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Abstract

Multiple change point detection is a special area of change point analysis where we
are mainly interested in localizing changes in the underlying model of an observed
time series. The MOSUM (moving sum) procedure investigated by Eichinger & Kirch
(2018) is one of the basic approaches to detect and estimate multiple changes in the
classical mean change model. The statistic is constructed by comparing the arithmetic
means of subsamples of size G around each time point where G denotes the bandwidth.
Hence, a quite natural generalization of this procedure to several parameter change
problems would be to use MOSUM Wald-type statistics based on di�erences of local
estimators. However, especially in non-linear models, applying these statistics can lead
to high computational e�ort and large numerical errors. To reduce the complexity
in computation we consider MOSUM statistics based on estimating functions (score-
type statistics) where only one global estimator of the parameter has to be computed.
However, this comes at the cost that a single global estimator may not be able to
detect all possible changes. Therefore, we need to repeat the procedure with several
estimators and combine the information from all of them.
After an introduction in the �rst chapter, the second chapter of the thesis focuses on
MOSUM score-type statistics. We construct a corresponding test statistic and inves-
tigate its asymptotic behavior under the null hypothesis and the alternative. Further,
we consider estimators for the number and the locations of the changes and examine
their statistical properties. The theoretical results derived in this part enable us to
develop a theory for MOSUM Wald-type statistics. In Chapter 3 we investigate the
asymptotic properties of a change point test and estimators based on Wald-type statis-
tics. This is followed by some simulation studies for a linear regression model and a
Poisson autoregressive model where we compare the performance of the two MOSUM
procedures. The simulation results illustrate that the MOSUM Wald-type procedure
usually performs better than its score-type counterpart. Further, we observe that, in
particular, the score-type procedure strongly depends on the selection of the band-
width. This bandwidth problem and the problem in detectability can be solved by
applying a multiscale method which merges the results obtained from di�erent band-
widths and global estimators in an appropriate way as discussed in Chapter 5. After
describing the multiscale procedure for the classical mean change model introduced
by Cho & Kirch (2018), we adapt their method to a general setting and the linear
regression model and we derive �rst theoretical results constituting the basis for future
work.



Zusammenfassung

Die Detektion multipler Strukturbrüche ist ein spezielles Gebiet der Changepoint Ana-
lyse, in dem man hauptsächlich daran interessiert ist, Änderungen in einem einer
beobachteten Zeitreihe zugrunde liegendem Modell zu lokalisieren. Das MOSUM-
Verfahren (moving sum), welches von Eichinger & Kirch (2018) näher untersucht
wurde, repräsentiert eines der grundlegenden Verfahren zur Erkennung und Schätzung
multipler Änderungen im klassischen Erwartungswertmodell. Die dazugehörige Statis-
tik ergibt sich aus dem Vergleich der Stichprobenmittelwerte, die auf Teilstichproben
der Gröÿe G, auch Bandbreite genannt, vor und nach jedem Zeitpunkt berechnet wer-
den. Ein sehr intuitiver Ansatz zur Verallgemeinerung dieses Verfahrens auf Modelle
verschiedener Parameteränderungen wäre daher die Verwendung von Wald-Statistiken,
die auf den Di�erenzen lokaler Parameterschätzer basieren. Ein Nachteil dieser Statis-
tiken ist jedoch, dass sie insbesondere in nicht-linearen Modellen nur mit hohem Rechen-
aufwand und groÿem numerischen Fehler bestimmt werden können. Die rechnerische
Komplexität kann durch Anwendung von MOSUM-Statistiken basierend auf Schätz-
funktionen (Score-Statistiken) deutlich reduziert werden, da zur Berechnung dieser
Statistiken lediglich ein globaler Schätzer bestimmt werden muss. Dieses Verfahren
hat dennoch den Nachteil, dass ein globaler Schätzer allein nicht zwingend dazu in der
Lage ist alle Strukturbrüche zu erkennen, was eine Wiederholung des Verfahrens mit
verschiedenen globalen Schätzern mit anschlieÿender Zusammenführung der Ergebnisse
erforderlich macht.
Nach einer Einleitung im ersten Kapitel wenden wir uns im zweiten Kapitel dieser Ar-
beit den MOSUM Score-Statistiken zu. Wir konstruieren eine entsprechende Teststatis-
tik und untersuchen deren asymptotisches Verhalten unter der Nullhypothese und der
Alternative. Auÿerdem werden Schätzer für die Anzahl und die Positionen der Struk-
turbrüche betrachtet und im Hinblick auf ihre statistischen Eigenschaften analysiert.
Die theoretischen Resultate dieses Kapitels ermöglichen es uns, eine Theorie für die
Wald-Statistiken zu entwickeln. Im dritten Kapitel werden die asymptotischen Eigen-
schaften eines Changepoint Tests und von Changepoint Schätzern basierend auf Wald-
Statistiken genauer untersucht. Im folgenden Kapitel werden die Simulationsstudien
für ein lineares Regressionsmodell und ein Poisson autoregressives Modell beschrieben
und die beiden MOSUM-Verfahren werden miteinander verglichen. Die Simulations-
ergebnisse zeigen, dass das Wald-Verfahren in den meisten Fällen besser abschneidet.
Es ist zudem ersichtlich, dass insbesondere die Leistungsfähigkeit des Score-Verfahrens
von der Wahl der Bandbreite abhängt. Das Bandbreitenproblem und das Problem
in der Detektierbarkeit können beide durch Anwendung eines Multiskalen-Verfahrens,
das die Ergebnisse unter Verwendung verschiedener Bandbreiten und globaler Schätzer
in geeigneter Weise zusammenführt, gelöst werden. In Kapitel 5 wird zuerst das von
Cho & Kirch (2018) für das Erwartungswertmodell eingeführte Multiskalen-Verfahren
beschrieben, bevor wir es auf ein allgemeines Modell bzw. ein lineares Regressions-
modell anpassen und erste theoretische Resultate herleiten, die die Grundlage für weit-
erführende Untersuchungen bilden.
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1. Introduction

Multiple change point detection is a special area of change point analysis with main
focus on �nding structural breaks in an observed time series within a �xed period of
time. A structural break or a change point describes a time point of the observation
period at which the underlying model and, consequently, the distributional properties
of the observations change. In this work we consider a general parameter change model
de�ned in Section 1.1, in which we allow for multiple changes in the parameter vector
θ specifying the distribution of the observations X1, . . . , Xn. This general framework
covers many di�erent change point problems. Some examples are given in Section 1.1
as well. The number of the change points as well as their locations are unknown and
our goal is to �nd suitable estimators for these values. Therefore, we are going to
investigate two general MOSUM (moving sum) procedures where the �rst one is based
on score-type statistics and the second one uses Wald-type statistics. Before explaining
these approaches in detail, we want to get an idea of what has been discussed so far in
the scienti�c literature.
Multiple change point detection is a current topic in research and comprises problems
in a wide range of �elds like �nance, quality control, medicine or climate. For example,
Braun et al. (2000) applied a technique of multiple change point detection on DNA
sequences. Aggarwal et al. (1999) focussed on �nding structural breaks in the volatility
of stock market returns. More recently, Killick et al. (2010) and Killick et al. (2012)
gave an interesting application to oceanography by detecting changes in the variance
of time series for wave heights.
All the techniques and methods designed for localising multiple structural breaks are
more or less inspired by model selection or hypothesis testing. These are the two origins
of multiple change point detection which have been developing alongside. Approaches
based on model selection rest upon the idea of �nding change points by optimizing a
target or cost function over all possible change point constellations where over�tting
is avoided by setting an upper bound for the number of changes or by introducing a
penalty on the complexity of the model. They date back to Yao (1988) who applied
Schwarz's criterion to estimate the number of changes in a mean change model under
normality assumptions. Since then many di�erent detection procedures have been con-
sidered for several models. For instance, Yao & Au (1989) used a least-squares based
target function to localise changes in the mean of i.i.d. (independent and identically
distributed) observations or, more recently, Davis et al. (2006) applied the minimum
description length principle in order to detect changes in the regression coe�cients of
a linear autoregressive process. More references are given in Section 5. Nevertheless,
all these methods have in common that the change point estimates are determined by
solving a multivariate optimization problem which can be computationally challenging.
In order to solve this problem more e�ciently several algorithms have been developed.
One of these is the PELT (pruned exact linear time) algorithm by Killick et al. (2012)
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1. Introduction

which is based on dynamic programming combined with a pruning step.
In hypothesis testing there are two basic approaches dealing with multiple change
points, the binary segmentation procedure and the MOSUM procedure. The �rst
one is an iterative method going back to Vostrikova (1981) which rests upon the idea
that tests for AMOC (at most one change) settings still have some power for multiple
changes. By conducting an AMOC-test on the whole data sequence, a change point
estimate is obtained and the sample is split at this point into two subsamples. Then,
the steps are repeated recursively on the subsamples as long as the test rejects the
null hypothesis of having no structural break. By introducing a random localisation
mechanism for choosing the segments or subsamples on which the test is conducted the
wild binary segmentation procedure by Fryzlewicz (2014) solves the power problem of
the original procedure for speci�c change point constellations. Moreover, the concept
of binary segmentation has attracted attention in model selection too mainly due to
its low computational complexity, see for example Killick & Eckley (2014). However,
one main drawback of binary segmentation in comparison to the MOSUM procedure
is that it involves multiple testing such that the overall signi�cance level cannot be
controlled.
Using MOSUM statistics in hypothesis testing goes back to Bauer & Hackl (1980) who
considered MOSUM based test motivated by an application in quality control. Fur-
thermore, Hu²ková (1990) and Chu et al. (1995) investigated a MOSUM-test based
on least squares residuals in linear regression models. Whereas the tests mentioned
before were constructed for AMOC alternatives, Hu²ková & Slab�y (2001) proposed
a MOSUM statistic actually designed for detecting multiple changes. More recently,
Eichinger & Kirch (2018) investigated the MOSUM procedure for the classical mean
change model and derived consistency for the estimators of the number and the lo-
cations of the changes. In this particular example the MOSUM score-type statistic
coincides with the MOSUM Wald-type statistic as explained in the following Section
1.2.

1.1. Examples

In this work we investigate MOSUM procedures in order to estimate multiple structural
breaks in a very general setting which is described in the following. The observations
X1, . . . , Xn follow a general parameter change model if

Xi =


X

(1)
i , if 1 ≤ i ≤ k1,n

X
(2)
i , if k1,n < i ≤ k2,n

...
X

(q+1)
i , if kq,n < i ≤ n

, (1.1)

where q denotes the number of structural breaks and k1,n, . . . , kq,n are the change
points. The sequences {X(j)

i }i≥1, j = 1, . . . , q + 1, are assumed to be stationary with
a distribution speci�ed by some parameter vector θj such that {Xi}i≥1 is piecewise
stationary. Note that the application of the MOSUM procedures is not restricted to
correctly speci�ed models and that we allow for misspeci�cation as well which will be
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1.1. Examples

explained in the respective sections. The model description above incorporates many
di�erent change point models. A few examples are given in the following. One main
example is the classical mean change model which has been considered extensively in
the change point literature.

Example 1.1.1 (Mean Change Model). The observations can be described by

Xi =


µ1 + εi, if 1 ≤ i ≤ k1,n

µ2 + εi, if k1,n < i ≤ k2,n

...
µq+1 + εi, if kq,n < i ≤ n

,

where {εi}i≥1 is a stationary error sequence with an expectation of zero and long-run
variance 0 < τ 2 <∞ and µ1, . . . , µq+1 represent the expected values.

In this classical example, a time series deviates randomly from a speci�c value, the
expected value, which may change several times.
Another well investigated model in statistics is the linear regression model. A descrip-
tion of that including change points is given in the next example.

Example 1.1.2 (Linear Regression Model with Structural Breaks). The model equa-
tion of a linear regression with two regressors {Xi,1} and {Xi,2} is given by

Yi =


XT

i β1 + εi, if 1 ≤ i ≤ k1,n

XT
i β2 + εi, if k1,n < i ≤ k2,n

...
XT

i βq+1 + εi, if kq,n < i ≤ n

,

where Yi denotes the response variable, X i = (1, Xi,1, Xi,2)T , β1, . . . ,βq+1 are the
parameter vectors and {εi}i≥1 represents an error sequence as in Example 1.1.1.

This linear regression model will be discussed in more detail in Section 4.1.
In the following example we consider an integer-valued time series model, the Poisson
autoregressive model of order one, which will be investigated in Section 4.2.

Example 1.1.3 (Poisson Autoregressive Model with Structural Breaks). A Poisson
autoregressive model of order one, also known as INARCH(1) model, with q change
points can be described by

Yi =


Y

(1)
i , if 1 ≤ i ≤ k1,n

Y
(2)
i , if k1,n < i ≤ k2,n

...

Y
(q+1)
i , if kq,n < i ≤ n

,

where {Y (j)
i } is an INARCH(1) time series with parameter θj = (θj,1, θj,2)T , j =

1, . . . , q + 1, i.e.

Y
(j)
i |Fi−1 ∼ P (λi), with λi = θj,1 + θj,2Yi−1.

In this model the observation Yi conditioned on the past is Poisson distributed with
parameter λi which is described by an autoregressive structure of order one whose
coe�cients may change over time.

� 3 �



1. Introduction

1.2. Motivation of the MOSUM Statistics

A classical estimation method in statistics is based on �nding the solution θ̂1,n of the

estimating equation system
∑n

i=1H(Xi,θ)
!

= 0 for a suitable choice of Xi, see below
for some examples. The function H is called estimating function and θ̂1,n is an M-
estimator or Z-estimator of θ. For more information on that estimation method we refer
to Van der Vaart (2007), Chapter 5. Furthermore, note that the estimating function
H will be vector-valued for the estimation of multidimensional parameter vectors.
In the classical model in Example 1.1.1 we consider a time series X1, . . . , Xn �uctuating
randomly around a mean µ. A typical estimator for the expectation is the sample mean

X̄1,n = 1
n

∑n
i=1Xi which is the solution of the estimating equation

∑n
i=1(Xi − µ)

!
= 0.

Another M-estimator for the expectation in this example is based on the estimating
function H(Xi, µ) = 2

π
arctan(µ − Xi). This estimating function is closely related to

the estimating function for the median which is given by the sign-function, but has the
advantage that it has nice di�erentiability properties. Henceforth, it will therefore be
called median-like estimator.
In the linear regression model of Example 1.1.2 the classical least squares estimator
minimises the sum of squared residuals and thus represents an M-estimator for the
parameter vector β with vector-valued estimating function H

(
(Yi, Xi,1, Xi,2)T ,β

)
=

−2X i

(
Yi −XT

i β
)
so that Xi = (Yi, Xi,1, Xi,2)T .

In the Poisson autoregressive model of Example 1.1.3 an M-estimator based on the
likelihood approach can be used. Its estimating function is given byH((Yi, Yi−1)T ,θ) =

−2Y i−1

(
Yi

Y T
i−1θ
− 1
)
, where Y i−1 = (1, Yi−1)T .

In order to explain how change point tests can be constructed based on estimating
functions, �rst consider the at most one change (AMOC) situation.
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H0: no structural break vs. H1: at least one structural break

The �rst plot shows a time series �uctuating around a constant mean value of zero
whereas the second plot illustrates a change in mean from 0 to 2 at time point 200,
which can easily be seen by eye. However, in many situations changes cannot be found
only by visual inspection and statistical tools are needed. Tests based on weighted
CUSUM statistics

χ2 = max
1≤k≤n

√
n

k(n− k)

1

τ

∣∣∣∣∣
k∑
i=1

(Xi − X̄1,n)

∣∣∣∣∣ (1.2)

can be applied in order to detect a change in mean. For further information on the
statistic see, for example, Chapter 2 of Csörgö & Horváth (1997). After some trans-
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1.2. Motivation of the MOSUM Statistics

formations we get the following representation of the statistic

χ2 = max
1≤k≤n

√
k(n− k)

n

1

τ

∣∣X̄1,k − X̄k+1,n

∣∣ , (1.3)

which bases on the absolute di�erence of the arithmetic mean of the subsampleX1, . . . , Xk

and the arithmetic mean of the of the subsample Xk+1, . . . , Xn.
By recalling that the estimating function of the classical mean is given by H(Xi, µ) =
Xi − µ, the version of the weighted CUSUM statistic in (1.2) can be conceived as a
special case of score-type statistics based on

∑k
i=1H(Xi, θ̂1,n) in the general paramter

change model where θ̂1,n denotes the global M-estimator and H its corresponding
estimating function. Score-type statistics have already received attention in the liter-
ature, e.g. Hu²ková (1996) examined weighted CUSUM score-type tests and change
point estimators under the null hypothesis and local alternatives with general regu-
larity conditions. Furthermore, Hu²ková et al. (2007) detected changes in linear au-
toregressive time series by applying test statistics based on partial sums of weighted
residuals which are speci�c score-type statistics using the least squares estimating func-
tion. More recently, Kirch & Tadjuidje Kamgaing (2016) contructed change point tests
using score-type statistics and derived consistency for the tests under the alternative
with an application to binary models and Poisson autoregressive models.
The representation of the CUSUM statistic in (1.3) is an example for Wald-type statis-
tics in general resting upon the comparison of the M-estimator computed on the �rst
k observations and the M-estimator of the last n − k observations: θ̂1,k − θ̂k+1,n. For
instance, Andrews (1993) considered Wald-type statistics based on GMM (generalized
method of moments) estimators in a quite general setting, which constitutes a gen-
eralization of the results of Hawkins (1987) investigating Wald-type tests based on
ML (maximum likelihood) estimators in the i.i.d. case with known probability density
function.
Now we allow for multiple changes in the expectation µ or parameter vector θ under
the alternative and we are interested in estimating the number of structural breaks and
their locations, i.e. the time points when the changes occur. In the plot below we see
an example of a time series with multiple changes in the mean where the red vertical
lines indicate the change points.

 

 

0 200 400 600 800 1000

−
2
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4

In order to detect all structural breaks, it is reasonable to use a moving window statistic
like the MOSUM statistic considered by Eichinger & Kirch (2018):

Tn(G) = max
G≤k≤n−G

1

τ
√

2G

∣∣∣∣∣
k+G∑
i=k+1

Xi −
k∑

i=k−G+1

Xi

∣∣∣∣∣
with bandwidth G determining the length of the moving window. The following graph
illustrates the behavior of the MOSUM statistic in the example. We can see that it is
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1. Introduction

suitable to detect multiple changes as the statistic gets quite large in intervals around
the change points with local maxima close to the true locations of the changes.

0 200 400 600 800 1000

0
5

10
15

 

 

k1 k2 k3

Similar to the weighted CUSUM statistic, the MOSUM statistic for mean changes can
be regarded as an example of MOSUMWald-type and score-type statistics since further
transformations yield

Tn(G) = max
G≤k≤n−G

√
G

τ
√

2

∣∣X̄k+1,k+G − X̄k−G+1,k

∣∣ .
and

Tn(G) = max
G≤k≤n−G

1

τ
√

2G

∣∣∣∣∣
k+G∑
i=k+1

(
Xi − X̄1,n

)
−

k∑
i=k−G+1

(
Xi − X̄1,n

)∣∣∣∣∣
= max

G≤k≤n−G

1

τ
√

2G

∣∣∣∣∣
k+G∑
i=k+1

H(Xi, X̄1,n)−
k∑

i=k−G+1

H(Xi, X̄1,n)

∣∣∣∣∣ .
In the general parameter change model, MOSUMWald-type statistics are based on the
di�erence of local M-estimators: θ̂k+1,k+G− θ̂k−G+1,k. For each time point k between G
and n−G we compare the estimator computed on the subsample Xk+1, . . . , Xk+G with
the estimator calculated on Xk−G+1, . . . , Xk whereupon a large di�erence indicates a
change at this point. This constitutes a natural approach to �nd changes in a parameter
vector θ but it has one main drawback. Calculating two estimates for each time point,
i.e. 2(n − 2G) in total, can be computationally challenging and can lead to high
numerical errors especially in non-linear models, for example non-linear AR models or
Poisson autoregressive models, where numerical methods are needed to determine the
estimates. In order to reduce the complexity in computation we will consider MOSUM
score-type statistics for general parameter change problems which are based on the
di�erence of sums of the estimating function where a global estimator is employed:

k+G∑
i=k+1

H
(
Xi, θ̃n

)
−

k∑
i=k−G+1

H
(
Xi, θ̃n

)
with θ̃n = θ̂1,n.

� 6 �



1.3. Structure of the Thesis

The basic idea here is to convert a general multiple parameter change problem to
a multiple mean change problem of the estimating function. After computing the
global estimator, we focus on the transformed sequence {H(Xi, θ̃n)}i≥1 and try to �nd
changes in the mean of this new series by applying a multivariate version of the classical
MOSUM statistic. This approach is computationally very fast as it only requires the
calculation of one estimator. However, it can happen that not all structural breaks are
detectable by MOSUM score-type statistics since a change in the parameter vector θ
does not necessarily cause a change in the expectation of the transformed series. We
will discuss this in detail later.
Both approaches have advantages and disadvantages but they have one problem in
common. The performance of the procedures crucially depends on the choice of the
bandwidth and in some situations it might be helpful to use more than one bandwidth.
For example, the detection of changes, which are large in magnitude and lie close to
each other, requires a small bandwidth whereas small changes located far away from
each other can be found by a large bandwidth. Hence, a mixture of these scenarios can
cause problems which we try to solve by adapting multiscale method. We will explain
this later.

1.3. Structure of the Thesis

My thesis is structured as follows. In Chapter 2 we consider MOSUM score-type
statistics which are also called MOSUM statistics based on estimating functions. After
deriving the asymptotics under the null hypothesis, we construct an asymptotic level
α test and prove its consistency under the alternative. In Section 2.1.3 we introduce a
MOSUM procedure, which is similar to that of Eichinger & Kirch (2018), to determine
estimators for the number and the locations of the changes followed by proofs of consis-
tency. The convergence rates of the estimator sequences can be improved under some
modi�cations and additional assumptions on the time series which is shown in Section
2.2. Since the assumptions used in previous subsections are expressed as generally as
possible we prove in Section 2.4 that the assumptions are satis�ed by i.i.d. series and
stationary and strongly mixing time series under some moment conditions. We com-
plete this chapter by discussing possible problems of the procedure. Chapter 3 focuses
on MOSUM Wald-type statistics. In the �rst section, we consider a general parameter
change model for those two examples. After investigating the asymptotic behavior of
the statistic under the null hypothesis, we examine the properties of the corresponding
test and estimators under the alternative in Section 3.1.2. In the second part of this
chapter, MOSUM Wald-type statistics for the linear regression model are considered
and statistical properties of the corresponding change point test and estimators are de-
rived. This is followed by a discussion of possible problems of the Wald-type procedure
in Section 3.3. In Chapter 4 we describe the results of simulation studies for a linear
regression model and a Poisson autoregressive model and compare the performance of
the two MOSUM procedures. With the goal to solve the bandwidth problem of both
procedures and the problem in detectability of the MOSUM score-type approach, we
consider a multiscale method in Chapter 5. The multiscale MOSUM procedure with
localized pruning introduced by Cho & Kirch (2018) is described in Section 5.2, before
we adapt this method to the linear regression model and a general parameter change

� 7 �



1. Introduction

model. After providing all the theoretical tools, we prove a �rst result for the output
of the procedure. This constitutes the foundation for future work as described in the
outlook concluding the main part of the thesis. In the appendix, we give an overview
of the assumptions followed by a summary of several theoretical results which are used
throughout this work.
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2. MOSUM Score-Type Statistics

We consider a general parameter change model as in (1.1) with observationsX1, . . . , Xn.
The distribution of these random variables is determined by a parameter vector θ ∈ Θ
where Θ denotes the parameter space being a subset of Rp. The estimating function
H(Xi,θ) is a measurable function with respect to Xi and we assume that it takes
values in Rp as well. All the assumptions on the time series that are required under
the null hypothesis and the alternative are introduced in the respective sections and
summarized in the Appendix A.1 and A.2.
With the goal to detect and estimate changes in the parameter vector θ we introduce
the following MOSUM statistics based on estimating functions which is also called
MOSUM score-type statistic:

De�nition 2.0.1. A MOSUM statistic based on estimating functions is given by

Tk,n(G, θ̃) =
1√
2G

√
AT
θ̃,k

Σ−1
k Aθ̃,k, for some θ̃ ∈ Θ and k ∈ {G, . . . , n−G}

with Aθ̃,k =
∑k+G

i=k+1H(Xi, θ̃) −
∑k

i=k−G+1H(Xi, θ̃) and Σk as long-run covariance

matrix of H(Xk, θ̃) which is assumed to be positive de�nite.

Note that we use an arbitrary θ̃ ∈ Θ instead of the estimator sequence θ̂1,n like in
Section 1.2. Doing so, we are able to develop a theory which is a little bit more general
concerning the choice of the global estimator sequence. Later, we will see that θ̃ can
be replaced by any estimator sequence θ̃n satisfying some speci�c conditions.
The following remark will be helpful in the proofs and we will use it throughout this
work without referring to it again.

Remark 2.0.2. It holds that

Tk,n(G, θ̃) =
1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥
F

=
1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥ ,
where ‖·‖F is the Frobenius norm described in Appendix E.1.1 and ‖·‖ the Euclidean
norm.

Proof. Since the positive de�nite matrix Σ−1
k has a symmetric square root Σ

−1/2
k (see

Roy & Banerjee (2014) page 415f) we obtain√
AT
θ̃,k

Σ−1
k Aθ̃,k =

√
tr

(
AT
θ̃,k

Σ
−1/2
k Σ

−1/2
k Aθ̃,k

)
=
∥∥∥Σ−1/2

k Aθ̃,k

∥∥∥
F
.

Furthermore, by Lemma E.1.4 in the appendix we know that the Frobenius norm

of a vector coincides with its Euclidean norm. Hence, we receive
∥∥∥Σ−1/2

k Aθ̃,k

∥∥∥
F

=∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥.
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2. MOSUM Score-Type Statistics

Moreover, to simplify the wording in the theoretical results and the calculations in the
proofs we use the following notations:

• We denote the maximum of the MOSUM score-type statistic by

Tn(G, θ̃) = max
G≤k≤n−G

Tk,n(G, θ̃).

• If the long-run covariance matrix Σk is replaced by an estimator Σ̂k,n we write

T̂k,n(G, θ̃) =
1√
2G

√
AT
θ̃,k

Σ̂
−1

k,nAθ̃,k and T̂n(G, θ̃) = max
G≤k≤n−G

T̂k,n(G, θ̃).

• Besides, we use

H0(Xi,θ) := H(Xi,θ)− E (H(Xi,θ)) .

• Furthermore, note that

E (Aθ,k) =
k+G∑
i=k+1

E (H(Xi,θ))−
k∑

i=k−G+1

E (H(Xi,θ)) .

• Moreover, we use Σ(θ) for the long-run covariance matrix of H(X1,θ). We only
write Σ if it is obvious which θ it refers to.

2.1. Theoretical Results

In this section we investigate the asymptotic behavior of the statistic under the null
hypothesis that no structural break occurs and under the alternative that at least one
structural break arises.

2.1.1. Asymptotics Under the Null Hypothesis

In the �rst theorem we derive the limit distribution under the null hypothesis which
enables us to contruct a test and gives a threshold for the estimating procedure under
the alternative later on. In order to prove this result, the following assumptions are
needed. Note that Σk = Σ(θ̃) = Σ holds for all k under H0.

A.1.1: Let the bandwidth G depend on n, i.e. G = G(n). Furthermore, for ν > 0
assume that

n

G
→∞ and

n
2

2+ν log(n)

G
→ 0 for n→∞.

This assumption is very important and used throughout this chapter. It ensures that
the bandwidth tends to in�nity as n goes to in�nity but not too fast or too slow. Note
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2.1. Theoretical Results

that the constant value ν comes from the invariance principle in Assumption A.1.3 and
is speci�ed there.
The following assumption is essential and describes the main setting under the null
hypothesis.

A.1.2 Let {Xi : i ≥ 1} be a stationary series following a distribution determined
by θ0 in a correctly speci�ed model. Under misspeci�cation let θ0 be the best approxi-
mating parameter for {Xi : i ≥ 1} in the sense of E (H(Xi,θ0)) = 0. Furthermore, we

assume that the stationary sequence {H(Xi, θ̃) : i ≥ 1} has a positive de�nite long-run

covariance matrix Σ(θ̃) = Σ.

This additionally shows that we do not only restrict our attention to correctly speci-
�ed models and allow for misspeci�cation as well. Moreover, note that the stationarity
of the transformed sequence {H(Xi, θ̃)} follows immediately from the stationarity of
{Xi} and the measurability of H with respect to Xi. This implies that Σk = Σ holds
for all k as already used in the assumption above.
The third assumption gives a strong invariance principle for the transformed series.

A.1.3: Let S(k, θ̃) =
∑k

i=1H(Xi, θ̃) ful�ll a strong invariance principle. So possi-
bly after changing the probability space, there exists a p-dimensional standard Wiener
process {W (k) : k ≥ 0} with identity matrix Ip as covariance matrix and ν > 0 such
that ∥∥∥Σ−1/2

(
S(k, θ̃)− E(S(k, θ̃))

)
−W (k)

∥∥∥ = O(k1/(2+ν)) a.s.

as k goes to in�nity.

If we want to replace θ̃ by an estimator sequence θ̂n in the statistic we have to assume
that the sequence sati�es the following condition.

A.1.4: Let

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP
(
(log(n/G))−1/2

)
hold for some θ̃.

As explained in Section 2.3 below, Assumption A.1.4 holds for i.i.d. and stationary
and strongly mixing time series under some moment conditions if the estimating func-
tion H is twice continuously di�erentiable on Θ.
Since the long-run covariance matrix Σ is typically unknow it might be reasonable to
replace it by an appropriate estimator as well. The following assumption describes the
conditions that a matrix-valued estimator sequence for Σ has to ful�ll for this purpose.

A.1.5 The estimator Σ̂k,n of the long-run covariance matrix Σ satis�es

max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n −Σ−1/2
∥∥∥
F

= oP

((
log(n/G)

)−1
)
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2. MOSUM Score-Type Statistics

under the null hypothesis.

Before we come to a �rst main result of this thesis, we need to introduce the following
de�nitions. Let

a(x) =
√

2 log(x) and (2.1)

b(x) = 2 log(x) +
p

2
log(log(x))− log

(
2

3
Γ
(p

2

))
,

where p is the dimension of the parameter space and Γ denotes the gamma function.

Theorem 2.1.1 (Limit Distribution). Let Assumption A.1.1 hold for the bandwidth G

and Assumptions A.1.2 and A.1.3 hold for some θ̃ ∈ Θ.

(a) Then, under H0,

a(n/G)Tn(G, θ̃)− b(n/G)
D−→ E

with E as Gumbel distributed random variable, i.e. P (E ≤ x) = exp(−2 exp(−x))
and with a(x) and b(x) as in (2.1).

(b) Let {θ̂n}n∈N be a sequence of estimators ful�lling Assumption A.1.4 for θ̃. Then,
under H0,

a(n/G)Tn(G, θ̂n)− b(n/G)
D−→ E.

(c) Furthermore, the covariance matrix Σ can be replaced by an estimator Σ̂k,n sat-
isfying Assumption A.1.5 without changing the results of this theorem.

Proof. (a) The proof of (a) consists of four main parts.

1) Replacing Aθ̃,k by increments of a p-dimensional standard Wiener
process {W (t) : t ≥ 0}:
On noting that E

(
Aθ̃,k

)
= 0 holds under H0 for all time points k, Assumption

A.1.3 yields∥∥∥Σ−1/2Aθ̃,k + 2W (k)−W (k −G)−W (k +G)
∥∥∥

=
∥∥∥Σ−1/2

(
Aθ̃,k − E

(
Aθ̃,k

))
+ 2W (k)−W (k −G)−W (k +G)

∥∥∥
=

∥∥∥∥∥Σ−1/2

(
k+G∑
i=k+1

H0(Xi, θ̃)−
k∑

i=k−G+1

H0(Xi, θ̃)

)
+2W (k)−W (k −G)−W (k +G)‖

≤

∥∥∥∥∥Σ−1/2
k+G∑
i=1

H0(Xi, θ̃)−W (k +G)

∥∥∥∥∥+ 2

∥∥∥∥∥Σ−1/2
k∑
i=1

H0(Xi, θ̃)−W (k)

∥∥∥∥∥
+

∥∥∥∥∥Σ−1/2
k−G∑
i=1

H0(Xi, θ̃)−W (k −G)

∥∥∥∥∥
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2.1. Theoretical Results

= O((k +G)1/(2+ν)) +O(k1/(2+ν)) +O((k −G)1/(2+ν)) a.s.

= O(n1/(2+ν)) a.s. uniformly in k.

Hence, by Assumption A.1.1 we obtain

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̃,k + 2W (k)−W (k −G)−W (k +G)
∥∥∥

= OP

(
n1/(2+ν)

√
G

)
= oP

(
(a(n/G))−1) .

Furthermore, by Lemma E.1.2 in the appendix together with the result above we
receive∣∣∣∣ max

G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥
− max

G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖

∣∣∣∣
≤ max

G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k −W (k −G) + 2W (k)−W (k +G)
∥∥∥

= oP

((
a(n/G)

)−1
)
,

implying that

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥− b(n/G)

= a(n/G) max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖ − b(n/G) + oP (1).

2) Replacing a discrete maximum by a supremum over real numbers:
Applying Lemma E.1.2 in connection with the triangle inequality for the Eu-
clidean norm yields

sup
r∈[G,n−G]

1√
2G
‖W (r +G)− 2W (r) +W (r −G)‖

− max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖

= sup
t∈[1, n

G
−1]

1√
2G
‖W (tG+G)− 2W (tG) +W (tG−G)‖

− sup
t∈[1, n

G
−1]

1√
2G
‖W (btGc+G)− 2W (btGc) +W (btGc −G)‖

≤ 1√
2G

sup
t∈[1, n

G
−1]

‖W (tG+G)− 2W (tG) +W (tG−G)

−W (btGc+G) + 2W (btGc)−W (btGc −G)‖
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2. MOSUM Score-Type Statistics

≤ 1√
2G

(
sup

t∈[1, n
G
−1]

‖W (tG+G)−W (btGc+G)‖+ 2 sup
t∈[1, n

G
−1]

‖W (tG)−W (btGc)‖

+ sup
t∈[1, n

G
−1]

‖W (tG−G)−W (btGc −G)‖

)
≤ 4√

2G
sup

0≤t≤n−1
sup

0≤s≤1
‖W (t+ s)−W (t)‖

=
4√
2G

O
(√

log(n)
)

=
4√
2G

OP

(
n1/(2+ν)

)
= oP

(
(a(n/G))−1) ,

where the last line follows from Lemma E.2.2 together with Assumption A.1.1.
Hence, we obtain

a(n/G) max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖ − b(n/G)

= a(n/G) sup
r∈[G,n−G]

1√
2G
‖W (r +G)− 2W (r) +W (r −G)‖ − b(n/G) + oP (1).

3) Adapting the supremum:
By the self-similarity of the Wiener process, e.g. described in Bauer (2001) on
page 352, we obtain

sup
r∈[G,n−G]

1√
2G
‖W (r +G)− 2W (r) +W (r −G)‖

D
= sup

t∈[1,n/G−1]

1√
2
‖W (t+ 1)− 2W (t) +W (t− 1)‖

= sup
t∈[0,n/G−2]

1√
2
‖W (t+ 2)− 2W (t+ 1) +W (t)‖

= sup
t∈[0,n/G−2]

1√
2
‖2W (t+ 1)−W (t)−W (t+ 2)‖ = sup

t∈[0,n/G−2]

‖Z(t)‖ ,

with {Z(t) : t ≥ 0} denoting a stochastic process de�ned by
Z(t) = 1√

2
(2W (t+ 1)−W (t)−W (t+ 2)).

Now, we want to show that the supremum over the interval [0, n/G − 2] can be
replaced by the supremum over [0, n/G] without changing the limit distribution.
We receive

sup
t∈[n/G−2,n/G]

‖Z(t)‖

≤ sup
t∈[n/G−2,n/G]

1√
2
‖W (t+ 1)−W (t)‖+ sup

t∈[n/G−2,n/G]

1√
2
‖W (t+ 2)−W (t+ 1)‖

= sup
t∈[n/G−2,n/G]

1√
2
‖W (t+ 1)−W (t)‖+ sup

t∈[n/G−1,n/G+1]

1√
2
‖W (t+ 1)−W (t)‖

≤
√

2 sup
n/G−2≤t≤n/G+1

sup
0≤s≤1

‖W (t+ s)−W (t)‖

D
=
√

2 sup
0≤t≤3

sup
0≤s≤1

‖W (t+ s)−W (t)‖ ,
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where the last line follows from the stationarity of the increments of a Wiener
process. Since a Wiener process has continuous paths with probability 1 and the
intervals [0, 3] and [0, 1] are compact, we obtain

sup
0≤t≤3

sup
0≤s≤1

‖W (t+ s)−W (t)‖ = OP (1),

which implies that

sup
t∈[n/G−2,n/G]

‖Z(t)‖ = OP (1) = oP

(
b(n/G)

a(n/G)

)
as limn→∞

a(n/G)
b(n/G)

= 0. On noting that

sup
t∈[0,n/G]

‖Z(t)‖ = max

{
sup

t∈[0,n/G−2]

‖Z(t)‖ , sup
t∈[n/G−2,n/G]

‖Z(t)‖
}

Lemma E.2.3 can be applied to receive that

a(n/G) sup
t∈[0,n/G−2]

‖Z(t)‖ − b(n/G) and a(n/G) sup
t∈[0,n/G]

‖Z(t)‖ − b(n/G)

have the same limit distribution.

4) Limit distribution:
This part of the proof is similar to the proof of Theorem 2.3 in Steinebach &
Eastwood (1996) on page 295.
Under the null hypothesis, the stochastic process {Z(t) : t ≥ 0} is an Rp-valued
separable stationary Gaussian process with independent and standardized com-
ponent processes. The covariance function r is identical for each component and
given by

r(h) =


1− 3

2
|h|, for |h| ≤ 1

1
2
|h| − 1, for 1 < |h| ≤ 2

0, else
,

which has been shown in Lemma E.2.5. Finally, Lemma E.2.4 can be used to
determine the limit distribution where we choose C = 3

2
and m = n/G. This

completes the proof of part (a).

(b) For proving b), we replace θ̂n by θ̃. We obtain∣∣∣∣ max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̂n,k

∥∥∥− max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥∣∣∣∣
≤ 1√

2G
max

G≤k≤n−G

∥∥∥Σ−1/2
(
Aθ̂n,k

−Aθ̃,k

)∥∥∥
≤
∥∥∥Σ−1/2

∥∥∥
F

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP
(
(a(n/G))−1) ,
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where the last line follows from Lemma E.1.5 and Assumption A.1.4. This yields

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥− b(n/G)

= a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̂n,k

∥∥∥− b(n/G) + oP (1).

Thus, θ̂n can be replaced by θ̃ in the statistic without changing the limit distri-
bution, i.e.

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̂n,k

∥∥∥− b(n/G)
D−→ E.

(c) The convergence in distribution of part (a) leads to

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥− b(n/G) = OP (1),

implying that

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥ = OP (
√

log(n/G)).

Hence, with Lemma E.1.5 we get

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̃,k

∥∥∥ = max
G≤k≤n−G

1√
2G

∥∥∥Σ1/2Σ−1/2Aθ̃,k

∥∥∥
≤
∥∥∥Σ1/2

∥∥∥
F

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥ = OP (
√

log(n/G)).

Moreover, Lemma E.1.5 combined with Assumption A.1.5 can be used to obtain∣∣∣∣ max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥− max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥∣∣∣∣
≤ max

G≤k≤n−G

1√
2G

∥∥∥(Σ̂
−1/2

k,n −Σ−1/2
)
Aθ̃,k

∥∥∥
≤ max

G≤k≤n−G

∥∥∥Σ̂−1/2

k,n −Σ−1/2
∥∥∥
F

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̃,k

∥∥∥
= oP

(
(log(n/G))−1)OP (

√
log(n/G)) = oP

(
(a(n/G))−1)

and consequently

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥− b(n/G)

= a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ̃,k

∥∥∥− b(n/G) + oP (1).

Thus, we receive

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥− b(n/G)
D−→ E.

By applying the result of part (b) instead of (a) it can be shown in an analogous
manner that

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̂n,k

∥∥∥− b(n/G)
D−→ E.
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2.1.2. Asymptotic Power of the MOSUM-based Tests

Under the alternative we examine scenarios, in which the parameter vector θ changes
multiple times in the considered time period as in (1.1), speci�ed by the following as-
sumptions.

A.2.1 Let q be the number of change points, occuring in the time period, which is
unknown but �xed. Furthermore, let k1,n < . . . < kq,n be the change points depending
on the sample size n in the following way: kj,n = bλjnc with λj as rescaled change
point being a constant but unknown value in (0, 1), for j = 1, . . . , q.

More precisely, at each change point kj,n the parameter vector changes from θj to
θj+1. Besides, note that Assumptions A.1.1 and A.2.1 ensure that the following state-
ment holds for the minimal distance between two neighboring structural breaks:

min
1≤j≤q+1

|kj,n − kj−1,n| > 2G, for n large,

with k0,n = 0 and kq+1,n = n. We will use this in the proofs without mentioning again.
Moreover, we consider the following assumption.

A.2.2 Let {Xi : i ≥ 1} be a piecewise stationary series such that

Xi =


X(1)
i , if 1 ≤ i ≤ k1,n

X(2)
i , if k1,n < i ≤ k2,n

...

X(q+1)
i , if kq,n < i ≤ n

,

where {X(j)
i : i ≥ 1} is stationary following a distribution determined by θj, for

j = 1, . . . , q+ 1, in a correctly speci�ed model. Under misspeci�cation let θj be the best

approximating parameter for {X(j)
i : i ≥ 1} in the sense of E

(
H(X(j)

i ,θj)
)

= 0. Fur-

thermore, we assume that the stationary sequence {H(X(j)
i , θ̃) : i ≥ 1} has a positive

de�nite long-run covariance matrix Σ(j)(θ̃) = Σ(j), for all j = 1, . . . , q + 1.

The stationarity of the transformed sequences {H(X(j)
i , θ̃)} follows immediately from

the stationarity of {X(j)
i } and the measurability of H with respect to Xi. Similar to

the null hypothesis, replacing the partial sum processes of the transformed sequences
by Wiener processes will be an essential part of the proofs and therefore a strong in-
variance principle, as described in the next assumption, is needed.

A.2.3 Let S(j, k, θ̃) =
∑k

i=1H(X(j)
i , θ̃) ful�ll a strong invariance principle for all

j = 1, . . . , q + 1. So possibly after changing the probability space there exists a p-
dimensional standard Wiener process {W (k) : k ≥ 0} with identity matrix Ip as
covariance matrix and ν > 0 such that∥∥∥Σ−1/2

(j)

(
S(j, k, θ̃)− E(S(j, k, θ̃))

)
−W (k)

∥∥∥ = O(k1/(2+ν)) a.s., k →∞.
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Furthermore, using an estimator θ̂n instead of θ̃ in the statistic requires the following
condition to hold.

A.2.4 Let {θ̂n}n∈N be a sequence of estimators ful�lling, for some θ̃ ∈ Θ,

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = OP

(√
log(n/G)

)
.

As shown in Section 2.3 below, Assumption A.2.4 is satis�ed by i.i.d. or stationary and
strongly mixing time series under some moment conditions if the estimating function
H is twice continuously di�erentiable on a compact parameter space Θ and if the
estimator sequence is

√
n-consistent for θ̃.

The set An,G, which is de�ned by

An,G := {k ∈ {G, . . . , n−G} : |k − bλjnc| ≥ G ∀ j ∈ {1, . . . , q}} , (2.2)

will often be considered in the proofs. It contains all time points which do not lie in
a G-environment of any change such that the statistic is not contaminated by changes
and behaves like under the null hypothesis in these points.
Moreover, replacing the long-run covariance matrix Σk by an appropriate estimator is
an important issue here as well. The following assumptions are needed:

A.2.5 The estimator Σ̂k,n of the long-run covariance matrix Σk is positive de�nite
and satis�es

(a) max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n

∥∥∥
F

= OP (1)

(b) max
k∈An,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
k

∥∥∥
F

= oP (log(n/G)−1) with An,G as in (2.2),

(c) maxk∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

= oP (1) , where

Bn,G := {k ∈ {G, . . . , n−G} : ∃ j ∈ {1, . . . , q} : |k − kj,n| ≤ G} (2.3)

and {ΣA,k} is a sequence of positive de�nite matrices ful�lling sup
n

sup
k∈Bn,G

‖ΣA,k‖F <
∞.

In Assumption A.2.5 (b) another important set of time points has been introduced:
Bn,G de�ned in (2.3). It contains all time points lying in a G-environment of a change
point so that the statistic is contaminated by a change in these points.
Furthermore, we have to take into consideration that Σk changes with k under the
alternative. By Assumption A.2.2 we receive

Σk =


Σ(1), if 1 ≤ k ≤ k1,n

Σ(2), if k1,n < k ≤ k2,n

...
Σ(q+1), if kq,n < k ≤ n

.

The main goals of this subsection are constructing and investigating a test for the
following test problem:
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2.1. Theoretical Results

H0: q = 0, i.e. no structural break occurs
versus

H1: q > 0, i.e. at least one structural break occurs

Applying Theorem 2.1.1 yields

P
(
a(n/G)Tn(G, θ̃)− b(n/G) > cα

)
→ α, under H0,

where cα := − log log 1√
1−α denotes the (1−α)-quantile of a Gumbel distribution as in

Theorem 2.1.1. Hence, an asymptotic level α test for the test problem is given by:

Reject H0 if Tn(G, θ̃) > Dn(G,α),

with Dn(G,α) =
b(n/G) + cα
a(n/G)

.

As already mentioned in the introduction, by using the MOSUM statistic based on
estimating functions we convert a general multiple parameter change problem to a
multiple mean change problem of the estimating function. Hence, by applying this
statistic we can only detect changes in the parameter vector causing changes in the
expectation of the estimating function. To obtain consistency of the test it is su�cient
to assume:

A.2.6 For at least one j ∈ {1, . . . , q} it holds that

E
(
H(X(j)

1 , θ̃)
)
6= E

(
H(X(j+1)

1 , θ̃)
)
.

This assumption says that the signal part of the statistic, which can be separated from
the noise, is strictly positive in a G-environment of at least one change point.
Beyond that, decomposing the MOSUM statistic into noise and signal and investigating
the behavior of these two parts under alternatives will be an essential part in all of the
proofs. By a simple zero expansion we get the decomposition of Aθ̃,k into noise and
signal:

Aθ̃,k = Aθ̃,k − E
(
Aθ̃,k

)
+E

(
Aθ̃,k

)
.

Whereas the signal is constant equal to zero under the null hypothesis, it behaves
di�erently under alternative which is shown in the following lemma.

Lemma 2.1.2. Let Assumptions A.2.1 and A.2.2 hold, then, for large n,

E
(
Aθ̃,k

)
=

k+G∑
i=k+1

E
(
H(Xi, θ̃)

)
−

k∑
i=k−G+1

E
(
H(Xi, θ̃)

)
=

{
0, if k ∈ An,G as in 2.2

(G− |k − kj,n|)dj, if k ∈ Bn,G as in 2.3
,

with dj = E
(
H(X(j+1)

1 , θ̃)
)
− E

(
H(X(j)

1 , θ̃)
)
for j = j(k) with j(k) being the index

of the closest change point to k.
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Proof. At �rst we consider all time points k ∈ An,G not lying in a G-environment of
any change. We set λ0 = 0 and λq+1 = 1. On noting that there exists exactly one
j∗ ∈ {1, . . . , q + 1} such that kj∗−1,n < k < kj∗,n, we obtain

E
(
Aθ̃,k

)
=

k+G∑
i=k+1

E
(
H(X(j∗)

i , θ̃)
)
−

k∑
i=k−G+1

E
(
H(X(j∗)

i , θ̃)
)

= 0,

which follows from the stationarity of the transformed sequence {H
(
X(j∗)
i , θ̃

)
: i ≥ 1}

given by Assumption A.2.2.
Now, we focus on time points k ∈ Bn,G. Since the Assumptions A.1.1 and A.2.1
guarantee that the minimum distance between two adjacent structural breaks is greater
than 2G for large sample sizes n the function j(k) is well de�ned on Bn,G in this sense.
For k ∈ Bn,G with kj,n < k < kj,n +G, we get by Assumption A.2.2

E
(
Aθ̃,k

)
=

k+G∑
i=k+1

E
(
H(X(j+1)

i , θ̃)
)
−

kj,n∑
i=k−G+1

E
(
H(X(j)

i , θ̃)
)
−

k∑
i=kj,n+1

E
(
H(X(j+1)

i , θ̃)
)

= (G− (k − kj,n))E
(
H(X(j+1)

1 , θ̃)
)
− (G− (k − kj,n))E

(
H(X(j)

1 , θ̃)
)

= (G− |k − kj,n|)dj.

Similar arguments can be used for kj,n −G < k ≤ kj,n

In Subsection 2.1.3 below, we will consider the signal part of the score-type statistic in
more detail and illustrate possible di�culties by some examples.
Before we are able to derive consistency for the test, we have to examine the behavior
of the noise under the alternative. Lemma 2.1.4 gives an approximation of the noise,
i.e. it shows in what range the statistic �uctuates asymptotically around the signal.
In order to prove this result the following lemma is needed.

Lemma 2.1.3. Let Assumptions A.1.1 on the bandwidth, A.2.1, A.2.2 and A.2.3 hold
for some θ̃. Then,

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥− b(n/G)
D→ E,

with E as Gumbel distributed random variable and a(x) and b(x) as in Theorem 2.1.1.

Proof. We consider the sets An,G and Bn,G, given in (2.2) and (2.3), separately. The
set Bn,G is further subdivided into

B
(1)
n,G := {k ∈ Bn,G : kj,n −G < k < kj,n, j ∈ {1, . . . , q}}

and
B

(2)
n,G := {k ∈ Bn,G : kj,n ≤ k < kj,n +G, j ∈ {1, . . . , q}}.
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We start with the set B(2)
n,G. Let j = j(k) with j(k) as in Lemma 2.1.2 which is well

de�ned on the G-environments of the change points for large n by Assumptions A.1.1
and A.2.1. Furthermore, on noting that Σk = Σ(j+1) and

Aθ̃,k − E
(
Aθ̃,k

)
=

k+G∑
i=k+1

H0(X(j+1)
i , θ̃)−

kj,n∑
i=k−G+1

H0(X(j)
i , θ̃)−

k∑
i=kj,n+1

H0(X(j+1)
i , θ̃)

hold for all k ∈ B(2)
n,G, applying Lemma E.1.5 in combination with Assumptions A.2.2

and A.2.3 yields∣∣∣∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥
−
∥∥∥W (k +G)− 2W (k) +W (kj,n)−Σ

−1/2
(j+1)Σ

1/2
(j) (W (kj,n)−W (k −G)))

∥∥∥∣∣∣
≤

∥∥∥∥∥Σ−1/2
(j+1)

k+G∑
i=1

H0(X(j+1)
i , θ̃)−W (k +G)

∥∥∥∥∥+ 2

∥∥∥∥∥Σ−1/2
(j+1)

k∑
i=1

H0(X(j+1)
i , θ̃)−W (k)

∥∥∥∥∥
+

∥∥∥∥∥∥Σ−1/2
(j+1)

kj,n∑
i=1

H0(X(j+1)
i , θ̃)−W (kj,n)

∥∥∥∥∥∥
+
∥∥∥Σ−1/2

(j+1)Σ
1/2
(j)

∥∥∥
F

∥∥∥∥∥∥Σ−1/2
(j)

kj,n∑
i=1

H0(X(j)
i , θ̃)−W (kj,n)

∥∥∥∥∥∥
+
∥∥∥Σ−1/2

(j+1)Σ
1/2
(j)

∥∥∥
F

∥∥∥∥∥Σ−1/2
(j)

k−G∑
i=1

H0(X(j)
i , θ̃)−W (k −G)

∥∥∥∥∥
= O((k +G)1/(2+ν)) = O(n1/(2+ν)) a.s. uniformly in k ∈ B(2)

n,G.

Similar arguments can be used to receive∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥
=
∥∥∥W (k −G)− 2W (k) +W (kj,n) + Σ

−1/2
(j) Σ

1/2
(j+1) (W (k +G)−W (kj,n))

∥∥∥
+O

(
n1/(2+ν)

)
a.s. uniformly in k ∈ B(1)

n,G.

Moreover, note that for each k ∈ An,G there exists exactly one j∗ ∈ {1, . . . , q+ 1} with
kj∗−1,n < k < kj∗,n so that

Aθ̃,k − E
(
Aθ̃,k

)
=

k+G∑
i=k+1

H0(X(j∗)
i , θ̃)−

k∑
i=k−G+1

H0(X(j∗)
i , θ̃).

Thus, by using Assumption A.2.3 we get∣∣∣∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥− ‖W (k +G)− 2W (k) +W (k −G)‖
∣∣∣

≤

∥∥∥∥∥Σ−1/2
(j∗)

k+G∑
i=1

H0(X(j∗)
i , θ̃)−W (k +G)

∥∥∥∥∥+ 2

∥∥∥∥∥Σ−1/2
(j∗)

k∑
i=1

H0(X(j∗)
i , θ̃)−W (k)

∥∥∥∥∥
+

∥∥∥∥∥Σ−1/2
(j∗)

k+G∑
i=1

H0(X(j∗)
i , θ̃)−W (k +G)

∥∥∥∥∥
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= O
(
n1/(2+ν)

)
a.s. uniformly in k ∈ An,G.

Thus, the results above together with Assumption A.1.1 lead to

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ (2.4)

= max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G) +RG,n(k)‖+ oP

(
a(n/G)−1

)
with

RG,n(k) =


(
Σ
−1/2
(j) Σ

1/2
(j+1) − Ip

)
(W (k +G)−W (kj,n)) , if kj,n −G < k < kj,n(

Ip −Σ
−1/2
(j+1)Σ

1/2
(j)

)
(W (kj,n)−W (k −G)) , if kj,n ≤ k < kj,n +G

0, if k ∈ An,G

.

This implies

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥− b(n/G)

= a(n/G) max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G) +RG,n(k)‖

− b(n/G) + oP (1) .

Hence, it is su�cient to consider the limit distribution of the expression on the right
side of the equation above.
By investigating the behavior of the remainder term RG,n(k) in the G-environment
of a change point, the self-similarity of a Wiener process and the Markov property of
increments of a Wiener process can be applied as follows

max
kj,n−G<k<kj,n+G

1√
2G
‖RG,n(k)‖

≤
(∥∥∥Ip −Σ

−1/2
(j+1)Σ

1/2
(j)

∥∥∥
F

+
∥∥∥Ip −Σ

−1/2
(j) Σ

1/2
(j+1)

∥∥∥
F

)
sup

kj,n−G≤t≤kj,n
sup

0≤s≤G

1√
2G
‖W (t+ s)−W (t)‖

D
=
(∥∥∥Ip −Σ

−1/2
(j+1)Σ

1/2
(j)

∥∥∥
F

+
∥∥∥Ip −Σ

−1/2
(j) Σ

1/2
(j+1)

∥∥∥
F

)
sup

kj,n
G
−1≤t≤

kj,n
G

sup
0≤s≤1

1√
2
‖W (t+ s)−W (t)‖

D
=
(∥∥∥Ip −Σ

−1/2
(j+1)Σ

1/2
(j)

∥∥∥
F

+
∥∥∥Ip −Σ

−1/2
(j) Σ

1/2
(j+1)

∥∥∥
F

)
sup

0≤t≤1
sup

0≤s≤1

1√
2
‖W (t+ s)−W (t)‖

= OP (1),

where the last line follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0, 1]. Hence, since the number of change
points q is �nite we receive

max
k∈Bn,G

1√
2G
‖RG,n(k)‖ = max

1≤l≤q
max

kl,n−G<k<kl,n+G

1√
2G
‖RG,n(k)‖ = OP (1).
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Furthermore, similar arguments can be used to show that

max
kj,n−G<k<kj,n+G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖

≤ sup
kj,n−2G≤t≤kj,n+G

sup
0≤s≤G

√
2√
G
‖W (t+ s)−W (t)‖

D
= sup

kj,n
G
−2≤t≤

kj,n
G

+1

sup
0≤s≤1

√
2 ‖W (t+ s)−W (t)‖

D
= sup

0≤t≤3
sup

0≤s≤1

√
2 ‖W (t+ s)−W (t)‖ = OP (1)

and thus

max
k∈Bn,G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖

= max
1≤l≤q

max
kl,n−G<k<kl,n+G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖

= OP (1).

On noting that limn→∞
a(n/G)
b(n/G)

= 0, we obtain

max
k∈Bn,G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖ = oP

(
b(n/G)

a(n/G)

)
(2.5)

and

max
k∈Bn,G

1√
2G
‖W (k +G)− 2W (k) +W (k −G) +RG,n(k)‖ (2.6)

≤ max
k∈Bn,G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖+ max

k∈Bn,G

1√
2G
‖RG,n(k)‖

= oP

(
b(n/G)

a(n/G)

)
.

With {G, . . . , n − G} = An,G + Bn,G the maximum over all time points can be re-
garded as the maximum over the two maxima of the subsets, i.e. maxk∈{G,...,n−G} ak =
max(maxk∈An,G ak,maxk∈Bn,G ak) holds for each sequence {ak}k∈N. Hence, applying
Lemma E.2.3 and (2.6) yields that

a(n/G) max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G) +RG,n(k)‖ − b(n/G)

has the same limit distribution as

a(n/G) max
k∈An,G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖ − b(n/G) (2.7)

since RG,n(k) = 0 for all k ∈ An,G. By using Lemma E.2.3 together with (2.5) we
obtain that the limit distribution of (2.7) coincides with the limit distribution of

a(n/G) max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖ − b(n/G)

which is asymptotically Gumbel distributed as shown in the proof of Theorem 2.1.1.
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Lemma 2.1.4. Let Assumptions A.1.1, A.2.1, A.2.2 and A.2.3 hold for some θ̃.

(a) Then

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ = OP

(√
log(n/G)

)
.

(b) Let {θ̂n}n∈N be a sequence of estimators ful�lling Assumption A.2.4 for θ̃. Then,

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̂n,k

− E
(
Aθ̃,k

))∥∥∥ = OP

(√
log(n/G)

)
.

(c) Furthermore, the covariance matrix Σk can be replaced by an estimator Σ̂k,n

satisfying Assumption A.2.5 (a) without changing the results of part (a) and (b).

Proof. (a) Applying Lemma 2.1.3 yields

a(n/G) max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥− b(n/G) = OP (1),

which implies that

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ =
OP (1) + b(n/G)

a(n/G)

= OP

(√
log(n/G)

)
.

(b) On noting that

max
G≤k≤n−G

∥∥∥Σ−1/2
k

∥∥∥
F

= max
l∈{1,...,q+1}

∥∥∥Σ−1/2
(l)

∥∥∥
F

= O(1),

Assumption A.2.4 in connection with Lemma E.1.5 lead to∣∣∣∣ max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̂n,k

− E
(
Aθ̃,k

))∥∥∥
− max

G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥∣∣∣∣
≤ max

G≤k≤n−G

∥∥∥Σ−1/2
k

∥∥∥
F

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = OP

(√
log(n/G)

)
.

Thus, together with part (a) we obtain

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̂n,k

− E
(
Aθ̃,k

))∥∥∥
= max

G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥+OP

(√
log(n/G)

)
= OP

(√
log(n/G)

)
.
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(c) With the result of part (a) and since

max
G≤k≤n−G

∥∥∥Σ1/2
k

∥∥∥
F

= max
l∈{1,...,q+1}

∥∥∥Σ1/2
(l)

∥∥∥
F

= O(1),

we receive

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̃,k − E
(
Aθ̃,k

)∥∥∥
≤ max

G≤k≤n−G

∥∥∥Σ1/2
k

∥∥∥
F

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥
= OP

(√
log(n/G)

)
.

Hence, by combining Assumption A.2.5 (a) and Lemma E.1.5, we can conclude
that

max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥
≤ max

G≤k≤n−G

1√
2G

∥∥∥Aθ̃,k − E
(
Aθ̃,k

)∥∥∥ max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n

∥∥∥
F

= OP

(√
log(n/G)

)
OP (1) = OP

(√
log(n/G)

)
.

Furthermore, in an analogous manner we get

max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n

(
Aθ̂n,k

− E
(
Aθ̃,k

))∥∥∥ = OP

(√
log(n/G)

)
.

Now we are able to show that the constructed test has asymptotic power one, i.e. the
probability that the test rejects the null hypothesis under the alternative converges to
one as n goes to in�nity.

Theorem 2.1.5. Let Assumptions A.1.1, A.2.1, A.2.2, A.2.3 and A.2.6 hold for some
θ̃.

(a) Then, under H1, we obtain for any z ∈ R

lim
n→∞

P (a(n/G)Tn(G, θ̃)− b(n/G) ≥ z) = 1.

(b) Let {θ̂n}n∈N be a sequence of estimators ful�lling Assumption A.2.4 for θ̃. Then
under H1,

lim
n→∞

P (a(n/G)Tn(G, θ̂n)− b(n/G) ≥ z) = 1

for any z ∈ R.

(c) Furthermore, the long-run covariance matrix Σk can be replaced by an estimator

Σ̂k,n satisfying Assumption A.2.5 (a) and (c) without changing the results of part
(a) and (b).
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Proof. (a) As the inequality a(n/G)Tn(G, θ̃)− b(n/G) ≥ z is equivalent to

Tn(G, θ̃)− z + b(n/G)

a(n/G)
≥ 0,

it is su�cient to show that Tn(G, θ̃)− z+b(n/G)
a(n/G)

P→∞.

Note that we use dj = E
(
H(X(j+1)

1 , θ̃)
)
−E

(
H(X(j)

1 , θ̃)
)
for all j ∈ {1, . . . , q}.

By Assumption A.2.6 there exists j∗ ∈ {1, . . . , q} ful�lling dj∗ 6= 0. Furthermore,
applying the following inequality

max
k
‖ak + bk‖ ≥ max

k
|‖ak‖ − ‖bk‖| ≥ max

k
‖ak‖ −max

k
‖bk‖ ,

for any vector-valued sequences ak, bk, yields

Tn(G, θ̃) = max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥
≥ max

G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k E

(
Aθ̃,k

)∥∥∥− max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥
≥
√
G√
2

∥∥∥Σ−1/2
(j∗) dj∗

∥∥∥+OP

(√
log(n/G)

)
,

where the last line follows from Lemma 2.1.4 (a) and Lemma 2.1.2 for kj∗,n. Since
dj∗ 6= 0 and Σ−1

(j∗) is a positive de�nite matrix, we obtain∥∥∥Σ−1/2
(j∗) dj∗

∥∥∥ =
∥∥∥Σ−1/2

(j∗) dj∗
∥∥∥
F

=
√
dTj∗Σ

−1
(j∗)dj∗ > c

for some c > 0. Thus, we receive Tn(G, θ̃) ≥
√
G√
2
c + OP

(√
log(n/G)

)
. Further-

more, on noting that z+b(n/G)
a(n/G)

= O(
√

log(n/G)) and
√

log(n/G) = o(
√
G) by

Assumption A.1.1, we can conclude

Tn(G, θ̃)− z + b(n/G)

a(n/G)
≥
√
G√
2
c+OP

(√
log(n/G)

)
=
√
G

(
c√
2

+ oP (1)

)
P→∞,

which implies the assertion.

(b) The assertion of part (b) can be shown in an analogous manner to part (a) by
using Lemma 2.1.4 (b).

(c) Similar to (a), applying Lemma 2.1.4 (c), which requires Assumption A.2.5 (a),
and Lemma 2.1.2 yields

T̂n(G, θ̃) = max
G≤k≤n−G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥ ≥ √G√
2

∥∥∥Σ̂−1/2

kj∗,n,n
dj∗
∥∥∥+OP

(√
log(n/G)

)
.

In order to replace the estimator sequence of the covariance matrix by some
deterministic matrix sequence, with Assumption A.2.5 (c) and Lemma E.1.5 we
get ∣∣∣∥∥∥Σ̂−1/2

kj∗,n,n
dj∗
∥∥∥− ∥∥∥Σ−1/2

A,kj∗,n
dj∗
∥∥∥∣∣∣ ≤ ∥∥∥(Σ̂

−1/2

kj∗,n,n
−Σ

−1/2
A,kj∗,n

)
dj∗
∥∥∥
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≤
∥∥∥Σ̂−1/2

kj∗,n,n
−Σ

−1/2
A,kj∗,n

∥∥∥
F
‖dj∗‖ ≤ max

k∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F
‖dj∗‖ = oP (1) ,

which implies
∥∥∥Σ̂−1/2

kj∗,n,n
dj∗
∥∥∥ =

∥∥∥Σ−1/2
A,kj∗,n

dj∗
∥∥∥+ oP (1).

Furthermore, Assumption A.2.5 (c) shows

sup
n

∥∥ΣA,kj∗,n

∥∥
F
< sup

n
sup

k∈Bn,G
‖ΣA,k‖F <∞.

Hence, Lemma E.1.10 ensures that for the sequence {Σ−1
A,kj∗,n

} there exists c > 0

such that min
l∈{1,...,p}

(λl,n) ≥ c holds for all n, where λ1,n, . . . , λp,n are the eigenvalues

of the matrix Σ−1
A,kj∗,n

. Thus, in combination with Lemma E.1.12 we obtain

∥∥∥Σ−1/2
A,kj∗,n

dj∗
∥∥∥ =

∥∥∥Σ−1/2
A,kj∗,n

dj∗
∥∥∥
F

=

√
tr
(
dTj∗Σ

−1
A,kj∗,n

dj∗
)

(2.8)

≥
√

min
l∈{1,...,p}

(λl,n) ‖dj∗‖ ≥
√
c ‖dj∗‖ = c̃ > 0,

since dj∗ 6= 0. Finally, we can conclude

T̂n(G, θ̃)− z + b(n/G)

a(n/G)
≥
√
G

(
c̃√
2

+ oP (1)

)
P→∞.

Similar arguments can be used to show that the test has still asymptotic power
one if, in addition, θ̃ is replaced by an estimator θ̂n satisfying Assumption A.2.4
in the statistic.

Remark 2.1.6. If Assumption A.2.5 (c) is replaced by the following statement, the
assertion of Theorem 2.1.5 remains true.

Let Σ̂bλjnc,n
P→ ΣA,λj , for j = 1, . . . , q, where ΣA,λj is a positive de�nite matrix.

Applying Lemma E.1.8 yields Σ̂
−1/2

kj∗,n,n
= Σ̂

−1/2

bλj∗nc,n
P→ Σ

−1/2
A,λj∗

. Hence, we obtain∥∥∥Σ̂−1/2

kj∗,n,n
dj∗
∥∥∥ =

∥∥∥Σ−1/2
A,λj∗

dj∗
∥∥∥+ oP (1).

