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Summary 

Water management faces increasing challenges due to environmental changes and competing human 

demands. In this context, environmental flows (e-flows) are of critical importance as they define the water 

regimes necessary for maintaining riverine ecosystems. Models have become crucial tools for supporting 

decision-making in river basin management by enabling sustainable resource allocation considering 

ecological needs. Optimization modeling is one such approach for addressing the challenges of sustainable 

resource allocation, although the development of these models faces several obstacles. This thesis 

investigates the following research topics: 

1. Trade-offs in scale representation in optimization modeling for water resource management; 

2. Suitability of optimization models for mediating the incorporation of e-flows into management at 

different scales to support the implementation of adaptive management implementation; 

3. Applicability of optimization models at the basin scale under future change. 

This dissertation is based on three consecutive articles: 

The first research topic is addressed in Chapter 2 (Paper 1). The chapter presents a literature review to 

understand and acknowledge the trade-offs in decision-making when applying optimization models for 

water management at different spatial and temporal scales. It outlines a framework that ties all model-

related decisions into practical steps for optimization model development and emphasizes the need for a 

shift to model perception and model formulation stages, away from solely result-oriented approaches. 

The chapter provides a series of key questions to support the problem perception and formulation stages 

to ensure transparency during model development. 

The second research topic is expanded in Chapter 3 (Paper 2) and builds on insights from an optimization 

assessment developed for a pilot application at various river water diversion sites in the Pas River basin 

(Northern Spain). The presented study shows how ecological requirements derived by experts can be 

translated into model parameters to achieve diversion objectives. The procedure can be used to identify 

the temporal scales in which the major trade-offs in water availability manifest themselves, thus guiding 

management efforts. In addition, the chapter provides suggestions for the most common challenges and 

limitations in applicability. 

The second and last research topics are addressed in Chapter 4 (Paper 3), which further evaluates the use 

of optimization to balance water diversion for human consumption and ecosystem services. This chapter 
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also examines the potential to integrate future environmental scenarios, such as climate and land use 

change. An evolutionary optimization model is proposed to guide diversion management in the Pas River 

basin. The findings from the study can help managers identify and track hotspots in the basin where 

ecological needs are being lost over different time periods. The chapter provides recommendations to 

enable the adoption of adaptive management through optimization modeling. 

Overall, this thesis provides new insights into the use of optimization modeling to solve problems of 

sustainable water resource allocation, including the consideration of e-flows. Combining a comprehensive 

review with a hands-on learning-by-practice modeling approach, the major challenges and limitations in 

applying optimization models to water resource management are explored with the goal of improving 

decision-making processes at modeling-management interface. 
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Zusammenfassung 

Das Wasserressourcenmanagement steht zunehmend vor Herausforderungen, die durch 

Umweltveränderungen und konkurrierende menschliche Ansprüche entstehen. In diesem 

Zusammenhang spielen ökologische Mindestabflüsse (e-flows) eine zentrale Rolle, da sie die 

Abflussregimes definieren, die notwendig sind, um Flussökosysteme zu schützen und zu erhalten. Modelle 

haben sich dabei zu wichtigen Werkzeugen entwickelt, um die Entscheidungsfindung im 

Flussgebietsmanagement zu unterstützen und eine nachhaltige Verteilung der Ressourcen unter 

Berücksichtigung ökologischer Anforderungen zu gewährleisten. Optimierungsmodelle stellen eine 

vielversprechende Herangehensweise dar, um die komplexen Herausforderungen bei der 

Ressourcenverteilung zu bewältigen. Ihre Entwicklung ist jedoch noch immer mit einer Vielzahl von 

Herausforderungen verbunden. Diese Dissertation behandelt daher drei zentrale Themen: 

- Abwägungen bei der Skalenrepräsentation in der Optimierungsmodellierung für das 

Wassermanagement; 

- Eignung von Optimierungsmodellen zur Integration von ökologischen Mindestabflüssen in das 

Wassermanagement auf verschiedenen Maßstabsebenen; 

- Anwendbarkeit von Optimierungsmodellen auf Einzugsgebietsebene für ein adaptives 

Management unter zukünftigen Umweltveränderungen. 

Die Dissertation basiert auf drei aufeinander aufbauenden wissenschaftlichen Studien: 

Das erste Forschungsthema wird in Kapitel 2 (Paper 1) behandelt. Dieses Kapitel bietet eine 

Literaturübersicht, um die Abwägungen bei der Entscheidungsfindung durch Optimierungsmodelle, die 

für das Wassermanagement auf verschiedenen räumlichen und zeitlichen Skalen angewendet werden, zu 

verstehen und anzuerkennen. Die Studie stellt einen integrativen Rahmen vor, der modellbezogene 

Entscheidungen in praktische Schritte für die Entwicklung von Optimierungsmodellen überführt. 

Besonders hervorgehoben wird die Notwendigkeit eines Paradigmenwechsels, weg von rein 

ergebnisorientierten Ansätzen hin zu einer bewussten Modellwahrnehmung und -formulierung. Das 

Kapitel stellt Schlüsselfragen bereit, welche die Transparenz und Nachvollziehbarkeit während der 

Modellentwicklung gewährleisten. 

Die Erkenntnisse aus der ersten Studie fließen direkt in das zweite Paper (Kapitel 3) ein.  Die Studie basiert 

auf Erkenntnissen aus einer Optimierungsbewertung, die für eine Pilotanwendung an verschiedenen 

Wasserumleitungsstandorten im Einzugsgebiet des Pas-Flusses (Nordspanien) entwickelt wurde. Die 
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vorgestellte Studie zeigt, wie von Experten gestellte ökologische Anforderungen in Modellparameter 

übersetzt werden können, um Umleitungsziele zu erreichen. Das Verfahren kann verwendet werden, um 

die zeitlichen Skalen zu ermitteln, in denen sich die wichtigsten Kompromisse bei der Wasserverfügbarkeit 

manifestieren, um so die Bewirtschaftungsmaßnahmen besser steuern zu können. Darüber hinaus zeigt 

das Kapitel die Herausforderungen und Grenzen der Anwendbarkeit. 

Das zweite sowie das letzte Forschungsthema werden in Kapitel 4 (Paper 3) behandelt, in dem die 

Verwendung von Optimierungsmodellen zur Abwägung der Anforderungen an die Wasserumleitung,  den 

menschlichen Verbrauch und den Erhalt von Ökosystemdienstleistungen weiter untersucht wird. Dies 

erfolgt durch die Untersuchung der Auswirkungen zukünftiger Szenarien von Klima- und 

Landnutzungsänderungen. Es wird ein evolutionäres Optimierungsmodell vorgeschlagen, um das 

Wasserumleitungsmanagement im Pas-Einzugsgebiet zu steuern. Die Ergebnisse der Studie können den 

zuständigen Ämtern und Behörden dabei helfen, kritische Bereiche oder "Hotspots" im Einzugsgebiet zu 

identifizieren, in denen ökologische Bedürfnisse über verschiedene Zeiträume hinweg verloren gehen. Das 

Kapitel enthält Empfehlungen, die die Einführung eines adaptiven Managements durch 

Optimierungsmodellierung ermöglichen sollen. 

Insgesamt bietet die Dissertation neue Erkenntnisse zur Anwendung von Optimierungsmodellen bei der 

Bewältigung von Problemen bei der Umsetzung von Strategien der nachhaltigen Verteilung von 

Wasserressourcen, einschließlich der Berücksichtigung von e-flows. Durch die Kombination einer 

umfassenden Überprüfung mit einem praxisorientierten, lernenden Modellierungsansatz werden die 

wichtigsten Möglichkeiten, Herausforderungen und Einschränkungen bei der Anwendung von 

Optimierungsmodellen im Wassermanagement untersucht, mit dem Ziel, Entscheidungsprozesse an der 

Schnittstelle von Modellierung und Management zu verbessern. 
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Thesis at a Glance 

This thesis explores the role of optimization modeling in addressing water allocation problems and resources for 

environmental flows (e-flows) and its applicability to river management across various scales. 

Paper 1 

Aim: Investigate the stages of optimization problem development for water management from a scale-wise 

perspective, focusing on trade-off decisions linked with data availability and modeling and the implications of each 

choice. 

Method: Literature review of multi-objective optimization studies that address water management problems 

considering environmental flows. 

Conclusions: The proposed framework helps clarify the role of scale in water management and emphasizes the need 

for transparency. At the same time, it provides clear steps for defining the optimization problem and implementing 

the desired assessment scales. 

Paper 2 

Aim: Demonstrate how an optimization assessment can be integrated into the adaptive management cycle to 

effectively incorporate environmental flow requirements into water diversion management. The approach is 

designed to balance ecological conservation needs with human water demands. 

Method: Multi-objective optimization (NSGA-III), hydrological scenarios, and e-flow requirements for three key 

biological groups within the case study area (Pas River segments). 

Conclusions: Optimization assessments can facilitate the incorporation of e-flows into water management plans. 

Water management must take into account seasonal variations in water availability for diversion. The proposed 

methodology can be applied to other river basins; however, detailed monitoring and flexible thresholds are required. 

Paper 3 

Aim: Explore the application of the optimization approach for river water diversion at the basin scale under future 

climate and land use change scenarios to identify modeling options and management practices that best facilitate 

the implementation of adaptive management.  

Method: Multi-objective optimization (NSGA-III), land use and climate scenarios (BAU and nature-based), and e-flow 

requirements for three Supporting ES within the case study area (Pas River basin, 500-m segment resolution). 

Conclusions: Seasonal shifts and spatial heterogeneity in diversion volumes challenge future management of water 

diversion; adaptive management is better promoted by reviewing seasonal planning and setting local diversion 

targets. 

The conclusion section examines the key challenges and limitations of the optimization approach and integrates a 

comprehensive review with practical insights for improving water management decision-making. 
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1. Introduction 

As a renewable resource, the availability of water resources is highly variable in quantity and unevenly 

distributed across the landscape (Ciampittiello et al., 2024; Feng et al., 2017). Climatic and environmental 

factors, such as precipitation patterns and landscape features, significantly influence the timing of water 

flows and the location of natural reservoirs (Mittal et al., 2016; Sabater et al., 2023; Zolfagharpour et al., 

2022). In an attempt to control this natural variability in supply and meet societal needs, water resource 

management and planning involve implementing various actions across the riverscape, including water 

impoundments, flow diversions, and flow regulation infrastructures or water pumping and transferring (A. 

C. Horne, Morris, Fowler, et al., 2017; Zeiringer et al., 2018). However, water availability is often limited in 

both time and space compared to human consumption demands while remaining essential for supporting 

ecological processes and sustaining species (Derepasko, Guillaume, et al., 2021; Docker & Johnson, 2017; 

Poff & Zimmerman, 2010). 

In the context of rivers, the understanding that both river and adjacent land ecosystems need adequate 

water flows to function properly was formally recognized with the introduction of the concept of 

environmental flows (e-flows) during the “10th International River Symposium and International 

Environmental Flows Conference” that took place in 2007 in Brisbane (Australia) and ever since known as 

the “Brisbane Declaration”. The concept of e-flows emphasizes the intricate connection between 

ecosystem processes and river flow dynamics, including elements like base flows, high flows, and water 

temperature. Recognizing these components is essential to maintaining ecosystem health and 

conservation. The most recent definition of e-flows (Arthington et al., 2018) states that e-flows correspond 

with "the quantity, timing, and quality of water flows required to sustain freshwater and estuarine 

ecosystems and the human livelihoods and well-being that depend on these ecosystems." 

The acknowledgment of e-flows importance also marks a significant milestone in river flow preservation 

and restoration efforts. It is key in shaping protection measures and policies for rivers and related water 

bodies, such as the European Water Framework Directive. This is particularly relevant for many rivers 

worldwide, which face intense exploitation to meet human demands. In fact, it is well established that 

heavy river regulation can cause various negative impacts on river ecosystems and habitats, threatening 

the survival of species and communities while disrupting ecosystem services that benefit society (Ekka et 

al., 2020; Nilsson & Berggren, 2000; Opperman et al., 2019). The most evident impacts of river regulation 
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and water management in river basins stem from damming and impoundment infrastructure able to 

drastically alter flow regimes, though the full extent of these impacts is not fully understood (Brown et al., 

2024; Olden & Naiman, 2010; Zargari et al., 2023). While damming significantly disrupts natural flow 

patterns, other perturbations like weirs, water abstraction through pumping, and flow diversion also affect 

ecosystem integrity by reducing flow magnitude and hampering peak flow events (Brown et al., 2024; 

McKay & King, 2006; Olden & Naiman, 2010; Yu et al., 2020; Zargari et al., 2023). These disturbances can 

interfere with the environmental cues that trigger phenological responses in certain species, as supported 

by evidence (Bunn & Arthington, 2002; Lytle & Poff, 2004). 

Several approaches have been developed to capture the fundamental components of the relationship 

between river ecosystems and river flows, referred to in this thesis as environmental water requirements 

(sensu A. C. Horne, Webb, Stewardson, et al., 2017). Well-represented approaches in the literature are 

primarily based on hydrologic and hydraulic modeling of flow regimes and habitat range, ecological 

processes, phenological stages, and growth/richness indicators or indices (Webb, Arthington, et al., 2017). 

While no single approach is definitive, they all share the understanding that the presence of specific 

conditions is essential for sustaining the ecosystems (Poff et al., 2017). The most widely applied 

approaches for ecological conservation in rivers are based on two main concepts: the "natural flow 

regime" and the "designer flow." The former emphasizes the need to allow the river to flow according to 

its natural conditions (e.g., peak flows, low flows, and their timing), reducing the interference to a 

minimum (Poff et al., 1997). At the same time, the latter involves the artificial delivery of appropriate 

water volumes at specific times (frequency) to mimic the natural flow of the river but with the ultimate 

goal of achieving desired outcomes such as particular ecosystem services (Acreman et al., 2014). The 

"designer flow" approach is particularly suited for regulated and heavily regulated rivers, such as those 

impaired by dams or artificial impoundments. 

In view of the urgent need for sustainable river water allocation, research has recently focused heavily on 

strategies for incorporating environmental flows (e-flows) into regulated river management decisions. 

However, despite their crucial role in promoting the well-being of both ecosystems and society, the 

practical application of this concept remains limited (Arthington et al., 2024). This gap is further 

compounded by the complex array of often conflicting objectives that water management must balance. 

Most river management efforts prioritize ensuring sufficient water for drinking, industrial use, and 

agriculture. Achieving these objectives demands decision-making across different scales and involves 

coordination across multiple levels of governance (Docker & Johnson, 2017; L. O’Donnell & E. Garrick, 
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2017). For instance, local governance includes municipalities' responsibilities to protect water diversions 

from river segments, while basin-scale governance offers a broader perspective on the watershed cycle, 

encompassing all institutions involved in water use and allocation. 

To achieve these management objectives, different approaches are used to implement e-flows depending 

on the governance level (local, regional, or national). These include demand-based strategies, such as caps 

on water abstraction, and ecosystem-based strategies, such as allocating certain amounts of water to the 

environment (Docker & Johnson, 2017). Both strategies fall under the broader framework of Integrated 

Water Resource Management (IWRM), which marks a pivotal shift in water management history—from 

traditional methods to a more holistic approach that considers society, the economy, and ecosystems as 

interconnected components (Ibisch et al., 2016). 

Nearly two decades have passed since adaptive water management emerged as a promising paradigm for 

sustainable water resource management, offering an alternative to the traditional IWRM approach (Pahl-

Wostl, 2006; Webb, Watts, et al., 2017). At its core, it involves continuously monitoring the outcome of 

decisions and adjusting actions to better achieve desired goals, making it especially effective at managing 

uncertainties and changing environmental conditions. In this way, adaptive water management provides 

a flexible framework for sustainable water resource management that allows for adjustments and 

improvements in each management cycle. However, despite its promise, there is currently no clear 

guidance on how to integrate adaptive management into practical water management practices 

successfully (Webb, Watts, et al., 2017). Consequently, water managers must monitor outcomes closely 

to ensure set goals are pursued as expected, especially in relation to maintaining ecosystem functions and 

integrity while balancing the diverse water needs of multiple stakeholders. This underscores the 

importance of tools that support informed decision-making before implementation takes place and 

facilitate a sustainable balance among competing demands. 

Among the plethora of decision support tools available to address river water resource management 

problems (Wardropper & Brookfield, 2022), optimization provides the technical structure for navigating 

complex and often conflicting objectives (Derepasko, Guillaume, et al., 2021; Horne et al., 2016; Horne et 

al., 2017) such as water supply for human consumption, agricultural irrigation, industrial use, and the 

protection of aquatic ecosystems. Unlike most decision support tools that focus on a single component or 

management goal, multi-objective optimization allows decision-makers to consider multiple criteria 

simultaneously, capturing the nuanced trade-offs between them. For example, maximizing water 
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allocation for agriculture may conflict with the goal of preserving environmental flows essential for aquatic 

ecosystems. To address these challenges, multi-objective optimization generates a range of optimal 

solutions, known as the Pareto front. Each point on this front represents a scenario where improving one 

objective necessitates sacrificing another. Decision-makers can then assess these trade-offs to identify a 

solution that aligns with their priorities and overarching management goals. 

One of the key strengths of the optimization approach is its flexibility, allowing the incorporation of data 

from different spatial and temporal scales. This adaptability makes it especially valuable for addressing 

environmental conservation challenges in river management. For example, during water scarcity, 

managers must balance limited resources while maintaining the ecological integrity of the river system. 

Multi-objective optimization models can simulate various scenarios, accounting for factors such as 

seasonal water availability, sector-specific demands, and ecosystem requirements. By offering a range of 

feasible allocation strategies, these models help decision-makers assess trade-offs and identify solutions 

that optimally balance competing needs. 

This approach is beneficial when implementing management strategies in the context of climate change, 

where traditional methods based on historical data may no longer be reliable (Derepasko et al., 2023). By 

incorporating optimization into management frameworks, decision-makers can better navigate future 

uncertainties and make informed decisions that align immediate needs with long-term sustainability. 

Optimization has been widely applied to managing water infrastructure, such as dams, reservoirs, and 

irrigation systems (Derepasko, Guillaume, et al., 2021). These infrastructures often serve multiple 

purposes, including flood control, hydropower generation, and water supply, each with distinct objectives. 

For example, a dam may be operated to maximize hydropower output while also ensuring sufficient flow 

downstream to support fish populations and aquatic ecosystems. Optimization models can be used to 

determine the ideal operational schedule for such infrastructure and balance these competing objectives. 

By simulating various operational strategies, these models can identify schedules that offer the best trade-

offs between hydropower generation, flood risk reduction, and environmental sustainability. 

In addition to their technical benefits, optimization assessments can enhance decision-making in river 

basin management by fostering transparency and stakeholder engagement. Defining objectives and 

evaluating trade-offs require input from diverse stakeholders, including government agencies, local 

communities, industry representatives, and environmental groups (Horne et al., 2016; Horne et al., 2017). 
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Optimization models can provide a structured framework for incorporating these varied perspectives, 

ensuring that all relevant interests are taken into account (Castelletti et al., 2008; Mayer & Muñoz‐

Hernandez, 2009; Nikoo et al., 2017). 

By offering decision-makers a range of potential solutions rather than a single "ideal" outcome, these 

models encourage a more inclusive approach to river management. Stakeholders gain insight into how 

different priorities can be balanced and actively participate in discussions about which trade-offs are most 

acceptable. This inclusive process improves the quality of decisions and increases their legitimacy and 

acceptance among affected communities, leading to more sustainable and widely supported management 

outcomes (Whitley et al., 2024). 

Although optimization assessments provide a flexible technical structure for tackling the complex and 

interconnected challenges of river basin management—allowing a comprehensive overview of the trade-

offs associated with various management decisions and enabling the development of strategies that 

effectively balance competing demands—several research questions remain unresolved. This thesis 

explores gaps related to scale, model reproducibility, and practical support for adaptive management 

strategies. Addressing these issues is essential for developing reliable optimization assessments and 

improving water management practices, ultimately enhancing the resilience and sustainability of water 

resource management. 

One of the primary challenges for water management research is the issue of scale. There is a significant 

lack of understanding of the scales at which water management problems should be addressed, leading 

to inconsistencies in the input and output data  (Lovell et al., 2002). This inconsistency affects the accurate 

representation of real-world conditions in simulated models. For example, management decisions made 

at the local level may overlook broader regional or even global impacts. At the same time, optimization 

models developed at larger scales may fail to capture critical local nuances. A unified approach is necessary 

for scaling results and, consequently, for the reliability and applicability of models used to inform water 

management policies (Cilliers et al., 2013). To meet this challenge, it is crucial to analyze the impact of 

modeling decisions at the model scales to avoid trade-offs between modeling capability and management 

needs. This thesis addresses the issue of trade-offs in scale representability within optimization modeling 

for water resource management and contributes to supporting model accuracy and relevance, ultimately 

enabling more effective decision-making that better reflects the complexities of real-world water 

management scenarios. 
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Another critical gap in water management research is the lack of flexible, easy-to-apply models. The 

increasing complexity of environmental systems and the necessity for effective decision-making have 

highlighted the need for structured modeling frameworks that enhance models' comparability, 

transparency, and transferability. In water resources management, such frameworks are essential for 

developing robust and adaptable strategies; however, many models lack the technical structure to 

accommodate diverse data types and outputs tailored to specific management needs. This results in using 

various methodologies, assumptions, and datasets or customizing indicators to fit modeling needs. Such a 

lack of versatility complicates the comparison of results across studies, reducing their applicability in 

decision-making. Additionally, the absence of a standardized framework for optimization model 

development hinders the reproducibility of results and limits the adaptability of models to different 

contexts. Since optimization offers flexibility in problem formulation and can efficiently process 

information in formats relevant to water management, this thesis explores the suitability of optimization 

models for integrating environmental flows (e-flows) into management practices at different scales. 

Lastly, a major challenge in water management research is identifying practical tools that enable the 

implementation of adaptive management strategies. While adaptive management is necessary for 

handling uncertain future environmental conditions (Williams & Brown, 2016), there is scarce evidence on 

how optimization approaches can facilitate its application. Optimization techniques, which focus on 

efficiently allocating resources and achieving specific objectives, have the potential to play a key role in 

adaptive management implementation by identifying optimal strategies under changing conditions. 

However, the integration of optimization methods into adaptive management practices has not yet been 

fully researched. To address this gap, future research must focus on developing and testing optimization 

frameworks that can be easily integrated into adaptive management processes. This thesis addresses this 

gap by extending the applicability of optimization models across different scales and analyzing the spatial 

and temporal information generated by these models to determine how they can best support adaptive 

management in the face of future environmental changes. 

Overall, this thesis aims to contribute to innovation in water resource management by advancing 

knowledge and providing new insights into the applicability of optimization models to solving sustainability 

problems in water resource allocation. It focuses on critical challenges in water resource management, 

such as incorporating e-flows, solving scale issues, and supporting adaptive management strategies. To 

achieve this, the dissertation is organized around three core research questions: 
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1. What are the implications of model development choices on spatial and temporal scales when 

optimization models are used to reconcile e-flows with human water needs? 

2. How can optimization approaches mediate the incorporation of e-flows into water diversion 

management? How can the resulting information support the implementation of adaptive 

management? 

3. How can optimization models for river water diversion at the basin scale take future 

environmental changes into account while ensuring essential ecosystem services?  

To address these questions, both innovative descriptive and experimental approaches were used. The 

descriptive approach consisted of a comprehensive review of studies that apply optimization in water 

management with a focus on environmental aspects to evaluate modeling decisions and their implications 

for spatial and temporal scales. The experimental component, based on a "learning by doing" method, was 

conducted at two spatial levels (river segment and river basin) and was critical for evaluating the 

opportunities and limitations of optimization models use in integrating environmental flows (e-flows) and 

evaluating their potential to support adaptive water management practices. 

1.1 Thesis structure 

The structure of the dissertation is organized as follows: 

• Chapter 2: lays the foundation of my research by providing a comprehensive literature review that 

addresses the first research question and aims to deepen the understanding of trade-offs involved 

in decision-making when applying optimization models for water management at different spatial 

and temporal scales. It introduces a framework that harmonizes all model-related decisions into 

practical steps for optimizing model development. This framework emphasizes the importance of 

moving from result-oriented approaches to holistic strategies focused on model perception and 

formulation. Additionally, the chapter outlines key considerations and presents a series of critical 

questions designed to support the problem perception and formulation stages. These elements 

are essential for ensuring transparency and robustness in model development, ultimately 

enhancing the effectiveness of optimization models in addressing complex water management 

challenges and setting the stage for the subsequent exploration of optimization models in real-

world scenarios addressed in later chapters. 



 
26 

 

• Chapter 3: builds on the framework from Chapter 2 by partially addressing the second research 

question by exploring the role of optimization within an environmental management cycle. While 

optimization is used to solve resource allocation problems as part of an integrated resource 

management approach, this chapter shows its potential for effectively incorporating 

environmental flows into decision-making processes. The chapter builds on the findings of an 

optimization assessment conducted at various river water diversion locations within the Pas River 

basin in Northern Spain. It demonstrates how expert-based ecological requirements can be 

translated into model parameters to achieve specific diversion goals, ensuring that human needs 

and ecological health are addressed. The approach presented identifies the temporal scales at 

which significant trade-offs in water availability occur and provides valuable insights to guide 

management action. In addition, the chapter examines the challenges and limitations of the 

optimization approach and offers practical suggestions for overcoming common obstacles that 

arise during its implementation. In this way, the potential of optimization methods to support 

adaptive management practices is emphasized, ultimately promoting a more sustainable balance 

between water resource use and environmental conservation. The insights generated here 

directly inform the broader-scale applications discussed in Chapter 4, providing a critical bridge 

between localized analysis and basin-wide strategies. 

• Chapter 4: expands on the second research question while addressing the third research 

question. It investigates the suitability of optimization models for identifying appropriate scales 

for implementing adaptive water management approaches, which aid water managers in reducing 

uncertainty in decision outcomes. Implementing these strategies at larger scales—e.g., at basin or 

multi-basin levels—is a major challenge. This chapter explores the use of optimization models to 

balance water diversion needs for human consumption with the provision of ecosystem services, 

considering future environmental scenarios, including climate and land use changes. It proposes 

an evolutionary optimization model to guide diversion management, specifically in the Pas River 

basin. By incorporating these future scenarios, the model helps identify critical areas or "hotspots" 

in the basin where ecological needs could be at risk over various time periods. In addition,  this 

chapter explains the key elements of the modeling process and provides recommendations for 

improving model development and adopting adaptive management strategies by water managers. 

The results show how optimization can play a crucial role in addressing the complex challenges of 

water resource management, ultimately promoting a more sustainable balance between human 

demands and ecological preservation. The recommendations presented here for improving model 
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development and adopting adaptive strategies connect back to the foundational framework 

established in Chapter 2 and the practical insights generated in Chapter 3, forming a cohesive 

progression toward addressing complex water management challenges. 

• Chapter 5: summarizes the research conducted and the most important results in relation to each 

research question and topic covered, highlighting each chapter's contribution to advancing 

optimization modeling in water resource management. It reflects on the limitations encountered 

and identifies opportunities for future research, ensuring that the insights gained throughout the 

dissertation are both actionable and forward-looking.
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2.  Considering scale within optimization 

procedures for water management decisions: 

Balancing environmental flows and human 

needs 

This chapter was published in Environmental Modelling & Software 

Derepasko, D., Guillaume, J. H. A., Horne, A. C., & Volk, M. (2021). 

Considering scale within optimization procedures for water 

management decisions: Balancing environmental flows and human 

needs. Environmental Modelling & Software, 139, 104991. 

https://doi.org/10.1016/j.envsoft.2021.104991  

Analyzed studies for this review can be found in Appendix A attached to this thesis. 

2.1 Summary (abstract) 

A key issue in optimization model development is the selection of spatial and temporal scale representing 

the system. This chapter proposes a framework for reasoning about scale in this context, drawing on a 

review of studies applying multi-objective optimization for water management involving environmental 

flows. In the chapter it is suggested that scale is determined by the management problem, constrained by 

data availability, computational, and model capabilities. There is therefore an inherent trade-off between 

problem perception and available modelling capability, which can either be resolved by obtaining data 

needed or tailoring analysis to the data available. In the interest of fostering transparency in this trade-off 

process, this chapter hence outlines phases of model development, associated decisions, and available 

options, and scale implications of each decision. The problem perception phase collects system 

information about objectives, limiting conditions, and management options. The problem formulation 

phase collects and uses data, information, and methods about system structure and behaviour. 

2.2 Introduction 

Water management is challenged by socio-economic (e.g. rising demand, sectoral competition) and 

climate change pressures (e.g. droughts, extreme events) (EEA, 2017; Grizzetti et al., 2017; Tonkin et al., 

2019) threatening water security (Kennen et al., 2018) and river biodiversity (Vörösmarty et al., 2010). 

Despite increasing awareness of river ecosystems' needs (Angela H Arthington et al., 2018), water 

https://doi.org/10.1016/j.envsoft.2021.104991
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allocation goals typically still aim “to provide water to people when and where they most need it and not 

when and where it would naturally be available” (Daniell & Barreteau, 2014). However, addressing the 

challenges of climate change and increasing demand will require a range of strategic actions, including 

those that directly protect and restore the environment (Liu et al., 2016; Pittock & Lankford, 2010; Salik et 

al., 2016; Thompson et al., 2014). Failing to adequately incorporate ecosystem values and underestimating 

the potential cross-scale impacts of water use and climate change on freshwater ecosystems (McCluney 

et al., 2014) fails to acknowledge the benefits that freshwater systems generate for the wider community 

(Richter, 2009). 

The implementation of environmental flows is one action that is already applied (A. C. Horne, O’Donnell, 

& Tharme, 2017; King et al., 2015; Le Quesne et al., 2010; Mendoza & Martins, 2006; N. L. Poff et al., 2010) 

to better protect freshwater and related ecosystems from modifications caused by river regulation (e.g. 

dams, weirs, diversion channels) (Arthington, 2012; N. L. Poff et al., 1997) and high-intensity use (EEA, 

2012). The approach to implementing environmental flows and the accompanying water management 

decisions varies according to governance level, spatial extent and temporal scale of the desired outcome: 

broad-scale long term environmental flows (e-flows) management typically employs a ‘top-down’ 

approach by imposing limits to additional hydrological alteration (e.g. caps on water abstraction, license 

conditions for water users, environmental water rights, see Horne et al., (2018), whereas a ‘bottom-up’ 

strategy (e.g. conditions on storage operators, environmental reserve established legally) that considers 

ecologically-relevant components of the flow regime and their ranges is implemented at finer scales and 

generally prioritizes short term effects (Gopal, 2016; A. C. Horne, Webb, Stewardson, et al., 2017; Pahl-

Wostl, Arthington, et al., 2013). Current incorporation of e-flows within integrated water resource 

management (IWRM) expresses environmental water requirements as quantity, quality and timing of 

water flows, in the short term at point-scale to limit impact propagation towards broader spatial scales in 

the long term (Vörösmarty et al., 2013; Evers, 2016; Angela H. Arthington et al., 2018). As a consequence, 

water governance seeks to implement enhanced management and infrastructure systems that can 

regulate river flow at multiple spatial and/or temporal levels (Daniell & Barreteau, 2014; Stewardson et 

al., 2017) in the light of changing consumptive water needs.  

