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A B S T R A C T

Small particles are all around us and even nanoparticles (smaller than
100nm in diameter) can stem from natural sources. However, inten-
tionally created (so-called engineered) nanoparticles are used in more
and more products such as deodorants and sun creams. Research is
still ongoing if such particles pose a health risk. Especially people
handling engineered nanoparticles at their workplace and potentially
breathing them in could be at risk. Therefore, it is desirable to mea-
sure their concentration in the air in work environments.

One promising approach to do so is to gather the particles in the air
and image them using a scanning electron microscope (SEM). After
that, the engineered nanoparticles in the images have to be distin-
guished from all other particles in order to estimate their concentra-
tion. Currently, this can only be done manually, which takes much
time.

This thesis introduces a fully automatic system to classify such par-
ticles in SEM images into engineered nanoparticles and other parti-
cles. As far as we know, it is the first system of its kind. It is able to
save time for the user while improving the classification quality.

We compile and outline literature on automatic image-based par-
ticles analysis and propose many novel algorithms as the available
methods are not suitable for our problem.

A segmentation method with a completely new noise estimation al-
gorithm targeted at SEM is developed. In our evaluation, this method
provides a good segmentation and is able to find about 10% more
engineered particles than a manual search.

We select appropriate features for the classification and devise a
new one able to capture the size of local shape features. In addition,
we show a completely new statistically derived method to estimate
the detected electron count of each pixel of an SEM image. We de-
rive features from these electron counts, which prove to be the most
informative features we use for classification.

This thesis selects suitable classifiers, parameters, performance
measures and preprocessing steps for the particle classification. In
addition, we propose an automatic model selection method so that
no classification expert is needed to train the system for new particle
types. In our evaluation, the classification performance (measured
as the geometric mean of the true positive rate and the true nega-
tive rate) of our system is on average about 18% better than that of
human experts.

The user can save about 3.6h when analyzing a typical workplace
sample using the trained system. This amounts to about 44% of the
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time when considering sampling and imaging and almost all of the
time after the images have been made.

Finally, this thesis proposes a method to predict the classification
performance under the assumption that more particles are added to
train the system. In our evaluation, the median relative error of the
predicted classification performance change is about 0.39.
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Z U S A M M E N FA S S U N G

Kleine Partikel gibt es fast überall. Sogar Nanopartikel (Partikel
mit einem Durchmesser von weniger als 100nm) können natürlich
auftreten. Allerdings werden auch immer mehr künstlich hergestellte
Nanopartikel in Produkten wie Deodorants und Sonnencremes ver-
wendet. Es wird aktuell daran geforscht, ob diese Partikel gesund-
heitsschädlich sind. Dieses Risiko wäre besonders hoch für Personen,
die an Arbeitsplätzen mit solchen Partikeln arbeiten und sie einat-
men könnten. Daher ist es wünschenswert, die Konzentration von
künstlich hergestellten Nanopartikeln in der Luft an Arbeitsplätzen
zu messen.

Ein erfolgversprechender Ansatz ist, die Partikel in der Luft zu sam-
meln und Bilder von ihnen mit einem Rasterelektronenmikroskop
(REM) zu machen. Danach müssen die künstlich hergestellten Nano-
partikel von allen anderen Partikeln unterschieden werden, damit
man ihre Konzentration schätzen kann. Aktuell kann dieser Arbeitss-
chritt nur manuell durchgeführt werden, was viel Zeit in Anspruch
nimmt.

In dieser Dissertation wird ein vollautomatisches System vorge-
stellt, um solche Partikel in REM-Bildern als künstlich hergestellte
Nanopartikel oder andere Partikel zu klassifizieren. Soweit wir wis-
sen ist es das erste System dieser Art. Es kann den Zeitaufwand
für den Nutzer reduzieren, während die Klassifikationsqualität
verbessert wird.

Wir sammeln Literatur zur automatischen bildbasierten Partikel-
analyse und fassen sie zusammen. Außerdem haben wir viele neue
Algorithmen entwickelt, da die vorhandenen nicht für unser Problem
geeignet sind.

In dieser Dissertation wird eine Segmentierungsmethode mit
einem komplett neuen Rauschschätzungsalgorithmus für REM-Bilder
vorgestellt. In unserer Evaluation zeigt diese Methode eine gute
Segmentierungsqualität und findet ungefähr 10% mehr künstlich
hergestellte Partikel als eine manuelle Suche.

Wir wählen passende Klassifikationsmerkmale aus und stellen ein
neues vor, welches die Größe von lokalen Konturmerkmalen erfasst.
Zusätzlich entwickeln wir eine komplett neue statistisch hergeleit-
ete Methode, die die Anzahl der detektierten Elektronen für jeden
Pixel eines REM-Bildes schätzt. Von diesen Elektronenzahlen leiten
wir Merkmale her, die sich als wertvollste aller von uns verwendeten
Merkmale erweisen.

In dieser Dissertation werden passende Klassifikatoren, Parame-
ter, Klassifikationsgütemaße und Vorverarbeitungsschritte für die Par-
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tikelklassifikation ausgewählt. Zusätzlich stellen wir ein automatis-
ches Verfahren zur Modellauswahl vor, sodass kein Klassifikationsex-
perte nötig ist, um das System für neue Partikeltypen zu trainieren.
In unserer Evaluation ist die Klassifikationsgüte (berechnet als ge-
ometrisches Mittel aus Sensitivität und Spezifität) unseres Systems
im Durchschnitt ungefähr 18% besser als die menschlicher Experten.

Der Benutzer des trainierten System kann bei der Auswertung
einer typischen Arbeitsplatzprobe etwa 3.6h sparen. Das entspricht
etwa 44% der Zeit, wenn Probenahme und Bilderfassung berück-
sichtigt werden, und nahezu der gesamten Zeit, falls man diese
vernachlässigt.

Zuletzt wird in dieser Dissertation eine Methode zur Vorhersage
der Klassifikationsgüte beim Hinzufügen von weiteren Trainingspar-
tikeln vorgestellt. In unserer Evaluation ist der Median des relativen
Vorhersagefehlers der Veränderung der Klassifikationsgüte etwa 0.39.
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(õ−E(õ |S ′))2

∣∣∣S ′), ∀S ′ ⊆ Ω). 65–67, 69,
70, 73

wcls A function defining the weight of a given class
(wcls : Y→ R>0). 144, 146, 147, 149

�

W A diagonal matrix containing weights in the
iteratively reweighted least squares algorithm.
205

wpx A function defining the weight of a given pixel
in the non-local means algorithm (wpx : P →
R>0). 83

X The feature space (X B Rnφ). 106, 132, 144–149,
152, 160, 185–188, 190

x The horizontal position of a coordinate in an
image (x ∈ R). 116, 117, 121, 122

X̄ The mean value of a feature. 149

X̃ A random variable representing the distribu-
tion of randomly gathering a CPG in a realis-
tic scenario and calculating its feature values
(~X : Ω→ X). 186, 187

~X A sample or, more precisely, the feature vector
of a CPG (~X ∈ X). 132, 144, 145, 147–149, 160,
165, 166, 185, 187, 188

ξ The threshold that determines the maximum
intensity of an image to be considered empty
(ξ ∈ R). 87, 88, 90, 100

Y The set of classes a sample can be assigned to
by the classifier (Y B {Y+, Y−}). 132, 136, 144,
146–149, 152, 160, 185–188, 190

Y A class a sample can be assigned to by the clas-
sifier (Y ∈ Y). 132, 136, 144, 147–149, 160, 185–
188

y The vertical position of a coordinate in an im-
age (y ∈ R). 116, 117, 121, 122



List of Symbols xxxi

Y+ The class of all CPGs that contain engineered
nanoparticles (Y+ ∈ Y). 132, 144, 145, 147–149,
160, 186, 188, 190

Y− The class of all CPGs that do not contain en-
gineered nanoparticles (Y− ∈ Y). 132, 144, 147,
148, 160, 186, 188, 190

z A coordinate in an image (z = (x,y) ∈ R2). 116,
117, 121

ζ The minimum probability of a configuration to
be chosen as a parent in the automatic param-
eter selection method, measured relative to the
probability of the configuration with the best
classification performance (ζ ∈ [0, 1]). 153, 154





1
I N T R O D U C T I O N

Small particles are a part of daily life. Sugar, salt, flour or cocoa pow-
der are examples that are used in many kitchens around the world.
The small particle sizes lead to a large surface and, thus, to a high
reactivity, which is needed for the chemical processes involved when
preparing food. House dust is another example of a mixture of small
particles commonplace in every home.

However, there are even smaller particles than that. These are called
nanoparticles or ultrafine particles and have diameters between 1nm
and 100nm. As a comparison, the average size of wheat flour par-
ticles is in the order of 100 000nm. Nanoparticles can be natural or
produced by humans. Examples of natural sources are volcanic erup-
tions and forest fires [Oberdörster et al., 2007]. Human-caused na-
noparticles can be further categorized into incidental particles and
engineered nanoparticles. The first category contains all byproducts
of production processes or any other human action. Major examples
are automobile exhausts and factory fumes.

Engineered nanoparticles are intentionally produced particles at a
scale of a few nm. These have considerably gained importance in
recent years as their large surface area and high reactivity are advan-
tageous in many applications. To name a few examples, silver (Ag)
nanoparticles are used in deodorants, toothpaste and fabrics for their
antimicrobial activity [Sung et al., 2009]. Zinc oxide (ZnO) particles
are used in sun creams to reflect the sunlight [Crosera et al., 2009].
Titanium dioxide (TiO2) nanoparticles are used as a catalyst in self-
cleaning surfaces [Wagner et al., 2009].

In 2004, an estimated 1000 t to 2000 t of nanoparticles such as TiO2
and ZnO were used in skincare products alone [The Royal Society &
The Royal Academy of Engineering, 2004, p. 26]. The amount of nano-
materials used in structural applications is estimated to go up from
approximately 10 t in 2004 to between 10 000 t and 100 000 t in 2020
[The Royal Society & The Royal Academy of Engineering, 2004, p. 27].
The total production of TiO2 nanoparticles is expected to grow from
about 50 000 t in 2010 to about 200 000 t in 2015 [Future Markets Inc.,
2011]. It must be noted, however, that these numbers are only rough
estimates as the production amounts are usually kept confidential by
the producing companies.
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2 introduction

1.1 motivation

The potential toxicity of engineered nanoparticles has not yet been
sufficiently explored [Gonzalez et al., 2008; Ostrowski et al., 2009;
Johnston et al., 2010]. In general, because of their high surface reac-
tivity and the ability to cross cell membranes, nanoparticles are sus-
pected to have adverse health effects [The Royal Society & The Royal
Academy of Engineering, 2004, p. ix]. In studies conducted with rats,
Ag nanoparticles are detectable in the blood after inhalation [John-
ston et al., 2010]. Low concentrations can also be measured in several
organs including the brain. Cha et al. [2008] observe liver inflamma-
tion in mice after ingestion of microparticulate and nanoparticulate
Ag. Bhabra et al. [2009] show that cobalt-chromium nanoparticles can
damage human cells and DNA if they are directly exposed to these
particles. Current research focuses on acute toxicity instead of chronic
effects [Ostrowski et al., 2009].

The Royal Society & The Royal Academy of Engineering [2004,
p. ix] expects a low likelihood of nanoparticles fixed or embedded in
products being released from them. “Nevertheless (depending on the
way in which they are manufactured, stored, transported or incorpo-
rated into products), there is the potential for some nanopowders to
be inhaled in certain workplaces in significant amounts.” [The Royal
Society & The Royal Academy of Engineering, 2004, p. 80] Among
these workplaces are factories where the nanoparticles are produced.
That raises the need to measure the exposure to specific nanoparticles
of humans such as workers. This has two reasons. Firstly, to further
research the potential toxicity, it is necessary to measure the amount
of particles a person is exposed to in order to discover correlations
with health issues. Secondly, as long as the toxicity of a particular
particle type has not be ruled out, there need to be strict exposure
limits. These limits have to be enforced by directly measuring the
exposure.

While the exact circumstances of the toxicity of nanoparticles are
not yet known, engineered nanoparticles may be more toxic than par-
ticles of the same size from other sources due to their chemical com-
position [Savolainen et al., 2010]. Therefore, a measurement system
has to differentiate the engineered nanoparticles from so-called back-
ground particles. These are other particles which also occur in ambi-
ent air. An example of a background particle type is diesel soot. It is
produced by diesel engines, which are used in cars, ships and trains.

There are several automatic techniques to measure the concentra-
tion of nanoparticles in the air: condensation particle counter, optical
particle counter, fast mobility particle sizer, scanning mobility parti-
cle sizer, electric low pressure impactor, aerosol diffusion charger and
tapered element oscillating microbalance [Methner et al., 2009]. How-
ever, these techniques have several disadvantages. Some are not able
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to measure the size of the particles. Some of the instruments only
work in specific size ranges. Many of them are also not portable, are
complex to use or bear a high cost [Methner et al., 2009]. All of these
instruments have in common that they are not able to differentiate en-
gineered nanoparticles from background particles [Savolainen et al.,
2010; National Institute for Occupational Safety and Health (NIOSH),
2009, p. 27]. In addition, these instruments cannot detect groups of na-
noparticles that stick together to form so-called agglomerates. Rather,
they are regarded as particles larger than 100nm and, thus, not as
nanoparticles.

Therefore, the National Institute for Occupational Safety and
Health (NIOSH) [2009] suggests the use of scanning electron micros-
copy (SEM) or transmission electron microscopy (TEM) to analyze
particles gathered from the air in environments where engineered na-
noparticles may occur to supplement other measurement techniques
[Methner et al., 2009]. This method has the advantage that it is pos-
sible to count the engineered nanoparticles separately and that the
device used to gather the particles can be very small and can be
carried by a worker. To measure his or her exposure, the gathered
particles are later analyzed by taking images of them using SEM or
TEM.

1.2 problem formulation

The German Federal Institute for Occupational Safety and Health
(BAuA) seeks to develop guidelines on how to measure the concen-
tration of engineered nanoparticles at workplaces where they are pro-
duced or handled. The current version of the recommended process
is described in the following paragraphs.

As a first step, using either a thermal or electrostatic precipitator,
particles are gathered from the air at the workplace and deposited
onto a silicon wafer (see Section 4.1). The electrostatic precipitator has
a high flow rate and, thus, can gather a large amount of particles in a
short time. However, it is also relatively big and heavy. The thermal
precipitator, on the other hand, can be worn by a worker to measure
his or her exposure directly instead of measuring the particle concen-
tration at a stationary position. The downside is that it is only able to
gather one thousandth of the particles in the same time compared to
the electrostatic precipitator. In addition to the precipitators, particle
counters are used to directly measure number and size distribution
of particles in the air. However, these are not able to determine the
composition of these particles.

In a next step, SEM images of the silicon wafer onto which the par-
ticles have been deposited by the precipitators are taken. By using
electrons, SEM can achieve higher magnifications than light micros-
copy. This is necessary because of the small size of the nanoparticles.
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Currently, the BAuA concentrates on Ag, TiO2 and ZnO nanopar-
ticles, because they are contained in the list of representative manu-
factured nanomaterials for safety testing by the Organisation for Eco-
nomic Co-operation and Development (OECD) [2010] and are com-
monly used in commercial products.

In the next paragraphs, we will describe three pairs of example
SEM images. Both images of each pair show the same location of the
wafer. However, the first image has a magnification of 5000 and the
second of 20 000. The particles in these images have been collected
using an electrostatic precipitator as described above.

Figures 1.1 and 1.2 show Ag nanoparticles with average diameters
in the range of 50nm to 100nm. The images illustrate very well that
the nanoparticles usually do not occur individually. Instead, multiple
particles stick together to form a so-called agglomerate. Figure 1.2
shows two agglomerates. The approximately spherical structures in-
side them are the actual nanoparticles. Figure 1.1 illustrates that the
sizes of such agglomerates can vary to a high degree.

Figures 1.3 and 1.4 show TiO2 nanoparticles with an average di-
ameter of 25nm. Similar to the Ag particles, they form agglomerates.
However, due to the different average particle size, the appearance is
very different. Even in Figure 1.4, with a magnification of 20 000, the
single nanoparticles are only barely perceptible.

Figures 1.5 and 1.6 show ZnO nanoparticles with an average diame-
ter of 10nm. These illustrate that the nanoparticle size is a significant
factor for the appearance of the agglomerates. In addition, the single
nanoparticles are not discernible anymore, even at a magnification of
20 000.

While gathering the particles from the air at a workplace, it is ex-
pected that, in addition to engineered nanoparticles, other particles
from the ambient air are also deposited onto the silicon wafer. In Fig-
ures 1.7 to 1.9, a selection of these background particles can be seen.
Figure 1.7 shows diesel soot particles which are produced and ex-
hausted by any kind of diesel engine. Just as the engineered nanopar-
ticles, these have a tendency to form agglomerates, which look very
similar to the ones formed by TiO2 or ZnO. Figure 1.8 shows parti-
cles which were gathered during abrasive cutting of steel. The nearly
spherical particle in the upper left corner is probably composed of
steel. The origin of the other particles is unknown. In Figure 1.9, one
can see a sample gathered from the ambient air in an urban environ-
ment.

For the sake of brevity, we will from now on refer to engineered
nanoparticles, nanoparticle agglomerates and background particles
simply as particles. If we want to refer to single nanoparticles, either
as part of an agglomerate or not, we will call them primary particles. In
order to further clarify these terms, a short list of definitions follows:
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Figure 1.1: An SEM image (1 pixel = 5.08nm) of Ag nanoparticles with an
average diameter of 75nm.

Figure 1.2: An SEM image (1 pixel = 1.27nm) of Ag nanoparticles with an
average diameter of 75nm. It shows the two agglomerates at the
center of Figure 1.1.
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Figure 1.3: An SEM image (1 pixel = 5.08nm) of TiO2 nanoparticles with an
average diameter of 25nm.

Figure 1.4: An SEM image (1 pixel = 1.27nm) of TiO2 nanoparticles with an
average diameter of 25nm. It shows the three agglomerates at
the center of Figure 1.3.
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Figure 1.5: An SEM image (1 pixel = 5.08nm) of ZnO nanoparticles with an
average diameter of 10nm.

Figure 1.6: An SEM image (1 pixel = 1.27nm) of ZnO nanoparticles with
an average diameter of 10nm. It shows the agglomerate at the
center of Figure 1.5.
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Figure 1.7: An SEM image detail (1 pixel = 1.27nm) of diesel soot particles.

Figure 1.8: An SEM image detail (1 pixel = 5.08nm) of particles gathered
during abrasive cutting of steel. While the specific source of each
of the particles is unknown, we believe that the upper left particle
is steel solidified in the form of a sphere. The upper right particle
presumably also derives from cutting process while the lower
right particle probably is a silicate, a typical component of dust.
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Figure 1.9: An SEM image detail (1 pixel = 1.27nm) of particles from the
ambient air in an urban environment. While the composition of
the particles is unknown to us, we presume that the particle in
the lower left is organic, possibly a bacterium. The rectangular
particle in the lower right is a crystal such as salt.

primary particle A single nanoparticle which is not a compound
of other particles. It may be part of an agglomerate or not.

nanoparticle agglomerate An assembly of primary particles
which are sticking to each other.

engineered nanoparticle An intentionally produced primary
particle with a diameter of 1nm to 100nm. It may be part of an
agglomerate or not.

background particle A particle or an agglomerate of particles
which has not been intentionally produced. If it is between 1nm
and 100nm in size, it is also called incidental nanoparticle.

particle A collective term for primary particle or agglomerate,
made up of engineered nanoparticles or background particles.
In most cases, we will use this term to refer to a primary parti-
cle or agglomerate which forms a connected component in an
SEM image and is surrounded by the image background.

After SEM images of particles have been created, they usually have
to be manually examined. This involves finding every particle on each
image and determining its type [Methner et al., 2009; Peters et al.,
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2009; Savolainen et al., 2010]. In other words, a person has to tell for
each particle in every image if it is an engineered nanoparticle or a
background particle. This is necessary because the concentration of
a certain particle type in the air can directly be calculated from the
number of particles of this type per image area. This process is very
cumbersome and time-consuming as in some cases there may be in
the order of one thousand particles per image. In addition, it is not
enough to examine one image. Several images need to be analyzed
to obtain reliable measurements. The actual number can range from
a few to several hundreds [Bundesanstalt für Arbeitsschutz und Ar-
beitsmedizin (BAuA), 2012].

Therefore, the goal of this thesis is to develop a system to signifi-
cantly reduce the manual work necessary to analyze such images. In
the following section, we will shortly describe its main goals. A more
detailed description of the exact circumstances of the application of
the system and its goals can be found in Chapters 2 and 3.

1.3 goals

To reduce the manual work involved in the analysis of particles in
SEM images, the minimum requirements are that our system is able
to detect particles and agglomerates in the images and decide for
every particle or agglomerate if it consists of engineered nanoparticles
or not. This allows an estimation of the concentration of engineered
nanoparticles in the air where the particles have been gathered. In
addition, the system shall be able to adapt to changing requirements.
This is desirable as nanoparticle research is still in its early days and
further insights may change the focus of exposure measurement.

The system shall be implemented in the form of software running
on a conventional PC. This has several potential advantages over the
manual approach:

• An automatic system can work faster than a human.

• The user is not required for the identification of the particles.
Therefore, the automatic approach can save most of the user’s
time.

• The system is able to find even small and faint particles, which
a human could overlook.

• The system cannot only measure the number concentration of
engineered particles, but can also estimate the volume and sur-
face concentrations. Especially the surface concentration seems
to be very important in predicting the potential toxicity of na-
noparticles [Crosera et al., 2009].

• The computer cannot get fatigued and, thus, avoids errors after
identifying many particles.
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• The saved time and effort makes it possible to provide the sys-
tem with more images than a human would be able to examine.
This allows for more accurate concentration estimates.

1.4 about this thesis

Although this thesis and the described work have been written and
developed by me, for reasons of familiarity and legibility, I will stick
to the plural we in the rest of the text.

This thesis contains a decent amount of mathematical formulas. As
a result, while reading these, the reader may wonder about the defi-
nition of a specific symbol. For these cases, this thesis contains a list
of symbols, which begins on Page xx. For each symbol, it contains a
short definition and a list of pages on which it occurs. If the reader
wishes more detail than the short definition, a more detailed descrip-
tion can usually be found on the page on which a symbol first oc-
curs. In our opinion, it is crucial to make good use of the list because
several symbols are used many pages after the point at which they
are first defined. In addition, there is a list of figures beginning on
Page xiv, a list of tables on Page xvii, a list of algorithms on Page xviii
and a list of acronyms on Page xix.

In addition, this thesis uses special mathematical syntax. As an ex-
ample, we use the expression S ′ v S to signify that S ′ is a multiset
that contains subsets of the set S. Furthermore, we try to consistently
use accents to indicate the type of a variable. In particular, ~· is used
for vectors, �· for matrices, while ·̃ stands for random variables and
·̂ for estimates.

Because of its subject, this thesis contains many SEM images. In
order to assure that these images have a consistent look in print as
well as in digital form, we have resized these images so that they
appear at a pixel density of 600 dpi. For this, we have chosen nearest
neighbor interpolation because it allows the reader to clearly see the
individual pixels of the original image on a magnified image detail.
In addition, we have enhanced the contrast of the images by linearly
scaling the image intensities so that the whole intensity range is used.
We have chosen this approach in order to allow the reader to see low-
contrast details even in difficult conditions such as on a monitor in
the sunlight.

In this chapter, we have introduced the topics covered by this thesis
and the target of the proposed system. In the remainder of this thesis,
we will give details on the challenges encountered and the steps that
are necessary when creating such a system. Chapter 2 will outline a
realistic usage scenario used as the basis of the design considerations
of our approach. In Chapter 3, we will define concrete goals to be
accomplished by the proposed system. Chapter 4 will describe how
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the SEM images are created and which characteristic properties they
possess. Chapter 5 will be the first of four chapters that describe the
details of our system. In particular, it will outline its global architec-
ture. In Chapter 6, we will explain how particle agglomerates can be
differentiated from the image background. Chapter 7 will describe
how each agglomerate can be represented as a small set of numeri-
cal features in order to enable the distinction of different classes of
particles. The details of this distinction process will be the subject of
Chapter 8. In Chapter 9, we will present an extension to our system
that is able to predict its performance given the addition of more train-
ing data. Finally, Chapter 10 will look back at all previous chapters
and provide some concluding remarks.



2
U S A G E S C E N A R I O

The study of engineered nanomaterials is a relatively new field, which
has its roots in the 1990s. It comes as no surprise that nanotoxicology,
the research of the toxicity of nanomaterials, is even younger. Actu-
ally, the term nanotoxicology itself was only coined in 2004 [Donald-
son and Seaton, 2012]. As a result, the insights gained are still prelim-
inary and the properties of nanomaterials in focus are still shifting.
Among others, possible factors for the toxicity of inhaled nanoparti-
cle agglomerates are:

• Agglomerate count

• Primary particle count

• Agglomerate size

• Primary particle size

• Composition

• Mass

• Surface area

It is unclear how important the individual properties are in the as-
sessment of the toxicity of such particles [Savolainen et al., 2010].

Therefore, it is not possible to reliably predict which classes of na-
noparticles or nanomaterials will be of interest for the field of nan-
otoxicology in the future. This has two implications:

• An automatic system to assist in the exposure measurement of
nanoparticles at workplaces has to be flexible enough to adapt
to changing requirements.

• It is currently not possible to accurately determine the require-
ments and circumstances such a system will encounter in the
near future.

Thus, when developing a system to automatically find and identify
engineered nanoparticles in SEM images, one has to make some as-
sumptions about the requirements and working conditions of the sys-
tem. To the best of our knowledge, our work is the first approach
to an automatic solution to image-based identification of engineered
nanoparticles in a realistic scenario.

Given these insights from today’s standpoint, we will outline a real-
istic scenario for the application of our system in this chapter. A work-
flow representing the usage scenario is described and requirements

13
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Figure 2.1: Picture of ZnO nanoparticle production on a laboratory scale. In
the background, there is a hot wall reactor producing gaseous
ZnO. It then deposits on the walls of the collector, which can be
seen in the foreground. The deposited ZnO is visible as a white
coating. Picture by BAuA.

and challenges the system has to fulfill and overcome are derived.
The workflow has three steps:

sampling Gathering particles from the air.

microscopy Taking SEM images of the gathered particles.

image analysis Analyzing the images using the system proposed
in this thesis.

In Sections 2.1 to 2.3, these steps will be described in detail.

2.1 workplaces and sampling

Nanoparticles are produced and processed either in a large industrial
scope or in a smaller laboratory setting as in the example described
above. The amount of produced nanoparticles ranges from less than
1 kg to more than 100 t per year. The production or processing sites
may be fully enclosed, equipped with different types of ventilation
systems or it may lack any such measures. Workers may or may not
wear personal protective equipment such as respiratory masks at dif-
ferent points in time [Plitzko et al., 2013].

Figures 2.1 to 2.3 show an example of laboratory scale ZnO
nanoparticle production. The hot wall reactor in the background of
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Figure 2.2: Picture of ZnO nanoparticle production on a laboratory scale. In
the foreground, the collector with a white coating of nanoparti-
cles can be seen. Behind it, on the right, there is a hot wall reactor
used to produce gaseous ZnO, which then deposits on the walls
of the collector. Picture by BAuA.

Figure 2.3: Picture of ZnO nanoparticle production on a laboratory scale. On
the left, the enclosure which is housing the production apparatus
is visible. On the far left, the enclosure has an opening, which can
be closed by a sliding door. Picture by BAuA.
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Figure 2.1 produces gaseous ZnO, which then is directed through the
collector in the center of the picture. Subsequently, the ZnO deposits
on the walls of the collector. It is visible as a white coating, which,
afterwards, is scraped off to obtain nanoparticles. The surroundings
of the collector are visible in Figure 2.2. In Figure 2.3 on the left,
an enclosure, which houses the production apparatus, is visible. It
shall prevent nanoparticles from escaping into the surrounding air.
However, as can be seen in Figure 2.3, it is not always closed and
for certain operations such as scraping off the nanoparticles or clean-
ing, workers have to go inside the enclosure. Therefore, it is likely
that they are exposed to the nanoparticles and should wear personal
protective equipment.

All of these circumstances have an effect on the amounts of engi-
neered nanoparticles and background particles a worker is exposed
to. In addition, the position of the worker with respect to the pro-
duction or processing site and the process step, such as production
or equipment cleaning, have an impact on the particle concentrations.
Therefore, the relative amounts of engineered and background parti-
cles are not known beforehand. Hence, it would not be appropriate
to make any assumptions regarding the ratio of engineered nanopar-
ticles to background particles.

To gather particles a worker is exposed to, he or she wears a so-
called precipitator, which picks up particles from the air (see Sec-
tion 4.1). This allows a more precise concentration assessment than
it would be possible with a fixed measurement system. At the same
time, the worker’s movement is not restricted. Additionally, it is pos-
sible to gather particles at a specific location using a stationary precip-
itator. In both cases, the particles are deposited onto a silicon wafer,
which is later scanned using a scanning electron microscope (SEM).

The BAuA uses two particle counters in conjunction with the pre-
cipitators to directly assess the particle concentration in the air. The
first is a TSI Condensation Particle Counter 3007 [TSI, 2012]. It is
portable and can measure the particle concentration. However, it can-
not provide any information about the sizes of these particles. The sec-
ond is a stationary Grimm Scanning Mobility Particle Sizer (SMPS+C)
[Grimm Aerosol Technik, 2012]. It is able to measure the size distri-
bution of the airborne particles. Both counters are not able to distin-
guish engineered nanoparticles from background particles or liquid
aerosols. Therefore, their measurements are not directly comparable
to those using a precipitator and do not give direct information on
the concentration of engineered particles in the air.

Typically, there is only one nanoparticle type at a time produced
at a specific site. Therefore, we assume that, aside from background
particles, only one type of engineered nanoparticles is gathered by
the precipitators. This type is known beforehand. Hence, for the com-
putation of the nanoparticle concentration, it is sufficient to be able
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to differentiate this one nanoparticle type from all background parti-
cles. From now on, we will assume that the system distinguishes one
engineered nanoparticle type from background particles at a time.
However, this does not mean that it is specialized to only one type of
engineered nanoparticles. It merely means that the system will know
beforehand which type it needs to identify.

Some background particle types typical for urban and industrial
environments are:

• Diesel soot emitted by automobiles.

• Particles contained in welding fumes.

• Silicates such as quartz crystals, which commonly occur in soils.

• Soot from factory fumes or fireplaces.

• Organic materials such as bacteria.

• Rubber dust from car tires.

• Various salts from sources such as salt water.

• Metal dust from pantographs of electrically operated vehicles
such as streetcars.

• Carbon dust from the brushes of electric motors.

These may all occur at a workplace in varying amounts. Particles of
other origins may appear, as well.

2.2 microscopy

Using a precipitator, particles have been deposited onto a silicon sub-
strate. In a next step, it is put into an SEM to take images of it. Apart
from the corresponding metadata, such as resolution, these images
are the only information available to our system. It cannot rely on
the chemical composition to identify the particle types. The reasons
for this will be explained in Section 2.2.1. Section 2.2.2 will gives de-
tails on how to chose the locations on the substrate of which images
are taken. In Section 2.2.3, we will describe issues to be considered
when choosing proper microscope settings. Finally, Section 2.2.4 will
present properties of the SEM images which pose a challenge for the
analysis of these images.

2.2.1 Chemical Composition

While most SEMs have the capability to use energy-dispersive X-ray
spectroscopy to gain information about the chemical composition of
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the samples, it is not feasible to use such information for the con-
centration estimation of engineered nanoparticles. This is due to the
following reasons:

• In order to obtain information about the composition of the par-
ticles, the microscope operator would have to find every particle
on each image. Due to small size and faintness of many parti-
cles, this is a difficult task. In our experience, it would not be
possible to detect 100% of the particles.

• The microscope operator would need to focus on every single
particle and perform an energy-dispersive X-ray spectroscopy
analysis of it. Apart from the time needed to focus on the par-
ticle, zoom in, zoom out again and returning to the original
image area, the analysis itself takes in the order of minutes per
particle [Goldstein et al., 2003, p. 346]. Due to the potentially
large number of visible particles, this would severely increase
the time of the microscope operator spent per image.

2.2.2 Image Locations

The locations on the substrate where images are taken have to be
chosen carefully. To obtain reliable statistical information about the
concentration, the particle frequency in the images has to be repre-
sentative of the whole substrate. Given that the average particle fre-
quency is homogeneous on a certain area of the substrate, there are
two possibilities to choose the image locations inside this area:

• Choose the image locations in a predictable pattern such as a
grid. The individual images should not overlap.

• Choose the image locations randomly inside the homogeneous
area.

To keep the average relative error of the particle concentration es-
timation below a given value, a certain number of images have to be
analyzed. The necessary image count nf ∈ N>0 can be calculated as

nf =
1

EPC
2κ

, (2.1)

where κ ∈ R>0 is the expected number of particles of the respective
type per image and EPC ∈ R>0 is the desired average relative error
of the concentration estimation [Bundesanstalt für Arbeitsschutz und
Arbeitsmedizin (BAuA), 2012]. If, for example, there is on average 1
particle per image and we want to achieve a relative error of 25%,
16 images are necessary. If, on the other hand, we want to achieve a
relative error of only 5%, we need 400 images. Of course, κ depends
on the used magnification.
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2.2.3 Microscope Settings

As an SEM has a multitude of parameters in order to alter the proper-
ties of the resulting images, decisions have to be made on the settings
of these parameters. Among them are the following:

• Magnification

• Image pixel count

• Brightness

• Contrast

2.2.3.1 Magnification and Image Pixel Count

The settings for magnification and image pixel count (number of pix-
els per image) determine the pixel resolution, which is measured as
the number of pixels per length of the sample. They should be chosen
according to the expected sizes of the agglomerates to be identified.
These may vary considerably. In our images of ZnO, the smallest par-
ticle occupies an area of about 80nm2 while the largest agglomerate
takes up about 34µm2. This corresponds to a ratio of 1:425 000. There-
fore, there is a trade-off between a low and a high pixel resolution. A
low pixel resolution has the following drawbacks:

• Small agglomerates are hard to detect.

• Small features disappear.

• Single primary particles cannot be discerned.

• Texture and contour of the agglomerates in the image are less
informative.

• The primary particle size is reflected in the image only to a
small degree.

• Different nanoparticle types which form similar agglomerates
are hard to distinguish.

A high pixel resolution, on the other hand, also has disadvantages:

• Large agglomerates are not fully visible if the image shows a
smaller area of the sample. As a consequence, the agglomerate
size cannot be determined. It can even happen that an image is
fully occupied by a single agglomerate.

• Images with a high pixel count take much time to be recorded.

• A higher pixel resolution leads to less sample area being
scanned in the same time. To make accurate estimates of the par-
ticle concentration, a certain sample area needs to be analyzed.
Therefore, the microscopy process takes longer.
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An optimal solution would be to record images with a high pixel
count and a moderately high pixel resolution. However, long im-
age acquisition times cause a higher risk of vibrations disturbing the
recording process (see Section 4.2.2). As a result, there is no solution
combining all advantages. A trade-off has to be found to balance the
disadvantages.

2.2.3.2 Brightness and Contrast

The brightness and contrast settings need to be adjusted in such a
way that the full range of the signal can be mapped to the range of
image intensities. In practice, many SEMs only use 256 or less dif-
ferent intensities. At the same time, the contrast of each image shall
be maximized so that small signal differences are still visible in the
image. To achieve both goals, it is necessary to adjust the brightness
and contrast settings between images due to varying conditions (see
Section 2.2.4.1). Hence, there is no fixed correlation between signal
strength and image intensity. This also means that there is no direct
relationship between particle properties and image intensity.

2.2.4 Image Analysis Challenges

Due to the nature of SEM and the nanoparticles, there are some chal-
lenges which have to be overcome to successfully analyze the images.
One such issue is the low signal-to-noise ratio of SEM, similar to
other nanoscale imaging techniques, which leads to high levels of
noise [Ribeiro and Shah, 2006]. This noise can be reduced by increas-
ing image acquisition times. However, besides the increased cost this
brings about, the drawbacks described in Section 2.2.3.1 have to be
kept in mind.

Another problem is that different particles appear with varying
intensities, which will be explained in Section 2.2.4.1. Section 2.2.4.2
will illustrate the fact that some engineered particle types look very
similar to certain background particles.

2.2.4.1 Variable Intensity

Small particles often show lower intensities than larger particles. The
reason is that in large particles, the electron beam passes through
more material. This leads to a greater number of emitted electrons.
For a more detailed explanation, see Section 4.2.2. Figures 2.4 and 2.5
illustrate this very well. Figure 2.4 shows an SEM image detail of
TiO2 nanoparticles with an average diameter of 25nm. The large ag-
glomerate on the right with a diameter of about 1700nm has a high
contrast and is clearly visible. Figure 2.5 shows the same image, but
in addition, every particle is marked with a rectangle around it. The
single primary particle closest to the agglomerate has a diameter of
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Figure 2.4: An SEM image detail (1 pixel = 1.27nm) of TiO2 nanoparticles
with an average diameter of 25nm.

Figure 2.5: The same image detail as in Figure 2.4 with a rectangle around
each particle.
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about 50nm. It can be spotted relatively well in the original image.
The two primary particles at the left, however, can only be seen if one
looks very closely. They have diameters of about 20nm to 25nm.

This poses a problem for human inspection as well as for an auto-
matic solution. A human has to take a close look at every small part
of the image in order to see such faint particles. We have found in our
experiments that it is very likely that a human overlooks such small
particles (see Section 6.4.5). For an automatic solution, small particles
pose a problem as it has to differentiate them from noise artifacts.

2.2.4.2 Similarity to Background Particles

A major challenge in the task of identifying engineered nanoparticles
in SEM images is that types with certain sizes behave very similar to
incidental nanoparticles such as diesel soot. Due to comparable pri-
mary particle sizes, they form agglomerates in a similar way and of-
ten look almost identical in SEM images. Figure 2.6 shows a compari-
son of TiO2 nanoparticles with a mean primary particle size of 25nm
and diesel soot particles. Figure 2.6a displays a single TiO2 primary
particle whereas, in Figure 2.6b, an individual diesel soot primary
particle can be seen. Apart from the contrast, there is virtually no
difference between the two image details. In Figures 2.6c to 2.6f, two
small agglomerates of both TiO2 and diesel soot are shown, which
further illustrate that it is a big challenge to differentiate certain types
of engineered nanoparticles from incidental nanoparticles like diesel
soot. We have also observed these problems with ZnO particles with
an average diameter of 10nm.

2.3 image analysis

The image analysis of an automatic solution comprises two steps. In
the first one, the system is trained to recognize a specific type of
engineered nanoparticles. This will be explained in Section 2.3.1. The
second step, where the actual particle identification is performed, will
be described in Section 2.3.2.

2.3.1 Training

In order to learn the specific properties of a nanoparticle type and
to be able to differentiate it from background particles, the system
needs to be trained. Therefore, it needs to be provided with images
of that particle type and, in addition, of a wide variety of background
particles. This is necessary so that the system is able to characterize
the difference between that particular type and particles which may
occur in an image of a sample taken at a workplace.
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(a) A single TiO2 primary particle. (b) A single diesel soot primary particle.

(c) A TiO2 agglomerate. (d) A diesel soot agglomerate.

(e) A TiO2 agglomerate. (f) A diesel soot agglomerate.

Figure 2.6: A comparison of SEM image details (1 pixel = 1.27nm) of TiO2
nanoparticles with an average diameter of 25nm on the left and
diesel soot on the right.
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If a human operator is able to unambiguously distinguish the en-
gineered nanoparticles from the background particles, images where
both types occur at the same time can be used for the training. These
may be images of samples gathered at workplaces. In cases such as
the TiO2 and ZnO samples described above, however, this procedure
is not applicable. Because it is not possible to manually distinguish
them from diesel soot, it would not be achievable to generate reli-
able training data for the system. Providing it with wrongly labeled
particles as its training data would lead to errors in the automatic
classification.

Therefore, the usual case is to give the system images with either
only engineered particles of that specific type or only background
particles. The former can be produced by releasing nanoparticle sam-
ples into a closed environment and gather them using a precipitator
(see Section 4.3). Images containing only background particles can be
created by taking air samples in environments where typical back-
ground particles but no engineered nanoparticles occur. The images
which only contain background particles are reusable each time the
system is trained to identify a new particle type. The images contain-
ing engineered nanoparticles have to be generated anew for each new
particle type.

Taking SEM images is time-consuming and SEMs are expensive so
that access is often shared among multiple parties. Therefore, it may
be expected that only few images will be available for the training
of the system, especially those containing engineered particles. This
makes it hard to train the system in a way that it reliably classifies un-
known particles because it is only provided with few examples. The
problem is amplified by the fact that it is very difficult to optimize
the number of particles per training image. If too many are present,
the probability that they overlay each other is high, which changes
the characteristics of the particles. However, the surface density can-
not directly be measured when the sample is taken. Therefore, the
sampling time must be chosen conservatively to avoid overlapping
particles. This leads to fewer particles per image.

2.3.2 Particle Identification

After the system has been trained with images of a type of engineered
nanoparticles, it can be used to identify them in images of samples
gathered at workplaces. For that, SEM images recorded as described
in Section 2.2 and the corresponding metadata are given as input to
the system. It is assumed that the images have been recorded with
the same microscope settings as those used for the training images,
because particle properties may look different otherwise. This does
not apply to the focus, brightness and contrast settings as these need
to be adjusted to obtain sharp images with high contrast. The sys-
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tem then detects and identifies the particles of a specific engineered
particle type. Finally, the software estimates and displays the concen-
tration of engineered nanoparticles in the air where the sample was
taken.

In this chapter, we have painted a realistic usage scenario for our
system and derived the circumstances it has to cope with. In the next
chapter, we will describe the goals such a system has to accomplish
in order to work well in this scenario and to significantly reduce the
manual work necessary for particle concentration measurement.
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G O A L S

After we have described the circumstances of its application, we will,
in this chapter, further elaborate on the goals of our system to mea-
sure the concentration of engineered nanoparticles by analyzing SEM
images of sampled airborne particles. Our primary goal was to re-
duce the manual work in analyzing the images. We wanted to de-
velop a system to automate the monotonous work of detecting and
identifying particles in SEM images. In addition, the goal was to re-
duce the time the user has to spend in front of the computer to a
minimum. Therefore, apart from providing the system with training
data, that is images of particles with corresponding type labels, and,
of course, looking at the results, the user shall need to spend as little
time as possible to use the system. This implies that the user shall not
need to provide any parameters except for application-related meta-
data such as the used precipitator or microscope settings. In other
words, the system should be fully automatic.

To adopt the work previously done by humans, the minimum re-
quirements for the system are that it performs these two tasks:

detection Locate the engineered nanoparticles and (optionally)
the background particles in every image.

identification Decide for every found particle if it either consists
of engineered nanoparticles of a specific type or is a background
particle.

In addition to these minimum requirements, further goals targeted
towards further reducing the work for the user of the system are:

future viability Be able to adapt to new particle types and re-
quirements.

performance prediction Predict the influence of additional
training data on the quality of the system’s particle identifica-
tion to guide the user’s decision if more training samples shall
be produced.

In the following paragraphs, we will describe these goals in more
detail.

detection In the first step, the system shall find all agglomerates
of engineered nanoparticles in each SEM image. This includes pri-
mary particles of the same type not connected to any other particle.
This means to determine the location and shape of each particle. In

27
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this case, a particle is considered as a collection of adjacent or over-
lapping primary particles. In particular, agglomerates are considered
as single particles. In other words, a connected component in an SEM
image is regarded as one particle.