Thus,
∥∥∥Σ−1/2

A,λj∗
dj∗
∥∥∥ can be used in the approximation above.

2.1.3. MOSUM-based Estimators

In this subsection, we focus on the estimation of the number and the locations of
the changes. After introducing a MOSUM procedure based on MOSUM Score-type
statistics, we show consistency of the corresponding estimators.
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2.1.3.1. The MOSUM Procedure

Let us at �rst look at an example in the classical mean change model where the MOSUM
statistic investigated by Eichinger & Kirch (2018) is applied. This statistic is a special
case of the MOSUM statistic based on estimating functions, as already mentioned in
the introductory part, and it is used to illustrate the idea of the MOSUM procedure.
However, please keep in mind that our MOSUM score-type approach is not limited to
the mean change problem and can be applied to general parameter change problems.
The following plot shows a time series with changes in the mean at the time points
100, 250, 700.
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In the second plot, the signal of the classical MOSUM statistic (G = 60) is illustrated
which achieves its local maxima at the true change points and is equal to zero in time
points lying far away from any change.

0 200 400 600 800 1000

0
4

8

 

 

Unfortunately, we cannot observe or compute the signal of the statistic in practice. We
only get a noisy version which is the actual statistic and shown in the graph below.
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Nevertheless, the statistic performs quite well. It gets large in intervals around the
true locations of the changes with local maximal points close to the true change points.
However, there are also some smaller peaks, e.g. between 300 and 400, which could
be interpreted as changes as well if the number and the locations of the changes were
unknown. Hence, we need some kind of threshold which helps us to decide what peaks
or intervals of time points should be considered in the estimation process. Theorem
2.1.1, where we have determined the limit distribution of the maximum of the statistic
under the null, provides a reasonable threshold, Dn(αn, G) := (cαn + b(n/G))/a(n/G),
as the statistic behaves like under the null hypothesis in time points which are far away
from any change.
Consequently, similar to Eichinger & Kirch (2018), we propose the followingMOSUM
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procedure to determine estimators for the number and the locations of the changes:

We consider all pairs of time points (vj,n, wj,n) with

Tk,n(G, θ̃) ≥ Dn(αn, G) for vj,n ≤ k ≤ wj,n, (2.9)

Tk,n(G, θ̃) < Dn(αn, G) for k = vj,n − 1, wj,n + 1, (2.10)

wj,n − vj,n ≥ εG with 0 < ε < 1/2 arbitrary but �xed. (2.11)

We take the number of these pairs as an estimator for the number of changes:

q̂n = q̂n(θ̃) =̂ number of pairs (vj,n, wj,n).

Furthermore, we determine the local maxima between vj,n and wj,n, j = 1, . . . , q̂n, and
use them as estimators for the locations of the change points:

k̂j,n = k̂j,n(θ̃) := arg max
vj,n≤k≤wj,n

Tk,n(G, θ̃)

0 200 400 600 800 1000

0
4

8
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●v1 ● w1 ●v2 ●w2 ●v3 ●w3

The pairs (vj,n, wj,n), j = 1, . . . , q̂n, give start and end points of intervals on which
the statistic exceeds the threshold. For this reason we call [vj,n, wj,n], j = 1, . . . , q̂n,
intervals of exceedings or exceeding intervals.
Condition (2.11) in the procedure restricts our attention to intervals of length greater
than εG and prevents us from considering exceeding intervals produced by spurious
local maxima in the estimating process. This is very important because the statistic
is noisy and, for instance, in an environment of a change point it can actually happen
that the statistic goes beyond the threshold but only for a short period and falls below
it before shortly exceeding the threshold again. Hence, in this sense, Condition (2.11)
avoids overestimation.
Furthermore, note that Eichinger & Kirch (2018) have also proposed an alternative
version of the MOSUM procedure. Instead of Condition (2.11) they consider all inter-
vals of exceedings and determine their local maximal points before checking whether
these points are local maxima in their cG-environments as well. Consistency for the
corresponding estimators can be derived by using similar arguments as for the original
MOSUM procedure in the classical mean change model according to Eichinger & Kirch
(2018). This will probably hold for our general setting too, but we concentrate on the
above case here.

2.1.3.2. Consistency of the Estimators

In this subsection we derive consistency for the estimators of the number and the lo-
cations of the changes obtained by the MOSUM procedure which has been described
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in the previous subsection. In doing so, we have to introduce further notation and
assumptions.
We have already learned that a change in the parameter vector θ can only be detected
or localized by the MOSUM score-type statistic if it causes a change in the expectation
of the transformed series H(Xi, θ̃). This is formalized in the following way.

A.2.7:
Let Q̃ = Q̃

(
θ̃
)
be the set of indices of all rescaled change points causing a change in

the expected value of the transformed series (detectable changes), i.e.

E
(
H(X(j)

1 , θ̃)
)
6= E

(
H(X(j+1)

1 , θ̃)
)

holds for all j ∈ Q̃ and

E
(
H(X(j)

1 , θ̃)
)

= E
(
H(X(j+1)

1 , θ̃)
)

for all j ∈ {1, . . . , q} \ Q̃.
Furthermore, let q̃ = q̃

(
θ̃
)
be the number of elements of Q̃ which is the number of

detectable changes.

Note that the number of detectable changes does not need to coincide with the to-
tal number of changes in general. If the score-type statistic based on the Z-estimator
computed on the whole sample is used in the MOSUM procedure at least one change
is detectable which will be shown in Lemma 2.3.10 under some regularity conditions.
The problem of detectability will be discussed in detail in Section 2.4.2.
Thus, in general we have to distinguish between detectable and non-detectable changes
and therefore we de�ne the following sets:

Ãn,G :=
{
k ∈ {G, . . . , n−G} : |k − kj,n| ≥ G ∀ j ∈ Q̃

}
, (2.12)

B̄n,G :=
{
k ∈ {G, . . . , n−G} : ∃ j ∈ Q̃ : |k − kj,n| < (1− ε)G

}
(2.13)

with ε as in (2.11).

The following condition is of more technical nature. Instead of using a �xed signi�cance
level, we will need a sequence of signi�cance levels in Theorem 2.1.8 satisfying:

A.2.8 Let the sequence of signi�cance levels αn ful�ll

αn → 0 and
cαn

a(n/G)
√
G

= o(1).

Moreover, if we want to use an estimator sequence θ̂n instead of θ̃ in the statistic and
show consistency for the corresponding estimators, we have to introduce additional
conditions.

A.2.9:

Let {θ̂n}n∈N be a sequence of estimators ful�lling
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(I) maxk∈An,G
1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP
(
(log(n/G))−1/2

)
,

with An,G as in (2.2).

(II) maxk∈Ãn,G
1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP

(√
log(n/G)

)
,

with Ãn,G as in (2.12).

In the following lemma we consider the maximum of the statistic over all time points
k ∈ Ãn,G, which do not lie in a G-environment of any detectable change, and derive
its limit distribution under the alternative. This result will be crucial for proving
consistency in Theorem 2.1.8.

Lemma 2.1.7. Let Assumptions A.1.1, A.2.1, A.2.2,A.2.3 and A.2.7 hold for some
θ̃.

(a) Then,

a(n/G) max
k∈Ãn,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G)
D→ E

with E as Gumbel distributed random variable as in Theorem 2.1.1.

(b) Let {θ̂n}n∈N be a sequence of estimators ful�lling Assumption A.2.9 for θ̃. Then,

if θ̃ is replaced by θ̂n in the statistic the result of (a) remain true.

(c) Furthermore, the long-run covariance matrix Σk can be replaced by an estimator

Σ̂k,n satisfying the Assumptions A.2.5 (a) and (b) without changing the results of
part (a) and (b).

Proof. (a) At �rst, note that An,G ⊂ Ãn,G, with An,G as in (2.2) denoting the set of all
points not lying in a G-environment of any change, and Ãn,G \ An,G ⊂ Bn,G, with
Bn,G as in (2.3) containing the time points of the G-environments of all changes.
By combining (2.4) and (2.6), which have been shown in the proof of Lemma 2.1.3,
we obtain

max
k∈Bn,G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ = oP

(
b(n/G)

a(n/G)

)
.

Hence, since E
(
Aθ̃,k

)
= 0 for all k ∈ Ãn,G and An,G ∪ Bn,G = {G, . . . , n − G},

which implies that

max
G≤k≤n−G

‖·‖ = max

(
max
An,G
‖·‖ ,max

Bn,G
‖·‖
)
,

applying Lemma E.2.3 together with Lemma 2.1.3 yields that

a(n/G) max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G) (2.14)
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is asymptotically Gumbel distributed. Furthermore, with Ãn,G \ An,G ⊂ Bn,G we
get

max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥ (2.15)

≤ max
k∈Bn,G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ = oP

(
b(n/G)

a(n/G)

)
.

Thus, Lemma E.2.3 can be used again to conclude that

a(n/G) max
k∈Ãn,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G)

has the same limit distribution as (2.14) completing the proof of part (a).

(b) On noting that

max
k∈Ãn,G

∥∥∥Σ−1/2
k

∥∥∥
F
≤ max

l∈{1,...,q+1}

∥∥∥Σ−1/2
(l)

∥∥∥
F

= O(1),

by using Lemma E.1.5 and Assumption A.2.9 (I) we obtain∣∣∣∣ max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̂n,k

∥∥∥− max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥∣∣∣∣
≤ max

k∈An,G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ max
k∈An,G

∥∥∥Σ−1/2
k

∥∥∥
F

= oP
(
a(n/G)−1

)
,

implying that

a(n/G) max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̂n,k

∥∥∥− b(n/G)

and

a(n/G) max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G)

have the same limit distribution, which is a Gumbel distribution as shown in part
(a). Furthermore, Assumption A.2.9 (II) in combination with (2.15) yields

max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̂n,k

∥∥∥ = max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̂n,k

−Aθ̃,k +Aθ̃,k

)∥∥∥
≤ max

k∈Ãn,G\An,G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ max
l∈{1,...,q+1}

∥∥∥Σ−1/2
(l)

∥∥∥
F

+ max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥
= oP

(
b(n/G)

a(n/G)

)
.

Finally, by Lemma E.2.3 we get the assertion.
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(c) By using (2.14) and Lemma E.1.4 we receive

max
k∈An,G

1√
2G

∥∥∥Aθ̃,k

∥∥∥ = max
k∈An,G

1√
2G

∥∥∥Σ1/2
k Σ

−1/2
k Aθ̃,k

∥∥∥
≤ max

1≤l≤q+1

∥∥∥Σ1/2
(l)

∥∥∥
F

max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥ = OP

(√
log(n/G)

)
.

Thus, applying Assumption A.2.5 (b) and Lemma E.1.4 yields∣∣∣∣ max
k∈An,G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥− max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥∣∣∣∣
≤ max

k∈An,G

1√
2G

∥∥∥(Σ̂
−1/2

k,n −Σ
−1/2
k

)
Aθ̃,k

∥∥∥
≤ max

k∈An,G

1√
2G

∥∥∥Aθ̃,k

∥∥∥ max
k∈An,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
k

∥∥∥
F

= oP
(
a(n/G)−1

)
,

implying that

a(n/G) max
k∈An,G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥− b(n/G)

and

a(n/G) max
k∈An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G)

have the same limit distribution, which is a Gumbel distribution as shown in part
(a). Furthermore, by (2.15) we get

max
k∈Ãn,G\An,G

1√
2G

∥∥∥Aθ̃,k

∥∥∥ = max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ1/2
k Σ

−1/2
k Aθ̃,k

∥∥∥
≤ max

1≤l≤q+1

∥∥∥Σ1/2
(l)

∥∥∥
F

max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥ = oP

(
b(n/G)

a(n/G)

)
.

Hence, in connection with Assumption A.2.5 (a) and Lemma E.1.5 we receive

max
k∈Ãn,G\An,G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥ ≤ max
k∈Ãn,G\An,G

1√
2G

∥∥∥Aθ̃,k

∥∥∥ max
k∈Ãn,G\An,G

∥∥∥Σ̂−1/2

k,n

∥∥∥
F

= oP

(
b(n/G)

a(n/G)

)
OP (1) = oP

(
b(n/G)

a(n/G)

)
.

Finally, the assertion follows from Lemma E.2.3.

Now, we are ready to show that the estimator for the number of changes q̂n is consistent
for the number of detectable changes q̃.

Theorem 2.1.8. Let the Assumptions A.1.1, A.2.1, A.2.2, A.2.3 and A.2.7 hold for
some θ̃. Furthermore, assume that the sequence {αn}n∈N ful�lls Assumption A.2.8.

(a) Then, for any θ̃ with corresponding q̃ = q̃(θ̃),

P (q̂n(θ̃) = q̃)→ 1 as n→∞.
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(b) Let {θ̂n}n∈N be a sequence of estimators for θ̃ ful�lling Assumption A.2.4 and

A.2.9. Then, the statistic Tn(G, θ̂n) can be used in the MOSUM procedure without
changing the result of part (a), i.e.

P (q̂n(θ̂n) = q̃)→ 1 as n→∞.

(c) Furthermore, the consistency statements of (a) and (b) remain true if the long-

run covariance matrix Σk is replaced by an estimator Σ̂k,n satisfying Assumptions
A.2.5 (a), (b) and (c).

Proof. (a) The basic idea of this proof, going back to Muhsal (2013) (Theorem 6.1.)
or Eichinger & Kirch (2018) (Theorem 3.1. a), is to show that the statistic is
below the threshold on Ãn,G as in (2.12) while exceeding the threshold on B̄n,G as
in (2.13) with probability tending to one. Note that it is su�cient to analyse the
asymptotic behavior of the statistic on these two sets since the omitted intervals
are too small to be taken into account for estimation due to Condition (2.11) of
the MOSUM procedure.
Using the simple inequality

P (A ∩B) = P (A) + P (B)− P (A ∪B) ≥ P (A) + P (B)− 1, (2.16)

we obtain

P (q̂n = q̃)

≥ P

(
max
k∈Ãn,G

Tk,n(G, θ̃) < Dn(αn, G), min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)

≥ P

(
max
k∈Ãn,G

Tk,n(G, θ̃) < Dn(αn, G)

)
+ P

(
min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)
− 1.

Hence, it is su�cient to show that

(1) P

(
max
k∈Ãn,G

Tk,n(G, θ̃) < Dn(αn, G)

)
→ 1 and

(2) P

(
min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)
→ 1

as n goes to in�nity.

Part (1):
On noting that cαn is the (1 − αn)-quantile of the Gumbel distribution given in
Theorem 2.1.1, applying Lemma 2.1.7 (a) yields

P

(
max
k∈Ãn,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)
= P

(
max
k∈Ãn,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥ ≥ Dn(αn, G)

)

= P

(
a(n/G) max

k∈Ãn,G

1√
2G

∥∥∥Σ−1/2
k Aθ̃,k

∥∥∥− b(n/G) ≥ cαn

)
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= αn + o(1)→ 0 as n→∞, (2.17)

since αn converges to 0 by Assumption A.2.8 and as the Gumbel distribution is
continuous.

Part (2):
Let j = j(k) where j(k) is the the index of the closest change point to k as in
Lemma 2.1.2. By using Lemma 2.1.2 for k ∈ B̄n,G we get∥∥∥Σ−1/2

k E
(
Aθ̃,k

)∥∥∥ = (G− |k − kj,n|)
∥∥∥Σ−1/2

k dj

∥∥∥ ≥ εG min
k∈B̄n,G

∥∥∥Σ−1/2
k dj

∥∥∥ ,
which shows that the signal part of the statistic grows with a rate of G on the
set B̄n,G. Furthermore, as Assumption A.2.7 ensures that dl 6= 0 for all l ∈ Q̃
and as Σ−1

(1), . . . ,Σ
−1
(q+1) are positive de�nite due to the positive de�niteness of

Σ(1), . . . ,Σ(q+1) we obtain

min
k∈B̄n,G

∥∥∥Σ−1/2
k dj

∥∥∥ = min
k∈B̄n,G

√
dTj Σ−1

k dj > c for some c > 0.

The results above in connection with Lemma 2.1.4 and the following inequality

min
k∈B̄n,G

Tk,n(G, θ̃)

≥ min
k∈B̄n,G

1√
2G

∥∥∥Σ−1/2
k E

(
Aθ̃,k

)∥∥∥− max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2
k

(
Aθ̃,k − E

(
Aθ̃,k

))∥∥∥ ,
imply that

P

(
min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)
(2.18)

≥ P

(
min
k∈B̄n,G

1√
2G

∥∥∥Σ−1/2
k E

(
Aθ̃,k

)∥∥∥+OP

(√
log(n/G)

)
≥ Dn(αn, G)

)
≥ P

(
ε

√
G

2
min
k∈B̄n,G

∥∥∥Σ−1/2
k dj

∥∥∥+OP

(√
log(n/G)

)
≥ Dn(αn, G)

)

= P

(
ε min
k∈B̄n,G

∥∥∥Σ−1/2
k dj

∥∥∥+ oP (1) ≥
√

2Dn(αn, G)√
G

)
→ 1,

since Dn(αn,G)√
G

= b(n/G)

a(n/G)
√
G

+ cαn
a(n/G)

√
G

= o(1) follows from Assumptions A.1.1 and
A.2.8.

(b) Part (1):
The result can be shown in an analogous manner to (a) by using Lemma 2.1.7 (b).

Part (2):
Result (b) of Lemma 2.1.4 can be used to prove part (2) similarly to (a).
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(c) Part (1):
With Lemma 2.1.7 (c) the result can be shown analogously to (a).

Part (2):
With j = j(k) as in Lemma 2.1.2 we receive by that lemma∥∥∥Σ̂−1/2

k,n E
(
Aθ̃,k

)∥∥∥ = (G− |k − kj,n|)
∥∥∥Σ̂−1/2

k,n dj

∥∥∥ ≥ εG min
k∈B̄n,G

∥∥∥Σ̂−1/2

k,n dj

∥∥∥ ,
which holds for all k ∈ B̄n,G. Furthermore, on noting that

max
k∈B̄n,G

‖dj‖ ≤ max
l∈{1,...,q}

‖dl‖ = O(1),

by Assumption A.2.5 (c) combined with Lemma E.1.3 and Lemma E.1.5 we get∣∣∣∣ min
k∈B̄n,G

∥∥∥Σ̂−1/2

k,n dj

∥∥∥− min
k∈B̄n,G

∥∥∥Σ−1/2
A,k dj

∥∥∥∣∣∣∣ ≤ max
k∈B̄n,G

∥∥∥(Σ̂
−1/2

k,n −Σ
−1/2
A,k

)
dj

∥∥∥
≤ max

k∈B̄n,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

max
k∈B̄n,G

‖dj‖ = oP (1) ,

implying that

min
k∈B̄n,G

∥∥∥Σ̂−1/2

k,n dj

∥∥∥ = min
k∈B̄n,G

∥∥∥Σ−1/2
A,k dj

∥∥∥+ oP (1) .

Applying Assumption A.2.5 (c) in combination with Lemma E.1.10 and Lemma
E.1.12 as in (2.8) yields that there exists c > 0 such that

min
k∈B̄n,G

∥∥∥Σ−1/2
A,k dj

∥∥∥ ≥ c+ o(1).

Thus, in an analogous manner to (a) we receive

P

(
min
k∈B̄n,G

T̂k,n(G, θ̃) ≥ Dn(αn, G)

)
= P

(
min
k∈B̄n,G

1√
2G

∥∥∥Σ̂−1/2

k,n Aθ̃,k

∥∥∥ ≥ Dn(αn, G)

)
≥ P

(
min
k∈B̄n,G

1√
2G

∥∥∥Σ̂−1/2

k,n E
(
Aθ̃,k

)∥∥∥+OP

(√
log(n/G)

)
≥ Dn(αn, G)

)

≥ P

(
ε min
k∈B̄n,G

∥∥∥Σ̂−1/2

k,n dj

∥∥∥+ oP (1) ≥
√

2Dn(αn, G)√
G

)

= P

(
ε min
k∈B̄n,G

∥∥∥Σ−1/2
A,k dj

∥∥∥+ oP (1) ≥
√

2Dn(αn, G)√
G

)

≥ P

(
εc+ oP (1) ≥

√
2Dn(αn, G)√

G

)
→ 1,
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since Dn(αn,G)√
G

= o(1) by Assumptions A.1.1 and A.2.8.

With similar arguments we obtain

P

(
min
k∈B̄n,G

T̂k,n(G, θ̂n) ≥ Dn(αn, G)

)
→ 1,

completing the proof of this theorem.

Remark 2.1.9. If Q̃ = {1, . . . , q}, i.e. each change in the parameter vector θ causes
a mean change in the transformed sequence of the estimating function, Theorem 2.1.8
yields

lim
n→∞

P (q̂n = q) = 1.

Moreover, the following corollary in combination with Remark 2.1.11 proves a weak
consistency statement for the change point estimators k̂j,n.

Corollary 2.1.10. Let the assumptions of Theorem 2.1.8 hold. Then,

P

(
max
j∈Q̃

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣ < G

)
→ 1,

i.e. with probability tending to one every detectable change point has at least one esti-
mator in its G-environment.

Remark 2.1.11. By Theorem 2.1.8 there are exactly q̃ change point estimators with
asymptotic probability one. Since the distance between two adjacent change points is
asymptotically greater than 2G an estimator can only lie in the G-environment of one
change point. Thus, combining Theorem 2.1.8 and Corollary 2.1.10 yields that every
detectable change point has exactly one estimator in its G-environment with probability
tending to one.

Proof of Corollary 2.1.10. On noting that{
min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

}
⊂
{

max
j∈Q̃

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣ < G

}
,

applying (2.18) yields

P

(
max
j∈Q̃

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣ < G

)
≥ P

(
min
k∈B̄n,G

Tk,n(G, θ̃) ≥ Dn(αn, G)

)
→ 1,

which shows the assertion.

The results above do not show consistency in the classical sense since we only get a
weak convergence rate depending on the bandwidth G which tends to in�nity. This
rate can be improved under stronger assumptions on the series which will be shown in
the following subsection. Nevertheless, the corollary above enables us to construct es-

timators of the rescaled change points λ̂j,n :=
k̂j,n
n
, j ∈ Q̃, which are actually consistent

for the true rescaled changes λj, j ∈ Q̃, in the classical sense as shown in the following
corollary.
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Corollary 2.1.12. Let the assumptions of Theorem 2.1.8 hold. Then,

max
j∈Q̃

min
1≤l≤q̂n

∣∣∣λ̂l,n − λj∣∣∣ = OP

(
G

n

)
= oP (1).

Proof. By applying Corollary 2.1.10 and on noting that

|kj,n − λjn| = |bλjnc − λjn| ≤ 1,

we obtain

max
j∈Q̃

min
1≤l≤q̂n

∣∣∣∣∣ k̂l,nn − λj
∣∣∣∣∣ =

1

n
max
j∈Q̃

min
1≤l≤q̂n

∣∣∣k̂l,n − λjn∣∣∣ ≤ 1

n
max
j∈Q̃

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣+
1

n

= OP

(
G

n

)
.

Furthermore, by Assumption A.1.1 we know that G
n
→ 0.

2.2. Convergence Rates

In the previous section we have derived consistency for the estimators of the number
and the locations of the changes. These results can be improved in terms of getting
better convergence rates under some stronger assumptions which are described in the
following.

A.2.10 Let the following forward and backward Hájek-Rényi-type inequalities hold for
some γ > 2:

(a) For all j ∈ {1, . . . , q + 1} and for any positive and non-increasing sequence b1 ≥
b2 ≥ . . . ≥ bn > 0 there exists a constant B(γ) such that

E

(
max

1≤k≤n
bk

∥∥∥∥∥
k∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ B(γ)
n∑
k=1

bγkk
γ/2−1.

(b) For all j ∈ {1, . . . , q + 1} and for any positive and non-decreasing sequence 0 <
a1 ≤ a2 ≤ . . . ≤ an there exists a constant A(γ) such that

E

(
max

1≤k≤n
ak

∥∥∥∥∥
n∑

i=k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ A(γ)
n∑
k=1

aγk(n− k)γ/2−1.

Furthermore, we need an additional assumption on the estimator sequence θ̂n which
will allow us to replace θ̃ in the statistic without changing the theoretical results.

A.2.11 Let {θ̂n}n∈N be a sequence of estimators ful�lling, for any m ∈ N and for
each j ∈ {1, . . . , q + 1},
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(i) max
1≤k≤n

1
k

∥∥∥∥ m∑
i=m−k+1

(
H
(
X(j)
i , θ̂n

)
−H

(
X(j)
i , θ̃

))∥∥∥∥ = oP (1)

and

(ii) max
1≤k≤n

1
k

∥∥∥∥ m+k∑
i=m+1

(
H
(
X(j)
i , θ̂n

)
−H

(
X(j)
i , θ̃

))∥∥∥∥ = oP (1)

for some θ̃.

In order to prove the main result in Theorem 2.2.5 we need the following auxiliary
lemmata.

Lemma 2.2.1. Let Assumptions A.2.2 and A.2.10 hold for some θ̃ and let {bk}k≥1

be a positive and non-increasing sequence with b1 ≥ . . . ≥ bk. Then, it holds for any
1 ≤ l ≤ u, any m ∈ N0, any δ > 0 and for each j ∈ {1, . . . , q + 1}

(a)

δγP

(
max
l≤k≤u

bk

∥∥∥∥∥
m+k∑
i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

)
≤ C̃

(
bγl l

γ/2 +
u∑

k=l+1

bγkk
γ/2−1

)
,

(b)

δγP

(
max
l≤k≤u

bk

∥∥∥∥∥
m∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

)
≤ C̃

(
bγl l

γ/2 +
u∑

k=l+1

bγkk
γ/2−1

)
,

where C̃ only depends on γ of Assumption A.2.10.

Proof. (a) The result of this lemma can be shown similarly to Lemma 3.1 in Eichinger
& Kirch (2018). On noting that for k > l holds

m+k∑
i=m+1

H0(X(j)
i , θ̃) =

m+l∑
i=m+1

H0(X(j)
i , θ̃) +

m+k∑
i=m+l+1

H0(X(j)
i , θ̃),

the triangle inequality and the monotonicity of the sequence yield

max
l≤k≤u

bk

∥∥∥∥∥
m+k∑
i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
≤ bl

∥∥∥∥∥
m+l∑

i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥+ max
l<k≤u

bk

∥∥∥∥∥
m+k∑

i=m+l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ .
Hence, by Chebychev inequality we receive

P

(
max
l≤k≤u

bk

∥∥∥∥∥
m+k∑
i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

)
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≤ P

(
bl

∥∥∥∥∥
m+l∑

i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

2

)
+ P

(
max
l<k≤u

bk

∥∥∥∥∥
m+k∑

i=m+l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

2

)

≤ E

(
bl

∥∥∥∥∥
m+l∑

i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ (

δ

2

)−γ

+ E

(
max
l<k≤u

bk

∥∥∥∥∥
m+k∑

i=m+l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ (

δ

2

)−γ
.

Since the series {H(X(j)
i , θ̃)}i≥1 is stationary and the constant sequence b̃k ≡ l

ful�lls the conditions of Assumption A.2.10 (a) we obtain

E

(
bl

∥∥∥∥∥
m+l∑

i=m+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

= E

(
bl

∥∥∥∥∥
l∑

i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ E

(
max
1≤k≤l

bl

∥∥∥∥∥
k∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ C̃1

l∑
k=1

bγl k
γ/2−1 ≤ C̃1b

γ
l l
γ/2,

where C̃1 is a constant only depending on γ. Furthermore, with b̃k = bk+l and an
index shift to h = k − l the stationarity of the series and Assumption A.2.10 (a)
can be used again to get

E

(
max
l<k≤u

bk

∥∥∥∥∥
m+k∑

i=m+l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

= E

(
max

1≤h≤u−l
b̃h

∥∥∥∥∥
m+l+h∑
i=m+l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

= E

(
max

1≤h≤u−l
b̃h

∥∥∥∥∥
h∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ C̃2

u−l∑
h=1

b̃γhh
γ/2−1 = C̃2

u∑
k=l+1

bγk(k − l)
γ/2−1 ≤ C̃2

u∑
k=l+1

bγkk
γ/2−1.

Thus, with C̃ = 2γ
(

max
(
C̃1, C̃2

))
we can complete the proof of (a).

(b) On noting that by the triangle inequality and the monotonicity of the sequence
{bk}

max
l≤k≤u

bk

∥∥∥∥∥
m∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
≤ bu

∥∥∥∥∥
m∑

i=m−u+1

H0(X(j)
i , θ̃)

∥∥∥∥∥+ max
l≤k<u

bk

∥∥∥∥∥
m∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
≤ bu

∥∥∥∥∥
m∑

i=m−u+1

H0(X(j)
i , θ̃)

∥∥∥∥∥+ max
l<k<u

bk

∥∥∥∥∥
m−l∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥+ bl

∥∥∥∥∥
m∑

i=m−l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ,
we receive

P

(
max
l≤k≤u

bk

∥∥∥∥∥
m∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

)
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≤ P

(
bu

∥∥∥∥∥
m∑

i=m−u+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)
+ P

(
max
l<k<u

bk

∥∥∥∥∥
m−l∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)

+ P

(
bl

∥∥∥∥∥
m∑

i=m−l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)
.

Furthermore, with the stationarity of the sequence {H(X(j)
i , θ̃)}i≥1 we get

bu

∥∥∥∥∥
m∑

i=m−u+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ D
= bu

∥∥∥∥∥
u∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≤ max
l≤k≤u

bk

∥∥∥∥∥
k∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥ .
Thus, applying part (a) yields(

δ

3

)γ
P

(
bu

∥∥∥∥∥
m∑

i=m−u+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)
≤ C̃1

(
bγl l

γ/2 +
u∑

k=l+1

bγkk
γ/2−1

)
.

Besides, as bl
∥∥∥∑m

i=m−l+1H0(X(j)
i , θ̃)

∥∥∥ D
= bl

∥∥∥∑l
i=1H0(X(j)

i , θ̃)
∥∥∥ we obtain by part

(a) (
δ

3

)γ
P

(
bl

∥∥∥∥∥
m∑

i=m−l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)
≤ C̃2

u∑
k=1+l

bγkk
γ/2−1.

Moreover, with an index shift to h = u − k and b̃h = bu−h the stationarity of the
series can be used again to get

max
l<k<u

bk

∥∥∥∥∥
m−l∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = max
1≤h<u−l

b̃h

∥∥∥∥∥
m−l∑

i=m−u+h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
= max

1≤h<u−l
b̃h

∥∥∥∥∥
m−u+u−l∑
i=m−u+h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ D
= max

1≤h<u−l
b̃h

∥∥∥∥∥
u−l∑
i=h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ .
Hence, since the sequence {b̃h} is positive and non-decreasing Assumption A.2.10
(b) in connection with the Chebychev inequality yields(

δ

3

)γ
P

(
max
l≤k<u

bk

∥∥∥∥∥
m−l∑

i=m−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)

≤
(
δ

3

)γ
P

(
max

1≤h≤u−l
b̃h

∥∥∥∥∥
u−l∑
i=h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ ≥ δ

3

)

≤ E

(
max

1≤h≤u−l
b̃h

∥∥∥∥∥
u−l∑
i=h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ C̃3

u−l∑
h=1

b̃γh(u− l − h)γ/2−1

= C̃3

u−1∑
k=l

bγk(k − l)
γ/2−1 = C̃3

u−1∑
k=l+1

bγk(k − l)
γ/2−1 ≤ C̃3

u∑
k=l+1

bγk(k − l)
γ/2−1
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≤ C̃3

u∑
k=l+1

bγkk
γ/2−1,

completing the proof of part (b).

In the following lemma we use the notation

E1(k,G,θ) =
1√
2G

(
Aθ,kj,n − E

(
Aθ̃,kj,n

)
−Aθ,k + E

(
Aθ̃,k

))
and (2.19)

E2(k,G,θ) =
1√
2G

(
Aθ,kj,n − E

(
Aθ̃,kj,n

)
+Aθ,k − E

(
Aθ̃,k

))
,

for some �xed θ̃ which appears in the expectations.

Lemma 2.2.2. Let Assumptions A.2.1, A.2.2 and A.2.10 hold for some θ̃. Then, for
any β > 0, 0 < u < kj,n and 0 < C ≤ G

(a) P

(
max

kj,n−G≤k≤kj,n−C

‖E1(k,G,θ̃)‖
(kj,n−k)

≥ β

)
= O

(
(β2GC)

−γ/2
)

(b) P

(
max

kj,n−u≤k≤kj,n

∥∥∥E1(k,G, θ̃)
∥∥∥ ≥ β

)
= O

(
β−γ

(
u
G

)γ/2)
,

(c) P

(
max

kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥ β

)
= O (β−γ) ,

with E1(k,G,θ) and E2(k,G,θ) as in (2.19).

Proof. Similar arguments as in the proof of Lemma 5.2 in Eichinger & Kirch (2018)
can be used here.

(a) By Assumptions A.2.1 and A.2.2 we obtain, for all kj,n −G ≤ k ≤ kj,n − C,

E1(k,G, θ̃)

=
1√
2G

 kj,n+G∑
i=k+G+1

H0(X(j+1)
i , θ̃) +

kj,n−G∑
i=k−G+1

H0(X(j)
i , θ̃)− 2

kj,n∑
i=k+1

H0(X(j)
i , θ̃)

 .

This implies in connection with an index shift of l = kj,n − k

P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥ β


≤ P

 max
C≤l≤G

1

l

∥∥∥∥∥∥
kj,n+G∑

i=kj,n−l+G+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


+ P

 max
C≤l≤G

1

l

∥∥∥∥∥∥
kj,n−G∑

i=kj,n−l−G+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


+ P

 max
C≤l≤G

1

l

∥∥∥∥∥∥
kj,n∑

i=kj,n−l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

6

 .
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Applying part (b) of Lemma 2.2.1 on the �rst summand of the inequality above
together with the monotony of integrals yields

P

 max
C≤l≤G

1

l

∥∥∥∥∥∥
kj,n+G∑

i=kj,n−l+G+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


≤ C̃

(
C−γ/2 +

G∑
l=C+1

l−γ/2−1

)(
β
√

2G

3

)−γ

≤ C̃

C−γ/2 +

G∫
C

x−γ/2−1dx

(β√2G

3

)−γ

≤ C̃

C−γ/2 +

∞∫
C

x−γ/2−1dx

(β√2G

3

)−γ

=
(
β2GC

)−γ/2
C̃

(√
2

3

)−γ (
1 +

2

γ

)
= O

((
β2CG

)−γ/2)
.

By stationarity, this also implies corresponding assertions for the other two sum-
mands completing the proof of part (a).

(b) Since
∥∥∥E1(kj,n, G, θ̃)

∥∥∥ = 0, it is su�cient to consider the maximum over kj,n−u ≤
k < kj,n. Similar to (a), by the triangle inequality and an index shift to l = kj,n−k
we obtain

P

(
max

kj,n−u≤k<kj,n

∥∥∥E1(k,G, θ̃)
∥∥∥ ≥ β

)

≤ P

max
1≤l≤u

∥∥∥∥∥∥
kj,n+G∑

i=kj,n−l+G+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


+ P

max
1≤l≤u

∥∥∥∥∥∥
kj,n−G∑

i=kj,n−l−G+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


+ P

max
1≤l≤u

∥∥∥∥∥∥
kj,n∑

i=kj,n−l+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

6

 .

Considering the �rst summand, with bk ≡ 1 we apply Lemma 2.2.1 (b) to get

P

max
1≤l≤u

∥∥∥∥∥∥
kj,n+G∑

i=kj,n−l+G+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β
√

2G

3


≤ C̃

(
uγ/2 +

u∑
l=1

lγ/2−1

)(
β
√

2G

3

)−γ
= O

(
β−γ

( u
G

)γ/2)
,

since γ/2 − 1 > 0. By stationarity, this also implies corresponding assertions for
the other two summands.
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(c) On noting that

E2(k,G, θ̃)

= −E1(k,G, θ̃) +

√
2√
G

 kj,n+G∑
i=kj,n+1

H0(X(j+1)
i , θ̃)−

kj,n∑
i=kj,n−G+1

H0(X(j)
i , θ̃)


holds for all kj,n −G ≤ k ≤ kj,n − C we receive

P

(
max

kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥ β

)
(2.20)

≤ P

(
max

kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥ ≥ β

3

)

+ P

 1√
G

∥∥∥∥∥∥
kj,n+G∑
i=kj,n+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β

3
√

2


+ P

 1√
G

∥∥∥∥∥∥
kj,n∑

i=kj,n−G+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β

3
√

2

 .

For the �rst summand, applying the result of part (b) yields

P

(
max

kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥ ≥ β

3

)
≤ P

(
max

kj,n−G≤k≤kj,n

∥∥∥E1(k,G, θ̃)
∥∥∥ ≥ β

3

)
= O

(
β−γ

)
.

Furthermore, by Lemma 2.2.1 (a) we obtain, for some constant C̃ > 0,

P

 1√
G

∥∥∥∥∥∥
kj,n+G∑
i=kj,n+1

H0(X(j+1)
i , θ̃)

∥∥∥∥∥∥ ≥ β

3
√

2

 ≤ ( β

3
√

2

)−γ
C̃ = O

(
β−γ

)
,

and similarly with Lemma 2.2.1 (b)

P

 1√
G

∥∥∥∥∥∥
kj,n∑

i=kj,n−G+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ ≥ β

3
√

2

 = O
(
β−γ

)
,

completing the proof of part (c).

Lemma 2.2.3. Let the Assumption A.1.1, A.2.1 and A.2.2 hold for some θ̃. Further-
more, assume that {θ̂n}n∈N is a sequence of estimators ful�lling Assumption A.2.11 for

θ̃. Then,

(a)

max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,kj,n
−Aθ̂n,k

−
(
Aθ̃,kj,n

−Aθ̃,k

)∥∥∥
kj,n − k

= oP (1)
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(b)

max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,k
+Aθ̂n,kj,n

−
(
Aθ̃,k +Aθ̃,kj,n

)∥∥∥ = oP (G)

Proof. (a) Assumptions A.2.1 and A.2.2 and the triangle inequality in connection with
an index shift to l = kj,n − k yield

max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,kj,n
−Aθ̂n,k

−
(
Aθ̃,kj,n

−Aθ̃,k

)∥∥∥
kj,n − k

≤ max
C≤l≤G

∥∥∥∑kj,n+G
i=kj,n+G−l+1

(
H(X(j+1)

i , θ̂n)−H(X(j+1)
i , θ̃)

)∥∥∥
l

+ max
C≤l≤G

∥∥∥∑kj,n
i=kj,n−l+1

(
H(X(j)

i , θ̂n)−H(X(j)
i , θ̃)

)∥∥∥
l

+ max
C≤l≤G

∥∥∥∑kj,n−G
i=kj,n−G−l+1

(
H(X(j)

i , θ̂n)−H(X(j)
i , θ̃)

)∥∥∥
l

= oP (1),

where the last line follows directly from Assumption A.2.11.

(b) We get

max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,k
+Aθ̂n,kj,n

−
(
Aθ̃,k +Aθ̃,kj,n

)∥∥∥
G

≤ max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,kj,n
−Aθ̂n,k

−
(
Aθ̃,kj,n

−Aθ̃,k

)∥∥∥
kj,n − k

+
2

G

∥∥∥Aθ̂n,kj,n
−Aθ̃,kj,n

∥∥∥
≤ max

kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,kj,n
−Aθ̂n,k

−
(
Aθ̃,kj,n

−Aθ̃,k

)∥∥∥
kj,n − k

+
2

G

∥∥∥∥∥∥
kj,n+G∑
i=kj,n+1

(
H(X(j+1)

i , θ̂n)−H(X(j+1)
i , θ̃)

)∥∥∥∥∥∥
+

2

G

∥∥∥∥∥∥
kj,n∑

i=kj,n−G+1

(
H(X(j)

i , θ̂n)−H(X(j)
i , θ̃)

)∥∥∥∥∥∥
= oP (1),

where the last line follows from Assumption A.2.11 and the result of part (a).

The following lemma gives more information about the intervals of exceedings obtained
by the MOSUM score-type procedure. It shows that the start and end points vj and wj,
j ∈ Q̃, lie in the G-environment of the corresponding change point kj,n with probability
tending to one.
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Lemma 2.2.4. Let the assumptions of Theorem 2.1.8 hold. Furthermore, let [vj,n, wj,n]

for j ∈ Q̃ be the intervals of exceedings of the statistic Tk,n

(
G, θ̃

)
, Tk,n

(
G, θ̂n

)
or

T̂k,n

(
G, θ̂n

)
. Then,

lim
n→∞

P (kj,n −G < vj,n < kj,n < wj,n < kj,n +G) = 1.

Proof. The statement follows directly from the results shown in the proof of Theorem
2.1.8 since

P (kj,n −G < vj,n < kj,n < wj,n < kj,n +G)

≥ P

({
max
k∈Ãn,G

Tk,n

(
G, θ̃

)
< Dn (αn, G)

}
∩
{

min
k∈B̄n,G

Tk,n

(
G, θ̃

)
≥ Dn (αn, G)

})

≥ P

(
max
k∈Ãn,G

Tk,n

(
G, θ̃

)
< Dn (αn, G)

)
+ P

(
min
k∈B̄n,G

Tk,n

(
G, θ̃

)
≥ Dn (αn, G)

)
− 1,

with Ãn,G and B̄n,G as in (2.12) and (2.13).

Now, we are almost ready to state the main result of this section. However, note that
the long-run covariance matrix of H(Xi, θ̃) is usually unknown in applications so that
an estimator is used in the statistic. In order to get a better convergence rate of the
change point estimators for these situations as well we need to modify the MOSUM
procedure in the following way.
Let Σ̂k,n be an estimator for the long-run covariance matrix Σk ful�lling Assumption
A.2.5. This covariance matrix estimator depends on k, which means that we can get
di�erent estimates of the covariance matrix for every time point k. For this reason
we call it a local estimator of the long-run covariance matrix. The estimators and
the corresponding intervals of exceedings obtained by the MOSUM procedure, which
uses this local estimator in the statistic, are denoted by q̂n, k̂j,n and [vj,n, wj,n], for
j ∈ Q̃. Furthermore, let Σ̂j,n, j = 1, . . . , q + 1, be an estimator of the long-run
covariance matrix computed on the whole sample or a �xed subsample which allows to
apply di�erent estimators Σ̂j,n for di�erent regimes. We call Σ̂j,n a global estimator
and assume that this estimator sequence is consistent for the true long-run covariance
matrix Σ under the null and converges in probability to some positive de�nite matrix
ΣA,j under alternative.
At �rst, we determine the intervals of exceedings [vj,n, wj,n] by the MOSUM statistic
which uses the local estimator Σ̂k,n. Then, the change point estimators are computed
by �nding the maxima of the MOSUM statistic, which bases on the global estimator
Σ̂j,n, on [vj,n, wj,n], j ∈ Q̃. We de�ne

k̄j,n := arg max
vj,n≤k≤wj,n

1√
2G

√
AT
θ̃,k

Σ̂
−1

j,nAθ̃,k for j ∈ Q̃. (2.21)

Note that not all of them need to exist in �nite samples.
In the following theorem we derive a better convergence rate for these modi�ed change
point estimators in comparison to Corollary 2.1.10.
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Theorem 2.2.5. Let Assumption A.1.1 on the bandwidth and Assumptions A.2.1,
A.2.2,A.2.3, A.2.7 and A.2.10 hold for some θ̃. Assume that a sequence {αn}n∈N
ful�lls Assumption A.2.8. Furthermore, let Σ̂k,n be a local estimator and Σ̂j,n be a
global estimator for the long-run covariance matrix ful�lling Assumption A.2.12.

(a) Then,
max
j∈Q̃

min
1≤l≤q̂n

∣∣k̄l,n − kj,n∣∣ = OP (1).

(b) Let {θ̂n}n∈N be a sequence of estimators ful�lling Assumption A.2.4, A.2.9 and

A.2.11 for θ̃. Then, θ̃ can be replaced by θ̂n in the statistic without changing the
result of part (a).

Proof. (a) The basic idea of this proof goes back to Eichinger & Kirch (2018) (Theorem
3.2.).
Since the number of change points is �nite it is su�cient to prove that
min1≤l≤q̂n

∣∣k̄l,n − kj,n∣∣ = OP (1) holds for all j ∈ Q̃. Hence, we want to show that
for each ε > 0 there exists a constant C > 0 such that

P

(
min

1≤l≤q̂n

∣∣k̄l,n − kj,n∣∣ > C

)
≤ P

(∣∣k̄j,n − kj,n∣∣ > C
)

= P
(
{k̄j,n > kj,n + C} ∪ {k̄j,n < kj,n − C}

)
= P

(
k̄j,n > kj,n + C

)
+ P

(
k̄j,n < kj,n − C

)
≤ ε.

We de�ne In,G := {kj,n −G < vj,n < kj,n < wj,n < kj,n +G} andMn,G := {q̂n = q̃}∩
In,G, with vj,n, wj,n and q̂n obtained by the MOSUM procedure using the local co-
variance matrix estimator. Furthermore, we get

k̄j,n = arg max
vj,n≤k≤wj,n

1√
2G

√
AT
θ̃,k

Σ̂
−1

j,nAθ̃,k = arg max
vj,n≤k≤wj,n

1√
2G

∥∥∥Σ̂−1/2

j,n Aθ̃,k

∥∥∥
= arg max

vj,n≤k≤wj,n
V

(j)
k,n (G, θ̃),

for all j ∈ Q̃, where V (j)
k,n (G, θ̃) = 1

2G

∥∥∥Σ̂−1/2

j,n Aθ̃,k

∥∥∥2

− 1
2G

∥∥∥Σ̂−1/2

j,n Aθ̃,kj,n

∥∥∥2

. On

noting that V (j)
kj,n,n

(G, θ̃) = 0 and kj,n ∈ (vj,n, wj,n) on Mn,G, we receive, for some
0 < C < G,

P
(
k̄j,n < kj,n − C

)
= P

(
k̄j,n < kj,n − C,Mn,G

)
+ P

(
k̄j,n < kj,n − C,MC

n,G

)
≤ P

(
arg max
vj,n≤k≤wj,n

V
(j)
k,n (G, θ̃) < kj,n − C,Mn,G

)
+ P

(
MC

n,G

)
= P

(
max

vj,n≤k<kj,n−C
V

(j)
k,n (G, θ̃) ≥ max

kj,n−C≤k≤wj,n
V

(j)
k,n (G, θ̃),Mn,G

)
+ P

(
MC

n,G

)
≤ P

(
max

vj,n≤k<kj,n−C
V

(j)
k,n (G, θ̃) ≥ 0,Mn,G

)
+ P

(
MC

n,G

)
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= P

(
max

vj,n≤k<kj,n−C
V

(j)
k,n (G, θ̃) ≥ 0,Mn,G

)
+ o(1),

where the last line follows from Theorem 2.1.8 and Lemma 2.2.4 since

P (MC
n,G) ≤ P (q̂n 6= q̃) + P (In,G) .

Furthermore, we obtain

P

(
max

vj,n≤k<kj,n−C
V

(j)
k,n (G, θ̃) ≥ 0,Mn,G

)
≤ P

(
max

kj,n−G≤k≤kj,n−C
V

(j)
k,n (G, θ̃) ≥ 0,Mn,G

)
.

Hence, it su�ces to investigate the maximum of V (j)
k,n (G, θ̃) over all time points

k ∈ {kj,n −G, . . . , kj,n − C}. On noting that xTBy = yTBx holds in general for
a symmetric p× p matrix B and vectors x,y ∈ Rp, we obtain

2G V
(j)
k,n (G, θ̃) =

∥∥∥Σ̂−1/2

j,n Aθ̃,k

∥∥∥2

−
∥∥∥Σ̂−1/2

j,n Aθ̃,kj,n

∥∥∥2

= AT
θ̃,k

Σ̂
−1

j,nAθ̃,k −A
T
θ̃,kj,n

Σ̂
−1

j,nAθ̃,kj,n
=
(
Aθ̃,k −Aθ̃,kj,n

)T
Σ̂
−1

j,n

(
Aθ̃,k +Aθ̃,kj,n

)
= −

(
Aθ̃,kj,n

−Aθ̃,k

)T
Σ̂
−1

j,n

(
Aθ̃,k +Aθ̃,kj,n

)
.

Furthermore, with dj = E
(
H(X(j+1)

1 , θ̃)
)
−E

(
H(X(j)

1 , θ̃)
)
, we receive by Lemma

2.1.2, for k ∈ {kj,n −G, . . . , kj,n − C},

1√
2G

(
Aθ̃,kj,n

−Aθ̃,k

)
=

1√
2G

(
Aθ̃,kj,n

− E
(
Aθ̃,kj,n

)
−Aθ̃,k + E

(
Aθ̃,k

))
+ (2G)−1/2 (kj,n − k)dj

=: E1(k,G, θ̃) + (2G)−1/2 (kj,n − k)dj

and

1√
2G

(
Aθ̃,k +Aθ̃,kj,n

)
=

1√
2G

(
Aθ̃,kj,n

− E
(
Aθ̃,kj,n

)
+Aθ̃,k − E

(
Aθ̃,k

))
+ (2G)−1/2 (2G+ k − kj,n)dj

=: E2(k,G, θ̃) + (2G)−1/2 (2G+ k − kj,n)dj.

Hence, we get

V
(j)
k,n (G, θ̃)

= −
(
E1(k,G, θ̃) + (2G)−1/2 (kj,n − k)dj

)T
Σ̂
−1

j,n(
E2(k,G, θ̃) + (2G)−1/2 (2G+ k − kj,n)dj

)
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= −
(
ET

1 (k,G, θ̃)Σ̂
−1

j,nE2(k,G, θ̃) (2.22)

+(2G)−1/2 (2G+ k − kj,n)ET
1 (k,G, θ̃)Σ̂

−1

j,ndj

+(2G)−1/2 (kj,n − k)dTj Σ̂
−1

j,nE2(k,G, θ̃)

+(2G)−1(2G+ k − kj,n)(kj,n − k)dTj Σ̂
−1

j,ndj

)
.

Considering the last summand in (2.22) �rst, we want to replace the estimator
Σ̂j,n by the positive de�nite matrix ΣA given by Assumption A.2.12. Applying

Assumption A.2.12 and Lemma E.1.8 yields
∥∥∥Σ̂−1/2

j,n −Σ
−1/2
A,j

∥∥∥
F

= oP (1). Thus, on

noting that ‖dj‖ = O(1), Lemma E.1.5 can be used to receive∣∣∣∣∥∥∥Σ̂−1/2

j,n dj

∥∥∥2

−
∥∥∥Σ−1/2

A,j dj

∥∥∥2
∣∣∣∣

=
∣∣∣(∥∥∥Σ̂−1/2

j,n dj

∥∥∥− ∥∥∥Σ−1/2
A,j dj

∥∥∥)(∥∥∥Σ̂−1/2

j,n dj

∥∥∥+
∥∥∥Σ−1/2

A,j dj

∥∥∥)∣∣∣
≤
∥∥∥Σ̂−1/2

j,n −Σ
−1/2
A,j

∥∥∥
F
‖dj‖

(∥∥∥Σ̂−1/2

j,n −Σ
−1/2
A,j

∥∥∥
F
‖dj‖+ 2

∥∥∥Σ−1/2
A,j dj

∥∥∥) = oP (1),

implying that dTj Σ̂
−1

j,ndj = dTj Σ−1
A,jdj + oP (1). Furthermore, since the matrix Σ−1

A,j

is positive de�nite and dj 6= 0 holds for all j ∈ Q̃ we obtain

(2G)−1(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj ≥

C

2
dTj Σ−1

A,jdj =
C

2

∥∥∥Σ−1/2
A,j dj

∥∥∥2

> 0,

for all kj,n −G ≤ k ≤ kj,n − C. Hence, in connection with (2.22) we get

V
(j)
k,n (G, θ̃)

= −
(
ET

1 (k,G, θ̃)Σ̂
−1

j,nE2(k,G, θ̃)

+ (2G)−1/2 (2G+ k − kj,n)ET
1 (k,G, θ̃)Σ̂

−1

j,ndj

+ (2G)−1/2 (kj,n − k)dTj Σ̂
−1

j,nE2(k,G, θ̃)

+ (2G)−1(2G+ k − kj,n)(kj,n − k)
(
dTj Σ−1

A,jdj + oP (1)
))

= −(2G)−1(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj(

2GET
1 (k,G, θ̃)Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj

+

√
2GET

1 (k,G, θ̃)Σ̂
−1

j,ndj

(kj,n − k)dTj Σ−1
A,jdj

+

√
2GdTj Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)dTj Σ−1
A,jdj)

+ 1 + oP (1)

)
.

This can be used to obtain

P

(
max

kj,n−G≤k≤kj,n−C
V

(j)
k,n (G, θ̃) ≥ 0,Mn,G

)
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= P

(
max

kj,n−G≤k≤kj,n−C
−(2G)−1(2G+ k − kj,n)(kj,n − k)dTj Σ−1

A,jdj(
2GET

1 (k,G, θ̃)Σ̂
−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj

+

√
2GET

1 (k,G, θ̃)Σ̂
−1

j,ndj

(kj,n − k)dTj Σ−1
A,jdj

+

√
2GdTj Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)dTj Σ−1
A,jdj)

+ 1 + oP (1)

)
≥ 0,Mn,G

)

= P

(
max

kj,n−G≤k≤kj,n−C

(
2GET

1 (k,G, θ̃)Σ̂
−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj

+

√
2GET

1 (k,G, θ̃)Σ̂
−1

j,ndj

(kj,n − k)dTj Σ−1
A,jdj

+

√
2GdTj Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)dTj Σ−1
A,jdj)

+ oP (1)

)
≤ −1,Mn,G

)

≤ P

(
max

kj,n−G≤k≤kj,n−C

∣∣∣∣∣ 2GET
1 (k,G, θ̃)Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)(kj,n − k)dTj Σ−1
A,jdj

+

√
2GET

1 (k,G, θ̃)Σ̂
−1

j,ndj

(kj,n − k)dTj Σ−1
A,jdj

+

√
2GdTj Σ̂

−1

j,nE2(k,G, θ̃)

(2G+ k − kj,n)dTj Σ−1
A,jdj

+ oP (1)

∣∣∣∣∣ ≥ 1,Mn,G

)

≤ P

 max
kj,n−G≤k≤kj,n−C

2G
∣∣∣ET

1 (k,G, θ̃)Σ̂
−1

j,nE2(k,G, θ̃)
∣∣∣

(2G+ k − kj,n)(kj,n − k)
∥∥∥Σ−1/2

A,j dj

∥∥∥2

+ max
kj,n−G≤k≤kj,n−C

√
2G
∣∣∣ET

1 (k,G, θ̃)Σ̂
−1

j,ndj

∣∣∣
(kj,n − k)

∥∥∥Σ−1/2
A,j dj

∥∥∥2

+ max
kj,n−G≤k≤kj,n−C

√
2G
∣∣∣dTj Σ̂

−1

j,nE2(k,G, θ̃)
∣∣∣

(2G+ k − kj,n)
∥∥∥Σ−1/2

A,j dj

∥∥∥2 + oP (1) ≥ 1,Mn,G


≤ P

 max
kj,n−G≤k≤kj,n−C

√
2G
∥∥∥Σ̂−1/2

j,n E1(k,G, θ̃)
∥∥∥

(kj,n − k)
∥∥∥Σ−1/2

A,j dj

∥∥∥
max

kj,n−G≤k≤kj,n−C

√
2
∥∥∥Σ̂−1/2

j,n E2(k,G, θ̃)
∥∥∥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
+ max

kj,n−G≤k≤kj,n−C

√
2G
∥∥∥Σ̂−1/2

j,n E1(k,G, θ̃)
∥∥∥∥∥∥Σ̂−1/2

j,n dj

∥∥∥
(kj,n − k)

∥∥∥Σ−1/2
A,j dj

∥∥∥2

+ max
kj,n−G≤k≤kj,n−C

√
2
∥∥∥Σ̂−1/2

j,n E2(k,G, θ̃)
∥∥∥∥∥∥Σ̂−1/2

j,n dj

∥∥∥
√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥2 + oP (1) ≥ 1,Mn,G

 ,

where the last line follows from Cauchy-Schwarz inequality and (2G+k−kj,n) ≥ G.
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After splitting the probability, applying Lemma E.1.5 yields

≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
∥∥∥Σ̂−1/2

j,n

∥∥∥
F


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥
√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
2
√

2
∥∥∥Σ̂−1/2

j,n

∥∥∥
F


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥2

4
√

2G
∥∥∥Σ̂−1/2

j,n

∥∥∥2

F
‖dj‖


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥2

4
√

2
∥∥∥Σ̂−1/2

j,n

∥∥∥2

F
‖dj‖

+ o(1).

In order to use Lemma 2.2.2 we need to get rid of the covariance matrix estimator
in the probability statements above. Therefore, we de�ne

Fn,ε :=
{∥∥∥Σ̂−1/2

j,n

∥∥∥
F
≤
∥∥∥Σ−1/2

A

∥∥∥
F

+ ε
}

for some ε > 0. On noting that

P
(
FC
n,ε

)
= P

(∥∥∥Σ̂−1/2

j,n

∥∥∥
F
−
∥∥∥Σ−1/2

A,j

∥∥∥
F
> ε
)

≤ P
(∥∥∥Σ̂−1/2

j,n −Σ
−1/2
A,j

∥∥∥
F
> ε
)
→ 0 as n→∞,

applying Lemma 2.2.2 (a) and (c) yields

P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
∥∥∥Σ̂−1/2

j,n

∥∥∥
F


≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
∥∥∥Σ̂−1/2

j,n

∥∥∥
F

, Fn,ε

+ P
(
FC
n,ε

)

≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
) , Fn,ε


+ P

(
FC
n,ε

)
≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)
+ P

(
FC
n,ε

)
= O

(
C−γ/2

)
+ o(1) = o(1)
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and

P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥
√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
2
√

2
∥∥∥Σ̂−1/2

j,n

∥∥∥
F


≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
2
√

2
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)
+ P

(
FC
n,ε

)
= O

(
G−γ/2

)
+ o(1) = o(1).

The remaining probabilities can be approximated in an analogous manner.
Consequently, we receive

P
(
k̄j,n < kj,n − C

)
= O

(
C−γ/2

)
+ o(1).

The second part of the assertion

P
(
k̄j,n > kj,n + C

)
= O

(
C−γ/2

)
+ o(1)

can be shown analogously with a modi�ed version of Lemma 2.2.2. Hence, we can
conclude that

P
(∣∣k̄j,n − kj,n∣∣ > C

)
= O

(
C−γ/2

)
+ o(1),

which proves the assertion.

(b) Similar to (a), we obtain

P
(
k̄j,n < kj,n − C

)
≤ P

(
max

kj,n−G≤k≤kj,n−C
V

(j)
k,n (G, θ̂n) ≥ 0,Mn,G

)
+ o(1)

since the results of Theorem 2.1.8 and Lemma 2.2.4 remain true if θ̃ is replaced by
an estimator satisfying Assumptions A.2.4 and A.2.9. Moreover, we receive

P

(
max

kj,n−G≤k≤kj,n−C
V

(j)
k,n (G, θ̂n) ≥ 0,Mn,G

)

≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̂n)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̂n)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
2
√

2
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̂n)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥2

4
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)2

‖dj‖


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̂n)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥2

4
√

2
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)2

‖dj‖

+ o(1)

= o(1).
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On noting that

E1(k,G, θ̂n) = E1(k,G, θ̃) +
1√
2G

(
Aθ̂n,kj,n

−Aθ̂n,k
−
(
Aθ̃,kj,n

−Aθ̃,k

))
and

E2(k,G, θ̂n) = E2(k,G, θ̃) +
1√
2G

(
Aθ̂n,k

+Aθ̂n,kj,n
−
(
Aθ̃,k +Aθ̃,kj,n

))
,

combining Lemma 2.2.3 and the results of part (a) yields

P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̂n)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
2
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E1(k,G, θ̃)
∥∥∥

(kj,n − k)
≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
4
√

2G
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,kj,n
−Aθ̂n,k

−
(
Aθ̃,kj,n

−Aθ̃,k

)∥∥∥
(kj,n − k)

≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
4
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


= O
(
C−γ/2

)
+ o(1) = o(1)

and

P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̂n)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
2
√

2
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


≤ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥E2(k,G, θ̃)
∥∥∥ ≥

√
G
∥∥∥Σ−1/2

A,j dj

∥∥∥
4
√

2
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


+ P

 max
kj,n−G≤k≤kj,n−C

∥∥∥Aθ̂n,k
+Aθ̂n,kj,n

−
(
Aθ̃,k +Aθ̃,kj,n

)∥∥∥
G

≥

∥∥∥Σ−1/2
A,j dj

∥∥∥
4
(∥∥∥Σ−1/2

A,j

∥∥∥
F

+ ε
)


= O
(
G−γ/2

)
+ o(1) = o(1),

which proves the assertion.

2.3. Some Considerations on the Assumptions

The assumptions of Theorem 2.1.1 and Theorem 2.1.8 are stated in quite a general way.
Hence, before applying the MOSUM procedure to a speci�c model one needs to check
whether these general assumptions are satis�ed or not. Here, we consider two examples,
an i.i.d. sequence and a stationary and strongly mixing sequence, and show that they
satisfy the main assumptions under some moment conditions which are summarized in
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Section B. In doing so, we �rst assume that there exists an estimator sequence which
is
√
n-consistent. Later on, we will examine a speci�c class of estimator sequences and

derive their
√
n-consistency under the null hypothesis and the alternative.

In this chapter, we assume that the estimating function H is twice continuously dif-
ferentiable on Θ, where Θ ⊂ Rp is a compact parameter space, and that H and its
derivatives are measurable with respect to Xi. For convenience, let the co-domain
of H be a subset of Rp, i.e. H is a vector valued function such that H(x,θ) =
(H1(x,θ), . . . , Hp(x,θ))T . Furthermore, note that the following notation is used:

• H0(Xi,θ) = H(Xi,θ)− E (H(X1,θ)),

• ∇H0(Xi,θ) = ∇H(Xi,θ)− E (∇H(X1,θ)) with
∇H0(Xi,θ) = (∇H1,0, . . .∇Hp,0), where ∇Hj,0 denotes the centered gradient
vector of Hj,

• ∇2Hj,0(Xi,θ) = ∇2Hj(Xi,θ)−E (∇2Hj(X1,θ)) representing the centered Hessian
matrix of Hj,

• under the null hypothesis: V (θ) = E (∇H(X1,θ))T and

• under alternative: V j(θ) = E
(
∇H(X(j)

1 ,θ)
)T

.

2.3.1. Under the Null Hypothesis

We concentrate on the following two examples satisfying Assumption A.1.2:

(E1) X1, . . . ,Xn are an i.i.d. sequence of random vectors or

(E2) X1, . . . ,Xn are a stationary and strongly mixing sequence of random vectors with
a mixing rate α(n) satisfying α(n) = O(n−β) for some β > 1 + 2/ν, where ν is as
in Assumption A.1.3.

The strong mixing condition introduced by Rosenblatt (1956) describes a speci�c type
of dependence. The following de�nition can be found in Bradley (2007) on page 28.

De�nition 2.3.1. Let {Xi}i≥1 be a sequence of random variables and let Ful :=
σ(Xi, l ≤ i ≤ u) denote the σ-�eld generated by (Xi, l ≤ i ≤ u). Furthermore, let

α(n) := sup
j∈N

sup
A∈Fj1 ,B∈F∞j+n

|P (A ∩B)− P (A)P (B)| .

Then, the sequence {Xi} is called strongly mixing if α(n)→ 0 as n→∞.

Furthermore, we assume that the estimator sequence θ̂n is
√
n-consistent for some

θ̃ ∈ Θ under the null hypothesis and that the series ful�ll the moment conditions
below which are listed in Section B.1 as well.

B.1.1 Let E (‖H(X1,θ)‖) <∞ hold for all θ ∈ Θ.
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B.1.2 Let E

(∥∥∥H(X1, θ̃)
∥∥∥2
)
<∞.

B.1.3 Let E (supθ∈Θ ‖∇H(X1,θ)‖F ) <∞.

B.1.4 E (supθ∈Θ ‖∇2Hl(X1,θ)‖F ) <∞ hold for all l = 1, . . . , p.

B.1.5 There exists a ν > 0 such that E

(∥∥∥H(X1, θ̃)
∥∥∥2+ν

)
<∞.

B.1.6 There exists a ν > 0 such that E
(
‖∇H(X1,θ)‖2+ν

F

)
<∞ holds for all θ ∈ Θ.

2.3.1.1. Assumptions A.1.4 and A.1.3

In this paragraph we prove that the main assumptions of Theorem 2.1.1 are satis�ed
by these speci�c time series.

Lemma 2.3.2. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2). Furthermore,

let Assumption A.1.1 hold on the bandwidth and let θ̂n be a global estimator sequence
which is

√
n-consistent for some θ̃ under the null. Then,

• if {Xi : i ≥ 1} ful�lls Condition B.1.5 , Assumption A.1.3 is satis�ed.

• if {Xi : i ≥ 1} ful�lls the Conditions B.1.4 and B.1.6, Assumptions A.1.4 is
satis�ed.

Proof. • Assumption A.1.4:
By a Taylor expansion of each component (l = 1, . . . , p) there exists a ξl,n,k such

that
∥∥∥ξl,n,k − θ̃∥∥∥ ≤ ∥∥∥θ̂n − θ̃∥∥∥ with

k+G∑
i=k+1

Hl(Xi, θ̂n)−
k∑

i=k−G+1

Hl(Xi, θ̂n)−

(
k+G∑
i=k+1

Hl(Xi, θ̃)−
k∑

i=k−G+1

Hl(Xi, θ̃)

)
(2.23)

=

(
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

)T (
θ̂n − θ̃

)
+

1

2

(
θ̂n − θ̃

)T ( k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

)(
θ̂n − θ̃

)
,

where ∇Hl(Xi,θ) denotes the gradient with respect to θ and ∇2Hl(Xi,θ) is the
Hessian matrix.
We start with approximating the �rst summand and use the following notation:

∇Hl(Xi, θ̃) = X̃ i = (X̃i,1, . . . , X̃i,p)
T .
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Since ∇Hl and the projection map are measurable with respect to Xi we get that
the sequences {X̃i,1}i≥1, . . . , {X̃i,p}i≥1 are i.i.d. (E1) or stationary and strongly
mixing with at least the same rate as the original series (E2). Without loss of
generality we can assume that the long-run variance of these random variables
is equal to 1. Furthermore, note that Lemma E.1.6 (a) and Assumption B.1.6

imply E

(∣∣∣X̃i,m

∣∣∣2+ν
)
<∞ for m = 1, . . . , p. Hence, for a sequence of type (E1)

the invariance principle proved by Komlós et al. (1975), Komlós et al. (1976) and
Major (1976) can be applied to obtain∣∣∣∣∣

k∑
i=1

X̃i,m − kE
(
X̃1,m

)
−W (k)

∣∣∣∣∣ = O
(
k1/(2+ν)

)
a.s., for k →∞,

where W (t) is a standard Wiener process. We get a similar result for sequences
of type (E2) by using Theorem 4 of Kuelbs & Philipp (1980). Consequently,
applying Theorem 2.1. of Eichinger & Kirch (2018), which is a result on the
null asymptotics of the classical MOSUM statistic, to each sequence {X̃i,m} and
Lemma E.1.6 (b) yields

max
G≤k≤n−G

1√
2G

∥∥∥∥∥
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

∥∥∥∥∥
≤

p∑
m=1

max
G≤k≤n−G

1√
2G

∣∣∣∣∣
k+G∑
i=k+1

X̃i,m −
k∑

i=k−G+1

X̃i,m

∣∣∣∣∣ = OP

(√
log(n/G)

)
.

