

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Accelerating Mono and Multi-Column Selection Predicates in Modern
Main-Memory Database Systems

Doktoringenieur (Dr.-Ing.)

M.Sc. David Broneske

17.11.1989 Burg

Prof. Dr. Gunter Saake
Prof. Dr. Kai-Uwe Sattler
Prof. Dr. Stefan Manegold

14.06.2019
Eingereicht am:

Verteidigt am:

Magdeburg, den 15.03.2019

Magdeburg, den 16.05.2019

Broneske, David:
Accelerating Mono and Multi-Column Selection Predicates in Modern Main-Memory
Database Systems
Dissertation, University of Magdeburg, 2019.

Abstract

Ever-since, database system engineers are striving for peak performance of their
database operators. However, this goal is a major endeavor since database opera-
tors are influenced not only by the hardware (i.e., the executing processor or the
memory hierarchy), but also by the workload (i.e., data distribution, selectivity,
etc.). Especially in today’s world of main-memory database systems, there are new
processing capabilities (e.g., advanced vector instructions such as AVX-512), new
storage devices (e.g., Intel Optane as non-volatile RAM), or new diverse applications
for data management (e.g., in-database machine learning) frequently introduced that
become essential impact factors. Hence, a once optimal operator has to be frequently
adapted with these new arising hardware and workloads.

A typical database operator that is frequently tuned by researchers is the selection
operator, because selections are essential to reduce the load of subsequent operators
and are usually one of the first operators that are executed in a query plan. Hence,
a selection is working on the full amount of data – a fact that emphasizes the
importance of tuning this data-intensive operator to avoid a serious bottleneck.

Although the selection operator is frequently tuned for arbitrary use cases mentioned
above, there is no comprehensive and holistic way to tune this operator automatically.
Furthermore, considering multiple selections on the same table, straight-forward
implementations use candidate scans for several selection predicates. However,
exploiting the interdependence and, hence, high selectivity is not investigated so
far. In this thesis, we tackle the aforementioned challenges of (1) creating hardware-
sensitive operator implementations automatically and (2) exploiting the relation
between multiple selection predicates.

For solving the first challenge, we investigate the commonalities of different optimiza-
tions for arbitrary hardware and workloads on the example of the selection operator.
As a result, we introduce the abstraction of code optimizations as a means to generate
hardware-sensitive code variants automatically. The solution is completed by the
concept of a tuning framework for operators in main-memory database systems.

As a solution for the second challenge, we propose to revive multi-dimensional index
structures as a means to exploit the relation between selection predicates on several
columns in main-memory database management systems. In order to allow for
hardware-sensitivity – especially cache consciousness – we propose our main-memory
index structure Elf. Elf is a tree structure combining prefix-redundancy elimination
with an optimized memory layout explicitly designed for efficient main-memory
access. Our experiments show that Elf is able to outperform several highly-potent

iv

baselines (including generated hardware-sensitive scans and state-of-the-art multi-
dimensional index structures) by several orders of magnitude for reasonable selection
predicates and queries from the standard OLAP benchmark TPC-H. However, our
evaluation also identifies that an integration into the query engine of the main-
memory database system MonetDB does not only show strengths but also limitations
that any sort-based index structure is faced with.

Overall, the resulting approaches can be used in future query engines to form a Swiss
army knife for arbitrary selection predicates. Hence, our contribution enriches a
query engine far beyond current state-of-the-art-approaches by allowing for efficient
execution of a single predicate (i.e., mono-column selection predicates) at bare-
metal speed as well as exploiting the combined selectivity of several predicates (i.e.,
multi-column selection predicates).

Inhaltsangabe

Seit jeher streben Datenbankentwickler nach Höchstleistungen ihrer Datenbankopera-
toren. Dieses Ziel ist jedoch ein umfängliches Unterfangen, da Datenbankoperatoren
nicht nur von der Hardware (d.h. dem ausführenden Prozessor oder der Speicher-
hierarchie), sondern auch von den zu verarbeitenden Daten (d.h. Datenverteilung,
Selektivität, etc.) beeinflusst werden. Mit dem Fortschreiten der Technik – vor allem
in Hauptspeicherdatenbanken – gibt es ständig neue Verarbeitungsmöglichkeiten (z.B.
erweiterte Vektorbefehle wie AVX-512), neue Speichergeräte (z.B. Intel Optane als
nicht-flüchtiger RAM) oder neue vielfältige Anwendungen für das Datenmanagement
(z.B. datenbankintegriertes maschinelles Lernen), die zu wesentlichen Einflussfaktoren
werden. Daher muss ein einst optimaler Operator häufig an diese neu entstehende
Hardware und Anwendungsszenarien angepasst werden.

Ein typischer Datenbankoperator, der von Forschern häufig getunt wird, ist der
Selektionsoperator, denn Selektionen sind unerlässlich, um die Last nachfolgender
Operatoren zu reduzieren. Des weiteren sind Selektionen in der Regel einer der
ersten Operatoren, die in einem Abfrageplan ausgeführt werden. Daher arbeitet der
Selektionsoperator auf der gesamten Datenmenge - eine Tatsache, die die Bedeutung
des Tunings dieses datenintensiven Operator unterstreicht, um einen schwerwiegenden
Engpass zu vermeiden. Obwohl der Selektionsoperator häufig auf eine Vielzahl der
oben genannten Einflüsse abgestimmt ist, gibt es keine umfassende und ganzheitliche
Möglichkeit, diesen Operator automatisch zu optimieren. Darüber hinaus verwen-
den naive Implementierungen bei mehreren Selektionen auf derselben Tabelle einen
Kandidaten-Scan für mehrere Selektionsprädikate. Die Ausnutzung der Interdepen-
denz und damit der hohen Selektivität wurde jedoch noch nicht untersucht. In dieser
Arbeit beschäftigen wir uns mit den oben genannten Herausforderungen: (1) der
automatischen Erstellung von hardwaresensitiven Operatorimplementierungen und
(2) der Ausnutzung der Beziehung zwischen mehreren Selektionsprädikaten.

Zur Lösung der ersten Herausforderung untersuchen wir die Gemeinsamkeiten ver-
schiedener Optimierungen für beliebige Hardware und Datencharacteristika am
Beispiel des Selektionsoperators. Als Ergebnis führen wir die Abstraktion von
Code-Optimierungen ein, um hardwaresensitive Codevarianten automatisch zu gener-
ieren. Abgerundet wird die Lösung durch das Konzept eines Tuning-Frameworks für
beliebige Operatoren in Hauptspeicherdatenbanksystemen.

Als Lösung für die zweite Herausforderung schlagen wir vor, multidimensionale In-
dexstrukturen wiederzubeleben, um die Beziehung zwischen Selektionsprädikaten
auf mehreren Spalten auszunutzen. Um die Hardware-Sensitivität – insbeson-
dere die Optimierung auf CPU-Caches – zu berücksichtigen, schlagen wir unsere

vi

Hauptspeicher-Indexstruktur Elf vor. Elf ist eine Baumstruktur, die die Eliminierung
von Präfixredundanzen mit einem optimierten Speicherlayout kombiniert und dessen
spezielle Speicherorganisation für einen effizienten Zugriff im Hauptspeicher optimiert
ist. Unsere Experimente zeigen, dass Elf in der Lage ist, mehrere hochpotente
Kontrahenten (einschließlich generierter hardwaresensitiver Scans und moderner
multidimensionaler Indexstrukturen) um mehrere Magnituden für eine sinnvolle
Auswahl von Abfragen aus dem Standard OLAP-Benchmark TPC-H zu übertreffen.
Unsere Auswertung zeigt aber auch, dass eine Integration in die Query-Engine des
Hauptspeicher-Datenbanksystems MonetDB nicht nur Stärken, sondern auch Grenzen
aufweist, mit denen jede sortierbasierte Indexstruktur konfrontiert ist.

Insgesamt können die resultierenden Ansätze in zukünftigen Anfrageverarbeitungs-
Engine genutzt werden, um eine eierlegende Wollmilchsau für beliebige Selektion-
sprädikate zu bilden. Daher bereichert unser Beitrag eine Anfrageverarbeitungs-
Engine weit über den aktuellen Stand der Technik hinaus, indem er einerseits die
Ausführung eines einzelnen Prädikats (d.h. einspaltiger Selektionsprädikate) an das
obere Ende der technisch möglichen Performanz der CPU bringt und andererseits die
kombinierte Selektivität mehrerer Prädikate (d.h. mehrspaltiger Selektionsprädikate)
effizient ausnutzen kann.

Contents

Contents vii

List of Figures xi

List of Tables xv

List of Code Listings xvii

List of Algorithms xix

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Structure of the Thesis . 4

2 Selections in the Rear-View Mirror 7
2.1 State of the Art in Selection Predicates 7

2.1.1 Relational Selection Basics . 8
2.1.2 Predicate Characteristics . 9
2.1.3 Selection Result Representation 10

2.2 CPU Capabilities . 10
2.2.1 Pipelining in CPUs – the RISC Pipeline 11
2.2.2 Hazards . 12

2.2.2.1 Data Hazard . 12
2.2.2.2 Control Hazard . 12

2.2.3 Single Instruction Multiple Data 13
2.3 Heterogenous Programming . 13

2.3.1 Hardware-Sensitive Programming 14
2.3.2 Hardware-Oblivious Programming 15

2.4 Summary . 16

3 Hardware Sensitive Full-Table Scans as Working Horse 17
3.1 Code Optimizations for Hardware-Sensitive Full-Table Scans on Single

Predicates . 17
3.1.1 Running Example . 18
3.1.2 Software Predication . 19
3.1.3 Loop Unrolling . 20
3.1.4 Single Instruction Multiple Data 23
3.1.5 Code Optimizations in Other Operators and Domains 24

viii Contents

3.2 Multi-Predicate Code Optimizations 25
3.2.1 Conditional AND . 25
3.2.2 Bitwise AND . 26

3.3 Exploiting Code Optimizations in Database Management Systems . . 27
3.3.1 Variant Generation . 29
3.3.2 Variant Selector & Feedback Loop 29
3.3.3 Variant Management . 30
3.3.4 Usage of Adaptive Reprogramming in Recent Database Man-

agement Systems . 30
3.4 Summary . 31

4 Elf as Multi-Column Selection Predicate Index 33
4.1 Conceptual Design of Elf . 35
4.2 Improving Elf’s Memory Layout . 36

4.2.1 Mapping DimensionLists to Arrays 36
4.2.2 Implicit Length Control of Arrays 37
4.2.3 Alternative Memory Layouts 37

4.3 Storage Optimizations for Elf . 38
4.3.1 Hash Map to Deal With the First DimensionList 38
4.3.2 MonoList: One-Element List Elimination 39
4.3.3 Worst Case Storage Consumption 40

4.4 Searching in Elfs . 41
4.4.1 Search Algorithm . 41
4.4.2 Selection of the Column Order 44

4.5 Empirical Evaluation . 45
4.5.1 Experiment 1: MonoList Storage Consumption 46
4.5.2 Experiment 2: TPC-H Predicates and Data 46

4.5.2.1 Mono-Column Selection Predicate Queries 49
4.5.2.2 Multi-Column Selection Predicate Queries 51

4.5.3 Experiment 3: Selection Time Scaling 53
4.5.4 Experiment 4: TPC-H Predicates in MonetDB 54

4.5.4.1 Mono-Column Selection Predicates 55
4.5.4.2 Multi-Column Selection Predicates 56

4.5.5 Result Summary . 56
4.6 Summary . 58

5 Complex Selection Queries in Elf-Supported Main-Memory Database
Systems 59
5.1 Complex Selection Predicates . 60

5.1.1 Column-Column Comparisons 61
5.1.2 IN-Predicates . 64
5.1.3 Summary . 68

5.2 MonetDB Integration . 70
5.2.1 MAL Extensions . 71
5.2.2 Operator Interoperability . 72

5.3 Evaluation . 73
5.3.1 Microbenchmarks for Complex Predicates 75

Contents ix

5.3.1.1 Experiment 1: Column-Column Comparison Microbench-
mark . 75

5.3.1.2 Experiment 2: IN-Predicates Microbenchmark 77
5.3.1.3 Microbenchmark Summary 79

5.3.2 Experiment 3: Elf’s Integration Test in MonetDB 80
5.3.2.1 TPC-H Query Runtimes 81
5.3.2.2 Result Summary . 83

5.4 Summary . 84

6 Elf Life Cycle 87
6.1 Initial Build: Elf Bulk Load . 89
6.2 Maintaining an Elf . 89

6.2.1 Insertions . 90
6.2.2 Deletion . 92
6.2.3 Updates . 93

6.3 Evaluation . 93
6.3.1 Experiment 1: Build Times 94
6.3.2 Experiment 2: Query Overhead of InsertElf 94
6.3.3 Experiment 3: Merge Threshold 95

6.4 Summary . 96

7 Related Work 99
7.1 Competitors . 99

7.1.1 BitWeaving . 99
7.1.2 Column Imprint . 101
7.1.3 Sorted Projection . 102
7.1.4 BB-Tree . 103

7.2 Data Redundancy Elimination . 104
7.2.1 Prefix and Suffix-Redundancy Elimination 105
7.2.2 The Data Dwarf Structure . 105

7.3 SIMD-Accelerated Main-Memory Indexing 107
7.3.1 Seg-Tree and Seg-Trie . 107
7.3.2 Fast Architecture Sensitive Tree 108
7.3.3 Vector-Advanced and Compressed Structure Tree 110
7.3.4 Adaptive Radix Tree . 110
7.3.5 Comparison to Elf . 112

7.4 One-Dimensional Main-Memory Indexing 114
7.5 Multi-Dimensional Main-Memory Indexing 115

8 Conclusion 117

9 Future Work 121

Bibliography 125

List of Figures

2.1 RISC pipeline . 11

2.2 Example of a data hazard . 12

2.3 Example of a control dependency (instr. i+1 was the wrong decision) 12

2.4 Single Instruction Single Data (SISD) vs. Single Instruction Multiple
Data (SIMD) . 13

2.5 Hardware-sensitive vs. hardware-oblivious programming 14

3.1 Response time of a branching scan on 30 million data items 19

3.2 Response time of branching and predicated scans on 30 million data
items . 20

3.3 Response time of unrolled branching scans for varying selectivities for
30 million data items (LUn = n-times loop-unrolled) 21

3.4 Response time of unrolled predicated scans for varying selectivities
for 30 million data items (LUn = n-times loop-unrolled) 22

3.5 Response time of scan variants on 30 million data items 24

3.6 Response time of conditional AND scan for two predicates under varying
selectivities . 26

3.7 Response time of bitwise AND scan for two predicates under varying
selectivities . 27

3.8 Response time of bitwise AND scan under different numbers of predicates 28

3.9 Sketch of our adaptive reprogramming approach for reaching hardware-
sensitive database operations on heterogeneous hardware 29

4.1 (a) WHERE-clause, (b) selectivity, and (c) response time of Elf and
a scan generated by adaptive reprogramming (ARScan) on TPC-H
query Q6 and its predicates Q6.1 - Q6.3 on Lineitem table s = 100 . 34

4.2 Elf tree structure using prefix-redundancy elimination 35

4.3 Memory layout as an array of 64-bit integers 36

4.4 Hash-map property of the first DimensionList 39

xii List of Figures

4.5 Percentage of 1-element lists per dimension for the TPC-H Lineitem

table with scale factor 100 . 40

4.6 MonoList (visualized as gray DimensionLists) for optimized cache
performance and storage utilization 40

4.7 Optimized memory layout . 40

4.8 Query response times of Elf and accelerated full-table scans for mono-
column TPC-H queries (s = 100) . 49

4.9 Query response times of Elf and multi-dimensional index structures
for mono-column TPC-H queries (s = 100) 50

4.10 Query response times of Elf and accelerated full-table scans for multi-
column TPC-H queries (s = 100) . 51

4.11 Query response times of Elf and multi-dimensional index structures
for multi-column TPC-H queries (s = 100) 52

4.12 Selection time scaling ratios for all approaches 53

4.13 Query response times for mono-column TPC-H queries (s = 100) in
MonetDB . 56

4.14 Query response times for multi-column TPC-H queries (s = 100) in
MonetDB . 57

5.1 Prefix redundancy elimination in Elf for efficient evaluation of column-
column comparisons . 61

5.2 Prefix redundancy elimination in Elf for efficient IN-predicate evaluation 65

5.3 Query details for mono and multi-column selections 75

5.4 Microbenchmark runtime for different column-column comparison
operators on two dates of the Lineitem table (s = 100) in MonetDB 76

5.5 Microbenchmark runtime for different column-column comparison
operators between three dates of the Lineitem table (s = 100) in
MonetDB . 77

5.6 Microbenchmark runtime for different IN-lists on the p_container

attribute of the Part table (s = 100) in MonetDB 78

5.7 Microbenchmark runtime for different IN-lists on the p_size attribute
of the Part table (s = 100) in MonetDB 79

5.8 Query execution times of Elf and MonetDB’s full-table scans for our
six selected TPC-H queries (s = 100) 82

6.1 InsertElf for a 5-dimensional data set 91

6.2 (a) Elf with marked tuple to be deleted, (b) reorganized Elf 92

6.3 Build time for Lineitem table of s = 200 94

List of Figures xiii

6.4 Normalized runtime overhead caused by different InsertElf sizes in the
TPC-H queries on the Lineitem table (s = 200) 95

6.5 Accumulated runtimes for the four TPC-H Lineitem queries (s = 200)
on a merged Elf (including merge time) and the sum of runtimes of a
linearized Elf and InsertElf w.r.t. different InsertElf-to-linearized-Elf
ratios . 96

7.1 BitWeaving approach . 100

7.2 Column Imprints . 101

7.3 Sorted Projections . 102

7.4 BB-Tree Structure . 103

7.5 An exemplary table and an excerpt of its cube 104

7.6 The Data Dwarf of the cube from Figure 7.5 106

7.7 Inner node format of Seg-Tree . 107

7.8 Index tree blocked in three-level hierarchy: First-level page blocking,
second-level cache-line blocking, third-level SIMD blocking of FAST. . 109

7.9 Inner nodes of ART. The partial keys 0, 2, 3, and 255 are mapped to
pointers of the subtrees. 111

xiv List of Figures

List of Tables

2.1 Columnar selection predicate translation 8

4.1 Running example data . 35

4.2 Upper bound storage overhead . 41

4.3 Storage consumption for Lineitem table 46

4.4 Query details for mono and multi-column selections 49

5.1 Query details for our TPC-H queries 81

7.1 Comparison of the considered index structures based on extracted
criteria . 112

List of Code Listings

3.1 Scan loop . 18

3.2 Scan loop with a predicated filter . 19

3.3 k-times unrolled aggregation loop . 21

3.4 Vectorized serial scan . 23

xviii List of Code Listings

List of Algorithms

1 Search multi-column selection predicate 42

2 Scan a DimensionList within an Elf 43

3 Scan a MonoList within an Elf . 44

4 Column-column queries on a DimensionList 63

5 Column-column queries on a MonoList 64

6 IN-predicate evaluation on hash map 66

7 IN-predicate evaluation on a DimensionList 67

8 IN-predicate evaluation on a MonoList 69

9 Additional MAL operators for an integration of Elf 72

10 Excerpt of MAL plan of TPC-H Q17 73

11 Excerpt of MAL plan of TPC-H Q17 using the integrated Elf 74

12 Building an Elf . 88

13 Merge a linearized DimensionList within a DimensionList of the
InsertElf . 91

xx List of Algorithms

1. Introduction

One of the first questions that I came across on my first conference was:

What are the three most important things a databaser wants?

The answer is both, totally hilarious but also truly honest and insightful:

• Performance

• Performance

• Performance

Christopher Ré, EDBT 2014 Keynote.

Although not being the only feature that a customer expects from a database system,
performance is one of the most important optimization criteria for a database system.
Especially in the prevailing workload scenarios1 online transaction processing (OLTP)
and online analytical processing (OLAP), there is a plethora of work optimizing the
performance of these workloads [Ros04, KSC+09, PPI+14, BBS16, ABP+17, ACP+18,
RBB+18]. With the increase in main-memory capacities, especially main-memory
database systems, which usually store the entire database in main memory, became
popular adding further tuning knobs [BMK99, BKM08]. For instance, due to the
missing bottleneck of disk access, the actual processing cost of the CPU matters, which
is essential for long-running OLAP operators. Hence, designing hardware-sensitive
OLAP database operators has become a hot research topic [PRR15, PMZM16].

An important yet challenging operator to optimize for is the selection operator
because of the following two reasons. First, a selection – or filter – is usually executed
on the input data tables. Hence, it is confronted with the whole original table,
which means that the volume of processed data is usually more than for subsequent
operators, which work only on the filtered set of qualifying tuples. Second, the

1apart from the hot research topic of hybrid transaction analytical processing (HTAP) [AKPA17]

2 1. Introduction

selectivity itself (i.e., the fraction of filtered out tuples) poses a big challenge for
selections, because the best strategy for optimal performance is highly dependent on
the selectivity. As we will see in this thesis, the selectivity is essential to choose the
best operator for optimized performance and also to avoid performance degeneration
by even several magnitudes. To summarize, both the high data volume processed by
selections and the varying selectivity are important challenges that we want to tackle.
Hence, we frame the overarching goal of this thesis as optimizing selections on a single
column as well as combining the selective power of selections on multiple columns. In
fact, this means that we explore how to optimize full-table scans for a single column
beyond state of the art approaches and how to overcome their conceptual limitations
for selections on multiple columns. In the following, we define this goal in more
detail.

1.1 Goal of this Thesis

The goal of this thesis is to investigate how to optimize selection predicate evaluation
of main-memory database systems beyond state-of-the-art approaches at two levels:

Level 1: At this level, we analyze full-table scans on a single column and optimize
them for the underlying hardware using code optimizations. This means, we
push the working horse to its physical limits in order to create a comprehensive
baseline as our competitor.

Level 2: The second level advances the field in the direction of efficiently evaluating
selections on multiple columns (i.e., multi-column selection predicates). To
this end, we aim for a clever design of a multi-dimensional sort-based index
structure to beat the baseline from Level 1 as well as other traditional index
structures.

In the following, both levels are explained in detail.

Level 1: Hardware-Sensitive Scans

With the missing I/O bottleneck, the actual processing time of the CPU is the new
tuning factor. In fact, exploiting processor-specific capabilities is an essential part
to reach the best performance [BTAÖ13, BBHS14]. Since processing capabilities
change every processor era, it is necessary to abstract general optimization concepts
from their specific implementation in order to apply them when they are needed.
However, so far, there is no comprehensive study about different hardware-sensitive
optimizations (i.e., code optimizations) for selections on a single or multiple columns.
More severely, not all code optimizations are beneficial for all selection workloads (i.e.,
selectivity and columns) and, hence, the right set of optimizations has to be chosen
for each query individually. Especially the last argument calls for an automated
approach to generate hardware-sensitive selection code for the actual use case.

In summary, we aim to answer the following research questions as the first goal of
this thesis:

1.1. Goal of this Thesis 3

RQ 1: Which optimizations are reasonable for a full-table scan and under which
circumstances do they outperform each other?

RQ 2: How can we ease the implementation effort of hardware-sensitive operations
for heterogeneous hardware?

As a result of these research questions, we present the first full-table scan approach
that is able to optimize itself during runtime until its performance is best optimized.
This will act as a hardware-sensitive gold standard for selection performance. In
addition to that, the optimizations are universally applicable to other operators
beyond simple full-table scans.

Level 2: Accelerating Multi-Column Selection Predicates

While many queries include at least one selection predicates, there is a reasonable
amount of queries involving a predicate on several columns of a table [Tra14]. Hence,
optimizing queries for multiple column predicates is an important goal. An essential
observation in Level 1 is that the execution of any selection with full-table scans
(naturally) is dominated by the data size, not by the cardinality of the result. We
argue that it should be the opposite: small results, as they are common for multi-
column selection predicates, should be much faster computed than large results. Due
to their usually combined low selectivity, it is obvious to improve their execution with
a multi-dimensional index structure2. However, current research rather focuses on
reaching bare-metal speed with accelerated scans or synopsis structures that are not
able to exploit the combined selectivity as a multi-dimensional index structure. To
achieve the goal of Level 2, we introduce the concept of a multi-dimensional sort-based
index structure, which we call Elf, to support multi-column selection predicates.
Of course, SQL offers more than comparing a column value to a constant [ISO99].
Hence, we aim to extend this index structure for more complex predicates that
include IN-predicates and column-column comparisons to reach query support that is
compatible with usual full-table scans in order to compare Elf to the state of the art
beyond multi-column selection predicates. In summary, this will answer the following
research questions:

RQ 3: What is an efficient data structure to exploit multi-column selection predicates
beating hardware-sensitive scans?

RQ 4: How to support more complex selection predicates in Elf and what is the
benefit against full-table scans?

As the goal is to provide a universal index structure, there are several further
challenges to be solved beyond delivering good selection performance. To reach this
goal, there are two challenges. First, although our index structure Elf delivers the
same set of results, the order of our qualifying tuples usually differs to the one of

2Please mind that result combination of partial results from one-dimensional index structures
like CSB-Trees [RR00] is often way more expensive than a full-table scan. This is due to the rather
low filter rates of single predicates.

4 1. Introduction

full-table scans due to the internal sorting of Elf. Hence, it is important to identify
the impact of Elf’s result order on subsequent operators. Second, an important
property of universal index structures for OLAP is to support maintenance tasks
such as frequent updates efficiently. Hence, we finalize the thesis by answering the
following research questions:

RQ 5: What is the benefit and drawback of using Elf in main-memory database
systems?

RQ 6: How to exploit Elf’s design to efficiently execute maintenance tasks (i.e.,
updates and appends)?

As a result of both levels, we can equip a query engine with our combination of
approaches as a Swiss army knife that efficiently evaluates arbitrary SQL predicates
by selecting the best approach from the two levels. In summary, these are hardware-
sensitive scans with peak performance for a limited set of selected columns or lower
selectivities and Elf for the common pain point of main-memory database systems –
highly-selective multi-column selection predicates.

1.2 Structure of the Thesis

In order to present the contributions of the thesis in understandable chunks, we
divide the thesis into 8 chapters. In the following, we give a brief overview of the
content chapters Chapter 2 to Chapter 6 as well as related work in Chapter 7 by
including references to shared material from own previous publications. Of course,
the thesis is rounded up by a conclusion in Chapter 8 and future work in Chapter 9
that has to be carried out to complete the Swiss army knife of this thesis.

Chapter 2 – Selections in the Rear-View Mirror

In Chapter 2, we present the basics that should be well understood before going deeper
into the topic of hardware-sensitive selections and multi-dimensional indexing. Hence,
we give basics about selections from the relational algebra and SQL. Furthermore, we
review CPU capabilities and hardware-sensitive programming frameworks to give the
background for our Level 2 of our contributions. The chapter shares content with:

David Broneske, Sebastian Breß, Max Heimel, and Gunter Saake. To-
ward Hardware-Sensitive Database Operations. In Proceedings of the
International Conference on Extending Database Technology (EDBT),
pages 229–234, 2014

David Broneske. Adaptive Reprogramming for Databases on Heteroge-
neous Processors. In SIGMOD/PODS Ph.D. Symposium, pages 51–55.
ACM, 2015

1.2. Structure of the Thesis 5

Chapter 3 – Hardware Sensitive Full-Table Scans as Working Horse

The first content chapter, Chapter 3, focuses on the first goal of this thesis. In this
chapter, we review important code optimizations and their combination in order
to push the performance of full-table scans by optimizing them for the underlying
hardware. As a result, we present concepts for answering RQ 1 and also present a
framework for automatically optimizing arbitrary database operators by applying
code optimizations for RQ 2. This chapter is based on:

David Broneske, Sebastian Breß, and Gunter Saake. Database Scan
Variants on Modern CPUs: A Performance Study. In Proceedings of the
International Workshop on In-Memory Data Management and Analytics
(IMDM), Lecture Notes in Computer Science (LNCS), pages 97–111.
Springer, 2014

David Broneske. Adaptive Reprogramming for Databases on Heteroge-
neous Processors. In SIGMOD/PODS Ph.D. Symposium, pages 51–55.
ACM, 2015

David Broneske and Gunter Saake. Exploiting Capabilities of Modern
Processors in Data Intensive Applications. it - Information Technology,
59(3):133–140, 2017

David Broneske, Andreas Meister, and Gunter Saake. Hardware-Sensitive
Scan Operator Variants for Compiled Selection Pipelines. In Fachtagung
Datenbanksysteme für Business, Technologie und Web (BTW), pages
403–412, 2017

Lars-Christian Schulz, David Broneske, and Gunter Saake. An Eight-
Dimensional Systematic Evaluation of Optimized Search Algorithms on
Modern Processors. Proceedings of the VLDB Endowment, 11(11):1550–
1562, 2018

Chapter 4 – Elf as Multi-Column Selection Predicate Index

In Chapter 4, we address the conceptual shortcoming of full-table scans of executing
multi-column selection predicates. To this end, we design a multi-dimensional sort-
based index structure, called Elf, whose design exploits the underlying characteristics
of the data of multiple columns. As a consequence, we answer RQ 3 by showing that
index structures still have a wide use case for selections in main-memory database
systems. The chapter shares content with:

David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Ac-
celerating Multi-Column Selection Predicates in Main-Memory - The
Elf Approach. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 647–658. IEEE, 2017

David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Effi-
cient Evaluation of Multi-Column Selection Predicates in Main-Memory.
Transactions on Knowledge and Data Engineering (TKDE), 2018. Ac-
cepted in April 2018

6 1. Introduction

Chapter 5 – Complex Selection Queries in Elf-Supported Main-Memory
Database Systems

In Chapter 5, we extend Elf to support more complex selection predicates from SQL
beyond the definition from the relational algebra. This endeavor answers RQ 4 and
compares the benefits of a multi-dimensional index structures compared to full-table
scans. Furthermore, we answer RQ 5 in this chapter by integrating Elf in MonetDB
as a representative of a successful main-memory database management system. The
content of this chapter is so far not published, but will be published as a next step.

Chapter 6 – Elf Life Cycle

In the last content chapter, Chapter 6, we introduce important maintenance tasks to
our multi-dimensional index structure Elf. To answer RQ 6, we present Elf’s build
algorithm and a delta-stored-like insertion procedure to cope with frequent inserts.
This chapter is based on and shares content with:

David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Ac-
celerating Multi-Column Selection Predicates in Main-Memory - The
Elf Approach. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 647–658. IEEE, 2017

David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Effi-
cient Evaluation of Multi-Column Selection Predicates in Main-Memory.
Transactions on Knowledge and Data Engineering (TKDE), 2018. Ac-
cepted in April 2018

Chapter 7 – Related Work

In Chapter 7, we review related work for this thesis. This related work includes
a description of our chosen competitors. Furthermore, we review related multi-
dimensional index structures. This chapter shares content with:

Veit Köppen, Martin Schäler, and David Broneske. Emerging Per-
spectives in Big Data Warehousing, chapter Index Structures for Data
Warehousing & Big Data Analytics. IGI Global, 2019

Marten Wallewein-Eising, David Broneske, and Gunter Saake. SIMD
Acceleration for Main-Memory Index Structures – A Survey. In Proceed-
ings of the International Conference Beyond Databases, Architectures
and Structures (BDAS), pages 105–119. Springer, 2018

2. Selections in the Rear-View
Mirror

Selections are one of the main operations in the relational algebra, because an
essential functionality of the database system is to provide only tuples to the user
that qualify specific properties. This is especially import in analytical scenarios,
where time-base, region-based, and product-based selections are executed before a
set of subsequent joins and aggregations [Inm05]. Our goal of the thesis is on two
different approaches for selections. Essentially, a selection can be executed using a
full-table scan or an index-structure and we aim to contribute to both these parts.

In the following, we first review the basics about selections in database manage-
ment systems including a small classification of selection predicates and favorable
approaches. Since the first contribution is to optimize full-table scans to the used
hardware, we additionally present the overall processing capabilities of CPUs and, af-
terwards, introduce state of the art for supporting heterogeneous hardware properties
in generic programs.

These three parts introduce the fundamental concepts to understand our design
decisions in the later chapters and also help to differentiate our contributions from
other work.

2.1 State of the Art in Selection Predicates

A typical database operation is to restrict the tuples to a user-defined subset of
tuples that qualify specific properties [LP13]. This operation is usually called a
selection, filter, or SELECT operator [SSH18]. Due to their importance, selections
have a high optimization potential. For example, there is no query in the TPC-
H [Tra14], SSBM [OOC09], and also TPC-DS [Tra15] benchmark (the standard
OLAP benchmarks) not having at least one selection predicate. Conceptually, the
selection splits a relation into two horizontal partitions, where one partition contains
all qualifying tuples and the other all non-qualifying tuples [EN15] – this observation

8 2. Selections in the Rear-View Mirror

is used for example in database cracking [KM05, IKM07]. However, usually only the
qualifying tuples matter, because they are the input for subsequent operators.

In the following, we first introduce the basic concepts from the relational algebra in
order to create a common ground of a selection predicate for this thesis. Afterwards,
we give a characterization of the underlying predicates (i.e., mono and multi-column
selection predicates) that helps to understand the use cases of different selection
operator implementations (i.e., full-table scans and index structures).

2.1.1 Relational Selection Basics

In the relational algebra [Cod70], the schema of a selection is as follows: σcond(R).
The operator σ represents a selection that filters non-qualifying tuples of relation
R for the condition cond. The condition is usually defined on a set of columns C
of relation R with C ⊆ R. For each column col ∈ C, there is usually one of the
following basic predicates given: {=, <,>,≤,≥, 6=} [EN15].

Given the definition of a selection predicate, we can transform these predicates into
an interval-based notation that helps us to treat them in a uniform manner across
different selection approaches. In Table 2.1, we present how to transform a given
predicate to an interval-based notation including a specialization for integer value
ranges. For example, col = x, where x is a scalar value within the domain of this
column’s type, is translated to the interval [x, x], where x indicates the lower and
upper boundaries and both are included in the interval. By contrast, col < x defines
an interval where the lower boundary is the domain minimum (min) of this column
and x defines the first value that is not included in the interval. Notably, it is possible
to express 6= as two intervals.

Predicate Interval Interval (Integer)
= x [x, x] [x, x]
< x [min, x) [min, x− 1]
≤ x [min, x] [min, x]
> x (x,max] [x+ 1,max]
≥ x [x,max] [x,max]
6= x [min, x) ∪ (x,max] [min, x− 1] ∪ [x+ 1,max]
≥ x and ≤ y with x ≤ y [x, y] [x, y]

(BETWEEN)

Table 2.1: Columnar selection predicate translation

Of course, these interval predicates work well for attributes from an ordered domain,
i.e., numeric values or dates [EN15]. In addition, string values can be compared
according to their orthographic order – please mind that numbers are differently
ordered when using an orthographic ordering. However, a special property of database
systems is to support enumerations as well, usually representing an unordered value
domain. For example, car models of a car manufacturer do not contain an intrinsic
order and, hence, can usually only be compared on equality or inequality.

In summary, the redefinition of a selection predicate as an interval predicate allows to
create a common interface of a selection for arbitrary predicates. It is only necessary

2.1. State of the Art in Selection Predicates 9

to encode a lower and an upper border for the comparisons. Of course, comparisons
matter and, hence, specializations for these intervals can be made for full-table scans
for example. However, for our traversal-based multi-dimensional index structure
presented in Chapter 4, the interval-based representation is useful.

2.1.2 Predicate Characteristics

Since predicates are user defined, selection predicates usually differ in complexity.
For determining efficient execution strategies, important properties are the predicate
selectivities and the number of involved columns of a table.

Selectivity

The term selectivity is not consistently used in literature. Selectivity could be used to
express how many tuples are filtered out or how many tuples qualify the selection. In
this thesis, we stick to the following definition: selectivity represents how many tuples
are filtered out. Hence, low-selectivity workloads filter out only a small fraction of
tuples (i.e., a big fraction qualifies the predicate), while high-selectivity workloads
filter out a big fraction of tuples (i.e., only a small number of tuples qualify the
predicate). For simplicity, we also use the term selectivity factor, which represents
the fraction of data that qualifies a predicate. Hence, the selectivity factor is invers
to the selectivity.

The selectivity plays a vital role when deciding which technique to use for executing
the selection. For low-selectivity workloads, a full-table scan is usually superior to
indexing techniques [SSH18]. This is due to an introduced overhead per tuple (e.g.,
index traversal, random memory access), which does not pay off for a big fraction of
qualifying tuples. On the other hand for high-selectivity workloads, using a special
indexing technique is beneficial, because it only touches promising candidates in
contrast to a full-table scan touching all data by definition.

Number of Columns

Depending on the number of columns in the condition cond, we can differentiate
between mono and multi-column selection predicates.

Mono-Column Selection Predicates: For a mono-column selection predicate,
there is only a predicate on a single column of the table (i.e., |C| = 1).
Mono-column selection predicates are well supported by accelerated full-table
scans (e.g., SIMD Scans [WBP+09, WOMF13], BitWeaving [LP13], Column
Imprints [SK13]) and one-dimensional index structures (e.g., CSB-Tree [RR00]).
However, recent studies suggest that especially in main-memory database
systems, the threshold for using an index structure instead of a full-table scan
has drastically moved towards full-table scans [DYZ+15].

Multi-Column Selection Predicates: A multi-column selection predicate is de-
fined for a set of columns C, where |C| > 1. The basic challenge of multi-column
selection predicates is that the selectivity of the overall query is often small,
but the selectivity for each column is high enough that a query optimizer would

10 2. Selections in the Rear-View Mirror

decide to use a scan for all columns [SSH11]. Thus, we cannot use only one
column that dominates the query and use traditional indexes, such as B-Trees,
and then perform index lookups for the remaining tuple identifiers on the other
columns. As a result, most used approaches are optimized column scans that
exploit the full speed of the processing unit [LP13, SK13].

