the use of existing e-flow calculation software packages (see Section “Management
objectives”). However, the modelling process can affect the spatial and temporal resolution of their output

data and thus the final scale boundaries.
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To define the reference hydrological conditions, and the monitoring of the targeted environmental assets,
historical and actual data from gauging stations are used, potentially with hydrological model simulations.
Flow data includes inflow data to reservoirs or dams when studies focus on optimizing release timing (e.g.
Shiau and Wu, 2013). Whilst the number and location of gauging stations vary based on the study site type
and the general purpose of the assessment, observations from gauging stations located downstream of
the reservoir are useful for the assessment of water release alterations in single (e.g. (Yin, Yang and Petts,
2012) or multiple reservoirs in series (e.g. Dai et al., 2017). Moreover, analyses for multiple-reaches benefit
from a sound gauging station network at the rivers and their tributaries as they enable the analysis of the
variability of historical flows (e.g. Fleifle et al., 2014), while optimizing reservoir- or dam- series requires

reporting or modelling of dam outflows (e.g. Yin, Yang and Petts, 2012; Shiau and Wu, 2013).

Our analysis showed that among the considered flow components, flow magnitude class parameters are
widely used as hydrological indicators of ecosystem health within optimization studies as they reflect
conditions that shape habitat availability and suitability for species (N. L. Poff & Zimmerman, 2010; Richter
etal., 1996; Rolls et al., 2012; Rolls & Bond, 2017). Measures of the magnitude of monthly and annual flow
conditions (e.g. median value of the mean monthly flow, minimum monthly flow) can describe the
prevailing behaviour of the flow across the year or uncover major hydro-climatic cycles among different
years (e.g. average yearly flow) but are unable to deliver sufficient information of local characteristics (e.g.
reach-level behaviour). The disaggregation of monthly average flows into site-specific minimum monthly
flows allows the consideration of the hydrological spatial variability at a sub-regional scale (e.g. Paredes-
Arquiola et al., 2013). The water impoundment planning horizon (e.g. (Wang et al.,, 2015) or the
characterization of a multi-reach system’s behaviour (e.g. Shiau and Wu, 2013) can drive the choice of the
selection of indicators defining the timespan and intensity in water flows (e.g. for low flow conditions).
Similarly, baseflow indicators (often subdivided into wet, dry and extreme baseflow) are linked to reservoir
outflow or diversion scheduling (e.g. Yin, Yang and Petts, 2012; Yin, Yang and Liu, 2014; Yin et al., 2015;
Dai et al., 2017).

Water quality indicators (i.e. temperature, dissolved compounds, oxygen) are less frequently considered
when addressing environmental flows problems (e.g. Fleifle et al., 2014; Xu et al., 2017). Nevertheless,
these indicators are usually associated to the flow parameters to the extent of being affected by changes

in the regime.
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Table 5 Framework 3/5. Summary of the decisions and options, and related scale considerations for the ‘Hydrological state and indicators‘ step during the ‘Problem formulation phase’.

Assessment Modelling Decision Description Related options | Spatial scale Temporal scale Relationships
phase element relation relation between options
Problem Hydrological Consideration | Selection of the ¢ Habitat Need to consider | Needs to consider | This decision could
formulation state and of the suitable e-flow approach the nature of the targeted be linked to the
phase indicators preferred e- assessment approach | (habitat targeted ecological outcome | decision on the
flow defining environmental | requirements of | ecological manifestation considered number
assessment water requirements relevant species) | endpoints (e.g. within the planning | and nature of flow
approach * Phenological instream horizon alteration structures
approach (life- elements). Mixed
history stages) approaches could
e Holistic be linked to
approach (mixed | multiple spatial
approach) scales and
multiple
resolutions
Information Consideration of the ® Empirical Data format could | As for spatial scale, | This decision is
inventory and | available source of estimation affect spatial data resolution and | directly linked with
method information e Expert scale. Need to empirical method the previous
selection judgement consider the could affect the decision on e-flow
e Web-tools model resolution | temporal scale assessment
e Literature (if spatially approach. Could also
e Participatory explicit). affect scenario
workshops definition.
Definition of Definition of the e Upstream of System spatial Could be affected Represents mainly a
reference location of the the reservoir boundaries could | by historical data data source, but can
hydrological monitoring or gauging | ® Downstream change when timeframe and be linked with
conditions stations as a source for temporal resolution
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natural flow values and
hydrograph data

of the reservoir
e Multi-reach

including gauging
station location

environmental asset
location decision

Selection of
hydrological
and non-
hydrological
indicators

Definition of the
hydrological metrics
(statistics) for the
definition of threshold
conditions (e.g. flow
magnitude and
frequency/timing)

* Flow
magnitude

* Frequency and
timing

e Extreme
events

e Water quality
indicators

Infrastructure size
could influence
the extent of flow
alteration

Indicator selection
could be affected by
the length of the
considered
timeframe (e.g.
annual statistics can
be used for multi-
year planning)

This decision is
linked to planning
horizon needs, the
nature and area of
effect of flow
alteration type as
well as the scenario
choice
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Objective functions and decision variables

The previous problem perception phase creates the conditions for the translation of assessment objectives
into objective functions. The general optimization problem is defined by the equation f(x) that we seek to
minimize or maximize, in which x is the decision variable in question (or vector of decision variables). In
addition to deriving from the management objective, objective functions can differ considerably
depending on data availability and the type of flow alteration type (e.g. run-of-river hydropower, storage-
based power generation) (see Table 6). Selection of optimization objectives remains highly dependent on
analyst choice and revolves around two main options: on one hand, a higher number of objectives (i.e.
more than one) can favour a more comprehensive representation of the system while promoting an
increased understanding of existing trade-offs; on the other hand, due to the structure of the applied
technique, the optimization of multiple objectives is often hampered by limited computational capacity or
difficult visualization of complex results (Lautenbach et al., 2013). Despite the existence of optimization
tools able to model a higher number of objectives (see Reed et al., 2013), studies tend to keep the number
of simultaneous objectives low (e.g. < 4) as well as considering few decision variables (see Section “Solution
methods”). In this case, the assignment of different weights to decision variables (e.g. Schliter et al., 2005;
Xevi and Khan, 2005) or the judicious use of constraints can reflect a range of stakeholders’ preferences
or policy decisions while at the same time reducing the computational effort. Further discussion on the

number of objectives is presented in Section “Constraint functions” and “Solution methods”.

The availability of exact and updated water consumption data for the targeted infrastructure can be
challenging to obtain. Expressing water supply objectives as the minimization of shortage indices (e.g. long
term total shortage ratio, mean annual deficit duration, maximum 1-day shortage ratio) allows the indirect
consideration of demand by relying on daily reservoir releases (Shiau and Wu, 2013). Finer scale
representation of water supply objectives, e.g. water demand-type at river network nodes (i.e. intake
points) (e.g. Schliiter et al., 2005) allows a more refined optimization for complex reach systems. An
alternative approach uses a composite function (e.g. an index) composed of different indicators for water
use purposes, such as domestic, industrial, and agriculture supply (e.g. Suen and Eheart, 2006). Shares of
abstracted water can sometimes be retrieved from regional and local databases, which may need to be

downscaled or extrapolated to areas of interest.

The most straightforward way to optimize power production is through the maximization of water releases
or available water volume for hydropower generation (e.g. Arslan, 2015; Xu et al., 2017) or inversely by

minimizing the gap between generated hydropower and the installed capacity during operational periods
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(e.g. Fallah-Mehdipour, Bozorg-Haddad and Loaiciga, 2018). Yin et al., (2015) for instance, aimed at
maximizing the mean annual revenue of hydropower generation concerning specific degrees of flow
regime alteration. Likewise, economic objectives can be also set for studies targeting irrigation water

demand (e.g. Xevi and Khan, 2005; Lewis and Randall, 2017).

In Section “Hydrological state and indicators” we discussed hydrological indicators used to define
ecological needs. Here we present ways to employ those indicators within the optimization model.
Environmental outcomes can be directly used as objective functions. In fact, e-flows objectives within the
optimization problem are commonly expressed as specific share of incoming flow (usually expressed as
volume) that reflect environmental requirements (e.g. Arslan, 2015; Xu et al., 2017). At the scale of river
sections, habitat-level data availability allows optimizing specific river flow conditions for the benefit of
target species (Chen and Olden, 2017). Depending on the targeted ecological endpoint, data collection and
hence function definition can be more or less straightforward to perform. Reduction of the proportional
deficit between a prescribed point-diversion and the river regime (e.g. Chen and Olden, 2017) suits
assessments of finer-scale hydrological systems such as rivers and river sections. This also applies for
assessments at reservoir-scale aiming at ensuring continuity between water inflows and outflows (e.g. Yin,

Yang and Petts, 2012; Shiau and Wu, 2013; Steinschneider et al., 2014).

Lastly, the fitness of certain solutions to the objective function for the environmental water requirements
can be conceptualized based on the assumptions of the analyst in relation to ecological response functions
(Fu & Guillaume, 2014). For example, Suen and Eheart, (2006) considered the intermediate disturbance
hypothesis assumption as basis for the definition of the fitness function for six eco-hydrological indicators

to maintain the livelihood of aquatic ecosystems.

Constraint functions

The general objective function presented in Section “Hydrological state and indicators” is usually subject
to some constraints. In the general case, f(x) is subject to g(x) < 0, in which g(x) represents the
constraint function. Constraint functions can significantly influence the optimization outcomes, allowing
the output of more realistic results with respect to the considered system scale and other factors (Strauch
etal.,, 2019) in mathematical optimization approaches, whereas they commonly represent “decision maker
preferences rather than physical laws” in simulation-based optimization (Clarkin et al., 2018). For the
general definition of constraints and their effect on the objective function, see (Coello, Lamont and

Veldhuizen, 2007).
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Constraint definition can be a modelling-intensive phase if the system considers a high number of input
points, diversion points, and facilities. If data used in the optimization problem is not yet spatially explicit
(i.e. georeferenced), spatial boundaries are usually represented by considering intake and outtake points

location.

While consumptive requirements can also be set as objectives (e.g. by defining a minimization function
aiming at minimizing the gap between the target consumptive amount and the optimized amount), the
translation of consumptive requirements into constraint functions requires knowledge of the nature of
demand. Stable demands over time are easily expressed by estimating an amount of water that captures
all the possible consumptive uses in the considered system. However, this choice will be more suitable for
short time frames or long term averages, for example management plans for maintaining the native
ecological communities in river sections (Chen & Olden, 2017). Alternatively, differentiating among
demand types by setting a minimum water supply ratio can ensure compliance of reservoir operation with
specific supply objectives, for example for irrigation purposes (e.g. Wang et al., 2015). On the other hand,
a series of unpredictable factors (e.g. climate, social behaviour, and daily patterns) can also make the
demand level uncertain. In this case, defining a reliable quantity of stored water for consumptive use or
energy generation allows satisfying fluctuating needs over a longer period. In this case, a minimum storage
constraint or supply reliability constraint may be used. The latter, in the case of municipal supply, can be

also considered as objective depending on the problem structure (e.g. Yin, Yang and Petts, 2012).

Hydropower plant optimization objectives are frequently constrained by capacity thresholds limiting the
range of decision variables such as the control gate operations, turbine release, ramping, power tunnel,

and grid capacities defining power output limitations (e.g. Steinschneider et al., 2014; Dai et al., 2017).

Optimization process-related constraints have the purpose of facilitating the search phase by setting
specific conditions that will influence the fitness value based on the degree of violation (e.g. Dai et al.,
2017). Penalty functions are an example of constraint handling techniques, where a constraint function is
transformed into a penalty that is directly added to the objective function (Coello et al., 2007; Ruhul et al.,
2012). For example, penalties can be set based on the frequency of falling outside of the target range for
each e-flow parameter (e.g. Wang et al., 2015). However, the values of the penalties should not be set to

very large values to avoid interfering with the identification of the ideal fitness values (Dai et al., 2017).

Lastly, constraints can also reflect additional objectives thus reducing the number of objectives (e.g. to a

single objective) (e.g. Torabi Haghighi and Klgve, 2015; Wang et al., 2015) but this does not necessarily
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mean that problem size would be reduced. Conversely, constraints can also be turned into objectives, thus
increasing their number and eventually leading to many-objective problems. However, Kasprzyk et al.,
(2016) in their study of many-objective problems for water management showed that a higher number of

objectives can be paradoxically easier to solve.
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Table 6 Framework 4/5. Summary of the decisions and options, and related scale considerations for the ‘Objective functions and decision variables ‘ step during the ‘Problem

formulation phase’.

constraints

would allow the
best representation
of the targeted
system

variables (e.g.
storage capacity)
e Search-related
constraints

infrastructure
operations,
location, and type
of flow alteration

management
scenario and
planning horizon

Assessment | Modelling Decision Description Related options Spatial scale Temporal scale Relationships
phase element relation relation between
options
Problem Objective Consideration of | Definition of e Single-objective Objectives for Objectives Relates mainly to
formulation | functions and | the number of objectives number | ¢ Multi-objective different water uses | calculated on longer | computational
phase decision objectives based on the are often on timeframes often resources but can
variables computational different spatial need to be be influenced by
effort scales or extents complemented with | the solution
objectives that method decision.
capture shorter-
term variability
Consideration of | Definition of the ¢ Supply reliability | Requires Requires knowledge | Relates to the
the nature of type of objective indices knowledge of the on management solution method
objectives function that can ¢ Shortage indices | environmental horizon and and is mainly
solve assessment e Composite asset information on methodological.
needs functions (weights demand nature
assignment)
¢ Gap reduction
Constraint Consideration of | Selection of the type | ® Upper and lower | Requires Need the Relates to the
functions the nature of of constraints that limits on decision knowledge of consideration of the | decision on the

type and number
of objectives
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Solution methods

How a water allocation optimization problem is addressed across the different scales depends on its
overall complexity. There is no direct relationship between scale and solution method as too many factors
influence the selection of one technique over another. Moreover, problems can be approached with
different degrees of complexity even if the considered assessment scale is fine (e.g. a single facility).
However, since water allocation optimization is based on the mathematical conceptualization of the
problem (e.g. linear, nonlinear, discrete, and continuous), knowledge about differences in solution
approaches can contribute to the understanding of possible solving strategies for the considered scale
(system) based on components (e.g. indicator types for objectives, nature for constraints). To illustrate the
decision about the solution method, we distinguish between deterministic (or mathematical

programming) and meta-heuristic optimisation.

Our analysis showed that oftentimes water allocation problems are formulated as multidimensional,
convex objective functions constrained by a series of rules. Since constraints influence the geometry of
the feasible solution space, the solution can be found through the process of eliminating problem variables
(Cavazzuti, 2013). For example, linear programming-based algorithms have been used for solving broad-
scale optimization problems of system types involving dams and large reservoirs, showing a convexity both
in the objective function and in the constraint functions (Xevi and Khan, 2005; Steinschneider et al., 2014;
Porse, Sandoval-Solis and Lane, 2015; Chen and Olden, 2017). Problems envisaging variables with a high
degree of nonlinearity (e.g. evapotranspiration, soil infiltration) can be solved by elimination-based
nonlinear programming algorithms (e.g. Schliiter et al., 2005; Arslan, 2015). In the case of broad-scale
optimization problems considering quadratic equations envisaging the relationship between streamflow
and net economic benefit, sequential quadratic programming can iteratively search for the optimal
solution (e.g. Mullick, Babel and Perret, 2013). When continuous function variables show discrete or
integer values, mixed-integer linear programming is preferred instead. Wang et al., (2015) used this
technique to optimize large scale reservoir operations carrying a binary value in the reservoir outflow

parameter.

Metaheuristic optimization algorithms can handle problems characterized by a high number of objectives
(Coello et al., 2007; Maier et al., 2019). This could be the case of multi-purpose or multi-reach optimization
problems. As a sub-group of metaheuristics, evolutionary algorithms provide good chances of
approximating a globally optimal solution quite rapidly (Cavazzuti, 2013) by generating initial random sets

of variables and then by exploiting operators such as selection, mutation and cross-over to produce better
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solutions at each generation. For example, Fleifle et al., (2014) solved the minimization problem for the
wastewater treatment costs and maximized water quality in a river section. Evolutionary techniques such
as the non-sorted genetic algorithm (NSGA) are commonly applied for handling both basin and multi-reach
scale optimization problems (e.g. Suen and Eheart, 2006; Dai et al., 2017; Martin et al., 2017; Xu et al.,
2017).

Optimization scenarios

The definition of optimization scenarios is included in the problem formulation phase as it relates closely
to the practicalities of providing useful information in the face of data, model, and computational
limitations. In principle, a given problem formulation would ideally have a general solution, but in practice,
it needs to be embedded in a specific context, and multiple variants of problem formulations may be
possible. The context represents both environmental, operational and management conditions. Scenarios
hence provide the opportunity to assess alternatives based on system behaviour under possible
circumstances (e.g. on the effects of different release-schemes on hydrological variability or seasonal
conditions on planned abstractions). This could contribute to reduce uncertainty about a specific
management decision or to explore potential management decisions, under a range of operational,
ecological and hydrological conditions. For example, Lewis and Randall, (2017) considered dry, normal and
wet hydrological conditions; Porse, Sandoval-Solis and Lane, (2015) considered different e-flow allocation
targets to assess the trade-off with water supply; Wang et al., (2015) formulated scenarios representing
combinations of objectives and constraints. While the reliability of optimization outcomes can be also
linked with robustness and accuracy of output data, it also depends on prior knowledge about the
considered system which is itself based on the overall system understanding Sanchis, Martinez and Blasco,
(2008). This means that some degree of conceptual bias arises from our lack of understanding of
relationships between components. The size and type of investigated system influences the scenarios that
have to be evaluated, because different needs, and thus ways to think objectives, can exist within that
system domain. For example, if the system is large (e.g. river basin, sub-basin) multiple needs often need
to be addressed due to the presence of different social groups and economic activities, policy
requirements (e.g. Porse, Sandoval-Solis and Lane, 2015) or just the presence of multiple abstraction
points (e.g. Paredes-Arquiola et al., 2013). Scenarios can be expressed differently for single facility systems.
At the reservoir scale, alternatives could be represented by the compromises between the amount of
released and impounded water flow concerning natural flow variability or e-flow requirements. Scenarios

depicting trade-offs between a series of off-stream (e.g. irrigation) and instream benefits (e.g. fishery) can
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be assessed with and without e-flows as a constraint (Mullick, Babel and Perret, 2013) to promote the

incorporation of e-flows within a water management plan.
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Table 7 Framework 5/5. Summary of the decisions and options, and related scale considerations for the ‘Solution methods’ and ‘Optimization scenarios’ steps during the ‘Problem
formulation phase’.

sources/external
conditions

uncertainty in
optimization
outcomes

¢ Hydrological
e Operational
horizon

o Legislative

river network and
the type of facility

horizon, if set at an
annual scale could
highlight inter-
annual patterns

Assessment | Modelling Decision Description Related options Spatial scale Temporal scale Relationships
phase element relation relation between options
Problem Solution Solution search Selection of the * Mathematical- Complex problem Longer This decision is
formulation methods approach solution approach based formulations management highly linked with
phase based on the nature | ¢ Stochastic covering multiple horizons and finer- | the decision on the
of the considered spatial scales may | scale operations number and nature
decision variables not be may require longer | of objective
and related computationally model run times functions (and
functions feasible, requiring computational
simplification resources
availability)
Optimization Definition of the | Consideration of the | e Climatic Need to consider Connected to This step is
scenario uncertainty major source of conditions the extent of the management influenced by the

optimization model
purpose (i.e.
updating an
existent plan or
propose a new
one)
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2.6 Discussion
2.6.1 Need for clarity of problem definition

Complex environmental water allocation problems can be optimised for a range of regulated system types
(e.g. river basins, reservoirs, reaches, hydropower plants) considering conflicting water management
objectives (i.e. aquatic ecosystems livelihood and human supply). Overall, the definition of system scales
and conceptualization within optimization procedures reflects a well-known problem-oriented
perspective on the river system (van den Belt and Blake, 2015; Opperman et al., 2018), intended to meet
the functions required for management purposes, and therefore requiring transparent documentation of

the management problem.

The availability of optimization models that can be applied simultaneously to multiple scales is still limited.
Studies would rather formulate the problem for one target area at a time. Hence, the applicability of an
optimization framework is generally only suitable to the specific case study or systems with similar relevant
features (e.g. the presence of a hydropower generator) (e.g. Yin, Yang and Liu, 2014). In general, this
results in a limited reproducibility of a scale-specific optimization assessment for environmental water
management - which could hinder the interpretation of results by decision-makers. This review and the
resulting framework therefore highlight the need both for clear problem definition and efforts to develop

the tools necessary to address multi-scale problems as defined.

2.6.2 Need for strategies to implement desired assessment scales
The size (i.e. temporal and spatial scale) of the assessment is intrinsically connected with the range of
information needed for the development of the optimization procedure. Optimization of large systems
(e.g. basins, transboundary rivers) and long planning horizons (e.g. multi-year planning) requires more
complex decision making about suitable options as information could be nested and hence more
challenging to obtain. Problems involving larger systems may be divided into smaller components by
subdividing the system into shorter time-frames or sub-areas. This operation when possible may reduce
both computational and modelling effort. Conversely, smaller systems (e.g. river sections, reaches)
modelling require less difficult option selection but could still be as challenging as more demanding
solution approaches (e.g. modelling ability) might be needed. However, mismatches between the scales
of involved factors (e.g. management scale, hydrological scale) during modelling are frequent as scales are
defined based on different needs (i.e. administrative, modelling). Overall, this can compound the difficulty
of defining absolute assessment scales because of the many factors involved (see Figure 3). It may be

hence more appropriate to speak of the targeted system ‘boundaries’ rather than scales more generally
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(van den Belt & Blake, 2015). Moreover, improved knowledge of the system connections (i.e. river system)
at the basin scale would also be helpful to better understand the effects of local-scale flow regulation
structures. This is especially meaningful if the final aim is to balance water needs as part of a wider system

(i.e. basin) (Shiau & Wu 2016).

2.6.3 Need to make explicit trade-offs in model development
Decisions and option selection during optimization problem definition are usually nonlinear with respect
to targeted assessment scales, as some trade-offs in data availability and modelling requirements need to
be accounted for. This is due to the fact that the relationship between scale and available options is not
one-to-one. The development of optimization procedures to solve water management problems requires
the simultaneous consideration of multiple factors to representatively recreate the real context or system:
the targeted scale from the management perspective (e.g. basin) on which a certain environmental goal
applies (e.g. good ecological status); the number of involved infrastructures and their location; the location
of gauging and monitoring stations within the management area; and the possibility for the considered
system to cross geopolitical borders. Hence, this revolves around the need to gather sufficient information
to be able to represent the targeted system; or, to adapt the assessment scale to the data available (i.e.
reducing the problem size into smaller problems or ‘nested’ systems). Failing to clearly describe the
optimization problem context (e.g. physical system, management horizon, and objectives) reduces the
understanding of how to represent trade-offs and results in a less transparent treatment of scale, and

therefore the ability to model across scales.

2.6.4 Need for increased modelling capacity
Solving water management optimization problems at different scales presents some challenges in relation
to the nature of the decision variables, the increasing number of objectives and the nature of the functions
(Reed et al., 2013). Whilst the fact that initial accessible information (i.e. in the problem perception phase)
linking flows, infrastructure operations and environmental outcomes “is not readily available in a format
suited to optimization” (A. Horne et al., 2016), a major impediment is represented by limited modelling
capacity. When dealing with complex real-world problems this could drive to over-simplification and thus
reduced reliability in optimization outcomes. On the one hand, a solution to over-simplification could be
the use of more sophisticated algorithms able to deal with a higher number of objectives, as many-
objective optimization algorithms are able to deal with up to 15 objectives (Chand & Wagner, 2015),
though this would inevitably lead to increase in needed computational effort. On the other hand,

consideration of the more appropriate approach (i.e. robust or evolutionary) based on the temporal
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horizon of the problem (e.g. infrastructure scheduling, management planning) could reduce the overall
uncertainty as it would account for the level of decision making incorporation (Grossmann et al., 2016).
Lastly, improving the flexibility in optimization problem structure (e.g. by finding a benchmark model
structure) to be applicable for different scales (e.g. Shiau and Wu, 2013) could help discover nested trade-

offs within the same study system or similar systems thus by fostering comparison.

2.7 Outlook and recommendations: Using optimization procedures in water
management

The need for stating clearer reference boundaries in study descriptions has already been identified by
Gleeson and Paszkowski, (2014). We consider this even more significant for optimization problems,
particularly concerning decision-making transparency throughout model development around the final
assessment scales. Clear definition of targeted and modelled spatial and temporal scales within
optimization procedures for environmental water allocation could support the identification of potential
minimum thresholds (i.e. scale) at which e-flow management should be implemented. However, this
process requires an increased understanding of how modelling limitations relate to option selection. We
believe that unravelling the relationship between existing options between the problem formulation
phase and the modelling phase provides a useful pathway for improving the take-up of results at the right
management level and increasing our ability to model across scales. The first step in this process would be
clear communication of the optimization problem statement throughout the two phases (see Section 2.5).
This may also include discussion of how the problem design can be altered to increase understandability,

which can also improve the understanding of system trade-offs (Seppelt, Lautenbach and Volk, 2013).

2.7.1 Towards increased transparency: recommendations for optimization problem development
The framework provided in Section 2.5 mapped the crucial decisions and options related to each phase of
model development (the problem perception phase and the problem formulation phase) and the
implications for the temporal and spatial scales of each stage. In this section, by building on the
aforementioned framework, we propose recommendations for model development under the form of
essential questions that need to be addressed. This questionnaire, presented in Table 8, assists system
conceptualization and serves to check information availability. By doing so, it supports clarity in problem

translation from the problem formulation to the modelling phase.

We believe that making the role of information availability explicit throughout model development will

support system understanding and further foster transparency around the trade-off process in model
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development and system scale representation when defining an optimization model for water

management problems.
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Table 8 Series of key questions that need to be addressed during optimization model development for water management.
The table presents questions for each optimization phase.

Problem perception phase

Physical system

How many flow-altering infrastructures are involved? What is the nature of the flow alteration? What
types of operations are performed?

What is the timeframe of the operational scheme?

How frequently does the infrastructure management plan need to be updated?

What is the scale of effect of the flow altering infrastructure operations?

What are the targeted environmental assets? What are the ecological endpoints for the targeted
environmental asset? What is the location of the environmental asset and ecological endpoint?

At what scale are the ecological outcomes manifested?

Management objectives & Limiting conditions

What are the management objectives for the considered management horizon?

How are management objectives defined?

What is the temporal scale of the considered objectives?

What are the limiting conditions that characterize my objectives?

What are the bounding conditions that characterize the problem setting (e.g. structural, hydrological)?

What is the temporal dependence of the limiting conditions?

Problem formulation phase

Hydrological state and indicators

What is the source of hydrological information?

What is the temporal resolution of the hydrological information?
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What is the location of the gauging stations?

What assessment approach is used to represent the requirements?

What instrument/tool/source of information is used to define the environmental water requirements
for the targeted environmental asset? What is its spatial/temporal resolution?

Objective functions, decision variables, and constraint functions

What hydrological metrics are representative of the selected ecological endpoints?

Do the hydrological metrics match the planning horizon?

What and how many decision variables are needed to represent the problem objectives?

How many and what functions are needed to represent the problem objectives and constraints?

What is the nature of the considered decision variables (discrete, continuous)?

Solution methods

What computational/modelling resources are available to handle the selected functions?

What approaches are implemented to reduce computational/modelling effort?

Optimization scenario

How is uncertainty in optimization outcomes addressed?

What is the uncertainty in climatic conditions?

What is the uncertainty in hydrological information used?

What is the uncertainty in the operational horizon?
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2.10 Conclusions

This review paper analysed the implications of decisions and related options throughout the optimization
model development stages for the final temporal and spatial scale of the assessment. We first explored
the main decisions that have to be made by distinguishing two distinct phases in optimization problem
development: problem perception and problem formulation. We found that most decisions have strong
links with the spatial and temporal scales of the assessment that need to be accounted for. Successively,
we mapped options related to each decision (i.e. related to the physical system, assessment objectives,
the hydrological state and indicators, objective and constraint functions, solution methods and,

optimization scenario) and provided scale-specific considerations for option selection.

Overall, given that water management problems involve a large number of factors to consider (e.g.
operations schemes, supply competition, changing environmental conditions), the decision-making
supported by optimization techniques is influenced by a series of challenges related to data availability
and modelling capability. This consequently affects decision making about options, which resolves in
tailoring the optimization model to the available data and modelling ability, retrieving additional data
required or subdividing the problem. Further research focused on clarifying the underlying influences
between options concerning scale would provide an enhanced insight into the relationship between
options and improve the process of option selection. Besides, it would enable the integration of
instruments that can improve reliability and comparability in optimization outcomes. Moreover, while
exploring how trade-offs across scales are incorporated into the optimization process is more challenging
for the application of optimization algorithms; it is also potentially most useful to an environmental water
manager. As a foundation for these goals, we provided recommendations for model development by
focusing on key questions related to each decision, with the intent of fostering transparency around

decision making and options selection during both problem development phases.
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3. Applying optimization to support adaptive
water management of rivers

This chapter was published in MDPI Water.
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Optimization to Support Adaptive Water Management of Rivers.
Water, 13(9), 1281. https://doi.org/10.3390/w13091281

References to Supplementary Materials can be found in Appendix B

attached to this thesis. o

3.1 Summary (abstract)

Adaptive water management is a promising management paradigm

for rivers that addresses the uncertainty of decision consequences. However, its implementation into
current practice is still a challenge. An optimization assessment can be framed within the adaptive
management cycle allowing the definition of environmental flows (e-flows) in a suitable format for
decision making. In this chapter, we demonstrate its suitability to mediate the incorporation of e-flows
into diversion management planning, fostering the realization of an adaptive management approach. We
used the case study of the Pas River, Northern Spain, as the setting for the optimization of surface water
diversion. We considered e-flow requirements for three key river biological groups to reflect conditions
that promote ecological conservation. By drawing from hydrological scenarios (i.e., dry, normal, and wet),
our assessment showed that the overall target water demand can be met, whereas the daily volume of
water available for diversion was not constant throughout the year. These results suggest that current the
decision making needs to consider the seasonal time frame as the reference temporal scale for objectives
adjustment and monitoring. The approach can be transferred to other study areas and can inform decision

makers that aim to engage with all the stages of the adaptive water management cycle.

3.2 Introduction

The concept of integrated water resource management (IWRM) embodies the willingness to account for
the economic, social, and ecological implications of water management (Meran et al., 2021). River
regulation such as damming, barrages and river training can affect both the sediment balance, inducing
morphological changes, and the hydrological regime (Bizzi et al., 2015; Ely et al., 2020). As a consequence,

many of the current water management decisions for regulated rivers worldwide aim for the sustainable
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use of water resources to protect the natural ecosystems (Tharme, 2003). However, the rapid decline in
freshwater biodiversity urges for prompt practical actions such as environmental flow implementation
(Lemm et al., 2021; Tickner et al., 2020). The concept of environmental water regime or environmental
flow (e-flow) has been first announced during “The Brisbane Declaration” (2007) (The Brisbane
Declaration, 2007) and ever since it defines “the quantity, timing, and quality of water flows required to
sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on
these ecosystems” (Acreman, 2016; Acreman et al., 2014; Arthington, Bhaduri, et al., 2018; Arthington,
Kennen, et al., 2018).

In regulated rivers, sustainable use is typically achieved by management decisions controlling certain
variables such as consumption capping or water allocation through downstream release for specific target
ecological processes and/or components (A. C. Horne, O’Donnell, & Tharme, 2017). Whatever the
management decision in question, the incorporation of e-flows into practice is fundamental to facilitate
“the establishment of a water regime needed to manage rivers” (N. L. Poff et al., 2017) that acknowledges
the importance of ecosystem needs (Tharme, 2003). Moreover, e-flows incorporation within management
practices can also be associated with conservation and restoration objectives for the targeted scales such
as “passive” restoration approaches addressing the reduction of hydrological alteration stresses on

biodiversity (Arthington, 2015; Atkinson & Bonser, 2020; King et al., 2015; Opperman et al., 2019).