Scale-specific investigation tools are often used to inform successful river management (Volk et al., 2008). 

Case study-level applications show that some management problems envisage several objectives and 

hence multi-objective optimization can be used to address water management needs at different spatial 

scales, such as hydropower facility, reservoir, reach, sub-basin and basin and different temporal horizons 
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(e.g. Shang, 2015; Yin et al., 2015; Fallah-Mehdipour, Bozorg-Haddad and Loáiciga, 2018). The optimization 

of a set of desired objectives related to water abstraction or release (e.g. species survival, hydropower 

production, domestic supply, irrigation) seeks to find optimal solutions. These solutions are searched 

across a range of criteria that allow the identification of trade-offs and synergies, and, as a result, the 

definition of compromises among conflicting goals (Cord et al., 2017; Gunantara, 2018; A. Horne et al., 

2016). The opportunity to explore compromise solutions might better support decision-making processes 

than single-objective modelling, as it has been shown in other resource allocation problems (e.g. 

(Lautenbach et al., 2013; Kaya et al., 2016; Kaim, Cord and Volk, 2018). 

However, modelling these decisions in water management is made challenging by the fragmentation and 

hierarchy of hydrological scales (Moss & Newig, 2010). A key obstacle is related to the consideration of 

the different scale-specific hydrological and ecological characteristics and processes (P. M. Davies et al., 

2014; Thorp, 2014; Volk & Ewert, 2011). Indeed, the effective representation of connections (e.g. 

ecological, hydrological and geomorphological) on each temporal and spatial scale of the river network 

remains a core challenge in e-flow assessments (N. L. Poff et al., 2017). Another problem is related to the 

reference hydrological scales used in the classification of river spatial extent. The spatial mismatch 

between physical and socio-political boundaries poses a challenge for the definition and implementation 

of management objectives (Daniell & Barreteau, 2014; Moss & Newig, 2010; Opperman et al., 2018; van 

den Belt & Blake, 2015); Lastly, chosen e-flow parameters can be employed for studies at small scales and 

can show effects in the short term (e.g. population size), but can also be ecologically relevant for wider 

areas (e.g. basin-scale) and support processes that manifest at longer temporal scales (e.g. nutrient 

cycling) (N. L. Poff et al., 2017). This requires the consideration of a range of flow events (e.g. pulses, 30-

day minimum flow) and diverse processes (e.g. water production, sediment delivery and vegetation 

dynamics, ecological stages, land cover influence) (Gurnell et al., 2016; Opperman et al., 2018). 

In this paper, we present a framework that describes the conceptual and operational steps of optimization 

model development to support e-flows and the related spatial and temporal scale considerations. The 

framework draws on a review of the state-of-art in this field of water research. Clarity about the role of 

scale improves our ability to model across scales and as a consequence, provide more reliable predictions 

of decision outcomes at the scales of interest. 

The chapter first introduces water management decisions and their translation into optimization models 

(see Box 1 for the definition of terms) and provides the outline of the proposed framework showing the 
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stages of optimization problem development (i.e. problem perception phase and problem formulation 

phase) (Section 2.3 of this paper). The framework, mapping the scale-related decisions and options linked 

to each development phase, is further described with reference to results from the review of selected 

studies in Section 2.5 of this paper. Section 2.6 discusses the need for clarity of problem definition, 

strategies to implement desired assessment scales, and explicit discussion of trade-offs in problem 

development. Lastly, in Section 2.7 we provide recommendations to foster transparency throughout the 

optimization problem development phases.
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Box 1. Definition of terms 

Environmental 
flow 

The quantity, timing, and quality of freshwater flows and levels necessary to sustain aquatic 

ecosystems which, in turn, support human cultures, economies, sustainable livelihoods, and 

well-being (Angela H. Arthington et al., 2018). 

Management 

objective 

Specific statement about the intents of the water management approach (e.g. in relation to 

ecosystem services, processes and components) as a result of engagement between multiple 

stakeholders and managers. In the case flow management it relates to water allocation for 

environmental purposes. (adapted from Horne, Konrad, et al., 2017) 

Optimization 

objective 

Function to be either maximized or minimized, corresponding with ‘outcomes of interest’ of the 

optimization problem. Depending on the problem formulation, optimization problem 

constraints can substitute/complement objectives. (adapted from Maier et al., 2019) 

Management 

decision 

Mechanism through which a management objective is achieved (e.g. control of diversion and 

release, flow alteration reduction). High-level management decisions are tied to larger scales 

(e.g. provided through planning or regulatory instruments) while implementation decisions 

reflect management choices for periodic objectives at finer spatial and temporal scales. (adapted 

from Horne et al., 2018) 

Optimization 

decision 

variable 

Input parameter of the optimization problem that is measurable and controllable (e.g. reservoir 

water level, release timing, energy production), providing a quantitative representation of a 

management decision (adapted from Coello, Lamont and Veldhuizen, 2007).  

Problem 

perception 

phase 

The stage consisting of the consideration and interpretation of all the factors and processes (i.e. 

spatial, temporal, environmental and operational) involved with the implementation of the 

considered management decision (adapted from Beven, 2012). 

Problem 

formulation 

phase 

Encompasses all the actions related to the translation and modelling of the perceived problem 

into functions (i.e. objectives and constraints). Involves also the consideration of data needs to 

appropriately represent the area of interest of the water management problem (adapted from 

Maier et al., 2014, 2019). 

Optimization 

problem 

Or optimization model is the formulation of the management problem within a 

simulation/modelling context. This is the mathematical formulation of the water management 

problem. 

Optimization 

framework 

Structured set of steps and considerations used for the formulation of an optimization problem. 

In this study it is applied in support of optimization problem definition for environmental water 

management, highlighting the role of each step in defining the resulting scale of the assessment. 

Optimization 

scenario 

Captures a degree of variability in the optimisation problem to reproduce system behaviour 

under different possible circumstances (e.g. operational, climatic, and hydrological). The 

concept of an optimization scenario is intended to capture variations of the decision problem 

formulation, which can include alternative climate projections or decision variables, and their 

resulting outcomes. 

Infrastructure 

operation 

The time steps of the scheduling (frequency) of infrastructure operations’ set.  

Planning 

horizon 

The timeframe upon which management decisions are taken. From a water management 

perspective, it usually corresponds with one management cycle and is linked with the previous 
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(management objectives) and the following (monitoring outcomes) management cycles 

(adapted from (Horne et al., 2018). From an infrastructure management perspective, can also 

be associated with the frequency of updating an operational management plan. 

Spatial scale The spatial bounds of the events and processes considered in the optimization problem (in 

relation to a management problem) (Iwanaga et al., 2021). Common spatial scales used in water 

management related to hydrological units and flow altering structures (see Table 2 and Figure 

4). 

Temporal 

scale 

The temporal horizons of the events and processes of the considered optimization problem (in 

relation to a management problem) (Iwanaga et al., 2021). Levels of temporal scale (e.g. days, 

months, years) can relate to the temporal resolution of hydrological data (adapted from Daniell 

and Barreteau, 2014). In water management optimization it can also refer both to the 

infrastructure operation cycle time steps and the planning horizon time window. 

 

2.3 A framework for incorporating scale within optimization modelling to support e-

flows water management decisions 

An optimization approach offers the opportunity to explore compromise solutions to support decisions 

about scarce water resources (A. Horne et al., 2016). It can be used to support environmental water 

management decisions while meeting conflicting water use objectives (e.g. hydropower generation, 

domestic supply, industrial supply, irrigation water). Environmental water objectives drive management 

actions that can be implemented at broader (e.g. control of diversion) or finer target scales (e.g. need to 

control reservoir releases). The timeframe of implementation also varies based on the management 

decision. 

Water resources management, and in particular e-flows, sit within an adaptive management framework 

that reflects these different temporal and spatial scales (Webb, Watts, et al., 2017). The selection of 

objectives and high-level policy decisions are made at a longer time scale and often for larger catchments 

or whole basins (Horne, Webb, et al., 2017). However, implementation decisions are made at a shorter 

time scale and often for a specific site or location. Optimization to support these decisions therefore also 

lends itself to be framed within an adaptive management framework, providing the structure and technical 

capacity to support trade-offs and decision making at different scales (Figure 1). Each stage of the adaptive 

management cycle has its own technical challenges. Similarly, the translation of management decisions 

into an optimization procedure needs to consider a range of factors to ensure the context and system is 

realistically represented. Table 1 uses a number of examples to demonstrate the importance of the type 

of management approach being considered (the columns in Table 1) for informing the approach to 

optimization model development. For instance, the decision to set a cap on abstraction can be tied to 
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optimization at basin scale considering an annual or seasonal time frame; the optimization of release 

timing (at seasonal, monthly or daily scale) in response to the need to meet downstream ecological 

needs/target ecological indicators will be preferred for management decisions at smaller spatial scales 

(e.g. reaches or sub-basins) to match species ecological response timeframes and local hydrological 

conditions; at sub-daily scale it could be applied to reduce hydropeaking impacts at target locations. The 

specific decision context dictates the target scales. However, translation of real-world management 

problems into a modelling framework presents some inherent challenges, either related to data 

availability, modelling or computational ability. The water management analyst dealing with optimization 

model development hence faces a range of trade-offs in model representation, in particular linked with 

choices of scale associated with the targeted problem and resulting modelled representation. Any 

optimization model development procedure to support e-flows decisions and water resource 

management will need to explicitly consider the implication and magnitude of these trade-offs for the 

spatial and temporal scales of the assessment, to foster transparency and understandability.  

 

 

 

 

 

Figure 1 Position of the optimization process within the adaptive water management framework (yellow triangle indicates the 
starting point for each management cycle) 
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Management  

Decisions 

Control of  

diversion 

Management  

planning 

Control of  

releases 

Impacts reduction 

Examples Setting a cap on 
maximum diversion 

Incorporation of 
minimum environmental 
flow regimes into existing 
or new management plan 

Optimization of 
reservoir release 
timing 

Hydropeaking impacts 
reduction 

Description Specification of the 
maximum volume of 
diverted water that 
would allow 
maintaining the river 
regime at targeted 
levels 

Incorporation of e-flow 
regimes into water 
management plan while 
meeting societal needs 

Release timing 
adjustment to meet 
ecological water 
demand needs 
and/or reduce 
natural water flow 
alteration 

Limitation of excessive 
water volume discharge 
downstream of the 
reservoir to mitigate 
adverse human and 
ecological effects 

Type and 

frequency of 

flow 

modification 

• Definition of 
specific % limits on 
the degree of 
allowable natural 
flow alteration 
• Definition of 
period-specific 
thresholds on river 
volume diversion 

• Testing the feasibility of 
incorporating different 
minimum e-flows regimes 
into current schemes 
against a range of climatic 
or supply reliability 
scenarios 

• Minimization of  
the deviation from 
reservoir storage and 
rule curves 
• Prescription of 
releases to meet 
specific downstream 
ecological needs 
• Reduction of the 
gap between natural 
flow  and outflows 

• Operational scheme 
synchronization of  peak 
water volume releases 
with natural flooding or 
pulses 

Targeted 

temporal scale 

• Seasonal 

• Annual 

• Annual • Daily 
• Monthly 

• Monthly 
• Seasonal 

Targeted spatial 

scale 

• Basin • Basin • Point scale 
(reservoir) 
• Multi-reservoir 

• Basin 
• Sub-basin 

Targeted 

ecological 

effects 

• Long term effects at 
the ecosystem scale 

• Long term effects at the 
ecosystem scale 

• Population 
structure and size 

• Non-native species 
reduction 

• Native community 
composition 
• Sediment budget 

Comments Participatory and/or 
multi-disciplinary 
workshops needed to 
define appropriate 
flow alteration 

Would need the 
definition of plausible 
minimum e-flow regimes 

Needs the definition 
of appropriate 
ecological indicators 

Especially meaningful for 
large infrastructure 

 

 

Table 1 Overview of water management decisions underpinning optimization procedure definition. The table shows for every 
decision examples of the corresponding approach undertaken during optimization procedure development and the temporal and 
spatial scales of the corresponding approach undertaken during optimization procedure development and the temporal and 
spatial scales of implementation. Note that in some cases also mixed approaches can be used. 
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A general optimization process (showed in Figure 2, left-hand side) first involves problem identification (or 

contextualization) and subsequently, requires input parameters definition and optimization environment 

creation (Maier et al., 2014). As a first step, the system domain is defined by the water management 

problem and decisions which underpin the relevant objectives, constraints, and scenarios of the targeted 

spatial and temporal scales of assessment (Figure 2, right-hand side). Once defined, the system 

characteristics, hydrological data, and other relevant information (e.g. ecological) are gathered to meet 

the requirements for representation at the targeted scales. Given that optimization assessments need to 

inform a decision making process (hence the output), the final scales of the assessment should 

appropriately match decision conditions and scales. Trade-offs in system representation arise when 

moving from problem perception phase to problem formulation phase as a consequence (see Section 2.5). 

Specifically, the trade-off can be resolved either by seeking additional information required to implement 

or by altering the problem perception to suit the information available. The precise process of achieving a 

trade-off is not well understood, and a variety of approaches and intermediate solutions may be possible 

(Fu et al., 2015). Figure 2, together with Tables 3-7 in Section 2.5, provide a framework in support of model 

development in the interest of fostering transparency in the trade-off process around decision making and 

option selection during these two distinct phases of optimization model development. 
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2.4 Data collection 

The proposed framework (see Tables 3-7 in Section 2.5) for assessing scale within optimization modelling 

to support e-flows was developed through a detailed review of existing literature that applied optimization 

in this context. We analysed existing literature and the options presented for each modelling element in 

the framework (Figure 2), the targeted spatial and temporal scales, and the assets considered.  

Data collection for the analysis was carried out by performing a literature search. The focus was set on 

studies that applied optimisation of water diversion or impoundment to environmental water 

management decisions while meeting human water needs at different spatial and temporal scales. 

Keyword combinations were used in the ‘Web of Science’ search engine (i.e. multi-objective optimization, 

multi-criteria optimization, optimization, environmental flows, e-flows) to generate the initial set of 

Figure 2 Conceptualisation of optimization process, as adopted in this analysis. Scheme of a stepwise general optimization 
procedure (left-hand side); Structure of the analysis applied in this paper (right-hand side): analysis of optimization procedure 
development for water management problems focused on two distinct phases, problem perception phase and problem 
formulation phase 
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literature. The collected studies were filtered for water management and the final selection was based on 

the criterion that they had to address both ecological and societal water use.  Studies were excluded 

mainly due to their character (e.g. framework, review) or because of the study objective (e.g. focused on 

land use). In a few cases, studies focusing only on a single objective function but considering both needs 

(i.e. ecological and anthropogenic) have been included in the analysis, due to their compliance with the 

aim of the review and to stimulate discussion. A final collection of 27 case studies applying optimization 

procedures at different targeted scales was analysed (see references in Table A1, in the Annex). The overall 

objective of the review process was to highlight existing decisions and options for each phase of model 

development and to feed into the guidance framework for scale implications of modelling decisions.  

2.4.1 Definitions of scales in multi-objective optimization procedures for water management  

Defining comprehensible scales and their consistent use is still a key issue in systems modelling (Iwanaga 

et al., 2021). The interdisciplinary nature of water resource management exacerbates this with different 

spatial and temporal boundaries related to the multiple aspects of water management (i.e. administrative, 

hydrologic, management, etc.) (Daniell & Barreteau, 2014; Gleeson & Paszkowski, 2014; Moss & Newig, 

2010). As policy decisions can be defined based on model outputs, (Dabiri and Blaschke, 2019) 

distinguished between the policy and the modelling scales, and associated the latter with the “dimension 

at which the data is acquired or derived” and in strict connection with the mathematical expression; 

similarly, (Moss and Newig, 2010) distinguish the ‘hydrological’ and the ‘political’ scales as central 

dimensions for water management modelling. On the other hand, in landscape ecology, scales are usually 

associated with patch extent or duration and grain or resolution (Withers & Meentemeyer, 1999). Most 

studies related to socio-environmental modelling consider the extent and resolution to define spatial and 

temporal scales (Dabiri & Blaschke, 2019; Daniell & Barreteau, 2014; Gleeson & Paszkowski, 2014; Iwanaga 

et al., 2021; Moss & Newig, 2010). Both spatial and temporal scale resolution is linked with data: grain size 

or cell size represent the smallest features of the spatial scale (particularly if the modelling is spatially-

explicit); while time-steps represent the levels of the temporal scale (e.g. hours, days). In this study, we 

consider these notions to define spatial and temporal scales for optimization modelling for water 

management (see Box 1).  

Studies optimizing water management usually indicate the targeted area for the assessment. Table 2 

shows the spatial scale definitions we retrieved from the analysed studies. For each we provided a 

description of the features of the considered scales. While these definitions were linked with the focused 

assessment area and thus presumably belong to the ‘problem perception phase’, we found an ambiguity 
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in the use of the terms sub-basin, multi-reach and river section scale. In fact they seem to be used 

interchangeably and possibly relate to modeller’s understanding of the system. However, this seems to be 

in accordance with the conclusions of (Gleeson and Paszkowski, 2014) who found that hydrological scales 

definitions are not used consistently among researchers. We use the definitions provided in Table 2 as 

mean of comparison throughout the paper.  

 

 

Definition Description 

Multi-basin A series of adjacent basins. 

Basin The hydrological delimitation of the river domain, formally defined as the land area that 

collects the rain or snow water generating the flow and the river network. Can refer to 

the whole river network. 

Sub-basin An area of the river network (as part of a defined basin) that encompasses a series of 

adjacent and interconnected reaches. The latter can eventually merge with a bigger 

tributary.  

Multi-reach Several reach sections of the same river. It can encompass multiple tributaries 

throughout the river network. Depending on the number of considered reaches (and 

their proximity) this may be similar to a sub-basin scale or river section. 

Reach A section of the river that presents similar hydrological characteristics (e.g. discharge, 

depth). Usually it represents short river portions or small tributaries. Sometimes it can 

be associated with the river section scale. 

River section A portion of the river network of variable length that is arbitrarily defined by the user. 

It could encompass the portion of the river stretch included two key points (e.g. gauging 

stations, dam, and connection to another tributary).  

Reservoir Body of water artificially impounded by a dam, commonly with potential for controlled 

releases 

Infrastructure Human assets linked to the river flow (e.g. dams, reservoirs, weirs) that are used to 

supply water or energy for human consumption, regulate the floods or provide 

navigation. 

Multi-infrastructure A series of infrastructure located in different sites of the river network. Can refer to a 

number of in-series infrastructures (i.e. consecutively positioned on the same river 

section) or on multiple reaches. 

 

 
Table 2 Spatial scales used for optimization modelling applied to waterFigure 3 Position of the optimization process within the 
adaptive water management framework (yellow triangle indicates the starting point for each management cycle) management. 
We identified a set of recurrent definitions in the reviewed studies that refer to the targeted assessment areas and their meaning. 
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2.5 Lessons from the literature: scales in multi-objective optimization procedures for 

water management  

Environmental water management problems in regulated rivers can represent different issues related to 

the delivery of e-flows. For example, e-flows can be incorporated into an existing operational plan or 

infrastructure operation can be modified to reduce flow alteration (see Table 1 in Section 2.3). Modelling 

these management problems requires the definition of the targeted area and the available information 

during the ‘problem perception phase’ (Section 2.5.1) and the selection of the modelling approach in the 

‘problem formulation phase’ (Section 2.5.2). Both phases are exposed to scale issues related with the data 

resolution, the temporal horizon for the operation plan and spatial boundaries of the system. Box 1 and 

Box 2 describe two example case studies. In the following sections, we elaborate on the framework by 

drawing on the considered literature to discuss the different stages within each phase with the aim of 

understanding the trade-offs between the management problem scales and the modelling problem scales.
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Box 1. Case study: the Luis L. Leon reservoir (Big Bend reach) (Porse et al., 2015) 

Management problem 

(perception phase) 

Incorporation of environmental flow requirements into reservoir operation. Respect 

of supply requirements subject to international treaty. Demonstrating that 

environmental flow allocations can be increased. 

Considered system: River segment delimited by two reservoirs, with releases from one reservoir, tributary 

inflows, water extractions, flow at multiple gauges, inflows to second reservoir. 

Existing environmental flow requirements for basin and longer river segments could 

also have been used. 

Operational timescale Monthly reservoir releases, flows, and water extractions 

Planning horizon Multi-year; treaty works on 5 year cycles not explicitly modelled here. 

E-flow approach: Prescribed hydrograph describing environmental flows monthly targets (base-flows, 

high flows and small/large floods developed from statistical analysis of hydrological 

record), scaled to vary total environmental flow volumes 

Optimization problem 

(formulation phase) 

Decision variables: monthly reservoir releases in two reservoirs 

Objectives: Minimization of total environmental flow deficits for all months 

Constraints: monthly mass balance continuity equations, total flow and minimum 

storage requirements approximating treaty stipulations; limits to storage and change 

in storage between months for operational constraints. 

Input data Flow record, water demands data, infrastructure operations from a prior water 

allocation model (1969 to 2009), e-flow requirements (literature) for BB reach 

Optimisation approach Linear programming 

Scenarios Water availability scenarios – total environmental flow used to scale monthly 

environmental flow targets: (a) 600; (b) 800; (c) 1000; (d) 1100; and (e) 1200 mcm. 

Our comments on 

spatial scale  

Flows at one gauge assumed to be representative of environmental flow requirements 

along entire river section. Full implementation of treaty requirements and trade-offs 

with upstream and downstream EF requirements would need expansion of spatial 

scale. River segment focus demonstrates feasibility of local changes all else being 

equal. 

Our comments on 

temporal scale 

Multi-year management cycles are not explicitly modeled (management-

implementation scale mismatch). Monthly rather than daily time step may not capture 

shorter term breaches of operational constraints. Expression of environmental flow as 

monthly average discharge conditions may not capture requirements at shorter 

timescales. Analysis assumed to make convincing case despite simplifications.  
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Box 2. Case study: the Peishih Creek (Shiau & Wu, 2013) 

Management problem 

(perception phase) 

Plan release environmental water for three interconnected reaches (subject to various 

degree of hydrological alteration) while ensuring domestic water supply and 

hydropower production 

Considered system: Reservoir connected to river section (with weir diversion), performance measured for 

1, 2 and all 3 reaches  

Operational timescale Hourly flows, with release decisions spread through the day, and flow indices 

aggregated to multiple scales 

Planning horizon Multi-year 

E-flow approach: Measurement of natural flow alteration through 5 hydrological indices: RBF*, daily 

flow, monthly flow, annual 7-day minimum flow and 5-year floods. 

Optimization problem 

(formulation phase) 

Decision variables (15): 2 environmental flow proportions, 3 three-period release 

parameters, 3 hedging coefficients, and 7 compelling release parameters. 

Objectives: TOPSIS (technique for order preference by similarity to ideal solution) 

transforms multi-objective problem into single objective 

Reservoir performance objectives:  minimization of long term shortage ratio, mean 

annual deficit duration, maximum 1-day shortage ratio; maximization of mean annual 

hydropower production, flood attenuation. 

Environmental water objectives: minimization of difference to pre-impact RBF, 

difference to daily hydrograph, difference to pre-impact monthly flow, difference to 

pre-impact annual 7-day minimum flow, difference to pre-impact 5-year floods. 

Constraints: only limits on decision variables. Routing model used to simulate flow. 

Input data Flow record (1998 to 2008) of reservoir inflows and Nanshih Creek’s river flow. 

Optimisation approach Genetic algorithm in simulation-optimization framework 

Scenarios Operation scenarios: (a) 1-reach scenario with 10 objectives, (b) 2-reach scenario with 

15 objectives, (c) 3-reach scenario with 20 objectives. 

Output Hourly reservoir releases; weir diversion volumes at Nanshih Creek, and post-impact 

flows at the three study reaches. 

Our comments on 

spatial scale  

Exploration of multiple scales; bottom of system defined implicitly in figures as 

junction with larger watercourse. Reaches defined based on nature of hydrological 

alteration provides natural segmentation while recognizing that ecosystem response 

has not been addressed. Selection of reaches significantly affected results. 

Our comments on 

temporal scale 

Inclusion of hydrological alteration at multiple scales as objectives, then reduced to 

single objective by comparison to ideal point such that trade-offs are not explicitly 

explored. The planning horizon of infrastructure operations is not clear, especially in 

relation to projected demand magnitude, as the only available information is the data 

timeframe (10 years).  

Notes: *Richards-Baker flashiness index (RBF); 
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2.5.1 Problem perception phase 

Physical system 

The concept of ‘system’ is expanded in water management to include the geographical, temporal and the 

socio-economic setting of the applied optimization procedure. The physical system can be defined in terms 

of the spatial area, including that involved in the generation of the water flow and the structural limits of 

the studied facility (e.g. a reservoir), and the temporal window of effect. Figure 3 illustrates systematically 

the spatial and temporal scales that interest water management problems and highlights some of the 

major factors that have scale implications, based on the reviewed papers. The definition of spatial area 

and temporal window of effect provides the physical-temporal target reference for the following problem 

formulation phase. Here, we split the decision related to physical system perception into multiple 

decisions related to the flow alteration infrastructure: the type and number of flow altering 

infrastructures, and its operations; the definition of environmental assets; and, the definition of the 

management horizon (see Table 3). Temporal scales tend to be fairly well-defined by flow alteration type 

(impoundment, diversions), the management horizon, and the points of interest (and hence spatial scale). 

Points of interest include flow altering infrastructure, which affects how that infrastructure is operated, as 

well as e-flow target locations (e.g. river reaches, environmental assets).  

Optimization assessments are developed to reflect operational schemes of impoundment and diversion 

structures at a range of management horizons. Considering all the resulting options related to the planning 

horizon, the selected facilities and the spatial range of their impact inevitably leads to a series of possible 

context-infrastructure combinations. In this case, system conceptualization benefits from the visualization 

of connections between assets, especially in large highly regulated river systems, as in transboundary river 

basins (e.g. Martin et al., 2017; Schlüter et al., 2005). Such visualization enables the definition of points 

where water movement is related to different causes (e.g. supply, inflow, storage), expressed as point 

sources (e.g. tributaries), releasing points (e.g. dams, hydraulic structures), and gauging stations facilitating 

optimization procedure development.  

The wide variety of possible network configurations means that the targeted hydrological scale can range 

spatially from reach or river sections (e.g. Mullick, Babel and Perret, 2013; Fleifle et al., 2014) to sub-basins 

and multi-reach systems (e.g. Xevi and Khan, 2005; Shiau and Wu, 2013) or an entire basin (e.g. Suen and 

Eheart, 2006; Shiau and Chou, 2016). The consideration of the number of assets and their location as well 
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as the scale of effect influences the final size of the spatial domain. Figure 4 illustrates the different 

targeted assessment scales as emerged from the analysed studies. 

A key challenge in the problem formulation phase is articulating the target for environmental outcomes. 

Environmental assets can include not only in-river values but also attributes of wetlands and floodplains 

(e.g. Szemis, Maier and Dandy, 2012, 2014; Szemis, Dandy and Maier, 2013). The environmental objective 

can be represented in several ways, for example as the provision of habitat or as the provision of 

ecosystem services. This clear articulation of environmental outcomes (as opposed to hydrological 

indicators) has been more evident in Australian case studies and management contexts. It is acknowledged 

that this need to define a-priori the targeted environmental assets during the optimization model 

procedure is a significant challenge, however, it represents good practice for system definition. 

Lastly, management context decisions relate to operational horizon or release schedules. Infrastructure 

operational horizon can be tailored both at sub-daily or daily scale as this supports the identification of 

the best option based on hourly flows or how much water is to be allocated. The management horizon 

should also be consistent with the frequency of need to update the management plan. We identified 

studies using management horizon that were monthly, seasonal, single, and multi-year. When targeting 

single or multi-year management horizon, water releases are assessed for different single years, 

differentiating by wet, normal, dry, allowing to implement the best releases or abstraction operations 

based on the yearly hydrological conditions type (e.g. Steinschneider et al., 2014; Chen and Olden, 2017; 

Dai et al., 2017; Lewis and Randall, 2017). Policy testing could require the definition of multiple alternative 

management horizons. Conception of alternative legislative contexts can consider the prioritization of 

different combinations of objectives (e.g. Shiau and Wu, 2013).  
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Figure 3 Temporal and spatial scales that define water management optimization problems. This figure is based on the results 
of our analysis. It illustrates the different spatial and temporal scales in relation to certain factors which challenge optimization 
procedure development by means of decision and option selection complexity, and definition of the resulting system boundaries. 

 



 
46 

 

 

  

 
Figure 4 Illustration of different spatial scales considered in the reviewed studies. For description see Table 2. 
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Assessment 

phase 

Modelling  

element 

Decision Description Related 

options 

Spatial scale  

relation 

Temporal scale  

relation 

Relationships  

between  

options 

Problem  

perception 

phase 

Physical 

system 

 

 

Definition of flow  

alteration type 

Definition of the flow 

altering infrastructures 

that belong to the 

considered regulative 

unit and consideration 

of their functioning 

• Diversion 

• Impoundment 

Need to consider 

the scale of effect 

and nature of flow 

alteration 

Need to consider 

infrastructure 

operations 

This step influences 

the incorporation of 

the management 

decision  

Definition of the 

number of flow 

altering 

infrastructures 

Consideration of all the 

assets in the target unit  

• Single-

infrastructure 

• Multi-

infrastructure 

• Single with 

mixed-use (e.g. 

impoundment 

with power 

generation) 

Affects the scale of 

representation of 

the infrastructure 

network 

Need to consider 

operative 

conditions 

(schemes) of all 

the assets. Hence 

could affect the 

final timeframe.  

This step influences 

also the choice of 

the solution 

approach (number 

of decision variables 

or objectives). 

Requires awareness 

of possible 

influences between 

assets 

Definition of 

infrastructure 

operations 

Consideration of the 

operative scheme of 

the selected 

infrastructure  

• Monthly 

• Daily 

• Sub-daily 

Spatial scale of 

effect is influenced 

by timeframe 

This relates to the 

timeframe of the 

operation cycle, 

involving both 

flow alteration 

type and 

configuration of 

infrastructure 

assets 

Option selection 

could affect the 

choice of the 

scenario 

Table 3 Framework 1/5. Summary of the decisions and options, and related scale considerations for the ‘Physical system‘ step during the ‘Problem perception phase’. 
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Definition of 

environmental 

assets 

Consideration of the 

type and characteristics 

of the targeted 

environmental assets 

and their location 

• Ecosystem type 

(e.g. wetlands) 

• Ecosystem 

services (e.g. 

habitat 

provisioning 

areas) 

Affects the scale of 

representation 

Needs to consider 

infrastructure 

operations and 

flow alteration 

type 

This step could 

influence scenario 

definition 

Definition of the 

management 

horizon 

Consideration of the 

frequency of needs to 

update the 

management plan 

• Monthly 

• Seasonal 

• Annual 

• Intra-annual 

Spatial scale of 

effect is influenced 

by management 

timeframe 

Affected by 

uncertainty  

in driving 

conditions and 

system 

knowledge, as 

well as the ability 

to adapt plans 

over time 

This step could 

influence the type 

of scenarios and 

hence trade-offs 

analysis 
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Management objectives 

The definition of optimization objectives reflects a range of management objectives or goals that can then 

be assessed for compromises in water allocations or other water release variables (see Table 4). There is 

a range of different formulations of system objectives, e.g. maximization satisfaction of consumptive 

demand (or minimization of shortfalls), optimization of structural performance, the maximization of 

economic benefit, or minimization of the hydrological disturbance. The way the objectives are expressed 

is linked to the spatial extent but can reflect end-user needs. For example, the need for controlling floods 

is more pressing at the basin scale and can be managed by considering the difference between inflows and 

outflows (e.g. Porse, Sandoval-Solis and Lane, 2015; Shiau and Chou, 2016).  

