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Zusammenfassung

Bemerkung: Für eine informellere Einführung in die zentralen Ideen der vorliegenden Arbeit, insbesondere
der in Kapitel 4 und Kapitel 5 eingeführten, verweisen wir auf Kapitel 1. Auÿerdem möchten wir anmerken,
dass Kapitel 16 eine deutlich ausführlichere englischsprachige Zusammenfassung dieser Arbeit bildet.

Teil I

Das zentrale Ziel von Teil I, welcher aus Kapitel 2 und Kapitel 3 besteht, ist es, grundlegende De�nitionen
einzuführen.

Kapitel 2 kann man als das �Mathematische-Grundlagen-Kapitel� betrachten, in dem wir zahlreiche De�ni-
tionen und Resultate aus diversen mathematischen Gebieten, die für die vorliegende Arbeit erforderlich sind,
einführen.

Kapitel 3 bildet eine Einführung in verbreitete Klassen von Schnittebenen, welche in der Literatur unter-
sucht wurden. Für diese Zusammenfassung merken wir lediglich an (vgl. De�nition 120), dass eine Schnitt-
ebene für P ⊆ Rm × Rn (m,n ∈ Z≥0; hier stehe m für die Anzahl diskreter (ganzzahliger) Variablen und n
für die Anzahl kontinuierlicher Variablen) eine lineare Ungleichung c ( · ) ≤ c0 (c ∈ (Rm × Rn)

T und c0 ∈ R)
für P ∩ (Zm × Rn) ist.

Teil II

Teil II besteht aus Kapitel 4, 5 und 6. Das Leitthema dieses Teils sind Lk-Schnitte und Lk− 1
2
-Schnitte. Diese

beiden Klassen von Schnittebenen bilden das zentrale Thema der vorliegenden Arbeit.

Kapitel 4 bildet das zentrale Grundlagenkapitel über diese beiden Klassen von Schnittebenen und ihr
Zusammenspiel. In ihm bauen wir das Theoriegebäude der Lk-Schnitte und Lk− 1

2
-Schnitte von Grunde auf.

Die zentrale Idee hinter Lk-Schnitten und Lk− 1
2
-Schnitten ist es, das Problem des Findens von Schnittebenen

zu relaxieren, indem wir statt linearen Ungleichungen für P ∩ (Zm × Rn) lineare Ungleichungen für

P ∩ ((Zm × Rn) + V )

bzw.
(P + V ) ∩ (Zm × Rn) ,

betrachten, wobei V ≤ Rm × Rn ein Vektorraum der Kodimension k ∈ {0, . . . ,m+ n} sei (der Fall k = 0 ist
aus formellen Gründen zugelassen). Die erste Konstruktion bezeichnen wir als Lk-Schnitte und die zweite als
Lk− 1

2
-Schnitte. In Abhängigkeit von der Art der Erzeuger von V (Rationalitätsbedingungen) und Existenz

kontinuierlicher Variablen führt dies auf diverse Klassen von Lk-Schnitten und Lk− 1
2
-Schnitten, namentlich

Lk,Q-Schnitte, Lk,R-Schnitte, Lk− 1
2 ,Q×Q

-Schnitte, Lk− 1
2 ,Q×R

-Schnitte, Lk− 1
2 ,R×R

-Schnitte, Lk− 1
2 ,Q

-Schnitte
und Lk− 1

2 ,R
-Schnitte.

Betrachten wir die Gliederung von Kapitel 4:
In Abschnitt 4.2 sind Lk-Schnitte das zentrale Thema: In Abschnitt 4.2.1 de�nieren wir Lk-Schnitte (De�-

nition 161) und ihre Abschlüsse clLk,Q ( · ) und clLk,R ( · ) (De�nition 165). Der Abschluss bezüglich einer Klasse
von Schnittebenen für ein vorgegebenes P is schlicht der Schnitt von P mit sämtlichen von den Schnittebenen
des entsprechenden Typs induzierten Halbräumen. In Abschnitt 4.2.2 geht es um die Frage, wie wir Lk-
Schnitte auch anders charakterisieren können. In Theorem 168 in Abschnitt 4.2.2.1 zeigen wir, dass wir uns
sowohl für Lk,Q-Schnitte als auch Lk,R-Schnitte auf Vektorräume der Form V = V ′×Rn beschränken können.
In Abschnitt 4.2.2.2 betrachten wir, wie wir Lk,Q-Schnitte �auf duale Weise� charakterisieren können. Dies
ermöglicht es uns, die Theorie von Lk,Q-Schnitten mit den in [DGMR17] betrachteten �k-dimensional lattice
cuts� in Verbindung zu bringen (siehe Theorem 176).
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In Abschnitt 4.3 de�nieren wir Lk− 1
2
-Schnitte (De�nition 179) und Lk− 1

2
-Abschlüsse (De�nition 182), z.B.

clL
k− 1

2
,Q×Q

( · ) und clL
k− 1

2
,Q×R

( · ), analog wie wir es in Abschnitt 4.2.1 für Lk-Schnitte durchführen.

In Remark 156 formulieren wir zentrale Leitfragen, die wir in den restlichen Abschnitten von Kapitel
4 analysieren. Ein zentrales Ziel ist es, zu zeigen, dass wir für rationale Polyeder die beiden Hierarchien
von Cutting-Plane-Operatoren in einer gemeinsamen Hierarchie zusammenfassen können, d.h. für rationale
Polyeder P ⊆ Rm (m ∈ Z≥0, obgleich nur der Fall m ∈ Z≥1 von mathematischer Bedeutung ist) gilt

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P ) (0.1)

und für rationale Polyeder P ⊆ Rm × Rn (m ∈ Z≥0 und n ∈ Z≥1, obgleich nur der Fall m,n ∈ Z≥1 von
mathematischer Bedeutung ist) gilt

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P ) .

(0.2)

clI (P ) steht hier für die gemischt-ganzzahlige Hülle von P (siehe De�nition 73).
In Abschnitt 4.5 analysieren wir die Unterschiede zwischen den unterschiedlichen Typen von Lk-Schnitten/

Abschlüssen und Lk− 1
2
-Schnitten/Abschlüssen.

In Abschnitt 4.6 beginnen wir mit dem Projekt, die Inklusionen in (0.1) und (0.2) zu zeigen. Ein wichtiges
Resultat hierzu ist Theorem 197, in welchen wir zeigen, dass für ein beliebiges P ⊆ Rm×Rn (m,n ∈ Z≥0) jeder
Lk− 1

2 ,Q×R
-Schnitt für P (k ∈ {0, . . . ,m+ n}) auch ein Lk,Q-Schnitt für P bezügliches des selben Vektorraums

V ist. Dies impliziert insbesondere
clLk,Q (P ) ⊆ clL

k− 1
2
,Q×R

(P ) .

Man beachte jedoch (vgl. Remark 198), dass die ähnlich aussehende Inklusion

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P )

im Allgemeinen nicht gilt. Ein weiteres wichtiges Resultat ist Theorem 199, in dem wir zeigen, dass für
beliebige P ⊆ Rm × Rn (m,n ∈ Z≥0) jeder Lk,R-Schnitt für P (k ∈ {0, . . . ,m+ n− 1}) ein L(k+1)− 1

2 ,R×R
-

Schnitt für P ist. Dies impliziert
clL

(k+1)− 1
2
,R×R

(P ) ⊆ clLk,R (P ) .

Falls P ein rationales Polyeder ist (wie für (0.1) und (0.2) gefordert), gilt auch

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) .

In Abschnitt 4.7 zeigen wir in Theorem 202, dass für beliebige P ⊆ Rm × Rn (m ∈ Z≥0 und n ∈ Z≥1)

clLm,Q (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P )

gilt (clI (P ) ist die abgeschlossene gemischt-ganzzahlige Hülle von P ; vgl. De�nition 73) und, falls P ein
rationales Polyeder ist, sogar

clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P )

erfüllt ist. Mit anderen Worten: Die clL
k− 1

2
,Q×Q

(P )-Hierarchie endet in diesem Fall bereits bei k = m+ 1 und

nicht erst bei k = m+ n (siehe (0.2)).
Zu Abschnitt 4.8: Wir erinnern uns, dass wir in Theorem 168 in Abschnitt 4.2.2.1 gezeigt haben, dass wir

uns für Lk-Schnitte auf Vektorräume der Form V = V ′×Rn beschränken können. Eine solche Beschränkung
ist trivialerweise für Lk− 1

2
-Schnitte im Allgemeinen nicht möglich. Nichtsdestotrotz sind Lk− 1

2 ,Q
-Schnitte

bezüglich solcher Vektorräume von mathematischer Bedeutung. In De�nition 203 de�nieren wir �essentielle
Lk− 1

2 ,Q
-Schnitte�, welche Lk− 1

2 ,Q×Q
-Schnitte/Lk− 1

2 ,Q×R
-Schnitte bezüglich Vektorräumen V von derartiger

Struktur sind. In Theorem 208 werden wir die Bedeutung von essentiellen Lk− 1
2 ,Q

-Schnitten sehen: Dort
zeigen wir, dass die einzigen Lk− 1

2 ,Q×R
-Schnitte (dies inkludiert Lk− 1

2 ,Q×Q
-Schnitte), welche nicht bereits

Lk−1,Q-Schnitte sind, essentielle Lk− 1
2 ,Q

-Schnitte sind. In diesem Sinne kann man salopp sagen, dass essen-
tielle Lk− 1

2 ,Q
-Schnitte �die interessanten� Lk− 1

2 ,Q×R
-Schnitte sind, da diese die einzigen Lk− 1

2 ,Q×R
-Schnitte

sind, welche möglicherweise mehr Ausdruckskraft besitzen als Lk−1,Q-Schnitte. In Theorem 211 nutzen wir

4



dieses Strukturresultat (Theorem 208), um unter anderem die Äquivalenz des Lk− 1
2 ,Q×Q

-Abschlusses und des
Lk− 1

2 ,Q×R
-Abschlusses von rationalen Polyedern zu zeigen.

In Abschnitt 4.9 untersuchen wir, was man über Lk-Abschlüsse und Lk− 1
2
-Abschlüsse von P aussagen kann,

wenn P entweder einen nichttrivialen Linealitätsraum besitzt oder in einem nichttrivialen rationalen a�nen
Unterraum enthalten ist.

Bis hier ist es keineswegs o�ensichtlich, wie wir Lk-Schnitte und Lk− 1
2
-Schnitte überhaupt konkret berech-

nen können. In der Tat werden wir in Abschnitt 5.1 sehen, dass ein naiver Ansatz zum Finden von Lk− 1
2 ,Q

-
Schnitten in der Praxis leicht zu Komplexitätsproblemen führen kann. Daher ist man daran interessiert, al-
ternative Charakterisierungen für Lk,Q-Schnitte/Abschluss, Lk− 1

2 ,Q×Q
-Schnitte/Abschluss und essentielle(n)

Lk− 1
2 ,Q

-Schnitte/Abschluss zu �nden. Es gibt zwei natürliche Ansätze, um dieses Problem anzugehen:

• Zeigen von alternativen Charakterisierungen, welche für allgemeine k funktionieren. Dies ist Inhalt von
Kapitel 5.

• Zeigen von alternativen Charakterisierungen, welche für ein bestimmtes k (welches typischerweise klein
ist) spezi�sch sind. Dies ist das Vorgehen in Teil III für L1− 1

2 ,Q×Q
-Schnitte (siehe Kapitel 8, insbeson-

dere Abschnitt 8.1) und L1,Q-Schnitte (siehe Kapitel 9, insbesondere Abschnitt 9.1.1) und in Teil IV
(insbesondere Kapitel 11) für L2,Q-Schnitte (Abschnitt 11.1) und essentielle L2− 1

2 ,Q
-Schnitte (Abschnitt

11.2).

Wir haben es soeben erwähnt: In Kapitel 5 zeigen wir alternative Charakterisierungen für Lk,Q-Schnitte/
Abschluss und essentielle(n) Lk− 1

2 ,Q
-Schnitte/Abschluss für ein allgemeines k. Hierzu betrachten wir zwei

Klassen von Charakterisierungen:

• Zum einen betrachten wir Charakterisierungen mittels gitterpunktfreien Körpern:

� In Abschnitt 5.2 charakterisieren wir Lk,Q-Schnitte mittels gitterpunktfreien Körpern. Das �nale
Resultat hierzu be�ndet sich in Theorem 240.

� In Abschnitt 5.3 führen wir eine Charakterisierung von essentiellen Lk− 1
2 ,Q

-Schnitten für rationale
Polyeder mittels gitterpunktfreien Körpern durch. Das �nale Resultat be�ndet sich in Theorem
246.

• Zum andereren analysieren wir Charakterisierungen mittels t-Branch-Split-Cuts (siehe De�nition 143).
Dies ist das zentrale Thema von Abschnitt 5.4:

� In Theorem 259 zeigen wir die Äquivalenz des Lk,Q-Abschlusses und des k, h (k)-Branch-Split-
Closures (siehe De�nition 252). Die Bedeutung von h (k) wird in Remark/De�nition 248 erklärt.

� In Theorem 261 zeigen wir die Äquivalenz des essentiellen Lk− 1
2 ,Q

-Abschlusses und des essentiellen
k, h (k)-Branch-Split-Closures (siehe De�nition 253).

� In Theorem 263 fügen wir diese beiden Charakterisierungen zusammen und charakterisieren den
Lk− 1

2 ,Q×Q
-Abschluss bzw. Lk− 1

2 ,Q×R
-Abschluss eines rationalen Polyeders durch den Schnitt seines

essentiellen k, h (k)-Branch-Split-Closures und seines k − 1, h (k − 1)-Branch-Split-Closures.

Die Charakterisierungvon Lk,Q-Schnitten mittels k, t-Branch-Split-Cuts nutzen wir in Abschnitt 5.4.5, um zu
zeigen, dass der Lk,Q-Abschluss eines rationalen Polyeders wieder ein rationales Polyeder bildet (ein Resultat,
welches unabhängig in [DGMR17, Theorem 2] gezeigt wurde).

In Kapitel 6 geben wir eine Übersicht über diverse Resultate bezüglich der Ausdruckskraft unterschiedlicher
Klassen von Schnittebenen und deren Operatoren. Diese Resultate sind in erster Linie der Literatur entnom-
men. Kapitel 6 ist in drei Abschnitte aufgeteilt:

• In Abschnitt 6.1 analysieren wir die Frage, welche Klassen von Schnittebenen bzw. Schnittebenen-
Operatoren andere dominieren oder nicht dominieren.

• Abschnitt 6.2 beschäftigt sich mit der Frage, ob es für eine vorgegebene Klasse von Schnittebenen immer
möglich ist, den zugeordneten Operator cl( · ) ( · ) ggf. iterativ auf ein P (typischerweise ein rationales
Polyeder) anzuwenden und nach endlich vielen Schritten clI (P ) zu erreichen. Falls dies nicht möglich
ist: Konvergiert dann wenigstens die Folge{

cl
(k)
( · ) (P )

}
k∈Z≥0
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(�Konvergenz� sei hierbei im Sinne von De�nition 308 verstanden) gegen clI (P )?

Um diese Frage systematisch zu untersuchen, formulieren wir am Anfang von Abschnitt 6.2 vier Leit-
fragen zu diesem Thema, welche wir für diverse Klassen von Schnittebenen-Operatoren betrachten.

• In Abschnitt 6.3 betrachten wir für einige Klassen von Schnittebenen die Frage, ob für ein vorgegebenes
P und einen vorgegebenen Schnittebenen-Operator cl( · ) ( · ) die Menge cl( · ) (P ) ein (rationales) Polyeder
bildet. Hierbei steht natürlich der Fall, dass bereits P ein rationales Polyeder ist, im Zentrum.

Teil III

In Teil III, welcher aus den Kapiteln 7, 8 und 9 besteht, sind die zentralen Themen ganzzahlige Polyeder,
L1− 1

2 ,Q×Q
-Schnitte, L1− 1

2 ,Q×R
-Schnitte und L1,Q-Schnitte (also Lk− 1

2 ,Q×Q
-Schnitte, Lk− 1

2 ,Q×R
-Schnitte und

Lk,Q-Schnitte im Fall k = 1):

In Kapitel 7 ist das zentrale Thema �ganzzahlige Polyeder�. Wir beginnen dieses Kapitel mit Abschnitt 7.1,
in welchem wir Ganzzahligkeit (Theorem 345) und Gemischt-Ganzzahligkeit (Theorem 347) von Polyedern
mittels Optimierungsproblemen charakterisieren. Wir wollen hierzu anmerken, dass eine solche Charakter-
isierung von Gemischt-Ganzzahligkeit nach unserem Wissen in der Literatur bislang unbekannt war.
Eine wichtige Rolle zur Beschreibung von ganzzahligen Polyedern besitzen Ungleichungssysteme Ax ≤ b (A

rational) mit der Eigenschaft, dass, wenn b ganzzahlig ist, das Polyeder P≤ (A, b) ⊆ Rm (m ∈ Z≥0) ebenfalls
ganzzahlig ist (wir de�nieren für A ∈ Rl×d und b ∈ Rl (l, d ∈ Z≥0): P≤ (A, b) :=

{
x ∈ Rd : Ax ≤ b

}
).

TDI-Systeme sind eine aus der Literatur wohlbekannte Klasse von Systemen mit dieser Eigenschaft, doch
in diesem Kapitel führen wir drei weitere Klassen von Systemen mit dieser Eigenschaft ein: TDZ + {0, 1}-
Systeme, TD(I ∩ Z) + {0, 1}-Systeme und TDZ+ I-Systeme.
Kapitel 7 beschäftigt sich zentral mit der Untersuchung dieser Klassen von Systemen. So ist beispielsweise

in der Literatur wohlbekannt, dass es einen engen Zusammenhang zwischen TDI-Systemen und Hilbertbasen
gibt. Um diesen Zusammenhang auf die anderen Klassen von Systeme zu verallgemeinern, führen wir von uns
so genannte icone-Systeme, Z+icone-Systeme, Z+{0, 1}-Systeme und (icone∩Z)+{0, 1}-Systeme ein, welche
in engem Zusammenhang zu TDI-Systemen, TDZ + I-Systemen, TDZ + {0, 1}-Systemen und TD(I ∩ Z) +
{0, 1}-Systemen stehen.
In Abschnitt 7.6 analysieren wir, wie sich diese verschiedenen Klassen von Systemen in der Gröÿe unter-

scheiden können.

Kapitel 8 besteht aus zwei recht unabhängigen Teilen, deren Hauptgemeinsamkeit darin besteht, dass es in
beiden Teilen um den L1− 1

2 ,Q×Q
-Abschluss bzw. L1− 1

2 ,Q×R
-Abschluss geht:

• In Abschnitt 8.1 untersuchen wir den Zusammenhang zwischen (projizierten) Chvátal-Gomory-Schnitten
(vgl. De�nition 122), dualen (projizierten) Chvátal-Gomory-Schnitten (vgl. De�nition 382), starken
(projizierten) Chvátal-Gomory-Schnitten (vgl. De�nition 384), L1− 1

2 ,Q×Q
-Schnitten und L1− 1

2 ,Q×R
-

Schnitten. Eine Übersicht über die Resultate wird in Abschnitt 8.1.2.4 gegeben. Bezüglich der Situation
für Polyeder betrachte man insbesondere Theorem 391.

• In Abschnitt 8.2 beschäftigen wir uns mit der Frage, wie man den Chvátal-Gomory-Abschluss eines
Polyeders mit rationalen Seitennormalen berechnen kann. Hierzu nutzen wir die Frameworks der
TDZ+I-Systeme und Z+ icone-Systeme aus Kapitel 7:

� In Theorem 398 in Abschnitt 8.2.3 zeigen wir, wie wir TDZ + I-Systeme mit ganzzahliger linker
Seite nutzen können, um den Chvátal-Gomory-Abschluss eines Polyeders P ⊆ Rm (m ∈ Z≥0) mit
rationalen Seitennormalen darzustellen. Wir merken an, dass ein solches Resultat für TDI-Systeme
in der Literatur wohlbekannt ist. Somit beschäftigen wir uns im Rest von Abschnitt 8.2.3 mit der
Frage, ob TDZ + I-Systeme zu diesem Zweck kleiner als TDI-Systeme sein können und ob hier
weiteres Potential für Verbesserungen existiert.

� In Abschnitt 8.2.4 reduzieren wir das Problem, den Chvátal-Gomory-Abschluss eines Polyeders
P = P≤

((
A G

)
, b
)
⊆ Rm × Rm (m,n ∈ Z≥0) mit rationalen Seitennormalen zu berechnen,

auf den Spezialfall, dass die Zeilen von
(
A G −b

)
einen LP-Face-Cone (vgl. De�nition 356)

bilden. Für solche Polyeder können wir den Chvátal-Gomory-Abschluss mittels Z+icone-Systemen
charakterisieren. Dieser Ansatz hat gegenüber dem mittels TDZ+ I-Systemen den Vorteil, dass er
auch im gemischt-ganzzahligen Fall funktioniert und auf den Split-Closure/MIR-Closure verallge-
meinert werden kann; letzteres bildet das Thema von Abschnitt 9.2 in Kapitel 9.
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Auch Kapitel 9 besteht aus zwei voneinander nahezu unabhängigen Teilen, deren Hauptgemeinsamkeit
darin liegt, dass in beiden der L1,Q-Abschluss betrachtet wird:

• In Abschnitt 9.1 analysieren wir den Zusammenhang zwischen L1,Q-Schnitten, Split-Cuts (vgl. De�ni-
tion 126) und MIR-Cuts (vgl. De�nition 410).

• In Abschnitt 9.2 zeigen wir, dass der Split-Closure eines Polyeders P ⊆ Rm × Rm (m,n ∈ Z≥0) mit
rationalen Seitennormalen wieder ein Polyeder ist (ein rationales Polyeder, falls P ein rationales Polyeder
ist). Wir merken an, dass für das schwächere Resultat, dass der Split-Closure eines rationalen Polyeders
wieder ein rationales Polyeder bildet, zahlreiche Beweise in der Literatur bekannt sind (vgl. Abschnitt
6.3). Unser Beweis benutzt das von uns entwickelte Framework von Z + icone-Systemen als zentralen
Bestandteil. Die Beweisführung spiegelt hierbei sehr eng die Beweisführung unseres zweiten Beweises
der Polyedrizität des Chvátal-Gomory-Abschlusses wieder. Bezüglich weiterer Vorteile unseres Ansatzes
verweisen wir auf den Anfang von Kapitel 9.

Teil IV

In Teil IV ist das Ziel, eine alternative Charakterisierung von L2,Q-Schnitten/Abschluss und L2− 1
2 ,Q×Q

/
L2− 1

2 ,Q×R
-Schnitten/Abschluss herzuleiten (bei letzteren liegt der Fokus auf essentiellen L2− 1

2 ,Q
-Schnitten/

Abschluss).

Um diese Resultate herzuleiten, beweisen wir in Kapitel 10 zwei Theoreme (Theorem 431 und Theorem
434) über die Einbettung volldimensionaler gitterpunktfreier Körper im R2 in Disjunktionen. Wir merken an,
dass eine schwächere Version von Theorem 431 (Theorem 432) bereits in [DDG12] gezeigt wurde.

In Kapitel 11 nutzen wir diese Einbettungsresultate, um L2,Q-Schnitte/Abschluss (in Abschnitt 11.1) und
essentielle L2− 1

2 ,Q
-Schnitte/Abschluss (in Abschnitt 11.2) mittels Disjunktionen zu charakterisieren. Die

�nalen Resultate sind in Theorem 462 (L2,Q-Abschluss), Theorem 474 (essentieller L2− 1
2 ,Q

-Abschluss) und
Theorem 475 (L2− 1

2 ,Q×Q
-Abschluss und L2− 1

2 ,Q×R
-Abschluss) zu �nden.

Teil V

In Teil V (Kapitel 12 und Kapitel 13) zeigen wir weitergehende Resultate für Lk-Schnitte und Lk− 1
2
-Schnitte:

In Kapitel 12 betrachten wir die Frage (vgl. Problem/De�nition 476), wie viele Ungleichungen in der
Ungleichungsbeschreibung eines Polyeders P wir gleichzeitig betrachten müssen, um alle Lk,Q-Schnitte oder
Lk− 1

2 ,Q×Q
-Schnitte, die erforderlich sind, um den Lk,Q-Abschluss oder Lk− 1

2 ,Q×Q
-Abschluss von P zu beschrei-

ben, als Lk,Q-Schnitt oder Lk− 1
2 ,Q×Q

-Schnitt eines solchen Teilsystems herleiten zu können.
Eine Zusammenfassung der wichtigsten oberen und unteren Schranken, die wir in diesem Kapitel beweisen,

be�ndet sich in Abschnitt 12.6. Abschnitt 12.4.3 liefert einen Ausblick darauf, wie diese Resultate auf den es-
sentiellen Lk− 1

2 ,Q
-Abschluss (Theorem 496) und Lk− 1

2 ,Q×R
-Abschluss (Theorem 497) erweitert werden können.

In Kapitel 13 betrachten wir Schranken für den Lk,Q-Rang und Lk− 1
2 ,Q×Q

-Rang (insbesondere ersteren)
eines Polyeders P , wenn die ganzzahligen Variablen 0/1-wertig sind. Der Lk,Q-Rang bzw. Lk− 1

2 ,Q×Q
-Rang

sagt aus, wie oft wir den entsprechenden Cutting-Plane-Operator iterativ auf P anwenden müssen, um die
gemischt-ganzzahlige Hülle von P (clI (P )) zu erhalten.
In Abschnitt 13.1 betrachten wir den Lk,Q-Rang. Das erste zentrale Resultat ist Theorem 515, in dem wir

die Schranke
rankLk,Q (P ) ≤

⌈m
k

⌉
zeigen (m,n ∈ Z≥0, k ∈ {1, . . . ,m} und P ⊆ [0, 1]

m × Rn). Ist diese Schranke bestmöglich? Diese Frage
beantworten wir in Theorem 526 (das zweite zentrale Resultat von Abschnitt 13.1) positiv, indem wir zeigen,
dass für jedes m ∈ Z≥1 ein rationales Polytop P ⊆ [0, 1]

m existiert, so dass für alle k ∈ {1, . . . ,m}

rankLk,Q (P ) ≥
⌈m
k

⌉
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erfüllt ist.
In Abschnitt 13.2 leiten wir hieraus Schranken für den Lk− 1

2 ,Q×Q
-Rang eines rationalen Polyeders ab,

was allerdings keine Herleitung einer oberen Schranke für den L1− 1
2 ,Q×Q

-Rang erlaubt. Glücklicherweise
ist das eng verwandte Problem des Findens von Schranken für den Chvátal-Gomory-Rangs eines Polyeders
P ⊆ [0, 1]m (m ∈ Z≥0) ein in der Literatur gut untersuchtes Problem. Daher geben wir in Abschnitt 13.2.1
eine Übersicht über wichtige Literaturresultate bezüglich oberer Schranken und in Abschnitt 13.2.2 bezüglich
unterer Schranken für den Chvátal-Gomory-Rang.

Teil VI

In Teil VI, welcher aus Kapitel 14 und Kapitel 15 besteht, geht es um folgende Thematik (vgl. Abschnitt
14.1): Können die Inklusionen in (0.1) und (0.2) auch strikt sein? Hierzu formulieren wir folgende Fragen:

• Existiert für jedes m ∈ Z≥1, n ∈ Z≥0 und k ∈ {1, . . . ,m} ein rationales Polyeder P ⊆ Rm×Rn, für das
gilt:

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,Q (P )?

• Existiert für jedes m ∈ Z≥1, n ∈ Z≥0 und k ∈

{
{1, . . . ,m− 1} falls n = 0,

{1, . . . ,m} falls n ≥ 1
ein rationales Polyeder

P ⊆ Rm × Rn, für das gilt:
clLk,Q (P ) ( clL

k− 1
2
,Q×Q

(P )?

Wir betrachten folgende noch stärkere Fragen:

• Existiert für jedes m ∈ Z≥1, n ∈ Z≥0 und k ∈ {1, . . . ,m} ein rationales Polyeder P ⊆ Rm×Rn, für das
gilt:

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P )?

• Existiert für jedes m ∈ Z≥1, n ∈ Z≥0 und k ∈

{
{1, . . . ,m− 1} falls n = 0,

{1, . . . ,m} falls n ≥ 1
ein rationales Polyeder

P ⊆ Rm × Rn, für das gilt:
clLk,Q (P ) ( clL

k− 1
2
,R×R

(P )? (0.3)

In Kapitel 14 beantworten wir alle diese Fragen positiv mit Ausnahme des am Ende von Kapitel 14 noch
o�en bleibenden Falles n ≥ 1 und k = m in (0.3). Die zentrale Übersicht hierzu be�ndet sich in Abschnitt
14.9. Die zentralen Theoreme zu diesem Zweck sind Theorem 543 und Theorem 544. Man beachte, dass wir
in Theorem 543 allgemeiner den (m− 1)-Branch-Split-Closure und den Lm−1,Q-Abschluss gegen den (m− 2)-
Branch-Split-Closure, den Lm−2,R-Abschluss und den L(m−1)− 1

2 ,R
-Abschluss abschätzen.

Die am Ende von Kapitel 14 o�ene gebliebene Frage nach einer strikten Inklusion in (0.3) im Fall n ≥ 1
und k = m ist zentrales Thema von Kapitel 15. Hier zeigen wir (Theorem 578) die noch stärkere Aussage,
dass für alle m,n ∈ Z≥1 und k ∈ {1, . . . ,m} ein a rationales Polyeder P ⊆ Rm ×Rn existiert, so dass für alle
` ∈ Z≥0 gilt:

clI (P ) = clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) .

Dies impliziert, dass wir niemals die gemischt-ganzzahlige Hülle clI (P ) dadurch erreichen können, indem wir
den Lk− 1

2 ,R×R
-Abschluss iterativ auf P anwenden. Das zentrale Theorem für diesen Beweis ist Theorem 563.

Ein weiteres ähnliches Resultat für ein Polyeder, welche in der für k row cuts erforderlichen Gleichungsform
gegeben ist (vgl. De�nition 154), ist Theorem 564.
In Abschnitt 15.5.1 nutzen wir diese Resultate, um strikte Inklusionen für weitere Klassen von Cutting-

Plane-Operatoren zu zeigen. Diese Resultate haben wir in Theorem 576 und Theorem 577 aufgeschrieben.

Teil VII

In Teil VII schlieÿen wir die Arbeit mit einer Zusammenfassung (Kapitel 16) und einem Ausblick (Kapitel
17) ab.
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Abstract

Remark: For a more casual introducation into the central ideas of this thesis, in particular those that are
introduced in chapter 4 and chapter 5, we refer to chapter 1. Additionally, we want to remark that chapter
16 provides a much more detailed summary of this thesis.

Part I

The central goal of part I, which consists of chapter 2 and chapter 3, is to introduce basic de�nitions that are
necessary for this thesis.

Chapter 2 can be considered as the �mathematical basics chapter�, in which we introduce numerous de�ni-
tions and results from various mathematical areas that are used in this thesis.

Chapter 3 is an introduction to common classes of cutting planes that were investigated in the literature.
For this abstract, we just remark (cf. De�nition 120) that a cutting plane for P ⊆ Rm × Rn (m,n ∈ Z≥0;
here, m denotes the number of discrete (integral) variables and n the number of continuous variables) is a
linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)

T and c0 ∈ R) for P ∩ (Zm × Rn).

Part II

Part II consists of chapter 4, 5 and 6. The guiding theme of this part are Lk cuts and Lk− 1
2
cuts. These two

classes of cutting planes form the central topic of this thesis.

Chapter 4 forms the central foundations chapter for these two classes of cutting planes and their interplay.
In this chapter, we build the whole theory building of Lk cuts and Lk− 1

2
cuts up from its foundations. The

central idea behind Lk cuts and Lk− 1
2
cuts is to relax the problem of �nding cutting planes by replacing the

problem of �nding linear inequalities for P ∩ (Zm × Rn) by the problem of �nding linear inequalities for

P ∩ ((Zm × Rn) + V )

or
(P + V ) ∩ (Zm × Rn) ,

where V ≤ Rm × Rn is a vector space of codimension k ∈ {0, . . . ,m+ n} (the case k = 0 is admitted for
formal reasons). We name the �rst construction Lk cuts and the second one Lk− 1

2
cuts. Depending on the

properties of the generators of V (rationality conditions) and the existence of continuous variables, this leads
to various classes of Lk cuts and Lk− 1

2
cuts, which we call Lk,Q cuts, Lk,R cuts, Lk− 1

2 ,Q×Q
cuts, Lk− 1

2 ,Q×R
cuts, Lk− 1

2 ,R×R
cuts, Lk− 1

2 ,Q
cuts and Lk− 1

2 ,R
cuts.

For the structure of chapter 4:
In section 4.2, Lk cuts are the central topic: in section 4.2.1, we de�ne Lk cuts (De�nition 161) and their

closures clLk,Q ( · ) and clLk,R ( · ) (De�nition 165). The closure with respect to some class of cutting planes for
a given P is just the intersection of P with all of the half-spaces that are induced by cutting planes of the
respective type. In section 4.2.2, we consider the question how we can characterize Lk cuts di�erently. In
Theorem 168 in section 4.2.2.1, we show that we can restrict ourselves to vector spaces of the form V = V ′×Rn
for both Lk,Q cuts and Lk,R cuts. In section 4.2.2.2, we consider how we can characterize Lk,Q cuts �dually�.
This enables us to connect the theory of Lk,Q cuts to the theory of �k-dimensional lattice cuts� that is studied
in [DGMR17] (see Theorem 176).
In section 4.3, we de�ne Lk− 1

2
cuts (De�nition 179) and Lk− 1

2
closures (De�nition 182), e.g. clL

k− 1
2
,Q×Q

( · )
and clL

k− 1
2
,Q×R

( · ), in an analogue way to what we did in section 4.2.1 for Lk cuts.

In Remark 156, we formulate central guiding questions, which we analyze in the remaining sections of
chapter 4. A central goal is to show that for rational polyhedra, the two hierarchies of cutting plane operators
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can be merged into a uni�ed hierarchy, i.e. for rational polyhedra P ⊆ Rm (m ∈ Z≥0, even though only the
case m ∈ Z≥1 is of mathematical importance), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P ) (0.4)

and for rational polyhedra P ⊆ Rm ×Rn (m ∈ Z≥0 and n ∈ Z≥1, even though only the case m,n ∈ Z≥1 is of
mathematical importance), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P ) .

(0.5)

clI (P ) is the mixed-integer hull of P (see De�nition 73).
In section 4.5, we analyze the di�erences between the di�erent kinds of Lk and Lk− 1

2
cuts/closures.

In section 4.6, we start with the project of showing the inclusions in (0.4) and (0.5). An important result
for this is Theorem 197, in which we show that for an arbitrary P ⊆ Rm ×Rn (m,n ∈ Z≥0), every Lk− 1

2 ,Q×R
cut for P (k ∈ {0, . . . ,m+ n}) is also an Lk,Q cut for P with respect to the same vector space V . This, in
particular, implies

clLk,Q (P ) ⊆ clL
k− 1

2
,Q×R

(P ) .

Pay attention (cf. Remark 198) that the similar looking inclusion

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P )

does not hold in general. Another important result is Theorem 199, in which we show that for arbitrary
P ⊆ Rm × Rn (m,n ∈ Z≥0), every Lk,R cut for P (k ∈ {0, . . . ,m+ n− 1}) is an L(k+1)− 1

2 ,R×R
cut for P .

This implies
clL

(k+1)− 1
2
,R×R

(P ) ⊆ clLk,R (P ) .

If P is a rational polyhedron (as we demand for (0.4) and (0.5)), we also have

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) .

In section 4.7, we show in Theorem 202 that for arbitrary P ⊆ Rm ×Rn (m ∈ Z≥0 and n ∈ Z≥1), we have

clLm,Q (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P )

(clI (P ) is the closed mixed-integer hull of P ; cf. De�nition 73) and if P is a rational polyhedron, even

clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P )

holds. In other words: in this situation, the clL
k− 1

2
,Q×Q

(P ) hierarchy already ends at k = m+ 1 and not only

at k = m+ n (see (0.5)).
For section 4.8: let us recall that we showed in Theorem 168 in section 4.2.2.1 that for Lk cuts, we can

restrict ourselves to vector spaces of the form V = V ′ × Rn. Such a restriction is trivially in general not
possible for Lk− 1

2
cuts. Nevertheless, Lk− 1

2 ,Q
cuts with respect to such vector spaces are of mathematical

importance. In De�nition 203, we de�ne �essential Lk− 1
2 ,Q

cuts�, which are Lk− 1
2 ,Q×Q

cuts/Lk− 1
2 ,Q×R

cuts
with respect to vector spaces V of such a structure. In Theorem 208, we attest the importance of essential
Lk− 1

2 ,Q
cuts: there, we show that the only Lk− 1

2 ,Q×R
cuts (this includes Lk− 1

2 ,Q×Q
cuts) which are not already

Lk−1,Q cuts, are essential Lk− 1
2 ,Q

cuts. In this sense, one can casually say that essential Lk− 1
2 ,Q

cuts are �the
interesting� Lk− 1

2 ,Q×R
cuts, since these are the only Lk− 1

2 ,Q×R
cuts that have possibly more expressivity than

Lk−1,Q cuts. In Theorem 211, we use this structural result (Theorem 208) for proving among other things
the equivalence of the Lk− 1

2 ,Q×Q
closure and the Lk− 1

2 ,Q×R
closure of rational polyhedra.

In section 4.9, we investigate what can be said about the Lk closures and Lk− 1
2
closures of P if P either

has a nontrivial lineality space or is contained in a nontrivial rational a�ne subspace.

Until here, it is anything but obvious how to even compute Lk cuts and Lk− 1
2
cuts concretely. Indeed, we see

in section 5.1 that a naive approach for �nding Lk− 1
2 ,Q

cuts easily leads to complexity issues in practice. That
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is why one is interested in �nding alternative characterizations of Lk,Q cuts/closure, Lk− 1
2 ,Q×Q

cuts/closure
and essential Lk− 1

2 ,Q
cuts/closure. There exist two natural approaches to tackle this problem:

• Show alternative characterizations which work for general k. This is the topic of chapter 5.

• Show alternative characterizations which work for a speci�c k (that is typically small). This becomes
the approach in part III for L1− 1

2 ,Q×Q
cuts (see chapter 8, in particular section 8.1) and L1,Q cuts (see

chapter 9, in particular section 9.1.1) and in part IV (in particular chapter 11) for L2,Q cuts (section
11.1) and essential L2− 1

2 ,Q
cuts (section 11.2).

We just mentioned it: in chapter 5, we show alternative characterizations of Lk,Q cuts/closure and essential
Lk− 1

2 ,Q
cuts/closure for a general k. For this, we consider two classes of characterizations:

• On one hand, we consider characterizations via lattice-free bodies:

� In section 5.2, we characterize Lk,Q cuts via lattice-free bodies. The �nal result can be found in
Theorem 240.

� In section 5.3, we characterize essential Lk− 1
2 ,Q

cuts for rational polyhedra via lattice-free bodies.
The �nal result is stated in Theorem 246.

• On the other hand, we examine characterizations via t-branch split cuts (see De�nition 143). This is
the central topic of section 5.4:

� In Theorem 259, we show the equivalence of the Lk,Q closure and the k, h (k)-branch split closure
(see De�nition 252). The meaning of h (k) is explained in Remark/De�nition 248.

� In Theorem 261, we show the equivalence of the essential Lk− 1
2 ,Q

closure and the essential k, h (k)

branch-split closure (see De�nition 253).

� In Theorem 263, we put these two characterizations together and characterize the Lk− 1
2 ,Q×Q

closure
or Lk− 1

2 ,Q×R
closure, respectively, of a rational polyhedron by the intersection of its k, h (k)-branch

split closure and its k − 1, h (k − 1)-branch split closure.

In section 5.4.5, we use the characterizations of Lk,Q cuts via k, t-branch split cuts to show that the Lk,Q
closure of a rational polyhedron is again a rational polyhedron (a result that has independently been shown
in [DGMR17, Theorem 2]).

In chapter 6, we give an overview on various results concerning the expressivity of various classes of cutting
planes and their operators. These are predominantly gathered from the literature. Chapter 6 is divided into
three sections:

• In section 6.1, we analyze the question which classes of cutting planes or cutting plane operators,
respectively, dominate others or not.

• Section 6.2 deals with the question whether for a given class of cutting planes, it is always possible to
apply the corresponding operator cl( · ) ( · ) iteratively (if necessary) on P (typically a rational polyhe-
dron) and reach clI (P ) in a �nite number of steps. If this is not possible: does at least the sequence{

cl
(k)
( · ) (P )

}
k∈Z≥0

converge (�convergence� is to be understood in the sense of De�nition 308) against clI (P )?

For analyzing this question systematically, we formulate four guiding questions at the beginning of
section 6.2. We consider these guiding questions for several classes of cutting plane operators.

• In section 6.3, for various classes of cutting planes, we consider the question whether for a given P and
a given cutting plane operator cl( · ) ( · ), the set cl( · ) (P ) is a (rational) polyhedron. Here, of course, the
case that P is already a rational polyhedron is at the center of our considerations.

Part III

In part III, which consists of chapter 7, 8 and 9, the central topics are integral polyhedra L1− 1
2 ,Q×Q

cuts,
L1− 1

2 ,Q×R
cuts and L1,Q cuts (i.e. Lk− 1

2 ,Q×Q
cuts, Lk− 1

2 ,Q×R
cuts and Lk,Q cuts in the case k = 1):

11



In chapter 7, the central topic is �integral polyhedra�. We start this chapter with section 7.1, in which
we characterize integrality (Theorem 345) and mixed-integrality (Theorem 347) of polyehdra via optimiza-
tion problems. We want to remark that such a characterization of mixed-integrality was to our knowledge
previously unknown in the literature.
Systems of linear inequalities Ax ≤ b (A rational) with the property that if b is integral, so is the polyhedron

P≤ (A, b) ⊆ Rm (m ∈ Z≥0; in general for A ∈ Rl×d and b ∈ Rl (l, d ∈ Z≥0), we de�ne P≤ (A, b) :={
x ∈ Rd : Ax ≤ b

}
), play an important role for describing integral polyhedra. TDI systems are a class of

system with this property that is well-known from the literature, but in this chapter we introduce three
additional types of systems with this property: TDZ+{0, 1} systems, TD(I ∩ Z)+{0, 1} systems and TDZ+I
systems.
Chapter 7 centrally deals with the investigation of these types of systems. So, for example, it is well-known

in the literature that there exists a close relationship between TDI systems and Hilbert bases. To generalize
this relationship to the other types of systems, we introduce (by us) so-called icone systems, Z+icone systems,
Z+{0, 1} systems and (icone∩Z)+{0, 1} systems which are closely related to TDI systems, TDZ+I systems,
TDZ+ {0, 1} systems and TD(I ∩ Z) + {0, 1} systems.
In section 7.6, we analyze how these di�erent types of systems can di�er in their sizes.

Chapter 8 consists of two nearly independent parts whose main similarity consists therein that in both, the
L1− 1

2 ,Q×Q
closure or L1− 1

2 ,Q×R
closure, respectively, is considered:

• In section 8.1, we investigate the relationship between (projected) Chvátal-Gomory cuts (cf. De�nition
122), dual (projected) Chvátal-Gomory cuts (cf. De�nition 382), strong (projected) Chvátal-Gomory
cuts (cf. De�nition 384), L1− 1

2 ,Q×Q
cuts and L1− 1

2 ,Q×R
cuts. An overview about the results is given in

section 8.1.2.4. Concerning the situation for polyhedra, the reader should in particular take a look at
Theorem 391.

• In section 8.2, we consider how to compute the Chvátal-Gomory closure of a polyhedron with rational
face normals. For this, we use the frameworks of TDZ+I systems and Z+ icone systems from chapter
7:

� In Theorem 398 in section 8.2.3, we show how we can use TDZ+I systems with an integral left-hand
side to represent the Chvátal-Gomory closure of a polyhedron P ⊆ Rm (m ∈ Z≥0) with rational
face normals. We remark that such a result is well-known in the literature on TDI systems. Thus,
in the remainder of section 8.2.3, we focus on the question whether TDZ+I systems for this purpose
can be smaller than TDI systems and whether there is additional potential for improvements.

� In section 8.2.4, we reduce the problem of computing the Chvátal-Gomory closure of a polyhedron
P = P≤

((
A G

)
, b
)
⊆ Rm × Rm (m,n ∈ Z≥0) with rational face normals to the special case

that the rows of
(
A G −b

)
form an LP face cone (cf. De�nition 356). For such polyhedra,

we can characterize the Chvátal-Gomory closure via Z + icone systems. This approach has the
advantage over the one using TDZ + I systems that it also works in the mixed-integer case and
can be generalized to the split closure; the latter topic is considered in section 9.2 of chapter 9.

Also chapter 9 consist of two nearly independent parts whose main similarity consists therein that in both,
the L1,Q closure is considered:

• In section 9.1, we analyze the relationship between L1,Q cuts, split cuts (cf. De�nition 126) and MIR
cuts (cf. De�nition 410).

• In section 9.2, we show that the split closure of a polyhedron P ⊆ Rm×Rm (m,n ∈ Z≥0) with rational
face normals is again a polyhedron (a rational polyhedron if P is one). We remark that for the weaker
result that the split closure of a rational polyhedron is again a rational polyhedron, there exist numerous
proofs in the literature (cf. section 6.3). Our proof uses the framework of Z + icone systems that was
developed by us as a central component. Our argumentation closely mirrors the argumentation of our
second proof of the polyhecricity of the Chvátal-Gomory closure.

Regarding further advantages of our approach, we refer to the beginning of chapter 9.
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Part IV

In part IV, our goal is to derive an alternative characterization of L2,Q cuts/closure and L2− 1
2 ,Q×Q

/L2− 1
2 ,Q×R

cuts/closure (for the latter one, we focus on essential L2− 1
2 ,Q

cuts/closure).

To derive these results, in chapter 10 we show two theorems about embedding full-dimensional lattice-free
bodies in R2 into disjunctions. We remark that a weaker version of Theorem 431 (Theorem 432) was shown
in [DDG12].

In chapter 11, we use these embedding results to characterize L2,Q cuts/closure (in section 11.1) and essential
L2− 1

2 ,Q
cuts/closure (in section 11.2) via disjunctions. The �nal results can be found in Theorem 462 (L2,Q

closure), Theorem 474 (essential L2− 1
2 ,Q

closure) and Theorem 475 (L2− 1
2 ,Q×Q

closure and L2− 1
2 ,Q×R

closure).

Part V

In part V (chapter 12 and chapter 13), we show further results about Lk cuts and Lk− 1
2
cuts:

In chapter 12, we consider the question (cf. Problem/De�nition 476) how many inequalities in the inequality
description of a polyhedron we have to consider simultaneously to be able to derive all Lk,Q cuts or Lk− 1

2 ,Q×Q
cuts, respectively, that are necessary to describe the Lk,Q closure or Lk− 1

2 ,Q×Q
closure, respectively, as an

Lk,Q cut or Lk− 1
2 ,Q×Q

cut, respectively, of such a subsystem.
A summary of the most important upper and lower bounds for this can be found in section 12.6. Section

12.4.3 delivers an outlook on how these results can be extended to the essential Lk− 1
2 ,Q

closure (Theorem
496) and Lk− 1

2 ,Q×R
closure (Theorem 497).

In chapter 13, we consider bounds for the Lk,Q rank and Lk− 1
2 ,Q×Q

rank (in particular the former) of a
polyhedron P if the integral variables are 0/1-valued. The Lk,Q rank or Lk− 1

2 ,Q×Q
rank, respectively, tells us

how often we have to apply the respective cutting plane operator iteratively on P to obtain the mixed-integer
hull of P (clI (P )).
In section 13.1, we consider the Lk,Q rank. The �rst central result is Theorem 515, in which we show the

bound
rankLk,Q (P ) ≤

⌈m
k

⌉
(m,n ∈ Z≥0, k ∈ {1, . . . ,m} and P ⊆ [0, 1]

m×Rn). Is this bound the best possible? We answer this question
positively in Theorem 526 (the second central result of section 13.1) by showing that for all m ∈ Z≥1, there
exists a rational polytope P ⊆ [0, 1]

m such that for all k ∈ {1, . . . ,m},

rankLk,Q (P ) ≥
⌈m
k

⌉
is satis�ed.
In section 13.2, we derive herefrom bounds for the Lk− 1

2 ,Q×Q
rank of a rational polyhedron, which, however,

does not permit to derive an upper bound for the L1− 1
2 ,Q×Q

rank. Luckily, the closely related problem of
�nding bounds for the Chvátal-Gomory rank of a polyhedron P ⊆ [0, 1]m (m ∈ Z≥0) is a well-investigated
problem in the literature. Therefore, in section 13.2.1, we give an overview of important results from the
literature about upper bounds and in section 13.2.2 about lower bounds for the Chvátal-Gomory rank.

Part VI

Part VI, which consists of chapter 14 and chapter 15, concerns the following topic (cf. section 14.1): can the
inclusions in (0.4) and (0.5) also be strict? On this, we formulate the following questions:

• Does for all m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m} exist a rational polyhedron P ⊆ Rm ×Rn for which
we have:

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,Q (P )?

• Does for all m ∈ Z≥1, n ∈ Z≥0 and k ∈

{
{1, . . . ,m− 1} if n = 0,

{1, . . . ,m} if n ≥ 1
exist a rational polyhedron P ⊆
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Rm × Rn for which we have:
clLk,Q (P ) ( clL

k− 1
2
,Q×Q

(P )?

We consider the following even stronger questions:

• Does for all m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m} exist a rational polyhedron P ⊆ Rm for which we
have:

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P )?

• Does for all m ∈ Z≥1, n ∈ Z≥0 and k ∈

{
{1, . . . ,m− 1} if n = 0,

{1, . . . ,m} if n ≥ 1
exist a rational polyhedron P ⊆

Rm × Rn for which we have:
clLk,Q (P ) ( clL

k− 1
2
,R×R

(P )? (0.6)

In chapter 14, we answer all of these questions positively with the exception of the case n ≥ 1 and k = m
in (0.6), which (temporarily) remains open at the end of chapter 14. The central overview concerning this
can be found in section 14.9. The central theorems on this are Theorem 543 and Theorem 544. Pay attention
that in Theorem 543, we more generally estimate the (m− 1)-branch split closure and the Lm−1,Q closure
against the (m− 2)-branch split closure, the Lm−2,R closure and the L(m−1)− 1

2 ,R
closure.

The question about a strict inclusion in (0.6) in the case n ≥ 1 and k = m, which stayed open at the end
of chapter 14, is a central topic of chapter 15. Here, we show (Theorem 578) the even stronger statement
that for all m,n ∈ Z≥1 and k ∈ {1, . . . ,m}, there exists a rational polyhedron P ⊆ Rm ×Rn such that for all
` ∈ Z≥0, we have:

clI (P ) = clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) .

This implies that we never attain the mixed-integer hull clI (P ) by applying the Lk− 1
2 ,R×R

closure iteratively
on P . The central theorem for this proof is Theorem 563. Another similar result for a polyhedron which is
given in the equation form that is necessary for k row cuts (cf. De�nition 154) is Theorem 564.
In section 15.5.1, we use these results to derive strict inclusion for further classes of cutting plane operators.

We have written down these results in Theorem 576 and Theorem 577.

Part VII

In part VII, we conclude the thesis with a summary (chapter 16) and an outlook (chapter 17).
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1. Introduction

In this chapter, we want to formulate a gentle introduction into the central topics of this thesis.
Consider some P ⊆ Rm × Rn (m ∈ Z≥1 and n ∈ Z≥0, where m denotes the number of integer variables

and n the number of continuous variables). We want to �nd cutting planes for P , i.e. valid linear inequalities
c ( · ) ≤ c0 for P ∩ (Zm × Rn). For the de�nition of a cutting plane cf. De�nition 120. For a short introduction
concerning the importance of cutting planes, we refer to the introduction of chapter 3.
The question that forms the center of this thesis is how one can derive cutting planes for P by considering

valid inequalities for either
P ∩ ((Zm × Rn) + V )

or
(P + V ) ∩ (Zm × Rn) ,

where V ≤ Rm×Rn is a subspace of codimension k ∈ {0, . . . ,m+ n} with suitable conditions on its generators.
The case k = 0 is admitted for formal reasons. In this text, we call the �rst construction Lk cuts (cf. De�nition
161) and the second construction Lk− 1

2
cuts (cf. De�nition 179).

To make it a little bit easier for the reader to become acquainted with the central ideas of this thesis, we
summarize some essential properties of these constructions, which are represented in a much more formal and
thorough way in chapter 4.
For the remainder of this introduction, we assume that P is a rational polyhedron.
Let us start with the case that we have n = 0 (i.e. we have no continuous variables), and V is generated

by vectors from Qm (i.e. V is a rational subspace; cf. De�nition 17). Later on in this text, if n = 0 and V
is generated by rational vectors (V is a rational subspace), we call these cutting planes Lk,Q cuts or Lk− 1

2 ,Q
cuts, respectively. We de�ne the Lk,Q closure of P or Lk− 1

2 ,Q
closure of P , respectively, as the intersection

of all Lk,Q cuts or Lk− 1
2 ,Q

cuts, respectively, for P , i.e.

clLk,Q (P ) :=
⋂

c∈(Rm)T ,c0∈R:
c( · )≤c0 Lk,Q cut for P

P≤ (c, c0) ,

clL
k− 1

2
,Q

(P ) :=
⋂

c∈(Rm)T ,c0∈R:
c( · )≤c0 Lk− 1

2
,Q cut for P

P≤ (c, c0) ,

where P≤ (c, c0) := {x ∈ Rm : cx ≤ c0} (cf. De�nition 45).

Remark 1. In general (in particular, if P is not convex or not closed), we additionally add P to the inter-
section by which the Lk,Q closure or Lk− 1

2 ,Q
closure, respectively, is de�ned (cf. De�nition 165 and De�nition

182).

