
University of Magdeburg

School of Computer Science

D
S E
B

Databases

Software
Engineering

and

Dissertation

Variational Debugging:
Understanding Differences among

Executions

Author:

Jens Meinicke

7. Januar 2019

Reviewers:

Prof. Gunter Saake (University of Magdeburg, Germany)

Prof. Christian Kästner (Carnegie Mellon University, PA, USA)

Prof. Xiangyu Zhang (Purdue University, IN, USA)

Meinicke, Jens:
Variational Debugging: Understanding Differences among Executions
Dissertation, University of Magdeburg, 2019.

Variational Debugging: Understanding Differences among Executions

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von M.Sc. Jens Meinicke

geb. am 01.11.1988 in Halle (Saale)

Gutachterinnen/Gutachter:

Prof. Gunter Saake (University of Magdeburg, Germany)

Prof. Christian Kästner (Carnegie Mellon University, PA, USA)

Prof. Xiangyu Zhang (Purdue University, IN, USA)

Magdeburg, den 7.1.2019

Abstract

Interactions among multiple program inputs or options can lead to undesired or
wrong behavior, such as system crashes and security vulnerabilities. This is espe-
cially challenging for large numbers of inputs such as for highly configurable sys-
tems, as the number of configurations to test grows exponentially with the number
of boolean options. A lot of research has focused on systematically covering this con-
figuration space, however there is little knowledge on how inputs interact as they can
only be observed from their effects (e.g., from bug reports). A better understanding
of interactions is needed to improve quality assurance.

In this thesis, we developed a dynamic analysis based on variational execution, that
monitors data and control flow interactions among all options simultaneously. We
analyzed the program traces of multiple medium sized highly-configurable systems
to characterize and identify where and how interactions occur. We found that the
essential configuration complexity (i.e., the degree of interactions occurring during
executions) is indeed much lower than the combinatorial explosion, but that the
pattern of how options interact are more nuanced than what state of the art analysis
techniques exploit.

Interaction characteristics can inform analysis techniques, however, understanding
of a specific interaction (e.g., a system crash), is challenging as this requires un-
derstanding how multiple inputs interact with each other to cause this undesired
behavior while the program succeeds otherwise. Debugging such faults requires un-
derstanding the individual effects of inputs and how they interact to cause the fault.
Contrasting traces of failing and the succeeding executions can reveal the interac-
tions in their differences, and thus the information needed to understand the fault.
We propose to align the execution traces of all configurations to discover and explain
interactions. As complete traces are too large to be used for debugging, we present
variational traces that concisely represent the differences on data and control flow
caused by interactions. We again use variational executions to scale the generation
of variational traces to exponential configuration spaces. To enable programmers
interacting with such variational traces, we provide our debugging tool Varviz. We
have shown that variational traces improve the performance of debugging variability
faults by a factor of two compared to standard debuggers.

Zusammenfassung

Interaktionen von mehreren Programmparametern oder Optionen können zu uner-
wünschten oder falschen Verhalten, wie zum Beispiel Systemabstürzen oder Sicher-
heitslücken, führen. Das ist vor allem für eine große Anzahl von Parametern her-
ausfordernd, da die Menge der zu testenden Konfigurationen exponentiell mit der
Zahl der Parameter steigt. Viel Forschung wurde betrieben, um diesen Konfig-
urationsraum systematisch abzudecken, allerdings ist wenig darüber bekannt wie
Optionen tatsächlich interagieren da Interaktionen meist nur durch ihren Effekt
beobachtbar sind (z.B. durch Fehlerberichte). Ein besseres Verständnis von Inter-
aktionen wird benötigt um die Qualitätssicherung von Software zu verbessern.

In dieser Dissertation, haben wir einen dynamischen Ansatz entwickelt der auf Vari-
ational Execution basiert. Dieser Ansatz beobachtet Interaktionen in Daten und
Kontrollfluss zwischen allen Optionen simultan. Wir haben Programmausführun-
gen von mehreren mittelgroßen Programmen analysiert um zu charakterisieren und
zu identifizieren wie und wo Interaktionen auftreten. Wir haben herausgefunden,
dass die essentielle Konfigurationskomplexität (d.h. der Grad in dem Interaktionen
während der Ausführung auftreten) tatsächlich wesentlich niedriger ist als die kom-
binatorische Explosion. Allerdings sind die Muster in denen Interaktionen auftreten
nuancierter als aktuelle Techniken derzeit ausnutzen.

Zwar können Charakteristiken über Interaktionen Analysen verbessern, allerdings
bleibt das Verstehen einer bestimmten Interaktion herausfordernd da man verste-
hen muss wie mehrere Optionen miteinander interagieren um dieses unerwünschte
Verhalten zu verursachen während das Programm sich sonst normal verhält. Um
solche Fehler zu debuggen muss man die Effekte einzelner Optionen und deren Inter-
aktionen verstehen. Vergleichen von fehlerhaften und korrekten Ausführungen kann
die Interaktionen anhand der Unterschiede aufzeigen, und somit die Informationen
die zum Verständnis des Fehlers benötigt sind. Wir schlagen vor die Ausführungen
aller Konfigurationen zu vergleichen um Interaktionen zu finden und zu erklären.
Da komplette Ausführungen zu lang sind um für das Debuggen nutzbar zu sein,
präsentieren wir Variational Traces, welche die durch Interaktionen verursachten
Unterschiede in Daten und Kontrollfluss kompakt repräsentieren. Wir nutzen Vari-
ational Execution um die Generierung von Variational Traces für exponentiell große
Konfigurationsräume zu skalieren. Wir stellen unser Debugging-Werkzeug Varviz
zur Verfügung um es Programmierern zu erlauben Variational Traces für das De-
buggen von Interaktionen zu nutzen. Wir haben gezeigt, dass Variational Traces
die Leistung beim Debuggen von Variabilitätsfehlern um einen Faktor von Zwei
gegenüber eines Standard-Debuggers verbessern.

Contents

List of Figures xi

List of Tables xiii

List of Code Listings xv

1 Introduction 1

1.1 Contribution . 3

1.2 Broader Impact . 4

1.3 Structure of the Thesis . 5

2 Feature Interactions 7

2.1 Quality assurance for highly-configurable systems 8

2.2 Running example . 11

2.3 Summary . 13

3 Variational Execution 15

3.1 Choice Calculus . 16

3.1.1 Variational Data Types . 16

3.1.2 Programming with Conditional Values 19

3.2 Variational Execution . 19

3.3 Variational Execution of GameScreen 21

3.4 Implementations . 23

3.5 Optimizations . 24

3.6 Related Work . 27

3.7 Conclusion . 28

4 Measuring Interactions in Highly Configurable Systems 31

4.1 Measuring Feature Interactions . 33

4.2 Interaction Benchmarks . 34

4.2.1 Experimental Setup . 34

4.2.2 Sharing Potential . 37

4.3 Measuring Feature Interactions in Highly Configurable Systems . . . 39

4.4 Discussion: Characteristics of Interactions 42

4.5 Related Work . 44

4.6 Conclusion . 45

x Contents

5 Understanding Interactions in Highly-Configurable Systems with
Variational Traces 47
5.1 State of the Art . 49

5.1.1 Automated Debugging Techniques 49
5.1.2 Understanding Feature Interactions 50

5.2 Generating and Visualizing Variational Traces 52
5.2.1 Variational Traces . 52
5.2.2 Generating Variational Traces by Aligning Trace Logs 54
5.2.3 Efficient Generation of Variational Traces with Variational Ex-

ecution . 56
5.2.4 Varviz . 57
5.2.5 Limitations of Variational Traces 58

5.3 Variational Debugging of GameScreen 58
5.4 User Study . 60
5.5 Scalability Evaluation . 68
5.6 Applications Beyond Debugging . 71
5.7 Related Work . 72
5.8 Conclusion . 73

6 Conclusion 75
6.1 Suggestions for Future Work . 77

A Appendix 79
A.1 Variational Trace for Elevator . 79
A.2 Variational Trace for NanoXML . 80

Bibliography 85

List of Figures

2.1 Exception thrown in GameScreen due to the interaction red ∧ blue. . 12

3.1 Tag Tree. 17

3.2 Formula Tree. 18

3.3 Formula Map. 18

3.4 Conditional console output for the exception in GameScreen. 23

3.5 Number of SAT calls compared to number of distinct cached calls. . . 27

4.1 Illustration of interaction metrics for GameScreen. 35

4.2 Traces and interaction overhead of variability-aware execution. 40

5.1 Variational Trace for our running example GameScreen. 53

5.2 Screenshot of Varviz for our running example Gamescreen. 59

5.3 Statistics on the programs used in the user study. 61

5.4 Time spend on debugging tasks. 64

A.1 Complete variational trace for Elevator used in our user study. 80

A.2 Complete variational trace for NanoXML used in our user study. . . . 84

List of Tables

2.1 Translation of terminologies from configurable systems to debugging
and information flow. 8

2.2 Overview on testing strategies for configurable systems. 11

4.1 Benchmarks to simulate different kinds of interactions. 36

4.2 Subject systems analyzed for configuration complexity. 39

4.3 Interaction characteristics exploited by different analysis approaches. 44

5.1 Statistics on programs used in quantitative evaluation. 69

List of Code Listings

2.1 Running example GameScreen. 12

3.1 Example to illustrate variational data types. 16

3.2 Variational Execution for the runnning Example GameScreen. 22

A.1 Parser check in NanoXML. 81

A.2 Location of the fault in NanoXML. 81

1. Introduction

Most of today’s software provides some sort of configuration, such as most end-user
programs, such as browsers, safety critical systems, such as cars, but also security
sensitive software, such as SSL libraries and databases. Software variability allows
to customize the behavior of a program regarding the requirements of its users [Apel
et al., 2013a, Clements and Northrop, 2001, Pohl et al., 2005]. Variability enables a
program to be specialized for thousands of different users with customized configu-
rations. However, this flexibility comes at the cost of complexity. Each additional
boolean option doubles the number of configurations, if there are no dependencies
among the options. Thus, the number of configurations grows exponentially, causing
the so-called configuration space explosion (a.k.a. combinatorial explosion). Ana-
lyzing each configuration individually is usually too time consuming, impractical
or even impossible [Halin et al., 2017, Medeiros et al., 2015, Thüm et al., 2014].
However, testing each feature in isolations is not sufficient either, as fault are often
caused by unexpected interactions among them, known as the feature interaction
problem [Abal et al., 2018, Apel et al., 2013b, Bruns, 2005, Calder et al., 2003a,b,
Garvin and Cohen, 2011, Nhlabatsi et al., 2008, Zave, 2009]. Thus, in practice,
usually only one or few configurations are tested and detecting faults is left to users
[Carmo Machado et al., 2014, Greiler et al., 2012, Medeiros et al., 2015].

Feature interactions are hard to find and can have severe consequences. As fea-
ture interactions are a general problem, they were reported in many different do-
mains [Abal et al., 2018, Crespo et al., 2007, Donaldson and Calder, 2012, Georgiev
et al., 2012, Jayaraman et al., 2007, Juarez Dominguez, 2012, Nhlabatsi et al., 2008,
Weiss et al., 2007]. Faults due to feature interactions can lead to system crashes,
leakage of sensitive data, server outages and severe problems in safety critical sys-
tems. Detecting feature interactions upfront seems impossible due to the huge con-
figuration spaces of these systems, especially when more than two options are inter-
acting.

There has been a lot of research providing specialized analyses and tools to detect
faults caused by variability and feature interactions [Meinicke et al., 2014, Thüm
et al., 2014]. These analyzes are based on common assumptions, that only few

2 1. Introduction

features interact and that most interaction faults can be detected by covering inter-
actions among three features [Abal et al., 2018, Garvin and Cohen, 2011]. However,
these assumptions are based on bug reports and are biased towards frequently used
configurations [Abal et al., 2018]. An exhaustive analysis of interactions is expen-
sive and can only detect interactions by their observable effects [Halin et al., 2018]
However, higher degree interactions exist: for example Reisner et al. [2010] found
that 7 of 30 options interact, and Nguyen et al. [2014b] detected interactions among
16 out of 50 plugins. These high degree interactions can potentially cause unex-
pected behaviors, that are unlikely to be detected with approaches that only cover
interactions among few options.

Our goal is to improve the understanding about feature interactions by observing
them directly when they occur at runtime. A common approach to understand the
effects of options is to compare the executions for different configurations [Sumner
and Zhang, 2013, Zeller, 2002]. Understanding the differences among the executions
not only requires comparing the results of the program but also comparing the exe-
cution traces and program states. Comparing the executions comes with challenges
for scalability, trace alignment and non-determinism [Kwon et al., 2016, Sumner
and Zhang, 2010, 2013, Zeller, 2002]. For n independent options this requires the
program to be executed 2n times which can only scale to low numbers of options.
Thus, recent approaches only compare few (usually two) executions at a time [Kwon
et al., 2016, Sumner and Zhang, 2010, 2013, Zeller, 2002] or only observe interactions
on code coverage [Reisner et al., 2010] and reachability [Lillack et al., 2017]. As we
aim to understand feature interactions, we need to compare the executions of all
configurations and observe differences on data and control-flow caused by feature
interactions.

We use the approach of variational execution (a.k.a. variability-aware execution and
faceted execution) to compare all, exponentially many, executions [Austin et al.,
2013, Kästner et al., 2012b, Meinicke, 2014, Meinicke et al., 2016, Nguyen et al.,
2014b, Schmitz et al., 2016, 2018, Wong et al., 2018b, Yang et al., 2016]. Varia-
tional execution is an approach that can execute an exponentially large number of
configurations, mostly efficiently, by aggressively sharing redundancies in executions
and in data. The basis of this thesis is the realization that this sharing ability of
variational execution, is equivalent to an alignment of all executions. This allows us
to compare all executions, and thus, observe feature interactions directly.

The goal of this thesis is to gain an understanding of feature interactions by ob-
serving them directly during runtime using variational execution. Based on this,
we help developers and researchers dealing with feature interactions by providing
common characteristics and a novel approach of variational traces that allows to
inspect and debug feature interactions.

1.1. Contribution 3

1.1 Contribution

This thesis has two main contributions: First, we analyze how options interact at
runtime to gain a better understanding of common characteristics of interactions.
These insights help to understand why certain analysis do not scale to analyze config-
urable systems and why they cannot detect all interactions. It also helps researchers
to develop new analyses by being aware of which interaction characteristics can be
exploited.

Second, we developed support that helps users to understand and debug interactions
among options. Our approach helps to understand how options interact, which
allows developers to debug configurable systems with huge configuration spaces and
interactions among many options.

Interaction characteristics

Most assumptions on feature interactions come from external observations, such as
bug reports [Abal et al., 2018]. To confirm and complete these assumptions we
characterize how options interact in highly configurable systems by observing how
options interact in control and data flow during runtime:

1. We developed a dynamic analysis for Java that tracks interactions on data and
control flow during execution. Our analysis enables a fine-grained observation
of interactions compared to state-of-the-art approaches which have scalability
issues and can only observe interactions on code coverage [Reisner et al., 2010]
and reachability [Lillack et al., 2017].

2. We developed three measures that characterize essential configuration com-
plexity, measuring how options interact within an execution. These measures
help us to characterize how options interact which allows us to make general
statements of how options usually interact. These characteristics explain scal-
ability of existing analyses and can lead to more efficient analyses that exploit
them.

3. State-of-the-art analyses for configurable systems aim to exploit interaction
characteristics to scale to exponential configuration spaces. We designed five
interaction benchmarks to study how well these analyses scale for different
interaction characteristics. Our results expose why certain approaches do not
scale for certain kinds of interactions.

4. We measured the configuration complexity for medium-sized systems, finding
that essential configuration complexity is low enough to enable configuration-
complete analyses.

5. We discuss common characteristics of interactions, providing more nuanced
variants of current assumptions, which can, among others, encourage more
efficient analyses for exponential configuration spaces.

4 1. Introduction

Variational Debugging

Debugging is a difficult and time-consuming task in software development. The
additional dimension of variability increases the difficulty and thus time for debug-
ging [Melo et al., 2016]. In the second part of this thesis, we aim to help developers
debugging faults in configurable systems.

1. We developed the concept of a variational trace that compactly represents
differences among the interactions of all configurations.

2. Generating variational traces requires logging and aligning the executions for
all configurations. We provide a baseline implementation that emphasizes
challenges of generating variational traces, such as memory consumption and
executions time.

3. We implemented mechanisms based on variational execution [Meinicke, 2014,
Meinicke et al., 2016] for efficient trace alignment and a dynamic analysis
to trace only relevant data which avoid memory explosion for a potentially
exponential number of configurations.

4. We provide an Eclipse plug-in Varviz to visualize and interact with variational
traces to allow developers debug interaction faults.

5. We performed a qualitative user study which shows that participants using
variational traces outperform participants using a standard debugger. The
study also shows that comparative approaches [Sumner and Zhang, 2013,
Zeller, 2002] actually help with debugging tasks.

1.2 Broader Impact

Advances in variational execution made in this thesis will change how configurable
systems are tested. These advances improve quality assurance of most of today’s
end user software as well as security sensitive software such as databases and SSL
libraries. Variational execution provides a simple, automatic and efficient way to
detect feature interactions, in contrast to more complicated techniques such as model
checking. Thus, variational execution is applicable by researchers and practitioners,
but also hobbyists, while improving the overall software quality and reducing the
cost of quality assurance at the same time.

We further refine our understanding of feature interactions. Our new insights will
help designing better quality assurance strategies that are aware of how options
interact in software. These insights enable us to explain why current analyses scale
for certain feature interactions but do not for others. With our new understanding
on feature interactions, we help building and designing configurable software that
is easier to analyze by being aware of which types of interactions are challenging to
analyze or are supported by existing analyses.

With variational traces, we provide the first opportunity to directly observe feature
interactions when they occur during runtime; in contrast to black box approaches

1.3. Structure of the Thesis 5

that only observe their effects (e.g., interaction faults and assertions). The ability to
observe feature interactions directly enables future researchers to study them in more
detail. Variational traces further help developers to debug interaction faults, which
are notoriously hard to understand with standard tools. Beyond the usefulness of
variational traces, our study shows for the first time, that comparative approaches
(i.e., contrasting executions) actually help developers understanding and debugging
faults.

Variational execution and variational debugging have promising applications beyond
configurable systems when exploring many variations of a program. In the area of
mutation testing, exploring many mutations and their combinations can help find-
ing good mutations. As variational execution explores all combinations of mutants
we can efficiently detect higher-order mutations, compared to existing search-based
approaches. Similarly, variational execution can be used to explore many patch can-
didates for search-based automatic program repair. Variational execution explores
combinations of patches, which helps finding multi-line patches which are challenging
to detect with current approaches.

The contributions of this thesis lead to better software quality by detecting faults
easier, by guiding better analysis in the future, and by informing the system design to
avoid potentially-difficult-to-analyze interactions. This leads to improved reliability,
safety, security while reducing the development cost.

1.3 Structure of the Thesis

In Chapter 2 (Feature Interactions) we introduce the background on feature inter-
actions, which gives a detailed motivation for this thesis.

In Chapter 3 (Variational Execution) we introduce the variational execution which
is the basis for this thesis. This way we enable readers to understand the benefits
of variational execution as dynamic analysis to observe feature interactions.

In Chapter 4 (Measuring Interactions in Highly Configurable Systems) we use vari-
ational execution to measure feature interactions during runtime. In this chapter,
we present the contributions regarding interaction characteristics.

In Chapter 5 (Understanding Interactions in Highly-Configurable Systems with Vari-
ational Traces) we develop the concept of variational traces to help developers debug
feature interactions. In this chapter we present the contributions regarding varia-
tional debugging.

In Chapter 6 (Conclusion) we summarize the contributions of our work and discuss
future directions.

2. Feature Interactions

Variability allows developers and users to customize programs to meet special need,
such as functional or performance requirements [Apel et al., 2013a, Clements and
Northrop, 2001]. However, variability comes with the cost of increased complexity
which hinders code comprehension, program analysis and debugging. Variability is
often implemented in terms of features. A feature is a user visible aspect of the
software [Apel et al., 2013a]. Variability is implemented by enabling or disabling
these features. Thus, a configuration is a set of enabled and disabled features.
Configurations are used to derive a product that contains the functionalities of the
enabled features [Apel et al., 2013a, Clements and Northrop, 2001]. This process
allows customizability which is used to meet user needs, hardware requirements, or
to optimize performance. Prominent examples off highly configurable systems are
operating systems (e.g., Linux), and browsers (e.g., Chrome).

Analysis of highly configurable systems is problematic as tests may succeeded in one
configuration but fail in others [Cohen et al., 2007, Medeiros et al., 2016, Nie and
Leung, 2011]. Such faults are often caused by feature interactions [Abal et al., 2018,
Apel et al., 2013b, Calder et al., 2003a, Garvin and Cohen, 2011]. A feature interac-
tion is a situation in which two or more features affect each other’s behavior [Bruns,
2005, Calder et al., 2003b, Nhlabatsi et al., 2008, Zave, 2009]. Feature interactions
became prominent in the 90s when studying telecommunication systems [Calder
et al., 2003b]. Research on feature interactions originates from requirements engi-
neering and feature-driven development where systems are compositions of features
that are however not considered optional [Bruns, 2005, Calder et al., 2003b, Palmer
and Felsing, 2001, Zave, 2009]. Software product line engineering continued this
research but considered features as optional aspects [Apel et al., 2013a, Clements
and Northrop, 2001, Pohl et al., 2005]. Feature interactions are a common problem
of configurable systems as it is impossible to reason about all possible interactions
manually. Thus, feature interactions can lead to undesired behaviors, such as system
crashes [Abal et al., 2018, Garvin and Cohen, 2011, Kuhn et al., 2004, Nhlabatsi
et al., 2008]. However, feature interactions are hard to detect as they only ap-
pear in specific configurations. The additional layer of variability increases the code
complexity which makes it harder to understand the program [Melo et al., 2016].

8 2. Feature Interactions

Faults that appear only in a certain of configurations are called variability faults [Abal
et al., 2018]. Feature interaction faults are a subset of variability faults that are
caused by certain combinations of two or more options (e.g., A∧¬B or A∧B ∧C).
The interaction degree defines the number of options that interact. Feature inter-
action with high interaction degree are harder to detect, but considered to be less
common on practice [Abal et al., 2018, Garvin and Cohen, 2011]. Feature interac-
tion faults are hard to detect as they only appear in few configurations [Kuhn et al.,
2004, Nhlabatsi et al., 2008, Thüm et al., 2014] and hard to understand as they
often require reasoning about the effects of multiple features [Melo et al., 2016].

In practice, the configuration space is rarely explored systematically [Halin et al.,
2017]. Instead ad-hoc testing of single configurations is still common and testing
configurations is left to users [Carmo Machado et al., 2014, Greiler et al., 2012,
Medeiros et al., 2015]. At best combinatorial interaction testing is used which checks
for all combination of only few options [Nie and Leung, 2011]. Thus, variability faults
are often only discovered by users [Greiler et al., 2012, Medeiros et al., 2015].

There is only little knowledge about feature interactions as they are only observed in
bug reports but usually not by systematically exploring the complete configuration
space (e.g., by testing all configurations with a brute-force approach) [Abal et al.,
2018, Halin et al., 2017]. Also, feature interactions may not manifest in observable
faults, but in internal behavioral differences. Such types of feature iterations are
difficult to detect as they may not be observable from the outside.

configurable systems debugging information-flow
option/feature input privacy-/security-/confidentially-level
configuration set of inputs set of private variables

Table 2.1: Translation of terminologies from configurable systems to debugging and
information flow.

The challenges of feature interactions in configurable systems can be translated to
the fields of debugging and information flow. We summarize the translations of
terminologies in Table 2.1. For the sake of simplicity, we use the terminology of
configurable systems. The challenges and our solutions are similar. We use the
established term feature interaction to refer to interactions among options.

2.1 Quality assurance for highly-configurable sys-

tems

Boolean configuration options are a special type of inputs that, in contrast to ar-
bitrary inputs (e.g., Strings), represent a finite set of possible configurations. Even
though the number of configurations can be exponentially large to the number of
independent options, it is usually not necessary to analyze the program for all config-
urations as faults are usually caused by feature interactions among few features [Abal
et al., 2018]. Thus, there are strategies that exploit this property of configuration
options to analyze only a subset of configurations.

2.1. Quality assurance for highly-configurable systems 9

Sampling

Sampling (aka. product-based analyses) generate a subset of configurations with the
goal of detecting faults by changing the configuration under test [Medeiros et al.,
2016, Thüm et al., 2014, Varshosaz et al., 2018]. These approaches reuse existing
analyses (e.g., testing or type checking) and directly apply them to the generated
configurations. Sampling strategies can be divided into the three groups Unsystem-
atic, Systematic, and Complete sampling as shown in Table 2.2. For an overview on
sampling techniques and their classification, we refer to the work of Medeiros et al.
[2016] and Varshosaz et al. [2018]

Unsystematic sampling is often used in practice due to the low additional testing
effort and usually low number of tested configurations [Medeiros et al., 2015]. Devel-
opers usually use hand-picked configurations to test the system. Such configurations
can only show that the functionality works for the specific configuration. However,
they cannot detect unexpected feature interactions. Additionally, the system may
be tested with few randomly generated configurations. Random sampling aims to
cover the whole configuration space evenly [Al-Hajjaji et al., 2016b, Ensan et al.,
2012, Henard et al., 2014, Liebig et al., 2013]. However, such a sampling approach
is difficult in the presence of constraints. Thus, the generated configurations tend
to test certain options more often than others.

Systematic sampling approaches aim to generates specific configurations to achieve
specific coverage goals. A common approach is to test a single configuration with all
or most options enabled (aka. all-yes). This configuration is used to cover most func-
tionalities. However, as feature interaction faults often appear because some options
are disabled, such a configuration will miss many feature interaction faults [Abal
et al., 2018]. Another sampling approach called combinatorial interaction testing
(aka. t-wise testing) generates configurations that contain all interactions among t
options [Nie and Leung, 2011]. This approach guarantees to cover all interactions
among t options (i.e., all combinations of possible selections among any combina-
tion of t options). As a single configuration can cover many interactions at the same
time, the number of generated configuration is usually much lower than the number
of possible configurations. Combinatorial interactions testing assumes that only few
options interact with each other at a time (i.e. options are mostly orthogonal) [Abal
et al., 2018, Cabral et al., 2010, Cohen et al., 2007, Garvin and Cohen, 2011, Kuhn
et al., 2004, Medeiros et al., 2016, Nguyen et al., 2014b, Nhlabatsi et al., 2008, Nie
and Leung, 2011]. The idea comes from the practical observation that most interac-
tion faults are caused by interactions of three options and at most six options cause
faults [Abal et al., 2018, Garvin and Cohen, 2011, Kuhn et al., 2004]. Combina-
torial interaction testing usually only scales to cover low interaction degrees with
t smaller than four. For higher t the number of generated configurations and the
time to generate them is usually too high for practical use, especially if options have
constrains among each other (e.g., due to a feature model) [Johansen et al., 2012,
Kang et al., 1990]. There are approaches to improve the efficiency of sampling by
cover interactions earlier (e.g., by reordering the configurations) and aborting the
analyses based on time constraints [Al-Hajjaji et al., 2016a, 2017]. Such approaches,
however, cannot guarantee to find all interactions.

10 2. Feature Interactions

Recent studies have shown that other sampling algorithms can be more efficient
(i.e., they find more faults with fewer configurations) then combinatorial interaction
testing [Abal et al., 2018, Medeiros et al., 2016]. Especially the approach one-disabled
was able to detect most interaction bugs by only generating at most t configurations
for t options. One disabled generates configurations such that one option is disabled
while all or most other options are enabled (the number of enabled options may
be restricted due to constraints). While the approach cannot guarantee that it will
find all interactions are found it was shown that it can detect most interaction bugs
reported in four large configurable systems [Abal et al., 2018].

Statement coverage takes the source code into account to generate configurations
such that all code elements are included at least once [Tartler et al., 2012]. This
approach is however designed for variability implemented conditional compilation
using preprocessors and for static analysis. When dealing with runtime variabil-
ity, usually all code is included, and code is enabled or disabled based on runtime
decisions. Thus, it is unclear which parts of the code is affected by options.