The complexity of interactions characterizing our socio-ecosystems (sensu Iwanaga et al., 2021) leads to
difficult predictability of effects of certain factors (e.g. climate, water demand) that increase the
uncertainty of results from specific water management actions (Pahl-Wostl et al., 2007). This lack of
security exacerbates the ongoing challenges on decision making in the water management process such
as organizing efficient water governance systems (Pahl-Wostl et al., 2012) and leads to reduced capacity
to resolve unexpected eventualities and future scenarios. The concept of “adaptive management”, as a
fairly new paradigm for managing water resources in an integrated way, emerged in the last decades in
response to the need for improving water management strategies (Medema et al., 2008; Webb, Watts, et
al., 2017). This paradigm, which builds on the ‘learning-by-doing’ approach, considers the improvement of
management practices by learning from the outcomes of previously implemented management strategies
(Pahl-Wostl et al., 2007; Webb, Watts, et al., 2017). Theoretically, this process consists of a constant loop
of learning and adaptation between each adaptive water management cycle (AWMC) to achieve long-term
management goals (e.g. restoration of hydrological conditions for endemic species). However, smaller

adjustments based on shorter-term ongoing outcomes could be made between each phase of the cycle
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(i.e. planning, doing, monitoring, and learning; see Docker & Johnson, 2017; Doolan et al., 2017; Webb,
Watts, et al., 2017. Practically, exact strategies to achieve adaptability within the AWMC are still lacking
(Edalat & Abdi, 2018) — it calls for stronger links between the management actions and subsequent
monitoring strategies (Docker & Johnson, 2017c; King et al., 2015; Westgate et al., 2013) to support the

evidence of ecological improvement or degradation (Westgate et al., 2013).

The adaptive management approach suits the challenge of incorporating e-flows into management (due
to the uncertain nature of environmental outcomes after management decisions; (A. C. Horne, O’Donnell,
Acreman, et al., 2017; Williams & Brown, 2016). The practical incorporation of e-flows into water
management planning will require prompt adaptation of decisions and actions based on changing
environmental conditions (e.g. hydrological, ecological, and climatic). The prediction of results from
management actions under different scenarios (e.g. incorporating hydrological variability, climate change,
and demand fluctuation) before their implementation represents a very powerful tool to anticipate
consequences and reinforce the decision-making process to improve adaptability, sustainability and,
ecosystem conservation. Overall, such a strategy will improve our ability to reveal management effects in

complex systems as managed rivers (Medema et al., 2008).

E-flows incorporation into water management is often linked to the problem of balancing human and
ecosystem water needs and maintaining ecosystem services provision when sustainable abstraction
practices are sought. Different methods have been applied to support water management and water
allocation in complex systems. Examples include economic approaches (Haavisto et al., 2019; D. Wang et
al., 2019); geographic information systems (Gebru & Tesfahunegn, 2020; Neissi et al., 2020); socio-
hydrological and environmental assessments (Baker et al.,, 2015; E. G. R. Davies & Simonovic, 2011;
Mostert, 2018); as well as a range of decision-support tools (Maia & Schumann, 2007; Ruiz-Ortiz et al.,
2019). Usually, water management deals with a range of conflicting anthropogenic water use objectives
and consequently, there are important trade-offs between water uses and demands (Mendoza & Martins,
2006). The need for new instruments and frameworks that help decision-makers is still evident (A. C.
Horne, O’'Donnell, Acreman, et al., 2017) and will increasingly put pressure on water managers dealing
with future climate change effects (Burnham et al., 2016; Hart et al., 2017). Optimization is a decision
support approach that has been applied for such water management problems at different scales,
envisaging convoluted decision-making (among which are trade-offs in river ecosystem services and river
sediment budget maintenance; (Bernardi et al., 2013; Bizzi et al., 2015; Laurita et al., 2021; Derepasko,

Guillaume, et al., 2021; Dhaubanjar et al., 2017; A. Horne et al., 2017). It enables the identification and
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evaluation of trade-offs and synergies among some management objectives (e.g. control of consumption,
risk prevention, delivery of water for targeted species, hydropeaking control) before the implementation
takes place. The technical structure and features of the optimization approach (e.g. mathematical
expression, multiple solutions) address many of the challenges (e.g. scenario analysis, real-world
conditions representation) resulting from the need of incorporating e-flows into management planning
(Derepasko, Guillaume, et al.,, 2021). Due to the absence of exact rules for the definition of e-flow
requirements for rivers but rather distinct approaches (Lamouroux et al., 2017; N. L. Poff et al., 2017;
Webb, Arthington, et al., 2017), a series of strategies are possible to operationalize their incorporation
within the optimization assessment (e.g. based on the consideration of natural-flow conditions or
exploiting flow-biota correlations). Careful definition of e-flow requirements is hence needed to support

the monitoring phase and enabling the adaptive process (King et al., 2015; Webb, Watts, et al., 2017).

In this paper, we propose an optimization assessment on the example of a targeted river basin in Northern
Spain, which is providing water for an urban area of over 200’000 people. The specific objectives of the
modeling exercise were (1) to demonstrate the suitability of a new methodology based on an optimization
approach to mediate the incorporation of e-flows into the diversion management planning, (2) to discuss
the challenges and limitations of the optimization model by drawing from the considered water
management problem, and (3) to assess the potential of the optimization approach to foster adaptive
management of water resources. We first present the conceptual framework underpinning the definition
of the optimization assessment for water abstraction and the stages involved in the definition of the
optimization problem for the selected case study (Section 3.3). The section also contains the description
of the case study and the optimization problem incorporating environmental flows, as well as an
illustration of the hydrological scenarios and the optimization modeling algorithm. Simulation results are
presented in Section 3.4. Lastly, we discuss both the modeling assumptions and results, highlighting both
the advantages and the disadvantages of the optimization assessment, and the implications for the
diversion planning and river management providing suggestions for the best adoption of an adaptive

process (Section 3.5).

3.3. Materials and Methods

3.3.1 The optimization framework
The optimization assessment framework presented in this study represents the “structured set of steps

and considerations used for the formulation [of the optimization problem]” (Derepasko, Guillaume, et al.,
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2021) underpinning the optimization modeling exercise carried out at the example of the Pas River,
Northern Spain (Paragraph 3.3.2).

The stages of the optimization assessment framework that led to the definition of the optimization
problem for the case study and their relation to the AWMC phases (see Figure 5) are shown in Figure 6. As
a first step, management objectives and water allocation decisions for the Pas River basin have been
assessed to understand the problem context and identify priorities and water diversion practices
(Paragraph 3.3.2). This stage required the contextualization of the optimization problem to identify the
best output information to be produced. In other words, a tailored result format has been selected to
enable the usage of information by the targeted user type (i.e. water managers and decision-makers).
Successively, based on the information identified during the contextualization phase, reference e-flow
conditions have been defined considering different biological groups present in the ecosystem (Paragraph
3.3.3). For these biological groups, hydrological conditions (expressed as thresholds) have been considered
to preserve flow components from alteration caused by diversion. The “learning” process within the
AWMPC is based on the exploration of ecological effects from the management interventions (Webb,
Watts, et al., 2017). As described in Paragraph 3.3.3, given the exploratory nature of the assessment, the

hydrological thresholds on the flow components (for each biological group) considered in this study were
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Figure 5 Position of the optimization assessment within the Adaptive Water Management Cycle. The phases of an AWMC can
be divided into two main stages belonging to opposite edges of the action spectrum, the perception-understanding and
operational: the first stage involves the definition of the management objectives and management decisions; the second stage
focuses on the implementation and monitoring of the management actions to provide insight into the next cycle, respectively.
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largely based on expert judgment. Lastly, information collected from the two previous stages was
processed during the modeling stage which considered the design of the optimization problem (e.g.
solution approach) and its functions (i.e. objectives) both for the human water demand and for the
considered biological groups (Paragraph 3.3.4). Alongside the model development, hydrological scenarios
reflecting daily mean discharge at the targeted location have been developed and used as the reference

(input) hydrological conditions for the optimization model runs (Paragraph 3.3.5 and 3.3.6, respectively).

3.3.2 Case study area: The Pas River basin
We used the Pas river basin in Northern Spain as the case study area for the optimization assessment
development and application (Figure 7). The Pas River represents an ideal catchment to show the potential
of optimization approaches to support adaptive water management planning. It is subjected to relatively
strong human pressure while it still provides a good representation of its potential natural condition. In
this regard, most of its river water bodies show a good ecological status (sensu European Water

Framework Directive; EC, 2000) and provide habitats for iconic species for conservation, such as the

Understanding of the management
objectives for the Pas River basin
Section 2.2 ) )
_ = = - Contextualization
(" Expert ) Consideration of the
| judgement | management decisions
- T - for the water abstraction
- = Jd —
Definition of e-flow Human demand:
requirements supporting Consideration
» the freshwater ecosystem: of the river
L water volume -
Characterization of allocated Optimization
biological groups & annualy | assessment
definition of hydrological _
thresholds P
< Section 2.3 L P i
‘ = = .
: Formulation of the optimization problem
: & simulation ,
' Section 2.4

Monitoring of the considered endpoints
& thresholds adjustment

Figure 6 Structure of the applied optimization assessment. The case study description phase considers information that arises
from the current management decisions and it was used for the optimization assessment development. The bold-outlined box
corresponds with the monitoring phase that was not assessed in this study but serves to highlight the link with the Adaptive
Water Management Cycle (left-hand side).
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Atlantic salmon. The Pas river system drains into the Cantabrian Sea (North-East Atlantic). Calcareous rock
and sandstone formations dominate the basin which covers an area of 649 km?. The river network is
defined by the three main rivers Pas, Pisueia, and Magdalena. The mean annual precipitation amounts to
1300 mm, and the mean annual daily flow (close to the river mouth) is 14 m3/s. Maximum flows are
observed in April, and minimum discharges occur in September (Alvarez-Cabria et al., 2010), close to the
mouth. Water regulation in the basin is mainly implemented through surface water uptake by cross-
channel weirs and pump injection into the water supply grid. A primary management objective is domestic
water supply: water is mainly abstracted to satisfy the demand of the municipalities with annual
volumetric allocation for the distinct municipalities. While there is no large infrastructure (e.g. dams) able
to modify high flow and flood patterns, water diversion operations and water use can still influence the
hydrological attributes related to low flows (e.g. magnitude of low flows, duration of droughts). Extended
shoals and changes in the river flow as a consequence of traditional diversion practices represent a threat
to ecosystems and freshwater biota. The ecological conditions of the aquatic ecosystem in the basin are
monitored and defined by the Cantabrian Hydrological Confederation (CHC) which is also responsible for
the drafting and development of the Basin Management Plans. In this study, we considered as a setting
for the optimization of water abstraction for municipal use two distinct diversion points (DP1 and DP2) -
as consumptive demand for the points we considered 0,26 Hm3/y and 0,66 Hm3/y, respectively. Both
points are not impacted by prior upstream flow diversion along the river network located on two distinct

river segments (sensu Derepasko et al., 2021).
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Figure 7 Location of the Pas River Basin and the river sections in proximity to the selected diversion points (indicated as ‘DP’).

For illustration purposes, we added shading to the river network, linked to average river discharge.

3.3.3 Definition of the e-flow requirements for the Pas River: biological groups and hydrological

thresholds

The optimization of water diversion based on environmental needs requires the definition of reference
hydrological conditions to ensure the conservation of key flow attributes (e.g. base flows, pulses, etc.) that
support the ecosystem. Knowledge of the exact hydrological conditions for species and their cross-scale
variation remains a core research gap in the field of freshwater biology (Rolls et al., 2018). Despite this
gap, water management optimization assessment relies on flow-ecology relationship assumptions or eco-
hydrological indicators (e.g. Chen & Olden, 2017; Shiau & Chou, 2016; Torabi Haghighi & Klgve, 2015; X.

A. Yin et al.,, 2012) for the identification of optimal management strategies that facilitate the
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implementation of an adaptive management approach at appropriate scales (Dollar et al., 2007). E-flow
requirements need to reflect hydrological conditions that support ecological processes and functions. A
generalized optimization assessment approach considering a single taxonomic group (e.g. fish) can expose
to the risk of adverse effects on other components of the ecosystem and lead to unpredictable ecological
results both at the short and long-term scales (Acreman et al., 2014; Tonkin et al., 2020). Thus, the
acknowledgment of the role of each biological group in the ecological framework results “fundamental to
the maintenance of diverse and resilient communities into the future” (Tonkin et al., 2020). In the frame
of the study, despite not explicitly considering existing direct and indirect relationships among the
considered biological groups, we simultaneously included hydrological conditions of different biological
groups to define the e-flow requirements in the Pas River throughout the year (Figure 8). In this regard,
we encompassed three biological groups (Biological Group 1, 2 and 3) within the relevant levels of the
trophic network of the ecosystems (from primary producers to apex predators). The process of e-flow
requirement (R) definition (i.e. hydrological conditions for the biological groups) was based on the output
of a workshop with a group of experts in the fields of hydrology, eco-hydrology, and freshwater biology
from the IHCantabria (Santander, Spain). The e-flow requirements considered in this study are not
absolute, meaning that they can be refined based on the dominant situation and idiosyncrasy of each
watershed (establishing definitive values was out of the scope of this work). A summary of the

requirements is shown in Table 9.

Biological Group 1 included fish species. Fish species are top predators and might represent an economic
source for the local population in the region, associated with recreational angling (Hunt et al., 2017). Life
cues of fish species are closely linked with the magnitude and timing of the distinct flow regimes. Despite
different fish species have specific adaptation strategies and hence can tolerate the modification of either
magnitude or timing of river flows to a certain extent, modification of flows during key stages of life-cycle
(e.g. migration, spawning, hatching, recruitment; Gibbins et al., 2008; McMichael et al., 2005; Tetzlaff et
al., 2008; Trotter, 2016; von Schiller et al., 2017) could compromise population structure (Jonsson et al.,
2011) or even increase the extinction risk (Bradford & Heinonen, 2008; Saltveit et al., 2019). The
hydrological requirements (R1-R4) for Biological Group 1 aimed at the maintenance of certain flow
conditions for cues (e.g. spawning or feeding) for the majority of the year (especially during dry periods)
and at ensuring the occurrence of peak flows (e.g. for migration). Particularly related to the September

period (characterized by reduced discharge), we exploited the synergy (and avoid algorithm conflicts) with
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R5 and R6 (described below) to ensure both survival and migration of the fish, which provided low flows

and peak flows, respectively, during the month of September.

Group 2 considers aquatic macroinvertebrates. Aquatic macroinvertebrates’ community composition is
highly diverse (e.g. grazer, shredders, predators; (Wallace & Webster, 1996) and each community exhibits
different responses to hydrological gradients and flow frequency (Booker et al., 2015; Chen & Olden, 2018;
Dollar et al., 2007). Since additional experimental evidence is needed to define the accurate requirement
of each taxonomic group, we considered the highest taxa occurrence probability (the underlying rationale
was based on the Intermediate Disturbance Hypothesis (Osman, 2015) as an indicator for the e-flow
requirement for this group. The hydrological requirement (R5) for Biological Group 2 considered the
occurrence of high flow conditions to reduce the alteration from flow diversion (e.g. flow magnitude and

variability).

Biological Group 3 considered for the optimization assessment refers to primary producers (PPs). PPs have
a role in defining the presence of the other two groups (i.e. Biological Group 1 and 2) because of their
position at the base of the food-web (Bowden et al., 2017). PPs encompass a variety of taxonomic groups
(from diatoms imbibed within the biofilm to macrophytes) that respond differently to changing
hydrological patterns. The opportunistic response of PPs to variation in hydrological conditions defines the
establishment of specific groups based on flow regime characteristics. We assumed that establishment
success (i.e. ability to develop cover) is supported by a minimum flow during the dry period and hence

defined the hydrological requirement (R6) in the targeted period (April to September).
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Figure 8 Annual distributions of e-flow requirements defined for the Pas River. Each requirement has been translated into the
ecological objectives within the optimization model for water diversion.

Table 9 E-flow requirements considered in this study. The requirements define hydrological conditions to be conserved in the
river during the daily diversion operations throughout the year. Q95-Q75 is the flow value that is exceeded 95% and 75% of the
time, respectively; FRE3 is the flow value that exceeds three times the median flow.

Target group Requirement Definition
R1 Q95 flow — full period
R2 FRE3 flow — 21 days (consequent)
Biological Group 1
R3 Q95 flow — 45 days (consequent)
R4 Q95 flow — full period
Biological Group 2 R5 Q75 flow — 5 events

10% average vyearly flow — 70 days

Biological Group 3 R6
(consequent)

3.3.4 Definition of the Pas River optimization problem
To identify the highest water supply sustainability in the river basin, the magnitude and timing of river
water diversion operations need to be optimized to comply with the considered e-flow requirements.
Hence, the latter generally constrains the availability of water for human consumption. Constrained multi-
objective optimization is an optimization method based on the search for feasible solutions that directly
limit the search space (Srinivas, 2019). This method is frequently applied in real-world settings of structural

and operational optimization assessments for water regulation assets (Alais et al., 2017; Chang et al.,
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2010). An approach for constrained optimization is represented by the penalty-based approach; it allows
transforming the problem into an ‘unconstrained’ one — penalty (constraint) is incorporated into the
objective function to reduce the fitness of the function based on the degree of the specified violation. The
penalty-based approach particularly suits optimization assessments considering a high number of limiting
conditions. Moreover, it can be easily implemented with evolutionary/genetic algorithms (Bustince et al.,
2018; Jadaan et al., 2009; Yeniay, 2005). In this study, the maximization of the conservation potential of
the hydrological conditions for the biological groups and the satisfaction of the yearly municipal water
volume demand are considered in the formulation of the problem functions as conflicting objectives. For
each e-flow requirement objective, a penalty score method based on the characteristics of the
requirement was defined and incorporated into the objective function. The calculation of the penalty score
and the objective function varied based on the type of requirement. The general structure of penalty score
and objective function calculation process is shown in Figure 9, while the detailed functions used in the
optimization problem are available in Supplementary Material to this paper. Considering the specific case
of river flow diversion, the requirements have been specified as thresholds for the river flow component
modification. A flow condition above the threshold will be always favored by the algorithm, while a
hydrological condition below the defined threshold will be penalized based on the degree of the violation.
Each function output has been normalized based on the characteristics of each requirement, with scaling

between zero (i.e. the best outcome) and one (i.e. the worst one).

START Daily flow values > Process of penalty score calculation > Objective function value END

Summation of
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&
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Trag;'te E:E"Od R asﬁ’igfem >  Reference [—»
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i+n I [

Figure 9 General structure of the calculation process for the penalty score and objective function (d; and d;,,, indicate a day i
of the year starting from January 1st).

3.3.5 Hydrological data
The developed optimization assessment used input hydrological data describing the river discharge for the
Pas River basin. The simulated time-series at the daily scale resolution (for the period 1980-2006) for the

two diversion points (DP1 and DP2) was generated by manipulating two datasets provided by the
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IHCantabria. The first dataset of discharge values developed by Garcia et al., (2008) for the Pas catchment
by using the updated version of the rainfall-runoff model (HEC-HMS; Scharffenberg, 2010). This dataset
was available only for certain points along the river network at daily resolution. The second dataset
contained discharge data extracted from the Spanish national repository and was processed with the
SIMPA GRASS-based tool (Alvarez et al., 2004), available for each 500 m section of the river network at
monthly resolution. To obtain the aforementioned time-series at the desired temporal resolution format
(i.e. the daily scale resolution) used in this study, a conversion factor (i.e. flow magnitude coefficient) for
the target river segments (in correspondence with DP1 and DP2) was first extracted from monthly scale

data (SIMPA tool) and successively multiplied to the daily flow data (HEC-HMS model).

3.3.6 Optimization scenarios
Scenario development aimed to capture lower than average, average, and higher than average
hydrological conditions at the considered diversion points (DP1 and DP2) to increase produced information
uptake and fostering discussion about management practices in the Pas River. With this purpose,
hydrological year-based scenarios namely dry, normal, and wet, were developed to explore optimization
outcomes at different hydrological conditions (see Figure 10). Firstly, each year in the record (1980-2006)
was sorted based on its average yearly discharge value (the years 1980 and 2006 were discarded as only
full-data years were considered), and a three-tiered statistical breakpoint classification has been applied.
Each class contained 33% of the data with higher, medium, and lower average yearly discharge values.
Lastly, daily averages have been recalculated among years of the same class to obtain the three sample

hydrographs used in this study. The daily values of each hydrological time series (at the daily time-step

harg

early disc

gey

Avera;

DP1 DP2

Figure 4 Average yearly discharge values (in m3/s) for the considered scenarios (dry, normal and wet) for the two diversion
points DP1 and DP2. The upper and lower fences represent the max and min discharge vales, the edges of the box represent the
upper and lower quartiles, and the line inside the box is the median.
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starting from January, 1% to December, 31%") under each considered scenario for both DP1 and DP2 is
available in Figure S1 in the Supplementary Materials to this paper.

Despite real-world daily river discharge can greatly fluctuate around the daily average discharge values
within each scenario that we considered in the optimization assessment, this is mostly due to less
predictable (in the long term) factors as precipitation and temperature. Forecasting the exact discharge
value occurring at a specific day with the aim of planning daily diversion is still challenging. A simple
approach to tackle this issue is the consideration of representative discharge patterns throughout the year.
In this study, the produced hydrological scenarios (or hydrographs) are intended only a basis for
exploration and discussion about potential decisions and management practices rather than absolute
discharge values. Hence, a key assumption underlying the input hydrological data (hydrographs in Figure
S1 in the Supplementary Materials) was that it serves as a representative ‘sample’ of the current

hydrological conditions at the daily scale for each considered scenario.

3.3.7 Evolutionary optimization algorithm and framework
To solve the presented non-linear optimization problem for the Pas River we applied the state-of-art of
evolutionary algorithm NSGA-IIl (Deb & Jain, 2014) by exploiting the Pymoo — Multi-objective optimization
in Python - framework version 0.4.1 (Blank & Deb, 2020a). To track the convergence towards the optimal
solutions we used a recently developed running metric indicator. Although the hyper-volume convergence
metric is a widely employed technique, it requires the knowledge of the “true Pareto front” which is not
always available (see Blank & Deb, 2020a); the aforementioned running metric indicator uses extreme
points and the information of the non-dominated solution retrieved at each generation to define the
convergence evolution (for in-depth explanation see Blank et al., 2019; Blank & Deb, 2020b). The structure
of the optimization module applied to the defined optimization assessment problem for the Pas River
basin simulation runs is shown in Figure 11. The Pymoo module is then linked with two additional modules:
a module that extracts the input hydrological indices (i.e. Q75, Q95, FRE3 and AYF — average yearly flow);
and a scenario module that processes the hydrological record and provides input hydrological conditions.
The algorithm was parametrized with a population size of 100 individuals and run for 1000 generations.

The running metric was set on a 50-generation step.
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Figure 5 Optimization problem structure employed to the Pas River. The main box shows the module structure of the Non-Sorted
Genetic Algorithm-3 (NSGA-3) in Pymoo — multi-objective optimization in Python. Two external modules, Hydrological Scenario
and Hydrological Indices, calculate the hydrological scenarios to be inputted into the Pymoo module and the hydrological
variables, respectively.

3.4. Results

Providing sufficient water for consumptive use (e.g. municipal, industrial) was the primary objective of the
water management optimization problem developed for the Pas River case study. Simulation results for
the different diversion points (i.e. DP1 and DP2) showed that the overall annual water demand for
municipal use (calculated in Hm3/y) set as demand objective was fulfilled under all the considered
scenarios (see Tables S1 and S2 in the Supplementary Materials). The total annual water volume for
municipal use increased with the increased availability of river discharge and was at its highest value under
the wet scenario conditions. On the other hand, e-flow requirement objectives (i.e. R1-R6) scores showed

very small deviations (in their normalized values) to the test runs (reference scores of the undisturbed
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hydrograph; see Tables $3-S8 in the Supplementary Materials). Test scores different from zero indicate
the original input hydrological conditions not allowing requirement meeting. This means that additional
pressure on the target Biological Groups already exists under some natural hydrological variability from
one year to another. The most noteworthy changes are related to the R2 objective scores, which showed
a linear trade-off with the municipal water supply objective (see Figure 12 as an example, other results

. available at https://doi.org/10.6084/m9.figshare.14230553; ;

“ Derepasko, Pefas, et al, 2021). For the remaining
i O optimization objectives, the trade-off pattern was

o characterized by a non-homogeneous behavior to the supply
objective gradient pattern. This can be due to the more strict

nature of the penalty requirement assigned to the objective.

» [ It is important to note that the reference e-flow requirement

scores (R1-R6) for the natural (or undisturbed) river flow

_:.'é 3 showed that in few cases the hydrological conditions for the
E SP selected Biological Groups were sub-optimal (i.e. higher than
% 4: [ I [ zero) also before the trading of water with municipal
3 .- diversion (see Tables S$3-S4-S5 and S6-S7-S8 in the

: Supplementary Materials). This means that the reference

natural discharge conditions used could have in some cases

contributed to increasing the score for the Biological Groups.

Results also indicate that the daily availability of water for

abstraction varied throughout the year; what we explored

from model results was this day-to-day variability in the water
quantity for municipal diversion defined as optimized

discharge (OD). To reduce uncertainty in the OD range values,

36
n g 0 M 6 86 0
I the optimization problem was run under three different
BG1 BG2 BG3

Objective function hydrological scenarios (dry, normal, and wet) and ten

independent times for each diversion point and each

Figure 6 Heat map of the objective functions. Heatmap showing the sorted normalized objective functions scores [on the y-axis] for
the e-flow requirements (BG1=Biological Group 1; BG2=Biological Group 2; BG3=Biological Group 3) in relation to the municipal
water supply objective (f1) [on the x-axis]. Tiles hue indicates the score (dark green=high/best scores; light green=low/worst scores).
Presented result is for run #1 for DP1, dry scenario.
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hydrological scenario. Each model run outputted a batch of day-to-day OD annual series when run for a
specific scenario. Results indicate that despite the stochastic nature of the genetic algorithm (as it uses
random input values of the potential optimized diversion volumes), the prevailing pattern of the optimized
diversion volumes repeats across the different runs for the same scenario (see as example Figure 13 which

depicts the outputs for DP1 under the dry scenario).
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Figure 7 Optimization runs. Comparison of the results for each run of the optimization model showing the pattern of the
normalized average daily diversion percentage values (expressed as the daily percentage of the natural daily discharge). Yellow
(1) tiles correspond with the highest daily percentage, whereas blue (0) tiles correspond with the lowest optimal daily diversion.
Presented results are for the DP1 under the dry scenario.

The shades of the tiles are in agreement for the majority of the days of the year meaning that the algorithm
was able to converge at each run to similar solutions, and hence the model identified a prevailing trend of
optimal solutions (i.e. the daily optimal amount of water for diversion) distribution throughout the
different model runs. The results of the time window from the end of August to the beginning of October
are more heterogeneous (i.e. the daily OD value changes significantly between each run). This indicates a
greater variability of the average daily diversion values identified by the model. Similar patterns across the
model runs emerged for the other diversion point and scenarios (see Figures S2-S3, Supplementary

Materials).

To provide a greater understandability and to explore the obtained results we averaged the batch of daily
diversion percentages for each scenario to obtain the mean daily percentages of the natural discharge
(%0D), as shown in Figure 14 for DP1 under the dry scenario. The %0D (optimized discharge expressed as

a percentage share of the natural flow) changes significantly daily. Results across the diversion points (see
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Supplementary Materials, Figures S4-S5) show that for the majority of the year over 50% of the daily river
discharge was not required for the selected environmental criteria. The highest %0D volumes are more
evident in the first half of the year (Jan-June) to the second half: this quantity decreases as river natural
flow declines because of the low flow season. Larger variability in abstraction shares characterizes the
months from September to November which can be attributed to the variability in precipitation

distribution upstream causing peaks in the river discharge in correspondence with the diversion points.

Hh"\ 1l

Figure 8 Reference flow and optimized flow. Comparison between the residual percentage of natural daily flow (green - %RF)
remains in the river and the average daily discharge optimized for diversion (purple - %0D]). The diverted discharge is calculated
as a daily average for all the 10 runs of the model. Presented results are for the DP1 under the dry scenario.
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By considering the results from the analysis of the individual simulations, we compared the averaged
results to the natural discharge in the river. Given the size of processed information available from
simulation runs we summarized all the results in Tables S9-510 (Supplementary Materials). To understand
the trends throughout the year we plotted the value of the unaltered river flow with the flow portion
optimized for diversion (see Figure 15 as an example for the DP1 under the dry scenario; complete results
are available in Figures S6-S7 in the Supplementary Materials). The OD mainly follows the profile of the
natural discharge, which corresponds with the upper edge of the line, for the greatest part of the year.
Thicker lines, and hence a greater quantity of water that should remain in the river, concentrate in the
driest days of the year. This is plausible due to the required objectives of maintenance of base flows. It is
important to note that days where the width of the line is thinner, indicate that the optimized discharge
almost matches with the totality of the natural discharge. This is because the lower edge represents the

ideal amount of water that can be abstracted. It represents an indication about the greatest water amount
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Figure 9 Gap between optimized and natural flow. Flow series showing the magnitude of gap between the daily optimized
diverted discharges with respect to the natural discharge for the DP1 under the dry scenario. Greater thickness indicates the
highest trade-off between the natural discharge and water for municipal use.

available for daily abstraction being the latter an average of the results across all the runs. The reason for
the presence of unmatched discharge (i.e. greater gap) can be related to the specific scenario used (i.e.
the representative hydrograph) and hence associated with the hydrological model used to generate the

data.

3.5. Discussion

3.5.1 Trade-offs between diversion and biological groups’ requirements: Variability in the daily flow
available for diversion

Considering water demand fulfillment needs, the optimization of daily flow for diversion evidenced
periods of major and minor daily average trade-offs (expressed as the quantity of flow that is available for
abstraction against the quantity of flow that should remain in the river), meaning that periods of lower
availability of water for diversion are present. Our optimization assessment shows that trade-offs of
human water use against the water needed to protect the ecosystem are not manifesting at the annual
scale (i.e. modification of the total quantity of water that can be abstracted annually) but rather, the trade-
off is more evident at the daily scale. Since the magnitude of this trade-off varies across the solutions found
by the algorithm (during each run), the selection of one solution over another is usually required. However,
the process of option selection remains a prerogative of the decision-maker as it requires appropriate

engagement strategies for management preference elicitation (O’Sullivan et al., 2020). Results presented
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in this study (as average daily diversion values) allow showing the variance of the daily threshold defining
the optimized abstraction throughout the year. Knowledge of these daily trade-off thresholds can serve
as guidance for the daily diversion operations throughout the year. They can also guide decisions on the
timeframes for planning and revision of the management objectives that will strengthen the overall water
management capacity (P. Kumar et al., 2019). Further inclusion of other statistical information (e.g.

standard deviation) would be beneficial in supporting the judgment underpinning diversion decisions.

Aiming at reducing alteration of surface water diversion assumes that the input hydrological scenarios
(related to an undisturbed hydrograph) fulfill the needs of the ecosystem. In our study, the considered
background hydrological conditions (i.e. input scenarios to the optimization model) were not scoring
optimally (i.e. zero) for the entire set of objective functions as required by the targeted biological groups.
On one hand, this outcome could be related to the type of data and the design of the assessment, it also
suggests that climate change impacts leading to more frequent droughts and reduced amounts of rainfall
will increase the pressure and hence risk the conservation of the targeted biological groups. Both the
climate and geomorphological features (e.g. slope, vegetation type, etc.) influence the local seasonal
change in river discharge and can affect, for instance, physio-chemical river properties (Moodley et al.,
2016; Sigleo & Frick, 2007). Changes in land use and land cover at the local and regional scale influence
the runoff and hydrology (Mirhosseini et al., 2018; Welde & Gebremariam, 2017). This suggests that both
objective scores and the magnitude of daily trade-offs can be reduced (i.e. reduced variability in water
available for diversion) if additional measures on the local scale are implemented (such as replacing
farmlands with forest cover). The consideration within the optimization assessment for adaptive water
management of additional hydrological scenarios based on land use/land cover changes would provide

insights into alternative water management practices in the face of climate change conditions.

