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Abstract

Multiple change point detection is a special area of change point analysis where we
are mainly interested in localizing changes in the underlying model of an observed
time series. The MOSUM (moving sum) procedure investigated by Eichinger & Kirch
(2018) is one of the basic approaches to detect and estimate multiple changes in the
classical mean change model. The statistic is constructed by comparing the arithmetic
means of subsamples of size G around each time point where G denotes the bandwidth.
Hence, a quite natural generalization of this procedure to several parameter change
problems would be to use MOSUM Wald-type statistics based on differences of local
estimators. However, especially in non-linear models, applying these statistics can lead
to high computational effort and large numerical errors. To reduce the complexity
in computation we consider MOSUM statistics based on estimating functions (score-
type statistics) where only one global estimator of the parameter has to be computed.
However, this comes at the cost that a single global estimator may not be able to
detect all possible changes. Therefore, we need to repeat the procedure with several
estimators and combine the information from all of them.

After an introduction in the first chapter, the second chapter of the thesis focuses on
MOSUM score-type statistics. We construct a corresponding test statistic and inves-
tigate its asymptotic behavior under the null hypothesis and the alternative. Further,
we consider estimators for the number and the locations of the changes and examine
their statistical properties. The theoretical results derived in this part enable us to
develop a theory for MOSUM Wald-type statistics. In Chapter 3 we investigate the
asymptotic properties of a change point test and estimators based on Wald-type statis-
tics. This is followed by some simulation studies for a linear regression model and a
Poisson autoregressive model where we compare the performance of the two MOSUM
procedures. The simulation results illustrate that the MOSUM Wald-type procedure
usually performs better than its score-type counterpart. Further, we observe that, in
particular, the score-type procedure strongly depends on the selection of the band-
width. This bandwidth problem and the problem in detectability can be solved by
applying a multiscale method which merges the results obtained from different band-
widths and global estimators in an appropriate way as discussed in Chapter 5. After
describing the multiscale procedure for the classical mean change model introduced
by (Cho & Kirch| (2018), we adapt their method to a general setting and the linear
regression model and we derive first theoretical results constituting the basis for future
work.



Zusammenfassung

Die Detektion multipler Strukturbriiche ist ein spezielles Gebiet der Changepoint Ana-
lyse, in dem man hauptsichlich daran interessiert ist, Anderungen in einem einer
beobachteten Zeitreihe zugrunde liegendem Modell zu lokalisieren. Das MOSUM-
Verfahren (moving sum), welches von |[Eichinger & Kirch| (2018) ndher untersucht
wurde, reprasentiert eines der grundlegenden Verfahren zur Erkennung und Schétzung
multipler Anderungen im klassischen Erwartungswertmodell. Die dazugehdrige Statis-
tik ergibt sich aus dem Vergleich der Stichprobenmittelwerte, die auf Teilstichproben
der Grofe G, auch Bandbreite genannt, vor und nach jedem Zeitpunkt berechnet wer-
den. Ein sehr intuitiver Ansatz zur Verallgemeinerung dieses Verfahrens auf Modelle
verschiedener Parameterdnderungen wire daher die Verwendung von Wald-Statistiken,
die auf den Differenzen lokaler Parameterschitzer basieren. Ein Nachteil dieser Statis-
tiken ist jedoch, dass sie insbesondere in nicht-linearen Modellen nur mit hohem Rechen-
aufwand und grofem numerischen Fehler bestimmt werden koénnen. Die rechnerische
Komplexitdt kann durch Anwendung von MOSUM-Statistiken basierend auf Schétz-
funktionen (Score-Statistiken) deutlich reduziert werden, da zur Berechnung dieser
Statistiken lediglich ein globaler Schéitzer bestimmt werden muss. Dieses Verfahren
hat dennoch den Nachteil, dass ein globaler Schétzer allein nicht zwingend dazu in der
Lage ist alle Strukturbriiche zu erkennen, was eine Wiederholung des Verfahrens mit
verschiedenen globalen Schitzern mit anschliefsender Zusammenfiihrung der Ergebnisse
erforderlich macht.

Nach einer Einleitung im ersten Kapitel wenden wir uns im zweiten Kapitel dieser Ar-
beit den MOSUM Score-Statistiken zu. Wir konstruieren eine entsprechende Teststatis-
tik und untersuchen deren asymptotisches Verhalten unter der Nullhypothese und der
Alternative. Aufserdem werden Schétzer fiir die Anzahl und die Positionen der Struk-
turbriiche betrachtet und im Hinblick auf ihre statistischen Eigenschaften analysiert.
Die theoretischen Resultate dieses Kapitels ermoglichen es uns, eine Theorie fiir die
Wald-Statistiken zu entwickeln. Im dritten Kapitel werden die asymptotischen Eigen-
schaften eines Changepoint Tests und von Changepoint Schéitzern basierend auf Wald-
Statistiken genauer untersucht. Im folgenden Kapitel werden die Simulationsstudien
fiir ein lineares Regressionsmodell und ein Poisson autoregressives Modell beschrieben
und die beiden MOSUM-Verfahren werden miteinander verglichen. Die Simulations-
ergebnisse zeigen, dass das Wald-Verfahren in den meisten Fallen besser abschneidet.
Es ist zudem ersichtlich, dass insbesondere die Leistungsfahigkeit des Score-Verfahrens
von der Wahl der Bandbreite abhingt. Das Bandbreitenproblem und das Problem
in der Detektierbarkeit konnen beide durch Anwendung eines Multiskalen-Verfahrens,
das die Ergebnisse unter Verwendung verschiedener Bandbreiten und globaler Schétzer
in geeigneter Weise zusammenfiihrt, gelost werden. In Kapitel 5 wird zuerst das von
Cho & Kirch| (2018) fiir das Erwartungswertmodell eingefiihrte Multiskalen-Verfahren
beschrieben, bevor wir es auf ein allgemeines Modell bzw. ein lineares Regressions-
modell anpassen und erste theoretische Resultate herleiten, die die Grundlage fiir weit-
erfithrende Untersuchungen bilden.
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1. Introduction

Multiple change point detection is a special area of change point analysis with main
focus on finding structural breaks in an observed time series within a fixed period of
time. A structural break or a change point describes a time point of the observation
period at which the underlying model and, consequently, the distributional properties
of the observations change. In this work we consider a general parameter change model
defined in Section in which we allow for multiple changes in the parameter vector
0 specifying the distribution of the observations Xy, ..., X,,. This general framework
covers many different change point problems. Some examples are given in Section
as well. The number of the change points as well as their locations are unknown and
our goal is to find suitable estimators for these values. Therefore, we are going to
investigate two general MOSUM (moving sum) procedures where the first one is based
on score-type statistics and the second one uses Wald-type statistics. Before explaining
these approaches in detail, we want to get an idea of what has been discussed so far in
the scientific literature.

Multiple change point detection is a current topic in research and comprises problems
in a wide range of fields like finance, quality control, medicine or climate. For example,
Braun et al| (2000) applied a technique of multiple change point detection on DNA
sequences. |Aggarwal et al.|(1999) focussed on finding structural breaks in the volatility
of stock market returns. More recently, Killick et al.| (2010) and Killick et al.| (2012)
gave an interesting application to oceanography by detecting changes in the variance
of time series for wave heights.

All the techniques and methods designed for localising multiple structural breaks are
more or less inspired by model selection or hypothesis testing. These are the two origins
of multiple change point detection which have been developing alongside. Approaches
based on model selection rest upon the idea of finding change points by optimizing a
target or cost function over all possible change point constellations where overfitting
is avoided by setting an upper bound for the number of changes or by introducing a
penalty on the complexity of the model. They date back to [Yao (1988) who applied
Schwarz’s criterion to estimate the number of changes in a mean change model under
normality assumptions. Since then many different detection procedures have been con-
sidered for several models. For instance, [Yao & Aul (1989) used a least-squares based
target function to localise changes in the mean of i.i.d. (independent and identically
distributed) observations or, more recently, Davis et al.| (2006)) applied the minimum
description length principle in order to detect changes in the regression coefficients of
a linear autoregressive process. More references are given in Section [5| Nevertheless,
all these methods have in common that the change point estimates are determined by
solving a multivariate optimization problem which can be computationally challenging.
In order to solve this problem more efficiently several algorithms have been developed.
One of these is the PELT (pruned exact linear time) algorithm by [Killick et al.| (2012)
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which is based on dynamic programming combined with a pruning step.

In hypothesis testing there are two basic approaches dealing with multiple change
points, the binary segmentation procedure and the MOSUM procedure. The first
one is an iterative method going back to |Vostrikoval (1981)) which rests upon the idea
that tests for AMOC (at most one change) settings still have some power for multiple
changes. By conducting an AMOC-test on the whole data sequence, a change point
estimate is obtained and the sample is split at this point into two subsamples. Then,
the steps are repeated recursively on the subsamples as long as the test rejects the
null hypothesis of having no structural break. By introducing a random localisation
mechanism for choosing the segments or subsamples on which the test is conducted the
wild binary segmentation procedure by Fryzlewicz| (2014) solves the power problem of
the original procedure for specific change point constellations. Moreover, the concept
of binary segmentation has attracted attention in model selection too mainly due to
its low computational complexity, see for example Killick & Eckley| (2014). However,
one main drawback of binary segmentation in comparison to the MOSUM procedure
is that it involves multiple testing such that the overall significance level cannot be
controlled.

Using MOSUM statistics in hypothesis testing goes back to Bauer & Hackl| (1980) who
considered MOSUM based test motivated by an application in quality control. Fur-
thermore, Huskova (1990) and |Chu et al.| (1995)) investigated a MOSUM-test based
on least squares residuals in linear regression models. Whereas the tests mentioned
before were constructed for AMOC alternatives, Huskova & Slaby| (2001)) proposed
a MOSUM statistic actually designed for detecting multiple changes. More recently,
Eichinger & Kirch (2018) investigated the MOSUM procedure for the classical mean
change model and derived consistency for the estimators of the number and the lo-
cations of the changes. In this particular example the MOSUM score-type statistic
coincides with the MOSUM Wald-type statistic as explained in the following Section
L2

1.1. Examples

In this work we investigate MOSUM procedures in order to estimate multiple structural
breaks in a very general setting which is described in the following. The observations
Xy,..., X, follow a general parameter change model if

XY i 1<i <k,

XP i Ky, <i < kon
D (1.1)

X k. <i<on

where ¢ denotes the number of structural breaks and ki,,...,k,, are the change
points. The sequences {X}j)}izl,j =1,...,q+ 1, are assumed to be stationary with
a distribution specified by some parameter vector 8; such that {X;};,>; is piecewise
stationary. Note that the application of the MOSUM procedures is not restricted to
correctly specified models and that we allow for misspecification as well which will be
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explained in the respective sections. The model description above incorporates many
different change point models. A few examples are given in the following. One main
example is the classical mean change model which has been considered extensively in
the change point literature.

Example 1.1.1 (Mean Change Model). The observations can be described by

M1 + €iy Zf 1 S l S kl,n

ot¢ei, if ki <t<ky,
Xi: M i ' )

Por1+ i if kg <i<mn

where {€;};>1 is a stationary error sequence with an expectation of zero and long-run
variance 0 < 7% < 00 and i1, . .., g1 represent the expected values.

In this classical example, a time series deviates randomly from a specific value, the
expected value, which may change several times.

Another well investigated model in statistics is the linear regression model. A descrip-
tion of that including change points is given in the next example.

Example 1.1.2 (Linear Regression Model with Structural Breaks). The model equa-
tion of a linear regression with two regressors {X;1} and {X;2} is given by

X[B+ei, if 1<i<ky,
XZTﬁ2 + &y Zf kl,n < l S k'Q,n

b

T ’ . .
X, Byt f kgn<i<n

where Y; denotes the response variable, X; = (1, X;1, X;2)7, Bi,---,B,41 are the
parameter vectors and {;};>1 represents an error sequence as in Example|1.1.1)

This linear regression model will be discussed in more detail in Section
In the following example we consider an integer-valued time series model, the Poisson
autoregressive model of order one, which will be investigated in Section [£.2]

Example 1.1.3 (Poisson Autoregressive Model with Structural Breaks). A Poisson
autoregressive model of order one, also known as INARCH(1) model, with q change
points can be described by

Y(l)a Zf 1 S [ S kl,n

)

Y, — Y;(z)a Zf kl,n <1 S kQ,n

Y i k. <i<n

where {}/;(j)} is an INARCH(1) time series with parameter 0; = (0;1,0;2)", j =
1,...,q+1, e

Y;(j)‘f‘i,l ~ P()\l), with >\z = 03‘71 + (9]',2}/;;,1.
In this model the observation Y; conditioned on the past is Poisson distributed with

parameter \; which is described by an autoregressive structure of order one whose
coefficients may change over time.
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1.2. Motivation of the MOSUM Statistics

A classical estimation method in statistics is based on finding the solution ém of the
estimating equation system > . H(X;,0) = 0 for a suitable choice of X;, see below
for some examples. The function H is called estimating function and 51771 is an M-
estimator or Z-estimator of 8. For more information on that estimation method we refer
to Van der Vaart| (2007), Chapter 5. Furthermore, note that the estimating function
H will be vector-valued for the estimation of multidimensional parameter vectors.

In the classical model in Example[1.1.1| we consider a time series X1, ..., X, fluctuating
randomly around a mean u. A typical estimator for the expectation is the sample mean
X1 = 23" | X; which is the solution of the estimating equation Y 7 | (X; — 1) = 0.
Another M-estimator for the expectation in this example is based on the estimating
function H(X;, 1) = 2 arctan(u — X;). This estimating function is closely related to
the estimating function for the median which is given by the sign-function, but has the
advantage that it has nice differentiability properties. Henceforth, it will therefore be
called median-like estimator.

In the linear regression model of Example the classical least squares estimator
minimises the sum of squared residuals and thus represents an M-estimator for the
parameter vector 3 with vector-valued estimating function H ((Yi,Xi,l,Xi,g)T,,B) =
—2X,; (Y; — X[ B) so that X; = (Vi, X; 1, X;0)7.

In the Poisson autoregressive model of Example [1.1.3] an M-estimator based on the
likelihood approach can be used. Tts estimating function is given by H((Y;,Y;_1)7,0) =

_2Y7§71 ( - 1), where Y,L',l = (1,1/;,1),11.

Yl .6
In order to explain how change point tests can be constructed based on estimating
functions, first consider the at most one change (AMOC) situation.

-2 0 2 4
Il

-2

T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Hy: no structural break VS. H: at least one structural break

The first plot shows a time series fluctuating around a constant mean value of zero
whereas the second plot illustrates a change in mean from 0 to 2 at time point 200,
which can easily be seen by eye. However, in many situations changes cannot be found
only by visual inspection and statistical tools are needed. Tests based on weighted
CUSUM statistics

2 = max | !
X7 k(n—k)r

k
D (X=X,

=1

(1.2)

can be applied in order to detect a change in mean. For further information on the
statistic see, for example, Chapter 2 of |(Csérgo & Horvath| (1997). After some trans-
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formations we get the following representation of the statistic

k(n—k)1, 2 -

2 _ . _

— lrgfm;(n = |X1,k Xitin|, (1.3)
which bases on the absolute difference of the arithmetic mean of the subsample X, ..., X,
and the arithmetic mean of the of the subsample Xy, q,..., X,,.

By recalling that the estimating function of the classical mean is given by H(X;, u) =
X; — p, the version of the weighted CUSUM statistic in ([1.2)) can be conceived as a

A

special case of score-type statistics based on Zle H(X;,0,,) in the general paramter
change model where 51,n denotes the global M-estimator and H its corresponding
estimating function. Score-type statistics have already received attention in the liter-
ature, e.g. Huskova (1996) examined weighted CUSUM score-type tests and change
point estimators under the null hypothesis and local alternatives with general regu-
larity conditions. Furthermore, Huskova et al.| (2007) detected changes in linear au-
toregressive time series by applying test statistics based on partial sums of weighted
residuals which are specific score-type statistics using the least squares estimating func-
tion. More recently, Kirch & Tadjuidje Kamgaing (2016) contructed change point tests
using score-type statistics and derived consistency for the tests under the alternative
with an application to binary models and Poisson autoregressive models.

The representation of the CUSUM statistic in ([1.3) is an example for Wald-type statis-
tics in general resting upon the comparison of the M-estimator computed on the first
k observations and the M-estimator of the last n — k observations: 0; ; — 0y41,. For
instance, Andrews (1993)) considered Wald-type statistics based on GMM (generalized
method of moments) estimators in a quite general setting, which constitutes a gen-
eralization of the results of Hawking| (1987) investigating Wald-type tests based on
ML (maximum likelihood) estimators in the i.i.d. case with known probability density
function.

Now we allow for multiple changes in the expectation p or parameter vector 8 under
the alternative and we are interested in estimating the number of structural breaks and
their locations, i.e. the time points when the changes occur. In the plot below we see
an example of a time series with multiple changes in the mean where the red vertical
lines indicate the change points.

I T T T T I
0 200 400 600 800 1000

In order to detect all structural breaks, it is reasonable to use a moving window statistic
like the MOSUM statistic considered by [Eichinger & Kirch| (2018):

1 k+G k
T,(G) = max Xi — Xi
(@) G<k<n—G 7/2G i:zk; izgﬂ

with bandwidth G determining the length of the moving window. The following graph
illustrates the behavior of the MOSUM statistic in the example. We can see that it is
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suitable to detect multiple changes as the statistic gets quite large in intervals around
the change points with local maxima close to the true locations of the changes.

15
|

I I I I I I
0 K1 200 Ko 400 600 K3 800 1000

Similar to the weighted CUSUM statistic, the MOSUM statistic for mean changes can
be regarded as an example of MOSUM Wald-type and score-type statistics since further
transformations yield

VG

T.(G) = clpax B | Xis1krc — Ximgrip -

and
k4G k
. B _
T,(G) = max Xi—Xin) — Xi = X
(@) G<k<n—G 74/2G 12%21( - ) z’:sz:J+1( ) )
k+G k
1 B _
=  max H(X;, X1,) — H(Xi, X1n)|-
G<k<n—G 71/2@G i:zk;1 | ) i:l§+l ( o

In the general parameter change model, MOSUM Wald-type statistics are based on the
difference of local M-estimators: 01 k+¢ — Or—c+1,6. For each time point & between G
and n — G we compare the estimator computed on the subsample X1, ..., X g with
the estimator calculated on X;_¢.1,..., Xx whereupon a large difference indicates a
change at this point. This constitutes a natural approach to find changes in a parameter
vector @ but it has one main drawback. Calculating two estimates for each time point,
ie. 2(n — 2G) in total, can be computationally challenging and can lead to high
numerical errors especially in non-linear models, for example non-linear AR models or
Poisson autoregressive models, where numerical methods are needed to determine the
estimates. In order to reduce the complexity in computation we will consider MOSUM
score-type statistics for general parameter change problems which are based on the
difference of sums of the estimating function where a global estimator is employed:

k+G " k _ . N
S H (X,-, 0n> - Y H <XZ», en) with 6, =8, ,.
i=k+1 i=k—G+1



1.3. Structure of the Thesis

The basic idea here is to convert a general multiple parameter change problem to
a multiple mean change problem of the estimating function. After computing the
global estimator, we focus on the transformed sequence { H(X;, 8,,)};>1 and try to find
changes in the mean of this new series by applying a multivariate version of the classical
MOSUM statistic. This approach is computationally very fast as it only requires the
calculation of one estimator. However, it can happen that not all structural breaks are
detectable by MOSUM score-type statistics since a change in the parameter vector 0
does not necessarily cause a change in the expectation of the transformed series. We
will discuss this in detail later.

Both approaches have advantages and disadvantages but they have one problem in
common. The performance of the procedures crucially depends on the choice of the
bandwidth and in some situations it might be helpful to use more than one bandwidth.
For example, the detection of changes, which are large in magnitude and lie close to
each other, requires a small bandwidth whereas small changes located far away from
each other can be found by a large bandwidth. Hence, a mixture of these scenarios can
cause problems which we try to solve by adapting multiscale method. We will explain
this later.

1.3. Structure of the Thesis

My thesis is structured as follows. In Chapter 2| we consider MOSUM score-type
statistics which are also called MOSUM statistics based on estimating functions. After
deriving the asymptotics under the null hypothesis, we construct an asymptotic level
a test and prove its consistency under the alternative. In Section we introduce a
MOSUM procedure, which is similar to that of |[Eichinger & Kirch| (2018]), to determine
estimators for the number and the locations of the changes followed by proofs of consis-
tency. The convergence rates of the estimator sequences can be improved under some
modifications and additional assumptions on the time series which is shown in Section
[2.2] Since the assumptions used in previous subsections are expressed as generally as
possible we prove in Section that the assumptions are satisfied by i.i.d. series and
stationary and strongly mixing time series under some moment conditions. We com-
plete this chapter by discussing possible problems of the procedure. Chapter |3| focuses
on MOSUM Wald-type statistics. In the first section, we consider a general parameter
change model for those two examples. After investigating the asymptotic behavior of
the statistic under the null hypothesis, we examine the properties of the corresponding
test and estimators under the alternative in Section [3.1.2] In the second part of this
chapter, MOSUM Wald-type statistics for the linear regression model are considered
and statistical properties of the corresponding change point test and estimators are de-
rived. This is followed by a discussion of possible problems of the Wald-type procedure
in Section In Chapter [ we describe the results of simulation studies for a linear
regression model and a Poisson autoregressive model and compare the performance of
the two MOSUM procedures. With the goal to solve the bandwidth problem of both
procedures and the problem in detectability of the MOSUM score-type approach, we
consider a multiscale method in Chapter [5l The multiscale MOSUM procedure with
localized pruning introduced by (Cho & Kirch (2018) is described in Section before
we adapt this method to the linear regression model and a general parameter change



1. Introduction

model. After providing all the theoretical tools, we prove a first result for the output
of the procedure. This constitutes the foundation for future work as described in the
outlook concluding the main part of the thesis. In the appendix, we give an overview
of the assumptions followed by a summary of several theoretical results which are used
throughout this work.



2. MOSUM Score-Type Statistics

We consider a general parameter change model as in with observations X, ..., X,,.
The distribution of these random variables is determined by a parameter vector 8 € ©
where © denotes the parameter space being a subset of R”. The estimating function
H (X;,0) is a measurable function with respect to X; and we assume that it takes
values in R? as well. All the assumptions on the time series that are required under
the null hypothesis and the alternative are introduced in the respective sections and
summarized in the Appendix and [A.2]

With the goal to detect and estimate changes in the parameter vector 8 we introduce
the following MOSUM statistics based on estimating functions which is also called
MOSUM score-type statistic:

Definition 2.0.1. A MOSUM statistic based on estimating functions is given by

Tin(G, 0) = \/_ ATZ Aekv for some @ € © and k € {G,...,n— G}

with Ag, = Eerlil H(X;,0) — Zf:kaH H(X;,0) and 3 as long-run covariance

matriz of H (X, 9) which is assumed to be positive definite.

Note that we use an arbitrary 6 € © instead of the estimator sequence él,n like in
Section Doing so, we are able to develop a theory which is a little bit more general
concerning the choice of the global estimator sequence. Later, we will see that 6 can
be replaced by any estimator sequence @,, satisfying some specific conditions.

The following remark will be helpful in the proofs and we will use it throughout this
work without referring to it again.

Remark 2.0.2. It holds that

1/2 4 1/2 4

Tyn(G, 0)

- JlE 4, = g 15

where ||| is the Frobenius norm described in Appendiz and ||-|| the Euclidean
norm.

Proof. Since the positive definite matrix 2_1 has a symmetric square root 2;1/2 (see
Roy & Banerjee| (2014) page 415f) we obtaln
.,

Furthermore, by Lemma [E.1.4] in the appendix we know that the Frobenius norm

AT 1A9k \/tr —1/22;1/2145716) _ Hz_l/zAg,

2
of a vector coincides with its Euclidean norm. Hence, we receive HEk 124 5’“”

—1/2
=i 45|



2. MOSUM Score-Type Statistics

Moreover, to simplify the wording in the theoretical results and the calculations in the
proofs we use the following notations:

We denote the maximum of the MOSUM score-type statistic by

T.(G,0) = max T;,(G,0).

G<k<n—G

If the long-run covariance matrix X, is replaced by an estimator f]kn we write

~ ~ 1 / 7 a1 N ~ ~ ~ ~
Tk,n(Ga 9) = \/T_G A§,k2k,nA9,k and Tn<G, 0) = Gérilgi(_G Tk7n<G, 9)

Besides, we use

e Furthermore, note that

k+G k
E(Aex)= Y E(H(X;0)— > E(H(X;0)).
i=k+1 i=k—G+1

Moreover, we use X(0) for the long-run covariance matrix of H (X, 8). We only
write X if it is obvious which 0 it refers to.

2.1. Theoretical Results

In this section we investigate the asymptotic behavior of the statistic under the null
hypothesis that no structural break occurs and under the alternative that at least one
structural break arises.

2.1.1. Asymptotics Under the Null Hypothesis

In the first theorem we derive the limit distribution under the null hypothesis which
enables us to contruct a test and gives a threshold for the estimating procedure under
the alternative later on. In order to prove this result, the following assumptions are
needed. Note that 3, = 3(0) = X holds for all k£ under Hy.

[A.1.1 Let the bandwidth G depend on n, i.e. G = G(n). Furthermore, for v > 0
assume that

nee log(n)

n
— — 00 and — 0 for n — oo.

G

This assumption is very important and used throughout this chapter. It ensures that
the bandwidth tends to infinity as n goes to infinity but not too fast or too slow. Note

- 10 -



2.1. Theoretical Results

that the constant value v comes from the invariance principle in Assumption and
is specified there.

The following assumption is essential and describes the main setting under the null
hypothesis.

Let {X; : i > 1} be a stationary series following a distribution determined
by B¢ in a correctly specified model. Under misspecification let 0y be the best approzi-
mating parameter for {X; : i > 1} in the sense of E'(H (X;,00)) = 0. Furthermore, we
assume that the stationary sequence { H (X, 5) 21 > 1} has a positive definite long-run
covariance matriz £(0) = 3.

This additionally shows that we do not only restrict our attention to correctly speci-
fied models and allow for misspecification as well. Moreover, note that the stationarity
of the transformed sequence {H (X;,0)} follows immediately from the stationarity of
{X;} and the measurability of H with respect to X;. This implies that X; = X holds
for all £ as already used in the assumption above.

The third assumption gives a strong invariance principle for the transformed series.

: Let S(k,0) = Zle H(X;,0) fulfill a strong invariance principle. So possi-
bly after changing the probability space, there exists a p-dimensional standard Wiener
process {W (k) : k > 0} with identity matriz I, as covariance matriz and v > 0 such

that
» 12 (8(k,0) — E(S(k,0))) — W(k)|| = O(kY*)) a.s.
= ( ) -wn)

as k goes to infinity.

If we want to replace 7] by an estimator sequence §n in the statistic we have to assume
that the sequence satifies the following condition.

[A.1.4 Let
_1 —
s —— 45, — Az, | = or ((og(n/C) )
hold for some 0.

As explained in Section below, Assumption holds for i.i.d. and stationary
and strongly mixing time series under some moment conditions if the estimating func-
tion H is twice continuously differentiable on ©.

Since the long-run covariance matrix X is typically unknow it might be reasonable to
replace it by an appropriate estimator as well. The following assumption describes the
conditions that a matrix-valued estimator sequence for X has to fulfill for this purpose.

The estimator f];m of the long-run covariance matriz X satisfies

~1/2

max Hi:,m - z—”?HF — op ((log(n/G))l)

G<k<n—G

- 11 -



2. MOSUM Score-Type Statistics

under the null hypothesis.

Before we come to a first main result of this thesis, we need to introduce the following
definitions. Let

a(x) = /2log(x) and (2.1)
b(x) = 2log(x) + ‘glog(log(x)) —log (%F (g)) ,

where p is the dimension of the parameter space and I denotes the gamma function.

Theorem 2.1.1 (Limit Distribution). Let Assumptzonm [A. 1.1 hold for the bandwidth G
and- hold for some 6 € ©.

and Assumptions

(a) Then, under Hy,
a(n/G)T,(G,0) —b(n/G) > E

with E as Gumbel distributed random variable, i.e. P(E < x) = exp(—2exp(—z))
and with a(x) and b(x) as in (2.1)).

(b) Let {én}neN be a sequence of estimators fulfilling Assumption for 0. Then,
under Hy,

a(n/G)T,(G,0,) — b(n/G) 2 E.

(¢) Furthermore, the covariance matriz X can be replaced by an estimator ikn sat-
isfying Assumption without changing the results of this theorem.

Proof.  (a) The proof of (a) consists of four main parts.

1) Replacing Ag, by increments of a p-dimensional standard Wiener
process {W (t) :t > 0}:
On noting that F <A§’k> = 0 holds under H, for all time points k, Assumption

[A1.3 yields
|24, +2W (k) - Wk - G) - W(k+G)|
= =2 (45, - B (45,)) +2W ) - Wk - G) - Wk +G)|

_ 2—1/2<1§ H0<Xi7§)_ i HO(Xi,g)>

i=k+1 1=k—G+1
W (k) — W (k—G) - W(k+ Q)|
k+G
< WZHU 00) — W(k+G) WZHO i, 0) — W(k)

IRE Z H((X;,0) - W(k—G)
=1

- 12 —



2.1. Theoretical Results

= O((k + )V £ Ok + O((k — G)V*)) as
= O(n/®*)) q.s. uniformly in k.

Hence, by Assumption we obtain

Jmax ¢%_G |45, + 2w (k) ~ Wk~ ) - Wi+ c)

_ o, (”lfg)) — op ((a(n/G)) ).

Furthermore, by Lemma |E.1.2|in the appendix together with the result above we
receive

1
- L T W G)— 2W )+ W= G

1 12 4
< e e Hz Ay~ W(k—G)+2W(k) - W(k+ G)H

~or(atnfe) ™).

implying that

/G gy 7o =74 = 0/

= a(n/G) max \/%_G W (k+ G) — 2W (k) + Wk — Q)| — b(n/G) + op(1).

2) Replacing a discrete maximum by a supremum over real numbers:
Applying Lemma [E.1.2] in connection with the triangle inequality for the Eu-
clidean norm yields

(r+G)=-2W(r)+W(r—G)|

sup

w
€lGn— G]\/ ”

- G&ng CW—_ (W (k+G) —2W (k) + W(k —G)|

= \/_ W (G + G) — 2W(tG) + W (G — G)|
- te[?uip_” \/T_G [W([tG] + G) —2W ([tG]) + W([tG]| — G)||
< 1G sup WG + G) — 2W(1G) + W (G — G)
tell, 1]

-W([tG] + G) + 2W ([tG]) — W([tG| — G)||

—-13 -



2. MOSUM Score-Type Statistics

§L< sup  [W(G +G) = W([IG] + G)[+2 sup [[W(tG) - W([tG])]

te[l,&—1] te[l,&—1]

+ sup [|[W(G —G) - W([tG] — G)H)

te[l,&—1]

4
<—— sup sup |[W(t+s)—W()
2@ 0<t<n—10<s<1

=220 (Vioalm) = —2=0r (n/#) = op ((a(n/G)) ™).

where the last line follows from Lemma together with Assumption
Hence, we obtain

an/G) , max J%_G W (k + G) — 2W (k) + W (k — G)|| — b(n/G)

1
=a(n/G su — ||W
(n/ )TE[GJEG} V2G |

(r4+G)=2W({r)+ W(r —G)|| —b(n/G) + op(1).
3) Adapting the supremum:

By the self-similarity of the Wiener process, e.g. described in Bauer (2001) on
page 352, we obtain

1
sup —||Wr+G)-2W(r)+W(r -G
o \/—II ( ) (r) ( )l
2 sup W (t+1)—2W(t) + W(t—1)]
€[l,n/G-1] \/_
= sup W (t+2)—2W(t+ 1)+ W(t)]
€[0,n/G—2] \/_
= sup 2W(t+1) -W(t) -W(t+2)[= sup [Z({)],
€[0,n/G-2] \/_ te[0,n/G—2]

with {Z(t) : t > 0} denoting a stochastic process defined by

Z(t) =75 2W(t+1) - W(t) - W(t +2)).

Now, we want to show that the supremum over the interval [0,n/G — 2] can be
replaced by the supremum over [0, n/G| without changing the limit distribution.
We receive

sup || Z(¢)]
teln/G—2,n/G]
1
S e W(t+1) =W+ sup —|[W(t+2)-W(t+1
ten/G-2,n/G| \/i H ( ) ( )H teln/G-2,n/G] \/§ ” ( ) ( )H

1 1
= sup = |[W(E+1)-W(@)[+  sup  —[|W
te[n/G—2,n/G]| \/§ ten/G—-1,n/G+1] \/§

<V2  sup sup [|[W(t+s) — W(t)]
n/G—2<t<n/G+1 0<s<1

2 sup sup [|[W(t+s) - W(t),

0<t<30<s<1

t+1) =W

— 14 —



2.1. Theoretical Results

where the last line follows from the stationarity of the increments of a Wiener
process. Since a Wiener process has continuous paths with probability 1 and the
intervals [0, 3] and [0, 1] are compact, we obtain

sup sup [W(t+5) — W(H)|| = Op(L),

0<t<30<s<1

which implies that

s 1Z(0)] = Op(1) = op (M>

teln/G—2,n/G] a(n/G)
as lim,,_ ZE"?G) = 0. On noting that
op (20 = max{ swp |20 s 20)]}
te[0,n/G] te[0,n/G—2] ten/G-2,n/G]

Lemma can be applied to receive that

a(n/G) sup | Z(t)|| - b(n/G) and a(n/G) sup [Z(t)[ - b(n/G)
te[0,n/G—2] te[0,n/G|

have the same limit distribution.

4) Limit distribution:

This part of the proof is similar to the proof of Theorem 2.3 in Steinebach &
Eastwood| (1996) on page 295.

Under the null hypothesis, the stochastic process {Z(t) : ¢t > 0} is an RP-valued
separable stationary Gaussian process with independent and standardized com-
ponent processes. The covariance function r is identical for each component and

given by
1—3n|, for || <1
r(h) =14 3lh|—1, for 1<|h| <2 ,
0, else

which has been shown in Lemma [E.2.5] Finally, Lemma can be used to
determine the limit distribution where we choose C' = g and m = n/G. This
completes the proof of part (a).

(b) For proving b), we replace 8, by 6. We obtain

1
s [2 - e o sy
1 1/2 ~ B
= 2G G<k<n GHE <A9 ok Aek)H
<=2, e |45~ Ag]| = or ((atn/e) ).

- 15 -



2. MOSUM Score-Type Statistics

where the last line follows from Lemma and Assumption [A.T.4l This yields

/) o 7| el T R

= a(n/G)  max \/T_G H

Thus, é\n can be replaced by 6 in the statistic without changing the limit distri-
bution, i.e.

271/2145"74( —b(n/G) + op(1).

a(n/G) X & \/%_G H

(c) The convergence in distribution of part (a) leads to

2-1/2A§n7,€H —b(n/G) 2 E

a(n/G)  max 2GH 245, | - b(n/G) = Op (1),

implying that

1 $-1/2 A TN
Ghn G aG H A5 H = Op(Vlog(n/G)).
Hence, with Lemma [E.1.5| we get

1 _ 1/25—1/2
GLren G VoG HAMH T adhen V2G HE = A“H

<[] x| a5,] = 0(ViowmTE),

F G<k<n—G \/2G
Moreover, Lemma [E.1.5] combined with Assumption can be used to obtain

21/2

GLren G \/QG H ‘ T ahenec g HE Ad
~—1/2
< max <2kn/ -7 1/2> Ang
G<k<n-G A2C )

—1/2
< max HE /—271/2H max

1
~ G<ks<n-G F G<k<n—G \/2G HA@’“H
= op ((log(n/G))™") Op(\/log(n/G)) = op ((a(n/G)) ™)
and consequently

a(n/G) Gk G \/_ H — b(n/G)

_ U lls-124- | -
_a(n/G)GSII?g;(_G\/T_GHE AMH b(n/G) + op(1).

Thus, we receive

an/G) GheneG \/ﬁ
By applying the result of part (b) instead of (a) it can be shown in an analogous
manner that

HA 1/2

H —b(n/G) 2 E.

a(n/G) max —b(n/G) N

G<k<n—G \/_ H

—1/2 H

- 16 —



2.1. Theoretical Results

2.1.2. Asymptotic Power of the MOSUM-based Tests

Under the alternative we examine scenarios, in which the parameter vector @ changes
multiple times in the considered time period as in (L.1)), specified by the following as-
sumptions.

Let g be the number of change points, occuring in the time period, which is
unknown but fized. Furthermore, let ki, < ... < kq, be the change points depending
on the sample size n in the following way: k;, = [A\n| with \; as rescaled change
point being a constant but unknown value in (0,1), for j=1,...,q.

More precisely, at each change point k;, the parameter vector changes from 6, to
0;.1. Besides, note that Assumptions |[A.1.1] and |A.2.1]| ensure that the following state-
ment holds for the minimal distance between two neighboring structural breaks:

min |kj, — kj_1,| > 2G, for n large,
1<j<q+1
with kg, = 0 and k,11, = n. We will use this in the proofs without mentioning again.
Moreover, we consider the following assumption.

Let {X; : i > 1} be a piecewise stationary series such that

Xz(‘l)7 Zf 1 S { S kl,n

X X§2)7 Zf kl,n <1 S kQ,n

X9 k. <i<on

where {ng) i > 1} is stationary following a distribution determined by 0;, for
Jj=1,...,q+1, in a correctly specified model. Under misspecification let 0; be the best

approximating parameter for {ng) 11> 1} in the sense of E (H(X(j) 0]-)> = 0. Fur-

thermore, we assume that the stationary sequence {H(ng), 5) 24 > 1} has a positive
definite long-run covariance matriz X;)(0) = X, forall j=1,...,q+ 1.

(

The stationarity of the transformed sequences {H (XY )} follows immediately from

the stationarity of {ij)} and the measurability of H with respect to X;. Similar to
the null hypothesis, replacing the partial sum processes of the transformed sequences
by Wiener processes will be an essential part of the proofs and therefore a strong in-
variance principle, as described in the next assumption, is needed.

Let S(j, k,g) = Zle H(ng),g) fulfill a strong invariance principle for all
g =1,...,9+ 1. So possibly after changing the probability space there exists a p-
dimensional standard Wiener process {W (k) : k > 0} with identity matriz I, as

covariance matriz and v > 0 such that

Hz(;;/? (S(j, k,8) — E(S(j, k. 5))) - W(k;)” — O(KY®)Y a5, k- 0.

- 17 -



2. MOSUM Score-Type Statistics

Furthermore, using an estimator §n instead of 6 in the statistic requires the following
condition to hold.

Let {én}neN be a sequence of estimators fulfilling, for some 6 € O,
1
L HAén . Agﬁk” —0p ( 1og(n/G)) .
As shown in Section [2.3] below, Assumption is satisfied by i.i.d. or stationary and

strongly mixing time series under some moment conditions if the estimating function
H is twice continuously differentiable on a compact parameter space ® and if the

estimator sequence is \/n-consistent for 6.
The set A,, ¢, which is defined by

Angi={ke{G,....n—G}: k= [A\n]|>GVje{l, ... ,q}}, (2.2)

will often be considered in the proofs. It contains all time points which do not lie in
a G-environment of any change such that the statistic is not contaminated by changes
and behaves like under the null hypothesis in these points.

Moreover, replacing the long-run covariance matrix 3, by an appropriate estimator is
an important issue here as well. The following assumptions are needed:

The estimator ikn of the long-run covariance matrix Xy, is positive definite
and satisfies

1/2
@ 2125 o[ B | = 071
(b) nax Ekn — E_l/ZH p (log(n/G)™1) with A, ¢ as in ,
€An,G
c) maxgep, N where
() €bn,G Ekn by 1/2H y h

Bhg ={ke{G,...,n—=G}:3j€{l,...,q¢} : |k —kjn| <G} (2.3)

and {X 4} is a sequence of positive definite matrices fulfilling sup sup ||Zaxlp <
n keB'rL,G
0.

In Assumption (b) another important set of time points has been introduced:
B, ¢ defined in . It contains all time points lying in a G-environment of a change
point so that the statistic is contaminated by a change in these points.

Furthermore, we have to take into consideration that 3, changes with k& under the

alternative. By Assumption we receive

Yy, if 1<E<E,
5, — Yoy, if kin <k <k,
E(q+1), if kq,n <k<n

The main goals of this subsection are constructing and investigating a test for the
following test problem:

- 18 -



2.1. Theoretical Results

Hy: ¢ =0, i.e. no structural break occurs
versus
Hy: g > 0, i.e. at least one structural break occurs

Applying Theorem yields
P (a(n/G)Tn(G, ) — b(n/G) > ca> — «a, under Hy,

where ¢, := —loglog \/1177 denotes the (1 — a)-quantile of a Gumbel distribution as in

Theorem Hence, an asymptotic level a test for the test problem is given by:

Reject Hy if T,,(G,0) > D, (G, a),
b(n/G) + cq

with D, (G, a) = o(n/G)

As already mentioned in the introduction, by using the MOSUM statistic based on
estimating functions we convert a general multiple parameter change problem to a
multiple mean change problem of the estimating function. Hence, by applying this
statistic we can only detect changes in the parameter vector causing changes in the
expectation of the estimating function. To obtain consistency of the test it is sufficient
to assume:

For at least one j € {1,...,q} it holds that
E (H(X?’, 5)) 4 E (H(ng“), 5)) .

This assumption says that the signal part of the statistic, which can be separated from
the noise, is strictly positive in a G-environment of at least one change point.

Beyond that, decomposing the MOSUM statistic into noise and signal and investigating
the behavior of these two parts under alternatives will be an essential part in all of the
proofs. By a simple zero expansion we get the decomposition of Aé,k into noise and
signal:

Ag, = Az, — B (A5,)+E (45,,).

Whereas the signal is constant equal to zero under the null hypothesis, it behaves
differently under alternative which is shown in the following lemma.

Lemma 2.1.2. Let Assumptions and [A.2.9 hold, then, for large n,

k+G k
B (Aé,k> = Z E (H(Xz70)> - Z E <H(Xi,9)>
i=k+1 i=k—G+1
B 0, if k€ Ang as inl2.2
a { (G — |k —kjnl)d;, ifk € B, as inl2.3 ’

with d; = E (H(ng“),é)) "y (H(X@,é)) for j = j(k) with j(k) being the index
of the closest change point to k.

- 19 —



2. MOSUM Score-Type Statistics

Proof. At first we consider all time points k € A, ¢ not lying in a G-environment of
any change. We set \g = 0 and A\;41 = 1. On noting that there exists exactly one
g€ {l,...,¢+ 1} such that kj«_, <k < kj»,,, we obtain

E (A@k,) - :2: E (H(Xgﬂ'*), 5)) - i_éﬂE (H(Xﬁj*), 5)) —0,

which follows from the stationarity of the transformed sequence { H (XEJ ", 5) ti> 1}

given by Assumption [A.2.2]
Now, we focus on time points k € B, . Since the Assumptions and
guarantee that the minimum distance between two adjacent structural breaks is greater

than 2G for large sample sizes n the function j(k) is well defined on B, ¢ in this sense.
For k € B, ¢ with k;,, < k < k;,, + G, we get by Assumption

£ (45.)

k+G kjn k
-y E (H(XE]*”,@)) - Y E (H(X§”,0)> - Y E (H(XE"“),G))
i=k+1 i=k—G+1 i=kj 1

= (G = (k= k) B (HXT',0)) = (G = (k= k;) B (H(X{.0))
= (G = [k —kjnl) d;.
Similar arguments can be used for k;,, — G <k < k;,, O

In Subsection below, we will consider the signal part of the score-type statistic in
more detail and illustrate possible difficulties by some examples.

Before we are able to derive consistency for the test, we have to examine the behavior
of the noise under the alternative. Lemma [2.1.4] gives an approximation of the noise,
i.e. it shows in what range the statistic fluctuates asymptotically around the signal.
In order to prove this result the following lemma is needed.

Lemma 2.1.3. Let Assumptions on the bandwidth, and[A.2.3 hold

for some 0. Then,

1
aln/G)  Jmax = =

with E as Gumbel distributed random variable and a(x) and b(x) as in Theorem|2.1.1]

2 (A, — 5 (45,))|| -/ % &

Proof. We consider the sets A, ¢ and B, ¢, given in (2.2) and (2.3), separately. The
set B, ¢ is further subdivided into

Bl .= {ke€Big:kin—G<k<kynje{l,. .. q}}

n,

and
B® .= {k€Byg kin<k<kin+G,je{l,....q}}

n,
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We start with the set Bffé Let 7 = j(k) with j(k) as in Lemma [2.1.2| which is well
defined on the G-environments of the change points for large n by Assumptions
and [A.2.1} Furthermore, on noting that 3, = ;1) and

k+G Ejmn 3
g~ B (Ag,) = > Hox0™.0) = > Hyx.6) - 3 Hyx'™.)
i=k+1 i=k—G+1 i=kjn+1

hold for all k£ € Bn)G, applying Lemma [E.1.5|in combination with Assumptions |A.2.2

and [A.2.3] yields

157 (43 = 2 (4a,))|

- HW(zf £ G) = 2W (k) + W k) = DS (W ki) = Wk = @)

(G+1) =)
k+G
—1 2 1 —1 2 1) o
=i ZHO XV 0) - Wk +G)|| +2|5,1 ZHO (XU ) — W (k)
#%ZHO X7 .0) = W (k)
], oo o) ws.
1/2 1/2 -1/2 (
+[=a=), 1= ZHoXﬂ - W= G)

v v . 2
= O((k +G)Y*) = O(nl/(2Jr )) a.s. uniformly in k € B! 2;

n,

Similar arguments can be used to receive

= (45, - 2 (4a) )|

_ HW (k= G) = 2W (k) + W (k) + 3,2

(3+1)

(W (k+G) = W k)|
+0 ( U 2+")) a.s. uniformly in k € BS)G

Moreover, note that for each k € A, ¢ there exists exactly one j* € {1,...,¢+ 1} with
kj*—l,n <k< kj*m so that

k+G k
Ag—E(45,) = > HoxU",0)— 3 Hox!",0).
i=k+1 i=k—G+1

Thus, by using Assumption we get
=7 (A5~ B (45,))| — 1wk + 6) = 2w (k) + W - G|

k+G
1/2ZH0 XV ) - W(k + Q)

WZHO 6.6) — W (k)

k+G

HIZGP DD Ho(XYV,0) - Wk +G)
i=1
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=0 ( 1/ 2+V)) a.s. uniformly in k € A, ¢.

Thus, the results above together with Assumption lead to

G<hinG \/@ H 71/2( —E (Ag,k»H (2.4)

= Ggrggaé(_(; \/T_G HW(]{Z + G) — QW(k’) + W(k — G) + ngn(k‘)H + op (&(H/G)_l)

with
(2(‘5/22§j/_ﬁl) - Ip> (W(k+G) -~ W(k;)), if kjm—G <k < kin
R (k) = (Ip - z;ji/f)zgf) (W (kn) — Wk —G)), ifhjn<k<kjnt+G -
0, ifkeA,c
This implies
»-1/2 B
a(n/G) GhenG o0 VoG H ( E <A" ’“)) H b(n/G)
= a(n/G)  max \/T_G Wk +G) = 2W (k) + W(k — G) + Reu (k)|

—b(n/G) +op(1).

Hence, it is sufficient to consider the limit distribution of the expression on the right
side of the equation above.

By investigating the behavior of the remainder term R, (k) in the G-environment
of a change point, the self-similarity of a Wiener process and the Markov property of
increments of a Wiener process can be applied as follows

1
kj,n—Grgl?fkijG 2 | Ren (k)|

—1/2 1/2 C1/21/2
- (‘ E‘j“)z(ﬂ ) B F)
sup sup ——— W(t+s)— Wit
kjn—G<t<kjn 0<s<G V2 H ( ) ( )H
D 1/2 5 1/2 1/2 12
D < 1,-3}% H 2 H >
sup sup — ||W(t + S) _ W(t)”
B _1pcHgp 0591 \/5
D ~1/2 \21/2 122
- (‘ To = B4 =) 2 26T F)
1
sup sup — ||[W({t+s)— W(t
ogt% ogs% V2 I ( ) @)l

= Op(1),

where the last line follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0, 1]. Hence, since the number of change
points ¢ is finite we receive

[ R (k)| = max

kEB o V26 1<i<q kyn— <k<k +G\/ﬁHRGn( )| = Op(1).
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Furthermore, similar arguments can be used to show that

]n7G<k<kJ Wt G \/@ |\W(k+G)—2W(k)+W(k—-G)|

< sup sup —= [[W(t +s) — W(t)]|

%4
kjn—2G<t<k; n+G 0<s<G VG |

sup sup V2[|[W(t+s)— W ()|

k- ki, 0<s<1
J,n LS ==
& —2<t<—g-+1

D sup sup \/§||W(t + 8) — W(t)” = OP(l)

0<t<30<s<1

lis}

and thus
1
W(k+G) —-2W (k) +-W(k -G
e [W ik G) — 2W (k) + Wk = )|
= B, %, o W+ G) = 2W () + W= Ol
:OP( )-

On noting that lim,,_. ZEZ;% = 0, we obtain

W (k+ G) — 2W (k) + W (k — G)|| = op (b(”/G)> (2.5)

kebog «/_QG a(n/G)
and
1
W(k+G)—-2W(k)+ W (k—-G)+ Rg.,(k 2.6
e [W 0k + G) — 2W (k) + Wk — G) + Reu(b)] 2.6
1 1
< — _
< kIEnB%LXG Noe W (k+ G)—2W (k) + W (k —G)|| + krenB&}?G VT |Ran (k)|
Y ( <n/G>)
(n/G)
With {G,.. } = A,¢+ Buc the maximum over all time points can be re-

.....

max(maxge, ; Gk, MaXkeB,  ax) holds for each sequence {ak}keN Hence, applymg

Lemma and (2.6)) yields that
1
a(n/Q) Gg%lgaiic \/T_G W (k+ G) —2W (k) + W(k —G) + Rg.(k)|| —b(n/G)
has the same limit distribution as

1
a(n/Q) X s

since Rg (k) = 0 for all k£ € A, . By using Lemma together with (2.5) we
obtain that the limit distribution of (2.7) coincides with the limit distribution of

W (k+ G) —2W (k) + W (k —G)|| —b(n/G) (2.7)

1
a(n/G) e W (

which is asymptotically Gumbel distributed as shown in the proof of Theorem[2.1.1} [

k+G) = 2W (k) + W(k — G)|| — b(n/G)
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2. MOSUM Score-Type Statistics

Lemma 2.1.4. Let Assumptions |A.1.1L |A.2. JL |A22] andlA.Q.é’l hold for some 6.

(a) Then

5172 B _
o o (s~ (40)] 00 (757
(b) Let {én}neN be a sequence of estimators fulfilling Assumption for 0. Then,

Ao 7 2 (Ao, = £ (4,)) | = 0r (Viosorc).

(¢) Furthermore, the covarmnce matriz 2 can be replaced by an estimator ikn
satisfying Assumption[A.2.5 (a) without changing the results of part (a) and (b).

Proof.  (a) Applying Lemma yields

o0/6) e 7 [ (s B (43.))| - vi ) = 0rt0),

which implies that

s[5, (4, — £ (45 )| = Qe+ s

a(n/G)
=Op ( log(n/G)> :
(b) On noting that
max HE;l/z = max ‘E V2 O(1),
G<k<n—-G F le{l,....q+1} F

Assumption in connection with Lemma lead to

e g 2 (4. - 2 (45.)|

T Gk G@H _1/2< ek_E<A§k )H‘
< max HE_l/QH A@kH :Op< log(n/G)).

G<k<n—G

F G<k;<n G \/2 H On,

Thus, together with part (a) we obtain

G<k<n G \/_ H =, ( ok~ E <A§”“>) H

= o g B (A5 8 (45,))| + 0r (Vioglo/ @)
=0Op ( log(n/G)) :
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(c) With the result of part (a) and since

= max

1/2
max HEk/
le{1,...,q+1}

G<k<n—G

we receive
Gahen G\/%_G HAgk - (Aak) H
G<I1£133f GH ¢ HFG<k<n G \/ﬁ H 71/2( ox—E <A57k>>H
=0Op < log(n/G)> :

Hence, by combining Assumption (a) and Lemma [E.1.5, we can conclude
that

(e @ [ 20 (45, — 2 (45) )|
S o2 \/ﬁ HA&’“ —E <A5’k> H Ghen-G HE
= 0p (V/10g(n/G)) Op (1) = Op (Viog(n/G)) .

Furthermore, in an analogous manner we get

7 B (Ao~ £ (4,)) | = 0 (Viosrc).

—-1/2

F

O

Now we are able to show that the constructed test has asymptotic power one, i.e. the
probability that the test rejects the null hypothesis under the alternative converges to
one as n goes to infinity.

Theorem 2.1.5. Let Assumptions|A.1.1,[A.2.1,|A.2.3, |A.2.5 and|A.2.6 hold for some
0.

(a) Then, under Hy, we obtain for any z € R

lim P(a(n/G)T,(G,0) —b(n/G) > z) = 1.

n—o0

(b) Let {én}neN be a sequence of estimators fulfilling Assumption for 8. Then

under Hy,

lim P(a(n/G)T,.(G, 7 n) —bn/G)>z2)=1

n—o0

for any z € R.

(¢) Furthermore, the long-run covariance matric Xy can be replaced by an estimator
s n satisfying Assumptzonm (a) and (c¢) without changing the results of part

(a) and (b).
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Proof.

(a) As the inequality a(n/G)T,(G,0) — b(n/G) > z is equivalent to
~  2+0b(n/G)
- L >
T.(G,0) )Gy = 0,

it is sufficient to show that T},(G, 8) — Z+b(%§;) — 0.