Necessarily, the system will also find background particles in this
step. However, it is not required to find all of them because they have
no influence on the concentration estimation of engineered nanopar-
ticles.

identification Once every particle has been found, the system
has to decide for each of them to which of the following two cate-
gories it belongs:

• The particle is an engineered nanoparticle of a predetermined
type or an agglomerate of such particles.

• The particle does not contain engineered nanoparticles.

The second category contains all particles occurring in ambient air
in industrial scenarios not intentionally produced by humans. (For
a list of examples, see Section 2.1.) As explained in Section 2.1, it is
sufficient for the system to be able to differentiate one nanoparticle
type at a time from background particles. The specific type is known
beforehand.

future viability As described in Chapter 2, the circumstances
the proposed system will face cannot completely be foreseen. The re-
quirements and the nanoparticle types the system is targeted at may
change in the future due to further research on the health implica-
tions. Therefore, the system shall not be targeted at a specific type of
nanoparticles. In addition, in order to train it to recognize nanoparti-
cles similar to the ones already supported by the system, no changes
to the source code shall be required. Furthermore, the training shall
not require the user to set any parameters.

The system shall be easily adaptable to changing requirements.
Therefore, it shall have a modular architecture so that single parts
can be replaced or adapted to fit the new demands.

performance prediction Generally, the more training sam-
ples a system can learn from, the better the classification performance
will be. However, producing SEM images and manually labeling the
particles costs time and money. So, the system shall be able to help the
user make the decision if generating more training samples is worth
the associated costs. More precisely, it shall be able to predict the
influence further training samples will have on the performance of
its ability to differentiate engineered nanoparticles from background
particles. This helps the user to make a more informed cost-benefit
analysis.
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On one hand, this can save time and money by preventing the gen-
eration of additional samples which would have no effect on the clas-
sification performance. On the other hand, it can tell the user that
a much better performance can be achieved with samples generated
using a reasonable amount of work.

Additionally to these goals, we want to assess how well a system
can identify engineered nanoparticles in SEM images compared to
humans. We want to see whether an automatic solution is able to
achieve similar or even better results compared to a manual inspec-
tion. A solution that only identifies a small fraction of the engineered
nanoparticles will not produce helpful output. Therefore, an evalua-
tion of such a system needs to incorporate the quality of its output.
In order to act as a replacement for manual work, the system quality
should be at least comparable to that of a human doing the same job.

Furthermore, we want to stress that our work is explicitly a proof
of concept. To the best of our knowledge, nobody else has proposed
a system targeted at detecting and identifying engineered nanoparti-
cles in ambient air based on SEM images in a realistic scenario. There-
fore, the following items are not the target of our work.

• An optimal runtime performance of all the parts of the system.

• Implementing and comparing all possible algorithms to find the
best one for every part of the system and its workflow.

• Development of an optimal user interface.

These would have exceeded the scope of this thesis and can be the
target of future research. We have the goal to develop a system which
can be used and tested within reasonable time constraints. As there
is no need for manual parameter optimization, the algorithms can
run unsupervised, without requiring user interaction. The operation
of the system is not time-critical. In addition, we have conducted lit-
erature research and developed our own methods within the scope
of this project to compose a system which works well and is easy to
use.

Using the types, count and projected shapes of the particles in the
SEM images, different types of concentrations of these particles in the
air at the workplace can be estimated. However, it is not our goal to
determine how accurate these concentration estimates are and which
formulas should be used to obtain them. These questions have to
be considered by physicists. To answer them would have exceeded
the scope of this thesis. Therefore, we limit ourselves to providing
accurate data on the types, count and projected shapes of the found
agglomerates.

Our main contributions are the following:
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• Gathering and analyzing literature on automatic image-based
particle analysis.

• Finding an appropriate workflow and architecture for our sys-
tem.

• Identifying and analyzing the properties of the problem to be
solved as well as those of the particles to be recognized and
selecting suitable methods for every module of the system.

• Developing new algorithms tailored to the characteristics of the
problem, especially for image preprocessing, feature computa-
tion and classification performance estimation.

• Creating an algorithm able to predict the performance of classi-
fiers trained on training sets of different sizes and compositions.

More details on our contributions can be found in Section 10.1.

In this chapter, the goals we have set ourselves for the development
of our system have been outlined. The next chapter will describe the
images used as its input and the steps necessary for them to be cre-
ated.
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M AT E R I A L S

In this chapter, we will describe how the images used as input for our
system are created. It is important to have a basic understanding of
this process in order to understand the characteristics of the images
and the depicted particles. The basic workflow is as follows:

• Particles are gathered using a Precipitator.

• Images of the samples are taken using an SEM.

• The images and the used parameters are given as input to the
system.

In reality, this process is repeated at least twice: First, particles of
known type are sampled and used for the training of the system.
Afterwards, unknown particles at a workplace are sampled and our
system in the form of software running on a conventional desktop
computer is used to identify them and calculate their concentration.
In the following sections, we will describe the procedures and devices
used for each of the steps as well as the images and particles used for
our experiments. Section 4.1 will outline the sampling process. In
Section 4.2, we will describe how the SEM images are created. The
process to generate training samples will be portrayed in Section 4.3.
Finally, Section 4.4 will describe the particles used for this thesis.

4.1 sampling

As a first step, particles are gathered from the air at the workplace
and deposited onto a silicon wafer. This is done with either a thermal
precipitator or an electrostatic precipitator. They will be described in
Sections 4.1.1 and 4.1.2.

4.1.1 Thermal Precipitator

The first sampling device is a so-called thermal precipitator. The
model used by the BAuA is described by Azong-Wara et al. [2013].
Its dimensions are 4.5 cm × 3.2 cm × 9.7 cm and it weighs only 140 g.
Additionally, it can be powered by batteries. This allows it to be
worn during an entire shift to assess a worker’s personal exposure to
nanoparticles.

The precipitator is equipped with a pump, which sucks in the sur-
rounding air. This air is channeled through a pair of opposing metal
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Figure 4.1: The thermal precipitator used by the BAuA. At the front, the
tray which holds the silicon substrate onto which the particles
are deposited can be seen. In the back, there is the cable and
the tube which connect to the power source and the air pump,
respectively. Picture by BAuA.

plates, which are 1mm apart. One of them is heated so that their tem-
perature difference is 15 ◦C. As a result of a mechanism called ther-
mophoresis, the air is accelerated from the warmer towards the colder
plate. Along with the air, the contained particles are accelerated and a
certain percentage is deposited onto a silicon substrate with a surface
of 10mm × 20mm. In Figure 4.1, the thermal precipitator used by
the BAuA is shown. It has an air throughput of 2ml/min.

4.1.2 Electrostatic Precipitator

The second device is called electrostatic precipitator. First, it electri-
cally charges the airborne particles. This is usually done by a corona
discharge caused by an electrode carrying a high voltage. The air
stream with the charged particles is then directed through an electric
field [Parker, 1997]. This drives the particles towards the silicon sub-
strate, which is similar to the one used in the thermal precipitator.
The BAuA uses a TSI Nanometer Aerosol Sampler 3089 [TSI, 2013],
which can be seen in Figure 4.2. It weighs 3.75 kg and its dimensions
are 20.3 cm × 25.6 cm × 22.8 cm. Thus, it is unsuitable to be carried
by a person while doing work and, therefore, cannot be used to mea-
sure a worker’s personal exposure to nanoparticles. However, its air
throughput of up to 2.5 l/min allows it to collect particles at a fixed
location much quicker than the thermal precipitator.
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Figure 4.2: The electrostatic precipitator used by the BAuA. The silicon sub-
strate onto which the particles are deposited is located inside of
the metal cap on top of the precipitator. On top of that is a small
duct through which the air is sucked in. Picture by BAuA.

4.2 imaging

In a next step, images of the silicon wafer onto which the particles
have been deposited are taken using an SEM. Its functional principle
will be explained in Section 4.2.1. In Section 4.2.2, we will explain
properties that are typical for SEM images.

4.2.1 Scanning Electron Microscopy

The main concept of SEM is that a beam of electrons scans the sur-
face of the specimen and resulting electron emissions are measured.
It can achieve higher magnifications than light microscopy by using
electrons instead of visible light. Figure 4.3 shows a schematic dia-
gram of an SEM. The main components are located in a chamber un-
der vacuum in order to keep the electron beam from interacting with
air molecules. The electron gun at the top of the so-called microscope
column generates electrons and accelerates them downwards. The en-
ergy to which each electron is accelerated is measured in eV (electron
volt, 1 eV ≈ 1.6× 10−19 J) and can be controlled to take values of
0.1 keV to 30 keV [Goldstein et al., 2003, p. 22]. This directly corre-
sponds to the acceleration voltage, which is measured in V . Thus, as
an example, using an acceleration voltage of 10 kV would give every
electron an energy of 10 keV .

Since the resulting electron beam is too coarse, its diameter needs
to be reduced using two or more so-called electron lenses. After that,
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Figure 4.3: A schematic diagram of an SEM. An electron beam is gener-
ated by an electron gun. Its diameter is reduced using so-called
electron lenses and it is deflected by deflection coils to scan the
sample surface. Finally, detectors sense emitted electrons and X-
rays. “Diagram of a scanning electron microscope with English
captions” (http://commons.wikimedia.org/wiki/File:Schema_
MEB_(en).svg, original by Steff, modified by ARTE and Marco-
Tolo) is licensed under CC BY-SA 3.0 (http://creativecommons.
org/licenses/by-sa/3.0/deed.en).

the electron beam is deflected using so-called deflection coils so that
it scans the surfaces of the specimen in a rectangular grid or raster.
Each point on this grid corresponds to a pixel in the final image. The
amount of deflection generated by the coils directly corresponds to
the magnification of the image, which is defined as the ratio of the
image length to the length of the raster on the specimen. If a higher
magnification shall be achieved, the electron beam is deflected by a
smaller amount so that the grid points are closer together.

Every SEM has at least one detector which collects the electrons
ejected from the sample. The image intensity directly represents the
amount of detected electrons using a linear relationship. This means
that if the detector counts more electrons at a point in the grid, the
corresponding pixel will have a higher intensity. The parameters of
this relationship can be altered by the microscope operator using the
contrast and brightness settings [Goldstein et al., 2003, p. 25].

There are two different kinds of electrons which can be detected:
secondary electrons and back-scattered electrons. Most SEMs have
separate detectors for both types (see Figure 4.3). Secondary electrons
are ejected from the atoms of the specimen by the interaction with
the electron beam. These have low energies and can only escape the

http://commons.wikimedia.org/wiki/File:Schema_MEB_(en).svg
http://commons.wikimedia.org/wiki/File:Schema_MEB_(en).svg
http://commons.wikimedia.org/wiki/User:Steff
http://commons.wikimedia.org/wiki/User:ARTE
http://commons.wikimedia.org/wiki/User:MarcoTolo
http://commons.wikimedia.org/wiki/User:MarcoTolo
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 4.4: A schematic diagram of a part of the interaction volume of
the electron beam of an SEM inside the specimen. The area
above the horizontal line represents the vacuum inside the mi-
croscope. The area below it represents the inside of the speci-
men. The primary electrons, which compose the electron beam,
penetrate the surface of the specimen at the top. The three de-
lineated areas represent the volumes where secondary electrons,
back-scattered electrons and characteristic X-rays, respectively,
are generated with enough energy to escape the specimen and
be detected. Secondary electrons are generated near to the spec-
imen surface while back-scattered electrons stem from an area
deeper inside the specimen. Characteristic X-rays are generated
still further away from the surface. This work is a derivative of a
graphic by Freundchen (http://commons.wikimedia.org/wiki/
File:Pear_interaction_SEM_german.svg).

specimen if they are generated near the surface. Therefore, detected
secondary electrons stem from a relatively small volume around the
impact point of the electron beam (see Figure 4.4). This allows for
images with a high resolution which contain surface details of the
specimen.

Back-scattered electrons are electrons from the beam which are re-
flected by the specimen and have high energies. They can penetrate
the sample to a great depth before returning and being detected.
Thus, the detected electrons stem from a volume which is far less
local to the impact point of the electron beam, both along the sur-
face and perpendicular to it (see Figure 4.4). Consequently, the signal
of the back-scattered electrons contains less information about the
specimen surface and has a lower resolution compared to the signal
generated by the secondary electrons. In our case, we want to take im-

http://commons.wikimedia.org/wiki/File:Pear_interaction_SEM_german.svg
http://commons.wikimedia.org/wiki/File:Pear_interaction_SEM_german.svg
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Figure 4.5: The Hitachi S-4000 SEM at the ZELMI. It has been used to take
the images used for this thesis. On the left, the microscope it-
self can be seen. It stands on a special table to reduce vibra-
tions, which could lead to image artifacts, and is surrounded
by a frame to reduce the impact of electromagnetic radiation on
the images. In the center, there is the console used to control
the microscope. On the right, one can see the computer used to
digitally save the images. Picture by ZELMI.

ages of nanoparticles, which are inherently small. Therefore, we have
decided to use the secondary electron signal, as it allows for images
with higher resolution. In addition, back-scattered electrons are more
likely to pass the nanoparticles and penetrate the silicon substrate
before being detected. This means that only part of the signal stems
from the particles themselves and the substrate may contribute to the
pixel intensity.

Most SEMs also have a detector to sense characteristic X-rays gener-
ated by the interaction of the electron beam with the specimen. This
allows for so-called energy-dispersive X-ray spectroscopy (EDX), also
abbreviated as EDS, which can be used to get information about the
chemical composition of the sample. However, performing just a qual-
itative analysis takes a relatively long time (10 s to 100 s) [Goldstein
et al., 2003, p. 357]. This means that it is not feasible to get composi-
tion information for every pixel or, in our case, for a grid fine enough
to cover every separate particle. We have several images containing
close to or more than one thousand separate particles. Therefore, the
chemical composition of the particles is not available to us.

For our experiments, we use images taken with a Hitachi S-4000
SEM at the Zentraleinrichtung Elektronenmikroskopie (ZELMI) of
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the Technische Universität Berlin (TU Berlin) by BAuA employees. It
can achieve a resolution of 1.5nm and can be seen in Figure 4.5. For
the images used in this thesis, a relatively high acceleration voltage
of 20 kV has been chosen in order to improve the effective resolution.
The working distance has been set to 10mm. To achieve a relatively
good signal-to-noise ratio, we have chosen a high oversampling fac-
tor of 128, which corresponds to the time used to record each pixel.
The microscope operator has been advised to adjust the contrast and
brightness settings for every image so that the average background
intensity is about 18 of the maximum possible intensity and the max-
imum intensity does not exceed the maximum possible intensity to
avoid clipping (see Section 4.2.2.3). We have chosen a large image size
of 4000× 3200 pixels so that big agglomerates can be fully captured
even at high magnifications. In order to be able to compare the perfor-
mance at different pixel sizes, each chosen position on the substrate
has been captured using two different magnifications. These are 5000
and 20 000, which correspond to pixel sizes of 5.08nm and 1.27nm,
respectively.

4.2.2 Properties of Scanning Electron Microscopy Images

Images captured using SEM have several properties which may mask
or distort the main image signal. These are:

• A low signal-to-noise ratio.

• Artifacts caused by vibrations or electromagnetic radiation.

• Intensity clipping.

• Variable particle intensity.

• Deposition of gas residuals.

• Intensity fluctuations around large particles.

We will describe them in detail in the following sections.

4.2.2.1 Noise

The number of detected electrons, which generate the image signal,
follows a Poisson distribution. This means that the standard devia-
tion divided by the expected value will get larger if the mean de-
creases. In essence, the signal-to-noise ratio will be low if the expected
number of counted electrons is low. Compared to conventional opti-
cal images such as photographs, SEM images have an extremely low
signal-to-noise ratio because of the low electrons counts [Ribeiro and
Shah, 2006]. In addition, keeping imaging times low and achieving
a high resolution further decrease the number of electrons. The two
images in Figure 4.6 illustrate the low signal-to-noise ratio very well.
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(a) A single TiO2 primary particle. (b) A single diesel soot primary particle.

Figure 4.6: Two SEM image details (1 pixel = 1.27nm) of a TiO2 nanopar-
ticle with an average diameter of 25nm and a diesel soot parti-
cle, respectively. The particles look very similar. In addition, the
signal-to-noise ratio of both images is very low.

In Section 6.3.1, we will present a custom algorithm to estimate the
strength of the noise in each image. Furthermore, in Section 6.3.2, we
will propose a noise removal method specifically targeted at SEM im-
ages using the output of the noise estimation algorithm to tune itself
specifically for each image.

4.2.2.2 Vibrations and Electromagnetic Radiation

Due to the fact that SEM works at the nanoscale, even slight vibra-
tions or electromagnetic radiation affect the image [Goldstein et al.,
2003, pp. 59f.]. This includes human voices and vibrations and ra-
diation emitted by trains and other machines. Such influences may
affect the impact point of the electron beam or the signal amplifica-
tion. Because of the fact that SEM images are captured row by row,
this may cause horizontal edges which are not present in the sample.
Such edges can be seen in Figure 4.7b. In addition, vertical edges may
become jagged as pixels in different rows may picture points on the
sample with different horizontal positions. This is illustrated well in
Figure 4.7a, where all vertical edges have become jagged.

For the segmentation, these artifacts should not pose a big problem.
For the classification step, however, the numerical features describing
the shape and texture of particles have to be robust enough to deal
with these distortions.

4.2.2.3 Intensity Clipping

In some circumstances, the electron detector detects more (or fewer)
electrons than the amount that can be mapped to the available in-
tensity range. In these cases, the maximum (or minimum) intensity is
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(a) Jagged edges in an image detail
(1 pixel = 1.27nm) of TiO2 nanopar-
ticles.

(b) Artificial edges in an image detail
(1 pixel = 1.27nm) of TiO2 nanopar-
ticles.

Figure 4.7: SEM image artifacts caused by vibrations or electromagnetic ra-
diation.

Figure 4.8: An SEM image detail (1 pixel = 5.08nm) of Ag nanoparticles
with an average diameter of 75nm showing intensity clipping in
the lower left corner. In addition, the artificial edge along the top
is probably caused by a fluctuating beam current.
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Figure 4.9: An SEM image detail (1 pixel = 5.08nm) of Ag nanoparticles
with an average diameter of 75nm showing that larger agglom-
erates appear brighter than small ones partly due to electrostatic
charging. Also note that shallow parts of the large agglomerate
are not as bright as other parts.

assigned to the corresponding pixels. This leads to image areas whose
pixels all contain the same intensity even though the sample contains
texture at the corresponding position [Goldstein et al., 2003, p. 178f.].
One reason for this is a wrong combination of the contrast and bright-
ness settings. The operator has to adjust these before taking the image
using only a more noisy live image having a much lower resolution.
Therefore, it is not easy to always find the right values.

Another reason for this can be that the current of the electron beam
sometimes fluctuates [Goldstein et al., 2003, p. 34]. This leads to more
(or fewer) electrons being accelerated towards the sample which in
turn leads to more (or fewer) detected electrons. Figure 4.8 shows
such a case, where the signal has been too intense to be mapped to
the intensity range of the image. Therefore, the intensities have been
clipped to the highest possible value and the part of the image has
lost its texture.

Just like with artifacts caused by radiation and vibrations, the fea-
tures describing the texture of particles need to be robust to deal with
intensity clipping.

4.2.2.4 Variable Particle Intensity

In addition to the fact that the intensity may differ between images
due to different contrast and brightness settings (see Section 2.2.3.2),
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large agglomerates usually appear brighter than small ones. This is
visible in Figure 4.9 as well as in Figures 2.4 and 2.5 on Page 21, where
small particles have much lower intensities than larger agglomerates.
This is due to the fact that the electron beam travels further through
a large agglomerate compared to small particles and has thus more
chances to release secondary electrons. The beam can penetrate the
sample up to a depth of several µm [Goldstein et al., 2003, p. 66]. This
is also the reason why shallower parts of agglomerates appear not as
bright as other parts, which can be seen in Figure 4.9, as well.

Apart from these differences, the intensity is mainly dependent on
the surface orientation of the specimen [Goldstein et al., 2003, p. 96].
Therefore, the sides of the primary particles usually appear brighter
than the parts facing upwards as can be seen in Figure 4.9. The com-
position of the particles has little influence on their intensity. There
are exceptions, however, such as gold, which generates about two
times as many secondary electrons as other materials [Goldstein et al.,
2003, p. 95]. We have observed that the Ag nanoparticles appear much
brighter than other particles in our images (see Figures 1.1 to 1.9 on
Pages 5 to 9).

Small dark particles may pose a problem to the segmentation al-
gorithm used in our system because they are difficult to distinguish
from noise artifacts. However, this problem is not limited to an auto-
matic solution. Humans searching for particles in SEM images may
overlook them as well.

4.2.2.5 Deposition of Gas Residuals

The main SEM components and the sample is kept in a vacuum when
images are taken. However, residuals of air still remain in the micro-
scope column. These can react with the electron beam spot and be
deposited onto the substrate [Ribeiro and Shah, 2006]. Such deposits
are also called contaminations. This can lead to a rectangular layer
on the sample which is clearly visible and may mask small details.
However, the deposits can also be local at a corner of the view frame
where the beam remains longer than at the other points of the frame.
Figure 4.10 shows three examples of such deposits. They clearly look
very similar to nanoparticles of a certain size range, such as the pri-
mary particle in Figure 4.6a. Such deposits cannot be avoided as the
operator has to zoom in on a particle to adjust the focus for each new
position on the substrate.

In addition, it is also possible that these deposits build up along
the edge of an image to form a bright line. An example of this can
be seen in the lower right image in Figure 4.10. This is caused by the
fact that the electron beam shortly remains at the same position at the
start of each line.

For our system, it will be very difficult to distinguish deposits in-
side the image from engineered nanoparticles. In fact, they do not
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Figure 4.10: SEM image details (1 pixel = 1.27nm) of deposits of gas resid-
uals on the silicon substrate. These can easily be mistaken for
engineered nanoparticles of a similar size, such as the one in
Figure 4.6a. The image detail in the lower right shows the left
edge of an image. Here, the leftmost pixels appear brighter be-
cause of gas deposition.

only seem like but are indeed nanoparticles created by the electron
beam. Deposits along an image edge may be detected as particles by
our system. The classification steps then has to distinguish them from
engineered nanoparticles.

4.2.2.6 Intensity Fluctuations around Particles

Image areas around a large agglomerate can appear much darker
or brighter than other areas. An example of this can be seen in Fig-
ure 4.11. This image shows a part of the image background to the
lower right of a large Ag agglomerate. The area nearest to it appears
much darker than the other areas. This is due to the fact that the ag-
glomerate is located directly between this part of the substrate and
the electron detector. This causes secondary electrons emitted in this
area and normally detected by the detector to be blocked by the ag-
glomerate. These blocked electrons never reach the detector leading
to a lower intensity.

On the other hand, areas next to a large agglomerate in the di-
rection of the detector appear brighter than normal. Here, electrons
emitted in this area colliding with the agglomerate may be reflected
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Figure 4.11: A part of the image background directly besides a large Ag ag-
glomerate (1 pixel = 5.08nm). The area in the upper left corner
of the image, which is nearest to the agglomerate, appears much
darker than the rest of the background.

towards the detector or release additional secondary electrons that
are detected, as well.

Small particles in the shadow of larger ones are hard to detect be-
cause they appear darker than the image background in other parts
of the image. We have observed this effect in one of our experiments.
It is explained in Section 6.4.5.

4.3 training sample generation

If particles of multiple types are gathered at once, it is often impos-
sible to differentiate the types afterwards. However, incorrectly la-
beled training samples may confuse the system and may cause it to
make false decisions when classifying unknown samples. For back-
ground particles, it is sufficient to only gather training samples in
environments where one can be sure that no engineered nanopar-
ticles occur. These can be urban environments near roads or other
surroundings where only background particles occur. For engineered
particles, however, it is important to only gather exactly one type and
no other engineered nanoparticles or background particles. This can
be ensured by sampling the nanoparticles in an enclosed container
where other particles are unlikely to occur. In case of the BAuA, small
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Figure 4.12: The equipment used by the BAuA to generate training sam-
ples of engineered nanoparticles. The apparatus on the lower
right shakes the nanoparticles so that they become airborne and
move into the tank on the upper left. Connected to the tank but
not visible is a precipitator to gather the particles and deposit
them onto a silicon substrate. Picture by BAuA.

amounts of nanoparticles are requested from the manufacturer. These
are then brought into the air inside an airtight tank using the so-called
shaker process, which is described by Spurny et al. [1975]. The used
apparatus can be seen in Figure 4.12. Connected to the tank is a TSI
Nanometer Aerosol Sampler 3089 [TSI, 2013], which gathers the par-
ticles as described in Section 4.1.2.

4.4 particles used in this thesis

For the experiments in this thesis, we use three different types of
engineered nanoparticles. These are:

• A mixture of Ag nanoparticles with average diameters of 50nm
and 100nm.

• TiO2 nanoparticles with an average diameter of 25nm.

• ZnO nanoparticles with an average diameter of 10nm.

The average diameters given here are according to the manufacturers’
specifications. The diameters of individual nanoparticles may deviate
from that specification to a relatively high degree.

The BAuA has chosen these particle types because they are on the
OECD’s list of representative manufactured nanomaterials for safety
testing [Organisation for Economic Co-operation and Development
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Table 4.1: A list of all SEM images and particles used for the experiments
in this thesis. Above the horizontal line are engineered nanoparti-
cles and below background particles are listed. The particle counts
in this table are given as counted by our system. Here, multiple
primary particles being connected in an image are regarded as a
single particle.

particle type image count particle count

Ag (50nm and 100nm) 26 109

TiO2 (25nm) 44 845

ZnO (10nm) 48 1774

Abrasive cutting dust 8 1424

Ambient air 12 156

Cigarette smoke 2 5

Construction dust 13 42

Diesel soot 14 6860

Welding smoke 12 792

(OECD), 2010] and available to the BAuA. In addition, these particle
types are commonly used in commercial products. TiO2 and ZnO
have also been chosen as they are very similar to accidentally created
nanoparticles such as diesel soot (see Section 2.2.4.2).

Furthermore, we use images of background particle samples that
are typical of urban or industrial environments. These contain a se-
lection of the particle types listed in Section 2.1.

A list of all SEM images and particles used for the experiments
in this thesis is given in Table 4.1. We use images of the following
background particle samples:

• A sample taken during abrasive cutting of steel.

• A sample taken from the ambient air in an urban environment.

• A sample taken while someone is smoking a cigarette.

• A sample taken on a construction site.

• A sample taken of the exhaust fumes of a diesel car.

• A sample taken during welding.

In almost all cases, two images have been taken of each selected po-
sition on the substrate, one using a magnification of 5000 (1 pixel
= 5.08nm) and one using 20 000 (1 pixel = 1.27nm). This means that
about half of the images have a pixel size of 5.08nmwhile the rest has
a pixel size of 1.27nm. In addition, the area covered by an image with
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a magnification of 20 000 is usually also covered by an image with a
magnification of 5000. In a few cases, there are one, three or four im-
ages of a single position on the substrate, respectively. However, we
have no images in our database that have a pixel size different from
the two mentioned above.

Example images of our engineered nanoparticles can be seen in
Figures 1.1 to 1.6 on Pages 5 to 7. Examples of background particles
can be found in Figures 1.7 to 1.9 on Pages 8 and 9.

In this chapter, we have described the equipment used to create
the images for this thesis and the particles used in our experiments.
In the next chapter, we will present literature related to the problem
we have chosen to solve and we will establish the architecture and
workflow of our system.



5
S Y S T E M D E S I G N

In this chapter, we will first give an overview of the literature on auto-
matic image-based particle detection and classification in Section 5.1.
In Section 5.2, we will then, based on the literature, devise the archi-
tecture and workflow of our system.

5.1 related work

We have found and examined 33 publications on automatic image-
based particle analysis. Not included are papers that say that a com-
mercial image processing solution has been used but do not describe
details of the process [Vezey and Skvarla, 1990; Reetz et al., 2000;
Donskoi et al., 2007]. The literature on problems concerning particles
with similar characteristics to ours is very sparse. Table 5.1 gives an
overview of the types of particles analyzed in the examined litera-
ture. We have left out prior publications by the same author groups
covering earlier versions of their systems targeted at the same particle
types. It is easily visible that the publications cover a wide range of
particle types with substantially different shapes and characteristics.
Therefore, the methods used to detect and classify them may not be
appropriate to be applied to nanoparticle agglomerates.

To the best of our knowledge, there are only three papers on au-
tomatic image-based analysis of engineered nanoparticles. We will
briefly describe them now.

Fisker et al. [2000] analyze TEM images of nearly spherical nanopar-
ticles. In contrast to our problem, the particles form no agglomerates
and do not overlap in the images. Therefore, the image characteris-
tics are very different. Furthermore, the paper is only interested in
estimating the particle size distribution and does not perform any
kind of classification.

Flores et al. [2003] classify small nanoparticles in high resolution
TEM images. The particles are composed of very few atoms, at most a
few thousand. The image characteristics differ to a great degree from
ours as the single atoms of the particles are clearly visible and no ag-
glomerates are formed. The nanoparticles shall be classified based on
the arrangement of their atoms rather than their size or composition.

Oleshko et al. [1996] examine agglomerates of Ag nanoparticles
in TEM images. Their shapes are very similar to the agglomerates
analyzed by us. However, their texture in the images is very different
due to the functional differences of SEM and TEM. In addition, no
classification is performed. In fact, only the fractal dimension of the
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Table 5.1: Overview of the examined particle types in the literature on auto-
matic image-based particle analysis.

particle type publications

airborne particles Germani and Buseck [1991]
Kindratenko et al. [1994, 1996]
Wienke et al. [1995]
Oster [2010]
Genga et al. [2012]

aquatic life forms Kindratenko and Van Espen [1996]
Luo et al. [2004]

engineered nanomaterials Oleshko et al. [1996]
Fisker et al. [2000]
Flores et al. [2003]
Oster [2010]

crystals Kindratenko et al. [1996, 1997]
Calderon De Anda et al. [2005]
Yu et al. [2007]

pollen grains Langford et al. [1990]
Rodriguez-Damian et al. [2006]
Ranzato et al. [2007]

polyethylene powders Greco and Maffezzoli [2004]

printing dust Hopke and Song [1997]

quartz grains Thomas et al. [1995]
Drolon et al. [2000]
Oster [2010]

sedimentary particles Orford and Whalley [1983]

urine particles Ranzato et al. [2007]
Hans et al. [2010]

wear particles Xu et al. [1998]
Peng and Kirk [1999]
ap Gwynn and Wilson [2001]
Laghari [2003]
Raadnui [2005]
Stachowiak et al. [2008]
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agglomerates is extracted, which we identified as not very useful for
differentiating agglomerates of engineered nanoparticles from those
composed of background particles (see Section 7.2.2).

Although it does not target engineered nanoparticles, we want to
mention the bachelor’s thesis by Oster [2010] at this point. The au-
thor also worked with the BAuA and used images captured with
the same SEM as those used in this thesis. Rather than nanoparti-
cles, the approach tries to find carbon nanotubes. Nevertheless, the
image characteristics and the problem statement are very similar to
ours. However, the problem is simplified and somewhat artificial in
order to match the scope of a bachelor’s thesis. Each image contains
exactly one particle in its center and, apart from carbon nanotubes,
only quartz dust and diesel soot may occur in the images. These have
sufficiently different appearances to be distinguished using relatively
simple numerical features.

The first three mentioned publications use images obtained by
TEM. While it, just like SEM, uses electrons to depict the sample, its
functional principle is different. With TEM, the electrons go through
the sample and the image intensity reflects how many electrons are
able to pass through it. While SEM images are comparable to pho-
tographs in that they depict the surface of the object, TEM is more
like light microscopy or X-ray radiography. Here, the image repre-
sents a three-dimensional volume and all layers of the object are
superimposed in it. TEM allows for very high resolutions as can be
seen in the paper by Flores et al. [2003]. However, the sample has to
be very thin in order that the electrons can pass it. In addition, the
texture of nanoparticles imaged using TEM is quite different to that
obtained by SEM, which becomes clear when looking at the images
in the paper by Oleshko et al. [1996]. More information on TEM can
be found in the book by Kohl and Reimer [2008].

In addition to TEM, the publications we examined use various
other imaging techniques. Table 5.2 lists these and the correspond-
ing publications. As in Table 5.1, we have left out prior publications
by the same author groups covering earlier versions of their systems
targeting the same particle types.

Several publications use a process called computer-controlled scan-
ning electron microscopy (CCSEM). Here, a computer instead of an
operator controls the microscope. It automatically detects particles
on the substrate and takes an image of each of them. In addition, it
performs an EDX analysis of each particle. However, this technique
only works for particles with a diameter larger than 50nm to 100nm
[Poelt et al., 2002]. Two of the three nanoparticle types we target are
smaller than that. Therefore, using this technique is not an option for
us.

The imaging methodologies used in the literature are diverse and
each provides a set of data with characteristics typical for the corre-
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Table 5.2: Overview of the used imaging techniques in the literature on auto-
matic image-based particle analysis. The publications whose tech-
niques are marked with 3D obtain and use three-dimensional data
of the particles.

imaging technique publications

CCSEM + EDX Germani and Buseck [1991]
Kindratenko et al. [1994, 1996]
Wienke et al. [1995]
Hopke and Song [1997]

confocal microscopy (3D) Peng and Kirk [1999]

light microscopy Xu et al. [1998]
Drolon et al. [2000]
Laghari [2003]
Greco and Maffezzoli [2004]
Luo et al. [2004]
Calderon De Anda et al. [2005]
Rodriguez-Damian et al. [2006]
Ranzato et al. [2007]
Yu et al. [2007]
Hans et al. [2010]

SEM Langford et al. [1990]
Thomas et al. [1995]
Kindratenko and Van Espen [1996]
Kindratenko et al. [1997]
ap Gwynn and Wilson [2001]
Oster [2010]

SEM (3D) Stachowiak et al. [2008]

SEM + EDX Genga et al. [2012]

TEM Fisker et al. [2000]
Flores et al. [2003]

TEM + EDX Oleshko et al. [1996]
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sponding technique. Often, these differ substantially for the different
methodologies. Therefore, many of the applied algorithms are not
useful for our problem.

The main differences between the problems covered in the litera-
ture examined by us and the challenge we face are the following:

• In many cases, the differences between the classes to distinguish
are bigger in the related work. As seen in Section 2.2.4.2, our
smaller engineered nanoparticles and diesel soot are very diffi-
cult to distinguish, even for humans.

• As the literature covers a wide range of particle types, their char-
acteristics differ by a large amount compared to the nanoparti-
cles which usually occur in agglomerates. The particles may for
example be circular or have regular features.

• In 9 of the 33 examined publications, the authors have access to
the chemical composition of the particles.

• As far as we know, none of the publications target particles of
a wide size range. As mentioned before, the ratio of the areas
occupied by the smallest and the largest ZnO particles in our
images is 1:425 000.

• Several of the publications try to detect particles with a constant
appearance. In our case, each nanoparticle agglomerate has a
different shape.

5.2 system architecture

Despite these major differences in the examined literature, we have
found a typical system workflow common to almost all examined
papers:

1. Segmentation of the image to separate the particles from the
image background.

2. Computation of numerical features for every particle.

3. Optional: Reduction of the number of features (dimensionality
reduction).

4. Classification of the particles based on the computed features.

A graphical representation of the workflow can be seen in Figure 5.1.
The following paragraphs describe each step in detail:
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Figure 5.1: The typical workflow for the task of particle detection and classi-
fication.

segmentation This step consists of finding the particles by de-
ciding which pixels of the original image belong to a particle and
which are part of the background. Furthermore, as an image poten-
tially shows more than one particle, the algorithm has to determine
which pixels belongs to which particle. This is often done by simply
grouping non-background pixels which form a connected component.
As a result of the segmentation process, the location and shape of ev-
ery particle in the original image is known.

feature computation In this step, every particle found in the
segmentation process is described by a fixed set of features, which
are expressed as numbers. The goal is that particles can be compared
solely based on their feature values. To do this, features should cap-
ture important aspects of the particle such as its shape or texture. Par-
ticles which are similar in the image should also have similar feature
values. To achieve that, features have to be carefully chosen to suit the
requirements of specific applications. The whole set of feature values
of a particle is also called its feature vector.

dimensionality reduction To reduce the complexity of the
classification, another step called dimensionality reduction can be per-
formed before the feature vector is passed to the classifier. Its goal is
to reduce the number of features in order to make the classification
less complex. For a more thorough analysis of the reasons to perform
this step, see Section 8.1.2. There are two approaches to reach this
goal: feature extraction and feature selection. In the literature, these
terms are used inconsistently and interchangeably. However, we will
use them according to Jain et al. [2000] as follows:

• Feature extraction combines or transforms existing features to
create new ones.
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• Feature selection chooses a subset of the original features to
obtain a smaller feature vector.

The two approaches are often combined by first using feature extrac-
tion to create new features and then reducing their number by apply-
ing feature selection.

classification In this last step, a so-called classifier assigns ex-
actly one class to each particle. In our case, there are two classes:

• Engineered nanoparticles

• Background particles

The classifier bases its decision solely on the feature vector of each
particle. To reliably predict the class of a particle, the classifier has
to be trained using manually classified particles. This step uses tech-
niques from the fields of pattern recognition and machine learning.
For a brief overview of pattern recognition, see Jain et al. [2000].

As said before, almost all of the publications follow this workflow.
However, there are a few exceptions, which we will briefly describe.

Langford et al. [1990] use manually extracted texture samples to
classify pollen grains instead of relying on an automatic segmenta-
tion. Other publications do not use segmentation because each image
only contains one centered particle or the exact shape is not of inter-
est. Instead, a region of interest (ROI) is used. In our case, however, it
is not feasible to manually mark the position of each particle as there
are up to a thousand particles in a single image.

Podsiadlo and Stachowiak [2005] do not compute a feature vec-
tor to classify the particles. Instead, they calculate the dissimilarities
of the wear particle to be classified with all particles of the training
set. The classification is then performed based on these dissimilari-
ties. This poses a problem as the approach cannot easily be combined
with features not based on dissimilarity. Another disadvantage is that
the computational complexity of the classification grows as more par-
ticles are added to the training set.

Some of the publications do not cover automatic classification [Or-
ford and Whalley, 1983; Germani and Buseck, 1991; Kindratenko
et al., 1994, 1996; Oleshko et al., 1996; Fisker et al., 2000; ap Gwynn
and Wilson, 2001; Greco and Maffezzoli, 2004; Genga et al., 2012].
Instead, features are computed to characterize different types of par-
ticles. However, the first two steps of the workflow are the same as in
the classification approach. Therefore, we have included these papers,
as well.

We have decided to adopt the presented workflow because the gen-
eral set-up of our problem is the same as in many of the analyzed
papers. In addition, because of the lack of large training sets and the
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complex nature of nanoparticle agglomerates, the use of numerical
features to describe the particles is a sensible choice. We will explain
this in more detail in Section 8.2.1.

As this workflow is linear and each step only depends on the previ-
ous, we will organize the remaining thesis based on it. Chapter 6 will
present our segmentation approach. In Chapter 7, we will describe
the features we chose for our system. Chapter 8 will address dimen-
sionality reduction and classification. Finally, Chapter 9 will present
an additional feature of our system, which enhances the usability and
operates in parallel to this workflow. Each of these chapters will ad-
ditionally present related work on the corresponding topic and will
feature an evaluation of the applied algorithms and approaches.

In order to illustrate each individual step of the workflow in a prac-
tical way, we will use a single Ag agglomerate on the left in Figure 1.2
on Page 5 and present the intermediate results for this agglomerate
in the corresponding passages of the text.

In this chapter, we have presented literature on automatic image-
based particle analysis and have derived a workflow for our system.
The next chapter will address the first step of this workflow, the seg-
mentation of SEM images containing engineered nanoparticles.



6
S E G M E N TAT I O N

This chapter will address the segmentation of nanoparticle images.
Section 6.1 will give a detailed description of its goals. In Section 6.2,
we will summarize the algorithms used in the literature on automatic
image-based particle analysis. Section 6.3 will describe the methods
used by our system and Section 6.4 will evaluate them.

6.1 goals

As the input of our system, we have SEM images. For the purpose of
this thesis, we define an image f as a function

f : P → G. (6.1)

Here, P is the two-dimensional pixel space, defined as a set

P B N<nx ×N<ny , (6.2)

where nx ∈ N>0 B {1, 2, 3, . . . } and ny ∈ N>0 are the width and
height of the image, respectively, and N<nx B {0, . . . ,nx − 1}. The set
G is, in the case of grayscale images, a subset of the real numbers:

G ⊆ R. (6.3)

We will only address grayscale images in this thesis. An element p ∈
P is called pixel and has an intensity f(p) ∈ G, also called gray level,

grayscale value or pixel value. We will use the convention that the
pixel (0, 0) is in the top-left corner of the image. The images used for
this thesis have a width of nx = 4000 and a height of ny = 3200. Their
pixels can take intensities from 0 to 255, so that G = {0, . . . , 255}.

Simply put, the goal of the segmentation task is to find the shape
and position of each particle in the image. As mentioned before, the
term particle can denote a single nanoparticle, also called primary par-
ticle, but it can also refer to an agglomerate of many particles. When
looking at Figure 6.1, it becomes clear that it is impossible to locate
every nanoparticle in an agglomerate. The depicted agglomerate is
made up of thousands of Ag nanoparticles with an average diameter
of 75nm. Due to the nature of SEM, contours of the primary particles
vanish. Instead, neighboring nanoparticles seem to be fused together
as if the agglomerate was a single solid object.

Another reason why it is impossible to locate every primary parti-
cle is that a majority of them is masked by other nanoparticles. Be-
cause the agglomerate is a three-dimensional object, it is impossible
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Figure 6.1: An image detail of an agglomerate of Ag nanoparticles with an
average diameter of 75nm.

to take an image that shows all primary particles on every side of
the agglomerate. Equally impossible is an image that shows the pri-
mary particles inside the agglomerate. Therefore, we have chosen to
treat agglomerates as a whole instead of trying to decompose them
into their components. More specifically, two particles connected by a
chain of other particles in the image are regarded as belonging to one
particle by our system. To avoid ambiguities, we will use the term
connected particle group (CPG) to refer to a set of connected particles in
an image. A single solid particle such as a nanoparticle will also be
called CPG if it is not connected to any other particles.

One conceivable disadvantage of the approach to treat agglomer-
ates as a whole would be that CPGs made up of multiple particle
types could not be separated. However, according to experts from the
BAuA, a case where engineered nanoparticles and background parti-
cles form an agglomerate is very rare. In light of this and the fact that
it simplifies the system workflow to a great degree, we have chosen
to classify each CPG as consisting either of engineered nanoparticles
or of background particles.

Optimally, our system should be able to find all CPGs consist-
ing of engineered nanoparticles as well as all CPGs of background
particles. In our experience, however, background particles can have
highly varying sizes, shapes and textures. Especially, very small and
dark particles might be hard to differentiate from noise artifacts of
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the highly noisy image background. Engineered nanoparticles, on the
other hand, while still relatively variable in appearance, are quite sim-
ilar in our experience. We have therefore decided to concentrate on
the detection of the latter. We will develop and tune our method so
that it optimally finds engineered nanoparticles in order to allow for a
precise concentration estimation. An overlooked background particle
is irrelevant with respect to a correct concentration estimate.