Configuration complete sampling approaches, generate configurations that can de-
tect all faults. Thus, a brute-force approach that tests all configurations covers the
whole configuration space [Halin et al., 2017]. Complete sampling approaches de-
tect the same faults as this brute-force approach, however without generating all
configurations. When executing a test case some options may not have an effect on
the execution or they depend on each other. This observation can be exploited to
generate fewer configurations (i.e., if the option A is not affecting the execution then
it is not necessary to test a configuration where A is selected and one where it is
deselected) [Kim et al., 2011, 2013]. The approach of SPLat generates configurations
by dynamically observing the usage of options and generates only configurations for
which the execution differs [Kim et al., 2013]. Ideally, SPLat only needs to test few
configurations if only few options are affected, and options depend on each other.
However, if options are implemented orthogonal all configurations need to be tested.
Thus, Souto et al. [2017] propose a hybrid approach (S-SPLat) that combines the
ideas of splat with incomplete systematic approaches, such as one-enabled. S-SPLat
solves the problem that black-box sampling approaches test for combinations of
options and combinations thereof that are not relevant for a test case.

Sharing

Despite the high number of configurations there is hope for efficient configuration
complete analysis. Such analyses are able to detect all feature interactions similar to
a brute-force approach while dealing with the exponential number of configurations.
The idea of sharing-based (aka. family-based, variability-aware, or variational) anal-
yses is to reduce the analysis effort by sharing parts of the analyses among configura-
tions. Sharing is achieved by the observation that similar configurations also behave
similar.

There are two ways to achieve sharing: First, applying existing analysis that are al-
ready able to reason about multiple executions, such as model checking [Clarke et al.,
1999, Meinicke, 2013, Thüm et al., 2014] and symbolic execution [Baldoni et al., 2018,
Clarke, 1976, King, 1976, Reisner et al., 2010], and second, lifting an existing analysis

2.2. Running example 11

to explicitly handle variability to share redundancies (i.e., variability-aware or vari-
ational), such as for type checking [Apel et al., 2012, Kästner et al., 2012a], model
checking [von Rhein et al., 2011], and dynamic analysis [Kim et al., 2012, Meinicke,
2014, Meinicke et al., 2016, Nguyen et al., 2014b, Wong et al., 2018b]. In Chap-
ter 4, we show how interactions impact the efficiency of different approaches and
how sharing enables to scale testing for exponential configuration spaces [Meinicke
et al., 2016].

In Table 2.2, we summarize testing strategies for configurable systems. We fur-
ther categorize the strategies by black-box (highlighted with •) and white-box ap-
proaches. Black-box approaches do not consider the implementation of the system
under test. Thus, they may test configurations redundantly. In contrast, white-
box approaches exploit the implementation of variability to reduce the number of
configurations to test or enable sharing among them.

Sampling Sharing
Unsystematic Systematic Complete variational
•hand-picked •t-wise •brute-force ◦variational execution
•random •one-enabled ◦SPLat ◦shared execution

•allyes ◦JPF-BDD
◦coverage
◦S-SPLat

Table 2.2: Overview on testing strategies for configurable systems. Strategies
marked with • are black-box approaches that do not consider the implementation of
the system under test. Strategies marked with ◦ are white-box approaches that con-
sidder the implementation and can thus be optimized to sample fewer configurations
or share redundancies among them.

2.2 Running example

In Listing 2.1, we introduce our running example to illustrate challenges regarding
testing, debugging and code comprehension, that arise due to feature interactions.
We reuse the example called GameScreen from a study by Melo et al. [2016] which
is based on BestLap [Ribeiro et al., 2014]. Each chapter refers to this example to
illustrate our solutions.

The program has three configuration options blue, red, and green that can be selected
independently. If the options blue and red are true, the executions will throw an
exception (see Figure 2.1). In the original study [Melo et al., 2016], participants were
asked to understand the program, to figure out whether the program has a fault and
in which configurations the fault appears. Melo et al. [2016] reported an average
bug finding time for this program of 10 minutes while it took only four minutes for
the same program without variability. This suggests that most of the time is spent
due to the increased complexity of only three options.

The example emphasizes that exception traces are usually not sufficient to under-
stand a fault as they often do not contain the cause of the fault. The exception

12 2. Feature Interactions

1 pub l i c c l a s s GameScreen {
2 p r i v a t e s t a t i c boo l e an blue , red , green ;
3
4 p r i v a t e s t a t i c f i n a l i n t PERFECT CUREVE = 4 ;
5 p r i v a t e s t a t i c f i n a l i n t PERFECT STRAIGHT = 1 ;
6 p r i v a t e s t a t i c f i n a l i n t TIME BONUS = 2 ;
7
8 i n t t o t a l S c o r e = 0 ;
9 i n t penal ty = 0 ;

10
11 pub l i c s t a t i c vo id main (St r ing [] a rgs) {
12 GameScreen game = new GameScreen () ;
13 i f (b lue) {
14 game . se tPena l ty (10) ;
15 }
16 game . computeLevelScore () ;
17 }
18
19 p r i v a t e vo id s e tPena l ty (i n t penal ty) {
20 t h i s . pena l ty = penal ty ;
21 }
22
23 p r i v a t e vo id computeLevelScore () {
24 a s s e r t t o t a l S c o r e == 0 ;
25 t o t a l S c o r e = PERFECT CUREVE + PERFECT STRAIGHT;
26 i f (green) {
27 t o t a l S c o r e += TIME BONUS;
28 }
29 i f (b lue) {
30 t o t a l S c o r e −= penalty ;
31 }
32 i f (b lue) {
33 a s s e r t t o t a l S c o r e < 0 ;
34 }
35 i f (red) {
36 s e tSco r e (t o t a l S c o r e) ;
37 }
38 i f (b lue) {
39 i f (t o t a l S c o r e >= 0)
40 throw new RuntimeException () ;
41 }
42 }
43
44 p r i v a t e vo id s e tSco r e (i n t s co r e) {
45 i f (s c o r e >= 0) {
46 t o t a l S c o r e = sco r e ;
47 } e l s e {
48 t o t a l S c o r e = 0 ;
49 }
50 }
51 }

Listing 2.1: Running example GameScreen based on an experiment by Melo et al.
[2016]

Exception in thread "main" java.lang.RuntimeException

at GameScreen.computeLevelScore(GameScreen.java:40)

at GameScreen.main(GameScreen.java:16)

Figure 2.1: Exception thrown in GameScreen due to the interaction red ∧ blue.

is thrown because the value of totalScore was set to 0 in Line 48 of the method
setScore only under condition red. As this method already returned it is not part
of the exception trace. Debugging support exist to enrich the exception trace with

2.3. Summary 13

information of such method calls [Ohmann and Liblit, 2017]. This however, increases
the amount of data a developer needs to deal with when debugging.

In summary, the example illustrates why configurable systems are hard to test as
the faults may be only thrown for certain configurations, and why they are hard to
debug as effects of options and their interactions are difficult to track.

In Chapter 3, we show how variational execution can efficiently detect such inter-
action faults due to its ability of aggressively sharing redundancies among execu-
tions [Meinicke, 2014]. In Chapter 4, we present our work where we explore charac-
teristics of feature interactions and their implications on efficient analyses [Meinicke
et al., 2016]. In Chapter 5, we show how we help debugging such feature interactions
bugs by aligning the executions of all configurations, called variational traces.

2.3 Summary

In this section, we discussed challenges in configurable systems due to feature inter-
actions. We discussed state of the art for detecting feature interactions, and why
they are often not sufficient. We discussed the difficulties to code comprehension due
to variability and how state of the art aims to approach these. We finally introduced
our running example that we will use to illustrate our solutions to help with testing
and debugging configurable systems.

3. Variational Execution

This chapter is based on and shares material with the author’s Mas-
ter’s thesis ”VarexJ: A Variability-Aware Interpreter for Java Applica-
tions” [Meinicke, 2014] the VaMoS’17 paper ”A Choice of Variational
Stacks: Exploring Variational Data Structures” [Meng et al., 2017], and the
OOPSLA’18 paper ”Faster Variational Execution with Transparent Byte-
code Transformation” [Wong et al., 2018b].

In this chapter, we present our work on variational execution, which is not the
main contribution of this thesis, but its foundation. Variational execution is a dy-
namic analysis that allows to efficiently execute all configurations of a program. It
essentially executes all configurations at once while sharing common parts of the
executions and data, which allows to observe variations caused by interactions.

Variational execution has similarities with symbolic execution [Clarke, 1976, King,
1976]: both approaches aim to execute the program for large input spaces. How-
ever, symbolic execution operates on symbolic values, such as α to represent all in-
tegers, which are often infinite and can lead to expensive constraint solving [Clarke,
1976, King, 1976]. Variational execution operates always on concrete values instead,
and thus, does not require specialized computations [Meinicke, 2014, Nguyen et al.,
2014b, Wong et al., 2018b]. Due to inexpensive computations and near optimal
sharing of memory and instructions, variational execution can scale to explore large
configuration spaces [Meinicke et al., 2016, Nguyen et al., 2014b, Wong et al., 2018b].

As memory is shared among all configurations and because all variations are stored
in data, we can trace each variation of the execution back to the inputs that cause
it. This opens opportunities for variational execution as dynamic analysis: we can
observe effects and interactions among inputs directly. We use variational execution
to characterize interactions [Meinicke et al., 2016] (Chapter 4) and to explain why
certain inputs interact and cause faults [Meinicke et al., 2018] (Chapter 5).

The goal of this research is to aid researchers studying interactions among many
executions by providing an efficient dynamic analysis – variational execution.

16 3. Variational Execution

3.1 Choice Calculus

The choice calculus is a central concept in variational execution [Erwig and Walk-
ingshaw, 2011a, 2013, Walkingshaw et al., 2014]. The choice calculus enables to
store and compute with differences in data that depend on options. We refer to
such data differences as conditional values. Variational execution uses conditional
values to represent differences in data and variability contexts, (i.e., propositional
formulas, such as A ∧B) to compute with this data under restricted configuration
spaces. These concepts allow variational execution to maximize sharing in data and
execution.

3.1.1 Variational Data Types

A conditional value (aka. choice value) is a multi-value that represents a mapping
of concrete values to corresponding configurations using variability contexts [Erwig
and Walkingshaw, 2011a,b]. That is, variables, such as field and local variables,
can take multiple different values at the same time depending on options. This way
the value differences can be stored while preserving its context (i.e., the mapping to
the corresponding configurations). Conditional values can be represented as different
variational data types, such as tag trees, formula tree or formula maps [Walkingshaw
et al., 2014].

We illustrate how the different data types work to show their advantages and dis-
advantages when storing conditional data using the example in Listing 3.1. The
example is designed to emphasize challenges of efficiently storing and computing
with redundancies in the variational data structures. In the example, we first incre-
ment the value of X by 1 in STEP 1 under condition A ∧ B. In STEP 2, we then
multiply this value by two under condition C.

1 X = 1
2 STEP 1: i f (A & B) X = X + 1
3 STEP 2: i f (C) X = X ∗ 2

Listing 3.1: Example to illustrate variational data types.

Tag Tree

A tag tree is a tree structure in which the nodes split the configuration space de-
pending on the selection of a single feature (tag). The leaves of the tree hold the
values of the conditional value. A tag tree has the advantage that it does not re-
quire a SAT solver due to its simplicity. However, a tag tree might need to duplicate
entries to represent the conditional value.

We illustrate tag trees in Figure 3.1. As shown, the tree splits the configuration space
depending on single options. The context on the edges is implicit and for illustration
purposes only. As shown, even to represent simple conditional values after STEP 1,
tag trees need to duplicate values (i.e., the value 1 is contained twice). After STEP
2, the duplication increases even further: the value 2 is contained three times and
1 is contained twice. Note that the tree can be rearranged to represent the same
conditional value. For example, instead of creating a C node on the top, we could

3.1. Choice Calculus 17

create C-nodes at each leaf. Reordering may influence the size of the tree and the
number of duplications.

The duplication has effects on memory consumption. More severely however, com-
putations with tag trees become expensive when the same operation needs to be
applied multiple times redundantly. The advantage of tag trees comes if sat solving
can be avoided. For example, if we want to apply an operation under condition A,
we can take the true branch of A-nodes or create a new A-node at the end.

Austin and Flanagan [2012a] use tag trees to represent data differences in their work
on dynamic information flow. As their applications usually only consider few options
(e.g., high and low confidentiality), tag trees are an appropriate data structure as
they contain only few redundancies but avoid satisfiability solving.

A

B 1

12

A

A
∧
¬
BA

∧
B

¬
A

(a) STEP 1

C

A

B 2

24

A

B 1

12

C
¬C

C
∧
A

C
∧
A
∧
¬
BC

∧
A
∧
B

C
∧
¬
A

¬C
∧
A

¬
C
∧
A
∧
¬
B¬C

∧
A
∧
B

¬
C
∧
¬
A

(b) STEP 2

Figure 3.1: Tag Tree.

Formula Tree

Formula trees are another tree structure that use propositional formulas instead
of single features in their nodes. This reduces the size of the tree as well as the
number of duplications compared to tag trees. However, formula trees might still
contain duplications. Reorganizing the tree structure can avoid all redundancies,
which however can be costly as this requires comparing values to detect duplicates.

In Figure 3.2, we illustrate formula trees for the example of Listing 3.1. As shown,
the tree can separate the configuration space depending on propositional formulas.
The conditions on the edges are again implicit and for illustration purposes. Thus,
for STEP 1, there is no duplication of values.

For STEP 2, we separate the value depending on option C and if C is true we mul-
tiply the value by 2. As shown, also formula trees may have duplications which are
however far fewer than for tag tree. As the nodes can contain arbitrary propositional

18 3. Variational Execution

formulas, a reorganization of the tree is possible to have each value only once. In
our experience, only simple restructuring has positive effects the performance when
computing with conditional values. If the computation that is performed on the
values is expensive it is rather worth transforming the formula tree into a formula
map so that the operation is not performed redundantly.

A ∧B

12

¬
(A
∧
B
)A

∧
B

(a) STEP 1

C

A ∧B

12

A ∧B

24

¬CC

¬
C
∧
¬
(A
∧
B
)¬C

∧
A
∧
B

C
∧
¬
(A
∧
B
)C

∧
A
∧
B

(b) STEP 2

Figure 3.2: Formula Tree.

Formula Map

A formula map uses a direct mapping of concrete values to propositional formulas
to represent conditional values. The formula map avoids all redundancies by design.
Thus, computations with formula trees do not need to be performed redundantly.
However, the costs of construction and manipulation is usually higher than for tree
structures.

In Figure 3.3, we illustrate formula maps for the example. As shown in STEP 2
the formulas may get more complicated than for the tree structures which causes
overhead for SAT solving. In our experience, we found that formula maps are efficient
if they need to represent many different values, which often causes redundancies in
formula trees. However, if they only represent few values, trees are often faster due
to their simpler construction and manipulation [Meinicke, 2014].

2 A ∧B
1 ¬(A ∧B)

(a) STEP 1

4 C ∧ A ∧B
2 C ∧ ¬(A ∧B) ∨ (¬C ∧ A ∧B)
1 ¬C ∧ ¬(A ∧B)

(b) STEP 2

Figure 3.3: Formula Map.

A fine-grained storage of data differences in variational data structures enables main
parts of our research on studying how options interact. We can observe how options
interact to study feature interactions in highly configurable systems [Meinicke et al.,
2016] (see Chapter 4), and we can explain how feature interaction cause unexpected
behavior [Meinicke et al., 2018, Soares et al., 2018] (see Chapter 5).

3.2. Variational Execution 19

3.1.2 Programming with Conditional Values

Variational programming allows to implement programs using conditional values
[Erwig and Walkingshaw, 2011a, 2013]. This way we can explicitly calculates with
variations. In variational execution, we use variational programming to represent
data differences and to apply operations on them [Meinicke, 2014, Nguyen et al.,
2014b, Wong et al., 2018b].

The advantage of conditional values over symbolic values is that the internal values
are always concrete and that only the variability context is symbolic. Thus, in
contrast to calculating with symbolic values, we can apply existing functions to all
single values of the conditional value.

A simple way of calculating with conditional values is to apply a function to all
values. In the choice calculus we use an operation map to apply a function f(x) to
all entries. The map function works as illustrated below:

V [T] • f [T,R]⇒ V [R] (3.1)

Ch(A, a, b) • f(x)⇒ Ch(A, f(a), f(b)) (3.2)

Ch(A, 1, 2) • x ∗ 3⇒ Ch(A, 3, 6) (3.3)

When calculating with conditional values it is more common to apply a function
in specific contexts. To do so, we use the operation flatMap. flatMap applies
a function which takes a concrete value and returns a variational one. This way
we can apply a function f(x) under specific contexts only. The operation flatMap
works as illustrated below:

V [T] • f [T, V [R]]⇒ V [R] (3.4)

One(a) • f(x)⇒ f(a) (3.5)

Ch(A, a, b) • f(x)⇒ Ch(A, a • f(x), b • f(x))) (3.6)

Ch(A, 1, 2) • x⇒ Ch(A, x ∗ 3, x)⇒ Ch(A,Ch(A, 3, 1), Ch(A, 3, 6)) (3.7)

⇒ Choice(A, 3, 2) (3.8)

Ch(A, 1, 2) • x⇒ Ch(B, x ∗ 3, x)⇒ Ch(A,Ch(B, 3, 1), Ch(B, 3, 6)) (3.9)

As shown, the functions x∗3 are applied in restricted context A and B, respectively.
When using the map functions we can see that we do not need to change the functions
(e.g., x ∗ 3) as they always operates on concrete values.

3.2 Variational Execution

Variational execution aims to maximally share redundant executions using condi-
tional values and variability contexts (i.e., a propositional formula defining under
which condition an instruction is applied), at the cost of additional overhead for
each computation [Kästner et al., 2012b, Meinicke, 2014, Nguyen et al., 2014b, Wong
et al., 2018b]. Variational execution keeps track of all data using conditional val-
ues, which enables a fine-grained representation of shared data. If, for example, the
value of a field differs among configurations, the values are stored as a choice in

20 3. Variational Execution

the field, but other fields of the same object are shared for the entire configuration
space. Instead of splitting the entire heap as usually for software model checkers,
variations are stored locally. When computing with data, we only compute with
distinct values of all inputs, of which there are typically much fewer than configu-
rations in the configuration space. Furthermore, the compact representation using
variability contexts in choices provides us with a way to track where options inter-
act. This enables opportunities for variational execution as dynamic analysis. We
can essentially monitor the program execution and compare the states among all
configurations. We use this ability in the following chapters to measure interactions
and to help understanding interactions [Meinicke et al., 2016, 2018].

In variational execution, options occur only in variability contexts of choices, but all
values are concrete. In contrast to symbolic execution, symbolic configuration deci-
sions do not intermix with concrete values. Hence, all computations are performed
with concrete values. This separation of concrete values and symbols enables com-
putations without the undecidability issues from abstractions in symbolic execution,
therefore we rely on variational execution in our study.

Variational execution maximizes sharing of redundant calculations in two ways:
First, variational execution achieves instruction-level sharing among control flows
of all possible configurations. Second, the difference between program states is rep-
resented compactly using choices, such that small differences in local variables or
heap objects can be represented without splitting the entire program state. In this
way, variational execution achieves fine-grained sharing among all executions. To
achieve variational execution, we need to handle the control flow to share executions
and data storage to handle redundancies in data.

Variational Data

A main idea of variational execution is a fine-grained storage of variations in data
using choice values. This means that all data of the program needs to be stored using
choice values. This requires transforming local variables, parameters, fields, and
values on the operand stack into choice values. This allows to store differences caused
by options independent from each other which allows us to avoid the exponential
explosion when representing conditional program states.

Variational Scheduling

In variational execution, the program counter of a method can point to different
instructions at the same time under different contexts. For example, after a condition
(e.g., an if-statement) that depends on a conditional value, variational execution
jumps to two different instructions in the method, the next instruction and the
instruction the condition refers to. Thus, the program counter points to different
instructions based on corresponding contexts. The goal of variational scheduling
is to execute the instructions in an optimal order (i.e., selecting the instruction of
the conditional program counter that should be executed next) to maximize sharing
while preserving correctness. In most cases, executing the instruction with the lowest
index (i.e., the one that is furthest behind) is an optimal scheduling strategy. Wong
et al. [2018b] have shown that such a variational scheduling is optimal in most cases.

3.3. Variational Execution of GameScreen 21

Only few exceptions, such as complicated loops, may cause a non-optimal sharing
depending on how the code is compiled. After selecting the next instruction, this
instruction is executed under its corresponding context, such that the changes of the
instruction are only applied in this context.

In addition to executing single instructions under certain contexts, also methods
can have a context they belong to. Thus, similar to executing single instructions,
executing a method has only effects to the program under the context the method
is called in.

Some methods may not be executed variationally, such as native methods that can-
not be lifted or interpreted directly. Thus, these methods cannot store variational
data and they cannot be executed using variational scheduling. A practical solution
is to execute these methods with all possible combinations of the choice parame-
ters of the method. This is however, only possible if calling the method does not
cause side effects (e.g., changing a global variable). If the method has side effects,
executing it multiple times can cause incorrect behavior. In this case it is neces-
sary to implement lifted versions of this method and its class, called model class.
Model classes are common for modeling the environment in model checking and
symbolic execution [d’Amorim et al., 2008, Sen et al., 2015, von Rhein et al., 2011]
and other variants of variational execution [Yang et al., 2016]. These model classes
are implemented such that they can handle conditional values.

In conclusion, variational execution combines two main concepts: variational data to
achieve fine-grained sharing of data and variational scheduling to share the execution
of instructions. In Section 3.3, we give a complete example illustrating variational
execution based on our running example GameScreen.

3.3 Variational Execution of GameScreen

In Listing 3.2, we exemplify variational execution based on our running example (see
Section 2.2) [Melo et al., 2016]. We annotated the example with arrows that show
the conditional control flow, including the context under which each instruction is
executed. Dotted arrows indicate the execution for the ”not” context (e.g., not red).
On the right side of the listing, we show the conditional value assignments, which are
the values that are stored for variational execution. These values are either concrete
values (e.g., 4 for PERFECT_CURVE) or choice values (e.g., Choice(blue, true, false)
for blue). Changes to variables are indicated in bold.

First, variational execution initializes all static fields. The fields blue, red, and
green are annotated with @Conditional. We use this annotation to inform vari-
ational execution, that these fields should be treated as options Thus, we create
features for each of the annotated fields and initialize them as true and false de-
pending on the feature selection. For example, the field blue is initialized with
Choice(blue, true, false). Static field that are initialized with the same value for all
configurations are initialized with a single concrete value.

When calling the main method, the execution is shared for all configurations (i.e., the
execution context is True). At first, we create an object for GameScreen and initial-
ize its non-static fields. Because the fields totalScore and penalty do not depend

22 3. Variational Execution

1 pub l i c c l a s s GameScreen {
2 @Conditional p r i v a t e s t a t i c boo l e an blue ; –> Choice(blue, true, false)
3 @Conditional p r i v a t e s t a t i c boo l e an red ; –> Choice(red, true, false)
4 @Conditional p r i v a t e s t a t i c boo l e an green ; –> Choice(green, true, false)
5
6 p r i v a t e s t a t i c f i n a l i n t PERFECT CUREVE = 4 ; –> 4
7 p r i v a t e s t a t i c f i n a l i n t PERFECT STRAIGHT = 1 ; –> 1
8 p r i v a t e s t a t i c f i n a l i n t TIME BONUS = 2 ; –> 2
9

10 i n t t o t a l S c o r e = 0 ; –> 0
11 i n t penal ty = 0 ; –> 0
12
13 pub l i c s t a t i c vo id main (St r ing [] a rgs) {
14 GameScreen game = new GameScreen () ;
15 i f (b lue) {
16 game . se tPena l ty (10) ;
17 }
18 game . computeLevelScore () ;
19 }
20
21 p r i v a t e vo id s e tPena l ty (i n t penal ty) {
22 t h i s . pena l ty = penal ty ; − > Choice(blue, 10,0)
23 }
24
25 p r i v a t e vo id computeLevelScore () {
26 a s s e r t t o t a l S c o r e == 0 ;
27 t o t a l S c o r e = PERFECT CUREVE + PERFECT STRAIGHT; –> 5
28 i f (green) {
29 t o t a l S c o r e += TIME BONUS; − > Choice(green, 7,5)
30 }
31 i f (b lue) {
32 t o t a l S c o r e −= penalty ; − > Choice(blue, Choice(green, -3, -5),Choice(green, 7, 5))
33 }
34 i f (b lue) {
35 a s s e r t t o t a l S c o r e < 0 ;
36 }
37 i f (red) {
38 s e tSco r e (t o t a l S c o r e) ;
39 }
40 i f (b lue) {
41 i f (t o t a l S c o r e >= 0)
42 throw new RuntimeException () ;
43 }
44 r e tu rn ;
45 }
46
47 p r i v a t e vo id s e tSco r e (i n t s co r e) {
48 i f (s c o r e >= 0) {
49 t o t a l S c o r e = sco r e ; − > Choice(blue, Choice(green,−3,−5), Choice(green, 7, 5))
50 } e l s e {
51 t o t a l S c o r e = 0 ; − > Choice(blue,Choice(red, 0,Choice(green,−3,−5), Choice(green, 7, 5))
52 }
53 r e tu rn ;
54 }
55 }

if blue

if red

Listing 3.2: Variational Execution for the runnning Example GameScreen. The
arrow indicate under which condition the statements are executed. The values on
the right side show changes to variables during variational execution.

on variability, they are initialized with simple concrete values. The next instruction
is an if-statement (Line 15) that depends on a conditional value blue, which splits
the execution depending on blue. This makes the program counter conditional (i.e.,
the execution is split), pointing to Line 16 under condition blue and Line 18 for
¬blue. As Line 16 is furthers behind (i.e., it is the PC with the lowest index of the

3.4. Implementations 23

conditional PC), we execute Line 16 next under condition blue. Thus, setPenalty is
invoked under condition blue and penalty is set to 10 for blue and penalty becomes
a choice value. After setPenalty returns, all program pointers are at Line 18 and
computeLevelscore is executed for again under the shared context True.

The same splitting and joining process happens for the method computeLevelscore

as indicated by the arrows and the conditional assignments. In Line 38, the method
setScore is called under condition red with the conditional value of the filed
totalScore as parameter. The method setScore essentially sets the value of
totalScore to 0 if the value of score is smaller than 0. As the changes are only
applied under context red and as the value of totalScore are negative under
condition blue, totalScore becomes 0 under condition blue ∧ red.

Finally, the Lines 40-42 check whether totalScore positive under condition blue.
As totalScore is 0 under context blue ∧ red, a runtime exception is thrown for
configurations with blue ∧ red. All other configurations do not fail and return in
Line 44.

In Figure 3.4, we show the conditional exception thrown by variational excep-
tion [Meinicke, 2014]. As variational execution is aware of the condition under which
the exception is thrown, the output is annotated with this additional information.

if (blue & red):
Exception in thread "main" java.lang.RuntimeException

at GameScreen.computeLevelScore(GameScreen.java:42)

at GameScreen.main(GameScreen.java:18)

Figure 3.4: Conditional console output for the exception in GameScreen due to the
interaction blue ∧ red.

3.4 Implementations

In this section, we give a brief overview on current implementations of variational
execution. There are two ways of implementing variational execution: a variational
interpreter that executed the code directly, but assumes that certain inputs are
conditional, and transformation of the program such that it behaves as if it would
be executed variationally. We briefly introduce a tool for each type, namely VarexJ
as a variational interpreter [Meinicke, 2014] and VarexC as variational bytecode
transformation [Wong et al., 2018b].

VarexJ: Variational Interpreter

A variational interpreter is a tool that executes the program variationally. A varia-
tional interpreter usually extends an existing interpreter with variational scheduling
and variational data [Kästner et al., 2012b, Meinicke, 2014, Nguyen et al., 2014b].
Previous variational interpreter have severe limitations: they are either only writ-
ten for a toy language as proof of concept [Kästner et al., 2012b] or have limited
language support [Nguyen et al., 2014a].