2.1.3 Selection Result Representation

Especially in bulk-processing engines, the representation of an intermediate result of
a selection predicate can be manifold, depending on the used main-memory database
system. Common representations are position lists, bitmaps, or even materialized
intermediate columns or column groups [AMDM07]. Without loss of generality, we
focus in this work on position lists as intermediate results of the complete selection,
which we define as Rmcsp as follows:

Definition 2.1 (Result position list: Rmcsp). Let Refi denote the tuple identifier of
the ith tuple (ti) in the data set. Moreover, let SATmcsp(Refi) be a Boolean function
that is true, iff all attribute values of ti for all columns are defined in the interval by
query mcsp. Then, Rmcsp is a list of identifiers such that
Refi ∈ Rmcsp ⇔ SATmcsp(Refi) = true.

The definition of our position list complies to the standards of main-memory database
systems such as MonetDB [BK99] using equivalent representations. Notably, Rmcsp

is the final result of a selection which is used in this thesis for interoperability with
subsequent operators. Of course, we use bitmaps for synchronizing intermediate
selection results of multi-column selection predicates on accelerated full-table scans
(the standard way for BitWeaving). A final conversion step is then constructing the
final position list Rmcsp.

2.2 CPU Capabilities

Since selections usually incur a branch per tuple depending on the outcome of the
predicate, the central processing unit (CPU) is usually well suited for evaluating
selection predicates. The CPU is the main processor of the computer and is also
the standard processor for any database operation. With the rise of main-memory
database systems, the bottleneck shifted from I/O to efficient processing. Hence,
optimizing for cache-efficient access and also CPU-efficient algorithms is the new goal.
Hence, we review important characteristics of CPUs in this section that are necessary
to reach peak selection performance. We start by introducing the common processing
paradigm of CPUs – pipelining – where processing steps of different instructions are
executed in parallel to increase instruction throughput. A good example to explain
pipelining is the RISC pipeline, which we introduce in the next section. However,
due to the dependencies between the execution of different instructions, pipeline
efficiency is reduced by so-called hazards, which we present in Section 2.2.2.

2.2. CPU Capabilities 11

2.2.1 Pipelining in CPUs – the RISC Pipeline

CPUs are optimized for instruction throughput, which is measured in instructions
per cycle [HP07]. In an ideal world, the CPU will execute one instruction per cycle.
However, since instructions include different overhead, the latency of an instruction
differs w.r.t. the work to be done (e.g., executing an addition on a register is faster
than loading a value from main memory into a register) and a common clock rate is
hard to define. To this end, tasks were split into a pipeline of subtasks, where each
subtask has an equally long latency. Furthermore, subtasks of different instructions
can be executed in parallel to allow for parallelism. A classical example of a pipeline
is the RISC pipeline [HP07], which we show in Figure 2.1. The RISC pipeline consists
of five stages:

Instruction Fetch (IF): In the instruction fetch cycle, the operation code (also:
OP code – a number identifying the operation) pointed to by the program
counter (PC) is fetched from memory and the program counter is incremented.

Instruction Decode / Register Fetch (ID): The main purpose of the ID stage is
to decode the instruction and detect and finish a branch instruction, which may
manipulate the PC. In parallel to that, the given register content is fetched.

Execution / Effective Address (EX): The EX stage performs the operations on
the fetched operands. For a memory reference (load/store), the effective address
is computed, else (e.g., for an addition) the result of the function is computed.

Memory Access (MEM): For a load or store instruction, the operand is read
from or stored at the effective address from the last cycle.

Write Back (WB): For computations on registers or load instructions, the result
is written into the register file.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

0 1 2 3 4 5 clock

instr. i

instr. i+1

instr. i+2

parallel

execution

Figure 2.1: RISC pipeline

The RISC pipeline is a good example to show limitations of pipelining, which we do
in the next section by introducing hazards. However, a five-stage pipeline is easy to
implement, but will neither bring optimal performance, nor good power consumption.
Hence, CPU vendors came up with numerous improvements of the classical pipeline.
These include the introduction of branch-predictors, µops and an extension of the
pipeline to up to 31 stages for an Intel Pentium 4. However, current CPUs feature
pipelines of a length around 20, because longer pipelines bring a bigger impact of
pipeline stall due to hazards.

12 2. Selections in the Rear-View Mirror

2.2.2 Hazards

In this section, we present the two most important hazards that can be avoided with
code optimizations. These two hazards are data and control hazards. In general,
a hazard forces the CPU to include stalls into the pipeline, because two or more
operations depend on each other and are serialized (or can only partially overlap).

2.2.2.1 Data Hazard

A data hazard exists if for two operations i1 and i2, the result of operation i1 is
used by operation i2 directly or via transitivity [HP11]. In Figure 2.2, we show an
example of a data hazard. The data that is loaded by the first instruction is needed
as an operand for the subtraction and the logical AND. However, since the result of
the load is only stable after the WB stage, the other operations have to be stalled in
order to read the right result from the register1.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

0 1 2 3 4 5 clock

LD R1, 0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

Figure 2.2: Example of a data hazard

To reduce the number of stalls due to data hazards, instruction reordering is an
essential optimization of compilers. However, this is only possible when there are
enough independent operations. For instance, tight loops with small amount of work
inside the loop will be prone to data hazards.

2.2.2.2 Control Hazard

A control hazard exists if there is a branch instruction that may manipulate the
program counter w.r.t. a given condition [HP11]. Branch instructions are mainly
produced by if-clauses, but also for/while loops include a branch instruction. In
these cases, instructions before the branch instruction cannot be scheduled after
the branch and instructions depending on the branch outcome cannot be scheduled
before the branch instruction. Since the outcome of a branch instruction is known
only after the ID stage, stalls may have to be included.

IF ID EX MEM WB

IF

IF ID EX MEM WB

0 1 2 3 4 5 clock

branch instr. i

instr. i+1

target instr.

idle idle idle idle

Figure 2.3: Example of a control dependency (instr. i+1 was the wrong decision)

1Notably, the technique bypassing can forward the result after the EX stage [Blo59].

2.3. Heterogenous Programming 13

There are different optimizations that one could take. The obvious one is to pipeline
the instruction that would come if the branch was not taken, because branches
are rather included to prevent from rare exceptions. A more robust technique is
branch prediction, where CPUs keep a history of the targets of a specific branch
(a branch target buffer). In this case, the instruction is pipelined that is likely to
be executed according to the branch target buffer. Apart from the used technique,
whenever the CPU pipelines the wrong instruction, it has to flush the pipeline as
shown in Figure 2.3.

2.2.3 Single Instruction Multiple Data

A lot of the design considerations for a CPU depend on the instructions and the
number of used registers, but not on the size of the register. Hence, CPU vendors
include special registers with wider register sizes (e.g., 128-bits XMM registers). Now,
several values can be packed into this register and the same instruction is executed
on all the values in a data-parallel fashion. This is called Single Instruction Multiple
Data (SIMD).

a1 a2 ... an

b1 b2 ... bn

a1 + b1 a2 + b2 ... an + bn

a1

b1

a1 + b1

+
+ + +

SISD SIMD

Figure 2.4: Single Instruction Single Data (SISD) vs. Single Instruction Multiple
Data (SIMD)

In an ideal world, for a register that fits s values, a speedup of s is achieved. For
example, using the Streaming SIMD Extensions 2 (SSE2) on the example in Figure 2.4,
we can add four values in one clock cycle – exhibiting usually four times the speed.
Hence, SIMD is an important capability to optimize for.

In practice, however, several limitations come into play. For example, the data should
be aligned for reaching peak performance and values to process should fill a SIMD
register fully [BS17b]. Furthermore, we cannot execute branching in SIMD, because
we cannot branch for each packed value individually in a SIMD fashion [ZR02]. Thus,
an algorithm has to be carefully tuned with SIMD instructions for having a benefit
of SIMD.

2.3 Heterogenous Programming
Due to ever-changing hardware characteristics, a once optimized algorithm may have
to be re-optimized with new arising capabilities of processors. Since our first goal of

14 2. Selections in the Rear-View Mirror

the thesis is to generate hardware-sensitive scan code for current and future CPUs,
we review the two main paradigms to achieve hardware sensitivity: the hardware-
sensitive paradigm, in which the algorithms are tuned to one specific processor; and
the hardware-oblivious paradigm, which means that the algorithms are abstractly
defined and efficiently executed using a processor-dependent driver [HSP+13]. We
depict a sketch of these two paradigms in Figure 2.5 and explain their characteristics
in detail in the following.

2.3.1 Hardware-Sensitive Programming

The main idea behind hardware-sensitive programming is that the programmer
knows the system that the algorithm is written for in detail. Hence, in a database,
programmers would write a set of operators per processor and tailor the code to the
underlying hardware by fully exploiting the hardware’s properties.

With this approach, programmers are able to reach the best performance, because
they know what hardware to program for [HSP+13]. However, this approach does
not scale to a high amount of different processors. The reason is that with each
new processor, another set of operators has to be implemented, although they may
only differ slightly. Thus, the development and maintenance effort is too high in
this approach, especially if we have in mind the increasing heterogeneity of future
processors.

Hardware-Sensitive

main code base

device-specific
operators

device-specific
operators

compiler compiler

binary binary

CPU GPU

Hardware-Oblivious

main code base

driver

CPU GPU1 GPU2

driver drive
r

binary

hardware-oblivious operators

parallel programming library

compiler

Figure 2.5: Hardware-sensitive vs. hardware-oblivious programming. Adapted
from [HSP+13]

Hardware-Sensitive Database Operators

Despite the high development overhead, tuning operators to the underlying hardware
has found much attention in research. First tuning focusses on optimizing main-
memory database operators for different CPUs and the cache hierarchy.

CPU

Early work in this area includes to tune database selections using vectorization,
e.g., the work of Zhou and Ross [ZR02], or predication in the work of Ross [Ros04].

2.3. Heterogenous Programming 15

Further optimizations for selections include vectorized scans on compressed data for
single [WBP+09], and complex predicates [WOMF13], as well as using vectorized
bloom filters for the scan [PR14].

Recent studies consider even more complex operators such as joins and aggrega-
tions. Here, Zukowski et al. optimize hash tables and functions to the underlying
hardware [ZHB06]. Based on that, efficient vectorized aggregation functions are
proposed by Polychroniou and Ross [PR13] to speed up aggregations in databases.
Simultaneously, the debate about the best join algorithm has been revitalized, leading
to even more specialized and tuned join algorithms. These include the massively
parallel sort-merge (MPSM) join by Albutiu et al. [AKN12], the sort-merge join
using SIMD-accelerated sorting networks by Kim et al. [KSC+09], and the radix join
which has been initially proposed by Boncz et al. [BMK99] and further improved with
vectorization and additional optimizations by Balkesen et al. [BATÖ13, BTAÖ13].

GPU

Early work considering database operations on GPUs has been published by He et
al. [HLY+09], which uses highly optimized primitives on the GPU whose combination
can compute any database operation. Furthermore, Sitaridi and Ross [SR13] present
an efficient selection with GPU’s missing branch-prediction capabilities. Furthermore,
several papers outline how to adapt joins to GPUs [HYF+08, KLMV12].

Other Processors

Furthermore, there is work presenting how to design database operations for more
specialized co-processors. He et al. [HLH13] show how to tailor the hash join to work
efficiently on an APU (a CPU with an integrated GPU) and Jha et al. [JLC+15]
investigate hash joins on an Intel Xeon Phi. Moreover, Mueller et al. [MTA11]
extensively discuss how to design sorting algorithms to implement them efficiently
on FPGAs (field-programmable gate arrays).

All these publications show that tuning algorithms to the underlying hardware can
improve performance by orders of magnitude. Nevertheless, all of them are only
tailored to a single (co-)processor and do not provide a comprehensive solution for
the increasing heterogeneity of the hardware landscape.

2.3.2 Hardware-Oblivious Programming

In contrast to hardware-sensitive programming, hardware-oblivious programming
includes an additional abstraction layer: a parallel programming library. With this
library, database operations are implemented without explicit knowledge of the
hardware based on the parallel programming library (e.g., OpenCL), which then
compiles a binary for each processor [HSP+13]. This binary is executed using a
specialized driver for each processor which should exploit special hardware capabilities
of the (co-)processor.

The advantage of hardware-oblivious programming is, that code for each operator is
written only once and hardware-related properties (e.g., parallelization possibilities)

16 2. Selections in the Rear-View Mirror

are included by the driver. As a result, development and maintenance overhead is
reduced to a minimum. However, the compiler and driver optimize algorithms for
the average use case and cannot take the workload into account. Furthermore, an
efficient execution and exploitation of hardware capabilities always relies on a good
implementation of the driver. Thus, it is not guaranteed that the hardware-oblivious
approach always provides the best performance. Differently phrased, the hardware-
oblivious programming approach allows for code portability but not for performance
portability [RHVM15]. Additionally, the driver is mainly designed to optimize for
the general use case. Hence, we are not able to fully exploit the domain knowledge
that we have in database systems about the workload.

2.4 Summary

In this section, we reviewed important basics to understand this work. We introduced
selection predicates and classified them to show their sweet spots for different operator
implementations (full-table scans vs. index structures). As a result, we clarified
for which use cases which of our next approaches is best suited. Furthermore, we
presented important properties of the CPU that are important to optimize a full-
table scan for. In concert with the definition of the two heterogeneous programming
paradigms, we are ready to introduce a hybrid approach of hardware-sensitive and
hardware-oblivious programming in the next chapter. The approach, which we call
adaptive reprogramming, is able to optimize selection operator implementations to
modern hardware capabilities during runtime.

3. Hardware Sensitive Full-Table
Scans as Working Horse

As introduced in the previous chapter, accelerated full-table scans are the straight-
forward method to execute a selection. However, with an increasing diversity of
hardware [HSP+13, BBHS14], the number of possible tuning opportunities increases
as well [BBS14]. In this chapter, we introduce our definition of the term code opti-
mizations as means to exploit diverse hardware features for the full-table scan [BS17a].
With code optimized full-table scans, we create a first baseline that other approaches
have to compete against. Furthermore, differently tuned operators perform best
depending on the use case (data and processor characteristics). Hence, it is impor-
tant to automate the generation of variants. To this end, we outline our idea of
a framework to automatically apply and exploit code optimizations for database
systems. This resulting framework serves as a solution for the problems of Level 1,
optimizing full-table scans to reach bare-metal speed.

In summary, we make the following contributions in order to answer the research
questions RQ 1 and RQ 2:

• Definition of code optimizations as a means to reach hardware-sensitivity

• Pointers to applications of code optimizations in other database operators

• Evaluations of baseline implementations for accelerated full-table scans

• Proposal of a code generation framework for hardware-sensitive database oper-
ators

3.1 Code Optimizations for Hardware-Sensitive

Full-Table Scans on Single Predicates

In this section, we look at important code optimizations that allow for hardware
sensitivity. We define the term code optimizations as [BS17a]:

18 3. Hardware Sensitive Full-Table Scans as Working Horse

1 for(int i = 0; i < column_size; ++i) {
2 if(column[i] < predicate) {
3 result[pos++]=i;
4 }
5 }

Listing 3.1: Scan loop

”A code optimization changes the code in order to improve its performance for a
specific processor and/or workload without changing the code’s external behavior”

In this regard, code optimizations are similar to a classical refactoring [FBBO99] in the
way that both change the code without loss of its behavior, while code optimizations
improve for performance instead of for maintainability/code comprehension.

Furthermore, code optimizations are optimizations that a compiler could detect and
automatically apply. However, it does usually not apply such optimizations, because
they are only useful for a specific combination of workload and processor. In contrast,
the workload and system characteristics are well known in a specific database system
and, thus, an execution engine can decide when to use a code-optimized variant.

Code optimizations, although no explicitly named, are already used in several
systems. For instance, flavors in VectorWise [RBZ13] are primitives that are tuned
with different code optimizations. In Section 3.3.4, we outline systems that currently
exploit code-optimized operator variants. As a consequence, code optimizations
usually have to be applied by hand and then exploited explicitly by the system.

In the following, we present a selection of code optimizations that are applicable to
full-table scans. These include loop unrolling, software predication, single instruction
multiple data (SIMD). In this regard, we also exemplify their performance impact as
well as their usage in other database operators based on our literature review [BS17a].

3.1.1 Running Example

For illustrating the impact of different code optimizations, we start with a small
example that we will use throughout this chapter. In Listing 3.1, we show the code of
a branching scan with a single less than predicate on an arbitrary column. Please
note, the less than predicate can be exchanged with any other predicate using
template expansion, such that implementation effort for query engines is minimal.

The usual way of implementing a scan in a column-oriented operator-at-a-time
engine is to have a for-loop iterating over the column values, in which we check
with an if-statement whether the predicate is fulfilled. If it is fulfilled, we add the
current position of the value to the result – in this case a position list as defined in
Definition 2.1.

We show the baseline performance for the branching variant from Listing 3.1 in Fig-
ure 3.1.1 The branching variant shows an increasing response time for increasing

1The experiments in this section are executed on an Intel Xeon E5-2609 v2 with 2.5 GHz
frequency and 256 Kb of L1 cache, 256 Kb of L2 cache per core, and 10 Mb of L3 cache per core.
Furthermore, all variants have been compiled with the GNU C++ compiler 4.6.4. with the same
flags as used by Rǎducanu et al. [RBZ13]. Each scan evaluates the predicate on 60 million data
items, which is around 240 Mb of data.

3.1. Code Optimizations for Hardware-Sensitive Full-Table Scans on Single
Predicates 19

1 for(int i = 0; i < column_size; i++) {
2 result[pos]=i;
3 pos += (column[i] < predicate);
4 }

Listing 3.2: Scan loop with a predicated filter

selectivity factors (Sel) until reaching its peak at around Sel=50 %. Afterwards, its
performance improves again. This behavior is caused by the branch prediction unit
of the CPU to avoid control hazards by speculating on the outcome of the branch
in Line 2 of Listing 3.1. However, especially at Sel=50 %, the branch predictor is
wrong half of the time and has to flush the CPU pipeline which has already been
loaded with the wrongly predicted instructions. Hence, several cycles are lost until
the pipeline is filled up again and can work at an Instructions per Cycle (IPC) of 1.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Selectivity factor Sel in %

R
es

p
on

se
ti

m
e

in
m

s

Intel Xeon E5-2609 v2

Branching Scan

Figure 3.1: Response time of a branching scan on 30 million data items

3.1.2 Software Predication

Since branches inside the code hinder performance when their outcome is hard to
predict, predication is commonly used to eliminate branches and turn them into data
flow. It can be implemented in hardware, e.g., by the Intel Itanium 2. Here, both
branches are executed in parallel in different pipelines, but only the result of the
correct pipeline succeeds at the end. This leads even to better performance than
a predicated version in software [BZN05]. In contrast, software predication does
neither execute both branches, nor does it speculate on the result of the condition.
In our example, the result of the condition is used to manipulate the write position
in the array. For example in Listing 3.2, we show the code for a predicated scan.
However, instead of using an if-clause, the result of the condition (cf. Line 3) is used
as the increment of the current write position. Since the result of the predicate is
either 0 (false) or 1 (true), it can be directly used to increment the position.

Performance Impact of Predication

Predication is useful if the CPU cannot easily decide about the outcome of a branch,
which is the case for selectivities other than around 0 or 100 %. In Figure 3.2, we

20 3. Hardware Sensitive Full-Table Scans as Working Horse

show the runtimes for the branching loop and the predicated loop from Listing 3.2.
Especially for selectivity factors around Sel=50 %, the branching variant incurs big
penalties due to many mispredictions that cause pipeline flushes. Here, predication
in these tight loops also causes write hazards for creating the position list that
further diminish performance [BBS14]. Another important observation is that the
branching version is superior for selectivity factors below 2 % and above 98 %. While
these thresholds seem to indicate only a small range of use cases, such selectivity
factors are often enough part of analytical queries. Considering the commonly
used TPC-H Benchmark [Tra14], the queries Q1 (σSel(L Shipdate) > 98 %), Q2
(σSel(P Size) < 2 %), Q8 (σSel(P Type) < 1 %), Q14 (σSel(L Shipdate) < 2 %), Q16
(σSel(PS SupplyCost) > 99 %), and Q20 (σSel(P Name) < 2 %) feature predicates
that fulfill these boundaries. Hence, both variants should have their existence in
query engines.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Selectivity factor Sel in %

R
es

p
on

se
ti

m
e

in
m

s

Intel Xeon E5-2609 v2

Branching Scan Predicated Scan

Figure 3.2: Response time of branching and predicated scans on 30 million data
items

Software Predication in Database Operator Implementation

Since predication trades branches for writes, it essentially applies only to operators
that include branches. Obviously, software predication has been used to eliminate
branches in selections [RHVM15, BBS14, ZF15, Ros02, Ros04]. Furthermore, selec-
tions combined with aggregations or hash builds are a big application when using
query compilation [Neu11]. In this regard, Broneske et al. show the impact of pred-
ication for filtered aggregation pipelines [BMS17] and Polychroniou and Ross for
filtered in-place hash aggregations [PR13].

Furthermore, Zukowski et al. [ZHB06] use predication to remove branches in the
hash table build of cuckoo hashing. This also applies for hash table probes, because
scanning a hash bucket also includes a branch. Moreover, Kim et al. [KSC+09]
use predication with conditional moves to implement sorting. Additionally, Pirk et
al. [PPI+14] show predication’s applicability for database cracking.

3.1.3 Loop Unrolling

Loop unrolling is a simple optimization that is already done by compilers. They
replicate the instructions inside the body of a loop in order to allow for more

3.1. Code Optimizations for Hardware-Sensitive Full-Table Scans on Single
Predicates 21

1 for(int i = 0; i+k < column_size; i+=k) {
2 //code for one iteration
3 if(column[i] < predicate) {
4 result[pos++]=i;
5 }
6 //unrolled iterations
7 if(column[i+1] < predicate) {
8 result[pos++]=i+1;
9 }

10 ...
11 if(column[i+k−1] < predicate) {
12 result[pos++]=i+k−1;
13 }
14 }
15 ... //process remaining tuples in a normal loop

Listing 3.3: k-times unrolled aggregation loop

possibilities in instruction rescheduling, which helps to reduce the impact of data
hazards. However, compilers are often unable to find the best unrolling depth, e.g.,
for loops with a dynamic number of iterations. In these cases, loop unrolling has to
be done by hand, which we show in Listing 3.3 where the loop body is unrolled by
hand k times.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

Selectivity factor Sel in %

R
es

p
on

se
ti

m
e

in
m

s

Intel Xeon E5-2609 v2

Branching Scan LU2-Scan LU3-Scan LU4-Scan
LU5-Scan LU6-Scan LU7-Scan LU8-Scan

Figure 3.3: Response time of unrolled branching scans for varying selectivities for 30
million data items (LUn = n-times loop-unrolled)

We have already shown that the best unrolling depth depends on the used proces-
sor [BBS14]. However, the benefit of loop unrolling depends on two further criteria:
(1) whether there are branches inside the loop and (2) whether the number of loop
iterations is known.

Branches Inside the Loop

Branches inside the loop change the number of executed instructions, which makes
it hard to find the right unrolling depth. Notably, the best depth will even depend

22 3. Hardware Sensitive Full-Table Scans as Working Horse

on the current iteration of the branch [BBS14]. Hence, operators that include a
branch have a limited applicability. Those operators include selections and hash
table probes.

In Figure 3.3, we show the response time for a scan with varying selectivities whose
body was unrolled several times. We can see that for small selectivities a higher
unrolling number is better, while for selectivity factors around 50 %, a 2-times
unrolling is the best. Since the best unrolling number is hard to define, a modern
compiler avoids an unrolling in this case and we have to apply this optimization by
hand. In contrast to that, the behavior of the predicated version under different
unrolling depths is rather homogeneous (cf. Figure 3.4). Here, an unrolling depth of
eight is the best.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

Selectivity factor Sel in %

R
es

p
on

se
ti

m
e

in
m

s

Intel Xeon E5-2609 v2

Predicated Scan LU2-Scan LU3-Scan LU4-Scan
LU5-Scan LU6-Scan LU7-Scan LU8-Scan

Figure 3.4: Response time of unrolled predicated scans for varying selectivities for
30 million data items (LUn = n-times loop-unrolled)

Number of Loop Iterations

Loop unrolling trades a reduction of loop iterations for an increased number of CPU
registers to be used. Hence, the number of available CPU registers sets an upper
bound. In the best case, the loop can be fully eliminated if the number of needed
registers for an unrolling of the whole iteration space does not exceed available
registers. Furthermore, if the iteration space is smaller than the unrolling depth,
the unrolling is not used efficiently. Hence, only if the number of loop iterations is
known beforehand (i.e., at runtime), it can easily be decided to which extent the
loop should be unrolled.

Loop Unrolling in Database Operator Implementation

Loop unrolling can be used in every database operator of a vectorized or bulk-
processing engine as they always loop over the content of a column. However,
knowledge about the number of iterations is essential for the applicability of loop

3.1. Code Optimizations for Hardware-Sensitive Full-Table Scans on Single
Predicates 23

1 ... // Code for unaligned tuples
2 for(int i=0;i < simd_array_size;++i)
3 {
4 mask=SIMD_COMPARISON(SIMD_array[i],comp_val);
5 if(mask){
6 for (int j=0;j < SIMD_Length;++j)
7 {
8 if((mask >> j) & 1)
9 result_array[pos++]=j+offsets;

10 }
11 }
12 }
13 ... // Code for remaining tuples

Listing 3.4: Vectorized serial scan

unrolling. Consequently, only systems that employ a query compiler can fully benefit
from loop unrolling as they can include meta data about table sizes [HKHL15]. Still
hash table probes and loop unrolling have a limited applicability, because the sizes
of hash buckets change and a specialization of the probe code is hardly practical.

Overall, loop unrolling has been applied in various work. Several researcher al-
ready apply loop unrolling for simple selections [RHVM15, BBS14] or for bloom
filters [PR14] and it is used to optimize aggregations [RHVM15] or hashing [MSL+15].
Furthermore, loop unrolling is also used to apply SIMD (via unroll-and-jam [LA00]),
which may cause further loops. For instance, Polychroniou et al. [PR15] use loop
unrolling to remove those loops that iterate over SIMD register elements.

3.1.4 Single Instruction Multiple Data

Due to the advances in hardware, adapting algorithms to SIMD has become essen-
tial [PR14]. To exploit this optimization, we can implement the scan in Listing 3.4
based on the SIMD scan by Zhou and Ross [ZR02]. Since SIMD operations work
best on aligned memory, we first have to process tuples that are not aligned. For
this, we use the branching variant, since only a few tuples have to be processed. The
same procedure is executed for the remaining tuples that do not completely fill one
SIMD register. The presented code snippet evaluates the elements of a SIMD array
and retrieves a bit mask for each comparison (cf. Line 4). After that, the mask is
evaluated for the four data items and if there is a match, the corresponding position
is inserted into the position list (cf. Line 6-10). Notably, similar to the algorithm by
Zhou and Ross, we also use an if-statement for evaluating whether there has been
a match at all, which could reduce executed instructions if the selectivity is high.
Furthermore, we implemented a predicated version of the SIMD-accelerated scan by
unrolling the loop which evaluates the branch.

Performance Impact of SIMD

Due to the usage of 128-bit registers for int values, we can compare 4 values at a
time and can expect a performance improvement of a factor of around 4 in Figure 3.5.
However, the final code shows only a run-time improvement if the selectivity factor
is low because the probability of excluding several data items in one step is high and
beneficial for performance. In the case of Sel=0 %, the vectorized branching scan

24 3. Hardware Sensitive Full-Table Scans as Working Horse

takes only 35 % of the branching scan. Its performance loss at higher selectivity factors
is caused by the inefficient result extraction from the bit mask. Also, a predicated
mask evaluation of the vectorized scan does not yield performance improvements
and is thus not preferable to the branching version.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Selectivity factor Sel in %

R
es

p
on

se
ti

m
e

in
m

s

Intel Xeon E5-2609 v2

Branching Scan Predicated Scan
Vectorized Scan Vectorized Predicated Scan

Figure 3.5: Response time of scan variants on 30 million data items

SIMD Acceleration in Database Operator Implementation

SIMD is applied to various operator implementations. Especially selections [RHVM15,
BBS14, ZR02] and joins [KSC+09, ZR02, AKN12, BATÖ13] are accelerated with
SIMD in several publications. Still in SSE, it is hard to accelerate hash table builds.
However, due to the introduction of scatter and gather in AVX2, operations such
as hash builds using radix sort become vectorizable as shown by Polychroniou et
al. [PR13, PRR15]. Gurumurthy et al. investigate the applicability of AVX2 for
different hashing techniques [GBP+18].

Additionally, SIMD is proposed for index structure acceleration [ZR02, KCS+10,
ZHF14], for compression [WOMF13], and for database cracking [PPI+14].

3.1.5 Code Optimizations in Other Operators and Domains

Code optimizations are a big and evolving field of research. Hence over the years, there
are more and more code optimizations introduced. In the following, we introduce
code optimizations that have been introduced for other operators or in other domains:

AVX-512: With the introduction of AVX-512, a plethora of different intrinsics has
been introduced. Especially intrinsics for masked execution allows for the full
computation code optimization introduced by Rǎducanu et al. [RBZ13]. Also,
AVX-512 allows to skip the mask computation of the SIMD-accelerated scan
by an intrinsic that allows to compresses the result mask to a position list.
Furthermore, in combination with just-in-time compilation, AVX-512 is able to
efficiently accelerate multi-column scans [DKF+18].

3.2. Multi-Predicate Code Optimizations 25

Prefetching: The CPU starts loading cache lines not yet accessed by the program,
expecting them to be accessed later due to the principle of locality [HP11].
This is called prefetching. Whenever the CPU detects a sequential access
pattern of the program, its hardware prefetcher loads data in advance that is
needed next. Prefetching can also be triggered by the hardware itself, or by
using special instructions in software [Int16]. Software-controlled prefetching
can accelerate pre-determined non-sequential access patterns (e.g., in a binary
search). However, due to limited prefetching units and cache sizes, prefetching
intrinsics should be cautiously used [SBS18].

Coalesced Access: With the rise of GPGPU computing, special optimizations for
GPUs have been introduced. Since GPUs use light-weight threads that are exe-
cuted in a SIMD fashion, they are sensitive to how tasks are performed. While
parallel CPU implementations rely on sequential access where data is split into
contiguous blocks that are processed on separate cores, GPUs use a coalesced
access pattern. In a coalesced access pattern, adjacent data items are processed
by adjacent threads leading to a rather interleaved execution [RHVM15].

3.2 Multi-Predicate Code Optimizations

To evaluate multiple predicates, we have to extend the above variants to evaluate not
one, but several predicates in the for-loop. However, how to combine the predicates
in an if-clause is an open question that is answered in this section, because we can
use a conditional AND or a bitwise AND. Notably, these two variations only apply to
the branching scan, because (1) the predicated omits every branch and, thus, will
only use the bitwise variant and (2) the SIMD variants only support a bitwise AND

as intrinsic.

3.2.1 Conditional AND

The conditional AND (e.g., P1 && P2) between predicates will start to evaluate the
first predicate at first and only if it evaluates to true, the second predicate will be
evaluated. This is also often called a short-circuit evaluation, because the computation
of further predicates can be skipped, when the first predicate is already evaluated
to false. Hence, it yields a speedup, if the first predicate is highly selective [Ros04].
However, each conditional AND will produce a conditional branch in the execution
and may lead to heavy branch misprediction penalties.

Performance Impact of Conditional AND

In Figure 3.6, we show the performance of a scan using a conditional AND for evaluating
different selectivities of two predicates. Although we evaluated the whole space of the
selectivity combination of both predicates, only half of the space would be considered
(the space where P1 < P2) because the query optimizer will choose the most selective
feature as P1.

Looking at the variant behavior depending on the selectivity of the first predicate P1,
it is visible that it causes the known branch-misprediction penalty if the selectivity

26 3. Hardware Sensitive Full-Table Scans as Working Horse

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

200

400

Se
lec

tiv
ity

Fa
ct

or
P 1

Selectivity Factor P2

T
im

e
in

m
s

Conditional AND Scan

100

200

300

400

500

Figure 3.6: Response time of conditional AND scan for two predicates under varying
selectivities

factor of the second predicate is high or low. In the other case, the penalty even adds
up. For instance at SelP1 = SelP2= 0.5, the conditional AND creates an overhead of
135 % compared to a scan that retrieves all data (SelP1 = SelP2= 1). The peak of
the diagram is located at SelP1 = 0.9 and SelP2= 0.5, because it is the worst case:
a filter on the first predicate does not give much benefit from early pruning and
the final outcome depends on the unpredictable branch of the second predicate. In
contrast, SelP1 = SelP2=0.5 at least reduces the branch misprediction penalty for
those tuples where P1 is not satisfied.

3.2.2 Bitwise AND

The bitwise AND (e.g., P1 & P2) inside an if-clause evaluates all predicates, forms
the final result, and then executes the branch according to the result of the predicate
evaluation. In this way, branch misprediction penalties are reduced (except the last
one for the if-clause), but it misses the possibility to skip irrelevant predicates as
the conditional AND can do.

Performance Impact of Bitwise AND

In Figure 3.7, we show the same experiment as for the conditional AND. At first,
we can see that the impact of branch misprediction is reduced compared to the
conditional AND. Especially points that are close to the plane with SelP1 = SelP2 have
a smaller run time compared to the conditional AND variant. Here, we can achieve
speedups of up to 16 %. The peak of the diagram is at the same position as for the
conditional AND. However, the gradient is much steeper and the peak is 10 % higher.

3.3. Exploiting Code Optimizations in Database Management Systems 27

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

200

400

Se
lec

tiv
ity

Fa
ct

or
P 1

Selectivity Factor P2

T
im

e
in

m
s

Bitwise AND Scan

100

200

300

400

500

Figure 3.7: Response time of bitwise AND scan for two predicates under varying
selectivities

Performance Impact of Number of Predicates on Bitwise AND

In Figure 3.8, we show the performance of a bitwise AND with varying selectivities of
the first predicate P1 and an increasing number of predicates (1-10 predicates)2. In
this experiment, we set the selectivity of all the other predicates to 1, because we
wanted to see the overall impact of an increasing number of predicates on the variant’s
performance. Especially for this variant, the selectivity of all other predicates plays
no role since the bitwise variant checks the outcome of the predicates at last.

Overall, we can see that the response time increases linearly with an increasing amount
of predicates. However, since the branching overhead for SelP1 = 0.5 compared to
SelP1 = 1 is an almost constant value (in these experiments around 70ms), its impact
for an increasing number of predicates diminishes for this variant. Hence, for an
increasing number of predicates, this variant outperforms the conditional AND for
highly similar selectivities of all predicates, since it only pays the branching overhead
once.

3.3 Exploiting Code Optimizations in Database

Management Systems

In the previous sections, we made the case for the parallel existence of different
variants due to different device characteristics and data characteristics. However,
there are several inherent problems caused:

2For a single predicate the code and performance resembles the one of the branching scan.

28 3. Hardware Sensitive Full-Table Scans as Working Horse

0 0.2 0.4 0.6 0.8 1 0

5

10

0

250

500

750

Selectivity P1 #
of

Pre
di

ca
te

s

T
im

e
in

m
s

Bitwise AND Scan

200

400

600

800

Figure 3.8: Response time of bitwise AND scan under different numbers of predicates

Variant Space Explosion: Due to the amount of available optimizations, the
possibility to combine them, and the number of different operators in a DBMS
(e.g., around 30 in MonetDB), there is a zoo of all variants to be maintained.
Especially, the implementation of these variants cannot be done by hand, but
needs a clear generation mechanism. The variant explosion opens up two
sub-ordinate problems:

Unclear Impact of Data and Hardware Characteristics: With the di-
versity of hardware and their features as well as different use cases that
imply different data characteristics (selectivity, data distribution, data size,
and types), it is tedious to test all variants against the current workload.
Hence, there needs to be a clever way to asses the costs of a variant for
different workloads.

Unclear Impact of Code Optimization Combinations: Looking at sin-
gle optimizations alone is not the key for best performing variants. Often,
a combination of optimizations improves performance beyond the sum of
the benefit of the single optimizations. However, an optimization can also
harm performance of a specific variant (cf. branched loop-unrolled scan).

To tackle the aforementioned problems, we propose the adaptive reprogramming ap-
proach. This approach is tightly integrated with the query engine to be able to create
several hardware-sensitive operators out of one abstract operator description while
monitoring the variant performance. The overall structure of our approach is visual-
ized in Figure 3.9, which is based on the hardware-sensitive and hardware-oblivious
approach described in Section 2.3. In the following, we explain the components of
the adaptive reprogramming approach.

3.3. Exploiting Code Optimizations in Database Management Systems 29

variant selector

main code base

generic operator description

variant generator

feedback
CPU Phi

variant
pool

variant
pool

variant
pool

GPU

Figure 3.9: Sketch of our adaptive reprogramming approach for reaching hardware-
sensitive database operations on heterogeneous hardware

3.3.1 Variant Generation

To tackle the problem of the variant space explosion, we propose to use a domain-
specific language (DSL) to define an operator [BBHS14]. As a result, we add an
abstraction level to the operator implementation, which helps us to flexibly adapt
the resulting operator code. Given a generic operator description, we are able to
apply different sets of code optimizations to produce different variants. For example,
we could vectorize the tight loop in a selection and then unroll the vectorized code.

The resulting variants are specific to one processor and have variations in code
depending on different possible workloads. These variants are grouped per available
processor type in a dedicated variant pool. On execution, the variant selector chooses
the optimal variant for the selected processor and workload.

3.3.2 Variant Selector & Feedback Loop

Since it is not an easy task to estimate how a given algorithm performs on the
given hardware – especially for parallel algorithms [BATÖ13] – we argue to use
an unsupervised learning algorithm instead of a static cost model. Especially new
advances in deep learning gives rise to techniques that may be applied to the operator
selection problem [CPP+18].