This yields two hierarchies of cutting plane operators/closures indexed by k, whose tightness increases with
k increasing:

P = clL0,Q (P ) ⊇ clL1,Q (P ) ⊇ · · · ⊇ clLm−1,Q (P ) ⊇ clLm,Q (P ) = clI (P )

and
P ⊇ clL

1− 1
2
,Q

(P ) ⊇ clL
2− 1

2
,Q

(P ) ⊇ · · · ⊇ clL
(m−1)− 1

2
,Q

(P ) ⊇ clL
m− 1

2
,Q

(P ) = clI (P ) ,

where clI (P ) is the integer hull of P (cf. De�nition 73).
The surprising property is that these two hierarchies can be merged together into one uni�ed hierarchy:

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P ) . (1.1)

This uni�ed hierarchy is of high importance for this thesis: indeed, a central goal of chapter 4 is to establish
the inclusions between these two hierarchies (cf. Remark 156; in particular guiding question 2 and equation
(4.1)).
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1. Introduction

We now consider the situation that we allow/assume that we have some continuous variables (in other
words: we have n ≥ 1). Let us introduce three types of Lk cuts/Lk− 1

2
cuts:

• Lk,Q cuts, which are Lk cuts where we demand that V is generated by vectors from Qm×Rn (no typo!),

• Lk− 1
2 ,Q×Q

cuts, which are Lk− 1
2
cuts where we demand that V is generated by vectors from Qm ×Qn,

• Lk− 1
2 ,Q×R

cuts, which are Lk− 1
2
cuts where we demand that V is generated by vectors from Qm ×Rn.

Two remarks concerning this list:

• It might seem surprising that for Lk,Q cuts, we demand V to be generated by vectors from Qm × Rn
instead of using the �more natural looking generator condition� that for Lk,Q cuts (in the mixed-integer
case), we demand V to be a rational subspace (i.e. V has generators from Qm × Qn). We soon come
back to this objection.

• One might be surprised what the motivation is, also to consider linear inequalities for (P + V ) ∩
(Zm × Rn), where V is generated by vectors from Qm × Rn, but not Qm × Qn. The reason is that
in this situation, one can still show that conv ((P + V ) ∩ (Zm × Rn)) is a polyhedron (a consequence of
Theorem 75).

In a completely similar way as in the pure integer case, one de�nes the associated cutting plane operators
and again this yields (this time three) hierarchies of cutting plane operators indexed by k:

P = clL0,Q (P ) ⊇ clL1,Q (P ) ⊇ clL2,Q (P ) ⊇ · · · ⊇ clLm+n,Q (P ) = clI (P ) , (1.2)

P ⊇ clL
1− 1

2
,Q×Q

(P ) ⊇ clL
2− 1

2
,Q×Q

(P ) ⊇ · · · ⊇ clL
m+n− 1

2
,Q×Q

(P ) = clI (P ) , (1.3)

P ⊇ clL
1− 1

2
,Q×R

(P ) ⊇ clL
2− 1

2
,Q×R

(P ) ⊇ · · · ⊇ clL
m+n− 1

2
,Q×R

(P ) = clI (P ) . (1.4)

Concerning these formulas, we �rst remark that it is not hard to show (cf. Theorem 202) that for k ∈
{m, . . . ,m+ n}, we have clLk,Q (P ) = clI (P ). So, (1.2) can be simpli�ed to

P = clL0,Q (P ) ⊇ clL1,Q (P ) ⊇ · · · ⊇ clLm−1,Q (P ) ⊇ clLm,Q (P ) = clI (P ) .

In all likelihood, the reader has already conceived that in the mixed-integer setting (recall that we assumed
P to be a rational polyhedron), we can even merge these three hierarchies of cutting plane operators (equations
(1.2), (1.3) and (1.4)) into a uni�ed hierarchy, i.e. we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P ) .

(1.5)

As a small interlude, let us consider how some elements in the hierarchies of (1.1) and (1.5) can be in-
terpreted in terms of �traditional� cutting plane operators (all under the still existent premise that P is a
rational polyhedron):

• clL
1− 1

2
,Q

(P ) in (1.1) is equal to the Chvátal-Gomory closure of P and every Chvátal-Gomory cut

for P is an L1− 1
2 ,Q

cut for P . Similarly, one can show that clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) in (1.5) is

equivalent to the projected Chvátal-Gomory closure of P and every projected Chvátal-Gomory
cut for P is an L1− 1

2 ,Q×Q
cut for P . For details cf.

� De�nition 122 for the de�nition of Chvátal-Gomory cuts/projected Chvátal-Gomory cuts,

� De�nition 123 for the de�nition of the Chvátal-Gomory closure/projected Chvátal-Gomory closure
and

� Theorem 391 (also cf. section 8.1 in general) for the result that every (projected) Chvátal-Gomory
cut for P is an L1− 1

2 ,Q
cut/ L1− 1

2 ,Q×Q
cut for P and the equivalence results

clL
1− 1

2
,Q

(P ) = clCG (P )

and
clL

1− 1
2
,Q×Q

(P ) = clpCG (P ) .
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• clL1,Q (P ) (both in (1.1) and (1.5)) is equal to the split closure of P . Even more: split cuts for P are
equivalent to L1,Q cuts for P . For details cf.

� De�nition 126 for the de�nition of split cuts,

� De�nition 127 for the de�nition of the split closure and

� Theorem 409 for the equivalence result between split cuts and L1,Q cuts.

• clL2,Q (P ) (both in (1.1) and (1.5)) is equal to the crooked cross closure of P and every crooked cross
cut for P is an L2,Q cut for P . For details cf.

� De�nition 147 for the de�nition of crooked cross cuts,

� De�nition 148 for the de�nition of the crooked cross closure,

� Corollary 279 for the result that every crooked cross cut for P is an L2,Q cut for P and

� Theorem 462 for the equivalence result clL2,Q (P ) = clCC (P ).

So, in the hierarchies (1.1) and (1.5), a lot of cutting plane operators occur that have been well-studied in
the literature for their independent importance.
Back to the main line of this introduction: with the hierarchy of (1.5) in the back of the mind, we come

back to the question of why we de�ned Lk,Q with respect to a vector space V that is generated by vectors from
Qm × Rm instead of restricting ourselves to vector spaces with generators from Qm ×Qm for this de�nition.
The central reason for this is that one can show (cf. Theorem 197) that every Lk− 1

2 ,Q×R
cut with respect to

some vector space V that is generated by vectors from Qm × Rm, is an Lk,Q cut with respect to exactly the
same vector space. It is clear that this relationship between Lk− 1

2 ,Q×R
cuts and Lk,Q cuts could not even be

formulated if one only allowed to use vector spaces with generators from Qm × Qm instead of Qm × Rm for
de�ning Lk,Q cuts.
Nevertheless there exist good practical reasons why one would (in the mixed-integer setting) prefer to

restrict oneself to rational vector spaces for Lk,Q cuts. The good news is that we are not only able to restrict
ourselves to rational vector spaces, but even to vector spaces of the form V = V ′ × Rn, where V ′ ≤ Rm is a
rational subspace of codimension k (cf. Theorem 168).
It is clear that such a restriction (to vector spaces V = V ′ × Rn, where V ′ ≤ Rm is a rational subspace

of codimension k) is not possible for Lk− 1
2 ,Q×Q

cuts or Lk− 1
2 ,Q×R

cuts. So, one can legitimately ask: do
Lk− 1

2 ,Q×Q
cuts and Lk− 1

2 ,Q×R
cuts with respect to such a vector space (which we name essential Lk− 1

2 ,Q
cuts; cf. De�nition 203) nevertheless have some surprising property? Indeed they have: one can show that
if an Lk− 1

2 ,Q×Q
cut or Lk− 1

2 ,Q×R
cut is not already an Lk−1,Q cut, it has to be an essential Lk− 1

2 ,Q
cut

(cf. Theorem 208; also cf. Theorem 211). In other words: the only cutting planes which in (1.5) make
clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) potentially stronger than clk−1,Q (P ) (k ∈ {1, . . . ,m}) are essential Lk− 1
2 ,Q

cuts.

Now for a second important consideration: how can we compute Lk,Q cuts and Lk− 1
2 ,Q×Q

cuts with respect
to some given rational subspace V ≤ Rm×Rn (of codimension k) explicitly? For this discussion, let us restrict
ourselves to the pure integer case (n = 0). A naive approach for �nding Lk− 1

2 ,Q
cuts for a given rational

polyhedron P ⊆ Rm (m ∈ Z≥0) with respect to a given (rational) subspace V ≤ Rm is:

1. Compute an explicit representation of P ′ := proj⊥V ⊥ P .

2. Compute a lattice basis of Λ := proj⊥V ⊥ Zm.

3. Compute (ideally facet-de�ning) inequalities c ( · ) ≤ c0 (c ∈ (Rm)
T and c0 ∈ R) for conv (P ′ ∩ Λ) such

that cT ⊥ V (the latter condition can be assumed because of Lemma 159).

The problem with this approach is that for k ≥ 2, the number of facets of P ′ can be enormous: for every
d ∈ Z≥2, there exists a full-dimensional rational polyhedron P ⊆ Rd and a rational subspace V of codimension
2 such proj⊥V ⊥ P has 2d vertices and thus (equivalently in R2 for full-dimensional polytopes) 2d facets. See
section 5.1 for details regarding this.
Thus, the outlined approach is arguably not feasible in practice and therefore we want to look for di�erent

characterizations of Lk,Q cuts, Lk− 1
2 ,Q×Q

cuts and essential Lk− 1
2 ,Q

cuts. For this, one can easily picture two
natural approaches:

• Show alternative characterizations that hold for general k. This is the topic of chapter 5.
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1. Introduction

• Show alternative characterizations for speci�c (typically small) values of k. This is done in part III
for L1− 1

2 ,Q×Q
cuts (see chapter 8, in particular section 8.1) and L1,Q cuts (see chapter 9, in particular

section 9.1.1) and in part IV (in particular chapter 11) for L2,Q cuts (see section 11.1) and essential
L2− 1

2 ,Q
cuts (see section 11.2).

To give this introducion a well-rounded conclusion, let us mention the following problem: in (1.1) and
(1.5), we saw that the di�erent kinds of closure operators applied to rational polyehdra form a hierarchy with
respect to inclusions. Can these inclusions also be strict?
Proving that all of these inclusions can indeed be strict is the central topic of part VI (chapter 14 and

chapter 15). In chapter 15, we even show that for every m,n ∈ Z≥1 and k ∈ {1, . . . ,m}, there exists a
rational polyhedron P ⊆ Rm × Rn such that for every ` ∈ Z≥0, we have

clI (P ) = clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) ,

which implies that we can never attain the mixed-integer hull clI (P ) by applying the Lk− 1
2 ,R×R

closure (which
is even potentially stronger than the Lk− 1

2 ,Q×Q
closure and Lk− 1

2 ,Q×R
closure) iteratively.
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2. Basics

This introductory chapter establishes basic de�nitions and results. In the subsequent chapter of this part
(chapter 3), we then begin to introduce cutting planes, which are the central topic of this dissertation.

2.1. Basic de�nitions

De�nition 2. For n ∈ Z≥0, we de�ne [n] := {1, . . . , n}. For n ∈ Z≥1 and a, b ∈ [n], we set a+n b to be the
addition modulo n, where the remainder lies in {1, . . . , n} instead of {0, . . . , n}. Similarly, we de�ne a −n b
as subtraction modolo n with modulus in [n].

De�nition 3. For some aritrary set S, let P (S) denote its power set (set of all subsets of S).

De�nition 4. Let f : A→ B, g : B′ → C be two maps, where B ⊆ B′. Then we de�ne

g ◦ f : A→ C :

a 7→ g (f (a))

as their composition.

2.2. Algebra

We now de�ne some basic algebraic objects.

2.2.1. Groups

De�nition 5. A group is a tuple (G, ∗, 1G), where G is a set, ∗ is a map G×G→ G and 1G ∈ G such that

1. ∀g1, g2, g3 ∈ G : g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 (associativity),

2. ∀g ∈ G : 1G ∗ g = g (1G is left identity element),

3. ∀g ∈ G∃g−1 ∈ G : g−1 ∗ g = 1G (existence of left inverse element).

Remark 6. It is well-known (cf. for example [Fis14, paragraph 1.2.3], [Bos14, chapter 1, Bemerkung 2] and
[Bos13, chapter 1, Bemerkung 2]) that in a group (G, ∗, 1G):

• 1G is also a right identity element in G.

• 1G is the only left/right identity element in G.

• Any left inverse element is also a right inverse element.

• The inverse element is uniquely determined.

De�nition 7. A group (G, ∗, 1G) is called commutative or abelian if ∀g1, g2 ∈ G : g1 ∗ g2 = g2 ∗ g1.

Since we use group homomorphisms to de�ne �elds (cf. De�nition 9) and vector spaces (cf. De�nition 12),
we next de�ne this concept:

De�nition 8. Let (G, ∗, 1G) and (H, •, 1H) be groups. A group homomorphism is a map ϕ : G→ H such
that

∀g1, g2 ∈ G : ϕ (g1 ∗ g2) = ϕ (g1) • ϕ (g2) .

If (G, ∗, 1G) = (H, •, 1H), we call ϕ a group endomorphism.
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2. Basics

2.2.2. Fields

De�nition 9. A tuple (F,+, ·, 0F , 1F ) is called a �eld if

1. (F,+, 0F ) is an abelian group,

2. (F\ {0F } , ·, 1F ) is an abelian group,

3. for all f ∈ F , the map x 7→ f · x is an endomorphism of the group (F,+, 0F ) (this property is usually
called left distributivity).

De�nition 10. Let p be a prime number. Then ({0, . . . , p− 1} ,+, ·), where + and · are addition and
multiplication modulo p, forms a �eld, which we denote by Fp.

For this thesis, mostly the �elds Q, R and (in particular in section 13.1.2) F2 are important. Because
Theorem 83 and Theorem 87, which we took from the literature, are formulated over skew �elds, we next de�ne
skew �elds. They only di�er from �elds in the property that multiplication is not necessarily commutative.

De�nition 11. A tuple (F,+, ·, 0F , 1F ) is called a skew �eld if

1. (F,+, 0F ) is an abelian group,

2. (F\ {0F } , ·, 1F ) is a group,

3. for all f ∈ F , the maps x 7→ f · x and x 7→ x · f are endomorphisms of the group (F,+, 0).

2.2.3. Vector spaces

De�nition 12. Let F be a (skew) �eld. A vector space over F is a tuple (V,+, ·, 0V ) (· : F × V → V )
such that

1. (V,+, 0V ) is an abelian group,

2. for all f ∈ F , the map v 7→ f · v is an endomorphism of the group (V,+, 0V ),

3. for all v ∈ V , the map a 7→ a · v is a homomorphism of the group (F,+, 0F ) to the group (V,+, 0V ),

4. ∀a, b ∈ F, v ∈ V : a · (b · v) = (a · b) · v,

5. for all v ∈ V , we have 1F · v = v.

We remark that in this text, all vector spaces are over a non-skew �eld (with the exception of Theorem 83
and Theorem 87). The most important vector spaces for this text are Qd, Rd and (in particular in section
13.1.2) Fd2, where d ∈ Z≥0. We now de�ne some important vectors in Rd:

De�nition 13. Let d ∈ Z≥0. We set

• 0d as the zero vector of Rd,

• ed,k (k ∈ [d]) as the dth unit vector of Rn. Additionally, we formally de�ne: ed,0 := 0d,

• 1d :=
∑n
i=1 e

n,k as the vector of Rd which only has ones as components.

De�nition 14. Let V be a vector space over some �eld F and let S ⊆ V . Then we say S is linearly
independent if

∀S′ ⊆ S, S′ �nite :

(∑
s′∈S′

λs′s
′ = 0V ⇒ ∀s′ ∈ S′ : λs′ = 0F

)
.

De�nition 15. Let V be a vector space over R and let V ′ ⊆ V . S is called a (linear) subspace if

1. R · V ′ ⊆ V ′,

2. V ′ + V ′ ⊆ S.

We write V ′ ≤ V in this case.
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De�nition 16. Let V be a vector space over R and let S ⊆ V . We set

linS :=
⋃

k∈Z≥0

⋃
λ∈Rk,

s1,...,sk∈S

{
k∑
i=1

λis
i

}
=

⋂
S⊆S′⊆V :

S′ subspace of V

S′

as the linear hull of S. If linS = V , we say S spans V or S generates V .

As one can see, in this text, we consider many concepts concerning vector spaces (linear hull, span, basis,
. . . ) only for vector spaces over R. We nevertheless remark that it is common in the literature to de�ne such
concepts for vector spaces over arbitrary �elds, but we do not need this generality for this text.

De�nition 17. Let V ≤ Rd (d ∈ Z≥0). We call V a rational subspace if it is generated by vectors from
Qd.

De�nition 18. Let V be a vector space over R. A linearly independent set B having linB = V is called a
basis of V .

De�nition 19. Let V be a vector space over R with a basis B having |B| ∈ Z≥0. In this case, we call V
�nite-dimensional and we de�ne dimV := |B|.
De�nition 20. Let V and W be vector spaces over some �eld F .

• A linear map (also called homomorphism of vector spaces) is a map ϕ : V →W such that

1. ∀v, v′ ∈ V : ϕ (v + v′) = ϕ (v) + ϕ (v′),

2. ∀λ ∈ F, v ∈ V : ϕ (λv) = λϕ (v).

• A map ϕ : V → W of the form ϕ (x) = ϕ′ (x) + w′, where ϕ′ : V → W is a linear map and w′ ∈ W , is
called an a�ne-linear map.

Remark/De�nition 21. Let V and W be vector spaces over some �eld F . Then

{ϕ : V →W : ϕ homomorphism of vector spaces over F}

is again a vector space with the natural operations. Of particular interest for this text is

V ∗ := {ϕ : V → F : ϕ homomorphism of vector spaces (over F )} ,

which we name the dual space of V .

If ϕ : Rq → Rp is a linear map, it it well-known that ϕ is of the form x 7→ Ax, where A ∈ Rp×q and if
ϕ : Rq → Rp is an a�ne-linear map, it is of the form x 7→ Ax+ b, where A ∈ Rp×q and b ∈ Rp.
We now de�ne some properties of matrices:

De�nition 22. For A ∈ Rp×q (p, q ∈ Z≥0), we de�ne

rowspanA := lin {A1,∗, . . . , Ap,∗} ≤ (Rq)T .

De�nition 23. We de�ne for d ∈ Z≥0:

• Id ∈ Rd×d as the identity matrix.

• A (square) matrix A ∈ Rd×d is called regular if detA 6= 0.

• A (square) matrix A ∈ Zd×d is called unimodular if |detA| = 1.

• A (square) matrix A ∈ Rd×d is called symmetric if A = AT .

• Let A ∈ Rd×d be a regular matrix. Then we de�ne A−T :=
(
A−1

)T
=
(
AT
)−1

.

• A symmetric matrix A ∈ Rd×d is called positive semide�nite if for all x ∈ Rd\
{

0d
}
, we have

xTAx ≥ 0.

• A symmetric matrix A ∈ Rd×d is called positive de�nite if for all x ∈ Rd\
{

0d
}
, we have xTAx > 0.

• A map f : Rd → Rd is called a�ne-unimodular if f is of the form f : x 7→ Ux + v, where U is a
unimodular matrix and v ∈ Zd.

De�nition 24. For A ∈ Rm×n (m,n ∈ Z≥0), we de�ne imA := lin {A∗,1, . . . , A∗,n} . Clearly, imA ≤ Rm.
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2.3. Concepts related to vector spaces

2.3.1. Orthogonal complements and projections

We now de�ne two types of projections for vectors.

De�nition 25. Let v :=
(
v′

v′′

)
∈ Rm × Rn (m,n ∈ Z≥0). We de�ne

projRm v := v′,

projRn v := v′′.

Clearly, De�nition 25 leads to problems if m = n, since in this situation, it is not clear whether for
v =

(
v′

v′′

)
∈ Rm×Rm, projRm v is a projection to the �rst or second m components. To avoid having to make

De�nition 25 more complicated, we trust the reader to be able to infer this information from context.
The second kind of projection that we want to introduce is the orthogonal projection. For this, we start

with the de�nition of the orthogonal complement:

De�nition 26. Let V ≤ Rd (d ∈ Z≥0). Then we de�ne

V ⊥ :=
{
x ∈ Rd : xT v = 0 ∀v ∈ V

}
as the orthogonal complement of V . Clearly, V ⊥ is rational if V is.

Let W ≤ V . Then we set
W⊥V :=

{
x ∈ V : xT v = 0 ∀v ∈W

}
as the orthogonal complement of W with respect to V . Clearly, W⊥V is rational if V and W are.

Now for the orthogonal projection:

De�nition 27. Let V ≤ Rd (d ∈ Z≥0). We de�ne

proj⊥V : Rd → V

by the property

∀v ∈ V : proj⊥V v = v,

∀v ∈ V ⊥ : proj⊥V v = 0V = 0d.

proj⊥V is called the orthogonal projection to V .

It is clear that such a map is uniquely de�ned if it exists. We now show that such a map really exists and
how it looks like. For this, we start with a small lemma:

Lemma 28. Let B ∈ Rd×k (d ∈ Z≥0 and k ∈ {0, . . . , d}) have linearly independent columns. Then BTB is
positive de�nite and in particular invertible.

Proof. Clearly, BTB is positive semide�nite. For the invertibility of BTB, it su�ces to show that the map

Rk → Rk : x 7→ BTBx

is injective. For this, let BTBx = 0k. This implies

0 = xTBTBx = (Bx)
T

(Bx) = ‖Bx‖2 .

Thus, Bx = 0d. Since the columns of B are linearly independent, we have x = 0k. So, BTB does not have 0
as eigenvalue and is thus positive de�nite.

Lemma 29. Let B ∈ Rd×k (d ∈ Z≥0, k ∈ {0, . . . , d}) be a matrix with linearly independent columns and let
V := imB. Then we have for all x ∈ Rd:

proj⊥V x = B
(
BTB

)−1
BTx.
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2.3. Concepts related to vector spaces

Proof. By Lemma 28,
(
BTB

)−1
exists. Let x ∈ V . Then x = Bλ, where λ ∈ Rk, and we have:(

B
(
BTB

)−1
BT
)
x = B

(
BTB

)−1
BTBλ = Bλ = x.

On the other hand, let x ∈ V ⊥. Then BTx = 0k and thus
(
B
(
BTB

)−1
BT
)
x = 0m.

As an outlook, we want to mention that in De�nition 428, we formulate a third type of projection for
vectors, which we need to formulate Theorem 429.

2.3.2. Sums

The following lemma is well-known:

Lemma 30. Let W1,W2 be �nite-dimensional subspaces of a vector space V . Then

dim (W1 +W2) = dimW1 + dimW2 − dim (W1 ∩W2) .

Lemma 31. Let V1, V2 ≤ Rd (d ∈ Z≥0) be subspaces. Then

(V1 + V2)
⊥

= V ⊥1 ∩ V ⊥2 , (2.1)

Proof. Clearly, if w ∈ (V1 + V2)
⊥, we have w ∈ V ⊥1 ∩ V ⊥2 (since 0d ∈ V1, V2). On the other hand, let

w ∈ V ⊥1 ∩ V ⊥2 . This means that for all v1 ∈ V 1, v2 ∈ V 2, we have wT v1 = 0 and wT v2 = 0. Thus,
wT
(
v1 + v2

)
= 0.

Remark 32. Beside the identity (2.1) that we showed in Lemma 31, other important identities concerning
orthogonal complements and sums of subspaces are(

V ⊥1
)⊥

= V1,

(V1 ∩ V2)
⊥

= V ⊥1 + V ⊥2 ,

where, as in Lemma 31, V1, V2 ≤ Rd (d ∈ Z≥0).

De�nition 33. Let V be a vector space and let W1, . . . ,Wk (k ∈ Z≥0) be subspaces of V . We write

V = W1 ⊕W2 ⊕ . . .⊕Wk

if for all v ∈ V , there exist uniquely de�ned w1 ∈ W1, . . . , w
k ∈ Wk such that v =

∑k
i=1 w

i. If, additionally,
W1, . . . ,Wk are pairwise orthogonal to each other, we write

V = W1

⊥
⊕W2

⊥
⊕ . . .

⊥
⊕Wk.

Lemma 34. Let V1, V2 ≤ Rd (d ∈ Z≥0) be subspaces such that

Rd = V1 ⊕ V2.

Then also
Rd = V ⊥1 ⊕ V ⊥2 .

Proof. We have to show that for all x ∈ Rd, there exist unique w1 ∈ V ⊥1 and w2 ∈ V ⊥2 such that x = w1 +w2.

For uniqueness: Assume that there exist x ∈ Rd, w′1, w′′1 ∈ V ⊥1 and w′2, w′′2 ∈ V ⊥2 having

x = w′1 + w′2 = w′′1 + w′′2.

This implies that there exist w1 := w′1 −w′′1 ∈ V ⊥1 and w2 := w′2 −w′′2 ∈ V ⊥2 such that 0d = w1 +w2. But
this implies

∀v1 ∈ V1 :
(
w1
)T
v1 = 0,

∀v2 ∈ V2 :
(
w2
)T
v2 = 0.
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On the other hand, since w1 = −w2, we also have

∀v1 ∈ V1 :
(
w2
)T
v1 = 0,

∀v2 ∈ V2 :
(
w1
)T
v2 = 0.

Thus, w1, w2 ∈ V ⊥1 ∩V ⊥2 . But, by Lemma 31, this is equivalent to w1, w2 ∈ (V1 + V2)
⊥. We have V1+V2 = Rd;

thus,
(V1 + V2)

⊥
=
{

0d
}
, (2.2)

which implies w1 = w2 = 0d, so w′1 = w′′1 and w′2 = w′′2.

For existence: We have

dim
(
V ⊥1 + V ⊥2

)
= dimV ⊥1 + dimV ⊥2 − dim

(
V ⊥1 ∩ V ⊥2

)
(by Lemma 30)

= dimV ⊥1 + dimV ⊥2 − (V1 + V2)
⊥ (by Lemma 31)

= dimV ⊥1 + dimV ⊥2 (by (2.2))

= d− dimV1 + d− dimV2

= d. (Rd = V1 ⊕ V2)

2.3.3. Norms and topological properties

De�nition 35. Let V be a vector space over R. A norm on V is a map ‖ · ‖ : V → R such that

1. ∀v ∈ V : ‖v‖ = 0⇔ v = 0V ,

2. ∀λ ∈ R, v ∈ V : ‖λ · v‖ = |λ| · ‖v‖,

3. ∀v, v′ ∈ V : ‖v + v′‖ ≤ ‖v‖+ ‖v′‖

holds.

Important norms on Rd are ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞. For x ∈ Rd, these are de�ned as

‖x‖1 :=
∑
i∈[d]

|xi| , ‖x‖2 :=

√∑
i∈[d]

(xi)
2
, ‖x‖∞ := max {|xi| : i ∈ [d]} .

If we use no index for a norm on Rd (i.e. ‖ · ‖), we always mean ‖ · ‖2.
Next, we de�ne open balls, closed balls and spheres:

De�nition 36. For d ∈ Z≥0, p ∈ Rd and ε ∈ R>0 we de�ne

• Bε (p) :=
{
x ∈ Rd : ‖x− p‖ < ε

}
as the open ball around p with radius ε,

• Bε (p) :=
{
x ∈ Rd : ‖x− p‖ ≤ ε

}
as the closed ball around p with radius ε,

• Sd :=
{
x ∈ Rd+1 :

∑d+1
i=1 x

2
i = 1

}
as the d-sphere.

Having de�ned open balls enables us to to de�ne open and closed sets and the (topological) closure:

De�nition 37. Let S ⊆ Rd (d ∈ Z≥0). S is called open if for every s ∈ S, there exists an ε ∈ R>0 such that
Bε (s) ⊆ S.

De�nition 38. Let S ⊆ Rd (d ∈ Z≥0). S is called closed if Rd\S is open.

De�nition 39. Let S ⊆ Rd (d ∈ Z≥0). Then we de�ne

S :=
⋂

S⊆S′⊆Rd:
S′ closed

S′

as the (topological) closure of S.
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2.4. Cones and convexity

For the remainder of this section, let V be a vector space over R.

2.4.1. Cones and polyhedral cones

De�nition 40. Let S ⊆ V . S is called a (convex) cone if for all λ ∈ R2
≥0, we have λ1S + λ2S ⊆ S.

De�nition 41. Let S ⊆ V . We de�ne

coneS :=
⋃

k∈Z≥0

⋃
λ∈Rk≥0,

s1,...,sk∈S

{
k∑
i=1

λis
i

}
=

⋂
S⊆S′⊆V :
S′ cone

S′

as the conic hull of S.

We now ask: what are the �simplest� cones? One natural criterion for �simplest� is that C = coneS, where
S ⊆ Rd (d ∈ Z≥0) is a �nite set. Such cones are called polyhedral cones:

De�nition 42. Let C ⊆ Rd (d ∈ Z≥0). We call C a polyhedral cone if there exist r1, . . . , rk ∈ Rd (k ∈ Z≥0)
such that C = cone

{
r1, . . . , rk

}
.

Often the sitation occurs that one has a matrix be given and wants to consider the cone that is generated
by the rows of the matrix. For this, we de�ne similarly to De�nition 22:

De�nition 43. For A ∈ Rp×q (p, q ∈ Z≥0), we de�ne

rowconeA := cone {A1,∗, . . . , Ap,∗} ⊆ (Rq)T .

De�nition 44. We de�ne:

• Let C ⊆ Rd (d ∈ Z≥0) be a (polyhedral) cone. C is called a rational cone if C = cone
{
v1, . . . , vk

}
,

where vi ∈ Qd for all i ∈ [k] (k ∈ Z≥0).

• Let C ⊆ Rm × Rn (m,n ∈ Z≥0) be a (polyhedral) cone. C is called a partially rational cone if
C = cone

{
v1, . . . , vk

}
, where vi ∈ Qm × Rn for all i ∈ [k] (k ∈ Z≥0).

�Surprisingly�, it turns out that C ⊆ Rd being a (rational) polyhedral cone is equivalent to C being an
intersection of a �nite number of (rational) half-spaces containing 0d. This is the statement of the Minkowski-
Weyl theorem for cones (Theorem 46), for which one can, for example, �nd a proof in [CCZ10, Theorem 11.9]
(also cf. [CCZ10, Remark 11.2]). To formulate this theorem, we de�ne:

De�nition 45. For A ∈ Rp×q and b ∈ Rp (p, q ∈ Z≥0), we de�ne

P= (A, b) := {x ∈ Rq : Ax = b} ,
P≤ (A, b) := {x ∈ Rq : Ax ≤ b} ,
P< (A, b) := {x ∈ Rq : Ax < b} .

Now for the Minkowski-Weyl theorem for cones:

Theorem 46. (Minkowski-Weyl theorem for cones; [CCZ10, Theorem 11.9], also cf. [CCZ10, Remark 11.2])
Let C ⊆ Rd (d ∈ Z≥0). Then the following two statements are equivalent:

1. C is a (rational) polyhedral cone (i.e. there exist R ∈ Qd×k or R ∈ Rd×k (k ∈ Z≥0), respectively, such
that C = RRk≥0).

2. There exists an A ∈ Ql×d or A ∈ Rl×d (l ∈ Z≥0), respectively, such that C = P≤
(
A, 0l

)
.

2.4.2. Convexity and polyhedra

2.4.2.1. De�nitions

We now want to de�ne an �a�ne analogue of cones/the conic hull�. For this, we start by de�ning d-simplices:
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De�nition 47. For d ∈ Z≥0 we de�ne ∆d :=
{
x ∈ Rd+1

≥0 :
(
1n+1

)T
x = 1

}
as the d-simplex.

We now can de�ne

• convex sets as �the a�ne analogue of cones� by simply replacing R2
≥0 by ∆1 in De�nition 40. This is

done in De�nition 48.

• the convex hull as �the a�ne analogue of cones/the conic hull� by simply replacing Rk≥0 by ∆k in
De�nition 41. This is done in De�nition 49.

De�nition 48. Let S ⊆ V . S is called convex if for all λ ∈ ∆1, we have λ1S + λ2S ⊆ S.

De�nition 49. Let S ⊆ V . We de�ne

convS :=
⋃

k∈Z≥0

⋃
λ∈∆k,

s1,...,sk+1∈S

{
k+1∑
i=1

λis
i

}
=

⋂
S⊆S′⊆V :
S′ convex

S′

as the convex hull of S.

Again we want to describe the �simplest� convex sets � in this case sets P ⊆ Rd such that P = convS,
where S ⊆ Rd (d ∈ Z≥0) is a �nite set. Such convex sets are called polytopes:

De�nition 50. Let P ⊆ Rd (d ∈ Z≥0). We call P a polytope if there exist v1, . . . , vk ∈ Rd (k ∈ Z≥0) such
that P = conv

{
v1, . . . , vk

}
.

Unluckily, Theorem 46 cannot one-to-one be generalized from convex cones to polytopes: while every
polytope is an intersection of a �nite number of a�ne halfspces, not every �nite intersection of a�ne half-
spaces is a polytope. The arguably simplest counterexample is

P = P≤
((

1
)
,
(

0
))
( R1,

which is surely not bounded, thus not a polytope. One thus introduces another term (polyhedra) for inter-
sections of a �nite number of half-spaces:

De�nition 51. A set P := P≤ (A, b) ⊆ Rd (d ∈ Z≥0), where A ∈ Rk×d, b ∈ Rk (k ∈ Z≥0), is called a
polyhedron.

Let us de�ne some speci�c classes of polyhedra that are important for this thesis:

De�nition 52. We de�ne for d ∈ Z≥0:

• A set P ⊆ Rd is called a half-space if it can be represented in the form P = P≤ (A, b), where A ∈
R1×d\

{
01×d} and b ∈ R1.

• A set P ⊆ Rd is called a hyperplane if it can be represented in the form P = P= (A, b), where
A ∈ R1×d\

{
01×d} and b ∈ R1.

• A set P ⊆ Rd is called a polyhedron with rational face normals if it can be represented in the form
P = P≤ (A, b), where A ∈ Qk×d and b ∈ Rk (k ∈ Z≥0).

• A set P ⊆ Rd is called a rational polyhedron if it can be represented in the form P = P≤ (A, b), where
A ∈ Qk×d and b ∈ Qk (k ∈ Z≥0).

While we have seen that there is no one-to-one correspondence between polyhedra and convex hulls of a �nite
number of points (polytopes), there is such a correspondence between (rational) polyhedra and Minkowski
sums of (rational) polytopes and (rational) polyhedral cones. So, we can formulate a Minkowski-Weyl theorem
for polyhedra, which is, for example, shown in [CCZ10, Theorem 11.10].

Theorem 53. (Minkowski-Weyl theorem for polyhedra) Let P ⊆ Rd (d ∈ Z≥0). Then the following two
statements are equivalent:

1. There exist v1, . . . , vk1 ∈ Qd or Rd, respectively, and r1, . . . , rk2 ∈ Qd or Rd (k1, k2 ∈ Z≥0), respectively,
such that P = conv

{
v1, . . . , vk1

}
+ cone

{
r1, . . . , rk2

}
.
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2. P is a (rational) polyhedron (i.e. there exist A ∈ Ql×d or Rl×d, respectively, and b ∈ Ql or Rl (l ∈ Z≥0),
respectively, such that P = P≤ (A, b)).

The next concepts that we de�ne are lineality spaces and recession cones:

De�nition 54. Let ∅ 6= S ⊆ Rd (d ∈ Z≥0). Then we de�ne

linealS :=
{
x ∈ Rd : ∀s ∈ S : s+ lin {x} ⊆ S

}
,

recS :=
{
x ∈ Rd : ∀s ∈ S : s+ cone {x} ⊆ S

}
as the lineality space or recession cone, respectively, of S.

The de�nition of lineality space and recession cone can be simpli�ed if S is convex. The following lemma
is easy to check:

Lemma 55. Let ∅ 6= S ⊆ Rd (d ∈ Z≥0) be convex. Then

linealS =
{
x ∈ Rd : ∃s ∈ S : s+ lin {x} ⊆ S

}
,

recS =
{
x ∈ Rd : ∃s ∈ S : s+ cone {x} ⊆ S

}
.

De�nition 56. Let ∅ 6= P ⊆ Rd (d ∈ Z≥0) be a polyhedron. We call P pointed if linealP =
{

0d
}
.

2.4.2.2. Properties of unions and Minkowski sums of convex sets

We now present some properties about unions and Minkowski sums of convex sets that are used at various
places in this text:

Lemma 57. Let S1, S2 ⊆ V , where V is a vector space over R. Then

conv (S1) + conv (S2) ⊆ conv (S1 + S2) . (2.3)

Proof. We �rst show that for all S′1, S
′
2 ⊆ V , we have

conv (S′1) + S′2 ⊆ conv (S′1 + S′2) .

For this, let λ ∈ ∆k, s′1,1, . . . , s′1,k+1 ∈ S′1 (k ∈ Z≥0) and s′2 ∈ S′2. Then

k+1∑
i=1

λis
′1,i + s′2 =

k+1∑
i=1

λi
(
s′1,i + s′2

)
∈ conv (S′1 + S′2) .

Now for (2.3):

conv (S1) + conv (S2) ⊆ conv (S1 + conv (S2)) ⊆ conv (conv (S1 + S2)) = conv (S1 + S2) .

Now for three theorems which are shown in [Roc70, Corollary 3.1; p. 16], [Roc70, Corollary 9.8.2; p. 81]
and [Roc70, Corollary 9.1.2; p. 75], respectively:

Theorem 58. ([Roc70, Corollary 3.1; p. 16]) Let S1, S2 ⊆ Rd (d ∈ Z≥0) be convex. Then S1 +S2 is convex.

Theorem 59. ([Roc70, Corollary 9.8.2; p. 81]) Let S1, . . . , Sk ⊆ Rd (k, d ∈ Z≥0) be compact. Then

conv
⋃k
i=1 Si is compact.

Theorem 60. ([Roc70, Corollary 9.1.2; p. 75]) Let ∅ 6= S1, S2 ⊆ Rd (d ∈ Z≥0) be convex and closed. Assume

@r ∈ recS1\
{

0d
}

: −r ∈ recS2

(this in particular holds if either S1 or S2 is bounded). Then S1 + S2 is closed and (by Theorem 58) convex
and we have

rec (S1 + S2) = recS1 + recS2.

An important consequence of Theorem 60 is:
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Corollary 61. Let S ⊆ Rd (d ∈ Z≥0) be convex and compact and let C ⊆ Rd be a closed convex cone (e.g.
a polyhedral cone). Then S + C is convex and closed.

Proof. W.l.o.g. we can assume S 6= ∅. Then the statement is an immediate consequence of Theorem 60.

2.4.2.3. Transformations

We now write down two elementary lemmas about polyhedra (Lemma 62 and Lemma 63). Lemma 62 is easy
to check.

Lemma 62. Let
P := conv

{
p1, . . . , pk

}
+ cone

{
q1, . . . , ql

}
⊆ Rm × Rn

(m,n, k, l ∈ Z≥0, p
1, . . . , pk, q1, . . . , ql ∈ Rm × Rn). Then

projRm P = conv
{

projRm p
1, . . . ,projRm p

k
}

+ cone
{

projRm q
1, . . . ,projRm q

l
}
.

Lemma 63. Let P := P≤ (A, b) ⊆ Rd (d ∈ Z≥0, A ∈ Rl×d, b ∈ Rl, where l ∈ Z≥0) be a polyhedron and let

f : Rd → Rd :

x 7→ Cx+ c

(C ∈ Rd×d regular, c ∈ Rd) be an a�ne map. Then

f (P ) = P≤
(
AC−1, b+AC−1c

)
, (2.4)

f−1 (P ) = P≤ (AC, b−Ac) . (2.5)

Proof. For (2.4): We have

f (P ) = CP≤ (A, b) + c

= C
{
x ∈ Rd : Ax ≤ b

}
+ c

=
{
x ∈ Rd : AC−1 (x− c) ≤ b

}
= P≤

(
AC−1, b+AC−1c

)
.

For (2.5), consider that f−1 (x) = C−1x− C−1c.

We now consider projections of sets that are described by linear inequalities and strict linear inequalities.
The following theorem is shown in [DDG11, Appendix A]:

Theorem 64. Let

P :=

{(
x
y

)
∈ Rm × Rn : Ax+By ≤ e, Cx+Dy < f

}
,

where A ∈ Rs×m, B ∈ Rs×n, C ∈ Rt×m, D ∈ Rt×n, e ∈ Rs and f ∈ Rt (m,n, s, t ∈ Z≥0). Then

projRm P = S,

where

S := {x ∈ Rm :

λAx ≤ λe ∀λ ∈
(
Rs≥0

)T
: λB = (0n)

T
, (2.6)

(λA+ µC)x < λe+ µf ∀
(
λ µ

)
∈
(
Rs≥0 × Rt≥0

)T
: λB + µD = (0n)

T
,∃i ∈ [t] : µi = 1

}
. (2.7)

In particular, since for (2.6) and (2.7), there exists a �nite set of generators, there exist matrices G1, G2

and vectors g1, g2 that satisfy
S =

{
x ∈ Rm : G1x ≤ g1, G2x < g2

}
,

where G1 and G2 can be assumed to be rational if A, B, C and D are rational and g1 and g2 can be assumed
to be rational if additionally e and f are rational.

One obtains an important special case of Theorem 64 if P is a polyhedron. We formulate it as a corollary:
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Corollary 65. Let

P :=

{(
x
y

)
∈ Rm × Rn : Ax+By ≤ e

}
,

where A ∈ Rs×m, B ∈ Rs×n and e ∈ Rs. Then

projRm P = S,

where
S :=

{
x ∈ Rm : λAx ≤ λe ∀λ ∈

(
Rs≥0

)T
: λB = (0n)

T
}
.

In particular, since {
λ ∈

(
Rs≥0

)T
: λB = (0n)

T
}

is �nitely generated, there exist a matrix G1 and a vector g1 having

S =
{
x ∈ Rm : G1x ≤ g1

}
,

where G1 can be assumed to be rational if A, B are rational and g1 can be assumed to be rational if additionally
e is rational.

At this place a remark concerning extended formulations: let P ⊆ Rn and Q ⊆ Rd be polyhedra (n, d ∈ Z≥0)
such that P = π (Q), where π is a linear or a�ne-linear map. Then we call Q an extended formulation of
P .
In [Kai09], the following theorem is shown, which considers the case that Q that is given via linear inequal-

ities and π is a linear map. In this situation, Theorem 66 gives an explicit characterization of π (Q) via linear
inequalities.

Theorem 66. [Kai09, Theorem 2] Let Q := P≤ (D, g) ⊆ Rd (D ∈ Rq×d and g ∈ Rq, where d, q ∈ Z≥0) be
a polyhedron and let π : Rd → Rn : x 7→ Tx be a linear map (T ∈ Rn×d, where n ∈ Z≥0). Let T ∈ Rd×t be
an arbitrary matrix whose columns form a basis of kerT . If L ∈ Rm×q≥0 (m ∈ Z≥0) is a matrix whose rows
generate the projection cone {

λ ∈
(
Rq≥0

)T
: λDT =

(
0t
)T}

= rowconeL,

then every A ∈ Rm×n with AT = LD satis�es

π (Q) = P≤ (A,Lg) ∩ π
(
Rd
)
.

Nevertheless, for understanding this thesis, it is not necessary to be familiar with any further results about
extended formulations than Theorem 64 and Corollary 65.

2.5. Closed convex sets

2.5.1. De�nitions

De�nition 67. Let S ⊆ Rd (d ∈ Z≥0). We de�ne

convS := convS =
⋂

S⊆S′⊆V :
S′ convex and closed

S′

as the closed convex hull of S.

Clearly, the closed convex hull of some set S is the smallest closed convex set containing S. We soon
consider why the closed convex hull is very important for optimization purposes, but before, we consider
separation theorems for convex sets. In [Roc70, section 11; p. 95], the author de�nes:

De�nition 68. Let H := P= (c, c0) ⊆ Rd (d ∈ Z≥0) be a hyperplane and let C1, C2 ⊆ Rd be convex. We say
that H separates C1 and C2 strongly if there exists some ε ∈ R>0 such that

• C1 +Bε
(
0d
)
⊆ P≤ (c, c0),
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• C2 +Bε
(
0d
)
⊆ P≥ (c, c0)

or vice versa.

In [Roc70, Theorem 11.4; p. 98], it is shown:

Theorem 69. Let ∅ 6= C1, C2 ⊆ Rd (d ∈ Z≥0) be convex. Then there exist a hyperplane that separates C1

and C2 strongly if and only if
inf {‖x− x′‖ : x ∈ C1, x

′ ∈ C2} > 0,

which is equivalent to 0d /∈ C1 − C2.

From Theorem 69, we conclude:

Corollary 70. Let C ⊆ Rd (d ∈ Z≥0) be convex and closed. Let x∗ ∈ Rd\C. Then there exist ϕ̂ ∈
(
Rd
)∗

and c0 ∈ R such that

• ϕ̂ (c) < c0 for every c ∈ C,

• ϕ̂ (x∗) > c0.

Now that we have the tools available, let us consider the importance of the closed convex hull for optimiza-
tion purposes. We consider the problem

sup {ϕ̂ (x) : x ∈ S} ,

where S ⊆ Rd (d ∈ Z≥0) is arbitrary and ϕ̂ ∈
(
Rd
)∗
. Since S might be di�cult to describe/enumerate, we

consider sets S′ ⊆ Rd that satisfy

∀ϕ ∈
(
Rd
)∗

: sup {ϕ (x) : x ∈ S} = sup {ϕ (x) : x ∈ S′} . (2.8)

Trivially, there can in general exist lots of such sets S′. So one wants to �nd a speci�c S′ which �stands out�
among the others. One very natural such property to look at is the maximum (with respect to inclusion)
among all sets S′ that satisfy (2.8). We next show that convS indeed satis�es this property, i.e. convS is
the maximum (with respect to inclusion) among all sets S′ that satisfy (2.8):

Theorem 71. Let S ⊆ Rd (d ∈ Z≥0). Then:

1. Let ϕ ∈
(
Rd
)∗
. Then

sup {ϕ (x) : x ∈ S} = sup {ϕ (x) : x ∈ convS} .

2. Let S′ ⊆ Rd be such that

∀ϕ ∈
(
Rd
)∗

: sup {ϕ (x) : x ∈ S} = sup {ϕ (x) : x ∈ S′} .

Then S′ ⊆ convS.

Proof.

For 1: W.l.o.g. we can assume S 6= ∅ and sup {ϕ (x) : x ∈ S} <∞. Since S ⊆ convS, we trivially have

sup {ϕ (x) : x ∈ S} ≤ sup {ϕ (x) : x ∈ convS} .

For the other direction
sup {ϕ (x) : x ∈ convS} ≤ sup {ϕ (x) : x ∈ S} ,

let x ∈ convS. Then there exist s1, . . . , sl+1 ∈ P and λ ∈ ∆l (l ∈ Z≥0) such that x =
∑l+1
i=1 λis

i. So

ϕ (x) = ϕ

(
l+1∑
i=1

λis
i

)
=

l+1∑
i=1

λiϕ
(
si
)
≤

l+1∑
i=1

λi max
j∈[l+1]

ϕ
(
sj
)

= max
j∈[l+1]

ϕ
(
sj
)
≤ sup

s∈S
ϕ (s) .

Let
{
xi
}
i∈Z≥1

be a convergent (in Rd) sequence of points in convS and let x∗ := lim
i→∞

xi. We just saw that for

all i ∈ Z≥1, we have ϕ
(
xi
)
≤ sup

s∈S
ϕ (s). Thus, since ϕ is a continuous function, we conclude ϕ (x∗) ≤ sup

s∈S
ϕ (s).

Thus,
∀s ∈ convS : ϕ (s) ≤ sup

s∈S
ϕ (s) .
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For 2: By 1, we can assume S′ to be convex and closed. Assume that there exists an x∗ ∈ S′\ convS. Then,
by Corollary 70, there exists a ϕ̂ ∈

(
Rd
)∗

such that

ϕ̂ (x∗) > sup {ϕ̂ (x) : x ∈ convS} = sup {ϕ̂ (x) : x ∈ S} .  

A very important consequence of Theorem 71 for this text is the following theorem, which is also shown in
[Roc70, Corollary 11.5.1; p. 99]:

Theorem 72. Let S ⊆ Rd (d ∈ Z≥0). Then

convS =
⋂

H half-space: S⊆H

H

(where the empty intersection is de�ned as Rd).

Despite the importance of the closed convex hull for optimzation purposes that we saw in Theorem 71,
it is often much harder to understand than the convex hull. So, it is very useful to understand under what
conditions the closed convex hull of a set is equal to its convex hull.

2.5.2. The closed mixed-integer hull of polyhedra

Central to this text (cf. chapter 3) is optimizing a linear function over P ∩ (Zm × Rn) (m,n ∈ Z≥0), where
P is typically a rational polyhedron. So, in the remainder of this section, we consider how the (closed)
mixed-integer hull (which we de�ne in De�nition 73) of P looks like. In section 2.5.2.1, we consider the
�good� cases, where the mixed-integer hull equals the closed mixed-integer hull and is again a polyhedron or
at least �well-behaved�. In section 2.5.2.2, we consider what can happen if we consider the mixed-integer hull
of non-rational polyhedra (more precisly: polyhedra that do not have a partially rational recession cone).

2.5.2.1. The mixed-integer hull in case of a partially rational recession cone

De�nition 73. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. We de�ne

PI := P ∩ (Zm × Rn)

and set

clI (P ) := convPI ,

clI (P ) := convPI

as the mixed-integer hull of P or closed mixed-integer hull of P , respectively. If n = 0, we also use
the terms integer hull or closed integer hull, respectively.

Remark 74. From now on, m ∈ Z≥0 mostly stands for the number of integral variables and n ∈ Z≥0 for
the number of continuous variables. If it does not matter whether the variables are integral or continuous, we
often use the letter d (d ∈ Z≥0) for the dimension.

The following theorem is proved in [Sch86, Theorem 16.1; p. 231] for the special case that P ⊆ Rm (pure
integer case) is a rational polyhedron. The original proof for P ⊆ Rm × Rn (mixed-integer case) being a
rational polyhedron is due to Meyer ([Mey74]).

Theorem 75. Let P = Q+ C ⊆ Rm × Rn (m,n ∈ Z≥0), where

• Q ⊆ Rm × Rn is arbitrary,

• C := cone
{
c1, . . . , cs

}
, where for all i ∈ [s] (s ∈ Z≥0), we have ci ∈ Zm × Rn.

Let

B :=

{
s∑
i=1

µic
i : 0 ≤ µi ≤ 1 ∀i ∈ [s]

}
.

Then
clI (P ) = clI (Q+B) + C.

39



2. Basics

If PI 6= ∅, we have rec (clI (P )) = recP . Now let Q be bounded. Then

clI (P ) = clI (P )

if either

• n = 0 or

• Q is closed (which together with the condition �Q is bounded� implies �Q is compact�).

In this case, clI (Q+B) is closed. In particular:

• clI (P ) is a polyhedron if either

� Q is a polytope,

� n = 0 or

� n = 1 and Q is closed.

• clI (P ) is a rational polyhedron if P is.

Proof.

For clI (P ) ⊆ clI (Q+B) + C: We start by showing PI ⊆ clI (Q+B) + C. Let p ∈ PI . Then p = q + c,
where q ∈ Q and c ∈ C. From this, we conclude that there exist b ∈ B and c′ ∈ CI having c = b+ c′. For the
reason: let c =

∑s
i=1 µic

i, where µ ∈ Rs≥0. Set

c′ :=

s∑
i=1

bµic ci,

b :=

s∑
i=1

(µi − bµic) ci = c− c′.

So, we have p = (q + b) + c′, where q+ b ∈ (Q+B)I (q+ b ∈ Q+B is obvious; for q+ b ∈ Zm×Rn, consider
that

q + b = p︸︷︷︸
∈Zm×Rn

− c′︸︷︷︸
∈Zm×Rn

∈ Zm × Rn.

Thus, we have p ∈ (Q+B)I + CI ⊆ clI (Q+B) + C.
Now for clI (P ) ⊆ clI (Q+B) + C:

clI (P ) = conv (PI) ⊆ conv (clI (Q+B) + C) = clI (Q+B) + C.

For clI (Q+B) + C ⊆ clI (P ):

clI (Q+B) + C ⊆ clI (P ) + C

= clI (P ) + clI (C)

= conv (PI) + conv (CI)

⊆ conv (PI + CI) (by Lemma 57)

= conv ((P ∩ (Zm × Rn)) + (C ∩ (Zm × Rn)))

= conv ((P + C) ∩ (Zm × Rn)) (Zm × Rn is closed under addition)

= clI (P + C)

= clI (P ) .

For the remaining statements: If either n = 0 or Q is closed, the set (Q+B)I is a �nite union of compact
sets. Thus, the closure property is immediately implied by Theorem 59. One concludes from Corollary 61
that clI (Q+B) + C is convex and closed with recession cone C if (Q+B)I 6= ∅.
If either Q is a polytope, n = 0, or n = 1 and Q is closed, clI (Q+B) is a polyhedron (a rational polyhedron

if P is one), which shows the �nal statement.

With De�nition 73 and Theorem 75 in mind, we de�ne:
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2.5. Closed convex sets

De�nition 76. A rational polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0) is called mixed-integral if P = clI (P ).
If n = 0, we also use the term integral.

We remark that for future research one might consider relaxing the condition in De�nition 76 of P to be a
rational polyhedron in particular for the mixed-integral case.

2.5.2.2. Situation for non-rational polyhedra

In Theorem 75, we saw that the mixed-integer hull of a polyhedron with a partially rational recession cone is
again a polyhedron. Now, we consider what can happen to clI (P ) and clI (P ) if P does not have a partially
rational recession cone.
The �rst thing that can happen is that the situation clI (P ) ( clI (P ) might occur. Since every polyhedron

is closed, this implies that clI (P ) is not a polyhedron (but clI (P ) might be one). For this, we consider the
following example:

Example 77. (See Figure 2.1) Let

P 77 :=

{
x ∈ R2 : x1 +

√
2x2 ≤

1

2

}
.