Note that we use d; = F (H(ngﬂ), 5)) -F (H(ng), 5)) forall j € {1,...,¢}.
By Assumption there exists j* € {1,...,q} fulfilling d;» # 0. Furthermore,
applying the following inequality

ma g + byl > ma [ flax | — [lbg| > max flax |~ mex [b |
for any vector-valued sequences ay, by, yields

5 12 4
(G, 6) = G<%3§G@H A5 H

G<k<n G\/_ HE e ( )H G<k<n G\/ﬁ H 71/2( 0k_E<A5’k>)H
Hz Y2, (Viog(n/@)) .

where the last line follows from Lemma (a) and Lemma for kj« ,. Since
d;- # 0 and E(_ji) is a positive definite matrix, we obtain

~1/2 _ [T 51
Hzm d; dp || =/l 55hdy >
for some ¢ > 0. Thus, we receive T,(G, 6) > @c +Op ( log(n/G)) Further-

more, on noting that % = O(/log( n/G ) and 4/log(n/G) = of

Assumption [A.1.1] we can conclude

T, (G, 0) — ~ ‘ai‘(z(/néf) > \/\/§C+ Op < log(n/G)> VG (% + 0p(1)> L o,

which implies the assertion.

>

—-1/2

The assertion of part (b) can be shown in an analogous manner to part (a) by
using Lemma [2.1.4] (b).

Similar to (a), applying Lemma (¢), which requires Assumption (a),
and Lemma yields

T,(G,0) = S Agyl| > “—f |5,

log(n/G))
Gohenea \/_ H ( 0g(n/G)
In order to replace the estimator sequence of the covariance matrix by some
deterministic matrix sequence, with Assumption (c) and Lemma we
get
—1/2
[

k% ns

S1/2 -1/2
a| <[5, - ay

Hz—l/Q
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—-1/2 —1/2
-3,

J”’ i n

C o1/2 _ 12 4
which implies szj*,mndj* = || Zak,. 4 H +op(1).
Furthermore, Assumption [A.2.5| (¢) shows

sup HEA,kj*,nHF <sup sup |[[Baxlp < oo.
n n kEBn,G

de*

(1),

<[

szn _1/2H Hd

Hence, Lemma |E.1.10| ensures that for the sequence {E;lkj* ~} there exists ¢ > 0

such that z %nin }()‘l,n) > c holds for all n, where Ay, ..., A, , are the eigenvalues
e{1,....p

of the matrix ¥, . Thus, in combination with Lemma [E.1.12| we obtain
WvgEn

- \/ tr (djT* ZX}kj*yndj*) (2.8)

—-1/2
Ak, By

WiFn

> in (\,)|ld;-
legﬁ}{{p}( 1) |ld;

since dj~ # 0. Finally, we can conclude

T.(G,0) — % > VG <% + op(1)) 2 .

Similar arguments can be used to show that the test has still asymptotic power
one if, in addition, @ is replaced by an estimator 8,, satisfying Assumption
in the statistic.

m

Remark 2.1.6. If Assumption (c) is replaced by the following statement, the
assertion of Theorem [2.1.5] remains true.

Let i‘,p\jnj n Lt Yan, for g =1,...,q, where X4, is a posilive definite matriz.

~—1/2 ~—1/2

Applying Lemma |E.1.8| yields Ekj* = ELA nlm £ EAflA/f Hence, we obtain

H —-1/2 1/2

ki

% msT

(1).

Thus, ‘ E;Xi d;-|| can be used in the approximation above.

2.1.3. MOSUM-based Estimators

In this subsection, we focus on the estimation of the number and the locations of
the changes. After introducing a MOSUM procedure based on MOSUM Score-type
statistics, we show consistency of the corresponding estimators.
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2.1.3.1. The MOSUM Procedure

Let us at first look at an example in the classical mean change model where the MOSUM
statistic investigated by Eichinger & Kirch| (2018) is applied. This statistic is a special
case of the MOSUM statistic based on estimating functions, as already mentioned in
the introductory part, and it is used to illustrate the idea of the MOSUM procedure.
However, please keep in mind that our MOSUM score-type approach is not limited to
the mean change problem and can be applied to general parameter change problems.
The following plot shows a time series with changes in the mean at the time points
100, 250, 700.

0 200 400 600 800 1000

In the second plot, the signal of the classical MOSUM statistic (G = 60) is illustrated
which achieves its local maxima at the true change points and is equal to zero in time
points lying far away from any change.

I T T T T
0 200 400 600 800

Unfortunately, we cannot observe or compute the signal of the statistic in practice. We
only get a noisy version which is the actual statistic and shown in the graph below.

N\

T T T T T T
0 200 400 600 800 1000

|
1000

12

8

0 4

Nevertheless, the statistic performs quite well. It gets large in intervals around the
true locations of the changes with local maximal points close to the true change points.
However, there are also some smaller peaks, e.g. between 300 and 400, which could
be interpreted as changes as well if the number and the locations of the changes were
unknown. Hence, we need some kind of threshold which helps us to decide what peaks
or intervals of time points should be considered in the estimation process. Theorem
[2.1.1) where we have determined the limit distribution of the maximum of the statistic
under the null, provides a reasonable threshold, D, (a,, G) := (ca, +b(n/G))/a(n/G),
as the statistic behaves like under the null hypothesis in time points which are far away
from any change.

Consequently, similar to Eichinger & Kirch| (2018)), we propose the following MOSUM
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procedure to determine estimators for the number and the locations of the changes:

We consider all pairs of time points (v}, w;,) with

Tyn(G,0) > Dy(ay, G) for v, <k <w;jy,, (2.9)
Tion(G,0) < Dy(t, G) for k = Vi — 1w, + 1, (2.10)
Wjn — Vin > G with 0 <e <1/2 arbitrary but fived. (2.11)

We take the number of these pairs as an estimator for the number of changes:

Gn = qAn(g) = number of pairs (v, w;,).
Furthermore, we determine the local mazima between v;,, and w;,, j =1,...,q,, and
use them as estimators for the locations of the change points:

~ ~ ~

kjn = Em(e) = argmax 1y, (G,0)

Uj,nSkS'wj:n

ﬁ -

o

< v Wi Vo W V. Wa

© T N T A T T A T T

0 ki 200 Ko 400 600 ks 800 1000

The pairs (vj,, wjn), j = 1,...,Gn, give start and end points of intervals on which
the statistic exceeds the threshold. For this reason we call [v),,w;.], J = 1,...,Gn,

intervals of exceedings or exceeding intervals.

Condition in the procedure restricts our attention to intervals of length greater
than ¢G and prevents us from considering exceeding intervals produced by spurious
local maxima in the estimating process. This is very important because the statistic
is noisy and, for instance, in an environment of a change point it can actually happen
that the statistic goes beyond the threshold but only for a short period and falls below
it before shortly exceeding the threshold again. Hence, in this sense, Condition ([2.11))
avoids overestimation.

Furthermore, note that Eichinger & Kirch| (2018) have also proposed an alternative
version of the MOSUM procedure. Instead of Condition they consider all inter-
vals of exceedings and determine their local maximal points before checking whether
these points are local maxima in their cG-environments as well. Consistency for the
corresponding estimators can be derived by using similar arguments as for the original
MOSUM procedure in the classical mean change model according to [Eichinger & Kirch
(2018). This will probably hold for our general setting too, but we concentrate on the
above case here.

2.1.3.2. Consistency of the Estimators

In this subsection we derive consistency for the estimators of the number and the lo-
cations of the changes obtained by the MOSUM procedure which has been described
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in the previous subsection. In doing so, we have to introduce further notation and
assumptions.

We have already learned that a change in the parameter vector 8 can only be detected
or localized by the MOSUM score-type statistic if it causes a change in the expectation
of the transformed series H (X;, 0). This is formalized in the following way.

[4.2.7:

Let @ = @ <5) be the set of indices of all rescaled change points causing a change in

the expected value of the transformed series (detectable changes), i.e.
E (H(Xﬁ”, 5)) £ E (H(Xgﬁ”, 5))

holds for all j € @ and
E (H(Xﬁ”, 5)) -y (H(ng“), 5))

for all 5 € {1,...,q}\é§.
Furthermore, let ¢ = 5(5) be the number of elements of @ which is the number of

detectable changes.

Note that the number of detectable changes does not need to coincide with the to-
tal number of changes in general. If the score-type statistic based on the Z-estimator
computed on the whole sample is used in the MOSUM procedure at least one change
is detectable which will be shown in Lemma under some regularity conditions.
The problem of detectability will be discussed in detail in Section [2.4.2]

Thus, in general we have to distinguish between detectable and non-detectable changes
and therefore we define the following sets:

Ao = {ke{G,...,n—G}:|k—kj,nyzGVjeéj}, (2.12)

Boo = {ke (G...on—GY:35€Q: |k —kjn| < (1-@0} (2.13)
with ¢ as in (2.11)).

The following condition is of more technical nature. Instead of using a fixed significance
level, we will need a sequence of significance levels in Theorem satisfying:

Let the sequence of significance levels oy, fulfill

a, —+ 0 and L:0(1).

a(n/G)VG

Moreover, if we want to use an estimator sequence 8,, instead of 0 in the statistic and
show comnsistency for the corresponding estimators, we have to introduce additional
conditions.

4.2.9:

Let {é\n}neN be a sequence of estimators fulfilling
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(1) maxpeq, . \/%T; HA@%,C — Ag”“H =op ((log(n/G))—l/Q) 7
with Apc as in (2.2).

(II) max, i \/%T; HAéA’mk — A@kH =op ( log(n/G)) ,
with Apc as in (2.12)).

In the following lemma we consider the maximum of the statistic over all time points
k € A, ¢, which do not lie in a G-environment of any detectable change, and derive
its limit distribution under the alternative. This result will be crucial for proving
consistency in Theorem [2.1.8]

Lemma 2.1.7. Let Assumptions [A.1.1, [A.2.1], [A.2.2]A.2.5 and [A.2.7 hold for some
0.

(a) Then,

a(n/G) kg}iﬁ \/_

with E as Gumbel distributed random variable as in Theorem [2.1.1.

(b) Let {é\n}neN be a sequence of estimators fulfilling Assumption for 6. Then,
if 0 is replaced by 0,, in the statistic the result of (a) remain true.

Hz‘m “H —b(n)G) B

(c¢) Furthermore, the long-run covariance matriz Xy, can be replaced by an estimator
Ekn satisfying the Assumptions m (a) and (b) without changing the results of
part (a) and (b).

Proof. (a) At first, note that A, ¢ C gn,g, with A, ¢ as in denoting the set of all
points not lying in a G-environment of any change, and Enyg \ A, ¢ C B, g, with
B, as in (2.3) containing the time points of the G-environments of all changes.
By combining and (2.6]), which have been shown in the proof of Lemma [2.1.3]

we obtain

max

s [50 (ag, - (4q,)) | = or (200N

Hence, since E <A§7k) =0 for all k € ZmG and A, ¢ U B, ¢ = {G,...,n— G},
which implies that

G<k<n—G

n,G n,G

e 1] = ma (g a1
B

applying Lemma together with Lemma yields that

a(n/G) max

b \/— |54, — bin/c) (2.14)
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is asymptotically Gumbel distributed. Furthermore, with zzlvmg \ A,c C Bng we
get

max

k€An c\An,G \/_ HE
< g 57t 2 (30 -or (2220

Thus, Lemma |l..2.3| can be used again to conclude that

A, H (2.15)

a(n/G) max
(n/ >keﬁn,G oTe

has the same limit distribution as (2.14) completing the proof of part (a).

HE_1/2A~ H — b(n/G)

(b) On noting that

s <

max < max
F ~ le{l,...,q+1}

]ﬂEAvn’G

by using Lemma [E.1.5| and Assumption [A.2.9] (I) we obtain

F

~1/2 4 B —1/2 4
e .@ HE enk\ e ,/—HE Aa|
< -2 -1
= hehne 20 \/_ H 9’“’ heAn g >k P (aln/G)7)
implying that
a(n/G) max Hz—l/? H — b(n/Q)

keA n,G \/

and

1
a(n/G) krer}qaixc NoTe

have the same limit distribution, which is a Gumbel distribution as shown in part
(a). Furthermore, Assumption (II) in combination with (2.15) yields

[ oy

$-1/2 4 w172
_max H ‘ =  max H ( — A 4+ As >H
k‘eAn,G\An el \/ kEAn,G\An e \ / 0 ,k; B,k; 07k
1/2
< max —— HAA — Aj max ’Z
k€Anc\Anc V 2G On )k 0.k le{1,....q+1} F
+  max _1/214~ H

k€An c\An,c \/_ HE
~or (snich)

Finally, by Lemma [E.2.3| we get the assertion.
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(c) By using (2.14) and Lemma we receive

o |

max

keAn ¢ \/L_ HAng k:eAnG \/_
HE;/ZA%H = Op (VIog(n/G)).

< max HE H max
~1<i<gtt 17O g kea, o V2G

Thus, applying Assumption (b) and Lemma yields

—1/2 B ~1/2 4 H
max o [50,  - max |74,
—— |[(Z0 - 307) 45,
< > —
_krer}‘\afc 2GH< R
1 ~—1/2 —1/2 _
< max s g | o |£07 - 57 = or fatn/6) ).

implying that

1
a(n/G) R e

e e

and

a(n/G) krer}ﬁlxc \/_

have the same limit distribution, which is a Gumbel distribution as shown in part
(a). Furthermore, by (2.15) we get

Hz A, H —b(n/G)

1 1 1/2—1/2
max ——— ||Az H = max DINES I A~
keﬁn,G\An,G V 2G H 97]9 k:eﬁn G\AnG H H
1/2 —1/2 B H . b(n/G)
> Ao = or <a<n/G> |

< max
1<I<q+1

max

FkeAnc\Anc V 2G

@

Hence, in connection with Assumption (a) and Lemma we receive

W P o Vo [y 5
max max ——— ||A; max
kegn,G\An G 2G - kegn G\An,G 2G O,k kegn,G\An,G g " F

n/G n/G

o (K290 0,0) = (K220,

(n/G) (n/G)

Finally, the assertion follows from Lemma [E.2.3
O

Now, we are ready to show that the estimator for the number of changes g, is consistent
for the number of detectable changes ¢.

Theorem 2.1.8. Let the Assumptions[A.1.1], [A.2.1], [A.2.9, [A.2.5 and [A.2.7 hold for

some 6. Furthermore, assume that the sequence {c, tnen fulfills Assumption|A.2.8,

(a) Then, for any 0 with corresponding q = q~(§),

P@G.(6)=3) —1 asn— .
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(b) Let é\n}neN be a sequence of estimators for 0 fulfilling Assumption and
A.2.9. Then, the statistic T,,(G, 0,,) can be used in the MOSUM procedure without
changing the result of part (a), i.e.

P(G.(6,) =q) — 1 asn— .

(¢) Furthermore, the consistency statements of (a) and (b) remain true if the long-
run covariance matriz Xy, is replaced by an estimator Xy, ,, satisfying Assumptions

(a), (b) and (c).

Proof.  (a) The basic idea of this proof, going back to Muhsal (2013) (Theorem 6.1.)
or Eichinger & Kirch| (2018) (Theorem 3.1. a), is to show that the statistic is
below the threshold on gm(; as in (2.12)) while exceeding the threshold on BmG as
in (2.13) with probability tending to one. Note that it is sufficient to analyse the
asymptotic behavior of the statistic on these two sets since the omitted intervals
are too small to be taken into account for estimation due to Condition of
the MOSUM procedure.

Using the simple inequality

P(AN B) = P(A) + P(B) — P(AUB) > P(A) + P(B) — 1, (2.16)
we obtain

P(n = q)

> P (;g}i Tin(G,0) < Dy(an, G), kglgifc Tion(G,0) > D, (an, G))

> p ( max Tjn(G,8) < Dy (an, G)) +P ( min Ty, (G,0) > Dy (o, G)> —1.

kZEAn_’G kEBn,G
Hence, it is sufficient to show that

(1) P ( max Tj.(G,0) < Dn(an,G)> — 1 and
kEAn’G

(2) P ( min T}.,(G,0) > Dn(an,G)> —1

k)EBmG
as n goes to infinity.
Part (1):

On noting that ¢, is the (1 — «,,)-quantile of the Gumbel distribution given in
Theorem applying Lemma (a) yields

~ 1 —1/2
Pl max T} ,(G,0) > D,(a,,G) | = P | max HE Aj; HZDn an, G
(keﬁn,g k, ( ) ( )) <k€A~n’Gm k 0.k ( )

= (o010 55| - s 2.
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=a,+o0(l) -0 asn— oo, (2.17)

since vy, converges to 0 by Assumption and as the Gumbel distribution is
continuous.

Part (2):
Let j = j(k) where j(k) is the the index of the closest change point to k as in
Lemma [2.1.2] By using Lemma for k € B, ¢ we get

=78 (4a0) | = (€ = = ka2,

which shows that the signal part of the statrstrc grows with a rate of G on the
set B, g Furthermore as Assumption 7| ensures that d; # 0 for all [ € Q
and as X} .21 are positive deﬁnlte due to the positive definiteness of

(1)7 7 Tg+1)
= min y/d;‘.FE,;ldj > ¢ for some ¢ > 0.
kEBmG

2(1), e E(q_;,_l) we obtain
The results above in connection with Lemma and the following inequality

Elzl/Qd‘

J

b

k‘EBn .G

min
kEBn,G

J

min T}, (G, 0)

k’EBn G

11111

> in = [208 (4a,) | - caps o S B (A - £ (45))

imply that

)

P( min Tpn(G,0) > Dy(an,G) (2.18)
(s )

> P <k£r£7r’1G NTe HE_1/2 < §7k> H + Op ( log(n/G)> > Dn(an,G)>

G -
> P (5\/ gkg}gm z, %d, ( 10g(n/G)> > Dn(anaG)>
n,G
_ V2D, (a, G)
= Ple min | V%d;|| +op (1) > YT
< hE B k ] P( ) = \/a
since 2 "%’G) = a(l;(%)ci)@ + a(n;‘gs 75 = o(1) follows from Assumptions|A.1.1]and

(b) Part (1):

The result can be shown in an analogous manner to (a) by using Lemma [2.1.7] (b).

Part (2):
Result (b) of Lemma can be used to prove part (2) similarly to (a).
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(c) Part (1):

With Lemma [2.1.7 (c) the result can be shown analogously to (a).

Part (2):

With j = j(k) as in Lemma we receive by that lemma

|="2 (4a,)]| = (- 1k -

S

J

9
kGBn .G

which holds for all k € B, ¢. Furthermore, on noting that

max ||d;l|
kEBnG

< max | =
le{l

77777

o),

by Assumption (¢) combined with Lemma and Lemma we get

: S1/2 . -1/2 S1/2 -1/2
min [|X, , d;||— min ||X,/7d;||| < max |[(X,, —X,. )d;
kGBn,G ’ kEBn’G ’ kGBn,G ’ ’
< max |87 =23 max ;) = op (1),
k€B,. " F keB, g
implying that
. ~—1/2 ) _
min ||¥,, d;|| = min EAlk/de +op(1).
kGBn,G ’ keBn,G ’

Applying Assumption (¢) in combination with Lemma [E.1.10| and Lemma
F.1.12| as in (2.8]) yields that there exists ¢ > 0 such that

min
kEBmG

Thus, in an analogous manner to

(

kEBn G

. A71/2
S O R
(kéné,?g \/— ox| = Dnlan, G)
. —1/2
> P< min HE
k‘EBn’G
- D ny
> P (s min Eki/Q (1) > w
k€ Bo.c VG
_ V2D, (a,, G)
_p . » 1/2d + ns
gkénélfg Ak “j OP( ) \/a
V2D, (o, G)
>Plectop(l) > d — 1,
VG

—1/2
EA,Z d

min Tkn(G 6) > D,(an, G)

il > c+o(1).

(a) we receive

)
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2.1. Theoretical Results

since % = o(1) by Assumptions|A.1.1{and [A.2.8

With similar arguments we obtain

P ( min Tj,(G,6,) > Dn(an,G)) — 1,
kEBmG
completing the proof of this theorem.
O

Remark 2.1.9. If @ ={1,...,q}, i.e. each change in the parameter vector 6 causes
a mean change in the transformed sequence of the estimating function, Theorem |2.1.8
yields

lim P(q, =q)=1.

n—oo

Moreover, the following corollary in combination with Remark [2.1.11] proves a weak
consistency statement for the change point estimators &;,.

Corollary 2.1.10. Let the assumptions of Theorem hold. Then,

P (max min |k, — kjn

jeq 1<I<dn

<G>—>1,

1.e. with probability tending to one every detectable change point has at least one esti-
mator in its G-environment.

Remark 2.1.11. By Theorem there are exactly q change point estimators with
asymptotic probability one. Since the distance between two adjacent change points is
asymptotically greater than 2G an estimator can only lie in the G-environment of one
change point. Thus, combining Theorem |2.1.8 and Corollary yields thatl every
detectable change point has exactly one estimator in its G-environment with probability

tending to one.
Proof of Corollary[2.1.10. On noting that
< G} ,

{ min 7}, (G, 5) > Dn(an,G)} C {max min El,n — kjn

k’eBn,G ]6@ 1<i<gn

applying (2.18) yields

P (max min /k\l,n —kjn| < G) > P ( min T;m(G,g) > D, (ap, G)> — 1,
je@ 1<i<gn kJEB,’“G
which shows the assertion. O

The results above do not show consistency in the classical sense since we only get a

weak convergence rate depending on the bandwidth G which tends to infinity. This

rate can be improved under stronger assumptions on the series which will be shown in

the following subsection. Nevertheless, the corollary above enables us to construct es-
Rjn

timators of the rescaled change points Xj,n =k j € @, which are actually consistent

for the true rescaled changes \;, j € @, in the classical sense as shown in the following
corollary.
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2. MOSUM Score-Type Statistics

Corollary 2.1.12. Let the assumptions of Theorem [2.1.8 hold. Then,

=Op (%) = op(1).

Proof. By applying Corollary 2.1.10| and on noting that

max min (A;, — A
jEQ 1§lSQH

[kjn — Ajn| = [[A\jn] — Ajn| <1,

we obtain
% 1 1 ~ 1
max min ﬂ—/\ = —max min kln—)\ n| < — maX min |k, — kjn| + —
je@ 1<I<gn n n jEé 1<I<gn jEQ 1<I<gn n
G
_op (_) |
n
Furthermore, by Assumption we know that ¢ = — 0. [

2.2. Convergence Rates

In the previous section we have derived consistency for the estimators of the number
and the locations of the changes. These results can be improved in terms of getting
better convergence rates under some stronger assumptions which are described in the
following.

Let the following forward and backward Hdjek-Rényi-type inequalities hold for
some vy > 2:

(a) For all j € {1,...,q+ 1} and for any positive and non-increasing sequence by >
by > ... > b, > 0 there ezists a constant B(y) such that

v n
ZHO X(J > < B(V)szkﬁﬂ—l'

k=1

max by,
1<k<n

(b) For all j € {1,...,q+ 1} and for any positive and non-decreasing sequence 0 <
a; < as < ...<a, there exists a constant A(~y) such that

Z Hy(x" 6) ) < A(y)ia%(n—k)”ﬂ_l.

i=k+1 k=1

max ay
1<k<n

Furthermore, we need an additional assumption on the estimator sequence §n which
will allow us to replace @ in the statistic without changing the theoretical results.

A.2.11| Let {é\n}neN be a sequence of estimators fulfilling, for any m € N and for
each j € {1,...,q+ 1},
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2.2. Convergence Rates

1<k<n
and

i) o | 8 (#r (50,6,) - 1 (20.8)) | = ont1)

(i) max 1 ~ i (H (ng),én) - H (XZ(J),g))H =op(1)

1<k<n *

for some 6.

In order to prove the main result in Theorem we need the following auxiliary
lemmata.

Lemma 2.2.1. Let Assumptions and hold for some 6 and let {by}i>1

be a positive and non-increasing sequence with by > ... > by. Then, it holds for any
1 <1<wu, anym € Ny, any § > 0 and for each j € {1,...,q+ 1}

(a)

m+k w
" (max bel| D Ho(X!.0)| > 5) =¢ (bm Yk 21) ,
I<k<u Pt ]
(b)
5P (f?&x | Y. HoxY,0)| > 5) <C <byﬂ/2+ 3 bgm/2-1>,
=h=t i=m—k-+1 k=I+1

where C only depends on v of Assumption|A.2.10.

Proof. (a) The result of this lemma can be shown similarly to Lemma 3.1 in [Eichinger
& Kirch| (2018). On noting that for k& > [ holds

m-+k m—1 N m—+k o
D HX.0)= > HoX7.0)+ 3 HoxX.0),
i=m-+1 i=m-+1 i=m-+I+1

the triangle inequality and the monotonicity of the sequence yield

m—+k
i) &
mashe|| 20 Ho(x?.
- i=m-+1
m+l m—+k
) g @) g
> Hy(X{, ) + max by > Hy(x/.0)
i=m+1 i=m-+Il+1

Hence, by Chebychev inequality we receive

m+k
7) >
(wwcﬁﬁﬁ —0
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m+l 0 7 (5 m+k " 5
J J
<Py g H)(X; 5 + P lr<nka<Xubk E H)(X; _2
i=m+1 - i=m-+I+1

m+l o v 5\
<E (bz > Ho(x{,6) ) (5)
i=m-+1

m-+k v 5 —y
U g ’
+E(l@kz§bk 2 v">) (3)

Since the series {H (X; xW 9)}@1 is stationary and the constant sequence gk =1
fulfills the conditions of Assumption [A.2.10] (a) we obtain
)’Y

m+l

> Hox!.6)

E(bl ) _E<bl ZH XY, 9)
i=m-+1
,
(] ~ /2—1 ~ /2
<1n<1]§§lb, ZHO XV > gCIZbykﬂ <

k=1
where C’l is a constant only depending on 7. Furthermore, with Ek = by, and an

index shift to h = k — [ the stationarity of the series and Assumption |A.2.10] (a)
can be used again to get

m+k v
U) g
(| 3 s )
i=m+I+1
m—+l+h ol 5
_ 7 U) g _ x@)
_E<1£§L§lbh -;HHO(Xi ,0) ) = (131135;% ZHO ,6) )

u—

§6'2Zl TR /2=1 C Zb’Y /2 1<C Zb7k7/21

h=1 k=l+1 k=I+1
Thus, with C = 27 (max <51, 52>) we can complete the proof of (a).

(b) On noting that by the triangle inequality and the monotonicity of the sequence

{br}

max by,
I<k<u

i 9)9

. 4 g

< .
<, Z + lrgll% by, Z H\(X;”,0)

i=m—u+1 i=m—k+1

m m—I m

<bu|| D0 Ho(XY,0)||+ maxbe| > HoX7”0)||+b|| > HoX,0

i=m—u+1 i=m—k+1 i=m—Il+1
we receive

i J)g

max by,
I<k<u
1=

[+
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m m—I
J) é @) p é
( Z 0 3) <lr<nka<>ibk A Z HoX/7.6)) 2 3)
i=m—u+ i=m—k+1
3
i=m—I+1

Furthermore, with the stationarity of the sequence { H (ng ), 5)}121 we get

J) D () (4)
by '—Z—:—HH( )| 2, ZHOX <l@ka<>ibk ZHOX

Thus, applying part (a) yields

N\’ - N~ ) ~ - _
<§> P (bu | Yo Hy(xY,6) §> <G <b}l”/2+ > bk 1).
i=m—u+1 k=Il+1
Besides, as ¥ Hzgm_lﬂ HQ(X,Ej), g)H 2 b; Zi’:l HO(X(J ” we obtain by part

(a)

Moreover, with an index shift to h = v — k and Eh = b,_p, the stationarity of the
series can be used again to get

Z Hy(xY 0)|| > g) <Cyp Y BRI

i=m— k=1+1

m—I m—I
@ pll — 7 4 p
lglki}ibk , Z Ho(X,",6) _151233{4% Z Ho(X;",0)
i=m—k+1 i=m—u+h+1

m—u+u—I
_ 7 @ || 2 7 (J
— s | S 0.8 2 e | 3

i=m—u+h+1 i=h+1

Hence, since the sequence {Eh} is positive and non-decreasing Assumption |A.2.10
(b) in connection with the Chebychev inequality yields

a\" “— ) 0
(5) P(f?&%’?k 2 Hx50)| 23

S H(xY,6)

1=h+1

=) bl(k—1)7*1 = Cq Z bk — 1)/ < Cy Z bl (k — 1)/

k=l k=141 k=l+1
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S 63 Z bZk’y/?—l’
k=1+1

completing the proof of part (b).

In the following lemma we use the notation

\/%_G <A9=kj,n - L (Aé,kj’n> —Agr + F (A@k)) and (2.19)

E(k,G,0) = \/%_G (Agyk].’n - F (Aé,kj,n> + Ao — F (A(?,k)) )

for some fixed @ which appears in the expectations.

Lemma 2.2.2. Let Assumptions |A.2. ZL |A22] andlA.Q.JOI hold for some 6. Then, for
any >0,0<u<k;, and 0 <C <G

E1(k,G,0)
(a) P( max [l o= H > ﬁ)

kjn—G<k<k;,—C

El(kang) =

(82GC) 7/2)

ol
w2 (,, e, o8] =5) o (")

kjn—u<k<k;n

(c) P( max HEQ(k,G, g)H >

kjn—G<k<k;,—C

N———

~0(57),

with E1(k,G,0) and Ey(k,G,0) as in (2.19).

Proof. Similar arguments as in the proof of Lemma 5.2 in |[Eichinger & Kirch| (2018)
can be used here.

(a) By Assumptions [A.2.1{and [A.2.2| we obtain, for all k;, — G <k <k, —C,

El(k7 Ga 5)
1 ] n+G k‘]’nfG
S (S e S a2 Y
2G i=k+G+1 i=k—G+1 i=k+1
This implies in connection with an index shift of [ = k;,, — k
El (ka G7 5)
>
P kj,nfGlgl?gkmfc (kjm — k) b
kjn+G
1 3 G+1) 7 BV2G

< - d >

sF ceica 1| Z Ho(X:77.0))) = 3
i=kj —1+G+1
LIS 0 gyl » BV2G
Z \ >

o CIEZ?LXGZ z’:k-;—G+1 ol 0 = 3
k'vL
BN 0 gyl > BV2G
Z \ >
P B MEZH Ho(X;7.0))) = =5
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Applying part (b) of Lemma on the first summand of the inequality above
together with the monotony of integrals yields

kjn+G

1 ~ 5\/

- (§+1)

P Joax 71| Z Hy(XV* 9)
1= —I+G+1

<C C”/2+Zl7/21>< >
I=C+1

< C Cc? 4 x /214, ) _”

< C C2 4 | g2y ) _V

— (8°GC) Wc(?) (1+V) <(B2CG) .

By stationarity, this also implies corresponding assertions for the other two sum-
mands completing the proof of part (a).

(b) Since ‘ E(kj,. G, 0) H = 0, it is sufficient to consider the maximum over k;,, —u <
k < k;n. Similar to (a), by the triangle inequality and an index shift to [ = k;,, — k
we obtain

0)| >
P, ma, [B00.0]20)
+G
e V2G
< j+1) > 6
<Plms| > HET0)27
i=kj n—l+G+1
kjn—G —
+P max Z H\ X", 0)|| > 3
i=k; n—l-G+1
Kin —
+ P 112%); | Z H\ X/, 0)| > 5
i=kjn—I+1
Considering the first summand, with b, = 1 we apply Lemma (b) to get
] n+G
(+1) > 6V 2G
Plmax| >, Ho&™.6)| >

i=kj n—l+G+1

coforefen) (49F) ol @)

=1

since 7/2 — 1 > 0. By stationarity, this also implies corresponding assertions for
the other two summands.
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(¢) On noting that

Es(k,G,0)

_ \/§ j7L+G _ kj,n ) .
=-E\(kG0)+-=| > Hyx" 6) - Hy(xY, )
VG i=kjn+1 i=kj n—G+1

holds for all k;,, — G <k < k;,, — C we receive

P( max HE2 (k, G, 9 2 ) (2.20)
kjn—G<k<kj,—C
§P< max HElkGe)Hzé>
kjn—G<k<kj,—C 3
1 kjn+G . ,6
+P|—= Ho(x9™ g)|| > 2
1 5
+P|— Hy (XY 9)|| >
\/é = kJ; G+1 3\/§

For the first summand, applying the result of part (b) yields

P 3
>
(’ffvn&%j,nc "El(k’G’e)“ =3

< P< max El(k,G,g)H > g) —0(57).

kjn—G<k<k;n

Furthermore, by Lemma m (a) we obtain, for some constant C' > 0,

I 5 AN
rPl— Hy(xXU™ 9)|| > | < (—> C=0(p"),
\/a i_§+1 0( ) 3\/— 3\/§ ( )
and similarly with Lemma [2.2.1] (b)
1| & A 8
Pl—=| Y HE6o|>"7|=0(5).

VG

completing the proof of part (c).

i=kj n—G+1 T 3V2

]

Lemma 2.2.3. Let the Assumption |A 1. ZI, |A 2. 1| and |A 2. ZI hold for some 6. Further-
more, assume that {Gn}neN is a sequence of estimators fulfilling Assumption 1| for
6. Then,

(a)

HA57L7kj,n B Aé\nyk o (Agakj,n B A§7k> H
max = op(1)
kj,nfGSkSkj,nfc k],n - k
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(b)

max A5 o+ A5~ (A5 + A )| = or (G
kj,n—ngsm—cH Ok = O kg Ok = T Okin @)

Proof. (a) Assumptions|A.2.1jand [A.2.2]and the triangle inequality in connection with
an index shift to | = k;,, — k yield

HAe?n,kj,n - Aén,k - (Aé,k,-,n - A§,k> H

max

kjn—G<k<kj,—C kjn—k
|2 (HXI,0,) - HXI,9))|
< -
cico z
Ejn H X(j) é\ ]) 0
S (HXD,8,) - )
s z
e . o
Iz (HED,6,) - HED,0) |
+ max =op(1),
C<I<G l

where the last line follows directly from Assumption [A.2.11]

(b) We get
HA@L,k + Aén,k]-,n - (Aé,k + Aé,kj,n) H
max
kjn—G<k<kj,—C G
< Aén,kj,n - Aén,k - <A§,km - Aé,k) ’ A A
= e Gohaiy n—C kin—k he H Onkjn — “Okjn
Aén,kj,n —AG kT~ (Aé“,k:j,n - Aé,k) ‘
< max
kjn—G<k<kjn—C kjn—k
o || Finte
G+1) g G+1) g
Z:kj7n+1
2| &
=Y (HEY.6,) - H(xD,0))
G|
’L:k‘jyn—G—‘rl
= Op(l),

where the last line follows from Assumption [A.2.11| and the result of part (a).
O]

The following lemma gives more information about the intervals of exceedings obtained
by the MOSUM score-type procedure. It shows that the start and end points v; and wyj,

J € @, lie in the G-environment of the corresponding change point k;,, with probability
tending to one.
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Lemma 2.2.4. Let the assumptions of Theorem[2.1.8 hold. Furthermore, let [0, w; ]
for 3 € @ be the intervals of exceedings of the statistic Ty, (G, 5), Thom (G,@L) or

T (G.6,). Then,

lim P (kj,n -G< Vjn < kj,n < Wiy < kj,n + G) =1.

n—oo

Proof. The statement follows directly from the results shown in the proof of Theorem

[2.1.8 since

P (kj,n —-G< Vip < kjm < Wjp < k’j,n + G)

> P ({ max Ty, (G, 5) < D, (an,G)} N { min T}, (G, 5) > D, (an,G)}>
kGAn7G k€Bn.c

> P ( max T}, (G, 5) < D, (Ozn,G)) + P ( min 7T}, (G, 5) > D, (an,G)) -1,

kGAmG keBn,G

with A, ¢ and B, ¢ as in [2.12) and (2.13). O

Now, we are almost ready to state the main result of this section. However, note that
the long-run covariance matrix of H (X;, ) is usually unknown in applications so that
an estimator is used in the statistic. In order to get a better convergence rate of the
change point estimators for these situations as well we need to modify the MOSUM
procedure in the following way.

Let X, be an estimator for the long-run covariance matrix ¥ fulfilling Assumption
[A.2.5] This covariance matrix estimator depends on k, which means that we can get
different estimates of the covariance matrix for every time point k. For this reason
we call it a local estimator of the long-run covariance matrix. The estimators and
the corresponding intervals of exceedings obtained by the MOSUM procedure, which
uses this local estimator in the statistic, are denoted by @,,k;, and [vj,,w;,], for
Jj € @ Furthermore, let §j7n, j = 1,...,9+ 1, be an estimator of the long-run
covariance matrix computed on the whole sample or a fixed subsample which allows to
apply different estimators 33;,, for different regimes. We call X, , a global estimator
and assume that this estimator sequence is consistent for the true long-run covariance
matrix 3 under the null and converges in probability to some positive definite matrix
34 ; under alternative.

At first, we determine the intervals of exceedings [v;,,w;,] by the MOSUM statistic
which uses the local estimator ik,n. Then, the change point estimators are computed
by finding the maxima of the MOSUM statistic, which bases on the global estimator
30, O [Ujn, win], J € Q. We define

_ 1 ~—1 ~
k;n = argmax AL 3. As, for jeQ. 2.21
” vj,ngkgwj’n vV 2G 0.k 0.k J Q ( )

Note that not all of them need to exist in finite samples.
In the following theorem we derive a better convergence rate for these modified change
point estimators in comparison to Corollary [2.1.10
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Theorem 2.2.5. Let Assumption [A.1.1] on the bandwidth and Assumptions
14.2.914.2.9, |A.2.7 and |A.2.10 hold for some 0. Assume that a sequence {an}neN

fulfills Assumption |A. 2% Furthermore, let Ekn be a local estimator and Zjn be a
global estimator for the long-run covariance matriz fulfilling Assumption [A.2.17

(a) Then,

max min ‘kln — kj,n‘ = Op(1).
Q 1<i<gn

(b) Let é\n}neN be a sequence of estimators fulfilling Assumption and
i

11| for 8. Then, 0 can be replaced by 0, in the statistic without changing the
result of part (a).

Proof. (a) The basic idea of this proof goes back to Eichinger & Kirch| (2018) (Theorem
3.2.).
Since the number of change points is finite it is sufficient to prove that
ming <;<g, |kl,n — kj7n| = Op(1) holds for all j € ). Hence, we want to show that
for each € > 0 there exists a constant C' > 0 such that

P (1% [ c) < P (| — kyu| > €)
=P ({kj,n > kj,n + O} U {]%j,n < kj,n - C}>
=P (lzfjﬂ > k’j’n + O) + P (Ejﬂl < kj,n — O) <e

We define I, ¢ := {kjn, — G < v;, < kjn <wj, <kj,+G}and M, ¢ = {q, = q}N

I, ¢, with v ,, w;,, and g, obtained by the MOSUM procedure using the local co-
variance matrix estimator. Furthermore, we get

_ ~—1
T
kjn= argmax ——/Az 3, Az, = argmax ——

v n<k<wjn V2 Bk 8 Vjn<k<win V2 H
= arg max Vk])(G 6),

Vjn<k<w;jn

—1/2 H

2

4 ~ G) i & 1 lla—1/2 2 1 lla—1/2
for all j € @, where V;9(G,8) = ﬁHzm AgﬁkH _ ﬁHzm Ag. | on

noting that Vlgin(G,g) = 0 and kj,, € (vj, w;,) on M, ¢, we receive, for some
0<C <@,

P (lz?jﬂ < k‘j’n — O)
=P (kjn < kjn — C,Mn) + P (kjn < kjn — C, ME¢)

<P < arg max Vk(jn (G, 0) kijn—C, Mn,G) + P (MnCG)

Vjn <k<wjn
= (7) 0) > () 3
= P (vj’n<r]£l<a]§;nc Vk:,’n, (G7 9) - kj’nfrélglzigwj‘n Vkm‘ (G, 9)7 Mn7G)
+P (M)
< P ( nax Vk(,jrz (G7 6) Z Oa Mn,G) +P <M7§:G)

ijngk?<k‘j,n—c
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= D gy >
d (Uj’"glgiagj’nc vk’n (G7 0> = 07 Mn,G) + 0(1)7
where the last line follows from Theorem [2.1.8] and Lemma 2.2.4] since

P(Myg) < P(@n# @)+ P (L)

Furthermore, we obtain

P ( max VY9G, 0) >0, Mn,G) <P ( max  VY(G,0) >0, ang) .

’Uj’nSk‘<k:j’n—C k‘jyn—GSksk‘j’n—C

Hence, it suffices to investigate the maximum of Vk])(G 0) over all time points

k€ {kjn—G,...,kjin —C}. On noting that £’ By = y” Bz holds in general for
a symmetric p X p matrix B and vectors @,y € R”, we obtain

26 VI(G,0) = ||, 45

[

Bk]n
AT S'A. — AT S'a A — A B ST Y
= AgpinAer — Agy,  Hinek, = \Aor ~ Aok, in Aok T Aak,.,

T ~—1
= — <A§7kj,n — Aé,k) Ej,n (A§7k, + Aﬂé,k‘]’n) .

Furthermore, with d; = E (H(X(JH) 0)) E (H(ng), 5)), we receive by Lemma
-fOI'k’E{]ij— ,...,k:j’n—C'},
1
\/ﬁ (Aé,kj,n - Aé,k)
1 _
aWore (Aa,kj,,l, —E (Ag,kj,n) —Agy +E (Aak)) +(2G) 7 (kjw — k) d;

= E\(k,G.0)+ 2G)" 2 (kj,, — k) d,

and

\/%_G <A§,k + A'ejkj,n)
== (401~ F (45,,,) + 40, — £ (4g,) ) + 26226 +h = ky) d,

—: Ey(k,G,0) 4+ (2G) V2 (2G + k — k;,) d;.
Hence, we get

A(eN)

T 1

——(E1<k,G,§) (2G)V2 (k n—k’)d]) N

J?n

(Eg(k, G,0) + (2G)™V2 (2G + k — k;,.) dj)
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- (E{(k, G,0), Bs(k, G, 0) (2.22)
+(2G) "2 (2G + k — k; ) BT (k, G, )3, 1d,;

+(2G) V2 (ky, — k) d'SS, ) Eo(k, G, 0)

+2G) 26 + k= ki) (ki — RIS,y )

Considering the last summand in (2.22)) first, we want to replace the estimator
3, by the positive definite matrix 34 given by Assumption |A.2.12| Applying

Assumption |A.2.12|and Lemma [E.1.8| yields Hifl/z — 221]/2 = op(1). Thus, on
Jlp
noting that ||d;|| = O(1), Lemma [E.1.5| can be used to receive

]7n

—1/2 —1/2 2‘
1(\\2‘”2 ) (=" + =5
<[5 —2ﬂ2lunﬂb1” XHQrun+ﬂh*”-)=@ux

implying that dTE d = dTEAJd + op(1). Furthermore, since the matrix E;Llj
is positive definite and d; # 0 holds for all j € @ we obtain

2
| >0,

(260)7 (20 + b — )by — WIS > S dlnid, = |51,

2 J
for all k;, — G < k < k;, —C. Hence, in connection with (2.22) we get

Vin(G,6)

+(2G)7 2 (2G + k — kj,) BT (k, G, 0)S, . d;
+(2G) V2 (K — k) dfzjanz(k, G, 0)
+ (2G) T (2G + k — ki) (kjm — k) (d] B55d; + oP(1)))
—(2G)'(2G + k — kjp) (kjn — k)djzg}jdj
2GE! (k,G,0)S, \Eo(k,G,0)  V2GE!(k,G,0)S,.d,
: 2 b
(2G + k — kjn)(kjn — k;)dJT EA}jdj (kjm — k)d] X, d;
V2Gd''S: ) Eo(k, G, 0)
n :
(2G + k — kj,n)dfzg}jdj)

+1+ OP(1)> .
This can be used to obtain

P D 8) >0 M
(kj,7L_GI£l]€az(kjﬂL_C ‘/k,n (G? 9) el O’ TL,G)
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kjn—G<k<kjn,—C

=P ( max —(2G) ' (2G + k — kjp) (kjm — k>dJTEZ,1jdj

2GE! (k,G,0)S,  Ea(k, G, 0) | V2GE; (k.G 0)S,,d;
(2G + k= k) (kyn — R)AI S, d;  (kj — k)l 3, d;
~—1 ~
V2GdrY . Es(k,G,0
j “jn 2(T il ) +1—|—0P(1)> > O,Mn,c>
(2G + k — k;,)dT =51 d)
2GE! (k,G,0)S,  Eo(k, G, 0)
= P max : T —1
kjn—Gkshin=C \ (2G + k — kjn) (kjn — k)d] 3,%d;

| VIGE[ (k€. 0)S, . d; | V20d] 5 Eo(k, G, ) o)) < 1ot
o -4, n
(ko — k)2 d, (2G+k -k )dlShdy) = “

2GE! (k,G,0)S, ,Es(k,G.0)
<P max = ]
kjn—Gskskin=C | (2G + k — kjn)(kjn — k)d; 37 ;d;
V2GE!(k,G,0)S,d;  V2Gd'S, ) Es(k, G, 0) )
(kjm — k)d; 3, 1d; 2G + k — kj)d; 3, 1d;

QG‘ElT(k,G, 0)S, Es(k, G, 5))

<P max
kjn—G<k<kjn—C (

2

G + k — kjn) (Fjm — HE—W

\/QG‘ET (k,G, 0%,

max
kjn—G<k<kjn,—C

(k _ Hz—l/z
2G |d’'S EQ(keé)’
max 5 +op(l) >1,M,¢
kjn—G<k<k;n,—C (QG—I—k k‘jn ‘2—1/2

MHEM Ei(k,C O)H

kjn—G<k<kj,—C (Kjm — Hz—uz

<P

V2 ‘24 Es(k, G, 0)

—1/2

max
kjin—G<k<kj,—C

~—1/2

\/2G‘ S B (K, G, 0) Hzm d
Gkt 2
g —GShShyn (kjn HE 2q,
V2|8, Ba(k, G, 9)‘ ijfi”dj

ki n—G<k<k;,—C 24 +op(l) 2 L Mg |,
jn—G<k<kjn— \/_HE 1/2 4

where the last line follows from Cauchy-Schwarz inequality and (2G+k—k;,,) > G.
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After splitting the probability, applying Lemma yields

kel |z

S P max
kjn=Gshshin=C  (Kjn — k) QMHE H
il
P, 6.0 2 —
BB, 2[5,
B 2
|2k c.0) HE_W
P
LR P S (kjn — k) 4\/@”2 1/2|2 Id |
sl
+ P G<k<k CHE (k. G, 0 H - 1/2||? o
AR o

In order to use Lemma [2.2.2| we need to get rid of the covariance matrix estimator
in the probability statements above. Therefore, we define

= (|52, < i, )
for some € > 0. On noting that
1/2 —1/2
( r AJ g €

~1/2 -
<P(HE /—EAlj/QH >5>—>0 as n — oo,
JollF

applying Lemma (a) and (c) yields

a0 [z
>
kj,n—Grgi%km—c (kjn — k) QmHE 1/2H

HEl(k:,G,O)H HE—W
S > — Fue | +P(FE)
kjn—G<k<kjn—C  (kj, — k) 9 ZGHE 1/2 ’ ,
ewcal  |mal
= Froe
<P kj,nfGngagxkj,nfC (kjn — k) 2\/—(“2 1/2 +€)a :
F
+ P (F.)
|Bwco =
<P max > +p (FnCa)
kjn—G<k<kjn—C  (kj, — k) 226G <HE—1/2 n 5) ;
F

=0 (C7?) +0(1) = o(1)
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and

\/— Hz—l/Q
A5,

\/— Hz—l/z
22 (Hz;}f

P max HE2 (k,G, O)H
kjn—G<k<kjn—C

+ P (FS)

n,e

<p max HEg(k,G, §>H >

- kjn—G<k<kjn—C

o +e)
=0 (G7?) +o(1) = o(1).

The remaining probabilities can be approximated in an analogous manner.
Consequently, we receive

P (kjp < kjn — C) =0 (C7T?) + o(1).
The second part of the assertion
P (kjn > kjn+C) =0 (C7?) +0(1)

can be shown analogously with a modified version of Lemma [2.2.2] Hence, we can
conclude that

P (|kjn — kjn| > C) =0 (C7?) +0(1),
which proves the assertion.

(b) Similar to (a), we obtain

_ () )
| L _C) < =z
P(kjy <kj,—C)<P (kjyn_Grg?%ckm_C Vi (G, 05) >0, Mn,G) +o(1)

since the results of Theorem and Lemma remain true if 6 is replaced by
an estimator satisfying Assumptions [A.2.4] and [A.2.9 Moreover, we receive

P( max v,ffg(G,én)zo,Mn,G)

kjn—G<k<kj,—C

|66, =
<P max = 1/2
~ e HEZ}/de
+ P max HE2U€;G7 On) > 1/2
kjin—G<k<kj,—C 2v/2 ( 2;’/ o e’:‘)
|B.6.0.) =3
+P max Kom — k ’
kjn=Gskskin=C (kjn —k) 4 55 (HE‘”Q + 6) ;]
2
~ \/5) > d;
oo, o] 7]
Ko i 1/2
(HE / ; +8> ;i

- 52—



2.3. Some Considerations on the Assumptions

On noting that

E\(k,G.0,) = Ei(k,G.0) + (Aan,kj,n —Agx (Ag,,w - A@k))

8-
o

and
EQ(k7 Gv §n) = EQ(kﬂ G7 5) + \/;—G <A§n7k + Aé\n,kj’n - <A§7k + Aé:%yﬂ)) I

combining Lemma and the results of part (a) yields

HEl(k,G,OAn) HE 1/2
max -
kjn—G<kskjn—C  (kjn — k) 2V2G <HEA1J/2H i E>
Jolp
El(k, G, 5) EAlj/de
<P

- G2k 1 —C (kjm — k) oTel —1/2
i, 2 jn 4 2G (|24 +e
F

-1/2
HAG K Aén,k - (Aé,kj,n - A§,k>H S HEA,J' d;

P
LI P (kjm — &) = (HE 1/2 ’ N 8)
A,j o
=0 (C7?) +0(1) = o(1)
and
s
P max HEg(k, G,60,)| >
kjn—G<k<kjn,—C 22 (HE 1/2 +€>
NE HE—1/2
<P max HEg(k,G,H)H
kjn—G<k<kjn—C 42 (HE 1/2 +€>
|45, + 45,4, — (A5, + 45, )| |3,
+ P max =z
kjn—G<k<kj,—C G 4 (HEAUZ n 5)
7]
=0 (G7?) +0(1) = o(1),
which proves the assertion. O

2.3. Some Considerations on the Assumptions

The assumptions of Theorem and Theorem [2.1.§ are stated in quite a general way.
Hence, before applying the MOSUM procedure to a specific model one needs to check
whether these general assumptions are satisfied or not. Here, we consider two examples,
an i.i.d. sequence and a stationary and strongly mixing sequence, and show that they
satisfy the main assumptions under some moment conditions which are summarized in
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Section |Bl In doing so, we first assume that there exists an estimator sequence which
is y/n-consistent. Later on, we will examine a specific class of estimator sequences and
derive their \/n-consistency under the null hypothesis and the alternative.

In this chapter, we assume that the estimating function H is twice continuously dif-
ferentiable on ®, where ® C RP is a compact parameter space, and that H and its
derivatives are measurable with respect to X;. For convenience, let the co-domain
of H be a subset of RP, i.e. H is a vector valued function such that H(x,0) =
(Hy(x,0),...,Hy(x,0))". Furthermore, note that the following notation is used:

e H((X;,0) = H(X;,0) - E(H(X,,0)),

VH\(X;,0) = (VHyp,...VH,,), where VH;, denotes the centered gradient
vector of Hj,

o V2H,(X;,0) =V?*H;(X;,0)—F (V?H;(Xy, 0)) representing the centered Hessian
matrix of Hj,

e under the null hypothesis: V(8) = E (VH(X,,0))" and

. T
o under alternative: V;(0) = E (VH(xgﬁ,e)) .

2.3.1. Under the Null Hypothesis
We concentrate on the following two examples satisfying Assumption

(E1) Xy,...,X,, are an i.i.d. sequence of random vectors or

(E2) Xy,...,X, are a stationary and strongly mixing sequence of random vectors with
a mixing rate a(n) satisfying a(n) = O(n=") for some 8 > 1+ 2/v, where v is as

in Assumption [A.1.3]

The strong mixing condition introduced by Rosenblatt| (1956]) describes a specific type
of dependence. The following definition can be found in Bradley (2007) on page 28.

Definition 2.3.1. Let {X;}i>1 be a sequence of random wvariables and let F}' =
0(X;,l <i <) denote the o-field generated by (X;,1 < i < wu). Furthermore, let

a(n):=sup sup |P(ANB)— P(A)P(B)|.
JEN AeF] BeFss,

Then, the sequence {X;} is called strongly mizing if a(n) — 0 as n — oo.

Furthermore, we assume that the estimator sequence é\n is y/n-consistent for some
0 € © under the null hypothesis and that the series fulfill the moment conditions
below which are listed in Section [B.1] as well.

Let E (||H (X4, 0)|) < oo hold for all 8 € ©.
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2
< Q0.

Let E (supgee || VH (X1, 0)]| ) < 00

E (supgee ||V H(X1,0)|| ) < 00 hold for alll=1,...,p.

B.1.2 Let B (HH(Xl,é)

~ ||2+V
B.1.5 There exists a v > 0 such that E (HH(Xl,O)H ) < 0.

There exists a v > 0 such that E (||VH (X, )H2+V) < 00 holds for all 8 € ©.

2.3.1.1. Assumptions and

In this paragraph we prove that the main assumptions of Theorem [2.1.1] are satisfied
by these specific time series.

Lemma 2.3.2. Let {X; : i > 1} be a series of type ( or type (HY). Furthermore,
let Assumptzonm hold on the bandwidth and let 6, be a global estimator sequence
which is \/n-consistent for some 6 under the null. Then,

o if {X,:i > 1} fulfills Condition , Assumption is satisfied.

o if {X; :1i > 1} fulfills the Conditions |B.1.4| and |B.1.6, Assumptions is
satisfied.

