
CONTRIBUTIONS TO THE THEORY
OF ALMOST PERFECT NONLINEAR

FUNCTIONS

Dissertation

zu Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M. Sc. Razi Arshad

geb. am 18.04.1979 in Lahore

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg.

Gutachter: Prof. Dr. Alexander Pott

Prof.in Dr. Gohar Kyureghyan

eingereicht am: 06.06.2018

Verteidigung am: 04.09.2018





Zusammenfassung

In dieser Dissertation untersuchen wir fast perfekt nichtlineare ( “almost perfect
nonlinear”, APN) Funktionen. In der Kryptographie, insbesondere bei Blockchif-
fren, sind vektorielle Boolesche Funktionen von grundlegender Bedeutung. Es
gibt zwei Hauptangriffe auf Blockchiffren: differentielle Angriffe [1] und lineare
Angriffe [2]. Funktionen, die den Besten Schutz vor differentiellen Angriffen bie-
ten, werden als APN Funktionen bezeichnet. Die Funktionen, die einen optima-
len Schutz sowohl vor linearen als auch differentiellen Angriffen bieten, werden
als “almost bent” (AB) Funktionen bezeichnet. Alle bekannten Konstruktionen
von APN Funktionen verwenden endliche Köper, während in dieser Arbeit die
Konstruktion von APN Funktionen unter Verwendung von im wesentlichen nur
Vektorräumen studiert.
Zuerst schlagen wir einen neuen Ansatz zur Konstruktion von APN Funktio-
nen unter Verwendung von Koordinatenfunktionen vor. Wir zeigen, dass “bent”
Funktionen die besten Kandidaten für Koordinatenfunktionen von APN Funk-
tionen sind. Wir untersuchen eine Variation der Maiorana-McFarland und der
“partial spread” Klasse von Booleschen Funktionen. Wir zeigen, dass diese auch
gute Kandidaten für Koordinatenfunktionen sind, insbesondere sind sie besse-
re Kandidaten als sogenannt plateaued Funktionen, die kürzlich vorgeschlagen
wurden. Dann studieren wir die Klassen von vektoriellen “bent” Funktionen,
die in den bekannten quadratischen APN Funktionen aus F26 enthalten sind.
Die vektoriellen booleschen Funktionen von Fn

2 nach Fn
2 können als ein Würfel

der Dimension n× n× n beschrieben werden. Wir zeigen, dass dieses Konzept
auf vektorielle Boolesche Funktionen von Fn

2 nach Fm
2 erweitert werden kann.

Wir berechnen explizit verschiedene Invarianten der quadratischen APN Funk-
tionen, die von Yu, Wang und Li [3] in F27 und F28 gefunden wurden. Wir
präsentieren einige Ergebnisse zu Funktionen der Form F(x) = x3 + Trn

1 (x)L(x),
wobei L(x) ein linearisiertes Polynom ist. Wir zeigen, dass F(x) = x3 + Trn

1 (x)x
niemals eine APN Funktion ist, indem wir Kloosterman-Summen verwenden.
Ferner schlagen wir auch einen neuen Ansatz für die Konstruktion von APN
Funktionen vor, indem wir die Zerlegung von Fn

2 in affine Unterräume verwen-
den. Wir haben mehrere Beispiele für APN Funktionen gefunden, indem wir
diesen Ansatz in F26 und F28 verwenden. Schließlich zeigen wir die Äquivalenz
der Göloğlu und der Gold APN Funktionen. Wir diskutieren einen Fehler in
MAGMA [4] bezüglich der Code Äquivalenz.

i





Abstract

In this dissertation, we investigate almost perfect nonlinear (APN) functions.
In cryptography, particularly in block ciphers, vectorial Boolean functions are of
fundamental importance. There are two main attacks on block ciphers, differ-
ential attacks [1] and linear attacks [2]. The functions which provide the best
resistance against differential attacks are called APN functions. The functions
which provide optimal resistance against both linear and differential attacks are
called almost bent (AB) functions. All the known constructions of APN func-
tions use finite fields. In this work, we study the construction of APN functions
using vector space structure.
First, we propose a new approach for the construction of APN functions by using
coordinate functions. We show that bent functions are the best candidates for
coordinate functions of APN functions. We study a variation of the Maiorana-
McFarland and the partial spread class of Boolean functions. We show that these
are also good candidates for coordinate functions, in particular, they are better
candidates than plateaued functions which have been proposed recently. Then
we study classes of vectorial bent functions contained in the known quadratic
APN functions on F26 .
Vectorial Boolean functions from Fn

2 to Fn
2 can be described in terms of a cube

of dimension n× n× n. We show that this concept can be extended to vectorial
Boolean functions from Fn

2 to Fm
2 .

We explicitly compute several invariants for quadratic APN functions found by
Yu, Wang and Li [3] on F27 and F28 . We present some results on functions of the
form F(x) = x3 + Trn

1 (x)L(x), where L(x) is a linearized polynomial. We show
that F(x) = x3 + Trn

1 (x)x is never an APN function by using Kloosterman sums.
We also propose a new approach for the construction of APN functions by using
the decomposition of Fn

2 in affine subspaces. Using this construction on F26 and
F28 , we found several examples of APN functions.
Finally, we show the equivalence of the Göloğlu and the Gold APN functions.
We discuss a MAGMA [4] error about code equivalence.

iii





Acknowledgements

First and foremost, I would like to express my sincere gratitude to my ad-
visor Prof. Dr. Alexander Pott for the continuous support, encouragement and
motivation throughout my Ph.D. studies. His insight, patience and scientific
knowledge helped me to find new and interesting results. I am really very grate-
ful for his availability, optimism and criticism while keeping a friendly working
environment. His professional and editorial advice helped me in the completion
of this thesis.
I am grateful to Prof.in Dr. Gohar Kyureghyan and Prof. Dr. Kai-Uwe Schmidt
for helping me in the initial phase of my research. I am also grateful to Dr.
Shuxing Li, Christian Kaspers, Daniel Gerike, for their kindness, friendship and
valuable comments.
I shared an office with Alexandr Polujan for two and half year. I am grateful to
him for many discussion on variety of topics, his friendship and valuable com-
ments.
I am further grateful to Dr. Faruk Göloğlu and Dr. Yue Zhou for the mathemati-
cal discussions on the results of this thesis.
My deepest gratitude goes to my mother, mother-in-law, father-in-law and my
brothers for all their endless love and encouragement.
I am grateful to my beloved wife for her endless support and patience in the
completion of my Ph.D. studies. She bears all the direct and indirect tension
of my Ph.D. studies. I am also grateful to her for unconditional and true love
throughout my life.
I am further grateful to my sons Ayan Razi, Umair Razi and Ashar Razi for their
inspiration and their love, otherwise, it would be much harder to keep the moti-
vation to finish this thesis.
Finally, I would like to express my gratitude to the financial, academic and tech-
nical support from the Otto-von-Guericke University, Magdeburg and the finan-
cial support from HEC (Higher Education Commission) of Pakistan.

v





CONTENTS vii

Contents

Overview 1
Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Preliminaries 9
1.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Vectorial Boolean functions . . . . . . . . . . . . . . . . . . . . . . 15
1.3 APN and AB functions . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Equivalence of functions . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Infinite families of AB and APN functions . . . . . . . . . . . . . . 26

2 On the number of weight 4 codewords 33
2.1 Connection between vectorial Boolean functions and coding theory 33
2.2 Formula for weight 4 codewords . . . . . . . . . . . . . . . . . . . 36
2.3 AB Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 APN Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Plateaued Boolean functions . . . . . . . . . . . . . . . . . . . . . . 46
2.6 Partial spread class . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Maiorana-McFarland class . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Dobbertin APN function and Kavut et. al. Boolean function . . . 55
2.9 Vectorial bent functions . . . . . . . . . . . . . . . . . . . . . . . . 58
2.10 APN Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Classes of vectorial bent functions contained in known quadratic
APN functions 61
3.1 Case n = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Open problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Local changes in the quadratic APN cube 67
4.1 Cube of dimension n× n×m . . . . . . . . . . . . . . . . . . . . . 67
4.2 Yu, Wang and Li (YWL) approach . . . . . . . . . . . . . . . . . . 75
4.3 The switching approach . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Local changes in the quadratic APN cube . . . . . . . . . . . . . . 92
4.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . 96



viii LIST OF TABLES

5 Functions of the type F(x) = x3 + Trn
1 (x)L(x) 99

5.1 Characterization of F(x) = x3 + Trn
1 (x)L(x) . . . . . . . . . . . . . 99

5.2 Computational results for F(x) = xd + Trn
1 (x)L(x) . . . . . . . . . 105

5.3 A possible approach for the construction of nonquadratic APN
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 A new construction method for APN functions . . . . . . . . . . . 108

6 Equivalence of Göloğlu infinite family of APN functions 119
6.1 Göloğlu family of APN functions . . . . . . . . . . . . . . . . . . . 119
6.2 Equivalence of Göloğlu APN functions . . . . . . . . . . . . . . . 120
6.3 MAGMA Computation Error . . . . . . . . . . . . . . . . . . . . . 122

A Computational Results 125

Bibliography 133

List of Tables

1.1 Truth table of f (x1, x2) = x1x2 . . . . . . . . . . . . . . . . . . . . . 11
1.2 Known APN power functions xd on F2n . . . . . . . . . . . . . . . 27
1.3 Known AB power functions xd on F2n , n odd . . . . . . . . . . . . 28
1.4 Two APN binomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Dillon APN functions on F26 . . . . . . . . . . . . . . . . . . . . . 31
1.6 Known infinite families of APN multinomials on F2n . . . . . . . 32

2.1 Walsh spectrum of AB functions on F2n with n = 2m + 1 odd . . 41
2.2 Weight 4 vectors in the linear codes of AB functions F : F25 → F25 41
2.3 Weight 4 vectors in the linear codes of AB functions F : F27 → F27 42
2.4 Weight 4 vectors in the linear codes of AB functions F : F29 → F29 42
2.5 Weight 4 vectors in the linear code of AB functions F : F211 → F211 42
2.6 Walsh spectrum of quadratic Boolean functions f : Fn

2 → F2 . . . 46
2.7 Weight 4 vectors in the linear code of quadratic Boolean functions

f : Fn
2 → F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Weight 4 vectors in the linear code of the partial spread Boolean
functions from F6

2 to F2 . . . . . . . . . . . . . . . . . . . . . . . . 52
2.9 Weight 4 vectors in the linear code of the partial spread Boolean

functions from F8
2 to F2 . . . . . . . . . . . . . . . . . . . . . . . . 52

2.10 Weight 4 vectors in the linear code of the partial spread Boolean
functions from F10

2 to F2 . . . . . . . . . . . . . . . . . . . . . . . . 52



LIST OF TABLES ix

2.11 Weight 4 vectors in the linear code of the Maiorana-McFarland
Boolean functions from F6

2 to F2 . . . . . . . . . . . . . . . . . . . 56
2.12 Weight 4 vectors in the linear code of the Maiorana-McFarland

Boolean functions from F8
2 to F2 . . . . . . . . . . . . . . . . . . . 56

2.13 Weight 4 vectors in the linear code of the Maiorana-McFarland
Boolean functions from F10

2 to F2 . . . . . . . . . . . . . . . . . . . 56
2.14 Weight 4 vectors in the linear codes of the component functions of

the Dobbertin function from F210 to F2 . . . . . . . . . . . . . . . 58
2.15 Weight 4 vectors in the linear code of vectorial bent functions

F : F2n → F2n/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.16 Walsh Spectrum of component functions of the Dillon APN Per-

mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Occurrence of 3 dimensional vectorial bent functions in the Dillon
APN functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Quadratic APN functions from F27 to F27 . . . . . . . . . . . . . . 97
4.2 Quadratic APN functions from F28 to F28 . . . . . . . . . . . . . . 98

5.1 Classification of F(x) = x3 + Trn
1 (x)L(x), L(x) = ∑n−1

i=0 aix2i
, ai ∈ F2 106

5.2 Classification of F(x) = xd +Trn
1 (x)L(x), L(x) = ∑n−1

i=0 aix2i
, ai ∈ F2,

n odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Classification of F(x) = xd +Trn

1 (x)L(x), L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2,
n even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107





Overview

In cryptography, vectorial Boolean functions from Fn
2 to Fm

2 can be used as build-
ing blocks in block ciphers, such as S-box in AES [5]. There are two main attacks
on block ciphers: differential attacks and linear attacks. Nonlinearity and differ-
ential uniformity of vectorial Boolean functions provide resistance against linear
attacks and differential attacks respectively.
The differential attack was presented by Biham and Shamir [1] in 1991. They
study how differences in an input of a cryptosystem can affect the resultant dif-
ference at the output. The vectorial Boolean functions F from Fn

2 to Fm
2 , being

used as S-box in symmetric cryptosystem, provide the best resistance to differ-
ential attacks when the value

max
a∈Fn

2 ,b∈Fm
2

a 6=0

| {x ∈ Fn
2 : F(x + a) + F(x) = b} |

is small. These functions are called almost perfect nonlinear (APN) functions if
n = m.
The linear attack was introduced by Matsui [2] in 1993. The linear attack is based
on finding the affine approximation to the action of a cipher. The linear attack
on the vectorial Boolean functions from Fn

2 to Fm
2 is successful if the value

max
a∈Fn

2 ,b∈Fm
2

b 6=0

| ∑
x∈Fn

2

(−1)b·F(x)+a·x |

is large. The functions achieving the maximum possible nonlinearity, that is,

NL(F) = 2n−1 − 1
2

max
a∈Fn

2 ,b∈Fm
2

b 6=0

| ∑
x∈Fn

2

(−1)b·F(x)+a·x |

provide the best resistance to linear attack. These functions are called almost
bent (AB) or maximum nonlinear functions.
The classification of AB and APN functions is a hard problem. All the known
constructions of APN functions use finite fields. In this thesis, we are interested
in studying the APN property of vectorial Boolean functions by using the vector
space structure.



2 OVERVIEW

Structure of the thesis

Chapter 1 contains all the necessary definitions related to Boolean and vectorial
Boolean functions, AB and APN functions, equivalence relations among vectorial
Boolean functions and infinite families of AB and APN functions.
In Chapter 2, we propose a new approach for the construction of APN functions
from Fn

2 to Fn
2 by using n coordinate functions. We study the coordinate function

approach in terms of coding theory. Let f1(x), . . . , fm(x) be Boolean functions
from Fn

2 to F2 with m ≤ n. We can define the (n + m + 1)× 2n matrix

H f1,..., fm =


1
x

f1(x)
...

fm(x)


x∈Fn

2

.

Let C f1,..., fm = {x ∈ F2n

2 : H f1,..., fm · x = 0}. This is the code that consists of all
codewords (vectors) orthogonal to the rows of H f1,..., fm .
The function F from Fn

2 to Fn
2 defined by

F(x) =

 f1(x)
...

fn(x)


is an APN function if and only if the minimum weight of C f1,..., fn is 6, see Corol-
lary 2.4. This means there is no weight 4 vector in the linear code C f1,..., fn .
In order to construct an APN function F from Fn

2 to Fn
2 by using n coordinate

functions f1, . . . , fn, we need to look at the pattern of reduction of the number
of weight 4 vectors in the linear code C f1,..., fn . We compute the formula for the
number of weight 4 vector in the linear code C f1,..., fm , given in the following
theorem

Theorem 2.5. Assume that F is a function from Fn
2 to Fm

2 with m ≤ n. The number
λ( f1, . . . , fm) of weight 4 vectors in the linear code C f1,..., fm is

λ( f1, . . . , fm) =
1

24

 1
2n+m

 ∑
a∈Fn

2 , b∈Fm
2 ,

b 6=0

(WF(a, b))4 + 24n

− 3 · 22n + 2n+1

 ,

where WF(a, b) = ∑x∈Fn
2
(−1)a·x+b·F(x).

From Corollary 2.3, we can also compute the number of weight 4 vectors in
the linear code C f of Boolean functions f .
We study several known examples of APN functions by using the coordinate



OVERVIEW 3

function approach. We found that bent functions f have minimum number of
weight 4 vectors in the linear code C f . Therefore, bent functions are the best
choice for the coordinate functions.
Bent functions can be constructed by using the Maiorana-McFarland and the
partial spread construction method. We study Boolean functions belonging to
the partial spread and Maiorana-McFarland class.
In the partial spread construction method, we consider two possible cases of
m-dimensional subspaces H1, ..., Hk of Fn

2 . In the first case, we consider m-
dimensional subspaces H1, ..., Hk of Fn

2 without 0. In this case, we compute
the number of weight 4 vectors in the linear code C f .

Corollary 2.14. Assume that fk : Fn
2 → F2 is a Boolean function with Walsh spectrum

given in Theorem 2.13. The number λ( fk) of weight 4 vectors in the linear code C fk
is

λ( fk) =
1

24
(

1
2n+1 [16((2n−1 − 2mk + k− 1)4 + (2nk4 − 2mk5 + k5 − k4)

+ k(k− 2m)4(2m − 1)) + 24n]− 3 · 22n + 2n+1).

In the second case, we consider m-dimensional subspaces H1, ..., Hk of Fn
2

with 0. In this case, we compute the number of weight 4 vectors in the linear
code C f .

Corollary 2.17. Assume that f
′
k : Fn

2 → F2 is a Boolean function with Walsh spectrum
given in Theorem 2.16. The number λ( f

′
k) of weight 4 vectors in the linear code C f ′k

is

λ( f
′
k) =

1
24

(
1

2n+1 [16((2n−1 − 2mk + k− 1)4 + (k− 1)4(2n − 2mk + k− 1)

+ k(k− 2m − 1)4(2m − 1)) + 24n]− 3 · 22n + 2n+1).

In both cases, the value of k is less than or equal to 2m+1. We show that for
k = {2m−1− 1, 2m−1 + 1} in the first case and k = {2m−1, 2m−1 + 2} in the second
case, partial spread Boolean functions reduce more weight 4 vectors in their lin-
ear code as compared with the weight 4 vectors in the linear code of plateaued
Boolean functions.
We also study Boolean functions with certain restrictions belonging to the Maiorana-
McFarland class. We compute the number of weight 4 vectors in the linear code
related to Maiorana-McFarland Boolean functions.

Corollary 2.21. Assume that f : Fn
2 → F2 is a Boolean function belonging to the

Maiorana-McFarland class with Walsh spectrum given in Theorem 2.20. The number
λ( f ) of weight 4 vectors in the linear code C f is

λ( f ) =
1

24

[
1

2n+1

(
25mt + 25m+3s + 24n

)
− 3 · 22n + 2n+1

]



4 OVERVIEW

We show that for s = 1 and t = 2m − 2, Maiorana-McFarland Boolean func-
tions reduce more weight 4 vectors in their linear code as compared with the
weight 4 vectors in the linear code of plateaued Boolean functions. The Boolean
functions belonging to the Maiorana-McFarland class and partial spread class
are good candidates for coordinate functions which can be used in the construc-
tion of APN functions by using our coordinate functions approach.
In our coordinate functions approach, we choose vectorial bent functions from
Fn

2 to Fn/2
2 as the first n/2 coordinate functions with n even. The vectorial bent

functions reduce the maximum number of weight 4 vectors in the linear code
C f1,..., fn/2

. We need to choose other n/2 coordinate functions in such a way that
there is no weight 4 vectors in the linear code C f1,..., fn . Then, we obtain APN
functions.
In Chapter 3, we consider known quadratic APN functions from F26 to F26 . We
analyze that how these APN functions are constructed by using our coordinate
functions approach. So, we study the classes of quadratic vectorial bent func-
tions contained in these APN functions. We completely classify the quadratic
vectorial bent functions from F6

2 to F3
2.

Theorem 3.1. There are only three (up to equivalence) quadratic vectorial bent functions
from F6

2 to F3
2 and only one (up to equivalence) quadratic vectorial bent function from

F6
2 to F2

2.

In Chapter 4, we study quadratic vectorial Boolean functions from Fn
2 to Fn

2
in terms of a cube of dimension n× n× n. We propose an extension of the cube
for quadratic vectorial Boolean functions from Fn

2 to Fm
2 .

Theorem 4.2. Let F be a quadratic homogeneous vectorial Boolean function from Fn
2 to

Fm
2 defined by

F(x) =

 f1(x)
...

fm(x)

 =

 xQ1xT

...
xQmxT

 ,

where f1(x), . . . , fm(x) are quadratic Boolean functions from Fn
2 to F2. Then DaF(x)

is
DaF(x) =

(
∑n

i=1 xi(∑n
j=1 C1

ijaj), . . . , ∑n
i=1 xi(∑n

j=1 Cm
ij aj)

)
,

where
C1 = Q1 + QT

1 , . . . , Cm = Qm + QT
m,

a = (a1, . . . , an) ∈ Fn
2 \ {0}. For k = 1, . . . , m, the matrix Ck

∗∗ corresponds to the
coordinate function fk of F. For j = 1, . . . , n, DaF(x) is given by the non-zero linear
combinations of matrices C∗∗j.

The ranks of all possible non-zero linear combinations of the matrices C∗∗j,
j = 1, . . . , n determine the number of solutions of F(x + a) + F(x) = b. The ma-
trices Ck

∗∗, k = 1, . . . , m are symmetric matrices with zero diagonal entries. The



OVERVIEW 5

ranks of all possible non-zero linear combinations of the matrices Ck
∗∗, k = 1, . . . , m

determine the Walsh spectrum of F [6].
We study the local changes in the quadratic APN cube of dimension n× n× n.
This has been proposed by Yu, Wang and Li [7] for the construction of quadratic
APN functions. We extend the work of Yu, Wang and Li by applying differ-
ent possible changes at different positions of quadratic APN cube of dimension
n× n× n. Unfortunately, we are unable to find new APN functions.
We compute the following so called CCZ-invariants: ∆- and Γ-rank, order of the
automorphism groups of M(GF) and Walsh spectrum for 471 quadratic APN
function on F27 and 8157 quadratic APN functions on F28 .
Yu, Wang and Li have constructed several CCZ-inequivalent quadratic APN
functions but they were unable to find an infinite family of APN functions. In
order to find an infinite family of APN function, it might be useful to have a
representation in finite fields. The function

F(x) = x3 + Trn
1 (x)L(x),

where L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n can be obtained from a quadratic APN cube
corresponding to the Gold APN function F(x) = x3 by changing the entries ck

i,j

with 1 ≤ k ≤ n and i = n, j = n in the cube Ck
i,j, 1 ≤ i, j, k ≤ n.

In Chapter 5, we study some conditions on the function F from Fn
2 to Fn

2 defined
by

F(x) = x3 + Trn
1 (x)L(x),

where L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n such that F is an APN function. We prove a
non-existence result by using Kloosterman sums:

Theorem 5.4. Let F be a function from F2n to F2n defined as

F(x) = x3 + Trn
1 (x)x.

The function F is not an APN function for n ≥ 3.

Yu, Wang and Li have used their approach for the construction of quadratic
APN functions. We show that their approach can be extended to search for non-
quadratic APN functions, in particular, if we add Trn

1 (x)Q(x) to quadratic APN
functions F, where Q(x) is an arbitrary polynomial then we could get a non-
quadratic APN functions. This approach works for any APN functions from Fn

2
to Fn

2 .
We also propose another new method for the construction of APN functions
from Fn

2 to Fn
2 . This method is based on the specific distribution of n − 2 di-

mensional subspaces of Fn
2 . Up to our knowledge, this construction method is

completely new.

Theorem 5.13. Let F be an APN function from Fn
2 to Fn

2 . Let U be a n− 2 dimensional
subspace of Fn

2 and U0 = U, U1 = U + v1, U2 = U + v2 and U3 = U + v3 are the



6 OVERVIEW

four cosets of U such that Fn
2 = U0 ∪U1 ∪U2 ∪U3, where v1, v2, v3 ∈ Fn

2 . Let F
′

be
the function from Fn

2 to Fn
2 defined as

F
′
(x) =



F(x) + a0, for x ∈ U0,

F(x) + a1, for x ∈ U1,

F(x) + a2, for x ∈ U2,

F(x) + a3, for x ∈ U3,

with ai ∈ Fn
2 , i = 0, . . . , 3. The function F

′
is an APN function if and only if

F(x1) + F(x2) + F(x3) + F(x4) 6= a0 + a1 + a2 + a3

for all 2-dimensional affine subspaces {x1, x2, x3, x4} of Fn
2 with | {x1, x2, x3, x4}∩Ui |= 1

for all i.

We constructed several examples of APN functions by using Theorem 5.13.
In Chapter 6, we study the Göloğlu infinite family of APN functions. We prove
that Göloğlu family of APN functions is extended affine equivalent to the Gold
family of APN functions.

Theorem 6.2. Let n = 2m = 4t, where m is an even positive integer and t > 0. Let
Trn

m be the trace function from F2n to F2m : Trn
m(x) = x + xq, where q = 2m. The APN

function
F(x) = x2k+1 + (Trn

m(x))2k+1

is EA equivalent to the Gold APN function

G(x) = xq2/2k+q

with gcd(k, n) = 1.

We find a computational error in MAGMA which occurs during the testing
of code equivalence between the Göloğlu and the Gold family of APN functions.
Finally, it should be noted that the following material from this thesis has either
been presented or is in preparation to be submitted for publication to interna-
tional journals:

� Section 2.2, 2.6: R. Arshad and A. Pott. Almost perfect nonlinear function,
KOLLOQUIUM ÜBER KOMBINATORIK, Paderborn, Germany, 24-25 Novem-
ber, 2017.

� Section 2.2, 2.6, 2.7: R. Arshad and A. Pott. On the variations of the
Maiorana-McFarland and the (partial) spread class of Boolean functions,
The 3rd International Workshop on Boolean Functions and their Applica-
tions (BFA), Leon, Norway 17-22 June, 2018.



OVERVIEW 7

� Section 4.5: R. Arshad and A. Pott. On the CCZ-invariants of Yu, Wang
and Li quadratic APN functions. In preparation.

� Section 5.4: R. Arshad and A. Pott. A new construction method for almost
perfect nonlinear function. In preparation.





Chapter 1

Preliminaries

Let Fn
2 be the n dimensional vector space defined over the finite field F2. In

this thesis, we are interested in the functions from Fn
2 to Fm

2 with m ≤ n. These
functions can be viewed as vectorial Boolean functions. If m = 1, they can be
viewed as Boolean functions from Fn

2 to F2. In Section 1.1, we give necessary
notions related to Boolean functions. In Section 1.2, we study the notions re-
lated to vectorial Boolean functions. Then, we discuss Almost Perfect Nonlinear
(APN) and Almost Bent (AB) functions in Section 1.3. In Section 1.4, we study
the equivalence between vectorial Boolean functions. Finally, we discuss infinite
families of APN and AB functions in Section 1.5.

1.1 Boolean functions

A Boolean function f in n variables is a function from Fn
2 to F2. In cryptography

and coding theory, we normally use two different representations of n variable
Boolean functions. The first representation is a truth table, that is,

f = [ f (0, 0, . . . , 0), f (1, 0, . . . , 0) . . . , f (0, 1, . . . , 1), f (1, 1, . . . , 1)] .

The second representation is by means of a polynomial in F2[x1, . . . , xn]/(x2
1 + x1,

. . . , x2
n + xn). This representation is called Algebraic Normal Form (ANF) :

f (x1, . . . , xn) = ∑
u∈Fn

2

au

(
n

∏
j=1

x
uj
j

)
,

where au ∈ F2 and xu = ∏n
j=1 x

uj
j is called a monomial. The algebraic degree of f ,

denoted by deg( f ), is the maximal value of wt(u) such that au 6= 0, where wt(u)
is the number of its nonzero coordinates.
A Boolean function f is called affine if deg( f ) ≤ 1 and f is called linear if
deg( f ) ≤ 1 and f (0) = 0. Boolean functions of algebraic degree 2 are called
quadratic functions. Quadratic Boolean functions without linear and constant



10 Preliminaries

terms are called quadratic homogeneous Boolean functions. Every quadratic ho-
mogeneous Boolean function can be described in terms of a quadratic form.
Here, a quadratic form over F2 is a polynomial in F2[x1, . . . , xn]/(x2

1 + x1, . . . , x2
n + xn)

such that all of its nonzero terms have degree 2. We can describe the quadratic
form as

f (x1, . . . , xn) = ∑
1≤i<j≤n

aijxixj, ai,j ∈ F2.

We can associate with f an upper triangular n× n matrix A whose (i, j) entries
are denoted by aij and whose diagonal entries are zero. The matrix A is called
the coefficient matrix of f . The function f can be written as

f (x1, . . . , xn) = (x1, . . . , xn)Q(x1, . . . , xn)
T,

here (x1, . . . , xn) is a row vector in Fn
2 .

Example 1.1. Let f be a quadratic homogeneous Boolean function from F4
2 to F2

defined by
f (x1, x2, x3, x4) = x1x2 + x3x4.

The coefficient matrix of f is

Q =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The support of f is defined as the set {x ∈ Fn
2 | f (x) 6= 0}. The Hamming

weight wt( f ) of a Boolean function f is the size of the support of f . A Boolean
function f is called balanced if its truth table contains the same number of zeros
and ones, that is, if wt( f ) = 2n−1. The Hamming distance d( f , g) between two
Boolean functions f and g is the size of the support of f + g.
The minimum Hamming distance between a Boolean function f and all affine
Boolean functions is called the nonlinearity of f and denoted by NL( f ). The non-
linearity of a Boolean function measures the level of confusion created by the
Boolean function in a cryptographic system. In order to provide confusion in a
cryptographic system, the cryptographic functions must be at large Hamming
distance to all affine functions. It means the nonlinearity of a Boolean function
must be high enough to resist the linear attacks which were introduced by Mat-
sui [2].
The Walsh transform W f : Fn

2 → Z of a Boolean function f is defined as

W f (a) = ∑
x∈Fn

2

(−1) f (x)+a·x,

where a · x = ∑n
i=1 aixi is the usual inner product in Fn

2 . For any element a ∈ Fn
2 ,

the value W f (a) is called the Walsh coefficient of f and the multi set Λ f = {∗W f (a) :
a ∈ Fn

2 ∗} is called the Walsh spectrum of f (the notion {*. . . *} indicates multisets).



1.1. Boolean functions 11

Table 1.1: Truth table of f (x1, x2) = x1x2

x1, x2 f (x1, x2)

0, 0 0
0, 1 0
1, 0 0
1, 1 1

Example 1.2. Let f : F2
2 → F2 be a Boolean function defined by

f (x1, x2) = x1x2.

Table 1.1 is the truth table of f . From the definition of the Walsh transform, we
have
W f (0, 0) = (−1)0+(0,0)·(0,0)+(−1)0+(0,0)·(0,1)+(−1)0+(0,0)·(1,0)+(−1)1+(0,0)·(1,1) = 2.
Similarly, W f (0, 1) = 2, W f (1, 0) = 2, W f (1, 1) = −2. Then

Λ f = {∗ 2, 2, 2,−2 ∗}.

Proposition 1.3. For a Boolean function f : Fn
2 → F2,

W f (0) = 2n − 2wt( f ).

Proof. From the definition of the Walsh transform, we have

W f (a) = ∑
x∈Fn

2

(−1) f (x)+a·x, a ∈ Fn
2 .

Now, consider a = 0, we have

W f (0) = ∑
x∈Fn

2

(−1) f (x)

= #{x | f (x) = 0} − #{x | f (x) = 1}
= (2n − #{x | f (x) = 1})− #{x | f (x) = 1}
= 2n − 2#{x | f (x) = 1}
= 2n − 2wt( f ).

From Proposition 1.3, one can see that for any Boolean function f and any
element a ∈ Fn

2 , we have

W f (a) = 2n − 2wt( f (x) + a · x) = 2n − 2d( f (x), a · x).



12 Preliminaries

Then

d( f (x), a · x) = 2n−1 − 1
2

W f (a).

Similarly,
W f+1(a) = ∑

x∈Fn
2

(−1) f (x)+1+a·x = (−1)W f (a)

and

d( f (x) + 1, a · x) = 2n−1 − 1
2

W f+1(a) = 2n−1 +
1
2

W f (a).

Now, we can define the relationship between the nonlinearity of a Boolean func-
tion f and the values of its Walsh transform. We have the following Proposition.

Proposition 1.4. [8] Let f be a Boolean function from Fn
2 to F2, the nonlinearity of f is

NL( f ) = 2n−1 − 1
2

max
a∈Fn

2

|W f (a) | .

The following are well known facts about the Walsh transform of a Boolean
function f .

Proposition 1.5. For any a ∈ Fn
2 , we have

∑
x∈Fn

2

(−1)a·x =

{
0 if a 6= 0,

2n if a = 0.

Proof. Assume that a = 0, then a · x = 0, so

∑
x∈Fn

2

(−1)a·x = ∑
x∈Fn

2

1 = 2n.

Assume that a 6= 0, consider the sets H1 = {x ∈ Fn
2 | a · x = 0} and

H2 = {x ∈ Fn
2 | a · x = 1}. Obviously, H1 and H2 form a partition of Fn

2 .
Moreover, for any x ∈ H1, we have (−1)a·x = 1, and for any y ∈ H2, we have
(−1)a·y = −1. Since the cardinalities of H1, H2 are the same, that is, 2n−1, we
have

∑
x∈Fn

2

(−1)a·x = 2n−1 − 2n−1 = 0.

Theorem 1.6 (Parseval’s Identity). Let f : Fn
2 → F2 be a Boolean function. Then

∑
a∈Fn

2

W2
f (a) = 22n.



1.1. Boolean functions 13

Proof. From the definition of the Walsh transform, we know that

∑
a∈Fn

2

W f (a) = ∑
a∈Fn

2

 ∑
x∈Fn

2

(−1) f (x)+a·x

 ,

hence

∑
a∈Fn

2

W2
f (a) = ∑

a∈Fn
2

 ∑
x∈Fn

2

(−1) f (x)+a·x ∑
y∈Fn

2

(−1) f (y)+a·y


= ∑

x,y∈Fn
2

(−1) f (x)+ f (y) ∑
a∈Fn

2

(−1)a·(x+y)

= 22n,

since ∑a∈Fn
2
(−1)a·(x+y) equals 0 when x 6= y and equals 2n otherwise.

The Parseval’s identity enables us to derive upper and lower bounds on the
maximum values attained by the Walsh transform of a Boolean function.

Corollary 1.7. For any Boolean function f : Fn
2 → F2 and for any value of a ∈ Fn

2 , we
have

2n/2 ≤ max
a∈Fn

2

|W f (a) |≤ 2n

Proof. If
max
a∈Fn

2

|W f (a) |< 2
n
2

then

∑
a∈Fn

2

|W f (a) |2 < 22n

which contradicts the Theorem 1.6. Therefore, we must have

max
a∈Fn

2

|W f (a) |≥ 2n/2.

On the other hand, we have

∑
a∈Fn

2

W2
f (a) = 22n,

therefore, it is clear that the maximal value of |W f (a) | is 2n.

Parsevals’s identity gives the upper bound on the nonlinearity of a Boolean
function f . We have the following Proposition.

Proposition 1.8. [8] Let f be a Boolean function from Fn
2 to F2, then the nonlinearity

of f is bounded by 2n−1 − 2
n
2−1, that is

NL( f ) ≤ 2n−1 − 2
n
2−1.



14 Preliminaries

This bound is valid for every Boolean function and it is tight for every even
value of n. For odd values of n, the challenge is to get Boolean functions having
nonlinearity strictly greater than 2n−1 − 2

n−1
2 . In 1972 [9], it was shown that for

n = 5, the maximum nonlinearity of n variable Boolean function is 12. In 1980,
the case for n = 7 is solved and it was shown that the maximum nonlinearity
of n variable Boolean function is 56. In 1983, Patterson and Wiedemann [10]
showed that one can construct a 15 variable Boolean function f with nonlinearity
16276. In 2006 [11], the 9 variable Boolean function having nonlinearity 241
was identified and later it was improved to 242 in 2010 [12]. Recently, Kai-
Uwe Schmidt [13] solved a conjecture of Patterson and Wiedemann [10] on the
nonlinearity of Boolean functions from 1983.

The functions which achieve the nonlinearity bound with equality are called
bent functions [14]. Bent functions exist with n even because 2n−1− 2

n
2−1 must be

an integer. In other words, a function f from Fn
2 to F2 is called bent if and only

if |W f (a) |= 2n/2, for all a ∈ Fn
2 .

Example 1.9. In Example 1.2, we have the Boolean function f from F2
2 to F2

defined as
f (x1, x2) = x1x2.

Note that
Λ f = {∗ 2, 2, 2,−2 ∗},

hence the function f is a bent function.

The derivative of a Boolean function f with respect to a ∈ Fn
2 is defined as

Da f (x) = f (x + a) + f (x).

The derivative of a Boolean function may be used to determine many crypto-
graphic properties, for instance, differential attack resistance [1]. Other crypto-
graphic properties determined by using the derivative are the strict avalanche
criteria (SAC) [15] and propagation criterion (PC) [16]. SAC and PC evaluates
some kind of diffusion of Boolean functions.
If the derivative of Boolean function Da f (x) is constant at some point a ∈ Fn

2 ,
then a is called a linear structure of f . The set of all linear structures of f is a sub-
space of Fn

2 [17]. Nonzero linear structures weakens the cryptographic property
of Boolean functions [18].
Bent functions can also be described by using the derivative. We have the fol-
lowing characterization of bent functions.

Theorem 1.10. [8] Let f be a Boolean function from Fn
2 to F2. The following statements

are equivalent:

(i) f is bent.



1.2. Vectorial Boolean functions 15

(ii) W f (a) = ±2n/2 for all a ∈ Fn
2 .

(iii) Da f (x) = f (x + a) + f (x) is balanced for any a 6= 0.