Studies aiming at maximizing water supply seek to ensure water supply maintenance over time by 

adjusting to flow fluctuation, rather than aiming to abstract the greatest possible amount of water at a 

single time-step. The operational scheme of the facility (i.e. impoundment or diversion) affects the 

approach for the definition of supply reliability. Targeted reservoir releases for downstream ecological 

needs are sought in the case of impoundment. In such cases water collection represents the prioritized 

supply method for human use and optimization objectives aim to maximize the ‘collection capacity’ of the 

reservoir. Water abstraction optimization, on the other hand, focuses on the withdrawal of water from 

the flowing river (e.g. diversion). An alternative for assessments targeting large basins that encompass 

several abstraction points is to define a ‘supply objective’ for each abstraction point in the considered 

system before defining the cumulative objective.  

Hydropower generation objectives are typically considered for assessments targeting reservoir- (e.g. 

(Shiau and Wu, 2013; Wang et al., 2015; Fallah-Mehdipour, Bozorg-Haddad and Loáiciga, 2018) or basin-

scales (e.g. (Paredes-Arquiola et al., 2013; Shiau and Chou, 2016; Hassanjabbar, Saghafian and Jamali, 

2018). Hydropower production optimization objectives require the consideration of infrastructure 

operations and the infrastructure capacity in energy generation. When optimization objectives are focused 

on the economic aspect of hydropower generation from a reservoir, metrics such as net benefit or 

revenues are considered.  

Definition of environmental objectives within the optimization procedure is connected to the 

environmental water management decisions (see Section 2.3) and usually considers the natural 

hydrograph or specific water volumes for ecological processes. Compliance of the regulated hydrograph 

with the natural discharge is based on the consideration of the natural flow regime as a pristine 
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hydrological reference (Acreman, 2016). Despite increasing awareness of the need to advance the natural 

flow regime paradigm, whether or not species can adapt or are already adapted to flow alteration caused 

by man-made infrastructures (e.g. dams) remains difficult to assess and needs an ‘expanded e-flow science 

foundation’ (N. L. R. Poff, 2018). This leaves the natural flow regime alteration reduction as the easiest 

choice for many optimization assessments (Wang et al., 2015). Moreover, this approach does not explicitly 

prioritize specific species over others as in the ecological flow regime paradigm (e.g. (Suen & Eheart, 2006). 

Within the optimization procedure, gauge data at reference points can set the target conditions of the 

ideal flow regime (e.g. Torabi Haghighi and Kløve, 2015). Shiau and Chou, (2016) for example minimized 

the differences between the monthly flow hydrograph and the monthly discharge; similarly, Schlüter et 

al., (2005) minimized water flow changes across several intake points. However, the use of gauge data 

should be based on appropriate considerations regarding the location of the gauging station and the river 

section it is related to (e.g. drainage area or length of river segment), as this could affect the resulting scale 

of the assessment. As alternative to real flow data and to the flow-alteration-reduction approach, simple 

algorithms such as those in the Global Environmental Flow Calculator (GEFC) can rapidly calculate e-flow 

requirements for the main rivers worldwide (e.g. Hassanjabbar, Saghafian and Jamali, 2018). This 

information can be then used within the optimization problem for developing targeted releases or 

‘designer flows’. The designer flows approach is gaining momentum for preservation of river ecosystems 

(N. L. Poff & Olden, 2017) and has been embraced for example by Chen and Olden, (2017) to prioritize 

native over non-native species in regulated rivers. 

Limiting conditions 

Decisions about the range of limiting conditions to consider for the targeted assessment system can be 

distinguished based on their nature: (1) physical-environmental conditions, which refer to the 

environmental status of the system, e.g. conservation of mass; (2) supply-related, linked to the magnitude, 

timing, and type of demand; (3) infrastructure-related, that are influenced by the design or operational 

capacity of the flow modification structure (e.g. dam, hydropower plant); and (4) regulative, which are 

defined based on policies or normative requirements (see Table 4). 

Physical-environmental limiting conditions reflect a certain environmental availability of water within the 

considered system and are usually described using a water balance equation or hydrological model. Our 

analysis showed that physical-environmental limitations are directly linked to the scale of the assessment. 

The location of the facility (i.e. dam, reservoir, hydropower plant, and weir) within the assessed area (e.g. 

basin, sub-basin, reach) influences the definition of the reference flow conditions and the number of inflow 
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points. The targeted scale of the assessment is physically defined by the input location receiving the flow 

and an output location releasing the flow following the course of the river. Continuity equations are often 

used to capture and assure the balance between the inflows and the outflows (e.g. Xu et al., 2017; 

Hassanjabbar, Saghafian and Jamali, 2018). The definition of the continuity equation requires the 

consideration of the dynamics of inflows, hence of both location and timing. For example, the water 

quantity in a reservoir (dam) at a certain point in time (that depends on the considered timescale) is a 

function of the water contained in the reservoir (dam) at the previous time step (e.g. day, hour) and of the 

outflow and inflow water quantity at the current time step (e.g., Chen and Olden, 2017). The ‘water 

budget’ within a reservoir also needs to account for losses due to evaporation (e.g. (Porse, Sandoval-Solis 

and Lane, 2015). This is particularly relevant if the system is exposed to severe temperature fluctuations, 

dry conditions. Flows to and from groundwater systems and the hyporheic zone may also be relevant. 

Limiting conditions can also reflect water or energy delivery requirements to meet sectoral needs (e.g. 

domestic, industrial, agricultural). Infrastructure operations optimization requires consideration of 

structural limitations on infrastructure capacity and releases. The number of infrastructure facilities and 

their management influences required scale and the corresponding constraints. Minimum (maximum) 

reservoir storage capacity or in- and outflow volumes are frequently implemented for water impoundment 

management, for example to avoid reservoir wall overtopping. This suits a daily or sub-daily scale 

optimization through the definition of the minimum and maximum allowable volume fluctuations (e.g. 

Chen and Olden, 2017) with respect to demand magnitude and risk of downstream bankfull flows or floods 

(e.g. Xu et al., 2017).  

Water use agreements, treaty stipulations, and legal water rights can appear as limiting conditions 

depending on how the river network intersects with national or other jurisdictional borders (e.g. Porse, 

Sandoval-Solis and Lane, 2015; Wang et al., 2015). Quality standards (e.g. for irrigation, drinking water) 

are also common. 
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Assessment 

phase 

Modelling  

element 

Decision Description Related  

options 

Spatial scale  

relation 

Temporal scale  

relation 

Relationships  

between options 

Problem  

perception 

phase 

Management  

objectives 

 

 

Classification of 

water uses 

Define water use 

objectives that are 

linked to the 

considered water 

flow alteration 

• Energy 

generation 

• Water supply 

• Flood attenuation 

• Environmental 

health 

Some objectives 

can be more 

strongly related to 

one scale (e.g. 

water supply or 

flood attenuation) 

Need to consider 

the management 

horizon 

This decision can 

be influenced by 

the decision on the 

extent of the 

assessment scale 

Contextualization 

of objectives 

Consideration of the 

implication of 

objectives 

implementation 

within the case 

study area 

• Participatory 

workshops with 

relevant 

stakeholders 

• User-defined 

• Regulations 

• Treaty stipulation 

System boundaries 

do not change but 

need to consider 

the spatial scale in 

regulative terms 

Could present 

different temporal 

needs in resource 

use (e.g. demand) 

/ 

Limiting 

conditions 

 

 

Definition of the 

limiting conditions  

Definition of the 

factors that can 

affect the nature of 

the considered 

objectives or the 

representability of 

the target system  

• Natural 

phenomena 

• Structural 

limitations 

• Operational limits 

• Demand 

fluctuations 

• Hydrological 

continuity 

Physical parameters 

(that can be 

spatially bounded 

e.g., hydrological 

continuity 

equation)  

Consider time-

dependence of 

some variables 

(especially demand, 

hydrology) 

These conditions 

border the search 

space, allow the 

output of more 

realistic outcomes 

and reduce 

computational 

time 

Table 4 Framework 2/5. Summary of the decisions and options, and related scale considerations for the ‘Assessment objectives‘ and ‘Limiting conditions’ steps during the ‘Problem 
perception phase’. 
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2.5.2 Problem formulation phase 

Hydrological state and indicators  

The decisions within the problem formulation phase specifically account for model, data, and 

computational limitations, contrasting with the ideal problem perception that stakeholders might prefer 

in absence of these limitations. In this phase, the definition of environmental water requirements 

establishes limits to the modification of water flows. We identified a series of crucial decisions related to 

the setting of environmental water requirements: the consideration of the preferred e-flow assessment 

approach, the inventory of the available sources of information, environmental water requirements 

establishment, and the location of the gauging stations and selection of the hydrological metric (see Table 

5 for summary).   

Environmental water requirements definition through empirical estimation of e-flow ranges is an option 

at finer scales (e.g. reach) and on short term planning (e.g. seasonal) when direct data (e.g., species, 

habitat-level data) is accessible. These ranges reflect hydrological or habitat needs (e.g. Mullick, Babel and 

Perret, 2013) of key species and can be defined through hydro-ecological models or regression techniques: 

for example, regression-based approaches to define fish-flow relationships for native and non-native 

species preferences (e.g. Chen and Olden, 2017) or by using the physical habitat simulation models (e.g. 

PHABSIM, (K. Bovee et al., 1998) to retrieve minimum e-flows requirements for phenological stages (e.g. 

(Shang, 2015). Mixed assessment approaches are more complex to implement as exploit multi-disciplinary 

instruments based on collaborative interactions between scientists, management analysts, and 

stakeholders (e.g. Porse, Sandoval-Solis and Lane, 2015).  

Once the preferred approach is identified, multiple methods can be applied to obtain the necessary eco-

hydrological information. Literature review and experts’ involvement in the definition of water 

requirements for targeted species can be used for modelling and optimization of spatially complex systems 

(e.g. involving non-linear relationships and multiple predictors) as alternatives to massive data collection. 

Participatory workshops to set hydrological thresholds are underpinned by knowledge coming from 

different sources (e.g. Paredes-Arquiola et al., 2013), possibly measured at different scales in different 

locations, and hence require a more careful statement of the final scale of applicability of the assessment. 

Another option is the use of existing e-flow calculation software packages (see Section “Management 

objectives”). However, the modelling process can affect the spatial and temporal resolution of their output 

data and thus the final scale boundaries. 
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To define the reference hydrological conditions, and the monitoring of the targeted environmental assets, 

historical and actual data from gauging stations are used, potentially with hydrological model simulations. 

Flow data includes inflow data to reservoirs or dams when studies focus on optimizing release timing (e.g. 

Shiau and Wu, 2013). Whilst the number and location of gauging stations vary based on the study site type 

and the general purpose of the assessment, observations from gauging stations located downstream of 

the reservoir are useful for the assessment of water release alterations in single (e.g. (Yin, Yang and Petts, 

2012) or multiple reservoirs in series (e.g. Dai et al., 2017). Moreover, analyses for multiple-reaches benefit 

from a sound gauging station network at the rivers and their tributaries as they enable the analysis of the 

variability of historical flows (e.g. Fleifle et al., 2014), while optimizing reservoir- or dam- series requires 

reporting or modelling of dam outflows (e.g. Yin, Yang and Petts, 2012; Shiau and Wu, 2013).  

Our analysis showed that among the considered flow components, flow magnitude class parameters are 

widely used as hydrological indicators of ecosystem health within optimization studies as they reflect 

conditions that shape habitat availability and suitability for species (N. L. Poff & Zimmerman, 2010; Richter 

et al., 1996; Rolls et al., 2012; Rolls & Bond, 2017). Measures of the magnitude of monthly and annual flow 

conditions (e.g. median value of the mean monthly flow, minimum monthly flow) can describe the 

prevailing behaviour of the flow across the year or uncover major hydro-climatic cycles among different 

years (e.g. average yearly flow) but are unable to deliver sufficient information of local characteristics (e.g. 

reach-level behaviour). The disaggregation of monthly average flows into site-specific minimum monthly 

flows allows the consideration of the hydrological spatial variability at a sub-regional scale (e.g. Paredes-

Arquiola et al., 2013). The water impoundment planning horizon (e.g. (Wang et al., 2015) or the 

characterization of a multi-reach system’s behaviour (e.g. Shiau and Wu, 2013) can drive the choice of the 

selection of indicators defining the timespan and intensity in water flows (e.g. for low flow conditions). 

Similarly, baseflow indicators (often subdivided into wet, dry and extreme baseflow) are linked to reservoir 

outflow or diversion scheduling (e.g. Yin, Yang and Petts, 2012; Yin, Yang and Liu, 2014; Yin et al., 2015; 

Dai et al., 2017).  

Water quality indicators (i.e. temperature, dissolved compounds, oxygen) are less frequently considered 

when addressing environmental flows problems (e.g. Fleifle et al., 2014; Xu et al., 2017). Nevertheless, 

these indicators are usually associated to the flow parameters to the extent of being affected by changes 

in the regime.
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Assessment 

phase 

Modelling  

element 

Decision Description Related options Spatial scale  

relation 

Temporal scale  

relation 

Relationships  

between options 

Problem 

formulation  

phase 

Hydrological 

state and 

indicators  

 

 

Consideration 

of the 

preferred e-

flow 

assessment 

approach 

Selection of the 

suitable e-flow 

assessment approach 

defining environmental 

water requirements 

• Habitat 

approach 

(habitat 

requirements of 

relevant species) 

• Phenological 

approach (life-

history stages) 

• Holistic 

approach (mixed 

approach) 

Need to consider 

the nature of 

targeted 

ecological 

endpoints (e.g. 

instream 

elements). Mixed 

approaches could 

be linked to 

multiple spatial 

scales and 

multiple 

resolutions 

Needs to consider 

the  targeted 

ecological outcome 

manifestation  

within the planning 

horizon 

This decision could 

be linked to the 

decision on the 

considered  number 

and nature of flow 

alteration structures  

Information 

inventory and 

method 

selection 

Consideration of the 

available source of 

information 

• Empirical 

estimation 

• Expert 

judgement 

• Web-tools 

• Literature 

• Participatory 

workshops 

Data format could 

affect spatial 

scale. Need to 

consider the 

model resolution 

(if spatially 

explicit).  

As for spatial scale, 

data resolution and 

empirical method 

could affect the 

temporal scale 

This decision is 

directly linked with 

the previous 

decision on e-flow 

assessment 

approach. Could also 

affect scenario 

definition. 

Definition of 

reference 

hydrological 

conditions 

Definition of the 

location of the 

monitoring or gauging 

stations as a source for 

• Upstream of 

the reservoir 

• Downstream 

System spatial 

boundaries could 

change when 

Could be affected 

by historical data 

timeframe and 

temporal resolution 

Represents mainly a 

data source, but can 

be linked with 

Table 5 Framework 3/5. Summary of the decisions and options, and related scale considerations for the ‘Hydrological state and indicators‘ step during the ‘Problem formulation phase’. 
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natural flow values and 

hydrograph data 

of the reservoir 

• Multi-reach 

including gauging 

station location 

environmental asset 

location decision 

Selection of 

hydrological 

and non-

hydrological 

indicators 

Definition of the 

hydrological metrics 

(statistics) for the 

definition of threshold 

conditions (e.g. flow 

magnitude and 

frequency/timing) 

• Flow 

magnitude 

• Frequency and 

timing 

• Extreme 

events 

• Water quality 

indicators 

 

 

Infrastructure size 

could influence 

the extent of flow 

alteration 

Indicator selection 

could be affected by 

the length of the 

considered 

timeframe (e.g. 

annual statistics can 

be used for multi-

year planning) 

This decision is 

linked to planning 

horizon needs, the 

nature and area of 

effect of flow 

alteration type as 

well as the scenario 

choice 
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Objective functions and decision variables 

The previous problem perception phase creates the conditions for the translation of assessment objectives 

into objective functions. The general optimization problem is defined by the equation f(x) that we seek to 

minimize or maximize, in which x is the decision variable in question (or vector of decision variables). In 

addition to deriving from the management objective, objective functions can differ considerably 

depending on data availability and the type of flow alteration type (e.g. run-of-river hydropower, storage-

based power generation) (see Table 6). Selection of optimization objectives remains highly dependent on 

analyst choice and revolves around two main options: on one hand, a higher number of objectives (i.e. 

more than one) can favour a more comprehensive representation of the system while promoting an 

increased understanding of existing trade-offs; on the other hand, due to the structure of the applied 

technique, the optimization of multiple objectives is often hampered by limited computational capacity or 

difficult visualization of complex results (Lautenbach et al., 2013). Despite the existence of optimization 

tools able to model a higher number of objectives (see Reed et al., 2013), studies tend to keep the number 

of simultaneous objectives low (e.g. ≤ 4) as well as considering few decision variables (see Section “Solution 

methods”). In this case, the assignment of different weights to decision variables (e.g. Schlüter et al., 2005; 

Xevi and Khan, 2005) or the judicious use of constraints can reflect a range of stakeholders’ preferences 

or policy decisions while at the same time reducing the computational effort. Further discussion on the 

number of objectives is presented in Section “Constraint functions” and “Solution methods”. 

The availability of exact and updated water consumption data for the targeted infrastructure can be 

challenging to obtain. Expressing water supply objectives as the minimization of shortage indices (e.g. long 

term total shortage ratio, mean annual deficit duration, maximum 1-day shortage ratio) allows the indirect 

consideration of demand by relying on daily reservoir releases (Shiau and Wu, 2013). Finer scale 

representation of water supply objectives, e.g. water demand-type at river network nodes (i.e. intake 

points) (e.g. Schlüter et al., 2005) allows a more refined optimization for complex reach systems. An 

alternative approach uses a composite function (e.g. an index) composed of different indicators for water 

use purposes, such as domestic, industrial, and agriculture supply (e.g. Suen and Eheart, 2006). Shares of 

abstracted water can sometimes be retrieved from regional and local databases, which may need to be 

downscaled or extrapolated to areas of interest.  

The most straightforward way to optimize power production is through the maximization of water releases 

or available water volume for hydropower generation (e.g. Arslan, 2015; Xu et al., 2017) or inversely by 

minimizing the gap between generated hydropower and the installed capacity during operational periods 
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(e.g. Fallah-Mehdipour, Bozorg-Haddad and Loáiciga, 2018). Yin et al., (2015) for instance, aimed at 

maximizing the mean annual revenue of hydropower generation concerning specific degrees of flow 

regime alteration. Likewise, economic objectives can be also set for studies targeting irrigation water 

demand (e.g. Xevi and Khan, 2005; Lewis and Randall, 2017).  

In Section “Hydrological state and indicators” we discussed hydrological indicators used to define 

ecological needs. Here we present ways to employ those indicators within the optimization model. 

Environmental outcomes can be directly used as objective functions. In fact, e-flows objectives within the 

optimization problem are commonly expressed as specific share of incoming flow (usually expressed as 

volume) that reflect environmental requirements (e.g. Arslan, 2015; Xu et al., 2017). At the scale of river 

sections, habitat-level data availability allows optimizing specific river flow conditions for the benefit of 

target species (Chen and Olden, 2017). Depending on the targeted ecological endpoint, data collection and 

hence function definition can be more or less straightforward to perform. Reduction of the proportional 

deficit between a prescribed point-diversion and the river regime (e.g. Chen and Olden, 2017) suits 

assessments of finer-scale hydrological systems such as rivers and river sections. This also applies for 

assessments at reservoir-scale aiming at ensuring continuity between water inflows and outflows (e.g. Yin, 

Yang and Petts, 2012; Shiau and Wu, 2013; Steinschneider et al., 2014). 

Lastly, the fitness of certain solutions to the objective function for the environmental water requirements 

can be conceptualized based on the assumptions of the analyst in relation to ecological response functions 

(Fu & Guillaume, 2014). For example, Suen and Eheart, (2006) considered the intermediate disturbance 

hypothesis assumption as basis for the definition of the fitness function for six eco-hydrological indicators 

to maintain the livelihood of aquatic ecosystems.  

Constraint functions 

The general objective function presented in Section “Hydrological state and indicators” is usually subject 

to some constraints. In the general case, f(x) is subject to g(x) < 0 , in which g(x) represents the 

constraint function. Constraint functions can significantly influence the optimization outcomes, allowing 

the output of more realistic results with respect to the considered system scale and other factors (Strauch 

et al., 2019) in mathematical optimization approaches, whereas they commonly represent “decision maker 

preferences rather than physical laws” in simulation-based optimization (Clarkin et al., 2018). For the 

general definition of constraints and their effect on the objective function, see (Coello, Lamont and 

Veldhuizen, 2007). 
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Constraint definition can be a modelling-intensive phase if the system considers a high number of input 

points, diversion points, and facilities. If data used in the optimization problem is not yet spatially explicit 

(i.e. georeferenced), spatial boundaries are usually represented by considering intake and outtake points 

location. 

While consumptive requirements can also be set as objectives (e.g. by defining a minimization function 

aiming at minimizing the gap between the target consumptive amount and the optimized amount), the 

translation of consumptive requirements into constraint functions requires knowledge of the nature of 

demand. Stable demands over time are easily expressed by estimating an amount of water that captures 

all the possible consumptive uses in the considered system. However, this choice will be more suitable for 

short time frames or long term averages, for example management plans for maintaining the native 

ecological communities in river sections (Chen & Olden, 2017). Alternatively, differentiating among 

demand types by setting a minimum water supply ratio can ensure compliance of reservoir operation with 

specific supply objectives, for example for irrigation purposes (e.g. Wang et al., 2015). On the other hand, 

a series of unpredictable factors (e.g. climate, social behaviour, and daily patterns) can also make the 

demand level uncertain. In this case, defining a reliable quantity of stored water for consumptive use or 

energy generation allows satisfying fluctuating needs over a longer period. In this case, a minimum storage 

constraint or supply reliability constraint may be used. The latter, in the case of municipal supply, can be 

also considered as objective depending on the problem structure (e.g. Yin, Yang and Petts, 2012). 

Hydropower plant optimization objectives are frequently constrained by capacity thresholds limiting the 

range of decision variables such as the control gate operations, turbine release, ramping, power tunnel, 

and grid capacities defining power output limitations (e.g. Steinschneider et al., 2014; Dai et al., 2017). 

Optimization process-related constraints have the purpose of facilitating the search phase by setting 

specific conditions that will influence the fitness value based on the degree of violation (e.g. Dai et al., 

2017). Penalty functions are an example of constraint handling techniques, where a constraint function is 

transformed into a penalty that is directly added to the objective function (Coello et al., 2007; Ruhul et al., 

2012). For example, penalties can be set based on the frequency of falling outside of the target range for 

each e-flow parameter (e.g. Wang et al., 2015). However, the values of the penalties should not be set to 

very large values to avoid interfering with the identification of the ideal fitness values (Dai et al., 2017).  

Lastly, constraints can also reflect additional objectives thus reducing the number of objectives (e.g. to a 

single objective) (e.g. Torabi Haghighi and Kløve, 2015; Wang et al., 2015) but this does not necessarily 
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mean that problem size would be reduced. Conversely, constraints can also be turned into objectives, thus 

increasing their number and eventually leading to many-objective problems. However, Kasprzyk et al., 

(2016) in their study of many-objective problems for water management showed that a higher number of 

objectives can be paradoxically easier to solve.  
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Assessment 

phase 

Modelling  

element 

Decision Description Related options Spatial scale  

relation 

Temporal scale  

relation 

Relationships 

between  

options 

Problem 

formulation  

phase 

Objective 

functions and 

decision 

variables 

Consideration of 

the number of 

objectives 

Definition of 

objectives number 

based on the 

computational 

effort 

 

• Single-objective 

• Multi-objective 

Objectives for 

different water uses 

are often on 

different spatial 

scales or extents 

Objectives 

calculated on longer 

timeframes often 

need to be 

complemented with 

objectives that 

capture shorter-

term variability 

Relates mainly to 

computational 

resources but can 

be influenced by 

the solution 

method decision. 

Consideration of 

the nature of 

objectives 

Definition of the 

type of objective 

function that can 

solve assessment 

needs 

• Supply reliability 

indices 

• Shortage indices 

• Composite 

functions (weights 

assignment) 

• Gap reduction 

 

Requires 

knowledge of the 

environmental 

asset 

Requires knowledge 

on management 

horizon and 

information on 

demand nature 

Relates to the 

solution method 

and is mainly 

methodological. 

Constraint 

functions 

Consideration of 

the nature of 

constraints 

Selection of the type 

of constraints that 

would allow the 

best representation 

of the targeted 

system 

• Upper and lower 

limits on decision 

variables (e.g. 

storage capacity) 

• Search-related 

constraints 

 

 

Requires 

knowledge of 

infrastructure 

operations, 

location, and type 

of flow alteration 

Need the 

consideration of the 

management 

scenario and 

planning horizon 

Relates to the 

decision on the 

type and number 

of objectives 

Table 6 Framework 4/5. Summary of the decisions and options, and related scale considerations for the ‘Objective functions and decision variables ‘ step during the ‘Problem 
formulation phase’. 
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Solution methods  

How a water allocation optimization problem is addressed across the different scales depends on its 

overall complexity. There is no direct relationship between scale and solution method as too many factors 

influence the selection of one technique over another. Moreover, problems can be approached with 

different degrees of complexity even if the considered assessment scale is fine (e.g. a single facility). 

However, since water allocation optimization is based on the mathematical conceptualization of the 

problem (e.g. linear, nonlinear, discrete, and continuous), knowledge about differences in solution 

approaches can contribute to the understanding of possible solving strategies for the considered scale 

(system) based on components (e.g. indicator types for objectives, nature for constraints). To illustrate the 

decision about the solution method, we distinguish between deterministic (or mathematical 

programming) and meta-heuristic optimisation. 

Our analysis showed that oftentimes water allocation problems are formulated as multidimensional, 

convex objective functions constrained by a series of rules. Since constraints influence the geometry of 

the feasible solution space, the solution can be found through the process of eliminating problem variables 

(Cavazzuti, 2013). For example, linear programming-based algorithms have been used for solving broad-

scale optimization problems of system types involving dams and large reservoirs, showing a convexity both 

in the objective function and in the constraint functions (Xevi and Khan, 2005; Steinschneider et al., 2014; 

Porse, Sandoval-Solis and Lane, 2015; Chen and Olden, 2017). Problems envisaging variables with a high 

degree of nonlinearity (e.g. evapotranspiration, soil infiltration) can be solved by elimination-based 

nonlinear programming algorithms (e.g. Schlüter et al., 2005; Arslan, 2015). In the case of broad-scale 

optimization problems considering quadratic equations envisaging the relationship between streamflow 

and net economic benefit, sequential quadratic programming can iteratively search for the optimal 

solution (e.g. Mullick, Babel and Perret, 2013). When continuous function variables show discrete or 

integer values, mixed-integer linear programming is preferred instead. Wang et al., (2015) used this 

technique to optimize large scale reservoir operations carrying a binary value in the reservoir outflow 

parameter. 

Metaheuristic optimization algorithms can handle problems characterized by a high number of objectives 

(Coello et al., 2007; Maier et al., 2019). This could be the case of multi-purpose or multi-reach optimization 

problems. As a sub-group of metaheuristics, evolutionary algorithms provide good chances of 

approximating a globally optimal solution quite rapidly (Cavazzuti, 2013) by generating initial random sets 

of variables and then by exploiting operators such as selection, mutation and cross-over to produce better 
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solutions at each generation. For example, Fleifle et al., (2014) solved the minimization problem for the 

wastewater treatment costs and maximized water quality in a river section. Evolutionary techniques such 

as the non-sorted genetic algorithm (NSGA) are commonly applied for handling both basin and multi-reach 

scale optimization problems (e.g. Suen and Eheart, 2006; Dai et al., 2017; Martin et al., 2017; Xu et al., 

2017). 

Optimization scenarios 

The definition of optimization scenarios is included in the problem formulation phase as it relates closely 

to the practicalities of providing useful information in the face of data, model, and computational 

limitations. In principle, a given problem formulation would ideally have a general solution, but in practice, 

it needs to be embedded in a specific context, and multiple variants of problem formulations may be 

possible. The context represents both environmental, operational and management conditions. Scenarios 

hence provide the opportunity to assess alternatives based on system behaviour under possible 

circumstances (e.g. on the effects of different release-schemes on hydrological variability or seasonal 

conditions on planned abstractions). This could contribute to reduce uncertainty about a specific 

management decision or to explore potential management decisions, under a range of operational, 

ecological and hydrological conditions. For example, Lewis and Randall, (2017) considered dry, normal and 

wet hydrological conditions; Porse, Sandoval-Solis and Lane, (2015) considered different e-flow allocation 

targets to assess the trade-off with water supply; Wang et al., (2015) formulated scenarios representing 

combinations of objectives and constraints. While the reliability of optimization outcomes can be also 

linked with robustness and accuracy of output data, it also depends on prior knowledge about the 

considered system which is itself based on the overall system understanding Sanchis, Martínez and Blasco, 

(2008). This means that some degree of conceptual bias arises from our lack of understanding of 

relationships between components. The size and type of investigated system influences the scenarios that 

have to be evaluated, because different needs, and thus ways to think objectives, can exist within that 

system domain. For example, if the system is large (e.g. river basin, sub-basin) multiple needs often need 

to be addressed due to the presence of different social groups and economic activities, policy 

requirements (e.g. Porse, Sandoval-Solis and Lane, 2015) or just the presence of multiple abstraction 

points (e.g. Paredes-Arquiola et al., 2013). Scenarios can be expressed differently for single facility systems. 