3.5.2 Advantages: The role of simulation conditions for the results
The application of optimization approaches shows several advantages for water management, such as the
chance to modify prior conditions (e.g. total demand, daily river flow). This provides the opportunity for
foreseeing outcomes of decisions under alternative scenarios improving the decision-making process. In
particular, the chance to modify the input hydrological conditions and the defined e-flow requirements is
useful to increase the understanding of implications for diversion of alternative water allocations for
environmental needs. For example, by increasing the allocation (share of discharge for ecological
processes) or including additional biological groups, or any other sort of geomorphological or

biogeochemical criteria for the achievement of a “good” ecological status, can identify the best e-flow
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water management options that have the least implications for water diversion. However, while the role
of science for supporting decision-making still faces challenges such as providing greater evidence for flow-
ecology knowledge (Stoffels et al., 2018), expanding the e-flow requirements for more species and other
components of the ecosystem could improve the chances of achievement of environmental goals. On the
other hand, the modification of the reference hydrological conditions (input hydrograph) by considering
the same ecological requirements could increase the resolution of the daily diversion threshold under
specific conditions. Overall, this strengthens the reliability of daily diverted volumes identified by the

model.

Another advantage of the employment of optimization approaches for fostering the adoption of adaptive
water management strategies is represented by the chance of incorporating e-flow requirements within
management decision assessment regardless of their type (i.e. as minimum flows, natural flows, indicators
of hydrologic alteration). Moreover, environmental data are not always readily available in a format
suitable for decision-making. E-flows can be expressed both as objectives or constraints depending on the
modeling capacity and ability (Derepasko, Guillaume, et al.,, 2021). However, each e-flow modeling
approach used within the optimization assessment would also require an appropriate results

communication strategy (Pollino et al., 2017).

Despite models have a great potential for socio-ecological research (Schliiter et al., 2019), each modeling
exercise requires prior conditions (e.g. scenarios) to be stated in the model, and the results remain highly
linked with those conditions. Optimization assessment for water management is no exception, but
optimization results exploration offers ground for discussion of decisions and is meant to convey
information useful for the decision-making process (A. C. Horne, Kaur, Szemis, Costa, Nathan, Angus Webb,

et al., 2018). This particularly suits the adaptive process.

3.5.3 Limitations: Sources of uncertainty defining the optimal diversion
Systemic, data-related, and epistemic uncertainties affect socio-environmental modeling (Lowe et al.,
2017). We identified the systemic uncertainty to be the one related to the search approach (e.g. stochastic)
and the number of model runs. Not many studies addressed the question of the number of simulation
runs and the best choice is represented by the “minimum number of runs” (Ritter et al., 2011), especially
when simulations are particularly expensive. While ten runs for each hydrological scenario allowed

defining the prevailing annual pattern of water diversion in our study, we believe that a further increase
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of simulation runs especially in the case of heuristic methods as genetic algorithms would allow reducing

the uncertainty of results, increasing the probability of ecological objectives achievement.

Data-related uncertainty is related to both present condition outcomes and future scenarios. In our study,
in the absence of real flow data, simulation data lead to the application of a precautionary approach that
considered the abstraction of the lowest amount of flow that can be diverted daily. To a certain extent,
this could represent the best available strategy for resource management. However, knowledge of the
extent of the “safe abstraction range” and the associated probability would contribute to enhancing
decision-making especially to climate change-induced changes in the hydrological behavior of the river
flow (Schneider et al., 2013) which are difficult to quantify and track. Methods that could address the
unpredictability of multiple flow conditions on a daily scale such as the Monte Carlo sampling (Byrne, 2013)
could be used to generate many input hydrological conditions on which to run the optimization algorithm.

However, this will inevitably increase post-processing effort (e.g. related to data volume).

Lastly, because of the complexity of the water management problem and optimization problem, the use
of expert opinions and knowledge is both a precious source of information in different situations (e.g.
urgency of implementation of management actions, limited evidence) and a source of uncertainty
(epistemic) linked with the subjective view of the knowledge (Krueger et al., 2012). In the case of our study,
epistemic uncertainty relates to both optimization assessment design and expert knowledge. In the first
case, this can be improved by creating alternative assessment designs (e.g. changing objectives, solution
search methods, scales (Derepasko, Guillaume, et al., 2021; Rolls et al., 2018); and by expanding our
knowledge of eco-hydrological relationships and ecosystem needs or by extending the pool of experts
enquired in the second. Additionally, participatory approaches for the definition of objectives and optimal
solutions could support the identification of the appropriate scales and design for the management

problem (Wicki et al., 2021).

3.5.4 Implications of the results for the diversion planning and the adaptive management approach in
the Pas River
Optimization can be used to translate knowledge of flow conditions that support environmental processes
into information used by decision-makers. This information then supports strategies and maintenance of
long-term goals for river management (O’Donnell & Garrick, 2017) under a range of possible hydrological
circumstances (i.e. below normal, normal, or above-normal conditions). The great variability in the amount

of flow throughout the year that can be diverted daily for consumptive use suggests that the definition of
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the monthly targets for municipal consumption (in Hm?) would be a much more appropriate management
objective compared to the targeted annual water allocation volumes for the local scale. The main reason
is that naturally, the river does not offer stable hydrological conditions for diversion throughout the year
at different locations. Reducing the time window of consumptive allocation validity could incorporate
these circumstances, and prevent overexploitation. River water can be diverted during periods of greater
availability and temporarily stored for the next period but water collection and storage systems would

eventually require investments and additional costs (Young, 2014).

Active water management is a management approach that calls for ongoing decisions concerning the
water required for environmental needs (see Doolan et al., 2017; A. C. Horne, Kaur, Szemis, Costa, Nathan,
Webb, et al., 2018) while aiming for long-term management goals (i.e. good ecological status and human
development; A. C. Horne, Kaur, Szemis, Costa, Nathan, Webb, et al., 2018). This approach suits the case
of regulated rivers such as the Pas River in which at least certain flow conditions need to be considered as
the rightful reserve for the ecological processes. This means that certain flexibility of design of the
environmental objectives within the optimization assessment should consider thresholds and parameters
that can be adjusted based on ongoing monitoring outcomes. The marked difference in natural flow
conditions, and consequently abstraction conditions, between seasons, suggests that the seasonal scale
could potentially represent the minimum time scale over which active management should be
implemented. For example, fish species respond to hydrological cues linked with the seasonal variation of
flow. When considering water requirement objectives for fish biological groups, evaluation of the
achievement of the expected phenological event from monitoring results is needed to adjust the threshold
or the timespan for the environmental water allocation for the next phenological period. This would
ensure species conservation and ecological restoration. Moreover, by increasing the scale of the
assessment (i.e. expand the analysis to multiple reaches or the entire basin) more detailed information
can arise and management planning can be extended over larger portions of the river. However, while
optimization allows assessment of both advantages and disadvantages of specific management decisions,
clear links between monitoring strategy and management goals still need to be stated before the
assessment phase to ensure the success of the adaptive management approach (Adams & Van Niekerk,

2020; Stein et al., 2021).

Overall, the optimization assessment proposed in this paper represents an opportunity to investigate what
implications arise from the incorporation of ecological needs within a diversion plan. Results should not

be considered as absolute, but they rather serve to highlight that trade-offs in water availability are more
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linked to the daily scale (i.e. daily diversion) than the annual scale (overall volume diverted in a year).
Increased chances of results uptake by the decision and policymakers would need an extended assessment
on the basin-scale and multiple simulations with sensitivity analyses. Furthermore, this study showed an
approach of e-flow requirements definition within the optimization assessment to extract information
useful for the promotion of an adaptive management process. Besides, as the provision of e-flows is a
means to restore the benefits of naturally flowing rivers, the optimization assessments can also match the
exploration of actions for the eventual restoration of ideal ecological conditions. In this case, the
advancement of the available eco-hydrological knowledge to be used to build the optimization model
would significantly improve the chances of restoring natural conditions while meeting supply objectives.
The proposed assessment can be applied to other basins and locations but would inevitably need the
adjustment of e-flow requirements (i.e. thresholds and parameters) to match local ecosystem needs.
However, regardless of its usefulness in supporting the adaptive process, the lack of proper link definition
between the e-flow requirements and the subsequent monitoring stage within an optimization

assessment can jeopardize the success of an adaptive management approach (Webb, Watts, et al., 2017).

3.6. Conclusions

This paper illustrates how an optimization assessment offers the opportunity for designing e-flow
requirements in a format suitable for informing water management and at the same time offers support
for the commitment to all the stages of the Adaptive Water Management Cycle (AWMC). We
demonstrated that the optimization process structure (e.g. limiting conditions definitions and objectives)
matches the presented approach applied for e-flow requirements incorporation. In particular, the
presented approach suits the need to anticipate management outcomes by exploiting the hydrological
thresholds as limiting conditions for river water diversion. On one hand, the advantages of the
optimization assessment as an instrument for mediating the incorporation of e-flows lie in the opportunity
of tailoring e-flow requirements both to the available data and modeling capability. On the other hand,
the need to pre-define conditions (e.g., input hydrological information, supply volume) can expose results
to different levels of uncertainty. Lastly, we identified few opportunities for the improvement of the
management approach in the case study area: the reduction of the allocation volume temporal window
during diversion planning such as by setting monthly caps on water allocation for consumptive use based
on seasonally averaged river discharge would allow incorporating natural flow variability (for ecosystem
needs) and prevent overexploitation during periods of scarce flows. Future applications of the

optimization assessment in support of Adaptive Water Management would benefit from an improved
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characterization of the reference river flow conditions through the inclusion of approaches to reduce
uncertainty (e.g. employment of input data-sampling techniques), the incorporation of alternative land-
use/land cover information and climate change scenarios. Moreover, stronger links between considered
e-flow requirements and monitoring planning would push the adaptive process further towards the closing
of the AWMC. Overall, this would reduce the risk of failure of e-flow requirements incorporation in the

management program and contribute to improving management actions outcomes.
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Supplementary Materials:
The following are available online at https://www.mdpi.com/article/10.3390/w13091281/s1, Figure S1:
Hydrological time series used as representative discharge scenarios for the considered diversion points

(DP1 and DP2); Figure S2: Combination of the average daily diversion percentages with respect to the
natural discharge normalized to 0-1 range for each single run of the model (‘s1-s10’) under the same
scenario; Figure $3: Combination of the average daily diversion percentages with respect to the natural
discharge normalized to 0-1 range for each single run of the model (‘s1-s10’) under the same scenario;
Figure 54: Barchart showing the normalized fraction (expressed in %) of discharge that has been optimized
for abstraction (purple ‘OD’ bars) with respect to the natural flow (green ‘RF’ bars) at the daily scale (results
for DP1 under dry (a), normal (b) and wet (c) scenarios; Figure S5: Barchart showing the normalized fraction
(expressed in %) of discharge that has been optimized for abstraction (purple ‘OD’ bars) with respect to
the natural flow (green ‘RF’ bars) at the daily scale (results for DP2 under dry (a), normal (b) and wet (c)
scenarios; Figure S6: Flow series showing the magnitude of gap between the daily optimized diverted
discharges in m3/s with respect to the natural discharge (results for DP1 under dry (a), normal (b) and wet
(c) scenarios); Figure S7: Flow series showing the magnitude of gap between the daily optimized diverted
discharges in m3/s with respect to the natural discharge (results for DP2 under dry (a), normal (b) and wet
(c) scenarios); Table S1: Average objective function score (municipal water demand), for each simulation
run (1-10) (results for the DP1 under dry, normal and wet scenarios); Table S2: Average objective function
score (municipal water demand), for each simulation run (1-10) (results for the DP2 under dry, normal and
wet scenarios); Tables S3-54-S5: Average objective function scores (R1-R6), for each simulation run (1-10)
(results for the DP1 under dry, normal and wet scenarios); Tables S6-S7-S8: Average objective function
scores (R1-R6), for each simulation run (1-10) (results for the DP2 under dry, normal and wet scenarios);
Table S9: Comparison of average natural discharge values under different scenarios and the optimized
discharge thresholds (results for DP1 for sub-normal (dry), normal and above-normal (wet) hydrological
conditions); Table S10: Comparison of average natural discharge values under different scenarios and the
optimized discharge thresholds (results for DP2 for sub-normal (dry), normal and above-normal (wet)
hydrological conditions).
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4.1. Summary (abstract)

The degree of success of river water diversion-planning decisions is affected by uncertain environmental
conditions. The adaptive water management framework incorporates this uncertainty at all stages of
management. While the most effective form of adaptive management requires an experimental
comparison of practices, the use of optimization modeling is convenient for conducting exploratory
simulations to evaluate the spatiotemporal implications of current water diversion management decisions
under future environmental changes. We demonstrated such an explorative modeling approach by
assessing river water availability for diversion in a river basin in Northern Spain under two future
environmental scenarios that combined climate and land use change. An evolutionary optimization
method was applied to identify and reduce trade-offs with Supporting Ecosystem Services linked to
environmental flow requirements for relevant local freshwater species. The results showed that seasonal
shifts and spatial heterogeneity of diversion volumes are the main challenges for the future diversion
management of the Pas River. Basin-scale diversion management should take into account the seasonal
planning horizon and the setting of tailored diversion targets at the local level to promote the
implementation of adaptive management. The presented assessment can help with the strategic
placement of diversion points and timing of withdrawals, but it also provides a deeper insight into how
optimization can support decision-making in managing water diversion under uncertain future

environmental conditions.
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4.2. Introduction

The "natural flow paradigm" (N. Poff et al., 1997) is acknowledged as the basic concept for a thriving river
ecosystem, however recognizing that certain key flow components must be conserved presents a unique
challenge for managing river water resources sustainably. Currently, the challenges related to water
resource management and its allocation are increasing each year globally due to several pressures, such
as climate change and population growth, but also due to trade and energy crises, food production, water
scarcity, and pandemics, to name a few (Alamanos & Koundouri, 2023; Grison et al., 2023). In Europe,
there are significant differences between countries in terms of both the intensity of the pressures
mentioned above, especially climate change extremes (Moghim et al., 2022), and the degree of
effectiveness of the water management strategies employed (Ziolkowska & Ziolkowski, 2016). Enhancing
water management efficiency requires anticipating the consequences of management outcomes and
future environmental circumstances. To achieve this, we need advanced modeling approaches that can
assess and guide decision-making in current and future scenarios.

The water management encompasses a range of interventions aimed at regulating the river system, which
involves constructing dams to control water flow or diverting river water. Through water intakes, water
diversion alters the flow regime of the river (i.e., its magnitude, seasonality, and variability) (Stewardson
et al., 2017), potentially compromising the integrity and functionality of the river ecosystem and the
services it provides (Alan Yeakley et al., 2016; Ferreira et al., 2022; Gilvear et al., 2017; Jahnig et al., 2022;
Rolls & Bond, 2017; Rosero-Lépez et al., 2020; Watz et al., 2022). The concept of environmental or
ecological flows (e-flows) is recognized as a valuable instrument for achieving sustainable water resource
management or sustainable water diversion as it considers the ‘quantity, quality and timing of flows that
are needed to sustain the ecosystem’ (Arthington, 2012; Gilvear et al., 2017). Ongoing intensification of
environmental changes related to climate and land use leads to uncertainty in the timing and location of
river flow components alteration manifestation (i.e., e-flows). As a consequence, modeling approaches
providing means for exploring spatiotemporal implications of current water diversion management
decisions under future environmental changes could provide water managers with reliable information
for strategic water diversion planning (Fowler et al., 2022; Horne et al., 2022; John et al., 2020; Judd et al.,
2022; Lowe et al., 2017).

The water diversion management strategies implemented so far are, to some extent, supported by the
incorporation of the Integrated Water Resource Management (IWRM) concept (Delavari Edalat & Abdi,
2018; Pahl-Wostl, Kabat, et al., 2008). While the latter remains a cornerstone of water management

approaches, it has evolved into a more articulated paradigm: the “adaptive” water management based on
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the “learning-by-doing” cycle, which better meets the need to deal with the increasing uncertainty
associated with future changes and management outcomes (Allan & Watts, 2018; Delavari Edalat & Abdi,
2018; Pahl-Wostl et al., 2012; Pahl-Wostl, Kabat, et al., 2008; Sendzimir et al., 2007). While a management
strategy or decision is assessed in the outer loop, uncertainty within the cycle is addressed through inner
loops of minor adjustments to the management approach as functional outcomes become available (for a
detailed explanation, see: Horne et al., 2022; Webb, Watts, et al., 2017). However, this inherently implies
that adaptive management of water resources involves implementing a particular management strategy
and repeatedly adjusting it to achieve the desired success or management objective. Indeed, “the most
effective form of adaptive management employs management programs that are designed to
experimentally compare selected policies or practices by evaluating alternative hypotheses about the
system being managed” (Allan & Curtis, 2005; Pahl-Wostl, 2006). However, comparing policies and
practices in the actual world is time and resource-consuming and not very cost-effective, making it highly
unlikely. Nevertheless, using models that consider real-world conditions to conduct experimental
simulations allows these hypotheses to be tested before implementation takes place. Moreover, this
approach enables the identification of space and time dimensions that would enable the implementation
of an adaptive management cycle.

A significant number of modeling approaches to predict water management outcomes under uncertainty
are nowadays available (Badham et al., 2019; Borgomeo, 2022; Candido et al., 2022; Kirchner et al., 2021;
Lowe et al., 2017; Refsgaard et al., 2007). Modeling and simulating are generally subject to uncertainties
arising from various sources (see Lowe et al., 2017; Refsgaard et al., 2007). One way to tackle the
uncertainty associated with water diversion management outcomes is to evaluate management decisions
under different environmental change scenarios. Optimization modeling is a versatile tool for this purpose
and has been used extensively to model water management problems (Derepasko, Guillaume, et al., 2021;
A. Horne et al., 2016). It represents a prescriptive type of modeling (Candido et al., 2022) and is flexible in
terms of the type, size, and scale of the problem but does not require extensive training compared to using
software. Ultimately, optimization is suitable for analyzing solutions to water management problems
through the employment of system perceptions (i.e., real-world system representation as we perceive it
to be), preferences (i.e., preferred solutions based on personal interests and priorities), and scenarios (i.e.,

plausible real-world conditions) (Derepasko, Guillaume, et al., 2021; Derepasko, Pefias, et al., 2021).

Optimization has been used in studies assessing changes in riparian areas at the river network segment

scale (Witing et al., 2022); however, the authors are not aware that an optimization assessment has been
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carried out for river water diversion at each segment of a river basin network considering future
environmental changes. To bridge this gap, in this paper, we perform an optimization assessment for the
Pas River basin in Northern Spain. Through this study, we aim to showcase the applicability of the
optimization approach at the river network scale with river segment resolution. More specifically, the
modeling exercise aims to (1) design an optimization model for river flow diversion and ecosystem services
(ES) supply capacity at the basin scale under climate and land use change scenarios, (2) identify spatial and
temporal patterns in the optimization results, and (3) provide recommendations for basin-scale water
diversion management and modeling to relevant experts. The presented approach is designed to consider
local hydrological conditions and plausible future scenarios while addressing the environmental flow
requirements of key biological groups (i.e., Supporting ES). The assessment performed with the presented
approach aims to identify spatiotemporal scales that increase the robustness of current diversion
management decisions to climate and land use changes, with the ultimate goal of facilitating the
identification of scales that enable adaptive management.

The chapter is organized as follows: Section 4.3 introduces the case study and the framework of the
optimization problem (sections 4.3.1 and 4.3.2) through the stages of problem perception and problem
definition. A suite of representative results is presented in Section 4.4. Section 4.5 discusses the spatial
and temporal scales of change. Based on the explorative modeling assessment we provide
recommendations for both management and modeling (Section 4.6).

Using the case application example, this study provides greater insight into how optimization can support
decision-making on water diversion management under uncertain future environmental conditions.
Moreover, it further supports the identification of temporal and spatial scales relevant to the
implementation of an adaptive approach for diversion management planning at the basin scale, while also

highlighting the importance of incorporating instream ecological requirements into model development.

4.3. Materials and Methods
4.3.1. The Pas River Basin

The Pas River basin (Figure 16) is located in the North of Spain (Cantabrian region) and covers an area of
650 km2 (approx.) with an average elevation of 446 m. The Pas River is characterized by a length of 57 km
and a mean slope of 34%. Its network comprises three main rivers (Pas, Pisuefia, and Magdalena) that
drain into the Cantabrian Sea (Northeast Atlantic). With a mean annual precipitation of 1300 mm, the

region’s temperate climate provides significant precipitation throughout the year, generating a mean
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annual daily flow of 14 m3/s close to the river mouth. The river supplies drinking water to the population
of the different municipalities in the region, including the metropolitan area of Santander (> 170,000
inhabitants) and its surroundings. Water abstraction from the Pas River is carried out by daily diversion of
river surface water (by cross-channel weirs and pumps) at multiple locations throughout the network to
satisfy bid-based municipal water allocations. Moreover, the Pas River is the habitat for iconic species such
as the Atlantic salmon or the EU-protected alder-ash riparian forests. It is expected that increasing human
water demands and changing environmental conditions, such as reduced forest cover in the catchment,
reduced precipitation, and higher temperatures from climate change will lead to growing pressure on the
ecological integrity of the Pas River ecosystem (Belmar et al., 2018; Pérez Silos, 2022). The intensification
of these drivers can affect the provision of essential Ecosystem Services (ES) in the whole basin, such as
those related to regulating and maintaining key ecological processes, conditions, and habitats (i.e.
Supporting ES). In this study, a set of 230 target sites (i.e., individual river segments with a maximum length
of 500 m, hereafter referred to as RS) were extracted from the cartographic information of the river
network data by considering only river segments that were of stream order > 4. Each RS of the set

considered in the assessment carries individual hydrological information.
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Figure 10 Case study. The Pas River basin in the Cantabrian region (Northern Spain).

4.3.2. Problem perception and problem formulation phase for the Pas River Basin

An optimization assessment for water management typically starts with the identification and
contextualization of a water management problem by defining objectives, targets, and goals (Horne,
Konrad, Webb, et al., 2017), followed by the definition of the optimization model in terms of simulation
assumptions and conditions (Derepasko, Guillaume, et al., 2021; A. Horne et al., 2016). These two phases
can be described as the problem perception and problem formulation phases (see Derepasko, Guillaume,
et al., 2021; Maier et al., 2014) as illustrated in Figure 17. The two-step process is presented for the Pas

River basin.

Problem perception: objectives and optimization goals

Contextualization helps to identify important values for river water management. Although a participatory

approach can be used to contextualize the management problem (Pahl-Wostl, Mostert, et al., 2008), for

104



simplicity, we have formulated the overall management priorities for the Pas River basin as municipal
water diversion planning to sustain ecosystem processes.

As part of the problem perception phase, we considered the improvement or maintenance of ES
supporting the biodiversity in the Pas River basin while simultaneously providing sufficient water for the
municipalities as the primary management planning objective (Figure 2, top box). With this management
objective in mind, we considered the provision of adequate instream hydrological conditions as an
assessment target. Such conditions are the basis for setting the optimization goals to meet the
ecohydrological requirements for key instream ES indicators (fish, macroinvertebrates, and primary
producers; see Section “Environmental Indicators — Definition of relevant ecosystem services for the Pas

River”).

Problem perception phase

Improve and maintain ES;

Management objectives SUpbort Blodiversity

Provision of water for
Assessment target N selected ES endpoints
(instream indicators)

Identify sustainable
Optimization goal diversion practices under
different scenarios

Problem formulation phase

Basin scale - 230 segments;

Scale setting Annual - daily timestep

E-flow requirements for
Environmental indicators fish, macroinvertebrates
and primary producers

Climate change and
Scenario setting land use change for 2041
and 2070

NSGA-IIl
Evolutionary optimization
with penalty-based approach

Solution approach

Figure 11 Summary of the optimization assessment steps implemented in this study throughout the problem perception and
formulation phases (adapted from Derepasko, Guillaume, et al., 2021)
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Problem formulation

Based on the optimization goals identified in the problem perception phase, the problem formulation
phase (Figure 17, bottom box) envisaged the following methodological steps. Regarding the modeling scale
setting, the entire river basin network is considered to be the appropriate scale for both management and
modeling. A spatial resolution of 500 m segments was set to allow local scale exploration on a daily time
step within the year. The length choice was based on an existing Pas river network data layer. The next
step consists of the processing of plausible environmental change scenarios (i.e., reference historical and
future conditions of climate and land use) as a testing ground for the considered management planning
objectives (i.e., optimization objectives) at two time points (2041 and 2070). In the following, the definition
of expert knowledge-based e-flow requirements (including the related time-frame) for key instream
biological groups (fish, macroinvertebrates, and primary producers) underlying the Supporting ES
indicators is carried out. Finally, an appropriate solution approach (i.e., evolutionary optimization) is
chosen for the optimization problem to minimize the violations of the target hydrological metrics while
maximizing the total water available for municipal consumption (see section “Solution Approach to the

optimization problem”).

Scale and scenario setting

Land cover can change the magnitude and variability of instream flow attending to its influence on several
runoff processes in the catchment (M. Kumar et al., 2022; Qazi et al., 2017; Sampurno Bruijnzeel, 2005;
Zeiger & Hubbart, 2018). Hence, different land cover and climate change scenarios can be used to simulate
the resulting river runoff in the basin.

To capture changes in river runoff throughout space and time, we set the spatial scale of the assessment
to the stream order 24 river network composed of 500 m long RS at the daily time step. The hydrological
data used for optimization simulation were provided by the Instituto de Hidraulica Ambiental de la
Universidad de Cantabria (IHCantabria) and developed under the (The ALICE Project) for three
environmental scenarios in the basin, considering historical (baseline) conditions and two plausible future
conditions (Table 10). Figure 18 shows an overview flowchart of the main steps related to the problem
formulation phase. The environmental scenarios accounted for land use (LU) and land cover (LC) changes

and future climate change projections:
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- The LU and LC scenarios were developed using the process-based model framework FORE-SCE
Model (Forecasting scenario for land change modeling) (T. L. Sohl et al., 2007; T. Sohl & Sayler,
2008). The FORE-SCE Model simulated current land use and cover by processing elevation, slope,
and orientation and modeled fire recurrence. Furthermore, it models the influence of
socioeconomic drivers obtained from interviews with local stakeholders and experts in agricultural
and urban development policy fields. The input LU and LC maps were derived from historical
remote sensing data (Landsat / Sentinel-2 imageries) for the 1990s, 2000s, and 2018 at a spatial
resolution of 10 m.

- For climate projections, historical data (from 1950 to 2018) and future data (from 2041 to 2070)
on temperature and precipitation were used. See the procedure described in (Fonseca et al.,
2022).

- The final accumulated river surface runoff data (i.e., the resulting flow in the river) were produced
by applying the distributed hydrological model SPHY (Spatial Processes in Hydrology; (Terink et al.,
2015) at a spatial resolution of 100 m and at the daily time step. Historical precipitation and
temperature data for the period 1950 to 2018 were retrieved from the E-OBS v20e database
(Cornes et al., 2018) and resampled to produce a spatial resolution of ~1 km. (Fonseca et al., 2022)
performed a statistical downscaling of precipitation and temperature with Ordinary Least Squares
with yearly daily means using latitude, elevation, and Euclidean distance to the coastline as
explanatory variables. For future scenarios, climatic datasets from a five-member ensemble of
GCM-RCM chain simulations were retrieved for the development of climate change projections
for the Pas catchment (Fonseca et al., 2022). Further details of the procedure to develop climatic
historical and future series can be found in (Fonseca et al.,, 2022). Details of the model
parameterization are provided in Table Al in the supplementary materials. As shown in Table A2
in the supplementary materials, the results of the SPHY simulation (which are used by the
optimization model) are characterized by a decline in precipitation and an increase in temperature
and water demand due to land use changes. This, in turn, leads to a rise in actual
evapotranspiration, causing a decrease in average instream flow in the Pas River basin, with a
mean flow reduction rate of 25% between the basin outlets in the 1980-2012 and the 2041-2070
periods.

To obtain the hydrological time series for the hydrological year, starting on October 1st and ending on
September 30™, with a resolution of 500 m, each RS was linked to the nearest cell value of each scenario

dataset (i.e., raster layer of simulated daily averaged accumulated surface runoff for the period 2041-
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2070). Two time points were considered for each scenario (i.e., 2041 and 2070) to explore the scenario-
related simulation outputs of the water diversion planning objectives defined in Section “Solution
approach to the optimization problem”. The choice of 31 years between the considered time points was
intended to capture all possible changes in the basin based on the pre-set conditions to facilitate results
comparison. Moreover, we believe this gap can be useful for management purposes. For reference, a
hydrological series belonging to the year 2006 was extracted from the historical scenario and used as a
present-day baseline. This particular year was chosen because it was the closest representation of a year
with normal water conditions. For further insights into these results, we refer to the percent coverage
distribution for the different land cover types under each scenario provided in Table A3 in the

Supplementary Materials.
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Table 10 Details of the scenarios considered in the optimization assessment for the Pas River basin.

source data

Timeframe of

Considered period

for modeling

Scenario name

Description

Historical

1980-2012

e 1/10/2005 -
30/9/2006

Present day (PR)

This scenario represents present-day land cover and present-day climate. It is used as

a comparison to the historical conditions.

Future

2041-2070

e 1/10/2041 -
30/9/2042

e 1/10/2069 -
30/9/2070

BAU future (CC_BAU)

This scenario assumes river discharge is affected by Business as Usual (BAU) future land
cover and future climate (RCP 8.5; (Riahi et al., 2011). It considers the evolution of
present-day land use and land cover conditions. In particular, forest patches
(monoculture planted forest) development is implemented but not prioritized with the
presence of shrubs and rushes. In the upper basin, there is a significant rural
abandonment with forest recovery from pastureland, whereas the lower basin is

characterized by urban area expansion and agricultural intensification.

Nature-based
solutions prioritization

(CC_BGIN)

This scenario assumes an investment in nature-based solutions and an RCP 8.5 climate
change intensity conditions (Riahi et al., 2011). Concerning the “future conditions”
scenario, we have a modification of the rules for land use-land cover evolution (e.g., no
fires and forest transitions are favored in places where it can have the highest impact
on regulatory ES). This results in a prevalence of hill-side forests (e.g., oak, beech,

chestnut, birch species) and riparian forests (e.g., willows, ash, alders).
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Figure 12 Flowchart of the steps implemented during the problem formulation phase.

Environmental indicators - definition of relevant Ecosystem Services for the Pas River

The ecosystem services (ES) concept emphasizes the significance of essential environmental assets and
lends itself as an indicator of sustainable management strategies' effectiveness at broader scales (Hauck
et al., 2013). River ES supply is heavily reliant on the maintenance of in-stream conditions as the ecological
processes and functions are strongly connected to specific attributes of the flow regime (Gilvear et al.,
2017; lbafiez, 2021). As a result, in order to safeguard and preserve ES, hydrological conditions can be
elicited to prioritize target ecological processes and functions and species requirements (Alan Yeakley et

al., 2016; Ferreira et al., 2022; Gilvear et al., 2017; Jdhnig et al., 2022).
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In this study, we defined three Supporting ES indicators by explicitly associating them with specific
environmental flow (e-flow) requirements for key ecosystem components representing three levels of the
river ecosystem food web. The Supporting ES category was chosen because the flow attributes underlying
the supporting services can be easily related to the e-flow needed for habitats, life stages, and processes.
Moreover, while there is a higher emphasis on Provisioning ES as it provides the most evident benefit to
society (Alan Yeakley et al., 2016) Supporting ES can be a valuable indicator for river diversion management
as it helps to define minimum standards for sustainable river water diversion.

We assumed that failure to meet the specified e-flow requirements would adversely affect the supply
capacity of a specific Supporting ES. This simplification was essential since the optimization simulation we
presented cannot quantify the reduction in the supply of Supporting ES and is not meant to explicitly
account for synergies and linkages between different categories of ES. E-flows for key ecological
components of the river ecosystem (fish, macroinvertebrates, and primary producers) were incorporated
into the optimization assessment by considering distinct ecological endpoints as targets. Such ecological
endpoints correspond with development stages (e.g., fish spawning) or taxonomic indicators (e.g., highest
macroinvertebrate richness) connected to flow events or conditions in a specific time window throughout
the hydrological year. We used a set of flow indices based on expert judgment as limiting conditions to
diversion to represent hydrological thresholds for the selected ecological endpoints, reflecting Supporting
ES supply. In other words, river flow optimized for diversion takes into account the hydrological conditions
that must be met to sustain Supporting ES supply in the basin. More specifically, the Supporting ES
considered were: Provision of habitat conditions for fish, Life-supporting conditions for
macroinvertebrates, and Primary productivity. A description of the considered Supporting ES is shown in
Table 11.