The function f is balanced if and only if W f (0) = 0. From the definition of
bent function, the Walsh coefficients of bent function are ±2n/2, for all a ∈ Fn

2 .
Therefore, bent functions are not balanced. In any cryptographic systems, we
need Boolean functions which satisfy certain cryptographic properties, for in-
stance, nonlinearity and balancedness. The bent functions are highly nonlinear
but they are not balanced. So, we cannot use them directly in any cryptographic
system.
A Boolean function f in n variables is called plateaued (or t-plateaued) if

W f (a) ∈ {0,±2
n+t

2 }

for some fixed t, 0 ≤ t ≤ n with n + t even and for any a ∈ Fn
2 . Plateaued

functions include three significant classes of Boolean functions: bent functions,
near-bent functions and semi-bent functions. Bent functions are 0-plateaued func-
tions. Semi-bent functions are 1-plateaued functions. Near-bent functions are
2-plateaued functions.

1.2 Vectorial Boolean functions

Let n and m be positive integers. A function F from Fn
2 to Fm

2 is often called an
(n, m) function or vectorial Boolean function. Let F be a function from Fn

2 to Fm
2 ,

then the Boolean functions fi : Fn
2 → F2, i = 1, . . . , m defined by

F(x1, . . . , xn) = ( f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

are called coordinate functions of F. The component functions of F are c · F, c ∈ Fm
2 .

The component functions of F are the nonzero linear combinations of the coor-
dinate functions of F.
The notion of the algebraic normal form of Boolean functions can be extended
to vectorial Boolean functions. Let F be a function from Fn

2 to Fm
2 . Then, F can

be uniquely represented as

F(x1, . . . , xn) = ∑
u∈Fn

2

au

(
n

∏
j=1

x
uj
j

)
,

where au ∈ Fm
2 . This representation is called algebraic normal form (ANF) of

F. The algebraic degree of F is equal to the maximum algebraic degree of the
coordinate functions of F, see [19].
If n = m, there is another representation of the function F from Fn

2 to Fm
2 . If we



16 Preliminaries

identify Fn
2 with the finite field F2n , then the function F from F2n to F2n can be

uniquely represented as a univariate polynomial over F2n :

F(x) =
2n−1

∑
i=0

aixi, ai ∈ F2n .

In this representation, the component functions of F can be expressed as Trn
1(αF),

where α ∈ F2n , α 6= 0 and Trn
1(x) = ∑n−1

i=0 x2i
is the trace function from F2n to F2.

For any integer k, 0 ≤ k ≤ 2n − 1, its binary expansion is ∑n−1
s=0 2sks, ks ∈ {0, 1}.

The number w2(k) of nonzero coefficients ks is called the 2-weight of k. We have
the following proposition about the algebraic degree of F.

Proposition 1.11. [20] Let F be a function from F2n to F2n defined as

F(x) =
2n−1

∑
i=0

aixi, ai ∈ F2n .

The algebraic degree of F is equal to the maximum 2-weight of the exponent i of the
polynomial F(x) such that ai 6= 0.

A linearized polynomial F from F2n to F2n is defined as

F(x) =
n−1

∑
i=0

aix2i
, ai ∈ F2n .

In cryptography, the balancedness of a vectorial Boolean function plays an im-
portant role. A function F from Fn

2 to Fm
2 is called balanced if it takes every value

of Fm
2 equal number i.e, 2n−m of times. Obviously, the balanced functions from

Fn
2 to Fn

2 are the permutations of Fn
2 . It is proved in [19] that a function F from Fn

2
to Fn

2 is balanced if and only if all nonzero linear combinations of the coordinate
functions of F are balanced, that is, c · F is balanced for every nonzero c ∈ Fn

2 .
Let F be a function from Fn

2 to Fm
2 . The function WF : Fn

2 ×Fm
2 → Z defined by

WF(a, b) = ∑
x∈Fn

2

(−1)b·F(x)+a·x, a ∈ Fn
2 , b ∈ Fm

2

is called the Walsh transform of the function F. For any element a ∈ Fn
2 , b ∈ Fm

2 ,
the value WF(a, b) is called the Walsh coefficient of F and the set

ΛF = {∗ WF(a, b) : a ∈ Fn
2 , b ∈ Fm

2 , b 6= 0 ∗}

is called the Walsh spectrum of F. We define the extended Walsh spectrum of F as

Λ(F) = {∗ |WF(a, b) |: a ∈ Fn
2 , b ∈ Fm

2 , b 6= 0 ∗}.

Nyberg [21] generalized the notion of nonlinearity of Boolean functions to the
notion of nonlinearity of functions from Fn

2 to Fm
2 . This was further studied by



1.2. Vectorial Boolean functions 17

Chabaud and Vaudenay [22]. The nonlinearity NL(F) of a function F from Fn
2

to Fm
2 is the minimum nonlinearity of all the component functions b · F(x) with

b 6= 0 of F.
In other words, NL(F) equals the minimum Hamming distance between all com-
ponent functions of F and all affine Boolean functions in n variables. The linear
cryptanalysis, introduced by Matsui [2], is successful on those functions which
have small value of nonlinearity.
From the equality relating the nonlinearity of a Boolean function with maximum
absolute value of the Walsh transform, we obtain the nonlinearity of the vectorial
Boolean functions.

Proposition 1.12. [19] Let F be a vectorial Boolean function from Fn
2 to Fm

2 , then the
nonlinearity of F is

NL(F) = 2n−1 − 1
2

max
a∈Fn

2 , b∈Fm
2

b 6=0

|WF(a, b) | .

We have discussed that the nonlinearity bound is valid for every n variable
Boolean function. It is also valid for every vectorial Boolean function from Fn

2 to
Fm

2 .

Proposition 1.13. [19] Let F be a vectorial Boolean function from Fn
2 to Fm

2 , the non-
linearity of F is bounded by 2n−1 − 2

n
2−1, that is

NL(F) ≤ 2n−1 − 2
n
2−1.

This bound is called universal bound and the functions which achieve this
bound have optimal nonlinearity and they are called vectorial bent functions.

Theorem 1.14. [19] Let F be a function from Fn
2 to Fm

2 . The following statements are
equivalent:

(i) F is a vectorial bent function.

(ii) For any nonzero c ∈ Fm
2 , the Boolean function c · F is bent.

(iii) For any nonzero a ∈ Fn
2 , F(x + a) + F(x) is balanced.

(iv) ΛF = {±2n/2}.

A function F from Fn
2 to Fm

2 is called perfect nonlinear (PN) if for any nonzero
a ∈ Fn

2 , the function F(x + a) + F(x) is balanced. It follows from Theorem 1.14
that a function F from Fn

2 to Fm
2 is a vectorial bent function if and only if it is a

perfect nonlinear function.
Nyberg [21] gave a necessary condition on the existence of such a bent (perfect
nonlinear) function from Fn

2 to Fm
2 .



18 Preliminaries

Theorem 1.15 (Nyberg Bound). Let F be a bent function from Fn
2 to Fm

2 , then
m ≤ n/2.

Since vectorial bent functions do not exist for m > n
2 , it is a natural question

whether a better upper bound than the universal bound can be found. Such a
bound is given by Sidelnikov in the context of sequences and is further studied
by Chabaud and Vaudenay [22] in the context of power functions. We call this
bound the Sidelnikov-Chabaud-Vaudenay bound.

Theorem 1.16. [19, 22] Let n and m are positive integers with m ≥ n− 1. Let F be a
function from Fn

2 to Fm
2 . Then

NL(F) ≤ 2n−1 − 1
2

√
2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1)22n .

Proof. We know that

NL(F) = 2n−1 − 1
2

max
a∈Fn

2 , b∈Fm
2

b 6=0

|WF(a, b) | .

From Theorem 4 [22], we have

max
a∈Fn

2 , b∈Fm
2

b 6=0

(WF(a, b))2 ≥
∑a∈Fn

2 , b∈Fm
2

b 6=0
(WF(a, b))4

∑a∈Fn
2 , b∈Fm

2
b 6=0

(WF(a, b))2 . (1.1)

Theorem 1.6 states that, for every b ∈ Fm
2 , we have

∑
a∈Fn

2

(WF(a, b))2 = 22n. (1.2)

Now, we consider the case

∑
a∈Fn

2 , b∈Fm
2

(WF(a, b))4 = ∑
a∈Fn

2 , b∈Fm
2

 ∑
x,y,z,w∈Fn

2

(−1)a·(x+y+z+w)+b·(F(x)+F(y)+F(z)+F(w))

 ,

(1.3)
hence,

∑
a∈Fn

2 ,b∈Fm
2

(WF(a, b))4 = ∑
x,y,z,w∈Fn

2

 ∑
a∈Fn

2

(−1)a·(x+y+z+w)

 ∑
b∈Fm

2

(−1)b·(F(x)+F(y)+F(z)+F(w))

 .

(1.4)
By using Proposition 1.5, we have

∑
a∈Fn

2 , b∈Fm
2

(WF(a, b))4 = 2n+mΓ,



1.3. APN and AB functions 19

where

Γ = #
{

(x, y, z, w) ∈ (Fn
2)

4 |
{

x + y + z + w = 0
F(x) + F(y) + F(z) + F(w) = 0

}
.

This implies that

Γ = #
{
(x, y, z) ∈ (Fn

2)
3 | F(x) + F(y) + F(z) + F(x + y + z) = 0

}
.

So,

∑
a∈Fn

2 , b∈Fm
2

(WF(a, b))4 ≥ 2n+m
(

#
{
(x, y, z) ∈ (Fn

2)
3 | x = y or x = z or y = z

})
.

Clearly, we have
#
{
(x, y, z) ∈ (Fn

2)
3 | x = y or x = z or y = z

}
= 3(# {(x, x, y) | x, y ∈ Fn

2})−
2(# {(x, x, x) | x ∈ Fn

2}) = 3 · 22n − 2 · 2n.
Hence,

∑
a∈Fn

2 , b∈Fm
2

b 6=0

(WF(a, b))4 ≥ 3 · 22n − 2 · 2n − 24n, (1.5)

we have used WF(a, 0) = 2n, if a = 0 and WF(a, 0) = 0, if a 6= 0.
Now, we substitute equations (1.2) and (1.5) into equation (1.1) to get

max
a∈Fn

2 , b∈Fm
2

b 6=0

(WF(a, b))2 ≥ 2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1)22n ,

which implies that

NL(F) ≤ 2n−1 − 1
2

√
2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1)22n .

The condition m ≥ n− 1 in Theorem 1.16 makes the expression located under
the square root non-negative. Note that for m = n− 1, the bound of the Theorem
1.16 coincides with the universal bound. For m ≥ n, it strictly improves the
universal bound and it is tight only if n = m with n odd. We will consider this
case in detail in the Section 1.3.

1.3 APN and AB functions

We have observed that the universal bound is attainable for functions from Fn
2

to Fm
2 with n even and m ≤ n/2. The functions F from Fn

2 to Fn
2 which achieve

the bound of Theorem 1.16 with equality, that is,

NL(F) = 2n−1 − 2
n−1

2



20 Preliminaries

are called almost bent (AB) function. Obviously, AB functions exist for n odd
only.
Biham and Shamir [1] has proposed differential cryptanalysis on the DES block
cipher. Differential cryptanalysis studies how the differences of input affect the
resultant differences at the output. The following functions provide the best
resistance to differential cryptanalysis.
Let F be a function from Fn

2 to Fn
2 . Let δF(a, b) denote the number of solutions

of the equation F(x + a) + F(x) = b for any element a, b ∈ Fn
2 , that is,

δF(a, b) = #{x ∈ Fn
2 : F(x + a) + F(x) = b}

and we call the set

∆F = {∗ δF(a, b) : a, b ∈ Fn
2 , a 6= 0 ∗}

the differential spectrum of the function F. We can also describe the differential
spectrum of F with the (2n − 1)× 2n matrix

∆(F) = (δF(a, b))a, b∈Fn
2 ,

a 6=0

which is called the table of differences of F.
For any function F from Fn

2 to Fn
2 , we have

max
a, b∈Fn

2 ,
a 6=0

δF(a, b) ≥ 2.

Indeed, for any a, b ∈ Fn
2 , the number δF(a, b) is even since if x0 is the solution of

F(x0 + a) + F(x0) = b, then x0 + a is a solution too. If δF(a, b) = 2, the function
F is called an almost perfect nonlinear (APN) function.
APN functions provide the best resistance to differential attacks. If the value of
δF(a, b) is small then the resistance of the function F, when used as an S-box in
a cipher to the differential attack is high. We have the following proposition.

Proposition 1.17. A function F from Fn
2 to Fn

2 is APN if and only if one of the following
conditions are satisfied:

(i) ∆F = {0, 2}.

(ii) For every a, b ∈ Fn
2 with a 6= 0, the system{

x + y = a
F(x) + F(y) = b

has 0 or 2 solutions.

(iii) For any a ∈ Fn
2 , a 6= 0, the mapping F(x + a) + F(x) is a two-to-one mapping.



1.4. Equivalence of functions 21

Proof. The statements of the above proposition are obvious from the definition
of APN functions.

The APN property is related to 2-dimensional affine subspaces of Fn
2 . Let

A(Fn
2) be the set of all 2-dimensional affine subspaces in Fn

2 . It means that
A(Fn

2) consists of the sets {t, u, v, w} of four pairwise different vectors with
t + u + v + w = 0.

Theorem 1.18. [23, 24] Let F be a function from Fn
2 to Fn

2 . Then F is APN if and only
if for all {t, u, v, w} ∈ A(Fn

2), it holds that

F(t) + F(u) + F(v) + F(w) 6= 0.

According to Chabaud-Vaudenay proof of the Sidelnikov-Chabaud-Vaudenay
bound, we have the following proposition.

Proposition 1.19. [22] Let F be an AB function from F2n to F2n , then F is an APN
function.

Remark 1.20. The converse of the Proposition 1.19 is not true. Not every APN
function is an AB function. We have APN functions for odd values of n but they
are not AB functions. We will dicuss them in Section 1.5. There are certain APN
functions which are also AB functions.

We have the following proposition.

Proposition 1.21. [20] Let F be a quadratic APN function from F2n to F2n with n odd,
then F is an AB function.

A function F from Fn
2 to Fn

2 is called crooked function if the sets {F(x)+ F(x+ a)
| x ∈ Fn

2} are (affine) hyperplanes for any nonzero a ∈ Fn
2 .

Now, we discuss the equivalence of vectorial Boolean functions.

1.4 Equivalence of functions

Two vectorial Boolean functions are said to be equivalent if one vectorial Boolean
function can be obtained from the other vectorial Boolean function under some
simple transformation which does not change APN and AB properties.
There are mainly three notions of equivalence: affine equivalence, extented affine
equivalence (EA) and Carlet-Charpin-Zinoviev (CCZ) equivalence respectively.
Let F and F

′
be two functions from Fn

2 to Fn
2 . F and F

′
are called affine equivalent

(or linear equivalent) if F
′
= A1 ◦ F ◦ A2, where A1 and A2 are affine (respectively

linear) permutations of Fn
2 .

The functions F and F
′

are called extended affine equivalent (EA-equivalent) if
F
′
= A1 ◦ F ◦ A2 + A, where A1 and A2 are affine permutations of Fn

2 and A is



22 Preliminaries

any function from Fn
2 to Fn

2 which is affine or constant.
Functions F and F

′
are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)

if their graphs are affine equivalent, that means there exists an affine permuta-
tion L of Fn

2 × Fn
2 such that L(GF) = GF′ , where GF = {(x, F(x)) | x ∈ Fn

2} and
GF′ = {(x, F

′
(x)) | x ∈ Fn

2}. Now, we discuss CCZ-equivalence in detail.
Let F and F

′
be vectorial Boolean functions from Fn

2 to Fn
2 which are CCZ-

equivalent. Then there exist a linear permutation L from Fn
2 × Fn

2 to Fn
2 × Fn

2
of the form L = (L1, L2), where L1 and L2 are two linear functions from Fn

2 ×Fn
2

to Fn
2 such that L(GF) = GF′ . We observe that

L(GF) = L(x, F(x)) = (L1(x, F(x)), L2(x, F(x))).

We define two functions F1 and F2 as

F1(x) = L1(x, F(x)) (1.6)

and
F2(x) = L2(x, F(x)). (1.7)

So, we can write

L(GF) = L(x, F(x)) = {(F1(x), F2(x)) : x ∈ Fn
2}.

For a given linear permutation of L, the set L(GF) is the graph of a function
if and only if the function F1 is a permutation. Define F

′
= F2 ◦ F−1

1 , we have
L(GF) = GF′ .
The equivalence relations defined above are related to each other. Linear equiv-
alence is a particular case of affine equivalence and affine equivalence is a par-
ticular case of EA-equivalence.
Let F and F

′
be the EA-equivalent functions then ∆F and ΛF is equal to ∆F′ and

ΛF′ respectively. If F is a permutation then ∆F is equal to ∆F−1 and ΛF is equal
to ΛF−1 .
This means if we have an APN function F (respectively AB function) and F

′
is

EA-equivalent to either F or F−1 (if F is a permutation), then F
′

is also an APN
function (respectively AB function). Carlet, Charpin and Zinoviev [20] showed
that EA-equivalence is a particular case of CCZ-equivalence and any permuta-
tion F from Fn

2 to Fn
2 is CCZ-equivalent to its inverse F−1 from Fn

2 to Fn
2 .

The algebraic degree of a function F (if it is not affine) from Fn
2 to Fn

2 is EA-
invariant but, in general, it is not preserved by CCZ-equivalence. The composi-
tion by the inverse of F1 modifies in general the algebraic degree of F

′
except for

the case when L1(x, y) depends only on x. This corresponds to EA-equivalence
of F and F

′
.

It was proven in [25] that CCZ-equivalence is more general than EA-equivalence.
However, there are some particular cases of functions F from Fn

2 to Fm
2 for



1.4. Equivalence of functions 23

which CCZ-equivalence can be reduced to EA-equivalence. For instance, CCZ-
equivalence coincides with EA-equivalence for all Boolean functions [26] and
vectorial bent functions. CCZ-equivalence also coincides with EA-equivalence
for two quadratic APN functions (conjectured by Edel, proven by Yoshiara [27]).
There are some properties of vectorial Boolean functions which are invariant
under CCZ-equivalence, for instance, the Walsh spectrum.

Proposition 1.22. [25] Let F and F
′

be the CCZ-equivalent functions from Fn
2 to Fn

2 .
Then ΛF = ΛF′ .

Proof. Let F and F
′

be CCZ-equivalent functions, then F
′
= F2 ◦ F−1

1 for certain
linear permutation L = (L1, L2), where F1, F2 are defined by equation (1.6) and
(1.7). For any a, b ∈ Fn

2 , b 6= 0, we have

WF(a, b) = ∑
x∈Fn

2

(−1)b·F(x)+a·x

= ∑
x∈Fn

2

(−1)(a,b)·(x,F(x))

= ∑
x∈Fn

2

(−1)(a,b)·L−1(F1(x),F2(x))

= ∑
x∈Fn

2

(−1)L−1∗(a,b)·(x,F2◦F−1
1 (x))

so,
WF(a, b) = WF′ (L−1∗(a, b))

where L−1∗ is the adjoint operator of L−1 (i.e. x · L−1(y) = L−1∗(x) · y, for any
(x, y) ∈ F2n

2 : if “· ” is the usual inner product in Fn
2 , then L−1∗ is the linear

permutation whose matrix is transposed of that of L−1). Hence, ΛF′ = ΛF.

We discussed in Section 1.2 that the nonlinearity is directly related with the
Walsh spectrum. It follows that the nonlinearity is CCZ-invariant as well. For
the differential spectrum, we have a similar observation.

Proposition 1.23. [25] Let F and F
′

be CCZ-equivalent functions from Fn
2 to Fn

2 . Then

∆F′ = ∆F.

Proof. Let F and F
′

be the CCZ-equivalent functions with L(GF) = GF′ . For any
a, b ∈ Fn

2 , b 6= 0, we have

δF′ (a, b) =| {F′(x) + F
′
(x + a) = b} |

=| {(x, F
′
(x)) + (y, F

′
(y)) = (a, b)} |

=| {L(x, F(x)) + L(y, F(y)) = (a, b)} |
=| {(x, F(x)) + (y, F(y)) = L−1(a, b)} |
= δF(L−1(a, b)).



24 Preliminaries

Since L is a permutation, L−1 is a permutation as well and the differential spec-
trum of F and F

′
is equal up to a permutation. Hence, ∆F′ = ∆F.

Since the Walsh spectrum and the differential spectrum are CCZ-invariants,
the resistance of a function to linear and differential attacks is also CCZ-invariant.
In order to check the CCZ-equivalence between two arbitrary functions, a nice
connection with coding theory is given in [28]. Note that codes are just linear
subspaces in Fv

2. We will discuss about codes in detail in Section 2.1.
Two functions F and H from Fn

2 to Fn
2 are CCZ-equivalent if and only if the

binary linear codes generated by the row space of the matrices

MF =

 1
x

F(x)


(2n+1)×2n

, MH =

 1
x

H(x)


(2n+1)×2n

x ∈ Fn
2

are equivalent over F2. Here, two binary linear codes C1 and C2 (subspaces in
Fv

2) are equivalent if there is a bijective linear mapping L from Fv
2 to Fv

2 and a
permutation π of the integers {1, 2, . . . , v} such that for all x ∈ Fv

2, the following
result holds:

L(xπ(1), . . . , xπ(v)) ∈ C1 if and only if (x1, . . . , xv) ∈ C2.

In general, it seems difficult to establish CCZ-equivalence between two func-
tions F and H from Fn

2 to Fn
2 . However, there are some CCZ-invariant parameters

that can be proved to be different for two functions F and H. Before introducing
these CCZ-invariant parameters, we need to introduce the group ring notation.
Let F be an arbitrary field and (G,+) be an additively written abelian group.
The group algebra F[G] consist of all formal sums

∑
g∈G

agg, ag ∈ F.

We define a component wise addition as

∑
g∈G

agg + ∑
g∈G

bgg = ∑
g∈G

(ag + bg)g

and a multiplication

∑
g∈G

agg ∑
g∈G

bgg = ∑
g∈G

( ∑
h∈G

ahbg−h)g.

With these operations and a scalar multiplication

λ ∑
g∈G

agg = ∑
g∈G

(λag)g,

F[G] becomes an algebra, the so called group algebra. The dimension of this
algebra as a F vector space is | G | .



1.4. Equivalence of functions 25

Let κ = F2[F
n
2 ×Fm

2 ] be the so called group algebra of Fn
2 ×Fm

2 defined over F2,
consisting of the formal sums

∑
k∈Fn

2×Fm
2

akk, ak ∈ F2.

If T is a subset of Fn
2 ×Fm

2 , it can be identified with the element ∑t∈T t of κ.
The dimension of the ideal of κ generated by the graph

GF = {(x, F(x)) : x ∈ Fn
2}

of F from Fn
2 to Fm

2 is called the Γ-rank of F. The dimension of the ideal of κ

generated by the set

DF = {(a, F(x) + F(x + a)) : a, x ∈ Fn
2 , a 6= 0}

of F from Fn
2 to Fm

2 is called the ∆-rank of F.
There are certain design or incidence structures associated with APN functions
which can be used to distinguish two APN functions. We take the following
definition from [29].
An incidence structure is a triple D = (p, B, I), where p is a set of elements called
points and B is a set of elements called blocks (lines) and I ⊆ (p× B) is a binary
relation which is called incidence relation.
Any incidence structure is associated with an incidence matrix: rows and columns
of the incidence matrix are indexed by points and blocks. The (p, B) entry is 1 if
a point from p is incident with the block from B, otherwise 0.
Let F be an APN function from Fn

2 to Fn
2 with n = m. We define two incidence

structures (designs) on the point set Fn
2 ×Fn

2 . In the first case, the blocks are the
sets

GF + (u, v) = {(x + u, F(x) + v) : x ∈ Fn
2}

for u, v ∈ Fn
2 , i.e. the translates of GF. We call this design the development of GF

and denote it by dev(GF). Similarly, the design whose blocks are the translates

DF + (u, v) = {(a + u, (F(x) + F(x + a)) + v) : a, x ∈ Fn
2 , a 6= 0}

of DF is called the development of DF and denoted by dev(DF). The Γ-rank
defined earlier is nothing but the F2 rank of the incidence matrix of dev(GF).
Similarly, the ∆-rank is the F2 rank of the incidence matrix of dev(DF).
It is not difficult to determine the automorphism groups of these designs for
small values of n with the help of MAGMA [4]. There is another group associ-
ated with the designs dev(GF) (respectively dev(DF)): The sets GF (respectively
DF) are subsets of F2n

2 . Then, there may exist automorphisms ϕ of F2n
2 such

that ϕ(GF) = GF + (u, v) (respectively ϕ(DF) = DF + (u, v)) for some u, v ∈ Fn
2 .

These automorphisms form a group contained in the automorphism group of



26 Preliminaries

the designs dev(GF) (respectively dev(DF)). We call the group of these automor-
phisms the so called multiplier group M(GF) (respectively M(DF)) of dev(GF)

(respectively dev(DF)).
It is shown in [30] that M(GF) is much easier to compute with MAGMA than the
full automorphism group of the design dev(GF). M(GF) is the automorphism
group of the code generated by the row space of MF. We have the following
Theorem.

Theorem 1.24. Let F1 and F2 be the CCZ-equivalent APN functions from Fn
2 to Fn

2 .
Then ∆-rank, Γ-rank, Aut(dev(DF1)), Aut(dev(GF1)) and Aut(M(GF1)) of the func-
tion F1 are the same as ∆-rank, Γ-rank, Aut(dev(DF2)), Aut(dev(GF2)) and Aut(M(GF2))

of the function F2 respectively, where Aut is the automorphism group.

1.5 Infinite families of AB and APN functions

The first classes of functions that have been checked for almost bentness and
almost perfect nonlinearity were power functions F(x) = xd from F2n to F2n

(which are also called monomials). The checking of AB and APN properties of
an arbitrary polynomial is more difficult but it is relatively easy in case of power
function. Assume that we have a power function F from F2n to F2n defined by

F(x) = xd,

then F is APN if and only if the mapping

DaF(x) = F(x + a) + F(x)

is a two-to-one. In fact, since for any a ∈ F2n , a 6= 0

DaF(x) = F(x+ a)+ F(x) = (x+ a)d + xd = ad
((x

a
+ 1
)d

+
(x

a

)d
)
= adD1F

(x
a

)
,

DaF(x) is a two-to-one mapping if and only if D1F(x) is a two-to-one. The
function

F(x) = xd

is AB if and only if
WF(a, b) ∈ {0,±2

n+1
2 }

for a ∈ F2n and b ∈ F2n , b 6= 0. Table 1.2 gives a complete list, up to CCZ-
equivalence, of known power mappings which are APN and Table 1.3 gives a
complete list, up to CCZ-equivalence, of known power mappings which are AB.

Gold [31] considered the power functions with the exponent d = 2i + 1 in the
context of maximum linear sequences. The proof of the APN and AB properties
of the Gold functions is not difficult. We need the following lemma to prove the
APN property of Gold functions.



1.5. Infinite families of AB and APN functions 27

Table 1.2: Known APN power functions xd on F2n

Functions Exponent d Conditions References
Gold 2i + 1 gcd(i, n) = 1 [31, 32]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [33, 34]
Welch 2k + 3 n = 2k + 1 [35]
Niho 2k + 2

k
2 − 1, k even

2k + 2
3k+1

2 − 1, k odd n = 2k + 1 [36]
Inverse 22k − 1 n = 2k + 1 [32, 37]

Dobbertin 24k + 23k + 22k + 2k − 1 n = 5k [38]

Lemma 1.25. [39] For any positive integers n and m, we have

• gcd(2n − 1, 2m − 1) = 2gcd(n,m) − 1.

• gcd(2n − 1, 2m + 1) =

{
1 if n/gcd(n, m) is odd.
2gcd(n,m) + 1 if n/gcd(n, m) is even.

Theorem 1.26. Let i and n be positive integers satisfying gcd(i, n) = 1. The function
F from F2n to F2n defined by F(x) = x2i+1 is APN. If n is odd, then F is a permutation
and if n is even, then F is a three-to-one mapping on F∗2n .

Proof. As, F(x) is a quadratic function, then F(x + a) + F(x) + F(a) is a linear
function in x whose kernel has the same size as any of its translates, such as the
solution set of F(x + a) + F(x) = b in F2n , for any b ∈ F2n . We show that for
every a, b ∈ F2n , a 6= 0, the equation

F(x) + F(x + a) = b

has at most two solutions by counting the number of solutions of the equation

F(x + a) + F(x) + F(a) = 0.

This gives
F(x + a) + F(x) + F(a) = x2i

a + a2i
x.

We have

| {x : F(x + a) + F(x) + F(a) = 0} |=| {x : x2i
a = a2i

x} |

=| {0} ∪ {x : (x/a)2i−1 = 1} | .

From Lemma 1.25, it follows that gcd(2n − 1, 2i − 1) = 1. Therefore,
| {x : (x/a)2i−1 = 1} |= 1 and F is an APN function. On the other hand, from
Lemma 1.25, it follows that gcd(2i + 1, 2n− 1) = 1 if n is odd and gcd(2i + 1, 2n− 1)
= 3 if n is even. We see that F is a permutation if n is odd and F is a three-to-one
mapping on F∗2n if n is even.



28 Preliminaries

Table 1.3: Known AB power functions xd on F2n , n odd

Functions Exponent d Conditions References
Gold 2i + 1 gcd(i, n) = 1 [31, 32]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [33, 34]
Welch 2k + 3 n = 2k + 1 [35]
Niho 2k + 2

k
2 − 1, k even

2k + 2
3k+1

2 − 1, k odd n = 2k + 1 [36]

Theorem 1.27. [19] Let i and n be positive integers satisfying gcd(i, n) = 1 and n is
odd. Let F be a function from F2n to F2n defined by

F(x) = x2i+1.

Then
WF(a, b) ∈ {0,±2

n+1
2 }, a, b ∈ F2n , b 6= 0.

Proof. From Theorem 1.26, we know that if n is odd, then F is a permutation.
We only need to consider WF(a, 1), a ∈ F2n , to determine the Walsh Spectrum
of F. We have

WF(a, 1) = ∑
x∈F2n

(−1)Trn
1 (x2i+1)+Trn

1 (ax).

Squaring both sides of the above equation, we get

W2
F(a, 1) = ∑

x,y∈F2n

(−1)Trn
1 (x2i+1)+Trn

1 (y
2i+1)+Trn

1 (a(x+y))

= ∑
y∈F2n

(−1)Trn
1 (ay) ∑

x∈F2n

(−1)Trn
1 (x2i+1)+Trn

1 ((x+y)2i+1)

= ∑
y∈F2n

(−1)Trn
1 (y

2i+1)+Trn
1 (ay) ∑

x∈F2n

(−1)Trn
1 (x2i

y+xy2i
)

= ∑
y∈F2n

(−1)Trn
1 (y

2i+1)+Trn
1 (ay) ∑

x∈F2n

(−1)Trn
1 ((y

2i
+y2−i

)x)

= 2m ∑
y∈F2

(−1)Trn
1 (y

2i+1)+Trn
1 (ay).

Since y2i
+ y2−i

= 0 means y22i−1 = 1 and y2gcd(2i,n)
= 1, we have y ∈ F2. The

function y2i+1 is linear on F2, hence

Trn
1 (y

2i+1 + ay) = Trn
1 (y(1 + a)) = yTrn

1 (1 + a)).

Since n is odd, it follows that

W2
F(a, 1) =

{
2n+1 if Trn

1 (1 + a) = 0

0 otherwise
=

{
2n+1 if Trn

1 (a) = 1

0 otherwise



1.5. Infinite families of AB and APN functions 29

Table 1.4: Two APN binomials

Dimension n Polynomial Conditions

10 x3 + βx36 β ∈ {ωF25} ∪ {ω2F25}
where ω ∈ F210 has order 3.

12 x3 + βx528 The order of β is a multiple of 45 and divides 585
or the order of β is a multiple of 7 and divides 273

This completes the proof that if n is odd then WF(a, b) = {0,±2
n+1

2 }.

Remark 1.28. It is difficult to determine the Walsh spectrum of F(x) = x2i+1 with
gcd(i, n) > 1. Budaghyan and Pott [40] investigate the functions from Fn

2 to Fn
2 ,

where
WF(a, b) ∈ {0,±2

n+s
2 }, a, b ∈ F2n , b 6= 0

and gcd(i, n) = s.

The power functions
F(x) = x22i−2i+1

were first studied in the context of coding theory. In 1971, Kasami showed that
when gcd(i, n) = 1 and n is odd, the Walsh spectrum of F is {0,±2

n+1
2 } (this is

the result of Welch (1969) but he never published it). If n is odd and gcd(i, n) = 1,
the function F is AB function and therefore F is also APN function. For n even
and gcd(i, n) = 1, Janwa and Wilson [34] proved the APN property of F by using
methods of algebraic geometry.
Note that the Gold and Kasami power functions in Table 1.2 are the only known
exceptional APN functions [41]. Exceptional APN functions mean that the func-
tions are APN for infinite many values of n.
Welch conjectured that the power function

F(x) = x2(n−1)/2+3

is an AB function in the context of maximum length sequences. In 1968, Golomb
[42] mentioned this conjecture in his paper. In 2000, Canteaut, Charpin and
Dobbertin [43] proved this conjecture .
In 1972, Niho conjectured in his PhD thesis that the power function

F(x) = x22i+2i−1,

where 4i + 1 ≡ 0 mod n, is AB. In 1999, Dobbertin [36] proved the APN property
of Niho function. Note that the proofs of the APN property of Kasami, Welch
and Niho functions are complicated and very technical.
In 1999, Canteaut and Dobbertin found the APN power function

F(x) = x24k+23k+22k+2k−1



30 Preliminaries

with n = 5k. In 2000, Dobbertin proved its APN property by using multivariate
equation method. It is proved in the paper [44] that the Dobbertin function is
not an AB function.
Let F be the inverse mapping on F2n , i.e.

F(x) = x2n−2 =

{
1
x if x 6= 0,

0 if x = 0.

The equation x2n−2 + (x + 1)2n−2 = b has 0 and 1 as solutions if and only if
b = 1. The solutions which are different from 0 and 1, are also the solutions of
x2 + x + b−1 = 0, b 6= 0. Therefore, δF(1, b) ∈ {0, 2} for b 6= 1 and

δF(1, 1) =

{
2 if n is odd,

4 if n is even.

If we square the equation x2 + x + 1 = 0 and substitute x2 = x + 1 in it, then
we have the equation x4 = x, which is only satisfied for x ∈ F22 . The inverse
function is an APN function for odd values of n and has the differential spec-
trum ∆F = {0, 2, 4} for even values of n. This means the inverse function F
opposes a good (but not optimal) resistance against differential cryptanalysis.
The inverse APN function is not AB. It has the algebraic degree n − 1 while
the algebraic degree of any AB function is not greater than (n + 1)/2, see [20].
The Walsh coefficients of the inverse function were determined by Lachaud and
Wolfmann [45]. The nonlinearity of the inverse function is greater than or equal
to 2n−1 − 2

n
2 , when n is even [32].

Remark 1.29. It is still an open problem to find functions from F2n to F2n with n
even having nonlinearity strictly greater than 2n−1 − 2

n
2 .

It was conjectured by Dobbertin that the list of APN functions given in Table
1.2 is complete. In 2006, two examples of APN functions on F210 and F212 were
found [54] which disprove the Dobbertin conjecture. These new APN functions
are binomial and it has been shown that they are not equivalent to the known
APN functions. Around the same time, John Dillon [55] gave several new APN
functions on F26 . He also showed that his examples are pairwise inequivalent
and also inequivalent to the known power functions. So in 2006, the examples
in Table 1.4 for n = 10 and 12 and Table 1.5 with n = 6 were known. In Table
1.5, α is the root of the irreducible polynomial x6 + x4 + x3 + x + 1.
Since these "sporadic" examples have been found, many researchers tried to find
infinite families of APN functions. A first infinite family generalized the example
in dimension 12 listed in Table 1.4. Some more families have been found since
then, and they will be summarized in Table 1.6. All of these families are differ-
ent from each other in such a way that there are certain examples in each family
which are not contained in any of the other known families. New APN functions



1.5. Infinite families of AB and APN functions 31

Table 1.5: Dillon APN functions on F26

No. Polynomial, α is the root of x6 + x4 + x3 + x + 1
D. 1 x3

D. 2 x3 + α11x6 + αx9

D. 3 αx5 + x9 + α4x17 + αx18 + α4x20 + αx24 + α4x34 + αx40

D. 4 α7x3 + x5 + α3x9 + α4x10 + x17 + α6x18

D. 5 x3 + αx24 + x10

D. 6 x3 + α17(x17 + x18 + x20 + x24)

D. 7 x3 + α11x5 + α13x9 + x17 + α11x33 + x48

D. 8 α25x5 + x9 + α38x12 + α25x18 + α25x36

D. 9 α40x5 + α10x6 + α62x20 + α35x33 + α15x34 + α29x48

D. 10 α34x6 + α52x9 + α48x12 + α6x20 + α9x33 + α23x34 + α25x40

D. 11 x9 + α4(x10 + x18) + α9(x12 + x20 + x40)

D. 12 α52x3 + α47x5 + αx6 + α9x9 + α44x12 + α47x33 + α10x34 + α33x40

D. 13 α(x6 + x10 + x24 + x33) + x9 + α4x17

were also found by using the switching method [50]. The switching method was
further explored in [30] and more sporadic quadratic and nonquadratic APN
functions were discovered. We will discuss the switching method in detail in
Section 4.3.
For n ≤ 5, the classification of APN functions is complete [23]. That list contains
one "sporadic" example in addition to the known power mappings. This is a
nonquadratic APN function which is also contained in [30]. By mistake in [23],
the authors claimed that their example is quadratic.
For n = 6, the classification of quadratic APN functions is complete. There are
only 13 CCZ-inequivalent quadratic APN functions as proven in [56].
It is shown in a recent work [7] that there are more than 470 (n = 7) and more
than 8000 (n = 8) CCZ-inequivalent quadratic APN functions. Now, it is compu-
tationally intensive to check the CCZ-equivalence of new APN functions found
on F28 .
Hans Dobbertin proved that for n odd, all power APN functions are permuta-
tions. This result was also mentioned by Leander [57]. For n even, it was conjec-
tured that no APN permutation exist on Fn

2 . In 2009, Dillon [58] constructed the
first APN permutation for n = 6 and it is the only known APN permutation if n
is even.