Proof. e Assumption [A. 1.4}
By a Taylor expansion of each component (I = 1,...,p) there exists a §;, ; such

E+G k k+G k
S OH(X.0,) - Y Hl(Xiﬁn)—<Z H(X;,0)— Y Hl(Xi,§)>

i=k+1 i=k—G+1 i=k+1 i=k—G+1
(2.23)
k+G N k N T L
= (Z VH (X, 0)— > VHZ<X@-,0>> (en—e)
i=k+1 i=k—G+1
1. k+G L
+§(en—9) (ZVHZ Xi, € p) — Z V2H( Xl,glnk)>( = 9).
i=k+1 i=k—G+1

where V H;(X;, 0) denotes the gradient with respect to 8 and V2H;(X;, 0) is the
Hessian matrix.
We start with approximating the first summand and use the following notation:

VH[(XZ', 5) = /X/z = (Xi,h s 7Xi,P)T'

— K5 —



2. MOSUM Score-Type Statistics

Since V H; and the projection map are measurable with respect to X; we get that
the sequences {X;1}i>1,. .., {Xip}i>1 are iid. ( or stationary and strongly
mixing with at least the same rate as the original series (H2|). Without loss of
generality we can assume that the long-run variance of these random variables
is equal to 1. Furthermore, note that Lemma [E.1.6] (a) and Assumption

~ 24v
imply F (‘sz‘ ) < oo for m =1,...,p. Hence, for a sequence of type (

the invariance principle proved by Komlos et al.| (1975), Komlos et al.| (1976]) and
Major (1976) can be applied to obtain

k
Z)A(:zm —kE (le) —-W(k)| =0 (/fl/(QJ’”)) a.s., for k — oo,

=1

where W (t) is a standard Wiener process. We get a similar result for sequences
of type ( by using Theorem 4 of Kuelbs & Philipp| (1980). Consequently,
applying Theorem 2.1. of [Eichinger & Kirch| (2018), which is a result on the
null asymptotics of the classical MOSUM statistic, to each sequence {sz} and
Lemma [E.1.6) (b) yields

k+G k "
T5a || 2o VAX0) = Y VH(X:.6
Gehin= i=h+1 i=h—G+1
p k+G N k _
a mz:l GSI?SEE{_G 2G =zk;rl X%m i:kz(:?+l Xwn or < 10g(n/G)>

Thus, together with the Cauchy-Schwarz inequality and the \/n-consistency of
the estimator sequence we receive

k+G k N T R N
G<k<nG <ZVHZ 2 >_ Z VHZ(Xi79)> (Gn—0>

1=k+1 i=k—G+1
k+G
< Z VH(X;,0 Z VH(X;,0
oskEn-G \2G —ht1 i=k—G+1
log(n/G
-0, ( %) — op ((log(n/G) ™).

since logf%G) < bg(??) — 0. Now, the next step is to approximate the remainder

term of the Taylor expansion in (2.23). With the measurability of the second
derivatives of H we get that the random variables V2H;(Xy,8),...,V2H(X,, 0)
are i.i.d. ( or stationary and strongly mixing ( and, thus, stationary and
ergodic. Hence, as

E (sup va,(xl,e)uF) <o
by Assumption [B.1.4)the Uniform Law of Large Numbers of Theorem shows

ZWHZ i 0

sup (2.24)

6co N

F
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< gup 2 DIV Hia 5, O+ s [ (9, 0) = O .

6co N

since supgeo ||E (V2H(X1,0)), < E (swppee |V2Hi(X1,0)]|,) = O(1). This

implies
k+G
Z le leélnk Z VHZ Xuslnk)
i=k+1 i=k—G+1 F
E+G
k+ G)su VZH (X, 0)|| + 2ksu VPH (X,
( geg k‘ G Z l BEg Z l P
+(k-Q) V’H (X, 0
(= ) mp Z /

F
=0(k+G)=0(n) as. umformly in k.

Thus, combining Lemma with the \/n-consistency of the estimator sequence

yields
Ll@-o)( >
e G (0"_0> < VQHZ(Xiafl,n,ﬁ
Gsksn-G /G i—k+1
k A~ ~
Z v2Hl(Xi7£l,n,k)> (971 - 0) ‘
i=k—G+1
1 -
_9H jmax Z V2H (X, &) — kz;HVZHl Xi, &1 r)
i= F

B 1 1/2
0 () =0 (aog(n/G)) ).
Finally, with Lemma [E.1.6] (b) we can conclude that

G<k<n G\/_H 9’“”

D 1 k+G
ZGSI,?% ¢ 75 > (Hi(X:,8,) — H(X 9))
1 i=k+1

= op ((log(n/G)) ).

e Assumption [A.1.3}
Under Condition (F1), we know that H(X,,0),..., H(X,, ) are iid. With
Assumption Theorem 2 of [Einmahl (1989) can be applied to receive

k
n-12 (Z H(X,,0) — kE (H(Xl, 5))) Wk

= O(KY@)) q.s.
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For further explanation we refer to chapter 1 of |Aue| (2003).
A similiar result can be derived for sequences of type ( by using Theorem 4 of
Kuelbs & Philipp| (1980) since H (X1, 8), ..., H(X,,6) are strongly mixing with
at least the same rate as the original sequence by the measurability of H with
respect to X.

O

2.3.1.2. General Z-Estimators

In the introductory chapter, we have already considered classical Z-estimators or M-
estimators which are determined by solving the estimating equation system

Yo, H(X;,0) = 0. Here, we investigate the asymptotic behavior of a broader class
of Z-estimators based only on a part of the sample. Therefore, we define the general

-~

Z-estimators 033% as the solution of

1 [v2n] '
- Z H(X;,0) =0, for every n, (2.25)
n

i=|mn|+1

where v1, 72 € [0, 1] and 71 < 7. Furthermore, let 8y be the unique zero of E (H (X4, 0)),
i.e. O is the true parameter vector under the null hypothesis in a correctly specified
model and the best approximating parameter under misspecification as in Assumption

A2

Now we want to prove that the estimator sequence 531%2 is /n-consistent for 6 = 6.
Firstly, we have to show that ’ éﬁf?ﬁ — 6o|| = op(1), i.e. it is consistent for O.

Lemma 2.3.3. Let {X; : i > 1} be a series of type (HI|) or type (H3) fulfilling As-
sumptions |B.1.1) and [B.1.5. Then,

Proof. Consistency of the estimator sequence can be proved by applying Lemma|k.2.11
However, first of all we have to show that the assumptions of this lemma are fulfilled
here.

The Uniform Law of Large Numbers in Theorem [E.2.8] can be used to derive the
uniform convergence condition. Therefore, we check if the assumptions of this theorem
are satisfied as well. First, note that H is measurable with respect to X; and that
{X;}i>1 is i.i.d. or stationary and strongly mixing and therefore stationary and ergodic.
Moreover, condition (i) of Theorem holds by Assumption By a first order
Taylor expansion and Lemma [E.1.5[ we get

~(n)
6 — 9“/1 Y2

= OP(l).

[H(@.01) ~ H(w,0,)| < sup [VH(,0)[ 01 —6:]. (220
€

which is well defined at least almost surely with respect to Px, since
E (supgee |IVH (X4, 0)|| ) < oo (condition (iii)) holds by Assumption The con-
tinuity of the supremum and the Frobenius norm in combination with the measurability

— B8 -



2.3. Some Considerations on the Assumptions

of the first derivatives of the estimating function imply that supgee |[VH (X, 0)|| is
a measurable function on X; which completes condition (ii) of Theorem [E.2.8 Conse-
quently, applying Theorem yields

sup ||~y H(X;,0) — (2 — ) E(H(X,,0))

b Y HeL0) () B (G 0)

1 [v2n]—[71n]

< e sup | Z H,(X,,0)

n oco || [2n] — [mn]

4 (WM—;L%TLJ — (12— 71)) sup ||E (H(X4,0))||

= op(1) +o(1) sup || B (H (X1, 0))]]

since W"Jn& — 72 — 71 as n goes to infinity. Furthermore, note that F (H (X, 0))
is (Lipschitz) continuous in € since due to (2.26) we have

|E(H(X,,02)) — E(H(X.,61))|| < E(|H(X,,602) — H(Xy,0,)]))
< & (sup IVHCE0)1, ) 02 64]

and E (supgee ||[VH (X;,0)| ) < co by Assumption [B.1.3} Hence, together with the
compactness of the parameter space we obtain

L’YQn
sup ||= Y H(X;,0) — (o —m) E(H(X1,0))|| = op(1). (2.27)
0co (|1
i=|yn]+1
Moreover, Lemma [E.2.10[shows that 6, is the unique zero of E (H (X1, 0)) in the strict
sense. Finally, (9:??72 — OOH = op(1) follows from Lemma [E.2.11 O

Asymptotic properties of the global estimator sequence §0,1 have already been inves-
tigated in other papers and books. For instance, asymptotic normality was shown by
Van der Vaart (2007) (Theorem 5.41 on page 68) for the i.i.d. case. Similar arguments
can be used to derive asymptotic normality of general Z-estimators as well which is
demonstrated in the following theorems.

Theorem 2.3.4. Let {X; : i > 1} be a series of type (‘) fulfilling the Assumptions
\B.1.1{to|B.1.4. Furthermore, let V(Ho) E(VH(X,,00))" be a non-singular matriz,
where VH (X;,0) = (VH,(X;,0), ..., VH,(X;,0)) denotes the matriz of gradients with
respect to 6. Then,

[v2n]
() . 1
Vi (00, = 00) = ~( =) V(O = ST H(K.,00) o (1),
i=|yn]+1

— 50 —



2. MOSUM Score-Type Statistics

as well as

Jn (ﬁ —00) BN, (0, (3 — 1) 'V (00) TE(V(80) 1))

V1,72

Proof. This proof is based on the proof of Theorem 5.41 in [Van der Vaart| (2007) on
page 68 for the univariate setting.
By componentwise Taylor series expansions around 6 there exist &§; 4., ..., &, ., such

that Hglkn—oo\<‘ N ...,p, with
1 [v2n]
—— > H(X,8)
i=|yin|+1
[v2n]
T ~(n)
L > VHC00" (07, - 6)
i=|y1n]+1
[v2n]
1 /~n) 1 ~n
Sy -a) > g, (6, - a)
i=|yin|+1
[v2n] [van]
1 1 /() T
NED> VHZ(Xi,OO)TﬂL%(@%W—@o) Y VHI(X, &)
i=[yin]+1 i=|yin|+1

(é\’(;: Y2 90)

Since E (supgee ||V2H (X1, 0)| ) < 0o by Assumption and as the measurability
of the second derivatives on X; yields that V2H;(Xy,8), ..., V*H(X,, 0) are i.i.d. and
therefore stationary and ergodic, for alll = 1, ... p, the Uniform Law of Large Numbers
in Corollary can be applied to obtain

1 [v27]
sup ||= Y VPH|(X;,0) (2.28)
0co ||TV .
Z*L'Yan'i'l F
[12n) = [n]

Z V2H(X;,0)

F

b Lan) = lwn) f

n oco || [72n] — [1n]
[v2n]—[v1n]

[v2n] = [nn] 1
STt [P P

+E (21618 HV2HZ<X170)HF))

F

= Op(1).
Hence, together with Lemma and Lemma |[E.1.5| we get
[v2n]

1 (é\f;)w _ GO)T Z VZHZ(XiaEZ,k,n)

n )
i=|yn|+1
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() 1 [v2m]
< ‘ 0, 90‘ sup || — Z VA (X;,0)|| = op(1).
0cO .
i=|yin|+1 r

Furthermore, note that F (|VH;(X1,60)]]) < oo by Assumption and Lemma
E.1.6| (¢c) and that the sequence {VH;(X;,0¢)}i>1 is i.i.d. due to the measurability of
the first derivatives with respect to X;. Thus, we obtain

[y2n]
- Z VH(X;,00) — (72 —71) E(VH (X, 00))
i=[yin]+1
1 L’Y271J*L’Ylnj
= ||— Z le(Xza 00) — (72 - '71) E (VHZ(Xla 00))
i=1
n|l —|vn
< (LB, 1 (v 000

1 [v2n]—nn]

I [v2n] — [ Z VH; (X, 00)

n (2] — [mn]

= op(1),
where the last line follows from

1 [y2n]—nn]

Tl =Tl 2 VH(Xi00)| = or(1) (2.20)

as given by the Law of Large Numbers and since lim,, M = 79 — 1. This

yields
[y27]

% Z VH(X;,00) = (v2—7)E (VH(X1,00)) + op(1).

i=|yin+1

By combining the Taylor expansions of all components, we receive

1 [v2n] ()
—= Y H(Xi60) = (52— m)V(80) + 0p(1)) (85, — 60)
i=|yn]+1

Since f(V) = V! is a continuous function on the elements of V' by Theorem 5.19 in
Schott| (1997) on page 188 the Continuous Mapping Theorem gives

(2 =)V (80) + op(1)) ™" = (12 — 1) ' V(B0) ! + op(1).

Thus, we get
() 1 [y2n]
NG (9%% - 90) = (2 — 1)V (Be) "t + op(1)) 7 Y H(X.6)). (230)
i=|yin]+1
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With Assumption we apply a multivariate version of the Central Limit Theorem,
which can be easily derived by using the Cramér-Wold Theorem and the univariate
CLT, on the sequence {H(X;,0¢)}:>1. Hence, we obtain

. hin ] o1 [yan)—[vin]
— H(X;,00) = — H(X;,6,) (2:31)
VR S Ve 5
\/L’anJ — lnn) L W"JZ:W”J H(X;,00) = N, (0, ( )%)
—= 79 0 Y 72 - 71 )
n Vien] —Innl o ’

which also implies that f szgm 111 H(X;,09) = Op(1). Consequently, we can con-
clude that

Vi (85, = 60) =~ — ) V(6,) ) +o0r (1)

ﬁ\
2
x
o
%
>

BN, (0, (72 — 1)V (80) 'S (V(60) >T).

]

Theorem 2.3.5. Let {X; : i > 1} be a series of type (HZ) fulfilling the Assumptions
|B.1.1,|B.1.5, |B.1.4] and [B.1.5. Then, the result of Theorem [2.3.4] remains true.

Proof. The proof is analogous to that of Theorem with the exception that the
statements in (2.29)) and are derived by using different arguments as explained
in the following.

On noting that the pattern of the original sequence described by type (F2)) is inherited
by the sequence VH,(Xy,8y),...,VH/(X,,0,) due to the measurability of the first
derivatives, together with Assumption we get that the sequence is stationary
and ergodic with existing first moment. Hence, the Ergodic Theorem shows .
Furthermore, Assumption [B.1.5| enables us to apply a strong invariance principle by
Kuelbs & Philipp| (1980)) (Theorem 4) to the sequence {H (X;,0)};>1. We receive

[v2n =[]

> H(X:,00) - W([nen] - [nn))|| = 0 () a.s.,

i=1
where ﬁ?(t) denotes a p-dimensional Wiener process with covariance matrix 3. Thus,
in connection with the stationarity of the sequence we obtain

1 [v2n] [y2n]—nn]

T2 Y HE)E Y H(K6) = = Wlln — Lunl) + on(1)

i=[nn]+1 =1

IIG

Furthermore, the self-similarity of the Wiener process and the almost sure continuity
of its paths lead to

T2 W (lan] a2 W (22 0d) 5 0, o),
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Corollary 2.3.6 (y/n-Consistency). Under the assumptions of Theorem and
Theorem |2.3.5, respectively, the estimator sequence é\(n) 15 \/n-consistent for 6.

Y1572
Proof. Applying Theorem [2.3.4] or Theorem [2.3.5| yields /n ((9{2)72 - 00) = Op(1)

which shows the assertion.

2.3.2. Under the Alternative

Under the alternative we have to take into consideration that the sequence {X;};> is
only piecewise stationary, i.e.

Do i <y,

X Ky, < < ko

XS > kg,

Furthermore, we assume that the estimator sequence 0,, is \/n-consistent for some

0 € © under the alternative and that {ng)}izl, j=1,...,q94 1, are sequences of type
(HI) or (F}2) satisfying Assumption and the following moment conditions which
are summarized in Section again.

B.2.1 Let E (HH(X§”,0)H> < oo hold for all@€®, j=1,....q+1.

N o~ |12
B.2.9 Let E (HH(XSJ),O)H ) <00, j=1,... q+1.

B.2.3 Let B <Sup9€@ HVH(X§J'>,0)HF) <00, j=1,...,q+1.

B.2.J) FE (Squee HV2H1(X¥)’B)HF) < o0 hold, foralll=1,...,p, j=1,...,q+ 1.

. 24v
B.2.5 There exists a v > 0 such that E (HH(X@,B)H ) <oo,j=1,...,q+1.

. 24v
B.2.6| There exists a v > 0 such that E (HVH(XSJ),O)HF ) < 00 holds for all
9cO, j—=1,.. ,q+1.

2.3.2.1. Assumptions [A.2.3| |A.2.4/ and [A.2.9|

In this part we show that the main assumptions of Theorem [2.1.8| are fulfilled by time
series belonging to type (HI) or (E2).

Lemma 2.3.7. Lel {ng) i > 1}, 5 =1,...,q9+ 1, be series of type ( or type

fulfilling the Assumptions and . Furthermore, let Assumption
l% hold on the bandwidth and let 6, be an estimator sequence which is \/n-consistent
for some 0 under the alternative. Then, the Assumptions |A23L |A.2.4| and |A29] are
satisfied.
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Proof. e Assumption [A.2.3}

We want to derive a strong invariance principle as in Assumptlon Thus,
the assertion follows from Lemma as the sequence {X } j= 1 g+ 1

satisfies all the assumptions of this lemma

Assumptions [A.2.4] and [A.2.9;
At first we consider the set B,,  containing all time points lying in a G-environment
of a change point. By a Taylor expansion of each component (I =1,...,p) there

exists a £, , such that H&ﬂ%k — gH <

Ile(Xi,é\n)— i H,(Xi,én)—<1§ H(X;,0) — i Hl(Xi,§)>

i=k+1 i=k—G+1 i=k+1 i=k—G+1
k+G N k A\’ N
_ (Z VH(X,0)— Y VHZ(X,-,O)> (§n . 0) (2.32)
i=k+1 i=k—G+1
L a1 [ G L
+5 (6.-9) (Z V€0 - Y Vi Xz,elm) (6.-9).
i=k+1 i=k—G+1

Furthermore, we assume that &;, < k < k;,, + G while noting that the following
statements can be derived similarly for k;,, — G < k < k;,. Thus, we receive

k+G _ k _

> VH(X;,0)- > VH(X,;0)

i=k+1 i=k—G+1
k+G N _
= > vHEX 8 Z VH,(XY 6 Z VH,(XY 6).
i=k+1 i=k—G+1 i=k; n+1

Since the sequence {Xj bis1, J=1,...,q+ 1, belongs to type ( or ( and
the first derivatives of the estimating functlon are measurable with respect to X;

we get that {VHl( 0)}Z>1, ....{VH, ( 0)}121, j=1,...,q+1, are ii.d.
or statlonary and strongly mixing as well. Furthermore, with VH XEJ ), 0) =

(VH(X; ) 9), . . VH,(X] ) 9)), Assumptlonand Lemma |[E.1.6{we obtain
) 2+v
E (HVHZ(XIJ ,0)” ) < 0,

foral@ e ®,l=1,...,pand j =1,...,q+ 1. Hence, applying Lemma |£.2.14
together with Assumption yields

k+G k N
ZVHZ $0)— Y VH(X;,0
i=k+1 i=k—G+1
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k+G
j+1 ’0“ 1 ]+1 5
Ve Z;I VH (X ,0) +—rG - %:H VH (X ,0)
L §5 0 g
+ e i_};ﬂ VH (X;",0)
k? —k+G ( ~
P HE (VHZ(Xf ,0)) (VH (XU 0)) H

=0Op (\/5) uniformly in k € {k;,, +1,....k;j, + G},

]

with VH,o(XY, 0) .= VH, (XY, 9) - E (VHZ(XE”, 0)). In connection with the

submultiplicativity of the Euclidean norm and the y/n-consistency of the esti-
mator sequence we are able to approximate the first summand of the Taylor
expansion in (2.32])

k+G k T
(Z VH(X,0) - Y VHZ(Xi,§)> (6, - 0)

i=k+1 i=k—G+1

k+G a
<—=| X va.0 S VA8 0) | 6. OP(M)’
i=k+1 i=k—G+1

which holds uniformly in k € {k;,, +1,...,k;, + G}
Moreover, the Assumption can be combined with the Uniform Law of Large
Numbers in Theorem as in (2.24) which leads to

k+G
> VPHI(X, €y, — Z V2H (X5, &)
i=k+1 i=k—G+1 F

k+G

1
Z VQH J+ Elnk Z V2Hl 7 7€lnk)
i=k+1 i=k—G+1
k .
- > VH(EITV €,
i:kj,n‘i‘l r
k+G
< su V2H,(XY™ 6)|| + 2su V2H,(XYT g
12 I Z i
n kj,

+ sup ZVQHZ(XEJH),O) + sup ZVQHZ X 6)

0co || 0co ||

F F
k-G '

+sup | VEH,(XY, 0)

0co || = »

=O0(k+ G)=0(n) a.s. uniformly in k € {k;,, +1,...,kjn + G}.
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Hence, with Lemma and the \/n-consistency of the estimator sequence we
receive, uniformly in k € {k;,, +1,...,k;», + G},

R T k+G R "
‘ (en—e) (Z V2H (Xi, & p) — Z V2H( Xz,glnk)) (en—0>

i=k+1 i=k— G+1

~ 2 ¢ )
On_OH v Hl(thlnk Z V Hl Xzaslnk)
i=k+1 i=k—G+1 7
=0p(1).
Thus, by considering (2.32) we can conclude
1
= e o
p | | e N
< max —— H/(X;,8,) — H(X;,0)
=1 EPna VG i:zk;rl ( )
k
- Y (Hz(Xuen) - HZ(XiaO))‘
i=k—G+1
=Op (\/ E) +Op <ﬁ) = op ((log(n/G)) )
log(n/G)

where the last line follows from Assumption|A.1.1fsince & — oo implies =G
0. Furthermore, on noting that the subsequences Xk,gﬂ, ..., Xy are stationary
for all k € A, ¢, similar arguments as in Lemma can be applied here to get

0% 7 [ 460~ 4] = or (vostny@) ).

Hence, we receive maxg<y<n—q \/Lé “A§n,k — Agka =op <(log(n/G))*1/2> show-
ing Assumptions [A.2.4] and [A.2.9

[]

2.3.2.2. General Z-Estimators

Similar to our Considerations under the null hypothesis, we examine the behavior of

general Z-estimators 07 ~, defined by (2.25) and prove V/n-consistency for these esti-
mator sequences under the alternative.

Therefore, let s be the number of change points lying in the interval (y1,72): s :=
|(71,72) N Cyl, where Cp, :== {kin,...,kqn} denotes the set of all change points. Fur-
thermore, we define

J r=min{j e {1,...,¢+ 1} : (\; —m1) > 0}

and we consider the sequence

Nje 15 Ajer ooy Ajess (2.34)
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with Xj*—l = ")/1,}:]'*_;,_5 = 72 and Xj = )\j fOI'j € {]*, c ,j* +s— 1}

Moreover, let 6,, ., be the unique zero of

Jt4s
Frn®) = (%= No) B (HED,0)). (2.35)
Jj=J"
Now we want to show that the estimator sequence 071 ~, 18 v/n-consistent for 6 = 0.,

under the alternative. At first, we derive classical consistency in the following lemma.

Lemma 2.3.8. Let {X; : ¢ > 1} be a series of type (Hi) or type (H2) fulfilling the
Assumptions [B.2.1] and [B.2.3. Then,

|

Proof. The proof of this result is similar to that of Lemma [2.3.3] By (2.27) it holds,
for j € {5%,...,j" +s—1},

9"
Y192 T Yy,

0

= OP(l).

[Xsm]
wlt & o (-5 5 (o) ~ons

eco ||V
’L:\_)\jflnj-‘rl

as by Assumptions |B.2.1| and B.2.3| {ng)} fulfills all the assumptions of Lemma
This implies together with ([2.35)

1 [y2n]
Sup || — Z H(Xiv 0) - F71,’72 (0)
6c® )
i=|yin|+1

J +s [Ajn]

— sup Z S HEXY.0) - (A —Xj_l) E(H(X§j>,9))

oc® =it = L/\ _in|+1
J*+s Ajn]
1 , - .
< sup = H(XY 0 —<A-—A._>E(HX<J>,0>
Sapln X HE - (-3 E(He 0
i:L)\jfan-‘rl
:OP(1)7

which shows that the uniform convergence condition of Lemma [E.2.11|holds. Moreover,
as the expectation of the estimating function is continuous on ® we get, the continuity

of F., -,(0) in 6. Thus, by Lemma |[E.2.10| we receive that 6., ., is the unique zero

8" _o

of F,, ,,(0) in the strict sense. Finally, ’ e — Oy

2. 111

= op(1) follows from Lemma

With the result of the lemma above we are able to derive y/n-consistency for general
Z-estimators. This is shown in the theorem below where we additionally get asymptotic
normality of the estimator sequence in the i.i.d. case.
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Theorem 2.3.9. Let the matriz j s ()\ — )\J 1) V(0. ~,) be invertible with Xj as
in . Furthermore, let

(a) {X i > 1}, {X(qH) i > 1} be sequences of type (‘) fulfilling the Assump-
tions |B 2. IL |B 2 L?L |B 2. 4| and |B 2. 2| with 6 = 0. ~,- Then,

Vvn (é\’(;j?'yz - 0”/1(Y2) - Ny (0’ v (j*is <XJ - Xj*l) 2@)) (VT)1> )

=5
where 3y = 3(;)(0,,, 72) denoting the long-run covariance matrizc ofH(XEj), 0. )
and V = J s ()\J — )\] 1) (04, 4,). In particular, this implies that the esti-
mator sequence éﬁ)w n-consistent for 0., -,.

(b) {X(l i>1},. {X(q+l) i > 1} be sequences of type (E@) fulfilling the Assump-
tions |B 2. ZL |B 2 3[, |B 2. 4| and |B 2. 5| with 6 = 0., .. Then, the estimator sequence

n)

0., ., is /n-consistent for 0., -,.

Proof. The proof is similar to that of Theorem and Theorem [2.3.5
By componentwise second order Taylor series expansions around 6., ., there exist

51771772,7’” T 75;0,71,72,71 SuCh that Hgl,qq,'yz,n - ’Yl V2 H < ‘ 1,72 071,’Y2 fOY l = 17 Y 4
with
1 Ly2n)
= D Hi(Xi0,5)
i=|yin|+1
[y2n]
~(n)
Z VHl & 'Yl '72) (071772 _071,72>
i=|y1in|+1
Ly2n]
1 ~(n) T1 ~(n)
_'_ 5 (0’71772 - 07%72) E Z V2Hl (Xh 5[771772771) <0717’72 _— 071772>
iZI_’)/lnj—l-l
[v2m] 1 () T |yam]
= |- > VH(X.6,.)" + 4 (60 = 0ns) D VEHIXi €0
i=|vn]+1 i=|yn/+1
~(n)
<0W1772 o 0%72) .

On noting that the second derivatives of the estimating function are measurable with
respect to X;, the i.i.d. or stationary, strong mixing structure of the original sequence
{X }121, j=1,...,q+1, carries over to the transformed sequence {V?H, (Xl( 2 ,0)}is1,
[ =1,...,p ie. {Vng(XEj),H)}izl, o AVZH(XY 0)Y sy, j o= 1,...,q + 1, are
random sequences of type ( or type ( and, consequently, stationary and ergodic.
Hence, by (on noting that {Xl(»j)} fufills the assumptions of Theorem we
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get, for j € {j*, ..., 7" +s—1},

LAjm]
1
sup ||— V2H,(X ,0 = 0Op(1).
sup 3 Z (X, 0) p(1)
g 17”“1‘1 F
This implies
1 Ly2n] itts [Ajm]
sup |~ ) VAH(X;,0)| = sup Z Y. VHI(X,6)
6cO |1 0c®
i=[yn]+1 P =7 = I_AJ 1n]+1 F
J*+s 1 [Xjn] 0
< sup ||— V2H,(X?. 0 = 0Op(1).
< ;%g - ~Z (X5, 0) p(1)
J=J 1= LAj,1HJ+1 F

Hence, applying Lemma [2.3.8| and Lemma yields

1 /\(TL) T L'YZ”J
E (0711"/2 - 0’71,72) Z VQHI(Xiagl,'yl;yg,n)
i=[mn|+1
() 1 [v2m]
<80, = O sup ||l > VR 0)| = op(1),
CECHIR
i=|vin]+1 o

Furthermore, note that the pattern of the original sequence {X(j)}z>17 j=1...,q+1,

described by type ( or H) is inherited by the sequence {VH;(X; x¥ 0,,0,)) 1=
1,...,p, due to the measurability of the first derivatives. Together Wlth Assumption
B.2.3| we get that the transformed sequence is stationary and ergodic with existing first
moment. Hence, the Ergodic Theorem yields

Xjn)
1 4 ~ o~ ,
o Z VHZ(XEJ)v 0:12) — <)‘j o )‘j—1> E (VHZ(ng)a 971772))
i=|Aj_1n]+1
i) =1j-1n) _

- Z VHI(XO 0., .,) — <)\j - Xjfl) E (VHI(ng)a 9*{1,72))

=1

< (LW L. m) |E (Ve 6,.)|

~ ~ [Ajn]—[Xj-1n)
nl— I\ 1 )
+ Ain] = LAyan] Z VHO,Z<XEJ)7 )
n L)‘ nj — L jo1n] i=1
:OP(1>7 jE{]*,,] +S—1}
which shows that

1 Ajm] 4 L '
E Z VHZ(XE'])a 071,’72) = ()‘J - )‘j—l)E (VHZ(ng)’ 071#2)) + OP(l)'

i=|Xj_1m]+1

Il
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Thus, we obtain

[v2n] J*s

LN VA0, =3 (3 A) B (VE(ED 6, +on(1),

i=|yn|+1 Jj=j*
By merging the Taylor expansions of all components, we get

[y2n]

Z H(Xiv 071772)

i=|vin|+1

Pts n)
- (Z <)\j — )\j—l> Vi(0,,4,) + 0P<1)> (0717“/2 - 971#2) '

J=J*

|
SRS

J=J"
V! is a continuous function on the elements of V' (see Theorem 5.19 in Schott| (1997)
page 188) the Continuous Mapping Theorem leads to

Since the matrix 57 ** (XJ - Xj_1> V (6., ,,) is invertible by assumption and as f(V') =

-1

(jf <Xj - Xj_1> Vi(0y) + 0P(1)> . (Jf (Xj - Xj_1> Vj(ew,w)) +op(1).

J=J* J=J*

Thus, we receive

Vi (947?)72 N 6%72)

its ! ;o Lend
- (Z <)‘j - )‘J'*1> VJ'(H%W)) +op(1) ﬁ Z H(X;, 0, ).
J=J* i=[yn]+1
Furthermore, on noting that (with F,, -, as in (2.35)))
[v2n] [y2n]
Z E (H(Xﬂ 071772)) = Z E (H(X2> 0’71,’72)) - nF71772(0717’Y2)
i=|yin/+1 i=|yin]+1
Its _ _ . '
<3 | Ryan = Byeand) = Gyn = gn)| | B (H XD 6,,.,) |
J=j*

*

j*+s J s
< |E(HED.0,.)| < X B (|HED 0.,
J=3* J=7*

)=o),

we obtain
~(n)
\/ﬁ <0’717’Yz o 9’}’1,72> (236)
(563 vo) o) & 5 |
= >‘j - )‘jfl Vj<0’717“/2)> + OP(l) = HO(Xi7 e'ymz) + 0 (_
= v [yin)+1 v
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For proving part (a), with Assumption we apply a multivariate version of the
Central Limit Theorem on the sequence {HO(X@, 0., .)}i>1,7=1,...,¢+1. and get

(3

Ajm] , o1 [Ajn) =i -1n] .
> Hy(x",0,,.,) 2 7 > Hy(X.0,,,,)
=1

1= LXjfan +1

-

— ~ [Ajn]—Xj—1n)
IAn] — [ A\jin] 1 ;
:\/ J o J = — Z HO(XZ('])ve’yl,’Yz)
\/L)\JTZJ — L)\jfan =1

b -
— N, <07 (A — Aj,l)E(j)) )

implying \/Lﬁ Zﬁiﬁ{lwﬂ Hy(XY 6, .,) = Op(1) as well. Furthermore, by the latter

one and equation ([2.36]) we receive

~n)
\/ﬁ (0717’72 o 071/72)

j*+s -1 [v27]
~ o~ 1
== (Z <)‘j - /\jfl) Vj(gw,’yz)) % Z HO(XhGW,W) + 0P<1)'
J=* i=|y1n]+1
Moreover, since the sequences x© e ,X@ ,j=1,...,q+ 1, are independent
[Aj—1n]+1 [Ajn]
we can conclude that
1 ly2n) ity BYE "
_n HO(X“e’h 72) = _n HO(XiJ 7071,72)
i=[y1n]+1 Jj=J* i=|\j_1n|+1
D LU
— Ny (07 (A )‘J—1>E(j)> )
J=j*

which shows the assertion of part (a).
In order to derive the assertion in (b), note that Assumption holds by Condition

by Lemma Hence, for every j € {1,..., ¢+ 1} there exists a p-dimensional
Wiener process {W(J)(t)}tzo with covariance matrix 3;) such that

= O0(n'/C)) g.s.

S H\(XY,0,,.,) - W (n)
=1

This yields together with the self-similarity of the Wiener process and Lemma [E.1.5

Ajn]

_n Z H, (Xz(])v 071772)
i:LXj,an—&-l

< —= W7 (1K) = W (N an)) || + 0r (n/;ﬁ))

—_
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0 (@_nj) 0 (M) o, (nli(jju))

<9 H21/2H W @) + O (nl/my))
su
- Fogtlg)l r vn

= Op(1),

where the last line follows from the almost sure continuity of the paths of a Wiener
process and the compactness of [0, 1]. Thus, we get

D

1 Ly2n] 7 s Ajn]
% Z HO ’7172 Z \/— Z HO(X§)797172) OP( )
i=|yin|+1 i=|XAj_1n]+1
which implies \/_< iy 0%72> = Op(1) by (2.36). O

Let us finish this subsection with a result linking to the discussion on the problem
in detectability which somehow depends on the choice of the global estimator. The
following lemma tells us that, under some regularity conditions, by taking the classical
Z-estimator in the MOSUM statistic at least one change is detectable or even all changes
are detectable if there are only two possible regimes, i.e. the parameter vector only
switches between two values.

Lemma 2.3.10. Let the assumptions of Theorem be satisfied. Furthermore, let
0; denote the unique zero of E (H(ng), 9)), forje{l,...,q+ 1} and let 0, # 0,4,

hold for all Il = 1,...,q. Moreover, suppose that the classical Z-estimator éénl) s used

in the MOSUM score-type statistic, Ty (G, é(()nl))

(a) Then, at least one change is detectable by the MOSUM statistic, i.e. ¢ > 1 with
q as in Assumption[4.2.7

(b) If there are only two distinct regimes then all changes are detectable, i.e. ¢ = q.

Proof. By Theorem [2.3.9| we know that é\énl) is y/n-consistent for 6y, which is the
unique zero of

q+1

Fou(0) =Y (0 - A1) B (HXY,6))

j=1

according to (2.35). Hence, for proving the result of part (a) we have to show that
E (H(ng),OOJ) # E( (X5 x{*t g, 1)> holds for at least one j € {1,...,q}. Let us
now assume that this not true, which means

E (H(XgU, 0071)> E— (H(ng“), 90,1)) .
Then, by definition of 8y, we would get
q+1 ‘
0 == F071(0071) = Z ()\J — )\jfl) E (H(ng), 6071)) == E (H(Xgl), 0071)> 5
j=1
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implying that 6, = 6¢,, for all j = 1,...,¢ + 1, which contradicts the assump-
tion. Consequently, we can conclude that there exists at least one j € {1,...,q}

with E (H(ng), 0071)> 4 E (H(X§j+”, 0071)>.

This immediately implies the assertion in (b) as in such a case
B (HxP,001)) — B (HEI™, 601),

are equal for all j € {1,...,q}. O

2.4. Possible Problems of the Procedure

2.4.1. The Choice of the Bandwidth

In the Section we could derive consistency for the estimator sequences which
is some kind of quality criterion theoretically justifying the usage of the MOSUM
procedure. Nevertheless, this property only holds asymptotically but in practice we
want to apply the procedure on data sets of finite sample size. Thus, we need to assess
how well or bad the procedure performs on finite samples and yet some questions come
up: How do we choose the length of the moving window for finite samples? Is there an
optimal bandwidth?

Fichinger & Kirch| (2018)) already recognized that the choice of the bandwidth has a
decisive influence on the performance of the MOSUM procedure in the classical mean
change model. This holds for the general model as well as we will see in the simulations
of Chapter [4

In theory it would make sense to choose the bandwidth G as large as possible so that
the minimal distance between two adjacent structural breaks is still greater than 2G.
This would ensure that in each time point the statistic is contaminated by at most
one change implying that the signal of the statistic takes its local maxima only at the
locations of the detectable changes as described in Section However, for real
data sets the change points and its distances to each other are unknown so that there
is no possibility to check whether a bandwidth G satisfies the condition above or not.
Moreover, for localizing small changes lying far from any other change, we need a large
bandwidth whereas detecting large changes being close to other changes requires a
small window length. Hence, problems arise if we have a combination of both scenarios
and only one bandwidth is used. One possible solution is to run the procedure with
different bandwidths and merge the results in an appropriate way. (Cho & Kirch| (2018)
have introduced such a multiscale method for the classical mean change model which
can be adapted to our general setting. Further explanations on that and first results
are given in Chapter o]

2.4.2. The Problem in Detectability

In Section we have already discussed when a change can be detected by MO-
SUM score-type statistics, at least asymptotically. We have learned that the signal of
the statistic needs to be strictly positive in an interval around the change which is the
case if a change in the parameter vector of the underlying distribution causes a change
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2. MOSUM Score-Type Statistics

in the expectation of H(X;, 0) as well. Hence, the number of detectable changes some-
how depends on the choice of the estimating function. There are examples in which all
changes are actually detectable by this MOSUM procedure, e.g. the classical MOSUM
statistic in the mean change model or the MOSUM score-type statistic based on the
least squares method in a simple linear regression model. However, this is not true
in general and there exist some examples, even for the classical mean change setting,
where the number of detectable changes is not equal to the total number of changes.
Let us consider the following example.

o —

< -

o -

0 200 400 600 800 1000

The plot shows a time series which randomly deviates from a mean value changing
at the time points 100, 200, 600, 900. By applying the MOSUM statistic based on the
estimating function of the classical median, which is H(x, 1) = sgn(x — u), we would
not be able to localize the first change point as the signal of the statistic is equal to
zero at this point as illustrated in the graph below.

T T T T T
0 200 400 600 800

Nevertheless, as shown at the end of Section under some regularity conditions in the
general model at least one change point is detectable if the global estimator computed
on the whole sample is used in the statistic. Thus, we could theoretically find all
changes by doing some kind of binary segmentation as explained in the following. At
first we determine the estimated change points obtained by the global Z-estimator
computed on the whole sample. After splitting the data sequence in these points into
different segments, an Z-estimator can be computed on each segment and employed in
the score-type statistic to detect further changes. By recursively repeating this step
we would be able to detect all changes for large n.

However, even if we choose the estimating function such that the signal of the MOSUM
score-type statistic is strictly positive in every change point, which ensures detectability
in the asymptotics, we could still fail in localizing some of the changes in finite samples.
For instance, if we use the median-like estimator and its estimating function, H (z, u) =
% arctan(u — x), for the example above and compute the corresponding MOSUM score-
type statistic (G = 50) we are again not able to detect the first change point in 100 as
plotted below.

T
1000
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P
>

In this statistic we compute the median-like estimator on the whole sample, i1,
and employ it in the estimating function to get the transformed series, H(X;, li1,) =
2 arctan(fi1,, — X;), on which the MOSUM statistic is based. However, our theoretical
results are not restricted to this specific global estimator and we can think of choosing
a different global estimator for the mean p in the statistic. Therefore, let fi; 100 denote
the median-like estimator calculated on the subsample X;,..., Xi00. Note that this
broader class of Z-estimators computed on a part of the sample has been examined in
Section [2.3] The behavior of the MOSUM score-type statistic, where the alternative

estimator is used, is shown in the following graph.

0 2 4 6 8
|

T
1000

A As

0 200 400 600 800
Here, we succeed in finding the first change but we slightly fail in detecting the last
one. Hence, applying several global estimators in the procedure and merging the results
reasonably could solve the problem in detectability. Consequently, similar to the band-
width problem, described in the previous subsection, adapting the multiscale method
introduced by (Cho & Kirch (2018)) will be essential for improving the performance of
the procedure.
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3. MOSUM Wald-Type Statistics

As already discussed in Section [[.2] the classical MOSUM statistic investigated by
Eichinger & Kirch| (2018)) is constructed by comparing the sample means of subsamples
of size G around each time point. Hence, a quite natural way for generalizing this
procedure to several parameter change problems would be to use MOSUM Wald-type
statistics based on differences of local estimators as described in the following definition:

Definition 3.0.1 (MOSUM Wald-Type Statistic). A MOSUM Wald-type statistic
based on Z-estimators is given by

Wa(G) = GLhinec Wia(G)

| VG [ - »
with Wi, ,(G) = NGl <0k+1,k+G - 0k7G+1,k> r;! <9k+1,k+G - 0k7G+1,k)7

where 51# is a local Z-estimator satisfying > ., H(X;, §lu) =0 and I’y is the asymp-
totic covariance matriz of \/éek_gﬂ,k which is assumed to be positive definite.

Note that the matrix 'y, in specified in below.

This chapter is organized as follows. In the first section, we consider the MOSUM
Wald-type statistic in a general setting under i.i.d. and strong mixing assumptions
on the observations. In Section the asymptotic behavior of the statistic under
the null hypothesis is examined whereas in Section we show consistency for the
corresponding test and estimators. In Section we focus on the linear regression
model and derive similar results under the null hypothesis and the alternative.

3.1. General Setting

Throughout this section, we assume that the estimating function H is twice continu-
ously differentiable on a compact parameter space ®, where H and its derivatives are
measurable with respect to X;. Furthermore, note that the same notation as in Section
2.3 is used here.

3.1.1. Asymptotics Under the Null Hypothesis

Similar to Section we assume that Xy, ..., X, is a series of type (HI) or type (E2).
Let 8y be the unique zero of E (H (X1, 0)) in the strict sense according to Definition

such that 6 is the true parameter vector under the null hypothesis in a correctly
specified model and the best approximating parameter under misspecification. Let
3 = 3(6y) be the long-run covariance matrix of H (X, 8), which is assumed to be

positive definite. Moreover, we consider the assumptions of Section with 6 = 0,
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and additionally introduce the following assumptions:

B.1.7 Let E (SUpeee |V2H; (X, )H2+V> < 0o hold for all j = 1,...,p and for some
v > 0.

Let V(0) = E(VH(X1,0))" be a reqular matriz for all @ € © and let

V() .
sup |[V(6)"'|[, < oo

For investigating the asymptotic behavior of the Wald-type statistics we need to
understand how the local Z-estimators behave if n goes to infinity. Similar to the
previous section, we can derive consistency results for these estimator sequences holding
pointwise in k.

Lemma 3.1.1. Let {X; : i > 1} be a series of type (HI|) or type (B9 fulfilling the
Assumptions |B.1.1) and|B.1.5. Then, it holds pointwise for any k=G,....,n—G

H9k+1,k+c - 90H =op(l) and Hek—GH,k - 00” =op(1)
i.e. the local Z-estimators are consistent for the true parameter vector.

Proof. Similar arguments as in the proof of Lemma [2.3.3| can be used here. However,
note that the condition of uniform convergence in Lemma (statement in
Lemma follows directly from the stationarity of the sequence and the Uniform
Law of Large Numbers in Theorem [E.2.§|

k+G G
sup HyX;,0)| = sup =op(1).
S PIE e o

]

Moreover, the local estimator sequences asymptotically follow a normal distribution
which is shown in the following two theorems.

Theorem 3.1.2. Let {X; : i > 1} be a series of type (Hl) fulfilling the Assump-
tions [B.1.1 to [B.1.]] and let Assumption hold on the bandwidth. Then, it holds
pointwise for any k=G,...,n—G

S
+
Q

VG (émkw - 90) — V()" H(X,,00) +op (1).

ﬁ\

i=k+1
and
1 k
e é\kaJrlk_OO = -V (0" Z H(X;,600) +op (1),
< ) \/az k—G+1
as well as

VG <§k+1,k+G — 90) 3 Ny (07 V(OO)_lz(V(OO)_l)T)
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3. MOSUM Wald-Type Statistics

and
NlE (§k_a+1,k _ 90> BN, (0,V(8,)'S(V(6) ™)),

where ¥ = 3(0y) denotes the long-run covariance matriz of H(Xy,0y), which is as-
sumed to be positive definite.

Proof. Similar arguments as in (2.30]) in the proof of Theorem can be used to get

k+G
\/5 <0k+1,k+G - 9()) = — (V(eo)il + Op Z H Xz, 00

z k+1

Applying a multivariate version of the Central Limit Theorem and the stationarity of
the sequence yields

k+G

G

1

\/EZHX”OO QTZ Xz,ao Np(072)7
i=k+1 i=1

which implies

iel (§k+1,k+c - 90)
k+G
> H(X;,00) +op(1) 3 N, (0,V(80) ' S(V(8,)71)7) .

i=k+1

1
VG

The second statement can be derived similarly. O]

—V ()"

Theorem 3.1.3. Let {X; : ¢ > 1} be a series of type (HZ) fulfilling the Assumptions
[B.1.1,[B.1.5, [B.1.4] and[B.1.5 and let Assumption hold on the bandwidth. Then,
the result of Theorem remains true.

Proof. Similar arguments as for in the proof of Theorem can be used here
where the statement in (2.29)) is given by the Ergodic Theorem which can be applied
by Assumption and as VH(Xy,8y), ..., VH(X,,8)) is of type (E2) due to the
measurability of the first derivatives. Thus, we get

k+G
VG (GHLHG - 90) = — (V(60) " +0p(1 Z H(X;, ).

z k+1

Furthermore, Assumption [B.1.5| enables us to apply a strong invariance principle by
Kuelbs & Philipp| (1980)) (Theorem 4) to the sequence { H (X, 60)};>1 which is of type
(E2) since the estimating function is measurable with respect to X;. We receive

G
> H(X;,60) — W (G)

=1

=0 (Gl/(2+”)) a.s.,
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where I//‘v/(t) denotes a p-dimensional Wiener process with covariance matrix 3. Hence,
with the stationarity of the sequence in connection with the self-similarity of the Wiener
process we receive

k+G
D

\/1_ S H(X,,0) 2 \/_ZH X, 00) — \/%W(G)Jrola(l) 2 W (1) + op(1),

i=k+1

which proves the assertion since W (1) ~ N, (0, %).
The second statement can be shown similarly. O

The results of Theorem and Theorem also show that the local estimator
sequences are v/ G-consistent for 8y which is given in the following corollary.

Corollary 3.1.4 (\/_ Consistency). Under the assumptzons of Theorem or The-
orem the estimator sequences 9k+1 krc and Hk G+1,k are (pomthse for any

k= G n — G) G-consistent for 6.

Proof. By Theorem [3.1.2 or Theorem [3.1.3| we get VG <§k+1,k+G — 00> = Op(1) and
VG (é\k,GJrLk — 90> = Op(1) showing the assertion. O

Moreover, applying these theorems enables us to specify the asymptotic covariance
matrix

[, =T=V(0) 'S(V(8) "), forallke{G,....,n—G}. (3.1)

In addition, Theorem gives the asymptotic covariance matrix of the difference
of the local estimators in the i.i.d. case. Since the local estimators are computed on
disjoint and therefore independent subsamples we obtain

VG (éﬁmm _ §k_a+1,k) BN, (0,2V(8,) ' S(V(60) ™)) .

This justifies the use of the factor \/Li in the statistic.

Nevertheless, we have to be aware of that all these results, including Lemma [3.1.1}
only hold pointwise and they do not need to hold uniformly in k. However, in order to
derive a limit distribution for the MOSUM Wald-type statistic we need the following
uniform statement:

k+G
$-1/2 (\/1_ Y H(X:.6) - \/—\/?V(OO) (490—49,f+1 G )H (3.2)

i=k+1

max
0<k<n—-G

= op ((log(n/G))1?).

The following lemma provides a uniform convergence rate for the local Z-estimators.
This will help us to show that Conditon ([3.2) is satisfied under some moment conditions.

Lemma 3.1.5. Let {X; : i > 1} be a series of type (HI) or type (H2) satisfying the
Assumptions |B.1.9, (B.1.6, |B.1.7 and |B.1.8. Then

max VG H@HMG — OOH =0Op ( log(n/G))

G<k<n—-G
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Proof. A Taylor expansion in §k+17k+g around 6 yields that there exists a &, with
Hﬁk,n - 90” < H9k+1,k+G - OOH such that

| MG k+G T R
~5 2 HX.00) = ( > VH( Xz,éko) VG (Bisrirc—60).  (33)
i=k+1 i=k+1

At first, we want to show that the assumptions of Theorem are fulfilled. Since
we assume that {X;};>1 is of type (EI)) or type (E2) and that the first derivatives of
the estimating function are measurable with respect to X; only Conditions (i) to (iii)
of the theorem have to be checked.

On noting that VH (X, 0) = (VH(X,,0), ..., VH,(X;,0)), Assumption in con-
nection with Lemma ﬁ (c) yields E (||VH;(Xy, 9)H2+”) < oo for all 8 € O, hence
(i). Moreover, by a first order Taylor expansion we get

IV H, (e, 8) ~ VHy (€)1 < [V H (o] 10 — €1 < sup ||V i .m0 — €1

which is well defined at least almost surely with respect to Px, since

E (supgee | V2H;(X1,0)||,) < oo by Assumption . The continuity of the supre-
mum and the Frobenius norm in combination with the measurability of the second
derivatives of the estimating function imply that supgee ||[V2H,(-,0)|  is a measur-
able function with respect to X;. Hence, Condition (ii) of Theorem [E.2.16] is satisfied.

Furthermore, we have £ (supgee I V2H; (X, )||2+”> < 0o by Assumption [B.1.7|which

shows Condition (iii) in the theorem. Consequently, applying Theorem [E.2.16]in con-
nection with Lemma [E.1.6] (d) yields

k+G k+G
<
Jnax Z VH(X;, &) sup, max ||~ Z VH,(X;,0 (3.4)
i=k+1 r i=k+1 r
P k+G
< = .
<o x| 3 Vi or(1)
J= i=k+1
Hence, by considering the Taylor expansion in (3.3)) again, we obtain
k+G
Z (X:,00) = (0p(1) + V(&) VG <9k+1,k+G’ - 90> uniformly in k.
z k+1

which shows together with Lemma [E.2.21 and Assumption [B.1.§]

k+G
1

V(gkm)flﬁ Z H(X;,00) = (op(1) + I,) VG ((9\“17“@ — 00) uniformly in k.
i=k+1

On noting that E (H (X1, 6,)) = 0 and E (| H (X, 90)H2+y) < 0o by Assumption
Corollary [E.2.13|can be used since the pattern of the original sequence described by type

- 80 -



3.1. General Setting

(HI) or type (Ef2) is inherited by the sequence { H (X;,0)}:>1 due to the measurability
of H. We receive

k+G

\/_ Z (X, 600) = Op( log(n/G)> uniformly in k. (3.5)

i=k+1

Thus, applying Lemma [[.2.21] in combination with Assumption yields
Op ( log(n/G)> = (op(1) + I,) VG <§k+1’k+g - 90> uniformly in k.

Hence, the assertion follows from Lemma [E.2.22 O

Remark 3.1.6. The condition in Assumption that supgee |V (0) | < oo is
satisfied if

. . T

elg(g Amin (V(G)V(G) ) > ¢, for some c > 0,
where Apin(+) denotes the smallest eigenvalue of a matriz.

Proof. Note that the spectral norm of a matrix A is defined by (see e.g. Horn &
Johnson| (1990) on page 295)

1AL, =/ Amae (AT A)

with A4 (+) denoting the largest eigenvalue of a matrix. Now, the result can be shown
by using the following inequality of the Frobenius norm and the spectral norm:

P
Al = /tr(ATA) = | 3 A (ATA) < y/pAnas (ATA) = VP || Al
i=1

where \;(+) represents an eigenvalue of a matrix.
Hence, we obtain

sup HV 1HF < psup HV 1H2 = /psup \/)\mm (V(@)")TVvV(e)1)
0cO 0cO

1 1
P 0eo Voo VT \/2_9\/mf96(9 L VOV \[E =0
]

The following lemma shows that Assumption (3.2) can be derived under some moment
conditions.