The definition of e-flow requirements underlying the Supporting ES indicators was obtained from
(Derepasko, Pefias, et al., 2021). However, to reflect more realistic conditions and in the light of novel
evidence data the hydrological and temporal thresholds were adjusted for this study. A summary of the e-
flow requirements and thresholds used in this study is available in Table A4 in the Supplementary

Materials. For a detailed description, please refer to (Derepasko, Pefias, et al., 2021).
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Table 11 Description of the river Supporting ES indicators linked with the e-flow requirements considered in the study

Supporting ecosystem service Indicator description

Provision of habitat conditions for fish Hydrological regimes linked with the maintenance of habitat
conditions that support main life stages (i.e., migration,
spawning, hatching, recruitment), especially during dry

periods, and ensuring the occurrence of peak flows (e.g., for

migration).
Life-supporting conditions for Flow magnitude and variability conditions. Based on the
macroinvertebrates occurrence of high flow events that promote the highest

taxa occurrence probability (itself based on the

Intermediate Disturbance Hypothesis; (Osman, 2015b).

Primary productivity Hydrological conditions of minimum flow during dry periods
fostering the maintenance of primary producers (i.e.,

establishment success and their ability to develop cover).

Solution approach to the optimization problem

Optimization models are computational tools that solve conflicting objectives, such as those related to
water diversion management and planning in large river basins. Such conflicts often arise between the
demands for river water to support the river ecosystem and for human use on the other side (for additional
examples of water management conflicts, see (Derepasko, Guillaume, et al., 2021).

Before defining the technical features of the optimization model, we evaluated different solutions in the
sense of a solution concept to better reflect the modeling needs and increase transparency in the model
development process (sensu Derepasko, Guillaume, et al., 2021). One solution to the problem follows a
top-down approach, limiting the daily water demand (i.e., diversion) based on the annual water demand
of all municipalities in the basin. The remaining daily river flow would be tested against the defined e-flow
requirements. However, with this approach, it is more likely that ecosystem needs will not be met, and
quantifying medium- to long-term needs is complex and adds to existing uncertainty. On the other hand,
a bottom-up approach that matches e-flow requirements with available flow increases the chances of
maintaining ES and, in a cross-scenario assessment, can identify diversion planning needs for

environmental change adaptation. Hence, we decided to follow the latter approach.
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Based on the selected Supporting ES and linked hydrological indicators, the optimization problem was
characterized by four conflicting objectives (i.e., three for ES and one for the human supply). The human
supply objective corresponds to the maximum amount of water that can be diverted from the river to
meet human needs (i.e. municipal) as described in Section 1A of the supplementary materials. The
optimization model was set to maximize the flow (in m3/s) that can be diverted for human supply while
minimizing the non-compliance of defined e-flow requirements underlying the three Supporting ES. A
penalty-based solution approach was implemented to penalize e-flow objective functions when a violation
of the specified constraints (i.e., constraints to the water flowing in the river and potentially available for
diversion) was detected. In this way, we formulated an unconstrained optimization problem but
considered certain conditions that had to be met to obtain solutions with minor violations. In the penalty
method, which is integrated into the objective functions, each flow condition that is below the threshold
is penalized by the algorithm based on the degree of the violation. Scaling between zero and one (i.e. best
and worst result respectively) is applied by normalizing the violation based on the individual constraint
features. For a detailed explanation of unconstrained optimization and penalty methods, see (Coello
Coello et al., 2002, 2007). The mathematical equations defining the optimization problem are presented
in Section B of the supplementary materials.

Evolutionary optimization was used to solve such a non-linear optimization problem, following the
approach of (Derepasko, Pefias, et al., 2021). The optimization model was developed using the Pymoo
(Multi-objective optimization in Python) framework version 0.4.1. (Blank & Deb, 2020b) for the NSGA-III
(Non-Dominated Sorting Genetic Algorithm Ill). The genetic algorithms (GA) at the base of the Pymoo
optimization framework are very versatile, as they allow the simultaneous optimization of multiple
objectives by imitating the process of natural selection of eliciting chromosomes throughout the search
process (Cavazzuti, 2013). The NSGA-IIl (Deb & Jain, 2014; Jain & Deb, 2014) provides a good chance of
rapidly approximating a globally optimal solution. A hydrological metric module was run with the Pymoo
optimization framework to calculate the hydrological indicators used for the e-flow requirements at each

III

generation. An initial random population of “optimal” discharge volumes (in m3/s) is generated by the
algorithm. The fitness of the residual discharge in the river (difference between the scenario-based
reference discharge in the river and the “optimal” discharge volume) is evaluated at each generation based
on the degree of penalty violations for each optimization objective.

In the present study, the optimization model framework was run once for each independent RS within the

considered time point and scenarios (i.e., five total model runs per scenario setup), generating unique
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results for each RS. The output of each model run was 230 optimal discharge volumes (i.e. one for each
RS) for each scenario. The choice to run the optimization algorithm only once for each RS and scenario was
based on the algorithm performance reported in the initial study by (Derepasko, Pefias, et al., 2021). The
study by (Derepasko, Pefias, et al., 2021) showed that a model set up envisaging 1000 generations (for 100
individuals) was appropriate for the convergence of the solution front to the ideal (i.e., its approximation).
This was confirmed by a Running Metric Indicator (Blank & Deb, 2020a) real-time measuring the objectives
space from one generation to another that found similar patterns in the results from multiple simulations.
The Running Metric is useful when termination criteria are not stated. An example of the convergence is
given in Figure 1B in Section B of the Supplementary Materials. The final population of optimization scores
was produced by implementing a preference-neutral approach by averaging the optimization objectives

scores of the optimal population.

4.4. Results

4.4.1. Performance of the optimization objectives

As a first step in the analysis of the results, we evaluated the performance of the optimization objectives
under the different scenarios, i.e., the total water volume available for consumption (i.e., municipal
supply) while maintaining the prescribed diversion limits. The simulation results show that the
optimization objective (i.e., the total volume of river water in Hm3/y) can satisfy the water demand of the
municipalities in the Pas River basin of the projected water demand for the year 2040 (i.e., around 7
Hm3/y) (Gobierno de Cantabria, 2020). However, the water volumes differ significantly between the
scenarios considered. While the baseline simulations (for the year 2006) predict an average of 91.1 Hm3/y
available for diversion, the future scenarios (for the year 2041) predict 86.9 and 86.7 Hm?3/y for the
CC_BGIN and CC_BAU respectively. For the same scenarios under future 2070 conditions, the model
simulated 67.4 and 70.4 Hm3/y available for diversion. These results can be linked to the ability of the SPHY
model to generate projected hydrological data to capture interactions between flow and land cover (e.g.,
the extent of forest cover vs. maturity).

On the other hand, the optimization results for the selected ES indicators along the river network (see
Figures C1-3 in Section C of the supplementary materials, Figure 19 shows results for Habitat condition
provision for fish life-stages ES) show the highest scores (i.e., least optimal results) for the provision of
suitable habitat conditions for the different life stages of fish. This is observed in particular for the

downstream river segments of the basin. At the same time, the highest heterogeneity of optimization
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scores is achieved in the upstream reaches in both the future BGIN_CC and BAU_CC scenarios.
Optimization scores are absolute values that measure the conditions for achieving ES objectives. Values
closest to zero represent the optimal conditions for ES for a given model simulation. While higher scores
(> 3.0) in the 2006 baseline scenario (PR) indicate existing hydrological pressure on the specific indicator,
the reduction (scores between 0.9-1.6) of the optimization scores in the future scenarios increased the
capacity of the river system to provide habitat conditions for fish. Conversely, a reverse pattern emerged
for the ES indicator primary productivity, where the results show the highest optimization scores in the
upstream reaches. Interestingly, the macroinvertebrate objective was zero at each RS and scenario,

indicating that the baseline and projected river flow could meet the defined instream conditions.
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Figure 19 Maps showing the spatial distribution of the optimization objective scores for the Habitat condition provision for fish
life-stages ES under each considered scenario. Values closest to zero indicate the best achievement of the objective at a specific
RS. The classification scheme follows the quantile chromatic classification approach: Blue shades = highest scores (worst results),
yellow shades = lowest scores (best results). Note: each map presents min-max values that differ from each other as the figure
aims to highlight scenario-specific spatial variation of the scores.

However, this result may also be due to the type of hydrological indicator considered for the specific
optimization objective. Furthermore, small inlets close to the downstream segments of the main river
network are characterized by reduced optimized discharge with respect to the remaining river network

due to their reduced discharge and variability.
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4.4.2. Spatial and temporal distribution of water available for diversion in the Pas River basin

The second objective of the assessment was to evaluate the spatiotemporal distribution of water available
for diversion in the Pas River basin after optimization. In the first step, we investigated the spatial
distribution of the optimized daily river discharge available for diversion. The daily values of the river flow
optimized for diversion in the Pas River basin can be accessed as an interactive map for each scenario at
the following link: https://doi.org/10.6084/m9.figshare.19636449.v4 (Derepasko et al., 2022). The
monthly averaged static maps of optimized instream flow for the baseline year (2006), and the 2041-2070
CC_BAU and CC_BGIN scenarios are available in Section C (Figures C4-8) of the supplementary materials.
Upstream river segments showed higher variation in the water volumes optimized for diversion than
downstream segments. Upon comparison of the different scenarios, it is evident that the observed pattern
remains consistent across all environmental conditions considered in the simulation. This consistency
could be attributed to the chosen hydrological indicator (i.e., cumulative runoff for each segment of the
river) and the anticipated increase in flow magnitude as the river network approaches its outlets. Lastly,
we analysed the simulation results by looking at the seasonal river discharge averages to explore which
time scales are particularly relevant for management and policy. Figure 20 depicts these findings. The
results show a decrease in the average optimized discharge for the fall season for both scenarios in 2070.
However, a slightly higher average optimized discharge is observed for the spring and summer seasons. In
all future scenarios (2041-2070), there is a decrease in the average flow available for diversion during
winter. Although there were minor differences in the overall trends between the BGIN_CC and BAU_CC

scenarios, the variations were not significant.

QR code for the https://doi.org/10.6084/m39.figshare.19636449.v4
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SEASONAL RIVER DISCHARGE TRENDS: SCENARIO-BASED
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Figure 20 Seasonal river discharge trands. The histogram shows the scenario-based comparison of the optimised seasonal river
discharge values expressed as average seasonal flow (in m3/s) for the entire river network. CC=CC_BAU (business-as-usual land
cover under RCP 8.5 climate forcing scenario; BGIN=CC_BGIN (prevalence of nature-based solutions under RCP 8.5 climate forcing
scenario.

4.4.3. Comparison of results within the different scenarios

To understand the rate of variability in average discharge values throughout the year, we processed the
results as a frequency distribution of average discharge values under each scenario. An illustration of this
for the baseline scenario can be found in Figure 21. Additional findings are available in Figures C9-12 in
Section C of the supplementary materials). The results show that the most significant variability in
optimized average discharge values throughout the basin is likely to occur from December to March,

whereas the period spanning May to October proved to be the most stable.

Due to the amount of data generated, four RS were selected to illustrate in detail the results of different

locations along the river network and to analyze the results at different locations in the river network (see
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Figure C9 in Section C of the supplementary materials). To examine the interannual trends, we plotted the
natural flow against the flow resulting from the optimization simulation and available for abstraction for
the four representative RS (Figure 22); see “A-B-C-D” in Figure 23 as an example for the BGIN_CC scenario
of the year 2041 (other results are available in Figures C14-17 of the supplementary materials). The
comparison of the natural flow and the optimized flow for diversion between scenarios shows that for
most of the year, a sufficient portion of the river flow is available for diversion (i.e., the optimized flow
mainly follows the natural flow regime), demonstrating a reduced trade-off between objectives (i.e.,
municipal supply and ecosystem services). However, during the driest periods of the year, a larger

proportion of the flow is needed to maintain and meet ecological thresholds.

joem ome o oo o °

Figure 21 Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the baseline scenario in 2006 for the entire river network. On the right-hand side of the box is a color-based classification of the
frequency of occurrence of each range of values; at the top of the box, a boxplot shows the yearly quartiles, extremes, and outliers.
The figure highlights periods (months) of greater or lower variability suggesting critical months of the year (providing hence a
temporal implication for diversion) for diversion planning, which in our view would require additional exploration

Notably, in the 2041 scenarios, the model identified a lower optimal discharge during the dry months
despite a prominent natural flow, indicating a greater trade-off based on ecological needs and defined

requirements.
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Figure 13 Four representative RS in the Pas River basin.
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Figure 14 Flow series showing the daily profile of the discharge (in m3/s) optimized for diversion (light blue thin line) plotted
against the river’s natural discharge (purple background shape). Example of four selected river sections (RS locations “A,” “B,”
“C”, “D") analyzed under the 2041 BGIN_CC scenario. More pronounced differences between the lines indicate the highest trade-
off periods between the natural discharge and water for municipal use.

4.5. Discussion
4.5.1. Spatial and temporal scale considerations of water available for diversion

Knowledge of the future spatial and temporal variability of water available for consumptive needs (e.g.,
drinking water) provides an advantage for water diversion management that aims at reducing uncertainty
in management outcomes. Although it is not possible to provide absolute results (because we cannot
reduce all potential sources of uncertainty; (Kirchner et al., 2021; Maier et al., 2016), evaluating objectives
under a range of scenarios can help identify appropriate management strategies in the present to achieve
long-term diversion goals. From a spatial perspective, typically most basin management strategies focus
on the entire network or significant parts to achieve specific downstream abstraction objectives (Gawne
et al., 2018). Our results showed that while river water optimized for diversion can meet annual municipal
water supply under all scenarios, the average daily and monthly optimized flow can vary significantly at
different locations in the river network, which poses a challenge for maintaining adequate conditions for
ES throughout the year and providing supply during dry periods. To address this, diversion management
can define site-specific water supply targets and support the ecosystems’ hydrological needs.
Furthermore, river and land management planning could consider relocating abstraction-dependent
facilities downstream where discharge is more stable. From the temporal perspective, our study has found
that downstream river segments maintain a more stable optimized discharge throughout the year
compared to upstream river segments, which experience greater variability. This pattern was observed

across all scenarios and can be attributed to the higher sensitivity of upstream reaches to climate events.
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However, more research is needed to evaluate the influence of land cover and instream flow in these
areas. Although these results are related to our case study, they underline the importance of analyzing
temporal hydrological patterns across the entire river network.

Our study suggests that the main challenges for basin management under the scenarios considered are
related to the pronounced seasonal differences in optimized discharge at each river segment, leading to
spatial heterogeneity across the network. Incorporating these spatial and temporal aspects into
management planning, for example by distinguishing between river segments that exhibit the greatest
variation in streamflow over the course of the year, would help reduce the risk of major trade-offs in river

water allocation in future diversion programs and promote the implementation of adaptive management.

4.5.2. Supporting ecosystem services objectives across scenarios

Our study assessed the future sustainability of diversion decisions by examining optimization scores
change between time points in the short and medium term (i.e., 2041 and 2070) and scenarios at each
river segment. In regulated basins, maintaining conditions for fish is typically a critical water management
objective because of their intrinsic value and connection to other ES supply (e.g. fisheries, recreational)
(Watz et al., 2022). Fish species require a range of specific hydrological conditions for each life stage. The
ES objective ‘provision habitat conditions for fish life stages’ showed high optimization scores (i.e., least
optimal result) in the downstream reaches in the baseline scenario. These scores decreased in both
CC_BGIN and CC_BAU scenarios, with slight additional improvement (i.e. slightly lower scores) for the year
2070. While downstream reaches are usually characterized by more stable discharge, this result could be
related to the simulation conditions. However, it is crucial to take into account the influence of severe
occurrences on hydrological behavior. Such events might have disturbed the timely flows of freshwater
and peak flows, resulting in affecting the model's fish requirements. Conversely, the ES of ‘primary
productivity’ required stable low-flow minimum conditions throughout determined periods in the year,
resulting in a higher score for upstream reaches in both scenarios and time points. This indicates that water
diversion planning trade-offs involve the priority of supplying low flows upstream of the river network
while ensuring that peak flows downstream are maintained. Other studies also found that upstream water
abstraction impairs downstream ecological functions and can expose the basin to water scarcity (Alvarez-
Garreton et al.,, 2023). On the one hand, our results confirm that even enough natural discharge
downstream of the river is not sufficient to ensure the achievement of optimal scores for all ES objectives

considered. However, this could also be related to the differences in the formulation of the equations at

121



the base of the optimization objectives (e.g. the indicators chosen). A possible solution could be
distinguishing areas where ES are generated and consumed, as suggested by the study of (Alan Yeakley et
al., 2016). This can likely reduce this bias by regarding only locations where Supporting ES are generated.
The Supporting ES objectives scores showed significant variability in their specific supply capacity
(Provision of habitat conditions for fish ES, Life-supporting conditions for macroinvertebrates ES, Primary
Productivity ES) throughout the network while the comparison of the scenarios (CC_BAU and CC_BGIN)
didn’t show any noticeable difference. Instead, trade-offs were found to be inherent in the spatial and
temporal dimensions of diversion planning. Thus, failure to recognize the spatial variability of discharge
conditions for each RS under consideration may result in overlooking hotspots of reduced supply that must
be investigated to achieve long-term management objectives. While the results of implementing such
goals need to be monitored to verify their durability in the real world, the results of our study showed
that, overall, the considered e-flow requirements (i.e., hydrological indices associated with ecological
processes) can provide a good compromise for diversion water management needs to ensure sufficient

river water for key ecosystem endpoints and municipal needs.

4.5.3. Optimization set-up and scenarios for water diversion management at different scales

Defining a set of plausible conditions under which the model will “operate” or be tested is the second step
after defining the model. In optimization, this usually corresponds to establishing rules and objectives and
then running the model for specific input conditions (e.g., hydrological, climatic, and LU and LC patterns)
(Derepasko, Guillaume, et al., 2021; A. Horne et al., 2016). The input conditions can be calibrated based
on projected changes in environmental drivers (i.e., scenarios) that could affect the system. Critical drivers
of change in river basins (and the water they provide) include, in particular, land use and climate change
(Gedefaw et al., 2023; Igbal et al., 2022; Kaushal et al., 2017), which introduce a large degree of uncertainty
in the results obtained. While uncertainty can be treated in different ways in optimization modeling,
(Mcintosh et al., 2011) points out that “decision-makers are not particularly interested in uncertainty per
se [...]. Rather, they are interested in knowing whether particular decision strategies are robust across a
range of possibilities”. This range of possibilities can be more or less roughly represented by scenarios,
which can be used to identify management plans and strategies independent of future conditions (Maier
et al., 2016).

Based on our explorative research and acknowledging the results from (Derepasko, Pefias, et al., 2021),

optimizing environmental change scenarios (i.e., input hydrological conditions, in the case of optimization
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applied for diversion) at large scales such as river basins and sub-basins can lead to more effective
identification of patterns of spatial-temporal changes in water availability for diversion to prioritize
hotspots for shortages. On the other hand, once hotspots have been identified, river segment-specific
hydrological features can be tested by modifying optimization constraints (i.e., limiting conditions), for
example, by relating hydrological patterns to the response of adjacent habitats, species requirements, and
landscape features (e.g. mountains slopes). However, both assessment scales would benefit from good-
quality input data and assumptions about system processes (i.e., knowledge of how the system behaves).
While the former can be controlled to some extent through careful selection and pre-processing, the latter
will always be affected by some degree of uncertainty (i.e., aleatory uncertainty as opposed to epistemic
uncertainty; (Maier et al., 2016; Maier et al., 2014) which cannot be eliminated. Another solution to reduce
uncertainty is to run the model multiple times. However, this would increase significantly the
computational effort and long post-processing times, especially for large river basins. We acknowledge
that simplified assumptions about future climate and environmental system states and a few model runs
have been made in this study. In addition, the inclusion of an optimization module to take into account
the cumulative impact of diverting river water from upstream river segments on the downstream
discharge would allow an improved assessment of river flow available for diversion. Therefore, while the
exploratory assessment has some limitations that can be addressed in future applications, our modeling
application can still provide a simple means for examining the implications of water diversion management
decisions by incorporating segment-level information. It’s worth noting that the results do not offer an
exact representation of the optimized daily flow behavior for each scenario but rather should be used to
derive the uncertainty space for implementing future water availability for diversion. To make informed
decisions for adaptation of management programs to future conditions (i.e., through informed decisions),
it’s vital to have a broader view of detailed river flow information such as river segment data at basin
scales. Assessing water diversion at small scales provides limited information to managers and reduces

their ability to take effective action when changes occur (Capon et al., 2018).

4.5.4. Considerations on optimization indicators for ecological endpoints

In order to effectively manage the impact of river water diversion on instream ecosystemes, it is crucial to
identify the hydrological conditions that are necessary to support ecological endpoints. The literature
provides many examples of hydrological conditions linked to specific ecosystem components (especially

biological groups or species) through e-flows (the magnitude, timing, and rate of change), which can be
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linked to indicators for supporting ES. Regardless of which concept better fits the management needs of
the particular case study, to define ecological instream flow requirements for optimization modeling, we
recommend taking the following considerations based on our study: (1) Focusing solely keystone species
or relevant ecosystem components in the basin is convenient for optimization as it can capture the most
critical hydrological components, but it may miss other important hydrological processes. In this case, the
choice is either to justify the selection a limited number of ecosystem components or to expand the range
of hydrological processes considered in the optimization model, which would require more modeling
efforts. (2) Our study results show that optimization scores for supporting ES objectives are unevenly
distributed across the basin and scenarios. This suggests that while the scenarios help test the
appropriateness of overall management objectives in light of future changes, more insight can be gained
by targeting locally tailored ecological objectives. For example, prioritizing some ecosystem components
and their hydrological requirements downstream of the river network while focusing on others upstream;
(3) Consider the possibility of ecological processes adaptation. More specifically, if the time horizon
considers long-term management objectives, it should be recognized that some species adaptation may
have occurred by the end of the planned management period while management outcomes are
manifested. Failure to account for potential ecosystem adaptations when applying optimization models
can skew the assessments and render results useless. Although this may be one of the most challenging
tasks for modern water management, many recommendations have already been made in the current
literature to account for these changes (Judd et al., 2023). However, more precise information is needed

this can be achieved with optimization.

4.6. Recommendations

Based on the results of the exploratory optimization assessment conducted in this study, a series of
recommendations were formulated for both water managers and water management analysts/modelers.
These recommendations aim to facilitate basin-scale diversion management planning and enable the

adoption of an adaptive management approach (see Table 12).
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Table 12 Summary of recommendations to support water managers and optimization modelers in addressing water
management problems to increase the potential for incorporating adaptive management approaches.

User

Issue

Description

Policy and Decision-

makers in the frame

Spatial domain

1. Considering river segment-specific hydrological conditions

when developing a diversion management plan can help identify

of water areas of more stable discharge conditions for consumptive use.
management

Temporal domain 2. Management planning should account for changes in diversion
conditions throughout the year by retailoring objectives to
seasonal scales.

Future 3. When planning diversion management, seasonal shifts due to

environmental climate and LULC change must be predicted, incorporated, and

conditions aligned with future management objectives.

Ecosystem services | 4. Management planning should consider appropriate ES supply
indicators and conditions based on the location of the river
segment and the conservation objectives.

Mixed Forest indicators 5. The effects of forest cover prioritization on available river water

for diversion would be more evident if forest maturity rather than

forest extent is prioritized.

Optimization
modelers for water

management/ water

Importance of
input data quality
for optimization

assessments

6. Incorporate predictions of ecological adaptation to

environmental changes for specific water management horizon.
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management

analysts Selection of the 7. Basin-scale modeling supports management scenario testing,

most appropriate while reach-scale modeling is more appropriate for constraint

scale testing.

Output type 8. As large scales require extensive input data, setting clear
objectives can help to process the volume of output data and

clear communication of results.

ES indicators 9. Prioritize the hydrological requirements of some species
downstream of the river network while focusing on others

upstream, for example, by applying weights.

4.7. Conclusions

This study considered the Pas River basin as a test site to examine the spatial and temporal implications
of river water diversions. The objective of the optimization assessment was to identify future challenges
for diversion planning, taking into account the hydrological requirements for key instream Supporting
ecosystem services and the annual municipal water demand. Two future environmental change (land use,
climate) scenarios were considered. While the daily river water available for diversion was found to meet
municipal needs under the considered scenarios, the study results showed that seasonal shifts and spatial
heterogeneity in diversion volumes and the optimal provision of ecosystem services represent the most
significant challenges for medium- to long-term diversion management. Based on our findings, we provide
considerations and recommendations for organizing river water diversion management efforts at the
basin scale to achieve an adaptive approach. Diversion planning should consider the seasonal time frame
for setting diversion targets and consider site-specific ecological goals that maintain the provision of
supporting ecosystem services. In addition, running multiple simulations can help reduce the uncertainties
associated with the data in subsequent practical applications.

While the assessment presented in this study can assist in pinpointing viable diversion locations and
strategizing withdrawal timing, forthcoming investigative analyses using optimization should incorporate

the effects of severe climate change events and insights from enhanced land cover-hydrology modeling.
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This entails taking into account the holistic influence of land cover in a given region on river discharge at a
designated site and the maturity of local forests. Moreover, conducting several simulations can help

mitigate any uncertainties related to data in subsequent practical applications.
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Supplementary Materials:

The following supporting information can be downloaded
at: https://www.mdpi.com/article/10.3390/w15183289/s1. Section A, Table Al: SPHY model (see Section 2.2.2.1)
input type and their values for the generation of the surface runoff for the river network in the considered case study
area; Table A2: Variation of the environmental parameters for the present (1980-2012) and future (2041-2070)
periods considered in the study; Table A3: Percentage cover for each class and each scenario considered in the
optimization simulation; Table A4: Summary of the e-flow requirements (EFR) considered in the study. The EFR
defines the hydrological conditions to be conserved in the river during the daily diversion operations throughout the
year. The table shows the duration, the hydrological metric used, and the month of the year relevant for each EFR.
Legend: %MMF = percentage value of mean monthly flow; Qm7 = 7 times the median annual flow; Q75 = the flow
value that is exceeded 25% of the time; %MYF = percentage value of the mean yearly flow; Section B, Figure B1: The
Running Metric Indicator (Blank & Deb, 2020) for a test RS simulation. The Af indicator measures the convergence of
the objective space at each generation. Section C, Figure C1: Maps showing the spatial distribution of the
optimization objective scores for the Habitat condition provision for fish life-stages ES under each considered
scenario; Figure C2: Maps showing the spatial distribution of the optimization objective scores for the life-supporting
conditions for Macroinvertebrate taxa richness ES under each considered scenario; Figure C3: Maps showing the
spatial distribution of the optimization objective scores for the Primary productivity ES under each considered
scenario; Figure C4: Monthly averaged optimized instream flow for the PR scenario (2006); Figure C5: Monthly
averaged optimized instream flow for the CC_BAU 2041 scenario; Figure C6: Monthly averaged optimized instream
flow for the CC_BGIN 2041 scenario; Figure C7: Monthly averaged optimized instream flow for the CC_BGIN 2070
scenario; Figure C8: Monthly averaged optimized instream flow for the CC_BAU 2070 scenario; Figure C9: Heatmap
showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for the 2041
BGIN_CC scenario; Figure C10: Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for
each month (on the y-axis) for the 2041 BAU_CC scenario; Figure C11: Heatmap showing the average optimized
discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for the 2070 BGIN_CC scenario; Figure C12:
Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the 2070 BAU_CC scenario; Figure C13: Location of the representative points in the basin elicited for results
presentation and discussion; Figure C14-C15: Flow series showing the daily profile of the discharge (in m3/s)
optimized for diversion (light blue thin line) plotted with respect to the river natural discharge (purple background
shape) for the each of the four RS locations analyzed under the Baseline 2006 (PR) scenario (top) and 2041 BAU_CC
scenario (bottom); Figure C16-C17: Flow series showing the daily profile of the discharge (in m3/s) optimized for
diversion (light blue thin line) plotted with respect to the river natural discharge (purple background shape) for the

each of the four RS locations analyzed under the 2070 BGIN_CC (top) and 2070 BAU_CC scenario (bottom).
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5. Synthesis and Discussion

This thesis addresses key challenges in water resource management research by exploring topics
such as the connection between modeling and management scales, the importance of integrating
environmental flows (e-flows) into management practices, and the necessity for tools to support the
implementation of adaptive management. In the context of sustainable water resource allocation,
optimization modeling was evaluated as a convenient tool to address these challenges by supporting
the decision-making process in balancing competing ecological and human water needs. Nevertheless,
several obstacles arise when developing models for water resource management problems,
particularly regarding trade-off decisions related to scale and the representation of ecological
requirements at different scales. Further challenges are the development of an effective modeling
structure to support the implementation of adaptive management and the inclusion of future
scenarios. The presented research investigated how optimization models can bridge these gaps by
providing the necessary flexibility to incorporate relevant factors such as ecological requirements and

future environmental changes.

This chapter synthesizes the main research findings by addressing the research questions and
highlighting how the thesis has advanced knowledge in this research area regarding the use of
optimization models to support water management decisions. It also reflects on the implications of
the findings for the broader issues addressed and the limitations of the research conducted. Finally,
the chapter provides recommendations for future applications of optimization approaches that build

on the findings of the previous chapters and suggests possible directions for further research.

5.1 Summary of key findings

One of the central research topics explored in this thesis is the interplay between modeling decisions
and the assessment scale, explicitly examining how these choices shape spatial and temporal scales in
reconciling environmental flows with human water needs. Water management systems are inherently
hierarchical, with water flowing through different regions, infrastructures (like dams and reservoirs),
and ecosystems that operate on different spatial and temporal scales (Gurnell et al., 2016). Water
allocation, river flow management, and infrastructure operation decisions aim to balance objectives
like maximizing human use or sustaining ecosystem flows. These decisions span scales—from small
river sections to entire river basins, daily operations to long-term planning—each requiring tailored
data and modeling. Accurate representation of the management context and scales is critical to the
success of management decisions and their outcomes. | have found that an exact match between

modeling scales and decision-making scales is often not achievable, leading to necessary compromises.
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In Chapter 2, | emphasize the importance of adapting the model's scale to the management problem's
objectives. | reviewed case studies of multi-objective optimization models in water management to
address the first research question on how modeling choices influence spatial and temporal scales.
The analysis examined how management scales were represented and the methods employed to
tackle water allocation challenges across diverse contexts, ranging from basin-wide strategies to
specific river reaches or reservoir operations. My findings highlight that effective management
requires tailoring optimization strategies to the unique characteristics of each river system and its
management context, considering factors like planning horizons and approaches to defining e-flows.
While some generalization is possible, modelers must prioritize relevant, scale-appropriate

information to minimize inaccuracies.

To address the challenge of integrating decision-making scales, data types, and optimization, | argue
that recognizing the impact of modeling decisions on spatial and temporal scales is key to
understanding trade-offs between the management scale and the simulated scale. This understanding
can ultimately improve management outcomes at the desired scale. In this context, Chapter 2 presents
a framework | developed to help users navigate these trade-offs and guide the selection of appropriate
scales and associated data at the interface of modeling and management. The framework divides the

optimization process into two phases: problem perception and problem formulation.

The problem perception phase focuses on understanding the objectives, limitations, and management
options of the water management system. Here, | emphasize the importance of collecting detailed
system information, such as identifying goals (e.g., water supply for human use or ecological health),
constraints, and options for managing water flows. In the problem formulation phase, this
understanding is translated into a formal optimization model, requiring the development of
mathematical representations of the management problem. While both phases offer flexibility in
modeling options, data selection, and reference conditions like e-flow definitions, these choices often
fail to fully align with the reference context.