Remark 1.30. The existence of APN permutations for even n ≥ 8 is still an open
problem and considered a big open problem in the study of APN functions.



32 Preliminaries

Table 1.6: Known infinite families of APN multinomials on F2n

Number Polynomial Conditions Reference

M.1 x2s+1 + A2t−1x2it+2rt+s
n = 3t, gcd(t, 3) = gcd(s, 3t) = 1,
t ≥ 3, i = st(mod 3), r = 3− i,
A ∈ F2n

[46]

M.2 x2s+1 + A2t−1x2it+2rt+s
n = 4t, gcd(t, 2) = gcd(s, 2t) = 1,
t ≥ 3, i = st(mod 4), r = 4− i,
A ∈ F2n

[47]

M.3
Ax2s+1 + A2m

x2m+s+2m
+

Bx2m+1 + ∑m−1
i=1 cix2m+i+2i

n = 2m, m odd, ci ∈ F2n ,
gcd(s, m) = 1, s odd, A, B ∈ F2n

primitive
[28]

M.4 Ax2n−t+2t+s
+ A2t

x2s+1 + bx2t+s+2s
n = 3t, gcd(s, 3t) = gcd(3, t) = 1,
3 | (t + s), A ∈ F2n primitive,
b ∈ F2t

[28]

M.5 A2t
x2n−t+2t+s

+ Ax2s+1 + bx2n−t+1
n = 3t, gcd(s, 3t) = gcd(3, t) = 1,
3 | (t + s), A ∈ F2n primitive,
b ∈ F2t

[48]

M.6
A2t

x2n−t+2t+s
+ Ax2s+1+

bx2n−t+1 + cA2t+1x2t+s+ss

n = 3t, gcd(s, 3t) = gcd(3, t) = 1,
3 | (t + s), A ∈ F2n primitive,
b, c ∈ F2t , bc 6= 1

[48]

M.7 x22k+2k
+ Bx2m+1 + Cx2m(22k+2k)

n = 2m, m odd, C is a (2m − 1)st
power but not a (2m − 1)(2i + 1)st
power, CB2m

+ B 6= 0
[49]

M.8
x(x2k

+ x2m
+ Cx2k+m

)+

x2k
(C2m

x2m
+ Ax2k+m

) + x(2
k+1)2m

n = 2m, gcd(n, k) = 1, C satisfies
Theorem 11, A ∈ F2n \F2m

[49]

M.9 x3 + Trn
1 (x9) [50]

M.10 x3 + A−1Trn
3 (A3x9 + A6x18) 3 | n, A 6= 0 [51]

M.11 x3 + A−1Trn
3 (A6x18 + A12x36) 3 | n, A 6= 0 [51]

M.12 Bivariate construction of Theorem 1 [52] n = 2m [52]
M.13 Bivariate construction of Theorem 9 [53] n = 4m [53]



Chapter 2

On the number of weight 4
codewords

In this chapter, we study the pattern of reduction of weight 4 codewords in
the linear code related with vectorial Boolean functions from Fn

2 to Fm
2 with

m ≤ n. In Section 2.1, we discuss the connection between vectorial Boolean
functions from Fn

2 to Fm
2 with m ≤ n and coding theory. In Section 2.2, we

compute an explicit formula to determine the number of weight 4 code words
in the linear codes of vectorial Boolean functions from Fn

2 to Fm
2 with m ≤ n.

We study the pattern of reduction of weight 4 codewords in the linear code
of AB functions, APN power functions, vectorial bent functions and the Dillon
APN permutation in Sections 2.3, 2.4, 2.9 and 2.10 respectively. In Section 2.5
and 2.8, we discuss the reduction of weight 4 codewords in the linear codes of
quadratic Boolean functions, Dobbertin APN functions and Kavut et. al. Boolean
functions respectively. We also discuss variations of the partial spread and the
Maiorana-McFarland class of Boolean functions in Section 2.6 and 2.7. We study
the reduction of weight 4 codewords in the linear code of the partial spread and
the Maiorana-McFarland class of Boolean functions.

2.1 Connection between vectorial Boolean functions
and coding theory

In this section, we discuss the connection between vectorial Boolean functions,
in particular AB and APN functions and coding theory. We have discussed in
Section 1.3 that the APN property of a vectorial Boolean function uses vector
space structure. In order to study the vector space structure of APN functions,
we need an interpretation of APN functions in terms of coding theory. First, we
discuss the basics of coding theory.
A binary linear code C of length n and dimension k is a linear subspace of Fn

2 .
Its parameters are [n, k]. The elements of the code C are called codewords. If



34 On the number of weight 4 codewords

a code C consists of only one codeword, then C is called a trivial code. i.e.,
C = {(0, . . . , 0)}. To any binary linear code, we associate its dual code

C⊥ = {x ∈ Fn
2 : c · x = 0, for all c ∈ C}.

The dual code has parameters [n, n− k]. The (Hamming) weight of any codeword
c ∈ C is denoted by wt(c). The (Hamming) distance between any two codewords
c1 and c2 of C is denoted by d(c1, c2). The number d = min{wt(c) | c ∈ C, c 6= 0}
is called the minimum distance of the binary linear code C. A binary linear code
C of length n, dimension k and minimum distance d is called an [n, k, d] code.
Let ai denote the number of codewords of C of weight i. The vector (a0, . . . , an−1)

is called the weight enumerator of C and the polynomial WC(x) = ∑n−1
i=0 aixi is

called the weight polynomial of C. Let H be an k × n matrix defined over F2.
A binary linear code C of length n is defined by the parity check matrix H if
C = {c ∈ Fn

2 | H · c = 0}.
Let h1, h2, . . . , hn denote the columns of the parity check matrix H and
v = (v1, . . . , vn) ∈ Fn

2 , then H · v equals v1h1 + v2h2 + . . . + vnhn. If there exist
v 6= 0 such that v1h1 + . . . + vnhn = 0 then hi, 1 ≤ i ≤ n are linearly dependent.
Using the above observation, we say that the minimum number of dependent
columns of H is equal to

min
v∈Fn

2 ,
v 6=0

{wt(v) | v1h1 + . . . + vnhn = 0}.

Lemma 2.1. Let H be a parity check matrix of an [n, k, d] code C. The minimum
distance d is equal to the minimum number of linearly dependent columns of H.

Proof. We know that c ∈ C if and only if H · c = 0. It follows that each codeword
with Hamming weight t corresponds to t linear dependent columns of H. We
know that the minimum weight of codewords is equal to d. Hence, d equals the
minimum number of linear dependent columns of H.

There is a connection between the Walsh coefficient of a function F from Fn
2 to

Fm
2 and the weights of codewords of C⊥F which can be described in the following

way.

Proposition 2.2. Let F be a function from Fn
2 to Fm

2 . Let C⊥F be the code generated by
the row space of the parity check matrix

HF =

[
x

F(x)

]
x∈Fn

2

of dimension (n + m)× 2n. Note that CF = {x ∈ F2n

2 : HF · x = 0}. The code words
in C⊥F are the vectors denoted by Ca,b = a · x + b · F(x), where x ∈ Fn

2 , a ∈ Fn
2 , b ∈ Fm

2 .
The weight of Ca,b is

λa,b = 2n−1 − 1
2

WF(a, b).



2.1. Connection between vectorial Boolean functions and coding theory 35

Proof. Assume that s(x) = a · x+ b · F(x). Note that the function s(x) is actually a
linear combination of the rows of HF. Hence, the number λa,b = #{x ∈ Fn

2 | s(x) = 1}
is the weight of the codewords Ca,b in C⊥F .
As we know that

WF(a, b) = ∑
x∈Fn

2

(−1)b·F(x)+a·x, a ∈ Fn
2 , b ∈ Fm

2 , b 6= 0, (2.1)

we can write the equation (2.1) as

WF(a, b) = ∑
x∈Fn

2

(−1)s(x)

= #{x ∈ Fn
2 | s(x) = 0} − #{x ∈ Fn

2 | s(x) = 1}
= (2n − #{x ∈ Fn

2 | s(x) = 1})− {x ∈ Fn
2 | s(x) = 1}

= 2n − 2#{x ∈ Fn
2 | s(x) = 1}

= 2n − 2λa,b,

so,

λa,b = 2n−1 − 1
2

WF(a, b).

We have introduced the basics of binary linear codes. The AB and APN
properties can be described in terms of binary linear codes.

Theorem 2.3. [20] Let F be a function from Fn
2 to Fn

2 such that F(0) = 0. Let CF be
the [2n − 1, k, d] code defined by the parity check matrix of dimension 2n× 2n − 1

HF =

[
x

F(x)

]
x∈Fn

2\{0}
.

Then

(i) F is APN if and only if d = 5.

(ii) F is AB if and only if the weight of every codeword of C⊥F belongs to Ω = {2n−1,
2n−1 ± 2

n−1
2 }.

Proof. (i) Let c = (c1, . . . , c2n−1) be a binary vector. By the definition of HF, c
belong to CF if and only if

HF · c = 0.

Since HF has no zero column, it means that CF has no codewords of Hamming
weight 1. All the columns of HF are distinct vectors then CF has no codewords
of Hamming weight 2. The CF has minimum weight 3 if and only if there exist
three distinct elements, say x1, x2, x3 ∈ Fn

2 , such that

x1 + x2 + x3 = 0 and F(x1) + F(x2) + F(x3) = 0.



36 On the number of weight 4 codewords

The non-existence of codewords of weight 3 follows from the proof of The-
orem 1.18. The 2-dimensional affine subspaces of Fn

2 are the translates of 2-
dimensional linear subspaces of Fn

2 by some vector of Fn
2 and F is an APN func-

tion.
The CF has minimum weight 4 if and only if there exist four distinct elements,
say x1, x2, x3, x4 ∈ Fn

2 , such that

x1 + x2 + x3 + x4 = 0 and F(x1) + F(x2) + F(x3) + F(x4) = 0.

The non-existence of codewords of weight 4 also follows from the proof of The-
orem 1.18. So, F is APN if and only if CF has minimum distance d ≥ 5. It
is difficult to prove that d ≤ 5, we refer to the proof from original paper [59].
Hence, F is APN if and only if d = 5.
(ii) From Proposition 2.2, we know that the codewords in C⊥F are the vectors
denoted by Ca,b = a · x + b · F(x), where x ∈ Fn

2 , a, b ∈ Fn
2 . The weight of Ca,b is

denoted by

λa,b = 2n−1 − 1
2

WF(a, b).

Assume that F is AB, i.e. WF(a, b) = 0 or ± 2
n+1

2 . First consider WF(a, b) = 0, it
means that λa,b = 2n−1. Therefore, 2n−1 ∈ Ω.
Similarly, consider WF(a, b) = ±2

n+1
2 , it means that

λa,b = 2n−1 ± 2
n−1

2 ∈ Ω.

Thus, we have proved (ii).

We may extend the matrix HF by adding the vector 1 = (1, . . . , 1) as a row to
HF to obtain the matrix Hext

F . This means the row space of the matrix Hext
F con-

tains all the row vectors of the matrix HF along with one additional coordinate
0 in the beginning, and with all codewords c also c + 1. We have the following
characterization of APN functions.

Corollary 2.4. [19] Let F be a function from Fn
2 to Fn

2 with F(0) = 0. Let CF be the
[2n, k, d] code defined by the parity check matrix of dimension (2n + 1× 2n)

Hext
F =

 1
x

F(x)


x∈Fn

2

Then F is APN if and only if d = 6.

2.2 Formula for weight 4 codewords

In this section, we compute an explicit formula to determine the exact number
of weight 4 codewords in a linear code of vectorial Boolean functions from Fn

2 to



2.2. Formula for weight 4 codewords 37

Fm
2 with m ≤ n. Let F be a vectorial Boolean function from Fn

2 to Fm
2 with m ≤ n

defined by

F(x) =

 f1(x)
...

fm(x)

 ,

where f1(x), . . . , fm(x) are the coordinate functions from Fn
2 to F2. From The-

orem 1.18, we known that a function F from Fn
2 to Fn

2 is APN if and only if F
is not affine on any 2-dimensional affine subspaces of Fn

2 . This means an APN
function “wipes out” all 2-dimensional affine subspaces of Fn

2 .
Here, we use the informal term “wipes out” which means that from the given
set of all 2-dimensional affine subspaces of Fn

2 , we remove (wipe out) some par-
ticular 2-dimensional affine subspaces of Fn

2 . We will use the term “wipes out”
frequently in the subsequent section.
We are interested in the construction of APN functions from Fn

2 to Fn
2 by using

coordinate functions. This means we need to find n Boolean functions from Fn
2 to

F2 in such a way that these n Boolean functions wipe out all the 2-dimensional
affine subspaces of Fn

2 . We name this approach as coordinate functions ap-
proach.

Coordinate functions approach

In this approach, we first need to find a Boolean function f1(x) from Fn
2 to F2

and determine the 2-dimensional affine subspaces of Fn
2 which are not wiped

out by f1(x), that is,

f1(x) + f1(x + a) + f1(y) + f1(y + a) = 0.

Then, we try to find a Boolean function f2(x) from Fn
2 to F2 that wipes out

many of the 2-dimensional affine subspaces of Fn
2 which are not wiped out by

the Boolean function f1(x). We can continue in the same way and finally we
need to find a Boolean function fn(x) from Fn

2 to F2 that wipes out all the 2-
dimensional affine subspaces of Fn

2 which are not wiped out by the Boolean
functions f1(x), . . . , fn−1(x).
We can also describe the coordinate functions approach for the construction of
APN functions from Fn

2 to Fn
2 in terms of coding theory. Assume that f1(x), . . . ,

fm(x) are Boolean functions from Fn
2 to F2 with m ≤ n. We can define the

(n + m + 1)× (2n) matrix

H f1,..., fm =


1
x

f1(x)
...

fm(x)


x∈Fn

2

.



38 On the number of weight 4 codewords

Let C f1,..., fm = {x ∈ F2n

2 : H f1,..., fm · x = 0}. This is the code that consists of all
codewords (vectors) orthogonal to the rows of H f1,..., fm . In the subsequent sec-
tion, we use the word vectors instead of codewords.
Assume that {x, x + a, y, y + a} is a 2-dimensional affine subspaces of Fn

2 . The
corresponding indicator function (which is 1 for x, x + a, y, y + a and 0 other-
wise) is a vector of weight 4. The function F from Fn

2 to Fn
2 defined by

F(x) =

 f1(x)
...

fn(x)


is an APN function if and only if the minimum weight of C f1,..., fn is 6, see
Corollary 2.4. In order to construct an APN function F from Fn

2 to Fn
2 us-

ing n coordinate functions f1, . . . , fn from Fn
2 to F2, we need to look at the

pattern of reduction of the number of weight 4 vectors in the linear code of
f1, . . . , fn. A good strategy would be to find a chain of functions f1, . . . , fn

such that λ( f1, . . . , fm)/λ( f1, . . . , fm+1) is always quite large, where m ≤ n and
λ( f1, . . . , fm) is the number of weight 4 vectors in C f1,..., fm .
Note that λ(0) is the total number of 2-dimensional affine subspaces of Fn

2 . The
total number of 2-dimensional affine subspaces of Fn

2 can be calculated using
Gaussian Binomial. In general, the Gaussian Binomials are[

n
k

]
q
=

(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
.

In our case, we have q = 2, k = 2, then[
n
2

]
2
=

(2n − 1)(2n − 2)
(22 − 1)(22 − 2)

=
(2n − 1)(2n − 2)

6
.

The total number of 2-dimensional affine subspaces of Fn
2 are[

n
2

]
2
· 2n−2 =

(2n − 1)(2n − 2)
6

· 2n−2 =
23n−3 − 3 · 22n−3 + 2n−2

3
,

here, 2n−2 is the number of all possible cosets of 2-dimensional linear subspaces.
We observe that if C f1,..., fm = Cg1,...,gm , then it is possible that λ( f1, . . . , fi) 6=
λ(g1, . . . , gi) for i < m. In other words, the pattern of reduction of λ( f1, . . . , fm)

or λ(g1, . . . , gm) may depend upon the choice of the coordinate functions from
Fn

2 to F2. The number of weight 4 vectors can be computed in the following way.

Theorem 2.5. Assume that F is a function from Fn
2 to Fm

2 with m ≤ n. The number
λ( f1, . . . , fm) of weight 4 vectors in the linear code C f1,..., fm are

λ( f1, . . . , fm) =
1

24

 1
2n+m

 ∑
a∈Fn

2 , b∈Fm
2 ,

b 6=0

(WF(a, b))4 + 24n

− 3 · 22n + 2n+1

 ,



2.2. Formula for weight 4 codewords 39

where WF(a, b) = ∑x∈Fn
2
(−1)a·x+b·F(x).

Proof. We have

WF(a, b) = ∑
x∈Fn

2

(−1)a·x+b·F(x), a ∈ Fn
2 , b ∈ Fm

2 .

Taking the fourth power on both sides, we get

(WF(a, b))4 =

 ∑
x∈Fn

2

(−1)a·x+b·F(x)

4

, a ∈ Fn
2 , b ∈ Fm

2 ,

From equations (1.3) and (1.4) of Theorem 1.16 and Proposition 1.5, we have

∑
a∈Fn

2 , b∈Fm
2

(WF(a, b))4 = 2n+mΓ,

where

Γ = #
{

(x, y, z, w) ∈ (Fn
2)

4 |
{

x + y + z + w = 0
F(x) + F(y) + F(z) + F(w) = 0

}
. (2.2)

Now, we discuss different cases for the possible values of the quadruple
(x, y, z, w) ∈ (Fn

2)
4 which satisfy the conditions of (2.2).

Case 1: Assume that x = y = z = w and F(x) = F(y) = F(z) = F(w). We have
precisely 2n possibilities for this type of occurrences.
Case 2: Assume that all the values in the quadruple (x, y, z, w) ∈ (Fn

2)
4 are differ-

ent: precisely these quadruples describe the weight 4 vectors in the linear code
C f1,..., fm . Moreover, one vector of weight 4 gives exactly 4! = 24 such quadruples,
hence, we have precisely 24λ( f1, . . . , fm) possibilities for this type of occurrences.
Case 3: Assume that any two of the values in the quadruple (x, y, z, w) ∈ (Fn

2)
4

are the same, that is, either x = y or x = z or x = w or y = z or y = w or z = w.
Then, in order to have x + y + z + w = 0 in each of these 6 cases, the other two

values must also be the same. There are
(

2n

2

)
possibilities to choose these two

values, which must be different from each other, since, we would be in case 1

otherwise. In total, we have 6
(

2n

2

)
= 3(22n − 2n) possibilities for this type of

occurrences.
Cases 1, 2 and 3 altogether gives

∑
a∈Fn

2 , b∈Fm
2

(WF(a, b))4 = 2n+m
[
2n + 24λ( f1, . . . , fm) + 3(22n − 2n)

]
.

This leads to the desired result

λ( f1, . . . , fm) =
1

24

 1
2n+m

 ∑
a∈Fn

2 ,b∈Fm
2 ,b 6=0

(WF(a, b))4 + 24n

− 3 · 22n + 2n+1

 ,

where we have used WF(a, 0) = 2n, if a = 0 and WF(a, 0) = 0, if a 6= 0.



40 On the number of weight 4 codewords

The following result is well known result about the 4th power of Walsh spec-
trum of APN functions from Fn

2 to Fn
2 [19, 60]. We can also derive this result

from Theorem 2.5.

Corollary 2.6. Let F be an APN function from Fn
2 to Fn

2 . Then

∑
a,b∈Fn

2 ,
b 6=0

(WF(a, b))4 = 23n+1(2n − 1).

Proof. From Theorem 2.5, we know that

λ( f1, . . . , fn) =
1

24

 1
22n

 ∑
a,b∈Fn

2 ,
b 6=0

(WF(a, b))4 + 24n

− 3 · 22n + 2n+1

 . (2.3)

Since, F is an APN function, we have λ( f1, . . . , fn) = 0. Substitute λ( f1, . . . , fn) = 0
in equation (2.3), we get

1
24

 1
22n

 ∑
a,b∈Fn

2 ,
b 6=0

(WF(a, b))4 + 24n

− 3 · 22n + 2n+1

 = 0.

After simplification, we have

∑
a,b∈Fn

2 ,
b 6=0

(WF(a, b))4 = 23n+1(2n − 1).

Corollary 2.7. Let f be a function from Fn
2 to F2. The number λ( f1) of weight 4 vectors

in the linear code C f1 is

λ( f1) =
1
24

 1
2n+1

 ∑
a∈Fn

2

(W f (a, 1))4 + 24n

− 3 · 22n + 2n+1

 .

Now, we discuss the pattern of reduction of weight 4 vectors in the linear
code of AB functions.

2.3 AB Functions

In this section, we consider the AB functions from F2n to F2n with n odd. We
want to observe the pattern of reduction of weight 4 vectors in the linear code
of AB functions. The Gold, Kasami, Welch and Niho power functions from F2n



2.3. AB Functions 41

Table 2.1: Walsh spectrum of AB functions on F2n with n = 2m + 1 odd

Walsh coefficient Multiplicity
2m+1 (2n − 1)(2n−2 + 2(n−3)/2)

0 (2n − 1)(2n−1)

−2m+1 (2n − 1)(2n−2 − 2(n−3)/2)

Table 2.2: Weight 4 vectors in the linear codes of AB functions F : F25 → F25

No. Value
λ(0) 1240
λ( f1) 600

λ( f1, f2) 280
λ( f1, f2, f3) 120

λ( f1, f2, f3, f4) 40
λ( f1, f2, f3, f4, f5) 0

to F2n listed in Table 1.3 are AB functions. Carlet, Charpin and Zinoviev [20]
showed that if F(0) = 0, then the Walsh spectrum of the AB functions F along
with their multiplicities are given in Table 2.1. The values λ( f1), . . . , λ( f1, . . . , fm)

can be computed from Theorem 2.5 in the following way.

Corollary 2.8. Assume that F is a function from Fn
2 to Fm

2 such that all non-trivial
component functions are semi-bent. Then, the number λ( f1, . . . , fm) of weight 4 vectors
in the linear code C f1,..., fm is

λ( f1, . . . , fm) =
1
3

[
23n−m−3 − 22n−3 − 22n−m−2 + 2n−2

]
.

Proof. The corollary follows from Theorem 2.5 and the definition of semi-bent
Boolean functions.

We have computed the number of weight 4 vectors in the linear code C f1,..., fn

of AB functions for small values of n. These values are explicitly listed in Tables
2.2, 2.3, 2.4 and 2.5. We observe that all the component functions of AB functions
have the same Walsh spectrum. Therefore, the values λ( f1, . . . , fi), 2 ≤ i ≤ n
do not depend upon the choice of the component functions fi that we choose to
represent F(x).



42 On the number of weight 4 codewords

Table 2.3: Weight 4 vectors in the linear codes of AB functions F : F27 → F27

No. Value
λ(0) 85344
λ( f1) 42336

λ( f1, f2) 20832
λ( f1, f2, f3) 10080

λ( f1, f2, f3, f4) 4704
λ( f1, f2, f3, f4, f5) 2016

λ( f1, f2, f3, f4, f5, f6) 672
λ( f1, f2, f3, f4, f5, f6, f7) 0

Table 2.4: Weight 4 vectors in the linear codes of AB functions F : F29 → F29

No. Value
λ(0) 5559680
λ( f1) 2774400

λ( f1, f2) 1381760
λ( f1, f2, f3) 685440

λ( f1, f2, f3, f4) 337280
λ( f1, f2, f3, f4, f5) 163200

λ( f1, f2, f3, f4, f5, f6) 76160
λ( f1, f2, f3, f4, f5, f6, f7) 32640

λ( f1, f2, f3, f4, f5, f6, f7, f8) 10880
λ( f1, f2, f3, f4, f5, f6, f7, f8, f9) 0

Table 2.5: Weight 4 vectors in the linear code of AB functions F : F211 → F211

No. Value
λ(0) 357389824
λ( f1) 178607616

λ( f1, f2) 89216512
λ( f1, f2, f3) 44520960

λ( f1, f2, f3, f4) 22173184
λ( f1, f2, f3, f4, f5) 10999296

λ( f1, f2, f3, f4, f5, f6) 5412352
λ( f1, f2, f3, f4, f5, f6, f7) 2618880

λ( f1, f2, f3, f4, f5, f6, f7, f8) 1222144
λ( f1, f2, f3, f4, f5, f6, f7, f8, f9) 523776

λ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10) 174592
λ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11) 0



2.4. APN Power Functions 43

2.4 APN Power Functions

Now, we discuss the case of APN power functions from F2n to F2n with n odd.
We have the following Theorem.

Theorem 2.9. [57] Let F(x) = xd be a power APN function from F2n to F2n with n
odd. Then the function F is a permutation.

Proof. Assume that the mapping x → xd is not a permutation. This means that
there exist some x ∈ F2n such that xd = 1, where x /∈ F2. Divide (x + 1)d on both
sides of the equation xd = 1. We get

xd

(x + 1)d =
1

(x + 1)d ,

it implies that
xd

(x + 1)d +
1

(x + 1)d = 0.

We can write the above equation as

xd

(x + 1)d +
1

(x + 1)d = 0 =
(x2)d

(x2 + 1)d +
1

(x2 + 1)d ,

hence, we have(
x

x + 1

)d
+

1
(x + 1)d = 0 =

(
x2

x2 + 1

)d

+
1

(x2 + 1)d .

Since F is an APN power function, then we must either have

x
x + 1

=
x2

x2 + 1
,

or
x

x + 1
=

1
x2 + 1

.

Assume that
x

x + 1
=

1
x2 + 1

,

it implies that
x(x2 + 1) = x + 1,

hence, we have
x3 + x = x + 1,

x3 = 1.

which is impossible since 3 - 2n − 1, if n is odd. This means that F(x) = xd is a
permutation if n is odd.



44 On the number of weight 4 codewords

We have discussed that the reduction in the number of weight 4 vectors in
the linear code related with vectorial Boolean functions from Fn

2 to Fn
2 depends

on the choice of coordinate functions from Fn
2 to F2. This is not true in case of

APN power permutations from F2n to F2n . This was also observed by Berger,
Canteaut, Charpin and Laigle Chapuy [60] in context of sum of square indica-
tors.

Theorem 2.10. Let F be a function from F2n to F2n defined by F(x) = xd with n odd.
Assume that F is a power permutation, that is, with gcd(d, 2n − 1) = 1, then

∑
a∈F2n

(WF(a, b))4 = Γ,

where

Γ = ∑
c∈F2n

(
∑

y∈F2n

(−1)Trn
1 (y

d+cy)

)4

.

In particular, if F is APN then Γ = 23n+1.

Proof. Let F(x) = xd be a power permutation from F2n to F2n . We know that

WF(a, b) = ∑
x∈F2n

(−1)Trn
1 (bF(x))+Trn

1 (ax), a,b∈F2n ,
b 6=0

= ∑
x∈F2n

(−1)Trn
1 (bF(x)+ax)

Taking the fourth power on both sides, we get

(WF(a, b))4 =

(
∑

x∈F2n

(−1)Trn
1 (bF(x)+ax)

)4

=

(
∑

x∈F2n

(−1)Trn
1 (bxd+ax)

)4

Assume that b = βd for some β ∈ F2n , then we have

(WF(a, b))4 =

(
∑

x∈F2n

(−1)Trn
1 (βdxd+ax)

)4

=

(
∑

x∈F2n

(−1)Trn
1 ((βx)d+ax)

)4

.

Let βx = y, then x = β−1y and

∑
a∈F2n

(WF(a, b))4 = ∑
a∈F2n

(
∑

y∈F2n

(−1)Trn
1 (y

d+β−1ay)

)4



2.4. APN Power Functions 45

Let β−1a = c, where c ∈ F2n , then

∑
a∈F2n

(WF(a, b))4 = Γ,

where

Γ = ∑
c∈F2n

(
∑

y∈F2n

(−1)Trn
1 (y

d+cy)

)4

.

Now, we take the sum over all b ∈ F2n with b 6= 0, then we have

∑
a,b∈F2n ,

b 6=0

(WF(a, b))4 = (2n − 1)Γ (2.4)

From Corollary 2.6 , we know that

∑
a,b∈Fn

2 ,
b 6=0

(WF(a, b))4 = 23n+1(2n − 1). (2.5)

After comparing equation (2.4) and (2.5), we get

Γ = 23n+1.

Corollary 2.11. Let F
′

be a function from Fn
2 to Fm

2 defined as

F
′
(x) =

 f1(x)
...

fm(x)


If F

′
is a power APN permutation then the number of weight 4 vectors in the linear code

of F
′

is independent of the choice of coordinate functions of F
′
.

Proof. From Theorem 2.5, we know that the number of weight 4 vectors λ( f1, . . . , fm)

in the linear code of F
′

depends upon the value of

∑
a∈Fn

2 ,b∈Fm
2

b 6=0

(
WF′ (a, b)

)4 .

For any value of b ∈ Fm
2 with b 6= 0, we have one component function of F

′
. If F

′

is an APN permutation then the value of Γ = 23n+1 is fixed for each component
function of F

′
. It means no matter in which order we choose component func-

tions, the number of weight 4 vectors in the linear code of F
′

is independent of
the choice of coordinate functions of F

′
.



46 On the number of weight 4 codewords

Table 2.6: Walsh spectrum of quadratic Boolean functions f : Fn
2 → F2

Walsh coefficient Multiplicity
2(n+e)/2 2(n−e−1) + 2(n−e−2)/2

0 2n − 2n−e

−2(n+e)/2 2(n−e−1) − 2(n−e−2)/2

2.5 Plateaued Boolean functions

The notion of plateaued Boolean functions were introduced in [61]. It is a gener-
alization of quadratic Boolean functions. All recently discovered infinite families
of AB and APN functions from F2n to F2n listed in Table 1.6 are quadratic. This
means all of their component functions are quadratic. In this section, we con-
sider the case of quadratic Boolean functions from Fn

2 to F2. We are interested
in observing the number of weight 4 vectors in the linear code related with
quadratic Boolean functions.
Recall that a quadratic homogeneous Boolean function f from Fn

2 to F2 is defined
as

f (x1, . . . , xn) = ∑
1≤i<j≤n

ai,jxixj, ai,j ∈ F2.

The Walsh coefficients of a quadratic Boolean functions along with their multi-
plicities are given in Table 2.6, (see McEliece, 1987, Chapter 11 [62]), for instance.
In Table 2.6, e = n− r with

r = Rank(ai,j + aj,i).

If the value of n is even and r = n, then we have bent functions. We can compute
the number of weight 4 vectors in the linear code C f related with a quadratic
Boolean functions f .

Corollary 2.12. Assume that fn,e : Fn
2 → F2 is a quadratic Boolean function with a

Walsh spectrum given in Table 2.6. The number λ( fn,e) of weight 4 vectors in the linear
code C f is

λ( f(n,e)) =
1
3

[
22n+e−4 + 23n−4 − 3 · 22n−3 + 2n−2

]
,

where e is defined as above.

Proof. The corollary follows from Theorem 2.5 and Table 2.6.

In Table 2.7, we explicitly give the values of λ( fn,e) for small values of n and
e. From Corollary 2.12, we observe that bent functions wipe out

23n−4 − 22n−4

3



2.5. Plateaued Boolean functions 47

Table 2.7: Weight 4 vectors in the linear code of quadratic Boolean functions
f : Fn

2 → F2

n e λ( fn,e)

4
4 140
2 76
0 60

6

6 10416
4 6320
2 5296
0 5040

8

8 690880
6 428736
4 363200
2 346816
0 342720

10

10 44608256
8 27831040
6 23636736
4 22588160
2 22326016
0 22260480

n e λ( fn,e)

5
5 1240
3 728
1 600

7

7 85344
5 52576
3 44384
1 42336

9

9 5559680
7 3462528
5 2938240
3 2807168
1 2774400

11

11 357389824
9 223172096
7 189617664
5 181229056
3 179131904
1 178607616

(a) n even (b) n odd



48 On the number of weight 4 codewords

of the
23n−3 − 3 · 22n−3 + 2n−2

3

2-dimensional affine subspaces of Fn
2 , i.e., approximately half of them.

Quadratic functions of rank n− e wipe out

23n−4 − 22n+e−4

3

of all (approximately 23n−4

3 ) 2-dimensional affine subspaces of Fn
2 . This shows

that bent functions are the best candidates of coordinate functions to construct
APN functions. From Tables 1.2 and 1.6, we know that many APN functions
consist of bent and plateaued coordinate functions. It has been proposed to
search for more (nonquadratic) plateaued functions and somehow replace the
quadratic functions by a nonquadratic plateaued functions. In our approach, we
want to replace the plateaued Boolean functions by nonquadratic Boolean func-
tions which are actually better than plateaued Boolean functions with respect to
wiping out 2-dimensional affine subspaces of Fn

2 .
The bent functions can be constructed by using the Maiorana-McFarland and the
partial spread construction method. We have discussed that the bent functions
wipe out the maximum number of 2-dimensional affine subspaces of Fn

2 . It may
be a promising idea to look for Boolean functions which belong to the partial
spread and Maiorana-McFarland class and which wipe out a large number of
2-dimensional affine subspaces of Fn

2 . First, we discuss the partial spread class
and then we discuss the Maiorana-McFarland class.

2.6 Partial spread class

The partial spread class of bent functions was introduced by Dillon [63]. This
class of bent function is defined corresponding to partial spreads, a classical
geometric object. We consider the case of partial spread Boolean functions from
Fn

2 to F2, where n = 2m. A partial spread of order k (k-spread) in Fn
2 is a set of

m-dimensional subspaces H1, ..., Hk of Fn
2 such that Hi ∩Hj = {0} for all i 6= j. A

partial spread is a spread if the union of its elements equals Fn
2 and in this case

k = 2m + 1.
We have two possible cases of m-dimensional subspaces H1, ..., Hk of Fn

2 . In the
first case, we consider m-dimensional subspaces H1, ..., Hk of Fn

2 without 0 and
in the second case, we consider m-dimensional subspaces H1, ..., Hk of Fn

2 with
0. Now we consider the first case, where we have the following theorem.

Theorem 2.13. Let n = 2m and H1, ..., Hk be m-dimensional subspaces of Fn
2 of a

partial spread. The Boolean function fk from Fn
2 to F2 is the indicator function of



2.6. Partial spread class 49

D = ∪k
i=1Hi \ {0} such that fk(x) = 1, if x ∈ D and 0, otherwise. The Walsh

spectrum of fk is as follows.

Walsh coefficient Multiplicity
2n − 2m+1k + 2k 1

2k 2n − 2mk + k− 1

2k− 2m+1 2mk− k

Proof. Let H1, . . . , Hk be the m-dimensional subspaces of Fn
2 . Let H∗i = Hi \ {0}

and D = ∪k
i=1H∗i . We know that

W fk
(a) = ∑

x∈Fn
2

(−1) fk(x)+a·x

= ∑
x∈D

(−1) fk(x) · (−1)a·x + ∑
x/∈D

(−1) fk(x) · (−1)a·x

= ∑
x∈D
−(−1)a·x + ∑

x/∈D
(−1)a·x

= − ∑
x∈D

(−1)a·x + ∑
x/∈D

(−1)a·x.

Assume that a = 0, then the above equation becomes

W fk
(a) = − ∑

x∈D
(−1)0 + ∑

x/∈D
(−1)0

= − ∑
x∈D

(1) + ∑
x/∈D

(1)

= − | D | +(| Fn
2 | − | D |)

= 2n − 2((2m − 1)k)

= 2n − 2m+1k + 2k.

The above value has multiplicity 1. Now, consider a 6= 0, then we have

W fk
(a) = − ∑

x∈D
(−1)a·x + ∑

x/∈D
(−1)a·x

From Proposition 1.5, we know that

∑
x∈Fn

2

(−1)a·x =

{
0 if a 6= 0,

2n if a = 0.

Now, we have

W fk
(a) = − ∑

x∈D
(−1)a·x − ∑

x∈Fn
2

(−1)a·x + ∑
x/∈D

(−1)a·x

= − ∑
x∈D

(−1)a·x − ∑
x∈D

(−1)a·x − ∑
x/∈D

(−1)a·x + ∑
x/∈D

(−1)a·x

= −2 ∑
x∈D

(−1)a·x.



50 On the number of weight 4 codewords

Now, consider ∑x∈D(−1)a·x, we have

∑
x∈D

(−1)a·x =

{
−1(#H∗i ) if a · x 6= 0 on all Hi, 1 ≤ i ≤ k,

| H∗i | −(#H∗i − 1) if a · x = 0 on exactly one Hi, 1 ≤ i ≤ k.

Now, we have

W fk
(a) = −2 ∑

x∈D
(−1)a·x =

{
2k if a · x 6= 0 on all Hi, 1 ≤ i ≤ k,

−2(2m − k) if a · x = 0 on exactly one Hi, 1 ≤ i ≤ k.

The multiplicity of −2(2m − k) is (2m − 1)k and the multiplicity of 2k is
2n − ((2m − 1)k + 1).

Now, we can compute the number of weight 4 vectors in the linear code C fk

of Boolean functions fk.

Corollary 2.14. Assume that fk : Fn
2 → F2 is a Boolean function with Walsh spectrum

given in Theorem 2.13. The number λ( fk) of weight 4 vectors in the linear code C fk
is

λ( fk) =
1

24
(

1
2n+1 [16((2n−1 − 2mk + k− 1)4 + (2nk4 − 2mk5 + k5 − k4)

+ k(k− 2m)4(2m − 1)) + 24n]− 3 · 22n + 2n+1).
(2.6)

Proof. The corollary follows from Theorem 2.5 and Theorem 2.13.