To phrase the goal of the segmentation step in a more formal way,
we want to find nC ∈ N B {0, 1, 2, . . . } different CPGs C1, . . . ,CnC ⊆
P, which are not empty and mutually disjoint:

|Ci| > 0, ∀ i ∈ {1, . . . ,nC}, (6.4)

and
Ci ∩Cj = ∅, ∀ i, j ∈ {1, . . . ,nC}, i , j. (6.5)

To define what it means for a CPG to be connected, we need to define
the 4-connected neighborhood N4 : P → P(P) of a pixel p ∈ P:

N4(p) B
{
p ′ ∈ P

∣∣ (∣∣px − p ′x∣∣+ ∣∣py − p ′y∣∣) = 1}, ∀p ∈ P. (6.6)

Here P(P) B {S |S ⊆ P} is the power set of P, which is defined as the
set of all subsets of P. Now, we can recursively define the notion of
connectedness, where C ⊆ P and p ∈ P:

1. C is connected if |C| = 1.

2. C∪ {p} is connected if C is connected and ∃p ′ ∈ C : p ∈ N4(p ′).
Each CPG must be connected. In addition, we said that agglomerates
should be treated as a whole. This means that two CPGs should not
be in the neighborhood of each other:

Ci ∩
⋃
p∈Cj

N4(p) = ∅, ∀ i, j ∈ {1, . . . ,nC}, i , j. (6.7)

In addition, let C ⊆ P(P) be the set of all possible CPGs C ⊆ P:

C B {C ⊆ P |C is connected}. (6.8)

Now that we have defined the goal of the segmentation step, both
informally and mathematically, we want to look at how the literature
on automatic image-based particle analysis deals with the problem.
We will do that in the following section.

6.2 related work

In about half of the publications on automatic image-based particle
analysis, the subject of segmentation is not covered at all. The rea-
son may be that each image contains only one centered particle or
that the segmentation is done manually. In those papers which ad-
dress the matter, we have found three general particle segmentation
approaches:
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• Finding round structures

• Edge-based segmentation

• Thresholding

In the following sections, these will be explained further.

6.2.1 Finding Round Structures

The approaches presented in this section assume that the particles to
be found are circular or elliptical. The used methods try to use this
feature to directly locate the particles.

Fisker et al. [2000] use an elliptic deformable template model to
find single elliptical nanoparticles and estimate their size distribution
directly. The authors state that their method “gives reliable estimates
of the size distribution when the particles are well separated and the
particle shape can be well approximated with ellipses.” In our case,
this is neither the case for the primary particles (most of them are
occluded by others) nor for the agglomerates (which have irregular
shapes and can even have holes in them). Therefore, the proposed
solution is unsuitable for our problem.

Rodriguez-Damian et al. [2006] propose a similar solution. They
use a circle Hough transform to detect circular pollen grains instead
of using classical segmentation. As with the previously mentioned
solution, this can only be used if the particles are round and well
separated.

Ranzato et al. [2007] filter their images at two scales with a differ-
ence of Gaussians and look for extrema to find biological particles in
human urine and airborne pollen grains. The algorithm is designed
for circular particles and requires their approximate size to be known
beforehand. As mentioned before, the sizes of agglomerates in our
images can vary to a great degree (see Section 2.2.3.1). Therefore, we
cannot use this solution either.

6.2.2 Edge-based Segmentation

Only one method falls into this category. It first tries to find the con-
tours of the particles in order to locate them. The method is proposed
and used by Calderon De Anda et al. [2005] to find organic crystals.
It is also used by Yu et al. [2007].

The approach consists of the following steps:

1. Edge detection

2. Morphological closing

3. Region filling
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4. Morphological opening

5. Removal of artifacts

The first step is done using the Canny edge detector and is performed
twice using two different Gaussian kernel widths. Their results are
combined to find the edges of the crystals. The closing step ensures
that there are no gaps in the contours. As a next step, the areas sur-
rounded by closed edges are filled. The opening step removes the
remaining edges which have not been filled. The last step consists of
removing all regions smaller than a minimum number of pixels to
ensure the removal of remaining artifacts.

The method is targeted at images where the background is irreg-
ular. It is unclear if the method is usable if the particles have holes.
A potential weakness of the approach is that a particle is completely
disregarded if its contour is not detected at all points.

6.2.3 Thresholding

Thresholding is by far the most popular segmentation approach in the
publications we have examined. The main idea is that the particles,
depending on the imaging technique, are brighter or darker than the
image background. Therefore, every pixel that has an intensity above
(below) a given threshold is regarded as belonging to a particle and all
other pixels as part of the image background. The main problem is the
determination of the optimal threshold. In addition, there are some
modifications to the base algorithm in the literature. An overview of
the used methods is given in this section.

Kindratenko et al. [1994] and Stachowiak et al. [2008] use threshold-
ing but do not give any details while ap Gwynn and Wilson [2001]
manually determine the threshold per image.

Germani and Buseck [1991] propose an iterative approach to find
the optimal threshold for the detection of atmospheric particles in
SEM. It consist of the following steps:

1. Calculate the mean and standard deviation of the image inten-
sity.

2. Reject every pixel whose intensity differs more than two times
the standard deviation from the mean.

3. Repeat Steps 1 and 2 until the change in the relative standard
deviation is less than 0.2. Note that for the computation of the
mean and standard deviation, only pixels which were not re-
jected are used.

4. The threshold is set to the mean plus three times the standard
deviation, calculated without the rejected pixels.
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Figure 6.2: An SEM image (1 pixel = 1.27nm) of Ag nanoparticles with an
average diameter of 75nm. Almost the entire image is occupied
by a single Ag agglomerate.

For the algorithm, it is assumed that the particles have a higher in-
tensity than the background. The authors say that a “particle loading
(projected particle area per SEM field-of-view area) of < 0.2 is neces-
sary for effective automatic thresholding.” Some of our images such
as the one in Figure 6.2 have a much higher particle loading than that.
Therefore, the algorithm is unsuitable for our problem.

Oleshko et al. [1996] use a threshold finding method by Brink
[1989]. The threshold is chosen such that the coefficient of correla-
tion between the original image and the binary image resulting from
the thresholding is maximized. The method works well for the TEM
images used in the paper because they have only very little contrast
inside of the particles while the difference between background and
particles is large. Our images, however, have in some cases a high
contrast inside the particles compared to the particle-background
difference. An example of this can be seen in Figure 6.3.

Oster [2010] uses a method by Zack et al. [1977] to find the thresh-
old for the segmentation of nanomaterials in SEM images. It chooses
the threshold based on the image histogram using geometrical means.
As the images used by Oster [2010] are very similar to ours, we have
found that the algorithm works well for the images examined in this
work. An explanation of the method will be given in Section 6.3.3.

In addition to the classical thresholding approach, there are some
variations known as dynamic or adaptive thresholding. Rather than
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Figure 6.3: An SEM image detail (1 pixel = 1.27nm) of engineered TiO2 na-
noparticles.

a constant threshold, these methods use a function which can give a
different threshold for every pixel of the image. The same approach
can also be interpreted as follows: A second image, such as an ap-
proximation of the background, is subtracted from the original one.
After that, classical thresholding is applied to the resulting image.

One such method is used by Flores et al. [2003]. They simply use
a smoothed version of the original image as the threshold function.
For large particles, the smoothing has to be strong, so that back-
ground pixels are taken into account. However, for small and faint
particles, the smoothing must not be too strong so that neighboring
particles with high intensities do not have too much influence on the
smoothed image. Therefore, the approximate size of the particles has
to be known beforehand. For the images targeted in this work, where
large bright and small faint particles can occur, the method is unsuit-
able.

Hans et al. [2010] use another variation to handle background inten-
sity variations. A morphological opening of the original image with a
round structuring element is performed. Its size must be larger than
the particle size so that the resulting image becomes an approxima-
tion of the image background. The result is then subtracted from the
original and a thresholding as proposed by Otsu [1979] is performed.
It works by minimizing the weighted sum of the variances of the
pixel intensities below and above the threshold. The weights are de-
termined by the number of pixels in each class.
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The requirements for the method used by Hans et al. [2010] are that
the structuring element is larger than the largest particle. In our case,
a large part of the image can be occupied by an agglomerate. There-
fore, the structuring element would have to be only slightly smaller
than the whole image. This would have no advantage as the method
converges to classical thresholding as the structuring element gets
larger. In addition, the computational complexity grows.

6.3 method

In this section, we will describe the method we use to perform a
segmentation of each image and to find the CPGs in it.

We have chosen to use thresholding to segment the images. This
has the following reasons:

• As is clearly visible in Figure 6.1, the engineered nanoparticles
always have a higher intensity than the image background.

• The background usually has a very homogeneous intensity.

• The segmentation method needs to be able to detect holes in an
agglomerate. An example of a hole can be seen in Figure 6.1. In
the lower right part of the agglomerate, a portion of the image
background is fully surrounded by nanoparticles. Most segmen-
tation methods apart from thresholding are not able to handle
such holes.

• Oster [2010] obtains good results using a thresholding approach
on images comparable to ours. In fact, the images have been
taken using the same microscope with similar parameters.

As the signal-to-noise ratio of SEM images is relatively low, apply-
ing thresholding to the raw images leads to small holes in the seg-
mentation of particles and background. This effect can be seen when
thresholding the image detail in Figure 6.4. The result is visible in Fig-
ure 6.5. Many pixels of the background are regarded as foreground
pixels by the thresholding. In addition, the segmentation of the ag-
glomerate contains small holes and its contour is very rough. Oster
[2010] successfully solves this problem by removing image noise us-
ing a filter prior to thresholding. Therefore, we have chosen to use a
noise removal method to avoid small holes in the segmentation, as
well.

Due to the different contrast and brightness settings used, each
image has individual noise parameters. In order to optimally remove
the noise in every image, the parameters of the noise removal method
have to be adjusted for each image individually. We therefore use an
algorithm to estimate the noise parameters of each image.

As a result of the thresholding, we obtain a binary image with
foreground and background pixels. In accordance with the decision
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Figure 6.4: An image detail (1 pixel = 1.27nm) of an agglomerate of TiO2
nanoparticles with an average diameter of 25nm.

Figure 6.5: A binary image resulting from thresholding the image in Fig-
ure 6.4 with a threshold of 20.5.
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to treat CPGs as a whole as outlined in Section 6.1, each connected
component of foreground pixels is treated as one CPG.

All in all, the workflow of the segmentation of every image is as
follows:

1. Noise estimation

2. Noise removal

3. Threshold determination

4. CPG search in thresholded image

These steps are explained in the following sections.

6.3.1 Noise Estimation

To optimally remove the noise in an image, the strength and distri-
bution of the noise have to be known. Since these are unknown, they
have to be estimated. Typically, it is assumed that the noise is Gaus-
sian distributed and uniform for each pixel [Olsen, 1993; Rank et al.,
1999]. However, this assumption does not hold for SEM images.

The electron generation and detection in an SEM is a Poisson pro-
cess [Joy, 2008]. Therefore, the number of detected electrons is Pois-
son distributed. This means that the noise is stronger in image parts
with higher intensities than in dark parts of the image. Noise having
this property is called shot noise.

As most noise estimation methods assume white noise [Olsen, 1993;
Rank et al., 1999], they are inappropriate to be used on SEM im-
ages. However, we found four existing approaches targeting signal-
dependent noise estimation, which we will briefly describe.

Healey and Kondepudy [1994], Ito et al. [2008] and Liu et al. [2008]
propose three different noise estimation methods targeted at CCD
camera images. All of these model signal-dependent noise. However,
CCD images have characteristics different from SEM images. For ex-
ample, the signal pipelines of CCD cameras contain steps such as
gamma correction. Furthermore, the method by Healey and Kon-
depudy [1994] requires estimating camera parameters using multiple
pairs of images of homogeneous surfaces. Using their approach, it is
not possible to estimate parameters for a single image. The algorithms
by Ito et al. [2008] and Liu et al. [2008] both need a so-called camera
response function, which models the signal pipeline processes and is
individual for each camera.

Foi et al. [2008] propose a method to estimate the noise parameters
of the raw data coming from an imaging sensor. It models Poissonian
and Gaussian Noise components.

While all of the mentioned solutions model signal amplification in
some form, none of their models include an additive term which is
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constant for all pixels of the image. In other words, all models as-
sume that an intensity of 0 corresponds to the case that no photons
(or in our case electrons) have been detected. This is not the case for
SEM because the brightness setting adds a constant term to the inten-
sity of every pixel of the image. Therefore, we will propose a novel
noise model for SEM images in the next section. In Section 6.3.1.2,
we will present an algorithm based on this model to estimate noise
parameters from a single image, which is specifically targeted at SEM
images.

6.3.1.1 Scanning Electron Microscopy Noise Model

As explained in Section 4.2.1, an SEM shoots electrons at the specimen
and detects how many secondary electrons escape the specimen. If we
assume that all microscope parameters including the position of the
specimen are fixed and that it takes an infinite number of images, we
can look at the probability distribution of the number of detected
electrons at each point of the specimen. In the following sections,
we will look at that distribution for a fixed point on the specimen.
This point corresponds to the same pixel in each image because the
specimen position and the microscope parameters are not changed.
We can interpret the number of electrons detected at that point as a
random variable c̃ : Ω → N. It reflects the probability of detecting a
certain number of electrons if we look at a random image from the
infinite set. We use the convention that the set Ω is a sample space
as defined in probability theory underlying all random variables in
this thesis. It is only used to define random variables and will not be
defined itself.

The random variable c̃ follows a Poisson distribution [Joy, 2008].
The probability of detecting exactly k ∈ N electrons is

P(c̃ = k) =
µk

k!
e−µ, ∀ k ∈ N. (6.9)

Here, µ ∈ R>0 is the average number of electrons detected at the
current point over multiple images of the same specimen at the same
position. This distribution occurs in scenarios where the number of
independent events is counted in a fixed time interval. Such scenarios
are called Poisson processes.

The expected value of c̃ is equal to µ:

E(c̃) = µ. (6.10)

In fact, the variance of c̃ is also equal to µ:

Var(c̃) = µ. (6.11)

As explained in Section 4.2.1, the microscope operator is able to
adjust the brightness and contrast settings in order to map the range
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of electron counts to the intensity range. As this mapping is linear, we
can define the intensity of the pixel corresponding to the point on the
specimen we have fixed as a random variable g̃ : Ω→ R as follows:

g̃ B ac̃+ b, (6.12)

where a ∈ R>0 corresponds to the contrast setting and b ∈ R<0 cor-
responds to the brightness setting. The values of a and b are constant
for each pixel of an image. However, their values are generally differ-
ent for separate images. Therefore, if we want to determine the noise
parameters, we have to estimate the values of a and b from a single
image.

Note, that we define g̃ as a real-valued random variable. In reality,
the intensities of our images can only take on integer values. However,
we assume that the effects of quantization are considerably smaller
than the inherent noise because of the low signal-to-noise ratio of
SEM (see Section 4.2.2.1). Modeling the quantization would make the
maths considerably more complex.

With this definition, we can compute the expected value of the in-
tensity g̃:

E(g̃) =
(6.12)

E(ac̃+ b)

= aE(c̃) + b
=

(6.10)
aµ+ b.

(6.13)

In a perfect image, g̃ = E(g̃) would hold for every pixel. Given the
values of a and b, which are determined by the microscope operator,
E(g̃) only depends on µ, which is a direct property of the specimen
at the current point.

In a given image, g̃ = E(g̃) will generally not hold. We can interpret
this noise as a random variable õ : Ω → R, which is added to the
optimal intensity E(g̃) to yield the observed intensity g̃:

õ B g̃−E(g̃). (6.14)

The expected value of the noise is 0:

E(õ) =
(6.14)

E(g̃−E(g̃))

= E(g̃) −E(g̃)
= 0.

(6.15)

This is so by definition because, in average, the pixel’s intensity is
E(g̃).

To determine the strength of the noise, we have to compute its
variance Var(õ):

Var(õ) =
(6.14)

Var(g̃−E(g̃))

= Var(g̃).
(6.16)
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Moreover, we can calculate:

Var(g̃) =
(6.12)

Var(ac̃+ b)

= Var(ac̃)

= a2Var(c̃)

=
(6.11)

a2µ.

(6.17)

Further, we can express it in terms of the expected intensity E(g̃):

Var(g̃) =
(6.17)

a2µ

= a(aµ+ b− b)

= a(aµ+ b) − ab

=
(6.13)

aE(g̃) − ab.

(6.18)

Using Equations (6.16) and (6.18), we get

Var(õ) = aE(g̃) − ab. (6.19)

This result shows that, contrary to the common assumption of
Gaussian noise, SEM images have signal-dependent noise. The noise
variance is a linear function of the average pixel intensity. Areas with
a higher intensity have a higher noise variance than darker image ar-
eas. But this also means that in order to calculate the noise variance
for a given image and intensity, we only need to determine the con-
trast setting a and the brightness setting b. As we do not know them,
they have to be estimated.

In order to do this, let us assume that we have two pixels with the
same probability distribution, which means that they have the same
average electron count µ. In addition, we assume that both pixels
have been recorded using the same values of a and b. Let the random
variables c̃1 : Ω → N and c̃2 : Ω → N be their electron counts and
g̃1 : Ω → R and g̃2 : Ω → R their intensities. These are independent
and have the same distribution as c̃ and g̃, respectively. Let s̃ : Ω→ R
be their sum:

s̃ B g̃1 + g̃2, (6.20)

and d̃ : Ω→ R their difference:

d̃ B g̃1 − g̃2. (6.21)
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With this, we can compute the expected squared difference given
the sum s ∈ aN+ 2b B {ai+ 2b ∈ R | i ∈ N}, using the definition c B
s−2b
a ∈ N for brevity:

E
(
d̃2
∣∣ s̃ = s)

=
(6.21)

E
(
(g̃1 − g̃2)

2
∣∣ s̃ = s)

=
(6.20)

E
(
(g̃1 − g̃2)

2
∣∣ g̃1 + g̃2 = s)

=
(6.12)

E
(
(ac̃1 + b− ac̃2 − b)

2
∣∣ac̃1 + b+ ac̃2 + b = s

)
= E

(
(a(c̃1 − c̃2))

2
∣∣∣a(c̃1 + c̃2) + 2b = s

)
= E

(
a2(c̃1 − c̃2)

2

∣∣∣∣ c̃1 + c̃2 = s− 2b

a

)
= a2 E

(
(c̃1 − c̃2)

2
∣∣ c̃1 + c̃2 = c)

=
(A.1)

a2

2c

c∑
i=0

(i− (c− i))2
(
c

i

)

=
a2

2c

c∑
i=0

(2i− c)2
(
c

i

)
= a2c

= a2
s− 2b

a
= as− 2ab, ∀ s ∈ aN+ 2b.

(6.22)

Here, we have used Equation (A.1), which can be found in Ap-
pendix A because it is not within the scope of this section.

This means that the expected squared difference of two indepen-
dent and identically distributed pixel intensities is linearly dependent
on their sum. This can be used to estimate the values of a and b. To
do this, we could take one pixel pair for each possible sum s and use
linear regression to estimate the slope a and y-intercept 2ab. To see
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how good such estimates can be, let us calculate the variance of the
squared difference given the sum s ∈ aN+ 2b:

Var
(
d̃2
∣∣ s̃ = s)

= E
((
d̃2 −E

(
d̃2
∣∣ s̃ = s))2 ∣∣∣ s̃ = s)

=
(6.22)

E
((
d̃2 − a2c

)2 ∣∣∣ s̃ = s)
=

(6.22)
E
((
d̃2 − a2c

)2 ∣∣∣ c̃1 + c̃2 = c)
=

(6.22)
E
((
a2(c̃1 − c̃2)

2 − a2c
)2 ∣∣∣ c̃1 + c̃2 = c)

= a4 E
((

(c̃1 − c̃2)
2 − c

)2 ∣∣∣ c̃1 + c̃2 = c)
=

(A.1)

a4

2c

c∑
i=0

(
(i− (c− i))2 − c

)2(c
i

)
= 2a4c(c− 1)

= 2a2c
(
a2c− a2

)
=

(6.22)
2E
(
d̃2
∣∣ s̃ = s)(E(d̃2 ∣∣ s̃ = s)− a2), ∀ s ∈ aN+ 2b.

(6.23)

We want the variance of an estimate to be considerably smaller
than its expected value. This is not the case for E

(
d̃2
∣∣ s̃ = s) and

Var
(
d̃2
∣∣ s̃ = s).

To solve this problem, let use take npp ∈ N>0 pixel pairs that have
been taken using the same values of a and b instead of only one.
The two pixels of each pair share the same average electron count µ.
However, the pixels of one pair may have a different µ from that of
another pair. In other words, the two pixels of a pair share the same
distribution while two pixels from different pairs may not. In addi-
tion, we assume that the random variables representing the electron
counts of all involved pixels are mutually independent.

For the pixel pair with the index i ∈
{
1, . . . ,npp

}
, let the random

variables s̃i : Ω → R and d̃i : Ω → R be the sum and difference
of their intensities, respectively. Then, we can define average squared
intensity difference as a random variable ṽ : Ω→ R:

ṽ B
1

npp

npp∑
i=1

d̃2i . (6.24)
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If we assume that all pixel pairs have the same sum, we can show that
the expected value of ṽ given the sum is equal to E

(
d̃2
∣∣ s̃ = s):

E
(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s

)
=

(6.24)
E

(
1

npp

npp∑
i=1

d̃2i

∣∣∣∣∣ s̃1 = · · · = s̃npp = s

)

=
1

npp

npp∑
i=1

E
(
d̃2i

∣∣∣ s̃1 = · · · = s̃npp = s
)

=
1

npp

npp∑
i=1

E
(
d̃2i
∣∣ s̃i = s)

=
(6.22)

1

npp

npp∑
i=1

a2c

= a2c

= as− 2ab, ∀ s ∈ aN+ 2b.

(6.25)

In the third step, we have used that the random variables representing
the electron counts of different pixels are independent.

With this result, we can group pixel pairs by their sum s and use
linear regression on their average squared difference to estimate the
values of a and b. We can also show that the variance of ṽ given the
sum is npp times smaller than Var

(
d̃2
∣∣ s̃ = s):

Var
(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s

)
=

(6.24)
Var

(
1

npp

npp∑
i=1

d̃2i

∣∣∣∣∣ s̃1 = · · · = s̃npp = s

)

=
1

npp2
Var

(npp∑
i=1

d̃2i

∣∣∣∣∣ s̃1 = · · · = s̃npp = s

)

=
1

npp2

npp∑
i=1

Var
(
d̃2i

∣∣∣ s̃1 = · · · = s̃npp = s
)

=
1

npp2

npp∑
i=1

Var
(
d̃2i
∣∣ s̃i = s)

=
(6.23)

1

npp2

npp∑
i=1

2a4c(c− 1)

=
2

npp
a4c(c− 1)

=
2

npp
a2(s− 2b)((s− 2b) − a), ∀ s ∈ aN+ 2b.

(6.26)

Again, in steps three and four, we used the fact that the random vari-
ables are independent. As the variance shrinks with npp, one can
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obtain a good estimate by using many pixel pairs. Also note that the
variance depends on the value of s. This is called heteroscedasticity
and has to be taken into account when performing the linear regres-
sion.

In order to estimate the values of a and b, we need good estimates
of E

(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s

)
for multiple values of s. To obtain these

estimates, we need many pixel pairs where both pixels have the same
average electron count µ. Healey and Kondepudy [1994] suggest us-
ing corresponding pixels of two images taken with the same configu-
ration. In our case, that would mean taking two images at the same
position of the specimen using the same microscope settings. How-
ever, this is infeasible due to several reasons:

• The approach would be very time-consuming. As mentioned be-
fore, it takes very long to record SEM images with a reasonable
resolution and signal-to-noise ratio. Taking two images of each
specimen position would result in only having half the number
of images for analysis.

• Existing images of which only one version is available could
not be used at all because the exact circumstances under which
they were taken are not reproducible in order to take a second
image.

• The electron beam may alter the specimen. An example for this
effect is that gas residuals can form a layer on the specimen (see
Section 4.2.2.5). This way, a second image would have different
characteristics than the first [Ribeiro and Shah, 2006].

• The point on the specimen that maps to a given pixel may
change between the two images. In other words, the electron
beam may scan different points on the specimen for the same
pixel even if the specimen position is not altered. This effect
can be caused by small fluctuations such as vibrations (see Sec-
tion 4.2.2.2).

Due to these reasons, we have decided to assume that neighboring
pixels in the same image have the same probability distribution. There
are several factors that permit this assumption:

• Our images have high magnifications and pixel counts. That
means that neighboring pixels represent points on the specimen
that are very close together. These are very likely to have similar
material properties and surface orientations.

• Most of the images we use have large homogeneous regions
where neighboring pixels have the same expected intensity.

• The images are slightly blurry because the electron beam diam-
eter is larger than the pixel size. Therefore, neighboring pixels
represent overlapping areas on the specimen.
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Although this assumption is reasonable, it is not always the case, es-
pecially at edges in the images. Therefore, we need a way to exclude
pixel pairs that violate our assumption from the estimation. In order
to do that, let us define the average intensity difference of the pixel
pairs as a random variable ũ : Ω→ R:

ũ B
1

npp

npp∑
i=1

d̃i. (6.27)

We want to calculate its expected value given the sum. To do that, we
need the expected intensity difference of two pixels given the sum:

E
(
d̃
∣∣ s̃ = s)

=
(6.21)

E(g̃1 − g̃2 | s̃ = s)

=
(6.20)

E(g̃1 − g̃2 | g̃1 + g̃2 = s)

= E(g̃1 | g̃1 + g̃2 = s) −E(g̃2 | g̃1 + g̃2 = s)
= E(g̃1 | g̃1 + g̃2 = s) −E(g̃1 | g̃2 + g̃1 = s)
= 0, ∀ s ∈ aN+ 2b.

(6.28)

Here, we have used that g̃1 and g̃2 have the same probability distri-
bution. With this result, we can calculate the expected value of the
average intensity difference given the sum:

E
(
ũ
∣∣∣ s̃1 = · · · = s̃npp = s

)
=

(6.27)
E

(
1

npp

npp∑
i=1

d̃i

∣∣∣∣∣ s̃1 = · · · = s̃npp = s

)

=
1

npp

npp∑
i=1

E
(
d̃i

∣∣∣ s̃1 = · · · = s̃npp = s
)

=
1

npp

npp∑
i=1

E
(
d̃i
∣∣ s̃i = s)

=
(6.28)

1

npp

npp∑
i=1

0

= 0, ∀ s ∈ aN+ 2b.

(6.29)

In the second step, we have once again used the fact that the random
variables are independent.

This means that if neighboring pixels have the same intensity dis-
tribution, the average difference of multiple pairs will be close to 0. If
this is not the case, our assumption will probably be violated. We can
use this to remove these pixels from the estimation. In order to see



6.3 method 73

how small the average difference has to be, we want to calculate the
variance of ũ. To do that, we need to compute Var

(
d̃
∣∣ s̃ = s) first:

Var
(
d̃
∣∣ s̃ = s)

= E
((
d̃−E

(
d̃
∣∣ s̃ = s))2 ∣∣∣ s̃ = s)

=
(6.28)

E
(
d̃2
∣∣ s̃ = s)

=
(6.22)

as− 2ab, ∀ s ∈ aN+ 2b.

(6.30)

Now, we can calculate Var
(
ũ
∣∣∣ s̃1 = · · · = s̃npp = s

)
:

Var
(
ũ
∣∣∣ s̃1 = · · · = s̃npp = s

)
=

(6.27)
Var

(
1

npp

npp∑
i=1

d̃i

∣∣∣∣∣ s̃1 = · · · = s̃npp = s

)

=
1

npp2

npp∑
i=1

Var
(
d̃i

∣∣∣ s̃1 = · · · = s̃npp = s
)

=
1

npp2

npp∑
i=1

Var
(
d̃i
∣∣ s̃i = s)

=
(6.30)

1

npp2

npp∑
i=1

as− 2ab

=
1

npp
(as− 2ab), ∀ s ∈ aN+ 2b.

(6.31)

If the average intensity difference of a set of pixel pairs with the same
sum deviates from 0, we can compare that deviation to the standard
deviation

√
as−2ab
npp

. This way, we can assess whether our assump-
tion is violated.

6.3.1.2 Noise Estimation Algorithm

Our goal is to calculate the noise variance Var(õ) as a function of the
local image intensity. We can do this using Equation (6.19) if we have
estimates of a and b. In Equation (6.25), we have seen that there is
a linear relationship between s and E

(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s

)
, whose

parameters depend on the values of a and b. This means that if we
estimate E

(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s

)
for different values of s, we will

be able to estimate the values of a and b with linear regression.
To calculate these estimates, we want to use neighboring pairs of

pixels from the given image. This is possible because the probability
distributions of the electron counts of the two pixels are very similar
in most cases.

The SEM we use captures images row-wise. Therefore, we have cho-
sen to use horizontally neighboring pixel pairs as they are captured
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in direct succession. Between rows, small fluctuations may change the
probability distribution governing the electron counts which violates
our assumption. Additionally, each pixel is used in only one pixel
pair. Otherwise, different pixel pairs would not be independent.

While the theoretical model describes the pixel generating process
relatively well, it does not take intensity clipping into account. If the
amplified signal is too high (or low) for the available intensity range,
its value is clipped to the highest (or lowest) available intensity (see
Section 4.2.2.3). To reduce the impact of intensity clipping on our es-
timates, we have chosen to remove all pixel pairs from the estimation
process, where at least one pixel has the lowest or highest available
intensity. This cannot fully remove the impact of intensity clipping.
However, it reduces its impact.

Figure 6.6 shows a plot which has been generated by grouping
all pixel pairs of the image in Figure 1.2 on Page 5 by the sum s of
their intensities, calculating the average squared intensity difference
using Equation (6.24) and plotting these pairs. As indicated by the
black line, there is a clear linear relationship. For the values of s from
about 30 to 250, there are outliers in the plot. These stem from the
edges in the image where our assumption is not valid. Note that we
have not removed points that are likely to violate our assumption
for this plot. In addition, for very low and very high values of s, the
average squared intensity difference is smaller than expected. This is
due to intensity clipping. Because of these outliers, we have chosen to
use a robust estimation method instead of simple linear least squares.
We use an M-estimation algorithm called iteratively reweighted least
squares because it is reliable and easy to compute [Maronna et al.,
2006, p. 87].

As shown in Equation (6.26), the variance of the estimates changes
based on the value of s and the number of pixel pairs used to obtain
the estimate. This means that the estimates are better for smaller val-
ues of s and a higher pixel pair count. Figure 6.6 is color-coded to
indicate how many pixel pairs where used to calculate each estimate.
It can be seen that the data points following the linear relationship
have been obtained using far more pixel pairs than the outliers and,
thus, are better estimates. In order to use this information, we divide
the coordinates of each data point by the expected standard devia-
tion derived from Equation (6.26) during the regression as suggested
by Maronna et al. [2006, p. 154]. However, to calculate the standard
deviation, we need the values of a and b. Therefore, in the first run,
we divide the data by

√
1
npp

to obtain initial estimates of a and b

and then perform a second run where the points are divided by their
standard deviations.

As mentioned before, Equations (6.29) and (6.31) allow us to detect
values of s for which our assumption is violated. If, for instance, in
the area of a particle edge, the right pixels of each pair are commonly
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Figure 6.6: The average squared intensity differences vs of all horizontal
pixel pairs of the image in Figure 1.2 on Page 5 grouped by their
sum s. The y-coordinate of each point represents the average
squared intensity difference vs of all pixel pairs whose intensity
sum s is equal to the x-coordinate of the point. Its color codes the
number npp(s) of pixel pairs that have that sum s. The black line
illustrates the linear relationship between s and vs. The data has
been calculated using Algorithm 6.1 with ntile = 1, which will be
introduced later in this chapter.
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Figure 6.7: The same data as in Figure 6.6 except that points for which
|us| >

√
1

npp(s)
(as− 2ab) holds have been removed (see Equa-

tion (6.31)). The removal has been performed as outlined in Al-
gorithm 6.2 in Line 12.
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brighter than the left pixels, the average intensity difference of the
pairs deviates from 0. In this case, we want to remove those pixel pairs
from the estimation. We have chosen to remove the sets of pixel pairs
where the average intensity sum deviates more than the standard
deviation from 0. This way, we remove approximately 32% of the
estimates that meet our assumption. However, the estimates that vio-
late our assumption are more likely to be removed. Consequently, the
fraction of pixel pairs violating our assumption gets smaller, which
leads to more accurate results. Figure 6.7 shows the same data as Fig-
ure 6.6 with the exception that the points where the absolute average
intensity difference is larger than the standard deviation have been re-
moved. Especially the number of outliers with values of s from about
30 to 250 has been reduced. This is the expected result because these
stem from the edges in the image. Since relatively good estimates of a
and b are required to calculate the standard deviation, we only apply
this step in a third regression pass in addition to dividing each point
by its standard deviation to compensate for heteroscedasticity.

One remaining problem is that left and right edges cancel each
other out in the computation of the average intensity difference. This
prevents estimates violating our assumption from being removed. To
avoid this, we split the image into ntile×ntile uniform tiles with ntile ∈
N>0 and calculate the estimates separately for each tile. This way, the

left and right edges of a larger particle are likely to lie in different tiles
which prevents them from canceling each other out.

The goal of our algorithm is to find the vector ~α =
(

â
−2âb̂

)
∈ R2

where â and b̂ are estimates of a and b, respectively. Equation (6.25)
tells us that if these estimates were correct, ~α would solve the follow-
ing equation:

s1 1

s2 1

s3 1
...

...

 · ~α =


E
(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s1

)
E
(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s2

)
E
(
ṽ
∣∣∣ s̃1 = · · · = s̃npp = s3

)
...

, (6.32)

where s1, s2, s3, · · · ∈ R are the possible sums of two intensities.
The steps of our method are detailed in Algorithms 6.1 and 6.2. The

main algorithm is Algorithm 6.2. Its first step is to call Algorithm 6.1,
which computes values of npp, ṽ and ũ grouped by intensity sum
s and image tile. These values are then returned as vectors to the
main algorithm. As a next step, a matrix �

s similar to the one in Equa-
tion (6.32) is constructed and used to obtain a first estimate ~α using
simple linear least squares. Then, iteratively reweighted least squares
is used three times to improve the estimate. First, it is used on the
original data. In the second and third round, the data is divided by
the estimated standard deviation to account for the heteroscedasticity.
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Algorithm 6.1 : ExtractEstimates(f,ntile)
Input : An image f : P → G and the parameter ntile ∈ N>0, which

determines into how many tiles the image is split.
Output : Vectors ~s, ~npp,~v, ~u ∈ R|G+G|·ntile

2
.

1 Split the image f into ntile ×ntile uniform tiles.
2 for each tile i ∈

{
1, . . . ,ntile

2
}

do
3 Find as many horizontally neighboring pixel pairs in tile i so

that no pixel is shared between two pixel pairs.
4 for every possible intensity sum s ∈ G+G do
5 Let npp(s, i) ∈ N be the number of pixel pairs in tile i

whose intensity sums are equal to s and of which neither
possesses the minimum or maximum possible intensity.

6 Let ds,i,1, . . . ,ds,i,npp(s,i) ∈ R be the intensity differences
of these pairs.

7 if npp(s, i) > 0 then

8 vs,i B
1

npp(s,i)

npp(s,i)∑
j=1

d2s,i,j. // See Equation (6.24).

9 us,i B
1

npp(s,i)

npp(s,i)∑
j=1

ds,i,j. // See Equation (6.27).

10 end
11 end
12 end
13 Define the vectors ~s, ~npp,~v, ~u ∈ R|G+G|·ntile

2
as follows. If any of

the vs,i or us,i are not defined (i.e. if npp(s, i) = 0), leave out the
corresponding entries in all vectors. In this case, all vectors have
fewer than |G+G| ·ntile

2 entries:

~s B



s1
...

s1

s2
......

s|G+G|


, ~npp B



npp(s1, 1)
...

npp(s1,ntile
2)

npp(s2, 1)
......

npp(s|G+G|,ntile
2)


,

~v B



vs1,1
...

vs1,ntile
2

vs2,1
......

vs|G+G|,ntile
2


, ~u B



us1,1
...

us1,ntile
2

us2,1
......

us|G+G|,ntile
2


.

(6.33)

return ~s, ~npp,~v, ~u.
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Algorithm 6.2 : EstimateNoiseParameters(f,ntile)
Input : An image f : P → G and the parameter ntile ∈ N>0, which

determines into how many tiles the image is split.
Output : Estimates â, b̂ ∈ R of the noise parameters a and b of

the image f.
1 ~s, ~npp,~v, ~u B ExtractEstimates(f,ntile). // See Algorithm 6.1.

// Define the matrix
�
s ∈ R(|G+G|·ntile

2)×2 with

|G+G| ·ntile
2 rows and 2 columns so that the first

column is equal to ~s and the second column contains

only 1s (Note that vector and matrix entries are

accessed using indices inside parentheses):

2
�
s(k, 1) B ~s(k), �s(k, 2) B 1, ∀ k ∈

{
1, . . . , |G+G| ·ntile

2
}

// Calculate an initial estimate ~α0 ∈ R2 of the solution

to the equation
�
s~α0 = ~v (see Equation (6.32)) using

linear least squares (
�
s
T

is the transpose of
�
s):

3 ~α0 B
(
�
s
T �
s
)−1

�
s
T
~v. // Initial estimate. Can optionally be

weighted using ~npp as in Lines 6 to 9.

4 for j = 1, 2, 3 do
// Define

�
sj ∈ R(|G+G|·ntile

2)×2 and ~vj ∈ R(|G+G|·ntile
2) by

dividing each row of
�
s and ~v by the estimated

standard deviation of ṽ (see Equation (6.26)) as

suggested by Maronna et al. [2006, p. 154]:

5 for k ∈
{
1, . . . , |G+G| ·ntile

2
}

do

6 σ̂ṽ B


√

1
~npp(k)

, if j = 1,√
2â2j−1(~s(k)−2b̂j−1)((~s(k)−2b̂j−1)−âj−1)

~npp(k)
, else.

7
�
sj(k, 1) B �

s(k, 1)/σ̂ṽ.
8

�
sj(k, 2) B �

s(k, 2)/σ̂ṽ.
9 ~vj(k) B ~v(k)/σ̂ṽ.

10 end
11 if j = 3 then
12 Remove all rows k ∈

{
1, . . . , |G+G| ·ntile

2
}

of �sj and ~vj

for which |~u(k)| >
√

1
~npp(k)

(
âj−1~s(k) − 2âj−1b̂j−1

)
holds.

// See Equation (6.31).

13 end
// Perform iteratively reweighted least squares

[Maronna et al., 2006, p. 105] to obtain the

estimate ~αj as the solution to the equation
�
sj~αj = ~vj with the initial estimate ~αj−1:

14 ~αj B IterativelyReweightedLeastSquares(�sj,~vj, ~αj−1).
// See Algorithm B.1 in Appendix B on Page 205.

// Extract the estimates âj ∈ R and b̂j ∈ R from ~αj:

15 âj = ~αj(1).

16 b̂j = −
~αj(2)
2âj

.

17 end
18 return â B â3, b̂ B b̂3.
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In the third pass, the data points where the absolute average inten-
sity difference deviates more than its standard deviation from 0 are
removed, as well.

The iteratively reweighted least squares algorithm [Maronna et al.,
2006, p. 105] used in our method is a robust replacement of simple
least squares. Understanding its functional principle is not necessary
to understand our method. However, the interested reader can find
its steps in Algorithm B.1 in Appendix B on Page 205.

Using the method described in this section, we are able to estimate
the values of a and b for a given image. This allows us to calculate the
noise variance given the expected pixel intensity using Equation (6.19)
and, thus, to adjust the parameters of a noise removal method to fit
the noise of the image. This process is explained in the next section.

6.3.2 Noise Removal

Having estimated the contrast-setting a and the brightness-setting
b of an image, we know the characteristics of the image noise via
Equation (6.19). This knowledge can be used to adjust a noise filter
to the noise characteristics of each image. Removing heteroscedastic
noise can be done using one of two approaches [Foi, 2009]:

• Use an algorithm specifically designed for heteroscedastic
noise.

• Employ a variance-stabilizing transformation to make the im-
age noise homoscedastic, which means that the noise of each
pixel has the same variance, and then use any filter designed
for Gaussian noise.

We have chosen to use the second approach because much more re-
search has been done on removing white noise than signal-dependent
noise. As a result, a much greater number of methods targeting ho-
moscedastic noise have been proposed. Section 6.3.2.1 describes how
the variance-stabilizing transformation works and Section 6.3.2.2 de-
tails the removal of the homoscedastic noise.

6.3.2.1 Variance-Stabilizing Transformation

Noise removal using variance-stabilizing transformation has three
steps [Foi, 2009]:

1. The value of each pixel is converted using a transformation for-
mula so that the noise of the resulting image has an approxi-
mately fixed variance.

2. A denoising algorithm for additive white noise is applied to the
transformed image.
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3. The inverse transformation is applied to each pixel of the result-
ing image.

The result of this process is a denoised image.
For signals resulting from a Poisson process, the Anscombe trans-

formation (also called Anscombe transform) proposed by Anscombe
[1948] is used for this purpose. Its formula is as follows:

2

√
c̃+

3

8
, (6.34)

where c̃ is the original signal, which, in our case, is the electron count.
Simply using the inverted formula as the inverse transformation leads
to a biased result [Mäkitalo and Foi, 2011b]. We therefore use the un-
biased inverse transformation proposed by Mäkitalo and Foi [2011a].

In addition to the basic transformation, we first have to invert the
scaling performed by the SEM using the estimated contrast setting â
and brightness setting b̂ gained using Algorithm 6.2. At the end of
the whole procedure, the scaling is reapplied to the resulting image.

The whole algorithm is described in Algorithm 6.3. Here, the pa-
rameter RemoveNoise is the denoising algorithm targeted at additive
white noise. We use a method called non-local means for this task. It
will be explained in the next section.

6.3.2.2 Homoscedastic Noise Removal

The Anscombe transform, which we described in the previous section,
allows us to use a standard noise removal method targeted at white
noise for our SEM images. We have chosen to use an algorithm called
non-local means by Buades et al. [2005b] for this task. This has several
reasons:

• It makes no concrete assumptions about the image content such
as the direction of edges. Assumptions true for most types of
images could be false for SEM images as these do not stem
from an optical process.

• Non-local means proves to be the best algorithm in a review by
Buades et al. [2005a], especially for images with a low signal-to-
noise ratio, as is the case for SEM images.

• In our experience, the algorithm removes no visible image de-
tails. It even preserves small image artifacts that are not the
effect of noise. This can be seen in Figure 6.8.

• A microscopy expert confirmed that non-local means coupled
with our noise estimation method and the Anscombe transform
is able to improve the effective resolution of SEM images [Kock-
entiedt et al., 2013].
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Algorithm 6.3 : ScaledAnscombeTransform
(
f, â, b̂, RemoveNoise

)
Input : An image f : P → G with scaled Poisson noise, estimates

â ∈ R>0, b̂ ∈ R<0 of the noise parameters a and b and an
algorithm RemoveNoise to remove white noise.

Output : An image f ′ : P → G, where the noise has been
removed.

1 Let f1 : P → R be an empty image. for p ∈ P do
// The estimated electron count of pixel p (see

Equation (6.12)):

2 ĉ B
f(p)−b̂
â .

// Perform the Anscombe transform [Anscombe, 1948]:

3 f1(p) B 2
√
ĉ+ 3

8 .

4 end
// f1 now has an approximately uniform noise variance of

1. Apply the noise removal method to it:

5 f2 B RemoveNoise(f1).
6 Let f3 : P → R be an empty image. for p ∈ P do

// Perform the inverse Anscombe transform [Mäkitalo

and Foi, 2011a]:

7 ĉavg B
1
4(f2(p))

2 +
√
6
8 (f2(p))

−1 − 11
8 (f2(p))

−2 + 5
√
6

16 (f2(p))
−3 − 1

8 .
8 f3(p) B âĉavg + b̂. // See Equation (6.12).