At the reservoir scale, alternatives could be represented by the compromises between the amount of 

released and impounded water flow concerning natural flow variability or e-flow requirements. Scenarios 

depicting trade-offs between a series of off-stream (e.g. irrigation) and instream benefits (e.g. fishery) can 
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be assessed with and without e-flows as a constraint (Mullick, Babel and Perret, 2013) to promote the 

incorporation of e-flows within a water management plan. 
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Assessment 

phase 

Modelling  

element 

Decision Description Related options Spatial scale  

relation 

Temporal scale  

relation 

Relationships  

between options 

Problem 

formulation  

phase 

Solution 

methods 

Solution search 

approach 

Selection of the 

solution approach 

based on the nature 

of the considered 

decision variables 

and related 

functions 

• Mathematical-

based 

• Stochastic 

Complex problem 

formulations 

covering multiple 

spatial scales may 

not be 

computationally 

feasible, requiring 

simplification 

Longer 

management 

horizons and finer-

scale operations 

may require longer 

model run times 

This decision is 

highly linked with 

the decision on the 

number and nature 

of objective 

functions (and 

computational 

resources 

availability) 

Optimization 

scenario 

 

 

Definition of the 

uncertainty 

sources/external 

conditions 

Consideration of the 

major source of 

uncertainty in 

optimization 

outcomes 

• Climatic 

conditions 

• Hydrological  

• Operational 

horizon 

• Legislative 

 

Need to consider 

the extent of the 

river network and 

the type of facility 

Connected to 

management 

horizon, if set at an 

annual scale could 

highlight inter-

annual patterns 

This step is 

influenced by the 

optimization model 

purpose (i.e. 

updating an 

existent plan or 

propose a new 

one) 

Table 7 Framework 5/5. Summary of the decisions and options, and related scale considerations for the ‘Solution methods’ and ‘Optimization scenarios’ steps during the ‘Problem 
formulation phase’. 
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2.6 Discussion 

2.6.1 Need for clarity of problem definition 

Complex environmental water allocation problems can be optimised for a range of regulated system types 

(e.g. river basins, reservoirs, reaches, hydropower plants) considering conflicting water management 

objectives (i.e. aquatic ecosystems livelihood and human supply). Overall, the definition of system scales 

and conceptualization within optimization procedures reflects a well-known problem-oriented 

perspective on the river system (van den Belt and Blake, 2015; Opperman et al., 2018), intended to meet 

the functions required for management purposes, and therefore requiring transparent documentation of 

the management problem.  

The availability of optimization models that can be applied simultaneously to multiple scales is still limited. 

Studies would rather formulate the problem for one target area at a time. Hence, the applicability of an 

optimization framework is generally only suitable to the specific case study or systems with similar relevant 

features (e.g. the presence of a hydropower generator) (e.g. Yin, Yang and Liu, 2014). In general, this 

results in a limited reproducibility of a scale-specific optimization assessment for environmental water 

management - which could hinder the interpretation of results by decision-makers. This review and the 

resulting framework therefore highlight the need both for clear problem definition and efforts to develop 

the tools necessary to address multi-scale problems as defined. 

2.6.2 Need for strategies to implement desired assessment scales 

The size (i.e. temporal and spatial scale) of the assessment is intrinsically connected with the range of 

information needed for the development of the optimization procedure. Optimization of large systems 

(e.g. basins, transboundary rivers) and long planning horizons (e.g. multi-year planning) requires more 

complex decision making about suitable options as information could be nested and hence more 

challenging to obtain. Problems involving larger systems may be divided into smaller components by 

subdividing the system into shorter time-frames or sub-areas. This operation when possible may reduce 

both computational and modelling effort. Conversely, smaller systems (e.g. river sections, reaches) 

modelling require less difficult option selection but could still be as challenging as more demanding 

solution approaches (e.g. modelling ability) might be needed. However, mismatches between the scales 

of involved factors (e.g. management scale, hydrological scale) during modelling are frequent as scales are 

defined based on different needs (i.e. administrative, modelling). Overall, this can compound the difficulty 

of defining absolute assessment scales because of the many factors involved (see Figure 3). It may be 

hence more appropriate to speak of the targeted system ‘boundaries’ rather than scales more generally 
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(van den Belt & Blake, 2015). Moreover, improved knowledge of the system connections (i.e. river system) 

at the basin scale would also be helpful to better understand the effects of local-scale flow regulation 

structures. This is especially meaningful if the final aim is to balance water needs as part of a wider system 

(i.e. basin) (Shiau & Wu 2016). 

2.6.3 Need to make explicit trade-offs in model development 

Decisions and option selection during optimization problem definition are usually nonlinear with respect 

to targeted assessment scales, as some trade-offs in data availability and modelling requirements need to 

be accounted for. This is due to the fact that the relationship between scale and available options is not 

one-to-one. The development of optimization procedures to solve water management problems requires 

the simultaneous consideration of multiple factors to representatively recreate the real context or system: 

the targeted scale from the management perspective (e.g. basin) on which a certain environmental goal 

applies (e.g. good ecological status); the number of involved infrastructures and their location; the location 

of gauging and monitoring stations within the management area; and the possibility for the considered 

system to cross geopolitical borders. Hence, this revolves around the need to gather sufficient information 

to be able to represent the targeted system; or, to adapt the assessment scale to the data available (i.e. 

reducing the problem size into smaller problems or ‘nested’ systems). Failing to clearly describe the 

optimization problem context (e.g. physical system, management horizon, and objectives) reduces the 

understanding of how to represent trade-offs and results in a less transparent treatment of scale, and 

therefore the ability to model across scales.  

2.6.4 Need for increased modelling capacity 

Solving water management optimization problems at different scales presents some challenges in relation 

to the nature of the decision variables, the increasing number of objectives and the nature of the functions 

(Reed et al., 2013). Whilst the fact that initial accessible information (i.e. in the problem perception phase) 

linking flows, infrastructure operations and environmental outcomes “is not readily available in a format 

suited to optimization” (A. Horne et al., 2016), a major impediment is represented by limited modelling 

capacity. When dealing with complex real-world problems this could drive to over-simplification and thus 

reduced reliability in optimization outcomes. On the one hand, a solution to over-simplification could be 

the use of more sophisticated algorithms able to deal with a higher number of objectives, as many-

objective optimization algorithms are able to deal with up to 15 objectives (Chand & Wagner, 2015), 

though this would inevitably lead to increase in needed computational effort. On the other hand, 

consideration of the more appropriate approach (i.e. robust or evolutionary) based on the temporal 
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horizon of the problem (e.g. infrastructure scheduling, management planning) could reduce the overall 

uncertainty as it would account for the level of decision making incorporation (Grossmann et al., 2016). 

Lastly, improving the flexibility in optimization problem structure (e.g. by finding a benchmark model 

structure) to be applicable for different scales (e.g. Shiau and Wu, 2013) could help discover nested trade-

offs within the same study system or similar systems thus by fostering comparison. 

2.7 Outlook and recommendations: Using optimization procedures in water 
management  

The need for stating clearer reference boundaries in study descriptions has already been identified by 

Gleeson and Paszkowski, (2014). We consider this even more significant for optimization problems, 

particularly concerning decision-making transparency throughout model development around the final 

assessment scales. Clear definition of targeted and modelled spatial and temporal scales within 

optimization procedures for environmental water allocation could support the identification of potential 

minimum thresholds (i.e. scale) at which e-flow management should be implemented. However, this 

process requires an increased understanding of how modelling limitations relate to option selection. We 

believe that unravelling the relationship between existing options between the problem formulation 

phase and the modelling phase provides a useful pathway for improving the take-up of results at the right 

management level and increasing our ability to model across scales. The first step in this process would be 

clear communication of the optimization problem statement throughout the two phases (see Section 2.5). 

This may also include discussion of how the problem design can be altered to increase understandability, 

which can also improve the understanding of system trade-offs (Seppelt, Lautenbach and Volk, 2013). 

2.7.1 Towards increased transparency: recommendations for optimization problem development 

The framework provided in Section 2.5 mapped the crucial decisions and options related to each phase of 

model development (the problem perception phase and the problem formulation phase) and the 

implications for the temporal and spatial scales of each stage. In this section, by building on the 

aforementioned framework, we propose recommendations for model development under the form of 

essential questions that need to be addressed. This questionnaire, presented in Table 8, assists system 

conceptualization and serves to check information availability. By doing so, it supports clarity in problem 

translation from the problem formulation to the modelling phase. 

We believe that making the role of information availability explicit throughout model development will 

support system understanding and further foster transparency around the trade-off process in model 
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development and system scale representation when defining an optimization model for water 

management problems.  
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Problem perception phase 

 Physical system 

- 
How many flow-altering infrastructures are involved? What is the nature of the flow alteration? What 

types of operations are performed? 

- What is the timeframe of the operational scheme?  

- How frequently does the infrastructure management plan need to be updated? 

- What is the scale of effect of the flow altering infrastructure operations? 

- 
What are the targeted environmental assets? What are the ecological endpoints for the targeted 

environmental asset? What is the location of the environmental asset and ecological endpoint? 

- At what scale are the ecological outcomes manifested? 

 Management objectives & Limiting conditions  

- What are the management objectives for the considered management horizon? 

- How are management objectives defined? 

- What is the temporal scale of the considered objectives? 

- What are the limiting conditions that characterize my objectives? 

- What are the bounding conditions that characterize the problem setting (e.g. structural, hydrological)?  

- What is the temporal dependence of the limiting conditions? 

Problem formulation phase 

 Hydrological state and indicators 

- What is the source of hydrological information?  

- What is the temporal resolution of the hydrological information? 

Table 8 Series of key questions that need to be addressed during optimization model development for water management. 
The table presents questions for each optimization phase. 
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- What is the location of the gauging stations? 

- What assessment approach is used to represent the requirements? 

-  What instrument/tool/source of information is used to define the environmental water requirements 

for the targeted environmental asset? What is its spatial/temporal resolution? 

 Objective functions, decision variables, and constraint functions 

- What hydrological metrics are representative of the selected ecological endpoints? 

- Do the hydrological metrics match the planning horizon? 

- What and how many decision variables are needed to represent the problem objectives? 

- How many and what functions are needed to represent the problem objectives and constraints? 

- What is the nature of the considered decision variables (discrete, continuous)? 

 Solution methods 

- What computational/modelling resources are available to handle the selected functions? 

- What approaches are implemented to reduce computational/modelling effort? 

 Optimization scenario 

- How is uncertainty in optimization outcomes addressed? 

- What is the uncertainty in climatic conditions? 

- What is the uncertainty in hydrological information used? 

- What is the uncertainty in the operational horizon? 
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2.10  Conclusions 

This review paper analysed the implications of decisions and related options throughout the optimization 

model development stages for the final temporal and spatial scale of the assessment. We first explored 

the main decisions that have to be made by distinguishing two distinct phases in optimization problem 

development: problem perception and problem formulation. We found that most decisions have strong 

links with the spatial and temporal scales of the assessment that need to be accounted for. Successively, 

we mapped options related to each decision (i.e. related to the physical system, assessment objectives, 

the hydrological state and indicators, objective and constraint functions, solution methods and, 

optimization scenario) and provided scale-specific considerations for option selection.  

Overall, given that water management problems involve a large number of factors to consider (e.g. 

operations schemes, supply competition, changing environmental conditions), the decision-making 

supported by optimization techniques is influenced by a series of challenges related to data availability 

and modelling capability. This consequently affects decision making about options, which resolves in 

tailoring the optimization model to the available data and modelling ability, retrieving additional data 

required or subdividing the problem. Further research focused on clarifying the underlying influences 

between options concerning scale would provide an enhanced insight into the relationship between 

options and improve the process of option selection. Besides, it would enable the integration of 

instruments that can improve reliability and comparability in optimization outcomes. Moreover, while 

exploring how trade-offs across scales are incorporated into the optimization process is more challenging 

for the application of optimization algorithms; it is also potentially most useful to an environmental water 

manager. As a foundation for these goals, we provided recommendations for model development by 

focusing on key questions related to each decision, with the intent of fostering transparency around 

decision making and options selection during both problem development phases.  
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3.  Applying optimization to support adaptive 

water management of rivers  

This chapter was published in MDPI Water. 

Derepasko, D., Peñas, F.J., Barquín, J. & Volk, M. (2021). Applying 

Optimization to Support Adaptive Water Management of Rivers. 

Water, 13(9), 1281. https://doi.org/10.3390/w13091281  

References to Supplementary Materials can be found in Appendix B 

attached to this thesis. 

3.1 Summary (abstract) 

Adaptive water management is a promising management paradigm 

for rivers that addresses the uncertainty of decision consequences. However, its implementation into 

current practice is still a challenge. An optimization assessment can be framed within the adaptive 

management cycle allowing the definition of environmental flows (e-flows) in a suitable format for 

decision making. In this chapter, we demonstrate its suitability to mediate the incorporation of e-flows 

into diversion management planning, fostering the realization of an adaptive management approach. We 

used the case study of the Pas River, Northern Spain, as the setting for the optimization of surface water 

diversion. We considered e-flow requirements for three key river biological groups to reflect conditions 

that promote ecological conservation. By drawing from hydrological scenarios (i.e., dry, normal, and wet), 

our assessment showed that the overall target water demand can be met, whereas the daily volume of 

water available for diversion was not constant throughout the year. These results suggest that current the 

decision making needs to consider the seasonal time frame as the reference temporal scale for objectives 

adjustment and monitoring. The approach can be transferred to other study areas and can inform decision 

makers that aim to engage with all the stages of the adaptive water management cycle. 

3.2 Introduction 

The concept of integrated water resource management (IWRM) embodies the willingness to account for 

the economic, social, and ecological implications of water management (Meran et al., 2021). River 

regulation such as damming, barrages and river training can affect both the sediment balance, inducing 

morphological changes, and the hydrological regime (Bizzi et al., 2015; Ely et al., 2020). As a consequence, 

many of the current water management decisions for regulated rivers worldwide aim for the sustainable 

https://doi.org/10.3390/w13091281
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use of water resources to protect the natural ecosystems (Tharme, 2003). However, the rapid decline in 

freshwater biodiversity urges for prompt practical actions such as environmental flow implementation 

(Lemm et al., 2021; Tickner et al., 2020). The concept of environmental water regime or environmental 

flow (e-flow) has been first announced during “The Brisbane Declaration” (2007) (The Brisbane 

Declaration, 2007) and ever since it defines “the quantity, timing, and quality of water flows required to 

sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on 

these ecosystems” (Acreman, 2016; Acreman et al., 2014; Arthington, Bhaduri, et al., 2018; Arthington, 

Kennen, et al., 2018).  

In regulated rivers, sustainable use is typically achieved by management decisions controlling certain 

variables such as consumption capping or water allocation through downstream release for specific target 

ecological processes and/or components (A. C. Horne, O’Donnell, & Tharme, 2017). Whatever the 

management decision in question, the incorporation of e-flows into practice is fundamental to facilitate 

“the establishment of a water regime needed to manage rivers” (N. L. Poff et al., 2017) that acknowledges 

the importance of ecosystem needs (Tharme, 2003). Moreover, e-flows incorporation within management 

practices can also be associated with conservation and restoration objectives for the targeted scales such 

as “passive” restoration approaches addressing the reduction of hydrological alteration stresses on 

biodiversity (Arthington, 2015; Atkinson & Bonser, 2020; King et al., 2015; Opperman et al., 2019). 

The complexity of interactions characterizing our socio-ecosystems (sensu Iwanaga et al., 2021) leads to 

difficult predictability of effects of certain factors (e.g. climate, water demand) that increase the 

uncertainty of results from specific water management actions (Pahl-Wostl et al., 2007). This lack of 

security exacerbates the ongoing challenges on decision making in the water management process such 

as organizing efficient water governance systems (Pahl-Wostl et al., 2012) and leads to reduced capacity 

to resolve unexpected eventualities and future scenarios. The concept of “adaptive management”, as a 

fairly new paradigm for managing water resources in an integrated way, emerged in the last decades in 

response to the need for improving water management strategies (Medema et al., 2008; Webb, Watts, et 

al., 2017). This paradigm, which builds on the ‘learning-by-doing’ approach, considers the improvement of 

management practices by learning from the outcomes of previously implemented management strategies 

(Pahl-Wostl et al., 2007; Webb, Watts, et al., 2017). Theoretically, this process consists of a constant loop 

of learning and adaptation between each adaptive water management cycle (AWMC) to achieve long-term 

management goals (e.g. restoration of hydrological conditions for endemic species). However, smaller 

adjustments based on shorter-term ongoing outcomes could be made between each phase of the cycle 
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(i.e. planning, doing, monitoring, and learning; see Docker & Johnson, 2017; Doolan et al., 2017; Webb, 

Watts, et al., 2017. Practically, exact strategies to achieve adaptability within the AWMC are still lacking 

(Edalat & Abdi, 2018) – it calls for stronger links between the management actions and subsequent 

monitoring strategies (Docker & Johnson, 2017c; King et al., 2015; Westgate et al., 2013) to support the 

evidence of ecological improvement or degradation (Westgate et al., 2013).  

The adaptive management approach suits the challenge of incorporating e-flows into management (due 

to the uncertain nature of environmental outcomes after management decisions; (A. C. Horne, O’Donnell, 

Acreman, et al., 2017; Williams & Brown, 2016). The practical incorporation of e-flows into water 

management planning will require prompt adaptation of decisions and actions based on changing 

environmental conditions (e.g. hydrological, ecological, and climatic). The prediction of results from 

management actions under different scenarios (e.g. incorporating hydrological variability, climate change, 

and demand fluctuation) before their implementation represents a very powerful tool to anticipate 

consequences and reinforce the decision-making process to improve adaptability, sustainability and, 

ecosystem conservation. Overall, such a strategy will improve our ability to reveal management effects in 

complex systems as managed rivers (Medema et al., 2008). 

E-flows incorporation into water management is often linked to the problem of balancing human and 

ecosystem water needs and maintaining ecosystem services provision when sustainable abstraction 

practices are sought. Different methods have been applied to support water management and water 

allocation in complex systems. Examples include economic approaches (Haavisto et al., 2019; D. Wang et 

al., 2019); geographic information systems (Gebru & Tesfahunegn, 2020; Neissi et al., 2020); socio-

hydrological and environmental assessments (Baker et al., 2015; E. G. R. Davies & Simonovic, 2011; 

Mostert, 2018); as well as a range of decision-support tools (Maia & Schumann, 2007; Ruiz-Ortiz et al., 

2019). Usually, water management deals with a range of conflicting anthropogenic water use objectives 

and consequently, there are important trade-offs between water uses and demands (Mendoza & Martins, 

2006). The need for new instruments and frameworks that help decision-makers is still evident (A. C. 

Horne, O’Donnell, Acreman, et al., 2017) and will increasingly put pressure on water managers dealing 

with future climate change effects (Burnham et al., 2016; Hart et al., 2017). Optimization is a decision 

support approach that has been applied for such water management problems at different scales, 

envisaging convoluted decision-making (among which are trade-offs in river ecosystem services and river 

sediment budget maintenance; (Bernardi et al., 2013; Bizzi et al., 2015; Laurita et al., 2021; Derepasko, 

Guillaume, et al., 2021; Dhaubanjar et al., 2017; A. Horne et al., 2017). It enables the identification and 
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evaluation of trade-offs and synergies among some management objectives (e.g. control of consumption, 

risk prevention, delivery of water for targeted species, hydropeaking control) before the implementation 

takes place. The technical structure and features of the optimization approach (e.g. mathematical 

expression, multiple solutions) address many of the challenges (e.g. scenario analysis, real-world 

conditions representation) resulting from the need of incorporating e-flows into management planning 

(Derepasko, Guillaume, et al., 2021). Due to the absence of exact rules for the definition of e-flow 

requirements for rivers but rather distinct approaches (Lamouroux et al., 2017; N. L. Poff et al., 2017; 

Webb, Arthington, et al., 2017), a series of strategies are possible to operationalize their incorporation 

within the optimization assessment (e.g. based on the consideration of natural-flow conditions or 

exploiting flow-biota correlations). Careful definition of e-flow requirements is hence needed to support 

the monitoring phase and enabling the adaptive process (King et al., 2015; Webb, Watts, et al., 2017). 

In this paper, we propose an optimization assessment on the example of a targeted river basin in Northern 

Spain, which is providing water for an urban area of over 200’000 people. The specific objectives of the 

modeling exercise were (1) to demonstrate the suitability of a new methodology based on an optimization 

approach to mediate the incorporation of e-flows into the diversion management planning, (2) to discuss 

the challenges and limitations of the optimization model by drawing from the considered water 

management problem, and (3) to assess the potential of the optimization approach to foster adaptive 

management of water resources. We first present the conceptual framework underpinning the definition 

of the optimization assessment for water abstraction and the stages involved in the definition of the 

optimization problem for the selected case study (Section 3.3). The section also contains the description 

of the case study and the optimization problem incorporating environmental flows, as well as an 

illustration of the hydrological scenarios and the optimization modeling algorithm. Simulation results are 

presented in Section 3.4. Lastly, we discuss both the modeling assumptions and results, highlighting both 

the advantages and the disadvantages of the optimization assessment, and the implications for the 

diversion planning and river management providing suggestions for the best adoption of an adaptive 

process (Section 3.5). 

3.3. Materials and Methods 

3.3.1 The optimization framework 

The optimization assessment framework presented in this study represents the “structured set of steps 

and considerations used for the formulation [of the optimization problem]” (Derepasko, Guillaume, et al., 
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2021) underpinning the optimization modeling exercise carried out at the example of the Pas River, 

Northern Spain (Paragraph 3.3.2).  

The stages of the optimization assessment framework that led to the definition of the optimization 

problem for the case study and their relation to the AWMC phases (see Figure 5) are shown in Figure 6. As 

a first step, management objectives and water allocation decisions for the Pas River basin have been 

assessed to understand the problem context and identify priorities and water diversion practices 

(Paragraph 3.3.2). This stage required the contextualization of the optimization problem to identify the 

best output information to be produced. In other words, a tailored result format has been selected to 

enable the usage of information by the targeted user type (i.e. water managers and decision-makers). 

Successively, based on the information identified during the contextualization phase, reference e-flow 

conditions have been defined considering different biological groups present in the ecosystem (Paragraph 

3.3.3). For these biological groups, hydrological conditions (expressed as thresholds) have been considered 

to preserve flow components from alteration caused by diversion. The “learning” process within the 

AWMC is based on the exploration of ecological effects from the management interventions (Webb, 

Watts, et al., 2017). As described in Paragraph 3.3.3, given the exploratory nature of the assessment, the 

hydrological thresholds on the flow components (for each biological group) considered in this study were 

 

Figure 5 Position of the optimization assessment within the Adaptive Water Management Cycle. The phases of an AWMC can 
be divided into two main stages belonging to opposite edges of the action spectrum, the perception-understanding and 
operational: the first stage involves the definition of the management objectives and management decisions; the second stage 
focuses on the implementation and monitoring of the management actions to provide insight into the next cycle, respectively. 
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largely based on expert judgment. Lastly, information collected from the two previous stages was 

processed during the modeling stage which considered the design of the optimization problem (e.g. 

solution approach) and its functions (i.e. objectives) both for the human water demand and for the 

considered biological groups (Paragraph 3.3.4). Alongside the model development, hydrological scenarios 

reflecting daily mean discharge at the targeted location have been developed and used as the reference 

(input) hydrological conditions for the optimization model runs (Paragraph 3.3.5 and 3.3.6, respectively). 

3.3.2 Case study area: The Pas River basin 

We used the Pas river basin in Northern Spain as the case study area for the optimization assessment 

development and application (Figure 7). The Pas River represents an ideal catchment to show the potential 

of optimization approaches to support adaptive water management planning. It is subjected to relatively 

strong human pressure while it still provides a good representation of its potential natural condition. In 

this regard, most of its river water bodies show a good ecological status (sensu European Water 

Framework Directive; EC, 2000) and provide habitats for iconic species for conservation, such as the 

 Figure 6 Structure of the applied optimization assessment. The case study description phase considers information that arises 
from the current management decisions and it was used for the optimization assessment development. The bold-outlined box 
corresponds with the monitoring phase that was not assessed in this study but serves to highlight the link with the Adaptive 
Water Management Cycle (left-hand side). 
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Atlantic salmon. The Pas river system drains into the Cantabrian Sea (North-East Atlantic). Calcareous rock 

and sandstone formations dominate the basin which covers an area of 649 km². The river network is 

defined by the three main rivers Pas, Pisueña, and Magdalena. The mean annual precipitation amounts to 

1300 mm, and the mean annual daily flow (close to the river mouth) is 14 m³/s. Maximum flows are 

observed in April, and minimum discharges occur in September (Álvarez-Cabria et al., 2010), close to the 

mouth. Water regulation in the basin is mainly implemented through surface water uptake by cross-

channel weirs and pump injection into the water supply grid. A primary management objective is domestic 

water supply: water is mainly abstracted to satisfy the demand of the municipalities with annual 

volumetric allocation for the distinct municipalities. While there is no large infrastructure (e.g. dams) able 

to modify high flow and flood patterns, water diversion operations and water use can still influence the 

hydrological attributes related to low flows (e.g. magnitude of low flows, duration of droughts). Extended 

shoals and changes in the river flow as a consequence of traditional diversion practices represent a threat 

to ecosystems and freshwater biota. The ecological conditions of the aquatic ecosystem in the basin are 

monitored and defined by the Cantabrian Hydrological Confederation (CHC) which is also responsible for 

the drafting and development of the Basin Management Plans. In this study, we considered as a setting 

for the optimization of water abstraction for municipal use two distinct diversion points (DP1 and DP2) - 

as consumptive demand for the points we considered 0,26 Hm3/y and 0,66 Hm3/y, respectively. Both 

points are not impacted by prior upstream flow diversion along the river network located on two distinct 

river segments (sensu Derepasko et al., 2021). 
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Figure 7 Location of the Pas River Basin and the river sections in proximity to the selected diversion points (indicated as ‘DP’). 
For illustration purposes, we added shading to the river network, linked to average river discharge. 

3.3.3 Definition of the e-flow requirements for the Pas River: biological groups and hydrological 

thresholds  

The optimization of water diversion based on environmental needs requires the definition of reference 

hydrological conditions to ensure the conservation of key flow attributes (e.g. base flows, pulses, etc.) that 

support the ecosystem. Knowledge of the exact hydrological conditions for species and their cross-scale 

variation remains a core research gap in the field of freshwater biology (Rolls et al., 2018). Despite this 

gap, water management optimization assessment relies on flow-ecology relationship assumptions or eco-

hydrological indicators (e.g. Chen & Olden, 2017; Shiau & Chou, 2016; Torabi Haghighi & Kløve, 2015; X. 

A. Yin et al., 2012) for the identification of optimal management strategies that facilitate the 
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implementation of an adaptive management approach at appropriate scales (Dollar et al., 2007). E-flow 

requirements need to reflect hydrological conditions that support ecological processes and functions. A 

generalized optimization assessment approach considering a single taxonomic group (e.g. fish) can expose 

to the risk of adverse effects on other components of the ecosystem and lead to unpredictable ecological 

results both at the short and long-term scales (Acreman et al., 2014; Tonkin et al., 2020). Thus, the 

acknowledgment of the role of each biological group in the ecological framework results “fundamental to 

the maintenance of diverse and resilient communities into the future” (Tonkin et al., 2020). In the frame 

of the study, despite not explicitly considering existing direct and indirect relationships among the 

considered biological groups, we simultaneously included hydrological conditions of different biological 

groups to define the e-flow requirements in the Pas River throughout the year (Figure 8). In this regard, 

we encompassed three biological groups (Biological Group 1, 2 and 3) within the relevant levels of the 

trophic network of the ecosystems (from primary producers to apex predators). The process of e-flow 

requirement (R) definition (i.e. hydrological conditions for the biological groups) was based on the output 

of a workshop with a group of experts in the fields of hydrology, eco-hydrology, and freshwater biology 

from the IHCantabria (Santander, Spain). The e-flow requirements considered in this study are not 

absolute, meaning that they can be refined based on the dominant situation and idiosyncrasy of each 

watershed (establishing definitive values was out of the scope of this work). A summary of the 

requirements is shown in Table 9. 

Biological Group 1 included fish species. Fish species are top predators and might represent an economic 

source for the local population in the region, associated with recreational angling (Hunt et al., 2017). Life 

cues of fish species are closely linked with the magnitude and timing of the distinct flow regimes. Despite 

different fish species have specific adaptation strategies and hence can tolerate the modification of either 

magnitude or timing of river flows to a certain extent, modification of flows during key stages of life-cycle 

(e.g. migration, spawning, hatching, recruitment; Gibbins et al., 2008; McMichael et al., 2005; Tetzlaff et 

al., 2008; Trotter, 2016; von Schiller et al., 2017) could compromise population structure (Jonsson et al., 

2011) or even increase the extinction risk (Bradford & Heinonen, 2008; Saltveit et al., 2019). The 

hydrological requirements (R1-R4) for Biological Group 1 aimed at the maintenance of certain flow 

conditions for cues (e.g. spawning or feeding) for the majority of the year (especially during dry periods) 

and at ensuring the occurrence of peak flows (e.g. for migration). Particularly related to the September 

period (characterized by reduced discharge), we exploited the synergy (and avoid algorithm conflicts) with 
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R5 and R6 (described below) to ensure both survival and migration of the fish, which provided low flows 

and peak flows, respectively, during the month of September. 

Group 2 considers aquatic macroinvertebrates. Aquatic macroinvertebrates’ community composition is 

highly diverse (e.g. grazer, shredders, predators; (Wallace & Webster, 1996) and each community exhibits 

different responses to hydrological gradients and flow frequency (Booker et al., 2015; Chen & Olden, 2018; 

Dollar et al., 2007). Since additional experimental evidence is needed to define the accurate requirement 

of each taxonomic group, we considered the highest taxa occurrence probability (the underlying rationale 

was based on the Intermediate Disturbance Hypothesis (Osman, 2015) as an indicator for the e-flow 

requirement for this group. The hydrological requirement (R5) for Biological Group 2 considered the 

occurrence of high flow conditions to reduce the alteration from flow diversion (e.g. flow magnitude and 

variability).  

Biological Group 3 considered for the optimization assessment refers to primary producers (PPs). PPs have 

a role in defining the presence of the other two groups (i.e. Biological Group 1 and 2) because of their 

position at the base of the food-web (Bowden et al., 2017). PPs encompass a variety of taxonomic groups 

(from diatoms imbibed within the biofilm to macrophytes) that respond differently to changing 

hydrological patterns. The opportunistic response of PPs to variation in hydrological conditions defines the 

establishment of specific groups based on flow regime characteristics. We assumed that establishment 

success (i.e. ability to develop cover) is supported by a minimum flow during the dry period and hence 

defined the hydrological requirement (R6) in the targeted period (April to September). 
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Figure 8 Annual distributions of e-flow requirements defined for the Pas River. Each requirement has been translated into the 
ecological objectives within the optimization model for water diversion. 

Table 9 E-flow requirements considered in this study. The requirements define hydrological conditions to be conserved in the 
river during the daily diversion operations throughout the year. Q95-Q75 is the flow value that is exceeded 95% and 75% of the 
time, respectively; FRE3 is the flow value that exceeds three times the median flow. 

 

 

 

3.3.4 Definition of the Pas River optimization problem 

To identify the highest water supply sustainability in the river basin, the magnitude and timing of river 

water diversion operations need to be optimized to comply with the considered e-flow requirements. 