Remark 2.15. Note that for k = 2m−1, we have a bent function from Fn
2 to F2. For

k = 2m−1 − 1, the number of weight 4 vectors in the linear code C f of partial
spread Boolean functions are

λ( f2m−1−1) =
1
3

[
26m−4 − 5 · 24m−4 + 21 · 22m−2 − 3 · 2m+2 + 7

]
.

Similarly, for k = 2m−1 + 1, the number of weight 4 vectors in the linear code C f
of partial spread Boolean function are

λ( f2m−1+1) =
1
3

[
26m−4 − 5 · 24m−4 + 5 · 22m−2 − 1

]
.

The number of weight 4 vectors in the linear code C f of quadratic Boolean func-
tion fn,2 are

λ( fn,2) =
1
3

[
26m−4 − 24m−3 + 22m−2

]
.

We observe that λ( f2m−1−1) < λ( fn,2) and λ( f2m−1+1) < λ( fn,2), this means that
for some values of k, the partial spread Boolean functions reduce more weight 4
vectors in their linear code as compared with weight 4 vectors in the linear code
of plateaued Boolean functions.

In the second case, we consider m-dimensional subspaces H1, ..., Hk of Fn
2

with 0. We have the following theorem.



2.6. Partial spread class 51

Theorem 2.16. Let n = 2m and H1, ..., Hk be the m-dimensional subspaces of Fn
2 . The

Boolean function fk from Fn
2 to F2 is the indicator function of D = ∪k

i=1Hi such that
fk(x) = 1, if x ∈ D and 0, otherwise. The Walsh spectrum of fk is as follows.

Walsh coefficient Multiplicity
2n − 2m+1k + 2k− 2 1

2k− 2 2n − 2mk + k− 1

2k− 2m+1 − 2 2mk− k

Proof. The proof follows the same lines of proof given in Theorem 2.13. We
consider m-dimensional subspaces H1, ..., Hk of Fn

2 with 0, so we subtract the
value 2 from each of the Walsh coefficients.

We can compute the number of weight 4 vectors in the linear code C f ′k
of

Boolean functions f
′
k in the following way.

Corollary 2.17. Assume that f
′
k : Fn

2 → F2 is a Boolean function with Walsh spectrum
as in Theorem 2.16. The number λ( f

′
k) of weight 4 vectors in the linear code C f ′k

is

λ( f
′
k) =

1
24

(
1

2n+1 [16((2n−1 − 2mk + k− 1)4 + (k− 1)4(2n − 2mk + k− 1)

+ k(k− 2m − 1)4(2m − 1)) + 24n]− 3 · 22n + 2n+1).
(2.7)

Proof. The corollary follows from Theorem 2.5 and Theorem 2.16.

Remark 2.18. Note that for k = 2m−1 + 1, we have a bent function from Fn
2 to F2.

For k = 2m−1, the number of weight 4 vectors in the linear code C f ′ of partial
spread Boolean functions is

λ( f
′

2m−1) =
1
3

[
26m−4 − 5 · 24m−4 + 5 · 22m−2 − 1

]
.

Similarly, for k = 2m−1 + 2, the number of weight 4 vectors in the linear code C f
of partial spread Boolean functions is

λ( f
′

2m−1+2) =
1
3

[
26m−4 − 5 · 24m−4 + 21 · 22m−2 − 3 · 2m+2 + 7

]
.

The number of weight 4 vectors in the linear code C f of quadratic Boolean func-
tions fn,2 is

λ( fn,2) =
1
3

[
26m−4 − 24m−3 + 22m−2

]
.

We observe that λ( f
′

2m−1) < λ( fn,2) and λ( f
′

2m−1+2) < λ( fn,2), this means that
for some values of k, the partial spread Boolean functions reduce more weight 4
vectors in their linear code as compared with weight 4 vectors in the linear code
of plateaued Boolean functions.



52 On the number of weight 4 codewords

Table 2.8: Weight 4 vectors in the linear code of the partial spread Boolean func-
tions from F6

2 to F2

λ(0) = 10416
k λ( fk) λ( f

′
k) f(6,2)

3 5117 5152 5296
4 5040 5061 5296
5 5061 5040 5296
6 5152 5117 5296

Table 2.9: Weight 4 vectors in the linear code of the partial spread Boolean func-
tions from F8

2 to F2

λ(0) = 690880
k λ( fk) λ( f

′
k) f(8,2)

6 345520 345645 346816
7 343085 343280 346816
8 342720 342805 346816
9 342805 342720 346816

10 343280 343085 346816
11 345645 345520 346816

Table 2.10: Weight 4 vectors in the linear code of the partial spread Boolean
functions from F10

2 to F2

λ(0) = 44608256
k λ( fk) λ( f

′
k) f(10,2)

13 22307445 22308096 22326016
14 22272880 22273965 22326016
15 22262061 22262960 22326016
16 22260480 22260821 22326016
17 22260821 22260480 22326016
18 22262960 22262061 22326016
19 22273965 22272880 22326016
20 22308096 22307445 22326016



2.7. Maiorana-McFarland class 53

Remark 2.19. The Boolean functions belong to partial spread class are good can-
didates for coordinate functions which can be used in the construction of APN
functions using our coordinate functions approach.

In Tables 2.8, 2.9 and 2.10, we explicitly give the values of λ( fk) and λ( f
′
k) for

n = 6, 8 and 10 respectively.

2.7 Maiorana-McFarland class

Another well known construction of bent functions is obtained by using Maiorana-
McFarland class. The Maiorana-McFarland class is as follows. Let n = 2m and
let f be a function from Fm

2 ×Fm
2 to F2 defined by

f (x, y) = x · π(y) + h(y).

Here, π is a mapping from Fm
2 to Fm

2 and h(y) : Fm
2 → F2 is any Boolean func-

tion. If π : Fm
2 → Fm

2 is a permutation then the function f is a bent function.
We are interested in studying the reduction in the number of weight 4 vec-
tors in the linear code of some of the Boolean functions that belong to the
Maiorana-McFarland class. The Walsh spectrum of the Maiorana-McFarland
class of Boolean functions is as follows.

Theorem 2.20. Let n = 2m and f be a Boolean function from Fn
2 to F2 belongs to the

Maiorana-McFarland class. Assume that π is not a permutation and the image of π has
s elements having 2 preimages and t elements having 1 preimage. We also assume that
| π−1(0) |= 1 and h(y) : Fm

2 → F2 is the zero function. The Walsh spectrum of f is as
follows:

Walsh coefficient Multiplicity

0 (2m + 2m−1)s

2m 2m−1t + 2m−1

−2m 2m−1t− 2m−1

2m+1 2m−2s

−2m+1 2m−2s.

Proof. We know that

W f (a, b) = ∑
x,y∈Fm

2

(−1)x·π(y)+a·x+b·y,

W f (a, b) = ∑
y∈Fm

2

(−1)b·y · ∑
x∈Fm

2

(−1)x·(π(y)+a). (2.8)

Now, we discuss different cases for the possible values of Equation (2.8).
Case 1: Assume that π(y) 6= a. This means a is not contained in the image set of



54 On the number of weight 4 codewords

π. From Proposition 1.5, we know that

∑
x∈Fn

2

(−1)a·x =

{
0 if a 6= 0,

2n if a = 0.

The equation (2.8) becomes
W f (a, b) = 0.

Now, we want to determine the multiplicity of the value W f (a, b) = 0. We know
that the size of the image of π is s + t. The number of a that are not contained
in the image of π is 2m − (s + t) = 2s + t− (s + t) = s. The multiplicity of the
value ∑a,b∈Fm

2
W f (a, b) = 0 is 2ms.

Case 2: Assume that π(y) = a, which means that a is contained in the image of
π. We have two different subcases. In the first subcase, a has one preimage and
in the second subcase, a has two preimages. We discuss these subcases in detail.
Case 2.a: Assume that π(y) = a with the condition | π−1(a) |= 1, then Equation
(2.8) becomes

W f (a, b) = ∑
y∈Fm

2

(−1)b·y · ∑
x∈Fm

2

(−1)x·(π(y)+a) = 2m

 ∑
π−1(a)∈Fm

2

(−1)b·π−1(a)

 .

For a fixed value of a, we assume that π−1(a) = 0, then the above equation
becomes

W f (a, b) = 2m.

This value has multiplicity 1. Now, we assume that π−1(a) 6= 0, then b ·π−1(a) = 0
for 2m−1 values of b and b · π−1(a) = 1 for 2m−1 values of b. Then

W f (a, b) =

{
2m if b · π−1(a) = 0,

−2m if b · π−1(a) 6= 0.

The value 2m occurs 2m−1(t + 1) times and −2m occurs 2m−1(t− 1) times.
Case 2.b: Now, we consider that π(y) = a and | π−1(a) |= 2. This means
π−1(a) = {y1, y2} with y1 6= y2 and y1, y2 6= 0 because | π−1(0) |= 1. Then
Equation (2.8) becomes

W f (a, b) = 2m

 ∑
y1∈Fm

2

(−1)b·y1 + ∑
y2∈Fm

2

(−1)b·y2

 . (2.9)

Assume that y1, y2 6= 0, then we have

(−1)b·y1 + (−1)b·y2 =


2 if b · y1 = 0 = b · y2,

0 if b · y1 6= b · y2,

−2 if b · y1 = 1 = b · y2.



2.8. Dobbertin APN function and Kavut et. al. Boolean function 55

So, the equation (2.9) becomes

W f (a, b) =


2m+1 if b · y1 = 0 = b · y2,

0 if b · y1 6= b · y2,

−2m+1 if b · y1 = 1 = b · y2.

The value 2m+1 occurs 2m−2s times, the value 0 occurs 2m−1s times and the value
2m+1 occurs 2m−2s times.

Now, we can compute the number of weight 4 vectors in the linear code C f
of Boolean functions belong to the Maiorana-McFarland class.

Corollary 2.21. Assume that f : Fn
2 → F2 is a Boolean function that belongs to the

Maiorana-McFarland class with Walsh spectrum given in Theorem 2.20. The number
λ( f ) of weight 4 vectors in the linear code C f is

λ( f ) =
1

24

[
1

2n+1

(
25mt + 25m+3s + 24n

)
− 3 · 22n + 2n+1

]
. (2.10)

Proof. The corollary follows from Theorem 2.5 and Theorem 2.20.

Remark 2.22. Note that for s = 0, t = 2m, we have a bent function from Fn
2 to

F2. For s = 1, t = 2m − 2, the number of weight 4 vectors in the linear code C f
related to the Maiorana-McFarland Boolean functions is

λ( f ) =
1
3

[
26m−4 − 5 · 24m−4 + 3 · 23m−3 + 22m−2

]
.

The number of weight 4 vectors in the linear code C f related to quadratic Boolean
functions fn,2 is

λ( fn,2) =
1
3

[
26m−4 − 24m−3 + 22m−2

]
.

We observe that λ( f ) < λ( fn,2), this means that for some values of s and t, the
Maiorana-McFarland Boolean functions reduce more weight 4 vectors in their
linear code as compared with weight 4 vectors in the linear code of plateaued
Boolean functions. The Boolean functions belong to the Maiorana-McFarland
class are good candidates for coordinate functions which can be used in the
construction of APN functions using our coordinate functions approach.

For small values of n, we have computed λ( f ) for Maiorana-McFarland
Boolean functions which is Tables 2.11, 2.12 and 2.13.

2.8 Dobbertin APN function and Kavut et. al. Boolean
function

In this section, first we consider the Dobbertin APN functions from F210 to F210 .
For odd values of n, the Dobbertin APN function is an APN permutation and



56 On the number of weight 4 codewords

Table 2.11: Weight 4 vectors in the linear code of the Maiorana-McFarland
Boolean functions from F6

2 to F2

λ(0) = 10416
s t λ( f ) f(6,2)

0 8 5040 5296
1 6 5104 5296
2 4 5168 5296
3 2 5232 5296

Table 2.12: Weight 4 vectors in the linear code of the Maiorana-McFarland
Boolean functions from F8

2 to F2

λ(0) = 690880
s t λ( f ) f(8,2)

0 16 342720 346816
1 14 343232 346816
2 12 343744 346816
3 10 344256 346816
4 8 344768 346816
5 6 245280 346816
6 4 345792 346816
7 2 346304 346816

Table 2.13: Weight 4 vectors in the linear code of the Maiorana-McFarland
Boolean functions from F10

2 to F2

λ(0) = 44608256
s t λ( f ) f(10,2)

0 32 22260480 22326016
1 30 22264576 22326016
2 28 22268672 22326016
3 26 22272768 22326016
4 24 22276864 22326016
5 22 22280960 22326016
6 20 22285056 22326016
7 18 22289152 22326016
8 16 22293248 22326016
9 14 22297344 22326016

10 12 22301440 22326016
11 10 22305536 22326016
12 8 22309632 22326016
13 6 22313728 22326016
14 4 22317824 22326016
15 2 22321920 22326016



2.8. Dobbertin APN function and Kavut et. al. Boolean function 57

each of its component functions has the same number of weight 4 vectors in their
linear codes.
For even values of n, we are interested in comparing the reduction of weight 4
vectors in the linear codes of component functions of the Dobbertin APN func-
tion, the partial spread Boolean functions as well as the Maiorana-McFarland
Boolean functions.
Using MAGMA, we have computed the complete Walsh spectrum of component
functions of Dobbertin function on F210 . The values in brackets in Table 2.14
give the multiplicities of the Walsh coefficients and the notion {∗ . . . ∗} denote
the multiset. The numbers of weight 4 vectors in the linear code of component
functions of Dobbertin function are given in Table 2.14.
We compare the reduction in the numbers of weight 4 vectors in the linear code
of component functions of the Dobbertin function and the partial spread Boolean
functions for k = 14, 15, 17, 18, 19 as well as the Maiorana-McFarland Boolean
functions for s = 1, 2, 3. For given values of k and s, we found that the partial
spread and the Maiorana-McFarland Boolean functions reduce more weight 4
vectors in their linear codes as compared with the weight 4 vectors in the linear
codes of component functions of the Dobbertin APN functions.
This gives us another indication that just by looking at the reduction in the num-
ber of weight 4 vectors in the linear code, the partial spread and the Maiorana-
McFarland Boolean function may serve as good candidates of coordinate func-
tions for the construction of APN functions by using our coordinate functions
approach.
In 2006, Kavut, Maitra, Sarker and Yücel [64] counted the Boolean functions from
F9

2 to F2 having nonlinearity greater than 240. They found that there are 1512
Boolean functions having nonlinearity 241. All of these Boolean functions have
the same Walsh Spectrum which is {∗ − 30(127),−22(27),−14(36),−6(18), 2(55),
10(39), 18(15), 26(156) ∗}, here the values in the bracket denote the multiplicities
and {∗ . . . ∗} denote the multiset. We have computed the number of weight 4
vectors in linear code C f of their boolean functions which is 2771125. We have
compared it with the number of weight 4 vectors in linear code C f of component
functions of AB functions which is 2774400.
We found that the Kavut et al. Boolean functions reduces more weight 4 vectors
in their linear code as compared with the weight 4 vectors in the linear code of
AB component functions. So, just by looking at the reduction in the number of
weight 4 vectors in their linear codes, Kavut et al. Boolean functions may be
good candidates for coordinate functions which can be used in the construction
of AB functions from F29 to F29 using our coordinate functions approach.



58 On the number of weight 4 codewords

Table 2.14: Weight 4 vectors in the linear codes of the component functions of
the Dobbertin function from F210 to F2

No. of component functions Walsh spectrum Weight 4 vectors
682 {∗ − 48(138),−32(136),−16(210), 16(270),

32(120), 48(150)∗}
22275840

341 {∗ − 80(3),−64(30),−48(210),−16(270),
0(180), 16(240), 48(135), 64(46)∗}

22295296

2.9 Vectorial bent functions

In this section, we consider vectorial bent functions F from Fn
2 to Fm

2 with m ≤ n
2

and n is even. We are interested in observing the pattern of reduction of weight
4 vectors in the linear code of vectorial bent functions.
We have discussed that bent functions are the best candidates for coordinate
functions which can be used in the construction of APN functions by using our
coordinate functions approach. We can compute the number of weight 4 vectors
in the linear code CF related with vectorial bent functions.

Corollary 2.23. Assume that F : Fn
2 → Fm

2 is a vectorial Boolean function with n even
and m ≤ n

2 . Let f1, . . . , fm be the coordinate functions of F. The function F is a vectorial
bent function if and only if the number λ( f1, . . . , fm) of weight 4 vectors in the linear
code C f1,..., fm is

λ( f1, . . . , fm) =
1
3

[
(2n − 1)(2n − 2m+1)2n−m−3

]
. (2.11)

Proof. This follows from Theorem 2.5 using

|WF(a, b) |= 2n/2

for all b 6= 0.

We have computed the values of λ( f1, . . . , fn/2) of vectorial bent functions
for n = 4, 6, . . . , 20 which are listed in Table 2.15. We compare the values of
λ( f1, . . . , fn/2) with λ(0). We observe that for the increasing values of n, the
value

λ( f1, . . . , fn/2)

λ(0)
=

23n/2 − 2n+1 − 2n/2 + 2
22n − 2n+1 − 2n + 2

tends to 0.
We observe that vectorial bent functions reduce maximum number of weight 4
vectors in their linear codes. The vectorial bent functions are the best choice
for n/2 coordinate functions which can be used for the construction of APN
functions from Fn

2 to Fn
2 with n even by using coordinate functions approach.



2.10. APN Permutation 59

Table 2.15: Weight 4 vectors in the linear code of vectorial bent functions
F : F2n → F2n/2

No. n λ(0) λ( f1, · · · , fn/2) Reduction Percentage = (1− λ( f1, · · · , fn/2)/λ(0)) ∗ 100
1 4 140 20 85.741
2 6 10416 1008 90.323
3 8 690880 38080 94.488
4 10 44608250 1309440 97.065
5 12 2861214720 43330560 98.486
6 14 183218384896 1409200128 99.231
7 16 11727587164160 45454376960 99.612
8 18 750591347982336 1460283310080 99.805
9 20 48038258586419200 46820825497600 99.903

Table 2.16: Walsh Spectrum of component functions of the Dillon APN Permu-
tation

No. Walsh Spectrum Number of Component functions
1 {∗ − 16(6), 0(48), 16(10)∗} 7
2 {∗ − 16(2), −8(20), 0(12), 8(28), 16(2)∗} 21
3 {∗ − 8(24), 0(12), 8(24), 16(4)∗} 7
4 {∗ − 16, −8(22), 0(12), 8(28), 16(3)∗} 21
5 {∗ − 16(3), −8(18), 0(12), 8(30), 16∗} 7

2.10 APN Permutation

In 2009, Dillon [58] introduced the first APN permutation F from F26 to F26 de-
fined by
F(x) = a45x60 + a41x58 + a43x57 + a4x56 + a50x54 + a20x53 + a45x52 + a20x51 +

a23x50 + a36x49 + a56x48 + a21x46 + a5x45 + a21x44 + a28x43 + a3x42 + a59x41 +

a58x40 + a57x39 + a53x38 + a37x37 + a40x36 + a18x35 + a41x34 + a54x33 + a3x32

+ a49x30 + a41x29 + a42x28 + a50x27 + a53x26 + a58x25 + a9x24 + x23 + a28x22 +

a3x21 + a21x20 + a52x19 + a60x17 + a59x16 + a10x15 + a42x13 + a8x12 + a35x11 +

a44x10 + a45x8 + a8x7 + a61x6 + a59x5 + a20x4 + a12x3 + a37x2 + a2x,
where a is a primitive element of F26 .
We are interested in observing the pattern of reduction of number of weight 4
vectors in the linear code C f of component functions of the Dillon APN per-
mutation. We computed the Walsh coefficients along with the multiplicities of
component functions of Dillon APN permutation using MAGMA. These values
are given in Table 2.16. The values in the brackets in Table 2.16 give the mul-
tiplicities of Walsh coefficients and the notion {∗ . . . ∗} denote the multiset. We
made several random choices for the selection of component functions of F. We



60 On the number of weight 4 codewords

observed that after the choice of the first component function, approximately
half (i.e. 5312) of the weight 4 vectors out of the total (i.e. 10416) weight 4
vectors are reduced. Similarly, after the choice of second component function,
approximately half of the remaining weight 4 vectors are reduced. This reduc-
tion pattern continues until the choice of the fifth component function. After
the choice of the sixth component function, we have no weight 4 vectors in the
linear code CF. It is interesting to observe that approximately half of the weight
4 vectors are reduced in each steps. This reduction pattern is the same for all
our random choices of component functions.



Chapter 3

Classes of vectorial bent functions
contained in known quadratic APN
functions

We discussed in Section 2.9 that vectorial bent functions from Fn
2 to Fm

2 with
m ≤ n

2 reduce the maximum number of weight 4 vectors in their linear code. In
our coordinate function approach, we can choose vectorial bent functions from
Fn

2 to Fm
2 with m ≤ n

2 as the first m coordinate functions out of n coordinate
functions. We need to choose other m coordinate functions in such a way that
there are no weight 4 vectors in the linear code C f1,..., fn . Then, we can construct
APN functions. Note that the first m coordinate functions generate a subspace
which is contained in the vectorspace generated by the n coordinate functions.
In this Chapter, we are interested in studying the construction of known APN
functions by using our proposed coordinate function approach. So, we study
the classes of vectorial bent functions contained in the known APN functions.
The Dobbertin function is an example of an APN function which has no bent
components. We consider the known classes of quadratic APN functions from
F26 to F26 . In Section 3.1, we completely classify the quadratic vectorial bent
functions from F6

2 to F3
2. In Section 3.2, we discuss one problem.

3.1 Case n = 6

In this Section, we investigate the vectorial bent functions contained in the APN
functions listed in Table 1.5.
First, we discuss the known classes of quadratic vectorial bent functions from
F6

2 to F2
2 and F6

2 to F3
2. Then, we discuss the algebraic representation of these

classes. Finally, we discuss which vectorial bent functions from F6
2 to F2

2 and F6
2

to F3
2 are contained in Dillon APN functions from F26 to F26 .

In 2009, Budaghyan and Carlet [26] published a paper about the equivalence of



62 Classes of vectorial bent functions contained in known quadratic APN functions

vectorial bent functions from F2n to F2m with m ≤ n
2 . They proved that the CCZ-

equivalence of vectorial bent functions is the same as their EA-equivalence. In
the subsequent section, we use the term equivalence for the CCZ-equivalence.
Up to equivalence there is only one quadratic bent function from F6

2 to F2, see
[8]. The interesting cases are quadratic vectorial bent functions from F6

2 to F2
2

and F6
2 to F3

2. Using MAGMA, it is not difficult to show the following theorem.

Theorem 3.1. There are only three (up to equivalence) quadratic vectorial bent functions
from F6

2 to F3
2 and only one (up to equivalence) quadratic vectorial bent function from

F6
2 to F2

2.

We have no nice algebraic representation of the quadratic vectorial bent func-
tion F from F6

2 to F2
2 but the matrices associated with the quadratic forms of each

bent function are as follows.

Q1 =



0 1 0 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


Q2 =



0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


The matrices Q1 and Q2 generate a vectorspace of matrices over F2. We have

F(x) =
(

xQ1xT

xQ2xT

)
=

(
x1x2 + x1x6 + x2x4 + x3x4 + x4x5 + x5x6

x1x3 + x1x6 + x2x4 + x2x5 + x3x5

)
where x = (x1, . . . , x6) ∈ F6

2 is a row vector.
We have identified the algebraic representation of two out of three quadratic vec-
torial bent functions from F6

2 to F3
2. The first quadratic vectorial bent function F1

belongs to the following class of quadratic vectorial bent functions expressed in
trace representation [52]: Let n = 2m, n ≡ 2 mod 4, d = 2i + 1 with gcd(i, n) = 1
and w /∈ (F2n)3. The function

G1(x) = Trn
m(wxd)

is a vectorial bent function, where Trn
m(x) = ∑

n
m−1
i=0 x2im

. In our case, we have
i = 1, d = 3, n = 6 and m = 3.
The second quadratic vectorial bent function F2 belongs to the following class of
quadratic vectorial bent function: if n = 2m, the function

G2(x, y) = xy

is a vectorial bent function from F2m ×F2m to F2m .
We have no nice algebraic representation for the third quadratic vectorial bent



3.1. Case n = 6 63

Table 3.1: Occurrence of 3 dimensional vectorial bent functions in the Dillon
APN functions

No. D.1 D.2 D.3 D.4 D.5 D.6 D.7 D.8 D.9 D.10 D.11 D.12 D.13
F1 X X X X X X X X X X X X X
F2 X X X
F3 X X X X X X X X X X X

function F3 but the matrices associated with the quadratic forms of each bent
function are listed below:

Q1 =



0 1 0 0 0 1
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


, Q2 =



0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, Q3 =



0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0


.

The matrices Q1, Q2 and Q3 generate a vectorspace of matrices over F2. We have

F3(x) =
(

F(x)
xQ3xT

)
=

(
F(x)

x1x4 + x1x6 + x2x5 + x3x5 + x3x6 + x4x5 + x5x6

)
,

Note that quadratic vectorial bent functions from F6
2 to F3

2 contain the (unique)
quadratic vectorial bent function from F6

2 to F2
2. Now, we want to analyse in

which Dillon APN functions these three vectorial bent functions from F6
2 to F3

2
are contained.
From Table 3.1, it is interesting to observe that F1 is contained in all Dillon APN
functions listed in Table 1.5, while F2 has minimum number of occurrences in
these functions. We also computed the order of automorphism groups of linear
codes of F1, F2 and F3. The order of automorphism groups of the function F1 is
4032, F2 is 677376 and F3 is 10752.
In 2009, Edel and Pott [30] found a sporadic example of a nonquadratic APN
function F from F26 to F26 defined as F(x) = x3 + u17(x17 + x18 + x20 + x24) +

u14(Tr6
1(u

52x3 + u6x5 + u19x7 + u28x11 + u2x13) + u18x9 + u36x18 + u72x36 +

x21 + x42), where u is a primitive root of F26 . We observe that the quadratic
vectorial bent functions F1 and F3 are also contained in this nonquadratic APN
function.

Remark 3.2. There are 23 CCZ-inequivalent quadratic APN functions on F28

which are listed in Table 9 [30]. Recently, Yu, Wang and Li [7] have constructed
8157 CCZ-inequivalent quadratic APN functions on F28 . In total, we have 8180
CCZ-inequivalent quadratic APN functions on F28 . It is computationally very in-
tensive to investigate the classes of quadratic vectorial bent functions contained
in 8180 quadratic APN function.



64 Classes of vectorial bent functions contained in known quadratic APN functions

3.2 Open problem

In this section, we discuss an open problem that arises from our computational
results of Section 3.1. First, we want to prove that the quadratic vectorial bent
function defined in [52] is contained in the function F from F2n to F2n defined
by F(x) = x3. In order to prove this result, we need the following preliminary
result. This preliminary result is also mentioned in Theorem 2.2.10 [65].

Theorem 3.3. [65, 66] Let α ∈ F2n , i ∈ N, d = 2i + 1. The function f : F2n → F2

with f (x) = Trn
1 (αxd) is bent if and only if α /∈ {xd : x ∈ F2n}.

Proof. Assume that α /∈ {xd : x ∈ F2n}. For any x, w ∈ F2n we have

(x+w)2i+1 = (x+w)2i
(x+w) = (x2i

+w2i
)(x+w) = x2i+1 + x2i

w+ xw2i
+w2i+1.

Now, for any a, w ∈ F2n , we have

W f (a) = ∑
x∈F2n

(−1)Trn
1 (αxd)+Trn

1 (ax)

= ∑
x∈F2n

(−1)Trn
1 (α((x+w)2i+1+x2i

w+xw2i
+w2i+1))+Trn

1 (ax)

= ∑
x∈F2n

(−1)Trn
1 (α((x+w)d+x2i

w+xw2i
+wd))+Trn

1 (ax)

= ∑
x∈F2n

(−1)Trn
1 (α(x+w)d+αx2i

w+αxw2i
+αwd+ax)

Assume that we can choose w independent of a such that for all x ∈ F2n , we
have

Trn
1 (αx2i

w + αxw2i
+ ax) = 0. (3.1)

Then, we have

W f (a) = ∑
x∈F2n

(−1)Trn
1 (α(x+w)d+αwd)

= (−1)Trn
1 (αwd) ∑

x∈F2n

(−1)Trn
1 (α(x+w)d

= (−1)Trn
1 (αwd) ∑

x∈F2n

(−1)Trn
1 (α(x)d

= (−1)Trn
1 (αwd)W f (0).

Thus, the Walsh coefficients of f would have constant absolute value. By Theo-
rem 1.6, the Walsh spectrum of f would therefore consist entirely of the values



3.2. Open problem 65

±2
n
2 , hence f would be bent. Therefore, we consider the linear equation (3.1),

Trn
1 (αx2i

w + αxw2i
+ ax) = 0

Trn
1 (αx2i

w + (αxw2i
)2i

+ (ax)2i
) = 0

Trn
1 (αx2i

w + α2i
x2i

w22i
+ a2i

x2i
) = 0

Trn
1 (x2i

(αw + α2i
w22i

+ a2i
)) = 0

This can be true for all x ∈ F2n if

αw + α2i
w22i

+ a2i
= 0

In order to choose w properly, we have to prove that the mapping

w→ αw + α2i
w22i

must be bijective, that means the mapping has a trivial kernel if α /∈ {xd | x ∈ F2n}.
For w 6= 0, we have

αw + α2i
w22i

= 0,

this impies that

α2i
w22i

= αw

w22i−1 = α1−2i
,

hence, we have

(w2i+1)2i−1 = (α−1)2i−1.

As gcd(2i + 1, 2i− 1) = 1, the left hand side of the above equation is a d-th power
while the right hand side of the above equation is a d-th power if and only if α

is a d-th power which is a contradiction. Thus, whenever α is not a d-th power,
the function f is bent.
Now, let us consider α ∈ {xd : x ∈ F2n}. Suppose furthermore that f is bent.
Clearly, f must be non-zero, therefore we may write α = βd for some β ∈ F∗2n .
Then

f (x) = Trn
1 (αxd) = Trn

1 ((βx)d).

The above equation shows that the function f is bent for any choice of
α ∈ {xd : x ∈ F∗2n}. Since we have proved earlier that f is bent for all
α /∈ {xd : x ∈ F2n}, we conclude that f is bent for all α ∈ F∗2n , which is impos-
sible. Assume that f is bent for every α ∈ F∗2n , this would allow the construc-
tion of a vectorial bent function from F2n to F2n which contradicts the Nyberg
bound.



66 Classes of vectorial bent functions contained in known quadratic APN functions

Corollary 3.4. Let α ∈ F2n , d = 3. The function f from F2n to F2 defined by

f (x) = Trn
1 (αx3)

is bent if and only if α /∈ {x3 : x ∈ F2n}.

Proof. For i = 1, the corollary follows the same line of proof given in Theorem
3.3.

Theorem 3.5. [19] Let n = 2m and G be a function from F2n to Fm
2 defined as

G(x) = (Trn
1 (β1wx3), . . . , Trn

1 (βmwx3)),

where (β1, . . . , βm) is a basis of F2m over F2 and w /∈ (F2n)3. If n ≡ 0 mod 4, then G
is not a vectorial bent function from F2n to Fm

2 . If n ≡ 2 mod 4, then G is a vectorial
bent function from F2n to Fm

2 .

Proof. Assume that n ≡ 0 mod 4, in this case gcd(3, 2m − 1) = 3. F2m consists of
cube and non-cubes. If we choose w ∈ F2n which is not a cube, then nonzero
elements of the vectorspace A = wF2m which are cubes turn into non-cubes
and non-cubes turns into cubes. From Corollary 3.4, we note that some of the
component functions Trn

1 (αx3) are bent, where α ∈ A \ {0} is not a cube and
some of the component functions Trn

1 (αx3) are non-bent, where α ∈ A \ {0} is
a cube. It means that the vectorspace A does not lead to the construction of
vectorial bent function from F2n to Fm

2 .
On the other hand, assume that n ≡ 2 mod 4, in this case gcd(3, 2m − 1) = 1. F2m

consists of cubes only. If we choose w ∈ F2n which is not a cube then all the
nonzero elements of the vectorspace A = wF2m are non-cubes. From Corollary
3.4, all the component functions Trn

1 (αx3), α ∈ A \ {0} are bent. This leads to a
vectorial bent function G(x) = (Trn

1 (α1x3), . . . , Trn
1 (αmx3)) = (Trn

1 (β1wx3), . . . ,
Trn

1 (βmwx3)) ∈ Fm
2 , where (β1, . . . , βm) is a basis of F2m over F2.

From Table 1.6, we have an APN function F from F2n to F2n defined by

F(x) = x3 + Trn
1 (x9).

It is CCZ-inequivalent with Gold APN function F(x) = x3 for n ≥ 7. The
function F(x) = x3 + Trn

1 (x9) is obtained by applying the switching approach
on Gold APN function F(x) = x3. We have proved in Theorem 3.5 that the
vectorial bent function G is contained in the Gold APN function F(x) = x3 if
n ≡ 2 mod 4. We leave the following problem as an open problem.

Problem 3.1. Is the vectorial bent function G defined in Theorem 3.5 is also
contained in the function F(x) = x3 + Trn

1 (x9) for n ≥ 8 with n ≡ 2 mod 4?



Chapter 4

Local changes in the quadratic APN
cube

In this chapter, we describe the derivative of quadratic homogeneous vectorial
Boolean functions from Fn

2 to Fm
2 in terms of a cube of dimension n× n×m in

Section 4.1. In Section 4.2, we discuss the Yu, Wang and Li [7] approach. Yu,
Wang and Li constructed several new quadratic APN functions on F27 and F28 .
We give a different point of view of the Yu, Wang and Li approach using a cube
over F2 of dimension n× n× n. Another possible approach for the construction
of new APN functions from Fn

2 to Fn
2 was introduced by John Dillon [55]. Dillon

named this approach Switching Approach. In Section 4.3, we study the switch-
ing approach in detail. In Section 4.4, we also discuss the local changes in the
quadratic APN cube. In Section 4.5, we give our computational results.

4.1 Cube of dimension n× n×m

First, we discuss the basics of cubical array of dimension n. A cube C is defined
over F2 as an n× n× n ordered set of elements of F2. The (i, j, k)-th entry of C
is denoted by Ck

ij, where 1 ≤ i, j, k ≤ n.

We use the notation similar to Ck
ij for matrices. Given a matrix M, let Mij denote

the (i, j)-th entry of M. It is quite often useful to construct matrices from the
entries of a cube. Given a cube C, we define the following matrices by fixing an
index of C, here ∗ denote the variable index :

Ck
∗∗ = M ⇔ Ck

ij = Mij,

in this case, k is the fixed index and i, j are variable indices.

C∗i∗ = M ⇔ Ck
ij = Mkj,

in this case, i is the fixed index and k, j are variable indices.

C∗∗j = M ⇔ Ck
ij = Mik,



68 Local changes in the quadratic APN cube

in this case, j is the fixed index and i, k are variable indices.
We are interested in interpreting the derivative of a quadratic homogeneous vec-
torial Boolean functions from Fn

2 to Fm
2 in terms of a cube of dimension n×n×m.

We may abuse the word cube in order to describe the derivative of quadratic ho-
mogeneous vectorial Boolean function from Fn

2 to Fm
2 because a cube has always

dimension n× n× n.
Let F be a quadratic homogeneous vectorial Boolean functions from Fn

2 to Fm
2 .

The function F is defined as

F(x) =

 f1(x)
...

fm(x)

 =

 xQ1xT

...
xQmxT


where x = (x1, . . . , xn) ∈ Fn

2 and Q1, . . . , Qm are the corresponding coefficient
matrices of quadratic homogeneous Boolean functions fi : Fn

2 → F2, i = 1, . . . , m.
A nice property of a quadratic function F from Fn

2 to Fm
2 is that the mapping

x 7→ F(x + a) + F(x) + F(a)

is always linear. If we want to find the number of solutions of F(x+ a)+ F(x) = b,
then we just need to check the dimension of the kernel of the linear mapping
x 7→ F(x + a) + F(x) + F(a).
First, we compute the derivative of the Boolean function f from Fn

2 to F2 with re-
spect to a = (a1, . . . , an) ∈ Fn

2 \ {0}. In this chapter, we assume that x = (x1, . . . ,
xn) ∈ Fn

2 is a row vector.

Lemma 4.1. Let f be a quadratic homogeneous Boolean function from Fn
2 to F2 defined

by the quadratic form f (x) = xQxT, where Q is the upper right triangular matrix with
zero diagonal and x = (x1, . . . , xn) ∈ Fn

2 is a row vector. Then

Da f (x) = xCaT, where C = Q + QT,

or

Da f (x) =
n

∑
j=1

xj(
n

∑
k=1

cjkak).

Proof. Let f (x) = xQxT be a quadratic function. The mapping Da f (x) = f (x+ a)
+ f (x) + f (a) is linear mapping. We have



4.1. Cube of dimension n× n×m 69

Da f (x) = f (x + a) + f (x) + f (a)

= (x + a)Q(x + a)T + xQxT + aQaT

= (x + a)Q(xT + aT) + xQxT + aQaT

= xQxT + xQaT + aQxT + aQaT + xQxT + aQaT

= xQaT + aQxT

= xQaT + (aQxT)T

= xQaT + xQTaT

= x(Q + QT)aT

= xCaT, where C = Q + QT

= (x1, . . . , xn)

c11 c12 . . . c1n
...

...
...

...
cn1 cn2 . . . cnn


a1

...
an

 .

In other words,

Da f (x) = (x1, . . . , xn)(c11a1 + . . . + c1nan, . . . , cn1a1 + . . . + cnnan)

= (x1, . . . , xn)(
n

∑
k=1

c1kak,
n

∑
k=1

c2kak, . . . ,
n

∑
k=1

cnkak)

Da f (x) =
n

∑
j=1

xj(
n

∑
k=1

cjkak).