The selector learns the execution behavior of variants under given hardware properties
and workload characteristics. In order to learn the execution behavior, we need a
feedback loop, which informs the selector about the runtime of the chosen variant
to refine the selector’s learned cost model. Also, the feedback loop has to inform

30 3. Hardware Sensitive Full-Table Scans as Working Horse

the variant generator about the performance impact of used code optimizations in
order to generate more efficient code. This procedure resembles the idea of adaptive
query processing [DIR07, BLC+16], where the query plan is refined during run-time
to achieve better performance.

3.3.3 Variant Management

In literature, there are numerous code optimizations proposed [BBS14, DMV+08,
RBZ13] that improve the code for different use cases. Hence, if we assume n
independent code optimizations, we can create 2n variants. Consequently, the
number of possible variants increases exponentially with an increasing number of
code optimizations. This causes the variant pool as well as the learned cost model of
the selector to grow enormously. As a consequence, we argue to limit the variant
pool and to keep only promising variants in the pool. However, if the workload of
the database system changes, better variants could be generated and included in the
variant pool, while others are evicted.

3.3.4 Usage of Adaptive Reprogramming in Recent Database
Management Systems

Adaptive reprogramming is a combination of already proposed concepts and can be
used to implement and optimize hardware-sensitive database management systems.
In this section, we outline parts of our approach that are implemented in current
systems and also point at parts that need to be implemented in these systems.
For this comparison, we reviewed available research prototypes that deal with
hardware-sensitive operator implementations (especially those managing different
operator variants) and finally come to the following systems (in chronological order):
VectorWise, CoGaDB, LegoBase, Voodoo.

VectorWise

VectorWise and its proposal of micro adaptivity [RBZ13] in vectorized execution
engines is the origin of variant management. In their work, Rǎducanu et al. define
flavors as different variants and propose variant selection as solving a multi-armed
bandit problem. However, their work does not cover an efficient variant generation
approach. They simply use template expansion for generating different flavors, which
is limited in its abstraction potential [KKRC14].

CoGaDB

CoGaDB [Bre14], as a GPU-accelerated system, inherently depends on hardware-
sensitive operator implementations, because operators have to be efficiently executable
across different devices. Also, its query execution engine HyPE [Bre13] is designed to
choose an efficient implementation for different devices. In this sense, it implements
variant pools by having different code for each device and a variant selector (HyPE)
that adapts its cost models. However, CoGaDB does not feature a variant generator
that can generate new hardware-sensitive relational operator implementations.

A recent advancement in CoGaDB is an impactful implementation of our adaptive
reprogramming architecture. Hawk [BKF+18], which is the new hardware-tailored

3.4. Summary 31

code generator of CoGaDB, allows to manage variants of query pipelines efficiently.
It has an abstract representation of a query pipeline, a so-called pipeline program,
defining an own DSL. Furthermore, Hawk applies different code optimizations in
a staged manner while exploring the operator space using a variant optimizer that
combines our variant selector and feedback loop.

LegoBase

LegoBase [KKRC14] and the DBLAB/LB query compiler [SKP+16] use light-weight
modular staging [Rom12] to stepwise lower and optimize a query plan. Both imple-
ment a DSL to allow for abstract operator descriptions and then use transformers
to adapt code and data structures. Although they are able to generate code for
different (co-)processors, they do not include hardware-sensitive code optimizations
and a selection of different variants.

Voodoo

Voodoo [PMZM16] is an algebra and compiler for vector programs on hybrid
CPU/GPU systems. Voodoo can be seen as a hardware-sensitive code genera-
tor for different variants of pipelines of vector operations. Thus, it combines a DSL
for vector programs and a variant generator. However, variant selection and the
selection of variants to be generated is not automatically decided and can be done
by the engine of LegoBase for example.

Conclusion

Overall, we can see that there are many systems that have to cope with different
implementation variants of the same operator or primitive [GBD+18]. Furthermore,
some of the systems implement several components of adaptive reprogramming.
In fact, CoGaDB’s Hawk implements all components of adaptive reprogramming,
but currently only focuses on compiled query pipelines and not whole relational
operators or primitives. Hence, we argue for the usefulness and effectiveness of
adaptive reprogramming.

3.4 Summary

In this chapter, we defined the term code optimizations and looked at the impact of
different code optimizations for full-table scans that implement the selection operator.
The result is the answer to research question RQ 1, since we looked at optimizations
of a single predicate and also at variants for combined selection predicates providing
guidelines when to use which variant. This led to a baseline that has to be beaten
by more elaborate techniques for single as well as multi-predicate selections in the
following chapters.

In addition, we presented arising challenges of variant management and introduced
an approach to deal with these challenges. Our approach of adaptive reprogramming
allows to generate, maintain and select different hardware-sensitive variants, which
answers research question RQ 2. Furthermore, we reviewed several systems that were
the basis of adaptive reprogramming and also outlined approaches that follow the
same design principles, but lack some important components to tackle the defined
challenges.

32 3. Hardware Sensitive Full-Table Scans as Working Horse

4. Elf as Multi-Column Selection
Predicate Index

With analytical queries getting more and more complex, the number of evaluated
selection predicates per query and table rises, too. For example, a typical TPC-H
query involving several column predicates is Q6, whose WHERE-clause is visualized
in Figure 4.1(a). We name such a collection of predicates on several columns in the
WHERE-clause a multi-column selection predicate. Multi-column selection predicate
evaluation is performed as early as possible in the query plan, because it shrinks
the intermediate results to a more manageable size. This filtering has become even
more important in main-memory database systems due to the limited amount of
available RAM, which calls for condensed intermediate representations (cf. late
materialization [AMDM07]).

In case all data sets are available in main memory (e.g., in a main-memory database
system [BKM08, KN11, Pla09]), the selectivity threshold for using an index structure
instead of an optimized full table scan is even smaller than for disk-based systems.
This phenomenon is due to the missing I/O bottleneck between disk and main
memory, giving full-table scans an advantage. In their study, Das et al. [DYZ+15]
propose to use an index structure for very low selectivities only, such as values
smaller than 2 %. Hence, most OLAP queries would never use an index structure
to evaluate the selection predicates. To illustrate this, we visualize the selectivity
of each selection predicate for the TPC-H Query Q6 in Figure 4.1(b). All of its
single predicate selectivities are above the threshold of 2 % and, thus, would prefer
an accelerated full-table scan per predicate. However, an interesting fact neglected
by this approach is that the accumulated selectivity of the multi-column selection
predicate (1.72 % for Q6) is below the 2 % threshold. Hence, an index structure would
be favored if it could exploit the relation between all selection predicates of the query.
Consequently, when considering multi-column selection predicates, we achieve the
selectivity required to use an index structure instead of an accelerated full-table scan.

In this chapter, we present the design of an index structure for order-preserving
dictionary-compressed data or numeric data. The new index structure, called Elf, is

34 4. Elf as Multi-Column Selection Predicate Index

(a)
Q6.1
Q6.2
Q6.3

l shipdate >= [DATE] and l shipdate < [DATE] + ’1 year’
and l discount between [DISCOUNT] − 0.01 and [DISCOUNT] + 0.01
and l quantity < [QUANTITY]

(b)
Q
6

Q
6.
1

Q
6.
2

Q
6.
3

2 %

20 %

40 %

S
el

ec
ti

v
it

y

(c)
A
R
Sc

an Elf

200

400

600

R
es

p
on

se
T

im
e

in
m

s

Figure 4.1: (a) WHERE-clause, (b) selectivity, and (c) response time of Elf and a
scan generated by adaptive reprogramming (ARScan) on TPC-H query Q6 and its
predicates Q6.1 - Q6.3 on Lineitem table s = 100

optimized for executing multi-column selection predicates in main-memory systems.
Elf is a novel combination of concepts and optimizations behind existing indexing
approaches in concert with a memory layout explicitly designed to exploit the
capabilities of modern CPUs. Due to its design, Elf can outperform full-table scans
on multiple columns by several factors (cf. Figure 4.1(c)). To this end, we contribute
to the goals of Level 2 of our thesis (i.e., eliminating the pain point of full-table scans
– multi-column selection predicate evaluation) and answer the research question RQ 3.

In the following, we first explain the Elf’s basic design and the underlying memory
layout. Then, we introduce additional optimizations to counter deteriorations due to
sparsely populated subspaces and present how to search in Elf. Finally, we determine
a theoretical upper bound for its storage size and talk about our heuristic for the
column order. The chapter ends with an extensive evaluation of Elf’s selection
predicate evaluation performance against highly-potent competitors.

In summary, we make the following contributions:

• Introduction of a main-memory index structure for multi-column selection
predicates, called Elf

• Proposal of improvements for Elf’s conceptual design to address deteriorations
of its tree-based structure to reach peak performance in main-memory database
systems

• Evaluation of Elf’s selection performance against stand-alone indexes:

– Full-table scans (generated using adaptive reprogramming)

– State-of-the-art main-memory indexes (BitWeaving [LP13], Column Im-
prints [SK13])

– Multi-dimensional index structures (BB-Tree [SSL18a, SSL19], sorted
projections [ABH+13])

• Evaluation of Elf integrated into MonetDB against MonetDB’s highly optimized
full-table scans

4.1. Conceptual Design of Elf 35

4.1 Conceptual Design of Elf

In the following, we explain the basic design with the help of the example data
in Table 4.1. The data set shows four columns that we want to index and a tuple
identifier (TID) that uniquely identifies each row (e.g., the row id in a column store).

C1 C2 C3 C4 ... TID
0 1 0 1 ... T1

0 2 0 0 ... T2

1 0 1 0 ... T3

Table 4.1: Running example data

In Figure 4.2, we depict the resulting Elf for the four indexed columns of the example
data from Table 4.1. The Elf tree structure maps distinct values of one column to
DimensionLists at a specific level in the tree. In the first column, there are two
distinct values, 0 and 1. Thus, the first DimensionList, L(1), contains two entries
and one pointer for each entry. The respective pointer points to the beginning of
the respective DimensionList of the second column, L(2) and L(3). Note, as the first
two points share the same value in the first column, we observe a prefix redundancy
elimination. In the second column, we cannot eliminate any prefix redundancy,
as all attribute combinations in this column are unique. As a result, the third
column contains three DimensionLists: L(4), L(5), and L(6). In the final column, the
structure of the entries changes. In an intermediate column, an entry consists of a
value and a pointer. Now, the pointer is interpreted as a tuple identifier (TID).

1 2

0 1

0

Column C1

Column C2

(1)

(2) (3)

0 T3 0 T21 T1

0 1
Column C3

Column C4
(7)

(5)

(8) (9)

0(4) (6)

Figure 4.2: Elf tree structure using prefix-redundancy elimination

The conceptual Elf structure is designed from the idea of prefix-redundancy elimina-
tion [SDRK02] and the properties of multi-column selection predicates. To this end,
it features the following properties to accelerate multi-column selection predicates on
the conceptual level:

Prefix-Redundancy Elimination: Attribute values are mainly clustered, appear
repeatedly, and share the same prefix. Thus, Elf exploits this redundancy as
each distinct value per prefix exists only once in a DimensionList to reduce
the amount of stored and queried data.

36 4. Elf as Multi-Column Selection Predicate Index

Ordered Node Elements: Each DimensionList is an ordered list of entries. This
property is beneficial for equality or range predicates, because we can stop the
search in a list if the current value is bigger than the searched constant/range.

Fixed Depth: Since, a column of a table corresponds to a level in the Elf, for a table
with n columns, we have to descend at most n nodes to find the corresponding
TID. This sets an upper bound on the search cost that does not depend on the
amount of stored tuples, but only on the amount of used columns.

In summary, our index structure is a bushy tree structure of a fixed height resulting
in stable search paths that allows for efficient multi-column selection predicate
evaluation on a conceptual level. To further optimize such queries, we also need to
optimize the memory layout of the Elf.

4.2 Improving Elf’s Memory Layout

The straight-forward implementation of Elf is similar to data structures used in
other tree-based index structures. However, this creates an OLTP-optimized version
of the Elf, which we call InsertElf. To enhance OLAP query performance, we use
an explicit memory layout, meaning that Elf is linearized into an array of integer
values (a classical way to reduce read and memory effects by compromising update
performance [AKM+16]). For simplicity of explanation, we assume that column
values and pointers within Elf are 64-bit integer values. However, our approach is
not restricted to this data type. Thus, we can also use 64 bits for pointers and 32 bits
for values, which is the most common case.

4.2.1 Mapping DimensionLists to Arrays

To store the node entries – in the following named DimensionElements – of Elf, we
use two 64-bit integers. Since we expect the largest performance impact for scanning
these potentially long DimensionLists, our first design principle is adjacency of
the DimensionElements of one DimensionList, which leads to a preorder traversal
during linearization. To illustrate this, we depict the linearized Elf from Figure 4.2
in Figure 4.3. The first DimensionList, L(1), starts at position 0 and has two
DimensionElements: E(1), with the value 0 and the pointer 04 (depicted with
brackets around it), and E(2), with the value 1 and the pointer 16 (the negativity of
the value 1 marks the end of the list and is explained in the next subsection). For
explanatory reasons, we highlight DimensionLists with alternating colors.

0 [04] -1 [16] 1 [08] -2 [12] -0 [10]

-1 -0 [14] -0 -0 [18]T1 T2

-0 T3

ELF[00]

ELF[10]

ELF[20]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

(7) (5) (8) (3)

(9)

-1 [20]
(6)

Figure 4.3: Memory layout as an array of 64-bit integers

4.2. Improving Elf’s Memory Layout 37

The pointers in the first list indicate that the DimensionLists in the second column,
L(2) and L(3) (cf. Figure 4.2), start at offset 04 and 16, respectively. This mechanism
works for any subsequent DimensionList analogously, except for those in the final
column (C4). In the final column, the second part of a DimensionElement is not
a pointer within the Elf array, but a TID, which we encode as a 64-bit integer as
well. The order of DimensionLists is defined to support a depth-first search with
expected low hit rates within the DimensionLists. To this end, we first store a
complete DimensionList and then recursively store the remaining lists starting at
the first element. We repeat this procedure until we reach the last column. Note,
in the last DimensionList, we mark the end of the list as well by setting the most
significant bit, allowing to store non-unique multi-dimensional data sets as well.

4.2.2 Implicit Length Control of Arrays

The second design principle is size reduction. To this end, we store only values and
pointers, but not the size of the DimensionLists. To indicate the end of such a list,
we utilize the most significant bit (MSB) of the value. Thus, whenever we encounter
a negative value1, we know we reached the end of a list (e.g., the DimensionElement

at offset 2). Note, in the final column, we also mark the end of the list by setting
the most significant bit, allowing to store duplicates as well. Finally, we use direct
pointers. This means that the pointers directly point to the offset in the array
where the respective list in the next dimension starts without any use of additional
structures (e.g., hash maps) or computation overhead (e.g., pointer arithmetics).

4.2.3 Alternative Memory Layouts

The memory layout of Elf plays a vital role in ensuring cache-friendly access patterns.
In the linearization, we rely on two principles: (1) we store values and keys together,
so that they are likely located at the same cache line, and (2) we store all entries
of a node together, even though our search is a depth-first search (cf. Section 4.4).
Arising from this, we implemented two different linearization strategies, which are
(1) separate arrays for pointers and values, and (2) storing each path of Elf from root
to a node adjacent to each other.

Separate Value and Pointer Arrays

An intuitive idea to accelerate processing is to store values and pointers in separate
arrays, because if a value does not match, we also do not need the corresponding
pointer in the caches. This layout also supports the usage of SIMD, as we could
compare several values with the given bounds in one step. Unfortunately, this layout
gives only comparable or slightly worse performance – even when used with SIMD.
The problem is that we incur an additional memory reference if a value matches.
Since multi-column selection predicates mostly use range predicates matching several
values instead of only one, this impact even worsens.

1This visualization is not correct according to the definition of the two’s complement, but allows
us to visualize the end of the list while displaying the original value. In our implementation, we use
bit masks to set, unset, and test the most significant bit to determine whether we reached the end
of a list.

38 4. Elf as Multi-Column Selection Predicate Index

Adjacent Path Storage

Our current implementation puts all elements of a DimensionList in consecutive
storage. As a result, the scan on a DimensionList is accelerated, but following the
path up to the leaves still causes a possible cache miss per DimensionList. The
alternative to store whole paths (or sub-paths) adjacently causes one cache miss per
walk over another path. Thus, only for highly selective workloads this linearization
makes sense. However, in-depth evaluations show no significant benefit over our
described linearization strategy.

4.3 Storage Optimizations for Elf

Considering the structure of Elf depicted in Figure 4.2, we can further optimize two
conceptual inefficiencies. First, since the first list contains all possible values of the
first column, this list can become very large, resulting in an unnecessary performance
overhead. Second, the deeper we descend in Elf, the sparser the nodes get, which
results in a linked-list-like structure in contrast to the preferred bushy tree structure.
For both inefficiencies, we introduce as solutions: a hash map for the first column
and MonoList for single-element lists.

4.3.1 Hash Map to Deal With the First DimensionList

The first DimensionList contains all distinct values of the first column, including
pointers that indicate where the next list starts. As a result, we have to sequentially
scan all these values until we find the upper boundary of the interval defined on the
first column. This, however, results in a major bottleneck and renders the approach
sensitive to the number of inserted tuples instead of the number of columns. However,
due to the applied compression scheme and prefix redundancy elimination, the first
DimensionList has three properties that allow us to store only the pointers in the
form of a perfect hash map2. As keys of the hash map, the dimension values are
used and as the hash map values, the pointer to the referenced DimensionList of
the second column is used. We now discuss the three properties of the values in the
first DimensionList that lead to a perfect hash-map property.

Uniqueness. Due to prefix redundancy elimination within Elf, all dimension values
in every list are unique.

Denseness. Due to the order preserving dictionary compression of the data, all
integer values between 0 and the maximum value of that column exist3.

Ordering. By definition, all values within a DimensionList are ordered.

As a result, the first DimensionList contains available integer values between [0,max],
which are stored in an ordered manner. We depict the resulting Elf for the first column

2With perfect hash map, we mean that we can represent the hash map as a dense array, where
the keys represent the array positions.

3Our hash map also works in case the data is not dense. Then, we use a special pointer directly
indicating that for this value there is no data, effectively being a null pointer.

4.3. Storage Optimizations for Elf 39

with the value range [0, 7] in Figure 4.4 (upper part). The primary observation is that
we can compute the position of the pointer to the next list by simply multiplying the
value by 2 and incrementing the result. Consequently, we could also omit the values
and only store the pointers, as shown in the lower part of the figure. Hence, we can
directly use the values as keys to the pointers of the first column like in a hash map.
In order to determine the start and end points of a query interval on the first column,
we take the query interval and identify the respected pointers. This way, we remove
the deterioration of the first DimensionList and furthermore, require only half of
the storage space for it.

0 [P0] 1 [P1] [P2] 3 [P3] 4 [P4]ELF[00]
without
hash map

0 91 2 3 4 5 6 7 8
(1)

2 5 [P5] 6 [P6] 7 [P7]

10 11 12 13 14 15

[P0] [P1] [P2] [P3] [P4]ELF[00]
with
hash map

0 1 2 3 4 5 6 7
(1)

[P5] [P6] [P7]

Figure 4.4: Hash-map property of the first DimensionList

4.3.2 MonoList: One-Element List Elimination

A main challenge of our data structure is that the lists get shorter the further the
search descends into an Elf. Notably, there is a level where only one-element lists exist.
That means, there are no more prefix redundancies that can be exploited. We display
this issue for the TPC-H Lineitem table of scale factor 200 with all 16 attributes
resulting in a 16-level Elf in Figure 4.5. The plot shows that at dimension 11 the prefix
of each data item has become unique and each data item is now represented with its
own path in the Elf. This leads to one linked list per data item, where each entry is
a DimensionList with only one entry. The result of those one-element lists is that
the remaining column values of each data item are scattered over the main memory
and we need to additionally store pointers to these values, although branching is
not necessary anymore. This phenomenon destroys the caching performance and
unnecessarily increases the overall size of Elf. To overcome this deterioration, we
introduce MonoLists. The basic idea of these MonoLists is that, if there is no prefix
redundancy, the remaining column values of this tuple are stored adjacent to each
other, similar to a row-store, to avoid jumps across the main memory.

In Figure 4.6, we depict the resulting Elf with MonoLists shown in gray and in Fig-
ure 4.7 the respective memory layout. Note that the MonoList can start at different
dimensions and thus, it totally removes the deterioration of one-element lists. To
indicate that there is a MonoList in the next column, we utilize the most significant
bit of the pointer of the respective DimensionElement in the same way as we mark
the end of a DimensionList. Thus, we depict such a pointer in the same way, by
using a minus in front of the pointer in Figure 4.7. In the example, there are two
MonoLists for C3 and C4 and a third one covering C2, C3, and C4 for T3.

40 4. Elf as Multi-Column Selection Predicate Index

l
sh

ip
da

te
l

qu
an

ti
ty

l
sh

ip
m

od
e

l
sh

ip
in

st
ru

ct
l

re
tu

rn
fla

g
l

di
sc

ou
nt

l
lin

es
ta

tu
s

l
co

m
m

it
da

te
l

re
ce

ip
td

at
e

l
ex

te
nd

ed
pr

ic
e

l
ta

x
l

co
m

m
en

t
l

or
de

rk
ey

l
pa

rt
ke

y
l

su
pp

ke
y

l
lin

en
um

be
r

0 %

20 %

40 %

60 %

80 %

100 %

P
er

ce
n
ta

ge
of

1-
E

le
m

en
t

L
is

ts

Figure 4.5: Percentage of 1-element lists per dimension for the TPC-H Lineitem

table with scale factor 100

1 2

0 1
Column C1

Column C2

(1)

(2) (3)

0 T21 T1 0

0 0 T3 1

Column C3

Column C4
(5) 0(4) +

Figure 4.6: MonoList (visualized as gray DimensionLists) for optimized cache
performance and storage utilization

In Figure 4.7, we depict the optimized storage layout of the Elf for the example data
from Table 4.1 using the MonoList and the hash map optimization. In comparison
to the initial layout in Figure 4.3, we observe a decrease in storage consumption and
a better adjacency of values in later columns. Even for this toy example, we decrease
storage consumption by almost 30 %. We give more insights into worst case storage
consumption in the Section 4.3.3.

[02] -[12] 1 -[6] -2 -[9] 0 1ELF[00]

ELF[20]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

T1
(5)

0

0 10 T2ELF[10]
(3)

0 T3

Figure 4.7: Optimized memory layout

4.3.3 Worst Case Storage Consumption

Storage consumption remains an important issue due to limited main-memory capaci-
ties and better cache utilization for smaller storage and index structures. We examine

4.4. Searching in Elfs 41

worst case storage consumption to give an upper limit for our novel structure to
show its potential. For Elf, we can construct a worst case scenario analytically. In
the first DimensionList, worst case means that there are only unique keys. Thus,
there is no prefix redundancy elimination resulting in k pointers to be stored, where
k is the number of points in the data set. Notably, this does not cause any overhead
compared to the normal storage of values, because of the hash map property. For
the other columns, we have two cases:

1. We can perform a prefix reduction of the column value: Then, we store the
pointer to the next level and one value representing m values, reducing the
storage consumption to 2/m.

2. We find a MonoList: Then, we need to store the attribute values and the TID
of the data item.

Worst case means that for each point, we immediately start a MonoList after the first
column, because with a prefix reduction, we achieve a better storage consumption4.
The worst case leads to storage of one additional value per data item. The additional
value is the TID, which would not be stored in the original row or column store
representation as it is encoded implicitly based on the offset from the beginning of
the array.

As a result, the maximum storage overhead per data item depends on the number
of indexed columns n of the data set and decreases with an increasing amount of
columns (cf. Table 4.2). It is computed as follows: overhead(n) = (n+ 1)/n.

Number of columns 1 2 3 4 5 6
Storage overhead 2.00 1.50 1.33 1.25 1.20 1.17

Table 4.2: Upper bound storage overhead

As this worst case is very unlikely, we expect even light compression rates for most
data sets. Hence, the actual storage size of Elf is an analysis target in our evaluation
section.

4.4 Searching in Elfs
After introducing the conceptual design and some optimizations of Elf, we now
present our search algorithms to execute multi-column selection predicates in Elf.
The search algorithm consists of several functions, each one depending on the node
that is searched in (hash map, DimensionList, MonoList). Afterwards, we outline
a simple heuristic that will be used in the evaluation to find a good column ordering.

4.4.1 Search Algorithm

In the following, we present the algorithm to evaluate a multi-column selection
predicate within Elf, based on our definition from Section 2.1.2. The algorithm
mainly consists of three functions: SearchMCSP, SearchDimList and SearchML.

4Nodes with two elements lead to the same storage consumption as a MonoList due to the
pointers. Both cases are equivalent for our worst case consideration.

42 4. Elf as Multi-Column Selection Predicate Index

Result: L Resultlist
1 SearchMCSP(lower, upper){
2 L← ∅;
3 if (lower[0] ≤ upper[0])then

// predicate on first column defined

// exploit hash-map

4 start← lower[0]; stop← upper[0];

5 else
6 start← 0; stop← max {C1};
7 end if
8 for (offset← start to stop)do
9 pointer ← Elf[offset];

10 if (noMonoList(pointer))then
11 SearchDimList(lower, upper, pointer, col ← 1, L);
12 else
13 L← L+SearchML(lower, upper, unsetMSB(offset), col← 1, L);
14 end if

15 end for
16 return L;

17 }

Algorithm 1: Search multi-column selection predicate

SearchMCSP Algorithm

The first function SearchMCSP, depicted in Algorithm 1, is executed once in order
to evaluate a multi-column selection predicate. It returns a list L of TIDs for each
tuple in accordance with the multi-column selection predicate. Two arrays define
the multi-column selection predicate containing the lower and upper boundaries of
the (hyper) rectangle. Moreover, this function evaluates the first DimensionList

exploiting its hash-map property (Line 3-5), in case C1 is part of the multi-column
selection predicate. Otherwise, in case of a wildcard for this column, the boundaries
for evaluation are set to 0 and maximum of Column C1. We have to check for each
value whether the next DimensionList is a MonoList. Based on this check, we either
call the function to evaluate a MonoList or a normal DimensionList (Line 10-14).

SearchDimList Algorithm

The second function SearchDimList, depicted in Algorithm 2, evaluates a predicate
on a single DimensionList. The function has two more input parameters besides
the lower and upper boundaries. This function also needs the start offset of the
current DimensionList within the Elf (startlist) and the current column (col).
The start offset directly marks the position of the first (and smallest) value in that
DimensionList (Line 3). In case there is a predicate defined on this column, we
start scanning the single values until we either reach the end of the list (Line 17)
or we find a first value that is larger than the upper boundary of the query interval.
Remember that the values are ordered, which allows us to abort the evaluation
of that particular list. Whenever we find a value within the predicate boundaries,

4.4. Searching in Elfs 43

1 SearchDimList(lower, upper, startlist, col, L){
2 if (lower[col] ≤ upper[col])then
3 position← startList;
4 do
5 if (isIn(lower[col], upper[col],Elf[position]))then
6 pointer ← Elf[position+ 1];

// start of next list in col+1

7 if (noMonoList(pointer))then
8 SearchDimList(lower, upper, pointer, col + 1, L);
9 else

10 L← L+SearchML(lower, upper, unsetMSB(pointer), col + 1,
L);

11 end if

12 else
13 if (Elf[position] > upper[col])then
14 return;// abort

15 end if
16 position← position+ 2;

17 while (notEndOfList(Elf[position]));

18 else
// call SearchDimList or SearchML with col + 1 for all

elements

19 end if

20 }

Algorithm 2: Scan a DimensionList within an Elf

44 4. Elf as Multi-Column Selection Predicate Index

we propagate the evaluation of the multi-column selection predicate to the child
DimensionList (Line 5-12). This results in a depth-first search, because we evaluate
the child DimensionList before evaluating the next value by incrementing the
position (Line 16). We decided on a depth-first search to make use of the program
stack and, as the first column is handled by SearchMCSP, we benefit from the curse
of dimensionality as the sparsity of the created spaces results in relatively low hit
rates. Thus, on average, we are able to scan large parts of a DimensionList located
in a small cache window without propagation to the next column. Consequently, the
Elf search algorithm is optimized for low selectivity-rate workloads, as it is common
for tree-based structures. For other query workloads, returning large parts of the
data set, we would favor optimized full-table scans anyway.

SearchML Algorithm

The last function depicted in Algorithm 3 is SearchML, which evaluates a MonoList.
Since MonoLists store the data of several columns in an array-like structure, we
iterate through the array comparing each value with its corresponding lower and
upper bound (cf. Line 4). If the value is not inside the query boundaries, the tuples
of the MonoList do not satisfy the query. Hence, we can directly return.

If all values of the MonoList lie inside the query boundaries, the TID(s) of the
MonoList have to be added to the result (cf. Line 8-12). Note that we use the same
trick as for DimensionLists to mark the end of a TID list.

1 SearchML(lower, upper, startlist, col, L){
2 for (curCol← col to NUM COLs)do
3 if (lower[curCol] ≤ upper[curCol])then
4 if (!isIn(lower[curCol], upper[curCol],Elf[startlist+ curCol −

col]))then
5 return;// tuple does not qualify

6 end for
7 position← NUM COLs− col;
8 while (notEndOfList(Elf[position]))do

// Handle duplicates

9 L← L+ Elf[position];
10 position← position+ 1;

11 end while
12 L← L+unsetMSB(Elf[position]);

13 }

Algorithm 3: Scan a MonoList within an Elf

4.4.2 Selection of the Column Order

One important aspect of building an Elf is the order of columns, because it influences
search time as well as storage consumption. To this end, we propose a simple heuristic
that is used to determine a column order.

4.5. Empirical Evaluation 45

First results indicate that the pruning power is the most important parameter. In
fact, it defines how many lists are traversed which has the highest performance
impact (similar to number of cache lines read). Due to this fact, Elf’s columns
should be ordered according to their usage in queries, because the whole workload
will benefit from it. Hence, the first column should be the most commonly used in
the queries, e.g., a time dimension. The following columns are sorted in ascending
order of their usage in queries. In the case that two columns are used in the same
amount of queries, they are ordered by their selectivity. Due to this heuristic and
the prefix reduction in the first columns, the data space is fast divided into sparse
regions. Hence, we benefit from an early pruning of the search space.

4.5 Empirical Evaluation

We conduct several experiments to gain insights into the benefits and drawbacks of Elf.
In total, we execute four different experiments ranging from micro-benchmarking Elf,
to a comparison of stand-alone selection approaches against Elf, up to a comparison
in a real main-memory database system (MonetDB):

Experiment 1: We start with evaluating the impact of our MonoList optimization.
Here, we are interested how much storage space is saved when using our
MonoLists and how it compares to storing the data in a tabular fashion.

Experiment 2: In Experiment 2, we evaluate the query performance of Elf on real-
world selection predicates, such as those from the TPC-H benchmark queries.
For this experiment, we select highly potent competitors from literature that
did our evaluation in a similar fashion [LP13, SK13].

Experiment 3: In Experiment 3, we are interested in the scalability of our approach
compared to the other competitors. To this end, we execute the TPC-H queries
on different scale factors of data and show the distribution of speedups across
these scale factors.

Experiment 4: Our last experiment, deals with the question whether our results
also apply to a whole query engine that uses Elf. Hence, we integrate Elf into
the well known main-memory database system MonetDB [BKM08] and execute
our queries once with Elf and once without Elf in MonetDB.

To ensure a valid comparison, all approaches are implemented in C++ and tuned to
an equal extent. The code of our evaluation is provided on the project website5. The
result of a multi-column selection predicate evaluation is a position list complying
to Definition 2.1. All experiments are single threaded to support an inter-operator
parallelism concept, which we deem best for OLAP workloads, except for the multi-
threaded BB-Tree variant (which we name BB-Tree-MT) using 32 threads. We
perform our experiments on an Intel Xeon E5-2630 v3 (Haswell architecture) with max.
3.2 GHz clock frequency, 20 MB L3 cache, and 1 TB RAM. Our SIMD optimizations
are implemented using AVX 2. In our evaluation, we present the response time for

5www.elf.ovgu.de

46 4. Elf as Multi-Column Selection Predicate Index

the selection predicates of each considered TPC-H query (scale factor s = 100). For
statistical soundness, we repeated every measurement 100 times and present the
median as robust averages.

4.5.1 Experiment 1: MonoList Storage Consumption

Although main-memory capacities increase rapidly, efficient memory utilization
remains important, because it is shared between all data structures (e.g., hash tables)
of the database system. In this micro-benchmark, we want to examine, first, whether
our worst-case storage boundaries for Elf from Section 4.3.3 hold. This upper bound,
however, is quite pessimistic. Thus, we are interested in empirical numbers of the
storage overhead for the TPC-H Lineitem table (s = 100). Second, we are interested
in how far this result is influenced by the usage of MonoLists, because they are an
essential optimization for our Elf for multi-dimensional data.

Raw Data Elf w/o
MonoLists

Elf with
MonoLists

0

20

40

S
to

ra
ge

in
G

B

Table 4.3: Storage consumption for Lineitem table

In Table 4.3, we display the storage consumption of the raw data, an Elf without
using MonoLists and an Elf with MonoList optimization. As visualized, the raw
data consumes about 36 GB, while the Elf without MonoList optimization consumes
52.03 GB and the fully optimized Elf consumes 25.55 GB of RAM. This is a remarkable
result, because the Elf is not only taking only 70 % of the raw data storage space, but
we could also clearly improve a severe deterioration of the conceptual Elf. In fact,
the optimized Elf consumes only half of the memory that the Elf without MonoLists
consumes. This can be explained by the high number of MonoLists especially in
deeper tree levels (cf. Figure 4.5). For instance, at level 9, we encounter around
114 million MonoLists, that save around 6 GB of pointers. Hence, the MonoList

optimization is worth using for sparsely populated spaces, because it does not only
save space, but also reduces the amount of cache lines that have to be fetched to
visit the TIDs. Notably, Elf stores the whole data set, which means that we do not
need to store the data additionally. Thus, we can even save space when using Elf
as a storage structure (one of the scenarios for our next evaluation), because all
information is directly available within the Elf.

4.5.2 Experiment 2: TPC-H Predicates and Data

In the following, we conduct an experiment using selection predicates from queries
of the TPC-H benchmark [Tra14], which our competitors performed in a similar

4.5. Empirical Evaluation 47

fashion [LP13, SK13]6. As competitors, we rely on accelerated full-table scans
and multi-dimensional index structures. As accelerated full-table scans, we chose
BitWeaving [LP13], as a technique working with a compressed data representation,
Column Imprints [SK13], a filter power with a bloom filter, and scans that are
generated using our adaptive reprogramming approach. As multi-dimensional index
structures, we use Sorted Projections, a multi-dimensional sorting of the data being
very similar to the Elf, and the BB-Tree, a kd-Tree with a fixed fanout and depth with
underlying bubble buckets that are sequentially scanned. For a detailed description
of the competitors, we refer to Section 7.1.

Elf Use Cases

This experiment answers the questions in how far our index structure Elf can
compete against hardware-sensitive scans that are compiled according to the adaptive
reprogramming approach and also against multi-dimensional competitors for real-
world queries of the TPC-H benchmark. For the comparison, we create Elfs for three
different use cases, which are called Elf, Elfred, and Elfmin.

Elf: In the first use case, we build Elfs over the full tables. Essentially, it represents
a scenario where Elf is used as a storage structure (i.e., storing the whole table),
which has the advantage that we do not need to store data in a redundant
storage format like row-wise or columnar storage and we even save storage
consumption (cf. Experiment 1).

Elfred: In the second use case, we built an Elf over the reduced set of columns that
are necessary for the whole query workload on the table. As a consequence, it
represents the scenario that we want to reuse one Elf for several queries and
build the Elf over the full set of needed columns in the queries. This scenario
needs all original data stored redundantly in their raw table format.

Elfmin: In the third use case, Elfs are built over the minimal set of columns per
query. In fact, it is the best case for query performance, but here we store
columns redundantly in different Elfs and also needs the underlying tables to
be stored redundantly.

Query Selection

We select queries having a multi-column selection predicate and additional ones
having a mono-column selection predicate, as summarized in Table 4.4. Notably, the
last two columns states where the columns with a predicate are located within the
full or reduced Elf and the minimal Elf, respectively. The first column number is
0 to emphasize that we can exploit the hash-map property for this column. The
column ColElfmin

is also important for our multi-dimensional competitors (BB-Tree
and Sorted Projection), because they will be built on the same column combinations.

6Other benchmarks, e.g., Starschema [OOC09] or TPC-DS [Tra15], could be used in a similar
fashion. However, due to the common use of the TPC-H benchmark, we restrict our evaluation to
this one.

48 4. Elf as Multi-Column Selection Predicate Index

Hence, both multi-dimensional index structures have the same potential as Elfmin by
only indexing the minimal amount of columns needed for a specific query.

The mono-column selection predicate queries are selected to explore the general
applicability (and limitations) of Elf for real-world workloads. To this end, we select
Query Q1,Q10, and Q14. The predicates for Q1 and Q14 are defined on the first
column. This means that the main cost factor for this query is traversing cold data
of the Elf variants in order to determine the respective TIDs. We choose these two
queries, because their selectivity differs significantly. By contrast, the predicate for
Q10 is defined on the fifth column, which is a different scenario than in our micro
benchmark, where we queried the whole prefix of the column order. In general,
we expect Elf performance to vary significantly across the three queries, as they
represent cases Elf is not designed for.

Since the accelerated full-table scans are sensitive to the number of queried columns,
we also include several multi-column selection predicate queries on different tables.
For Q19, we have two multi-column selection predicates on two different tables. The
first is defined on the Lineitem table (as indicated by the L prefix) and the second
is defined on the Part table. We refer to them as LQ19 and PQ19, respectively. The
column order for executing LQ19 starts from the second column in the full and reduced
Elf. Thus, we cannot exploit the hash-map property here and we are interested to
see the impact of it.