Thus, together with the Cauchy-Schwarz inequality and the
√
n-consistency of

the estimator sequence we receive

max
G≤k≤n−G

1√
2G

∣∣∣∣∣∣
(

k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

)T (
θ̂n − θ̃

)∣∣∣∣∣∣
≤ max

G≤k≤n−G

1√
2G

∥∥∥∥∥
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

∥∥∥∥∥∥∥∥θ̂n − θ̃∥∥∥
= OP

(√
log(n/G)

n

)
= oP

(
(log(n/G))−1/2

)
,

since log(n/G)√
n
≤ log(n)√

n
→ 0. Now, the next step is to approximate the remainder

term of the Taylor expansion in (2.23). With the measurability of the second
derivatives ofH we get that the random variables ∇2Hl(X1,θ), . . . ,∇2Hl(Xn,θ)
are i.i.d. (E1) or stationary and strongly mixing (E2) and, thus, stationary and
ergodic. Hence, as

E

(
sup
θ∈Θ

∥∥∇2Hl(X1,θ)
∥∥
F

)
<∞

by Assumption B.1.4 the Uniform Law of Large Numbers of Theorem E.2.6 shows

sup
θ∈Θ

1

n

∥∥∥∥∥
n∑
i=1

∇2Hl(Xi,θ)

∥∥∥∥∥
F

(2.24)
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≤ sup
θ∈Θ

1

n

n∑
i=1

∥∥∇2Hl,0(Xi,θ)
∥∥
F

+ sup
θ∈Θ

∥∥E (∇2Hl(X1,θ)
)∥∥

F
= O(1) a.s.,

since supθ∈Θ ‖E (∇2Hl(X1,θ))‖F ≤ E (supθ∈Θ ‖∇2Hl(X1,θ)‖F ) = O(1). This
implies∥∥∥∥∥

k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

∥∥∥∥∥
F

≤ (k +G) sup
θ∈Θ

1

k +G

∥∥∥∥∥
k+G∑
i=1

∇2Hl(Xi,θ)

∥∥∥∥∥
F

+ 2k sup
θ∈Θ

1

k

∥∥∥∥∥
k∑
i=1

∇2Hl(Xi,θ)

∥∥∥∥∥
F

+ (k −G) sup
θ∈Θ

1

k −G

∥∥∥∥∥
k−G∑
i=1

∇2Hl(Xi,θ)

∥∥∥∥∥
F

= O(k +G) = O(n) a.s. uniformly in k.

Thus, combining Lemma E.1.5 with the
√
n-consistency of the estimator sequence

yields

max
G≤k≤n−G

1√
G

∥∥∥∥∥(θ̂n − θ̃)T
(

k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)

−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

)(
θ̂n − θ̃

)∥∥∥∥∥
≤ 1√

G

∥∥∥θ̂n − θ̃∥∥∥2

max
G≤k≤n−G

∥∥∥∥∥
k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

∥∥∥∥∥
F

= OP

(
1√
G

)
= oP

(
(log(n/G))−1/2

)
.

Finally, with Lemma E.1.6 (b) we can conclude that

max
G≤k≤n−G

1√
G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥
≤

p∑
l=1

max
G≤k≤n−G

1√
G

∣∣∣∣∣
k+G∑
i=k+1

(
Hl(Xi, θ̂n)−Hl(Xi, θ̃)

)
−

k∑
i=k−G+1

(
Hl(Xi, θ̂n)−Hl(Xi, θ̃)

)∣∣∣∣∣
= oP

(
(log(n/G))−1/2

)
.

• Assumption A.1.3:

Under Condition (E1), we know that H(X1, θ̃), . . . ,H(Xn, θ̃) are i.i.d. With
Assumption B.1.5 Theorem 2 of Einmahl (1989) can be applied to receive∥∥∥∥∥Σ−1/2

(
k∑
i=1

H(Xi, θ̃)− kE
(
H(X1, θ̃)

))
−W (k)

∥∥∥∥∥ = O(k1/(2+ν)) a.s.
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For further explanation we refer to chapter 1 of Aue (2003).
A similiar result can be derived for sequences of type (E2) by using Theorem 4 of
Kuelbs & Philipp (1980) since H(X1, θ̃), . . . ,H(Xn, θ̃) are strongly mixing with
at least the same rate as the original sequence by the measurability of H with
respect to Xi.

2.3.1.2. General Z-Estimators

In the introductory chapter, we have already considered classical Z-estimators or M-
estimators which are determined by solving the estimating equation system∑n

i=1H(Xi,θ)
!

= 0. Here, we investigate the asymptotic behavior of a broader class
of Z-estimators based only on a part of the sample. Therefore, we de�ne the general

Z-estimators θ̂
(n)

γ1,γ2
as the solution of

1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ)
!

= 0, for every n, (2.25)

where γ1, γ2 ∈ [0, 1] and γ1 < γ2. Furthermore, let θ0 be the unique zero of E (H(X1,θ)),
i.e. θ0 is the true parameter vector under the null hypothesis in a correctly speci�ed
model and the best approximating parameter under misspeci�cation as in Assumption
A.1.2.
Now we want to prove that the estimator sequence θ̂

(n)

γ1,γ2
is
√
n-consistent for θ̃ = θ0.

Firstly, we have to show that
∥∥∥θ̂(n)

γ1,γ2
− θ0

∥∥∥ = oP (1), i.e. it is consistent for θ0.

Lemma 2.3.3. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) ful�lling As-
sumptions B.1.1 and B.1.3. Then,∥∥∥θ0 − θ̂

(n)

γ1,γ2

∥∥∥ = oP (1).

Proof. Consistency of the estimator sequence can be proved by applying Lemma E.2.11.
However, �rst of all we have to show that the assumptions of this lemma are ful�lled
here.
The Uniform Law of Large Numbers in Theorem E.2.8 can be used to derive the
uniform convergence condition. Therefore, we check if the assumptions of this theorem
are satis�ed as well. First, note that H is measurable with respect to Xi and that
{Xi}i≥1 is i.i.d. or stationary and strongly mixing and therefore stationary and ergodic.
Moreover, condition (i) of Theorem E.2.8 holds by Assumption B.1.1. By a �rst order
Taylor expansion and Lemma E.1.5 we get

‖H(x,θ1)−H(x,θ2)‖ ≤ sup
θ∈Θ
‖∇H(x,θ)‖F ‖θ1 − θ2‖ , (2.26)

which is well de�ned at least almost surely with respect to PX1 since
E (supθ∈Θ ‖∇H(X1,θ)‖F ) <∞ (condition (iii)) holds by Assumption B.1.3. The con-
tinuity of the supremum and the Frobenius norm in combination with the measurability
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of the �rst derivatives of the estimating function imply that supθ∈Θ ‖∇H(Xi,θ)‖F is
a measurable function on Xi which completes condition (ii) of Theorem E.2.8. Conse-
quently, applying Theorem E.2.8 yields

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ)− (γ2 − γ1)E (H(X1,θ))

∥∥∥∥∥∥
D
= sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc−bγ1nc∑
i=1

H(Xi,θ)− (γ2 − γ1)E (H(X1,θ))

∥∥∥∥∥∥
≤ bγ2nc − bγ1nc

n
sup
θ∈Θ

∥∥∥∥∥∥ 1

bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

H0(Xi,θ)

∥∥∥∥∥∥
+

(
bγ2nc − bγ1nc

n
− (γ2 − γ1)

)
sup
θ∈Θ
‖E (H(X1,θ))‖

= oP (1) + o(1) sup
θ∈Θ
‖E (H(X1,θ))‖ ,

since bγ2nc−bγ1nc
n

→ γ2 − γ1 as n goes to in�nity. Furthermore, note that E (H(X1,θ))
is (Lipschitz) continuous in θ since due to (2.26) we have

‖E (H(X1,θ2))− E (H(X1,θ1))‖ ≤ E (‖H(X1,θ2)−H(X1,θ1)‖)

≤ E

(
sup
θ∈Θ
‖∇H(Xi,θ)‖F

)
‖θ2 − θ1‖ ,

and E (supθ∈Θ ‖∇H(Xi,θ)‖F ) < ∞ by Assumption B.1.3. Hence, together with the
compactness of the parameter space we obtain

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ)− (γ2 − γ1)E (H(X1,θ))

∥∥∥∥∥∥ = oP (1). (2.27)

Moreover, Lemma E.2.10 shows that θ0 is the unique zero of E (H(X1,θ)) in the strict

sense. Finally,
∥∥∥θ̂(n)

γ1,γ2
− θ0

∥∥∥ = oP (1) follows from Lemma E.2.11.

Asymptotic properties of the global estimator sequence θ̂0,1 have already been inves-
tigated in other papers and books. For instance, asymptotic normality was shown by
Van der Vaart (2007) (Theorem 5.41 on page 68) for the i.i.d. case. Similar arguments
can be used to derive asymptotic normality of general Z-estimators as well which is
demonstrated in the following theorems.

Theorem 2.3.4. Let {Xi : i ≥ 1} be a series of type (E1) ful�lling the Assumptions
B.1.1 to B.1.4. Furthermore, let V (θ0) = E (∇H(X1,θ0))T be a non-singular matrix,
where ∇H(Xi,θ) = (∇H1(Xi,θ), . . . ,∇Hp(Xi,θ)) denotes the matrix of gradients with
respect to θ. Then,

√
n
(
θ̂

(n)

γ1,γ2
− θ0

)
= −(γ2 − γ1)−1V (θ0)−1 1√

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0) + oP (1) ,
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as well as

√
n
(
θ̂

(n)

γ1,γ2
− θ0

)
D→ Np

(
0, (γ2 − γ1)−1V (θ0)−1Σ(V (θ0)−1)T

)
.

Proof. This proof is based on the proof of Theorem 5.41 in Van der Vaart (2007) on
page 68 for the univariate setting.
By componentwise Taylor series expansions around θ0 there exist ξ1,k,n, . . . , ξp,k,n such

that
∥∥ξl,k,n − θ0

∥∥ ≤ ∥∥∥θ̂(n)

γ1,γ2
− θ0

∥∥∥, for l = 1, . . . , p, with

− 1

n

bγ2nc∑
i=bγ1nc+1

Hl(Xi,θ0)

=
1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θ0)T
(
θ̂

(n)

γ1,γ2
− θ0

)

+
1

2

(
θ̂

(n)

γ1,γ2
− θ0

)T 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,k,n)
(
θ̂

(n)

γ1,γ2
− θ0

)

=

 1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θ0)T +
1

2n

(
θ̂

(n)

γ1,γ2
− θ0

)T bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,k,n)


(
θ̂

(n)

γ1,γ2
− θ0

)
.

Since E (supθ∈Θ ‖∇2Hl(X1,θ)‖F ) <∞ by Assumption B.1.4 and as the measurability
of the second derivatives on Xi yields that ∇2Hl(X1,θ), . . . ,∇2Hl(Xn,θ) are i.i.d. and
therefore stationary and ergodic, for all l = 1, . . . , p, the Uniform Law of Large Numbers
in Corollary E.2.7 can be applied to obtain

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

(2.28)

D
=
bγ2nc − bγ1nc

n
sup
θ∈Θ

∥∥∥∥∥∥ 1

bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

≤ bγ2nc − bγ1nc
n

sup
θ∈Θ

∥∥∥∥∥∥ 1

bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

∇2Hl,0(Xi,θ)

∥∥∥∥∥∥
F

+E

(
sup
θ∈Θ

∥∥∇2Hl(X1,θ)
∥∥
F

))
= OP (1).

Hence, together with Lemma 2.3.3 and Lemma E.1.5 we get∥∥∥∥∥∥ 1

n

(
θ̂

(n)

γ1,γ2
− θ0

)T bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,k,n)

∥∥∥∥∥∥
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≤
∥∥∥θ̂(n)

γ1,γ2
− θ0

∥∥∥ sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

= oP (1).

Furthermore, note that E (‖∇Hl(X1,θ0)‖) < ∞ by Assumption B.1.3 and Lemma
E.1.6 (c) and that the sequence {∇Hl(Xi,θ0)}i≥1 is i.i.d. due to the measurability of
the �rst derivatives with respect to Xi. Thus, we obtain∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θ0)− (γ2 − γ1)E (∇Hl(X1,θ0))

∥∥∥∥∥∥
D
=

∥∥∥∥∥∥ 1

n

bγ2nc−bγ1nc∑
i=1

∇Hl(Xi,θ0)− (γ2 − γ1)E (∇Hl(X1,θ0))

∥∥∥∥∥∥
≤
(
bγ2nc − bγ1nc

n
− (γ2 − γ1)

)
‖E (∇Hl(X1,θ0))‖

+
bγ2nc − bγ1nc

n

∥∥∥∥∥∥ 1

bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

∇Hl,0(Xi,θ0)

∥∥∥∥∥∥
= oP (1),

where the last line follows from∥∥∥∥∥∥ 1

bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

∇Hl,0(Xi,θ0)

∥∥∥∥∥∥ = oP (1) (2.29)

as given by the Law of Large Numbers and since limn→∞
bγ2nc−bγ1nc

n
= γ2 − γ1. This

yields

1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θ0) = (γ2 − γ1)E (∇Hl(X1,θ0)) + oP (1).

By combining the Taylor expansions of all components, we receive

− 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0) = ((γ2 − γ1)V (θ0) + oP (1))
(
θ̂

(n)

γ1,γ2
− θ0

)
.

Since f(V ) = V −1 is a continuous function on the elements of V by Theorem 5.19 in
Schott (1997) on page 188 the Continuous Mapping Theorem gives

((γ2 − γ1)V (θ0) + oP (1))−1 = (γ2 − γ1)−1V (θ0)−1 + oP (1).

Thus, we get

√
n
(
θ̂

(n)

γ1,γ2
− θ0

)
= −

(
(γ2 − γ1)−1V (θ0)−1 + oP (1)

) 1√
n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0). (2.30)
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With Assumption B.1.2 we apply a multivariate version of the Central Limit Theorem,
which can be easily derived by using the Cramér-Wold Theorem and the univariate
CLT, on the sequence {H(Xi,θ0)}i≥1. Hence, we obtain

1√
n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0)
D
=

1√
n

bγ2nc−bγ1nc∑
i=1

H(Xi,θ0) (2.31)

=

√
bγ2nc − bγ1nc

n

1√
bγ2nc − bγ1nc

bγ2nc−bγ1nc∑
i=1

H(Xi,θ0)
D→ Np (0, (γ2 − γ1)Σ) ,

which also implies that 1√
n

∑bγ2nc
i=bγ1nc+1H(Xi,θ0) = OP (1). Consequently, we can con-

clude that

√
n
(
θ̂

(n)

γ1,γ2
− θ0

)
= −(γ2 − γ1)−1V (θ0)−1 1√

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0) + oP (1)

D→ Np

(
0, (γ2 − γ1)−1V (θ0)−1Σ(V (θ0)−1)T

)
.

Theorem 2.3.5. Let {Xi : i ≥ 1} be a series of type (E2) ful�lling the Assumptions
B.1.1, B.1.3, B.1.4 and B.1.5. Then, the result of Theorem 2.3.4 remains true.

Proof. The proof is analogous to that of Theorem 2.3.4 with the exception that the
statements in (2.29) and (2.31) are derived by using di�erent arguments as explained
in the following.
On noting that the pattern of the original sequence described by type (E2) is inherited
by the sequence ∇Hl(X1,θ0), . . . ,∇Hl(Xn,θ0) due to the measurability of the �rst
derivatives, together with Assumption B.1.3 we get that the sequence is stationary
and ergodic with existing �rst moment. Hence, the Ergodic Theorem shows (2.29).
Furthermore, Assumption B.1.5 enables us to apply a strong invariance principle by
Kuelbs & Philipp (1980) (Theorem 4) to the sequence {H(Xi,θ0)}i≥1. We receive∥∥∥∥∥∥

bγ2nc−bγ1nc∑
i=1

H(Xi,θ0)− W̃ (bγ2nc − bγ1nc)

∥∥∥∥∥∥ = O
(
n1/(2+ν)

)
a.s.,

where W̃ (t) denotes a p-dimensional Wiener process with covariance matrix Σ. Thus,
in connection with the stationarity of the sequence we obtain

1√
n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ0)
D
=

1√
n

bγ2nc−bγ1nc∑
i=1

H(Xi,θ0) =
1√
n
W̃ (bγ2nc − bγ1nc) + oP (1).

Furthermore, the self-similarity of the Wiener process and the almost sure continuity
of its paths lead to

1√
n
W̃ (bγ2nc − bγ1nc)

D
= W̃

(
bγ2nc − bγ1nc

n

)
P→ W̃ (γ2 − γ1),

which proves (2.31) since W̃ (γ2 − γ1) ∼ Np (0, (γ2 − γ1)Σ).
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Corollary 2.3.6 (
√
n-Consistency). Under the assumptions of Theorem 2.3.4 and

Theorem 2.3.5, respectively, the estimator sequence θ̂
(n)

γ1,γ2
is
√
n-consistent for θ0.

Proof. Applying Theorem 2.3.4 or Theorem 2.3.5 yields
√
n
(
θ̂

(n)

γ1,γ2
− θ0

)
= OP (1)

which shows the assertion.

2.3.2. Under the Alternative

Under the alternative we have to take into consideration that the sequence {Xi}i≥1 is
only piecewise stationary, i.e.

Xi =


X(1)
i , if i ≤ k1,n

X(2)
i , if k1,n < i ≤ k2,n

...
X(q+1)
i , if i > kq,n

.

Furthermore, we assume that the estimator sequence θ̂n is
√
n-consistent for some

θ̃ ∈ Θ under the alternative and that {X(j)
i }i≥1, j = 1, . . . , q+ 1, are sequences of type

(E1) or (E2) satisfying Assumption A.2.2 and the following moment conditions which
are summarized in Section B.2 again.

B.2.1 Let E
(∥∥∥H(X(j)

1 ,θ)
∥∥∥) <∞ hold for all θ ∈ Θ, j = 1, . . . , q + 1.

B.2.2 Let E

(∥∥∥H(X(j)
1 , θ̃)

∥∥∥2
)
<∞, j = 1, . . . , q + 1.

B.2.3 Let E
(

supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)
<∞, j = 1, . . . , q + 1.

B.2.4 E
(

supθ∈Θ

∥∥∥∇2Hl(X(j)
1 ,θ)

∥∥∥
F

)
<∞ hold, for all l = 1, . . . , p, j = 1, . . . , q + 1.

B.2.5 There exists a ν > 0 such that E

(∥∥∥H(X(j)
1 , θ̃)

∥∥∥2+ν
)
<∞, j = 1, . . . , q + 1.

B.2.6 There exists a ν > 0 such that E

(∥∥∥∇H(X(j)
1 ,θ)

∥∥∥2+ν

F

)
< ∞ holds for all

θ ∈ Θ, j = 1, . . . , q + 1.

2.3.2.1. Assumptions A.2.3, A.2.4 and A.2.9

In this part we show that the main assumptions of Theorem 2.1.8 are ful�lled by time
series belonging to type (E1) or (E2).

Lemma 2.3.7. Let {X(j)
i : i ≥ 1}, j = 1, . . . , q + 1, be series of type (E1) or type

(E2) ful�lling the Assumptions B.2.4, B.2.5 and B.2.6. Furthermore, let Assumption

A.1.1 hold on the bandwidth and let θ̂n be an estimator sequence which is
√
n-consistent

for some θ̃ under the alternative. Then, the Assumptions A.2.3, A.2.4 and A.2.9 are
satis�ed.
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Proof. • Assumption A.2.3:
We want to derive a strong invariance principle as in Assumption A.1.3. Thus,
the assertion follows from Lemma 2.3.2 as the sequence {X(j)

i }, j = 1, . . . , q + 1,
satis�es all the assumptions of this lemma.

• Assumptions A.2.4 and A.2.9:
At �rst we consider the setBn,G containing all time points lying in aG-environment
of a change point. By a Taylor expansion of each component (l = 1, . . . , p) there

exists a ξl,n,k such that
∥∥∥ξl,n,k − θ̃∥∥∥ ≤ ∥∥∥θ̂n − θ̃∥∥∥ with

k+G∑
i=k+1

Hl(Xi, θ̂n)−
k∑

i=k−G+1

Hl(Xi, θ̂n)−

(
k+G∑
i=k+1

Hl(Xi, θ̃)−
k∑

i=k−G+1

Hl(Xi, θ̃)

)

=

(
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

)T (
θ̂n − θ̃

)
(2.32)

+
1

2

(
θ̂n − θ̃

)T ( k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

)(
θ̂n − θ̃

)
.

Furthermore, we assume that kj,n < k ≤ kj,n +G while noting that the following
statements can be derived similarly for kj,n −G < k ≤ kj,n. Thus, we receive

k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

=
k+G∑
i=k+1

∇Hl(X(j+1)
i , θ̃)−

kj,n∑
i=k−G+1

∇Hl(X(j)
i , θ̃)−

k∑
i=kj,n+1

∇Hl(X(j+1)
i , θ̃).

Since the sequence {X(j)
i }i≥1, j = 1, . . . , q + 1, belongs to type (E1) or (E2) and

the �rst derivatives of the estimating function are measurable with respect to Xi

we get that {∇H1(X(j)
i , θ̃)}i≥1, . . . , {∇Hp(X(j)

i , θ̃)}i≥1, j = 1, . . . , q + 1, are i.i.d.
or stationary and strongly mixing as well. Furthermore, with ∇H(X(j)

i ,θ) =

(∇H1(X(j)
i ,θ), . . . ,∇Hp(X(j)

i ,θ)), Assumption B.2.6 and Lemma E.1.6 we obtain

E

(∥∥∥∇Hl(X(j)
1 ,θ)

∥∥∥2+ν
)
<∞,

for all θ ∈ Θ, l = 1, . . . , p and j = 1, . . . , q + 1. Hence, applying Lemma E.2.14
together with Assumption B.2.6 yields

1√
G

∥∥∥∥∥
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

∥∥∥∥∥
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≤ 1√
G

∥∥∥∥∥
k+G∑
i=k+1

∇Hl,0(X(j+1)
i , θ̃)

∥∥∥∥∥+
1√
G

∥∥∥∥∥∥
k∑

i=kj,n+1

∇Hl,0(X(j+1)
i , θ̃)

∥∥∥∥∥∥
+

1√
G

∥∥∥∥∥∥
kj,n∑

i=k−G+1

∇Hl,0(X(j)
i , θ̃)

∥∥∥∥∥∥
+
kj,n − k +G√

G

∥∥∥E (∇Hl(X(j)
1 , θ̃)

)
− E

(
∇Hl(X(j+1)

1 , θ̃)
)∥∥∥

= OP

(√
G
)
uniformly in k ∈ {kj,n + 1, . . . , kj,n +G},

with ∇Hl,0(X(j)
i ,θ) := ∇Hl(X(j)

i ,θ)− E
(
∇Hl(X(j)

i ,θ)
)
. In connection with the

submultiplicativity of the Euclidean norm and the
√
n-consistency of the esti-

mator sequence we are able to approximate the �rst summand of the Taylor
expansion in (2.32)

1√
G

∣∣∣∣∣∣
(

k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

)T (
θ̂n − θ̃

)∣∣∣∣∣∣
≤ 1√

G

∥∥∥∥∥
k+G∑
i=k+1

∇Hl(Xi, θ̃)−
k∑

i=k−G+1

∇Hl(Xi, θ̃)

∥∥∥∥∥∥∥∥θ̂n − θ̃∥∥∥ = OP

(√
G

n

)
,

which holds uniformly in k ∈ {kj,n + 1, . . . , kj,n +G}.
Moreover, the Assumption B.2.4 can be combined with the Uniform Law of Large
Numbers in Theorem E.2.6 as in (2.24) which leads to∥∥∥∥∥

k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

∥∥∥∥∥
F

=

∥∥∥∥∥∥
k+G∑
i=k+1

∇2Hl(X(j+1)
i , ξl,n,k)−

kj,n∑
i=k−G+1

∇2Hl(X(j)
i , ξl,n,k)

−
k∑

i=kj,n+1

∇2Hl(X(j+1)
i , ξl,n,k)

∥∥∥∥∥∥
F

≤ sup
θ∈Θ

∥∥∥∥∥
k+G∑
i=1

∇2Hl(X(j+1)
i ,θ)

∥∥∥∥∥
F

+ 2 sup
θ∈Θ

∥∥∥∥∥
k∑
i=1

∇2Hl(X(j+1)
i ,θ)

∥∥∥∥∥
F

+ sup
θ∈Θ

∥∥∥∥∥∥
kj,n∑
i=1

∇2Hl(X(j+1)
i ,θ)

∥∥∥∥∥∥
F

+ sup
θ∈Θ

∥∥∥∥∥∥
kj,n∑
i=1

∇2Hl(X(j)
i ,θ)

∥∥∥∥∥∥
F

+ sup
θ∈Θ

∥∥∥∥∥
k−G∑
i=1

∇2Hl(X(j)
i ,θ)

∥∥∥∥∥
F

= O(k +G) = O(n) a.s. uniformly in k ∈ {kj,n + 1, . . . , kj,n +G}.
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Hence, with Lemma E.1.5 and the
√
n-consistency of the estimator sequence we

receive, uniformly in k ∈ {kj,n + 1, . . . , kj,n +G},∥∥∥∥∥(θ̂n − θ̃)T
(

k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

)(
θ̂n − θ̃

)∥∥∥∥∥
≤
∥∥∥θ̂n − θ̃∥∥∥2

∥∥∥∥∥
k+G∑
i=k+1

∇2Hl(Xi, ξl,n,k)−
k∑

i=k−G+1

∇2Hl(Xi, ξl,n,k)

∥∥∥∥∥
F

= OP (1) .

Thus, by considering (2.32) we can conclude

max
k∈Bn,G

1√
G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ (2.33)

≤
p∑
l=1

max
k∈Bn,G

1√
G

∣∣∣∣∣
k+G∑
i=k+1

(
Hl(Xi, θ̂n)−Hl(Xi, θ̃)

)
−

k∑
i=k−G+1

(
Hl(Xi, θ̂n)−Hl(Xi, θ̃)

)∣∣∣∣∣
= OP

(√
G

n

)
+OP

(
1√
G

)
= oP

(
(log(n/G))−1/2

)
,

where the last line follows from Assumption A.1.1 since n
G
→∞ implies log(n/G)

n/G
→

0. Furthermore, on noting that the subsequences Xk−G+1, . . . ,Xk+G are stationary
for all k ∈ An,G, similar arguments as in Lemma 2.3.2 can be applied here to get

max
k∈An,G

1√
G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP

(
(log(n/G))−1/2

)
.

Hence, we receive maxG≤k≤n−G
1√
G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP

(
(log(n/G))−1/2

)
show-

ing Assumptions A.2.4 and A.2.9.

2.3.2.2. General Z-Estimators

Similar to our considerations under the null hypothesis, we examine the behavior of

general Z-estimators θ̂
(n)

γ1,γ2
de�ned by (2.25) and prove

√
n-consistency for these esti-

mator sequences under the alternative.
Therefore, let s be the number of change points lying in the interval (γ1, γ2): s :=
|(γ1, γ2) ∩ Cn|, where Cn := {k1,n, . . . , kq,n} denotes the set of all change points. Fur-
thermore, we de�ne

j∗ := min{j ∈ {1, . . . , q + 1} : (λj − γ1) > 0}

and we consider the sequence

λ̃j∗−1, λ̃j∗ , . . . , λ̃j∗+s (2.34)
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with λ̃j∗−1 = γ1, λ̃j∗+s = γ2 and λ̃j = λj for j ∈ {j∗, . . . , j∗ + s− 1}

Moreover, let θγ1,γ2 be the unique zero of

F γ1,γ2(θ) =

j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
E
(
H(X(j)

1 ,θ)
)
. (2.35)

Now we want to show that the estimator sequence θ̂
(n)

γ1,γ2
is
√
n-consistent for θ̃ = θγ1,γ2

under the alternative. At �rst, we derive classical consistency in the following lemma.

Lemma 2.3.8. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) ful�lling the
Assumptions B.2.1 and B.2.3. Then,∥∥∥θγ1,γ2 − θ̂(n)

γ1,γ2

∥∥∥ = oP (1).

Proof. The proof of this result is similar to that of Lemma 2.3.3. By (2.27) it holds,
for j ∈ {j∗, . . . , j∗ + s− 1},

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

H(X(j)
i ,θ)−

(
λ̃j − λ̃j−1

)
E
(
H(X(j)

1 ,θ)
)∥∥∥∥∥∥ = oP (1),

as by Assumptions B.2.1 and B.2.3 {X(j)
i } ful�lls all the assumptions of Lemma 2.3.3.

This implies together with (2.35)

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ)− F γ1,γ2(θ)

∥∥∥∥∥∥
= sup
θ∈Θ

∥∥∥∥∥∥
j∗+s∑
j=j∗

1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

H(X(j)
i ,θ)−

(
λ̃j − λ̃j−1

)
E
(
H(X(j)

1 ,θ)
)∥∥∥∥∥∥

≤
j∗+s∑
j=j∗

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

H(X(j)
i ,θ)−

(
λ̃j − λ̃j−1

)
E
(
H(X(j)

1 ,θ)
)∥∥∥∥∥∥

= oP (1),

which shows that the uniform convergence condition of Lemma E.2.11 holds. Moreover,
as the expectation of the estimating function is continuous on Θ we get the continuity
of F γ1,γ2(θ) in θ. Thus, by Lemma E.2.10 we receive that θγ1,γ2 is the unique zero

of F γ1,γ2(θ) in the strict sense. Finally,
∥∥∥θ̂(n)

γ1,γ2
− θγ1,γ2

∥∥∥ = oP (1) follows from Lemma

E.2.11.

With the result of the lemma above we are able to derive
√
n-consistency for general

Z-estimators. This is shown in the theorem below where we additionally get asymptotic
normality of the estimator sequence in the i.i.d. case.

� 67 �



2. MOSUM Score-Type Statistics

Theorem 2.3.9. Let the matrix
∑j∗+s

j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2) be invertible with λ̃j as

in (2.34). Furthermore, let

(a) {X(1)
i : i ≥ 1}, . . . , {X(q+1)

i : i ≥ 1} be sequences of type (E1) ful�lling the Assump-
tions B.2.1, B.2.3, B.2.4 and B.2.2 with θ̃ = θγ1,γ2. Then,

√
n
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
D→ Np

(
0,V −1

(
j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
Σ(j)

)(
V T
)−1

)
,

where Σ(j) = Σ(j)(θγ1,γ2) denoting the long-run covariance matrix ofH(X(j)
i ,θγ1,γ2)

and V =
∑j∗+s

j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2). In particular, this implies that the esti-

mator sequence θ̂
(n)

γ1,γ2
is
√
n-consistent for θγ1,γ2.

(b) {X(1)
i : i ≥ 1}, . . . , {X(q+1)

i : i ≥ 1} be sequences of type (E2) ful�lling the Assump-
tions B.2.1, B.2.3, B.2.4 and B.2.5 with θ̃ = θγ1,γ2. Then, the estimator sequence

θ̂
(n)

γ1,γ2
is
√
n-consistent for θγ1,γ2.

Proof. The proof is similar to that of Theorem 2.3.4 and Theorem 2.3.5.
By componentwise second order Taylor series expansions around θγ1,γ2 there exist

ξ1,γ1,γ2,n, . . . , ξp,γ1,γ2,n such that
∥∥ξl,γ1,γ2,n − θγ1,γ2∥∥ ≤ ∥∥∥θ̂(n)

γ1,γ2
− θγ1,γ2

∥∥∥ for l = 1, . . . , p

with

− 1

n

bγ2nc∑
i=bγ1nc+1

Hl(Xi,θγ1,γ2)

=
1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θγ1,γ2)
T
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)

+
1

2

(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)T 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,γ1,γ2,n)
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)

=

 1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θγ1,γ2)
T +

1

2n

(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)T bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,γ1,γ2,n)


(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
.

On noting that the second derivatives of the estimating function are measurable with
respect to Xi, the i.i.d. or stationary, strong mixing structure of the original sequence
{X(j)

i }i≥1, j = 1, . . . , q+1, carries over to the transformed sequence {∇2Hl(X(j)
i ,θ)}i≥1,

l = 1, . . . , p, i.e. {∇2H1(X(j)
i ,θ)}i≥1, . . . , {∇2Hp(X(j)

i ,θ)}i≥1, j = 1, . . . , q + 1, are
random sequences of type (E1) or type (E2) and, consequently, stationary and ergodic.
Hence, by (2.28) (on noting that {X(j)

i } fu�lls the assumptions of Theorem 2.3.4) we
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get, for j ∈ {j∗, . . . , j∗ + s− 1},

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

∇2Hl(X(j)
i ,θ)

∥∥∥∥∥∥
F

= OP (1).

This implies

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

= sup
θ∈Θ

∥∥∥∥∥∥
j∗+s∑
j=j∗

1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

≤
j∗+s∑
j=j∗

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

∇2Hl(X(j)
i ,θ)

∥∥∥∥∥∥
F

= OP (1).

Hence, applying Lemma 2.3.8 and Lemma E.1.5 yields∥∥∥∥∥∥ 1

n

(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)T bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi, ξl,γ1,γ2,n)

∥∥∥∥∥∥
≤
∥∥∥θ̂(n)

γ1,γ2
− θγ1,γ2

∥∥∥ sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

∇2Hl(Xi,θ)

∥∥∥∥∥∥
F

= oP (1).

Furthermore, note that the pattern of the original sequence {X(j)
i }i≥1, j = 1, . . . , q+ 1,

described by type (E1) or (E2) is inherited by the sequence {∇Hl(X(j)
i ,θγ1,γ2)}, l =

1, . . . , p, due to the measurability of the �rst derivatives. Together with Assumption
B.2.3 we get that the transformed sequence is stationary and ergodic with existing �rst
moment. Hence, the Ergodic Theorem yields∥∥∥∥∥∥ 1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

∇Hl(X(j)
i ,θγ1,γ2)−

(
λ̃j − λ̃j−1

)
E
(
∇Hl(X(j)

1 ,θγ1,γ2)
)∥∥∥∥∥∥

D
=

∥∥∥∥∥∥ 1

n

bλ̃jnc−bλ̃j−1nc∑
i=1

∇Hl(X(j)
i ,θγ1,γ2)−

(
λ̃j − λ̃j−1

)
E
(
∇Hl(X(j)

1 ,θγ1,γ2)
)∥∥∥∥∥∥

≤

(
bλ̃jnc − bλ̃j−1nc

n
− (γ2 − γ1)

)∥∥∥E (∇Hl(X(j)
1 ,θγ1,γ2)

)∥∥∥
+
bλ̃jnc − bλ̃j−1nc

n

∥∥∥∥∥∥ 1

bλ̃jnc − bλ̃j−1nc

bλ̃jnc−bλ̃j−1nc∑
i=1

∇H0,l(X(j)
i ,θ0)

∥∥∥∥∥∥
= oP (1), j ∈ {j∗, . . . , j∗ + s− 1}

which shows that

1

n

bλ̃jnc∑
i=bλ̃j−1nc+1

∇Hl(X(j)
i ,θγ1,γ2) = (λ̃j − λ̃j−1)E

(
∇Hl(X(j)

1 ,θγ1,γ2)
)

+ oP (1).
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Thus, we obtain

1

n

bγ2nc∑
i=bγ1nc+1

∇Hl(Xi,θγ1,γ2) =

j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
E
(
∇Hl(X(j)

1 ,θγ1,γ2)
)

+ oP (1).

By merging the Taylor expansions of all components, we get

− 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θγ1,γ2)

=

(
j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2) + oP (1)

)(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
.

Since the matrix
∑j∗+s

j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2) is invertible by assumption and as f(V ) =

V −1 is a continuous function on the elements of V (see Theorem 5.19 in Schott (1997)
page 188) the Continuous Mapping Theorem leads to(

j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2) + oP (1)

)−1

=

(
j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2)

)−1

+ oP (1).

Thus, we receive

√
n
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
= −

(j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2)

)−1

+ oP (1)

 1√
n

bγ2nc∑
i=bγ1nc+1

H(Xi,θγ1,γ2).

Furthermore, on noting that (with F γ1,γ2 as in (2.35))∥∥∥∥∥∥
bγ2nc∑

i=bγ1nc+1

E (H(Xi,θγ1,γ2))

∥∥∥∥∥∥ =

∥∥∥∥∥∥
bγ2nc∑

i=bγ1nc+1

E (H(Xi,θγ1,γ2))− nF γ1,γ2(θγ1,γ2)

∥∥∥∥∥∥
≤

j∗+s∑
j=j∗

∣∣∣(λ̃j−1n− bλ̃j−1nc)− (λ̃jn− bλ̃jnc)
∣∣∣ ∥∥∥E (H(X(j)

1 ,θγ1,γ2)
)∥∥∥

≤
j∗+s∑
j=j∗

∥∥∥E (H(X(j)
1 ,θγ1,γ2)

)∥∥∥ ≤ j∗+s∑
j=j∗

E
(∥∥∥H(X(j)

1 ,θγ1,γ2)
∥∥∥) = O(1),

we obtain

√
n
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
(2.36)

= −

(j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2)

)−1

+ oP (1)

 1√
n

bγ2nc∑
i=bγ1nc+1

H0(Xi,θγ1,γ2) +O

(
1√
n

)
.
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For proving part (a), with Assumption B.2.2 we apply a multivariate version of the
Central Limit Theorem on the sequence {H0(X(j)

i ,θγ1,γ2)}i≥1, j = 1, . . . , q+1. and get

1√
n

bλ̃jnc∑
i=bλ̃j−1nc+1

H0(X(j)
i ,θγ1,γ2)

D
=

1√
n

bλ̃jnc−bλ̃j−1nc∑
i=1

H0(X(j)
i ,θγ1,γ2)

=

√
bλ̃jnc − bλ̃j−1nc

n

1√
bλ̃jnc − bλ̃j−1nc

bλ̃jnc−bλ̃j−1nc∑
i=1

H0(X(j)
i ,θγ1,γ2)

D→ Np

(
0, (λ̃j − λ̃j−1)Σ(j)

)
,

implying 1√
n

∑bλ̃jnc
i=bλ̃j−1nc+1

H0(X(j)
i ,θγ1,γ2) = OP (1) as well. Furthermore, by the latter

one and equation (2.36) we receive

√
n
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
= −

(
j∗+s∑
j=j∗

(
λ̃j − λ̃j−1

)
V j(θγ1,γ2)

)−1

1√
n

bγ2nc∑
i=bγ1nc+1

H0(Xi,θγ1,γ2) + oP (1).

Moreover, since the sequences X(j)

bλ̃j−1nc+1
, . . . ,X(j)

bλ̃jnc
, j = 1, . . . , q + 1, are independent

we can conclude that

1√
n

bγ2nc∑
i=bγ1nc+1

H0(Xi,θγ1,γ2) =

j∗+s∑
j=j∗

1√
n

bλ̃jnc∑
i=bλ̃j−1nc+1

H0(X(j)
i ,θγ1,γ2)

D→ Np

(
0,

j∗+s∑
j=j∗

(λ̃j − λ̃j−1)Σ(j)

)
,

which shows the assertion of part (a).
In order to derive the assertion in (b), note that Assumption A.2.3 holds by Condition
B.2.5 by Lemma 2.3.7. Hence, for every j ∈ {1, . . . , q+ 1} there exists a p-dimensional

Wiener process {W̃
(j)

(t)}t≥0 with covariance matrix Σ(j) such that∥∥∥∥∥
n∑
i=1

H0(X(j)
i ,θγ1,γ2)− W̃

(j)
(n)

∥∥∥∥∥ = O(n1/(2+ν)) a.s.

This yields together with the self-similarity of the Wiener process and Lemma E.1.5∥∥∥∥∥∥ 1√
n

bλ̃jnc∑
i=bλ̃j−1nc+1

H0(X(j)
i ,θγ1,γ2)

∥∥∥∥∥∥
≤ 1√

n

∥∥∥W̃ (j)
(bλ̃jnc)− W̃

(j)
(bλ̃j−1nc)

∥∥∥+OP

(
n1/(2+ν)

√
n

)
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D
=

∥∥∥∥∥W̃ (j)

(
bλ̃jnc
n

)
− W̃

(j)

(
bλ̃j−1nc

n

)∥∥∥∥∥+OP

(
n1/(2+ν)

√
n

)
≤ 2

∥∥∥Σ1/2
∥∥∥
F

sup
0≤t≤1

‖W (t)‖+OP

(
n1/(2+ν)

√
n

)
= OP (1),

where the last line follows from the almost sure continuity of the paths of a Wiener
process and the compactness of [0, 1]. Thus, we get

1√
n

bγ2nc∑
i=bγ1nc+1

H0(Xi,θγ1,γ2) =

j∗+s∑
j=j∗

1√
n

bλ̃jnc∑
i=bλ̃j−1nc+1

H0(X(j)
i ,θγ1,γ2) = OP (1).

which implies
√
n
(
θ̂

(n)

γ1,γ2
− θγ1,γ2

)
= OP (1) by (2.36).

Let us �nish this subsection with a result linking to the discussion on the problem
in detectability which somehow depends on the choice of the global estimator. The
following lemma tells us that, under some regularity conditions, by taking the classical
Z-estimator in the MOSUM statistic at least one change is detectable or even all changes
are detectable if there are only two possible regimes, i.e. the parameter vector only
switches between two values.

Lemma 2.3.10. Let the assumptions of Theorem 2.3.9 be satis�ed. Furthermore, let

θj denote the unique zero of E
(
H(X(j)

1 ,θ)
)
, for j ∈ {1, . . . , q + 1} and let θl 6= θl+1

hold for all l = 1, . . . , q. Moreover, suppose that the classical Z-estimator θ̂
(n)

0,1 is used

in the MOSUM score-type statistic, Tk,n(G, θ̂
(n)

0,1 ).

(a) Then, at least one change is detectable by the MOSUM statistic, i.e. q̃ ≥ 1 with
q̃ as in Assumption A.2.7.

(b) If there are only two distinct regimes then all changes are detectable, i.e. q̃ = q.

Proof. By Theorem 2.3.9 we know that θ̂
(n)

0,1 is
√
n-consistent for θ0,1 which is the

unique zero of

F 0,1(θ) =

q+1∑
j=1

(λj − λj−1)E
(
H(X(j)

1 ,θ)
)

according to (2.35). Hence, for proving the result of part (a) we have to show that

E
(
H(X(j)

1 ,θ0,1)
)
6= E

(
H(X(j+1)

1 ,θ0,1)
)
holds for at least one j ∈ {1, . . . , q}. Let us

now assume that this not true, which means

E
(
H(X(1)

1 ,θ0,1)
)

= . . . = E
(
H(X(q+1)

1 ,θ0,1)
)
.

Then, by de�nition of θ0,1 we would get

0 = F 0,1(θ0,1) =

q+1∑
j=1

(λj − λj−1)E
(
H(X(j)

1 ,θ0,1)
)

= E
(
H(X(1)

1 ,θ0,1)
)
,
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implying that θj = θ0,1, for all j = 1, . . . , q + 1, which contradicts the assump-
tion. Consequently, we can conclude that there exists at least one j ∈ {1, . . . , q}
with E

(
H(X(j)

1 ,θ0,1)
)
6= E

(
H(X(j+1)

1 ,θ0,1)
)
.

This immediately implies the assertion in (b) as in such a case∣∣∣E (H(X(j)
1 ,θ0,1)

)
− E

(
H(X(j+1)

1 ,θ0,1)
)∣∣∣

are equal for all j ∈ {1, . . . , q}.

2.4. Possible Problems of the Procedure

2.4.1. The Choice of the Bandwidth

In the Section 2.1.3 we could derive consistency for the estimator sequences which
is some kind of quality criterion theoretically justifying the usage of the MOSUM
procedure. Nevertheless, this property only holds asymptotically but in practice we
want to apply the procedure on data sets of �nite sample size. Thus, we need to assess
how well or bad the procedure performs on �nite samples and yet some questions come
up: How do we choose the length of the moving window for �nite samples? Is there an
optimal bandwidth?
Eichinger & Kirch (2018) already recognized that the choice of the bandwidth has a
decisive in�uence on the performance of the MOSUM procedure in the classical mean
change model. This holds for the general model as well as we will see in the simulations
of Chapter 4.
In theory it would make sense to choose the bandwidth G as large as possible so that
the minimal distance between two adjacent structural breaks is still greater than 2G.
This would ensure that in each time point the statistic is contaminated by at most
one change implying that the signal of the statistic takes its local maxima only at the
locations of the detectable changes as described in Section 2.1.3.1. However, for real
data sets the change points and its distances to each other are unknown so that there
is no possibility to check whether a bandwidth G satis�es the condition above or not.
Moreover, for localizing small changes lying far from any other change, we need a large
bandwidth whereas detecting large changes being close to other changes requires a
small window length. Hence, problems arise if we have a combination of both scenarios
and only one bandwidth is used. One possible solution is to run the procedure with
di�erent bandwidths and merge the results in an appropriate way. Cho & Kirch (2018)
have introduced such a multiscale method for the classical mean change model which
can be adapted to our general setting. Further explanations on that and �rst results
are given in Chapter 5.

2.4.2. The Problem in Detectability

In Section 2.1.3.2, we have already discussed when a change can be detected by MO-
SUM score-type statistics, at least asymptotically. We have learned that the signal of
the statistic needs to be strictly positive in an interval around the change which is the
case if a change in the parameter vector of the underlying distribution causes a change
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in the expectation ofH(Xi,θ) as well. Hence, the number of detectable changes some-
how depends on the choice of the estimating function. There are examples in which all
changes are actually detectable by this MOSUM procedure, e.g. the classical MOSUM
statistic in the mean change model or the MOSUM score-type statistic based on the
least squares method in a simple linear regression model. However, this is not true
in general and there exist some examples, even for the classical mean change setting,
where the number of detectable changes is not equal to the total number of changes.
Let us consider the following example.

 

 

0 200 400 600 800 1000

0
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8

The plot shows a time series which randomly deviates from a mean value changing
at the time points 100, 200, 600, 900. By applying the MOSUM statistic based on the
estimating function of the classical median, which is H(x, µ) = sgn(x − µ), we would
not be able to localize the �rst change point as the signal of the statistic is equal to
zero at this point as illustrated in the graph below.
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Nevertheless, as shown at the end of Section 2.3, under some regularity conditions in the
general model at least one change point is detectable if the global estimator computed
on the whole sample is used in the statistic. Thus, we could theoretically �nd all
changes by doing some kind of binary segmentation as explained in the following. At
�rst we determine the estimated change points obtained by the global Z-estimator
computed on the whole sample. After splitting the data sequence in these points into
di�erent segments, an Z-estimator can be computed on each segment and employed in
the score-type statistic to detect further changes. By recursively repeating this step
we would be able to detect all changes for large n.
However, even if we choose the estimating function such that the signal of the MOSUM
score-type statistic is strictly positive in every change point, which ensures detectability
in the asymptotics, we could still fail in localizing some of the changes in �nite samples.
For instance, if we use the median-like estimator and its estimating function, H(x, µ) =
2
π

arctan(µ−x), for the example above and compute the corresponding MOSUM score-
type statistic (G = 50) we are again not able to detect the �rst change point in 100 as
plotted below.
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In this statistic we compute the median-like estimator on the whole sample, µ̂1,n,
and employ it in the estimating function to get the transformed series, H(Xi, µ̂1,n) =
2
π

arctan(µ̂1,n−Xi), on which the MOSUM statistic is based. However, our theoretical
results are not restricted to this speci�c global estimator and we can think of choosing
a di�erent global estimator for the mean µ in the statistic. Therefore, let µ̂1,100 denote
the median-like estimator calculated on the subsample X1, . . . , X100. Note that this
broader class of Z-estimators computed on a part of the sample has been examined in
Section 2.3. The behavior of the MOSUM score-type statistic, where the alternative
estimator is used, is shown in the following graph.
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Here, we succeed in �nding the �rst change but we slightly fail in detecting the last
one. Hence, applying several global estimators in the procedure and merging the results
reasonably could solve the problem in detectability. Consequently, similar to the band-
width problem, described in the previous subsection, adapting the multiscale method
introduced by Cho & Kirch (2018) will be essential for improving the performance of
the procedure.
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As already discussed in Section 1.2, the classical MOSUM statistic investigated by
Eichinger & Kirch (2018) is constructed by comparing the sample means of subsamples
of size G around each time point. Hence, a quite natural way for generalizing this
procedure to several parameter change problems would be to use MOSUM Wald-type
statistics based on di�erences of local estimators as described in the following de�nition:

De�nition 3.0.1 (MOSUM Wald-Type Statistic). A MOSUM Wald-type statistic
based on Z-estimators is given by

Wn(G) = max
G≤k≤n−G

Wk,n(G)

with Wk,n(G) =

√
G√
2

√(
θ̂k+1,k+G − θ̂k−G+1,k

)T
Γ−1
k

(
θ̂k+1,k+G − θ̂k−G+1,k

)
,

where θ̂l,u is a local Z-estimator satisfying
∑u

i=lH(Xi, θ̂l,u)
!

= 0 and Γk is the asymp-

totic covariance matrix of
√
Gθ̂k−G+1,k which is assumed to be positive de�nite.

Note that the matrix Γk in speci�ed in (3.1) below.
This chapter is organized as follows. In the �rst section, we consider the MOSUM
Wald-type statistic in a general setting under i.i.d. and strong mixing assumptions
on the observations. In Section 3.1.1 the asymptotic behavior of the statistic under
the null hypothesis is examined whereas in Section 3.1.2 we show consistency for the
corresponding test and estimators. In Section 3.2 we focus on the linear regression
model and derive similar results under the null hypothesis and the alternative.

3.1. General Setting

Throughout this section, we assume that the estimating function H is twice continu-
ously di�erentiable on a compact parameter space Θ, where H and its derivatives are
measurable with respect to Xi. Furthermore, note that the same notation as in Section
2.3 is used here.

3.1.1. Asymptotics Under the Null Hypothesis

Similar to Section 2.3.1, we assume that X1, . . . ,Xn is a series of type (E1) or type (E2).
Let θ0 be the unique zero of E (H(X1,θ)) in the strict sense according to De�nition
E.2.9 such that θ0 is the true parameter vector under the null hypothesis in a correctly
speci�ed model and the best approximating parameter under misspeci�cation. Let
Σ = Σ(θ0) be the long-run covariance matrix of H(X1,θ0), which is assumed to be
positive de�nite. Moreover, we consider the assumptions of Section B.1 with θ̃ = θ0
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and additionally introduce the following assumptions:

B.1.7 Let E
(

supθ∈Θ ‖∇2Hj(X1,θ)‖2+ν

F

)
< ∞ hold for all j = 1, . . . , p and for some

ν > 0.

B.1.8 Let V (θ) = E (∇H(X1,θ))T be a regular matrix for all θ ∈ Θ and let

sup
θ∈Θ

∥∥V (θ)−1
∥∥
F
<∞.

For investigating the asymptotic behavior of the Wald-type statistics we need to
understand how the local Z-estimators behave if n goes to in�nity. Similar to the
previous section, we can derive consistency results for these estimator sequences holding
pointwise in k.

Lemma 3.1.1. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) ful�lling the
Assumptions B.1.1 and B.1.3. Then, it holds pointwise for any k = G, . . . , n−G∥∥∥θ̂k+1,k+G − θ0

∥∥∥ = oP (1) and
∥∥∥θ̂k−G+1,k − θ0

∥∥∥ = oP (1)

i.e. the local Z-estimators are consistent for the true parameter vector.

Proof. Similar arguments as in the proof of Lemma 2.3.3 can be used here. However,
note that the condition of uniform convergence in Lemma E.2.11 (statement (2.27) in
Lemma 2.3.3) follows directly from the stationarity of the sequence and the Uniform
Law of Large Numbers in Theorem E.2.8

sup
θ∈Θ

∥∥∥∥∥ 1

G

k+G∑
i=k+1

H0(Xi,θ)

∥∥∥∥∥ D
= sup
θ∈Θ

∥∥∥∥∥ 1

G

G∑
i=1

H0(Xi,θ)

∥∥∥∥∥ = oP (1).

Moreover, the local estimator sequences asymptotically follow a normal distribution
which is shown in the following two theorems.

Theorem 3.1.2. Let {Xi : i ≥ 1} be a series of type (E1) ful�lling the Assump-
tions B.1.1 to B.1.4 and let Assumption A.1.1 hold on the bandwidth. Then, it holds
pointwise for any k = G, . . . , n−G

√
G
(
θ̂k+1,k+G − θ0

)
= −V (θ0)−1 1√

G

k+G∑
i=k+1

H(Xi,θ0) + oP (1) .

and

√
G
(
θ̂k−G+1,k − θ0

)
= −V (θ0)−1 1√

G

k∑
i=k−G+1

H(Xi,θ0) + oP (1) ,

as well as
√
G
(
θ̂k+1,k+G − θ0

)
D→ Np

(
0,V (θ0)−1Σ(V (θ0)−1)T

)
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and

√
G
(
θ̂k−G+1,k − θ0

)
D→ Np

(
0,V (θ0)−1Σ(V (θ0)−1)T

)
,

where Σ = Σ(θ0) denotes the long-run covariance matrix of H(X1,θ0), which is as-
sumed to be positive de�nite.

Proof. Similar arguments as in (2.30) in the proof of Theorem 2.3.4 can be used to get

√
G
(
θ̂k+1,k+G − θ0

)
= −

(
V (θ0)−1 + oP (1)

) 1√
G

k+G∑
i=k+1

H(Xi,θ0).

Applying a multivariate version of the Central Limit Theorem and the stationarity of
the sequence yields

1√
G

k+G∑
i=k+1

H(Xi,θ0)
D
=

1√
G

G∑
i=1

H(Xi,θ0)
D→ Np (0,Σ) ,

which implies

√
G
(
θ̂k+1,k+G − θ0

)
= −V (θ0)−1 1√

G

k+G∑
i=k+1

H(Xi,θ0) + oP (1)
D→ Np

(
0,V (θ0)−1Σ(V (θ0)−1)T

)
.

The second statement can be derived similarly.

Theorem 3.1.3. Let {Xi : i ≥ 1} be a series of type (E2) ful�lling the Assumptions
B.1.1, B.1.3, B.1.4 and B.1.5 and let Assumption A.1.1 hold on the bandwidth. Then,
the result of Theorem 3.1.2 remains true.

Proof. Similar arguments as for (2.30) in the proof of Theorem 2.3.4 can be used here
where the statement in (2.29) is given by the Ergodic Theorem which can be applied
by Assumption B.1.3 and as ∇Hl(X1,θ0), . . . ,∇Hl(Xn,θ0) is of type (E2) due to the
measurability of the �rst derivatives. Thus, we get

√
G
(
θ̂k+1,k+G − θ0

)
= −

(
V (θ0)−1 + oP (1)

) 1√
G

k+G∑
i=k+1

H(Xi,θ0).

Furthermore, Assumption B.1.5 enables us to apply a strong invariance principle by
Kuelbs & Philipp (1980) (Theorem 4) to the sequence {H(Xi,θ0)}i≥1 which is of type
(E2) since the estimating function is measurable with respect to Xi. We receive∥∥∥∥∥

G∑
i=1

H(Xi,θ0)− W̃ (G)

∥∥∥∥∥ = O
(
G1/(2+ν)

)
a.s.,
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where W̃ (t) denotes a p-dimensional Wiener process with covariance matrix Σ. Hence,
with the stationarity of the sequence in connection with the self-similarity of the Wiener
process we receive

1√
G

k+G∑
i=k+1

H(Xi,θ0)
D
=

1√
G

G∑
i=1

H(Xi,θ0) =
1√
G
W̃ (G) + oP (1)

D
= W̃ (1) + oP (1),

which proves the assertion since W̃ (1) ∼ Np (0,Σ).
The second statement can be shown similarly.

The results of Theorem 3.1.2 and Theorem 3.1.3 also show that the local estimator
sequences are

√
G-consistent for θ0 which is given in the following corollary.

Corollary 3.1.4 (
√
G-Consistency). Under the assumptions of Theorem 3.1.2 or The-

orem 3.1.3, the estimator sequences θ̂k+1,k+G and θ̂k−G+1,k are (pointwise for any
k = G, . . . , n−G)

√
G-consistent for θ0.

Proof. By Theorem 3.1.2 or Theorem 3.1.3 we get
√
G
(
θ̂k+1,k+G − θ0

)
= OP (1) and

√
G
(
θ̂k−G+1,k − θ0

)
= OP (1) showing the assertion.

Moreover, applying these theorems enables us to specify the asymptotic covariance
matrix

Γk = Γ = V (θ0)−1Σ(V (θ0)−1)T , for all k ∈ {G, . . . , n−G}. (3.1)

In addition, Theorem 3.1.2 gives the asymptotic covariance matrix of the di�erence
of the local estimators in the i.i.d. case. Since the local estimators are computed on
disjoint and therefore independent subsamples we obtain

√
G
(
θ̂k+1,k+G − θ̂k−G+1,k

)
D→ Np

(
0, 2V (θ0)−1Σ(V (θ0)−1)T

)
.

This justi�es the use of the factor 1√
2
in the statistic.

Nevertheless, we have to be aware of that all these results, including Lemma 3.1.1,
only hold pointwise and they do not need to hold uniformly in k. However, in order to
derive a limit distribution for the MOSUM Wald-type statistic we need the following
uniform statement:

max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k+1,k+G

))∥∥∥∥∥ (3.2)

= oP
(
(log(n/G))−1/2

)
.

The following lemma provides a uniform convergence rate for the local Z-estimators.
This will help us to show that Conditon (3.2) is satis�ed under some moment conditions.

Lemma 3.1.5. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) satisfying the
Assumptions B.1.5, B.1.6, B.1.7 and B.1.8. Then

max
G≤k≤n−G

√
G
∥∥∥θ̂k+1,k+G − θ0

∥∥∥ = OP

(√
log(n/G)

)
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Proof. A Taylor expansion in θ̂k+1,k+G around θ0 yields that there exists a ξk,n with∥∥ξk,n − θ0

∥∥ ≤ ∥∥∥θ̂k+1,k+G − θ0

∥∥∥ such that

− 1√
G

k+G∑
i=k+1

H(Xi,θ0) =

(
1

G

k+G∑
i=k+1

∇H(Xi, ξk,n)

)T √
G
(
θ̂k+1,k+G − θ0

)
. (3.3)

At �rst, we want to show that the assumptions of Theorem E.2.16 are ful�lled. Since
we assume that {Xi}i≥1 is of type (E1) or type (E2) and that the �rst derivatives of
the estimating function are measurable with respect to Xi only Conditions (i) to (iii)
of the theorem have to be checked.
On noting that ∇H(Xi,θ) = (∇H1(Xi,θ), . . . ,∇Hp(Xi,θ)), Assumption B.1.6 in con-
nection with Lemma E.1.6 (c) yields E

(
‖∇Hj(X1,θ)‖2+ν) < ∞ for all θ ∈ Θ, hence

(i). Moreover, by a �rst order Taylor expansion we get

‖∇Hj(x,θ)−∇Hj(x, ξ)‖ ≤
∥∥∇2Hj(x,η)

∥∥
F
‖θ − ξ‖ ≤ sup

η∈Θ

∥∥∇2Hj(x,η)
∥∥
F
‖θ − ξ‖ ,

which is well de�ned at least almost surely with respect to PX1 since
E
(
supθ∈Θ ‖∇2Hj(X1,θ)‖F

)
< ∞ by Assumption B.1.7. The continuity of the supre-

mum and the Frobenius norm in combination with the measurability of the second
derivatives of the estimating function imply that supθ∈Θ ‖∇2Hj(·,θ)‖F is a measur-
able function with respect to Xi. Hence, Condition (ii) of Theorem E.2.16 is satis�ed.

Furthermore, we have E
(

supθ∈Θ ‖∇2Hj(X1,θ)‖2+ν

F

)
<∞ by Assumption B.1.7 which

shows Condition (iii) in the theorem. Consequently, applying Theorem E.2.16 in con-
nection with Lemma E.1.6 (d) yields

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇H0(Xi, ξk,n)

∥∥∥∥∥
F

≤ sup
θ∈Θ

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇H0(Xi,θ)

∥∥∥∥∥
F

(3.4)

≤
p∑
j=1

sup
θ∈Θ

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇Hj,0(Xi,θ)

∥∥∥∥∥ = oP (1).

Hence, by considering the Taylor expansion in (3.3) again, we obtain

− 1√
G

k+G∑
i=k+1

H(Xi,θ0) =
(
oP (1) + V (ξk,n)

)√
G
(
θ̂k+1,k+G − θ0

)
uniformly in k.

which shows together with Lemma E.2.21 and Assumption B.1.8

− V (ξk,n)−1 1√
G

k+G∑
i=k+1

H(Xi,θ0) = (oP (1) + Ip)
√
G
(
θ̂k+1,k+G − θ0

)
uniformly in k.

On noting that E (H(X1,θ0)) = 0 and E
(
‖H(X1,θ0)‖2+ν) <∞ by Assumption B.1.5,

Corollary E.2.13 can be used since the pattern of the original sequence described by type
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(E1) or type (E2) is inherited by the sequence {H(Xi,θ0)}i≥1 due to the measurability
of H . We receive

1√
G

k+G∑
i=k+1

H(Xi,θ0) = OP

(√
log(n/G)

)
uniformly in k. (3.5)

Thus, applying Lemma E.2.21 in combination with Assumption B.1.8 yields

OP

(√
log(n/G)

)
= (oP (1) + Ip)

√
G
(
θ̂k+1,k+G − θ0

)
uniformly in k.

Hence, the assertion follows from Lemma E.2.22.

Remark 3.1.6. The condition in Assumption B.1.8 that supθ∈Θ ‖V (θ)−1‖F < ∞ is
satis�ed if

inf
θ∈Θ

λmin
(
V (θ)V (θ)T

)
> c, for some c > 0,

where λmin(·) denotes the smallest eigenvalue of a matrix.

Proof. Note that the spectral norm of a matrix A is de�ned by (see e.g. Horn &
Johnson (1990) on page 295)

‖A‖2 =

√
λmax(A

TA)

with λmax(·) denoting the largest eigenvalue of a matrix. Now, the result can be shown
by using the following inequality of the Frobenius norm and the spectral norm:

‖A‖F =

√
tr(ATA) =

√√√√ p∑
i=1

λi
(
ATA

)
≤
√
pλmax

(
ATA

)
=
√
p ‖A‖2 ,

where λi(·) represents an eigenvalue of a matrix.
Hence, we obtain

sup
θ∈Θ

∥∥V (θ)−1
∥∥
F
≤ √p sup

θ∈Θ

∥∥V (θ)−1
∥∥

2
=
√
p sup
θ∈Θ

√
λmax ((V (θ)−1)TV (θ)−1)

=
√
p sup
θ∈Θ

1√
λmin (V (θ)V (θ)T )

=
√
p

1√
infθ∈Θ λmin (V (θ))V (θ)T )

≤
√
p

c
<∞.

The following lemma shows that Assumption (3.2) can be derived under some moment
conditions.

Lemma 3.1.7. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) satisfying the
Assumptions B.1.5, B.1.6, B.1.7 and B.1.8. Then, Condition (3.2)

max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k+1,k+G

))∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
.

is satis�ed.
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Proof. By a componentwise Taylor expansion, for each component (j = 1, . . . , p) there

exists a ξj,n,k such that
∥∥ξj,n,k − θ0

∥∥ ≤ ∥∥∥θ̂k+1,k+G − θ0

∥∥∥ with

−
k+G∑
i=k+1

Hj(Xi,θ0) =

(
k+G∑
i=k+1

(∇Hj(Xi,θ0))

)T (
θ̂k+1,k+G − θ0

)
+

1

2

(
θ̂k+1,k+G − θ0

)T ( k+G∑
i=k+1

∇2Hj(Xi, ξj,n,k)

)(
θ̂k+1,k+G − θ0

)
.

Hence, we obtain

1√
2G

k+G∑
i=k+1

Hj(Xi,θ0) (3.6)

=

(
E (∇Hj(X1,θ0)) +

1

G

k+G∑
i=k+1

∇Hj,0(Xi,θ0)

)T √
G√
2

(
θ0 − θ̂k+1,k+G

)
+

√
G√
8

(
θ̂k+1,k+G − θ0

)T ( 1

G

k+G∑
i=k+1

∇2Hj(Xi, ξj,n,k)

)(
θ0 − θ̂k+1,k+G

)
.

Furthermore, note that the function supθ∈Θ ‖∇2Hj(·,θ)‖F is measurable with respect
to Xi due to the continuity of the supremum and the Frobenius norm and since the
second derivatives of the estimating function are measurable with respect to Xi. Thus,
the i.i.d. or strong mixing structure of the original sequence carries over to the trans-
formed sequence, i.e. {supθ∈Θ ‖∇2Hj(Xi,θ)‖}i≥1 is a random sequence of type (E1)
or type (E2) as well. With Assumption B.1.7 and Assumption A.1.1, Corollary E.2.13
can be applied to receive

1

G

∥∥∥∥∥
k+G∑
i=k+1

∇2Hj(Xi, ξj,n,k)

∥∥∥∥∥
F

≤ 1

G

k+G∑
i=k+1

sup
θ∈Θ

∥∥∇2Hj(Xi,θ)
∥∥
F

≤ 1

G

∣∣∣∣∣
k+G∑
i=k+1

(
sup
θ∈Θ

∥∥∇2Hj(Xi,θ)
∥∥
F
− E

(
sup
θ∈Θ

∥∥∇2Hj(X1,θ)
∥∥
F

))∣∣∣∣∣
+ E

(
sup
θ∈Θ

∥∥∇2Hj(X1,θ)
∥∥
F

)
= OP

(√
log(n/G)√

G

)
+O(1) = OP (1) uniformly in k,

where the last line follows directly from Assumption B.1.7 and Assumption A.1.1. This
yields in connection with Lemma E.1.5 and Lemma 3.1.5∣∣∣∣∣

√
G√
8

(
θ̂k+1,k+G − θ0

)T ( 1

G

k+G∑
i=k+1

∇2Hj(Xi, ξj,n,k)

)(
θ0 − θ̂k+1,k+G

)∣∣∣∣∣
≤
√
G√
8

∥∥∥θ̂k+1,k+G − θ0

∥∥∥2

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇2Hj(Xi, ξj,n,k)

∥∥∥∥∥
F
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= OP

(
log(n/G)√

G

)
= oP

(
(log(n/G))−1/2

)
uniformly in k,

since, for large n,

log(n/G)
√

log(n/G)√
G

≤
n1/(2+ν)

√
log(n)√

G
→ 0 as n→∞

by Assumption A.1.1. Furthermore, with Assumption B.1.6 and as the sequence
{∇Hj(Xi,θ0)}i≥1 is of type (E1) or type (E2) due to the measurability of the �rst
derivative Corollary E.2.13 can be used to get

1

G

k+G∑
i=k+1

∇Hj,0(Xi,θ0) = OP

(√
log(n/G)√

G

)
.