Hence, the latter generally constrains the availability of water for human consumption. Constrained multi-

objective optimization is an optimization method based on the search for feasible solutions that directly 

limit the search space (Srinivas, 2019). This method is frequently applied in real-world settings of structural 

and operational optimization assessments for water regulation assets (Alais et al., 2017; Chang et al., 

Target group Requirement Definition 

Biological Group 1 

        R1 Q95 flow – full period 

        R2 FRE3 flow – 21 days (consequent) 

        R3 Q95 flow – 45 days (consequent) 

        R4 Q95 flow – full period 

Biological Group 2         R5 Q75 flow – 5 events 

Biological Group 3         R6 
10% average yearly flow – 70 days 

(consequent) 
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2010). An approach for constrained optimization is represented by the penalty-based approach; it allows 

transforming the problem into an ‘unconstrained’ one – penalty (constraint) is incorporated into the 

objective function to reduce the fitness of the function based on the degree of the specified violation. The 

penalty-based approach particularly suits optimization assessments considering a high number of limiting 

conditions. Moreover, it can be easily implemented with evolutionary/genetic algorithms (Bustince et al., 

2018; Jadaan et al., 2009; Yeniay, 2005). In this study, the maximization of the conservation potential of 

the hydrological conditions for the biological groups and the satisfaction of the yearly municipal water 

volume demand are considered in the formulation of the problem functions as conflicting objectives. For 

each e-flow requirement objective, a penalty score method based on the characteristics of the 

requirement was defined and incorporated into the objective function. The calculation of the penalty score 

and the objective function varied based on the type of requirement. The general structure of penalty score 

and objective function calculation process is shown in Figure 9, while the detailed functions used in the 

optimization problem are available in Supplementary Material to this paper. Considering the specific case 

of river flow diversion, the requirements have been specified as thresholds for the river flow component 

modification. A flow condition above the threshold will be always favored by the algorithm, while a 

hydrological condition below the defined threshold will be penalized based on the degree of the violation. 

Each function output has been normalized based on the characteristics of each requirement, with scaling 

between zero (i.e. the best outcome) and one (i.e. the worst one).  

  

 

Figure 9 General structure of the calculation process for the penalty score and objective function (𝒅𝒊 and 𝒅𝒊+𝒏 indicate a day 𝒊 
of the year starting from January 1st). 

 

3.3.5 Hydrological data 

The developed optimization assessment used input hydrological data describing the river discharge for the 

Pas River basin. The simulated time-series at the daily scale resolution (for the period 1980-2006) for the 

two diversion points (DP1 and DP2) was generated by manipulating two datasets provided by the 
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IHCantabria. The first dataset of discharge values developed by García et al., (2008) for the Pas catchment 

by using the updated version of the rainfall-runoff model (HEC-HMS; Scharffenberg, 2010). This dataset 

was available only for certain points along the river network at daily resolution. The second dataset 

contained discharge data extracted from the Spanish national repository and was processed with the 

SIMPA GRASS-based tool (Álvarez et al., 2004), available for each 500 m section of the river network at 

monthly resolution. To obtain the aforementioned time-series at the desired temporal resolution format 

(i.e. the daily scale resolution) used in this study, a conversion factor (i.e. flow magnitude coefficient) for 

the target river segments (in correspondence with DP1 and DP2) was first extracted from monthly scale 

data (SIMPA tool) and successively multiplied to the daily flow data (HEC-HMS model). 

3.3.6 Optimization scenarios 

Scenario development aimed to capture lower than average, average, and higher than average 

hydrological conditions at the considered diversion points (DP1 and DP2) to increase produced information 

uptake and fostering discussion about management practices in the Pas River. With this purpose, 

hydrological year-based scenarios namely dry, normal, and wet, were developed to explore optimization 

outcomes at different hydrological conditions (see Figure 10). Firstly, each year in the record (1980-2006) 

was sorted based on its average yearly discharge value (the years 1980 and 2006 were discarded as only 

full-data years were considered), and a three-tiered statistical breakpoint classification has been applied. 

Each class contained 33% of the data with higher, medium, and lower average yearly discharge values. 

Lastly, daily averages have been recalculated among years of the same class to obtain the three sample 

hydrographs used in this study. The daily values of each hydrological time series (at the daily time-step 

 

Figure 4 Average yearly discharge values (in m3/s) for the considered scenarios (dry, normal and wet) for the two diversion 
points DP1 and DP2. The upper and lower fences represent the max and min discharge vales, the edges of the box represent the 
upper and lower quartiles, and the line inside the box is the median. 
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starting from January, 1st to December, 31st) under each considered scenario for both DP1 and DP2 is 

available in Figure S1 in the Supplementary Materials to this paper. 

Despite real-world daily river discharge can greatly fluctuate around the daily average discharge values 

within each scenario that we considered in the optimization assessment, this is mostly due to less 

predictable (in the long term) factors as precipitation and temperature. Forecasting the exact discharge 

value occurring at a specific day with the aim of planning daily diversion is still challenging. A simple 

approach to tackle this issue is the consideration of representative discharge patterns throughout the year. 

In this study, the produced hydrological scenarios (or hydrographs) are intended only a basis for 

exploration and discussion about potential decisions and management practices rather than absolute 

discharge values. Hence, a key assumption underlying the input hydrological data (hydrographs in Figure 

S1 in the Supplementary Materials) was that it serves as a representative ‘sample’ of the current 

hydrological conditions at the daily scale for each considered scenario. 

3.3.7 Evolutionary optimization algorithm and framework 

To solve the presented non-linear optimization problem for the Pas River we applied the state-of-art of 

evolutionary algorithm NSGA-III (Deb & Jain, 2014) by exploiting the Pymoo – Multi-objective optimization 

in Python - framework version 0.4.1 (Blank & Deb, 2020a). To track the convergence towards the optimal 

solutions we used a recently developed running metric indicator. Although the hyper-volume convergence 

metric is a widely employed technique, it requires the knowledge of the “true Pareto front” which is not 

always available (see Blank & Deb, 2020a); the aforementioned running metric indicator uses extreme 

points and the information of the non-dominated solution retrieved at each generation to define the 

convergence evolution (for in-depth explanation see Blank et al., 2019; Blank & Deb, 2020b). The structure 

of the optimization module applied to the defined optimization assessment problem for the Pas River 

basin simulation runs is shown in Figure 11. The Pymoo module is then linked with two additional modules: 

a module that extracts the input hydrological indices (i.e. Q75, Q95, FRE3 and AYF – average yearly flow); 

and a scenario module that processes the hydrological record and provides input hydrological conditions. 

The algorithm was parametrized with a population size of 100 individuals and run for 1000 generations. 

The running metric was set on a 50-generation step. 
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Figure 5 Optimization problem structure employed to the Pas River. The main box shows the module structure of the Non-Sorted 
Genetic Algorithm-3 (NSGA-3) in Pymoo – multi-objective optimization in Python. Two external modules, Hydrological Scenario 
and Hydrological Indices, calculate the hydrological scenarios to be inputted into the Pymoo module and the hydrological 
variables, respectively. 

3.4. Results 

Providing sufficient water for consumptive use (e.g. municipal, industrial) was the primary objective of the 

water management optimization problem developed for the Pas River case study. Simulation results for 

the different diversion points (i.e. DP1 and DP2) showed that the overall annual water demand for 

municipal use (calculated in Hm3/y) set as demand objective was fulfilled under all the considered 

scenarios (see Tables S1 and S2 in the Supplementary Materials). The total annual water volume for 

municipal use increased with the increased availability of river discharge and was at its highest value under 

the wet scenario conditions. On the other hand, e-flow requirement objectives (i.e. R1-R6) scores showed 

very small deviations (in their normalized values) to the test runs (reference scores of the undisturbed 
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hydrograph; see Tables S3-S8 in the Supplementary Materials). Test scores different from zero indicate 

the original input hydrological conditions not allowing requirement meeting. This means that additional 

pressure on the target Biological Groups already exists under some natural hydrological variability from 

one year to another. The most noteworthy changes are related to the R2 objective scores, which showed 

a linear trade-off with the municipal water supply objective (see Figure 12 as an example, other results 

available at https://doi.org/10.6084/m9.figshare.14230553; ; 

Derepasko, Peñas, et al., 2021). For the remaining 

optimization objectives, the trade-off pattern was 

characterized by a non-homogeneous behavior to the supply 

objective gradient pattern. This can be due to the more strict 

nature of the penalty requirement assigned to the objective. 

It is important to note that the reference e-flow requirement 

scores (R1-R6) for the natural (or undisturbed) river flow 

showed that in few cases the hydrological conditions for the 

selected Biological Groups were sub-optimal (i.e. higher than 

zero) also before the trading of water with municipal 

diversion (see Tables S3-S4-S5 and S6-S7-S8 in the 

Supplementary Materials). This means that the reference 

natural discharge conditions used could have in some cases 

contributed to increasing the score for the Biological Groups. 

Results also indicate that the daily availability of water for 

abstraction varied throughout the year; what we explored 

from model results was this day-to-day variability in the water 

quantity for municipal diversion defined as optimized 

discharge (OD). To reduce uncertainty in the OD range values, 

the optimization problem was run under three different 

hydrological scenarios (dry, normal, and wet) and ten 

independent times for each diversion point and each 

 
Figure 6 Heat map of the objective functions. Heatmap showing the sorted normalized objective functions scores [on the y-axis] for 
the e-flow requirements (BG1=Biological Group 1; BG2=Biological Group 2; BG3=Biological Group 3) in relation to the municipal 
water supply objective (f1) [on the x-axis]. Tiles hue indicates the score (dark green=high/best scores; light green=low/worst scores). 
Presented result is for run #1 for DP1, dry scenario. 

https://doi.org/10.6084/m9.figshare.14230553
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hydrological scenario. Each model run outputted a batch of day-to-day OD annual series when run for a 

specific scenario. Results indicate that despite the stochastic nature of the genetic algorithm (as it uses 

random input values of the potential optimized diversion volumes), the prevailing pattern of the optimized 

diversion volumes repeats across the different runs for the same scenario (see as example Figure 13 which 

depicts the outputs for DP1 under the dry scenario).  

 

The shades of the tiles are in agreement for the majority of the days of the year meaning that the algorithm 

was able to converge at each run to similar solutions, and hence the model identified a prevailing trend of 

optimal solutions (i.e. the daily optimal amount of water for diversion) distribution throughout the 

different model runs. The results of the time window from the end of August to the beginning of October 

are more heterogeneous (i.e. the daily OD value changes significantly between each run). This indicates a 

greater variability of the average daily diversion values identified by the model. Similar patterns across the 

model runs emerged for the other diversion point and scenarios (see Figures S2-S3, Supplementary 

Materials). 

To provide a greater understandability and to explore the obtained results we averaged the batch of daily 

diversion percentages for each scenario to obtain the mean daily percentages of the natural discharge 

(%OD), as shown in Figure 14 for DP1 under the dry scenario. The %OD (optimized discharge expressed as 

a percentage share of the natural flow) changes significantly daily. Results across the diversion points (see 

Figure 7 Optimization runs. Comparison of the results for each run of the optimization model showing the pattern of the 
normalized average daily diversion percentage values (expressed as the daily percentage of the natural daily discharge). Yellow 
(1) tiles correspond with the highest daily percentage, whereas blue (0) tiles correspond with the lowest optimal daily diversion. 
Presented results are for the DP1 under the dry scenario. 
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Supplementary Materials, Figures S4-S5) show that for the majority of the year over 50% of the daily river 

discharge was not required for the selected environmental criteria. The highest %OD volumes are more 

evident in the first half of the year (Jan-June) to the second half: this quantity decreases as river natural 

flow declines because of the low flow season. Larger variability in abstraction shares characterizes the 

months from September to November which can be attributed to the variability in precipitation 

distribution upstream causing peaks in the river discharge in correspondence with the diversion points. 

 

By considering the results from the analysis of the individual simulations, we compared the averaged 

results to the natural discharge in the river. Given the size of processed information available from 

simulation runs we summarized all the results in Tables S9-S10 (Supplementary Materials). To understand 

the trends throughout the year we plotted the value of the unaltered river flow with the flow portion 

optimized for diversion (see Figure 15 as an example for the DP1 under the dry scenario; complete results 

are available in Figures S6-S7 in the Supplementary Materials). The OD mainly follows the profile of the 

natural discharge, which corresponds with the upper edge of the line, for the greatest part of the year. 

Thicker lines, and hence a greater quantity of water that should remain in the river, concentrate in the 

driest days of the year. This is plausible due to the required objectives of maintenance of base flows. It is 

important to note that days where the width of the line is thinner, indicate that the optimized discharge 

almost matches with the totality of the natural discharge. This is because the lower edge represents the 

ideal amount of water that can be abstracted. It represents an indication about the greatest water amount 

 Figure 8 Reference flow and optimized flow. Comparison between the residual percentage of natural daily flow (green - %RF) 
remains in the river and the average daily discharge optimized for diversion (purple - %OD]). The diverted discharge is calculated 
as a daily average for all the 10 runs of the model. Presented results are for the DP1 under the dry scenario. 
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available for daily abstraction being the latter an average of the results across all the runs. The reason for 

the presence of unmatched discharge (i.e. greater gap) can be related to the specific scenario used (i.e. 

the representative hydrograph) and hence associated with the hydrological model used to generate the 

data. 

3.5. Discussion 

3.5.1 Trade-offs between diversion and biological groups’ requirements: Variability in the daily flow 

available for diversion 

Considering water demand fulfillment needs, the optimization of daily flow for diversion evidenced 

periods of major and minor daily average trade-offs (expressed as the quantity of flow that is available for 

abstraction against the quantity of flow that should remain in the river), meaning that periods of lower 

availability of water for diversion are present. Our optimization assessment shows that trade-offs of 

human water use against the water needed to protect the ecosystem are not manifesting at the annual 

scale (i.e. modification of the total quantity of water that can be abstracted annually) but rather, the trade-

off is more evident at the daily scale. Since the magnitude of this trade-off varies across the solutions found 

by the algorithm (during each run), the selection of one solution over another is usually required. However, 

the process of option selection remains a prerogative of the decision-maker as it requires appropriate 

engagement strategies for management preference elicitation (O’Sullivan et al., 2020). Results presented 

Figure 9 Gap between optimized and natural flow. Flow series showing the magnitude of gap between the daily optimized 
diverted discharges with respect to the natural discharge for the DP1 under the dry scenario. Greater thickness indicates the 
highest trade-off between the natural discharge and water for municipal use. 
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in this study (as average daily diversion values) allow showing the variance of the daily threshold defining 

the optimized abstraction throughout the year. Knowledge of these daily trade-off thresholds can serve 

as guidance for the daily diversion operations throughout the year. They can also guide decisions on the 

timeframes for planning and revision of the management objectives that will strengthen the overall water 

management capacity (P. Kumar et al., 2019). Further inclusion of other statistical information (e.g. 

standard deviation) would be beneficial in supporting the judgment underpinning diversion decisions. 

Aiming at reducing alteration of surface water diversion assumes that the input hydrological scenarios 

(related to an undisturbed hydrograph) fulfill the needs of the ecosystem. In our study, the considered 

background hydrological conditions (i.e. input scenarios to the optimization model) were not scoring 

optimally (i.e. zero) for the entire set of objective functions as required by the targeted biological groups. 

On one hand, this outcome could be related to the type of data and the design of the assessment, it also 

suggests that climate change impacts leading to more frequent droughts and reduced amounts of rainfall 

will increase the pressure and hence risk the conservation of the targeted biological groups. Both the 

climate and geomorphological features (e.g. slope, vegetation type, etc.) influence the local seasonal 

change in river discharge and can affect, for instance, physio-chemical river properties (Moodley et al., 

2016; Sigleo & Frick, 2007). Changes in land use and land cover at the local and regional scale influence 

the runoff and hydrology (Mirhosseini et al., 2018; Welde & Gebremariam, 2017). This suggests that both 

objective scores and the magnitude of daily trade-offs can be reduced (i.e. reduced variability in water 

available for diversion) if additional measures on the local scale are implemented (such as replacing 

farmlands with forest cover). The consideration within the optimization assessment for adaptive water 

management of additional hydrological scenarios based on land use/land cover changes would provide 

insights into alternative water management practices in the face of climate change conditions. 

3.5.2 Advantages: The role of simulation conditions for the results 

The application of optimization approaches shows several advantages for water management, such as the 

chance to modify prior conditions (e.g. total demand, daily river flow). This provides the opportunity for 

foreseeing outcomes of decisions under alternative scenarios improving the decision-making process. In 

particular, the chance to modify the input hydrological conditions and the defined e-flow requirements is 

useful to increase the understanding of implications for diversion of alternative water allocations for 

environmental needs. For example, by increasing the allocation (share of discharge for ecological 

processes) or including additional biological groups, or any other sort of geomorphological or 

biogeochemical criteria for the achievement of a “good” ecological status, can identify the best e-flow 
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water management options that have the least implications for water diversion. However, while the role 

of science for supporting decision-making still faces challenges such as providing greater evidence for flow-

ecology knowledge (Stoffels et al., 2018), expanding the e-flow requirements for more species and other 

components of the ecosystem could improve the chances of achievement of environmental goals. On the 

other hand, the modification of the reference hydrological conditions (input hydrograph) by considering 

the same ecological requirements could increase the resolution of the daily diversion threshold under 

specific conditions. Overall, this strengthens the reliability of daily diverted volumes identified by the 

model.  

Another advantage of the employment of optimization approaches for fostering the adoption of adaptive 

water management strategies is represented by the chance of incorporating e-flow requirements within 

management decision assessment regardless of their type (i.e. as minimum flows, natural flows, indicators 

of hydrologic alteration). Moreover, environmental data are not always readily available in a format 

suitable for decision-making. E-flows can be expressed both as objectives or constraints depending on the 

modeling capacity and ability (Derepasko, Guillaume, et al., 2021). However, each e-flow modeling 

approach used within the optimization assessment would also require an appropriate results 

communication strategy (Pollino et al., 2017).  

Despite models have a great potential for socio-ecological research (Schlüter et al., 2019), each modeling 

exercise requires prior conditions (e.g. scenarios) to be stated in the model, and the results remain highly 

linked with those conditions. Optimization assessment for water management is no exception, but 

optimization results exploration offers ground for discussion of decisions and is meant to convey 

information useful for the decision-making process (A. C. Horne, Kaur, Szemis, Costa, Nathan, Angus Webb, 

et al., 2018). This particularly suits the adaptive process. 

3.5.3 Limitations: Sources of uncertainty defining the optimal diversion 

Systemic, data-related, and epistemic uncertainties affect socio-environmental modeling (Lowe et al., 

2017). We identified the systemic uncertainty to be the one related to the search approach (e.g. stochastic) 

and the number of model runs. Not many studies addressed the question of the number of simulation 

runs and the best choice is represented by the “minimum number of runs” (Ritter et al., 2011), especially 

when simulations are particularly expensive. While ten runs for each hydrological scenario allowed 

defining the prevailing annual pattern of water diversion in our study, we believe that a further increase 
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of simulation runs especially in the case of heuristic methods as genetic algorithms would allow reducing 

the uncertainty of results, increasing the probability of ecological objectives achievement. 

Data-related uncertainty is related to both present condition outcomes and future scenarios. In our study, 

in the absence of real flow data, simulation data lead to the application of a precautionary approach that 

considered the abstraction of the lowest amount of flow that can be diverted daily. To a certain extent, 

this could represent the best available strategy for resource management. However, knowledge of the 

extent of the “safe abstraction range” and the associated probability would contribute to enhancing 

decision-making especially to climate change-induced changes in the hydrological behavior of the river 

flow (Schneider et al., 2013) which are difficult to quantify and track. Methods that could address the 

unpredictability of multiple flow conditions on a daily scale such as the Monte Carlo sampling (Byrne, 2013) 

could be used to generate many input hydrological conditions on which to run the optimization algorithm. 

However, this will inevitably increase post-processing effort (e.g. related to data volume). 

Lastly, because of the complexity of the water management problem and optimization problem, the use 

of expert opinions and knowledge is both a precious source of information in different situations (e.g. 

urgency of implementation of management actions, limited evidence) and a source of uncertainty 

(epistemic) linked with the subjective view of the knowledge (Krueger et al., 2012). In the case of our study, 

epistemic uncertainty relates to both optimization assessment design and expert knowledge. In the first 

case, this can be improved by creating alternative assessment designs (e.g. changing objectives, solution 

search methods, scales (Derepasko, Guillaume, et al., 2021; Rolls et al., 2018); and by expanding our 

knowledge of eco-hydrological relationships and ecosystem needs or by extending the pool of experts 

enquired in the second. Additionally, participatory approaches for the definition of objectives and optimal 

solutions could support the identification of the appropriate scales and design for the management 

problem (Wicki et al., 2021). 

3.5.4 Implications of the results for the diversion planning and the adaptive management approach in 

the Pas River 

Optimization can be used to translate knowledge of flow conditions that support environmental processes 

into information used by decision-makers. This information then supports strategies and maintenance of 

long-term goals for river management (O’Donnell & Garrick, 2017) under a range of possible hydrological 

circumstances (i.e. below normal, normal, or above-normal conditions). The great variability in the amount 

of flow throughout the year that can be diverted daily for consumptive use suggests that the definition of 
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the monthly targets for municipal consumption (in Hm3) would be a much more appropriate management 

objective compared to the targeted annual water allocation volumes for the local scale. The main reason 

is that naturally, the river does not offer stable hydrological conditions for diversion throughout the year 

at different locations. Reducing the time window of consumptive allocation validity could incorporate 

these circumstances, and prevent overexploitation. River water can be diverted during periods of greater 

availability and temporarily stored for the next period but water collection and storage systems would 

eventually require investments and additional costs (Young, 2014). 

Active water management is a management approach that calls for ongoing decisions concerning the 

water required for environmental needs (see Doolan et al., 2017; A. C. Horne, Kaur, Szemis, Costa, Nathan, 

Webb, et al., 2018) while aiming for long-term management goals (i.e. good ecological status and human 

development; A. C. Horne, Kaur, Szemis, Costa, Nathan, Webb, et al., 2018). This approach suits the case 

of regulated rivers such as the Pas River in which at least certain flow conditions need to be considered as 

the rightful reserve for the ecological processes. This means that certain flexibility of design of the 

environmental objectives within the optimization assessment should consider thresholds and parameters 

that can be adjusted based on ongoing monitoring outcomes. The marked difference in natural flow 

conditions, and consequently abstraction conditions, between seasons, suggests that the seasonal scale 

could potentially represent the minimum time scale over which active management should be 

implemented. For example, fish species respond to hydrological cues linked with the seasonal variation of 

flow. When considering water requirement objectives for fish biological groups, evaluation of the 

achievement of the expected phenological event from monitoring results is needed to adjust the threshold 

or the timespan for the environmental water allocation for the next phenological period. This would 

ensure species conservation and ecological restoration. Moreover, by increasing the scale of the 

assessment (i.e. expand the analysis to multiple reaches or the entire basin) more detailed information 

can arise and management planning can be extended over larger portions of the river. However, while 

optimization allows assessment of both advantages and disadvantages of specific management decisions, 

clear links between monitoring strategy and management goals still need to be stated before the 

assessment phase to ensure the success of the adaptive management approach (Adams & Van Niekerk, 

2020; Stein et al., 2021). 

Overall, the optimization assessment proposed in this paper represents an opportunity to investigate what 

implications arise from the incorporation of ecological needs within a diversion plan. Results should not 

be considered as absolute, but they rather serve to highlight that trade-offs in water availability are more 
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linked to the daily scale (i.e. daily diversion) than the annual scale (overall volume diverted in a year). 

Increased chances of results uptake by the decision and policymakers would need an extended assessment 

on the basin-scale and multiple simulations with sensitivity analyses. Furthermore, this study showed an 

approach of e-flow requirements definition within the optimization assessment to extract information 

useful for the promotion of an adaptive management process. Besides, as the provision of e-flows is a 

means to restore the benefits of naturally flowing rivers, the optimization assessments can also match the 

exploration of actions for the eventual restoration of ideal ecological conditions. In this case, the 

advancement of the available eco-hydrological knowledge to be used to build the optimization model 

would significantly improve the chances of restoring natural conditions while meeting supply objectives. 

The proposed assessment can be applied to other basins and locations but would inevitably need the 

adjustment of e-flow requirements (i.e. thresholds and parameters) to match local ecosystem needs. 

However, regardless of its usefulness in supporting the adaptive process, the lack of proper link definition 

between the e-flow requirements and the subsequent monitoring stage within an optimization 

assessment can jeopardize the success of an adaptive management approach (Webb, Watts, et al., 2017). 

3.6. Conclusions 

This paper illustrates how an optimization assessment offers the opportunity for designing e-flow 

requirements in a format suitable for informing water management and at the same time offers support 

for the commitment to all the stages of the Adaptive Water Management Cycle (AWMC). We 

demonstrated that the optimization process structure (e.g. limiting conditions definitions and objectives) 

matches the presented approach applied for e-flow requirements incorporation. In particular, the 

presented approach suits the need to anticipate management outcomes by exploiting the hydrological 

thresholds as limiting conditions for river water diversion. On one hand, the advantages of the 

optimization assessment as an instrument for mediating the incorporation of e-flows lie in the opportunity 

of tailoring e-flow requirements both to the available data and modeling capability. On the other hand, 

the need to pre-define conditions (e.g., input hydrological information, supply volume) can expose results 

to different levels of uncertainty. Lastly, we identified few opportunities for the improvement of the 

management approach in the case study area: the reduction of the allocation volume temporal window 

during diversion planning such as by setting monthly caps on water allocation for consumptive use based 

on seasonally averaged river discharge would allow incorporating natural flow variability (for ecosystem 

needs) and prevent overexploitation during periods of scarce flows. Future applications of the 

optimization assessment in support of Adaptive Water Management would benefit from an improved 
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characterization of the reference river flow conditions through the inclusion of approaches to reduce 

uncertainty (e.g. employment of input data-sampling techniques), the incorporation of alternative land-

use/land cover information and climate change scenarios. Moreover, stronger links between considered 

e-flow requirements and monitoring planning would push the adaptive process further towards the closing 

of the AWMC. Overall, this would reduce the risk of failure of e-flow requirements incorporation in the 

management program and contribute to improving management actions outcomes. 
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Supplementary Materials: 

The following are available online at https://www.mdpi.com/article/10.3390/w13091281/s1, Figure S1: 

Hydrological time series used as representative discharge scenarios for the considered diversion points 

(DP1 and DP2); Figure S2: Combination of the average daily diversion percentages with respect to the 

natural discharge normalized to 0-1 range for each single run of the model (‘s1-s10’) under the same 

scenario; Figure S3: Combination of the average daily diversion percentages with respect to the natural 

discharge normalized to 0-1 range for each single run of the model (‘s1-s10’) under the same scenario; 

Figure S4: Barchart showing the normalized fraction (expressed in %) of discharge that has been optimized 

for abstraction (purple ‘OD’ bars) with respect to the natural flow (green ‘RF’ bars) at the daily scale (results 

for DP1 under dry (a), normal (b) and wet (c) scenarios; Figure S5: Barchart showing the normalized fraction 

(expressed in %) of discharge that has been optimized for abstraction (purple ‘OD’ bars) with respect to 

the natural flow (green ‘RF’ bars) at the daily scale (results for DP2 under dry (a), normal (b) and wet (c) 

scenarios; Figure S6: Flow series showing the magnitude of gap between the daily optimized diverted 

discharges in m3/s with respect to the natural discharge (results for DP1 under dry (a), normal (b) and wet 

(c) scenarios); Figure S7: Flow series showing the magnitude of gap between the daily optimized diverted 

discharges in m3/s with respect to the natural discharge (results for DP2 under dry (a), normal (b) and wet 

(c) scenarios); Table S1: Average objective function score (municipal water demand), for each simulation 

run (1-10) (results for the DP1 under dry, normal and wet scenarios); Table S2: Average objective function 

score (municipal water demand), for each simulation run (1-10) (results for the DP2 under dry, normal and 

wet scenarios); Tables S3-S4-S5: Average objective function scores (R1-R6), for each simulation run (1-10) 

(results for the DP1 under dry, normal and wet scenarios); Tables S6-S7-S8: Average objective function 

scores (R1-R6), for each simulation run (1-10) (results for the DP2 under dry, normal and wet scenarios); 

Table S9: Comparison of average natural discharge values under different scenarios and the optimized 

discharge thresholds (results for DP1 for sub-normal (dry), normal and above-normal (wet) hydrological 

conditions); Table S10: Comparison of average natural discharge values under different scenarios and the 

optimized discharge thresholds (results for DP2 for sub-normal (dry), normal and above-normal (wet) 

hydrological conditions).

https://www.mdpi.com/article/10.3390/w13091281/s1
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4.  Towards adaptive water management — 

Optimizing river water diversion at the basin 

scale under future environmental conditions 

This chapter was published in MDPI Water.  

Derepasko, D., Witing, F., Peñas, F.J., Barquín, J. & Volk, M. (2023). 

Towards Adaptive Water Management—Optimizing River Water 

Diversion at the Basin Scale under Future Environmental 

Conditions. Water, 15(18), 3289. 

https://doi.org/10.3390/w15183289  

References to Supplementary Materials can be found in Appendix C attached to this thesis. 

4.1. Summary (abstract) 

The degree of success of river water diversion-planning decisions is affected by uncertain environmental 

conditions. The adaptive water management framework incorporates this uncertainty at all stages of 

management. While the most effective form of adaptive management requires an experimental 

comparison of practices, the use of optimization modeling is convenient for conducting exploratory 

simulations to evaluate the spatiotemporal implications of current water diversion management decisions 

under future environmental changes. We demonstrated such an explorative modeling approach by 

assessing river water availability for diversion in a river basin in Northern Spain under two future 

environmental scenarios that combined climate and land use change. An evolutionary optimization 

method was applied to identify and reduce trade-offs with Supporting Ecosystem Services linked to 

environmental flow requirements for relevant local freshwater species. The results showed that seasonal 

shifts and spatial heterogeneity of diversion volumes are the main challenges for the future diversion 

management of the Pas River. Basin-scale diversion management should take into account the seasonal 

planning horizon and the setting of tailored diversion targets at the local level to promote the 

implementation of adaptive management. The presented assessment can help with the strategic 

placement of diversion points and timing of withdrawals, but it also provides a deeper insight into how 

optimization can support decision-making in managing water diversion under uncertain future 

environmental conditions. 

https://doi.org/10.3390/w15183289
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4.2. Introduction 

The "natural flow paradigm" (N. Poff et al., 1997) is acknowledged as the basic concept for a thriving river 

ecosystem, however recognizing that certain key flow components must be conserved presents a unique 

challenge for managing river water resources sustainably. Currently, the challenges related to water 

resource management and its allocation are increasing each year globally due to several pressures, such 

as climate change and population growth, but also due to trade and energy crises, food production, water 

scarcity, and pandemics, to name a few (Alamanos & Koundouri, 2023; Grison et al., 2023). In Europe, 

there are significant differences between countries in terms of both the intensity of the pressures 

mentioned above, especially climate change extremes (Moghim et al., 2022), and the degree of 

effectiveness of the water management strategies employed (Ziolkowska & Ziolkowski, 2016). Enhancing 

water management efficiency requires anticipating the consequences of management outcomes and 

future environmental circumstances. To achieve this, we need advanced modeling approaches that can 

assess and guide decision-making in current and future scenarios. 