Then

• clI
(
P 77

)
is not a polyhedron. For this, consider that for every x ∈

(
P 77

)
I
, we have x1 +

√
2x2 <

1
2 ,

while on the other hand, one can show

sup
{
x1 +

√
2x2 : x ∈

(
P 77

)
I

}
=

1

2
.

Thus,

clI
(
P 77

)
⊆
{
x ∈ R2 : x1 +

√
2x2 <

1

2

}
.

Indeed, equality holds, i.e. we have

clI
(
P 77

)
=

{
x ∈ R2 : x1 +

√
2x2 <

1

2

}
. (2.9)

• One can conclude from (2.9) that clI
(
P 77

)
= P 77.

x2

−2

−1

1

2

x1
−2 −1 1 2 3 4

(a) P 77 = clI
(
P 77

)
and P 77 ∩ Z2

x2

−2

−1

1

2

x1
−2 −1 1 2 3 4

(b) clI
(
P 77

)
and P 77 ∩ Z2

Figure 2.1.: Visualisation of P 77 = clI
(
P 77

)
and clI

(
P 77

)
One might conjecture that, in general, for any polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0) at least clI (P )

is again a polyhedron. We next consider an example (Example 80; also cf. Lemma 79) where we have
clI (P ) = clI (P ), but

• we need a countably in�nite number of (rational) linear inequalities to describe clI (P ) using linear
inequalities and
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• clI (P ) has a countably in�nite number of vertices.

Consider the following lemma, for which a proof is sketched in [Rub70]:

Lemma 78. Let w ∈ R>0\Q. Consider the in�nite continued fraction

a0 +
1

a1 + 1
a2+ 1

...+ 1
ak+ 1

...

for w. Let

Pk
Qk

:= a0 +
1

a1 + 1
a2+ 1

...+ 1
ak

∀k ∈ Z≥1,

where Pk, Qk ∈ Z≥1 and gcd (Pk, Qk) = 1. Let

L78,w := conv
{
x ∈ Z2

≥0 : x2 < wx1

}
and let

vi :=



(
1

0

)
if i = 0,(

Q2i

P2i

)
if w < 1 ∧ i ≥ 1,(

1

a0

)
if w > 1 ∧ i = 1,(

Q2(i−1)

P2(i−1)

)
if w > 1 ∧ i ≥ 2

∀i ∈ Z≥0.

Then

L78,w = P≥
((

0 1
)
, 0
)
∩
⋂

i∈Z≥1

P≤
((

vk−1
2 − vk2 vk1 − vk−1

1

)
, vk1v

k−1
2 − vk−1

1 vk2
)

=

conv
⋃

i∈Z≥0

{
vi
}+ cone

{(
1
0

)}
,

where all the inequalities are facet-de�ning for L and the vi are the vertices of L.

We use Lemma 78 to characterize the facets of clI (P ) for a speci�c class of polyhedra P ⊆ R2:

Lemma 79. For w ∈ R>0\Q, let

P 79,w :=
{
x ∈ R2 : x1 ≥ 1, x2 ≥ 0, x2 ≤ wx1

}
.

Then
clI
(
P 79,w

)
= L78,w.

Proof. Since w is irrational, we have(
L78,w

)
I

=
{
x ∈ Z2

≥0 : x2 < wx1

}
=
{
x ∈ Z2 : x1 ≥ 1, x2 ≥ 0, x2 ≤ wx1

}
=
(
P 79,w

)
I
.

Thus, we have L78,w = clI
(
P 79,w

)
.

Example 80. (See Figure 2.2) Let w := 1+
√

5
2 . It is well-known that the in�nite continued fraction repre-

sentation of w is

w = 1 +
1

1 + 1
1+ 1

...+ 1
1+ 1

...

,
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x2

1

2

3

4

5

6

7

8

9

x1
1 2 3 4 5

(a) P 79, 1+
√

5
2 and P 79, 1+

√
5

2 ∩ Z2

x2

1

2

3

4

5

6

7

8

9

x1
1 2 3 4 5

v3

v2

v1

v0

(b) clI

(
P 79, 1+

√
5

2

)
and P 79, 1+

√
5

2 ∩ Z2

Figure 2.2.: Visualisation of P 79, 1+
√

5
2 and clI

(
P 79, 1+

√
5

2

)

i.e. in the notation of Lemma 78, we have: ∀i ∈ Z≥0 : ai = 1. It is also well-known that for all i ∈ Z≥1, we
have (again using the notation of Lemma 78)

Pi := Fi+2, Qi := Fi+1,

where

Fi :=


0 if i = 0,

1 if i = 1,

Fi−2 + Fi−1 i ≥ 2

(Fibonacci sequence). So, by Lemma 78 and Lemma 79, we have

clI

(
P 79, 1+

√
5

2

)
= L78, 1+

√
5

2

= P≥
((

0 1
)
, 0
)
∩
⋂

i∈Z≥1

P≤
((

vk−1
2 − vk2 vk1 − vk−1

1

)
, vk1v

k−1
2 − vk−1

1 vk2
)

(2.10)

=

conv
⋃

i∈Z≥0

{
vi
}+ cone

{(
1
0

)}
,

where

v0 :=

(
1
0

)
, v1 :=

(
1
1

)
, ∀i ≥ 2 : vi :=

(
Q2(i−1)

P2(i−1)

)
=

(
F2i−1

F2i

)
.

If one de�nes (as it is often done) F−1 := 1, we have

∀i ∈ Z≥0 : vi =

(
F2i−1

F2i

)
.
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By Lemma 78, all vi (i ∈ Z≥0) are vertices of clI

(
P 79, 1+

√
5

2

)
and all inequalities in (2.10) are facet-de�ning.

2.6. Theorems of the alternative

The central idea of theorems of the alternative is the following: consider a system of, for example, linear
equations or linear inequalities. It is often not too hard to �nd criteria that are necessary to be satis�ed
such that this system has a solution. On the other hand, it is typically much harder to �nd criteria that are
additionally su�cient for a solution to exist.
If one is able to �nd such a criterion, one likes to formulate it in a form where two systems are given, but

exactly one of them has a solution. So, if one shows a solution to one of the systems, this automatically gives
a certi�cate that the other one is unsolvable. Examples for such criteria are given in Corollary 84, Lemma
88, Lemma 89 and Theorem 92.
For the outline of this section:

• In section 2.6.1, we consider the situation for systems of linear equations.

• In section 2.6.2, we consider the situation for systems of linear inequalities.

• In section 2.6.3, we consider the situation for systems of linear equations with rational coe�cients where
we additionally demand integrality conditions on some variables.

2.6.1. Systems of linear equations

De�nition 81. Let V be a vector space over an arbitrary (possibly skew) �eld F . Let u ∈ V . We de�ne

ιu : F → V :

λ 7→ λu.

Remark 82. Let u, F and V be as in De�nition 81 and let α : W → F be a linear form, where W is a vector
space over F . Then

∀x ∈W : ((ιu) ◦ α) (x) = (α (x))u.

The following formulation of Theorem 83 and its proof are based on ideas that were originally developed
by Bartl in [Bar12b] for giving a short algebraic proof of the Farkas lemma in the formulation of Theorem 87
(also cf. [Bar07, Lemma 3.1]):

Theorem 83. Let V , W be vector spaces over some (possibly skew) �eld F . Let α1, . . . , αm : W → F
(m ∈ Z≥0) be linear forms and let γ : W → V be a linear mapping. Then

∀x ∈W : (α1 (x) = 0 ∧ · · · ∧ αm (x) = 0)⇒ γ (x) = 0V

⇔∃u1, . . . , um ∈ V : γ =

m∑
i=1

(ιui) ◦ αi.

Proof. The direction �⇐� is obvious. So, we only prove �⇒�. For m = 0, the statement is obvious. Let the
statement be proved for some m and assume

∀x ∈W : α1 (x) = 0 ∧ · · · ∧ αm (x) = 0 ∧ αm+1 (x) = 0⇒ γ (x) = 0V . (2.11)

If we also have
∀x ∈W : α1 (x) = 0 ∧ · · · ∧ αm (x) = 0⇒ γ (x) = 0V , (2.12)

then, by induction hypothesis, there exist u1, . . . , um ∈ V having

γ =

m∑
i=1

(ιui) ◦ αi,

and we can simply set um+1 := 0V .
So, we can assume that (2.12) does not hold. In other words:

∃x∗ ∈W : α1 (x∗) = 0 ∧ · · · ∧ αm (x∗) = 0 ∧ γ (x∗) 6= 0V .
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By (2.11), we can assume αm+1 (x∗) 6= 0. By scaling, we can additionally assume that αm+1 (x∗) = 1. Thus,

∀x ∈W : αm+1 (x− (αm+1 (x))x∗) = 0.

Thus, by setting x− (αm+1 (x))x∗ for x in (2.11), we obtain

∀x ∈W :


α1 (x− (αm+1 (x))x∗) = 0

...
αm (x− (αm+1 (x))x∗) = 0

⇒ γ (x− (αm+1 (x))x∗) = 0V ,

which is equivalent to (cf. Remark 82)

∀x ∈W :


(α1 − α1 (x∗)αm+1) (x) = 0

...
(αm − αm (x∗)αm+1) (x) = 0

⇒ (γ − (ι (γ (x∗))) ◦ αm+1) (x) = 0V .

Hence, by induction hypothesis, there exist u1, . . . , um ∈ V having

γ − (ι (γ (x∗))) ◦ αm+1 =

m∑
i=1

(ιui) ◦ (αi − αi (x∗)αm+1) ,

which is equivalent to

γ =

m∑
i=1

(ιui) ◦ αi +

(
ι

(
γ (x∗)−

m∑
i=1

αi (x∗)ui

))
◦ αm+1.

So simply set

um+1 := γ (x∗)−
m∑
i=1

αi (x∗)ui.

From Theorem 83, one immediately concludes:

Corollary 84. Let A ∈ Fm×n and b ∈ Fn (m,n ∈ Z≥0), where F is a �eld. Then

∃x ∈ Fn : Ax = b⇔ @y ∈ (Fm)
T

: yA = (0n)
T ∧ yb 6= 0.

2.6.2. Systems of linear inequalities (Farkas lemma)

De�nition 85. An ordered (skew) �eld (also called linearly ordered (skew) �eld) is a tuple (F,≤),
where F is a (skew) �eld and ≤ is a total order on F such that

1. ∀f1, f2, g ∈ F : f1 ≤ f2 ⇒ f1 + g ≤ f2 + g,

2. ∀f1, f2 ∈ F : 0 ≤ f1, 0 ≤ f2 ⇒ 0 ≤ f1 · f2.

De�nition 86. Let (F,≤) be a linearly ordered (skew) �eld and let V be a vector space over F . Let � be a
total order on V . Then (V,�) is called a linearly ordered (skew) vector space (over F) if we have

1. ∀v1, v2, w ∈ F : v1 � v2 ⇒ v1 + w � v2 + w,

2. ∀λ ∈ F, v ∈ V : 0 ≤ λ, 0V � v ⇒ 0V � λ · v.

For the following theorem, one can �nd a short proof in [Bar12b] (also cf. [Bar07], [Bar08] and [Bar12a]).

Theorem 87. Let V , W be vector spaces over some ordered (possibly skew) �eld F , where (V,�) is a linearly
ordered vector space. Let α1, . . . , αm : W → F (m ∈ Z≥0) be linear forms and let γ : W → V be a linear
mapping. Then

∀x ∈W : (α1 (x) ≤ 0 ∧ · · · ∧ αm (x) ≤ 0)⇒ γ (x) � 0V

⇔∃u1, . . . , um ∈ V : γ =

m∑
i=1

(ιui) ◦ αi ∧ u1, . . . , um � 0V .

45



2. Basics

Lemma 88 is an immediate consequence of Theorem 87. In [Sch86, Corollary 7.1d; p. 89], one can �nd a
direct proof for the case F = R:
Lemma 88. Let F be an ordered �eld, let A ∈ Fm×n and let b ∈ Fm (m,n ∈ Z≥0). Then

∃x ∈ Fn≥0 : Ax = b⇔ @y ∈ (Fm)
T

: yA ≥ (0n)
T ∧ yb < 0.

Another consequence of Theorem 87 is:

Lemma 89. Let F be an ordered �eld, let A ∈ Fm×n and let b ∈ Fm (m,n ∈ Z≥0). Then

∃x ∈ Fn : Ax ≤ b⇔ @y ∈
(
Fm≥0

)T
: yA = (0n)

T ∧ yb < 0.

For Lemma 89, we give two proofs. The �rst one is based on the idea of the proof of [Sch86, Corollary 7.1e;
p. 89], where Lemma 89 is derived from Lemma 88. The other one is taken from the proof of [Bar07,
Lemma 4.2]. In the latter one, Lemma 89 is derived directly from Theorem 87.

Proof. (Lemma 89)

First proof:

∃x ∈ Fn : Ax ≤ b
⇔∃x′ ∈ F 2n+m

≥0 :
(
A −A Im

)
x′ = b

⇔@y ∈ (Fm)
T

: y
(
A −A Im

)
≥
(
02n+m

)T ∧ yb < 0 (by Lemma 88)

⇔@y ∈
(
Fm≥0

)T
: yA = (0n)

T ∧ yb < 0.

Second proof: There exists no x ∈ Fn having Ax ≤ b if and only if

∀x ∈ Fn, t ∈ F :
(
A −b

)( x
t

)
≤ 0m ⇒

(
(0n)

T
1
)( x

t

)
≤ 0.

By Theorem 87, this is equivalent to

∃y ∈ Fm≥0 : yT
(
A −b

)
=
(

(0n)
T

1
)
,

which is again equivalent to
∃y ∈

(
Fm≥0

)T
: yA = (0n)

T ∧ yb < 0.

An important consequence of the Farkas lemma for this text is the following �a�ne form�, which is a refor-
mulation of [Sch86, Corollary 7.1h; p. 93]. It characterizes all valid inequalities for a non-empty polyhedron
P ⊆ Rd (d ∈ Z≥0).

Lemma 90. Let ∅ 6= P := P≤ (A, b) ⊆ Rd (A ∈ Rk×d and b ∈ Rk, where d, k ∈ Z≥0) be a non-empty

polyhedron and let c ( · ) ≤ c0 (c ∈
(
Rd
)T

and c0 ∈ R) be a linear inequality that is valid for P (i.e. P ⊆

P≤ (c, c0)). Then there exists a y ∈
(
Rk+1
≥0

)T
having

(
c c0

)
= y

(
A b(

0d
)T

1

)
.

On the other hand, every inequality that can be represented in this form, is obviously valid for P .

2.6.3. Systems of mixed-integer linear equations

In [KW04] (also cf. [BW05, Theorem 13.3; p. 491]), it is shown:

Theorem 91. Let A ∈ Zl×m, G ∈ Zl×n and b ∈ Zl (l,m, n ∈ Z≥0) satisfy rank
(
A G

)
= l (i.e.

(
A G

)
has full row rank). Then

∃x ∈ Zm × Rn :
(
A G

)
x = b⇔ @y ∈

(
Rl
)T

: y
(
A G

)
∈ (Zm × 0n)

T ∧ yb /∈ Z.
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We show the following tightening of Theorem 91. Its essential di�erence to Theorem 91 is that we get rid of
the condition that

(
A G

)
must have full row rank. Also, for convenience, we write down our formulation

in a such a way that A, G and b are not required to be integral, but only rational.

Theorem 92. Let A ∈ Ql×m, G ∈ Ql×n and b ∈ Ql (l,m, n ∈ Z≥0). Then

∃x ∈ Zm × Rn :
(
A G

)
x = b⇔ @y ∈

(
Rl
)T

: y
(
A G

)
∈ (Zm × 0n)

T ∧ yb /∈ Z.

Proof.

For �⇒�: Assume that there exist x∗ ∈ Zm × Rn and y∗ ∈
(
Rl
)T

such that y∗
(
A G

)
∈ (Zm × 0n)

T ,(
A G

)
x∗ = b and y∗b /∈ Z. Then

Z 63 y∗b = y∗
(
A G

)
x∗ ∈ (Zm × 0n)

T
x∗ ∈ Z.  

For �⇐�: W.l.o.g., by rescaling, we can assume that A, G and b are integral. By assumption, we have

@y ∈
(
Rl
)T

: y
(
A G

)
∈ (Zm × 0n)

T ∧ yb /∈ Z. (2.13)

We �rst show
∃x∗ ∈ Rm × Rn :

(
A G

)
x∗ = b.

Assume otherwise. Then, by Corollary 84, there exists a y∗ ∈
(
Rl
)T

having

y∗
(
A G

)
= (0m × 0n)

T ∧ y∗b =
1

2
.

This is clearly a contradiction to (2.13). Now, let rank
(
A G

)
=: r and assume w.l.o.g. that the �rst r

rows of
(
A G

)
are linearly independent. Then there exists some M ∈ R(l−r)×r such that

(
A G

)
=

(
Ir

M

)(
A G

)
[r],∗ .

We claim that

b =

(
Ir

M

)
b[r]. (2.14)

Assume otherwise. Then there exists an i∗ ∈ {r + 1, . . . , l} such that bi 6= Mi∗−r,∗b[r]. Let

y∗ :=
1

2
(
Mi∗−r,∗b[r] − bi

) ( Mi∗−r,∗ −
(
el−r,i

∗−r)T )
∈
(
Rl
)T
.

Then

y∗
(
A G

)
=

1

2
(
Mi∗−r,∗b[r] − bi∗

) (Mi∗−r,∗
(
A G

)
[r],∗ −

(
A G

)
i∗,∗

)
= (0m × 0n)

T
,

y∗b =
1

2
(
Mi∗−r,∗b[r] − bi∗

) (Mi∗−r,∗b[r] − bi∗
)

=
1

2
,

which contradicts (2.13).
From (2.13), we obtain

@y ∈ (Rr)T : y
(
A G

)
[r],∗ ∈ (Zm × 0n)

T ∧ yb[r] /∈ Z.

So, by Theorem 91, there exists an x∗ ∈ Zm × Rn such that
(
A G

)
[r],∗ x

∗ = b[r]; thus, using (2.14), we
conclude (

A G
)
x∗ =

(
Ir

M

)(
A G

)
[r],∗ x

∗ =

(
Ir

M

)
b[r] = b.
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2.7. Lattices

2.7.1. De�nitions and properties

De�nition 93. Let {v1, . . . , vm, w1, . . . , wn} ⊆ Rd (d,m, n ∈ Z≥0) be linearly independent. Then we call the
subgroup

Λ :=
(
v1 · · · vm w1 · · · wn

)( Zm
Rn

)
a mixed lattice and denote (m,n) its signature:

sig Λ := (m,n) .

If n = 0, we call Λ a lattice.

De�nition 94. A (mixed) lattice Λ is called rational if v1, . . . , vm, w1, . . . , wn in De�nition 93 can be
assumed to be rational.

We remark that we found no established de�nition of a �mixed lattice� in the literature; so, this term and
the term �signature of a mixed lattice� is a de�nition of ours. Nevertheless, for the non-mixed lattice case
(n = 0), the de�nition of a lattice in De�nition 93 coincides with the one used in [Sch86, p. 47].
In [Bar02, Chapter VII, section 1; p. 279], one can �nd another de�nition of a lattice: here, a lattice is de�ned

as an additive subgroup Λ of
(
Rd,+

)
which spans Rd and is discrete (i.e. ∃ε ∈ R>0 : Bε

(
0d
)
∩Λ =

{
0d
}
). It is

clear that every lattice (as in De�nition 93) is a discrete subgroup of Rd. In the next theorem (Theorem 95),
we show that als the reverse holds and we consider how to �nd a basis of a mixed lattice. It is a restatement
of [Bar02, (1.4) Theorem; p. 284]:

Theorem 95. Let Λ ( Rd (d ∈ Z≥0) be a discrete subgroup of Rd. Let dim (lin Λ) =: d′ and let {b1, . . . , bd′} ⊆
Λ be linearly independent. For k ∈ {0, . . . , d′}, de�ne

Lk := lin {b1, . . . , bk} .

For k ∈ {1, . . . , d′}, let uk be a lattice point in Lk\Lk−1 that is closest to Lk−1. Then Λ =
(
v1 · · · vd′

)
Zd′

(i.e. {v1, . . . , vd′} is a lattice basis of Λ). In particular, a lattice basis always exists.

An immediate consequence of Theorem 95 is:

Corollary 96. Let V ≤ Rm (m ∈ Z≥0) be a linear subspace. Then Zm ∩ V is a rational lattice. If V is a
rational subspace, then Zm ∩ V has signature (dimV, 0).

We now formulate an immediate consequence of Theorem 95 for mixed lattices, which is easy to prove:

Theorem 97. Let Λ ( Rd (d ∈ Z≥0) be a subgroup of Rd. De�ne

V := lineal Λ, Λ′ := proj⊥V ⊥ Λ.

Let there exists an ε ∈ R>0 such that Bε
(
0d
)
∩ Λ′ =

{
0d
}
. Then Λ′ is a lattice. Let

• m := dim (lin Λ′) = dim (lin Λ)− dimV ,

• n := dimV ,

• {v1, . . . , vm} be a lattice basis of Λ′ (Theorem 95 tells us how to construct one) and

• {w1, . . . , wn} ∈ V be a (vector space) basis of V .

Then

Λ =
(
v1 · · · vm w1 · · · wn

)
·
(
Zm
Rn

)
.

In particular, Λ has signature (m,n).
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2.7.2. Dual representations

We now write down a lemma that gives us a way to represent rational mixed lattices in a dual way:

Lemma 98. Let V ≤ Rm (m ∈ Zm) be a rational subspace of codimension k ∈ {0, . . . ,m} and let
{w1, . . . , wk} ⊆ Zm be a lattice basis of Zm ∩ V ⊥ (it exists by Corollary 96). Then

Zm + V =
{
y ∈ Rm : ∀i ∈ [k] :

(
wi
)T
y ∈ Z

}
.

Proof. Let {v1, . . . , vm−k} ⊆ Qm be basis of V that consists of rational vectors. Then

Zm + V =
{
x ∈ Rm : ∃λ ∈ Zm × Rm−k :

(
Im v1 · · · vm−k

)
λ = x

}
=: (2.15).

By Theorem 92, x ∈ (2.15) if and only if there exists no z ∈ (Rm)
T having

• z ∈ (Zm)
T ,

• zvi = 0 for all i ∈ [m− k] and

• zx /∈ Z.

Thus,

x ∈ (2.15)⇔ ∀z ∈
(
Zm ∩ V ⊥

)T
: zx ∈ Z.

Since
{
w1, . . . , wk

}
is a lattice basis of Zm ∩ V ⊥, this means

x ∈ (2.15)⇔ ∀i ∈ [k] :
(
wi
)T
x ∈ Z.

We now show a simple consequence of Lemma 98, which becomes important in section 4.2.2.2:

Lemma 99. Let m, V and w1, . . . , wk be as in Lemma 98 and let w′1, . . . , w′k
′
be arbitrary vectors from

Zm ∩ V ⊥ (in particular not necessarily linearly independent or even a lattice basis of this lattice). Then{
y ∈ Rm : ∀i ∈ [k′] :

(
w′i
)T
y ∈ Z

}
⊇
{
y ∈ Rm : ∀i ∈ [k] :

(
wi
)T
y ∈ Z

}
= Zm + V.

Proof. Since
{
w1, . . . , wk

}
is a lattice basis, there exist λ1, . . . , λk

′ ∈ Zk such that for all i ∈ [k′], we have

w′i =
(
w1 · · · wk

)
λi. Let y ∈ Rm satisfy ∀i ∈ [k] :

(
wi
)T
y(1,...,m) ∈ Z. Then(

w′i
)T
y(1,...,m) =

((
w1 · · · wk

)
λi
)T
y(1,...,m) =

(
λi
)︸︷︷︸

∈Zk

T (
w1 · · · wk

)T
y(1,...,m)︸ ︷︷ ︸

∈Zk

∈ Z.

2.7.3. Projections of lattices

Theorem 100. Let V ≤ Rm×Rn (m,n ∈ Z≥0) be a rational subspace of dimension k ∈ {0, . . . ,m+ n}. Let{
b1, . . . , bk

}
⊆ Qm ×Qn be a basis of V that consists of rational vectors. De�ne B :=

(
b1 . . . bk

)
. Then

proj⊥V (Zm × Rn) is a rational mixed lattice of signature (k − s, s), where

s = dim

(
B
(
BTB

)−1
BT

(
0m

Rn
))

.

In particular

• max (0, k − n) ≤ k − s ≤ min (m, k) and

• max (0, k −m) ≤ s ≤ min (n, k).
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Proof. Consider

V2 := proj⊥V (0m × Rn) = B
(
BTB

)−1
BT

(
0m

Rn
)
, (by Lemma 29)

V1 := (V2)
⊥V .

By de�nition, s = dimV2. We surely have

0 ≤ s ≤ min

(
dim

(
B
(
BTB

)−1
BT

(
0m

Rn
))

,dimV

)
≤ min (n, k) .

Additionally, V1 and V2 are rational vector spaces. Let

Λ := proj⊥V1
(Zm × 0n) .

By Lemma 29,
m⋃
i=1

{
proj⊥V1

em+n,i
}

is a set of rational vectors. So, there exists an N ∈ Z≥1 such that

m⋃
i=1

{
proj⊥V1

em+n,i
}
⊆ 1

N
(Zm × Zn)

and thus

Λ = proj⊥V1
(Zm × 0n) ⊆ 1

N
(Zm × Zn) ,

which shows that Λ is discrete and thus a lattice.

We now claim that proj⊥V (Zm × Rn) = Λ + V2 :

proj⊥V (Zm × Rn) = proj⊥V (Zm × 0n) + proj⊥V (0m × Rn)

= proj⊥V1
(Zm × 0n) + proj⊥V2

(Zm × 0n) + proj⊥V (0m × Rn) (V = V1

⊥
⊕ V2)

= proj⊥V1
(Zm × 0n) + proj⊥V2

(Zm × 0n) + V2

= proj⊥V1
(Zm × 0n) + V2

= Λ + V2.

In Corollary 96, we already considered that the intersection Zm ∩ V, where V is a (e.g. rational) subspace
of Rm, is again a lattice. We now consider

(Zm × Rn) + V, (2.16)

where V ≤ Zm ×Rn is a vector space such that projRm V is a rational vector space of dimension k. We show
that (2.16) is a mixed lattice of signature (m− k, n+ k):

Theorem 101. Let V ≤ Zm × Rn be a vector space such that V ′ := projRm V is a rational vector space of
dimension k. Then (Zm × Rn) + V is a mixed lattice of signature (m− k, n+ k).

Proof. Clearly,
(Zm × Rn) + V = (Zm + V ′)× Rn =

((
proj⊥V ′⊥ Z

m
)

+ V ′
)
× Rn.

By Theorem 100, proj⊥V ′⊥ Zm is a lattice of signature (m− k, 0). So, by Theorem 97,
((

proj⊥V ′⊥ Zm
)

+ V ′
)
×Rn

is a mixed lattice of signature (m− k, n+ k).
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2.8. Lattice-free bodies

2.8.1. Basics

De�nition 102. A convex set S ⊆ Rm (m ∈ Z≥0) is called lattice-free if (intS)I = ∅. If even SI = ∅ is
satis�ed, we call it strictly lattice-free. A lattice-free set S is called maximal lattice-free if there exists
no lattice-free set S′ ⊆ Rm having S′ ) S.

We next show the �obvious� statement that every lattice-free set can be extended to a maximal lattice-free
set.

De�nition 103. Let (P,≤) be a partially ordered set (poset). An element p ∈ P is called maximal with
respect to ≤ if for all p′ ∈ P , we have p′ ≥ p⇒ p′ = p.

Remark 104. If one does not one does not demand ≤ to be antrisymmetric in De�nition 103 (only re�exive
and transitive), one de�nes instead: an element p ∈ P is called maximal with respect to ≤ if for all p′ ∈ P ,
we have: p′ ≥ p⇒ p′ ≤ p.

De�nition 105. Let (P,≤) be a partially ordered set. A totally ordered (with respect to ≤) subset of P is
called a chain in P .

Lemma 106. (Zorn's lemma) Let (P,≤) (P 6= ∅) be a partially ordered set such that each chain in P has an
upper bound in P . Then P contains at least one maximal element (with respect to ≤).

The following lemma, which shows that every lattice-free body can be embedded into a maximal lattice-free
body, seems in principle to be well-known in the literature. But at least in none of the papers where one
can �nd a proof of the structure theorem (Theorem 108) for maximal lattice-free bodies or a sketch thereof
([Lov89], [BCCZ10] and [Ave13]; see below), we could �nd a proof for it. Thus, we came up with an own
short proof.

Lemma 107. Let P ( Rm (m ∈ Z≥0) be lattice-free. Then there exists a maximal lattice-free set Q having
P ⊆ Q.

Proof. Via �⊆�, one de�nes a partial order on the set of all lattice-free (convex) subsets of Rm containing P
(which we want to denote LP in this proof). Let C be a totally ordered subset of LP (chain in LP ). We show
that it has an upper bound in LP to be able to apply Zorn's lemma. For this, we consider

conv

(⋃
C∈C

C

)
=: Ĉ.

By de�nition, Ĉ is convex. Assume Ĉ is not lattice-free. This is equivalent to the existence of an x∗ ∈(
int Ĉ

)
∩ ĈI . So, there exists an ε ∈ R>0 such that Bε (x∗) ⊆ Ĉ.

This implies the existence of a�nely independent points p1, . . . , pm+1 ∈ Rm having

• ∀i ∈ [m+ 1] : pi ∈ Bε (x∗) ⊆ Ĉ and

• x∗ ∈ int
(
conv

{
p1, . . . , pm+1

})
.

Since the set C is totally ordered, there exists a C∗ ∈ C having p1, . . . , pm+1 ∈ C∗. But this means that C∗ is
not lattice-free and thus Ĉ ⊇ C∗ is also not.
So, Ĉ is indeed lattice-free and we have shown that for all totally ordered subsets of LP , there exists an

upper bound in LP . So, we conclude from Zorn's lemma that there exists a a maximal lattice-free set Q
containing P .

In [Ave13, Theorem 1 and Theorem 2], it is shown:

Theorem 108. Let K ⊆ Rm (m ∈ Z≥1) be a maximal lattice-free body.

• If dimK = m, let k := dim (recK) ∈ {0, . . . ,m− 1}. Then the following conditions hold:

� K is a polyhedron with at most 2m−k facets,

� recK = linealK forms a linear space and

� the relative interior of every facet of K contains at least one point from Zd.
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• If dimK < m, then K is a translate of an (m− 1)-dimensional linear space L having L 6= lin (L ∩ Zm).

Remark 109. The bound 2m−k on the number of facets of a full-dimensional lattice-free body K ⊆ Rm
(m ∈ Z≥1) having dim (linealK) = k (k ∈ {0, . . . ,m− 1}) is tight. For this, consider the maximal lattice-free
polyhedron

K :=

x ∈ Rm : ∀I ∈ P ([m− k]) :
∑
i∈I

xi −
∑

i∈[m−k]\I

xi ≤ |I|

 .

We remark that the �rst complete proof of Theorem 108 can be found in [BCCZ10]. [Lov89, section 3]
contains a sketch of a proof for the statements of Theorem 108 in the case that K is a full-dimensional.
We now show a theorem which is in a sense a converse of the characterization of full-dimensional, maximal

lattice-free bodies in Theorem 108. This converse is to be understood in the meaning that if we can show
that every facet of a lattice-free polyhedron contains an integral points in its relative interior (which was a
condition for a full-dimensional maximal lattice-free body in Theorem 108), we have a certi�cate that the
given polyhedron is indeed maximal lattice-free (and full-dimensional).

Theorem 110. Let P = P≤ (A, b) ⊆ Rm, where A ∈ Rt×m and b ∈ Rt (m, t ∈ Z≥1), be a lattice-free
polyhedron. Let for every i ∈ [t] exist a zi ∈ Zm such that Ai,∗z

i = bi ∧ A[t]\{i},∗z
i < b[t]\{i}. Then P is a

full-dimensional maximal lattice-free body.

Proof.

For P being full-dimensional: It su�ces to show that P< (A, b) 6= ∅. It is easy to check that for P to be
lattice-free, we need t ≥ 2. Let x∗ := 1

t

∑
j∈[t] z

j ∈ P. Then for every i ∈ [t], we have

Ai,∗x
∗ =

1

t
Ai,∗z

i +
1

t

∑
j∈[t]\{i}

Ai,∗z
j =

1

t
bi +

1

t

∑
j∈[t]\{i}

Ai,∗z
j <

1

t
bi +

t− 1

t
bi = bi.

For P being maximal lattice-free: Assume that there exists a lattice-free set P ′ ⊆ Rm such that P ′ ) P .
Let x∗ ∈ P ′\P . Then there exists an i∗ ∈ [t] such that Ai∗,∗x∗ > bi∗ . For disproving that P ′ is lattice-free, we
show that zi

∗ ∈ intP ′. Since zi
∗ ∈ relintP ∩ P= (Ai∗,∗, bi∗) and P is full-dimensional, there exists an ε > 0

such that
Bε

(
zi
∗
)
∩ P≤ (Ai∗,∗, bi∗) ⊆ P ⊆ P ′. (2.17)

Thus, there exist a�nely independent points s1, . . . , sm ∈ Rm such that for all i ∈ [m], we have∥∥∥si − zi∗∥∥∥ = ε,

si − zi
∗
⊥ (Ai∗,∗)

T
,

zi
∗
∈ int

(
conv

{
s1, . . . , sm

})
.

Surely, conv
{
s1, . . . , sm, x∗

}
⊆ P ′. Let

conv
{
s1, . . . , sm, x∗

}
=: P≤ (C, c) ∩ P≥ (Ai∗,∗, bi∗) ⊆ P ′,

where C ∈ Rm×m, c ∈ Rm and
∀i ∈ [m] : ‖Ci,∗‖ > 0. (2.18)

We clearly have Czi
∗
< c. We claim that

Bε′
(
zi
∗
)
⊆ P ′, (2.19)

where

ε′ := min

(
ε,
c1 − C1,∗z

i∗

‖C1,∗‖
, . . . ,

cm − Cm,∗zi
∗

‖Cm,∗‖

)
. (2.20)

For (2.19): Let

x ∈ Bε′
(
zi
∗
)
. (2.21)
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If Ai∗,∗x ≤ bi∗ , equation (2.19) is implied by (2.17) and ε′ ≤ ε. On the other hand, if Ai∗,∗x > bi∗ , we have,
by (2.21), that x = zi

∗
+ u, where Ai∗,∗u > 0 and ‖u‖ < ε′. Then for every i ∈ [m], we have

Ci,∗x = Ci,∗z
i∗ + Ci,∗u

≤ Ci,∗zi
∗

+ ‖Ci,∗‖ · ‖u‖ (Cauchy-Schwarz inequality)

< Ci,∗z
i∗ + ‖Ci,∗‖ · ε′ (by (2.18) and 0 < ‖u‖ < ε′)

≤ Ci,∗zi
∗

+ ‖Ci,∗‖ ·
ci − Ci,∗zi

∗

‖Ci,∗‖
(by (2.20))

= ci.

So, we �nally conclude from (2.19) that P ′ cannot be lattice-free.

2.8.2. Extension of lattice-free bodies

We next show that if we have some strictly lattice-free body P< (A, b) (A integral) be given such that no
inequality in this description is redundant with respect to this property, we can �nd some integral b∗ ≥ b such
that P≤ (A, b∗) is full-dimensional and maximal lattice-free.

Theorem 111. Let P = P≤ (A, b) ⊆ Rm, where A ∈ Zt×m, b ∈ Rt and m, t ∈ Z≥1, be a polyhedron with
rational face normals that satis�es P< (A, b)I = ∅ (i.e. P< (A, b) = intP is strictly lattice-free) such that for
every i ∈ [t], we have: P<

(
A[t]\{i}, b[t]\{i}

)
I
6= ∅ (i.e. no inequality in the description A ( · ) < b is redundant

for P< (A, b) to be strictly lattice-free). Then there exists a b∗ ∈ Zt, where b∗ ≥ b, such that P≤ (A, b∗) is
full-dimensional and maximal lattice-free.

Proof. For every i ∈ [t], there exists a zi ∈ Zm such that A[t]\{i}z
i < b[t]\{i} and Ai,∗z

i =: bi ≥ bi. We
consider the set

B :=
{
b′ ∈ Zt : b ≤ b′ ≤ b ∧ P≤ (A, b′) is lattice-free

}
,

which is ordered by the natural order ≤ on Zt. Since B 6= ∅ and B is �nite, there exists a maximal element
b∗ ∈ B. We claim that P≤ (A, b∗) is maximal lattice-free. For this, we show

∀i ∈ [t]∃zi ∈ Zm : A[t]\{i},∗z
i < b∗[t]\{i} ∧Ai,∗z

i = b∗i . (2.22)

We then can conclude from Theorem 110 that P≤ (A, b∗) is full-dimensional and maximal lattice-free.
Assume that there exists an i∗ ∈ [t] for which (2.22) does not hold, i.e.

@z ∈ Zm : A[t]\{i∗},∗z < b∗[t]\{i∗} ∧Ai∗,∗z = b∗i∗ . (2.23)

We show that under this assumption, also P ′ := P≤
(
A, b∗ + et,i

∗)
is lattice-free. This yields a contradiction

to the maximality of b∗ if we can additionally show b∗ + et,i
∗ ∈ B.

Let z ∈ Zm. For proving that P ′ is lattice-free, we show that z /∈ P<
(
A, b∗ + et,i

∗)
. Since P≤ (A, b∗) is

lattice-free, there exists an iz ∈ [t] such that Aiz,∗z ≥ b∗iz . If iz 6= i∗ or iz = i∗ ∧ Aiz,∗z ≥ b∗iz + 1, there
is nothing to show. Thus, we only need to consider the case iz = i∗ ∧ Aiz,∗z = b∗iz , i.e. we can assume
Ai∗,∗z = b∗i∗ . Because of (2.23), we conclude

¬
(
A[t]\{i∗},∗z < b∗[t]\{i∗}

)
.

Thus, there exists an i∗∗ ∈ [t] \ {i∗} such that Ai∗∗,∗z ≥ b∗i∗∗ , which shows that z /∈ P<
(
A, b∗ + et,i

∗)
.

To derive a �nal contradiction to the maximality of b∗, we need to show that b∗ + et,i
∗ ∈ B. Clearly,

b[t]\{i∗} ≤
(
b∗ + et,i

∗
)

[t]\{i∗}
≤ b[t]\{i∗}.

So, we just need to ensure that bi∗ ≤ b∗i∗ + 1 ≤ bi∗ . The inequality bi∗ ≤ b∗i∗ + 1 is a consequence of bi∗ ≤ b∗i∗ .
So for b∗i∗+1 ≤ bi∗ : since we just showed that P ′ = P≤

(
A, b∗ + et,i

∗)
is lattice-free, we have Ai∗,∗zi

∗ ≥ b∗i∗+1.

On the other hand, by construction, we have Ai∗,∗zi
∗

= bi∗ . Thus, b∗i∗ + 1 ≤ bi∗ .
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2.9. Diverse topics

In this last section of chapter 2, we introduce two topics that do not really �t anywhere else in this chapter:

• In section 2.9.1, Lemma 113, we prove some inequalities involving fractional parts. These play an
important role in part III, in particular chapters 8 and 9.

• In section 2.9.2, we introduce some polyhedra that are important examples in various subsequent chap-
ters of this text.

2.9.1. Inequalities involving fractional parts

De�nition 112. For x ∈ R, de�ne
fracx := x− bxc

(fractional part of x).

Lemma 113. Let x, y ∈ R. Then

bxc+ byc ≤ bx+ yc , (2.24)

frac (x+ y) ≤ fracx+ frac y, (2.25)

fracx+ frac y ≤ 1 + frac (x+ y) , (2.26)

frac (x+ y) (fracx+ frac y) ≤ (frac (x+ y))
2

+ frac y. (2.27)

Proof.

For (2.24):
bxc+ byc = bbxc+ bycc ≤ bx+ yc .

For (2.25): Using (2.24), we obtain

frac (x+ y) = x+ y − bx+ yc ≤ x+ y − bxc − byc = fracx+ frac y.

For (2.26):

fracx+ frac y =

{
frac (x+ y) if fracx+ frac y < 1,

1 + frac (x+ y) if fracx+ frac y ≥ 1

≤ 1 + frac (x+ y) .

For (2.27): We distinguish two cases:

1. frac (x+ y) = fracx+ frac y,

2. frac (x+ y) = fracx+ frac y − 1.

For case 1:

frac (x+ y) (fracx+ frac y) = (fracx+ frac y)
2 ≤ (frac (x+ y))

2
+ frac y.

For case 2:

frac (x+ y) (fracx+ frac y) = frac (x+ y) (frac (x+ y) + 1)

= (frac (x+ y))
2

+ frac (x+ y)

= (frac (x+ y))
2

+ frac y + fracx− 1︸ ︷︷ ︸
<0

< (frac (x+ y))
2

+ frac y.

54



2.9. Diverse topics

2.9.2. Important polyhedra

De�nition 114. De�ne

P 114 :=

{(
0
1
2

)}
+ lin

{(
1√
2

)}
( R2.

Obviously,
(
P 114

)
I

= ∅ and P 114 is a maximal lattice-free body (cf. Theorem 108).

De�nition 115. A variant of P 114, which contains an integral point in its relative interior, is

P 115 :=

{(
0
0

)}
+ lin

{(
1√
2

)}
( R2.

Obviously,
(
P 115

)
I

=
{

02
}
and P 115 is a maximal lattice-free body (cf. Theorem 108).

x2

−3

−2

−1

1

2

3

x1
−2 −1 1 2

(a) P 114 and Z2

x2

−3

−2

−1

1

2

3

x1
−2 −1 1 2

(b) P 115 and Z2

Figure 2.3.: Visualization of P 114 and P 115

In Figure 2.3, one can see a visualization of P 114 and P 115.

De�nition 116. Let 1, h1, . . . , hm−1 ∈ R (m ∈ Z≥2) be linearly independent over Q (1, h1, . . . , hm−1 clearly
exist). De�ne

P 116,m :=

{
1

2
em,1

}
+ lin

m⋃̇
i=2

{
hi−1 · em,1 + em,i

}
( Rm.

Obviously,
(
P 116,m

)
I

= ∅ and P 116,m is a maximal lattice-free body (cf. Theorem 108).

De�nition 117. Let h1, . . . , hm−1 be as in De�nition 116. De�ne

P 117,m := {0m}+ lin

m⋃̇
i=2

{
hi−1 · em,1 + em,i

}
( Rm.

Obviously,
(
P 117,m

)
I

= {0m} and P 117,m is a maximal lattice-free body (cf. Theorem 108).

De�nition 118. Let

P 118 := conv


 0

0
0

 ,

 1
0
0

 ,

 1
2
3
4
0

+ lin


 0

1√
2

 ( R1 × R2.
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2. Basics

P 118 has a partially rational recession code, which is at the same time its lineality space. We have

clI
(
P 118

)
= clI

(
P 118

)
= conv


 0

0
0

 ,

 1
0
0

+ lin


 0

1√
2

 .

A variant of De�nition 118 is:

De�nition 119. Let

P 119 := conv


 0

0
0

 ,

 1
0
0

 ,

 1
2
3
4
0

+ cone


 0

1√
2

 ( R1 × R2.

P 119 has a partially rational recsession code, but in contrast to P 118, its lineality space only consists of{(
01

02

)}
. We have

clI
(
P 119

)
= clI

(
P 119

)
= conv


 0

0
0

 ,

 1
0
0

+ cone


 0

1√
2

 .
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3. Cutting planes

In this chapter, we de�ne classes of cutting planes that have been studied in the literature and are important
for this thesis. What is the idea behind cutting planes? Consider the problem

sup {cx : x ∈ PI} , (3.1)

where P ⊆ Rm×Rn (m,n ∈ Z≥0) is arbitrary (though typically a rational polyhedron), c ∈ (Rm × Rn)
T and

(recall De�nition 73) PI := P ∩ (Zm × Rn) (i.e. the vector components indexed by {1, . . . ,m} are assumed
to be integral). By Theorem 71, (3.1) attains the same optimum as

sup {cx : x ∈ clI (P )} . (3.2)

We know from Theorem 75 that under some conditions, clI (P ) = clI (P ) is a polyhedron. This means that
�we just have to �nd this �nite number of inequalities describing clI (P ) and add them to the inequality
description of P �. Unluckily, �nding them directly is in general a very hard problem, since there is no known
fast algorithm for this purpose. So, we try a more indirect approach: we consider inequalities c ( · ) ≤ c0 that
are valid for PI , but not for P , and add them iteratively to P , until we obtain clI (P ) (or, if P was not convex
at the beginning, but clI (P ) is a polyhedron, a set containing clI (P ) = clI (P )).
Another perspective from which one can consider cutting planes is to consider the relaxation

sup {cx : x ∈ P}

of (3.1) and (3.2). Assume that we have

Mrelax := sup {cx : x ∈ P} > sup {cx : x ∈ PI} =: Mopt. (3.3)

Then we are intested in adding linear inequalities to P to decrease the integrality gap Mrelax−Mopt. This
is another application that one can use cutting planes for. Of course, if we �nd a cutting plane that closes the
integrality gap to 0, we have solved (3.1). So, again, one typically rather adds cutting planes iteratively to
decrease the gap further and further (hopefully reaching an integrality gap of 0 in a �nite number of steps).
At this place, we already want to remark a slightly subtile di�erence between these two applications of

cutting planes: While �nding an inequality description for clI (P ) via a �nite number of cutting planes
(of some arbitrary class) is only possible if clI (P ) is a polyhedron, �nding a cutting plane that closes the
integrality gap in (3.3) to 0 is always possible (just add the cutting plane c ( · ) ≤Mopt). This does, of course,
not imply that closing the integrality gap via a concrete given class of cutting planes is always possible.

3.1. De�nition of a cutting plane

After we already explained cutting planes informally in the introduction of this chapter, we now introduce
them formally:

De�nition 120. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary. A cutting plane for P is a linear inequality

c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) that is valid for PI .

We remark that in the literature, it is often additionally demanded that c ( · ) ≤ c0 is not valid for P . Why
don't we demand such a condition in this text?
In general, for classes of cutting planes that we consider in this text (for example split cuts; cf. De�nition

126), it is easy to �nd instances of cutting planes of this speci�c class that are already valid for P . This would
mean that only a subset of, for example, split cuts are really cutting planes. In this sense split cuts would
not be cutting planes; rather only a subset of split cuts would be.
A second reason not to demand such a a condition is that in chapter 4, we introduce the class of what we

named Lk,Q cuts (k ∈ {0, . . . ,m+ n}); cf. De�nition 161. For formal reasons, it makes sense also to include
L0,Q cuts as a degenerate case. L0,Q cuts can be shown to be exactly the inequalities that are valid for P (cf.
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3. Cutting planes

Remark 162). Demanding such a condition would imply that L0,Q cuts are not cutting planes, even though
Lk,Q cuts typically are for k ≥ 1.
This together gives reasonable grounds why we don't demand an inequality c ( · ) ≤ c0 not to be valid for

P to be a cutting plane (of course, in practice, one is mostly intested in cutting planes with this property).

Since we want to compare cutting planes with respect to their expressivity, we de�ne what it means for an
inequality to be dominated:

De�nition 121. Let c, c1, . . . , ck ∈ (Rm × Rn)
T
(m,n ∈ Z≥0) and let c0, c

1
0, . . . , c

k
0 ∈ R.

• Let P ⊆ Rm × Rn. The inequalities c1 ( · ) ≤ c10, . . . , c
k ( · ) ≤ ck0 dominate the inequality c ( · ) ≤ v0

relatively to P if

P ∩ P≤


 c1

...
ck

 ,

 c10
...
ck0


 ⊆ P ∩ P≤ (c, c0) .

• The inequalities c1 ( · ) ≤ c10, . . . , ck ( · ) ≤ ck0 dominate the inequality c ( · ) ≤ v0 absolutely if
c1 ( · ) ≤ c10, . . . , ck ( · ) ≤ ck0 dominate c ( · ) ≤ c0 relatively to Rm × Rn, i.e.

P≤


 c1

...
ck

 ,

 c10
...
ck0


 ⊆ P≤ (c, c0) .

Why do we distinguish between absolute dominance versus relative dominance, which is often not done in
the literature? We give three examples:

• In Theorem 385, we show that for ∅ 6= P := P≤
((

A G
)
, b
)
, every dual projected Chvátal-Gomory

cut with respect to A, G and b is a projected Chvátal-Gomory cut for P . In Remark 386, we state that
the reverse only holds up to absolute dominance (i.e. not every projected Chvátal-Gomory cut is a dual
projected Chvátal-Gomory cut).

• In Theorem 389, we show that for a convex P ⊆ Rm ×Rn, every strong projected Chvátal-Gomory cut
for P is an L1− 1

2 ,Q×Q
cut for P and the reverse holds up to relative dominance, but, as we show in

Remark 390, not absolute dominance.

• In De�nition 126 (in this chapter), we introduce split cuts and in De�nition 410, we introduce MIR
cuts. In Theorem 412, we show that every MIR cut is a split cut (thus, split cuts dominate MIR cuts
absolutely) and in Theorem 415, we show that every split cut for a polyhedron is dominated relatively
to it by a MIR cut. On the other hand, not every split cut is a MIR cut or dominated absolutely by a
MIR cut (cf. Example 416).

All of these examples have a subtile asymmetry in the dominance behaviour of two di�erent classes of cutting
planes, which only becomes apparent if one is very precise about what kind of dominance behaviour is present.

3.2. (Projected) Chvátal-Gomory cuts

The arguably most elemantary class of cutting planes that we consider in this text are the so-called (pro-
jected) Chvátal-Gomory cuts.

De�nition 122. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Let c ∈ (Zm)
T
and let c0 ∈ R (w.l.o.g. we

can assume c0 ∈ R\Z) be such that

P ⊆ P≤
((

c (0n)
T
)
, c0

)
.

Then the inequality (
c (0n)

T
)

( · ) ≤ bc0c

is called a projected Chvátal-Gomory cut for P . If n = 0, we simply use the term Chvátal-Gomory
cut for P .

58



3.2. (Projected) Chvátal-Gomory cuts

x2
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1

2

x1
−2 −1 1 2 3

(a) P :=
{
x ∈ R2 : (−4 3

4 3 )x ≤ ( 4
8 )
}
and P ∩ Z2

x2

−1

1

2

x1
−2 −1 1 2 3

(b) clI (P ) (for reference)

x2

−1

1

2

x1
−2 −1 1 2 3

(c) −x1 + x2 ≤ 3
2
is valid for x ∈ P ;{

x ∈ Z2 : −x1 + x2 ≤ 3
2

}

x2

−1

1

2

x1
−2 −1 1 2 3

(d) −x1 + x2 ≤
⌊
3
2

⌋
is a Chvátal-Gomory cut for x ∈ P ;{

x ∈ Z2 : −x1 + x2 ≤ 3
2

}
x2

−1

1

2

x1
−2 −1 1 2 3

(e) P ∩
{
x ∈ R2 : −x1 + x2 ≤

⌊
3
2

⌋}
Figure 3.1.: Illustration of Chvátal-Gomory cuts

We remark that the term �projected Chvátal-Gomory cut� was to our knowledge �rst introduced in
[BCD+08], where, as far as we know, for the �rst time the question was considered how Chvátal-Gomory
cuts (in the form of projected Chvátal-Gomory cuts) can also be used for mixed-integer linear programs
(MILPs).
In Figure 3.1, one can see an illustration of the construction behind Chvátal-Gomory cuts.
We next de�ne the (projected) Chvátal-Gomory closure:

De�nition 123. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then we de�ne

clpCG (P ) := P ∩
⋂

c∈(Zm)T ,c0∈R:

P⊆P≤(( c (0n)T ),c0)

P≤
((

c (0n)
T
)
, bc0c

)

as the projected Chvátal-Gomory closure of P . If n = 0, we also use the term Chvátal-Gomory
closure of P (clCG (P )).

Remark 124. Why do we, in contrast to the de�nition that one can often �nd in the literature, e.g. in
[Sch86, p. 339], additionally intersect over P for de�ning the (projected) Chvátal-Gomory closure of P? The
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3. Cutting planes

reason is that we would otherwise, for example, have clCG
(
P 114

)
= R2. By adding P to the intersection, we

can ensure that always clCG (P ) ⊆ P holds; in other words: we can ensure that the Chvátal-Gomory closure
of P is a relaxation of PI that is �at least as strong as P �.

At this place, we state the process of assigning a closure operator with respect a particular class of cutting
planes to some P ⊆ Rm × Rn explicitely, since this is a construction that arguably pervades the whole text:
to de�ne a closure of some P with respect a class of cutting planes, we intersect P with all half-spaces that
correspond to a cutting planes of the respective type.

3.3. Split cuts

De�nition 125. Let π ∈ Zm and γ ∈ Z (m ∈ Z≥0). Then the set

D (π, γ) :=
{
x ∈ Rm : πTx ≤ γ ∨ πTx ≥ γ + 1

}
is called a split disjunction and

S (π, γ) :=
{
x ∈ Rm : γ < πTx < γ + 1

}
is called a split set.

Two split disjunctions are visualized in Figure 3.2.
We next de�ne split cuts:

De�nition 126. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. A split cut for P is a valid inequality for
P ∩ (D (π, γ)× Rn) for some split disjunction D (π, γ).