Now, it is meaningful to describe the derivative of quadratic homogeneous
vectorial Boolean function from Fn

2 to Fm
2 in terms of cube of dimension n×n×m.

Theorem 4.2. Let F be a quadratic homogeneous vectorial Boolean function from Fn
2 to

Fm
2 defined by

F(x) =

 f1(x)
...

fm(x)

 =

 xQ1xT

...
xQmxT

 ,

where f1(x), . . . , fm(x) are quadratic Boolean functions from Fn
2 to F2. Then DaF(x)

is
DaF(x) =

(
∑n

i=1 xi(∑n
j=1 C1

ijaj), . . . , ∑n
i=1 xi(∑n

j=1 Cm
ij aj)

)
,

where
C1 = Q1 + QT

1 , . . . , Cm = Qm + QT
m,

a = (a1, . . . , an) ∈ Fn
2 \ {0}. For k = 1, . . . , m, the matrix Ck

∗∗ corresponds to the
coordinate function fk of F. For j = 1, . . . , n, DaF(x) is given by the non-zero linear
combinations of matrices C∗∗j.



70 Local changes in the quadratic APN cube

Proof. From lemma 4.1, we have

DaF(x) =
(

∑n
i=1 xi(∑n

j=1 c1
ijaj), . . . , ∑n

i=1 xi(∑n
j=1 cm

ij aj)
)

, (4.1)

where x ∈ Fn
2 , a ∈ Fn

2 \ {0}. We observe that for 1 ≤ k ≤ m, 1 ≤ i, j ≤ n, Ck
ij is

a symmetric matrix with zero diagonal.
We can view these m matrices each having dimension n × n as a cube C of
dimension n× n×m.
For k = 1, . . . , m, the matrix Ck

∗∗ corresponds to the coordinate function fk of F.
Consider ∑n

i=1 xi(∑n
j=1 c1

ijaj) from equation (4.1) which can be described as

n

∑
i=1

xi(
n

∑
j=1

c1
ijaj) = (x1, . . . , xn)

c1
11 c1

12 . . . c1
1n

...
...

...
...

c1
n1 c1

n2 . . . c1
nn


a1

...
an


= (x1, . . . , xn)

c1
11a1 + c1

12a2 + . . . + c1
1nan

...
c1

n1a1 + c1
n2a2 + . . . + c1

nnan



= (x1, . . . , xn)

a1


c1

11
c1

21
...

c1
n1

+ a2


c1

12
c1

22
...

c1
n2

+ . . . + an


c1

1n
c1

2n
...

c1
nn


 .

Now, consider ∑n
i=1 xi(∑n

j=1 c2
ijaj) from equation (4.1) which can also be described

as

n

∑
i=1

xi(
n

∑
j=1

c2
ijaj) = (x1, . . . , xn)

a1


c2

11
c2

21
...

c2
n1

+ a2


c2

12
c2

22
...

c2
2n

+ . . . + an


c2

1n
c2

2n
...

c2
nn


 .

Similarly, consider ∑n
i=1 xi(∑n

j=1 cm
ij aj) from equation (4.1) which can also be de-

scribed as

n

∑
i=1

xi(
n

∑
j=1

cm
ij aj) = (x1, . . . , xn)

a1


cm

11
cm

21
...

cm
n1

+ a2


cm

12
cm

22
...

cm
n2

+ . . . + an


cm

1n
cm

2n
...

cm
nn


 .

Combining all these equations, we get

DaF(x) = (x1, . . . , xn)

a1

c1
11 c2

11 . . . cm
11

...
...

...
...

c1
n1 c2

n1 . . . cm
n1

+ a2

c1
12 c2

12 . . . cm
12

...
...

...
...

c1
n2 c2

n2 . . . cm
n2

+ . . .



4.1. Cube of dimension n× n×m 71

+an

c1
1n c2

1n . . . cm
1n

...
...

...
...

c1
nn c2

nn . . . cm
nn

 .

Since (a1, . . . , an) ∈ Fn
2 \ {0}, the DaF(x) of F with respect to a is given by

nonzero linear combinations of matrices C∗∗j for j = 1, . . . , n.

Remark 4.3. The matrices Ck
∗∗, k = 1, . . . , m are symmetric matrices with diagonal

entries zero. The rank distribution of all possible nonzero linear combinations
of the matrices Ck

∗∗, k = 1, . . . , m determine the Walsh spectrum of F [6].
The rank distribution of all possible nonzero linear combinations of the matrices
C∗∗j, j = 1, . . . , n determine the number of solutions of F(x+ a)+ F(x)+ F(a) = 0.

Example 4.4. Let F be a quadratic homogeneous Boolean function from F4
2 to F3

2
defined by

F(x1, x2, x3, x4) =

 f1(x1, x2, x3, x4)

f2(x1, x2, x3, x4)

f3(x1, x2, x3, x4)

 ,

where f1(x1, x2, x3, x4) = x1x3 + x2x3 + x2x4, f2(x1, x2, x3, x4) = x1x2 + x1x3 + x3x4,
f3(x1, x2, x3, x4) = x2x4 + x3x4. As, f1, f2, f3 are quadratic homogeneous Boolean
functions from F4

2 to F2. We can write them in terms of quadratic forms.

f1(x) = xQ1xT = (x1, x2, x3, x4)


0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f2(x) = xQ2xT = (x1, x2, x3, x4)


0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0




x1

x2

x3

x4



f3(x) = xQ3xT = (x1, x2, x3, x4)


0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0




x1

x2

x3

x4


Then DaF(x) with a ∈ Fn

2 \ {0} is

DaF(x) =
(

∑4
i=1 xi

(
∑4

j=1 c1
ijaj

)
, ∑4

i=1 xi

(
∑4

j=1 c2
ijaj

)
, ∑4

i=1 xi

(
∑4

j=1 c3
ijaj

))
(4.2)

Note that

C1
∗∗ = Q1 + QT

1 =


0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 , C2
∗∗ = Q2 + QT

2 =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0





72 Local changes in the quadratic APN cube

C3
∗∗ = Q3 + QT

3 =


0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 0


Here, Ck

∗∗, k = 1, 2, 3 are symmetric matrices of dimension 4 × 4 with main
diagonal entries zero. If we consider matrices in the cube Ck

∗∗, k = 1, 2, 3, then
these matrices correspond exactly to the coordinate functions f1, f2, f3.
We consider the equation ∑4

i=1 xi(∑4
j=1 c1

ijaj) from equation (4.2), which can be
described as

4

∑
i=1

xi(
4

∑
j=1

c1
ijaj) = (x1, x2, x3, x4)

a1


0
0
1
0

+ a2


0
0
1
1

+ a3


1
1
0
0

+ a4


0
1
0
0


 .

Consider the equation ∑4
i=1 xi(∑4

j=1 c2
ijaj) from equation (4.2), which can be de-

scribed as

4

∑
i=1

xi(
4

∑
j=1

c2
ijaj) = (x1, x2, x3, x4)

a1


0
1
1
0

+ a2


1
0
0
0

+ a3


1
0
0
1

+ a4


0
0
1
0


 .

Finally, consider the equation ∑4
i=1 xi(∑4

j=1 c3
ijaj) from equation (4.2), which can

be described as

4

∑
i=1

xi(
4

∑
j=1

c3
ijaj) = (x1, x2, x3, x4)

a1


0
0
0
0

+ a2


0
0
0
1

+ a3


0
0
0
1

+ a4


0
1
1
0


 .

After combining ∑4
i=1 xi(∑4

j=1 c1
ijaj),∑4

i=1 xi(∑4
j=1 c2

ijaj) and ∑4
i=1 xi(∑4

j=1 c3
ijaj), we

get

DaF(x) = (x1, x2, x3, x4)

a1


0 0 0
0 1 0
1 1 0
0 0 0

+ · · ·+ a4


0 0 0
1 0 1
0 1 1
0 0 0


 .

Since (a1, a2, a3, a4) ∈ F4
2 \ {0}, the DaF(x) is given by the nonzero linear combi-

nations of the matrices C∗∗j for j = 1, . . . , 4.

Quadratic APN cube (QAC)

Now, we consider quadratic homogeneous vectorial Boolean functions from Fn
2

to Fn
2 . We are interested in studying the APN property of quadratic homoge-

neous vectorial Boolean functions from Fn
2 to Fn

2 in terms of a cube of dimension



4.1. Cube of dimension n× n×m 73

n× n× n.
Let F be a quadratic homogeneous vectorial Boolean function from Fn

2 to Fn
2

defined by

F(x) =

 f1(x)
...

fn(x)

 , x ∈ Fn
2 .

Then, Ck
ij, 1 ≤ i, j, k ≤ n is called Quadratic APN Cube (QAC) if and only if it

satisfies the following two conditions.

• For k = 1, . . . , n, each matrix Ck
∗∗ is symmetric with main diagonal entries

are zero.

• For j = 1, . . . , n, every nonzero linear combination of matrices C∗∗j has rank
n− 1.

Theorem 4.5. Let F be a quadratic homogeneous vectorial Boolean function from Fn
2 to

Fn
2 defined by

F(x) =

 f1(x)
...

fn(x)

 ,

where f1(x), . . . , fn(x) are quadratic homogeneous Boolean functions from Fn
2 to F2.

Then
ΛF = max

a,b∈Fn
2

a 6=0

| {x ∈ Fn
2 : F(x + a) + F(x) = b} |= 2k

if and only if the smallest rank of any nonzero linear combination of n matrices C∗∗j,
j = 1, . . . , n, is n− k. In particular, F is APN on Fn

2 if and only if Ck
ij, 1 ≤ i, j, k ≤ n is

a quadratic APN cube.

Proof. Let

F(x) =

 f1(x)
...

fm(x)

 .

We define
DaF(x) = F(x + a) + F(x) + F(a).

Note that DaF(x) is a linear function. In order to find the maximum number of
solutions of DaF(x) = 0, we need to find the maximum dimension of the kernel
of DaF(x) for all a ∈ Fn

2 \ {0}.
It means that ΛF = 2k if and only if

max{dim(Ker(DaF(x))) | a ∈ Fn
2 , a 6= 0} = k.



74 Local changes in the quadratic APN cube

From Theorem 4.2, we know that

DaF(x) =
(

∑n
i=1 xi(∑n

j=1 c1
ijaj), . . . , ∑n

i=1 xi(∑n
j=1 cm

ij aj)
)

.

We can write the above equation as

DaF(x) = (x1, . . . , xn)

a1

c1
11 c2

11 . . . cn
11

...
...

...
...

c1
1n c2

1n . . . cn
1n

+ a2

c1
12 c2

12 . . . cn
12

...
...

...
...

c1
n2 c2

n2 . . . cn
n2

+ . . .

+an

c1
1n c2

1n . . . cn
1n

...
...

...
...

c1
nn c2

nn . . . cn
nn

 .

Then DaF(x) is given by the nonzero linear combinations of the matrices C∗∗j for
j = 1, . . . , n. The rank of the matrix obtained from the nonzero linear combina-
tions of matrices C∗∗j for j = 1, . . . , n actually determine the number of solutions
of DaF(x) = 0.
For all a ∈ Fn

2 \ {0}, if the matrix obtained from the nonzero linear combination
of the matrices C∗∗j for j = 1, . . . , n has rank n, then DaF(x) = 0 has a unique
solution. This is impossible because if x is a solution of DaF(x) = 0, then x + a
is another solution of DaF(x) = 0. Similarly, for all a ∈ Fn

2 \ {0}, if the matrix
obtained from the nonzero linear combinations of matrices C∗∗j for j = 1, . . . , n.
has rank n− k then DaF(x) = 0 has 2k solutions. Thus, ΛF = 2k if and only if
the maximum number of solutions of DaF(x) = 0 is 2k for a ∈ Fn

2 \ {0}.
Note that Ck

∗∗, k = 1, . . . , n are symmetric n × n matrices with main diago-
nal entries are zero. Consequently, a quadratic homogeneous vectorial Boolean
function F from Fn

2 to Fn
2 is APN if and only if Ck

ij, 1 ≤ i, j, k ≤ n is a quadratic
APN cube.

Remark 4.6. We have discussed the derivative of a quadratic homogeneous vecto-
rial Boolean function from Fn

2 to Fm
2 in terms of a cube of dimension n× n×m.

Assume that n = m, the derivative of a quadratic homogeneous APN function
from Fn

2 to Fn
2 is described in terms of a cube of dimension n× n× n which is

called QAC.
On the other hand, assume that m ≤ n/2, then the derivative of a quadratic
homogeneous vectorial bent function from Fn

2 to Fm
2 can also be described in

terms of a cube Ck
ij, 1 ≤ k ≤ m, 1 ≤ i, j ≤ n of dimension n× n×m. The cube

Ck
ij is called a Quadratic Vectorial Bent Cube (QVBC) if and only if it satisfies the

following two conditions.

• For k = 1, . . . , m, each matrix Ck
∗∗ is symmetric with main diagonal entries

are zero and every non-zero linear combination of the matrices Ck
∗∗ has

rank n.



4.2. Yu, Wang and Li (YWL) approach 75

• For j = 1, . . . , n, every non-zero linear combination of the matrices C∗∗j has
rank m.

In 2013, Yu, Wang and Li [7] proposed a guess and determine approach which
they used to construct several CCZ-inequivalent quadratic APN functions on F27

and F28 . In their approach, they modified certain elements of QAC Ck
ij, 1 ≤ i, j,

k ≤ n to obtain a new QAC Dk
ij, 1 ≤ i, j, k ≤ n. Now, we discuss the Yu, Wang

and Li approach in detail.

4.2 Yu, Wang and Li (YWL) approach

First, we discuss a very important property of QAC which is used by YWL in
their guess and determine approach for the construction of new quadratic APN
functions on F27 and F28 .
Let Ck

ij, k = 1, . . . , n, i = 1, . . . , r, j = 1, . . . , s be a r× s× n cube with r = s and

r, s ≤ n. The cube Ck
ij is called a proper cube if every non-zero linear combination

of C∗∗j, j = 1, . . . , s of dimension r × n has rank r − 1. We explain this property
with the help of the following example.

Example 4.7. Let F be the quadratic APN function from F24 to F24 defined by
F(x) = x3. We represent F24 as F2[α], where α4 + α + 1 = 0. We choose the basis
{1, α, α2, α3} both for input and output of F. We write x = x1 + x2α+ x3α2 + x4α3

and
x3 = (x1 + x2α + x3α2 + x4α3)3

After simplification, we get
x3 = (x1 + x1x3 + x2x3 + x2x4) · 1 + (x1x2 + x1x3 + x3x4 + x4) · α +

(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x3) · α2 +(x2 + x2x4 + x3 + x3x4 + x4) · α3.
Here,

f1(x1, x2, x3, x4) = x1 + x1x3 + x2x3 + x2x4.

f2(x1, x2, x3, x4) = x1x2 + x1x3 + x3x4 + x4.

f3(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x3.

f4(x1, x2, x3, x4) = x2 + x2x4 + x3 + x3x4 + x4.

Ignoring the linear terms in the above functions, we get the following quadratic
homogeneous Boolean functions

f1(x1, x2, x3, x4) = x1x3 + x2x3 + x2x4.

f2(x1, x2, x3, x4) = x1x2 + x1x3 + x3x4.

f3(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

f4(x1, x2, x3, x4) = x2x4 + x3x4.



76 Local changes in the quadratic APN cube

We write the quadratic homogeneous Boolean functions f1, f2, f3, f4 in terms
of quadratic forms as

f1(x) = xQ1xT = (x1, . . . , xn)


0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f2(x) = xQ2xT = (x1, . . . , xn)


0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0




x1

x2

x3

x4



f3(x) = xQ3xT = (x1, . . . , xn)


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0




x1

x2

x3

x4



f4(x) = xQ4xT = (x1, . . . , xn)


0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0




x1

x2

x3

x4

 .

Note that,

C1
∗∗ = Q1 + QT

1 =


0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 , C2
∗∗ = Q2 + QT

2 =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 ,

C3
∗∗ = Q3 + QT

3 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , C4
∗∗ = Q4 + QT

4 =


0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 0

 .

Here, Ck
∗∗, k = 1, . . . , 4 are symmetric matrices with main diagonal entries are

zero. Now, consider the subcube Ck
ij, k = 1, . . . , 4 and i, j = 1, . . . , 3 of dimension

3× 3× 4. We have

C1
∗∗ =

0 0 1
0 0 1
1 1 0

 , C2
∗∗ =

0 1 1
1 0 0
1 0 0

 ,

C3
∗∗ =

0 1 1
1 0 1
1 1 0

 , C4
∗∗ =

0 0 0
0 0 0
0 0 0

 .



4.2. Yu, Wang and Li (YWL) approach 77

Note that the bold letter C is used to represent the subcube. For j = 1, . . . , 3, we
have the following matrices

C∗∗1 =

0 0 0 0
0 1 1 0
1 1 1 0

 , C∗∗2 =

0 1 1 0
0 0 0 0
1 0 1 0

 , C∗∗3 =

1 1 1 0
1 0 1 0
0 0 0 0


One can check that the Rank(C∗∗j) = 2, j = 1, . . . , 3 and all possible non-zero
linear combinations of these matrices also have rank equal to 2. So the cube
Ck

ij, k = 1, . . . , 4, 1 ≤ i, j ≤ 3 is a proper subcube.

From the definition of QAC Ck
ij, 1 ≤ i, j, k ≤ n, we know that the nonzero

linear combinations of matrices C∗∗j, j = 1, . . . , n has rank n− 1. We can choose

a subcube Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n − 1 from the QAC Ck

ij, 1 ≤ i, j, k ≤ n.

The subcube Ck
ij has n matrices of dimension (n − 1× n − 1). One can check

that for j = 1, . . . , n− 1, every nonzero linear combination of the matrices C∗∗j of
dimension (n− 1× n) has rank n− 2.
In order to discuss the YWL approach, first, we need to look at the positions of
the QAC where we want to change the values in order to get a new QAC.
First, we construct a QAC Ck

ij, 1 ≤ i, j, k ≤ n from the known quadratic APN
function. For each 1 ≤ k ≤ n, we have the following matrix

Ck
ij =


0 ck

12 . . . ck
1n−1 ck

1n
...

...
...

...
...

ck
n−11 ck

n−12 . . . 0 ck
n−1n

ck
n1 ck

n2 . . . ck
nn−1 0

 .

For each value of k, we want to reassign the values in the last column and the
last row of each matrix. It means that we need to change the following values

Ck
ij =


0 ck

12 . . . ck
1n−1 ck

1n
...

...
...

...
...

ck
n−11 ck

n−12 . . . 0 ck
n-1n

ck
n1 ck

n2 . . . ck
nn-1 0

 .

For each value of k, the change in the last column and the last row of each
corresponding matrix is reflected in the derivative matrix C∗∗j, j = 1, . . . , n in the
following way.
For j = 1, we have the following matrix

C∗∗1 =


0 0 . . . 0

c1
21 c2

21 . . . cn
21

...
...

...
...

c1
n−11 c2

n−11 . . . cn
n−11

c1
n1 c2

n1 . . . cn
n1

 .



78 Local changes in the quadratic APN cube

For j = 2, we have the following matrix

C∗∗2 =


c1

12 c2
12 . . . cn

12
0 0 . . . 0
...

...
...

...
c1

n−12 c2
n−12 . . . cn

n−12
c1

n2 c2
n2 . . . cn

n2

 .

Similarly, for j = n, we have the following matrix

C∗∗n =


c1

1n c2
1n . . . cn

1n
...

...
...

...
c1

n-1n c2
n-1n . . . cn

n-1n
0 0 . . . 0

 .

The YWL approach is an elegant approach for the construction of new quadratic
APN functions from Fn

2 to Fn
2 . It works in the following way:

First choose a subcube Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n − 1 from the QAC

Ck
ij, 1 ≤ i, j, k ≤ n. The subcube Ck

ij has n matrices of dimension (n− 1× n− 1).

We want to construct a new cube Dk
ij, 1 ≤ i, j, k ≤ n using the subcube

Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 1 in such a way that the new cube Dk

ij is again a
QAC.
The procedure for the construction of the new cube Dk

ij is as follows:
For each 1 ≤ k ≤ n, we have the following matrix

Dk
∗∗ =


0 ck

12 . . . ck
1n−1 dk

1n
...

...
...

...
...

ck
n−11 ck

n−12 . . . 0 dk
n-1n

dk
n1 dk

n2 . . . dk
nn-1 0

 .

For each value of k, the change in the last column and the last row of each
corresponding matrix is reflected in the derivative matrix D∗∗j, j = 1, . . . , n in the
following way.
For j = 1, we have the following matrix

D∗∗1 =


0 0 . . . 0

c1
21 c2

21 . . . cn
21

...
...

...
...

c1
n−11 c2

n−11 . . . cn
n−11

d1
n1 d2

n1 . . . dn
n1





4.2. Yu, Wang and Li (YWL) approach 79

For j = 2, we have the following matrix

D∗∗2 =


c1

12 c2
12 . . . cn

12
0 0 . . . 0
...

...
...

...
c1

n−12 c2
n−12 . . . cn

n−12
d1

n2 d2
n2 . . . dn

n2


Similarly, for j = n, we have the following matrix

D∗∗n =


d1

1n d2
1n . . . dn

1n
...

...
...

...
d1

n-1n d2
n-1n . . . dn

n-1n
0 0 . . . 0


For j = 1, we need to choose a vector (d1

n1, d2
n1, . . . , dn

n1) ∈ Fn
2 in such a way that it

is not contained in the subspace generated by the row vectors {(c1
21, c2

21, . . . , cn
21),

. . . , (c1
n−11, c2

n−11, . . . , cn
n−11)} of D∗∗1. We use the vector (d1

n1, d2
n1, . . . , dn

n1) as a
row vector in the matrix D∗∗1. Then D∗∗1 has n− 1 linearly independent rows and
one zero row. It means that the rank of the matrix D∗∗1 is n− 1.
For j = 2, we only choose a vector (d1

n2, d2
n2, . . . , dn

n2) ∈ Fn
2 which is not contained

in the subspace generated by the row vectors {(c1
12, c2

12, . . . , cn
12), . . . ,

(c1
n−12, c2

n−12, . . . , cn
n−12)} of D∗∗2. We use the vector (d1

n2, d2
n2, . . . , dn

n2) as a row
vector in the matrix D∗∗2. Then D∗∗2 has n− 1 linearly independent rows and one
zero row. It means that the rank of the matrix D∗∗2 is n− 1.
The important condition is that the sum of the matrices D∗∗1 and D∗∗2 also has
rank n− 1. Assume that the sum of the matrices D∗∗1 and D∗∗2 does not have rank
n− 1, then we need to choose again a vector (d1

n2, d2
n2, . . . , dn

n2) ∈ Fn
2 and repeat

the same procedure.
Similarly, for j = 3, 4, . . . , n − 1, we use the new vectors in the matrices
D∗∗3, D∗∗4, . . . , D∗∗n−1 respectively and check the ranks of each matrix. If the
rank of each matrix for j = 3, 4, . . . , n − 1 is n − 1 and all possible non-
zero linear combinations of these matrices also have rank n− 1, then the cube
Dk

ij, 1 ≤ i, j, k ≤ n is a quadratic APN cube. Note that for j = n, the last row of
D∗∗n is zero. So, we do not need to find a new row vector in this case.
Now, we explain the YWL approach with the help of an example.

Example 4.8. From Example 4.7 and for j = 1, . . . , 4, we have the following
matrices.

C∗∗1 =


0 0 0 0
0 1 1 0
1 1 1 0
0 0 1 0

 , C∗∗2 =


0 1 1 0
0 0 0 0
1 0 1 0
1 0 1 1

 ,



80 Local changes in the quadratic APN cube

C∗∗3 =


1 1 1 0
1 0 1 0
0 0 0 0
0 1 1 1

 , C∗∗4 =


0 0 1 0
1 0 1 1
0 1 1 1
0 0 0 0

 .

One can check that the Rank(C∗∗1) = Rank(C∗∗2) = Rank(C∗∗3) = Rank(C∗∗4) = 3
and all possible non-zero linear combinations of these matrices also have rank
equal to 3.
Now, we want to apply the YWL approach to construct new quadratic APN
function. We only need to change the last row and last column of each matrix
Ck

ij, 1 ≤ i, j, k ≤ 4 in such a way that the resulting cube also satisfies the proper-
ties of QAC.
First, consider the subcube Ck

ij, 1 ≤ k ≤ 4 and 1 ≤ i, j ≤ 3 of dimension 3× 3× 4.
We have

C1
∗∗ =

0 0 1
0 0 1
1 1 0

 , C2
∗∗ =

0 1 1
1 0 0
1 0 0

 ,

C3
∗∗ =

0 1 1
1 0 1
1 1 0

 , C4
∗∗ =

0 0 0
0 0 0
0 0 0

 .

We want to construct a cube Dk
ij, 1 ≤ i, j, k ≤ 4, using the subcube Ck

ij, 1 ≤ k ≤ 4 and

1 ≤ i, j ≤ 3. In the new cube Dk
ij, 1 ≤ i, j, k ≤ 4, the values in the last row and

column of Dk
ij are not known.

For k = 1, we have the following matrix

D1
∗∗ =


0 0 1 d1

14
0 0 1 d1

24
1 1 0 d1

34
d1

41 d1
42 d1

43 0

 .

For k = 2, we have the following matrix

D2
∗∗ =


0 1 1 d2

14
1 0 0 d2

24
1 0 0 d2

34
d2

41 d2
42 d2

43 0

 .

For k = 3, we have the following matrix

D3
∗∗ =


0 1 1 d3

14
1 0 1 d3

24
1 1 0 d3

34
d3

41 d3
42 d3

43 0

 .



4.2. Yu, Wang and Li (YWL) approach 81

For k = 4, we have the following matrix

D4
∗∗ =


0 0 0 D4

14
0 0 0 D4

24
0 0 0 D4

34
D4

41 D4
42 D4

43 0

 .

Now, we consider the matrices D∗∗j, j = 1, 2, 3, 4. These matrices are actually the
derivative matrices of the function F from F4

2 to F4
2.

For j = 1, we have the following matrix

D∗∗1 =


0 0 0 0
0 1 1 0
1 1 1 0

d1
41 d2

41 d3
41 d4

41

 .

For j = 2, we have the following matrix

D∗∗2 =


0 1 1 0
0 0 0 0
1 0 1 0

d1
42 d2

42 d3
42 d4

42

 .

For j = 3, we have the following matrix

D∗∗3 =


1 1 1 0
1 0 1 0
0 0 0 0

d1
43 d2

43 d3
43 d4

43

 .

For j = 4, we have the following matrix

D∗∗4 =


d1

14 d2
14 d3

14 d4
14

d1
24 d2

24 d3
24 d4

24
d1

34 d2
34 d3

34 d4
34

0 0 0 0

 .

Now, choose the following vectors from F4
2 as

(d1
41, d2

41, d3
41, d4

41) = (1, 0, 0, 1) ∈ F4
2,

(d1
42, d2

42, d3
42, d4

42) = (0, 1, 1, 1) ∈ F4
2,

(d1
43, d2

43, d3
43, d4

43) = (0, 0, 1, 1) ∈ F4
2.



82 Local changes in the quadratic APN cube

For j = 1, 2, 3, 4, the matrices D∗∗j become

D∗∗1 =


0 0 0 0
0 1 1 0
1 1 1 0
1 0 0 1

 , D∗∗2 =


0 1 1 0
0 0 0 0
1 0 1 0
0 1 1 1

 ,

D∗∗3 =


1 1 1 0
1 0 1 0
0 0 0 0
0 0 1 1

 , D∗∗4 =


1 0 0 1
0 1 1 1
0 0 1 1
0 0 0 0

 .

One can check that the Rank(D∗∗j) = 3, j = 1, . . . , 4 and all possible non-zero
linear combinations of these matrices have also rank equal to 3. It means that
Dk

ij, 1 ≤ i, j, k ≤ 4 is a new quadratic APN cube. For k = 1, 2, 3, 4, we have the
following matrices

D1
∗∗ =


0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

 , D2
∗∗ =


0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

 ,

D3
∗∗ =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 , D4
∗∗ =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

 .

As, we know that

D1
∗∗ = Q1 + QT

1 , D2
∗∗ = Q2 + QT

2 D3
∗∗ = Q3 + QT

3 D4
∗∗ = Q4 + QT

4 .

So, we have

f
′
1(X) = xQ1xT = (x1, . . . , x4)


0 0 1 1
0 0 1 0
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f
′
2(X) = xQ2xT = (x1, . . . , x4)


0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f
′
3(X) = xQ3xT = (x1, . . . , x4)


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0




x1

x2

x3

x4





4.3. The switching approach 83

f
′
4(X) = xQ4xT = (x1, . . . , x4)


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0




x1

x2

x3

x4


f
′
1(x1, x2, x3, x4) = x1x3 + x1x4 + x2x3.

f
′
2(x1, x2, x3, x4) = x1x2 + x1x3 + x2x4.

f
′
3(x1, x2, x3, x4) = x1x2 + x1x3 + x2x3 + x2x4 + x3x4.

f
′
4(x1, x2, x3, x4) = x1x4 + x2x4 + x3x4.

Here, F
′
= ( f

′
1, f

′
2, f

′
3, f

′
4) is also a quadratic APN function from F4

2 to F4
2 and F

′

is CCZ-equivalent with F.

4.3 The switching approach

In this section, we discuss a different point of view for the construction of new
APN functions from Fn

2 to Fn
2 : the Switching Approach. The idea of switching is

as follows.
Assume that we have an APN function F from Fn

2 to Fn
2 defined as

F(x) =

 f1(x)
...

fn(x)

 ,

where x = (x1, x2, . . . , xn) ∈ Fn
2 and f1(x), . . . , fn(x) are the coordinate functions

from Fn
2 to F2. If we replace or modify one coordinate function f1 of F by some

suitable Boolean function g1 from Fn
2 to F2 which more or less satisfies the same

properties as satisfied by f1, then the function G from Fn
2 to Fn

2 defined by

G(x) =


g1(x)
f2(x)

...
fn(x)

 ,

is an APN function. The function G is obtained via switching of the function F
from Fn

2 to Fn
2 .

The following Theorem gives a necessary and sufficient condition for a Boolean
function f from Fn

2 to F2 to produce another (not necessarily equivalent) APN
function.

Theorem 4.9. [30] Let F be an APN function from Fn
2 to Fn

2 . The function F
′

from Fn
2

to Fn
2 defined by

F
′
(x) =


f1(x)
f2(x)

...
fn(x)

+


f (x)

0
...
0





84 Local changes in the quadratic APN cube

is an APN function if and only if

f (x) + f (x + a) + f (y) + f (y + a) = 0

for all x, y, a ∈ Fn
2 with

F(x) + F(x + a) + F(y) + F(y + a) = 1,

where 1 = (1, 0, . . . , 0) ∈ Fn
2 .

Proof. Since F is an APN function, the equation

F(x + a) + F(x) = b, a, b ∈ Fn
2 , a 6= 0.

has at most 2 solutions. Now, we add a Boolean function f from Fn
2 to F2 to the

first coordinate function of the APN function F from Fn
2 to Fn

2 . We obtain the
function F

′
from Fn

2 to Fn
2 . The derivative of the function F

′
in the direction of

a = (a1, . . . , an) ∈ Fn
2 with a 6= 0 is

F(x + a) + F(x) +


f (x + a) + f (x)

0
...
0


and we have the following equation

F(x + a) + F(x) +


f (x + a) + f (x)

0
...
0

 = b. (4.3)

Now, we want to determine the number of solutions of the equation (4.3). As-
sume that F(x + a) + F(x) = b, then equation (4.3) becomes

f (x + a) + f (x) = 0.

Assume that F(x + a) + F(x) = b + 1, then equation (4.3) becomes

f (x + a) + f (x) = 1.

Therefore, equation (4.3) has at most 4 solutions. The solutions are for those
values of x for which

F(x + a) + F(x) ∈ {b, b + 1}.

Assume that there are 4 different solutions x, y, x + a, y + a, then we have

F(x + a) + F(x) +


f (x + a) + f (x)

0
...
0

 = b,



4.3. The switching approach 85

F(y + a) + F(y) +


f (y + a) + f (y)

0
...
0

 = b.

By the addition of above two equations, we get

F(x + a) + F(x) + F(y + a) + F(y) =


f (x + a) + f (x) + f (y + a) + f (y)

0
...
0


This is possible if and only if

f (x + a) + f (x) + f (y + a) + f (y) = 1,

and
F(x + a) + F(x) + F(y + a) + F(y) = 1,

holds which is a contradiction because we assume that

f (x + a) + f (x) + f (y + a) + f (y) = 0.

The switching approach introduced by Dillon changes only one coordinate
function of an APN function F from Fn

2 to Fn
2 to produce another APN function

G from Fn
2 to Fn

2 . The dimension of the image set of the mapping F + G from Fn
2

to Fn
2 is always 1.

Theorem 4.10. [67] Let F and G be functions from Fn
2 to Fn

2 . If F is the switching
of G, then the image set of the mapping F + G defined by x → F(x) + G(x) spans a
1-dimensional vector space.

Proof. Let F and G be the functions from Fn
2 to Fn

2 defined by

F(x) =

 f1(x)
...

fn(x)

 , G(x) =

g1(x)
...

gn(x)

 ,

where x = (x1, . . . , xn) ∈ Fn
2 . Assume that F(x) is the switching of G(x), which

means that f1(x) 6= g1(x) and fi(x) = gi(x), 2 ≤ i ≤ n. Hence,

F(x) + G(x) =

 f1(x) + g1(x)
...
0


shows that the dimension of the vectorspace generated by the image set of the
mapping F + G is equal to 1.



86 Local changes in the quadratic APN cube

In 2008, Budaghyan, Carlet and Leander [50] obtained an example of an APN
function by using the switching approach which is as follows.

Theorem 4.11. [50] Let F be the function from F2n to F2n defined by F(x) = x3 +Trn
1 (x9).

Then F is an APN function for any n ≥ 1.

Indeed, the function F(x) = x3 + Trn
1 (x9) from F2n to F2n is a switching over

F2 of the Gold APN function G(x) = x3 from F2n to F2n .
First, choose a basis A = (1, α1, α2, . . . , αn−1) of F2n over F2. Let (g0(x), g1(x), . . . ,
gn−1(x)) be the coordinate functions of the function G(x) with respect to the ba-
sis A. Then

G(x) = g0(x) · 1 + g1(x) · α1 + . . . + gn−1(x) · αn−1

and consequently,

F(x) = (g0(x) + Trn
1 (x9)) · 1 + g1(x) · α1 + . . . + gn−1 · αn−1.

It shows that F(x) is obtained from G(x) by switching over F2.

Remark 4.12. In 2009, Budaghyan, Carlet and Leander [51] obtained two more
infinite families of APN functions using switching approach which are M.10
and M.11 of Table 1.6.

In 2008, Edel and Pott [30] extensively studied the switching approach pro-
posed by Dillon. They generalized the Dillon switching approach by replacing
the Boolean function f from Fn

2 to F2 by c f , where c = (c1, . . . , cn) ∈ Fn
2 with

(c1, . . . , cn) 6= (0, . . . , 0). It is interesting to observe that the Edel and Pott switch-
ing approach can be iterated with the different values of c = (c1, . . . , cn) ∈ Fn

2
with (c1, . . . , cn) 6= (0, . . . , 0).
The following Theorem gives a necessary and sufficient condition for a Boolean
function f from Fn

2 to F2 to produce another APN function.

Theorem 4.13. [30] Let F be an APN function from Fn
2 to Fn

2 and c = (c1, . . . , cn) ∈ Fn
2 ,

c 6= 0. The function F + c f from Fn
2 to Fn

2 defined by

F(x) + c f (x) =


f1(x)
f2(x)

...
fn(x)

+


c1 f (x)
c2 f (x)

...
cn f (x)


is an APN function if and only if

f (x) + f (x + a) + f (y) + f (y + a) = 0,

F(x) + F(x + a) + F(y) + F(y + a) = c,

for all x, y, a ∈ Fn
2 .



4.3. The switching approach 87

Proof. Since, F is an APN function, then

F(x + a) + F(x) = b, a, b ∈ Fn
2 , a 6= 0.

has at most 2 solution.
Now, we add a Boolean function c f to the coordinate functions of an APN func-
tion F from Fn

2 to Fn
2 . We obtain the function F+ c f from Fn

2 to Fn
2 . The derivative

of the function F + c f in the direction of a = (a1, . . . , an) ∈ Fn
2 with a 6= 0 is

F(x + a) + F(x) + c( f (x + a) + f (x))

and we have the following equation

F(x + a) + F(x) + c( f (x + a) + f (x)) = b. (4.4)

We want to determine the number of solutions of equation (4.4). Assume that
F(x + a) + F(x) = b, then the equation (4.4) becomes

b + c( f (x + a) + f (x)) = b,

hence
f (x + a) + f (x) = 0.

So, if x is one solution then x + a is another solution.
Assume that F(x + a) + F(x) = b + c, then the equation (4.4) becomes

c + b + c( f (x + a) + f (x)) = b,

hence
c + c( f (x + a) + f (x)) = 0,

f (x + a) + f (x) = 1.

So, if x is one solution, then x + a is another solution. The equation (4.4) has at
most 4 solutions. The solutions are for those values of x for which

F(x + a) + F(x) ∈ {b, b + c}.

Assume that there are 4 different solutions x, y, x + a, y + a, then we have

F(x + a) + F(x) + c( f (x + a) + f (x)) = b,

F(y + a) + F(y) + c( f (y + a) + f (y)) = b.

By the addition of above two equations, we get

F(x + a) + F(x) + F(y + a) + F(y) = c( f (x + a) + f (x) + f (y + a) + f (y)).

This is possible if and only if

f (x + a) + f (x) + f (y + a) + f (y) = 1,



88 Local changes in the quadratic APN cube

and
F(x + a) + F(x) + F(y + a) + F(y) = c

holds which is a contradiction because we assume that

f (x + a) + f (x) + f (y + a) + f (y) = 0.