The water management encompasses a range of interventions aimed at regulating the river system, which 

involves constructing dams to control water flow or diverting river water. Through water intakes, water 

diversion alters the flow regime of the river (i.e., its magnitude, seasonality, and variability) (Stewardson 

et al., 2017), potentially compromising the integrity and functionality of the river ecosystem and the 

services it provides (Alan Yeakley et al., 2016; Ferreira et al., 2022; Gilvear et al., 2017; Jähnig et al., 2022; 

Rolls & Bond, 2017; Rosero‐López et al., 2020; Watz et al., 2022). The concept of environmental or 

ecological flows (e-flows) is recognized as a valuable instrument for achieving sustainable water resource 

management or sustainable water diversion as it considers the ‘quantity, quality and timing of flows that 

are needed to sustain the ecosystem’ (Arthington, 2012; Gilvear et al., 2017). Ongoing intensification of 

environmental changes related to climate and land use leads to uncertainty in the timing and location of 

river flow components alteration manifestation (i.e., e-flows). As a consequence, modeling approaches 

providing means for exploring spatiotemporal implications of current water diversion management 

decisions under future environmental changes could provide water managers with reliable information 

for strategic water diversion planning (Fowler et al., 2022; Horne et al., 2022; John et al., 2020; Judd et al., 

2022; Lowe et al., 2017). 

The water diversion management strategies implemented so far are, to some extent, supported by the 

incorporation of the Integrated Water Resource Management (IWRM) concept (Delavari Edalat & Abdi, 

2018; Pahl-Wostl, Kabat, et al., 2008). While the latter remains a cornerstone of water management 

approaches, it has evolved into a more articulated paradigm: the “adaptive” water management based on 
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the “learning-by-doing” cycle, which better meets the need to deal with the increasing uncertainty 

associated with future changes and management outcomes (Allan & Watts, 2018; Delavari Edalat & Abdi, 

2018; Pahl-Wostl et al., 2012; Pahl-Wostl, Kabat, et al., 2008; Sendzimir et al., 2007). While a management 

strategy or decision is assessed in the outer loop, uncertainty within the cycle is addressed through inner 

loops of minor adjustments to the management approach as functional outcomes become available (for a 

detailed explanation, see: Horne et al., 2022; Webb, Watts, et al., 2017). However, this inherently implies 

that adaptive management of water resources involves implementing a particular management strategy 

and repeatedly adjusting it to achieve the desired success or management objective. Indeed, “the most 

effective form of adaptive management employs management programs that are designed to 

experimentally compare selected policies or practices by evaluating alternative hypotheses about the 

system being managed” (Allan & Curtis, 2005; Pahl-Wostl, 2006). However, comparing policies and 

practices in the actual world is time and resource-consuming and not very cost-effective, making it highly 

unlikely. Nevertheless, using models that consider real-world conditions to conduct experimental 

simulations allows these hypotheses to be tested before implementation takes place. Moreover, this 

approach enables the identification of space and time dimensions that would enable the implementation 

of an adaptive management cycle.  

A significant number of modeling approaches to predict water management outcomes under uncertainty 

are nowadays available (Badham et al., 2019; Borgomeo, 2022; Candido et al., 2022; Kirchner et al., 2021; 

Lowe et al., 2017; Refsgaard et al., 2007). Modeling and simulating are generally subject to uncertainties 

arising from various sources (see Lowe et al., 2017; Refsgaard et al., 2007). One way to tackle the 

uncertainty associated with water diversion management outcomes is to evaluate management decisions 

under different environmental change scenarios. Optimization modeling is a versatile tool for this purpose 

and has been used extensively to model water management problems (Derepasko, Guillaume, et al., 2021; 

A. Horne et al., 2016). It represents a prescriptive type of modeling (Candido et al., 2022) and is flexible in 

terms of the type, size, and scale of the problem but does not require extensive training compared to using 

software. Ultimately, optimization is suitable for analyzing solutions to water management problems 

through the employment of system perceptions (i.e., real-world system representation as we perceive it 

to be), preferences (i.e., preferred solutions based on personal interests and priorities), and scenarios (i.e., 

plausible real-world conditions) (Derepasko, Guillaume, et al., 2021; Derepasko, Peñas, et al., 2021).  

Optimization has been used in studies assessing changes in riparian areas at the river network segment 

scale (Witing et al., 2022); however, the authors are not aware that an optimization assessment has been 
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carried out for river water diversion at each segment of a river basin network considering future 

environmental changes. To bridge this gap, in this paper, we perform an optimization assessment for the 

Pas River basin in Northern Spain. Through this study, we aim to showcase the applicability of the 

optimization approach at the river network scale with river segment resolution. More specifically, the 

modeling exercise aims to (1) design an optimization model for river flow diversion and ecosystem services 

(ES) supply capacity at the basin scale under climate and land use change scenarios, (2) identify spatial and 

temporal patterns in the optimization results, and (3) provide recommendations for basin-scale water 

diversion management and modeling to relevant experts. The presented approach is designed to consider 

local hydrological conditions and plausible future scenarios while addressing the environmental flow 

requirements of key biological groups (i.e., Supporting ES). The assessment performed with the presented 

approach aims to identify spatiotemporal scales that increase the robustness of current diversion 

management decisions to climate and land use changes, with the ultimate goal of facilitating the 

identification of scales that enable adaptive management. 

The chapter is organized as follows: Section 4.3 introduces the case study and the framework of the 

optimization problem (sections 4.3.1 and 4.3.2) through the stages of problem perception and problem 

definition. A suite of representative results is presented in Section 4.4. Section 4.5 discusses the spatial 

and temporal scales of change. Based on the explorative modeling assessment we provide 

recommendations for both management and modeling (Section 4.6). 

Using the case application example, this study provides greater insight into how optimization can support 

decision-making on water diversion management under uncertain future environmental conditions. 

Moreover, it further supports the identification of temporal and spatial scales relevant to the 

implementation of an adaptive approach for diversion management planning at the basin scale, while also 

highlighting the importance of incorporating instream ecological requirements into model development. 

4.3. Materials and Methods 

4.3.1.  The Pas River Basin 

The Pas River basin (Figure 16) is located in the North of Spain (Cantabrian region) and covers an area of 

650 km2 (approx.) with an average elevation of 446 m. The Pas River is characterized by a length of 57 km 

and a mean slope of 34%. Its network comprises three main rivers (Pas, Pisueña, and Magdalena) that 

drain into the Cantabrian Sea (Northeast Atlantic). With a mean annual precipitation of 1300 mm, the 

region’s temperate climate provides significant precipitation throughout the year, generating a mean 
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annual daily flow of 14 m3/s close to the river mouth. The river supplies drinking water to the population 

of the different municipalities in the region, including the metropolitan area of Santander (> 170,000 

inhabitants) and its surroundings. Water abstraction from the Pas River is carried out by daily diversion of 

river surface water (by cross-channel weirs and pumps) at multiple locations throughout the network to 

satisfy bid-based municipal water allocations. Moreover, the Pas River is the habitat for iconic species such 

as the Atlantic salmon or the EU-protected alder-ash riparian forests. It is expected that increasing human 

water demands and changing environmental conditions, such as reduced forest cover in the catchment, 

reduced precipitation, and higher temperatures from climate change will lead to growing pressure on the 

ecological integrity of the Pas River ecosystem (Belmar et al., 2018; Pérez Silos, 2022). The intensification 

of these drivers can affect the provision of essential Ecosystem Services (ES) in the whole basin, such as 

those related to regulating and maintaining key ecological processes, conditions, and habitats (i.e. 

Supporting ES). In this study, a set of 230 target sites (i.e., individual river segments with a maximum length 

of 500 m, hereafter referred to as RS) were extracted from the cartographic information of the river 

network data by considering only river segments that were of stream order ≥ 4. Each RS of the set 

considered in the assessment carries individual hydrological information. 
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Figure 10 Case study. The Pas River basin in the Cantabrian region (Northern Spain). 

4.3.2.  Problem perception and problem formulation phase for the Pas River Basin 

An optimization assessment for water management typically starts with the identification and 

contextualization of a water management problem by defining objectives, targets, and goals (Horne, 

Konrad, Webb, et al., 2017), followed by the definition of the optimization model in terms of simulation 

assumptions and conditions (Derepasko, Guillaume, et al., 2021; A. Horne et al., 2016). These two phases 

can be described as the problem perception and problem formulation phases (see Derepasko, Guillaume, 

et al., 2021; Maier et al., 2014) as illustrated in Figure 17. The two-step process is presented for the Pas 

River basin. 

Problem perception: objectives and optimization goals 

Contextualization helps to identify important values for river water management. Although a participatory 

approach can be used to contextualize the management problem (Pahl-Wostl, Mostert, et al., 2008), for 
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simplicity, we have formulated the overall management priorities for the Pas River basin as municipal 

water diversion planning to sustain ecosystem processes. 

As part of the problem perception phase, we considered the improvement or maintenance of ES 

supporting the biodiversity in the Pas River basin while simultaneously providing sufficient water for the 

municipalities as the primary management planning objective (Figure 2, top box). With this management 

objective in mind, we considered the provision of adequate instream hydrological conditions as an 

assessment target. Such conditions are the basis for setting the optimization goals to meet the 

ecohydrological requirements for key instream ES indicators (fish, macroinvertebrates, and primary 

producers; see Section “Environmental Indicators – Definition of relevant ecosystem services for the Pas 

River”).  

 

Figure 11 Summary of the optimization assessment steps implemented in this study throughout the problem perception and 
formulation phases (adapted from Derepasko, Guillaume, et al., 2021) 
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Problem formulation 

Based on the optimization goals identified in the problem perception phase, the problem formulation 

phase (Figure 17, bottom box) envisaged the following methodological steps. Regarding the modeling scale 

setting, the entire river basin network is considered to be the appropriate scale for both management and 

modeling. A spatial resolution of 500 m segments was set to allow local scale exploration on a daily time 

step within the year. The length choice was based on an existing Pas river network data layer. The next 

step consists of the processing of plausible environmental change scenarios (i.e., reference historical and 

future conditions of climate and land use) as a testing ground for the considered management planning 

objectives (i.e., optimization objectives) at two time points (2041 and 2070). In the following, the definition 

of expert knowledge-based e-flow requirements (including the related time-frame) for key instream 

biological groups (fish, macroinvertebrates, and primary producers) underlying the Supporting ES 

indicators is carried out. Finally, an appropriate solution approach (i.e., evolutionary optimization) is 

chosen for the optimization problem to minimize the violations of the target hydrological metrics while 

maximizing the total water available for municipal consumption (see section “Solution Approach to the 

optimization problem”).  

Scale and scenario setting 

Land cover can change the magnitude and variability of instream flow attending to its influence on several 

runoff processes in the catchment (M. Kumar et al., 2022; Qazi et al., 2017; Sampurno Bruijnzeel, 2005; 

Zeiger & Hubbart, 2018). Hence, different land cover and climate change scenarios can be used to simulate 

the resulting river runoff in the basin.  

To capture changes in river runoff throughout space and time, we set the spatial scale of the assessment 

to the stream order ≥4 river network composed of 500 m long RS at the daily time step. The hydrological 

data used for optimization simulation were provided by the Instituto de Hidráulica Ambiental de la 

Universidad de Cantabria (IHCantabria) and developed under the (The ALICE Project) for three 

environmental scenarios in the basin, considering historical (baseline) conditions and two plausible future 

conditions (Table 10). Figure 18 shows an overview flowchart of the main steps related to the problem 

formulation phase. The environmental scenarios accounted for land use (LU) and land cover (LC) changes 

and future climate change projections: 
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- The LU and LC scenarios were developed using the process-based model framework FORE-SCE 

Model (Forecasting scenario for land change modeling) (T. L. Sohl et al., 2007; T. Sohl & Sayler, 

2008). The FORE-SCE Model simulated current land use and cover by processing elevation, slope, 

and orientation and modeled fire recurrence. Furthermore, it models the influence of 

socioeconomic drivers obtained from interviews with local stakeholders and experts in agricultural 

and urban development policy fields. The input LU and LC maps were derived from historical 

remote sensing data (Landsat / Sentinel-2 imageries) for the 1990s, 2000s, and 2018 at a spatial 

resolution of 10 m.  

- For climate projections, historical data (from 1950 to 2018) and future data (from 2041 to 2070) 

on temperature and precipitation were used. See the procedure described in (Fonseca et al., 

2022).  

- The final accumulated river surface runoff data (i.e., the resulting flow in the river) were produced 

by applying the distributed hydrological model SPHY (Spatial Processes in Hydrology; (Terink et al., 

2015) at a spatial resolution of 100 m and at the daily time step. Historical precipitation and 

temperature data for the period 1950 to 2018 were retrieved from the E-OBS v20e database 

(Cornes et al., 2018) and resampled to produce a spatial resolution of ~1 km. (Fonseca et al., 2022) 

performed a statistical downscaling of precipitation and temperature with Ordinary Least Squares 

with yearly daily means using latitude, elevation, and Euclidean distance to the coastline as 

explanatory variables. For future scenarios, climatic datasets from a five-member ensemble of 

GCM-RCM chain simulations were retrieved for the development of climate change projections 

for the Pas catchment (Fonseca et al., 2022). Further details of the procedure to develop climatic 

historical and future series can be found in (Fonseca et al., 2022). Details of the model 

parameterization are provided in Table A1 in the supplementary materials. As shown in Table A2 

in the supplementary materials, the results of the SPHY simulation (which are used by the 

optimization model) are characterized by a decline in precipitation and an increase in temperature 

and water demand due to land use changes. This, in turn, leads to a rise in actual 

evapotranspiration, causing a decrease in average instream flow in the Pas River basin, with a 

mean flow reduction rate of 25% between the basin outlets in the 1980-2012 and the 2041-2070 

periods. 

To obtain the hydrological time series for the hydrological year, starting on October 1st and ending on 

September 30th, with a resolution of 500 m, each RS was linked to the nearest cell value of each scenario 

dataset (i.e., raster layer of simulated daily averaged accumulated surface runoff for the period 2041-
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2070). Two time points were considered for each scenario (i.e., 2041 and 2070) to explore the scenario-

related simulation outputs of the water diversion planning objectives defined in Section “Solution 

approach to the optimization problem”. The choice of 31 years between the considered time points was 

intended to capture all possible changes in the basin based on the pre-set conditions to facilitate results 

comparison. Moreover, we believe this gap can be useful for management purposes. For reference, a 

hydrological series belonging to the year 2006 was extracted from the historical scenario and used as a 

present-day baseline. This particular year was chosen because it was the closest representation of a year 

with normal water conditions. For further insights into these results, we refer to the percent coverage 

distribution for the different land cover types under each scenario provided in Table A3 in the 

Supplementary Materials. 
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Table 10 Details of the scenarios considered in the optimization assessment for the Pas River basin. 

 

Timeframe of  

source data 

Considered period 

for modeling 
Scenario name Description 

Historical 1980-2012 
• 1/10/2005 - 

30/9/2006 

Present day (PR) This scenario represents present-day land cover and present-day climate. It is used as 

a comparison to the historical conditions. 

Future 

 

2041-2070 

 

• 1/10/2041  -

30/9/2042 

• 1/10/2069  -

30/9/2070 

BAU future (CC_BAU) This scenario assumes river discharge is affected by Business as Usual (BAU) future land 

cover and future climate (RCP 8.5; (Riahi et al., 2011). It considers the evolution of 

present-day land use and land cover conditions. In particular, forest patches 

(monoculture planted forest) development is implemented but not prioritized with the 

presence of shrubs and rushes. In the upper basin, there is a significant rural 

abandonment with forest recovery from pastureland, whereas the lower basin is 

characterized by urban area expansion and agricultural intensification.  

Nature-based 

solutions prioritization 

(CC_BGIN) 

This scenario assumes an investment in nature-based solutions and an RCP 8.5 climate 

change intensity conditions (Riahi et al., 2011). Concerning the “future conditions” 

scenario, we have a modification of the rules for land use-land cover evolution (e.g., no 

fires and forest transitions are favored in places where it can have the highest impact 

on regulatory ES). This results in a prevalence of hill-side forests (e.g., oak, beech, 

chestnut, birch species) and riparian forests (e.g., willows, ash, alders).   
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Figure 12 Flowchart of the steps implemented during the problem formulation phase. 

Environmental indicators - definition of relevant Ecosystem Services for the Pas River 

The ecosystem services (ES) concept emphasizes the significance of essential environmental assets and 

lends itself as an indicator of sustainable management strategies' effectiveness at broader scales (Hauck 

et al., 2013). River ES supply is heavily reliant on the maintenance of in-stream conditions as the ecological 

processes and functions are strongly connected to specific attributes of the flow regime (Gilvear et al., 

2017; Ibáñez, 2021). As a result, in order to safeguard and preserve ES, hydrological conditions can be 

elicited to prioritize target ecological processes and functions and species requirements (Alan Yeakley et 

al., 2016; Ferreira et al., 2022; Gilvear et al., 2017; Jähnig et al., 2022). 
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In this study, we defined three Supporting ES indicators by explicitly associating them with specific 

environmental flow (e-flow) requirements for key ecosystem components representing three levels of the 

river ecosystem food web. The Supporting ES category was chosen because the flow attributes underlying 

the supporting services can be easily related to the e-flow needed for habitats, life stages, and processes. 

Moreover, while there is a higher emphasis on Provisioning ES as it provides the most evident benefit to 

society (Alan Yeakley et al., 2016) Supporting ES can be a valuable indicator for river diversion management 

as it helps to define minimum standards for sustainable river water diversion. 

We assumed that failure to meet the specified e-flow requirements would adversely affect the supply 

capacity of a specific Supporting ES. This simplification was essential since the optimization simulation we 

presented cannot quantify the reduction in the supply of Supporting ES and is not meant to explicitly 

account for synergies and linkages between different categories of ES. E-flows for key ecological 

components of the river ecosystem (fish, macroinvertebrates, and primary producers) were incorporated 

into the optimization assessment by considering distinct ecological endpoints as targets. Such ecological 

endpoints correspond with development stages (e.g., fish spawning) or taxonomic indicators (e.g., highest 

macroinvertebrate richness) connected to flow events or conditions in a specific time window throughout 

the hydrological year. We used a set of flow indices based on expert judgment as limiting conditions to 

diversion to represent hydrological thresholds for the selected ecological endpoints, reflecting Supporting 

ES supply. In other words, river flow optimized for diversion takes into account the hydrological conditions 

that must be met to sustain Supporting ES supply in the basin. More specifically, the Supporting ES 

considered were: Provision of habitat conditions for fish, Life-supporting conditions for 

macroinvertebrates, and Primary productivity. A description of the considered Supporting ES is shown in 

Table 11. 

The definition of e-flow requirements underlying the Supporting ES indicators was obtained from 

(Derepasko, Peñas, et al., 2021). However, to reflect more realistic conditions and in the light of novel 

evidence data the hydrological and temporal thresholds were adjusted for this study. A summary of the e-

flow requirements and thresholds used in this study is available in Table A4 in the Supplementary 

Materials. For a detailed description, please refer to (Derepasko, Peñas, et al., 2021). 
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Table 11 Description of the river Supporting ES indicators linked with the e-flow requirements considered in the study 

Supporting ecosystem service Indicator description 

Provision of habitat conditions for fish Hydrological regimes linked with the maintenance of habitat 

conditions that support main life stages (i.e., migration, 

spawning, hatching, recruitment), especially during dry 

periods, and ensuring the occurrence of peak flows (e.g., for 

migration). 

Life-supporting conditions for 

macroinvertebrates 

Flow magnitude and variability conditions. Based on the 

occurrence of high flow events that promote the highest 

taxa occurrence probability (itself based on the 

Intermediate Disturbance Hypothesis; (Osman, 2015b). 

Primary productivity Hydrological conditions of minimum flow during dry periods 

fostering the maintenance of primary producers (i.e., 

establishment success and their ability to develop cover). 

Solution approach to the optimization problem 

Optimization models are computational tools that solve conflicting objectives, such as those related to 

water diversion management and planning in large river basins. Such conflicts often arise between the 

demands for river water to support the river ecosystem and for human use on the other side (for additional 

examples of water management conflicts, see (Derepasko, Guillaume, et al., 2021).  

Before defining the technical features of the optimization model, we evaluated different solutions in the 

sense of a solution concept to better reflect the modeling needs and increase transparency in the model 

development process (sensu Derepasko, Guillaume, et al., 2021). One solution to the problem follows a 

top-down approach, limiting the daily water demand (i.e., diversion) based on the annual water demand 

of all municipalities in the basin. The remaining daily river flow would be tested against the defined e-flow 

requirements. However, with this approach, it is more likely that ecosystem needs will not be met, and 

quantifying medium- to long-term needs is complex and adds to existing uncertainty. On the other hand, 

a bottom-up approach that matches e-flow requirements with available flow increases the chances of 

maintaining ES and, in a cross-scenario assessment, can identify diversion planning needs for 

environmental change adaptation. Hence, we decided to follow the latter approach. 
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Based on the selected Supporting ES and linked hydrological indicators, the optimization problem was 

characterized by four conflicting objectives (i.e., three for ES and one for the human supply). The human 

supply objective corresponds to the maximum amount of water that can be diverted from the river to 

meet human needs (i.e. municipal) as described in Section 1A of the supplementary materials. The 

optimization model was set to maximize the flow (in m³/s) that can be diverted for human supply while 

minimizing the non-compliance of defined e-flow requirements underlying the three Supporting ES. A 

penalty-based solution approach was implemented to penalize e-flow objective functions when a violation 

of the specified constraints (i.e., constraints to the water flowing in the river and potentially available for 

diversion) was detected. In this way, we formulated an unconstrained optimization problem but 

considered certain conditions that had to be met to obtain solutions with minor violations. In the penalty 

method, which is integrated into the objective functions, each flow condition that is below the threshold 

is penalized by the algorithm based on the degree of the violation. Scaling between zero and one (i.e. best 

and worst result respectively) is applied by normalizing the violation based on the individual constraint 

features. For a detailed explanation of unconstrained optimization and penalty methods, see (Coello 

Coello et al., 2002, 2007). The mathematical equations defining the optimization problem are presented 

in Section B of the supplementary materials.  

Evolutionary optimization was used to solve such a non-linear optimization problem, following the 

approach of (Derepasko, Peñas, et al., 2021). The optimization model was developed using the Pymoo 

(Multi-objective optimization in Python) framework version 0.4.1. (Blank & Deb, 2020b) for the NSGA-III 

(Non-Dominated Sorting Genetic Algorithm III). The genetic algorithms (GA) at the base of the Pymoo 

optimization framework are very versatile, as they allow the simultaneous optimization of multiple 

objectives by imitating the process of natural selection of eliciting chromosomes throughout the search 

process (Cavazzuti, 2013). The NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) provides a good chance of 

rapidly approximating a globally optimal solution. A hydrological metric module was run with the Pymoo 

optimization framework to calculate the hydrological indicators used for the e-flow requirements at each 

generation. An initial random population of “optimal” discharge volumes (in m3/s) is generated by the 

algorithm. The fitness of the residual discharge in the river (difference between the scenario-based 

reference discharge in the river and the “optimal” discharge volume) is evaluated at each generation based 

on the degree of penalty violations for each optimization objective.  

In the present study, the optimization model framework was run once for each independent RS within the 

considered time point and scenarios (i.e., five total model runs per scenario setup), generating unique 
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results for each RS. The output of each model run was 230 optimal discharge volumes (i.e. one for each 

RS) for each scenario. The choice to run the optimization algorithm only once for each RS and scenario was 

based on the algorithm performance reported in the initial study by (Derepasko, Peñas, et al., 2021). The 

study by (Derepasko, Peñas, et al., 2021) showed that a model set up envisaging 1000 generations (for 100 

individuals) was appropriate for the convergence of the solution front to the ideal (i.e., its approximation). 

This was confirmed by a Running Metric Indicator (Blank & Deb, 2020a) real-time measuring the objectives 

space from one generation to another that found similar patterns in the results from multiple simulations. 

The Running Metric is useful when termination criteria are not stated. An example of the convergence is 

given in Figure 1B in Section B of the Supplementary Materials. The final population of optimization scores 

was produced by implementing a preference-neutral approach by averaging the optimization objectives 

scores of the optimal population. 

4.4. Results 

4.4.1. Performance of the optimization objectives 

As a first step in the analysis of the results, we evaluated the performance of the optimization objectives 

under the different scenarios, i.e., the total water volume available for consumption (i.e., municipal 

supply) while maintaining the prescribed diversion limits. The simulation results show that the 

optimization objective (i.e., the total volume of river water in Hm3/y) can satisfy the water demand of the 

municipalities in the Pas River basin of the projected water demand for the year 2040 (i.e., around 7 

Hm3/y) (Gobierno de Cantabria, 2020). However, the water volumes differ significantly between the 

scenarios considered. While the baseline simulations (for the year 2006) predict an average of 91.1 Hm³/y 

available for diversion, the future scenarios (for the year 2041) predict 86.9 and 86.7 Hm³/y for the 

CC_BGIN and CC_BAU respectively. For the same scenarios under future 2070 conditions, the model 

simulated 67.4 and 70.4 Hm³/y available for diversion. These results can be linked to the ability of the SPHY 

model to generate projected hydrological data to capture interactions between flow and land cover (e.g., 

the extent of forest cover vs. maturity).  

On the other hand, the optimization results for the selected ES indicators along the river network (see 

Figures C1-3 in Section C of the supplementary materials, Figure 19 shows results for Habitat condition 

provision for fish life-stages ES) show the highest scores (i.e., least optimal results) for the provision of 

suitable habitat conditions for the different life stages of fish. This is observed in particular for the 

downstream river segments of the basin. At the same time, the highest heterogeneity of optimization 
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scores is achieved in the upstream reaches in both the future BGIN_CC and BAU_CC scenarios. 

Optimization scores are absolute values that measure the conditions for achieving ES objectives. Values 

closest to zero represent the optimal conditions for ES for a given model simulation. While higher scores 

(> 3.0) in the 2006 baseline scenario (PR) indicate existing hydrological pressure on the specific indicator, 

the reduction (scores between 0.9-1.6) of the optimization scores in the future scenarios increased the 

capacity of the river system to provide habitat conditions for fish. Conversely, a reverse pattern emerged 

for the ES indicator primary productivity, where the results show the highest optimization scores in the 

upstream reaches. Interestingly, the macroinvertebrate objective was zero at each RS and scenario, 

indicating that the baseline and projected river flow could meet the defined instream conditions.  

 

Figure 19 Maps showing the spatial distribution of the optimization objective scores for the Habitat condition provision for fish 
life-stages ES under each considered scenario. Values closest to zero indicate the best achievement of the objective at a specific 
RS. The classification scheme follows the quantile chromatic classification approach: Blue shades = highest scores (worst results), 
yellow shades = lowest scores (best results). Note: each map presents min-max values that differ from each other as the figure 
aims to highlight scenario-specific spatial variation of the scores. 

However, this result may also be due to the type of hydrological indicator considered for the specific 

optimization objective. Furthermore, small inlets close to the downstream segments of the main river 

network are characterized by reduced optimized discharge with respect to the remaining river network 

due to their reduced discharge and variability. 
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4.4.2. Spatial and temporal distribution of water available for diversion in the Pas River basin 

The second objective of the assessment was to evaluate the spatiotemporal distribution of water available 

for diversion in the Pas River basin after optimization. In the first step, we investigated the spatial 

distribution of the optimized daily river discharge available for diversion. The daily values of the river flow 

optimized for diversion in the Pas River basin can be accessed as an interactive map for each scenario at 

the following link: https://doi.org/10.6084/m9.figshare.19636449.v4 (Derepasko et al., 2022). The 

monthly averaged static maps of optimized instream flow for the baseline year (2006), and the 2041-2070 

CC_BAU and CC_BGIN scenarios are available in Section C (Figures C4-8) of the supplementary materials. 

Upstream river segments showed higher variation in the water volumes optimized for diversion than 

downstream segments. Upon comparison of the different scenarios, it is evident that the observed pattern 

remains consistent across all environmental conditions considered in the simulation. This consistency 

could be attributed to the chosen hydrological indicator (i.e., cumulative runoff for each segment of the 

river) and the anticipated increase in flow magnitude as the river network approaches its outlets. Lastly, 

we analysed the simulation results by looking at the seasonal river discharge averages to explore which 

time scales are particularly relevant for management and policy. Figure 20 depicts these findings. The 

results show a decrease in the average optimized discharge for the fall season for both scenarios in 2070. 

However, a slightly higher average optimized discharge is observed for the spring and summer seasons. In 

all future scenarios (2041-2070), there is a decrease in the average flow available for diversion during 

winter. Although there were minor differences in the overall trends between the BGIN_CC and BAU_CC 

scenarios, the variations were not significant.  

 QR code for the https://doi.org/10.6084/m9.figshare.19636449.v4 

https://doi.org/10.6084/m9.figshare.19636449.v4
https://doi.org/10.6084/m9.figshare.19636449.v4
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Figure 20 Seasonal river discharge trands. The histogram shows the scenario-based comparison of the optimised seasonal river 
discharge values expressed as average seasonal flow (in m³/s) for the entire river network. CC=CC_BAU (business-as-usual land 
cover under RCP 8.5 climate forcing scenario; BGIN=CC_BGIN (prevalence of nature-based solutions under RCP 8.5 climate forcing 
scenario. 

4.4.3. Comparison of results within the different scenarios 

To understand the rate of variability in average discharge values throughout the year, we processed the 

results as a frequency distribution of average discharge values under each scenario. An illustration of this 

for the baseline scenario can be found in Figure 21. Additional findings are available in Figures C9-12 in 

Section C of the supplementary materials). The results show that the most significant variability in 

optimized average discharge values throughout the basin is likely to occur from December to March, 

whereas the period spanning May to October proved to be the most stable.  

Due to the amount of data generated, four RS were selected to illustrate in detail the results of different 

locations along the river network and to analyze the results at different locations in the river network (see 
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Figure C9 in Section C of the supplementary materials). To examine the interannual trends, we plotted the 

natural flow against the flow resulting from the optimization simulation and available for abstraction for 

the four representative RS (Figure 22); see “A-B-C-D” in Figure 23 as an example for the BGIN_CC scenario 

of the year 2041 (other results are available in Figures C14-17 of the supplementary materials). The 

comparison of the natural flow and the optimized flow for diversion between scenarios shows that for 

most of the year, a sufficient portion of the river flow is available for diversion (i.e., the optimized flow 

mainly follows the natural flow regime), demonstrating a reduced trade-off between objectives (i.e., 

municipal supply and ecosystem services). However, during the driest periods of the year, a larger 

proportion of the flow is needed to maintain and meet ecological thresholds. 

  

Figure 21 Heatmap showing the average optimized discharge (in m³/s) value (on the x-axis) for each month (on the y-axis) for 
the baseline scenario in 2006 for the entire river network. On the right-hand side of the box is a color-based classification of the 
frequency of occurrence of each range of values; at the top of the box, a boxplot shows the yearly quartiles, extremes, and outliers. 
The figure highlights periods (months) of greater or lower variability suggesting critical months of the year (providing hence a 
temporal implication for diversion) for diversion planning, which in our view would require additional exploration 

Notably, in the 2041 scenarios, the model identified a lower optimal discharge during the dry months 

despite a prominent natural flow, indicating a greater trade-off based on ecological needs and defined 

requirements.  
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Figure 13 Four representative RS in the Pas River basin. 
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Figure 14 Flow series showing the daily profile of the discharge (in m³/s) optimized for diversion (light blue thin line) plotted 
against the river’s natural discharge (purple background shape). Example of four selected river sections (RS locations “A,” “B,” 
“C”, “D”) analyzed under the 2041 BGIN_CC scenario. More pronounced differences between the lines indicate the highest trade-
off periods between the natural discharge and water for municipal use. 