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

(a) The split disjunction D ((−1
1 ) , 0)

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

(b) The split disjunction D (( 2
0 ) , 0)

Figure 3.2.: Two split disjunctions

In Figure 3.3, one can see an illustration of the construction behind split cuts.
We now de�ne the split closure in the natural way to assign an operator to a class of cutting planes that

we stated at the end of section 3.2:

De�nition 127. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then we de�ne

clsplit (P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 split cut for P

P≤ (c, c0)

= P ∩
⋂

π∈Zm,γ∈Z
conv (P ∩ (D (π, γ)× Rn))

as the (1-branch) split closure of P .
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3.3. Split cuts
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(a) P :=
{
x ∈ R2 : (−4 3

4 3 )x ≤ ( 4
8 )
}
and P ∩ Z2
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(b) clI (P ) (for reference)
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(c) D (( 1
0 ) , 0)
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x1
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(d) P ∩D (( 1
0 ) , 0)

x2

−1

1

2

x1
−2 −1 1 2 3

(e) x2 ≤ 4
3
is valid for x ∈ P ∩D (( 1

0 ) , 0)

x2

−1

1

2

x1
−2 −1 1 2 3

(f) P ∩
{
x ∈ R2 : x2 ≤ 4

3

}
Figure 3.3.: Illustration of split cuts

In [DGMR16a, Lemma 8], the following lemma is shown (by reading its proof, it is easy to check that
the rationality conditions hold, even though they are not written down in the statement of [DGMR16a,
Lemma 8]):

Lemma 128. Let P ⊆ Rd (d ∈ Z≥0) be a polyhedron and let Pi ⊆ Rd (i ∈ [t], where t ∈ Z≥0) be polyhedra
such that recPi = linealPi for all i ∈ [t]. Then

P ′ := conv

(
P\

t⋃
i=1

intPi

)

is a polyhedron. If P ′ 6= ∅, we have recP ′ = recP and if P, P1, . . . , Pt are rational polyhedra, so is P ′.

We remark that in [ALW10], Lemma 128 is shown for the special case t = 1. In this reference (for t = 1),
the authors give an explicit characterization of the P ′ from Lemma 128 in terms of an extended formulation.
Using Lemma 128, we immediately conclude:

Lemma 129. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be a polyhedron and let D (π, γ) ⊆ Rm× be a split disjunction.
Then conv (P ∩ (D (π, γ)× Rn)) is a polyhedron (a rational polyhedron if P is rational). In particular, we
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3. Cutting planes

have
clsplit (P ) =

⋂
π∈Zm,γ∈Z

conv (P ∩ (D (π, γ)× Rn)) . (3.4)

We state the following conjecture that is related to the statement of Lemma 128:

Conjecture 130. Let K ⊆ Rd (d ∈ Z≥0) be a closed convex set and let Pi ⊆ Rd (i ∈ [t], where t ∈ Z≥0) be
polyhedra such that recPi = linealPi for all i ∈ [t]. Then

K ′ := conv

(
K\

t⋃
i=1

intPi

)

is a closed convex set.

In [DDV11a, Lemma 2.3], Conjecture 130 is shown for the case t = 1 and P1 being a split set. Thus, we
get the following statement that is related to the statement of Lemma 129:

Lemma 131. Let K ⊆ Rm × Rn (m,n ∈ Z≥0) be a closed convex set and let D (π, γ) ⊆ Rm be a split
disjunction. Then conv (K ∩ (D (π, γ)× Rn)) is a closed convex set. In particular, we have

clsplit (K) =
⋂

π∈Zm,γ∈Z
conv (K ∩ (D (π, γ)× Rn)) . (3.5)

Indeed, often in the literature (for example cf. [ACL05], [Vie05], [Vie07] and [DGM15]), the split closure
is de�ned as in (3.4) or (3.5). So, Lemma 129 (or Lemma 131) is the connecting link between the �natural�
de�nition of the split closure of P (intersection of P with all split cuts for P , as we did in De�nition 127) and
the common de�nition in the literature.

3.4. Generalizations of split cuts

Before we continue with generalizing split cuts, we �rst want to consider a practical motivation why one is
interested in such generalizations. For this, consider Theorem 430, which we show in section 9.2.5:

Theorem 430. For ε ∈ R>0, let

P 430,ε := conv


 0

0
0

 ,

 2
0
0

 ,

 0
2
0

 ,

 2
3
2
3
ε


= P≤



−1 0 2

3ε

0 −1 2
3ε

1 1 2
3ε

0 0 −1

 ,


0
0
2
0




=: P≤
((

A Gε
)
, b
)

⊆ R2 × R1.

Then clsplit
(
P 430,ε

)
= P 430, ε2 . In particular, for every t ∈ Z≥0, we have

cl
(t)
split

(
P 430,ε

)
= P 430, ε

2t .

Here, cl(t) ( · ) means applying the split closure operator t times iteratively. On the other hand, we clearly
have

clI
(
P 430,ε

)
= conv


 0

0
0

 ,

 2
0
0

 ,

 0
2
0

 ⊆ R2 × R1.

In other words: by applying the split closure any �nite number of times on P 430,ε, we never obtain
clI
(
P 430,ε

)
(though in Theorem 310, we give a result that the iterated split closure cl

(t)
split (P ) at least converges

(in a sense that is de�ned in De�nition 308) to clI (P ) for a rational polyhedron P ⊆ Rm×Rn (m,n ∈ Z≥0)).
This is an important reason why one is interested in classes of cutting planes that are more expressive than
split cuts.
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3.4. Generalizations of split cuts

A rather general method for �nding cutting planes is the following: consider some arbitrary set P ⊆
Rm × Rn (m,n ∈ Z≥0) and some set S ⊆ Rm such that S ∩ Zm = ∅. Then every inequality c ( · ) ≤ c0
for P ∩ ((Rm\S)× Rn) is a cutting plane for P . On the other hand, for every cutting plane c ( · ) ≤ c0
for P , there trivially exists an S ⊆ Rm such that c ( · ) ≤ c0 is valid for P ∩ ((Rm\S)× Rn)) (simply set
S := projRm (P ∩ P> (c, c0))). Obviously, every split set S (π, γ) satis�es these conditions on S.
So, in the following two subsections, we consider classes of cutting planes that have been investigated in

the literature and are based on speci�c classes of such sets S. More precisely:

• In section 3.4.1, we consider the situation that S is the interior of a (w.l.o.g. full-dimensional) lattice-free
polyhedron (recall that, by Theorem 108, maximal lattice-free bodies are polyhedra).

• In section 3.4.2, we consider the case that Rm\S forms a (in general non-convex) disjunction.

3.4.1. Generalizing split cuts via lattice-free polyhedra

The �rst oberservation is that if L = P≤ (A, b) ⊆ Rm is a lattice-free polyhedron, its interior intL = P< (A, b)
is strictly lattice-free, thus satis�es the conditions imposed on S. We remark that if L is not a full-dimensional
lattice-free body, we have P< (A, b) = ∅; thus, only full-dimensional lattice-free bodies are of interest for this
construction. In other words: for a given P ⊆ Rm × Rn and a given lattice-free body L := P≤ (A, b) ⊆ Rm
(A ∈ Rl×m and b ∈ Rl, where l ∈ Z≥0), we consider valid inequalities for

P ∩
l⋃
i=1

(
P≥ (Al,∗, bl)× Rn

)
= P ∩ ((Rm\ intP )× Rn) .

De�nition 132. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let L := P≤ (A, b) ⊆ Rm (A ∈ Rl×m
and b ∈ Rl, where l ∈ Z≥0) be a (full-dimensional) lattice-free polyhedron. An inequality c ( · ) ≤ c0 (c ∈
(Rm × Rn)

T
and c0 ∈ R) is called a lattice-free cut (with respect to L) if it is valid for

P ∩
l⋃
i=1

(
P≥ (Al,∗, bl)× Rn

)
= P ∩ ((Rm\ intL)× Rn) .

There still exists a large class of full-dimensional lattice-free bodies; so, one typically wants to restrict the
class of lattice-free bodies that one considers even further. This is done in section 3.4.1.2. We remark already
here that later on (cf. Theorem 240 in section 5.2.5), Lk,Q cuts (which play a central role in this text; cf.
section 4.2 for details) turn out (under some assumptions) to be lattice-free cuts with respect to a special
class of lattice-free bodies, too.

3.4.1.1. Lattice-free polyhedra

Lemma 133. Let ∅ 6= P := P≤ (A, b) ⊆ Rd, where A ∈ Rl×d and b ∈ Rl (l, d ∈ Z≥0), be a polyhedron. De�ne

L (P ) := P − recP.

Then:

1. linealL (P ) = (recP ) + (− recP ) = recL (P ).

2. Let L := {i ∈ [l] : Ai,∗c = 0 ∀c ∈ recP}. Then L (P ) = P≤ (AL,∗, bL). In particular, L (P ) has at most
the same number of facets as P .

3. Let recP be generated by rational vectors and let P be a lattice-free polyhedron. Then L (P ) is also a
lattice-free polyhedron.

4. If P is an integral polyhedron, so is L (P ).

Problem 134. Can in item 3 of Lemma 133 the rationality conditions for the generators of recP be dropped?

Proof. (Lemma 133) 1 holds obviously.
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For 2: L (P ) ⊆ P≤ (AL,∗, bL) holds obviously. So for L (P ) ⊇ P≤ (AL,∗, bL): let recP = cone
{
c1, . . . , ck

}
,

where k ∈ Z≥0 and c1, . . . , ck ∈ Rd. We claim that

∀i ∈ [l] \L∃j (i) ∈ [k] : Ai,∗c
j(i) < 0. (3.6)

We �rst note that we have (because ∀j ∈ [k] : cj ∈ recP ):

∀i ∈ [l] , j ∈ [k] : Ai,∗c
j ≤ 0.

Assume that
∃i∗ ∈ [l] \L∀j ∈ [k] : Ai,∗c

j = 0.

This means that Ai∗,∗c = 0 for all c ∈ recP . But this implies i∗ ∈ L � a contradiction. So, (3.6) holds.

Now for the main statement: let x ∈ P≤ (AL,∗, bL). De�ne L′ := {i ∈ [l] \L : Ai,∗x > bi} and set

x′ := x+
∑
i∈L′

bi −Ai,∗x
Ai,∗cj(i)︸ ︷︷ ︸

>0

cj(i)

︸ ︷︷ ︸
∈recP

.

We claim that x′ ∈ P . For this, let i′ ∈ [l]. Then

Ai′,∗x
′ = Ai′,∗

(
x+

∑
i∈L′

bi −Ai,∗x
Ai,∗cj(i)

cj(i)

)

≤

Ai′,∗x if i′ ∈ [l] \L′ = L ∪̇ {i ∈ [l] \L : Ai,∗x ≤ bi} ,
Ai′,∗x+

bi′−Ai′,∗x
Ai′,∗c

j(i′) Ai′,∗c
j(i′) if i′ ∈ L′ (3.7)

≤ bi′ .

So, since x′ ∈ P , we immediately conclude x ∈ P − recP = L (P ).

We remark that (3.7) holds because for all i′ ∈ [l] and j ∈ [k], we have Ai′,∗cj ≤ 0. On the other hand, we
have seen that for i ∈ L′, we have bi−Ai,∗x

Ai,∗cj(i)
> 0.

For 3: W.l.o.g. we assume Ai,∗ 6=
(
0d
)T

for all i ∈ [l]. Let again recP = cone
{
c1, . . . , ck

}
(k ∈ Z≥0). This

time, we impose the additional requirement c1, . . . , ck ∈ Zd. Assume that there exists an ε ∈ R>0 and a
z0 ∈ Zd such that Bε (z0) ⊆ L (P ). Then, by 2, we have

∀x ∈ Bε (z0) : AL,∗x ≤ bL,

where L is as in the statement of 2. By (3.6), we know that

∀i ∈ [l] \L∃j (i) ∈ [k] : Ai,∗c
j(i) < 0.

Let
L′ := {i ∈ [l] \L : Ai,∗z0 + ε ‖Ai,∗‖ > bi} .

We thus have
∀i ∈ [l] \ (L ∪̇ L′) : Ai,∗z0 + ε ‖Ai,∗‖ ≤ bi. (3.8)

De�ne

z′0 := z0 +
∑
i∈L′

⌈
bi −Ai,∗z0 − ε ‖Ai,∗‖

Ai,∗cj(i)︸ ︷︷ ︸
>0

⌉
︸ ︷︷ ︸

≥1

cj(i) ∈ Zm.

We claim that Bε (z′0) ⊆ P . For this, let e ∈ Sd−1, ε′ ∈ [0, ε) and i′ ∈ [l]. Then:
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• If i′ ∈ L, we have

Ai′,∗ (z′0 + ε′ · e) = Ai′,∗

(
z0 + ε′ · e+

∑
i∈I′

⌈
bi −Ai,∗z0 − ε ‖Ai,∗‖

Ai,∗cj(i)

⌉
cj(i)

)
≤ Ai′,∗ (z0 + ε′ · e)
≤ bi′ . (Bε (z0) ⊆ L (P ))

• If i′ ∈ [l] \ (L ∪̇ L′), we have

Ai′,∗ (z′0 + ε′e) = Ai′,∗

(
z0 + ε′ · e+

∑
i∈L′

⌈
bi −Ai,∗z0 − ε ‖Ai,∗‖

Ai,∗cj(i)

⌉
cj(i)

)
≤ Ai′,∗ (z0 + ε′ · e)
≤ Ai′,∗z0 + ε · ‖Ai′,∗‖ · ‖e‖ (Cauchy-Schwarz inequality)

= Ai′,∗z0 + ε · ‖Ai′,∗‖
≤ bi′ . (by (3.8))

• If i′ ∈ L′, we have

Ai′,∗ (z′0 + ε′ · e)

=Ai′,∗

(
z0 + ε′ · e+

∑
i∈L′

⌈
bi −Ai,∗z0 − ε ‖Ai,∗‖

Ai,∗cj(i)

⌉
cj(i)

)

≤Ai′,∗
(
z0 + ε′ · e+

⌈
bi′ −Ai′,∗z0 − ε ‖Ai′,∗‖

Ai′,∗cj(i
′)

⌉
cj(i

′)
)

≤Ai′,∗z0 + ε · ‖Ai′,∗‖ · ‖e‖+

⌈
bi′ −Ai′,∗z0 − ε ‖Ai′,∗‖

Ai′,∗cj(i)

⌉
Ai′,∗c

j(i′) (Cauchy-Schwarz inequality)

=Ai′,∗z0 + ε · ‖Ai′,∗‖

+

(⌈
bi′ −Ai′,∗z0 − ε ‖Ai′,∗‖

Ai′,∗cj(i
′)

⌉
− bi′ −Ai′,∗z0 − ε · ‖Ai′,∗‖

Ai′,∗cj(i
′)

)
︸ ︷︷ ︸

≥0

Ai′,∗c
j(i′)︸ ︷︷ ︸

<0

+
bi′ −Ai′,∗z0 − ε ‖Ai′,∗‖

Ai′,∗cj(i
′)

Ai′,∗c
j(i′)

≤Ai′,∗z0 + ε · ‖Ai′,∗‖+
bi′ −Ai′,∗z0 − ε · ‖Ai′,∗‖

Ai′,∗cj(i
′)

Ai′,∗c
j(i′)

=bi′ .

For 4: By De�nition 76, P is an integral polyhedron if and only if

P = conv
{
q1, . . . , qk1

}
+ cone

{
c1, . . . , ck2

}
,

where q1, . . . , qk1 , c1, . . . , ck2 ∈ Zd (k1, k2 ∈ Z≥0). Clearly,

L (P ) = conv
{
q1, . . . , qk1

}
+ cone

{
c1, . . . , ck2 ,−c1, . . . ,−ck2

}
,

thus also L (P ) can be represented in this form.

3.4.1.2. k-disjunctive cuts and integral lattice-free cuts

The �rst class of class of lattice-free cuts that we consider in this section are the so-called k-disjunctive
cuts. Here, we demand L (as in De�nition 132) to be a rational polyhedron and �x the number of inequalities
de�ning L to be bounded by a constant k ∈ Z≥2. This class of cutting planes is considered in [Jör07].

De�nition 135. For k ∈ Z≥2, let L := P≤ (A, b) ⊆ Rm (m ∈ Z≥0) be a rational lattice-free polyhedron (i.e.
A and b are rational) such that A and b have at most k rows. Then a lattice-free cut with respect to L is
called a k-disjunctive cut.
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3. Cutting planes

The reason for the naming �k-disjunctive cut� is that in [Jör07], a k-disjunction is de�ned as a set of integral
inequalities c1 ( · ) ≤ c10, . . . , ck ( · ) ≤ ck0 such that for every z ∈ Zm, there exists an i ∈ [k] such that ciz ≤ ci0.
W.l.o.g. we can assume A and b in De�nition 135 to be integral. Then we can set

A :=

 −c
1

...
−ck

 , b :=

 −c
1
0
...
−ck0


to derive a lattice-free body L as in De�nition 135. On the other hand, we can derive a k-disjunction from A
and b in De�nition 135 by setting

ci := −Ai,∗, ci0 := −bi

for all i ∈ [k].
Clearly, every split cut is a 2-disjunctive cut (thus k-disjunctive cut, where k ∈ Z≥2). So, k-disjunctive cuts

really generalize split cuts.
We now de�ne the k-disjunctive closure in the natural way:

De�nition 136. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ Z≥2. Then we de�ne

clkD (P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 k-disjunctive cut for P

P≤ (c, c0)

= P ∩
⋂

L⊆Rm rational lattice-free body
with at most k facets

conv (P ∩ ((Rm\ intL)× Rn))

as the k-disjunctive closure of P .

One obtains another important class of lattice-free cuts if one demands L in De�nition 132 to be an integral
lattice-free body. This class is considered in [DPW12].

De�nition 137. Let P be arbitrary. An integral lattice-free cut is a lattice-free cut with respect to an
integral lattice-free polyhedron.

De�nition 138. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then we de�ne

clILF (P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 integral lattice-free cut for P

P≤ (c, c0)

= P ∩
⋂

L⊆Rm integral lattice-free body

conv (P ∩ ((Rm\ intL)× Rn))

as the integral lattice-free closure of P .

The integral lattice-free closure has the interesting property that for a rational polyhedron P ⊆ Rm × Rn,
it su�ces to apply it iteratively a �nite number of times on P to obtain the mixed-integer hull clI (P ) (cf.
Theorem 313).
We now consider whether (like in Lemma 129) we can substitute conv by conv in the de�nition of the

k-disjunctive closure or integral lattice-free closure if P is a polyhedron. For one concretely given polyhedron
P and an L satisfying the conditions of De�nition 135 or De�nition 137, it can indeed happen that we have

conv (P ∩ ((intL)× Rn)) ) conv (P ∩ ((intL)× Rn)) .

For this, we consider the following example:

Example 139. (See Figure 3.4) Let

P 139 := P≤
((

0 −1
)
,
(
− 1

2

))
,

L139 := P≤

 −1 0
0 1
0 −1

 ,

 0
1
0

 .
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(a) P 139
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(b) L139
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1
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x1
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(c) R2\ intL139
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2

x1
−2 −1 1 2

(d) P 139 ∩
(
R2\ intL139

)

x2

−1

1

2

x1
−2 −1 1 2

(e) conv
(
P 139 ∩

(
R2\ intL139

))

x2

−1

1

2

x1
−2 −1 1 2

(f) conv
(
P 139 ∩

(
R2\ intL139

))
=

P 139

Figure 3.4.: Illustration of Example 139

Clearly, L139 is integral, lattice-free and described by 3 rational inequalities. It is easy to check that

conv
(
P 139 ∩

(
R2\ intL139

))
= P 139\

((
0
1
2

)
+ R>0 ·

{(
1
0

)})
,

which is clearly not closed. On the other hand

conv
(
P 139 ∩

(
R2\ intL139

))
= P 139.

We can nevertheless substitute conv by conv in De�nition 136 and De�nition 138 if P is a polyhedron, as
the following theorem shows, which holds obviously.

Theorem 140. Let L ⊆ Rm be

• a rational lattice-free polyhedron that is descibed by at most k ∈ Z≥2 inequalities or

• an integral lattic-free polyhedron,

respectively. Let L (L) be as in Lemma 133. Then, by Lemma 133, also L (L) is

• a rational lattice-free polyhedron that is descibed by at most k ∈ Z≥2 inequalities or

• an integral lattic-free polyhedron,

respectively, having L (L) ⊇ L. So, for every P ⊆ Rm × Rn, we have

P ∩ ((intL (L))× Rn) ⊆ P ∩ ((intL)× Rn) .

Thus,

clkD = P ∩
⋂

L⊆Rm rational lattice-free body
with at most k facets and

recL=linealL

conv (P ∩ ((Rm\ intL)× Rn)) ,

clILF = P ∩
⋂

L⊆Rm integral lattice-free body
having recL=linealL

conv (P ∩ ((Rm\ intL)× Rn)) .
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3. Cutting planes

If P is a polyhedron, we thus have using Lemma 128:

clkD =
⋂

L⊆Rm rational lattice-free body
with at most k facets and

recL=linealL

conv (P ∩ ((Rm\ intL)× Rn))

=
⋂

L⊆Rm rational lattice-free body
with at most k facets

conv (P ∩ ((Rm\ intL)× Rn)) ,

clILF =
⋂

L⊆Rm integral lattice-free body
having recL=linealL

conv (P ∩ ((Rm\ intL)× Rn))

=
⋂

L⊆Rm integral lattice-free body

conv (P ∩ ((Rm\ intL)× Rn)) .

3.4.2. Generalizing split cuts via other types of disjunctions

We now consider sets S as in the introduction of section 3.4, which are this time not necessarily convex
anymore. A rather general framework for this purpose is what we introduce as �multi-branch disjunctive
cuts� in the following de�nition (we know of no term for this concept in the literature):

De�nition 141. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let Di :=
{
x ∈ Rm : Aix ≤ bi

}
(i ∈ [t],

Ai ∈ Rli×m and bi ∈ Rli , where li, t ∈ Z≥0) be polyhedra such that

D :=

t⋃
i=1

Di ⊇ Zm.

An inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) is called a multi-branch disjunctive cut (with

respect to D) if it is valid for P ∩ (D × Rn).

The central place in this dissertation where we use the concept of �multi-branch disjunctive cuts� in its
generality is Theorem 277.

3.4.2.1. t-branch split cuts

De�nition 142. Let π1, . . . , πt ∈ Zm (m ∈ Z≥0) and γ1, . . . , γt ∈ Z, where t ∈ Z≥0. Then we denote the set

D
(
π1, . . . , πt, γ1, . . . , γt

)
:=

t⋂
i=1

D
(
πi, γi

)
⊆ Rm

as t-branch split disjunction and the set

S
(
π1, . . . , πk, γ1, . . . , γk

)
:=

k⋃
i=1

S
(
πi, γi

)
⊆ Rm

as t-branch split set. 2-branch split disjunctions are also called cross disjunctions.

An example of a 2-branch split disjunction and a 3-branch split disjunction is shown in Figure 3.5.

De�nition 143. A multi-branch disjunctive cut with respect to some t-branch split disjunction

D
(
π1, . . . , πt, γ1, . . . , γt

)
is called a t-branch split cut. 2-branch split cuts are also called cross cuts.
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(a) The 2-branch split disjunction D (( 1
0 ) , (

−1
1 ) , 0, 0)

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

(b) The 3-branch split disjunction
D (( 1

0 ) , (
0
1 ) , (

−1
1 ) , 0, 0, 0)

Figure 3.5.: A 2-branch split disjunction and a 3-branch split disjunction

De�nition 144. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let t ∈ Z≥1. Then we de�ne

cltBS (P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 t-branch split cut for P

P≤ (c, c0)

= P ∩
⋂

π1,...,πt∈Zm,
γ1,...,γt∈Z

conv
(
P ∩

(
D
(
π1, . . . , πt, γ1, . . . , γt

)
× Rn

))

as the t-branch split closure of P .

Of course, every 1-branch split cut is a split cut and vice versa and thus for every P ⊆ Rm×Rn (m,n ∈ Z≥0),
we have:

clsplit (P ) = cl1BS (P ) .

The following lemma is an immediate consequence of Lemma 128 and generalizes Lemma 129:

Lemma 145. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be a polyhedron and let D
(
π1, . . . , πt, γ1, . . . , γt

)
⊆ Rm×Rn be

a t-branch split disjunction (t ∈ Z≥1). Then conv
(
P ∩D

(
π1, . . . , πt, γ1, . . . , γt

))
is a polyhedron (a rational

polyhedron if P is a rational polyhedron). In particular, we have

cltBS (P ) =
⋂

π1,...,πt∈Zm,
γ1,...,γt∈Z

conv
(
P ∩

(
D
(
π1, . . . , πt, γ1, . . . , γt

)
× Rn

))
.

3.4.2.2. Crooked cross cuts

For the following de�nition cf. [DGM15]:

De�nition 146. For π1, π2 ∈ Zm (m ∈ Z≥0) and γ1, γ2 ∈ Z, de�ne

Dc
1

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≤ γ1 ∧

(
π2 − π1

)T
x ≤ γ2 − γ1

}
,

Dc
2

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≤ γ1 ∧

(
π2 − π1

)T
x ≥ γ2 − γ1 + 1

}
,

Dc
3

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≥ γ1 + 1 ∧ π2Tx ≤ γ2

}
,

Dc
4

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≥ γ1 + 1 ∧ π2Tx ≥ γ2 + 1

}
,

Dc
(
π1, π2, γ1, γ2

)
:=

4⋃
i=1

Dc
i

(
π1, π2, γ1, γ2

)
.
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Then we denote the set Dc
(
π1, π2, γ1, γ2

)
as a crooked cross disjunction and the sets Dc

i

(
π1, π2, γ1, γ2

)
(i ∈ [4]) as atoms of the crooked cross disjunction.

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

2

1

4

3

Figure 3.6.: The crooked cross disjunction Dc (( 1
0 ) , ( 0

1 ) , 0, 0)

In Figure 3.6, one can see an example of a crooked cross disjunction.

De�nition 147. A multi-branch disjunctive cut with respect to a crooked cross disjunction Dc
(
π1, π2, γ1, γ2

)
is called a crooked cross cut.

De�nition 148. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then we de�ne

clCC (P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 crooked cross cut for P

P≤ (c, c0)

= P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))

as the crooked cross closure of P .

One may now ask whether we can also simplify the de�nition of the crooked cross closure to

clCC (P ) =
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
. (3.9)

Indeed, this is how for example in [DGM15], the crooked cross closure is de�ned. One obstacle that one
encounters if one wants to show (3.9) is that for a rational polyhedron P and a crooked cross disjunction
Dc
(
π1, π2, γ1, γ2

)
, it can happen that conv

(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
is not closed, i.e. we have

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
( conv

(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
(also recall Example 139 and Theorem 140). For this, we consider the following example, which is inspired
by [DGM15, section 2.4 and Figure 3]:

Example 149. (See Figure 3.7) Let

P 149 :=

{(
− 3

2
1
2

)}
+ cone

{(
1
0

)
,

(
1
1

)}
⊆ R2.

Then it is easy to check that

conv

(
P 149 ∩Dc

((
1
0

)
,

(
0
1

)
, 0, 0

))
= P 149\

((
− 1

2
1
2

)
+ R>0 ·

{(
1
0

)})
,

which is clearly not closed.
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(a) P 149
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(b) Dc (( 1
0 ) , (
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1 ) , 0, 0)
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(c) P 149 ∩Dc (( 1
0 ) , (
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(d) conv
(
P 149 ∩Dc (( 1

0 ) , (
0
1 ) , 0, 0)

)
Figure 3.7.: Illustration of Example 149

In Theorem 464 in section 11.1.4, we show that

clCC (P ) =
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))

nevertheless holds if P ⊆ Rm × Rn is either a rational polyhedron or convex and compact.

3.4.2.3. Generalizations of crooked cross cuts

In [DDG12, section 5.2] (also cf. [DDG11, section 3]), the so-called parametric cross cuts are introduced.
The idea behind them is to provide a uni�ed framework for dealing with 2-branch split cuts (cross cuts) and
crooked cross cuts.

De�nition 150. Let π1, π2 ∈ Zm (m ∈ Z≥0), γ1, γ2 ∈ Z and t ∈ Z. Let

Dt
1

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm × Rn : π1Tx ≤ γ1 ∧

(
π2 − tπ1

)T
x ≤ γ2 − tγ1

}
,

Dt
2

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm × Rn : π1Tx ≤ γ1 ∧

(
π2 − tπ1

)T
x ≥ γ2 − tγ1 + 1

}
,

Dt
3

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm × Rn : π1Tx ≥ γ1 + 1 ∧ π2Tx ≤ γ2

}
,

Dt
4

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm × Rn : π1Tx ≥ γ1 + 1 ∧ π2Tx ≥ γ2 + 1

}
,

Dt
(
π1, π2, γ1, γ2

)
:=

4⋃
i=1

Dt
i

(
π1, π2, γ1, γ2

)
.

Then we denote the set Dt
(
π1, π2, γ1, γ2

)
as parametric cross disjunction (with respect to t) and the
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sets Dt
i

(
π1, π2, γ1, γ2

)
(i ∈ [4]) as atoms of the parametric cross disjunction (with respect to t).

De�nition 151. A multi-branch disjunctive cut for P with respect to some parametric cross disjunction
Dt
(
π1, π2, γ1, γ2

)
is called a parametric cross cut.

In Figure 3.8, one can see an example of a parametric cross disjunction (with respect to 2). Obviously,
parametric cross disjunctions with respect to 0 are 2-branch split disjunctions (cross disjunctions) and para-
metric cross disjunctions with respect to 1 are crooked cross disjunctions. Similarly, cuts with respect to a
parametric cross disjunction Dt

(
π1, π2, γ1, γ2

)
, where t = 0, are 2-branch split cuts (cross cuts) and cuts with

respect to a parametric cross disjunction Dt
(
π1, π2, γ1, γ2

)
, where t = 1, are crooked cross cuts.

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

2

1

4

3

Figure 3.8.: The parametric cross disjunction D2 (( 1
0 ) , ( 0

1 ) , 0, 0)

3.5. Cutting planes based on combination of inequalities

We now have a brief look at two classes of cutting planes that use how the polyhedron P is de�ned via
equations/inequalities:

• In section 3.5.1, we consider cutting planes based on a basic relaxation.

• In section 3.5.2, we consider cutting planes based on a k row relaxation.

3.5.1. Cutting planes based on a basic relaxation

For the following de�nition cf. [DGM15, section 2.5.2] (also cf. [ACL05] and [DGR11]). The only di�erence
to this literature reference is that we do not demand A, G and b to be rational.

De�nition 152. Let

P :=

{(
x
y

)
∈ Rm × Rn : Ax+Gy ≤ b

}
,

where A ∈ Rr×m, G ∈ Rr×n and b ∈ Rr (m,n, r ∈ Z≥0, where r ≥ m+ n). De�ne

P[J] :=

{(
x
y

)
∈ Rm × Rn : AJ,∗x+GJ,∗y ≤ bJ

}
,

where J ⊆ [r] is chosen such that
(
A G

)
J,∗ has full row rank (i.e. the rows are linearly independent).

Then we call P[J] a basic relaxation. A linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T

and c0 ∈ R) for(
P[J]

)
I
is called an inequality of a basic relaxation.

We remark that P[J] is an abuse of notation, since P[J] not only depends on P , but on the concrete
inequalities that are used to de�ne P . But we stick to this notation that is common in the literature instead
of introducing a new one, since in this text, the reader should always be able to infer from context what
concrete system of linear equations was used to describe P .
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De�nition 153. Let P = P≤
((

A G
)
, b
)
be as in De�nition 152. We set

clBR (A,G, b) := P ∩
⋂

J⊆[r]:(A G )J,∗
has full row rank

clI
(
P[J]

)
.

3.5.2. Cutting planes based on a k row relaxation

For the following de�nition cf. [DGM15, section 2.5.2]. The only di�erence to this literature reference is that
we do not demand A, G and b to be rational.

De�nition 154. Let

P =

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rr×m, G ∈ Rr×n and b ∈ Rr (m,n, r ∈ Z≥0). Let k ∈ Z≥0 (even though only the case k ∈ {0, . . . , r}
is of mathematical interest) and let M ∈ Rk×r. Then we set

P (M) :=

{(
x
y

)
∈ Rm × Rn≥0 : MAx+MGy = Mb

}
.

We denote (P (M))I as a k row relaxation of P . A linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T

and
c0 ∈ R) for (P (M))I is called a cut from a k row relaxation or shorter a k row cut.

Similar to the remark in section 3.5.1, P (M) is, of course, again an abuse of notation.

De�nition 155. Let P , A, G, b, r and k be as in De�nition 154. Then we set

clkR (A,G, b) := P ∩
⋂

M∈Rk×r
clI (P (M))

as the k row closure with respect to A, G and b.
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Cutting planes, Lk cuts and L
k−1

2
cuts
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4. Lk cuts and Lk−1
2
cuts

In this chapter, we introduce the concepts of Lk cuts and Lk− 1
2
cuts, which are central to this text. The

high-level idea for these concepts is the following: let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. We want to
�nd cutting planes for P , i.e. inequalities for P ∩ (Zm × Rn). Let k ∈ {0, . . . ,m} (where k = 0 is a degenerate
case) and consider a vector space V ≤ Rm × Rn of codimension k. We study two ways of using V to relax
the problem of �nding valid inequalities for P ∩ (Zm × Rn) (in particular cf. Remark 181):

• Add V to the lattice Zm × Rn, i.e. �nd inequalities for P ∩ ((Zm × Rn) + V ); this is the central idea
behind Lk cuts.

• Add V to P , i.e. �nd inequalities for (P + V ) ∩ (Zm × Rn); this is the central idea behind Lk− 1
2
cuts.

By demanding further conditions on the generators of V (in particular with respect to rationality), this leads
to a multitude of di�erent classes of Lk cuts and Lk− 1

2
cuts, such as Lk,Q cuts, Lk,R cuts (cf. De�nition

161), Lk− 1
2 ,Q×Q

cuts, Lk− 1
2 ,Q×R

cuts and Lk− 1
2 ,R×R

cuts (cf. De�nition 179). Each of these families yields
a hierarchy (indexed by k) of cutting planes or cutting plane operators/closures (intersection of P with all
cutting planes of the respective type), such as clL

k− 1
2
,Q×Q

( · ), which become increasingly tight as k increases.

Chapter 4 is structured as follows:

• In section 4.1, we prove some auxiliary results about adding a vector space to a lattice or a polyhedron.
These results are later on central for proving results about Lk cuts and Lk− 1

2
cuts. Since the usefulness

of these results is not obvious to the readers until they are more familiar with the framework of Lk and
Lk− 1

2
cuts, it is perhaps not a bad idea to skim over this section when one reads this chapter for the

�rst time and come back to it later on.

• For section 4.2: in section 4.2.1, we introduce the framework of Lk cuts. In section 4.2.2, we consider
how Lk cuts can be represented in an alternative way:

� In section 4.2.2.1, Theorem 168, we show that for both Lk,Q and Lk,R cuts we can restrict ourselves
to vector spaces of the form V = V ′ × Rn.

� In section 4.2.2.2, we consider how Lk,Q cuts can be represented �in a dual way�: instead of
considering inequalities for

P ∩ ((Zm × Rn) + (V ′ × Rn))

(where V ′ ≤ Rm is a rational subspace of codimension k), we consider inequalities for

P ∩
({
x ∈ Rm :

(
wi
)T
x ∈ Z ∀i ∈ [k]

}
× Rn

)
,

where w1, . . . , wk ∈ Zm. This perspective is taken in [DGMR17], a paper where a framework called
k-dimensional lattice cuts, that is very related to Lk,Q cuts, is developed. This relationship is
the topic of De�nition 175 and Theorem 176.

• In section 4.3, we introduce the framework of Lk− 1
2
cuts.

Remark 156. Before we continue outlining the structure of chapter 4, we want to characterize the central
questions that we want to analyze for Lk cuts/closures and Lk− 1

2
cuts/closures:

1. Analyze under what conditions one type of Lk cuts/closure or Lk− 1
2
cuts/closure is more expressive than

another one or not.

2. Show that the out of themselves unrelated looking hierarchies of operators for Lk,Q cuts, Lk− 1
2 ,Q×Q

cuts
and Lk− 1

2 ,Q×R
cuts can be combined into a �uni�ed hierarchy� for rational polyehdra, i.e. for a rational

polyhedron P ⊆ Rm (m ∈ Z≥0), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P )

(4.1)
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and for a rational polyhedron P ⊆ Rm × Rn (m ∈ Z≥0 and n ∈ Z≥1), the chain of inclusions

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

(4.2)

holds. We remark that in part VI (chapter 14 and chapter 15), we reconsider this hierarchy and analyze
whether these inclusions can also be strict.

3. In section 4.2.2.1, Theorem 168, we show that for both Lk,Q cuts and Lk,R cuts, we can restrict ourselves
to vector spaces of the form V = V ′ × Rn. It is easy to see that such a restriction is not possible for
Lk− 1

2
cuts. Nevertheless, one can ask the question whether Lk− 1

2
cuts, speci�cally Lk− 1

2 ,Q
cuts, with

respect to such a vector space �ll an interesting role or have interesting properties.

Now on with the outline of this chapter:

• In section 4.4, we prove some technical results about the Lk and Lk− 1
2
closures of some irrational

hyperplanes, which are used in the subsequent section (section 4.5).

• By now, we have (even for a �xed k) de�ned lots of di�erent classes of Lk and Lk− 1
2
cuts. One can

legitimately ask whether these really have di�erences in expressive power. This is what we formulated
as guiding question 1 in Remark 156 and is the topic of section 4.5. At the beginning of this section,
one can �nd a much more comprehensive summary of our results on this topic. For this introduction,
we only want to mention Theorem 193, which we formulate in section 4.5.4 (though it is proved further
back in section 4.8.4). This theorem states that, given a rational polyhedron P ⊆ Rm×Rn (m,n ∈ Z≥0)
and k ∈ {0, . . . ,m}, we have

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) .

This implies the
clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

equalities in (4.2) of guiding question 2 in Remark 156.

• Up to here, we only considered Lk and Lk− 1
2
cuts independently from each other. The naming already

suggests that these two hierarchies can be uni�ed into one hierarchy. Considering this question is the
central topic of section 4.6:

� In Theorem 197, we show that for arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), every Lk− 1
2 ,Q×R

cut
for P (k ∈ {0, . . . ,m+ n}) is also an Lk,Q cut for P with respect to the same subspace, which in
particular implies

clLk,Q (P ) ⊆ clL
k− 1

2
,Q×R

(P ) .

Note however (cf. Remark 198) that the similar looking inclusion

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P )

does not hold in general.

� In Theorem 199, we show that for arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), every Lk,R cut for P
(k ∈ {0, . . . ,m+ n− 1}) is an L(k+1)− 1

2 ,R×R
cut for P . In particular, we have

clL
(k+1)− 1

2
,R×R

(P ) ⊆ clLk,R (P )

and if P is a rational polyhedron, we also have

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) .

• It is easy to see that we have for every type of Lm+n closure and Lm+n− 1
2
closure and any arbitrary

P ⊆ Rm × Rn (m,n ∈ Z≥0):

clLm+n,( · ) (P ) = clL
m+n− 1

2
,( · )

(P ) = P ∩ clI (P )
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(for the simple reason that for the only vector space V of codimension m + n that we can add is
{0m × 0n}). In Theorem 202 in section 4.7, we brie�y remark that we already always have

clLm,Q (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P )

and for rational polyhedra P , the identity

clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P )

holds. In other words: under these conditions, the Lk− 1
2 ,Q×Q

and Lk− 1
2 ,R×R

hierarchies �already end at
k = m+ 1 or k = m, respectively�.

• The central topic of section 4.8 is guiding question 3 in Remark 156, i.e. the role of Lk− 1
2
cuts with

respect to vector spaces of the form V = V ′ × Rn:
� In De�nition 203, we de�ne �essential Lk− 1

2 ,Q
cuts�. These are Lk− 1

2 ,Q×Q
cuts with respect to a

vector space V = V ′ × Rn, where V ′ ≤ Rm is � as the naming already suggests � generated by
rational vectors and has codimension k.

� In Theorem 208, we see the importance of this concept: we show that the only Lk− 1
2 ,Q×R

cuts
(these include Lk− 1

2 ,Q×Q
cuts) that are not already Lk−1,Q cuts, are essential Lk− 1

2 ,Q
cuts. In this

sense, one can very casually say that �essential Lk− 1
2 ,Q

cuts are `the interesting' Lk− 1
2 ,Q×R

cuts,
since these are the only Lk− 1

2 ,Q×R
cuts that might have potentially more expressive power than

Lk−1,Q cuts�.

� In Theorem 211, we use this structure result (Theorem 208) to show that the Lk− 1
2 ,Q×Q

closure and
the Lk− 1

2 ,Q×R
closure of a rational polyhedron P ⊆ Rm×Rn (m,n ∈ Z≥0 and k ∈ {0, . . . ,m+ n})

are equal. We already mentioned in the introduction that this implies the

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

equalities in (4.2) of guiding question 2 in Remark 156.

� Since we have just circumscribed how Lk− 1
2 ,Q×Q

/Lk− 1
2 ,Q×R

cuts that are not already Lk−1,Q cuts
have to look like (they are essential Lk− 1

2 ,Q
cuts), we also skim the question of how an Lk,Q cut

c ( · ) ≤ c0 with respect to some V has to look like if it is not already an Lk− 1
2 ,Q×Q

or Lk− 1
2 ,Q×R

cut with respect to the same V . In Theorem 213, we show that for this to be the case, we need
cT 6⊥ V .

� Recall that in section 4.2.2.2 (in particular Theorem 174), we give a dual characterization of Lk,Q
cuts. In Theorem 215, we consider how a similar dual characterization for essential Lk− 1

2 ,Q
cuts

looks like.

• In section 4.9, we consider the following problem: let some arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0) be
given. Trivially, we always have

cl(m+n)− 1
2 ,( · )

(P ) = P ∩ clI (P )

and
clm,( · ) (P ) = P ∩ clI (P ) .

But now assume that we can impose some �vector space condition� on P , such as

� P or projRm P has a (w.l.o.g. non-trivial) lineality space (section 4.9.1) or

� P or projRm P is contained in an (again w.l.o.g. non-trivial) a�ne subspace (section 4.9.3).

Can we then show
cl(m+n−l)− 1

2 ,( · )
(P ) = P ∩ clI (P )

or
clm−l,( · ) (P ) = P ∩ clI (P ) ,

respectively, for some l ∈ Z≥1?

• Finally for section 4.10. In De�nition 224, we consider the following construction: for a given polyhedron
P ⊆ Rm × Rn (m,n ∈ Z≥0), we construct a polyhedron P ′ ⊇ P that is de�ned by k inequalities and
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consider inequalities for P ′I , which we call k-half-space cuts. In Theorem 225, we show that every
k-half-space cut is an Lmin(k,m+n)− 1

2
cut. On the other hand, in Theorem 226, we prove that for

P := P=
((

A G
)
, b
)
∩
(
Rm × Rn≥0

)
as in De�nition 154 (this is the form that is required for k row cuts), every k-half-space cut for P is a
k row cut with respect to A, G and b.

4.1. Preparations for Lk− 1
2 ,Q×Q

and Lk,Q cuts

As already mentioned in the introduction, we start this chapter with some technical results:

• In section 4.1.1, we introduce technical results (Lemma 157 and Corollary 158) about linear inequalities
for P∩((Zm × Rn) + V ), where P ⊆ Rm×Rn (m,n ∈ Z≥0) is arbitrary. These results become important
for Lk,Q cuts, which are introduced in section 4.2.

• In section 4.1.2, we consider results about linear inequalities for (P + V ) ∩ (Zm × Rn), where P ⊆
Rm × Rn (m,n ∈ Z≥0) is arbitrary and V is either generated by vectors from Qm × Qn or Qm × Rn.
This becomes important for Lk− 1

2 ,Q×Q
cuts and Lk− 1

2 ,Q×R
cuts, which are both introduced in section

4.3.

4.1.1. Preparations for Lk,Q cuts

The following lemma is about inequalities for P ∩ ((Zm × Rn) + V ), where P ⊆ Rm × Rn is arbitrary and
V ≤ Rm × Rn is a rational subspace:

Lemma 157. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let V ≤ Rm × Rn be a rational subspace of
codimension k ∈ {0, . . . ,m+ n}. Let {v1, . . . , vm+n−k} ⊆ Qm ×Qn be a basis of V . De�ne

C :=
(
w1 · · · wk−s wk−s+1 · · · wk v1 · · · vm+n−k )

such that

proj⊥V ⊥ (Zm × Rn) = C∗,(1,...,k)

(
Zk−s
Rs

)
(in other words: {w1, . . . , wk} ⊆ Qm forms a lattice basis of the mixed lattice proj⊥V ⊥ (Zm × Rn) of signature
(k − s, s)). Then c ( · ) ≤ c0 is a valid inequality for P ∩ ((Zm × Rn) + V ) if and only if cC ( · ) ≤ c0 is a valid
inequality for

(
C−1P

)
∩
(
Zk−s × Rm+n−(k−s)).

Proof.

For �only if�: Let c ( · ) ≤ c0 be valid for P ∩ ((Zm × Rn) + V ) and let

x′ ∈
(
C−1P

)
∩
(
Zk−s × Rm+n−(k−s)

)
.

Then x′ =
(
µ′

λ′

)
, where

• µ′ ∈ Zk−s × Rs and

• λ′ ∈ Rm+n−k.

Thus,

Cx′ =
(
w1 · · · wk v1 · · · vm+n−k )( µ′

λ′

)
=
(
w1 · · · wk

)
µ′ +

(
v1 · · · vm+n−k )λ′

∈
(
proj⊥V ⊥ (Zm × Rn)

)
+ V

= (Zm × Rn) + V.

On the other hand, Cx′ ∈ CC−1P = P . So, cC ( · ) ≤ c0 is a valid inequality for(
C−1P

)
∩
(
Zk−s × Rm+n−(k−s)

)
.
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For �if�: Let cC ( · ) ≤ c0 be a valid inequality for
(
C−1P

)
∩
(
Zk−s × Rm+n−(k−s)) and let

x ∈ P ∩ ((Zm × Rn) + V ) .

Since x ∈ (Zm × Rn) + V , we have x = w + v, where

• w ∈ proj⊥V ⊥ (Zm × Rn) and

• v ∈ V .

Then w = C∗,(1,...,k)µ, where µ ∈ Zk−s × Rs. Thus,

C−1x =
(
C∗,(1,...,k) v1 · · · vm+n−k )−1 (

C∗,(1,...,k)µ+ v
)
∈
(

µ
Rm−k

)
⊆ Zk−s × Rm+n−(k−s).

On the other hand, C−1x ∈ C−1P = P . So,

cx = cC · C−1x︸ ︷︷ ︸
∈(C−1P )∩(Zk−s×Rm+n−(k−s))

≤ c0.

Now let V ≤ Rm be a rational subspace. Note that

(Zm × Rn) + (V × {0n}) = (Zm × Rn) + (V × Rn) .

Thus, the following corollary is an immediate consequence of Lemma 157:

Corollary 158. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let V ≤ Rm be a rational subspace of
codimension k ∈ {0, . . . ,m}. Let

{
v1, . . . , vm−k

}
⊆ Qm be a basis of V and let w1, . . . , wk ∈ Qm be a lattice

basis of proj⊥V ⊥ Zm. De�ne

C :=

(
w1 · · · wk v1 · · · vm−k 0m×n

0n×m In

)
.

Then c ( · ) ≤ c0 is a valid inequality for

P ∩ ((Zm × Rn) + (V × 0n)) = P ∩ ((Zm × Rn) + (V × Rn))

if and only if cC ( · ) ≤ c0 is a valid inequality for(
C−1P

)
∩
(
Zk × Rm+n−k) .

4.1.2. Preparations for Lk− 1
2
,Q×Q cuts

In this section, we prove two technical results (Lemma 159 and Lemma 160) about linear inequalities for
(P + V )I , where P ⊆ Rm × Rn is arbitrary and V is a vector space that is either generated by vectors from
Qm ×Qn or Qm × Rn.

Lemma 159. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let V ≤ Rm × Rn be a subspace with generators
from Qm × Rn and let c ( · ) ≤ c0 be a valid inequality for (P + V )I . Then:

1. If (P + V )I 6= ∅, we have cT ⊥ V .

2. Let (P + V )I = ∅. Then c ( · ) ≤ c0 is dominated absolutely by (0m × 0n)
T

( · ) ≤ −1, which is valid for
(P + V )I , and we have 0m × 0n ⊥ V .

Proof. 2 holds obviously; so, we only prove 1. Let
{
v1, . . . , vl

}
⊆ Zm × Rn (l ∈ {0, . . . ,m+ n}) be a basis of

V and let z ∈ (P + V )I . Assume that there exists some i ∈ [l] such that cvi 6= 0. W.l.o.g. we can assume
cvi > 0. De�ne

M :=

⌈
c0 − cz
cvi

⌉
+ 1 ∈ Z.
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Then z +M · vi ∈ (P + V )I and we have

c
(
z +M · vi

)
= cz + cvi

(⌈
c0 − cz
cvi

⌉
+ 1

)
≥ cz + (c0 − cz) + cvi

= c0 + cvi

> c0.  

Lemma 160. Let V ≤ Rm×Rn (m,n ∈ Z≥0) be a rational subspace of codimension k ∈ {0, . . . ,m+ n} with
basis

{
v1, . . . , vm+n−k} ⊆ Qm ×Qn. Let

proj⊥V ⊥ (Zm × Rn) =:
(
w1 · · · wk

)( Zk−s
Rs

)
be a mixed lattice of signature (k − s, s). De�ne

C :=
(
w1 · · · wk v1 · · · vm+n−k ) .

Then:

1. Let c ( · ) ≤ c0 be a valid inequality for (P + V ) ∩ (Zm × Rn). Then cC ( · ) ≤ c0 is a valid inequality
for

((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k). If cT ∈ V ⊥ (this condition can be assumed

w.l.o.g. because of Lemma 159), we have (cC)
T ∈ Rk × 0m+n−k.

2. Let c′ ( · ) ≤ c0 be a valid inequality for
((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k). Then

c′C−1 ( · ) ≤ c0 is a valid inequality for (P + V ) ∩ (Zm × Rn). If c′ ∈
(
Rk × 0m+n−k)T (this condition

can be assumed w.l.o.g. because of Lemma 159), we have
(
c′C−1

)T ∈ V ⊥.
Proof. We �rst show

(P + V ) ∩ ((Zm × Rn) + V ) = ∅ ⇔ (P + V ) ∩ (Zm × Rn) = ∅. (4.3)

The �⇒� implication clearly holds because 0m× 0n ∈ V . For �⇐�, let x ∈ (P + V )∩ ((Zm × Rn) + V ). Then
x = p+ v = z + v′, where p ∈ P , v, v′ ∈ V and z ∈ Zm × Rn. So z = p+ v − v′ ∈ (P + V ) ∩ (Zm × Rn) .
Next, we show

(P + V ) ∩ (Zm × Rn) = ∅ ⇔
(
C−1P +

(
0k × Rm+n−k)) ∩ (Zk−s × Rm+n−(k−s)

)
= ∅. (4.4)

For (4.4): ((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k) = ∅

⇔ C
(((

C−1P
)

+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k)) = ∅

⇔ (P + V ) ∩
(
C
(
Zk−s × Rs × Rm+n−k)) = ∅

⇔ (P + V ) ∩ ((Zm × Rn) + V ) = ∅
⇔ (P + V ) ∩ (Zm × Rn) = ∅. (by (4.3))

For 1: If c /∈
(
V ⊥
)T

, we have (P + V ) ∩ (Zm × Rn) = ∅ (by Lemma 159). By (4.4), this is equivalent to((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k) = ∅. So, we can assume c ∈

(
V ⊥
)T

. Let

x ∈
((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k) .

Then x = C−1p+r, where p ∈ P and r ∈ 0k×Rm+n−k. Since
{
w1, . . . , wk

}
forms a basis of proj⊥V ⊥ (Zm × Rn)

of signature (k − s, s), for every i ∈ {1, . . . , k − s}, there exists a v∆,i ∈ V such that wi + v∆,i ∈ Zm × Rn,
and for every i ∈ {k − s+ 1, . . . , k}, there exists a v∆,i ∈ V such that wi + v∆,i ∈ 0m × Rn. Let

v∆ :=
(
v∆,1 · · · v∆,k

)
x(1,...,k) −

(
v1 · · · vm+n−k )x(k+1,...,m).
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and Lk,Q cuts

We next show
Cx+ v∆ ∈ (P + V ) ∩ (Zm × Rn) .

For Cx+ v∆ ∈ P + V :

Cx+ v∆ = C
(
C−1p+ r

)
+ v∆ = p+ Cr︸︷︷︸

∈V

+ v∆︸︷︷︸
∈V

∈ P + V.

For Cx+ v∆ ∈ Zm × Rn:

Cx+ v∆ =
(
w1 + v∆,1 · · · wk−s + v∆,k−s )x(1,...,k−s)

+
(
wk−s+1 + v∆,k−s+1 · · · wk + v∆,k

)
x(k−s+1,...,k)

+
(
v1 · · · vm+n−k )x(k+1,...,m) −

(
v1 · · · vm+n−k )x(k+1,...,m)

⊆ (Zm × Rn) + (0m × Rn)

=Zm × Rn.

Thus, using v∆ ∈ V ⊥ cT and Cx+ v∆ ∈ (P + V ) ∩ (Zm × Rn), we conclude

cCx = c
(
Cx+ v∆

)
≤ c0.

For the second statement: Using cT ⊥ V , we obtain

(cC)
T

=
(
c
(
w1 · · · wk v1 · · · vm+n−k ))T ∈ Rk × 0m+n−k.

For 2: Let
x′ ∈ (P + V ) ∩ (Zm × Rn) .

Then x′ = p′ + v′, where p′ ∈ P and v′ ∈ V . We want to show that c′C−1x′ ≤ c0. For this, we show

C−1x′ ∈
((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k) .

For C−1x′ ∈
(
C−1P

)
+
(
0k × Rm+n−k):

C−1x′ = C−1p′ +
(
w1 · · · wk v1 · · · vm+n−k )−1

v′

∈ C−1P +
(
0k × Rm+n−k) . (since v′ ⊥ w1, . . . , wk)

For C−1x′ ∈ Zk−s × Rs × Rm+n−k:

C−1x′ ⊆ C−1 (Zm × Rn)

⊆ C−1
(
proj⊥V ⊥ (Zm × Rn) + V

)
= C−1

(
C∗,(1,...,k)

(
Zk−s
Rs

)
+ V︸︷︷︸

=C∗,(k+1,...,m+n)Rm+n−k

)
= Zk−s × Rm+n−(k−s).