Remark 4.14. The Edel and Pott switching approach may change more than one
coordinate function of the function F from Fn

2 to Fn
2 . The Dillon switching ap-

proach is a particular case of the Edel and Pott switching approach. The Boolean
function f from Fn

2 to F2 depends on c, i.e. for different choices of c, we may get
different f ’s.

Theorem 4.13 suggest a way to find a Boolean function f from Fn
2 to F2 such

that F(x) + c f (x) is an APN function.
First, find all the 4-tuples (x, y, x + a, y + a) ∈ (Fn

2)
4 such that the following

equation holds:
F(x) + F(x + a) + F(y) + F(y + a) = c.

These 4-tuples give rise to constraints

f (x) + f (x + a) + f (y) + f (y + a) = 0.

We may view f as a vector of length 2n (coordinates are indexed by elements x in
Fn

2 and the entries of the vector are f (x)). The constraints are linear constraints,
and we may find f by solving the system of linear equations.
Now, we explain the switching approach with the help of an example.

Example 4.15. Let F be the APN function from F25 to F25 defined by F(x) = x3.
We represent F32 as F2[α] where α5 + α2 + 1 = 0. Choose a basis {1, α, α2, α3, α4}
of F25 over F2. We write x = x1 + x2α + x3α2 + x4α3 + x5α4 and obtain

x3 = (x1 + x2α + x3α2 + x4α3 + x5α4)3

After simplification, we get
x3 = f1(x1, . . . , x5) · 1+ f2(x1, . . . , x5) · α+ f3(x1, . . . , x5) · α2 + f4(x1, . . . , x5) · α3 +

f5(x1, . . . , x5) · α4

where,
f1(x1, . . . , x5) = x4x5 + x3x5 + x4x5 + x3x4 + x1x5 + x3x5 + x2x3 + x2x4 + x1.
f2(x1, . . . , x5) = x5 + x4x5 + x4 + x2x5 + x3 + x1x4 + x2x5 + x1x2.
f3(x1, . . . , x5) = x5 + x4x5 + x3x4 + x1x5 + x3x5 + x2x4 + x3x4 + x2x3 + x2x4 + x1x3

+ x1x2.
f4(x1, . . . , x5) = x5 + x4 + x2x5 + x3x4 + x1x5 + x3x5 + x3 + x1x4 + x2x5 + x1x4 + x2.
f5(x1, . . . , x5) = x3x5 + x4x5 + x4 + x2x5 + x2x4 + x3x4 + x1x5 + x2x3 + x1x3.



4.3. The switching approach 89

Now, choose a vector u = (1, 0, 0, 1, 0) ∈ F5
2. We need to find x, y, a ∈ F5

2 such
that

F(x) + F(x + a) + F(y) + F(y + a) = u

Using computer, we found 960 linear equations in 32 variables x1, x2, . . . , x32.
After solving the system of linear equations, we have 21 linear equation in 32
variables x1, x2, . . . , x32. We describe these linear equations in a matrix A of di-
mension (21× 32) as follows.

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1


(21×32)

Now, we have a linear transformation T : F32
2 −→ F21

2 defined as x −→ A · x,
where x = (x1, . . . , x32) ∈ F32

2 . We need to find the kernel of the linear map T to
determine the Boolean function f from F5

2 to F2. The kernel of the linear map T
is the set of solutions of the equation A · x = 0, that is,

Ker(A) = {x ∈ F32
2 | A · x = 0}.

We have computed the basis of Ker(A). We write the basis in terms of a matrix
B of dimension (11× 32) which is as follows.

B =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0


(11×32)

The dimension of the basis is 11. It means that there are 211 possible candidates



90 Local changes in the quadratic APN cube

for the Boolean function f from F5
2 to F2 such that the function G(x) = F(x)+ c f (x)

from F5
2 to F5

2 is an APN function. We have 211 possible APN functions. For sim-
plicity, we choose one Boolean function f from F5

2 to F2 which is as follows.

f (x1, x2, x3, x4, x5) = x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x2 + x3x5 + x4.

The function G from F5
2 to F5

2 defined by

G(x1, x2, x3, x4, x5) =


g1(x1, x2, x3, x4, x5)

f2(x1, x2, x3, x4, x5)

f3(x1, x2, x3, x4, x5)

g4(x1, x2, x3, x4, x5)

f5(x1, x2, x3, x4, x5)


where
g1(x1, . . . , x5) = x4x5 + x3x5 + x4x5 + x3x4 + x1x5 + x3x5 + x2x3 + x2x4 + x1 +

(x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x2 + x3x5 + x4).
f2(x1, . . . , x5) = x5 + x4x5 + x4 + x2x5 + x3 + x1x4 + x2x5 + x1x2.
f3(x1, . . . , x5) = x5 + x4x5 + x3x4 + x1x5 + x3x5 + x2x4 + x3x4 + x2x3 + x2x4 + x1x3

+ x1x2.
g4(x1, . . . , x5) = x5 + x4 + x2x5 + x3x4 + x1x5 + x3x5 + x3 + x1x4 + x2x5 + x1x4

+ x2 + (x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x2 + x3x5 + x4).
f5(x1, . . . , x5) = x3x5 + x4x5 + x4 + x2x5 + x2x4 + x3x4 + x1x5 + x2x3 + x1x3.
is the switching of the function F from F5

2 to F5
2.

Note that, we have changed two coordinate functions of the function F from F5
2

to F5
2 to obtain the function G from F5

2 to F5
2.

It is interesting to observe that Edel and Pott found the first and currently the
only known sporadic example of a nonquadratic APN function from F6

2 to F6
2 by

using the switching approach. The nonquadratic APN function is described as
follows.

Theorem 4.16. [30] Let F be a functions from F26 to F26 defined as
F(x) = x3 + u17(x17 + x18 + x20 + x24) + u14(Tr6

1(u
52x3 + u6x5 + u19x7 + u28x11 +

u2x13) + u18x9 + u36x18 + u72x36 + x21 + x42),
where u is the primitive root of F26

The equivalent representation of this nonquadratic APN function F from F26

to F26 in F6
2 is as follows.

Let
F(x) = G(x) + u14 f (x),

where
G(x) = x3 + u17(x17 + x18 + x20 + x24)

and

f (x) = Tr6
1(u

52x3 +u6x5 +u19x7 +u28x11 +u2x13)+u18x9 +u36x18 +u72x36 + x21 + x42.



4.3. The switching approach 91

We represent F26 as F2[α], where α6 + α4 + α3 + α + 1 = 0. We choose the basis
{1, α, α2, α3, α4, α5} both for input and output of G. We write

x = x1 + x2α + x3α2 + x4α3 + x5α4 + x6α5

and
G(x) = (x1 + x2α + x3α2 + x4α3 + x5α4 + x6α5)17 + u17((x1 + x2α + x3α2 +

x4α3 + x5α4 + x6α5)17 + (x1 + x2α + x3α2 + x4α3 + x5α4 + x6α5)18 + (x1 +

x2α + x3α2 + x4α3 + x5α4 + x6α5)20 + (x1 + x2α + x3α2 + x4α3 + x5α4 + x6α5)24)

After simplification, we get
G(x) = g1(x1, . . . , x6) · 1 + g2(x1, . . . , x6) · α + g3(x1, . . . , x6) · α2 +

g4(x1, . . . , x6) · α3 + g5(x1, . . . , x6) · α4 + g6(x1, . . . , x6) · α5,
where
g1(x1, . . . , x6) = x1x4 + x1 + x2x5 + x2x6 + x2 + x4x5 + x4x6 + x5x6.
g2(x1, . . . , x6) = x1x3 + x1x4 + x1x5 + x2x3 + x2x6 + x3x4 + x3x6 + x3 + x4x5 +

x4x6 + x4.
g3(x1, . . . , x6) = x1x2 + x1x3 + x2x4 + x2x5 + x2x6 + x3x5 + x3 + x4x6.
g4(x1, . . . , x6) = x1x2 + x1x4 + x1x5 + x2 + x2 + x3x5 + x3x6 + x4 + x4x5.
g5(x1, . . . , x6) = x1x2 + x1x4 + x1x5 + x2x5 + x2x6 + x3x5 + x4x5 + x5x6.
g6(x1, . . . , x6) = x1x2 + x1x4 + x1x6 + x2x5 + x3x4 + x3x5 + x4 + x4x6.
and
f (x1, x2, x3, x4, x5, x6) = x1x2x4 + x1x2x6 + x1x5 + x1x6 + x1 + x2x3x4 + x2x3x6 +

x2x4 + x2x5 + x2 + x3x4 + x3x6 + x4x5 + x4x6 + x4 + x6.
We observe that

F(x1, . . . , x6) =



f1(x1, . . . , x6)

f2(x1, . . . , x6)

f3(x1, . . . , x6)

f4(x1, . . . , x6)

f5(x1, . . . , x6)

f6(x1, . . . , x6)


=



g1(x1, . . . , x6)

g2(x1, . . . , x6)

g3(x1, . . . , x6)

g4(x1, . . . , x6)

g5(x1, . . . , x6)

g6(x1, . . . , x6)


+



0
f (x1, . . . , x6)

0
0

f (x1, . . . , x6)

0



In this example of a nonquadratic APN function F from F6
2 to F6

2, we add a cubic
Boolean function f from F6

2 to F2 into two coordinate functions of the function
G from F6

2 to F6
2.

Edel and Pott also proved that this example of a nonquadratic APN function
is CCZ-inequivalent to a crooked function and it is also CCZ-inequivalent to
known APN power mappings.

Remark 4.17. Finding new examples of nonquadratic APN functions from Fn
2 to

Fn
2 is still an open problem.



92 Local changes in the quadratic APN cube

4.4 Local changes in the quadratic APN cube

In Section 4.2, we discussed the YWL approach for the construction of quadratic
APN functions from Fn

2 to Fn
2 . In Section 4.3, we discussed the switching ap-

proach for the construction of APN functions from Fn
2 to Fn

2 . In the switching
approach, we made changes in one coordinate functions of the function F from
Fn

2 to Fn
2 . We are interested in applying changes in more than one coordinate

function of the function F from Fn
2 to Fn

2 . We introduce the concept of local
change. Local change means that we make small changes in the coordinate ma-
trices of a quadratic APN cube.
First, we apply the local changes in Quadratic APN cube of dimension n× n× n
defined over F2. After performing the local changes in a quadratic APN cube,
we can use the YWL approach to construct a new quadratic APN functions.
Let F be a quadratic APN function from Fn

2 to Fn
2 defined as

F(x) =

 f1(x)
...

fn(x)

 , x ∈ Fn
2 ,

where f1(x), . . . , fn(x) are quadratic homogeneous Boolean functions from Fn
2 to

F2. The function F can be describe in terms of the cube Ck
ij, 1 ≤ i, j, k ≤ n of

dimension n× n× n defined over F2. For k = 1, . . . , n, the matrix Ck
ij, 1 ≤ i, j ≤ n

corresponds to the coordinate function fk of F. We can write the coordinate
functions fk, k = 1, . . . , n corresponding to Ck

ij, 1 ≤ i, j ≤ n as

fk(x1, . . . , xn) = ∑
1≤i<j≤n

ck
i,jxixj, ck

i,j ∈ F2.

Single point local change

We discuss a very particular case of a local change. In this particular case, we
make a small change at one point in the coordinate matrix corresponding to one
coordinate function of F.
Assume that we can add x1x2, where x1, x2 ∈ F2 \ {0} in the first coordinate
function f1(x1, . . . , xn). The modified coordinate function f

′
1 corresponding to

C1
ij, 1 ≤ i, j ≤ n is

f
′
1(x1, . . . , xn) = ∑

1≤i<j≤n
c1

i,jxixj + x1x2, c1
i,j ∈ F2.

The coordinate functions fk, k = 2, . . . , n corresponding to Ck
ij, 1 ≤ i, j ≤ n are

fk(x1, . . . , xn) = ∑
1≤i<j≤n

ck
i,jxixj, ck

i,j ∈ F2.



4.4. Local changes in the quadratic APN cube 93

For k = 1, we have the following modified matrix

C1
ij =


0 c1

12 + 1 . . . c1
1n−1 c1

1n
c1

21 ++1 0 . . . c1
2n−1 c1

2n
...

...
...

...
...

c1
n−11 c1

n−12 . . . 0 c1
n−1n

c1
n1 c1

n2 . . . c1
nn−1 0

 .

As the matrix C1
ij is a symmetric matrix, so we add x

′
1x
′
2 in C1

21 too.
For k = 2, . . . , n, we have the following unchanged matrices

Ck
ij =


0 ck

12 . . . ck
1n−1 ck

1n
ck

21 0 . . . ck
2n−1 ck

2n
...

...
...

...
...

ck
n−11 ck

n−12 . . . 0 ck
n−1n

ck
n1 ck

n2 . . . ck
nn−1 0

 .

Note that this local change has changed the structure of the quadratic APN cube.
It means that for j = 1, . . . , n, every nonzero linear combinations of matrices C∗∗j
have not necessarily rank n − 1. In order to construct a new quadratic APN
functions from Fn

2 to Fn
2 . We use the following procedure.

Procedure:

First, we choose a subcube Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 1 from the modified cube

Ck
ij, 1 ≤ i, j, k ≤ n, here C denotes the subcube. The subcube Ck

ij has n matrices of

dimension (n− 1× n− 1). Now, we want to check that the subcube Ck
ij is proper

or not. Assume that the subcube Ck
ij is proper, it means that for j = 1, . . . , n− 1,

every nonzero linear combination of the matrices Ck
ij of dimension (n− 1× n)

has rank n− 2. Now, we may apply the YWL approach for the construction of
new QAC Dk

ij, 1 ≤ i, j, k ≤ n.

On the other hand, assume that the subcube Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 1 is

not proper. We need to choose a subcube of smaller dimension, that is, a subcube
Ck

ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 2 from the modified cube Ck
ij, 1 ≤ i, j, k ≤ n. The

subcube Ck
ij has n matrices of dimension (n − 2 × n − 2). We check that the

subcube Ck
ij is proper or not. Assume that the subcube Ck

ij is proper, it means

that for j = 1, . . . , n− 2, every non-zero linear combination of the matrices Ck
ij of

dimension (n− 2× n) has rank n− 3. Now, we may apply the YWL approach
two times for the construction of new QAC Dk

ij, 1 ≤ i, j, k ≤ n.

On the other hand, if the subcube Ck
ij, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 2 is not proper.

Then, we repeat the above procedure until we find the proper subcube and we
apply the YWL approach appropriate number of times for the construction of



94 Local changes in the quadratic APN cube

new cube Dk
ij, 1 ≤ i, j, k ≤ n. The new cube Dk

ij, 1 ≤ i, j, k ≤ n is a QAC.
We explain this procedure with the help of an example.

Example 4.18. We use the same function F from F24 to F24 as we discussed in
Example 4.7. For k = 1, . . . , 4, Ck

∗∗ are symmetric matrices with main diagonal
entries are zero.

C1
∗∗ = Q1 + QT

1 =


0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 , C2
∗∗ = Q1 + QT

1 =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 ,

C3
∗∗ = Q1 + QT

1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , C4
∗∗ = Q1 + QT

1 =


0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 0

 .

Now, we only change the entries C1
12 and C1

21 into 1. So, we have the modified
cube Mk

ij, 1 ≤ i, j, k ≤ n which is as follows

M1
∗∗ = Q1 + QT

1 =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 , M2
∗∗ = Q1 + QT

1 =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 ,

M3
∗∗ = Q1 + QT

1 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , M4
∗∗ = Q1 + QT

1 =


0 0 0 0
0 0 0 1
0 0 0 1
0 1 1 0

 .

Now, consider the subcube Ck
ij, 1 ≤ k ≤ 4 and 1 ≤ i, j ≤ 3 of dimension 3× 3× 4

from the modified cube Mk
ij, 1 ≤ i, j, k ≤ n.

C1
∗∗ =

0 1 1
1 0 1
1 1 0

 , C2
∗∗ =

0 1 1
1 0 0
1 0 0

 ,

C3
∗∗ =

0 1 1
1 0 1
1 1 0

 , C4
∗∗ =

0 0 0
0 0 0
0 0 0

 .

Note that Rank(C∗∗1) = 1, the subcube Ck
ij, 1 ≤ k ≤ 4 and 1 ≤ i, j ≤ 3 is not

proper.
Now, we choose the subcube Ck

ij, 1 ≤ k ≤ 4 and 1 ≤ i, j ≤ 2 of dimension
2× 2× 4 from the modified cube Mk

ij, 1 ≤ i, j, k ≤ n. Note that the subcube



4.4. Local changes in the quadratic APN cube 95

Ck
ij, 1 ≤ k ≤ 4 and 1 ≤ i, j ≤ 2 is proper.

We apply the YWL approach two times to get the new quadratic APN cube
Dk

ij, 1 ≤ i, j, k ≤ 4.
For k = 1, 2, 3, 4, we have the following matrices

D1
∗∗ =


0 1 1 0
1 0 1 0
1 1 0 0
1 0 0 0

 , D2
∗∗ =


0 1 1
1 0 1 0
0 1 0 0
1 0 0 0

 ,

D3
∗∗ =


0 1 0 0
1 0 0 1
0 0 0 0
0 1 0 0

 , D4
∗∗ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 .

As, we know that

D1
∗∗ = Q1 + QT

1 , D2
∗∗ = Q2 + QT

2 D3
∗∗ = Q3 + QT

3 D4
∗∗ = Q4 + QT

4 .

So, we have

f
′
1(X) = xQ1xT = (x1, . . . , x4)


0 1 1 0
0 0 1 0
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f
′
2(X) = xQ2xT = (x1, . . . , x4)


0 1 0 1
0 0 1 0
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f
′
3(X) = xQ3xT = (x1, . . . , x4)


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0




x1

x2

x3

x4



f
′
4(X) = xQ4xT = (x1, . . . , x4)


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




x1

x2

x3

x4


f
′
1(x1, x2, x3, x4) = x1x2 + x1x3.

f
′
2(x1, x2, x3, x4) = x1x2 + x1x4 + x2x3.

f
′
3(x1, x2, x3, x4) = x1x2 + x2x4.

f
′
4(x1, x2, x3, x4) = x3x4.

Here, F
′
= ( f

′
1, f

′
2, f

′
3, f

′
4) is also a quadratic APN function from F4

2 to F4
2 and F

′

is CCZ equivalent to F.



96 Local changes in the quadratic APN cube

Remark 4.19. We have discussed a very particular case of local changes. In gen-
eral, it is possible to change cube in more complicated way. If there exists a
subcube in the modified cube which is proper then we can construct a new
quadratic APN functions by using the YWL approach.

4.5 Computational results

In this section, we discuss several computational results which we performed on
quadratic APN cube of dimension n× n× n.

Remark 4.20. Note that in all of our computational results, we use default primi-
tive element of MAGMA v2.23− 9 for F2n .

Yu, Wang and Li have used their approach two times on the QAC Ck
i,j,

1 ≤ i, j, k ≤ n and constructed 471 CCZ-inequivalent quadratic APN func-
tions on F27 . They have also constructed 8157 CCZ-inequivalent quadratic APN
functions on F28 . On F28 , they have also checked that their CCZ-inequivalent
quadratic APN functions are not equal to a permutation.
We extend the Yu, Wang and Li work by computing the following so called
CCZ-invariants:

• ∆- and Γ- Rank.

• order of the automorphism groups of M(GF).

• Walsh spectrum.

of Yu, Wang and Li quadratic APN functions on F27 and F28 . We have listed our
computational results about these CCZ-invariants in Tables 4.1 and 4.2. We have
the following observations.

Result 4.21. In Tables 4.1 and 4.2, we found that there are several CCZ-inequivalent
quadratic APN functions which have same CCZ-invariants, that is, they have
same ∆-rank, Γ-rank, order of the automorphism groups of M(GF) and Walsh
spectrum.

Problem 4.1. It is an interesting problem to investigate that why so many CCZ-
inequivalent quadratic APN functions having same CCZ-invariant parameters.

In 2017, Kai-Uwe Schmidt at the fifth irsee conference which was held in
Germany has mentioned that there are few quadratic APN functions found by
Yu, Wang and Li have 7 valued Walsh spectrum. We have explicitly computed
the number of APN functions having 7 valued Walsh spectrum. We found that
there are 487 quadratic APN function on F28 having Walsh spectrum

{∗ − 64[6],−32[2240],−16[20880], 0[15600], 16[23664], 32[2880], 64[10]∗}



4.5. Computational results 97

Table 4.1: Quadratic APN functions from F27 to F27

No ∆-rank Γ-rank | M(GF) | Walsh spectrum # of APN functions
1 212 4048 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 201
2 212 4046 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 172
3 210 4048 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 3
4 212 4050 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 60
5 212 4044 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 32
6 212 4042 128 {∗ − 16[3556], 0[8128], 16[4572]∗} 3

and 12 quadratic APN functions on F28 having Walsh spectrum

{∗ − 64[12],−32[2100],−16[21360], 0[14880], 16[24208], 32[2700], 64[20]∗}

(the values in brackets [ ] denote the multiplicities of the Walsh coefficients and
the notion {∗ . . . ∗} indicates multisets).
Yu, Wang and Li have used Gold APN function F(x) = x3 to construct QAC and
generate several CCZ-inequivalent quadratic APN functions on F27 and F28 .
In our computational results, we choose known quadratic APN functions other
than Gold APN function and construct QAC corresponding to these quadratic
APN functions. We tried to find new examples of quadratic APN functions by
using Yu, Wang and Li approach. We discuss several cases for n = 6, 7, 8 in
Appendix A.



98 Local changes in the quadratic APN cube

Table 4.2: Quadratic APN functions from F28 to F28

No. ∆-Rank Γ-Rank | M(GF) | Walsh Spectrum # CCZ-inequivalent APN functions

1 454 14048 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

3168

2 454 14046 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

2696

3 454 14044 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

560

4 454 14050 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1116

5 454 14046 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

176

6 454 14044 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

42

7 454 14042 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

31

8 454 14048 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

204

9 454 14050 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

57

10 452 14048 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

32

11 452 14044 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

10

12 454 14042 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

3

13 452 14050 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

16

14 452 14048 256
{*-64[6],-32[2240],-16[20880],
0[15600],16[23664],32[2880],64[10]*}

5

15 452 14046 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

22

16 454 14032 768
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

17 454 14048 256
{*-64[12],-32[2100],-16[21360],
0[14880],16[24208],32[2700],64[20]*}

4

18 454 14040 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

19 454 14046 256
{*-64[12],-32[2100],-16[21360],
0[14880],16[24208],32[2700],64[20]*}

6

20 452 14050 512
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

21 454 14050 512
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

22 446 14044 768
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

23 450 14048 256
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

24 454 14030 768
{*-64[12],-32[2100],-16[21360],
0[14880],16[24208],32[2700],64[20]*}

1

25 446 14042 768
{*-32[2380],-16[20400],
0[16320],16[23120],32[3060]*}

1

26 454 14038 768
{*-64[12],-32[2100],-16[21360],
0[14880],16[24208],32[2700],64[20]*}

1



Chapter 5

Functions of the type
F(x) = x3 + Trn

1(x)L(x)

In this chapter, we are interested in studying some conditions on the function F
from F2n to F2n defined by

F(x) = xd + Trn
1 (x)L(x),

where L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n such that F is an APN function. First, we
consider the particular case d = 3, then we discuss different cases of d listed in
Table 1.2 such that F is an APN function.

5.1 Characterization of F(x) = x3 + Trn
1(x)L(x)

In Section 4.2, we have discussed the Yu, Wang and Li approach for the construc-
tion of new quadratic APN functions from Fn

2 to Fn
2 . Recall that a quadratic APN

function F from Fn
2 to Fn

2 can be described in terms of cube Ck
ij, 1 ≤ i, j, k ≤ n of

dimension n× n× n defined over F2.
For k = 1, the matrix C1

ij, 1 ≤ i, j ≤ n corresponds to the coordinate function f1

of F. We can write the coordinate functions f1 as

f1(x1, . . . , xn) = ∑
1≤i<j≤n−1

c1
i,jxixj + xnL1(x1, . . . , xn−1), c1

i,j ∈ F2.

Similarly, for k = 2, . . . , n, the matrices Ck
ij, 1 ≤ i, j ≤ n corresponds to the

coordinate functions fk of F. We can also write the coordinate functions fk as

fk(x1, . . . , xn) = ∑
1≤i<j≤n−1

ck
i,jxixj + xnLk(x1, . . . , xn−1), ck

i,j ∈ F2,

here, L1, . . . , Ln are linear mappings from Fn−1
2 to F2.

In Yu, Wang and Li approach, for k = 1, . . . , n, we change one row and column
corresponds to xn in the QAC Ck

ij with 1 ≤ i, j ≤ n to obtain a new QAC Dk
ij with



100 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

1 ≤ i, j, k ≤ n. This means we add xn times a linear mapping from Fn−1
2 to F2 in

each coordinate function of Ck
ij with 1 ≤ i, j, k ≤ n.

For k = 1, the coordinate functions f
′
1 corresponds to D1

ij, 1 ≤ i, j ≤ n is

f
′
1(x1, . . . , xn) = ∑

1≤i<j≤n−1
c1

i,jxixj + xn

(
L1(x1, . . . , xn−1) + L

′
1(x1, . . . , xn−1)

)
.

Similarly, for k = 2, . . . , n, the coordinate functions f
′
k corresponds to Dk

ij,
1 ≤ i, j ≤ n are

f
′
k(x1, . . . , xn) = ∑

1≤i<j≤n−1
ck

i,jxixj + xn

(
Lk(x1, . . . , xn−1) + L

′
k(x1, . . . , xn−1)

)
,

where, ck
i,j ∈ F2.

Yu, Wang and Li have constructed several CCZ-inequivalent quadratic APN
functions on F27 and F28 but they were unable to find an infinite family of APN
functions. In order to find an infinite family of APN functions, it might be useful
to have a representation in finite fields. The function

F(x) = x3 + Trn
1 (x)L(x),

where L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n can be obtained from a quadratic APN cube
corresponding to the Gold APN function F(x) = x3 by changing the entries ck

i,j

with 1 ≤ k ≤ n and i = n and j = n in the cube Ck
i,j, 1 ≤ i, j, k ≤ n.

Remark 5.1. The function

F(x) = x3 + Trn
1 (αx)L1(x) + Trn

1 (βx)L2(x), α, β ∈ F2n

where L1(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n and L2(x) = ∑n−1
i=0 bix2i

, bi ∈ F2n can be
obtained from a quadratic APN cube corresponding to the Gold APN function
F(x) = x3 by changing the entries ck

i,j with 1 ≤ k ≤ n, i = n, i = n− 1 and j = n
and j = n− 1 in the cube Ck

i,j, 1 ≤ i, j, k ≤ n.

We are interested in studying the conditions such that F is an APN function.
We can state the following lemma.

Lemma 5.2. For any positive integer n and a linear function L from F2n to F2n defined
by L(x) = ∑n−1

i=0 aix2i
, the function

F(x) = x3 + Trn
1 (x)L(x)

is APN if and only if for all a ∈ F2n , a 6= 0,

x2a + a2x + Trn
1 (x)L(a) + Trn

1 (a)L(x) 6= 0 if x 6= 0, a.



5.1. Characterization of F(x) = x3 + Trn
1 (x)L(x) 101

Proof. The function F is a quadratic function satisfying F(0) = 0. We can refor-
mulate the APN condition in the following way: For any a ∈ F2n , a 6= 0, we
have

F(x + a) + F(x) + F(a) = 0 if and only if x ∈ {0, a}.

The above equation is equivalent to the following:

F(x + a) + F(x) + F(a) = (x + a)3 + Trn
1 (x + a)L(x + a) + (x)3

+Trn
1 (x)L(x) + a3 + Trn

1 (a)L(a).

After simplification, we have

F(x + a) + F(x) + F(a) = x2a + a2x + Trn
1 (x)L(a) + Trn

1 (a)L(x) = 0.

Therefore, we have

x2a + a2x + Trn
1 (x)L(a) + Trn

1 (a)L(x) 6= 0 if and only if x 6= 0, a.

Now, we discuss further conditions on L(x) such that the function F from
F2n to F2n defined by F(x) = x3 + Trn

1 (x)L(x) is APN or not.

Proposition 5.3. Let n be a positive even integer. The functions F and G from F2n to
F2n defined by G(x) = x3 and F(x) = x3 + (x + x2)Trn

1 (x) are EA-equivalent.

Proof. Let L(x) = x + Trn
1 (x). We claim that

G(L(x)) = F(x) + Trn
1 (x).

Note that L(x) is a permutation for any even n and Trn
1 (1) = 0: Indeed,

x + Trn
1 (x) = y + Trn

1 (y),

x + y = Trn
1 (x + y)

if and only if x = y.
Furthermore, we have

G(L(x)) = (x + Trn
1 (x))3

= (x + Trn
1 (x))2(x + Trn

1 (x))

= (x2 + (Trn
1 (x))2)(x + Trn

1 (x))

We use the fact (Trn
1 (x))2 = Trn

1 (x) to obtain

G(L(x)) = x3 + (x + x2)Trn
1 (x) + Trn

1 (x),

which implies that
G(L(x)) = F(x) + Trn

1 (x).



102 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

In order to prove the Theorem 5.4, we need to define the following prelimi-
nary results. The Kloosterman sum of a ∈ F2n is defined as

K(a) = ∑
x∈Fn

2

(−1)Trn
1 (x−1+ax),

where, we interpret 0−1 = 0. For Kloosterman sums, the classical Weil inequality
[68] is as follows:

| K(a) |≤ 2
n
2+1

Theorem 5.4. Let F be a function from F2n to F2n defined as

F(x) = x3 + Trn
1 (x)x.

The function F is not an APN function for n ≥ 3.

Proof. We show that the equation

F(x + a) + F(x) = b

has more than two solutions for a, b ∈ F2n with a 6= 0. Note that F(x) is a
quadratic function, we can count the number of solutions of the equations

F(x + a) + F(x) + F(a) = 0.

This gives

F(x+ a)+ F(x)+ F(a) = (x+ a)3 +Trn
1 (x+ a)(x+ a)+ x3 +Trn

1 (x)x+ a3 +Trn
1 (a)a = 0.

After simplification, we have

x2a + a2x + Trn
1 (x)a + Trn

1 (a)x = 0. (5.1)

Assume that if Trn
1 (a) = 0, then equation (5.1) becomes

x2a + a2x + Trn
1 (x)a = 0. (5.2)

Case 1: Assume that Trn
1 (x) = 0, then equation (5.2) becomes

x2a + a2x = 0.

The above equation has two solutions which are {0, a}.
Case 2: Assume that Trn

1 (x) = 1, then equation (5.2) becomes

x2a + a2x + a = 0.

x2 + ax + 1 = 0. (5.3)

We want to prove that for some a with Trn
1 (a) = 0, equation (5.3) has solutions

with Trn
1 (x) = 1. If we are able to show that there exist at least one a such that



5.1. Characterization of F(x) = x3 + Trn
1 (x)L(x) 103

equation (5.3) has solutions with Trn
1 (x) = 1 and Trn

1 (a) = 0, then the function F
is not an APN function.
Let

x2 + ax + 1 = (x + b)
(

x +
1
b

)
,

we will show that there exist b with Trn
1 (b) = 1 and Trn

1

(
b + 1

b

)
= 0. This

implies that

x2 + (b +
1
b
)x + 1 = 0

has two solutions namely b and 1
b such that Trn

1 (b) = 1. Therefore, the function
F is not an APN function. Assume on the contrary that

#{b : Trn
1 (b) = 1 and Trn

1

(
b +

1
b

)
= 0} = 0

which implies that

#{b : Trn
1 (b) = 1 and Trn

1

(
1
b

)
= 1} = 0.

This means

∑
b∈F2n\H

(−1)Trn
1 (b
−1) = 2n−1,

where H = {b ∈ F2n : Trn
1 (b) = 0}. We need to show that

∑
b∈F2n\H

(−1)Trn
1 (b
−1) 6= 2n−1,

We know that

∑
b∈F2n

(−1)Trn
1 (b
−1) = ∑

b∈H
(−1)Trn

1 (b
−1) + ∑

b∈F2n\H
(−1)Trn

1 (b
−1) = 0.

From Kloosterman sum, we have

K(a) = ∑
b∈Fn

2

(−1)Trn
1 (b
−1+ab),

and

K(1) = ∑
b∈Fn

2

(−1)Trn
1 (b
−1+b)

= ∑
b∈H

(−1)Trn
1 (b
−1+b) + ∑

b∈F2n\H
(−1)Trn

1 (b
−1+b)

= ∑
b∈H

(−1)Trn
1 (b
−1) − ∑

b∈F2n\H
(−1)Trn

1 (b
−1)

= − ∑
b∈F2n\H

(−1)Trn
1 (b
−1) − ∑

b∈F2n\H
(−1)Trn

1 (b
−1)

= −2 ∑
b∈F2n\H

(−1)Trn
1 (b
−1)



104 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

which implies that

∑
b∈F2n\H

(−1)Trn
1 (b
−1) = −K(1)

2
.

We know that the Weil inequality states that for any non-zero a,

| K(a) |≤ 2
n
2+1,

which implies that

∑
b∈F2n\H

(−1)Trn
1 (b
−1) =| K(1)

2
|≤ 2

n
2 < 2n−1.

This shows that equation (5.3) has solutions and Trn
1 (a) = Trn

1 (b+
1
b ) = 0 implies

that both solutions are either Trace 1 or Trace 0. This shows that the function F
is not an APN function.

Remark 5.5. Faruk Göloğlu [69] suggests the proof of Theorem 5.4 using Kloost-
ermann sums.

Remark 5.6. Note that our computational results also shows that the function F
from F2n to F2n defined as

F(x) = x3 + Trn
1 (x)x2

is not an APN function for small values of n.

Remark 5.7. One of the reviewer of the thesis mentioned that the similar results
as of Theorem 5.4 and Remark 5.6 by using different methods has also been
mentioned in [60].

Remark 5.8. After the submission of the thesis, we have proved a necessary and
sufficient condition on L(x) such that F(x) = x3 +Trn

1 (x)L(x) is an APN function
which is as follows:
Let F be a function from F2n to F2n defined as

F(x) = x3 + Trn
1 (x)L(x).

Then F is APN if and only if

∑
x∈F2n\{0,1}

(−1)
Trn

1

(
x2L(x2+x)
(x2+x)3

)
− 1

2 ∑
x∈F2n\{0,1}

(−1)
Trn

1

(
L(x2+x)
(x2+x)3

)
= 2n−1 − 1.



5.2. Computational results for F(x) = xd + Trn
1 (x)L(x) 105

5.2 Computational results for F(x) = xd + Trn
1(x)L(x)

In this section, we discuss several computational results which are obtained by
using different values of the exponent d such that the function F from F2n to F2n

defined by
F(x) = xd + Trn

1 (x)L(x),

where L(x) = ∑n−1
i=0 aix2i

, ai ∈ F2n is an APN function.
We have listed our computational results in Tables 5.1, 5.2 and 5.3. Note that in
Tables 5.1, 5.2 and 5.3, we consider the particular case of L(x) in which ai ∈ F2.
We did some additional computation in case of the Gold APN function F(x) = x3

which is as follows.

Linearized polynomial of the form L(x) = ∑n−1
i=0 aix2i

, ai ∈ F22

We consider linearized polynomial of the form L(x) = ∑1
i=0 aix2i

, ai ∈ F22 .
For n = 6, we found 7 APN functions. All of them are CCZ-equivalent with
F(x) = x3.
For n = 8, we found 63 APN functions. One APN function is

F(x) = x3 + Tr8
1(x)(αTr8

2(x)).

It is CCZ-equivalent to the APN function

F(x) = x3 + β245x33 + β183x66 + β21x144

listed in Appendix 2 of [3].
Rest of them, that is 62 APN functions are CCZ-equivalent with either F(x) = x3

or F(x) = x3 + Tr8
1(x9), here α is the root of x2 + x + 1 and β is the root of

x8 + x4 + x3 + x2 + 1.
For n = 10, we found one APN functions F(x) = x3 + Tr10

1 (x)Tr10
1 (x). It is

already listed in Table 5.1.

Linearized polynomial of the form L(x) = ∑1
i=0 aix2i

, ai ∈ F2n

Now, we consider linearized polynomial of the form L(x) = ∑1
i=0 aix2i

, ai ∈ F2n .
For n = 6, we found 31 APN functions. All of them are CCZ-equivalent with
F(x) = x3.
For n = 8, we found 127 APN functions. All of them are CCZ-equivalent with
F(x) = x3

Based on our computational results on Gold APN function F(x) = x3, we have
formulated the following conjecture.

Conjecture 5.9. Let F(x) = x3 be an APN function from F2n to F2n . Let L = {L1(x),
L2(x), . . . , Ln(x)} be a set of linearized polynomials with coefficients in F2n . If



106 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

Table 5.1: Classification of F(x) = x3 + Trn
1 (x)L(x), L(x) = ∑n−1

i=0 aix2i
, ai ∈ F2

n No. L(x) CCZ-Equivalence

6
6.1 x + x2

x36.2 x4 + x8 + x16 + x32

6.3 Tr6
1(x)

7
7.1 x2 + x4 + x16

x37.2 x + x8 + x32 + x64

7.3 Tr7
1(x)

8

8.1 x + x2 x3

8.2 x + x8 + x32 + x128

Table 1.2: No. 9
8.3 x + x4 + x16 + x64

8.4 x2 + x8 + x32 + x128

8.5 x2 + x4 + x16 + x64

8.6 x4 + x8 + x16 + x32 + x64 + x128
x3

8.7 Tr8
1(x)

9 9.1 Tr8
1(x) x3

10
10.1 x + x2

x310.2 x4 + x8 + x16 + x32 + x64 + x128 + x256 + x512

10.3 Tr10
1 (x)

11 11.1 Tr11
1 (x) x3

G(x) = x3 + Trace(x)l(x) is APN function for each l ∈ L, then the set L is a vector
space.