9 end
10 Obtain the final image f ′ : P → G by rounding the values of f3 to

values in G.
11 return f ′.

(a) Jagged edges caused by vibrations or
electromagnetic radiation in an image
detail (1 pixel = 1.27nm) of TiO2 na-
noparticles.

(b) The same image detail after applying
our noise removal approach. Global
intensity differences are due to differ-
ent intensity scalings.

Figure 6.8: SEM image artifacts before and after application of our noise
removal method. The result is a very smooth image where edges
and artifacts are preserved.
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• As Figure 6.8 shows, the method is able to provide smooth re-
sults without disturbing edges in the images. This is especially
important as the resulting images are only used for threshold-
ing. They are not used for further analysis.

The premise of the non-local means algorithm is that the value of
each pixel of the resulting image is a weighted average of all pixels of
the original image. This is similar to the concept of a Gaussian filter.
In contrast to the Gaussian filter, however, the weight of a pixel does
not depend on its distance to the center pixel. Instead, the weight
depends on the similarity of the pixel’s neighborhood to the neigh-
borhood of the center pixel, where the size of each neighborhood is
(2rn+ 1)× (2rn+ 1) pixels and rn ∈ N>0 is the neighborhood radius.
In other words, if the neighborhood of pixel p in the original image is
more similar to the neighborhood of pixel p1 than to the one of pixel
p2, the weight of p1 in the computation of the new value of p will be
greater than the weight of p2.

However, since it is computationally not feasible to compare the
neighborhoods of every pixel pair, the search for similar pixels is
restricted to a so-called search window of size (2rs + 1)× (2rs + 1)

pixels around the center pixel, where rs ∈ N>0 is the search window
radius.

In addition, the algorithm has a filtering parameter η ∈ R>0, which
determines how strong the image is smoothed.

The steps of the method are listed in Algorithm 6.4. For the sakes
of brevity and understandability, we left out image edge handling in
the listing. We use a modified version of the implementation by Kroon
[2010]. It restricts the search window to the bounds of the image and
mirrors the pixels inside the image to compute the pixel values of a
neighborhood that lie outside the image.

When comparing two neighborhoods, pixels closer to the center of
the neighborhood have more influence than pixels at the edges. This
is achieved by weighting the convolution using the Gaussian kernel G.
In the implementation we use, its value is calculated as 2rn+14 , which
is a fourth of the kernel width.

Now, we have all the building blocks for estimating the parame-
ters of scaled Poisson noise and removing it. Algorithm 6.5 shows
the full process as it is used by us. In the listing, the expression
ScaledAnscombeTransform(f, â, b̂, NonLocalMeans( · , rn, rs,η)) signi-
fies that NonLocalMeans is used as the parameter RemoveNoise of the
algorithm ScaledAnscombeTransform using the fixed parameters rn,
rs and η.

Note that we use noise removal only for the thresholding and not
for any other image analysis task such as the computation of features.
The process yields optically superior images to the originals and we
do not observe that the method removes any meaningful image de-
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Algorithm 6.4 : NonLocalMeans(f, rn, rs,η)
Input : An image f : P → R with white noise, the neighborhood

radius rn ∈ N>0, the search window radius rs ∈ N>0 and
the filtering parameter η ∈ R>0.

Output : An image f ′ : P → R, in which the noise has been
removed.

1 Let G : {−rn, . . . , rn}× {−rn, . . . , rn}→ R>0 be a Gaussian kernel
with sum 1.

2 Let f ′ : P → R be an empty image. for p = (px,py) ∈ P do
// Define the search window for pixel p:

3 P ′ B {px − rs, . . . ,px + rs}× {py − rs, . . . ,py + rs}.
// Calculate the weights of the pixels in the search

window by comparing their neighborhood to the

neighborhood of p (An appropriate image edge

handling method has to be used.):

4 for p ′ =
(
p ′x,p ′y

)
∈ P ′ do

5 wpx(p
′) B e

−

rn∑
i,j=−rn

G(i,j)·(f(px+i,py+j)−f(p ′x+i,p ′y+j))
2

η2 .
6 end

// Calculate the new value of pixel p as the weighted

average of the pixel values in the search window:

7 f ′(p) B 1∑
p ′∈P ′

wpx(p ′)

∑
p ′∈P ′

wpx(p
′) · f(p ′).

8 end
9 return f ′.

Algorithm 6.5 : RemoveScaledPoissonNoise(f,ntile, rn, rs,η)
Input : An image f : P → G with scaled Poisson noise, the

parameter ntile ∈ N>0, which determines into how many
tiles the image is split, the neighborhood radius
rn ∈ N>0, the search window radius rs ∈ N>0 and the
filtering parameter η ∈ R>0.

Output : An image f ′ : P → G, where the noise has been
removed.

1 â, b̂ B EstimateNoiseParameters(f,ntile).
2 f ′ B ScaledAnscombeTransform(f, â, b̂, NonLocalMeans( · , rn, rs,η)).
3 return f ′.
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Figure 6.9: An SEM image (1 pixel = 1.27nm) of ZnO nanoparticles with an
average diameter of 10nm.

tails. However, we cannot rule out the possibility that in addition to
noise, the algorithm removes small image variations that a feature
can use to differentiate particle types. In fact, we have observed that
computing our features on filtered images leads to a reduced classifi-
cation performance.

After removing the image noise, the next step is to determine the
threshold used to segment the image. This will be explained in the
next section.

6.3.3 Threshold Determination

As a next step, we want to find a threshold to split the image into
background and foreground in order to find all CPGs in it. To do
that, we have to define the so-called absolute histogram Hf : G → N
of an image f : P → G:

Hf(g) B
∑
p∈P

1, if f(p) = g,

0, else,
∀ f : P → G,g ∈ G. (6.35)

This function can also be represented by a graph. Figure 6.10 shows
the histogram of the image in Figure 6.9. It has only one prominent
peak. This is typical for the images we use because most of the area
of a particular image is taken up by the background. In addition, the
background has a narrow intensity range in contrast to most particles.
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Figure 6.10: A graph of the histogram of the image in Figure 6.9. The peak at
an intensity of 11 represents the image background. The inten-
sity distribution of the image foreground is barely visible and
has a peak at an intensity of about 90.

Most thresholding methods assume that the histogram is bimodal.
This means that the intensities consist of two distinct distributions
which are clearly discernible and of approximately equal proportions
in the histogram. However, as seen in Figure 6.10, this is not the case
for the images we use. While there are in fact two distributions, the
one stemming from the particles is usually much less prominent than
the background distribution in the histogram. Although the agglom-
erate takes up a considerable portion of the image because it is very
large, its intensity distribution with a peak between 80 and 100 is
only barely visible. In a typical image, which shows much smaller
agglomerates, the foreground distribution is not visible without mag-
nification.

Oster [2010] successfully uses a method targeted at images with
only one peak in their histograms on images very similar to ours. In
fact, those images have been taken using the same microscope that
was used to record our images. Therefore, we have decided to use
the same method, which has been proposed by Zack et al. [1977] and
further analyzed by Rosin [2001].

The algorithm assumes that the image intensities stem from two
distributions, from which the first has lower intensities and is much
more prominent than the second. It does not require that the second
distribution is discernible in the histogram, which makes it a good
choice for our images. The approach works by drawing a line from
the tallest peak in the histogram to the intersection of the highest
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Figure 6.11: An illustration of the thresholding method by Zack et al. [1977]
using the histogram from Figure 6.10. The tallest peak is con-
nected to the highest occurring intensity using a straight line
(solid line). Then, the point on the histogram between these two
intensities that has the greatest distance to the line is chosen
(dashed line). Finally, a constant offset is added to the found
intensity to obtain the threshold (not displayed).

occurring intensity and the x-axis. As a next step, the point between
these two intensities with the greatest distance to the line is taken.
Finally, a fixed offset is added to the found intensity to obtain the
final threshold. This process is illustrated in Figure 6.11 and formally
described in Algorithm 6.6.

In addition to this method, we have also tested an algorithm by Kit-
tler and Illingworth [1986], which shows the best results in a compar-
ison with 40 other approaches [Sezgin and Sankur, 2004]. The work-
flow of the technique, which is called minimum error thresholding,
is as follows:

1. Split the histogram at every possible threshold into two parts.

2. For every threshold and for each of the two parts, compute the
mean, standard deviation and relative frequency and model a
weighted Gaussian distribution using these parameter values.

3. For every threshold, compute the value of a criterion function,
which indirectly reflects the amount of overlap between the
Gaussian models of the two parts.

4. Take the threshold with the minimum value of the criterion
function.
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Algorithm 6.6 : UnimodalThresholding(f, δ)
Input : An image f : P → G and an offset parameter δ ∈ R.
Output : A threshold gT.
// Find the mode of the histogram:

1 g1 B arg max
g∈G

Hf(g).

// Find the maximum intensity of the image:

2 g2 B max({g ∈ G |Hf(g) > 0}).
// Find the point in the histogram with the greatest

distance to the line between the points (g1,Hf(g1))
and (g2, 0):

3 g3 B arg max
g∈G,g16g<g2

((g2 − g1)(Hf(g1) −Hf(g)) − (g− g1)Hf(g1)).

4 return gT B g3 + δ.

In contrast to the algorithm by Zack et al. [1977], this method as-
sumes that there are two distinct and prominent modes in the his-
togram. As a consequence, it has shown worse results in our experi-
ments (see Section 6.4.3). We therefore use the method by Zack et al.
[1977] in our system.

After finding an appropriate threshold, the next step is to search
for CPGs in the image. This will be explained in the next section.

6.3.4 CPG Search

After a threshold has been found, the image can be split into fore-
ground PFG ⊆ P and background PBG ⊆ P. The foreground repre-
sents the area of the image where any kind of particle is visible and
the background is its complement:

PBG B P \ PFG. (6.36)

The foreground is found by taking every pixel whose intensity is
higher than the calculated threshold. This approach works well for
images that contain particles. However, in cases where an image con-
tains no particles, the threshold finding method sometimes fails. As
a consequence, large portions of the background have an intensity
higher than the threshold and are thus regarded as foreground.

To avoid this, we need an algorithm to detect empty images. In
our dataset, after the noise removal step, the difference of the highest
intensity of any empty image and the one of the darkest non-empty
image is 13 (see Section 6.4.4). Therefore, using a threshold ξ ∈ R to
determine if an image is empty works well for our dataset.

The whole algorithm to find the image foreground PFG is listed
in Algorithm 6.7. Figure 6.12 shows the foreground of the image in
Figure 1.2 on Page 5.
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Algorithm 6.7 : FindImageForeground(f,ntile, rn, rs,η, ξ, δ)
Input : An image f : P → G with scaled Poisson noise, the

parameter ntile ∈ N>0, which determines into how many
tiles the image is split for the noise estimation, the
neighborhood radius rn ∈ N>0, the search window radius
rs ∈ N>0, the filtering parameter η ∈ R>0, the empty
image threshold ξ ∈ R and the threshold offset δ ∈ R.

Output : The image foreground PFG ⊆ P.
1 f ′ B RemoveScaledPoissonNoise(f,ntile, rn, rs,η).
2 if max

p∈P
(f ′(p)) > ξ then

3 gT B UnimodalThresholding(f ′, δ).
4 PFG B {p ∈ P | f ′(p) > gT}.
5 else
6 PFG B ∅.
7 end
8 return PFG.

Figure 6.12: The foreground PFG of the image in Figure 1.2 on Page 5 repre-
sented as white pixels on a black background.
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As a next step, the image foreground has to be split into CPGs
C1, . . . ,CnC ⊆ PFG as introduced in Section 6.1. Each one has to be
connected as defined on Page 57 and they must satisfy Equation (6.7),
that is, two CPGs may not be directly adjacent. This can be accom-
plished using an algorithm to find connected components in a binary
image such as the one described by Shapiro and Stockman [2001,
p. 76].

In addition, each CPG shall have a minimum size MCPG ∈ N>0.
While the noise removal method we use works well, it is still possible
that the thresholding produces components that contain only one or
a few pixels. Since the nanoparticles we want to find have a well de-
fined size and the magnification has been chosen so that the pixel size
is considerably smaller than the nanoparticle size, it is unlikely that
such small components represent a particle. Therefore, it is reason-
able to introduce a minimum CPG size MCPG. A formal description
of the method we use to find the CPGs can be found in Algorithm 6.8.

Algorithm 6.8 : FindCPGs(PFG,MCPG)
Input : The image foreground PFG ⊆ P and the minimum CPG

size MCPG ∈ N>0.
Output : The CPGs C1, . . . ,CnC ⊆ P.

1 Let C ′1, . . . ,C ′nC ′ ⊆ P with nC ′ ∈ N and
nC
′⋃

i=1

C ′i = PFG be the

components of PFG so that each one is connected using the
4-connected neighborhood N4 as defined on Page 57 and they
satisfy Equation (6.7).
// We find these components using the algorithm from

Shapiro and Stockman [2001, p. 76].

// Retain only those components with a size >MCPG:

2 Define nC ∈ N and C1, . . . ,CnC ⊆ P so that
Ci , Cj, ∀ i, j ∈ {1, . . . ,nC} and

{C1, . . . ,CnC} =
{
C ′ ∈

{
C ′1, . . . ,C ′nC ′

} ∣∣∣ |C ′| >MCPG

}
.

3 return C1, . . . ,CnC .

In this section, we have introduced a method to find CPGs in an
SEM image. With this, we can accomplish the goal we have stated in
Section 6.1. In the next section, we will find appropriate values for the
parameters used in this chapter and evaluate our method to segment
SEM images.

6.4 evaluation

In this chapter, we have defined goals for the segmentation of the
images provided to our system. Then, we have looked at the solutions
to related problems proposed in other publications. Based on these
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foundations, we have devised a method specifically targeted at SEM
images containing engineered nanoparticles. As a last step, we will
evaluate our approach. This serves two purposes:

• Find fixed values for the algorithm parameters.

• Determine how well our proposed system achieves the defined
goals.

Our segmentation method contains several parameters that need
to be specified before it is applied. In Chapter 3, however, we have
stated that our system shall be fully automatic. This means that the
user should not have to pick their values. Therefore, we need to find
fixed values for the following parameters beforehand:

• The parameter ntile ∈ N>0 determines into how many tiles the
image is split for the noise estimation.

• The neighborhood radius rn ∈ N>0 defines the size of the neigh-
borhood which is compared to determine the weights in the
non-local means noise removal algorithm.

• The search window radius rs ∈ N>0 specifies the size of the part
of the image that is averaged to compute the resulting intensity
of a particular pixel in the non-local means noise removal algo-
rithm.

• The filtering parameter η ∈ R>0 determines how strong the
non-local means noise removal algorithm smoothes the image.

• The empty image threshold ξ ∈ R defines the maximum inten-
sity of an image that is regarded as empty.

• The threshold offset δ ∈ R is added to the output of the uni-
modal thresholding to obtain the final threshold.

• The minimum CPG sizeMCPG ∈ N>0 defines the minimum size
of of a connected component of the foreground to be regarded
as a CPG.

We will evaluate the segmentation steps in their respective order
beginning with noise estimation, which we will evaluate in the next
section. Finally, in Section 6.4.5, we will evaluate the results of the
segmentation pipeline as a whole.

6.4.1 Noise Estimation

To test the estimation of SEM noise parameters, some sort of ground
truth is needed. For images that stem from a real SEM, the true param-
eters a and b are not available. Therefore, we have chosen to create
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Figure 6.13: An artificial image without noise loosely based on the SEM im-
age in Figure 6.14. It is used to test our noise estimation ap-
proach.

Figure 6.14: An SEM image (1 pixel = 1.27nm) of an agglomerate of TiO2
nanoparticles with an average diameter of 25nm.
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Figure 6.15: An artificial image without noise loosely based on the SEM im-
age in Figure 6.16. It is used to test our noise estimation ap-
proach.

Figure 6.16: An SEM image (1 pixel = 1.27nm) of Ag nanoparticles with an
average diameter of 75nm.
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Table 6.1: The parameter values used to simulate Poisson noise to test our
noise estimation method and the values of the parameter ntile of
our noise estimation method to be tested.

parameter used parameter values

Gaussian standard deviation 2, 4 and 8

contrast setting a 1
8 , 14 , 12 and 1

brightness setting b −20, −10 and −5

noise estimation parameter ntile 1, 2, 4, 8, 16, 32, 64 and 128

artificial images, add SEM noise with varying known parameters a
and b and test how well our method is able to estimate their values.

The artificial images used to test our approach can be seen in Fig-
ures 6.13 and 6.15. They contain structures imitating nanoparticle ag-
glomerates. In addition, we added intensity gradients in the fore- and
background to further simulate real images. However, in contrast to
SEM images, the artificial ones contain no noise at all. This allows
us to add noise with specific properties to test our noise estimation
method. We do this as follows:

1. Choose values for a, b and the standard deviation of the Gaus-
sian kernel used to smooth the simulated image.

2. Use the inverse of Equation (6.13) with the values of a and b
to compute µ for every pixel of the artificial image. This can be
done because the image is assumed to be optimal.

3. Apply a Gaussian Filter using the predetermined standard devi-
ation to the resulting image in order to simulate blur introduced
by the SEM.

4. Use the computed value of µ for each pixel to simulate a Poisson
process.

5. Use Equation (6.12) with each pixel of the resulting image to
compute the intensity from the electron count.

6. Convert the resulting image to 8-bit intensities.

7. Use our noise estimation method to obtain estimates â and b̂.

Figure 6.17 shows the image in Figure 6.15 with added blur and arti-
ficial noise using the above procedure.

We have performed this procedure for every combination of the
parameter values in Table 6.1. Because there is no ground truth, we
did not know typical values for these parameters. Therefore, we have
applied our noise estimation method to several images and tried to
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Figure 6.17: An image that has been obtained by blurring the artificial image
in Figure 6.15 and adding artificial noise. A Gaussian standard
deviation of 8, a contrast setting a of 1 and a brightness setting
b of −5 have been used.

cover the resulting values of â and b̂ with the range of parameter val-
ues to be used for the evaluation. In addition, we have chosen to scale
the values exponentially in order to cover a wide range of possible val-
ues while also including small numbers. For the standard deviation
of the Gaussian filter, we use relatively large values to match the high
degree of blur of some of our images.

To obtain an error metric for a given ntile, we use the following
calculation:

1. For a given parameter combination and intensity g ∈ G, using
the estimates â and b̂ from our algorithm, we estimate the stan-
dard deviation of the noise to be expected for a pixel with the
intensity g using Equation (6.19).

2. Then, we calculate the relative absolute error of this estimate
compared to the true standard deviation of the noise calculated
using the real values of a and b.

3. Finally, we average these relative absolute errors over all g ∈ G
and all parameter combinations of Gaussian standard deviation,
contrast setting a and brightness setting b.

Doing this, we find that, for both images, all noise estimation parame-
ter values ntile from 1 to 32 produce stable results with errors between
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Figure 6.18: The mean relative error of the noise standard deviation estima-
tion by our method for different values of ntile measured using
two artificial images. The image in Figure 6.13 is referred to as
the first image and the one in Figure 6.15 as the second.

0.007 and 0.02. This means that our algorithm’s estimates of the noise
standard deviation differ on average less than 2% from the true value.
For the image in Figure 6.13, ntile = 8 produces the lowest error of
0.013 and for the image in Figure 6.15, ntile = 32 yields an error of
0.007. For higher values of ntile, the error grows up to a value of 0.086.
A graph of the errors for both images can be seen in Figure 6.18.

These results tells us the following:

• The algorithm is stable for a wide range of values of ntile from
1 to 32 without the parameter being carefully chosen.

• The error is very small for most parameter values and even in
the worst case, a relative error of 0.086 is still acceptable.

We have decided to use a fixed value of ntile = 16 in our system
because it produced the lowest error of 0.011 averaged between both
test images. We will also use this value for the remaining experiments
in this thesis.

6.4.2 Noise Removal

The noise removal method by Buades et al. [2005b] has three param-
eters (see Section 6.3.2.2):
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• The neighborhood radius rn.

• The search window radius rs.

• The filtering parameter η.

The choice of the first two parameters is mainly a trade-off between
quality and execution time. For larger parameters, the runtime of the
algorithm grows and the results become slightly better. We have de-
cided to adopt the values given by the authors in the original paper
as they yield a good balance between quality and time. Therefore,
for the rest of this thesis and in our system, we use a neighborhood
radius of rn = 3 and a search window radius of rs = 10.

The filtering parameter η determines how strong the algorithm
smooths the image. The larger the value, the smoother the image be-
comes. We have not adopted the value used by Buades et al. [2005b]
because our setup is different. Firstly, because we use a variance-
stabilizing transformation, the images used as input to the noise re-
moval method have a fixed noise variance of 1. Secondly, the resulting
images are only used to apply a thresholding. This means that it is
acceptable for a filtered image to be very smooth and lose details in-
side the particles as long as the borders between image background
and particles is unaffected.

To find a good value for η, we have chosen three images of each
of the three nanoparticle types. Among these nine images there are
some that pose a problem to our thresholding algorithm because
parts of the image background have a high intensity. We have found
an appropriate parameter value of η using the following approach:

1. For each of these images, apply noise estimation and removal
as described in Section 6.3 starting with a low value of η.

2. Manually choose an optimal threshold for each image so that
as much particle area as possible but no large parts of the back-
ground are recognized as foreground.

3. If a particle in any image contains small holes in the segmenta-
tion resulting from the manual thresholding, repeat the process
with a higher value of η.

4. If no particle contains any small holes, use the current value of
η.

Using this approach to find a value for η, we ensure that the found
CPGs do not contain small holes. Additionally, we avoid that the im-
ages are smoothed too much. As with the noise estimation parame-
ters, we have chosen to exponentially scale the parameter values to
be tested. Therefore, we have started with a value of η = 1

2 and mul-
tiplied the current value with

√
2 to obtain the next value. Using this
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(a) Segmentation after removing noise
using the method proposed in this
chapter.

(b) Segmentation after removing noise
using a Gaussian filter.

Figure 6.19: Two segmentations of an SEM image detail (1 pixel = 5.08nm)
of ZnO nanoparticles after noise removal using the proposed
method and a Gaussian filter, respectively. The segmentation of
the background is represented by green pixels.

approach, we have found that η = 2 is a good choice. We use this
value in our system and in all following experiments.

Figure 6.19 shows a comparison of two segmentations of a ZnO
nanoparticle agglomerate. In the left case, the noise removal method
proposed in this chapter is used. The right image is the result of
instead using a Gaussian filter as the noise removal method before
segmenting the image. The green pixels in each image show the area
which has been segmented as image background. The segmentation
using our method is much more precise than using a Gaussian filter.
The segmentation border in the latter case is a few pixels further from
the particle border. In addition, the small hole in the agglomerate near
the center of the image has not been detected.

In addition, we wanted to test how our noise removal pipeline per-
forms compared to a conventional method. For that, we have chosen
non-local means because it is a state-of-the-art method and it allows
us to directly quantify the influence of our noise estimation approach.
We have opted not to use a variance-stabilizing transformation for the
comparison approach because in order to use such a method the noise
parameters have to be known. This is usually not the case without a
noise estimation method. The test we have performed is very similar
to the experiment for finding the best noise estimation parameter ntile,
which is explained in Section 6.4.1. It has the following steps:

1. For each of the two artificial images in Figures 6.13 and 6.15, do:

a) For each combination of the values for a, b and the stan-
dard deviation of the Gaussian kernel in Table 6.1 on
Page 93, do:
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i. Use the inverse of Equation (6.13) with the values of
a and b to compute µ for every pixel of the artificial
image. This can be done because the artificially created
images contain no noise.

ii. Apply a Gaussian Filter using the predetermined stan-
dard deviation to the resulting image in order to sim-
ulate blur introduced by the SEM.

iii. Use the computed value of µ for each pixel to simulate
a Poisson process.

iv. Use Equation (6.12) with each pixel of the resulting im-
age to compute the intensity from the electron count.

v. Convert the resulting image to 8-bit intensities.

vi. Apply our noise removal pipeline as well as simple
non-local means to the resulting image.

vii. For each approach, compute the root-mean-square er-
ror of the pixel differences between the blurred im-
age of Step 1(a)ii and the filtered image resulting from
Step 1(a)vi.

2. For each approach, compute the average of the root-mean-
square errors resulting from Step 1(a)vii.

Note that we do not convert the filtered images from Step 1(a)vi to 8-
bit intensities because this could pose a source of error for the results.
In addition, we compare the resulting images to the blurred ones in-
stead of the unaltered test images because the noise removal methods
are not designed for removing blur.

The resulting average root-mean-square errors are shown in Fig-
ure 6.20. As a baseline, the average error of the unfiltered images
from Step 1(a)v is also shown. The average error of simple non-local
means (1.657) is almost three times as high as the one of our method
(0.585). Moreover, our approach has outperformed simple non-local
means for every combination of test image and parameters in our
experiments.

6.4.3 Threshold Determination

To find the threshold offset δ, we use the nine images and the manu-
ally chosen thresholds from the noise removal evaluation as described
in Section 6.4.2. We apply the thresholding algorithm by Zack et al.
[1977] and the method called minimum error thresholding by Kittler
and Illingworth [1986] to the filtered images and compare the found
thresholds to the manual thresholds. By computing the mean error
and the error variance of both algorithms compared to the manual
values, we can see which performs better and how large δ has to be.
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Figure 6.20: The average root-mean-square errors of non-local means (1.657)
and our noise removal method (0.585) in our experiment. As
a comparison, the average error of the unfiltered noisy images
(3.271) is also shown.

The average error of the method by Zack et al. [1977] is −1.17,
while the one by minimum error thresholding is −2.11. This means
that both algorithms return values that are on average slightly be-
low the ground truth consisting of the manual thresholds while the
first yields a better result. However, the error variance paints a much
clearer picture. For the algorithm by Zack et al. [1977], it is equal to
2.5, while the approach by Kittler and Illingworth [1986] has an error
variance of 7.86. This means that the first one is much more precise at
predicting the best possible threshold. In fact, for six of the nine im-
ages, the error of Zack’s method is either −0.5 or 0.5. This is the best
possible result because the algorithm always returns a single intensity
while the manually chosen thresholds are defined as g+ 0.5 for g ∈ G
so that they always lie between two intensities. The three images for
which the absolute error of the method by Zack et al. [1977] is higher
than 0.5 are exactly the ones which we have added to the test set
because they pose a challenge to thresholding algorithms. For these,
the error is between −4.5 and −3.5. Minimum error thresholding’s
best result has an error of −1.5, while its largest error is −22.5. Such
a high error would presumably make any further processing of the
image impossible.

Due to these results, we have decided to use the thresholding ap-
proach by Zack et al. [1977] and a threshold offset of δ = 1.17 in our
system and all remaining experiments. This value coincides with the
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mean negative error achieved in our experiment in order to counter-
act the average error.

6.4.4 CPG Search

The empty image threshold ξ determines if an image is considered
empty by our system. If the highest intensity of an image is above
the threshold, it is considered not empty and vice versa. The high-
est intensity is determined after our noise removal method has been
applied.

The highest intensity in any empty image in our dataset is 21. On
the other hand, the brightest pixel in the image with the lowest peak
intensity that contains particles has a value of 34. Therefore, we have
chosen to set ξ = 27.5 for our system, which is exactly in the middle
of these two values.

The parameter MCPG determines the minimum size of a CPG in
pixels. This value depends on the size of the nanoparticles and the
pixel size in nm2. However, for smaller particles, usually a smaller
pixel size is chosen by the user. Therefore, we have decided to take
the particles and image magnification we use for this thesis as a basis.
The smallest engineered particles we use in our experiments are ZnO
nanoparticles with a diameter of 10nm. In one of our images with
a magnification of 20 000, such a particle has a size of approximately
48.7 pixels. We have chosen to use 90% of that, which corresponds
to 43.8 pixels, as the value of MCPG. This ensures that even a single
nanoparticle can be found at a magnification of 20 000.

6.4.5 Full Segmentation Pipeline

Fully evaluating our segmentation pipeline is difficult because of the
lack of ground truth. However, while one cannot objectively deter-
mine if the algorithm correctly segmented an agglomerate, we are
able to objectively determine if it has detected the CPG at all. In ad-
dition, we can subjectively assess how well the segmentation result
is. Using a random number generator, we have chosen two images of
each type of engineered nanoparticles. For these, we have assessed
how many CPGs the pipeline detects and how well the resulting seg-
mentations are.

Table 6.2 lists the results of our quantitative evaluation. In the six
assessed images, we have manually found 73 CPGs containing en-
gineered nanoparticles. Our segmentation pipeline finds all of these,
as well. In fact, it finds 7 additional CPGs containing engineered na-
noparticles, which we have overlooked while searching the images
manually. All of these are recognized as a whole and none are split
into multiple CPGs. Apart from these CPGs, the images also contain
gas deposits as described in Section 4.2.2.5 and some background
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Table 6.2: The number of CPGs of engineered nanoparticles we have found
manually compared to the number our pipeline detects automati-
cally.

particle type manually automatically

Ag 12 12

TiO2 29 30

ZnO 32 38

particles accidentally introduced onto the silicon substrate. We have
manually found 11 background CPGs, all in the same image contain-
ing Ag nanoparticles. Our pipeline finds 6 of these, while it splits
two of them into two and three parts, respectively. The other images
contain 2 gas deposits, which we have overlooked. In contrast, our
algorithm finds both of them.

Apart from the CPGs present in the images, the algorithm also
marks segments at the left edge of an image containing TiO2 nano-
particles. This is caused by the fact that the leftmost columns appear
brighter than the rest of the background. This effect has been ex-
plained in Section 4.2.2.5. These extra segments do not impair the
segmentation because we can train the classification step of our sys-
tem to label them as not being engineered nanoparticles.

All in all, we have manually found 84 CPGs while our pipeline de-
tects 88 CPGs, of which it splits two into multiple parts. Our method
overlooks 5 CPGs. All of them are in the same image and each con-
sists of a single small background particle. This has two reasons:

• These particles are very small and the image has a relatively
low magnification of 5000. Therefore, each of them occupies rel-
atively few pixels.

• The particles have very low intensities. In addition, the images
contain a very large Ag agglomerate having a very high inten-
sity due to its material properties (see Section 4.2.2.4). This has
two implications: Firstly, in order to avoid intensity clipping,
the microscope operator has adjusted the brightness and con-
trast settings so that these small particles appear very dark. Sec-
ondly, the large agglomerate causes the background on the up-
per left of it to appear brighter than normal. This effect has
been explained in Section 4.2.2.6. It leads to the fact that these
small particles are darker than the background next to the Ag
agglomerate.

The first point tells us that while this magnification is enough to de-
tect engineered Ag nanoparticles, if we wanted to analyze particles
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like the ones overlooked, we would need to choose a higher magnifi-
cation resulting in a better resolution and a smaller pixel size.

The second issue is more difficult to solve. If parts of the back-
ground have a higher intensity than a particle, this issue is inherent
to thresholding. However, we have made the point in Section 6.2 and
at the beginning of Section 6.3 that the other approaches in the related
work are not suitable for the types of images our system has to deal
with. One could argue that dynamic thresholding could be a possible
candidate. However, our database contains images where over 90%
of the area is occupied by a single agglomerate. Our approach seg-
ments this image very well. We would argue that dynamic threshold-
ing would not be able to handle such an image correctly, because the
local threshold for some parts of the image would only be determined
by intensities belonging to the agglomerate. This would lead to some
parts of the agglomerate being segmented as image background.

While criticism of this result is certainly justifiable, we want to ar-
gue that our pipeline delivers results superior to manual detection.
For the randomly chosen images, our approach not only detects more
particles overall than we have been able to find manually. In addition,
the pipeline is able to find every single CPG containing engineered
nanoparticles in these images in contrast to the manual search, which
has missed about 9% of them.

Still, one could argue that a case like that of the particles that have
not been detected by our pipeline may also occur in an instance where
small engineered nanoparticles are overlooked. This may be possible
but we believe that such a case is unlikely. For this to happen, a large
background particle that appears very bright would also need to be
present in the image. However, we have never observed any kind of
background particle that appears similar to these Ag nanoparticles.
This is due to the properties of Ag. It is very unlikely that background
particles made of Ag appear in an image of other engineered nano-
particles.

In addition, for the analysis of smaller engineered nanoparticles,
one would choose a higher magnification. This would result in a
smaller visible area of the sample. Due to this smaller area, the in-
tensity differences between different parts of the image would not
be so high. Therefore, it would be less likely that a small particle is
darker than the image background in other parts of the image.

One additional advantage of our solution over manual detection is
that it yields information about the size and shape of the detected
CPGs. This data can be used to estimate CPG volume, mass and
nanoparticle count in addition to the CPG count. In order to use this
advantage, the segmentation itself should be good. We will assess its
quality in the following paragraphs.

When assessing the results of our experiment, we find that our
pipeline makes no major errors in the segmentation of the 80 CPGs
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(a) One of the holes in this Ag nanopar-
ticle agglomerate is not correctly seg-
mented (1 pixel = 5.08nm).

(b) Small holes in the segmentation
of a TiO2 agglomerate (1 pixel =
1.27nm).

(c) The segmentation of this TiO2 ag-
glomerate contains a small part of
the background in the upper left cor-
ner due to an SEM artifact (1 pixel =
1.27nm).

(d) This ZnO agglomerate is not fully
segmented (1 pixel = 5.08nm).

Figure 6.21: SEM image details containing segmentation errors. The segmen-
tation is represented by a white line.

containing engineered nanoparticles in the randomly chosen images.
The borders of the resulting segments match very well with the out-
lines of the CPGs and the algorithm also detects holes in them. In ad-
dition, no large parts have been added to or removed from any CPG.
We find only minor imperfections in these segmentations. These are
the following:

• Small holes inside the CPGs are sometimes smaller in the seg-
mentation than they are in the the image. An example of this
can be seen in Figure 6.21a, where the hole in the center of the
image is not correctly segmented. The impact of this kind of er-
ror is usually negligible because small holes only have a minor
influence on the complete segmentation of a CPG.

• Despite the fact that we apply a noise removal method before
thresholding, in a few cases, the segmentation contains small
holes of only one or two pixels. An instance of this is visible in
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Figure 6.21b. Similar to the previous issue, the impact of this
should be small.

• In one case, the segmentation of a TiO2 agglomerate located at
the left edge of the image contains a small part of the image
background as can be seen in Figure 6.21c. This is due to an
SEM artifact where the leftmost pixel columns appear brighter
than the rest of the background as described in Section 4.2.2.5.
This part represents only a very small percentage of the agglom-
erate’s segmentation.

• Finally, in four cases, small parts of an agglomerate are not cap-
tured by the segmentation. An example of this can be seen in
Figure 6.21d where some pixels in the lower left are not part of
the segmentation.

The last two issue might have an impact on every calculation involv-
ing the sizes of CPGs. However, these segmentation errors are mostly
minor and only 5 CPGs are affected, representing about 6% of all
CPGs. In all other cases, the sizes are measured correctly.

Taking all these facts into consideration, the pipeline presented in
this chapter does a very good job at detecting and segmenting en-
gineered nanoparticles in SEM images. This is especially true when
compared to performing this task manually, which is tedious, error-
prone and not able to produce a detailed segmentation.

In this chapter, we have developed a pipeline specifically targeted
at detecting and segmenting engineered nanoparticles in SEM im-
ages. We have developed and selected various algorithms in order
to match the unique properties of these images. In the next chapter,
we will characterize the properties differentiating CPGs containing
engineered nanoparticles from those consisting of background parti-
cles and present numerical features capturing these characteristics in
order to perform a successful classification.
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F E AT U R E C O M P U TAT I O N

This chapter will address the task of computing numerical features
for each CPG found by the segmentation pipeline presented in the
last chapter. The goal is to capture the characteristics differentiating
engineered nanoparticles from background particles. In Section 7.1,
we will give a detailed description of the task to be performed and the
particle characteristics that the features shall capture. Section 7.2 will
give an overview of the features used in the literature on automatic
image-based particle analysis. Finally, in Section 7.3, we will describe
the features used by our system.

This chapter does not contain an evaluation. Instead, the features
used by our system will be evaluated in the next chapter. The reason
for this is that we will assess their quality by the impact they have
on the classification result. In order to do this, we will first need to
introduce our classification pipeline, which we will also do in the next
chapter.

7.1 goals

The segmentation pipeline of our system outputs a list of CPGs,
which we have defined as C1, . . . ,CnC ⊆ P in Section 6.1, for each
image. Each of these represents the position and shape of a group of
connected particles visible in the SEM image. The goal of the system
is to decide for each CPG into which of these two classes it belongs:

• CPGs consisting of engineered nanoparticles.

• CPGs consisting of background particles.

In order to do that, the first step is to capture the characteristics of
a CPG into a fixed set of numerical values. These are called feature
values and are produced by functions called features. Each feature
produces a feature value for each CPG.

In order to allow for a successful classification, the following con-
ditions should be fulfilled:

• Similar CPGs should have similar feature values. As similarity
is always subjective, each feature focuses on a specific attribute
of a CPG.

• Different classes may have similar feature values. For a success-
ful classification, however, it should be possible to differentiate
two classes based solely on a combination of feature values of
their members.

105
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• The CPGs should be described by as little features as possible.
This may seem counter-intuitive at first as more information
about a CPG allows for a better informed decision. However,
given a fixed number of CPGs, an increased number of fea-
tures may lead to random patterns in the feature values that
seem to differentiate the classes well. However, when looking
at a different set of CPGs, these patterns are not at all able to
tell the classes apart. When having too many features, finding
those that allow for a successful classification is difficult. As few
features as possible should be selected. We will give a more de-
tailed explanation of this so-called curse of dimensionality in
Section 8.1.2.

In a more formal way, a feature φ is defined as a function

φ : C×GP ×R>0 → R. (7.1)

Here GP is the set of all images f : P → G. Using this definition, if
C ⊆ C is a CPG, f : P → G is the corresponding image and sp ∈ R>0 is
its pixel size in nm, then φ(C, f, sp) ∈ R is the feature value of feature
φ for the CPG C. For brevity, we will define the set of all features Φ:

Φ B RC×GP×R>0 , (7.2)

so that φ ∈ Φ.
If φ1, . . . ,φnφ ∈ Φ are the features used to describe all particles,

then
(
φ1(C, f, sp), . . . ,φnφ(C, f, sp)

)
∈ X B Rnφ is the so-called fea-

ture vector of the CPG C. Sometimes, a group of features belonging
together is also called a feature. In this case, a feature yields multi-
ple feature values instead of only one. However, we can split such a
feature into multiple “sub-features” that fit with our definition.

7.2 related work

We have again surveyed the 33 publications on automatic image-
based particle analysis first introduced in Section 5.1. The features
used in these publications can be grouped into four categories:

• External information

• Basic geometric features

• Shape features

• Texture features

Features based on external information rely on any knowledge
from sources other than the image itself. The only feature of this kind
mentioned in the papers we investigated was the chemical composi-
tion of the particles [Germani and Buseck, 1991; Kindratenko et al.,
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1994, 1996; Wienke et al., 1995; Oleshko et al., 1996; Hopke and Song,
1997; Genga et al., 2012]. That feature would be very helpful for our
purpose as engineered nanoparticles are made of metals while envi-
ronmental particles are usually composed of non-metals such as car-
bon. However, as mentioned in Section 4.2.1, it is not feasible for the
microscope operator to probe every particle using EDX. As explained
in Section 5.1, using a CCSEM to obtain EDX data is also not an op-
tion because it cannot handle particles with diameters smaller than
50nm to 100nm. Therefore, we cannot use the chemical composition
as a feature.

Basic geometric features only depend on the shape of a CPG in the
image. They produce a single feature value and in most cases, their
computational complexity is low. Often, they are calculated as ratios
of two geometric measures such as area, diameter or perimeter.

There is no clear dividing line between basic geometric features
and shape features. The latter are based on the shape of the CPG, as
well. However, they often require more involved computations and
produce multiple feature values.

Texture features examine the intensity distribution inside the CPG’s
area. They may be sensitive to particular patterns such as circles. Oth-
ers calculate specific statistical properties such as the frequency of
intensity combinations at specific offsets. Most texture features gener-
ate multiple feature values.

In the following sections, we will describe image-based features
used in the literature we have surveyed. However, as there are many
different features, we will only present the ones which are used by
more than one research group or seem important to us.

7.2.1 Basic Geometric Features

Basic geometric features can be further categorized into two groups:
size-dependent measures and scale-invariant measures. The differ-
ence is that the latter do not change their value as the particle changes
its size without altering its shape. In the remainder of this section, we
will discuss a selection of these measures.

7.2.1.1 Size-dependent Features

The most used feature is the area a particle occupies in the image
[Germani and Buseck, 1991; Xu et al., 1998; Peng and Kirk, 1999;
Laghari, 2003; Luo et al., 2004; Rodriguez-Damian et al., 2006; Sta-
chowiak et al., 2008; Genga et al., 2012]. This can be a useful feature
for our system, as well. For example, agglomerates made of large
engineered nanoparticles are on average larger than diesel soot ag-
glomerates.

Another popular measure is the diameter. However, there are mul-
tiple definitions for it. A Feret diameter is the “distance between
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two parallel tangents on opposite sides of the image” of the particle
[Merkus, 2009, p. 15]. In the publications using automatic classifica-
tion, only the maximum Feret diameter is used [Xu et al., 1998; Peng
and Kirk, 1999; Rodriguez-Damian et al., 2006]. A Martin diameter is
the length of a line which divides the area of the particle image into
two equal halves [Merkus, 2009, p. 15]. Germani and Buseck [1991]
use the minimum, maximum and average Martin diameter. Fisker
et al. [2000] calculate the geometric means of the minor and major di-
ameters of ellipses fitted to images of spherical particles. Ap Gwynn
and Wilson [2001] use the maximum diameter but do not specify
which kind of diameter is used.

We find that a diameter feature is not appropriate for our system.
Two agglomerates made of the same type of engineered nanoparti-
cles can have very different global—as opposed to local—shapes. One
can be very elongated while the other is relatively round. A diameter
would therefore not help to capture the characteristics of nanoparticle
agglomerates. In addition, a random diameter is not very meaning-
ful while a minimum, maximum or average diameter requires much
computational effort.

The last size-dependent measure is the perimeter [Germani and
Buseck, 1991; Stachowiak et al., 2008; Genga et al., 2012]. It is defined
as the length of the contour of the particle. We adopt this feature in
our system because it can help to distinguish CPGs with jagged edges
such as nanoparticle agglomerates from ones with smooth borders.
Moreover, it is relatively easy to compute.

7.2.1.2 Scale-invariant Features

Scale-invariant features do not change their value when the scale of
the particle is changed. They are also called shape factors. The naming
of the individual features is very inconsistent so that there are differ-
ent names for the same measure while there are also distinct features
with the same name.

The most popular class of scale-invariant features we have found
compares the shape of the particle with that of a circle. The most
common way to do this is to compute the ratio of the particle area
and the area of a circle which has the same perimeter as the particle.
Its formula is 4π area

perimeter2
. This ratio or variants multiplied with a con-

stant value are called circularity [ap Gwynn and Wilson, 2001; Greco
and Maffezzoli, 2004], isoperimetric quotient [Oster, 2010] or round-
ness [Rodriguez-Damian et al., 2006] in the literature. Its inverse is
called compactness [Rodriguez-Damian et al., 2006], circularity or
roundness factor [Raadnui, 2005]. A similar measure which is cal-
culated using the formula 4 area

π (maximum Feret diameter)2 is called roundness
by Peng and Kirk [1999] and Greco and Maffezzoli [2004]. In addi-
tion, features with the names compactness [Stachowiak et al., 2008],
roundness [Genga et al., 2012] and roundness factor [Laghari, 2003]
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are used without being defined. Similar to the perimeter, this feature
can be of use in our system to distinguish CPGs with jagged edges
such as nanoparticle agglomerates from those with smooth borders.