24 3. Variational Execution

Our goal was to study variational execution for larger systems for a complete lan-
guage. We chose Java as its specification is well defined. We implemented our varia-
tional interpreter VarexJ [Meinicke, 2014] on top of Java Pathfinder’s [Havelund and
Pressburger, 2000] interpreter for Java Bytecode. Even though Java Pathfinder is a
software model checker, it is essentially a Java interpreter with model checking capa-
bilities. To implement variational execution, we modified all bytecode instructions
to compute with conditional data, we extended all shared data structures (e.g., the
heap, the method frame) to store conditional data, and we implemented a specialized
scheduling mechanism.

Those changes and the fact that VarexJ itself is written in Java creates a high run-
time overhead for each instruction. As we build on top of Java Pathfinder, we inherit
the same limitations, such as incomplete support for native methods and limited sup-
port for concurrency. This overhead and these limitations might forbid using VarexJ
for practical use, but it is acceptable for our explorations. The advantage of extend-
ing an interpreter is that we can easily monitor each Java Bytecode instruction to
observe interactions during runtime. To ensure the correctness of the implemen-
tation we used differential testing, we compared the executed instructions to the
execution of all configurations for several of our subject systems [Kästner, 2017].

VarexC: Variational Bytecode Transformation

The goal of VarexC is to avoid the overhead and technical limitations of an inter-
preter by executing the program directly with a standard JVM [Wong et al., 2018b].
VarexC changes the bytecode such that when executed with a standard JVM, the
program behaves as if it would have been executed with a variational interpreter.
This means that VarexC transforms all data directly into Choice values (e.g., an
int field becomes a Conditional<Integer>). To execute instructions conditionally,
VarexC introduces additional instructions to the code so that map functions are
called on conditional values. To achieve variational scheduling VarexC introduces
additional jump instructions and structures the code into so called VBlocks. A
VBlock is a set of instrucions that will always be executed under a shared context.
To decide which block should be executed next, each VBlock has its own context
and the block with the lowest index that has a satisfiable context will be executed
next. Details on variational execution using bytecode transformation can be found
in the OOPSLA paper [Wong et al., 2018b].

Note that we used VarexJ in all studies of this thesis [Meinicke et al., 2016, 2018],
as VarexC was developed after the studies were performed. However, the findings
and insights stay the same as the implementations are functionally equivalent.

3.5 Optimizations

The goal of this thesis it to study feature interaction in highly-configurable sys-
tems [Meinicke et al., 2016, 2018]. Thus, we worked on different ways to make
variational execution applicable to larger systems [Lazarek, 2017, Meinicke et al.,
2016, Meng et al., 2017, Wong et al., 2018b]. In this section, we discuss several ways
to improve the performance that we explored during the development of VarexJ

3.5. Optimizations 25

and VarexC. These optimizations can help when implementing new engines for vari-
ational execution or similar techniques, such as symbolic executions or software
model checking, in the future. In particular, efficient handling of variability is the
main challenge of variational execution. Optimizations that handle variability more
efficiently can have a high impact on performance. Handling variability can be
improved in different ways: First, optimizing internal variational data structures
used in the execution engine [Meng et al., 2017]. Second, using specialized varia-
tional data structures to represent data structures of the executed program [Lazarek,
2017, Walkingshaw et al., 2014]. Third, avoiding redundant satisfiability calls.

Internal Variational Data Structures

Variational data structures are designed to efficiently represent data for an expo-
nential configuration space [Walkingshaw et al., 2014]. Walkingshaw et al. [2014]
already outlined initial ideas for such data structures, on which our improvements
are based on. We present our decorator-based approach to optimize variational data
structures, exemplary on our implementation of the variational method frame [Meng
et al., 2017].

The method frame is the central data structure of a JVM for computations. Thus,
also in VarexJ a large amount of time is spend in the variational method frame. A
method frame consists of two parts, the operand stack and local variables. As any
data can be conditional, both the stack and the local variables need to be able to
store conditional values. Efficient handling of these conditional values is crucial for
the performance.

The main idea of our approach is that the efficiency of the implementation highly
depends on the shape of the data it has to handle. Thus, beyond a general variational
implementation for a stack frame that can handle arbitrary inputs, we aimed to
provide optimized implementations for different shapes of variational data.

The optimizations are based on two observations on which data is processed when
executing a program with variational execution. First, most of the time, the stack
frame does not need to handle variability at all. That means that all calls to the
stack frame are done in the same context and all the data are unconditional. Thus,
an implementation that supports variability is unnecessary most of the time. To
support such non-variational cases, we provide a Hybrid-Decorator that can switch
between a lifted and an unlifted version of the stack frame.

The second observation is that bytecode instructions are connected. For example,
values that are pushed under a condition are usually also popped again under the
same condition. Thus, it is often sufficient to remember under which condition the
current operands are pushed instead of representing all different stacks. Again, we
support these cases with a Buffer-Decorator which adds a buffer that remembers the
current context of the operands on top of a variational stack frame.

In VarexJ, we use both decorators at the same time as they are independent and
provide performance improvements over a general variational stack frame. A system-
atic evaluation of variational stack frames can be found in our VaMoS paper [Meng
et al., 2017].

26 3. Variational Execution

External Variational Data Structures

Data structures used by the executed program that are modified by many different
features can cause a main bottleneck for variational execution. In the worst case,
such a shared data structure can cause an exponential explosion. For example, when
adding a value to a list under two different independent contexts, 1 under context A
and 2 under context B, variational execution has to represent all four different lists:
(¬A ∧ ¬B : {∅}, A : {1}, B : {2}, A ∧B : {1, 2}).

Lazarek [2017] explored how to efficiently represent such variational data structures
in the program. Specialized variational representation of such data structures can
handle changes under several different contexts. We extended VarexC with an im-
plementations of a variational list including a specialized scheduling algorithm that
allows to efficiently iterate on such lists [Lazarek, 2017, Wong et al., 2018b].

A further exploration and general solutions for variational data structures (e.g., an
automated lifting algorithm) are still missing and open research. However, these
data structures are necessary for variational execution to be efficiently applicable to
arbitrary programs.

Avoiding redundant SAT calls

Another bottleneck of variational execution is the number of satisfiability calls and
operations on propositional formulas. Each executed bytecode instruction requires
multiple of these calls, to check the condition of the operation and for modifying data.
Thus, even a perfectly optimized variational execution engine cannot become faster
than the number of operations the library for propositional formulas can perform.

A main observation from our study on how feature interact in configurable sys-
tems [Meinicke et al., 2016] is that most of the operations on propositional formulas
are performed redundantly. Thus, we can cache all operations, such as and, not,
and isSatisfiable. Especially, isSatisfiable can be costly if the program uses
a feature model. Caching can effectively reduce the effort for these operations to
simple map calls. We implemented this optimization in both VarexJ, and VarexC.
In VarexC we experienced a speedup of at least four times when caching SAT calls.
Reusing previous constraint solutions is used to speed up symbolic execution engines,
like our optimization [Baldoni et al., 2018, Cadar et al., 2008b].

In Figure 3.5, we compare the number of calls and distinct calls (i.e., the size of
the cached calls) on propositional formulas. To estimate the effect of caching SAT
calls, we used six commonly used programs from previous evaluations of variational
execution [Meinicke, 2014, Meinicke et al., 2016, Wong et al., 2018b]. As shown
in the Figure, the size of the cache is 1 to 6 orders of magnitude smaller than the
number of calls. The highest effect can be observed in GPL due to mostly orthogonal
features and long runs in few different contexts (i.e., few interactions).

In summary, variational execution has the potential to scale to large systems with
large numbers of configurations by efficiently sharing redundancies among them. We
explored several ways to increase sharing and improve performance. As variational
execution is a new analysis technique, it has still potential for further improvements
by future research, such as general solutions for variational data structures [Walk-
ingshaw et al., 2014].

3.6. Related Work 27

1E+00

1E+02

1E+04

1E+06

1E+08 all cached

BankAccount Email Elevator GPL Queval CheckStyle

100

102

104

106

108

Figure 3.5: Number of SAT calls compared to number of distinct cached calls.

3.6 Related Work

Detecting faults caused by interactions of multiple options is challenging as it re-
quires finding a configuration that reveals this fault. Recent research on highly-
configurable systems has worked on solving the challenges that come with the con-
figuration space explosion. As discussed in Chapter 2, there exist many approaches
that test the system for a subset of configurations only [Abal et al., 2018, Cabral
et al., 2010, Cohen et al., 2007, Garvin and Cohen, 2011, Kuhn et al., 2004, Medeiros
et al., 2016, Nie and Leung, 2011]. In this section, we discuss work that is more
closely related to variational execution in a sense that they share redundancies.

Initial work on variational execution was designed for a toy language as a proof of
concept [Kästner et al., 2012b]. A second implementation is a variational interpreter
for PHP that was built to analyze how 50 plugins interact in WordPress [Nguyen
et al., 2014b]. However, due to the language design of PHP, the interpreter is
incomplete and can hardly be used to analyze other systems. Our goal was to
overcome these limitations and provide variational execution for a complete language
to be able to study more diverse systems. Thus, we chose Java as it has a clear
specification of instructions. With VarexJ [Meinicke, 2014, Meinicke et al., 2016]
and VarexC [Wong et al., 2018b], we have two mature implementations with nearly
complete language support, with only minor limitations.

There exist approaches with similarities to variational execution. Kim et al. [2012]
propose shared-execution based on Java Pathfinder, which performs a form of vari-
ational execution, however not beyond method boundaries. The approach improves
sharing, however as it requires to split the execution at method calls the ability to
share are still very limited.

The approach called faceted execution is the similar idea as variational execution
applied in the context of secure information flow analysis [Austin and Flanagan,
2012b, Austin et al., 2013, Yang et al., 2016]. Like variational execution, faceted
execution uses faceted values (i.e., choice values) to represent data that differs across
executions.

28 3. Variational Execution

Coalescing execution [Sumner et al., 2011] uses vectors to represent multiple values,
similar to choice values. However, the execution model scales only to few different
inputs.

Multi-execution approaches run the program multiple times in parallel [De Groef
et al., 2012, Devriese and Piessens, 2010, Hosek and Cadar, 2013, 2015, Kolbitsch
et al., 2012, Maurer and Brumley, 2012, Su et al., 2007], however, without sharing
redundancies among them. Thus, multi execution is often only used to analyze few
executions (usually two).

Software model checking is designed to explore multiple program paths while shear-
ing parts of the execution, by splitting and joining the executions. However, as
executions can usually only be merged if the program states are equivalent, the
states can rarely be merges, leading to the so called state space explosion [Ball
et al., 2011, Beyer et al., 2007]. von Rhein et al. [2011] extended Java Pathfinder by
abstracting configuration options as symbolic variables using BDDs. These options
are then no longer part of the global state of the system. Thus, removing the options
from the state enables to split the executions later and increase the probability of
joining the executions again. However, as soon as options affect the global program
state (e.g., a value of a field is changed depending on the selection of an option),
JPF-BDD can no longer share the execution. There exist further model checking
approaches that include features into the verification process [Asirelli et al., 2011,
Classen et al., 2010, 2011, Lauenroth et al., 2009], which however only operate on
models of systems and not on source code.

Variational execution shares ideas of dynamic symbolic execution [Clarke, 1976,
King, 1976], but instead of calculating with symbolic values, variational execution
always calculates with concrete values. Usually, symbolic execution has to split the
execution and the state when branching (e.g., due to if-statements), while not being
able to merge the execution again [Baldoni et al., 2018]. Symbolic execution engines
that implement a fully symbolic memory, use if-then-else formulas (like choices [Er-
wig and Walkingshaw, 2011a]), and optimally merge branches potentially behave like
variational execution [Baldoni et al., 2018, Sen et al., 2015]. Such symbolic execution
engines reduce the effort of analyzing a system by sharing redundant computations,
which, however, comes with the cost of more expensive constraint solving [Kuznetsov
et al., 2012]. For example, the approach of MultiSE is closely related to variational
execution [Sen et al., 2015]. MultiSE introduces a fine-grained representation of data
differences, similar to choice values, which enables more sharing as it is no longer
necessary to split the whole program state.

3.7 Conclusion

In this chapter, we presented variational-execution [Meinicke, 2014, Nguyen et al.,
2014b, Wong et al., 2018b], which builds the foundation of this thesis. With vari-
ational execution we developed an efficient dynamic analysis that essentially aligns
the executions of many configurations. We use this dynamic analysis throughout
this thesis to (1) understand how options interact in highly-configurable systems
(Chapter 4)[Meinicke et al., 2016] and (2) to help developers understanding interac-
tions and their causes (see Chapter 5) [Meinicke et al., 2018]. We further presented

3.7. Conclusion 29

present recent our advancements of variational executions, such as optimizations
for internal [Meng et al., 2017] and external variational data structures [Lazarek,
2017], and a new implementation that avoids the overhead of an interpreter-based
approach [Wong et al., 2018b].

4. Measuring Interactions in
Highly Configurable Systems

This chapter is based on the ASE’16 paper ”On Essential Configu-
ration Complexity: Measuring Interactions in Highly-Configurable Sys-
tems” [Meinicke et al., 2016].

Research in the area of configurable systems has developed many approaches to deal
with the feature interaction problem, such as sampling. These approaches are built
on certain assumptions about feature interactions, such as that only few feature
interact, and that practically all faults can be detected by covering interactions
among three features [Abal et al., 2018, Garvin and Cohen, 2011, Kuhn et al., 2004].
These assumptions come from indirect observations of how variability affects the
system behavior (e.g., though bug reports) [Abal et al., 2018, Garvin and Cohen,
2011, Kuhn et al., 2004]. However, little is known on how features interact inside the
system: ”Are all options orthogonal?” or ”Do options interact randomly with each
other?” Such knowledge is helpful to develop better (e.g., configuration complete)
analyses that scale to large configuration spaces as they complete and backup the
assumptions on feature interactions that the analyses rely on.

Recent research started investigating how exactly options interact. Reisner et al.
[2010] observed interaction through path constraints in symbolic execution. In their
experiments they used symbolic execution to execute all configurations and to detect
differences in the code coverage that depend on configuration options and interac-
tions thereof. However, due to the scalability issues of symbolic execution, the ex-
periments took 80 machine weeks to execute the 319 test cases of 10k LOC programs
while exploring at most 30 configuration options.

Nguyen et al. [2014b] used variational execution to analyze WordPress, a blog post
management system, and found that higher-order interactions exist that include
up to 16 plugins. Their experiment was mainly a feasibility study that should
show the scalability of variational execution. Only a small part of the study was
dedicated analyzing interactions, such as the numbers of interacting options on data
and control-flow.

32 4. Measuring Interactions in Highly Configurable Systems

Our goal is to directly measure how options interact during runtime to observe
the behavior of feature interactions. We use variational execution which provides
(nearly-)optimal sharing, similar to the study of Nguyen et al. [2014b]. The sharing
potential of variational execution and the way how variational execution represents
data and control-flow differences enables us to directly observe interactions. That is,
we can observe how features interact in the control flow by observing under which
condition instructions are executed, and we can observe interactions on data by ana-
lyzing how many options are involved in the choices that represent certain values. We
further measure the essential configuration complexity : the configuration related dif-
ferences in an execution that need to be explored given an optimal execution strategy.

Using these analyses, we developed three metrics that allows us to visualize how op-
tions interact. Specifically, the degree of the interactions on the control flow and how
complex computations are depending on the number of alternatives that need to be
explored (i.e., the essential configuration complexity). These metrics help us under-
standing how interactions affect different configuration complete analysis techniques
that are proposed to analyze configurable systems, namely SPLat (sampling) [Kim
et al., 2013], symbolic execution [Anand et al., 2007, Reisner et al., 2010], software
model checking [Havelund and Pressburger, 2000, von Rhein et al., 2011], and vari-
ational execution [Meinicke, 2014, Nguyen et al., 2014b]. We developed five micro
benchmarks that allow us to observe the effects of different interactions on tools
that implement different sharing strategies. With these micro benchmarks we gain
an understanding how different sharing strategies affect scalability.

We further apply our measurements to eight configurable systems to investigate the
characteristics of interactions in actual programs. We analyzed the metrics and
found, beyond others, that options are often orthogonal and interact locally, but
high-degree interactions exist.

The goal of this research is to aid researchers gain a better understanding of
how options interact during program execution by analyzing how data interacts
in variational execution.

Overall, we contribute the following in this chapter:

• We develop three metrics that characterize essential configuration complexity,
measuring how options interact within an execution.
• We design five benchmarks to study how state-of-the-art analysis approaches

exploit interaction characteristics in exponential configuration spaces, exposing
why certain approaches do not scale for certain kinds of interactions.
• We measure the configuration complexity for medium-sized systems, finding

that the essential configuration complexity is low enough to enable configuration-
complete analyses.
• We discuss common characteristics of interactions, providing more nuanced

variants of current assumptions, which can, among others, encourage more
efficient analyses of programs with large configuration spaces.

4.1. Measuring Feature Interactions 33

4.1 Measuring Feature Interactions

Sharing executions and compactly representing data differences, our dynamic anal-
ysis can directly collect data about interactions. Our execution over-approximates
essential interaction complexity where sharing is suboptimal. Technically, we in-
strumented the execution of each Java bytecode instruction to collect data on in-
teractions to measure three metrics: the control-flow interaction degree, the data
interaction degree, and the interaction overhead. We exemplify the measurements
for our running example GameScreen in 4.1a. Based on this execution, we generate
metrics to on feature interactions shown in 4.1b, containing interactions overhead,
interactions on data and interactions on the control flow.

With control-flow interaction degree, we measure configuration complexity on the
control flow by assessing how many options need to be selected or deselected to
execute the instruction at this point of the trace. The degree increases at control
flow decisions that depend on a configuration option; in our example, the instruction
in Line 42 is executed with context blue∧red, thus this instruction’s control-flow
interaction degree is two. As our analysis already tracks the variability context
during execution, we merely need to log the number of options in the context for
each executed instruction. In our plots, we visualize the control-flow interaction
degree as a red line along the trace. A high value indicates part of an execution that
is only contained in few configurations.

With data interaction degree, we measure configuration complexity on data by assess-
ing on how many options the resulting value of an instruction depends. Considering
variability, an instruction may need to be computed with alternative values and the
result of the instruction may depend on one or multiple options, of which we re-
port the number of distinct options affecting the value. For example, the expression
computing totalScore in Line 51 results in five alternative values depending on
three different options, resulting in a data interaction degree of three. We measure
the degree by inspecting the result of every instruction during execution and plot
it as a green bar along the trace. A high value indicates that some different results
from a computation might be observable in few specific configurations only.

Finally, with interaction overhead, we measure the effort required to execute an in-
struction considering data variability in the instruction’s inputs. If all inputs of an in-
struction have the same value in all configurations, we need to execute the instruction
only once (baseline overhead 1). If one input has n alternative values in different con-
figurations, we need to execute the instruction n times (overhead n). For instructions
with multiple inputs (e.g., addition or method invocation), we need to consider all
combinations of alternatives of all inputs (worst case overhead n×m for an instruc-
tion with two inputs with n and m alternatives respectively). In contrast to interac-
tion degree measures, interaction overhead assesses the essential computational effort
from alternative values, not how many options are involved. For example, in Line 32
the two values of totalScore are combined with the two values of penalty (over-
head four). We compute the interaction overhead by inspecting the variability in all
inputs of each instruction and plot it as blue bars along the trace. The interaction
overhead is useful to compare essential complexity to the effort for executing a single
configuration; comparing the aggregated overhead of all instructions with those of

34 4. Measuring Interactions in Highly Configurable Systems

a single execution allows us to assess how many additional instructions have been
executed and how many instructions need to be repeated due to variability.

All three measures assess different aspects of configuration complexity. The inter-
action degree measures characterize interactions in control flow and data, whereas
interaction overhead approximates the effort required for a configuration-complete
analysis considering maximal sharing. The trace for our example in Figure 4.1 il-
lustrates how the measures peak every time data from interactions is created or
accessed.

4.2 Interaction Benchmarks

After introducing how we measure configuration complexity technically, we illustrate
how certain kinds of interactions affect essential configuration complexity with a
series of benchmarks. The benchmarks provide a sanity check for our measures
of configuration complexity before we collect and interpret the measures on real-
world systems. Additionally, they allow us to study how well existing sharing-based
analysis tools exploit redundancies and which interaction characteristics they exploit.
This enables us later to extrapolate which analysis tools can cope with characteristics
found in real-world software systems.

We designed five benchmarks shown in Table 4.1 that each exhibit different in-
teraction characteristics in a short execution. In the second column, we plot the
measured configuration complexity. Additionally, we compare execution time, exe-
cuted instructions, and memory consumption of five state-of-the-art analysis tools:
SPLat [Kim et al., 2013], JPF-core [Havelund and Pressburger, 2000], JPF-BDD [von
Rhein et al., 2011], JPF-symbolic [Anand et al., 2007], and VarexJ. We do not eval-
uate sampling-based strategies, as our benchmarks are specifically designed to pro-
duce high-degree interactions. Specifically, we address the following research ques-
tion: RQ 1: What are the effects of different kinds of interactions on the
scalability and performance of state-of-the-art execution mechanisms?

4.2.1 Experimental Setup

Evaluated Analysis Tools

We compare five state-of-the-art analysis tools that have been designed to efficiently
execute a program over configuration spaces by fighting surface complexity through
different kinds of sharing. Some of these tools have been designed originally for differ-
ent purposes, such as model checking safety properties [Anand et al., 2007], but they
have been suggested also for analyzing interactions or testing highly-configurable
systems. We selected tools that represent different analysis and sharing strategies:
identifying unnecessary options, software model checking, and symbolic execution.
In addition, we use the uninstrumented version of our variational interpreter VarexJ
a representative for variational execution. The tools are comparable in the sense
that they all target Java and are mostly based on the same infrastructure, namely
Java Pathfinder [Havelund and Pressburger, 2000].

Java Pathfinder (JPF-core) is a software model checker for Java Bytecode that han-
dles bytecode instructions as transitions between states [Havelund and Pressburger,

4.2. Interaction Benchmarks 35

1 p u b l i c c l a s s GameScreen {
2 @Conditional p r i v a t e s t a t i c b o o l e a n blue ; –> Choice(blue, true, false)
3 @Conditional p r i v a t e s t a t i c b o o l e a n red ; –> Choice(red, true, false)
4 @Conditional p r i v a t e s t a t i c b o o l e a n green ; –> Choice(green, true, false)
5
6 p r i v a t e s t a t i c f i n a l i n t PERFECTCUREVE = 4 ; –> 4
7 p r i v a t e s t a t i c f i n a l i n t PERFECT STRAIGHT = 1 ; –> 1
8 p r i v a t e s t a t i c f i n a l i n t TIME BONUS = 2 ; –> 2
9

10 i n t t o t a l S c o r e = 0 ; –> 0
11 i n t penalty = 0 ; –> 0
12
13 p u b l i c s t a t i c v o i d main (St r ing [] a rgs) {
14 GameScreen game = new GameScreen () ;
15 i f (blue) {
16 game . se tPena l ty (10) ;
17 }
18 game . computeLevelScore () ;
19 }
20
21 p r i v a t e v o i d se tPena l ty (i n t penalty) {
22 t h i s . pena lty = penalty ; − > Choice(blue, 10,0)
23 }
24
25 p r i v a t e v o i d computeLevelScore () {
26 a s s e r t t o t a l S c o r e == 0 ;
27 t o t a l S c o r e = PERFECTCUREVE + PERFECT STRAIGHT; –> 5
28 i f (green) {
29 t o t a l S c o r e += TIME BONUS; − > Choice(green, 7,5)
30 }
31 i f (blue) {
32 t o t a l S c o r e −= penalty ; − > Choice(blue, Choice(green, -3, -5),Choice(green, 7, 5))
33 }
34 i f (blue) {
35 a s s e r t t o t a l S c o r e < 0 ;
36 }
37 i f (red) {
38 s e tSco r e (t o t a l S c o r e) ;
39 }
40 i f (blue) {
41 i f (t o t a l S c o r e >= 0)
42 t h r ow new RuntimeException () ;
43 }
44 r e t u r n ;
45 }
46
47 p r i v a t e v o i d s e tSco r e (i n t s co r e) {
48 i f (s co r e >= 0) {
49 t o t a l S c o r e = sco r e ; − > Choice(blue, Choice(green,−3,−5), Choice(green, 7, 5))
50 } e l s e {
51 t o t a l S c o r e = 0 ; − > Choice(blue,Choice(red, 0,Choice(green,−3,−5), Choice(green, 7, 5))
52 }
53 r e t u r n ;
54 }
55 }

if blue

if red

(a) Variational execution of GameScreen.

4

3

2

1

0

1

2

3

4

2 3 4 6 7 8

1
4

1
5

1
6

2
2

1
8

2
6

2
7

2
8

2
9

3
1

3
2

3
4

3
5

3
7

3
8

4
8

4
9

5
1

5
3

4
0

4
1

4
2

4
4

Interaction Degree, Data

Interaction Overhead

Interaction Degree, Control Flow

(b) Traces and interaction overhead for GameScreen.

Figure 4.1: Illustration of interaction metrics for GameScreen.

36 4. Measuring Interactions in Highly Configurable Systems

Performance Measures

Benchmark Complexity
Measures

Time in seconds Instructions in
1,000

Memory in MB
B
1
:
E
x
p
lo

s
io

n

boolean O1, O2, . . .
void method () {

i n t i = 1 ;
i f (O1)

i += 2 ;
i f (O2)

i += 4 ;
. . .

}
200

0

200

400

600 Interaction Degree,
Data
Interaction
Overhead
Interaction Degree,
Control Flow

10 0

20

40

60

80

100

120
JPF-Core

JPF-BDD

JPF-SE

SPLat

VarexJ

0

5

10

15

20

0

200

400

600

800

B
2
:
D
e
e
p

N
e
s
t
in

g boolean O1, O2, . . .
void method () {

i n t i = 1 ;
i f (O1) {

i += 2 ;
i f (O2) {

i += 4 ;
. . .

}}}

10

5

0

5

10

0

1

2

0

1

2

3

0

10

20

30

40

50

B
3
:
D
is
t
in

c
t
V
a
lu

e
s boolean O1, O2, . . .

void method () {
i n t i = 0 ;
i f (O1)

i++;
i f (O2)

i++;
. . .

}

10

5

0

5

10

0

5

10

15

20

0

5

10

15

20

0

100

200

300

400

500

600

B
4
:
S
e
p
a
r
a
t
e

V
a
lu

e
s

boolean O1, O2, . . .
i n t i1 , i2 , . . .
void method () {

i f (O1)
i 1 = 1 ;

i f (O2)
i 2 = 1 ;

. . .
}

2

1

0

1

2

0

5

10

15

20

0

5

10

15

20

0

200

400

600

800

B
5
:
N

o
D
a
t
a

In
t
.

boolean O1, O2, . . .
void method () {

i f (O1)
p r in t (””) ;

i f (O2)
p r in t (””) ;

. . .
}

2

1

0

1

2

0

5

10

15

20

0 50 100
Options

0

5

10

15

20

0 50 100
Options

0

50

100

150

200

250

300

0 50 100
Options

Table 4.1: Benchmarks to simulate different kinds of interactions (left). The dia-
grams in the second column illustrate interactions for each program measured using
variaitonal execution. The three diagrams on the right show the performance results
for time, executed instructions and memory consumptions for five analysis tools.

2000]. JPF-core can be used to split execution paths for boolean options and explore
all possible paths. If all values of fields and variables are equivalent, JPF-core can
join separated paths and share subsequent executions.

JPF-BDD extends JPF-core by separating tracking of boolean options [von Rhein
et al., 2011]. By taking options out of the state, states can be merged if they differ
only by options, increasing the chance for joining, and thus sharing.

JPF-symbolic is a symbolic extension of JPF-core [Anand et al., 2007], designed
for test generation. If the execution splits (e.g., due to if-statements), the state is
forked, but due to challenges in matching symbolic states, states are never merged.
Other symbolic engines may yield better sharing by the memory fully symbolically,

4.2. Interaction Benchmarks 37

which however may also result in more expansive computations [Baldoni et al., 2018,
Sen et al., 2015].