Thus, since c′ ( · ) ≤ c0 is a valid inequality for
((
C−1P

)
+
(
0k × Rm+n−k))∩ (Zk−s × Rs × Rm+n−k), and

C−1x′ ∈
((
C−1P

)
+
(
0k × Rm+n−k)) ∩ (Zk−s × Rs × Rm+n−k), we conclude c′C−1x′ ≤ c0.

For the second statement: Let v ∈ V . Then

(
c′C−1

)
v = c′

(
w1 · · · wk v1 · · · vm+n−k )−1

v ∈
(

Rk
0m+n−k

)T (
0k

Rm+n−k

)
= 0.
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4.2. Lk cuts and closures

4.2.1. De�nitions

De�nition 161. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m+ n} and let V ≤ Rm × Rn
be a linear subspace of codimension k that is generated by vectors from

• Qm × Rn or

• Rm × Rn,

respectively. An

• Lk,Q cut for P or

• Lk,R cut for P ,

respectively, is a valid linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) for

P ∩ ((Zm × Rn) + V ) .

If it is of no importance what kind of Lk cuts is used or this is clear from the context, we also use the general
term Lk cuts.

In Figure 4.1, one can see an illustration of the construction behind Lk,Q cuts.

Remark 162. The �degenerated� L0 cuts for P are simply the valid inequalities for P .

Remark 163. We remark that Lk,Q cuts have independently been discovered by Dash, Günlük and Morán
(cf. [DGMR17]), even though their de�nition is �dual� to ours. We defer this discussion to De�nition 175
and Theorem 176.

Remark 164. If we have a vector space V ≤ Rm×Rn of codimension k that is generated by vectors from, for
example, Qm×Rn, we can always assume that it is generated by m+n− k linearly independent vectors from
Qm×Rn. From now on, we take the freedom to always implicitely make use of this assumption, if necessary.

We next de�ne the Lk,Q closure and Lk,R closure in the canonical way:

De�nition 165. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m+ n}. Then we de�ne
the Lk,Q closure of P (clLk,Q (P )) and the Lk,R closure of P (clLk,R (P )), respectively, via

clL
k,QR

(P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 Lk,QR

cut for P

P≤ (c, c0) .

The following lemma is an immediate consequence of De�nition 165 and Theorem 72:

Lemma 166. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m+ n}. Then

clL
k,QR

(P ) = P ∩
⋂

V≤Rm×Rn:codimV=k,
V generated by vectors

from
Qm×Rn
Rm×Rn

conv (P ∩ ((Zm × Rn) + V )) .
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4.2. Lk cuts and closures

x2

−1

1

2

x1
−2 −1 1 2 3

(a) P :=
{
x ∈ R2 : (−4 3

4 3 )x ≤ ( 4
8 )
}
and P ∩ Z2

x2

−1

1

2

x1
−2 −1 1 2 3

(b) clI (P ) (for reference)

x2

−1

1

2

x1
−2 −1 1 2 3

(c) Z2 and Z2 + lin {( 0
1 )}

x2

−1

1

2

x1
−2 −1 1 2 3

(d) P ∩
(
Z2 + lin {( 0

1 )}
)

x2

−1

1

2

x1
−2 −1 1 2 3

(e) x2 ≤ 4
3
is valid for x ∈ P ∩

(
Z2 + lin {( 0

1 )}
)

x2

−1

1

2

x1
−2 −1 1 2 3

(f) P ∩
{
x ∈ R2 : x2 ≤ 4

3

}
Figure 4.1.: Illustration of Lk,Q cuts

4.2.2. Representation of Lk cuts

4.2.2.1. Restriction to V = V ′ × Rm

We now show that in the de�nition of Lk cuts, we can assume that V is a vector space of the form V = V ′×Rm,
where V ′ is generated by vectors from Qm (Lk,Q cuts) or Rm (Lk,R cuts). For this, we start with a small
lemma:

Lemma 167. Let V ≤ Rm × Rn (m,n ∈ Z≥0) be a subspace. Then

(Zm × Rn) + V = (Zm × Rn) + ((projRm V )× Rn) .

Proof. Clearly, V ⊆ (projRm V )× Rn; thus,

(Zm × Rn) + V ⊆ (Zm × Rn) + ((projRm V )× Rn) .

For
(Zm × Rn) + ((projRm V )× Rn) ⊆ (Zm × Rn) + V,

consider some z + v ∈ (Zm × Rn) + ((projRm V )× Rn), where z ∈ Zm × Rn and v ∈ (projRm V ) × Rn. The
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de�nition of v implies that there exists a w ∈ Rn such that ( v(1,...,m)
w ) ∈ V. So,

z + v = z +

(
0n

v(m+1,...,m+n) − w

)
︸ ︷︷ ︸

∈Zm×Rn

+

(
v(1,...,m)

w

)
︸ ︷︷ ︸

∈V

∈ (Zm × Rn) + V.

The following theorem is an immediate consequence of Lemma 167:

Theorem 168. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let V ≤ Rm×Rn be a vector space of codimension
k ∈ {0, . . . ,m+ n} that is generated by vectors from Qm × Rn or Rm × Rn and let V ′ := projRm V. Then

P ∩ ((Zm × Rn) + (V ′ × Rn)) = P ∩ ((Zm × Rn) + V ) . (4.5)

In particular, every Lk,Q or Lk,R cut for P with respect to V is an Lk,Q or Lk,R cut for P with respect to
V ′ × Rn and for Lk cuts, it thus su�ces to consider vector spaces of the form V := V ′ × Rn, where V ′ is
generated by vectors from Qm or Rm.

Remark 169. In Theorem 168, let V be generated by linearly independent vectors(
v′1

v′′1

)
, . . . ,

(
v′m+n−k

v′′m+n−k

)
∈ Qm × Rm.

Then V ′ := projRm V is generated by
{
v′1, . . . , v′m+n−k} and there exists a linear independent subset of{

v′1, . . . , v′m+n−k} that forms a basis of V ′ which consists of vectors from Qm.

Remark 170. In Theorem 168, we have:

codimV ′ = m− dimV ′ = m+ n− dim (V ′ × Rn) ≤ m+ n− dimV = m+ n− (m+ n− k) = k.

An immediate consequence of Lemma 166 and Theorem 168 is:

Corollary 171. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m}. Then

clL
k,QR

(P ) = P ∩
⋂

V ′≤Rm:codimV ′=k,
V ′ generated by vectors

from Qm
Rm

conv(P ∩ ((Zm × Rn) + (V ′ × Rn)︸ ︷︷ ︸
=(Zm×Rn)+(V ′×0n)

)).

4.2.2.2. A dual representation of Lk,Q cuts

We next want to show some statements about how one can represent Lk,Q cuts in an alternative, �dual� way.
We immediately conclude from Lemma 98:

Theorem 172. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let V ≤ Rm be a rational subspace of codimension
k ∈ {0, . . . ,m} and let w1, . . . , wk be a lattice basis of Zm ∩ V ⊥ (as in Lemma 98). Then

P ∩ ((Zm × Rn) + (V × Rn)) = P ∩ ((Zm × Rn) + (V × 0n)) =

{(
x
y

)
∈ P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
.

Theorem 173. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let w′1, . . . , w′k
′ ∈ Zm (k′ ∈ Z≥0) and let

W := lin
{
w′1, . . . , w′k

′
}
,

k := dimW.

Then every inequality for {(
x
y

)
∈ P : ∀i ∈ [k′] :

(
w′i
)T
x ∈ Z

}
(4.6)

is an Lk,Q cut for P with respect to W⊥.
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Proof. Let w1, . . . , wk ∈ Zm be a lattice basis of Zm ∩ lin
{
w′1, . . . , w′k

′
}
. By Lemma 99, we have{(

x
y

)
∈ P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
⊇
{(

x
y

)
∈ P : ∀i ∈ [k′] :

(
w′i
)T
x ∈ Z

}
.

So, by Theorem 172, every inequality for (4.6) is an Lk,Q cut for P with respect to W⊥.

From Theorem 172 and Theorem 173, we immediately conclude:

Theorem 174. Let P ⊆ Rm ×Rn (m,n ∈ Z≥0) be arbitrary. An inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and

c0 ∈ R) is an Lk,Q cut for P (k ∈ {0, . . . ,m}) if and only if there exist vectors w1, . . . , wk ∈ Zm (which can
w.l.o.g. be assumed to be linearly independent; but this assumption is not necessary) such that c ( · ) ≤ c0 is a
valid inequality for {(

x
y

)
∈ P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
.

We now come back to Remark 163. In [DGMR17], the authors consider the following class of cutting planes:

De�nition 175. ([DGMR17, section 1]) Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary (in [DGMR17], P is
assumed to be a polyhedron) and let k ∈ Z≥0. A k-dimensional lattice cut for P is a valid linear inequality

c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) for{(

x
y

)
∈ P :

(
π1
)T
x ∈ Z, . . . ,

(
πk
)T
x ∈ Z

}
,

where π1, . . . , πk ∈ Zm.

So, we obtain:

Theorem 176. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary.

• Let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T

and c0 ∈ R) be a k-dimensional lattice cut for P with respect to
π1, . . . , πk, let W := lin

{
π1, . . . , πk

}
and let d := dimW . Then c ( · ) ≤ c0 is an Ld,Q cut (and, since

d ≤ k and d ≤ m, an Lmin(k,m),Q cut) for P with respect to W⊥ × Rn.

• Let c′ ( · ) ≤ c′0 (c′ ∈ (Rm × Rn)
T
, c′0 ∈ R) be an Lk,Q cut for P with respect to V ′ × Rn (by Theorem

168, it su�ces to consider this case) and let w1, . . . , wk be a lattice basis of Zm ∩V ′⊥. Then c′ ( · ) ≤ c′0
is a k-dimensional lattice cut for P with respect to w1, . . . , wk.

Proof. The �rst statement is an immediate consequence of Theorem 173. The second statement holds by
Theorem 172.

We �nish this section with two consequences of the dual representation of Lk,Q cuts:

Theorem 177. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron,

• a polyhedron with a rational recession cone,

• a polyhedron with a partially rational recession cone or

• convex and compact,

respectively. Let w1, . . . , wk ∈ Zm (k ∈ Z≥0). Then

conv

(
P ∩

{(
x1

x2

)
∈ Rm × Rn :

(
wi
)T
x1 ∈ Z ∀i ∈ [k]

})
=: (4.7)

is

• a rational polyhedron,

• a polyhedron with a rational recession cone,

• a polyhedron with a partially rational recession cone or
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• convex and compact,

respectively.

Proof. Let

Λ :=
{
x ∈ Rm :

(
wi
)T
x ∈ Z ∀i ∈ [k]

}
=
(
C D

)( Zk′

Rm−k′
)
,

where C,D are rational and 0 ≤ k′ ≤ k (k′ = k holds if and only if the wi are linearly independent). Then

Λ× Rn =

(
C D 0m×n

0n×k 0n×(m−k) In

)
︸ ︷︷ ︸

=:M

 Zk′

Rm−k′

Rn

 .

We claim that
conv (P ∩ (Λ× Rn)) = M · conv

((
M−1P

)
∩
(
Zk
′
× Rm−k

′
× Rn

))
. (4.8)

For this, we show

P ∩ (Λ× Rn) = M
((
M−1P

)
∩
(
Zk
′
× Rm−k

′
× Rn

))
. (4.9)

For (4.9):

P ∩ (Λ× Rn) = P ∩

( C D 0m×n

0n×k
′

0n×(m−k′) In

) Zk′

Rm−k′

Rn


= M

((
M−1P

)
∩
(
Zk
′
× Rm−k

′
× Rn

))
.

So, considering (4.8), we get from Theorem 75 that (4.7) has the stated properties.

From Theorem 174 and Theorem 177, we immediately obtain:

Theorem 178. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron,

• a polyhedron with a rational recession cone,

• a polyhedron with a partially rational recession cone or

• convex and compact,

respectively. Let V ≤ Rm be a rational subspace of codimension k. Then

conv (P ∩ ((Zm + V )× Rn))

is

• a rational polyhedron,

• a polyhedron with a rational recession cone,

• a polyhedron with a partially rational recession cone or

• convex and compact,

respectively.

4.3. Lk− 1
2
cuts and closures

De�nition 179. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m+ n} and let V ≤ Rm × Rn
be a linear subspace of codimension k that is generated by vectors from

• Qm ×Qn,
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• Qm × Rn or

• Rm × Rn,

respectively. An

• Lk− 1
2 ,Q×Q

cut for P ,

• Lk− 1
2 ,Q×R

cut for P or

• Lk− 1
2 ,R×R

cut for P ,

respectively, is a valid linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) for

(P + V )I = (P + V ) ∩ (Zm × Rn) .

If n = 0 (pure integer case), we also use the terms

• Lk− 1
2 ,Q

cuts for P or

• Lk− 1
2 ,R

cut for P ,

respectively, if V is generated by vectors from

• Qm or

• Rm,

respectively.
If it is of no importance what kind of Lk− 1

2
cuts is used or this is clear from the context, we also use the

general term Lk− 1
2
cuts.

In Figure 4.2, one can see an illustration of the construction behind Lk− 1
2
cuts.

Remark 180. The �degenerated� L0− 1
2
cuts for P are

• any arbitrary inequality if P = ∅,

• an inequality (0m × 0n)
T

( · ) ≤ c0, where c0 ≥ 0, if P 6= ∅.

Remark 181. Consider the similarity of the de�nitions of Lk cuts and Lk− 1
2
cuts. Let P ⊆ Rm × Rn be

arbitrary and let V ≤ Rm×Rn be a vector space of codimension k with suitable restrictions on its generators,
for example from Qm × Rn. Then

• an Lk cut is a valid inequality for
P ∩ ((Zm × Rn) + V ) ,

• an Lk− 1
2
cut is a valid inequality for

(P + V ) ∩ (Zm × Rn) .

Now, we de�ne the Lk− 1
2
closures:

De�nition 182. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m+ n}. We de�ne

clL
k− 1

2
,Q×Q

(P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 Lk− 1

2
,Q×Q cut for P

P≤ (c, c0)

as the Lk− 1
2 ,Q×Q

closure of P . In a similar way, we de�ne

• the Lk− 1
2 ,Q×R

closure of P (clL
k− 1

2
,Q×R

(P )) and

• the Lk− 1
2 ,R×R

closure of P (clL
k− 1

2
,R×R

(P )).

For P ⊆ Rm (no continuous variables), we additionally de�ne
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x2

−1

1

2

x1
−2 −1 1 2 3

(a) P :=
{
x ∈ R2 : (−4 3

4 3 )x ≤ ( 4
8 )
}
and P ∩ Z2

x2

−1

1

2

x1
−2 −1 1 2 3

(b) clI (P ) (for reference)

x2

−1

1

2

x1
−2 −1 1 2 3

(c) P + lin {( 1
1 )}

x2

−1

1

2

x1
−2 −1 1 2 3

(d) (P + lin {( 1
1 )}) ∩ Z

2

x2

−1

1

2

x1
−2 −1 1 2 3

(e) −x1 + x2 ≤ 1 is valid for x ∈ (P + lin {( 1
1 )}) ∩ Z

2

x2

−1

1

2

x1
−2 −1 1 2 3

(f) P ∩
{
x ∈ R2 : −x1 + x2 ≤ 1

}
Figure 4.2.: Illustration of Lk− 1

2 ,Q
cuts

• the Lk− 1
2 ,Q

closure of P (clL
k− 1

2
,Q

(P )) and

• the Lk− 1
2 ,R

closure of P (clL
k− 1

2
,R

(P )).

The following lemma is an immediate consequence of De�nition 182 and Theorem 72:

Lemma 183. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m+ n}. Then

clL
k− 1

2
,Q×Q

(P ) = P ∩
⋂

V≤Rm×Rn:
V rational subspace
of codimension k

clI (P + V ) .

Similar characterizations also hold for clL
k− 1

2
,Q×R

(P ) and clL
k− 1

2
,R×R

(P ) and, if P ⊆ Rm, for clL
k− 1

2
,Q

(P )

and clL
k− 1

2
,R

(P ).

Remark 184. In Lemma 183, if P satis�es the prerequisites of Theorem 75, we can replace clI (P + V ) by
clI (P + V ) for clL

k− 1
2
,Q×Q

(P ) and clL
k− 1

2
,Q×R

(P ).
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4.4. Lk cuts and Lk− 1
2
cuts for some irrational hyperplanes

As already outlined at the beginning of this chapter, in this section we give proofs how some Lk,Q closures,
Lk,R closures, Lk− 1

2 ,Q
closures and Lk− 1

2 ,R
closures of some irrational hyperplaness look like. These results

are, for example, applied in section 4.5.1 and section 4.5.2 to show di�erences in the expressiveness of such
cutting plane operators. For an outline of this section:

• The purpose of section 4.4.1 is to show an auxiliary lemma (Lemma 185) that is a central tool for the
proofs of Theorem 187 and Theorem 189.

• In section 4.4.2, we analyze the irrational hyperplanes P 114, P 115 ⊆ R2. Speci�cally:

� In Theorem 187, we compute clL1,R

(
P 114

)
, clL1,Q

(
P 114

)
and clL1,R

(
P 115

)
.

� In Theorem 188, we compute clL
1− 1

2
,Q

(
P 114

)
, clL

1− 1
2
,R

(
P 114

)
, clL

1− 1
2
,Q

(
P 115

)
and clL

1− 1
2
,R

(
P 115

)
.

• In section 4.4.3, we analyze the irrational hyperplanes P 116,m, P 117,m ⊆ Rm (m ∈ Z≥2). Speci�cally:

� In Theorem 189, we compute clL1,R

(
P 116,m

)
and clLm−1,Q

(
P 116,m

)
.

� In Theorem 190, we compute clL
(m−1)− 1

2
,Q

(
P 116,m

)
, clL

1− 1
2
,R

(
P 116,m

)
, clL

(m−1)− 1
2
,Q

(
P 117,m

)
and

clL
1− 1

2
,R

(
P 117,m

)
.

4.4.1. An auxiliary lemma for Lk cuts

We start with a small auxiliary lemma, which allows one to compute the Lm−1 closures of a hyperplane in Rm
(m ∈ Z≥1; even though only the case m ∈ Z≥2 is of importance for this text) with respect to one speci�cally
chosen vector space that satis�es some speci�c weak property. Lemma 185 is a central tool for the proofs of
Theorem 187 and Theorem 189.

Lemma 185. Let P := P= (c, c0) ⊆ Rm (m ∈ Z≥1) be a hyperplane, where c ∈ (Rm)
T \
{

(0m)
T
}
and c0 ∈ R.

Let v ∈ Rm be such that cv 6= 0. Then

conv (P ∩ (Zm + lin {v})) = P.

Remark 186. In Lemma 185, the condition c 6= (0m)
T
is only left in for more clarity. It is redundant, since

it is already implied by cv 6= 0.

Proof. (Lemma 185) Since P is convex, clearly

conv (P ∩ (Zm + lin {v})) ⊆ P

holds and we only have to prove
conv (P ∩ (Zm + lin {v})) ⊇ P.

Let p ∈ P . Consider the points

p := bpc ∈ Zm,
p := dpe ∈ Zm,

which one obtains by rounding each coordinate of p down or up. Clearly, p ∈ conv
([
p, p

]
I

)
, where

[
p, p

]
is

an axially parallel and not necessarily full-dimensional cuboid, where for each vertex w, we have wi ∈
{
p
i
, pi

}
for i ∈ [m]. Thus, there exist k ∈ Z≥1, λ ∈ ∆k−1 and p1, . . . , pk ∈

[
p, p

]
I
such that

p =

k∑
i=1

λip
i. (4.10)

For i ∈ [k], consider

p′i := pi +
c0 − cpi

cv
v.
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Clearly, p′i ∈ Zm + lin {v} for all i ∈ [k]. On the other hand, we have

cp′i = c

(
pi +

c0 − cpi

cv
v

)
= c0.

So, p′i ∈ P for all i ∈ [k]. Finally, using cp = c0, λ ∈ Rk,
∑k
i=1 λi = 1 and (4.10), we obtain:

k∑
i=1

λip
′i =

k∑
i=1

λi

(
pi +

c0 − cpi

cv
v

)
= p+

1

cv

(
c0 − c

k∑
i=1

λip
i

)
= p+

1

cv
(c0 − cp) = p.

Thus, p ∈ conv
{
p′1, . . . , p′k

}
⊆ conv (Zm + lin {v}).

4.4.2. P 114 and P 115

Theorem 187. For P 114 and P 115, respectively, we have

clL1,R

(
P 114

)
= ∅ = clI

(
P 114

)
= clI

(
P 114

)
, (4.11)

clL1,Q

(
P 114

)
= P 114, (4.12)

clL1,R

(
P 115

)
= P 115 )

{
02
}

= clI
(
P 115

)
= clI

(
P 115

)
. (4.13)

Proof.

For (4.11): Consider P 114 ∩
(
Z2 + lin

{(
1√
2

)})
. Obviously, P 114 ∩

(
Z2 + lin

{(
1√
2

)})
= ∅, from which

we conclude the statement.

For (4.12): Let v ∈ Q2\
{

02
}
. Clearly,

( √
2 1

)
v 6= 0. By considering

P 114 = P=
((
−
√

2 1
)
,
(

0
))
,

the statement is an immediate consequence of Lemma 185.

For (4.13): Let v ∈ R2\
{

02
}
. If v ∈ lin

{(
1√
2

)}
, we have

P ∩
(
Z2 + lin

{(
1√
2

)})
= P.

If, on the other hand, v /∈ lin
{(

1√
2

)}
, we have

(
−
√

2 1
)
v 6= 0. By considering that

P 115 = P=
((
−
√

2 1
)
,
(

1
2

))
,

the statement is an immediate consequence of Lemma 185.

Theorem 188. For P 114 and P 115, respectively, we have

clL
1− 1

2
,Q

(
P 114

)
= P 114, (4.14)

clL
1− 1

2
,R

(
P 114

)
= ∅ = clI

(
P 114

)
= clI

(
P 114

)
, (4.15)

clL
1− 1

2
,Q

(
P 115

)
= P 115, (4.16)

clL
1− 1

2
,R

(
P 115

)
=
{

02
}

= clI
(
P 115

)
= clI

(
P 115

)
. (4.17)

Proof. Let v ∈ Q2\
{

02
}
. Then v is surely linearly independent to

(
1√
2

)
. Thus, we have

P 114 + lin {v} = P 115 + lin {v} = R2,

92



4.4. Lk cuts and Lk− 1
2
cuts for some irrational hyperplanes

from which we conclude (4.14) and (4.16). On the other hand, we have

P 114 + lin

{(
1√
2

)}
= P 114,

P 115 + lin

{(
1√
2

)}
= P 115,

which is why any valid inequality for
(
P 114

)
I
or
(
P 115

)
I
is an L1− 1

2 ,Q
cut for this polyhedron. Thus, (4.15)

and (4.17) hold.

4.4.3. P 116,m and P 117,m

Theorem 189. For m ∈ Z≥2, we have:

clLm−1,Q

(
P 116,m

)
= P 116,m, (4.18)

clL1,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
. (4.19)

Proof. It is easy to check that

P 116,m = P=
((

1 −h1 −h2 · · · −hm−1

)
,
(

1
2

))
,

where, of course, h1, . . . , hm−1 are as in De�nition 116.

For (4.18): Let v ∈ Qm\ {0m}. Clearly,
(

1 −h1 −h2 · · · −hm−1

)
v 6= 0. Thus, the statement is an

immediate consequence of Lemma 185.

For (4.19): We have

P 116,m ∩
(
Zm +

(
lin
{(

1 −h1 −h2 · · · −hm−1

)T})⊥)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
.

Theorem 190. For m ∈ Z≥2, we have:

clL
(m−1)− 1

2
,Q

(
P 116,m

)
= P 116,m, (4.20)

clL
1− 1

2
,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
, (4.21)

clL
(m−1)− 1

2
,Q

(
P 117,m

)
= P 117,m, (4.22)

clL
1− 1

2
,R

(
P 117,m

)
=
{

02
}

= clI
(
P 117,m

)
= clI

(
P 117,m

)
. (4.23)

Proof. Let v ∈ Qm\ {0m}. We �rst show that

m⋃̇
i=2

{
hi−1 · em,1 + em,i

}
∪̇ {v}

is a linearly independent set. For this, we consider the system of linear equations

m−1∑
i=1

λi
(
hi · em,1 + em,i+1

)
+ λmv = 0m, (4.24)

which can also be written as 
h1 h2 · · · hm−1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

v

λ = 0m.
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We immediately conclude
λi = −vi+1 · λm ∀i ∈ [m− 1] . (4.25)

By plugging (4.25) into the �rst row of (4.24), we obtain

λm ·

(
v1 · 1 +

m−1∑
i=1

(−vi+1 · hi)

)
= 0.

If λm = 0, we immediately conclude from (4.25) that λ = 0m. Thus, let λm 6= 0. Since by De�nition 116 or
117, respectively, {1, h1, . . . , hm−1} are linearly independent over Q, we conclude v = 0m: a contradiction to
the assumption v ∈ Qm\ {0m}. Because of

linealP 116,m = linealP 117,m = lin

m⋃̇
i=2

{
hi−1e

m,1 + em,i
}
,

we conclude
P 116,m + lin {v} = P 117,m + lin {v} = Rm.

Thus, (4.20) and (4.22) hold. On the other hand, we have

P 116,m + lin

m⋃̇
i=2

{
hi−1 · em,1 + em,i

}
= P 116,m,

P 117,m + lin

m⋃̇
i=2

{
hi−1 · em,1 + em,i

}
= P 117,m,

from which we conclude (4.21) and (4.23).

4.5. Di�erences between the types of Lk cuts and Lk− 1
2
cuts

In the previous sections (section 4.2 and section 4.3), we introduced di�erent types of Lk and Lk− 1
2
cuts and

formulated in Remark 156 as guiding question 1 whether there exist any di�erences between these di�erent
types.
For the structure of this section:

• In section 4.5.1 and section 4.5.2, respectively, we compare the Lk,Q closure with the Lk′,R closure and
the Lk− 1

2 ,Q
closure with the Lk′− 1

2 ,R
closure, respectively. For this, we summarize results that we showed

in section 4.4. We restate that for every m ∈ Z≥2, there exists an irrational hyperplane P ⊆ Rm such
that we have

clL1,R (P ) ( clLm−1,Q (P ) ,

clL
1− 1

2
,R

(P ) ( clL
(m−1)− 1

2
,Q

(P ) .

• In section 4.5.3 and section 4.5.4, we compare the Lk− 1
2 ,Q×Q

closure with the Lk− 1
2 ,Q×R

closure. From
a bird's eye perspective, section 4.5.3 is about when these two are di�erent and section 4.5.4 is about
when these are equal.

The central result of section 4.5.3 is Theorem 191. Here, we show that for P 118 ⊆ R1 × R2, we have

P 118 = clL
2− 1

2
,Q×Q

(
P 118

)
) clL

2− 1
2
,Q×R

(
P 118

)
= clI

(
P 118

)
= clI

(
P 118

)
.

The essential property of P 118 that enables this proof is that P 118 has a lineality space that is generated
by vectors from Qm × Rn, but is not a rational subspace.

So, in section 4.5.4, we formulate Conjecture 192, which claims that as long as P = Q+C+L ⊆ Rm×Rn
(m,n ∈ Z≥0), where

� Q is convex and compact,

� C is a pointed polyhdral cone generated by vectors from Qm × Rn and
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� L is a linear vector space generated by rational vectors (from Qm ×Qn),

we have
clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

for k ∈ {0, . . . ,m}. While in the general case Conjecture 192 is open, we analyze the important special
case that P is a rational polyhedron:

� In Theorem 193, which we prove further back in section 4.8.4, we prove that Conjecture 192 holds
if P ⊆ Rm × Rn (m,n ∈ Z≥0) is a rational polyhedron. Moreover: every Lk− 1

2 ,Q×R
cut for P

(k ∈ {0, . . . ,m}) is dominated absolutely by a �nite number of rational Lk− 1
2 ,Q×Q

cuts for P .
This, of course, implies the

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

equalities in (4.1) and (4.2) of guiding question 2 in Remark 156.

� Why do we put an emphasis on this stronger statement (than the statement of Conjecture 192)
that every Lk− 1

2 ,Q×R
is dominated by a �nite number of Lk− 1

2 ,Q×Q
cuts for P if P is a rational

polyhedron? The reason is that in the more general setting of Conjecture 192 (even if P is a
polyhedron), it can happen that

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = clI (P )

and we need to apply just one Lk− 1
2 ,Q×R

cut to P to obtain clI (P ), but the intersection of P with
an arbitray �nite number of half-spaces induced by Lk− 1

2 ,Q×Q
cuts is always a strict superset of

clI (P ). This is a central statement of Theorem 194.

4.5.1. clLk,Q ( · ) vs clLk,R ( · )

By Theorem 187, we have for P 114 ⊆ R2:

clL1,R

(
P 114

)
= ∅ = clI

(
P 114

)
= clI

(
P 114

)
,

clL1,Q

(
P 114

)
= P 114.

By Theorem 189, we have for P 116,m ⊆ Rm (m ∈ Z≥2):

clLm−1,Q

(
P 116,m

)
= P 116,m,

clL1,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
.

4.5.2. clL
k− 1

2 ,Q
( · ) vs clL

k− 1
2 ,R

( · )

By Theorem 188, we have for P 114, P 115 ⊆ R2:

clL
1− 1

2
,Q

(
P 114

)
= P 114,

clL
1− 1

2
,R

(
P 114

)
= ∅ = clI

(
P 114

)
= clI

(
P 114

)
,

clL
1− 1

2
,Q

(
P 115

)
= P 115,

clL
1− 1

2
,R

(
P 115

)
=
{

02
}

= clI
(
P 115

)
= clI

(
P 115

)
.

By Theorem 190, we have for P 116,m, P 117,m ⊆ Rm (m ∈ Z≥2):

clL
(m−1)− 1

2
,Q

(
P 116,m

)
= P 116,m,

clL
1− 1

2
,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
,

clL
(m−1)− 1

2
,Q

(
P 117,m

)
= P 117,m,

clL
1− 1

2
,R

(
P 117,m

)
= {0m} = clI

(
P 117,m

)
= clI

(
P 117,m

)
.
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4.5.3. An example where clL
2− 1

2 ,Q×Q
( · ) ( clL

2− 1
2 ,Q×R

( · )

We next show that for polyhedra that have a lineality space that is not rational (but is generated by vectors
from Qm × Rn), it can happen that the Lk− 1

2 ,Q×R
closure is strictly more expressive than the Lk− 1

2 ,Q×Q
closure:

Theorem 191. We have:

1.
√

2 ( · )2 − ( · )3 ≤ 0 is an L2− 1
2 ,Q×R

cut for P 118 ⊆ R1 × R2 and we have

clI

(
P 118 + lin

{( 0
1√
2

)})
= clL

2− 1
2
,Q×R

(
P 118

)
= clI

(
P 118

)
= clI

(
P 118

)
.

2. We have
clL

2− 1
2
,Q×Q

(
P 118

)
= P 118 ) clI

(
P 118

)
= clI

(
P 118

)
.

Proof.

For 1: Consider P ′ := P 118 + lin
{( 0

1√
2

)}
. Obviously,

√
2x2 − x3 ≤ 0 is a valid inequality for P ′I . On the

other hand, we have

P 118 ∩ P≤
((

0
√

2 −1
)
,
(

0
))

= conv
{(

0
0
0

)
,
(

1
0
0

)}
+ lin

{( 0
1√
2

)}
= clI

(
P 118

)
= clI

(
P 118

)
.

For 2: We consider valid inequalities for
(
P 118 + lin {v}

)
I
, where v ∈

(
Q1 ×Q2

)
\
{

01 × 02
}
. For this, we

analyize the point

(
1
2

δ
0

)
, where δ ∈

(
0, 3

4

]
is arbitrary. We show that for every v ∈ Q1 × Q2, this point lies

in conv
(
P 118 + lin {v}

)
I
. If v1 = 0, we have(

1
2

δ
0

)
=

1

2
·
((

0
0
0

)
− v3 · δ√

2 · v2 − v3

·
( 0

1√
2

)
︸ ︷︷ ︸

∈(P 118)I

+

√
2 · δ√

2 · v2 − v3

·
(

0
v2
v3

)
︸ ︷︷ ︸

=v

)
︸ ︷︷ ︸

∈(P 118+lin{v})I

+
1

2
·
((

1
0
0

)
− v3 · δ√

2 · v2 − v3

·
( 0

1√
2

)
︸ ︷︷ ︸

∈(P 118)I

+

√
2 · δ√

2 · v2 − v3

·
(

0
v2
v3

)
︸ ︷︷ ︸

=v

)
︸ ︷︷ ︸

∈(P 118+lin{v})I

∈ conv
((
P 118 + lin {v}

)
I

)
.

Now for the case v1 6= 0. We have(
1
2

δ
0

)
=

1

2

((
1
2

δ
0

)
︸ ︷︷ ︸
∈P 118

+
1

2v1
·
(
v1
v2
v3

))
︸ ︷︷ ︸

∈(P 118+lin{v})I

+
1

2

((
1
2

δ
0

)
︸ ︷︷ ︸
∈P 118

− 1

2v1
·
(
v1
v2
v3

))
︸ ︷︷ ︸

∈(P 118+lin{v})I

∈ conv
((
P 118 + lin {v}

)
I

)
.

4.5.4. clL
k− 1

2 ,Q×Q
( · ) vs clL

k− 1
2 ,Q×R

( · ): cases of equality

We conjecture that the reason why in Theorem 191, the Lk− 1
2 ,Q×Q

closure is strictly weaker than the Lk− 1
2 ,Q×R

closure lies in the fact that P 118 has a lineality space that cannot be generated by rational vectors. To formalize
this, we state the following conjecture:

Conjecture 192. Let P = Q+ C + L ⊆ Rm × Rn (m,n ∈ Z≥0), where

• Q is convex and compact,
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• C is a pointed polyhdral cone generated by vectors from Qm × Rn and

• L is a linear vector space generated by rational vectors (from Qm ×Qn).
Let k ∈ {0, . . . ,m}. Then

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) .

Additionally, we have
clL

(m+1)− 1
2
,Q×Q

(P ) = clI (P ) .

At least if P is a rational polyhedron, an even stronger statement holds than what we hypothesize in
Conjecture 192. In this case, we do not just have clL

(m+1)− 1
2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ), but also that every

Lk− 1
2 ,Q×R

cut for P is dominated absolutely by a �nite set of rational Lk− 1
2 ,Q×Q

cuts:

Theorem 193. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron. Then every Lk− 1
2 ,Q×R

cut for P

(k ∈ {0, . . . ,m}) is dominated absolutely by a �nite set of either

• rational essential Lk− 1
2 ,Q

cuts for P (essential Lk− 1
2 ,Q

cuts are de�ned in De�nition 203) or

• rational Lk−1,Q cuts for P (which, by Theorem 199, are Lk− 1
2 ,Q×Q

cuts for P ) if k ≥ 1.

More concisely: every Lk− 1
2 ,Q×R

cut for P is dominated by a �nite set of rational Lk− 1
2 ,Q×Q

cuts for P . Thus,
we conclude

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) .

Theorem 193 is proved in section 4.8.4. Why do we point out the dominance by a �nite number of Lk− 1
2 ,Q×Q

cuts in Theorem 193 so explicitly? The reason is that if we have a polyhedron P for which the �nite set of
generators of its recession cone consists of vectors from Qm ×Rn (instead of Qm ×Qn, as it can be assumed
for rational polyhedra), it can happen that clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ), but there exist Lk− 1
2 ,Q×R

cuts

for P that are not dominated (not even relatively to P ) by a �nite set of Lk− 1
2 ,Q×Q

cuts for P . This is a
consequence of the following theorem (observe the similarity to Theorem 191):

Theorem 194. We have:

1.
√

2 ( · )2 − ( · )3 ≤ 0 is an L2− 1
2 ,Q×R

cut for P 119 ⊆ R1 × R2 and

P 119 ∩ clI

(
P 119 + lin

{( 0
1√
2

)})
= clL

2− 1
2
,Q×R

(
P 119

)
= clI

(
P 119

)
= clI

(
P 119

)
.

2. Let l ∈ Z≥1 and let v1, . . . , vl ∈ Q1 ×Q2\
{

01 × 02
}
. Then

l⋂
i=1

clI
(
P 119 + lin

{
vi
})
) clI

(
P 119

)
= clI

(
P 119

)
.

3. For all p ∈ P 119\ clI
(
P 119

)
, there exists a v ∈ Q1 × Q2 such that p /∈ clI (P + lin {v}) . This, in

particular, implies
clL

2− 1
2
,Q×Q

(
P 119

)
= clI

(
P 119

)
= clI

(
P 119

)
,

which shows that Conjecture 192 holds for P = P 119 and k = 2.

Remark 195. Taking 2 and 3 of Theorem 194 together shows that we have clL
2− 1

2
,Q×Q

(
P 119

)
= clI

(
P 119

)
,

but in contrast to the situation of Theorem 193, no �nite number of L2− 1
2 ,Q×Q

cuts su�ces to describe

clL
2− 1

2
,Q×Q

(
P 119

)
.

Proof. (Theorem 194)

For 1: Because of

• P 119 ( P 118 and

•
(

0
√

2 −1
)

( · ) ≤ 0 is a valid L2− 1
2 ,Q×R

cut for P 118 (cf. Theorem 191),

we conclude that
(

0
√

2 −1
)

( · ) ≤ 0 is also an L2− 1
2 ,Q×R

cut for P 119 ⊆ R1 × R2.
The second statement is a consequence of

clI
(
P 119

)
= P 119 ∩ P≤

((
0
√

2 −1
)
,
(

0
))
.
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For 2: We show that for every i ∈ {1, . . . , l} and δ ∈
(
0, 3

4

]
, there exists a λ∗ (i, δ) ∈ R≥0 such that for all

λ ≥ λ∗ (i, δ), we have (
1
2

δ
0

)
+ λ

( 0
1√
2

)
∈ clI

(
P 119 + lin

{
vi
})
.

By setting λ∗ (δ) := max {λ (1, δ) , . . . , λ (l, δ)}, we thus obtain

∀λ ≥ λ∗ (δ) :

(
1
2

δ
0

)
+ λ

( 0
1√
2

)
∈

(
l⋂
i=1

clI
(
P 119 + lin

{
vi
}))
\P 119.

Let i ∈ {1, . . . , l} and let δ ∈
(
0, 3

4

]
be �xed. We distinguish three cases:

a. vi1 = 0 and vi3
vi3−
√

2vi2
> 0,

b. vi1 = 0 and vi3
vi3−
√

2vi2
< 0,

c. vi1 6= 0.

For case a: Set λ∗ (i, δ) := 0 and let λ ∈ R≥0. Then(
1
2

δ
0

)
+ λ

( 0
1√
2

)
=

1

2
·
((

0
0
0

)
+

(
vi3 · δ

vi3 −
√

2vi2
+ λ

)
·
( 0

1√
2

)
︸ ︷︷ ︸

∈(P 119)I

−
√

2 · δ
vi3 −

√
2vi2
·
(

0
vi2
vi3

)
︸ ︷︷ ︸

=vi

)
︸ ︷︷ ︸

∈(P 119+lin{vi})I

+
1

2
·
((

1
0
0

)
+

(
vi3 · δ

vi3 −
√

2vi2
+ λ

)
·
( 0

1√
2

)
︸ ︷︷ ︸

∈(P 119)I

−
√

2 · δ
vi3 −

√
2vi2
·
(

0
vi2
vi3

)
︸ ︷︷ ︸

=vi

)
︸ ︷︷ ︸

∈(P 119+lin{vi})I

∈ conv
((
P 119 + lin

{
vi
})
I

)
.

For case b: Set

λ∗ (i, δ) := − vi3 · δ
vi3 −

√
2vi2

> 0

and let λ ∈ R satisfy λ ≥ λ∗ (i, δ) > 0. Then(
1
2

δ
0

)
+ λ

( 0
1√
2

)
=

(
1
2

δ
0

)
+ λ∗

( 0
1√
2

)
+ (λ− λ∗)

( 0
1√
2

)
=

(
1
2

δ
0

)
− vi3 · δ
vi3 −

√
2vi2

( 0
1√
2

)
+ (λ− λ∗)

( 0
1√
2

)

=

(
1
2
0
0

)
+

 0

δ− vi3·δ
vi3−
√

2vi2

− vi3·δ
vi3−
√

2vi2

√
2

+ (λ− λ∗)
( 0

1√
2

)

=

(
1
2
0
0

)
+

 0
−
√

2vi2·δ
vi3−
√

2vi2

− vi3·δ
vi3−
√

2vi2

√
2

+ (λ− λ∗)
( 0

1√
2

)

=

(
1
2
0
0

)
+
(

0
δ
0

)
− 1√

2
· 2δ

vi3 −
√

2vi2

(
0
vi2
vi3

)
+ (λ− λ∗)

( 0
1√
2

)
=

1

2
·
((

0
0
0

)
+ (λ− λ∗)

( 0
1√
2

))
︸ ︷︷ ︸

∈(P 119+lin{vi})I

+
1

2
·
((

1
0
0

)
− 1√

2
· 4δ

vi3 −
√

2vi2

(
0
vi2
vi3

)
+ (λ− λ∗)

( 0
1√
2

))
︸ ︷︷ ︸

∈(P 119+lin{vi})I

∈ clI
(
P 119 + lin

{
vi
})
.

98



4.6. Inclusions between clL
k− 1

2

( · ) vs clLk ( · ) vs clL
k+1

2

( · )

For case c: Set λ∗ (i, δ) := 0 and let λ ∈ R≥0. Then(
1
2

δ
0

)
+ λ

( 0
1√
2

)
=

1

2

((
1
2

δ
0

)
+ λ

( 0
1√
2

)
︸ ︷︷ ︸

∈P 119

+
1

2vi1
·

(
vi1
vi2
vi3

))
︸ ︷︷ ︸

∈(P 119+lin{vi})I

+
1

2

((
1
2

δ
0

)
+ λ

( 0
1√
2

)
︸ ︷︷ ︸

∈P 119

− 1

2vi1
·

(
vi1
vi2
vi3

))
︸ ︷︷ ︸

∈(P 119+lin{vi})I

∈ conv
((
P 119 + lin

{
vi
})
I

)
.

For 3: Since p ∈ P 119\ clI
(
P 119

)
, we have −

√
2p2 + p3 > 0. Let c ∈ Z2

≥1 be such that

−c2p2 + c1p3 =: C > 0 (4.26)

and
c2 >

√
2c1 (4.27)

(one can easily show that such a c exists). Additionally, de�ne v :=
(

0
c1
c2

)
. It is easy to check that

clI
(
P 119 + lin {v}

)
= conv

(
{0, 1} ×

(
( 0

0 ) + cone
{(

1√
2

)}
+ lin {( c1c2 )}

))
. (4.28)

We now show (
0 −c2 c1

)
p > 0, (4.29)

∀x ∈ clI
(
P 119 + lin {v}

)
:
(

0 −c2 c1
)
x ≤ 0. (4.30)

For (4.29): (4.29) is an immediate consequence of (4.26).

For (4.30): By (4.28), there exist λ ∈ R≥0 and µ ∈ R such that

x2 = λ+ µc1,

x3 = λ
√

2 + µc2.

Thus, using (4.27), we obtain(
0 −c2 c1

)
x = −c2 (λ+ µc1) + c1

(
λ
√

2 + µc2

)
= λ

(
−c2 +

√
2c1

)
≤ 0.

4.6. Inclusions between clL
k− 1

2

( · ) vs clLk ( · ) vs clL
k+ 1

2

( · )

In Remark 156, we formulated as question 2 whether if P ⊆ Rm ×Rn (m,n ∈ Z≥0) is a rational polyhedron,
the out of themselves unrelated looking hierarchies

P = clL0,Q (P ) ⊇ clL1,Q (P ) ⊇ clL2,Q (P ) ⊇ · · · ⊇ clLm,Q (P ) = clI (P ) ,

P ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL
2− 1

2
,Q

(P ) ⊇ · · · ⊇ clL
m− 1

2
,Q×R

(P ) = clI (P )

(if n = 0) or

P = clL0,Q (P ) ⊇ clL1,Q (P ) ⊇ clL2,Q (P ) ⊇ · · · ⊇ clLm+n,Q (P ) = clI (P ) ,

P ⊇ clL
1− 1

2
,Q×Q

(P ) ⊇ clL
2− 1

2
,Q×Q

(P ) ⊇ · · · ⊇ clL
m+n− 1

2
,Q×Q

(P ) = clI (P ) ,

P ⊇ clL
1− 1

2
,Q×R

(P ) ⊇ clL
2− 1

2
,Q×R

(P ) ⊇ · · · ⊇ clL
m+n− 1

2
,Q×R

(P ) = clI (P )
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(if n ≥ 1), respectively, can be merged together into a �uni�ed� hierarchy, i.e. whether we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P ) (4.31)

for n = 0 and

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

(4.32)

for n ≥ 1.
We have already seen the equivalence clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) (k ∈ {0, . . . ,m}) from (4.32) in

section 4.5.4, Theorem 193 (though it is proved later on in section 4.8.4).
The topic of this section are the inclusions in (4.31) and (4.32):

• In section 4.6.1, we consider the inclusion

clLk,Q (P ) ⊆ clL
k− 1

2
,Q×R

(P ) , (4.33)

where m,n ∈ Z≥0 and k ∈ {0, . . . ,m+ n}. This inclusion does hold for arbitrary P ⊆ Rm × Rn. In
other words: we don't demand P to be a rational polyhedron. The �nal result is formulated in Theorem
197. In Theorem 196, we prove a property that is essential for this proof, but is in our opinion also by
itself of mathematical interest.

We remark that the inclusion (4.33) holds �in an even stronger sense�, i.e. we show that every Lk− 1
2 ,Q×R

cut for P with respect to some vector space V is an Lk,Q cut with respect to the same vector space V .

Note that the �obvious� analogue of (4.33) for the Lk,R closure vs the Lk− 1
2 ,R×R

closure

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P ) (4.34)

does not hold in general: in Remark 198, we consider a counterexample P ⊆ R2 for (4.34), where P is
a (non-rational) polyhedron.

• In section 4.6.2, we consider the inclusion

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) (4.35)

(m,n ∈ Z≥0 and k ∈ {0, . . . ,m+ n− 1}), which holds for every rational polyhedron P ⊆ Rm ×Rn. As
we see in Example 201, the condition that P is a rational polyhedron is essential.

(4.35) has an analogue for the L(k+1)− 1
2 ,R×R

closure vs Lk,R closure:

clL
(k+1)− 1

2
,R×R

(P ) ⊆ clLk,R (P ) (4.36)

(m,n ∈ Z≥0 and k ∈ {0, . . . ,m+ n− 1}), which holds for arbitrary P ⊆ Rm × Rn. Both (4.35) and
(4.36) are shown in Theorem 199.

The �nal property of (4.32), that the hierarchy ends at clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P )

if P is a rational polyhedron, is the topic of section 4.7, even though this section rather brings together results
that are shown in the preceding sections.

4.6.1. clLk,( · ) ( · ) ⊆ clL
k− 1

2 ,( · )
( · )?

Theorem 196. Let P ⊆ Rm ×Rn (m,n ∈ Z≥0) be an arbitrary set and let V ≤ Rm ×Rn be a subspace with
generators from Qm × Rn. Then

P ∩ ((Zm × Rn) + V ) ⊆ clI (P + V ) .
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Proof. Clearly, V is �nitely generated. Let
{
v1, . . . , vl

}
⊆ Zm × Rn (l ∈ Z≥0) be a generating system for V

and let p ∈ P ∩ ((Zm × Rn) + V ). Then

p = z +

l∑
i=1

λi · vi,

where z ∈ Zm × Rn and λ ∈ Rl. For I ∈ {0, 1}l, consider

qI := z +

l∑
i=1

(bλic+ Ii) v
i

︸ ︷︷ ︸
∈Zm×Rn

= p︸︷︷︸
∈P

−
l∑
i=1

λi · vi +

l∑
i=1

(bλic+ Ii) v
i

︸ ︷︷ ︸
∈V

∈ (P + V )I . (4.37)

For i ∈ [l], let
λ′i := λi − bλic ∈ [0, 1) .

De�ne µ ∈ [0, 1](
{0,1}l) via

µI :=

l∏
i=1

{
1− λ′i if Ii = 0,

λ′i if Ii = 1.

We have

∑
I∈{0,1}l

µI =
∑

I∈{0,1}l

l∏
j=1

{
1− λ′j if Ij = 0,

λ′j if Ij = 1
=

l∏
j=1

((
1− λ′j

)
+ λ′j

)
= 1, (4.38)

∀i ∈ [l] :
∑

I∈{0,1}l:
Ii=1

µI =
∑

I∈{0,1}l:
Ii=1

λ′i

l∏
j=1,j 6=i

{
1− λ′j if Ii = 0,

λ′j if Ii = 1
= λ′i

l∏
j=1,j 6=i

((
1− λ′j

)
+ λ′j

)
= λ′i. (4.39)

Using (4.37) and (4.38), we infer ∑
I∈{0,1}l

µIq
I ∈ clI (P + V ) .

On the other hand,

∑
I∈{0,1}l

µIq
I = z +

∑
I∈{0,1}l

µI

l∑
i=1

(bλic+ Ii) v
i (by (4.37) and (4.38))

= z +

l∑
i=1

bλic+
∑

I∈{0,1}l
µIIi

 vi (by (4.38))

= z +

l∑
i=1

bλic+
∑

I∈{0,1}l:
Ii=1

µI

 vi

= z +

l∑
i=1

(bλic+ λ′i) v
i (by (4.39))

= z +

l∑
i=1

λiv
i

= p.

Thus, p ∈ clI (P + V ).

An immediate consequence of Theorem 196 is:

Theorem 197. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then every Lk− 1
2 ,Q×R

cut for P (k ∈
{0, . . . ,m+ n}) with respect to some V is also an Lk,Q cut for P with respect to the same V . In particular,
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we have
clLk,Q (P ) ⊆ clL

k− 1
2
,Q×R

(P ) .

Remark 198. Note that a similar statement to Theorem 197 for Lk,R cuts vs Lk− 1
2 ,R×R

cuts, i.e. that for

arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0) and k ∈ {0, . . . ,m+ n}, we have

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P ) ,

does not hold in general, even if we restrict P to be a polyhedron and only consider the pure integer case. For
this, consider that, by Theorem 188, we have

clL
1− 1

2
,R

(
P 115

)
=
{

02
}
,

but, on the other hand, by equation (4.13) in Theorem 187, we have

clL1,R

(
P 115

)
= P 115 = P )

{
02
}
.

4.6.2. clL
(k+1)− 1

2 ,( · )
( · ) ⊆ clLk,( · ) ( · )?

Theorem 199. Let P ⊆ Rm ×Rn (m,n ∈ Z≥0) be arbitary, let k ∈ {0, . . . ,m+ n− 1}, let V pre ≤ Rm ×Rn
be a subspace of codimension k and let c ( · ) ≤ c0 be an Lk cut for P with respect to V pre (i.e. valid for
P ∩ ((Zm × Rn) + V pre)). De�ne

W pre :=
(
lin
{
cT
})⊥

,

V := V pre ∩W pre.

Then c ( · ) ≤ c0 is valid for (P + V ) ∩ (Zm × Rn) (i.e. an Lk− 1
2
cut or Lk+1− 1

2
cut (depending on the

codimension of V ) for P with respect to V ). Thus:

1. Every Lk,R cut for P is an L(k+1)− 1
2 ,R×R

cut for P . In particular, we have

clL
(k+1)− 1

2
,R×R

(P ) ⊆ clLk,R (P ) .

2. Let c ( · ) ≤ c0 be an Lk,Q cut for P having c ∈ (Qm ×Qn)
T
. Then c ( · ) ≤ c0 is also an L(k+1)− 1

2 ,Q×Q
cut for P . In particular, if P is a rational polyhedron, we have

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) .

Proof. We start with a proof that 2 can be concluded from the main statement (for 1, this is obvious).

Since clLm,Q (P ) = clI (P ) (just consider that every inequality for PI is an Lm,Q cut with respect to 0m×Rn),
we can assume k ≤ m. By Theorem 168, we can additionally assume that V pre = V ′ × Rn, where V ′ is a
rational subspace of codimension k. So, V is a rational subspace if c ∈ (Qm ×Qn)

T . Additionally, note that
clI (P + V ) is a rational polyhedron; thus, any facet-de�ning inequality for it can be assumed to have rational
coe�cients. Thus, we can restrict ourselves to the case c ∈ (Qm ×Qn)

T .

Now for a proof of the main statement: we have

m+ n− k − 1 ≤ dimV ≤ m+ n− k,
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since

m+ n− k = dimV pre

≥ dimV

= dim (V pre ∩W pre)

= dimV pre + dimW pre − dim (V pre +W pre) (by Lemma 30)

≥ (m+ n− k) + (m+ n− 1)− dim (V pre +W pre)︸ ︷︷ ︸
≤dim(Rm×Rn)=m+n

≥ (m+ n− k) + (m+ n− 1)− (m+ n)

= m+ n− k − 1.

Remark 200. One can even tell exactly:

dimV =

{
m+ n− k if cT ∈ (V pre)

⊥
,

m+ n− k − 1 otherwise.

Proof. (Remark 200) If cT = 0m × 0n, the statement is clear. So, from now on, we assume cT 6= 0m × 0n,
which is equivalent to dimW pre = m+ n− 1. Looking at the chain of inequalities, we just have to prove

dim (V pre +W pre) =

{
m+ n− 1 if cT ∈ (V pre)

⊥
,

m+ n if cT /∈ (V pre)
⊥
.

We �rst show
cT ∈ (V pre)

⊥ ⇔ V pre ⊆W pre. (4.40)

For ⇒: Let w ∈ (V pre)
⊥. Then cw = 0, thus w ∈W pre.