Lemma 3.1.7. Let {X; : i > 1} be a series of type (HI) or type (HI) satisfying the
Assumptions |B.1.5], |B.1.6, |B.1.7 and |B.1.8. Then, Condition (3.2)

/ ( 1 ]iG vG (
max 271 2 H XZ, 00) — —V(90) 00 — 0k+1 k+G ) H
0<k<n—G NoTel L V2

— op ((log(n/G))~2).
15 satisfied.
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Proof. By a componentwise Taylor expansion, for each component (j = 1,...,p) there

exists a &, such that Hfj,n,k — OOH < Hak+1,k+G — GOH with

- lf H;(X;,60) = (lf (VHj(X¢,9o))> (§k+1,k+c: - ‘90>

i=k+1 i=k+1
1~ k+G R
+3 (ek—l—l,k—i-G - 90) ( > VIH(X, §]nk)> (9k+1,k+G - 90> :
i=k+1
Hence, we obtain
1 k+G
Z H;(X;, 0,) (3.6)
i=k+1
k+G T
1 VG N
E (V‘H (Xh 00 + = Z VH 7,0 X’L? 00)) = (00 - 0k+1,k+G>
( G i=k+1 \/§
\/@ N T k+G R
+ NG <9k+1,k+G — 90) Z VPH; (X, € k) (90 — 9k+1,k+G> :
2 k+1

Furthermore, note that the function supgeg ||V>H;(+, 0)|| » is measurable with respect
to X; due to the continuity of the supremum and the Frobenius norm and since the
second derivatives of the estimating function are measurable with respect to X;. Thus,
the i.i.d. or strong mixing structure of the original sequence carries over to the trans-
formed sequence ie. {supgeo |V*H (X )||}2>1 is a random sequence of type (HL)

or type (E2) as well. With Assumptlon and Assumption [A.1.1] Corollary [E.2.13]

can be applied to receive

1 k+G 1 k+G
— VZH-(X“&’”’ NN <= supHV2H )H
izk—;l ’ o P Gi;ﬁ’@ "
1 k+G
< = VZH;(X;, —E V*H;(Xy,0
<3| 3 (Ivmes. ol £ (uyIvme.0)l) )
+E(eupHV H,(%,,0)|, )
0cO

VG

where the last line follows directly from Assumption and Assumption[A.T.T] This
yields in connection with Lemma [E.1.5| and Lemma [3.1.5

k+G
‘\/_ 9k+1 k4G — )T( Z V2H,( XZ?E]H]C)) (90 _§k+1,k+G>

i=k+1

=0Op (M> + O(1) = Op(1) uniformly in £,

e
Hokﬂ i — 00|

Z VZH Xzaégnk)
i=k+1

F
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=0Op (M> = op ((log(n/G))~ 1/2) uniformly in k,

since, for large n,

log(n/G)+/log(n/G) - nt/ @+ /log(n)
VG N VG
by Assumption [A.1.1} Furthermore, with Assumption [B.1.6]and as the sequence

{VH;(X;,00)}i>1 is of type (HI) or type (H2) due to the measurability of the first
derivative Corollary [E.2.13| can be used to get

k+G

1 G

_Zv 0(X:,80) = Op (M)
i=k+1 \/@

—0 asn— o0

Combining this with the result of Lemma the Cauchy-Schwarz inequality and
Assumption leads to

k+G
1 Z VH;oX;, 90)T@ (90 - §k+1,k+G>

Gizkﬂ | V2
k+G \/a R
5> VH (., 60) 7]\00—9k+l,k+0\)
i=k+1 2

= M =0 og(n —1/2 uniformly in
_op( OIE)) — op (tog(n/G)) ) wiorny i

Thus, with (3.6) we can conclude that

k+G

j— D Hil%:,00) = B (VH; (%1,00))" “—E (80 = Brsirsc) + or ((log(n/G)) ™)
holds uniformly in k. Finally, we obtain
| G
\/_lgk;l (X, 8)
= V(OO)\/—E <00 — é\k+17k+g) +op ((log(n/G))™/?)  uniformly in k,

which shows (3.2]). ]

If Assumption (3.2) is satisfied we are able to determine the limit distribution of the
Wald-type statistic under the null as stated in Theorem [3.1.8] The basic idea there
is to show that the Wald-type statistic is asymptotically equivalent to the score-type
statistic considered in the previous chapter so that both statistics behave similarly in
the limit and a(n/G)W,(G) — b(n/G) has the same limit distribution as its score-type
counterpart described in Theorem
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Theorem 3.1.8. Let {X; : i > 1} be a series of type (HI)) or type (HJ) satisfying
Assumption and let Assumption on the bandwidth hold. Furthermore,
assume that (3.2)) is fulfilled.

(a) Then, under Hy,

aln/GYWo(G) —b(n/G) 2 E

with E as Gumbel distributed random variable as in Theorem and with a(x)
and b(x) as in (2.1)).

(b) The long-run covariance matriz 3 can be replaced by a positive definite estimator
sequence Xy, and the expectation of the gradient matriz 'V (6y) can be replaced by
a regular estimator sequence Vi, satisfying the following assumption

Gg,ggg_GHE’”zV(@) Sor Vi —OP((log(n/G))_l)

without changing the result of part (a).

Proof. (a) By (3.1) we know that T'; /* = 72V (8y) holds for all k € {G, ..., n—G}
under the null hypothesis. Similar to the MOSUM score-type statistic (see Remark

2.0.2)), we receive

W,(G) = max
G<k<n—G

\/_ ~ —~
HE 12v(6) (9k+1,k+G — 0k7G+l,k) H -

On noting that

5172 (\/_ lf H(X:,00) — \/—\EV(BO) (60~ §k+1,k+g)) H

= k+1

max
0<k<n—G

= max
G<I<n

1/2 \/@ n
51/ (\/ﬁ Z H(X,.60) " =V (60) (eo—el_gm))H

i=l—G+1

by shifting the index to [ = k + G, Assumption (3.2)) yields
T0(G,80) — Wa(G)]|

~ |e<k<n-a \/%_G HEil/ZAoo’k ‘
s B0
< Ogrkng%LX—G’ ~1/2 < : (Xi, 00) — \/—g (6o) (00 — 9k+l k+G ) H
+ x5 <\/%_G izéﬂﬂ(xi’ 00) — ¢—\; (60) (60 - §kc+1,k)> H
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3.1. General Setting

=2 max
0<k<n—G

= op ((log(n/G)) ™),

k+G
1 VG ~
»n-1/2 (\/_ E H X“GO \/§ V (90) (00 — 0k+1,k+G)> H

=k+1

which implies that W, (G) = T,(G, 6o) + op ((log(n/G))~/?). Furthermore, As-

sumption of Theorem is satisfied by Lemma and Theorem [2.1.]
can be applied to finish the proof.

(b) The result of part (a) yields

W,(G) = max

 G<k<n—G

=Op (2?2;2;) =Op ( log(n/G)) :

Furthermore, by Lemma |E.1.5 we receive

|

0,)"'T2x"12v (9,) (@H,HG - @ﬁcﬂ,k) H

NG R _
HE 12V (0,) (9k+1,k+c - 0k70+1,k) H

max Nl H9k+1,k+c —0i_cik

G<k<n—G

e

= max —HV(
G<k<n—G

< HV(90>—121/2

VG o . .
F Geken—a V2 HE 2V (6,) <9k+17’€+0 - Bk—G+l,k> H
— Op ( log(n/G)> _
Hence, we obtain

max HZ
G<k<n—G

2V (6,) <§k+1,k+G — §k—G+1,k> H

s

— max ko an(9k+1/c+(;—9k GH+1,k H‘

G<k<n—G

~_1/2 ~
< max Hz—l/QV(oo)—zkn/ Vi
G<k<n—G :

= op ((log(n/G))™1?),

which implies the assertion.

|

max —— ||@p+16+6 — Ok—ci1k
chkgnc\/ﬁH L i

O
Remark 3.1.9. The assumption on the estimator sequences in part (b) is fulfilled if

—-1/2

max HE Y

G<h<n—G = or ((log(n/G))™) and

s [[Vi = V6w = or ((ox(n/G) )

— 85 —



3. MOSUM Wald-Type Statistics

Proof. By using the triangle inequality and the submultiplicativity of the Frobenius
norm, we receive

max HE‘VQV(HO) — 2;2/2‘7;”

G<k<n—G F
- |5 (V00 - ) s (57 5217) (P - Vi)
12 o2
v (2 — S )V(GO)HF
< = [vie0-v
S D N LCOR e
+ max ‘ V(6y) — ‘A/kn max H§3*1/2 _ ﬁ;;ﬂ ‘
G<k<n—G F G<k<n—-G ’ F
12 @TY2 ‘
VO mex =72 -5

— op ((log(n/G)) ) .

3.1.2. Asymptotics Under the Alternative

As already described in Section we consider alternatives with ¢ structural breaks
where ¢ denotes the unknown number of change points. Under the assumption of
piecewise stationarity, there exist stationary sequences {XEJ) i>1),5=1,...,q+1,
such that ‘

X; = ng), for kj_1, <i<kj,.

Furthermore, we assume that 8; € © is the unique zero of E <H(X§j),0)> in the

strict sense according to Definition for j=1,...,9+1, and 8; # 0;,, for all
j=1,...,q. Hence, 6, is the true parameter vector of the underlying distribution of

{ng) : ¢ > 1} in a correctly specified model and the best approximating parameter
under misspecification. Besides, let X, = 3,(0;) denote the long-run covariance ma-

trix of H(ng)7 0;) which is assumed to be positive definite. Moreover, we consider the

same assumptions as in Section [2.3.2 with § = 0; for {ng)}. In addition to that, the
following conditions are needed 1n this section:

. 24+v

B.2.7 Let E (SUpee@ HV2H1(X§J),0)H ) < oo, for all 1 = 1,...,p and for some
F

v>0,7=1,...,q+ 1.

. 2+v
B.2.8 There exists a v > 0 such that E (”H(ng),G)H ) < o0, for all 8 € O,
7=1,...,g+ 1.

. T
B.2.9 Let V;(0) = E(VH(X&”,H)) ,j = 1,....q+ 1, be a regular matriz for
all 8 € O and let

sup [|V;(6)7"|| < oo
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3.1. General Setting

Let 6V ;(0)+(1—0)V ;+1(0) be a regular matriz for all @ € © and all 6 € [0, 1]
and let

sup sup ||(6V;(6) + (1 — 5)Vj+1(0))_1||p <oo, j=1,...,q
4€[0,1] €O

. 2+v
B.2.11| There exists a v > 0 such that E (sup,ge@ HVH(X&J),O)H ) < 00, for
F
7=1...,q+ 1.

Note that all conditions are summarized in Section [B.2l

In order to show consistency for the MOSUM-based test and estimators, we need
to examine the behavior of the MOSUM Wald-type statistic on several subsets of
{G,...,n — G}. Remember that

Avg={ke{G,....n—=G}: |k—kj,| >G Vje{l,...,q}}

is the set of all time points being far away from any change point as in (2.2)). Further-
more, let

Aj,n,G = {k‘ c An,G . kj—l,n < k‘ S kj,n} (fOI‘ j = 1, o q + 1) (37)

such that Ay, ¢, ..., Agt1n,¢ is a partition of A, ¢ since for each k there exists exactly
one j € {1,...,q+ 1} with k;_;,, < k < k;,,. Moreover, we define

B =B with BY o i={ke{G,....n— G} 1k <k, <k+G} (3.8)

q+
B(Q)G::UB(Q)G with BZ) = {k € {G,....n— G} 1k — G < kj,, <k}. (3.9)

n,

Note that the sets Ay, ¢, ..., Agt1n.6, Bfr)l’G, e B(SL)IWG, Bﬂ}G, .. B(Jr)1 .G re pair-
wise disjoint for n sufficiently large by Assumption[A.1.1}and |A.2.1|so that they together
built a partition of {G,...,n — G}.

Under the null hypothesis we used the asymptotic equivalence to the score-type statis-
tic to determine the limit distribution whereas under the alternative this might be only
useful on segments far away from any change. The main advantage of the MOSUM
Wald-type statistic is that a change in the parameter vector directly affects the statistic
which implies that the signal of the statistic is strictly positive on the G-environment
of every change. In order to use this strength in detectability, we have to examine the

behavior of Wald-type statistics on intervals around the change points. In doing so
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3. MOSUM Wald-Type Statistics

we need to understand how the local estimator sequences §k+1,k+g behave under the
alternative. Therefore, we introduce two functions:

[ E(HXD.0), i hedg
E (H(X§j+1), 0)) . if ke BY,

Fi(k,n,G,0) = | | (3.10)
ety (H(XY.0)) + 2k g (HXU™,0)),
. 1
\ if keB) .,
and
(B(HXP.0), i kedg
E(HXY 0)), if keBWY
Fy(k,n,G,0) = ( (& )> ' dimaG (3.11)

kj,n_k G j k_ijL j+1
hin—ktG (H(Xgﬂ, 0)) + kg (H(ng+ ) 9)) ,
it keBY,

\

1 2
Furthermore, let éfgiG be the unique zero of Fy(k,n,G,-) and 5;;0 denote the unique

. ~(1) ~2)
zero of Fy(k,n,G,-). By definition of Fy and Fy we get 6,,, = 6,5, = 0; for

1 2
k€ Amg (=1 .q+1) and By =001, 000 =0, for k =k j=1,....q

In the following lemma we derive v/G-consistency pointwise for all change points and
all time points being far away from any change.
Lemma 3.1.10. Let {Xgl) D> 1},...,{X§q+1) : i > 1} be sequences of type (

satisfying the Assumptions|B.2.1| to |B.2.4| or sequences of type (E@) fulfilling the As-
sumptions |B.2.1, B.Q.Z?L B.2.4| and |B.2.5, with @ = 6; for {XEJ)}. Furthermore, let
Assumption [A.1.1] on the bandwidth and Assumption hold. Then,

(a) \/5 Hé\kj,n‘i‘lykj,n+G — 0j+1 = Op(l) and \/@ Hé\kj,n*G+1,kj,n — Hj = Op(l) f07" all
change points kj,, j=1,...,q, and

(b) \/5 "§k+1,k+G — 0]' = Op(l) and \/5 Hé\k’—G"rlvk’ — Oj = Op(l)

pointwise for all k € A, c.

Proof. First note that, for all change points kj,,j =1,...,¢, (Xi, .41, Xp, . 4¢) =

(XD X ) and (Xm0 Xay,) = (XF) _gpys X)) hold for all

n. Hence, ijyn_GﬁLijyn and ij,ﬁl’kj‘ﬁg, respectively, is determined by solving the

estimating equation system Zfizj a1 I—I(ng)7 0) =0or Zfig;ﬁl H(XZQH)7 0) = 0.

Since the sequences {Xgl)}, ce {ngﬂ)} are stationary and fulfill the assumptions of
Theorem or Theorem the assertion in (a) follows from Corollary |3.1.4]
Similar arguments can be applied to show (b). O

The lemma above is very helpful in the consistency proof for the test. However, for
showing consistency of the change point estimators we need results which enable us to
split the statistic into noise and signal and to approximate the noise part in a uniform
way. Hence, the next lemma will be essential for the proof of Theorem [3.1.15]
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3.1. General Setting

Lemma 3.1.11. Let {Xgl) D> 1},...,{X§q+1) : i > 1} be sequences of type (
or (H2) satisfying the Assumptions[B.2.7], [B.2.8, [B.2.1(} and [B.2.11] Furthermore, let
Assumption on the bandwidth and Assumption hold. Then,

~ oo(n - "(2) og(n
(a) H9k+1,k+G’ OknGH - (V < /G)) and Hek_aﬂ’k B ek’"’GH =0 ( l g(G/G))

uniformly on A, a,

—~ ~(1) ~
(b) H9k+17k+G — Ok’nyGH = op (1) and Hekz—GH,k — OknGH = Op (%) uniformly on
By

~(2)

6. || = 0p (L) and ||6, ~ 07 | = op (1) wniformi
= Op|7g) an k—G+1.k kncl| = op uniformly on

(c) Hé\kJrl,lHG — 0.6

2
B;,g.

Proof. (a) First note that (Xk+1,.. XHG) = XV X9 ), K, X)) =
(x? GH,...,X,(f) and . = By = 6; hold for all time points k & AMG

Thus, Ok G+1k and 9k+1 kic are computed on a stationary sequence {X }121
which fulfills the assumptions of Lemma [3.1.5]since Assumption [B.2.6]follows from

Assumption [B.2.11| and as Assumption [B.2.10| implies (with 6 = 1 or 6 = 0) that

V;(0) is regular for all @ € © and supgee |Vj(0) |, <o, j=1,....,q+1.
Thus, Lemma [3.1.5| can be applied here to receive

a+1
~ 1) ~
max VG H9k+1,k+c — Gk,mgH < Z max VG H9k+1,k+G -

kJGAn,G - k’EAj’n,G
=Op < 1og(n/G)>
and
max \/EH@C k G—é@) H :Op< log(n/G))
e +1,k+ kn,G ~

(b) We start with the proof of the second statement. Note that (Xz_gy1,...,Xg) =
(X901, X9) and 6, ; = 6, hold for all time points k € BY , and that the

assumptions of Lemma are satisfied by {ng )} as explained in (a). Conse-
quently, the same arguments as in Lemma [3.1.5| can be used here. However, the
rate in (3.5) can be improved by Lemma [E.2.15| as follows

Z H(XY,00) = Op (1) uniformly in k € B(}..
z k—G+1

Finally, the proof can be finished in an analogous manner to Lemma with the
new rate.
For the first statement we have to take into consideration that k;,, € {k+1,...k+
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G — 1} which makes it a bit more complicated. A Taylor expansion in §k+17k+g

1
around é{le yields that there exists a §; ,, o with

~(1)
Hékz,n - Ok,n,GH < Hek-i-l,k’-l-G - OknGH
such that
k+G k+G T R )
- —= Z H(X;, 6 ( > VH( meknc)) V@ <9k+1,k+G - ek,n,G) ;
z k+1 i=k+1
(3.12)
which is by Assumption equivalent to
1 [ G =0 = Gi) 2D
. n
- ﬁ Z H(ij 70k,n,G) + Z H(Xz] 70k,n,G>
i=k+1 i=ky p+1
1 kj,n ( ) 1 k+G ( ) T
j i+1
E Z VH(XzJ 7£k,n,G) + a Z VH(XZJ 7Ek,n,G)
i=k+1 i=kjn+1

- ~(1)
Ve (okﬂ,kw . ek,mG) .

Similar to Lemma , one can show that the sequences {ng)}izl or {ngJrl)}iZl
and the function VH; satisfy the assumptions of Theorem coinciding with
the assumptions of Lemma [E.2.17] For further explanation we refer to in
the proof of Lemma m Hence, applying Lemma |E.2.17| on VHl(XZ(-j),G) in
combination with Lemma [E.1.6] (d) and Assumption [A.1.1] yields

max Z VH( @,gk,w) < sup max Z VH, (XY 6)

kB o |G S . <@ kB o ||© S h
(3.13)
]n
< sup max VH o(X;7,0)| =op(1)
and
k+G
J+1)
max Z VH (X ¢, ,0) (3.14)
keBJnG 1=kjn+1
F
1 k+G 4
< sup max ||— VH XEJH),O =op(1).
zp | CR ORI Bt
—kyn

Consequently, by considering the Taylor expansion in (3.12) again we obtain

k+G

1 +1) 50
-— Z HEY. 800+ Y HE'. 6, )
\/a i=k+1 i=kj n+1
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ki,—k k+G -k,
= <OP(1) + a Vi€ena) + TJ’Vﬂl(fk,n,G))

. 1
VG (9k+1,k+G — éiiG) uniformly on Bﬁic

In addition, Lemma [E.2.17] can be used to approximate the left hand side of the
equation above. Therefore, we have to verify that the assumptions of this lemma,
which are explicitly descrlbed in Theorem are satisfied. On noting that
{ng }i>1 is of type ( or type ( and that the estimating function H is

measurable with respect to X(J) by assumptlon only Conditions (i) to (iii) of
Theorem [[L.2.16[ have to be derived.

. 2+v
By Assumption |B.2.8{we have E (HH(X?), 0)” > < oo for all @ € ©. Moreover,

a first order Taylor expansion yields
|H (x,0) — H(z,&)| < [VH(z,n)||p 6 — &l < Sup IVH (z,n)||; 10 — €Il
n
(3.15)

which is well defined, at least almost surely with respect to P, since
1

E (SUpee(-) HVH xY) o H ) < 00 by Assumption [B.2.11| By the continuity of the

supremum and the Frobemus norm in combination with the measurability of the
first derivatives of the estimating function we can conclude that supgcg |VH (-, 0)|| »

is a measurable function with respect to X foryj=1,...,q+ 1 Hence, Condi-
tion (ii) is satisfied and Assumption 1| shows Condltlon (iii). Consequently,

since Ok,) ¢ 1s the unique zero of 7” “E (H(X( Z 0)> htG kJ"E ( X(JH >
applying Lemma [E.2.17] yields

1 ] n ( k+G 1)
max ||— ZHXJ + Y HEXY e,mG (3.16)
kEBJ<17)z G \/5 i=k+1 i=kjn+1
kjn ' k+G 1)
= max VG|~ S HY )+ S HxU 6, )
keBM , ’
7,n,G i=k+1 = k‘J nt+1

0cO keB(1>

kjn
1 - (]
< sup max VG G Z H( X

i=k+1

k+G
1 (+1)
+sup max VG G Z Hy X", 0)

00 kBl i=hj p+1
= Op <\/ G> .

Hence, we receive

- k+ G~k _ 1)
(OP(l) + L G Vil€rna) + ijjﬂ(&k,n,a)) <9kz+1,k+G - 9k,n,G>
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= op(1) uniformly on B§,172,G
Furthermore, by combining Assumption [B.2.10| and Lemma [[2.2.21] we can multi-
ply both sides of the equamon above with the inverse of the convex combination

k'n_k' k G n
LG Vj(ﬁk,n,G)+ S V]+1(€knG) and get

- ~(1)
op(1) = (op(1) + I,) <9k+17k+g — 9k7n7G> uniformly on BJ(gG

Thus, Lemma shows

. 1

H9k+1,k+G - éfm)lGH =o0p (1) uniformly on Bj(lrzG
and we obtain

Hé\k+17k+G OknGH =o0p (1) uniformly on Bﬁ:é,

since the number of changes ¢ is finite.

(c) These assertions can be shown analogously to (b).
[l

Note that Assumption is very restrictive and might not be verifiable in some
models. For further discussion on that we refer to Remark 3.1.19 below.

Moreover, the matrix I', has to be specified under the alternative as it constitutes
an important part of our Wald-type statistic. According to Assumption for
kiin <k <kjn j=1...,q+1, weset

=T, =V;(0;)'3;(V;(6,)"")". (3.17)

3.1.2.1. Asymptotic Power of the MOSUM-Based Test

By applying Theorem [3.1.§ an asymptotic level a test for testing the null hypothesis
of ¢ = 0, i.e. no change or structural break occurs in the considered time period, has
been constructed:

Reject Hy it W,(G) > D, (G, ),
b(n/G) + cq
a(n/G)

where ¢, := — loglog denotes the (1 — «)-quantile of the Gumbel distribution.
The following theorem shows that this test correctly rejects the null hypothesis under
the alternative with probability tending to 1. The main result is stated in part (a)
followed by part (b) which is of particular interest for applications where the matrix
I';, is usually unknown and estimators are used.

with D, (G, a) =

Theorem 3.1.12. Let {X\" : i > 1}, {X™ i > 1} be sequences of type (‘)

or (b@) satisfying the Assumptions |B 2. BL |B 2. 7[, |B 28] and with 9 = 0; for
{X,L- 4 > 1}. Furthermore, let Assumption |A.1.1] on the bandwzdth and Assumption
[A.2.1 hold.
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(a) Then, under Hy, we obtain for any z € R

lim P(a(n/G)W,(G) —b(n/G) > z) =1,

n—o0

i.e. the test has asymptolic power one.

(b) The matriz T, as in (3.17)) can be replaced by a positive definite estimator sequence
L'y, satisfying the following assumption:

~—1/2  __
(1) maxyep, . || Tk n/ I‘A,lk/2 =op (1), where {T" 41 }r>1 s a sequence of pos-
itive definite matrices fulfilling supy, [|[T a x|l < 0o and sup, I‘;}k/Q . <00

Proof. (a) Similar to the proof of Theorem [2.1.7] it is sufficient to show that W,,(G) —
/

ZZ(I)’IEZLG?) 24 0o since the inequality a(n/G)W,(G) — b(n/G) > z is equivalent to
z+b(n/G)
Wo(G) — ——~+—=0.
e

First we use W,,(G) > Wy, , »(G) before we split the statistic Wy, , ,(G) into noise
and signal. Then, since the Assumptions [B.2.7] and [B.2.§| imply [B.2.1] and
Lemma [3.1.10] (a) can be applied which shows together with Lemma [E.1.5]

W,.(G) = max W;,(G)

G<k<n—-G

- 3 6. 2 )

_} n+17kj,n+G - ekj,’!L_GJ'_l’kj:"

N HI‘_I/z (OkJ n+1 k’J 7L+G - 0]"1‘1 <§kjv”_G+17kj’n N 0]>> H)

B (Hekj,nJrl,kj,nJrG =01

By

>

v (Hr:f 01— 0,

G ||
> 2 |ri 6, - 6)

)

+ Hekj,n—e+1,kj,n — 0,

6;) ‘ + Op(1),

as HI‘_l/QH = O(1). Furthermore, Assumption [B.2.9/in combination with Lemma

yields that Ty, = V;(0;)7'%;(V;(0,)~")" is positive definite which implies
that r, 1n is pos1t1ve deﬁnlte as Well Hence, on noting that 6., # 6, and that

the Fuclidean norm coincides with the Frobenius norm for vectors in Rd as shown

in Lemma we receive

HF 1/2 j+1

‘ =\/(0;41—6,) T} (6,11 —6))
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= \/(91+1 —0,)" (V;(6;,)71%,(V;(6;)")7) " (801 — 0;) > ¢

holds for some ¢ > 0. Since Z:(I’T(L%?) = 0(v/G) by Assumption|A.1.1|we can conclude
that

2+ b(n/G) _ VGe 2+b(n/G) c P
W, (G) — ) > 7% +OP(1>_W_\/5(\/§+0P(1)> = 00,

which implies the assertion in (a).

(b) If the matrix 'y is replaced by an estimator fkn in the statistic we use the following

notation
_ VG a2
Wn(G) = G<r]£1<ai< GWk n(G) = cgrilﬁf_a 2 HP’“” <9k+1 e 01 Gl k) H

On noting that by Assumption (I) on the estimator sequence

~—1/2 _
1/ L

—1/2
kn — T AE r

< max Al

F - kEBn,G

+ max
F kEBn,G

= OP(1)>

~—1/2
kj,'mn

F

the same arguments as in (a) can be applied here to obtain

] e

W.(G 9,) ‘ +Op(1).

01—
In analogous manner to the proof of Theorem [2.1.5] (¢) we can show that

R 002

Ly on (001 —6;)

hold for some ¢ > 0. For a detailed explanation we refer to that proof. Finally,
similar to (a) we can conclude that

—~ 24 b(n/G)
n — 2 1 ;
Wo(G) — /G VG(c+op(l)) = o0
which yields the statement of (b).
[

Remark 3.1.13. The assumption on the estimator sequence of the long-run covariance
~ ~—1 ~ ~—1
matriz in part (b) is fulfilled if Ty =V Bpn(Vy,)", where

° f];m s a positive definite estimator sequence satisfying:
~—1/2

—-1/2
maneB Ekn _EAk

= op (1), with {Eax}tr>1 denoting a sequence of
F

positive definite matrices fulfilling supy, | Xkl < 0o and sup, HE 1/2

< X
F
and

o V. is a reqular estimator sequence satisfying:

MaXieB, o “7;” — VA’kHF =op (1), with {V ax}tr>1 denoting a sequence of reg-

ular matrices fulfilling sup, HVZlkHF < 00 and supy, ||V okl < 00.
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Proof. We receive

=-1/2 —1/2” Sooo2 —1/2H

max ||T’ = max ||Vi,2 — V2
KEB, ¢ k,n kEB, ¢ kn~kn Ak
= max (Vk n — VA k:) 2_1/2

kEBn_’G

~ ~—1/2 _1/2 —1/2
+(Vin = Var) (X, —X, + Vo Ek n T XA .

< max E;lk/QH max ‘A/kn—VAkH
" k€B, ’ F k€B,.a ’ ’

+ max Vi, -V H max 2_1/2 » Y2

eyl | AR b keB, o II7Fn Ak g

o 1/2 —1/2
Ek,n _EA,k/

+ max HVAkHF max
kEB, €B

n,G n,G F

= op (1)7

which shows the first part of Assumption (I). Furthermore, note that T4, = VX4, (V;lk)T
is a sequence of positive definite matrices by Lemma [E.1.7] with

_ _ T _ 2
Sl}:p 1T Akl = Sgp HVA}I@ZAJC (VA,lk) HF < Sip HVA,lkHFS%p [Zakllp < o0

and
1/2

—1/2 -1
SUPHFA,k/ :SUPHVA,kEAJC/ H <sup||VAk”FsuPH2 RS
k k

F

completing the proof of Assumption (I). O

3.1.2.2. MOSUM Wald-Type Estimators

The estimators for the number of changes and the locations are determined in an
analogous manner to Section We consider all pairs of time points (vj,, w;,)
with

Win(G) > Dy (o, G) for vj, <k <wj,,

Win(G) < Dy, G) for k=v;, —1,w;, +1,

Win — Vjn > G with 0 <e <1/2 fixed. (3.18)

The estimator for the number of changes ¢, is given by the number of pairs and we
take the maximal points of these exceeding intervals [v;,,w;,] as estimators for the
location of the change points:

Ejm = argmax Wy ,(G).

vjn<k<wjn

Before we prove that these estimators are consistent for the true values in some sense,

1 2
we need to examine the distance between 6; and the unique zeros 5;316‘ and éfm)«zc on

specific intervals around the change points. Therefore, we define

B =B 0 {k: |k~ kjnl < (1-€)G} and (3.19)

Js

B =B 0 {k: |k~ kil < (1-)G}

Js

with B( )G and B( >G as in 1) and 1) and ¢ as in (3.18]).
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3. MOSUM Wald-Type Statistics

Lemma 3.1.14. Let Assumption on the bandwidth and Assumption be
fulfilled. Moreover let {Xgl) > 1) {ngﬂ) 11> 1} be sequences of type or

(E@) satisfying Assumption |B.2.11. Then, for all j =1,...,q¢+ 1,

(a) max HO,CHG 0;

keB(l

=0(1) and max HOknG 0,41

keB

=0(1),

>

~(2)
> c and min Hek,n,G — 044
keBY)

> ¢ for some ¢ > 0.

Proof. (a) The assertions follow directly from the compactness of the parameter space.

(b) First note that by definition of 6; and 52:17)1@

k+G = kjn (+1)
I L O <H(X13 9))
G 7
T - k4 G-k, -
=B (HX,6,) + ——=—""E (H(X{™.0,))
- k4G =k,

E <H(X§J ,e,m(;)) E (H(Xﬁj“), 55:,31,@)) :

G

Furthermore, with the approximation in (3.15) and by using the properties of
expected values we receive

L ki . .
B b | (m(x00,)) — B (B, 60|
< # B (||Fe . 0) - Hx0,6) GH)
k — ki,
< kG king (supHVH X0+ ) H ) Hekna
G )
<FE (sup HVH(ngﬂ H ) HOknG < oo, forall k € Bﬁzg,
6c®
where the last line follows from Assumption [B.2.11] Similarly, we obtain
kin—k ;
P |[E (e ep) - £ (01?610
kjn—k

< E(|Hx?. 0, - HxP, ek,n,GH)

bt (e o], ) oo,

6cO
<10 (s [y 02 0], ) -0 0,
0cO
Hence, this can be combined to
k+G—k;n ;
HTJE (H(Xgﬁl), 0j)> H
§( (SupHVH xU+D Q)H )+(1—5) (supHVH 7 H )) HH,MG
0c® F 0cO
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3.1. General Setting

Moreover, since 6;.; is the unique zero of E (H(ngﬂ), )) and 0,1 # 0, we know
that there exists a ¢ > 0 such that

[ (e )| 2 <o (e 0)| -2

Finally, we can conclude

min HOknG > ¢ with

keB(l)

c:= , > 0.
e T N e e T

The second statement can be derived in an analogous manner.
O

Now, we have all the ingredients together to show that the estimator for the number
of changes is equal to the true number with probability tending to one.

Theorem 3.1.15. Let Assumption on the bandwidth and Assumption 1 be
fulfilled. Moreover, let {Xgl) 1> 1} .., {ngﬂ) 1 > 1} be sequences of type (HI|) or
(H2) satisfying the Assumptions (B.2.7), (B.2.8), (B.2.10)) and (B.2.11)). Furthermore,
assume that the sequence {ay, }nen fulfills Assumption .

(a) Then, it holds

P(@,=q) — 1, asn— oo.

(b) The consistency statement in (a) remains true if the matriz T, is replaced by an
estimator I'y,,, satisfying the following assumptions.
~—1/2

(1) maxiep, o ||Tr, — T}

‘ = op (1), where {T' 4 1, }r>1 is a sequence of pos-
h >

itive definite matrices fulfilling supy, [T 4| < oo and sup,, F,:xlkﬂ‘ < 0.
Follp
(II) max I‘kn — F_l/QH p (log(n/G)™1).
keA n,G

Proof. (a) The basic idea of this proof is similar to that of Theorem [2.1.8] Due to
Condition 3 in the MOSUM procedure, we need to consider only the set of time
points being far away from any change, A, ¢, and the sets of time points lying in

n ((1 —¢)G)- environment of a change as in such that

q+1
BmG = U Bjm,G’ Wlth Bj,n,G = B](',ln),G U B](-isz
We obtain

P(a\n = Q>
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3. MOSUM Wald-Type Statistics

> P < max Wy ,(G) < Dp(an, G), min Wy, (G) > Dn(an,G)>

keAn G kGBn G

> P ( max Wi(G) < Dy (cu, G)) + P ( min Wi, .(G) > Dy (an, G)> -~

k€A, ¢ keB, ¢

Thus, it is sufficient to show that

(1) P ( max W ,(G) < Dn(an,G)) — 1 and
k‘EAnG

(2) P ( min W,,.(G) > Dn(amG)) 1

kGBn G
as n goes to infinity.
Part (1):
We start with proving statement (1). Let T(j (G, 0) be the MOSUM statistic based

on estlmatlng functions according to Deﬁnltlon 1| computed on the sequence
{X; G) }i>1. Furthermore, note that applying Lemma 3 1.11| yields

- log(n/G)

ker%i}ig 91~c+1,k+G — Uil = Op ( T and
A~ _ log(n/G)

. £?§G Or_ci1k Op ( —a |

Thus, since (Xp_g11, -, Xera) = (X 0y, -, XU ) holds for all k € A;,, ¢ with

{ng)}izl fulfilling the Assumptions |B.2.5, B.2.6|, |B.2.7| and |B.2.9| (following from
Assumption [B.2.10| with 6 = 1) Lemma [3.1.7| can be used here to receive

12 k+G \/@ N
max 3 ) — —V(G) 0. —Bk k+G
keAj,n,G J < / Z;l \/§ J J < J +1,k+ >

= op ((log(n/G))™"?)

and

max
kEAjyn,G

— op ((log(n/G)) ).

This implies

E\E

V;(0;) (9j - 5kG+1,k)> H

2j—1/2<\/_ Z H(X J)9>

=k—G+1

max Tkn(G 0;) — max Wkn(G)‘

keA]nG keAJnG
k+G k+G
71 2 )
= | max P HED 0)- Y H(EXY.0))
keA;
T i=k+1 i=k—G+1

— Imax

keA,m 7 HE 1/2VJ(0J') <§k+1,k+G - é\kaH,k) H‘
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3.1. General Setting

; k+G k+G
< max _12< (ZH .0 Z H(X J)0>
k€Ajn.c 2G ) A
J <9k G+1,k — 9k+1 k+G>) ‘
k+G \/a
< —1/2 X vGao A<A_A
ké%?,i{c ( V2G zzk::—HH 9 \/5 VJ(O]) 0; 9k+1,k+G)
k
1 ]) \/E ~
+ kenf}ilxc ( 2G . ’;H H 0 - %V]<0J) (03 - 9k—G+1,k>

= op ((log(n/G))~?),

which shows that W ,(G) = T,C(Q(G, 6;)+op ((log(n/G))~/?) uniformly on A; .
Moreover, this yields

P (a(n/G) max Wy,(G) —b(n/G) < z) (3.20)

kEAJ n,G

=P (a(n/G) max T,m(G 0;) —b(n/G)+op (1) < z)

> P <a(n/G) o Juax. GT (G 0;) —b(n/G)+op(1) < z>

= exp(—2exp(—z)) +o(1l) for some z € R,

where the last line follows from Theorem [2.1.1] since Assumption is satisfied
by {H(X" 8,)};~1 under the Conditions|B.2.8 or[B.2.5/as shown in Lemma [2.3.2]
Hence, on notlng that c,,, is the 1—a,,-quantile of the Gumbel distribution, applying

Lemma [£.2.18)] yields

P ( max Wi.(G) < Dn(an,G)) (3.21)

kEA" G

=P ( max max Wi ,(G) < Dn(ozn,G)>

1<5<q+1 k)EAJ n,G

_p (ﬁl {ker%?icc Win(G) < Dn(an,G)}>

Jj=1

k)EAJ n,G

g+l
>y P < max Wy, (G) < Dy(an, G)> —(¢g+1)+1

kEAJ n,G

= ZP (a(n/G) max Wy, (G) —b(n/G) < can) —q
> g+ 1)1 —ay) +o(l) —g=1—(qg+ Do, + o(1).

Thus, we can conclude that P (maxkeAmG Win(G) < Dy(cun, G)) — 1 by Assump-
tion [AL2.8
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Part (2):
For proving the second statement, it is necessary to approximate
P (minkij,n,g Win(G) > Dy(a, G))

Note that T = T; and 6y, = 6; hold for all k € BY . After sphttlng the

statistic into noise and signal, applylng Lemma [E-T.5 and Lemma 1] yields

min W, ,(G) = min _1 2 <0k+1 e — Ot k:) H

keB(l) keB! 1>

> mip 02 (B H)H
keBl) .
VG 5
_kn}%{ — HI‘ 1/2 <9A+lk+0 - 9A G+1,k — (Ok n,G 0]>>H
EB].%G
>  min @ F-I/Q(éﬂ) —9'>H
- keBWY V2 I fn@ !

~ )
max H0k+1,k+G - Okn(;‘
F \keB!) .

_1/2 (éﬁ ¢~ j)

By using the result above and on noting that

)

+ max Hek G+1,k — 0
keB) &

‘+0p(\/5>.

_ 1 _ 1
[0 =6l = [r3x7 (8o = 83) | < e [ (Bl - 85)]
according to Lemma |[E.1.5| and
1
min Hééie -0 >c
keB) . o

by Lemma |3.1.14] we receive

P ( min Wy, (G) > Dn(ozn,G)>

(1)
k:EBJ n.G

> P (kerg(l}r)lyc \/—\/g 1";1/2 (éf:;G — 0]-> ’ +op (\/5) > Dy (o, G))
(L YE oo (117,) " +or (v8) > D1t )

> P (VG (c+op (1)) = Dalan,G)) = P (c+op(1) > %) 1

-1
where the last line follows from (‘ F;/Q = O(1) due to the positive defi-

F
niteness of the matrix I'; and from Assumptions and ensuring that
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% = o(1). Similar arguments can be used to obtain

P min Wy,(G) > Dy(a,,G) | =1 asn— oo.
keB'”)

7,n,G

Hence, with Lemma [E.2.18 we get

P( min Wi, (G) > Dn(an,G)>

kEBJ n,G

1 2
keB), keB?

=P ({ min Wy, (G) > Dn(an,G)} N { min Wy, (G) > Dn(ozn,G)})

> P ( min  Wy,.(G) > Dn(an,G)>

&)
keB) &

+ P ( min Wy, (G) > Dn(an,G)) -1—=1

B
keB?) &

Finally, we can conclude

P ( min Wy ,(G) > Dy,(an, G >
kEBn a
=P ( min = min Wy, (G) > D, (. G))
1<j<a+1 keB,; .o

j=1 kEB]',mG

_p (qﬁl{ min Wi (G) > Dn(an,@})

k’EBJ n,G

q+1
>y P ( min Wy ,.(G) > Dn(an,G)) —(g+1)+1—1,
]'_

where the approximation in the last line follows from Lemma [E.2.18

(b) Part (1):

Combining Lemma [3.1.11f with Lemma and Assumption (IT) on the estimator
sequence yields

max Wkn(G) — max Wi,(G)

kGAn G k‘EA,,L G ‘

o o%

max —— ||I';, (9k+1 k+G — 01 k) H
kGAn’G

/G

12 (A A
— max —— HI‘k (0k+1,k+G - 9k—G+1,k> H
k€AnG /2

~-1/2 —1/2
max ||y, —T

VG i~ .
< max ——= (@it 046 — Ok—ct1k
2 keAn,G

F
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:op< 10g(n/G)> op (log(n/G) ") = op (log(n/G) 2,
which shows that Wj,,.(G) = Wi.(G) + op ((log(n/G))~"/?) uniformly on A, ¢.
Thus, with (3.20) we get

kEAJ n,G

P (a(n/G) max Win(G) — b(n/G) < z)

=P (a(n/G) max Wi,(G) —b(n/G) +op(1l) < Z)

kJEA] n,G

> exp(—2exp(—z)) +o(1) for some z € R.

Hence, in an analogous manner to (3.21)) we can conclude

P ( max Wi, (G) < Dn(ozn,G)) 1.

kGAn el

Part (2):
Similar to (a), we get with Lemma [E.1.5]
e

min Wi,(G) = min (0’““ pra — Orcn k) H

keB) & keB) &
~—1/2
> mln \/_H / <9knG 0; )H
keB)
\/_ ~—1/2 ~(1)
— max HF“ (0k+1 ki — Or G+1k — (aknc_OJ'))H
keB) o h

3t I )

k.n Ok,n,G

VG ~—1/2

— — max Hrk”

V2 keB(l)

)
‘ max H9k+1k+G eknG‘ + max Hek G+1,k — 0
F\ keB; 1) k:eB

)

. \/ ~—1/2 A(l)
> min o ||E (00— 0)|
keBY) .
VG A—12 _
- — max H / -T 1/2H + max HF 1/2H
V2 \keB® , ke

)
max H9k+1k+0—9kng~’ + max Hek a1k — 0
I<:eB(1 keB

. \/_ ~—1/2
= min Hrkn/ ( kn,G T j)“+0P <\/E>’

(1)
keBY) .

)

where the last line follows from Lemma [3.1.11] and Assumption (I). Furthermore,

applying Lemma and Lemma |[E.1.5|in connection with Lemma [3.1.14] (a) and

- 102 -
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Assumption (I) yields

VG 1512 (4 e -
i YL @ 0,)|- i L2 (0l 0))|

(1) (1)

keBY) keBY)
VG ||a-1/2 (1) —1/2 (D)

< max. —= Hrkn <0k,n,G - 9]’) - FA,k <0k,n,G - 9]’) H

keBY V2

J5ms
~-1/2 —-1/2 V

S max Fk n -r k n,G

keB‘” ©F keB(l)

= op ((log(n/G)™") Op (\/@) = op (\/5) :

Thus, by combining these results we obtain

P < min Wkn(G) > Dn(an,G)>

&
keBY) .

> P ( min @ Hrz}kﬂ (@SLG — ej) H +op (\/5> > Dn(an,G)) :

Similar arguments as in (2.8) in the proof of Theorem [2.1.5] (¢) can be applied
keBY) HFZIZQ:I:H > /1 ||x]| for every @ € R? with « # 0,

where ¢; > 0 denotes a lower bound for the minimal eigenvalues of I‘;le, for

every k € Bﬁ?c» obtained by Lemma [E.1.10, For further explanation we refer

to the proof of Theorem (c). Moreover, from Lemma [3.1.14] we know that

here to show that min

for some ¢, > 0. Thus, we receive

min keB") Hek nG

00 (8- 0)) | = v [0 - 6] > e vith c:= vires

Finally, in analogous manner to (a) we can conclude that

Dn(an,G))
P Win(G) = Do(an,G) | = P (et op(1) > =802 g,
(kerg(llr; 11(G)> D, (o >> (e on(r) = 1%

7,n,G

since % = o(1) by Assumptions|A.1.1{and |A.2.8

]

Moreover, the following corollary in combination with Remark [3.1.17) proves a weak
consistency statement for the change point estimators &;,.

Corollary 3.1.16. Let the assumptions of Theorem hold. Then,

<G>—>1

1.e. with probability tending to one every change point has at least one estimator in ils
G-environment.

P (max min |k, — kjn

1<j<q 1<I<{n
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Proof. Similar to the proof of Corollary [2.1.10} the assertion follows from part (2) in
the proof of Theorem [3.1.15] O

Remark 3.1.17. By Theorem[3.1.15 there are exactly q change point estimators with
asymptotic probability one. Since the distance between two adjacent change points is
asymptotically greater than 2G an estimator can only lie in the G-environment of one
change point. Thus, combining Theorem and Corollary[3.1.16 yields that every
change point has exactly one estimator in its G-environment with probability tending
to one.

With the help of the results above we get that the estimators of the rescaled change

points ij = k"T’”, Jj € {1,...,q}, are consistent for the true rescaled changes \;,
j €{1,...,q}, in the classical sense shown by the corollary below.

Corollary 3.1.18. Let the assumptions of Theorem hold. Then,

~ G
max min |\, — ;| =Op (—) = op(1).
1<j<q 1<I<gn n
Proof. The assertion follows immediately from Corollary [3.1.16] m

Remark 3.1.19. In order to prove the consistency results above we have to assume
that Assumplion holds which s very restrictive and can not be verified in some
models. Thus, we have been thinking about relaxing this assumipion to Assumption
[B.2.9. From theory we know that under Assumption for each 8 € ©, there are
at most finitely many 0 such that 6V ;(0)+(1—06)V ;41(0) is not regular. Unfortunately,

this statement is not strong enough and it does not rule out that there exists a k € BJ('}?E,G
so that . . bt Gk

ij Vj (€k’,n,G) + vaj-‘rl(gk,n,G)
15 not invertible. This would suspend a main argument in the proof of Lemma
which would implicate that we are not able to assess the value of the statistic in this
point. Hence, it would be theoretically possible that the statistic takes extremely small
or large values on BJ(ITZG Whereas large outliers are not problematic, as long as we
are not interested in improving the convergence rates, small outliers, which fall below
the critical value, can have severe consequences. In this scenario we could have two
wntervals of exceedings of length greater than eG in the G-environment of a change point
such that the number of changes would be overestimated. A solution could be to modify
the e-criterion in the MOSUM procedure. One can think of choosing the estimators of
the locations and the number of the changes in the following way:

Let Upg :={k €{G,...,n = G} : Wy ,(G) > Dp(a, G)}. Then, take the local
mazimum k;, as a change point estimator if it satisfies

kjn — G kjn + Gl N Upg| > (1 —8)G, with0 < &< 1/2,

i.e. the statistic exceeds the critical value in more than (1 —€)G time points of the
G-environment of the local mazimum k;j,,. Furthermore, use the number of these local
mazrima as an estimator for the number of changes.

Nevertheless, investigating the test and the estimators obtained by this modified version
of the MOSUM procedure would go beyond the scope of this work but should be
examined in the future.
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3.2. The Linear Regression Model

The linear regression model has been investigated and applied in many different fields
of statistics. Due its structure the model is easier to analyse in comparison to non-
linear models. Even if one is interested in a more general setting it can be helpful to
consider the linear regression model first in order to gain insight how to generalize a
statistical method. This is exactly what we did in this work. We actually started with
investigating MOSUM Wald-type statistics in the linear regression model before we
were able to develop the general theory of Section Nevertheless, linear regression
has to be considered separately since the parameter space is not compact, which is an
important assumption in the section before.

It is not surprising that we are not the first ones who want to detect changes in this
model. At-most-one-change situations have been discussed extensively under various
assumptions in the change point literature, we refer to Csorgo & Horvath (1997) Chap-
ter 3 and references therein or Zeileis et al.|(2002)). For instance, Hawkins (1989) and
Horvath & Shao| (1995) considered tests based on Wald-type statistics which for each
time point k£ compare the least squares estimator computed on the subsample of the
first k observations with the estimator calculated on the last n — k observations. Some
papers also focus on the change point detection in linear autoregressive time series.
Whereas Horvath| (1993) considered test statistics of unweighted partial sums of resid-
uals, Huskova et al.| (2007) used statistics based on partial sums of weighted residuals
belonging to the group of score-type statistics.

In comparison, alternatives of multiple changes have received less attention. Just to
name a few contributions, Liu et al| (1997) applied a modified Schwarz criterion for
identifying different segments in a multivariate regression model. Bai & Perron| (1998)
and Bai & Perron| (2003)) estimated the changes by minimizing the sum of squared
residuals and determined the number of changes by conducting a consistent test. More
recently, [Perron & Qul (2006]) extended their work to models with linear restrictions on
the regression coefficients.

We consider a linear regression model under minimal restrictive assumptions such that
simple linear regression models as well as autoregressive structures or models with
exogenous and endogenous regressors can be analysed.

3.2.1. Asymptotics Under the Null Hypothesis
Let B, be the true parameter of the model if no change occurs, i.e.
Y = XzTIBo +T&

holds for all ¢ = 1,...,n under the null. In a random design model we assume that
the vector of the regressors X; is random whereas a fixed design requires X; being
deterministic. Here we focus on the first one, the random design model.

Furthermore, the following assumptions are used in this section:

(R1) The sequence {X;};>1 is stationary and ergodic with F (|| X]]) < oc.
(R2) Let F; =0 (Xj,ej-1,j <t). We assume that ¢, and F; are independent.

(R3) C:=E (X:X7) is a positive definite matrix.
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R4) The sequence {g;};>; is i.i.d. with E(e;) =0, 0 < E(£2) := 02 < o0.
( ) q = ) 1

(R5) Let the components of {X; X, — C};>; satisfy a strong invariance principle
similar to that in Assumption [A.1.3]

(R6) Let {X,e;}i>1 be a series with positive definite long-run covariance matrix 3
satisfying a strong invariance principle similar to that in Assumption [A.1.3]

The (local) least-squares estimator B\l,u based on the subsample (Yl, X?)T e (Yu, XZ)T
solves the normal equation

u u u -1 u
> X XTB=> XV and is given by 3, = <Z XZ-XZT) Y XY (3.22)
1=l i=l

i=l i=l

This estimator minimises the sum of the squared residuals >, (Yi — Xfﬁ)z and is
therefore the solution of the following estimating equation system

STHYL X, 8) =0 with H(Y,X.8)= X, (- X'8), (329

1=l

where the vector X; from Section is given by (Y;, XZ»T)T. On noting that the pa-
rameter space ® = RP is not compact, Lemma 3.1.1| can not be applied here. However,
by using the formula for the least- -squares estimator in - ) the consistency of the

estimator sequences ,Bkﬂ prc and Bk G+1k Can be derived directly.

Lemma 3.2.1. Let the Assumptions (H1)) to (R{]) and (R} hold for the random design
model and let Assumption[A.1.1 hold on the bandwidth. Then, under H,

[Becio -8 =0n (5) ot [Bicas-o] =0r (5)

pointuise for allk =G,....n—G.

Proof. On noting that by Conditions ( and ( {X,;X7]}i> is a stationary and
ergodic sequence with existing first moment, applying the Ergodic Theorem yields

1 G
EZXin “wooc.

Since the matrix C is invertible by Assumption ') we get that ézzil X, XT is
invertible as well for large G. Thus, with the continuity of the matrix inverse function
the Continuous Mapping Theorem can be used to get

-1

G
(é > XZ-XZ.T> ©wocn (3.24)
i=1
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Furthermore, by the properties of conditional expectations, the measurability of X,
with respect to the filtration F; defined in Assumption ( and as ¢; is independent
of F; we get

Moreover, thanks to the invariance principle of Assumption (R@ there exists a Wiener
process W (t) with covariance matrix being equal to the long-run covariance matrix of

X ;g; such that
G o~

e

Gl/(?—f—u
e

where the last line follows from the self-similarity of the Wiener process. Furthermore,
note that

+ Hﬁﬁ?(c)u (3.26)

L 0p (G142 + W ()| = 0p (1),

:3k+l k+G /80 (327)
k+G -1 ko k+G B ¥
( ZXXT> = > XY - < ZXXT> = > XX,
i=k+1 i=k+1 i=k+1 i=k+1
k4G -1 kG k+G - kta
< ZXXT> = > X (v XT50_< ZXXT> = > X
i=k+1 i=k+1 i=k+1 z k+1

Finally, with (3.24)), (3.26) and the stationarity of the sequences we can conclude that

IBk-H kE+G /60

( %XXT> : ]§st£<

i=k+1 i=k+1

G
= (C" +0p(1)) Op (%) = Op (%) :

The lemma above shows that the local estimator sequences Bk 41k+G are v/G-consistent
for the true parameter vector B, holding pointwise for each k. However, investigating
the MOSUM Wald-type statistic requires a result holding uniformly in k& which is given
in the follwing lemma.

Lemma 3.2.2. Let the Assumptions (H1)) to (R6]) hold for the random design model
and let Assumption hold on the bandwidth. Then, under Hy

~ log(n/G ‘ 4
HﬁkH’HG —,BOH =0Op (%) uniformly in k =0,...,n—G.
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Proof. Firstly, note that by (3.27)) we get

< If X XT) (ﬁkﬂ k+G ) = lf X (3.28)

1=k+1 i=k+1

Furthermore, by Condition ( R' ) Theorem [E.2.12| can be applied to each component of
the matrix-valued sequence {X; X7 — C};»;. Thus, with X; X7 — C = (X,4(i)) we

receive
k+G
1
Z er M = op(1) uniformly in £,
i=k+1 \/a

where the last line follows from Assumption [A.T.1} Hence, in connection with Lemma
E.1.6| (b) we get

1] &S log(n/G)
1Y (xxT-0)|| =0p (g—> — op(1) uniformly in k. (3.29)
i=k+1 F \/@

Moreover, the uniform statement

k+G
log(n/G)>
max — g X;e&; (—
0<k<n— GG S VG

follows from Assumption (R) and Theorem [E.2.12] Hence, by considering equation
(3.28) again we can conclude
log(n/G)

(C +op(1)) <§k+1,k+G — Bo) =0Op (T) uniformly in k.