Query Q6 works on the Lineitem table and the predicates are defined on the first
two columns and the 6th column. Please mind that in the minimal column order,
the position of l quantity and l discount is swapped. This is due to the fact that in
the column order of the full and reduced Elfs, the l quantity is more often used in
queries and, thus, has a higher overall impact giving it a higher rank. In contrast for
query Q6 alone, l discount has a better selectivity than l quantity (i.e., Sell discount <
Sell quantity) and, hence, should be at a higher position in the column order.

Furthermore, Q17 addresses the Part table and the predicate is defined on the first
and second column with a rather low selectivity factor. Hence, we expect good
results for all of these queries using Elf, because only a fraction of data is retrieved.
Moreover, we expect to verify the superiority of state-of-the-art approaches for theses
queries regarding the baseline of a full-table scan.

While the last three queries contain real multi-column selection predicates, Query
Q1 only contains a single column selection predicate. Although our work mainly
focuses on accelerating multi-column selection predicates, we are still interested in
the performance of our Elf in comparison to the competitors. However, we do not
expect to outperform the state-of-the-art approaches for Q1 as it represents a query
that our approach is not designed for.

In the following, we depict the values for the selection predicates of the TPC-H
benchmark with its order-preserving dictionary-compressed data. We generate 100
random predicates by varying selection predicate parameters according to the TPC-H
specification and compute the median response time to assure robust measurements.

4.5. Empirical Evaluation 49

example Sel predicate columns ColElf/ ColElfmin

in % ColElfred
Q1 98.0 l shipdate 0 0
Q10 24.68 l returnflag 4 0
Q14 1.3 l shipdate 0 0

Q6 1.72 l shipdate, l quantity, l discount {0,1,5} {0,2,1}
LQ19 1.4 l quantity, l shipmode, l shipinst. {1,2,3} {2,0,1}
Q17 0.099 p brand, p container {0,1} {1,0}
PQ19 0.083 p brand, p container, p size {0,1,2} {0,1,2}

Table 4.4: Query details for mono and multi-column selections

4.5.2.1 Mono-Column Selection Predicate Queries

In this section, we discuss the response times for the for mono-column selection
predicates Elf and its competitors. We start by comparing our Elf scenarios against
accelerated full-table scans including BitWeaving, Column Imprints and a scan
generated for each query using our adaptive reprogramming approach. Afterwards,
we discuss our result for Elf’s performance in comparison with the multi-dimensional
competitors BB-Tree and Sorted Projection.

Q1 Q10 Q14
1

101

102

103

104

105

S
IM

D

P
re

d
ic

at
ed

S
IM

D

S
el

ec
ti

on
T

im
e

in
m

s

ARScan BitWeaving Column Imprints
Elf Elfred Elfmin

Figure 4.8: Query response times of Elf and accelerated full-table scans for mono-
column TPC-H queries (s = 100)

Elf vs. Accelerated Full-Table Scans

In Figure 4.8, we depict the results for the mono-column selection predicates in
a logarithmic plot. For query Q1 and Q10, all accelerated full-table scans perform
similar, however for Q14, adaptive reprogramming generates a SIMD scan that
outperforms the other accelerated full-table scans by a factor of 3-4. The SIMD scan
performs best for Q1 and Q14, while a predicated version is best for Q10 due to its
medium selectivity.

Considering the performance of Elf, we observe high differences regarding the three
queries in comparison to the competitors. For Q1 returning 98 % of the tuples of
the Lineitem table, Elf is clearly outperformed by all accelerated full-table scans.

50 4. Elf as Multi-Column Selection Predicate Index

Even Elfred and Elfmin are slower than the accelerated full-table scans. By contrast,
for Q10, where the selection column is the fifth column, using the Elfred results
in a better response time than the accelerated full-table scans. However, the Elf
containing all columns is by a factor of 2.7 slower than the predicated scan. Reasons
for this behavior are the high selectivity of Q1, the moderate selectivity of Q10 and
the fact that the selection predicate in Q10 is at the fifth dimension. This forces Elf
to follow a majority of paths. Therefore, we cannot and do not intend to compete
with optimized full-table scans in this scenario.

Considering Q14, all Elf variants outperform the accelerated full-table scans. In fact,
we reach a performance improvement by a factor of 2.7, 10, and 12 against the SIMD
scan for this highly selective query when using Elf, Elfred, and Elfmin respectively.
From our point of view, this is a remarkable result, because our approach is designed
and optimized for multi-column selection predicates. However, in Query Q14, we
benefit from the hash-map property, a low selectivity factor, and the fact that the
selection column is at the first instead of the fifth level, as in Q10.

Q1 Q10 Q14
1

101

102

103

104

105

S
el

ec
ti

on
T

im
e

in
m

s

BB-Tree BB-Tree-MT Sorted Proj.
Elf Elfred Elfmin

Figure 4.9: Query response times of Elf and multi-dimensional index structures for
mono-column TPC-H queries (s = 100)

Elf vs. Multi-Dimensional Index Structures

In Figure 4.9, we depict the results for the mono-column selection predicates for the
multi-dimensional competitors in comparison to Elf. Notably, we build the BB-Tree
(including its multi-threaded version BB-Tree-MT using 32 threads) and Sorted
Projection over the minimal set of columns with the same column order as Elfred.

In general, the BB-Tree is outperformed by Sorted Projection and the Elf variants
for all mono-column selection predicates. Interestingly, the multi-threaded version
using 32 threads has an improvement of a factor of 2-3, while it performs even 30 %
worse for Q10.

For all mono-column selection predicate queries, Sorted Projection performs better
than Elf but worse than Elfred and Elfmin. The benefit of Elf is that the prefix
redundancy elimination allows to touch less memory locations than Sorted Projection,
but skipping over the cold data diminishes this benefit. Thus, only the smaller Elfs
constantly outperform Sorted Projection by a factor of 2 (Elfred) and 2.5 (Elfmin).

4.5. Empirical Evaluation 51

4.5.2.2 Multi-Column Selection Predicate Queries

Since Elf has shown remarkable performance benefits even for some mono-column
selection predicates, we assume an even better behavior for multi-column selection
predicates. In the following, we again first compare Elf with the accelerated full-table
scans and afterwards with its multi-dimensional competitors.

Elf vs. Accelerated Full-Table Scans

For the adaptive reprogramming approach, all multi-column selection predicate
queries work best with a SIMD scan using bitwise AND for the predicates (cf. Fig-
ure 4.10). Overall, SIMD benefits here from reusing the comparator elements and
also combining intermediate results in SIMD. This has already shown beneficial
for compiled aggregation pipelines [BMS17] and also applies to selections. The
superiority of the bitwise AND is due to our SIMD acceleration whose branching AND

is only helpful in case the first predicate is highly selective. However, this is not the
case for these predicates, as only their combination is highly selective. Hence, in this
case, a bitwise AND is the best option.

In contrast to mono-column selection predicates, we observe Elf’s superiority for all
multi-column selection predicate queries. In particular, all Elf variants deliver the
fastest response times for every query compared to the full-table scans. Moreover,
we observe a stable performance increase between a factor of 3 and 4 when using
Elfred as compared to a full Elf. An in-depth analysis reveals that this correlates to
the difference in size of both variants.

However, the performance gain of our approach over the accelerated full-table scans
varies widely. For the Lineitem selection predicates of Query Q19(LQ19) and Q6, we
observe the smallest performance gain compared to the fastest accelerated full-table
scan (adaptive reprogramming), which is between a factor of 2 and 4. By contrast,
the largest performance gain is measured for the queries with the smallest result sizes:
Q17 and PQ19 (cf. Table 4.4). It is in the order of almost two orders of magnitude
compared to the adaptive reprogramming scan.

Q6 LQ19Q17 PQ19
0.01

0.1

1

101

102

103

104

S
IM

D
+

&

S
IM

D
+

&

S
IM

D
+

&

S
IM

D
+

&

S
el

ec
ti

on
T

im
e

in
m

s

ARScan BitWeaving Column Imprints
Elf Elfred Elfmin

Figure 4.10: Query response times of Elf and accelerated full-table scans for multi-
column TPC-H queries (s = 100)

52 4. Elf as Multi-Column Selection Predicate Index

The results of this experiment reveal that the major cost factor is the accumulated
selectivity, as we achieve the largest speedups for the queries with the lowest selectivity.
This is consistent with the results from the mono-column selection predicates. The
additional improvements using the Elfred and Elfmin also seem plausible as they
directly correlate to the difference in size between Elf and Elfred as well as Elfmin.
Hence, determining the required columns is an important factor to fully exploit the
potential of Elf.

According to our results, the performance gain also depends on the column order.
This is especially observable for Q6 and LQ19, which have a similar selectivity, but
the selection predicates are defined on different columns. In fact, to evaluate Q6, we
have to traverse the Elf until the sixth column (the last column with a predicate)
in order to exclude last parts of the tree, while we pruned the remaining Elf to
the final set of paths after the fourth column for LQ19. This explains the different
speedups of both queries. Interestingly, the response times of LQ19 (multi-column)
and Q14 (mono-column), whose selectivities are similar, are comparable, indicating
the consistency and stability of our approach and cost model.

Elf vs. Multi-Dimensional Index Structures

When comparing the performance of the multi-dimensional competitors with the
accelerated full-table scans, we can see that especially for query Q17 and PQ19 the
BB-Tree and Sorted Projection perform by a magnitude better than BitWeaving,
Column Imprint and SIMD scans. However, for the other two queries, the SIMD scan
generated by adaptive reprogramming can even outperform the BB-Tree and Sorted
Projection. Notably, the multi-threaded version of the BB-Tree does only give a
performance improvement of a factor of 2-3 for Q6 and LQ19 and only 30 - 70 % for Q17
and PQ19. The small benefit for the part table queries comes probably from the small
size of the table. Hence, we cannot recommend to use the multi-threaded version
for this little amount of data. Comparing Sorted Projection and BB-Tree, for the
queries on the Lineitem table, Sorted Projection can outperform the single-threaded
BB-Tree but Sorted Projection is outperformed by the multi-threaded version. For
the queries on the Part table, both BB-Tree versions outperform Sorted Projection.

Q6 LQ19Q17 PQ19
0.01

0.1

1

101

102

103

104

S
el

ec
ti

on
T

im
e

in
m

s

BB-Tree BB-Tree-MT Sorted Proj.
Elf Elfred Elfmin

Figure 4.11: Query response times of Elf and multi-dimensional index structures for
multi-column TPC-H queries (s = 100)

4.5. Empirical Evaluation 53

As a side note, we expected BB-Tree to perform by an order of magnitude better
compared to its competitors (especially accelerated full-table scans). While its former
evaluation setup (cf. Sprenger et al. [SSL19]) included around the same dimensionality,
it however had a much higher cardinality of different column values. As stated in
their paper, the BB-Tree has some deficiencies with low cardinality data. Especially
for the sampling-based column ordering, low cardinality columns represent a threat.
Hence, there is a need for further research to optimize the BB-Tree for our workload
of TPC-H data and queries.

Similar to the results against accelerated full-table scans, Elf can outperform its
multi-dimensional competitors by at least a factor of 3. In the best case, the full Elf
gives a performance benefit by a factor of 14 (PQ19) compared to the multi-threaded
BB-Tree. Considering the minimal Elfs, the performance improvement for PQ19 adds
up to a factor of 55. Notably, this is a remarkable result as Elf does outperform its
multi-dimensional competitors even with a higher factor than for the mono-column
selection predicate queries.

4.5.3 Experiment 3: Selection Time Scaling

In this experiment, we investigate how the selection time of Elf scales. Our hypothesis
is that Elf scales with a smaller linear factor, e.g., in case one doubles the amount of
data, the selection time increase is less than factor two. The rationale is that, when
the data size increases while keeping column cardinalities the same, the data space is
more densely populated. Therefore, we observe more beneficial prefix redundancy
eliminations in Elf. This would be a valuable property of Elf, because full-table scans
(including optimized ones), by concept, scale with a factor of 1. In addition, other
tree-based approaches, such as the BB-Tree, probably face issues reaching a linear
scaling [SGS+13].

A
R
Sc

an

BitW
ea

vi
ng

Col
um

n
Im

pr
in

t

BB-T
re

e

BB-T
re

e-
M

T

So
rt
ed

Pro
j.

Elf

Elf r
ed

Elfm
in

0.5

1

1.5

2

S
el

ec
ti

on
T

im
e

S
ca

li
n
g

R
at

io

Figure 4.12: Selection time scaling ratios for all approaches

54 4. Elf as Multi-Column Selection Predicate Index

To investigate the validity of this hypothesis, we conduct the following experiment:
We select two pairs of TPC-H scaling factors (ssmall, slarge) such that 2× ssmall = slarge
holds. That is, the data size is doubled. In particular, we use (50, 100) and (100, 200).
For each pair, we determine the selection time tqs for both scaling factors and all
three mono-column selection predicates as well as the four multi-column selection
predicate queries having seven queries in total: q with 1 ≤ q ≤ 7 (cf. Section 4.5.2).
Then, we compute the selection time scaling ratio per query as division of tqslarge and
tqssmall

normalizing by the data size increase, i.e., factor 2. As a result, a selection
time scaling ratio of 1.0 indicates that the approach scales linearly for this query
and scaling factor pair. In turn, a value observably smaller than 1.0 suggests a lower
scaling. To confirm our hypothesis, we require that using Elf, on average considering
all 14 measurements, results in a selection time scaling ratio below 1.0.

In Figure 4.12, we visualize the results for each approach. We observe that all
full-table scans (i.e., ARScan, BitWeaving. and Column Imprint) scale linearly as
expected. The overall result pattern is another indicator stating the validity of our
experimental results in general. This is because all (optimized) full-table scans scale
in a linear way with almost no deviation. Considering the BB-Tree, the serial variant
performs worse when increasing the data size. This is probably due to an insufficient
splitting due to the small cardinality columns and hence, overfull bubble buckets.
The multi-threaded version shows a wide range of scaling factors. This is due to
the difference in our queries. In fact, queries with a small selectivity lead to a small
number of bubble buckets that are searched in parallel. Hence, parallelism does not
pay out in this case.

Interestingly, we also observe, on average, a linear scaling for Sorted Projections
being conceptually the most similar approach to Elf. However, the scaling of Elf is
different. First, with 1.012 there is only one measurement where the selection time
scaling ratio is slightly larger than 1.0. On average the selection time scaling ratio is
0.899 with σ = 0.091, i.e., the scaling ratio is observably smaller than 1.0. To this
end, we confirm that Elf scales with a lower linear scaling factor than 1. Looking at
the scaling factor of Elfred, we see that the median is slightly lower than for the full
Elf. However, scaling factors also have a higher deviation of σ = 0.11. The difference
between Elf and Elfred can be explained by two facts. First, the difference in depth
(i.e., indexed columns) between both Elfs varies drastically and, hence, the possibility
of exploiting a prefix-redundancy increases (cf. Section 4.3.3). Our experiments show
that, although we double the number of tuples, Elf’s storage consumption is only
increased by a factor of 1.91. This is also visible for Elfmin, where the number of
inserted tuples has the highest impact on performance scaling. However, due to the
reduced set of indexed columns, Elfmin exploits less prefix redundancies compared to
the length of paths. For example, the minimal Elfs for the mono-column selection
predicates have a similar size and structure as the corresponding Sorted Projections
(which scale by a factor of 1). Hence, Elfmin also scales with a factor closer to 1.

4.5.4 Experiment 4: TPC-H Predicates in MonetDB

In this experiment, we want to find out whether a full-fledged system with hardware-
sensitive full-table scans is able to outperform Elf. For this experiment, we integrated
Elf into MonetDB and ran the same queries once with the built-in full-table scans

4.5. Empirical Evaluation 55

and once with the built Elfs for the selections. In the latter case, MonetDB maps
queries to Elf traversals and Elf results are expressed as a BAT7. A more detailed
description of the integration into MonetDB and the impact on query execution and
intermediate result combination is given in Chapter 5.

Experimental Setup

For this experiment, we load the dictionary-compressed TPC-H data (s=100) into
MonetDB8. Our queries follow the TPC-H specification in the sense that they use
the same predicates as their original queries. However, we only use one table per
query (thus excluding joins) and our result is not the materialized table but the
count of qualifying tuples. As a consequence, our results are free of intermediate
result combination and interference with other operators. We also checked the final
projection of the resulting count value and both MonetDBs scan queries and our
queries with integrated Elfs incur comparable overhead for creating the final result.
The impact of Elf on the full-fledged query engine is examined in Chapter 5.

In the following, we first discuss the results for all mono-column selection predicates
and afterwards for all multi-column selection predicates that we already used in
Experiment 2 (cf. Section 4.5.2). Again, we create Elfs on the full table (called Elf),
Elfs for the minimal amount of columns for the table’s whole query workload (called
Elfred) and a minimal Elf for each query (called Elfmin). Column orders are the same
as in Experiment 2 (cf. Table 4.4).

4.5.4.1 Mono-Column Selection Predicates

In Figure 4.13, we show the performance of the three mono-column selection predicates
(Q1,Q10,Q14) comparing the response time of full-table scans in MonetDB with the
response times of different Elfs integrated in MonetDB. In general, MonetDB’s scans
perform similar for all mono-column selection predicates. The difference between the
response times of the queries is caused the by costly result materialization which is
the same for both, Elf and scans.

Overall, the scans outperform Elfs that are built over the whole Lineitem table if
the selectivity factor is moderately or high (i.e., SelQ1=98 % & SelQ10=24.68 %). In
contrast, for queries with a low selectivity factor (i.e., SelQ14=1.3 %), even the full
Elf outperforms MonetDB’s scans. The reason is the combination of good pruning
capabilities with prefix-redundancy elimination. Hence, there is only a reduced set of
nodes in the full Elf touched, which is even less costly than scanning a single column.

When comparing the scans with the reduced and minimal Elfs, we see that all Elfs
outperform the scans by a factor between 2 and 5, which is in line with our previous
experiments. Interestingly, reducing the number of indexed columns in Elf gives a big
benefit (by a factor of 5-11), but cutting the indexed columns down to a minimum
adds only a marginal benefit on top (around 10 %).

The results in MonetDB are in accordance with Experiment 3, which shows the
validity of our experiments. MonetDB’s scans perform similar to accelerated full-table

7BAT: Binary Association Table – MonetDBs internal column and intermediate data structure.
8We integrated Elf into MonetDB 5 server of version 11.8.0. with 64 bit, 128 bit integer.

56 4. Elf as Multi-Column Selection Predicate Index

Q1 Q10 Q14
1

101

102

103

104

105

S
el

ec
ti

on
T

im
e

in
m

s

Scan Elf Elfred Elfmin

Figure 4.13: Query response times for mono-column TPC-H queries (s = 100) in
MonetDB

scans and the integrated Elf performs similar to the stand-alone implementation. The
difference is due to the interoperability between Elf and MonetDB’s query engine.
For example, our intermediate result, the list of TIDs, is transformed into a BAT,
which MonetDB uses for further processing.

4.5.4.2 Multi-Column Selection Predicates

In this experiment, we want to see how well MonetDB’s scans execute multi-column
selection predicates. MonetDB uses the intermediate results (a BAT of matching
entries) of subsequent scans in two ways. On the one hand, it is used as an upper
bound to estimate the size of the result vector of the next scan. Obviously, it is never
bigger than the result of the preceding scan. On the other hand, the intermediate
result is used to only touch and evaluate results that qualified the preceding scan.
With this property, MonetDB’s scans are superior to BitWeaving whose interface is
currently focusing on independent full-table scans and result merging using OR and
AND operations on bit maps.

Nevertheless, MonetDB’s scans cannot overcome the overhead of memory access
when compared to a multi-dimensional index structure such as Elf. For all queries,
the integrated full Elf reaches performance improvements by a factor of 3 up to a
factor above 300. Elfmin adds up to this with a maximum performance improvement
by a factor above 1500.

4.5.5 Result Summary

Based on the results of all our experiments, we have empirically shown the superiority
of our approach compared to several strong competitors.

Our MonoList optimization reduces the storage overhead by 50 % compared to an
Elf without MonoList and by 30 % compared to the raw data. In our performance
evaluation on queries of the TPC-H benchmark, we first compared the full Elf,
Elfred indexing all columns needed for the set of queries, and Elfmin indexing only
the necessary columns for a specific query against state-of-the-art accelerated full-
table scans and a scan generated using our adaptive reprogramming approach.

4.5. Empirical Evaluation 57

Q6 LQ19Q17 PQ19
0.1

1

101

102

103

104

S
el

ec
ti

on
T

im
e

in
m

s

Scan Elf Elfred Elfmin

Figure 4.14: Query response times for multi-column TPC-H queries (s = 100) in
MonetDB

Overall, adaptive reprogramming improves selection times against state-of-the-art
scans by several factors. Furthermore, all Elf variants show remarkable performance
improvements across a wide range of queries. Especially for highly selective queries,
the Elf variants outperform accelerated full-table scans up to more than an order of
magnitude. Only for queries with a single predicate with a medium selectivity, the
Elf variants are outperformed by accelerated full-table scans.

In our performance evaluation, we also compare Elf against Sorted Projections
and BB-Trees. Although both approaches are a reasonable competitor built on the
minimal set of columns for each query, they cannot reach the low response times of Elf.
Even the full Elf outperforms them on all evaluated multi-column selection predicates.
Only Sorted Projections outperform Elf for single predicate queries with a medium
selectivity. However, both Elfred and Elfmin outperform all its multi-dimensional
competitors by at least a factor of 1.6 up to a factor of 53 for s = 100 and our tested
TPC-H queries.

In our third experiment, we invested the impact of the data size on our index
structures and competitors. While the accelerated full-table scans double their
runtime when doubling the data, we have seen a different picture for Elf. The
full Elf slightly improves its runtime when increasing the data size due to a better
exploitation of prefix-redundancies. The scaling factor can even be improved by
Elfred due to its good ratio between columns used in the selections and its total size.
However, due to the small size (i.e., length of paths) of Elfmin, it does not scale better
than the other Elf scenarios. In fact, Elfmin scales similar to Sorted Projections with
a factor of 0.97.

At last, we compared Elf’s query performance for the same data and queries of
Experiment 2 in MonetDB. Overall, the results of this test confirm our previous
evaluation results. The Elf integrated in MonetDB can reach similar performance
improvements as in Experiment 2 when compared to MonetDB’s built-in highly-
optimized scans, which emphasizes the validity of our results.

58 4. Elf as Multi-Column Selection Predicate Index

4.6 Summary

In this chapter, we argue for multi-dimensional index structures to efficiently support
multi-column selection predicates as the answer to research question RQ 3. To this
end, we present the conceptual design of our multi-dimensional main-memory index
structure Elf that uses prefix-redundancy elimination, ordered node entries putting a
multi-dimensional ordering on the data, and a main-memory-optimized storage layout
for efficient traversal. After presenting the conceptual design and some optimizations
for Elf, we explain its search algorithm and a simple heuristic for ordering its columns.
We extensively evaluate Elf’s performance against our baseline, scans generated using
our proposed adaptive reprogramming approach, against state-of-the-art accelerated
full-table scans (BitWeaving and Column Imprints), against recent multi-dimensional
competitors (BB-Tree and Sorted Projections), and against MonetDB’s scans. In all
experiments, adaptive reprogramming is the best accelerated full-table scan and Elf
outperformed all competitors by several factors for highly-selective workloads. We
end this chapter with a detailed description of our competitors and related work.

5. Complex Selection Queries in
Elf-Supported Main-Memory
Database Systems

The overarching goal of this thesis is to provide an acceleration for a comprehensive
set of selections in relational main-memory database systems. This goal can be split
into two parts: accelerating arbitrary selections, and accelerating the runtime of the
whole SQL query due to improved selection performance.

So far, we investigated the suitability of Elf for dictionary-compressed values executing
mono and multi-column selection predicates, which provides the basic set that an
SQL engine should support. However, SQL does not only support selections on
single values (i.e., constants), but also with a list of constants (IN-predicates) and
also comparing sets of values (i.e., a comparison of values of two columns)1 [ISO99].
To reach a comprehensive selection support in Elf, we have to extend its capability
to execute column-column comparison and IN-predicates. As a positive side result,
we also support the majority of TPC-H queries. As a consequence, our Elf is now
able to accelerate a similar set of selection predicates as usual scans, which allows to
comprehensively reach our goal of Level 2 by answering research question RQ 4.

Reaching reasonable performance boosts with a sort-based index structure for the
whole SQL query does not only concern the selection itself. Especially the interop-
erability between selection results and subsequent operators is an important issue
when considering query runtimes in a holistic manner. As a proof-of-concept for an
easy interoperability, we extended the well-known main-memory database system
MonetDB [BK99] to also support Elf as an additional index structure. To this end,
Elf can use MonetDB’s query facilities and dictionary compression to execute whole
TPC-H queries using Elf for selections. As a result of the this proof-of-concept, we
can answer the following research questions:

1Another important operation is a like-predicate. However, by exploiting a dictionary encoding
and supporting IN-predicates, we are able to efficiently support also like-predicates.

60 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

• Is it possible to integrate a multi-column index into a column store query
engine?

• What speedups can be expected when using a sort-based multi-column index?

• How can the incurred overhead of a sort-based structure be resolved?

Especially the last question arises, because Elf puts a multi-dimensional ordering
depending on the data, forcing TIDs to be possibly scattered. Hence, it also
impacts the runtime of subordinate operators that may incur random access due to
the selection result. Hence, the ultimate question to resolve this issue is whether
overheads are acceptable or a complete rebuild of the query engine is inevitable. To
this end, we investigate the improvement of scan performance and also performance
drawbacks for downstream operators in our evaluation section of this chapter. In fact,
the holistic evaluation of Elf in MonetDB allows to assess the whole contribution of
Elf to the field of main-memory database systems and to the goal of Level 2. It also
answers RQ 5.

In summary, we make the following contributions in this chapter:

• Concept and implementation of efficient algorithms for executing column-
column comparisons and IN-predicates

• Evaluation of performance impacts of different factors for column-column
comparisons and IN-predicates in several microbenchmarks

• Integration concepts for a multi-dimensional index structure into a main-
memory column store on the example of Elf and MonetDB

• Evaluation of performance benefits and drawbacks of using Elf in MonetDB
for a reasonable set of TPC-H queries

5.1 Complex Selection Predicates

The SQL standard allows for a variety of possibility to limit the tuples that qualify
for the result set. Apart from the possibility to connect different selection operators
with logical AND and OR, a single selection predicate can highly differ in its complexity.
Simple selection predicates include our multi-column selection predicates where the
column values are compared against a given constant. More complex selections
extend a selection to be checked against a list of constants (i.e., IN-predicates)
and comparing values of different columns for the same tuple (i.e., column-column
comparisons). Both complex selection predicates pose a big challenge for full-table
scans. Similar to multi-column selection predicates, a column-column comparison
needs to touch all tuples, but this time cache misses are incurred for all involved
columns. Hence, the more columns are involved, the higher the overhead. Even
more severe, an IN-predicate usually incurs one scan per value in the list of values
of the IN-predicate. To overcome these issues, we investigate how to exploit Elf’s
properties of prefix-redundancy elimination and sorted node entries to accelerate
complex selection predicates beyond the potential of full-table scans.

5.1. Complex Selection Predicates 61

To this end, in this section, we explain how to exploit the crafty design of Elf to execute
column-column comparisons and IN-predicates. First, we give a broad overview
of the general idea of executing complex selection predicates in Elf. Afterwards,
we elaborate implementation details for each complex selection predicate and each
special type of nodes in Elf (i.e., hash map, DimensionList, MonoList).

5.1.1 Column-Column Comparisons

In comparison to usual selection predicate, where a constant is compared to all
values of a column, a column-column comparison is more complex. A column-
column comparison is defined by a comparison operator θ between two columns with
θ ∈ {<,>,<=, >=,=, <>}. A necessary prerequisite is that the columns have the
same cardinality. Hence, columns of the same table can be compared early in the
query plan, while conceptually a comparison across tables is executed after joining
both tables.

0 101

0 4

0 1

0

Column C1

Column C2

Column C3

(4)

(1)

(2)

(5) (6)

(3)

0 T1

1 T3 Column C4

0 T4

1 T2(7) (8)

4

1 T5(9)

Figure 5.1: Prefix redundancy elimination in Elf for efficient evaluation of column-
column comparisons

Column-Column Comparisons in Elf

As an example to illustrate column-column comparisons in Elf, we visualize an Elf
built on five tuples with four columns in Figure 5.1. To accelerate column-column
comparisons, we can exploit the prefix-redundancy elimination property of Elf. Due
to the prefix-redundancy elimination, all values within a path down the tree have
the same values as prefix. Hence, if there is a column-column comparison predicate
between two columns, e.g., C1 <= C3, we can use the prefix of the nodes in level
C3 on deciding which values qualify the predicate. To allow for column-column
comparisons, the prefix of DimensionList L(6), marked in red, has to be saved
while traversing down the tree2. Upon reaching the deeper column in the tree on
which a column-column predicate is defined, in our case C3, we can compare its
values to the value of C1 in the prefix (which is stored at position 0 in the prefix).
For DimensionList L(6), the first and second DimensionElement qualify the given
predicate and we can even use early pruning if the current DimensionElement has a
bigger value than the prefix value it is compared against (of course, this works only
for the comparators <,<=, or =).

2Notably, storing the prefix of the traversal is also the straight-forward way to allow for an
efficient materialization of the query result.

62 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

Regarding the column order of Elf, a column-column comparison adds another
predicate type to be considered while optimizing the column order. In general, it
adds another a comparison with a usual selectivity to the heuristic. However, when
the column-column comparison does not comply with the column order (e.g., consider
the comparison C4 <= C3 <= C1), the predicates have to be transformed to follow
the given column order of the Elf (e.g., to a comparison of C1 > C3 > C4).

Notably, a column-column comparison is only executed when reaching the second
column that is part of the comparison. Hence, the first possibility to execute a
column-column comparison is on the second column and, thus, there is no special
code for the hash map.

Column-Column Comparison on a DimensionList

Since the execution of a column-column comparison is on the second column that is
part of the comparison, the code for traversing the hash map is the same as the code
in Algorithm 1. Hence, an actual processing of the column-column comparison is only
possible on a DimensionList or MonoList. We present the code that is executed on
a DimensionList in Algorithm 4.

The column-column comparison is encoded with three input parameters of the
function: colColSel, compOPs, compCols. The boolean array colColSel encodes
whether the current column is part of the comparison. The arrays compOPs and
compCols encode the comparison operator θ and the (previous) column that our
values have to be compared against, respectively. Another additional input parameter
of this function is the current path encoding the prefix of the current DimensionList
used for comparison.

The algorithm for executing a column-column comparison (cf. Algorithm 4) works
as follows. At first, the current column is checked upon the existence of a column-
column comparison (Line 2). If there is no column-column comparison on the current
column, we just follow the pointers of all DimensionElements. Otherwise, we have
to investigate the comparison operator of the column-column comparison (Line 3
and 18ff). In the shown case of equality, we check for each DimensionElement,
whether its value is equal to the value of the comparison column in the prefix. In
case of a match, we store the current value in the prefix for a prospective further
column-column comparison (Line 7) and call the respective function for the next
DimensionList (Line 10) or MonoList (Line 12). If there is no match and the current
value is bigger than its prefix, we can skip the remaining entries due to the property
of sorted node entries in Elf. Please mind that an early pruning is only possible for
the comparison operators θ ∈ {=, <,<=}. The other operators iterate till the end of
the list.

Column-Column Comparison on a MonoList

We show the pseudo code for evaluating a column-column comparison on a MonoList

in Algorithm 5. It is very similar to the code for executing a multi-column selection
predicate (cf. Algorithm 3). Since there is only a consecutive list of column values
in the MonoList, we iterate through them without any necessary jumps (Line 2).
For each DimensionElement, we append its value to the prefix (Line 3) and check

5.1. Complex Selection Predicates 63

1 ColColDimList(startlist, col, path, colColSel, compOPs, compCols, L){
2 if (colColSel[col])then
3 if (compOPs[col] = EQUALS)then
4 position← startList;
5 do
6 if (Elf[position] = path[compCols[col]])then
7 path[col] = Elf[position];

// remember current path

8 pointer ← Elf[position+ 1];
// start of next list in col+1

9 if (noMonoList(pointer))then
10 ColColDimList(pointer, col +

1, path, colColSel, compOPs, compCols, L);

11 else
12 L← L+ColColML(unsetMSB(pointer), col +

1, path, colColSel, compOPs, compCols, L);

13 end if

14 else if (Elf[position] > path[compCols[col]])then
15 return;// abort

16 position← position+ 2;

17 while (notEndOfList(Elf[position]));

18 else if (/* check other comparators */)then
// execute code from the If case above with the needed

comparison operator

// Please mind: early pruning is only possible for

EQUALS, LESS_THAN, LESSER_EQUALS

19 else
// call ColColDimList or ColColML with col + 1 for all

elements

20 end if

21 }

Algorithm 4: Column-column queries on a DimensionList

64 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

whether it is part of a column-column comparison (Line 4). If it is for example an
equality comparison, we check whether the current value and the column in the prefix
do not match (Line 6). In this case, we can return since the tuple(s) do not qualify
the predicate. Please mind for this execution, we have to negate the comparison
operator to stop iterating in case the predicate is not fulfilled. Otherwise, if all
predicates match, we extract the TIDs and add them to the result (Line 11-15).

1 ColColML(startlist, col, path, colColSel, compOPs, compCols, L){
2 for (curCol← col to NUM COLs)do
3 path[curCol] = Elf[startlist+ curCol − col];

// remember current path

4 if (colColSel[curCol])then
5 if (compOPs[curCol] = EQUALS)then
6 if (Elf[startlist+ curCol− col] != path[compCols[curCol]])then
7 return;// tuple does not qualify

8 else if (/* check other comparators */)then
// adapted code with the needed comparison operator

9 end for
10 position← NUM COLs− col;
11 while (notEndOfList(Elf[position]))do

// Handle duplicates

12 L← L+ Elf[position];
13 position← position+ 1;

14 end while
15 L← L+unsetMSB(Elf[position]);

16 }

Algorithm 5: Column-column queries on a MonoList

5.1.2 IN-Predicates

Another important complex selection predicate of SQL are IN-predicates. An IN-
predicate consists in our case of a list of attribute values and an equality or inequality
predicate. In case of an equality IN-predicate, we have to output those column values
that are contained in the list of attribute values. In case of an inequality IN-predicate,
all values that are not in the list of attribute values qualify the predicate.

IN-Predicate Evaluation in Elf

A straight-forward way of executing an IN-predicate in Elf is to issue one query per
IN-predicate and then merge (i.e., unite) the results. However, this would lead to v
traversals for a list of attributes with v entries. Furthermore, single traversals do
not exploit the Elf’s properties of prefix-redundancy elimination and ordered node
entries.

A more sophisticated execution of an IN-predicate is to execute a merge join between
the list of attribute values and the values of the DimensionList. To this end, we
first sort the values of the list and then step-wise compare the values with the values

5.1. Complex Selection Predicates 65

0 101

0 4

0 1

0

Column C1

Column C2

Column C3

(4)

(1)

(2)

(5) (6)

(3)

0 T1

1 T3 Column C4

0 T4

1 T2(7) (8)

4

1 T5(9)

Figure 5.2: Prefix redundancy elimination in Elf for efficient IN-predicate evaluation

of the DimensionList. This procedure results in a linear time complexity instead of
the naiive quadratic time complexity.

For example, consider an equality IN-predicate with [0, 1] as the list of values on
column C3 from the Elf in Figure 5.2. In the case of DimensionList L(6), the first
entry of the list of the IN-predicate (i.e., 0) is compared with the first value of L(6)

(i.e., 0 as well). In case of a match, we can proceed both pointers; in case of a
mismatch, we proceed the smaller value’s pointer similar to a merge join. In case,
we reach the end of the list of the IN-predicate, we can directly skip any remaining
sub trees of Elf, which essentially exploits the opportunity for early pruning.

An inequality IN-predicate is similar to the equality version. In this case, however,
we follow the path down the Elf in case the value of the DimensionElement is smaller
than the current IN-value. Furthermore, the last DimensionElements are a match in
case we iterated to the end of the IN-list. For example, take the inequality predicate
with [1, 2] as the list of values on column C3. When evaluating DimensionList L(6),
the first DimensionElement matches since its value is smaller than the first IN-list
value. Furthermore, after checking all IN-list values, we follow the path down the
last DimensionElement with the value 4.

IN-Predicate Algorithm

The function to execute an IN-predicate is shown in Algorithm 6. Due to the
traversal-based processing, we use an input array that encodes whether the current
column has an IN-predicate. This array, called inSel, also encodes whether it is an
equality or inequality predicate. Another input parameter is a multi-dimensional
array containing the IN-list values, called inValues.

The algorithm first checks whether an IN-predicate is defined on the hash map
(Line 3). In this case, we determine whether the IN-predicate is an equality or an
inequality predicate (Line 4 and 13)3. In the case of an equality predicate, we can
directly jump to the according values in the IN-predicate due to the properties of
our hash map (Line 7). For each match, we recursively call INDimList (Line 9) or
INML (Line 11) if the next node is a DimensionList or a MonoList, respectively.

3For ease of implementation, the inSel array is a char array with the following encodings. A
value of 0 represents no IN-predicate, a value of 1 represents an equality IN-predicate, and a value
of 2 represents an inequality IN-predicate.