For ⇐: Let v ∈ V pre. Then, since by assumption v ∈W pre =
(
lin
{
cT
})⊥

, we have cv = 0.

Now, if cT ∈ (V pre)
⊥, by (4.40), we have V pre ⊆W pre. Thus,

dim (V pre +W pre) = dimW pre = m+ n− 1.

If, on the other hand, c /∈ (V pre)
⊥, we show that V pre + W pre = Rm × Rn: since dimW pre = m + n − 1,

the situation dim (V pre +W pre) = m + n − 1 can only happen if V pre ⊆ W pre. But, by (4.40), this is a
contradiction to the case assumption.

Now on with the proof of Theorem 199: we claim that c ( · ) ≤ c0 is a valid inequality for (P + V )I . For
this, let p ∈ P and v ∈ V be such that p+ v ∈ Zm × Rn. Then, clearly, p ∈ P ∩ ((Zm × Rn) + V ). Thus,

cp ≤ c0. (4.41)

On the other hand, we have using cT ⊥ V and (4.41):

c (p+ v) = cp ≤ c0.

We next want to demonstrate that the condition that P is a rational polyhedron is essential for the

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P )

inclusion in Theorem 199 to hold. For this, we consider the following example:

Example 201. We have:

clL1,Q

(
P 118

)
= clI

(
P 118

)
= clI

(
P 118

)
( P 118 = clL

2− 1
2
,Q×Q

(
P 118

)
.
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Proof. Set V := 01 × R2 and consider

conv
(
P 118 ∩

((
Z1 × R2

)
+ V

)︸ ︷︷ ︸
=Z1×R2

)
= clI

(
P 118

)
= clI

(
P 118

)
.

The rest is a consequence of Theorem 191.

4.7. Termination of the Lk/Lk− 1
2
hierarchy

Of the questions that we formulated at the beginning of section 4.6, it is still open that for rational polyhedra,
the hierarchy (4.32) ends at clLm,Q (P ) = clL

(m+1)− 1
2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ), i.e. that we have

clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P ) .

We also write down that for arbitrary P ⊆ Rm × Rn (m ∈ Z≥0, n ∈ Z≥1), we have

clLm,Q (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P ) .

The only argument that is necessary for the proof of the following theorem, is to consider that for P , m
and n as in Theorem 202, we have

PI = P ∩ ((Zm × Rn) + (0m × Rn)︸ ︷︷ ︸
=:V

).

Theorem 202. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary. Then every linear inequality for PI is an Lm,Q
cut for P . Thus, we have

clLm,Q (P ) = P ∩ clI (P ) .

This has the following consequences if n ≥ 1:

• If P is a rational polyhedron, every cutting plane c ( · ) ≤ c0 for P such that c ∈ (Qm ×Qn)
T

is,
by Theorem 199, an L(m+1)− 1

2 ,Q×Q
cut for P , and every arbitrary cutting plane for P is dominated

absolutely by some set of rational L(m+1)− 1
2 ,Q×Q

cuts for P . Thus, the identity

clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P ) .

holds.

• In the general case (P arbitrary), every cutting plane for P is an L(m+1)− 1
2 ,R×R

cut for P (again a

consequence of Theorem 199). We thus have

clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P ) .

So, summarizingly, for n ≥ 1, we have:

• If P is a rational polyehdron, we have

clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P ) .

• In the general case (P arbitrary), we have

clLm,Q (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P ) .

We remark that in Theorem 217, Theorem 218, Theorem 222 and Theorem 223, we generalize Theorem
202.
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4.8. Essential Lk− 1
2 ,Q

cuts

The central topic of this section is guiding question 3 of Remark 156, i.e. the role of Lk− 1
2
cuts with respect

to vector spaces of the form V = V ′×Rn. The motivation for this is that in section 4.2.2.1, Theorem 168, we
showed that a restriction to this subset of vector spaces is possible for Lk cuts. While it is easy to see that
this restriction, in general, does not su�ce to describe all possible Lk− 1

2 ,Q×Q
cuts, it should at this point at

least be plausible to the reader that this restricted subset of Lk− 1
2 ,Q×Q

cuts might have interesting properties.

4.8.1. De�nitions

We start by giving a formal de�nition of �essential Lk− 1
2 ,Q

cuts� (De�nition 203). These are Lk− 1
2 ,Q×Q

cuts
with respect to a vector space V = V ′ × Rn, where V ′ is � as the naming already suggests � generated by
rational vectors and has codimension k. We then de�ne their respective closure (�essential Lk− 1

2 ,Q
closure�)

in De�nition 205.

De�nition 203. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m} and let V ′ ≤ Rm be a linear
subspace of codimension k that is generated by rational vectors (i.e. a rational subspace of codimension k).
An essential Lk− 1

2 ,Q
cut for P is a valid linear inequality for (P + (V ′ × Rn))I .

Remark 204. Let P ⊆ Rm (m ∈ Z≥0) be arbitrary. Then every Lk− 1
2 ,Q

cut for P (k ∈ {0, . . . ,m}) is also
an essential Lk− 1

2 ,Q
cut for P . In other words: in the pure integer case, it makes no sense to distinguish

between Lk− 1
2 ,Q

cuts and essential Lk− 1
2 ,Q

cuts.

De�nition 205. We de�ne for an arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0)

clessL
k− 1

2
,Q

(P ) := P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 essential L

k− 1
2
,Q

cut for P

P≤ (c, c0)

as the essential Lk− 1
2 ,Q

closure of P .

Remark 206. In an analogue way as in Lemma 183, one can show that for arbitrary P ⊆ Rm × Rn, where
m,n ∈ Z≥0 and k ∈ {0, . . . ,m}, we have

clessL
k− 1

2
,Q

(P ) = P ∩
⋂

V ′≤Rm:
V ′ rational subspace
of codimension k

clI (P + (V ′ × Rn)) .

4.8.2. Characterizing the essential Lk− 1
2
,Q closure

Our �rst theorem about the essential Lk− 1
2 ,Q

closure states that to describe the essential Lk− 1
2 ,Q

closure of
some arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), we just need to consider the Lk− 1

2 ,Q
closure of the projection of

P into the integer variables:

Theorem 207. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {0, . . . ,m}. Then

clessL
k− 1

2
,Q

(P ) = P ∩
((

clL
k− 1

2
,Q

(projRm P )
)
× Rn

)
.

Proof.

clessL
k− 1

2
,Q

(P ) = P ∩
⋂

V ′≤Rm:
V ′ rational subspace
of codimension k

clI (P + (V ′ × Rn))

= P ∩
⋂

V ′≤Rm:
V ′ rational subspace
of codimension k

(clI ((projRm P ) + V ′)× Rn)
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= P ∩


(projRm P ) ∩

⋂
V ′≤Rm:

V ′ rational subspace
of codimension k

(clI ((projRm P ) + V ′))

× Rn


= P ∩
((

clL
k− 1

2
,Q

(projRm P )
)
× Rn

)
.

4.8.3. L(k+1)− 1
2
,Q×( · ) cuts vs Lk,Q cuts

We now come to a result that can be considered as an analogue of Theorem 168 and Corollary 171 for
Lk− 1

2 ,Q×Q
cuts and Lk− 1

2 ,Q×R
cuts. We recapitulate that in these theorems, we showed that for Lk,Q cuts

(k ∈ {0, . . . ,m}), we can restrict ourselves to vector spaces of the form V := V ′ × Rn (cf. Theorem 168).
It is easy to verify that such a restriction (i.e. restrict oneself to essential Lk− 1

2 ,Q
cuts) is not possible for

Lk− 1
2 ,Q×Q

cuts and Lk− 1
2 ,Q×R

cuts. In the next theorem, we show that such a restriction is possible if we only
consider Lk− 1

2 ,Q×R
cuts that are not already Lk−1,Q cuts.

Theorem 208. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let k ∈ {1, . . . ,m}. Let c ( · ) ≤ c0
(c ∈ (Rm × Rn)

T
and c0 ∈ R) be an Lk− 1

2 ,Q×R
cut for P that is not an Lk−1,Q cut for P . Then c ( · ) ≤ c0 is

an essential Lk− 1
2 ,Q

cut for P .

Remark 209. The reason why in Theorem 208 the condition k ∈ {1, . . . ,m} (instead of k ∈ {1, . . . ,m+ n})
is no restriction (beside the fact that we only de�ned essential Lk,Q cuts for k ∈ {0, . . . ,m}) is that

clLm,Q (P ) = P ∩ clI (P ) .

In other words: for k ≥ m+ 1, there exist no Lk− 1
2 ,Q×R

cuts for P which are not already Lk−1,Q cuts for P .

Remark 210. Since every Lk− 1
2 ,Q×Q

cut is an Lk− 1
2 ,Q×R

cut, Theorem 208 also holds for Lk− 1
2 ,Q×Q

cuts.

Proof. (Theorem 208) Let V be a subspace of codimension k that is generated by vectors from Qm × Rn
and let c ( · ) ≤ c0 be valid for (P + V )I (i.e. c ( · ) ≤ c0 is an Lk− 1

2 ,Q×R
cut for P with respect to V ). If

0m × Rn ≤ V , we are done. Otherwise, let V ′ := projRm V.
By Theorem 196, c ( · ) ≤ c0 is valid for

P ∩ ((Zm × Rn) + V ) .

On the other hand, by Theorem 168, c ( · ) ≤ c0 is also valid for

P ∩ ((Zm × Rn) + (V ′ × Rn)) .

But we have V < V ′ × Rn; thus,
codim (V ′ × Rn) < codimV = k.

Thus, c ( · ) ≤ c0 is an Lk−1,Q cut for P .

Theorem 211. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {1, . . . ,m} and let c ( · ) ≤ c0 (c ∈
(Rm × Rn)

T
and c0 ∈ R) be an Lk− 1

2 ,Q×R
cut for P . Then c ( · ) ≤ c0 is either an Lk−1,Q cut for P or an

essential Lk− 1
2 ,Q

cut for P . This has the following consequences:

• If P is a rational polyhedron, every Lk− 1
2 ,Q×R

cut for P is dominated (absolutely) by a �nite set of either

� rational essential Lk− 1
2 ,Q

cuts for P or

� rational Lk−1,Q cuts for P .

In particular,
clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = clLk−1,Q (P ) ∩ clessL
k− 1

2
,Q

(P ) . (4.42)

Furthermore, we have for k ∈ {0, . . . ,m+ n}:

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) . (4.43)
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• In general, the weaker identity

clL
k− 1

2
,Q×R

(P ) ⊇ clLk−1,Q (P ) ∩ clessL
k− 1

2
,Q

(P ) (4.44)

holds.

Proof. From Theorem 208, one concludes that if c ( · ) ≤ c0 is an Lk− 1
2 ,Q×R

cut, but no Lk−1,Q cut, for P , the
inequality c ( · ) ≤ c0 is an essential Lk− 1

2 ,Q
cut for P . This shows the �rst statement and equation (4.44).

Now for the situation if P is a rational polyhedron: since for every rational subspace V ≤ Rm,

clI (P + (V × Rn))

is a rational polyhedron, every essential Lk− 1
2 ,Q

cut for P is dominated by a �nite set of rational essential
Lk− 1

2 ,Q
cuts for P . Let c ( · ) ≤ c0 be an Lk−1,Q cut for P with respect to some appropriate vector space V .

By Theorem 168, we can assume V = V ′ × Rn, where V ′ is a rational subspace. Then, by Theorem 172 and
Theorem 177, P ∩ ((Zm × Rn) + V ) is a rational polyhedron; thus, every Lk−1,Q cut for P with respect to
V is dominated by some �nite set of rational Lk−1,Q cuts for P (with respect to V ). Thus, we can assume
c ∈ (Qm ×Qn)

T . So, by Theorem 199, c ( · ) ≤ c0 is an Lk− 1
2 ,Q×Q

cut for P .
Finally, for (4.43): for k ∈ {1, . . . ,m}, (4.43) is a consequence of (4.42). For k = 0, (4.43) is a consequence

of Remark 180. Finally, for k ∈ {m+ 1, . . . ,m+ n}, we conclude using Theorem 202:

clI (P ) ⊆ clL
(k+1)− 1

2
,Q×R

(P ) ⊆ clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clL
(m+1)− 1

2
,Q×Q

(P ) = clI (P ) .

From Theorem 211, we immediately conclude Theorem 193, which we already stated in section 4.5.4:

Theorem 193. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron. Then every Lk− 1
2 ,Q×R

cut for P

(k ∈ {0, . . . ,m}) is dominated absolutely by a �nite set of either

• rational essential Lk− 1
2 ,Q

cuts for P (essential Lk− 1
2 ,Q

cuts are de�ned in De�nition 203) or

• rational Lk−1,Q cuts for P (which, by Theorem 199, are Lk− 1
2 ,Q×Q

cuts for P ) if k ≥ 1.

More concisely: every Lk− 1
2 ,Q×R

cut for P is dominated by a �nite set of rational Lk− 1
2 ,Q×Q

cuts for P . Thus,
we conclude

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) .

An immediate consequence of Theorem 193 is:

Theorem 212. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let k ∈ {0, . . . ,m+ n}. Then

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) .

Proof. If k ∈ {0, . . . ,m}, the statement holds by Theorem 193. On the other hand, if k ≥ m, we have using
Theorem 75 and Theorem 202:

clI (P ) ⊆ clL
k− 1

2
,Q×R

(P ) ⊆ clL
k− 1

2
,Q×Q

(P ) = clI (P ) .

Thus, equality holds.

4.8.4. Lk,Q cuts vs Lk− 1
2
,Q×( · ) cuts

Recall that in Theorem 208, we showed how an Lk− 1
2 ,Q×R

cut that is not already an Lk−1,Q cut has to look like
(it is an essential Lk− 1

2 ,Q
cut). Additionally, recall that by Theorem 197, every Lk− 1

2 ,Q×Q
cut or Lk− 1

2 ,Q×R
cut with respect to some V is also an Lk,Q cut with respect to the same V .
In this section, in Theorem 213, we consider some kind of reverse to Theorem 208: let an Lk,Q cut c ( ·, ) ≤ c0

with respect to some V be given. We show that if cT ⊥ V , then it already is an Lk− 1
2 ,Q×Q

cut or Lk− 1
2 ,Q×R

cut, respectively, with respect to the same V . Thus, every Lk,Q cut c ( ·, ) ≤ c0 with respect to some V that
is not already an Lk− 1

2 ,Q×Q
cut or Lk− 1

2 ,Q×R
cut, respectively, has to satisfy cT 6⊥ V .
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Theorem 213. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let V ≤ Rm×Rn be a subspace of codimension

k that is generated by vectors from Qm × Qn or Qm × Rn, respectively, and let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T

and c0 ∈ R) be a valid inequality for P ∩ ((Zm × Rn) + V ) (in other words: an Lk,Q cut for P with respect
to V ), where cT ⊥ V . Then c ( · ) ≤ c0 is already an Lk− 1

2 ,Q×Q
cut or Lk− 1

2 ,Q×R
cut, respectively, for P with

respect to V .

Proof. Let z ∈ (P + V )I . Then x = p+ v, where p ∈ P and v ∈ V . Since p+ v ∈ Zm × Rn, we have

p ∈ P ∩ ((Zm × Rn) + V ) . (4.45)

Since we have cp′ ≤ c0 for all p′ ∈ P ∩ ((Zm × Rn) + V ), we thus get from (4.45):

cp ≤ c0. (4.46)

Thus,
cz = c (p+ v) = cp︸︷︷︸

≤c0 (by (4.46))

+ cv︸︷︷︸
=0 (since v ∈ V ⊥ cT )

≤ c0.

4.8.5. A dual representation of essential Lk− 1
2
,Q cuts

In the previous subsections of section 4.8, we saw the importance of the concept of essential Lk− 1
2 ,Q

cuts. In
this last subsection of section 4.8, we want to study an alternative characterization of essential Lk− 1

2 ,Q
cuts.

Recall that in section 4.2.2.2 (in particular Theorem 174), we gave a �dual� characterization of Lk,Q cuts. In
this section, in Theorem 215, we now derive a �dual� characterization of essential Lk− 1

2 ,Q
cuts. Before we

state and prove Theorem 215, we give a lemma that is used for its proof:

Lemma 214. Let P ⊆ Rm (m ∈ Z≥0) be arbitrary, let V ′ ≤ Rm be a rational subspace of codimension
k ∈ {0, . . . ,m} and let {w1, . . . , wk} be a lattice basis of Zm ∩ V ′⊥. Then the following statements are
equivalent:

1. (P + V ′)I = ∅,

2. P ∩ (Zm + V ′) = ∅,

3.
{
x ∈ P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
= ∅.

Proof.

For 1⇒ 2: Since (P + V ′)I = ∅, we also have clI (P + V ′) = ∅. Using Theorem 196, we conclude

∅ = clI (P + V ′) ⊇ P ∩ (Zm + V ′) .

For 2⇔ 3: By Theorem 172, we have

P ∩ (Zm + V ′) = ∅ ⇔
{
x ∈ P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
= ∅.

For 3⇒ 1: Let
{
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
= ∅. By �2⇔ 3�, we have

∅ = P ∩ (Zm + V ′) . (4.47)

Now let z = p+ v ∈ (P + V ′)I , where z ∈ Zm, p ∈ P and v ∈ V ′. Then z − v ∈ P ∩ (Zm + V ′) . But this is a
contradiction to (4.47).

Theorem 215. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let V ′ ≤ Rm be a rational subspace of

codimension k ∈ {0, . . . ,m}, let c ∈
(
V ′⊥

)T
and let c0 ∈ R. Then:
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1. Let {w1, . . . , wk} be a lattice basis of Zm∩V ′⊥. Then
(
c (0n)

T
)

( · ) ≤ c0 is valid for (P + (V ′ × Rn))I

(in other words:
(
c (0n)

T
)

( · ) ≤ c0 is an essential Lk,Q cut for P with respect to V ′) if and only if(
c (0n)

T
)

( · ) ≤ c0 is valid for{
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
× Rn.

2. Let w′1, . . . , w′k be arbitrary vectors of Zm ∩ V ′⊥ and let
(
c (0n)

T
)

( · ) ≤ c0 be valid for{
x ∈ projRm P : ∀i ∈ [k] :

(
w′i
)T
x ∈ Z

}
× Rn.

Then
(
c (0n)

T
)

( · ) ≤ c0 is valid for (P + (V ′ × Rn))I (in other words: it is an essential Lk,Q cut

for P with respect to V ).

Remark 216. The condition cT ⊥ V ′ and the restricition to linear inequalities of the form(
c (0n)

T
)

( · ) ≤ c0

in Theorem 215 can be assumed without loss of generality (cf. Lemma 159).

Proof. (Theorem 215) We �rst show(
(projRm P ) ∩ P> (c, c0)

)
+ V ′ = ((projRm P ) + V ′) ∩ P> (c, c0) . (4.48)

For ⊆: We have, using cT ⊥ V ′:(
(projRm P ) ∩ P> (c, c0)

)
+ V ′ ⊆ ((projRm P ) + V ′) ∩

(
P> (c, c0) + V ′

)
= ((projRm P ) + V ′) ∩ P> (c, c0) .

For ⊇: Let p ∈ projRm P and v ∈ V ′ be such that c (p+ v) > c0. Then, using cT ⊥ v ∈ V ′, we obtain

cp = c (p+ v) > c0.

So, p ∈ P> (c, c0) and thus p ∈ (projRm P ) ∩ P> (c, c0). This shows

p+ v ∈
(
(projRm P ) ∩ P> (c, c0)

)
+ V ′.

Now for the main statements:

For 1: {
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
× Rn ⊆ P≤

((
c (0n)

T
)
, c0

)
⇔
{
x ∈ (projRm P ) ∩ P> (c, c0) : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
= ∅

⇔
((

(projRm P ) ∩ P> (c, c0)
)

+ V ′
)
I

= ∅ (by Lemma 214)

⇔
(
((projRm P ) + V ′) ∩ P> (c, c0)

)
I

= ∅ (by (4.48))

⇔ ((projRm P ) + V ′) ∩ Zm ⊆ P≤ (c, c0)

⇔ (P + (V ′ × Rn))I ⊆ P
≤
((

c (0n)
T
)
, c0

)
.

For 2: 2 is a consequence of 1 and{
x ∈ projRm P : ∀i ∈ [k] :

(
w′i
)T
x ∈ Z

}
× Rn ⊆ P≤

((
c (0n)

T
)
, c0

)
⇒
{
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
× Rn ⊆ P≤

((
c (0n)

T
)
, c0

)
.
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4.9. Lineality spaces and a�ne subspaces

In the introduction of this chapter, we already gave an idea of the problem that we consider in this section.
Let us repeat it here: let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Trivially, we always have

cl(m+n)− 1
2 ,( · )

(P ) = P ∩ clI (P ) ,

and by section 4.7, we have
clm,( · ) (P ) = P ∩ clI (P ) .

But now assume that we can impose some �vector space condition� on P :

• P or projRm P has a (w.l.o.g. non-trivial) lineality space,

• P or projRm P is contained in an (again w.l.o.g. non-trivial) a�ne subspace.

Can we then show
cl(m+n−l)− 1

2 ,( · )
(P ) = P ∩ clI (P )

or
clm−l,( · ) (P ) = P ∩ clI (P ) ,

respectively, where l ∈ Z≥1?
For the structure and results of this section: in section 4.9.1, we consider the situation that P or projRm P

has a (w.l.o.g. non-trivial) lineality space:

• Let L ≤ linealP satisfy some appropriate rationality conditions (that depend on the type of Lk− 1
2
cut

that we consider). In Theorem 217, we show that under these circumstances, for Lk− 1
2
cuts, we can

restrict ourselves to the ones with respect to vector spaces that contain L. In particular, we have

clL
m+n−l− 1

2
,( · )

(P ) = P ∩ clI (P ) ,

where l := dimL.

• Let L ≤ lineal (projRm P ) be a rational subspace. In Theorem 218, we show that under these circum-
stances, for Lk cuts, we can restrict ourselves to the ones with respect to vector spaces that contain
L× Rn. In particular, we have

clLm−l,Q (P ) = P ∩ clI (P ) ,

where l := dimL.

In section 4.9.2, Theorem 220, we consider the situation that some P ⊆ Rm × Rn is given, for which we
�understand� how some of its Lk− 1

2
closure or Lk closure looks like. This theorem tells us how we can �nd

similar examples P̂ ⊆ Rm̂×Rn̂, where m̂ ≥ m and n̂ ≥ n, for which we also �understand� its Lk− 1
2
closure or

Lk closure. This becomes important in part VI, but since it is very related to the results in section 4.9.1, we
prove it in a subsection of section 4.9.
In section 4.9.3, we consider the situation that P or projRm P is contained in an (w.l.o.g. non-trivial) a�ne

subspace:

• Let P be contained in an a�ne translate of a rationally generated subspace of codimension l. In Theorem
222, we show that under these circumstances, we have

clL
max(l,1)− 1

2
,Q×Q

(P ) = P ∩ clI (P ) .

• Let projRm P be contained in an a�ne translate of a rationally generated subspace of dimension l. In
Theorem 223, we show that under these circumstances, we have

clLmax(l,1),Q (P ) = P ∩ clI (P ) .
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4.9.1. Lineality spaces

4.9.1.1. Lk− 1
2
cuts

Theorem 217. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let L ≤ Rm × Rn be a subspace that satis�es
L ≤ linealP and let V ≤ Rm × Rn be another subspace. Then

(P + V )I = (P + (V + L))I . (4.49)

So, if L ≤ Rm × Rn is generated by vectors from

• Qm ×Qn,

• Qm × Rn or

• Rm × Rn,

respectively, for

• Lk− 1
2 ,Qm×Qn

cuts,

• Lk− 1
2 ,Qm×Rn

cuts or

• Lk− 1
2 ,Rm×Rn

cuts,

respectively (k ∈ {0, . . . ,m+ n}), we can restrict ourselves to those with respect to subspaces containing L.
Additionally, under this �generator condition for L�, we have, using l := dimL:

clL
m+n−l− 1

2
,Q×Q

(P ) = P ∩ clI (P ) ,

clL
m+n−l− 1

2
,Q×R

(P ) = P ∩ clI (P ) or

clL
m+n−l− 1

2
,R×R

(P ) = P ∩ clI (P ) , (4.50)

respectively.

Proof.

For (4.49): Since P + L = P, we have

(P + V )I = ((P + L) + V )I = (P + (V + L))I .

For (4.50): By de�nition, we have P + L = P. Thus,

P ∩ clI (P + L) = P ∩ clI (P ) .

Depending on the generators of L, we thus obtain

P ∩ clI (P ) ⊆ clL
m+n−l− 1

2
,Q×Q

(P ) ⊆ P ∩ clI (P + L) = P ∩ clI (P ) ,

P ∩ clI (P ) ⊆ clL
m+n−l− 1

2
,Q×R

(P ) ⊆ P ∩ clI (P + L) = P ∩ clI (P ) or

P ∩ clI (P ) ⊆ clL
m+n−l− 1

2
,R×R

(P ) ⊆ P ∩ clI (P + L) = P ∩ clI (P ) ,

respectively.

4.9.1.2. Lk cuts

Theorem 218. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let L ≤ Rm be a rational subspace that satis�es
L ≤ projRm (linealP ) and let V ≤ Rm be another subspace. Then

conv (P ∩ ((Zm × Rn) + (V × Rn))) = conv (P ∩ ((Zm × Rn) + ((V + L)× Rn))) , (4.51)

i.e. for Lk cuts for P , we can restrict ourselves to subspaces containing L× Rn.
Additionally, we have

P ∩ ((Zm × Rn) + (L× Rn)) ⊆ clI (P ) , (4.52)
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which implies
clLm−l,Q (P ) = P ∩ clI (P ) , (4.53)

where l := dimL.

Proof.

For (4.51):

conv (P ∩ ((Zm × Rn) + (V × Rn))) ⊆ conv (P ∩ ((Zm × Rn) + ((V + L)× Rn)))

is obvious. So for

conv (P ∩ ((Zm × Rn) + ((V + L)× Rn))) ⊆ conv (P ∩ ((Zm × Rn) + (V × Rn))) :

We show
(projRm P ) ∩ (Zm + (V + L)) ⊆ conv ((projRm P ) ∩ (Zm + V ))

by a construction that is similar to the one that we used in the proof of Theorem 196.

Let
p = z + v + w,

where p ∈ projRm P , z ∈ Zm, v ∈ V and w ∈ L. Let {w1, . . . , wl} ⊆ Zm be a basis of L, where, of course,
l := dimL. So there exists a λ ∈ Rl such that w =

∑l
i=1 λiw

i.

For I ∈ {0, 1}l, consider

qI := v + z +

l∑
i=1

(bλic+ Ii)w
i

︸ ︷︷ ︸
∈Zm︸ ︷︷ ︸

∈Zm+V

= p−
l∑
i=1

λi · wi +

l∑
i=1

(bλic+ Ii)w
i

︸ ︷︷ ︸
∈projRm P (since L ≤ linealP )

∈ (projRm P ) ∩ (Zm + V ) . (4.54)

For i ∈ [l], let
λ′i := λi − bλic ∈ [0, 1) .

De�ne µ ∈ [0, 1](
{0,1}l) via

µI :=

l∏
i=1

{
1− λ′i if Ii = 0,

λ′i if Ii = 1.

Like in the proof of Theorem 196, we have ∑
I∈{0,1}l

µI = 1, (4.55)

∀i ∈ [l] :
∑

I∈{0,1}l:
Ii=1

µI = λ′i. (4.56)

So,

∑
I∈{0,1}l

µIq
I = z + v +

∑
I∈{0,1}l

µI

l∑
i=1

(bλic+ Ii)w
i (by (4.54) and (4.55))

= z + v +

l∑
i=1

bλic+
∑

I∈{0,1}l
µIIi

wi (by (4.55))

= z + v +

l∑
i=1

bλic+
∑

I∈{0,1}l:
Ii=1

µI

wi
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= z + v +

l∑
i=1

(bλic+ λ′i)w
i (by (4.56))

= z + v +

l∑
i=1

λiw
i

= p.

Thus, p ∈ conv ((projRm P ) ∩ (Zm + V )).

For (4.52) and (4.53): Since L is a rational subspace and satis�es L ≤ projRm (linealP ), there exists a
subspace L̂ ≤ Rm × Rn having

• L̂ ≤ linealP ,

• projRm L̂ = L and

• L̂ has generators from Qm × Rn.

We have

P ∩ ((Zm × Rn) + (L× Rn)) = P ∩
(

(Zm × Rn) + L̂
)

⊆ clI

(
P + L̂

)
(by Theorem 196)

= clI (P ) .

Thus,

P ∩ clI (P ) ⊆ clLm−l,Q (P )

⊆ P ∩ conv (P ∩ ((Zm × Rn) + (L× Rn)))

= P ∩ clI (P ) .

Remark/Problem 219. In contrast to (4.50) in Theorem 217, equation (4.53) in Theorem 218 does not
hold if L is not a rational subspace. For this, consider P 115 ⊆ R2. Clearly,

dim
(
linealP 115

)
= 1,

but, by equation (4.13) in Theorem 187, we have clL1,R

(
P 115

)
) clI

(
P 115

)
. We want to state the problem to

decide whether (4.51) also holds if V is not a rational subspace as a research question.

4.9.2. Increasing the dimension

As explained in the introduction of this section, we now prove a theorem (Theorem 220) about how we can
�lift� some P ⊆ Rm×Rn (m,n ∈ Z≥0), for which we �understand� how some of its Lk− 1

2
closure or Lk closure

looks like, into higher dimensions, i.e. �nd a P̂ ⊆ Rm̂ × Rn̂, where m̂ ≥ m and n̂ ≥ n, for which we also
�understand� its Lk− 1

2
closure or Lk closure. This result becomes important in part VI.

Theorem 220. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m+ n} and let m′, n′ ∈ Z≥0.
Then

clL
k− 1

2
,

Q×Q
Q×R
R×R

(
P × Rm

′
× Rn

′
)

= clL
k− 1

2
,

Q×Q
Q×R
R×R

(P )× Rm
′
× Rn

′
, (4.57)

clL
k,QR

(
P × Rm

′
× Rn

′
)

= clL
k,QR

(P )× Rm
′
× Rn

′
. (4.58)

All of the closures are with respect to the lattice Zm × Rn × Zm′ × Rn′ .

Remark 221. One could also prove the �⊇� inclusions in Theorem 220 as consequences of Theorem 217 and
Theorem 218. While this would be very much in the spirit of the preceding section 4.9.1 and perhaps more
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elegant, it probably would not make the proof much shorter. So, we decided to keep the self-contained proof of
Theorem 220.

Proof. (Theorem 220) In the following proof, we replace some required conditions for V in the intersections
by �. . .� for better readability. For the meaning of this �. . .� cf. Lemma 166 and Lemma 183.

For ⊆: Let V ≤ Rm × Rn be a vector space of codimension k for which there exists a generating system
that satis�es the imposed rationality conditions. We have

conv
(((

P × Rm
′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
))
∩
(
Zm × Rn × Zm

′
× Rn

′
))

= conv
(((

P × Rm
′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
))
∩
(
Zm × Rn × Rm

′
× Rn

′
))

= conv ((P + V ) ∩ (Zm × Rn))× Rm
′
× Rn

′
. (4.59)

For (4.57):

clL
k− 1

2
,( · )

(
P × Rm

′
× Rn

′
)

=
(
P × Rm

′
× Rn

′
)

∩
⋂

V≤Rm×Rn×Rm
′
×Rn

′
:

codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+ V
)
∩
(
Zm × Rn × Zm

′
× Rn

′
))

⊆
(
P × Rm

′
× Rn

′
)

∩
⋂

V≤Rm×Rn:
codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
))
∩
(
Zm × Rn × Zm

′
× Rn

′
))

=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn:

codimV=k,...

(
conv ((P + V ) ∩ (Zm × Rn))× Rm

′
× Rn

′
)

(by (4.59))

=

P ∩ ⋂
V≤Rm×Rn:

codimV=k,...

conv
(

((P + V )) ∩
(
Zm × Rn × Zm

′
× Rn

′
))× Rm′ × Rn′

= clL
k− 1

2
,( · )

(P )× Rm
′
× Rn

′
.

For (4.58):

clLk,( · )

(
P × Rm

′
× Rn

′
)

=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
((
P × Rm

′
× Rn

′
)
∩
((
Zm × Rn × Zm

′
× Rn

′
)

+ V
))

⊆
(
P × Rm

′
× Rn

′
)

∩
⋂

V≤Rm×Rn:
codimV=k,...

conv
((
P × Rm

′
× Rn

′
)
∩
((
Zm × Rn × Zm

′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
)))

=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn:

codimV=k,...

(
conv (P ∩ ((Zm × Rn) + V ))× Rm

′
× Rn

′
)
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=

P ∩ ⋂
V≤Rm×Rn:

codimV=k,...

conv (P ∩ ((Zm × Rn) + V ))

× Rm′ × Rn′
= clLk,( · ) (P )× Rm

′
× Rn

′
.

For ⊇: Let V ≤ Rm × Rn × Rm′ × Rn′ be a vector space of codimension k that is generated by vectors
v1, . . . , vm+n+m′+n′−k that satisfy the rationality conditions that are imposed on the generating system of V .
Since dimV = m+ n+m′ + n′ − k, by the Steinitz exchange lemma, there exist i1, . . . , im+n−k such that

dim
((

0m × 0n × Rm
′
× Rn

′
)

+ lin
{
vi1 , . . . , vim+n−k

})
= m+ n+m′ + n′ − k.

De�ne
V ′ (V ) := projRm×Rn

(
lin
{
vi1 , . . . , vim+n−k

})
≤ Rm × Rn.

We clearly have

dim
(
V ′ (V )× Rm

′
× Rn

′
)

= m+ n+m′ + n′ − k (4.60)

and

V +
(

0m × 0n × Rm
′
× Rn

′
)
⊇
(
V ′ (V )× 0m

′
× 0n

′
)

+
(

0m × 0n × Rm
′
× Rn

′
)

= V ′ (V )× Rm
′
× Rn

′
. (4.61)

For (4.57):

clL
k− 1

2
,( · )

(P )× Rm
′
× Rn

′

=

P ∩ ⋂
V≤Rm×Rn:

codimV=k,...

conv ((P + V ) ∩ (Zm × Rn))

× Rm′ × Rn′
=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn:

codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
))
∩
(
Zm × Rn × Zm

′
× Rn

′
))

⊆
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+
(
V ′ (V )× Rm

′
× Rn

′
))
∩
(
Zm × Rn × Zm

′
× Rn

′
))

(by (4.60))

⊆
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+
(
V +

(
0m × 0n × Rm

′
× Rn

′
)))

∩
(
Zm × Rn × Zm

′
× Rn

′
))

(by (4.61))

=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
(((

P × Rm
′
× Rn

′
)

+ V
)

∩
(
Zm × Rn × Zm

′
× Rn

′
))

= clL
k− 1

2
,( · )

(
P × Rm

′
× Rn

′
)
.
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For (4.58):

clLk,( · ) (P )× Rm
′
× Rn

′

=

P ∩ ⋂
V≤Rm×Rn:

codimV=k,...

conv (P ∩ ((Zm × Rn) + V ))

× Rm′ × Rn′
=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn:

codimV=k,...

conv
((
P × Rm

′
× Rn

′
)

∩
((
Zm × Rn × Rm

′
× Rn

′
)

+
(
V × Rm

′
× Rn

′
)))

⊆
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
((
P × Rm

′
× Rn

′
)

∩
((
Zm × Rn × Rm

′
× Rn

′
)

+
(
V ′ (V )× Rm

′
× Rn

′
)))

(by (4.60))

⊆
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
((
P × Rm

′
× Rn

′
)

∩
((
Zm × Rn × Rm

′
× Rn

′
)

+ V
))

(by (4.61))

=
(
P × Rm

′
× Rn

′
)
∩

⋂
V≤Rm×Rn×Rm

′
×Rn

′
:

codimV=k,...

conv
((
P × Rm

′
× Rn

′
)

∩
((
Zm × Rn × Zm

′
× Rn

′
)

+ V
))

= clLk,( · )

(
P × Rm

′
× Rn

′
)
.

4.9.3. A�ne subspaces

4.9.3.1. Lk− 1
2 ,Q×Q

cuts

Theorem 222. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Let there exist an a�ne subspace

q + L ⊆ Rm × Rn,

where L ≤ Rm × Rn is a rational subspace, dimL =: l and q ∈ Rm, such that

P ⊆ q + L.

Let (Zm × Rn)∩L be a lattice of signature (l − s, s), let b1, . . . , bl−s, c1, . . . , cs ∈ Zm×Qn be vectors that form
a mixed lattice basis of (Zm × Rn) ∩ L, i.e.

(Zm × Rn) ∩ L =
(
b1 · · · bl−s c1 · · · bs

)( Zl−s
Rs

)
,

let bl−s+1, . . . , bm, cs+1, . . . , cn ∈ Zm × Rn be vectors that complete b1, . . . , bl−s, c1, . . . , cs ∈ Zm × Qn to a
mixed lattice basis of Zm × Rn, i.e.

Zm × Rn =
(
b1 · · · bm c1 · · · cn

)( Zm
Rn

)
and let

q =

m∑
i=1

ηqi b
i +

n∑
i=1

ϑqi c
i,
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where ηq ∈ Rm and ϑq ∈ Rn (they exist because
{
b1, . . . , bm, c1, . . . , cn

}
is a basis of Rm × Rn). Then:

• Case 1: ∃i∗ ∈ {l − s+ 1, . . . ,m} : ηqi∗ /∈ Z.
De�ne

L̂ := lin
{
b1, . . . , bi

∗−1, bi
∗+1, . . . , bm, c1, . . . , cn

}
.

Then (
P + L̂

)
I

= ∅, (4.62)

which immediately implies
clL

1− 1
2
,Q×Q

(P ) = ∅.

• Case 2: ∀i ∈ {l − s+ 1, . . . ,m} : ηqi ∈ Z.
De�ne

L̃ := lin
{
bl−s+1, . . . , bm, cs+1, . . . , cn

}
.

Then
P ∩ clI

(
P + L̃

)
= P ∩ clI (P ) ; (4.63)

thus,
clL

l− 1
2
,Q×Q

(P ) = P ∩ clI (P ) .

In any case, we have
clL

max(l,1)− 1
2
,Q×Q

(P ) = P ∩ clI (P ) .

Proof.

For (4.62): We want to show (
P + L̂

)
I

= ∅.

Let z ∈
(
P + L̂

)
I
. Then, using p ∈ P ⊆ q + L, we obtain

z =

m∑
i=1

ηqi b
i +

n∑
i=1

ϑqi c
i

︸ ︷︷ ︸
=q

+

l−s∑
i=1

ηw
L

i bi +

s∑
i=1

ϑw
L

i ci︸ ︷︷ ︸
∈L

+
∑

i∈[m]\{i∗}

ηwi b
i +

n∑
i=1

ϑwi c
i

︸ ︷︷ ︸
∈L̂

,

where

• ηwL ∈ Rl−s,

• ϑwL ∈ Rs,

• ηw ∈ R[m]\{i∗} and

• ϑw ∈ Rn.

Thus, there exist ηz ∈ R[m]\{i∗} and ϑz ∈ Rn such that

z = ηqi∗b
i∗ +

∑
i∈[m]\{i∗}

ηzi b
i +

n∑
i=1

ϑzci.

By de�nition,
(
b1, . . . , bm, c1, . . . , cn

)
is a mixed lattice basis of Zm ×Rn. On the other hand, ηqi∗ /∈ Z. Thus,

z /∈ Zm × Rn, which is a contradiction.

For (4.63): Clearly

P ∩ clI

(
P + L̃

)
⊇ P ∩ clI (P ) ;

so, we only have to show

P ∩ clI

(
P + L̃

)
⊆ P ∩ clI (P ) .
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Let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T and c0 ∈ R) be a valid inequality for PI and let p∗ ∈ P be such that cp∗ > c0.

We show that there exists a valid inequality c′ ( · ) ≤ c′0 for
(
P + L̃

)
I
such that c′p∗ > c′0.

Clearly, Rm ×Rn = L⊕ L̃, i.e. every vector in Rm ×Rn can uniquely be decomposed into vectors of these
subspaces. Thus, by Lemma 34, there exists a decomposition Rm × Rn = L⊥ ⊕ L̃⊥. Let

c = cL
⊥

+ cL̃
⊥
,

where
(
cL
⊥
)T
∈ L⊥ and

(
cL̃
⊥
)T
∈ L̃⊥. De�ne

c′ := cL̃
⊥
, c′0 := c0 − cL

⊥
q.

We claim that

1. c′ ( · ) ≤ c′0 is valid for
(
P + L̃

)
I
and

2. c′p∗ > c′0.

For 1: Let z = p+ wL̃ ∈
(
P + L̃

)
I
, where p ∈ P and wL̃ ∈ L̃. We claim that this implies p ∈ PI . Since

p ∈ P ⊆ q + L, there exists a wL ∈ L such that p = q + wL. Let

p = q +

l−s∑
i=1

ηw
L

i bi +

s∑
i=1

ϑw
L

i ci

=

m∑
i=1

ηqi b
i +

n∑
i=1

ϑqi c
i +

l−s∑
i=1

ηw
L

i bi +

s∑
i=1

ϑw
L

i ci

=

l−s∑
i=1

(
ηqi + ηw

L

i

)
bi +

m∑
i=l−s+1

ηqi b
i +

s∑
i=1

(
ϑqi + ϑw

L

i

)
ci +

n∑
i=s+1

ϑqi c
i, (4.64)

where

• ηwL ∈ Rl−s and

• ϑwL ∈ Rs.

Additionally, there exist ηw
L̃ ∈ R(s+1,...,l) and ϑw

L̃ ∈ R(s+1,...,l) such that

wL̃ =

m∑
i=l−s+1

ηw
L̃

i bi +

n∑
i=s+1

ϑw
L̃

i ci.

Thus,

z = p+ wL̃

=

l−s∑
i=1

(
ηqi + ηw

L

i

)
bi +

m∑
i=l−s+1

(
ηqi + ηw

L̃

i

)
bi +

s∑
i=1

(
ϑqi + ϑw

L

i

)
ci +

n∑
i=s+1

(
ϑqi + ϑw

L̃

i

)
ci.

Considering that z ∈ Zm × Rn and
(
b1, . . . , bm, c1, . . . , cn

)
is a mixed lattice basis of Zm × Rn, we obtain

∀i ∈ {1, . . . , l − s} : ηqi + ηw
L

i ∈ Z.

Thus, (4.64) and

∀i ∈ {l − s+ 1, . . . ,m} : ηqi︸︷︷︸
∈Z

+ηw
L̃

i ∈ Z

imply p ∈ Zm × Rn.
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Now for the proof of statement 1:

c′z = cL̃
⊥
(
p+ wL̃

)
= cp− cL

⊥
p+ cL̃

⊥
wL̃

= cp− cL
⊥
p (cL̃

⊥
∈
(
L̃⊥
)T

, wL̃ ∈ L̃)

= cp− cL
⊥

(q + w)

= cp− cL
⊥
q (cL

⊥
∈
(
L⊥
)T

, w ∈ L)

≤ c0 − cL
⊥
q (p ∈ PI)

= c′0.

For 2: Since P ⊆ q + L, there exists a w∗ ∈ L such that p∗ = q + w∗. So, we have

c′p∗ = cp∗ − cL
⊥
p∗

= cp∗ − cL
⊥

(q + w∗)

= cp∗ − cL
⊥
q (cL

⊥
∈
(
L⊥
)T

, w∗ ∈ L)

> c0 − cL
⊥
q

= c′0.

4.9.3.2. Lk,Q cuts

Theorem 223. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let there exist an a�ne subspace

q + L ⊆ Rm,

where L ≤ Rm is a rational subspace, dimL =: l and q ∈ Rm, such that

projRm P ⊆ q + L.

Let {b1, . . . , bl} ⊆ Zm be a lattice basis of Zm ∩ L. Let bl+1, . . . , bm ∈ Zm be such that
{
b1, . . . , bm

}
is a

lattice basis of Zm (these exist because of Theorem 95) and let

q =

m∑
i=1

ηqi b
i,

where ηq ∈ Rm (it exists because
{
b1, . . . , bm

}
is a basis of Rm). Then:

• Case 1: ∃i∗ ∈ {l + 1, . . . ,m} : ηqi∗ /∈ Z.
De�ne

L̂ := lin
{
b1, . . . , bi

∗−1, bi
∗+1, . . . , bm

}
.

Then
(projRm P ) ∩

(
Zm + L̂

)
= ∅, (4.65)

which immediately implies

P ∩
(

(Zm × Rn) +
(
L̂× Rn

))
= ∅;

thus,
clL1,Q (P ) = ∅.

• Case 2: ∀i ∈ {l + 1, . . . ,m} : ηqi ∈ Z.

119



4. Lk cuts and Lk− 1
2
cuts

De�ne
L̃ := lin

{
bl+1, . . . , bm

}
.

Then
(projRm P ) ∩

(
Zm + L̃

)
= (projRm P ) ∩ Zm; (4.66)

thus,

P ∩
(

(Zm × Rn) +
(
L̃× Rn

))
= P ∩ (Zm × Rn) , (4.67)

which implies
clLl,Q (P ) = P ∩ clI (P ) .

In any case, we have
clLmax(l,1),Q (P ) = P ∩ clI (P ) .

Proof.

For (4.65): We want to show

(projRm P ) ∩
(
Zm + L̂

)
= ∅.

Let p ∈ (projRm P ) ∩
(
Zm + L̂

)
. Then, using p ∈ projRm P ⊆ q + L, we obtain

p =

m∑
i=1

ηqi b
i

︸ ︷︷ ︸
=q

+

l∑
i=1

ηw
L

i bi︸ ︷︷ ︸
∈L

=

m∑
i=1

ηzi b
i

︸ ︷︷ ︸
=Zm

+
∑

i∈[m]\{i∗}

ηw
L̂

i bi

︸ ︷︷ ︸
∈L̂

,

where

• ηwL ∈ Rl,

• ηz ∈ Zm (since {b1, . . . , bm} is a lattice basis of Zm) and

• ηwL̂ ∈ R[m]\{i∗}.

Thus, by comparing coe�cients and using that {b1, . . . , bm} is linearly independent, we obtain

Z 3 ηzi∗ = ηqi∗ /∈ Z.  

For (4.66) and (4.67): Clearly,

(projRm P ) ∩
(
Zm + L̃

)
⊇ (projRm P ) ∩ Zm;

so, we only have to show

(projRm P ) ∩
(
Zm + L̃

)
⊆ (projRm P ) ∩ Zm.

Let
p = q + wL = z + wL̂,

where p ∈ projRm P , w
L ∈ L, z ∈ Zm and wL̃ ∈ L̃. Thus, there exist ηwL , ηz and ηwL̃ having

wL =

l∑
i=1

ηw
L

i bi, z =

m∑
i=1

ηzi b
i, wL̃ =

m∑
i=l+1

ηw
L̃

i bi,

where

• ηwL ∈ Rl,

• ηz ∈ Zm and

• ηwL̃ ∈ R{l+1,...,m}.
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So, we obtain

p =

l∑
i=1

(
ηqi + ηw

L

i

)
bi +

m∑
i=l+1

ηqi︸︷︷︸
∈Z

bi =

l∑
i=1

ηzi︸︷︷︸
∈Z

bi +

m∑
i=l+1

(
ηzi︸︷︷︸
∈Z

+ηw
L

i

)
bi, (4.68)

which, by comparing coe�cients and using that {b1, . . . , bm} is linearly independent, implies

∀i ∈ {l + 1, . . . ,m} : ηqi︸︷︷︸
∈Z

= ηzi︸︷︷︸
∈Z

+ηw
L

i .

Thus,
∀i ∈ {l + 1, . . . ,m} : ηw

L

i ∈ Z.

So, from (4.68), one concludes, using the fact that {b1, . . . , bm} is a lattice basis of Zm, that p ∈ Zm.
Now for (4.67):(

p1

p2

)
∈ P ∩

(
(Zm × Rn) +

(
L̃× Rn

))
⇔
(
p1

p2

)
∈ P ∧ p1 ∈ (projRm P ) ∩

(
Zm + L̃

)
⇔
(
p1

p2

)
∈ P ∧ p1 ∈ (projRm P ) ∩ Zm

⇔
(
p1

p2

)
∈ P ∩ (Zm × Rn) .

4.10. k-half-space cuts

De�nition 224. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let P ′ := P≤ (A′, b′) ⊇ P , where A′ ∈
Rk×(m+n) and b′ ∈ Rk (k ∈ Z≥0). Then we denote an inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)

T
and c0 ∈ R) for

P ′I as k,R× R-half-space cut for P . Additionally, we de�ne:

• If linealP ′ is generated by vectors from Qm ×Rn, we call c ( · ) ≤ c0 a k,Q×R-half-space cut for P .

• If linealP ′ is generated by vectors from Qm×Qn, we call c ( · ) ≤ c0 a k,Q×Q-half-space cut for P .

Theorem 225. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary and let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R)

be a

• k,R× R-half-space cut,

• k,Q× R-half-space cut or

• k,Q×Q-half-space cut,

respectively, for P with respect to P ′ := P≤ (A′, b′). Let V := linealP ′ and let k′ := m + n − dimV . Then
k′ ≤ k and c ( · ) ≤ c0 is an

• Lk′− 1
2 ,R×R

cut,

• Lk′− 1
2 ,Q×R

cut or

• Lk′− 1
2 ,Q×Q

cut,

respectively, for P with respect to V . In particular, it is an Lmin(k,m+n)− 1
2
cut for P .

Proof. W.l.o.g. we assume P 6= ∅; thus, P ′ 6= ∅.

For k′ ≤ k: It is easy to conclude from P ′ 6= ∅ that

linealP ′ = P=
(
A′, 0k

)
.

Thus,
k′ = m+ n− dimV = m+ n− dim (kerA′) = m+ n− (m+ n− dim (imA′)) ≤ k.
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For c ( · ) ≤ c0 being an Lk′− 1
2 ,·×·

cut: We have P ′I = (P ′ + V )I ⊇ (P + V )I . Thus, every inequality that is
valid for P ′I is also valid for (P + V )I .

Theorem 226. Let A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Let

P := P=
((

A G
)
, b
)
∩
(
Rm × Rn≥0

)
(as in De�nition 154) and let c ( · ) ≤ c0 (c ∈ (Rm × Rn)

T
and c0 ∈ R) be a k,R × R-half-space cut for P

(k ∈ Z≥0). Then c ( · ) ≤ c0 is a k row cut for P with respect to A, G and b.

Proof. W.l.o.g. let P 6= ∅. Let P ′ := P≤ (A′, b′) ⊇ P (A′ ∈ Rk×(m+n) and b′ ∈ Rk). Then, by Lemma 90, we
have:

∃M ∈ Rk×l, S ∈ Rk×n≥0 , s ∈ Rk≥0 : A′ =
(
MA MG− S

)
∧ b′ = Mb+ s.

We claim that
P=

(
M
(
A G

)
,Mb

)
∩
(
Rm × Rn≥0

)
⊆ P ′. (4.69)

If (4.69) is shown, we immediately conclude the statement because of

P≤ (c, c0)I ⊇ P
′
I ⊇

(
P=

(
M
(
A G

)
,Mb

)
∩
(
Rm × Rn≥0

))
I
.

So for (4.69): let x ∈ P=
(
M
(
A G

)
,Mb

)
∩
(
Rm × Rn≥0

)
. Then

A′x =
(
MA MG

)
x−

(
0k×m S

)
x = Mb−

(
0k×m S

)
x ≤Mb ≤Mb+ s = b′.
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5. Alternative characterizations of Lk,Q cuts
and essential Lk−1

2 ,Q
cuts

5.1. Motivation and outline

A naive approach for �nding Lk− 1
2 ,Q

cuts for a given rational polyhedron P ⊆ Rm (m ∈ Z≥0) with respect
to a given (rational) subspace V ≤ Rm is:

1. Compute an explicit representation of P ′ := proj⊥V ⊥ P .

2. Compute a lattice basis of Λ := proj⊥V ⊥ Zm.

3. Compute (ideally facet-de�ning) inequalities c ( · ) ≤ c0 (c ∈ (Rm)
T and c0 ∈ R) for conv (P ′ ∩ Λ) such

that cT ⊥ V (the latter condition can be assumed because of Lemma 159).

We now explain why this approach causes problems in practice. The short answer is that the number of facets
of P ′ can be very large if k ≥ 2.
In [GHOT13], it is shown that if the matrix A of P = P≤ (A, b) ⊆ Rd (d ∈ Z≥2) contains merely two

entries in each row that are di�erent from 0, there can already exist a subspace V ≤ Rd of codimension 2
such that proj⊥V ⊥ P has 2d vertices and thus (equivalently in R2 for full-dimensional polytopes) has 2d facets.
Let us sketch the proof idea. For this, let us for ε ∈

(
0, 1

2

)
consider the d-dimensional Kleene-Minty cube (cf.

[GHOT13, De�nition 5]):

PKM,d,ε :=
{
x ∈ Rd : 0 ≤ x1≤1,

εxj−1 ≤ xj≤ 1− εxj−1 ∀j ∈ {2, . . . , d}} .

For u ∈ {0, 1}d, we de�ne x (u) ∈ Rd recursively via

xj (u) := (1− uj) εxj−1 (u)

for j ∈ {1, . . . , d}, where we formally set x0 (u) := 0 (cf. [GHOT13, De�nition 6]). The following lemma is
easy to check:

Lemma 227. For all u ∈ {0, 1}d (d ∈ Z≥2), the point x (u) is a vertex of PKM,d,ε.

For given r, s ∈ Rd, we de�ne:

πr,s : Rd → R2,

x 7→
(
rTx
sTx

)
.