Because the optimization process inherently involves compromises, | advocate for greater
transparency in outlining how these trade-offs are made when transitioning from problem perception
to problem formulation. This includes explicitly addressing how data and modeling limitations
influence the scale of the analysis and acknowledging their potential impacts on management
decisions. By making these trade-offs clear, | believe the optimization process can become more
robust, providing reliable insights and ensuring models are better suited to addressing ecological and

societal needs.
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On the whole, Chapter 2 addresses a critical gap in water management literature by offering practical
guidance for researchers and practitioners — it provides a simple yet structured approach to
understanding and integrating scale in multi-objective optimization models, helping clarify the critical
role of spatial and temporal scale in the water management context. This ensures that optimization
models are better aligned with the realities of complex water systems. Ultimately, | aim for the
proposed framework to be valuable for water managers, offering a tool for reasoning about the
appropriate scales and relevant data when developing a water management plan. It is also intended
for modelers and provides a comprehensive structure for developing multi-objective optimization
models that incorporate e-flows and help achieve a satisfactory representation of the target spatial

and temporal management contexts.

Building on the framework presented in Chapter 2, which highlights the importance of scale in multi-
objective optimization models for water management, | have shifted the focus in Chapter 3 to a more
technical exploration of optimization model development. Here, | address how to practically integrate
e-flows into these models, moving from a broader conceptual understanding to a hands-on approach.
| aimed to show how optimization can support the decision-making process while minimizing the need

for excessive information processing in both the upstream and downstream stages of the simulation.

The literature offers various approaches for defining ecological water requirements, often relying on
software or modeling techniques. | found that optimization provides flexibility, enabling decision-
makers to select the level of complexity for incorporating ecological information. In this chapter, |
introduce an optimization-based method to balance competing objectives by adjusting water diversion
practices to meet ecosystem needs. Using the Pas River in northern Spain as a case study, |
incorporated ecological flow requirements for fish, aquatic macroinvertebrates, and primary
producers, informed by expert judgment from a workshop with hydrology and freshwater biology
specialists. | translated these requirements into thresholds for hydrological conditions, such as flow
magnitude and timing, to support key ecological processes like migration and spawning. By applying
penalties for unmet flow thresholds, | achieved optimized flows that better reflect natural variability.
Simulation results revealed significant daily variability in water availability for diversion, leading me to
conclude that seasonal adjustments could be more appropriate for diversion planning than relying
solely on annual water supply targets. However, the deviations | observed in the optimized
hydrograph, particularly under dry conditions, showed that also natural flow variability imposes
baseline stress on ecosystems. This highlights the importance of incorporating flexibility into water

management strategies to account for natural fluctuations and address extreme climate conditions.
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| believe both modelers and managers can benefit from the demonstrated example of eco-hydrological
information processing, gaining insights on translating expert knowledge on ecological flow
requirements into indicators to be easily integrated into optimization models. This addresses the
research question of how optimization approaches can mediate e-flows in water diversion
management and support adaptive management. Through this modeling simulation, | gained a deeper
understanding of the potential of optimization modeling to process information and build a knowledge
base for adaptive management. The results highlight how management strategies could dynamically
adjust to real-time ecological and hydrological data through optimization, enabling more responsive
decision-making. Optimization outputs also help identify optimal timeframes for diversion goals, such
as during significant flow variability or reduced ecological target performance. This work fills a crucial
gap by advancing the operationalization of adaptive management and providing a framework

applicable to diverse contexts and conditions.

Adaptive management often remains an aspirational concept, rarely translated into actionable
practices. Chapters 3 and 4 address this challenge by providing a framework for operationalizing
adaptive water management through optimization modeling. In Chapter 3, | focus on the immediate,
point-scale application of optimization to current practices. In contrast, in Chapter 4, | expand the
scope, by examining how optimization can support planning under future uncertainty and answering
the last research question in the context of optimization modeling employment in adaptive
management support. Building on insights from previous chapters about tailoring models to deliver
actionable outputs, Chapter 4 further advances the research by integrating future environmental
uncertainties—such as climate change and land use alterations—into optimization modeling for water
resource management. Here, | have extended the methodology from Chapter 3 to the catchment scale
and have examined the sustainability of the diversion under two future scenarios: one that reflects
conventional land use practices and one that is based on an ecologically conscious strategy. These
scenarios incorporated changes in land use/land cover and climate impacts on river hydrology, using
historical data and future projections (2041-2070) for temperature and precipitation. The simulations
revealed variations in water availability for human and environmental needs, emphasizing the
importance of testing socio-environmental contexts to balance ecological health with water supply

security.

The optimization modeling conducted in this chapter highlighted possible key management strategies,
such as considering seasonal shifts and spatial variability in water availability, setting site-specific
diversion targets, and prioritizing ecological needs during critical periods. It also demonstrated the

potential of optimization to address the temporal and spatial complexities of water management
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under future uncertainties. Ultimately, | believe the main contribution of this chapter lies in providing
essential insights into how optimization can guide management decisions in the face of changing

resource availability.

5.2 Addressing scale in optimization models for water management

Scale is a foundational element in environmental models that integrate diverse data sources and
disciplinary perspectives — consequently, there is a need for models that effectively balance the
demands of detailed, site-specific management needs with broader, basin-wide strategies (lwanaga et
al., 2021). Furthermore, it is widely acknowledged that model inputs and outputs need to accurately
reflect real-world management conditions in order to be effective (Pahl-Wostl, Palmer, et al., 2013).
This is especially true for water management problems that aim at ecological preservation. However,
the effort associated with achieving a reliable representation within optimization models is not
sufficiently explored in the literature. In this thesis, | addressed the critical task of adequately
representing both temporal and spatial scales in optimization models for water management. | found
that, when developing optimization models, scaling decisions can pose a challenge for the modeler
and significantly influence the model's ability to meet the requirements of the management context
in target scaling. To enable better decision-making at the appropriate temporal and spatial scale of the
model, | facilitated the model development process in Chapter 2 with a simple, step-by-step procedure
that helps align the model scales with the real-world conditions of water management. While this
structured approach aims to ensure that the choice of scale is systematically aligned with the specific
requirements of the management context, the extent to which these scale decisions affect the model
output remains to be fully quantified. In fact, the modeler's perspective and assumptions about the
system can influence how they approach scale representation for a particular management issue
(lwanaga et al., 2021). To exploit the full potential of optimization modeling for water management
problems and sustainable resource allocation, | believe it would be beneficial to further explore the

impact of these scale-related modelers' beliefs.

Prioritizing data is essential to maintain model clarity while also obtaining the local insights needed for
effective, fine-scale modeling (Loucks & Van Beek, 2017). | argue that the model development process
directly influences the quality and type of data the model requires. For example, in Chapter 4, |
considered different structuring approaches to enhance transparency and better align with ecosystem
needs. A top-down approach, which limits daily diversions based on annual municipal demand, risks
introducing uncertainties and may fall short of meeting ecosystem needs. In contrast, a bottom-up
approach that matches e-flow requirements with available flow increases the likelihood of supporting

ecosystem services and adapting to environmental changes. This example demonstrates how a
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bottom-up strategy can foster a more adaptable and resilient model structure. By carefully selecting
the most relevant information, the model remains both manageable and responsive to localized needs,
ultimately enhancing its applicability in real-world scenarios. My approach in Chapters 3 and 4 to reveal
temporal changes and spatial variability of river water volumes available for diversion directly reflects
this principle, underscoring that flexibility in adapting to changing spatial contexts is critical for
maintaining reliable water management outputs. Building on this foundation, in Chapter 3, | developed
an optimization model approach for a site-specific diversion target, focusing on isolated locations
within the river. This pilot-scale application demonstrated how optimization can be used to support

decision-making on small scales without overwhelming the process with excessive information needs.

For comparison, | extended this approach to a basin-wide spatial coverage in Chapter 4, merging
information on adjacent river segments to display the whole river network. Although an optimization
model can potentially address planning and management needs across multiple scales, my exploration
pointed out a practical distinction in scale suitability based on the specific assessment objectives. Finer
scales prove more effective for accurately capturing local hydrology and ecological requirements,
allowing for detailed insights into site-specific dynamics and interventions. In contrast, larger scales
are more appropriate for identifying overarching, long-term patterns, offering a strategic perspective
that helps pinpoint management hotspots and guide broader planning decisions. This scale-wise
distinction enhances the model's ability to balance detailed local needs with basin-wide management
strategies, optimizing its utility across varying planning contexts. Collectively, this suggests that scale
decisions within optimization models should be guided by strategies accommodating multiple
management objectives across scales while maintaining model efficiency and simplicity. This multi-
scale perspective aligns with the systems thinking of Thorp (2014) and Simonovic (2012), both of whom
advocate that effective water management demands adaptable, cross-scale models capable of
capturing both immediate and long-term management impacts. However, integrating various
temporal and spatial scales within a single optimization model presents a significant modeling
challenge (Horne et al., 2016). Overall, | believe that a well-designed optimization model must
incorporate essential information across scales while keeping the decision-making process
manageable during development. It is important to balance the need for detail at various scales with
the simplicity of the model. If successful, the model can seamlessly integrate the needs of detailed,
site-specific management and broader, basin-wide strategic objectives within a unified optimization

framework that delivers an effective and practical output format.

Despite the contributions of this thesis, there are some challenges in integrating fine- and large-scale

insights without oversimplifying their complexities, especially in river systems, where numerous
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interactions and processes occur simultaneously across multiple scales (lwanaga et al., 2021). For
example, the basin-scale model in Chapter 4 provides essential information on the spatial and
temporal variability of optimized river flow across the network. However, it does not fully capture the
feedbacks and synergies between river flow and ecosystem processes. This results in a lack of
granularity needed for real-time, local decision-making on optimal environmental flow management
actions. This mirrors the gaps identified by Gurnell et al. (2016), who argue for models that dynamically
adjust across scales as new data and environmental changes arise. To address hierarchical and multi-
layered management problems, | found that an adaptive, scale-flexible approach—where models
adjust to changing contexts—could provide a solution that improves model responsiveness and
resilience. This flexible approach reinforces the need for context-specific strategies in water
management that simultaneously address both fine, site-specific needs and broader objectives at the

watershed level.

The understanding of scale representation in optimization models for sustainable water management
presented in this thesis echoes a broader call in the literature for improved scale integration within
management strategies (Arthington et al., 2024; Poff et al., 2017). While the need for multi-scale
integration and dynamic adaptation should be set as a future research goal, | emphasize that
transparency should take precedence when synergies between data and modeling approaches cannot
be achieved. Achieving this balance requires adherence to a rigorous, mutually agreed-upon set of
model development steps to ensure adaptability and responsiveness to the inherent complexities of

water management.

5.3 Incorporating environmental flows (e-flows) into optimization models

Environmental protection is increasingly recognized as a critical objective for water management (Finn
& Jackson, 2011), especially as environmental pressures — such as climate change, population growth,
and land use alterations—increase demands on water resources (Chowdhury & Das, 2024). The
advancement of water management practices requires that e-flows become a core component of
resource planning to ensure that, in addition to human needs, essential ecological processes are also
supported (Arthington et al., 2024; Poff et al., 2017). | found that the wide range of approaches to
incorporating e-flows into optimization models reflects the diversity of case studies and contexts in
which they are applied. This diversity underscores the need for adaptable, standardized strategies for

optimizing ecological and human demands within water management.

In Chapter 2, | identified several critical decisions that influence how environmental flows are defined

in models. The choice of assessment locations, spatial scale, and approach to defining e-flows proved
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essential to accurately reflecting ecological conditions. Often, the success of these decisions depends
on the availability of historical and real-time data from monitoring stations. Monitoring networks are
essential for developing effective e-flow models for different management contexts (Poff et al., 2007).
For instance, an extensive network of gauging stations can provide crucial information in complex river
systems with multiple reservoirs. It can capture spatial and temporal flow variability across the basin,
enhancing the model’s capacity to represent ecological impacts accurately. Flow magnitude
parameters are commonly used as hydrological indicators to assess the state of ecosystems, with
monthly and annual flow readings providing valuable insights into seasonal cycles. However, these
general metrics sometimes lack the level of detail needed for more refined ecological assessments. To
improve accuracy for localized applications, breaking down large river flow rates into site-specific

values can increase model accuracy when assessing ecosystem response (Cai & Zhang, 2018).

Defining e-flow requirements based on empirical data related to specific habitats or species can be
convenient for finer-scale or short-term assessments. Techniques such as regression modeling and
hydro-ecological tools (such as PHABSIM, Bovee et al., 1998) allow for the establishment of minimum
flows for critical ecological functions. While these methods increase ecological relevance, they are
data-intensive and may be challenging to implement across diverse habitats or settings (Davies et al.,
2014). In more complex scenarios, participatory methods can provide a way to define hydrological
thresholds by directly involving stakeholders in the decision-making process. This stakeholder
engagement is invaluable for developing models that accurately reflect local needs and knowledge
(Ananda & Proctor, 2013). Such an approach benefits optimization models targeted at systems with
multiple environmental and human assets and high spatial complexity, allowing for more adaptive and
inclusive management strategies. Furthermore, some studies incorporate broader flow indicators,
such as baseflow conditions and, occasionally, water quality parameters like temperature and
dissolved oxygen levels. Although less common, these indicators provide valuable insights when flow

regime changes directly impact ecosystem health.

A reliable representation of ecological freshwater flow requirements is essential for generating robust
optimization assessment results. Expert knowledge offers the opportunity to gain substantial insights
(Nelitz et al., 2015). Incorporating the latest freshwater ecology and eco-hydrology advancements
validates our understanding of ecological flows. However, the lack of a standardized method to directly
translate this expertise into input parameters for optimization models creates a gap between
environmental expertise and model integration. In response to this, | presented a practical approach
in Chapters 3 and 4 that builds on the insights from Chapter 2. This approach demonstrates that

combining site-specific hydrological data with basin-wide environmental flow parameters can
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effectively meet both localized and broader ecological needs within a cohesive modeling framework.
This method allows expert knowledge of ecological requirements to be elicited and integrated into an
optimization model for the case study. Importantly, it avoids data over-processing and allows for
stepwise model refinement as new insights or data become available. By varying hydrological
thresholds across multiple model runs, this approach can help identify sustainable water diversion
volumes with increased predictive accuracy, demonstrating the potential of flexible modeling for
ecological flow management. Despite these advantages, a significant limitation remains in the resource
demands of the approach presented in Chapters 3 and 4. First, the iterative simulations require
stakeholder commitment to repeated model runs, which may demand more time and investment than
conventional static approaches. This need for stakeholder engagement underscores the collaborative
nature of adaptive water management and highlights a key area for further development, namely,
fostering stakeholder support for resource-intensive but ultimately more accurate modeling

techniques.

Another challenge is related to the complexity of representing dynamic ecological systems within static
optimization constraints. E-flows are inherently variable; in fact, ecological needs shift with seasonal
changes, extreme weather events, and long-term environmental changes such as climate change. By
defining e-flows as fixed constraints, there is a risk of oversimplifying the complexity of ecological
processes, which may reduce the model's effectiveness under unforeseen conditions. My findings
suggest that overcoming this gap requires prioritizing certain data types, carefully selecting model
parameters, and accepting trade-offs between detail and manageability—choices that inevitably shape

model accuracy and relevance (Badham et al., 2019; lwanaga et al., 2021).

Balancing hydrological detail with data feasibility in incorporating environmental flows (e-flows) into
optimization models creates a foundation for sustainable water management that prioritizes
ecological integrity. This research underscores a shift from output-focused modeling to a more
integrated, process-driven approach incorporating ecological constraints within a flexible framework.
By setting hydrological constraints, we prioritize e-flows, safeguarding key ecological functions while
meeting human water demands. Selecting spatial and temporal scales that capture both local and
basin-wide dynamics should ensure that models remain responsive to diverse ecological needs. Finally,
incorporating adaptive and participatory elements fosters a modeling process that not only reflects
local knowledge but also strengthens resilience to environmental change. Through these guiding
principles, we create optimization models capable of addressing the complex interplay between
ecological preservation and water management and support a robust and inclusive approach to

sustainable resource planning.
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5.4 Using optimization models as a tool in support of adaptive water management
implementation

Adaptive management is a dynamic yet composite management paradigm that is increasingly
recognized as essential to the management of complex water systems because it provides a proactive
approach to addressing uncertainty associated with factors such as climate variability, population
growth, and land use modifications (Allan & Watts, 2018; Delavari Edalat & Abdi, 2018). However,
despite a few examples of successful applications worldwide (for instance, see Failing et al., 2013;
Smith, 2011), implementing adaptive management in water resource management remains
challenging. Some key obstacles include the need for polycentric governance, organizational flexibility,
and public participation—integral components of “social learning” strategies—alongside balancing
ecological and human demands, limited data availability, fragmented governance and monitoring
efforts, and difficulties in adjusting strategies in real-time. Furthermore, the lack of standardized
methodologies for iterative, adaptive management continues to hinder implementation (Delavari
Edalat & Abdi, 2018; Wan Rosely & Voulvoulis, 2024; Webb, Watts, et al., 2017). Data limitations, for
instance, constrain the level of detail with which ecological conditions can be monitored. At the same
time, institutional and regulatory rigidity can prevent the shift toward more adaptive frameworks
(Pahl-Wostl, 2006). Furthermore, the intricate, non-linear nature of ecological systems introduces
uncertainties that complicate any predictive modeling, leading some managers to rely on more

traditional, static approaches (Poff & Zimmerman, 2010).

As shown in Chapter 2, optimization modeling fits well with the adaptive management cycle,
particularly before the implementation stage. | have found it can be applied within both the inner and
outer feedback loops of the adaptive cycle (i.e., the “Plan-do-monitor-learn” process as described by
Webb, Watts, et al., 2017). Optimization modeling employment specifically can provide insights into
where and to what extent changes may occur, as well as identify priority areas for targeted monitoring
in the short term. In the long term, it can enhance the adaptability of water management frameworks,
positioning optimization as a valuable tool for anticipating and responding to environmental changes

in a structured, iterative manner.

Water managers need data that empowers them to make adaptive, informed choices that align with
the scale and priorities of the management plans. In the chapters presented, | showed how
optimization modeling can be useful for several adaptive management challenges by strengthening
decision-making frameworks, promoting transparency, integrating preference-defined thresholds,
enabling scenario-based planning, and providing a structured approach to balancing ecological and

human demands. The insights from the exploratory optimization assessments presented in Chapters 3
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and 4 reveal that optimization modeling can be employed not only to aid in forecasting trade-off
outcomes—such as those related to water allocation for specific ecological objectives—but also to
discover patterns and pinpoint optimal locations or timeframes for targeted interventions. To
demonstrate how optimization can inform adaptive management, | took an unconventional data-
driven approach in both chapters by running optimization simulations at two different scales within
the same case study. By recurring to different water management scenarios at basin-wide scales, | was
able to leverage empirical data to reveal optimal patterns for water diversion, identify critical
"hotspots"”, and make evidence-based recommendations for scale-sensitive water resource
management needs directly supporting adaptive management-oriented decision-making. As a result,
| identified two primary goals for employing optimization modeling in water management for adaptive
planning, specifically in the context of river flow diversion. First, simulations under present flow
conditions are particularly suited to fine-scale applications (Chapter 3) by accommodating short-term
changes such as seasonal variations or extreme weather events, as they allow for refining or adjusting
water supply decisions, environmental thresholds, and the range of species or ecological endpoints
considered. This is particularly relevant in contexts where limited data and high stakeholder
involvement necessitate clear and negotiable trade-offs (Loucks & Van Beek, 2017). Second,
simulations under future scenarios (Chapter 4) that encompass climate change and land use alterations
provide the opportunity to highlight key areas for prospective monitoring, addressing the need to
screen larger regions and focus on priority zones. This information offers the chance to address long-
term environmental stressors, ensuring that management objectives remain relevant across temporal

scales.

Participatory approaches are critical for adaptive management to build acceptance and reflect the
knowledge of local communities and stakeholders, who can help refine e-flow thresholds based on
observed ecological and social impacts (Ananda & Proctor, 2013). In this thesis, | have provided
evidence that optimization supports the critical aspect of stakeholder engagement in adaptive
management, as demonstrated by the bottom-up approach in Chapter 4. Additionally, optimization
modeling offers a practical solution to the iterative nature of adaptive management. By designing
models that support incremental refinement as new data becomes available, as seen in Chapters 3 and
4, water managers can update and improve models based on recent findings, maintaining their
relevance. This aligns with the adaptive management principle of learning from each planning cycle,
helping to ensure that optimization models remain aligned with actual conditions and management
objectives. This incremental, data-driven refinement is essential to overcome the resistance to
iterative approaches in water management, often perceived as inefficient or resource-intensive

(Gunderson & Holling, 2002).
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Based on the research conducted, | have identified several principles for using optimization models to
support adaptive water management implementation. First, integrating flexible thresholds for e-flows
ensures adaptability to short-term changes, while scenario-based planning prepares for long-term
shifts. Second, prioritizing site-specific data collection through a robust gauging network enhances
model accuracy in assessing ecological responses. Third, engaging field experts in model development,
as demonstrated in Chapter 4, fosters responsive, context-sensitive models that align with local
ecological needs. Additionally, establishing an iterative model update process helps keep models
relevant as new data emerges. Finally, investing in computational resources and training is essential to
manage the complexities of adaptive optimization modeling effectively. Overall, this research adds
valuable evidence on how optimization can provide a responsive, transparent, and scalable framework

capable of adapting to evolving conditions and shifting management priorities.

5.5 Limitations of this work

In considering the research approach and methodology employed in Chapters 2, 3, and 4, |
acknowledge certain limitations and shortcomings that, while potentially relevant for the relevance
and generalizability of my work, do not undermine the validity or intent of the approach taken. A key
factor underlying most of these limitations is the lack of “high-power” stakeholder engagement, such
as the Cantabrian water management authorities, which prevented the translation of the modeling
output into actions. In fact, the optimization simulations conducted for Chapters 3 and 4 remain at the
proof-of-concept level without progressing to real-world implementation or monitoring stages. Ideally,
these types of modeling simulations in support of water resource management decisions should be
extended to include practical application and feedback loops, allowing the models to be tested,
refined, and validated against actual outcomes (Kergus et al., 2022). Such an approach is fundamental
in adaptive management, where iterative learning and adjustments based on real-world feedback are
key to addressing the dynamic and evolving challenges of water management. | recognize that the
absence of this crucial stage prevents the optimization modeling conducted in this thesis from fully

validating its usefulness in effectively informing river water diversion planning.

The thesis also omits a formal sensitivity and uncertainty assessment, which could have improved the
robustness of the optimization models. While sensitivity analysis could identify critical parameters
influencing outcomes, and uncertainty assessments could reveal the range of potential results under
varying conditions — such as input data, ecological thresholds, or future climate projections — the focus
of this work was to demonstrate conceptual applications rather than provide absolute results, as
highlighted in Chapter 3. | prioritized developing and testing methodological frameworks over detailed

parametric evaluation. Nevertheless, the presented results can still stimulate discussion among
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relevant stakeholders. Future work should incorporate these assessments to improve model reliability

and its capacity to inform adaptive decision-making.

Furthermore, regarding the optimization results, | deliberately adopted a preference-neutral approach
in both Chapters 3 and 4, averaging outcomes such as objective scores across various scenarios to
produce a simplified, ready-to-use hydrograph for daily river flow diversions. This approach aimed to
prioritize usability and accessibility, offering decision-makers a straightforward, optimal solution
without requiring extensive engagement during the modeling phase. As Miettinen (1998) noted, no-
preference methods are suitable when decision-makers lack predefined expectations or are satisfied
with any optimal solution, partially justifying my intent of prioritizing practicality and immediate
applicability. However, optimization models inherently generate a range of optimal solutions that
stimulate discussion, ideally requiring stakeholders to review and select to align with specific
management goals. While stakeholder input was not incorporated due to the exploratory nature of
this research, this presents an exciting opportunity for future work to enhance inclusivity and

transparency in adaptive water management.

Additionally, the research is based on a single case study—the Pas River basin in Northern Spain—
focused on river flow regulation for water diversion, with fixed thresholds for environmental flows set
on local species. While this focus allowed for a detailed exploration, it narrowed the model’s
adaptability and generalizability. Expanding to different river and flow alteration systems would have
added valuable data and helped verify the relevance and flexibility of the model under varying
ecological and socio-economic conditions. Furthermore, allowing thresholds to vary or to be defined
in part by stakeholders would have aligned the optimization models more closely with adaptive
management’s emphasis on context-specific, participatory approaches. This choice might have
improved the optimization model's responsiveness to the particular ecological and social dynamics

influencing water management decisions in different contexts.

Finally, 1 must acknowledge that the optimization assessments performed are relatively simple,
particularly with respect to the conceptual model of actual management objectives and targets for the
Pas River water diversion, which considered only a few ecological endpoints. This simplification means
that the models may not fully reflect the true variability and complexity of the ecological processes
and interactions critical to sustainable water management. A more sophisticated ecological model,
with a larger number of hydrological parameters representing various biological and environmental
interactions with the river flow, would have offered a richer understanding of how these systems

respond to different diversion scenarios ultimately improving its utility for adaptive management.
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Thus, the representation of the ecosystem could have been limited, which, in turn, limited the depth

and accuracy of my findings.

5.6 Recommendations: generalizable principles for optimization modeling to support
water resource management

With this work, | have laid a foundation for the design and application of optimization models to
advance water resource management practices toward an adaptive management framework, as
demonstrated in Chapters 2, 3, and 4. Building on the insights and findings from these chapters, |
propose several overarching recommendations to guide both modelers and water managers in
developing robust, flexible, and sustainable optimization models. These recommendations are also
intended to support managers in formulating strategies that effectively address the complexities of

water resource system representation:

(i) Defining clear boundaries and scales: Setting explicit spatial and temporal boundaries within
optimization models is crucial for ensuring relevance and transparency. As emphasized in Chapter 2,
clearly communicating the optimization problem statement throughout the problem perception and
formulation phases enhances system understanding, facilitates stakeholder engagement, and
ensures that trade-offs are assessed at appropriate scales;

(ii) Enhancing model transparency and clarity: A framework for optimization model development,
as presented in Chapter 2, offers a systematic approach to clarifying system conceptualization.
Answering key questions for each optimization phase — including physical systems, hydrological
states, objective functions, and constraints — ensures that input data and objectives align with
management goals, thereby improving model transparency;

(iii) Considering scale-sensitive approaches: As demonstrated in Chapter 4, assessments at the
basin level are effective for identifying hotspots of reduced water availability and for testing large-
scale management scenarios. Conversely, the reach-scale modeling, explored in Chapter 3, refines
site-specific objectives and assesses localized trade-offs. By using these approaches within a single
framework, managers can effectively address both broad ecological and human needs and localized
priorities;

(iv) Prioritizing environmental flow representation: Optimization models should prioritize
ecological endpoints based on hydrological requirements for key species or ecosystem services, as
shown in Chapters 3 and 4. Expanding the range of ecological components and considering long-term
adaptation potential are essential for improving ecological accuracy and relevance. Applying
appropriate distinction within the optimization model to prioritize species' needs upstream versus

downstream could address ecosystem variability throughout the river network;
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(v) Enhancing input data quality and results communication: Reliable input data and clear
communication of optimization results are critical for decision-making. Addressing uncertainty in
output data (e.g., by using multiple scenarios), improving used data resolution (e.g., by relying on
gauging networks), and focusing on standardized ecological indicators can reduce epistemic and
systemic uncertainties. The decision to communicate results in user-friendly formats such as

hydrographs can improve acceptance among decision-makers.
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5.7 Overall thesis conclusions

Optimization modeling for water resource management has gained significant momentum due to
advancements in computational methods and the growing need to balance human and ecological water
demands. This thesis builds on this interest and demonstrates the flexibility and potential of optimization
models as a tool for addressing the complex challenges of sustainable water management. | have shown
that optimization models can inform day-to-day decision-making and equip managers with the
appropriate spatial-temporal information to anticipate future risks to optimal water resource availability—
all while being accessible due to low cost and minimal training requirements. However, the possibilities go
beyond purely technical applications and offer an opportunity to rethink and implement water
management within an adaptive management framework. My results show how optimization can be an
integral component of the adaptive water management cycle, providing insights before pre-
implementation and using its inherent flexibility to integrate scenarios that account for evolving
environmental conditions caused by climate and land use change. By addressing critical gaps — such as
trade-offs in scale representation, the integration of environmental flows (e-flows) into optimization
models across scales, and their applicability at the catchment scale under future environmental changes
— | have provided a basis for a broader application of optimization modeling in different management
contexts. This will enable the identification of critical hotspots for intervention, the adaptation of water
allocation strategies to seasonal and long-term climate scenarios, and the integration of knowledge-based
preferences to balance ecological and human needs. By advancing these methods, optimization modeling
can strengthen decision-making processes, improve their reliability and effectiveness, and ultimately serve

as a blueprint for managing water resources in dynamic, stratified systems.

5.8 Future research needs

In Chapter 2, | proposed a framework to navigate option selection relative to scale when developing
optimization models. In order to further advance the application of optimization modeling in water
resource management, future research should focus on developing an integrated optimization framework
to guide researchers and practitioners through the various stages of adaptive management across multiple
scales. As emphasized by Horne et al. (2022), modular frameworks for optimization modeling can provide
the flexibility needed to align with diverse management objectives and spatial contexts, offering a
structured yet adaptable toolset for addressing water management challenges. Achieving this could be

further supported by scaling up assessments across diverse case studies, tailoring approaches to different
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management contexts, and integrating stakeholder-defined thresholds and preferences. These efforts
would enhance the generalizability and inclusivity of optimization models, ensuring they align more

effectively with the principles of adaptive management.

Additionally, uncertainty remains a persistent challenge in water management modeling, as highlighted
by Judd, Boese, et al., (2023) and Judd, Horne, et al., (2023). In my work, | did not explicitly focus on
uncertainty quantification. Future research should hence explore innovative methods to navigate and
represent uncertainty within optimization models, such as sensitivity analyses, scenario-based modeling,
and probabilistic frameworks. These tools can enable optimization models to capture better and
communicate the inherent variability in hydrological, ecological, and socio-economic systems, increasing

the robustness and credibility of modeling outcomes for adaptive management.

In Chapter 4, | tested a spatially explicit optimization model output underscoring the importance of
alternative conceptualizations of management systems, particularly during the problem perception phase.
This could enhance the ability of optimization models to address complexities inherent in stratified socio-
ecological systems. Spatially explicit optimization models, already prevalent in land-use management (Li
et al., 2023), hold great potential for water management by revealing multi-scale interactions and trade-
offs. Extending this work to incorporate more sophisticated ecological parameters, detailed land-use
patterns, and dynamic climate scenarios, as suggested by Judd, Boese, et al., (2023), could improve the
ability of optimization systems to address complexities inherent in stratified socio-ecological systems.
Moving toward temporally explicit models that account for seasonal or event-driven variability would also
strengthen their applicability in adaptive management. Furthermore, Judd et al., (2022) also emphasize
the importance of integrating climate resilience into ecological flow objectives—an essential consideration

for supporting long-term water management under uncertain and shifting climatic conditions.

Finally, establishing stronger links between optimization systems and monitoring plans is equally crucial.
As noted by Judd et al., (2022) establishing clear connections between modeled e-flow endpoints and
monitoring frameworks can bridge the gap between theoretical modeling and practical application,
enabling iterative feedback loops. These loops are central to adaptive management, where real-world
validation is essential for refining and improving optimization outputs. These advancements would
collectively position optimization modeling as a convenient and flexible tool for adaptive water
management, capable of addressing evolving challenges while fostering sustainable and resilient resource

use.