Several publications use a feature called aspect ratio. However,
their definitions vary. Fisker et al. [2000] define it as the ratio of major
and minor diameter of an ellipse fitted to the particle. Greco and Maf-
fezzoli [2004] call their feature aspect ratio or elongation and define it
as the ratio of maximum to minimum Feret diameter. Raadnui [2005]
employs a shape factor also called aspect ratio and defines it as the
ratio of width to length of the minimum enclosing rectangle. Laghari
[2003], Stachowiak et al. [2008] and Genga et al. [2012] use measures
with the same name but do not give a definition. We do not employ
the aspect ratio as a feature due to the same reasons we mentioned
in the case of the diameter.

7.2.2 Shape Features

The fractal dimension can be seen as either a basic geometric or as
a shape feature. It is one-dimensional and relatively complex to com-
pute. Still, it is very popular [Orford and Whalley, 1983; Kindratenko
et al., 1994, 1996; Oleshko et al., 1996; Peng and Kirk, 1999; ap Gwynn
and Wilson, 2001; Greco and Maffezzoli, 2004; Raadnui, 2005; Sta-
chowiak et al., 2008; Genga et al., 2012]. The idea is that a contour
can have self-similarity at different scales and thus have a dimension
between 1 and 2. Therefore, it is called fractal dimension. Its value can
be obtained by measuring the perimeter of the particle with measur-
ing sticks of different sizes. Using a large measuring stick, the mea-
sured length of the contour will be shorter. Using a more detailed
representation of the contour, however, its measured length will be
longer. If the contour is fractal, the measured perimeter is propor-
tional to the length of the stick to the power of one minus the fractal
dimension [Kindratenko et al., 1996]. However, real objects are not
fractal as the self-similarity is only present in a limited size range
[Kindratenko et al., 1996].

The computation of this measure is complex and the feature is suit-
able only for irregular shapes. In addition, a shape has only one
fractal dimension so that it is not able to successfully discriminate
complex shapes [Drolon et al., 2000]. Kindratenko et al. [1997] write
that the fractal dimension attempts “to condense all the details of
the shape into a single number. There can, however, be an unlimited
number of visually different shapes with the same fractal dimension.”
These facts limit the applicability of this feature. The most important
reason, however, for not using the fractal dimension is that it is scale-
invariant. Therefore, it cannot give any information about the size of
contour features. For nanoparticle agglomerates, though, the size of
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the nanoparticles is reflected in the contour and it is a crucial factor
for distinguishing them from other types of particles.

Another shape feature that is used in many publications are the so-
called Fourier descriptors. They aim at capturing the raggedness of
the particle contour at different scales and are calculated as follows:

1. Express the contour of the particle as a real- or complex-valued
periodic function.

2. Apply the Fourier transform to this function.

3. Alter the Fourier coefficients to ensure translation-, rotation-
and (optionally) scale-invariance.

4. Take a number of the resulting coefficients and use them as
feature values.

The third step is done by removing the zeroth coefficient, taking only
the magnitude and dividing all coefficients by the first one. When
applying this type of feature, one has to decide how to express the
particle contour as a function. There are several possibilities to do so:

• angle 7→ centroid distance

• contour length 7→ centroid distance

• contour length 7→ curvature

• contour length 7→ coordinates expressed as complex number

In the first variant, the position of every contour point is expressed in
polar coordinates using the particle centroid as the origin of the coor-
dinate system. The function that is used for the Fourier transform
maps the angle to the distance of these coordinates [Kindratenko
et al., 1996, 1997; Raadnui, 2005]. However, only for convex particles,
this mapping is guaranteed to be unique. Therefore, it is not applica-
ble to complex shapes.

The functions used in the three remaining options map the contour
length from the starting point to the contour point in question to
different measures of that point. For the second variant, the distance
of the point and the centroid is used [Yu et al., 2007] while the third
option uses the point’s curvature [Xu et al., 1998]. The last and most
popular variant, however, interprets the Cartesian coordinates of the
point as a complex number where the real part is the x-coordinate
and the imaginary part is the y-coordinate of the point [Thomas et al.,
1995; Kindratenko and Van Espen, 1996; Greco and Maffezzoli, 2004;
Calderon De Anda et al., 2005; Rodriguez-Damian et al., 2006].

Kindratenko et al. [1996] state that “Fourier description is very at-
tractive for particles with regular shapes, especially for those with
axes of symmetry.” That means that it is well suited to detect particles
whose shapes are recurring. Nanoparticle agglomerates, however, can
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have very different shapes and two of them will almost never look the
same. To identify these agglomerates, it is necessary to examine them
at exact predetermined scales to detect nanoparticles of specific sizes.
Fourier descriptors, however, are in general not able to examine two
particles using the same scales. This is because the wavelengths used
to analyze a particle are always equal to its contour length divided
by a natural number. Therefore, these wavelengths are in general not
the same for two different particles.

Drolon et al. [2000] propose another approach called multiscale
roughness descriptor, which is also used by Greco and Maffezzoli
[2004]. In it, the contour of the particle is represented as a function
where the contour length maps to the Cartesian coordinates of the
contour point interpreted as a complex number. (See the discussion
of Fourier descriptors above.) Then, a modified version of the har-
monic wavelet transform by Newland [1993] is applied to that func-
tion. Drolon et al. [2000] replace the Fourier coefficients used in the
computation of the wavelet transform by shift-invariant versions. This
makes the coefficients of the wavelet transform translation-, rotation-
and scale-invariant. As a last step, the energies of these coefficients
are calculated to obtain the final feature values.

The multiscale roughness descriptor, as the name suggests, is able
to represent the roughness of the particle’s shape at different scales.
However, the resulting feature values are scale-invariant. As men-
tioned before, in our case, the exact size of the primary particles
constituting an agglomerate is crucial to distinguish different types
of particles. Therefore, for a feature to be used in our workflow, it has
to examine every particle at exactly the same scales.

7.2.3 Texture Features

The least popular feature category in the literature are texture fea-
tures. Only one is used in more than one publication. The so-called
Haralick features [Langford et al., 1990; Flores et al., 2003; Laghari,
2003; Rodriguez-Damian et al., 2006; Stachowiak et al., 2008] are
based on the statistics of gray-level combinations at specific pixel off-
sets. An advantage of this approach is that it can be applied to large
particles as well as very small ones. Therefore, we use this feature in
our system. An explanation of the method is given in Section 7.3.3.2.

Oster [2010] applies band-pass filters to the SEM images in order
to detect frequencies corresponding to structures of a specific scale
in the particle textures. This feature may be useful in order to find
the signatures of nanoparticles of a specific size in the texture of
agglomerates. However, it cannot be applied to CPGs of similar or
smaller size compared to the filter’s wavelengths because the image
background and particle edges influence the filter responses of pixels
near the border of a CPG.
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Figure 7.1: An SEM image detail (1 pixel = 5.08nm) of TiO2 nanoparticles.
The global shapes of the visible agglomerates differ very much.

Other methods from the literature cannot be used because they
require extra data such as multispectral images [Hans et al., 2010] or
3D data [Raadnui, 2005] or are not applicable to small and irregularly
shaped CPGs because rectangular image patches are needed for their
computation [Yu et al., 2007; Stachowiak et al., 2008].

7.3 method

The automatic recognition of engineered nanoparticles in SEM im-
ages poses a unique challenge. As explained in Section 5.1 on Page 51,
there are several crucial differences between this task and the prob-
lems treated in the literature. For the selection of features, this means
that we have to find a unique selection of new and existing features
suitable for this task. These need to fulfill the following properties:

• The area occupied by a CPG in our images can vary by a factor
of several hundred thousand. This means that every feature we
use has to be applicable to very small particles as well as very
large ones.

• The shape of nanoparticle agglomerates is very variable. Not
only does their size vary a lot, their global shape also does not
allow any conclusions about the nanoparticles they are made
of. This can be seen in Figure 7.1. Some of the agglomerates



7.3 method 113

Figure 7.2: An SEM image detail (1 pixel = 5.08nm) of particles gathered
during abrasive cutting of steel. The specific source of each of the
particles is unknown. According to employees of the BAuA, the
upper left particle may be steel solidified in the form of a sphere,
the upper right particle presumably also derives from a cutting
process while the lower right particle probably is a silicate, which
is a typical component of dust.

in the image are relatively round, some have small tails and
the one on the right has a very complex shape. Note, however,
that this does not apply if only short segments—in other words
local features—of their contours are regarded. These show simi-
larities for agglomerates of nanoparticles with similar sizes. We
will elaborate on this shortly. This means that we need to se-
lect features that are invariant to changes of the global shape of
CPGs.

• As explained in Section 4.2.2.4, the absolute intensity of CPGs
does not allow direct conclusions about their composition.
Therefore, features should not rely on the absolute intensity.

Although we face a unique challenge, we use some common ba-
sic geometric features in order to give the classifier some basic in-
formation about the CPG in addition to more specialized features.
Specifically, we use the area, variants of the perimeter and the isoperi-
metric quotient as used by Oster [2010]. These help identify very sim-
ple shapes which usually occur in background particles such as the
sphere in the upper left corner of Figure 7.2. In addition, to help
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(a) An agglomerate of TiO2 nanoparti-
cles. The primary particles have rel-
atively constant sizes.

(b) A diesel soot agglomerate. It contains
small primary particles as well as
large ones, especially in its center.

Figure 7.3: Two SEM image details (1 pixel = 1.27nm) showing different
primary particle sizes.

the classifier cope with particles touching the image border, we have
added a feature giving the percentage of the contour which does not
touch the image border.

While agglomerates of engineered nanoparticles have various sizes
and shapes, the sizes of their primary particles are usually relatively
constant for a given nanoparticle type. In the case of background par-
ticles that form agglomerates such as diesel soot, this is usually not
the case. Figure 7.3 shows an example. The primary particles of the
TiO2 agglomerate in Figure 7.3a all have similar sizes. No large parti-
cles are visible. The diesel soot agglomerate in Figure 7.3b, however,
contains some large primary particles in its center as well as many
small ones.

The primary particle sizes influence two aspects of agglomerates
in SEM images: Their contour and their texture. They generate local
features of a size spectrum corresponding to their size. The numerical
features in our system need to be sensitive regarding these spectra. In
addition, the scales to which they are sensitive should optimally be
configurable. Because of the low signal-to-noise ratio of SEM images
and the fact that our segmentation pipeline reconstructs the contours
of CPGs well (see Section 6.4.5), we have first concentrated on features
characterizing the contour. Therefore, we have developed a feature
called mean contour angle wavelet response. Similar to the Fourier
descriptors and the multiscale roughness descriptor described in Sec-
tion 7.2.2, it captures the roughness of the contour at different scales.
However, in contrast to all other mentioned features, the mean con-
tour angle wavelet response is not scale-invariant and we are able to
exactly specify the wavelength of contour features we are interested
in. This is important in order to identify nanoparticle agglomerates.

In order to make intensity information available to the classifier, we
calculate a histogram for each CPG. However, since we cannot rely
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on absolute intensities, these histograms are normalized between the
modal background intensity and the maximum intensity of the CPG.

For the goal of capturing the nanoparticle signatures in the texture,
we adopt the most commonly used texture feature in the literature,
namely Haralick features, because they can be applied to large CPGs
as well as small ones.

As mentioned before, the correlation between the number of elec-
trons detected by the electron detector and image intensity can
change in every image due to different values of the contrast and
brightness settings of the microscope. Therefore, we introduce a
novel algorithm to estimate the number of electrons detected for ev-
ery single pixel in each image. This allows us to use the minimum,
maximum and mean electron counts of each CPG as features.

All in all, we use the following features:

• Basic geometric features:

– Projected area in nm2

– Perimeter in nm

– Perimeter including inner contours in nm

– Isoperimetric quotient

– In-image contour percentage

• Shape features:

– Mean contour angle wavelet response

• Intensity-based features:

– Normalized relative histogram

– Haralick features

– Electron counts

We will explain these features in more detail in the following sections.

7.3.1 Basic Geometric Features

The first basic geometric feature we use is the projected area φarea ∈ Φ
measured in nm2. It is defined as the area a CPG occupies in an
image:

φarea(C, f, sp) B |C| · sp2, ∀C ∈ C, f ∈ GP, sp ∈ R>0. (7.3)

The Ag agglomerate on the left in Figure 1.2 on Page 5 occupies
6 322 817 pixels in the image, whose pixel size is 1.27nm. Therefore,
the projected area of the CPG is about 10 198 072nm2.

The next feature is the perimeter φperimeter ∈ Φ measured in nm.
It is the length of the contour that surrounds the CPG in the image.
To compute the feature, we first need to locate this contour. This is
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Algorithm 7.1 : FindContour(C)
Input : A CPG C ∈ C.
Output : The contour (z1, . . . , znz) surrounding the CPG C as a

sequence of contour points zi = (xi,yi) ∈ R2. C is
assumed to be four-connected.

// Find a pixel in the topmost row of the CPG:

1 Let the current pixel pcur be any pixel in the set{
p ∈ C

∣∣py = min
({
p ′y
∣∣p ′ ∈ C})}.

// pcur will always lie inside C.

// Define the search direction as “up”:

2 ∆ B (0,−1).
// The pixel above the current one is guaranteed to lie

outside the CPG:

3 pnxt B pcur +∆

4 i B 1. // The index of the next contour point.

// The first contour point lies between the two pixels:

5 zi B
pcur+pnxt

2 .
// Each contour point lies between a pixel inside C and

a pixel outside it.

// Define the search direction as “right” so that the

contour is to our left:

6 ∆ B (1, 0).
7 repeat
8 pnxt B pcur +∆.
9 while pnxt ∈ C do

10 pcur B pnxt.
// Turn left to find the next pixel outside of C:

11 ∆ B (∆y,−∆x).
12 pnxt B pcur +∆.
13 end

// We have found the next contour point:

14 z B pcur+pnxt
2 .

15 if z , z1 then // Is this a new one? Else we are done.

16 i B i+ 1.
17 zi B z.

// Turn right so that we do not travel outside C:

18 ∆ B (−∆y,∆x).
19 end
20 until z = z1 // We have reached the beginning.

21 nz B i. // The number of contour points.

22 return (z1, . . . , znz).
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done using Algorithm 7.1, which is similar to an algorithm by Zahn
[1966]. It starts at a pixel in the top row of the CPG. Then, the al-
gorithm travels along the CPG’s edge and records every boundary
point it encounters. Each of these points lies between a pixel inside
and one pixel outside of the CPG. In every case, these lie in the four-
neighborhood of each other.

Given the outputs (z1, . . . , znz) of Algorithm 7.1, φperimeter is de-
fined as:

φperimeter(C, f, sp) B sp

(
‖z1 − znz‖2 +

nz−1∑
i=1

‖zi+1 − zi‖2

)
,

∀C ∈ C, f ∈ GP, sp ∈ R>0. (7.4)

Here, ‖·‖2 stands for the Euclidean norm. The perimeter of the Ag
agglomerate mentioned at the beginning of the section is about
17 054nm.

The perimeter including inner contours φperimeter+ ∈ Φ is com-
puted exactly as φperimeter with the only difference that contours of
holes inside the CPG are also incorporated into the calculation of the
length of the contour. In other words, it is defined as the length of
the outer contour plus the lengths of the inner contours. For the Ag
agglomerate, the value of this feature is approximately 22 069nm.

The next feature, the isoperimetric quotient φIQ ∈ Φ is defined as
the ratio of the particle’s area φarea and the area of a circle having a
perimeter equal to φperimeter+. It is calculated as

φIQ(C, f, sp) B
4πφarea

φperimeter+
2

, ∀C ∈ C, f ∈ GP, sp ∈ R>0. (7.5)

If the particle has a circular shape, its value is 1. If the shape gets
more complex, the feature becomes smaller. This complexity can ei-
ther stem from global features such as a very elongated shape or
local properties such as a rugged shape. The Ag agglomerate has an
isoperimetric quotient of about 0.263.

The last basic geometric feature we use is the in-image contour
percentage φIICP ∈ Φ. It is defined as the percentage of the CPG’s
surrounding contour that does not touch an image edge:

φIICP(C, f, sp) B 1−
sp|{(x,y) ∈ {z1, . . . , znz} | x · y < 0∨ x > nx − 1∨ y > ny − 1}|

φperimeter(C, f, sp)
,

∀C ∈ C, f ∈ GP, sp ∈ R>0. (7.6)

The set in the equation contains all points of the surrounding con-
tour which lie at the border of the image. Its size multiplied with the
pixel size sp gives us the length of the outer contour that is touch-
ing an image edge. Dividing it by the perimeter φperimeter yields the
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percentage of the outer contour touching an image edge. Finally, by
subtracting this value from 1, we get the in-image contour percentage
φIICP. For particles which are completely visible, it is equal to 1. The
Ag agglomerate has an in-image contour percentage of 0.558.

As mentioned before, we have selected these basic geometric fea-
tures in order to give the classifier some context. Using these features,
it is measured if the CPG is fully visible and if it has a complicated
shape. In the next section, we will introduce a feature that will give
the classifier much more detailed information about the CPG’s con-
tour.

7.3.2 Shape Features

The aforementioned features are suitable to distinguish round shapes
from irregular ones or small objects from large ones. Still, the agglom-
erates often only differ in the size distribution of the primary parti-
cles. The agglomerates of engineered nanoparticles typically have a
small variance in the primary particle sizes while background parti-
cles such as diesel soot agglomerates can contain primary particles
from a wider size range. These size distributions are typically re-
flected in the texture and the contour of the agglomerates. Because
the texture is greatly affected by the noise and blur in some images,
we first concentrate on the contour. In order to identify nanoparticle
agglomerates, a shape feature has to have the following properties:

• It has to be insensitive against the global shape of an agglomer-
ate.

• It has to be sensitive towards local contour changes in specific
size ranges caused by primary particles of certain sizes.

• It has to be sensitive towards local structures of the same size for
every CPG regardless of its overall size.

As explained in Section 7.2.2, the shape features used in the liter-
ature are not suitable for our purpose. The fractal dimension only
allows a rough division of particles because it yields a single feature
value. It does not give nearly enough information in order to differ-
entiate agglomerates of engineered nanoparticles from particles such
as diesel soot agglomerates. In addition, it is relatively complicated
to calculate.

The other popular type of shape features are Fourier descriptors.
They capture global frequencies in the function representation. How-
ever, local changes such as fluctuations of the phase of these frequen-
cies can pose a problem to the descriptors. In addition, two particles
are generally not examined using the same frequencies.

The multiscale roughness descriptor by Drolon et al. [2000] is based
on the wavelet transform instead of the Fourier transform. It is able
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Figure 7.4: The form of the real part of a Morlet wavelet.

to give more local information than the latter. However, similarly to
the Fourier transform, the absolute frequencies of the wavelets are in
general distinct for two particles due to the different lengths of their
contours.

In the next section, we will introduce a feature we have developed
that does not have these drawbacks. In addition, we are able to exactly
specify the wavelengths of the structures it searches for. It is called
mean contour angle wavelet response.

7.3.2.1 Mean Contour Angle Wavelet Response

The feature φMCAWR, λ ∈ Φ is calculated as follows:

1. Express the contour of the particle as a periodic function.

2. Convolve this function with a wavelet of the predetermined
wavelength λ ∈ R>0 measured in nm.

3. Use the mean absolute value of the resulting function as the
feature value.

The first step is similar to the first step in the calculations of the Fou-
rier descriptors and the multiscale roughness descriptor. As a result
of the convolution, we get a strong response in areas whose structures
correspond to the frequency of the wavelet. By taking the average of
the absolute values, we get a measure of how prevalent this frequency
is in the functional representation of the contour.

The exact method is listed in Algorithm 7.2. The functional rep-
resentation of the contour, whose details we will discuss shortly, are
convoluted with the real part of the complex-valued Morlet wavelet.
Its form is visible in Figure 7.4. As the next step, the mean absolute
response is calculated. Finally, to obtain the feature value, the result
is divided by the in-image contour percentage φIICP. The rationale
behind this is that the convolution with parts of the contour that co-
incide with an image edge usually result in a value of 0. For particles
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Algorithm 7.2 : MeanContourAngleWaveletResponse(λ,C, f, sp)
Input : The wavelength λ ∈ R>0 of the structures to be detected

measured in nm, a CPG C ∈ C, its image f : P → G and
the pixel size sp ∈ R>0 measured in nm.

Output : The mean contour angle wavelet response
φMCAWR, λ(C, f, sp) ∈ R.

1 λ∗ B λ
sp

. // The wavelength measured in pixels.

2 (γ0, . . . ,γnγ−1) B NormalizedCumulativeAngularFunction(C).
// The cumulative angles of the contour of C,

measured at equidistant points one pixel size apart

from each other (see Algorithm 7.3).

// Convolve the function γ with the real part of a

Morlet wavelet of wavelength λ∗:

3 for i = 0, . . . ,nγ − 1 do

4 ϕi B
d4λ∗e∑

j=−d4λ∗e
γ(i−j) mod nγ cos

(
2π jλ∗

)
e−(

j
λ∗ )

2

. // For

brevity, we omitted the constant multiplicative

and additive terms of the wavelet making its mean 0

and its L1 norm 1.

5 end
// To get the feature value, compute the mean absolute

response of the convolution and divide it by the

in-image contour percentage in order to account for

CPGs where only part of the contour is inside the

image:

6 return φMCAWR, λ(C, f, sp) B 1
φIICP(C,f,sp)

·
nγ−1∑
i=0

|ϕi|

nγ
.

such as the Ag agglomerate on the left in Figure 1.2 on Page 5, this
would result in a very low feature value. Therefore, we have decided
to perform the division, which approximately reverts this effect.

To express the contour as a periodic real-valued function, we have
chosen the normalized cumulative angular function also known as
normalized tangent-angle function originally proposed by Zahn and
Roskies [1972]. It is applicable to non-convex shapes and the func-
tion’s shape is invariant under translation and rotation. The computa-
tion of the function is explained in Algorithm 7.3. At first, the contour
of the CPG is expressed as a series of equidistant points progressing
clockwise. Then, for each consecutive pair of these points, the angle
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Algorithm 7.3 : NormalizedCumulativeAngularFunction(C)
Input : A CPG C ∈ C.
Output : The normalized cumulative angular function

(γ1, . . . ,γnγ) of the contour surrounding C expressed
as a sequence of values γi ∈ R.

1 (z1, . . . , znz) B FindContour(C). // The contour surrounding C

as a series of points (see Algorithm 7.1) progressing

clockwise.

// Resample the contour so that consecutive points have a

distance of 1:

2 Let (z ′0, . . . , z ′nγ−1) with nγ ∈ N>0 be a resampled version of
(z1, . . . , znz) so that

∥∥z ′i+1 − z ′i∥∥2 = 1, ∀ i = 0, . . . ,nγ − 2 and∥∥∥z ′0 − z ′nγ−1∥∥∥2 6 1.
3 γ B 0.
4 for i = 0, . . . ,nγ − 1 do

// Compute the angle of the vector from z ′i to

z ′(i+1) mod nγ
:

5 γ ′ B atan2
(
y ′(i+1) mod nγ

− y ′i , x ′(i+1) mod nγ
− x ′i

)
.

// Compute the cumulative angle so that the function

is continuous:

6 while |γ ′ − γ| > π do

7 γ ′ B

γ ′ + 2π, if γ > γ ′,

γ ′ − 2π, else.
8 end
9 γ B γ ′.

// Normalize the value so that the function is

continuous and periodic:

10 γi B γ−
i
nγ
2π.

11 end
12 return (γ1, . . . ,γnγ).
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of the connecting line segment is calculated. This is done using the
function atan2 : R×R→ (−π,π]:

atan2(y, x) B



arctan
(
y
x

)
, if x > 0,

arctan
(
y
x

)
+ π, if y > 0, x < 0,

arctan
(
y
x

)
− π, if y < 0, x < 0,

+π2 , if y > 0, x = 0,

−π2 , if y < 0, x = 0,

∀y, x ∈ R,yx , 0. (7.7)

We could interpret these values as a function describing the contour
of a CPG. However, if the contour was a circle, this function would
jump from π to −π after half of the function values. To avoid that,
we need to calculate the cumulative angle, which is defined as the
change of the contour angle between the starting point and the cur-
rent point. This is done in the loop starting in Line 6. After that step,
the function is continuous from the first to the last value. However,
we also want the function to be periodic. For a circular contour the
first value would be 0 and the last value would be 2π. Interpreted as a
periodic function, it would not be continuous. Therefore, we have to
normalize the function values. This is done in Line 10. Now, we have
a periodic and continuous function. A circle’s normalized cumulative
angular function would be constantly 0.

The normalized cumulative angular function of the Ag agglomer-
ate on the left in Figure 1.2 on Page 5 is depicted in Figure 7.5. The
straight parts of the function are caused by the image edges. Fig-
ure 7.6 shows the absolute result values of a convolution of this func-
tion with a Morlet wavelet having a wavelength of about 101, which
corresponds to 128nm (see Algorithm 7.2). Averaging these values,
we get about 0.0838. Finally, we get the final feature value of 0.154
by dividing this result by the in-image contour percentage, which is
equal to 0.558.

The system uses the versions of the feature φMCAWR, λ with the
following wavelengths: 4nm, 8nm, 16nm, 32nm, 64nm, 128nm,
256nm, 512nm, 1024nm and 2048nm. We have chosen to scale the
values exponentially in order to cover a wide range of frequencies
while having a good coverage in the range of the diameters of engi-
neered nanoparticles. Smaller values would not make sense because
the images we use have a pixel size of at least 1.27nm. We have in-
cluded values much larger than the nanoparticle diameters because
multiple primary particles may form substructures inside agglomer-
ates that have sizes in this range. We do not use values larger than
2048nm because the contours of most CPGs have a perimeter smaller
than this value. The feature values of the Ag agglomerate are listed
in Table 7.1.
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Figure 7.5: The normalized cumulative angular function of the contour of
the Ag agglomerate on the left in Figure 1.2 on Page 5 as calcu-
lated in Algorithm 7.3.
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Figure 7.6: The absolute results of convolving the function from Figure 7.5
using a Morlet wavelet with a wavelength corresponding to
128nm. The details of the computation are listed in Algo-
rithm 7.2.
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Table 7.1: The feature values of the mean contour angle wavelet response
feature of the Ag agglomerate on the left in Figure 1.2 on Page 5
for different wavelengths.

wavelength feature value

4nm 0.098

8nm 0.067

16nm 0.050

32nm 0.056

64nm 0.092

128nm 0.154

256nm 0.199

512nm 0.247

1024nm 0.282

2048nm 0.246

7.3.3 Intensity-based Features

The intensity-based features we use have to be able to deal with the
fact that the absolute intensity of a particle has little significance. As
explained in Section 4.2.2.4, the intensity can vary between images
and even within a single image. We have to take that into considera-
tion when selecting intensity-based features.

In the literature, intensity-based feature are the least-popular cate-
gory compared to basic geometric and shape features. As mentioned
in Section 7.2.3, Haralick features are the most popular kind of
intensity-based features. We also use them in our system to capture
the structures inside agglomerates introduced by their primary par-
ticles. Additionally, they are applicable to very small and also large
particles.

In addition, we use a histogram feature to describe the intensity
distributions of the CPGs. We use a normalized calculation method
to cope with variable intensities. Finally, we introduce a new feature
based on an estimation of the number of electrons detected for each
pixel. We will describe these features in the following sections.

7.3.3.1 Normalized Relative Histogram

One distinguishing factor of the different particle types are the vary-
ing intensity distributions. As explained in Section 4.2.2.4, the Ag ag-
glomerates often appear brighter than many other particle types. To
include information about the CPGs’ intensity distributions, we com-
pute a normalized relative histogram φhist, i ∈ Φ, i = 0, . . . , 9 with 10
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Figure 7.7: The normalized relative histogram of the Ag agglomerate on the
left in Figure 1.2 on Page 5.

bins φhist, 0, . . . ,φhist, 9 for the pixels of every CPG. The features are
calculated as follows:

φhist, i(C, f, sp) B∣∣∣∣∣
{
p ∈ C

∣∣∣∣∣ i10 6
f(p)−arg max

g∈G
Hf(g)

max
p ′∈C

f(p ′)+ε−arg max
g∈G

Hf(g)
< i+1

10

}∣∣∣∣∣
|C|

,

∀C ∈ C, f ∈ GP, sp ∈ R>0, i = 0, . . . , 9. (7.8)

Here, Hf : G → N is the absolute histogram of the image f (see
Equation (6.35)) and ε ∈ R>0 is a small positive value. The dis-
tribution of the bins is normalized between the modal image in-
tensity arg maxg∈GHf(g) and the maximum intensity of the CPG
maxp ′∈C f(p ′). This way, the parameter values are invariant under
linear transformations of the image intensities such as changes to the
contrast and brightness settings of the microscope. The intensities of
the CPG are guaranteed to lie above the modal image intensity be-
cause the threshold used for the segmentation is always higher than
this value (see Section 6.3.3). The ε in Equation (7.8) is introduced
to guarantee that pixels with intensities equal to maxp ′∈C f(p ′) are
included in the last bin. We ensure that the values do not depend on
the size of the CPG by dividing everything by the total number of
pixels in the CPG |C|.

The histogram of the Ag agglomerate is shown in Figure 7.7.
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7.3.3.2 Haralick Features

In order to use the additional information given by the texture of the
particles, we have decided to use Haralick features. This technique
is used in several publications on particle detection and classification
[Langford et al., 1990; Flores et al., 2003; Laghari, 2003; Rodriguez-
Damian et al., 2006; Stachowiak et al., 2008]. In fact, it is the only
intensity-based feature used in more than one publication examined
by us. We have chosen the approach because it is applicable to small
and irregularly shaped particles.

Haralick features are derived from the so-called co-occurrence ma-
trix OC,f,∆(g,g ′) ∈ R>0, g,g ′ ∈ G. The value OC,f,∆(g,g ′) is defined
as the probability that a pair of intensities g and g ′ occurs in the CPG
Cwith the offset ∆ ∈ P−P B {p− p ′ |p,p ′ ∈ P}. The formal definition
is the following:

OC,f,∆(g,g ′) B
|{p ∈ C |p+∆ ∈ C, f(p) = g, f(p+∆) = g ′}|

|{p ∈ C |p+∆ ∈ C}| ,

∀C ∈ C, f ∈ GP,∆ ∈ P− P,g,g ′ ∈ G. (7.9)

The entries of the co-occurrence matrix could be used directly as
features but assuming 256 different image intensities, this would a-
mount to 65 536 different features per offset. This would result in a
computationally expensive classification training and, because of the
curse of dimensionality (see Section 8.1.2), in an inferior classification
performance. This is the reason why several measures derived from
the co-occurrence matrix are used instead.

Haralick et al. [1973] originally describes 14 statistics. However, sev-
eral other measures have been proposed. We have chosen the set
of features used by Stachowiak et al. [2008] because they report a
good performance for wear particles having similar characteristics
to nanoparticle agglomerates. They use the following measures [Sta-
chowiak et al., 2005]:

• Contrast φHC,∆

• Energy φHEne,∆

• Entropy φHEnt,∆

• Local homogeneity φHLH,∆

• Cluster shade φHCS,∆

• Cluster prominence φHCP,∆

• Maximum probability φHMP,∆

For C ∈ C, f ∈ GP, sp ∈ R>0,∆ ∈ P − P, they are defined as follows
[Stachowiak et al., 2005]:

φHC,∆(C, f, sp) B
∑
g,g ′∈G

(g− g ′)2OC,f,∆(g,g ′), (7.10)
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Table 7.2: The feature values of the Haralick features of the Ag agglomerate
on the left in Figure 1.2 on Page 5 for different offsets.

feature feature value for offset

(1, 0) (1, 1) (0, 1) (−1, 1)

φHC,∆ 70.496 86.926 85.231 87.449

φHEne,∆ 0.000 418 9 0.000 381 8 0.000 383 1 0.000 380 8

φHEnt,∆ 11.779 11.922 11.911 11.927

φHLH,∆ 0.1428 0.1303 0.1313 0.1301

φHCS,∆ −351 620 −343 721 −351 401 −347 069

φHCP,∆ 1.246× 108 1.213× 108 1.241× 108 1.224× 108

φHMP,∆ 0.001 201 0.001 109 0.001 090 0.001 056

φHEne,∆(C, f, sp) B O2C,f,∆(g,g ′), (7.11)

φHEnt,∆(C, f, sp) B −
∑
g,g ′∈G

OC,f,∆(g,g ′) · log2
(
OC,(g,g ′)

)
, (7.12)

φHLH,∆(C, f, sp) B
∑
g,g ′∈G

1

1+ (g− g ′)2
OC,f,∆(g,g ′), (7.13)

φHCS,∆(C, f, sp) B∑
g,g ′∈G

(g−M1,C,f,∆ + g ′ −M2,C,f,∆)
3OC,f,∆(g,g ′), (7.14)

φHCP,∆(C, f, sp) B∑
g,g ′∈G

(g−M1,C,f,∆ + g ′ −M2,C,f,∆)
4OC,f,∆(g,g ′), (7.15)

φHMP,∆(C, f, sp) B max
g,g ′∈G

OC,f,∆(g,g ′), (7.16)

where
M1,C,f,∆ =

∑
g,g ′∈G

gOC,f,∆(g,g ′), (7.17)

M2,C,f,∆ =
∑
g,g ′∈G

g ′OC,f,∆(g,g ′). (7.18)

We compute these features for the following offsets: (1, 0), (1, 1), (0, 1),
(−1, 1). The feature values of the Ag agglomerate are listed in Ta-
ble 7.2.
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7.3.3.3 Electron Counts

For each pixel of each SEM image, the intensity is determined by
counting the electrons detected by the electron detector at the cor-
responding point on the specimen and amplifying this signal (see
Section 4.2.1). This process can be modeled using Equation (6.12) on
Page 66. The electron count is multiplied with the value of the con-
trast setting a and the value of the brightness setting b is added to ob-
tain the intensity. However, the values of these settings are unknown
to us and generally change for every image. This means that the abso-
lute intensities of an image are only weakly connected to the electron
counts and reveal very little about the specimen. Knowing the elec-
tron counts of the pixels of a CPG, however, would be very insight-
ful. Samples made from carbon, for example, which is the main com-
ponent of diesel soot, generate only about half as many secondary
electrons as other materials [Goldstein et al., 2003, p. 95]. Knowing
the electron counts of the pixels of diesel soot agglomerates could
therefore be crucial to distinguish them from agglomerates made of
engineered nanoparticles.

The noise estimation method we have developed and described in
Section 6.3.1 is able to calculate estimates of the contrast and bright-
ness setting values a and b for each image. Using these and Equa-
tion (6.12) on Page 66, we are able to directly estimate the electron
count of every pixel in each image. From these, we can derive features
that describe the minimum, maximum and mean estimated electron
counts φmin EC,φmax EC,φmean EC ∈ Φ of each CPG. The computation
of these features is described in Algorithm 7.4. The feature values
of the Ag agglomerate are approximately 240, 1712 and 1259, respec-
tively. For background particles in our database taken from the ambi-
ent air, the maximum estimated electron count can take values below
20. We observe such values for several particles in multiple images. In
such a case, according to the Poisson distribution, the standard devi-
ation of the noise equals to more than 20% of the mean signal value
(see Section 6.3.1.1). This shows that the signal-to-noise ratio of these
images is indeed extremely low.

The parameter ntile ∈ N>0 is needed for the estimation of the con-
trast and brightness setting values. We use a fixed value of 16, which
we have found to be best in the evaluation of the noise estimation in
Section 6.4.1.

In order to compare the electron counts to another feature and to
test the hypothesis that absolute intensities are not very meaningful
in the case of SEM, we will include the maximum intensity of each
CPG as a feature φmax I ∈ Φ:

φmax I(C, f, sp) B max
p∈C

f(p), ∀C ∈ C, f ∈ GP, sp ∈ R>0. (7.19)
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Algorithm 7.4 : EstimateElectronCounts(ntile,C, f, sp)
Input : The parameter ntile ∈ N>0 for the noise estimation, a CPG

C ∈ C, its image f : P → G and the pixel size sp ∈ R>0
measured in nm.

Output : The minimum, maximum and mean estimated electron
counts
φmin EC(C, f, sp),φmax EC(C, f, sp),φmean EC(C, f, sp) ∈ R
of the CPG C.

// Calculate estimates â, b̂ ∈ R of the contrast and

brightness settings:

1 â, b̂ B EstimateNoiseParameters(f,ntile). // See Algorithm 6.2

on Page 78.

// Estimate the feature values using Equation (6.12) on

Page 66:

2 φmin EC(C, f, sp) B min
p∈C

f(p)−b̂
â .

3 φmax EC(C, f, sp) B max
p∈C

f(p)−b̂
â .

4 φmean EC(C, f, sp) B 1
|C|

∑
p∈C

f(p)−b̂
â .

5 return φmin EC(C, f, sp),φmax EC(C, f, sp),φmean EC(C, f, sp).

In this chapter, we have described every feature our system uses to
describe the CPGs. In the next chapter, we will explain the classifica-
tion system that uses the values of these features to distinguish CPGs
made of engineered nanoparticles from those made of background
particles. It will also contain an evaluation of the features described
in this chapter because the quality of a feature can best be assessed
by the impact it has on the classification result.





8
C L A S S I F I C AT I O N

This chapter will address the task of deciding for each CPG that has
been found if it is composed of engineered nanoparticles. Further-
more, we will present a method that is able to automatically select
classification parameters so that the system is able to adapt to new
particle types. In Section 8.1, we will look at the remaining tasks to
be fulfilled by our system in order to be able to successfully classify
engineered nanoparticles. Section 8.2 will explain how other publica-
tions have solved similar problems. In Section 8.3, we will describe
how our system performs these tasks. Finally, Section 8.4 will per-
form a thorough evaluation of our system as a whole.

8.1 goals

In Chapter 3, we have outlined goals that our system shall be able to
fulfill. Our primary target was to reduce the amount of manual work
in the detection and identification of engineered nanoparticle in SEM
images. In particular, we formulated the following goals:

• Minimum goals:

detection Locate the engineered nanoparticles and (option-
ally) the background particles in every image.

identification Decide for every found particle if it either
consists of engineered nanoparticles of a specific type or is
a background particle.

• Optional goals:

future viability Be able to adapt to new particle types and
requirements.

performance prediction Predict the influence of addi-
tional training data on the quality of the system’s particle
identification to guide the user’s decision if more training
samples shall be produced.

We have shown in Chapter 6 that our system is able to successfully
perform the first task. In addition, we have partly addressed the sec-
ond goal in Chapter 7 by describing how the system computes char-
acteristic numerical features of each found CPG. The missing part
of this goal is solved using statistical classification and additional di-
mensionality reduction, whose general concepts we will explain in
Sections 8.1.1 and 8.1.2. After that, we will address the goal of future
viability in Section 8.1.3. The last goal will be the topic of Chapter 9.
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8.1.1 Classification

As the result of the feature computation step of our pipeline, we have
a list of feature values (φi(C, f, sp))i=1,...,nφ

∈ X for each CPG C, its
so-called feature vector. The job of the classification step is then to
assign each CPG to a class Y ∈ Y B {Y+, Y−}. Here, the “positive”
class Y+ is the class of all CPGs made of engineered nanoparticles.
Conversely, the “negative” class Y− is the class of all CPGs made of
background particles.

In practice, this is done using a so-called classifier. It has to be
trained using a set of CPGs that have manually been labeled as be-
longing to either of the classes. This produces a learned classifier,
which is able to classify previously unknown CPGs on its own.

More formally, a classifier l is trained using a training set T to pro-
duce a learned classifier l(T), which is able to assign a class l(T)

(
~X
)
∈

Y to a CPG with the feature vector ~X ∈ X. Here, the training set
T v X×Y is a multiset with elements in X×Y. Each member

(
~X, Y

)
∈

X × Y of T means that there is a CPG of class Y with the feature
vector ~X. We have defined T as a multiset because there can be mul-
tiple CPGs with the same feature values of the same class in a single
training set. If we define D B {D |D v X× Y}, then the classifier is
a function l : D → YX where YX is the set of all functions from X

to Y. In most cases, a classifier l has a set of parameters that can be
adjusted in order to change its behavior. Such parameters are always
changed before training the classifier.

Often, l as well as l(T) are simply called classifier. However, we
will use the convention of calling l classifier, unlearned classifier or
untrained classifier while we will refer to l(T) as learned or trained
classifier.

8.1.2 Dimensionality Reduction

As explained in the previous section, a classifier l is given a training
set T in order to produce a function l(T) : X→ Y that is able to tell for
any CPG to which class Y ∈ Y it belongs solely based on its feature
vector ~X ∈ X. The quality of this function depends, among others, on
the following factors [Jain et al., 2000]:

• The size of the training set |T |.

• The complexity of the classifier.

• The number of features nφ.

In general, a larger training set leads to better results. This observa-
tion, however, is only valid under the assumption that the distribution
of the samples in the training set is the same as for the samples the
quality of the learned classifier is assessed with.
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The classifier has to be chosen specifically for each individual clas-
sification problem. Given a large enough training set, a complex clas-
sifier can improve the results. For relatively small training sets, a sim-
ple classifier is usually a better choice. We will elaborate on that in
Section 8.3.1.1.

The feature count has a strong influence on the classification re-
sults. Without any features, no classifier can perform well if there
is more than one class. In some cases, one feature may be enough
to achieve a good classification result. In most cases, though, using
multiple features leads to a better classification. This is a predictable
result because the classifier can base its decision on more information.
However, it has been observed that, at a certain point, adding more
features deteriorates the classification results. This effect is known as
the curse of dimensionality or the peaking phenomenon. Jain et al.
[2000] provide an intuitive explanation of this effect: Most classifiers
produce the learned classifier simply by altering the parameters of a
base function. The more features are used, the more parameters this
function has. Given a fixed training set size, the ratio of training sam-
ples to unknown parameters decreases. This makes the parameter
estimation less reliable.

Another explanation is as follows: We can think of each sample as
a point in nφ-dimensional space, the so-called feature space, if we
interpret its feature vector as coordinates. The job of the classifier is
to estimate the probability of a sample in a specific region of this
space of belonging to a certain class. If we increase nφ and add more
features, the dimension of the feature space increases. Assuming a
fixed training set size, the density of the training samples in this space
decreases accordingly. This makes the estimation of the probabilities
more difficult.

The ideal number of features depends on the training set size, the
classifier complexity, the types of features and the problem domain
and cannot be predicted in advance. In addition, one cannot predict
which features are best suited to represent the characteristics of the
samples. Due to these reasons, in most cases, the number of avail-
able features is too high. This is especially true if only few training
samples are available. In such cases, dimensionality reduction can be
used to improve the classification performance. Its goal is to reduce
the number of features in order to improve the classification quality.
The classifier is then trained using the reduced set of features. Due to
the relatively low number of samples in our database, dimensionality
reduction can be a useful addition to our system.

8.1.3 Future Viability

In Chapter 2, we have outlined that the requirements a system like
ours will have to meet may change in the future. In particular, the
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types of particles it shall be able to identify may change. If these
are very different from the three particle types in our images, new
features may have to be added and the segmentation approach may
even have to be changed. Such changes must be made by a computer
scientist or programmer and cannot be performed by the user of our
system. However, if the new particle types are similar to the ones the
system is currently targeted at, using a different selection of the al-
ready implemented features and changing the classifier or its param-
eters may be sufficient to achieve a good classification performance.
In such a case, we want the system to be able to adapt itself with-
out needing the user to set any parameters. More specifically, when
training the system for any type of engineered nanoparticles, it shall
be able to fully automatically choose an appropriate classifier, its pa-
rameters and the subset of features to use. In the literature on pattern
recognition and machine learning, this task is called model selection.