Then (cf. [GHOT13, De�nition 9, De�nition 11 and Lemma 12]):

Lemma 228. Let

r :=


ε3·(d−1)

ε3·(d−2)

...
ε3·1

0

 ,

s := ed,d,
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where d ∈ Z≥2, and let u ∈ {0, 1}d. Then the maximum of the functionr − d−1∑
j=0

pdj+1 (u) ε2(d−j)s

T

( · )

over PKM,d,ε is uniquely attained at the vertex x (u). Here,

pji (u) :=

j∏
k=i

(1− 2uk) ∈ {−1, 1}

is de�ned as the {−1, 1} coding of the parity of the bit vector (ui, ui+1, . . . , uj).

This, of course, has the consequence that πr,s
(
PKM,d,ε

)
has 2d vertices and facets.

So, we want to look for di�erent characterizations of Lk,Q cuts, Lk− 1
2 ,Q×Q

cuts and essential Lk− 1
2 ,Q

cuts.
To do this, one can easily picture two natural approaches:

• Show alternative characterizations for speci�c (typically small) values of k. This is done in part III
for L1− 1

2 ,Q×Q
cuts and L1− 1

2 ,Q×R
cuts (chapter 8; in particular section 8.1) and L1,Q cuts (chapter 9;

in particular section 9.1.1), and in part IV (in particular chapter 11) for L2,Q cuts (section 11.1) and
essential L2− 1

2 ,Q
cuts (section 11.2). For the latter, recall that by Theorem 208 and Theorem 211, �the

most interesting� Lk− 1
2 ,Q×Q

cuts/Lk− 1
2 ,Q×R

cuts are the essential Lk− 1
2 ,Q

cuts, since if an Lk− 1
2 ,Q×R

is
not already an Lk−1,Q cut, it has to be an essential Lk− 1

2 ,Q
cut.

• Show alternative characterizations that hold for general k ∈ {1, . . . ,m}. This is what this chapter is
about.

So, for the outline of this chapter:

• In section 5.2, we consider the relationship between Lk,Q cuts and lattice-free bodies:

� In section 5.2.1, we prove some auxiliary results about full-dimensional projections that are used
in section 5.2.2.

� In section 5.2.2, we show that for

∗ a rational polyhedron P ⊆ Rm × Rn (Theorem 231),

∗ P ⊆ Rm × Rn convex (Theorem 233) and

∗ P ⊆ Rm × Rn convex and compact (Theorem 234)

(m,n ∈ Z≥0) and a valid inequality for PI satisfying some conditions (rationality in Theorem 231;
being a strict inequality in Theorem 234), the projection of the points that are cut away into the
Rm can be embedded into a lattice-free body in a speci�c way.

� In section 5.2.3, Theorem 235, Theorem 236 and Theorem 237, we extend this result to Lk,Q cuts,
where k ∈ {0, . . . ,m}.

� In section 5.2.4, Theorem 239, we show the reverse: if we have a lattice-free polyhedron L ⊆ Rm
(m ∈ Z≥0) with a rational lineality space such that dim (linealL) ≥ k be given, it can be used to
derive an Lk,Q cut for P .

� In section 5.2.5, Theorem 240, we put all the parts together and characterize Lk,Q cuts using
lattice-free bodies.

• In section 5.3, we consider the relationship between essential Lk− 1
2 ,Q

cuts and lattice-free bodies:

� In section 5.3.1, Theorem 241, we show how rational essential Lm− 1
2 ,Q

cuts for rational polyhedra
P ⊆ Rm × Rn (m,n ∈ Z≥0) can be represented via lattice-free bodies.

� In section 5.3.2, Theorem 244, we extend this result to rational essential Lk− 1
2 ,Q

cuts for rational
polyhedra P ⊆ Rm × Rn (m,n ∈ Z≥0), where k ∈ {0, . . . ,m}.

� In section 5.3.3, Theorem 245, we show the reverse: if we have a cutting plane be given that can
be represented via a full-dimensional lattice-free body as in the previous section, it is an essential
Lk− 1

2 ,Q
cut.
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� In section 5.3.4, Theorem 246, we put all these parts together to describe essential Lk− 1
2 ,Q

cuts for
rational polyhedra using lattice-free bodies.

• In section 5.4, we consider how Lk,Q cuts and essential Lk− 1
2 ,Q

cuts can be characterized via t-branch
split disjunctions:

� In section 5.4.1, we present some results from the literature about covering lattice-free bodies
with t-branch split disjunctions. Additionally, we de�ne k, t-branch split cuts (De�nition 252) and
essential k, t-branch split cuts (De�nition 253) and their respective closures. These are restrictions
of t-branch split cuts (cf. De�nition 143) that are used later on for characterizing Lk,Q cuts and
essential Lk− 1

2 ,Q
cuts via t-branch split cuts.

� In section 5.4.2, we show in Theorem 254 that if P ⊆ Rm × Rn (m,n ∈ Z≥0) is either a rational
polyhedron or convex and compact, we have

clm,h(m)BS (P ) = clLm,Q (P ) = clI (P )

(h ( · ) is de�ned in Remark/De�nition 248 and clm,h(m)BS ( · ) is de�ned in De�nition 252). In
Theorem 255, we show that a similar statement does not hold if P ⊆ R2 is instead an irrational
hyperplane.

� In section 5.4.3, Theorem 256, we extend this to the situation where we have k ∈ {1, . . . ,m}, but
P ⊆ Rm × Rn (m,n ∈ Z≥0) is still either a rational polyhedron or convex and compact. Here, we
show that

clk,h(k)BS (P ) ⊆ clLk,Q (P ) .

In Theorem 258, we extend this result to essential Lk− 1
2 ,Q

cuts and show that

cless k,h(k)BS (P ) ⊆ clessL
k− 1

2
,Q

(P )

(cless k,h(m)BS ( · ) is de�ned in De�nition 253).

� In section 5.4.4, we put all the pieces together and show:

∗ If P ⊆ Rm×Rn (m,n ∈ Z≥0) is either a rational polyhedron or convex and compact, we have
for k ∈ {0, . . . ,m} (Theorem 259):

clLk,Q (P ) = clLk,h(k)BS (P ) .

∗ If P ⊆ Rm×Rn (m,n ∈ Z≥0) is either a rational polyhedron or convex and compact, we have
for k ∈ {0, . . . ,m} (Theorem 261):

clessL
k− 1

2
,Q

(P ) = cless k,h(k)BS (P ) .

.

∗ If P ⊆ Rm × Rn (m,n ∈ Z≥0) is a rational polyhedron, we have for k ∈ {1, . . . ,m} (Theorem
263):

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = cless k,h(k)BS (P ) ∩ clk−1,h(k−1)BS (P ) .

� In section 5.4.5, we use these structural results to show in Theorem 264 that the Lk,Q closure of a
rational polyhedron is again a rational polyhedron.

5.2. Characterizing Lk,Q cuts via lattice-free bodies

5.2.1. Full-dimensional projections

Lemma 229. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex, let projRm P be full-dimensional and let c ( · ) ≥ c0
(c ∈ (Rm × Rn)

T
and c0 ∈ R) be an inequality such that P ∩ P< (c, c0) 6= ∅. Then projRm (P ∩ P< (c, c0)) is

full-dimensional.

Proof. If c = (0m × 0n)
T (which implies c0 > 0 because of the assumption), the statement holds trivially.

Thus, let c 6= (0m × 0n)
T . Let x̂ ∈ P ∩ P< (c, c0). Since projRm P is full-dimensional, there exist linearly
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independent r1, . . . , rm ∈ Rm for which there exist s1, . . . , sm ∈ Rn having x̂+
(
ri

si

)
∈ P for all i ∈ [m]. Let

µi :=


min

 c0−cx̂

2c

(
ri

si

) , 1
 if c

(
ri

si

)
> 0,

1 if c
(
ri

si

)
≤ 0

∀i ∈ [m] .

Using 0m < µ ≤ 1m (the strict inequality holds because x̂ ∈ P ∩ P< (c, c0)) and that P is convex, we obtain

∀i ∈ [m] : x̂+ µi

(
ri

si

)
∈ P.

Additionally, we claim

∀i ∈ [m] : c

(
x̂+ µi

(
ri

si

))
< c0.

For this:

c

(
x̂+ µi

(
ri

si

))
= (cx̂− c0) + c0 + µic

(
ri

si

)
=: (5.1).

If c
(
ri

si

)
≤ 0, we have

(5.1) = (cx̂− c0)︸ ︷︷ ︸
<0

+c0 + 1 · c
(
ri

si

)
︸ ︷︷ ︸
≤0

< c0.

On the other hand, if c
(
ri

si

)
> 0, we conclude

(5.1) ≤ (cx̂− c0) + c0 +
c0 − cx̂

2c

(
ri

si

)c( ri

si

)
=

1

2
(cx̂− c0)︸ ︷︷ ︸

<0

+c0 < c0.

For the role of Lemma 229 in the later context of this text: by using cutting planes, one cuts away points
of P to approach clI (P ). The set of the points that are cut o� obviously forms a lattice-free body, which, by
Theorem 111, can be embedded into a maximal lattice-free body. By Theorem 108, a maximal lattice-free
body in Rm can also be an irrational hyperplane of codimensionm−1 (which is not full-dimensional), which is
often an inconvenient situation. So one wishes to avoid this degenerate constellation. Lemma 229 guarantees
that if projRm P is full-dimensional, so is the set of points that are cut o� and the maximal lattice-free body
into which these points can be embedded.
We next consider a lemma (Lemma 230) that guarantees that a projection is full-dimensional, so that we

can apply Lemma 229.

Lemma 230. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex and let projRm P be full-dimensional. For linearly
independent vectors π1, . . . , πk ∈ Zm (k ∈ {0, . . . ,m}), de�ne

S
(
P, π1, . . . , πk

)
:= conv


 x

y
z

 ∈ P × Rk :
(
πi
)T
x = zi ∀i ∈ [k]

 .

Then projRk S
(
P, π1, . . . , πk

)
is convex and full-dimensional.

Proof. Convexity is obvious; so, we only prove full-dimensionality. Let ( xy ) ∈ P be such that x ∈ int (projRm P )
(such a point clearly exists). Thus, there exists an ε > 0 such that

x+ επ1, . . . , x∗ + επk ∈ projRm P.

So, we can �nd a y ∈ Rn and µ1, . . . , µk ∈ Rn such that(
x
y

)
+ ε

(
π1

µ1

)
,

(
x
y

)
+ · · ·+ ε

(
πk

µk

)
∈ P.
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This means
x
y(

π1
)T
x

...(
πk
)T
x

 ∈ S
(
P, π1, . . . , πk

)
∧ ∀i ∈ [k] :


x
y(

π1
)T
x

...(
πk
)T
x

+ ε


πi

µi(
π1
)T
πi

...(
πk
)T
πi

 ∈ S
(
P, π1, . . . , πk

)
.

So, it su�ces to show that 
(
π1
)T
π1 · · ·

(
π1
)T
πk

...
. . .

...(
πk
)T
π1 · · ·

(
πk
)T
πk


has full rank. But this holds by Lemma 28.

5.2.2. k = m

The following theorem generalizes statements that are proved implicitly in the proof of [DDG11, Lemma 2.1]
to arbitrary m ∈ Z≥0.

Theorem 231. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let c ( · ) ≥ c0, where c ∈
(Qm ×Qn)

T
and c0 ∈ R (even though only the case c0 ∈ Q is of interest for this text), be a valid inequality

for PI (in other words: an Lm,Q cut for P ). Let R := P ∩ P< (c, c0). Then there exists a full-dimensional,
maximal lattice-free, rational polyhedron L ⊆ Rm such that

projRm R ⊆ intL.

In particular, c ( · ) ≥ c0 is valid for P\ ((intL)× Rn).

Proof. W.l.o.g. we can assume R 6= ∅ and P = P≤ (A, b), where A is rational. Obviously, we have RI = ∅
and thus also (projRm R)I = ∅. By Theorem 64, there exist G1 ∈ Qt1×m, G2 ∈ Qt2×m and vectors g1 ∈ Qt1 ,
g2 ∈ Qt2 (t1, t2 ∈ Z≥0) such that

projRm R =
{
x ∈ Rm : G1x ≤ g1, G2x < g2

}
.

W.l.o.g. let G1, G2 be integral. De�ne g′1 ∈ Zt1 via

g′1i :=

{
dgie if g1

i /∈ Z,
g1
i + 1 if g1

i ∈ Z
∀i ∈ [t1] .

Consider (since G1 is integral) that for x ∈ Zm, we have ∀i ∈ [t1]: G1
i,∗x ≤ g1

i ⇔ G1
i,∗x < g′1i . Let

S := P<
((

G1

G2

)
,

(
g′1

g2

))
.

Clearly, SI = ∅. Observe that S is full-dimensional, since

• S 6= ∅ (since ∅ 6= projRm R ⊆ S) and

• S is generated by strict inequalities.

Thus, S = P≤
((

G1

G2

)
,
(
g′1

g2

))
(the topological closure of S) is surely lattice-free. By Theorem 111, there

exists a rational, maximal lattice-free polyhedron L ⊆ Rm having L ⊇ S. So, we have

projRm R ⊆ S ⊆ intS ⊆ intL.

Before we formulate the next theorem (Theorem 233), we show a small lemma:
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Lemma 232. Let L = P≤
(
AL, bL

)
⊆ Rm be a lattice-free body, where AL ∈ Rl×m and bL ∈ Rl (l,m ∈ Z≥0).

Then
l⋂
i=1

(
P<

(
ALi,∗, b

L
i

)
∪̇
(
P=

(
ALi,∗, b

L
i

)
\
(
P=

(
ALi,∗, b

L
i

)
I

)))
= (intL) ∪̇ ((bdL) \ (bdL)I) .

Proof.

For ⊆: Let

x ∈
l⋂
i=1

(
P<

(
ALi,∗, b

L
i

)
∪̇
(
P=

(
ALi,∗, b

L
i

)
\
(
P=

(
ALi,∗, b

L
i

)
I

)))
.

If ALx < bL, we have x ∈ intL. On the other hand, if ∃i [l] : ALi,∗x = bLi , we conclude (using x ∈ L): x ∈ bdL.
By construction, x is not integral. So, x /∈ (bdL)I .

For ⊇: Let x ∈ (intL) ∪̇ ((bdL) \ (bdL)I). If x ∈ intL, we have ALx < bL. On the other hand, if
x ∈ (bdL) \ (bdL)I , we have A

Lx ≤ bL and ∃i ∈ [l] : ALi,∗x = bi. So, since x is not integral, we conclude

x ∈
l⋂
i=1

(
P<

(
ALi,∗, b

L
i

)
∪̇
(
P=

(
ALi,∗, b

L
i

)
\
(
P=

(
ALi,∗, b

L
i

)
I

)))
.

Theorem 233. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex and let c ( · ) ≥ c0, where c ∈ (Rm × Rn)
T
and

c0 ∈ R, be a valid inequality for PI (in other words: an Lm,Q cut for P ). Set R := P ∩P< (c, c0). Then there
exists a maximal lattice-free polyhedron L ⊆ Rm such that

projRm R ⊆ (intL) ∪̇ ((bdL) \ (bdL)I) .

In particular, c ( · ) ≥ c0 is valid for

P\ (((intL) ∪̇ ((bdL) \ (bdL)I))× R
n) .

If projRm P is full-dimensional, so is L.

Proof. W.l.o.g. we can assume R 6= ∅. Since RI = ∅, projRm R is surely lattice-free. Thus, by Lemma 107,
there exists a maximal lattice-free body L ⊇ projRm R. By Theorem 108, L is a polyhedron; so, there exist
AL ∈ Rl×m and bL ∈ Rl (l ∈ Z≥0) such that L = P≤

(
AL, bL

)
. Since R ⊆ L, we surely have for all i ∈ [l]:

projRm R ⊆ P≤
(
ALi,∗, b

L
i

)
. (5.2)

Since RI = ∅, also clearly P=
(
AL, bL

)
I
∩ projRm R = ∅ holds. Thus, we can tighten (5.2) to

projRm R ⊆
l⋂
i=1

(
P<

(
ALi,∗, b

L
i

)
∪̇
(
P=

(
ALi,∗, b

L
i

)
\
(
P=

(
ALi,∗, b

L
i

)
I

)))
= (intL) ∪̇ ((bdL) \ (bdL)I) . (by Lemma 232)

If projRm P is full-dimensional, we get from Lemma 229 that projRm R is full-dimensional, too. Since
projRm R ⊆ L, we then obtain the full-dimensionality of L.

The following theorem generalizes statements that are proved implicitly in the proof of [DDG11, Theo-
rem 5.1] to arbitrary m ∈ Z≥0:

Theorem 234. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex and compact and let c ∈ (Rm × Rn)
T
and c0 ∈ R

be given such that
∀x ∈ PI : cx > c0. (5.3)

Set R := P ∩ P< (c, c0) . Then there exists a full-dimensional, maximal lattice-free polyhedron L ⊆ Rm such
that projRm R ⊆ intL. In particular, c ( · ) ≥ c0 is valid for P\ ((intL)× Rn).
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Proof. W.l.o.g. we can assume R 6= ∅. Set S := P ∩ P≤ (c, c0) . Since S is convex, closed and bounded, also
projRm S is. We have (projRm S)I = ∅. To realize this, assume otherwise, i.e. assume ∃x ∈ (projRm S)I . Then
there exists a y ∈ Rn such that ( xy ) ∈ SI =

(
P ∩ P≤ (c, c0)

)
I
, which is a contradiction to (5.3).

Since projRm S is bounded, there exists a full-dimensional polytope U =: P≤
(
AU , bU

)
⊆ Rm such that

projRm S ⊆ intU . Let
{
v1, . . . , vk

}
:= UI (since U is bounded, the number of integral points in U is �nite).

Then there exist c1, . . . , ck ∈ (Rm)
T and ε1, . . . , εk ∈ R>0 such that

∀i ∈ [k] , x ∈ projRm S : civi − cix > εi. (5.4)

Let V := U ∩
⋂k
i=1 P

≤ (ci, civi) . We claim that

1. V is lattice-free,

2. projRm S ⊆ intV (thus, in particular, V is full-dimensional, since projRm S 6= ∅).

For 1: Let x ∈ VI . Then x = vi for some i ∈ [k], since V ⊆ U . On the other hand, we have civi ≤ civi.
Since ci ( · ) ≤ civi is one of the inequalities de�ning V , we thus conclude x ∈ bdV and obtain x /∈ intV .

For 2: Let x ∈ projRm S. Since projRm S ⊆ intU , we have AUx < bU . On the other hand, by (5.4), we have
cix < civi − εi < civi.

So, by Lemma 107, there exists a full-dimensional, maximal lattice-free polyhedron L having V ⊆ L ⊆ Rm.
By Theorem 108, L is a polyhedron. We thus conclude

projRm R = projRm
(
P ∩ P< (c, c0)

)
⊆ projRm

(
P ∩ P≤ (c, c0)

)
= projRm S ⊆ intL.

5.2.3. k ≤ m

Theorem 235. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let V ′ ≤ Rm be a rational

subspace of codimension k ∈ {0, . . . ,m}. De�ne V := V ′×Rn. Let c ( · ) ≥ c0, where c ∈ (Qm ×Qn)
T
and c0 ∈

R (even though only the case c0 ∈ Q is of interest for this text), be a valid inequality for P ∩ ((Zm × Rn) + V )
(in other words: an Lk,Q cut for P with respect to V ; recall that, by Theorem 168, it su�ces to consider
vector spaces of this form for Lk,Q cuts). Set R := P ∩ P< (c, c0).

Then there exists a full-dimensional, maximal lattice-free, rational polyhedron L ⊆ Rm, where projRm R ⊆
intL and linealL ≥ V ′. In particular, c ( · ) ≥ c0 is valid for P\ ((intL)× Rn).

Theorem 236. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex and let V ′ ≤ Rm be a rational subspace of

codimension k ∈ {0, . . . ,m}. De�ne V := V ′ × Rn. Let c ( · ) ≥ c0, where c ∈ (Rm × Rn)
T
and c0 ∈ R, be a

valid inequality for P ∩ ((Zm × Rn) + V ) (in other words: an Lk,Q cut for P ). Set R := P ∩ P< (c, c0).

Then there exists a maximal lattice-free polyhedron L ⊆ Rm such that we have

projRm R ⊆ (intL) ∪̇ ((bdL) \ ((bdL)I + V ′))

and linealL ≥ V ′. In particular, c ( · ) ≥ c0 is valid for

P\ (((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))× Rn) .

If projRm P is full-dimensional, so is L.

Theorem 237. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be convex, closed and bounded. Let V ′ ≤ Rm be a rational

subspace of codimension k ∈ {0, . . . ,m}. De�ne V := V ′ × Rn. Let c ( · ) > c0, where c ∈ (Rm × Rn)
T
and

c0 ∈ R, be a valid inequality for P ∩ ((Zm × Rn) + V ) (in other words: an Lk,Q cut for P , though in this case
a strict linear inequality). Set R := P ∩ P< (c, c0) .

Then there exists a full-dimensional maximal lattice-free polyhedron L, where projRm R ⊆ intL and linealL ≥
V ′. In particular, c ( · ) ≥ c0 is valid for P\ ((intL)× Rn).

Before we prove Theorem 235, Theorem 236 and Theorem 237, we show a small helper statement:
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Lemma 238. Let Qpre ⊆ Rk (k ∈ Z≥0) be arbitrary and let x∗,pre ∈ Qpre and εpre ∈ R>0 be such that
Bεpre (x∗,pre) ⊆ Qpre. De�ne Q :=

{
x ∈ Rm : WTx ∈ Qpre

}
, where m ∈ Z≥0, and W ∈ Rm×k is a matrix

with linearly independent columns. Set x∗ := W
(
WTW

)−1
x∗,pre. Then there exists an ε ∈ R>0 such that

Bε (x∗) ⊆ Q.

Proof. Let

ε :=
1

max {‖WTx‖ : x ∈ Sm−1}
.

By the Weierstrass extreme value theorem, the maximum in the denominator clearly exists. We claim:

1. ∀x ∈ Q, v ∈ (imW )
⊥

: x+ v ∈ Q,

2. ∀w ∈ imW, ‖w‖ < 1 : x∗ + ε · w ∈ Q.

For 1: Let x ∈ Q. Then WTx ∈ Qpre. Using v ⊥ imW , we obtain

x+ v ∈ Q⇔WT (x+ v) ∈ Qpre ⇔WTx ∈ Qpre.

For 2: If w = 0m (which is equivalent to ‖w‖ = 0), we trivially have
∥∥εWTw

∥∥ = 0 < 1. On the other hand,
if ‖w‖ > 0, we obtain

∥∥ε ·WTw
∥∥ = ε · ‖w‖ ·

∥∥∥∥WT w

‖w‖

∥∥∥∥ ≤ ε · ‖w‖ ·max
{∥∥WTx

∥∥ : x ∈ Sm−1
}

= ‖w‖ < 1.

So, we conclude:

Bεpre (x∗,pre) ⊆ Qpre ⇒ x∗,pre + ε ·WTw ∈ Qpre

⇔WT
(
W
(
WTW

)−1
x∗,pre + ε · w

)
∈ Qpre (

(
WTW

)−1
exists by Lemma 28)

⇔ x∗ + ε · w ∈ Q.

Now let r ∈ B1(0m) (i.e. ‖r‖ < 1). r can be partitioned into r = v+w, where v ∈ (imW )
⊥ and w ∈ imW ,

where ‖v‖ , ‖w‖ < 1. Thus,

x∗ + ε · r = x∗ + ε · (v + w) = x∗ + ε · w︸ ︷︷ ︸
∈Q (by 2)

+ ε · v︸︷︷︸
∈(imW )⊥︸ ︷︷ ︸

∈Q (by 1)

∈ Q.

We now prove Theorem 235, Theorem 236 and Theorem 237:

Proof. (Theorem 235, Theorem 236 and Theorem 237) W.l.o.g. we can assume R 6= ∅. By Theorem 172,
there exist linearly independent vectors w1, . . . , wk ∈ Zm such that{(

x
y

)
∈ P :

(
w1
)T
x ∈ Z, . . . ,

(
wk
)T
x ∈ Z

}
= P ∩ ((Zm × Rn) + V ) . (5.5)

Let W :=
(
w1 · · · wk

)
and recall that, by Lemma 98 and Theorem 172, we have

Zm + V ′ =
{
x ∈ Rk : WTx ∈ Zk

}
. (5.6)

De�ne

SLP :=


 x

y
z

 ∈ P × Rk : z = WTx

 ,

S := SLP ∩
(
Rm × Rn × Zk

)
.
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We claim that(
c(1,...,m)

(
Im −

(
W
(
WTW

)−1
)
WT

))
x+ c(m+1,...,m+n)y +

(
c(1,...,m)W

(
WTW

)−1
)
z ≥ c0 (5.7)

is a valid linear inequality for
(
x
y
z

)
∈ S (the inverse

(
WTW

)−1
exists by Lemma 28). For this, let

(
x
y
z

)
∈ S.

Then (
c(1,...,m)

(
Im −

(
W
(
WTW

)−1
)
WT

))
x+ c(m+1,...,m+n)y +

(
c(1,...,m)W

(
WTW

)−1
)
z

=
(
c(1,...,m)

(
Im −W

(
WTW

)−1
WT

))
x+ c(m+1,...,m+n)y + c(1,...,m)W

(
WTW

)−1
WTx

=c(1,...,m)x+ c(m+1,...,m+n)y

≥c0 (since ( xy ) ∈ P and WTx ∈ Zk).

We claim that there exists a maximal lattice-free body Lpre := P≤ (Apre, bpre) ⊆ Rk such that (5.7) is a
valid linear inequality for

SLP \ (Rm × Rn × intLpre) (for Theorem 235 and Theorem 237),

SLP ∩ (Rm × Rn × ((intLpre) ∪̇ ((bdLpre) \ (bdLpre)I))) (for Theorem 236)

and we additionally have

Apre ∈ Ql×k ∧ bpre ∈ Ql (for Theorem 235),

Apre ∈ Rl×k ∧ bpre ∈ Rl (for Theorem 236 and Theorem 237)

(l ∈ Z≥0) and Lpre is full-dimensional if necessary (for Theorem 235 and Theorem 237; for Theorem 236 if
projRm P is full-dimensional).

• In the case of Theorem 235, this is a consequence of Theorem 231: because P is a rational polyhedron,
so is SLP .

• In the case of Theorem 236, this is a consequence of Theorem 233. Note that if projRm P is full-
dimensional, by Lemma 230, projRk S

LP is full-dimensional, too.

• In case of Theorem 237, note that, since P is convex and compact, so is also S and we can apply
Theorem 234.

We claim that

• L := P≤
(
ApreWT , bpre

)
is a rational (in case of Theorem 235), full-dimensional (except for Theorem

236 if projRm P is not full-dimensional), maximal lattice-free body with linealL ≥ V ′.

• c ( · ) ≥ c0 is valid for

� P\ ((intL)× Rn) (for Theorem 235 and Theorem 237),

� P\ (((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))× Rn) (for Theorem 236).

Since V ′ ⊥ w1, . . . , wk, we clearly have ApreWT v = Apre0m = 0l for all v ∈ V ′. Thus, linealL ≥ V ′. To
see that L is lattice-free, let z ∈ Zm. Then, clearly,

WT z ∈ Zk (5.8)

and, since Lpre is lattice-free, there exists an i ∈ [l] such that Ai,∗WT z ≥ bi.
For L being full-dimensional (if applicable): by construction, Lpre ⊆ Rk is full-dimensional in the cases

where we want to prove that L is full-dimensional. So,

∃x∗,pre ∈ Lpre, εpre ∈ R>0 : Bεpre (x∗,pre) ⊆ Lpre.

Now consider that L =
{
x ∈ Rm : WTx ∈ Lpre

}
. By Lemma 238, there exists an ε ∈ R>0 such that Bε (x∗) ⊆

L, where x∗ := W
(
WTW

)−1
x∗,pre.

For L being maximal lattice-free: by construction, Lpre is maximal lattice-free. Thus, by Theorem 108,
Lpre can only be of two forms:
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1. Lpre is a full-dimensional polyhedron with an integral point in the relative interior of each facet,

2. Lpre is a translate of an irrational hyperplane.

For case 1: We can w.l.o.g. assume that every inequality of P≤ (Apre, bpre) is facet-de�ning. Thus, by
Theorem 108,

∀i ∈ [l]∃z∗,pre,i ∈ Zk : Aprei,∗ z
∗,pre,i = bprei ∧Apre[l]\{i},∗z

∗,pre,i < bpre[l]\{i}.

Because of (5.6), we have

∀i ∈ [l]∃z∗,i ∈ Zm, v′∗,i ∈ V ′ : WT
(
z∗,i + v′∗,i

)
= z∗,pre,i.

This implies that for all i ∈ [l], we have

Aprei,∗ W
T z∗,i = Aprei,∗ W

T
(
z∗,i + v′∗,i

)
= Aprei,∗ z

∗,pre,i = bi,

Apre[l]\{i},∗W
T z∗,i = Apre[l]\{i},∗W

T
(
z∗,i + v′∗,i

)
= Apre[l]\{i},∗z

∗,pre,i < bpre[l]\{i}.

By Theorem 110, this implies that L = P≤
(
ApreWT , bpre

)
is a full-dimensional, maximal lattice-free body.

For case 2: We can assume that l = 1 and Apre1,∗ 6= (0m)
T . Denote d := Apre1,∗ and d0 := bpre1 . Assume

that there exists a lattice-free body L̂ ) L and let x̂∗ ∈ L̂\L. By de�nition, dWT x̂∗ 6= d0. W.l.o.g. let
dWT x̂∗ > d0. Consider

L̂− :=
{
x ∈ Rm : d0 ≤ dWTx < dWT x̂∗

}
,

L̂pre,− :=
{
x ∈ Rk : d0 ≤ dx < dx̂∗

}
.

Clearly,

L̂− =
{
x ∈ Rm : WTx ∈ L̂pre,−

}
. (5.9)

Additionally,
L̂− ⊆ L̂ (5.10)

holds (we show this later on). Let z∗,pre ∈ Zk and ε∗,pre ∈ R>0 be such that

Bε∗,pre (z∗,pre) ⊆ int
(
conv

(
Lpre ∪̇

{
WT x̂∗

}))
⊆
{
x ∈ Rm : d0 ≤ dWTx ≤ dWT x̂∗

}
.

Since Bε∗,pre (z∗,pre) is an open set, we even have

Bε∗,pre (z∗,pre) ⊆ int
{
x ∈ Rm : d0 ≤ dWTx ≤ dWT x̂∗

}
=
{
x ∈ Rm : d0 < dWTx < dWT x̂∗

}
⊆
{
x ∈ Rm : d0 ≤ dWTx < dWT x̂∗

}
= L̂pre,−.

So, by Lemma 238 and (5.9), there exists an ε∗ ∈ R>0 such that Bε
(
W
(
WTW

)−1
z∗,pre

)
⊆ L̂−. Now

consider that
WT

(
W
(
WTW

)−1
z∗,pre

)
= z∗,pre ∈ Zk.

Thus, by (5.6), we have W
(
WTW

)−1
z∗,pre =: z∗ + v∗, where z∗ ∈ Zm and v∗ ∈ V ′. Since V ′ ≤ lineal L̂−,

we thus conclude using (5.10):
Bε (z∗) ⊆ L̂− ⊆ L̂.

So, clearly, L̂ is not lattice-free.

Now for (5.10): let x ∈ L̂−, i.e. d0 ≤ dWTx < dWT x̂∗ and let x = xWdT + x(WdT )
⊥

, where

xWdT ∈ lin
{
WdT

}
, x(WdT )

⊥

⊥WdT .
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Clearly,

x =
dWT (x̂∗ − x)

dWT x̂∗ − d0
·

((
dWT x̂∗

)
· x−

(
dWTx

)
· x̂∗ + d0 · (x̂∗ − x)

dWT (x̂∗ − x)

)
︸ ︷︷ ︸

=:y∗

+
dWTx− d0

dWT x̂∗ − d0
· x̂∗

∈ conv {y∗, x̂∗} .

What remains to be shown is y∗ ∈ L̂. We show that even y∗ ∈ L holds:

dWT y∗ = dWT

(
dWT x̂∗

)
· x−

(
dWTx

)
· x̂∗ + d0 · (x̂∗ − x)

dWT (x̂∗ − x)
= d0.

We now show that c ( · ) ≥ c0 is valid for

1. P\ ((intL)× Rn) (for Theorem 235 and Theorem 237),

2. P\ (((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))× Rn) (for Theorem 236).

For 1: Let ( xy ) ∈ P\ ((intL)× Rn) . So, there exists an i∗ ∈ [l] such that Aprei∗,∗W
Tx ≥ bprei∗ . This means

WTx ∈ Rk\ (intLpre) and thus  x
y

WTx

 ∈ SLP \ (Rm × Rn × (intLpre)) .

So, (5.7) is a valid inequality for
( x

y

WT x

)
and we conclude using (5.7):

c(1,...,m)x+ c(m+1,...,m+n)y

=c(1,...,m)

(
Im −W

(
WTW

)−1
WT

)
x+ c(m+1,...,m+n)y +

(
c(1,...,m)W

(
WTW

)−1
WT

)
x

≥c0.

For 2: Let (
x
y

)
∈ P\ (((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))× Rn)

This implies that there exists some i∗ ∈ [l] such that

1. Aprei∗,∗W
Tx > bi∗ or

2. Aprei∗,∗W
Tx = bi∗ ∧ x /∈ Zm + V ′.

We claim that in both cases

WTx ∈ Rk\ ((intLpre) ∪̇ ((bdLpre) \ (bdLpre)I)) (5.11)

holds.
In case 1, we clearly have

WTx ∈ Rk\Lpre ⊆ Rk\ ((intLpre) ∪̇ ((bdLpre) \ (bdLpre)I)) ,

which implies (5.11).
In case 2, if WTx /∈ Lpre, equation (5.11) clearly holds. So, let WTx ∈ Lpre. Then, by case assump-

tion, clearly WTx ∈ bdLpre. Assuming WTx ∈ Zk leads by (5.6) to the contradiction x ∈ Zm + V ′. So,
WTx ∈ bdLpre\ (bdLpre)I , again showing (5.11).

Using (5.11), we obtain x
y

WTx

 ∈ SLP \ (Rm × Rn × ((intLpre) ∪̇ ((bdLpre) \ (bdLpre)I))) .

133



5. Alternative characterizations of Lk,Q cuts and essential Lk− 1
2 ,Q

cuts

So, (5.7) is a valid inequality for
( x

y

WT x

)
and we conclude using (5.7):

c(1,...,m)x+ c(m+1,...,m+n)y

=c(1,...,m)

(
Im −W

(
WTW

)−1
W
)
x+ c(m+1,...,m+n)y + c(1,...,m)W

(
WTW

)−1 (
WTx

)
≥c0.

5.2.4. Reverse inclusions

Theorem 239. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let V ′ ≤ Rm be a rational subspace of
codimension k ∈ {0, . . . ,m}. Let ∅ 6= L = P≤

(
AL, bL

)
⊆ Rm (AL ∈ Rl×m and bL ∈ Rl, where l ∈ Z≥0) be a

lattice-free polyhedron such that linealL ≥ V ′. Then every linear inequality for

P\ (((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))× Rn) (5.12)

(this in particular includes the special case P\ ((intL)× Rn)) is an Lk,Q cut for P with respect to V := V ′×Rn.

Proof. Let c ( · ) ≥ c0 be valid for (5.12) and let ( xy ) := z︸︷︷︸
∈Zm×Rn

+ v︸︷︷︸
∈V

∈ P ∩ ((Zm × Rn) + V ) . If we can

show ( xy ) ∈ (5.12), we are done. Clearly, ( xy ) ∈ P ; so, only

x ∈ Rm\ ((intL) ∪̇ ((bdL) \ ((bdL)I + V ′)))

remains to be shown. Because of linealL ≥ V ′ and L 6= ∅, we have ALv(1,...,m) = 0l. Thus,

ALx = AL
(
z(1,...,m) + v(1,...,m)

)
= ALz(1,...,m). (5.13)

Since z(1,...,m) ∈ Zm and L is lattice-free, we have

∃i ∈ [l] : Ai,∗z(1,...,m) ≥ bi. (5.14)

We consider two cases:

1. ∃i ∈ [l] : Ai,∗z(1,...,m) > bi,

2. ∀i ∈ [l] : Ai,∗z(1,...,m) ≤ bi.

For case 1: Let i∗ ∈ [l] be such that Ai∗,∗z(1,...,m) > bi∗ . Using (5.13), we obtain ALi∗,∗x > bLi∗ , which implies
x ∈ Rm\L. Finally, since

L ⊇ (intL) ∪̇ ((bdL) \ ((bdL)I + V ′)) ,

we conclude x ∈ Rm\ ((intL) ∪̇ ((bdL) \ ((bdL)I + V ′))).

For case 2: Let i∗ ∈ [l] be such that Ai∗,∗z(1,...,m) = bi∗ (i∗ exists by case assumption and (5.14)). Combined
with the case assumption, we thus obtain z(1,...,m) ∈ bdL, from which we conclude z(1,...,m) ∈ (bdL)I . So,
x ∈ (bdL)I + V ′. Because of

(bdL)I + V ′ ⊆ Rm\ ((intL) ∪̇ ((bdL) \ ((bdL)I + V ′))) ,

we conclude x ∈ Rm\ ((intL) ∪̇ ((bdL) \ ((bdL)I + V ′))).

5.2.5. Conclusion

We now summarize the central results that we showed in section 5.2. Recall that in section 3.4.1, we looked
ahead and mentioned that rational Lk,Q cuts for a rational polyhedron are often equivalent to lattice-free cuts
with respect to (maximal) lattice-free bodies L ⊆ Rm having

codim (linealL) ≥ k.

Formulating this relationship more precisely is one of the statements of the following theorem (Theorem 240).
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Theorem 240. Let m,n ∈ Z≥0, let k ∈ {0, . . . ,m} and let V ′ ≤ Rm be a rational subspace of codimension
k. Then:

1. Let P ⊆ Rm ×Rn be a rational polyhedron, let c ∈ (Qm ×Qn)
T
and let c0 ∈ R (recall that, by Theorem

178, for rational polyhedra, every Lk,Q cut is dominated absolutely by a set of rational Lk,Q cuts). Let
c ( · ) ≥ c0 be an Lk,Q cut for P with respect to V ′×Rn. Then there exists a rational maximal lattice-free
polyhedron L ⊆ Rm having linealL ≥ V ′ such that c ( · ) ≥ c0 is valid for

P\ ((intL)× Rn) ,

which in particular implies that c ( · ) ≥ c0 is valid for

P\ (((intL) ∪̇ ((bdL) \ (bdL)I))× R
n) .

Together with 3 of this enumeration, we thus get: an inequality c ( · ) ≥ c0, where c ∈ (Qm ×Qn)
T
and

c0 ∈ R, is an Lk,Q cut for P with respect to V ′ × Rn if and only if there exists a rational lattice-free
polyhedron L ⊆ Rm such that linealL ≥ V ′ and c ( · ) ≥ c0 is valid for

P\ ((intL)× Rn) .

2. Let P ⊆ Rm×Rn be convex, let c ∈ (Rm × Rn)
T
and let c0 ∈ R. Let c ( · ) ≥ c0 be an Lk,Q cut for P with

respect to V ′ × Rn. Then there exists a maximal lattice-free polyhedron L ⊆ Rm having linealL ≥ V ′

such that c ( · ) ≥ c0 is valid for

P\ (((intL) ∪̇ ((bdL) \ (bdL)I))× R
n) .

If projRm P is full-dimensional, we can assume L to be full-dimensional, too.

Together with 3 of this enumeration, we thus get: c ( · ) ≥ c0 is an Lk,Q cut for P with respect to V ′×Rn
if and only if there exists a lattice-free polyhedron L ⊆ Rm such that linealL ≥ V ′ and c ( · ) ≥ c0 is
valid for

P\ (((intL) ∪̇ ((bdL) \ (bdL)I))× R
n) .

3. Let P ⊆ Rm × Rn be arbitrary, let L ⊆ Rm be a lattice-free polyhedron having linealL ≥ V ′, let
c ∈ (Rm × Rn)

T
and let c0 ∈ R be such that c ( · ) ≥ c0 is valid for

P\ (((intL) ∪̇ ((bdL) \ (bdL)I))× R
n)

(this is, in particular, satis�ed if c ( · ) ≥ c0 is valid for P\ ((intL)× Rn)). Then c ( · ) ≥ c0 is an Lk,Q
cut for P with respect to V ′ × Rn.

Proof. 1, 2 and 3, respectively, hold by Theorem 235, Theorem 236 and Theorem 239, respectively.

5.3. Characterizing essential Lk− 1
2 ,Q

cuts via lattice-free bodies

In this section, we want to characterize essential Lk− 1
2 ,Q

cuts for rational polyhedra via lattice-free bodies. Let
us �rst recapitulate (cf. Theorem 208) that for an arbitrary P ⊆ Rm ×Rn (m,n ∈ Z≥0) and k ∈ {1, . . . ,m},
every Lk− 1

2 ,Q×R
cut (or Lk− 1

2 ,Q×Q
cut) for P that is not already an Lk−1,Q cut for P , is an essential Lk− 1

2 ,Q
cut for P . We also want to recapitulate (cf. Lemma 159) that for an essential Lk− 1

2 ,Q
cut c ( · ) ≤ c0

(k ∈ {0, . . . ,m}) with respect to V ′ × Rn, we can assume c =
(
c′ (0n)

T
)
, where c′T ⊥ V ′.

5.3.1. k = m

Theorem 241. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron. Then:

1. If (P + (0n × Rn))I = ∅ (which is equivalent to PI = ∅), there exists a rational, full-dimensional,
maximal lattice-free polyhedron L ⊆ Rm such that P ⊆ (intL)× Rn. In particular, we have

P\ ((intL)× Rn) = ∅.
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2. If (P + (0n × Rn))I 6= ∅ (which is equivalent to PI 6= ∅), let(
c′ (0n)

T
)

︸ ︷︷ ︸
=:c

( · ) ≥ c0,

where c′ ∈ (Qm)
T
and c0 ∈ R, be a linear inequality for (P + (0n × Rn))I that is not already valid for P

(because of the particular structure of c, the statements c ( · ) ≥ c0 being valid for (P + (0n × Rn))I and
c ( · ) ≥ c0 being valid for PI are equivalent). Then there exists a rational, full-dimensional polyhedron
L̃ ⊆ Rm such that

a) L := L̃ ∩ P≤ (c′, c̃0) is a rational, full-dimensional, maximal lattice-free polyhedron, where c̃0 ∈ Q
satis�es c̃0 ≥ c0,

b) P ⊆
(

int L̃
)
× Rn.

Remark 242. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron (as in Theorem 241). Consider an
essential Lm− 1

2 ,Q
cut for P , i.e. a linear inequality for (P + (0m × Rn))I . Then, if PI 6= ∅, by Lemma 159,

every linear inequality c ( · ) ≥ c0 for P + (0m × Rn) has to satisfy cT ⊥ 0m × Rn; so c =
(
c′ (0n)

T
)
,

where c′ ∈ (Rm)
T
.

On the other hand, P + (0m × Rn) is also a rational polyhedron and so is clI (P + (0m × Rn)). Thus, every
essential Lm− 1

2 ,Q
cut for P is dominated by a �nite set of rational essential Lm− 1

2 ,Q
cuts for P and we can

assume c′ ∈ (Qm)
T
, i.e. the assumptions in 2 of Theorem 241 can be made without loss of generality.

Similar considerations also hold for Theorem 244 in section 5.3.2.

Proof. (Theorem 241) Since (P + (0n × Rn))I = ∅ if and only if PI = ∅, 1 is a direct consequence of Theorem
231 if we set c := (0m × 0n)

T . So, we only have to show 2.
Let P ′ := projRm P = P≤ (A′, b′), where A′ ∈ Zt′×m and b′ ∈ Zt′ (t′ ∈ Z≥0). Such a representation exists

by Corollary 65. By assumption, we have (P ′ ∩ P< (c′, c0))I = ∅. We also know that P ′I 6= ∅. Let T ′ ⊆ [t′] be
minimal such that

(
P≤

(
A′T ′,∗, b

′
T ′
)
∩ P< (c′, c0)

)
I

= ∅. If we set

Ã := A′T ′,∗,

b′′ ∈ ZT
′
,∀i ∈ T ′ : b′′i :=

{
db′ie if b′i /∈ Z,
b′i + 1 if b′i ∈ Z,

we have by construction

P<
((

Ã
c′

)
,

(
b′′

c0

))
I

= ∅.

So,

P≤
((

Ã
c′

)
,

(
b′′

c0

))
is lattice-free. To be able to apply Theorem 111, we need to show that P<

(
Ã, b′′

)
I
6= ∅ (i.e. we need the

inequality c′ ( · ) ≤ c0). For this: clearly,

P<
(
Ã, b′′

)
⊇ P≤ (A′, b′) = P ′.

On the other hand (by case assumption), we have PI 6= ∅ and thus P ′I 6= ∅. This shows that we really need
c′ ( · ) ≤ c0.
So, we can apply Theorem 111 and get that there exists some ZT ′ 3 b̃ ≥ b′′ and some Q 3 c̃0 ≥ c0 such

that

L = P≤
((

Ã
c

)
,

(
b̃
c̃0

))
is maximal lattice-free.
Finally, for P ⊆

(
int L̃

)
× Rn:

P ⊆ P<
(
Ã, b′′

)
× Rn ⊆ P<

(
Ã, b̃

)
× Rn ⊆

(
int L̃

)
× Rn.
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5.3.2. k ≤ m

Before we state our main statement in Theorem 244, we prove a small lemma:

Lemma 243. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary and let V ′ ≤ Rm be a rational subspace. Then

(P + (V ′ × Rn))I = ∅ ⇔ P ∩ ((Zm × Rn) + (V ′ × Rn)) = ∅.

Proof. Let p ∈ P , z ∈ Zm ×Rn and v ∈ V ′ ×Rn. Then p+ v = z ⇔ p = z − v. From this, we easily conclude

(P + (V ′ × Rn))I = ∅ ⇔ P ∩ ((Zm × Rn) + (V ′ × Rn)) = ∅.

Theorem 244. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let V ′ ≤ Rm be a rational
subspace of codimension k ∈ {0, . . . ,m}. Then:

1. If (P + V )I = ∅, there exists a rational, full-dimensional, maximal lattice-free polyhedron L ⊆ Rm such
that V ′ ≤ linealL and P ⊆ (intL)× Rn. In particular, we have

P\ ((intL)× Rn) = ∅.

2. If (P + V )I 6= ∅, let
(
c′ (0n)

T
)

( · ) ≥ c0, where c′ ∈ (Qm)
T ∩ V ′⊥ and c0 ∈ R, be a linear inequality

for PI that is not already valid for P . Then there exists a rational, full-dimensional polyhedron L̃ ⊆ Rm
having

• lineal L̃ ≥ V ′,

• P ⊆
(

int L̃
)
× Rn and

• L := L̃ ∩ P≤ (c′, c̃0) is a rational, full-dimensional, maximal lattice-free polyhedron, where c̃0 ∈ Q
satis�es c̃0 ≥ c0.

Proof. By Lemma 243, we have

(P + (V ′ × Rn))I = ∅ ⇔ P ∩ ((Zm × Rn) + (V ′ × Rn)) = ∅.

With this in mind, 1 is a direct consequence of Theorem 235 if we set c := (0m × 0n)
T . So, we only need to

show 2.
By Theorem 215 and c′T ⊥ V ′,

(
c′ (0n)

T
)

( · ) ≥ c0 is an essential Lk− 1
2 ,Q×Q

cut for P if and only if

there exist linearly independent w1, . . . , wk ∈ Zk such that
(
c′ (0n)

T
)

( · ) ≥ c0 is valid for{
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
× Rn.

This is equivalent to c′ ( · ) ≥ c0 being valid for{
x ∈ projRm P : ∀i ∈ [k] :

(
wi
)T
x ∈ Z

}
.

Let W :=
(
w1 · · · wk

)
and de�ne

SLP :=

{(
x
z

)
∈ (projRm P )× Rk : z = WTx

}
,

S := SLP ∩
(
Rm × Zk

)
.

We claim that S 6= ∅: by assumption, there exists an
(
x∗

y∗

)
∈ (P + V )I . Thus, x∗ = p∗ + v∗, where

p∗ ∈ projRm P and v∗ ∈ V ′. We have using imW ⊥ V ′:

WT p∗ = WT (x∗ − v∗) = WT z∗ ∈ Zk.
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Thus,
(

x∗

WT x∗

)
∈ S.

We next claim that (
c′W

(
WTW

)−1
)
z ≥ c0 (5.15)

is a valid inequality for ( xz ) ∈ S (the inverse
(
WTW

)−1
exists by Lemma 28). For this, we show

c′W
(
WTW

)−1
WT = c′. (5.16)

Since c′T ⊥ V ′ and {w1, . . . , wk} forms a basis of V ′⊥, we have by Lemma 29:

W
(
WTW

)−1
WT ( · ) = proj⊥V ′⊥ ( · ) .

Thus,

c′W
(
WTW

)−1
WT =

((
W
(
WTW

)−1
WT

)T
c′T
)T

=
(
proj⊥V ⊥ c

′T )T
= c′. (cT ∈ V ⊥)

To show (5.15), let ( xz ) ∈ S. Then(
c′W

(
WTW

)−1
)
z = c′W

(
WTW

)−1
WTx

= c′x (by (5.16))

≥ c0. (x ∈ projRm P , W
Tx ∈ Zk)

Since (5.15) is valid for ( xz ) ∈ S, by Theorem 241, there exists a rational, full-dimensional polyhedron

L̃pre := P≤
(
Ãpre, b̃pre

)
⊆ Rk

that satis�es Ã ∈ Qt̃×k, b̃ ∈ Qt̃ and
SLP ⊆ int L̃pre, (5.17)

for which there exists a c̃0 ∈ Q having c̃0 ≥ c0 such that

Lpre := P≤

((
Ãpre

c′W
(
WTW

)−1

)
,

(
b̃pre

c̃0

))

is a rational, full-dimensional, lattice-free polyhedron. Set

L̃ := P≤
(
ÃpreWT , b̃pre

)
.

Proving that

L := P≤

((
ÃpreWT

c′W
(
WTW

)−1
WT

)
,

(
b̃pre

c̃0

))
(5.18)

is a full-dimensional maximal lattice-free body with linealL ≥ V ′ works completely similar as in the proof of
Theorem 235. In (5.16), we already saw that cW

(
WTW

)−1
WT = c (thus, the last row in the de�nition of

L (cf. (5.18)) is indeed c); so, the only remaining statement to show is P ⊆
(

int L̃
)
× Rn:

For this, let ( xy ) ∈ P. This implies ( x
WT x ) ∈ SLP . Using (5.17), we obtain(
x

WTx

)
∈ SLP ⊆ Rm ×

(
int L̃pre

)
.

Thus,
(
ÃpreWT

)
x = Ãpre

(
WTx

)
< b̃pre, which implies x ∈ int L̃. Thus, clearly, ( xy ) ∈

(
int L̃

)
× Rn.
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5.3.3. Reverse inclusions

Theorem 245. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let V ′ ≤ Rm be a rational subspace of
codimension k ∈ {0, . . . ,m} and let

L := L̃ ∩ P≤ (c′, c0) ⊆ Rm

(c′ ∈ (Rm)
T
, c′T ⊥ V ′ and c0 ∈ R) be a lattice-free body, where

• L̃ ⊆ Rm is a polyhedron,

• lineal L̃ ≥ V ′ and

• P ⊆ int L̃× Rm.

Then
(
c′ (0n)

T
)

( · ) ≥ c0 is an essential Lk− 1
2 ,Q

cut for P with respect to V := V ′ × Rn.

Proof. We have to show that
(
c′ (0n)

T
)

( · ) ≥ c0 is valid for (P + V )I . Let

z := p︸︷︷︸
∈P

+ v︸︷︷︸
∈V

∈ (P + V )I .

Since z(1,...,m) ∈ Zm and L is lattice-free, we have z(1,...,m) /∈ intL, which implies that we either have
z(1,...,m) /∈ int L̃ or c′z(1,...,m) ≥ c0 (the latter is what we want to show).
To show that the latter holds, assume that z(1,...,m) /∈ int L̃. Since lineal L̃ ≥ V ′, we obtain p(1,...,m) /∈ int L̃.

But this is a contradiction to P ⊆ int L̃× Rm.
So,

(
c′ (0n)

T
)

( · ) ≥ c0 is indeed valid for (P + V )I .

5.3.4. Conclusion

Theorem 246. Let

• P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron,

• V ′ ≤ Rm be a rational subspace of codimension k ∈ {0, . . . ,m},

• c′ ∈ (Qm)
T
where c′T ⊥ V ′ and

• c0 ∈ R

be such that
(
c′ (0n)

T
)

( · ) ≥ c0 is not valid for P . Then
(
c′ (0n)

T
)

( · ) ≥ c0 is an essential Lk− 1
2 ,Q×Q

cut for ( xy ) ∈ P with respect to V × Rn if and only if there exists a rational polyhedron L̃ ⊆ Rm having

• lineal L̃ ≥ V ′,

• P ⊆
(

int L̃
)
× Rn and

• L := L̃∩P≤ (c′, c̃0) is a rational, full-dimensional, maximal lattice-free polyhedron, where c̃0 ∈ Q satis�es
c̃0 ≥ c0.

Proof. �If� holds by Theorem 245 and �only if� by Theorem 244.

5.4. Characterizing Lk,Q/essential Lk− 1
2 ,Q

cuts via t-branch split cuts

5.4.1. De�nitions and properties

De�nition 247. (Cf. [DDG+13, section 3]) Let B ⊆ Rm (m ∈ Z≥0) be closed, bounded and convex, and let
c ∈ Zm. Then we de�ne

w (B, c) := max
{
cTx : x ∈ B

}
−min

{
cTx : x ∈ B

}
.

as width of B along the direction c. The lattice width of B, which we denote by w (B), is de�ned as

w (B) := min
c∈Zm\{0m}

w (B, c) .
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If B is not closed, we set w (B) := w
(
B
)
.

Remark/De�nition 248. There exists a function f : Z≥1 → R≥1 such that for any strictly lattice-free,
bounded, convex set B ( Rm (m ∈ Z≥1), we have

w (B) ≤ f (m) .