66 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

1 INQuery(inSel, inValues){
2 L← ∅;
3 if (inSel[0])then
4 if (isEq(inSel[0]))then

// equality predicate

5 curINV alue← inV alues.begin();
6 while

(curV alue <= max {C1} && curINV alue < inV alues.end())do
7 pointer ← Elf[inValues[curINValue]];
8 if (noMonoList(pointer))then
9 INDimList(pointer, col + 1, inSel, inV alues, L);

10 else
11 L← L+INML(unsetMSB(pointer), col+1, inSel, inV alues, L);
12 end if

13 end while

14 else
// inequality predicate

15 curV alue← 0;
16 curINV alue← inV alues.begin();
17 while

(curV alue <= max {C1} && curINV alue < inV alues.end())do
18 if (curValue != inValues[curINValue])then
19 pointer ← Elf[curV alue];
20 if (noMonoList(pointer))then
21 INDimList(pointer, col + 1, inSel, inV alues, L);
22 else
23 L←

L+INML(unsetMSB(pointer), col+1, inSel, inV alues, L);

24 end if

25 else
26 curINV alue← curINV alue+ 1;
27 end if
28 curV alue← curV alue+ 1;

29 end while

30 end if

31 else
// call INDimList or INML with col + 1 for all elements

32 end if
33 return L;

34 }

Algorithm 6: IN-predicate evaluation on hash map

5.1. Complex Selection Predicates 67

1 INDimList(startlist, col, inSel, inValues, L){
2 if (inSel[col])then
3 if (isEq(inSel[col]))then
4 curINV alue← inV alues.begin();
5 do
6 if (Elf[position] < inV alues[curINV alue])then
7 position← position+ 2;
8 else if (Elf[position] > inV alues[curINV alue])then
9 curINV alue← curINV alue+ 1;

10 else
11 pointer ← Elf[position+ 1];
12 if (noMonoList(pointer))then
13 INDimList(pointer, col + 1, inSel, inV alues, L);
14 else
15 L←

L+INML(unsetMSB(pointer), col+1, inSel, inV alues, L);

16 end if
17 position← position+ 2;
18 curINV alue← curINV alue+ 1;

19 end if

20 while
(notEndOfList(Elf[position]) && curINV alue < inV alues.end());

21 else
// NOT IN predicate

// Evaluate next column if

Elf[position] < inV alues[curINV alue]
// In the other cases increment position or curINValue

22 end if

23 else
// call INDimList or INML with col + 1 for all elements

24 end if

25 }

Algorithm 7: IN-predicate evaluation on a DimensionList

68 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

If the current IN-predicate is an inequality IN-predicate, we have to iterate through
all pointers of the hash map and check whether the currently represented value in the
hash map does not match the current value in the IN-list. If the inequality predicate
is satisfied, we also follow the pointer recursively by differentiating a DimensionList

(Line 21) or MonoList (Line 23). Afterwards, we proceed with the next entry in the
hash map. In the case the current value of the hash map and the IN-list are equal
(Line 25-27), we do not follow the pointer down the Elf, but increment the position in
the IN-value in addition to the increment of the hash map. Please note that the case
where the IN-value is smaller than the hash map value does not exist. This is due to
the denseness criteria of the hash map. Hence, all IN-values will eventually be found
in the traversal of the hash map (except it is bigger than the column maximum).

IN-Predicate Evaluation on a DimensionList

We present the pseudo code for evaluating an IN-predicate on a DimensionList in
Algorithm 7. When evaluating an IN-predicate on a DimensionList, we have to
follow a merge-join-like execution, because we do not have guaranteed denseness in
values of a DimensionList. Hence after checking for an IN-predicate (Line 2) and
differentiating between an equality (Line 3ff) or inequality (Line 19ff) IN-predicate,
we stepwise iterate through DimensionList and IN-list. In case of an equality IN-
predicate, we increment the pointer of the smaller value (Line 6-10) and on a match
(Line 10-19), we recursively call INDimList or INML. On a match, we also increment
both pointers, since neither in the DimensionList nor in the IN-list are duplicate
values allowed.

For the inequality case, we switch cases. Here, we call INDimList or INML if the
DimensionList value is smaller than the current IN-list value and in the other cases,
we advance either pointer.

IN-Predicate Evaluation on a MonoList

In a MonoList, there is only a single path represented down to the tuple identifiers.
As a consequence, there is only a single value in the MonoList that is to be found
in the IN-list. Hence, after checking for an IN-predicate (Line 3), we search the
current value of the MonoList at the specified column in the IN-list. Currently, we
use a vectorized predicated search since we assume only a limited amount of IN-list
values. For bigger IN-lists, a binary or k-ary search is useful [SBS18]. This, however,
seems to be implausible for real SQL use cases, since usually the data to be analyzed
exceeds RAM and not the query.

Depending on the type of IN-predicate, we either continue the evaluation when
the value has been found in the IN-list (Line 7) and otherwise skip this MonoList

(Line 8), or we switch those cases for an inequality IN-predicate. The remaining
code from Line 15 to 20 represent the TID extraction as already used in Algorithm 3
and 5.

5.1.3 Summary

In this section, we investigated how to exploit Elf’s design for selection predicates
beyond multi-column selection predicates. To reach a comprehensive set of predicates,

5.1. Complex Selection Predicates 69

1 INDimList(startlist, col, inSel, inValues, L){
2 for (curCol← col to NUM COLs)do
3 if (inSel[col])then
4 result← search(inValues,Elf[startlist+ curCol − col]);
5 if (isEq(inSel[col]))then
6 if (isFound(result))then
7 continue;
8 return;

9 else
10 if (isFound(result))then
11 return;
12 continue;

13 end if

14 end for
15 position← NUM COLs− col;
16 while (notEndOfList(Elf[position]))do

// Handle duplicates

17 L← L+ Elf[position];
18 position← position+ 1;

19 end while
20 L← L+unsetMSB(Elf[position]);

21 }

Algorithm 8: IN-predicate evaluation on a MonoList

70 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

we extended Elf for column-column comparisons and IN-predicates. To this end, we
explain a conceptual idea how to exploit Elf’s design for accelerating both complex
selection predicates and also present algorithms for ease of reproducibility. An
evaluation of the performance for these algorithms is presented in Section 5.3.1.

5.2 MonetDB Integration
With the conceptual design of executing complex selection predicates from the
previous section, we are able to execute a comprehensive set of SQL queries. Especially
most of the queries of the TPC-H are now supported. However, accelerating only
the selection predicates of a query with Elf does not necessarily mean that the whole
query time can be reduced. In fact, there are two possible reasons that an Elf-based
query execution is outperformed:

1. A query engine could be able to exploit data and query characteristics using
additional data structures. For instance, MonetDB features Column Imprints,
candidate scans (i.e., previous positive selection results are only considered for
the next selection), and even a hash lookup (i.e., values are hashed and only
the matching bucket(s) are scanned sequentially) for accelerating selections.
Using these additional structures gives a non-linear performance improvement.

2. Due to the sorting of Elf, the resulting tuples are usually not in insertion order.
Hence, when a subsequent operator works with the results of an Elf selection,
it usually incurs additional cache misses due to the unordered result adding a
considerable overhead.

For a comprehensive comparison between a system’s clever query processing engine
supporting different ways of executing a complex predicate, we aim to integrate Elf
into MonetDB [BK99]. This serves as a proof-of-concept for the usability of Elf for
accelerating scans in a set of reasonable queries. However, the overhead for using
Elf leads to the ultimate goal of building a query engine to exploit Elf’s properties
instead of interfacing Elf to an arbitrary query engine.

In fact, there are several systems that could be used for integrating Elf. Still, we
choose MonetDB for the following reasons: First, Elf is a main-memory structure and
its aim is to accelerate in-memory query processing. Hence, for disk-based systems we
would have to investigate suitable buffering techniques [JLR+94, ADHW99, SSH11]
since paging of the operating system would not be efficient enough. Second, the
operator-at-a-time bulk-processing engine of MonetDB is well suited for integrating
Elf, because we currently return all matches at once. Of course, an adaption for
tuple-at-a-time processing is possible but needs additional implementation overhead.
Considering compilation-based engines, such as Hyper [KN11], would need a different
design, because recursive traversals would have to be transformed to a tuple-at-a-time,
kernel-like processing. Furthermore, due to its closed-source development, we are
currently unable to integrate Elf. Third, the competing storage scheme of a column
store in MonetDB is reasonable for analytical scenarios. Still, it would be interesting
to compare Elf against hybrid storage schemes between column and row stores, such
as in Peloton [APM16], Aqua [Lüb17], H2O [AIA14]. Last but not least, MonetDB
is open source which allows for an accountable integration.

5.2. MonetDB Integration 71

Integration Overview

The integration of Elf into MonetDB has touched several layers. To give a short
overview, we adapt the following components:

• MonetDB’s SQL parser is extended to allow for an index creation of the type
Elf.

• the MAL (MonetDB Assembly Language) interface, which is the internal
mapping layer between MonetDB’s front-end languages (e.g., SQL) and the
operator of the query processing back-end. Here, we have to allow to not only
map a selection predicate to a selection operator, but also to a selection in Elf.

• the query optimizer of MonetDB is adapted to merge single predicates that
can be executed in concert on a single Elf. Furthermore, optimizations of
the query plan should favor the execution using Elf and should not hinder its
applicability.

• MonetDB’s storage engine is extended to store the built Elf upon table indexing
in the heap.

In the following, we discuss the extensions to the MAL layer and the impact on
interoperability of other operators in detail, because these extensions are important to
weigh the benefits and drawbacks of Elf. For a more comprehensive presentation on
all touched parts in MonetDB, we refer to the master thesis of Florian Bethe [Bet18]4.

5.2.1 MAL Extensions

In order to use our Elf during query execution, we extend MonetDB’s internal
representation of a query plan – the MAL plan [BK99] – with suitable back-end
operator calls that construct and execute the selections on the Elf. We show the
necessary extensions to the MAL primitives in Algorithm 9.

The first two operators (create_query_idx, drop_query) are required for house-
keeping. Creating a query allocates memory for the necessary input parameters for a
selection of the Elf. These are the input arrays with the lower and upper bounds
of multi-column selection predicates (cf. Section 4.4), the IN-lists for IN-predicates
(cf. Section 5.1.2), and the columns and comparators for column-column comparisons
(cf. Section 5.1.1). To convert comparison values into the same type that Elf uses
for indexing (unsigned 32-bit integer values), the functions num2elfval (Line 3) and
resolve_bat_index_map (Line 4) are needed. While the former converts integer
values of different types (bit, bte (i.e., byte), short, int, lng (i.e., long), any), the
latter operator converts string values. String values are represented as an identifier
in an order-preserving dictionary that MonetDB holds in addition to the general

4Florian Bethe implements two variants of string resolution: (1) resolve based, where an identifier
is stored in the Elf and during selection execution, the string comparison is done and (2) index-based,
where an order-preserving dictionary is used to resolve identifiers before running the final selection.
Since the second alternative has proven to be mostly superior, we only consider an index-based Elf
in this thesis.

72 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

// Create/destroy a selection query

1 command create_query_idx(elf:ptr):idxquery;
2 command destroy_query(query:idxquery):void;
// Value conversion

3 command num2elfval(v:type t, cmp:int):elfval;
4 command resolve_bat_index_map(b:bat[:any], map:bat[:elfval], val:any 1,

cmp:int):elfval;
// Operator combination and selection execution

5 command add_window_query(query:idxquery, dim:int, cmp:int,
val:elfval):idxquery;

6 command add_in_query(query:idxquery, dim:int, cmp:int, val:elfval):idxquery;
7 command add_col_col_query(query:idxquery, dim:int, target dim:int,

cmp:int):idxquery;
8 command select(query:idxquery):bat[:oid];

Algorithm 9: Additional MAL operators for an integration of Elf

columnar storage as a BAT (Binary Association Table) [BMK99]. As a consequence,
resolve_bat_index_map scans the dictionary and determines the corresponding
identifiers for the comparison operators.

The last set of operators fill and execute a selection on the Elf. A converted value
(val) can be added to a multi-column selection predicate or to an IN-list in a
specific column (dim) by using add_window_query or add_in_query, respectively.
Similarly, add_col_col_query is used to put a comparison on two columns (dim
and target_dim). At last, the operator select executes a prepared selection query
on the given Elf and returns an unordered BAT. How to use this BAT and how to
execute subsequent operators after Elf is explained in the following section.

5.2.2 Operator Interoperability

The integration of Elf into MonetDB does not significantly change the MAL plan for
a given query. The reason for the minimal invasiveness is two fold:

1. Selections on base tables are usually executed early in the query plan – mostly
as the leaves of the query tree. Hence, we only have to care about subsequent
operators. Please mind, that we do not support selections on intermediate
result table since those would have to be linearized into an Elf at runtime.

2. MonetDB’s scalar scans usually create a candidate list as a result, which is
similar to the result of our Elf from Definition 2.1, because MonetDB delays
result materialization as long as possible [IKM09]. Hence, the overall query
execution of MonetDB only has to be extended, not fundamentally changed.

To exemplify both changes to the query plan, we show an excerpt of the Q17 query
plan in Algorithm 10 and the new one when using the Elf for selections in Algorithm 11.
On the left side of the assignment operator (“:=”), the result variable is presented,
which is either a single BAT or a pair of BATs in case of a join (cf. Line 9). On

5.3. Evaluation 73

the right side of the assignment operator, the executed function and its parameters
are listed. One of the first operations is to bind the input columns to a variable. In
Algorithm 10 Line 2 and 3, the two columns for the selections are bound to variable
X_77 and X_70. In Line 5 and 6, the selections are executed storing their results in a
BAT of OIDs (MonetDB’s term for TIDs). In the last selection, MonetDB executes
a candidate scan with the result of the previous scan as input. The final result of
both selections (C_88) is then used for projecting the qualifying l_partkeys (Line 8),
which are then used for the subsequent join (Line 9).

1 ...
2 X 77:bat[:str] := sql.bind(X 12:int, ”sys”:str, ”part”:str, ”p container”:str, 0:int);
3 X 70:bat[:str] := sql.bind(X 12:int, ”sys”:str, ”part”:str, ”p brand”:str, 0:int);
4 ...
5 C 85:bat[:oid] := algebra.thetaselect(X 70:bat[:str], C 61:bat[:oid],

”Brand#23”:str, ”==”:str);
6 C 88:bat[:oid] := algebra.thetaselect(X 77:bat[:str], C 85:bat[:oid], ”MED

BOX”:str, ”==”:str);
7 X 63:bat[:int] := sql.bind(X 12=0:int, ”sys”:str, ”part”:str, ”p partkey”:str,

0:int);
8 X 89:bat[:int] := algebra.projection(C 88:bat[:oid], X 63:bat[:int]);
9 (X 113:bat[:oid], X 114:bat[:oid]) := algebra.join(X 89:bat[:int], X 25:bat[:int],

nil:BAT, nil:BAT, false:bit, nil:lng);
10 ...

Algorithm 10: Excerpt of MAL plan of TPC-H Q17

Compared to the MAL plan in Algorithm 10, the resulting MAL plan when using
Elf in Algorithm 11 comprises several additional instructions. At first, we have
to call create_query_idx to allocate the necessary space. For the first predicate
(p_brand=“Brand#23”), the column is bound to the Elf (Line 2) and the value is
resolved. To resolve the string, its dictionary is scanned and the identifier is retrieved
in X_101. Afterwards, the selection value is added as an interval predicate on the
first level of the Elf (Line 5). The same procedure is executed for the predicate on
p_container, but on the column at position 1. In Line 9, the selection predicate is
finally executed on the Elf. The result is an unordered BAT with matching TIDs.
Hence, the next step is to project the l_partkeys that belong to the matching tuples.
This time, however, projectionpath is called since MonetDB cannot rely on ordered
TIDs. The l_partkeys are then passed to the join operator, which also cannot rely
on keys that are sorted by TID.

In summary, due to the unordered output of TIDs, our Elf approach incurs additional
overhead for subsequent operators like projections and joins. The real impact of this
overhead for real-world queries is investigated in our evaluation.

5.3 Evaluation

The evaluation section consists, similar to the content of this chapter, of two parts:
first, we evaluate the efficiency and impact of different parameters on Elf’s query

74 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

1 ...
2 X 97:idxquery := elf.create query idx(9:ptr);
3 X 83:bat[:elfval] := elf.bind index map(X 12:int, ”sys”:str, ”part”:str,

”p brand”:str);
4 X 101:elfval := elf.resolve bat index map(X 85:bat[:str], X 83:bat[:elfval],

”Brand#23”:str, 4:int);
5 X 102:idxquery := elf.add window query(X 97:idxquery, 0:int, 4:int,

X 101:elfval);
6 X 93:bat[:elfval] := elf.bind index map(X 12:int, ”sys”:str, ”part”:str,

”p container”:str);
7 X 106:elfval := elf.resolve bat index map(X 95:bat[:str], X 93:bat[:elfval],

”MED BOX”:str, 4:int);
8 X 107:idxquery := elf.add window query(X 102:idxquery, 1:int, 4:int,

X 106:elfval);
9 X 109:bat[:oid] := elf.select(X 107:idxquery);

10 X 69:bat[:int] := sql.bind(X 12:int, ”sys”:str, ”part”:str, ”p partkey”:str, 0:int);
11 X 110:bat[:int] := algebra.projectionpath(X 109:bat[:oid], C 67:bat[:oid],

X 69:bat[:int]);
12 (X 137:bat[:oid], X 138:bat[:oid]) := algebra.join(X 110:bat[:int], X 25:bat[:int],

nil:BAT, nil:BAT, false:bit, nil:lng);
13 ...

Algorithm 11: Excerpt of MAL plan of TPC-H Q17 using the integrated Elf

performance for complex predicates (Experiment 1 & 2) and, second, we evaluate
the impact of including Elf in MonetDB for queries with complex predicates (Ex-
periment 3). While the first part is represented as microbenchmarks with artificial
queries that are inspired by TPC-H queries, the second part evaluates a set of real
TPC-H queries. In this second part, we investigate what optimization potential
can be gained when using Elf and also how the impact to subsequent operators is.
This impact probably results in a performance decrease for the other operators due
to Elf’s unordered output leading to many additional cache misses. The observed
limitations of Elf lead to the ultimate need for an adaption of query engines to suit
Elf’s processing model in future work.

Evaluation Setup

Throughout this section, we evaluate the performance of Elf on complex predicates
with the same Elf use cases (i.e., Elf, Elfred, Elfmin) and the same machine that we
used in Section 4.5. Furthermore, we adapted the column order of Elf, because we
now use several additional queries from the TPC-H (s = 100), which is possible due
to Elfs extension for column-column comparisons and IN-predicates. The resulting
column order for the Lineitem and Part table is shown in Figure 5.3. We also use
this column order for our microbenchmarks to have a realistic column order even
though each microbenchmark operates only on a limited set of columns (these are,
however, reflected in the results of Elfmin). A detailed description of the used queries
and how they impact the resulting column order is given in Section 5.3.2.

5.3. Evaluation 75

Lineitem

Elf := (0) l quantity (1) l shipmode (2) l receiptdate (3) l commitdate
(4) l shipdate (5) l discount (6) l shipinstruct (7) l returnflag
(8) l linestatus (9) l extendedprice (10) l tax (11) l orderkey
(12) l partkey (13) l suppkey (14) l linenumber

Elfred := (0) l quantity (1) l shipmode (2) l receiptdate (3) l commitdate
(4) l shipdate (5) l discount (6) l shipinstruct

Part

Elf := (0) p brand (1) p container (2) p size (3) p type
(4) p name (5) p mfgr (6) p retailprice
(7) p comment (8) p partkey

Elfred := (0) p brand (1) p container (2) p size (3) p type

Figure 5.3: Query details for mono and multi-column selections

5.3.1 Microbenchmarks for Complex Predicates

In the microbenchmarks, we want to evaluate how well Elf performs when executing
different column-column comparison or IN-predicates. To this end, we adapt promis-
ing TPC-H queries and vary parameters that influence Elf’s execution performance
for the specific predicates. We start by analyzing column-column comparisons in
Experiment 1 and afterwards show the impact for IN-predicates in Experiment 2.

5.3.1.1 Experiment 1: Column-Column Comparison Microbenchmark

In this microbenchmark, we are interested in how well Elf can exploit prefix-
redundancy elimination in column-column comparisons. Since we want to execute
meaningful experiments that also represent real-world use cases, we choose column-
column comparison from the TPC-H benchmarks. In several queries, the three date
columns of the Lineitem table (l_shipdate, l_receiptdate, l_commitdate) are
compared and, hence, these columns are suitable candidates for our evaluation. The
TPC-H query Q12 defines a column-column comparison predicate as l_shipdate <
l_commitdate < l_receiptdate and we use transformations of this predicate for
our microbenchmark. An example query for the microbenchmark is the following,
with θ ∈ {<,>,<=, >=,=, <>}:

select count(*)
from lineitem
where l shipdate θ l receiptdate

In the following, we first take two of the date columns and different comparison
operators to emulate different selectivities for each query. Afterwards, we examine the
impact of having three date columns that are compared against each other resulting
in two column-column comparisons being executed.

Single Column-Column Comparison

For a single predicate, we can vary the predicates between l_shipdate & l_commit-

date, l_receiptdate & l_commitdate, and l_receiptdate & l_shipdate. Con-
sidering all 6 comparison operators, this results in 18 different queries. However, the
resulting selectivities only have a distinct number of 11 selectivity factors. In Fig-
ure 5.4, we show the selection time for MonetDB’s full-table scans and the three Elf
scenarios for the resulting 11 queries with distinct selectivity factors.

76 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10000

20000

30000

Selectivity Factor

S
el

ec
ti

o
n

T
im

e
in

m
s

Scan Elf Elfred Elfmin

Figure 5.4: Microbenchmark runtime for different column-column comparison opera-
tors on two dates of the Lineitem table (s = 100) in MonetDB

Overall, we can see that an increasing selectivity factor results in an increase in
runtime for all approaches. However, while the full-table scan has a rather stable
selection time independent of the selectivity, the Elf approaches are more sensitive to
the selectivity showing an increasing selection time for an increasing selectivity factor.
This is due to the increasing number of traversed paths of the Elf. Furthermore, the
baseline of full-table scans incur only a single traversal and, hence, we can expect a
similar performance behavior as for mono-column selection predicates. To this end,
Elf cannot outperform full-table scans in this experiment. Only Elfred and Elfmin

are able to beat a full-table scan. While Elfred outperforms a full-table scan up
to a selectivity factor of 0.35, Elfmin can outperform the full-table scan across all
selectivities – even for a selectivity factor of around 1. This is a remarkable result,
which is only possible due to the medium sized cardinalities of the date attributes
of around 2500 distinct dates each. Hence, the minimal Elf consists of around 2500
pointers in the hash map and 6,250,000 values and pointers in C1. In fact, the whole
Elfmin has only 4 % of the size that a single date column of the Lineitem table of
s = 100 has. As a consequence, Elfmin is up to a factor of 9 faster than the full-table
scan for a single column-column comparison. The impact of several column-column
comparisons on the performance is investigated in the second set of queries.

Two Column-Column Comparisons

Compared to the previous set of queries, we extend the column-column comparisons to
two comparisons. With the available three date columns and the six date columns, it
results in 36 different queries. Executing these 36 queries yield 13 different selectivity
factors. In Figure 5.5, we show the performance of the four approaches for these 13
queries.

In general, the performance behavior of the Elf approaches is similar to the experiment
with a single column-column comparison. However, MonetDB’s full-table scan shows
an increasing selection time for an increasing selectivity factor compared to the rather
constant performance for a single column-column comparison. This is due to the
candidate scans of the second selection that incurs a different overhead depending on
the number of matches from the first column-column comparison. Due to this, the
full Elf can even outperform full-table scans for up to a selectivity factor around 0.2.

5.3. Evaluation 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10000

20000

30000

Selectivity Factor

S
el

ec
ti

o
n

T
im

e
in

m
s

Scan Elf Elfred Elfmin

Figure 5.5: Microbenchmark runtime for different column-column comparison opera-
tors between three dates of the Lineitem table (s = 100) in MonetDB

In this experiment, even Elfred can outperform full-table scans for all tested selectivity
factors. Up to a selectivity factor of 0.63, the performance difference between these
two is around a factor of 2-3. Interestingly, Elfmin performs very similar to the
experiment with a single column-column comparison. This can be explained, because
the main impact for Elfmin is filling the result vector and traversals are only a minor
overhead. Furthermore, this shows that the proposed algorithm scales well for an
increased number of column-column comparisons.

5.3.1.2 Experiment 2: IN-Predicates Microbenchmark

In this section, we are interested in the impact of the parameters for different IN-
predicates. There are two important parameters impacting the performance of an
IN-predicate:

Size of IN-List: The more values are present in the IN-list, the more comparisons
need to be done. Especially full-table scans incur one scan per IN-list, which
means that our Elf can probably outperform them in this case.

Attribute Cardinality: The bigger the value domain of an attribute, the bigger
are the possible DimensionLists. Hence, this parameter influences the runtime
of the traversal, but usually not the runtime of scans.

Of course, the parameter of the selectivity and column order play another vital role.
However, selectivity is defined by the size of the IN-list and the attribute cardinality.
Hence, we more specifically look at the cause than the effect. Also, the impact on
the best column order can be mapped to the impact of the selectivity on the column
order. Thus, we treat an IN-predicate the same as a multi-column selection predicate
in our column order heuristic.

To vary the parameters of the IN-predicate, we choose possible IN-predicates from
TPC-H query Q16 and Q19. While Q16 defines an IN-predicate on the attribute
p_size, the query Q19 has an IN-predicate on the attribute p_container. Similar
to the evaluation of column-column comparisons, we generate different queries of the
form:

78 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

select count(*)
from lineitem
where p size IN [15,16]

We choose corresponding IN-list values in the middle of the value range such that we
do not exploit early pruning too extensively. In the following, we first look at queries
on the attribute p_container and afterwards on those using an IN-predicate on the
p_size attribute.

Experiment on p_container

For the IN-predicates on the attribute p_container, we vary the number of the
containers that are within the 40 possible containers. We choose a maximum size of
10 containers, because this already reaches a selectivity factor of Sel = 0.25, which is
beyond the typical use case of an index structure. In Figure 5.6, we show the different
selection times (i.e., only the selection on the Elf or necessary selection operations of
MonetDB, but not the whole query runtime) for an increasing number of containers
in the IN-predicate. Each additional container adds 0.025 to the selectivity factor.

0.025
1 Container

0.075
3 Containers

0.125
5 Containers

0.175
7 Containers

0.225
9 Containers

0

200

400

600

800

1,000

Selectivity Factor / Amount of Containers

S
el

ec
ti

on
T

im
e

in
m

s

Scan Elf Elfred Elfmin

Figure 5.6: Microbenchmark runtime for different IN-lists on the p_container

attribute of the Part table (s = 100) in MonetDB

The experiment shows that for an increasing number of IN-list values, the selection
time of all approaches (Elf or MonetDB’s full-table scan) increases as well. However,
the factor is significantly higher for MonetDB’s full-table scans than the integrated
Elfs. However, especially the full Elf cannot outperform MonetDB’s scans since
traversing down to the TIDs is very costly. Overall, the impact of retrieving tuples
with one or ten containers is only 16 %.

In contrast, when limiting the indexed columns to the necessary ones for the workload
(Elfred) or the query (Elfmin), the Elfs can outperform full-table scans by a factor
between 9 and 13. Interestingly, the overhead for the selection on the Elfred and
Elfmin is for both circa a factor of 10 comparing the selection time of one and ten
containers. This, however, does not only depend on the size of the IN-list, but also
on the cardinality of the attribute, as we can see in the next experiment on p_size.

5.3. Evaluation 79

Experiment on p_size

Compared to the experiment before, the attribute p_size has 50 possible values.
Hence, its value domain is increased by 25 % compared to p_container. In this
experiment, we extended the range to 20 different sizes which results in a maximum
selectivity factor of 0.4.

0.02
1 Size

0.06
3 Sizes

0.1
5 Sizes

0.14
7 Sizes

0.18
9 Sizes

0.22
11 Sizes

0.26
13 Sizes

0.30
15 Sizes

0.34
17 Sizes

0.38
19 Sizes

0

200

400

600

800

1,000

Selectivity Factor / Amount of Sizes

S
el

ec
ti

o
n

T
im

e
in

m
s

Scan Elf Elfred Elfmin

Figure 5.7: Microbenchmark runtime for different IN-lists on the p_size attribute of
the Part table (s = 100) in MonetDB

In Figure 5.7, we show the selection times for all four approaches for IN-predicates
on the p_size attribute. The overall selection time behavior is the same as for the
selection on p_container. Again, the full Elf has the worst performance, although
for 20 sizes, the difference between Elf and MonetDB’s full-table scans is only 13 %.
This is due to the increasing number of scans that MonetDB has to execute.

Compared to the experiment on p_container, the Elfred needs 20 sizes to reach
an increased selection time of a factor of 10. This is almost double the amount of
IN-list values. The explanation for this is the different cardinality of the p_size

attribute. Since the initial effort for a selection is a little bit higher due to bigger
DimensionLists but there is only a small overhead for the merge-like execution of
the IN-predicate, more IN-list values can be checked before the overhead is equally
big as for a smaller attribute domain. However, the bigger value domain has the
impact that for a selectivity factor of 0.24, the performance difference between a
full-table scan and Elfred is only a factor of 5.4 compared to a factor of 6 when
selecting 10 containers.

5.3.1.3 Microbenchmark Summary

In this benchmark, we investigated the impact of the selectivity, the number of
predicates in a column-column comparison, the number in IN-list values, and the
attribute cardinality of IN-predicates on the performance of our Elf. Hence, positive
results indicate a well performed design of the algorithms for these complex selection
predicates.

Our column-column comparison microbenchmark shows that Elfred can partially (up
to a selectivity factor of 0.35) and Elfmin can fully outperform a full-table scan for a

80 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

single predicate. When increasing the number of column-column comparisons, the
baseline worsens its performance due to expensive result materialization and merging
such that even the full Elf can outperform full-table scans for a selectivity factor of
up to 0.2. This underlines the well chosen design of our column-column comparison
efficiently exploiting Elfs design.

Considering IN-predicates, we have seen that especially Elfred and Elfmin can out-
perform MonetDB’s full-table scans even for a single IN-predicate by several factors.
However, the value domain has a big impact on Elf’s selection time due to the
impact on the size of the resulting DimensionLists. As a result, Elf’s IN-predicate
algorithm scales well for an increasing number of IN-list values.

As a consequence of these positive results, we assume that also the whole query
performance should increase similar to the performance increase for their selections.
Whether this hypothesis is true is investigated in the next experiment.

5.3.2 Experiment 3: Elf’s Integration Test in MonetDB

With the ability of efficiently executing complex selection predicates in Elf, we
extended the usability of Elf to a large variety of SQL queries. This opens the door
for executing a variety of real-world queries such as the TPC-H. Since powerful
query engines could outperform the processing of Elf for these real-world queries, we
want to assess the usefulness of the integrated Elf compared to the query engine of
MonetDB in this experiment. In fact, this experiment is a proof-of-concept of the
integration of Elf in a columnar main-memory bulk-processing engine on the example
of MonetDB.

We expect from this experiment that Elf can outperform MonetDB’s full-table scans
with respect to selection performance5. This expectations arises from our previous
experiments and the microbenchmarks. Usually, this means that also the runtime
of the whole query is improved in the same manner. However, we are aware of the
drawback of using a sort-based structure in a column store (cf. Section 5.2), which
means that we have to investigate whether our integrated Elf can beat full-table
scans w.r.t. the whole query time.

To assess the usability of Elf and the overhead that is caused for usual queries, we
select several queries from the TPC-H benchmark (s = 100) that fit the overall use
case of Elf. Since single-column selection predicates and small tables probably do
not benefit enough from using the Elf, we decided for queries involving at least two
columns in a predicates and those should be on the Part or Lineitem . In Table 5.1,
we show the details of the chosen queries, which we can classify into three categories:

Multi-Column Selection Predicate Queries: The usual case of Elf are still
multi-column selection predicate queries and, hence, we choose the two queries
Q6 and Q17 to assess the impact of using Elf for subsequent operators. Query
Q6 only features a multi-column selection predicate with a final sum and, thus,
can be seen as a baseline with two projections. In query Q17, two joins plus two
selections are executed. Hence, the impact on join processing can be assessed
with Q17.

5We used MonetDB 5 server of version 11.8.0. with 64 bit, 128 bit integer.

5.3. Evaluation 81

IN-Predicate Queries: More complex queries represent those that include a column-
column comparison, e.g., Q16 and Q19. While Q16 defines a multi-column selec-
tion predicate and an IN-predicate on the Part table, Q19 has two selection
queries – one on the Part and one on the Lineitem table. Each selection
query of Q19 has a multi-column selection predicate on two columns (one
using an equality predicate and another one using a between-predicate) and an
IN-predicate on one column. Both queries include one join, however the join
between the Part and Lineitem table (Q19) is far more costly than joining the
Part and Partsupp table (Q16).

Column-Column Comparison Queries: The last group of queries are those that
mix column-column comparisons, IN-predicates and multi-column selection
predicates. These queries include query Q4 and Q12. While Q4’s predicate is a
single column-column comparison, in Q12 two column-column comparisons and
a multi-column selection predicate on two columns are executed. Both queries
do a subsequent join between the Lineitem and Orders table. Hence, their
overhead on using Elf is to a certain extent comparable – only the effort for
the selections should differ.

Query Number of example Sel Number of relevant
MCSPs CCs INs in % Joins Projections

Q6 3 - - 1.9 - 2
Q17 2 - - 0.10 2 2

Q16 1 - 1 15.37 1 75

Q19 4 - 2 0.04 & 0.79 1 4

Q4 - 1 - 63.22 2 36

Q12 1 2 1 0.52 1 3

Table 5.1: Query details for our TPC-H queries. MCSPs = involved columns in a
multi-column selection predicates, CCs = involved column-column comparisons, IN
= involved IN-predicates.

Considering the selectivities, there is a big range of selectivity factors covered.
However, we expect higher selectivity factors (e.g., for query Q4 and Q16) to have
a higher impact on subsequent operators. The reason is that the more tuples are
returned, the more random access is caused. This is even more severe for Q4 since it
operates on the biggest table, the Lineitem table.

5.3.2.1 TPC-H Query Runtimes

In Figure 5.8, we show the execution time of our selected six queries. For each query,
we show the response time for MonetDB using full-table scans, for the full Elf, Elfred
and Elfmin. The execution time is further split into four parts:

• the overall time taken for the selections,

6This includes an intersection of the join result.

82 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

• the overhead for initializing Elf (i.e., the summed up runtime for all commands
from Algorithm 9 except Elf.select),

• the overhead for the unsorted output of Elf on other operators such as projec-
tions and joins (Elf InterOp),

• and the runtime of the remaining operators that are not influenced by the Elf
selection.

Of course, Elf InterOp and Elf Initialization is only applicable for the Elf. A first
insight is that the general initialization time is not a problem for compute intensive
queries.

Q4

0

20

40

60

80

100

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

E
x
ec

u
ti

on
T

im
e

in
s

Q6 Q12 Q16 Q17 Q19

0

10

20

30

40

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

M
on
et
D
B

E
lf

E
lf r

e
d

E
lf m

in

Selections Elf Initialization
Elf InterOp Remaining Operators

Figure 5.8: Query execution times of Elf and MonetDB’s full-table scans for our six
selected TPC-H queries (s = 100)

The overall results for the queries are mixed. While all Elf use cases outperform
MonetDB for the queries Q6, Q12, and Q19, they cannot clearly win for the other
queries. The reason for the good performance is the small selectivity factor on the
big table Lineitem and the small number of subsequent joins and projections. In
fact for these queries, using Elf gives a performance improvement for the whole query
execution time between a factor of 1.68 (Q6) and 5.64 (Q19), using Elfred improves by
a factor between 1.95 and 5.65, and using Elfmin improves by a factor between 2.64
and 5.8. Especially for Q19, the overhead for the remaining and affected operators is
minimal, which leads to performance improvements similar to the improvement in
selection time. However, this does not apply for Q6 and Q12, where the introduced
overhead is significantly higher due to the usage of Elf.

For the remaining three queries, we get mixed results compared to the other queries.
Hence, we discuss them in detail in the following.

Result for Q4

Although Q4 has a rather expensive column-column comparison, its selectivity factor
of 0.63 is far too expensive for using Elf. Especially the full Elf worsens selection

5.3. Evaluation 83

times by a factor of 3.54, while the Elfred and Elfmin show comparable selection times.
However, the resulting TID list is huge and due to it being unsorted, we face high
overheads for the following joins and projections. In fact, 90 % of the execution time
is spent due to the random memory access. Hence, this query would have been only
beneficial with a reasonable selectivity and, thus, shows the limitation of Elf.

Result for Q16

The selectivity factor of Q16 is with 0.15 in a reasonable range. Hence, we can see that
the full Elf has a similar performance to MonetDB’s full-table scans and Elfred and
Elfmin outperform full-table scans by a factor of 35. However, the saved execution
speed is not as significant to hide the overhead for Elf’s interoperability. Here,
especially an additional intersection operation to interoperate with the like-predicate,
which is currently evaluated by a full-table scan, is a big problem. However, in the
future, we can support a like-predicate by looking up the dictionary and execute an
IN-predicate.

Result for Q17

The query Q17 has a similar problem as Q16. Although the selectivity factor of
0.001 is very small, full-table scans outperform Elf, because MonetDB can use a
hash lookup for the equality predicates including a candidate hash lookup, which
is extraordinary fast. Still, Elfred and Elfmin can outperform MonetDB’s scans by
a factor of 377. However, the overhead for using Elf is 420 times higher than its
performance benefit.

5.3.2.2 Result Summary

From our integration test, we identified benefits and drawbacks of using Elf in a
main-memory column-oriented bulk-processing engine on the example of MonetDB.
The positive points are:

Consistent Selection Boost: The improvement in selection performance is consis-
tent to our previous experiments for reasonable selectivity factors. Especially
the included selection capability of executing column-column comparisons and
IN-predicates in Elf is of utmost importance.