Remark 5.10. Note that we make this conjecture for Gold APN function F(x) = x3

only, see for instance, Tables 5.2 and 5.3.

5.3 A possible approach for the construction of non-
quadratic APN function

There is one possible approach for the construction of nonquadratic APN func-
tions from F2n to F2n .
Let F be a quadratic APN function from F2n to F2n . We can describe F in terms
of cube Ck

ij, 1 ≤ i, j, k ≤ n of dimension n× n× n defined over F2.

In Yu, Wang and Li approach, we add xn times a linear mapping from Fn−1
2 to F2

in each coordinate function of Ck
ij with 1 ≤ i, j, k ≤ n to obtain a new quadratic

APN cube Dk
ij with 1 ≤ i, j, k ≤ n.

Yu, Wang and Li has used their approach for the construction of quadratic APN
functions. We can extend their approach to search for nonquadratic APN func-
tions.



5.3. A possible approach for the construction of nonquadratic APN function 107

Table 5.2: Classification of F(x) = xd + Trn
1 (x)L(x), L(x) = ∑n−1

i=0 aix2i
, ai ∈ F2,

n odd
n No. xd Families from Table 1.1 L(x) CCZ-Equivalence

7

7.1

x5

Gold

x2 Table 7:No.2.2 [30]
7.2 x + x2 + x32 Table 7:No.12.1[30]
7.3 x4 + x8 + x16 + x64 Table 7:No.12.1[30]
7.4 x + x4 + x8 + x16 + x32 + x64 Table 7:No.2.2 [30]
7.5 Tr7

1(x) x5

7.6

x9

x + x16 + x32 Table7:No.10.1[30]
7.7 x2 + x4 + x8 + x64 Table 7:No.10.1[30]
7.8 x2 + x4 + x32 Table 7:No.2.1[30]
7.9 x + x8 + x16 + x64 Table 7:No.2.1[30]
7.10 Tr7

1(x) x9

7.11 x13
Kasami

Tr7
1(x)

x13

7.12 x57 x57

7.13 x63 Inverse x63

9

9.1 x5
Gold

Tr9
1(x)

x5

9.2 x17 x17

9.3 x13
Kasami

x13

9.4 x241 x241

9.5 x19 Welch x19

9.6 x255 Niho x255

11

11.1 x5

Gold

Tr11
1 (x)

x5

11.2 x9 x9

11.3 x17 x17

11.4 x33 x33

11.5 x13

Kasami

x13

11.6 x57 x57

11.7 x241 x241

11.8 x993 x993

11.9 x35 Welch x35

11.10 x287 Niho x287

11.11 x1023 Inverse x1023

Table 5.3: Classification of F(x) = xd + Trn
1 (x)L(x), L(x) = ∑n−1

i=0 aix2i
, ai ∈ F2,

n even
n No. xd Families from Table 1.1 L(x) CCZ-Equivalence

8

8.1

x9 Gold

x + x2 + x32 + x128

x3 + x6 + x448.2 x4 + x8 + x16 + x64

8.3 x + x4 + x16 + x64

8.4 x2 + x8 + x32 + x128

8.5 x + x8

x98.6 x2 + x4 + x16 + x32 + x64 + x128

8.7 Tr8
1(x)

8.6 x57 Kasami Tr8
1(x) x57

10

10.1
x9 Gold

x + x8

x910.2 x2 + x4 + x16 + x32 + x64 + x128 + x256 + x512

10.3 Tr10
1 (x)

10.4 x57 Kasami Tr10
1 (x) Kasami

10.5 x339 Dobbertin Tr10
1 (x) Dobbertin



108 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

If we add xn times a nonlinear mapping from Fn−1
2 to F2 in coordinate function

of Ck
ij with 1 ≤ i, j, k ≤ n then we can get nonquadratic APN functions from Fn

2
to Fn

2 .
In terms of finite fields, if we add Trn

1 (x)Q(x) to any quadratic APN function F
from F2n to F2n , where Q(x) is any arbitrary polynomial from F2n to F2n then
we can also get a nonquadratic APN function from F2n to F2n .

Remark 5.11. Note that this approach is true for any APN functions from F2n to
F2n . If Q is a linear function, then it is a special case of YWL approach.

Computational results

In this section, we discuss some partial results for n = 6, 7, 8, 9, 10 and 11. In all
of these cases, we consider the following polynomial

Q(x) = ai,jx2i+2j
,

with i, j = 0, . . . , n− 1, i < j and ai,j ∈ F2n , ai,j 6= 0. In this computational results,
we used all possible Q(x).
1. For n = 6, we consider the quadratic APN functions listed in Table 1.5. We
added Tr6

1(x)Q(x) in each of the quadratic APN functions.
2. For n = 7, we consider the APN functions listed in Tables 1.2, 1.6 and Ap-
pendix 1 of Yu, Wang and Li paper [3]. We added Tr7

1(x)Q(x) in each of the
APN functions.
3. For n = 8, we consider the APN functions listed in Tables 1.2, 1.6 and Table 9
of Edel and Pott paper [30]. We added Tr8

1(x)Q(x) in each of the APN function.
4. For n = 9, 10, 11, we consider the APN functions listed in Tables 1.2 and 1.6.
We added Tr9

1(x)Q(x),Tr10
1 (x)Q(x) and Tr11

1 (x)Q(x) in each of the APN func-
tions respectively.
For n = 6, 7, 8, 9, 10, 11, we checked the APN property of the modified functions.
Unfortunately, we are unable to find any APN function.

Remark 5.12. Our computational results shows that for this very particular case of
the polynomial Q(x), it is not possible to find any nonquadratic APN functions
for n = 6, 7, 8, 9, 10, 11.

5.4 A new construction method for APN functions

In this section, we propose a new method for the construction of APN func-
tions from Fn

2 to Fn
2 . This method is based on the specific distribution of n− 2

dimensional subspaces of Fn
2 . Our proposed construction method is as follows.



5.4. A new construction method for APN functions 109

Theorem 5.13. Let F be an APN function from Fn
2 to Fn

2 . Let U be an n− 2 dimensional
subspace of Fn

2 and U0 = U, U1 = U + v1, U2 = U + v2 and U3 = U + v3 are the
four cosets of U such that Fn

2 = U0 ∪U1 ∪U2 ∪U3, where v1, v2, v3 ∈ Fn
2 . Let F

′
be

the function from Fn
2 to Fn

2 defined as

F
′
(x) =



F(x) + a0, for x ∈ U0,

F(x) + a1, for x ∈ U1,

F(x) + a2, for x ∈ U2,

F(x) + a3, for x ∈ U3,

with ai ∈ Fn
2 , i = 0, . . . , 3. The function F

′
is an APN function if and only if

F(x1) + F(x2) + F(x3) + F(x4) 6= a0 + a1 + a2 + a3

for all 2-dimensional affine subspaces {x1, x2, x3, x4} of Fn
2 with | {x1, x2, x3, x4}∩Ui |= 1

for all i.

Proof. Let U be an n− 2 dimensional subspace of V = Fn
2 . We decompose V into

four cosets of U such that V = U0 ∪U1 ∪U2 ∪U3, where U0 = U, U1 = U + v1,
U2 = U + v2 and U3 = U + v3 and v1, v2, v3 ∈ Fn

2 . Assume that F is an APN
function, it means that

F(x1) + F(x2) + F(x3) + F(x4) 6= 0

for all 2-dimensional affine subspaces {x1, x2, x3, x4} of Fn
2 . Recall that if

{x1, x2, x3, x4} is an affine 2-dimensional subspace of Fn
2 , then x1, x2, x3, x4 are

pairwise different and x1 + x2 + x3 + x4 = 0. Now, we discuss the distribution
of affine 2-dimensional subspaces {x1, x2, x3, x4} in Ui, i = 0, . . . , 3.
Assume that if x1, x2, x3 ∈ Ui, then x4 ∈ Ui, i = 0, . . . , 3. Now, assume that
x1, x2 ∈ Ui, x3 ∈ Uj and x4 ∈ Uk with i, j, k are pairwise different. Then,
x1 + x2 ∈ U0 and x3 + x4 /∈ U0. Therefore, x1 + x2 + x3 + x4 = 0 ∈ U0 is not pos-
sible. The only possible distributions of x1, x2, x3, x4 are either x1, x2, x3, x4 ∈ Ui
for some i or x1, x2 ∈ Ui and x3, x4 ∈ Uj with (i 6= j) or | {x1, x2, x3, x4} ∩Ui |= 1
for i = 0, 1, 2, 3.
Assume that

F
′
(x) =



F(x) + a0, for x ∈ U0,

F(x) + a1, for x ∈ U1,

F(x) + a2, for x ∈ U2,

F(x) + a3, for x ∈ U3,

with ai ∈ Fn
2 , i = 0, . . . , 3. Then

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4)



110 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

if | {x1, x2, x3, x4} ∩Ui |= 0 or 2 for all i.
Assume that | {x1, x2, x3, x4} ∩Ui |= 1 for i = 0, 1, 2, 3. Then, we have

F
′
(x1)+ F

′
(x2)+ F

′
(x3)+ F

′
(x4) = F(x1)+ F(x2)+ F(x3)+ F(x4)+ (a0 + a1 + a2 + a3).

Let A = a0 + a1 + a2 + a3. It means that

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4) + A.

So, the function F
′

is an APN function if and only if

F(x1) + F(x2) + F(x3) + F(x4) 6= A

for all 2 dimensional affine subspaces {x1, x2, x3, x4} of Fn
2 with

| {x1, x2, x3, x4} ∩Ui |= 1 for all i.

Computational Results

We apply Theorem 5.13 on the known examples APN functions for n = 6, 8 and
n = 10. First, we discuss the case n = 6.

Case n = 6

We choose quadratic APN function D.1 from Table 1.5. We apply Theorem 5.13
on D.1. We found the following example.

Example 5.14. Let F be an APN function from F26 to F26 defined as F(x) = x3.
First, we decompose F26 into four set U0, U1, U2, U3 such that

U0 = {x ∈ F26 : Tr6
2(x) = 0},

U1 = {x ∈ F26 : Tr6
2(x) = 1},

U2 = {x ∈ F26 : Tr6
2(x) = α},

U3 = {x ∈ F26 : Tr6
2(x) = α2},

where α is the root of x2 + x + 1.
Now, we choose all x1 ∈ U0, x2 ∈ U1, x3 ∈ U2 and x4 ∈ U3 in such a way that

x1 + x2 + x3 + x4 = 0.

Then, we compute

w = {F(x1) + F(x2) + F(x3) + F(x4)} ⊆ F26 ,

where x1 + x2 + x3 + x4 = 0 and xi ∈ Ui, i = 0, . . . , 3.
We found that T = F26 \ w = {0, β7, β14, β28, β35, β49, β56}, here β is the root of
x6 + x4 + x3 + x + 1.



5.4. A new construction method for APN functions 111

We can choose a0, a1, a2, a3 ∈ F26 such that a0 + a1 + a2 + a3 = β7. Assume that
if x ∈ U0, then F

′
(x) = F(x) + a0,

if x ∈ U1, then F
′
(x) = F(x) + a1,

if x ∈ U2, then F
′
(x) = F(x) + a2,

if x ∈ U3, then F
′
(x) = F(x) + a3.

Note that

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4) + β7.

Since
F(x1) + F(x2) + F(x3) + F(x4) 6= β7,

we have
F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) 6= 0

for all x1, x2, x3, x4 ∈ F26 with x1 + x2 + x3 + x4 = 0, as we know that Tr6
1(x) =

Tr2
1(Tr6

2(x)) = Tr6
2(x) + (Tr6

2(x))2. If Tr6
2(x) = 0, then Tr6

1(x) = 0. Similarly, if
Tr6

2(x) = 1, Tr6
2(x) = α, Tr6

2(x) = α2 then Tr6
1(x) = 0, Tr6

1(x) = 1, Tr6
1(x) = 1

respectively. This means if Tr6
1(x) = 1 then we add

β7α + β7α2 = β7(α + α2) = β7

to the function F(x) to obtain the function F
′
(x). The function F

′
from F26 to F26

is defined as
F
′
(x) = x3 + Tr6

1(x)(β7Tr6
2(x))

is an APN function.

Remark 5.15. We have checked the CCZ-equivalence of

F
′
(x) = x3 + Tr6

1(x)(β7Tr6
2(x))

with known examples of the APN functions. We found that F
′
(x) is CCZ-

equivalent to APN function D.2 of Table 1.5.
Note that for other values of T \ {0} in Example 5.14, we have CCZ-equivalent
APN functions with F

′
(x).

In the subsequent examples, we have tried all possible values of a0, a1, a2and a3

and we found several APN functions but all of them are CCZ-equivalent with
F
′
(x).

Also, note that checking CCZ-equivalence between F(x) and F
′
(x) means that

we are checking code equivalence between F(x) and F
′
(x).

Next, we choose quadratic APN function D.2 from Table 1.5. We apply The-
orem 5.13 on D.2. We found the following example.

Example 5.16. Let F be an APN function from F26 to F26 defined as

F(x) = x3 + β11x6 + βx9,



112 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

here β is the root of x6 + x4 + x3 + x + 1.
First, we decompose F26 into four set U0, U1, U2, U3 such that

U0 = {x ∈ F26 : Tr6
2(x) = 0},

U1 = {x ∈ F26 : Tr6
2(x) = 1},

U2 = {x ∈ F26 : Tr6
2(x) = α},

U3 = {x ∈ F26 : Tr6
2(x) = α2},

α is the root of x2 + x + 1.
Now, we choose all x1 ∈ U0, x2 ∈ U1, x3 ∈ U2 and x4 ∈ U3 in such a way that

x1 + x2 + x3 + x4 = 0.

Then, we compute

w = {F(x1) + F(x2) + F(x3) + F(x4)} ⊆ F26 ,

where x1 + x2 + x3 + x4 = 0 and xi ∈ Ui, i = 0, . . . , 3.
We found that T = F26 \ w = {0, β12, β21, β24, β27, β46, β58}.
We can choose a0, a1, a2, a3 ∈ F28 such that a0 + a1 + a2 + a3 = β12. Assume
that
if x ∈ U0, then F

′
(x) = F(x) + a0,

if x ∈ U1, then F
′
(x) = F(x) + a1,

if x ∈ U2, then F
′
(x) = F(x) + a2,

if x ∈ U3, then F
′
(x) = F(x) + a3.

Note that

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4) + β12.

Since
F(x1) + F(x2) + F(x3) + F(x4) 6= β12,

we have
F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) 6= 0

for all x1, x2, x3, x4 ∈ F28 with x1 + x2 + x3 + x4 = 0,
as we know that Tr6

1(x) = Tr2
1(Tr6

2(x)) = Tr6
2(x) + (Tr6

2(x))2.
If Tr6

2(x) = 0, then Tr6
1(x) = 0. Similarly, if Tr6

2(x) = 1, Tr6
2(x) = α, Tr6

2(x) = α2

then Tr6
1(x) = 0, Tr6

1(x) = 1, Tr6
1(x) = 1 respectively. This means if Tr6

1(x) = 1
then we add

β12α + β12α2 = β12(α + α2) = β12

to the function F(x) to obtain the function F
′
(x). The function F

′
from F26 to F26

is defined as
F
′
(x) = x3 + β11x6 + βx9 + Tr6

1(x)(β12Tr6
2(x))

is an APN function.



5.4. A new construction method for APN functions 113

Remark 5.17. We have checked the CCZ-equivalence of

F
′
(x) = x3 + β11x6 + βx9 + Tr6

1(x)(β12Tr6
2(x))

with known examples of APN functions. We found that F
′
(x) is CCZ-equivalent

to APN function D.2 of Table 1.5.
Note that for other values of T \ {0} in Example 5.16, we have CCZ-equivalent
APN functions with F

′
(x).

Similary, We apply Theorem 5.13 on D.3, . . . , D.13. We found the following
examples. Note that we use the same procedure as we discussed in Examples
5.14 and 5.16.

Example 5.18. The function F from F26 to F26 is defined as

F(x) = x3 + β17(x17 + x18 + x20 + x24) + Tr6
1(x)(β9Tr6

2(x))

is an APN function, here β is the root of x6 + x4 + x3 + x + 1.

Remark 5.19. We have checked the CCZ-equivalence of

F(x) = x3 + β17(x17 + x18 + x20 + x24) + Tr6
1(x)(β9Tr6

2(x))

with known examples of APN functions. We found that F(x) is CCZ-equivalent
to APN function D.13 of Table 1.5. In this example, we have T = {0, β9}.

Example 5.20. The function F from F26 to F26 is defined as

F(x) = β25x5 + x9 + β38x12 + β25x18 + β25x36 + Tr6
1(x)(β46Tr6

2(x))

is an APN function, here β is the root of x6 + x4 + x3 + x + 1.

Remark 5.21. We have checked the CCZ-equivalence of

F(x) = β25x5 + x9 + β38x12 + β25x18 + β25x36 + Tr6
1(x)(β46Tr6

2(x))

with known examples of APN functions. We found that F(x) is CCZ-equivalent
to APN function D.10 of Table 1.5. In this example, we have T = {0, β46}.

Example 5.22. The function F from F26 to F26 is defined as

F(x) = β34x6 + β52x9 + β48x12 + β6x20 + β9x33 + β23x34 + β25x40 +Tr6
1(x)(β36Tr6

2(x))

is an APN function, here β is the root of x6 + x4 + x3 + x + 1.

Remark 5.23. We have checked the CCZ-equivalence of

F(x) = β34x6 + β52x9 + β48x12 + β6x20 + β9x33 + β23x34 + β25x40 +Tr6
1(x)(β36Tr6

2(x))

with known examples of APN functions. We found that F(x) is CCZ-equivalent
to APN function D.13 of Table 1.5. In this example, we have T = {0, β36}.



114 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

Case n = 8

There are 8180 quadratic APN functions listed in Appendix 2 of YWL paper [3].
It is computationally intensive to apply Theorem 5.13 to 8180 quadratic APN
functions. We choose first 23 APN functions from Appendix 2 of YWL paper.
These 23 APN functions are also listed in Table 9 of Edel and Pott paper [30].
We apply Theorem 5.13 on these 23 APN functions. We found the following
examples.

Example 5.24. Let F be an APN function from F28 to F28 defined as F(x) = x3.
First, we decompose F28 into four set U0, U1, U2, U3 such that

U0 = {x ∈ F28 : Tr8
2(x) = 0},

U1 = {x ∈ F28 : Tr8
2(x) = 1},

U2 = {x ∈ F28 : Tr8
2(x) = α},

U3 = {x ∈ F28 : Tr8
2(x) = α2},

where α is the root of x2 + x + 1.
Now, we choose all x1 ∈ U0, x2 ∈ U1, x3 ∈ U2 and x4 ∈ U3 in such a way that

x1 + x2 + x3 + x4 = 0.

Then, we compute

w = {F(x1) + F(x2) + F(x3) + F(x4)} ⊆ F28 ,

where x1 + x2 + x3 + x4 = 0 and xi ∈ Ui, i = 0, . . . , 3.
We found that T = F28 \ w = {0, 1, β85, β170}, here β is the root of
x8 + x4 + x3 + x2 + 1. We can choose a0, a1, a2, a3 ∈ F28 such that a0 + a1 + a2 + a3

= β85. Assume that
if x ∈ U0, then F

′
(x) = F(x) + a0,

if x ∈ U1, then F
′
(x) = F(x) + a1,

if x ∈ U2, then F
′
(x) = F(x) + a2,

if x ∈ U3, then F
′
(x) = F(x) + a3.

Note that

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4) + β85.

Since
F(x1) + F(x2) + F(x3) + F(x4) 6= β85,

we have
F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) 6= 0

for all x1, x2, x3, x4 ∈ F28 with x1 + x2 + x3 + x4 = 0, as we know that Tr8
1(x) =

Tr2
1(Tr8

2(x)) = Tr8
2(x) + (Tr8

2(x))2. If Tr8
2(x) = 0, then Tr8

1(x) = 0. Similarly, if



5.4. A new construction method for APN functions 115

Tr8
2(x) = 1, Tr8

2(x) = α, Tr8
2(x) = α2 then Tr8

1(x) = 0, Tr8
1(x) = 1, Tr8

1(x) = 1
respectively. This means if Tr8

1(x) = 1 then we add

β85α + β85α2 = β85(α + α2) = β85

to the function F(x) to obtain the function F
′
(x).

The function F
′

from F28 to F28 is defined as

F
′
(x) = x3 + Tr8

1(x)(β85Tr8
2(x))

is an APN function.

Remark 5.25. We have checked the CCZ-equivalence of F
′
(x) = x3 +Tr8

1(x)(β85Tr8
2(x))

with known examples of APN functions. We found that F
′
(x) is CCZ-equivalent

to APN function

F(x) = x3 + β245x33 + β183x66 + β21x144

listed in Appendix 2 of [3].

Now, we apply Theorem 5.13 on the function F(x) = x9. We found the fol-
lowing example.

Example 5.26. Let F be an APN function from F28 to F28 defined as F(x) = x9.
First, we decompose F28 into four set U0, U1, U2, U3 such that

U0 = {x ∈ F28 : Tr8
2(x) = 0},

U1 = {x ∈ F28 : Tr8
2(x) = 1},

U2 = {x ∈ F28 : Tr8
2(x) = α},

U3 = {x ∈ F28 : Tr8
2(x) = α2},

where α is the root of x2 + x + 1.
Now, we choose all x1 ∈ U0, x2 ∈ U1, x3 ∈ U2 and x4 ∈ U3 in such a way that

x1 + x2 + x3 + x4 = 0.

Then, we compute

w = {F(x1) + F(x2) + F(x3) + F(x4)} ⊆ F28 ,

where x1 + x2 + x3 + x4 = 0 and xi ∈ Ui, i = 0, . . . , 3.
We found that T = F28 \ w = {0, 1, }.
We can choose a0, a1, a2, a3 ∈ F28 such that a0 + a1 + a2 + a3 = 1. Assume that
if x ∈ U0, then F

′
(x) = F(x) + a0,

if x ∈ U1, then F
′
(x) = F(x) + a1,

if x ∈ U2, then F
′
(x) = F(x) + a2,



116 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

if x ∈ U3, then F
′
(x) = F(x) + a3.

Note that

F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) = F(x1) + F(x2) + F(x3) + F(x4) + 1.

Since
F(x1) + F(x2) + F(x3) + F(x4) 6= 1,

we have
F
′
(x1) + F

′
(x2) + F

′
(x3) + F

′
(x4) 6= 0

for all x1, x2, x3, x4 ∈ F28 with x1 + x2 + x3 + x4 = 0, as we know that Tr8
1(x)

= Tr2
1(Tr8

2(x)) = Tr8
2(x) + (Tr8

2(x))2. If Tr8
2(x) = 0, then Tr8

1(x) = 0. Similarly,
if Tr8

2(x) = 1, Tr8
2(x) = α, Tr8

2(x) = α2 then Tr8
1(x) = 0, Tr8

1(x) = 1, Tr8
1(x) = 1

respectively. This means if Tr8
1(x) = 1 then we add

α + α2 = 1

to the function F(x) to obtain the function F
′
(x).

The function F
′

from F28 to F28 is defined as

F
′
(x) = x9 + Tr8

1(x)(Tr8
2(x))

is an APN function.

Remark 5.27. We have checked the CCZ-equivalence of F
′
(x) = x9 +Tr8

1(x)(Tr8
2(x))

with known examples of APN functions. We found that F
′
(x) is CCZ-equivalent

to APN function
F(x) = x3 + x6 + x44

listed in Appendix 2 of [3].

Now, we apply Theorem 5.13 on remaining 21 APN functions listed in Ap-
pendix 2 of [3]. We found the following examples. Note that we use the same
procedure as we discussed in Examples 5.24 and 5.26.

Example 5.28. The function F
′

from F28 to F28 is defined as

F
′
(x) = x3 + x6 + x72 + Tr8

1(x)(β85Tr8
2(x))

is an APN function, here β is the root of x8 + x4 + x3 + x2 + 1.

Remark 5.29. We have checked the CCZ-equivalence of

F
′
(x) = x3 + x6 + x72 + Tr8

1(x)(β85Tr8
2(x))

with known examples of APN functions listed in Appendix 2 of [3]. We found
that F

′
(x) is CCZ-equivalent to APN function

F(x) = x3 + β245x33 + β183x66 + β21x144.

In this example, we have T = {0, 1, β85, β170}. Note that for other values of
T \ {0}, we have CCZ-equivalent APN functions with F

′
(x).



5.4. A new construction method for APN functions 117

Example 5.30. The function F
′

from F28 to F28 is defined as

F
′
(x) = x3 + x6 + x144 + Tr8

1(x)(Tr8
2(x))

is an APN function.

Remark 5.31. We have checked the CCZ-equivalence of

F
′
(x) = x3 + x6 + x144 + Tr8

1(x)(Tr8
2(x))

with known examples of APN functions listed in Appendix 2 of [3]. We found
that F

′
(x) is CCZ-equivalent to APN function

F(x) = x9.

In this example, we have T = {0, 1}.

Example 5.32. The function F
′

from F28 to F28 is defined as
F
′
(x) = β126x192 + β119x144 + β221x132 + β222x129 + β79x96 + β221x72 + β187x66 + β148x48

+ β187x36 + β237x24 + β231x12 + β119x9 + β244x6 + β236x3 + Tr8
1(x)(Tr8

2(x))
is an APN function, here β is the root of x8 + x4 + x3 + x2 + 1.

Remark 5.33. We have checked the CCZ-equivalence of
F
′
(x) = β126x192 + β119x144 + β221x132 + β222x129 + β79x96 + β221x72 + β187x66 +

β148x48 + β187x36 + β237x24 + β231x12 + β119x9 + β244x6 + β236x3 + Tr8
1(x)(Tr8

2(x))
with known examples of APN functions listed in Appendix 2 of [3]. We found
that F

′
(x) is CCZ-equivalent to APN function

F(x) = x3 + x6 + x72.

In this example, we have T = {0, 1}.

Example 5.34. The function F
′

from F28 to F28 is defined as
F
′
(x) = β86x192 + β224x129 + β163x96 + β102x66 + β129x48 + β102x36 + β170x33 +

β14x24 + β170x18 + β101x12 + β58x6 + β254x3 + Tr8
1(x)(Tr8

2(x))
is an APN function, here β is the root of x8 + x4 + x3 + x2 + 1.

Remark 5.35. We have checked the CCZ-equivalence of
F
′
(x) = β86x192 + β224x129 + β163x96 + β102x66 + β129x48 + β102x36 + β170x33 +

β14x24 + β170x18 + β101x12 + β58x6 + β254x3 + Tr8
1(x)(Tr8

2(x))
with known examples of APN functions listed in Appendix 2 of [3]. We found
that F

′
(x) is CCZ-equivalent to APN function

F(x) = β126x192 + β119x144 + β221x132 + β222x129 + β79x96 + β221x72 + β187x66 +

β148x48 + β187x36 + β237x24 + β231x12 + β119x9 + β244x6 + β236x3 + Tr8
1(x)(Tr8

2(x)).
In this example, we have T = {0, 1}.



118 Functions of the type F(x) = x3 + Trn
1 (x)L(x)

Example 5.36. The function F
′

from F28 to F28 is defined as
F
′
(x) = β113x192 + β56x144 + β68x132 + β155x129 + β91x96 + β78x72 + β159x66 + β30x48

+ β194x36 + β14x33 + β238x24 + β91x18 + β100x12 + β96x9 + β222x6 + β178x3 +

Tr8
1(x)(Tr8

2(x))
is an APN function, here β is the root of x8 + x4 + x3 + x2 + 1.

Remark 5.37. We have checked the CCZ-equivalence of
F
′
(x) = β113x192 + β56x144 + β68x132 + β155x129 + β91x96 + β78x72 + β159x66 + β30x48 +

β194x36 + β14x33 + β238x24 + β91x18 + β100x12 + β96x9 + β222x6 + β178x3 +Tr8
1(x)(Tr8

2(x))
with known examples of APN functions listed in Appendix 2 of [3]. We found
that F

′
(x) is CCZ-equivalent to APN function

F(x) = x3 + β245x33 + β183x66 + β21x144.

In this example, we have T = {0, 1}.

Case n = 10

In this case, we applied Theorem 5.13 on the following functions
F1(x) = x3 (Gold APN function in Table 1.2)
F2(x) = x9 (Gold APN function in Table 1.2)
F3(x) = x57 (Kasami APN function in Table 1.2)
F4(x) = x339 (Dobbertin APN function in Table 1.2)
F5(x) = x6 + x33 + β31x192 (M.7 in Table 1.6)
F6(x) = x33 + x72 + β31x258 (M.7 in Table 1.6)
F7(x) = x3 + Tr10

1 (x9) (M.9 in Table 1.6)
F8(x) = x3 + β1012x33 Table 1.4

Remark 5.38. Unfortunately, we are unable to find the set w for the above listed
APN functions on F210 .



Chapter 6

Equivalence of Göloğlu infinite
family of APN functions

In Section 6.1, we discuss the Göloğlu infinite family of APN functions. In
Section 6.2, we prove that the Göloğlu family of APN functions is extended affine
equivalent to the Gold family of APN functions. In Section 6.3, we discuss an
error in MAGMA, which occurs during the testing of code equivalence between
the Göloğlu and the Gold family of APN functions.

6.1 Göloğlu family of APN functions

We have discussed in Theorem 4.11 that Budaghyan, Carlet and Leander found
an infinite family of APN functions by using the switching approach. It is an in-
teresting problem to find other families of APN functions similar to Budaghyan,
Carlet and Leander family of APN functions.
In 2015, Göloğlu found a family of APN functions which is similar to Budaghyan,
Carlet and Leander family of APN function. The Göloğlu family of APN func-
tions is described as follows.

Theorem 6.1. [70] Let Fk : F2n → F2n is a function defined by

Fk(x) = x2k+1 + (Trn
m(x))2k+1

and n = 2m, Trn
m(x) = x + x2m

. The function Fk is APN on F2n if and only if m is
even and gcd(k, n) = 1.

There are three interesting properties of the Göloğlu family of APN functions.
The first property of the Göloğlu family is that it is obtained by the addition of
a vectorial Boolean function to the Gold family of APN functions. The second
property of the Göloğlu family is that the polynomial coefficients are from the
simplest possible field F2. The third property of the Göloğlu family is that his
family of APN functions satisfies the subspace property. The subspace property



120 Equivalence of Göloğlu infinite family of APN functions

of vectorial Boolean function from F2n to F2n is defined in the following way.
Let n = 2m be a positive integer. A function F from F2n to F2n satisfies the
subspace property if there is an integer k such that

F(λx) = λ2k+1F(x)

for every λ ∈ F2m .
The subspace property is studied in the context of APN permutations with n
even. The first APN permutation was found in 2009 by Dillon [58] which is
CCZ-equivalent to the Kim function k from F26 to F26 . The Kim function is

k(x) = x3 + x10 + αx24,

where α is the primitive element of F∗26 . The Kim function is the only known
APN function that satisfies the subspace property.

6.2 Equivalence of Göloğlu APN functions

In this section, we prove that the Göloğlu family of APN functions is EA equiv-
alent to the Gold family of APN functions.

Theorem 6.2. Let n = 2m = 4t, where m is an even positive integer and t > 0. Let
Trn

m is the trace function from F2n to F2m : Trn
m(x) = x + xq, where q = 2m. The APN

function
F(x) = x2k+1 + (Trn

m(x))2k+1

is EA equivalent to Gold APN function

G(x) = xq2/2k+q

with gcd(k, n) = 1.

Proof. Let α be primitive element of F4. Let L1, L2 be the linear mappings defined
by

L1(x) = αx2kq + α2x2k

and
L2(y) = α2yq + αy.

Note that αq = α, α2k
= α2, α21−k

= α, α+ α2 = 1. The linear mappings L1(x) and
L2(x) are permutations. Indeed, it is easy to see that L1(x) = 0 and L2(y) = 0
have only 0 as a solution.
If L2(y) = 0, this implies that Lq

2(y) = 0, which gives

α2yq + αy = 0⇒ α2yq = αy



6.2. Equivalence of Göloğlu APN functions 121

and
(α2yq + αy)q = 0⇒ α2qyq2

= αqyq

Assume that y 6= 0, multiply both sides of the above equations, we get

α2q+2 = αq+1

α = α2

which contradicts the fact that α is the primitive element of F4.
Similarly, L1(x) = 0 implies that Lq

1(x) = 0, which gives

αx2kq + α2x2k
= 0⇒ αx2kq = α2x2k

and
(αx2kq + α2x2k

)q = 0⇒ αqx2kq2
= α2qx2kq

Assume that x 6= 0, multiply both sides of the above equations, we get

αq+1 = α2q+2

α2 = α

which contradicts the fact that α is the primitive element of F4. Now, we have

G ◦ L1(x) =
(

αx2kq + α2x2k
)q2/2k+q

=
(

αx2kq + α2x2k
)q2/2k (

αx2kq + α2x2k
)q

=
(

αq2/2k
xq3

+ α21−kq2
xq2
) (

αqx2kq2
+ α2qx2kq

)
=
(

α2xq + αx
) (

αx2k
+ α2x2kq

)
= α3x2k+q + α4x2kq+q + α2x2k+1 + α3x2kq+1

Since α3 = 1 and α2 + α = 1,then the above equation becomes

G ◦ L1(x) = x2k+q + αx2kq+q + α2x2k+1 + x2kq+1

=
(

α2 + α
)

x2k+q + αx2kq+q + α2x2k+1 +
(

α2 + α
)

x2kq+1

= α2x2k+q + αx2k+q + αx2kq+q + α2x2k+1 + α2x2kq+1 + αx2kq+1

After combining terms with same coefficients, we get

G ◦ L1(x) = α2
(

x2k+q + x2k+1 + x2kq+1
)
+ α

(
x2k+q + x2kq+q + x2kq+1

)



122 Equivalence of Göloğlu infinite family of APN functions

Re-arranging the terms, we get

G ◦ L1(x) = α2
(

x2k+1 + x2k+q + x2kq+1
)
+ α

(
x(2

k+1)q + x2kq+1 + x2k+q
)

= α2
(

x(2
k+1)q + x2kq+1 + x2k+q

)q
+ α

(
x(2

k+1)q + x2kq+1 + x2k+q
)

= α2
(

x2k+1 + (trn
m(x))2k+1

)q
+ α

(
x2k+1 + (trn

m(x))2k+1
)

= α2 (F(x))q + α (F(x))

= L2 ◦ F(x).

Remark 6.3. Note that G
′
(x) = (G(x))q = (xq2/2k+q)q = (x2m−k+1) is the equiva-

lent representation of G(x).
Remark 6.4. The above proof follows the same line of proof given in corollary 2
of [50].
Remark 6.5. Budaghyan, Helleseth, Li and Sun has independently uploaded the
same results on IACR archive [71].

6.3 MAGMA Computation Error

In this section, we discuss the reason why Göloğlu believes that his family of
APN functions is new up to CCZ-equivalence. As we know that there does not
exist any theoretical method for checking of CCZ-equivalence between two APN
functions. Göloğlu checked the CCZ-equivalence of his family of APN functions
with other infinite families of APN function by using the MAGMA [4] built in
test for code equivalence.
On F28 , he found that his family of APN functions is CCZ-equivalent to the Gold
family of APN function. On F212 , due to computational error in MAGMA built
in test for code equivalence, he found that his family of APN function is CCZ-
inequivalent to the Gold family of APN functions. After this observation on F212 ,
he claimed that his family of APN functions is new up to CCZ-equivalence.
One may think that it might be the case that MAGMA does not work for this
particular class of APN functions. We have tested other APN functions which
we know that they are EA equivalent with each other, see Proposition 5.3. We
found that MAGMA also gave error in these particular cases.
In Section 1.4, we have discussed several interesting CCZ-invariants. Among
these CCZ-invariant, one invariant is the order of automorphism groups of
M(GF). Recall that, if we describe the function F from Fn

2 to Fn
2 in the form

of matrix of dimension (2n + 1)× 2n as

HF :=

 1
x

F(x)


x∈Fn

2

,



6.3. MAGMA Computation Error 123

where the row space generated the code CF, then M(GF) is just the automor-
phism group of the code CF. In [30], authors have discussed certain conditions
on the order of automorphism groups of M(GF) which are as follows:

Theorem 6.6. If F is an APN mapping from Fn
2 to Fn

2 such that F(x + a) + F(x) is
affine for all a ∈ Fn

2 , then M(GF) contains an elementary abelian group of order 2n.

It follows that the order of automorphism group of linear code associated
with the Gold and the Göloğlu infinite family of APN function contain a factor of
2n. We have used MAGMA function to compute the order of the automorphism
groups of linear codes associated with the Gold and the Göloğlu infinite family
of APN functions on F212 . MAGMA computational results gave the output 1 as
the order of automorphism group of linear code associated with the Gold and
the Göloğlu infinite family of APN function respectively which is incorrect. This
shows that the MAGMA function for the computation of order of automorphism
group also gives incorrect results.

Remark 6.7. We have used MAGMA version v2.23− 9 in our computations. We
have also informed the MAGMA team about the malfunctioning cases that we
have observed.





Appendix A

Computational Results

Here, we discuss the computational results of Section 4.5. First, we start with
the case n = 6.

Case n = 6

For n = 6, Yu, Wang and Li used Gold APN function F(x) = x3 to construct
QAC Ck

ij, 1 ≤ i, j, k ≤ 6. They changed one row and column in Ck
ij, 1 ≤ i, j, k ≤ 6

to generate 13 CCZ-inequivalent quadratic APN functions.
We choose two quadratic APN functions other than Gold APN function which
are

F1(x) = x3 + α11x6 + α ∗ x9

and

F2(x) = x3 + αx24 + x9

from Table 1.5, where α is the root of x6 + x4 + x3 + x + 1.
We describe F1(x) and F2(x) in terms of QAC’s Ck

ij, 1 ≤ i, j, k ≤ 6 and Dk
ij,

1 ≤ i, j, k ≤ 6 respectively. We apply the Yu, Wang and Li approach to the QAC
Ck

ij, 1 ≤ i, j, k ≤ 6 and Dk
ij, 1 ≤ i, j, k ≤ 6 respectively. We found that the Yu,

Wang and Li approach generates 13 CCZ-inequivalent quadratic APN functions
using Ck

ij,

1 ≤ i, j, k ≤ 6 and Dk
ij, 1 ≤ i, j, k ≤ 6 respectively.