4.5. Discussion 

4.5.1. Spatial and temporal scale considerations of water available for diversion 

Knowledge of the future spatial and temporal variability of water available for consumptive needs (e.g., 

drinking water) provides an advantage for water diversion management that aims at reducing uncertainty 

in management outcomes. Although it is not possible to provide absolute results (because we cannot 

reduce all potential sources of uncertainty; (Kirchner et al., 2021; Maier et al., 2016), evaluating objectives 

under a range of scenarios can help identify appropriate management strategies in the present to achieve 

long-term diversion goals. From a spatial perspective, typically most basin management strategies focus 

on the entire network or significant parts to achieve specific downstream abstraction objectives (Gawne 

et al., 2018). Our results showed that while river water optimized for diversion can meet annual municipal 

water supply under all scenarios, the average daily and monthly optimized flow can vary significantly at 

different locations in the river network, which poses a challenge for maintaining adequate conditions for 

ES throughout the year and providing supply during dry periods. To address this, diversion management 

can define site-specific water supply targets and support the ecosystems’ hydrological needs. 

Furthermore, river and land management planning could consider relocating abstraction-dependent 

facilities downstream where discharge is more stable. From the temporal perspective, our study has found 

that downstream river segments maintain a more stable optimized discharge throughout the year 

compared to upstream river segments, which experience greater variability. This pattern was observed 

across all scenarios and can be attributed to the higher sensitivity of upstream reaches to climate events. 
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However, more research is needed to evaluate the influence of land cover and instream flow in these 

areas. Although these results are related to our case study, they underline the importance of analyzing 

temporal hydrological patterns across the entire river network. 

Our study suggests that the main challenges for basin management under the scenarios considered are 

related to the pronounced seasonal differences in optimized discharge at each river segment, leading to 

spatial heterogeneity across the network. Incorporating these spatial and temporal aspects into 

management planning, for example by distinguishing between river segments that exhibit the greatest 

variation in streamflow over the course of the year, would help reduce the risk of major trade-offs in river 

water allocation in future diversion programs and promote the implementation of adaptive management. 

4.5.2. Supporting ecosystem services objectives across scenarios 

Our study assessed the future sustainability of diversion decisions by examining optimization scores 

change between time points in the short and medium term (i.e., 2041 and 2070) and scenarios at each 

river segment. In regulated basins, maintaining conditions for fish is typically a critical water management 

objective because of their intrinsic value and connection to other ES supply (e.g. fisheries, recreational) 

(Watz et al., 2022). Fish species require a range of specific hydrological conditions for each life stage. The 

ES objective ‘provision habitat conditions for fish life stages’ showed high optimization scores (i.e., least 

optimal result) in the downstream reaches in the baseline scenario. These scores decreased in both 

CC_BGIN and CC_BAU scenarios, with slight additional improvement (i.e. slightly lower scores) for the year 

2070. While downstream reaches are usually characterized by more stable discharge, this result could be 

related to the simulation conditions. However, it is crucial to take into account the influence of severe 

occurrences on hydrological behavior. Such events might have disturbed the timely flows of freshwater 

and peak flows, resulting in affecting the model's fish requirements. Conversely, the ES of ‘primary 

productivity’ required stable low-flow minimum conditions throughout determined periods in the year, 

resulting in a higher score for upstream reaches in both scenarios and time points. This indicates that water 

diversion planning trade-offs involve the priority of supplying low flows upstream of the river network 

while ensuring that peak flows downstream are maintained. Other studies also found that upstream water 

abstraction impairs downstream ecological functions and can expose the basin to water scarcity (Alvarez-

Garreton et al., 2023). On the one hand, our results confirm that even enough natural discharge 

downstream of the river is not sufficient to ensure the achievement of optimal scores for all ES objectives 

considered. However, this could also be related to the differences in the formulation of the equations at 



 
122 

 

the base of the optimization objectives (e.g. the indicators chosen). A possible solution could be 

distinguishing areas where ES are generated and consumed, as suggested by the study of (Alan Yeakley et 

al., 2016). This can likely reduce this bias by regarding only locations where Supporting ES are generated. 

The Supporting ES objectives scores showed significant variability in their specific supply capacity 

(Provision of habitat conditions for fish ES, Life-supporting conditions for macroinvertebrates ES, Primary 

Productivity ES) throughout the network while the comparison of the scenarios (CC_BAU and CC_BGIN) 

didn’t show any noticeable difference. Instead, trade-offs were found to be inherent in the spatial and 

temporal dimensions of diversion planning. Thus, failure to recognize the spatial variability of discharge 

conditions for each RS under consideration may result in overlooking hotspots of reduced supply that must 

be investigated to achieve long-term management objectives. While the results of implementing such 

goals need to be monitored to verify their durability in the real world, the results of our study showed 

that, overall, the considered e-flow requirements (i.e., hydrological indices associated with ecological 

processes) can provide a good compromise for diversion water management needs to ensure sufficient 

river water for key ecosystem endpoints and municipal needs.  

4.5.3. Optimization set-up and scenarios for water diversion management at different scales 

Defining a set of plausible conditions under which the model will “operate” or be tested is the second step 

after defining the model. In optimization, this usually corresponds to establishing rules and objectives and 

then running the model for specific input conditions (e.g., hydrological, climatic, and LU and LC patterns) 

(Derepasko, Guillaume, et al., 2021; A. Horne et al., 2016). The input conditions can be calibrated based 

on projected changes in environmental drivers (i.e., scenarios) that could affect the system. Critical drivers 

of change in river basins (and the water they provide) include, in particular, land use and climate change 

(Gedefaw et al., 2023; Iqbal et al., 2022; Kaushal et al., 2017), which introduce a large degree of uncertainty 

in the results obtained. While uncertainty can be treated in different ways in optimization modeling, 

(McIntosh et al., 2011) points out that “decision-makers are not particularly interested in uncertainty per 

se […]. Rather, they are interested in knowing whether particular decision strategies are robust across a 

range of possibilities”. This range of possibilities can be more or less roughly represented by scenarios, 

which can be used to identify management plans and strategies independent of future conditions (Maier 

et al., 2016).  

Based on our explorative research and acknowledging the results from (Derepasko, Peñas, et al., 2021), 

optimizing environmental change scenarios (i.e., input hydrological conditions, in the case of optimization 
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applied for diversion) at large scales such as river basins and sub-basins can lead to more effective 

identification of patterns of spatial-temporal changes in water availability for diversion to prioritize 

hotspots for shortages. On the other hand, once hotspots have been identified, river segment-specific 

hydrological features can be tested by modifying optimization constraints (i.e., limiting conditions), for 

example, by relating hydrological patterns to the response of adjacent habitats, species requirements, and 

landscape features (e.g. mountains slopes). However, both assessment scales would benefit from good-

quality input data and assumptions about system processes (i.e., knowledge of how the system behaves). 

While the former can be controlled to some extent through careful selection and pre-processing, the latter 

will always be affected by some degree of uncertainty (i.e., aleatory uncertainty as opposed to epistemic 

uncertainty; (Maier et al., 2016; Maier et al., 2014) which cannot be eliminated. Another solution to reduce 

uncertainty is to run the model multiple times. However, this would increase significantly the 

computational effort and long post-processing times, especially for large river basins. We acknowledge 

that simplified assumptions about future climate and environmental system states and a few model runs 

have been made in this study. In addition, the inclusion of an optimization module to take into account 

the cumulative impact of diverting river water from upstream river segments on the downstream 

discharge would allow an improved assessment of river flow available for diversion. Therefore, while the 

exploratory assessment has some limitations that can be addressed in future applications, our modeling 

application can still provide a simple means for examining the implications of water diversion management 

decisions by incorporating segment-level information. It’s worth noting that the results do not offer an 

exact representation of the optimized daily flow behavior for each scenario but rather should be used to 

derive the uncertainty space for implementing future water availability for diversion. To make informed 

decisions for adaptation of management programs to future conditions (i.e., through informed decisions), 

it’s vital to have a broader view of detailed river flow information such as river segment data at basin 

scales. Assessing water diversion at small scales provides limited information to managers and reduces 

their ability to take effective action when changes occur (Capon et al., 2018). 

4.5.4. Considerations on optimization indicators for ecological endpoints 

In order to effectively manage the impact of river water diversion on instream ecosystems, it is crucial to 

identify the hydrological conditions that are necessary to support ecological endpoints. The literature 

provides many examples of hydrological conditions linked to specific ecosystem components (especially 

biological groups or species) through e-flows (the magnitude, timing, and rate of change), which can be 
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linked to indicators for supporting ES. Regardless of which concept better fits the management needs of 

the particular case study, to define ecological instream flow requirements for optimization modeling, we 

recommend taking the following considerations based on our study: (1) Focusing solely keystone species 

or relevant ecosystem components in the basin is convenient for optimization as it can capture the most 

critical hydrological components, but it may miss other important hydrological processes. In this case, the 

choice is either to justify the selection a limited number of ecosystem components or to expand the range 

of hydrological processes considered in the optimization model, which would require more modeling 

efforts. (2) Our study results show that optimization scores for supporting ES objectives are unevenly 

distributed across the basin and scenarios. This suggests that while the scenarios help test the 

appropriateness of overall management objectives in light of future changes, more insight can be gained 

by targeting locally tailored ecological objectives. For example, prioritizing some ecosystem components 

and their hydrological requirements downstream of the river network while focusing on others upstream; 

(3) Consider the possibility of ecological processes adaptation. More specifically, if the time horizon 

considers long-term management objectives, it should be recognized that some species adaptation may 

have occurred by the end of the planned management period while management outcomes are 

manifested. Failure to account for potential ecosystem adaptations when applying optimization models 

can skew the assessments and render results useless. Although this may be one of the most challenging 

tasks for modern water management, many recommendations have already been made in the current 

literature to account for these changes (Judd et al., 2023). However, more precise information is needed 

this can be achieved with optimization. 

4.6. Recommendations 

Based on the results of the exploratory optimization assessment conducted in this study, a series of 

recommendations were formulated for both water managers and water management analysts/modelers. 

These recommendations aim to facilitate basin-scale diversion management planning and enable the 

adoption of an adaptive management approach (see Table 12). 
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Table 12 Summary of recommendations to support water managers and optimization modelers in addressing water 
management problems to increase the potential for incorporating adaptive management approaches. 

User Issue Description 

Policy and Decision-

makers in the frame 

of water 

management 

Spatial domain 1. Considering river segment-specific hydrological conditions 

when developing a diversion management plan can help identify 

areas of more stable discharge conditions for consumptive use.  

Temporal domain 2. Management planning should account for changes in diversion 

conditions throughout the year by retailoring objectives to 

seasonal scales. 

Future 

environmental 

conditions 

3. When planning diversion management, seasonal shifts due to 

climate and LULC change must be predicted, incorporated, and 

aligned with future management objectives. 

Ecosystem services 4. Management planning should consider appropriate ES supply 

indicators and conditions based on the location of the river 

segment and the conservation objectives. 

Mixed Forest indicators 5. The effects of forest cover prioritization on available river water 

for diversion would be more evident if forest maturity rather than 

forest extent is prioritized. 

Optimization 

modelers for water 

management/ water 

Importance of 

input data quality 

for optimization 

assessments 

6. Incorporate predictions of ecological adaptation to 

environmental changes for specific water management horizon. 



 
126 

 

management 

analysts 
Selection of the 

most appropriate 

scale 

7. Basin-scale modeling supports management scenario testing, 

while reach-scale modeling is more appropriate for constraint 

testing. 

Output type 8. As large scales require extensive input data, setting clear 

objectives can help to process the volume of output data and 

clear communication of results. 

ES indicators 9. Prioritize the hydrological requirements of some species 

downstream of the river network while focusing on others 

upstream, for example, by applying weights. 

 

4.7. Conclusions 

This study considered the Pas River basin as a test site to examine the spatial and temporal implications 

of river water diversions. The objective of the optimization assessment was to identify future challenges 

for diversion planning, taking into account the hydrological requirements for key instream Supporting 

ecosystem services and the annual municipal water demand. Two future environmental change (land use, 

climate) scenarios were considered. While the daily river water available for diversion was found to meet 

municipal needs under the considered scenarios, the study results showed that seasonal shifts and spatial 

heterogeneity in diversion volumes and the optimal provision of ecosystem services represent the most 

significant challenges for medium- to long-term diversion management. Based on our findings, we provide 

considerations and recommendations for organizing river water diversion management efforts at the 

basin scale to achieve an adaptive approach. Diversion planning should consider the seasonal time frame 

for setting diversion targets and consider site-specific ecological goals that maintain the provision of 

supporting ecosystem services. In addition, running multiple simulations can help reduce the uncertainties 

associated with the data in subsequent practical applications. 

While the assessment presented in this study can assist in pinpointing viable diversion locations and 

strategizing withdrawal timing, forthcoming investigative analyses using optimization should incorporate 

the effects of severe climate change events and insights from enhanced land cover-hydrology modeling. 
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This entails taking into account the holistic influence of land cover in a given region on river discharge at a 

designated site and the maturity of local forests. Moreover, conducting several simulations can help 

mitigate any uncertainties related to data in subsequent practical applications.
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Supplementary Materials:  

The following supporting information can be downloaded 

at:  https://www.mdpi.com/article/10.3390/w15183289/s1. Section A, Table A1: SPHY model (see Section 2.2.2.1) 

input type and their values for the generation of the surface runoff for the river network in the considered case study 

area; Table A2: Variation of the environmental parameters for the present (1980-2012) and future (2041-2070) 

periods considered in the study; Table A3: Percentage cover for each class and each scenario considered in the 

optimization simulation; Table A4: Summary of the e-flow requirements (EFR) considered in the study. The EFR 

defines the hydrological conditions to be conserved in the river during the daily diversion operations throughout the 

year. The table shows the duration, the hydrological metric used, and the month of the year relevant for each EFR. 

Legend: %MMF = percentage value of mean monthly flow; Qm7 = 7 times the median annual flow; Q75 = the flow 

value that is exceeded 25% of the time; %MYF = percentage value of the mean yearly flow; Section B, Figure B1: The 

Running Metric Indicator (Blank & Deb, 2020) for a test RS simulation. The ∆f indicator measures the convergence of 

the objective space at each generation. Section C, Figure C1: Maps showing the spatial distribution of the 

optimization objective scores for the Habitat condition provision for fish life-stages ES under each considered 

scenario; Figure C2: Maps showing the spatial distribution of the optimization objective scores for the life-supporting 

conditions for Macroinvertebrate taxa richness ES under each considered scenario; Figure C3: Maps showing the 

spatial distribution of the optimization objective scores for the Primary productivity ES under each considered 

scenario; Figure C4: Monthly averaged optimized instream flow for the PR scenario (2006); Figure C5: Monthly 

averaged optimized instream flow for the CC_BAU 2041 scenario; Figure C6: Monthly averaged optimized instream 

flow for the CC_BGIN 2041 scenario; Figure C7: Monthly averaged optimized instream flow for the CC_BGIN 2070 

scenario; Figure C8: Monthly averaged optimized instream flow for the CC_BAU 2070 scenario; Figure C9: Heatmap 

showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for the 2041 

BGIN_CC scenario; Figure C10: Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for 

each month (on the y-axis) for the 2041 BAU_CC scenario; Figure C11: Heatmap showing the average optimized 

discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for the 2070 BGIN_CC scenario; Figure C12: 

Heatmap showing the average optimized discharge (in m3/s) value (on the x-axis) for each month (on the y-axis) for 

the 2070 BAU_CC scenario; Figure C13: Location of the representative points in the basin elicited for results 

presentation and discussion; Figure C14-C15: Flow series showing the daily profile of the discharge (in m3/s) 

optimized for diversion (light blue thin line) plotted with respect to the river natural discharge (purple background 

shape) for the each of the four RS locations analyzed under the Baseline 2006 (PR) scenario (top) and 2041 BAU_CC 

scenario (bottom); Figure C16-C17: Flow series showing the daily profile of the discharge (in m3/s) optimized for 

diversion (light blue thin line) plotted with respect to the river natural discharge (purple background shape) for the 

each of the four RS locations analyzed under the 2070 BGIN_CC (top) and 2070 BAU_CC scenario (bottom). 

https://www.mdpi.com/article/10.3390/w15183289/s1
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5.  Synthesis and Discussion  

This thesis addresses key challenges in water resource management research by exploring topics 

such as the connection between modeling and management scales, the importance of integrating 

environmental flows (e-flows) into management practices, and the necessity for tools to support the 

implementation of adaptive management. In the context of sustainable water resource allocation, 

optimization modeling was evaluated as a convenient tool to address these challenges by supporting 

the decision-making process in balancing competing ecological and human water needs. Nevertheless, 

several obstacles arise when developing models for water resource management problems, 

particularly regarding trade-off decisions related to scale and the representation of ecological 

requirements at different scales. Further challenges are the development of an effective modeling 

structure to support the implementation of adaptive management and the inclusion of future 

scenarios. The presented research investigated how optimization models can bridge these gaps by 

providing the necessary flexibility to incorporate relevant factors such as ecological requirements and 

future environmental changes.  

This chapter synthesizes the main research findings by addressing the research questions and 

highlighting how the thesis has advanced knowledge in this research area regarding the use of 

optimization models to support water management decisions. It also reflects on the implications of 

the findings for the broader issues addressed and the limitations of the research conducted. Finally, 

the chapter provides recommendations for future applications of optimization approaches that build 

on the findings of the previous chapters and suggests possible directions for further research. 

5.1 Summary of key findings 

One of the central research topics explored in this thesis is the interplay between modeling decisions 

and the assessment scale, explicitly examining how these choices shape spatial and temporal scales in 

reconciling environmental flows with human water needs. Water management systems are inherently 

hierarchical, with water flowing through different regions, infrastructures (like dams and reservoirs), 

and ecosystems that operate on different spatial and temporal scales (Gurnell et al., 2016). Water 

allocation, river flow management, and infrastructure operation decisions aim to balance objectives 

like maximizing human use or sustaining ecosystem flows. These decisions span scales—from small 

river sections to entire river basins, daily operations to long-term planning—each requiring tailored 

data and modeling. Accurate representation of the management context and scales is critical to the 

success of management decisions and their outcomes. I have found that an exact match between 

modeling scales and decision-making scales is often not achievable, leading to necessary compromises. 
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In Chapter 2, I emphasize the importance of adapting the model's scale to the management problem's 

objectives. I reviewed case studies of multi-objective optimization models in water management to 

address the first research question on how modeling choices influence spatial and temporal scales. 

The analysis examined how management scales were represented and the methods employed to 

tackle water allocation challenges across diverse contexts, ranging from basin-wide strategies to 

specific river reaches or reservoir operations. My findings highlight that effective management 

requires tailoring optimization strategies to the unique characteristics of each river system and its 

management context, considering factors like planning horizons and approaches to defining e-flows. 

While some generalization is possible, modelers must prioritize relevant, scale-appropriate 

information to minimize inaccuracies. 

To address the challenge of integrating decision-making scales, data types, and optimization, I argue 

that recognizing the impact of modeling decisions on spatial and temporal scales is key to 

understanding trade-offs between the management scale and the simulated scale. This understanding 

can ultimately improve management outcomes at the desired scale. In this context, Chapter 2 presents 

a framework I developed to help users navigate these trade-offs and guide the selection of appropriate 

scales and associated data at the interface of modeling and management. The framework divides the 

optimization process into two phases: problem perception and problem formulation. 

The problem perception phase focuses on understanding the objectives, limitations, and management 

options of the water management system. Here, I emphasize the importance of collecting detailed 

system information, such as identifying goals (e.g., water supply for human use or ecological health), 

constraints, and options for managing water flows. In the problem formulation phase, this 

understanding is translated into a formal optimization model, requiring the development of 

mathematical representations of the management problem. While both phases offer flexibility in 

modeling options, data selection, and reference conditions like e-flow definitions, these choices often 

fail to fully align with the reference context. 

Because the optimization process inherently involves compromises, I advocate for greater 

transparency in outlining how these trade-offs are made when transitioning from problem perception 

to problem formulation. This includes explicitly addressing how data and modeling limitations 

influence the scale of the analysis and acknowledging their potential impacts on management 

decisions. By making these trade-offs clear, I believe the optimization process can become more 

robust, providing reliable insights and ensuring models are better suited to addressing ecological and 

societal needs. 
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On the whole, Chapter 2 addresses a critical gap in water management literature by offering practical 

guidance for researchers and practitioners – it provides a simple yet structured approach to 

understanding and integrating scale in multi-objective optimization models, helping clarify the critical 

role of spatial and temporal scale in the water management context. This ensures that optimization 

models are better aligned with the realities of complex water systems. Ultimately, I aim for the 

proposed framework to be valuable for water managers, offering a tool for reasoning about the 

appropriate scales and relevant data when developing a water management plan. It is also intended 

for modelers and provides a comprehensive structure for developing multi-objective optimization 

models that incorporate e-flows and help achieve a satisfactory representation of the target spatial 

and temporal management contexts. 

Building on the framework presented in Chapter 2, which highlights the importance of scale in multi-

objective optimization models for water management, I have shifted the focus in Chapter 3 to a more 

technical exploration of optimization model development. Here, I address how to practically integrate 

e-flows into these models, moving from a broader conceptual understanding to a hands-on approach. 

I aimed to show how optimization can support the decision-making process while minimizing the need 

for excessive information processing in both the upstream and downstream stages of the simulation. 

The literature offers various approaches for defining ecological water requirements, often relying on 

software or modeling techniques. I found that optimization provides flexibility, enabling decision-

makers to select the level of complexity for incorporating ecological information. In this chapter, I 

introduce an optimization-based method to balance competing objectives by adjusting water diversion 

practices to meet ecosystem needs. Using the Pas River in northern Spain as a case study, I 

incorporated ecological flow requirements for fish, aquatic macroinvertebrates, and primary 

producers, informed by expert judgment from a workshop with hydrology and freshwater biology 

specialists. I translated these requirements into thresholds for hydrological conditions, such as flow 

magnitude and timing, to support key ecological processes like migration and spawning. By applying 

penalties for unmet flow thresholds, I achieved optimized flows that better reflect natural variability. 

Simulation results revealed significant daily variability in water availability for diversion, leading me to 

conclude that seasonal adjustments could be more appropriate for diversion planning than relying 

solely on annual water supply targets. However, the deviations I observed in the optimized 

hydrograph, particularly under dry conditions, showed that also natural flow variability imposes 

baseline stress on ecosystems. This highlights the importance of incorporating flexibility into water 

management strategies to account for natural fluctuations and address extreme climate conditions. 
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I believe both modelers and managers can benefit from the demonstrated example of eco-hydrological 

information processing, gaining insights on translating expert knowledge on ecological flow 

requirements into indicators to be easily integrated into optimization models. This addresses the 

research question of how optimization approaches can mediate e-flows in water diversion 

management and support adaptive management. Through this modeling simulation, I gained a deeper 

understanding of the potential of optimization modeling to process information and build a knowledge 

base for adaptive management. The results highlight how management strategies could dynamically 

adjust to real-time ecological and hydrological data through optimization, enabling more responsive 

decision-making. Optimization outputs also help identify optimal timeframes for diversion goals, such 

as during significant flow variability or reduced ecological target performance. This work fills a crucial 

gap by advancing the operationalization of adaptive management and providing a framework 

applicable to diverse contexts and conditions. 

Adaptive management often remains an aspirational concept, rarely translated into actionable 

practices. Chapters 3 and 4 address this challenge by providing a framework for operationalizing 

adaptive water management through optimization modeling. In Chapter 3, I focus on the immediate, 

point-scale application of optimization to current practices. In contrast, in Chapter 4, I expand the 

scope, by examining how optimization can support planning under future uncertainty and answering 

the last research question in the context of optimization modeling employment in adaptive 

management support. Building on insights from previous chapters about tailoring models to deliver 

actionable outputs, Chapter 4 further advances the research by integrating future environmental 

uncertainties—such as climate change and land use alterations—into optimization modeling for water 

resource management. Here, I have extended the methodology from Chapter 3 to the catchment scale 

and have examined the sustainability of the diversion under two future scenarios: one that reflects 

conventional land use practices and one that is based on an ecologically conscious strategy. These 

scenarios incorporated changes in land use/land cover and climate impacts on river hydrology, using 

historical data and future projections (2041–2070) for temperature and precipitation. The simulations 

revealed variations in water availability for human and environmental needs, emphasizing the 

importance of testing socio-environmental contexts to balance ecological health with water supply 

security. 

The optimization modeling conducted in this chapter highlighted possible key management strategies, 

such as considering seasonal shifts and spatial variability in water availability, setting site-specific 

diversion targets, and prioritizing ecological needs during critical periods. It also demonstrated the 

potential of optimization to address the temporal and spatial complexities of water management 
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under future uncertainties. Ultimately, I believe the main contribution of this chapter lies in providing 

essential insights into how optimization can guide management decisions in the face of changing 

resource availability. 

5.2 Addressing scale in optimization models for water management 

Scale is a foundational element in environmental models that integrate diverse data sources and 

disciplinary perspectives – consequently, there is a need for models that effectively balance the 

demands of detailed, site-specific management needs with broader, basin-wide strategies (Iwanaga et 

al., 2021). Furthermore, it is widely acknowledged that model inputs and outputs need to accurately 

reflect real-world management conditions in order to be effective (Pahl-Wostl, Palmer, et al., 2013). 

This is especially true for water management problems that aim at ecological preservation. However, 

the effort associated with achieving a reliable representation within optimization models is not 

sufficiently explored in the literature. In this thesis, I addressed the critical task of adequately 

representing both temporal and spatial scales in optimization models for water management. I found 

that, when developing optimization models, scaling decisions can pose a challenge for the modeler 

and significantly influence the model's ability to meet the requirements of the management context 

in target scaling. To enable better decision-making at the appropriate temporal and spatial scale of the 

model, I facilitated the model development process in Chapter 2 with a simple, step-by-step procedure 

that helps align the model scales with the real-world conditions of water management. While this 

structured approach aims to ensure that the choice of scale is systematically aligned with the specific 

requirements of the management context, the extent to which these scale decisions affect the model 

output remains to be fully quantified. In fact, the modeler's perspective and assumptions about the 

system can influence how they approach scale representation for a particular management issue 

(Iwanaga et al., 2021). To exploit the full potential of optimization modeling for water management 

problems and sustainable resource allocation, I believe it would be beneficial to further explore the 

impact of these scale-related modelers' beliefs. 

Prioritizing data is essential to maintain model clarity while also obtaining the local insights needed for 

effective, fine-scale modeling (Loucks & Van Beek, 2017). I argue that the model development process 

directly influences the quality and type of data the model requires. For example, in Chapter 4, I 

considered different structuring approaches to enhance transparency and better align with ecosystem 

needs. A top-down approach, which limits daily diversions based on annual municipal demand, risks 

introducing uncertainties and may fall short of meeting ecosystem needs. In contrast, a bottom-up 

approach that matches e-flow requirements with available flow increases the likelihood of supporting 

ecosystem services and adapting to environmental changes. This example demonstrates how a 
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bottom-up strategy can foster a more adaptable and resilient model structure. By carefully selecting 

the most relevant information, the model remains both manageable and responsive to localized needs, 

ultimately enhancing its applicability in real-world scenarios. My approach in Chapters 3 and 4 to reveal 

temporal changes and spatial variability of river water volumes available for diversion directly reflects 

this principle, underscoring that flexibility in adapting to changing spatial contexts is critical for 

maintaining reliable water management outputs. Building on this foundation, in Chapter 3, I developed 

an optimization model approach for a site-specific diversion target, focusing on isolated locations 

within the river. This pilot-scale application demonstrated how optimization can be used to support 

decision-making on small scales without overwhelming the process with excessive information needs. 

For comparison, I extended this approach to a basin-wide spatial coverage in Chapter 4, merging 

information on adjacent river segments to display the whole river network. Although an optimization 

model can potentially address planning and management needs across multiple scales, my exploration 

pointed out a practical distinction in scale suitability based on the specific assessment objectives. Finer 

scales prove more effective for accurately capturing local hydrology and ecological requirements, 

allowing for detailed insights into site-specific dynamics and interventions. In contrast, larger scales 

are more appropriate for identifying overarching, long-term patterns, offering a strategic perspective 

that helps pinpoint management hotspots and guide broader planning decisions. This scale-wise 

distinction enhances the model's ability to balance detailed local needs with basin-wide management 

strategies, optimizing its utility across varying planning contexts. Collectively, this suggests that scale 

decisions within optimization models should be guided by strategies accommodating multiple 

management objectives across scales while maintaining model efficiency and simplicity. This multi-

scale perspective aligns with the systems thinking of Thorp (2014) and Simonovic (2012), both of whom 

advocate that effective water management demands adaptable, cross-scale models capable of 

capturing both immediate and long-term management impacts. However, integrating various 

temporal and spatial scales within a single optimization model presents a significant modeling 

challenge (Horne et al., 2016). Overall, I believe that a well-designed optimization model must 

incorporate essential information across scales while keeping the decision-making process 

manageable during development. It is important to balance the need for detail at various scales with 

the simplicity of the model. If successful, the model can seamlessly integrate the needs of detailed, 

site-specific management and broader, basin-wide strategic objectives within a unified optimization 

framework that delivers an effective and practical output format. 

Despite the contributions of this thesis, there are some challenges in integrating fine- and large-scale 

insights without oversimplifying their complexities, especially in river systems, where numerous 
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interactions and processes occur simultaneously across multiple scales (Iwanaga et al., 2021). For 

example, the basin-scale model in Chapter 4 provides essential information on the spatial and 

temporal variability of optimized river flow across the network. However, it does not fully capture the 

feedbacks and synergies between river flow and ecosystem processes. This results in a lack of 

granularity needed for real-time, local decision-making on optimal environmental flow management 

actions. This mirrors the gaps identified by Gurnell et al. (2016), who argue for models that dynamically 

adjust across scales as new data and environmental changes arise. To address hierarchical and multi-

layered management problems, I found that an adaptive, scale-flexible approach—where models 

adjust to changing contexts—could provide a solution that improves model responsiveness and 

resilience. This flexible approach reinforces the need for context-specific strategies in water 

management that simultaneously address both fine, site-specific needs and broader objectives at the 

watershed level.  

The understanding of scale representation in optimization models for sustainable water management 

presented in this thesis echoes a broader call in the literature for improved scale integration within 

management strategies (Arthington et al., 2024; Poff et al., 2017). While the need for multi-scale 

integration and dynamic adaptation should be set as a future research goal, I emphasize that 

transparency should take precedence when synergies between data and modeling approaches cannot 

be achieved. Achieving this balance requires adherence to a rigorous, mutually agreed-upon set of 

model development steps to ensure adaptability and responsiveness to the inherent complexities of 

water management. 