Selectivity-Interoperability Dependency: From the experiment, we can ob-
serve that the overhead for subsequent operators is generally related to the
selectivity of the selection. When a selection returns only a small amount of
tuples, the overhead for materializing these small amount of tuples is minimal.
For bigger result sets (cf. Q4), the overhead is extra-ordinary big. However, we
deem such an approach not suitable for Elf.

Apart from the great results, there are also some serious drawbacks for some queries
– especially Q4, Q16 and Q17. These drawbacks are:

84 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

Additional Result Merge: Especially when we had to offload selections to Mon-
etDB’s full-table scans (e.g., for Q16), we had to merge candidates of both
selections using a costly intersection. This, however, can be avoided in the
future when more operators are implemented in MonetDB’s integrated Elf (e.g.,
like-predicates).

Unordered Output: The result TID list is sorted according to the data, not accord-
ing to their insertion order. However, most of the subsequent operators favor
sequential access, especially for materialization. This is a conceptual problem
that has to be addressed either by a reorganization of the underlying table
(especially when using Elf as a storage structure), or by a clever declustering
approach [MBNK04]. Please mind that it is possible to sort the resulting TID
list. However, the sprting overhead on large results is usually more severe than
unordered access [Bet18].

Another solution is to incorporate more operators into the Elf, especially
projections and joins. On the one hand, to allow for efficient projections, we
can change the result of an Elf to one (or more) materialized column(s) that are
created during traversal of their values with additional TIDs. These materialized
columns can then directly passed to the next operator. On the other hand, a
join simply results in a merge-join between sorted DimensionLists from two
Elfs, which outputs a list of pairs of TIDs.

5.4 Summary

In this chapter, we extended Elf in two important directions. First, we extend Elf to
support column-column comparisons and IN-predicates in order to allow for more SQL
queries being accelerated by Elf. After a short definition of these complex selection
predicate types, we discussed the conceptual idea of evaluating these predicates using
Elf and afterwards discuss implementation details to execute these predicates on
Elf’s hash map, DimensionLists, and MonoLists.

Second, we investigate whether a holistic query execution would benefit from Elf.
This means that not only selection times are improved, but also downstream operators
are not hindered too much by Elf. To assess the usefulness in a real system, we
integrated Elf into MonetDB as a proof-of-concept. We discussed Elf’s interface to
MonetDB introducing a set of additional MAL commands. The result of Elf is an
unordered BAT of TIDs, which is compatible to MonetDB’s current full-table scan
results (though the resulting TIDs are usually sorted).

In our evaluation we identified benefits and drawbacks of Elf’s column-column
comparison and IN-predicate approaches in two microbenchmark. In summary,
Elfred and Elfmin can outperform full-table scans on a wide range of selectivity
factors. Furthermore, the more column-column comparisons the better does Elf scale.
Furthermore, Elfmin shows almost no impact on the number of executed column-
column comparison, which strengthens the efficiency of our designed algorithm. For
IN-predicates, we observe that a reasonable selectivity factor for using Elf increases
the more IN-predicates are used. In our experiment, the full Elf is still outperformed
by MonetDB’s full-table scans, but Elfred and Elfmin win by several factors. Hence,

5.4. Summary 85

we deem our support of additional selection operators successful (cf. RQ 4), because
we exploited Elf’s design for a scalable execution of complex predicates.

In our last experiment, we then examined the overhead for using Elf for full queries
in a full-fledged main-memory DBMS – MonetDB. Usually, one would expect that
improving the selection times also improves query performance in the same manner.
To validate this expectation, we selected six representative queries from the TPC-H
benchmark that should challenge Elf, but also benefit from Elf. In fact, most of
the selections got a reasonable boost by Elf, especially when using Elfred and Elfmin.
However, the interoperability between Elf’s selections and subsequent operators
is still an open question, because the introduced overhead overshadows the good
selection performance for some queries. From our experiments, we identified that
the underlying reason is the unordered output of Elf, which causes cache misses for
subsequent operators. Still, we deem this goal as successful, because the performance
of TPC-H queries is in the same order of magnitude and, hence, we answered research
question RQ 5 with the outcome of this experiment.

The performance penalties of subsequent operators lead to the ultimate goal of
equipping Elf with more operator implementations to exploit prefix-redundancies also
for joins and projections and to minimize the interoperability overhead. Furthermore,
by storing tuples in accordance to Elf’s tuple order would minimize this overhead as
well, calling for an (own) adapted storage and query engine for Elf.

86 5. Complex Selection Queries in Elf-Supported Main-Memory Database Systems

6. Elf Life Cycle

The primary application field of Elf are data warehousing scenarios and decision
support systems. Although hybrid transaction/analytical processing has earned
much of attention recently [PFRE14, KN11, APM16, PBDS17], the usual use case
of Elf are still read-mostly workloads with periodic insertions of new tuples (e.g.,
over night). To this end, we need to support initial build and periodic insertions
efficiently.

In this chapter, we give technical details on how Elf supports initial building by
means of multi-dimensional sorting (cf. Section 6.1). In addition, we explain how
Elf supports periodic insertions by means of a Elf-like delta store (cf. Section 6.2),
which reduces this task to merging of pre-sorted lists. Finally, we outline how Elf
handles updates and deletions.

In our evaluation of this chapter, we first compare the initial build time of Elf against
its competitors from Chapter 4. This experiment gives insights whether high build
times are a counter argument for using Elf. Afterwards, we evaluate the efficiency of
our second important use case – supporting periodic insertions – and also determine
the best point to consolidate the Elfs. As a consequence, we complement the good
query performance of Elf as the goal of Level 2 of this thesis with an ability to support
OLAP in data-warehouses-like scenarios. As a consequence, we answer research
question RQ 6 in this chapter.

In summary, we make the following contributions:

• Concept for efficient maintenance of Elfs including initial builds, insertions,
updates, deletions

• Build time comparison between Elf and competitors

• Evaluation of the overhead for delta-store-based insertion handling

• Determination of a reasonable threshold for handling insertions in a delta-store-
like Elf

88 6. Elf Life Cycle

1 BuildDimList(data[][], col, start, num, writePointer){
// (1) incremental sort w.r.t. a given column

2 sort(data[start], num, col);
// (2) determine all values and store position of their

pointers

3 pf ← new list(); // of 2-tuples (position, frequency)

4 cur ← data[start][col]; // smallest value in this col

5 for (i← start + 1 to start + num)do
6 if (cur ! = data[i][col])then
7 Elf[writePointer] ← cur ; // write this value

8 pf.add(writePointer,1); // (position, frequency)

9 writePointer+=2; // DIM_Element size

10 cur ← data[i][col];

11 else
12 pf.last.freq++;
13 end if

14 end for
15 setMSB(Elf[writePointer-3]); // End of DimList

// (3) write pointers and interate to next col

16 if (col + 1 < NUM COL)then
// not in last column

17 offset ← start ;
18 for (i← 0 to pf.size)do
19 Elf[pf[j].pos]← writePointer; // pointer to begin of next

DimList

20 if (hasFanOut(data[offset],col,pf[j].freq))then
21 writePointer ← BuildDimList(data, col+1, offset,

pf[j].size,writePointer);

22 else
23 setMSB(Elf[pf[j].pos]); // mark as monolist

24 for (curCol← col to NUM COL)do
25 Elf[writePointer] ← data[offset][curCol]; // write values

26 writePointer++;

27 end for
28 for (curTuple← 0 to pf[j].freq)do
29 Elf[writePointer] ← data[offset][NUM COL]; // write TIDs

30 writePointer++;

31 end for
32 setMSB(Elf[writePointer-1]); // mark as last TID

33 end if
34 offset ← offset+pf[j].freq ;

35 end for

36 else
// in last column: write all TIDs (cf. Line 22-33)

37 end if

38 }

Algorithm 12: Building an Elf

6.1. Initial Build: Elf Bulk Load 89

6.1 Initial Build: Elf Bulk Load

The initial build of Elf is executed as a bulk load, where all data of the table is read
to create the Elf with its explicit memory layout as shown in Algorithm 12. The
build procedure consists of a step-wise multi-dimensional sort paired with a build of
all DimensionLists of the currently sorted column.

The build is invoked as: BuildDimList(data, col = 0, start = 0, num = data.size,
writePointer = 0), where data is a two-dimensional array containing all tuples plus
the TID at the end (at position NUM_COL). The general approach consists of sorting1

the data for the current dimension, bringing all values with the same prefix next to
each other, and then finding all partitions that belong to a single DimensionList.
For each resulting partition, we call the build function recursively.

For each call of BuildDimList from Algorithm 12, we know that all points between
data[start] and data[start+ num] (i.e., the current partition) refer to the current
DimensionList and are already sorted according to the prefix until column col − 1.
The algorithm then additionally sorts these points according to the current column
col (Line 2). Next, we iterate over the current partition twice: first for finding all
distinct values (the common prefixes) and, second, for building the DimensionLists
of each sub-partition. Note that we need two steps because we do not know the exact
number of distinct values in the current sub-partition.

In the first iteration, all existing values within the current DimensionList are lin-
earized starting with the smallest one. Since we do not know where the corresponding
sub tree (i.e., the next Elf level) will start, we store the position where this pointer
is located and count how many points refer to this sub tree in an auxiliary structure
pf (cf. Line 3-15).

In the second iteration, the algorithm linearizes the corresponding sub tree of the
first DimensionElement entirely, before it moves on to the next. In case the current
partition can be split further, a recursive call is executed (Line 21). Otherwise, we
create a MonoList by storing first all remaining values of the next columns (cf. Line
24-27) and afterwards storing a number of TIDs (cf. Line 28-31). Notably, this case
also holds for duplicates in the data which leads to a list of TIDs being stored. In
this case, only the last TID’s MSB is set.

This sort-based algorithm proves to be superior to a hash-based alternative (cf. our
technical report [KBSS15]). As build times are an important factor of the practicality
of Elf, we compare the build times of all competitors in detail in Section 6.3.1.

6.2 Maintaining an Elf

Due to Elf’s explicit memory layout, maintenance (i.e., insert, update, and delete)
after its initial built is not trivial (a typical RUM tradeoff [AKM+16]), but it is still
possible. Since Elf is designed for analytical scenarios, supporting periodic inserts of
new data, such as weekly or daily inserts, are most important and are explained in
the following.

1Our sorting routine is adapted from the MPSM join [AKN12].

90 6. Elf Life Cycle

6.2.1 Insertions

Our solution for periodic inserts consists of two parts. First, new data is collected
in an auxiliary data structure named InsertElf. It has the same conceptual design
as a normal Elf without the explicit memory layout and MonoLists. In Figure 6.1,
we show an exemplary InsertElf for a table with 5 columns. When inserting new
tuples, we can simply extend the corresponding DimensionLists, which would not
be possible with the explicit memory layout due to its tight packing. Also, we do not
create MonoLists, although DimensionList 4, 5, 9, and 10 would benefit from this
w.r.t. query performance. However, since the main objective is insertion performance,
a non-MonoList design is preferable since they will probably be split anyway when
more data is added.

Our described idea is similar to delta stores in columnar databases [ZAP+16]: there
is one write-optimized InsertElf and one linearized read-optimized Elf. Usually,
the write-optimized InsertElf is by several factors bigger than an analogous read-
optimized Elf. This is similar to row stores having worse compression capabilities
and, hence, cause an overhead. Hence, when a specific threshold of insertions is
reached, data is transferred from the InsertElf to Elf. This transfer is simply a merge
of both structures, which is conducted as follows.

Merging InsertElf and Linearized Elf

By concept, Elf introduces a total order into the multi-dimensional data space. As
the read-optimized Elf and its write-optimized counterpart imply the same order,
we can exploit this for reducing the problem of merging two Elfs to the problem of
merging pre-sorted lists. Therefore, the merge algorithm works at DimensionList

level (cf. Algorithm 13) and is highly similar to merging two sorted lists of elements.
The algorithm starts at the first element of the root DimensionList of both Elfs in
order to merge both roots (i.e., DimensionList). To merge two DimensionLists, the
algorithm first compares the values of the first DimensionElements differentiating
three cases:

1. If the value of the linearized Elf is smaller, the common prefix ends here. Hence,
the sub tree of the linearized Elf is copied into the new Elf without changes
(Line 5).

2. If the value of the InsertElf is smaller, there is an insertion of new data to be
done. In this case, the whole sub tree of the InsertElf is linearized into the new
Elf (Line 8).

3. If the value in the InsertElf and the linearized Elf is the same, the prefix
redundancy is further exploited. This leads to a subsequent merge of the
underlying DimensionList of the InsertElf and the linearized Elf (Line 12).

After comparing the first two elements, the algorithm increments the smaller position
in the two DimensionLists in order to compare and merge the next values, until the
end of one of the lists is reached. Due to the sorting criteria of both structures, we
can efficiently combine both structures with a complexity of O(Elfsize+InsertElfsize).

6.2. Maintaining an Elf 91

1 2 12

2 3

1 2

1

Column C1

Column C2

Column C3
(4)

(1)

(2)

(5) (6)

(3)

1 T5 2 T7 1 T62 T4

1 2

Column C4

Column C5
(11)

(8)

(12) (13)

1 2

(7) (9) (10)

(14)

Figure 6.1: InsertElf for a 5-dimensional data set

1 MergeDimLists(toInsertDimList, position, newElf, writePointer){
2 iElfPos ← 0;
3 while (notEndOfList (Elf[position])∧ notEndOfList

(toInsertDimList[iElfPos]))do
4 if (Elf[position] < toInsertDimList[iElfPos])then
5 writePointer← copySubTree(Elf[position+1],newElf,writePointer);
6 position← position+ 2;

7 else if (Elf[position] > toInsertDimList[iElfPos])then
8 writePointer←

linearizeDimLists(toInsertDimList[position].child(),
newElf,writePointer);

9 iElfPos← iElfPos + 1;

10 end if
11 else
12 writePointer← MergeDimLists(toInsertDimList[position].child(),

Elf[position + 1], newElf,writePointer);
13 position← position + 2;
14 iElfPos← iElfPos + 1;

15 end if

16 end while
// Process remaining entries of longer DimList

17 }

Algorithm 13: Merge a linearized DimensionList within a DimensionList of
the InsertElf

92 6. Elf Life Cycle

However, even if the InsertElf is by several orders of magnitude smaller than the
read-optimized Elf, there is still some performance loss on query execution to be
expected. We quantify this performance loss in Section 6.3.2 considering different
sizes of the InsertElf. Moreover, for any approach relying on a combination of
read-optimized and write-optimized structures, such as delta stores, solving the
problem when to merge both structures is important. To this end, we also conduct
experiments in Section 6.3.3 to answer the question when to merge both Elfs.

6.2.2 Deletion

For deletion, we first perform a lookup for the data item we want to delete. Due
to the prefix-redundancy elimination and our MonoList optimization, we have to
traverse down until we find the corresponding MonoList for the tuple. Notably,
deletions only impact the path starting from the last value before the corresponding
MonoList, because its prefix still represents values of several data items and has to
persist. Now, there are two cases: the tuple can be a duplicate or not.

1 2

0 1
Column C1

Column C2

(1)

(2) (3)

0 T21 T1 0

0 0 T3 1

Column C3

Column C4
(5) 0(4) +

1 0

0 1
Column C1

Column C2

(1)

(2) (3) 0 0 T3 1
Column C3

Column C4

+

1 T1 +

(a)

(b)

Figure 6.2: (a) Elf with marked tuple to be deleted, (b) reorganized Elf

In case, we delete a duplicate data item, we just remove the TID in the list of
TIDs. Otherwise, we have to delete the MonoList and update the parent Dimen-

sionList2. Assume, we want to delete data item T2 from Figure 6.2. We know
that in DimensionList (2) its MonoList starts. Its parent DimensionList, however,
has only two values before the deletion. Hence, we use the freed space to transform
DimensionList (2) to a MonoList, because after deletion there is no branch out
anymore in DimensionList (2). Please mind that this is only possible due to the
preorder linearization of our Elf. Otherwise, in the case there is more than one value
left in the last DimensionList and we delete any value but the last, we just have

2 It is also possible to just invalidate the pointer to that MonoList using a pre-defined tomb-
stone [RAD15], but this is neither space efficient nor efficient for traversals.

6.3. Evaluation 93

to shift all values and pointers of the DimensionList to the left. In case the last
value of the DimensionList has to be deleted, we just have to set the MSB of the
before-last value to indicate the end of the list.

Overall, the delete procedure creates unused gaps in our tightly packed Elf for each
deleted MonoList. Notably, the earlier the corresponding MonoList starts, the more
space is left unused. Hence, cleaning up the resulting structure becomes an essential
part to assure competitiveness. Such a clean up should be coupled with the merge in
Algorithm 13, as it traverses and rearranges the whole Elf anyway.

6.2.3 Updates

Finally, updates are rare for analytical workloads, but possible within Elf. Generally,
there is a large amount of MonoLists (cf. Section 4.3.2). Updating a value in a
MonoList does not result in any problem, as we just have to write the new value
to the correct position. This is possible since only changes on DimensionLists will
change the position (or path) of the tuple in the Elf. In the case the update is located
in a DimensionList, an update is composed of a delete and an insert as described
above.

6.3 Evaluation
In this section, we evaluate the performance of the aforementioned algorithms. At
first, we investigate the initial build time in Experiment 1. Furthermore, as already
mentioned, the explicit memory layout of Elf is an accelerator for query performance,
but a burden for update intensive workloads. This is because an easy enlargement
of DimensionLists is hardly possible in the tightly-packed cache-efficient memory
layout. Hence, we adapt the delta-store idea of Zhang et al. [ZAP+16] by building a
separate InsertElf that indexes newly inserted data. However, this approach causes
an overhead every time we execute a query. Hence, we also investigate its usefulness
in Experiment 2 and 3. Overall, we answer the following research questions in this
evaluation:

1. What is the overhead of our bulk-load algorithm compared to the build times
of our competitors? Since too high build times would limit the usefulness of Elf
even for analytical-only scenarios, we require that building has a significantly
smaller overhead than Elf’s query performance benefits (which are up to several
magnitudes).

2. What is the selection time overhead caused by querying both Elfs based on the
fraction of tuples stored in the InsertElf (Experiment 2)?
Answering this question indicates the efficiency of the overall solution, suggests
reasonable sizes for the InsertElf, and is a first indicator when to merge both
Elfs.

3. When is a merge more cost-efficient than querying both structures considering
the number of executed queries and the number of tuples in the InsertElf
(Experiment 3)?
In fact, we have observed performance differences between the InsertElf and
linearized Elf of around a magnitude. Hence, determining the point in time
when a merge is necessary is an important task.

94 6. Elf Life Cycle

6.3.1 Experiment 1: Build Times

The purpose of the build time examination is to evaluate whether a large build time
is a counterargument for the applicability of Elf. In this experiment, we built all
index structures and accelerated scans over the whole Lineitem table of scale factor
s = 200 including all its columns. For each measurement, we build the corresponding
index structures 10 times and compute the mean value.

B
B
-T

re
e

Im
pr

in
t

B
itW

ea
vi

ng

So
rt
ed

Pro
j.

Elf
10

100

1,000

B
u
il
d

T
im

e
in

s

Figure 6.3: Build time for Lineitem table of s = 200

In Figure 6.3, we visualize the build times for the Lineitem table of s = 200. Overall,
all approaches need at least several minutes up to 50 minutes for finishing the build.
The fastest approach is BitWeaving, with a build time of 443.71 s. This is needed
to compress all columns using its bit packing technique. The next fastest appraoch
is Sorted Projection requiring 530.93 s, which is quite similar to the build time of
BitWeaving. Here, Sorted Projection has the advantage to execute a single sort
for the first dimension. In contrast, Elf executing a full multi-dimensional sort
has even less than double of the time of Sorted Projection. Elf’s build only takes
964.17 s. The reason for its good build times is that in the deeper levels of the Elf,
we often just linearize MonoLists, which is less expensive than linearizing a hierarchy
of DimensionLists. Therefore, we argue that build times are no counterargument
for the applicability of our approach, especially as we reach a speedup of one order
of magnitude for query performance. For instance, in analytic environments, such an
additional build time is acceptable. Note, Column Imprints and BB-Trees require
more build time than Elf. Here, especially the BB-Tree suffers from its sampling-based
column ordering and high overhead in data shuffling [SSL18a, SSL19].

6.3.2 Experiment 2: Query Overhead of InsertElf

Considering the design of the InsertElf, we assume that for small data the overhead
can hardly be measured. Hence, our approach would be well suited for read-intensive
OLAP scenarios with (relatively) small periodic insertions. We deem our solution
efficient in case a fraction of up to 0.1 % introduces an overhead of less than 10%
selection time increase. To put these numbers into context, consider that with scale
factor s = 200, the Lineitem table has 1,200 million tuples. Thus, 1 % means 12
million newly inserted tuples. To examine efficiency, we distribute the tuples of the
Lineitem table between the read-optimized Elf and InsertElf using different tuple

6.3. Evaluation 95

distribution factors r. We execute the queries on both structures meaning that the
selection time is the sum of individual selection times. Generally, one can execute the
query on both Elfs in parallel and the overall selection time would be the maximum
of the individual response times. However, further experiments suggest that an
inter-query parallelism concept should be preferred.

Q1 Q6 Q10 LQ19
0

20

40

60

R
u
n
ti

m
e

O
v
er

h
ea

d
in

%

Tuples in InsertElf

0.001 %

0.01 %

0.1 %

1 %

Figure 6.4: Normalized runtime overhead caused by different InsertElf sizes in the
TPC-H queries on the Lineitem table (s = 200)

In Figure 6.4, we show the overhead for querying both structures depicting the
average of 1,000 measurements. We load r% (with r ∈ 0.001, 0.01, 0.1, 1) of the data
into the InsertElf and the remaining 1−r% into the read-optimized Elf. In Figure 6.4,
we observe that the overhead is scaling similar to the ratio of indexed tuples by
the InsertElf. Thus, for reasonable amounts of data, the overhead can be neglected.
That is for r ≤ 0.01 the overhead is hardly measurable. Furthermore, we consider an
overhead of about 5 % per query for r = 0.1 % as acceptable stating the efficiency of
the periodic insert mechanism. Nevertheless, the high overhead for r ≥ 1 % makes a
merge inevitable.

In summary, the overhead for querying both structures is remarkably small for a
small amount of appended data. Hence, we argue for the usefulness of the InsertElf
in OLAP scenarios with a high frequency of updates.

6.3.3 Experiment 3: Merge Threshold

To determine when to best merge the InsertElf into the linearized Elf, we have to
examine when the threshold of all executed queries is high enough that querying
both structures is less efficient than merging them and querying the resulting Elf.
In Figure 6.5, we show the runtime of executing a merge and a multiple of the queries
(Q1, Q6, Q10, LQ19) compared to executing these queries on both, the linearized Elf
and InsertElf, w.r.t. different ratios r.

We can observe an exponential increase of the runtime for querying both data
structures. While for small ratios (r < 0.01 %), a merge is more costly than querying
the InsertElf and linearized Elf, this behavior changes for r = 0.5 %. Here, when
executing the query workload 10 times, a merge would have been more beneficial. In
fact, postponing the merge can lead to a performance loss of factor 8 for r = 2 %
and 20 executed queries. Notably, executing more than one query would lead to a
performance loss for r = 2 % and, hence, a merge is inevitable.

96 6. Elf Life Cycle

Amount of Queries 5

10

15
20

Ra
tio

s (
r)

in
%

0.5

1.0

1.5

2.0

Runtim
e in m

in

5

10

15

InsertElf + Linearized Elf
Linearized Elf + Merge

Figure 6.5: Accumulated runtimes for the four TPC-H Lineitem queries (s = 200)
on a merged Elf (including merge time) and the sum of runtimes of a linearized Elf
and InsertElf w.r.t. different InsertElf-to-linearized-Elf ratios

These results indicate that for workloads with less frequent updates, a merge is
necessary right away, because after a short time of executing queries (for instance,
16 minutes of executing queries for r = 0.02 %) a merge would have paid off, which
can be seen as a lower bound. For frequently added data, a merge should be latest
executed for a ratio of r ≥ 2 %, because in this case merging becomes more efficient
than querying both structures.

6.4 Summary

In this chapter, we extended the applicability of Elf for workloads that include
maintenance tasks such as inserts, updates and deletes of data. To this end, we
first explained the build of Elf implementing a bulk insert. Afterwards, we proposed
our approach for handling periodic inserts to the initially built Elf. Our approach
for handling periodic inserts is similar to a delta store in modern main-memory
database systems, where there is one read-optimized and one write-optimized Elf
version. Furthermore, we outlined how to implement updates and deletions. With
the algorithms in this chapter, we took a big step towards using Elf as the only
storage structure of the system.

In our evaluation, we analyzed the performance for the main use case of Elf –
initial build times and the performance implications of our write-optimized InsertElf
compared to standalone linearized Elf. In these experiments, we have shown that
the Elf is built within factor 2-3 compared to its fastest competitor (BitWeaving).
However, given that Elf outperforms its competitors by the order of up to one

6.4. Summary 97

magnitude, we argue for its usefulness. Furthermore, for reasonable ratios of inserted
data, the overhead of our write-optimized InsertElf is manageable (5 % performance
overhead for indexing additional 0.1 % of data). However, our last experiment
shows that a merge is inevitable when more than 2 % of the data is stored in
the write-optimized InsertElf due to its high impact on query performance. With
these considerations, we argue that using Elf for data-warehouse-like workloads with
frequent appends is reasonable, which is the answer to our research question RQ 6.

98 6. Elf Life Cycle

7. Related Work

In this section, we highlight important related work in the field of main-memory
indexing and multi-dimensional indexes. At first, we explain the chosen competitors
that are compared against Elf in our evaluation, because their characteristics are
important to assess their strength and weaknesses compared to Elf. Afterwards, we
introduce the Data Dwarf, because its concept of prefix-redundancy elimination and
its tree structure are the key ideas for our Elf. In Section 7.3, we present SIMD-
accelerated one-dimensional index structures for main-memory database systems,
because they also focus on cache-efficiency and adaptations for modern hardware.
These adaptations are important optimizations that could also be applied to Elf
in the future and, hence, we give a more detailed explanation of these related
structures compared to the following ones. In the last two sections, we review
recent one-dimensional and multi-dimensional indexing approaches for main-memory
databases.

7.1 Competitors

In the following, we introduce our selected state-of-the-art competitors to speed up
column scans and range queries in OLAP environments. In particular, we explain
BitWeaving [LP13] as an approach to utilize bit-parallelism for bit-packed data.
Additionally, we describe Column Imprints [SK13], a secondary index structure,
which uses a 64-bit representation of a histogram to exclude whole cache-lines of
data from the search space that do not qualify for the query. For both approaches it
has been shown that they outperform prior state-of-the-art approaches. As multi-
dimensional competitors, we describe Sorted Projections [SAB+05] and the recently
proposed BB-Tree [SSL18a, SSL19].

7.1.1 BitWeaving

BitWeaving is a bit-packing technique proposed by Li and Patel [LP13]. The idea of
BitWeaving is to store the necessary bits (w.r.t. the given value range) of several values
into one processor word (with a typical size of 64 bit). Therefore, BitWeaving adapts

100 7. Related Work

the idea of SIMD even for scalar registers to exploit data parallelism in computation.
BitWeaving can either be used as a secondary index structure or a compression
technique with improved scan performance. However, when using BitWeaving as the
physical data layout, we have to deal with heavy-weight packing and unpacking of
data, especially when accessing concrete data. Thus, in the context of this thesis, we
look at BitWeaving as an index structure. BitWeaving offers two different methods
to pack values into processor words : BitWeaving/H and BitWeaving/V. To facilitate
the understanding, we present a small comparison between both layouts in Figure 7.1,
where each value can be expressed with a 3-bit code.

1t1

t3

3

ValueID

7

3

t4

t6 1

t5

4

2

t7

t9 2

t8

7

t2

MSB LSB
Binary Representation

0 0 1

0 0 1

0 1 0

0 1 1

0 1 1

1 1 1

1 1 1

1 0 0

0 1 0

HBP Storage Layout VBP Storage Layout

00 0 1

t1 t5
00 1 1

t2
00 1 1

t3
10 1 1

t4
10 1 1

00 0 1

t6

00 1 0

t8

10 0 0

t7

t9
00 1 0

0
0
1

0
1
1

1
1
1

1
1
1

0
1
1

0
0
1

1
0
0

0
1
0

0
1
0

t1 t2 t3 t4 t5 t6 t7 t8

t9

Figure 7.1: BitWeaving approach – adapted from [LP13]

Horizontal Bit-Parallel

Assuming that we can describe each value with k bits, the horizontal bit-parallel
storage layout constructs a code of length (k + 1) bits, where the k bits of the word
have to be extended with a leading 0. Several of these codes, exactly

⌊
w

k+1

⌋
with a

processor word length of w, are then consecutively packed together starting at the
right word boundary (remaining bits are filled with zeros) [LP13]. In Figure 7.1,
two words including the leading zero fill an 8-bit word. However, the physical data
layout is rearranged such that the first four values are stored in the upper part
of the words and the second four values are stored in the lower part of the words.
This rearrangement is essential to reach peak scan performance. The idea of a
scan over the horizontal bit-parallel (HBP) storage layout is that we use simple
arithmetic functions to create a bit mask, which indicates whether the values satisfy
the condition. The result bits of the comparison are stored in the added zero of
each word (for the corresponding arithmetic functions for any comparison operator,
we refer to the original sources [Lam75, LP13]). Now, by shifting each word an
additional time to its predecessor and by doing an AND operation of the words, we
can construct the resulting bit mask. Although the HBP storage layout allows to
process several values in parallel instead of just one, it still has to process the whole
word. To overcome this, the vertical bit-parallel (VBP) storage layout packs the bits
of several words vertically.

7.1. Competitors 101

Vertical Bit-Parallel

The vertical bit-parallel storage layout partitions one value across several processor
words. For illustration, the binary representation can be seen as a set of columns of
a table, which are then stored in a column store [LP13]. As a consequence, the ith
bit of w values are stored consecutively in a processor word of length w (e.g., the
most significant bit of 8 values in one word in Figure 7.1). So, we construct k words
that can be independently processed. Although, packing and unpacking of values
for this storage layout is expensive [PR15], scanning values in a vertical bit-parallel
storage layout offers several benefits. First, it is possible to do an early pruning of
the search. Since we start with comparing the most significant bits of the codes, we
are able to deduce the result of the comparison from the first bits that differ in the
comparison. If the results of all codes of a processor word are determined, we can
stop to evaluate these codes and, thus, save computational effort.

Overall, the results of Li and Patel [LP13] and our own initial experiments suggest
that BitWeaving/V is by far the superior approach. Thus, we only report performance
results for BitWeaving/V in this thesis.

1t1

t3

3

ValueID

7

3

t4

t6 1

t5

4

2

t7

t9 2

t8

7

t2

Bitmap
0 1 2 3 4 5 6 7

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

Column Imprints

01010001

01010001

00101000

Cache Line Dictionary

2

Counter

1

1

Repeat

0

Figure 7.2: Column Imprints – adapted from [SK13]

7.1.2 Column Imprint

A Column Imprint is a cache-conscious secondary index structure for range queries
implemented in MonetDB [SK13]. The idea is to apply a coarse-grained filter (similar
to bloom filters [Blo70]) indicating whether we can exclude a complete cache line for
a given query. To this end, the Column Imprint builds a histogram over all values of a
cache line and stores it in a 64-bit integer. The histogram is an equi-width histogram
with 64 bins where a bit b = 1 means that at least one value of the corresponding
cache line is in the range of the given bin. Notably, the first and the last bin hold
values from −∞ to the current smallest value and from the highest value to ∞,
respectively.

As an example, we show the bitmap and the Column Imprint for our running example
in Figure 7.2. Assume that our values range from 0 to 7 and we use an 8-bit value to

102 7. Related Work

represent the histogram. In this case, we have a direct mapping between the values
and bins of the histogram (although in practice, each bin corresponds to a range
of values). Furthermore, if a cache line could only hold 3 values, then our imprint
indexes the first three values and is constructed by applying the logical AND of the
bitmaps of the corresponding values.

A further optimization that Sidirourgos and Kersten apply is that if two succeeding
imprints are the same, they are compressed using a cache line dictionary [SK13].
Consequently, we only store and scan these repeated cache lines once.

To evaluate a selection predicate on a Column Imprint, a bit mask is created where
all the bits are set that match the predicate (probably several bits for a range query).
If the result of the logical and between the bit mask and the current imprint leaves
any bit set, then there is at least one qualifying tuple and the cache line has to be
consulted for filtering out false positives. However, we can skip this filtering step, if
the range predicate and the bin borders totally align, which implies that all values of
the cache line are included in the selection.

In our evaluation, we use a scalar version of Column Imprint that we extracted from
MonetDB. Recently, Sidirourgos and Mühleisen extended Column Imprint to bigger
imprints and encoded data blocks by using SIMD [SM17]. They show that when
increasing the size of the imprint vectors, the number of encoded values (formerly
the size of a cache line) should increase as well such that the ratio between imprint
and number of encoded values is 8:1.

1

1

Value

2

3

3

4

7

7

2

ID

T1
T6
T8
T9
T2
T5

T4

T7
T3

Figure 7.3: Sorted Projections

7.1.3 Sorted Projection

C-Store [SAB+05] proposes the concept of projections as an additional index structure.
A projection is defined on a set of columns with a predefined order. With respect
to this order, column data are replicated and sorted according to the first column
in this order. This sorting enables an efficient binary search on the first column.
However, it also alters the position of a tuple in the column that creates the need for
an additional TID column (cf. Figure 7.3) which is implicitly encoded by the tuple
position before. Hence, it creates additional storage overhead. The overhead can be
reduced by using run-length encoding on the first column being effective due to the

7.1. Competitors 103

sorting criteria. Note, in our example in Figure 7.3 the run-length encoding does not
gain any compression. This is due to the fact of the very small data size.

Sorted Projections are very efficient if the query workload is known. Then, the
minimal set of necessary projections can be determined to accelerate query execution.
However, for frequent updates the more projections are created, the more update
propagation has to be done.

7.1.4 BB-Tree

Due to the increasing importance of accelerated scans, employing them in a multi-
dimensional index structure has become a reasonable idea. To this end, BB-Tree
has been proposed, which is a combination of a kd-tree (inner search tree) that
partitions the space into buckets (bubble buckets) that are subsequently scanned by
a full-table scan (cf. Figure 7.4). In that sense, the BB-Tree uses similar concepts
like X-Trees, where degenerating nodes form so-called super nodes that are scanned
linearly [BKK96].

Inner Search Tree

Bubble Buckets
V91 V92 V93

V51 V52 V53

V31 V32 V33

V11 V12 V13

V71 V72 V73 V41 V42 V43

V21 V22 V23

V61 V62 V63

C1

C2

C1 C2 C3 C1 C2 C3 C1 C2 C3

Figure 7.4: BB-Tree Structure

Inner Search Tree

The inner search tree is an array that linearizes the k-ary nodes of the kd-tree. Node
entries are stored in a sorted manner to allow for binary search. In fact, the k node
entries split the space on the given column C1 into k + 1 sub spaces. Each of the
subspaces is then partitioned in the next level C2 into k + 1 further subspaces. This
procedure is (as for usual kd-trees) executed in a cyclic manner until a certain depth
of the tree. The columns for each level are chosen according to their cardinality of
different values as presumably, higher cardinality columns lead to a more efficient
pruning. From our Elf, we have seen that the pruning power depends on the usage of
the columns in the query (e.g., comparing Elf and Elfmin) and the same also applies
for the column order of the BB-Tree. Nevertheless, this procedure has shown effective
for the GMRQ benchmark [SSL18b].

Bubble Buckets

Due to the incomplete splitting of the space into subspaces up to a certain depth
of the inner search tree, there are several data points left in a subspace. Each of

104 7. Related Work

these subspaces is stored in a so-called bubble bucket, which is traversed sequentially
during querying. Although, this effectively reduces the number of possible candidates,
all columns C1–C3 of the candidates have to be compared to the query again due to
the incomplete splitting (in contrast to Elf’s complete space partitioning).

An important optimization is that if buckets overflow, due to further insertions, a
bubble bucket can be replaced with another inner search tree with subsequent bubble
buckets. Hence, even on insertion, the BB-Tree performs well. However, if a bucket
of the second level overflows, the tree is rebuilt in order to not degenerate further.

7.2 Data Redundancy Elimination

In this section, we introduce the basic concepts of the Data Dwarf because some of
its concepts are the basis for our Elf. Hence, we give a detailed view on the use case
and also structure of the Data Dwarf. For a better understandability, we use the
dataset from Figure 7.5 to build and explain the Data Dwarf approach.

Example Table

In our example table (left side), the first dimension consists of two distinct values, the
second dimension’s value domain has three distinct values, and the third dimension
consists again of only two different values. Note, we use a dense value domain for
each dimension in this example. This could be easily obtained from any data set by
applying an order-preserving dictionary encoding (for further details we refer to the
work of Gennady Antoshenkov [Ant97]).

1

2

0

1 0

1

2

10

Dim2Dim1 SUM(Fact)

1

2

ALL

ALL 0

1

2

1ALL

ALL0

1 ALL

2

2

ALLALL 4

1

2

0

1 0

1

2

10

T1
T2
T3

Dim2Dim1 Fact

CubeTable

1

0

1

Dim3
1

0

1

Dim3

1

0

1

ALL

ALL

ALL

Figure 7.5: An exemplary table and an excerpt of its cube

Data Cube

Besides computation of aggregates on the fly, a pre-computation is possible in case
sufficient storage is available. In a data warehouse, the corresponding data structure is

7.2. Data Redundancy Elimination 105

called cube, which is a materialization of the cube operator [KSS14]. In Figure 7.5, we
show the result of the example relation for the cube operator. Note, all intermediate
aggregations are stored and we use the ALL representation in our depiction in case a
dimension is summarized to the top node.