Combining this with the result of Lemma 3.1.5, the Cauchy-Schwarz inequality and
Assumption A.1.1 leads to∣∣∣∣∣ 1

G

k+G∑
i=k+1

∇Hj,0(Xi,θ0)T
√
G√
2

(
θ0 − θ̂k+1,k+G

)∣∣∣∣∣
≤

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇Hj,0(Xi,θ0)

∥∥∥∥∥
√
G√
2

∥∥∥θ0 − θ̂k+1,k+G

∥∥∥
= OP

(
log(n/G)√

G

)
= oP

(
(log(n/G))−1/2

)
uniformly in k.

Thus, with (3.6) we can conclude that

1√
2G

k+G∑
i=k+1

Hj(Xi,θ0) = E (∇Hj(X1,θ0))T
√
G√
2

(
θ0 − θ̂k+1,k+G

)
+ oP

(
(log(n/G))−1/2

)
holds uniformly in k. Finally, we obtain

1√
2G

k+G∑
i=k+1

H(Xi,θ0)

= V (θ0)

√
G√
2

(
θ0 − θ̂k+1,k+G

)
+ oP

(
(log(n/G))−1/2

)
uniformly in k,

which shows (3.2).

If Assumption (3.2) is satis�ed we are able to determine the limit distribution of the
Wald-type statistic under the null as stated in Theorem 3.1.8. The basic idea there
is to show that the Wald-type statistic is asymptotically equivalent to the score-type
statistic considered in the previous chapter so that both statistics behave similarly in
the limit and a(n/G)Wn(G)− b(n/G) has the same limit distribution as its score-type
counterpart described in Theorem 2.1.1.
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Theorem 3.1.8. Let {Xi : i ≥ 1} be a series of type (E1) or type (E2) satisfying
Assumption B.1.5 and let Assumption A.1.1 on the bandwidth hold. Furthermore,
assume that (3.2) is ful�lled.

(a) Then, under H0,

a(n/G)Wn(G)− b(n/G)
D−→ E

with E as Gumbel distributed random variable as in Theorem 2.1.1 and with a(x)
and b(x) as in (2.1).

(b) The long-run covariance matrix Σ can be replaced by a positive de�nite estimator

sequence Σ̂k,n and the expectation of the gradient matrix V (θ0) can be replaced by

a regular estimator sequence V̂ k,n satisfying the following assumption

max
G≤k≤n−G

∥∥∥Σ−1/2V (θ0)− Σ̂
−1/2

k,n V̂ k,n

∥∥∥
F

= oP

((
log(n/G)

)−1
)

without changing the result of part (a).

Proof. (a) By (3.1) we know that Γ
−1/2
k = Σ−1/2V (θ0) holds for all k ∈ {G, . . . , n−G}

under the null hypothesis. Similar to the MOSUM score-type statistic (see Remark
2.0.2), we receive

Wn(G) = max
G≤k≤n−G

√
G√
2

∥∥∥Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥ .
On noting that

max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k+1,k+G

))∥∥∥∥∥
= max

G≤l≤n

∥∥∥∥∥Σ−1/2

(
1√
2G

l∑
i=l−G+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂l−G+1,l

))∥∥∥∥∥
by shifting the index to l = k +G, Assumption (3.2) yields

|Tn(G,θ0)−Wn(G)|

=

∣∣∣∣ max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2Aθ0,k

∥∥∥
− max

G≤k≤n−G

√
G√
2

∥∥∥Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥∣∣∣∣∣
≤ max

G≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G
Aθ0,k −

√
G√
2
V (θ0)

(
θ̂k−G+1,k − θ̂k+1,k+G

))∥∥∥∥∥
≤ max

0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k+1,k+G

))∥∥∥∥∥
+ max

G≤k≤n

∥∥∥∥∥Σ−1/2

(
1√
2G

k∑
i=k−G+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k−G+1,k

))∥∥∥∥∥
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= 2 max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

H(Xi,θ0)−
√
G√
2
V (θ0)

(
θ0 − θ̂k+1,k+G

))∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
,

which implies that Wn(G) = Tn(G,θ0) + oP
(
(log(n/G))−1/2

)
. Furthermore, As-

sumption A.1.3 of Theorem 2.1.1 is satis�ed by Lemma 2.3.2 and Theorem 2.1.1
can be applied to �nish the proof.

(b) The result of part (a) yields

Wn(G) = max
G≤k≤n−G

√
G√
2

∥∥∥Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
= OP

(
b(n/G)

a(n/G)

)
= OP

(√
log(n/G)

)
.

Furthermore, by Lemma E.1.5 we receive

max
G≤k≤n−G

√
G√
2

∥∥∥θ̂k+1,k+G − θ̂k−G+1,k

∥∥∥
= max

G≤k≤n−G

√
G√
2

∥∥∥V (θ0)−1Σ1/2Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
≤
∥∥∥V (θ0)−1Σ1/2

∥∥∥
F

max
G≤k≤n−G

√
G√
2

∥∥∥Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
= OP

(√
log(n/G)

)
.

Hence, we obtain∣∣∣∣∣ max
G≤k≤n−G

√
G√
2

∥∥∥Σ−1/2V (θ0)
(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
− max

G≤k≤n−G

√
G√
2

∥∥∥Σ̂−1/2

k,n V̂ k,n

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥∣∣∣∣∣
≤ max

G≤k≤n−G

∥∥∥Σ−1/2V (θ0)− Σ̂
−1/2

k,n V̂ k,n

∥∥∥
F

max
G≤k≤n−G

√
G√
2

∥∥∥θ̂k+1,k+G − θ̂k−G+1,k

∥∥∥
= oP

(
(log(n/G))−1/2

)
,

which implies the assertion.

Remark 3.1.9. The assumption on the estimator sequences in part (b) is ful�lled if

max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n −Σ−1/2
∥∥∥
F

= oP
(
(log(n/G))−1) and

max
G≤k≤n−G

∥∥∥V̂ k,n − V (θ0)
∥∥∥
F

= oP
(
(log(n/G))−1) .
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Proof. By using the triangle inequality and the submultiplicativity of the Frobenius
norm, we receive

max
G≤k≤n−G

∥∥∥Σ−1/2V (θ0)− Σ̂
−1/2

k,n V̂ k,n

∥∥∥
F

= max
G≤k≤n−G

∥∥∥Σ−1/2
(
V (θ0)− V̂ k,n

)
+
(
Σ−1/2 − Σ̂

−1/2

k,n

)(
V̂ k,n − V (θ0)

)
+
(
Σ−1/2 − Σ̂

−1/2

k,n

)
V (θ0)

∥∥∥
F

≤
∥∥∥Σ−1/2

∥∥∥
F

max
G≤k≤n−G

∥∥∥V (θ0)− V̂ k,n

∥∥∥
F

+ max
G≤k≤n−G

∥∥∥V (θ0)− V̂ k,n

∥∥∥
F

max
G≤k≤n−G

∥∥∥Σ−1/2 − Σ̂
−1/2

k,n

∥∥∥
F

+ ‖V (θ0)‖F max
G≤k≤n−G

∥∥∥Σ−1/2 − Σ̂
−1/2

k,n

∥∥∥
F

= oP
(
(log(n/G))−1

)
.

3.1.2. Asymptotics Under the Alternative

As already described in Section 2.1.2, we consider alternatives with q structural breaks
where q denotes the unknown number of change points. Under the assumption of
piecewise stationarity, there exist stationary sequences {X(j)

i : i ≥ 1}, j = 1, . . . , q + 1,
such that

Xi = X(j)
i , for kj−1,n < i ≤ kj,n.

Furthermore, we assume that θj ∈ Θ is the unique zero of E
(
H(X(j)

1 ,θ)
)
in the

strict sense according to De�nition E.2.9, for j = 1, . . . , q + 1, and θj 6= θj+1 for all
j = 1, . . . , q. Hence, θj is the true parameter vector of the underlying distribution of
{X(j)

i : i ≥ 1} in a correctly speci�ed model and the best approximating parameter
under misspeci�cation. Besides, let Σj = Σj(θj) denote the long-run covariance ma-
trix of H(X(j)

1 ,θj) which is assumed to be positive de�nite. Moreover, we consider the
same assumptions as in Section 2.3.2 with θ̃ = θj for {X(j)

i }. In addition to that, the
following conditions are needed in this section:

B.2.7 Let E

(
supθ∈Θ

∥∥∥∇2Hl(X(j)
1 ,θ)

∥∥∥2+ν

F

)
< ∞, for all l = 1, . . . , p and for some

ν > 0, j = 1, . . . , q + 1.

B.2.8 There exists a ν > 0 such that E

(∥∥∥H(X(j)
1 ,θ)

∥∥∥2+ν
)
< ∞, for all θ ∈ Θ,

j = 1, . . . , q + 1.

B.2.9 Let V j(θ) = E
(
∇H(X(j)

1 ,θ)
)T

, j = 1, . . . , q + 1, be a regular matrix for

all θ ∈ Θ and let
sup
θ∈Θ

∥∥V j(θ)−1
∥∥
F
<∞.
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B.2.10 Let δV j(θ)+(1−δ)V j+1(θ) be a regular matrix for all θ ∈ Θ and all δ ∈ [0, 1]
and let

sup
δ∈[0,1]

sup
θ∈Θ

∥∥(δV j(θ) + (1− δ)V j+1(θ))−1
∥∥
F
<∞, j = 1, . . . , q.

B.2.11 There exists a ν > 0 such that E

(
supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥2+ν

F

)
< ∞, for

j = 1, . . . , q + 1.

Note that all conditions are summarized in Section B.2.
In order to show consistency for the MOSUM-based test and estimators, we need
to examine the behavior of the MOSUM Wald-type statistic on several subsets of
{G, . . . , n−G}. Remember that

An,G := {k ∈ {G, . . . , n−G} : |k − kj,n| ≥ G ∀j ∈ {1, . . . , q}}

is the set of all time points being far away from any change point as in (2.2). Further-
more, let

Aj,n,G := {k ∈ An,G : kj−1,n < k ≤ kj,n} (for j = 1, . . . , q + 1) (3.7)

such that A1,n,G, . . . , Aq+1,n,G is a partition of An,G since for each k there exists exactly
one j ∈ {1, . . . , q + 1} with kj−1,n < k ≤ kj,n. Moreover, we de�ne

B
(1)
n,G :=

q+1⋃
j=1

B
(1)
j,n,G with B(1)

j,n,G := {k ∈ {G, . . . , n−G} : k < kj,n < k +G} (3.8)

and

B
(2)
n,G :=

q+1⋃
j=1

B
(2)
j,n,G with B(2)

j,n,G := {k ∈ {G, . . . , n−G} : k −G < kj,n ≤ k}. (3.9)

Note that the sets A1,n,G, . . . , Aq+1,n,G, B
(1)
1,n,G, . . . , B

(1)
q+1,n,G, B

(2)
1,n,G, . . . , B

(2)
q+1,n,G are pair-

wise disjoint for n su�ciently large by Assumption A.1.1 and A.2.1 so that they together
built a partition of {G, . . . , n−G}.
Under the null hypothesis we used the asymptotic equivalence to the score-type statis-
tic to determine the limit distribution whereas under the alternative this might be only
useful on segments far away from any change. The main advantage of the MOSUM
Wald-type statistic is that a change in the parameter vector directly a�ects the statistic
which implies that the signal of the statistic is strictly positive on the G-environment
of every change. In order to use this strength in detectability, we have to examine the
behavior of Wald-type statistics on intervals around the change points. In doing so
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we need to understand how the local estimator sequences θ̂k+1,k+G behave under the
alternative. Therefore, we introduce two functions:

F1(k, n,G,θ) =



E
(
H(X(j)

1 ,θ)
)
, if k ∈ Aj,n,G

E
(
H(X(j+1)

1 ,θ)
)
, if k ∈ B(2)

j,n,G

kj,n−k
G

E
(
H(X(j)

1 ,θ)
)

+
k+G−kj,n

G
E
(
H(X(j+1)

1 ,θ)
)
,

if k ∈ B(1)
j,n,G

(3.10)

and

F2(k, n,G,θ) =



E
(
H(X(j)

1 ,θ)
)
, if k ∈ Aj,n,G

E
(
H(X(j)

1 ,θ)
)
, if k ∈ B(1)

j,n,G

kj,n−k+G

G
E
(
H(X(j)

1 ,θ)
)

+
k−kj,n
G

E
(
H(X(j+1)

1 ,θ)
)
,

if k ∈ B(2)
j,n,G

. (3.11)

Furthermore, let θ̃
(1)

k,n,G be the unique zero of F1(k, n,G, ·) and θ̃
(2)

k,n,G denote the unique

zero of F2(k, n,G, ·). By de�nition of F1 and F2 we get θ̃
(1)

k,n,G = θ̃
(2)

k,n,G = θj for

k ∈ Aj,n,G (j = 1, . . . , q + 1) and θ̃
(1)

k,n,G = θj+1, θ̃
(2)

k,n,G = θj for k = kj,n, j = 1, . . . , q.
In the following lemma we derive

√
G-consistency pointwise for all change points and

all time points being far away from any change.

Lemma 3.1.10. Let {X(1)
i : i ≥ 1}, . . . , {X(q+1)

i : i ≥ 1} be sequences of type (E1)
satisfying the Assumptions B.2.1 to B.2.4 or sequences of type (E2) ful�lling the As-

sumptions B.2.1, B.2.3, B.2.4 and B.2.5, with θ̃ = θj for {X(j)
i }. Furthermore, let

Assumption A.1.1 on the bandwidth and Assumption A.2.1 hold. Then,

(a)
√
G
∥∥∥θ̂kj,n+1,kj,n+G − θj+1

∥∥∥ = OP (1) and
√
G
∥∥∥θ̂kj,n−G+1,kj,n − θj

∥∥∥ = OP (1) for all

change points kj,n, j = 1, . . . , q, and

(b)
√
G
∥∥∥θ̂k+1,k+G − θj

∥∥∥ = OP (1) and
√
G
∥∥∥θ̂k−G+1,k − θj

∥∥∥ = OP (1)

pointwise for all k ∈ Aj,n,G.

Proof. First note that, for all change points kj,n, j = 1, . . . , q, (Xkj,n+1, . . . ,Xkj,n+G) =

(X(j+1)
kj,n+1, . . . ,X

(j+1)
kj,n+G) and (Xkj,n−G+1, . . . ,Xkj,n) = (X(j)

kj,n−G+1, . . . ,X
(j)
kj,n

) hold for all

n. Hence, θ̂kj,n−G+1,kj,n and θ̂kj,n+1,kj,n+G, respectively, is determined by solving the

estimating equation system
∑kj,n

i=kj,n−G+1H(X(j)
i ,θ) = 0 or

∑kj,n+G
i=kj,n+1H(X(j+1)

i ,θ) = 0.

Since the sequences {X(1)
i }, . . . , {X

(q+1)
i } are stationary and ful�ll the assumptions of

Theorem 3.1.2 or Theorem 3.1.3 the assertion in (a) follows from Corollary 3.1.4.
Similar arguments can be applied to show (b).

The lemma above is very helpful in the consistency proof for the test. However, for
showing consistency of the change point estimators we need results which enable us to
split the statistic into noise and signal and to approximate the noise part in a uniform
way. Hence, the next lemma will be essential for the proof of Theorem 3.1.15.
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Lemma 3.1.11. Let {X(1)
i : i ≥ 1}, . . . , {X(q+1)

i : i ≥ 1} be sequences of type (E1)
or (E2) satisfying the Assumptions B.2.7, B.2.8, B.2.10 and B.2.11. Furthermore, let
Assumption A.1.1 on the bandwidth and Assumption A.2.1 hold. Then,

(a)
∥∥∥θ̂k+1,k+G − θ̃

(1)

k,n,G

∥∥∥ = OP

(√
log(n/G)

G

)
and

∥∥∥θ̂k−G+1,k − θ̃
(2)

k,n,G

∥∥∥ = OP

(√
log(n/G)

G

)
uniformly on An,G,

(b)
∥∥∥θ̂k+1,k+G − θ̃

(1)

k,n,G

∥∥∥ = oP (1) and
∥∥∥θ̂k−G+1,k − θ̃

(2)

k,n,G

∥∥∥ = OP

(
1√
G

)
uniformly on

B
(1)
n,G,

(c)
∥∥∥θ̂k+1,k+G − θ̃

(1)

k,n,G

∥∥∥ = OP

(
1√
G

)
and

∥∥∥θ̂k−G+1,k − θ̃
(2)

k,n,G

∥∥∥ = oP (1) uniformly on

B
(2)
n,G.

Proof. (a) First note that (Xk+1, . . . ,Xk+G) = (X(j)
k+1, . . . ,X

(j)
k+G), (Xk−G+1, . . . ,Xk) =

(X(j)
k−G+1, . . . ,X

(j)
k ) and θ̃

(1)

k,n,G = θ̃
(2)

k,n,G = θj hold for all time points k ∈ Aj,n,G.

Thus, θ̂k−G+1,k and θ̂k+1,k+G are computed on a stationary sequence {X(j)
i }i≥1

which ful�lls the assumptions of Lemma 3.1.5 since Assumption B.2.6 follows from
Assumption B.2.11 and as Assumption B.2.10 implies (with δ = 1 or δ = 0) that
V j(θ) is regular for all θ ∈ Θ and supθ∈Θ ‖V j(θ)−1‖F < ∞, j = 1, . . . , q + 1 .
Thus, Lemma 3.1.5 can be applied here to receive

max
k∈An,G

√
G
∥∥∥θ̂k+1,k+G − θ̃

(1)

k,n,G

∥∥∥ ≤ q+1∑
j=1

max
k∈Aj,n,G

√
G
∥∥∥θ̂k+1,k+G − θj

∥∥∥
= OP

(√
log(n/G)

)
and

max
k∈An,G

√
G
∥∥∥θ̂k+1,k+G − θ̃

(2)

k,n,G

∥∥∥ = OP

(√
log(n/G)

)
.

(b) We start with the proof of the second statement. Note that (Xk−G+1, . . . ,Xk) =

(X(j)
k−G+1, . . . ,X

(j)
k ) and θ̃

(2)

k,n,G = θj hold for all time points k ∈ B(1)
j,n,G and that the

assumptions of Lemma 3.1.5 are satis�ed by {X(j)
i } as explained in (a). Conse-

quently, the same arguments as in Lemma 3.1.5 can be used here. However, the
rate in (3.5) can be improved by Lemma E.2.15 as follows

1√
G

k∑
i=k−G+1

H(X(j)
i ,θ0) = OP (1) uniformly in k ∈ B(1)

n,G.

Finally, the proof can be �nished in an analogous manner to Lemma 3.1.5 with the
new rate.
For the �rst statement we have to take into consideration that kj,n ∈ {k+1, . . . k+
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G − 1} which makes it a bit more complicated. A Taylor expansion in θ̂k+1,k+G

around θ̃
(1)

k,n,G yields that there exists a ξk,n,G with∥∥∥ξk,n − θ̃(1)

k,n,G

∥∥∥ ≤ ∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥
such that

− 1√
G

k+G∑
i=k+1

H(Xi, θ̃
(1)

k,n,G) =

(
1

G

k+G∑
i=k+1

∇H(Xi, ξk,n,G)

)T √
G
(
θ̂k+1,k+G − θ̃

(1)

k,n,G

)
,

(3.12)

which is by Assumption A.2.1 equivalent to

− 1√
G

 kj,n∑
i=k+1

H(X(j)
i , θ̃

(1)

k,n,G) +
k+G∑

i=kj,n+1

H(X(j+1)
i , θ̃

(1)

k,n,G)


=

 1

G

kj,n∑
i=k+1

∇H(X(j)
i , ξk,n,G) +

1

G

k+G∑
i=kj,n+1

∇H(X(j+1)
i , ξk,n,G)

T

√
G
(
θ̂k+1,k+G − θ̃

(1)

k,n,G

)
.

Similar to Lemma 3.1.5, one can show that the sequences {X(j)
i }i≥1 or {X(j+1)

i }i≥1

and the function ∇Hl satisfy the assumptions of Theorem E.2.16 coinciding with
the assumptions of Lemma E.2.17. For further explanation we refer to (3.4) in
the proof of Lemma 3.1.5. Hence, applying Lemma E.2.17 on ∇Hl(X(j)

i ,θ) in
combination with Lemma E.1.6 (d) and Assumption A.1.1 yields

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

kj,n∑
i=k+1

∇H0(X(j)
i , ξk,n,G)

∥∥∥∥∥∥
F

≤ sup
θ∈Θ

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

kj,n∑
i=k+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

(3.13)

≤
p∑
l=1

sup
θ∈Θ

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

kj,n∑
i=k+1

∇Hl,0(X(j)
i ,θ)

∥∥∥∥∥∥ = oP (1)

and

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

k+G∑
i=kj,n+1

∇H0(X(j+1)
i , ξk,n,G)

∥∥∥∥∥∥
F

(3.14)

≤
p∑
l=1

sup
θ∈Θ

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

k+G∑
i=kj,n+1

∇Hl,0(X(j+1)
i ,θ)

∥∥∥∥∥∥ = oP (1).

Consequently, by considering the Taylor expansion in (3.12) again we obtain

− 1√
G

 kj,n∑
i=k+1

H(X(j)
i , θ̃

(1)

k,n,G) +
k+G∑

i=kj,n+1

H(X(j+1)
i , θ̃

(1)

k,n,G)


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=

(
oP (1) +

kj,n − k
G

V j(ξk,n,G) +
k +G− kj,n

G
V j+1(ξk,n,G)

)
√
G
(
θ̂k+1,k+G − θ̃

(1)

k,n,G

)
uniformly on B(1)

j,n,G.

In addition, Lemma E.2.17 can be used to approximate the left hand side of the
equation above. Therefore, we have to verify that the assumptions of this lemma,
which are explicitly described in Theorem E.2.16, are satis�ed. On noting that
{X(j)

i }i≥1 is of type (E1) or type (E2) and that the estimating function H is
measurable with respect to X(j)

i by assumption, only Conditions (i) to (iii) of
Theorem E.2.16 have to be derived.

By Assumption B.2.8 we have E

(∥∥∥H(X(j)
1 ,θ)

∥∥∥2+ν
)
<∞ for all θ ∈ Θ. Moreover,

a �rst order Taylor expansion yields

‖H(x,θ)−H(x, ξ)‖ ≤ ‖∇H(x,η)‖F ‖θ − ξ‖ ≤ sup
η∈Θ
‖∇H(x,η)‖F ‖θ − ξ‖ ,

(3.15)

which is well de�ned, at least almost surely with respect to PX(j)
1
, since

E
(

supθ∈Θ

∥∥∥∇H(X(j)
i ,θ)

∥∥∥
F

)
<∞ by Assumption B.2.11. By the continuity of the

supremum and the Frobenius norm in combination with the measurability of the
�rst derivatives of the estimating function we can conclude that supθ∈Θ ‖∇H(·,θ)‖F
is a measurable function with respect to X(j)

i for j = 1, . . . , q + 1. Hence, Condi-
tion (ii) is satis�ed and Assumption B.2.11 shows Condition (iii). Consequently,

since θ̃
(1)

k,n,G is the unique zero of kj,n−k
G

E
(
H(X(j)

1 ,θ)
)

+
k+G−kj,n

G
E
(
H(X(j+1)

1 ,θ)
)

applying Lemma E.2.17 yields

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1√
G

 kj,n∑
i=k+1

H(X(j)
i , θ̃

(1)

k,n,G) +
k+G∑

i=kj,n+1

H(X(j+1)
i , θ̃

(1)

k,n,G)

∥∥∥∥∥∥ (3.16)

= max
k∈B(1)

j,n,G

√
G

∥∥∥∥∥∥ 1

G

 kj,n∑
i=k+1

H0(X(j)
i , θ̃

(1)

k,n,G) +
k+G∑

i=kj,n+1

H0(X(j+1)
i , θ̃

(1)

k,n,G)

∥∥∥∥∥∥
≤ sup
θ∈Θ

max
k∈B(1)

j,n,G

√
G

∥∥∥∥∥∥ 1

G

 kj,n∑
i=k+1

H0(X(j)
i ,θ)

∥∥∥∥∥∥
+ sup
θ∈Θ

max
k∈B(1)

j,n,G

√
G

∥∥∥∥∥∥ 1

G

 k+G∑
i=kj,n+1

H0(X(j+1)
i ,θ)

∥∥∥∥∥∥
= oP

(√
G
)
.

Hence, we receive(
oP (1) +

kj,n − k
G

V j(ξk,n,G) +
k +G− kj,n

G
V j+1(ξk,n,G)

)(
θ̂k+1,k+G − θ̃

(1)

k,n,G

)
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= oP (1) uniformly on B(1)
j,n,G.

Furthermore, by combining Assumption B.2.10 and Lemma E.2.21 we can multi-
ply both sides of the equation above with the inverse of the convex combination
kj,n−k
G
V j(ξk,n,G) +

k+G−kj,n
G

V j+1(ξk,n,G) and get

oP (1) = (oP (1) + Ip)
(
θ̂k+1,k+G − θ̃

(1)

k,n,G

)
uniformly on B(1)

j,n,G.

Thus, Lemma E.2.22 shows∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥ = oP (1) uniformly on B(1)
j,n,G

and we obtain ∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥ = oP (1) uniformly on B(1)
n,G,

since the number of changes q is �nite.

(c) These assertions can be shown analogously to (b).

Note that Assumption B.2.10 is very restrictive and might not be veri�able in some
models. For further discussion on that we refer to Remark 3.1.19 below.
Moreover, the matrix Γk has to be speci�ed under the alternative as it constitutes
an important part of our Wald-type statistic. According to Assumption A.2.2, for
kj−1,n < k ≤ kj,n, j = 1, . . . , q + 1, we set

Γk = Γj = V j(θj)
−1Σj(V j(θj)

−1)T . (3.17)

3.1.2.1. Asymptotic Power of the MOSUM-Based Test

By applying Theorem 3.1.8 an asymptotic level α test for testing the null hypothesis
of q = 0, i.e. no change or structural break occurs in the considered time period, has
been constructed:

Reject H0 if Wn(G) > Dn(G,α),

with Dn(G,α) =
b(n/G) + cα
a(n/G)

,

where cα := − log log 1√
1−α denotes the (1− α)-quantile of the Gumbel distribution.

The following theorem shows that this test correctly rejects the null hypothesis under
the alternative with probability tending to 1. The main result is stated in part (a)
followed by part (b) which is of particular interest for applications where the matrix
Γk is usually unknown and estimators are used.

Theorem 3.1.12. Let {X(1)
i : i ≥ 1}, . . . , {X(q+1)

i : i ≥ 1} be sequences of type (E1)

or (E2) satisfying the Assumptions B.2.3, B.2.7, B.2.8 and B.2.9. with θ̃j = θj for

{X(j)
i : i ≥ 1}. Furthermore, let Assumption A.1.1 on the bandwidth and Assumption

A.2.1 hold.
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(a) Then, under H1, we obtain for any z ∈ R

lim
n→∞

P (a(n/G)Wn(G)− b(n/G) ≥ z) = 1,

i.e. the test has asymptotic power one.

(b) The matrix Γk as in (3.17) can be replaced by a positive de�nite estimator sequence

Γ̂k,n satisfying the following assumption:

(I) maxk∈Bn,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

= oP (1) , where {ΓA,k}k≥1 is a sequence of pos-

itive de�nite matrices ful�lling supk ‖ΓA,k‖F <∞ and supk

∥∥∥Γ−1/2
A,k

∥∥∥
F
<∞.

Proof. (a) Similar to the proof of Theorem 2.1.5, it is su�cient to show that Wn(G)−
z+b(n/G)
a(n/G)

P→∞ since the inequality a(n/G)Wn(G)− b(n/G) ≥ z is equivalent to

Wn(G)− z + b(n/G)

a(n/G)
≥ 0.

First we use Wn(G) ≥ Wkj,n,n(G) before we split the statistic Wkj,n,n(G) into noise
and signal. Then, since the Assumptions B.2.7 and B.2.8 imply B.2.1, B.2.2 and
B.2.4 Lemma 3.1.10 (a) can be applied which shows together with Lemma E.1.5

Wn(G) = max
G≤k≤n−G

Wk,n(G)

≥ Wkj,n,n(G) =

√
G√
2

∥∥∥Γ−1/2
kj,n

(
θ̂kj,n+1,kj,n+G − θ̂kj,n−G+1,kj,n

)∥∥∥
≥
√
G√
2

(∥∥∥Γ−1/2
kj,n

(θj+1 − θj)
∥∥∥

−
∥∥∥Γ−1/2

kj,n

(
θ̂kj,n+1,kj,n+G − θj+1 −

(
θ̂kj,n−G+1,kj,n − θj

))∥∥∥)
≥
√
G√
2

∥∥∥Γ−1/2
kj,n

(θj+1 − θj)
∥∥∥

−
√
G√
2

∥∥∥Γ−1/2
kj,n

∥∥∥
F

(∥∥∥θ̂kj,n+1,kj,n+G − θj+1

∥∥∥+
∥∥∥θ̂kj,n−G+1,kj,n − θj

∥∥∥)
=

√
G√
2

∥∥∥Γ−1/2
kj,n

(θj+1 − θj)
∥∥∥+OP (1),

as
∥∥∥Γ−1/2

kj,n

∥∥∥
F

= O(1). Furthermore, Assumption B.2.9 in combination with Lemma

E.1.7 yields that Γkj,n = V j(θj)
−1Σj(V j(θj)

−1)T is positive de�nite which implies
that Γ−1

kj,n
is positive de�nite as well. Hence, on noting that θj+1 6= θj and that

the Euclidean norm coincides with the Frobenius norm for vectors in Rd as shown
in Lemma E.1.4, we receive∥∥∥Γ−1/2

kj,n
(θj+1 − θj)

∥∥∥ =
√

(θj+1 − θj)T Γ−1
kj,n

(θj+1 − θj)
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=

√
(θj+1 − θj)T (V j(θj)−1Σj(V j(θj)−1)T )−1 (θj+1 − θj) ≥ c

holds for some c > 0. Since z+b(n/G)
a(n/G)

= o(
√
G) by Assumption A.1.1 we can conclude

that

Wn(G)− z + b(n/G)

a(n/G)
≥
√
Gc√
2

+OP (1)− z + b(n/G)

a(n/G)
=
√
G

(
c√
2

+ oP (1)

)
P→∞,

which implies the assertion in (a).

(b) If the matrix Γk is replaced by an estimator Γ̂k,n in the statistic we use the following
notation

Ŵn(G) = max
G≤k≤n−G

Ŵk,n(G) = max
G≤k≤n−G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥ .
On noting that by Assumption (I) on the estimator sequence∥∥∥Γ̂−1/2

kj,n,n

∥∥∥
F
≤ max

k∈Bn,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

+ max
k∈Bn,G

∥∥∥Γ−1/2
A,k

∥∥∥
F

= OP (1),

the same arguments as in (a) can be applied here to obtain

Ŵn(G) ≥
√
G√
2

∥∥∥Γ̂−1/2

kj,n,n
(θj+1 − θj)

∥∥∥+OP (1).

In analogous manner to the proof of Theorem 2.1.5 (c) we can show that∥∥∥Γ̂−1/2

kj,n,n
(θj+1 − θj)

∥∥∥ ≥ c

hold for some c > 0. For a detailed explanation we refer to that proof. Finally,
similar to (a) we can conclude that

Ŵn(G)− z + b(n/G)

a(n/G)
≥
√
G(c+ oP (1))→∞,

which yields the statement of (b).

Remark 3.1.13. The assumption on the estimator sequence of the long-run covariance

matrix in part (b) is ful�lled if Γ̂k,n = V̂
−1

k,nΣ̂k,n(V̂
−1

k,n)T , where

• Σ̂k,n is a positive de�nite estimator sequence satisfying:

maxk∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

= oP (1) , with {ΣA,k}k≥1 denoting a sequence of

positive de�nite matrices ful�lling supk ‖ΣA,k‖F < ∞ and supk

∥∥∥Σ−1/2
A,k

∥∥∥
F
< ∞

and

• V̂ k,n is a regular estimator sequence satisfying:

maxk∈Bn,G

∥∥∥V̂ k,n − V A,k

∥∥∥
F

= oP (1) , with {V A,k}k≥1 denoting a sequence of reg-

ular matrices ful�lling supk
∥∥V −1

A,k

∥∥
F
<∞ and supk ‖V A,k‖F <∞.
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Proof. We receive

max
k∈Bn,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

= max
k∈Bn,G

∥∥∥V̂ k,nΣ̂
−1/2

k,n − V A,kΣ
−1/2
A,k

∥∥∥
F

= max
k∈Bn,G

∥∥∥(V̂ k,n − V A,k

)
Σ
−1/2
A,k

+
(
V̂ k,n − V A,k

)(
Σ̂
−1/2

k,n −Σ
−1/2
A,k

)
+ V A,k

(
Σ̂
−1/2

k,n −Σ
−1/2
A,k

)∥∥∥
F

≤ max
k∈Bn,G

∥∥∥Σ−1/2
A,k

∥∥∥
F

max
k∈Bn,G

∥∥∥V̂ k,n − V A,k

∥∥∥
F

+ max
k∈Bn,G

∥∥∥V̂ k,n − V A,k

∥∥∥
F

max
k∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

+ max
k∈Bn,G

‖V A,k‖F max
k∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

= oP (1) ,

which shows the �rst part of Assumption (I). Furthermore, note that ΓA,k = V −1
A,kΣA,k

(
V −1

A,k

)T
is a sequence of positive de�nite matrices by Lemma E.1.7 with

sup
k
‖ΓA,k‖F = sup

k

∥∥∥V −1
A,kΣA,k

(
V −1

A,k

)T∥∥∥
F
≤ sup

k

∥∥V −1
A,k

∥∥2

F
sup
k
‖ΣA,k‖F <∞

and

sup
k

∥∥∥Γ−1/2
A,k

∥∥∥
F

= sup
k

∥∥∥V A,kΣ
−1/2
A,k

∥∥∥
F
≤ sup

k
‖V A,k‖F sup

k

∥∥∥Σ−1/2
A,k

∥∥∥
F
<∞

completing the proof of Assumption (I).

3.1.2.2. MOSUM Wald-Type Estimators

The estimators for the number of changes and the locations are determined in an
analogous manner to Section 2.1.3.1. We consider all pairs of time points (vj,n, wj,n)
with

Wk,n(G) ≥ Dn(αn, G) for vj,n ≤ k ≤ wj,n,

Wk,n(G) < Dn(αn, G) for k = vj,n − 1, wj,n + 1,

wj,n − vj,n ≥ εG with 0 < ε < 1/2 �xed. (3.18)

The estimator for the number of changes q̂n is given by the number of pairs and we
take the maximal points of these exceeding intervals [vj,n, wj,n] as estimators for the
location of the change points:

k̂j,n := arg max
vj,n≤k≤wj,n

Wk,n(G).

Before we prove that these estimators are consistent for the true values in some sense,

we need to examine the distance between θj and the unique zeros θ̃
(1)

k,n,G and θ̃
(2)

k,n,G on
speci�c intervals around the change points. Therefore, we de�ne

B̄
(1)
j,n,G := B

(1)
j,n,G ∩ {k : |k − kj,n| < (1− ε)G} and (3.19)

B̄
(2)
j,n,G := B

(2)
j,n,G ∩ {k : |k − kj,n| < (1− ε)G}

with B(1)
j,n,G and B(2)

j,n,G as in (3.8) and (3.9) and ε as in (3.18).
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Lemma 3.1.14. Let Assumption A.1.1 on the bandwidth and Assumption A.2.1 be
ful�lled. Moreover let {X(1)

i : i ≥ 1}, . . . , {X(q+1)
i : i ≥ 1} be sequences of type (E1) or

(E2) satisfying Assumption B.2.11. Then, for all j = 1, . . . , q + 1,

(a) max
k∈B̄(1)

j,n,G

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ = O(1) and max

k∈B̄(2)
j,n,G

∥∥∥θ̃(2)

k,n,G − θj+1

∥∥∥ = O(1),

(b) min
k∈B̄(1)

j,n,G

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ > c and min

k∈B̄(2)
j,n,G

∥∥∥θ̃(2)

k,n,G − θj+1

∥∥∥ > c for some c > 0.

Proof. (a) The assertions follow directly from the compactness of the parameter space.

(b) First note that by de�nition of θj and θ̃
(1)

k,n,G

k +G− kj,n
G

E
(
H(X(j+1)

1 ,θj)
)

=
kj,n − k
G

E
(
H(X(j)

1 ,θj)
)

+
k +G− kj,n

G
E
(
H(X(j+1)

1 ,θj)
)

− kj,n − k
G

E
(
H(X(j)

1 , θ̃
(1)

k,n,G)
)
− k +G− kj,n

G
E
(
H(X(j+1)

1 , θ̃
(1)

k,n,G)
)
.

Furthermore, with the approximation in (3.15) and by using the properties of
expected values we receive

k +G− kj,n
G

∥∥∥E (H(X(j+1)
1 ,θj)

)
− E

(
H(X(j+1)

1 , θ̃
(1)

k,n,G

)∥∥∥
≤ k +G− kj,n

G
E
(∥∥∥H(X(j+1)

1 ,θj)−H(X(j+1)
1 , θ̃

(1)

k,n,G

∥∥∥)
≤ k +G− kj,n

G
E

(
sup
θ∈Θ

∥∥∥∇H(X(j+1)
1 ,θ)

∥∥∥
F

)∥∥∥θ̃(1)

k,n,G − θj
∥∥∥

≤ E

(
sup
θ∈Θ

∥∥∥∇H(X(j+1)
1 ,θ)

∥∥∥
F

)∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ <∞, for all k ∈ B̄(1)

j,n,G,

where the last line follows from Assumption B.2.11. Similarly, we obtain

kj,n − k
G

∥∥∥E (H(X(j)
1 ,θj)

)
− E

(
H(X(j)

1 , θ̃
(1)

k,n,G

)∥∥∥
≤ kj,n − k

G
E
(∥∥∥H(X(j)

1 ,θj)−H(X(j)
1 , θ̃

(1)

k,n,G

∥∥∥)
≤ kj,n − k

G
E

(
sup
θ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)∥∥∥θ̃(1)

k,n,G − θj
∥∥∥

≤ (1− ε)E
(

sup
θ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ <∞, for all k ∈ B̄(1)

j,n,G,

Hence, this can be combined to∥∥∥∥k +G− kj,n
G

E
(
H(X(j+1)

1 ,θj)
)∥∥∥∥

≤
(
E

(
sup
θ∈Θ

∥∥∥∇H(X(j+1)
1 ,θ)

∥∥∥
F

)
+ (1− ε)E

(
sup
θ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

))∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ .
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Moreover, since θj+1 is the unique zero of E
(
H(X(j+1)

1 , ·)
)
and θj+1 6= θj we know

that there exists a c̃ > 0 such that∥∥∥∥k +G− kj,n
G

E
(
H(X(j+1)

1 ,θj)
)∥∥∥∥ ≥ ε

∥∥∥E (H(X(j+1)
1 ,θj)

)∥∥∥ > c̃.

Finally, we can conclude

min
k∈B̄(1)

j,n,G

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ > c with

c :=
c̃

E
(

supθ∈Θ

∥∥∥∇H(X(j+1)
1 ,θ)

∥∥∥
F

)
+ (1− ε)E

(
supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

) > 0.

The second statement can be derived in an analogous manner.

Now, we have all the ingredients together to show that the estimator for the number
of changes is equal to the true number with probability tending to one.

Theorem 3.1.15. Let Assumption A.1.1 on the bandwidth and Assumption A.2.1 be
ful�lled. Moreover, let {X(1)

i : i ≥ 1}, . . . , {X(q+1)
i : i ≥ 1} be sequences of type (E1) or

(E2) satisfying the Assumptions (B.2.7), (B.2.8), (B.2.10) and (B.2.11). Furthermore,
assume that the sequence {αn}n∈N ful�lls Assumption A.2.8.

(a) Then, it holds
P (q̂n = q)→ 1, as n→∞.

(b) The consistency statement in (a) remains true if the matrix Γk is replaced by an

estimator Γ̂k,n satisfying the following assumptions.

(I) maxk∈Bn,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

= oP (1) , where {ΓA,k}k≥1 is a sequence of pos-

itive de�nite matrices ful�lling supk ‖ΓA,k‖F <∞ and supk

∥∥∥Γ−1/2
A,k

∥∥∥
F
<∞.

(II) max
k∈An,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
k

∥∥∥
F

= oP (log(n/G)−1) .

Proof. (a) The basic idea of this proof is similar to that of Theorem 2.1.8. Due to
Condition 3 in the MOSUM procedure, we need to consider only the set of time
points being far away from any change, An,G, and the sets of time points lying in
an ((1− ε)G)- environment of a change as in (3.19) such that

B̄n,G :=

q+1⋃
j=1

B̄j,n,G with B̄j,n,G := B̄
(1)
j,n,G ∪ B̄

(2)
j,n,G.

We obtain

P (q̂n = q)
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≥ P

(
max
k∈An,G

Wk,n(G) < Dn(αn, G), min
k∈B̄n,G

Wk,n(G) ≥ Dn(αn, G)

)
≥ P

(
max
k∈An,G

Wk,n(G) < Dn(αn, G)

)
+ P

(
min
k∈B̄n,G

Wk,n(G) ≥ Dn(αn, G)

)
− 1.

Thus, it is su�cient to show that

(1) P

(
max
k∈An,G

Wk,n(G) < Dn(αn, G)

)
→ 1 and

(2) P

(
min
k∈B̄n,G

Wk,n(G) ≥ Dn(αn, G)

)
→ 1

as n goes to in�nity.
Part (1):

We start with proving statement (1). Let T (j)
k,n(G,θ) be the MOSUM statistic based

on estimating functions according to De�nition 2.0.1 computed on the sequence
{X(j)

i }i≥1. Furthermore, note that applying Lemma 3.1.11 yields

max
k∈Aj,n,G

∥∥∥θ̂k+1,k+G − θj
∥∥∥ = OP

(√
log(n/G)

G

)
and

max
k∈Aj,n,G

∥∥∥θ̂k−G+1,k − θj
∥∥∥ = OP

(√
log(n/G)

G

)
.

Thus, since (Xk−G+1, . . . ,Xk+G) = (X(j)
k−G+1, . . . ,X

(j)
k+G) holds for all k ∈ Aj,n,G with

{X(j)
i }i≥1 ful�lling the Assumptions B.2.5, B.2.6, B.2.7 and B.2.9 (following from

Assumption B.2.10 with δ = 1) Lemma 3.1.7 can be used here to receive

max
k∈Aj,n,G

∥∥∥∥∥Σ−1/2
j

(
1√
2G

k+G∑
i=k+1

H(X(j)
i ,θj)−

√
G√
2
V j(θj)

(
θj − θ̂k+1,k+G

))∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
and

max
k∈Aj,n,G

∥∥∥∥∥Σ−1/2
j

(
1√
2G

k∑
i=k−G+1

H(X(j)
i ,θj)−

√
G√
2
V j(θj)

(
θj − θ̂k−G+1,k

))∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
.

This implies∣∣∣∣ max
k∈Aj,n,G

T
(j)
k,n(G,θj)− max

k∈Aj,n,G
Wk,n(G)

∣∣∣∣
=

∣∣∣∣∣ max
k∈Aj,n,G

1√
2G

∥∥∥∥∥Σ−1/2
j

(
k+G∑
i=k+1

H(X(j)
i ,θj)−

k+G∑
i=k−G+1

H(X(j)
i ,θj)

)∥∥∥∥∥
− max

k∈Aj,n,G

√
G√
2

∥∥∥Σ−1/2
j V j(θj)

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥∣∣∣∣∣
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≤ max
k∈Aj,n,G

∥∥∥∥∥Σ−1/2
j

(
1√
2G

(
k+G∑
i=k+1

H(X(j)
i ,θj)−

k+G∑
i=k−G+1

H(X(j)
i ,θj)

)

−
√
G√
2
V j(θj)

(
θ̂k−G+1,k − θ̂k+1,k+G

))∥∥∥∥∥
≤ max

k∈Aj,n,G

∥∥∥∥∥Σ−1/2
j

(
1√
2G

k+G∑
i=k+1

H(X(j)
i ,θj)−

√
G√
2
V j(θj)

(
θj − θ̂k+1,k+G

))∥∥∥∥∥
+ max

k∈Aj,n,G

∥∥∥∥∥Σ−1/2
j

(
1√
2G

k∑
i=k−G+1

H(X(j)
i ,θj)−

√
G√
2
V j(θj)

(
θj − θ̂k−G+1,k

))∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
,

which shows thatWk,n(G) = T
(j)
k,n(G,θj)+oP

(
(log(n/G))−1/2

)
uniformly on Aj,n,G.

Moreover, this yields

P

(
a(n/G) max

k∈Aj,n,G
Wk,n(G)− b(n/G) < z

)
(3.20)

= P

(
a(n/G) max

k∈Aj,n,G
T

(j)
k,n(G,θj)− b(n/G) + oP (1) < z

)
≥ P

(
a(n/G) max

G≤k≤n−G
T

(j)
k,n(G,θj)− b(n/G) + oP (1) < z

)
= exp(−2 exp(−z)) + o(1) for some z ∈ R,

where the last line follows from Theorem 2.1.1 since Assumption A.1.3 is satis�ed
by {H(X(j)

i ,θj)}i≥1 under the Conditions B.2.8 or B.2.5 as shown in Lemma 2.3.2.
Hence, on noting that cαn is the 1−αn-quantile of the Gumbel distribution, applying
Lemma E.2.18 yields

P

(
max
k∈An,G

Wk,n(G) < Dn(αn, G)

)
(3.21)

= P

(
max

1≤j≤q+1
max

k∈Aj,n,G
Wk,n(G) < Dn(αn, G)

)
= P

(
q+1⋂
j=1

{
max

k∈Aj,n,G
Wk,n(G) < Dn(αn, G)

})

≥
q+1∑
j=1

P

(
max

k∈Aj,n,G
Wk,n(G) < Dn(αn, G)

)
− (q + 1) + 1

=

q+1∑
j=1

P

(
a(n/G) max

k∈Aj,n,G
Wk,n(G)− b(n/G) < cαn

)
− q

≥ (q + 1)(1− αn) + o(1)− q = 1− (q + 1)αn + o(1).

Thus, we can conclude that P
(
maxk∈An,GWk,n(G) < Dn(αn, G)

)
→ 1 by Assump-

tion A.2.8.
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Part (2):
For proving the second statement, it is necessary to approximate
P
(
mink∈B̄j,n,GWk,n(G) ≥ Dn(αn, G)

)
.

Note that Γk = Γj and θ̃
(2)

k,n,G = θj hold for all k ∈ B̄
(1)
j,n,G. After splitting the

statistic into noise and signal, applying Lemma E.1.5 and Lemma 3.1.11 yields

min
k∈B̄(1)

j,n,G

Wk,n(G) = min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
≥ min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥

− max
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̂k+1,k+G − θ̂k−G+1,k −

(
θ̃

(1)

k,n,G − θj
))∥∥∥

≥ min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥

−
√
G√
2

∥∥∥Γ−1/2
j

∥∥∥
F

(
max

k∈B(1)
j,n,G

∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥+ max
k∈B(1)

j,n,G

∥∥∥θ̂k−G+1,k − θj
∥∥∥)

= min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥+ oP

(√
G
)
.

By using the result above and on noting that∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ =

∥∥∥Γ1/2
j Γ

−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥ ≤ ∥∥∥Γ1/2

j

∥∥∥
F

∥∥∥Γ−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥

according to Lemma E.1.5 and

min
k∈B̄(1)

j,n,G

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ > c

by Lemma 3.1.14, we receive

P

(
min

k∈B̄(1)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

)

≥ P

(
min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥Γ−1/2
j

(
θ̃

(1)

k,n,G − θj
)∥∥∥+ oP

(√
G
)
≥ Dn(αn, G)

)

≥ P

(
min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥(∥∥∥Γ1/2

j

∥∥∥
F

)−1

+ oP

(√
G
)
≥ Dn(αn, G)

)

≥ P
(√

G (c+ oP (1)) ≥ Dn(αn, G)
)

= P

(
c+ oP (1) ≥ Dn(αn, G)√

G

)
→ 1,

where the last line follows from
(∥∥∥Γ1/2

j

∥∥∥
F

)−1

= O(1) due to the positive de�-

niteness of the matrix Γj and from Assumptions A.1.1 and A.2.8 ensuring that
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Dn(αn,G)√
G

= o(1). Similar arguments can be used to obtain

P

(
min

k∈B̄(2)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

)
→ 1 as n→∞.

Hence, with Lemma E.2.18 we get

P

(
min

k∈B̄j,n,G
Wk,n(G) ≥ Dn(αn, G)

)
= P

({
min

k∈B̄(1)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

}
∩

{
min

k∈B̄(2)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

})

≥ P

(
min

k∈B̄(1)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

)

+ P

(
min

k∈B̄(2)
j,n,G

Wk,n(G) ≥ Dn(αn, G)

)
− 1→ 1.

Finally, we can conclude

P

(
min
k∈B̄n,G

Wk,n(G) ≥ Dn(αn, G)

)
= P

(
min

1≤j≤q+1
min

k∈B̄j,n,G
Wk,n(G) ≥ Dn(αn, G)

)
= P

(
q+1⋂
j=1

{
min

k∈B̄j,n,G
Wk,n(G) ≥ Dn(αn, G)

})

≥
q+1∑
j=1

P

(
min

k∈B̄j,n,G
Wk,n(G) ≥ Dn(αn, G)

)
− (q + 1) + 1→ 1,

where the approximation in the last line follows from Lemma E.2.18.

(b) Part (1):
Combining Lemma 3.1.11 with Lemma E.1.5 and Assumption (II) on the estimator
sequence yields∣∣∣∣ max

k∈An,G
Ŵk,n(G)− max

k∈An,G
Wk,n(G)

∣∣∣∣
=

∣∣∣∣∣ max
k∈An,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
− max

k∈An,G

√
G√
2

∥∥∥Γ−1/2
k

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥∣∣∣∣∣
≤ max

k∈An,G

√
G√
2

∥∥∥θ̂k+1,k+G − θ̂k−G+1,k

∥∥∥ max
k∈An,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
k

∥∥∥
F
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= OP

(√
log(n/G)

)
oP
(
log(n/G)−1

)
= oP

(
log(n/G)−1/2

)
,

which shows that Ŵk,n(G) = Wk,n(G) + oP
(
(log(n/G))−1/2

)
uniformly on An,G.

Thus, with (3.20) we get

P

(
a(n/G) max

k∈Aj,n,G
Ŵk,n(G)− b(n/G) < z

)
= P

(
a(n/G) max

k∈Aj,n,G
Wk,n(G)− b(n/G) + oP (1) < z

)
≥ exp(−2 exp(−z)) + o(1) for some z ∈ R.

Hence, in an analogous manner to (3.21) we can conclude

P

(
max
k∈An,G

Ŵk,n(G) < Dn(αn, G)

)
→ 1.

Part (2):
Similar to (a), we get with Lemma E.1.5

min
k∈B̄(1)

j,n,G

Ŵk,n(G) = min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̂k+1,k+G − θ̂k−G+1,k

)∥∥∥
≥ min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)∥∥∥

− max
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̂k+1,k+G − θ̂k−G+1,k −

(
θ̃

(1)

k,n,G − θj
))∥∥∥

≥ min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)∥∥∥

−
√
G√
2

max
k∈B̄(1)

j,n,G

∥∥∥Γ̂−1/2

k,n

∥∥∥
F

(
max

k∈B̄(1)
j,n,G

∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥+ max
k∈B̄(1)

j,n,G

∥∥∥θ̂k−G+1,k − θj
∥∥∥)

≥ min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)∥∥∥

−
√
G√
2

(
max

k∈B̄(1)
j,n,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

+ max
k∈B̄(1)

j,n,G

∥∥∥Γ−1/2
A,k

∥∥∥
F

)
(

max
k∈B(1)

j,n,G

∥∥∥θ̂k+1,k+G − θ̃
(1)

k,n,G

∥∥∥+ max
k∈B(1)

j,n,G

∥∥∥θ̂k−G+1,k − θj
∥∥∥)

= min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)∥∥∥+ oP

(√
G
)
,

where the last line follows from Lemma 3.1.11 and Assumption (I). Furthermore,
applying Lemma E.1.3 and Lemma E.1.5 in connection with Lemma 3.1.14 (a) and
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Assumption (I) yields∣∣∣∣∣ min
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)∥∥∥− min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥Γ−1/2
A,k

(
θ̃

(1)

k,n,G − θj
)∥∥∥∣∣∣∣∣

≤ max
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̃

(1)

k,n,G − θj
)
− Γ

−1/2
A,k

(
θ̃

(1)

k,n,G − θj
)∥∥∥

≤ max
k∈B̄(1)

j,n,G

∥∥∥Γ̂−1/2

k,n − Γ
−1/2
A,k

∥∥∥
F

max
k∈B̄(1)

j,n,G

√
G√
2

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥

= oP
(
(log(n/G)−1

)
OP

(√
G
)

= oP

(√
G
)
.

Thus, by combining these results we obtain

P

(
min

k∈B̄(1)
j,n,G

Ŵk,n(G) ≥ Dn(αn, G)

)

≥ P

(
min

k∈B̄(1)
j,n,G

√
G√
2

∥∥∥Γ−1/2
A,k

(
θ̃

(1)

k,n,G − θj
)∥∥∥+ oP

(√
G
)
≥ Dn(αn, G)

)
.

Similar arguments as in (2.8) in the proof of Theorem 2.1.5 (c) can be applied

here to show that min
k∈B̄(1)

j,n,G

∥∥∥Γ−1/2
A,k x

∥∥∥ ≥ √c1 ‖x‖ for every x ∈ Rp with x 6= 0,

where c1 > 0 denotes a lower bound for the minimal eigenvalues of Γ−1
A,k, for

every k ∈ B̄
(1)
j,n,G, obtained by Lemma E.1.10. For further explanation we refer

to the proof of Theorem 2.1.5 (c). Moreover, from Lemma 3.1.14 we know that

min
k∈B̄(1)

j,n,G

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ > c2 for some c2 > 0. Thus, we receive∥∥∥Γ−1/2

A,k

(
θ̃

(1)

k,n,G − θj
)∥∥∥ ≥ √c1

∥∥∥θ̃(1)

k,n,G − θj
∥∥∥ > c with c :=

√
c1c2.

Finally, in analogous manner to (a) we can conclude that

P

(
min

k∈B̄(1)
j,n,G

Ŵk,n(G) ≥ Dn(αn, G)

)
≥ P

(
c+ oP (1) ≥ Dn(αn, G)√

G

)
→ 1,

since Dn(αn,G)√
G

= o(1) by Assumptions A.1.1 and A.2.8.

Moreover, the following corollary in combination with Remark 3.1.17 proves a weak
consistency statement for the change point estimators k̂j,n.

Corollary 3.1.16. Let the assumptions of Theorem 3.1.15 hold. Then,

P

(
max
1≤j≤q

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣ < G

)
→ 1,

i.e. with probability tending to one every change point has at least one estimator in its
G-environment.
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Proof. Similar to the proof of Corollary 2.1.10, the assertion follows from part (2) in
the proof of Theorem 3.1.15.

Remark 3.1.17. By Theorem 3.1.15 there are exactly q change point estimators with
asymptotic probability one. Since the distance between two adjacent change points is
asymptotically greater than 2G an estimator can only lie in the G-environment of one
change point. Thus, combining Theorem 3.1.15 and Corollary 3.1.16 yields that every
change point has exactly one estimator in its G-environment with probability tending
to one.

With the help of the results above we get that the estimators of the rescaled change

points λ̂j,n :=
k̂j,n
n
, j ∈ {1, . . . , q}, are consistent for the true rescaled changes λj,

j ∈ {1, . . . , q}, in the classical sense shown by the corollary below.

Corollary 3.1.18. Let the assumptions of Theorem 3.1.15 hold. Then,

max
1≤j≤q

min
1≤l≤q̂n

∣∣∣λ̂l,n − λj∣∣∣ = OP

(
G

n

)
= oP (1).

Proof. The assertion follows immediately from Corollary 3.1.16.

Remark 3.1.19. In order to prove the consistency results above we have to assume
that Assumption B.2.10 holds which is very restrictive and can not be veri�ed in some
models. Thus, we have been thinking about relaxing this assumtpion to Assumption
B.2.9. From theory we know that under Assumption B.2.9, for each θ ∈ Θ, there are
at most �nitely many δ such that δV j(θ)+(1−δ)V j+1(θ) is not regular. Unfortunately,

this statement is not strong enough and it does not rule out that there exists a k ∈ B̄(1)
j,n,G

so that
kj,n − k
G

V j(ξk,n,G) +
k +G− kj,n

G
V j+1(ξk,n,G)

is not invertible. This would suspend a main argument in the proof of Lemma 3.1.11
which would implicate that we are not able to assess the value of the statistic in this
point. Hence, it would be theoretically possible that the statistic takes extremely small
or large values on B̄

(1)
j,n,G. Whereas large outliers are not problematic, as long as we

are not interested in improving the convergence rates, small outliers, which fall below
the critical value, can have severe consequences. In this scenario we could have two
intervals of exceedings of length greater than εG in the G-environment of a change point
such that the number of changes would be overestimated. A solution could be to modify
the ε-criterion in the MOSUM procedure. One can think of choosing the estimators of
the locations and the number of the changes in the following way:

Let Un,G := {k ∈ {G, . . . , n−G} : Wk,n(G) ≥ Dn(α,G)}. Then, take the local
maximum k̃j,n as a change point estimator if it satis�es∣∣∣[k̃j,n −G, k̃j,n +G] ∩ Un,G

∣∣∣ > (1− ε̃)G, with 0 < ε̃ < 1/2,

i.e. the statistic exceeds the critical value in more than (1− ε̃)G time points of the
G-environment of the local maximum k̃j,n. Furthermore, use the number of these local

maxima as an estimator for the number of changes.

Nevertheless, investigating the test and the estimators obtained by this modi�ed version
of the MOSUM procedure would go beyond the scope of this work but should be
examined in the future.
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3.2. The Linear Regression Model

The linear regression model has been investigated and applied in many di�erent �elds
of statistics. Due its structure the model is easier to analyse in comparison to non-
linear models. Even if one is interested in a more general setting it can be helpful to
consider the linear regression model �rst in order to gain insight how to generalize a
statistical method. This is exactly what we did in this work. We actually started with
investigating MOSUM Wald-type statistics in the linear regression model before we
were able to develop the general theory of Section 3.1. Nevertheless, linear regression
has to be considered separately since the parameter space is not compact, which is an
important assumption in the section before.
It is not surprising that we are not the �rst ones who want to detect changes in this
model. At-most-one-change situations have been discussed extensively under various
assumptions in the change point literature, we refer to Csörgö & Horváth (1997) Chap-
ter 3 and references therein or Zeileis et al. (2002). For instance, Hawkins (1989) and
Horváth & Shao (1995) considered tests based on Wald-type statistics which for each
time point k compare the least squares estimator computed on the subsample of the
�rst k observations with the estimator calculated on the last n− k observations. Some
papers also focus on the change point detection in linear autoregressive time series.
Whereas Horváth (1993) considered test statistics of unweighted partial sums of resid-
uals, Hu²ková et al. (2007) used statistics based on partial sums of weighted residuals
belonging to the group of score-type statistics.
In comparison, alternatives of multiple changes have received less attention. Just to
name a few contributions, Liu et al. (1997) applied a modi�ed Schwarz criterion for
identifying di�erent segments in a multivariate regression model. Bai & Perron (1998)
and Bai & Perron (2003) estimated the changes by minimizing the sum of squared
residuals and determined the number of changes by conducting a consistent test. More
recently, Perron & Qu (2006) extended their work to models with linear restrictions on
the regression coe�cients.
We consider a linear regression model under minimal restrictive assumptions such that
simple linear regression models as well as autoregressive structures or models with
exogenous and endogenous regressors can be analysed.

3.2.1. Asymptotics Under the Null Hypothesis

Let β0 be the true parameter of the model if no change occurs, i.e.

Yi = XT
i β0 + εi

holds for all i = 1, . . . , n under the null. In a random design model we assume that
the vector of the regressors X i is random whereas a �xed design requires X i being
deterministic. Here we focus on the �rst one, the random design model.
Furthermore, the following assumptions are used in this section:

(R1) The sequence {X i}i≥1 is stationary and ergodic with E (‖X1‖) <∞.

(R2) Let Ft = σ (Xj, εj−1, j ≤ t). We assume that εt and Ft are independent.

(R3) C := E
(
X1X

T
1

)
is a positive de�nite matrix.
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(R4) The sequence {εi}i≥1 is i.i.d. with E(ε1) = 0, 0 < E(ε2
1) := σ2 <∞.

(R5) Let the components of {X iX
T
i − C}i≥1 satisfy a strong invariance principle

similar to that in Assumption A.1.3.

(R6) Let {X iεi}i≥1 be a series with positive de�nite long-run covariance matrix Σ
satisfying a strong invariance principle similar to that in Assumption A.1.3.

The (local) least-squares estimator β̂l,u based on the subsample
(
Yl,X

T
l

)T
, . . . ,

(
Yu,X

T
u

)T
solves the normal equation

u∑
i=l

X iX
T
i β =

u∑
i=l

X iYi and is given by β̂l,u =

(
u∑
i=l

X iX
T
i

)−1 u∑
i=l

X iYi. (3.22)

This estimator minimises the sum of the squared residuals
∑u

i=l

(
Yi −XT

i β
)2

and is
therefore the solution of the following estimating equation system

u∑
i=l

H(Yi,X i,β) = 0 with H(Yi,X i,β) := −X i

(
Yi −XT

i β
)
, (3.23)

where the vector Xi from Section 3.1 is given by
(
Yi,X

T
i

)T
. On noting that the pa-

rameter space Θ = Rp is not compact, Lemma 3.1.1 can not be applied here. However,
by using the formula for the least-squares estimator in (3.22) the consistency of the
estimator sequences β̂k+1,k+G and β̂k−G+1,k can be derived directly.

Lemma 3.2.1. Let the Assumptions (R1) to (R4) and (R6) hold for the random design
model and let Assumption A.1.1 hold on the bandwidth. Then, under H0∥∥∥β̂k+1,k+G − β0

∥∥∥ = OP

(
1√
G

)
and

∥∥∥β̂k−G+1,k − β0

∥∥∥ = OP

(
1√
G

)
pointwise for all k = G, . . . , n−G.

Proof. On noting that by Conditions (R1) and (R3) {X iX
T
i }i≥1 is a stationary and

ergodic sequence with existing �rst moment, applying the Ergodic Theorem yields

1

G

G∑
i=1

X iX
T
i

a.s.→ C.

Since the matrix C is invertible by Assumption (R3) we get that 1
G

∑G
i=1X iX

T
i is

invertible as well for large G. Thus, with the continuity of the matrix inverse function
the Continuous Mapping Theorem can be used to get(

1

G

G∑
i=1

X iX
T
i

)−1

a.s.→ C−1. (3.24)
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Furthermore, by the properties of conditional expectations, the measurability of X i

with respect to the �ltration Fi de�ned in Assumption (R2) and as εi is independent
of Fi we get

E (X iεi) = E (E (X iεi|Fi)) = E (X iE (εi|Fi)) = E (X iE (εi)) (3.25)

= E (X i)E (εi) = 0.

Moreover, thanks to the invariance principle of Assumption (R6) there exists a Wiener
process W̃ (t) with covariance matrix being equal to the long-run covariance matrix of
X iεi such that∥∥∥∥∥ 1√

G

G∑
i=1

X iεi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

G

(
G∑
i=1

X iεi − W̃ (G)

)∥∥∥∥∥+

∥∥∥∥ 1√
G
W̃ (G)

∥∥∥∥ (3.26)

= OP

(
G1/(2+ν)

√
G

)
+

∥∥∥∥ 1√
G
W̃ (G)

∥∥∥∥ D
= OP

(
G−ν/(4+2ν)

)
+
∥∥∥W̃ (1)

∥∥∥ = OP (1) ,

where the last line follows from the self-similarity of the Wiener process. Furthermore,
note that

β̂k+1,k+G − β0 (3.27)

=

(
1

G

k+G∑
i=k+1

X iX
T
i

)−1

1

G

k+G∑
i=k+1

X iYi −

(
1

G

k+G∑
i=k+1

X iX
T
i

)−1

1

G

k+G∑
i=k+1

X iX
T
i β0

=

(
1

G

k+G∑
i=k+1

X iX
T
i

)−1

1

G

k+G∑
i=k+1

X i

(
Yi −XT

i β0

)
=

(
1

G

k+G∑
i=k+1

X iX
T
i

)−1

1

G

k+G∑
i=k+1

X iεi.

Finally, with (3.24), (3.26) and the stationarity of the sequences we can conclude that

β̂k+1,k+G − β0

=

(
1

G

k+G∑
i=k+1

X iX
T
i

)−1

1

G

k+G∑
i=k+1

X iεi
D
=

(
1

G

G∑
i=1

X iX
T
i

)−1

1

G

G∑
i=1

X iεi

=
(
C−1 + oP (1)

)
OP

(
1√
G

)
= OP

(
1√
G

)
.

The lemma above shows that the local estimator sequences β̂k+1,k+G are
√
G-consistent

for the true parameter vector β0 holding pointwise for each k. However, investigating
the MOSUMWald-type statistic requires a result holding uniformly in k which is given
in the follwing lemma.

Lemma 3.2.2. Let the Assumptions (R1) to (R6) hold for the random design model
and let Assumption A.1.1 hold on the bandwidth. Then, under H0∥∥∥β̂k+1,k+G − β0

∥∥∥ = OP

(√
log(n/G)√

G

)
uniformly in k = 0, . . . , n−G.
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Proof. Firstly, note that by (3.27) we get(
1

G

k+G∑
i=k+1

X iX
T
i

)(
β̂k+1,k+G − β0

)
=

1

G

k+G∑
i=k+1

X iεi. (3.28)

Furthermore, by Condition (R5) Theorem E.2.12 can be applied to each component of
the matrix-valued sequence {X iX

T
i − C}i≥1. Thus, with X iX

T
i − C = (X̃rs(i)) we

receive

1

G

∣∣∣∣∣
k+G∑
i=k+1

X̃rs(i)

∣∣∣∣∣ = OP

(√
log(n/G)√

G

)
= oP (1) uniformly in k,

where the last line follows from Assumption A.1.1. Hence, in connection with Lemma
E.1.6 (b) we get

1

G

∥∥∥∥∥
k+G∑
i=k+1

(
X iX

T
i −C

)∥∥∥∥∥
F

= OP

(√
log(n/G)√

G

)
= oP (1) uniformly in k. (3.29)

Moreover, the uniform statement

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

X iεi

∥∥∥∥∥ = OP

(√
log(n/G)√

G

)
follows from Assumption (R6) and Theorem E.2.12. Hence, by considering equation
(3.28) again we can conclude

(C + oP (1))
(
β̂k+1,k+G − β0

)
= OP

(√
log(n/G)√

G

)
uniformly in k.