Finally, the assertion follows from Lemma [E.2.22|in connection with Assumption (Ri3)).
O

Now, we want to show that the Condition is satisfied in order to derive a limit
distribution for the Wald-type statistic with the help of Theorem | Under the null
hypothesis, we obtain
H(Y;, X;,8) =X, (Yi— X[ B,) = — Xz
with expectation F (H(Y;, X;,8,)) = E (—X;e;) = 0 as shown in (3.25) and long-run
covariance matrix 3. Furthermore, we receive
op

implying that V(8,) = C. Thus, we get that the asymptotic covariance matrix of

VGBy_gs1x 18Ty = CT'EC. Consequently, under the null hypothesis the MOSUM
Wald-type statistic is given by:

VH (Y;, X,;,8) = = X, X7,

Wéinear(G)

~ ~ T ~ ~
= G<I£3§—G \/5 <5k+1,k+c - /Bk:—G-i-l,k:) cx'C (:3k+1,k+c; - ﬁk—GH,k)
= VG [|=7C (B~ Bucons)
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Lemma 3.2.3. Lel Assumption hold on the bandwidth. Furthermore, assume
that Conditions ( to (H@) are fulfilled. Then, under Hy, the Assumption (3.2)) is

satisfied for the linear regression model, i.e.

max ||271/2 X, (Y,- X 3 5 (3.30
0<k<n—G (FZ;I 0) \/— < k+1,k4+G 0 )

=op ((log(n/G))_l/z) :
Proof. By (3.22)) we know that

k+G k+G

Z XY = Z XinT/Bk+l,k+G7

i=k+1 i=k-+1

which is equivalent to
k4G k+G
T T (23

Z X (Yz‘_Xiﬁo) = Z X X; <Bk+1,k+G_60>'
i=k+1 i=k-+1

By multiplying \/%76‘ and subtracting ‘/ch (Bk+1,k+G’ - BO) from both sides of the
equation above, we obtain

1 k+G , \/a
NeTe > Xi(YZ-—XiBo)—W

i=k+1

k+G
G/~
== Z X XT ) \\//; (ﬁk+1,k+G - BO) :

i=k+1

Hence, by Lemma [E.1.5, Lemma and since

C (B\k-i-l,k-i—G - BO)

1| & ’ B log(n/G)
5 -0 <o ()

holds uniformly in & by (3.29)), we receive

1 k+G \/a R
5172 <\/_Z;1X (vi-XTp) - =C (Biriirc —ﬁ0>> H

max
0<k<n—G

1
< HE*UQH max —
0<k<n—-G GG

MY

ma.
O<k<n G
F

k+G
> (Xix7-0C)
1

i=

o (G
_0P< - )_p<<lg</G>> ).

where the last step follows from Assumption with

log(n/G)+/log(n/G) - nt/C+) /logn
VG B VG
This shows (3.30)). O

—0 asn — oo.
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Now, the limit distribution of the statistic can be derived under the null hypothesis.

Theorem 3.2.4. Let Assumption hold on the bandwidth. Furthermore, assume
that Conditions (H1)) to (R6) are fulfilled.

(a) Then, under Hy,
a(n/GYW!mer(G) — b(n/G) 2 E

with E as Gumbel distributed random variable as in Theorem and with a(x)
and b(z) as in (2.1)).

(b) The matrices 3 and C can be replaced by estimator sequences f)kn and 6,” ful-
filling

max

G<k<n—-G

Biat G = 57V2C = or ((lox(n/) ™)

without changing the results of part (a).

Proof. (a) By Lemma we know that Condition (3.2)) from Section [3.1.1] which
has been specified for the linear regression model in (3.30]), holds. Moreover,

Assumption is directly given by Condition (R[6) as
H(Y;, X, By) = —Xe

holds for all + = 1,...,n under the null hypothesis. Thus, applying the same
arguments as in the proof of Theorem yields the assertion.

(b) The result can be shown similarly to part (b) of Theorem [3.1.8|
[

For models with strictly exogenous regressors we propose to use a global estimator,
computed on the whole sample, for the expectation matrix C' since the estimation of
this matrix would not be influenced by changes under the alternative and therefore all
the information available should be incorporated. In contrast, the estimation of the
matrix X integrates the estimation of the error variance o2 in some way which is based
on estimated residuals and would be contaminated by changes. For the mean change
model, Muhsal| (2013 and Eichinger & Kirch| (2018) pointed out that the classical
variance estimator, computed on the whole sample, overestimates the error variance
under the alternative as it is contaminated by the changes. They further proposed
to use a MOSUM-type estimator which gives a single estimate for each time point k
computed on the G-environment of k. This estimator has the nice property that it
consistently estimates the error variance at the change points and at time points being
far from any change while overestimating the variance on intervals around the changes
which leads to tighter peaks of the statistic close to true changes possibly improving
the performance of the procedure. Hence, it might be interesting to check whether a
MOSUM-type estimator for the error variance in the linear regression shows a similiar
behavior. For a further discussion on that we refer to Section [L.1.4l
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3.2.2. Asymptotics Under the Alternative

Under the alternative we allow for multiple changes in the regression coefficients:

X;Tﬁl—f—(‘:“ if ]-SZSkl,n
XT84 e if kip <i< ko

X7 By +ein if kgn<i<n

with X; = (1, Xp4, ..., Xp3)", B; = (Brjs - - -, Bp;)" and ¢ being the number of changes.
Note that a change in 3 results in the non-stationarity of the sequence {Y;};>1, whereas
the sequence {¢; };>1 is still stationary. In order to incorporate autoregressive structures,
we merely assume that the regressor sequence { X, };>; is piecewise stationary so that

XU 1<i <k,

(
Xk, <i<kon

Xi: )
X\ k. <i<n

where {ng) ci>1},7=1,...,q+1, is stationary and satisfies the Assumptions (,
(RB), (RF) and (R). This can probably be relaxed to allow for starting values from
the other regime under some additional technical effort.

We get that the response sequence {Y;};>1 is piecewise stationary as well with

Y: = Y(j) — X(J’)7
for /{:j,l,n <1< kj,n and j=1,...,¢+ 1.

Due to the structure of the regressor sequence we slightly change the Assumptions (R[L)
to (R[6) as follows:

(R1*) The sequence {X,(j)}izl is stationary and ergodic with F (HX&J')
j=1...,q+ 1.

) < oo, for

(R2*) Let F; =0 (X, ,ej-1,j <t). We assume that ¢, and F, are independent.
(R3*) C)=F <X§j)X§j)T> is a positive definite matrix, for j =1,...,¢+ 1.
(R4*) The sequence {&;};>; is i.i.d. with E(e;) =0, 0 < E(e?) := 0% < 0.

(R5*) Let the components of {ng)Xl(»j)T—C(j)}izl satisfy a strong invariance principle
similar to that in Assumption forj=1,...,q+ 1.

(R6*) Let {ng)ei}izl be a series with positive definite long-run covariance matrix ;)
satisfying a strong invariance principle similar to that in Assumption for
j=1,... .q+1.

Furthermore, we need an additional assumption on the expectation matrices of X; X ;‘F
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(R7*) Let the matrix dC ;) + (1 — 0)C/j41) be positive definite for all 6 € [0,1] and
-1
(6C G + (1= 0)C)

assume that supcp <oo,forall j=1,...,q.

’ F
Note that this assumption coincides with Assumption (R3[*) if the regressors are strictly
exogenous and not effected by the changes so that { X} is stationary.
In order to prove consistency for the test and the change point estimators the following
lemmata are needed.

Lemma 3.2.5. Let the sequences {X;}i>1 and {e;}i>1 satisfy the Assumptions (),

(RZ), (R%), (Rf) and (RO ). Furthermore, let Assumption on the bandwidth
and Assumption hold. Then,

G H/@kj,n'f'Lk]n“!‘G - ﬂ]"l‘l

= 0p(1) and VG||By,, cars,, — B

g, J

= 0Op(1)

for all change points k;,, 7=1,...,q.

Proof. By Assumption |A.2.1) we know that the estimator sequences ,é\kjnH,kjnJrG and

. +1 j+1
Bk, .—G+1,k;, are computed on stationary subsamples (Yk(]];r)l, e ,Y,C(zl)G) and

(Yk(]_];zl_GH, o ,Yk(jj"i), respectively. Hence, on noting that {X;};>1 and {e;};>1 satisfy
the Assumptions (RI}), (R2[), (RB[), (Rf) and (R[') and since

i i J

H(K(])7X§j)7ﬁj) = _XEJ) (Y(J) - X(j)T/B) = _Xz(j)gh j = 17 ceeq 17

Lemma [B.2.1] shows the assertion. O

This lemma shows v/G-consistency of the estimator sequences holding pointwise in Ejn
which will be used for proving asymptotic power one of the test. However, this is not
sufficient if we want to derive consistency for the corresponding estimators. Hence, we
need to derive some uniform results as in the previous section. Therefore, we define

~( !
,8;7)7%61 similar to éé)ng as unique zero of Fi(k,n,G,0) in (3.10) and (3.11)), I = 1,2.
Since E (X,e;) = 0, as shown in (3.25)), holds under the alternative as well we obtain

B (H(K“’,XE”,B)) _E (_sz (Y;'(j) _ ng)T[i))
=5 (-XxV (X978, + - XV78)) = B (XVX07) (8- 8)) - B (X<)
=C;) (B-8;).

implying that

s b (1 0, 1) + £ (00, 000, )
" kG -k,
= -2 o Cu (8-8;)+ TJCU+1) (B = Bj:1)

ki — k k+ G — ko
::< e Cur+———gr*L{RHn)ﬁ

kjn — k k+G— ki
- ( ’ o Cubit TJC@H)@H)
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and similarly

kjn—k+G 0 % 0) k —kjn G+1) )
kim —k+G k—kjn
= (JTC@) + TJCUH)) B
kjn —k+ G k—kjn
- (”TC@B]- g C<j+1>ﬂj+l) -
Thus, we get
(Cy)(B-8)). if k€A
Ci+1) (B = Bj) » it keBplo

Fl(k>n>G718) = kin—k k+G—k;
( 4=Cy) + g C<j+1>>ﬁ

kjn—Fk k4+G—kjn . (1)
\ _< T CuB T CUH)BJ‘H)’ if keBjc

and

C(j) (,3 . ,6]) 7 if ke AjVn,G
Cy(B-8), ke B
Fy(k,n,G,B) = (k‘jm;k-i-cc(j) 4 %C(jﬂ)) J;

_ (Wc(ﬂﬁj + %C(j—%l)/@j—i—l) , i ke BJ('>272:G

\

~(1 ~(2
such that the unique zeros ﬁ,(g’i,g and ﬂ,i?ZL,G of the functions above can be specified as
follows

( B, if keAjq

0 B, it keBP,
P = (kj’"afkc h+ g C <j+1>>1 .

L <MG_I€C(J')BJ' + %C(J’*‘l)/@j-&-l) , if ke Bg(lrzG

and

( B, if keAjq

" B, it ke B,
Pena = (%C G+ g <j+1>)1 (3:32)

(WCU)@ + %le)ﬁm) . if keBfg

\

with A;, q, BJ(ITZG and BﬁiG as defined in , and .

Lemma 3.2.6. Let the sequences {X;};>1 and {e;};>1 satisfy the Assumptions (RIf)
to (R ). Furthermore, let Assumption on the bandwidth and Assumption [A.2.1]
hold. Then,
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—~ ~(1) log(n /G -~ ~(2) log(n/G
(a) Hﬂk+1,k+c - 5k,n,GH =Op (\/ %) and Hﬁk—GH,k - 5k,n,GH =Op (\/ %)

uniformly on A, a,
) |Birinec = Bunel| = 0r (J5) ond |Bicins — Binel| = 0r (4
k+1,k+G knG|| = YP g ) a1 k—G+1,k knGl — YP\TG

uniformly on B, .

Proof. (a) On noting that
Y=YV =XY8. +e, i=k-G+1,... k+G,

holds for all k € Aj, ¢, and that the Assumptions (R[I}) to (Rf}) are satisfied,
Lemma |3.2.2| can be applied to receive

3 log(n/G)
keff}‘?fic Bryrpra — Byl = Op ( —a
and
- log(n/G)
kérfl‘l?nx,c Br-cr1k — By|| = Op ( —a |-

. . . 1
Since ¢ is finite and A,, ¢ = ?il Ajn.c we can conclude that

- log(n/G)
i I ZOP( e
and
= log(n/G)
e |Bcian =8, =0P( —a )

(b) Since B, ¢ = Bgé U ng, it is sufficient to show that the assertions hold uniformly
on these two subsets. We only consider the set BS)G as the results on BT(L% can be
derived in an analogous manner.

For the first statement we have to mind that k;, € {k+1,...,k+ G — 1}. By

(3.22) we know that

k+G k+G R
Z XY, = Z XiX%TI@k—i—l,k—i-G7
i=k+1 i=k+1
which is equivalent to
k+G ) k+G R .
Z Xz <Y; - XzTBk,n,G) - Z XZXZT (/Bk+17k+G - 6k,n,G> . (333)
i=k+1 i=k+1
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At first, we approximate the left hand side of the equation above. As (Vi 1,

.. ,ij’n) -
(ygﬁp.. Yy and (Ve Yige) = (Y2, YY) hold for all k €
B](QG we obtain
k+G
S X (Vi- XTBie) (3.34)
i=k+1
_ Z Xga) ( J)TﬁknG> Z X! (+1) ( y G+ X§J+1)T/8k,n,G’>
i=k+1 i=kj n+1
i ~(1) o )
= Z Xy <5 ﬁmG) + Z X;"e;
i=k+1 i=k+1
k+G ' ' O k4G e
4 Z X§J+1)XEJ+1)T <5j+1 ﬁkn(;) 4 Z XU+,
i:kj7n+1 1= k]ﬁ,n"'l
o 1)
N _
= > (XEJ)XEJ) - C(j)) + (kjn — k)Cy) <5j - ﬁk,n,G)
i=k+1
k+G 1)
1) nT 2
+ Z X A ]+ - C(]+1 ) + (/f +G - kj,n)C(j-‘rl) (ﬁj—}—l - Bk,n,G)
i=kj n+1
] n k+G
DI M
i=k+1 = kj n+1

Furthermore, note that by (3.31) and Assumption (R7') in connection with Lemma

(3.35)
keB|")
ki — k k+G—kjn -
—kglﬁi( e C(jﬁTC(m))

- kt Gk
( ’ a Cy»B; + TJCU"H)IBH-l) H

< sup H (6Cy + (1 —5)C(j+1))’1HF (||C(j)ﬁjH + ||C(j+1)6j+1“> = 0(1).
5€[0,1]

Moreover, by Lemma [E.2.14{ applied to each component of {X - C,}
j=1,...,q+1, and Lemma [E.1.6] (a) we get
1| 1
U) x
max — (X? —C ) ::Op(———) and (3.36)
kB, 6 G i;l v VG
o F
1 k+G 1
(J+1) 5 G+DT
max — (XZ X, —C-1> :Op< )
kEB;173G G i_kZJrl by \/a
7,m F
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Thus, in combination with (3.35) and Lemma we receive

k.
1 <& . . ~
max || — Z (XEJ)XEJ)T )(5 51(:; G)

(1)
keB] n,G i=k+1
Ejm
1 J)
mz(n){ — 5 X - Cy m?g)c =0Op T
1 1
kEB] n,G =k+ r kEBj,n,

and similarly

k+G

1 j !
max || = Z <XZ(.J+1)X(]Jrl _C(]+1><16j+1 ﬁii(;) =Op (ﬁ)

B
keBja || imkjnt1

Furthermore, as by (3.25) F (X(j)ei) =0,7=1,...,9q+1, LemmalE.2.14together

(2

with Assumption (R6[') shows

k.
1| RS 1
max — Xi])el =0Op (—)
kenll o @ z:zk—:i-l G

and

1 k+G ( ) 1
max — XUt gll =0 (—) i
G Z ¢ P /G

(1)
kEBj n,G i:kj7n+1

Hence, by considering (3.34) again we can conclude that

k+G

GZ;HX < XTﬁmG)
= Bl (8, Bla) + GOl (810~ Bine) + 01 ()
~ B8, + MT_IMC”“)@“

B (’fj,nG— kC(j) n %G_kj’"cﬁl ) Binc + Or (%)

1
= Op | — | uniformly in k£ € B ) ,

~(1
where the last line follows directly from the definition of ﬁ;ﬁ;vG in (3.31)). Moreover,
applying (3.36) yields

k+G
1

= > X X7 (Besiie — Brne)

i=k+1
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ki — k k+ G~k _ ~
= (0}3(1) + J a C(]) + ch(j—kl)) </6k+1,k+G’ ﬂknG)

uniformly in k € B](Q’G

Finally, with (3.33]) we obtain

kijn—k E+G—kj, ~ ~(1
= (0p(1) + -2 e Ci+ TJC@H)) (ﬂk+1,k+G ﬁknG)

uniformly in k € B](~71n),(;

By Assumption (R[7[) in combination with Lemma [E.2.21| multiplying the inverse

of kj”é_k Cy + s C:kj’" Cj+1) to both sides of the equation above leads to

1 - ~(1)
Op (ﬁ) = (op(1) + I,) <Bk+1’k+0 — BknG) , uniformly in k € B; TzG,
(1)

which shovvs the assertion on B;, » by Lemma [E.2.22| Since ¢ is finite and B,

1 g
Uq+ ynG we get

(1) -

kfenBaX H16k+1 k+G BknGH =Op <%) :

For proving the second statement in (b) note that Y; = Y-(j), 1=k—G+1,...,k,

(2

and Bfie = (3, holds for all time points k € Bﬁ,e- Thus, by (3.22)) we get

k k

3 X0 (Yf”- Xl(j)Tlgj): 3 XV x0T (ﬂk+1k+e [3>. (3.37)

i=k—G+1 i=k—G+1

Furthermore, as by (3.25) E (ng)ai) =0,75=1,...,9+ 1, Lemma [E.2.15| with
Assumption (Rf6f') yields

k
- 1
max — E XU ( —xV) BJ) ‘ = max & E xYe, |
(1) (1)
renl) o O || oo k€Bjnc 7 li=k—G+1

1
—Op(—=).
" (@)
Moreover, by Lemma [E.2.15 applied to each component of {X(j (])T - Cy},
j=1,...,q+1, and Lemma [E.1.6] (a) we get

L ¥ e a)

i=k—G+1

max
(1)
kij,n,G

- 117 -
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implying that

k
1 N
a E XZ(-])XEJ)T = C(;) + op(1) uniformly in k € Bj(lr)LG
i=k—G+1

Thus, by considering (3.37) again, we obtain

1 R | |
Op <ﬁ> = (OP(l) + C(J’)) <5k+1,k+c - /6j> uniformly in & € Bg(lgc

Finally, Lemma [E.2.22| combined with Assumption (RJ3[') completes the proof.
]

Moreover, we have to take into consideration that the asymptotic covariance matrix
I'y, of \/aﬁk_GH’k actually changes with £ under the alternative. It can be specified
as follows:

r,=C.'%.C.' (3.38)
with Ck = C(J) and Ek = E(j) for kj—l,n <k S kj,na j = 1, .o q + 1.
The following theorem shows that the test for the linear regression model, which is sim-

ilar to that in Section |3.1.2.1] correctly rejects the null hypothesis under the alternative
with probability tending to one.

Theorem 3.2.7. Let the sequences {X;}i>1 and {&;};>1 satisfy the Assumptions (HI')
to (R4f) and (K6 ). Furthermore, let Assumption on the bandwidth and Assump-
tion hold.

(a) Then, under Hy, we obtain for any z € R

lim P(a(n/G)Winer(GY — b(n/G) > z) = 1,

n—oo

i.e. the test has asymptotic power one.

(b) The matrices Xy and C}, can be replaced by estimator sequences ikn and ékn
satisfying the assumption:

~—1/2 ~ _
(1) maxyep, E,W/ Crn— FA’lk/ZHF = op (1), with B,g = Bfl% U BS)G and
where {4 1 }x>1 15 a sequence of positive definite matrices fulfilling

—1/2
Ve

supy, [T akllp < oo and sup,, » <00

Proof. The result of part (a) can be shown in an analoguous manner to part (a) of
Theorem [3.1.12) by using Lemma [3.2.5 and on noting that Iy, = CG%EU)C(}; as
in (3.38)) is positive definite due to Lemma [E.1.7| in combination with the positive
definiteness of X ;) and the regularity of C';).

Moreover, we can derive the assertion in (b) by using similar arguments as in Theorem

(b).

]
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The estimators for the number and the locations of the changes denoted by ¢, and Ejm,
j=1,...,q, are determined in an analogous manner to Section [3.1.2.2l Similar to
the general setting, for proving consistency of these estimators we need the following
results.

Lemma 3.2.8. Let Assumption on the bandwidth and Assumption be
fulfilled. Furthermore, assume that Assumption (@*) s satisfied. Then, for all j =

1,....,q,

(a) max ”BS;G—QH = 0(1) and max HﬁknG B, H =

kEB

~(2)
> c and mln H,@kna -

> ¢ for some c > 0,
keBY)

with BY) ¢, 1=1,2, as in (3.19).

Proof. (a) The first statement follows directly from (3.35)). The second assertion can
be derived in an analogous manner by using (3.32) and Assumption (RI7[).

(b) The same arguments as in the proof of Lemma [3.1.14] (b) can be used here
<With E (Sup%@ HVH(X?), 9)‘ F) - C(j)).

The following theorem states the main result of this section and shows that the esti-
mator for the number of changes is consistent for the true number q.

]

Theorem 3.2.9. Let Assumption on the bandwidth and Assumption be
fulfilled. Moreover, let the sequences {X;}i>1 and {g;}>1 satisfy the Assumptions (HI')
to (R). Furthermore, assume that the sequence {au, tnen fulfills Assumption[A.2.8

(a) Then, it holds
P(@,=q) — 1, asn— oo.

(b) The result remains true if the matrices Xy and Cy, are replaced by estimator
sequences an and Ckn fulfilling:

1) maxycp >N C’;m — _1/2 = op , where {T 4 1 }i>1 15 a sequence of
€Dn,G k,n ) ) =

positive definite matrices fulﬁllmg supy, || T akllp < 0o and sup, HI‘ 1/2H
0.

(1) sy, o ||Sin "G — 572C|| = 0p ((10g(n/G) 7).

Proof. The results can be derived in an analogous manner to Theorem [3.1.15| by using
Lemma [3.2.8/ and Lemma [3.2.6, Furthermore, note that H(Yi(j),X(-j) B;) = Xl(-])ei,

j =1,...,qg+ 1, and that the sequence {ng)si}izl satisfies Assumption by
Condition (R). Hence, Theorem can be used here as well. O

Similar to the general setting, the following assertions can be proved as well.
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Corollary 3.2.10. Let the assumptions of Theorem [3.2.9 hold. Then,

P (max min |k, — kjn

1<j<q 1<I<{n

<G)—>1.

Corollary 3.2.11. Let the assumptions of Theorem [3.2.9 hold. Then,
G
== OP ( ) == Op(l).

n

max min [N, — A;
1<j<q 1<I<gn

3.3. Possible Problems of the Procedure

The choice of the bandwidth is not only an issue of the MOSUM score-type procedure,
the performance of the MOSUM Wald-type procedure on finite samples also depends
on the selection of the bandwidth. For a detailed discussion on that we refer to Section
[2.4.0] As already described there, a possible solution for this problem is to run the
procedure with several window lengths and merge the results appropriately by using a
multiscale method as described in Chapter

Moreover, note that the validity of the results for the MOSUM Wald-type statistic in
some sense base on the condition that the estimator sequences 6.1 1+ are identifiably
unique which implies that the distance between all possible solutions of the estimating
equation system Zfikil (X;,0) = 0 goes to zero. See, for example, Potscher &
Prucha| (1997) Chapter 3 and Section 4.6. This condition has not been directly men-
tioned but it is implicated by the assumptions on the general setting and the linear
regression model. This is an important condition as it guarantees that the signal of the
Wald-type statistic can only be strictly positive on intervals around the true changes
in the asymptotics. A violation of this assumption leads to an estimation error which
possibly causes overestimation of the changes under alternative or a size problem under
the null hypothesis.
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4.1. Example: Linear Regression

We consider a linear regression model where the regressors are strictly exogenous and
the regressors as well as the error are modelled by i.i.d. normally distributed random
variables. This is a simple model in the sense that it does not incorporate any depen-
dence structure and that there exists an explicit solution of the estimating equation
system such that the least squares estimators can be computed easily without apply-
ing numerical methods. By conducting a simulation study on this linear regression
model we want to get an impression about the pure difference in performance of the
MOSUM Wald-type and score-type procedure in the absence of numerical errors and
disturbances caused by the variance estimation in dependence settings. Intuitively, we
would expect that the MOSUM Wald-type statistic performs much better as it directly
focuses on the difference in the parameter vectors without making a detour over the
estimating function like in the score-type approach.

However, before we start to analyse the simulation results, we need to check whether
the assumptions of the MOSUM procedures are satisfied in this specific linear regression
model.

4.1.1. Proving the Assumptions of the Wald-Type and
Score-Type Approach

In the simulations, we consider an example of the follwing simple linear regression
model:

e Under the null hypothesis:

Y;:XZ-TBO—F@ fori=1,...,n,

e Under the alternative:

Yi — YZ(J) — X,LTﬂj +€i for kj—l,n <1 S kj,n;j = 17,q+ 1,

where X1,..., X, is an i.i.d. series with X; = (1, X; 1, Xi2)", Xi1 ~ N(p1,0?) and
Xio~ N(p2,03) and ey, ..., &, is i.i.d. with g; ~ N(0,0?).

At first, we consider the Assumptions of the MOSUM Wald-type statistics given in
Section Note that due to the stationarity of the sequence {X,;} under the null
hypothesis and the alternative the Assumptions (R[I) to (R[f) coincide with the As-
sumptions (RI}') to (R['). Moreover, Condition (R[7[') simplifies to Assumption (RJ).
The Conditions (R[I), (R2) and (RH) are obviously satisfied. Furthermore, we get that
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the sequence {X,¢e;} is i.i.d. with existing second and higher moments so that the in-
variance principle in Theorem 2 of [Einmahl| (1989) shows Assumption (R[f]). Besides,
as the components of the sequence {X;X; — C} are univariate i.i.d. sequences with
zero mean and existing second and higher moments Assumption (RpB|) can be obtained
by the invariance principle proved by Komlos et al. (1975), Komlos et al| (1976) and
Major (1976). Furthermore, we get that the positive semi-definite matrix

1 H1 H2
C=E(X\X{)=| m of+ui mps

s s O3+ i

is positive definite as det (C) = 0?03 > 0.

For the score-type procedure, we show that the general assumptions of Theorem
and Theorem [2.1.8] stating the main results for MOSUM score-type statistics, are ful-
filled.

Assumptions [A.1.4] and [A.1.3] under the Null Hypothesis:
We use the global least squares estimator EM which is computed on the whole sam-
ple for calculating the MOSUM score-type statistic. This classical estimator is /n-

consistent for the true parameter vector 3, under the null hypothesis so that ,[§ = B,
and

H(Yi,Xi,B) = H(Y;, X, 8) = —X&i.
Thus, Condition (R) directly yields Assumption Furthermore, with (3.23)) we

receive

1
GS’CS:IF-G \/ 2G H ﬂl 77,7k ’307k

k+G k
| (X xare y xixz) (8o, )

i=k+1 i=k—G+1

k+G
- Vi ' A ) [Ben =i
- <G<k<n G Xk;lX X + G<I£<an G ]§+1X X ) ﬁl;n /60 )

where the last line follows from Lemma [li.1.5 Since the arguments used here are very
similar to that of previous proofs we only give a brief explanation. Applying Theo-

rem [E.2.12/and Condition (Rf]) in combination with Lemmal[E.1.6] (b) and Assumption

1{together with the y/n-consistency of the least-squares estimator leads to Assump-

tion [A1.4]

Assumptions [A.2.3] |A.2.4] and [A.2.9| under the Alternative:
Let us start with Assumptions [A.2.4and [A.2.9 In Lemma [5.4.24] we will see that the

least-squares estimator 3, ,, is y/n-consistent for ,B ;1+1 (Aj — Aj—1) B; under the
alternative. Furthermore, we obtain

1
G<ken—c /20 HABLM - AE,kH
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ceken—c /oG
= op (a(n/G)_ ),

where the last line follows from the same arguments which we used for proving As-
sumption This implies the statements of Assumptions [A.2.4] and [A.2.9 For
deriving Assumption note that the transformed sequence {H (Y, G) , X, 8) bis1
with

k+G k
( Y xxT- % XZ»X?) (B... - B) H

=k+1 i=k—G+1

“HYY, X, 8) = X, XT (5j_5> X, j=1,...,q+1,

is i.i.d. with existing second and higher moments. Hence, the assumption follows from
Theorem 2 in Einmahl (1989). Moreover, we can show that all changes are detectable
by that statistic since

B(HYY X.B)=C(6-8,)4C (8- B) = F(HKY X, B)

holds for all j =1,...,q.

4.1.2. Simulating the Data

Let Xl = (1,XZ'71,XZ'72)T with Xi,l ~ N(l,l) and Xi,2 ~ N(2, 1) and E; ~ N(l, 1)
We simulate a data sample of length n = 1000 and use 1000 replications in the study.
Under the null hypothesis, let 3, = (1,2,2)% so that

Y;=X!B,+¢e fori=1,..., 1000.

For evaluating the performance of the procedures under alternative we include three
Change pOiIltS, q = 37 at k171000 = 200, k271000 = 500 and ]{73’1000 = 800. Furthermore,
with 8, = (1,2,2)1,8, = (1,1,2)T,8;, = (2,1,2)T and B, = (2,1,1)T we get the
following model

XTB, +¢, if <200
XTBy +e;, if 200 < i < 500
XTB;+ ¢, if 500 < i< 800
X778, +¢e, if i>800

4.1.3. Estimating the Covariance Matrices

First note that in this specific setting, where the regressors and the error are inde-
pendent i.i.d. sequences, the long-run covariance matrix 3 = ¥(3) coincides with the
covariance matrix of the estimating function. As the errors and the regressors are in-
dependent and the components of the regressor vector X; are indenpendent as well a
straightforward calculation of the covariance matrix shows that:

Cov (H(X1,5)> =o’C
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holds under the null hypothesis and the alternative. Hence, estimating the covariance
matrices for the Wald-type and score-type statistic comes down to estimating the error
variance and the expectation matrix C'. We consider the MOSUM score-type statistic

fﬂ,k (G7 Bl,n)

k+G k
1 ~
- 1/2 (Z X, (Y XTBln) - 3 X (Yi—XiTﬂLn)>'|
2ng7k i=k+1 i=k—G+1

and the MOSUM Wald-type statistic

A1/2
H <5k+1 k+G — Bk G+1 k> H

Woik(G) = = \/_

where C,, denotes the estimator of C and & 0., represents the estimator of the error
variance o2. As already explained in Section |3.2 m in this setting it is reasonable to
use a global estimator, calculated on the whole sample, for the expectation matrix C.
Thus, we take the sample mean - ZZ . XX as an estimator for C which is not
contaminated by changes in the parameter vector B under the alternative since the
distribution of the X; does not change. In comparison to that estimators of the error
variance are based on estimated residuals which are highly contaminated by changes
in the regression parameter. Therefore, we prefer to apply a MOSUM-type estimator
for o2 which is time dependent and calculates a variance estimate for each time point
k on its G-environment. Nevertheless, in order to investigate how the performance of
the procedures depends on the choice of estimator for the error variance, we use three
different estimators in the simulations:

e GLOBAL:

n

~ 1 >
Ui,k = Z(Yz - XzTIBI,n)Q

n—14%
=1

We fit a linear regression model on the whole data sample and compute the
sample variance of the corresponding residuals.

e LOCALTL:
1 k R k+G R
Arzzk 20 ( Z (¥; — XiT/gka%l,k)Q + Z (Y; = XzT/BkJrl,kJrG)z)
i=k—G+1 i=k+1

For each time point k& we fit a linear regression model on the subsample from
k — G + 1 to k and on the subsample from k& + 1 to k + G and take the sum of
the corresponding squared residuals divided by 2G.

o LOCAL2:
. K (e
e = 3G < > (i — @—crin)’ + Z (€in — €k+1,k+G)2>
i=k—G+1 i=k+1

with &, :=Y; — X[ B, and €, 1= —7 D1 éine

We fit a linear regression model on the complete data sequence and compute the
corresponding residuals denoted by ¢€;,,. For each time point & we compute the
sample variance of €,_g41, n <y €km and €xp1p, ..., €pran and take the sum of
both values multiplied by as the LOCAL2 estlmator
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4.1.4. Results of the Simulations

Table shows the performance of the MOSUM Wald-type test with different band-
widths under the null hypothesis and the alternative at significance level o = 0.05
for the different variance estimators. Under the null hypothesis, the empirical size of
the tests gets relatively small if we choose a large bandwidth in the procedure. The
smallest bandwidth of 20 is not appropriate, in particular if the LOCAL1 estimator is
employed in the statistic, since the empirical size is too high whereas the tests with
a bandwidth greater than 50 are conservative as the empirical value is less than the
theoretical value of 0.05. Note that the tests based on the GLOBAL and LOCAL?2 es-
timator reveal a more conservative behavior in comparison to the LOCALI estimator.
Under the alternative, the size adjusted power is equal to one or at least close to one for
all considered window lengths and variance estimators that shows the consistency of
the MOSUM Wald-type tests empirically. Furthermore, note that the MOSUM score-
type tests show similar results for the size adjusted power under the alternative, which
are given in Table[4.2] but are even more conservative under the null hypothesis. Thus,
we can conclude that the tests perform quite well.

Table 4.1.: Simulation results for the test based on the MOSUM Wald-type statistic

H, H,
Empirical size | Size adjusted power

GLOBAL
G=20 0.198 0.748
G =50 0.030 1
G =80 0.013 1
G =100 0.014 1
G =120 0.012 1
G = 150 0.013 1

LOCAL1
G =20 0.652 0.975
G =50 0.087 1
G =80 0.029 1
G = 100 0.029 1
G =120 0.025 1
G =150 0.022 1

LOCAL2
G=20 0.196 0.957
G =50 0.040 1
G =280 0.015 1
G =100 0.018 1
G =120 0.014 1
G =150 0.014 1
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Table 4.2.: Simulation results for the test based on the MOSUM score-type statistic

H, H,
Empirical size | Size adjusted power

GLOBAL
G=20 0.026 0.867
G =50 0.010 1
G =280 0.009 1
G =100 0.008 1
G =120 0.013 1
G =150 0.007 1

LOCAL1
G =20 0.312 0.998
G =50 0.047 1
G =280 0.022 1
G =100 0.022 1
G =120 0.020 1
G =150 0.012 1

LOCAL?2
G=20 0.064 0.991
G =50 0.014 1
G =80 0.008 1
G =100 0.012 1
G =120 0.009 1
G =150 0.007 1

Nevertheless, we are more interested in estimation as in testing and for this reason
we analyse the simualtion results for the change point estimators in more detail. The
Tables 4.3 and show the performance of the estimator for the number and the
locations of the changes based on the MOSUM Wald-type and MOSUM score-type
statistic. The simulation results for the estimated number are summarized in the
columns two to six. The entries represent the proportions of repetitions in which
the estimated number of changes was less than or equal to one or equal to two and
so on. For example, the MOSUM Wald-type procedure with LOCALIL estimator for
the error variance and bandwidth G = 100 correctly estimates the number of change
points in 94.5% of the simulated samples. In the last three columns, the performance
of the estimators for the change point locations are recorded as follows. The entries
are the proportions of repetitions in which we got a change point estimate lying in an
interval of [k;, — 20, k;,, + 20] around the true change point, j = 1,2, 3. For instance,
the MOSUM Wald-type procedure with LOCAL1 estimator and bandwidth G = 100
produced a change point estimate in the interval [480,520] in 93.8% of the cases. Note
that we used a = 0.05 and ¢ = 0.2 in the estimation process.
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Table 4.3.: Simulation results for the estimator of the number and the locations of the
changes based on the MOSUM Wald-type statistic

Estimated number Estimated change point in
<1 | 2 |q¢=3| 4 | >5 |[180,220] | [480,520] | [730,770]
GLOBAL
G =20 [0.990 [ 0.010 [ 0.000 | 0.000 [ 0.000 [ 0.010 0.000 0.442
G =50 |0.523 | 0.469 | 0.008 | 0.000 | 0.000 | 0.467 0.016 1.000
G =180 [0.023 | 0.745 | 0.230 | 0.002 | 0.000 | 0.965 0.231 1.000
G =100 | 0.000 | 0.480 | 0.516 | 0.004 | 0.000 | 0.991 0.510 1.000
G =120 | 0.000 | 0.222 | 0.772 | 0.006 | 0.000 | 0.990 0.764 1.000
G =150 | 0.000 | 0.045 | 0.951 | 0.004 | 0.000 | 0.990 0.926 1.000
LOCALIL
G =20 [0.404 [ 0.406 | 0.154 [ 0.033 [ 0.003 | 0.461 0.140 0.957
G =50 |0.018 | 0.445 | 0.501 | 0.035 | 0.001 | 0.963 0.539 1.000
G =380 | 0.000 | 0.094 | 0.866 | 0.040 | 0.000 | 0.998 0.885 1.000
G =100 | 0.000 | 0.030 | 0.945 | 0.025 | 0.000 | 0.998 0.938 1.000
G =120 | 0.000 | 0.008 | 0.981 | 0.011 | 0.000 |  0.992 0.957 1.000
G =150 | 0.000 | 0.000 | 0.991 | 0.009 | 0.000 | 0.995 0.970 1.000
LOCAL2
G =20 [0.866 [ 0.127 [ 0.007 | 0.000 | 0.000 [ 0.090 0.062 0.790
G =50 |0.092 | 0.544 | 0.354 | 0.010 | 0.000 | 0.852 0.409 1.000
G =280 |0.001 | 0.155 | 0.822 | 0.021 | 0.001 | 0.992 0.825 1.000
G =100 | 0.000 | 0.044 | 0.942 | 0.014 | 0.000 | 0.996 0.925 1.000
G =120 | 0.000 | 0.012 | 0.980 | 0.008 | 0.000 | 0.993 0.954 1.000
G =150 | 0.000 | 0.000 | 0.993 | 0.007 | 0.000 | 0.992 0.970 1.000
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Table 4.4.: Simulation results for the estimator of the number and the locations of the
of changes based on the MOSUM score-type statistic

Estimated number Estimated change point in
<1 | 2 |q¢g=3| 4 | >5 |[180,220] | [480,520] | [730, 770]
GLOBAL
G =20 [0.950 [ 0.045 [ 0.004 [ 0.001 [ 0.000 [ 0.043 0.000 0.452
G =50 |0.505 | 0.470 | 0.024 | 0.001 | 0.000 | 0.471 0.017 0.997
G =280 |0.047 | 0.714 | 0.238 | 0.001 | 0.000 | 0.904 0.241 0.999
G =100 | 0.006 | 0.451 | 0.529 | 0.013 | 0.001 |  0.969 0.516 0.997
G =120 | 0.112 | 0.462 | 0.421 | 0.005 | 0.000 | 0.960 0.743 0.536
G =150 | 0.051 | 0.942 | 0.007 | 0.000 | 0.000 | 0.969 0.900 0.000
LOCALIL
G =20 [0.080 [0.163 [ 0.231 [ 0.211 [ 0.315 [ 0.499 0.127 0.913
G =50 |0.023 | 0.309 | 0.453 | 0.158 | 0.057 | 0.932 0.542 1.000
G =180 |0.000 | 0.086 | 0.795 | 0.111 | 0.008 | 0.981 0.875 1.000
G =100 | 0.001 | 0.036 | 0.919 | 0.043 | 0.001 | 0.979 0.936 0.986
G =120 | 0.006 | 0.592 | 0.396 | 0.005 | 0.001 | 0.975 0.947 0.391
G =150 | 0.002 | 0.988 | 0.010 | 0.000 | 0.000 | 0.987 0.953 0.000
LOCAL2
G =20 [0.741 [ 0.206 | 0.045 [ 0.003 | 0.005 [ 0.160 0.046 0.746
G =50 |0.107 | 0.528 | 0.329 | 0.034 | 0.002 | 0.807 0.415 1.000
G =180 |0.001 | 0.146 | 0.807 | 0.044 | 0.002 | 0.976 0.825 1.000
G =100 | 0.001 | 0.043 | 0.925 | 0.031 | 0.000 | 0.983 0.916 0.999
G =120 | 0.003 | 0.431 | 0.558 | 0.008 | 0.000 | 0.981 0.943 0.565
G =150 | 0.003 | 0.990 | 0.007 | 0.000 | 0.000 | 0.989 0.952 0.000
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As expected, the estimator based on score-type statistics performs worse than the Wald-
type estimator. Its performance highly depends on the selection of the bandwidth and
can only compete with the Wald-type procedure for G = 100. For bandwidths smaller
than 100, exept 20, the score-type statistic performs quite well in detecting the first
and third change point but has problems in finding the second one. In comparison
to that, for bandwidth 120 and 150 the score-type procedure localises the first and
the second change in more than 90% of the cases but does poorly in dectecting the
third one. Hence G = 100 seems to be the optimal choice of the bandwidth here.
This is exactly half of the minimal distance between two adjacent structural breaks
ming<<q |kj+1,n — kjn| with ko, = 1 and k,11, = n which is a theoretically reasonable
window length as explained in Section However, this value is unknown and
cannot be determined in practice so that the application of a multiscale procedure as
described in Chapter [5] which merges the results obtained by different bandwidths in
an appropriate way, is essential to make the MOSUM score-type approach competitive.
In contrast, the MOSUM Wald-type procedure seems to be less sensitive to the choice
of the bandwidth and shows very good results for window lengths of 100,120, 150.
Moreover, the performance of the procedures also depends on which estimator of the
error variance has been used in the statistic. The MOSUM score-type statistic as
well as the MOSUM Wald-type statistic perform worse if the GLOBAL error variance
estimator is used in comparison to the results for the LOCAL1 and LOCAL?2 variance
estimator which perform both very well. In the MOSUM Wald-type procedure the
LOCALLI estimator shows slightly better results than LOCAL2 whereas in the MOSUM
score-type procedure the LOCAL2 estimator performs best.

Now, we consider the estimators of the error variance more closely in order to explain
the differences in performance. The GLOBAL variance estimator relies on the residuals
of the global estimator 3, ,, which are obviously affected by changes in the parameter
vector. This leads to overestimation of the error variance and, thus, deterioration of the
performance of the procedure as the values of the statistic get smaller. In contrast, the
LOCALI estimator bases on residuals obtained from the local estimators 8, _5., , and

,@k +1.k+¢ and is therefore able to react to changes in 8 in some way. It reveals a similar
behavior as the MOSUM-type estimator of the error variance in the classical mean
change model used by Eichinger & Kirch| (2018). The plot below shows the estimates
by using the LOCAL1 estimator for one of the simulated data samples where the red
vertical lines give the change points and the green horizontal line illustrates the true
error variance o2 = 1.
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We can see that the LOCALI1 estimates get quite large in intervals around the true
changes whereas the estimates at the changes and at time points which are far away
from any change are relatively small. This improves the performance of the procedure
by making the peaks at the changes tighter. Consequently, we would recommend
to apply the LOCALL estimator in general. However, from a pratical point of view it
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would not make much sense to use this estimator in the score-type statistic as it requires
the computation of the local parameter estimators B; g, and B, ;. ¢ so that the
computational advantages of the score-type procedure would vanish. For this reason we
have introduced the LOCAL2 estimator for the error variance which is a MOSUM-type
estimator based on the global residuals obtained by fitting a linear regression model
on the whole sample. The plot below shows the LOCAL2 estimates of the simulation
example.
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As a compromis between less complexity in computation and high accuracy the LO-
CAL2 estimator shows a similar behavior as the LOCAL1 estimator but less pro-
nounced. Furthermore, note that the global residuals are contaminated by the changes
which carries over to the variance estimator so that it tends to overestimate the error
variance. For this reason we would have expected that the MOSUM procedures using
the LOCAL2 estimator does not perform as quite as well as the LOCALT1 alternative.
However, this does not hold for the MOSUM score-type procedure where we are slightly
more successful by applying the LOCAL2 variance estimator. One possible explana-
tion for this is that the MOSUM score-type statistic is based on the weighted global
residuals so that the LOCAL2 estimator, which rests upon the global residuals as well,
is more suitable to mimic the variation in the statistic.

4.1.5. Comparison of the Run Time

Although both statistics, the MOSUM Wald-type and score-type, can be computed in
linear time, the difference of the run time of the two procedures could be quite large.
In order to investigate this computational aspect we calculated the two statistics for
several sample sizes n = 250, 500, 1000, 2000, 4000, 8000, 16000, 32000 with bandwidth
G = G(n) = n*? so that G(1000) = 100. For the MOSUM Wald-type statistic the
LOCALTL variance estimator has been used whereas the LOCAL2 variance estimator
has been employed in the score-procedure. The results are summarized in Figure [4.1
and Figure shows the performance of the score-type statistic (in seconds) sepa-
rately. We can see that the score-type procedure performs much better in terms of
computation times which is not surprising as the procedure only requires the calcula-
tion of one global estimate. For instance, for a sample size of n = 32000 the run time
of the Wald-type statistic is about 38.78 seconds which is still acceptable. However, in
comparison to that the calculation of the MOSUM score-type statistic only takes 1.18
seconds on average for n = 32000.
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Figure 4.1.: The graph shows the average computation time of the MOSUM Wald-type
statistic and the score-type statistic for 100 replications.
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Figure 4.2.: The graph shows the average computation time of the MOSUM score-type
statistic for 100 replications.
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4.2. Example: Poisson Autoregressive Model

In this section, we consider a Poisson autoregressive model of order one, the INARCH(1)
model. This is a very popular example of integer-valued time series and can be applied
to different data sets in practise as it is able to describe overdispersion. For instance,
Weifs (2010) applied the INARCH(1) model to monthly strike data of the U.S. labor
market and [Zhu & Wang| (2010) used it to model daily download counts of a program.
In general, INARCH models are a specific class of INGARCH time series which were
introduced by Heinen (2003) as an analog of continuous GARCH models for count
data. Since then INGARCH models have been examined by several authors, e.g. [Fer-
land et al.| (2006), [Fokianos et al.| (2009) and Weifs (2009).

More recently, these time series of counts have received more attention in the context
of change point detection. Franke et al.| (2012) used CUSUM-type statistics based on
conditional least squares residuals for detecting structural breaks in a general class of
Poisson autoregressive models of order one. Related to that |[Kirch & Tadjuidje Kam-
gaing| (2016) considered a CUSUM score-type test statistic based on the least squares
approach and derived consistency for the corresponding change point test and esti-
mator in a quite general setting. Furthermore, Doukhan & Kengne (2013) proposed
several Wald-type test statistics and investigated the behavior of the corresponding
tests under the null hypothesis and alternatives of multiple changes.

4.2.1. The Model and the Statistics

The time series {Y;};>o follows an INARCH(1) model if the observation Y; conditioned
on the past is Poisson distributed with parameter \; = 6, + 6,Y;_1:

Yi|Fiii ~ P(\),  with \; = 0 + 6,Y;_;. (4.1)

According to Fokianos et al.| (2009)) we assume that Y} is fixed and we set it to zero
in the simulations. In addition, similar to Franke et al| (2012) we constrain the pa-
rameters to 0 < 6; < A and 0 < 6y < 1 — 4, for some small 0 < § < 1 and some
large A < oo, in order to get a compact parameter space ®. According to [Ferland
et al.| (2006) all moments of the Poisson autoregressive series exist. Furthermore, by
Neumann| (2011)) we know that there exists a stationary ergodic solution of which
is S-mixing with exponential rate if the autocorrelation coefficient 5 < 1. This implies
that {Y;} is stationary and strongly mixing («a-mixing) with exponential rate (see e.g.
Bradley| (2007)). Since the mixing property of a sequence is preserved by measurable
transformations we can conclude that the series {Y;} with Y; = (Y;_,Y;)T is of type
(FE).

Under the alternative with ¢ structural breaks we assume that there are g+1 INARCH(1)
time series {Y;O)}, j=1,...,q+ 1, such that
Y(l)a if 4 S kl,n

7

2 . .
Y i kg, <i<kop
S/;: 7 1 17 G — 27 (4.2)

)

Y > kg,
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4.2. Example: Poisson Autoregressive Model

with corresponding parameter vectors 6y,...,0,.; € © where 8; # 0;,, for all j =
1,...,q. With the same arguments as before we get that the sequences {ng)}, j =
1,...,q+ 1, are of type ( Furthermore, we use the notation Y;_; = (1,Y;_;)~.

In the following, we consider the MOSUM Wald-type and score-type statistics based
on the conditional least squares approach and the conditional maximum likelihood
approach. The least squares estimator éfi is the solution of the estimating equation
system Y1 Y, 1 (Y — Y] ,60) = 0 and has the explicit expression (see [Weily (2010)
on page 1278)

0, = ( (1= P X ) , (4.3)

1,n
Pin

where p;, denotes the lag 1 sample autocorrelation and Xln replesents the sample

mean. In contrast, the (conditional) maximum likelihood estimator 0 has to be deter-

vi-Y7Z |0
YT 0 ) B
0. The estimating functions of the two approaches and their derivatives are shown in
the following table.

mined numerically by solving the estimating equation system » . Yi,l (

Least squares approach | Likelihood approach
Estimating function T Yi-YT 6
H (Y;,6) “Wia (Y- Yi,6) | -2y ( Y70 )
First derivatives T Y;
VH (Y,,0) 2YiaY, iYL wr ey
Second derivatives
VZH, (Y;,0) 0 —4Y 1YZ 1yT—9)
V?H, (Y;,0) 0 —4Yi. Y[, ;’/Tne
i—1 )

The MOSUM score-type statistic and the MOSUM Wald-type statistic based on the
least squares approach are given by

<G 0, ) (4.4)
V2 5 (lf Yoo (vi-vLer) - Zk: Yia (¥ —YZ_ﬁii))‘

v G i=k+1 i=k—G+1

and

Wk k+1,k+G — 0 G+1,k (4.5)

\/_A12 515 GLs
vl S )|

Furthermore, the likelihood based Wald-type and score-type statistic are defined as
follows

ML (G 9 ) (4.6)
\/§ ’2‘371/2 % Y Y Y’ZT leML i Y Y YZT 10ML

= —7= | %kn i—1 ML - -1 ~ML
VG i Z-Tflﬂm i=k—G+1 Y6,
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and

~ML ~ML )H

—~ VG ||=-1/2
WEHG) = NG Hrkn <0k+1,k+G =0 i1k (4.7)

4.2.2. Proving the Assumptions of the MOSUM Procedures

As the series {Y,} is of type (H2) as mentioned in the previous subsection we only have
to show that the moment conditions in Section [2.3] and [3.1] which are summarized in
Appendix [B] are satisfied. We focus on the assumptions under the alternative as the
assumptions under the null hypothesis are similar to that with stationary sequence
{v;} instead of {V;9}.

Least Squares Approach:
At first, note that the matrix £ (Yl(i)lYl@lT> is regular since

.y LYY
det (B (Y2, Y])) = det (E ( S )) (4.8)
i—1 i

i—1
. . 2 .
_ (E (vor) - B (v2) ) _Var(v) > 0.

Moreover, applying the computation rules for conditional expectations in combination

with (4.1) and (4.2) yields
1 : : : :
E <—§H(Y§J>, 9)) -E(Y? (v -v"o)) (4.9)

(s (2 (- ¥10) 7)) (8 (5 (1) - ¥
=B (Y2, (v2le,-vo)) =£(Y2yPl) (6, -6),
which directly shows that 6; is the unique zero of E (H(YE”,B)) as the matrix
E (ij_)lYl(J_)lT> is regular by (4.8). Furthermore, we get

1 ) _ () v()T _ 1 vY
E (_§H(Yij 79>> =E <YiJ—1Yz']—1 (03' - 9)) =F Y(j) Y(j)l2 (93‘ - 0) :

1—1 1—1

Hence, since the parameter space © is compact and as all moments of Yz(ﬂ exist

by Proposition 6 of [Ferland et al.| (2006), we know that all moments of the compo-
nents of H(YY, 6) exist. Thus, with the help of Lemma m (b) we can conclude

7 0

that F <HH(Y¥),0)H> < oo holds for all & € © showing Assumption |B.2.1| and

. 24v
E <HH(Y§”, 9)“ ) < oo holds for all 8 € ©, for some v > 0, which gives Assump-
tion [B.2.8

Moreover, as
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4.2. Example: Poisson Autoregressive Model

holds for all 8 € ©® the Assumptions [B.2.3| and |B.2.6| (B.2.11|) follow directly from
Proposition 6 of Ferland et al. (2006) and Lemma|E.1.6|(b) again. To prove Assumption
B.2.10, we consider the convex combination

S (YOYOT) ¢ (1) (¥ 5y ),
which is regular, for all v € [0, 1], as a straightforward calculation shows

= 4yVar (V) +4(1 = )Var (YIV) + 491 - ) (B (V) - B (}g@f”))Q
> 4~yVar ( ) ~v)Var <YU+1)> > 4 min {Var (Y ) Var <Y ]H))} > 0,

det <7E (2Y§QIY§{>1T ) Y (1—)E (2Y<{§1>Y§{§1)T)) (4.10)

uniformly in € [0,1]. Moreover, since all moments of Y;) and Y,V exist we obtain

sup
76[011}

j T i+1 i+1)T
<[ o)« s (v, <o

7

B (v YOl +-e vy @y

Hence, by Lemma [E.1.11| combined with (4.10) and (4.11)) we can conclude that

-1

sup
~v€E[0,1]

which shows Assumption [B.2.10l Furthermore, note that the Assumptions [B.2.4] and
B.2.7] are satisfied because the second derivatives of the estimating function are equal
to zero.

< 00,
F

(vE 22yl + -y (v YT

Likelihood Approach:

3 (2

At first, we want to show that the matrix F <Y(])T0Y( )1Y@1T) is regular. By com-
1

puting the determinant we obtain

1 v
1 STy T

det [ E YD vy ) = det Yia® Yo ® (4.12)
YZ(J Yita Yita

)
n)*

2
vra) v Ysa
e vy g
= Var () — Cov T () > Var ST > 0,
Y./ 6 Y. 0’ Y./ 0 Y./ 6

()2
where the last line follows from Cov (Yu—);, #) < 0. Furthermore, by using
YWy’ yTg

similar arguments as in (4.9) we obtain
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showing that 6; is the unique zero of £ (H(Y(j) > by (4.12)). Besides, as the param-

eter space © = [§, A] x [0,1 — J] we get ng < 5, for all @ € ©. Hence, the results

from the least squares section can be used as follows

1 . T
i—1
and
1 2+v ) .
o |smrevere-o| )< ge(revere-of”) <
1, 1

proving the Assumptions [B.2.1] and [B.2.8] Furthermore, by applying the computation
rules for the conditional expectation similar to (4.9)), we receive

E <VH (YE”,G)) E <2Y§J>IY Tﬁ) .

‘ )<ooade(HY,U1 YOI (yWTg )

On noting that £ <HY§J_)1Y,(J_)1T(Y£]—)1TOJ)

24v
;)
oo holds since all moments of Y;(_J} exist by Proposition 6 of [Ferland et al.| (2006), we
can conclude that

y T 0; 1 ; ; :
E{swp |yO ¥yl —e sl ) < S ([y@y T vt o)) ) <o
6o (yWre2|,.) ~ 9 F
and
E | sup Y( % Y(J T—Y’ o < b E HY(.j) Y(j)T(Y(j)TH‘) o < 00
0cO (YE )1 0)2|, = 4t R ’

which show the Assumptions [B.2.3]and [B.2.6|or [B.2.11] The moment conditions [B.2.4
and can be derived by using similar arguments. In contrast, proving Assumption
is more complicated and needs to be examined in detail. However, this would
go beyond the scope of this thesis and will be part of future work.