Finally, SPLat instruments a program to dynamically detect which configuration
options are used in an execution [Kim et al., 2013]. It reexecutes the program until
all combinations of used options are explored. Although SPLat does not share any
actual executions, it can narrow down the configuration space if only a subset of
configurations has an effect on the execution trace (e.g., for unit tests). As the tool
is not publicly available, we reimplemented it for Java.

Benchmarks and Metrics

We design five small benchmark programs characterizing favorable and critical cases
for interactions among configuration options. We show all benchmarks in Table 4.1
and explain them and their rationale together with the results. All benchmarks are
reduced to distill the interaction effect in a very concise setting. Each benchmark
can be scaled in the number of involved configuration options, such that we can
observe scalability with regard to the exponentially growing surface configuration
complexity. We plot the complexity measures for an execution with 10 options to
illustrate the general trend.

For each tool, we report the performance measures time, instructions, and memory
consumptions for executing the benchmark with different numbers of options (0 to
100). We measured them all using internal metrics of Java Pathfinder and built
a separate harness for SPLat. As we face an exponential problem, we terminate
executions that exceed two minutes. To reduce measurement bias, we report the
average of three runs.

4.2.2 Sharing Potential

For each benchmark, we discuss the interaction characteristic it simulates, reasons
for the configuration complexity, and the performance measures indicating which
tools scale.

Benchmark B1 (Explosion): We start with the worst case of interactions in
which all options interact on the same value and yield a different result in every
configuration. In such case, every exhaustive technique needs to track an exponen-
tial number of alternative values. As visible from the complexity measures, early and
some later instructions (e.g., if statements) in the benchmark are affected by fewer
configurations and can be shared. However, no tool can be expected to scale as they
all face essential configuration complexity growing exponentially with the number
of options as visible in all performance measures. If these kinds of interactions are
common in practice, there would be little hope for configuration-complete analyses.

Benchmark B2 (Deep Nesting): Next, we explore the effect of dependencies
among options, leading to a lower essential configuration complexity with a linear
number of distinct execution traces. Whereas B1 had independent decisions for
each option, resulting in 2n execution traces, B2 models nested decisions, resulting
in n + 1 execution traces for n options. The complexity measure shows the linear
increase in overhead as additions are performed on values with increasingly many

38 4. Measuring Interactions in Highly Configurable Systems

alternative values. Also the interaction degree measures grow linear as more and
more options need to be selected. Again, we can see that several instructions that
do not manipulate variable i could be shared. Our performance measures show that
this kind of interaction is well supported by all approaches. As all tools only split
lazily where necessary, there are nearly linear increases with more options in all per-
formance measures. Simpler tools outperform tools with higher constant overhead,
as exploiting additional sharing has only marginal effects.

Benchmark B3 (Distinct Values): Sharing becomes feasible if interactions on a
variable produce a small number of distinct values. In benchmark B3, each option
increases a value by 1, resulting in n + 1 distinct values for n options. Therefore,
essential configuration complexity grows linearly with the number of configurations.
Our performance measurements indicate that JPF-core and JPF-symbolic require
exponential effort as they need to split the execution on every if statement but
cannot join them again; JPF-symbolic never joins and JPF-core cannot join as the
values representing the options have different values in different states. Without
data sharing, also SPLat requires exponential effort because all options have an
independent effect on the execution trace. JPF-BDD and VarexJ both track the n+1
distinct values separately from the variations in configuration options, which enables
them to perform closer to the linear growing essential configuration complexity.
VarexJ executes fewer instructions and requires less memory than JPF-BDD by
exploiting additional sharing, which however has no benefits for the execution time
due to the additional overhead.

Benchmark B4 (Separate Values): If options affect disjoint parts of the state,
essential configuration complexity can be very low. Benchmark B4 exhibits an inter-
action in which each option affects a different variable, without any data interaction.
Despite an exponential number of execution traces and distinct states, each variable
has only two alternative values (0 and 1) and, as such, the essential configuration
complexity is low. As the performance measures show, JPF-core, JPF-symbolic,
JPF-BDD, and SPLat all require exponential effort, as they do not exploit sharing
for this interaction characteristic. All approaches split on each if-statement and
none can join the states again. Even JPF-BDD cannot join, as non-option values
differ across configurations. Only VarexJ approaches the low essential complexity.

Benchmark B5 (No Interactions on Data): Finally, we eliminate all data inter-
actions, such that only control-flow interactions remain (i.e., an exponential number
of different execution traces, all with the same states). Essential configuration com-
plexity is low as in B4. JPF-BDD and VarexJ both execute each instruction on a
single state without interaction overhead, as all variability of options is handled sep-
arately. In contrast, SPLat still needs to explore all execution traces and JPF-core
and JPF-symbolic track different configuration values as part of their split state,
resulting in exponential behavior.

Lessons Learned

Even when essential configuration complexity is low, missing to exploit suitable
forms of sharing for certain characteristics of interactions can result in exponen-
tial execution efforts. A program with negligible essential complexity (e.g., without

4.3. Measuring Feature Interactions in Highly Configurable Systems 39

System LOC Options Config. Instr. VA
∑

IO µInstr. Coverage

Jetty 7 145,421 7 128 12M 12M 12M 16%
Checkstyle 14,950 141 >2135 407M 421M 198M 37%
Prevayler 8,975 8 256 28M 29M 15M 7%
QuEval 3,109 20 680 81M 94M 1M 45%
Elevator 730 6 20 89k 100k 29k 81%
GPL 662 15 146 17M 17M 9M 86%
Email 644 9 40 48k 55k 16k 96%
Mine Pump 296 6 64 14k 16k 14k 84%

Table 4.2: Subject systems analyzed for configuration complexity and their sizes
in lines of code, number of options and configurations; number of instructions
executed with VarexJ, the aggregated interaction overhead (

∑
IO), the average

number of instructions for single configurations (µInst.), and lower bound for line
coverage reached with the sample method.

any data interaction, as in B4 (Separate Values)) can cause exponential behavior in
state-of-the-art approaches. Finding such kind of interaction characteristics in real-
world programs would be a great opportunity for quality assurance, as it indicates
a high potential for configuration-complete analysis with sharing-based approaches.

4.3 Measuring Feature Interactions in Highly Con-

figurable Systems

To assess essential configuration complexity of executions in real-world software,
we applied variational execution to eight configurable systems shown in Table 4.2.
We selected four configurable medium-sized systems from different domains, the
http server Jetty 7, the in-memory database Prevayler, the static analysis tool
Checkstyle, and the academic evaluation framework for database index structures
QuEval [Schäler et al., 2013]. In addition, we included systems previously used as
benchmarks in research on configurable systems: The systems MinePump [Kramer
et al., 1983], E-Mail [Hall, 2005], and Elevator [Plath and Ryan, 2001] are small aca-
demic Java programs that were designed with many interacting options; GPL [Lopez-
Herrejon and Batory, 2001] is a small-scale configurable graph library often used for
evaluations in the product-line community. All these systems are executable with
VarexJ.

To investigate interactions in configurable systems, we pose the following research
question: RQ 2: What is the essential configuration complexity of real-
world software? Particularly, we are interested in whether our measures for
configuration complexity confirm current assumptions based on error reports and
program outputs [Abal et al., 2018, Garvin and Cohen, 2011, Kuhn et al., 2004] or
whether they provide additional insights.

Experimental Setup

We execute all subject systems over all configurations with VarexJ. For each sys-
tem, we measure configuration complexity for a fixed standard input: a sample input

40 4. Measuring Interactions in Highly Configurable Systems

distributed with QuEval, a source file with 474 lines for Checkstyle, and a sample
application provided with Prevayler. For Jetty, we deploy a web application that is
capable of serving static content as well as running simple servlets. As the traces
often contain several million instructions, we aggregate subsequent instructions in
our plots. We share the evaluation setup together with our implementation.

5

0

5

10

15

(a) Elevator

6

3

0

3

(b) Email

10

5

0

5

6

(c) Mine Pump

9

6

3

0

3

6

(d) GPL

25

0

25

50

75

100

(e) QuEval

3

0

3

6

9

(f) Prevayler

50
25
0
25
50
75

100

(g) Checkstyle
2

1

0

1

2

3

(h) Jetty

Figure 4.2: Traces and interaction overhead of variability-aware execution for larger
software. Each bar represents the highest value per 1,000 instructions (per 10 for
Elevator, Mine Pump and Email). Blue bars on top of the axis denote interaction
overhead, green bars below the axis denote interactions degrees on data and the red
line denotes the interaction degrees on the control flow.

Interactions in Real-World Software

We show the traces for the eight subject systems in Figure 4.2. In all systems,
we can observe a small average interaction overhead throughout most of the trace
and usually small interaction degrees (i.e., most instructions can be shared in large
configuration spaces). The traces also show that options do not interact increasingly
across the entire executions. Some individual results are noteworthy:

First, the Elevator system was specifically designed to exhibit many interactions [Plath
and Ryan, 2001]. Its trace shows that several interactions on data cause an interac-
tion overhead of up to 12. However, most instructions in the trace have an overhead
of at most two. Many instructions are executed in restricted contexts though, re-
quiring up to five options.

4.3. Measuring Feature Interactions in Highly Configurable Systems 41

Second, GPL is a common system for evaluations in the product-line community,
including prior studies of sharing and verification [Apel et al., 2013c, Kim et al.,
2012]. The system has only some minor interactions with an interaction overhead of
mostly two and a interaction degrees of mostly one option. Options do not interact
at all for most parts of the trace. However, at the end of the execution up to eight
options interact on the same data.

Third, we observed the strongest data interactions in QuEval. QuEval implements
several database index structures which can be customized with several options, sig-
nificantly changing the behavior of the entire system. The trace shows that there are
long sequences with similar overhead in the execution. This is caused by separate
processing of each index structure. Some values interact strongly causing an over-
head of 100 (among 680 configurations). However, the trace still shows that high
interaction degrees are rare, and many instructions can be shared after and between
them. In QuEval, there are multiple interactions that cause high interaction degrees
on data and control flow. Especially, in the last part of the execution, data interac-
tions like benchmark B1 (Explosion) can be observed for a subset of the options.

Fourth, Checkstyle is a good example for a trace with particularly few interactions.
The system implements many optional and independent checks that are not sup-
posed to interact. However, the trace shows that there are still high degree interac-
tions in Checkstyle, mostly caused by optional caching, resulting in a similar behav-
ior as in the benchmark B3 (Distinct Values) in a subset of the trace. Also, in Jetty,
we similarly observe that most options have only minimal influences on the trace; we
found no interactions on data at all (possibly due to the simple test scenario we used).

Throughout all systems, we observe essential configuration complexity that is far
lower than surface complexity may indicate. The amount of essential configura-
tion complexity differs by system though from almost negligible (Checkstyle, Jetty,
GPL), to medium (Elevator, Prevayler), to significant (QuEval). Comparing the
aggregated interaction overhead with the average number of instructions executed
without variability shown in Table 4.2 (see Section 4.1), we can see that a system exe-
cuting close to essential configuration complexity would usually only have to execute
1 – 4 times more instructions than an average execution of a single configuration.
Only QuEval had a significant interaction overhead compared to an average execu-
tion of individual configurations, but that can be explained largely by executions
for alternative options. In general, the overhead is much lower than the overhead
of factor 20 to 2135 a brute-force approach would require and could potentially even
beat some sampling strategies that reexecute each sampled configuration.

In its current form, due to the high overhead per instruction, VarexJ cannot achieve
this speedup compared to a standard JVM.1 However, our results indicate that
essential complexity is low and there is hope for the community to develop efficient
configuration-complete analysis techniques.

1When compared to executing a single configuration with VarexJ’s own interpreter, we observe
performance overheads between 1.0x (Jetty) and 9.7x (GPL) for most systems and 190x for QuEval,
in line with the measured interaction overhead. Detailed performance measurements are outside
the scope of this work, but can be found on our website.

42 4. Measuring Interactions in Highly Configurable Systems

Threats to Validity

Concrete results from our measurements should be generalized only carefully; our
focus is on establishing metrics for configuration complexity, not on proving charac-
teristics of programs in general practice. External validity is limited by the number
and size of our subject systems. As described, we selected the small programs rep-
resenting critical and paradigmatic cases, whereas we used convenience sampling for
the medium-sized systems, primarily due to current technical limitations of our in-
terpreter and the high engineering effort to execute further and larger systems. Our
subject systems are diverse, but their characteristics may not generalize for other
systems.

As described, we executed each system with only one input. Thus, we potentially
miss interactions that occur only with other inputs. Nonetheless, we execute each
program’s main method with a representative input, which in each system covers all
configuration options and a large amount of its code as the measured line coverage
in Table 4.2 indicates.

To interpret our results, it is important to remember, as discussed in Chapter 2, that
we define interactions as any differences during the execution triggered by options,
not just externally visible differences or defects. This decision is deliberate to study
interactions and execution methods in general, independent of defects they may
cause [Abal et al., 2018, Garvin and Cohen, 2011, Kuhn et al., 2004].

4.4 Discussion: Characteristics of Interactions

In Section 4.2, we have shown that despite exponential surface complexity many
kinds of interactions actually have low essential complexity, which can be exploited
by suitable sharing-based analyses. In Section 4.3, we have subsequently shown that
also real-world systems typically have a much lower essential complexity than it may
appear on the surface. However, we have also seen that interactions in real-world
systems have characteristics that are more nuanced than expected by existing ap-
proaches. Therefore, we conclude with a discussion of observed characteristics that
may inform the design of future analysis approaches and may also be informative
for developers concerned about interactions in their code.

We identify three main characteristics that are exploited (though not always ex-
plicitly) by existing analyses: irrelevant variability, orthogonal variability, and local
variability.

Irrelevant variability: Some options may not have any effect on an execution at
all. Even when a program has a large configuration space, some executions, such as
test cases, may not even read certain configuration options. If no configuration of
an execution ever reads a configuration option, we call such execution unaffected
by the option. In addition, some options may never be read unless another option
is (de)activated, in which the first option depends on the second. In both cases,
the number of distinct executions is smaller than the exponential surface complexity
indicates.

All sharing-based approaches exploit irrelevant variability, as shown with benchmark
B2 (Deep Nesting). Although, irrelevant variability was attributed with significant

4.4. Discussion: Characteristics of Interactions 43

speedups for test cases in prior work [Kim et al., 2011, 2013], none of our real-world
executions benefited from unaffected variability without rewriting the system to ini-
tialize options lazily (all options were always read and initialized). Dependencies
reduced the search space, but never close to essential configuration complexity.

Orthogonal Variability: Many options may not interact with each other. Al-
though potentially every option could interact with every other option, resulting in
exponential surface complexity, a common assumption is that most options do not
interact. We say two options are orthogonal if combining both options does not
yield any new behavior that could not be explained by either option alone. Some
options may be strictly orthogonal and not interact with any other option, but
it is more common to assume low interaction degrees where each change can be
explained by the interaction of at most two or three options.

The effectiveness of sampling strategies typically hinges on low interaction degrees,
whereas most existing sharing-based approaches are rather inefficient in exploiting
orthogonality, especially when options affect data, as apparent from benchmarks B4
(Separate Values) and B5 (No Interactions on Data). Our real-world executions
confirm that many options are orthogonal, but also show that one should not rely
on low interaction degrees alone: We found high interaction degrees (e.g., 40 in
Checkstyle) in most systems, but also found that those involve some options while
others remain mostly orthogonal. We argue that rare high interaction degrees is
a more accurate characterization of interactions in real-world systems, encouraging
research into configuration-complete analyses.

Local variability: An option may affect control flow and data during an execution,
but its effects might not spread across the entire execution trace, resulting in much
lower essential configuration complexity than surface complexity. With locality, we
might need to invest more effort to execute part of the trace repeatedly for different
configurations, but we can share effort in other parts.

Many sharing-based approaches exploit locality by sharing executions before the
option’s effect, and possibly also after (see Section 4.2). Existing sharing-based ap-
proaches differ in what forms of locality can be exploited though. Many approaches
can share a common prefix of the execution trace (prefix sharing) and split late on
the first instruction depending on an option. Some approaches can join after local
instructions, if those instructions do not affect the state as in benchmark B5 (No
Interactions on Data) (strictly local). Interactions that affect some state, that
is, however, not read again subsequently (see benchmark B4 (Separate Values)) are
rarely supported.

A much more common pattern in the observed real-world executions is what we
call scattered local: Options affect the trace locally and cause some changes to
the program’s state, but many subsequent instructions can be shared before that
changed state is accessed again. This is an effect, which we observed as gaps between
peaks in the measures of our benchmarks and the real-world executions. In all cases,
we see strong evidence of locality in that essential configuration complexity always
returns to lower values after peaks.

44 4. Measuring Interactions in Highly Configurable Systems

U
n
aff

ected

D
ep

en
d
in

g
S
trictly

O
rth

ogon
al

L
ow

In
teraction

D
.

H
igh

In
teraction

D
.

P
refi

x
S
h
arin

g
S
trictly

L
o
cal

S
cattered

L
o
cal

E
n
g.

&
R

u
n
tim

e
O

v
.

Combinatorial testing very low

SPLat low

JPF high

JPF-SE very high

JPF-BDD high

VarexJ very high
VarexC high

Table 4.3: Interaction characteristics exploited by different analysis approaches.
: exploited, : partially exploited.

Outlook

We observed that essential configuration complexity is often low and exploiting irrel-
evant variability, orthogonal variability, and local variability is a promising avenue
to scale analysis approaches. However, we also found that supporting the more nu-
anced characteristics of rare high interaction degrees and scattered local effects are
essential for scaling sharing-based approaches to large configuration spaces.

We summarize which properties are supported by each of the discussed tools in
Table 4.3. Currently, the tools that exploit more characteristics are also based on
a more heavy-weight infrastructure (i.e., higher engineering effort for the analysis
and higher runtime effort to execute individual instructions). We hope that our
analysis infrastructure helps to identify a sweet spot for exploiting the most relevant
interaction characteristics, without the overhead of our current dynamic analysis
implementation in VarexJ.

In several traces, we measured interactions of which not all might be intended. We
conjecture that our dynamic analysis might be useful for developers to understand
the sources of interactions and to build maintainable and assurable software.

4.5 Related Work

Despite much research on highly-configurable systems, the nature of configuration-
related interactions is not well understood, especially at the code level. In studying
bug reports, many studies found that the majority of reported configuration-related
bugs are caused by individual options or interactions among only few options with
only few defects at higher degrees [Abal et al., 2018, Cabral et al., 2010, Cohen et al.,

4.6. Conclusion 45

2007, Garvin and Cohen, 2011, Kuhn et al., 2004, Medeiros et al., 2016, Nie and
Leung, 2011]; but none of these studies is based on a configuration-complete analysis.
Manual search for feature interactions in requirements in telecommunications and
electronic mail has focused primarily on pairwise interactions [Hall, 2005, Kolberg
et al., 2000]. The few studies that systematically analyzed entire configuration spaces
found also interactions among more options, such as a linker fault in Busybox that
involved 11 options [Kästner et al., 2012a]. Where prior work primarily focused
on the degree of interaction faults, we define and monitor measures for interaction
degrees and interaction overhead to assess configuration complexity of both data
and control flow interactions.

Halin et al. [2018] tested all 26,000+ configurations of the JHipster with the goal
of evaluating the quality of sampling strategies and to analyze interaction faults.
As they tested each configuration in individually, their experiments took 182 days
(CPU time). They detected six interaction faults triggered by up to four options. In
contrast, we used an efficient configuration complete analysis that allows us to scale
executing test cases for large configuration spaces for which it would be infeasible to
test them all. Variational execution further enables us to observe feature interactions
beyond failures.

As discussed in Section 3.6, symbolic execution can potentially behave like varia-
tional execution [Baldoni et al., 2018, Sen et al., 2015]. Thus, symbolic execution
could be used to perform a similar analysis of feature interactions. However, scal-
ing symbolic execution to large systems remains challenging due to expensive SMT
solving. In contrast, variational execution has much lower effort as computations
are reduced to concrete operations and SAT solving [Meinicke et al., 2016, Nguyen
et al., 2014b, Wong et al., 2018b].

Closest to our analysis of interactions at the execution level, Reisner et al. [2010]
used symbolic execution to explore different paths of test cases in three C programs
(9–14 KLOC, 13–30 options) and found interactions among 7 of 30 options in one
system. Executing configurations separately, they measured the effect of interac-
tions on control flow only (with the goal of increasing test coverage), whereas we
specifically monitor the effect of interactions on data to measure configuration com-
plexity (to assess whether a configuration-complete approach is feasible), especially
regarding the different notions of local variability (e.g., using benchmarks B3–B5
and the complexity measure of interaction overhead).

Nguyen et al. [2014b] previously used variational execution to observe interaction
degrees on data finding that up to 16 plugins interact on the same data. In contrast,
we systematically analyze how such interactions appear to get a better understanding
of interaction characteristics.

4.6 Conclusion

Undesired interactions challenge quality assurance for highly-configurable software,
as they are typically unknown and can result in faults and security vulnerabilities.
Their detection is a challenge as the configuration space of such systems grows up
to exponentially in the number of configuration options. Existing analyses try to

46 4. Measuring Interactions in Highly Configurable Systems

scale with assumptions about interactions. However, whether these assumptions are
valid and how much we can speed up analyses in future is not well understood.
With VarexJ, we implemented a dynamic analysis for Java to quantify different
characteristics of interactions with benchmarks and to analyze real-world programs
(see Chapter 3) [Meinicke, 2014]. We found that essential configuration complex-
ity induced by real-world interactions is usually low, making configuration-complete
analyses feasible. Based on our insights, we discussed typical characteristics of inter-
actions. These characteristics are unknowingly exploited by resend analyses [Thüm
et al., 2014], but can intentionally be exploited by future approaches, such as for
debugging as we will show in Chapter 5 [Meinicke et al., 2018].

5. Understanding Interactions in
Highly-Configurable Systems
with Variational Traces

This chapter is based on the technical report ”Understanding Differences
among Executions with Variational Traces” [Meinicke et al., 2018].

Understanding why a certain program input causes a fault while another succeeds
is a common task during debugging [Zeller, 1999]. This happens, for example, if a
certain program crashes in one configuration but succeeds in others [Cohen et al.,
2007, Medeiros et al., 2016, Nie and Leung, 2011]. Reasoning about such differences
in executions is difficult when using a standard debugger as the program can only
be executed for one input at a time. To understand why certain inputs lead to a
fault requires to understand the differences between correct and failing executions.
Such a comparison can be generated by recording and aligning the traces and state
changes of these two executions [Sumner and Zhang, 2010, Xin et al., 2008]. The
aligned traces can be used to generate explanations of the fault [Sumner and Zhang,
2013, Zeller, 2002].

Some faults, however, are caused by interactions of multiple inputs which make
understanding and debugging them even more challenging [Abal et al., 2018, Apel
et al., 2013b, Calder et al., 2003a, Garvin and Cohen, 2011] (see Chapter 2). Inter-
action faults are hard to detect as they require to specify a certain input to trigger
the fault [Medeiros et al., 2015]. Even if we can narrow down the fault to a smaller
number of options, say with delta debugging [Zeller, 1999, Zeller and Hildebrandt,
2002], it is still difficult to understand why, where, and how they interact.

After identifying the set of interacting options, a programmer can start investigating
how this interaction causes the fault. Understanding the interaction requires under-
standing the individual behavior of the interacting options, but also their combined
behavior. Thus, it may no longer be sufficient to align the execution of two in-
puts as previous approaches do [Sumner and Zhang, 2013, Zeller, 2002], as such an
alignment cannot explain the effects of multiple options.

48
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

We propose to align the execution traces of all configurations to explain the effect
of multiple options. We introduce the concept of a variational trace, a compact
representation of the trace differences among all executions. In the variational trace,
redundant parts are shared, and individual parts are annotated with the input they
belong to. This focus on differences allows understanding how data and control flow
influence the executions and interact, and thus how the different inputs cause a fault.

Generation of variational traces challenges scalability as the number of executions
and traces that need to be aligned can potentially be exponential to the number of
options. A baseline approach would execute all configurations separately and thus
can only scale to explain the interactions among few options. More severely is the
potential memory consumption as this approach needs to keep all past statements in
memory, as it is unclear upfront which statements will differ among executions [Ko
and Myers, 2010, Pothier and Tanter, 2009].

We use variational execution [Meinicke, 2014, Meinicke et al., 2016, Nguyen et al.,
2014b, Wong et al., 2018b] to avoid separately recording and aligning the traces for
many inputs (see Chapter 3). Since the program is executed in a shared fashion,
alignment is achieved by construction. Additionally, executed statements and pro-
gram states are tracked as they relate to the original inputs and their interactions.
This means that executions and variables can always be linked to specific program
inputs. With variational execution we usually avoid the memory explosion as it
enables us to recognize during execution which statements differ, and thus, need to
be kept for the variational trace. As options are mostly orthogonal and appear only
on few locations we expect variational traces to be concise [Meinicke et al., 2016]
(see Chapter 4).

To enable developers to interact with variational traces, we developed an interactive
Eclipse plug-in called Varviz that visualizes variational traces. Varviz can be used
for understanding interaction faults, but also for other program comprehension tasks
that involve understanding differences among similar executions.

In a user study, we show that variational traces help to understand a fault in a
highly interacting program and that they help to explain a fault from a previous ex-
periment on automatic debugging techniques. Participants using variational traces
were more than twice as fast and more successful compared to participants using a
standard debugger. In our qualitative study, we found that when dealing with faults
caused by differences in inputs, in contrast to standard faults, participants search
for places where these inputs interact and how they have an effect, which is exactly
what our approach helps with. Furthermore, we show that variational traces are
compact, even for medium sized programs with many explored options.

The goal of this research is to aid researchers and developers detecting differ-
ences among executions depending on potentially multiple options by providing
a dynamic analysis that can efficiently execute and align all configurations sum-
marized in variational traces.

5.1. State of the Art 49

Overall, we contribute the following in this chapter:

• The concept of a variational trace that compactly represents differences among
the executions of many configurations.
• A baseline implementation that shows challenges of generating variational

traces.
• Efficient trace alignment and a dynamic analysis to trace only relevant data

avoiding memory explosion for a potentially exponential number of configura-
tions using variational execution [Meinicke, 2014, Meinicke et al., 2016].
• An Eclipse plug-in Varviz to visualize and interact with variational traces.
• A user study that shows that participants using variational traces outperform

participants using a standard debugger. The study also shows that compar-
ative approaches [Sumner and Zhang, 2013, Zeller, 2002] actually help with
debugging tasks.
• An evaluation on scalability showing that our approach can align executions

for large number of input combinations, while concisely describing their dif-
ferences. By focusing on the effects of certain inputs, the sizes can be reduced
even further.

5.1 State of the Art

An important problem of many program comprehension and debugging tasks is to
understand the differences among executions. For example, a programmer may want
to understand why a fault occurs for certain inputs but does not for others. Such
faults can be hard to detect, as they are only triggered for a certain input, and hard
to understand because they may require reasoning about interactions among these
inputs within long traces. The differences in control and data flow among faulty and
valid executions can provide insights about how the fault is caused.

Our approach combines ideas from two research fields, namely automatic debugging
and feature interactions, to explain differences among executions. In this section,
we discuss how automatic-debugging techniques exploit differences in executions
and how various approaches address the feature-interaction problem that causes
undesired behavior for certain combinations of inputs.

5.1.1 Automated Debugging Techniques

Automated-debugging techniques aim to create explanations of why a fault appears,
often by comparing correct and faulty executions of the program [Johnson et al.,
2011, Jones et al., 2002, Sumner and Zhang, 2009, 2013, Weeratunge et al., 2010,
Zeller, 2002]. To create explanations, the approaches execute, record and align the
program multiple times for different inputs or test cases.

Fault Localization

There are many approaches that aim to find the cause of a fault [Wong et al., 2016].
One of these approaches is spectrum-based fault localization which rates each line of
the source code by whether it is probable to cause the fault [Abreu et al., 2006, Jones

50
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

et al., 2002]. For example, Tarantula compares the code coverage of valid and fail-
ing test cases and provides this information using different background colors on the
code [Jones et al., 2002]. However, such statement ranking has been shown to be less
useful than expected [Parnin and Orso, 2011]: there are usually too many lines high-
lighted in the code, which makes it hard for users to understand which lines matter
for an explanation of the fault. Also, the information why certain lines are important
is missing, as are control- and data-flow information. Such information is however
often necessary to understand how certain parts of the execution lead to the fault.