8.2 related work

The publications on automatic image-based particle analysis use a
wide array of classification algorithms. The used approaches range
from expert systems [Xu et al., 1998] over linear discriminant analy-
sis [Langford et al., 1990; Thomas et al., 1995], k-nearest neighbors
[Kindratenko et al., 1997; Oster, 2010] and support vector machines
(SVMs) [Luo et al., 2004; Rodriguez-Damian et al., 2006; Stachowiak
et al., 2008] to neural networks [Wienke et al., 1995; Kindratenko and
Van Espen, 1996; Xu et al., 1998; Laghari, 2003; Calderon De Anda
et al., 2005; Raadnui, 2005; Rodriguez-Damian et al., 2006]. However,
instead of looking at these publications we will concentrate on the
general literature on pattern recognition and machine learning. The
reason is that the feature representation of CPGs is abstract and not
domain-dependent. Classification algorithms are designed to learn
the distributions of any problem domain.

In the next section, we will give an overview of the literature on
statistical classification. Then, Section 8.2.2 will present different ap-
proaches to dimensionality reduction. Finally, Section 8.2.3 will ad-
dress the task of finding an appropriate classifier and matching pa-
rameters for a given classification task.

8.2.1 Classification

First, we want to define some terminology as we use it in this thesis.
Other publications may use the same terms differently.

The fields of machine learning and pattern recognition are strongly
connected. Both aim at enabling computers to make autonomous de-
cisions. Some even say that both “activities can be viewed as two
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facets of the same field” [Bishop, 2006, p. vii]. We will not try to give
an exact definition of these terms.

Both fields make a distinction between unsupervised classification
or learning and supervised classification or learning [Jain et al., 2000].
Both tasks have in common that an unknown sample shall be as-
signed to a class. In the former case, the classes that the samples
are assigned to are unknown beforehand. In the case of supervised
classification or learning, there are predefined classes. For this thesis,
only the latter case is relevant. Therefore, the definition given in Sec-
tion 8.1.1 describes supervised learning. If we refer to classification in
this thesis, we will always mean supervised classification.

Jain et al. [2000] categorize classification approaches into four
groups:

• Template matching

• Syntactic or structural matching

• Statistical classification

• Neural networks

The idea of template matching is that there is a prototypical instance
(the template) of each class, which every new sample is compared to.
Then, the sample is assigned to the class whose template it’s most
similar to. The approach is unsuitable if there are large variations
among the samples of a single class [Jain et al., 2000], as is the case
for nanoparticle agglomerates. Therefore, we do not use this method.

The syntactic approach is based on the assumption that the pattern
to be recognized is composed of subpatterns which in turn are com-
posed of even simpler patterns, called primitives. The idea is that the
pattern is defined by the relationship between these primitives. These
relationships can be described by a grammar, which is automatically
inferred from the training set. However, to use this approach, a large
training set is required. In our case, generating samples is accompa-
nied by considerable costs. Therefore, this method is unsuitable for
our purpose.

In the case of statistical classification, the samples are expressed
in terms of feature values as explained in Section 7.1. Using these
feature values, the classification algorithm then assigns the sample to
a class as described in Section 8.1.1.

Neural networks are a special case of statistical classifiers. They are
composed of many nodes, which perform simple computations. The
feature values of a single sample are used as the input for the first
set of nodes. The results of the computations of these nodes are then
propagated through a series of nodes until the final set of nodes out-
puts the class of the sample. Although the computations performed
by a single node are very simple, neural networks are able to infer
complex relationships between feature values and classes.
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A variant of neural networks, which has become popular in recent
years, are convolutional neural networks [Krizhevsky et al., 2012].
These do not work with features. Instead, their input are the im-
age pixels themselves. Through a series of nodes organized in lay-
ers, which perform convolutions and combine the inputs locally, the
amount of information is reduced to such a degree that it can be used
as the input of a conventional fully-connected neural network.

Another special case of statistical classification is the so-called out-
lier detection or anomaly detection [Dokas et al., 2002]. Such ap-
proaches group samples into two categories: normal and abnormal.
They are trained by learning the characteristics of normal samples.
Any unknown sample that does not fit these characteristics is then
classified as abnormal. Outlier detection is suitable for applications
with the following properties:

• The characteristics of all subtypes of normal samples are well
known. Otherwise, a normal sample of an unknown subtype
would be classified as abnormal.

• The characteristics of abnormal samples are not well known.
Otherwise, a normal statistical classifier is better suited because
it can use this information to better distinguish the two classes.

However, our problem does not fit these properties. There are many
kinds of airborne particles and only a minority of them are engi-
neered nanoparticles. Therefore, it is impossible to create a training
set that contains every possible type of background particles. This
would contradict the first property if we would define background
particles as “normal”. In addition, we can relatively easily create train-
ing images of background particles. Therefore, defining them as “ab-
normal” would disagree with the second property.

Because of the reasons mentioned above, namely relatively small
training sets and complex classes, we have decided to use statistical
classifiers. As mentioned before, each sample can be thought of as a
point in the nφ-dimensional feature space if we interpret its feature
vector as coordinates. Using this interpretation, a random sample of
class Y ∈ Y has a certain probability of being located in a given region
of the feature space. These probabilities are called class-conditional
densities. If they are completely known, then the optimal Bayes de-
cision rule can be used to assign a class to a previously unknown
sample [Jain et al., 2000]. If at least their form is known, their pa-
rameters can be estimated using the training set. This approach is
called the Bayes plug-in classifier. However, we know nothing about
the class-conditional densities of our classification problem. There-
fore, the classifier we use has to either estimate the class-conditional
densities or operate based on a learned decision boundary. The lat-
ter is defined as a hypersurface in the feature space that splits the
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samples that are assigned to one class from those that are assigned to
another.

8.2.2 Dimensionality Reduction

According to Jain et al. [2000], there are two types of dimensional-
ity reduction: feature extraction and feature selection. These terms
are often used interchangeably in the literature. We will use them as
defined by Jain et al. [2000].

Feature extraction methods create new features by calculating them
from existing ones. The hope is that these features are more expres-
sive than the old ones and are more useful for the classification.

Feature selection algorithms select a subset of features, which is
then used as the input of the classifier. Optimally, the most useful
features are selected and the ones that are not helpful to differentiate
the classes are rejected.

Also note that both methods are often used together. In these cases,
feature extraction is used in order to produce additional features and
feature selection is applied subsequently to reduce the overall feature
count.

8.2.3 Model Selection

We want our system to automatically select an appropriate classifier
and good values for the classifier parameters for each type of engi-
neered nanoparticles. This task is called model selection. For that,
three questions have to be answered:

• How do we evaluate the quality of a classifier-parameter com-
bination?

• How do we estimate the error of a given classifier-parameter
combination in order to calculate the evaluation metric?

• How do we select classifier-parameter combinations to be
tested?

To answer the first question, we need to select an evaluation metric
or performance measure. Most often used is the accuracy [Japkowicz
and Shah, 2011, p. 7]. It is defined as the percentage of the samples
that are correctly classified. However, this metric is unsuitable if, as
in our case, samples of one class are much rarer than those of another
class. For example, the ratio of Ag nanoparticle CPGs to background
CPGs in our database is about 1:85.

The shortcoming of the accuracy metric can be illustrated by the
following example: We want to evaluate cancer screening tests for the
general public. Test A always predicts that a subject is healthy. There-
fore, it is not able to detect a single cancer case. Test B, on the other
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hand, is able to detect every single cancer case and has a relatively
low probability of 0.1% of predicting cancer in a healthy subject. Test
B is clearly the better choice. However, let us assume that 99.99% of
the public are healthy. Then, Test A achieves an accuracy of 99.99%
while test B only obtains an accuracy of about 99.90%. We will de-
scribe more appropriate metrics in Section 8.3.3.

To answer the second question, we need to find a way to test a given
classifier-parameter combination in order to estimate its error on real-
world data. The most obvious solution of using all labeled samples
as the training set and testing the performance of the classifier on the
same data is not appropriate. In this case, the error is underestimated
because the learned classifier is biased towards the samples in the
training set. A simple lookup table that remembers the classes of all
labels in the training set would commit no errors if it was tested on
the training set.

Several other error estimation approaches have been proposed [Jap-
kowicz and Shah, 2011, p. 163]:

• Holdout

• Random subsampling

• Bootstrapping

• Cross-validation

• Repeated cross-validation

The holdout method randomly splits the dataset into two separate
sets, the training set and the test set. The classifier is trained on the
training set and the performance of the learned classifier is then eval-
uated on the test set. The advantage of this approach is that the train-
ing and the test set are independent. However, in order to successfully
use this method, the number of labeled samples of each class has to
be relatively high. If this is not the case, we have to designate a large
part of the dataset as the test set so that the error estimate is reliable.
However, this means that the training set is small, which results in a
poorly trained classifier leading to a higher error estimate.

Random subsampling repeats the holdout method multiple times
with different choices of the training and test sets. This makes the
error estimate more reliable. However, the limited size of the training
sets is still a problem.

Bootstrapping is similar to random subsampling. However, the
training set has the same size as the full dataset and is drawn with
replacement from it. This means that the training set can contain
multiple instances of a single sample. The test set is defined as the
whole dataset without the samples that are in the training set. This
procedure is repeated multiple times. Bootstrapping has the advan-
tage that a larger training set is available to the classifier. However,
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it is unsuitable for classifiers such as the nearest neighbor algorithm
that cannot make use of repeated training samples.

In the case of cross-validation, the dataset is randomly split into
nF ∈ N>0,nF > 2, separate sets of roughly equal size. These sets
are called folds. Then, the classifier is trained on nF − 1 folds and
evaluated on the remaining fold. This procedure is repeated nF times
so that each fold is used exactly once for evaluation. This method
allows the classifier to be tested on every sample in the dataset. At
the same time, it is always trained on a sufficiently large training set.
A special case where nF is equal to the dataset size is called leave-
one-out. Here, in each iteration, the classifier is trained on all but
one sample and tested on the remaining one. A slightly modified
version of this method is called stratified cross-validation. Here, the
folds are generated such that the class distributions of every fold are
approximately equal.

Repeated cross-validation works by applying cross-validation mul-
tiple times on the same dataset. This can be done to obtain a more
reliable error estimate. However, this approach increases the compu-
tation time by a factor equal to the number of repetitions.

The final question to be answered is how to select specific classifier-
parameter combinations to be evaluated using the approaches ex-
plained above. Several types of algorithms have been proposed to
do this:

• Grid-search

• Random search

• Bayesian optimization

• Evolutionary algorithms

Grid-search works by selecting some fixed values for each param-
eter and then testing each combination of these values [Hsu et al.,
2010]. This approach is usually too time-consuming because its run-
time grows exponentially with the number of parameters.

Random search does not rely on predetermined parameter values.
Instead, as the name suggests, it chooses classifier-parameter combi-
nations randomly. This approach has been shown to perform better
than grid-search [Bergstra and Bengio, 2012]. However, a major dis-
advantage is that random search does not make use of the evaluation
results of previously chosen classifier-parameter combinations in the
selection of new ones. For example, it does not prefer combinations
similar to those which have previously proven to provide good re-
sults.

Bayesian optimization tries to build a statistical model of the rela-
tionship between parameter values and classification error [Thornton
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et al., 2013]. It chooses the next configuration based on a trade-off be-
tween probing unexplored regions in the parameter space and choos-
ing promising configurations. The model takes its knowledge from
all previously evaluated classifier-parameter combinations.

Finally, evolutionary algorithms are used for model selection
[Friedrichs and Igel, 2005]. Here, a certain number of configurations
is randomly chosen and evaluated to form a so-called population.
Then, inspired by biological evolution, new configurations are cre-
ated using recombination and mutation of existing members of the
population. Only the configurations that have shown the best clas-
sification performance are kept in the population. As with Bayesian
optimization, this approach is able to find a trade-off between prob-
ing unexplored regions in the parameter space and choosing the most
promising configurations.

8.3 method

In this section, we will explain the classification pipeline of our sys-
tem. At first, we want to describe the general workflow that is used
to automatically identify engineered nanoparticles of a given type:

• Training data creation:

1. The user makes a set of SEM images and corresponding
metadata (pixel sizes) available to the system.

2. The system segments these images as explained in Chap-
ter 6 in order to detect the CPGs in them.

3. The user manually labels the CPGs of known types with
the corresponding classes (specific engineered nanoparti-
cle class or the generic background particle class).

• Classifier training:

1. The user tells the system to train the classification of a spe-
cific engineered nanoparticle type and which images shall
be used for this.

2. The system computes (only once per CPG) and saves the
features of every CPG to be used as described in Chapter 7.

3. The system assembles a training set of all CPGs that are in
the images selected by the user and are either labeled as be-
longing to the class of the selected engineered nanoparticle
type or the background particle class.

4. The system automatically selects an appropriate subset of
features and a matching classifier-parameter combination
using the training set as we will explain in Section 8.3.2.

5. The system trains the selected classifier using the chosen
parameters and features on the training set.
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• Classification:

1. The user provides a set of SEM images containing engi-
neered nanoparticles of a specific type and background
particles and corresponding metadata (pixel sizes) to the
system.

2. The system segments these images as explained in Chap-
ter 6 in order to detect the CPGs in them.

3. The user tells the system to identify engineered nanoparti-
cles of the specific type in the images.

4. The system applies the learned classifier from the training
step to the CPGs found in the images using the selected
feature subset as we will describe in Section 8.3.1.

5. The system presents the classification results and concen-
tration estimates to the user.

The three steps can be independently initiated by the user. However,
running a step requires that the previous steps have been performed
at least once for the specific engineered nanoparticle type.

Note that the responsibilities of the user are restricted to the follow-
ing three tasks:

• Supplying images and the corresponding metadata.

• Labeling the CPGs of the training set.

• Tell the system to learn or classify a specific engineered nanopar-
ticle type.

The second task seems most demanding. However, this only needs to
be done once per engineered nanoparticle type. In addition, different
particle types are usually on separate images (see Section 4.3). There-
fore, the manual classification is very easy. Also note that the user
does not need to supply any parameters whatsoever.

We will begin with describing the classification process in Sec-
tion 8.3.1. Then, Section 8.3.2 will explain our automatic model se-
lection algorithm. Finally, Section 8.3.3 will address the task of esti-
mating the classification performance of a given classifier-parameter
combination.

8.3.1 Classification

In this section, we will describe the algorithms we use to classify
the CPGs. Section 8.3.1.1 will explain the requirements our classifiers
have to meet. In Section 8.3.1.2, we will present the classification al-
gorithms themselves. Finally, Section 8.3.1.3 will describe the prepro-
cessing steps each sample goes through before it is presented to the
classification algorithm.
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8.3.1.1 Classifier Requirements

The choice of a classifier strongly depends on the application domain,
the class distributions and the training set size. Our system shall be
able to automatically adapt to new particle types. While the applica-
tion domain stays the same, the class distribution and the training
set size may depend on the particle type. Therefore, it would not be
advisable to select a single classifier to be used by our system. We
apply an automatic model selection approach, which we will explain
in the next section. It is able to automatically select an appropriate
classifier for a given classification task. However, we have to select a
set of classifiers it can choose from.

While each new particle type brings with it a new classification
problem, we can assume that they share the following two character-
istics:

• The training sets will be relatively small because of the high
costs of generating training images.

• The proportion of CPGs containing engineered nanoparticles
in the training set will be relatively low because background
particles are easily obtained and their images can be used in the
training sets of multiple engineered nanoparticle types.

Both properties are reflected in our dataset, which we have described
in Section 4.4. We have only 109 CPGs of Ag compared to 9279 back-
ground CPGs. The overall size of the dataset may seem large. How-
ever, we have very complex classes due to the variability of nanoparti-
cle agglomerates. In addition, 109 positive samples are few compared
to our feature count of almost 60.

The small training set size means that there is a high risk of the clas-
sifier to overfit the training set. Overfitting means that the classifier
learns random variations of the training set that are not representa-
tive of the true class-conditional densities. Figure 8.1 illustrates this
well. The graphics visualize an artificial classification problem with
two classes and two features. The points represent the samples of
the training set with their colors signifying their classes. Their hori-
zontal and vertical positions represent their feature values. The two
black lines depict the decision boundaries of two classifiers learned
on the training set. The decision boundary in Figure 8.1a approxi-
mates the border between the true class-conditional densities well.
The learned classifier would not classify every single sample in the
training set correctly. However, it would presumably generalize well
to unknown samples. The classifier corresponding to Figure 8.1b, on
the other hand, has overfit the training set. It has produced a learned
classifier which correctly classifies every single sample in the training
set. However, it is obvious that the decision boundary does not match
the true distributions.
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(a) This decision boundary matches the
true class distributions well.

(b) Here, the classifier has overfit the
training set.

Figure 8.1: An artificial example of overfitting. The black lines represent
the decision boundaries of two classifiers learned using the
same training set and two features. The samples of the train-
ing set are represented by points. Their position is defined
by their feature values interpreted as coordinates and their
color represents their class. These works are derivatives of a
graphic by Chabacano (https://commons.wikimedia.org/wiki/
File:Overfitting.svg) licensed under CC BY-SA 4.0 (https:
//creativecommons.org/licenses/by-sa/4.0/).

The fact that the training set contains much more samples of one
class than those of another is called class imbalance. In Section 8.2.3,
we have briefly covered one problem of this condition. In addition,
some types of classifiers tend to overrate the importance of the preva-
lent class. This leads to a high classification error of the minority class.
Our classifier choice has also take this into consideration.

Complex classifiers are susceptible to overfitting on small training
sets [Jain et al., 2000]. Therefore, simple classifiers are best suited for
our system. In particular, we do not use neural networks because they
tend to overfit the data [Zhang, 2000]. In addition, backpropagation
neural networks perform poorly in the case of class imbalance [Sun
et al., 2009]. In particular, we do not use convolutional neural net-
works because, such as conventional neural networks, they are quite
complex. In addition, the image region used as the input to such a
net has a fixed shape (usually a rectangle). This means that pixels not
belonging to a CPG may influence its classification. Since nanoparti-
cles and background particles may be next to each other on an image,
this is undesirable. Similarly, decision trees, Bayesian classification,
associative classifiers and K-nearest neighbor have been reported to
perform badly under class imbalance [Sun et al., 2009].

https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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8.3.1.2 Classifiers

We have chosen to use logistic regression with a ridge estimator [Le
Cessie and Van Houwelingen, 1992] because it has only nφ + 1 inter-
nal parameters that are learned from the training set and it is based
on a simple model. In addition, we can avoid overfitting further using
regularization by means of the ridge estimator. As a second classifier,
we use support vector machines (SVMs) because they are less prone
to class imbalance [Sun et al., 2009] than other classifiers. Both are
geometric classification approaches and directly construct the deci-
sion boundary. This is appropriate because the distributions of our
features are unknown [Jain et al., 2000].

For the explanation of the classification algorithms, we will define
the positive class, to which every CPG containing engineered nano-
particles belongs, as Y+ B 1 and the negative class as Y− B 0. This
means that the class of a sample is equal to 0 or 1.

Logistic Regression models the posterior probability of a sample
~X ∈ X belonging to class Y+ as [Bishop, 2006]

hR
(
~X
)
B

1

1+ e
−
(
R0+~R

T ~X
) , ∀R B

(
R0,~R

)
∈ R×Rnφ , ~X ∈ X. (8.1)
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The term θλ
∥∥~R∥∥2

2
is not present in the original minimization problem.

However, it is added to regularize the classification in order to avoid
overfitting [Le Cessie and Van Houwelingen, 1992]. The parameter
θλ ∈ R>0 controls the amount of regularization. The function wcls :

Y → R>0 is also an addition to the original problem. It is a function
that determines the weight of each class Y ∈ Y. If class Y+ is weighted
higher than Y−, then samples are more likely to be assigned to Y+
compared to a classifier trained with equal weights. In the standard
configuration, wcls always returns 1.

The definition of the classifier lLR,θλ,wcls : D→ RX is then given by

lLR,θλ,wcls(T)
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B hRθλ ,wcls,T
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∀ θλ ∈ R>0, T B
{(

~X1, Y1
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~Xn~X

, Yn~X

)}
v X× Y,

~X ∈ X,wcls : Y → R>0. (8.3)
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Note that this definition returns a real value instead of a class. This
value can be interpreted as the probability of sample ~X belonging to
class Y+. To obtain the most probable class of the sample, the return
value has to be rounded to 0 or 1.

Our model selection algorithm, which we will explain in Sec-
tion 8.3.2, can choose from the following values for the regularization
parameter θλ: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1. We have chosen
relatively high values because our classification problem is prone to
overfitting (see Section 8.3.1.1).

SVMs, in contrast to logistic regression, operate based on the
premise that the decision boundary should be influenced only by the
samples closest to it in feature space, the so-called support vectors
[Bishop, 2006, pp. 326ff.]. The concept was first introduced by Vap-
nik and Lerner [1963] for cases where the two classes are linearly
separable in feature space. The decision boundary in the form of a
hyperplane was chosen such that the distance of the closest sample
in the training set was maximized. However, the concept has been
extended to work with non-separable data and non-linear decision
boundaries.

We will not describe the exact calculations of an SVM in this thesis
because, in our opinion, they add little value. The exact formulas are
not very intuitive at first glance and their derivation is beyond the
scope of this work. However, the details of SVMs can be found in the
book by Bishop [2006, pp. 326ff.] or in the excellent lecture notes by
Ng [2014].

For their calculations, SVMs use a so-called kernel K : X×X → R.
In the original algorithm, K

(
~X, ~X ′

)
was defined as ~X

T ~X ′ correspond-
ing to a linear decision boundary. Our model selection algorithm may
choose from the following two kernels:

Klin(~X, ~X ′) B ~X
T ~X ′, (8.4)

KRBF,θγ(
~X, ~X ′) B e−θγ‖~X−~X ′‖2

2 , ∀ θγ ∈ R>0, ~X, ~X ′ ∈ X. (8.5)

The first is called linear kernel and corresponds to the original case of
a linear decision boundary. The second is called radial basis function
(RBF) kernel and generates non-linear decision boundaries. It has a
parameter θγ ∈ R>0, which determines the area of influence of each
support vector. Smaller values lead to simpler decision boundaries.
Our model selection algorithm can choose these values for θγ: 0.001,
0.003, 0.01, 0.03 and 0.1. These are relatively small corresponding to
simple decision boundaries. This is reasonable because, as explained
in the previous section, our problem calls for a simple classifier.

In addition, an SVM has a regularization parameter θC ∈ R>0.
However, in contrast to θλ in logistic regression, a small value of θC
corresponds to a high degree of regularization. The model selection
can select one of these values for it: 1, 3, 10, 30, 100, 300 and 1000.
Again, this corresponds to a relatively high degree of regularization.



146 classification

Furthermore, we use the sequential minimal optimization algorithm
to train the SVMs in our system [Platt, 1998]. We will represent an
SVM classifier as lSVM,K,θC,wcls : D → YX, where K : X×X → R is its
kernel, θC ∈ R>0 the regularization parameter and wcls : Y → R>0
the class weight function.

8.3.1.3 Preprocessing

Before the samples are passed to the classifier, they are preprocessed.
The goal of this step is to optimize the classification result. The pre-
processing performs three tasks:

• Dimensionality reduction

• Feature scaling

• Weighting and resampling

Dimensionality reduction reduces the number of features. Then, fea-
ture scaling normalizes the feature values to equalize the impacts of
all features. Finally, weighting and resampling increase the impact of
positive samples on the learned classifier. The steps will be explained
in more detail in the remainder of this section.

We have discussed dimensionality reduction in Sections 8.1.2
and 8.2.2. As mentioned before, there are two variants of it: fea-
ture extraction and feature selection. Because of the high complexity
of our classification problem and the lack of many positive samples,
our classification pipeline should not contain unnecessary complex-
ity (see Section 8.3.1.1). Therefore, we have opted not to use feature
extraction, which would introduce additional features to our clas-
sification problem. Instead, we use feature selection to reduce the
classifier complexity. A subset θφ ⊆

{
1, . . . ,nφ

}
of feature indices

is selected and only the corresponding features are visible to the
classifier. The selection itself is performed by our automatic model
selection method, which we will explain in the next section.

Feature scaling rescales the feature values in order to guarantee
that the impact of different features on the learned classifier is ap-
proximately equal. If, for example, the values of a feature are very
small compared to other features, they have to be multiplied by a
large factor in logistic regression in order to have an impact. How-
ever, the regularization would prevent a large factor. This way, the
impact of this feature is smaller than the influence of features with
large value ranges. To eliminate this effect, our system normalizes
the features so that their values have a mean of 0 and a variance of 1
based on the feature values in the training set.

As mentioned in Section 8.3.1.1, we assume that there are fewer
CPGs containing engineered nanoparticles than ones consisting of
background particles in the training set. This may lead to the fact that
the learned classifier is more likely to classify samples as belonging
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to the negative class than the positive class. This behavior can result
in a poor classification performance, especially for very skewed class
distributions in the training set. The automatic model selection algo-
rithm can use two methods to reduce this effect. The first is weighting.
The weight function wcls : Y → R>0 used in the training of logistic
regression classifiers (see Equation (8.2)) and SVMs usually returns 1
for each class. However, returning 1 for Y− and θw ∈ R>0, θw > 1

for Y+ can cause the learned classifier to be more likely to classify
samples as engineered nanoparticles. The automatic model selection
method can choose the following values for θw: 1, 3, 10, 30 and 100.
1 corresponds to no weighting and 100 is slightly higher than the
highest ratio of background CPGs to positive samples in our dataset.

Another good solution is to resample the training data for the clas-
sifier [Sun et al., 2009]. Forman and Cohen [2004] say that “perfor-
mance can be greatly improved by non-random sampling that some-
what favors the minority class on tasks with skewed class distribu-
tions”. It works by removing samples of the majority class (under-
sampling) from and adding artificial samples of the minority class
(oversampling) to the training set. We use the synthetic minority over-
sampling technique (SMOTE) by Chawla et al. [2002] to oversample
the positive class because, according to He and Garcia [2009], it “is a
powerful method that has shown a great deal of success in various ap-
plications”. In addition, we randomly undersample the negative class.
The resampling method is explained in Algorithm 8.1. Note that we
use 5 nearest neighbors in the SMOTE algorithm as proposed in the
original paper. The automatic model selection method can choose the
values 0%, 30%, 100%, 300% and 1000% for θN and 1, 3, 10, 30 and∞ for θMS. Here, θN = 0 and θMS = ∞ would mean that neither
over- nor undersampling is performed. The maximum oversampling
percentage of θN = 1000 would mean that 11 times as many positive
samples are used for the classifier training compared to the origi-
nal count, which is a considerable amount. A maximum spread of
θMS = 1 means that an equal number of positive and negative sam-
ples are used for the training. We have (apart from ∞) not included
values larger than 30 because, in our dataset, none of the ratios be-
tween positive and negative samples exceeds 100.

The whole pipeline including preprocessing and classifiers can be
thought of as a single classifier lfull,θ : D → YX where the parameter
θ contains all parameters of the preprocessing steps and classifiers.
The parameter has the structure (θφ, θw, θN, θMS, θl), where θl can
have one of the following structures:

• (lLR, θλ).

• (lSVM, (Klin), θC).

• (lSVM, (KRBF, θγ), θC).

Algorithm 8.2 shows how lfull,θ(T)
(
~X
)

is computed.
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Algorithm 8.1 : Resample(T , θN, θMS)

Input : A trainig set T B
{(

~X1, Y1
)
, . . . ,

(
~Xn~X

, Yn~X

)}
v X× Y, the

oversampling percentage θN ∈ R>0 in percent and the
maximum spread of the classes θMS ∈ [1,∞].

Output : The resampled training set T ′.
// Split the samples into positive and negative ones:

1 X+ B
⋃

i=1,...,n~X
Yi=Y+

{
~Xi
}

.

2 X− B
⋃

i=1,...,n~X
Yi=Y−

{
~Xi
}

.

3 n~X,art B b
θN|X+|
100 c. // The number of artificial positive

samples to be created.

4 Xart B ∅. // The multiset of artificial positive samples.

5 X ′+ B X+. // The positive samples which have not yet been

used to create an artificial sample.

// Create some artificial positive samples:

6 while n~X,art > 0 do
7 if X ′+ = ∅ then
8 X ′+ B X+.
9 end

10 Randomly choose ~X from X ′+ with a uniform distribution.
11 Randomly choose ~X ′ from the 5 nearest neighbors of ~X in

X+ \
{
~X
}

with a uniform distribution.
12 Randomly choose τ from the interval [0, 1] with a uniform

distribution.
13 ~Xart B ~X+ τ

(
~X ′ − ~X

)
. // A new artificial sample between

the two original samples in feature space.

14 Xart B Xart ∪
{
~Xart
}

.
15 n~X,art B n~X,art − 1.
16 end
17 X+ B X+ ∪Xart.

// Undersample the negative class:

18 n~X,max B bθMS|X+|c. // The maximum number of negative

samples.

19 while |X−| > n~X,max do
20 Randomly choose ~X from X− with a uniform distribution.
21 X− B X− \

{
~X
}

.
22 end
23 return T ′ B

{(
~X, Y+

) ∣∣ ~X ∈ X+

}
∪
{(

~X, Y−
) ∣∣ ~X ∈ X−

}
.
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Algorithm 8.2 : ClassificationPipeline
(
θ, T , ~X

)
Input : The parameter values θ, a trainig set

T B
{(

~X1, Y1
)
, . . . ,

(
~Xn~X

, Yn~X

)}
v X× Y and a sample

~X ∈ X to be classified.
Output : The class lfull,θ(T)

(
~X
)

of ~X predicted by the learned
classifier lfull,θ(T).

1 (θφ, θw, θN, θMS, θl) B θ.
// DIMENSIONALITY REDUCTION:

// Only retain the features whose indices are in θφ:

2 for i = 1, . . . ,n~X do
3 ~Xi B ~Xi

(
θφ
)
, where ~Xi

(
θφ
)
∈ R|θφ| is defined as a vector

containing only the entries of ~Xi with the indices in θφ.
4 end
5 ~X B ~X

(
θφ
)
.

// FEATURE SCALING:

6 for j = 1, . . . ,
∣∣θφ∣∣ do

7 X̄ B

n~X∑
i=1

~Xi(j)

n~X
. // Mean value of the feature with index j.

8 σX B

√√√√ n~X∑
i=1

(~Xi(j)−X̄)
2

n~X−1
. // Standard deviation of the

feature with index j.

9 ~Xi(j) B
~Xi(j)−X̄
σX

, ∀ i = 1, . . . ,n~X.

10 ~X(j) B
~X(j)−X̄
σX

.
11 end

// RESAMPLING:

12 T ′ B Resample
({(

~X1, Y1
)
, . . . ,

(
~Xn~X

, Yn~X

)}
, θN, θMS

)
. // See

Algorithm 8.1.

// WEIGHTING:

13 wcls(Y) B

θw, if Y = Y+,

1, else,
∀ Y ∈ Y. // The weight function

passed to the classifier.

// TRAINING AND CLASSIFICATION:

// Train and classify using the classifier, classifier

parameters and, in the case of an SVM, kernel from θl
and the weight function wcls defined above:

14 return lfull,θ(T)
(
~X
)
B lθl,wcls(T

′)
(
~X
)
.
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8.3.2 Automatic Model Selection

In the previous sections, we have presented our classification pipeline.
However, this pipeline has several parameters including classifiers,
kernels and numerical parameters which have to be chosen. In addi-
tion, an appropriate subset of features has to be found each time our
system is trained. Since our goal is to build a fully automatic solution,
the user cannot be responsible for making these decisions. Therefore,
we have to find automatic solutions to perform the following two
tasks for a given classification problem:

feature selection Choose the subset of features that is passed to
the classifier.

model selection Determine a good classifier-parameter combina-
tion.

Forman and Cohen [2004] recommend that “feature selection should
not be decoupled from the model selection task”. The reason is that a
certain classifier-parameter combination may work well with a given
feature subset while others may not. This means that we have to find
a method that selects a feature subset and a classifier-parameter com-
bination at the same time instead of performing these steps consecu-
tively.

We have chosen to use an evolutionary algorithm to perform both
feature selection and model selection at the same time. As explained
in Section 8.2.3, such an approach is superior to grid-search and ran-
dom search because it makes use of information about the previously
evaluated classifier-parameter combinations. We have opted against
Bayesian optimization because it tries to model the function from pa-
rameter values to the classifier error by making assumptions about
its distribution [Thornton et al., 2013]. However, we know too little
about its distribution to make such assumptions.

Friedrichs and Igel [2005] apply an evolution strategy to find opti-
mal parameters for SVMs. However, their approach can only handle
real-valued parameters. In particular, it cannot deal with categorical
parameters such as which features are used.

Several genetic algorithms have been successfully applied to fea-
ture selection [Siedlecki and Sklansky, 1989; Kuncheva, 1993; Yang
and Honavar, 1998; Handels et al., 1999; Zheng et al., 1999; Raymer
et al., 2000; Cantú-Paz, 2002; Fröhlich et al., 2002; Miller et al., 2003;
Jong et al., 2004]. We use such an approach to not only perform fea-
ture selection but also to do model selection at the same time. Genetic
algorithms are modeled after natural selection and evolution. We will
not elaborate on their theory more than is necessary to explain our
implementation. More details on the topic can be found in the book
by Sivanandam and Deepa [2008].
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8.3.2.1 The Model Selection Algorithm

Our implementation is able to work with hierarchical dependencies
where the parameters to be used depend on the choice of classifier
or kernel. Algorithm 8.3 shows its steps. The algorithm works by
first randomly generating nθ ∈ N>2 classifier-parameter combina-
tions and estimating their classification performances to form an ini-
tial population. Then, repeatedly, two configurations are randomly
picked from this population and recombined to form a new classifier-
parameter combination, which is then randomly mutated. The new
configuration is introduced into the population and the worst one is
removed.

We have made most of the design decisions of our particular im-
plementation with respect to the fact that the performance estimation
takes relatively long and that the user shall be able to specify a run-
ning time the algorithm may take. Therefore, in each generation, only
one configuration is added to the population. Otherwise, the running
time could be exceeded by the time it takes to estimate the classifi-
cation performances of multiple configurations. In addition, we have
chosen a relatively small population size, namely 30, which shows
the best performance in the experiments by Grefenstette [1986] for
the case of time-constrained applications. While large populations
sizes are generally favorable if the running time is not limited, the
disadvantage of such a genetic algorithm is that it takes considerable
time to converge to a good solution [Grefenstette, 1986]. A small pop-
ulation size, on the other hand, is able to produce a relatively good
solution in a time-constrained setup.

In order to prevent overfitting, the parameter search is stopped be-
fore the time has been used up if the performances of the parameter
population are too similar. This suggests that the results are in the
range of the best achievable performance and that any further im-
provements are likely due to chance. We have implemented the no-
tion of population similarity in the form of a function ι, which takes
a parameter population Θ and returns a number in the interval [0, 1]:

ι(Θ) B

min
(θ,ρ)∈Θ

ρ

max
(θ,ρ)∈Θ

ρ
. (8.6)

It simply calculates the ratio of the worst and the best classification
performances in the population. The parameter search is stopped if
the function value is greater than the maximum population similarity
parameter ιmax B 0.99.

8.3.2.2 Parent Selection

Algorithm 8.4 describes how the random parent selection is done.
Configurations with a high estimated classification performance are
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Algorithm 8.3 : ParameterSelection(T ,ω, t,nθ B 30, ιmax B 0.99)

Input : A trainig set T v X× Y, the evaluation metric ω : N4 → R
to be used, the time t that this algorithm may take to run,
the desired size of the population nθ ∈ N>2 and the
maximum population similarity ιmax ∈ ]0, 1]. The default
values of nθ and ιmax are 30 and 0.99, respectively.

Output : Good parameter values θbest, which can be used as an
input for ClassificationPipeline() (see
Algorithm 8.2).

// Create an initially empty population of parameter

configurations θ and their estimated classification

performances ρ ∈ R:
1 Θ B ∅
2 repeat

// Generate new parameters θnew:

3 if |Θ| < nθ then
// The population has not yet reached its desired

size. Randomly create new parameters:

4 θnew B GenerateRandomParameters(). // See

Algorithm 8.5.

5 else
// Randomly select two parents, which are

recombined to form new parameters:

6 (θ1, ρ1) B RandomlySelectParent(Θ). // See

Algorithm 8.4.

7 (θ2, ρ2) B RandomlySelectParent(Θ \ {(θ1, ρ1)}).
// Generate new parameters θnew by random

recombination and mutation of θ1 and θ2 and add

them to Θ:

8 θnew B RandomlyRecombineParameters(θ1, θ2). // See

Algorithm 8.6.

9 θnew B RandomlyMutateParameters(θnew). // See

Algorithm 8.8.

10 ρnew B EstimateClassificationPerformance(θnew, T ,ω).
// See Algorithm 8.9 on Page 160.

11 Θ B Θ∪ {(θnew, ρnew)}

12 end
13 while |Θ| > nθ do

// Remove the element from Θ with the lowest

classification performance:

14 Θ B Θ \

{
arg min
(θ,ρ)∈Θ

ρ

}
.

15 end
16 until |Θ| = nθ∧ ι(Θ) > ιmax or the processing time t has been used up.

// Let (θbest, ρbest) be the element of Θ with the highest

classification performance:

17 (θbest, ρbest) B arg max
(θ,ρ)∈Θ

ρ.

18 return θbest.
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Algorithm 8.4 : RandomlySelectParent(Θ, ζ B 0.2)
Input : A set Θ = {(θ1, ρ1), . . . , (θnθ , ρnθ)} of parameter

configurations θi and their estimated classification
performances ρi and the minimum selection probability
ζ ∈ [0, 1], measured relative to the selection probability of
the configuration with the highest classification
performance. The default value of ζ is 0.2.

Output : A random element (θ, ρ) ∈ Θ.
// The minimum and maximum estimated classification

performances:

1 ρmin B min
iB1,...,nθ

ρi.

2 ρmax B max
iB1,...,nθ

ρi.

// Compute the probabilities of the elements to be

chosen:

3 if ρmin = ρmax then
4 for i B 1, . . . ,nθ do
5 ρ ′i B 1.
6 end
7 else

// Rescale the classification performance measures in

such a way that the worst one has a value ζ times

that of the best one:

8 for i B 1, . . . ,nθ do
9 ρ ′i B ζ+ (1− ζ) ρi−ρmin

ρmax−ρmin
.

10 end
11 end

// Rescale the values so that their sum is 1:

12 for i B 1, . . . ,nθ do
13 ρ ′′i B

ρ ′i
nθ∑
j=1
ρ ′j

.

14 end
// Randomly pick a configuration θi with the selection

probabilities being equal to the ρ ′′i and return it:

15 Randomly choose τ from the interval [0, 1] with a uniform
distribution.

16 i B 1.
17 while τ > ρ ′′i do
18 τ B τ− ρ ′′i .
19 i B i+ 1

20 end
21 return (θi, ρi).
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more likely to be chosen as a parent. The probabilities depend lin-
early on the estimated classification performance measures and the
probability of the worst configuration is ζ as high as that of the best
one. We set ζ B 0.2. In a case where only one configuration in the
population of 30 has a classification performance larger than 0, this
means that this classifier-parameter combination is selected as a par-
ent of about every fourth newly tested configuration on average. This
increases the chance that another configuration with a performance
measure larger than 0 is found. Such a scenario seems unlikely. How-
ever, in the case of high class imbalance, which we have discussed in
Sections 8.2.3 and 8.3.1.1, it is relatively likely that a classifier assigns
the majority class to every single sample in the test set.

8.3.2.3 Random Parameter Generation

The generation of random parameters is explained in Algorithm 8.5.
The configuration θ returned by the algorithm has the same structure
as explained in Section 8.3.1.3. At first, the indices of the features to
be used for the classification are chosen. Since we do not know the
optimal number of features for the given problem, the algorithm first
randomly chooses the probability τ of a given feature to be included.
In the next step, each feature index is added to θφ with a probability
of τ. This means that for a given τ, on average τ · nφ feature indices
are added to θφ.

Because of the relatively high number of parameters that need to be
optimized at the same time, the search space of the genetic algorithm
is very large. Therefore, we have decided to use our knowledge of the
classification problem to choose some sensible values for each param-
eter beforehand. Thus, the algorithm can choose among these value
instead of all possible values for a given feature. This reduces the size
of the search space, while the algorithm is still able to test a range
of values for each feature. The values listed in Algorithm 8.5 coincide
with those given in the text where the corresponding parameters have
been introduced.

Finally, the algorithm chooses with equal probabilities between lo-
gistic regression and an SVM and, if an SVM has been chosen, be-
tween a linear kernel and an RBF kernel.

8.3.2.4 Recombination

After the population has its desired size, new configurations are gen-
erated by recombining two classifier-parameter combinations using
Algorithm 8.6. It uses a helper algorithm called RandomlyChoose(),
which returns its first argument with a probability of qθ1 and other-
wise its second argument. It is listed in Algorithm 8.7.

RandomlyRecombineParameters generates a new configuration by
randomly choosing for each parameter to either use the parameter
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Algorithm 8.5 : GenerateRandomParameters()
Output : Random parameter values θ for

ClassificationPipeline() (see Algorithm 8.2).
1 θφ B ∅. // The indices of the selected features.

2 Randomly choose τ from [0, 1] with a uniform distribution.
// The probability of a given feature index being

added to θφ.

3 for i B 1, . . . ,nφ do
4 Randomly choose τi from [0, 1] with a uniform distribution.

5 θφ B

θφ ∪ {i} if τi < τ,

θφ, else.
6 end
7 Randomly choose θw from {1, 3, 10, 30, 100} with a uniform

distribution.
8 Randomly choose θN from {0, 30, 100, 300, 1000} with a uniform

distribution.
9 Randomly choose θMS from {1, 3, 10, 30,∞} with a uniform

distribution.
// Choose a classifier and its parameters:

10 Randomly choose τl from [0, 1] with a uniform distribution.
11 if τl < 0.5 then

// Logistic regression.

12 Randomly choose θλ from {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}
with a uniform distribution.

13 θl B (lLR, θλ).
14 else

// SVM.

15 Randomly choose θC from {1, 3, 10, 30, 100, 300, 1000} with a
uniform distribution.
// Choose a kernel:

16 Randomly choose τK from [0, 1] with a uniform distribution.
17 if τK < 0.5 then

// Linear kernel.

18 θl B (lSVM, (Klin), θC).
19 else

// RBF kernel.

20 Randomly choose θγ from {0.001, 0.003, 0.01, 0.03, 0.1} with
a uniform distribution.

21 θl B (lSVM, (KRBF, θγ), θC).
22 end
23 end
24 return θ B (θφ, θw, θN, θMS, θl).
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Algorithm 8.6 : RandomlyRecombineParameters(θ1, θ2,qθ1 B 0.5)
Input : Two parameter configurations θ1 and θ2 and the

probability qθ1 ∈ [0, 1] of choosing a parameter value
from θ1 over the one from θ2. The default value of qθ1 is
0.5.

Output : Parameter values θ that are a combination of θ1 and θ2.
1 (θφ,1, θw,1, θN,1, θMS,1, θl,1) B θ1.
2 (θφ,2, θw,2, θN,2, θMS,2, θl,2) B θ2.
3 θφ B ∅. // The indices of the selected features.

4 for i B 1, . . . ,nφ do
5 Randomly choose τi from [0, 1] with a uniform distribution.

6 θφ B

θφ ∪
(
θφ,1 ∩ {i}

)
, if τi < qθ1 ,

θφ ∪
(
θφ,2 ∩ {i}

)
, else.

7 end
8 θw B RandomlyChoose(θw,1, θw,2,qθ1).
9 θN B RandomlyChoose(θN,1, θN,2,qθ1).