Remark A.1. Note that the classification of quadratic APN function for n = 6
is complete [56]. There are only 13 CCZ-inequivalent quadratic APN functions
listed in Table 1.5.
Our computational results show that we can also generate these 13 CCZ-inequivalent
quadratic APN functions from QAC’s corresponding to the functions F1(x) and
F2(x).



126 Computational Results

Case n = 7

For n = 7, we choose six quadratic APN functions including Gold APN function
from Table 7 [30] which are

F1(x) = x3,

F2(x) = x3 + x9 + x18 + x66,

F3(x) = x3 + x12 + x17 + x33,

F4(x) = x3 + x12 + x40 + x72,

F5(x) = x3 + x5 + x10 + x33 + x34

F6(x) = x3 + x6 + x34 + x40 + x72

here α is the root of x7 + x + 1. These quadratic APN functions have nice uni-
variate representation in F27 .
First, we describe F1 in terms of QAC Ck

ij, 1 ≤ i, j, k ≤ 7. We apply the YWL

approach to Ck
ij, 1 ≤ i, j, k ≤ 7. We found that the YWL approach generates 1

CCZ-inequivalent quadratic APN functions which is
G1(x) = α23 ∗ x80 + α59 ∗ x68 + α62 ∗ x66 + α61 ∗ x65 + α119 ∗ x48 + α28 ∗ x36 + α31 ∗ x34 +

α30 ∗ x33 + α64 ∗ x24 + α15 ∗ x18 + α79 ∗ x17 + α100 ∗ x12 + α103 ∗ x10 + α102 ∗ x9 + α51 ∗ x6 +

α115 ∗ x5 + α57 ∗ x3.

Remark A.2. Note that YWL approach on QAC Ck
ij, 1 ≤ i, j, k ≤ 7 that corre-

sponds to F1(x) generates several quadratic APN functions but all of them are
CCZ-equivalent with G1(x). The same observation holds for F2(x), . . . , F6(x).

Similarly, we describe F2(x), . . . , F6(x) in terms of QAC Ck
ij, 1 ≤ i, j, k ≤ 7

respectively. We apply the YWL approach to Ck
ij, 1 ≤ i, j, k ≤ 7 that corresponds

to F2(x), . . . , F6(x) respectively. We found the following results:
1. The QAC Ck

ij, 1 ≤ i, j, k ≤ 7 that corresponds to F2(x) generates 2 CCZ-
inequivalent quadratic APN functions which are
G2(x) = α2 ∗ x96 + α76 ∗ x80 + α120 ∗ x72 + α86 ∗ x68 + α74 ∗ x66 + α44 ∗ x65 + α2 ∗ x48

+ α80 ∗ x40 + α53 ∗ x33 + α79 ∗ x24 + α86 ∗ x20 + α74 ∗ x18 + α94 ∗ x17 + α37 ∗ x12 +

α43 ∗ x10 + α98 ∗ x9 + α10 ∗ x5 + α112 ∗ x3

and
G3(x) = α81 ∗ x96 + α101 ∗ x80 + α33 ∗ x72 + α126 ∗ x68 + α114 ∗ x66 + α44 ∗ x65 +

α74 ∗ x48 + α123 ∗ x40 + α68 ∗ x36 + α25 ∗ x34 + α76 ∗ x33 + α124 ∗ x24 + α103 ∗ x20 +

α112 ∗ x18 + α14 ∗ x17 + α77 ∗ x12 + α46 ∗ x10 + α27 ∗ x9 + α104 ∗ x6 + α40 ∗ x5 + α26 ∗ x3.
2. The QAC Ck

ij, 1 ≤ i, j, k ≤ 7 that corresponds to F3(x) generates 2 CCZ-
inequivalent quadratic APN functions which are
G4(x) = α120 ∗ x96 + α15 ∗ x80 + α117 ∗ x72 + α5 ∗ x68 + α2 ∗ x66 + x65 + α94 ∗ x48 + x40 +

α59 ∗ x36 + α89 ∗ x34 + α63 ∗ x33 + α2 ∗ x24 + α59 ∗ x20 + α32 ∗ x18 + α2 ∗ x17 + α36 ∗ x12 +

α42 ∗ x10 + α ∗ x9 + α18 ∗ x6 + α55 ∗ x5 + α115 ∗ x3

and



127

G5(x) = α4 ∗ x96 + α4 ∗ x80 + α84 ∗ x72 + α106 ∗ x68 + α4 ∗ x66 + α33 ∗ x65 + α92 ∗ x48

+ α101 ∗ x40 + α110 ∗ x36 + α109 ∗ x34 + α107 ∗ x33 + α53 ∗ x24 + α84 ∗ x20 + α8 ∗ x18 +

α109 ∗ x17 + α81 ∗ x12 + α35 ∗ x10 + α32 ∗ x9 + α67 ∗ x6 + α109 ∗ x5 + α122 ∗ x3.
3. The QAC Ck

ij, 1 ≤ i, j, k ≤ 7 that corresponds to F4(x) generates 3 CCZ-
inequivalent quadratic APN functions which are
G6(x) = α110 ∗ x96 + α9 ∗ x80 + α39 ∗ x72 + α43 ∗ x68 + α48 ∗ x66 + α49 ∗ x65 + α25 ∗ x48 +

α74 ∗ x40 + α8 ∗ x36 + α122 ∗ x34 + α84 ∗ x33 + α114 ∗ x24 + α74 ∗ x20 + α ∗ x18 + α120 ∗ x17 +

α67 ∗ x12 + α53 ∗ x10 + α48 ∗ x9 + α108 ∗ x6 + α38 ∗ x5 + α49 ∗ x3,
G7(x) = α102 ∗ x96 + α102 ∗ x80 + α30 ∗ x72 + α37 ∗ x68 + α106 ∗ x66 + α93 ∗ x65 + α63 ∗ x48 +

α22 ∗ x40 + α53 ∗ x36 + α109 ∗ x34 + α15 ∗ x33 + α19 ∗ x24 + α11 ∗ x20 + α54 ∗ x18 + α115 ∗ x17 +

α60 ∗ x12 + α104 ∗ x10 + α105 ∗ x9 + α99 ∗ x6 + α121 ∗ x5 + α108 ∗ x3

and
G8(x) = α80 ∗ x96 + α113 ∗ x80 + α101 ∗ x72 + α114 ∗ x68 + α119 ∗ x66 + α3 ∗ x65 + α113 ∗ x48 +

α117 ∗ x40 + α39 ∗ x36 + α ∗ x34 + α116 ∗ x33 + α119 ∗ x24 + α113 ∗ x20 + α115 ∗ x18 + α24 ∗ x17 +

α3 ∗ x12 + α59 ∗ x10 + α124 ∗ x9 + α52 ∗ x6 + α50 ∗ x5 + α26 ∗ x3.
4. The QAC Ck

ij, 1 ≤ i, j, k ≤ 7 that corresponds to F5(x) generates 6 CCZ-
inequivalent quadratic APN functions which are
G9(x) = α110 ∗ x96 + α100 ∗ x72 + α81 ∗ x68 + α103 ∗ x66 + α59 ∗ x65 + x48 + α92 ∗ x40 +

α38 ∗ x36 + α59 ∗ x34 + α79 ∗ x33 + α117 ∗ x24 + α98 ∗ x20 + α120 ∗ x18 + α76 ∗ x17 + α10 ∗ x12 +

α119 ∗ x10 + α3 ∗ x9 + α125 ∗ x6 + α55 ∗ x3,
G10(x) = α122 ∗ x96 + α50 ∗ x80 + α118 ∗ x72 + α117 ∗ x68 + α84 ∗ x66 + α99 ∗ x65 + α13 ∗ x48 +

α76 ∗ x40 + α106 ∗ x36 + α124 ∗ x34 + α43 ∗ x33 + α58 ∗ x24 + α118 ∗ x20 + α30 ∗ x18 + α13 ∗ x17 +

α86 ∗ x12 + α70 ∗ x10 + α64 ∗ x9 + α110 ∗ x6 + α70 ∗ x5 + α43 ∗ x3,
G11(x) = α75 ∗ x96 + α118 ∗ x80 + α53 ∗ x72 + α22 ∗ x68 + α22 ∗ x66 + α50 ∗ x65 + α14 ∗ x48 +

α66 ∗ x40 + α99 ∗ x36 + α99 ∗ x34 + α39 ∗ x33 + α90 ∗ x24 + α93 ∗ x20 + α126 ∗ x18 + α55 ∗ x17 +

α80 ∗ x12 + α38 ∗ x10 + α87 ∗ x9 + α74 ∗ x6 + α115 ∗ x5 + α30 ∗ x3,
G12(x) = α114 ∗ x96 + α87 ∗ x80 + α52 ∗ x72 + α46 ∗ x68 + α118 ∗ x66 + α34 ∗ x65 + α97 ∗ x48 +

α22 ∗ x40 + α120 ∗ x36 + α120 ∗ x34 + α51 ∗ x33 + α46 ∗ x24 + α96 ∗ x20 + α95 ∗ x18 + α41 ∗ x17 +

α13 ∗ x12 + α99 ∗ x10 + α48 ∗ x9 + α5 ∗ x6 + α43 ∗ x5 + α59 ∗ x3,
G13(x) = α68 ∗ x96 + α4 ∗ x80 + α85 ∗ x72 + α108 ∗ x68 + α3 ∗ x66 + α10 ∗ x65 + α116 ∗ x48 +

α67 ∗ x40 + α44 ∗ x36 + α99 ∗ x34 + α80 ∗ x33 + α66 ∗ x24 + α102 ∗ x20 + α37 ∗ x18 + x17 +

α98 ∗ x12 + α50 ∗ x10 + α35 ∗ x9 + α25 ∗ x6 + α54 ∗ x5 + α52 ∗ x3

and
G14(x) = α100 ∗ x96 + α12 ∗ x80 + α76 ∗ x72 + x68 + α106 ∗ x66 + α74 ∗ x65 + α71 ∗ x48 +

α29 ∗ x40 + α117 ∗ x36 + α122 ∗ x34 + α70 ∗ x33 + α104 ∗ x24 + α9 ∗ x20 + α37 ∗ x18 +

α117 ∗ x17 + α102 ∗ x12 + α126 ∗ x10 + α70 ∗ x9 + α98 ∗ x6 + α62 ∗ x5 + α113 ∗ x3.
5. The QAC Ck

ij, 1 ≤ i, j, k ≤ 7 that corresponds to F6(x) generates 3 CCZ-
inequivalent quadratic APN functions which are
G15(x) = α22 ∗ x96 + α92 ∗ x80 + α111 ∗ x72 + α101 ∗ x68 + α61 ∗ x66 + α86 ∗ x65 + α86 ∗ x48 +

α33 ∗ x40 + α124 ∗ x36 + α91 ∗ x34 + α74 ∗ x33 + α75 ∗ x24 + α57 ∗ x20 + α29 ∗ x18 + α16 ∗ x17 +

α16 ∗ x12 + α120 ∗ x10 + α15 ∗ x9 + α123 ∗ x6 + α8 ∗ x5 + α17 ∗ x3,
G16(x) = α56 ∗ x96 + α81 ∗ x80 + α13 ∗ x72 + α79 ∗ x68 + α38 ∗ x66 + α75 ∗ x65 + α5 ∗ x48 +



128 Computational Results

α80 ∗ x40 + α9 ∗ x36 + α43 ∗ x34 + α9 ∗ x33 + α28 ∗ x24 + α27 ∗ x20 + x18 + α5 ∗ x17 +

α106 ∗ x12 + α61 ∗ x10 + α123 ∗ x9 + α115 ∗ x6 + α56 ∗ x5 + α104 ∗ x3

and
G17(x) = α90 ∗ x96 + α104 ∗ x80 + α71 ∗ x72 + α24 ∗ x68 + α121 ∗ x66 + α95 ∗ x65 + α32 ∗ x48 +

α117 ∗ x40 + α75 ∗ x36 + α64 ∗ x34 + α125 ∗ x33 + α91 ∗ x24 + α117 ∗ x20 + α116 ∗ x18 +

α117 ∗ x17 + α2 ∗ x12 + α7 ∗ x10 + α63 ∗ x9 + α110 ∗ x6 + α116 ∗ x5 + α37 ∗ x3.
We have checked the CCZ-equivalence of G1(x), . . . , G17(x) with known exam-
ples of quadratic APN function given in Appendix 1 of YWL paper [3]. We
found that G1(x), . . . , G17(x) are contained in Appendix 1 of YWL paper.
Now, we are interested in applying the YWL approach on the EA-equivalent
examples of quadratic APN function.
First, we choose a random invertible matrix P of dimension 7× 7 over F2. We
compute

PTCk
ijP,

for k = 1, . . . , 7 to obtain EA equivalent QAC that corresponds to the function
F1(x). We apply the YWL approach to the PTCk

ijP, 1 ≤ i, j, k ≤ 6.
We found that the YWL approach generate 1 CCZ-inequivalent quadratic APN
functions which is
G14(x) = α121 ∗ x96 + α26 ∗ x80 + α121 ∗ x72 + α22 ∗ x68 + α9 ∗ x66 + α42 ∗ x65 + α40 ∗ x48 +

α85 ∗ x40 + α2 ∗ x36 + α80 ∗ x34 + α78 ∗ x33 + α74 ∗ x24 + α74 ∗ x20 + α68 ∗ x18 + α64 ∗ x17 +

α62 ∗ x12 + α50 ∗ x10 + α104 ∗ x9 + α34 ∗ x6 + α118 ∗ x5 + α100 ∗ x3.
We checked the CCZ-equivalence of G14(x) with the known examples of quadratic
APN functions. We found that G14(x) is CCZ-equivalent with G1(x). We repeat
the above procedure with 100 random invertible matrix. We always get 1 CCZ-
inequivalent quadratic APN function. This function is always CCZ-equivalent
with G1(x).

Remark A.3. We are unable to find new quadratic APN function for n = 7 by
apply YWL approach to F2(x), . . . , F6(x).

Now, we consider the case n = 8.

Case n = 8

For n = 8, we choose seven quadratic APN functions including Gold APN func-
tion which are

F1(x) = x3,

F2(x) = x3 + u125x33 + u183x66 + u21x144,

F3(x) = x3 + u65x18 + u120x66 + u135x144,

F4(x) = x9,

F5(x) = x3 + x17 + u16(x18 + x33) + u15x48,

F6(x) = x3 + u24x6 + u182x132 + u67x192



129

F7(x) = x3 + x5 + x18 + x40 + x66

from Table 9 [30], where α is the root of x8 + x4 + x3 + x2 + 1. These APN
functions have nice univariate representation in F28 .
First, we describe F1(x) in terms of QAC Ck

ij, 1 ≤ i, j, k ≤ 8. We apply the YWL

approach to Ck
ij, 1 ≤ i, j, k ≤ 8. We found that the YWL approach generate 2

CCZ-inequivalent quadratic APN functions which are
G1(x) = α145 ∗ x192 + α235 ∗ x144 + α130 ∗ x132 + α67 ∗ x130 + α214 ∗ x129 + α70 ∗ x96 +

α115 ∗ x72 + α155 ∗ x66 + α239 ∗ x65 + α160 ∗ x48 + α55 ∗ x36 + α247 ∗ x34 + α139 ∗ x33 +

α205 ∗ x24 + α245 ∗ x18 + α74 ∗ x17 + α100 ∗ x12 + α37 ∗ x10 + α184 ∗ x9 + α140 ∗ x6 +

α224 ∗ x5 + α67 ∗ x3,
G2(x) = α60 ∗ x192 + α150 ∗ x144 + α45 ∗ x132 + α138 ∗ x130 + α193 ∗ x129 + α240 ∗ x96 +

α30 ∗ x72 + α224 ∗ x66 + α126 ∗ x65 + α75 ∗ x48 + α225 ∗ x36 + α63 ∗ x34 + α118 ∗ x33 +

α120 ∗ x24 + α59 ∗ x18 + α216 ∗ x17 + α15 ∗ x12 + α108 ∗ x10 + α163 ∗ x9 + α209 ∗ x6 +

α111 ∗ x5 + α17 ∗ x3.

Remark A.4. Note that YWL approach on QAC Ck
ij, 1 ≤ i, j, k ≤ 8 that corre-

sponds to F1(x) generates several quadratic APN functions but all of them are
CCZ-equivalent with G1(x) and G2(x). The same observation holds for F2(x), . . . , F7(x).

Similarly, we describe F2(x), . . . , F7(x) in terms of QAC’s Ck
ij, 1 ≤ i, j, k ≤ 8

respectively. We apply the YWL approach to Ck
ij, 1 ≤ i, j, k ≤ 8 corresponding to

F2(x), . . . , F7(x) respectively. We found that the following results:
1. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F2(x) generates 1 CCZ-
inequivalent quadratic APN functions which is
G3(x) = α186 ∗ x192 + α157 ∗ x160 + α28 ∗ x144 + α188 ∗ x136 + α68 ∗ x132 + α5 ∗ x130 +

α158 ∗ x129 + α225 ∗ x96 + α148 ∗ x80 + α127 ∗ x72 + α7 ∗ x68 + α ∗ x66 + α174 ∗ x65 +

α11 ∗ x48 + α82 ∗ x40 + α217 ∗ x36 + α253 ∗ x34 + α147 ∗ x33 + α187 ∗ x24 + α67 ∗ x20 +

α102 ∗ x18 + α145 ∗ x17 + α198 ∗ x10 + α72 ∗ x9 + α78 ∗ x6 + α207 ∗ x5 + α150 ∗ x3.
2. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F3(x) generates 1 CCZ-
inequivalent quadratic APN functions which is
G4(x) = α252 ∗ x192 + α173 ∗ x160 + α226 ∗ x144 + α218 ∗ x136 + α98 ∗ x132 + α24 ∗ x130 +

α65 ∗ x129 + α136 ∗ x96 + α2 ∗ x80 + α181 ∗ x72 + α61 ∗ x68 + α15 ∗ x66 + α244 ∗ x65 +

α180 ∗ x48 + α173 ∗ x34 + α16 ∗ x33 + α225 ∗ x24 + α105 ∗ x20 + α46 ∗ x18 + α60 ∗ x17 +

α218 ∗ x10 + α61 ∗ x9 + α98 ∗ x6 + α196 ∗ x5 + α206 ∗ x3.
3. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F4(x) generates 2 CCZ-
inequivalent quadratic APN functions which are
G5(x) = α135 ∗ x192 + α225 ∗ x144 + α30 ∗ x136 + α120 ∗ x132 + α23 ∗ x129 + α60 ∗ x96 +

α136 ∗ x72 + α180 ∗ x66 + x65 + α150 ∗ x48 + α210 ∗ x40 + α45 ∗ x36 + α203 ∗ x33 + α226 ∗ x24 +

α15 ∗ x18 + α90 ∗ x17 + α121 ∗ x12 + α75 ∗ x10 + α177 ∗ x9 + α165 ∗ x6 + α240 ∗ x5 + α68 ∗ x3

and
G6(x) = α77 ∗ x136 + α ∗ x129 + α197 ∗ x72 + α121 ∗ x65 + α2 ∗ x40 + α181 ∗ x33 + α32 ∗ x24 +

α211 ∗ x17 + α182 ∗ x12 + α122 ∗ x10 + α224 ∗ x9 + α106 ∗ x5 + α46 ∗ x3.
4. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F5(x) generates 1 CCZ-



130 Computational Results

inequivalent quadratic APN functions which is
G7(x) = α8 ∗ x160 + α101 ∗ x144 + α173 ∗ x130 + α122 ∗ x129 + α128 ∗ x96 + α221 ∗ x80 +

α38 ∗ x66 + α242 ∗ x65 + α238 ∗ x48 + α233 ∗ x40 + α113 ∗ x36 + α84 ∗ x34 + α207 ∗ x33 +

α71 ∗ x24 + α206 ∗ x20 + α206 ∗ x18 + α123 ∗ x17 + α143 ∗ x10 + α92 ∗ x9 + α23 ∗ x6 +

α227 ∗ x5 + α134 ∗ x3.
5. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F6(x) generates 1 CCZ-
inequivalent quadratic APN functions which is
G8(x) = α116 ∗ x192 + α131 ∗ x160 + α161 ∗ x144 + α176 ∗ x136 + α190 ∗ x132 + α178 ∗ x130 +

α88 ∗ x129 + α24 ∗ x96 + α54 ∗ x80 + α69 ∗ x72 + α109 ∗ x68 + α33 ∗ x66 + α62 ∗ x65 +

α90 ∗ x36 + α84 ∗ x34 + α8 ∗ x33 + α120 ∗ x20 + α114 ∗ x18 + α38 ∗ x17 + α135 ∗ x12 +

α129 ∗ x10 + α53 ∗ x9 + α122 ∗ x6 + α125 ∗ x5 + α21 ∗ x3.
6. The QAC Ck

ij, 1 ≤ i, j, k ≤ 8 that corresponds to F7(x) generates 1 CCZ-
inequivalent quadratic APN functions which is
G9(x) = α194 ∗ x192 + α221 ∗ x160 + α194 ∗ x144 + α74 ∗ x136 + α232 ∗ x132 + α89 ∗ x130 +

α231 ∗ x129 + α101 ∗ x96 + α121 ∗ x80 + α230 ∗ x72 + α191 ∗ x68 + α42 ∗ x66 + α172 ∗ x65 +

α202 ∗ x48 + α111 ∗ x40 + α58 ∗ x36 + α234 ∗ x34 + α69 ∗ x33 + α173 ∗ x24 + α194 ∗ x20 +

α214 ∗ x18 + α127 ∗ x17 + α120 ∗ x12 + α191 ∗ x10 + α96 ∗ x9 + α251 ∗ x6 + α72 ∗ x5 + α212 ∗ x3.
We have checked the CCZ-equivalence of G1(x), . . . , G9(x) with known examples
of quadratic APN function given in Appendix 2 of YWL paper [3]. We found
that G1(x), . . . , G9(x) are contained in Appendix 2 of YWL paper.
Now, we are interested in applying the YWL approach on the EA-equivalent
examples of quadratic APN function.
Next, we choose a random invertible matrix P of dimension 8× 8 over F2. We
compute

PTCk
ijP,

for k = 1, . . . , 8 to obtain EA equivalent QAC that corresponds to the function
F1(x). We apply the YWL approach to PTCk

ijP, 1 ≤ i, j, k ≤ 8.
We found that the YWL approach generate 2 CCZ-inequivalent quadratic APN
functions which are
G10(x) = α146 ∗ x192 + α20 ∗ x160 + α124 ∗ x144 + α115 ∗ x136 + α184 ∗ x132 + α102 ∗ x130 +

α104 ∗ x129 + α84 ∗ x96 + α155 ∗ x80 + α79 ∗ x72 + α95 ∗ x68 + α14 ∗ x66 + α102 ∗ x65 +

α199 ∗ x48 + α229 ∗ x40 + α121 ∗ x36 + α175 ∗ x34 + α137 ∗ x33 + α175 ∗ x24 + α37 ∗ x20 +

α162 ∗ x18 + α239 ∗ x17 + α26 ∗ x12 + α215 ∗ x10 + α52 ∗ x9 + α227 ∗ x6 + α203 ∗ x5 + α214 ∗ x3

and
G11(x) = α100 ∗ x192 + α207 ∗ x160 + α26 ∗ x144 + α209 ∗ x136 + α232 ∗ x132 + α22 ∗ x130 +

α180 ∗ x129 + α39 ∗ x96 + α227 ∗ x80 + α106 ∗ x72 + α65 ∗ x68 + α162 ∗ x66 + α9 ∗ x65 +

α146 ∗ x48 + α116 ∗ x40 + α124 ∗ x36 + α227 ∗ x34 + α209 ∗ x33 + α111 ∗ x24 + α213 ∗ x20 +

α178 ∗ x18 + α234 ∗ x17 + α181 ∗ x12 + α66 ∗ x10 + α230 ∗ x9 + α40 ∗ x6 + α97 ∗ x5 + α62 ∗ x3.
We checked the CCZ-equivalence of G10(x) and G11(x) with the known exam-
ples of quadratic APN functions. We found that G10(x) is CCZ-equivalent with
G1(x) and G11(x) is CCZ-equivalent with G2(x). We repeat the above procedure
with 10 random invertible matrix and we always get 2 quadratic APN function



131

which are CCZ-equivalent with G1(x) and G2(x).

Remark A.5. We are unable to find new quadratic APN function for n = 8 by
apply YWL approach to F2(x), . . . , F7(x).





Bibliography

[1] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of Cryptology, 4(1):3–72, 1991.

[2] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances
in Cryptology, EUROCRYPT ’93, pages 386–397, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[3] Y. Yu, M. Wang, and Y. Li. A matrix approach for constructing quadratic
APN functions. Cryptology ePrint Archive, Report 2013/007, 2013.
https://eprint.iacr.org/2013/007.

[4] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[5] J. Daemen and V. Rijmen. AES proposal: Rijndael, 1999.

[6] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-holland Publishing Company, 2nd edition, 1978.

[7] Y. Yuyin, W. Mingsheng, and L. Yongqiang. A matrix approach for
constructing quadratic APN functions. Designs, Codes and Cryptography,
73(2):587–600, 2014.

[8] C. Carlet. Boolean functions for cryptography and error-correcting codes.
In Yves Crama and Peter L. Hammer, editors, Boolean Models and Methods in
Mathematics, Computer Science, and Engineering, pages 257–397. Cambridge
University Press, 2010.

[9] E. Berlekamp and L. Welch. Weight distributions of the cosets of the (32,6)
Reed-Muller code. IEEE Transactions on Information Theory, 18(1):203–207,
January 1972.

[10] N. Patterson and D. Wiedemann. The covering radius of the r.

[11] S. Kavut, S. Maitra, and M. D. Yücel. Search for Boolean functions with
excellent profiles in the rotation symmetric class. IEEE Transactions on Infor-
mation Theory, 53(5):1743–1751, 2007.



134 BIBLIOGRAPHY

[12] S. Kavut and M. D. Yücel. 9-variable boolean functions with nonlinearity
242 in the generalized rotation symmetric class. Information and Computation,
208(4):341 – 350, 2010.

[13] K.-U. Schmidt. Asymptotically optimal Boolean functions. Arxiv e-prints,
2017.

[14] O.S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A,
20(3):300 – 305, 1976.

[15] A. F. Webster and S. E. Tavares. On the design of s-boxes. Advances in
Cryptology — CRYPTO ’85 Proceedings, pages 523–534, 1986.

[16] B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle.
Propagation characteristics of Boolean functions. In Advances in Cryptology
— EUROCRYPT ’90, pages 161–173, Springer,Berlin, 1991.

[17] X. Lai. Additive and linear structures of cryptographic functions. In Bart
Preneel, editor, Fast Software Encryption, pages 75–85. Springer,Berlin, 1995.

[18] E. Jan-Hendrik. Linear structures in blockciphers. In Advances in Cryptology
— EUROCRYPT’ 87, pages 249–266, Springer,Berlin, 1988.

[19] C. Carlet. Vectorial boolean functions for cryptography. In Yves Crama and
Peter L. Hammer, editors, Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering, pages 398–473. Cambridge University Press,
2010.

[20] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and per-
mutations suitable for DES-like cryptosystems. Design Codes Cryptography,
15(2):125–156, 1998.

[21] K. Nyberg. On the construction of highly nonlinear permutations. In Ad-
vances in Cryptology — EUROCRYPT’ 92, pages 92–98, Springer,Berlin, 1993.

[22] F. Chabaud and S. Vaudenay. Links between differential and linear crypt-
analysis. In Advances in Cryptology — EUROCRYPT’94, pages 356–365,
Springer,Berlin, 1995.

[23] M. Brinkmann and G. Leander. On the classification of APN functions up
to dimension five. Designs, Codes and Cryptography, 49(1):273–288, 2008.

[24] X.-D. Hou. Affinity of permutations of Fn
2 . Discrete Applied Mathematics,

154(2):313 – 325, 2006.

[25] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and al-
most perfect nonlinear polynomials. IEEE Transactions on Information Theory,
52(3):1141–1152, 2006.



BIBLIOGRAPHY 135

[26] L Budaghyan and C Carlet. CCZ-equivalence of single and multi output
Boolean functions. Post-proceedings of the 9-th International Conference on Fi-
nite Fields and Their Applications Fq’09, Contemporary Math., AMS, 518:43–54,
2010.

[27] S. Yoshiara. Equivalences of quadratic APN functions. Journal of Algebraic
Combinatorics, 35(3):461–475, 2012.

[28] C. Bracken, E. Byrne, N. Markin, and G. McGuire. New families of
quadratic almost perfect nonlinear trinomials and multinomials. Finite
Fields and Their Applications, 14(3):703 – 714, 2008.

[29] D. R. Hughes and F. C. Piper. Design theory. Cambridge University Press,
Cambridge, second edition, 1988.

[30] Y. Edel and A. Pott. A new almost perfect nonlinear function which is not
quadratic. Advances in Mathematics of Communications, 3(1):59–81, 2009.

[31] R. Gold. Maximal recursive sequences with 3-valued recursive cross-
correlation functions. IEEE Transactions on Information Theory, 14(1):154–156,
January 1968.

[32] K. Nyberg. Differentially uniform mappings for cryptography. In Advances
in cryptology—EUROCRYPT ’93 (Lofthus, 1993), volume 765 of Lecture Notes
in Computer Science, page 55–64. Springer, Berlin, 1994.

[33] T. Kasami. The weight enumerators for several classes of subcodes of the
2nd order binary Reed-Muller codes. Information and Control, 18(4):369 –
394, 1971.

[34] H. Janwa and R. M. Wilson. Hyperplane sections of fermat varieties in P3 in
char. 2 and some applications to cyclic codes. In 10th International Symposium
on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes:AAECC-
10, pages 180–194, Springer, Berlin, 1993.

[35] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): the
welch case. IEEE Transactions on Information Theory, 45(4):1271–1275, May
1999.

[36] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): The
niho case. Information and Computation, 151(12):57 – 72, 1999.

[37] T. Beth and C. Ding. On almost perfect nonlinear permutations, chapter Ad-
vances in Cryptology — EUROCRYPT ’93, pages 65–76. Springer, Berlin,
1994.



136 BIBLIOGRAPHY

[38] H. Dobbertin. Almost perfect nonlinear power functions on GF(2n): A new case
for n divisible by 5, chapter Finite Fields and Applications: Proceedings of
The Fifth International Conference on Finite Fields and Applications Fq5,
held at the University of Augsburg, Germany, August 2–6, 1999, pages 113–
121. Springer, Berlin, 2001.

[39] M. Erickson and A. Vazzana. Introduction to number theory. Chapman &
Hall/CRC, 1st edition, 2007.

[40] L. Budaghyan and A. Pott. On differential uniformity and nonlinearity of
functions. Discrete Mathematics, 309(2):371 – 384, 2009.

[41] D. Jedlicka. APN monomials over GF(2n) for infinitely many n. Finite Fields
and Their Applications, 13(4):1006 – 1028, 2007.

[42] W. G. Solomon. Theory of transformation groups of polynomials over
GF(2) with applications to linear shift register sequences. Information Sci-
ences, 1(1):87 – 109, 1968.

[43] A. Canteaut, P. Charpin, and H. Dobbertin. Binary m-sequences with three-
valued crosscorrelation: a proof of welch’s conjecture. IEEE Transactions on
Information Theory, 46(1):4–8, Jan 2000.

[44] A. Canteaut, P. Charpin, and H. Dobbertin. Weight divisibility of cyclic
codes, highly nonlinear functions on Fm

2 , and crosscorrelation of maximum-
length sequences. SIAM Journal on Discrete Mathematics, 13(1):105–138, 2000.

[45] G. Lahaud and J. Wolfmann. The weights of the orthogonals of the ex-
tended quadratic binary goppa codes. IEEE Transactions on Information The-
ory, 36(3):686–692, May 1990.

[46] L. Budaghyan, C. Carlet, P. Felke, and G. Leander. An infinite class of
quadratic APN functions which are not equivalent to power mappings. In
2006 IEEE International Symposium on Information Theory, pages 2637–2641,
July 2006.

[47] L. Budaghyan, C. Carlet, and G. Leander. Two classes of quadratic APN
binomials inequivalent to power functions. IEEE Transactions on Information
Theory, 54(9):4218–4229, 2008.

[48] C. Bracken, E. Byrne, N. Markin, and G. McGuire. A few more quadratic
APN functions. Cryptography and Communications, 3(1):43–53, 2011.

[49] L. Budaghyan and C. Carlet. Classes of quadratic APN trinomials and
hexanomials and related structures. IEEE Transactions on Information Theory,
54(5):2354–2357, 2008.



BIBLIOGRAPHY 137

[50] L. Budaghyan, C. Carlet, and G. Leander. Constructing new APN functions
from known ones. Finite Fields and Their Applications, 15(2):150 – 159, 2009.

[51] L. Budaghyan, C. Carlet, and G. Leander. On a construction of quadratic
APN functions. In 2009 IEEE Information Theory Workshop, pages 374–378,
2009.

[52] C. Carlet. Relating three nonlinearity parameters of vectorial functions and
building APN functions from bent functions. Designs, Codes and Cryptogra-
phy, 59(1):89–109, 2011.

[53] Y. Zhou and A. Pott. A new family of semifields with 2 parameters. Ad-
vances in Mathematics, 234:43 – 60, 2013.

[54] Y. Edel, G. Kyureghyan, and A. Pott. A new APN function which is not
equivalent to a power mapping. IEEE Transactions on Information Theory,
52(2):744–747, 2006.

[55] J.F. Dillon. Slides from talk given at “polynomials over finite fields and
applications”, held at Banff International Research Station. 2006.

[56] Y. Edel. On quadratic APN functions and dimensional dual hyperovals.
Designs, Codes and Cryptography, 57(1):35–44, 2010.

[57] G. Leander. Algebraic problems in symmetric cryptography: two recent results on
highly nonlinear functions. Contemporary Mathematics 418, 2006.

[58] J.F. Dillon. Slides from talk given at conference “finite fields and their ap-
plications”, in dublin. 2009.

[59] A. E. Brouwer and L. M. G. M. Tolhuizen. A sharpening of the johnson
bound for binary linear codes and the nonexistence of linear codes with
preparata parameters. Designs, Codes and Cryptography, 3(2):95–98, 1993.

[60] P. B. Thierry, A. Canteaut, P. Charpin, and Y. Laigle-Chapuy. On almost
perfect nonlinear functions over Fn

2 . IEEE Transactions on Information Theory,
52(9):4160–4170, Sept 2006.

[61] Y. Zheng and X. M. Zhang. Plateaued functions. In Second International
Conference on Information and Communication Security:ICICS’99, pages 284–
300, Springer, Berlin, 1999.

[62] R. J. McEliece. Finite field for computer scientists and engineers. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1987.

[63] J.F. Dillon. Elementary hadamard difference sets. University of Maryland, 1974.



138 BIBLIOGRAPHY

[64] S. Kavut, S. Maitra, S. Sarkar, and M. D. Yücel. Enumeration of 9-variable ro-
tation symmetric boolean functions having nonlinearity > 240, chapter Progress
in Cryptology - INDOCRYPT 2006, pages 266–279. Springer, Berlin, 2006.

[65] L.J. Lapierre. Vectorial bent functions in characteristic two. Master Thesis,
2016.

[66] G. Leander. Monomial bent functions. IEEE Transactions on Information
Theory, 52(2):738–743, Feb 2006.

[67] M. G. Evoyan, G.M. Kyuregyan, and M.K. Kyuregyan. On k-switching of
mappings on finite fields. Mathematical Problems of Computer Science, 39:5–12,
2013.

[68] A. Weil. On some exponential sums. Proceedings of the National Academy of
Sciences, 34(5):204–207, 1948.

[69] F. Göloğlu. Private communication. 2018.

[70] F. Göloğlu. Almost perfect nonlinear trinomials and hexanomials. Finite
Fields and their Applications, 33:258–282, 2015.

[71] L. Budaghyan, T. Helleseth, N. Li, and B. Sun. Some results on the known
classes of quadratic APN functions. Cryptology ePrint Archive, Report
2016/1183, 2016. https://eprint.iacr.org/2016/1183.


	Overview
	Structure of the thesis

	Preliminaries
	Boolean functions
	Vectorial Boolean functions
	APN and AB functions
	Equivalence of functions
	Infinite families of AB and APN functions

	On the number of weight 4 codewords
	Connection between vectorial Boolean functions and coding theory
	Formula for weight 4 codewords
	AB Functions
	APN Power Functions
	Plateaued Boolean functions
	Partial spread class
	Maiorana-McFarland class
	Dobbertin APN function and Kavut et. al. Boolean function
	Vectorial bent functions
	APN Permutation

	Classes of vectorial bent functions contained in known quadratic APN functions
	Case n = 6
	Open problem

	Local changes in the quadratic APN cube
	Cube of dimension nn m
	Yu, Wang and Li (YWL) approach
	The switching approach
	Local changes in the quadratic APN cube
	Computational results

	Functions of the type F(x)=x3+Trn1(x)L(x)
	Characterization of F(x)=x3+Trn1(x)L(x)
	Computational results for F(x)=xd+Trn1(x)L(x)
	A possible approach for the construction of nonquadratic APN function
	A new construction method for APN functions

	Equivalence of Göloglu infinite family of APN functions
	Göloglu family of APN functions
	Equivalence of Göloglu APN functions
	MAGMA Computation Error

	Computational Results
	Bibliography