Finally, the assertion follows from Lemma E.2.22 in connection with Assumption (R3).

Now, we want to show that the Condition (3.2) is satis�ed in order to derive a limit
distribution for the Wald-type statistic with the help of Theorem 3.1.8. Under the null
hypothesis, we obtain

H(Yi,X i,β0) = −X i

(
Yi −XT

i β0

)
= −X iεi

with expectation E (H(Yi,X i,β0)) = E (−X iεi) = 0 as shown in (3.25) and long-run
covariance matrix Σ. Furthermore, we receive

∇H (Yi,X i,β) =
∂H (Yi,X i,β)

∂β
= X iX

T
i ,

implying that V (β0) = C. Thus, we get that the asymptotic covariance matrix of√
Gβ̂k−G+1,k is Γk = C−1ΣC−1. Consequently, under the null hypothesis the MOSUM

Wald-type statistic is given by:

W linear
n (G)

= max
G≤k≤n−G

√
G

√(
β̂k+1,k+G − β̂k−G+1,k

)T
CΣ−1C

(
β̂k+1,k+G − β̂k−G+1,k

)
= max

G≤k≤n−G

√
G
∥∥∥Σ−1/2C

(
β̂k+1,k+G − β̂k−G+1,k

)∥∥∥ .
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Lemma 3.2.3. Let Assumption A.1.1 hold on the bandwidth. Furthermore, assume
that Conditions (R1) to (R6) are ful�lled. Then, under H0, the Assumption (3.2) is
satis�ed for the linear regression model, i.e.

max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

X i

(
Yi −XT

i β0

)
−
√
G√
2
C
(
β̂k+1,k+G − β0

))∥∥∥∥∥ (3.30)

= oP
(
(log(n/G))−1/2

)
.

Proof. By (3.22) we know that

k+G∑
i=k+1

X iYi =
k+G∑
i=k+1

X iX
T
i β̂k+1,k+G,

which is equivalent to

k+G∑
i=k+1

X i

(
Yi −XT

i β0

)
=

k+G∑
i=k+1

X iX
T
i

(
β̂k+1,k+G − β0

)
.

By multiplying 1√
2G

and subtracting
√
G√
2
C
(
β̂k+1,k+G − β0

)
from both sides of the

equation above, we obtain

1√
2G

k+G∑
i=k+1

X i

(
Yi −XT

i β0

)
−
√
G√
2
C
(
β̂k+1,k+G − β0

)
=

1

G

k+G∑
i=k+1

(
X iX

T
i −C

) √G√
2

(
β̂k+1,k+G − β0

)
.

Hence, by Lemma E.1.5, Lemma 3.2.2 and since

1

G

∥∥∥∥∥
k+G∑
i=k+1

(
X iX

T
i −C

)∥∥∥∥∥
F

= OP

(√
log(n/G)√

G

)

holds uniformly in k by (3.29), we receive

max
0≤k≤n−G

∥∥∥∥∥Σ−1/2

(
1√
2G

k+G∑
i=k+1

X i

(
Yi −XT

i β0

)
−
√
G√
2
C
(
β̂k+1,k+G − β0

))∥∥∥∥∥
≤
∥∥∥Σ−1/2

∥∥∥
F

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

(
X iX

T
i −C

)∥∥∥∥∥
F

max
0≤k≤n−G

√
G√
2

∥∥∥β̂k+1,k+G − β0

∥∥∥
= OP

(
log(n/G)√

G

)
= oP

(
(log(n/G))−1/2

)
,

where the last step follows from Assumption A.1.1 with

log(n/G)
√

log(n/G)√
G

≤ n1/(2+ν)
√

log n√
G

→ 0 as n→∞.

This shows (3.30).

� 109 �



3. MOSUM Wald-Type Statistics

Now, the limit distribution of the statistic can be derived under the null hypothesis.

Theorem 3.2.4. Let Assumption A.1.1 hold on the bandwidth. Furthermore, assume
that Conditions (R1) to (R6) are ful�lled.

(a) Then, under H0,

a(n/G)W linear
n (G)− b(n/G)

D−→ E

with E as Gumbel distributed random variable as in Theorem 2.1.1 and with a(x)
and b(x) as in (2.1).

(b) The matrices Σ and C can be replaced by estimator sequences Σ̂k,n and Ĉk,n ful-
�lling

max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n Ĉk,n −Σ−1/2C
∥∥∥
F

= oP
(
(log(n/G))−1)

without changing the results of part (a).

Proof. (a) By Lemma 3.2.3 we know that Condition (3.2) from Section 3.1.1, which
has been speci�ed for the linear regression model in (3.30), holds. Moreover,
Assumption A.1.3 is directly given by Condition (R6) as

H(Yi,X i,β0) = −X iεi

holds for all i = 1, . . . , n under the null hypothesis. Thus, applying the same
arguments as in the proof of Theorem 3.1.8 yields the assertion.

(b) The result can be shown similarly to part (b) of Theorem 3.1.8.

For models with strictly exogenous regressors we propose to use a global estimator,
computed on the whole sample, for the expectation matrix C since the estimation of
this matrix would not be in�uenced by changes under the alternative and therefore all
the information available should be incorporated. In contrast, the estimation of the
matrix Σ integrates the estimation of the error variance σ2 in some way which is based
on estimated residuals and would be contaminated by changes. For the mean change
model, Muhsal (2013) and Eichinger & Kirch (2018) pointed out that the classical
variance estimator, computed on the whole sample, overestimates the error variance
under the alternative as it is contaminated by the changes. They further proposed
to use a MOSUM-type estimator which gives a single estimate for each time point k
computed on the G-environment of k. This estimator has the nice property that it
consistently estimates the error variance at the change points and at time points being
far from any change while overestimating the variance on intervals around the changes
which leads to tighter peaks of the statistic close to true changes possibly improving
the performance of the procedure. Hence, it might be interesting to check whether a
MOSUM-type estimator for the error variance in the linear regression shows a similiar
behavior. For a further discussion on that we refer to Section 4.1.4.

� 110 �



3.2. The Linear Regression Model

3.2.2. Asymptotics Under the Alternative

Under the alternative we allow for multiple changes in the regression coe�cients:

Yi =


XT

i β1 + εi, if 1 ≤ i ≤ k1,n

XT
i β2 + εi, if k1,n < i ≤ k2,n

...
XT

i βq+1 + εi, if kq,n < i ≤ n

,

withX i = (1, X2,i, . . . , Xp,i)
T , βj = (β1,j, . . . , βp,j)

T and q being the number of changes.
Note that a change in β results in the non-stationarity of the sequence {Yi}i≥1, whereas
the sequence {εi}i≥1 is still stationary. In order to incorporate autoregressive structures,
we merely assume that the regressor sequence {X i}i≥1 is piecewise stationary so that

X i =


X

(1)
i , if 1 ≤ i ≤ k1,n

X
(2)
i , if k1,n < i ≤ k2,n

...
X

(q+1)
i , if kq,n < i ≤ n

,

where {X(j)
i : i ≥ 1}, j = 1, . . . , q+1, is stationary and satis�es the Assumptions (R1),

(R3), (R5) and (R6). This can probably be relaxed to allow for starting values from
the other regime under some additional technical e�ort.
We get that the response sequence {Yi}i≥1 is piecewise stationary as well with

Yi = Y
(j)
i = X

(j)T
i βj + εi,

for kj−1,n < i ≤ kj,n and j = 1, . . . , q + 1.
Due to the structure of the regressor sequence we slightly change the Assumptions (R1)
to (R6) as follows:

(R1∗) The sequence {X(j)
i }i≥1 is stationary and ergodic with E

(∥∥∥X(j)
1

∥∥∥) < ∞, for
j = 1, . . . , q + 1.

(R2∗) Let Ft = σ (Xj, εj−1, j ≤ t). We assume that εt and Ft are independent.

(R3∗) C(j) := E
(
X

(j)
1 X

(j)T
1

)
is a positive de�nite matrix, for j = 1, . . . , q + 1.

(R4∗) The sequence {εi}i≥1 is i.i.d. with E(ε1) = 0, 0 < E(ε2
1) := σ2 <∞.

(R5∗) Let the components of {X(j)
i X

(j)T
i −C(j)}i≥1 satisfy a strong invariance principle

similar to that in Assumption A.1.3, for j = 1, . . . , q + 1.

(R6∗) Let {X(j)
i εi}i≥1 be a series with positive de�nite long-run covariance matrix Σ(j)

satisfying a strong invariance principle similar to that in Assumption A.1.3, for
j = 1, . . . , q + 1.

Furthermore, we need an additional assumption on the expectation matrices ofX iX
T
i :
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(R7∗) Let the matrix δC(j) + (1 − δ)C(j+1) be positive de�nite for all δ ∈ [0, 1] and

assume that supδ∈[0,1]

∥∥∥(δC(j) + (1− δ)C(j+1)

)−1
∥∥∥
F
<∞, for all j = 1, . . . , q.

Note that this assumption coincides with Assumption (R3∗) if the regressors are strictly
exogenous and not e�ected by the changes so that {X i} is stationary.
In order to prove consistency for the test and the change point estimators the following
lemmata are needed.

Lemma 3.2.5. Let the sequences {X i}i≥1 and {εi}i≥1 satisfy the Assumptions (R1∗),
(R2∗), (R3∗), (R4∗) and (R6∗). Furthermore, let Assumption A.1.1 on the bandwidth
and Assumption A.2.1 hold. Then,

√
G
∥∥∥β̂kj,n+1,kj,n+G − βj+1

∥∥∥ = OP (1) and
√
G
∥∥∥β̂kj,n−G+1,kj,n

− βj
∥∥∥ = OP (1)

for all change points kj,n, j = 1, . . . , q.

Proof. By Assumption A.2.1 we know that the estimator sequences β̂kj,n+1,kj,n+G and

β̂kj,n−G+1,kj,n
are computed on stationary subsamples (Y

(j+1)
kj,n+1, . . . , Y

(j+1)
kj,n+G) and

(Y
(j)
kj,n−G+1, . . . , Y

(j)
kj,n

), respectively. Hence, on noting that {X i}i≥1 and {εi}i≥1 satisfy
the Assumptions (R1∗), (R2∗), (R3∗), (R4∗) and (R6∗) and since

H(Y
(j)
i ,X

(j)
i ,βj) = −X(j)

i

(
Y

(j)
i −X

(j)T
i βj

)
= −X(j)

i εi, j = 1, . . . , q + 1,

Lemma 3.2.1 shows the assertion.

This lemma shows
√
G-consistency of the estimator sequences holding pointwise in kj,n

which will be used for proving asymptotic power one of the test. However, this is not
su�cient if we want to derive consistency for the corresponding estimators. Hence, we
need to derive some uniform results as in the previous section. Therefore, we de�ne

β̃
(l)

k,n,G similar to θ̃
(l)

k,n,G as unique zero of Fl(k, n,G,θ) in (3.10) and (3.11), l = 1, 2.
Since E (X iεi) = 0, as shown in (3.25), holds under the alternative as well we obtain

E
(
H(Y

(j)
i ,X

(j)
i ,β)

)
= E

(
−X(j)

i

(
Y

(j)
i −X

(j)T
i β

))
= E

(
−X(j)

i

(
X

(j)T
i βj + εi −X(j)T

i β
))

= E
(
X

(j)
i X

(j)T
i

) (
β − βj

)
− E

(
X

(j)
i εi

)
= C(j)

(
β − βj

)
,

implying that

kj,n − k
G

E
(
H(Y

(j)
i ,X

(j)
i ,β)

)
+
k +G− kj,n

G
E
(
H(Y

(j+1)
i ,X

(j+1)
i ,β)

)
=
kj,n − k
G

C(j)

(
β − βj

)
+
k +G− kj,n

G
C(j+1)

(
β − βj+1

)
=

(
kj,n − k
G

C(j) +
k +G− kj,n

G
C(j+1)

)
β

−
(
kj,n − k
G

C(j)βj +
k +G− kj,n

G
C(j+1)βj+1

)

� 112 �



3.2. The Linear Regression Model

and similarly

kj,n − k +G

G
E
(
H(Y

(j)
i ,X

(j)
i ,β)

)
+
k − kj,n
G

E
(
H(Y

(j+1)
i ,X

(j)
i ,β)

)
=

(
kj,n − k +G

G
C(j) +

k − kj,n
G

C(j+1)

)
β

−
(
kj,n − k +G

G
C(j)βj +

k − kj,n
G

C(j+1)βj+1

)
.

Thus, we get

F1(k, n,G,β) =



C(j)

(
β − βj

)
, if k ∈ Aj,n,G

C(j+1)

(
β − βj+1

)
, if k ∈ B(2)

j,n,G(
kj,n−k
G
C(j) +

k+G−kj,n
G

C(j+1)

)
β

−
(
kj,n−k
G
C(j)βj +

k+G−kj,n
G

C(j+1)βj+1

)
, if k ∈ B(1)

j,n,G

and

F2(k, n,G,β) =



C(j)

(
β − βj

)
, if k ∈ Aj,n,G

C(j)

(
β − βj

)
, if k ∈ B(1)

j,n,G(
kj,n−k+G

G
C(j) +

k−kj,n
G
C(j+1)

)
β

−
(
kj,n−k+G

G
C(j)βj +

k−kj,n
G
C(j+1)βj+1

)
, if k ∈ B(2)

j,n,G

,

such that the unique zeros β̃
(1)

k,n,G and β̃
(2)

k,n,G of the functions above can be speci�ed as
follows

β̃
(1)

k,n,G =



βj, if k ∈ Aj,n,G
βj+1, if k ∈ B(2)

j,n,G(
kj,n−k
G
C(j) +

k+G−kj,n
G

C(j+1)

)−1(
kj,n−k
G
C(j)βj +

k+G−kj,n
G

C(j+1)βj+1

)
, if k ∈ B(1)

j,n,G

(3.31)

and

β̃
(2)

k,n,G =



βj, if k ∈ Aj,n,G
βj, if k ∈ B(1)

j,n,G(
kj,n−k+G

G
C(j) +

k−kj,n
G
C(j+1)

)−1(
kj,n−k+G

G
C(j)βj +

k−kj,n
G
C(j+1)βj+1

)
, if k ∈ B(2)

j,n,G

(3.32)

with Aj,n,G, B
(1)
j,n,G and B(2)

j,n,G as de�ned in (3.7), (3.8) and (3.9).

Lemma 3.2.6. Let the sequences {X i}i≥1 and {εi}i≥1 satisfy the Assumptions (R1∗)
to (R7∗). Furthermore, let Assumption A.1.1 on the bandwidth and Assumption A.2.1
hold. Then,
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(a)
∥∥∥β̂k+1,k+G − β̃

(1)

k,n,G

∥∥∥ = OP

(√
log(n/G)

G

)
and

∥∥∥β̂k−G+1,k − β̃
(2)

k,n,G

∥∥∥ = OP

(√
log(n/G)

G

)
uniformly on An,G,

(b)
∥∥∥β̂k+1,k+G − β̃

(1)

k,n,G

∥∥∥ = OP

(
1√
G

)
and

∥∥∥β̂k−G+1,k − β̃
(2)

k,n,G

∥∥∥ = OP

(
1√
G

)
uniformly on Bn,G.

Proof. (a) On noting that

Yi = Y
(j)
i = X

(j)
i βj + εi, i = k −G+ 1, . . . , k +G,

holds for all k ∈ Aj,n,G, and that the Assumptions (R1∗) to (R6∗) are satis�ed,
Lemma 3.2.2 can be applied to receive

max
k∈Aj,n,G

∥∥∥β̂k+1,k+G − βj
∥∥∥ = OP

(√
log(n/G)

G

)

and

max
k∈Aj,n,G

∥∥∥β̂k−G+1,k − βj
∥∥∥ = OP

(√
log(n/G)

G

)
.

Since q is �nite and An,G =
⋃q+1
j=1 Aj,n,G we can conclude that

max
k∈An,G

∥∥∥β̂k+1,k+G − βj
∥∥∥ = OP

(√
log(n/G)

G

)

and

max
k∈An,G

∥∥∥β̂k−G+1,k − βj
∥∥∥ = OP

(√
log(n/G)

G

)
.

(b) Since Bn,G = B
(1)
n,G∪B

(2)
n,G, it is su�cient to show that the assertions hold uniformly

on these two subsets. We only consider the set B(1)
n,G as the results on B(2)

n,G can be
derived in an analogous manner.
For the �rst statement we have to mind that kj,n ∈ {k + 1, . . . , k + G − 1}. By
(3.22) we know that

k+G∑
i=k+1

X iYi =
k+G∑
i=k+1

X iX
T
i β̂k+1,k+G,

which is equivalent to

k+G∑
i=k+1

X i

(
Yi −XT

i β̃
(1)

k,n,G

)
=

k+G∑
i=k+1

X iX
T
i

(
β̂k+1,k+G − β̃

(1)

k,n,G

)
. (3.33)
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At �rst, we approximate the left hand side of the equation above. As (Yk+1, . . . , Ykj,n) =

(Y
(j)
k+1, . . . , Y

(j)
kj,n

) and (Ykj,n+1, . . . , Yk+G) = (Y
(j+1)
kj,n+1, . . . , Y

(j+1)
k+G ) hold for all k ∈

B
(1)
j,n,G we obtain

k+G∑
i=k+1

X i

(
Yi −XT

i β̃
(1)

k,n,G

)
(3.34)

=

kj,n∑
i=k+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i β̃

(1)

k,n,G

)
+

k+G∑
i=kj,n+1

X
(j+1)
i

(
Y

(j+1)
i −X(j+1)T

i β̃
(1)

k,n,G

)

=

kj,n∑
i=k+1

X
(j)
i X

(j)T
i

(
βj − β̃

(1)

k,n,G

)
+

kj,n∑
i=k+1

X
(j)
i εi

+
k+G∑

i=kj,n+1

X
(j+1)
i X

(j+1)T
i

(
βj+1 − β̃

(1)

k,n,G

)
+

k+G∑
i=kj,n+1

X
(j+1)
i εi

=

 kj,n∑
i=k+1

(
X

(j)
i X

(j)T
i −C(j)

)
+ (kj,n − k)C(j)

(βj − β̃(1)

k,n,G

)

+

 k+G∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)
+ (k +G− kj,n)C(j+1)

(βj+1 − β̃
(1)

k,n,G

)

+

kj,n∑
i=k+1

X
(j)
i εi +

k+G∑
i=kj,n+1

X
(j+1)
i εi.

Furthermore, note that by (3.31) and Assumption (R7∗) in connection with Lemma
E.1.5

max
k∈B(1)

j,n,G

∥∥∥β̃(1)

k,n,G

∥∥∥ (3.35)

= max
k∈B(1)

j,n,G

∥∥∥∥∥
(
kj,n − k
G

C(j) +
k +G− kj,n

G
C(j+1)

)−1

(
kj,n − k
G

C(j)βj +
k +G− kj,n

G
C(j+1)βj+1

)∥∥∥∥
≤ sup

δ∈[0,1]

∥∥∥(δC(j) + (1− δ)C(j+1)

)−1
∥∥∥
F

(∥∥C(j)βj
∥∥+

∥∥C(j+1)βj+1

∥∥) = O(1).

Moreover, by Lemma E.2.14 applied to each component of {X(j)
i X

(j)T
i − C(j)},

j = 1, . . . , q + 1, and Lemma E.1.6 (a) we get

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
kj,n∑
i=k+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1√
G

)
and (3.36)

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
k+G∑

i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1√
G

)
.
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Thus, in combination with (3.35) and Lemma E.1.5 we receive

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

kj,n∑
i=k+1

(
X

(j)
i X

(j)T
i −C(j)

)(
βj − β̃

(1)

k,n,G

)∥∥∥∥∥∥
≤ max

k∈B(1)
j,n,G

∥∥∥∥∥∥ 1

G

kj,n∑
i=k+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

max
k∈B(1)

j,n,G

∥∥∥βj − β̃(1)

k,n,G

∥∥∥ = OP

(
1√
G

)

and similarly

max
k∈B(1)

j,n,G

∥∥∥∥∥∥ 1

G

k+G∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)(
βj+1 − β̃

(1)

k,n,G

)∥∥∥∥∥∥ = OP

(
1√
G

)
.

Furthermore, as by (3.25) E
(
X

(j)
i εi

)
= 0, j = 1, . . . , q+1, Lemma E.2.14 together

with Assumption (R6∗) shows

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
kj,n∑
i=k+1

X
(j)
i εi

∥∥∥∥∥∥ = OP

(
1√
G

)

and

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
k+G∑

i=kj,n+1

X
(j+1)
i εi

∥∥∥∥∥∥ = OP

(
1√
G

)
.

Hence, by considering (3.34) again we can conclude that

1

G

k+G∑
i=k+1

X i

(
Yi −XT

i β̃
(1)

k,n,G

)
=
kj,n − k
G

C(j)

(
βj − β̃

(1)

k,n,G

)
+
k +G− kj,n

G
C(j+1)

(
βj+1 − β̃

(1)

k,n,G

)
+OP

(
1√
G

)
=
kj,n − k
G

C(j)βj +
k +G− kj,n

G
C(j+1)βj+1

−
(
kj,n − k
G

C(j) +
k +G− kj,n

G
C(j+1)

)
β̃

(1)

k,n,G +OP

(
1√
G

)
= OP

(
1√
G

)
uniformly in k ∈ B(1)

j,n,G,

where the last line follows directly from the de�nition of β̃
(1)

k,n,G in (3.31). Moreover,
applying (3.36) yields

1

G

k+G∑
i=k+1

X iX
T
i

(
β̂k+1,k+G − β̃

(1)

k,n,G

)
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=

(
oP (1) +

kj,n − k
G

C(j) +
k +G− kj,n

G
C(j+1)

)(
β̂k+1,k+G − β̃

(1)

k,n,G

)
,

uniformly in k ∈ B(1)
j,n,G.

Finally, with (3.33) we obtain

OP

(
1√
G

)
=

(
oP (1) +

kj,n − k
G

C(j) +
k +G− kj,n

G
C(j+1)

)(
β̂k+1,k+G − β̃

(1)

k,n,G

)
,

uniformly in k ∈ B(1)
j,n,G.

By Assumption (R7∗) in combination with Lemma E.2.21, multiplying the inverse
of kj,n−k

G
C(j) +

k+G−kj,n
G

C(j+1) to both sides of the equation above leads to

OP

(
1√
G

)
= (oP (1) + Ip)

(
β̂k+1,k+G − β̃

(1)

k,n,G

)
, uniformly in k ∈ B(1)

j,n,G,

which shows the assertion on B(1)
j,n,G by Lemma E.2.22. Since q is �nite and B(1)

n,G =⋃q+1
j=1 B

(1)
j,n,G we get

max
k∈B(1)

n,G

∥∥∥β̂k+1,k+G − β̃
(1)

k,n,G

∥∥∥ = OP

(
1√
G

)
.

For proving the second statement in (b) note that Yi = Y
(j)
i , i = k−G+ 1, . . . , k,

and β̃
(2)

k,n,G = βj holds for all time points k ∈ B(1)
j,n,G. Thus, by (3.22) we get

k∑
i=k−G+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i βj

)
=

k∑
i=k−G+1

X
(j)
i X

(j)T
i

(
β̂k+1,k+G − βj

)
. (3.37)

Furthermore, as by (3.25) E
(
X

(j)
i εi

)
= 0, j = 1, . . . , q + 1, Lemma E.2.15 with

Assumption (R6∗) yields

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥
k∑

i=k−G+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i βj

)∥∥∥∥∥ = max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥
k∑

i=k−G+1

X
(j)
i εi

∥∥∥∥∥
= OP

(
1√
G

)
.

Moreover, by Lemma E.2.15 applied to each component of {X(j)
i X

(j)T
i − C(j)},

j = 1, . . . , q + 1, and Lemma E.1.6 (a) we get

max
k∈B(1)

j,n,G

∥∥∥∥∥ 1

G

k∑
i=k−G+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥ = OP

(
1√
G

)
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implying that

1

G

k∑
i=k−G+1

X
(j)
i X

(j)T
i = C(j) + oP (1) uniformly in k ∈ B(1)

j,n,G.

Thus, by considering (3.37) again, we obtain

OP

(
1√
G

)
=
(
oP (1) +C(j)

) (
β̂k+1,k+G − βj

)
uniformly in k ∈ B(1)

j,n,G.

Finally, Lemma E.2.22 combined with Assumption (R3∗) completes the proof.

Moreover, we have to take into consideration that the asymptotic covariance matrix
Γk of

√
Gβ̂k−G+1,k actually changes with k under the alternative. It can be speci�ed

as follows:

Γk = C−1
k ΣkC

−1
k (3.38)

with Ck = C(j) and Σk = Σ(j) for kj−1,n < k ≤ kj,n, j = 1, . . . , q + 1.

The following theorem shows that the test for the linear regression model, which is sim-
ilar to that in Section 3.1.2.1, correctly rejects the null hypothesis under the alternative
with probability tending to one.

Theorem 3.2.7. Let the sequences {X i}i≥1 and {εi}i≥1 satisfy the Assumptions (R1
∗)

to (R4∗) and (R6∗). Furthermore, let Assumption A.1.1 on the bandwidth and Assump-
tion A.2.1 hold.

(a) Then, under H1, we obtain for any z ∈ R

lim
n→∞

P (a(n/G)W linear
n (G)− b(n/G) ≥ z) = 1,

i.e. the test has asymptotic power one.

(b) The matrices Σk and Ck can be replaced by estimator sequences Σ̂k,n and Ĉk,n

satisfying the assumption:

(I) maxk∈Bn,G

∥∥∥Σ̂−1/2

k,n Ĉk,n − Γ
−1/2
A,k

∥∥∥
F

= oP (1) , with Bn,G = B
(1)
n,G ∪ B

(2)
n,G and

where {ΓA,k}k≥1 is a sequence of positive de�nite matrices ful�lling

supk ‖ΓA,k‖F <∞ and supk

∥∥∥Γ−1/2
A,k

∥∥∥
F
<∞.

Proof. The result of part (a) can be shown in an analoguous manner to part (a) of
Theorem 3.1.12 by using Lemma 3.2.5 and on noting that Γkj,n = C−1

(j)Σ(j)C
−1
(j) as

in (3.38) is positive de�nite due to Lemma E.1.7 in combination with the positive
de�niteness of Σ(j) and the regularity of C(j).
Moreover, we can derive the assertion in (b) by using similar arguments as in Theorem
3.1.12 (b).
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The estimators for the number and the locations of the changes denoted by q̂n and k̂j,n,
j = 1, . . . , q̂n, are determined in an analogous manner to Section 3.1.2.2. Similar to
the general setting, for proving consistency of these estimators we need the following
results.

Lemma 3.2.8. Let Assumption A.1.1 on the bandwidth and Assumption A.2.1 be
ful�lled. Furthermore, assume that Assumption (R7∗) is satis�ed. Then, for all j =
1, . . . , q,

(a) max
k∈B̄(1)

j,n,G

∥∥∥β̃(1)

k,n,G − βj
∥∥∥ = O(1) and max

k∈B̄(2)
j,n,G

∥∥∥β̃(2)

k,n,G − βj
∥∥∥ = O(1),

(b) min
k∈B̄(1)

j,n,G

∥∥∥β̃(1)

k,n,G − βj
∥∥∥ > c and min

k∈B̄(2)
j,n,G

∥∥∥β̃(2)

k,n,G − βj
∥∥∥ > c for some c > 0,

with B̄
(l)
j,n,G, l = 1, 2, as in (3.19).

Proof. (a) The �rst statement follows directly from (3.35). The second assertion can
be derived in an analogous manner by using (3.32) and Assumption (R7∗).

(b) The same arguments as in the proof of Lemma 3.1.14 (b) can be used here(
with E

(
supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)
= C(j)

)
.

The following theorem states the main result of this section and shows that the esti-
mator for the number of changes is consistent for the true number q.

Theorem 3.2.9. Let Assumption A.1.1 on the bandwidth and Assumption A.2.1 be
ful�lled. Moreover, let the sequences {X i}i≥1 and {εi}i≥1 satisfy the Assumptions (R1

∗)
to (R7∗). Furthermore, assume that the sequence {αn}n∈N ful�lls Assumption A.2.8.

(a) Then, it holds
P (q̂n = q)→ 1, as n→∞.

(b) The result remains true if the matrices Σk and Ck are replaced by estimator

sequences Σ̂k,n and Ĉk,n ful�lling:

(I) maxk∈Bn,G

∥∥∥Σ̂−1/2

k,n Ĉk,n − Γ
−1/2
A,k

∥∥∥
F

= oP (1) , where {ΓA,k}k≥1 is a sequence of

positive de�nite matrices ful�lling supk ‖ΓA,k‖F < ∞ and supk

∥∥∥Γ−1/2
A,k

∥∥∥
F
<

∞.

(II) maxk∈An,G

∥∥∥Σ̂−1/2

k,n Ĉk,n −Σ−1/2C
∥∥∥
F

= oP
(
(log(n/G))−1) .

Proof. The results can be derived in an analogous manner to Theorem 3.1.15 by using
Lemma 3.2.8 and Lemma 3.2.6. Furthermore, note that H(Y

(j)
i ,X

(j)
i ,βj) = X

(j)
i εi,

j = 1, . . . , q + 1, and that the sequence {X(j)
i εi}i≥1 satis�es Assumption A.1.3 by

Condition (R6∗). Hence, Theorem 2.1.1 can be used here as well.

Similar to the general setting, the following assertions can be proved as well.
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Corollary 3.2.10. Let the assumptions of Theorem 3.2.9 hold. Then,

P

(
max
1≤j≤q

min
1≤l≤q̂n

∣∣∣k̂l,n − kj,n∣∣∣ < G

)
→ 1.

Corollary 3.2.11. Let the assumptions of Theorem 3.2.9 hold. Then,

max
1≤j≤q

min
1≤l≤q̂n

∣∣∣λ̂l,n − λj∣∣∣ = OP

(
G

n

)
= oP (1).

3.3. Possible Problems of the Procedure

The choice of the bandwidth is not only an issue of the MOSUM score-type procedure,
the performance of the MOSUM Wald-type procedure on �nite samples also depends
on the selection of the bandwidth. For a detailed discussion on that we refer to Section
2.4.1. As already described there, a possible solution for this problem is to run the
procedure with several window lengths and merge the results appropriately by using a
multiscale method as described in Chapter 5.
Moreover, note that the validity of the results for the MOSUM Wald-type statistic in
some sense base on the condition that the estimator sequences θ̂k+1,k+G are identi�ably
unique which implies that the distance between all possible solutions of the estimating
equation system

∑k+G
i=k+1H(Xi,θ) = 0 goes to zero. See, for example, Pötscher &

Prucha (1997) Chapter 3 and Section 4.6. This condition has not been directly men-
tioned but it is implicated by the assumptions on the general setting and the linear
regression model. This is an important condition as it guarantees that the signal of the
Wald-type statistic can only be strictly positive on intervals around the true changes
in the asymptotics. A violation of this assumption leads to an estimation error which
possibly causes overestimation of the changes under alternative or a size problem under
the null hypothesis.

� 120 �



4. Simulation Studies

4.1. Example: Linear Regression

We consider a linear regression model where the regressors are strictly exogenous and
the regressors as well as the error are modelled by i.i.d. normally distributed random
variables. This is a simple model in the sense that it does not incorporate any depen-
dence structure and that there exists an explicit solution of the estimating equation
system such that the least squares estimators can be computed easily without apply-
ing numerical methods. By conducting a simulation study on this linear regression
model we want to get an impression about the pure di�erence in performance of the
MOSUM Wald-type and score-type procedure in the absence of numerical errors and
disturbances caused by the variance estimation in dependence settings. Intuitively, we
would expect that the MOSUM Wald-type statistic performs much better as it directly
focuses on the di�erence in the parameter vectors without making a detour over the
estimating function like in the score-type approach.
However, before we start to analyse the simulation results, we need to check whether
the assumptions of the MOSUM procedures are satis�ed in this speci�c linear regression
model.

4.1.1. Proving the Assumptions of the Wald-Type and

Score-Type Approach

In the simulations, we consider an example of the follwing simple linear regression
model:

• Under the null hypothesis:

Yi = XT
i β0 + εi for i = 1, . . . , n,

• Under the alternative:

Yi = Y
(j)
i = XT

i βj + εi for kj−1,n < i ≤ kj,n, j = 1, . . . , q + 1,

where X1, . . . ,Xn is an i.i.d. series with X i = (1, Xi,1, Xi,2)T , Xi,1 ∼ N(µ1, σ
2
1) and

Xi,2 ∼ N(µ2, σ
2
2) and ε1, . . . , εn is i.i.d. with εi ∼ N(0, σ2).

At �rst, we consider the Assumptions of the MOSUM Wald-type statistics given in
Section 3.2. Note that due to the stationarity of the sequence {X i} under the null
hypothesis and the alternative the Assumptions (R1) to (R6) coincide with the As-
sumptions (R1∗) to (R6∗). Moreover, Condition (R7∗) simpli�es to Assumption (R3).
The Conditions (R1), (R2) and (R4) are obviously satis�ed. Furthermore, we get that
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the sequence {X iεi} is i.i.d. with existing second and higher moments so that the in-
variance principle in Theorem 2 of Einmahl (1989) shows Assumption (R6). Besides,
as the components of the sequence {X iX

T
i − C} are univariate i.i.d. sequences with

zero mean and existing second and higher moments Assumption (R5) can be obtained
by the invariance principle proved by Komlós et al. (1975), Komlós et al. (1976) and
Major (1976). Furthermore, we get that the positive semi-de�nite matrix

C = E
(
X1X

T
1

)
=

 1 µ1 µ2

µ1 σ2
1 + µ2

1 µ1µ2

µ2 µ1µ2 σ2
2 + µ2

2


is positive de�nite as det (C) = σ2

1σ
2
2 > 0.

For the score-type procedure, we show that the general assumptions of Theorem 2.1.1
and Theorem 2.1.8, stating the main results for MOSUM score-type statistics, are ful-
�lled.

Assumptions A.1.4 and A.1.3 under the Null Hypothesis:

We use the global least squares estimator β̂1,n which is computed on the whole sam-
ple for calculating the MOSUM score-type statistic. This classical estimator is

√
n-

consistent for the true parameter vector β0 under the null hypothesis so that β̃ = β0

and
H(Yi,X i, β̃) = H(Yi,X i,β0) = −X iεi.

Thus, Condition (R6) directly yields Assumption A.1.3. Furthermore, with (3.23) we
receive

max
G≤k≤n−G

1√
2G

∥∥∥Aβ̂1,n,k
−Aβ0,k

∥∥∥
= max

G≤k≤n−G

1√
2G

∥∥∥∥∥
(

k+G∑
i=k+1

X iX
T
i −

k∑
i=k−G+1

X iX
T
i

)(
β̂1,n − β0

)∥∥∥∥∥
≤

(
max

G≤k≤n−G

1√
2G

∥∥∥∥∥
k+G∑
i=k+1

X iX
T
i

∥∥∥∥∥
F

+ max
G≤k≤n−G

1√
2G

∥∥∥∥∥
k∑

i=k−G+1

X iX
T
i

∥∥∥∥∥
F

)∥∥∥β̂1,n − β0

∥∥∥ ,
where the last line follows from Lemma E.1.5. Since the arguments used here are very
similar to that of previous proofs we only give a brief explanation. Applying Theo-
rem E.2.12 and Condition (R5) in combination with Lemma E.1.6 (b) and Assumption
A.1.1 together with the

√
n-consistency of the least-squares estimator leads to Assump-

tion A.1.4.

Assumptions A.2.3, A.2.4 and A.2.9 under the Alternative:
Let us start with Assumptions A.2.4 and A.2.9. In Lemma 5.4.24 we will see that the
least-squares estimator β̂1,n is

√
n-consistent for β̃ =

∑q+1
j=1 (λj − λj−1)βj under the

alternative. Furthermore, we obtain

max
G≤k≤n−G

1√
2G

∥∥∥Aβ̂1,n,k
−Aβ̃,k

∥∥∥
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= max
G≤k≤n−G

1√
2G

∥∥∥∥∥
(

k+G∑
i=k+1

X iX
T
i −

k∑
i=k−G+1

X iX
T
i

)(
β̂1,n − β̃

)∥∥∥∥∥
= oP

(
a(n/G)−1

)
,

where the last line follows from the same arguments which we used for proving As-
sumption A.1.3. This implies the statements of Assumptions A.2.4 and A.2.9. For
deriving Assumption A.2.3, note that the transformed sequence {H(Y

(j)
i ,X i, β̃)}i≥1

with
−H(Y

(j)
i ,X i, β̃) = X iX

T
i

(
βj − β̃

)
+X iεi, j = 1, . . . , q + 1,

is i.i.d. with existing second and higher moments. Hence, the assumption follows from
Theorem 2 in Einmahl (1989). Moreover, we can show that all changes are detectable
by that statistic since

E
(
H(Y

(j)
i ,X i, β̃)

)
= C

(
β̃ − βj

)
6= C

(
β̃ − βj+1

)
= E

(
H(Y

(j+1)
i ,X i, β̃

)
holds for all j = 1, . . . , q.

4.1.2. Simulating the Data

Let X i = (1, Xi,1, Xi,2)T with Xi,1 ∼ N(1, 1) and Xi,2 ∼ N(2, 1) and εi ∼ N(1, 1).
We simulate a data sample of length n = 1000 and use 1000 replications in the study.
Under the null hypothesis, let β0 = (1, 2, 2)T so that

Yi = XT
i β0 + εi for i = 1, . . . , 1000.

For evaluating the performance of the procedures under alternative we include three
change points, q = 3, at k1,1000 = 200, k2,1000 = 500 and k3,1000 = 800. Furthermore,
with β1 = (1, 2, 2)T ,β2 = (1, 1, 2)T ,β3 = (2, 1, 2)T and β4 = (2, 1, 1)T we get the
following model

Yi =


XT

i β1 + εi, if i ≤ 200

XT
i β2 + εi, if 200 < i ≤ 500

XT
i β3 + εi, if 500 < i ≤ 800

XT
i β4 + εi, if i > 800

.

4.1.3. Estimating the Covariance Matrices

First note that in this speci�c setting, where the regressors and the error are inde-
pendent i.i.d. sequences, the long-run covariance matrix Σ = Σ(β̃) coincides with the
covariance matrix of the estimating function. As the errors and the regressors are in-
dependent and the components of the regressor vector X i are indenpendent as well a
straightforward calculation of the covariance matrix shows that:

Cov
(
H(X1, β̃)

)
= σ2C
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holds under the null hypothesis and the alternative. Hence, estimating the covariance
matrices for the Wald-type and score-type statistic comes down to estimating the error
variance and the expectation matrix C. We consider the MOSUM score-type statistic

T̂n,k(G, β̂1,n)

=
1√

2Gσ̂n,k

∥∥∥∥∥Ĉ−1/2

n

(
k+G∑
i=k+1

X i

(
Yi −XT

i β̂1,n

)
−

k∑
i=k−G+1

X i

(
Yi −XT

i β̂1,n

))∥∥∥∥∥
and the MOSUM Wald-type statistic

Ŵn,k(G) =

√
G

σ̂n,k
√

2

∥∥∥Ĉ1/2

n

(
β̂k+1,k+G − β̂k−G+1,k

)∥∥∥ ,
where Ĉn denotes the estimator of C and σ̂2

n,k represents the estimator of the error
variance σ2. As already explained in Section 3.2, in this setting it is reasonable to
use a global estimator, calculated on the whole sample, for the expectation matrix C.
Thus, we take the sample mean 1

n

∑n
i=1X iX

T
i as an estimator for C which is not

contaminated by changes in the parameter vector β under the alternative since the
distribution of the X i does not change. In comparison to that estimators of the error
variance are based on estimated residuals which are highly contaminated by changes
in the regression parameter. Therefore, we prefer to apply a MOSUM-type estimator
for σ2 which is time dependent and calculates a variance estimate for each time point
k on its G-environment. Nevertheless, in order to investigate how the performance of
the procedures depends on the choice of estimator for the error variance, we use three
di�erent estimators in the simulations:

• GLOBAL:

σ̂2
n,k =

1

n− 1

n∑
i=1

(Yi −XT
i β̂1,n)2

We �t a linear regression model on the whole data sample and compute the
sample variance of the corresponding residuals.

• LOCAL1:

σ̂2
n,k =

1

2G

(
k∑

i=k−G+1

(Yi −XT
i β̂k−G+1,k)

2 +
k+G∑
i=k+1

(Yi −XT
i β̂k+1,k+G)2

)
For each time point k we �t a linear regression model on the subsample from
k − G + 1 to k and on the subsample from k + 1 to k + G and take the sum of
the corresponding squared residuals divided by 2G.

• LOCAL2:

σ̂2
n,k =

1

2G

(
k∑

i=k−G+1

(ε̂i,n − ε̄k−G+1,k)
2 +

k+G∑
i=k+1

(ε̂i,n − ε̄k+1,k+G)2

)
with ε̂i,n := Yi −XT

i β̂1,n and ε̄l,u := 1
u−l+1

∑u
i=l ε̂i,n.

We �t a linear regression model on the complete data sequence and compute the
corresponding residuals denoted by ε̂i,n. For each time point k we compute the
sample variance of ε̂k−G+1,n, . . . , ε̂k,n and ε̂k+1,n, . . . , ε̂k+G,n and take the sum of
both values multiplied by G−1

2G
as the LOCAL2 estimator.
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4.1.4. Results of the Simulations

Table 4.1 shows the performance of the MOSUM Wald-type test with di�erent band-
widths under the null hypothesis and the alternative at signi�cance level α = 0.05
for the di�erent variance estimators. Under the null hypothesis, the empirical size of
the tests gets relatively small if we choose a large bandwidth in the procedure. The
smallest bandwidth of 20 is not appropriate, in particular if the LOCAL1 estimator is
employed in the statistic, since the empirical size is too high whereas the tests with
a bandwidth greater than 50 are conservative as the empirical value is less than the
theoretical value of 0.05. Note that the tests based on the GLOBAL and LOCAL2 es-
timator reveal a more conservative behavior in comparison to the LOCAL1 estimator.
Under the alternative, the size adjusted power is equal to one or at least close to one for
all considered window lengths and variance estimators that shows the consistency of
the MOSUM Wald-type tests empirically. Furthermore, note that the MOSUM score-
type tests show similar results for the size adjusted power under the alternative, which
are given in Table 4.2, but are even more conservative under the null hypothesis. Thus,
we can conclude that the tests perform quite well.

Table 4.1.: Simulation results for the test based on the MOSUM Wald-type statistic

H0 H1

Empirical size Size adjusted power

GLOBAL
G = 20 0.198 0.748
G = 50 0.030 1
G = 80 0.013 1
G = 100 0.014 1
G = 120 0.012 1
G = 150 0.013 1

LOCAL1
G = 20 0.652 0.975
G = 50 0.087 1
G = 80 0.029 1
G = 100 0.029 1
G = 120 0.025 1
G = 150 0.022 1

LOCAL2
G = 20 0.196 0.957
G = 50 0.040 1
G = 80 0.015 1
G = 100 0.018 1
G = 120 0.014 1
G = 150 0.014 1
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Table 4.2.: Simulation results for the test based on the MOSUM score-type statistic

H0 H1

Empirical size Size adjusted power

GLOBAL
G = 20 0.026 0.867
G = 50 0.010 1
G = 80 0.009 1
G = 100 0.008 1
G = 120 0.013 1
G = 150 0.007 1

LOCAL1
G = 20 0.312 0.998
G = 50 0.047 1
G = 80 0.022 1
G = 100 0.022 1
G = 120 0.020 1
G = 150 0.012 1

LOCAL2
G = 20 0.064 0.991
G = 50 0.014 1
G = 80 0.008 1
G = 100 0.012 1
G = 120 0.009 1
G = 150 0.007 1

Nevertheless, we are more interested in estimation as in testing and for this reason
we analyse the simualtion results for the change point estimators in more detail. The
Tables 4.3 and 4.4 show the performance of the estimator for the number and the
locations of the changes based on the MOSUM Wald-type and MOSUM score-type
statistic. The simulation results for the estimated number are summarized in the
columns two to six. The entries represent the proportions of repetitions in which
the estimated number of changes was less than or equal to one or equal to two and
so on. For example, the MOSUM Wald-type procedure with LOCAL1 estimator for
the error variance and bandwidth G = 100 correctly estimates the number of change
points in 94.5% of the simulated samples. In the last three columns, the performance
of the estimators for the change point locations are recorded as follows. The entries
are the proportions of repetitions in which we got a change point estimate lying in an
interval of [kj,n − 20, kj,n + 20] around the true change point, j = 1, 2, 3. For instance,
the MOSUM Wald-type procedure with LOCAL1 estimator and bandwidth G = 100
produced a change point estimate in the interval [480, 520] in 93.8% of the cases. Note
that we used α = 0.05 and ε = 0.2 in the estimation process.
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Table 4.3.: Simulation results for the estimator of the number and the locations of the
changes based on the MOSUM Wald-type statistic

Estimated number Estimated change point in
≤ 1 2 q = 3 4 ≥ 5 [180, 220] [480, 520] [730, 770]

GLOBAL
G = 20 0.990 0.010 0.000 0.000 0.000 0.010 0.000 0.442
G = 50 0.523 0.469 0.008 0.000 0.000 0.467 0.016 1.000
G = 80 0.023 0.745 0.230 0.002 0.000 0.965 0.231 1.000
G = 100 0.000 0.480 0.516 0.004 0.000 0.991 0.510 1.000
G = 120 0.000 0.222 0.772 0.006 0.000 0.990 0.764 1.000
G = 150 0.000 0.045 0.951 0.004 0.000 0.990 0.926 1.000

LOCAL1
G = 20 0.404 0.406 0.154 0.033 0.003 0.461 0.140 0.957
G = 50 0.018 0.445 0.501 0.035 0.001 0.963 0.539 1.000
G = 80 0.000 0.094 0.866 0.040 0.000 0.998 0.885 1.000
G = 100 0.000 0.030 0.945 0.025 0.000 0.998 0.938 1.000
G = 120 0.000 0.008 0.981 0.011 0.000 0.992 0.957 1.000
G = 150 0.000 0.000 0.991 0.009 0.000 0.995 0.970 1.000

LOCAL2
G = 20 0.866 0.127 0.007 0.000 0.000 0.090 0.062 0.790
G = 50 0.092 0.544 0.354 0.010 0.000 0.852 0.409 1.000
G = 80 0.001 0.155 0.822 0.021 0.001 0.992 0.825 1.000
G = 100 0.000 0.044 0.942 0.014 0.000 0.996 0.925 1.000
G = 120 0.000 0.012 0.980 0.008 0.000 0.993 0.954 1.000
G = 150 0.000 0.000 0.993 0.007 0.000 0.992 0.970 1.000
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Table 4.4.: Simulation results for the estimator of the number and the locations of the
of changes based on the MOSUM score-type statistic

Estimated number Estimated change point in
≤ 1 2 q = 3 4 ≥ 5 [180, 220] [480, 520] [730, 770]

GLOBAL
G = 20 0.950 0.045 0.004 0.001 0.000 0.043 0.000 0.452
G = 50 0.505 0.470 0.024 0.001 0.000 0.471 0.017 0.997
G = 80 0.047 0.714 0.238 0.001 0.000 0.904 0.241 0.999
G = 100 0.006 0.451 0.529 0.013 0.001 0.969 0.516 0.997
G = 120 0.112 0.462 0.421 0.005 0.000 0.960 0.743 0.536
G = 150 0.051 0.942 0.007 0.000 0.000 0.969 0.900 0.000

LOCAL1
G = 20 0.080 0.163 0.231 0.211 0.315 0.499 0.127 0.913
G = 50 0.023 0.309 0.453 0.158 0.057 0.932 0.542 1.000
G = 80 0.000 0.086 0.795 0.111 0.008 0.981 0.875 1.000
G = 100 0.001 0.036 0.919 0.043 0.001 0.979 0.936 0.986
G = 120 0.006 0.592 0.396 0.005 0.001 0.975 0.947 0.391
G = 150 0.002 0.988 0.010 0.000 0.000 0.987 0.953 0.000

LOCAL2
G = 20 0.741 0.206 0.045 0.003 0.005 0.160 0.046 0.746
G = 50 0.107 0.528 0.329 0.034 0.002 0.807 0.415 1.000
G = 80 0.001 0.146 0.807 0.044 0.002 0.976 0.825 1.000
G = 100 0.001 0.043 0.925 0.031 0.000 0.983 0.916 0.999
G = 120 0.003 0.431 0.558 0.008 0.000 0.981 0.943 0.565
G = 150 0.003 0.990 0.007 0.000 0.000 0.989 0.952 0.000
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As expected, the estimator based on score-type statistics performs worse than the Wald-
type estimator. Its performance highly depends on the selection of the bandwidth and
can only compete with the Wald-type procedure for G = 100. For bandwidths smaller
than 100, exept 20, the score-type statistic performs quite well in detecting the �rst
and third change point but has problems in �nding the second one. In comparison
to that, for bandwidth 120 and 150 the score-type procedure localises the �rst and
the second change in more than 90% of the cases but does poorly in dectecting the
third one. Hence G = 100 seems to be the optimal choice of the bandwidth here.
This is exactly half of the minimal distance between two adjacent structural breaks
min0≤j≤q |kj+1,n− kj,n| with k0,n = 1 and kq+1,n = n which is a theoretically reasonable
window length as explained in Section 2.4.1. However, this value is unknown and
cannot be determined in practice so that the application of a multiscale procedure as
described in Chapter 5, which merges the results obtained by di�erent bandwidths in
an appropriate way, is essential to make the MOSUM score-type approach competitive.
In contrast, the MOSUM Wald-type procedure seems to be less sensitive to the choice
of the bandwidth and shows very good results for window lengths of 100, 120, 150.
Moreover, the performance of the procedures also depends on which estimator of the
error variance has been used in the statistic. The MOSUM score-type statistic as
well as the MOSUM Wald-type statistic perform worse if the GLOBAL error variance
estimator is used in comparison to the results for the LOCAL1 and LOCAL2 variance
estimator which perform both very well. In the MOSUM Wald-type procedure the
LOCAL1 estimator shows slightly better results than LOCAL2 whereas in the MOSUM
score-type procedure the LOCAL2 estimator performs best.
Now, we consider the estimators of the error variance more closely in order to explain
the di�erences in performance. The GLOBAL variance estimator relies on the residuals
of the global estimator β̂1,n which are obviously a�ected by changes in the parameter
vector. This leads to overestimation of the error variance and, thus, deterioration of the
performance of the procedure as the values of the statistic get smaller. In contrast, the
LOCAL1 estimator bases on residuals obtained from the local estimators β̂k−G+1,k and

β̂k+1,k+G and is therefore able to react to changes in β in some way. It reveals a similar
behavior as the MOSUM-type estimator of the error variance in the classical mean
change model used by Eichinger & Kirch (2018). The plot below shows the estimates
by using the LOCAL1 estimator for one of the simulated data samples where the red
vertical lines give the change points and the green horizontal line illustrates the true
error variance σ2 = 1.
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We can see that the LOCAL1 estimates get quite large in intervals around the true
changes whereas the estimates at the changes and at time points which are far away
from any change are relatively small. This improves the performance of the procedure
by making the peaks at the changes tighter. Consequently, we would recommend
to apply the LOCAL1 estimator in general. However, from a pratical point of view it
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would not make much sense to use this estimator in the score-type statistic as it requires
the computation of the local parameter estimators β̂k−G+1,k and β̂k+1,k+G so that the
computational advantages of the score-type procedure would vanish. For this reason we
have introduced the LOCAL2 estimator for the error variance which is a MOSUM-type
estimator based on the global residuals obtained by �tting a linear regression model
on the whole sample. The plot below shows the LOCAL2 estimates of the simulation
example.
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As a compromis between less complexity in computation and high accuracy the LO-
CAL2 estimator shows a similar behavior as the LOCAL1 estimator but less pro-
nounced. Furthermore, note that the global residuals are contaminated by the changes
which carries over to the variance estimator so that it tends to overestimate the error
variance. For this reason we would have expected that the MOSUM procedures using
the LOCAL2 estimator does not perform as quite as well as the LOCAL1 alternative.
However, this does not hold for the MOSUM score-type procedure where we are slightly
more successful by applying the LOCAL2 variance estimator. One possible explana-
tion for this is that the MOSUM score-type statistic is based on the weighted global
residuals so that the LOCAL2 estimator, which rests upon the global residuals as well,
is more suitable to mimic the variation in the statistic.

4.1.5. Comparison of the Run Time

Although both statistics, the MOSUM Wald-type and score-type, can be computed in
linear time, the di�erence of the run time of the two procedures could be quite large.
In order to investigate this computational aspect we calculated the two statistics for
several sample sizes n = 250, 500, 1000, 2000, 4000, 8000, 16000, 32000 with bandwidth
G = G(n) = n2/3 so that G(1000) = 100. For the MOSUM Wald-type statistic the
LOCAL1 variance estimator has been used whereas the LOCAL2 variance estimator
has been employed in the score-procedure. The results are summarized in Figure 4.1
and Figure 4.2 shows the performance of the score-type statistic (in seconds) sepa-
rately. We can see that the score-type procedure performs much better in terms of
computation times which is not surprising as the procedure only requires the calcula-
tion of one global estimate. For instance, for a sample size of n = 32000 the run time
of the Wald-type statistic is about 38.78 seconds which is still acceptable. However, in
comparison to that the calculation of the MOSUM score-type statistic only takes 1.18
seconds on average for n = 32000.
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Figure 4.1.: The graph shows the average computation time of the MOSUMWald-type
statistic and the score-type statistic for 100 replications.
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Figure 4.2.: The graph shows the average computation time of the MOSUM score-type
statistic for 100 replications.
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4.2. Example: Poisson Autoregressive Model

In this section, we consider a Poisson autoregressive model of order one, the INARCH(1)
model. This is a very popular example of integer-valued time series and can be applied
to di�erent data sets in practise as it is able to describe overdispersion. For instance,
Weiÿ (2010) applied the INARCH(1) model to monthly strike data of the U.S. labor
market and Zhu & Wang (2010) used it to model daily download counts of a program.
In general, INARCH models are a speci�c class of INGARCH time series which were
introduced by Heinen (2003) as an analog of continuous GARCH models for count
data. Since then INGARCH models have been examined by several authors, e.g. Fer-
land et al. (2006), Fokianos et al. (2009) and Weiÿ (2009).
More recently, these time series of counts have received more attention in the context
of change point detection. Franke et al. (2012) used CUSUM-type statistics based on
conditional least squares residuals for detecting structural breaks in a general class of
Poisson autoregressive models of order one. Related to that Kirch & Tadjuidje Kam-
gaing (2016) considered a CUSUM score-type test statistic based on the least squares
approach and derived consistency for the corresponding change point test and esti-
mator in a quite general setting. Furthermore, Doukhan & Kengne (2013) proposed
several Wald-type test statistics and investigated the behavior of the corresponding
tests under the null hypothesis and alternatives of multiple changes.

4.2.1. The Model and the Statistics

The time series {Yi}i≥0 follows an INARCH(1) model if the observation Yi conditioned
on the past is Poisson distributed with parameter λi = θ1 + θ2Yi−1:

Yi|Fi−1 ∼ P (λi), with λi = θ1 + θ2Yi−1. (4.1)

According to Fokianos et al. (2009) we assume that Y0 is �xed and we set it to zero
in the simulations. In addition, similar to Franke et al. (2012) we constrain the pa-
rameters to δ ≤ θ1 ≤ ∆ and 0 ≤ θ2 ≤ 1 − δ, for some small 0 < δ < 1 and some
large ∆ < ∞, in order to get a compact parameter space Θ. According to Ferland
et al. (2006) all moments of the Poisson autoregressive series exist. Furthermore, by
Neumann (2011) we know that there exists a stationary ergodic solution of (4.1) which
is β-mixing with exponential rate if the autocorrelation coe�cient θ2 < 1. This implies
that {Yi} is stationary and strongly mixing (α-mixing) with exponential rate (see e.g.
Bradley (2007)). Since the mixing property of a sequence is preserved by measurable
transformations we can conclude that the series {Yi} with Yi = (Yi−1, Yi)

T is of type
(E2).
Under the alternative with q structural breaks we assume that there are q+1 INARCH(1)
time series {Y (j)

i }, j = 1, . . . , q + 1, such that

Yi =


Y

(1)
i , if i ≤ k1,n

Y
(2)
i , if k1,n < i ≤ k2,n

...
Y

(q+1)
i , if i > kq,n

, (4.2)
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with corresponding parameter vectors θ1, . . . ,θq+1 ∈ Θ where θj 6= θj+1 for all j =

1, . . . , q. With the same arguments as before we get that the sequences {Y(j)
i }, j =

1, . . . , q + 1, are of type (E2). Furthermore, we use the notation Y i−1 = (1, Yi−1)T .
In the following, we consider the MOSUM Wald-type and score-type statistics based
on the conditional least squares approach and the conditional maximum likelihood

approach. The least squares estimator θ̂
LS

1,n is the solution of the estimating equation
system

∑n
i=1 Y i−1

(
Yi − Y T

i−1θ
)

= 0 and has the explicit expression (see Weiÿ (2010)
on page 1278)

θ̂
LS

1,n =

(
(1− ρ̂1,n)X̄1,n

ρ̂1,n

)
, (4.3)

where ρ̂1,n denotes the lag 1 sample autocorrelation and X̄1,n represents the sample

mean. In contrast, the (conditional) maximum likelihood estimator θ̂
Ml

1,n has to be deter-

mined numerically by solving the estimating equation system
∑n

i=1 Y i−1

(
Yi−Y T

i−1θ

Y T
i−1θ

)
=

0. The estimating functions of the two approaches and their derivatives are shown in
the following table.

Least squares approach Likelihood approach
Estimating function −2Y i−1

(
Yi − Y T

i−1θ
)

−2Y i−1

(
Yi−Y T

i−1θ

Y T
i−1θ

)
H (Yi,θ)

First derivatives
2Y i−1Y

T
i−1

2Y i−1Y
T
i−1

Yi
(Y T

i−1θ)2∇H (Yi,θ)
Second derivatives
∇2H1 (Yi,θ) 0 −4Y i−1Y

T
i−1

Yi
(Y T

i−1θ)3

∇2H2 (Yi,θ) 0 −4Y i−1Y
T
i−1

YiYi−1

(Y T
i−1θ)3

The MOSUM score-type statistic and the MOSUM Wald-type statistic based on the
least squares approach are given by

T̂LSk,n

(
G, θ̂

LS

1,n

)
(4.4)

=

√
2√
G

∥∥∥∥∥Σ̂−1/2

k,n

(
k+G∑
i=k+1

Y i−1

(
Yi − Y T

i−1θ̂
LS

1,n

)
−

k∑
i=k−G+1

Y i−1

(
Yi − Y T

i−1θ̂
LS

1,n

))∥∥∥∥∥
and

ŴLS
k,n(G) =

√
G√
2

∥∥∥Γ̂−1/2

k,n

(
θ̂
LS

k+1,k+G − θ̂
LS

k−G+1,k

)∥∥∥ . (4.5)

Furthermore, the likelihood based Wald-type and score-type statistic are de�ned as
follows

T̂ML
k,n

(
G, θ̂

ML

1,n

)
(4.6)

=

√
2√
G

∥∥∥∥∥∥Σ̃−1/2

k,n

 k+G∑
i=k+1

Y i−1

Yi − Y T
i−1θ̂

ML

1,n

Y T
i−1θ̂

ML

1,n

− k∑
i=k−G+1

Y i−1

Yi − Y T
i−1θ̂

ML

1,n

Y T
i−1θ̂

ML

1,n

∥∥∥∥∥∥
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and

ŴML
k,n (G) =

√
G√
2

∥∥∥Γ̃−1/2

k,n

(
θ̂
ML

k+1,k+G − θ̂
ML

k−G+1,k

)∥∥∥ . (4.7)

4.2.2. Proving the Assumptions of the MOSUM Procedures

As the series {Yi} is of type (E2) as mentioned in the previous subsection we only have
to show that the moment conditions in Section 2.3 and 3.1, which are summarized in
Appendix B, are satis�ed. We focus on the assumptions under the alternative as the
assumptions under the null hypothesis are similar to that with stationary sequence
{Yi} instead of {Y (j)

i }.

Least Squares Approach:

At �rst, note that the matrix E
(
Y

(j)
i−1Y

(j)T
i−1

)
is regular since

det
(
E
(
Y

(j)
i−1Y

(j)T
i−1

))
= det

(
E

(
1 Y

(j)
i−1

Y
(j)
i−1 Y

(j)2
i−1

))
(4.8)

=

(
E
(
Y

(j)2
i−1

)
− E

(
Y

(j)
i−1

)2
)

= Var(Y
(j)
i−1) > 0.

Moreover, applying the computation rules for conditional expectations in combination
with (4.1) and (4.2) yields

E

(
−1

2
H(Y(j)

i ,θ)

)
= E

(
Y

(j)
i−1

(
Y

(j)
i − Y

(j)T
i−1 θ

))
(4.9)

= E
(
E
(
Y

(j)
i−1

(
Y

(j)
i − Y

(j)T
i−1 θ

)
|Fi−1

))
= E

(
Y

(j)
i−1

(
E
(
Y

(j)
i |Fi−1

)
− Y (j)T

i−1 θ
))

= E
(
Y

(j)
i−1

(
Y

(j)T
i−1 θj − Y

(j)T
i−1 θ

))
= E

(
Y

(j)
i−1Y

(j)T
i−1

)
(θj − θ) ,

which directly shows that θj is the unique zero of E
(
H(Y(j)

i ,θ)
)

as the matrix

E
(
Y

(j)
i−1Y

(j)T
i−1

)
is regular by (4.8). Furthermore, we get

E

(
−1

2
H(Y(j)

i ,θ)

)
= E

(
Y

(j)
i−1Y

(j)T
i−1 (θj − θ)

)
= E

((
1 Y

(j)
i−1

Y
(j)
i−1 Y

(j)2
i−1

)
(θj − θ)

)
.

Hence, since the parameter space Θ is compact and as all moments of Y (j)
i−1 exist

by Proposition 6 of Ferland et al. (2006), we know that all moments of the compo-
nents of H(Y(j)

i ,θ) exist. Thus, with the help of Lemma E.1.6 (b) we can conclude

that E
(∥∥∥H(Y(j)

1 ,θ)
∥∥∥) < ∞ holds for all θ ∈ Θ showing Assumption B.2.1 and

E

(∥∥∥H(Y(j)
1 ,θ)

∥∥∥2+ν
)
<∞ holds for all θ ∈ Θ, for some ν > 0, which gives Assump-

tion B.2.8.
Moreover, as

∇H
(
Y(j)
i ,θ

)
= 2Y

(j)
i−1Y

(j)T
i−1 = 2

(
1 Y

(j)
i−1

Y
(j)
i−1 Y

(j)2
i−1

)
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holds for all θ ∈ Θ the Assumptions B.2.3 and B.2.6 (B.2.11) follow directly from
Proposition 6 of Ferland et al. (2006) and Lemma E.1.6 (b) again. To prove Assumption
B.2.10, we consider the convex combination

γE
(

2Y
(j)
i−1Y

(j)T
i−1

)
+ (1− γ)E

(
2Y

(j+1)
i−1 Y

(j+1)T
i−1

)
,

which is regular, for all γ ∈ [0, 1], as a straightforward calculation shows

det
(
γE
(

2Y
(j)
i−1Y

(j)T
i−1

)
+ (1− γ)E

(
2Y

(j+1)
i−1 Y

(j+1)T
i−1

))
(4.10)

= 4γVar
(
Y

(j)
i−1

)
+ 4(1− γ)Var

(
Y

(j+1)
i−1

)
+ 4γ(1− γ)

(
E
(
Y

(j)
i−1

)
− E

(
Y

(j+1)
i−1

))2

≥ 4γVar
(
Y

(j)
i−1

)
+ 4(1− γ)Var

(
Y

(j+1)
i−1

)
≥ 4 min

{
Var

(
Y

(j)
i−1

)
,Var

(
Y

(j+1)
i−1

)}
> 0,

uniformly in γ ∈ [0, 1]. Moreover, since all moments of Y (j)
i−1 and Y

(j+1)
i−1 exist we obtain

sup
γ∈[0,1]

∥∥∥γE (2Y
(j)
i−1Y

(j)T
i−1

)
+ (1− γ)E

(
2Y

(j+1)
i−1 Y

(j+1)T
i−1

)∥∥∥
F

(4.11)

≤
∥∥∥E (2Y

(j)
i−1Y

(j)T
i−1

)∥∥∥
F

+
∥∥∥E (2Y

(j+1)
i−1 Y

(j+1)T
i−1

)∥∥∥
F
<∞.

Hence, by Lemma E.1.11 combined with (4.10) and (4.11) we can conclude that

sup
γ∈[0,1]

∥∥∥∥(γE (2Y
(j)
i−1Y

(j)T
i−1

)
+ (1− γ)E

(
2Y

(j+1)
i−1 Y

(j+1)T
i−1

))−1
∥∥∥∥
F

<∞,

which shows Assumption B.2.10. Furthermore, note that the Assumptions B.2.4 and
B.2.7 are satis�ed because the second derivatives of the estimating function are equal
to zero.