10 θMS B RandomlyChoose(θMS,1, θMS,2,qθ1).
// Extract the used classifiers:

11 l1 B θl,1(1). l2 B θl,2(1).
12 if l1 , l2 then

// The configurations use different classifiers.

13 θl B RandomlyChoose(θl,1, θl,2,qθ1).
14 else if l1 = lLR then

// Both use logistic regression. Extract θλ:

15 (l1, θλ,1) B θl,1. (l2, θλ,2) B θl,2.
16 θλ B RandomlyChoose(θλ,1, θλ,2,qθ1).
17 θl B (lLR, θλ).
18 else

// Both use SVMs. Extract θK and θC:

19 (l1, θK,1, θC,1) B θl,1. (l2, θK,2, θC,2) B θl,2.
20 θC B RandomlyChoose(θC,1, θC,2,qθ1).

// Extract the used kernels:

21 K1 B θK,1(1). K2 B θK,2(1).
22 if K1 , K2 then

// The configurations use different kernels.

23 θK B RandomlyChoose(θK,1, θK,2,qθ1).
24 else if K1 = Klin then

// Both use the linear kernel.

25 θK B (Klin).
26 else

// Both use an RBF kernel. Extract θγ:

27 (K1, θγ,1) B θK,1. (K2, θγ,2) B θK,2.
28 θγ B RandomlyChoose(θγ,1, θγ,2,qθ1).
29 θK B (KRBF, θγ).
30 end
31 θl B (lSVM, θK, θC).
32 end
33 return θ B (θφ, θw, θN, θMS, θl).
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Algorithm 8.7 : RandomlyChoose(θ1, θ2,qθ1)
Input : Two parameters θ1 and θ2 and the probability qθ1 ∈ [0, 1]

of choosing θ1.
Output : Either θ1 with a probability of qθ1 or θ2 with a

probability of 1− qθ1 , picked randomly.
1 Randomly choose τ from [0, 1] with a uniform distribution.

2 θ B

θ1, if τ < qθ1 ,

θ2, else.
3 return θ.

value from the first or the second parent configuration with equal
probabilities. Special cases are the selected features and the used clas-
sifiers. Each feature is represented as a binary parameter, which de-
termines if the feature is used in the classification. For each of these,
the algorithm randomly picks the decision if this feature shall be used
from one of the two configurations.

The classifiers and their specific parameters are recombined as fol-
lows: If both configurations use the same classifier, then the default
procedure is used to choose the parameter values specific to this clas-
sifier. If this is not the case, then the used classifier along with the
values of its specific parameters are simply taken from one of the con-
figurations. The same procedure is used for the kernels in the case of
SVM classifiers.

8.3.2.5 Mutation

After a new configuration is generated by recombining two parents, it
is randomly mutated by RandomlyMutateParameters(), which is listed
in Algorithm 8.8. The mutation is simply done by generating a ran-

Algorithm 8.8 : RandomlyMutateParameters(θ,qmut B 0.01)
Input : Parameters θ and the mutation probability qmut ∈ [0, 1].

The default value of qmut is 0.01.
Output : A mutated version of the parameters θ.

1 θ ′ B GenerateRandomParameters(). // See Algorithm 8.5.

2 θ B RandomlyRecombineParameters(θ, θ ′, 1− qmut). // See

Algorithm 8.6.

3 return θ.

dom set of parameters and recombining the original configuration
with this new one. The major difference to the standard recombina-
tion step, however, is that the probability of taking a parameter value
from the new configuration is qmut ∈ [0, 1]. This variable is called
mutation probability and we use a value of 0.01, which shows the
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best results for time-constrained applications in the experiments per-
formed by Grefenstette [1986].

We have tried to choose sensible parameter values for our genetic
algorithm based on experiments performed by others on data that is
not directly comparable to ours. However, evaluating these parameter
values on our data is impossible for two reasons:

• To do such an evaluation, we would have to split our dataset
so that we could test different parameters on one subset and
evaluate the algorithm on the another subset. Otherwise, the
obtained results would be biased as explained in Section 8.2.3.
This would mean that even fewer samples could be used for the
evaluation of the classification pipeline.

• Because of the long time required to do the performance evalu-
ation of a single classifier-parameter combination, a single run
of the automatic model selection method takes about 10 hours.
This means that the evaluation of a single set of the parameter
values for the genetic algorithm using 10-fold cross-validation
would take about 100 hours. If we wanted to evaluate only
10 combinations, this would in turn take approximately 1000
hours. This process would then need to be done for each of the
three particle types. All of this would take about 125 days. If
we wanted to make the evaluation a bit more thorough and test
three values for each of the three parameters, the whole proce-
dure would run for almost one year.

These circumstances are not optimal. However, Grefenstette [1986]
has found that “while it is possible to optimize GA control param-
eters, very good performance can be obtained with a range of GA
control parameter settings”. This means that our automatic model se-
lection method should be able to find good classifier-parameter com-
binations for all particle types.

8.3.3 Classification Performance Estimation

The final part of the automatic parameter selection method that still
needs to be explained is the classification performance estimation of
a given classifier-parameter combination. We have already devoted
the major part of Section 8.2.3 on how this can be done. We have said
that three question need to be answered:

• How do we evaluate the quality of a classifier-parameter com-
bination?

• How do we estimate the error of a given classifier-parameter
combination in order to calculate the evaluation metric?

• How do we select classifier-parameter combinations to be
tested?
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The third question has been addressed in the previous section. This
leaves the first two still to be answered.

For the error estimation, we have established in Section 8.2.3 that
bootstrapping and cross-validation are the only sensible options for
our problem because of the limited availability of training samples.
Kohavi [1995] compares these two methods and finds that 10-fold
cross-validation shows the best results compared to bootstrapping. In
addition, he finds that it performs better than cross-validation using
a higher number of folds. Therefore, we have decided to use 10-fold
cross-validation. We have opted against repeated cross-validation be-
cause it would reduce the number of configurations the model selec-
tion method would be able to test by a factor equal to the number of
repetitions.

Simply using standard cross-validation on our data would likely
produce biased results. This has two reasons:

• Two CPGs from the same image may end up in different folds.
This means that a classifier trained using one of them is tested
on the other CPG. However, all CPGs in an image share the
same contrast- and brightness-settings, which could be reflected
in features such as the estimated electron count. This gives the
classifier an unfair advantage, which it would not have in a real
usage scenario.

• As explained in Section 4.4, our dataset usually contains two
images of different magnifications for each selected position on
the substrate. This means that it may contain multiple images of
the same CPG. Again, if these would end up in different folds,
the classifier could learn the specific properties of this CPG and
apply that knowledge to the version of it in the test set.

This means that, in order to do a fair evaluation, all CPGs from a
single position on the substrate need to be grouped into the same
fold. This fact not only makes the used cross-validation algorithm
slightly more complicated. It also prevents us from using stratified
cross-validation, which has the additional requirement that the class
proportions of every fold are approximately equal.

Algorithm 8.9 shows the cross-validation process that is tailored to
these circumstances. The only difference to standard cross-validation
is that all samples of a position on the substrate are assigned to a fold
at once instead of one sample at a time.

During the cross-validation, the number of true positives, false pos-
itives, true negatives and false negatives are recorded. These terms
are defined as follows:

true positive A sample that is assigned to the positive class by the
learned classifier and truly belongs to the positive class.

false positive A sample that is assigned to the positive class by
the learned classifier but in fact belongs to the negative class.
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Algorithm 8.9 : EstimateClassificationPerformance(θ, T ,ω,nF B 10)
Input : Parameters θ to be used for the classification, a dataset

D v X× Y to test the parameters on, the evaluation
metric ω : N4 → R to be used and the number of folds
nF ∈ N>2 to be used for the cross-validation. The default
value of nF is 10.

Output : The estimated classification performance ρ ∈ R of the
parameters θ measured by the evaluation metric ω
using a nF-fold cross-validation on the dataset D.

1 Let D ′1, . . . ,D ′m v X× Y be the elements of D split by their

substrate position so that
m⋃
i=1

D ′i = D.

2 D ′ B
{
D ′1, . . . ,D ′m

}
as a multiset.

3 F0, . . . , FnF−1 B ∅ as multisets. // The folds for the

cross-validation.

// Distribute the samples among the folds:

4 i B 0.
5 while |D ′| > 0 do
6 Randomly choose D ′ from D ′ with a uniform distribution.
7 Fi B Fi ∪D ′.
8 D ′ B D ′ \ {D ′}.
9 i B (i+ 1) mod nF.

10 end
// Ensure that F0, . . . , FnF−1 are not empty:

11 nF B max({i ∈ {1, . . . ,nF} | Fi−1 , ∅}).
// Perform the cross-validation:

12 nTP B 0. // True positive count.

13 nFP B 0. // False positive count.

14 nTN B 0. // True negative count.

15 nFN B 0. // False negative count.

16 for i B 0, . . . ,nF − 1 do
17 for

(
~X, Y

)
∈ Fi do

18 T B D \ Fi

// Predict the class of ~X using the parameters θ

and the training set T:

19 Y ′ B ClassificationPipeline
(
θ, T , ~X

)
. // See

Algorithm 8.2 on Page 149.

20 if Y ′ = Y+ then
21 if Y = Y+ then nTP B nTP + 1.
22 else nFP B nFP + 1.
23 else

// Y ′ = Y−.

24 if Y = Y− then nTN B nTN + 1.
25 else nFN B nFN + 1.
26 end
27 end
28 end

// Calculate the evaluation metric from the counts and

return it:

29 return ρ B ω(nTP,nFP,nTN,nFN).
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true negative A sample that is assigned to the negative class by
the learned classifier and truly belongs to the negative class.

false negative A sample that is assigned to the negative class by
the learned classifier but in fact belongs to the positive class.

These are then passed to the evaluation metric, whose value is re-
turned.

This brings us to the final unanswered question of how to evaluate
the quality of a given classifier-parameter combination. To answer
it, we need to find a suitable evaluation metric for our problem. In
Section 8.2.3, we have already established that the accuracy measure
is inappropriate in our case. Sun et al. [2009] suggest F-measure and
G-mean as appropriate measures in the case of class imbalance. F-
measure ωF : N4 → [0, 1] is defined as follows:

ωF(nTP,nFP,nTN,nFN) B
2nTP

2nTP +nFN +nFP
,

∀nTP,nFP,nTN,nFN ∈ N. (8.7)

This corresponds to the harmonic mean of the precision, which is the
percentage of positively classified samples that is truly positive, and
the recall (or true positive rate), which is the percentage of correctly
classified positive samples. G-mean ωG : N4 → [0, 1] is defined as:

ωG(nTP,nFP,nTN,nFN) B

√
nTP

nTP +nFN
· nTN

nTN +nFP
,

∀nTP,nFP,nTN,nFN ∈ N. (8.8)

This corresponds to the geometric mean of the true positive rateωTP :

N4 → [0, 1] and the true negative rate ωTN : N4 → [0, 1], which is the
percentage of correctly classified negative samples:

ωTP(nTP,nFP,nTN,nFN) B
nTP

nTP +nFN
,

∀nTP,nFP,nTN,nFN ∈ N. (8.9)

ωTN(nTP,nFP,nTN,nFN) B
nTN

nTN +nFP
,

∀nTP,nFP,nTN,nFN ∈ N. (8.10)

One major difference between F-measure and G-mean is their
behavior under changing class distributions. Let us assume that a
trained classifier correctly classifies 90% of the positive samples and,
equally, 90% of the negative samples. If a test set has a class ratio of
1:1, this trained classifier will achieve an average precision, recall (or
true positive rate) and true negative rate of 0.9 each. Equally, both
F-measure and G-mean will average at 0.9. Now, if we use a test
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set that consists of 90% negative samples and 10% positive samples,
the true positive rate and the true negative rate will remain at 0.9.
However, the precision will drop to 0.5. This means that the G-mean
will still be 0.9 while the F-measure will change to about 0.64.

The problem we have is that our system usually does not know
the class distribution to expect in workplace samples when training
a classifier for a given particle type. The still limited experience of
the BAuA suggests that more background particles than engineered
nanoparticles can be expected. However, the true ratio depends on
many factors such as the presence of enclosures around the produc-
tion equipment or ventilation systems. According to Forman and Co-
hen [2004], an unknown class distribution is a common problem in
industrial classification applications. It means that the class distribu-
tions in the training set and the workplace samples are disconnected
from each other. Moreover, the class distribution of the training set is
completely arbitrary because positive and negative training samples
are usually created independently of each other as explained in Sec-
tion 4.3. Using F-measure in the automatic model selection method
would therefore mean that these arbitrary changes would change the
optimization objective of the classification. This means that having
more negative samples in the training set leads to a learned classifier
which is more likely to classify samples as negative. This is fine in
cases where the class distribution of the training set and target distri-
bution are the same. However, in our case, this is inappropriate for
two reasons:

• We do not know the target distribution. Therefore, we cannot
adjust the class distribution of the training set accordingly. By
using F-measure, we would therefore influence the optimiza-
tion objective by arbitrarily choosing the class distribution of
the training set. This means that the optimization objective in
itself would be arbitrary.

• As explained in Section 8.3.1.1, our training sets usually contain
more negative samples than positive ones. Using F-measure as
the optimization objective would lead to a classifier that is bi-
ased towards classifying samples as negative. However, in the
case of estimating the concentration of engineered nanoparti-
cles at workplaces, it is better to overestimate this figure than to
underestimate it. Transferred to our classification problem, this
means that we do not want a trained classifier which is biased
towards classifying samples as negative.

We cannot totally remove any bias introduced by the training set
class distribution. However, we can reduce the bias by using G-mean,
which gives the classification quality of negative and positive samples
equal weight, independent of the class distribution of the training
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set. Therefore, our system uses G-mean to evaluate the parameter
configurations in its automatic model selection method.

At this point, we have described all of the main components of our
system. The next section will evaluate the parts introduced in this
and the previous chapter as well as the system as a whole.

8.4 evaluation

In this section, we will evaluate the parts of our system described in
this chapter. In addition, we will examine the features introduced in
the previous chapter, which we have not yet evaluated due to the lack
of prerequisites. Furthermore, we will evaluate the system as a whole.
Specifically, this section will take a look at the following aspects:

• The classification performance of our system compared to that
of human experts and non-experts

• The contributions of single features to the classification quality

• The time spent by a user to analyze SEM images using the sys-
tem versus manually performing the task

For the experiments described in this section, we use the classifier
implementations of the data mining software Weka [Hall et al., 2009].

For the evaluation, we use the data described in Section 4.4. As
explained before, this dataset has been generated in a way to ensure
that engineered nanoparticles of a certain type appear on separate
images from other types of engineered nanoparticles as well as back-
ground particles. Notwithstanding, we have found a small number
of background particles in the images of engineered nanoparticles. In
addition, we have found depositions of gas residuals as described in
Section 4.2.2.5.

As explained in Section 6.1, together with experts from the BAuA,
we have made the assumption that agglomerates containing engi-
neered nanoparticles as well as background particles would not occur.
However, our dataset contains a few agglomerates that appear to be
composed of Ag as well as another particle type.

In light of these circumstances and in order not to give our system
an unfair advantage in the evaluation, we have used the following
rules for the labels used to evaluate the classification performance:

• Label all CPGs in images of background particle samples (the
images listed below the horizontal line in Table 4.1) as back-
ground particles.

• Label a CPG in an image of engineered nanoparticle samples
(the images listed above the horizontal line in Table 4.1) as the
corresponding nanoparticle type except you are sure that it does
not contain engineered nanoparticles. In the latter case, do not
label the CPG.
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Giving a CPG no label corresponds to excluding the CPG from the
classifier training in this case. Note that these rules may lead to imag-
ing artifacts and gas residuals being labeled as background particles.
However, this has no negative consequences as a classifier that re-
gards such artifacts as background particles does not affect the esti-
mated concentration of engineered nanoparticles.

8.4.1 Classification

In this section, we will evaluate the classification performance of our
system as a whole on the CPGs found by our segmentation approach.
First, however, we want to present a benchmark against which our
system can be evaluated, the classification performance of human ex-
perts and non-experts.

We have asked some BAuA employees to classify random subsets
of the CPGs found by our segmentation approach. Some of these em-
ployees are experts in classifying particles in SEM images and others
are not. In essence, they have been given the same task our system has
to perform after its segmentation part has found the CPGs and has
been told which engineered nanoparticle type may occur. In each ses-
sion, only one engineered nanoparticle type could occur besides dif-
ferent kinds of background particles and the participants have been
told this type beforehand. Each classification session had the follow-
ing steps:

1. Choose an engineered nanoparticle type and tell the participant
which type has been chosen.

2. From all particles in the dataset used for this thesis (see Sec-
tion 4.4) pick all background CPGs and all CPGs containing
engineered nanoparticles of the chosen type and use them to
create an experiment dataset.

3. Until the participant quits the experiment, repeat:

a) Choose a random CPG from the experiment dataset and re-
member if it is positive (contains engineered nanoparticles)
or negative (is a background particle).

b) Extract the CPG plus a margin of 10 pixels from its image
and place it onto a uniform image whose pixels have the
mean background intensity of the CPG’s original image.

c) Show the extracted CPG and a corresponding scale bar to
the participant, ask if he or she thinks it is positive (con-
tains the chosen nanoparticle type) or negative (is a back-
ground particle) and remember the decision.

In order for the experiment to be fair, the randomly selected CPG has
to be extracted from the image. Otherwise, the participant may have
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an unfair advantage by gaining contextual information by other CPGs
in the image. This is due to the fact that, for the used dataset, back-
ground particles have been collected together with other background
particles and engineered nanoparticles together with other nanopar-
ticles. However, because the segmentation algorithm may have made
an error segmenting the CPG, a margin of 10 pixels is added in or-
der not to cut off part of it. The results of this experiment will be
given later together with the classification results of our system (see
Table 8.1 on Page 168).

In order to evaluate the classification pipeline of our system, we
use 10-fold cross-validation because, as explained in Section 8.3.3, it
has proven to yield good results compared to other techniques. The
steps of the evaluation are as follows:

1. Choose an engineered nanoparticle type.

2. From all particles in the dataset used for this thesis (see Sec-
tion 4.4) pick all background CPGs and all CPGs containing
engineered nanoparticles of the chosen type and use them to
create an experiment dataset.

3. Split these CPGs into 10 folds as described in Lines 1 to 11 of
Algorithm 8.9 on Page 160.

4. For each of the folds F, do:

a) Let T be the training set composed of all folds except F.

b) Use the automatic model selection method to find good
parameters on the training set: θ B ParameterSelection(T ,
ωG, t) with t B 10h (see Algorithm 8.3 on Page 152).

c) Train the classification pipeline using the found parame-
ters θ on the training set, classify every sample ~X ∈ F of the
current fold and remember the classification lfull,θ(T)

(
~X
)
=

ClassificationPipeline
(
θ, T , ~X

)
(see Algorithm 8.2 on

Page 149).

5. Calculate appropriate evaluation metrics from the number of
true positives, false positives, true negatives and false negatives.

Here are a few things to note:

• This evaluation uses exactly the same CPGs as the evaluation of
the manual classification performance described above.

• As explained in Section 8.3.3, the cross validation needs to
group all CPGs of a single position on the substrate into the
same fold. Therefore, we use the same cross validation method
here as explained in Algorithm 8.9 on Page 160.
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• When classifying a sample from a fold, the model selection
method as well as the classification pipeline only have access
to information of the samples from the nine other folds.

• Passing ωG to ParameterSelection() means that the model
selection method chooses the classifier-parameter combination
that optimizes the G-mean evaluation metric. In addition, pass-
ing t B 10h means that, in each fold, the parameter selection
runs for a maximum of ten hours. Thus, the whole evaluation
runs for a little over 100 hours.

This evaluation approach can be viewed from two different per-
spectives:

• Cross-validation of a black-box classifier

• Nested cross-validation in order to guarantee a fair model selec-
tion

From the first perspective, we can view the evaluation as standard
cross-validation if we treat the combination of model selection algo-
rithm and classification pipeline as a black-block classifier. In fact,
the above algorithm is equivalent to Algorithm 8.9 on Page 160 if
we replace the call ClassificationPipeline

(
θ, T , ~X

)
in Line 19 by

ClassificationPipeline
(
ParameterSelection(T ,ωG, t), T , ~X

)
.

The second perspective requires a little more explanation: There are
several methods by which the classification performance of a given
classifier-parameter combination can be evaluated such as holdout or
cross-validation (see Section 8.2.3). However, when comparing multi-
ple classifier-parameter combinations using such an method, the eval-
uation result of the best found combination cannot be generalized to
unknown data. The reason is that the found classifier-parameter com-
bination is fine-tuned towards the samples used to compare it to the
other combination. Therefore, it is important that the model selection
does not use the samples used to compute the reported classification
performance [Japkowicz and Shah, 2011, pp. 177f.].

Therefore, in the case of cross-validation, Japkowicz and Shah
[2011, pp. 177f.] suggest using nested cross-validation in order to
report an unbiased classification performance. In the case of nF-fold
cross-validation, this means that for each of the nF folds, multiple
independent cross-validation are performed using the samples of
the nF − 1 other folds, which are not used for the evaluation. Each
of these inner cross-validation uses a different classifier-parameter
combination in order to find the best one. This chosen classifier-
parameter combination is then trained on the nF − 1 folds of the
outer cross-validation (which have been used to perform the in-
ner cross-validations) and applied to the samples in the remaining
fold. This exactly matches the behavior of our evaluation approach
listed above because the algorithm ParameterSelection() is called
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inside the outer cross-validation and performs multiple inner cross-
validations to find the best classifier-parameter combination.

Note that this approach means that not only one classifier-parame-
ter combination is chosen and evaluated but potentially ten different
ones. However, another interpretation more in line with the first per-
spective is that not the classifier-parameter combinations are evalu-
ated but instead the combination of model selection algorithm and
classification pipeline.

In addition to the results of manual classification, we wanted to
compare our system to a baseline classifier trained and tested on the
same data and using the same features as our classification pipeline.
We have chosen the Nearest Neighbor classifier [Aha et al., 1991] for
this task because it is one of the most simple classifiers one could
think of. When classifying, it searches for the nearest, or in other
words most similar, sample in the training set and classifies the new
one as belonging to the same class. Thus, it makes no assumption
about the data other than that similar samples have similar feature
values, which is the basic assumption of machine learning. In ad-
dition, it does not apply some sort of advanced intelligence to the
classification. In our eyes, this makes it a perfect baseline classifier to
compare our classification pipeline with.

We have tested Nearest Neighbor using the same kind of 10-
fold cross-validation as we have used to evaluate our classification
pipeline. The only kind of preprocessing we have performed is fea-
ture scaling as described in Algorithm 8.2 on Page 149, which nor-
malizes the mean and standard deviation of each feature. This shall
prevent that changes of one feature overshadow those of another
feature as explained in Section 8.3.1.3. Notably, we have also not
performed any dimensionality reduction such as feature selection for
the Nearest Neighbor test.

A summary of the results of the classification evaluation is listed
in Table 8.1. It compares the classification performances of human
experts and non-experts, the Nearest Neighbor baseline classifier and
the full classification pipeline of our system. Besides the raw true posi-
tive, false negative, true negative and true positive counts and the true
positive and false negative rates, the values of G-mean and F-measure
are also listed. These two evaluation metrics are recommended for
cases of class imbalance by Sun et al. [2009] (see Section 8.3.3).

Note that the number of Ag CPGs classified by human experts as
well as non-experts is relatively low. This makes the given values of
true positive rate G-mean and F-measure for non-experts and experts
in the case of Ag unreliable. The low number of classified Ag CPGs
has two reasons: Firstly, in our Ag dataset, the ratio of engineered
nanoparticle CPGs to background CPGs is about 1:85 compared to
approximately 1:11 and 1:5 for TiO2 and ZnO, respectively.
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The second reason is that we believed for a long time that human
experts were able to almost perfectly discriminate between the Ag
particles and background particles. However, newer images of Ag na-
noparticles have shown agglomerates which look different from those
in previous images. In addition, a careful re-evaluation of the exist-
ing images has shown that some small CPGs, which were previously
assumed to be background particles, could in fact very well be ag-
glomerates of Ag agglomerates. And because of the labeling rules for
our test data as described at the beginning of Section 8.4, we have
labeled them as Ag nanoparticles. These small particles have a much
lower intensity than the larger Ag agglomerates. Due to these reasons,
the Ag particles were not part of the early round of human classifi-
cation testing. Therefore, the total number of particles classified by
human experts and non-experts for the Ag experiment is only a little
more than two thirds of those of the other two experiments.

Our system has yielded better results than human experts in every
case except for the true positive rate in the Ag case. However, since
only 14 particles played a part in the determination of the manual
true positive rate of 0.929 due to the reasons mentioned above, it falls
within the margin of error of our system’s true positive rate of 0.881.
In addition, the manual true negative rate of 0.652 is considerably
lower than the 0.984 of our system. This leads to much better values
of G-mean (0.931 compared to 0.778) as well as F-measure (0.541 ver-
sus 0.043) for our system. On the other hand, even if the manual true
positive rate, which we failed to measure exactly, would be equal to 1,
the resulting values of G-mean (0.807) and F-measure (0.047) would
still be worse than those of our system. This means that we have
achieved our main goal expressed in Chapter 3 of matching and also
exceeding the classification performance of human experts. Conse-
quently, our system also produces better results than non-experts.

Compared to the Nearest Neighbor classifier, our classification
pipeline has in every case yielded a higher G-mean and in two out
of three cases a better F-measure. There are some things to note
about this result: The classifiers and their parameters in our pipeline
have been chosen from the point of view that it is better to over-
estimate the concentration of engineered nanoparticles than it is to
under-estimate it. The reason for this is that if the concentration was
under-estimated, the worker would be exposed to a higher potential
health risk than the estimation would have suggested. This tendency
favoring over-estimation leads to a trade-off towards higher true pos-
itive rates and lower true negative rates. This effect is reflected in the
results of our classification pipeline compared to Nearest Neighbor.
Note that the same trend can be seen in the results of the human
experts compared to non-experts where the former always have a
higher true positive rate and a lower true negative rate than the latter.
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In this sense, Nearest Neighbor behaves like a non-expert compared
to our system.

In the case of Ag, Nearest Neighbor shows a higher F-measure
than the system pipeline. There are some potential reasons for this
behavior:

• The parameter selection method explained in Section 8.3.2
chooses the classifier-parameter combination by their G-mean
score instead of F-measure.

• The model selection method may perform better with many
training particles compared to Nearest Neighbor because of the
high number of parameters to be selected. For Ag, there are rel-
atively few training particles available compared to the other
engineered nanoparticle types.

• In the case of Ag, the ratio between engineered CPGs and back-
ground particles is so low that one can relatively easily achieve
a high F-measure value by concentrating on achieving a high
true negative rate. However, because our classification pipeline
deliberately favors concentration over-estimation as explained
above, this behavior would be counterproductive.

In addition, as mentioned in Section 8.3.3, we believe that F-
measure is not a good fit for our system. The reason is that it is
heavily dependent on the class distribution. However, we do not
have reliable data about the class distributions in real-world sce-
narios. Therefore, basing the performance estimation of a trained
classifier on the arbitrary class distribution of our test dataset would,
in our opinion, be incorrect.

To demonstrate this, we can calculate the F-measure values that
the classifiers would achieve if the class distribution of the test set
was different. For the case of Ag, our pipeline achieves an F-measure
of about 0.541 on our test set. Nearest Neighbor yields 0.854 on the
same data. If the class ratio was 1:1, our pipeline would achieve an
F-measure of about 0.929 compared to 0.909 for Nearest Neighbor.
We have done this calculation by computing F-measure in terms of
precision and recall (which is the same true positive rate), where we
leave the recall unchanged and calculate the precision as ωTP

ωTP+(1−ωTN)

for the class ratio of 1:1.
Another fact that shows that F-measure is a suboptimal perfor-

mance measure in our case is that the human experts have achieved
a lower F-measure value than the non-experts in the case of TiO2. We
have nonetheless provided the F-measure values of our experiments
for the sake of completeness.

Note that the relatively good results of Nearest Neighbor also show
that the preprocessing and features of our system have been chosen
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Table 8.2: The classifiers and parameters chosen by the automatic model se-
lection method on all available CPGs. N/A means that a parame-
ter is not applicable to the chosen classifier.

parameter Ag TiO2 ZnO

Classifier Logistic regression SVM SVM

θλ 0.003 N/A N/A

SVM kernel N/A KRBF KRBF

θγ N/A 0.1 0.001

θC N/A 10 300

θw 100 1 3

θN 1000% 100% 0%

θMS 1 30 3

Selected feature count 9 22 48

well. In addition, we want to note that the maximum population sim-
ilarity parameter ιmax (see Algorithm 8.3), which shall prevent over-
fitting, has only been reached and has led to an early termination of
the parameter selection for Ag. We presume this is the case because
of the relatively low positive sample count.

Finally, Table 8.2 lists the classifier-parameter combinations that
have been selected by the automatic model selection method on the
full datasets.

8.4.2 Features

In addition to the system and the classification pipeline as a whole,
we want to evaluate the quality and impact of each feature described
in Section 7.3. To do that, we use two separate approaches:

• Classify each particle type using only a single feature.

• Count how often each feature has been chosen by the feature
selection method in our classification experiments.

We will explain these strategies in the following two sections.

8.4.2.1 Single Feature Classification

For this experiment, we have classified each of the three datasets con-
taining all background CPGs and one engineered nanoparticle type
using only one feature per run. This has been done using basically
the same method as for the Nearest Neighbor experiment explained
on Page 167. Again, we have used 10-fold cross-validation and the
Nearest Neighbor classifier. The only difference is that the classifier
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has had only access to the value of a single feature plus pixel density
of the image per cross-validation. This means that we have performed
three times the number of features separate cross-validations because
we have three types of engineered nanoparticles in our dataset. Again,
we have chosen Nearest Neighbor because it is a very simple classifier,
which makes no assumption about the data.

The results of this experiment are given in Table 8.3. We will ana-
lyze the results in the following section.

Table 8.3: The classification performances measured in G-mean when using
only a single feature. For each feature, the G-means for the three
engineered nanoparticle types and the average value are given.
The features are sorted by their average classification performance.
As the classifier, Nearest Neighbor has been used.

feature Ag TiO2 ZnO avg .

Mean electron count 0.913 0.407 0.644 0.654

Maximum electron count 0.882 0.441 0.627 0.650

Haralick cluster shade (-1,1) 0.770 0.438 0.451 0.553

Haralick cluster shade (0,1) 0.770 0.466 0.414 0.550

Haralick cluster shade (1,1) 0.782 0.462 0.400 0.548

Haralick cluster shade (1,0) 0.770 0.430 0.426 0.542

Haralick energy (1,1) 0.640 0.479 0.461 0.527

Haralick energy (0,1) 0.618 0.479 0.457 0.518

Haralick entropy (1,0) 0.641 0.480 0.429 0.516

Haralick entropy (1,1) 0.619 0.465 0.454 0.512

Haralick entropy (0,1) 0.654 0.446 0.429 0.510

Haralick cluster prominence (1,0) 0.547 0.495 0.483 0.508

Haralick cluster prominence (0,1) 0.596 0.484 0.440 0.507

Perimeter 0.611 0.440 0.463 0.505

Haralick entropy (-1,1) 0.604 0.454 0.449 0.502

Haralick cluster prominence (1,1) 0.573 0.501 0.429 0.501

Haralick cluster prominence (-1,1) 0.531 0.534 0.423 0.496

Minimum electron count 0.452 0.430 0.607 0.496

Projected area 0.682 0.434 0.370 0.495

Haralick energy (-1,1) 0.564 0.454 0.453 0.490

Haralick energy (1,0) 0.595 0.450 0.405 0.483

Haralick maximum probability (1,0) 0.586 0.445 0.401 0.477

Mean wavelet response (2048nm) 0.618 0.385 0.415 0.473

Haralick maximum probability (0,1) 0.573 0.441 0.399 0.471

Continued on next page...



8.4 evaluation 173

Table 8.3: (continued)

feature Ag TiO2 ZnO avg .

Haralick maximum probability (-1,1) 0.505 0.475 0.431 0.470

Haralick maximum probability (1,1) 0.548 0.445 0.416 0.470

Perimeter+ 0.588 0.385 0.424 0.465

Maximum intensity 0.449 0.354 0.391 0.398

Mean wavelet response (1024nm) 0.415 0.350 0.412 0.392

Mean wavelet response (512nm) 0.316 0.393 0.389 0.366

Normalized histogram (3) 0.357 0.252 0.383 0.331

Normalized histogram (2) 0.357 0.245 0.383 0.328

Normalized histogram (0) 0.233 0.342 0.404 0.327

Mean wavelet response (256nm) 0.270 0.307 0.386 0.321

Normalized histogram (9) 0.213 0.304 0.374 0.297

Normalized histogram (5) 0.252 0.248 0.382 0.294

Normalized histogram (6) 0.286 0.245 0.340 0.290

Haralick local homogeneity (1,1) 0.252 0.262 0.354 0.289

Normalized histogram (1) 0.233 0.264 0.365 0.287

Mean wavelet response (128nm) 0.190 0.262 0.387 0.280

Mean wavelet response (64nm) 0.165 0.284 0.384 0.278

Normalized histogram (7) 0.191 0.268 0.365 0.275

Isoperimetric quotient 0.190 0.250 0.348 0.263

Normalized histogram (8) 0.135 0.264 0.360 0.253

Haralick contrast (1,0) 0.095 0.286 0.377 0.253

Mean wavelet response (8nm) 0.134 0.252 0.366 0.251

Normalized histogram (4) 0.165 0.228 0.347 0.247

Mean wavelet response (16nm) 0.135 0.232 0.367 0.245

Haralick contrast (0,1) 0.000 0.328 0.394 0.241

Haralick local homogeneity (0,1) 0.095 0.257 0.346 0.233

Haralick contrast (-1,1) 0.000 0.290 0.390 0.227

Haralick contrast (1,1) 0.000 0.287 0.391 0.226

Mean wavelet response (4nm) 0.000 0.299 0.361 0.220

Mean wavelet response (32nm) 0.000 0.269 0.370 0.213

Haralick local homogeneity (1,0) 0.000 0.273 0.358 0.211

In-image contour percentage 0.270 0.146 0.100 0.172

Haralick local homogeneity (-1,1) 0.000 0.087 0.357 0.148
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8.4.2.2 Feature Selection Count

In addition to the single feature classification experiments, the results
of the evaluation of our classification pipeline (see Section 8.4.1) can
give us information about the quality of our features. As mentioned
before, our experiments using 10-fold cross-validation have yielded
10 classifier-parameter combinations per nanoparticle type, adding
up to a total of 30. Each of these classifier-parameter combinations
contains a list of selected features to be used for the classification. By
counting the number of classifier-parameter combinations that con-
tain a given feature, we can get an indication of its quality. The results
are listed in Table 8.4.

Table 8.4: The number of feature subsets chosen by the automatic param-
eter selection method including each feature out of 10 for each
nanoparticle type and a total of 30.

feature Ag TiO2 ZnO total

Maximum electron count 9 10 8 27

Haralick energy (1,0) 7 10 9 26

Haralick contrast (-1,1) 7 7 10 24

Mean electron count 8 7 9 24

Mean wavelet response (1024nm) 7 9 8 24

Normalized histogram (5) 9 7 8 24

Haralick local homogeneity (0,1) 5 10 8 23

Haralick maximum probability (-1,1) 6 8 9 23

Haralick maximum probability (1,0) 8 7 8 23

Haralick maximum probability (1,1) 5 9 9 23

Haralick cluster prominence (-1,1) 5 7 10 22

Haralick contrast (1,1) 3 9 10 22

Normalized histogram (2) 5 8 9 22

Haralick cluster shade (0,1) 6 6 9 21

Maximum intensity 6 5 10 21

Mean wavelet response (2048nm) 5 7 9 21

Mean wavelet response (256nm) 3 9 9 21

Mean wavelet response (32nm) 6 7 8 21

Haralick local homogeneity (1,0) 6 5 9 20

Mean wavelet response (512nm) 7 7 6 20

Mean wavelet response (8nm) 7 5 8 20

Minimum electron count 4 9 7 20

Continued on next page...
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Table 8.4: (continued)

feature Ag TiO2 ZnO total

Haralick cluster prominence (0,1) 5 5 9 19

Haralick cluster shade (-1,1) 6 7 6 19

Haralick contrast (0,1) 5 4 10 19

Haralick contrast (1,0) 4 7 8 19

Haralick local homogeneity (-1,1) 6 6 7 19

Mean wavelet response (128nm) 6 6 7 19

Normalized histogram (0) 5 6 8 19

Normalized histogram (1) 2 8 9 19

Normalized histogram (7) 5 6 8 19

Perimeter 5 8 6 19

Perimeter+ 5 6 8 19

Projected area 7 8 4 19

Haralick energy (-1,1) 5 5 8 18

Haralick energy (0,1) 5 7 6 18

Haralick entropy (0,1) 5 7 6 18

Haralick entropy (1,0) 5 6 7 18

Haralick entropy (1,1) 5 7 6 18

Haralick local homogeneity (1,1) 4 7 7 18

In-image contour percentage 3 8 7 18

Isoperimetric quotient 4 7 7 18

Mean wavelet response (4nm) 4 6 8 18

Normalized histogram (4) 7 4 7 18

Haralick cluster shade (1,0) 4 5 8 17

Haralick cluster shade (1,1) 4 5 8 17

Haralick energy (1,1) 5 5 7 17

Haralick maximum probability (0,1) 3 6 8 17

Normalized histogram (6) 4 6 7 17

Normalized histogram (8) 6 6 5 17

Normalized histogram (9) 4 7 6 17

Haralick cluster prominence (1,0) 5 6 5 16

Haralick cluster prominence (1,1) 6 4 6 16

Haralick entropy (-1,1) 1 7 8 16

Mean wavelet response (16nm) 5 5 6 16

Mean wavelet response (64nm) 1 5 7 13

Continued on next page...
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Table 8.4: (continued)

feature Ag TiO2 ZnO total

Normalized histogram (3) 1 5 7 13

We will comment these two sets of results feature by feature:

projected area For both types of evaluation, the projected area
achieves an average result. It is used in almost two thirds of the
feature subsets. Therefore, removing it from the system would
probably decrease its classification performance.

perimeter While performing similar to the projected area in the
second result, its classification results are among the top 15. This
makes it a valuable feature.

perimeter including inner contours (perimeter+)
Its classification result is worse than the normal perimeter
despite having the same selection count. Therefore, it seems
that the information about holes in the CPG is not very valu-
able. Possibly, the recognition quality of these holes has to be
increased for this feature to be helpful.

isoperimetric quotient By itself, this feature does not provide
much information to discriminate CPGs. However, like almost
all features, it has been included in more than half of the feature
subsets.

in-image contour percentage As expected, this feature is not
able to distinguish particles by itself because it is not a property
of the CPG itself but rather of the imaging circumstances. How-
ever, like all features listed up until now, which are the basic
geometric features, it shall provide context information to the
classifier. For example, other feature values may change if the
CPG is not fully visible. This feature shall give the classifier a
chance to notice this change.

mean contour angle wavelet response The performance of
these features depend on their wavelengths and the size of
the engineered nanoparticles. For larger ones like the Ag parti-
cles, long wavelengths such as 2048nm perform better. Smaller
wavelengths seem to work better for small particles. In general,
higher values for the wavelength yield better results. This is an
interesting result because these wavelengths are several times
the size of the nanoparticle diameters. It suggests that the fea-
ture values do not capture the size of the particles themselves
but the size of the structures they form.
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normalized relative histogram Here, 10 feature values are
calculated, one for each bin of the histogram. By themselves,
these provide an average classification performance. However,
by the number of feature subsets, bin 5 is on the shared third
place while bin 3 is on the last. However, note that bin 3 is
included in 7 of 10 feature subsets for ZnO and in only 1 for
Ag. This suggests that the typical intensity distribution highly
depends on the type of particles.

haralick features The performance of the different Haralick fea-
tures varies. Cluster Shade, energy, entropy and cluster promi-
nence yield good results while local homogeneity and contrast
perform poorly. It seems that the offset direction is not very
important because of the random orientation of the CPGs on
the substrate. This can explain the relatively low subset count
in Table 8.4 of features such as the cluster shade. These four
feature values contain much redundant information. Therefore,
the classifier does not need all of them.

electron counts The estimated electron counts developed by us
perform very well. The mean and maximum achieve much bet-
ter G-means for Ag and ZnO than all other features. In fact, the
estimated mean electron count alone achieves a classification
performance (0.913) for Ag that outperforms human experts
(0.778) and is comparable to our system (0.931). In addition, the
maximum electron count is included in 90% of all feature sub-
sets. Compared to the maximum intensity of a CPG, which we
have included as a comparison, the maximum electron count
performs much better. This proves our assumption from Sec-
tions 4.2.2.4 and 7.3 that one cannot rely on absolute intensities
and that our electron count estimation method is effective.

8.4.3 Time Consumption

One goal of our system has been to reduce the time a human spends
analyzing SEM images of airborne particles of a workspace. There-
fore, in this section, we will compare the time spent in an analysis
with the system and without it, respectively. Because the workflow in
these two cases is quite different, Table 8.5 gives an overview over the
required steps and if the computer or the human performs them.

Note that the topic of this thesis are only the Detection and Classifi-
cation substeps of both steps. However, we want to give an overview
over the time consumption of the whole process. In addition, we have
left out smaller steps such as the sample and image management.
These are difficult to capture systematically and usually take less time
than the listed steps. Next, we will explain these steps in more detail.
Because we have laid out the basics of the process in Chapters 2 and 4,
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Table 8.5: The steps of sample analysis with and without our system, respec-
tively. For each step and case, it is listed if the process is manual
or automatic. N/A is listed if the step does not occur when our
system is not used. If a step can potentially be done automatically,
pot. automatic is listed. The asterisks are explained in the text.

step substep without system with system

Training Sampling Manual* Manual

Imaging Pot. automatic* Pot. automatic

Detection Manual* Automatic

Classification N/A Manual*

Analysis Sampling Manual Manual

Imaging Pot. automatic Pot. automatic

Detection Manual Automatic

Classification Manual Automatic

we will not repeat them here. We will not consider times when the
system is working because the user is free to walk away from the
computer and spent the time on other things.

The first step is training the recognition ability with known par-
ticles. Usually, this phase is only associated with automatic systems
such as classifiers. This is why we have added asterisks to these steps
for the process without the system. However, humans performing
manual classification also have to learn the appearance of the parti-
cles to be recognized. In addition, they also need background particle
samples to see if these may look similar to the particles of interest.
Furthermore, we have experienced that certain particles may look dif-
ferent on distinct images. Also, we have seen in Section 8.4.1 that the
manual classification performance has been worse than the one of
our system even though the human classifiers had access to the same
training images. Therefore, we will assume that the training phase
is also applied in the case without our system but potentially with
fewer images and particles.

As a first step of the training, particles of known types have to be
gathered using a precipitator. This has to be done once per particle
type or sampling location. A person operating the precipitator has to
be on site. The time consumption of this step varies based on the used
precipitator type and the circumstances such as the particle concentra-
tion to be expected. According to the BAuA, typical gathering times
are 8h for the thermal precipitator and 2h to 4h for the electrostatic
precipitator.

Next, SEM images of the gathered particles have to be taken. In
case of the BAuA, this process is done by hand. However, SEMs can
be operated by a computer, which can be instructed to take images
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at random or systematic locations in a certain area of the sample.
According to the BAuA, an operator needs about 2min per image
using a modern SEM.

Next, the CPGs in the training images have to be found. When us-
ing our system, this step is performed automatically. However, with-
out it, they have to be found manually. The time for this depends on
several factors such as the number of CPGs in an image and their
contrast compared to the background. In our experiments, we have
found that this process takes a human on average about 13 s per CPG.
There will typically also be time spent on keeping track of the CPGs
that have been counted and avoiding counting them multiple times.
We do not consider this time because it is difficult to capture system-
atically.