4.2.3. Estimating the Covariance Matrices

In order to apply the MOSUM score-type procedure we have to find an appropriate
estimator of the long-run covariance matrix of H(Y;,0). A first idea is to ignore the
dependency and to use a MOSUM-version of the empirical covariance matrix estimator
of H(Y;,0,,) as follows:

k
~ 1 ~ _ - _ T
Sin =55 2 (HY£0) —Higo) (HY0010) — Higig)  (413)
2G\
i=k—G+1
k+G T
+ Z ( Yz;gln Hk+1,k+G) (H(Yzael,n) - Hk+1,k+G> > )
i=k+1
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4.2. Example: Poisson Autoregressive Model

where H;ju denotes the sample mean of H (Y, 517,1), L H(Y,, é\ln) We applied this
type of estimators in the least squares and the likelihood based procedures. However,
for future simulation studies it might be reasonable to consider more complex estimators
created for estimating long-run covariance matrices as well.

For the Wald-type procedures we need to find suitable estimators for the log-run
~ML
covariance matrices of Hk ik and O o g

The asymptotic covariance matrix of the least squares estimator 0 ,, 1s under the null
hypothesis given (0 (61,605)T) by:

<91+9102+ 14203 ) —0, — 0,0, — 03+263

1+62 +92 1462+03
I 03+203 2 024203 ’
91 9192 146 +92 (1 92) 1 + 91(1+92+9%)

which can be found in [Weifs| (2010) on page 1278. Hence, by replacing the parameter

=18 ~ o~
vector 6 by the local estimators 6, ¢ 5 = (011, 02.1)" we get the following MOSUM-
type estimator:

2
~ 1—92,

) Gup — s —
Fk: n —

; 93 , 1202 ~ 02, +203 ’
_9 — (9 9 _ 2k T2k 1 — h? 1 —“
1k 1,kY2,k 1505402 ( 2,k:) + R
(4.14)

14204,
1+§2,k+§g,k

03 04
03 11205 1
140, 463 ,

<91k+91k92k+

which has been used in the simulations.
As described in Weils| (2010)) on page 1277, under the null hypothesis, the asymptotic

~ML
covariance matrix of the likelihood estimator 6, ,, coincides with the inverse of the ex-
pected Fisher information matrix which does not have an explicit expression. However,
it can be approximated by the observed Fisher information matrix given by:

1 Z Y,  YiYia
YT Y}/z 1 Ysz,l '
Thus, we propose to estimate the Fisher information matrix by applying the following

MOSUM-type estimator which combines the mean of the estimated observed Fisher
Information on k — G +1,...,kand on k+1,..k + G:

k
~—1 1 1 Y. Y.Y. 4
I‘k —_ ML ( A 3 22 )
i Z ~ YY . YY,
2G i=k—G+1 (Yz 10k_cy, 5?2 vl S
. ’f < Y, Y, )
VYo, YiY?
i=k-+1 (Yz 19k+1 k+G)2 ! i1

This estimator has been applied in the simulations.

4.2.4. Simulating the Data

Under the null hypothesis we simulate 1000 samples of size n = 1000 from the following
model:

Y;’.E_lNP<)\Z), with )\1:1—1-05}/;_1,@:1,,71
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Under the alternative, we let three changes occur. At time point 250 the parameter
vector changes from 6; = (1,0.5)7 to 8, = (2.5,0.5)7, at 500 to 83 = (2.5,0.2)" and
at change point 750 the paramter vector goes to 64 = (1,0.5)T.

4.2.5. Results of the Simulations

On the simulated data, we test the null hypothesis of having no change at significance
level o = 0.05 by using MOSUM score-type and Wald-type statistics based on the least
squares approach. The empirical size under the null hypothesis and the size adjusted
power under the alternative are given in Table 4.5l For both tests, we observe that the
empirical size gets smaller and the size adjusted power grows with increasing band-
width. Whereas the score-type test is very conservative with empirical size less than
a = 0.05 for all considered bandwidths, the MOSUM Wald-type test holds the level
only for the largest bandwidth of 150. Under the alternative, the score-type test per-
forms quite well with a size adjusted power close to one for bandwidths greater than 80.
In comparison to that, the size adjusted power of the Wald-type test is smaller and lies
between 0.8 and 0.9. Furthermore, the results for score-type and Wald-type test based
on the likelihood approach are given in Table [4.6] Note that the likelihood version of
the score-type test shows similar results as the score-type test considered above. On
the contrary, the likelihood based Wald-type test performs much better than its least
squares counterpart. But this is not surprising as the maximum likelihood estimator
is used in the statistic which usually performs better than the least squares estimator.
We can see that the empirical size is around 0.05 for bandwidth between 80 and 120
and that the test is a bit conservative for the largest bandwidth of 150. Furthermore,
the size adjusted power is for all bandwidth close to one. Thus, we can conclude that
the MOSUM Wald-type test based on the likelihood approach performs best among
the considered tests.

Table 4.5.: Simulation results for the tests based on the least squares approach

H, H,
Empirical size | Size adjusted power
Score-type (least squares)
G =50 0.017 0.554
G =280 0.010 0.879
G =100 0.010 0.949
G =120 0.002 0.981
G =150 0.006 1
Wald-type (least squares)
G =50 0.292 0.771
G =80 0.125 0.835
G =100 0.090 0.843
G =120 0.060 0.854
G =150 0.034 0.859
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Table 4.6.: Simulation results for the tests based on the likelihood approach

H, H,
Empirical size | Size adjusted power
Score-type (least squares)
G =50 0.015 0.542
G =280 0.010 0.876
G =100 0.009 0.953
G =120 0.003 0.983
G =150 0.008 1
Wald-type (likelihood)
G =50 0.170 0.918
G =280 0.067 0.992
G =100 0.060 0.998
G =120 0.032 1
G =150 0.025 1

Now, we want to compare the performance of the different procedures in terms of es-
timation. Therefore, for each procedure, we recorded the estimated number and the
estimated locations of the changes as in the simulations for the linear regression. Note
that we use a = 0.2 and ¢ = 0.1 in the estimation process. The results of the MO-
SUM procedures based on the least squares approach are summarized in Table In
the MOSUM score-type and Wald-type procedure the performance of the estimator
for the number of changes depends on the choice of the bandwidth. We can observe
that the estimator performs better if the bandwidth gets larger which even holds for a
bandwidth greater than the proposed length of half of the minimal distance between
two adjacent structural breaks. For G = 150, the MOSUM score-type procedure cor-
rectly estimates the number of changes for 35.8% of the simulated samples whereas the
Wald-type approach estimates the number by 3 in 58.2% of the cases. Thus, the esti-
mator based on the score-type statistic performs worse than the Wald-type estimator.
This coincides with our expectations as the Wald-type statistics are directly based on
the local least squares estimators which can computed by an explicit formula without
applying any numerical method. Furthermore, by considering the results for the esti-
mated change point locations we can see that the score-type procedure performs quite
well in detecting the first change and can compete with the Wald-type procedure for
bandwidths greater than 80. It even shows better results than the Wald-type approach
for localising the third change point. However, the score-type statistics are not really
able to detect the second change since it estimates a change between 480 and 520 for
only 33.2% of the simulated samples (G = 150). In contrast, the MOSUM Wald-
type procedure provides an appropriate change point estimate for the second change
in 80.7% of the cases. Nevertheless, the question arises if the detection of the second
change by the score-type procedure can be improved by using another global estimator

~LS ~LS
in the statistic. By replacing the estimator 6, ;5o by the least squares estimator @3 799
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calculated on the sample Y3, ..., Y700 we get the following results which are given in
Table Thus, we would prefer to use this score-type procedure as it performs better
in detecting the second change point and shows similar results for the first and third
change in comparison to the original one. Unfortunately, in practice we do not know
what global estimators are more suitable to detect several changes. Hence, it would be
reasonable to use a set of global estimators in the score-type procedure and to merge
the results by a multiscale method as described in Chapter 5

Table 4.7.: Simulation results for the MOSUM score-type and Wald-type statistic based
on the least squares approach

Estimated number Estimated change point in
<1 | 2 |g¢=3| 4 | >5 |[230,270] | [480,520] | [730, 770]
Score-type (least squares)
G =50 [0.901 | 0.080 | 0.018 | 0.001 | 0.000 | 0.352 0.010 0.125
G =280 |0.627 | 0.228 | 0.073 | 0.012 | 0.000 | 0.734 0.036 0.326
G =100 | 0.407 | 0.435 | 0.131 | 0.023 | 0.004 | 0.871 0.077 0.460
G =120 | 0.223 | 0.486 | 0.237 | 0.043 | 0.011 0.931 0.161 0.588
G =150 | 0.081 | 0.428 | 0.358 | 0.111 | 0.022 | 0.920 0.332 0.724
Wald-type (least squares)
G =50 [0.390 | 0.374 | 0.175 | 0.051 | 0.010 | 0.891 0.429 0.044
G =280 [0.181 | 0.472 | 0.253 | 0.071 | 0.023 | 0.916 0.664 0.156
G =100 | 0.089 | 0.438 | 0.338 | 0.098 | 0.037 | 0.916 0.731 0.292
G =120 | 0.036 | 0.346 | 0.435 | 0.153 | 0.03 0.914 0.781 0.431
G =150 | 0.008 | 0.184 | 0.582 | 0.188 | 0.038 | 0.894 0.807 0.635

Table 4.8.: Simulation results for the MOSUM score-type based on the least squares

~L

estimator @3, 709

Estimated number Estimated change point in
<1 | 2 |q¢=3| 4 | >5 |[230,270] | [480,520] | [730,770]

.3
Score-type with estimator 634 799

G =50 | 0.264 | 0.339 | 0.230 | 0.102 | 0.065 0.798 0.037 0.484
G =80 | 0.100 | 0.397 | 0.300 | 0.143 | 0.060 0.932 0.121 0.684
G =100 | 0.038 | 0.341 | 0.413 | 0.155 | 0.053 0.923 0.259 0.759
G =120 | 0.011 | 0.249 | 0.490 | 0.204 | 0.046 0.932 0.408 0.772
G =150 | 0.018 | 0.162 | 0.596 | 0.194 | 0.030 0.923 0.660 0.749
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Furthermore, the results of the MOSUM procedures based on the likelihood approach
are given in Table The procedures perform better than their least squares based
counterparts as the maximum likelihood estimator is used in the statistics. The MO-
SUM Wald-type statistic of likelihood approach shows the best performance in terms
of estimating the number and the location of the changes. Besides, the score-type

procedure with the global estimator 5%5 700 Shows for G = 150 similar results as the
Wald-type approach but is more effected by the choice of the bandwidth and performs
worse for smaller window length. However, this problem can be solved by implementing
a multiscale method in order to appropriately combine results produced by MOSUM
score-type procedures with different bandwidths and different global estimators. This
could considerably improve the performance of the score-type approach so that it could
compete with the Wald-type procedures.

Table 4.9.: Simulation results for the MOSUM score-type and Wald-type statistic based
on the likelihood approach

Estimated number Estimated change point in
<1 | 2 |g¢=3| 4 | >5 |[230,270] | [480,520] | [730,770]
Score-type (likelihood) with estimator 4/9\]1»7{1%00
G =50 |0.903 | 0.077 | 0.019 | 0.001 | 0.000 0.312 0.028 0.097
G =80 | 0.619 | 0.288 | 0.063 | 0.028 | 0.002 0.713 0.135 0.242
G =100 | 0.385 | 0.379 | 0.183 | 0.045 | 0.008 0.857 0.267 0.367
G =120 | 0.190 | 0.418 | 0.276 | 0.096 | 0.020 0.925 0.406 0.494
G =150 | 0.056 | 0.321 | 0.449 | 0.137 | 0.037 0.921 0.583 0.623
Score-type (likelihood) with estimator 5%5 700
G =50 |0.264 | 0.339 | 0.230 | 0.102 | 0.065 0.839 0.061 0.545
G =80 | 0.100 | 0.397 | 0.300 | 0.143 | 0.060 0.936 0.199 0.734
G =100 | 0.038 | 0.341 | 0.413 | 0.155 | 0.053 0.929 0.389 0.780
G =120 | 0.011 | 0.249 | 0.490 | 0.204 | 0.046 0.929 0.561 0.782
G =150 | 0.018 | 0.162 | 0.596 | 0.194 | 0.030 0.919 0.724 0.742
Wald-type (likelihood)
G =50 | 0.330 | 0.320 | 0.225 | 0.090 | 0.035 0.789 0.352 0.429
G =80 | 0.069 | 0.295 | 0.373 | 0.199 | 0.064 0.890 0.603 0.645
G =100 | 0.017 | 0.205 | 0.415 | 0.259 | 0.104 0.908 0.702 0.714
G =120 | 0.005 | 0.115 | 0.546 | 0.248 | 0.086 0.908 0.766 0.764
G =150 | 0.001 | 0.040 | 0.629 | 0.261 | 0.069 0.896 0.809 0.803

4.2.6. Comparison of the Run Time

Similar to the considerations in the linear regression we want to compare the Wald-
type and score-type procedures in terms of their actual computation times. Thus, we
calculated the two statistics based on the least squares and the likelihood approach for
several sample sizes n = 250, 500, 1000, 2000, 4000, 8000, 16000, 32000 with bandwidth
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G = G(n) = n*/? and recorded the run times of 100 repetitions. Figure shows the
average run time of the MOSUM score-type and Wald-type statistic based on the least
squares approach. We can see that the score-type statistic performs slightly better
in terms of computation times. Since the procedure only requires the calculation of
one global estimate we would have expected a larger difference in run time as in the
linear regression example in Section [f.1.5] An explanation for this could be that we
applied a MOSUM-version of the empirical covariance matrix 3, (given in (4.13))) as
an estimator for the long-run covariance matrix of the estimating function which seems
to slow down the computation in total. Nevertheless, both procedures perform quite
well. For a sample size of n = 32000 the computation of the score-type statistic only
takes 9.48 seconds on average followed by the Wald-type statistic with 10.94 seconds.
Figure gives the average run time of the two statistics based on the likelihood
approach (in minutes) and Figure shows the performance of the score-type statistic
(in seconds) separately. The plots show that the score-type statistic clearly outperforms
the Wald-type statistic in terms of computation time. For sample size n = 1000 (n =
32000) it only takes 0.71 (35.24) seconds to calculate the score-type statistic whereas
the Wald-type statistic requires on average 3.23 (221.34) minutes of computation time.
This illustrates a main disadvantage of the Wald-type procedure in contrast to the
score-type approach. As numerical methods are needed to calculate the local estimates
in the Wald-type statistics computation time increases dramatically in large data sets.
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Figure 4.3.: The graph shows the average computation time of the MOSUM Wald-type
statistic and the score-type statistic based on the least squares approach
for 100 replications.
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Figure 4.4.: The graph shows the average computation time of the MOSUM Wald-type
statistic and the score-type statistic based on the likelihood approach (in
minutes) for 100 replications.
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Figure 4.5.: The graph shows the average computation time of the MOSUM score-type
statistic based on the likelihood approach (in seconds) for 100 replications.
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5. The Multiscale MOSUM
Procedure

5.1. Introduction

In this chapter we consider the multiscale MOSUM procedure with localised pruning
introduced by |Cho & Kirch (2018), which is decsribed in the following subsection, and
we adapt it to the MOSUM score-type and MOSUM Wald-type procedure in order
to solve the problem of choosing the bandwidth and the problem in detectability of
the score-MOSUM. In Section we explain how the method can be extended to the
linear regression model as given in Section and a general model which is similar
to that in Section but we do not restrict our considerations to i.i.d. (type (HI))
or stationary and strongly mixing (type (H2)) sequences. Before stating a first result
on the output of the multiscale method, we derive some auxiliary lemmata which are
crucial for that proof and for showing consistency of the estimators as future work.

5.2. The Multiscale MOSUM Procedure with
Localized Pruning by Cho and Kirch

The choice of the bandwidth has a crucial impact on the performance of the MOSUM
procedures, even in the classical mean change model. One possibility to solve this
problem is to run the MOSUM procedure on a set of different bandwidths and to merge
the results in an appropriate way. For instance, Messer et al.| (2014), using MOSUM
statistics for detecting changes in point processes, proposed a multiscale method which
takes all the estimates obtained from the smallest bandwidth and adds recursively
estimates produced by the next largest bandwidth but only if their G-environments do
not cover any of the previous estimates. However, one main drawback of this procedure
is that it might fail to eliminate some estimates produced by spurious local maxima.
Furthermore, as already mentioned by [Eichinger & Kirch| (2018), it is questionable how
to extend this method to asymmetric bandwidths where the length of the right window
does not coincide with length of the left window. Such bandwidth constellations have
been considered for the classical mean change model in order to locate small changes
with one close and one distant neighboring change and it would be reasonable to
incorporate this in our MOSUM procedures as well. Moreover, the multiscale procedure
mentioned above cannot be used to merge results produced by MOSUM score-type
statistics of different global estimators which is essential for solving the problem in
detectability.

In comparison to that, |Cho & Kirch|(2018) adopted the idea of |Fryzlewicz| (2014)) to use
an information criterion to combine the estimates produced by the MOSUM procedure
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with different window lengths. Starting with Yao| (1988), who used Schwarz’s criterion
(also known as BIC — Bayesian information criterion) to estimate the number of changes
in the mean under normality assumption, information criteria have been widely used
in multiple change point detection. Just to mention a few contributions, Liu et al.
(1997) applied a modified Schwarz criterion for localizing changes or different segments
in a multivariate regression model. Pan & Chen| (2006) considered a general parameter
change problem of independent observations and used a modified information criterion.
Moreover, Kiihn| (2001)) extended the result of [Yao| (1988) to a non-parametric setting
by using a weak invariance principle. Nevertheless, in all of these examples the change
point estimates are obtained by an optimization of the considered criterion over all time
points which can be computationally expensive. In contrast, Cho & Kirch| (2018) apply
a modified Schwarz criterion (sBIC) to choose among a set of candidates produced
by different bandwidths and propose a localized pruning approach which is shortly
described in the following.

We consider a set of bandwidths and for each of these window lengths we run the
MOSUM procedure to get estimates for the change points. These estimates are stored
together with the information about the bandwidth, the values of the corresponding
MOSUM statistic and the p-values, derived from the limit distribution of the test
statistic under the null, in order to create an initial candidate set for the multiscale
procedure. In the next step, the candidates are ranked according to their p-values or
jump sizes, which are computed by dividing the MOSUM statistics by the square root of
the corresponding bandwidth. We start with the candidate £*, which has the smallest p-
value or the largest jump size, and determine its conflicting candidates in the set which
are estimates possibly generated by the same structural break. Two estimates are in
conflict if they lie in the computation interval of the other, where the comptutation
interval of a candidate is the window on which the associated MOSUM statistic has
been calculated. Then, we determine all the subsets of k£* and its conflicting candidates
satisfying the following conditions and add them to the set of the final candidate sets.

(C1) Adding further candidates to the set monotonically increases sBIC.
(C2) Removing any single candidate from the set increases sBIC.

After removing the estimates, which have already been considered, from the candidate
set, we repeat the same steps until the initial candidate set is empty. Finally, the output
consists of sets of candidates A satifying the conditions ( and ( Furthermore,
the cardinality of the output is defined as the minimal cardinality among its candidate
sets and is used as an estimator for the number of changes.

5.3. Adapting the Procedure

Cho & Kirch| (2018]) apply the following modified Bayesian information criterion
RSS(A,

where A, = {c1n,...,Cmn} is a generic set of possible change points with cardinality
|A,| = m. The choice of &,, which penalizes the complexity of the model, depends in
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a sense on the assumptions of the model. Moreover, the sum of squared residuals of
the set A, is given by

m Cj+1,n
RSS(A) =Y Y (Xi—Xe vienn)
j=0 i=c; n+1

where ¢y, = 0 and ¢, 41, = n. Under normality assumptions on the random variables
the RSS represents the log-likelihood function whereas in a non-parametric world we
would call it pseudo-log-likelihood which has the following relation to the estimator.
The sample mean computed on the subsample X, ..., X,, denoted by X, minimizes
the function >_7 (X; — u)? and thus belongs to the class of M-estimators. This con-
nection enables us to generalize the information criterion as follows.

At first, let us think about the classical M-estimator theory in the absence of change
points. With Q(X;, 8) denoting the criterion function, we call the estimator sequence
(/9\1771 an M-estimator for 6y := mingce F (Q(Xy, 0)) if é\m minimizes = 37" | Q(X;, 0)
for every n. Moreover, we assume that the criterion function () is positive and con-
tinuously differentiable on the compact parameter space ® such that the estimating
function is the gradient vector of the criterion function with respect to 6: H(X;, 0) =
VQ(X;, 0). Hence, minimizing £ 3" Q(X;, 8) comes down to solving the estimating
equation system £ "  H(X;,0) = 0. Under the moment conditions

(I) E(Q(X;,0)) < oo for all 8 € © and
(IT) E (supgee [ H (X1, 0)]]) < oo,

the dominated convergence theorem yields VE(Q(Xy,0)) = E (H (X, 80)) (see Bauer
(2001) page 102 ff). This shows that these M-estimators belong to the class of Z-
estimators considered in the previous sections where the unique zero of the expecta-
tion of the estimating function coincides with the unique minimizer 6y of the criterion
function. Thus, the estimator 6, minimizing the function >, ; Q(X;, @) can be called
M-estimator or Z-estimator on the subsample X, ..., X,.

Under the alternative, we assume piecewise stationarity as in Assumption where
the sequences {Xz(j) cj>1}, 5 =1,...,9+ 1, additionally satisfy Conditions H and

such that the unique minimizer of F (Q(ng), 0), denoted by 0; € ©, is equal to
the unique zero of £ (H(ng), 0))

Consequently, we propose the following information criterion for the MOSUM score-
type and the MOSUM Wald-type procedure:

n

sBIC(A,) = §1og (gRSS(AL)) + | Anln, (5.1)
where
1 m Ci+1,n -
= — X, 0.. . 2
gRSS(A,) = — ;:ZH Q.00 410,11,) (5.2)
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and the penalty fufills
& = o(n). (5.3)

Throughout this chapter, we consider the general parameter change model and the lin-
ear regression model which satisfy Assumptions[A.2.1land [A.2.2| under the alternative.
In the general model we assume that the estimating function H is twice continuously
differentiable on ©, where ® C RP is a compact parameter space, and that H and
its derivatives are measurable with respect to X;. Further conditions on that model
will be introduced in the following subsection. In the linear regression model, where
the parameter space is not compact, we consider Assumptions (R[1[) to (R[7[) given in
Section and we will introduce additional conditions the Section [5.4.2] According
to the least-squares approach we get the following criterion function:

QY;, X, 8) = (Y — XT8)",

such that gRSS of an arbitrary set is given by:

m Ci+1,n

gRSS(A) = -3 S (Y- XIB i) (5.4)
§=0 i=c;jn+1

5.4. Theoretical Foundation

In this section, we derive some auxiliary results helping us to prove a first result for the
multiscale method. We first consider the general model before we show similar results
for the linear regression model.

To simplify the notation in the proofs we shorten the expressions of uniformity if it is
clear what scenarios are considered. For instance, in Lemma we want to show

that max ||@, _ . —0.|| =0 <max{ L ”—"}) holds. Hence, within the
vnSh<dyy || m=ht bk ntg T P Von? vn ’
1<g<vn,

proof of that lemma we only write that a derived statement holds 'uniformly in g and
I’ instead of 'uniformly for all v, <h < 9,, and 1 < g <7,

5.4.1. The General Model

In the general parameter change model we assume that, for all j = 1,...,¢ + 1, the
following conditions are satisfied:

(M1) Let {X,(j)}iz1 be a stationary and ergodic sequence in RP.

(M2) Let S(j,k,0;) = >2F | H(ng), 0;) fulfill a strong invariance principle such that
(possibly after changing the probability space) there exists a p-dimensional stan-
dard Wiener process {W (k) : k > 0} with identity matrix I, as covariance
matrix and v > 0 such that

202 (56 %.6,) ~ B(5G..6,) - W) = 00724 as.

as k goes to infinity.
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(M3)

(M4)

(M5)

(M6)

(M7)

(M8)

(M9)

(M10)

For all @ € © and for all [ = 1,....p, let the sequence {VH,(XZQ), 0)} fulfill a

strong invariance principle as described in (M?2]).

Foralll=1,...,p, let & (sup(,e@ HV2HZ X(J H > < oo and let the sequence
{sup(,e@ HVZHZ X(] H } satisfy a strong invariance principle as in ( I)
Let E (sup%@ HVH(X@, O)H > < oo hold.

F

Let the following forward and backward H&ajek-Rényi-type inequalities hold for
0 c{6,,...,01,}, for any m,, € Ny and a positive deterministic sequence {v,}
with v, — oo (which will be specified later):

mn+k
(J _
hex E ’ H(X; = Op(1)
and
Un (J
H (X = 1
e X oty

. T
Let V;(0) = E (VH(X%J), 0)) be a regular matrix for all 8 € © and let

supHVj(B) 1HF <oo, forall j=1,...,¢+1.
0cO

Let 0V ;(0) + (1 —0)V j41(0) be a regular matrix for all @ € ® and all 6 € [0, 1]
and let

sup sup ||(6V;(0) + (1 — 6)Vj+1(0))71HF <oo, forall j=1,...,q.

5€l0,1] OO

For s > 1 we assume that 77 (A, — A\_1)V(8) is invertible for all € © and

l=j+1
j+s !
sup ( Z (A — All)Vl(0)> < 00.
0€® 1l \i=j+1 p
Let £ (Q(ng), §)> < oo where 6 denotes the unique zero of
g+1 ‘
YN E (H(X(f), 9)) :
j=1
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Remark 5.4.1. Note that Assumption (1\@ holds for any positive deterministic se-
quence {v,} with v, — oo if the series {VHD(X(J) )} is time-reversible and satis-
fies Assumption (1\@ For instance, i.i.d sequences of type ( and stationary and
strongly mixzing sequences of type (E@) as considered in Section and Sectionful—
fill these conditions. If the series satisfies Assumption (1\@ but 1s not time-reversible,

we only get that Assumption (M@) holds for sequences {v,} with L\/%V) = O(1).

The first results up to Lemma [5.4.8| give uniform statements on the approximation
of sums of transformed sequences which will enable us to investigate the asymptotic
behavior of the local estimator sequences in a uniform manner.

Remember that k;,,...,k,, denote the change points and that we set ky,, = 1 and
kq+1n, = n for all n. Furthermore, we use

5j,n = kj,n - kj—l,’ru .] = 17 ) + L. (55)

Lemma 5.4.2. Let the Assumptions ( and (1\@ be fufilled. Then, for any positive
deterministic sequence {v,}, it holds

I+h e i
%&X Z H z 7 OP (max {n , Og(n) )
og@?ﬁh i=l+1 Up /Un,

Proof. At first, we assume that ¥3(;y = I,. On noting that £ (H(Xl(-j), Hj)> = 0, the
strong invariance principle in (M2)) and Lemma [E.1.6] (b) can be applied to receive

I+h
1
©) v
max § CH(X.0)) nop (n¥/ @) 4 max o ||W(l +h) = W(Q)|
0<i<n—h i=l+1 0<i<n— h
1/(24v) 1 1
< — —
<Op ( o ) nogr%%f \/E\|W(l+h) W)l

/(@)
<Op ( Wi (1) — Wi (1)

) —
max ————
Up Un A=t 0<h<b<n /[, — I

nt/(@+v) log(n)
=0p ( o ) + Op (—m ,

where the last line follows from Lemma 1 in|Yao (1988) since the increments of a Wiener
process can be represented as sums of independent standard normal distributed random
variables.

If 3y # I,,, Lemma [E.1.5] yields

I+h 1 I+h
(4) _ 1/2 1/2
s |7 30 HOG6)| = s SSRGS HOK6
0<I<n—h Il i=l+1 0<I<n—h i=l+1
1/@2+) /]
<[sig], g ;3 e o (m{ , °~g(”>}> |
F0<127;Zih i=l+1 Un, Uy,

where the last line follows from the first the part and since HE / QH O
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Remark 5.4.3. The value v appearing in the rate in the lemma above comes from the
wvariance principle of the considered transformed sequence. In the following lemmata
we need mvamance principles for dzﬁerent sequences (but only finitely many), for in-
stance {H( ,0)}is1, {VHZ( ; 0)}121 Hence, throughout this chapter we choose
v as the minimum over the values of all these tnvariance principles.

Lemma 5.4.4. (a) Let the Assumptions (M1) and (M3) be fufilled. Then, for all
l=1,...,p and for any positive deterministic sequence {v,}, it holds

I+h , 1/(24v) ]
max § VHy (X9, 0)| = 0p (max{n , og(n) {
h>vy Un, \/Un
0<i<n—h Il i=l4+1

(b) Let the Assumptions (MI]) and (MY)) be satisfied. Then, for alll =1,...,p and for
any positive deterministic sequence {v,}, it holds

I+h

e |3 s [0, - 2 (g [0, )|
05?7’;1/_}1 i1 0<@ F 0cO F
1/@+v) /]
=0Op (max {n , og(n) }) .
Un \/ /UTL
Proof. The results can be derived in an analogous manner to Lemma [5.4.2 [
Lemma 5.4.5. Let the Assumptions (MI]), (M3) and (MY]) be satisfied. Then, for any
positive deterministic sequence {v,} with &:U) — 0,
I+h
sup max Z VH,X l ), 0)|| =op(1).
0ce® h>vn
0<I<n—h i=[+1 F

Proof. The basic idea of this proof is well known in non-parametric statistics and it
can be used in general to derive uniform results on a compact space. We have only
adapted the arguments to our specific setting.

There are three main arguments:

(1) The compactness of the parameter space @ implies that for each 6 > 0 there exist
a finite number M = M (J) > 1 and 64,...,0); € O such that for any 6 € © there
is an m < M with ||@ — 0,,] < é.

(2) For fixed M and 6y,...,0), applying Lemma [5.4.4] (a) in connection with As-
sumption (MB)) yields

I+h M I+h

sup max E VHy,(X 1 ), 0,,)| < max E V Ho,( X(j 0.,
m<M h>vn h>vn
= 0<I<n—h 1=l+1 m=10<|<n—h i=l+1

n'/ @) /log(n)
= Op | max , = op(1),
(e }> v

as log(n) _ @) (W> implies max { nt/CH) g log(n)} — 0

VUn vV Un Un ’ VUn
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(3) Since the estimating function is twice continuously differentiable on © a first order
Taylor expansion on V H; shows, for any 0,& € O,

IV Hi(x,8) = VH(=, £)|| < sup V2 Hi(z, m)]| . 16 — &l
ne

which is well defined at least almost surely with respect to Px, since
E (Supee@ Hv?m(xgj), 0)HF> < o0 holds by ( u
Let L(XY) = supgee HWHI(X?), e)HF. Hence, for any 8, € € © with || — & < 6,

we obtain
I+h

. Z |V Ho(x,6) = Vo, (x, ¢)|

<5 (% Z (L&) = BLx?) + 2E<L<X§”>>> .

Furthermore, for each € > 0 we can choose a § > 0 such that 55 — 2E(L(X(]))) > 0 as
E(L(ng))) < 0o by Assumption ( I) Thus, combining (2) and (3) shows

I+h

P | sup max ZVHOZ xW ,0)
0c® olﬁ%ﬂ h h 2 I+1
I+h
=P | sup sup max ||— Z VH,, (X > €
m<M “e—em”oﬁii’ih i=l+1
I+h
=P | sup sup max Z (VHOZ ,0) — VHO,Z(XEj),OmD
mEM 8=6.] o 200 hz I+1
I+h
"— Z VH()I z , m) €>
i=l+1
I+h
<P 31<15\)4 sup - max Z (VHOl ,0) — VHOJ(XZU)’Om)) >§
= ||0—0m||0§@f;1h i=l+1
I+h
+ P | sup max ZVHOZ ; , 0., E
m§M0<z?ﬁ"h i=l+1 72
R () () ()
<P max - Y (L&) - BLED)) > o = 2BLED) | +0(1) = o(1)

0<i<n—h i=l+1

where the last step follows from Lemma [5.4.4{ (b) and since & —2F (L <X§j)>> > 0 by
the choice of 4. Finally, applying Lemma [E.1.6| (d) completes the proof as

I+h P I+h

max || E VHO(ng),B) < max E VHy, (X Z )6 )| = op(1).
>vn

0<i<n—h i=l+1 F =1 0<l<n h i=l+1
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]

Lemma 5.4.6. Let the Assumptions (MI]) and (MJ) hold. Then, for any positive
deterministic sequence {v,} with v, — oo,

kjnth
sup sup ||— Z VH X(j), 0)|| =op(1)
h>v, 0€O i=k;nt1 -
and
1
sup sup || — Z VHO(XEJ), 0)|| =op(1).
h>v, 0c© h ki —ha1
i=kjn o

Proof. Note that the first derivatives of the estimating function are measurable with
respect to X so that the transformed sequence {VHy(XY 6)} is stationary and
ergodic by Assumption (MI). Furthermore, with the stationarity of the sequence we
obtain

j nth h
D 1
sgp Sup — Z VH( X(] ,0)|| = sup sup Z Z
>v, 06O =kt 1 h>v, 0e©® i—1 P

F

Moreover, applying Assumption ( together with the Uniform Ergodic Theorem
given in Corollary yields

h

1 .
- S VH (X, 0)

=1

sup sup =o(l) a.s.

h>vy, 0O

F

The second assertion can be derived in an analogous manner with

1
Sup sup || Z VHO(X(J 0) 2 sup sup Z VH,X ]) ,0)

h>vn 0€O P " . h>un 06O l i -

and since the series in reversed time is ergodic as well which implies that

sup sup Z VH,X ,0) =o(l) a.s.
h>v, 0€© i=n—ht1 P
by the Uniform Ergodic Theorem in Corollary [

Lemma 5.4.7. Let the Assumptions (M1]) and (M?3) hold. Furthermore, let {v,} and
{0n} be positive deterministic sequences with v, — oo as n — oo. Then,

]n+g
)
max sup VH,X J ,O)|| =op(1
9<0n 9@ || g + Un ,_ ;H ) (1)
n F
and
1 j’!L
max su VH, (XY .0 = op(1).
maxeup | D VH(EE.0) = or(l)
i=kjn—g+1 I

- 153 -



5. The Multiscale MOSUM Procedure

Proof. With the stationarity of the sequence, we receive

] ntg
max su VH X(J 2 maxsu VH ),
g<Un 068 Up + 9 kz:Jrl 0 ) g=<Tn 068 Up + 9% Z 0
= 7,m F F
g1 ' 1Y 4
< max sup — ||— ZVHO(X(]),O) + max sup ||— ZVHO(XZ@,Q)
9<Vn 6€® Un || 9 = g 92Vneceo |99 .
Z VH, X(j + max sup Z VH, (X 6
T 9<Vn e \/Un 921/Un €O
F F
= OP(l).
The first summand in the inequality above converges to zero as \/Lv? — 0 and since
BN ()
max su VH,X” . 0)||=0(1) a.s
s sup | -3 V(. 0)) = O

by the Uniform Ergodic Theorem in Corollary [E.2.7] The convergence of the second
summand follows from Corollary as well.

The second assertion can be shown similarly by using the ergodicity of the sequence in
reversed time. O

Lemma 5.4.8. Let the Assumption ( hold. Furthermore, let Assumption (M@]) be
satisfied by {v,}, for @ € {01, ...,0,11}. Then, for any positive deterministic sequence

{on},

max ! kj’z"fg H (X(j) 0)| =0 < = )
ggﬂn vn + g i k] n+1 0 7 0 - P ’Un
and
max ! kan H (X(j) )| =0 ( ! )
9<tn || Uy + g e O\™ P /Up,

Proof. By the stationarity of the sequence we get

kjntg g
1R x0) gy 2 ") 7
max H ( ,0)|| = max H X-J), 0 5.6
9<0n vn+glg;+1 (X ) g<in vn+g; X7, 9) (56)
3 1
Hy (X7 6) H =0 :
< |85 EGE. )|+ [ ()

where the approximation of the second summand follows directly from the Hajek-

Rényi-type inequality of Assumption (M@) The first summand is Op <L since the

om
Ergodic Theorem shows
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The second statement can be derived in an analogous manner by using the backward
Hajek-Rényi-type inequality and on noting that the series in reversed time is ergodic
as well. O

Now we are able to investigate the behavior of the estimator sequences. In the fol-
lowing two lemmata we concentrate on situations where no change occurs between the
considered time points, i.e. the estimators are computed on stationary subsequences
of the time series.

Lemma 5.4.9. Let the Assumptions (M1)), (M2), (M3), ( and (M7) be satisfied.

Then, for any positive deterministic sequence {v,} with nl2 0, it holds

R nl/(?—l—y) log(n)
max 0141+ — 0j|| = Op | max , .
Un§h<5j,n U’n V Un
k‘jfl_,n<l§kj7n7h

Proof. A first order Taylor expansion yields, that there exists a 1, ;, ,, with

Hm,h,n - 01+1,l+h‘ <10, — Ol+1’l+hH such that

I+h l+h

N Z H(X J) ,0;) Z VH(X z 7nlhn) <9Al+1,l+h — 9j>
i=l+1 i=l+1
| b ' | T -
= <E Z VHO(ng)v Tll,h,n) + E <VH(X§J)a nl,h,n)>) <Ol+1,l+h - 0])
i=l+1

= ( p(l)+FE (VH(X1 ,nlhn))>T <9Al+17l+h — Bj) uniformly in [ and h,

where the last line follows from Lemma since

I4+h
max E (VHO(XZ 7nlhn))

vn§h<6j7n

kj_1,n<I<kjn,—h |l i=l+1 F
1 I+h

< sup max — E (VHO(X ),9)) =op(1)

0cO v <h<djn

kj1n<I<kjn—h i=l+1 F

Moreover, Lemma gives

Ith /(2+v) 1
max Z H(X; , = Op | max n , og(n)
vn<h<éjn Z | Un, A/ Un

k‘j_17n<l§k]’,n—h

Hence, we can conclude that

nt/ @) Jlog(n
Op (max{ o \/i—i)}>

= <0P(1) (VH( i ,nlhn)>>T (§l+17l+h — 9j> uniformly in [ and h.
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Furthermore, after multiplying both sides of the equation above with the inverse of

the expectation matrix, Lemma [E.2.21] in connection with Assumption (M[7) can be
applied to get

nl/(2+y) log(n, R ) .
Op (max{ — \/% ) = (op(1) + Ip)T (9l+1,l+h - 0j> uniformly in [ and h.

Finally, Lemma [E.2.22| shows the assertion. O]

This rate of convergence can be improved if we have further information about the
start and end points of the subsample on which we compute the estimator sequence.

Lemma 5.4.10. Let the Assumptions (M), (M3) and (M7) hold. Furthermore, let
Assumption (]\@ be satisfied by 6;,, as in (5.5)). Then, for any positive deterministic
sequences {v,} and {0,} fulfilling that ;, — v, — ¥, > 0 and e = 0(1),

~ 1
og;lzaé ijfl,n+h+17kj,n*g - 03’ =0Op (ﬁ )
=t =Yn
0<g<tn

Proof. A first order Taylor expansion shows

~ Y HxY.e) (5.7)
i=k;_1 n+h+1
] el " _
- E Z VH(X’L] 7ng,h,n)T <0kj71,n+h+1,kj’n—g - 0]>

i:kjfl,n +h+1

for some n, ), ,, with

On noting that F <H(ng), Gj)> = 0, applying Lemma [5.4.8 together with Assumption

(M) yields

0 — Ok, 1 tht1 kg

<]

ng,h,n - ekjfl,n+h+1,kj,n*g

kin—g
LS )
By 2. HED) 5:8)
0<g<on i=kj_1 n+h+1
1 kj,n k‘jflyn-i-h kj,n
= - V) 9;) — U) gy _ W p.
= o<hu || n Z H(X;".0;) Z H(X;",8;) H(X;",0;)
0=g=0n =kj—1ntl i=kj—1,n+1 i=kjn—g+1
by i k'fl n+h
6' 1 7 . 5 _|_ 1_) 1 J N ‘
< bl H X(]) ] jn n H X(,]) |
_ n 6]17, ) Z ( 7 70]) + n Og}lzag%gn 5jn—|—h ' Z ( i 70])
) Z:kj717n+1 k) 7':kj71,n+1
Oin+ 0 1 Kjn
O5n T tn )
max ||——— HXY g,
* n oggg}gn (Sjn + Uy Z ( i ])
’ Z:k",nfg‘i’l
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Moreover, by Lemma we obtain

1 kj,n_g
(4)
max ||— E VHX:
T | O( 3 7ng,h,n)
0<g<tn, i=k;_1 n+h+1 F
1 kjn Fi—tnth
3 Loy () _ ()
= Og}lag)gn - | VH()(XZ 7ng,h,n) ‘ VH0<X1 777g,h,n)
0<g<tn i=kj—1,n+1 i=kj—1,n+l
k’j,n
Z <)
- VHO( % >nghn)
i=kjn—g+1 F
1 J n kjfl,n“!‘h
< - Hy(x? 9 - HyxY o
< sup VH( )| + max sup VHy(X;",0)
n 0<h<tn n
0cO . 0O _
1= k] 1 n+1 F Z—kj_17n+1 F

]n

+ max sup 1 Z VHO( ,0)

0<9<tn gc® n
" oe ]n 9+1

F
= OP(l)’
implying that
kj,nfg
1 Sim—h—g
E Z VH(XE])anghn) - ]TE (VH(Xl 7nghn)> +0P(1)7
’i:kjfl,n‘f'h-‘rl

holds uniformly in g and h. Thus, together with (5.7) and (5.8) we can conclude that

1 djin—h—g ; T
Op (%) = (jTE <VH(X(IJ)’ng,h,n)> + OP(l)) <9k,,-_1,n+h+1,k]-,n—g - 9j>
uniformly in ¢ and h.
On noting that

. E(VLHXU)n )>_1
5j,n —h— g 1 »%ghn

=0(1)

holds uniformly in g and h by Assumption (M/7]), with Lemma [E.2.21| both sides of the
equation above can be multiplied with the inverse of the expectation matrix in order
to get

E(Vfuxg%eﬂ_l

= - ~— Sup
F 5j,n — Up — Un 0cO®

F

1 ~
Op (7) = (I, + 0p(1))T <9kj71 th e —g — 0]-> uniformly in ¢g and A,
- : :

which completes the proof by Lemma [E.2.22 O
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In the next lemma we focus on situations in which exactly one change arises between
the two considered time points so that the sample, on which an estimator is computed,
can be divided into two subsamples: before and after the change. Lemma in
particular shows that we still get uniform convergence if one subsample increases with
n whereas the second subsample is dominated by the other one.

Lemma 5.4.11. Let the Assumptions (M) and (M?5) hold. Furthermore, let (M6) be
satisfied by {v,} and let §;, as in (5.5)).

(a) If Assumption (M7) is fulfilled, then, for any positive deterministic sequence {0y}
with 0, = o(vy),

~ 1 o,
max ||0r. _ni1k. —0;|| = Op | max —
Un§h<5j7n 7, + ) ],n+g J /—UTLJ Un
1<g<vn
and
~ 1 o,
max Or. i1k +n— 0,11 =Op | max — )
0 <h<8ji1n T I VUn Uy
1<g<vn

(b) If Assumption (M§) holds, we get the same result as in (a) for any positive deter-
ministic sequence {0} with v, < 041, and 0, < §;, respectively.

Proof. We only derive the first assertion since the second statement in (a) can be shown
in an analogous manner.

First note that h, which is greater than v,,, denotes the length of the subsample before
the change and g represents the length of the subsample after the change point bounded
by 0. A first order Taylor expansion yields, that there exists an 7, ,,, with

th,y,n B ij,n—h+1,kj,n+g < ) 0; — ij,n—hﬂ,kj,ﬁg such that
s
H(X:,9,) (5.9)
htg i=kjn—h+1
1 kJ}n'J"g
= —h + Z VH(XZ’ nh7g7n)T (ij,n_g‘i‘l,kj,n-f—h —_ 0])
g i:k‘jyn—h-i-l
1 kj,n
1 kj7n+g . h A
o > (VEE ) B (VHE )
h + g i:k’j,n-‘rl h + g
g T
o N
+h +_gE (vH(X(1-7+ )’ nh,g,n)>> <0kj,n_h+17k?]',n+g — 0]) .
Furthermore, we can apply Lemma in order to receive
L o)
- 'J
L iy 2 VH )
1<g<in i=kjn—ht1 p
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1 () _
<O lE 2 VHEDO) =or(l)
F

Moreover, by Lemma we obtain

1 kjntg

_ VH, (XY )
iy 2 (VHE )
1<g<vn, 1= ]7L+1 F

j’ffg <VH0(XZ('j)a9)> =op(1).

1=kjn+1 r

1
< sup max
0c0 1<9<tn || Uy + g

Thus, by considering 1) again, with h%g < f]—: — 0 and Assumption ( I} we get

1 k:j,n+g
— > Hx.6)
9 - h i=kjn—h+1

h T, .
= ( (1> + h—gE (VH( 1 7nhgn)>) <0kj,n*h+1,kj,n+g - 9])
uniformly in h and g.

Besides, the left hand side of the equation above can be approximated in the following
way. Applying the Hajek-Rényi-type inequality in Assumption (M6) and Lemma [5.4.§]
yields

1 ] ntg

max —_— E H(X,. 0.
vn<h<din ||h 4 g (X, 05)
1<g<p, i=kjn—h+l

k _7 n+g

I Z H(XY g, Z H(X9*Y 9))

vm<h<din ||h+ g

1g<on |0 + 9 \ £
_}n

ool

Hence, we receive, uniformly in A and g,

o ()

_ (op(l) i hL—irgE (VH( ) ,nhgn)>)T (é\k’j,n—h-i-l,kj,n"l‘g - 9j> .

1<g<vn, i= k.7n_h+1 = k] ntl
1 k]n ~
< max | H(XD.0,)| + 2| B (HET™.0,) |
onsh<Ogn (|0
—k;
1 ]n+g
+ max Z Ho( J“
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Furthermore, with Assumption ( and since Z—Z + o(1) we get

Up
< <1 + —) sup
F Un /) 6cO®

Thus, by Lemma [E.2.21| we can multiply the inverse of —— h <VH( i ,nhgn)> to
both sides of the equation above to get

ht -1
Lt e (Ve m,0) _ o).

E <VH(X§j),0)>_1
F

1 9, ~ . .
Op (max { N Z}) = (op(1) + Ip)T <0l+1,l+h — 0j> uniformly in A and g.

Finally, Lemma [E.2.22| shows the assertion of (a).
For proving part (b), similar arguments as in (a) can be used to obtain

1 jn+g
— > HX.0)
g+hz kjn—h+1

h A g
= (ont)+ B (VHOD ) + 5 (VHOE 00 )

(é\k;j,n_h_t,_ijm_i_g — 0j> uniformly in h and g.

By Assumption (M) and Lemma [E.2.21] we receive

Op (max { o Z" }) = (op(1) + I,)" (é\kjﬁn,hﬂ,kj’nw — 9j> uniformly in h and g,

so that Lemma completes the proof. O]

Until now we have focused on scenarios with at most one change occuring in the
considered subsample. However, it might be of interest as well to examine the behavior
of estimator sequences computed on subsamples in which more changes arise. The
following lemma incorporates such scenarios.

Lemma 5.4.12. Let the Assumptions (M), (M3) and (MY), for some s > 1, hold.
Furthermore, let (M@) be satisfied by a sequence {v,} of order n. Then, for any positive
deterministic sequences {v,} and {v,} with v, = o(n) and v, = o(n),

~ ~ 1 o, o,

max ‘Ok, a1k dg — 0511 =0Op (max{— —, —
7,m Rij+s,nTg J+1,5+s ) ) )

1<h<tn vn'n’n

where §j+17j+s is the unique zero of {;il()\l —N1)E (H(Xﬁ”, 0))

Proof. In the proof we use the short version 0 for §j+17]~+5 and 0, for 9, j4sn = Kjrsn—
kjn. Furthermore, remember that k;,, = |\;n]. By a first order Taylor expansion we
get

1 kj+s,n+g .
_— H(X;,0 5.10
Op +h + g, Zhﬂ ( ) ( )
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1 kj+s,n+g R .
— VH(X, nT(a._ | —9>.
S +htg _ kjnzhﬂ (X5, Mhg.n) kjn—h+1,k; 4 s ntg

Besides, with ijﬂ( - N1)E (H(Xgl), 5)) =0 and

n § (N —N_1)E (H<X§l), 5)) - f (ki = ki1n) E (H(Xgl)7 §)> H o
S I=j+1
_ fj (nh = [nA] = (A = [nA ) E (H(XY,6)) H
I=j+1
< f} (= Lon)) | B (HED,8) | + 3 +S (s = x| (B, 6) |
I=j+1 =
AL 0
<9 §1HE( ) )H o(1)

we receive {:;H(kz,n —kii0)E <I—I(X§l), 5)) = O(1). Hence, applying Assumption

(M) and Lemma yields

1 kj+s,n+g .
e ey 2 HX.) (312)
1<g<vn 1=kjn—h+1
1 kjyn o J+s kl,n _
= max [———— [ Y HxPV.o+> Y HE
{é’;%}jz onthtg =k ht1 I=j+1i=ky_1nt1
k]+s,n+g
_|_ Z H(X§]+s+1)7 0)
'L*kj+s,n+1
1 o G 7 ) ;
< H o (X9 Ul (H X0 )H
< max sl D HoX.0)+ (%17, 6)
i=kjn—h+1
j+s 1 ki n b
H,X". 0
+Z_Z+1 kln — k'lfln _kz 0( ) )
1= l*l,n+1
1] & -
+ = Z (kl,n - kl*l,n)E <H(Xgl)7 0)) "
" i=j+1
kj s+g ~
4 max 1 Ji H0<X§j+s+1), 6) + U_” E (H(ng+s+1)’ g)) H
1<9<tn Op + g ||._, — On
1=Rj+s,n

— Op (max L O o
— YP ax \/ﬁ’n’n :
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Moreover, by Assumptions (M) and (MF]) the Uniform Ergodic Theorem in Corollary
and Lemma can be used to obtain

1 kj+s,n+g
- VH(X,n,.. 5.13
onthtg kj;hﬂ (i M) (5.13)
1 i
e 3 (i — 1) B (VEX )
5n+h+9l2+:1< i = B (X3 Mhgn) )
1 j+$ kl,n
j !
" g i ] n—h+1 l=j5+1 i:kl_l,n-i-l
kj+s,n+g )
> VHET )
Z':k’j-&-s,n‘i‘l F
1

< max su
1<h<vn, eeg (5 + h

S V)| B (vEGED0)]

i=kjp—ht1 . n 0cO F

J+s 1 ki n l)
+ su VH,(X;’,0

ZZ—;I 60cO kln - kl 1,n kz O )

= 1—1,nt1 F

kjtstg
1 \ (j+s+1) j+s+1)

+ max sup VH,X/ 0)| + —sup HE (VH XV .0 )H

1<9<tn gc® Op, + ¢ Zk; o ol ) O 6cO (Xi )

=Rj+s,n F

= Op(l),

where the last line follows from Assumption (MJ]) and since ©,, = o(n) and 0, = o(n).

Furthermore, by considering the Taylor expansion in (5.10) the statements in ((5.12)
and (5.13]) together with

Jj+s
sup || 37 ((kin — kio1a) = n(\ = Mt)) E (VH(X?), 0))
0O |li=j »
j+s "
<23 s HE vHD. H —o(1
l;leeg ( ( ! >) F ()

can be combined to

Op (max{%%%}) (5.14)

Jts

_ <0p(1) +ml§1(xl —\_)E (VH( ( ,nhgn))) (5.15)

(é\kj‘n_hﬂ,kj“’nw - 0) uniformly in A and g.
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With 224240 — (1) and Assumption (M@ we get

» 1
S, + h+ Ak
SntRTY ( > (M- N)E (VH x, nh,g,n)>>

n -
I=j+1 r
- -1
571 Un, ~n 2
<0 ST (= A)E (VH(Xg“, 9)) = 0(1).
" 0@ 1l \i=jt1

F
Hence, by Lemma [E.2.21] multiplying the inverse matrix to both sides of the equation

in(b.14)) yields
0 L D On ( (1)+I)T(§ 5) iformly in A and
max<{ —, —, — = (o o . — uniformly in A an
P Jn P p kjn—h+1kj1sntg y 9,
which completes the proof by Lemma O

In order to get an upper bound for gRSS of an arbitrary candidate set, we need to
examine the behavior of the global estimator 01 » under alternative. Therefore, let 0
be the unique zero of

q+1

Sy -No)E (H(Xgﬂ, 9)) . (5.16)

J=1

Lemma 5.4.13. Let the Assumptions (M1), (M3) and (M9) for j =0 and s = q+1
hold. Furthermore, let (M) be satisfied by a sequence {v,} of order n. Then,

PO 1
61, 6| =0r (=)
o ) (ﬁ)
Proof. The result follows directly from Lemma [5.4.12] with v, = 0 and v,, = 0. O

Lemma 5.4.14. Let the assumptions of Lemma be satified. Furthermore, as-
sume that Assumption (1\@ holds. Then, there exists a constant Cy such that

gRSS(A,) < Cy+op(1)
holds for all sets A, C {2,...,n—1}.

Proof. By definition we know that the gRSS of an arbitrary set A, is less than or
equal to the gRSS of the empty set, which is

(H-l

GRSSWM) = = 3" QX 81 = - > Z Q(xY.6,,).
=1

.] 1Zk] 1n+1

Lemma [5.4.13[ shows that the estimator sequence {él,n}izl is \/n-consistent for 0 as
defined in ([5.16)). Furthermore, a second order Taylor expansion shows, that there

MNn — é\l,n < Hg— él,n such that

D

exists an 7,, with

gRSSO)= > Y Q6. (517)
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g+1 kj,

“Iyy

7j=114i= kj 1n+1

qul

Q(X(J

o)

On noting that

q+1

=1

> (ki = kjo10) E (H(Xz('j)’ 5))‘

j'IL

Z Y HEY, ) (01n—9)

j 1= k‘J 1n+1

1 q+1 Ejmn ' R N
=3 > vHE.n) (61, -9).