Likelihood Approach:

At �rst, we want to show that the matrix E

(
1

Y
(j)T
i−1 θ

Y
(j)
i−1Y

(j)T
i−1

)
is regular. By com-

puting the determinant we obtain

det

(
E

(
1

Y
(j)T
i−1 θ

Y
(j)
i−1Y

(j)T
i−1

))
= det

E
 1

Y
(j)T
i−1 θ

Y
(j)
i−1

Y
(j)T
i−1 θ

Y
(j)
i−1

Y
(j)T
i−1 θ

Y
(j)2
i−1

Y
(j)T
i−1 θ


 (4.12)

= E

(
1

Y
(j)T
i−1 θ

)
E

(
Y

(j)2
i−1

Y
(j)T
i−1 θ

)
− E

(
Y

(j)
i−1

Y
(j)T
i−1 θ

)2

= Var

(
Y

(j)
i−1

Y
(j)T
i−1 θ

)
− Cov

(
Y

(j)2
i−1

Y
(j)T
i−1 θ

,
1

Y
(j)T
i−1 θ

)
≥ Var

(
Y

(j)
i−1

Y
(j)T
i−1 θ

)
> 0,

where the last line follows from Cov

(
Y

(j)2
i−1

Y
(j)T
i−1 θ

, 1

Y
(j)T
i−1 θ

)
≤ 0. Furthermore, by using

similar arguments as in (4.9) we obtain

E

(
−1

2
H(Y(j)

i ,θ)

)
= E

(
1

Y
(j)T
i−1 θ

Y
(j)
i−1Y

(j)T
i−1

)
(θj − θ) ,
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showing that θj is the unique zero of E
(
H(Y(j)

i ,θ)
)
by (4.12). Besides, as the param-

eter space Θ = [δ,∆] × [0, 1 − δ] we get 1

Y
(j)T
i−1 θ

≤ 1
δ
, for all θ ∈ Θ. Hence, the results

from the least squares section can be used as follows

E

(∥∥∥∥∥ 1

Y
(j)T
i−1 θ

Y
(j)
i−1Y

(j)T
i−1 (θj − θ)

∥∥∥∥∥
)
≤ 1

δ
E
(∥∥∥Y (j)

i−1Y
(j)T
i−1 (θj − θ)

∥∥∥) <∞
and

E

∥∥∥∥∥ 1

Y
(j)T
i−1 θ

Y
(j)
i−1Y

(j)T
i−1 (θj − θ)

∥∥∥∥∥
2+ν
 ≤ 1

δ2+ν
E

(∥∥∥Y (j)
i−1Y

(j)T
i−1 (θj − θ)

∥∥∥2+ν
)
<∞,

proving the Assumptions B.2.1 and B.2.8. Furthermore, by applying the computation
rules for the conditional expectation similar to (4.9), we receive

E
(
∇H

(
Y(j)
i ,θ

))
= E

(
2Y

(j)
i−1Y

(j)T
i−1

Y
(j)T
i−1 θj

(Y
(j)T
i−1 θ)2

)
.

On noting that E
(∥∥∥Y (j)

i−1Y
(j)T
i−1 (Y

(j)T
i−1 θj)

∥∥∥
F

)
<∞ and E

(∥∥∥Y (j)
i−1Y

(j)T
i−1 (Y

(j)T
i−1 θj)

∥∥∥2+ν

F

)
<

∞ holds since all moments of Y (j)
i−1 exist by Proposition 6 of Ferland et al. (2006), we

can conclude that

E

(
sup
θ∈Θ

∥∥∥∥∥Y (j)
i−1Y

(j)T
i−1

Y
(j)T
i−1 θj

(Y
(j)T
i−1 θ)2

∥∥∥∥∥
F

)
≤ 1

δ2
E
(∥∥∥Y (j)

i−1Y
(j)T
i−1 (Y

(j)T
i−1 θj)

∥∥∥
F

)
<∞

and

E

sup
θ∈Θ

∥∥∥∥∥Y (j)
i−1Y

(j)T
i−1

Y
(j)T
i−1 θj

(Y
(j)T
i−1 θ)2

∥∥∥∥∥
2+ν

F

 ≤ 1

δ4+2ν
E

(∥∥∥Y (j)
i−1Y

(j)T
i−1 (Y

(j)T
i−1 θj)

∥∥∥2+ν

F

)
<∞,

which show the Assumptions B.2.3 and B.2.6 or B.2.11. The moment conditions B.2.4
and B.2.7 can be derived by using similar arguments. In contrast, proving Assumption
B.2.10 is more complicated and needs to be examined in detail. However, this would
go beyond the scope of this thesis and will be part of future work.

4.2.3. Estimating the Covariance Matrices

In order to apply the MOSUM score-type procedure we have to �nd an appropriate
estimator of the long-run covariance matrix of H(Yi, θ̃). A �rst idea is to ignore the
dependency and to use a MOSUM-version of the empirical covariance matrix estimator
of H(Yi, θ̂1,n) as follows:

Σ̂k,n =
1

2G

(
k∑

i=k−G+1

(
H(Yi, θ̂1,n)−Hk−G+1,k

)(
H(Yi, θ̂1,n)−Hk−G+1,k

)T
(4.13)

+
k+G∑
i=k+1

(
H(Yi, θ̂1,n)−Hk+1,k+G

)(
H(Yi, θ̂1,n)−Hk+1,k+G

)T)
,

� 136 �



4.2. Example: Poisson Autoregressive Model

where H l,u denotes the sample mean of H(Yl, θ̂1,n), . . . ,H(Yu, θ̂1,n). We applied this
type of estimators in the least squares and the likelihood based procedures. However,
for future simulation studies it might be reasonable to consider more complex estimators
created for estimating long-run covariance matrices as well.
For the Wald-type procedures, we need to �nd suitable estimators for the log-run

covariance matrices of θ̂
LS

k−G+1,k and θ̂
ML

k−G+1,k.

The asymptotic covariance matrix of the least squares estimator θ̂
LS

1,n is under the null
hypothesis given (θ = (θ1, θ2)T ) by: θ1

1−θ2

(
θ1 + θ1θ2 +

1+2θ42
1+θ2+θ22

)
−θ1 − θ1θ2 − θ32+2θ42

1+θ2+θ22

−θ1 − θ1θ2 − θ32+2θ42
1+θ2+θ22

(1− θ2
2)
(

1 +
θ2+2θ32

θ1(1+θ2+θ22)

)  ,

which can be found in Weiÿ (2010) on page 1278. Hence, by replacing the parameter

vector θ by the local estimators θ̂
LS

k−G+1,k = (θ̂1,k, θ̂2,k)
T we get the following MOSUM-

type estimator:

Γ̂k,n =


θ̂1,k

1−θ̂2,k

(
θ̂1,k + θ̂1,kθ̂2,k +

1+2θ̂42,k

1+θ̂2,k+θ̂22,k

)
−θ̂1,k − θ̂1,kθ̂2,k −

θ̂32,k+2θ̂42,k

1+θ̂2,k+θ̂22,k

−θ̂1,k − θ̂1,kθ̂2,k −
θ̂32,k+2θ̂42,k

1+θ̂2,k+θ̂22,k
(1− θ̂2

2,k)

(
1 +

θ̂2,k+2θ̂32,k

θ̂1,k(1+θ̂2,k+θ̂22,k)

)
 ,

(4.14)

which has been used in the simulations.
As described in Weiÿ (2010) on page 1277, under the null hypothesis, the asymptotic

covariance matrix of the likelihood estimator θ̂
ML

1,n coincides with the inverse of the ex-
pected Fisher information matrix which does not have an explicit expression. However,
it can be approximated by the observed Fisher information matrix given by:

1

n

n∑
i=1

1

(Y T
i−1θ)2

(
Yi YiYi−1

YiYi−1 YiY
2
i−1

)
.

Thus, we propose to estimate the Fisher information matrix by applying the following
MOSUM-type estimator which combines the mean of the estimated observed Fisher
Information on k −G+ 1, ..., k and on k + 1, ...k +G:

Γ̃
−1

k,n =
1

2G

 k∑
i=k−G+1

1

(Y T
i−1θ̂

ML

k−G+1,k)
2

(
Yi YiYi−1

YiYi−1 YiY
2
i−1

)

+
k+G∑
i=k+1

1

(Y T
i−1θ̂

ML

k+1,k+G)2

(
Yi YiYi−1

YiYi−1 YiY
2
i−1

) .

This estimator has been applied in the simulations.

4.2.4. Simulating the Data

Under the null hypothesis we simulate 1000 samples of size n = 1000 from the following
model:

Yi|Fi−1 ∼ P (λi), with λi = 1 + 0.5Yi−1, i = 1, . . . , n.
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Under the alternative, we let three changes occur. At time point 250 the parameter
vector changes from θ1 = (1, 0.5)T to θ2 = (2.5, 0.5)T , at 500 to θ3 = (2.5, 0.2)T and
at change point 750 the paramter vector goes to θ4 = (1, 0.5)T .

4.2.5. Results of the Simulations

On the simulated data, we test the null hypothesis of having no change at signi�cance
level α = 0.05 by using MOSUM score-type and Wald-type statistics based on the least
squares approach. The empirical size under the null hypothesis and the size adjusted
power under the alternative are given in Table 4.5. For both tests, we observe that the
empirical size gets smaller and the size adjusted power grows with increasing band-
width. Whereas the score-type test is very conservative with empirical size less than
α = 0.05 for all considered bandwidths, the MOSUM Wald-type test holds the level
only for the largest bandwidth of 150. Under the alternative, the score-type test per-
forms quite well with a size adjusted power close to one for bandwidths greater than 80.
In comparison to that, the size adjusted power of the Wald-type test is smaller and lies
between 0.8 and 0.9. Furthermore, the results for score-type and Wald-type test based
on the likelihood approach are given in Table 4.6. Note that the likelihood version of
the score-type test shows similar results as the score-type test considered above. On
the contrary, the likelihood based Wald-type test performs much better than its least
squares counterpart. But this is not surprising as the maximum likelihood estimator
is used in the statistic which usually performs better than the least squares estimator.
We can see that the empirical size is around 0.05 for bandwidth between 80 and 120
and that the test is a bit conservative for the largest bandwidth of 150. Furthermore,
the size adjusted power is for all bandwidth close to one. Thus, we can conclude that
the MOSUM Wald-type test based on the likelihood approach performs best among
the considered tests.

Table 4.5.: Simulation results for the tests based on the least squares approach

H0 H1

Empirical size Size adjusted power

Score-type (least squares)
G = 50 0.017 0.554
G = 80 0.010 0.879
G = 100 0.010 0.949
G = 120 0.002 0.981
G = 150 0.006 1

Wald-type (least squares)
G = 50 0.292 0.771
G = 80 0.125 0.835
G = 100 0.090 0.843
G = 120 0.060 0.854
G = 150 0.034 0.859
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Table 4.6.: Simulation results for the tests based on the likelihood approach

H0 H1

Empirical size Size adjusted power

Score-type (least squares)
G = 50 0.015 0.542
G = 80 0.010 0.876
G = 100 0.009 0.953
G = 120 0.003 0.983
G = 150 0.008 1

Wald-type (likelihood)
G = 50 0.170 0.918
G = 80 0.067 0.992
G = 100 0.060 0.998
G = 120 0.032 1
G = 150 0.025 1

Now, we want to compare the performance of the di�erent procedures in terms of es-
timation. Therefore, for each procedure, we recorded the estimated number and the
estimated locations of the changes as in the simulations for the linear regression. Note
that we use α = 0.2 and ε = 0.1 in the estimation process. The results of the MO-
SUM procedures based on the least squares approach are summarized in Table 4.7. In
the MOSUM score-type and Wald-type procedure the performance of the estimator
for the number of changes depends on the choice of the bandwidth. We can observe
that the estimator performs better if the bandwidth gets larger which even holds for a
bandwidth greater than the proposed length of half of the minimal distance between
two adjacent structural breaks. For G = 150, the MOSUM score-type procedure cor-
rectly estimates the number of changes for 35.8% of the simulated samples whereas the
Wald-type approach estimates the number by 3 in 58.2% of the cases. Thus, the esti-
mator based on the score-type statistic performs worse than the Wald-type estimator.
This coincides with our expectations as the Wald-type statistics are directly based on
the local least squares estimators which can computed by an explicit formula without
applying any numerical method. Furthermore, by considering the results for the esti-
mated change point locations we can see that the score-type procedure performs quite
well in detecting the �rst change and can compete with the Wald-type procedure for
bandwidths greater than 80. It even shows better results than the Wald-type approach
for localising the third change point. However, the score-type statistics are not really
able to detect the second change since it estimates a change between 480 and 520 for
only 33.2% of the simulated samples (G = 150). In contrast, the MOSUM Wald-
type procedure provides an appropriate change point estimate for the second change
in 80.7% of the cases. Nevertheless, the question arises if the detection of the second
change by the score-type procedure can be improved by using another global estimator

in the statistic. By replacing the estimator θ̂
LS

1,1000 by the least squares estimator θ̂
LS

300,700
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calculated on the sample Y300, . . . , Y700 we get the following results which are given in
Table 4.8. Thus, we would prefer to use this score-type procedure as it performs better
in detecting the second change point and shows similar results for the �rst and third
change in comparison to the original one. Unfortunately, in practice we do not know
what global estimators are more suitable to detect several changes. Hence, it would be
reasonable to use a set of global estimators in the score-type procedure and to merge
the results by a multiscale method as described in Chapter 5.

Table 4.7.: Simulation results for the MOSUM score-type and Wald-type statistic based
on the least squares approach

Estimated number Estimated change point in
≤ 1 2 q = 3 4 ≥ 5 [230, 270] [480, 520] [730, 770]

Score-type (least squares)
G = 50 0.901 0.080 0.018 0.001 0.000 0.352 0.010 0.125
G = 80 0.627 0.228 0.073 0.012 0.000 0.734 0.036 0.326
G = 100 0.407 0.435 0.131 0.023 0.004 0.871 0.077 0.460
G = 120 0.223 0.486 0.237 0.043 0.011 0.931 0.161 0.588
G = 150 0.081 0.428 0.358 0.111 0.022 0.920 0.332 0.724

Wald-type (least squares)
G = 50 0.390 0.374 0.175 0.051 0.010 0.891 0.429 0.044
G = 80 0.181 0.472 0.253 0.071 0.023 0.916 0.664 0.156
G = 100 0.089 0.438 0.338 0.098 0.037 0.916 0.731 0.292
G = 120 0.036 0.346 0.435 0.153 0.03 0.914 0.781 0.431
G = 150 0.008 0.184 0.582 0.188 0.038 0.894 0.807 0.635

Table 4.8.: Simulation results for the MOSUM score-type based on the least squares

estimator θ̂
LS

300,700

Estimated number Estimated change point in
≤ 1 2 q = 3 4 ≥ 5 [230, 270] [480, 520] [730, 770]

Score-type with estimator θ̂
LS

300,700

G = 50 0.264 0.339 0.230 0.102 0.065 0.798 0.037 0.484
G = 80 0.100 0.397 0.300 0.143 0.060 0.932 0.121 0.684
G = 100 0.038 0.341 0.413 0.155 0.053 0.923 0.259 0.759
G = 120 0.011 0.249 0.490 0.204 0.046 0.932 0.408 0.772
G = 150 0.018 0.162 0.596 0.194 0.030 0.923 0.660 0.749
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Furthermore, the results of the MOSUM procedures based on the likelihood approach
are given in Table 4.9. The procedures perform better than their least squares based
counterparts as the maximum likelihood estimator is used in the statistics. The MO-
SUM Wald-type statistic of likelihood approach shows the best performance in terms
of estimating the number and the location of the changes. Besides, the score-type

procedure with the global estimator θ̂
ML

300,700 shows for G = 150 similar results as the
Wald-type approach but is more e�ected by the choice of the bandwidth and performs
worse for smaller window length. However, this problem can be solved by implementing
a multiscale method in order to appropriately combine results produced by MOSUM
score-type procedures with di�erent bandwidths and di�erent global estimators. This
could considerably improve the performance of the score-type approach so that it could
compete with the Wald-type procedures.

Table 4.9.: Simulation results for the MOSUM score-type and Wald-type statistic based
on the likelihood approach

Estimated number Estimated change point in
≤ 1 2 q = 3 4 ≥ 5 [230, 270] [480, 520] [730, 770]

Score-type (likelihood) with estimator θ̂
ML

1,1000

G = 50 0.903 0.077 0.019 0.001 0.000 0.312 0.028 0.097
G = 80 0.619 0.288 0.063 0.028 0.002 0.713 0.135 0.242
G = 100 0.385 0.379 0.183 0.045 0.008 0.857 0.267 0.367
G = 120 0.190 0.418 0.276 0.096 0.020 0.925 0.406 0.494
G = 150 0.056 0.321 0.449 0.137 0.037 0.921 0.583 0.623

Score-type (likelihood) with estimator θ̂
ML

300,700

G = 50 0.264 0.339 0.230 0.102 0.065 0.839 0.061 0.545
G = 80 0.100 0.397 0.300 0.143 0.060 0.936 0.199 0.734
G = 100 0.038 0.341 0.413 0.155 0.053 0.929 0.389 0.780
G = 120 0.011 0.249 0.490 0.204 0.046 0.929 0.561 0.782
G = 150 0.018 0.162 0.596 0.194 0.030 0.919 0.724 0.742

Wald-type (likelihood)
G = 50 0.330 0.320 0.225 0.090 0.035 0.789 0.352 0.429
G = 80 0.069 0.295 0.373 0.199 0.064 0.890 0.603 0.645
G = 100 0.017 0.205 0.415 0.259 0.104 0.908 0.702 0.714
G = 120 0.005 0.115 0.546 0.248 0.086 0.908 0.766 0.764
G = 150 0.001 0.040 0.629 0.261 0.069 0.896 0.809 0.803

4.2.6. Comparison of the Run Time

Similar to the considerations in the linear regression we want to compare the Wald-
type and score-type procedures in terms of their actual computation times. Thus, we
calculated the two statistics based on the least squares and the likelihood approach for
several sample sizes n = 250, 500, 1000, 2000, 4000, 8000, 16000, 32000 with bandwidth
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G = G(n) = n2/3 and recorded the run times of 100 repetitions. Figure 4.3 shows the
average run time of the MOSUM score-type and Wald-type statistic based on the least
squares approach. We can see that the score-type statistic performs slightly better
in terms of computation times. Since the procedure only requires the calculation of
one global estimate we would have expected a larger di�erence in run time as in the
linear regression example in Section 4.1.5. An explanation for this could be that we
applied a MOSUM-version of the empirical covariance matrix Σ̂k,n (given in (4.13)) as
an estimator for the long-run covariance matrix of the estimating function which seems
to slow down the computation in total. Nevertheless, both procedures perform quite
well. For a sample size of n = 32000 the computation of the score-type statistic only
takes 9.48 seconds on average followed by the Wald-type statistic with 10.94 seconds.
Figure 4.4 gives the average run time of the two statistics based on the likelihood
approach (in minutes) and Figure 4.5 shows the performance of the score-type statistic
(in seconds) separately. The plots show that the score-type statistic clearly outperforms
the Wald-type statistic in terms of computation time. For sample size n = 1000 (n =
32000) it only takes 0.71 (35.24) seconds to calculate the score-type statistic whereas
the Wald-type statistic requires on average 3.23 (221.34) minutes of computation time.
This illustrates a main disadvantage of the Wald-type procedure in contrast to the
score-type approach. As numerical methods are needed to calculate the local estimates
in the Wald-type statistics computation time increases dramatically in large data sets.
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Figure 4.3.: The graph shows the average computation time of the MOSUMWald-type
statistic and the score-type statistic based on the least squares approach
for 100 replications.
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Figure 4.4.: The graph shows the average computation time of the MOSUMWald-type
statistic and the score-type statistic based on the likelihood approach (in
minutes) for 100 replications.
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Figure 4.5.: The graph shows the average computation time of the MOSUM score-type
statistic based on the likelihood approach (in seconds) for 100 replications.
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5. The Multiscale MOSUM

Procedure

5.1. Introduction

In this chapter we consider the multiscale MOSUM procedure with localised pruning
introduced by Cho & Kirch (2018), which is decsribed in the following subsection, and
we adapt it to the MOSUM score-type and MOSUM Wald-type procedure in order
to solve the problem of choosing the bandwidth and the problem in detectability of
the score-MOSUM. In Section 5.3 we explain how the method can be extended to the
linear regression model as given in Section 3.2 and a general model which is similar
to that in Section 3.1 but we do not restrict our considerations to i.i.d. (type (E1))
or stationary and strongly mixing (type (E2)) sequences. Before stating a �rst result
on the output of the multiscale method, we derive some auxiliary lemmata which are
crucial for that proof and for showing consistency of the estimators as future work.

5.2. The Multiscale MOSUM Procedure with

Localized Pruning by Cho and Kirch

The choice of the bandwidth has a crucial impact on the performance of the MOSUM
procedures, even in the classical mean change model. One possibility to solve this
problem is to run the MOSUM procedure on a set of di�erent bandwidths and to merge
the results in an appropriate way. For instance, Messer et al. (2014), using MOSUM
statistics for detecting changes in point processes, proposed a multiscale method which
takes all the estimates obtained from the smallest bandwidth and adds recursively
estimates produced by the next largest bandwidth but only if their G-environments do
not cover any of the previous estimates. However, one main drawback of this procedure
is that it might fail to eliminate some estimates produced by spurious local maxima.
Furthermore, as already mentioned by Eichinger & Kirch (2018), it is questionable how
to extend this method to asymmetric bandwidths where the length of the right window
does not coincide with length of the left window. Such bandwidth constellations have
been considered for the classical mean change model in order to locate small changes
with one close and one distant neighboring change and it would be reasonable to
incorporate this in our MOSUM procedures as well. Moreover, the multiscale procedure
mentioned above cannot be used to merge results produced by MOSUM score-type
statistics of di�erent global estimators which is essential for solving the problem in
detectability.
In comparison to that, Cho & Kirch (2018) adopted the idea of Fryzlewicz (2014) to use
an information criterion to combine the estimates produced by the MOSUM procedure
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with di�erent window lengths. Starting with Yao (1988), who used Schwarz's criterion
(also known as BIC � Bayesian information criterion) to estimate the number of changes
in the mean under normality assumption, information criteria have been widely used
in multiple change point detection. Just to mention a few contributions, Liu et al.
(1997) applied a modi�ed Schwarz criterion for localizing changes or di�erent segments
in a multivariate regression model. Pan & Chen (2006) considered a general parameter
change problem of independent observations and used a modi�ed information criterion.
Moreover, Kühn (2001) extended the result of Yao (1988) to a non-parametric setting
by using a weak invariance principle. Nevertheless, in all of these examples the change
point estimates are obtained by an optimization of the considered criterion over all time
points which can be computationally expensive. In contrast, Cho & Kirch (2018) apply
a modi�ed Schwarz criterion (sBIC) to choose among a set of candidates produced
by di�erent bandwidths and propose a localized pruning approach which is shortly
described in the following.
We consider a set of bandwidths and for each of these window lengths we run the
MOSUM procedure to get estimates for the change points. These estimates are stored
together with the information about the bandwidth, the values of the corresponding
MOSUM statistic and the p-values, derived from the limit distribution of the test
statistic under the null, in order to create an initial candidate set for the multiscale
procedure. In the next step, the candidates are ranked according to their p-values or
jump sizes, which are computed by dividing the MOSUM statistics by the square root of
the corresponding bandwidth. We start with the candidate k̂∗, which has the smallest p-
value or the largest jump size, and determine its con�icting candidates in the set which
are estimates possibly generated by the same structural break. Two estimates are in
con�ict if they lie in the computation interval of the other, where the comptutation
interval of a candidate is the window on which the associated MOSUM statistic has
been calculated. Then, we determine all the subsets of k̂∗ and its con�icting candidates
satisfying the following conditions and add them to the set of the �nal candidate sets.

(C1) Adding further candidates to the set monotonically increases sBIC.

(C2) Removing any single candidate from the set increases sBIC.

After removing the estimates, which have already been considered, from the candidate
set, we repeat the same steps until the initial candidate set is empty. Finally, the output
consists of sets of candidates Â satifying the conditions (C1) and (C2). Furthermore,
the cardinality of the output is de�ned as the minimal cardinality among its candidate
sets and is used as an estimator for the number of changes.

5.3. Adapting the Procedure

Cho & Kirch (2018) apply the following modi�ed Bayesian information criterion

sBIC(An) =
n

2
log

(
RSS(An)

n

)
+ |An|ξn,

where An = {c1,n, . . . , cm,n} is a generic set of possible change points with cardinality
|An| = m. The choice of ξn, which penalizes the complexity of the model, depends in
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a sense on the assumptions of the model. Moreover, the sum of squared residuals of
the set An is given by

RSS(An) =
m∑
j=0

cj+1,n∑
i=cj,n+1

(Xi − X̄cj,n+1,cj+1,n
)2,

where c0,n = 0 and cm+1,n = n. Under normality assumptions on the random variables
the RSS represents the log-likelihood function whereas in a non-parametric world we
would call it pseudo-log-likelihood which has the following relation to the estimator.
The sample mean computed on the subsample Xl, . . . , Xu, denoted by X̄l,u, minimizes
the function

∑u
i=l(Xi − µ)2 and thus belongs to the class of M-estimators. This con-

nection enables us to generalize the information criterion as follows.
At �rst, let us think about the classical M-estimator theory in the absence of change
points. With Q(Xi,θ) denoting the criterion function, we call the estimator sequence
θ̂1,n an M-estimator for θ0 := minθ∈ΘE (Q(X1,θ)) if θ̂1,n minimizes 1

n

∑n
i=1Q(Xi,θ)

for every n. Moreover, we assume that the criterion function Q is positive and con-
tinuously di�erentiable on the compact parameter space Θ such that the estimating
function is the gradient vector of the criterion function with respect to θ: H(Xi,θ) =
∇Q(Xi,θ). Hence, minimizing 1

n

∑n
i=1Q(Xi,θ) comes down to solving the estimating

equation system 1
n

∑n
i=1H(Xi,θ) = 0. Under the moment conditions

(I) E (Q(Xi,θ)) <∞ for all θ ∈ Θ and

(II) E (supθ∈Θ ‖H(X1,θ)‖) <∞,

the dominated convergence theorem yields ∇E(Q(X1,θ)) = E (H(X1,θ)) (see Bauer
(2001) page 102 �). This shows that these M-estimators belong to the class of Z-
estimators considered in the previous sections where the unique zero of the expecta-
tion of the estimating function coincides with the unique minimizer θ0 of the criterion
function. Thus, the estimator θ̂l,u minimizing the function

∑u
i=lQ(Xi,θ) can be called

M-estimator or Z-estimator on the subsample Xl, . . . ,Xu.
Under the alternative, we assume piecewise stationarity as in Assumption A.2.2 where
the sequences {X(j)

i : j ≥ 1}, j = 1, . . . , q + 1, additionally satisfy Conditions (I) and

(II) such that the unique minimizer of E
(
Q(X(j)

1 ,θ
)
, denoted by θj ∈ Θ, is equal to

the unique zero of E
(
H(X(j)

1 ,θ)
)
.

Consequently, we propose the following information criterion for the MOSUM score-
type and the MOSUM Wald-type procedure:

sBIC(An) =
n

2
log (gRSS(An)) + |An|ξn, (5.1)

where

gRSS(An) =
1

n

m∑
j=0

cj+1,n∑
i=cj,n+1

Q(Xi, θ̂cj,n+1,cj+1,n
) (5.2)
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and the penalty fu�lls

ξn = o(n). (5.3)

Throughout this chapter, we consider the general parameter change model and the lin-
ear regression model which satisfy Assumptions A.2.1 and A.2.2 under the alternative.
In the general model we assume that the estimating function H is twice continuously
di�erentiable on Θ, where Θ ⊂ Rp is a compact parameter space, and that H and
its derivatives are measurable with respect to Xi. Further conditions on that model
will be introduced in the following subsection. In the linear regression model, where
the parameter space is not compact, we consider Assumptions (R1∗) to (R7∗) given in
Section 3.2.2 and we will introduce additional conditions the Section 5.4.2. According
to the least-squares approach we get the following criterion function:

Q(Yi,X i,β) =
(
Yi −XT

i β
)2
,

such that gRSS of an arbitrary set is given by:

gRSS(An) =
1

n

m∑
j=0

cj+1,n∑
i=cj,n+1

(
Yi −XT

i β̂cj,n+1,cj+1,n

)2

. (5.4)

5.4. Theoretical Foundation

In this section, we derive some auxiliary results helping us to prove a �rst result for the
multiscale method. We �rst consider the general model before we show similar results
for the linear regression model.
To simplify the notation in the proofs we shorten the expressions of uniformity if it is
clear what scenarios are considered. For instance, in Lemma 5.4.11 we want to show

that max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥θ̂kj,n−h+1,kj,n+g − θj
∥∥∥ = OP

(
max

{
1√
vn
, ṽn
vn

})
holds. Hence, within the

proof of that lemma we only write that a derived statement holds 'uniformly in g and
h' instead of 'uniformly for all vn ≤ h < δj,n and 1 ≤ g ≤ ṽn'.

5.4.1. The General Model

In the general parameter change model we assume that, for all j = 1, . . . , q + 1, the
following conditions are satis�ed:

(M1) Let {X(j)
i }i≥1 be a stationary and ergodic sequence in Rp.

(M2) Let S(j, k,θj) =
∑k

i=1H(X(j)
i ,θj) ful�ll a strong invariance principle such that

(possibly after changing the probability space) there exists a p-dimensional stan-
dard Wiener process {W (k) : k ≥ 0} with identity matrix Ip as covariance
matrix and ν > 0 such that∥∥∥Σ−1/2

(j) (S(j, k,θj)− E(S(j, k,θj)))−W (k)
∥∥∥ = O(k1/(2+ν)) a.s.

as k goes to in�nity.
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(M3) For all θ ∈ Θ and for all l = 1, . . . , p, let the sequence
{
∇Hl(X(j)

i ,θ)
}
ful�ll a

strong invariance principle as described in (M2).

(M4) For all l = 1, . . . , p, let E
(

supθ∈Θ

∥∥∥∇2Hl(X(j)
i ,θ)

∥∥∥
F

)
<∞ and let the sequence{

supθ∈Θ

∥∥∥∇2Hl(X(j)
i ,θ)

∥∥∥
F

}
satisfy a strong invariance principle as in (M2).

(M5) Let E
(

supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)
<∞ hold.

(M6) Let the following forward and backward Hájek-Rényi-type inequalities hold for
θ̃ ∈ {θ1, . . . ,θ1+q}, for any mn ∈ N0 and a positive deterministic sequence {vn}
with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = OP (1)

and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = OP (1)

(M7) Let V j(θ) = E
(
∇H(X(j)

1 ,θ)
)T

be a regular matrix for all θ ∈ Θ and let

sup
θ∈Θ

∥∥V j(θ)−1
∥∥
F
<∞, for all j = 1, . . . , q + 1.

(M8) Let δV j(θ) + (1− δ)V j+1(θ) be a regular matrix for all θ ∈ Θ and all δ ∈ [0, 1]
and let

sup
δ∈[0,1]

sup
θ∈Θ

∥∥(δV j(θ) + (1− δ)V j+1(θ))−1
∥∥
F
<∞, for all j = 1, . . . , q.

(M9) For s ≥ 1 we assume that
∑j+s

l=j+1(λl−λl−1)V l(θ) is invertible for all θ ∈ Θ and

sup
θ∈Θ

∥∥∥∥∥∥
(

j+s∑
l=j+1

(λl − λl−1)V l(θ)

)−1
∥∥∥∥∥∥
F

<∞.

(M10) Let E
(
Q(X(j)

i , θ̃)
)
<∞ where θ̃ denotes the unique zero of

q+1∑
j=1

(λj − λj−1)E
(
H(X(j)

1 ,θ)
)
.
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Remark 5.4.1. Note that Assumption (M6) holds for any positive deterministic se-

quence {vn} with vn → ∞ if the series {∇H0(X(j)
i , θ̃)} is time-reversible and satis-

�es Assumption (M3). For instance, i.i.d sequences of type (E1) and stationary and
strongly mixing sequences of type (E2) as considered in Section 2.3 and Section 3.1 ful-
�ll these conditions. If the series satis�es Assumption (M3) but is not time-reversible,

we only get that Assumption (M6) holds for sequences {vn} with n1/(2+ν)
√
vn

= O(1).

The �rst results up to Lemma 5.4.8 give uniform statements on the approximation
of sums of transformed sequences which will enable us to investigate the asymptotic
behavior of the local estimator sequences in a uniform manner.
Remember that k1,n, . . . , kq,n denote the change points and that we set k0,n = 1 and
kq+1,n = n for all n. Furthermore, we use

δj,n = kj,n − kj−1,n, j = 1, . . . , q + 1. (5.5)

Lemma 5.4.2. Let the Assumptions (M1) and (M2) be fu�lled. Then, for any positive
deterministic sequence {vn}, it holds

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

H(X(j)
i ,θj)

∥∥∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

Proof. At �rst, we assume that Σ(j) = Ip. On noting that E
(
H(X(j)

i ,θj)
)

= 0, the

strong invariance principle in (M2) and Lemma E.1.6 (b) can be applied to receive

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

H(X(j)
i ,θj)

∥∥∥∥∥ ≤ 1

vn
OP

(
n1/(2+ν)

)
+ max

h≥vn
0≤l≤n−h

1

h
‖W (l + h)−W (l)‖

≤ OP

(
n1/(2+ν)

vn

)
+

1
√
vn

max
h≥vn

0≤l≤n−h

1√
h
‖W (l + h)−W (l)‖

≤ OP

(
n1/(2+ν)

vn

)
+

1
√
vn

p∑
m=1

max
0≤l1<l2≤n

1√
l2 − l1

|Wm (l2)−Wm (l1)|

= OP

(
n1/(2+ν)

vn

)
+OP

(√
log(n)
√
vn

)
,

where the last line follows from Lemma 1 in Yao (1988) since the increments of a Wiener
process can be represented as sums of independent standard normal distributed random
variables.
If Σ(j) 6= Ip, Lemma E.1.5 yields

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

H(X(j)
i ,θj)

∥∥∥∥∥ = max
h≥vn

0≤l≤n−h

∥∥∥∥∥Σ1/2
(j) Σ

−1/2
(j)

1

h

l+h∑
i=l+1

H(X(j)
i ,θj)

∥∥∥∥∥
≤
∥∥∥Σ1/2

(j)

∥∥∥
F

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

Σ
−1/2
(j) H(X(j)

i ,θj)

∥∥∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
,

where the last line follows from the �rst the part and since
∥∥∥Σ1/2

(j)

∥∥∥
F

= O(1).
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Remark 5.4.3. The value ν appearing in the rate in the lemma above comes from the
invariance principle of the considered transformed sequence. In the following lemmata
we need invariance principles for di�erent sequences (but only �nitely many), for in-

stance {H(X(j)
i ,θ)}i≥1, {∇Hl(X(j)

i ,θ)}i≥1. Hence, throughout this chapter we choose
ν as the minimum over the values of all these invariance principles.

Lemma 5.4.4. (a) Let the Assumptions (M1) and (M3) be fu�lled. Then, for all
l = 1, . . . , p and for any positive deterministic sequence {vn}, it holds

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θ)

∥∥∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

(b) Let the Assumptions (M1) and (M4) be satis�ed. Then, for all l = 1, . . . , p and for
any positive deterministic sequence {vn}, it holds

max
h≥vn

0≤l≤n−h

1

h

∣∣∣∣∣
l+h∑
i=l+1

sup
θ∈Θ

∥∥∥∇2H0,l(X(j)
i ,θ)

∥∥∥
F
− E

(
sup
θ∈Θ

∥∥∥∇2H0,l(X(j)
i ,θ)

∥∥∥
F

)∣∣∣∣∣
= OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

Proof. The results can be derived in an analogous manner to Lemma 5.4.2.

Lemma 5.4.5. Let the Assumptions (M1), (M3) and (M4) be satis�ed. Then, for any

positive deterministic sequence {vn} with n1/2+ν)

vn
→ 0,

sup
θ∈Θ

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

= oP (1).

Proof. The basic idea of this proof is well known in non-parametric statistics and it
can be used in general to derive uniform results on a compact space. We have only
adapted the arguments to our speci�c setting.
There are three main arguments:

(1) The compactness of the parameter space Θ implies that for each δ > 0 there exist
a �nite number M = M(δ) ≥ 1 and θ1, . . . ,θM ∈ Θ such that for any θ ∈ Θ there
is an m ≤M with ‖θ − θm‖ < δ.

(2) For �xed M and θ1, . . . ,θM , applying Lemma 5.4.4 (a) in connection with As-
sumption (M3) yields

sup
m≤M

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θm)

∥∥∥∥∥ ≤
M∑
m=1

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θm)

∥∥∥∥∥
= OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
= oP (1),

as
√

log(n)
√
vn

= O
(√

n1/(2+ν)
√
vn

)
implies max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

}
→ 0.
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(3) Since the estimating function is twice continuously di�erentiable on Θ a �rst order
Taylor expansion on ∇Hl shows, for any θ, ξ ∈ Θ,

‖∇Hl(x,θ)−∇Hl(x, ξ)‖ ≤ sup
η∈Θ

∥∥∇2Hl(x,η)
∥∥
F
‖θ − ξ‖ ,

which is well de�ned at least almost surely with respect to PX1 since

E
(

supθ∈Θ

∥∥∥∇2Hl(X(j)
1 ,θ)

∥∥∥
F

)
<∞ holds by (M4).

Let L(X(j)
i ) = supθ∈Θ

∥∥∥∇2Hl(X(j)
i ,θ)

∥∥∥
F
. Hence, for any θ, ξ ∈ Θ with ‖θ − ξ‖ < δ,

we obtain

1

h

l+h∑
i=l+1

∥∥∥∇H0,l(X(j)
i ,θ)−∇H0,l(X(j)

i , ξ)
∥∥∥

≤ δ

(
1

h

l+h∑
i=l+1

(
L(X(j)

i )− E(L(X(j)
1 ))

)
+ 2E(L(X(j)

1 ))

)
.

Furthermore, for each ε > 0 we can choose a δ > 0 such that ε
2δ
− 2E(L(X(j)

1 )) > 0 as

E(L(X(j)
1 )) <∞ by Assumption (M4). Thus, combining (2) and (3) shows

P

sup
θ∈Θ

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θ)

∥∥∥∥∥ > ε


= P

 sup
m≤M

sup
‖θ−θm‖

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θ)

∥∥∥∥∥ > ε


= P

 sup
m≤M

sup
‖θ−θm‖

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

(
∇H0,l(X(j)

i ,θ)−∇H0,l(X(j)
i ,θm)

)

+
1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θm)

∥∥∥∥∥ > ε

)

≤ P

 sup
m≤M

sup
‖θ−θm‖

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

(
∇H0,l(X(j)

i ,θ)−∇H0,l(X(j)
i ,θm)

)∥∥∥∥∥ > ε

2


+ P

 sup
m≤M

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θm)

∥∥∥∥∥ > ε

2


≤ P

 max
h≥vn

0≤l≤n−h

1

h

l+h∑
i=l+1

(
L(X(j)

i )− E(L(X(j)
1 ))

)
>

ε

2δ
− 2E(L(X(j)

1 ))

+ o(1) = o(1),

where the last step follows from Lemma 5.4.4 (b) and since ε
2δ
− 2E

(
L
(
X(j)

1

))
> 0 by

the choice of δ. Finally, applying Lemma E.1.6 (d) completes the proof as

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

≤
p∑
l=1

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

∇H0,l(X(j)
i ,θ)

∥∥∥∥∥ = oP (1).
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Lemma 5.4.6. Let the Assumptions (M1) and (M5) hold. Then, for any positive
deterministic sequence {vn} with vn →∞,

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥∥1

h

kj,n+h∑
i=kj,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1)

and

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1).

Proof. Note that the �rst derivatives of the estimating function are measurable with
respect to X(j)

i so that the transformed sequence {∇H0(X(j)
i ,θ)} is stationary and

ergodic by Assumption (M1). Furthermore, with the stationarity of the sequence we
obtain

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥∥1

h

kj,n+h∑
i=kj,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

D
= sup

h≥vn
sup
θ∈Θ

∥∥∥∥∥1

h

h∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

.

Moreover, applying Assumption (M5) together with the Uniform Ergodic Theorem
given in Corollary E.2.7 yields

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥1

h

h∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

= o(1) a.s.

The second assertion can be derived in an analogous manner with

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

D
= sup

h≥vn
sup
θ∈Θ

∥∥∥∥∥1

h

n∑
i=n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

and since the series in reversed time is ergodic as well which implies that

sup
h≥vn

sup
θ∈Θ

∥∥∥∥∥1

h

n∑
i=n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

= o(1) a.s.

by the Uniform Ergodic Theorem in Corollary E.2.7.

Lemma 5.4.7. Let the Assumptions (M1) and (M5) hold. Furthermore, let {vn} and
{ṽn} be positive deterministic sequences with vn →∞ as n→∞. Then,

max
g≤ṽn

sup
θ∈Θ

∥∥∥∥∥∥ 1

g + vn

kj,n+g∑
i=kj,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1)

and

max
g≤ṽn

sup
θ∈Θ

∥∥∥∥∥∥ 1

g + vn

kj,n∑
i=kj,n−g+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1).
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Proof. With the stationarity of the sequence, we receive

max
g≤ṽn

sup
θ∈Θ

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

D
= max

g≤ṽn
sup
θ∈Θ

∥∥∥∥∥ 1

vn + g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

≤ max
g<
√
vn

sup
θ∈Θ

g

vn

∥∥∥∥∥1

g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

+ max
g≥√vn

sup
θ∈Θ

∥∥∥∥∥1

g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

≤ max
g<
√
vn

sup
θ∈Θ

1
√
vn

∥∥∥∥∥1

g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

+ max
g≥√vn

sup
θ∈Θ

∥∥∥∥∥1

g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥
F

= oP (1).

The �rst summand in the inequality above converges to zero as 1√
vn
→ 0 and since

max
1≤g≤n

sup
θ∈Θ

∥∥∥∥∥1

g

g∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥ = O(1) a.s.

by the Uniform Ergodic Theorem in Corollary E.2.7. The convergence of the second
summand follows from Corollary E.2.7 as well.
The second assertion can be shown similarly by using the ergodicity of the sequence in
reversed time.

Lemma 5.4.8. Let the Assumption (M1) hold. Furthermore, let Assumption (M6) be

satis�ed by {vn}, for θ̃ ∈ {θ1, . . . ,θq+1}. Then, for any positive deterministic sequence
{ṽn},

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ = OP

(
1
√
vn

)
and

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n∑
i=kj,n−g+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ = OP

(
1
√
vn

)
Proof. By the stationarity of the sequence we get

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥ D
= max

g≤ṽn

∥∥∥∥∥ 1

vn + g

g∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥ (5.6)

≤ max
g<
√
vn

1
√
vn

∥∥∥∥∥1

g

g∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥+ max
g≥√vn

∥∥∥∥∥1

g

g∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = OP

(
1
√
vn

)
,

where the approximation of the second summand follows directly from the Hájek-

Rényi-type inequality of Assumption (M6). The �rst summand is OP

(
1√
vn

)
since the

Ergodic Theorem shows

max
1≤g≤n

∥∥∥∥∥1

g

g∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = O(1) a.s.
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The second statement can be derived in an analogous manner by using the backward
Hájek-Rényi-type inequality and on noting that the series in reversed time is ergodic
as well.

Now we are able to investigate the behavior of the estimator sequences. In the fol-
lowing two lemmata we concentrate on situations where no change occurs between the
considered time points, i.e. the estimators are computed on stationary subsequences
of the time series.

Lemma 5.4.9. Let the Assumptions (M1), (M2), (M3), (M4) and (M7) be satis�ed.

Then, for any positive deterministic sequence {vn} with n1/2+ν)

vn
→ 0, it holds

max
vn≤h<δj,n

kj−1,n<l≤kj,n−h

∥∥∥θ̂l+1,l+h − θj
∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

Proof. A �rst order Taylor expansion yields, that there exists a ηl,h,n with∥∥∥ηl,h,n − θ̂l+1,l+h

∥∥∥ ≤ ∥∥∥θj − θ̂l+1,l+h

∥∥∥ such that

1

h

l+h∑
i=l+1

H(X(j)
i ,θj) =

1

h

l+h∑
i=l+1

∇H(X(j)
i ,ηl,h,n)T

(
θ̂l+1,l+h − θj

)

=

(
1

h

l+h∑
i=l+1

∇H0(X(j)
i ,ηl,h,n) + E

(
∇H(X(j)

1 ,ηl,h,n)
))T (

θ̂l+1,l+h − θj
)

=
(
oP (1) + E

(
∇H(X(j)

1 ,ηl,h,n)
))T (

θ̂l+1,l+h − θj
)

uniformly in l and h,

where the last line follows from Lemma 5.4.5 since

max
vn≤h<δj,n

kj−1,n<l≤kj,n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

(
∇H0(X(j)

i ,ηl,h,n)
)∥∥∥∥∥

F

≤ sup
θ∈Θ

max
vn≤h<δj,n

kj−1,n<l≤kj,n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

(
∇H0(X(j)

i ,θ)
)∥∥∥∥∥

F

= oP (1).

Moreover, Lemma 5.4.2 gives

max
vn≤h<δj,n

kj−1,n<l≤kj,n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

H(X(j)
i ,θj)

∥∥∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

Hence, we can conclude that

OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
=
(
oP (1) + E

(
∇H(X(j)

1 ,ηl,h,n)
))T (

θ̂l+1,l+h − θj
)

uniformly in l and h.
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Furthermore, after multiplying both sides of the equation above with the inverse of
the expectation matrix, Lemma E.2.21 in connection with Assumption (M7) can be
applied to get

OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
= (oP (1) + Ip)

T
(
θ̂l+1,l+h − θj

)
uniformly in l and h.

Finally, Lemma E.2.22 shows the assertion.

This rate of convergence can be improved if we have further information about the
start and end points of the subsample on which we compute the estimator sequence.

Lemma 5.4.10. Let the Assumptions (M1), (M5) and (M7) hold. Furthermore, let
Assumption (M6) be satis�ed by δj,n as in (5.5). Then, for any positive deterministic
sequences {v̄n} and {ṽn} ful�lling that δj,n − v̄n − ṽn > 0 and n

δj,n−v̄n−ṽn = O(1),

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥θ̂kj−1,n+h+1,kj,n−g − θj
∥∥∥ = OP

(
1√
n

)
,

Proof. A �rst order Taylor expansion shows

1

n

kj,n−g∑
i=kj−1,n+h+1

H(X(j)
i ,θj) (5.7)

=
1

n

kj,n−g∑
i=kj−1,n+h+1

∇H(X(j)
i ,ηg,h,n)T

(
θ̂kj−1,n+h+1,kj,n−g − θj

)
for some ηg,h,n with∥∥∥ηg,h,n − θ̂kj−1,n+h+1,kj,n−g

∥∥∥ ≤ ∥∥∥θj − θ̂kj−1,n+h+1,kj,n−g

∥∥∥ .
On noting that E

(
H(X(j)

1 ,θj)
)

= 0, applying Lemma 5.4.8 together with Assumption

(M6) yields

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

kj,n−g∑
i=kj−1,n+h+1

H(X(j)
i ,θj)

∥∥∥∥∥∥ (5.8)

= max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

 kj,n∑
i=kj−1,n+1

H(X(j)
i ,θj)−

kj−1,n+h∑
i=kj−1,n+1

H(X(j)
i ,θj)−

kj,n∑
i=kj,n−g+1

H(X(j)
i ,θj)

∥∥∥∥∥∥
≤ δj,n

n

∥∥∥∥∥∥ 1

δj,n

kj,n∑
i=kj−1,n+1

H(X(j)
i ,θj)

∥∥∥∥∥∥+
δj,n + v̄n

n
max

0≤h≤v̄n

∥∥∥∥∥∥ 1

δj,n + h

kj−1,n+h∑
i=kj−1,n+1

H(X(j)
i ,θj)

∥∥∥∥∥∥
+
δj,n + ṽn

n
max

0≤g≤ṽn

∥∥∥∥∥∥ 1

δj,n + ṽn

kj,n∑
i=kj,n−g+1

H(X(j)
i ,θj)

∥∥∥∥∥∥
= OP

(
1√
n

)
.

� 156 �



5.4. Theoretical Foundation

Moreover, by Lemma 5.4.7 we obtain

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

kj,n−g∑
i=kj−1,n+h+1

∇H0(X(j)
i ,ηg,h,n)

∥∥∥∥∥∥
F

= max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

 kj,n∑
i=kj−1,n+1

∇H0(X(j)
i ,ηg,h,n)−

kj−1,n+h∑
i=kj−1,n+1

∇H0(X(j)
i ,ηg,h,n)

−
kj,n∑

i=kj,n−g+1

∇H0(X(j)
i ,ηg,h,n)

∥∥∥∥∥∥
F

≤ sup
θ∈Θ

∥∥∥∥∥∥ 1

n

kj,n∑
i=kj−1,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

+ max
0≤h≤v̄n

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

kj−1,n+h∑
i=kj−1,n+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

+ max
0≤g≤ṽn

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

kj,n∑
i=kj,n−g+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1),

implying that

1

n

kj,n−g∑
i=kj−1,n+h+1

∇H(X(j)
i ,ηg,h,n) =

δj,n − h− g
n

E
(
∇H(X(j)

1 ,ηg,h,n)
)

+ oP (1),

holds uniformly in g and h. Thus, together with (5.7) and (5.8) we can conclude that

OP

(
1√
n

)
=

(
δj,n − h− g

n
E
(
∇H(X(j)

1 ,ηg,h,n)
)

+ oP (1)

)T (
θ̂kj−1,n+h+1,kj,n−g − θj

)
uniformly in g and h.

On noting that

n

δj,n − h− g

∥∥∥∥E (∇H(X(j)
1 ,ηg,h,n)

)−1
∥∥∥∥
F

≤ n

δj,n − v̄n − ṽn
sup
θ∈Θ

∥∥∥∥E (∇H(X(j)
1 ,θ)

)−1
∥∥∥∥
F

= O(1)

holds uniformly in g and h by Assumption (M7), with Lemma E.2.21 both sides of the
equation above can be multiplied with the inverse of the expectation matrix in order
to get

OP

(
1√
n

)
= (Ip + oP (1))T

(
θ̂kj−1,n+h+1,kj,n−g − θj

)
uniformly in g and h,

which completes the proof by Lemma E.2.22.
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In the next lemma we focus on situations in which exactly one change arises between
the two considered time points so that the sample, on which an estimator is computed,
can be divided into two subsamples: before and after the change. Lemma 5.4.11 in
particular shows that we still get uniform convergence if one subsample increases with
n whereas the second subsample is dominated by the other one.

Lemma 5.4.11. Let the Assumptions (M1) and (M5) hold. Furthermore, let (M6) be
satis�ed by {vn} and let δj,n as in (5.5).

(a) If Assumption (M7) is ful�lled, then, for any positive deterministic sequence {ṽn}
with ṽn = o(vn),

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥θ̂kj,n−h+1,kj,n+g − θj
∥∥∥ = OP

(
max

{
1
√
vn
,
ṽn
vn

})
and

max
vn≤h<δj+1,n

1≤g≤ṽn

∥∥∥θ̂kj,n−g+1,kj,n+h − θj+1

∥∥∥ = OP

(
max

{
1
√
vn
,
ṽn
vn

})
.

(b) If Assumption (M8) holds, we get the same result as in (a) for any positive deter-
ministic sequence {ṽn} with ṽn ≤ δj+1,n and ṽn ≤ δj,n respectively.

Proof. We only derive the �rst assertion since the second statement in (a) can be shown
in an analogous manner.
First note that h, which is greater than vn, denotes the length of the subsample before
the change and g represents the length of the subsample after the change point bounded
by ṽn. A �rst order Taylor expansion yields, that there exists an ηh,g,n with∥∥∥ηh,g,n − θ̂kj,n−h+1,kj,n+g

∥∥∥ ≤ ∥∥∥θj − θ̂kj,n−h+1,kj,n+g

∥∥∥ such that

1

h+ g

kj,n+g∑
i=kj,n−h+1

H(Xi,θj) (5.9)

=
1

h+ g

kj,n+g∑
i=kj,n−h+1

∇H(Xi,ηh,g,n)T
(
θ̂kj,n−g+1,kj,n+h − θj

)

=

 1

h+ g

kj,n∑
i=kj,n−h+1

(
∇H0(X(j)

i ,ηh,g,n)
)

+
1

h+ g

kj,n+g∑
i=kj,n+1

(
∇H0(X(j+1)

i ,ηh,g,n)
)

+
h

h+ g
E
(
∇H(X(j)

1 ,ηh,g,n)
)

+
g

h+ g
E
(
∇H(X(j+1)

1 ,ηh,g,n)
))T (

θ̂kj,n−h+1,kj,n+g − θj
)
.

Furthermore, we can apply Lemma 5.4.6 in order to receive

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n∑
i=kj,n−h+1

∇H0(X(j)
i ,ηh,g,n)

∥∥∥∥∥∥
F
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≤ max
vn≤h<δj,n

sup
θ∈Θ

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

= oP (1).

Moreover, by Lemma 5.4.7 we obtain

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n+g∑
i=kj,n+1

(
∇H0(X(j)

i ,ηh,g,n)
)∥∥∥∥∥∥

F

≤ sup
θ∈Θ

max
1≤g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

(
∇H0(X(j)

i ,θ)
)∥∥∥∥∥∥

F

= oP (1).

Thus, by considering (5.9) again, with g
h+g
≤ ṽn

vn
→ 0 and Assumption (M5) we get

1

g + h

kj,n+g∑
i=kj,n−h+1

H(X(j)
i ,θj)

=

(
oP (1) +

h

h+ g
E
(
∇H(X(j)

1 ,ηh,g,n)
))T (

θ̂kj,n−h+1,kj,n+g − θj
)

uniformly in h and g.

Besides, the left hand side of the equation above can be approximated in the following
way. Applying the Hájek-Rényi-type inequality in Assumption (M6) and Lemma 5.4.8
yields

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n+g∑
i=kj,n−h+1

H(Xi,θj)

∥∥∥∥∥∥
= max

vn≤h<δj,n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

 kj,n∑
i=kj,n−h+1

H(X(j)
i ,θj) +

kj,n+g∑
i=kj,n+1

H(X(j+1)
i ,θj)

∥∥∥∥∥∥
≤ max

vn≤h<δj,n

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

H(X(j)
i ,θj)

∥∥∥∥∥∥+
ṽn
vn

∥∥∥E (H(X(j+1)
1 ,θj)

)∥∥∥
+ max

1≤g≤ṽn

∥∥∥∥∥∥ 1

vn + g

 kj,n+g∑
i=kj,n+1

H0(X(j+1)
i ,θj)

∥∥∥∥∥∥
= OP

(
max

{
1
√
vn
,
ṽn
vn

})
.

Hence, we receive, uniformly in h and g,

OP

(
max

{
1
√
vn
,
ṽn
vn

})
=

(
oP (1) +

h

h+ g
E
(
∇H(X(j)

1 ,ηh,g,n)
))T (

θ̂kj,n−h+1,kj,n+g − θj
)
.
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Furthermore, with Assumption (M7) and since ṽn
vn

+ o(1) we get

h+ g

h

∥∥∥∥E (∇H(X(j)
1 ,ηh,g,n)

)−1
∥∥∥∥
F

≤
(

1 +
ṽn
vn

)
sup
θ∈Θ

∥∥∥∥E (∇H(X(j)
1 ,θ)

)−1
∥∥∥∥
F

= O(1).

Thus, by Lemma E.2.21 we can multiply the inverse of h
h+g

E
(
∇H(X(j)

1 ,ηh,g,n)
)
to

both sides of the equation above to get

OP

(
max

{
1
√
vn
,
ṽn
vn

})
= (oP (1) + Ip)

T
(
θ̂l+1,l+h − θj

)
uniformly in h and g.

Finally, Lemma E.2.22 shows the assertion of (a).
For proving part (b), similar arguments as in (a) can be used to obtain

1

g + h

kj,n+g∑
i=kj,n−h+1

H(X(j)
i ,θj)

=

(
oP (1) +

h

h+ g
E
(
∇H(X(j)

1 ,ηh,g,n)
)

+
g

h+ g
E
(
∇H(X(j+1)

1 ,ηh,g,n)
))T

(
θ̂kj,n−h+1,kj,n+g − θj

)
uniformly in h and g.

By Assumption (M8) and Lemma E.2.21 we receive

OP

(
max

{
1
√
vn
,
ṽn
vn

})
= (oP (1) + Ip)

T
(
θ̂kj,n−h+1,kj,n+g − θj

)
uniformly in h and g,

so that Lemma E.2.22 completes the proof.

Until now we have focused on scenarios with at most one change occuring in the
considered subsample. However, it might be of interest as well to examine the behavior
of estimator sequences computed on subsamples in which more changes arise. The
following lemma incorporates such scenarios.

Lemma 5.4.12. Let the Assumptions (M1), (M5) and (M9), for some s ≥ 1, hold.
Furthermore, let (M6) be satis�ed by a sequence {vn} of order n. Then, for any positive
deterministic sequences {v̄n} and {ṽn} with v̄n = o(n) and ṽn = o(n),

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥θ̂kj,n−h+1,kj+s,n+g − θ̃j+1,j+s

∥∥∥ = OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
,

where θ̃j+1,j+s is the unique zero of
∑j+s

l=j+1(λl − λl−1)E
(
H(X(l)

1 ,θ)
)
.

Proof. In the proof we use the short version θ̃ for θ̃j+1,j+s and δn for δj,j+s,n := kj+s,n−
kj,n. Furthermore, remember that kj,n = bλjnc. By a �rst order Taylor expansion we
get

1

δn + h+ g

kj+s,n+g∑
i=kj,n−h+1

H(Xi, θ̃) (5.10)
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=
1

δn + h+ g

kj+s,n+g∑
i=kj,n−h+1

∇H(Xi,ηh,g,n)T
(
θ̂kj,n−h+1,kj+s,n+g − θ̃

)
.

Besides, with
∑j+s

l=j+1(λl − λl−1)E
(
H(X(l)

1 , θ̃)
)

= 0 and∥∥∥∥∥n
j+s∑
l=j+1

(λl − λl−1)E
(
H(X(l)

1 , θ̃)
)
−

j+s∑
l=j+1

(kl,n − kl−1,n)E
(
H(X(l)

1 , θ̃)
)∥∥∥∥∥ (5.11)

=

∥∥∥∥∥
j+s∑
l=j+1

(nλl − bnλlc − (nλl−1 − bnλl−1c))E
(
H(X(l)

1 , θ̃)
)∥∥∥∥∥

≤
j+s∑
l=j+1

(nλl − bnλlc)
∥∥∥E (H(X(l)

1 , θ̃)
)∥∥∥+

j+s∑
l=j+1

(nλl−1 − bnλl−1c)
∥∥∥E (H(X(l)

1 , θ̃)
)∥∥∥

≤ 2

j+s∑
l=j+1

∥∥∥E (H(X(l)
1 , θ̃)

)∥∥∥ = O(1)

we receive
∑j+s

l=j+1(kl,n − kl−1,n)E
(
H(X(l)

1 , θ̃)
)

= O(1). Hence, applying Assumption

(M6) and Lemma 5.4.8 yields

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

δn + h+ g

kj+s,n+g∑
i=kj,n−h+1

H(Xi, θ̃)

∥∥∥∥∥∥ (5.12)

= max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

δn + h+ g

 kj,n∑
i=kj,n−h+1

H(X(j)
i , θ̃) +

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

H(X(l)
i , θ̃)

+

kj+s,n+g∑
i=kj+s,n+1

H(X(j+s+1)
i , θ̃)

∥∥∥∥∥∥
≤ max

1≤h≤v̄n

1

δn + h

∥∥∥∥∥∥
kj,n∑

i=kj,n−h+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥+
v̄n
δn

∥∥∥E (H(X(j)
1 , θ̃)

)∥∥∥
+

j+s∑
l=j+1

1

kl,n − kl−1,n

∥∥∥∥∥∥
kl,n∑

i=kl−1,n+1

H0(X(l)
i , θ̃)

∥∥∥∥∥∥
+

1

δn

∥∥∥∥∥
j+s∑
l=j+1

(kl,n − kl−1,n)E
(
H(X(l)

1 , θ̃)
)∥∥∥∥∥

+ max
1≤g≤ṽn

1

δn + g

∥∥∥∥∥∥
kj+s+g∑

i=kj+s,n+1

H0(X(j+s+1)
i , θ̃)

∥∥∥∥∥∥+
ṽn
δn

∥∥∥E (H(X(j+s+1)
1 , θ̃)

)∥∥∥
= OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
.
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Moreover, by Assumptions (M1) and (M5) the Uniform Ergodic Theorem in Corollary
E.2.7 and Lemma 5.4.7 can be used to obtain∥∥∥∥∥∥ 1

δn + h+ g

kj+s,n+g∑
i=kj,n−h+1

∇H(Xi,ηh,g,n) (5.13)

− 1

δn + h+ g

j+s∑
l=j+1

(kl,n − kl−1,n)E
(
∇H(X(l)

1 ,ηh,g,n)
)∥∥∥∥∥

F

=
1

δn + h+ g

∥∥∥∥∥∥
kj,n∑

i=kj,n−h+1

∇H(X(j)
i ,ηh,g,n) +

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

∇H0(X(l)
i ,ηh,g,n)

+

kj+s,n+g∑
i=kj+s,n+1

∇H(X(j+s+1)
i ,ηh,g,n)

∥∥∥∥∥∥
F

≤ max
1≤h≤v̄n

sup
θ∈Θ

1

δn + h

∥∥∥∥∥∥
kj,n∑

i=kj,n−h+1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

+
v̄n
δn

sup
θ∈Θ

∥∥∥E (∇H(X(j)
1 ,θ)

)∥∥∥
F

+

j+s∑
l=j+1

sup
θ∈Θ

1

kl,n − kl−1,n

∥∥∥∥∥∥
kl,n∑

i=kl−1,n+1

∇H0(X(l)
i ,θ)

∥∥∥∥∥∥
F

+ max
1≤g≤ṽn

sup
θ∈Θ

1

δn + g

∥∥∥∥∥∥
kj+s+g∑

i=kj+s,n+1

∇H0(X(j+s+1)
i ,θ)

∥∥∥∥∥∥
F

+
ṽn
δn

sup
θ∈Θ

∥∥∥E (∇H(X(j+s+1)
1 ,θ)

)∥∥∥
F

= oP (1),

where the last line follows from Assumption (M5) and since v̄n = o(n) and ṽn = o(n).
Furthermore, by considering the Taylor expansion in (5.10) the statements in (5.12)
and (5.13) together with

sup
θ∈Θ

∥∥∥∥∥
j+s∑
l=j+1

((kl,n − kl−1,n)− n(λl − λl−1))E
(
∇H(X(l)

1 ,θ)
)∥∥∥∥∥

F

≤ 2

j+s∑
l=j+1

sup
θ∈Θ

∥∥∥E (∇H(X(l)
1 ,θ)

)∥∥∥
F

= O(1)

can be combined to

OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
(5.14)

=

(
oP (1) +

n

δn + h+ g

j+s∑
l=j+1

(λl − λl−1)E
(
∇H(X(l)

1 ,ηh,g,n)
))T

(5.15)(
θ̂kj,n−h+1,kj+s,n+g − θ̃

)
uniformly in h and g.
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With δn+v̄n+ṽn
n

= O(1) and Assumption (M9) we get

δn + h+ g

n

∥∥∥∥∥∥
(

j+s∑
l=j+1

(λl − λl−1)E
(
∇H(X(l)

1 ,ηh,g,n)
))−1

∥∥∥∥∥∥
F

≤ δn + v̄n + ṽn
n

sup
θ∈Θ

∥∥∥∥∥∥
(

j+s∑
l=j+1

(λl − λl−1)E
(
∇H(X(l)

1 ,θ)
))−1

∥∥∥∥∥∥
F

= O(1).

Hence, by Lemma E.2.21 multiplying the inverse matrix to both sides of the equation
in(5.14) yields

OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
= (oP (1) + Ip)

T
(
θ̂kj,n−h+1,kj+s,n+g − θ̃

)
uniformly in h and g,

which completes the proof by Lemma E.2.22.

In order to get an upper bound for gRSS of an arbitrary candidate set, we need to
examine the behavior of the global estimator θ̂1,n under alternative. Therefore, let θ̃
be the unique zero of

q+1∑
j=1

(λj − λj−1)E
(
H(X(j)

1 ,θ)
)
. (5.16)

Lemma 5.4.13. Let the Assumptions (M1), (M5) and (M9) for j = 0 and s = q + 1
hold. Furthermore, let (M6) be satis�ed by a sequence {vn} of order n. Then,∥∥∥θ̂1,n − θ̃

∥∥∥ = OP

(
1√
n

)
.

Proof. The result follows directly from Lemma 5.4.12 with v̄n ≡ 0 and ṽn ≡ 0.

Lemma 5.4.14. Let the assumptions of Lemma 5.4.13 be sati�ed. Furthermore, as-
sume that Assumption (M10) holds. Then, there exists a constant C1 such that

gRSS(An) ≤ C1 + oP (1)

holds for all sets An ⊂ {2, . . . , n− 1}.

Proof. By de�nition we know that the gRSS of an arbitrary set An is less than or
equal to the gRSS of the empty set, which is

gRSS(∅) =
1

n

n∑
i=1

Q(Xi, θ̂1,n) =
1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

Q(X(j)
i , θ̂1,n).

Lemma 5.4.13 shows that the estimator sequence {θ̂1,n}i≥1 is
√
n-consistent for θ̃ as

de�ned in (5.16). Furthermore, a second order Taylor expansion shows, that there

exists an ηn with
∥∥∥ηn − θ̂1,n

∥∥∥ ≤ ∥∥∥θ̃ − θ̂1,n

∥∥∥ such that

gRSS(∅) =
1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

Q(X(j)
i , θ̂1,n) (5.17)
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=
1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

Q(X(j)
i , θ̃) +

1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

H(X(j)
i , θ̃)T

(
θ̂1,n − θ̃

)

+
1

2

(
θ̂1,n − θ̃

)T  1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

∇H(X(j)
i ,ηn)

(θ̂1,n − θ̃
)
.

On noting that ∥∥∥∥∥
q+1∑
j=1

(kj,n − kj−1,n)E
(
H(X(j)

i , θ̃)
)∥∥∥∥∥ = O(1),

which has been derived in Lemma 5.4.12 in (5.11) (with s = q + 1 and j = 0), by
Assumption (M6) we get∥∥∥∥∥∥ 1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

H(X(j)
i , θ̃)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥+OP

(
1

n

)

≤
q+1∑
j=1

∥∥∥∥∥∥ 1

n

kj,n∑
i=kj−1,n+1

H0(X(j)
i , θ̃)

∥∥∥∥∥∥+OP

(
1

n

)
= OP

(
1√
n

)
.

Thus, in connection with the submultiplicativity of the Euclidean norm and Lemma
5.4.13 we obtain∣∣∣∣∣∣ 1n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

H(X(j)
i , θ̃)T

(
θ̂1,n − θ̃

)∣∣∣∣∣∣ (5.18)

≤

∥∥∥∥∥∥ 1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

H(X(j)
i , θ̃)

∥∥∥∥∥∥
∥∥∥θ̂1,n − θ̃

∥∥∥ = OP

(
1

n

)
.