Execution Comparison

The comparison of internals of failing and valid executions can be used to explain
why programs fail. Instead of just comparing the coverage information, execution
comparison approaches compare traces and program states across executions [Api-
wattanapong et al., 2007, Groce et al., 2006, Johnson et al., 2011, Kim et al., 2015,
Sumner and Zhang, 2009, 2013, Weeratunge et al., 2010, Zeller, 2002]. Such com-
parison can highlight differences in data and control flow relevant to the fault.

Delta debugging is an approach that systematically narrows down the inputs (resp.
changes) that are relevant for causing a fault [Zeller and Hildebrandt, 2002]. Based
on this idea, Zeller applied delta debugging to program states of executions [Zeller,
2002]. A challenge with delta debugging is that it needs to align statements and
program states of independent executions [Xin et al., 2008]. Sumner et al. [Sumner
and Zhang, 2009, 2013] improved the initial work of Zeller using dual slicing [Johnson
et al., 2011, Weeratunge et al., 2010] and efficient execution indexing [Xin et al.,
2008]. They improve the efficiency and minimize the explanations in finding the
cause effect chain [Sumner and Zhang, 2009, 2013].

Execution comparison approaches are designed to explain the differences between
only two executions at a time. Thus, they require significant runtime overhead, as
they execute the program many times to narrow down the instructions necessary for
a certain behavior. Due to the separate execution of the program, these approaches
need to deal with three major challenges, correct alignment of the executions [Kwon
et al., 2016, Sumner and Zhang, 2010, Xin et al., 2008], memory overhead that comes
with recording the executions [Burtscher et al., 2005, Kanev and Cohn, 2011, Ko
and Myers, 2008], and differences in executions caused by nondeterminism [Kwon
et al., 2016].

5.1.2 Understanding Feature Interactions

Feature interaction bugs are hard to detect as they are only triggered for certain
combinations of features. There is a lot of research to efficiently find such faults, such
as combinatorial interaction testing [Cohen et al., 2007, Medeiros et al., 2016, Nie
and Leung, 2011], systematic sampling [Kim et al., 2010, 2013, Souto et al., 2017],
model checking [Burch et al., 1990, Classen et al., 2011, von Rhein et al., 2011], and
variational execution [Austin and Flanagan, 2012a, Kim et al., 2012, Meinicke et al.,
2016, Nguyen et al., 2014b, Wong et al., 2018b].

Sampling approaches can only reveal configurations that fail, but not the interaction
that causes it. Variational execution tracks the exact combination of inputs that

5.1. State of the Art 51

lead to a fault but does not help to understand why the interaction happens and
how it causes the fault.

Other approaches statically reason about the code to detect feature interactions.
The work of Kim et al. [2011] reasons about the combinatorics to reduce the num-
ber of configurations to execute. However, after testing these reduced configuration,
the approach cannot answer why configurations fail. The research of Zhang and
Ernst aims to identify configuration faults using thin slicing and a lightweight form
of execution comparison [Zhang and Ernst, 2013, 2014]. Their approach suggests
single configuration options that are likely to trigger a fault. However, they assume
that (a) the program itself is correct and (b) that a single option triggers the fault
rather than a combination of multiple options.

Another line of research aims to identify implementations of feature in configurable
systems, known as feature traceability problem [Apel et al., 2013a]. Many solutions
from software product line research can deal with the feature traceability problem
for programs where feature can be directly mapped to code. In these programs,
variability is either implemented in modules (e.g., using feature-oriented program-
ming [Prehofer, 1997] or plugins) or variability is explicitly annotated (e.g., for condi-
tional compilation). There are several approaches that help users deal with feature
traceability in such systems using views or background colors [Feigenspan et al.,
2011, Kästner and Apel, 2009, Meinicke et al., 2017]. These approaches, however,
ignore data-flow and control-flow dependencies among the features.

In contrast to systems with a direct mapping of features to source code, feature
traceability becomes challenging, such as for systems with runtime variability [Apel
et al., 2013a]. Lillack et al. [2017] reason about which lines of code are affected
by load-time options using static taint analysis [Arzt et al., 2014]. Nguyen et al.
[2016] iteratively sample configurations and observe interactions on code coverage.
Similarly, Reisner et al. [2010] observe interactions on code coverage using symbolic
execution.

Feature traceability can help identifying features in source code and can help with
code comprehension [Feigenspan et al., 2013]. Additional information about which
features interact and which lines are affected by these interactions can provide further
help for understanding and debugging. However, identifying features in source code
and information on which features potentially interact cannot answer why and how
they interact.

In summary, there exist many approaches that help to compare two executions
and approaches that help detecting interaction faults in larger configuration spaces.
However, none of the existing approaches helps to understand how multiple options
interact as they either do not scale to multiple options or miss control and data-
flow information [Ko and Myers, 2008, Ko et al., 2006b]. In our work, we provide
support that scales to explain interactions among multiple options and that also
provides necessary control and data-flow information about the interactions.

52
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

5.2 Generating and Visualizing Variational Traces

In this section, we introduce the new concept of variational traces which help devel-
opers understanding how options interact during the program execution and assist
with debugging interaction faults.

5.2.1 Variational Traces

We introduce a variational trace as a compact representation of differences among
multiple execution traces regarding control flow and the program states. With vari-
ational traces, we explain how differences in inputs affect a program’s execution and
data, and how inputs interact with each other. A variational trace is a graph that
represents differences on the control-flow and on data using the following concepts
(illustrated in Figure 5.1 for our running example GameScreen of Listing 2.1):

- State changes (orange rectangles) describe statements that change values of fields
and local variables. In the example, the value of penalty is changed from 0 to 10
if the option blue is true.

- Decisions (diamonds) describe statements causing control-flow differences due
to differences in inputs (directly or indirectly) between the individual traces
(e.g., if-statements).

- Decision Parameters (gray rectangles) describe variables that are used in deci-
sions. In the example, score is used as parameter for the decision in the method
setScore. We found this information on parameters used in decisions particularly
useful as they help to understand causes of control-flow differences.

- Exceptions (red rectangles) describe statements that are thrown due to faults or
exception handling. In the figure, we see that the RuntimeException is thrown
under the condition that blue and red are true.

- Return statements (not shown in the example) describe values that are returned
by a method. Return statements are included if a method returns different values
or from different locations.

- Methods (rectangles around subgraphs) structure the variational trace and describe
the stack trace (e.g., method setScore). The notation of methods helps to under-
stand the control flow and the execution of the program across method boundaries.

- Paths connect the elements and show the control flow. Paths are annotated
with path conditions showing under which configurations the path is taken
(e.g., blue ∧ red). Additionally, the failing path is highlighted: red if the path
always leads to a fault, and orange if the path eventually leads to a fault. Orange
paths are bold if they are necessary to cause the fault, they are dotted otherwise.

Variational traces show differences

To be a useful debugging tool, variational traces need to concisely describe differ-
ences among executions while still containing sufficient information. A variational
trace only describes state changes, decisions, invocations and exceptions that differ
among executions. Thus, a variational trace contains only statements that cause
control-flow differences and statements that change variables differently in different
executions. Statements that do not cause such differences are not as important and
will not be contained in the variational trace. For example, initialization of fields in

5.2. Generating and Visualizing Variational Traces 53

Start

blue

int GameScreen.penalty = 0 → 0� : ¬blue
10 : blue

GameScreen#setPenalty()

green

int GameScreen.totalScore = 5 → 5 : ¬green
7 : green

blue

int GameScreen.totalScore = 5 : ¬green
7 : green →

∧5� : ¬blue ¬green
∧‐3 : blue green
∧7� : ¬blue green
∧‐5 : blue ¬green

red

int score ∧ ∧5� : red ¬green ¬blue
∧ ∧‐3 : red green blue
∧ ∧7� : red green ¬blue
∧ ∧‐5 : red ¬green blue

∧¬blue red

int GameScreen.totalScore = ∧5� : ¬blue ¬green
∧‐3 : blue green
∧7� : ¬blue green
∧‐5 : blue ¬green

→

∧0� : blue red
∧5� : ¬blue ¬green
∧ ∧‐3 : ¬red green blue
∧7� : ¬blue green
∧ ∧‐5 : ¬red ¬green blue

GameScreen#setScore()

blue

GameScreen.totalScore ∧0� : blue red
∧ ∧‐3 : ¬red green blue
∧ ∧‐5 : ¬red ¬green blue

∧blue red

java.lang.RuntimeException

GameScreen#computeLevelScore()

GameScreen#main()

GameScreen#[main]()

End

blue

blue

green

¬green

green

blue

blue

¬blue

red

red

blue∧red

red

¬blue∧red

¬red

blue∧red

blue

blue

blue∧red

¬blue

blue

¬blue

blue∧red
blue∧¬red

Figure 5.1: Variational Trace for our running example GameScreen.

54
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

the constructor of the GameScreen are the same for all configurations. Such state
changes are thus not relevant to describe differences among executions. The same
applies to changes that only take place on variables that only exist for certain in-
puts. Thus, if an object only exists under condition a, then changes that happen to
this object under condition a are not important for comparing traces. Instead, the
variational trace will report changes that create interactions, such as the method
setPenalty which sets the field penalty to 10 if blue is true. Such a statement re-
duction requires to record and keep all state changes of all variables and to compare
their values across all executions.

A focus on differences among executions allows to narrow down the number of state-
ments that are reported to the user. Our approach might be further combined with
slicing to remove statements that do not matter to explain a certain exception [Sum-
ner and Zhang, 2009, 2013, Zeller, 2002]. In this work, we focus on efficiently gen-
erating explanations for differences among many executions. Thus, improvements
such as data-flow and impact analyses are out of this paper’s scope.

A variational trace, as in Figure Figure 5.1, looks similar to a control flow graph.
However, three differences make variational traces more useful for debugging pur-
poses: (i) variational traces represent actual executions and they show the actual
values that variables take plus the exact context they are executed in, (ii) variational
traces only contain statements that differ among the executions, and (iii) variational
traces support (beyond others) loops, recursion, dynamic invocation, and reflection.

Using Variational Traces

Variational traces help understanding differences among executions as they describe
the cause and effects of differences among executions. This allows answering
questions about interactions among options and to understand faults caused by
such interactions. First, a variational trace answers for which inputs the inter-
actions occurs. This information is visible in the context of the statement (resp.
exception). Second, it helps understanding why the interaction occurs as it shows
the differences in the state and in the control-flow at the point in the execution
before the statement. Third, a variational trace helps understanding how the
interaction is caused and how the corresponding state is created. As an interaction
is always caused due to previous control-flow decisions or other interactions, the
information about the cause will always be contained in the variational trace.

5.2.2 Generating Variational Traces by Aligning Trace Logs

To generate variational traces, we could align the traces from executing all configu-
rations separately. In this subsection, we use such a base line approach that aligns
trace logs to explain the necessary steps and emphasize the challenges of creating
variational traces, namely recording, alignment, merging, and reduction.

The first step for creating a variational trace is to record the program’s executions
for all different inputs. The recording needs to track both the instructions and the
state changes, to understand the effects of the executions.

5.2. Generating and Visualizing Variational Traces 55

To compare the executions, the recorded traces need to be aligned. To align the
traces, instructions from each trace that belong to each other need to be identi-
fied [Needleman and Wunsch, 1970]. In general, there are multiple different align-
ments possible as statements may repeat in different parts of the execution. Thus, a
semantically optimal alignment is required for meaningful results. However, as the
program is executed separately multiple times, alignment is a non-trivial task, espe-
cially as object references are different among executions, as it is necessary to keep
track of iterations, and as nondeterminism may lead to wrong alignments, which can
be avoided by recording and replaying nondeterministic result (e.g., IO) among the
executions [Kwon et al., 2016, Sumner and Zhang, 2010, Xin et al., 2008].

After aligning the traces, shared parts of the executions can be identified. Thus,
we can merge the traces into a single trace with conditional statements [Rubin and
Chechik, 2013]. Statements and state changes that are included in several traces
can be shared.

Finally, the variational trace can be reduced to statements that describe differences
and can be enriched with information about the effects of the instructions. The
variational trace only describes the control-flow and state differences among the
executions resulting in a concise explanation of the differences and the fault.

Discussion

The baseline approach has the obvious issue that it can only scale to few options
as it needs to run the program 2n times for n boolean options. Furthermore, as it
is unclear which statements will interact upfront, the approach needs to record full
traces which causes severe memory problems. That is, the approach needs to keep
all statements and states in memory until all configurations are executed. There are
several ways to reduce the memory consumption, such as (i) directly merging the
traces after execution instead of keeping them all in memory, (ii) statically deciding
which parts of a method will be equal independent of options (e.g., initialization of
local variables), (iii) compressed storage of trace logs [Burtscher et al., 2005, Kanev
and Cohn, 2011], and (iv) inter-procedural analysis to detect statements that depend
on options [Lillack et al., 2017]. However, these approaches are either not sufficient
(i, ii & iii) or do not scale to larger programs (iv).

We implemented the baseline approach in a prototype for Java including optimiza-
tions (i) and (ii). We observed that the additional logging statements and the merg-
ing process cause a lot of computational overhead. However, especially the memory
consumption of the approach is problematic. If too many statements and states must
be kept in memory the tool may record multiple GB for the systems in our evaluation,
as we show in Table 5.1, which makes this approach infeasible for larger systems.
To approach these challenges requires sophisticated mechanisms to reduce the num-
ber of statements to record and to solve the problems of nondeterminism (e.g., by
synchronously executing all configurations [Kim et al., 2015, Kwon et al., 2016]).

Our goal is to generate variational traces anyhow as they enable us to observe effects
and interactions of options. To this end, we have to avoid all the limitations (scal-
ability, memory overhead, nondeterminism) of the base line approach while keeping
the idea of aligning the executions of all configurations.

56
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

5.2.3 Efficient Generation of Variational Traces with Varia-
tional Execution

A key insight of our work is to use variational execution to sidestep the previ-
ously discussed challenges for generating variational traces (i.e., handling the chal-
lenges of recording, alignment, merging and nondeterminism). Variational execution
can efficiently execute all configurations of the program in a single synchronized
run [Meinicke et al., 2016, Nguyen et al., 2014b]. As variational execution represents
state differences among configurations as choice values [Erwig and Walkingshaw,
2011a], we can efficiently observe the states of all configurations [Meinicke, 2014,
Meinicke et al., 2016]. We solve the problem of non-deterministic behavior among
the configurations due to the sharing and synchronous execution of variational execu-
tion, for which an alignment-based approach requires sophisticated synchronization
and alignment strategies [Kwon et al., 2016, Sumner and Zhang, 2010].

As variational execution synchronizes the executions among configurations, there is
no need to align the executions of the program. Instead, we directly generate the
variational trace by recording how variational execution runs the program. The con-
text of each statement is already given as all instructions are executed under a certain
context. To observe where the execution splits, we just need to observe changes in the
execution context. Finally, we can observe interactions on data in the assigned choice
values of local variables and fields. With variational execution we avoid the memory
explosion of the base line approach, as we can decide during execution whether a
statement should be contained in the variational trace. As we will show as part of our
evaluation in Table 5.1, using variational execution is up to five times faster than the
baseline approach while requiring up to 74% less memory. Beyond that, we also show
that we can generate variational traces for huge configuration spaces for which it is
simply impossible to generate them using a brute force approach (see Checkstyle).

To generate variational traces, we extended our variational interpreter
VarexJ [Meinicke, 2014, Meinicke et al., 2016]. We adapted the execution of
bytecode instructions, such as fields and local variable instructions to record their
changes on data, if-statements to record whether they split the execution, method
invocations to record the stack trace, and exceptions to report faults.

Our new contribution is to realize the potential of variational execution for generat-
ing variational traces without the disadvantages (e.g., memory overhead) of aligning
single traces, by observing internals of the variational execution engine. Thus, with
variational traces, we are usually able to align an exponential number of traces,
which is practically impossible without it.

Generation with Symbolic Execution

Variational execution shares similar ideas with symbolic execution [Clarke, 1976,
King, 1976] (see Chapter 3). Indeed, with symbolic execution it is possible to ex-
plore the executions for many inputs. In contrast to symbolic execution, variational
execution always processes alternative but concrete values, not symbolic ones. Thus,
variational execution does not share the problems of symbolic execution, such as
undecidable loop bounds. As variational execution requires concrete inputs, our

5.2. Generating and Visualizing Variational Traces 57

approach also requires a test case, which is given by our scenario as we want to
compare executions for a given test. Symbolic execution can hardly be used to gen-
erate variational traces as it typically does not share and align executions beyond
common prefixes [Cadar et al., 2011, Hentschel et al., 2016b].

As discussed in Section 3.6, symbolic execution engines that implement a fully sym-
bolic memory, if-then-else formulas, and optimal joining of execution branches can
potentially have similar sharing as variational execution [Baldoni et al., 2018, Sen
et al., 2015]. Such symbolic execution engines can potentially be used to generate
variational traces as the execution may be similar to variational execution and the
data-flow differences can be observed in the summary values. However, due to the
overhead of constraint solving, it remains unclear whether they would achieve the
same scalability and performance as variational execution.

5.2.4 Varviz

We argue that variational traces aid programmers to debug and understand pro-
grams by providing information about the program execution and interactions among
options. To make variational traces accessible, we implemented an Eclipse plug-in
called Varviz (from var iation and visualization). We released Varviz as open-source
(https://meinicke.github.io/varviz/). The plug-in already comes with the utilized
VarexJ to generate variational traces.

In Figure 5.2, we show a screenshot of Varviz for our running example GeamScreen.
The variational trace can be generated using default run mechanisms of Eclipse,
which will automatically call VarexJ. After running the program, the variational
trace is shown in the Varviz view.

Navigation is one of the most time-consuming tasks during debugging [Ko et al.,
2006a]. Therefore, we designed Varviz to also be used as a navigation tool. By
double-clicking on elements in the trace, the tool automatically displays the file and
the line of the element. As shown in the screenshot, the return instruction that
throws the exception is highlighted after double-clicking the exception statement in
the trace.

Focus on selected interactions

In practice, many interaction faults occur among few options [Abal et al., 2018,
Cabral et al., 2010, Cohen et al., 2007, Garvin and Cohen, 2011, Kuhn et al., 2004,
Medeiros et al., 2016, Meinicke et al., 2016, Nie and Leung, 2011]. To understand
a certain interaction among a specific set of options, we show a, usually smaller,
relevant part of the variational trace. To this end, we provide a new projection
mechanism to show only the statements that explain the effects of a given set of
options. All other options are set to fixed values, false if possible (the valid selection
might be restricted by a feature model [Kang et al., 1990]). By setting all other
options to fixed values, Varviz will produce a projection for the interaction of the
few options of interest. For example, if a fault is thrown under context A ∧ ¬B,
we are interested in the interactions of these two options, but not in options C and
D. To create a projection on the variational trace for A and B, we set the other
options C and D to false (if possible) to hide the effects and interactions of these

https://meinicke.github.io/varviz/

58
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

options. To remove unnecessary elements, we create the constraint ¬C ∧ ¬D and
evaluate the conditions of all elements of the variational trace. If the condition of
the element under the context of the constraint is satisfiable, we keep the element
in the variational trace, otherwise it can be removed. Finally, we evaluate the re-
maining elements, whether they represent differences among the executions for the
options of the projection. Removing options from the trace can highly reduce its
size and thus helps to understand the interactions (as we will show in Section 5.5),
while preserving interactions that are relevant for the options of interest.

5.2.5 Limitations of Variational Traces

Variational traces inherit limitations from related automatic debugging techniques
based on trace alignment [Sumner and Zhang, 2013, Zeller, 2002]. Similar to these
techniques, we compare separate executions to explain causes of faults and interac-
tions. The similarity of these executions determines the quality of variational traces.
For example, executions (i.e., test cases) can introduce minor changes (noise) that
are irrelevant to the fault of interest. Thus, executions that minimize noise are
always preferable. In contrast, inputs need to trigger similar executions to reveal
enough information about fault and its cause. If the executions are too different,
then the variational trace cannot provide enough information. When we apply vari-
ational traces to configurable systems for the same test case, the executions of the
configurations will be similar by design. However, if a fault is not caused by an
interaction, but simply because certain code is executed, then we can only report
the context and location of the fault but not necessarily its cause.

We use our variational execution engine VarexJ to generate variational traces [Meinicke,
2014, Meinicke et al., 2016]. Thus, we inherit the limitations of VarexJ, such as in-
complete support for native code (see Section 3.4). Variational execution is an
evolving technique and advancements in variational execution will also improve the
efficiency and applicability of our approach [Wong et al., 2018b].

5.3 Variational Debugging of GameScreen

To illustrate how variational traces work on actual software, we again use our run-
ning example GameScreen. In Figure 5.2, we show the variational trace in Eclipse
generated by Varviz (the full trace is shown in Figure 5.1). The trace explains how
the options blue and red interact to cause the exception. As the fault is caused by
the interaction blue∧ red, we sliced trace is sliced the variational trace for blue and
red. Thus, the option green does not appear in the variational trace as it is not
relevant to explain the fault (i.e., green is set to be false).

To understand the fault, we can start at the exception on the bottom of the vari-
ational trace. We directly see that the exception is thrown under the context
blue ∧ red. The next step is to understand why the exception is thrown under this
condition. Thus, we check the decisions and parameters that lead to the exception.
We can see that the parameter totalScore is 0 for blue ∧ red.

We can further backtrack the reason why totalScore is 0. Thus, we search for state-
ments that change totalScore to 0 before. This leads us to the method setScore.

5.3. Variational Debugging of GameScreen 59

Figure 5.2: Screenshot of Varviz for our running example Gamescreen.

60
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

setScore changes the totalScore to 0 if the parameter score is negative, which it
is if blue is true. We can also see that setScore is only invoked if red is true.

We further need to understand why totalScore was negative for blue. In the
earlier statements we can see that under condition blue totalScore is changed to
be negative because penalty was set to 10 under condition blue.

In summary, we can see that the variational trace contains all information necessary
to understand how an interaction causes a fault. It contains information about
control flow and and data changes caused by options. The slicing for the options
that are responsible for the fault removes unnecessary options, which reduces the
information on the user. As Varviz is integrated into Eclipse, it further provides a
link to the source code which helps debugging.

5.4 User Study

Automated debugging techniques often promise large effects for debugging tasks.
Previous evaluations on approaches based on execution comparison focused on re-
porting the size of the explanations (number of statements) instead of showing
whether and how helpful they actually are for debugging [Sumner and Zhang, 2013,
Zeller, 2002]. However, only reporting quantitative results of the approach can be
misleading, and the expectations may not meet the reality (e.g., the explanations
may be too complex and complicated to be understandable or do not contain the
necessary information to understand the fault) [Parnin and Orso, 2011]. This is the
first user study on delta-debugging-like approaches that we are aware of.

We designed variational traces to help users to understand variations in executions.
In our evaluation, we investigate how and why variational traces help users. Specif-
ically, we perform a user study to answer the following research questions:

RQ1: How much do variational traces improve the performance of solving debugging
tasks compared to a standard debugger? To answering RQ1, we explore the speedup
and the success rates for solving debugging tasks.

RQ2: How do variational traces help understanding differences in executions? With
RQ2, we investigate what the information needs are during a debugging task and
whether the variational trace can answer them. We want to evaluate whether the
provided information (i.e, the statements shown in the variational trace) is sufficient
to help understanding the interactions.

Systems and Tasks

We use three subject systems in our evaluation, namely GameScreen, Elevator and
NanoXML. Statistics on the programs are shown in Figure 5.3. We carefully chose
these systems for different reasons:

The first system is our running example GameScreen as it was previously used in
a study which conducted the effect of different degrees of variability on program
comprehension [Melo et al., 2016]. Melo et al. [2016] have shown that the small pro-
gram with only three features takes on average ten minutes to debug without tool
support. However, the program is too trivial and cannot give any insights for our

5.4. User Study 61

Program LOC Cov. Opt. Conf. M N D Instr.

GameScreen 32 32 3 8 4 12 6 230
Elevator 259 193 6 20 7 12 3 5,688
NanoXML 1000 331 1 2 18 21 4 42,138

Figure 5.3: Statistics on the programs used in the user study (Cov: Covered LOC by
the test case, Instr: instructions executed for the test case, M: Methods, N: Nodes,
D: Decisions).

study as the program can be understood in few minutes using a standard debugger.
Thus, we used GameScreen only as warm-up task to make the users familiar with
the type of tasks they should perform.

Elevator is a simulation of a configurable elevator system [Plath and Ryan, 2001].
The program is designed to trigger interactions among its options. Even though
the program has only few lines of code, it is hard to understand the impact of its
features due to the interactions. The program comes with several specifications in
form of runtime assertions that are violated for certain configurations. We selected
a specification that states that the elevator should continue in its current direction
if there are still calls in this direction. This specification is violated if a feature for
executive floors is on, which can force the elevator to change its direction. In the
tasks for Elevator, the participants should figure out in which configurations the fault
appears and how the fault is caused. Although fixing a fault is part of debugging,
fixing itself is not part of the task as this would have required to change the program’s
specification. Instead it was sufficient to explain how the fault is caused.

NanoXML itself is not a configurable system. The program was used in a prior
study to evaluate whether the automatic debugging technique Tarantula can help
programmers with debugging [Parnin and Orso, 2011]. Tarantula showed only mi-
nor improvements for debugging NanoXML compared to a standard debugger. We
evaluate NanoXML on the same bug as in the original study, in line with the original
study [Parnin and Orso, 2011]. We provide two slightly different files as input for
parsing. One of the files cannot be parsed correctly, causing an exception. The other
one is a similar file that can be parsed. Both files are parsed simultaneously using
variational execution. In addition to the tasks of the previous programs, the partic-
ipants were also asked to fix the bug similar to the prior study [Parnin and Orso,
2011]. With NanoXML we show that variational traces are helpful for a standard
debugging tasks to understand variations beyond configurable systems. Thus, with
the NanoXML experiment we can show the usefulness of comparative- and delta-
debugging approaches which have not been evaluated in user studies before [Sumner
and Zhang, 2013, Zeller, 2002].

Pilot Study

We performed a pilot study to estimate the required power of our study (i.e., number
of participants) to gain confidence finding significant results and to tune the task
and descriptions. We asked several graduate students to use Varviz and the Eclipse

62
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

debugger on our tasks. We found and revised several issues with the usability of
Varviz. We also measured the time and estimated that the effect size was big enough
to show significant effects with few participants in the actual experiment. For the
Elevator task we had an estimation of 40 minutes when using the Eclipse debugger,
compared to an estimation of 12 minutes when using Varviz. For the NanoXML
task we have an estimation of 22 minutes from a previous study when using a de-
bugger, which we use as estimation when using a standard debugger (our results
were slightly higher) [Parnin and Orso, 2011]. We have an estimation based on our
pilot study of only 8 minutes when using Varviz.

Study Design

We designed our experiment as between-subject study to compare performances be-
tween participants using a standard debugger (baseline) or Varviz (treatment). We
did not mix the participants between using the standard debugger and Varviz (i.e.,
within-subject design). Each participant solved all three tasks with the same tool
to reduce training time required for Varviz and to avoid carryover effects, such as
learning effects and demand effects [Charness et al., 2012]. Learning effects from
the first tasks might be applied to the second which influences the performances
when using different tools. Also, the motivation of using a new tool can influence
the performance of the participants. This effect is amplified if they are using both
tools in a within-subject design [Charness et al., 2012]. A between-subject design
has less statistical power compared to a within-subject design (i.e., we may need
more participants to show significant effects), however, we expect the effect size to
be very large. Hence, as suggested by the literature on user studies [Charness et al.,
2012], a between-subject design is more appropriate as it avoids confounding factors
of within-subject designs.

We did not design two comparable tasks, but intentionally two very different ones
for external validity. A within subject design typically requires multiple similar
tasks, which is a benefit using a between-subject design. While the participants
worked on the tasks, with their consent, we recorded the screen and asked them to
verbalize their thoughts using think-aloud protocols [Beyer and Holtzblatt, 1997].
These recordings help us to track the participants’ information needs and debugging
strategies.