145



Appendix A

146



Table A1 Summary of reviewed studies. Legend: /=no info, MP=mathematical programming, S=stochastic, MAG-d=magnitude of daily and sub-daily flows, MAG-m=magnitude of monthly
and yearly flows, MAG/DUR-ext=magnitude and duration of extreme water conditions, FREQ/DUR-pulses=frequency anFigure 15 Optimization runs. Comparison of the results for each
run of the optimization model showing the pattern of the normalized average daily diversion percentage values (expressed as the daily percentage of the natural daily discharge). Yellow
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(Fallah- physical-
Mehdipour, Karoon IV dam ducti MP-based ° ) tal
Bozorg-Haddad on Karoon River ~ SNeray proauction, Reservoir Daily / -base / environmental, G /
and Lodiciaa (Iran) ecological health /S infrastructure-
2018) 9, related
. hysical-
. El-Qalaa River, , . pnys
(Fleifle et al., Nile River functlo_nal purpose, Sut_)- Seasonal / s NH environmental, G /
2014) (Egypt) ecological health basin supply-related,
ayp ecological
(Torabi Haghighi . . ) ° :
and Klgve, Batkr;]tegan | dlzturb_ance tI)?lvgr Monthly Intra | MP-based MAG-m suplply_rellated, G N
2015) catchment (Iran)  reduction asin annua ecological
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MAG-d, physical-
Hassanjabbar, Karkheh Basin energy production, . MAG/DUR- environmental,
Multi-
Saghafian and (Iran, Iraq disturbance reservoir Monthly Annual S ext, infrastructure- /
Jamali, 2018) border) reduction FREQ/DUR- related, supply-
pulses related
physical-
i environmental,
(Lewis and Murrumbidgee functional purpose, River infrastructure-
River Irrigation . : Monthly Annual S MAG-m G
Randall, 2017) . ecological health basin related, supply-
Area (Australia)
related,
ecological
Goulburn-
. Broken River
%I?;tm etal, catchment functional purpose Sup- Daily / S MAG-m / G
) : basin
(Murray-Darling
Basin, Australia)
(Mullick, Babel Teesta River River physical-
and Perret, (Bangladesh) functional purpose section Monthly Annual MP-based MAG-m environmental, T
2013) 9 ecological
(Paredes- Duero River consumptive use River
Arquiola et al., basin (Spai logical heal h’ Basi Monthly Annual / MAG-m supply-related G
2013) asin (Spain) ecological heall asin
Luis L. Leon physical-
reservoir, Big MAG-d, MAG- )
(Porse, _ Bend region of _ _ m, _enwronmental,
Sandoval-Solis . ecological health Reservoir Monthly / MP-based infrastructure- DF
and Lane, 2015) the Rio FREQ/DUR- related, supply-
’ Grande/Bravo pulses related’
(Mexico-US)
physical-
. . environmental
. Amudarya River  consumptive use, . ) ’
(Schiiter et al., Basin (Central disturbance Multi- Monthly Annual MP-based MAG-m infrastructure- /
2005) Asia) reduction reach related, supply-
related,
ecological
Ertix River / consumptive use River infrastructure-
(Shang, 2015) Ebinur Lake . ’ section / Monthly / MP-based MAG-m G
- . ecological health related
(Xinjiang, China) Lake
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consumptive use,

physical-

(Shiau and Hsintien Creek energy production, River . MAG-m, environmental,
. ) ; Daily / S MAG/DUR- ) T
Chou, 2016) (Taiwan) safety, disturbance basin ext NH infrastructure-
reduction ’ related
consumptive use Multi- MAG-d, physical-
(Shiau and Wu,  Feitsui Reservoir  energy production, reach / . Annual / MAG/DUR- environmental,
. ) . Sub-daily Multi- S ext, ) G
2013) (Taiwan) safety, disturbance Multi- annual RAT/FREQ- infrastructure-
reduction reservoir change related
MAG-d physical-
(Szemis et al., Murray-Darling . Multi- R environmental,
2012) River (Australia) / Reservoir Monthly annual S FRESQZ;JR infrastructure- DF
P related
MAG-d physical-
(Szemis et al., Murray-Darling . Multi- R environmental,
2013) River (Australia) / Reservoir Monthly annual S FRESQZ;JR infrastructure- DF
P related
MAG-d physical-
(ZSzemls etal., M.urray-Darllng / Reservoir Monthly Multi- s FREQ/DUR- 9nV|ronmentaI, DF
014) River (Australia) annual ulses infrastructure-
P related
physical-
Connecticut environmental,
(Steinschneider . disturbance River . MAG-d, MAG- infrastructure-
River (New . : Daily Annual MP-based PF
et al, 2014) reduction basin m related, supply-
England, US)
related,
ecological
. ; physical-
(Suen and Dahan River Z(r)]gfumprtcl)vdeugtsice)h River Monthl / s FEESS/DTLIJIG- environmental, PF
Eheart, 2006) Basin (Taiwan) 9y p ’ basin Y P ’ infrastructure-
ecological health ext
related
physical-
consumptive use, environmental,
(Wang et al., Philpott damon  energy production, . . ) MAG-m, infrastructure-
2015) Smith River (US) disturbance Reservoir  Daily Monthly — MP-based  \1G/DUR ext related, supply-  C

reduction

related,
process-based
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Berembed Weir,

physical-
environmental,

(z)c()%\g)and Khan, Murrumbidgee consumptive use pg:lé; Monthly Seasonal MAG-m infrastructure- T
River (Australia) related,
ecological
consumptive use, Z%ﬁ'ﬁ:rlr-]ental
Han River, energy production, infrastructure-,
(Xu et al., 2017)  Yangtze River disturbance River Daily / NH related. Supply- DF
tributary (China)  reduction, ecological lat d‘ ppRly
health relaied,
ecological
Tanghe MAG-d,
. . . FREQ/DUR- physical-
(Yin, Yang and Reservc_)lr on the dlsturpance Reservoir Daily Annual pulses, environmental, DF
Petts, 2012) Tang River reduction RAT/FREQ lv-related
(China) - supply-relate
change
physical-
Wangkuai MAG-d environmental,
(\_(ln, Yang and R_eserv0|r_(Ha| dlsturpance Reservoir Monthly Annual FREQ/DUR- infrastructure- DF
Liu, 2014) River basin, reduction ulses related, supply-
China) P related,
process-based
Wangkuai infrastructure-
. Reservoir, Hai . . related, supply-
(Yin et al., 2015) River basin energy production Reservoir Monthly Annual MAG-d related. GT
(China) ecological
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Supplementary Materials

DP1 discharge scenarios
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Figure S1. Hydrological time series used as representative discharge scenarios for the considered diversion points

(DP1 and DP2).
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Figure S2. Combination of the average daily diversion percentages with respect to the natural discharge normalized to
0-1 range for each single run of the model (‘s1-s10") under the same scenario. Yellow (1) tiles correspond with the
highest diversion percentage, whereas blue (0) tiles correspond with the lowest optimal diversion. Results for DP1

under dry (a), normal (b) and wet (c) scenarios.
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Figure S3. Combination of the average daily diversion percentages with respect to the natural discharge
normalized to 0-1 range for each single run of the model (‘s1-s10") under the same scenario. Yellow (1) tiles
correspond with the highest diversion percentage, whereas blue (0) tiles correspond with the lowest optimal
diversion. Results for DP2 under dry (a), normal (b) and wet (c) scenarios.
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Figure S4. Barchart showing the normalized fraction (expressed in %) of discharge that has been optimized for
abstraction (purple ‘OD’ bars) with respect to the natural flow (green ‘RF’ bars) at the daily scale. The diverted discharge

is calculated as a daily average for all the 10 runs of the model for each scenario. Results for DP1 under dry (a), normal

(b) and wet (c) scenarios.
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Figure S5. Barchart showing the normalized fraction (expressed in %) of discharge that has been optimized for
abstraction (purple ‘OD’ bars) with respect to the natural flow (green ‘RF’ bars) at the daily scale. The diverted
discharge is calculated as a daily average for all the 10 runs of the model for each scenario. Results for DP2 under

dry (a), normal (b) and wet (c) scenarios.
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Figure S6. Flow series showing the magnitude of gap between the daily optimized diverted discharges in m*/s with
respect to the natural discharge. Greater thickness indicates the highest trade-off between the natural discharge and

water for municipal use. Results for DP1 under dry (a), normal (b) and wet (c) scenarios.
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Figure S7. Flow series showing the magnitude of gap between the daily optimized diverted discharges in m¥/s with
respect to the natural discharge. Greater thickness indicates the highest trade-off between the natural discharge and

water for municipal use. Results for DP2 under dry (a), normal (b) and wet (c) scenarios.
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Table S1 Average objective function score (municipal water demand), for each simulation run (1-10). The score indicate
the achievement of the objective (minus sign) and the ratio of the resulting supply after optimization to the required
supply (i.e. the proportion of existing water for human consumption with respect to demanded water; AVG, MIN and
MAX values refer to the average, minimum and maximum value for each set, respectively. Results for the DP1 under
dry, normal and wet scenarios.

DP1
RUN: Dry Normal Wet
1 -134.14 -209.57 -266.20
2, -134.34 -204.36 -271.45
3 -136.62 -208.30 -268.61
4 -137.05 -209.96 -263.14
5 -134.76 -209.25 -273.09
6 -133.21 -210.18 -264.93
7 -132.31 -212.78 -268.04
8 -127.97 -208.82 -272.77
9 -129.91 -206.23 -264.72
10 -133.64 -208.50 -275.35
AVG -133.40 -208.79 -268.83
MIN -127.97 -204.36 -263.14
MAX -137 -213 -275

Table S2 Average objective function score (municipal water demand), for each simulation run (1-10). The score indicate
the achievement of the objective (minus sign) and the ratio of the resulting supply after optimization to the required
supply (i.e. the proportion of existing water for human consumption with respect to demanded water; AVG, MIN and
MAX values refer to the average, minimum and maximum value for each set, respectively. Results for the DP2 under
dry, normal and wet scenarios.

DP2
RUN: Dry Normal Wet
1 -172.09 -234.62 -299.99
2 -170.52 -234.34 -296.80
3 -175.62 -228.17 -298.36
4 -171.66 -232.57 -298.00
5 -173.92 -231.20 -295.49
6 -173.71 -231.62 -293.23
7 -174.54 -227.52 -288.43
8 -172.89 -231.38 -295.89
9 -173.13 -231.16 -291.14
10 -171.13 -227.95 -295.75
AVG -172.92 -231.05 -295.31
MIN -170.52 -227.52 -288.43
MAX -176 -235 -300
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Dry Scenario — DP1

RUN: R1 R2 R3 R4 RS R6
1 0.01 0.79 0.24 0.01 0 0.10
2 0.01 0.79 0.20 0.01 0 0.07
3 0.02 0.75 0.20 0.01 0 0.11
4 0.01 0.80 0.20 0.01 0 0.08
5 0.01 0.79 0.17 0.01 0 0.10
6 0.01 0.79 0.23 0.01 0 0.07
7 0.01 0.80 0.31 0.01 0 0.11
8 0.01 0.80 0.25 0.01 0 0.13
9 0.01 0.83 0.21 0.01 0 0.10

10 0.01 0.75 0.19 0.01 0 0.07
TEST 0 0.67 0 0 0 0
AVG 0.01 0.79 0.22 0.01 0 0.09
MIN 0.01 0.75 0.17 0.01 0 0.07
MAX 0.02 0.83 0.31 0.01 0 0.13

Normal Scenario — DP1

RUN: R1 R2 R3 R4 RS R6
1 0.01 0.73 0.17 0.01 0 0.08
2 0.02 0.63 0.15 0.01 0 0.07
3 0.02 0.73 0.24 0.00 ] 0.12
4 0.02 0.68 0.14 0.01 0 0.06
5 0.03 0.75 0.21 0.01 0 0.10
6 0.02 0.72 0.19 0.01 0 0.08
7 0.02 0.73 0.12 0.01 0 0.08
8 0.01 0.67 0.18 0.01 0 0.06
9 0.02 0.66 0.19 0.01 0 0.08

10 0.02 0.69 0.15 0.00 0 0.05
TEST 0 0.10 0 0 0 0
AVG 0.02 0.70 0.17 0.01 0 0.08
MIN 0.01 0.63 0.12 0 0 0.05
MAX 0.03 0.75 0.24 0.01 0 0.12

Wet Scenario — DP1

RUN: R1 R2 R3 R4 RS R6
1 0.01 0.28 0.18 0.01 0 0.02
2 0.01 0.39 0.19 0.01 0 0.08
3 0.01 0.26 0.15 0.01 0 0.01
4 0.01 0.26 0.12 0.00 0 0.04
5 0.01 0.32 0.17 0.01 0 0.04
6 0.01 0.35 0.14 0.00 0 0.03
7 0.01 0.16 0.17 0.01 0 0.09
8 0.02 0.25 0.22 0.01 0 0
9 0.01 0.30 0.15 0.00 0 0.06

10 0.01 0.42 0.16 0.01 0 0.04
TEST 0 0 0 0 0 0
AVG 0.01 0.30 0.17 0.01 0 0.04
MIN 0.01 0.16 0.12 0 0 0
MAX 0.02 0.42 0.22 0.01 0 0.09
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Tables S3-S4-S5 Average objective
function scores (R1-R6), for each
simulation run (1-10). TEST values
refer to the test runs on the
undisturbed hydrograph; AVG, MIN
and MAX values refer to the average,
minimum and maximum value for
each set, respectively. Results for the
DP1 under dry, normal and wet
scenarios.



Dry Scenario — DP2

RUN: R1 R2 R3 R4 RS R6
1 0.03 0.91 0.26 0.01 0 0.13
2 0.02 0.84 0.22 0.01 0 0.08
3 0.03 0.92 0.26 0.01 0 0.10
4 0.02 0.82 0.22 0.01 0 0.08
5 0.02 0.90 0.26 0.01 0 0.08
6 0.02 0.90 0.26 0.01 0 0.11
7 0.02 0.91 0.27 0.01 0 0.10
8 0.02 0.91 0.22 0.01 0 0.09
9 0.04 0.87 0.25 0.01 0 0.09

10 0.01 0.87 0.27 0.01 0 0.10
TEST 0 0.76 0 0 0 0
AVG 0.02 0.88 0.25 0.01 0 0.10
MIN 0.01 0.82 0.22 0.01 0 0.08
MAX 0.04 0.92 0.27 0.01 0 0.13

Normal Scenario — DP2

RUN: R1 R2 R3 R4 RS R6
1 0.01 0.63 0.15 0 0 0.06
2 0.01 0.77 0.20 0.01 0 0.03
3 0.01 0.71 0.24 0.01 0 0.06
4 0.01 0.79 0.20 0.01 0 0.08
5 0.01 0.65 0.16 0 0 0.06
6 0.01 0.75 0.16 0 0 0.05
7 0.02 0.71 0.16 0 0 0.10
8 0.02 0.75 0.24 0.01 0 0.07
9 0.02 0.73 0.18 0 0 0.10

10 0.01 0.72 0.16 0 0 0.06
TEST 0 0 0 0 0 0
AVG 0.01 0.72 0.19 0 0 0.07
MIN 0.01 0.63 0.15 0 0 0.03
MAX 0.02 0.79 0.24 0.01 0 0.10

Wet Scenario — DP2

RUN: R1 R2 R3 R4 RS R6
1 0.02 0.56 0.19 0.01 0 0.06
2 0.02 0.56 0.18 0.02 0 0.10
3 0.02 0.56 0.22 0.01 0 0.09
4 0.02 0.61 0.16 0.01 0 0.07
5 0.01 0.53 0.16 0.02 0 0.03
6 0.01 0.55 0.16 0.02 0 0.08
7 0.02 0.49 0.16 0.02 0 0.05
8 0.01 0.47 0.16 0.01 0 0
9 0.02 0.55 0.18 0.02 0 0.08

10 0.01 0.57 0.14 0.01 0 0.04
TEST 0 0.10 0 0.01 0 0
AVG 0.02 0.54 0.17 0.02 0 0.06
MIN 0.01 0.47 0.14 0.01 0 0.01
MAX 0.02 0.61 0.22 0.02 0 0.10
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Tables S6-S7-S8 Average objective
function scores (R1-R6), for each
simulation run (1-10). TEST values
refer to the test runs on the
undisturbed hydrograph; AVG, MIN
and MAX values refer to the average,
minimum and maximum value for
each set, respectively. Results for the
DP2 under dry, normal and wet
scenarios.



Table S9. Comparison of average natural discharge values under different scenarios and the optimized discharge thresholds. Results
for DP1 for sub-normal (dry), normal and above-normal (wet) hydrological conditions.

1-Jan 2-Jan 3-Jan 4-Jan S-Jan 6-Jan 7-Jan 8-Jan

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 2.2457 2.1846 2.1433 1.8893 20454 1.9004 20744 1.8983 2.1038 1.9532 22377 1.9403 23526 2.2639 2.4065 22354

$ N 2.7257 2.5988 2.8858 2.7747 3.0020 2.9284 35120 3.2989 3.3890 2.8362 42324 3.4977 4.0577 3.1257 3.6905 2.7677

w 4.0957 3.6503 3.9504 3.6157 3.8874 3.1336 3.9807 2.8495 4.0785 2.0469 44813 21496 5.3042 2.8360 5.7497 29976
9-Jan 10-Jan 11-Jan 12-Jan 13-Jan 14-Jan 15-Jan 16-Jan

Natural Optimized Natural Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 2.5010 2.2804 2.6441 27434 2.5225 2.7498 2.7045 2.6533 25293 24970 2.3146 23187 2.1072 2.1662 20953

S N 3.5470 23170 3.3036 5.1130 4.1108 5.5450 4.6118 3.6366 28122 3.1876 22244 3.0762 25357 3.0982 29497

w 5.2748 2.3948 5.8818 2.6661 8.3126 5.2834 7.9577 4.8709 8.6646 5.5866 7.4207 43734 7.9668 4.9955 7.8124 5.0218
17-Jan 18-Jan 19-Jan 20-Jan 21-Jan 22-Jan 23-Jan 24-Jan

Natural Natural Optimized Natural Optimized Natural Natural Natural Natural Natural Optimized

D 2.0903 2.0629 17733 2.0046 1.8911 19389 1.7969 1.9009 1.7150 18231 1.7513 1.7440 1.4668 1.6489 15638

5 N 3.0693 29415 3.0364 29618 3.0362 2.9638 3.0741 2.9348 2.9680 29399 2.8365 2.6765 27691 25664 2.7226 26797

w 5.1039 2.1016 4.6233 19139 44915 2.1019 5.4905 3.1103 5.2642 3.5485 41717 3.0730 3.9054 3.1361 3.8537 3.5267
25-Jan 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 31-Jan 1-Feb

Natural Optimized Natural Natural Optimized Natural Optimized Natural Natural Optimized Natural Natural Optimized

D 1.5372 1.2378 1.4531 14448 1.1845 1.8039 16777 27335 2.6275 2.8264 2.7202 2.7729 2.6280 3.0338 29273

$ N 2.7416 24143 2.7412 2.7675 2.6941 33228 3.1733 5.5054 5.2479 9.4489 9.4023 7.9027 7.8307 4.8705 4.7677

w 3.8096 3.6158 3.7796 3.5623 3.7455 3.5272 4.1740 3.9836 6.1210 6.0033 9.7584 9.6226 8.0067 7.8115 4.8312 4.7028
2-Feb 3-Feb 4-Feb 5-Feb 6-Feb 7-Feb 8-Feb 9-Feb

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 2.3299 21615 2.6257 25223 5.0380 4.9700 4.8862 48125 3.0920 27716 24365 2.2676 2.3206 2.1576 2.2627 2.1551

3 N 5.4828 5.4410 4.2542 4.1289 3.1529 2.9823 3.0167 29214 2.7432 25975 2.7265 26328 27367 26377 2.7323 25280

W 6.2687 6.2099 5.8129 5.5684 3.7022 3.5933 3.8839 3.6679 4.3662 4.2866 5.3304 4.8475 5.3152 5.1691 4.3391 4.1022
10-Feb 11-Feb 12-Feb 13-Feb 14-Feb 15-Feb 16-Feb 17-Feb

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 2.1789 17532 2.0706 19560 19471 1.7069 1.8450 15966 18323 15746 1.8646 17148 1.8310 16593 1.7567 14857

& N 2.7748 25469 2.8257 2.6675 29202 2.7541 29483 27631 29515 27310 29849 28129 29948 28393 2.9688 2.6983

W 4.2963 41121 4.7142 4.6346 5.3922 5.1212 4.8747 4.4965 4.7773 4.6454 4.6769 4.2442 4.5356 4.0281 4.3590 4.0365
18-Feb 19-Feb 20-Feb 21-Feb 22-Feb 23-Feb 24-Feb 25-Feb

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 1.6960 16174 1.6287 14703 15475 1.3316 14691 13115 13885 13075 13384 11483 1.2800 1.0989 1.2299 1.0425

5 N 2.9843 2.8294 2.9649 2.7627 2.8767 2.6662 2.9847 2.7455 3.6617 3.5198 3.2472 3.0815 3.1388 29632 3.0695 29018

W 4.2002 3.8052 4.4525 4.2936 65.8628 6.6463 7.7321 7.5169 7.8569 7.7044 6.6866 6.3663 7.1229 6.9606 8.3145 8.1050
26-Feb 27-Feb 28-Feb 1-Mar 2-Mar 4-Mar 5-Mar

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Opti d Natural Optimized

D 1.2391 0.9494 1.4572 12359 14838 1.2683 19269 17973 2.6294 2.4707 19782 1.8033 1.8700 17712 1.8552 17623

§ N 3.8954 3.6264 4.5971 4.4568 3.7831 3.6288 3.8788 3.6245 3.9498 3.8355 3.9845 3.7092 4.0828 3.9404 7.7321 7.6262

w 6.3479 6.2182 5.0231 4.6862 4.0565 3.8330 10.3852 10.2033 4.8606 4.6667 3.7878 3.0214 3.5188 3.1853 3.3865 3.1068
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6-Mar 7-Mar 8-Mar 9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
1.8351 17110 1.7558 15989 16461 1.5693 1.5275 13506 14302 12748 13468 11641 1.2867 1.0584 1.2403 0.8879
9.2405 9.1255 6.2896 6.1797 4.7358 4.5815 4.4838 4.2799 4.5837 4.3900 4.7050 44228 4.7584 45868 4.7488 4.4044
3.2463 2.7128 3.5411 3.1117 3.2693 2.6859 2.8010 2.3862 2.6518 2.1956 2.5687 1.9402 25129 20524 2.5511 1.9505
14-Mar 15-Mar 16-Mar 17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
1.2050 1.0028 1.1464 10387 10929 1.0237 1.0898 0.8689 1.0895 0.8221 1.0589 0.7215 1.0249 0.6807 1.0125 0.6043
4.6397 4.3841 4.4370 4.1468 4.1289 3.8230 3.7565 3.4192 3.3687 2.9568 3.0065 2.6092 2.6932 2.1402 2.4458 2.0502
2.5805 1.8907 2.5928 19580 26182 2.0729 3.8398 3.0413 4.7201 4.2871 4.7389 4.0422 4.4773 3.9502 3.3369 2.7170
22-Mar 23-Mar 24-Mar 25-Mar 26-Mar 27-Mar 28-Mar 29-Mar
Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimized Natural Opti d Natural Optimized
0.9889 0.5625 0.9629 0.5455 09328 0.4566 0.9074 0.4478 0.9028 0.3963 0.9168 0.4269 1.0007 0.5031 1.1135 0.6229
2.2428 1.8233 2.1380 1.7384 3.5815 3.2576 4.2546 3.8926 2.6734 2.2019 24522 21181 24809 21075 2.5173 21171
3.0397 24878 2.9286 2.1800 29292 2.2443 3.0729 2.5244 5.4967 4.9826 9.8397 9.3603 9.1007 8.6996 5.2282 4.4390
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr 4-Apr S-Apr 6-Apr
Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
11724 0.7060 1.2093 0.7360 1.2300 0.7719 1.2265 0.6805 15702 11286 21318 1.6219 1.7166 12112 1.7124 1.2804
3.5561 3.2268 4.2470 3.9301 2.7751 2.3947 24750 2.0608 27116 23252 3.1760 2.8659 5.1577 4.8219 5.0128 4.7083
4.2594 3.7081 5.1398 4.5225 8.5446 8.0997 9.7488 9.3749 7.2017 6.7654 5.1247 4.7419 44137 3.8631 4.2165 3.6865
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr 12-Apr 13-Apr 14-Apr
Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural [ Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
1.7675 12464 1.8410 11770 18819 1.4562 2.3848 1.9202 3.1947 2.7851 2.7022 22514 2.7034 2.2691 2.8221 23133
29113 25314 2.4818 2.0884 23678 2.0116 2.4019 19345 25613 2.1556 2.7267 23511 29369 25568 3.0412 2.7156
4.0520 34755 4.3254 3.6957 4.5149 4.0304 3.6057 3.1328 3.3386 2.8413 3.2727 2.6069 3.1950 26803 3.0212 23340
15-Apr 16-Apr 17-Apr 18-Apr 19-Apr 20-Apr 21-Apr 22-Apr
Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
2.9033 24362 29209 2.3940 28773 24752 2.8296 23929 27812 2.3686 3.5949 29067 4.5688 41575 6.2074 5.8086
3.0388 27510 3.0782 2.7277 3.1415 2.8127 3.1201 2.8216 3.0551 2.7266 2.9884 2.6976 2.8780 24175 2.7835 2.4980
2.8019 2.3687 2.6040 1.8927 24935 1.8581 24752 19350 25067 1.8302 25557 21054 2.6438 20407 2.7200 23296
23-Apr 24-Apr 25-Apr 26-Apr 28-Apr 29-Apr
Natural Natural Natural Optimized Natural Natural Natural 0 d Natural Optimized Natural
7.6451 7.2982 5.2255 29874 2.6167 27398 2.2348 28129 29078 24960 29310 25315 2.9092
2.7315 23173 2.6706 25915 2.1842 2.6099 2.2523 2.6156 25904 23989 24957 22571 24324
2.7520 21397 2.7340 24188 26634 2.3160 26161 2.2163 25629 19677 25442 22191 25026 20484 2.4360 2.1422
1-May 2-May 3-May 4-May 5-May 6-May 7-May 8-May
Natural | Optimized | Natural | Optimized Natural | Optimized | Natural Optimized | Natural Natural | Optimized | Natural | Optimized | Natural | Optimized
2.7138 2.5419 2.6506 24860 25827 24072 24783 2.3087 23978 2.1972 23197 2.0250 2.2808 2.1030 2.3334 21707
3.1635 3.0252 3.8837 3.7369 29030 2.5071 3.8709 3.7300 5.2409 5.2082 4.0821 3.8715 3.5883 3.4438 4.9160 4.7618
2.3502 16832 2.3861 21561 24353 2.1567 2.4448 2.0616 24626 2.1454 25133 1.8130 25227 22136 2.4839 19123
12
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9-May 10-May 11-May 12-May 13-May 14-May 15-May 16-May

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
23418 21223 | 22832 19792 | 21570 17666 | 2.0187 17829 | 18594 16843 | 16982 14351 | 15648 12891 | 14832 1.2267
43161 42624 | 3.2593 30810 | 30110 28955 | 29164 28392 | 28508 26455 | 27193 25838 | 25489 23472 | 23570 2.2603
2.4126 19026 | 3.3885 32422 | 58453 57284 | 61771 60711 | 43380 41463 | 26098 19748 | 23287 18978 | 22072 16976
17-May 18-May 19-May 20-May 21-May 22-May 23-May 24-May

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

1.3927 0.9566 1.3191 0.9003 13008 1.0495 13070 0.9848 12713 1.0507 12141 09113 11538 0.8534 1.1014 0.9636

21797 1.8496 2.0690 1.7609 1.9567 1.8036 1.8237 1.4978 1.6786 11971 15440 13041 14298 1.1362 1.3394 1.0341

2.2908 2.0487 2.2990 19631 23189 1.6315 23742 18706 2.4060 16735 23892 2.1036 23382 1.9003 4.1688 3.8970
25-May 26-May 27-May 28-May 29-May 30-May 31-May 1-Jun

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Opti d Natural Optimized

10714 0.8158 1.0457 0.7413 10246 0.7308 10129 0.6806 1.0026 0.6757 1.0004 0.7398 1.0023 0.7887 0.9749 0.5622

1.2874 10722 1.2610 10725 1.2297 1.0359 1.1894 09172 11714 0.6546 11813 0.7844 1.1796 09189 1.1385 0.6819

4.3294 3.9871 2.7078 2.2649 22203 1.7182 2.0798 15297 20143 17625 19819 17383 19774 14916 1.8276 10757
2-Jun 3-Jun 4-Jun S-Jun 6-Jun 7-Jun 8-Jun 9-Jun

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.9555 0.4482 0.9787 0.4930 10612 0.6661 1.2984 0.9080 14285 0.9180 14399 0.9956 14047 0.8284 1.3422 09115

11120 0.7188 1.0930 0.5800 1.0865 0.6625 1.1291 0.6970 12104 0.7921 1.2379 0.8612 1.2420 0.7744 1.2432 0.8362

1.7801 0.9581 1.7450 12042 16959 1.0400 1.6270 09348 15875 1.0028 15811 0.8496 15838 0.9508 1.5461 1.0199
10-Jun 11-Jun 12-Jun 13-Jun 14-Jun 15-Jun 16-Jun 17-Jun

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural [ Optimized | Natural | Optimized | Natural | Optimized

1.2704 0.8245 1.2014 0.7575 1.1300 0.7056 1.0632 0.6213 1.0049 0.5896 0.9563 0.4287 0.9165 0.4699 0.8843 0.4523

12147 0.7853 1.1928 0.7448 1.1969 0.6993 1.1990 0.7652 12218 0.6866 11947 0.6385 11432 0.7190 1.0875 0.5902

14841 0.9443 1.3992 0.8695 1.3086 0.6762 1.2228 0.6698 11477 0.4675 10828 0.5294 10275 0.5824 0.9810 04136
18-Jun 19-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 25-Jun

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

0.8579 0.4289 0.8360 0.4094 0.8178 0.4157 0.8024 0.3883 0.8103 0.4050 0.8608 0.3507 0.8635 0.3801 0.8425 03723

10365 0.6455 0.9922 05591 0.9549 0.5065 09243 05373 0.8984 0.4958 0.8767 0.4766 0.8582 0.3899 0.8421 0.4368

0.9428 0.4066 0.9114 04112 0.8853 0.3103 0.8874 03778 09739 03843 1.0614 05242 1.1024 0.5067 1.0993 0.4862
26-Jun 27-Jun 28-Jun 29-Jun 30-Jun 1-Jul 2-Jul 3-Jul

Natural Natural Natural Natural Natural Natural | O d_| Natural ptimized | Natural

0.8174 0.3703 0.7939 0.7728 0.3700 0.7553 0.7397 0.7158 0.2555 0.7193 0.3106 0.7443

0.8277 04214 0.8147 0.8021 0.3735 0.7903 0.7796 0.7621 03492 0.7516 0.3064 0.7415

1.0706 0.4999 1.0298 0.5324 0.9846 0.4319 09393 0.4440 0.8972 0.3854 0.8656 0.2991 0.8443 03392 0.8185 0.3230
4-Jul S-Jul 6-Jul 7-Jul 8-Jul 9-Jul 10-Jul 11-Jul

Natural | Optimized | Natural | Optimized Natural | Optimized | Natural Optimized | Natural Natural | Optimized | Natural | Optimized | Natural | Optimized

0.7477 0.2660 0.7377 0.3356 0.7239 0.3544 0.7050 03391 0.6864 0.2267 0.6692 0.2556 0.6544 0.2428 0.6414 0.2268

0.7506 0.3579 0.8323 0.3984 0.8597 0.4385 0.8468 0.3958 0.8195 0.4312 0.7887 0.4082 0.7589 0.3187 0.7318 0.2960

0.7924 0.3265 0.7772 0.2655 0.8027 0.3226 0.8062 0.2325 0.7901 02712 0.7672 0.2442 0.7525 0.1893 0.7312 0.2401
13
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12-Jul 13-Jul 14-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.6339 0.2468 | 0.6275 02267 | 06178 0.2049 | 06237 02181 | 06357 01653 | 0.6269 02025 | 06142 02154 | 05990 02021

0.7082 03159 | 0.6880 0.2837 | 06702 0.2785 | 06546 02392 | 06411 02710 | 06282 01745 | 06167 02258 | 0.6059 02056

0.7076 02255 | 0.6861 01705 | 06676 0.1960 | 06513 02149 | 06371 02076 | 0.6246 01585 | 06131 01822 | 0.6068 0.1500
20-Jul 21ul 22-ul 23-ul 24-4ul 25-ul 26-Jul 27-3ul

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.5852 0.2022 0.5722 0.1609 0.5598 0.1164 0.5487 0.1471 0.5387 0.1347 0.5293 0.1361 0.5204 0.1325 05121 0.1245

0.5956 0.1855 0.5857 0.1968 05762 0.2102 0.5669 0.2053 05577 0.1422 05488 0.1520 0.5396 0.1844 0.5310 0.1392