Furthermore, with the Assumptions (M1) and (M5) the Uniform Ergodic Theorem in
Corollary E.2.7 can be applied to receive∥∥∥∥∥∥ 1

n

kj,n∑
i=kj−1,n+1

∇H(X(j)
i ,ηn)

∥∥∥∥∥∥
F

D
=

∥∥∥∥∥∥ 1

n

kj,n−kj−1,n∑
i=1

∇H(X(j)
i ,ηn)

∥∥∥∥∥∥
F

≤ sup
θ∈Θ

∥∥∥∥∥∥ 1

n

kj,n−kj−1,n∑
i=1

∇H(X(j)
i ,θ)

∥∥∥∥∥∥
F

≤ sup
θ∈Θ

∥∥∥∥∥∥ 1

n

kj,n−kj−1,n∑
i=1

∇H0(X(j)
i ,θ)

∥∥∥∥∥∥
F

+OP (1) = OP (1),

where the last line follows from the triangle inequality and Assumption (M5). Thus,
we get ∥∥∥∥∥∥ 1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

∇H(X(j)
i ,ηn)

∥∥∥∥∥∥
F

= OP (1).
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Moreover, the
√
n-consistency of the estimator sequence and Lemma E.1.4 in combi-

nation with Lemma E.1.5 show∣∣∣∣∣∣
(
θ̂1,n − θ̃

)T  1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

∇H(X(j)
i ,ηn)

(θ̂1,n − θ̃
)∣∣∣∣∣∣ (5.19)

≤
∥∥∥θ̂1,n − θ̃

∥∥∥2

∥∥∥∥∥∥ 1

n

q+1∑
j=1

kj,n∑
i=kj−1,n+1

∇H(X(j)
i ,ηn)

∥∥∥∥∥∥
F

= OP

(
1

n

)
.

Besides, with Assumption (M1) and as the function Q is measurable with respect to
X(j)
i the sequence Q(X(j)

i , θ̃) is stationary and ergodic. Hence, by Assumption (M10)
the Ergodic Theorem can be used to get∣∣∣∣∣∣ 1n

kj,n∑
i=kj−1,n+1

Q0(X(j)
i , θ̃)

∣∣∣∣∣∣ D=
∣∣∣∣∣∣ 1n

kj,n−kj−1,n∑
i=1

Q0(X(j)
i , θ̃)

∣∣∣∣∣∣ = oP (1),

implying that∣∣∣∣∣∣ 1n
q+1∑
j=1

kj,n∑
i=kj−1,n+1

Q0(X(j)
i , θ̃)

∣∣∣∣∣∣ ≤
q+1∑
j=1

∣∣∣∣∣∣ 1n
kj,n∑

i=kj−1,n+1

Q0(X(j)
i , θ̃)

∣∣∣∣∣∣ = oP (1).

Finally, by considering the Taylor expansion in (5.17) again, the statement above com-
bined with (5.18) and (5.19) yields

gRSS(∅) =

q+1∑
j=1

kj,n − kj−1,n

n
E
(
Q(X(j)

1 , θ̃)
)

+ oP (1)

=

q+1∑
j=1

(λj − λj−1)E
(
Q(X(j)

1 , θ̃)
)

+ oP (1),

which completes the proof as 0 <
∑q+1

j=1(λj − λj−1)E
(
Q(X(j)

1 , θ̃)
)

:= C1 <∞.

Remark 5.4.15. Note that we could get a rate of convergence in Lemma 5.4.14 by
imposing additional assumptions on the transformed sequence {Q(X(j)

i , θ̃)}.

5.4.2. The Linear Regression Model

We consider the linear regression model introduced in Section 3.2.2 under the Assump-
tions (R1∗) to (R7∗). Furthermore, we need forward and backward Hájek-Rényi-type
inequalities as given in the following:

(R8∗) For all j = 1, . . . , q + 1, let the series {X(j)
i εi}i≥1 satisfy the following forward

and backward Hájek-Rényi-type inequalities, for any mn ∈ N0 and a positive
deterministic sequence {vn} with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

X
(j)
i εi

∥∥∥∥∥ = OP (1)
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and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

X
(j)
i εi

∥∥∥∥∥ = OP (1).

(R9∗) For all j = 1, . . . , q + 1, let the series {X(j)
i X

(j)T
i −C(j)}i≥1 ful�ll the following

forward and backward Hájek-Rényi-type inequalities, for any mn ∈ N0 and a
positive deterministic sequence {vn} with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥
F

= OP (1)

and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥
F

= OP (1).

Moreover, we introduce the following additional assumption:

(R10∗) Let the matrix
∑j+s

l=j+1(λl − λl−1)C(l) be positive de�nite for some s ≥ 1.

Note that Assumption (R10∗) follows directly from Assumption (R3∗) if the regressors
are strictly exogenous and not e�ected by changes.
Now, we derive similar statements as in the previous section. The results up to Lemma
5.4.19 are mainly needed to investigate the asymptotic behavior of the estimator se-
quences in the subsequent lemmata.

Lemma 5.4.16. Let the Assumptions (R1∗), (R2∗), (R4∗) and (R6∗) be satis�ed.
Then,

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

X
(j)
i εi

∥∥∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

Proof. First, note that by Assumptions (R1∗), (R2∗) and (R4∗) we get

E
(
X

(j)
i εi

)
= E

(
E
(
X

(j)
i εi|Fi

))
= E

(
X

(j)
i E (εi|Fi)

)
= E

(
X

(j)
i E (εi)

)
(5.20)

= E
(
X

(j)
i

)
E (εi) = 0.

Hence, with Assumption (R6∗) we can apply Lemma 5.4.2, which shows the assertion.

Lemma 5.4.17. Let the sequence {X(j)
i }i≥1 satisfy the Assumptions (R1

∗), (R3∗) and
(R5∗). Then,

max
h≥vn

0≤l≤n−h

∥∥∥∥∥1

h

l+h∑
i=l+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥
F

= OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.

� 166 �



5.4. Theoretical Foundation

Proof. By Assumption (R3∗) we know that C(j) is the expectation ofX
(j)
i X

(j)T
i so that

the component sequences of {X(j)
i X

(j)T
i −C(j)}i≥1 have zero expectation. Furthermore,

they satisfy a strong invariance principle by Assumption (R5∗). Thus, applying Lemma
5.4.2 to each component in connection with Lemma E.1.6 (b) yields the assertion.

Lemma 5.4.18. Let the Assumptions (R1∗), (R2∗) and (R4∗) hold. Furthermore, let
(R8∗) be satis�ed by {vn} and let δj,n as in (5.5). Then, for any positive deterministic
sequence {ṽn} with ṽn ≤ δj+1,n or ṽn ≤ δj,n,

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

X
(j)
i εi

∥∥∥∥∥∥ = OP

(
1
√
vn

)
and

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n∑
i=kj,n−g+1

X
(j)
i εi

∥∥∥∥∥∥ = OP

(
1
√
vn

)

Proof. Note that by Assumptions (R1∗), (R2∗) and (R4∗) E
(
X

(j)
i εi

)
= 0 which has

been shown in (5.20). Furthermore, we know that the sequence {X(j)
i εi} is stationary

and ergodic so that the same arguments as in the proof of Lemma 5.4.8 (see (5.6)) can
be applied here to show the assertion.

Lemma 5.4.19. Let the Assumptions (R1∗) and (R3∗) hold. Furthermore, let (R9∗) be
satis�ed by {vn}. Then, for any positive deterministic sequence {ṽn} with ṽn ≤ δj+1,n

or ṽn ≤ δj,n,

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1
√
vn

)

and

max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n∑
i=kj,n−g+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1
√
vn

)

Proof. As the series {X(j)
i X

(j)T
i −C(j)} is stationary and ergodic by Assumption (R1∗)

the same arguments as in the proof of Lemma 5.4.8 (see (5.6)) can be used again.

In the following lemma we examine the behavior of local least-squares estimators which
are computed on stationary subsamples of appropriate length.

Lemma 5.4.20. Let the Assumptions (R1∗) to (R6∗) be satis�ed. Then, for any pos-

itive deterministic sequence {vn} with n1/(2+ν)

vn
→ 0 and vn < δj,n,

max
vn≤h<δj,n

kj−1,n≤l≤kj,n−h

∥∥∥β̂l+1,l+h − βj
∥∥∥ = OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
.
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Proof. By the normal equation in (3.22) and on noting that there is no change point
between l + 1 and l + h we get

l+h∑
i=l+1

X
(j)
i Y

(j)
i =

l+h∑
i=l+1

X
(j)
i X

(j)T
i β̂l+1,l+h,

implying that

l+h∑
i=l+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i βj

)
=

l+h∑
i=l+1

X
(j)
i X

(j)T
i

(
β̂l+1,l+h − βj

)
,

which is equivalent to

1

h

l+h∑
i=l+1

X
(j)
i εi =

1

h

l+h∑
i=l+1

X
(j)
i X

(j)T
i

(
β̂l+1,l+h − βj

)
for kj−1,n ≤ l ≤ l + h ≤ kj,n. Hence, since n1/(2+ν)

vn
→ 0 implies that

max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

}
= oP (1) Lemma 5.4.17 yields

1

h

l+h∑
i=l+1

X
(j)
i εi =

(
oP (1) +C(j)

) (
β̂l+1,l+h − βj

)
, uniformly in l and h ≥ vn.

Furthermore, by Lemma 5.4.16 we receive, uniformly in l and h ≥ vn,

OP

(
max

{
n1/(2+ν)

vn
,

√
log(n)
√
vn

})
=
(
oP (1) +C(j)

) (
β̂l+1,l+h − βj

)
.

Thus, Lemma E.2.22 together with Condition (R3∗) shows the assertion.

The convergence rate of the result above can be improved by imposing additional
restrictions as in the following lemma.

Lemma 5.4.21. Let the Assumptions (R1∗), (R2∗), (R3∗) and (R4∗) hold. Further-
more, let (R8∗) and (R9∗) be satis�ed by δj,n as in (5.5). Then, for any positive deter-
ministic sequences {v̄n} and {ṽn} ful�lling that δj,n− v̄n− ṽn > 0 and n

δj,n−v̄n−ṽn = O(1),

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥β̂kj−1,n+h+1,kj,n−g − βj
∥∥∥ = OP

(
1√
n

)
,

Proof. By the normal equation in (3.22) we know that, for 0 ≤ h ≤ v̄n and 0 ≤ g ≤ ṽn,

1

n

kj,n−g∑
i=kj−1,n+h+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i βj

)
(5.21)

=
1

n

kj,n−g∑
i=kj−1,n+h+1

X
(j)
i X

(j)T
i

(
β̂kj−1,n+h+1,kj,n−g − βj

)
.
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We start with approximating the left hand side of the equation above. By Lemma
5.4.18 and Assumption (R8∗) we receive

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

kj,n−g∑
i=kj−1,n+h+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i βj

)∥∥∥∥∥∥ = max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

kj,n−g∑
i=kj−1,n+h+1

X
(j)
i εi

∥∥∥∥∥∥
= max

0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

 kj,n∑
i=kj−1,n+1

X
(j)
i εi −

kj−1,n+h∑
i=kj−1,n+1

X
(j)
i εi −

kj,n∑
i=kj,n−g+1

X
(j)
i εi

∥∥∥∥∥∥
≤ δj,n

n

∥∥∥∥∥∥ 1

δj,n

kj,n∑
i=kj−1,n+1

X
(j)
i εi

∥∥∥∥∥∥+
δj,n + v̄n

n
max

0≤h≤v̄n

∥∥∥∥∥∥ 1

δj,n + h

kj−1,n+h∑
i=kj−1,n+1

X
(j)
i εi

∥∥∥∥∥∥
+
δj,n + ṽn

n
max

0≤g≤ṽn

∥∥∥∥∥∥ 1

δj,n + g

kj,n∑
i=kj,n−g+1

X
(j)
i εi

∥∥∥∥∥∥
= OP

(
1√
n

)
. (5.22)

Furthermore, applying Lemma 5.4.19 and Assumption (R9∗) and yields

max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

kj,n−g∑
i=kj−1,n+h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

(5.23)

= max
0≤h≤v̄n
0≤g≤ṽn

∥∥∥∥∥∥ 1

n

 kj,n∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)
−

kj−1,n+h∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)

−
kj,n∑

i=kj,n−g+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

≤ δj,n
n

∥∥∥∥∥∥ 1

δj,n

kj,n∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+
δj,n + v̄n

n
max

0≤h≤v̄n

∥∥∥∥∥∥ 1

δj,n + h

kj−1,n+h∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+
δj,n + ṽn

n
max

0≤g≤ṽn

∥∥∥∥∥∥ 1

δj,n + g

kj,n∑
i=kj,n−g+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
= oP (1),

which shows that

1

n

kj,n−g∑
i=kj−1,n+h+1

X
(j)
i X

(j)T
i =

δj,n − h− g
n

C(j) + oP (1) uniformly in g and h.
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Hence, together with (5.21) and (5.22) we can conclude that

OP

(
1√
n

)
=

(
δj,n − h− g

n
C(j) + oP (1)

)T (
β̂kj−1,n+h+1,kj,n−g − βj

)
holds uniformly in g and h. On noting that n

δj,n−h−g ≤
n

δj,n−v̄n−ṽn = O(1), by Lemma
E.2.21 multiplying n

δj,n−h−g to both sides of the equation above leads to

OP

(
1√
n

)
=
(
C(j) + oP (1)

)T (
β̂kj−1,n+h+1,kj,n−g − βj

)
, uniformly in g and h.

Finally, Assumption (R3∗) in combination with Lemma E.2.22 completes the proof.

In the next lemma we concentrate on estimator sequences calculated on subsamples
with exactly one change.

Lemma 5.4.22. Let the Assumptions (R1∗), (R2∗), (R3∗) and (R4∗) hold. Further-
more, let (R8∗) and (R9∗) be satis�ed by the sequence {vn}.

(a) Then, for any positive deterministic sequence {ṽn} with ṽn = o(vn),

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥β̂kj,n−h+1,kj,n+g − βj
∥∥∥ = OP

(
max

{
1
√
vn
,
ṽn
vn

})

and

max
vn≤h<δj+1,n

1≤g≤ṽn

∥∥∥β̂kj,n−g+1,kj,n+h − βj+1

∥∥∥ = OP

(
max

{
1
√
vn
,
ṽn
vn

})
.

(b) If Assumption (R7∗) holds in addition, we get the same result as in (a) for any
positive deterministic sequence {ṽn} with ṽn ≤ δj+1,n and ṽn ≤ δj,n respectively.

Proof. We only derive the �rst statement since the second statement in (a) can be
proved in an analogous manner.
With the normal equation in (3.22) we get

1

h+ g

kj,n+g∑
i=kj,n−h+1

X i

(
Yi −XT

i βj
)

=
1

h+ g

kj,n+g∑
i=kj,n−h+1

X iX
T
i

(
β̂kj,n−h+1,kj,n+g − βj

)
,

which is equivalent to

1

h+ g

 kj,n∑
i=kj,n−h+1

X
(j)
i εi +

kj,n+g∑
i=kj,n+1

X
(j+1)
i εi

+
1

h+ g

kj,n+g∑
i=kj,n+1

X
(j+1)
i X

(j+1)T
i

(
βj+1 − βj

)
(5.24)

=
1

h+ g

 kj,n∑
i=kj,n−h+1

X
(j)
i X

(j)T
i +

kj,n+g∑
i=kj,n+1

X
(j+1)
i X

(j+1)T
i

(β̂kj,n−h+1,kj,n+g − βj
)
,
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as Yi = X
(j)T
i βj + εi for i = kj,n − h + 1, . . . , kj,n and Yi = X

(j+1)T
i βj+1 + εi for

i = kj,n + 1, . . . , kj,n + g. Furthermore, by Lemma 5.4.19 we receive

max
vn≤h<δj,n

1≤g≤ṽn

1

h+ g

∥∥∥∥∥∥
kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

(5.25)

≤ max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1
√
vn

)
.

This implies in connection with Lemma E.1.5 and the triangle inequality

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n+g∑
i=kj,n+1

X
(j+1)
i X

(j+1)T
i

(
βj+1 − βj

)∥∥∥∥∥∥
≤
∥∥βj+1 − βj

∥∥ max
1≤g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

+
ṽn
vn

∥∥C(j+1)

∥∥
F


= OP

(
max

{
1
√
vn
,
ṽn
vn

})
.

Moreover, by Lemma 5.4.18 we receive

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n+g∑
i=kj,n+1

X
(j+1)
i εi

∥∥∥∥∥∥ ≤ max
g≤ṽn

∥∥∥∥∥∥ 1

vn + g

kj,n+g∑
i=kj,n+1

X
(j+1)
i εi

∥∥∥∥∥∥ = OP

(
1
√
vn

)

and with the backward Hájek-Rényi-type inequality of Assumption (R8∗) we get

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n∑
i=kj,n−h+1

X
(j)
i εi

∥∥∥∥∥∥ ≤ max
vn≤h<δj,n

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

X
(j)
i εi

∥∥∥∥∥∥ = OP

(
1
√
vn

)
.

Thus, by considering equation (5.24) again we obtain

OP

(
max

{
1
√
vn
,
ṽn
vn

})
(5.26)

=
1

h+ g

 kj,n∑
i=kj,n−h+1

X
(j)
i X

(j)T
i +

kj,n+g∑
i=kj,n+1

X
(j+1)
i X

(j+1)T
i

(β̂kj,n−h+1,kj,n+g − βj
)
,

uniformly in h and g.

Furthermore, applying the backward Hájek-Rényi-type inequality of Assumption (R9∗)
yields

max
vn≤h<δj,n

1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
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≤ max
vn≤h<δj,n

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1
√
vn

)
= oP (1),

Hence, together with (5.25) and (5.26) we obtain

OP

(
max

{
1
√
vn
,
ṽn
vn

})
(5.27)

=

(
oP (1) +

h

h+ g
C(j) +

g

h+ g
C(j+1)

)(
β̂kj,n−h+1,kj,n+g − βj

)
, uniformly in h and g.

In part (a) we assume that ṽn = o(vn) so that∥∥∥∥ g

h+ g
C(j+1)

∥∥∥∥
F

≤
∥∥∥∥ ṽnvnC(j+1)

∥∥∥∥
F

= o(1), uniformly in h and g,

and (5.27) simpli�es to

OP

(
max

{
1
√
vn
,
ṽn
vn

})
=

(
oP (1) +

h

h+ g
C(j)

)(
β̂kj,n−h+1,kj,n+g − βj

)
, uniformly in h and g.

Furthermore, as h+g
h
≤ vn+ṽn

vn
= o(1) holds uniformly in h and g as well and since C(j),

which does not depend on h and g, is invertible we can multiply both sides of the
equation above by h+g

h
C−1

(j) while preserving the uniformity by Lemma E.2.21. Thus,
we get

OP

(
max

{
1
√
vn
,
ṽn
vn

})
= (oP (1) + Ip)

(
β̂kj,n−h+1,kj,n+g − βj

)
, uniformly in h and g.

Hence, the assertion follows from Lemma E.2.22.
For proving part (b), we consider the matrix of the convex combination h

h+g
C(j) +

g
h+g
C(j+1). By Assumption (R7∗) we know that the inverse of this matrix exists and is

uniformly bounded from above. Hence, we can multiply both sides of equation (5.27)
with the inverse and get by Lemma E.2.21

OP

(
max

{
1
√
vn
,
ṽn
vn

})
= (oP (1) + Ip)

(
β̂kj,n−h+1,kj,n+g − βj

)
, uniformly in h and g,

completing the proof with Lemma E.2.22.

The following lemma considers local least-squares estimators calculated on subsamples
with more than one structural break and shows that they behave quite nicely if the
start and end point of the subsample lie in some sense close to a change point.

Lemma 5.4.23. Let the Assumptions (R1∗), (R2∗), (R3∗), (R4∗) and (R10∗), for some
s ≥ 1, hold. Furthermore, let (R8∗) and (R9∗) be satis�ed by the sequence {vn} of order
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n. Then, for any positive deterministic sequences {v̄n} and {ṽn} with v̄n = o(n) and
ṽn = o(n),

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥β̂kj,n−h+1,kj+s,n+g − β̃j+1,j+s

∥∥∥ = OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
,

with β̃j+1,j+s :=
(∑j+s

l=j+1(λl − λl−1)C(l)

)−1∑j+s
l=j+1(λl − λl−1)C(l)βl.

Proof. In the proof we use the short version β̃ for β̃j+1,j+s and δn for δj,j+s,n := kj+s,n−
kj,n. By the normal equation in (3.22) we know that

1

h+ g + δn

kj+s,n+g∑
i=kj,n−h+1

X i

(
Yi −XT

i β̃
)

(5.28)

=
1

h+ g + δn

kj,n+g∑
i=kj,n−h+1

X iX
T
i

(
β̂kj,n−h+1,kj,n+g − β̃

)
.

Considering the left hand side of the equation above, with Yi = Y
(j)
i = X

(j)T
i βj + εi,

for kj−1,n < i ≤ kj,n we receive

kj+s,n+g∑
i=kj,n−h+1

X i

(
Yi −XT

i β̃
)

(5.29)

=

kj,n∑
i=kj,n−h+1

X
(j)
i

(
Y

(j)
i −X

(j)T
i β̃

)
+

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

X
(l)
i

(
Y

(l)
i −X

(l)T
i β̃

)

+

kj+s,n+g∑
i=kj+s,n+1

X
(j+s+1)
i

(
Y

(j+s+1)
i −X(j+s+1)T

i β̃
)

=

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i

(
βj − β̃

)
+X

(j)
i εi

)

+

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i

(
βl − β̃

)
+X

(l)
i εi

)

+

kj+s,n+g∑
i=kj+s,n+1

(
X

(j+s+1)
i X

(j+s+1)T
i

(
βj+s+1 − β̃

)
+X

(j+s+1)
i εi

)
.

Moreover, since
j+s∑
l=j+1

(λl − λl−1)C(l)

(
βl − β̃

)
= 0

holds by the de�nition of β̃ we obtain∥∥∥∥∥∥E
 j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

X
(l)
i X

(l)T
i

(
βl − β̃

)∥∥∥∥∥∥
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=

∥∥∥∥∥
j+s∑
l=j+1

(kl,n − kl−1,n)C(l)

(
βl − β̃

)∥∥∥∥∥
=

∥∥∥∥∥
j+s∑
l=j+1

(kl,n − kl−1,n)C(l)

(
βl − β̃

)
− n

j+s∑
l=j+1

(λl − λl−1)C(l)

(
βl − β̃

)∥∥∥∥∥
=

∥∥∥∥∥
j+s∑
l=j+1

(nλl − bλlnc − (nλl−1 − bλl−1nc))C(l)

(
βl − β̃

)∥∥∥∥∥
≤

j+s∑
l=j+1

∥∥∥C(l)

(
βl − β̃

)∥∥∥ ≤ max
j<l≤j+s

∥∥C(l)

∥∥
F

j+s∑
l=j+1

∥∥∥βl − β̃∥∥∥ = O(1),

where the last line follows from Lemma E.1.5. Thus, on noting that
kl,n − kl−1,n = bλlnc − bλl−1nc is of order n, applying the Hájek-Rényi-type inequality
of Assumption (R9∗) together with Lemma E.1.5 yields

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

X
(l)
i X

(l)T
i

(
βl − β̃

)∥∥∥∥∥∥
≤ 1

δn

∥∥∥∥∥∥
j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i −C(l)

)(
βl − β̃

)

+

j+s∑
l=j+1

(kl,n − kl−1,n)C(l)

(
βl − β̃

)∥∥∥∥∥
≤

j+s∑
l=j+1

∥∥∥∥∥∥ 1

kl,n − kl−1,n

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i −C(l)

)(
βl − β̃

)∥∥∥∥∥∥+O

(
1

n

)

≤
j+s∑
l=j+1

∥∥∥∥∥∥ 1

kl,n − kl−1,n

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i −C(l)

)∥∥∥∥∥∥
F

∥∥∥βl − β̃∥∥∥+O

(
1

n

)

= OP

(
1√
n

)
+OP

(
1

n

)
= OP

(
1√
n

)
.

Furthermore, with the Hájek-Rényi-type inequality of Assumption (R8∗) we obtain

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

j+s∑
l=j+1

kl,n∑
i=kl−1,n+1

X
(l)
i εi

∥∥∥∥∥∥
≤

j+s∑
l=j+1

∥∥∥∥∥∥ 1

kl,n − kl−1,n

kl,n∑
i=kl−1,n+1

X
(l)
i εi

∥∥∥∥∥∥ = OP

(
1√
n

)
.

Besides, by Lemma 5.4.19 and Lemma E.1.5 we get

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

kj,n∑
i=kj,n−h+1

X
(j)
i X

(j)T
i

(
βj − β̃

)∥∥∥∥∥∥
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≤ max
1≤h≤v̄n

∥∥∥∥∥∥ 1

δn + h

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j) +C(j)

)(
βj − β̃

)∥∥∥∥∥∥
≤

 max
1≤h≤v̄n

∥∥∥∥∥∥ 1

δn + h

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+
v̄n
δn

∥∥C(j)

∥∥
F

∥∥∥βj − β̃∥∥∥
= OP

(
max

{
1√
n
,
v̄n
n

})
.

Similarly, we obtain

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

kj+s,n+g∑
i=kj+s,n+1

X
(j+s+1)
i X

(j+s+1)T
i

(
βj+s+1 − β̃

)∥∥∥∥∥∥ = OP

(
max

{
1√
n
,
ṽn
n

})
.

Furthermore, Lemma 5.4.18 shows

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

kj,n∑
i=kj,n−h+1

X
(j)
i εi

∥∥∥∥∥∥ ≤ max
1≤h≤v̄n

∥∥∥∥∥∥ 1

δn + h

kj,n∑
i=kj,n−h+1

X
(j)
i εi

∥∥∥∥∥∥ = OP

(
1√
n

)
and similarly

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

kj+s,n+g∑
i=kj+s,n+1

X
(j+s+1)
i εi

∥∥∥∥∥∥ = OP

(
1√
n

)
.

Hence, by considering the decomposition in (5.29) again we can conclude that

1

h+ g + δn

kj+s,n+g∑
i=kj,n−h+1

X i

(
Yi −XT

i β̃
)

(5.30)

= OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
uniformly in h and g.

Now, we focus on the right hand side of equation (5.28). Applying Lemma 5.4.19 and
the Hájek-Rényi-type inequalities of Assumption (R9∗) yields

max
1≤h≤v̄n
1≤g≤ṽn

∥∥∥∥∥∥ 1

h+ g + δn

 kj+s,n+g∑
i=kj,n−h+1

X iX
T
i −

j+s∑
l=j+1

(kl,n − kl−1,n)C(l)

∥∥∥∥∥∥
F

≤
j+s∑
l=j+1

∥∥∥∥∥∥ 1

kl,n − kl−1,n

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i −C(l)

)∥∥∥∥∥∥
F

+
v̄n
δn

∥∥C(j)

∥∥
F

+ max
1≤h≤v̄n

∥∥∥∥∥∥ 1

δn + h

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+
ṽn
δn

∥∥C(j+s+1)

∥∥
F

+ max
1≤g≤ṽn

∥∥∥∥∥∥ 1

δn + g

kj,n+g∑
i=kj,n+1

(
X

(j+s+1)
i X

(j+s+1)T
i −C(j+s+1)

)∥∥∥∥∥∥
F

= oP (1),
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implying that

1

h+ g + δn

kj+s,n+g∑
i=kj,n−h+1

X iX
T
i

=

j+s∑
l=j+1

kl,n − kl−1,n

h+ g + δn
C(l) + oP (1) uniformly in h and g.

Furthermore, on noting that

j+s∑
l=j+1

kl,n − kl−1,n

h+ g + δn
C(l) =

δn
h+ g + δn

j+s∑
l=j+1

kl,n − kl−1,n

δn
C(l)

=
δn

h+ g + δn

j+s∑
l=j+1

bλlnc − bλl−1nc
bλj+snc − bλjnc

C(l) = (1 + o(1))

(
j+s∑
l=j+1

λl − λl−1

λj+s − λj
C(l) + o(1)

)

=

j+s∑
l=j+1

λl − λl−1

λj+s − λj
C(l) + o(1) uniformly in h and g,

we can conclude that

1

h+ g + δn

kj+s,n+g∑
i=kj,n−h+1

X iX
T
i =

j+s∑
l=j+1

λl − λl−1

λj+s − λj
C(l) + oP (1) uniformly in h and g.

(5.31)

Hence, in combination with (5.28) and (5.30) we receive

OP

(
max

{
1√
n
,
v̄n
n
,
ṽn
n

})
=

(
oP (1) +

j+s∑
l=j+1

λl − λl−1

λj+s − λj
C(l)

)(
β̂kj,n−h+1,kj,n+g − β̃

)
uniformly in h and g.

Finally, Lemma E.2.22 together with Assumption (R10∗) completes the proof.

Similar to the general parameter change model, we show in Lemma 5.4.25 that the
gRSS of an arbitrary candidate set is bounded from above. In order to prove this
result, we have to investigate the behavior of the global estimator β̂1,n under the

alternative which is done in the following lemma. Therefore, let β̃ be the unique zero

of
∑q+1

j=1 (λj − λj−1)E
(
H(X(j)

1 ,θ)
)
, which is given by

β̃ =

(
q+1∑
j=1

(λj − λj−1)C(j)

)−1 q+1∑
j=1

(λj − λj−1)C(j)βj. (5.32)

Lemma 5.4.24. Let the Assumptions (R1∗), (R2∗), (R3∗), (R4∗) and (R10∗) for j = 0
and s = q + 1 hold. Furthermore, let (R8∗) and (R9∗) be satis�ed by a sequence {vn}
of order n. Then, ∥∥∥β̂1,n − β̃

∥∥∥ = OP

(
1√
n

)
.
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Proof. The result follows directly from Lemma 5.4.23 with v̄n ≡ 0 and ṽn ≡ 0 and with
s = q + 1 and j = 0.

Lemma 5.4.25. Let the assumptions of Lemma 5.4.24 hold. Then, there exists a
constant C1 such that

gRSS(An) ≤ C1 + oP (1)

holds for all sets An ⊂ {2, . . . , n− 1}.

Proof. The gRSS of the empty set gives an upper bound for the gRSS of any candidate
set and is given by

gRSS(∅) =
1

n

n∑
i=1

(
Yi −XT

i β̂1,n

)2

.

A second order Taylor expansion about β̃, as de�ned in (5.32), yields

1

n

n∑
i=1

(
Yi −XT

i β̂1,n

)2

(5.33)

=
1

n

n∑
i=1

(
Yi −XT

i β̃
)2

− 2
1

n

n∑
i=1

X i

(
Yi −XT

i β̃
)T (

β̂1,n − β̃
)

+
(
β̂1,n − β̃

)T ( 1

n

n∑
i=1

X iX
T
i

)(
β̂1,n − β̃

)
.

Furthermore, the following auxiliary results have already been derived in the proof of
Lemma 5.4.23 (with j = 0, s = q + 1, v̄n ≡ 0 and ṽn ≡ 0). By (5.30) we know

1

n

n∑
i=1

X i

(
Yi −XT

i β̃
)

= OP

(
1√
n

)
and with (5.31) we have

1

n

n∑
i=1

X iX
T
i =

q+1∑
l=1

(λl − λl−1)C(l) + oP (1) .

Thus, together with the
√
n-consistency of the estimator sequence, shown in Lemma

5.4.24, and Lemma E.1.5 we obtain∣∣∣∣∣(β̂1,n − β̃
)T ( 1

n

n∑
i=1

X iX
T
i

)(
β̂1,n − β̃

)∣∣∣∣∣ ≤ ∥∥∥β̂1,n − β̃
∥∥∥2

∥∥∥∥∥ 1

n

n∑
i=1

X iX
T
i

∥∥∥∥∥
F

= OP

(
1

n

)( q+1∑
l=1

(λl − λl−1)C(l) + oP (1)

)
= OP

(
1

n

)
.
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Moreover, Lemma 5.4.24 in combination with the submultiplicativity of the Euclidean
norm leads to∣∣∣∣∣ 1n

n∑
i=1

X i

(
Yi −XT

i β̃
)T (

β̂1,n − β̃
)∣∣∣∣∣ ≤ ∥∥∥β̂1,n − β̃

∥∥∥∥∥∥∥∥ 1

n

n∑
i=1

X i

(
Yi −XT

i β̃
)∥∥∥∥∥

= OP

(
1

n

)
.

By considering (5.33) we can conclude that

gRSS(∅) =
1

n

n∑
i=1

(
Yi −XT

i β̂1,n

)2

=
1

n

n∑
i=1

(
Yi −XT

i β̃
)2

+OP

(
1

n

)
. (5.34)

Furthermore, we receive

1

n

n∑
i=1

(
Yi −XT

i β̃
)2

=
1

n

q+1∑
l=1

kl,n∑
i=kl−1,n+1

(
X

(l)T
i

(
βl − β̃

)
+ εi

)2

=

q+1∑
l=1

(
βl − β̃

)T  1

n

kl,n∑
i=kl−1,n+1

X
(l)
i X

(l)T
i

(βl − β̃)

+ 2

q+1∑
l=1

(
βl − β̃

)T  1

n

kl,n∑
i=kl−1,n+1

X
(l)
i εi

+
1

n

n∑
i=1

ε2
i .

On noting that by Assumption (R9∗)∥∥∥∥∥∥ 1

kl,n − kl−1,n

kl,n∑
i=kl−1,n+1

(
X

(l)
i X

(l)T
i −C(l)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
.

and kl,n−kl−1,n

n
→ (λl−λl−1), the �rst summand in equation above can be approximated

in the following way

q+1∑
l=1

(
βl − β̃

)T  1

n

kl,n∑
i=kl−1,n+1

X
(l)
i X

(l)T
i

(βl − β̃)

=

q+1∑
l=1

(
βl − β̃

)T (
(λl − λl−1)C(l)

) (
βl − β̃

)
+OP

(
1√
n

)
.

Moreover, by using Assumption (R8∗) together with the triangle inequality and the
submultiplicativity of the Euclidean norm, we receive

q+1∑
l=1

(
βl − β̃

)T  1

n

kl,n∑
i=kl−1,n+1

X
(l)
i εi

 = OP

(
1√
n

)
.
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Besides, by Assumption (R4∗) we know that the sequence {ε2
i } is i.i.d. with existing

�rst moment E(ε2
i ) = σ2 so that the Law of Large Numbers shows

1

n

n∑
i=1

ε2
i = σ2 + oP (1).

Finally, together with (5.34) the results above can be summarized to

gRSS(∅) =

q+1∑
l=1

(
βl − β̃

)T (
(λl − λl−1)C(l)

) (
βl − β̃

)
+ σ2 + oP (1).

Consequently, we get that there exists a constant C1 such that

gRSS(An) ≤ gRSS(∅) ≤ C1 + oP (1).

Remark 5.4.26. Note that we could get a rate of convergence in Lemma 5.4.25 if we
use stronger moment conditions for the error sequence.

5.5. Estimating the Number of Change Points - A

First Result

Throughout this section, we assume that for the linear regression model the Assump-
tions (R1∗) to (R7∗) and (R10∗) are fu�lled and that the Assumptions (R8∗) and (R9∗)
are satis�ed by any sequence {vn} with vn ≤ n and n

vn
= O(1). For the general param-

eter change model, let the Assumptions (M1) to (M10) hold and let (M6) be satis�ed
by any sequence {vn} with vn ≤ n and n

vn
= O(1).

Similar to Cho & Kirch (2018) we use an algorithm which returns a set of �nal candi-
date sets satifying the following conditions with sBIC as de�ned in (5.1):

(C1) Adding further candidates to the set monotonically increases sBIC.

(C2) Removing any single candidate from the set increases sBIC.

However, in contrast to Cho & Kirch (2018) we omit the pruning step and perform
an exhaustive search on the whole set of change point candidates obtained from the
MOSUM Wald-type procedure with di�erent bandwidths or the MOSUM score-type
procedure with several bandwidths and/or di�erent global estimators. Furthermore, we
take the cardinality of the output, which is de�ned as the minimal cardinality among
its �nal candidate sets, as an estimator for the number of changes and we state a �rst
result which will be the basis for proving consistency in the future.
In doing so, we basically consider speci�c candidate sets An and we want to know how
the gRSS, de�ned in (5.2) and (5.4), changes if we add a candidate to such a set:
gRSS(An)−gRSS(An∪{l̃n}), where l̃n represents the added candidate. Furthermore,
let l0,n and l1,n denote the elements of the set An lying closest to the left and to the
right of l̃n such that l0,n < l̃n < l1,n. We use the following de�nitions and notation:
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• Let G be the set of bandwidths, which are used in the MOSUM procedure to
produce the initial candidates for the algorithm.

• Let G ∈ G denote a bandwidth satisfying Assumption A.1.1.

• Let L = L(G) be the set of initial candidates obtained from the bandwidths of
G.

• A candidate (estimate) ln is called valid for a change point kj,n if |kj,n − ln| < un
with

un := min
1≤j≤q+1

|kj,n − kj−1,n|/2, (5.35)

which is half of the minimal distance between two adjacent structural breaks.
The set of valid candidates of a change point kj,n is denoted by:

Vj,n = {ln ∈ L : |kj,n − ln| < un} . (5.36)

• A candidate (estimate) ln is called strictly valid for a change point kj,n if
|kj,n − ln| < G. The set of strictly valid candidates of a change point kj,n is
denoted by:

V∗j,n = {ln ∈ L : |kj,n − ln| < G}. (5.37)

• A candidate ln is called invalid if ln 6∈ Vj,n holds for all j = 1, . . . , q.

Furthermore, the relationship between likelihood-ratio and Wald-type statistic plays
an important role and needs to be examined in detail. Note that in the linear regression
model these statistics are equivalent to each other, as we will see later, whereas in the
general model this only holds asymptotically.
The di�erence in gRRS of two sets An = {l1,n, . . . , lm,n} and An ∪ {l̃n}

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
=

l1,n∑
i=l0,n+1

Q(Xi, θ̂l0,n+1,l1,n)−
l̃n∑

i=l0,n+1

Q(Xi, θ̂l0,n+1,l̃n
)−

l1,n∑
i=l̃n+1

Q(Xi, θ̂ l̃n+1,l1,n
)

can be regarded as a generalization or a non-parametric version of the likelihood-
ratio statistic where a general criterion function Q is used instead of the logarithm of a
speci�c probability density function. For further information on the classical likelihood
approach in change point analysis we refer to Csörgö & Horváth (1997), Chapter 1.
For the linear regression model we get the following likelihood-ratio statistic

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
=

l1,n∑
i=l0,n+1

(
Yi −XT

i β̂l0,n+1,l1,n)
)2

−
l̃n∑

i=l0,n+1

(
Yi −XT

i β̂l0,n+1,l̃n

)2

−
l1,n∑

i=l̃n+1

(
Yi −XT

i β̂ l̃n+1,l1,n

)2

,
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being equal to a Wald-type statistic given by(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)T
C l0,n+1,l̃n

C−1
l0,n+1,l1,n

C l̃n+1,l1,n

(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)
(5.38)

with C l,u :=
u∑
i=l

X iX
T
i ,

which was shown by Csörgö & Horváth (1997) on page 226f. After some further long
calculations we also obtain that this equivalent to l̃n∑

i=l0,n+1

X i

(
Yi −XT

i β̂l0,n+1,l1,n

)T

C−1

l0,n+1,l̃n
C l0,n+1,l1,n

C−1

l̃n+1,l1,n

 l̃n∑
i=l0,n+1

X i

(
Yi −XT

i β̂l0,n+1,l1,n

) ,

which represents a score-type statistic. Understanding the connection between the
score-type statistic and the Wald-type or the likelihood-ratio statistic will be important
as well for proving consistency later.
The relationship between the Wald-type and the likelihood-ratio statistic in the linear
regression model can be used to derive the following result which gives a modi�ed
asymptotic Wald-type representation of the di�erence in gRSS for speci�c settings.

Lemma 5.5.1. Let the bandwidth G satisfy Assumption A.1.1. Then,(
n
(
gRSS(An)− gRSS(An ∪ {l̃n})

))1/2

=

√
(l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n∥∥∥∥∥∥
((

kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1)

)1/2 (
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)∥∥∥∥∥∥
holds uniformly in l0,n ∈ (kj−1,n − G, kj,n − un], l̃n ∈ (kj,n − G, kj,n + G) and l1,n ∈
(kj,n + un, kj+1,n +G).

Proof. We only prove the assertion for l̃n > kj,n and note that the proof is similar for
l̃n ≤ kj,n as all the results of Section 5.4.2, which are applied here, are stated in a
forward and backward way. Furthermore, we distinguish between four cases:

(i) kj−1,n ≤ l0,n < kj,n < l̃n < l1,n ≤ kj+1,n,

(ii) l0,n < kj−1,n < kj,n < l̃n < kj+1,n < l1,n,

(iii) l0,n < kj−1,n < kj,n < l̃n < l1,n ≤ kj+1,n and

(iv) kj−1,n ≤ l0,n < kj,n < l̃n < kj+1,n < l1,n.
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First note that in each scenario the distances between the candidates, i.e. l̃n− l0,n and
l1,n − l̃n, are greater than un −G which is of order n by Assumption A.1.1.
We start with scenario (i). With the forward and backward Hájek-Rényi-type inequal-
ities of Assumption (R9∗) (with vn = un −G so that n = O(vn) by Assumption A.1.1)
we obtain with δj,n as in (5.5)∥∥∥∥∥∥ 1

l1,n − l0,n

 l1,n∑
i=l0,n+1

X iX
T
i − (kj,n − l0,n)C(j) − (l1,n − kj,n)C(j+1)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

l1,n − l0,n

 kj,n∑
i=l0,n+1

(
X

(j)
i X

(j)T

i −C(j)

)
+

l0,n∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T

i −C(j+1)

)∥∥∥∥∥∥
F

≤ max
un−G≤h≤δj,n

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+ max
un−G≤g≤δj+1,n

∥∥∥∥∥∥1

g

kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
, uniformly in l0,n and l1,n of case (i).

Moreover, by Assumption (R7∗) we know that the matrix kj,n−l0,n
l1,n−l0,nC(j) +

l1,n−kj,n
l1,n−l0,nC(j+1)

is positive de�nite and that its inverse is uniformly bounded from above. Thus, Lemma
E.2.21 in connection with Corollary E.2.20 shows 1

l1,n − l0,n

l1,n∑
i=l0,n+1

X iX
T
i

−1

(5.39)

=

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1) + oP (1)

)−1

=

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

(Ip + oP (1))−1

=

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

(Ip + oP (1))

=

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

+ oP (1),

uniformly in l0,n and l1,n of case (i). Furthermore, by (5.23) with v̄n = G and ṽn =
δj+1,n − un and on noting that δj+1,n − G − (δj+1,n − un) = un − G > 0 is of order n,
we obtain∥∥∥∥∥∥ 1

l1,n − l̃n

l1,n∑
i=l̃n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
= oP (1)
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holding uniformly in l̃n and l1,n of case (i). Besides, applying Lemma 5.4.19 and the
Hájek-Rényi-type inequalities of Assumption (R9∗) (with vn = un) yields∥∥∥∥∥∥ 1

l̃n − l0,n

l̃n∑
i=l0,n+1

(
X iX

T
i −C(j)

)∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

l̃n − l0,n

 kj,n∑
i=l0,n+1

X
(j)
i X

(j)T
i +

l̃n∑
i=kj,n+1

X
(j+1)
i X

(j+1)T
i

−C(j)

∥∥∥∥∥∥
F

≤ δj,n
un −G

max
un≤h≤δj,n

∥∥∥∥∥∥1

h

kj,n∑
i=kj,n−h+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+ max
1≤g≤G

∥∥∥∥∥∥ 1

un + g

kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

+
G

un −G
∥∥C(j+1) −C(j)

∥∥
F

= oP (1), uniformly in l0,n and l̃n of case (i),

as δj,n
un−G = O(1) and G

un−G = o(1) by Assumption A.1.1. Hence, with (5.39), Assump-
tion (R7∗) and Lemma E.2.21 we can conclude

l1,n − l0,n
(l̃n − l0,n)(l1,n − l̃n)

C l0,n+1,l̃n
C−1
l0,n+1,l1,n

C l̃n+1,l1,n
(5.40)

=

 1

l̃n − l0,n

l̃n∑
i=l0,n+1

X iX
T
i

 1

l1,n − l0,n

l1,n∑
i=l0,n+1

X iX
T
i

−1 1

l1,n − l̃n

l1,n∑
i=l̃n+1

X iX
T
i


=
(
C(j) + oP (1)

)((kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

+ oP (1)

)(
C(j+1) + oP (1)

)
=

(
kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1),

uniformly in l̃n, l0,n and l1,n of case (i).

Thus, with (5.38) we obtain

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
=
(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)T
C l0,n+1,l̃n

C−1
l0,n+1,l1,n

C l̃n+1,l1,n

(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)
=

(l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)T ((kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1)

)
(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)
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=
(l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n∥∥∥∥∥∥
((

kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1)

)1/2 (
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)∥∥∥∥∥∥
2

F

,

holding uniformly in l̃n, l0,n, l1,n of case (i). This shows the assertion for case (i) and
we can continue with case (ii).
By considering case (ii), with the Hájek-Rényi-type inequalities of Assumption (R9∗)
(with vn = δj,n) and Lemma 5.4.19 we receive∥∥∥∥∥∥ 1

l1,n − l0,n

 l1,n∑
i=l0,n+1

X iX
T
i − (kj,n − l0,n)C(j) − (l1,n − kj,n)C(j+1)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

l1,n − l0,n

 kj−1,n∑
i=l0,n+1

(
X

(j−1)
i X

(j−1)T

i −C(j−1)

)
+

kj,n∑
i=kj−1,n+1

(
X

(j)
i X

(j)T

i −C(j)

)

+

kj+1,n∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T

i −C(j+1)

)
+

l0,n∑
i=kj+1,n+1

(
X

(j+2)
i X

(j+2)T

i −C(j+2)

)
+(kj−1,n − l0,n)

(
C(j−1) −C(j)

)
+ (l0,n − kj+1,n)

(
C(j+2) −C(j+1)

))∥∥
F

≤ max
1≤h≤G

∥∥∥∥∥∥ 1

δj,n + h

kj−1,n∑
i=kj−1,n−h

(
X

(j−1)
i X

(j−1)T
i −C(j−1)

)∥∥∥∥∥∥
F

+
G

δj,n

∥∥C(j−1) −C(j)

∥∥
F

+ max
1≤g≤G

∥∥∥∥∥∥ 1

δj,n + g

kj+1,n+g∑
i=kj+1,n+1

(
X

(j+2)
i X

(j+2)T
i −C(j+2)

)∥∥∥∥∥∥
F

+
G

δj,n

∥∥C(j+2) −C(j+1)

∥∥
F

+

∥∥∥∥∥∥ 1

δj,n

kj,n∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

+

∥∥∥∥∥∥ 1

δj+1,n

kj+1,n∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
+OP

(
G

n

)
= oP (1) , uniformly in l0,n and l1,n of case (ii),

since G
n

= o(1) by Assumption A.1.1. Thus, similar to (5.39) we get 1

l1,n − l0,n

l1,n∑
i=l0,n+1

X iX
T
i

−1

=

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

+ oP (1),

uniformly in l0,n and l1,n of case (ii). Furthermore, using Assumption (R9∗) (with
vn = δj,n for the �rst part and vn = δj+1,n − G for the second), Lemma 5.4.19 and
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Assumption A.1.1 again shows∥∥∥∥∥∥ 1

l̃n − l0,n

l̃n∑
i=l0,n+1

X iX
T
i −C(j)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

l̃n − l0,n

 kj−1,n∑
i=l0,n+1

X
(j−1)
i X

(j−1)T
i +

kj,n∑
i=kj−1,n+1

X
(j)
i X

(j)T
i

+
l̃n∑

i=kj,n+1

X
(j+1)
i X

(j+1)T
i

−C(j)

∥∥∥∥∥∥
F

≤ max
1≤h≤G

∥∥∥∥∥∥ 1

δj,n + h

kj−1,n∑
i=kj−1,n−h

(
X

(j−1)
i X

(j−1)T
i −C(j−1)

)∥∥∥∥∥∥
F

+
G

δj,n

∥∥C(j−1) −C(j)

∥∥
F

+ max
1≤g≤G

∥∥∥∥∥∥ 1

δj,n + g

kj,n+g∑
i=kj,n+1

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

+
G

δj,n

∥∥C(j+1) −C(j)

∥∥
F

+

∥∥∥∥∥∥ 1

δj,n

kj,n∑
i=kj−1,n+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
+OP

(
G

n

)
= oP (1), uniformly in l0,n and l̃n of case (ii)

and ∥∥∥∥∥∥ 1

l1,n − l̃n

l1,n∑
i=l̃n+1

X iX
T
i −C(j+1)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

l1,n − l̃n

 kj+1,n∑
i=l̃n+1

X
(j+1)
i X

(j+1)T
i +

l1,n∑
i=kj+1,n+1

X
(j+2)
i X

(j+2)T
i

−C(j+1)

∥∥∥∥∥∥
F

≤ max
1≤g≤G

∥∥∥∥∥∥ 1

δj+1,n −G+ g

kj+1,n+g∑
i=kj+1,n+1

(
X

(j+2)
i X

(j+2)T
i −C(j+2)

)∥∥∥∥∥∥
F

+
G

δj+1,n −G
∥∥C(j+2) −C(j+1)

∥∥
F

+ max
δj+1,n−G≤h≤δj+1,n

∥∥∥∥∥∥1

h

kj+1,n∑
i=kj+1,n−h

(
X

(j+1)
i X

(j+1)T
i −C(j+1)

)∥∥∥∥∥∥
F

= OP

(
1√
n

)
+OP

(
G

n

)
= oP (1), uniformly in l̃n and l1,n of case (ii),

since δj+1,n − G is of order n. Hence, similar to (5.40) the results above can be sum-
marized to

l1,n − l0,n
(l̃n − l0,n)(l1,n − l̃n)

C l0,n+1,l̃n
C−1
l0,n+1,l1,n

C l̃n+1,l1,n
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=

(
kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1),

uniformly in l̃n, l0,n and l1,n of case (ii)

and the proof can be completed in an analogous manner to case (i).
In the scenarios (iii) and (iv,) the arguments used for (i) and (ii) can be combined to
derive the assertion.

Remark 5.5.2. Note that the matrix
(
kj,n−l0,n
l1,n−l0,nC

−1
(j+1) +

l1,n−kj,n
l1,n−l0,nC

−1
(j)

)−1

is positive def-

inite. By Assumption (R7∗) it can be rewritten as a product of invertible matrices

C(j)

(
kj,n − l0,n
l1,n − l0,n

C(j) +
l1,n − kj,n
l1,n − l0,n

C(j+1)

)−1

C(j+1),

which has already been used in (5.40), and is therefore invertible. Moreover, the positive
de�niteness of the matrix follows from the positive de�niteness of its inverse which is
a convex combination of positive de�nite matrices by Assumption (R3∗).

For proving the main result of this chapter for the general parameter change model
we need a similar statement or at least an asymptotic Wald-type lower bound of the
di�erence in gRSS for scenarios described in Lemma 5.5.1. Since the Likelihood-ratio,
the Wald-type and the Score-type statistic are in the general setting only asymptotically
equivalent it is more complicated to get a uniform statement as in the lemma above.
Investigating this asymptotic relationship would go beyond the scope of this thesis and
will be a part of future work. Hence, at the moment we can only solve this problem
by imposing an additional assumption on the general model.

Assumption 5.5.3. Let C > 0 be a constant such that(
n
(
gRSS(An)− gRSS(An ∪ {l̃n})

))1/2

≥

√
(l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n
(C + oP (1))

∥∥∥θ̂l0,n+1,l̃n
− θ̂ l̃n+1,l1,n

∥∥∥
holds uniformly in l0,n ∈ (kj−1,n − G, kj,n − un], l̃n ∈ (kj,n − G, kj,n + G) and l1,n ∈
(kj,n + un, kj+1,n +G).

The following lemma is essential for proving Theorem 5.5.6. It rules out that a can-
didate set obtained by the algorithm does not include a valid candidate for a change
point while containing strictly valid candidates for the neighboring changes.

Lemma 5.5.4. Let An be a candidate set which does not contain any valid estimate
for a change point kj,n. Furthermore, let An ∩V∗j−1,n 6= ∅ and An ∩V∗j+1,n 6= ∅, i.e. the
set contains at least one strictly valid candidate for both of the neighboring changes.
Then, adding a strictly valid candidate l̃n for kj,n to the set decreases the information
criterion with probability tending to one:

sBIC (An) > sBIC
(
An ∪ {l̃n}

)
.
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Proof. For the asymptotics we have to take into consideration that l0,n and l1,n are
returned by the algorithm. If n grows we always get new results from the algorithm
and we only have some information on the di�erence between l0,n, l1,n and l̃n. Hence,
we treat these candidates as arbitrary while imposing assumptions on the distances.
We assume that l̃n > kj,n and note that the proof is similar for l̃n ≤ kj,n as the results
from Section 5.4, which will be used here, are stated in a forward and backward manner.
Furthermore, we have to distinguish between the following four scenarios which have
all in common that the distances between the considered time points are of order n, in
particular l̃n − l0,n > un and l1,n − l̃n > un −G with un as in (5.35).

(i) kj−1,n ≤ l0,n < kj,n < l̃n < l1,n ≤ kj+1,n: The candidates l0,n and l1,n can be
(strictly) valid for kj−1,n and kj+1,n, respectively, or invalid.

(ii) l0,n < kj−1,n < kj,n < l̃n < l1,n ≤ kj+1,n: The candidate l1,n can be (strictly) valid
for kj+1,n or invalid whereas l0,n must be strictly valid for kj−1,n.

(iii) l0,n < kj−1,n < kj,n < l̃n < kj+1,n < l1,n: The candidates l0,n and l1,n are strictly
valid for kj−1,n and kj+1,n, respectively.

(iv) kj−1,n ≤ l0,n < kj,n < l̃n < kj+1,n < l1,n: The candidate l0,n can be (strictly) valid
for kj−1,n or invalid whereas l1,n must be strictly valid for kj+1,n.

Linear regression model:

At �rst, we consider the di�erence of the local estimators
(
β̂l0,n+1,l̃n

− β̂ l̃n+1,l1,n

)
and

decompose it into noise and signal. Therefore, the uniform results on the convergence
of the estimators derived in Section 5.4 are needed. By considering the estimator
sequence {β̂l0,n+1,l̃n

}, for the cases (i) and (iv) Lemma 5.4.22 can be used to receive∥∥∥β̂l0,n+1,l̃n
− βj

∥∥∥ ≤ max
un≤h<δj,n

1≤g≤G

∥∥∥β̂kj,n−h+1,kj,n+g − βj
∥∥∥ = OP

(
max

{
1√
n
,
G

n

})
= oP (1),

uniformly in l0,n and l̃n of cases (i) and (iv), where the last line follows from Assumption
A.1.1. In the scenarios (ii) and (iii) applying Lemma 5.4.23 (with v̄n = ṽn = G, s = 1

and β̃j,j = βj) yields∥∥∥β̂l0,n+1,l̃n
− βj

∥∥∥ ≤ max
1≤h≤G
1≤g≤G

∥∥∥β̂kj−1,n−h+1,kj,n+g − βj
∥∥∥ = OP

(
max

{
1√
n
,
G

n

})
= oP (1),

uniformly in l0,n and l̃n of cases (ii) and (iii). Investigating the behavior of the second
estimator sequence {β̂ l̃n+1,l1,n

}, in the cases (i) and (ii) Lemma 5.4.21 shows∥∥∥β̂ l̃n+1,l1,n
− βj+1

∥∥∥ ≤ max
0≤h≤G

0≤g≤δj+1,n−un

∥∥∥β̂kj,n+h+1,kj+1,n−g − βj+1

∥∥∥ = OP

(
1√
n

)
= oP (1),

uniformly in l̃n and l1,n of cases (i) and (ii), since δj+1,n−G−(δj+1,n−un) = un−G > 0
is of order n. Furthermore, for the scenarios (iii) and (iv), by Lemma 5.4.22 we obtain∥∥∥β̂ l̃n+1,l1,n

− βj+1

∥∥∥ ≤ max
δj+1,n−G≤h≤δj+1,n

1≤g≤G

∥∥∥β̂kj+1,n−h+1,kj+1,n+g − βj+1

∥∥∥
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= OP

(
max

{
1√
n
,
G

n

})
= oP (1),

uniformly in l̃n and l1,n of cases (iii) and (iv). Thus, by applying Lemma 5.5.1, the
results above can be combined to

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
(5.41)

=
(l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n∥∥∥∥∥∥
((

kj,n − l0,n
l1,n − l0,n

C−1
(j+1) +

l1,n − kj,n
l1,n − l0,n

C−1
(j)

)−1

+ oP (1)

)1/2 ((
βj − βj+1

)
+ oP (1)

)∥∥∥∥∥∥
2

F

,

uniformly in l0,n ∈ (kj−1,n − G, kj,n − un], l̃n ∈ (kj,n − G, kj,n + G) and l1,n ∈ (kj,n +
un, kj+1,n+G). We use the following notation to simply the expression above for further
calculations. Let γn = γ(l0,n, lr+,n, n) :=

kj,n−l0,n
l1,n−l0,n so that

M γn :=
(
γnC

−1
(j+1) + (1− γn)C−1

(j)

)−1

represents the matrix above which is positive de�nite as described in Remark 5.5.2. By
Proposition E.6 and Example E.7.c in Marshall et al. (2011) (on page 676�) we know
that the di�erence (

γnC(j+1) + (1− γn)C(j)

)
−M γn

is a positive semi-de�nite matrix. On noting that the matrices C(j) and C(j+1) are
positive de�nite by Assumption (R3∗), this implies in combination with Lemma E.1.4
and Lemma E.1.5, for any vector x ∈ Rp,

0 < xTM γnx ≤ xT
(
γnC(j+1) + (1− γn)C(j)

)
x = γnx

TC(j+1)x+ (1− γn)xTC(j)x

≤ xTC(j+1)x+ xTC(j)x = xT
(
C(j+1) +C(j)

)
x,

uniformly in γn ∈ [0, 1].

Thus, by Min-Max Theorem the eigenvalues of M γn , which are denoted by λγn,i, i =
1, . . . , p, are bounded by the eigenvalues of C(j+1) + C(j) uniformly in γn. Hence,

on noting that ‖M γn‖F =
√∑p

i=1 λ
2
γn,i

, we can conclude that ‖M γn‖F is bounded

uniformly in γn. Together with Lemma E.2.21 we obtain∥∥∥(M γn + oP (1))1/2 ((βj − βj+1

)
+ oP (1)

)∥∥∥2

F

=
((
βj − βj+1

)
+ oP (1)

)T
(M γn + oP (1))

((
βj − βj+1

)
+ oP (1)

)
=
(
βj − βj+1

)T
M γn

(
βj − βj+1

)
+ oP (1),

holds uniformly in l0,n ∈ (kj−1,n − G, kj,n − un], l̃n ∈ (kj,n − G, kj,n + G) and l1,n ∈
(kj,n + un, kj+1,n +G). Moreover, note that the inverse ofM γn is given by γnC

−1
(j+1) +

(1− γn)C−1
(j) satisfying

sup
γn∈[0,1]

∥∥M−1
γn

∥∥
F
≤
∥∥∥C−1

(j+1)

∥∥∥
F

+
∥∥∥C−1

(j)

∥∥∥
F
<∞.
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Thus, by Lemma E.1.10 in connection with Lemma E.1.12 we can conclude that there
exists a constant C1 > 0 such that∥∥∥(M γn + oP (1))1/2 ((βj − βj+1

)
+ oP (1)

)∥∥∥2

F

=
(
βj − βj+1

)T
M γn

(
βj − βj+1

)
+ oP (1) ≥ C1 + oP (1),

which holds uniformly in l0,n ∈ (kj−1,n−G, kj,n−un], l̃n ∈ (kj,n−G, kj,n+G). Further-

more, as the fraction (l̃n−l0,n)(l1,n−l̃n)

l1,n−l0,n is of order n there exists a constant C2 > 0 such

that (l̃n−l0,n)(l1,n−l̃n)

l1,n−l0,n > C2n holds for all l0,n, l1,n, l̃n of this setting. Hence, together with
(5.41) we receive

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
≥ nC2 (C1 + oP (1)) = n

(
C̃ + oP (1)

)
, (5.42)

holds uniformly in l0,n ∈ (kj−1,n −G, kj,n − un], l̃n ∈ (kj,n −G, kj,n +G). Thus, we get

sBIC(An)− sBIC(An ∪ {l̃n})

=
n

2

(
log(gRSS(An))− log(gRSS(An ∪ {l̃n}))

)
− ξn

=
n

2
log

(
gRSS(An)

gRSS(An ∪ {l̃n})

)
− ξn

≥ n

2

(
1− gRSS(An ∪ {l̃n})

gRSS(An)

)
− ξn =

n

2

(
gRSS(An)− gRSS(An ∪ {l̃n})

)
gRSS(An)

− ξn

≥
n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
C3 + oP (1)

− ξn ≥ n
(
C̃ + oP (1)

)
− ξn,

where the second last line follows from the property of the natural logarithm that
log(x) ≥ 1 − 1

x
for all x > 0 and the last line is obtained by applying Lemma 5.4.25

and (5.42). Finally, since ξn = o(n) by (5.3), this implies

sBIC(An)− sBIC(An ∪ {l̃n}) ≥ n
(
C̃ + oP (1)

)
,

completing the proof.
Note that there are two special cases. The �rst one is that there is no valid candi-
date for k1,n and no other candidate between 1 and kj,n in An. Then, we set l0,n = 1
and proceed as before. In the second case, there is no valid candidate for kq,n and no
candidate between kq,n and n in the set An. By setting l1,n = n we can use the same
arguments as in usual case again.

General parameter change model:
By Assumption 5.5.3 we know that

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
≥ (l̃n − l0,n)(l1,n − l̃n)

l1,n − l0,n
(C + oP (1))

∥∥∥θ̂l0,n+1,l̃n
− θ̂ l̃n+1,l1,n

∥∥∥2
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holds uniformly in l0,n ∈ (kj−1,n − G, kj,n − un], l̃n ∈ (kj,n − G, kj,n + G) and l1,n ∈
(kj,n+un, kj+1,n+G). Analogously to the linear regression, by applying Lemma 5.4.10,
Lemma 5.4.11 and Lemma 5.4.12, we obtain∥∥∥θ̂l0,n+1,l̃n

− θ̂ l̃n+1,l1,n

∥∥∥ = ‖θj − θj+1‖+ oP (1), uniformly in l0,n, l̃n, l1,n.

Thus, similar to the �rst part we get

n
(
gRSS(An)− gRSS(An ∪ {l̃n})

)
≥ n

(
C̃ + oP (1)

)
,

for some constant C̃ > 0, and the proof can be �nished in an analogous manner to the
linear regression.

Furthermore, we have to verify that there is at least one valid candidate for each change
point in the initial candidate set.

Lemma 5.5.5. (a) Let G ∈ G satisfy Assumption A.1.1 and let L denote the set of
initial candidates obtained by the MOSUM Wald-type procedure. Then, for every
change point kj,n, there exists a candidate k̂j,n ∈ L such that

P
(∣∣∣k̂j,n − kj,n∣∣∣ > G

)
→ 0.

(b) The result remains true for the MOSUM score-type procedure if we additionally
ensure that all changes are detectable by choosing an appropriate set of global esti-
mators.

Proof. The assertion in (a) follows directly from Corollary 3.1.16 and Corollary 3.2.10,
respectively, whereas the statement in (b) can be derived from Corollary 2.1.10.

The main result of this chapter is stated in the following theorem showing that a �nal
candidate set of the algorithm's output contains at least q candidates with probability
tending to one.

Theorem 5.5.6. Let An be a �nal candidate set of the algorithm's output satisfying
(C1) and (C2) and let the assumptions of Lemma 5.5.5 be ful�lled. Then,

P (|An| ≥ q)→ 1 as n→∞.

Proof. The assertion can be proved by contradiction. Therefore, assume that |An| < q.
Hence, there would be at least one change point without valid candidate in An. By
Lemma 5.5.5 there is a strictly valid candidate for each change point in the initial
candidate set. Thus, by adding strictly valid candidates to the set An we can create a
new set Ãn such that there is exactly one change point kj∗,n without valid estimate in
Ãn while the set contains strictly valid candidates for its neighboring change points.
By Lemma 5.5.4 we know that adding a strictly valid candidate for kj∗,n to the set
Ãn decreases the information criterion. Hence, the candidate set Ãn does not ful�ll
Condition (C1) implying that An cannot satisfy Condition (C1) as An ⊂ Ãn. This
would contradict the assumption that An is in the output of the algorithm completing
the proof.

� 190 �



5.6. Outlook

5.6. Outlook

For justifying the usage of the procedure theoretically we need to show consistency for
the estimators of the number and the locations of the changes obtained by the multiscale
method. As a part of future work, this will be based on the theoretical results of Section
5.4 and Theorem 5.5.6. Moreover, it will be necessary to implement the localised
pruning approach like Cho & Kirch (2018) to make the procedure competitive in terms
of computation time compared to other detection algorithms. Furthermore, simulation
studies for di�erent change point problems will be conducted in order to assess the
performance of the method empirically. Simulations in the classical mean change model
done by Cho & Kirch (2018) have shown that the multiscale MOSUM procedure with
localised pruning, which is already implemented in the mosum R-package, perfoms
quite well in comparative studies. We would expect to get similar results for the linear
regression model or examples of the general parameter change model.
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A. Assumptions of Chapter 2

A.1. Assumptions Under the Null Hypothesis

Assumption A.1.1. Let the bandwidth G depend on n, i.e. G = G(n). Furthermore,
for ν > 0 assume that

n

G
→∞ and

n
2

2+ν log(n)

G
→ 0 for n→∞.

Assumption A.1.2. Let {Xi : i ≥ 1} be a stationary series following a distribution
determined by θ0 in a correctly speci�ed model. Under misspeci�cation let θ0 be the
best approximating parameter for {Xi : i ≥ 1} in the sense of E (H(Xi,θ0)) = 0.

Furthermore, we assume that the stationary sequence {H(Xi, θ̃) : i ≥ 1} has a positive

de�nite long-run covariance matrix Σ(θ̃) = Σ.

Assumption A.1.3. Let S(k, θ̃) =
∑k

i=1H(Xi, θ̃) ful�ll a strong invariance principle.
So possibly after changing the probability space there exists a p-dimensional standard
Wiener process {W (k) : k ≥ 0} with identity matrix Ip as covariance matrix and ν > 0
such that ∥∥∥Σ−1/2

(
S(k, θ̃)− E(S(k, θ̃))

)
−W (k)

∥∥∥ = O(k1/(2+ν)) a.s.

as k goes to in�nity.

Assumption A.1.4. Let

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥
= max

G≤k≤n−G

1√
2G

∥∥∥∥∥
k+G∑
i=k+1

(
H(Xi, θ̂n)−H(Xi, θ̃)

)
−

k∑
i=k−G+1

(
H(Xi, θ̂n)−H(Xi, θ̃)

)∥∥∥∥∥
= oP

(
(log(n/G))−1/2

)
hold for some θ̃.