Other approaches, such as delta debugging [Zeller, 2002] and comparative causal-
ity [Sumner and Zhang, 2013] may give similar textual explanations of the faults.
However, we cannot compare our approach with delta debugging [Zeller, 2002] and
comparative causality [Sumner and Zhang, 2013] as the tools are not available (we
contacted the authors) and as they are designed to explain differences among only
two executions.

Methods

To answer RQ 1, we compare the time and success rates of the participants for
solving the tasks. To answer RQ 2, we record the audio and the screen of the par-
ticipants. We analyze the recordings based on qualitative content analysis using
open coding [Saldaña, 2015, Schreier, 2012]. We watch the videos with the goal to

5.4. User Study 63

find common tasks that the participants perform during debugging. We use these
commonalities to create a coding frame that allows us to understand how the par-
ticipants perform when using Varviz or the standard debugger.

Participants

As we plan to perform think-aloud protocols, analyzing the data (i.e., screen record-
ings and audio) requires high effort. We thus aim to avoid an unnecessary high
number of participants. According to Nielsen [1994], for think aloud protocols five
participants are sufficient to gain most insights. Adding more participants does not
give more essential information. Thus, to answer RQ 2, we require at least five
participants per group, so ten participants in total.

To answer RQ 1, we calculate the minimum number of number of participants re-
quired using power statistics based on the pre-study results. We use Rosner’s equa-
tion to calculate the required sample size n for each group in our study [Rosner,
2015]:

n =
(σ2

1 + σ2
2)(z1−α/2 + z1−β)2

∆2
(5.1)

We use a conservative α value of 0.01 which is a probability of Type I error of 1%
(i.e. the probability to find an effect even though there is none, usually 0.05). We
use a conservative β value of 0.05 which is a probability of Type II error of 5% (i.e.
the probability not finding an effect even though there is one, usually 0.2). The
statistical power is 1 − β and thus 95%. We use a high value for the estimated
standard deviations σ1 and σ2 of 5 minutes as we only used few participants in our
pilot study. Using Equation 5.1 and our estimations of expected performances (10
versus 40 and 8 versus 22 minutes for Elevator and NanoXML respectively), we can
calculate the number of participants needed for our experiment as one participant
(nelevator = 0.989 ≈ 1) and five participants (nNanoXML = 4.544 ≈ 5) per group for
Elevator and NanoXML respectively. As the required group size for NanoXML is
larger than for Elevator, we use a group size of five for our experiment. Thus, based
on our pre-study results, we need ten participants to show significant results. For
both, our quantitative and our qualitative analysis ten participants are sufficient.

We recruited ten participants at Carnegie Mellon University: eight undergraduate
students, one graduate student and one post doc. The participants were recruited
using posters and mailing lists. We excluded participants without prior knowledge
of Java. All participants received a 25-dollar gift card after finishing the experiment.
The participants were assigned randomly to two groups of five. One group used the
Eclipse debugger, the other group used Varviz. The graduate student used Varviz,
while the post doc used the Eclipse debugger.

Before conducting the experiment, we asked the participants for their programming
experience and experience with Java. The groups were roughly similar: The median
experience for programming is 3.5 years for both groups (average is 3.7 years for the
debugger group and 5.3 years for the Varviz group; note that the large difference in
average experience is caused by a single outlier (Varviz 1) who reported 12 years of
non-professional programming experience.) The median Java experience is 2 years

64
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

00'00'' 05'00'' 10'00'' 15'00'' 20'00'' 25'00'' 30'00''

Debugger 1

Debugger 2

Debugger 3

Debugger 4

Debugger 5

Varviz 1

Varviz 2

Varviz 3

Varviz 4

Varviz 5

cause

state condition
state

change
interaction

effect

✔

✔
✔

✔
✔

✔

✔

✘
✘
✘

Debugging tasks for understanding variations

(a) Elevator

00'00'' 05'00'' 10'00'' 15'00'' 20'00'' 25'00'' 30'00''

Debugger 1

Debugger 2

Debugger 3

Debugger 4

Debugger 5

Varviz 1

Varviz 2

Varviz 3

Varviz 4

Varviz 5 ✔
✔

✔
✔

✔
✔

✔

✔
✘

✔

✔ success

✘ abort

(b) NanoXML

Figure 5.4: Time spend on debugging tasks. White boxes denote unrelated tasks.

for both groups (average is 2.6 years for the debugger group and 2 for the Varviz
group). None of the participants knew variational execution or any of the subject
programs. All participants in the debugger group have used Eclipse and the debugger
before. If a participant did not remember how to get to a certain view, such as the
call hierarchy, or were unsure about certain functionalities of Eclipse, we provided
this information during the experiment.

Execution

Both groups were given an Eclipse containing the three programs they had to debug
including a failing configuration for Elevator and the two XML files for NanoXML.
The participants using Varviz were introduced to the functionalities of the tool. We
used a simple foo-bar example to explain the functionalities of Varviz. All partici-
pant started debugging the programs in the same order, first GameScreen, second
Elevator and third NanoXML. The participants performed the tasks for Elevator
and NanoXML until they solved them correctly, until they gave up, or until they
reached a time limit of 30 minutes per task, as we planned the experiment to take
roughly one hour.

As we performed a think-aloud protocol, we conducted the experiment with each
participant in isolation. To record the audio and screen, we used an inhouse recording
tool from our university. For the first participant using the debugger (Debugger 1),
we used a different open source recording tool. We lost the screen recording due to
a fault in the recording tool. However, we kept the results and the audio recording
from this participant in our study as he had a good performance compared to the
others using the debugger.

Quantitative Analysis

To answer RQ1, we compare the time and success rates of the participants for solving
the tasks. In Figure 5.4, we plot the performances of the participants. The signs 3

5.4. User Study 65

and 7 indicate correct and aborted solutions respectively. When using the Eclipse
debugger only two out of five participants solved the Elevator task correctly and
four out of five for NanoXML. In contrast, all participants using Varviz solved the
tasks for both programs.

For Elevator the participants using Varviz took on average 12 minutes while the
participants using the debugger took on average 28 minutes. The best performance
using the debugger took 20 minutes, more than five minutes longer than the worst
participant using Varviz. For NanoXML we see similar results. The Varviz group
took on average 9 minutes. In contrast, the debugger group took on average 27
minutes (best was 22 minutes). Our results are in line with prior research which
reported an average time of 22:30 minutes using only a debugger [Parnin and Orso,
2011]. To calculate the effect size of using Varviz compared to a standard Debugger,
we use the corrected equation of Hedges’ g which corrects for the upwards bias on
small sample sizes:

g =
µ1 − µ2√
σ2
1 + σ2

2

2

× N − 3

N − 2.25
×
√
N − 2

N
(5.2)

A g value of 1 indicates that the groups differ by 1 standard deviation. In general, a
g value larger than 0.8 indicates a large effect size. We calculated a g values of 3.6 for
Elevator and 4.9 for NanoXML. Thus, g values indicate a huge effect of using Varviz
compared to a standard Debugger for understanding differences among executions.
The differences are statistically significant (Mann-Whitney U test: p < 0.01).

RQ1: How much do variational traces improve the performance of solving de-
bugging tasks compared to a standard debugger?

The participants using Varviz are on average 55%, respectively 65% faster than
participants using the Eclipse debugger for Elevator respectively NanoXML. The
success rates when using the Eclipse debugger are 40% for Elevator and 80% for
NanoXML. When using Varviz, the success rates are 100% for both programs.

Qualitative Analysis

To answer RQ 2, we analyzed the audio and the screen recordings to understand
how variational traces help understanding differences among executions. Our
coding frame [Saldaña, 2015, Schreier, 2012] is shown in the right upper corner of
5.4a. Overall, all participants try to understand the relationship between effect
(e.g., the fault) and its cause [LaToza et al., 2007]. The tasks for understanding
effect and cause can be refined further.

To understand the effect, it is necessary to understand program state and the condi-
tion. The program state is necessary to know values of variables and which method
calls are important. When analyzing variations, it is also important to know under
which condition (i.e., selection of options) the fault appears.

After understanding the effect, it is possible to investigate its cause. It is necessary
to understand the state changes and method calls that lead to the state of the effect.

66
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

As the effect only happens under certain conditions it is also necessary to investigate
how specific selections of options cause the effect.

In Figure 5.4, we used our coding frame to illustrate on which tasks the participants
were working on. Additionally, to the tasks in our coding frame, the participants
also spend time with unrelated tasks, such as reading, scrolling, or investigating
unrelated code [Ko et al., 2006a]. Unrelated tasks are shown with white boxes. We
plot the tasks on a horizontal time axis. The group using Varviz performed the tasks
much better than the group using the debugger. In the following, we investigate the
reasons why the tasks are so difficult when using only a debugger. We explore which
information are required to solve the tasks and how Varviz helps to gather them.

We can see in Figure 5.4 that the debugger group spend much more time on unrelated
parts of the program and on tasks that do not lead to solving the problem. The main
reason is that the participants read unrelated code of the programs. Another reason
is that the participants give up on their current goal and try to get information
from other places. When using the debugger, it is up to the programmer to find the
places where to find information about the program. Thus, the participants were
lost in the source code they did not know, which leads to confusion and reading of
code. In contrast, when using Varviz, the participants had a guide that helps them
to find the few locations in the code that are of interest.

When we analyze the performances for Elevator more closely (see Figure 5.4a), we
see that the Varviz group took only little time to understand the variations. All
the participants almost instantly figured out the condition of the fault (which is
trivial using the variational trace as it is indicated by the context of the exception
statement). Also, figuring out where the option affects the behavior of the pro-
gram is simple using Varviz as there are only few place (few decisions) where the
option affects the data flow. In contrast, when using the debugger, the first task
is to figure out the condition of the fault. Without specialized tool support, this
requires switching the options in the configuration and to re-execute the program.
The time spent on this task depends on how many options the program has, how
many options interact, and finally on luck or intuition as for participant Debugger 5.
A simple tool that reports the condition of the faults (e.g., brute force) would help
the debugger users and would improve their performances. However, such a tool
alone is not sufficient as it solves only a small part of the problem.

After finding the condition of the fault, the participants still need to answer how the
option triggers the effect. By searching where the option is used, the place can be
found, however also unrelated usages and only direct usages are found. Thus, par-
ticipants Debugger 3 and Debugger 4 did not even identify this part of the program.

Finally, we can see that the Varviz group spend little time to understand the state
at the exception. This means that they can spend more time for understanding
how the interaction triggers the effect and how this causes the fault. The debugger
group took overall more time to find the values of the variables and their values at
the exception (except of participant Debugger 5 who performed well on this task).
The tasks to identify the exception state and the state changes are particularly hard
as the program calls the scheduling method for the elevator in a loop. This makes

5.4. User Study 67

setting breakpoints hard as they are triggered multiple times before the actual state
of interest.

In the performances for NanoXML (see Figure 5.4b), we can see that both groups
struggle for identifying the state of the exception and answering why this state causes
the fault. This is because of a relatively difficult if-statement shown in the listing
below. The variational trace provides the values used in this if-statement. However,
the participants still need to understand the meaning of it.

1 if (!str.equals(prefix==null?name:prefix+name))
2 XMLUtil.errorWrongClosingTag(this.reader, name, str);

After the participants using Varviz understood the meaning of the if-statement, they
only spend little time to find the place of the cause as it is pointed out by a decision
in the trace. In contrast, the debugger group again struggled to identify the cause.
One reason is that the parsing is implemented using recursion, which again means
that the breakpoints are triggered multiple times at the wrong state. This again
shows that control-flow (i.e., the decision of the cause) and data-flow information
(i.e., the values that differ among the two executions) are essential to understand
the differences among executions. Both information are contained in the variational
trace.

RQ2: How do variational traces help understanding differences in executions?

Understanding where and how configuration options influence the execution is
hard using only a standard debugger as only one configuration can be executed
at a time. Thus, participants using the Eclipse debugger have difficulties figuring
out the condition of the fault, gathering information about differences in the
program states, and to find the cause of the fault. Variational traces help
with these task by providing essential information about the fault condition,
the fault state, as well as data and control-flow differences that lead
to the fault. This information helps users to focus on important parts of the
execution which additionally prevents from wasting time on unrelated activities.

Threats to Validity

We designed our user study as between-subject study with only ten participants. As
discussed, we decided to use a between-subject design to avoid confounding factors
and to reduce training time at the cost of the reduced power of the design [Char-
ness et al., 2012]. We carefully calculated the required number of users upfront to
minimize the effort for analyzing the think-aloud protocols and the screen record-
ings [Rosner, 2015]. The measured performances in the experiment approximately
match our expected performances from our pilot study. Due to the large effect sizes
a larger number of participants is unnecessary. The fact that our results are statis-
tically significant confirms that the chance of a random error due to small sample
size is small.

To reduce selection bias, we recruit participants in public channels and randomly
assign them into two groups. The average programming experience varies by almost

68
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

two years between the groups, which is however caused by a single outlier (Varviz 1).
Our results are robust to removing this outlier (i.e., our results remain statistically
significant without this participant) [Larsson et al., 2014]. To avoid effects due to
differences in programming experiences, we designed the tasks in a way that basic
debugging experience is sufficient. Since we conduct the user study in the Eclipse
environment, experience with the Eclipse toolchain is likely to affect performance
of participants. We performed a warm-up task to familiarize the participants with
the type of tasks and the programming environment. We argue that most common
usages of Eclipse are straightforward to most developers, given that Eclipse is a
standard and classic development tool for Java. In addition, we made it clear to the
participants before study that we could provide immediate support for questions on
Eclipse usage. However, participants rarely asked for help regarding Eclipse. Thus,
we argue that Eclipse experience likely has only minor impact to the performance
results. To minimize confounding factors, we implement Varviz in a way that is
completely orthogonal with existing features of Eclipse. Moreover, our introduction
to Varviz only covers the plugin itself, not including any other functionalities of
Eclipse. The think-aloud protocol influences the time performance of the partici-
pants; however, it influences both groups equally and because the expected effect
size is big we do not expect any systematic influences on the overall results.

We used two diverse systems for the debugging tasks. We showed that variational
traces are useful to understand faults in systems with multiple options as well to
compare two executions. However, readers should be careful when generalizing our
results to other systems and tasks.

5.5 Scalability Evaluation

Variational traces are concise representations of differences among executions. To
further reduce the size, we allow focusing on small sets of options discussed in Sec-
tion 5.2.4. However, we do not yet apply any kind of impact analyses to reduce
the size even further, as this is out of scope of this paper and as the sizes are al-
ready small enough especially for the programs used in Section 5.4. Variational
traces are useful beyond debugging, as for example in our work on detecting be-
havioral feature interactions with feature interaction graphs which can deal with
large variational traces [Soares et al., 2018]. In this section, we evaluate the size of
variational traces when aligning the executions of exponentially large configuration
spaces. Specifically, we answer the following research question:

RQ3: How does the generation of variational traces using variational executions
scale compared to a base line approach? The exponential growth of configuration
spaces with the number of options is challenging for both, execution and alignment
of many configurations. By answering RQ 3, we investigate the scalability of us-
ing variational execution to generate variational traces with regard to runtime and
memory consumption.

RQ4: How large do variational traces get? Information on data and control flow
differences useful are beyond debugging (see Section 5.6). With RQ4, we investigate
how complex variational traces get when applied to programs with different numbers

5.5. Scalability Evaluation 69

Program SLOC Opt. Conf. Instr. Time TimeBL Memory MemoryBL Dall D3 Sall S3

CheckStyle 14,950 141 > 2135 194M 209.8s *364.8.8s 1984MB *3269MB 5,989 165.5 290,477 2022.7
QuEval 3,109 23 940 6M 10.6s 50.3s 379MB 1498MB 699 26.9 4,152 110.0
GPL 662 15 146 17M 15.6s 18.9s 408MB 975MB 530 6.9 5,565 301.0
Elevator 730 6 20 24k 0.1s 0.2s 41MB 29MB 36 17.7 96 51.0
E-Mail 644 9 40 26k 0.2s 0.4s 28MB 49MB 53 9.7 129 17.5
Mine Pump 296 6 64 22k 0.1s 0.4s 37MB 49MB 10 7.6 14 10.9

Table 5.1: Statistics on programs used in quantitative evaluation. Dall and Sall state
the number of decisions respectively statements of the full variational trace. D3 and
S3 state the mean number of decisions respectively statements after filtering for three
options. In TimeBL and MemoryBL we show the time and memory consumptions
for the baseline implementation (*for CheckStyle we only executed the configurations
for five options with the baseline approach).

of options and different sizes. We also want to find out how effective the filters for
options are for reducing the size (see Section 5.2.4).

Experimental Setup

In our evaluation, we reuse six configurable systems from our previous study on
feature interactions and essential configuration complexity (see Chapter 4) [Meinicke
et al., 2016]. The systems are shown in Table 5.1. The systems are from different
domains and show different interaction properties [Meinicke et al., 2016]. We execute
each system for a corresponding standard scenario. Each system comes with a set
of options that can be enabled and disabled, which results in large numbers of
configurations for which we execute the program (see Table 5.1).

The experiments are performed on a Windows computer with 8 GB ram and an
Intel i5 processor with 4 cores. To answer RQ 3 we collect the execution time and
the memory consumption, we ran variational execution and the base line approach
ten times and report the median value to avoid measurement errors.

The size of the variational trace depends on several factors. First, the length of the
execution (see number of instructions in Table 5.1). It also depends on how the
program implements variability and how the options interact. The fewer options in-
teract in a program, the shorter the trace will be (statistics on the interactions in the
systems are discussed by Meinicke et al. [2016]). In our evaluation, we collect metrics
on how large variational traces can get for different implementations and executions.

Statements and decisions indicate the complexity of the variational trace. However,
understanding a fault or an interaction usually only requires few options as the
interactions degrees are usually low [Abal et al., 2018, Cabral et al., 2010, Cohen
et al., 2007, Garvin and Cohen, 2011, Kuhn et al., 2004, Medeiros et al., 2016,
Meinicke et al., 2016, Nie and Leung, 2011]. We use context filters as discussed in
Section 5.2.4 to filter the variational trace for all combinations of three options (we
filter the trace of CheckStyle only for one option due to the large number of options).

Results

In Table 5.1, we report the times and memory consumptions required to generate
the variational trace. As shown, the time to generate the variational trace is always

70
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

lower than with the base line approach, especially for larger configuration spaces.
For Checkstyle with 141 options, our approach takes 209.8 seconds, which is lower
than what the base line approach takes when aligning the configurations for only five
options. As expected, the memory consumption of the base line approach becomes
problematic, especially when aligning longer execution traces. Again, the base line
approach requires 3 GB for aligning only the traces for five options while our ap-
proach takes 2 GB when aligning the traces for all configurations. Note that the
reported memory consumption of our approach also contains the memory overhead
of VarexJ itself.

RQ3: How does the generation of variational traces using variational executions
scale compared to a base line approach?

Generating variational traces using variational executions scales to exponentially
large configuration spaces with regard to execution time and memory consump-
tion. In contrast, the base line approach is only able to generate variational
traces for smaller configuration spaces while taking more time and memory than
our approach based on variational execution.

In Table 5.1, we report the sizes of complete variational traces and the mean sizes
after applying filters for three options. Even though the interaction experiments
(Elevator, E-Mail and Mine Pump) are designed to cause many interactions among
options, we see that the sizes of their variational traces are small. For GPL the
complete variational trace becomes large as the executions contain long iterations
which cause trivial but repetitive interactions on data (e.g., optionally initializing
the weight for all vertexes in a graph). The same happens for QuEval which also
has trivial but repetitive executions. For CheckStyle, which has by far the longest
executions, we see that the size of the complete variational trace is huge. The size of
the variational trace is, however, small in relation to the configuration space and the
number of executed instructions. Most of these statements in the variational trace
for CheckStyle are again repetitive. After applying the filter for one option, we can
see that the size can be reduced a lot. In general, the sizes of the traces become
small after filtering them. Even the full traces can be useful as most of the shown
statements and decisions are repetitive due to iterations.

RQ4: How large do variational traces get?

Variational traces are often small, but can become large, especially due to long
iterations that repetitively create the same interactions on data. The size can
be drastically reduced due to the filtering mechanisms, such as filtering for a
small set of options.

Threats to Validity

To mitigate threats to external validity, we analyze different programs that show
different kinds of interactions. We argue that variational traces are scalable (i.e.,

5.6. Applications Beyond Debugging 71

we can align the execution for an exponential configuration space while the number
of nodes does not grow exponentially with the number of configurations) to most
programs in the wild, because recent studies have shown that although there could
be many options in a program, most options interact locally and thus interaction
degrees are usually low [Abal et al., 2018, Cabral et al., 2010, Cohen et al., 2007,
Garvin and Cohen, 2011, Kuhn et al., 2004, Medeiros et al., 2016, Meinicke et al.,
2016, Nie and Leung, 2011].

5.6 Applications Beyond Debugging

Understanding differences among executions can be useful beyond debugging a fault
as in our example systems (see Section 5.4). In Section 5.1, we discussed related
work that is able to detect feature interaction faults, help with feature traceability,
and map options to program outputs. As discussed, these approaches can detect
dependencies and interactions among options, but they cannot answer why they
are interacting. We discuss three possible applications of variational traces to help
understanding how dependencies and interactions are caused, to is illustrate the
potential of variational traces in concert with existing approaches.

Understanding the Impact of Load-Time Options

It is difficult to identify code that is affected by load-time options, especially due to
implicit data flow. Previous work used static taint analysis or symbolic execution
to detect code that depends on certain options [Lillack et al., 2017, Reisner et al.,
2010]. Information (e.g., background colors) about which parts of the code depends
on variability can help in the context of conditional compilation [Feigenspan et al.,
2013]. However, when considering indirect dependencies due to data flow, as for load
time variability, understanding becomes more difficult. We found that information
about which lines depend of which options alone is not sufficient for understand-
ing, as the cause of indirect dependencies are hard to understand [Zulfiqa, 2016].1

Understanding these dependencies requires information about their causes due to
indirect data and control flow [Ko et al., 2006b, LaToza et al., 2007, Parnin and
Orso, 2011]. With variational traces we can help to understand why certain parts
of the code depends on the selection of options as we show causes of differences in
the control flow [Meinicke et al., 2018].

Understanding Information Flow

Previous work compared executions to detect information flow, either using a sim-
ilar technique to variational execution [Austin and Flanagan, 2012b, Austin et al.,
2013, Schmitz et al., 2016, Yang et al., 2016] or using multi execution [Devriese
and Piessens, 2010, Kolbitsch et al., 2012, Kwon et al., 2016]. In this context of
information flow, confidentiality levels (e.g., high and low) are used as options of
the program. Aligning executions allows detecting potential information leaks by
observing the conditional outputs. However, tracing back why data is leaked is diffi-
cult as it requires understanding why the executions differ. Thus, again, variational
traces can help understanding the causes of information flow by explaining data and
control flow differences.

1https://github.com/meinicke/VarexJ/wiki/Coverage-PlugIn

https://github.com/meinicke/VarexJ/wiki/Coverage-PlugIn

72
5. Understanding Interactions in Highly-Configurable Systems with Variational

Traces

Detecting Behavioral Feature Interactions

Variational traces are useful tool for understanding interactions in a single test case.
However, if we want to analyze how all options interact in general, we need to
execute multiple test cases. Thus, variational traces can become overwhelming as
we cannot use our projections for subsets of options and we need to understand
many variational traces, one for each test case.

Understanding many complex variational traces requires a form of abstraction to
make them manageable. We developed an analysis of feature interaction in the
variational traces that we present as feature interactions graphs [Soares et al., 2018].
These graphs summarize interactions between pairs of options including information
on which variables are affected by the interaction. Beyond identifying which options
interact with each other, the abstraction to feature interaction graphs enables us
to perform analyses of how options interact. For example, we can detect suspicions
interactions, such as suppressions, where one options disables the effect of another
option [Soares et al., 2018].

5.7 Related Work

We already discussed closely related work in the domains of automatic debug-
ging [Abreu et al., 2006, Apiwattanapong et al., 2007, Groce et al., 2006, Jones
et al., 2002, Parnin and Orso, 2011, Sumner and Zhang, 2009, 2013, Xin et al., 2008,
Zeller, 2002, Zeller and Hildebrandt, 2002] and feature interactions [Cohen et al.,
2007, Kim et al., 2011, 2013, Lillack et al., 2017, Medeiros et al., 2016, Meinicke
et al., 2016, Nguyen et al., 2014b, Nie and Leung, 2011, Souto et al., 2017, von
Rhein et al., 2011] in Section 5.1. Our work combines ideas from both fields and
builds specifically on the idea of sharing and coordinating multiple executions with
variational execution [Meinicke, 2014, Meinicke et al., 2016, Nguyen et al., 2014b,
Wong et al., 2018b] and thus sidesteps the challenges of trace alignment and full
trace recording [Burtscher et al., 2005, Kanev and Cohn, 2011] as discussed.

Omniscient or back-in-time debugging allows exploring and debug a single execu-
tion [Burg et al., 2013, Ko and Myers, 2008, 2010, Lewis, 2003, Pothier et al., 2007].
In contrast to standard debuggers, back-in-time debuggers allow exploring informa-
tion of previous parts of the execution. To do so, they record full traces resulting
in severe scalability challenges as they cannot predict which information is of inter-
est. In contrast, we provide a dynamic analysis that can decide on the fly which
information is potentially relevant to explain the fault.

Symbolic execution allows to explore all executions of a program for different inputs.
As discussed in Section 5.2.3, symbolic execution usually does not share the execu-
tions after they are separated unless they incorporate ideas from variational execu-
tion [Sen et al., 2015]. The interactive verification debugger is a tool to understand
the symbolic execution of a program [Hentschel et al., 2016a,b]. The tool visualizes
the execution in a tree structure similar to Varviz. However, as the symbolic execu-
tion never joins the tree structure gets large even for small programs [Kanyshkova,
2017]. In contrast, our variational trace provides a concise representation of many
executions.

5.8. Conclusion 73

Static and dynamic program slicing are techniques to reduce a program to only
the statements relevant for understanding the state at a given program point [Ko-
rel and Laski, 1988, Weiser, 1981]. However, program slices are often large and
cannot explain differences among multiple executions, especially execution omis-
sion bugs [Zhang et al., 2007]. Differential slicing and dual slicing [Johnson et al.,
2011, Kim et al., 2015, Sumner and Zhang, 2013] compare the execution of two ex-
ecutions and reduces the comparison using program slicing. In contrast to slicing
approaches, we aim to explain the differences among many executions and only focus
on the causes and differences in the state to keep the explanations concise.

Multi execution are approaches that synchronize (typically two) concrete executions.
These approaches enable analyses for information flow [Devriese and Piessens,
2010, Kim et al., 2015, Kolbitsch et al., 2012, Kwon et al., 2016], configuration
faults [Su et al., 2007] and inconsistent updates [Hosek and Cadar, 2013, Maurer
and Brumley, 2012, Tucek et al., 2009]. In contrast, our approach can compare
a potentially exponential number of executions and helps to understand how the
differences affect the program behavior.

5.8 Conclusion

In this work, we propose variational traces to explain the runtime behaviors of in-
puts and interactions among them. Efficient generation of variational traces is only
possible due to optimal alignment using variational execution [Meinicke, 2014, Wong
et al., 2018b] (see Chapter 3), which enables us to generate traces for larger appli-
cations, and the properties of how options interact, such as local and orthogonal
[Meinicke et al., 2016] (see Chapter 4), which are essential for variational traces to
be concise. To visualize variational traces, we provide an interactive Eclipse plugin
called Varviz, which enables programmers to use variational traces for debugging
interaction faults. In our user study, we show that users of Varviz outperform the
users of the Eclipse debugger significantly in terms of understanding and time spent
on debugging tasks. Users of Varviz can focus on relevant parts of the programs
quickly, without being distracted by irrelevant data and control flow decisions. When
compared with users who use the standard Eclipse debugger, Varviz users can finish
all the debugging and understanding tasks, using less than half of the time. We
further evaluate the size of variational traces on six highly configurable systems. In
general, the size of variational traces can get large, but our filters are effective in
reducing the traces to a relatively small number of statements. Overall, our evalu-
ation of effectiveness and scalability demonstrates that variational traces are useful
in practice to understand differences among executions.

6. Conclusion

In this chapter, we summarize the contributions of this thesis and discuss future
research directions.