0.5974 0.1274 0.5863 0.1153 05757 0.1071 0.5660 0.1148 0.5564 0.1047 0.5473 0.1109 0.5384 0.0980 0.5299 0.0936
28-Jul 29-Jul 30-Jul 31-Jul 1-Aug 2-Aug 3-Aug 4-Aug

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural

Natural Optimized Natural Opti d Natural Optimized

0.5039 0.1198 0.4962 0.1071 0.4884 0.1001 0.4841 0.1177 0.4821 0.1118 0.4746 0.0827 0.4669 0.0876 0.4596 0.0821

0.5229 0.1359 0.5143 0.1404 05057 0.1569 0.4974 0.0949 0.5005 0.1526 1.0747 0.6872 1.8866 14559 0.8109 0.3952

0.5213 0.1101 0.5127 0.0856 0.5046 0.0691 0.4963 0.0663 0.4927 0.0743 0.4849 0.0657 0.4768 0.0696 0.4686 0.0523
5-Aug 6-Aug 7-Aug 8-Aug 9-Aug 10-Aug 11-Aug 12-Aug

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.4525 0.0719 0.4451 0.0968 04379 0.0773 0.4309 0.0617 0.4240 0.0492 04169 0.0476 0.4102 0.0504 0.4030 0.0443

0.5935 0.2016 0.5310 0.1595 0.5087 0.1230 0.4895 0.1053 04730 0.0958 0.4587 0.1002 0.4466 0.1017 0.4358 0.0875

0.4608 0.0577 0.4533 0.0377 04673 0.0447 0.8703 0.3164 05633 0.1019 0.5215 0.0966 0.5029 0.0837 0.4826 0.0570
13-Aug 14-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug 20-Aug

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural [ Optimized | Natural | Optimized | Natural | Optimized

0.3963 00442 | 0.3898 00422 | 03829 0.0201 | 03767 00227 | 03699 00288 | 0.3637 00189 | 03573 00192 | 03510 00122

04261 0.0886 0.4171 0.0744 0.4089 0.0637 0.4012 0.0623 0.3941 0.0617 0.3869 0.0458 0.3800 0.0439 0.3733 0.0445

0.4612 00443 | 0.4426 00350 | 04281 00201 | 04351 00254 | 0.4308 00256 | 04177 00162 | 04041 00064 | 03921 0.0026
21-Aug 22-Aug 23-Aug 24-Aug 25-Aug 26-Aug 27-Aug 28-Aug

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

0.3446 0.0048 0.3386 0.0188 0.3327 0.0033 0.3267 0.0074 0.3305 0.0021 13283 0.8197 18750 12829 1.1745 0.7728

0.3671 0.0394 0.3604 0.0338 0.3544 0.0311 0.3483 0.0283 03520 0.0283 0.4023 0.0633 0.4830 0.1044 0.8281 0.4270

0.3962 0.0079 0.4686 0.0522 0.5601 0.1168 0.6569 0.1639 19264 1.2972 27861 21351 14190 0.8232 1.1578 0.6941
29-Aug 31-Aug 1-Sep 2Sep 3-Sep 4-Sep 5-Sep

Natural | O Natural Natural | Optimized | Natural Natural Natural | O d_| Natural Natural

0.8035 0.3542 0.7064 0.6513 0.2786 0.5623 0.4056 0.5126 0.4684 03703 0.4298 0.3984

0.6611 0.2444 0.6193 05837 0.1835 05123 0.3934 0.4761 0.4415 03206 0.4099 0.3188 0.3834

1.0368 0.5278 1.0433 0.5791 1.0577 0.4819 0.9793 0.6001 0.9582 0.7917 09084 0.6857 0.8430 0.5813 0.7713 0.5568
6-Sep 7-Sep 8-Sep 9-Sep 10-Sep 11-Sep 12-Sep 13-Sep

Natural | Optimized | Natural | Optimized Natural | Optimized | Natural Optimized | Natural

Natural | Optimized | Natural | Optimized | Natural | Optimized

0.3726 0.3018 0.3519 0.2390 0.3501 0.2547 0.3730 0.2013 0.3755 03162 0.3636 0.2285 0.3482 0.1891 0.3330 0.2122

0.3611 0.2517 0.3425 0.2143 03423 0.2308 0.3656 0.2375 0.3687 0.2602 0.3572 0.2524 0.3413 0.2577 0.3258 0.2151

0.6992 0.4906 0.6311 04725 0.5685 0.4267 05134 0.3854 0.4655 0.2878 0.4255 0.2370 0.3923 0.2569 0.3649 0.2763
14
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14-Sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 20-Sep 21-Sep

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.3192 02283 | 03077 02183 | 02979 0.2184 | 02897 01963 | 02829 02205 | 02773 01495 | 02722 01878 | 0.2677 0.1491

03337 01839 | 0.3461 02577 | 03335 0.2167 | 03166 02093 | 03017 01890 | 0.2902 02200 | 0.2805 01943 | 02724 01854

0.3433 02199 | 03256 02298 | 03114 0.2064 | 02997 01869 | 0.2907 02107 | 02826 0.2088 | 02755 0179 | 0.2695 01567
22:5ep 23-Sep 24-5ep 25-Sep 26-Sep 27-Sep 28Sep 295ep

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.2635 0.1821 0.2597 0.1924 0.2635 0.1674 0.2789 0.1930 0.3035 0.2408 1.6063 14372 2.1695 20922 0.7746 0.5536

0.2661 0.2090 0.2650 0.2089 0.2964 0.2217 0.3101 0.2193 0.3067 0.2252 0.2969 0.1482 0.2842 0.2170 0.2721 0.2093

0.2651 0.1724 0.2669 0.1764 0.3000 0.2015 0.3436 0.1974 0.3428 0.2487 0.5081 0.4433 1.1800 0.9454 0.4961 03734
30-Sep 1-Oct 2-Oct 3-Oct 4-Oct 5-Oct 6-Oct 7-0ct

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural

Natural Optimized

0.4846 0.2897 0.3971 0.0445 04377 0.0652 0.5165 0.1450 0.5448 0.1376 0.5348 0.1460 0.5068 0.1283 0.4716 0.0698

0.2646 0.1610 0.2720 0.0001 02721 0.0004 0.2644 0.0007 0.2686 0.0015 0.3026 0.0003 0.3971 0.0623 0.5806 0.1377

0.3535 0.2208 0.3579 0.0002 03793 0.0000 0.4228 0.0215 05874 0.0956 23234 16761 3.7977 3.2612 1.9531 13115
8-Oct 9-Oct 10-Oct 11-Oct 12-Oct 13-Oct 14-Oct 15-Oct

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

0.4348 0.0551 0.4047 0.0471 0.3942 0.0443 0.3792 0.0276 03721 0.0199 03764 0.0325 0.4229 0.0549 0.4411 0.0757

1.5434 0.9987 1.5831 1.0944 1.1376 0.6743 0.9186 0.4433 09115 04254 0.9280 0.5038 0.9455 0.5089 0.9761 0.5915

1.7685 09971 1.8446 1.0608 29661 2.2481 3.1294 2.5836 20610 13319 17944 1.0706 1.6950 10175 1.6039 0.9959
16-Oct 17-Oct 18-Oct 19-Oct 20-Oct 21-Oct 22-Oct 23-Oct

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural [ Optimized | Natural | Optimized | Natural | Optimized

0.4889 0.0976 0.5042 0.0941 0.5006 0.0945 0.4849 0.0958 0.4996 0.1159 0.5962 0.2042 0.6710 0.2515 0.7016 0.3042

0.9814 04913 0.9495 0.5063 0.9099 0.4447 0.9190 05148 0.9693 0.4809 09617 0.5407 09171 04181 0.8436 0.3889

1.5068 0.9746 1.4180 0.7353 13333 0.7462 12319 0.5569 11252 0.6041 1.0396 0.4563 10217 05324 2.0316 11784
24-Oct 25-Oct 26-Oct 27-Oct 28-Oct 29-Oct 30-Oct 31-Oct

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

0.7195 0.2384 0.7298 0.3105 0.6920 0.2294 0.6332 0.2035 0.5827 0.1917 0.5594 0.1618 05392 0.7140 0.5666 0.7305

0.7588 0.3015 0.6751 02141 0.5983 0.1945 05308 0.1342 04727 0.0957 04275 0.0792 0.3961 0.0643 0.3669 0.0365

2.2700 17810 1.4340 0.8435 14447 0.8404 14794 0.9398 15303 1.0255 15189 0.8688 15096 08577 1.7039 0.9911
1-Nov 2-Nov 3-Nov 4-Nov 5-Nov 6-Nov 7-Nov 8-Nov

Natural Natural Natural Natural Natural Natural | O d_| Natural Natural

0.5010 0.6200 0.4858 0.4802 0.5781 0.5042 0.7672 18355 3.2900 11795 1.0716

0.3504 0.0226 0.3319 03377 0.0144 0.3487 0.4045 05173 0.1549 0.5954 0.5867

1.4049 0.8082 1.3212 0.7780 12751 0.6222 12341 0.6754 11775 0.6271 1.1001 05229 10175 0.4697 0.9549 0.4530
9-Nov 10-Nov 11-Nov 12-Nov 13-Nov 14-Nov 15-Nov 16-Nov

Natural | Optimized | Natural | Optimized Natural | Optimized | Natural Optimized | Natural

Natural | Optimized | Natural | Optimized | Natural | Optimized

1.0117 1.6153 0.9776 14834 0.9455 1.3862 0.9004 1.3880 0.8631 13123 0.9089 13645 0.9624 14673 0.9827 1.4896

0.5598 0.2125 0.6131 0.2277 25040 2.0612 3.5435 3.1766 17641 13511 12925 0.8192 14162 0.9785 1.5739 0.9973

0.8923 0.3443 0.8829 0.3579 0.8986 0.3833 1.0812 05613 15186 0.8635 13422 0.8434 15399 0.7805 1.7742 1.0544
15
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17-Nov 18-Nov 19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized
1.0544 15747 | 1.1080 16839 | 11777 19183 | 12991 21219 | 13658 22453 | 13505 22080 | 13161 22512 | 12843 20735
1.7424 11776 | 1.9090 14432 | 31199 27685 | 7.9024 75619 | 88303 85053 | 50315 46232 | 26426 21757 | 2223 17224
1.9993 13698 | 2.2624 14535 | 24597 18570 | 25680 20320 | 25981 20194 | 27191 21158 | 43265 38109 | 69175 6.4368

25-Nov 26-Nov 27-Nov 28-Nov 29-Nov 30-Nov 1-Dec 2-Dec

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

1.2465 20273 1.2487 21048 18713 3.3058 2.3864 4.2503 1.8804 3.3413 2.0066 3.5843 3.1376 5.7084 4.5510 7.3650

21925 1.7451 2.2642 1.8979 23868 1.8331 23918 1.9936 3.0699 24276 4.2200 3.8812 33481 23358 3.5534 2.1921

7.6423 7.1100 6.9757 6.5327 6.0843 5.5846 5.0748 4.3856 3.3812 2.8116 4.2726 3.7749 4.9556 4.9014 3.5778 34179
3-Dec 4-Dec 5-Dec 6-Dec 7-Dec 8-Dec 9-Dec 10-Dec

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural

Natural Optimized Natural Natural Optimized

4.4096 6.0189 4.4953 6.2822 4.4979 6.3071 4.5202 6.9455 3.8592 6.1173 25728 5.0002 2.2521 4.3433 4.4108 8.6605

4.2340 2.5455 4.5928 2.8806 4.7306 2.9894 48364 3.1349 4.2284 2.7836 29655 21691 26561 25180 2.6057 23816

29753 2.6393 2.7657 25760 5.8692 5.7241 6.3517 6.1400 5.4423 5.2090 5.5900 5.5053 3.4395 3.2209 2.7279 1.9984
11-Dec 12-Dec 13-Dec 14-Dec 15-Dec 16-Dec 17-Dec 18-Dec

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

5.1012 10.1340 2.9426 5.7675 27115 5.2729 24732 4.8381 24429 4.7426 23722 45852 2.2684 4.3611 2.0961 3.9632

2.5689 25145 2.4932 2.3309 2.3550 2.1929 22351 1.9389 21910 21141 2.3155 2.0749 2.4488 23727 2.1038 1.9965

2.7078 2.4504 2.8734 23941 3.8099 3.4698 4.7146 4.4621 3.5100 3.2225 3.2944 3.0038 3.9007 3.5878 6.8284 6.6278
19-Dec 20-Dec 21-Dec 22-Dec 23-Dec 24-Dec 25-Dec 26-Dec

Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural [ Optimized | Natural | Optimized | Natural | Optimized

1.9058 3.6603 1.7288 3.2229 1.5924 2.9595 1.5626 3.0176 1.5185 2.7345 1.4438 2.7891 3.8113 7.3707 5.2902 10.4833

2.0589 19343 2.1124 2.0093 2.1683 1.9860 2.2501 20714 23328 2.0686 2.3309 22156 2.2330 19799 2.1550 1.9894

6.8255 6.6454 4.0592 3.9888 3.6380 3.4711 6.1654 6.0966 8.2585 7.9432 6.0289 5.9600 4.3602 4.0142 3.9467 3.8059
27-Dec 28-Dec 29-Dec 30-Dec 31-Dec

Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

3.1512 6.2538 20577 3.9408 19317 3.5916 19722 3.7903 2.0461 4.0311

2.2859 2.1686 2.4646 21413 25584 2.4971 2.5864 2.5366 26374 2.5547

3.7929 3.6296 3.9079 3.7087 3.9912 3.7950 39782 3.7834 3.8760 3.6872
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Table S10. Comparison of average natural discharge values under different scenarios and the optimized discharge thresholds. Results
for DP2 for sub-normal (dry), normal and above-normal (wet) hydrological conditions.

1-Jan 2-Jan 3-Jan 4-Jan S-Jan 6-Jan 7-Jan 8-Jan

Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 5.9146 5.1633 5.8658 5.8016 5.8241 5.3982 8.0919 7.9802 11.6450 9.9287 11.7683 81527 10.0950 6.3245 8.4880 4.9904

SN 11.1707 6.7491 14.4555 9.0357 15.2655 9.3264 11.9407 5.0480 10.3348 3.4738 9.7044 2.8087 9.3389 4.6792 8.9967 6.3579

w 7.1581 6.7271 6.8927 6.0190 6.5863 6.0478 6.6051 6.3284 6.6644 6.3814 10.1940 9.0921 12.3759 121318 9.3709 8.8301
9-Jan 10-Jan 11-Jan 12-Jan 13-Jan 14-Jan 15-Jan 16-Jan

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimiz Natural Optimized

D 89824 7.8267 8.2789 7.9379 11.0679 10.8602 12.3161 12.0747 9.0844 8.9502 8.1350 8.0069 7.6004 7.3940 7.1883 6.9447

) N 8.7574 7.8383 8.7861 84910 8.9725 8.8030 9.1509 8.8580 9.1956 8.3604 10.6037 10.2016 11.7701 11.6364 9.8958 9.6746

w 7.5974 6.6675 6.7264 5.7368 8.7881 8.4770 10.8640 10.3762 11.3025 10.3580 8.8636 84528 14.3422 13.8453 17.2921 16.8148
17-Jan 18-Jan 19-Jan 20-Jan 21-Jan 22-Jan 23-Jan 24-Jan

Natural | Optimized | Natural | Optimized Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized | Natural | Optimized

D 6.9008 6.7387 6.6818 6.2228 6.3965 6.2099 6.0787 5.7220 5.7248 5.2345 5.3054 5.0008 5.0197 4.5028 4.9104 4.7042

SN 10.5951 10.2670 9.1007 83591 8.9189 8.2136 8.8316 7.7451 8.5485 7.6466 8.2429 7.3491 8.1096 7.6890 8.0001 7.8154

w 10.1931 9.3158 8.0715 7.27117 7.5939 7.0546 10.4792 9.9329 11.9981 11,6958 8.9785 8.4436 8.1560 7.4967 8.0277 7.2152
25-Jan 26-Jan 27-Jan 28-Jan 29-Jan 30-Jan 31-Jan 1-Feb

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 4.6973 4.1178 4.5876 4.3929 4.7392 4.0213 7.3309 7.1011 10.1129 9.9979 10.8676 10.6711 11.4307 10.8745 8.4899 8.1633

SN 7.8016 7.5366 7.6508 7.1563 7.5163 7.3217 8.1773 7.9765 9.5691 9.2567 7.9927 7.5399 7.4508 7.1080 6.8833 6.2222

w 8.1609 7.3929 8.7973 8.2303 9.9886 9.5668 9.1053 8.7601 9.2133 86721 17.5653 17.2366 22.6549 224590 20.9461 20.3483
2-Feb 3-Feb 4-Feb 5-Feb 6-Feb 7-Feb 8-Feb 9-Feb

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Opt ed Natural Natural Optimized

D 6.8656 6.7282 6.8099 6.6133 9.2807 9.0205 9.8594 9.6123 7.6835 7.5104 5.4631 4.9135 4.8250 4.1981 4.6088 4.0372

SN 6.5604 5.8804 6.2866 53730 6.1985 5.5013 6.0779 5.6686 6.0441 5.4715 6.1002 5.8084 6.2115 5.8520 6.2336 5.7592

w 19.2496 18.4912 13.5318 13.2899 8.7213 8.0281 16.1002 15.8882 17.5735 17.2156 12.3853 11.8613 14.9532 14.7334 17.7952 17.4511
10-Feb 11-Feb 12-Feb 13-Feb 14-Feb 15-Feb 16-Feb 17-Feb

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 4.5035 4.1415 4.3850 4.2995 4.2053 3.6044 4.0300 3.5686 3.9246 3.2353 3.7809 3.7293 3.5910 3.0604 3.4488 2.9547

SN 7.1114 6.4764 8.3860 7.9498 7.1648 6.2263 6.8076 6.4940 7.8186 7.0299 9.7197 9.4681 8.1948 7.3534 7.8098 7.4871

w 15.4372 15.0466 12,9516 12.3782 11.3973 10.8741 9.5173 8.6465 9.0457 8.0864 8.6752 7.8724 8.2531 7.6846 7.8213 7.3213
18-Feb 19-Feb 20-Feb 21-Feb 22-Feb 23-Feb 24-Feb 25-Feb

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 3.4480 3.1434 3.3754 2.7030 3.2275 2.8098 3.0539 2.3635 3.0106 2.5984 3.0654 2.5849 3.0950 2.7817 3.1562 2.5871

s 7.8037 7.4799 7.8720 7.3843 11,9543 11.4844 15.7759 15.3238 12.8725 12.4596 9.8458 8.6732 8.1697 7.8545 7.8028 7.3936

w 7.4962 6.2218 7.2444 6.2278 8.3657 7.9573 9.2730 8.4120 8.7926 7.9836 10.3963 9.6157 14.7863 14.4472 13.0764 12.3687
26-Feb 27-Feb 28-Feb 1-Mar 2-Mar 3-Mar 4-Mar 5-Mar

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

D 3.7836 3.4432 5.1123 4.3975 4.5989 4.1939 4.9216 4.6839 5.3576 5.1038 5.6116 5.2736 6.5544 6.4718 8.8148 8.5601

SN 7.8012 7.3909 7.9878 7.0528 10.4509 10.0862 11.9198 11.6490 10.5412 10.0278 109771 10.3815 12.5552 12.2145 13.8471 13.5940

w 12.2777 11.5278 11.5055 10.5656 9.1705 8.3098 8.1396 7.3829 7.8039 6.8696 7.6944 7.1989 7.5093 6.9778 7.1982 6.4696
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6-Mar 7-Mar 8-Mar 9-Mar 10-Mar 11-Mar 12-Mar 13-Mar
Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
8.5864 8.3199 6.4772 5.9525 5.5845 4.6865 5.1615 4.9457 4.8999 4.3689 4.6734 4.4299 4.5104 3.8878 4.3855 4.0373
17.1226 16.8061 11.8383 11.4084 10.4361 9.9781 9.8414 9.2835 9.4635 9.0134 9.0982 84216 8.6483 8.2479 8.2029 7.5302
6.8094 5.1821 6.4120 5.4655 6.1372 5.2980 5.9552 4.5650 5.9586 5.4829 6.0216 4.9650 6.1866 5.2086 6.4799 5.5402
14-mar 15-Mar 16-Mar 17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
4.2565 3.9005 4.0762 3.6728 3.9447 3.1724 4.0796 3.5735 4.2603 3.3998 5.2744 4.2768 6.5547 5.6764 5.6139 4.3377
7.7115 7.1958 7.2754 64271 6.8455 6.1373 6.4829 5.7376 6.1834 5.0151 6.8297 5.7280 7.8390 6.8405 6.6535 5.6038
6.8306 5.6089 6.9802 6.0654 7.0563 5.7148 7.1815 5.4488 7.0834 5.4957 6.8087 5.1562 6.4699 4.6151 6.1759 4.5104
22-Mar 23-Mar 24-Mar 25-Mar 26-Mar 27-Mar 28-Mar 29-Mar
Natural | Optimized | Natural | Optimized Natural | Optimized | Natural | Optimized | Natural Natural | Optimized | Natural | Optimiz Natural | Optimized
4.5790 3.4303 4.2768 3.1932 4.1283 2.7169 4.0052 2.7265 3.8982 2.8197 3.9584 2.7329 5.3337 4.2362 6.3549 5.1690
5.5910 4.0920 5.6560 4.5400 12.0547 10.9851 14.9598 13.9552 8.5633 7.2949 7.3997 6.3561 7.3082 5.8948 7.5194 6.5644
5.9103 4.0643 5.8599 43993 12.2058 10.6308 15.2464 13.7401 9.8862 83515 11.0741 9.0614 12.6458 11.2812 10.7939 8.7317
30-Mar 31-Mar 1-Apr 2-Apr 3-Apr 4-Apr S-Apr Apr
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
5.3252 4.0268 5.1824 3.8890 5.1483 3.7045 5.0046 3.6775 10.1444 8.9890 12.7100 11.5487 68188 5.7047 5.4791 3.9489
7.7324 6.5971 7.8958 64195 7.6946 6.6637 7.4983 6.5540 73111 6.4937 7.6244 6.7226 13.9029 13.0314 15.2637 14.3860
12.3276 10.6292 12,9332 11.2585 13.7515 12.2431 17.3913 15.9856 14.9555 13.4831 10.3469 8.7366 86734 7.2409 8.3200 6.8539
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr 12-Apr 13-Apr 14-Apr
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimized
5.2005 3.8899 5.1213 4.0583 5.0586 3.6675 6.9466 5.7742 8.8957 7.6801 6.6243 5.4591 5.8371 5.8437 4.7285
8.4938 7.3629 6.7886 5.5873 71917 6.2523 8.7546 7.6861 7.5038 6.4876 7.4705 6.1821 7.9810 85179 7.5668
8.2358 6.5014 8.7917 7.0663 9.6592 7.8611 81310 6.2366 7.7902 5.7418 7.7870 6.4488 7.9391 6.0767 7.9975 5.8931
15-Apr 16-Apr 17-Apr 18-Apr 19-Apr 20-Apr 21-Apr 22-Apr
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
6.0217 4.7900 6.1592 4.9091 6.2263 5.0510 6.1975 5.0741 6.0347 4.6672 10.8383 9.7861 14.1574 13.1609 15.7554 14.7685
8.8553 8.0381 9.0656 7.5580 9.1081 8.2979 8.9783 7.9460 8.7938 7.9447 8.5956 7.5281 83941 7.6058 8.2986 7.0604
7.8833 6.1861 7.6890 5.8771 7.5705 6.0096 7.7101 5.8845 7.8908 5.8875 8.0227 6.0726 8.1542 6.6081 8.1841 6.6429
23-Apr 24-Apr 25-Apr 26-Apr 27-Apr 28-Apr 29-Apr 30-Apr
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
17.7058 16.7750 13.3488 12.3881 9.8111 8.9239 87121 7.8760 7.3318 6.6529 8.0333 7.3522 7.1511 6.2447 6.8859 6.0621
8.1611 7.2953 7.9052 6.6133 7.6453 6.3234 7.4739 6.1458 7.1905 6.4652 6.7995 5.7268 6.4177 5.4023 6.1184 5.0940
8.0410 6.6781 7.7836 5.6901 7.8137 6.4130 8.9584 7.7681 7.9468 6.7389 7.7298 6.3123 7.7552 5.9696 7.8824 6.9869
1-May 2-May 3-May 4-May 5-May 6-May 7-May 8-May
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
6.4244 6.1201 6.2095 5.6812 5.8676 5.6303 5.4689 4.9159 5.1952 4.6827 5.2268 4.4804 6.2950 6.1197 7.5646 7.0481
7.0488 6.3545 8.4384 8.2554 6.1000 5.8327 7.3336 6.6260 12.3509 12.1350 11.1608 11.0245 10.0151 9.7028 13.3469 13.1240
9.7913 8.9231 14.8507 14.2464 14.9078 14.4416 14.2000 14.0951 16.7144 16.5044 13.9847 13.7960 12.1086 11.7335 13.1152 12,9151
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9-May 10-May 11-May 12-May 13-May 14-May 15-May 16-May
Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
59789 5.7231 9.6424 9.5245 13.0555 12.9337 11.7906 11.7157 9.4617 9.0890 5.9519 5.6684 5.0001 4.4944 4.6890 4.0250
13.0348 12.8200 124283 11.8218 15.1126 14.9642 14.3281 14.1324 12.4094 12.1097 8.2627 7.0518 7.3048 6.9205 7.0646 6.6622
10.6102 9.8567 8.1731 7.3364 7.4299 6.3583 7.7709 7.2887 7.9114 7.3612 6.9713 6.0879 6.7397 5.7884 6.5895 6.0202
17-May 18-May 19-May 20-May 21-May 22-May 23-May 24-May
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
4.6842 4.2811 4.8680 4.2299 4.6836 4.2398 4.6400 3.9325 4.5322 3.8337 43725 3.8258 4.1514 3.6580 3.9079 3.5854
7.1129 6.8922 7.3316 6.9291 7.0418 6.4214 6.7568 6.1000 64211 5.6896 6.0409 5.4981 5.6393 5.1248 5.2253 4.7084
6.3784 5.9962 6.0998 4.6354 7.4694 6.8675 9.0098 8.5039 6.1314 5.1889 5.3087 4.4848 4.9284 3.9976 9.5318 8.8629
25-May 26-May 27-May 28-May 29-May 30-May 31-May 1-Jun
Natural | Optimized | Natural | Optimized Natural | Optimized | Natural | Optimized | Natural Natural | Optimized | Natural | Optimiz Natural | Optimized
3.6902 3.0581 3.5172 29724 3.4828 3.0123 3.5260 2.6913 3.4655 2.6083 3.4180 24118 3.4156 3.0697 3.4484 2.2524
4.8861 4.1581 4.5452 3.5361 4.2268 3.6242 3.8928 2.9735 35793 2.4379 3.3399 2.7041 3.1135 2.3958 2.9372 1.8920
12.1865 11.4899 7.3804 6.3897 4.9409 3.9684 4.2585 2.9157 4.0551 29437 4.1308 3.3421 4.2041 3.2120 4.1204 2.4090
2-Jun 3-Jun 4-Jun S-Jun 6-Jun 7-Jun 8-Jun 9-Jun
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
3.4800 2.1155 3.5952 23733 3.7703 2.4896 4.1821 2.9407 4.3758 3.1174 4.2881 2.9983 4.0889 2.8487 3.8261 2.7831
2.8075 1.7075 2.7409 13328 26757 13124 27528 1.7400 29401 1.6693 3.0405 1.8480 3.1155 1.6577 3.1359 1.7055
4.0044 2.3777 3.8554 2.1549 3.8292 2.0298 3.9477 2.3039 4.0790 2.4548 4.1741 2.6887 4.3431 2.5066 4.4125 2.8613
10-Jun 11-Jun 12-Jun 13-Jun 14-Jun 15-Jun 16-Jun 17-Jun
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimized
3.6138 2.2481 3.5080 24204 33179 21222 3.0836 1.9186 2.9190 1.7955 2.7490 15626 2.5728 24411 12127
3.0616 17574 29328 1.8695 2.7835 14517 26332 12372 25159 13677 25247 14584 2.5095 2.4507 12332
4.4035 25182 4.3377 2.7233 4.2673 27453 4.0965 2.4414 3.9731 2.0430 3.7865 2.0126 3.5711 1.7456 3.3354 15510
18-Jun 19-Jun 20-Jun 21-Jun 22-Jun 23-Jun 24-Jun 25-Jun
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
2.3449 1.0250 2.2678 11944 2.2293 1.0381 2.1730 0.9874 2.1482 0.8879 2.1831 11021 2.1393 1.0597 2.0576 0.7790
2.4474 1.3794 2.4024 13678 25742 14411 3.4546 2.2365 2.6913 1.4838 24252 1.2683 23790 1.2935 2.3356 1.1165
3.0952 1.4886 2.8781 1.1440 2.7659 12533 5.0593 3.7061 10.4695 9.0091 9.4238 80353 5.6661 3.9214 3.6694 17337
26-Jun 27-Jun 28-Jun 29-Jun 30-Jun 1-Jul 2-Jul 3-Jul
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
19761 0.8550 1.9600 0.6438 1.9864 0.8002 2.0888 0.8909 2.1206 0.8064 2.0721 0.8746 2.2631 1.1344 2.4663 14647
2.2649 1.0827 2.1702 10538 2.0726 0.9011 1.9929 0.9982 19641 0.8283 2.0326 09179 20276 1.0315 2.0064 0.7721
3.2107 1.7351 3.1207 1.2491 3.0628 14453 2.9542 1.5014 2.8148 1.2192 2.7863 13714 2.7201 13191 2.6770 1.0216
4-Jul S-Jul 6-Jul 7-ul 8-Jul 9-Jul 10-Jul 11-Jul
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
2.5841 1.2173 2.7360 14799 2.8308 1.8191 2.7985 1.5064 2.6842 1.4747 2.5308 13647 2.4426 1.2294 2.5570 1.2607
2.1015 0.8322 2.9099 1.8326 2.6012 14424 2.6292 1.4291 2.6762 1.2592 2.6354 16551 25394 1.1901 2.4362 1.1849
2.5836 0.9722 2.5489 0.9360 26547 0.9730 2.8442 1.3590 3.0911 1.2808 31771 15818 3.2197 1.6556 3.1577 11913
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12-Jul 13-Jul 14-Jul 15-Jul 16-Jul 17-Jul 18-Jul 19-Jul
Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
25411 1.3788 2.4149 12422 2.2672 1.2680 2.2882 1.0140 2.8442 15298 4.0138 2.6622 2.9008 1.6371 2.6293 13576
2.2927 1.0867 2.1370 0.8955 1.9899 0.9112 1.8585 0.6819 1.7445 0.5795 1.6468 0.5953 15645 0.5223 1.5016 0.4833
3.0057 1.6364 2.8135 12734 2.6140 1.1469 24226 0.9136 2.2471 0.7356 2.0911 0.6730 1.9683 0.5854 1.8758 0.4367
20-Jul 21-Jul 22-Jul 23-Jul 24-Jul 25-Jul 26-Jul 27-Jul
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
25121 1.3944 2.3649 1.3486 2.1981 1.0016 2.0356 0.9168 1.8908 0.5690 1.7669 0.5885 1.6646 0.5476 1.5802 0.5150
1.5252 0.5108 1.5284 04726 1.4940 0.4691 1.4457 0.4599 13997 0.4366 1.3553 0.4428 13141 0.2612 1.3155 0.3619
1.7803 0.4321 1.6930 0.3643 1.6342 0.2609 1.5806 0.2623 15266 0.2456 14767 0.1707 14324 0.2028 1.3946 0.1518
28-Jul 29-3ul 30-Jul 31-Jul 1-Aug 2-Aug 3-Aug a-Aug
Natural | Optimized | Natural | Optimized Natural | Optimized | Natural | Optimized | Natural Natural | Optimized | Natural | Optimiz Natural | Optimized
15117 0.4798 1.4558 0.3264 1.4097 0.3376 13713 0.3028 1.3788 03191 13491 0.2881 13229 0.2891 1.3297 0.2558
1.3033 0.3150 1.2767 0.2953 1.2596 0.3063 1.2304 0.2909 1.2145 0.2713 1.7020 0.6097 2.9712 1.5183 2.0623 1.0605
1.3989 0.1550 1.3835 0.1691 1.3486 0.1341 1.3130 0.0979 1.3095 0.0828 1.2787 0.0531 1.2620 0.0546 1.2408 0.0309
5-Aug 6-Aug 7-Aug 8-Aug 9-Aug 10-Aug 11-Aug 12-Aug
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
1.3883 0.2808 1.4116 0.3568 1.4286 0.3996 1.3965 0.3509 1.3471 0.2989 1.2993 0.1974 1.2576 0.1855 1.2207 0.2405
1.9430 0.7974 1.9227 0.7196 19091 0.7914 1.8306 0.6511 17270 0.6933 1.7017 0.5625 16379 0.5742 1.5459 0.5352
1.2147 0.0247 1.1897 0.0115 1.1899 0.0050 1.2581 0.0507 1.2962 0.0774 13164 0.0982 1.2902 0.0517 1.2393 0.0364
13-Aug 14-Aug 15-Aug 16-Aug 17-Aug 18-Aug 19-Aug 20-Aug
Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Natural Optimized
11895 0.2084 1.1617 0.1634 11368 0.1294 11143 0.1265 1.0931 0.1122 10732 0.0823 1.0544 1.0358 0.0558
14532 0.4604 13506 03193 12541 0.2767 11709 0.1992 11025 0.1271 1.0467 0.1412 1.0013 0.9639 0.0551
1.1871 0.0138 1.1409 0.0076 1.1039 0.0136 11142 0.0128 1.1051 0.0057 10746 0.0050 10411 0.0091 1.0104 0.0100
21-Aug 22-Aug 23-Aug 24-Aug 25-Aug 26-Aug 27-Aug 28-Aug
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
1.0180 0.0598 1.0005 0.0354 0.9832 0.0250 0.9664 0.0202 0.9545 0.0087 16778 0.4990 2.9627 1.6082 1.8227 0.6715
0.9330 0.0387 0.9071 0.0205 0.8845 0.0130 0.8644 0.0024 0.8465 0.0007 0.8298 0.0030 2.2559 0.8518 3.6919 2.4160
1.4241 0.1638 3.1455 15704 3.0259 1.1505 4.0745 2.3095 11.3647 9.5451 26.9707 25.7634 32.8884 31.6406 17.6805 16.3611
29-Aug 30-Aug 31-Aug 1-Sep 2-Sep 3-Sep 4-Sep 5-Sep
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
152945 0.3901043 1.3858 0.2865 1.2830 0.2865 11551 0.9576 1.1356 0.6538 1.0958 0.7947 1.0393 0.8279 0.9842 0.6840
1849235 |0.64480258 1.4079 0.3838 1.2491 0.3025 1.1095 0.8053 1.0397 0.7965 09731 0.6915 09127 0.6279 0.8607 0.5660
5.864919 |4.10378229 3.1877 17329 2.6695 11631 23503 1.9257 2.3040 1.7896 2.1960 15901 2.0497 1.5053 1.8879 1.7056
6Sep 7-Sep 8-Sep 9-Sep 10-Sep 11-Sep 12-Sep 13-Sep
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized
0.9368 0.7161 0.8966 0.6224 0.8640 0.6068 0.8364 0.5433 0.8131 0.5549 0.7934 0.5842 0.7758 0.4810 0.7602 0.5578
0.8162 0.5078 0.7794 0.5489 0.7838 0.4956 0.8525 0.5521 0.8696 0.6514 0.8485 0.5897 0.8134 0.6067 0.7741 0.4934
1.7254 1.2292 1.5706 11299 1.4280 0.9838 13011 0.7195 1.1902 0.6605 1.0952 0.8452 10151 0.5393 0.9808 0.6307
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14-sep 15-Sep 16-Sep 17-Sep 18-Sep 19-Sep 20-sep 21-Sep

Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

0.7455 0.4709 0.7320 0.4538 0.7188 0.4303 0.7065 0.5100 0.6940 0.4278 0.6826 0.4147 0.6917 0.4256 0.7398 0.5500

0.7378 05235 | 07063 04864 | 07115 04555 | 07792 03338 | 08229 06472 | 07974 05185 | 08106 05371 | 09826 0.6980

1.1248 0.8614 1.2496 0.7964 1.2572 0.8864 1.2330 0.7046 1.1916 0.8596 1.1586 0.7754 1.1578 0.7787 1.1730 0.7818
22-5ep 23-sep 24-5ep 25-Sep 26-Sep 27-sep 28-Sep 29-5ep

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

0.7554 0.5581 0.8421 0.5358 0.9404 0.6220 1.0365 0.6874 1.1944 0.9658 1.3052 0.8581 1.3674 1.0723 1.3562 1.0849
1.1017 0.7723 1.1102 0.6635 11255 0.8698 1.1015 0.6695 1.0936 0.6342 10.7247 10.0813 17.5891 17.3877 9.8326 9.6637
13118 1.0718 1.5769 12108 1.9805 1.2219 2.2870 1.3359 24354 1.8032 6.4889 5.9912 8.5096 7.9388 4.9894 4.2672
30-Sep 1-Oct 2-Oct 3-Oct 4-Oct 5-Oct 6-Oct 7-Oct
Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Natural Optimized Natural Optimize Natural Optimized
1.2969 0.9542 1.1773 0.1700 1.2374 0.2163 1.3863 0.3214 1.5022 0.4635 15845 0.5207 15918 0.4458 1.5099 0.3789
6.2029 5.6377 2.9015 1.7289 2.2535 0.8818 2.1350 0.9233 2.1156 1.0217 2.1014 1.0320 2.1161 0.9128 2.0443 1.0367
5.7725 5.3002 3.6169 1.8947 3.1421 1.5520 3.1242 1.6004 7.6494 6.1489 25.4186 24.1455 30.2901 28.9340 20.2852 18.9737
8-Oct 9-Oct 10-Oct 11-Oct 12-Oct 13-Oct 14-Oct 15-Oct

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

1.4399 0.3282 1.3532 0.3299 1.2881 0.2631 1.2656 0.2316 1.2076 0.2071 1.8389 0.6029 3.0687 1.7698 1.9005 0.8051

1.9072 0.6985 1.8051 0.6016 1.7745 0.6880 16892 0.4974 15765 0.5370 15210 0.4659 1.5920 0.4686 1.6083 0.4765

16.3206 14.8188 14.7483 13.3618 14.3347 12.9802 12.4702 111529 9.1980 7.4608 7.9880 6.2630 7.6522 5.6240 7.4519 6.0296
16-Oct 17-Oct 18-Oct 19-Oct 20-Oct 21-Oct 22-Oct 23-Oct

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimized

17236 0.5720 1.7253 0.4519 17144 0.6342 1.6830 0.4644 2.0260 0.7577 3.3395 2.2814 2.3925 2.3433 13143

1.6492 05773 1.6809 04799 16781 0.5851 17291 0.5318 18553 0.7855 1.9362 0.8112 1.9646 1.9078 0.6215

7.4072 5.6920 7.4482 5.7782 7.3653 5.5991 7.4474 4.8515 7.4316 5.7609 7.3134 5.7374 84531 6.7027 13.4410 12.0682
24-Oct 25-Oct 26-Oct 27-Oct 28-Oct 29-Oct 30-Oct 31-Oct

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

25711 1.4334 2.6796 15318 2.6292 13578 2.5363 1.4659 2.6110 14194 2.6551 16187 2.6638 1.5686 2.7915 1.6076

1.7890 0.6003 1.6431 0.5686 15113 0.3991 1.3855 0.3480 1.3430 03518 1.2682 0.2575 1.1648 0.2096 1.0947 0.1674

11.8480 10.4146 8.7991 7.2913 9.1711 7.6015 6.9885 5.2715 6.2949 4.7133 5.9132 4.3694 8.0965 6.0660 9.0093 7.4512
1-Nov 2-Nov 3-Nov 4-Nov 5-Nov 6-Nov 7-Nov 8-Nov

Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

29771 1.6847 3.0125 1.5303 3.1773 2.0319 3.2931 2.1834 3.5885 2.5129 6.1260 4.8771 6.3180 5.1842 5.0973 3.6703

1.1943 0.1961 1.3106 0.3286 13727 0.4079 15797 0.4469 2.1670 1.0331 2.7304 15004 4.3701 2.8853 3.2863 2.1982

5.7257 3.1375 4.7647 24272 4.4774 27557 4.4685 3.0406 4.5189 2.9150 4.4916 2.7266 4.2842 2.5924 3.9757 2.2810
9-Nov 10-Nov 11-Nov 12-Nov 13-Nov 14-Nov 15-Nov 16-Nov

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

4.8060 3.5922 4.6694 3.5772 4.5538 3.1026 44774 2.9603 6.4936 5.2165 8.1117 7.1117 5.2935 4.3082 4.5837 3.3500
3.1422 1.9422 11.5229 10.5560 19.0863 18.0476 11.7063 10.6288 6.8339 5.4557 5.9757 4.8146 6.1514 4.5122 6.5231 5.4916
3.6798 2.1422 3.5327 14782 3.4449 17786 5.5205 3.6550 7.5281 6.0633 5.2497 3.7623 53719 3.7031 5.9470 4.1866
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17-Nov 18-Nov 19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov

Natural | Optimized Natural [ Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

4.6373 3.4983 4.7711 3.5476 4.9577 3.7909 5.1780 4.1034 5.4225 4.1860 5.7324 4.4107 6.1215 5.0690 6.4319 5.4832

6.8663 5.9431 7.1498 6.2140 9.7985 8.8578 20.4104 19.3965 21.9968 21.1020 13.1975 12.2078 8.4870 7.2448 109112 9.8408

84686 6.9315 10.7413 9.2208 10.8529 9.5326 18.3932 17.0213 17.4201 16.0844 11.8470 10.4315 10.3684 8.8995 8.6730 7.2564
25-Nov 26-Nov 27-Nov 28-Nov 29-Nov 30-Nov 1-Dec 2-Dec

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

6.4513 5.5015 6.4030 5.0514 9.1374 8.1889 9.1685 8.2012 7.0362 5.9620 8.5219 7.4617 11.8651 11.7668 10.0751 9.8741
18.4944 17.4275 25.0210 24.0459 19.0425 18.0886 14.4285 13.5063 11.0000 9.9628 7.6894 6.2212 6.7946 6.4621 11.4421 10.1463
10.7975 9.1686 13.4020 121649 13.2082 10.9470 12.4569 10.9623 13.4205 119724 18.5991 17.2300 15.0131 14.7765 9.6899 9.1857

3-Dec 4-Dec 5-Dec 6-Dec 7-Dec 8-Dec 9-Dec 10-Dec

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Natural Optimized Natural Optimize Natural Optimized

7.7090 7.4423 7.0569 6.9833 6.9404 6.5957 6.8107 6.3461 6.5956 6.2245 6.2690 5.8504 6.3136 6.0495 10.2753 10.0300
14.5470 13.1418 13.7723 12.0581 13.5443 11.6773 11.8334 10.1177 9.664 6 81311 7.0834 6.4586 6.2957 5.9625 6.0645 5.5210

7.6470 6.4255 7.4820 6.8172 17.6987 17.5244 19.0386 18.8656 129715 12.7633 124191 12.0923 8.7724 8.2943 8.5334 7.8725

11-Dec 12-Dec 13-Dec 14-Dec 15-Dec 16-Dec 17-Dec 18-Dec

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized

10.2047 10.0881 8.1297 8.0495 7.0774 6.8503 5.5408 5.1575 5.2680 4.9749 5.0800 4.8578 4.8355 4.6512 45273 3.9280
5.9890 5.8548 5.8178 5.1219 5.5535 47771 5.3236 4.5468 5.2430 4.8032 5.4179 4.4548 5.4994 4.6098 5.1485 4.4179
7.6606 6.7058 7.7289 6.9705 9.2437 8.8601 11.7662 10.6656 9.9129 7.7021 8.6415 6.3430 12.1635 8.2762 16.5726 10.0614

19-Dec 20-Dec 21-Dec 22-Dec 23-Dec 24-Dec 25-Dec 26-Dec

Natural Optimized Natural | Optimized Natural Optimized Natural Optimized Natural Optimized Natural Optimized Natural Natural Optimized

4.2104 3.4531 3.9201 3.6043 3.6634 3.2629 3.6055 3.3825 3.6101 3.0997 3.6785 3.3651 12.3746 9.8510 16.9485 13.7240

5.1689 4.8500 5.8035 5.0492 5.5200 4.5101 5.6675 5.2047 5.7225 55381 5.6032 5.2028 5.3972 4.6826 6.4477 6.2730

14.2411 5.9772 9.7876 13401 9.4439 1.2008 14.1592 5.8676 18.7559 10.5803 16.7408 8.2675 12.8848 5.2465 10.5072 3.6997
27-Dec 28-Dec 29-Dec 30-Dec 31-Dec

Natural | Optimized Natural | Optimized Natural Optimized Natural | Optimized Natural Optimized

9.0385 6.3488 6.2471 6.1580 7.4868 7.2181 9.2409 9.1191 7.4150 7.2491
7.0936 6.4533 6.9162 6.6080 7.8049 7.5119 6.0031 5.1185 5.8356 5.5903
9.9852 4.7055 9.3109 6.4607 9.0359 6.4435 8.7571 7.2000 8.4092 7.8879
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Table S1. SPHY model (see Section “Scale and scenario setting”) input type and their values for the
generation of the surface runoff for the river network in the considered case study area.

Map Source

Dem Cantabrian Government/EU-DEM
Latitude European Space Agency (ESA)
Top soil Field capacity (SW1, 1) HiHydroSoil Database

Saturated water content (SW1, sat)
Wilting point (SW1, pr3)
Permanent wilting point (SWi, pra.2)
Saturated conductivity (Ksqt 1)
Sub soil Field capacity (SWa, 1) HiHydroSoil Database
Saturated water content (SW5, sat)
Saturated conductivity (Ksa, 2)
Land use IHCantabria
Climate Precipitation IHCantabria
Temperature (min, mean, max)

Model parameter  Physical meaning of model parameter Initial value

SW3, sat Saturated water content in groundwater zone (mm) 300

Ogw Delay in groundwater recharge (days) 119.697

BFiresh Minimum value for baseflow to occur (mm) 0

Olgw Parameter of baseflow days: alphaGw = 2.3/x (x = nr. Of 0.051
baseflow days)

U Specific aquifer yield (m/m) 0.05

kx Recession coefficient of routing 0.5
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Table S2. Variation of the environmental parameters for the present (1980-2012) and future (2041-2070)
time periods considered in the study.

Basin P (mm/year) Tmean (2C) Kc ETa (mm/year) Qumean (M3/s)
1980-2012 1531 8.5 0.78 566 13.20
2041-2070 1387 10.1 0.84 614 9.90
Variation -9% 1.62C 8% 9% -25%

The hydrological model’s performance during calibration was analysed based on the Nash-Sutcliffe
efficiency (LOG NSE) between observed and simulated flow. The performance of the SPHY model in
the Pas catchment was done using the Puente Viesgo gauge station (period 01/01/1996 to
31/12/1998) and showed good calibration performance (log NSE =0.74). In addition, the model
validation was assessed based on the LOG NSE and the percentage of Bias (PBIAS) from the observed
mean flow. The validation analysis was done using the Puente Viesgo gauge station data for the period
01/01/1980 to 30/09/2007 and the results (LOG NSE = 0.75 and PBIAS = -7.28) confirmed the
validity of the parameter values established through the calibration process.

Table S3. Percentage cover for each class and each scenario considered in the optimization simulation.

Land cover type PR Baseline CC_BAU CC_BGIN
Broadleaf forest 16% 18% 25%
Coniferous forest 3% 3% 3%
Scrubs and Shrubs 45% 55% 48%
Pasture and grassland 29% 18% 19%
Agricultural land 4% 3% 2%
Denuded rock, bare land 0,5% 0,5% 0,5%
Urban areas & Human-derived activities 3% 3% 3%
Wetlands and water-associated ecosystems 0,5% 0,5 0,5%
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Table S4. Summary of the e-flow requirements (EFR) considered in the study. The EFR define the hydrological conditions to be conserved in the
river during the daily diversion operations throughout the year. The table shows the duration, the hydrological metric used and the month of the
year relevant for each EFR. Legend: %MMF = percentage value of mean monthly flow; Qm7 = 7 times the median annual flow; Q75 = the flow
value that is exceeded 25% of the time; %MYF = percentage value of the mean yearly flow.

Supporting ES | EFR I Duration | Oct ] Nov | Dec [ Jan | Feb I Mar | Apr | May I Jun I Jul | Aug | Sept
Provision of habitat
conditinne for ith Migration Rla Month 35% MMF
ES
2events (1
kib per month) zan?

Hatching R3a Month

R3b 27 days

Recruitment R4 Month
Life-supporting
conditions for
macroinvertebrates RS S5events
ES
Primary
productivity ES R6 70 days
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Section B

S5. Human water supply objective

The aim of this objective Og, is the maximization of the yearly water supplied for human use. No limitation
to the water volume for human use has been set but rather the objective aims to identify the highest river
water volume that can be extracted, meaning the delivery capacity of the river can be assessed.

The condition is valid for each point in the basin, hence accounting for the local volumetric capacity at
each considered location in the basin. The objective function has hence been expressed as a minimization
function of the difference between the total water volume provided by the river and the total diverted

water from the river:

Os: min f(y) = V;* ~ )
Where:
VR total natural water volume per year that is available at a specific point z
in the river, in m?per year;
VZD total diverted water volume in m® per year, represents the maximum

total abstraction volume per year at a specific point z (corresponding
with a RS).

The total volume of natural flow and diverted flow is defined as follows:

V=20

(2)
VP =380 D €)
Where:

i€{l,..,365} days of the year;

x; natural flow (m3/s) at day i of the year, x; € R}. Represents the value of the
natural flow (m3/s) in the river at day i and is defined by the input scenario. This
value doesn’t change throughout the optimization process;

Vi diverted flow (m3/s) at day i of the year, y; € R}. Represents the portion of river
flow (m3/s) that is diverted from the river. It is randomly generated at each
generation;

T constant, referring to the daily time-frame of diversion (considered 24 h);

Subject to:
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Daily diverted discharge limit
0<y <x (4)

S6. Ecosystem services objectives

The ecosystem services (ES) objectives considered in this study: habitat conditions provisions for fish at
different life-stages ES (0,}5), provision of conditions for macroinvertebrates taxa richness ES (0,%5) and
primary productivity ES (O3s) are represented by the aggregation of six optimization indicators (i.e. Ogq,
OR2, Og3, Ogy, Ogs, Oge). This section provides the description of the optimization functions defining the
optimization indicators. The optimization equations presented below are expressed as minimization
functions of the sum of the scores for each e-flow requirement. For modelling convenience each indicator
has been fragmented in sub-equations, hence the equations are presented as they were incorporated in

the optimization model.

Optimization objectives for habitat condition provision for fish life-stages ES ( 0};5 )
Ofs = Oy + Ogy + Ogz + Opy (5)
Let ¢; == x; — y; be the residual water flow (m?/s) in the river (the difference between x; and y; and

represents the portion of the river flow that remains in the river after diversion), the Og, optimization
objective for fish migration is defined as follows:

Ogi: min f(q) = Oy + 0%y + 0y (6)
R shut ;
0k, : fial@) = H‘T' where i € a; (7)
- 0, Vi ifq—ai®>0i€. 4
S = _ 4 . (8)
o) otherwise
h
Where:
Sl.’”‘l score value for the day i, when i € .%4;
H set of days of the year relevant for R1;1;
a subset of .74, containing SiRl‘1 > 0 values;
n number of days in the set a;, n € N*;
a,315 reference value for the discharge threshold (in m3/s) corresponding to the 35% of the mean

monthly flow value for the given hydrograph h.

Ik, s )
Of1: frag) ===-"— where i € a, )
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R1;2 0, Vi, ifq—ai®>0,i€.%
St =Ey1 G , (10)
k -2 otherwise
h
Where:
Sl.’“‘2 score value for the day i, when i € .%
S set of days of the year relevant for R1;2;
a, subset of .%%, containing SiRl‘Z > ( values
n number of days in the set a,, n € N*;
aﬂs reference value for the discharge threshold (in m3/s) corresponding to the 35% of the mean
monthly flow value for the given hydrograph h.
3 R1;3 (11)
Op1: fia(q) = S*Y
SR1;3 — { 0, Vi, if NRY3 > Bp,i € ag (12)
Bn—w, otherwise
NRY3 = Filgzp, i€.% (13)
Where:
SRu3 score value for the R1;3 ;
NRL3 number of days i, resulting from the set .%% , that satisfy the condition;
A set of days of the year relevant for R1;3;
as subset of .74, containing Sl.m;3 values;
W max f[ az] is the maximum of the set as;
I indicator function, takes the value of 1 or O respectively if the condition is satisfied or not;
Bn reference value for the discharge threshold (in m®/s) corresponding to seven times the
median annual flow value for the given hydrograph h;
constant, number representing the optimal occurrence of events for the promotion of R1;3,
R

PrENY;

The Oy, optimization objective for fish spawning is defined as follows:

Opz: min f(q) = Ok, + OF, (14)
1 i sk ;
1=1"i
Oky: fou(q) = ESn where i € by (15)
wi | U Vi, if g —as® >0, i €
S = _ 4 . (16)
T otherwise
h
Where:
SiRZ" score value for the day i, when i € 73;;
7N set of days of the year relevant for R2;1;
by subset of 74;, containing SiRz;l > 0 values;
n number of daysin the set by, n € N*;
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ay?

Where:

SiR2;2
1773
b,

n

a5

reference value for the discharge threshold (in m3/s) corresponding to the 50% of the mean
monthly flow value for the given hydrograph h.

yn  sRz2 3
01%22 faa (@) = &n‘— where i € b, (17)
. 50 - o
GR22 _ 0, " Vi, ifq—ap’ >0, i€, (28)
¥ @ otherwise

score value for the day i, when i € 73;;
set of days of the year relevant for R2;2;
subset of 74,, containing SL-RZ;2 > (0 values;
number of days in the set b,, n € N*;

reference value for the discharge threshold (in m?/s) corresponding to the 50% of the mean
monthly flow value for the given hydrograph h.

The Og3 optimization objective for fish hatching is defined as follows:

Where:

S-RB:Z
7'/'2

C2

Ogz: min f(q) = Ogs + Of3 + OR3 + O3 (19)
n Rl .
Oks: fa1(q) = —E‘“:* where i € ¢; (20)
R _ 0, " Vi, ifq—ap®>>0,i€ %
LE N ; (21)
L P otherwise
h
score value for the day i, when i € ¢;;
set of days of the year relevant for R3;1;
subset of ¢, containing SF‘I > 0 values;

number of days in the set ¢;, n € N*;

reference value for the discharge threshold (in m?/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

S SR :
0f3:  fap(q) ==="— where i € c, (22)
R3;2 0, Vi, ifqi—a§5>0,ie”@
i DA p -
as® otherwise

score value for the day i, when i € ©,;
set of days of the year relevant for R3;2;
subset of @,, containing S,»R3;2 > (0 values;

number of days in the set ¢;, n € N*;
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oS

Where:
SiR3;3

@s

C3

o

Where:
R3;4
Si+w

R3;4
Ni+w

reference value for the discharge threshold (in m3/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

3 S ghas 3
033: fa3(q) =="21— n' where i € ¢ (24)
R3;3 0, ) Vi, ifgi—ap®>0, i€ @
S; = _ i . (25)
Pl otherwise
h
score value for the day i, when i € &;;
set of days of the year relevant for R3;3;
subset of ¢, containing Sf3;3 > 0 values;

number of days in the set c3, n € N*;

reference value for the discharge threshold (in m?/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

Ofs:  faa (@) =we— ST wherei+w € G, (26)
W, : R3;4
sk _ [ re if N®9% > w, (27)
eR {N ¢ otherwise
NR3% = 3w las 2B i+we @, we{o,..,27} (28)

reference factor for fish hatching score;

number of days i, when i + w € ¢, that satisfy the condition;

set of days of the year relevant for R3;4 ;

indicator function, takes the value of 1 or O respectively if the condition is satisfied or not;
number of consecutive days representing the optimal time length for R3;4;

constant, target number of days for R3;4;

reference value for the discharge threshold (in m3/s) corresponding to seven times the
median annual flow (7mQ) for the given hydrograph h.

The Og4 optimization objective for fish recruitment is defined as follows:

Where:
SiR4;1

Ogy: min f(q) = Oy + 034 + 034 + Oty + 034 (29)
Zp SR4;1 i
03s: fan (@) = ”‘T‘ where i € dy (30)
B 0, Vi, ifq—ap®>>0, i€
S§l=qq_a herwi (31)
o otherwise

score value for the day i, when i € &4;
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Where:

R4;2
S;

()

T

Where:

Where:

R4;4
Si

N

set of days of the year relevant for R4;1;

subset of ¢/;, containing SiR"”1 > 0 values;
number of days in the set d;, n € N*;

reference value for the discharge threshold (in m®/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

5 D s

0%4: fua(q) ==L wherei € d, (32)
Ra2 0, Vi, ifgg—ap> >0, i€ &

St =14_ 4 ; (33)

557 otherwise

score value for the day i, when i € &;

set of days of the year relevant for R4;2;

subset of @4, containing SiR"’;2 > 0 values;

number of days in the set d,, n € N*;

reference value for the discharge threshold (in m3/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

3 A 1S'R4;3 g
i=
Ora: fap(@) ==="— where i € d; (34)
R4 0, Vi, ifqg—ap®> >0, i€ &4
ST = _a . (35)
L P otherwise
h
score value for the day i, when i € &4}
set of days of the year relevant for R4;3;
subset of ¢, containing SiR""'3 > 0 values;

number of days in the set d;, n € N*;

reference value for the discharge threshold (in m®/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

$B sRae .
ORa:  fua(@) = MT' where i € d, (36)
R4;4 0, Vi, ifqi—a,§5>0, i € O
S . ; (37)
o otherwise

score value for the day i, when i € &;

set of days of the year relevant for R4;4;
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dy

55

Where:
SiR4;5

%

subset of ¢, containing SiR"""’ > 0 values;
number of days in the set dy, n € N*;

reference value for the discharge threshold (in m?/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

5 IR, S herei € d (38)
ORs: fas(q) = m wherel € ds
GRes _ 0, u Vi, if g—ap® >0, i € % o
rs b e e (39)
a’SISI otherwise

score value for the day i, when i € &%
set of days of the year relevant for R4;5;
subset of ¢, containing SiR"';5 > 0 values;
number of days in the set d5, n € N*;

reference value for the discharge threshold (in m®/s) corresponding to the 55% of the mean
monthly flow value for the given hydrograph h.

Optimization objective for hydrological conditions for macroinvertebrates’ taxa richness ES ( Of;s )

The 0% corresponds to the value of the Ogs:

. SRS .
Ogs: min f(q) =1 — €@ (40)
YR if NRS > i € &
SRS fs(q) = {NRs ifN=2ypi€ < (41)
L otherwise
NRS = $i100, i€ (42)

reference factor for R5;

number of days i, when i € % that satisfy the condition;

indicator function, takes the value of 1 or O respectively if the condition is satisfied or not;
set of days of the year relevant for RS5;

constant, number representing the optimal occurrence of events for the promotion of RS,
Yr ENY;

reference value for the discharge threshold (in m3/s) corresponding to the 75-percentile
flow (Q25) value for the given hydrograph h.

Optimization objective for primary productivity ES ( 0%5)

The O35 corresponds to the value of the Ogg:
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Where:

R6
Ri+u

NR6

- B

oR

10

101 0

Af

100 _

Ré
Ops: min f(q) =152 itueF (43)
R
OR, . R6 . -
B fo@ = { ke N2 G+ U8 & (44)
’ otherwise
NR6 = 3, I gpuzgt® i+u€Z uef0,..,70} (45)

reference factor for R6;

total number of days i, when i + u € .Z that satisfy the condition;

indicator function, takes the value of 1 or O respectively if the condition is satisfied or not;
range of days representing the optimal time length for R6;

set of days of the year relevant for macrophytes seedling survival;

constant, number representing the optimal number of days for the promotion of primary
producers density and growth, oz € N*;

reference value for the discharge threshold (in m3/s) corresponding to the 10% of the
average yearly flow calculated from the historical flow record.

m— t=850
t=900

=950

= t=1000 (*)

0 200 400 600 800 1000
Generation

Figure S1. The Running Metric Indicator (Blank & Deb, 2020) for a test RS simulation. The Af indicator measures the convergence
of the objective space at each generation.

185



Supplementary Materials - Section C

Section C
2041 CC_BGIN 2041 CC_BAU

Baseline 2006

2070 CC_BGIN 2070 CC_BAU

Figure S2. Maps showing the spatial distribution of the optimization objective scores for the Habitat condition provision for fish life-stages ES under each considered scenario.
Values closest to zero indicate best achievement of the objective at a specific RS. The classification scheme follows the quantile chromatic classification approach: Red shades =
highest scores (worst results), light-green shades = lowest scores (best results). Note: each map presents min-max values that differ from each other as figure aim is to highlight

scenario-specific spatial variation of the scores.
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2041 BGIN_CC

Baseline 2006 i =

2070 BGIN_CC

2041 BAU_CC

2070 BAU_CC

Figure $3. Maps showing the spatial distribution of the optimization objective scores for the life-supporting conditions for Macroinvertebrate taxa richness ES under each

considered scenario. Values closest to zero indicate best achievement of the objective at a specific RS.
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Figure S4. Maps showing the spatial distribution of the optimization objective scores for the Primary productivity ES under each considered scenario. Values closest to zero indicate
best achievement of the objective at a specific RS. The classification scheme follows a quantile chromatic classification approach: Red shades = highest scores (worst results), light-
green shades = lowest scores (best results). Note: each map presents min-max values that differ from each other as figure aim is to highlight scenario-specific spatial variation of
the scores.
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Figure S5. Monthly averaged optimized instream flow for the PR scenario (2006) using the quantile (25-100%) ification method: yells isch

discharge values).
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Figure S6. Monthly averaged optimized instream flow for the CC_BAU 2041 scenario using the quantile (25-100%) i ion method: y i values; dark

green=high discharge values).
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Figure $7. Monthly averaged optimized instream flow for the CC_BGIN 2041 scenario using the quantile (25-100%)
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Figure 8. Monthly averaged optimized instream flow for the CC_BGIN 2070 scenario using the quantile (25-100%) ification method: y

green=high discharge values).
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Figure S9. Monthly averaged optimized instream flow for the CC_BAU 2070 scenario using the quantile (25-100%) i ion method:

green=high discharge values).
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Month

Average discharge (m3/s,

Figure S10. Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the 2041 BGIN_CC scenario. On the right-hand side of the box a colour-based classification of the frequency of appearance of
each value range; on top of the box a regular box-plot shows the yearly quartiles, extremes and outliers.
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Figure S11. Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the 2041 BAU_CC scenario. On the right-hand side of the box a colour-based classification of the frequency of appearance of each
value range; on top of the box a regular box-plot shows the yearly quartiles, extremes and outliers.

194



Supplementary Materials - Section C

Septembe:

Figure S12. Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the 2070 BGIN_CC scenario. On the right-hand side of the box a colour-based classification of the frequency of appearance of

each value range; on top of the box a regular box-plot shows the yearly quartiles, extremes and outliers.

Figure S13. Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for
the 2070 BAU_CC scenario. On the right-hand side of the box a colour-based classification of the frequency of appearance of each

value range; on top of the box a regular box-plot shows the yearly quartiles, extremes and outliers.
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Figure $14. Location of the representative points in the
basin elicited for results presentation and discussion.
Complete optimization results available at
https://doi.org/10.6084/m9.figshare.19636449.v4
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Figures $15-516. Flow series showing the daily profile of the discharge (in m3/s) optimized for diversion (light blue thin line) plotted with respect to the river natural discharge
{purple background shape) for the each of the four RS locations analyzed under the Baseline 2006 (PR) scenario (top) and 2041 BAU_CC scenario (bottom). More pronounced
differences between the lines indicate the highest trade-off periods between the natural discharge and water for municipal use.
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between the lines indicate the highest trade-off periods between the natural discharge and water for municipal use.
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