Assumption A.1.5. The estimator Σ̂k,n of the long-run covariance matrix Σ can
depend on k and satis�es

max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n −Σ−1/2
∥∥∥
F

= oP

((
log(n/G)

)−1
)

under the null hypothesis.
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A.2. Assumptions Under the Alternative

Assumption A.2.1. Let q be the number of change points, occuring in the time period,
which is unknown but �xed. Furthermore, let k1,n < . . . < kq,n be the change points
depending on the sample size n in the following way: kj,n = bλjnc with λj as rescaled
change point being a constant but unknown value in (0, 1), for j = 1, . . . , q

Assumption A.2.2. Let {Xi : i ≥ 1} be a piecewise stationary series such that

Xi =


X(1)
i , if 1 ≤ i ≤ k1,n

X(2)
i , if k1,n < i ≤ k2,n

...

X(q+1)
i , if kq,n < i ≤ n

,

where {X(j)
i : i ≥ 1} is stationary following a distribution determined by θj, for j =

1, . . . , q + 1, in a correctly speci�ed model. Under misspeci�cation let θj be the best

approximating parameter for {X(j)
i : i ≥ 1} in the sense of E

(
H(X(j)

i ,θj)
)

= 0.

Furthermore, we assume that the stationary sequence {H(X(j)
i , θ̃) : i ≥ 1} has a positive

de�nite long-run covariance matrix Σ(j)(θ̃) = Σ(j), for all j = 1, . . . , q + 1.

Assumption A.2.3. Let S(j, k, θ̃) =
∑k

i=1H(X(j)
i , θ̃) ful�ll a strong invariance prin-

ciple for all j = 1, . . . , q+1. So possibly after changing the probability space there exists
a p-dimensional standard Wiener process {W (k) : k ≥ 0} with identity matrix Ip as
covariance matrix and ν > 0 such that∥∥∥Σ−1/2

(j)

(
S(j, k, θ̃)− E(S(j, k, θ̃))

)
−W (k)

∥∥∥ = O(k1/(2+ν)) a.s., k →∞.

Assumption A.2.4. Let {θ̂n}n∈N be a sequence of estimators ful�lling

max
G≤k≤n−G

1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = OP

(√
log(n/G)

)
,

for some θ̃.

Assumption A.2.5. The estimator Σ̂k,n of the long-run covariance matrix Σk is pos-
itive de�nite and satis�es

(a) max
G≤k≤n−G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
k

∥∥∥
F

= OP (1)

(b) max
k∈An,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
k

∥∥∥
F

= oP (log(n/G)−1)

with An,G := {k ∈ {G, . . . , n−G} : |k − kj,n| > G ∀ j = 1, . . . , q},

(c) max
k∈Bn,G

∥∥∥Σ̂−1/2

k,n −Σ
−1/2
A,k

∥∥∥
F

= oP (1) ,

where Bn,G := {k ∈ {G, . . . , n − G} : ∃ j ∈ {1, . . . , q} with |k − kj,n| ≤ G} and
{ΣA,k} is a sequence of positive de�nite matrices ful�lling supk ‖ΣA,k‖F <∞.
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Assumption A.2.6. For at least one j ∈ {1, . . . , q} it holds that

E
(
H(X(j)

1 , θ̃)
)
6= E

(
H(X(j+1)

1 , θ̃)
)
.

Assumption A.2.7. Let Q̃ = Q̃
(
θ̃
)
be the set of indices of all rescaled change points

causing a change in the expected value of the transformed series (detectable changes),
i.e.

E
(
H(X(j)

1 , θ̃)
)
6= E

(
H(X(j+1)

1 , θ̃)
)

holds for all j ∈ Q̃ and

E
(
H(X(j)

1 , θ̃)
)

= E
(
H(X(j+1)

1 , θ̃)
)

for all j ∈ {1, . . . , q} \ Q̃.
Furthermore, let q̃ = q̃

(
θ̃
)
be the number of elements of Q̃ which is the number of

detectable changes.

Assumption A.2.8. Let the sequence of signi�cance levels αn ful�ll

αn → 0 and
cαn

a(n/G)
√
G

= o(1),

where a(x) =
√

log(x) and cαn is the (1− αn)-quantile of the Gumbel distribution.

Assumption A.2.9. Let {θ̂n}n∈N be a sequence of estimators ful�lling

(I) maxk∈An,G
1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP
(
(log(n/G))−1/2

)
,

where An,G = {k ∈ {G, . . . , n−G} : |k − bλjnc| ≥ G ∀ j ∈ {1, . . . , q}}.

(II) maxk∈Ãn,G
1√
2G

∥∥∥Aθ̂n,k
−Aθ̃,k

∥∥∥ = oP

(√
log(n/G)

)
,

where Ãn,G =
{
k ∈ {G, . . . , n−G} : |k − bλjnc| ≥ G ∀ j ∈ Q̃

}
with Q̃ denoting

the set of indices of detectable rescaled change points de�ned by Assumption
A.2.7.

Assumption A.2.10. Let the following forward and backward Hájek-Rényi-type in-
equalities hold for some γ > 2:

(a) For all j ∈ {1, . . . , q + 1} and for any positive and non-increasing sequence b1 ≥
b2 ≥ . . . ≥ bn > 0 there exists a constant B(γ) such that

E

(
max

1≤k≤n
bk

∥∥∥∥∥
k∑
i=1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ B(γ)
n∑
k=1

bγkk
γ/2−1.

(b) For all j ∈ {1, . . . , q + 1} and for any positive and non-decreasing sequence 0 <
a1 ≤ a2 ≤ . . . ≤ an there exists a constant A(γ) such that

E

(
max

1≤k≤n
ak

∥∥∥∥∥
n∑

i=k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥
)γ

≤ A(γ)
n∑
k=1

aγk(n− k)γ/2−1.

� 194 �



A.2. Assumptions Under the Alternative

Assumption A.2.11. Let {θ̂n}n∈N be a sequence of estimators ful�lling, for any m ∈
N and for each j ∈ {1, . . . , q + 1},

(i) max
1≤k≤n

1
k

∥∥∥∥ m∑
i=m−k+1

(
H
(
X(j)
i , θ̂n

)
−H

(
X(j)
i , θ̃

))∥∥∥∥ = oP (1)

and

(ii) max
1≤k≤n

1
k

∥∥∥∥ m+k∑
i=m+1

(
H
(
X(j)
i , θ̂n

)
−H

(
X(j)
i , θ̃

))∥∥∥∥ = oP (1)

for some θ̃.

Assumption A.2.12. Let Σ̂k,n be a local estimator for the long-run covariance matrix

Σk which is positive de�nite and fu�lls Assumption A.2.5. Furthermore, let Σ̂j,n,
j = 1, . . . , q + 1, be a positive de�nite global estimator which is consistent for the true
long-run covariance matrix Σ under the null and which converges in probability to some
positive de�nite matrix ΣA,j under alternative.
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B. Assumptions of Section 2.3 and

Section 3.1

We consider the following type of series:

(E1) X1, . . . ,Xn are an i.i.d. sequence of random vectors or

(E2) X1, . . . ,Xn are a stationary and strongly mixing sequence of random vectors with
a mixing rate α(n) satisfying α(n) = O(n−β) for some β > 1 + 2/ν, where ν is as
in Assumption A.1.3.

B.1. Under the Null Hypothesis

Assumption B.1.1.
Let E (‖H(X1,θ)‖) <∞ hold for all θ ∈ Θ.

Assumption B.1.2.

Let E

(∥∥∥H(X1, θ̃)
∥∥∥2
)
<∞.

Assumption B.1.3.
Let E (supθ∈Θ ‖∇H(X1,θ)‖F ) <∞.

Assumption B.1.4.
E
(
supθ∈Θ ‖∇2Hj(X1,θ)‖F

)
<∞ hold for all j = 1, . . . , p.

Assumption B.1.5.

There exists a ν > 0 such that E

(∥∥∥H(X1, θ̃)
∥∥∥2+ν

)
<∞.

Assumption B.1.6.
There exists a ν > 0 such that E

(
‖∇H(X1,θ)‖2+ν

F

)
<∞ holds for all θ ∈ Θ.

Assumption B.1.7.

Let E
(

supθ∈Θ ‖∇2Hj(X1,θ)‖2+ν

F

)
<∞ hold for all j = 1, . . . , p and for some ν > 0.

Assumption B.1.8.
Let V (θ) be a regular matrix for all θ ∈ Θ and let

sup
θ∈Θ

∥∥V (θ)−1
∥∥
F
<∞,

with V (θ) = E (∇H(X1,θ))T .
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B.2. Under the Alternative

Assumption B.2.1.

Let E
(∥∥∥H(X(j)

1 ,θ)
∥∥∥) <∞ hold for all θ ∈ Θ, j = 1, . . . , q + 1.

Assumption B.2.2.

Let E

(∥∥∥H(X(j)
1 , θ̃)

∥∥∥2
)
<∞, j = 1, . . . , q + 1.

Assumption B.2.3.

Let E
(

supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)
<∞, j = 1, . . . , q + 1.

Assumption B.2.4.

E
(

supθ∈Θ

∥∥∥∇2Hl(X(j)
1 ,θ)

∥∥∥
F

)
<∞ hold for all l = 1, . . . , p, j = 1, . . . , q + 1.

Assumption B.2.5.

There exists a ν > 0 such that E

(∥∥∥H(X(j)
1 , θ̃)

∥∥∥2+ν
)
<∞, j = 1, . . . , q + 1.

Assumption B.2.6.

There exists a ν > 0 such that E

(∥∥∥∇H(X(j)
1 ,θ)

∥∥∥2+ν

F

)
< ∞ holds for all θ ∈ Θ,

j = 1, . . . , q + 1.

Assumption B.2.7.

Let E

(
supθ∈Θ

∥∥∥∇2Hl(X(j)
1 ,θ)

∥∥∥2+ν

F

)
<∞ hold for all l = 1, . . . , p and for some ν > 0,

j = 1, . . . , q + 1.

Assumption B.2.8.
There exists a ν > 0 such that

E

(∥∥∥H(X(j)
1 ,θ)

∥∥∥2+ν
)
<∞ holds for all θ ∈ Θ, j = 1, . . . , q + 1.

Assumption B.2.9.
Let V j(θ) be a regular matrix for all θ ∈ Θ and let

sup
θ∈Θ

∥∥V j(θ)−1
∥∥
F
<∞,

with V j(θ) = E
(
∇H(X(j)

1 ,θ)
)T

, j = 1, . . . , q + 1.

Assumption B.2.10. Let

δV j(θ) + (1− δ)V j+1(θ)

be a regular matrix for all θ ∈ Θ and all δ ∈ [0, 1] and let

sup
δ∈[0,1]

sup
θ∈Θ

∥∥(δV j(θ) + (1− δ)V j+1(θ))−1
∥∥
F
<∞,

j = 1, . . . , q.

Assumption B.2.11. There exists a ν > 0 such that

E

(
supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥2+ν

F

)
<∞ holds, j = 1, . . . , q + 1.
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C. Assumptions of Section 3.2

C.1. Assumptions Under the Null Hypothesis

Let β0 be the true parameter of the model if no change occurs, i.e.

Yi = XT
i β0 + εi

holds for all i = 1, . . . , n under the null. Furthermore, the following assumptions are
used in that section:

(R1) The sequence {X i}i≥1 is stationary and ergodic with E (‖X1‖) <∞.

(R2) Let Ft = σ (Xj, εj−1, j ≤ t). We assume that εt and Ft are independent.

(R3) C := E
(
X1X

T
1

)
is a positive de�nite matrix.

(R4) The sequence {εi}i≥1 is i.i.d. with E(ε1) = 0, 0 < E(ε2
1) := σ2 <∞.

(R5) Let the components of {X iX
T
i − C}i≥1 satisfy a strong invariance principle

similar to that in Assumption A.1.3.

(R6) Let {X iεi}i≥1 be a series with positive de�nite long-run covariance matrix Σ
satisfying a strong invariance principle similar to that in Assumption A.1.3.

C.2. Assumptions Under the Alternative

Under the alternative we allow for multiple changes in the regression coe�cients and
get a piecewise stationary response sequence {Yi}i≥1 with

Yi = Y
(j)
i = X

(j)T
i βj + εi,

for kj−1,n < i ≤ kj,n and j = 1, . . . , q + 1. The following assumptions are used in that
section.

(R1∗) The sequence {X(j)
i }i≥1 is stationary and ergodic with E

(∥∥∥X(j)
1

∥∥∥) < ∞, for
j = 1, . . . , q + 1.

(R2∗) Let Ft = σ (Xj, εj−1, j ≤ t). We assume that εt and Ft are independent.

(R3∗) C(j) := E
(
X

(j)
1 X

(j)T
1

)
is a positive de�nite matrix, for j = 1, . . . , q + 1.

(R4∗) The sequence {εi}i≥1 is i.i.d. with E(ε1) = 0, 0 < E(ε2
1) := σ2 <∞.
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(R5∗) Let the components of {X(j)
i X

(j)T
i −C(j)}i≥1 satisfy a strong invariance principle

similar to that in Assumption A.1.3, for j = 1, . . . , q + 1.

(R6∗) Let {X(j)
i εi}i≥1 be a series with positive de�nite long-run covariance matrix Σ(j)

satisfying a strong invariance principle similar to that in Assumption A.1.3, for
j = 1, . . . , q + 1.

(R7∗) Let the matrix δC(j) + (1 − δ)C(j+1) be positive de�nite for all δ ∈ [0, 1] and

assume that supδ∈[0,1]

∥∥∥(δC(j) + (1− δ)C(j+1)

)−1
∥∥∥
F
<∞, for all j = 1, . . . , q.
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D. Assumptions of Chapter 5

D.1. The General Model

In the general parameter change model we assume that, for all j = 1, . . . , q + 1, the
following conditions are satis�ed:

(M1) Let {X(j)
i }i≥1 be a stationary and ergodic sequence in Rp.

(M2) Let S(j, k,θj) =
∑k

i=1H(X(j)
i ,θj) ful�ll a strong invariance principle such that

(possibly after changing the probability space) there exists a p-dimensional stan-
dard Wiener process {W (k) : k ≥ 0} with identity matrix Ip as covariance
matrix and ν > 0 such that∥∥∥Σ−1/2

(j) (S(j, k,θj)− E(S(j, k,θj)))−W (k)
∥∥∥ = O(k1/(2+ν)) a.s.

as k goes to in�nity.

(M3) For all θ ∈ Θ and for all l = 1, . . . , p, let the sequence
{
∇Hl(X(j)

i ,θ)
}
ful�ll a

strong invariance principle as described in (M2).

(M4) For all l = 1, . . . , p, let E
(

supθ∈Θ

∥∥∥∇2Hl(X(j)
i ,θ)

∥∥∥
F

)
<∞ and let the sequence{

supθ∈Θ

∥∥∥∇2Hl(X(j)
i ,θ)

∥∥∥
F

}
satisfy a strong invariance principle as in (M2).

(M5) Let E
(

supθ∈Θ

∥∥∥∇H(X(j)
1 ,θ)

∥∥∥
F

)
<∞ hold.

(M6) Let the following forward and backward Hájek-Rényi-type inequalities hold for
θ̃ ∈ {θ1, . . . ,θ1+q}, for any mn ∈ N0 and a positive deterministic sequence {vn}
with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = OP (1)

and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

H0(X(j)
i , θ̃)

∥∥∥∥∥ = OP (1)

(M7) Let V j(θ) = E
(
∇H(X(j)

1 ,θ)
)T

be a regular matrix for all θ ∈ Θ and let

sup
θ∈Θ

∥∥V j(θ)−1
∥∥
F
<∞, for all j = 1, . . . , q + 1.
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D.2. The Linear Regression Model

(M8) Let δV j(θ) + (1− δ)V j+1(θ) be a regular matrix for all θ ∈ Θ and all δ ∈ [0, 1]
and let

sup
δ∈[0,1]

sup
θ∈Θ

∥∥(δV j(θ) + (1− δ)V j+1(θ))−1
∥∥
F
<∞, for all j = 1, . . . , q.

(M9) For s ≥ 1 we assume that
∑j+s

l=j+1(λl−λl−1)V l(θ) is invertible for all θ ∈ Θ and

sup
θ∈Θ

∥∥∥∥∥∥
(

j+s∑
l=j+1

(λl − λl−1)V l(θ)

)−1
∥∥∥∥∥∥
F

<∞.

(M10) Let E
(
Q(X(j)

i , θ̃)
)
<∞ where θ̃ denotes the unique zero of

q+1∑
j=1

(λj − λj−1)E
(
H(X(j)

1 ,θ)
)
.

D.2. The Linear Regression Model

We consider the linear regression model introduced in Section 3.2.2 under the Assump-
tions (R1∗) to (R7∗) which can be found in Section C.2 as well. Furthermore, the
following conditions are used.

(R8∗) For all j = 1, . . . , q + 1, let the series {X(j)
i εi}i≥1 satisfy the following forward

and backward Hájek-Rényi-type inequalities, for any mn ∈ N0 and a positive
deterministic sequence {vn} with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

X
(j)
i εi

∥∥∥∥∥ = OP (1)

and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

X
(j)
i εi

∥∥∥∥∥ = OP (1).

(R9∗) For all j = 1, . . . , q + 1, let the series {X(j)
i X

(j)T
i −C(j)}i≥1 ful�ll the following

forward and backward Hájek-Rényi-type inequalities, for any mn ∈ N0 and a
positive deterministic sequence {vn} with vn →∞ (which will be speci�ed later):

max
vn≤k≤n−mn

∥∥∥∥∥
√
vn
k

mn+k∑
i=mn+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥
F

= OP (1)

and

max
vn≤k≤mn

∥∥∥∥∥
√
vn
k

mn∑
i=mn−k+1

(
X

(j)
i X

(j)T
i −C(j)

)∥∥∥∥∥
F

= OP (1).

(R10∗) Let the matrix
∑j+s

l=j+1(λl − λl−1)C(l) be positive de�nite for some s ≥ 1.
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E.1. Norms and Matrices

Remark E.1.1. According to Roy & Banerjee (2014) (page 492f), the Frobenius norm
is a matrix norm which is de�ned as follows

‖A‖F =

√
tr(ATA) =

√
tr(AAT ) for A ∈ Rp×q.

An important property of this norm is the submultiplicativity,

‖AB‖F ≤ ‖A‖F ‖B‖F .

Lemma E.1.2. Let {Xn} and {Yn} be deterministic or stochastic sequences of vectors
in Rp and let A ⊆ N. Then,∣∣∣∣max

n∈A
‖Xn‖ −max

n∈A
‖Yn‖

∣∣∣∣ ≤ max
n∈A
‖Xn − Yn‖ .

Proof.

max
n∈A
‖Xn‖ = max

n∈A
‖Xn − Yn + Yn‖ ≤ max

n∈A
(‖Xn − Yn‖+ ‖Yn‖)

≤ max
n∈A
‖Xn − Yn‖+ max

n∈A
‖Yn‖

yields

max
n∈A
‖Xn‖ −max

n∈A
‖Yn‖ ≤ max

n∈A
‖Xn − Yn‖ .

Similarly we obtain

max
n∈A
‖Yn‖ −max

n∈A
‖Xn‖ ≤ max

n∈A
‖Xn − Yn‖ ,

showing the assertion.

Lemma E.1.3. Let {Xn} and {Yn} be deterministic or stochastic sequences of vectors
in Rp and let A ⊆ N. Then,∣∣∣∣min

n∈A
‖Xn‖ −min

n∈A
‖Yn‖

∣∣∣∣ ≤ max
n∈A
‖Xn − Yn‖ .

Proof. Without loss of generality we assume that minn∈A ‖Xn‖ ≥ minn∈A ‖Yn‖. We
receive

‖Xn − Yn‖ ≥ ‖Xn‖ − ‖Yn‖ ≥ min
n∈A
‖Xn‖ − ‖Yn‖ ,
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which holds for all n ∈ A. Hence, maximizing the left and right site does not change
the inequality sign and we obtain

max
n∈A
‖Xn − Yn‖

≥ max
n∈A

(
min
n∈A
‖Xn‖ − ‖Yn‖

)
= min

n∈A
‖Xn‖ −min

n∈A
‖Yn‖ =

∣∣∣∣min
n∈A
‖Xn‖ −min

n∈A
‖Yn‖

∣∣∣∣ .

Lemma E.1.4. Let a = (a1, . . . , ap)
T be a vector in Rp. Then,

‖a‖F = ‖a‖ ,

where ‖·‖ denotes the Euclidean norm and ‖·‖F the Frobenius norm.

Proof. By de�nition of the Frobenius and the Euclidean norm it holds that

‖a‖F =
√

tr (aTa) =
√
a2

1 + . . .+ a2
p = ‖a‖ .

Lemma E.1.5. Let A be a p× p-matrix and x ∈ Rp. Then,

‖Ax‖ ≤ ‖A‖F ‖x‖ ,

where ‖·‖ denotes the Euclidean norm and ‖·‖F the Frobenius norm of matrices.

Proof. On noting that Ax ∈ Rp, applying lemma E.1.4 and the submultiplicativity of
the Frobenius norm yield

‖Ax‖ = ‖Ax‖F ≤ ‖A‖F ‖x‖F = ‖A‖F ‖x‖ .

Lemma E.1.6. Let A = (aij) be an r × s-matrix. Furthermore, let ai� be the i-th row
and a�j be the j-th column of the matrix. Then,

(a) maxi,j |ai,j| ≤ ‖A‖F ,

(b) ‖A‖F ≤
∑

i,j |aij|,

(c) max1≤i≤r ‖ai�‖ ≤ ‖A‖F and max1≤j≤s ‖a�j‖ ≤ ‖A‖F and

(d) ‖A‖F ≤
∑r

i=1 ‖ai�‖ and ‖A‖F ≤
∑s

j=1 ‖a�j‖.

Proof. By using the de�nition of the Frobenius norm, we get

‖A‖F =

√
tr(AAT ) =

√∑
i,j

|aij|2 ≥
√
|akl|2 = |akl| for all k and l
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and

‖A‖2
F =

∑
i,j

|aij|2 ≤
∑
k,l

∑
i,j

|aij||akl| =

(∑
i,j

|aij|

)2

.

The �rst inequality proves part (a) and the second implies result (b).
Moreover, we obtain

‖A‖2
F =

∑
i,j

|aij|2 =
r∑
i=1

‖ai�‖2 ≤
r∑

k=1

r∑
i=1

‖ai�‖ ‖ak�‖ =

(
r∑
i=1

‖ai�‖

)2

and

‖A‖F =

√∑
i,j

|aij|2 =

√√√√ r∑
i=1

‖ai�‖2 ≥
√
‖ai�‖2 = ‖ai�‖ for all i,

showing the results (c) and (d) of the lemma. Similar inequalities can be derived for
the columns of the matrix in order to complete the proof.

Lemma E.1.7. Let A ∈ Rp×p be a symmetric positive de�nite matrix and B ∈ Rp×p

a regular matrix. Then, C := BABT is a symmetric positive de�nite matrix.

Proof. By determining the transpose (BABT )T = BABT we get thatC is symmetric.
Furthermore, let x ∈ Rp be an arbitrary non-zero vector (x 6= 0). Since B is a regular
Matrix y := BTx is a non-zero vector in Rp as well. Hence, on noting that A is
positive de�nite, we receive

xTCx = yTAy > 0,

which shows the assertion.

Lemma E.1.8. Let {Bn} be a sequence of symmetric positive de�nite p× p matrices.
If Bn

P→ B, where B is a positive de�nite matrix,
then it holds

B−1/2
n

P→ B−1/2.

Proof. First note that the square root of the inverse matrix f(A) = A−1/2 is a primary
matrix function on the set of positive de�nite matrices with scalar-valued stem function
f(t) = t−1/2 according to De�nition 6.2.4 in Horn & Johnson (1991) on page 410. Since
the stem function f(t) = t−1/2 is continuous on (0,∞), applying Theorem 6.2.37 of Horn
& Johnson (1991) on page 433 yields that the matrix function f is continuous on the
open cone of positive de�nite matrices. Thus, the assertion follows from the continuous
mapping theorem.

Lemma E.1.9. Let A be a symmetric positive de�nite p× p-matrix. Furthermore, let
λmax denote the largest eigenvalue of matrix A and δmin the smallest eigenvalue of the
inverse matrix A−1. Then, the following inequalities hold:

(a) λmax ≤ ‖A‖F
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(b) δmin ≥ ‖A‖−1
F .

Proof. (a) Let λ1, . . . , λp denote the eigenvalues ofA. On noting that the eigenvalues
of the squared matrix A2 = AA are given by λ2

1, . . . , λ
2
p, we receive

‖A‖F =
√

tr
(
AAT

)
=
√

tr
(
A2
)

=

√√√√ p∑
i=1

λ2
i ≥

√
λ2
max = λmax.

(b) Let δ1, . . . , δp denote the eigenvalues of A
−1. Since δi = 1

λi
for i = 1, . . . , p, the

result of part (a) can be used to obtain

δmin =
1

λmax
≥ ‖A‖−1

F .

Lemma E.1.10. Let {Ak} be a sequence of symmetric positive de�nite p×p- matrices.
If supk ‖Ak‖F < ∞, then there exists c > 0 such that λmin(A−1

k ) ≥ c holds for all k,
where λmin

(
A−1
k

)
denotes the smallest eigenvalue of matrix A−1

k .

Proof. Applying Lemma E.1.9 (b) yields

λmin
(
A−1
k

)
≥ ‖Ak‖−1

F for all k.

Hence, by assumption we obtain

inf
k

(
λmin

(
A−1
k

))
≥ inf

k

(
‖Ak‖−1

F

)
=

(
sup
k
‖Ak‖F

)−1

> 0,

which shows the assertion.

Lemma E.1.11. Let A be a regular 2× 2-matrix. Then,∥∥A−1
∥∥
F

=
1

|det (A)|
‖A‖F .

Proof. With A =

(
a11 a12

a21 a22

)
the inverse of the matrix is given by

A−1 =
1

det (A)

(
a22 −a12

−a21 a11

)
.

Thus, by the de�nition of the Frobenius norm we receive

∥∥A−1
∥∥
F

=

√√√√∑
i,j

(
aij

det (A)

)2

=
1

|det (A)|

√∑
i,j

a2
ij =

1

|det (A)|
‖A‖F .
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Lemma E.1.12. Let A ∈ Rp×p be a symmetric positive de�nite matrix with minimal
eigenvalue λmin := min1≤j≤p λj. Then, for any vector x ∈ Rp with x 6= 0, it holds

xTAx ≥ λmin ‖x‖2 .

Proof. An eigendecomposition of the positive de�nite matrix A yields that there exists
an orthogonal matrix Q such that A = Qdiag(λi)Q

T . Hence, with y = QTx, the
computation rules for the trace of a matrix can be used to receive

xTAx = tr
(
xTAx

)
= tr

(
xTQdiag(λi)Q

Tx
)

= tr
(
diag(λi)Q

TxxTQ
)

= tr
(
diag(λi)yy

T
)

=

p∑
i=1

λi,ny
2
i ≥

p∑
i=1

λminy
2
i = λmin ‖y‖2 = λmin

∥∥QTx
∥∥2

= λmin ‖x‖2 ,

as the matrix Q is orthogonal.

E.2. Probability Theory and Statistics

Lemma E.2.1. Let {W (t) : t ∈ [0,∞)} be a standard Wiener process, then it holds

sup
0≤t≤T−1

sup
0≤s≤1

|W (t+ s)−W (t)| = O(
√

log T ) a.s.

Proof. By Theorem 1.2.1 (1.2.6) of Csörgo & Révész (1981) on page 30 we obtain

lim
T→∞

sup
0≤t≤T−1

sup
0≤s≤1

|W (t+ s)−W (t)|√
2(log T + log log T )

= 1 a.s.

This implies

sup
0≤t≤T−1

sup
0≤s≤1

|W (t+ s)−W (t)| = O(
√

2(log T + log log T )) a.s.

= O(
√

log T ) a.s.

Lemma E.2.2. Let {W (t) : t ∈ [0,∞)} be a p-dimensional standard Wiener process
with identity matrix Ip as covariance matrix, then it holds

sup
0≤t≤T−1

sup
0≤s≤1

‖W (t+ s)−W (t)‖ = O(
√

log T ) a.s.

Proof. The component processesW1(t), . . . ,Wp(t) of the p-dimensional standardWiener
process W (t) are independent standard Wiener processes. Hence, applying Lemma
E.2.1 yields

sup
0≤t≤T−1

sup
0≤s≤1

‖W (t+ s)−W (t)‖ ≤ sup
0≤t≤T−1

sup
0≤s≤1

p∑
i=1

|Wi(t+ s)−Wi(t)|

≤
p∑
i=1

sup
0≤t≤T−1

sup
0≤s≤1

|Wi(t+ s)−Wi(t)| = O(
√

log T ) a.s.
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The following lemma and the corresponding proof goes back to Kirch (2008) page 14.

Lemma E.2.3. Let {an} and {bn} be sequences of positive real numbers with limn→∞ bn =
∞. Furthermore, consider two sequences of random variables {An} and {Bn} with
An = oP (bn/an). Then the random sequences an max(An, Bn)− bn and anBn− bn have
the same limit distribution, i.e. it holds

lim
n→∞

|P (an max(An, Bn)− bn ≤ y)− P (anBn − bn ≤ y)| = 0, ∀ y ∈ R.

Proof. The proof can also be found in Kirch (2008) on page 14.
Since the maximum can be rewritten as an intersection of two sets, the following
inequality holds

P (an max(An, Bn)− bn ≤ y) = P ({anAn − bn ≤ y} ∩ {anBn − bn ≤ y})
= P (anAn − bn ≤ y) + P (anBn − bn ≤ y)

− P ({anAn − bn ≤ y} ∪ {anBn − bn ≤ y})
≥ P (anAn − bn ≤ y) + P (anBn − bn ≤ y)− 1

= P (anBn − bn ≤ y) + P

(
an
bn
An ≤

y

bn
+ 1

)
− 1.

Since bn goes to in�nity for n going to in�nity, for all y ∈ R, there exists an m(y) ∈ N
such that y/bn + 1 ≥ 1/2 holds for all n ≥ m(y). With an

bn
An = oP (1) we obtain

limn→∞ P
(
an
bn
An ≤ 1/2

)
= 1. This implies

P (an max(An, Bn)− bn ≤ y) ≥ P (anBn − bn ≤ y) + P

(
an
bn
An ≤ 1/2

)
− 1

= P (anBn − bn ≤ y) + o(1)

for large n.
Furthermore, we obtain

P (an max(An, Bn)− bn ≤ y) ≤ P (anBn − bn ≤ y)

since {anAn − bn ≤ y} ∩ {anBn − bn ≤ y} ⊆ {anBn − bn ≤ y} holds for all n ∈ N.

The following lemma can be derived by using some results of Steinebach & Eastwood
(1996).

Lemma E.2.4. Let {Z(t) : t ≥ 0} be a separable stationary Gaussian process with
values in Rp and independent standardized component processes. Let the covariance
functions of these components ful�ll

ri(h) = 1− C|h|+ o(|h|) as h→ 0

ri(h) = o(1/ log h) as h→∞ for all i = 1, . . . , p,

for some constant C > 0. Then,

a(m) sup
0≤t≤m

‖Z(t)‖ − b(m)
D→ E as m→∞,
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where

a(m) =
√

2 logm,

b(m) = 2 logm+
p

2
log logm− log

(
C−1Γ

(p
2

))
and E follows a Gumbel distribution with

P (E ≤ x) = exp
(
−2 exp(−x)

)
for all x ∈ R.

Proof. The assertion follows from Lemma 3.1. in combination with Remark 3.1. of
Steinebach & Eastwood (1996) on page 289 with α = 1 and C1 = . . . = Cp = C.

Lemma E.2.5. Let {Z(t) : t ≥ 0} be a stochastic process with
Z(t) = 1√

2
(2W (t+ 1)−W (t)−W (t+ 2)) where {W (t) : t ≥ 0} is a p-dimensional

Wiener process with identity matrix Ip as covariance matrix. Then, the covariance
function of the component processes is given by

r(h) =


1− 3

2
|h|, for |h| ≤ 1

1
2
|h| − 1, for 1 < |h| ≤ 2

0, else
.

Proof. With W (t) = (W1(t), . . . ,Wp(t))
T and Z(t) = (Z1(t), . . . , Zp(t))

T the covari-
ance function of a component process {Zi(t)} can be determined as follows.
At �rst, we consider the case h ≥ 0.

• Let h > 2.

ri(h) = r(h) = Cov(Zi(t), Zi(t+ h))

= Cov

(
1√
2

(
(Wi(t+ 1)−Wi(t))− (Wi(t+ 2)−Wi(t+ 1)

)
,

1√
2

(
(Wi(t+ 1 + h)−Wi(t+ h))− (Wi(t+ 2 + h)−Wi(t+ h+ 1)

))
= 0.

• Let 1 < h ≤ 2.

Cov(Zi(t), Zi(t+ h))

= Cov

(
1√
2

(
(Wi(t+ 1)−Wi(t))

− (Wi(t+ 2)−Wi(t+ h))− (Wi(t+ h)−Wi(t+ 1))
)
,

1√
2

(
(Wi(t+ 1 + h)−Wi(t+ 2)) + (Wi(t+ 2)−Wi(t+ h))

− (Wi(t+ 2 + h)−Wi(t+ h+ 1))
))

= −1

2
Var(Wi(t+ 2)−Wi(t+ h)) = −2− h

2
=

1

2
h− 1.
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• Let 0 ≤ h ≤ 1.

Cov(Zi(t), Zi(t+ h))

= Cov

(
1√
2

(
2Wi(t+ 1)−Wi(t)−Wi(t+ 2)

)
,

1√
2

(
2Wi(t+ 1 + h)−Wi(t+ h)−Wi(t+ 2 + h)

))
= Cov

(
1√
2

(
(Wi(t+ 1)−Wi(t+ h)) + (Wi(t+ h)−Wi(t))

− (Wi(t+ 2)−Wi(t+ 1 + h))− (Wi(t+ 1 + h)−Wi(t+ 1))
)
,

1√
2

(
(Wi(t+ 1 + h)−Wi(t+ 1)) + (Wi(t+ 1)−Wi(t+ h))

− (Wi(t+ 2 + h)−Wi(t+ 2))− (Wi(t+ 2)−Wi(t+ 1 + h))
))

= −1

2
Var(Wi(t+ 1 + h)−Wi(t+ 1)) +

1

2
Var(Wi(t+ 1)−Wi(t+ h))

+
1

2
Var(Wi(t+ 2)−Wi(t+ 1 + h))

= −h
2

+
1− h

2
+

1− h
2

= 1− 3

2
h.

Due to the symmetry we obtain for h < 0

Cov(Zi(t+ h), Zi(t)) = Cov(Zi(s), Zi(s+ |h|)) (s = t+ h)

=


1− 3

2
|h|, for − 1 ≤ h ≤ 0

1
2
|h| − 1, for − 2 ≤ h < −1

0, for h < −2
,

which completes the proof.

Theorem E.2.6 (Uniform Law of Large Numbers, Theorem 6.5 in Rao (1962)).
Let ‖·‖ be any norm on Rd and let F (Xi,θ) be a stationary and ergodic random sequence
with values in Rd satisfying

E

(
sup
θ∈Θ
‖F (X1,θ)‖

)
<∞,

then

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥→ 0 a.s. as n→∞.

Corollary E.2.7. Let ‖·‖F be the Frobenius norm for matrices and let F (Xi,θ) be a
stationary and ergodic random sequence with values in Rr×s satisfying

E

(
sup
θ∈Θ
‖F (X1,θ)‖F

)
<∞,

then

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥
F

→ 0 a.s. as n→∞.
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Proof. Let F1(Xi,θ), . . . , Fs(Xi,θ) denote the columns of F (Xi,θ). Then, the moment
assumption and Lemma E.1.6 (c) yield

E

(
sup
θ∈Θ
‖Fj(X1,θ)‖

)
≤ E

(
sup
θ∈Θ
‖F (X1,θ)‖F

)
<∞ for all j = 1, . . . , s.

Hence, by Lemma E.1.6 (d) and Theorem E.2.6 applied to each column vector we
receive

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥
F

≤
s∑
j=1

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

Fj(Xi,θ)− E (Fj(X1,θ))

∥∥∥∥∥ = o(1) a.s.

The same statement can be obtained under di�erent assumptions as well which is shown
in the following theorem.

Theorem E.2.8 (Uniform Law of Large Numbers II).
Let the parameter space Θ be compact, let {Xi}i≥1 be a stationary and ergodic sequence
of p-dimensional random vectors and let F : (Rp,Θ) → Rd be a measurable function
with respect to Xi such that the following assumptions are ful�lled:

(i) Let E (‖F (X1,θ)‖) <∞ hold for all θ ∈ Θ.

(ii) Let F (x,θ) be Lipschitz continuous in θ, i.e. there exists a function L(x) > 0,
which is measurable with respect to Xi, such that

‖F (x,θ)− F (x, ξ)‖ ≤ L(x) ‖θ − ξ‖

for all θ, ξ ∈ Θ and

(iii) E (L(X1)) <∞.

Then,

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥ = oP (1).

Proof. The proof of this theorem is well known in non-parametric statistics.
There are three main arguments:

(1) The parameter space Θ is compact. This implies that for each δ > 0 there exist a
�nite number M = M(δ) ≥ 1 and θ1, . . . ,θM ∈ Θ such that for any θ ∈ Θ there
is an m ≤M with ‖θ − θm‖ < δ.

(2) Since F is measurable with respect to Xi the ergodicity of the sequence {Xi}i≥1

carries over to the transformed sequence {F (Xi,θ)}i≥1. Hence, for �xed M and
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θ1, . . . ,θM , the Law of Large Numbers and the Ergodic Theorem, respectively, and
assumption (i) yield

sup
m≤M

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θm)− E (F (X1,θm))

∥∥∥∥∥
≤

M∑
m=1

∥∥∥∥∥ 1

n

n∑
i=1

F (Xi,θm)− E (F (X1,θm))

∥∥∥∥∥ = oP (1).

(3) Let F 0(Xi,θ) = F (Xi,θ) − E (F (X1,θ)). For any θ, ξ ∈ Θ with ‖θ − ξ‖ < δ we
obtain

1

n

n∑
i=1

‖F 0(Xi,θ)− F 0(Xi, ξ)‖

≤ 1

n

n∑
i=1

‖F (Xi,θ)− F (Xi, ξ)‖+ ‖E (F (X1,θ))− E (F (X1, ξ))‖

≤ 1

n

n∑
i=1

L(Xi)δ + E(L(X1))δ = δ

(
1

n

n∑
i=1

(L(Xi)− E(L(X1))) + 2E(L(X1))

)
,

where the last line follows from assumption (ii).

Now, for each ε > 0 we can choose a δ > 0 such that ε
2δ
−2E(L(X1)) > 0 by assumption

(iii). Note that the Law of Large Numbers and the Ergodic Theorem, respectively,
can be applied to the sequence {L(Xi)}i≥1 by assumption (iii) and since the sequence
{L(Xi)}i≥1 is stationary and ergodic by the measurability of L and the ergodicity of
{Xi}i≥1. Hence, with M and θ1, . . . ,θM according to (1) and by applying (2) and (3)
we get

P

(
sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

F 0(Xi,θ)

∥∥∥∥∥ > ε

)
= P

(
sup
m≤M

sup
‖θ−θm‖

∥∥∥∥∥ 1

n

n∑
i=1

F 0(Xi,θ)

∥∥∥∥∥ > ε

)

= P

(
sup
m≤M

sup
‖θ−θm‖

∥∥∥∥∥ 1

n

n∑
i=1

(F 0(Xi,θ)− F 0(Xi,θm)) +
1

n

n∑
i=1

F 0(Xi,θm)

∥∥∥∥∥ > ε

)

≤ P

(
sup
m≤M

sup
‖θ−θm‖

∥∥∥∥∥ 1

n

n∑
i=1

(F 0(Xi,θ)− F 0(Xi,θm))

∥∥∥∥∥ > ε

2

)

+ P

(
sup
m≤M

∥∥∥∥∥ 1

n

n∑
i=1

F 0(Xi,θm)

∥∥∥∥∥ > ε

2

)

≤ P

(
1

n

n∑
i=1

(L(Xi)− E(L(X1))) >
ε

2δ
− 2E(L(X1))

)
+ o(1) = o(1),

since ε
2δ
− 2E(L(X1) > 0 by the choice of δ.

De�nition E.2.9. Let F be a function on Θ and let θ̃ ∈ Θ be the unique zero of F (θ).

Then, θ̃ is called the unique zero in the strict sense if for every ε > 0 there exists a

δ > 0 such that ‖F (θ)‖ > δ whenever
∥∥∥θ − θ̃∥∥∥ > ε.
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Lemma E.2.10. Let Θ be a compact set and let F : Θ→ Rp be a continuous function
on Θ. Furthermore, let θ̃ be the unique zero of F (θ).

Then, θ̃ is the unique zero in the strict sense according to De�nition E.2.9.

Proof. We want to prove this by contradiction. Hence we assume that θ̃ is not the
unique zero in the strict sense, i.e.:

∃ ε > 0 ∀ δ > 0 ∃ θδ with
∥∥∥θδ − θ̃∥∥∥ > ε : ‖F (θδ)‖ ≤ δ.

Considering the sequence {δn} with δn = 1
n
for all n ∈ N, we obtain

‖F (θδn)‖ ≤ 1

n
→ 0 as n→∞. (E.1)

Since Θ is compact the sequence {θδn} has a convergent subsequence {θδα(n)} with a
limit θ∗ ∈ Θ. The continuity of F implies F (θδα(n))→ F (θ∗). Furthermore, F (θ∗) = 0

follows from equation (E.1). But θ∗ 6= θ̃, which contradicts the assumption that θ̃ is
the unique zero.

Lemma E.2.11. Let θ̃ be the unique zero of some function F (θ) in the strict sense
as de�ned in E.2.9. Furthermore, it holds that

sup
θ∈Θ

∥∥∥∥∥∥ 1

n

bγ2nc∑
i=bγ1nc+1

H(Xi,θ)− F (θ)

∥∥∥∥∥∥ = oP (1).

Then, the estimator sequence θ̂
(n)

γ1,γ2
with 1

n

∑bγ2nc
i=bγ1nc+1H(Xi, θ̂

(n)

γ1,γ2
) = 0 for every n

satis�es θ̂
(n)

γ1,γ2

P−→ θ̃.

Proof. We refer to the proof of proposition 10.1 in Kirch & Tadjuidje Kamgaing (2016)
on page 240.

Theorem E.2.12. Let {Xi}i≥1 be a stationary sequence in Rp with E(X1) = 0 and
positive de�nite long-run covariance matrix Σ. Furthermore, let a strong invariance
principle be fu�lled so that there exists a p-dimensional Wiener process W (t) with∥∥∥∥∥Σ−1/2

k∑
i=1

Xi −W (k)

∥∥∥∥∥ = O
(
k1/(2+ν)

)
a.s., k →∞.

Moreover, let Assumption A.1.1 hold on the bandwidth G. Then,

max
0≤k≤n−G

1√
G

∥∥∥∥∥
k+G∑
i=k+1

Xi

∥∥∥∥∥ = OP

(√
log(n/G)

)
.

Proof. Applying the invariance principle and the self-similarity of the Wiener process
yields

max
0≤k≤n−G

1√
G

∥∥∥∥∥Σ−1/2
k+G∑
i=k+1

Xi

∥∥∥∥∥
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≤ max
0≤k≤n−G

1√
G

∥∥∥∥∥Σ−1/2
k+G∑
i=k+1

Xi − (W (k +G)−W (k))

∥∥∥∥∥
+ max

0≤k≤n−G

1√
G
‖W (k +G)−W (k)‖

≤ 1√
G

(
max

0≤k≤n−G

∥∥∥∥∥Σ−1/2
k+G∑
i=1

Xi −W (k +G)

∥∥∥∥∥+ max
0≤k≤n−G

∥∥∥∥∥Σ−1/2
k∑
i=1

Xi −W (k)

∥∥∥∥∥
)

+ max
0≤k≤n−G

1√
G
‖W (k +G)−W (k)‖

= OP

(
n1/(2+ν)

√
G

)
+ max

0≤k≤n−G

1√
G
‖W (k +G)−W (k)‖

D
= OP

(
n1/(2+ν)

√
G

)
+ max

0≤k≤n−G

∥∥∥∥W (
k

G
+ 1

)
−W

(
k

G

)∥∥∥∥
≤ OP

(
n1/(2+ν)

√
G

)
+ sup

0≤t≤ n
G
−1

sup
0≤s≤1

‖W (t+ s)−W (t)‖

= OP

(
n1/(2+ν)

√
G

)
+OP

(√
log(n/G)

)
= OP

(√
log(n/G)

)
,

where the last line follows from Lemma E.2.2 and Assumption A.1.1. Finally, by
Lemma E.1.5 we can conclude

max
0≤k≤n−G

1√
G

∥∥∥∥∥
k+G∑
i=k+1

Xi

∥∥∥∥∥ = max
0≤k≤n−G

1√
G

∥∥∥∥∥Σ1/2Σ−1/2
k+G∑
i=k+1

Xi

∥∥∥∥∥
≤
∥∥∥Σ1/2

∥∥∥
F

max
0≤k≤n−G

1√
G

∥∥∥∥∥Σ−1/2
k+G∑
i=k+1

Xi

∥∥∥∥∥ = OP

(√
log(n/G)

)
.

Corollary E.2.13. Let {Xi}i≥1 be a vector-valued sequence of type (E1) or type (E2)
with Xi = (X1i, . . . , Xpi)

T and E(X1) = 0. Furthermore, let Assumption A.1.1 hold on
the bandwidth G. Then, if E

(
‖X1‖2+ν) <∞ for some ν > 0, we have

max
0≤k≤n−G

1√
G

∥∥∥∥∥
k+G∑
i=k+1

Xi

∥∥∥∥∥ = OP

(√
log(n/G)

)
.

Proof. For a sequence of type (E1) the invariance principle proved by Einmahl (1989)
in Theorem 2 can be applied to obtain∥∥∥∥∥Σ−1/2

k∑
i=1

Xi −W (k)

∥∥∥∥∥ = O
(
k1/(2+ν)

)
a.s., k →∞,

with W (t) as a standard p-dimensional Wiener process. We get a similar result for
sequences of type (E2) by using Theorem 4 of Kuelbs & Philipp (1980). Thus, Theorem
E.2.12 completes the proof.
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Lemma E.2.14. Let the assumptions of Theorem E.2.12 or Corollary E.2.13 hold.
Then,

(a) with B
(1)
j,n,G := {k ∈ {1, . . . , n} : k < kj,n < k +G},

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥
kj,n∑
i=k+1

Xi

∥∥∥∥∥∥ = OP (1) and max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥
k+G∑

i=kj,n+1

Xi

∥∥∥∥∥∥ = OP (1) ,

(b) with B
(2)
j,n,G := {k ∈ {1, . . . , n} : k −G < kj,n ≤ k},

max
k∈B(2)

j,n,G

1√
G

∥∥∥∥∥∥
kj,n∑

i=k−G+1

Xi

∥∥∥∥∥∥ = OP (1) and max
k∈B(2)

j,n,G

1√
G

∥∥∥∥∥∥
k∑

i=kj,n+1

Xi

∥∥∥∥∥∥ = OP (1) .

Proof. We only prove the �rst result of (a) since the second assertion in (a) and the
assertions in (b) can be shown in an analogous manner.
With the stationarity of the sequence and by changing the index to l = k − kj,n + G
we get

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥Σ−1/2

kj,n∑
i=k+1

Xi

∥∥∥∥∥∥ = max
kj,n−G<k<kj,n

1√
G

∥∥∥∥∥∥Σ−1/2

kj,n∑
i=k+1

Xi

∥∥∥∥∥∥
= max

0<l<G

1√
G

∥∥∥∥∥∥Σ−1/2

kj,n∑
i=kj,n−G+1+l

Xi

∥∥∥∥∥∥ D
= max

0<l<G

1√
G

∥∥∥∥∥Σ−1/2
G∑

i=l+1

Xi

∥∥∥∥∥ .
Furthermore, applying the invariance principle, which is directly given or can be derived
under the assumptions of Corollary E.2.13, in combination with the self-similarity of
the Wiener process results in

max
0<l<G

1√
G

∥∥∥∥∥Σ−1/2
G∑

i=l+1

Xi

∥∥∥∥∥
≤ max

0<l<G

1√
G

(∥∥∥∥∥Σ−1/2
G∑
i=1

Xi −W (G)

∥∥∥∥∥+

∥∥∥∥∥Σ−1/2
l∑

i=1

Xi −W (l)

∥∥∥∥∥
)

+ max
0<l<G

1√
G
‖W (G)−W (l)‖

= OP

(
G1/(2+ν)

√
G

)
+ max

0<l<G

1√
G
‖W (G)−W (l)‖

D
= OP

(
G−ν/(4+2ν)

)
+ max

0<l<G

∥∥∥∥W (1)−W
(
l

G

)∥∥∥∥
≤ OP

(
G−ν/(4+2ν)

)
+ sup

0≤t≤1
‖W (1)−W (t)‖ = OP (1),

where the last step follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0, 1]. Finally, Lemma E.1.5 completes
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the proof since

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥
kj,n∑
i=k+1

Xi

∥∥∥∥∥∥ = max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥Σ1/2Σ−1/2

kj,n∑
i=k+1

Xi

∥∥∥∥∥∥
≤
∥∥∥Σ1/2

∥∥∥
F

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥∥Σ−1/2

kj,n∑
i=k+1

Xi

∥∥∥∥∥∥ = OP (1) .

Lemma E.2.15. Let the assumptions of Theorem E.2.12 or Corollary E.2.13 hold.
Then,

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥
k∑

i=k−G+1

Xi

∥∥∥∥∥ = OP (1) and max
k∈B(2)

j,n,G

1√
G

∥∥∥∥∥
k+G∑
i=k+1

Xi

∥∥∥∥∥ = OP (1) .

Proof. We only prove the �rst result as the second assertion can be derived by using
similar arguments.
With the stationarity of the sequence we obtain

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥Σ−1/2
k∑

i=k−G+1

Xi

∥∥∥∥∥ = max
kj,n−G<k<kj,n

1√
G

∥∥∥∥∥Σ−1/2
k∑

i=k−G+1

Xi

∥∥∥∥∥
= max

kj,n−2G<l<kj,n−G

1√
G

∥∥∥∥∥Σ−1/2
l+G∑
i=l+1

Xi

∥∥∥∥∥ D
= max

0<l<G

1√
G

∥∥∥∥∥Σ−1/2
l+G∑
i=l+1

Xi

∥∥∥∥∥ .
Moreover, the invariance principle, which is directly given or can be derived under the
assumptions of Corollary E.2.13, in connection with the self-similarity of the Wiener
process shows

max
0<l<G

1√
G

∥∥∥∥∥Σ−1/2
l+G∑
i=l+1

Xi

∥∥∥∥∥
≤ max

0<l<G

1√
G

(∥∥∥∥∥Σ−1/2
l+G∑
i=1

Xi −W (l +G)

∥∥∥∥∥+

∥∥∥∥∥Σ−1/2
l∑

i=1

Xi −W (l)

∥∥∥∥∥
)

+ max
0<l<G

1√
G
‖W (l +G)−W (l)‖

= OP

(
G1/(2+ν)

√
G

)
+ max

0<l<G

1√
G
‖W (l +G)−W (l)‖

D
= OP

(
G−ν/(4+2ν)

)
+ max

0<l<G

∥∥∥∥W (
l

G
+ 1

)
−W

(
l

G

)∥∥∥∥
≤ OP

(
G−ν/(4+2ν)

)
+ sup

0≤t≤1
sup

0≤s≤1
‖W (t+ s)−W (t)‖ = OP (1),

where the last step follows from the almost sure continuity of paths of a Wiener process
and the compactness of the considered interval [0, 1]. Finally, applying Lemma E.1.5
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�nishes the proof since

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥
k∑

i=k−G+1

Xi

∥∥∥∥∥ = max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥Σ1/2Σ−1/2
k∑

i=k−G+1

Xi

∥∥∥∥∥
≤
∥∥∥Σ1/2

∥∥∥
F

max
k∈B(1)

j,n,G

1√
G

∥∥∥∥∥Σ−1/2
k∑

i=k−G+1

Xi

∥∥∥∥∥ = OP (1) .

Theorem E.2.16.
Let the parameter space Θ be compact and let Assumption A.1.1 hold on the bandwidth
G. Furthermore, assume that {Xi}i≥1 is a sequence of type (E1) or type (E2) and let
F : (Rp,Θ) → Rd be a measurable function with respect to Xi such that the following
assumptions are ful�lled:

(i) Let E
(
‖F (X1,θ)‖2+ν) <∞ hold for some ν > 0 and for all θ ∈ Θ.

(ii) Let F (x,θ) be Lipschitz continuous in θ, i.e. there exists a function L(x) > 0,
which is measurable with respect to Xi, such that

‖F (x,θ)− F (x, ξ)‖ ≤ L(x) ‖θ − ξ‖

for all θ, ξ ∈ Θ and

(iii) E (|L(X1)|2+ν) <∞ for some ν > 0.

Then,

sup
θ∈Θ

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥ = oP (1).

Proof. Similar arguments as in the proof of Theorem E.2.8 can be used here. Argument
(1) is the same as in the proof of Thereom E.2.8. We need to modify argument (2) and
(3) slightly to:

(2') Let F 0(Xi,θ) = F (Xi,θ) − E (F (X1,θ)). Since F is measurable with respect
to Xi, the function F 0 is measurable as well. Thus, the pattern of the original
sequence {Xi}i≥1 described by type (E1) or type (E2) is inherited by the trans-
formed sequence {F 0(Xi,θ)}i≥1. Hence, for �xedM and θ1, . . . ,θM , Assumption
(i) and Corollary E.2.13 yield

sup
m≤M

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

F 0(Xi,θm)

∥∥∥∥∥ ≤
M∑
m=1

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

F 0(Xi,θm)

∥∥∥∥∥
= OP

(√
log(n/G)√

G

)
= oP (1),

where the last line follows from Assumption A.1.1.
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(3') For any θ, ξ ∈ Θ with ‖θ − ξ‖ < δ we obtain

1

G

k+G∑
i=k+1

‖F 0(Xi,θ)− F 0(Xi, ξ)‖ ≤ δ

(
1

G

k+G∑
i=k+1

(L(Xi)− E(L(X1))) + 2E(L(X1))

)
,

which is given by Assumption (ii).

Now, for each ε > 0 we can choose a δ > 0 such that ε
2δ
− 2E(L(X1)) > 0 by Assump-

tion (iii). Note that Corollary E.2.13 can be applied to the sequence {L(Xi)}i≥1 with
Assumption (iii) and since the measurability of L with respect to Xi ensures that the
pattern of the original sequence carries over such that the sequence {L(Xi)}i≥1 is of
type (E1) or type (E2) as well. Hence, in connection with (2') and (3') we get

P

(
sup
θ∈Θ

max
1≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

F 0(Xi,θ)

∥∥∥∥∥ > ε

)

= P

(
sup
m≤M

sup
‖θ−θm‖

max
1≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

F 0(Xi,θ)

∥∥∥∥∥ > ε

)

= P

(
sup
m≤M

sup
‖θ−θm‖

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

(F 0(Xi,θ)− F 0(Xi,θm)) +
1

G

k+G∑
i=k+1

F 0(Xi,θm)

∥∥∥∥∥ > ε

)

≤ P

(
sup
m≤M

sup
‖θ−θm‖

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

(F 0(Xi,θ)− F 0(Xi,θm))

∥∥∥∥∥ > ε

2

)

+ P

(
sup
m≤M

max
1≤k≤n−G

∥∥∥∥∥ 1

G

k+G∑
i=k+1

F 0(Xi,θm)

∥∥∥∥∥ > ε

2

)

≤ P

(
max

1≤k≤n−G

1

G

k+G∑
i=k+1

(L(Xi)− E(L(X1))) >
ε

2δ
− 2E(L(X1))

)
+ o(1) = o(1),

since ε
2δ
− 2E(L(X1) > 0 by the choice of δ.

Lemma E.2.17. Let the assumptions of Theorem E.2.16 hold. Then, if E
(
‖X1‖2+ν) <

∞ for some ν > 0, it holds

(a)

sup
θ∈Θ

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
kj,n∑
i=k+1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥∥ = oP (1) and

sup
θ∈Θ

max
k∈B(1)

j,n,G

1

G

∥∥∥∥∥∥
k+G∑

i=kj,n+1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥∥ = oP (1) ,

(b)

sup
θ∈Θ

max
k∈B(2)

j,n,G

1

G

∥∥∥∥∥∥
kj,n∑

i=k−G+1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥∥ = oP (1) and
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sup
θ∈Θ

max
k∈B(2)

j,n,G

1

G

∥∥∥∥∥∥
k∑

i=kj,n+1

F (Xi,θ)− E (F (X1,θ))

∥∥∥∥∥∥ = oP (1) .

Proof. These results can be derived in analogous manner to Theorem E.2.16 by apply-
ing Lemma E.2.14 instead of Corollary E.2.13.

Lemma E.2.18. Let (Ω,A, P ) be a probability space and Ai ∈ A be events.Then, for
n ∈ N

P

(
n⋂
i=1

Ai

)
≥

n∑
i=1

P (Ai)− n+ 1.

Proof. The assertion can be proved by induction. We start with n = 2:

P (A1 ∩ A2) = P (A1) + P (A2)− P (A1 ∪ A2) ≥ P (A1) + P (A2)− 1,

which shows the base clause. The induction hypothesis is that

P

(
n⋂
i=1

Ai

)
≥

n∑
i=1

P (Ai)− n+ 1.

holds for n ∈ N. Hence, by using the base clause and the hypothesis we obtain

P

(
n+1⋂
i=1

Ai

)
≥ P

(
n⋂
i=1

Ai

)
+ P (An+1)− 1

≥
n∑
i=1

P (Ai)− n+ 1 + P (An+1)− 1 =
n+1∑
i=1

P (Ai)− (n+ 1) + 1,

which completes the proof.

Theorem E.2.19. Let {ak,n}, 1 ≤ k ≤ n, be a sequence of random variables on some
probabilty space (Ω,B, P ) with values in A ⊂ R which converges to some deterministic
value a ∈ A uniformly in k as n→∞, i.e. supk |ak,n − a| = oP (1). Furthermore, let f
denote a continuous function on A. Then,

sup
k
|f(ak,n)− f(a)| = oP (1).

Proof. The result can be shown by applying the subsequence principle. For each sub-
sequence supk

∣∣ak,α(n) − a
∣∣ there exists a further subsequence supk

∣∣ak,β(α(n)) − a
∣∣ such

that
sup
k

∣∣ak,β(α(n)) − a
∣∣ a.s.→ 0,

which means that supk
∣∣ak,β(α(n))(ω)− a

∣∣→ 0 holds for all ω ∈ Ω0 ⊂ Ω with P (Ω0) = 1.
This implies that

∀δ > 0 ∃n0 ∈ N ∀n ≥ n0 : sup
k

∣∣ak,β(α(n))(ω)− a
∣∣ < δ. (E.2)
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Furthermore, by the continuity of f in a we get

∀ε > 0 ∃δ > 0 ∀x with |x− a| < δ : |f(x)− f(a)| < ε

2
. (E.3)

The statements in (E.2) and (E.3) can be combined as follows. For every ε > 0 with
corresponding δ as above there exists an n0 ∈ N such that |ak,β(α(n))(ω)− a| < δ for all
n ≥ n0 and all 1 ≤ k ≤ n implying that

sup
k
|f(ak,β(α(n))(ω))− f(a)| < ε, ∀n ≥ n0,

which shows the convergence supk |f(ak,β(α(n))(ω)) − f(a)| → 0. Hence, we obtain
supk |f(ak,β(α(n))) − f(a)| a.s.→ 0 and the subsequence principle can be applied again to

receive supk |f(ak,n)− f(a)| P→ 0

Corollary E.2.20. Let {Bk,n} be a random sequence of p× p matrices. If Bk,n
P→ B

holds uniformly in k, where B is a regular deterministic matrix,
then

B−1
k,n

P→ B−1 uniformly in k.

Proof. First note that Bk,n is invertible for large n as by the continuity of the determi-
nant and Theorem E.2.19 |det (Bk,n)− det (B)| = oP (1) implying that |det (Bk,n)| =
|det (B)|+ oP (1) holds uniformly in k. Furthermore, since the matrix inverse f(A) =
A−1 is a continuous function on the elements of A by Theorem 5.19 in Schott (1997)
on page 188 applying Theorem E.2.19 shows the assertion.

Lemma E.2.21. Let {ck,n} be a sequence of random vectors in Rp. Furthermore,
let {an} be a deterministic positive sequence and let {Bk,n} denote a deterministic
sequence of Rp×p matrices satisfying supk ‖Bk,n‖F <∞. Then, if

• supk ‖ck,n‖ = OP (an), it holds that

Bk,nck,n = OP (an) holds uniformly in k.

• supk ‖ck,n‖ = oP (an), it holds that

Bk,nck,n = oP (an) holds uniformly in k.

Proof. By Lemma E.1.5 we obtain

sup
k
‖Bk,nck,n‖ ≤ sup

k
‖Bk,n‖F sup

k
‖ck,n‖ = O

(
sup
k
‖ck,n‖

)
,

hence the assertions follow.

Lemma E.2.22. Let {ak,n} be a sequence of random vectors. Furthermore, let an be
a deterministic sequence and B a regular deterministic matrix.

• Then,
OP (an) = (oP (1) +B)ak,n, uniformly in k,

implies that
ak,n = OP (an) holds uniformly in k.
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• Then,
oP (an) = (oP (1) +B)ak,n, uniformly in k,

implies that
ak,n = oP (an) holds uniformly in k.

Proof. By Corollary E.2.20 we can multiply both sides of the equation above with the
inverse of (oP (1) +B) and get

(oP (1) +B−1)OP (an) = Ak,n, uniformly in k,

which shows the assertion as B−1 = O(1).
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Notation

X1, . . . , Xn Observations
{Xi : i ≥ 1} Vector-valued sequence of observations
θ Parameter of interest
Θ Parameter space
p Dimension of the parameter space
H Estimating function
Tk,n(G, θ̃) MOSUM score-type statistic according to De�ntion 2.0.1
Tn(G, θ̃) Maximum of the MOSUM score-type statistic: maxG≤k≤n−G Tk,n(G, θ̃)
G Bandwidth
Aθ̃,k

∑k+G
i=k+1H(Xi, θ̃)−

∑k
i=k−G+1H(Xi, θ̃) as in De�ntion 2.0.1

Σk Long-run covariance matrix of H(Xk, θ̃) as in De�ntion 2.0.1
Σ(θ), Σ Long-run covariance matrix of H(X1, θ̃)

Σ̂k,n Estimator of Σk

T̂k,n(G, θ̃) MOSUM score-type statistic with estimated long-run covariance

matrix: 1√
2G

√
AT
θ̃,k

Σ̂
−1

k,nAθ̃,k

T̂n(G, θ̃) Corresponding maximum
‖·‖F Frobenius norm
‖·‖ Euclidean norm
H0(Xi,θ) H(Xi,θ)− E (H(Xi,θ))
∇H0(Xi,θ) Matrix of centered gradient vectors ∇H(Xi,θ)− E (∇H(Xi,θ))
∇2Hj,0(Xi,θ) Centered Hessian matrix ∇2Hj(Xi,θ)− E (∇2Hj(Xi,θ))
V (θ) Expectation matrix of the gradient vectors under the null hypothesis

E (∇H(X1,θ))T

V j(θ) Expectation matrix of the gradient vectors under the alternative

E
(
∇H(X(j)

1 ,θ)
)T

θ̃n, θ̂n Estimator of θ
θ̂l,u Z-estimator (M-estimator) computed on the subsample Xl, . . . , Xu

S(k, θ̃) Partial sum process
∑k

i=1H(Xi, θ̃)
{W (t) : t ≥ 0} p-dimensional standard Wiener process with identity matrix Ip as

covariance matrix
a(x), b(x) Normalizing functions de�ned in (2.1)
Γ(x) Gamma function
An,G Set of time points de�ned in (2.2)

{k ∈ {G, . . . , n−G} : |k − bλjnc| ≥ G ∀ j ∈ {1, . . . , q}}
Bn,G Set of time points de�ned in (2.3)

{k ∈ {G, . . . , n−G} : ∃ j ∈ {1, . . . , q} : |k − kj,n| ≤ G}
{ΣA,k} Sequence of positive de�nite matrices
j(k) Index of the closest change point to k

dj Di�erence in exected values E
(
H(X(j+1)

1 , θ̃)
)
− E

(
H(X(j)

1 , θ̃)
)

(vj,n, wj,n) Pair of time points considered in the MOSUM procedure



ful�lling (2.9) to (2.11)
q̂n Estimator of the number of change points
q̂n(θ) Estimator of the number of change points based on Tk,n(G,θ)

k̂j,n Estimator for the location of a change point
k̂j,n(θ) Estimator for the location based on Tk,n(G,θ)

Q̃ Set of indices of detectable changes
q̃ Number of detectable changes
Ãn,G Set of time points de�ned in (2.12){

k ∈ {G, . . . , n−G} : |k − kj,n| ≥ G ∀ j ∈ Q̃
}

B̄n,G Set of time points de�ned in (2.13){
k ∈ {G, . . . , n−G} : ∃ j ∈ Q̃ : |k − kj,n| < (1− ε)G

}
Σ̂j,n Global estimator of the long-run covariance matrix Σ satisfying

Assumption A.2.12
ΣA,j Positive de�nite matrix as in Assumption A.2.12
k̄j,n Estimator for the location of a change point de�ned in (2.21)
E1(k,G,θ) and De�ned in (2.19)
E2(k,G,θ)
Type (E1) i.i.d. sequence of random vectors
Type (E2) Stationary and strongly mixing sequence of random vectors

with a mixing rate α(n) satisfying α(n) = O(n−β) for some
β > 1 + 2/ν, where ν is as in Assumption A.1.3

θ̂
(n)

γ1,γ2
General Z-estimator de�ned as the solution of (2.25)

θ0 Unique zero of E (H(X1,θ)) (in the strict sense according
to De�nition E.2.9) under the null hypothesis

θγ1,γ2 Unique zero of (2.35) under the alternative
Wk,n(G) MOSUM Wald-type statistic according to De�ntion 3.0.1
Wn(G) Maximum of the MOSUM score-type statistic: maxG≤k≤n−GWk,n(G)

Γk Asymptotic covariance matrix of
√
Gθ̂k−G+1,k speci�ed in (3.1)

θj Unique zero of E
(
H
(
X(j)

1 ,θ
))

(in the strict sense according to

De�nition E.2.9) under the alternative
δj,n Distance between two adjacent change points kj,n − kj−1,n

sBIC Information criterion given in (5.1)
gRSS Generalized sum of squared residuals de�ned in (5.2) and (5.4)
ξn Penalty speci�ed in (5.3)
G Set of bandwidths
L = L(G) Set of initial candidates obtained from the bandwidths of G
un Half of the minimal distance between two adjacent structural breaks

de�ned in (5.35)
Vj,n Set of valid candidates for a change point kj,n as in (5.36)
V∗j,n Set of strictly valid candidates for a change point kj,n as in (5.37)
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