Variability in software is challenging as it hinders analysis and code comprehen-
sion [Apel et al., 2013a, Melo et al., 2017, Thüm et al., 2014]. Especially, interac-
tions among options are hard to detect, understand, and resolve [Abal et al., 2018,
Apel et al., 2013b, Calder et al., 2003a, Garvin and Cohen, 2011]. With the re-
search of this thesis, we aimed to increase our understanding of such interactions.
In detail, we help detecting faults caused by feature interaction using variational exe-
cution [Meinicke, 2014, Nguyen et al., 2014a, Wong et al., 2018b], we gained a better
understanding of how options interact with each other [Meinicke et al., 2016], and
we help programmers understanding interactions using variational traces [Meinicke
et al., 2018, Soares et al., 2018].

In Chapter 3, we discussed our work on variational execution. Variational execution
itself is not the main contribution of this thesis. Though, we made several engineer-
ing contributions advancing the technique (see Chapter 3). Instead, our contribution
bases on the realization that beyond the ability of executing all configurations, varia-
tional execution is an efficient approach for aligning many of executions, sidestepping
challenges of trace alignment, nondeterminism, and the memory explosion caused by
recording full traces. Aligning the executions of all configurations enables the work
of this thesis as it allows us to directly observe feature interactions on the control
and on data-flow. Observing feature interactions is challenging without variational
execution as they can usually only be observed by their effects, such as faults.

Characteristics of Interactions: There have been assumptions on feature in-
teractions, such as that only few feature interact at a time and that most faults
are caused by interactions of three features [Abal et al., 2018, Garvin and Cohen,
2011, Kuhn et al., 2004]. However, these assumptions are biased towards bug re-
ports, as interactions are only observed by undesired behavior. Existing analyses
try to scale with these assumptions about interactions. However, whether these as-
sumptions are valid and how much we can speed up analyses in future was not well

76 6. Conclusion

understood. Based on variational execution, we implemented a dynamic analysis
to quantify different characteristics of interactions with benchmarks and to analyze
real-world programs. We found that essential configuration complexity (i.e., the
computational overhead) induced by real-world interactions is usually low, making
configuration-complete analyses feasible. Based on our insights, we discussed typi-
cal characteristics of interactions, which can be exploited by future approaches for
analyzing configurable systems.

Our new insights will help designing better quality assurance strategies that are
aware of how options interact in software. These insights enable us to explain
why current analyses scale for certain feature interactions but do not for others.
With our new understanding on feature interactions, we help building and designing
configurable software that is easier to analyze by being aware of which types of
interactions challenge analysis or are supported by existing analyses.

Variational Debugging: Detecting interaction faults is only the first step. The
fault also needs to be resolved, which requires understanding why and how feature
interactions causes the faulty behavior. Comparing valid and failing executions has
been shown the be useful for explaining faults [Sumner and Zhang, 2013, Zeller,
2002]. When understanding interactions, however, it is not sufficient to align two
executions. Instead, we propose to align the executions of all configurations, using
variational execution. We summarize the alignment of the executions in variational
traces to explain the runtime behaviors of inputs and interactions among them. We
provide an interactive Eclipse plugin called Varviz, which enables programmers to
use variational traces for debugging interaction faults. We showed that users of
Varviz outperform the users of the Eclipse debugger significantly in terms of under-
standing and time spent on debugging tasks. Users of Varviz can focus on relevant
parts of the programs quickly, without being distracted by irrelevant data and con-
trol flow decisions. In general, the size of variational traces can get large, but our
filters are effective in reducing the traces to a relatively small number of statements.
Overall, our evaluation of effectiveness and scalability demonstrates that variational
traces are useful in practice to understand differences among executions.

With variational traces, we provide the first opportunity to directly observe feature
interactions when they occur during runtime. The ability to observe feature inter-
actions directly enables future researchers to study them in more detail. Variational
traces further help developers to debug interaction faults, which are notoriously hard
to understand with standard tools. Beyond the usefulness of variational traces, our
study shows for the first time, that comparative approaches (i.e., contrasting execu-
tions) actually help developers understanding and debugging faults.

In summary, we extended the general understanding of feature interactions. We
enable efficient future analysis of configurable systems by informing them about
properties of interactions. We further enable researchers to study and observe fea-
ture interactions directly using variational traces. Overall, our work helps detecting
interaction faults, which improves software quality and reduce development effort.
This directly impacts safety, security, reliability and cost of software.

6.1. Suggestions for Future Work 77

6.1 Suggestions for Future Work

In this Section, we want to discuss future research opportunities according to varia-
tional traces and the two main parts of this thesis, variational execution, character-
istics of feature interactions, and variational traces.

Variational Execution: Variational execution is a new and evolving technique that
gained major improvements over the last years [Meinicke, 2014, Wong et al., 2018b].
However, there are still major challenges that need to be solved for variational ex-
ecution to be usable in industrial settings. The first challenge is the environment
barrier where code is execution that cannot be executed variational, such as native
methods. This problem is shared with related techniques, such as symbolic execu-
tion [Baldoni et al., 2018]. A simple solution is to invoke the code multiple times,
which however may cause incorrect behavior if the method has side effects (e.g.,
writing to a file). Thus, the environment is often modeled separately to avoid these
side effects [Baldoni et al., 2018, Cadar et al., 2008a]. Such model classes, however,
are often implemented manually with high effort. Automated solutions simulat-
ing the environment would have a great impact for the applicability of variational
execution.

A second bottleneck of variational execution are variations in data structures. In-
teractions on data structures can in the worst case cause an exponential explosion,
making variational execution impractical [Walkingshaw et al., 2014]. Research has
shown that variational data structures can efficiently handle interactions among
many options [Lazarek, 2017, Wong et al., 2018b]. However, manually lifting each
data structure to be variational including specialized handling of them is again
impractical. Automated and general solutions for variational data structures are
needed to speed up variational execution and to avoid the exponential explosion.

Variational execution is an efficient technique to explore many variations of a system
and its inputs. Beyond testing configurable systems and observing feature interac-
tions, variational execution has more interesting applications [Wong et al., 2018a].
Future research should explore how to improve existing approaches that rely on exe-
cuting a system multiple times with minor variations. Some promising applications
are [Wong et al., 2018a]: (1) mutation testing, where variational execution can be
used to explore many mutations at the same time including combinations of them,
called higher oder mutations [Chen, 2018, Jia and Harman, 2009, 2011], and (2) au-
tomatic program repair, where minor changes are applied to a faulty program and
the test suite is invoked repeatedly for each change until all tests pass [Le Goues
et al., 2012].

Characteristics of Feature Interactions: We observed characteristics of inter-
actions that are more nuanced than ”low interaction degree”. These characteristics
should be considered when designing analysis of configurable systems and interac-
tions. Especially, the insights that not all options interact and that most parts of the
execution are not affected by interactions help when designing efficient approaches.

Our study on characteristics was done on a small set of systems. Future work should
investigate whether our findings hold for larger systems as well and whether there
are more interesting characteristics.

78 6. Conclusion

Variational Debugging: With variational traces we developed an approach that
allows to observe feature interactions directly. We already developed an analy-
sis based on variational traces to detect unintended behavioral interactions [Soares
et al., 2018]. We believe that variational traces are helpful for developers and re-
searchers to understand how options are interacting. However, currently variational
traces can become large for long executions due to repeated and unimportant inter-
actions. For variational traces to be a useful debugging tool even for larger systems,
we need a way to reduce the traces to the essential statements necessary for under-
standing of an interaction (e.g., a fault). This can be done with impact analysis to
only include statements that are necessary to cause a certain fault. Further heuris-
tics, such as loop summaries, can be applied to reduce the amount of redundant
information in the trace.

A. Appendix

In the context of this work we performed a user study to evaluate variational traces.
In Section 5.4, we used variational traces generated by Varviz to compare their
usefulness to a standard eclipse debugger when understanding faults caused by vari-
ations. In this Section, we present the complete variational traces that we showed
the users in our study to illustrate why variational traces are helpful.

A.1 Variational Trace for Elevator

In Figure A.1, we show the variational trace for Elevator used in our user study
of Section 5.4. As shown, the exception is thrown in the method checkAfter-

TimeShift. The method checks whether the expectedDirection is equivalent to
the actual direction (getCurrentDirection) of the elevator. The trace shows the
values of both: expectedDirection is DOWN in all configurations and the current
direction is UP if executiveFloor is selected, DOWN otherwise. As the directions are
not equal if executiveFloor is selected, the Exception is thrown under the condition
of executiveFloor.

The next step is to find the place where the direction is changed. This leads us to
the method continueInDirection. The method is invoked with different directions
depending on the selection of executiveFloor. This direction change is caused by the
previous check of stopRequestedInDirection, which returns false if executiveFloor
is selected. The implementation of executiveFloor overrides any other call to force
the elevator to go to the executed floor.

The connections among these method calls are difficult to detect as they do not
appear in the stack trace of the exception. A further challenge when using a debug-
ger is that the method timeShift is invoked multiple times before the exception
is thrown which makes debugging using breakpoints difficult. As discussed in Sec-
tion 5.4, we can see from the trace that the users are focus on five methods, while
they can observe the states and the state differences that lead to the fault.

80 A. Appendix

S
t
a
r
t

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
.
c
u
r
r
e
n
t
H
e
a
d
i
n
g

D
O
W
N

e
x
e
c
u
t
i
v
e
f
l
o
o
r

r
e
t
u
r
n

b
o
o
l
e
a
n

f
a
l
s
e

r
e
t
u
r
n

b
o
o
l
e
a
n

t
r
u
e

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
s
t
o
p
R
e
q
u
e
s
t
e
d
I
n
D
i
r
e
c
t
i
o
n
(
)

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

i
n
t

E
l
e
v
a
t
o
r
.
c
u
r
r
e
n
t
F
l
o
o
r
I
D

=

3
→
2

:

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

3

:

e
x
e
c
u
t
i
v
e
f
l
o
o
r

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
c
o
n
t
i
n
u
e
I
n
D
i
r
e
c
t
i
o
n
(
)

E
l
e
v
a
t
o
r
$
D
i
r
e
c
t
i
o
n

E
l
e
v
a
t
o
r
.
c
u
r
r
e
n
t
H
e
a
d
i
n
g

=

D
O
W
N
→
D
O
W
N

:

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

U
P
�
�

:

e
x
e
c
u
t
i
v
e
f
l
o
o
r

i
n
t

E
l
e
v
a
t
o
r
.
c
u
r
r
e
n
t
F
l
o
o
r
I
D

=

2

:

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

3

:

e
x
e
c
u
t
i
v
e
f
l
o
o
r

→
2

:

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

4

:

e
x
e
c
u
t
i
v
e
f
l
o
o
r

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
c
o
n
t
i
n
u
e
I
n
D
i
r
e
c
t
i
o
n
(
)

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
.
e
x
p
e
c
t
e
d
D
i
r
e
c
t
i
o
n

D
O
W
N

r
e
t
u
r
n

E
l
e
v
a
t
o
r
$
D
i
r
e
c
t
i
o
n

D
O
W
N

:

¬
e
x
e
c
u
t
i
v
e
f
l
o
o
r

U
P
�
�

:

e
x
e
c
u
t
i
v
e
f
l
o
o
r

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
g
e
t
C
u
r
r
e
n
t
D
i
r
e
c
t
i
o
n
(
)

e
x
e
c
u
t
i
v
e
f
l
o
o
r

s
p
e
c
i
f
i
c
a
t
i
o
n
s
.
S
p
e
c
i
f
i
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
:

E
l
e
v
a
t
o
r

c
h
a
n
g
e
d

d
i
r
e
c
t
i
o
n
s

e
v
e
n

t
h
o
u
g
h

t
h
e
r
e

w
e
r
e

s
t
i
l
l

c
a
l
l
s

i
n

t
h
e

o
l
d

d
i
r
e
c
t
i
o
n
.

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
c
h
e
c
k
A
f
t
e
r
T
i
m
e
S
h
i
f
t
(
)

e
l
e
v
a
t
o
r
s
y
s
t
e
m
.
E
l
e
v
a
t
o
r
#
t
i
m
e
S
h
i
f
t
(
)

M
a
i
n
#
m
a
i
n
(
)

M
a
i
n
#
[
m
a
i
n
]
(
)

E
n
d

exe
cu
tiv
efl
oo
r¬e

xec
uti
ve
flo
or

exe
cu
tiv
efl
oo
r¬
exe

cu
tiv
efl
oo
r

¬e
xec

uti
ve
flo
or

exe
cu
tiv
efl
oo
r

exe
cu
tiv
efl
oo
r

¬e
xec

uti
ve
flo
or

exe
cu
tiv
efl
oo
r

exe
cu
tiv
efl
oo
r

Figure A.1: Complete variational trace for Elevator used in our user study (Sec-
tion 5.4).

A.2 Variational Trace for NanoXML

In Figure A.2, we show the complete variational trace for NanoXML used in our
user study of Section 5.4. The trace illustrates the main challenge of unimportant
statements and state differences that are not important to understand the fault.
Most of the statements in the trace show minor differences in characters. These
differences are caused by reading two different files. Thus, when parsing the strings

A.2. Variational Trace for NanoXML 81

simultaneously, the elements do not align, and the variational trace reports a differ-
ence.

Even though the trace contains a lot of noise, the participants were able to detect
the important statements in the trace easily. The exception is thrown because the
str does not equal prefix + name (see Listing A.1). When looking in the trace,
we can see all the values used in the if statement. We can see that prefix + name

under condition testva ns is "ns:" + ":Bar". Thus, there are two colons instead
of one as expected.

To solve the fault, we need to figure out why there is an additional colon. When going
back on the trace, we can find the location where prefix and name are changed under
condition testva ns. These changes are automatically highlighted by Varviz due to
the red arrows. Opening the location of the statements leads us to the code shown in
Listing A.2 (this is supported by double clicking on the statement in Varviz). We can
see that the method substring on name is called with the parameter colonIndex.
As substring is inclusive, name contains the additional colon. Thus, changing the
parameter to colonIndex+1 will fix the bug.

In summary, debugging the fault using a standard debugger is again challenging as
the method processElement is called recursively many times before the exception
is thrown. Varviz instead highlights the exact location and state causing the fault.
Thus, even though the variational trace contains unnecessary statements, it is eases
debugging.

1 if (!str.equals(prefix==null?name:prefix+name))
2 XMLUtil.errorWrongClosingTag(this.reader, name, str);

Listing A.1: Parser check in NanoXML.

1 String name = XMLUtil.scanIdentifier();
2 String prefix = null;
3 int colonIndex = name.indexOf(' : ');
4 if (colonIndex > 0) {
5 prefix = name.substring(0, colonIndex+1);
6 name = name.substring(colonIndex);
7 }

Listing A.2: Location of the fault in NanoXML.

82 A. Appendix

Start

testvw_ns

IXMLReader StdXMLParser.reader = null → @1030 : testvw_ns
null� : ¬testvw_ns

net.n3.nanoxml.StdXMLParser#setReader()

net.n3.nanoxml.Parser1_vw_v1#setReader()

IXMLReader StdXMLParser.reader = @1030 : testvw_ns
null� : ¬testvw_ns →

@1030 : testvw_ns
@2325 : ¬testvw_ns

net.n3.nanoxml.StdXMLParser#setReader()

net.n3.nanoxml.Parser1_vw_v1#setReader()

char ch = 0x3c → 66� : ¬testvw_ns
110 : testvw_ns

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

return char 66� : ¬testvw_ns
110 : testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

return char 66� : ¬testvw_ns
110 : testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

char ch = null → 115 : testvw_ns
97� : ¬testvw_ns

return char 115 : testvw_ns
97� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 115 : testvw_ns
97� : ¬testvw_ns

char ch = null → 0x3a : testvw_ns
114� : ¬testvw_ns

return char 0x3a : testvw_ns
114� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 0x3a : testvw_ns
114� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

net.n3.nanoxml.XMLUtil#scanIdentifier()

net.n3.nanoxml.StdXMLParser#processElement()

net.n3.nanoxml.StdXMLParser#scanSomeTag()

net.n3.nanoxml.StdXMLParser#processElement()

net.n3.nanoxml.StdXMLParser#scanSomeTag()

net.n3.nanoxml.StdXMLParser#scanData()

net.n3.nanoxml.StdXMLParser#parse()

net.n3.nanoxml.Parser1_vw_v1#main()

net.n3.nanoxml.Parser1_vw_v1#[main]()

testvw_ns
testvw_ns

testvw_ns

¬testvw_ns
¬testvw_ns

¬testvw_ns

¬testvw_nstestvw_ns

A.2. Variational Trace for NanoXML 83

char ch = null → 66�� : testvw_ns
0x3e : ¬testvw_ns

return char 66�� : testvw_ns
0x3e : ¬testvw_ns

char ch = null → 66�� : testvw_ns
0x3e : ¬testvw_ns

return String "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns

String name = null → "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns

int colonIndex = null → 2� : testvw_ns
‐1 : ¬testvw_ns

int colonIndex 2� : testvw_ns
‐1 : ¬testvw_ns

testvw_ns

String prefix = null → null� : ¬testvw_ns
"ns:" : testvw_ns

String name = "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns →

":Bar" : testvw_ns
"Bar"� : ¬testvw_ns

String XMLElement.name = null → ":Bar" : testvw_ns
"Bar"� : ¬testvw_ns

net.n3.nanoxml.XMLElement#<init>()

return String ":Bar" : testvw_ns
"Bar"� : ¬testvw_ns

net.n3.nanoxml.XMLElement#getName()

net.n3.nanoxml.XMLElement#addChild()

net.n3.nanoxml.StdXMLBuilder#startElement()

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

net.n3.nanoxml.XMLUtil#skipWhitespace()

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

return char 66� : ¬testvw_ns
110 : testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 66� : ¬testvw_ns
110 : testvw_ns

char ch = null → 115 : testvw_ns
97� : ¬testvw_ns

return char 115 : testvw_ns
97� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 115 : testvw_ns
97� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#scanIdentifier()

testvw_ns

testvw_ns

testvw_ns

¬testvw_ns

84 A. Appendix

char ch = null → 0x3a : testvw_ns
114� : ¬testvw_ns

return char 0x3a : testvw_ns
114� : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 0x3a : testvw_ns
114� : ¬testvw_ns

char ch = null → 66�� : testvw_ns
0x3e : ¬testvw_ns

return char 66�� : testvw_ns
0x3e : ¬testvw_ns

net.n3.nanoxml.XMLUtil#read()

char ch = null → 66�� : testvw_ns
0x3e : ¬testvw_ns

return String "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns

String str = null → "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns

String str "ns:Bar" : testvw_ns
"Bar"��� : ¬testvw_ns

String prefix null� : ¬testvw_ns
"ns:" : testvw_ns

¬testvw_ns

String name "Bar" String prefix "ns:"

String name ":Bar"

testvw_ns

net.n3.nanoxml.XMLParseException: XML Not Well‐Formed at Line 4:
Closing tag does not match opening tag:
 `ns:Bar' != `:Bar'

net.n3.nanoxml.XMLUtil#errorWrongClosingTag()

End

¬testvw_ns testvw_ns

testvw_ns

testvw_ns
¬testvw_ns

testvw_ns
testvw_ns

testvw_ns

¬testvw_ns

Figure A.2: Complete variational trace for NanoXML used in our user study (Sec-
tion 5.4).

Bibliography

Iago Abal, Jean Melo, Ştefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej W ↪asowski. Variability Bugs in Highly Configurable Systems: A Qual-
itative Analysis. ACM Transactions on Software Engineering and Methodology
(TOSEM), 26(3):10, 2018. (cited on Page 1, 2, 3, 7, 8, 9, 10, 27, 31, 39, 42, 44, 47, 57,

69, 71, and 75)

Rui Abreu, Peter Zoeteweij, and Arjan J C Van Gemund. An Evaluation of Sim-
ilarity Coefficients for Software Fault Localization. In Proceedings of the Pacific
Rim International Symposium on Dependable Computing (PRDC), pages 39–46.
IEEE, 2006. (cited on Page 49 and 72)

Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter
Saake. IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sam-
pling. In Proceedings of the International Conference on Generative Programming
and Component Engineering (GPCE), pages 144–155. ACM, 2016a. (cited on

Page 9)

Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter, Thomas
Thüm, Thomas Leich, and Gunter Saake. Tool Demo: Testing Configurable Sys-
tems with FeatureIDE. Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), page 173, 2016b. (cited on

Page 9)

Mustafa Al-Hajjaji, Thomas Thüm, Malte Lochau, Jens Meinicke, and Gunter
Saake. Effective Product-Line Testing Using Similarity-Based Product Priori-
tization. Software & Systems Modeling (SOSYM), pages 1–23, 2017. (cited on

Page 9)

Saswt Anand, Corina S Păsăreanu, and Willem Visser. JPF-SE: A Symbolic Execu-
tion Extension to Java Pathfinder. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 134–138. Springer, 2007. (cited on Page 32, 34, and 36)

Sven Apel, Sergiy Kolesnikov, Jörg Liebig, Christian Kästner, Martin Kuhlemann,
and Thomas Leich. Access Control in Feature-Oriented Programming. Science of
Computer Programming (SCP), 77(3):174–187, 2012. (cited on Page 11)

Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer, 2013a. (cited

on Page 1, 7, 51, and 75)

86 Bibliography

Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. Exploring Feature Interactions in the Wild: The New Feature-interaction
Challenge. In Proceedings of the International SPLC Workshop Feature-Oriented
Software Development (FOSD), pages 1–8, 2013b. ACM. (cited on Page 1, 7, 47,

and 75)

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk
Beyer. Strategies for Product-Line Verification: Case Studies and Experiments.
In Proceedings of the International Conference on Software Engineering (ICSE),
pages 482–491. IEEE, 2013c. (cited on Page 41)

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. JDiff: A
Differencing Technique and Tool for Object-Oriented Programs. Proceedings of
the International Conference on Automated Software Engineering (ASE), 14(1):
3–36, 2007. (cited on Page 50 and 72)

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis
for Android Apps. Proceedings of the International Conference on Programming
Language Design and Implementation (PLDI), 49(6):259–269, 2014. (cited on

Page 51)

Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and
Franco Mazzanti. Design and Validation of Variability in Product Lines. In Pro-
ceedings of the International Workshop on Product Line Approaches in Software
Engineering (PLEASE), pages 25–30, 2011. ACM. (cited on Page 28)

Thomas H Austin and Cormac Flanagan. Multiple Facets for Dynamic Information
Flow. ACM Sigplan Notices, 47(1):165–178, 2012a. (cited on Page 17 and 50)

Thomas H. Austin and Cormac Flanagan. Multiple Facets for Dynamic Information
Flow. In Proceedings of the Symposium on Principles of Programming Languages
(POPL), pages 165–178. ACM, 2012b. (cited on Page 27 and 71)

Thomas H Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.
Faceted Execution of Policy-Agnostic Programs. In Proceedings of the ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security (PLAS),
pages 15–26. ACM, 2013. (cited on Page 2, 27, and 71)

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. A Survey of Symbolic Execution Techniques. ACM Computing Surveys
(CSUR), 51(3):50:1–50:39, 2018. (cited on Page 10, 26, 28, 37, 45, 57, and 77)

Thomas Ball, Vladimir Levin, and Sriram K Rajamani. A Decade of Software Model
Checking with SLAM. Communications of the ACM, 54(7):68–76, 2011. (cited

on Page 28)

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The Soft-
ware Model Checker Blast: Applications to Software Engineering. International

Bibliography 87

Journal on Software Tools for Technology Transfer (STTT), 9(5):505–525, 2007.
(cited on Page 28)

Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining Customer-Centered
Systems. Elsevier, 1997. (cited on Page 62)

Glenn Bruns. Foundations for Features. In Feature Interactions in Telecommunica-
tions and Software Systems VIII, pages 3–11. IOS Press, 2005. (cited on Page 1

and 7)

Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-
Jinn Hwang. Symbolic Model Checking: 1020 States and Beyond. In Symposium
on Logic in Computer Science (LICS), pages 428–439. IEEE, 1990. (cited on

Page 50)

Brian Burg, Richard Bailey, Andrew J Ko, and Michael D Ernst. Interactive
Record/Replay for Web Application Debugging. In Proceedings of ACM sympo-
sium on User interface software and technology (SIGHCI), pages 473–484. ACM,
2013. (cited on Page 72)

Martin Burtscher, Ilya Ganusov, Sandra J Jackson, Jian Ke, Paruj Ratanaworabhan,
and Nana B Sam. The VPC Trace-Compression Algorithms. IEEE Journal of
Transactions on Computers (TC), 54(11):1329–1344, 2005. (cited on Page 50, 55,

and 72)

Isis Cabral, Myra B Cohen, and Gregg Rothermel. Improving the Testing and
Testability of Software Product Lines. In Proceedings of the International Software
Product Line Conference (SPLC), pages 241–255. Springer, 2010. (cited on Page 9,

27, 44, 57, 69, and 71)

Cristian Cadar, Daniel Dunbar, and Dawson R Engler. KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Programs. In
Proceedings of the USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 209–224, 2008a. (cited on Page 77)

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. EXE: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008b. (cited on Page 26)

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. Symbolic Execution for Software Test-
ing in Practice: Preliminary Assessment. In Proceedings of the International Con-
ference on Software Engineering (ICSE), pages 1066–1071. ACM, 2011. (cited on

Page 57)

Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature
Interaction: A Critical Review and Considered Forecast. Computer Networks, 41
(1):115–141, 2003a. (cited on Page 1, 7, 47, and 75)

Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature
Interaction: A Critical Review and Considered Forecast. Computer Networks, 41
(1):115–141, 2003b. (cited on Page 1 and 7)

88 Bibliography

Ivan Do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana De Almeida. On Strategies for Testing Software Product Lines:
A Systematic Literature Review. International Journal on Information and Soft-
ware Technology(IST), 56(10):1183–1199, 2014. (cited on Page 1 and 8)

Gary Charness, Uri Gneezy, and Michael A Kuhn. Experimental Methods: Between-
Subject and Within-Subject Design. Journal of Economic Behavior & Organiza-
tion, 81(1):1–8, 2012. (cited on Page 62 and 67)

Serena Chen. Finding Higher Order Mutants Using Variational Execution. Techni-
cal Report 1809.04563, arXiv, 2018. Accepted to SPLASH’18 Student Research
Competition. (cited on Page 77)

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. 1999.
(cited on Page 10)

Lori A Clarke. A Program Testing System. In Proceedings of the 1976 Annual
Conference, pages 488–491. ACM, 1976. (cited on Page 10, 15, 28, and 56)

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
François Raskin. Model Checking Lots of Systems: Efficient Verification of Tem-
poral Properties in Software Product Lines. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 335–344, 2010. ACM. (cited

on Page 28)

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Sym-
bolic Model Checking of Software Product Lines. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), pages 321–330, 2011. ACM.
(cited on Page 28 and 50)

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001. (cited on Page 1 and 7)

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages 129–139.
ACM, 2007. (cited on Page 7, 9, 27, 44, 47, 50, 57, 69, 71, and 72)

Rui Gustavo Crespo, Miguel Carvalho, and Luigi Logrippo. Distributed Resolution
of Feature Interactions for Internet Applications. Computer Networks, 51(2):382–
397, 2007. (cited on Page 1)

Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov. Delta Execution for Ef-
ficient State-Space Exploration of Object-Oriented Programs. IEEE Transactions
on Software Engineering (TSE), 34(5):597–613, 2008. (cited on Page 21)

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. Flow-
Fox: A Web Browser with Flexible and Precise Information Flow Control. In Pro-
ceedings of the International Conference on Conference on Computer and Com-
munications Security (CCS), pages 748–759. ACM, 2012. (cited on Page 28)

Bibliography 89

Dominique Devriese and Frank Piessens. Noninterference Through Secure Multi-
Execution. In Symposium on Security and Privacy (SP), pages 109–124. IEEE,
2010. (cited on Page 28, 71, and 73)

Robin Donaldson and Muffy Calder. Modular Modelling of Signalling Pathways and
Their Cross-Talk. Theoretical Computer Science (TCS), 456:30–50, 2012. (cited

on Page 1)