Since the data cube causes a lot of redundancy due to the aggregation and denor-
malization, its efficient storage is an important problem. To solve this problem,
Sismanis et al. introduced the Data Dwarf. In the following, we first explain the
special properties of the Data Dwarf that we also exploit for our Elf and, afterwards,
we introduce the conceptual tree structure of the Data Dwarf.

7.2.1 Prefix and Suffix-Redundancy Elimination

An interesting concept that has been introduced by the Data Dwarf is prefix-
redundancy and suffix-redundancy elimination [SDRK02]. It is an essential part
of the Data Dwarf, which is designed to compress the data of a materialized cube
operator. Hence, besides actual dimension values, it also stores the aggregates of all
dimension key combinations (cf. Figure 7.5), allowing for efficient aggregate queries.

Prefix Redundancy: Prefix redundancies occur whenever two or more dimension
keys share a common prefix. This is visible in the left table in Figure 7.5, where
tuple T1 and T2 share the same value in the first dimension.

Suffix Redundancy: Suffix redundancies are caused by creating the cube. If an
aggregate has only one value to take into consideration (e.g., the aggregate
ALL, ALL, 0, which only consists of T2), then it is the same aggregate as T2

itself. Hence, there is a suffix redundancy, which could be avoided for this
aggregate.

In the examples of Sismanis et al. [SDRK02], they could shrink a 1 PB cube to
a 2.3 GB Data Dwarf. These high compression rates come mainly from avoiding
redundancies of the cube entries (cf. Figure 7.6). Since the Data Dwarf avoids both of
these redundancies, it has, on the one hand, improved storage consumption. On the
other hand, also the scan performance is increased, because compared to a full-table
scan, the Data Dwarf only has to descend d nodes in a d-dimensional Data Dwarf
until it finds a matching tuple.

In the following, we present the overall structure of the Data Dwarf, because its
prefix-redundancy elimination and the overall Data Dwarf structure is an interesting
starting point for our Elf structure.

7.2.2 The Data Dwarf Structure

The Data Dwarf has one root node containing all distinct values of the first dimension
in an ordered fashion. Moreover, it contains pointers to the nodes of the next level,
indicating a path. A path is the implementation of prefix-redundancy elimination. It
defines a way from the root node to the leaf nodes representing the dimension value
of an existing point of the data set. To store a d-dimensional cube, we need to create
a Data Dwarf with d levels: one for each dimension. On the final level, a leaf node

106 7. Related Work

stores entries that contain the last dimension value, as well as the aggregate for the
given tuple. All entries in a Data Dwarf node are ordered according to the value in
the dimension (similar to B-Tree nodes). Furthermore, the Data Dwarf introduces
one additional entry per node, which is the ”ALL” node that corresponds to the
aggregate of all values of this node. We visualize an example of the constructed Data
Dwarf in Figure 7.6 for the cube of Figure 7.5. Note, ”ALL” nodes may reference
parts in a different path implementing the suffix-redundancy elimination. To this
end, the Data Dwarf conceptually is a directed acyclic graph (DAG) but not a tree.

Due to this structure, it is particularly hard to optimize Data Dwarf for efficient
main-memory access. In addition, it has been shown that the storage reduction is
rarely reached in practice [DBS08]. To this end, we focus in the remainder only
on some properties of the Data Dwarf that are essential for the design of our Elf.
Therefore, we cannot simply improve the Data Dwarf. Instead, we need to combine
concepts behind it with new ideas and an optimized main-memory layout in order to
significantly speed-up selection predicate evaluation on multiple columns in Elf.

Dim1

Dim2

0

1 2 ALL 0 ALL 1 2 ALL0

1;1 ALL;1 1; 3 ALL; 40; 10;1 ALL;1

1; 1 ALL; 20; 1

1;2 ALL;2

Dim3

1 ALL

Figure 7.6: The Data Dwarf of the cube from Figure 7.5

Avoiding Prefix and Suffix Redundancies

The Data Dwarf avoids prefix redundancies by having only one entry per value per
dimension in each list. For example, the value 1 in dimension Dim1 is only one
entry in the first dimension, although the cube uses two rows to store it. Thus,
the graph-based representation of the Data Dwarf is avoiding this redundancy. For
avoiding suffix redundancies, the graph property of the Data Dwarf is exploited.
Whenever there is a common suffix for different entries of the cube, the pointers of
all these entries will just point to the same node in the Data Dwarf.

Known Limitations

The resulting Data Dwarf layout is highly dependent on the order of the dimensions
during construction. The best setup for the Data Dwarf is to start with the dimension
with the highest cardinality, because it creates the best fanout so that the underlying
sub-graphs get smaller. This is also a reasonable criteria for the heuristic of the
column ordering in Elf. However, this is just a heuristic, which depends highly on
the data distribution.

7.3. SIMD-Accelerated Main-Memory Indexing 107

Another limitation for the Data Dwarf is that for an efficient insert, the data has to
be inserted in a sorted order. Only under this circumstance, the construction could
be done in one pass over the input data, because it facilitates the decision when to
close a node with the ”ALL” entry [SDRK02]. Sorting the data is also important for
Elf’s build algorithm and is the most promising way to construct our Elf.

Further Use Cases

Due to the good properties of the Data Dwarf, there are several more advanced
applications where it has been used. Longgang and Feng use the Data Dwarf
for storing iceberg cubes, i.e., cubes with a minimal support within each aggrega-
tion [LY04]. Sismanis et al. extend the Data Dwarf’s capabilities to be applicable to
different aggregation steps of the rollup operator [SDKR03]. Additionally, due to its
good compression characteristics, Michalarias et al. use the Data Dwarf for mobile
OLAP [MOL09].

7.3 SIMD-Accelerated Main-Memory Indexing

An important part of this work is to reach hardware-sensitivity for the proposed
approaches. Apart from our work, there are recent advances in the same direction
for other (one-dimensional) index structures that employ SIMD to reach hardware-
sensitivity. In this section, we review previously proposed one-dimensional index
structures Seg-Tree/Trie, FAST, ART, and VAST from which we want to extract
important optimizations that could be applied to our Elf. We consider the adaptations
made compared to the base index structure, the usage of SIMD, and the performance
gain presented by the authors of the selected index structures.

7.3.1 Seg-Tree and Seg-Trie

Zeuch et al. adapted the B+-Tree by having a k-ary search tree as each inner node,
called segment, and perform a k-ary search on each segment. In Figure 2, we show
the adaptation of nodes made by Zeuch et al. for Seg-Tree. The k-ary search bases on
the binary search but divides the search space into k partitions with k-1 separators.
Compared to binary search, the k-ary search reduces the complexity from O(log2 n)
to O(logk n). Considering m as the maximum number of bits to represent a data

type and |SIMD| as the size of a SIMD-register, called SIMD bandwidth: k = |SIMD|
m

defines the number of partitions for the k-ary search.

178
3-ary Seg Tree

52

10 43 76 109 1312 1615

1411

1918 2221 2524

2320

Figure 7.7: Inner node format of Seg-Tree

108 7. Related Work

SIMD Adaptation

As mentioned before, each segment of the Seg-Tree is a k-ary search tree. To perform
a k-ary search on a segment, Zeuch et al. liearize the elements of the segment. They
show two algorithms for linearization using breadth-first search and depth-first search.
Because of the condition k = |SIMD|

m
, each partition of the k-ary search fits into a

SIMD register and is compared to the search key. A perfect k-ary search tree contains
Smax = kh− 1 keys for an integer h > 0. The considered search algorithm only works
for sequences with a multiple of k − 1 keys. In case of sequences with less than a
multiple of k − 1 keys, they replenish the sequence with elements having the value
kmax + 1 for the maximal key value kmax in the sequence. Consequently, the adapted
search algorithm also works for sequences with less than a multiple of k − 1 keys.

Performance Improvement

The performance of Seg-Tree depends on k-ary search and horizontal vectorization.
The smaller a key the more keys are compared parallel. Due to the relevance of 32
and 64-bit data types in modern systems, the k-ary search performance increases up
to a factor of four for 32-bit types and two for 64-bit types.

Zeuch et al. also present the k-ary search on an adapted prefix trie (trie for short)
called Seg-Trie. A trie is a search tree where nodes store parts of the key, called
chunks. For example, a 32 bit key with a chunk size of 8 bit is stored in a trie with
4 levels. The Seg-TrieL is defined as a balanced trie where each node on each level
contains one part of a key with L Bits. The tree has r = m

L
levels (E0, E1, .., Er),

where m is the number of necessary bits to represent the data type. Similar to the
Seg-Tree, each node is again designed as a k-ary search tree. Complete keys are
stored in leaf nodes or are build by concatenating partial keys from the root node
to a leaf node. This approach benefits from the separation of the keys in different
levels of the tree. Consequently, they are smaller and more keys can be compared in
parallel.

To perform a tree traversal on the Seg-Trie, the search key is split into r segments,
each segment ri being compared to level Ei. If a matching partial key is found in
a node of Ei, the search continues at the referenced node for the partial key. If no
match of the partial key is found, the Seg-Trie does not contain the search key and
the search is finished. Consequently, the advantage of Seg-Trie against tree structures
is the reduced comparison effort for non-existing key segments.

7.3.2 Fast Architecture Sensitive Tree

Kim et al. adapted a binary tree to optimize for architecture features like page size,
cache-line size, and SIMD bandwidth called Fast Architecture Sensitive Tree (FAST)
[KCS+10]. In contrast to Seg-Trees, FAST is also adapted to disk-based database
systems. Kim et al. show the performance increase due to decreasing cache misses
and better cache-line usage. In order to optimize for architectural features, tree
nodes are rearranged by hierarchical blocking. In Figure 3, we show an index tree
blocked in the three-level hierarchy introduced by Kim et al. They split the tree into
a number of subtrees, each one fitting a page block. These sub-trees can be further

7.3. SIMD-Accelerated Main-Memory Indexing 109

SIMD Blocking

Cache Line Blocking

Page Blocking

Figure 7.8: Index tree blocked in three-level hierarchy: First-level page blocking,
second-level cache-line blocking, third-level SIMD blocking of FAST. Adapted from
Kim et al. [KCS+10]

split into cache-line-sized subtrees building the second level in the hierarchy. Each of
these subtrees that fit a cache line can be further split into a number of nodes that
fit a SIMD register. These nodes are laid out in a breadth-first fashion (the first key
as root, the next keys as children on depth 2) representing a SIMD block.

SIMD Adaptation

Kim et al. present implementations for building and traversing the tree adapted for
CPU and also for GPU. Building up the tree, SIMD is used to computing the index
for each set of keys within the SIMD-level block in parallel, achieving around 2X
SIMD scaling as compared to the scalar code. Traversing the tree, they compare one
search key to multiple keys of the index structure. To use the complete bandwidth
of cache and main memory within the search, blocks are loaded completely into
associated memory from large blocks to small blocks. For a page block, at first
the page is loaded into main memory. Then cache-line blocks are loaded one after
another in the cache and for each cache-line block, the included SIMD blocks are
loaded into the SIMD register. All keys of this SIMD block are compared with one
SIMD instruction. After examining the bit mask as result fo the comparison, the
corresponding next SIMD block is loaded (including the load of the surrounding
larger blocks) until the key is found or the last level of the index structure is reached.

Performance Improvement

Kim et al. consider the search performance as queries per second. The CPU search
performance on the Core i7 with 64M 32-bit (key, rowID) pairs is 5X faster than the
best reported number [SGL09], resulting in a throughput of 50M search queries per
second. Considering larger index structures, the GPU performance increase exceeds
the CPU performance increase, because TLB and cache misses grow up and the CPU
search becomes bandwidth bound.

110 7. Related Work

7.3.3 Vector-Advanced and Compressed Structure Tree

Yamamuro et al. extended FAST by building an index structure called Vector-
Advanced and Compressed Structure Tree (VAST) [YOHY12]. They adapt the
blocking and aligning structure of FAST and add compression of nodes along with
improved SIMD usage.

In order to decrease the size of the index structure to better fit into main memory,
they compress inner nodes. Inner nodes above a given threshold are compressed to
16 bit keys using lossy compression, while nodes in deeper levels are compressed to 8
bit with lossy compression. In the leaf nodes, Yamamuro et al. decrease the node size
with the lossless compression algorithm P4Delta [ZHNB06], which results in a good
balance between compression ratio and decompression speed. To compensate errors
that occur due to lossy compression, they present an algorithm for error correction.
In a nutshell, they use prefix and suffix truncation to compress keys and calculate an
offset ∆w of the incorrect key to the correct key during tree traversal. If ∆w 6= 0,
VAST scans the leaf nodes sequentially until ∆w becomes 0.

SIMD Adaptation

Along with the other considered index structures, Yamamuro et al. compare multiple
keys to one search key with SIMD in the tree traversal. Due to the key compression
of nodes, VAST compares more keys in parallel than FAST. Additionally, they reduce
branch misses with an adapted SIMD usage. They use addition and multiplication
operations on the results of a SIMD key comparison, instead of conditional branches
(if-then paths), to find the next node in tree traversal.

Performance Improvement

Due to lossy and lossless compression of the majority of nodes, Yamamuro et al.
reach 95% less space consumption of VAST compared to a binary tree or FAST,
respectively. When considering an index with 232 keys, they reach up to 6.0 and 1.24
times performance increase compared to a binary tree and FAST. Although errors
occur due to lossy compression, the error correction does not have a major influence
on the query execution speed.

7.3.4 Adaptive Radix Tree

Leis et al. adapted a radix tree for efficient indexing in main-memory database
systems called Adaptive Radix Tree (ART) [LKN13]. Similar to the Seg-Trie, the
height of a radix tree depends on the chunk size of the keys stored in each node.
ART divides keys into 8-bit chunks. They differentiate between inner nodes and leaf
nodes and adapt each of them in a different way.

Instead of using a constant node size for each inner node, they present four types
of nodes with different numbers of keys and children. In Figure 5, we show these
node types containing keys that are mapped to subtrees. The types of nodes, sorted
ascending by their size, are Node4, Node16, Node48, and Node256.

7.3. SIMD-Accelerated Main-Memory Indexing 111

0 2 3 255

Node4

Node16

keys

child pointers
0 1 2 3 0 1 2 3

0 2 3 255keys

child pointers
0 1 2 15 0 1 2 15

Index

Index

Node256

Node48 child pointers
0 1 2 255 0 1 2 47

child pointers
0 1 2 2553 4 5

pointers
Index = key

Index = key

Figure 7.9: Inner nodes of ART. The partial keys 0, 2, 3, and 255 are mapped to
pointers of the subtrees. Adapted from Leis et al. [LKN13]

Node4: The smallest node type consists of one array with up to four sorted keys
and another array with up to four children. The keys and pointers are stored at
corresponding positions.

Node16: This node type consists of arrays of 16 keys and 16 children, storing keys
and children analogue to Node4.

Node48: To avoid searching keys in many elements, this node type does not store
the keys explicitly. Instead, an array with 256 elements is used. This array can be
indexed with key bytes directly. It stores indexes into a second array with the size of
48 elements containing the pointers to child nodes.

Node256: The largest node type is simply an array of 256 pointers. Consequently,
the next node can be found efficiently using a single lookup of the key byte in that
array.

When the capacity of a node is exhausted due to insertion, it is replaced by a larger
node type. When a node becomes underfull (e.g., due to key removal), it is replaced
by a smaller node type.

For leaf nodes, Leis et al. use a mix of pointer and value slots in an array. If the
value fits within the slot, they store it directly in the slot. Otherwise, a pointer to
the value is stored. They tag each element with an additional bit indicating if a
pointer or a value is stored.

SIMD Adaptation

According to FAST and Seg-Tree, Leis et al. use SIMD within the tree traversal.
They use horizontal vectorization, comparing the search key against multiple keys of
a node. In contrast to Zeuch et al., using horizontal vectorization for each inner node,
Leis et al. only compare the keys of nodes with type Node16 in parallel. Therefor,
they replicate the search key 16 times and compare these against all keys of nodes of
type Node16.

In contrast to FAST and Seg-Tree, the goal of ART is also to reduce space consump-
tion. Leis et al. use lazy expansion and path compression. The first technique, lazy
expansion, is to create inner nodes only if they are required to distinguish at least
two leaf nodes. The second technique, path compression, removes all inner nodes
that have only one child.

112 7. Related Work

Performance Improvement

Since SIMD is only used in the tree search, we do not consider the performance
increases of ART in insert and update operations. Leis et al. show, that looking up
random keys using ART is faster than Seg-Tree and FAST, because ART has less
cache misses and less CPU cycles per comparison. They consider the performance
increases for dense and sparse keys, while ART works better with dense keys. Also
they show that a span of 8 results in better performance than a smaller span.

Criterion
Seg-Tree/

FAST ART VAST Elf
Trie

Horizontal vectorization x x x x -

Minimized key size o - x x -

Specialized node sizes / types - - x - -

Decreased branch misses - x - x -

Exploit cache lines using
- x - x x

blocking and alignment

Usage of Compression o - x x x

Adapt search algorithm for
x - - - x

linearized nodes

Legend: x = implements the issue; o = partially implements the issue;
- = does not implement the issue

Table 7.1: Comparison of the considered index structures based on extracted criteria

7.3.5 Comparison to Elf

In this section, we compare the optimizations made in Seg-Tree, FAST, ART, and
VAST to increase performance and show differences to Elf. We summarize the
optimizations in Table 7.1 and show which index structure implements which of the
criteria. If the index structure does not implement a criterion, we consider if it is
possible to implement it.

Horizontal Vectorization: All considered approaches except Elf use horizontal
vectorization in search operation for a single (broadcasted) search key in the
index structure showing significant performance improvements. Hence, an
adaptation of Elf in this criteria is promising.

Minimized Key Size: Minimizing the key size as much as possible speeds up
the search performance, because more keys can be compared with a single
SIMD instruction. Additionally, the smaller the keys are, the more keys fit
into a cache line. Zeuch et al. minimize the key size for the Seg-Trie using a
small chunk size (please mind the resulting bigger tree size), however, they do
not use it in the Seg-Tree. Kim et al. do not minimize the key size for FAST,
therefore the performance increase with SIMD also depends on the size of the
used data type. Elf currently does not feature a special compression mechanism
of node entries. However, since the value range is usually known, compression
will definitely pay out in this scenario. Especially in combination with SIMD
acceleration, a magnitude of performance improvement is reasonable to expect.

7.3. SIMD-Accelerated Main-Memory Indexing 113

Specialized Node Sizes and Types: An important property of ART is that it
offers different node types depending on the cardinality of stored data. However,
the other index structures do not adapt to the stored data and, hence, leave
this tuning opportunity open.

Decreased Branch Misses: Evaluating comparisons using conditional branches
can lead to branch misses, if the CPU prefetches the wrong branch. Conse-
quently, decreasing branch misses improves search performance because less
CPU cycles are needed. VAST uses addition and multiplication operations
to determine the next node in their evaluation of the comparison result, thus,
avoiding branches. The other index structures use conditional branches in
their search algorithms and careful considerations are necessary to transform
conditional branches into conditional moves or data flow [SBS18].

Exploit Cache Lines Using Blocking and Alignment: Kim et al. segmented
FAST into SIMD, cache, and page blocks. They highly optimize FAST for
efficient cache-line usage by blocking the index structure into blocks with the
size of a cache line, which shows considerable performance benefits. Although
several structures allow for blocking due to their linearization (cf. Elf, Seg-Tree,
ART), currently they do not block or align their nodes to cache lines or have a
special blocking.

Usage of Compression: Key compression leads to better search performance
with SIMD, because more keys are compared in parallel. While Seg-Tree and
FAST do not use compression, VAST does. Yamamuro et al. use lossy block
compression to decrease the key size of blocks. Consequently, they compare
more keys with one SIMD instruction, whereas performance decrease of the
occurring errors is smaller than the performance increase of the compression.
Instead of compressing blocks, Seg-Trie and ART use path compression to
decrease the tree height. This is also an idea that Elf exploits.

Adapt Search Algorithm for Linearized Nodes: Searching children in nodes
with many keys can be speeded up with adapted search algorithms compared to
linear search. Zeuch et al. introduce k-ary search for the Seg-Tree and Seg-Trie,
which performs in O(logn) compared to O(n) of linear search, where k is the
SIMD bandwidth. Consequently, less keys are compared in one node, whereas a
linearized storage of the keys in the node is required. For FAST and VAST, the
k-ary search is not applicable because they are adapted from binary trees and
have only one key in each node. Leis et al. use linear search in their adapted
nodes of ART to find children. For the node type Node256 k-ary search can
speed up finding the correct child node. Similar to this, the sort order in nodes
of Elf is not fixed. Hence, Elf provides the opportunity to use k-ary search.

Summary

Overall, this survey has shown that our index structure Elf already shares some
characteristics with highly-tuned main-memory index structures. However, especially
the most promising optimizations (horizontal vectorization, minimizing key sizes,
and branch misses) are currently not used. Still, we have argued that all these
optimizations are possible to be implemented in future work.

114 7. Related Work

7.4 One-Dimensional Main-Memory Indexing

Due to the missing bottleneck of disk access in main-memory database systems,
algorithms and data structures now have to be optimized for better cache perfor-
mance [BMK99]. Hence, several common index structures – usually B-Tree derivatives
– were proposed. In this section, we shortly describe the idea and optimizations of
these structures.

Cache Sensitivity for B-Trees

Since B-Trees are the standard index structure for many database systems, tuning B-
Trees for better cache performance in main-memory database systems is a reasonable
step. At first, Rao and Ross adapt the B-Tree structure with a special linearization
technique [RR99]. The resulting CSS-Tree has its intermediate nodes stored as a
contiguous array in level-order. Since the CSS-Tree is static and needs to be rebuilt
on insert, Rao and Ross propose the CSB+-Tree [RR00]. The CSB+-Tree stores
only all child nodes of the current node in a contiguous array, which allows for
cache sensitivity but also for incremental updates. Hence, these optimizations are an
interesting future investigation for our Elf allowing for in-place updates.

Cracking

An important approach to create a sorted index structure adaptively during query
processing is cracking. The idea is to use the query predicates to partition the data
according to the query intervals. For example, a less-than predicate splits the table
into two partitions of data – one that contains values that are bigger than or equal
to the constant and one that contains values that are smaller than the constant. As
a result, the table is step-wise split and is eventually sorted if all possible constants
are queried. However, data reorganization creates a considerable overhead for query
processing in the first steps and, hence, was avoided for a long time. Cracking was first
introduced by Kersten and Manegold [KM05] and integrated into MonetDB by Idreos
et al. adding specific operators [IKM07]. Special hardware-sensitive optimizations
are done by Pirk et al. [PPI+14], who apply SIMD and predication to speed up the
cracking process, and Petraki et al. [PIM15], who leverage the available parallelism
of the machine for cracking.

Tree Structures for Non-Volatile Memory

Recent advancements in memory architectures brings the idea of persistency in
RAM into practice. With non-volatile memory (NVM), also called storage class
memory (SCM) or non-volatile RAM (NVRAM), implementations of byte-addressable
main memory has been proposed that are based on different underlying techniques.
Usually, the benefit of persistence comes with the drawback of asymmetric read-
write latencies and memory cells that wear out when being used (similar to flash
memory) [APW+08, OKW17, GvRL+18].

An important research topic for NVM is to adapt the B+-Tree of database systems
to be persisted in NVM. Chen et al. adapt a B+-Tree, called wB+-Tree, with specific
instructions to manage NVM writes safely and also use an additional array that

7.5. Multi-Dimensional Main-Memory Indexing 115

buffers insertions and deletions to reduce real writes on B+-Tree nodes in NVM [CJ15].
Yang et al. propose the NV-Tree which separates B+-Tree nodes into critical nodes
(i.e., leaf nodes) stored in NVM and reconstructable data (i.e., internal nodes) stored
in DRAM [YWC+15]. Oukid et al. present the FPTree which combines the benefits
of the wB+-Tree and the NV-Tree by adding support for hardware transactional
memory [OLN+16]. Arulraj et al. present the BzTree as a latch-free B+-Tree using a
multi-word compare-and-swap operation [ALML18]. All these adaptions show that a
careful design for NVM is necessary. When using Elf on NVM, similar adaptions are
necessary.

7.5 Multi-Dimensional Main-Memory Indexing

There is a plethora of multi-dimensional index structures already introduced for
spatial and multi-media database systems. For a comprehensive overview, we refer to
the surveys of Gaede and Günther [GG98] and Böhm et al. [BBK01]. However, most
of these multi-dimensional index structures are tuned for window-based range queries
or similarity queries. Hence, there is only little work investigating their benefit for
multi-column selection predicates.

Partitioning Multi-Dimensional Data With Cracking

Apart from the BB-Tree [SSL18a, SSL19], the field of new recent multi-dimensional
main-memory indexing is only sparsely populated. An interesting field is to apply a
multi-dimensional cracking to built a multi-dimensional index on the table. Pavlovic
et al. use cracking for structuring raw data by using spatial queries [PSHA18] and
Holanda et al. propose to build a KD-Tree from multi-column selection predicates
queries on the underlying data [HNdAM18]. Both approaches create a partial ordering
but do not reach a full partitioning of the space like Elf. Only when enough diverse
queries are issued, cracking pays off in the long run.

Adapting State-of-the-Art Multi-Dimensional Index Structures for Mod-
ern Hardware

A recent benchmark, called Genomic Multidimensional Range Query Benchmark
(GMRQB), that is specifically designed for multi-dimensional range queries in multi-
threaded main-memory systems was proposed by Sprenger et al. [SSL18b]. In their
evaluation, they test parallelized versions of well-known multi-dimensional structures.
These structures are kd-Tree [Ben75], VA-File [WSB98], R∗-Tree [BKSS90] and a
full-table scan on a row-store or column-store data layout. In order to reach multi-
threaded tree structures, Sprenger et al. horizontally partition the data and create
one tree per partition in order to search these trees independently in parallel [SSL18b].
Furthermore, nodes are kept fully in main-memory and nodes sizes were adapted to
expand beyond page limits of disks.

A kd-Tree is a universal index structure that is used in many image-processing
workloads. Hence, kd-Trees have been ported to the architecture of GPUs, especially
focussing on parallel insertions [ZHWG08, SSK07]. Garcia et al. optimize similarity
queries on kd-Trees [GDB08]. However, Sprenger et al. are the first to investigate
parallel multi-dimensional partial-match queries on CPUs [SSL18b].

116 7. Related Work

Since R-Trees are based on B-Trees, Kim et al. apply optimizations of CSB-Trees to
R-Trees [KCK01]. Their CR-Tree encodes the coordinates of a minimum bounding
rectangle (MBR) in relation to its parent. Thus, coordinates usually contain many
trailing 0s, which can be compressed. Hence, they apply compression which also
optimizes cache utilization.

8. Conclusion

In this chapter, we conclude our thesis. To this end, we summarize the contributions
and results of each chapter in detail by also referring to the goals presented in the
introduction. Since the goal of Level 2 has a wide range and several important
aspects, we split the contributions to this goal into four sub-levels Level 2.1-2.4.

Level 1: Hardware-Sensitive Scans

The contribution of the first level is found in our optimizations for hardware sensitive
scans. It spreads across three main contributions, which are the definition of code
optimizations, an assessment of their impact for mono and multi-column full-table
scans, and the design of a framework for variant tuning using code optimizations.
These contributions and results are explained in the following in detail.

Code Optimizations: As first contribution, we introduce the concept of code
optimizations as a powerful abstraction level to reach hardware-sensitivity for
arbitrary operators. We also review for each code optimization its application
field in other operators. As a result, we give a comprehensive overview for the
state of the art in code optimizations.

Code Optimized Full-Table Scans: A second contribution is to test the applica-
bility of code optimizations for mono and multi-column full-table scans. Our
results show that there is not one best optimized scan, but depending on the
workload, some scan variants perform better than others. Consequently, a
DBMS has to be equipped with a set of code optimized scans to reach peak
performance.

Adaptive Reprogramming: Due to the fluctuation of use cases for code optimiza-
tions depending on the workload, there is a need to automate the generation
of hardware-sensitive code for database operators. As a consequence, we in-
troduced our concept of the adaptive reprogramming framework that is able

118 8. Conclusion

to tune database operators during runtime. Furthermore, we present its ap-
plication and similarity to already existing execution engines of main-memory
database systems.

As a result, we achieve the first goal of our thesis – an important extension of
hardware sensitive scans to reach peak performance. These scans serve as a powerful
baseline to evaluate subsequent contributions. In summary, our contributions answer
the first two research questions RQ 1 and RQ 2 concerning the question how to
reach hardware-sensitivity for full-table scans and how to automate their tuning and
selection.

Level 2.1: Accelerating Multi-Column Selection

Predicates

Despite the comprehensive optimization of full-table scans in the first level for a
variety of use cases, which leads to a powerful baseline, there are still open challenging
use cases. Especially, the pain point of full-table scans is still that the number of
memory accesses increases linearly by the number of tuples and also increasing the
number of evaluated columns adds a considerable amount of overhead. Hence, a
multi-dimensional index structure is a reasonable addition to hardware-sensitive
scans to investigate.

Our investigation shows that exploiting prefix-redundancies in a sort-based multi-
dimensional tree structure, called Elf, is a well performing approach to exploit
the relation between multiple columns of a selection predicate. In order to reach
peak performance, we optimize this structure for different data distributions with
the introduction of MonoLists, a hash map for the first index level and a clever
storage design for cache-consciousness. Our evaluation shows that Elf can outperform
the full-table scans of adaptive reprogramming and of MonetDB as well as other
multi-dimensional index structures by several magnitudes for multi-column selection
predicates of the TPC-H benchmark with considerably high selectivities.

The result of this level shows that index structures still have important use cases in
main-memory database systems – of course in combination with optimized full-table
scans. This answers RQ 3 concerning the design of an alternative structure for
accelerating multi-column selection predicates.

Level 2.2: Accelerating Complex Selection Predi-

cates

Due to the flexibility of full-table scans for arbitrary selection predicates, our intro-
duced multi-dimensional index structure lacks efficient support for complex selection
predicates (i.e., IN-predicates and column-column comparisons). Hence, we investi-
gate for Level 2.2 how to efficiently support complex predicates in Elf. This results
in the introduction of two algorithms – one for evaluating IN-predicates and one for
evaluating column-column predicates – which are adapted to all levels of the Elf, i.e.,
its hash map, its DimensionLists, and its MonoLists.

119

Our subsequent evaluation shows the usability for Elf for different complex predicate
queries, which shows a better scaling behavior than a full-table scan when increasing
the number of IN-values and number of column-column comparisons. Hence, our Elf
is capable to support arbitrary selections that can be expressed with SQL, which
also answers research question RQ 4.

Level 2.3: Query Acceleration in Main-Memory

Database Systems with a Multi-Dimensional Sort-

Based Index Structure
With the introduction of Elf, we reached a milestone in this thesis for accelerating
complex multi-column selection predicates due to its enormous performance benefits.
However, still the question arises whether it is possible to equip a query engine of a
main-memory database system with Elf and afterwards reach the same performance
speedups (cf. RQ 5). To this end, we integrated Elf into MonetDB and test its query
performance against MonetDB’s full-table scans for a variety of TPC-H queries.

The results of the integration tests show a positive outcome. Overall, Elf shows
remarkable benefits for queries with reasonably high selectivity and its integration
shows only minimal overhead. However, for some TPC-H queries, the interoperability
of Elf’s selection result and the access pattern of subsequent operators is still a
major bottleneck. Due to the unsorted output of TIDs of Elf, subsequent joins
and projections add a considerable performance overhead due to random memory
accesses. Hence, it is open for future work to solve or minimize this overhead. Still,
we deem the integration as successful (and thus the answer to RQ 5) since the query
times of the integrated Elf are often better than those with full-table scans and for
some queries, Elf delivers a performance in at least the same range as queries backed
by full-table scans. Hence, we argue that Elf is a reasonable structure to be used in
arbitrary main-memory database systems in order to reach peak performance.

Level 2.4: Maintenance of a Multi-Dimensional Sort-

Based Index Structure
The last contribution to Level 2 is an efficient maintenance of our proposed Elf.
Since maintenance jobs (i.e., building, inserting values) is an important and easy
operation for column stores (and by concept also for full-table scans), it is also
important to support maintenance jobs within Elf. To this end, we present an
efficient build algorithm as well as a design for efficient inserts, updates, and deletes.
The insertion algorithm for data-warehouse-like scenarios allows to frequently append
data efficiently in Elf with only minimal overhead. The idea is based on delta stores
allowing to stage data and after a specific threshold of insertions to merge both
structures.

Our results for building and maintaining Elf shows that it cannot always outperform
simpler structures, but its performance is in the same order of magnitude. Due to
the proven performance benefit of Elf by several magnitudes, we argue that such
maintenance performance is acceptable, which concludes the outcome of research
question RQ 6.

120 8. Conclusion

Thesis Conclusion

As an overall conclusion, the contribution of all chapters leverages the performance of
selections to another level. By automatically generating hardware-sensitive database
operators using code optimizations, the whole system is capable to optimize for
arbitrary underlying (future) hardware. Furthermore, by exploiting the underlying
data distributions with code optimizations as well as with our multi-dimensional
sort-based index structure, we are able to push database performance beyond tuning
it only for the hardware, but also for a arbitrary use cases. Hence, the contribution
of the thesis is a Swiss-army knife for a query engine to accelerate arbitrary selection
predicates.

9. Future Work

In this chapter, we give an overview of open or newly arisen challenges and goals that
can be inferred from the results of the thesis. Of course, the future work for this thesis
spans across all levels that we worked on in the thesis. Hence, we first review future
work for hardware-sensitive full-table scans and afterwards new ideas on extending
our Elf approach. Although the thesis may give the impression that there are only
small optimizations left for improving the applicability of Elf, however, the clever
design became a door-opener for another level that goes beyond the optimization of
selection predicates.

Extending Level 1: Hardware-Sensitive Database Operators

In this thesis, we characterized code optimizations that are well suited for selection
predicates and proposed a methodology to exploit code optimizations for arbitrary
operators. Due to the focus of this thesis, a comprehensive extension of both
contributions is needed to reach hardware-sensitivity without borders. This goal
calls for an extended set of code optimizations and a more powerful automation of
variant generation.

Extending Code Optimizations

The result of this thesis is a set of code optimizations that are applicable for full-table
scans. We also included further optimizations that were proposed in related work.
However, to optimize database operations for different use cases, it is necessary to
create a comprehensive set of possible code optimizations. This includes to review and
also extend code optimizations for different database operators, workloads, as well
as for different devices, while being coupled with performance evaluations to assess
their usefulness. Especially code optimizations for highly parallel architectures, such
as GPUs or Xeon Phis, is an important task. Furthermore, advances in data-parallel
processing forces the support for the ever-growing set of SIMD instructions. As a
result, we are able to exploit the given hardware and workload characteristics at its
maximum reaching bare-metal speed.

122 9. Future Work

Automating Code Optimization and Generation

Since several frameworks already implement our idea of adaptive reprogramming,
there are only small changes to be done to fully exploit the underlying hardware
and workload for arbitrary database workloads. However, the future work in the
direction of code optimization rather lies in the direction of software engineering. So
far, there is no method that enables an easy and reliable way to apply arbitrary code
optimizations on our database operators. Probably, newest advances in lightweight-
modular staging (i.e., abstraction without regret [SKK18]) or software product
lines [BDKM14, MTS+17, KPK+18] may come to the rescue in this regard. However,
a comprehensive test for their applicability is still open.

Extending Level 2: Multi-Column Selection Predicates in Elf

Our multi-dimensional sort-based index structure Elf is already a powerful approach
to accelerate queries with low-selectivity on multiple columns. However, there are
still challenges that limit the applicability of Elf, which we intend to solve in the
future. The following optimizations range from conceptual optimizations on the Elf
design to use-case-specific optimizations.

Extending Elf’s Design

The conceptual design of Elf dictates that we have to travers down to the leaf levels
of the Elf to reach TIDs. However, an identified problem from our benchmarks
in Section 4.5.2 is that especially mono-column selection predicates suffer high
performance penalties. To optimize even these workloads, we can use the property
of Elf that it creates a total ordering of the data space and, hence, also on the TIDs.
Thus, a reasonable optimization would be to include additional pointers that point
from an upper level in the Elf to the matching partition of the TIDs. These pointers
(i.e., Shortcuts) can then be used in case the multi-column selection predicate ends
at a specific level in order to shortcut to the matching TIDs. Nevertheless, this
optimization poses further challenges, because not all levels of the Elf need to be
equipped with additional pointers (by incurring additional storage space consumption)
in order to minimize the overhead for other queries as well as the storage consumption
of the query. In addition to that, different node designs (e.g., storing nodes as a k-ary
search tree [SGL09]) and linearization strategies are a reasonable extension, as we
already identified in Section 7.3.5. Especially for domains with huge data cardinalities
(e.g., protein databases [HSZ+17, ZSJ+18]), such optimizations are essential.

Widetable Approach for Elf

In our evaluation of Elf’s impact on the whole query runtime (cf. Section 5.3.2), we
have identified that the unordered TID list diminishes performance benefits of the
selections due to an overhead in subsequent joins and projections. A reasonable
approach to avoid join processing is to use a denormalized schema, a so-called wide
table [BYT+17, LP14]. In a wide table, all joins are already executed leading to a
table with all columns and a lot of data redundancy. Since Elf is able to compress
the redundancy of column values, it is a valuable goal to use Elf to accelerate a wide
table approach. Furthermore, by including shortcuts, the additional columns will
also only minimally impact the performance behavior of Elf. However, how well Elf
can accelerate a wide table approach is open for an extensive evaluation.