5.3 Incorporating environmental flows (e-flows) into optimization models 

Environmental protection is increasingly recognized as a critical objective for water management (Finn 

& Jackson, 2011), especially as environmental pressures — such as climate change, population growth, 

and land use alterations—increase demands on water resources (Chowdhury & Das, 2024). The 

advancement of water management practices requires that e-flows become a core component of 

resource planning to ensure that, in addition to human needs, essential ecological processes are also 

supported (Arthington et al., 2024; Poff et al., 2017). I found that the wide range of approaches to 

incorporating e-flows into optimization models reflects the diversity of case studies and contexts in 

which they are applied. This diversity underscores the need for adaptable, standardized strategies for 

optimizing ecological and human demands within water management.  

In Chapter 2, I identified several critical decisions that influence how environmental flows are defined 

in models. The choice of assessment locations, spatial scale, and approach to defining e-flows proved 
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essential to accurately reflecting ecological conditions. Often, the success of these decisions depends 

on the availability of historical and real-time data from monitoring stations. Monitoring networks are 

essential for developing effective e-flow models for different management contexts (Poff et al., 2007). 

For instance, an extensive network of gauging stations can provide crucial information in complex river 

systems with multiple reservoirs. It can capture spatial and temporal flow variability across the basin, 

enhancing the model’s capacity to represent ecological impacts accurately. Flow magnitude 

parameters are commonly used as hydrological indicators to assess the state of ecosystems, with 

monthly and annual flow readings providing valuable insights into seasonal cycles. However, these 

general metrics sometimes lack the level of detail needed for more refined ecological assessments. To 

improve accuracy for localized applications, breaking down large river flow rates into site-specific 

values can increase model accuracy when assessing ecosystem response (Cai & Zhang, 2018).  

Defining e-flow requirements based on empirical data related to specific habitats or species can be 

convenient for finer-scale or short-term assessments. Techniques such as regression modeling and 

hydro-ecological tools (such as PHABSIM, Bovee et al., 1998) allow for the establishment of minimum 

flows for critical ecological functions. While these methods increase ecological relevance, they are 

data-intensive and may be challenging to implement across diverse habitats or settings (Davies et al., 

2014). In more complex scenarios, participatory methods can provide a way to define hydrological 

thresholds by directly involving stakeholders in the decision-making process. This stakeholder 

engagement is invaluable for developing models that accurately reflect local needs and knowledge 

(Ananda & Proctor, 2013). Such an approach benefits optimization models targeted at systems with 

multiple environmental and human assets and high spatial complexity, allowing for more adaptive and 

inclusive management strategies. Furthermore, some studies incorporate broader flow indicators, 

such as baseflow conditions and, occasionally, water quality parameters like temperature and 

dissolved oxygen levels. Although less common, these indicators provide valuable insights when flow 

regime changes directly impact ecosystem health. 

A reliable representation of ecological freshwater flow requirements is essential for generating robust 

optimization assessment results. Expert knowledge offers the opportunity to gain substantial insights 

(Nelitz et al., 2015). Incorporating the latest freshwater ecology and eco-hydrology advancements 

validates our understanding of ecological flows. However, the lack of a standardized method to directly 

translate this expertise into input parameters for optimization models creates a gap between 

environmental expertise and model integration. In response to this, I presented a practical approach 

in Chapters 3 and 4 that builds on the insights from Chapter 2. This approach demonstrates that 

combining site-specific hydrological data with basin-wide environmental flow parameters can 
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effectively meet both localized and broader ecological needs within a cohesive modeling framework. 

This method allows expert knowledge of ecological requirements to be elicited and integrated into an 

optimization model for the case study. Importantly, it avoids data over-processing and allows for 

stepwise model refinement as new insights or data become available. By varying hydrological 

thresholds across multiple model runs, this approach can help identify sustainable water diversion 

volumes with increased predictive accuracy, demonstrating the potential of flexible modeling for 

ecological flow management. Despite these advantages, a significant limitation remains in the resource 

demands of the approach presented in Chapters 3 and 4. First, the iterative simulations require 

stakeholder commitment to repeated model runs, which may demand more time and investment than 

conventional static approaches. This need for stakeholder engagement underscores the collaborative 

nature of adaptive water management and highlights a key area for further development, namely, 

fostering stakeholder support for resource-intensive but ultimately more accurate modeling 

techniques.  

Another challenge is related to the complexity of representing dynamic ecological systems within static 

optimization constraints. E-flows are inherently variable; in fact, ecological needs shift with seasonal 

changes, extreme weather events, and long-term environmental changes such as climate change. By 

defining e-flows as fixed constraints, there is a risk of oversimplifying the complexity of ecological 

processes, which may reduce the model's effectiveness under unforeseen conditions. My findings 

suggest that overcoming this gap requires prioritizing certain data types, carefully selecting model 

parameters, and accepting trade-offs between detail and manageability—choices that inevitably shape 

model accuracy and relevance (Badham et al., 2019; Iwanaga et al., 2021). 

Balancing hydrological detail with data feasibility in incorporating environmental flows (e-flows) into 

optimization models creates a foundation for sustainable water management that prioritizes 

ecological integrity. This research underscores a shift from output-focused modeling to a more 

integrated, process-driven approach incorporating ecological constraints within a flexible framework. 

By setting hydrological constraints, we prioritize e-flows, safeguarding key ecological functions while 

meeting human water demands. Selecting spatial and temporal scales that capture both local and 

basin-wide dynamics should ensure that models remain responsive to diverse ecological needs. Finally, 

incorporating adaptive and participatory elements fosters a modeling process that not only reflects 

local knowledge but also strengthens resilience to environmental change. Through these guiding 

principles, we create optimization models capable of addressing the complex interplay between 

ecological preservation and water management and support a robust and inclusive approach to 

sustainable resource planning. 
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5.4 Using optimization models as a tool in support of adaptive water management 

implementation 

Adaptive management is a dynamic yet composite management paradigm that is increasingly 

recognized as essential to the management of complex water systems because it provides a proactive 

approach to addressing uncertainty associated with factors such as climate variability, population 

growth, and land use modifications (Allan & Watts, 2018; Delavari Edalat & Abdi, 2018). However, 

despite a few examples of successful applications worldwide (for instance, see Failing et al., 2013; 

Smith, 2011), implementing adaptive management in water resource management remains 

challenging. Some key obstacles include the need for polycentric governance, organizational flexibility, 

and public participation—integral components of “social learning” strategies—alongside balancing 

ecological and human demands, limited data availability, fragmented governance and monitoring 

efforts, and difficulties in adjusting strategies in real-time. Furthermore, the lack of standardized 

methodologies for iterative, adaptive management continues to hinder implementation (Delavari 

Edalat & Abdi, 2018; Wan Rosely & Voulvoulis, 2024; Webb, Watts, et al., 2017). Data limitations, for 

instance, constrain the level of detail with which ecological conditions can be monitored. At the same 

time, institutional and regulatory rigidity can prevent the shift toward more adaptive frameworks 

(Pahl-Wostl, 2006). Furthermore, the intricate, non-linear nature of ecological systems introduces 

uncertainties that complicate any predictive modeling, leading some managers to rely on more 

traditional, static approaches (Poff & Zimmerman, 2010).  

As shown in Chapter 2, optimization modeling fits well with the adaptive management cycle, 

particularly before the implementation stage. I have found it can be applied within both the inner and 

outer feedback loops of the adaptive cycle (i.e., the “Plan-do-monitor-learn” process as described by 

Webb, Watts, et al., 2017). Optimization modeling employment specifically can provide insights into 

where and to what extent changes may occur, as well as identify priority areas for targeted monitoring 

in the short term. In the long term, it can enhance the adaptability of water management frameworks, 

positioning optimization as a valuable tool for anticipating and responding to environmental changes 

in a structured, iterative manner.  

Water managers need data that empowers them to make adaptive, informed choices that align with 

the scale and priorities of the management plans. In the chapters presented, I showed how 

optimization modeling can be useful for several adaptive management challenges by strengthening 

decision-making frameworks, promoting transparency, integrating preference-defined thresholds, 

enabling scenario-based planning, and providing a structured approach to balancing ecological and 

human demands. The insights from the exploratory optimization assessments presented in Chapters 3 
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and 4 reveal that optimization modeling can be employed not only to aid in forecasting trade-off 

outcomes—such as those related to water allocation for specific ecological objectives—but also to 

discover patterns and pinpoint optimal locations or timeframes for targeted interventions. To 

demonstrate how optimization can inform adaptive management, I took an unconventional data-

driven approach in both chapters by running optimization simulations at two different scales within 

the same case study. By recurring to different water management scenarios at basin-wide scales, I was 

able to leverage empirical data to reveal optimal patterns for water diversion, identify critical 

"hotspots", and make evidence-based recommendations for scale-sensitive water resource 

management needs directly supporting adaptive management-oriented decision-making. As a result, 

I identified two primary goals for employing optimization modeling in water management for adaptive 

planning, specifically in the context of river flow diversion. First, simulations under present flow 

conditions are particularly suited to fine-scale applications (Chapter 3) by accommodating short-term 

changes such as seasonal variations or extreme weather events, as they allow for refining or adjusting 

water supply decisions, environmental thresholds, and the range of species or ecological endpoints 

considered. This is particularly relevant in contexts where limited data and high stakeholder 

involvement necessitate clear and negotiable trade-offs (Loucks & Van Beek, 2017). Second, 

simulations under future scenarios (Chapter 4) that encompass climate change and land use alterations 

provide the opportunity to highlight key areas for prospective monitoring, addressing the need to 

screen larger regions and focus on priority zones. This information offers the chance to address long-

term environmental stressors, ensuring that management objectives remain relevant across temporal 

scales. 

Participatory approaches are critical for adaptive management to build acceptance and reflect the 

knowledge of local communities and stakeholders, who can help refine e-flow thresholds based on 

observed ecological and social impacts (Ananda & Proctor, 2013). In this thesis, I have provided 

evidence that optimization supports the critical aspect of stakeholder engagement in adaptive 

management, as demonstrated by the bottom-up approach in Chapter 4. Additionally, optimization 

modeling offers a practical solution to the iterative nature of adaptive management. By designing 

models that support incremental refinement as new data becomes available, as seen in Chapters 3 and 

4, water managers can update and improve models based on recent findings, maintaining their 

relevance. This aligns with the adaptive management principle of learning from each planning cycle, 

helping to ensure that optimization models remain aligned with actual conditions and management 

objectives. This incremental, data-driven refinement is essential to overcome the resistance to 

iterative approaches in water management, often perceived as inefficient or resource-intensive 

(Gunderson & Holling, 2002). 
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Based on the research conducted, I have identified several principles for using optimization models to 

support adaptive water management implementation. First, integrating flexible thresholds for e-flows 

ensures adaptability to short-term changes, while scenario-based planning prepares for long-term 

shifts. Second, prioritizing site-specific data collection through a robust gauging network enhances 

model accuracy in assessing ecological responses. Third, engaging field experts in model development, 

as demonstrated in Chapter 4, fosters responsive, context-sensitive models that align with local 

ecological needs. Additionally, establishing an iterative model update process helps keep models 

relevant as new data emerges. Finally, investing in computational resources and training is essential to 

manage the complexities of adaptive optimization modeling effectively. Overall, this research adds 

valuable evidence on how optimization can provide a responsive, transparent, and scalable framework 

capable of adapting to evolving conditions and shifting management priorities.  

5.5 Limitations of this work 

In considering the research approach and methodology employed in Chapters 2, 3, and 4, I 

acknowledge certain limitations and shortcomings that, while potentially relevant for the relevance 

and generalizability of my work, do not undermine the validity or intent of the approach taken. A key 

factor underlying most of these limitations is the lack of “high-power” stakeholder engagement, such 

as the Cantabrian water management authorities, which prevented the translation of the modeling 

output into actions. In fact, the optimization simulations conducted for Chapters 3 and 4 remain at the 

proof-of-concept level without progressing to real-world implementation or monitoring stages. Ideally, 

these types of modeling simulations in support of water resource management decisions should be 

extended to include practical application and feedback loops, allowing the models to be tested, 

refined, and validated against actual outcomes (Kergus et al., 2022). Such an approach is fundamental 

in adaptive management, where iterative learning and adjustments based on real-world feedback are 

key to addressing the dynamic and evolving challenges of water management. I recognize that the 

absence of this crucial stage prevents the optimization modeling conducted in this thesis from fully 

validating its usefulness in effectively informing river water diversion planning. 

The thesis also omits a formal sensitivity and uncertainty assessment, which could have improved the 

robustness of the optimization models. While sensitivity analysis could identify critical parameters 

influencing outcomes, and uncertainty assessments could reveal the range of potential results under 

varying conditions – such as input data, ecological thresholds, or future climate projections –  the focus 

of this work was to demonstrate conceptual applications rather than provide absolute results, as 

highlighted in Chapter 3. I prioritized developing and testing methodological frameworks over detailed 

parametric evaluation. Nevertheless, the presented results can still stimulate discussion among 
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relevant stakeholders. Future work should incorporate these assessments to improve model reliability 

and its capacity to inform adaptive decision-making. 

Furthermore, regarding the optimization results, I deliberately adopted a preference-neutral approach 

in both Chapters 3 and 4, averaging outcomes such as objective scores across various scenarios to 

produce a simplified, ready-to-use hydrograph for daily river flow diversions. This approach aimed to 

prioritize usability and accessibility, offering decision-makers a straightforward, optimal solution 

without requiring extensive engagement during the modeling phase. As Miettinen (1998) noted, no-

preference methods are suitable when decision-makers lack predefined expectations or are satisfied 

with any optimal solution, partially justifying my intent of prioritizing practicality and immediate 

applicability. However, optimization models inherently generate a range of optimal solutions that 

stimulate discussion, ideally requiring stakeholders to review and select to align with specific 

management goals. While stakeholder input was not incorporated due to the exploratory nature of 

this research, this presents an exciting opportunity for future work to enhance inclusivity and 

transparency in adaptive water management. 

Additionally, the research is based on a single case study—the Pas River basin in Northern Spain—

focused on river flow regulation for water diversion, with fixed thresholds for environmental flows set 

on local species. While this focus allowed for a detailed exploration, it narrowed the model’s 

adaptability and generalizability. Expanding to different river and flow alteration systems would have 

added valuable data and helped verify the relevance and flexibility of the model under varying 

ecological and socio-economic conditions. Furthermore, allowing thresholds to vary or to be defined 

in part by stakeholders would have aligned the optimization models more closely with adaptive 

management’s emphasis on context-specific, participatory approaches. This choice might have 

improved the optimization model's responsiveness to the particular ecological and social dynamics 

influencing water management decisions in different contexts.  

Finally, I must acknowledge that the optimization assessments performed are relatively simple, 

particularly with respect to the conceptual model of actual management objectives and targets for the 

Pas River water diversion, which considered only a few ecological endpoints. This simplification means 

that the models may not fully reflect the true variability and complexity of the ecological processes 

and interactions critical to sustainable water management. A more sophisticated ecological model, 

with a larger number of hydrological parameters representing various biological and environmental 

interactions with the river flow, would have offered a richer understanding of how these systems 

respond to different diversion scenarios ultimately improving its utility for adaptive management. 
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Thus, the representation of the ecosystem could have been limited, which, in turn, limited the depth 

and accuracy of my findings.  

5.6 Recommendations: generalizable principles for optimization modeling to support 

water resource management 

With this work, I have laid a foundation for the design and application of optimization models to 

advance water resource management practices toward an adaptive management framework, as 

demonstrated in Chapters 2, 3, and 4. Building on the insights and findings from these chapters, I 

propose several overarching recommendations to guide both modelers and water managers in 

developing robust, flexible, and sustainable optimization models. These recommendations are also 

intended to support managers in formulating strategies that effectively address the complexities of 

water resource system representation: 

(i) Defining clear boundaries and scales: Setting explicit spatial and temporal boundaries within 

optimization models is crucial for ensuring relevance and transparency. As emphasized in Chapter 2, 

clearly communicating the optimization problem statement throughout the problem perception and 

formulation phases enhances system understanding, facilitates stakeholder engagement, and 

ensures that trade-offs are assessed at appropriate scales; 

(ii) Enhancing model transparency and clarity: A framework for optimization model development, 

as presented in Chapter 2, offers a systematic approach to clarifying system conceptualization. 

Answering key questions for each optimization phase — including physical systems, hydrological 

states, objective functions, and constraints — ensures that input data and objectives align with 

management goals, thereby improving model transparency; 

(iii) Considering scale-sensitive approaches: As demonstrated in Chapter 4, assessments at the 

basin level are effective for identifying hotspots of reduced water availability and for testing large-

scale management scenarios. Conversely, the reach-scale modeling, explored in Chapter 3, refines 

site-specific objectives and assesses localized trade-offs. By using these approaches within a single 

framework, managers can effectively address both broad ecological and human needs and localized 

priorities; 

(iv) Prioritizing environmental flow representation: Optimization models should prioritize 

ecological endpoints based on hydrological requirements for key species or ecosystem services, as 

shown in Chapters 3 and 4. Expanding the range of ecological components and considering long-term 

adaptation potential are essential for improving ecological accuracy and relevance. Applying 

appropriate distinction within the optimization model to prioritize species' needs upstream versus 

downstream could address ecosystem variability throughout the river network; 
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(v) Enhancing input data quality and results communication: Reliable input data and clear 

communication of optimization results are critical for decision-making. Addressing uncertainty in 

output data (e.g., by using multiple scenarios), improving used data resolution (e.g., by relying on 

gauging networks), and focusing on standardized ecological indicators can reduce epistemic and 

systemic uncertainties. The decision to communicate results in user-friendly formats such as 

hydrographs can improve acceptance among decision-makers. 
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5.7 Overall thesis conclusions 

Optimization modeling for water resource management has gained significant momentum due to 

advancements in computational methods and the growing need to balance human and ecological water 

demands. This thesis builds on this interest and demonstrates the flexibility and potential of optimization 

models as a tool for addressing the complex challenges of sustainable water management. I have shown 

that optimization models can inform day-to-day decision-making and equip managers with the 

appropriate spatial-temporal information to anticipate future risks to optimal water resource availability—

all while being accessible due to low cost and minimal training requirements. However, the possibilities go 

beyond purely technical applications and offer an opportunity to rethink and implement water 

management within an adaptive management framework. My results show how optimization can be an 

integral component of the adaptive water management cycle, providing insights before pre-

implementation and using its inherent flexibility to integrate scenarios that account for evolving 

environmental conditions caused by climate and land use change. By addressing critical gaps — such as 

trade-offs in scale representation, the integration of environmental flows (e-flows) into optimization 

models across scales, and their applicability at the catchment scale under future environmental changes 

— I have provided a basis for a broader application of optimization modeling in different management 

contexts. This will enable the identification of critical hotspots for intervention, the adaptation of water 

allocation strategies to seasonal and long-term climate scenarios, and the integration of knowledge-based 

preferences to balance ecological and human needs. By advancing these methods, optimization modeling 

can strengthen decision-making processes, improve their reliability and effectiveness, and ultimately serve 

as a blueprint for managing water resources in dynamic, stratified systems. 

5.8 Future research needs 

In Chapter 2, I proposed a framework to navigate option selection relative to scale when developing 

optimization models. In order to further advance the application of optimization modeling in water 

resource management, future research should focus on developing an integrated optimization framework 

to guide researchers and practitioners through the various stages of adaptive management across multiple 

scales. As emphasized by Horne et al. (2022), modular frameworks for optimization modeling can provide 

the flexibility needed to align with diverse management objectives and spatial contexts, offering a 

structured yet adaptable toolset for addressing water management challenges. Achieving this could be 

further supported by scaling up assessments across diverse case studies, tailoring approaches to different 



 
145 

 

management contexts, and integrating stakeholder-defined thresholds and preferences. These efforts 

would enhance the generalizability and inclusivity of optimization models, ensuring they align more 

effectively with the principles of adaptive management. 

Additionally, uncertainty remains a persistent challenge in water management modeling, as highlighted 

by Judd, Boese, et al., (2023) and Judd, Horne, et al., (2023). In my work, I did not explicitly focus on 

uncertainty quantification. Future research should hence explore innovative methods to navigate and 

represent uncertainty within optimization models, such as sensitivity analyses, scenario-based modeling, 

and probabilistic frameworks. These tools can enable optimization models to capture better and 

communicate the inherent variability in hydrological, ecological, and socio-economic systems, increasing 

the robustness and credibility of modeling outcomes for adaptive management. 

In Chapter 4, I tested a spatially explicit optimization model output underscoring the importance of 

alternative conceptualizations of management systems, particularly during the problem perception phase. 

This could enhance the ability of optimization models to address complexities inherent in stratified socio-

ecological systems. Spatially explicit optimization models, already prevalent in land-use management (Li 

et al., 2023), hold great potential for water management by revealing multi-scale interactions and trade-

offs. Extending this work to incorporate more sophisticated ecological parameters, detailed land-use 

patterns, and dynamic climate scenarios, as suggested by Judd, Boese, et al., (2023), could improve the 

ability of optimization systems to address complexities inherent in stratified socio-ecological systems. 

Moving toward temporally explicit models that account for seasonal or event-driven variability would also 

strengthen their applicability in adaptive management. Furthermore, Judd et al., (2022) also emphasize 

the importance of integrating climate resilience into ecological flow objectives—an essential consideration 

for supporting long-term water management under uncertain and shifting climatic conditions. 

Finally, establishing stronger links between optimization systems and monitoring plans is equally crucial. 

As noted by Judd et al., (2022) establishing clear connections between modeled e-flow endpoints and 

monitoring frameworks can bridge the gap between theoretical modeling and practical application, 

enabling iterative feedback loops. These loops are central to adaptive management, where real-world 

validation is essential for refining and improving optimization outputs. These advancements would 

collectively position optimization modeling as a convenient and flexible tool for adaptive water 

management, capable of addressing evolving challenges while fostering sustainable and resilient resource 

use. 
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Reference 
Study system 

location 
Management  

purpose 

Targeted scale 
Planning 

period 
Solution 
method 

Hydrological 
indicators 

Objectives 
Constraints 

Trade-
offs 

Scenarios 
Spatial Temporal ≤ 3 ≥ 4 

(Arslan, 2015) 
Aksu River 
Basin (Turkey) 

energy production, 
ecological health 

River Sub-daily / MP-based MAG-m 
• 

 
physical-
environmental, 
infrastructure-
related, supply-
related, 
ecological 

/ x 

(Chen and 
Olden, 2017) 

San Juan River, 
(Colorado River 
tributary, US) 

disturbance reduction, 
ecological health 

River 
section 

Seasonal 
3-year 
plan 

MP-based MAG-d 
• 

 
physical-
environmental, 
infrastructure-
related, supply-
related 

G x 

(Dai et al., 2017) 

Three Gorges-
Gezhouba 
reservoirs, 
Yangtze River 
(China) 

energy production, 
ecological health 

Multi-
Reservoir 

Seasonal / S MAG-d 
• 

 
physical-
environmental, 
infrastructure-
related 

G x 

(Fallah-
Mehdipour, 
Bozorg-Haddad 
and Loáiciga, 
2018)  

Karoon IV dam 
on Karoon River 
(Iran) 

energy production, 
ecological health 

Reservoir Daily / 
MP-based 

/ S 
/ 

• 

 
physical-
environmental, 
infrastructure-
related 

G  / 

(Fleifle et al., 
2014) 

El-Qalaa River, 
Nile River 
(Egypt) 

functional purpose, 
ecological health 

Sub-
basin 

Seasonal / S NH 
• 

 
physical-
environmental, 
supply-related, 
ecological 

G  / 

(Torabi Haghighi 
and Kløve, 
2015)  

Bakhtegan 
catchment (Iran) 

disturbance 
reduction 

River 
basin 

Monthly 
Intra-

annual 
MP-based MAG-m 

• 

 

supply-related, 
ecological 

G x 

Table A1 Summary of reviewed studies. Legend: /=no info, MP=mathematical programming, S=stochastic, MAG-d=magnitude of daily and sub-daily flows, MAG-m=magnitude of monthly 
and yearly flows, MAG/DUR-ext=magnitude and duration of extreme water conditions, FREQ/DUR-pulses=frequency anFigure 15 Optimization runs. Comparison of the results for each 
run of the optimization model showing the pattern of the normalized average daily diversion percentage values (expressed as the daily percentage of the natural daily discharge). Yellow 
(1) tiles correspond with the highest daily percentage, whereas blue (0) tiles correspond with the lowest optimal daily diversion. Presented results are for the DP1 under the dry scenario.R-
pulses=frequency and duration of high and low pulses, TIM= Timing of annual extreme water conditions, NH= non-hydrologic iFigure 16 Conceptualisation of optimization process, as 
adopted in this analysis. Scheme of a stepwise general optimization procedure (left-hand side); Structure of the analysis applied in this paper (right-hand side): analysis of optimization 
procedure development for water management problems focused on two distinct phases, problem perception phase and problem formulation phasendicator, G=graph, T=table, 
DF=designer flows, PF=Pareto front. [Continuing on the next pages] 
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(Hassanjabbar, 
Saghafian and 
Jamali, 2018) 

Karkheh Basin 
(Iran, Iraq 
border) 

energy production, 
disturbance 
reduction 

Multi-
reservoir 

Monthly Annual S 

MAG-d, 
MAG/DUR-

ext, 
FREQ/DUR-

pulses 

• 

 
physical-
environmental, 
infrastructure-
related, supply-
related 

/ x 

(Lewis and 
Randall, 2017) 

Murrumbidgee 
River Irrigation 
Area (Australia) 

functional purpose, 
ecological health 

River 
basin 

Monthly  Annual S MAG-m 
• 

 physical-
environmental, 
infrastructure-
related, supply-
related, 
ecological 

G X 

(Martin et al., 
2017) 

Goulburn-
Broken River 
catchment 
(Murray–Darling 
Basin, Australia)  

functional purpose 
Sub-
basin 

Daily  / S MAG-m 

 

  / G  / 

(Mullick, Babel 
and Perret, 
2013) 

Teesta River 
(Bangladesh) 

functional purpose 
River 

section 
Monthly Annual MP-based MAG-m 

 
• 

physical-
environmental, 
ecological 

T x 

(Paredes-
Arquiola et al., 
2013) 

Duero River 
basin (Spain) 

consumptive use, 
ecological health 

River 
Basin 

Monthly Annual / MAG-m 
 

• supply-related G  / 

(Porse, 
Sandoval-Solis 
and Lane, 2015) 

Luis L. Leon 
reservoir, Big 
Bend region of 
the Rio 
Grande/Bravo 
(Mexico-US) 

ecological health Reservoir Monthly / MP-based 

MAG-d, MAG-
m, 

FREQ/DUR-
pulses 

 

• 

physical-
environmental, 
infrastructure-
related, supply-
related 

DF / 

(Schlüter et al., 
2005) 

Amudarya River 
Basin (Central 
Asia) 

consumptive use, 
disturbance 
reduction 

Multi-
reach 

Monthly Annual MP-based MAG-m 

 

  

physical-
environmental, 
infrastructure-
related, supply-
related, 
ecological 

/ x  

(Shang, 2015) 
Ertix River / 
Ebinur Lake 
(Xinjiang, China) 

consumptive use, 
ecological health 

River 
section / 

Lake 
Monthly / MP-based MAG-m 

 
• 

infrastructure-
related 

G /  
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(Shiau and 
Chou, 2016) 

Hsintien Creek 
(Taiwan) 

consumptive use, 
energy production, 
safety, disturbance 
reduction 

River 
basin 

Daily / S 
MAG-m, 

MAG/DUR-
ext, NH 

 

  

physical-
environmental, 
infrastructure-
related 

T x 

(Shiau and Wu, 
2013) 

Feitsui Reservoir 
(Taiwan) 

consumptive use, 
energy production, 
safety, disturbance 
reduction 

Multi-
reach / 
Multi-

reservoir 

Sub-daily 
Annual / 

Multi-
annual 

S 

MAG-d, 
MAG/DUR-

ext, 
RAT/FREQ-

change 

 

  

physical-
environmental, 
infrastructure-
related 

G x 

(Szemis et al., 
2012) 

Murray-Darling 
River (Australia) 

/ Reservoir Monthly 
Multi-

annual 
S 

MAG-d, 
FREQ/DUR-

pulses 

 

• 
physical-
environmental, 
infrastructure-
related 

DF x 

(Szemis et al., 
2013) 

Murray-Darling 
River (Australia) 

/ Reservoir Monthly 
Multi-

annual 
S 

MAG-d, 
FREQ/DUR-

pulses 

 
• 

physical-
environmental, 
infrastructure-
related 

DF x 

(Szemis et al., 
2014) 

Murray-Darling 
River (Australia) 

/ Reservoir Monthly 
Multi-

annual 
S 

MAG-d, 
FREQ/DUR-

pulses 

 

• 
physical-
environmental, 
infrastructure-
related 

DF x 

(Steinschneider 
et al., 2014) 

Connecticut 
River (New 
England, US) 

disturbance 
reduction 

River 
basin 

Daily Annual MP-based 
MAG-d, MAG-

m 

 

• 

physical-
environmental, 
infrastructure-
related, supply-
related, 
ecological 

PF x 

(Suen and 
Eheart, 2006) 

Dahan River 
Basin (Taiwan) 

consumptive use, 
energy production, 
ecological health 

River 
basin 

Monthly / S 
FREQ/DUR-
pulses, TIM-

ext 

 
• 

physical-
environmental, 
infrastructure-
related 

PF  / 

(Wang et al., 
2015) 

Philpott dam on 
Smith River (US) 

consumptive use, 
energy production, 
disturbance 
reduction 

Reservoir Daily Monthly MP-based 
MAG-m, 

MAG/DUR-ext 

 

• 

physical-
environmental, 
infrastructure-
related, supply-
related, 
process-based 

G x 
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(Xevi and Khan, 
2005) 

Berembed Weir, 
Murrumbidgee 
River (Australia) 

consumptive use 
Multi-
reach 

Monthly Seasonal MP-based MAG-m 

 

• 

physical-
environmental, 
infrastructure-
related, 
ecological 

T x 

(Xu et al., 2017) 
Han River, 
Yangtze River 
tributary (China) 

consumptive use, 
energy production, 
disturbance 
reduction, ecological 
health 

River Daily / S NH 

 

  

physical-
environmental, 
infrastructure-
related, supply-
related, 
ecological 

DF  / 

(Yin, Yang and 
Petts, 2012) 

Tanghe 
Reservoir on the 
Tang River 
(China) 

disturbance 
reduction 

Reservoir Daily Annual S 

MAG-d, 
FREQ/DUR-

pulses, 
RAT/FREQ-

change 

 

• 

physical-
environmental, 
supply-related 

DF /  

(Yin, Yang and 
Liu, 2014) 

Wangkuai 
Reservoir (Hai 
River basin, 
China) 

disturbance 
reduction 

Reservoir Monthly Annual S 
MAG-d, 

FREQ/DUR-
pulses 

 

• 

physical-
environmental, 
infrastructure-
related, supply-
related, 
process-based 

DF x 

(Yin et al., 2015) 

Wangkuai 
Reservoir, Hai 
River basin 
(China) 

energy production Reservoir Monthly Annual S MAG-d 

 
• 

infrastructure-
related, supply-
related, 
ecological 

G, T /  
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