For the case without our system, the training phase is complete.
With the system, it would theoretically suffice to tell it which images
contain background particles and which show engineered nanopar-
ticles. However, as mentioned at the beginning of Section 8.4, the
samples containing engineered nanoparticles may include some back-
ground particles. Therefore, in this step, an expert has to classify the
CPGs in the images that contain engineered nanoparticles. For the
images showing background particles, this step is not necessary be-
cause it is very unlikely that these contain engineered nanoparticles.
In the experiment on manual classification performance, the average
time of a human expert classifying a CPG has been approximately
5.5 s.

After the system or a human expert have been trained to recognize
a certain type of engineered nanoparticles, workplace samples can
be analyzed. Such an analysis comprises the same substeps as the
training phase. The first three of these are very similar except that the
samples are taken at a workplace. The classification step, however, is
different. Here, each CPG has to be classified either as engineered
nanoparticles or as background particles. With our system, this is
done automatically. Without it, however, an human expert has to do
this. As mentioned above, this takes approximately 5.5 s per CPG.

Because the cases with and without our system are quite different,
it is difficult to compare the time consumption in these cases objec-
tively. However, in order to establish some kind of comparability, we
will estimate the manual time consumption of these two cases in a
concrete scenario:

• The system or the expert, respectively, shall learn to recognize
a new type of engineered nanoparticles.

• Both have access to enough previously recorded images of back-
ground particles, which have been used to learn recognizing
other particle types.
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Table 8.6: The time consumption of a sample analysis scenario with and
without our system, respectively.

step substep without system with system

Training Sampling 3h 3h

Imaging 22 · 2min =

44min

44 · 2min =

88min

Detection 422 · 13 s =

91.43min
0min

Classification 0min 845 · 5.5 s =

77.46min

Analysis Sampling 3h 3h

Imaging 50 · 2min =

100min

50 · 2min =

100min

Detection 700 · 13 s =

151.67min
0min

Classification 700 · 5.5 s =

64.17min
0min

Total 811.27min 625.46min

• We assume that an electrostatic precipitator gathers particles for
3h for the training sample and workplace sample, respectively.

• For the training of the system, we assume that 44 images con-
taining 845 CPGs are taken by a human operator. This coincides
with the number of TiO2 images and CPGs used in this thesis.
For the case without the system, we assume that half of the im-
ages and CPGs are taken and analyzed for the training of the
expert.

• For the workplace sample, 50 images containing 700 CPGs are
taken and analyzed.

The time consumption of this scenario is listed in Table 8.6. With
our system, the training phase is slightly longer with 5h and 45min
compared to 5h and 15min without it. However, the analysis phase
takes much less manual time with our system. Here, the time con-
sumption is 4h and 40min compared to 8h and 16min. All in all,
our system saves 3h and 6min with a total time of 10h and 25min
compared to 13h and 31min.

Note that if an automatic SEM is used, the time saving of the train-
ing phase without our system will vanish. In addition, in a usual sce-
nario, the system will be trained once for a given nanoparticle type
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and used to analyze multiple workplace samples. There, the time sav-
ings will be even higher.

In this chapter, we have provided details on the last part of the sys-
tem workflow and presented the performance results of the system
as a whole. In the next chapter, we will present an addition to our
system, which is able to give the user information how additional
training samples will affect the classification performance to be ex-
pected.
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P E R F O R M A N C E P R E D I C T I O N

In this chapter, we will propose an algorithm that enables our sys-
tem to predict its classification performance under the assumption
that additional training data is available. In Section 9.1, we will out-
line the goals for our performance prediction approach. Section 9.2
will present an overview of related literature. Our method will be de-
scribed in Section 9.3 and in Section 9.4, we will present an evaluation
of the proposed algorithm.

9.1 goals

As explained in Section 8.1.2, it is important to have as many train-
ing samples as possible. However, gathering particles and producing
SEM images is time-consuming and potentially expensive. Therefore,
a user training the system has an interest in producing neither too
few nor too many training samples.

We want our system to be able to predict the influence of the addi-
tion of a certain number of samples of a specific class to the training
set on the classification performance. In particular, we want the sys-
tem to be able to answer the following questions:

• How will the classification performance change if n CPGs com-
posed of engineered nanoparticles are added to the training set?

• How will the classification performance change if n CPGs com-
posed of background particles are added to the training set?

• How will the classification performance change if n CPGs with
the same class distribution as the current training set are added
to the training set?

In particular, we want to be able to predict performance measures
such as G-mean instead of only the classification accuracy because
they are better suited for situations such as class imbalance (see Sec-
tion 8.3.3). For that, it is sufficient to predict the false positive and
false negative rates because the other measures can be derived from
them.

If the system makes predictions like these, the user is able to make
a well-informed decision if additional training data is needed and
what type these new samples should have. This can have two effects:

• The user saves time and money by avoiding to generate addi-
tional training data that does not sufficiently improve the classi-
fication performance.

183
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• The classification performance is optimized because the user is
able to generate the right amount of training data of the proper
class.

9.2 related work

We have found two approaches to predict the expected performance
of a given classifier after the addition of training samples to the train-
ing set. Both are only able to predict the misclassification rate, which
is defined as the percentage of samples that is incorrectly classified
by the learned classifier. Thus, it is identical to one minus the accu-
racy. However, in Section 8.2.3, we have already demonstrated that
the accuracy is an unsuitable performance metric in our case. Both
approaches work in two steps:

1. Estimate the misclassification rate or components of it for train-
ing set sizes smaller than the available dataset.

2. Predict the expected misclassification rate given larger training
set sizes.

The first method is proposed by Mukherjee et al. [2003]. It uses a
repeated holdout approach to estimate the misclassification rates (see
Section 8.2.3). For the prediction step, a power-law function (which
we will describe in Section 9.3) is fit to these estimates. It is used to
predict the misclassification rates for larger training sets. In addition,
Mukherjee et al. [2003] fit such functions to the 25th and 75th per-
centiles of the error estimates, which are then used to give bounds
on the predicted error. We find that the estimation procedure of the
method has several drawbacks. For a given training set size n~X, it re-
peatedly and randomly chooses n~X samples from the dataset, trains
the classifier using these and uses the remaining samples to estimate
the expected misclassification rate. This can lead to the following
problems:

• Some samples will more often end up in the test set than the
training set. For others, the opposite will be true. This may in-
troduce a bias in the estimation of the misclassification rate.

• The size of the test sets is equal to the size of the whole dataset
minus n~X. This means that the size of the test set will vary
from 10 to the size of the whole dataset minus 10 if we use
the parameters recommended by the authors. This means that
the variance of the error estimation strongly depends on n~X. In
other words, estimations for small values of n~X are much more
exact than those for larger values.

• Similarly, the calculation of the 25th and 75th percentiles are bi-
ased to deviate stronger for large values of n~X. This means that
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the predicted error bounds are further apart than they would
be using an unbiased estimation method, especially for large
values of n~X.

Smith et al. [2012] propose another method to predict the classi-
fication performance. Contrary to Mukherjee et al. [2003], they de-
compose the misclassification rate into a bias and a variance compo-
nent. For this, they use the decomposition method by Kohavi and
Wolpert [1996]. The assumption behind it is that the responses of
these two components to changes of the training set size can better
be predicted individually than that of the misclassification rate as a
whole. Instead of a holdout approach, Smith et al. [2012] use a cross-
validation technique proposed by Webb and Conilione [2003]. There-
fore, their method does not have the disadvantages of the estimation
phase of the approach by Mukherjee et al. [2003].

However, their prediction method makes some disputable assump-
tions. In order to predict the misclassification rate for a training set
size of n~X

′, their method only needs estimates of the bias and vari-
ance for a training set size of n~X where n~X is a fixed value. The
predicted misclassification rate for a training set size of n~X

′ is then
calculated from these estimates using a simple linear model. How-
ever, Smith et al. [2012] argue that the parameter values of this model
only depend on the value of n~X. This means that these values do not
depend on the following factors:

• The used classifier

• The classification data

• The value of n~X
′

We find the last point especially concerning. It means that their
method will predict the same misclassification rate no matter whether
10 samples are added to the training set or 1 000 000.

As mentioned before, both approaches are only able to predict
the misclassification rate or, equivalently, the accuracy of a classifier-
parameter combination. However, we need a method which is able
to predict other performance metrics such as the G-mean. In the next
section, we will therefore propose a method which is able to do this.

9.3 method

As explained in Section 8.1.1, a trained classifier l(T) : X→ Y tries to
assign a class Y ∈ Y to a given sample ~X ∈ X. For the derivation of
our method, we will assume that the function L : X → Y returns the
true class of a given sample. This means that for a perfectly learned
classifier, l(T)

(
~X
)
= L

(
~X
)
, ∀ ~X ∈ X would be true. In addition, we will

assume that L is deterministic. Otherwise, the choice of classification
features would be insufficient in order to distinguish the classes.
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Let X̃ : Ω → X be a random variable representing the probabil-
ity distribution of generating a sample when gathering particles in
a realistic scenario. In addition, let T̃ : Ω → X × Y be a random
multiset representing a randomly generated training set. With these
definitions, we can write the misclassification rate given a training
set size of n~X ∈ N>0 as P

(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣ ∣∣T̃ ∣∣ = n~X

)
. The methods

by Mukherjee et al. [2003] and Smith et al. [2012] both try to pre-
dict this quantity. However, we cannot calculate the G-mean from the
misclassification rate. To do that, we need to predict the true positive
rate P

(
l
(
T̃
)(
X̃
)
= Y+

∣∣L(X̃) = Y+,
∣∣T̃ ∣∣ = n~X

)
and the true negative rate

P
(
l
(
T̃
)(
X̃
)
= Y−

∣∣L(X̃) = Y−,
∣∣T̃ ∣∣ = n~X

)
given a training set size of n~X.

These can be expressed as

P
(
l
(
T̃
)(
X̃
)
= Y+

∣∣L(X̃) = Y+,
∣∣T̃ ∣∣ = n~X

)
=

1− P
(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y+,

∣∣T̃ ∣∣ = n~X

)
,

∀n~X ∈ N>0, (9.1)

and

P
(
l
(
T̃
)(
X̃
)
= Y−

∣∣L(X̃) = Y−,
∣∣T̃ ∣∣ = n~X

)
=

1− P
(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y−,

∣∣T̃ ∣∣ = n~X

)
,

∀n~X ∈ N>0. (9.2)

Therefore, it will be sufficient if our method is able to predict the
probabilities P

(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y,

∣∣T̃ ∣∣ = n~X

)
for Y ∈ {Y+, Y−}.

However, this will only be sufficient to answer how the classification
performance changes if samples of both classes are added to the train-
ing set. To predict the influence of additional samples of a single class,
we need to define the random variables ñ+ : Ω→ N and ñ− : Ω→ N,
which stand for the number of positive and negative samples in the
training set T̃ , respectively:

ñ+ B
∣∣T̃ ∩ (X× {Y+})

∣∣, (9.3)

ñ− B
∣∣T̃ ∩ (X× {Y−})

∣∣. (9.4)

To answer the remaining questions, our method shall be able to pre-
dict the false negative rates EFN : N2 → [0, 1]:

EFN(n+,n−) B

P
(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y+, ñ+ = n+, ñ− = n−

)
,

∀n+,n− ∈ N>0, (9.5)

and the false positive rates EFP : N2 → [0, 1]:

EFP(n+,n−) B

P
(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y−, ñ+ = n+, ñ− = n−

)
,

∀n+,n− ∈ N>0, (9.6)
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for certain values of n+,n− ∈ N>0.
Similar to the two existing methods, our prediction approach con-

sists of the following two phases:

1. Estimation phase. We use the same cross-validation approach as
Smith et al. [2012]. However, instead of the misclassification
rates for a single class distribution, we estimate the false nega-
tive rates and false positive rates for several class distributions.

2. Prediction phase. To predict future values, we use a power-law
function as proposed by Mukherjee et al. [2003]. Similar to the
first phase, we predict the values of the false negative rates and
false positive rates for varying class distributions instead of the
misclassification rate for a single one. We have also tested to
decompose the estimates into bias and variance components
and predicting their values individually (see our paper on this
topic [Kockentiedt et al., 2014]). However, directly predicting
the probabilities has shown to produce better results.

The estimation of the false negative and false positive rates given
multiple classification results works as follows: The probability
P
(
l
(
T̃
)(
~X
)
, L
(
~X
) ∣∣ ñ+ = n+, ñ− = n−

)
for a given ~X ∈ X can be es-

timated by P̂
(
l
(
T̃
)(
~X
)
, L
(
~X
) ∣∣ ñ+ = n+, ñ− = n−

)
. Here, P̂(·) is the

estimate of P(·) obtained by calculating the observed frequency of the
event in question over multiple classifications using different training
sets. An estimate of P

(
l
(
T̃
)(
X̃
)
, L
(
X̃
) ∣∣L(X̃) = Y, ñ+ = n+, ñ− = n−

)
for a given class Y ∈ Y can then be obtained by taking the mean of
P̂
(
l
(
T̃
)(
~X
)
, L
(
~X
) ∣∣ ñ+ = n+, ñ− = n−

)
over all samples ~X in the

dataset belonging to class Y. By doing this, we assume that the sam-
ples of the dataset belonging to a particular class Y ∈ Y reflect the
distribution of P

(
X̃ = ~X

∣∣L(X̃) = Y). Note, however, that we do not
assume that the class distribution of the dataset reflects a particular
distribution.

In order to obtain multiple classification results using different
training sets, we use a variation of the sub-sampled cross-validation
method used by Smith et al. [2012], which has originally been pro-
posed by Webb and Conilione [2003]. As mentioned in Section 9.2, it
does not share the disadvantages of the holdout used by Mukherjee
et al. [2003]. Every sample in the dataset is classified by the same num-
ber of trained classifiers. We have adapted the algorithm so that we
are able to specify the number of samples per class in each training
set instead of only the total number of samples. In addition, we have
altered the method so that all samples from the same position on the
substrate are grouped into the same fold, similar to the changes to
the cross-validation method described in Section 8.3.3. The algorithm
is listed in Algorithm 9.1.

In Lines 4 to 5, the number of folds nF ∈ N>2 for the cross-
validation is calculated. nF has to be high enough so that at least
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Algorithm 9.1 : EstimateErrorRates(l,D,n+,n−,nT )

Input : A classifier l : D→ YX, a dataset D ∈ D, the numbers
n+,n− ∈ N>0 of positive and negative samples to be
used in the training sets and the number nT ∈ N>0 of
training sets used to classify each sample.

Output : The estimated false negative rate ÊFN(n+,n−) and false
positive rate ÊFP(n+,n−) of the classifier l trained using
n+ positive and n− negative samples.

1 D+ B D∩ (X× {Y+}), D− B D∩ (X× {Y−}).
2 Let D ′1, . . . ,D ′m v X× Y be the elements of D split by their

substrate position so that
m⋃
i=1

D ′i = D.

3 D ′ B
{
D ′1, . . . ,D ′m

}
as a multiset.

4 Let iF ∈ N>0, iF < m, be the highest number so that any iF
elements of D ′ contain at most |D+|−n+ positive and
|D−|−n− negative samples. // Max. number of positions

per fold.

5 nF B dmiF e. // The number of folds of the cross-validation.

6 P̂~X B 0 ∀
(
~X, Y

)
∈ D.

// Stands for P̂
(
l
(
T̃
)(
~X
)
, L
(
~X
) ∣∣ ñ+ = n+, ñ− = n−

)
.

7 for i B 1, . . . ,nT do
8 F0, . . . , FnF−1 B ∅ as multisets. // The CV folds.

9 j B 0.
10 while |D ′| > 0 do
11 Randomly choose D ′ from D ′ with a uniform distribution.
12 Fj B Fj ∪D ′.
13 D ′ B D ′ \ {D ′}.
14 j B (j+ 1) mod nF.
15 end

// Perform the cross-validation:

16 for j B 0, . . . ,nF − 1 do
17 T ′ B D \ Fj.

// Resample the training set:

18 Let T+ be a random subset of T ′ ∩D+ with size n+.
19 Let T− be a random subset of T ′ ∩D− with size n−.
20 T B T+ ∪ T−.
21 for

(
~X, Y

)
∈ Fj do

// Predict the class of ~X using the parameters

θ and the training set T:

22 Y ′ B l(T)
(
~X
)
.

23 if Y , Y ′ then P̂~X B P̂~X + 1
nT

.
24 end
25 end
26 end
27 ÊFN(n+,n−) B

1
|D+|

∑
(~X,Y)∈D+

P̂~X.

28 ÊFP(n+,n−) B
1

|D−|

∑
(~X,Y)∈D−

P̂~X.

29 return
(
ÊFN(n+,n−), ÊFP(n+,n−)

)
.
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n+ positive and n− negative samples are present in every possible
combination of nF− 1 folds. On the other hand, it shall be as small as
possible in order to reduce computation time. At the same time, we
must consider that all samples of a single substrate position must be
grouped into the same fold (see Section 8.3.3). Therefore, iF stores the
maximum number of substrate positions a single fold may contain
so that it is guaranteed to contain at most |D+| − n+ positive and
|D−|−n− negative samples. This means that the number of folds nF
must be at least as high as the substrate position count m divided
by the maximum number of positions per fold iF. This is calculated
in Line 5. Note that this limits the parameter n+ to the number of
positive samples in the dataset minus the maximum number of posi-
tive samples at a single substrate position. Similarly, n− is limited to
the number of negative samples in the dataset minus the maximum
number of negative samples at a single substrate position.

After that, nT cross-validations are performed. For each fold of
every iteration, a training set containing n+ positive and n− negative
samples is randomly assembled from the samples of the remaining
folds. This is used to train a classifier, which is then used to classify all
samples of the given fold. This means that every sample of the dataset
is classified by nT learned classifiers trained on training sets each
containing n+ positive and n− negative samples. From the obtained
classification results, the estimated false negative rate ÊFN(n+,n−)

and false positive rate ÊFP(n+,n−) are calculated and returned.
As for the prediction phase, we essentially want to be able to

choose any positive and negative sample counts n+,n− ∈ N>0 and
predict the false negative and false positive rates EFN(n+,n−) and
EFP(n+,n−) of a classifier trained on a set containing the chosen
number of positive and negative samples.

As mentioned before, our prediction approach is based on power-
law functions because theoretical and empirical evidence suggests
that the error rate can be described as a function of this kind [Mukher-
jee et al., 2003; Smith et al., 2012]. These functions have the following
form:

E
(
n~X

)
≈ Qn~X

−β +B. (9.7)

Its parameters are the learning rate Q ∈ R>0, the decay rate β ∈ R>0

and the Bayes error B ∈ [0, 1], which is the minimum achievable error
rate [Mukherjee et al., 2003]. Their values are specific to a combination
of classifier, parameters and underlying sample distribution. Further-
more, n~X ∈ N>0 stands for the number of samples in the training set.
In the classical interpretation, E

(
n~X

)
stands for the misclassification

rate of a classifier trained on a set with n~X samples. However, our re-
search shows that this kind of function is also appropriate to predict
the false negative and false positive rates of a classifier [Kockentiedt
et al., 2014].



190 performance prediction

Algorithm 9.2 : PredictErrorRates(l,D,n+,n−,nT ,nÊ, τn)

Input : A classifier l : D→ YX, a dataset D ∈ D, the numbers
n+,n− ∈ N>0 of positive and negative samples of the
predicted scenario and parameters controlling the
prediction quality and time consumption of the algorithm:
the number nT ∈ N>0 of training sets used for each error
estimation, the number nÊ ∈ N>0 of error estimations to
perform and the fraction τn ∈ (0, 1] of the maximum
possible number of samples to be used for the estimation.

Output : The predicted false negative rate ÊFN(n+,n−) and false
positive rate ÊFP(n+,n−) of the classifier l trained using
n+ positive and n− negative samples taken from the
same sample space as D.

1 D+ B D∩ (X× {Y+}), D− B D∩ (X× {Y−}).
2 Let D ′1, . . . ,D ′m v X× Y be the elements of D split by their

substrate position so that
m⋃
i=1

D ′i = D.

// The maximum possible parameter values that can be

passed to EstimateErrorRates():

3 n+,max B |D+|− max
i=1,...,m

∣∣D ′i ∩D+

∣∣.
4 n−,max B |D−|− max

i=1,...,m

∣∣D ′i ∩D−

∣∣.
5 τ B τn ·min

(
n+ ,max
n+

, n− ,max
n−

)
.

6 for i = 1, . . . ,nÊ do

7 n+,i B round
(
i
nÊ
τ ·n+

)
.

8 n−,i B round
(
i
nÊ
τ ·n−

)
.

9 n~X,i B n+,i +n−,i.
10

(
ÊFN,i, ÊFP,i

)
B EstimateErrorRates(l,D,n+,i,n−,i,nT ).

11 end
// Fit two power-law functions of the form E = Qn~X

−β +B

to predict the error rates EFN and EFP for varying

sample counts n~X. This can be done using an

appropriate non-linear least squares optimization

algorithm:

12 (QFN,βFN,BFN) B arg min
(QFN,βFN,BFN)

nÊ∑
i=1

(
QFNn~X

−βFN
,i +BFN − ÊFN,i

)2
.

13 (QFP,βFP,BFP) B arg min
(QFP,βFP,BFP)

nÊ∑
i=1

(
QFPn~X

−βFP
,i +BFP − ÊFP,i

)2
.

// Predict the error rates for the positive and negative

sample counts n+ and n−:

14 n~X B n+ +n−.
15 ÊFN(n+,n−) B QFNn~X

−βFN +BFN.
16 ÊFP(n+,n−) B QFPn~X

−βFP +BFP.
17 return

(
ÊFN(n+,n−), ÊFP(n+,n−)

)
.
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The steps of our prediction approach are listed in Algorithm 9.2.
Among others, the algorithm takes the parameters l, D, n+ and n−.
It returns a prediction of the false negative rate and false positive
rate of the classifier l trained on a set containing n+ positive and n−

negative samples taken from the same sample space as the dataset D.
As a first step, the method estimates the error rates of training sets
having the same ratio of positive to negative samples as the predic-
tion target. However, before that, the maximum values of n+ and n−

that can be passed to EstimateErrorRates are calculated given that
a single substrate position shall not be split among multiple folds of
the cross validation. Note that we do only use τn times the maximum
values for the estimation, where τn ∈ (0, 1]. The reason is that if the
maximum values were used, the number of folds of the cross val-
idation would be equal to the number of substrate positions, which
would lead to long computation times. In addition, there would be no
inter-training-set variability in the estimation for some of the samples,
which could likely introduce bias into the estimation. In other words,
in EstimateErrorRates, some of the samples would be classified nT
times by classifiers trained on the exact same training set. Therefore,
τn reduces the computation time and introduces inter-training-set
variability.

The training set sizes for the estimation are then spaced equidis-
tantly between 0 (exclusively) and τn times the maximum possible
value (inclusively). The parameter nÊ ∈ N>0 determines the number
of different training set sizes to be used and nT ∈ N>0 defines the
number of training sets to be used of each size.

Essentially, the parameters nT , nÊ and, to a certain degree, τn con-
trol a trade-off between shorter computation time and estimation ac-
curacy where higher values tend to increase the computation time as
well as the estimation quality. We have found that parameter values
of nT = 100, nÊ = 5 and τn = 0.5 provide a good balance between
computation time, estimation quality and inter-training-set variabil-
ity and therefore use these values in our system. Note that nT = 100

corresponds to twice the value used by Webb and Conilione [2003].
We have chosen this value in order to increase the estimation quality.
The duration of a run of the algorithm of course depends on the used
classifier-parameter combination. It is in the order of 6 hours for our
test setup.

As the second step of the algorithm, two power-law functions are
fitted to the estimates, one for each of false negative rate and false pos-
itive rate. We use the software library dlib by King [2009] to perform
the non-linear least squares fitting using the Levenberg–Marquardt al-
gorithm [Marquardt, 1963]. Finally, the power-law functions are used
to calculate the predicted error rates, which are returned from the
algorithm.
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We can also predict various performance measures by calculating
them from the predicted false positive and false negative rates. For
example, G-mean can be calculated as described in Section 8.3.3.

9.4 evaluation

In this section, we want to evaluate the method proposed in the pre-
vious section. We want to assess how well it is able to predict the clas-
sification performance of a classifier when more samples are added
to its training set.

In order to optimally evaluate the algorithm described in the pre-
vious section, one would need a large dataset with many CPGs. The
reason for this is the following: In a real-world scenario, where this
method would be applied, there would be an existing dataset, which
we will call A. Then, the prediction method would estimate the clas-
sification error using at most 50% of the CPGs of dataset A at a time
in order to prevent bias. After that, it would predict the classification
error of a training set B, which in turn would be larger than dataset
A. In order to evaluate this prediction, one would need an even larger
dataset C, which would need about twice as much CPGs as dataset
B, again, in order to prevent bias.

If we would perform the evaluation in this way and would use
our dataset as dataset C and we would assume that training set B is
25% larger than dataset A, then the maximum number of Ag CPGs
in an error estimation of our algorithm would be about 18. Moreover,
the minimum number of Ag CPGs in an estimation would be about
3. We therefore think that our dataset is too small for this kind of
evaluation.

Instead, we have decided to take the following approach:

1. For each of the three engineered nanoparticle types, do:

a) From all particles in the dataset used for this thesis (see
Section 4.4) pick all background CPGs and all CPGs con-
taining engineered nanoparticles of the chosen type and
use them to create an experiment dataset D.

b) For (n+,n−) ∈ {(0.3 ·n+,max, 0.6 ·n−,max),
(0.6 ·n+,max, 0.3 ·n−,max), (0.6 ·n+,max, 0.6 ·n−,max)} with
n+,max and n−,max defined as in Lines 3 and 4 of Algo-
rithm 9.2 on Page 190, do:

i. Compute predictions
(
ÊFN(n+,n−), ÊFP(n+,n−)

)
B

PredictErrorRates(l,D,n+,n−,nT ,nÊ, τn) with the
maximum particle fraction τn B 0.3, the other param-
eter values as provided at the end of Section 9.3 and
the classifier l that has been found to be best for D by
our automatic model selection method (see Table 8.2
on Page 171).
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ii. Compute estimates (EFN(n+,n−),EFP(n+,n−)) B

EstimateErrorRates(l,D,n+,n−,nT ).

iii. Compare the predictions ÊFN(n+,n−) and ÊFP(n+,n−)

to the estimates EFN(n+,n−) and EFP(n+,n−).

With this approach, the prediction algorithm is run almost unchanged
on the whole dataset. The size of the training set whose classification
performance shall be predicted, however, is smaller than the dataset.
The number of positive and negative particles, respectively, is at most
0.6 times the maximum possible number given the current dataset.
This is done in order not to get a biased estimation due to a too low
training set variability. To prevent that this choice leads to the training
set size whose behavior shall be predicted only being slightly larger
than the one used for the predictions, we have changed τn from 0.5 to
0.3 for the experiment. This ensures that the training set size used for
the predictions is at most half the size of the one whose behavior shall
be predicted, which more closely resembles the ratios in a realistic
scenario.

In some runs, we set the number of particles of one class to
0.3 times the maximum possible number in order to test the algo-
rithm’s behavior under different class ratios. In addition, we use
EstimateErrorRates() to compute the ground truth, with which we
can compare the predictions computed by PredictErrorRates().

Note that we do not use our automatic model selection method in-
side the cross validations performed by the error estimation and pre-
diction algorithms. Doing this would simply take too much time. In-
stead, we use the classifier-parameter combinations found to be best
for the corresponding engineered nanoparticle types. They are listed
in Table 8.2 on Page 171. This leads to classification performance esti-
mations that are higher than the ones found in the evaluation in the
previous chapter because the classifier-parameter combinations are
tuned for the datasets they are used on. This, contrary to the previ-
ous chapter, poses no problem because we are not interested in the
classification performance itself. Instead, we are interested in the pre-
diction of its change while varying the training set size.

We have compared our algorithms to two baseline algorithms. The
first one works exactly like our prediction method except that it fits
a linear function instead of a power-law function to predict the clas-
sification error. The second one also uses a linear function. However,
it only uses the two estimates with the highest CPG count to fit it.
Figure 9.1 shows the results of this comparison. It displays the medi-
ans and lower and upper quartiles of the prediction error of the three
algorithms among all runs of our evaluation. The data is split by the
type of predicted error rate. The prediction error in our experiments
has on average been lower when predicting the false positive rate,
that is the percentage of negative samples being labeled as positive
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Figure 9.1: The prediction errors defined as the absolute difference between
the prediction and the estimate (

∣∣ÊFN(n+,n−) − EFN(n+,n−)
∣∣ or∣∣ÊFP(n+,n−) − EFP(n+,n−)

∣∣, respectively) of our algorithm com-
pared to the two baseline algorithms. The bars show the median
prediction errors while the whiskers show the lower and upper
quartiles, respectively.

by the classifier. The reason for this is that, for our data, the false
positive rate itself is generally lower than the false negative rate.

Our method performs better than the baseline algorithms for both
error rates. For the false negative rate, the median prediction error of
the first baseline (0.0938) is more than 13 times that of our algorithm
(0.0068) while that of the second baseline (0.0233) is over 3 times as
high. When predicting the false positive rate, the first baseline median
(0.0100) and the second baseline median (0.0132) are over 2.5 and 3
times as high as the median prediction error of our algorithm (0.0038),
respectively.

While these results show that our method generally performs bet-
ter than the baselines, the upper quartile of the prediction errors for
the false positive rate of our algorithm is an exception. It is worse
than those of the baselines and even worse than that of our algorithm
when predicting the false negative rate. The reason is that in some
runs of our experiment, the false positive rate does not resemble a
power-law function at all. An example of this behavior can be seen in
Figure 9.2. Here, the relation between CPG count of the training set
and false positive rate of the trained classifier seems unpredictable.
As a comparison, Figure 9.3 shows the relationship between CPG
count of the training set and the false negative rate for another run
of our evaluation. The line fitted to all data points shows very well
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Figure 9.2: False positive rate estimates for a run of our evaluation for Ag
nanoparticles. Each point represents the estimated false positive
rate of a classifier trained with the given number of CPGs.
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Figure 9.3: False negative rate estimates for a run of our evaluation for ZnO
nanoparticles. Each point represents the estimated false negative
rate of a classifier trained with the given number of CPGs. The
line represents a power-law function that has been fitted to all
data points.
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that they closely follow a power-law function, which is typical for the
false negative rate in our experiment.

We believe that a part of the reason for the unpredictable behavior
of the false positive rate in some examples lies in the small overall
variation of the rate. It is usually much smaller than that of the false
negative rate for the data used in this thesis. For example, the false
positive rates of all points in Figure 9.2 lie within a span of 0.02 of
each other while the false negative rates in Figure 9.3 span a range
of over 0.1. This increases the influence of the prediction error for the
false positive rate, which makes a prediction more difficult.

However, the small variation of the false positive rate compared to
the false negative rate also reduces its influence on an overall classifi-
cation performance measure such as G-mean. This can be seen when
we combine the predictions of the two error rates and calculate a
G-mean prediction from them. Over all runs of our evaluation, the
median error of the G-mean prediction relative to the change of the
estimated G-Means from the last value available to the prediction al-
gorithm to the value to predict is 0.392 for our method compared to
4.7340 and 1.0612 for the baselines. In other words, half of the time,
the prediction of our method differs from the G-mean to predict less
than 0.4 times as much as the last G-Mean available to the algorithm.

In this chapter, we have proposed an algorithm to predict the clas-
sification performance of our system given more training samples. In
the next, the final chapter, we will look at all parts of our system and
make some concluding remarks.



10
C O N C L U S I O N S

In Chapters 1 to 4, we have motivated our work, described the circum-
stances it shall be used in and laid out our goals. Then, Chapter 5 has
introduced related literature and, based on that, proposed the basic
architecture of our system. In Chapters 6 to 9, we have presented
the related work, algorithms and evaluation of each of the steps of
our system, where each step has been presented in its own chapter.
We have chosen this layout so that the literature discussion and algo-
rithm description are still fresh in the readers mind when reading an
evaluation section.

This chapter will revisit all parts of our system by providing a
conclusion to this thesis. In particular, we will address the following
points:

• Shortly summarize the contributions of this thesis.

• Assess which of the goals we have set ourselves have been met.

• Look at possible future directions of research related to the top-
ics of this thesis.

We will begin with our contributions in the following section. The
other points will be covered in the two sections after that.

10.1 contributions of this thesis

To the best of our knowledge, the work described in this thesis is the
first automatic solution to image-based identification of engineered
nanoparticles in a realistic scenario. Therefore, much thought and
many decisions have been necessary to build this system. In particu-
lar, we have had to make decisions about the overall approach of the
system as well as which algorithm categories and implementations
to use. In addition, we have developed several algorithms ourselves
appropriate for the characteristics of the task and the targeted nano-
particles. In the order of appearance in this thesis, this section will
shortly name our main contributions.

We have compiled and reviewed related literature on automatic
image-based particle analysis in Chapter 5 and the related work sec-
tions of Chapters 6 to 8. Only little of that work could be directly ap-
plied to our problem because the scenarios of the examined literature
are diverse and considerably different from ours. Therefore, we have
made the effort to analyze and describe in detail which approaches
of the literature can and cannot be used for our problem and why.

197
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In Section 6.3.1, we have proposed a completely new noise parame-
ter estimation algorithm specifically targeted at SEM images. It is de-
rived using statistical means from a realistic image generation model.
As far as we know, it is the first such algorithm targeted at SEM. On
simulated images, it shows very good results on its own (see Sec-
tion 6.4.1) as well as combined with a noise removal method (see
Section 6.4.2).

We have selected suitable feature categories and features for the
unique properties of nanoparticle agglomerates in Chapter 7. We
could not directly adopt the features used in the literature because,
for agglomerates, the global form and size is very variable. For the
same reason, we have created a new set of features called Mean Con-
tour Angle Wavelet Response (see Section 7.3.2.1), which is able to
extract the absolute sizes of local contour features.

In Section 7.3.3.3, we have introduced a new method to estimate
the number of electrons detected by the detector for each pixel of
an SEM image. It uses the same derivation as the noise parameter
estimation mentioned above and is the only such algorithm we are
aware of. It performs so well that two of the three features derived
from it have been found to be the most valuable features used by us
in our evaluation (see Section 8.4.2).

For the classification step of our system, we have selected appropri-
ate classifiers, parameters, performance measures and preprocessing
steps such as dimensionality reduction, weighting and resampling
(see Chapter 8). For this, we have had to consider the characteristics
of the classification problem such as small sample sizes, class imbal-
ance and unknown target class ratios. In addition, we have compiled
an automatic model selection method from existing evolutionary al-
gorithms in order to make the system adaptable to new kinds of
nanoparticles without the need for a classification expert (see Sec-
tion 8.3.2).

Finally, in Chapter 9, we have created a new method to predict the
classification performance of a classifier trained on a dataset of differ-
ent size and composition. For that, we have combined two existing
methods and extended them to be able to predict the false positive
and false negative rates as well as take the class ratio into account.

10.2 goal review

At the beginning of this thesis, we have stated that the main goal of
our system is to save time the user spends in front of the computer
compared to a manual analysis of the images. A prerequisite for this
is that it meets the minimum goals stated in Chapter 3:

detection Locate the engineered nanoparticles and (optionally)
the background particles in every image.
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identification Decide for every found particle if it either consists
of engineered nanoparticles of a specific type or is a background
particle.

We have evaluated the detection goal in Section 6.4.5. There, we
have found that the segmentation pipeline can match human perfor-
mance regarding the number of found CPGs. In fact, it finds all CPGs
containing engineered nanoparticles in the randomly chosen images
we have looked at in our evaluation. Thus, it meets the first require-
ment.

The particle identification has been evaluated in Section 8.4.1.
Again, this has shown that the system can match the performance
of human experts. This means that our system fulfills the minimum
goals defined in this thesis.

Having established this, we can look at the time that can be saved
using our system. We have investigated this in Section 8.4.3. For
the examined scenario, taking sampling, imaging, training of experts
or the system, respectively, and classification into account, we have
found that the system can save 3h of the user’s time. This accounts for
savings of 22.9%. Assuming that the system has been trained before
for the targeted nanoparticle type, the savings rise to 43.5%. When
only regarding the work after the images have been created, the user
only has to provide the images to the system instead of spending 3h
and 36min detecting and classifying particles.

In addition to our main goal of saving time for the user, we have
defined further goals. One of them is future viability. This means that
our system shall be able to adapt to new particle types without the
need for a classification expert. Therefore, we have proposed a fully
automatic model selection method in Section 8.3.2. It has proven its
merit in Section 8.4.1 where it has been used to select the classifier-
parameter combinations used to evaluate the classification perfor-
mance of our system. We will give more detail on the quality of these
classification results below.

Until now, we have established that our system is able to save time
while matching human performance. Next, we will assess whether it
can provide insights that exceed those provided by human experts.
First, we want to look at the particle detection and identification qual-
ity. In our segmentation evaluation, our system has been able to find
all CPGs containing engineered nanoparticles while only 91% have
been found manually (see Section 6.4.5). In the classification evalua-
tion, our system has yielded a G-mean of 0.931 for Ag compared to
0.778 achieved by human experts. For TiO2, the result has been 0.854
versus 0.767 and for ZnO, the system has achieved 0.861 compared to
0.705 (see Section 8.4.1).

In Chapter 9, we have shown that our system is able to predict the
improvement in classification performance if it is given more train-
ing data. This helps the user to decide whether the additional work
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needed to produce such sample images is worth the added classi-
fication precision. It is much more difficult for human experts to as-
sess and predict their classification ability given longer training using
more sample images with a reasonable precision. While it is conceiv-
able to devise a procedure to make the same predictions for a human
expert, it would certainly involve a considerable amount of time spent
classifying particles for evaluation purposes. And because a human
is not able to easily unlearn previously gained knowledge, it would
probably require more training images than to predict the systems
performance. Thus, such a procedure would be infeasible.

Finally, while a human can count the number of CPGs containing
engineered nanoparticles in an image, our system captures the exact
form and size of the image area covered by these CPGs. The former al-
lows to estimate the number of CPGs per volume of air, the so-called
number concentration. Additionally, the image area recorded by our
system allows for the estimation of other forms of concentration:

• The number of engineered primary particles per volume of air.

• The volume of engineered nanoparticles per volume of air (vol-
ume concentration).

• The surface of engineered nanoparticles per volume of air (sur-
face concentration).

While the estimation of these numbers is beyond the scope of this the-
sis, especially the surface concentration seems to be very important in
predicting the potential toxicity of nanoparticles [Crosera et al., 2009].

In conclusion, we have proposed a system that is able to signifi-
cantly reduce the manual work needed to analyze airborne nanopar-
ticles while maintaining or even improving the quality of the analysis.

10.3 future work

Since our system is the first of its kind, it is a proof of concept. By
definition, this means that there may be better algorithms for some of
its parts. In this section, we will outline some areas where we think
future research may be able to improve the system.

On Page 49, we have briefly mentioned CCSEM, where a computer
controls the SEM and automatically takes particle images. If future
generations of such tools would be able to detect particles as small
as the nanoparticles to be found, they could be a valuable tool for a
system like ours. In our opinion, it could have the following benefits:

• Having more training data would probably improve the classi-
fication quality of our system.

• It would reduce the manual work needed for sample analysis
even further.
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• It could perform an EDX analysis for every found particle pro-
viding valuable information about its composition.

While our system has been able to locate all CPGs with engineered
nanoparticles in our evaluation in Section 6.4.5, it has overlooked
some small and faint background particles in proximity to a large
bright particle. We think that the possible solutions we have consid-
ered such as dynamic thresholding would have difficulties to cope
with the highly variable size of the agglomerates. Nevertheless, it
would be beneficial to find a segmentation method that is able to also
find such small and faint particles.

As described in Section 6.1, we have assumed that engineered na-
noparticles and background particles never appear in the same ag-
glomerate. However, as said at the beginning of Section 8.4, we have
observed a few agglomerates which contain both types of particles.
Future research could look into how such cases can be handled bet-
ter.

Our noise and electron count estimation algorithms described in
Sections 6.3.1 and 7.3.3.3 work very well as seen in Sections 6.4.1
and 8.4.2. However, as described on Page 74, intensity clipping pro-
duces outliers in the parameter fitting. The noise model by Foi et al.
[2008] is able to model this clipping. It would be nice if this could be
incorporated in the algorithm proposed by us.

The features we have derived from the estimated electron count
(minimum, maximum and mean) work very well in our evaluation
(see Section 8.4.2). It would be interesting to see if more complicated
features such as a histogram or Haralick features computed from the
electron count estimates of all pixels would perform equally well.

We think that directly estimating the primary particle distribution
of an agglomerate could be another valuable goal. This data could be
used to aid the classification or to directly estimate different concen-
trations indicative of a worker’s health risk.
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A P P E N D I X A : A D D I T I O N A L M AT H

This appendix collects formulas that would disturb the flow of the
main text.

Using the definitions from Section 6.3.1 and any function Γ : N×
N→ R, we can show:

E(Γ(c̃1, c̃2) | c̃1 + c̃2 = c)

=
∑
i,j∈N
i+j=c

Γ(i, j)P(c̃1 = i, c̃2 = j | c̃1 + c̃2 = c)

=
∑
i,j∈N
i+j=c

Γ(i, j)
P(c̃1 = i, c̃2 = j)
P(c̃1 + c̃2 = c)

=
∑
i,j∈N
i+j=c

Γ(i, j)
P(c̃1 = i)P(c̃2 = j)
P(c̃1 + c̃2 = c)

=
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i+j=c

Γ(i, j)
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i! e
−µµj

j! e
−µ
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c! e−(µ+µ)

=
∑
i,j∈N
i+j=c

Γ(i, j)
µiµjc!
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Γ(i, c− i)
µiµc−ic!

2cµci!(c− i)!

=
1

2c
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Γ(i, c− i)
(
c

i

)
, ∀ c ∈ N.

(A.1)

Here, we have used the fact that the sum of two independent Poisson
distributed random variables is itself Poisson distributed.
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A P P E N D I X B : A D D I T I O N A L A L G O R I T H M S

This appendix presents algorithms that do not fit in the main text but
may be of interest to the reader.

Algorithm B.1 shows the iteratively reweighted least squares algo-
rithm [Maronna et al., 2006, p. 105].

Algorithm B.1 : IterativelyReweightedLeastSquares(�s,~v, ~α0)

Input : A matrix �
s ∈ Rl×m, a vector ~v ∈ Rl and an initial estimate

~α0 ∈ Rm, where l,m ∈ N>0, l� m.
Output : An estimate ~α ∈ Rm as a robust approximate solution

to the equation �
s~α = ~v.

1 ~r0 B ~v−
�
s~α0.

2 k B 0

3 repeat
4 σ̂k B med

i=1,...,l
(|~rk(i)|)/0.675. // med denotes the median.

5
�

Wk B diag
i=1,...,l



(
1−

(
~rk(i)
4.685σ̂k

)2)2
, if

∣∣∣~rk(i)σ̂k

∣∣∣ 6 4.685
0, if

∣∣∣~rk(i)σ̂k

∣∣∣ > 4.685
.

// diag generates a diagonal matrix with the given

diagonal entries.

6 ~αk+1 =
(
�
s
T �

Wk
�
s
)−1

�
s
T �

Wk~v.

7 ~rk+1 B ~v−
�
s~αk+1.

8 k B k+ 1

9 until maxi(|~rk(i) −~rk−1(i)|)/σ̂k−1 < ε.
// ε ∈ R>0 is a small constant.

10 return ~α B ~αk.
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