J=1i=kj_1n+1

= 0(1),

which has been derived in Lemma [5.4.12in (5.11) (with s = ¢+ 1 and j = 0), by

Assumption (M@ we get

i .0 - 0\ P\
=1i=kj_1n+1 n] 1i=kj_1,n+1 n
+1 kjn
S S H\(xY.6) +Op< ) ( )
= i=kj_1n+1

Thus, in connection with the submultiplicativity of the Euclidean norm and Lemma

(.4.13 we obtain

'y S HEY.6)7 (6, 0)

(2
.]:1 i:kj—l,n“l‘l

H(XY, 8) ’

(5.18)

0., — 5H ~0p (%) .

Furthermore, with the Assumptions (ML) and (MP]) the Uniform Ergodic Theorem in

Corollary [E.2.7] can be applied to receive

ks
LSS wHEY )| 2
i=kj 11 .
< sup = ’ "i " VH (XY )
0co (|1
< sup 1” i VH, (XY, 9)
0co (|1 i1

1 kjn—kj—1,n '
=1 o
F
+ Op(l) — Op(l),
F

where the last line follows from the triangle inequality and Assumption ( Thus,

we get
1 !
D

=1 i=kj_1nt1

Jn

> vHEY q,)

— 0p(1).

F
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Moreover, the y/n-consistency of the estimator sequence and Lemma in combi-
nation with Lemma show

q+1

(§M—§)T %Z kz vH(".n,) | (8. - 8) (5.19)

J=1li=kj_1 n+1

q+1

i %Z Z VH(XY n,) :0P<%>.

]le kj 1n+ r

~ ~

S‘el,n_e

Besides, with Assumptlon A [1) and as the function @ is measurable with respect to

X(]) the sequence Q(X; ) ) is stationary and ergodic. Hence, by Assumption ( I)
the Ergodic Theorem can be used to get

1 kjn 1 kjn—kj—1n
0 gy 2|2 @) gy —
n Qo(Xi",0)| = n Z Qo(X;",0)| = op(1),
l:kj_17n+1 =1
implying that
1 ot kjn q+1 kjn o
Z S QY. 8) <Z > Qu(x,0)| = op(1).
.7 1i= k] 1n+]- = kjfl,n"l‘l

Finally, by considering the Taylor expansion in (5.17]) again, the statement above com-

bined with (5.18) and (5.19) yields

q+1 ko — k.
gRSS(0) = Y = (Q(X,6)) + 0p(1)
j=1
g+1 o
=3 = A B (QEE,8)) + 0p(1),
j=1
which completes the proof as 0 < Zq+1(/\ —\j)E (Q(ng), 5)) = () < o0. O

Remark 5.4.15. Note that we could gel a rate of convergence in Lemma [5.4.14] by
imposing additional assumptions on the transformed sequence {Q(XZ(»]), 0)}.

5.4.2. The Linear Regression Model

We consider the linear regression model introduced in Section under the Assump-
tions (RI1}) to (RI7["). Furthermore, we need forward and backward Héajek-Rényi-type
inequalities as given in the following:

(R8*) For all j =1,...,q+ 1, let the series {ng)ai}izl satisfy the following forward
and backward Hajek-Rényi-type inequalities, for any m, € Ny and a positive
deterministic sequence {v, } with v, — oo (which will be specified later):

mn+k
max g XPe;l = 0p(1)
vp<k<n—mp
i=mp+1
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and

= Op(1).

max
vp<k<mp

\/]:_n i": X0,

i=mn—k+1

(R9*) For all j =1,...,q+ 1, let the series {XZ(-j)Xl(»j)T — Cj) }i>1 fulfill the following
forward and backward Hajek-Rényi-type inequalities, for any m, € Ny and a
positive deterministic sequence {v, } with v,, — 0o (which will be specified later):

mn+k
@r ) _

L, MY (x0x0T-cy)| or)

- i=mn—+1 r

and
VUi ) ()T

onhomn | & <X2 X = C(J’)) = Op(1)

i=mnp—k+1 F

Moreover, we introduce the following additional assumption:
(R10%) Let the matrix S77 ]H( — X\i-1)C ) be positive definite for some s > 1.

Note that Assumption (R10}) follows directly from Assumption (RB3[") if the regressors
are strictly exogenous and not effected by changes.

Now, we derive similar statements as in the previous section. The results up to Lemma
5.4.19 are mainly needed to investigate the asymptotic behavior of the estimator se-
quences in the subsequent lemmata.

Lemma 5.4.16. Let the Assumptions (RIf), (R%), (R{) and (H6) be satisfied.

Then,
Leh 1/(24v) 1
max Z XUl = <max { i ’ og(n) .
oglégfih i=l+1 Up \/Un

Proof. First, note that by Assumptions (R[I}"), (R2}) and (R4[) we get
E (Xg%i) —F <E <X§j)ei|}}>) -5 (XE”E (5,~|]—"Z~)> -5 (ng)E (z—:i)> (5.20)
—E (ng)) E(e) = 0.

Hence, with Assumption (R6[') we can apply Lemma [5.4.2] which shows the assertion.
]

Lemma 5.4.17. Let the sequence {ng)}izl satisfy the Assumptions (), (@k} and
(H5). Then,

I+h

n/ ) flog(n)
0<i<n—h Il i=l+1 P
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Proof. By Assumption " ) we know that C;) is the expectation of ng)XEj)T so that
the component sequences of {ng)ng)T—C(j)}izl have zero expectation. Furthermore,
they satisfy a strong invariance principle by Assumption (Rp[). Thus, applying Lemma
to each component in connection with Lemma [E.1.€] (b) yields the assertion. [

Lemma 5.4.18. Let the Assumptions (RIf), (RF) and (R4} ) hold. Furthermore, let
(}@*) be satisfied by {v,} and let §;,, as in (p.5)). Then, for any positive deterministic

sequence {0y} with 0, < 041, or Uy < 0y,

1 kjn+g 1
g%aﬁf Un—i—gAZ i © F /Un,

’L:k:j’n-‘rl

and

k.
1 O 1
X-J)Z' :O
pri Up+g Z i€ P(./vn)

Z:kj,n_g+1

7

Proof. Note that by Assumptions " ) () and () E (X(j)ei) = 0 which has

been shown in (5.20). Furthermore, we know that the sequence {ng)éi} is stationary
and ergodic so that the same arguments as in the proof of Lemma [5.4.8] (see (5.6)) can
be applied here to show the assertion. O

Lemma 5.4.19. Let the Assumptions (R1f ) and (H3) hold. Furthermore, let (R be
satisfied by {v,}. Then, for any positive deterministic sequence {0,} with v, < i1,
or U < 0jp,

1 k’j,n"‘g 1

() x5 ()T
max XX —Cys; ) =0
g<in || vy, + g i_kz+1 ( i i () P ( Un)

=kjn » \4
and
1 o 1
() » ()T
max Z <XZ X7 = C’(j)> =0Op ( )
g<tn || Uy + g P . \/Un

Proof. As the series {Xz(j)XZ(»j)T —C;)} is stationary and ergodic by Assumption " )
the same arguments as in the proof of Lemma [5.4.8 (see (5.6)) can be used again. [

In the following lemma we examine the behavior of local least-squares estimators which
are computed on stationary subsamples of appropriate length.

Lemma 5.4.20. Let the Assumptions (HIF) to (R6f) be satisfied. Then, for any pos-

vy . .. . . 1/(24v)
itive deterministic sequence {v,} with "U— — 0 and v, < djn,

0 nV/C+) | flog(n)
= Op | max o o .
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Proof. By the normal equation in (3.22)) and on noting that there is no change point
between [ + 1 and [ + h we get

I+h I+h

N : T A
Z XEJ)Y;(]) _ Z XEJ)XZ('j) Bl+1,l+hv
i=1+1 i=1+1
implying that
I+h I+h
)T
> XU (10~ XUTB) = 3 XOXIT (B 6).
i=l+1 i=l+1
which is equivalent to
I+h I+h
T
—ZX € = hZX ]) <ﬁl+ll+h ﬁ)
i=l+1 i=l+1
nl/(2+v)

for kj_1, <1 <1+ h <kj,. Hence, since — 0 implies that

e { n/ ) log<n>} — 0p(1) Lemma [5.4.17] yields

Un ’ \/ﬁ
I+h N
— Z X(j e = (op(1) + Cyy)) (Bl+1,l+h - ,6j> , uniformly in ! and h > v,.
i=l+1

Furthermore, by Lemma [5.4.16| we receive, uniformly in [ and h > v,

1/(24+v) 1 ~
Op (max{n P \j%n) }) = (op(1) + Cyy) (/3I+1,l+h - /31‘> '

Thus, Lemma [E.2.22| together with Condition (R3[") shows the assertion. O

The convergence rate of the result above can be improved by imposing additional
restrictions as in the following lemma.

Lemma 5.4.21. Let the Assumptions (RIf), (R@*}, (@) and (R4 ) hold. Further-
more, let (R§) and (H9) be satisfied by 0, as in . Then, for any positive deter-
ministic sequences {v,} and {0,} fulfilling that (5j7n—vn Un >0 and 5 =0(1),

o)

Proof. By the normal equation in (3.22)) we know that, for 0 < h < 4, and 0 < g < vy,

n—0n—"Un,

max
0<h<vp
0<g<vn,

‘/Bkj—l,n+h+17kj,n_g - ’Bj

1 jn —9g
ni k'] 1n+h+1

1 ]ng

= Z X()X(j (,Bkj Lnth+1,kj n—g B])

1= kj 1n+h+1
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We start with approximating the left hand side of the equation above.

By Lemma
5.4.18 and Assumption (RI8F) we receive
p
1 kjn—g 1 kjn—g
NT
max (|- S xV <Y(]) x9 @) = max |- Y xUe
0<h<on |[1 0<h<vn |[10
0<g<n, i=kj_1nth+1 0<g<n i=kj_1n+h+1
1 kj,n ] 1n+h kj,n
= max ||— E XEJ)EZ' E X(] €; — E ng)ei
0<h<v, ||\ . )
Ogggﬁn 'L:kjfl,n'i'l 1= k] 1, ntl Z:kj,’VL_g+1
Ein ki—inth
55 1 - ; Sin+7 1 =
< jn 5 2: XZ(J)gi 4 i n H;lLaX — }: XZ(J)&
n ] n OS S’L_)n ] .
I =k 1 1 Jm i=kj_1n+1
~ kj,n
n Ojn + Un 1 > XU,
1
n 0<9<on (|0 + g .

— Op (%) | (5.22)

Furthermore, applying Lemma [5.4.19| and Assumption (R) and yields

k'nfg
1R 4) x )T
gt S (x0x07-cy) o2
0<g<in i=kj_1,nth+1 I
1 Ejn kj—1n+h
() v~ )T (7)) x (HT
- |0 3 (XVxIT-0p)- 3 (xVxPT-cp)
0<Zg<tn i=kj_1,n+1 i=kj_1,n+1
Ejn
Sy (xxer oy
l*k]n_g"rl F
sl e
jyn () v )T
< J? 5 Z <X¢] X7 = C(J)>
Jm = k‘7 1n+1 F
Sin+ 0 et
jn n ) )T _
+ n Og}%}gn Ojm +h Z XX C(j)>
’ ’Lfkj_Ln—‘rl F
§in 1 o -
4 %, nax S (X(J)X(a) _C )
n 0<g<tp, 5j ntg ¢ G)
’ i=kj n—g+1 P

_ 0, (%) — op(1),

which shows that

1 jng

djn—h— , .
n Z X(])X( 24 ]’Tgc(j) + op(1) uniformly in g and h.
1= k‘g 1n+h+1
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Hence, together with (5.21)) and (5.22)) we can conclude that

1 5j,n - h - g g a
Op % = TC(]) + OP(l) </6kj,1,n+h+1,kj,n*g o ﬁ])

holds uniformly in g and h. On noting that ;—— < ;—2— = = O(1), by Lemma
7n n
1.2.21| multiplying 5 5 to both sides of the equatlon above leads to

1 T (5 . .
Op (%) = (C) + op(1)) (ﬁkjil,nJth’kjynfg - B]> , uniformly in g and h.

Finally, Assumption (RB3f) in combination with Lemma[E.2.22|completes the proof. [

In the next lemma we concentrate on estimator sequences calculated on subsamples
with exactly one change.

Lemma 5.4.22. Let the Assumptions (R1f), (H%), (R3') and (R{f) hold. Further-
more, let (H8) and (RF) be satisfied by the sequence {v,}.

(a) Then, for any positive deterministic sequence {0, } with v, = o(v,),

=0r (e {ie))

25 “ﬁki,n_h+1vkj,n+9 B

Un§h<§j7n
1<g<vn
and
~ 1 o,
max Br. —grik; +h—[3-+1H:Op max ,— o |
vn<h<dji1n I TITHEn J N
1<g<tn B

(b) If Assumption (RT) holds in addition, we get the same result as in (a) for any
positive deterministic sequence {0} with 0, < 41, and v, < 6;,, respectively.

Proof. We only derive the first statement since the second statement in (a) can be
proved in an analogous manner.
With the normal equation in (3.22) we get

1 k]',n—i-g 1 k]’,n+g
T _ T (A2
e 2 X XIB) =g 3 XX (B his e~ ;).
i:kj7n7h+1 iij,nfhri»l
which is equivalent to
1 J ntg j ntg
( (a+1 J+1 +1)T
i=kj n—h+1 i=kjn+1 i=kjn+1
(5.24)
1 k; kjntg
+1 (j+1 3
— —h n Z X(J)X + Z X ( J )T <ﬁkj,n_h+17kj,n+g - ﬁj) 5
9 i=kjn—h+1 i=kjn+1
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as V; = XUTB e fori = kjp —h+1,... k, and Y, = XT84 ¢ for
i =kjn,+1,...,kj, + g. Furthermore, by Lemma [5.4.19 we receive

1S (1) 3 (G+1)T
- : — ; .2
vnI<rflLa<)§]n h+g ~7Z <Xz Xz C(]+1)> (5 5)
1<g<in i=kjn+1 r

1 kjn+g ( 1
< max (X DX T o ) ~0 .
-~ gS’l}n vn + g ;—i_l (]+1 P ,_’Un
n F

This implies in connection with Lemma and the triangle inequality

kjn+g
1 Js
X J+1)X(J+l) A3,
1<g<on i=kjn+1

kj,n'f‘g

1 - : B
<18 - 8 | ma > (XK= )|+ 2 G,

159=on ||vy + g, £~
=k

or(f2))

Moreover, by Lemma [5.4.18 we receive

F

1 k] ntg 1 kg,n+g 1
1 j+1
max o E X, Gt )51- < max n E XEH )5i =Op ( )
'Ungh< jn gg'ﬁn U \//U
1§9§1~)ZL 9 i=kjn+1 " 9 1=kjn+1 "

and with the backward Hajek-Rényi-type inequality of Assumption (RE) we get

Kjm
1 - ) 1 ) 1
max ||—— g X&|l €< max ||+ g X el =Op .
U?él‘;;gzn ht g i=kjn—h+1 UnSh<dim h kjn—h+1 V Un

Thus, by considering equation (5.24)) again we obtain

or(om{ e ) -

"l+g
1 ) E G+1) x G+0T | (3
“ht g Z X7 X Tt Z X7 ] <5’fj,n*h+1:kj,n+g - ﬁ]) '
i=kjn—h+1 i=kjnt1

uniformly in A and g.
Furthermore, applying the backward Héjek-Rényi-type inequality of Assumption (R@]*)
yields

1 (j T

- xPx0" - )

'Ung}li}gj,n h + g . Z < (j)
1<g<n i=kjn—h+1
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1 () v ()T 1
< - xXWxWT _ o . ) —0 = op(1
< pax g ikz_:m( i X 0 = ) = orD).
—vn F

Hence, together with (5.25)) and ((5.26]) we obtain

Op (max{\/lv_nZ—:}) (5.27)

h ~
= ( p(1) + —Cj 9 ]H)) <5kj,n—h+1,kj,n+g — ﬁj) , uniformly in h and g.

h+g h+

In part (a) we assume that 0, = o(v,) so that

Ciyr|| <

F

= 0o(1), uniformly in h and g,
F

Up
EC (G+1)

i

and (5.27)) simplifies to

o ({7 ))

h ~
= ( p(1) + FC ) (,Bkj’"_hH’kj‘nJrg - ,3j> , uniformly in A and g.

Furthermore, as h+9 < Un+vn —

0(1) holds uniformly in h and g as well and since C|;,
which does not depend on h and g, is invertible we can multiply both sides of the
equation above by %C&; while preserving the uniformity by Lemma [E.2.21] Thus,

we get

1o, ~ . .
Op (max { Nk Z—n}> = (op(1) + I,) (/Bkj,n—hﬂ,kj,nw — ,Bj> , uniformly in h and g.
Hence, the assertion follows from Lemma [E.2.22

For proving part (b), we consider the matrix of the convex combination h%gC(j) +
7 Cj41). By Assumption () we know that the inverse of this matrix exists and is
uniformly bounded from above. Hence, we can multiply both sides of equation (5.27))
with the inverse and get by Lemma [[2.2.21

1 Nn 3 . .
Op <max { o Z—n}> = (op(1) + I,) (’Bkj,n*h+l,kj,n+g — ﬁj) , uniformly in h and g,

completing the proof with Lemma [F.2.22 ]

The following lemma considers local least-squares estimators calculated on subsamples
with more than one structural break and shows that they behave quite nicely if the
start and end point of the subsample lie in some sense close to a change point.

Lemma 5.4.23. Let the Assumptions (R1f ), (R%), (R%), (R4 ) and (K10 ), for some
s > 1, hold. Furthermore, let (B8 ) and (K% ) be satisfied by the sequence {v,} of order
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n. Then, for any positive deterministic sequences {v,} and {v,} with v, = o(n) and

U, = o(n),
~ ~ 1 v, v,
12}%}5” ‘ﬁka‘,rhﬂ,kﬁs,ﬁg = Bjt1j+s|| = Op (max {%, ol ;
1<g<op,

~ . -1 .

Proof. In the proof we use the short version 5 for §j+17j+5 and 9, for 6; j15n = Kjrsn—
k;n. By the normal equation in (3.22) we know that

1 kjtsntg N
- X, (Y; - X?ﬁ) 5.28
h+g+ o, i:kg_:hﬂ ( )
1 kj,n+g
S XX (B B).
h + g + (S k;h—i—l ¢ 'Bka" h+1,kjn+g ’8

Considering the left hand side of the equation above, with Y; = Y;(j) = ng)Tﬁj + &,
for kj_1, <i < kj, we receive

kj+s,n+g .
S xi(vi- X7B) (5.29)
i=kjn—h+1
kj,n ) ) ]+S kln ~
_ Z x <Y;() X973 > Z Z x < X()Tﬁ>
iij,n7h+1 l=74+1i=k;_ 1,nt1
kj+s,n+g
n Z X Utst) (Y_(j+s+1) _ X(j+s+1)T§>
i=k5j+51n+1
kjn
= > <X§J)X§J)T (ﬁj _ [3) I szgl,)
i=kjn—h+1
j+8 kl,n

<Y Y (xPx0(8-8) + x\=)

l=j+1i=kj_1 n+1
j+s n+g

X Z <X§j+s+1)XZ(j+s+1)T <18j+s+1 B B’) I X5j+s+1)8i> .

1= k,}-&-a ntl

Moreover, since
J+s "
> (M= Am) Cp) (/61 - 5) =0

I=j+1
holds by the definition of B we obtain

]+S kl n

Bl Y xPxY(8,-8)

I=j+1i=ki—1,n+1
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_ i (Kin = ki-1m) Cy <ﬁl - 5) H
I=+1 .
_ i (kl,n - kl—l,n) C(l) (ﬂl — B) —n i ()\l — )\z—l) C(l) (ﬁl - B) H
I=+1 =
— i (nA — [Am] — (nAi—1 — [Ni-an])) C) ('Bl B B> H
I=j+1
< § HC(Z) (@ _B>H Sji?%}is”C(UHF § Hﬂl _BH = o),
o < I=j+1

where the last line follows from Lemma Thus, on noting that
kin — ki1, = | Ain] — [N—in] is of order n, applying the Hajek-Rényi-type inequality
of Assumption (R}) together with Lemma yields

j+5 kl,n

1 ) (O 3
o g > Y XX (8- B)

1<g<vy, =j+1 i:kl—lﬂl_'—l

j+8 kl,n

< % > (XEZ)XEI)T - C(z)) (/Bl —5)

" |l=g41 =k 1

j+s
+ Z (kl,n - kl—l,n) C(l) (,@l — I@) H
I=j+1
Jts 1 Ein 1
< - - xOxOT _ & > ( _ ~> 1
B Z Kin —Ki—ip Z ( i o) (8 —8)|+0 -
I=j+1 ’ i=kp oy p 1
Jj+s 1 Kin 1
< - - X(Z)X(z)T _C > H B ~H 1
_Z kin— ki1 Z ( i i 0 B, —B|+0 -
I=j+1 ' =kt -

1 1 1
—Op (=) +0p(=)=0n(—=).
(7)o (3) =0 (55)
Furthermore, with the Hajek-Rényi-type inequality of Assumption (RS[) we obtain

j+5 kl,n

1 0)
1S s, h+g+5nlz 2, Xie

1<g<0n =j+1li=ki_1n+1
j+s kl,n
<SSl — Y xUs=0s(—=).
, Fin—ki—in . NG
l:j+1 ’ ’ Z:klf1,n+1

Besides, by Lemma [5.4.19] and Lemma [E.1.5] we get

kA
1 7, ( ) T .
- x ) x () ( L >
12;?;%” h+g+6n_z 1 7 /6] B
1<g<vp, 1=kjn—h+1
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kjn

< max L Z (ng)XZ(j)T —Cy+ C(j)) (5] - B)

1<h<on || & h
- nt i=kjn—h+1

kjm _
< | max L Z (Xz(j)Xz(j)T - C(J’)) + g_: HC(J‘) HF

1<h<on || § h
ShSvn n + i:k]-,n—h—l—l .

ool )

Similarly, we obtain

kjtsntg

1 (+5+1) 5 (+s+1)T A 1 v,
o ey 2 XUTURTT(By - B)| = 0 (max{ =Tty ).

1<g<in " i=kjysntl

Furthermore, Lemma [5.4.18| shows

1 ST L& o 1
max ||— X&)l € max X el =Op (—)
1<hson h+g+on ik k1 1<h<ty, || 0, + D e vn

and similarly

1 ]+5 n+g ( ) 1
- X Jj+s+1 _ - )
1250, [T+ g + 0, 2. sif| =Or NG

1<g<tn, 1=kjtsnt1
Hence, by considering the decomposition in (5.29)) again we can conclude that

kjtsntg

1

. X, (v, - xIB) (5.30)

i=k;j n—h+1
1 777, ~TL . .
= Op | max < —, U—, Un uniformly in A and g.
vninln
Now, we focus on the right hand side of equation (5.28). Applying Lemma [5.4.19| and
the Hajek-Rényi-type inequalities of Assumption (R9}) yields

]+s n+g .7+S

1
max ||—— Z X, XT Z (ki — kim10)Coy

1<h<wn ||h + g+ 6,

1<g<in i=k; n—h+1 I=j+1 p
J+s ki n _
Un
<Dl k: > (Xz(l)Xz(l)T - C(l)) +=[Coll
I=j1 || b T ML T s
R () X G)T 0
X0 x —C-) Uil
P a2 (XX 00|+ 5 Connl,
1= YR F
1 kjntg
(j+s+1) 5 (j+s+1)T
a XUt x —Cyiss >
RPN s kZH( i i (Fs+1)
= YR F
== Op(l),
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implying that

1 ]+s n+g
s Y X
h+g+ 0, kRt
J+s
kin—k "o ) )
_ Z ;H_ p j_(; @ +op(1) uniformly in ~ and g.
I=j+1
Furthermore, on noting that
f kl,n - klfl,n W= 671 - kl,n - klfl,n C()
- o= "+ —— Cq
S htat On h+g+ 0y S On
5n A \_)\an |_>\l 171J I >\l — )\l,1
= — Cuy=(1+0(1)) ——C +0(1)
ot g+ 6 S, Ihieen] = An] Z Nbs = Ai
jts
A — AN
= #C(” + o(1) uniformly in A and g,
: )\j+s - )\j
l=j+1
we can conclude that
1 ]+s ntg Jj+s )\ o )\
—_ Z X, XTI = Z ﬁc(l) + op(1) uniformly in & and g.
htg+on,_ kjn—ht1 I=j+1 79T Aj

(5.31)
Hence, in combination with (5.28)) and (5.30) we receive

0 L O
p | Mmax \/ﬁ?nan

Jts

A= N— ~ ~ : ,

= <0p(1) + Z ﬁc(l)> (,Bk,jyn_hH’kj)nJrg — ﬂ) uniformly in h and g.
l=j+1 778 1

Finally, Lemma [E.2.22| together with Assumption (R[10[) completes the proof. O

Similar to the general parameter change model, we show in Lemma [5.4.25| that the
gRSS of an arbitrary candidate set is bounded from above. In order to prove this
result, we have to investigate the behavior of the global estimator 3,, under the

alternative which is done in the following lemma. Therefore, let B be the unique zero
of Y1 (N = A1) B (H(Xﬁ”, 9)), which is given by

a1 g1
B= (Z (A = Aj-1) C(j)) > (= X)) CB;. (5.32)
Jj=1 j=1

Lemma 5.4.24. Let the Assumptions (R} ), (R%), (R%), (Rf) and (R10F) for j =0
and s = ¢+ 1 hold. Furthermore, let (H8 ) and (R%) be satisfied by a sequence {v,}

of order n. Then,

B8] =0r (5):
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Proof. The result follows directly from Lemma [5.4.23| with v,, = 0 and v,, = 0 and with
s=q+1and j=0. [

Lemma 5.4.25. Let the assumptions of Lemma hold. Then, there exists a
constant Cy such that

holds for all sets A, C {2,...,n—1}.

Proof. The gRSS of the empty set gives an upper bound for the g RS S of any candidate
set and is given by

n

gRSS0) =~ 3" (vi- XTB,,,)

i=1

A second order Taylor expansion about 5, as defined in 1} yields

- Z (y XT51n> (5.33)

:%2( XTB> _o- ZX( XTB> (Bm—ﬁ)
) () )

Furthermore, the following auxiliary results have already been derived in the proof of
Lemma [5.4.23) (with j =0, s = ¢+ 1, 7, = 0 and ©,, = 0). By (5.30) we know

%;X (v: - X7B) = 0 (%)

and with (5.31) we have

q+1

—ZXXT > (= Ao)Coy +op (1)

=1

Thus, together with the \/n-consistency of the estimator sequence, shown in Lemma
5.4.24, and Lemma [E.1.5| we obtain

(pu-)' (L3 %7 (30 -5)

~0r(2) (S v e rorw) = on (1)

=1
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Moreover, Lemma [5.4.24] in combination with the submultiplicativity of the Euclidean
norm leads to

%;X (v~ x78) (B, B)

~on(1).

By considering ([5.33)) we can conclude that

<[5 |1 x (- x18)|

n

gRSS(0) = %i (Yi - X?Bm>2 - %Z (n - Xfﬁ)Q +Op (%) . (5.34)

=1 =1

Furthermore, we receive

1 & SO TA S ~ 2
w2 (i XIB) =03 30 (X (8 -8) +=)
i=1 I=1 i=k;_1 p+1
q+1 1 kl,n
1) 5 ()T =
ICh B) |- > x"x0") (5~ )
i:klflgn""]-
q+1 \NT 1 kl,n l 1 n
=1 i=kj_1 n+1 =1
On noting that by Assumption (R9f)
1 o 1
e — x"x"" ¢ > =0 (—)
b — ki1 :kZ » (xx; " "\

F

and W — (A —A\i_1), the first summand in equation above can be approximated
in the following way

q+ kl ,n

> (5-8) 3 > xix (8.~ 5)

= Z <Bl ) (N — )\1—1)0(1)) (,C-]l — B) +Op (%) '

Moreover, by using Assumption (RFJ) together with the triangle inequality and the
submultiplicativity of the Euclidean norm, we receive

q+1 7 (1 kin " 1
Z(,@l—ﬂ) - Z X, '¢ei :OP(%>.

=1 i:kl_l’n-i-l
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Besides, by Assumption (R4) we know that the sequence {€?} is i.i.d. with existing
first moment E(e?) = 02 so that the Law of Large Numbers shows

1 n
— Ze? = o0” +op(1).
i3

Finally, together with ([5.34]) the results above can be summarized to

q+1

gRSS(0) = Z (ﬁl — E)T (()\l — )\lfl)c(l)) (ﬁz - B) + 0%+ o0p(1).

Consequently, we get that there exists a constant C such that
gRSS(A,) < gRSS(0) < Cy + op(1).
m

Remark 5.4.26. Note that we could get a rate of convergence in Lemma if we
use stronger moment conditions for the error sequence.

5.5. Estimating the Number of Change Points - A
First Result

Throughout this section, we assume that for the linear regression model the Assump-
tions (R[I}") to (R[7) and (RLOf) are fufilled and that the Assumptions (RgJ) and (R9}")
are satisfied by any sequence {v,,} with v, <n and & = O(1). For the general param-
eter change model, let the Assumptions (ML) to (ML0) hold and let (M) be satisfied
by any sequence {v,} with v, <n and = = O(1).

Similar to |(Cho & Kirch| (2018) we use an algorithm which returns a set of final candi-
date sets satifying the following conditions with sBIC as defined in ({.1)):

(C1) Adding further candidates to the set monotonically increases sBIC.
(C2) Removing any single candidate from the set increases sBIC.

However, in contrast to (Cho & Kirch| (2018) we omit the pruning step and perform
an exhaustive search on the whole set of change point candidates obtained from the
MOSUM Wald-type procedure with different bandwidths or the MOSUM score-type
procedure with several bandwidths and/or different global estimators. Furthermore, we
take the cardinality of the output, which is defined as the minimal cardinality among
its final candidate sets, as an estimator for the number of changes and we state a first
result which will be the basis for proving consistency in the future.

In doing so, we basically consider specific candidate sets A,, and we want to know how
the gRSS, defined in and , changes if we add a candidate to such a set:
gRSS(A,) —gRSS(A,U{l,}), where [, represents the added candidate. Furthermore,
let Iy, and [y, denote the elements of the set A, lying closest to the left and to the
right of l~n such that [y, < l~n < l1,. We use the following definitions and notation:
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5. The Multiscale MOSUM Procedure

e Let G be the set of bandwidths, which are used in the MOSUM procedure to
produce the initial candidates for the algorithm.

e Let G € G denote a bandwidth satisfying Assumption

e Let L = L(G) be the set of initial candidates obtained from the bandwidths of

g.
e A candidate (estimate) [, is called valid for a change point k;,, if |k;, — 1| < un
with
Up = 1§I}1§1£l+1 ‘k’jm — kjfl,n|/27 (535)

which is half of the minimal distance between two adjacent structural breaks.
The set of valid candidates of a change point £;,, is denoted by:

Vin ={ln € L1 [kjn — ln] <uy}. (5.36)

e A candidate (estimate) [, is called strictly valid for a change point k;,, if
|kin — ln] < G. The set of strictly valid candidates of a change point k;,, is
denoted by:

Vin =1l € L:|kj —lu| < G} (5.37)

e A candidate [, is called invalid if I, € V;,, holds for all j =1,...,¢.

Furthermore, the relationship between likelihood-ratio and Wald-type statistic plays
an important role and needs to be examined in detail. Note that in the linear regression
model these statistics are equivalent to each other, as we will see later, whereas in the
general model this only holds asymptotically.

The difference in gRRS of two sets A, = {l1,...,lm,} and A, U {Zn}

n (gRSS(An) — gRSS(A, U {Zn}))

ll,n In llm,

= > QX0 00,0 > QX6 p)— > QX6 )

i=lo,n+1 i=lo,n+1 i=ln+1

can be regarded as a generalization or a non-parametric version of the likelihood-
ratio statistic where a general criterion function @ is used instead of the logarithm of a
specific probability density function. For further information on the classical likelihood
approach in change point analysis we refer to |Csorgo & Horvath| (1997), Chapter 1.
For the linear regression model we get the following likelihood-ratio statistic

n (gRSS(An) — gRSS(A, U {Zn}))

ll,n

ln

~ 2 ~ 2
_ T T .
- Z (}/Z - XZ /BlO,n+lyll,n)> o Z <1/Z o X'L ﬁlO,n+laln>
i:lO,n+1 7;:lo,n“!‘l
ll,n 2
T/\
- : : (E - X'L ’8l~n+1al1,n) )
i=lp+1
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being equal to a Wald-type statistic given by

~ ~ T ~ ~
—1
</3l0,n+17l~n - ﬂz’n"‘lvll,n) Cl(),n+17l~nClO,n+17l1,nCl~n+1yll,n </Bl(),n+1al~n - 61~n+1al1,n) (538)

with  Cy, =) X, X7,

which was shown by (Csorgé & Horvath| (1997) on page 226f. After some further long
calculations we also obtain that this equivalent to

- T
ln

Z T3 1
Xl (5/7» - X’L ﬁlo,n‘f‘l,ll?n) C n_l’_ll CZO n+1 ll n
i:l(),n“!‘l

l’IL
1 T2
Czn+1 lin Z X (Y; - Xz' ﬁlo,nﬂjl,n) )

i:lo,n“l‘l

which represents a score-type statistic. Understanding the connection between the
score-type statistic and the Wald-type or the likelihood-ratio statistic will be important
as well for proving consistency later.

The relationship between the Wald-type and the likelihood-ratio statistic in the linear
regression model can be used to derive the following result which gives a modified
asymptotic Wald-type representation of the difference in gRS'S for specific settings.

Lemma 5.5.1. Let the bandwidth G satisfy Assumption[A.1.1, Then,
. 1/2
(n <gRSS(An) — gRSS(A, U {zn})))
_ (Z - ZO n)(lln - an)
- ZO n
1/2

n lOn ll,n - k/“,n — - 3 =
P 2 L Com C(ﬁ) +or(1) | (Buy iz, Briun,)

lln 1n — lO,n

holds uniformly in ly,, € (kj—1, — G, kjn — ), l, € (kjn — G, kjn +G) and 1y, €
(kjm + Unp, kj+1,n + G)

Proof. We only prove the assertion for L, > k;, and note that the proof is similar for
I, < k;, as all the results of Section |5.4.2] which are applied here, are stated in a
forward and backward way. Furthermore we distinguish between four cases:

(i

(i) lom < kjo1m < Ejn < ln < kjy1m < lim,

) k
)
)
) k

j— 1n§ZOn<kjn <ln<l1n§kj+1na

(111 lOn<kj 1n<k]n<l <l1n<kﬁ1nand

(iv) kj_ 1n_10n<k:]n<l < kjtin <l
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First note that in each scenario the distances between the candidates, i.e. l~n — o, and
lin — [n, are greater than u,, — G which is of order n by Assumption .

We start with scenario (i). With the forward and backward Hajek-Rényi-type inequal-
ities of Assumption (R9f) (with v,, = u, — G so that n = O(v,) by Assumption
we obtain with 4, as in (5.5)

ll,n

1
l _ l XZX,ZT - (k],n - lO,n)C(]) - (ll,n — k:j,n)c(j+1)
1’” 07” 7":lOA,n*Fl h
1 kjaﬂ’ lO n
) T N )
B Z (XEJ)XZ(.J) — C(j)> Z <X(J+ ]+ )" C(j+1)>
1,n 0,n i=lo,n+1 i=kj n+1 B
1o
(4) 3 (HT
- un_glgah}(g(sj,n h i Z <XZ XZ C(]))
1=kjn—h r
kjntg

1
+ max Z (X D) x GOt C(j+1)>

un_G§g§6j+l,n

i=kjn+1 I
1 . . .
=0Op ﬁ , uniformly in [y, and [; ,, of case (i).
Moreover, by Assumption () we know that the matrix ’;J nlo, =2 C () IZI":];O ~C(j41)

is positive definite and that its inverse is uniformly bounded frorn above Thus, Lemma
E.2.21] in connection with Corollary [E.2.20] shows

-1
llﬁn

X, X! (5.39)
N O,TL i= lO nt1
Kin —lon g lin—kin !
ll n lOn ll,n - lO,TL
—lon Ly — ki -1 _
= DO+ P C gy | (T, + op(1)
lln lOn ll,n lO,n
—long = Fin -
= g O j + L—]C (+1) (Ip+0P(1))
lln lOn l _l

lOn ll,n - kj,n -
= —C(j) + —C(j+1) + 0P<1),
ll,n lO,n ll,n - lO,n
uniformly in [y, and [, of case (i). Furthermore, by (5.23) with @, = G and 0, =
dj+1,n — Uy and on noting that 0,41, — G — (0410 — Up) = U, — G > 0 is of order n,
we obtain

lln
1 7 A A 1
=Y (x0x0 - )| =0 (S2) = or)

lhn—10, =
1n n il +1 r
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holding uniformly in I, and l1,, of case (i). Besides, applying Lemma |5.4.19| and the
Hajek-Rényi-type inequalities of Assumption (R9F) (with v, = u,) yields

&
H > (XixT-cy)

- lo’n 7f'le,n*F]-

F

1
= ; Z X X(] + Z X]+1 J—H)T —C(j)

n lO?” i=lo,n+1 i=kjn+1

F
5 1o
< —]’n max |- Z <X§])X§])T — C’(j)>

— G un<h<s;
e | P A S |

kjntg

(1) GHOT v G o
b | 3 (XPIXTT 0|+ g lICun - €

U
1=kjn+1 n

(J’)“F

= 0p(1), uniformly in Iy, and I, of case (i),

as = = O(1) and —¢_ = 0(1) by Assumption |A.1.1] Hence, with (5.39), Assump-
tion () and Lemma [E.2.21] we can conclude

ll,n - lOn _
(i — o) (1, .y )Cl0n+1 lnClo,ln+1,ll,ncin+1,zl,n (5.40)

-1
ll ,n

= }: X, X7 E: X, xT

O"i lon+1 7"1 lon+1

lln

i= ln+1

kin—lon Ly —kin -
= (Cy) +opr(1)) ((%O’C(j) + 1’—j’c(jﬂ)) +0P(1)) (Csry +op(1))

ll,n lO,n ll,n - lO,n

Kim —lon I — ki -1
-—(;L——ﬂ—cwi) f;——i;CGQ +op(1),

ll n lO 1,n — lO,n

uniformly in I,, lo, and 1y, of case (i).

Thus, with (5.38) we obtain
n (9RSS(A,) - gRSS(A, U (L))

~ ~ T ~ ~
— - _ A 1 - - _ 3-
o (IBlO,n"F]-Jn ﬂln"l‘lyll,n) ClO,n+1 lnClO n+1 ll nCln'i‘lyll,n (Blo,n+lyln ﬂln+17l1,n>
o (ln - lO,n)(ll,n - ln)
ll,n - lO,n

2 2 T Ejn lOn ll,n - k:',n — -
(ﬂzo,nﬂ,in - 5in+1,l1,n> ((J—C g1+1 ll—]C(J;) + OP(1)>

lln lOn no lO,n

</8l0,n+1,[n - ﬁin+17l1,n>
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 (l —zM)(lln—in)

_lOn

z Ll -1 2 i
j n 0,n 1 1In = Mjn -1 3 S
11 n C Gy T Lo — lon C(a‘)) + 0P(1)> <5lo,n+1% - ﬁin+1,ll,n> ’

F

holding uniformly in I, 1o, 1., of case (i). This shows the assertion for case (i) and
we can continue with case (ii).

By considering case (ii), with the Hajek-Rényi-type inequalities of Assumption (R0[")
(with v, = J;,,) and Lemma we receive

lln
1 :
ﬁ Z XzX;[ - (kj,n - lO,n)C(j) - (ll,n - kj,n>c(j+1)
1n 0,n i=lo n+1
o F
1 Fale (G-1) v G-1T & (7) 3 ()"
= X (xVxIV —cua)+ Y (XX -cy)
1,TL 0,7L i:lo n+1 i:k]'_l n+1
]+1n lO"n . . T
n Z < ]+1 ]+1) _ C(j+1)> i Z <X§]+2)X§]+2) _ C(j+2)>
= k] nt+1 i=k3]'+1,n+1
H(kj-10 = lo) (Ci-1) = Cy) + (lon = kjs1n) (Ciro) — Cyin)) ||
1 ki_1,n G
< XU x0T _ o > e, o —C..
< max. 5j,n+h._kz h( . Cov)| 5 ICG-1) = Cil
1=Rj—1,n— F
1 kit1in+g ‘ ) G
XU x Ut _ o > + —||Cs2) — C;
+ 1r<nga<XG 5Jn +g i kZ 1 ( ! ' (+2) 5j,n H (G+2) (J—H)HF
j+1,n F
k.
1 J.n . .
= X (xPxPT-cy)
DM =k 11 F
1 fe i+1 1T
+l5 <X§]+ D AR C(j+1)>
AR

F
1
=0Op (%) +Op (g) = op (1), uniformly in ly, and [y, of case (ii),

since % = o(1) by Assumption Thus, similar to (5.39) we get

-1

lln -1
1 : kin—lon lim—Fkin
XZXZT = (—] % C(j —L C(j+1)) + Op(l),

ll,n - lO,n i=lon+1 ll n lO n ll,n - lO,n

uniformly in I, and [y, of case (ii). Furthermore, using Assumption (RO}') (with
v, = 0;, for the first part and v, = J;41,, — G for the second), Lemma [5.4.19 and
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Assumption again shows

i
1 = T
1 Z X, X _C(j)
n 0,n i:lo,n+1 F
. ki1 kj,
— |l Z Xz('] 1)X(J nT + Z X( )X(J)
ln - lO,n i=lpn+1 i=kj_1,n+1
+ Z X]+1 J+1) - Cy
i=kj n+1 Vo
S~ G G
< b D o) | Il e/ off
= 1<ha§G Ojm+ N kz h( i i (3-1) + Sim ” (G-1) (J)HF
1=Kj—1,n— F
[ G
XU+ x 60T o ) ZCyary — Cyy
i raerll g:ﬂ( e ¢ o) + 5 ICGn — Colls
n F
1
s 2 (xoxom-cy)
—kj_1nt1 »
1 G -
=0Op (T + Op (—) = op(1), uniformly in [y, and [, of case (ii)
n n
and
1 lln
l — Y X, X[ - C
I’n n 1= ln+1 a
1 kjtin ' ' ln ' '
_ — Z X§J+1)X§j+1)T + Z X§]+2)X§]+2)T — Cs)
Ln =i\ =i, 11 i=kj+1,n+1 P
1 kjt1ntg
(+2) 3 (G+2)T )
< . ‘ — O,
15956 || 3 i+in— G +yg kz +1 <X1 - G
i= j+1,n F
G
=G IC 42 = Cin
1 ijrl,n
1 X UH) x GHOT _ o >
+5j+1,n*%121)1(§5j+1,n h . Z ( ! ! G+
Z:k)j_'.lm,—h F
G

1 -
=0Op <%> + Op (E) = op(1), uniformly in [, and [y, of case (ii),

since dj41,, — G is of order n. Hence, similar to (5.40) the results above can be sum-

marized to

ll n - lO n

) ) - —1 -

7 7 lO,n+1yln ClO,n+17l1,n Cln+17l1,n
(ln - lO n)(ll,n - ln)
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Kim — lom [ A
— (Zin "o dn " ding ] 1
(zln o C0 T o *orll)

uniformly in I,,, lo., and an of case (ii)

and the proof can be completed in an analogous manner to case (i).
In the scenarios (iii) and (iv,) the arguments used for (i) and (ii) can be combined to
derive the assertion. O

-1
Remark 5.5.2. Note that the matriz (l . lngC(’jil) + llll "_I;OJ ~C; ) is positive def-

inite. By Assumption (K ) it can be rewritten as a product of mvertzble matrices

k',n - l(),n ll,n - k",n -

Coy |77 —"Co+7—Cun ) Ci
ll,n lO,n ll,n lO,n

which has already been used in (5.40), and is therefore invertible. Moreover, the positive

definiteness of the matriz follows from the positive definiteness of its inverse which is

a conver combination of positive definite matrices by Assumption (@*)

For proving the main result of this chapter for the general parameter change model
we need a similar statement or at least an asymptotic Wald-type lower bound of the
difference in gRS'S for scenarios described in Lemma Since the Likelihood-ratio,
the Wald-type and the Score-type statistic are in the general setting only asymptotically
equivalent it is more complicated to get a uniform statement as in the lemma above.
Investigating this asymptotic relationship would go beyond the scope of this thesis and
will be a part of future work. Hence, at the moment we can only solve this problem
by imposing an additional assumption on the general model.

Assumption 5.5.3. Let C' > 0 be a constant such that
- 1/2
(n (9RSS(A) — gRSS(A, U{TLD) )

(I = lo.n) (hn = 1) ~ _
> \/ 110 | (C + op(1)) Helo’nﬂjn O

- lO,n

holds uniformly in ly, € (kj—1n — G, kjn — unl, l, € (kjn — G, kjn+G) and 1y, €
(kjm + U, kj+1,n + G)

The following lemma is essential for proving Theorem [5.5.6] It rules out that a can-
didate set obtained by the algorithm does not include a valid candidate for a change
point while containing strictly valid candidates for the neighboring changes.

Lemma 5.5.4. Let A, be a candidate set which does not contain cmy valid estimate
for a change point k;,. Furthermore, let A, NV;_,, # 0 and A, NV}, #0, i.e. the
set contains at least one strictly valid candidate for both of the neighboring changes.
Then, adding a strictly valid candidate L, for k;,, to the set decreases the information
criterion with probability tending to one:

sBIC (A,) > sBIC (An U {Zn}> .
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Proof. For the asymptotics we have to take into consideration that [y, and [, are
returned by the algorithm. If n grows we always get new results from the algorithm
and we only have some information on the difference between [, {1, and l~n Hence,
we treat these candidates as arbitrary while imposing assumptions on the distances.
We assume that l~n > k;, and note that the proof is similar for l~n < kjn, as the results
from Section which will be used here, are stated in a forward and backward manner.
Furthermore, we have to distinguish between the following four scenarios which have
all in common that the distances between the considered time points are of order n, in
particular l~n —lon > uy, and [y, — l~n > u,, — G with u,, as in ((5.35)).

(i) kjo1n < lom < kjm < Iy < lin < kjy10 The candidates Iy, and [, can be
(strictly) valid for k;_y, and kj;1,, respectively, or invalid.

(i) lop < kjo1n < kjpn < I, < lin < kjt1n: The candidate [, can be (strictly) valid
for k;i1, or invalid whereas [y, must be strictly valid for k;_; ,,.

(iti) lop < kjo1m < Kjm < In < Ejy1m < lin: The candidates Iy, and [, are strictly
valid for k;_, and kj 1., respectively.

(1iv) kjin <lon < kjn < I, < kjt1n < li,: The candidate Iy, can be (strictly) valid

for k;_1, or invalid whereas [; ,, must be strictly valid for k;1 .

Linear regression model:

At first, we consider the difference of the local estimators <[A3107n+1yl~n — //B\fnJrl,an) and
decompose it into noise and signal. Therefore, the uniform results on the convergence
of the estimators derived in Section [5.4] are needed. By considering the estimator
sequence {8, .7 }, for the cases (i) and (iv) Lemma 5.4.22 can be used to receive

~ ~ 1 G
Hﬁlmﬁljn — By < uﬂg}fg%n Byt gesntg — Bj|| = Op (max {%, E}) = op(1),
1<g<@

uniformly in ly,, and [, of cases (i) and (iv), where the last line follows from Assumption

A.1.1l In the scenarios (ii) and (iii) applying Lemma [5.4.23| (with 0, =0, = G, s =1

and B;; = B;) yields
=0Op (max {%, %}) = op(1),

uniformly in Iy, and I, of cases (ii) and (iii). Investigating the behavior of the second

H’Blo,n‘f‘ljn - /8]

< 1f<nha<XG H/Bk]-_lyn—h-s-l,kj,n+g - /6]'
1<g<G

estimator sequence {Bin+1,zl _}, in the cases (i) and (ii) Lemma [5.4.21| shows

_0, (%) — op(1),

uniformly in [,, and [, ,, of cases (i) and (ii), since 6,1, — G — (8 41n —Un) = Up—G > 0
is of order n. Furthermore, for the scenarios (iii) and (iv), by Lemma [5.4.22| we obtain

H/an'i‘Lll,n - ﬁ]""l

< g [Buenssng— B
OSQSSj+_1,n—un

Hﬁi'rL“Flvll,n _/8.7+l

< max
5j+1,n7GSh§6j+1,n
1<g<G

/Bkj-ﬁ»l,n_h“!‘lvkj-!—l,n“l‘g - /8]+1
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or (max{ 251} )

uniformly in I, and Iy, of cases (iii) and (iv). Thus, by applying Lemma [5.5.1] the
results above can be combined to

n <gRSS(An) — gRSS(A, U {Zn})) (5.41)

(Z - ZO n)(lln - in)
lOn

2

B 1/2
N ZO n 1 ll,n —k 1 ~y— !
zf O+ ) o)) (8= By) +ont))]
’ ’ F
llIlifOI‘Hlly in lO,n S (kj—l,n - G, kj,n - Un]; l~n € (kj,n - G, kj,n + G) and ll,n € (kj,n +
Un, kj11,,+G). We use the following notation to simply the expression above for further
k.

calculations. Let v, = y(lon, lr+n, 1) == ﬁ so that

1 1) !
M., ::( W C ey + (1= %)C(a)>

represents the matrix above which is positive definite as described in Remark By
Proposition E.6 and Example E.7.c in Marshall et al.| (2011) (on page 676ff) we know
that the difference

(1 C+1) + (1 =mm)Cy) — M,
is a positive semi-definite matrix. On noting that the matrices C;) and C;;1) are
positive definite by Assumption (RB3f'), this implies in combination with Lemma [E.1.4]
and Lemma for any vector « € R?,

0< QZTM%{B <zl (’ynC’(jH) +(1- 'yn)C’(j)) Tr = fyn:cTC(jH):B + (1 — 'yn):nTC(j):I:
<z'Cymz+a Chm=z (Cim+Cy)
uniformly in ~, € [0, 1].
Thus, by Min-Max Theorem the eigenvalues of M, , which are denoted by A, ;%
1,...,p, are bounded by the eigenvalues of C ;) + C\;) uniformly in -,. Hence7

on noting that || M., [/, = \/>7_; A2 ;, we can conclude that || M., [, is bounded

uniformly in ~,. Together with Lemma [E.2.21| we obtain

H(M% T OP(l))l/z ((B - 5j+1) +op(1)) Hi
= ((8, = Byjs1) +0r(1)" (M, +0p(1)) ((B; = By11) + 0r(1))
= (8,—B;41) M, (8, - B,.1) +op(1),
holds uniformly in ly,, € (kj_1n — G, kjn — Uy, l, € (kjn — G kjn + G) and [y, €

(kjn + Un, kjr1,, + G). Moreover, note that the inverse of M., is given by 7, C jlﬂ

(1-— %)C(’j% satisfying

sup |5, < ||Cgly

n€[0,1]

*lea

< Q.
(j+1) F
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Thus, by Lemma [[.1.10[ in connection with Lemma [[£.1.12| we can conclude that there
exists a constant C; > 0 such that

2

| M+ 0p (W) ((8; = B12) +0r(1) |
= (8= Bj1) M., (B~ Bj.1) +op(1) = Cy +op(1),

which holds uniformly in ly,, € (kj_1,— G, kjn— unl, = (kjn— G, kjn+G). Further-
(iﬂ*lo,n)(ll,n*in)
ll,n*lo,n

that Ww > Cyn holds for all Iy ,,, 11, l~n of this setting. Hence, together with

l,n_l(),n

we receive
n (gRSS(An) — gRSS(A, U {Zn})> > nCy (Cy + op(1)) = n (é n Op(l))  (5.42)

more, as the fraction is of order n there exists a constant Cy > 0 such

holds uniformly in lo, € (kj_1n — G, kjm — Un), In € (kj — G, kjm + G). Thus, we get
sBIC(A,) — sBIC(A, U{l,})
— 7 (10g(g RSS(AL)) — log(gRSS(An U {In}))) - &

o ( gRgg(Sjl(Jjn{)Zn}Q b

gRSS(A, U {i,)) n (gRSS(An) — gRSS(A, U {in}))
b= gRSS(A,) )

|3

JRSS(A) Sn

|3

n (gRSS(An) — gRSS(A, U {Zn}>)

>
- 03 + Op(l)

—& 20 (C+op(1) - &,

where the second last line follows from the property of the natural logarithm that
log(z) > 1 — 2 for all # > 0 and the last line is obtained by applying Lemma [5.4.25

and (5.42)). Finally, since &, = o(n) by (5.3), this implies
sBIC(A,) — sBIC(A, U {,}) > n (6 n 0p(1)> ,

completing the proof.

Note that there are two special cases. The first one is that there is no valid candi-
date for k;, and no other candidate between 1 and k;,, in A,. Then, we set [y, = 1
and proceed as before. In the second case, there is no valid candidate for k,, and no
candidate between k,,, and n in the set A,. By setting [, = n we can use the same
arguments as in usual case again.

General parameter change model:
By Assumption [5.5.3] we know that

n (gRSS(.An) — gRSS(A, U {Zn}))
. (In — log) (I — 1)

~ ~

(€ +0p(1)||8l, 1, = Or 1.

ll,n - lO,n
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holds uniformly in ly,, € (kj_1, — G, kjn — unl, l, € (kjn — G, kjn,+G) and 1, €
(kjn+Un, kjt1,,+G). Analogously to the linear regression, by applying Lemma|5.4.10
Lemma [5.4.11] and Lemma [5.4.12] we obtain

= [|6; — 0;11]| + op(1), uniformly in I, by, 11 .

HOZ(LnJ!‘ljn - ein"!‘lall,n

Thus, similar to the first part we get
n (gRSS(An) — gRSS(A, U {Zn})) >n (6 ¥ op<1)) ,

for some constant C' > 0, and the proof can be finished in an analogous manner to the
linear regression. [l

Furthermore, we have to verify that there is at least one valid candidate for each change
point in the initial candidate set.