123

Solving the Column Ordering Problem

Currently, we use a simple heuristic to order the columns for our executed queries,
which is based on the frequency of usage of the columns and cardinality of the
values in the column. So far, this heuristic has proven well and has been approved
by the cost model of Jonas Schneider [Sch15]. However, there are still several
extensions necessary to guarantee a comprehensive modeling for Elf’s performance.
At first, the cost model needs to be extended for complex predicates in order to
get a comprehensive cost model for arbitrary selection predicates. Furthermore,
the possibility of using Elf as an index structure leaves the opportunity open to
generate several query-sensitive Elfs. With this in mind, a cost model could also
generate several partially-overlapping Elfs that balance storage consumption and
query performance for a set of queries.

Introducing Level 3: Elf as a Full-Fledged Accelerator for
Hybrid Relational and Similarity Queries

The last important part of future work covers the capabilities of Elf beyond acceler-
ating only selection predicates. For instance, there is already a plethora of related
work (cf. Chapter 7) of multi-dimensional index structures to accelerate similarity
queries (e.g., k-nearest-neighbor (kNN) queries). By combining selections and for
instance similarity queries, we are able to accelerate whole queries without result
materialization leading to an enormous benefit compared to usual query engines
suffering from intermediate result materialization. Hence, we present our ideas for
Elf’s applicability on further relational and similarity query operators in the following.

Extensions for Relational Operators

Interestingly, the main properties of Elf (i.e., sorted node entries and values of each
level correspond to a single column) allow for an efficient support for sort, group, and
join operators. While sorting and grouping drills down to a merge of pre-sorted data
(i.e., DimensionLists), the join operator needs more effort. For instance, joins of two
Elf’s on a join column could be done with a grouping phase on the first (bigger) Elf
and one selection per group on the second Elf. Another possible optimization is to
use co-clustering similar to BDCC [BBS16]. In summary, the goal of this extension
is to architect clever approaches to efficiently combine all relational operators into
one traversal of the Elf.

Extensions for Similarity Operators

A last extension of the Elf is to support similarity operators like similarity-based
selections or queries. This extension in combination with other operators allows to do
similarity-based analyses on a specific subset of the data (i.e., a selected subpartition
of the data). A valuable property of Elf is that it puts a total ordering of the
space, which means that all points with the same prefix have the same distance to
the query point. As a result, Elf’s partitioning can reduce distance computations
of a set of points to a single distance computation to their common prefix. This
extension, however, does not only need an efficient operator implementation, but
also an adaption of the cost model.

124 9. Future Work

Bibliography

[ABH+13] Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos,
and Samuel Madden. The Design and Implementation of Modern
Column-Oriented Database Systems. Foundations and Trends in
Databases, 5(3): 197-280, 2013.

[ABP+17] Iya Arefyeva, David Broneske, Marcus Pinnecke, Mudit Bhatnagar,
and Gunter Saake. Column vs. Row Stores for Data Manipulation
in Hardware Oblivious CPU/GPU Database Systems. In Proceedings
of the GI-Workshop Grundlagen von Datenbanken (GvDB), CEUR
Workshop Proceedings, pages 24–29. CEUR-WS, 2017.

[ACP+18] Iya Arefyeva, Gabriel Campero Durand, Marcus Pinnecke, David
Broneske, and Gunter Saake. Low-Latency Transaction Execution
on Graphics Processors: Dream or Reality? In Proceedings of the In-
ternational Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures (ADMS),
pages 16–21, 2018.

[ADHW99] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. DBMSs on a Modern Processor: Where Does Time Go? Pro-
ceedings of the International Conferenece on Very Large Data Bases
(VLDB), pages 266–277, 1999.

[AIA14] Ioannis Alagiannis, Stratos Idreos, and Anastassia Ailamaki. H2O:
A Hands-free Adaptive Store. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 1103–1114. ACM,
2014.

[AKM+16] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica,
Stratos Idreos, Anastassia Ailamaki, and Mark Callaghan. Designing
Access Methods: The RUM Conjecture. In Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT), pages
461–466, 2016.

[AKN12] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Mas-
sively Parallel Sort-Merge Joins in Main Memory Multi-Core Database
Systems. Proceedings of the VLDB Endowment, 5(10):1064–1075, 2012.

[AKPA17] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anas-
tassia Ailamaki. The Case For Heterogeneous HTAP. In Proceedings

126 Bibliography

of the International Conference on Innovative Data Systems Research
(CIDR), 2017.

[ALML18] Joy Arulraj, Justin Levandoski, Umar F. Minhas, and Per-Ake Larson.
BzTree: A High-performance Latch-free Range Index for Non-volatile
Memory. Proceedings of the VLDB Endowment, 11(5):553–565, 2018.

[AMDM07] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden.
Materialization Strategies in a Column-Oriented DBMS. In Proceedings
of the International Conference on Data Engineering (ICDE), pages
466–475. IEEE, 2007.

[Ant97] Gennady Antoshenkov. Dictionary-Based Order-Preserving String Com-
pression. The VLDB Journal, 6(1):26–39, 1997.

[APM16] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the
Archipelago Between Row-Stores and Column-Stores for Hybrid Work-
loads. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 583–598. ACM, 2016.

[APW+08] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design Tradeoffs for SSD Performance. In
Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pages 57–70, 2008.

[BATÖ13] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. Proceedings
of the VLDB Endowment, 7(1):85–96, 2013.

[BBHS14] David Broneske, Sebastian Breß, Max Heimel, and Gunter Saake. To-
ward Hardware-Sensitive Database Operations. In Proceedings of the
International Conference on Extending Database Technology (EDBT),
pages 229–234, 2014.

[BBK01] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in
High-Dimensional Spaces: Index Structures for Improving the Perfor-
mance of Multimedia Databases. ACM Computing Surveys, 33(3):322–
373, 2001.

[BBS14] David Broneske, Sebastian Breß, and Gunter Saake. Database Scan
Variants on Modern CPUs: A Performance Study. In Proceedings
of the International Workshop on In-Memory Data Management and
Analytics (IMDM), Lecture Notes in Computer Science (LNCS), pages
97–111. Springer, 2014.

[BBS16] Stephan Baumann, Peter A. Boncz, and Kai-Uwe Sattler. Bitwise Di-
mensional Co-Clustering for Analytical Workloads. The VLDB Journal,
25(3):291–316, 2016.

Bibliography 127

[BDKM14] David Broneske, Sebastian Dorok, Veit Köppen, and Andreas Meister.
Software Design Approaches for Mastering Variability in Database Sys-
tems. In Proceedings of the GI-Workshop Grundlagen von Datenbanken
(GvDB), volume 1313 of CEUR Workshop Proceedings, pages 47–52.
CEUR-WS, 2014.

[Ben75] Jon Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, 1975.

[Bet18] Florian Bethe. Elf Meets MonetDB: Integrating a Multi-Column Struc-
ture Into a Column Store. Master’s thesis, University of Magdeburg,
2018.

[BK99] Peter A. Boncz and Martin L. Kersten. MIL Primitives for Querying a
Fragmented World. The VLDB Journal, 8(2):101–119, 1999.

[BKF+18] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann
Rabl, and Volker Markl. Generating Custom Code for Efficient Query
Execution on Heterogeneous Processors. The VLDB Journal, 27(6):797—
822, 2018.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-Tree:
An Index Structure for High-Dimensional Data. Proceedings of the
International Conferenece on Very Large Data Bases (VLDB), pages
28–39, 1996.

[BKM08] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the
Memory Wall in MonetDB. Communications of the ACM, 51(12):77–85,
2008.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 322–331. ACM, 1990.

[BKSS17] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler.
Accelerating Multi-Column Selection Predicates in Main-Memory - The
Elf Approach. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 647–658. IEEE, 2017.

[BKSS18] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler.
Efficient Evaluation of Multi-Column Selection Predicates in Main-
Memory. Transactions on Knowledge and Data Engineering (TKDE),
2018. Accepted in April 2018.

[BLC+16] Debabrota Basu, Qian Lin, Weidong Chen, Hoang T. Vo, Zihong
Yuan, Pierre Senellart, and Stéphane Bressan. Regularized Cost-Model
Oblivious Database Tuning With Reinforcement Learning. Transactions
on Large-Scale Data and Knowledge-Centered Systems (TLDKS), 28:96–
132, 2016.

128 Bibliography

[Blo59] Erich Bloch. The Engineering Design of the Stretch Computer. In
Proceedings of the International Workshop on Managing Requirements
Knowledge (MARK), pages 48–59, 1959.

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding With Allow-
able Errors. Communications of the ACM, 13:422–426, 1970.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Optimizing
Database Architecture for the New Bottleneck: Memory Access. Pro-
ceedings of the International Conferenece on Very Large Data Bases
(VLDB), 9(3):231–246, 1999.

[BMS17] David Broneske, Andreas Meister, and Gunter Saake. Hardware-
Sensitive Scan Operator Variants for Compiled Selection Pipelines.
In Fachtagung Datenbanksysteme für Business, Technologie und Web
(BTW), pages 403–412, 2017.

[Bre13] Sebastian Breß. Why it is Time for a HyPE: A Hybrid Query Processing
Engine for Efficient GPU Coprocessing in DBMSs. The VLDB PhD
Workshop, 6(12):1398–1403, 2013.

[Bre14] Sebastian Breß. The Design and Implementation of CoGaDB: A Column-
Oriented GPU-Accelerated DBMS. Datenbank-Spektrum, 14(3):199–209,
2014.

[Bro15] David Broneske. Adaptive Reprogramming for Databases on Heteroge-
neous Processors. In SIGMOD/PODS Ph.D. Symposium, pages 51–55.
ACM, 2015.

[BS17a] David Broneske and Gunter Saake. Exploiting Capabilities of Modern
Processors in Data Intensive Applications. it - Information Technology,
59(3):133–140, 2017.

[BS17b] David Broneske and Martin Schäler. Single Instruction Multiple Data
– Not Everything is a Nail for this Hammer. In Proceedings of the
International Workshop on Failed Aspirations in Database Systems
(FADS), 2017.

[BTAÖ13] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the Underly-
ing Hardware. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 362–373. IEEE, 2013.

[BYT+17] Haoqiong Bian, Ying Yan, Wenbo Tao, Liang Jeff Chen, Yueguo Chen,
Xiaoyong Du, and Thomas Moscibroda. Wide Table Layout Optimiza-
tion Based on Column Ordering and Duplication. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
299–314. ACM, 2017.

[BZN05] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proceedings of the International

Bibliography 129

Conference on Innovative Data Systems Research (CIDR), pages 225–
237, 2005.

[CJ15] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-volatile Main
Memory. Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[Cod70] Edgar F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, 13(6):377–387, 1970.

[CPP+18] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mahmoud
Mohsen, David Broneske, Gunter Saake, Maya Sekeran, Fabian Ro-
driguez, and Laxmi Balami. GridFormation: Towards Self-Driven
Online Data Partitioning using Reinforcement Learning. In Proceed-
ings of the International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management (aiDM), volume 1, pages 1–7, 2018.

[DBS08] Jens Dittrich, Lukas Blunschi, and Marcos Salles. Dwarfs in the
Rearview Mirror: How Big Are They Really? Proceedings of the
VLDB Endowment, 1(2):1586–1597, 2008.

[DIR07] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive
Query Processing. Foundations and Trends in Databases (FTDB),
1(1):1–140, 2007.

[DKF+18] Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias
Uflacker, and Hasso Plattner. Fused Table Scans: Combining AVX-512
and JIT to Double the Performance of Multi-Predicate Scans. In Pro-
ceedings of the International Workshop on Big Data Management on
Emerging Hardware (HardBD), pages 102–109, 2018.

[DMV+08] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David A. Patterson, John Shalf, and
Katherine Yelick. Stencil Computation Optimization and Auto-tuning
on State-of-the-Art Multicore Architectures. In Proceedings of the
International Conference on Supercomputing (SC), pages 1–12, 2008.

[DYZ+15] Dinesh Das, Jiaqi Yan, Mohamed Zait, Satyanarayana R. Valluri, Nirav
Vyas, Ramarajan Krishnamachari, Prashant Gaharwar, Jesse Kamp,
and Niloy Mukherjee. Query Optimization in Oracle 12c Database
In-Memory. Proceedings of the VLDB Endowment, 8(12):1770–1781,
2015.

[EN15] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Addison-Wesley, 7 edition, 2015.

[FBBO99] Martin Fowler, Kent Beck, John Brant, and William Opdyke. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[GBD+18] Bala Gurumurthy, David Broneske, Tobias Drewes, Thilo Pionteck,
and Gunter Saake. Cooking DBMS Operations Using Granular Primi-
tives - An Overview on a Primitive-Based RDBMS Query Evaluation.
Datenbank-Spektrum, 18(3):183–193, 2018.

130 Bibliography

[GBP+18] Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero
Durand, and Gunter Saake. SIMD Vectorized Hashing for Grouped
Aggregation. In Proceedings of the European Conference on Advances
in Databases and Information Systems (ADBIS), Lecture Notes in
Computer Science (LNCS), pages 113–126. Springer, 2018.

[GDB08] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k Nearest
Neighbor Search Using GPU. In Proceedings of the International Work-
shop on Computer Vision and Pattern Recognition (EMMCVPR), pages
1–6. IEEE, 2008.

[GG98] Volker Gaede and Oliver Günther. Multidimensional Access Methods.
ACM Computing Surveys, 30(2):170–231, 1998.

[GvRL+18] Philipp Götze, Alexander van Renen, Lucas Lersch, Viktor Leis, and Is-
mail Oukid. Data Management on Non-Volatile Memory: A Perspective.
Datenbank-Spektrum, 18(3):171–182, 2018.

[HKHL15] Carl-Philip Hänsch, Thomas Kissinger, Dirk Habich, and Wolfgang
Lehner. Plan Operator Specialization using Reflective Compiler Tech-
niques. In Fachtagung Datenbanksysteme für Business, Technologie und
Web (BTW), pages 363–382, 2015.

[HLH13] Jiong He, Mian Lu, and Bingsheng He. Revisiting Co-Processing for
Hash Joins on the Coupled CPU-GPU Architecture. Proceedings of the
VLDB Endowment, 6(10):889–900, 2013.

[HLY+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. Relational Query Co-Processing
on Graphics Processors. In ACM Transactions on Database Systems
(TODS), volume 34, pages 1–39. ACM, 2009.

[HNdAM18] Pedro Holanda, Matheus Nerone, Eduardo Cunha de Almeida, and
Stefan Manegold. Cracking KD-Tree: The First Multidimensional
Adaptive Indexing (Position Paper). In Proceedings of the International
Conference on Data Science, Technology and Applications (DATA),
pages 393–399, 2018.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 4. edition,
2007.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., 5. edition,
2011.

[HSP+13] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker
Markl. Hardware-Oblivious Parallelism for In-Memory Column-Stores.
Proceedings of the VLDB Endowment, 6(9):709–720, 2013.

Bibliography 131

[HSZ+17] Robert Heyer, Kay Schallert, Roman Zoun, Beatrice Becher, Gunter
Saake, and Dirk Benndorf. Challenges and Perspectives of Metapro-
teomic Data Analysis. Journal of Biotechnology, (261):24–36, 2017.

[HYF+08] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju,
Qiong Luo, and Pedro V. Sander. Relational Joins on Graphics Proces-
sors. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 511–524. ACM, 2008.

[IKM07] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database
Cracking. In Proceedings of the International Conference on Innovative
Data Systems Research (CIDR), pages 68–78, 2007.

[IKM09] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-Organizing
Tuple Reconstruction in Column-Stores. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), pages 297–308.
ACM, 2009.

[Inm05] William H. Inmon. Building the Data Warehouse. Wiley, 4. edition,
2005.

[Int16] Intel 64 and IA-32 Architectures Optimization Reference Manual, 2016.

[ISO99] ANSI/ISO/IEC International Standard (S) Database Language SQL
– Part 2: Foundation (SQL/Foundation), ISO/IEC 9075-2:1999 (E),
1999.

[JLC+15] Saurabh Jha, Mian Lu, Xuntao Cheng, Bingsheng He, and Huynh Phung
Huynh. Improving Main Memory Hash Joins on Intel Xeon Phi Proces-
sors: An Experimental Approach. Proceedings of the VLDB Endowment,
8(6):642–653, 2015.

[JLR+94] Hosagrahar Visvesvaraya Jagadish, Daniel Lieuwen, Rajeev Rastogi,
Avi Silberschatz, and S. Sudershan. Dali: A High Performance Main
Memory Storage Manager. Proceedings of the International Conferenece
on Very Large Data Bases (VLDB), pages 48–59, 1994.

[KBSS15] Veit Köppen, David Broneske, Gunter Saake, and Martin Schäler. Elf:
A Main-Memory Structure for Efficient Multi-Dimensional Range and
Partial Match Queries. Technical Report 002-2015, Otto-von-Guericke-
University Magdeburg, 2015.

[KCK01] Kihong Kim, Sang K. Cha, and Keunjoo Kwon. Optimizing Multidi-
mensional Index Trees for Main Memory Access. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
139–150. ACM, 2001.

[KCS+10] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-
thony D. Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and
Pradeep Dubey. FAST: Fast Architecture Sensitive Tree Search on Mod-
ern CPUs and GPUs. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 339–350. ACM, 2010.

132 Bibliography

[KKRC14] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi.
Building Efficient Query Engines in a High-level Language. Proceedings
of the VLDB Endowment, 7(10):853–864, 2014.

[KLMV12] Tim Kaldewey, Guy M. Lohman, Rene Mueller, and Peter Volk. GPU
Join Processing Revisited. In Proceedings of the International Workshop
on Data Management on New Hardware (DaMoN), pages 55–62. ACM,
2012.

[KM05] Martin L. Kersten and Stefan Manegold. Cracking the Database Store.
In Proceedings of the International Conference on Innovative Data
Systems Research (CIDR), pages 213–224, 2005.

[KN11] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP &
OLAP Main Memory Database System Based on Virtual Memory
Snapshots. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 195–206. IEEE, 2011.

[KPK+18] Jacob Krüger, Marcus Pinnecke, Andy Kenner, Christopher Kruczek,
Fabian Benduhn, Thomas Leich, and Gunter Saake. Composing Annota-
tions Without Regret? Practical Experiences Using FeatureC. Software:
Practice and Experience, 48(3):402–427, 2018.

[KSB19] Veit Köppen, Martin Schäler, and David Broneske. Emerging Per-
spectives in Big Data Warehousing, chapter Index Structures for Data
Warehousing & Big Data Analytics. IGI Global, 2019.

[KSC+09] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D.
Nguyen, Andrea Di Blas, Victor W. Lee, Nadathur Satish, and Pradeep
Dubey. Sort vs. Hash Revisited: Fast Join Implementation on Modern
Multi-Core CPUs. Proceedings of the VLDB Endowment, 2(2):1378–
1389, 2009.

[KSS14] Veit Köppen, Gunter Saake, and Kai-Uwe Sattler. Data Warehouse
Technologien. mitp, 2. edition, 2014.

[LA00] Samuel Larsen and Saman Amarasinghe. Exploiting Superword Level
Parallelism With Multimedia Instruction Sets. Proceedings of the In-
ternational Conference on Programming Language Design and Imple-
mentation (PLDI), 35(5):145–156, 2000.

[Lam75] Leslie Lamport. Multiple Byte Processing With Full-Word Instructions.
Communications of the ACM, 18(8):471–475, 1975.

[LKN13] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive
Radix Tree: ARTful Indexing for Main-Memory Databases. In Pro-
ceedings of the International Conference on Data Engineering (ICDE),
pages 38–49. IEEE, 2013.

[LP13] Yinan Li and Jignesh M. Patel. BitWeaving: Fast Scans for Main
Memory Data Processing. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 289–300. ACM, 2013.

Bibliography 133

[LP14] Yinan Li and Jignesh M. Patel. WideTable: An Accelerator for Analyt-
ical Data Processing. Proceedings of the VLDB Endowment, 7(10):907–
918, 2014.

[Lüb17] Andreas Lübcke. Automated Query Interface for Hybrid Relational
Architectures. PhD thesis, University of Magdeburg, 2017.

[LY04] Xiang Longgang and Feng Yucai. Fast Computation of Iceberg Dwarf. In
Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM), pages 203–212. IEEE, 2004.

[MBNK04] Stefan Manegold, Peter A. Boncz, Niels Nes, and Martin L. Kersten.
Cache-Conscious Radix-Decluster Projections. Proceedings of the In-
ternational Conferenece on Very Large Data Bases (VLDB), pages
684–695, 2004.

[MOL09] Ilias Michalarias, Arkadiy Omelchenko, and Hans-Joachim Lenz. FC-
LOS: A Client-Server Architecture for Mobile OLAP. Data & Knowledge
Engineering, 68(2):192–220, 2009.

[MSL+15] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and
Franz Färber. Cache-Efficient Aggregation: Hashing Is Sorting. In
Proceedings of the International Conference on Management of Data
(SIGMOD), pages 1123–1136. ACM, 2015.

[MTA11] Rene Mueller, Jens Teubner, and Gustavo Alonso. Sorting Networks
on FPGAs. The VLDB Journal, 21(1):1–23, 2011.

[MTS+17] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability With
FeatureIDE. Springer, 1. edition, 2017.

[Neu11] Thomas Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. Proceedings of the VLDB Endowment, 4(9):539–550,
2011.

[OKW17] Ismail Oukid, Robert Kettler, and Thomas Willhalm. Storage Class
Memory and Databases: Opportunities and Challenges. it - Information
Technology, 59(3):109, 2017.

[OLN+16] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
371–386. ACM, 2016.

[OOC09] Pat O’Neil, Betty O’Neil, and Xuedong Chen. Star Schema Benchmark
- Revision 3, 2009.

[PBDS17] Marcus Pinnecke, David Broneske, Gabriel Campero Durand, and
Gunter Saake. Are Databases Fit for Hybrid Workloads on GPUs?

134 Bibliography

A Storage Engine’s Perspective. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 1599–1606, 2017.

[PFRE14] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali.
Hybrid Transaction/Analytical Processing Will Foster Opportunities
for Dramatic Business Innovation. In Gartner, 2014.

[PIM15] Eleni Petraki, Stratos Idreos, and Stefan Manegold. Holistic Indexing
in Main-Memory Column-Stores. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 1153–1166. ACM,
2015.

[Pla09] Hasso Plattner. A Common Database Approach for OLTP and OLAP
Using an In-Memory Column Database. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), pages 1–2.
ACM, 2009.

[PMZM16] Holger Pirk, Oscar Moll, Matei Zaharia, and Samuel Madden. Voodoo
- A Vector Algebra for Portable Database Performance on Modern
Hardware. Proceedings of the VLDB Endowment, 9(14):1707–1718,
2016.

[PPI+14] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, and Mar-
tin L. Kersten. Database Cracking: Fancy Scan, Not Poor Man’s Sort!
In Proceedings of the International Workshop on Data Management on
New Hardware (DaMoN), pages 4:1–4:8. ACM, 2014.

[PR13] Orestis Polychroniou and Kenneth A. Ross. High Throughput Heavy
Hitter Aggregation for Modern SIMD Processors. In Proceedings of
the International Workshop on Data Management on New Hardware
(DaMoN), pages 6:1–6:6. ACM, 2013.

[PR14] Orestis Polychroniou and Kenneth A. Ross. Vectorized Bloom Filters
for Advanced SIMD Processors. In Proceedings of the International
Workshop on Data Management on New Hardware (DaMoN), pages
6:1–6:6. ACM, 2014.

[PR15] Orestis Polychroniou and Kenneth A. Ross. Efficient Lightweight
Compression Alongside Fast Scans. In Proceedings of the International
Workshop on Data Management on New Hardware (DaMoN), pages
9:1–9:6. ACM, 2015.

[PRR15] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethink-
ing SIMD Vectorization for In-Memory Databases. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
1493–1508. ACM, 2015.

[PSHA18] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastassia
Ailamaki. QUASII: Query-Aware Spatial Incremental Index. In Proceed-
ings of the International Conference on Extending Database Technology
(EDBT), pages 325–336, 2018.

Bibliography 135

[RAD15] Stefan Richter, Victor Alvarez, and Jens Dittrich. A Seven-Dimensional
Analysis of Hashing Methods and Its Implications on Query Processing.
Proceedings of the VLDB Endowment, 9(3):96–107, 2015.

[RBB+18] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim,
Wolfgang Lehner, and Amr Rizk. OLTPshare: The Case for Sharing in
OLTP Workloads. Proceedings of the VLDB Endowment, 11(12):1769–
1780, 2018.

[RBZ13] Bogdan Rǎducanu, Peter A. Boncz, and Marcin Zukowski. Micro
Adaptivity in Vectorwise. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 1231–1242. ACM, 2013.

[RHVM15] Viktor Rosenfeld, Max Heimel, Christoph Viebig, and Volker Markl.
The Operator Variant Selection Problem on Heterogeneous Hardware.
In Proceedings of the International Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), pages 1–12, 2015.

[Rom12] Tiark Rompf. Lightweight Modular Staging and Embedded Compilers:
Abstraction Without Regret for High-Level High-Performance Program-
ming. PhD thesis, EPFL Lausanne, 2012.

[Ros02] Kenneth A. Ross. Conjunctive Selection Conditions in Main Memory.
In Proceedings of the Symposium on Principles of Database Systems
(PODS), pages 109–120. ACM, 2002.

[Ros04] Kenneth A. Ross. Selection Conditions in Main-Memory. ACM Trans-
actions on Database Systems (TODS), 29:132–161, 2004.

[RR99] Jun Rao and Kenneth A. Ross. Cache Conscious Indexing for Decision-
Support in Main Memory. Proceedings of the International Conferenece
on Very Large Data Bases (VLDB), pages 78–89, 1999.

[RR00] Jun Rao and Kenneth A. Ross. Making B+-Trees Cache Conscious in
Main Memory. SIGMOD Record, 29(2):475–486, 2000.

[SAB+05] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and
Stan Zdonik. C-Store: A Column-Oriented DBMS. Proceedings of the
International Conferenece on Very Large Data Bases (VLDB), pages
553–564, 2005.

[SBS18] Lars-Christian Schulz, David Broneske, and Gunter Saake. An Eight-
Dimensional Systematic Evaluation of Optimized Search Algorithms on
Modern Processors. Proceedings of the VLDB Endowment, 11(11):1550–
1562, 2018.

[Sch15] Jonas Schneider. Analytic Performance Model of a Main-Memory Index
Structure. Bachelor thesis, Karlsruhe Institute of Technology, 2015.

136 Bibliography

[SDKR03] Yannis Sismanis, Antonios Deligiannakis, Yannis Kotidis, and Nick
Roussopoulos. Hierarchical Dwarfs for the Rollup Cube. In Proceed-
ings of the International Workshop on Data Warehousing and OLAP
(DOLAP), pages 17–24. ACM, 2003.

[SDRK02] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yan-
nis Kotidis. Dwarf: Shrinking the PetaCube. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
464–475. ACM, 2002.

[SGL09] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. K-ary Search
on Modern Processors. In Proceedings of the International Workshop
on Data Management on New Hardware (DaMoN), pages 52–60. ACM,
2009.

[SGS+13] Martin Schäler, Alexander Grebhahn, Reimar Schröter, Sandro Schulze,
Veit Köppen, and Gunter Saake. QuEval: Beyond High-Dimensional
Indexing à la Carte. Proceedings of the VLDB Endowment, 6(14):1654–
1665, 2013.

[SK13] Lefteris Sidirourgos and Martin L. Kersten. Column Imprints: A Sec-
ondary Index Structure. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 893–904. ACM, 2013.

[SKK18] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. Building Ef-
ficient Query Engines in a High-Level Language. Transactions on
Database Systems (TODS), 43(1):4:1–4:45, 2018.

[SKP+16] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mo-
hammad Dashti, and Christoph Koch. How to Architect a Query
Compiler. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 1907–1922. ACM, 2016.

[SM17] Lefteris Sidirourgos and Hannes Mühleisen. Scaling Column Imprints
Using Advanced Vectorization. In Proceedings of the International
Workshop on Data Management on New Hardware (DaMoN), pages
4:1–4:8. ACM, 2017.

[SR13] Evangelia Sitaridi and Kenneth A. Ross. Optimizing Select Conditions
on GPUs. In Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), pages 4:1–4:8. ACM, 2013.

[SSH11] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken –
Implementierungstechniken. mitp, 3 edition, 2011.

[SSH18] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken.
Konzepte und Sprachen. mitp, 6 edition, 2018.

[SSK07] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. Highly
Parallel Fast KD-Tree Construction for Interactive Ray Tracing of
Dynamic Scenes. In Computer Graphics Forum, volume 26, pages
395–404. Wiley Online Library, 2007.

Bibliography 137

[SSL18a] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. BB-Tree: A Practi-
cal and Efficient Main-Memory Index Structure for Multidimensional
Workloads. In Proceedings of the International Conference on Data
Engineering (ICDE). IEEE, 2018.

[SSL18b] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. Multidimensional
Range Queries on Modern Hardware. In Proceedings of the Interna-
tional Conference on Scientific and Statistical Database Management
(SSDBM), pages 4:1–4:12. ACM, 2018.

[SSL19] Stefan Sprenger, Patrick Schäfer, and Ulf Leser. BB-Tree: A Practical
and Efficient Main-Memory Index Structure for Multidimensional Work-
loads. In Proceedings of the International Conference on Extending
Database Technology (EDBT), 2019.

[Tra14] Transaction Processing Performance Council. TPC BENCHMARK H
(Decision Support). Technical Report 2.17.1, 2014.

[Tra15] Transaction Processing Performance Council. TPC BENCHMARK DS.
Technical Report 2.1.0, 2015.

[WBP+09] Thomas Willhalm, Yazan Boshmaf, Hasso Plattner, Nicolae Popovici,
Alexander Zeier, and Jan Schaffner. SIMD-Scan: Ultra Fast in-Memory
Table Scan Using on-Chip Vector Processing Units. Proceedings of the
VLDB Endowment, 2(1):385–394, 2009.

[WEBS18] Marten Wallewein-Eising, David Broneske, and Gunter Saake. SIMD
Acceleration for Main-Memory Index Structures – A Survey. In Proceed-
ings of the International Conference Beyond Databases, Architectures
and Structures (BDAS), pages 105–119. Springer, 2018.

[WOMF13] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber.
Vectorizing Database Column Scans With Complex Predicates. In
Proceedings of the International Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), pages 1–12, 2013.

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative
Analysis and Performance Study for Similarity-Search Methods in High-
Dimensional Spaces. Proceedings of the International Conferenece on
Very Large Data Bases (VLDB), 98:194–205, 1998.

[YOHY12] Takeshi Yamamuro, Makoto Onizuka, Toshio Hitaka, and Masashi
Yamamuro. VAST-Tree: A Vector-Advanced and Compressed Structure
for Massive Data Tree Traversal. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 396–407.
ACM, 2012.

[YWC+15] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. NV-Tree: Reducing Consistency Cost for
NVM-Based Single Level Systems. In Proceedings of the USENIX

138 Bibliography

Conference on File and Storage Technologies (FAST), pages 167–181.
USENIX Association, 2015.

[ZAP+16] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky,
Lin Ma, and Rui Shen. Reducing the Storage Overhead of Main-
Memory OLTP Databases With Hybrid Indexes. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages
1567–1581. ACM, 2016.

[ZF15] Steffen Zeuch and Johann-Christoph Freytag. Selection on Modern
CPUs. In Proceedings of the International Workshop on In-Memory
Data Management and Analytics (IMDM), Lecture Notes in Computer
Science (LNCS), pages 5:1–5:8. Springer, 2015.

[ZHB06] Marcin Zukowski, Sándor Héman, and Peter A. Boncz. Architecture-
Conscious Hashing. In Proceedings of the International Workshop on
Data Management on New Hardware (DaMoN), pages 6:1–6:6. ACM,
2006.

[ZHF14] Steffen Zeuch, Frank Huber, and Johann-christoph Freytag. Adapting
Tree Structures for Processing With SIMD Instructions. In Proceedings
of the International Conference on Extending Database Technology
(EDBT), pages 97–108. OpenProceedings.org, 2014.

[ZHNB06] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter A. Boncz.
Super-Scalar RAM-CPU Cache Compression. In Proceedings of the
International Conference on Data Engineering (ICDE), page 59. IEEE,
2006.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-Time
KD-Tree Construction on Graphics Hardware. ACM Transactions on
Graphics (TOG), 27(5):126:1–126:11, 2008.

[ZR02] Jingren Zhou and Kenneth A. Ross. Implementing Database Operations
Using SIMD Instructions. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 145–156. ACM, 2002.

[ZSJ+18] Roman Zoun, Kay Schallert, Atin Janki, Rohith Ravindran,
Gabriel Campero Durand, Wolfram Fenske, David Broneske, Robert
Heyer, Dirk Benndorf, and Gunter Saake. Streaming FDR Calculation
for Protein Identication. In Proceedings of the European Conference
on Advances in Databases and Information Systems (ADBIS), Lecture
Notes in Computer Science (LNCS), pages 80–87. Springer, 2018.

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;
verwendete fremde und eigene Quellen sind als solche kenntlich gemacht. Insbeson-
dere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch
genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leis-
tungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafver-
folgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland noch
im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.

Magdeburg, den 14. Juni 2019

David Broneske

	Contents
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Algorithms
	1 Introduction
	1.1 Goal of this Thesis
	1.2 Structure of the Thesis

	2 Selections in the Rear-View Mirror
	2.1 State of the Art in Selection Predicates
	2.1.1 Relational Selection Basics
	2.1.2 Predicate Characteristics
	2.1.3 Selection Result Representation

	2.2 CPU Capabilities
	2.2.1 Pipelining in CPUs – the RISC Pipeline
	2.2.2 Hazards
	2.2.2.1 Data Hazard
	2.2.2.2 Control Hazard

	2.2.3 Single Instruction Multiple Data

	2.3 Heterogenous Programming
	2.3.1 Hardware-Sensitive Programming
	2.3.2 Hardware-Oblivious Programming

	2.4 Summary

	3 Hardware Sensitive Full-Table Scans as Working Horse
	3.1 Code Optimizations for Hardware-Sensitive Full-Table Scans on Single Predicates
	3.1.1 Running Example
	3.1.2 Software Predication
	3.1.3 Loop Unrolling
	3.1.4 Single Instruction Multiple Data
	3.1.5 Code Optimizations in Other Operators and Domains

	3.2 Multi-Predicate Code Optimizations
	3.2.1 Conditional AND
	3.2.2 Bitwise AND

	3.3 Exploiting Code Optimizations in Database Management Systems
	3.3.1 Variant Generation
	3.3.2 Variant Selector & Feedback Loop
	3.3.3 Variant Management
	3.3.4 Usage of Adaptive Reprogramming in Recent Database Management Systems

	3.4 Summary

	4 Elf as Multi-Column Selection Predicate Index
	4.1 Conceptual Design of Elf
	4.2 Improving Elf's Memory Layout
	4.2.1 Mapping DimensionLists to Arrays
	4.2.2 Implicit Length Control of Arrays
	4.2.3 Alternative Memory Layouts

	4.3 Storage Optimizations for Elf
	4.3.1 Hash Map to Deal With the First DimensionList
	4.3.2 MonoList: One-Element List Elimination
	4.3.3 Worst Case Storage Consumption

	4.4 Searching in Elfs
	4.4.1 Search Algorithm
	4.4.2 Selection of the Column Order

	4.5 Empirical Evaluation
	4.5.1 Experiment 1: MonoList Storage Consumption
	4.5.2 Experiment 2: TPC-H Predicates and Data
	4.5.2.1 Mono-Column Selection Predicate Queries
	4.5.2.2 Multi-Column Selection Predicate Queries

	4.5.3 Experiment 3: Selection Time Scaling
	4.5.4 Experiment 4: TPC-H Predicates in MonetDB
	4.5.4.1 Mono-Column Selection Predicates
	4.5.4.2 Multi-Column Selection Predicates

	4.5.5 Result Summary

	4.6 Summary

	5 Complex Selection Queries in Elf-Supported Main-Memory Database Systems
	5.1 Complex Selection Predicates
	5.1.1 Column-Column Comparisons
	5.1.2 IN-Predicates
	5.1.3 Summary

	5.2 MonetDB Integration
	5.2.1 MAL Extensions
	5.2.2 Operator Interoperability

	5.3 Evaluation
	5.3.1 Microbenchmarks for Complex Predicates
	5.3.1.1 Experiment 1: Column-Column Comparison Microbenchmark
	5.3.1.2 Experiment 2: IN-Predicates Microbenchmark
	5.3.1.3 Microbenchmark Summary

	5.3.2 Experiment 3: Elf's Integration Test in MonetDB
	5.3.2.1 TPC-H Query Runtimes
	5.3.2.2 Result Summary

	5.4 Summary

	6 Elf Life Cycle
	6.1 Initial Build: Elf Bulk Load
	6.2 Maintaining an Elf
	6.2.1 Insertions
	6.2.2 Deletion
	6.2.3 Updates

	6.3 Evaluation
	6.3.1 Experiment 1: Build Times
	6.3.2 Experiment 2: Query Overhead of InsertElf
	6.3.3 Experiment 3: Merge Threshold

	6.4 Summary

	7 Related Work
	7.1 Competitors
	7.1.1 BitWeaving
	7.1.2 Column Imprint
	7.1.3 Sorted Projection
	7.1.4 BB-Tree

	7.2 Data Redundancy Elimination
	7.2.1 Prefix and Suffix-Redundancy Elimination
	7.2.2 The Data Dwarf Structure

	7.3 SIMD-Accelerated Main-Memory Indexing
	7.3.1 Seg-Tree and Seg-Trie
	7.3.2 Fast Architecture Sensitive Tree
	7.3.3 Vector-Advanced and Compressed Structure Tree
	7.3.4 Adaptive Radix Tree
	7.3.5 Comparison to Elf

	7.4 One-Dimensional Main-Memory Indexing
	7.5 Multi-Dimensional Main-Memory Indexing

	8 Conclusion
	9 Future Work
	Bibliography