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gašević. Evolutionary Search-based
Test Generation for Software Product Line Feature Models. In Proceedings
of the International Conference on Advanced Information Systems Engineering
(CAiSE), pages 613–628. Springer, 2012. (cited on Page 9)

Martin Erwig and Eric Walkingshaw. The Choice Calculus: A Representation for
Software Variation. ACM Transactions on Software Engineering and Methodology
(TOSEM), 21(1):6:1–6:27, 2011a. (cited on Page 16, 19, 28, and 56)

Martin Erwig and Eric Walkingshaw. Variation Programming with the Choice Cal-
culus. In Generative and Transformational Techniques in Software Engineering
IV, pages 55–100. Springer, 2011b. (cited on Page 16)

Martin Erwig and Eric Walkingshaw. Variation Programming with the Choice Cal-
culus. In Proceedings of the summer school on Generative and Transformational
Techniques in Software Engineering (GTTSE), pages 55–100, 2013. Springer.
(cited on Page 16 and 19)

Janet Feigenspan, Michael Schulze, Maria Papendieck, Christian Kästner, Raimund
Dachselt, Veit Köppen, and Mathias Frisch. Using Background Colors to Support
Program Comprehension in Software Product Lines. In Proceedings of the Con-
ference on Evaluation and Assessment in Software Engineering (EASE), pages
66–75. IEEE, 2011. (cited on Page 51)

Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. Do
Background Colors Improve Program Comprehension in the #Ifdef Hell? Empir-
ical Software Engineering (EMSE), 18(4):699–745, 2013. (cited on Page 51 and 71)

Brady J Garvin and Myra B Cohen. Feature Interaction Faults Revisited: An
Exploratory Study. In Proceedings of the International Symposium on Software
Reliability Engineering (ISSRE), pages 90–99. IEEE, 2011. (cited on Page 1, 2, 7,

8, 9, 27, 31, 39, 42, 45, 47, 57, 69, 71, and 75)

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. The Most Dangerous Code in the World: Validating SSL Cer-
tificates in Non-Browser Software. In Proceedings of the International Conference
on Conference on Computer and Communications Security (CCS), pages 38–49.
ACM, 2012. (cited on Page 1)

90 Bibliography

Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Test Confessions: A
Study of Testing Practices for Plug-in Systems. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 244–254, 2012. IEEE. (cited

on Page 1 and 8)

Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error Explanation
with Distance Metrics. International Journal on Software Tools for Technology
Transfer (STTT), 8(3):229–247, 2006. (cited on Page 50 and 72)

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. Test Them All, is it Worth it? A Ground Truth Comparison
of Configuration Sampling Strategies. arXiv preprint arXiv:1710.07980, 2017.
(cited on Page 1, 8, and 10)

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. Test Them All, is it Worth it? Assessing Configuration Sam-
pling on the JHipster Web Development Stack. Empirical Software Engineering
(EMSE), pages 1–44, 2018. (cited on Page 2 and 45)

Robert J. Hall. Fundamental Nonmodularity in Electronic Mail. Proceedings of
the International Conference on Automated Software Engineering (ASE), 12(1):
41–79, 2005. (cited on Page 39 and 45)

Klaus Havelund and Thomas Pressburger. Model Checking Java Programs Using
Java PathFinder. International Journal on Software Tools for Technology Transfer
(STTT), 2(4):366–381, 2000. (cited on Page 24, 32, and 34)

Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-based gener-
ation of software product line test configurations. In Proceedings of the Interna-
tional Symposium on Search Based Software Engineering (SSBSE), pages 92–106.
Springer, 2014. (cited on Page 9)

M Hentschel, R Hähnle, and R Bubel. The Interactive Verification Debugger: Ef-
fective Understanding of Interactive Proof Attempts. In Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE), pages 846–851,
2016a. (cited on Page 72)

Martin Hentschel, Reiner Hähnle, and Richard Bubel. An Empirical Evaluation
of Two User Interfaces of an Interactive Program Verifier. In Proceedings of the
International Conference on Automated Software Engineering (ASE), pages 403–
413, 2016b. (cited on Page 57 and 72)

Petr Hosek and Cristian Cadar. Safe Software Updates via Multi-Version Execution.
In Proceedings of the International Conference on Software Engineering (ICSE),
pages 612–621. IEEE, 2013. (cited on Page 28 and 73)

Petr Hosek and Cristian Cadar. VARAN the Unbelievable: An Efficient N-version
Execution Framework. In ASPLOS, pages 339–353, 2015. (cited on Page 28)

Praveen Jayaraman, Jon Whittle, Ahmed M Elkhodary, and Hassan Gomaa. Model
Composition in Product Lines and Feature Interaction Detection Using Critical

Bibliography 91

Pair Analysis. In International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS), pages 151–165. Springer, 2007. (cited on Page 1)

Yue Jia and Mark Harman. Higher Order Mutation Testing. International Journal
on Information and Software Technology(IST), 51(10):1379–1393, 2009. (cited on

Page 77)

Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Transactions on Software Engineering (TSE), 37(5):649–678, 2011.
(cited on Page 77)

Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. An Algorithm for
Generating T-Wise Covering Arrays from Large Feature Models. In Proceedings of
the International Software Product Line Conference (SPLC), pages 46–55, 2012.
ACM. (cited on Page 9)

Noah M Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant, Pongsin
Poosankam, Daniel Reynaud, and Dawn Song. Differential Slicing: Identifying
Causal Execution Differences for Security Applications. In Symposium on Security
and Privacy (SP), pages 347–362. IEEE, 2011. (cited on Page 49, 50, and 73)

James A Jones, Mary Jean Harrold, and John Stasko. Visualization of Test Informa-
tion to Assist Fault Localization. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 467–477. ACM, 2002. (cited on Page 49,

50, and 72)

Alma L Juarez Dominguez. Detection of Feature Interactions in Automotive Active
Safety Features. PhD thesis, University of Waterloo, 2012. (cited on Page 1)

Svilen Kanev and Robert Cohn. Portable trace compression through instruction
interpretation. In Proceedings of of the International IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages 107–116.
IEEE, 2011. (cited on Page 50, 55, and 72)

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990. (cited on Page 9

and 57)

Maria Kanyshkova. Symbolisches Debuggen von Software-Produktlinien. Bachelor’s
thesis, University of Magdeburg, Germany, 2017. (cited on Page 72)

Christian Kästner. Differential Testing for Variational Analyses: Experience from
Developing KConfigReader. arXiv arXiv:1706.09357, 2017. (cited on Page 24)

Christian Kästner and Sven Apel. Virtual Separation of Concerns - A Second Chance
for Preprocessors. Journal of Object Technology (JOT), 8(6):59–78, 2009. (cited

on Page 51)

92 Bibliography

Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A Variability-Aware
Module System. In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 773–792, 2012a.
ACM. (cited on Page 11 and 45)

Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. Toward Variability-Aware Testing.
In Proceedings of the International SPLC Workshop Feature-Oriented Software
Development (FOSD), pages 1–8, 2012b. ACM. (cited on Page 2, 19, 23, and 27)

Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Eliminating Products
to Test in a Software Product Line. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages 139–142, 2010. ACM. (cited

on Page 50)

Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing Combina-
torics in Testing Product Lines. In Proceedings of the International Conference
on Aspect-Oriented Software Development (AOSD), pages 57—68, 2011. ACM.
(cited on Page 10, 43, 51, and 72)

Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared Execution for
Efficiently Testing Product Lines. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 221–230, 2012. IEEE. (cited

on Page 11, 27, 41, and 50)

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina
Souto, Paulo Barros, and Marcelo d’Amorim. SPLat: Lightweight Dynamic Anal-
ysis for Reducing Combinatorics in Testing Configurable Systems. In Proceedings
of the European Software Engineering Conference/Foundations of Software Engi-
neering (ESEC/FSE), pages 257–267. ACM, 2013. (cited on Page 10, 32, 34, 37, 43,

50, and 72)

Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan
Xu. Dual Execution for On the Fly Fine Grained Execution Comparison. In Pro-
ceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 325–338, 2015. (cited

on Page 50, 55, and 73)

James C. King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385–394, 1976. (cited on Page 10, 15, 28, and 56)

Andrew J. Ko and Brad A. Myers. Debugging Reinvented: Asking and Answering
Why and Why Not Questions about Program Behavior. In Proceedings of the
International Conference on Software Engineering (ICSE), page 301, 2008. (cited

on Page 50, 51, and 72)

Andrew J. Ko and Brad A. Myers. Extracting and Answering Why and Why Not
Questions About Java Program Output. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 20(2):4:1–4:36, 2010. (cited on Page 48 and 72)

Bibliography 93

Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An Ex-
ploratory Study of How Eevelopers Seek, Relate, and Collect Relevant Information
During Software Maintenance Tasks. IEEE Transactions on Software Engineering
(TSE), 32(12), 2006a. (cited on Page 57 and 66)

Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Information
during Software Maintenance Tasks. IEEE Transactions on Software Engineering
(TSE), 32(12):971–987, 2006b. (cited on Page 51 and 71)

M. Kolberg, E.H. Magill, D. Marples, and S. Reiff. Feature Interactions in Telecom-
munication Systems VI, chapter Results of the Second Feature Interaction Con-
test, pages 311–325. IOS Press, 2000. (cited on Page 45)

Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Roz-
zle: De-Cloaking Internet Malware. In IEEE Symposium on Security and Privacy
(SP), pages 443–457. IEEE, 2012. (cited on Page 28, 71, and 73)

Bogdan Korel and Janusz Laski. Dynamic Program Slicing. Information processing
letters, 29(3):155–163, 1988. (cited on Page 73)

Jeff Kramer, Jeff Magee, Morris Sloman, and Andrew Lister. CONIC: An Inte-
grated Approach to Distributed Computer Control Systems. IEE Proceedings E
(Computers and Digital Techniques), 130(1):1–10, 1983. (cited on Page 39)

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software Fault Inter-
actions and Implications for Software Testing. IEEE Transactions on Software
Engineering (TSE), 30:418–421, 2004. (cited on Page 7, 8, 9, 27, 31, 39, 42, 45, 57, 69,

71, and 75)

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. Effi-
cient State Merging in Symbolic Execution. In Proceedings of the International
Conference on Programming Language Design and Implementation (PLDI), num-
ber EPFL-CONF-176487, pages 193–204. ACM, 2012. (cited on Page 28)

Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. LDX: Causality Inference by
Lightweight Dual Execution. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 503–515. ACM, 2016. (cited on Page 2, 50, 55, 56, 71, and 73)

H. Larsson, E. Lindqvist, and R. Torkar. Outliers and Replication in Software
Engineering. In Proceedings of the Asia-Pacific Software Engineering Conference
(APSEC), pages 207–214. IEEE, 2014. (cited on Page 68)

Thomas D LaToza, David Garlan, James D Herbsleb, and Brad A Myers. Program
Comprehension as Fact Finding. In Proceedings of the International Symposium
Foundations of Software Engineering (FSE), pages 361–370. ACM, 2007. (cited

on Page 65 and 71)

94 Bibliography

Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model Checking of Domain Arti-
facts in Product Line Engineering. In Proceedings of the International Conference
on Automated Software Engineering (ASE), pages 269–280, 2009. IEEE. (cited

on Page 28)

Lukas Lazarek. How to Efficiently Process 100 List Variations. In Proceedings
Companion of the 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, pages 36–
38. ACM, 2017. (cited on Page 24, 25, 26, 29, and 77)

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
Prog: A Generic Method for Automatic Software Repair. IEEE Transactions on
Software Engineering (TSE), 38(1):54, 2012. (cited on Page 77)

Bil Lewis. Debugging Backwards in Time. Computing Research Repository (CoRR),
2003. (cited on Page 72)

Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. Scalable Analysis of Variable Software. In Proceedings of the
European Software Engineering Conference/Foundations of Software Engineering
(ESEC/FSE), pages 81–91, 2013. ACM. (cited on Page 9)

Max Lillack, Christian Kästner, and Eric Bodden. Tracking Load-Time Configura-
tion Options. IEEE Transactions on Software Engineering (TSE), 2017. (cited

on Page 2, 3, 51, 55, 71, and 72)

Roberto E. Lopez-Herrejon and Don Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In Proceedings of the International Conference on
Generative and Component-Based Software Engineering (GCSE), pages 10–24,
2001. Springer. (cited on Page 39)

Matthew Maurer and David Brumley. Tachyon: Tandem Execution for Efficient Live
Patch Testing. In USENIX Security Symposium, pages 617–630, 2012. (cited on

Page 28 and 73)

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 495–518, 2015. Schloss Dagstuhl–LZI. (cited on Page 1, 8, 9,

and 47)

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. A
Comparison of 10 Sampling Algorithms for Configurable Systems. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 664–675.
ACM, 2016. (cited on Page 7, 9, 10, 27, 45, 47, 50, 57, 69, 71, and 72)

Jens Meinicke. JML-Based Verification for Feature-Oriented Programming. Bache-
lor’s thesis, University of Magdeburg, Germany, 2013. (cited on Page 10)

Jens Meinicke. VarexJ: A Variability-Aware Interpreter for Java Applications. Mas-
ter’s thesis, University of Magdeburg, 2014. (cited on Page 2, 4, 11, 13, 15, 18, 19, 23,

24, 26, 27, 28, 32, 46, 48, 49, 56, 58, 72, 73, 75, and 77)

Bibliography 95

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter
Saake. An Overview on Analysis Tools for Software Product Lines. In Proceedings
of the Workshop on Software Product Line Analysis Tools (SPLat), pages 94–101,
2014. ACM. (cited on Page 1)

Jens Meinicke, Chu Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. On Essential Configuration Complexity : Measuring Interactions in Highly-
Configurable Systems. In Proceedings of the International Conference on Auto-
mated Software Engineering (ASE), pages 483–494, 2016. (cited on Page 2, 4, 11,

13, 15, 18, 20, 24, 26, 27, 28, 31, 45, 48, 49, 50, 56, 57, 58, 69, 71, 72, 73, and 75)

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. Mastering Software Variability with FeatureIDE. Springer,
2017. (cited on Page 51)

Jens Meinicke, Chu-Pan Wong, Christian Kästner, and Gunter Saake. Under-
standing Differences among Executions with Variational Traces. arXiv e-prints,
arXiv:1807.03837, 2018. (cited on Page 15, 18, 20, 24, 28, 46, 47, 71, and 75)

Jean Melo, Claus Brabrand, and Andrzej W ↪asowski. How Does the Degree of Vari-
ability Affect Bug Finding? In Proceedings of the International Conference on
Software Engineering (ICSE), pages 679–690. ACM, 2016. (cited on Page 4, 7, 8,

11, 12, 21, and 60)

Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen, Claus Brabrand, and
Andrzej Wasowski. Variability through the Eyes of the Programmer. In Inter-
national Conference on Program Comprehension. IEEE, 2017. (cited on Page 75)

Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian Käst-
ner. A Choice of Variational Stacks: Exploring Variational Data Structures. In
Proceedings of the Workshop on Variability Modelling of Software-intensive Sys-
tems (VaMoS), pages 28–35. ACM, 2017. (cited on Page 15, 24, 25, and 29)

Saul B Needleman and Christian D Wunsch. A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of
molecular biology, 48(3):443–453, 1970. (cited on Page 55)

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Building Call Graphs
for Embedded Client-Side Code in Dynamic Web Applications. In Proceedings of
the International Symposium Foundations of Software Engineering (FSE), pages
518–529, 2014a. ACM. (cited on Page 23 and 75)

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Exploring Variability-
Aware Execution for Testing Plugin-Based Web Applications. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 907–918,
2014b. ACM. (cited on Page 2, 9, 11, 15, 19, 23, 27, 28, 31, 32, 45, 48, 50, 56, and 72)

ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and Adam A. Porter.
iGen: Dynamic Interaction Inference for Configurable Software. Proceedings of

96 Bibliography

the International Symposium Foundations of Software Engineering (FSE), pages
655–665, 2016. (cited on Page 51)

Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. Feature Interaction: The
Security Threat from within Software Systems. Progress in Informatics, pages 75–
89, 2008. (cited on Page 1, 7, 8, and 9)

Changhai Nie and Hareton Leung. A Survey of Combinatorial Testing. ACM Com-
puting Surveys (CSUR), 43(2):11:1–11:29, 2011. (cited on Page 7, 8, 9, 27, 45, 47, 50,

57, 69, 71, and 72)

Jakob Nielsen. Estimating the Number of Subjects Needed for a Thinking Aloud
Test. International Journal of Human-Computer Studies(IJHCS), 41(3):385–397,
1994. (cited on Page 63)

Peter Ohmann and Ben Liblit. Lightweight Control-Flow Instrumentation and Post-
mortem Analysis in Support of Debugging. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 865–904. Springer,
2017. (cited on Page 13)

Steve R. Palmer and Mac Felsing. A Practical Guide to Feature-Driven Develop-
ment. Pearson Education, 1st edition, 2001. (cited on Page 7)

Chris Parnin and Alessandro Orso. Are Automated Debugging Techniques Actually
Helping Programmers? In Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 199–209. ACM, 2011. (cited on Page 50,

60, 61, 62, 65, 71, and 72)

Malte Plath and Mark Ryan. Feature Integration Using a Feature Construct. Science
of Computer Programming (SCP), 41(1):53–84, 2001. (cited on Page 39, 40, and 61)

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005. (cited on

Page 1 and 7)

Guillaume Pothier and Éric Tanter. Back to the Future: Omniscient Debugging.
IEEE software, 26(6), 2009. (cited on Page 48)

Guillaume Pothier, Éric Tanter, and José Piquer. Scalable Omniscient Debugging.
In Proceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 535–552. ACM, 2007. (cited on Page 72)

Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 419–443, 1997. Springer. (cited on Page 51)

Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter.
Using Symbolic Evaluation to Understand Behavior in Configurable Software Sys-
tems. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 445–454. ACM, 2010. (cited on Page 2, 3, 10, 31, 32, 45, 51, and 71)

Bibliography 97

Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature Maintenance with
Emergent Interfaces. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 989–1000, 2014. ACM. (cited on Page 11)

Bernard Rosner. Fundamentals of Biostatistics. Nelson Education, 2015. (cited on

Page 63 and 67)

Julia Rubin and Marsha Chechik. N-Way Model Merging. In Proceedings of the
International Symposium Foundations of Software Engineering (FSE), pages 301–
311. ACM, 2013. (cited on Page 55)

Johnny Saldaña. The Coding Manual for Qualitative Researchers. Sage, 2015. (cited

on Page 62 and 65)

Martin Schäler, Alexander Grebhahn, Reimar Schröter, Sandro Schulze, Veit Köp-
pen, and Gunter Saake. QuEval: Beyond High-Dimensional Indexing à la Carte.
In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 1654–1665. VLDB Endowment, 2013. (cited on Page 39)

Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles, and Cor-
mac Flanagan. Faceted Dynamic Information Flow via Control and Data Monads.
In Proceedings of the International Conference on Principles of Security and Trust
(POST), pages 3–23. Springer, 2016. (cited on Page 2 and 71)

Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
Faceted Secure Multi Execution. In Proceedings of the International Conference
on Conference on Computer and Communications Security (CCS). ACM, 2018.
(cited on Page 2)

Margrit Schreier. Qualitative Content Analysis in Practice. SAGE Publications,
2012. (cited on Page 62 and 65)

Koushik Sen, George Necula, Liang Gong, and Wontae Choi. MultiSE: Multi-Path
Symbolic Execution Using Value Summaries. In Proceedings of the International
Symposium Foundations of Software Engineering (FSE), pages 842–853. ACM,
2015. (cited on Page 21, 28, 37, 45, 57, and 72)

Larissa Rocha Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Ed-
uardo Santana de Almeida. Exploring Feature Interactions Without Specifica-
tions: A Controlled Experiment. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE). ACM, 2018.
(cited on Page 18, 68, 72, 75, and 78)

Sabrina Souto, Marcelo d’Amorim, and Rohit Gheyi. Balancing Soundness and
Efficiency for Practical Testing of Configurable Systems. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 632–642. IEEE,
2017. (cited on Page 10, 50, and 72)

Ya-Yunn Su, Mona Attariyan, and Jason Flinn. AutoBash: Improving Configuration
Management with Operating System Causality Analysis. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), pages 237–250. ACM,
2007. (cited on Page 28 and 73)

98 Bibliography

William N. Sumner and Xiangyu Zhang. Algorithms for Automatically Computing
the Causal Paths of Failures. In Proceedings of the International Symposium
Foundations of Software Engineering (FSE), pages 355–369. Springer, 2009. (cited

on Page 49, 50, 54, and 72)

William N Sumner and Xiangyu Zhang. Memory Indexing: Canonicalizing Ad-
dresses Across Executions. In Proceedings of the International Symposium Foun-
dations of Software Engineering (FSE), pages 217–226. ACM, 2010. (cited on

Page 2, 47, 50, 55, and 56)

William N Sumner and Xiangyu Zhang. Comparative causality: Explaining the
differences between executions. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 272–281. IEEE Press, 2013. (cited on Page 2,

4, 47, 49, 50, 54, 58, 60, 61, 62, 72, 73, and 76)

William N Sumner, Tao Bao, Xiangyu Zhang, and Sunil Prabhakar. Coalescing
Executions for Fast Uncertainty Analysis. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 581–590. ACM, 2011. (cited

on Page 28)

Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. Configuration Coverage in the Analysis of Large-Scale System Software.
ACM SIGOPS Operating Systems Review, 45(3):10–14, 2012. (cited on Page 10)

Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classification and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys (CSUR), 47(1):6:1–6:45, 2014. (cited on Page 1, 8, 9, 46, and 75)

Thomas Thüm, Jens Meinicke, Fabian Benduhn, Martin Hentschel, Alexander von
Rhein, and Gunter Saake. Potential Synergies of Theorem Proving and Model
Checking for Software Product Lines. In Proceedings of the International Software
Product Line Conference (SPLC), pages 177–186, 2014. ACM. (cited on Page 10)

Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Efficient Online Validation with
Delta Execution. ACM SIGARCH Computer Architecture News (SIGARCH), 37
(1):193–204, 2009. (cited on Page 73)

Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. A Classification of Product Sampling for
Software Product Lines. In Proceedings of the International Software Product Line
Conference (SPLC). ACM, 2018. (cited on Page 9)

Alexander von Rhein, Sven Apel, and Franco Raimondi. Introducing Binary Decision
Diagrams in the Explicit-State Verification of Java Code. In Proceedings of the
Java Pathfinder Workshop, 2011. (cited on Page 11, 21, 28, 32, 34, 36, 50, and 72)

Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden.
Variational Data Structures: Exploring Tradeoffs in Computing with Variability.
In Proceedings of the International Symposium on New Ideas, New Paradigms,

Bibliography 99

and Reflections on Programming & Software (Onward!), pages 213–226. ACM,
2014. (cited on Page 16, 25, 26, and 77)

Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner, and Suresh Jagan-
nathan. Analyzing Concurrency Bugs Using Dual Slicing. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), pages 253–
264. ACM, 2010. (cited on Page 49 and 50)

Mark Weiser. Program Slicing. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 439–449, 1981. IEEE. (cited on Page 73)

Michael Weiss, Babak Esfandiari, and Yun Luo. Towards a Classification of Web
Service Feature Interactions. Computer Networks, 51(2):359–381, 2007. (cited on

Page 1)

Chu-Pan Wong, Jens Meinicke, Kästner, and Christian. Beyond Testing Config-
urable Systems: Applying Variational Execution to Automatic Program Repair
and Higher Order Mutation Testing. In Proceedings of the European Software
Engineering Conference/Foundations of Software Engineering - New Ideas and
Emerging Results (ESEC/FSE-NIER). ACM, 2018a. (cited on Page 77)

Chu-Pan Wong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. Faster Vari-
ational Execution with Transparent Bytecode Transformation. In Proceedings of
the Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA). ACM, 2018b. (cited on Page 2, 11, 15, 19, 20, 23, 24, 26, 27, 28,

29, 45, 48, 50, 58, 72, 73, 75, and 77)

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A Survey on
Software Fault Localization. IEEE Transactions on Software Engineering (TSE),
42(8):707–740, 2016. (cited on Page 49)

Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient Program Execution
Indexing. In Proceedings of the International Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 238–248. ACM, 2008. (cited on

Page 47, 50, 55, and 72)

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. Precise, Dynamic Information Flow for Database-
backed Applications. In Proceedings of the International Conference on Program-
ming Language Design and Implementation (PLDI). ACM, 2016. (cited on Page 2,

21, 27, and 71)

Pamela Zave. Software Requirements and Design: The Work of Michael Jackson,
chapter Modularity in Distributed Feature Composition, pages 267–290. Good
Friends Publishing Company, 2009. (cited on Page 1 and 7)

Andreas Zeller. Yesterday, my Program Worked. Today, it Does Not. Why? In
Proceedings of the International Symposium Foundations of Software Engineering
(FSE), pages 253–267. ACM, 1999. (cited on Page 47)

100 Bibliography

Andreas Zeller. Isolating Cause-Effect Chains From Computer Programs. In Proceed-
ings of the International Symposium Foundations of Software Engineering (FSE),
pages 1–10. ACM, 2002. (cited on Page 2, 4, 47, 49, 50, 54, 58, 60, 61, 62, 72, and 76)

Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing
Input. IEEE Transactions on Software Engineering (TSE), 28:183–200, 2002.
(cited on Page 47, 50, and 72)

Sai Zhang and Michael D. Ernst. Automated Diagnosis of Software Configuration
Errors. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 312–321. IEEE, 2013. (cited on Page 51)

Sai Zhang and Michael D Ernst. Which Configuration Option Should I Change?
In Proceedings of the International Conference on Software Engineering (ICSE),
pages 152–163. ACM, 2014. (cited on Page 51)

Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv Gupta. Towards Lo-
cating Execution Omission Errors. In Proceedings of the International Conference
on Programming Language Design and Implementation (PLDI), pages 415–424.
ACM, 2007. (cited on Page 73)

Hamza Zulfiqa. Towards Detecting Unintended Feature Interactions. Master’s thesis,
TU Darmstadt, Germany, 2016. (cited on Page 71)

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;
verwendete fremde und eigene Quellen sind als solche kenntlich gemacht. Ins-
besondere habe ich nicht die Hilfe einer kommerziellen Promotionsberaterin/eines
kommerziellen Promotionsberaters in Anspruch genommen. Dritte haben von mir
weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die
im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfer-

tigter Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche der Urheberin/des Urhebers sowie eine strafrechtliche Ahndung durch
die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im
Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht
und ist als Ganzes auch noch nicht veröffentlicht.

Magdeburg, den 7.1.2019

Jens Meinicke

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Contribution
	1.2 Broader Impact
	1.3 Structure of the Thesis

	2 Feature Interactions
	2.1 Quality assurance for highly-configurable systems
	2.2 Running example
	2.3 Summary

	3 Variational Execution
	3.1 Choice Calculus
	3.1.1 Variational Data Types
	3.1.2 Programming with Conditional Values

	3.2 Variational Execution
	3.3 Variational Execution of GameScreen
	3.4 Implementations
	3.5 Optimizations
	3.6 Related Work
	3.7 Conclusion

	4 Measuring Interactions in Highly Configurable Systems
	4.1 Measuring Feature Interactions
	4.2 Interaction Benchmarks
	4.2.1 Experimental Setup
	4.2.2 Sharing Potential

	4.3 Measuring Feature Interactions in Highly Configurable Systems
	4.4 Discussion: Characteristics of Interactions
	4.5 Related Work
	4.6 Conclusion

	5 Understanding Interactions in Highly-Configurable Systems with Variational Traces
	5.1 State of the Art
	5.1.1 Automated Debugging Techniques
	5.1.2 Understanding Feature Interactions

	5.2 Generating and Visualizing Variational Traces
	5.2.1 Variational Traces
	5.2.2 Generating Variational Traces by Aligning Trace Logs
	5.2.3 Efficient Generation of Variational Traces with Variational Execution
	5.2.4 Varviz
	5.2.5 Limitations of Variational Traces

	5.3 Variational Debugging of GameScreen
	5.4 User Study
	5.5 Scalability Evaluation
	5.6 Applications Beyond Debugging
	5.7 Related Work
	5.8 Conclusion

	6 Conclusion
	6.1 Suggestions for Future Work

	A Appendix
	A.1 Variational Trace for Elevator
	A.2 Variational Trace for NanoXML

	Bibliography