Lemma 5.5.5. (a) Let G € G satisfy Assumption and let L denote the set of
initial candidates obtained by the MOSUM Wald-type procedure. Then, for every
change point k;,,, there exists a candidate k;,, € L such that

P

(b) The result remains true for the MOSUM score-type procedure if we additionally
ensure that all changes are detectable by choosing an appropriate set of global esti-
mators.

Proof. The assertion in (a) follows directly from Corollary [3.1.16| and Corollary [3.2.10
respectively, whereas the statement in (b) can be derived from Corollary 2.1.1OL O

~

Kjn — Ejn

>G>—>0.

The main result of this chapter is stated in the following theorem showing that a final
candidate set of the algorithm’s output contains at least ¢ candidates with probability
tending to one.

Theorem 5.5.6. Let A, be a final candidate set of the algorithm’s output satisfying
(d1) and (49) and let the assumptions of Lemma [5.5.5] be fulfilled. Then,

P(|A,>q)—1 asn— occ.

Proof. The assertion can be proved by contradiction. Therefore, assume that | A,| < ¢.
Hence, there would be at least one change point without valid candidate in A,,. By
Lemma there is a strictly valid candidate for each change point in the initial
candidate set. Thus, by adding strictly valid candidates to the set A, we can create a
new set A, such that there is exactly one change point kj- , without valid estimate in
levn while the set contains strictly valid candidates for its neighboring change points.
By Lemma [5.5.4] we know that adding a strictly valid candidate for kj., to the set
.A decreases the information criterion. Hence, the candidate set A does not fulfill
Condition (1)) implying that A, cannot satisfy Condition ( as A, C A This
would contradlct the assumption that A4, is in the output of the algorithm completing
the proof.

O
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5.6. Outlook

For justifying the usage of the procedure theoretically we need to show consistency for
the estimators of the number and the locations of the changes obtained by the multiscale
method. As a part of future work, this will be based on the theoretical results of Section
and Theorem Moreover, it will be necessary to implement the localised
pruning approach like Cho & Kirch| (2018) to make the procedure competitive in terms
of computation time compared to other detection algorithms. Furthermore, simulation
studies for different change point problems will be conducted in order to assess the
performance of the method empirically. Simulations in the classical mean change model
done by (Cho & Kirch| (2018) have shown that the multiscale MOSUM procedure with
localised pruning, which is already implemented in the mosum R-package, perfoms
quite well in comparative studies. We would expect to get similar results for the linear
regression model or examples of the general parameter change model.
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A. Assumptions of Chapter

A.1. Assumptions Under the Null Hypothesis

Assumption A.1.1. Let the bandwidth G depend on n, i.e. G = G(n). Furthermore,
for v > 0 assume that

ne log(n)
G

%—>OO and — 0 for n — oo.

Assumption A.1.2. Let {X; : i > 1} be a stationary series following a distribution
determined by Oy in a correctly specified model. Under misspecification let g be the
best approzimating parameter for {X; : ¢ > 1} in the sense of E(H(X;,0y)) = 0.
Furthermore, we assume that the stationary sequence { H (X;, 5) 1 > 1} has a positive
definite long-run covariance matriz 2(5) = 3.

Assumption A.1.3. Let S(k, 5) = Zle H (X, 5) fulfill a strong invariance principle.
So possibly after changing the probability space there exists a p-dimensional standard
Wiener process {W (k) : k > 0} with identity matriz I, as covariance matriz and v > 0
such that

Hz*l/? <S(k, 0) — E(S(k, 5))) - W(k)H = O(KY™) q.s.

as k goes to infinity.

Assumption A.1.4. Let

Gk Gw/QG H 9’“”

k+G k
1 ~ ~ —~ ~
= —_— H(X;,0,) — HX;,0)) — H(X;, 0, — H(X,0
X o TG Z( (Xi,0,) — H(X;,0)) ZG( (X, 6,) — H( >)|

= op((log(n/G)) "%
hold for some 0.

Assumption A.1.5. The estimator ikn of the long-run covariance matrix X can
depend on k and satisfies

o2
max H DI n —1/2
G<k<n—G

, = or(tostn/c) ™)

under the null hypothesis.
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A.2. Assumptions Under the Alternative

Assumption A.2.1. Let q be the number of change points, occuring in the time period,
which is unknown but fized. Furthermore, let ki, < ... < kg, be the change points
depending on the sample size n in the following way: k;, = |\jn] with \; as rescaled
change point being a constant but unknown value in (0,1), for j =1,...,q

Assumption A.2.2. Let {X;:i > 1} be a piecewise stationary series such that

XM 1<i <k,
X — X'EQ)’ Zf kl,n <1 S k2,n
X i k. <i<n

where {ng) i > 1} is stationary following a distribution determined by 0, for j =
1,...,q+ 1, in a correctly specified model. Under misspecification let 8; be the best

approzimating parameter for {ng) 24 > 1} in the sense of E (H(ng),Bj)) = 0.
Furthermore, we assume that the stationary sequence {H(Xz@, 6) :i > 1} has a positive

definite long-run covariance matriz 3;)(0) = X, for all j=1,... ¢+ 1.

Assumption A.2.3. Let S(j, k, 5) = Zle H(ng), 5) fulfill a strong invariance prin-
ciple for all j = 1,... g+ 1. So possibly after changing the probability space there exists
a p-dimensional standard Wiener process {W (k) : k > 0} with identity matriz I, as
covariance matriz and v > 0 such that

HE&VQ (SO} k,0) — E(S(j, k, 0))) - W(k:)” — O(KY®)Y a5, k- 0.
Assumption A.2.4. Let {én}neN be a sequence of estimators fulfilling
1
Ggrl?gi{—c NoTE HA@I,J@ - Ag,kH =0Op (\/ 10%(”/G)) ,

for some 6.

Assumption A.2.5. The estimator f)kn of the long-run covariance matriz 3y is pos-
itwe definite and satisfies

S 12|
(a)  max |8, -5 = o000)
(b) max 2;”2_2*1/2“ — op (log(n/G)™)
k€A, G n Foolle

with A ={ke{G,....n—=G}:|k—k;,|>GVj=1,...,q},

a2 27 -

(c) kfenBific 2 gk s OF (1),
where By :={k € {G,....,.n—G} :3j e {l,...,q} with |k — k;,| < G} and
{Zax} is a sequence of positive definite matrices fulfilling supy, || X4k, < 0o.
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Assumption A.2.6. For at least one j € {1,...,q} it holds that
E(HXY.0)) # E(HX!™,6)).

Assumption A.2.7. Let @ = @ (5) be the set of indices of all rescaled change points

causing a change in the expected value of the transformed series (detectable changes),
B (H(x.0)) # B (H(XI™.6))
holds for all j € @ and

E (H(X@, 5)) -y (H(ng“), 5))

for all 5 € {1,...,q}\é.
Furthermore, let ¢ = §<0~> be the number of elements of Cj which is the number of

detectable changes.

Assumption A.2.8. Let the sequence of significance levels o, fulfill

a, =0 and Ca—":o(l),

a(n/G)VG
where a(x) = /log(z) and c,, is the (1 — ay,)-quantile of the Gumbel distribution.
Assumption A.2.9. Let {én}neN be a sequence of estimators fulfilling
(I) maxpea, . \/%76’ “Aén,k — A@kH =op ((log(n/G)) 1/2)
where Ay, ={ke{G,....n—G}: k- | \n|]|>GVje{l,...,q}}.
(II) max, 3 \/%76' HAémk — A@kH =op ( log(n/G)) ,
where zz{nvg = {k‘ e{G,....n—G}:lk—|A\n]|>GVje @} with Q denoting

the set of indices of detectable rescaled change points defined by Assumption
[A.2.7

Assumption A.2.10. Let the following forward and backward Hdjek-Rényi-type in-
equalities hold for some v > 2:

(a) For all j € {1,...,q+ 1} and for any positive and non-increasing sequence by >
by > ... > b, > 0 there ezists a constant B(y) such that

v n
(J < v 1.7/2—-1
(121;?<ank ZHO (X; > < B(')/)Zbkk: :

k=1
(b) For all j € {1,...,q+ 1} and for any positive and non-decreasing sequence 0 <
a; < as <...<a, there exists a constant A(~) such that

v
ZHOXJ ) Za k)t

i=k+1

max ay
1<k<n
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Assumption A.2.11. Let {é\n}neN be a sequence of estimators fulfilling, for any m €
N and for each j € {1,...,q+ 1},

(i) max 1 isz_lﬂ (H (Xfﬂ'), §n> _H (ng’), 5)) H = op(1)
and

(i) max 1| 3 (H (X§j>,§n) ~H (X?’,é))” = op(1)

Isk=n " |li=m+1

for some 0.

Assumption A.2.12. Let f]kn be a local estimator for the long-run covariance matrix
3, which is positive definite and fufills Assumption . Furthermore, let fljm
j=1,...,9+ 1, be a positive definite global estimator which is consistent for the true
long-run covariance matriz 3 under the null and which converges in probability to some
positive definite matriz 34 ; under alternative.
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B. Assumptions of Section [2.3| and
Section 3.

We consider the following type of series:
(E1) Xy,...,X,, are an i.i.d. sequence of random vectors or

(E2) Xy,...,X,, are a stationary and strongly mixing sequence of random vectors with
a mixing rate a(n) satisfying a(n) = O(n=") for some 8 > 1+ 2/v, where v is as

in Assumption [A.T.3]

B.1. Under the Null Hypothesis

Assumption B.1.1.
Let E (|| H(Xy,0)||) < oo hold for all 6 € ©.

Assumption B.1.2.
~ |12
Lel E (HH(Xl,t‘))H ) < 0.

Assumption B.1.3.
Let E (suppeo [ VH (X1, )] ) < oc.

Assumption B.1.4.
E (supgee | V?H;(X41,0)||,) < 0o hold for all j =1,...,p.

Assumption B.1.5.

24+v
There exists a v > 0 such that £ (HH(XI,G) ) < 0.

Assumption B.1.6.
There exists a v > 0 such that E (||VH (X, 0)||if”) < 00 holds for all 8 € ©.

Assumption B.1.7.
Let E (supee@ | V2H;(Xq, 9)||?V> < 00 hold for all j =1,...,p and for some v > 0.

Assumption B.1.8.
Let V(0) be a reqular matriz for all @ € © and let

V()
sup [[V(6) ™[] . < oo,

with V(8) = E (VH(X,,0))".
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B.2. Under the Alternative

Assumption B.2.1.
Let E (HH(X?,@)H) < oo hold for all@€®©, j=1,....q+1.
Assumption B.2.2.

N o~ |12
Let E <HH(X§”,9)H > oo, j=1,.. q+1.
Assumption B.2.3.
Let E (sup%@ HVH(XP,H)H ) <00, j=1,...,q+1.

F

Assumption B.2.4.
E (Supgee HVQHI(X@,B)H ) <oohold foralll=1,....p,j=1,....q+1.
F

Assumption B.2.5.
There exists a v > 0 such that E (HH(X?), 0)

24+v
)<oo,j:1,...,q—|—1.

Assumption B.2.6.

There exists a v > 0 such that E (”VH(ng),H)“2+V) < oo holds for all 0 € O,
j=1,...,9+ 1 )

Assumption B.2.7.

Let £ (supee@ HVQHZ(ng),O)H:FV> < 00 hold for alll =1,...,p and for some v > 0,
j=1,...,q+ 1.

Assumption B.2.8.
There exists a v > 0 such that

. 2+v
E <HH(X§”,¢9)H ) < o0 holds for all@ €®, j=1,... q+1.
Assumption B.2.9.
Let V ;(0) be a regular matriz for all @ € © and let

sup | V;(6)”"|| < oo,

with V,(8) = E (VH(X§j>,9))T, j=1,....q+1.
Assumption B.2.10. Let

SV5(0) + (1— 6)V111(6)
be a regqular matriz for all @ € © and all § € [0,1] and let

sup sup || (5V;(8) + (1 — 6)V;51(0)) ||, < oo,
4€[0,1] 0O

j=1,...,q.
Assumption B.2.11. There exists a v > 0 such that
. 24v
E <sup9€@ HVH(XP,B)H ) < oo holds, j=1,...,q+ 1.
F
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C. Assumptions of Section 3.2

C.1. Assumptions Under the Null Hypothesis
Let B, be the true parameter of the model if no change occurs, i.e.
Y, = X;[,Bo + &

holds for all ¢ = 1,...,n under the null. Furthermore, the following assumptions are
used in that section:

R1) The sequence {X,};>; is stationary and ergodic with F (|| X]|) < occ.
R2) Let F;, = 0 (Xj,€j-1,j < t). We assume that ¢, and F; are independent.

(R1)

(R2)

(R3) C:= E(XX7) is a positive definite matrix.

(R4) The sequence {g;};>1 is i.i.d. with E(e;) =0, 0 < E(e?) := 0% < 0.
(R5)

R5) Let the components of {X; X, — C};>; satisfy a strong invariance principle
similar to that in Assumption [A.1.3]

(R6) Let {X,e;}i>1 be a series with positive definite long-run covariance matrix 3
satisfying a strong invariance principle similar to that in Assumption [A.1.3]

C.2. Assumptions Under the Alternative

Under the alternative we allow for multiple changes in the regression coefficients and
get a piecewise stationary response sequence {Y;};>; with

—_ v _ x0T
Y;_Y; _X@ ﬁj"’gia

for kj_1, <i<kj,and j=1,...,¢+ 1. The following assumptions are used in that

section.

(R1*) The sequence {ng)}izl is stationary and ergodic with F (HX?)
j=1,...,q+ L

) < 00, for

(R2*) Let F; =0 (Xj,ej-1,j <t). We assume that ¢; and F; are independent.
(R3*) Cj) =F (ng)ng)T> is a positive definite matrix, for j =1,...,q+ 1.

(R4*) The sequence {&;};>1 is i.i.d. with E(e;) =0, 0 < E(e?) := 0% < 0.
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(R5*) Let the components of {ng)Xl(»j)T—C(j)}izl satisfy a strong invariance principle
similar to that in Assumption forj=1,...,q+ 1.

(R6*) Let {ng)ei}izl be a series with positive definite long-run covariance matrix ;)
satisfying a strong invariance principle similar to that in Assumption for
=1,....q+1

(R7*) Let the matrix 6C;) + (1 — §)Cj11) be positive definite for all 6 € [0, 1] and
assume that sup,e( ] H (6Cu + (1 - (5)C(j+1))71H <oo, forall j=1,...,q.
’ F
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D.

Assumptions of Chapter

D.1. The General Model

In the general parameter change model we assume that, for all 7 = 1,...,¢ + 1, the
following conditions are satisfied:

(M1)

(M2)

(M7)

Let {ng)}iZI be a stationary and ergodic sequence in R?.

Let S(j,k,0,) = Zle H(ng), 0;) fulfill a strong invariance principle such that
(possibly after changing the probability space) there exists a p-dimensional stan-
dard Wiener process {W(k) : k > 0} with identity matrix I, as covariance
matrix and v > 0 such that

|20 (80 k.6)) — B(S(.,6,)) = W(k)|| = O as.
as k goes to infinity.

For all @ € ® and for all [ = 1,...,p, let the sequence {VHI(XI(»j), 0)} fulfill a

strong invariance principle as described in (Mi2]).

Foralll=1,...,p, let £ <sup9€@ HV2H1 X(] H > < oo and let the sequence
{sup(,e@ HVQHI X(] H } satisfy a strong invariance principle as in ( I)
Let E (supee@ HVH(X@, 9)” ) < o0 hold.

F

Let the following forward and backward H&ajek-Rényi-type inequalities hold for
0 c{0,,...,0,,}, for any m, € Ny and a positive deterministic sequence {v,}
with v,, — oo (which will be specified later):

mn+k
(J _
vnSIan%L)Emn Z_H HO X o OP(l)
and
\/U_n (J _
e [ 8 meal <o

: T
Let V;(0) = E (VI—I(X&J), 0)) be a regular matrix for all @ € © and let

< oo, forall j=1,...,¢+ 1.

V;(0)!
sup | V;(6)™
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(M8) Let 6V ;(0) + (1 — )V ;41(0) be a regular matrix for all @ € © and all 6 € [0, 1]
and let

sup sup ||(6V;(8) + (1 — 6)Vj+1(0))_1HF <oo, forall j=1,...,q
5€l0,1] O

(M9) For s > 1 we assume that >77° (A, — X\_1)V(8) is invertible for all § € © and

l=j5+1
j+s !
sup ([{ Y (M= A1) V(6) < 0.
0e@ 1l \i=jt1
F
(M10) Let E (Q(ij), 5)) < 00 where 8 denotes the unique zero of

q+1 -

> (=) E (HED,0).

j=1

D.2. The Linear Regression Model

We consider the linear regression model introduced in Section under the Assump-

tions (R[1) to (R[7}') which can be found in Section as well. Furthermore, the
following conditions are used.

(R8*) For all j = 1,...,q + 1, let the series {ng)sl-}izl satisfy the following forward
and backward Hajek-Rényi-type inequalities, for any m, € Ny and a positive
deterministic sequence {v,} with v, — oo (which will be specified later):

mn+k
max E X(J gill = Op(1)
'Ungksn_mn
i=mn+1
and
AU o
n
max E ng)si = Op(1).
v <k<mp
i=mnp—k+1

(R9*) For all j =1,...,q+ 1, let the series {XZ(»j)XZ(»j)T — C(j) }i>1 fulfill the following
forward and backward Hajek-Rényi-type inequalities, for any m, € Ny and a
positive deterministic sequence {v, } with v,, — oo (which will be specified later):

mp+k
T .
vk nem, Z ( IxI" - ¢y ) — 0p(1)
i=mn+1 P
and
\/Un mn ( (]) (J)T ) .
yng}%}inn ko Zk+1 XX C = Op(1).
1=Mn— F

(R10%) Let the matrix S°77 ]H( — X\i—1)C ) be positive definite for some s > 1.
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E. Theoretical Results

E.1. Norms and Matrices

Remark E.1.1. According to|Roy & Banerjee (2014)) (page 492f), the Frobenius norm
18 a matriz norm which is defined as follows

|A|, = \/tr(ATA) = \/tr(AAT) for A € RP¥.

An important property of this norm is the submultiplicativity,
|AB|| < [[Allz | Bl

Lemma E.1.2. Let {X,} and {Y,} be deterministic or stochastic sequences of vectors
in R? and let A C N. Then,

— < _
max [|.Xy, || — max ||V, [} < max [[X, — Yo

Proof.
max || X, || = max || X,, — Y, + Y,|| < max (|| X, = Y,.| + [|[Yal)
neA neA neA
< max ||.X, — Y, || + max ||Y,,||
neA neA
yields

— < —
max || Xo[| = max |[Ya ]| < max||X; —Ya|.

Similarly we obtain

_ < _
max [|Y,[| — max [|X,[| < max[|X, =Y, [|,

showing the assertion. O]

Lemma E.1.3. Let {X,} and {Y,} be deterministic or stochastic sequences of vectors
i RP and let A C N. Then,

minl ||, | — min |[Y,[|| < max [[X, =Y.

Proof. Without loss of generality we assume that min,ea || X,|| > min,eca || Yal. We
receive

10 = Yol 2 NI Xall = 1Yol = min [| ]| = [[¥all,
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which holds for all n € A. Hence, maximizing the left and right site does not change
the inequality sign and we obtain

max [ X, — 5|

> max (min | X0l — HYnH> = min || X, || — min ||Y,|| = [min || X,|| — min |[|Y, |||
necA €A ncA ncA neA ncA

[

Lemma E.1.4. Let a = (ay,...,a,)" be a vector in RP. Then,

lallz = llall,
where ||-|| denotes the Euclidean norm and ||-|| the Frobenius norm.
Proof. By definition of the Frobenius and the Euclidean norm it holds that
lallz = Vtr(aTa) = \/a? + ... + a2 = ||la]|.

[

Lemma E.1.5. Let A be a p X p-matriz and x € RP. Then,
|Az|| < [[Allz[l],

where ||-|| denotes the Euclidean norm and ||| the Frobenius norm of matrices.

Proof. On noting that Ax € RP, applying lemma and the submultiplicativity of
the Frobenius norm yield

|Az|| = |Az||p < [|Allp 2] = [ Al 2]
O

Lemma E.1.6. Let A = (a;;) be an r x s-matriz. Furthermore, let a;, be the i-th row
and a.; be the j-th column of the matriz. Then,

(a) max; jla;;| < || Ay,

®) 14l <3,

(¢) maxicicr [law|| < |Allp and maxi< [la]| < [|Allp and

(@) |Allp < 325y llaill and Al <325, flas]l-

Proof. By using the definition of the Frobenius norm, we get

[A[lp =/ tr(AAT) = Z |aij|* > V/|au|* = |aw| for all k and I
1,7

g
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and
2
AN = lagl? <> lagllaw| = (Z |%‘\) :
2,7 k1,5 2,7

The first inequality proves part (a) and the second implies result (b).
Moreover, we obtain

2
I8 T T T
2 2
AR = Sl = 3 aul < 375" ool flaw | = (zm.u) and
ij i=1 i=1

k=1 i=1
1Al = D layl? =
i

showing the results (c) and (d) of the lemma. Similar inequalities can be derived for
the columns of the matrix in order to complete the proof. O

r
S lail? =/ llal = llaa]l  for all i,
=1

Lemma E.1.7. Let A € RP*P be a symmetric positive definite matriz and B € RP*P
a reqular matriz. Then, C := BABT is a symmetric positive definite matriz.

Proof. By determining the transpose (BAB”)” = BAB” we get that C is symmetric.
Furthermore, let © € R? be an arbitrary non-zero vector (& # 0). Since B is a regular
Matrix y := B’z is a non-zero vector in R? as well. Hence, on noting that A is
positive definite, we receive

' Cx=yTAy >0,
which shows the assertion. O

Lemma E.1.8. Let {B,} be a sequence of symmetric positive definite p X p matrices.
If B, Rt B, where B is a positive definite matriz,
then it holds

B-1/2 f) B /2

Proof. First note that the square root of the inverse matrix f(A) = A~Y?is a primary
matrix function on the set of positive definite matrices with scalar-valued stem function
f(t) = t7Y/? according to Definition 6.2.4 in Horn & Johnson| (1991) on page 410. Since
the stem function f(t) = ¢t~*/2 is continuous on (0, o), applying Theorem 6.2.37 of Horn
& Johnson| (1991) on page 433 yields that the matrix function f is continuous on the
open cone of positive definite matrices. Thus, the assertion follows from the continuous
mapping theorem.

0

Lemma E.1.9. Let A be a symmetric positive definite p X p-matriz. Furthermore, let
Amaz denote the largest eigenvalue of matriz A and 0,,;, the smallest eigenvalue of the
inverse matriz A~t. Then, the following inequalities hold:

(a) Amaz < HAHF
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(b) Omin = HAH;PI

Proof. (a) Let A1,...,\, denote the eigenvalues of A. On noting that the eigenvalues
of the squared matrix A* = AA are given by A\?,..., A2, we receive

| Al = y/tr (AAT) = 4\/tr (AQ) =

(b) Let dy,...,8, denote the eigenvalues of A~'. Since §; = + fori=1,...,p, the
result of part (a) can be used to obtain

P
Z )\Z? > V )\gnax = Amaz-
i=1

]

Lemma E.1.10. Let { Ay} be a sequence of symmetric positive definite p X p- matrices.
If supy, || Ag|l» < oo, then there exists ¢ > 0 such that Apin(Ay ') > ¢ holds for all k,
where \in (A,;l) denotes the smallest eigenvalue of matriz A,;l.

Proof. Applying Lemma [E.1.9 (b) yields
Amin (AFY) > | Ax||7 for all k.

Hence, by assumption we obtain

-1
inf (Amin (A;")) > inf (| Akll5") = (sgpnAkllF) > 0,

which shows the assertion. O

Lemma E.1.11. Let A be a reqular 2 x 2-matriz. Then,

1
71 o

Proof. With A = ( ZH 312 ) the inverse of the matrix is given by
21 @22

1 a —a
Al — 22 12 )
det (A) ( —aG1  an

Thus, by the definition of the Frobenius norm we receive

1 o Q5 2_ 1 2 _ 1
1421~ 32 (ats) = o cay 2 = g M40

,L'7j
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Lemma E.1.12. Let A € RP*P be a symmetric positive definite matriz with minimal
eigenvalue \pyn = minj<j<, Aj. Then, for any vector x € RP with x© # 0, it holds

T Ax > M\ Hzc|]2 .

Proof. An eigendecomposition of the positive definite matrix A yields that there exists
an orthogonal matrix @ such that A = Qdiag(\;)Q”. Hence, with y = Q" x, the
computation rules for the trace of a matrix can be used to receive

" Az = tr (2" Azx) = tr (2" Qdiag(\,)Q" ) = tr (diag(\;) Q" zz" Q)
p p
i=1 i=1

)‘min HwH2>

as the matrix @ is orthogonal. O

E.2. Probability Theory and Statistics

Lemma E.2.1. Let {W(t) : t € [0,00)} be a standard Wiener process, then it holds
sup  sup |[W(t+s)—W(t)| =0(/logT) a.s.

0<t<T—10<s<1
Proof. By Theorem 1.2.1 (1.2.6) of |Csorgo & Réveész| (1981) on page 30 we obtain

W (t+s)—W(t)]
lim sup sup =1 a.s.
T—o0 0<t<1-10<s<1 /2(log T + log log T')

This implies
sup  sup [W(t+s) — W(t)| = O(v/2(log T +loglogT)) a.s.

0<t<T—10<s<1
= O0(y/logT) a.s

]

Lemma E.2.2. Let {W(t) : t € [0,00)} be a p-dimensional standard Wiener process
with identity matriz I, as covariance matriz, then it holds

sup sup |[W(t+s)—W(t)|| =0(/logT) a.s

0<t<T—10<s<1

Proof. The component processes Wy (t), ..., W,(t) of the p-dimensional standard Wiener
process W (t) are independent standard Wiener processes. Hence, applying Lemma

yields

sup  sup ||[W(t+s)—W(t)| < sup sup Z|W (t+s) — Wi(t)]

0<t<T—-10<s<1 0<t<T—-10<s<1

< Z sup  sup |[Wi(t+s) —W;(t)| = O(\/logT) a.s.

0<t<T—-10<s<1

- 206 -



E.2. Probability Theory and Statistics

The following lemma and the corresponding proof goes back to Kirch| (2008) page 14.

Lemma E.2.3. Let {a,} and {b,} be sequences of positive real numbers with lim,,_,.. b, =
oo. Furthermore, consider two sequences of random wvariables {A,} and {B,} with
A, = op(by/ay). Then the random sequences a, max(A,, B,) — b, and a,B, — b, have
the same limit distribution, i.e. it holds

lim |P(a, max(A,, B,) —b, <y)— P(a,B,—b, <y)|=0, VyeR.

n—oo

Proof. The proof can also be found in Kirch| (2008) on page 14.
Since the maximum can be rewritten as an intersection of two sets, the following
inequality holds

P(a, max(A,, B,) — b, <vy) = P{a,A, — b, <y} N{a,B, — b, <y})
= P(a,A, — b, <y) + P(a,B, — b, < y)

- P({anAn —b, < y} U {aan —b, < y})
> P(anAy — by < y) + P(anB, — b, <y) — 1

= P(ay,B, — by, gy)+P(Z—"An < bi+1) 1

Since b, goes to infinity for n going to infinity, for all y € R, there exists an m(y) € N
such that y/b, +1 > 1/2 holds for all n > m(y). With $*4, = op(1) we obtain
lim,, o0 P(Z—:An <1/2) = 1. This implies
P(a, max(A,, B,) — b, <vy) > P(a,B, — b, <y)+ P( "A, < 1/2)
= P(a,B, — b, <y)+o0(1)

for large n.
Furthermore, we obtain

P(a, max(A,, B,) — b, <vy) < P(a,B, — b, <)
since {a, A, — b, <y} N{a,B, —b, <y} C{a,B, —b, <y} holds for alln e N. O

The following lemma can be derived by using some results of [Steinebach & Eastwood
(1996)).

Lemma E.2.4. Let {Z(t) : t > 0} be a separable stationary Gaussian process with
values in RP and independent standardized component processes. Let the covariance
functions of these components fulfill

ri(h) =1—C|h| +o(|h]) as h =0
ri(h) =o(1/logh) as h— oo forall i=1,...,p,
for some constant C' > 0. Then,
a(m) sup [|Z(t)]| — b(m) B FE as m— oo,

0<t<m
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where

a(m) = +/2logm,

b(m) = 2logm + g loglog m — log (C_lr (g))

and E follows a Gumbel distribution with
P(E < z) = exp(—2exp(—z)) for all z € R.

Proof. The assertion follows from Lemma 3.1. in combination with Remark 3.1. of
Steinebach & Eastwood| (1996)) on page 289 with o =1and C; = ... =C, =C. O

Lemma E.2.5. Let {Z(t) : t > 0} be a stochastic process with

Z(t) = \/Li CW(t+1) —WI(t) — W(t+2)) where {W (t) : t > 0} is a p-dimensional
Wiener process with identity matriz I, as covariance matriz. Then, the covariance

function of the component processes is given by

1_%|h|7 fO’I’ |h|§1
r(h) =14 3l =1, for 1<|n[ <2 .
0, else

Proof. With W (t) = (Wi(t),...,W,(t))" and Z(t) = (Zi(t), ..., Z,(t))" the covari-
ance function of a component process {Z;(t)} can be determined as follows.
At first, we consider the case h > 0.

o Let h > 2.

o Letl<h <2
Cov(Z;i(t), Zi(t + h))
— Cov( S5 (O¥e-+ 1)~ W)
— (Wit +2) = Wil + 1) — (Wilt + ) — Wit + 1)),

L Wil 14 B) — Wit 2)) + (Wit +2) — Wit + b))

V2
—O%@+2+h%4%@+h+nﬂ)
= I Var(Wi(t +2) ~ Wit b)) =~ = Th
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e Let 0 <h <1.
Cov(Z;i(t), Zi(t + h))

= Cov( 5 (@Wilt + 1) = Wi(t) = Wit + 2).
5§@W%t+1+hy—th+m—wm@+2+h»>
= Cov( 5 (Wit 1) = Wile-+ 1)+ (Wit 1) = Wi(0)
— (Wit +2) = Wit +1+h)) — (Wit + 14 h) = W;(t + 1)),

1
;§«WQt+1+h)—Wﬂﬁ+n)+ﬂmu+1y—WKr+M)

—U%@+2+h%4%@+2»—@%@+%—W%@+1+MD>
:—évmumu+1+h%4%@+1»+%Vm@m@+1y4wﬁ+h»

1
5 Var(Wit +2) = Wit + 1+ b))

h 1—h 1—h 3
- 44—~ =1-2h
2T T T >

Due to the symmetry we obtain for A < 0
Cov(Zi(t+ h), Zi(t)) = Cov(Z;(s), Zi(s+ |h])) (s=t+h)

—%|h\, for —1<h<0
—{ Lh/=1, for —2<h<-1

0, for h< -2
which completes the proof. O
Theorem E.2.6 (Uniform Law of Large Numbers, Theorem 6.5 in Rao| (1962)).
Let ||-|| be any norm on RY and let F(X;, ) be a stationary and ergodic random sequence

with values in R? satisfying

E (sup HF<X1,9)H) < oo,
0c®

then

n

1 N F(X,,0) - E(F(X,.0))

n <
=1

sup —0 a.s. as n — oo.

0coO

Corollary E.2.7. Let ||| be the Frobenius norm for matrices and let F(X;,0) be a
stationary and ergodic random sequence with values in R™° satisfying

E (sup | F(X, O)HF) < 00,
0c®

then

n

l}:F@@m—Eﬂw&ﬁD

— 0 a.s. as n — 0.

F
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Proof. Let F1(X;,0),..., Fy(X;,0) denote the columns of F(X;,0). Then, the moment
assumption and Lemma [E.1.6] (c) yield

E <sup ||Fj(X1,0)||) <FE (sup ||F(X1,9)HF) <oo forallj=1,...,s.
0cO 0cO

Hence, by Lemma (d) and Theorem applied to each column vector we
receive

—E F(X;,0) - E(F(X4,0

E‘Glpn;1< ) ((1))F

<Esu —EFXZ-,O—EFX,B =o0(1) a.s
_j:19€p n & i ) (F5(X4 ))H (1)

]

The same statement can be obtained under different assumptions as well which is shown
in the following theorem.

Theorem E.2.8 (Uniform Law of Large Numbers II).

Let the parameter space © be compact, let {X;};>1 be a stationary and ergodic sequence
of p-dimensional random vectors and let F : (RP,©) — R? be a measurable function
with respect to X; such that the following assumptions are fulfilled:

(i) Let E (|| F(X4y,0)||) < oo hold for all 8 € ©.

(ii) Let F(x,0) be Lipschitz continuous in 0, i.e. there exists a function L(x) > 0,
which is measurable with respect to X;, such that

|F(z,0) — F(x,€)|| < L(z) |6 — &||
for all 0,€ € © and
(iii) E(L(X1)) < oc.
Then,

n

1 N F(X,,6) — E(F(X..0))

n <
=1

sup
0cO

' = 0p<1).
Proof. The proof of this theorem is well known in non-parametric statistics.

There are three main arguments:

(1) The parameter space © is compact. This implies that for each § > 0 there exist a
finite number M = M () > 1 and 64, ...,0;; € O such that for any 8 € © there
is an m < M with ||@ — 0,,| < §.

(2) Since F' is measurable with respect to X; the ergodicity of the sequence {X;};>1
carries over to the transformed sequence {F(X;,0)};>1. Hence, for fixed M and
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0,,...,0), the Law of Large Numbers and the Ergodic Theorem, respectively, and
assumption (i) yield

ZF X,,0,,) — E (F <X1,em>>H

menr ||
Z ZF X;,0,,) — E(F(Xy,0,,)) ‘ = op(1).

(3) Let Fy(X;,0) = F(X;,0) — E(F(Xy,0)). For any 6,£ € © with ||@ — &|| < 0 we
obtain

1 n
~ D [IFo(X:,0) = Fo(X;, £)]
i=1

s %Z |F(X:,6) — F(X,, )|l + | E (F(X1,0)) - E (F(Xy,€))|

<= Z L(X;))0 + E(L(X1))d =6 (% i: (L(X;) — B(L(Xy))) + 2E(L(X1))> ,

i=1
where the last line follows from assumption (ii).
Now, for each € > 0 we can choose a > 0 such that oz —2F(L(X;)) > 0 by assumption
(iii). Note that the Law of Large Numbers and the Ergodic Theorem, respectively,
can be applied to the sequence {L(X;)};>1 by assumption (iii) and since the sequence

{L(X;)}i>1 is stationary and ergodic by the measurability of L and the ergodicity of
{X;}i>1. Hence, with M and 01,...,0,, according to (1) and by applying (2) and (3)

we get

=P | sup sup Fy(X;,0
> (m<M 10—, || Z

)

DO ™

:P(sup sup EZ(FO(X“ Fo XZ,O ZFO XZ,O
1 n

<P Ssu su — F XZ,B — F XZ,Hm

= <m<% HG—GI;H n Z( of ) o )

m<M [|6—6,||
su Fy(X;,0,,
<m<§\)4 Z 0

<P (% S (LK) — BL(X)) > 55 - 2E<L<xl>>> +o(1) = of1),

since o — 2E(L(X;) > 0 by the choice of 4. O

Definition E.2.9. Let F' be a function on © and let 0 € © be the unique zero of F(0).
Then, @ is called the unique zero in the strict sense if for every e > 0 there exists a

0 > 0 such that ||F(0)] > § whenever ”0 - gH > €.
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Lemma E.2.10. Let © be a compact set and let F': © — R? be a conlinuous function
on ©. Furthermore, let 0 be the unique zero of F(6).
Then, 0 is the unique zero in the strict sense according to Definition .

Proof. We want to prove this by contradiction. Hence we assume that 0 is not the
unique zero in the strict sense, i.e.:

Jde>0 Vd>0380; with

]95 - 5” > et |F(85)] < 6.

Considering the sequence {d,} with ¢, = & for all n € N, we obtain

1
|F(85,)] < - 0 as n — 0. (E.1)

Since © is compact the sequence {65, } has a convergent subsequence {65, } with a
limit 6 € ©. The continuity of F implies F'(6;,,,,) — F(8"). Furthermore, F'(6") =0
follows from equation 1) But 0" # 5, which contradicts the assumption that 0 is
the unique zero. O

Lemma E.2.11. Let 0 be the unique zero of some function F(0) in the strict sense
as defined in[E.2.9. Furthermore, it holds that

[v2n]
1
sup || = Y H(X,;,0) — F(6)| = op(1).
0co || 1
i=[yn)+1
‘ ~(n) ly2n ~(n)
Then, the estimator sequence 0., . wi ith L s i) 1 H(X;, 0, .,) = 0 for every n

satisfies 5(7??72 7 0.

Proof. We refer to the proof of proposition 10.1 in |Kirch & Tadjuidje Kamgaing| (2016)
on page 240. O

Theorem E.2.12. Let {X;};>1 be a stationary sequence in RP with E(X;) = 0 and
positive definite long-run covariance matrix 3. Furthermore, let a strong invariance
principle be fufilled so that there exists a p-dimensional Wiener process W (t) with

k
XN X - W(k)
=1

Moreover, let Assumption hold on the bandwidth G. Then,

k+G

ZX

=k+1

=0 (kl/(2+l’)) a.s., k— oo.

< log(n/G)> :

0<hinea \/_
Proof. Applying the invariance principle and the self-similarity of the Wiener process
yields

k+G

I/QZX

i=k+1
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k+G
~1/2 B
< ax > Xi— (W(k+G) W<k>>|
i=k+1
" OQ&%Gﬁ W (k+G) - W (k)|
1 k+G k
e Y X 2% %
< \/§<OS%1§3;LXG X ;Xl W(k+G) +og%1g%fia by EXZ W (k) )
1
+ s W+ G) = W)
o (P ! ,
= 0n (" )+ S W+ G) - W

IS
QS

M/ (@+v) I
(e ) oW (6 01) - ()

1/(24v)
+ su sup [|[W(t+s Wt
() W) - W)

IN
QS

_ o, (m\//(gu)) N Op< log(n/G)> — 0P< log(n/G)> ,

where the last line follows from Lemma and Assumption [A. 1.1l Finally, by
Lemma, we can conclude

k+G k+G
. A 1/25-1/2 .

1/QZX

<[],

— Op ( log(n/G)> .

]

Corollary E.2.13. Let {X;};>1 be a vector-valued sequence of type (H1)) or type (H2)
with X; = (X, ..., Xpi)? and BE(X,) = 0. Furthermore, let Assumption[A.1.1) hold on
the bandwidth G. Then, if £ (HX1H2+V) < 00 for some v > 0, we have

k+G

Y X =

i=k+1

e \/_ < log(n/G)> '

Proof. For a sequence of type (HI) the invariance principle proved by [Einmahl| (1989)
in Theorem 2 can be applied to obtain

k
XN X - W(k)
i=1

with W (t) as a standard p-dimensional Wiener process. We get a similar result for
sequences of type (H2) by using Theorem 4 of Kuelbs & Philipp| (1980). Thus, Theorem
1.2.12| completes the proof. O

=0 (l{:l/(2+”)) a.s., k— oo,
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Lemma E.2.14. Let the assumptions of Theorem or Corollary hold.
Then,

(a) with B G ={ke{l,....n}: k<kj, <k+G}

kj.n k+G
1 1
max —— Xi||=0p (1) and max —= Xil| =0p (1),
ken) VG i;l ke VG ig;ﬂ
(b) with BY) = {k € {1,....n} 1k — G < kj,, <k},
1 & 1| g
max —— Xi||=0p (1) and max —= Xi||=0p(1).
kel o VG i:i;H ke VG i:kan—H

Proof. We only prove the first result of (a) since the second assertion in (a) and the
assertions in (b) can be shown in an analogous manner.

With the stationarity of the sequence and by changing the index to l = k — k;,, + G
we get

J n ]n

o —-1/2 X — i —1/2 X
ek \/— > by iy \/— >

(1)
kEB] n,G i=k+1 i=k+1
1 k“j!n
_ D
= max — ||Z71/? g X; :max— -1/2 E Xl .
0<i<G /(G
=kjn—G+1+1 =i+l

Furthermore, applying the invariance principle, which is directly given or can be derived
under the assumptions of Corollary [E.2.13] in combination with the self-similarity of
the Wiener process results in

I/QZX

i=l+1

I/QZX W

+ max ﬁ W (G) - W ()

o<i<G
@] G L W(G)—W(l
= 0r (S5 ) + S IW(G) - W

max ——
0<l<G G

l
+H|ZTY X - W ()
=1

)

20 (G u/(4+2u)> + max ||[W (1) ( )H
o<il<@

< Op (G™42)) 4 sup [W(1) — W ()| = Op(1
0<t<1

where the last step follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0, 1]. Finally, Lemma completes
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the proof since

k'n kn
1 - 1 1/25—1/2 S
max — ZXi:max—E/E_/ZXi
kEB(,lvz,G VG i=k+1 keB;,lr)l,G VG i=k+1
<[z, mas | WZX ~ 0,
F kij}gY

]

Lemma E.2.15. Let the assumptions of Theorem or Corollary hold.
Then,

k+G
max —— E X; p(1) and max — E X;
(1) (2)
kEBJnG i=k—G+1 kEB]nG i=k+1

Proof. We only prove the first result as the second assertion can be derived by using
similar arguments.
With the stationarity of the sequence we obtain

1 k 1 k
max T 2_1/2 E Xz = max T 2_1/2 E Xz
(1) kin—G<k<k;jr
keB() o VG i=k—G+1 o in VG i=k—G+1
I+G +G
= —1/2 E X; max —— || X 1/2 E X;
Jn—20<l<km
i=l+1 i=l+1

Moreover, the invariance principle, which is directly given or can be derived under the
assumptions of Corollary in connection with the self-similarity of the Wiener
process shows

+G
max— —1/2 E X;
0<1<G /(G =
Z

+G
YK - W+ @)

=1

+ max T IW(l+G)—W()

0<I<@G

1/QZX Wi

)

Gl/ (24+v)
=0 (25 )+ g - IWG6) - WO
l
2 v/(4+2v) _
0n(672) ¢ | (5 +1) - (M
< Op (G™U2)) 4 sup sup |[W(t+s) — W ()] r(1),

0<t<1 0<s<1

where the last step follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0,1]. Finally, applying Lemma [E.1.5]
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finishes the proof since

k k
1 1
max —— X;|l = max — DINED v X;
’fGBj(lﬁc\/a i:l;Jrl ’fEBj(lic\/a i:l;l+1
k
1

<[z max — |z — Op(1).

E k€B§,1v>L,G e i=k—G+1

]

Theorem E.2.16.

Let the parameter space © be compact and let Assumption[A. 1.1 hold on the bandwidth
G. Furthermore, assume that {X;};>1 is a sequence of type (Hl)) or type (H3) and let
F : (R?,0) — R? be a measurable function with respect to X; such that the following
assumptions are fulfilled:

(i) Let E (HF(X1,0)|]2+”) < 0o hold for some v > 0 and for all 0 € ©.

(i) Let F(x,0) be Lipschitz continuous in 0, i.e. there exists a function L(x) > 0,
which is measurable with respect to X;, such that

|F(z,0) — F(z,8)|| < L(z)[|6 - £]|
for all 0, & € © and

(iii) E (|L(X1)]*™) < oo for some v > 0.

Then,
k+G
329051?3?05 zk;rlF i) — (F(Xl,g))HZOP(l)

Proof. Similar arguments as in the proof of Theorem [E.2.8|can be used here. Argument
(1) is the same as in the proof of Thereom We need to modify argument (2) and
(3) slightly to:

(27) Let F¢(X;,0) = F(X;,0) — E(F(Xy,0)). Since F is measurable with respect
to X;, the function Fj is measurable as well. Thus, the pattern of the original
sequence {X;};>; described by type (HI) or type (E2) is inherited by the trans-
formed sequence {F(X;, 0)};>1. Hence, for fixed M and 0, ..., 0,,, Assumption
(i) and Corollary yield

k+G M kLG
su max—EFXG <E maX—EFXG
m<£\)/10<k<n ¢ G 0L = Aosken—c G o(Xis
i=k+1 m= i=k+1

B log(n/G)\ _
=Op <—\/5 ) = op(1),

where the last line follows from Assumption
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(3’) For any 6,& € © with ||@ — &]|| < ¢ we obtain

k+G kG
é Z [Fo(X;,0) — Fo(X;,8)[| <6 (é Z (L(X3) — E(L(Xy))) + 2E(L(X1))) ;

i=k+1 i=k+1

which is given by Assumption (ii).
Now, for each € > 0 we can choose a § > 0 such that =z —2E(L(X;)) > 0 by Assump-
tion (iii). Note that Corollary [E.2.13|can be applied to the sequence {L(X;)};>1 with
Assumption (iii) and since the measurability of L with respect to X; ensures that the

pattern of the original sequence carries over such that the sequence {L(X;)}i>1 is of
type (HI) or type (H2) as well. Hence, in connection with (2’) and (3”) we get

>5>

1 k+G
d (zggliéla%@ 2, Fol¥.0) >f)

» 1
= sup sup max —
m<M 99,y 1<k<n=G &

> Fo(X;,0)

i=k+1
s | G
=P | sup su max ||— FyX;,0) — FyX;,0,,)) + = FyX;,0,,)| >¢
msg\)/fue—egn\\lng"*G Gi—zk;1< o ) o ) Gz‘—zk;-l ! ) >

k+G
1 €
< P| sup su max ||— FyX;,0) — FyX;,0,, > —
= b oo 1<kEn G Q;f o500 = Bl ) 2)
1 k+G c
*P(WEEPM@%;%LXG G 2 Fol.6n) >§)

k+G
<P ( max é > (LX) — B(L(Xy))) > % — 2E(L(X1))> +0(1) = o(1),

1<k<n—G
i=k+1

since 5z — 2E(L(X;) > 0 by the choice of 4.

]

Lemma E.2.17. Let the assumplions of Theorem hold. Then, if E (HX1H2+V) <
oo for some v > 0, it holds

(a)

k.
1 2
sup max — F(X;,0)— E(F(X,0))||=o0p(1) and
1 k+G
sup max — F(X;,0)— FE(F(X,0))|| =o0p(1),
e gl Z:g;“ (X,0) — E(F(X,0))| = op(1)
(b)
i
sup max — Z F(X;,0) — E(F(X,0))|| =0p(1) and
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sp max = || S F(X,0) = E(F(X,,0)|| = op (1)

2
0cO keB}, o i=kj 1

Proof. These results can be derived in analogous manner to Theorem by apply-

ing Lemma |E.2.14] instead of Corollary [£.2.13] [
Lemma E.2.18. Let (2,2, P) be a probability space and A; € A be events. Then, for
n €N

P (ﬂAZ) > P(A)—n+1.
i=1 i=1
Proof. The assertion can be proved by induction. We start with n = 2:
P(A1NAy) = P(A)) + P(Ay) — P(A1 U Ay) > P(Ay) + P(Ay) — 1,

which shows the base clause. The induction hypothesis is that

P (ﬂA) > S P L

holds for n € N. Hence, by using the base clause and the hypothesis we obtain

() (f4) - Pt

i=1
which completes the proof. O

Theorem E.2.19. Let {ay,}, 1 <k <n, be a sequence of random variables on some
probabilty space (2, B, P) with values in A C R which converges to some deterministic
value a € A uniformly in k as n — oo, i.e. supy |ax, —a| = op(1). Furthermore, let f
denote a continuous function on A. Then,

sup | flaxn) = fla)l = op(1).

Proof. The result can be shown by applying the subsequence principle. For each sub-
sequence sup;, ‘ak@(n) — a| there exists a further subsequence supy |ax g(a(n)) — a‘ such
that

sup |k saty — af =0,

which means that sup, ’akﬂ(a(n))(w) - a} — 0 holds for all w € Qy C Q with P(€g) = 1.
This implies that

V6>0 dng €N Vn>mng: suplaypam)(w) —a| <. (E.2)
k
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Furthermore, by the continuity of f in a we get
€
5

The statements in (E.2) and (E.3|) can be combined as follows. For every ¢ > 0 with
corresponding 0 as above there exists an ng € N such that |ax gia@m))(w) —a| < § for all
n > ng and all 1 < k < n implying that

Ve>0 30>0 Vewith|z—al<d: |[f(x)— fla)|< (E.3)

sup | (ar pamy (@) — fla)| <&, Vn >ny,

which shows the convergence supy, |f(ak gm))(w)) — f(a)] — 0. Hence, we obtain
supy, | f(ak,gam))) — f(a)l %% 0 and the subsequence principle can be applied again to

receive supy, | f(ag,) — f(a)| 5o O
Corollary E.2.20. Let {By.,,} be a random sequence of p X p matrices. If By, B
holds uniformly in k, where B 1is a reqular deterministic matriz,

then
B,;l1 5 Bt uniformly in k.

Proof. First note that By, is invertible for large n as by the continuity of the determi-
nant and Theorem |det (By.,,) — det (B)| = op(1) implying that |det (By.,)| =
|det (B)| 4+ op(1) holds uniformly in k. Furthermore, since the matrix inverse f(A) =
A~ is a continuous function on the elements of A by Theorem 5.19 in |Schott| (1997)
on page 188 applying Theorem shows the assertion. O

Lemma E.2.21. Let {c;,} be a sequence of random wvectors in RP. Furthermore,
let {a,} be a deterministic positive sequence and let {By,} denote a deterministic
sequence of RP*P matrices satisfying supy, || Binll» < 0o. Then, if

e sup, ||cinl = Op(ay), it holds that

By ncin = Op(ay) holds uniformly in k.

e sup, |lcknll = op(ay), it holds that

By nCr.n, = op(ay) holds uniformly in k.

-0 (sgp ||ck,n||) ,

hence the assertions follow. O

Proof. By Lemma we obtain

Sl]ip HBkncka < Sl;p HBk,nHF Sl;p Hck’,n

Lemma E.2.22. Let {ay,} be a sequence of random vectors. Furthermore, let a, be
a deterministic sequence and B a reqular deterministic matriz.

o Then,
Op(a,) = (op(1) + B) agn, uniformly in k,

implies that
ain, = Op(ay,) holds uniformly in k.
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e Then,
op(an) = (op(1) + B) agn, uniformly in k,

mplies that
ai, = op(ay,) holds uniformly in k.

Proof. By Corollary [E.2.20] we can multiply both sides of the equation above with the
inverse of (op(1) + B) and get

(op(1) + B1Op(a,) = Ay, uniformly in k,

which shows the assertion as B~ = O(1). O
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Notation

Xy, ..., X,

6,. 6,
é\l,u

S(k, )
{(W(t):t>0}

a(x), b(x)
['(x)

Observations

Vector-valued sequence of observations

Parameter of interest

Parameter space

Dimension of the parameter space

Estimating function

MOSUM score-type statistic according to Defintion m
Maximum of the MOSUM score-type statistic: maxg<g<n—c Trn(G, 5)
Bandwidth

SIS H(X,0) —YF, o, H(X,,0) as in Defintion 2.0.1
Long-run covariance matrix of H(Xy, ) as in Defintion [2.0.1

Long-run covariance matrix of H (X, 5)
Estimator of X,

MOSUM score-type statistic with estimated long-run covariance
matrix: \/ﬁ AT Ek nA

Corresponding maximum

Frobenius norm

FEuclidean norm

H(X;,0) — E (H(X;,0))

Matrix of centered gradient vectors VH(X;,0) — E (VH (X;,0))
Centered Hessian matrix V2H,(X;,0) — E (V*H;(X;, 0))
Expectation matrix of the gradient vectors under the null hypothesis
E(VH(X,,0))"

Expectation matrix of the gradient vectors under the alternative

£ (vHE 0)

Estimator of 6

Z-estimator (M-estimator) computed on the subsample X, ...
Partial sum process Zle H(X;, 5)

p-dimensional standard Wiener process with identity matrix I, as
covariance matrix

Normalizing functions defined in

Gamma function

Set of time points defined in
{kel{G,....n—=G}: |k—|\n]|>GVje{l,...
Set of time points defined in
{kel{G,....n—=G}:3je{l,....q}: |k —
Sequence of positive definite matrices

Index of the closest change point to k

Difference in exected values £ (H(X(JH) 5)) —-F (H(ng), 5))
Pair of time points considered in the MOSUM procedure

» Xu

,q}}

kin| < G}



fulfilling (2.9)) to (2.11))

Estimator of the number of change points

Estimator of the number of change points based on T} (G, 0)
Estimator for the location of a change point

Estimator for the location based on 7}, (G, 0)

Set of indices of detectable changes
Number of detectable changes

Set of time points defined in (2.12))

{kze (G...on— G} |k =kl ZGVjeQN)}

Set of time points defined in (2.13))

{ke (Gro.oon—G}:3j€Q:|k—kjal < (1—€)G}

Global estimator of the long-run covariance matrix 3 satistying
Assumption

Positive definite matrix as in Assumption

Estimator for the location of a change point defined in (2.21)

Defined in (2.19)

i.i.d. sequence of random vectors

Stationary and strongly mixing sequence of random vectors
with a mixing rate a(n) satisfying a(n) = O(n=?) for some
B > 1+ 2/v, where v is as in Assumption

General Z-estimator defined as the solution of (2.25))
Unique zero of E'(H(X,0)) (in the strict sense according

to Definition } under the null hypothesis
Unique zero of (2.35) under the alternative

MOSUM Wald-type statistic according to Defintion m

Maximum of the MOSUM score-type statistic: maxg<i<n—c Win(G)

Asymptotic covariance matrix of \/@é\k_@rm specified in (3.1)
Unique zero of £ (H (ng), 0)) (in the strict sense according to

Definition under the alternative

Distance between two adjacent change points k;,, — kj_1,,
Information criterion given in

Generalized sum of squared residuals defined in and
Penalty specified in (5.3)

Set, of bandwidths

Set of initial candidates obtained from the bandwidths of G

Half of the minimal distance between two adjacent structural breaks

defined in (5.35)
Set of valid candidates for a change point £;,, as in ([5.36])
Set of strictly valid candidates for a change point k;,, as in (5.37))
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