For an overview of functions with this property, cf. [DDG+13, section 3]. According to this text, the best

known asymptotic upper bound for such an f is of order O
(
n

4
3 logcn

)
for some constant c. From now on, let

f be such a function. De�ne for m ∈ Z≥1:

fm := 1 + df (m)e

and let

h : Z≥0 → Z≥0 :

m 7→
m∑
i=1

m∏
j=m−i+1

f j .

In [DDG+13, Lemma 3.3], it is shown:

Lemma 249. Any (convex) bounded, strictly lattice-free set (cf. De�nition 102) B ⊆ Rm (m ∈ Z≥0) is
contained in the union of some h (m) split sets.

In [DDG+13, Lemma 3.4], this is tightened to

Lemma 250. Let B ⊆ Rm (m ∈ Z≥0) be a (convex) unbounded strictly lattice-free set. If B is contained in
the interior of a maximal lattice-free convex set in Rm, then it is contained in the union of some h (m) split
sets.

From Lemma 249 and Lemma 250, we immediately obtain:

Lemma 251. Let B ⊆ Rm (m ∈ Z≥0) be a (convex) full-dimensional strictly lattice-free set. Then B is
contained in the union of some h (m) split sets.

Since a central topic of this section (section 5.4) is to unify the theory of Lk,Q cuts and t-branch split cuts,
we de�ne:

De�nition 252. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m} (even though the case k = 0
is only interesting for formal purposes) and let t ∈ Z≥0. A k, t-branch split cut for P is an inequality
c ( · ) ≥ c0 that is valid for some

P ∩
(
D
(
π1, . . . , πt, γ1, . . . , γt

)
× Rn

)
,

where D
(
π1, . . . , πt, γ1, . . . , γt

)
is a t-branch split disjunction such that dim

(
lin
{
π1, . . . , πt

})
≤ k. We de�ne

the k, t-branch split closure of P as

clk,tBS (P ) := P ∩
⋂

π1,...,πt∈Zm,
γ1,...,γt∈Z:

dim(lin{π1,...,πt})≤k

⋂
c∈(Rm×Rn)T ,c0∈R:

P∩(D(π1,...,πt,γ1,...,γt)×Rn)⊆P≤(c,c0)

P≤ (c, c0)

= P ∩
⋂

π1,...,πt∈Zm,
γ1,...,γt∈Z:

dim(lin{π1,...,πt})≤k

conv
(
P ∩

(
D
(
π1, . . . , πt, γ1, . . . , γt

)
× Rn

))
.

Similarly, we want to unify the theory of essential Lk− 1
2 ,Q

cuts with the theory of t-branch split cuts. To
prepare this, we de�ne:

De�nition 253. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m} (even though the case k = 0
is only interesting for formal purposes) and let t ∈ Z≥0. An essential k, t-branch split cut for P is an

inequality
(
c′ (0n)

T
)

( · ) ≥ c0 that is valid for some

P ∩
(
D
(
π1, . . . , πt, γ1, . . . , γt

)
× Rn

)
,
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where D
(
π1, . . . , πt, γ1, . . . , γt

)
is a t-branch split disjunction such that dim

(
lin
{
π1, . . . , πt

})
≤ k and we

have c′T ∈ lin
{
π1, . . . , πt

}
(this is the central property that distinguishes essential k, t-branch split cuts from

�ordinary� k, t-branch split cuts!). We de�ne the essential k, t-branch split closure of P as

cless k,tBS (P ) := P ∩
⋂

π1,...,πt∈Zm,
γ1,...,γt∈Z:

dim(lin{π1,...,πt})≤k

⋂
c′∈(Rm)T ,c0∈R:

c′T∈lin{π1,...,πt},
P∩(D(π1,...,πt,γ1,...,γt)×Rn)⊆P≤(( c′ (0n)T ),c0)

P≤
((

c′ (0n)
T
)
, c0

)
.

We remark that in De�nition 253, we demand that the inequality is of the form
(
c′ (0n)

T
)

( · ) ≥ c0,

where c′ satis�es c′T ∈ lin
{
π1, . . . , πt

}
. But we allow P to have a non-empty intersections with as many

atoms of the t-branch split disjunction as one desires. On the other hand, for the related essential T cuts
and essential crooked cross cuts, which we de�ne in De�nition 465 (also cf. De�nition 466), we allow
a non-empty intersection with at most one of the atoms of the respective disjunction. The reason for this
di�erence in the de�nitions is the following:

• For the purpose of section 5.4, we want to make it as easy as possible to extend the results that we
show on the relationship between Lk,Q cuts vs k, h (k)-branch split cuts to essential Lk− 1

2 ,Q
cuts.

Indeed, extending Theorem 256 about the relationship between Lk,Q cuts vs k, h (k)-branch split cuts to
essential Lk− 1

2 ,Q
cuts vs essential k, h (k)-branch split cuts, which we do in Theorem 258, turns out to

be rather easy (see the proof of Theorem 258). A similar �easy transferability� exists between Theorem
259 (about Lk,Q cuts vs k, h (k)-branch split cuts) and Theorem 261 (about essential Lk− 1

2 ,Q
cuts vs

essential k, h (k)-branch split cuts).

The results for essential Lk− 1
2 ,Q

vs essential T cuts/essential crooked cross cuts in chapter 11 less closely
mirror the results for L2,Q cuts vs crooked cross cuts in that chapter.

• On the other hand, for the de�nition of essential T cuts and essential crooked cross cuts (De�nition 465;
also cf. De�nition 466) in section 11.2.1, let P ⊆ Rm × Rn, L̃ := P≤ (A, b) and L = L̃ ∩ P≤ (c′, c̃0) be
as Theorem 246 (A ∈ Rl×m, b ∈ Rl, c′ ∈ (Rm)

T and c̃0 ∈ R, where l,m, n ∈ Z≥0). Then the condition

P ⊆
(

int L̃
)
× Rn in Theorem 246 means

∀i ∈ [l] : P ∩ P≥ (Ai,∗, bi) = ∅,

i.e. for all inequalities de�ning L (except for c′ ( · ) ≤ c̃0), we demand that the associated half-spaces
have an empty intersection with P and the remaining half-space de�nes the essential Lk− 1

2 ,Q
cut.

Similarly, for essential T cuts and essential crooked cross cuts, we de�ne in De�nition 465 (also cf.
De�nition 466) that all except one of the atoms of the disjunction that we consider have an empty inter-
section with P and the remaining atom is the central tool for constructing the essential T cut/essential
crooked cross cut.

So to summarize:

• The de�nition of t, k-branch split cuts makes it easier to extend results on Lk,Q cuts/closure vs t, k-
branch split cuts/closure to essential Lk− 1

2 ,Q
cuts/closure vs essential t, k-branch split cuts/closure.

• The de�nitions of essential T cuts and essential crooked cross cuts more closely mirror the characteri-
zation of essential Lk− 1

2 ,Q
cuts via lattice-free bodies that we gave in Theorem 246.

5.4.2. k = m

Theorem 254. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron or

• convex and compact,

respectively, and let

• c ( · ) ≥ c0, where c ∈ (Qm ×Qn)
T
and c0 ∈ R, be a valid inequality for PI , or
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• c ( · ) > c0, where c ∈ (Rm × Rn)
T
and c0 ∈ R, be a valid strict inequality for PI ,

respectively. Set R := P ∩ P< (c, c0) 6= ∅ and let h (m) be as in Remark/De�nition 248. Then there exists an
h (m)-branch split disjunction D

(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
such that c ( · ) ≥ c0 is a valid inequality for

P ∩
(
D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
× Rn

)
.

In particular, we have
clm,h(m)BS (P ) = clLm,Q (P ) = clI (P ) = clI (P ) . (5.19)

Proof. By Theorem 231 or Theorem 234, respectively, there exists a full-dimensional maximal lattice-free body
L ⊆ Rm such that projRm R ⊆ intL. Thus, by Lemma 251, there exists an h (m)-branch split disjunction
D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
having

R ∩
(
D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
× Rn

)
= ∅; (5.20)

thus,

P ∩ P< (c, c0) ∩
(
D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
× Rn

)
= ∅.

This means that c ( · ) ≥ c0 is a valid inequality for P ∩D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
.

Now for (5.19): because of Theorem 75 and Theorem 202, we have

clLm,Q (P ) = clI (P ) = clI (P ) .

For clI (P ) ⊆ clm,h(m)BS (P ): Because P is convex and closed, we have clI (P ) ⊆ P . On the other hand,
every m,h (m)-branch split cut for P is a valid inequality for clI (P ).

For clI (P ) ⊇ clm,h(m)BS (P ): For the case that P is a rational polyhedron, note that, by Theorem 75,
clI (P ) is a rational polyhedron; thus, any linear inequality for PI is dominated absolutely by some �nite set
of rational linear inequalities for PI . In the case that P is convex and compact, let c′ ( · ) ≥ c′0 be a valid
inequality for PI . We have proved that for every ε ∈ R>0, the inequality c′ ( · ) ≥ c′0 − ε is an h (m)-branch
split cut for P .

We now show that a similar statement to Theorem 254 does not hold if P ⊆ R2 is instead an irrational
hyperplane:

Theorem 255. Let t ∈ Z≥0, π
1, . . . , πt ∈ Z2 and γ1, . . . , γt ∈ Z. Then

conv
(
P 114 ∩D

(
π1, . . . , πt, γ1, . . . , γt

))
= P 114. (5.21)

In particular, for all parametric cross disjunctions Dt′
(
π1, π2, γ1, γ2

)
(cf. De�nition 150) with respect to

some t′ ∈ Z (this includes crooked cross disjunctions), we have:

conv
(
P 114 ∩Dt′

(
π1, π2, γ1, γ2

))
= P 114. (5.22)

On the other hand,
(
02
)T

( · ) ≤ −1 is an L2,Q cut for P 114.

Proof. The statement that
(
02
)T

( · ) ≤ −1 is an L2,Q cut for P 114 holds by de�nition, since P 114 ⊆ R2 and(
P 114

)
I

= ∅.

For (5.21): If dim
{
π1, . . . , πt

}
= 0, we have

P 114 ∩D
(
π1, . . . , πt, γ1, . . . , γt

)
= P 114.

If, on the other hand, dim
{
π1, . . . , πt

}
≥ 1, we can w.l.o.g. assume ∀i ∈ [t] : πi 6= 02. It is easy to check that

then

∀i ∈ [t] :
(
πi
)T ( 1√

2

)
6= 0.
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Additionally, we can w.l.o.g. assume that

∀i ∈ [t] :
(
πi
)T ( 1√

2

)
> 0

(if this is not the case for some i ∈ [t], replace πi by −πi and γi by −γi + 1). Let

M := max

γi + 1−
(
πi
)T ( 0

1
2

)
(πi)

T
(

1√
2

) : i ∈ [t]

 ,

M := min

γi −
(
πi
)T ( 0

1
2

)
(πi)

T
(

1√
2

) : i ∈ [t]

 .

Let x ∈ P . Then x =
(

0
1
2

)
+ λ∗

(
1√
2

)
, where λ∗ ∈ R. We distinguish three cases:

1. λ∗ ≥M ,

2. λ∗ ≤M ,

3. M < λ∗ < M .

For case 1: For showing x ∈ D
(
π1, . . . , πt, γ1, . . . , γt

)
, we show that for all i ∈ [t], we have

(
πi
)T
x ≥

γi + 1.. Let i ∈ [t]. Then

(
πi
)T
x =

(
πi
)T (( 0

1
2

)
+M

(
1√
2

))
+
(
λ∗ −M

) (
πi
)T ( 1√

2

)
≥
(
πi
)T (( 0

1
2

)
+M

(
1√
2

))

≥
(
πi
)T ( 0

1
2

)
+
γi + 1−

(
πi
)T ( 0

1
2

)
(πi)

T
(

1√
2

) (
1√
2

)
= γi + 1.

For case 2: For showing x ∈ D
(
π1, . . . , πt, γ1, . . . , γt

)
, we show that for all i ∈ [t], we have

(
πi
)T
x ≤ γi.

Let i ∈ [t]. Then

(
πi
)T
x =

(
πi
)T (( 0

1
2

)
+M

(
1√
2

))
+ (λ∗ −M)

(
πi
)T ( 1√

2

)
≤
(
πi
)T (( 0

1
2

)
+M

(
1√
2

))

≤
(
πi
)T ( 0

1
2

)
+
γi −

(
πi
)T ( 0

1
2

)
(πi)

T
(

1√
2

) (
1√
2

)
= γi.

For case 3: We have

x =

(
0
1
2

)
+ λ∗

(
1√
2

)
=
M − λ∗

M −M

((
0
1
2

)
+M

(
1√
2

))
+
λ∗ −M
M −M

((
0
1
2

)
+M

(
1√
2

))
∈ conv

(
P 114 ∩D

(
π1, . . . , πt, γ1, . . . , γt

))
. (by case 1 and 2)

For (5.22): Notice that (cf. De�nition 150) Dt′
(
π1, π2, γ1, γ2

)
⊇ D

(
π1, π2, π2 − t′π1, γ1, γ2, γ2 − t′γ1

)
.
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5.4.3. k ≤ m

5.4.3.1. Lk,Q cuts

Theorem 256. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron or

• convex and compact,

respectively, let k ∈ {0, . . . ,m}, let V ′ ≤ Rm be a rational subspace of codimension k and let

• c ( · ) ≥ c0, where c ∈ (Qm ×Qn)
T
and c0 ∈ R, be an Lk,Q cut for P with respect to V ′ × Rn, or

• c ( · ) > c0, where c ∈ (Rm × Rn)
T
and c0 ∈ R, be a strict Lk,Q cut for P with respect to V ′ × Rn,

respectively. Then there exists an h (k)-branch split disjunction D
(
π1, . . . , πh(k), γ1, . . . , γh(k)

)
where V ′ ⊥

π1, . . . , πh(k) such that c ( · ) ≥ c0 is a valid inequality for

P ∩
(
D
(
π1, . . . , πh(k), γ1, . . . , γh(k)

)
× Rn

)
.

In particular, we have
clk,h(k)BS (P ) ⊆ clLk,Q (P ) .

Remark 257. In De�nition 161, we de�ned Lk,Q cuts as linear inequalities c ( · ) ≤ c0 for P∩((Zm × Rn) + V ),
while in Theorem 256, a strict inequality c ( · ) > c0 for P ∩ ((Zm × Rn) + V ) is called a �strict Lk,Q cut for
P � (in both cases, of course, V ≤ Rm × Rn is some rational subspace of codimension k). This is obviously
some abuse of notation, but we believe it is clear to the reader how De�nition 161 can easily be adapted to
de�ne �strict Lk,Q cuts� formally.

Proof. (Theorem 256) Let S, SLP , w1, . . . , wk and W be as in the proof in section 5.2.3. Keep in mind that
W ∈ Zm×k. Since c ( · ) ≥ c0 is valid for{(

x
y

)
∈ P :

(
w1
)T
x, . . . ,

(
wk
)T
x ∈ Z

}
,

we saw in the proof in section 5.2.3 that(
c(1,...,m)

(
Im −

(
W
(
WTW

)−1
)
WT

))
x+ c(m+1,...,m+n)y +

(
c(1,...,m)W

(
WTW

)−1
)
z ≥ c0 (5.23)

is valid for
(
x
y
z

)
∈ S. Thus, by Theorem 254, there exists an h (k)-branch split disjunction

D
(
π1,pre, . . . , πh(k),pre, γ1, . . . , γh(k)

)
⊆ Rk

such that (5.23) is a valid inequality for

SLP ∩
(
Rm × Rn ×D

(
π1,pre, . . . , πh(k),pre, γ1, . . . , γh(k)

))
.

We �rst note that, because of the dimension of W , we have

dim
(

lin
{
Wπ1,pre, . . . ,Wπh(k),pre

})
≤ rankW ≤ min (m, k) ≤ k.

We now claim that c ( · ) ≥ c0 is valid for

P ∩
(
D
(
Wπ1,pre, . . . ,Wπh(k),pre, γ1, . . . , γh(k)

)
× Rn

)
.

For this, let (
x
y

)
∈ P ∩

(
D
(
Wπ1,pre, . . . ,Wπh(k),pre, γ1, . . . , γh(k)

)
× Rn

)
.

Then, using  x
y

WTx

 ∈ SLP ∩ (Rm × Rn ×Dc
(
π1,pre, . . . , πh(k),pre, γ1, . . . , γh(k)

))
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and (5.23), we get

c

(
x
y

)
= c(1,...,m)

(
Im −W

(
WTW

)−1
WT

)
x+ c(m+1,...,m+n)y + c(1,...,m)W

(
WTW

)−1 (
WTx

)
≥ c0.

Finally, observe that, because imW = lin
{
w1, . . . , wk

}
⊥ V ′, we have Wπ1,pre, . . . ,Wπh(k),pre ⊥ V ′.

5.4.3.2. Essential Lk− 1
2 ,Q

cuts

Theorem 258. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron or

• convex and compact,

respectively, let k ∈ {0, . . . ,m}, let V ′ ≤ Rm be a rational subspace of codimension k and let

•
(
c′ (0n)

T
)

( · ) ≥ c0, where c ∈ (Qm)
T
, be a valid essential Lk− 1

2 ,Q
cut for P with respect to V ′×Rn

or

•
(
c (0n)

T
)

( · ) > c0, where c ∈ (Rm)
T
, be a valid strict essential Lk− 1

2 ,Q
cut for P with respect to

V ′ × Rn,

respectively, be such that cT ⊥ V ′. Then there exists a h (k)-branch split disjunction

D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
,

where V ′ ⊥ π1, . . . , πh(k), such that
(
c′ (0n)

T
)

( · ) ≥ c0 is a valid inequality for

P ∩
(
D
(
π1, . . . , πh(m), γ1, . . . , γh(k)

)
× Rn

)
.

In particular, we have
cless k,h(k)BS (P ) ⊆ clessL

k− 1
2
,Q

(P ) . (5.24)

Proof. By Theorem 196, we have

P ∩ ((Zm × Rn) + (V ′ × Rn)) ⊆ conv ((P + (V ′ × Rn)) ∩ (Zm × Rn)) .

Thus, the �rst statement is a consequence of Theorem 256. So, only (5.24) remains to be shown.
For this, consider essential Lk− 1

2 ,Q
cuts with respect to V ′×Rn, where V ′ ≤ Rm is a subspace of codimension

k. W.l.o.g. we can assume (P + (V ′ × Rn))I 6= ∅. Thus, by Lemma 159, every essential Lk− 1
2 ,Q

cut c ( · ) ≥ c0
for P with respect to V ′×Rn can be assumed to satisfy cT ⊥ V ′×Rn, i.e. c =

(
c′ (0n)

T
)
, where c′ ⊥ V ′.

If P is convex and compact, by the �rst statement, for all ε > 0, the inequality
(
c′ (0n)

T
)

( · ) ≥ c0 + ε

is an essential k, h (k)-branch split cut for P with respect to a h (k)-branch split disjunction

D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
,

where c′ ⊥ V ′ ⊥ π1, . . . , πh(k). Thus,
(
c′ (0n)

T
)

( · ) ≥ c0 is also valid for cless k,h(k)BS (P ).

If, on the other hand, P is a rational polyhedron, by Theorem 75, clI (P + (V ′ × Rn)) is also a ratio-
nal polyhedron. Thus, we can w.l.o.g. assume c′ to be rational. Again, by the �rst part of this proof,(
c′ (0n)

T
)

( · ) ≥ c0 is valid for cless k,h(k)BS (P ).

5.4.4. Conclusion

5.4.4.1. Lk,Q closure

Theorem 259. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron or
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• convex and compact,

respectively, let k ∈ {0, . . . ,m} and let h ( · ) be as in Remark/De�nition 248. Then

clLk,Q (P ) = clk,h(k)BS (P ) .

Remark 260. The condition that P is either a rational polyhedron or convex and compact is essential for
Theorem 259 to hold. For example if P is an irrational hyperplane, it does not hold. For this, consider the
irrational hyperplane P 114 ⊆ R2. By Theorem 255, we have

clL2,Q

(
P 114

)
= ∅ ( P 114 = cl2,h(2)BS

(
P 114

)
,

i.e. the L2,Q closure of P 114 is stronger than the 2, h (2)-branch split closure of P 114.

Proof. (Theorem 259) The inclusion clLk,Q (P ) ⊆ clk,h(k)BS (P ) is an immediate consequence of Corollary 278,
which we show in section 6.1.4. On the other hand, the inclusion clk,h(k)BS (P ) ⊆ clLk,Q (P ) holds by Theorem
256.

5.4.4.2. Essential Lk− 1
2 ,Q

closure

Theorem 261. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be

• a rational polyhedron or

• convex and compact,

respectively, let k ∈ {0, . . . ,m} and let h ( · ) be as in Remark/De�nition 248. Then

clessL
k− 1

2
,Q

(P ) = cless k,h(k)BS (P ) .

Remark 262. Similarly to what we wrote in Remark 260 about Theorem 259, also in Theorem 261, the
condition that P is either a rational polyhedron or convex and compact is essential. Again, consider P 114 ⊆ R2.
Using Theorem 255, we obtain

clessL
2− 1

2
,Q

(
P 114

)
= clL

2− 1
2
,Q

(
P 114

)
= ∅ ( P 114 = cl2,h(2)BS

(
P 114

)
⊆ cless 2,h(2)BS

(
P 114

)
.

Proof. (Theorem 261) Since �⊇� is a direct consequence of Theorem 258, we only have to show �⊆�.

For �⊆�: Let
(
c′ (0n)

T
)

( · ) ≥ c0 be an essential k, h (k)-branch split cut for P with respect to the

k, h (k)-branch split disjunction

D
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
.

Since essential k, h (k)-branch split cut are by de�nition also k, h (k)-branch split cuts, by Corollary 278,(
c′ (0n)

T
)

( · ) ≥ c0 is an Lk,Q cut for P with respect to V ′ × Rn, where

V ′ ≤
(

lin
{
π1, . . . , πh(m)

})⊥
is a rational subspace. By the de�nition of essential k, h (k)-branch split cuts, we have(

c (0n)
T
)T
⊥
(

lin
{
π1, . . . , πh(m)

})
× Rn;

thus, (
c (0n)

T
)T
⊥ V ′ × Rn.

So, by Theorem 213,
(
c (0n)

T
)

( · ) ≥ c0 is also a valid inequality for (P + (V ′ × Rn))I ; in other words:

an essential Lk− 1
2 ,Q

cut for P .
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5.4.4.3. Lk− 1
2 ,Q×Q

closure and Lk− 1
2 ,Q×R

closure

Theorem 263. Let P ⊆ Rm ×Rn (m,n ∈ Z≥0) be a rational polyhedron, let k ∈ {1, . . . ,m} and let h ( · ) be
as in Remark/De�nition 248. Then

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = cless k,h(k)BS (P ) ∩ clk−1,h(k−1)BS (P ) .

Proof. The equalitity
clessL

k− 1
2
,Q×Q

(P ) = cless k,h(k)BS (P )

holds by Theorem 261. By Theorem 211, we know that

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = clLk−1,Q (P ) ∩ clessL
k− 1

2
,Q

(P ) .

Finally, by Theorem 259, we have
clLk−1,Q (P ) = clLk−1,h(k)BS

(P ) .

5.4.5. Polyhedricity

We remark that a theorem that can be shown to be equivalent to the following one was independently proved
using a di�erent reasoning in [DGMR17, Theorem 2].

Theorem 264. Let P ⊆ Rm ×Rn (m,n ∈ Z≥0) be a rational polyhedron and let k ∈ {0, . . . ,m}. Then there
exists a �nite set V of rational subspaces of Rm of codimension k such that

clLk,Q (P ) =
⋂
V ∈V

conv (P ∩ ((Zm × Rn) + (V × Rn))) .

In particular, clLk,Q (P ) is a rational polyhedron.

Proof. The inclusion �⊆� is trivial; so, we only have to show �⊇�. We �rst note that it su�ces to show a
weaker statement where we only demand all elements of V to have codimension ≤ k instead of exactly k, since
if there exists some V ∈ V having codimV < k, we can simply replace V by a rational subspace V ′ ≤ Rm
where V ′ ≥ V has codimension k; this only tightens the statement.

By Theorem 259, we have
clLk,Q (P ) = clk,h(k)BS (P ) ,

where h ( · ) is as in Remark/De�nition 248. Let

T splith(k),m,k :=
{
S
(
π1, . . . , πh(k), γ1, . . . , γh(k)

)
: π1, . . . , πh(k) ∈ Zm, γ1, . . . , γh(k) ∈ Z,

dim
(

lin
{
π1, . . . , πh(k)

})
≤ k

}
⊆ T ∗h(k),1,m

(for the de�nition of S
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
cf. De�nition 142 and for T ∗h(m),1,m cf. De�nition 332).

By Theorem 335, there exists a �nite set Tf ⊆ T splith(m),m,k such that

clk,h(k)BS (P ) =
⋂

T∈T split
h(m),m,k

conv (P\ (T × Rn)) =
⋂
T∈Tf

conv (P\ (T × Rn)) .

By Corollary 278, every inequality for P\
(
S
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
× Rn

)
is an Lk′,Q cut for P with

respect to V :=
(
lin
{
π1, . . . , πh(m)

})⊥
, where k′ := dim

(
lin
{
π1, . . . , πh(m)

})
. Set

V :=

{(
lin
{
π1, . . . , πh(m)

})⊥
: S
(
π1, . . . , πh(m), γ1, . . . , γh(m)

)
∈ T splith(m),m,k

}
.
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5. Alternative characterizations of Lk,Q cuts and essential Lk− 1
2 ,Q

cuts

So, we have⋂
V ∈V

conv (P ∩ ((Zm × Rn) + (V × Rn))) ⊆
⋂
T∈Tf

conv (P\ (T × Rn)) (by Corollary 278)

= clk,h(k)BS (P )

= clLk,Q (P ) .

Finally, by Theorem 178, for all V ∈ V, conv (P ∩ ((Zm × Rn) + (V × Rn))) is a rational polyhedron.
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6. Expressivity of various classes of cutting
planes

This chapter consists of three parts:

• In section 6.1, we look at results concerning what cutting planes/cutting plane operators are dominated
by others or not.

• In section 6.2, we concern ourselves with the following question: let a rational polyhedron P and a
cutting plane operator cl( · ) ( · ) be given. Is it always possible to obtain clI (P ) in a �nite number of
steps by applying the cutting plane operator iteratively on P? Or if this is not possible: does the

sequence
{

cl
(k)
( · ) (P )

}
k∈Z≥0

at least converge (in a sense that we formalize in De�nition 308) to clI (P )?

• In section 6.3, we consider whether for a given cutting plane operator cl( · ) ( · ) and a given P , also
cl( · ) (P ) is a (rational) polyhedron � in particular in the case that P already is a rational polyhedron.

Note however that such topics are also treated in other chapters for speci�c cases.

6.1. (Non-)Inclusions

6.1.1. Split cuts vs integral lattice-free cuts and k-disjunctive cuts

We already saw at the discussion at the beginning of section 3.4.1.2 that every split cut is a 2-disjunctive cut.
On the other hand, is easy to check that for m ∈ Z≥0, every full-dimensional rational lattice-free body in Rm
with (at most) two facets is contained in a split set (though not necessarily forms a split set). Putting these
parts together, we obtain:

Theorem 265. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then every split cut for P is also an k-
disjunctive cut for P (k ∈ Z≥2). In particular, we have

clkD (P ) ⊆ clsplit (P ) .

For k = 2, also the reverse holds, i.e. every 2-disjunctive cut for P is also a split cut for P and we thus have

cl2D (P ) = clsplit (P ) .

Similarly, also by the discussion at the beginning of section 3.4.1.2, every split cut is an integral lattice-free
cut. We thus get:

Theorem 266. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then every split cut for P is an integral
lattice-free cut for P . In particular, we have

clILF (P ) ⊆ clsplit (P ) .

6.1.2. t-branch split cuts vs cuts from basic relaxations

In [ACL05], the following theorem is shown, which states that every split cut is a split cut of a basic relaxation:

Theorem 267. Let A ∈ Rl×(m+n) and b ∈ Rl (l,m, n ∈ Z≥0). Additionally, let π ∈ Zm and γ ∈ Z be given.
Then

conv
(
P≤ (A, b) ∩ (D (π, γ)× Rn)

)
=

⋂
S∈B∗(A)

conv
(
P≤ (AS,∗, bS) ∩ (D (π, γ)× Rn)

)
,

where B∗ (A) is as in De�nition 392.

We remark (cf. [ACL05]) that in Theorem 267, one also has to consider infeasible bases.
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6. Expressivity of various classes of cutting planes

Remark 268. Let P := P≤ (A, b), π and γ0 be as in Theorem 267. Then, by Lemma 128,

conv (P ∩ (D (π, γ)× Rn))

is a polyhedron and is thus closed. So, we have

conv (P ∩ (D (π, γ)× Rn)) = conv (P ∩ (D (π, γ)× Rn)) .

In Theorem 409, we show the equivalence between L1,Q cuts and split cuts for a given convex P ⊆ Rm×Rn
(m,n ∈ Z≥0, where m + n ≥ 1). Using this, we obtain the following result from Theorem 267 and Remark
268.

Theorem 269. Let P := P≤ (A, b) ⊆ Rm × Rn, where A ∈ Rl×(m+n) and b ∈ Rl (l,m, n ∈ Z≥0). Then

clL1,Q
clsplit

(P ) =
⋂

S∈B∗(A)

clL1,Q
clsplit

(
P≤ (AS,∗, bS)

)
.

Here, the equation for clL1,Q ( ·), of course, only holds if m+ n ≥ 1 (otherwise, clL1,Q ( · ) is not de�ned).

We remark that the statement of Theorem 269 for split cuts was originally formulated in [ACL05]. In
Theorem 427 of section 9.2.2, we present a tightening of Theorem 269.
From Theorem 269, one concludes:

Theorem 270. Let A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Then

clBR (A,G, b) ⊆ clsplit
(
P≤

((
A G

)
, b
))
.

Next, we ask whether the inclusion that is formulated in Theorem 270 can also be strict. This can be the
case, as we see in Theorem 576 (also cf. the related Theorem 577): there, we see that for every m ∈ Z≥1,
there exists a rational polytope P = P≤

((
A G

)
, b
)
⊆ Rm × R1 such that for every ` ∈ Z≥0, we have

clBR (A,G, b) = clI (P ) ( cl
(`)
(m−1)BS (P ) .

We now consider another result that is shown in [DGM15], which states that for every m ∈ Z≥2, there
exists a rational polyhedron P≤ (A, b) ⊆ Rm such that

• its second Chvátal-Gomory closure (applying the Chvátal-Gomory closure two times) and thus the
second split closure and

• its closure with respect to cuts from a basic relaxation

can be strictly included in its t-branch split closure for t ∈ {0, . . . ,m− 2}. For this, we de�ne:

De�nition 271. For m ∈ Z≥2 and ε ∈ R>0, let

A271,m :=

( (
1m−1

)T
2

−Im−1 0m−1

)
∈ Zm×m,

b271,m,ε :=

(
m+ 1− ε
−ε · 1m−1

)
∈ Rm,

P 271,m,ε := P≤
(
A271,m, b271,m,ε

)
⊆ Rm.

We have for ε ∈ (0, 1) (cf. [DGM15, proof of Theorem 1.1 (restated)]):

clI
(
P 271,m,ε

)
= P≤



(
1m−1

)T
2

−Im−1 0m−1(
0m−1

)T
1

 ,

 m
−1m−1

0


 .

The following theorem is a consequence of [DGM15, section 4; in particular cf. Lemmas 4.1, Lemma 4.4,
Theorem 1.1 (Restated) and Corollary 4.5]. We remark that the authors formulate the statement for the
second split closure, but actually prove it for the second Chvátal-Gomory closure. The central consideration
for clBR

(
A271,m, b271,m,ε

)
= clI

(
P 271,m,ε

)
is to observe that the rows of A271,m are linearly independent.
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6.1. (Non-)Inclusions

Theorem 272. For every m ∈ Z≥2, there exists an ε∗ ∈ (0, 1) such that for all ε ∈ (0, ε∗] and t ∈
{0, . . . ,m− 2}, we have

cl
(2)
CG

(
P 271,m,ε

)
= cl

(2)
split

(
P 271,m,ε

)
= clBR

(
A271,m, b271,m,ε

)
= clI

(
P 271,m,ε

)
( cltBS

(
P 271,m,ε

)
.

So, the central statement of Theorem 272 is that both the second Chvátal-Gomory closure (and thus the
second split closure) and the closure with respect to cuts from a basic relaxations can be stronger than any
t-branch split closure.
We next come to two results that state that also the reverse can happen: the 2-branch split closure can be

stronger than the closure with respect to cuts from a basic relaxations. This is the statement of Theorem 273
and Theorem 274, which constitute the remainder of this section.
In [DGM15, Lemma 7.1, Lemma 7.2 and Theorem 1.6 (restated)], the following theorem is shown:

Theorem 273. Let

A :=


−1 −1
1 1
−1 1
1 −1

 , G :=


1
1
1
1

 , b :=


0
2
1
1

 .

De�ne P := P≤
((

A G
)
, b
)
⊆ R2 × R1. Then:

1. The inequality w1 ≤ 0 is a valid 2-branch split cut for ( xw ) ∈ P derived from the 2-branch split disjunction
D
(
e2,1, e2,2, 0, 0

)
.

2.

(
1
2
1
2
1
2

)
∈

4⋂
i=1

clI

(
P
((

A G
)

[4]\{i},∗ , b[4]\{i}

))
.

In particular, we have
clBR (A,G, b) * cl2BS (P ) .

We now prove that an analogous statement of the statement of Theorem 273 already holds in the pure
integer case. In other words: we do not have to assume that one of the variables of the polytope P in
Theorem 273 is continuous. The proof of the next theorem (Theorem 274) is very similar to the proof in
[DGM15, Lemma 7.1, Lemma 7.2 and Theorem 1.6 (restated)] for what we state here as Theorem 273.

Theorem 274. Let

A :=


−1 −1 1
1 1 1
−1 1 1
1 −1 1

 , b :=


0
2
1
1

 .

De�ne P := P≤ (A, b) ⊆ R3. Then:

1. The inequality x3 ≤ 0 is a valid 2-branch split cut for x ∈ P derived from the 2-branch split disjunction
D
(
e3,1, e3,2, 0, 0

)
.

2.

(
1
2
1
2
1
2

)
∈

4⋂
i=1

clI
(
P≤

(
A[4]\{i},∗, b[4]\{i}

))
.

In particular, we have
clBR (A, b) * cl2BS (P ) .

Proof.

For 1: Let P ′ be the P of Theorem 273. By Theorem 273, w1 ≤ 0 is a valid 2-branch split for ( xw ) ∈ P ′
derived from the 2-branch split disjunction D

(
e2,1, e2,2, 0, 0

)
; in other words: it is a valid inequality for

( xw ) ∈ P ′ ∩
(
D
(
e2,1, e2,2, 0, 0

)
× R1

)
. Since D

(
e2,1, e2,2, 0, 0

)
× R︸ ︷︷ ︸

⊆R2×R

= D
(
e3,1, e3,2, 0, 0

)︸ ︷︷ ︸
⊆R3

(under identi�cation of

R2 × R1 with R3), we conclude the statement.
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6. Expressivity of various classes of cutting planes

For 2: We prove this statement in a similar way to the proof from [DGM15] for statement 2 of Theorem
273. The points

p1 :=

 0
0
0

 p2 :=

 1
1
0

 p3 :=

 0
1
0

 p4 :=

 1
0
0


lie in PI and thus for every i ∈ [4] in P≤

(
A[4]\{i},∗, b[4]\{i}

)
I
. Also the points

q1 :=

 0
0
1

 q2 :=

 1
1
1

 q3 :=

 0
1
1

 q4 :=

 1
0
1

 ,

satisfy the property qi ∈ P≤
(
A[4]\{i},∗, b[4]\{i}

)
I
for i ∈ [4] (since qi only violates the inequality Ai,∗ ( · ) ≤ bi).

So for all i ∈ [4], we have(
1
2
1
2
1
2

)
=
pi + qi

2
∈ conv

(
P≤

(
A[4]\{i},∗, b[4]\{i}

)
I

)
= clI

(
P≤

(
A[4]\{i},∗, b[4]\{i}

))
.

We thus conclude (
1
2
1
2
1
2

)
∈

4⋂
i=1

clI
(
P≤

(
A[4]\{i},∗, b[4]\{i}

))
.

We remark that later on (Theorem 576; also cf. Theorem 577, Theorem 560, Theorem 561 and Theorem
562), we prove that for every m ∈ Z≥1, there exists a rational polytope P = P≤

((
A G

)
, b
)
⊆ Rm × R1

such that for every ` ∈ Z≥0, we have:

clBR (A,G, b) ( cl
(`)
(m−1)BS (P ) ,

which is some kind of reverse non-inclusion to Theorem 273 and Theorem 274.

6.1.3. t-branch split cuts vs integral lattice-free cuts

A proof of the following lemma is sketched in [DPW12]:

Lemma 275. Let

P 275 := conv

{(
− 1

2
1
2
0

)
,

(
1
2

− 1
2

0

)
,

(
1
2
3
2
0

)
,

(
3
2
1
2
0

)
,

(
1
2
1
2
1

)}
( R2 × R1.

Then
clI
(
P 275

)
= conv

{(
0
0
0

)
,
(

0
1
0

)
,
(

1
0
0

)
,
(

1
1
0

)}
,

but (
1
2
1
2
1
4

)
∈ clILF

(
P 275

)
\ clI (P ) .

On the other hand:

Theorem 276. We have
cl2BS

(
P 275

)
= clI

(
P 275

)
.

To see this, just consider the 2-branch split disjunction D
(
e2,1, e2,2, 0, 0

)
. Thus, in the light of Lemma 275,

there exists a rational polytope P ⊆ R2 × R1 that satis�es

cl2BS (P ) ( clILF (P ) .

We remark that in Theorem 576 (also cf. Theorem 577, Theorem 560, Theorem 561 and Theorem 562), we
prove that for every m ∈ Z≥1, there exists a rational polytope P ⊆ Rm ×R1 such that for every ` ∈ Z≥1, we
have

clILF (P ) ( cl
(`)
(m−1)BS (P ) ,
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6.1. (Non-)Inclusions

which is some kind of reverse non-inclusion to Theorem 276.

6.1.4. Lk cuts, crooked cross cuts and t-branch lattice-free cuts

Theorem 277. Let c ( · ) ≤ c0 be a multi-branch disjunctive cut (cf. De�nition 141) for an arbitrary P ⊆
Rm × Rn (m,n ∈ Z≥0) with respect to D :=

⋃t
i=1D

i =: D ⊇ Zm (t ∈ Z≥0), where the

Di :=
{
x ∈ Rm : Aix ≤ bi

}
(i ∈ [t]) are as in De�nition 141. Let V ′ ≤ Rm be a subspace that satis�es

lin

(
t⋃
i=1

(
rowspanAi

)T) ≤ V ′.
Then c ( · ) ≤ c0 is a valid inequality for P ∩

(
(Zm × Rn) +

(
V ′⊥ × Rn

))
. In particular, if we set k := dimV ,

we have:

• If V ′ is a rational subspace, then c ( · ) ≤ c0 is an Lk,Q cut for P .

• In general, c ( · ) ≤ c0 is an Lk,R cut for P .

Proof. Since c ( · ) ≤ c0 is a multi-branch disjunctive cut for P , we have

P ∩ (D × Rn) ⊆ P≤ (c, c0) .

Because Zm ⊆ D and V ′⊥ ≤ linealD, we deduce Zm + V ′⊥ ⊆ D, from which we immediately conclude the
statement:

P ∩
(
(Zm × Rn) +

(
V ′⊥ × Rn

))
⊆ P ∩ (D × Rn) ⊆ P≤ (c, c0) .

An immediate consequence of Theorem 277 is:

Corollary 278. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, let k ∈ {0, . . . ,m} and let t ∈ Z≥0. Every
k, t-branch split cut for P (cf. De�nition 252) with respect to D

(
π1, . . . , πt, γ1, . . . , γt

)
is an Lk,Q cut for P

with respect to V ′×Rn, where V ′ ≤
(
lin
{
π1, . . . , πt

})⊥
is a rational subspace of codimension k. In particular,

we have
clLk,Q (P ) ⊆ clk,tBS (P ) ,

and more speci�cally
clLk,Q (P ) ⊆ clk,kBS (P ) = clkBS (P ) .

Another consequence of Theorem 277 is:

Corollary 279. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary, where m + n ≥ 2. Then every parametric
cross cut for P (cf. De�nition 150) and, in particular, every crooked cross cut for P (cf. De�nition 146) is
an L2,Q cut for P . In particular, we have

clL2,Q (P ) ⊆ clCC (P ) .

In Theorem 462, we see that in many cases, the crooked cross closure is equivalent to the L2,Q closure. On
the other hand, by Corollary 278, every 2-branch split cut is an L2,Q cut. So, for the next step, we analyze
the relationship between 2-branch split cuts and crooked cross cuts for rational polyhedra. The following
theorem is shown in [DGM15, Theorem 1.2 (Restated)]:

Theorem 280. There exists a rational polytope P ( R2 × R1 such that

clCC (P ) ( cl2BS (P ) .

The central idea for the proof of Theorem 280 is the following result, which is proved in [DDG+13]. We
present it in a formulation that is based on the one that is given in [DGM15, Theorem 5.1].

Theorem 281. There exists a rational triangle T ∗ ⊆ R2 satisfying

1. (intT ∗) ∩ Z2 = ∅,
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6. Expressivity of various classes of cutting planes

2. e2,i ∈ bdT ∗ for i ∈ {0, 1, 2} and

3. ∃δ ∈ R>0 such that for any pair S1, S2 of split sets for Z2, we have vol2 (T ∗ (T ∗, x∗) \ (S1 ∪ S2)) ≥ δ,
where vol2 denotes the 2-dimensional volume.

Now, let T ∗ ( R2 be as Theorem 281 and let x∗ ∈ (intT ∗) ∩Q2. Set

P := conv ((T ∗ × {0}) ∪ ({x∗} × {1})) .

This P satis�es the conditions that are imposed upon it in Theorem 280.
From Corollary 279 and Theorem 280, we conclude:

Corollary 282. There exists a rational polytope P ( R2 × R1 such that

clL2,Q (P ) ( cl2BS (P ) .

We now consider how Corollary 282 can be generalized to t-branch split cuts, where t ≥ 3. In [DDG+13,
Lemma 4.9, Theorem 4.10 and Theorem 4.11], it is shown:

Theorem 283. For all m ∈ Z≥3, there exists a rational, full-dimensional, lattice-free polytope T ε ⊆ Rm (the
ε has a speci�c meaning in [DDG+13], which does not matter here) such that for any given set of 3 · 2m−2− 1
split sets S1, . . . , S3·2m−2−1, we have:

intT ε *
3·2m−2−1⋃

i=1

Si.

Additionally, we have ([DDG+13], Theorem 4.13):

Theorem 284. Let t ∈ Z≥1 and let P ⊆ Rm (m ∈ Z≥1) be a rational, full-dimensional, lattice-free polytope.
Assume that the integer hull of P has dimension m and intP cannot be covered by t split sets. Let x ∈ intP
(w.l.o.g. x ∈ Qm) and let

Q := conv

(
(B × {0}) ∪̇

{((
x
1
2

)}))
⊆ Rm × R1.

Then y1 ≤ 0 is a facet-de�ning inequality for ( xy ) ∈ clI (Q) which cannot be expressed as a t-branch split cut
for Q.

We thus conclude, since the polytope T ε from Theorem 283 satis�es the conditions for P in Theorem 284:

Theorem 285. For all m ∈ Z≥3, there exists a rational polytope P ( Rm × R1 such that

• y1 ≤ 0 is a valid inequality for ( xy ) ∈ PI and a valid Lm,Q cut for P ,

• y1 ≤ 0 is not a valid
(
3 · 2m−2 − 1

)
-branch split cut for ( xy ) ∈ P .

We remark that one cannot conclude from Theorem 285 that there exists a polyhedron P ⊆ Rm × R1

(m ∈ Z≥3) having
clLm,Q (P ) ( cl(3·2m−2−1)BS (P ) .

For the question how t − 1-branch split cuts relate to t-branch split cuts: in Theorem 560 and Theorem
562 (also cf. Theorem 561, Theorem 576 and Theorem 577), we see that for every m ∈ Z≥1, there exists a
rational polytope P ⊆ Rm × R1 having

clmBS (P ) ( cl(m−1)BS (P ) .

We now consider the question how crooked cross cuts are related to 3-branch split cuts. One can easily
show that for every π1, π2 ∈ Zm and γ1, γ2 ∈ Z, we have:

D
(
π1, π2, π2 − π1, γ1, γ2, γ2 − γ1

)
⊆ Dc

(
π1, π2, γ1, γ2

)
.

From this, we immediately conclude:

Theorem 286. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then every crooked cross cut for P is also a
2, 3-branch split cut for P (recall De�nition 252), thus a 3-branch split cut for P . In particular, we have

cl3BS (P ) ⊆ cl2,3BS (P ) ⊆ clCC (P ) .
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6.1. (Non-)Inclusions

We now consider that the inclusion cl3BS (P ) ⊆ clCC (P ) in Theorem 286 can also be strict. This is the
statement of the following theorem, which is shown in [DGM15, Theorem 1.2 (restated)]:

Theorem 287. Let P := P 516,3 ⊆ R3 (cf. De�nition 516). Then ∅ = clI (P ) = cl3BC (P ), but 1
2 · 1

3 ∈
clCC (P ), thus cl3BC (P ) ( clCC (P ).

We remark that we analyze the Lk,Q closures of P 516,3 (or rather of the series P 516,m of polytopes) much
more deeply in section 13.1 of chapter 13.

6.1.5. k-disjunctive cuts vs Lk′,Q cuts

We now show that for a rational polyhedron P ⊆ Rm ×Rn (m,n ∈ Z≥0), the k-disjunctive closure is at least
as strong as the Lk′,Q closure as long as k is chosen su�ciently large (only depending on k′):

Theorem 288. Let ∅ 6= P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyehdron. Let k ∈ {0, . . . ,m} and let

c ( · ) ≥ c0 (c ∈ (Qm ×Qn)
T
and c0 ∈ Q) be an Lk,Q cut for P that is not already valid for P . Then c ( · ) ≥ c0

is a 2k-disjunctive cut for P . In particular, we have

cl2kD (P ) ⊆ clLk,Q (P ) .

Remark 289. The condition of Theorem 288 that c and c0 are rational is not a restriction, since it is a
consequence of Theorem 178 that for a rational polyhedron P , every Lk,Q cut is dominated absolutely by a
�nite set of rational Lk,Q cuts.

Proof. (Theorem 288) Since c ( · ) ≥ c0 is an Lk,Q cut for P that is not valid for P , and P is rational, by
Theorem 240, there exists a rational, full-dimensional, maximal lattice-free body L := P≤ (A′, b′) ⊆ Rm with
dim (linealL) ≥ m− k such that c ( · ) ≥ c0 is valid for

P ∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
.

Since L is maximal lattice-free, by Theorem 108, L has at most 2k facets, i.e. we can assume k′ ≤ 2k. Thus,
c ( · ) ≥ c0 is a 2k-disjunctive cut for P .

6.1.6. k row cuts, split cuts, crooked cross cuts and Lk′,Q cuts

For the remainder of this section, we de�ne (cf. [DDG12, section 5]):

De�nition 290. Let A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). An inequality
(
c d

)
( · ) ≥ f

(c ∈ (Rm)
T
, d ∈ (Rn)

T
and f ∈ R) is a translation of

(
c′ d′

)
( · ) ≥ f ′ with respect to A, G and b

(c′ ∈ (Rm)
T
, d′ ∈ (Rn)

T
and f ′ ∈ R) if there exists a µ ∈

(
Rl
)T

and a δ ∈ R>0 such that(
c d f

)
= µ

(
A G b

)
+ δ

(
c′ d′ f ′

)
.

The motivation for De�nition 290 should be clear if one keeps in mind that in [DDG12], the authors consider
linear inequalities for P=

((
A G

)
, b
)
∩
(
Rm × Rn≥0

)
.

6.1.6.1. Results

The following theorem is shown in [DDG12, Lemma 5.1] for the case that A, G and b are rational, even though
the argumentation does not make any use of the rationality:

Theorem 291. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Let π ∈ Zm and γ ∈ Z be such that

P ∩ (D (π, γ)× Rn) 6= ∅

and let
(
c d

)
( · ) ≥ f (c ∈ (Rm)

T
, d ∈ (Rn)

T
and f ∈ R) be a nontrivial split cut for P (i.e.

(
c d

)
( · ) ≥

f is not valid for P ) with respect to D (π, γ). Then there exists a λ ∈
(
Rl
)T

having π = λA such that
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6. Expressivity of various classes of cutting planes

(
π d′

)
( · ) ≥ γ + 1 is a translation of

(
c d

)
( · ) ≥ f with respect to A, G and b for some d′ ∈ (Rn)

T
.

Furthermore,
(
π d′

)
( · ) ≥ γ + 1 can be derived as a split cut for the 1-row relaxation{(

x
y

)
∈ Rm × Rn≥0 : λA︸︷︷︸

=πT

x+ λGy = λb

}
.

In [DDG12, section 5], the authors analyze that in Theorem 291, the translation of the split cut is really
necessary. In other words: not every split cut for P as in Theorem 291 can be obtained as a split cut of a 1-row
relaxation without translation. Also, Theorem 291 does not hold in the case that P ∩ (D (π, γ)× Rn) = ∅.
For this, we consider the following example:

Example 292. ([DDG12, section 5]) Consider the polyhedron

P :=

{
x ∈ R2 :

3

10
≤ x1 ≤

7

10

}
⊆ R2.

By introducing slack variables, we can bring P into the form that is required for Theorem 291:

P :=

{(
x
y

)
∈ R2 × R2

≥0 :

(
1 0
1 0

)
︸ ︷︷ ︸

=:A

x+

(
1 0
0 −1

)
︸ ︷︷ ︸

=:G

y =

( 7
10
3
10

)
︸ ︷︷ ︸

=:b

}
.

Clearly, P ∩
(
D
(
e2,1, 0

)
× R2

)
= ∅, thus x2 ≤ 0 is a split cut for ( xy ) ∈ P with respect to the split disjunction

D
(
e2,1, 0

)
. On the other hand, every 1-row relaxation of P with respect to A, G, b and some λ

(
R2
)T

is of
the form

P
′

:=

{(
x
y

)
∈ R2 × R2

≥0 : (λ1 + λ2)x1 + λ1y1 − λ2y2 =
7

10
λ1 +

3

10
λ2

}
,

where λ1, λ2 ∈ R. This relaxation is feasible for every x2 ∈ R; thus, x2 ≤ 0 is not valid for any arbitrary
1-row relaxation. It can also not be obtained by a translation, as x2 does not appear in the constraints de�ning
P .

What, according to [DDG12, section 5.1], holds in the case P ∩ D (π, γ) = ∅, is the following version of
Theorem 291:

Theorem 293. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Let π ∈ Zm and γ ∈ Z be such that

P ∩ (D (π, γ)× Rn) = ∅.

Then there exists a λ ∈
(
Rl
)T

such that a translation of
(

(0m)
T

(0n)
T
)

( · ) ≥ 1 can be derived as a split

cut from the 1-row relaxation {(
x
y

)
∈ Rm × Rn≥0 : λA︸︷︷︸

=πT

x+ λGy = λb

}
.

From Theorem 291 and Theorem 293, we obtain:

Theorem 294. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Then

cl1R (A,G, b) ⊆ clsplit (P ) .

We next consider 2-row relaxations. For the following theorem, a proof idea is sketched in [DGM15,
section 1.2]:
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Theorem 295. There exist rational A, G and b such that

cl2R (A,G, b) ( cl1R (A,G, b) .

The idea that the authors sketch is to bring the well-known Cook-Kannan-Schrijver example (cf. [CKS90],
but also cf. [LR08]) into the form that De�nition 154 requires for k row cuts, just as we do in De�nition 557
for the more general Li-Richard example to de�ne P 557,m,ε,=. One can show that one can derive the missing
facet-de�ning inequality from a 2-row relaxation (cf. [ALWW07] for the original derivation for 2-row cuts).
On the other hand, the authors remark that it is possible to show the non-trivial statement that for this
polyhedron, all cuts from a 1-row relaxation are split cuts; thus, 1-row cuts are not su�cient to obtain the
mixed-integer hull.
For the remainder of this section, we de�ne (cf. [DDG12, section 2]):

De�nition 296. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. A parametric cross cut for P (cf. De�nition
151) is called non-trivial if it not valid for the split closure of P .

In [DDG12, Theorem 5.8], the following analogue of Theorem 291 for parametric cross cuts is shown:

Theorem 297. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0) and let
(
c d

)
( · ) ≥ f (c ∈ (Rm)

T
, d ∈

(Rn)
T
and f ∈ R) be a non-trivial parametric cross cut for P derived from the parametric cross disjunction

Dt
(
π1, π2, γ1, γ2

)
(π1, π2 ∈ Zm and γ1, γ2, t ∈ Z). If P ∩Dt

(
π1, π2, γ1, γ2

)
6= ∅, then there exist λ1, λ2, λ3 ∈(

Rl
)T

having

λ1A =
(
π1
)T
, λ2A =

(
π2
)T
, λ3A = (0m)

T

such that a translation of
(
c d

)
( · ) ≥ f is a parametric cross cut with respect to Dt

(
π1, π2, γ1, γ2

)
for the

3-row relaxation 
(
x
y

)
∈ Rm × Rn≥0 :

 λ1

λ2

λ3

Ax+

 λ1

λ2

λ3

Gy =

 λ1

λ2

λ3

 b

 .

In [DDG12, Lemma 5.5, Corollary 5.6], the following analogue of Theorem 293 for parametric cross cuts is
shown:

Theorem 298. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Let a parametric cross disjunction Dt
(
π1, π2, γ1, γ2

)
be given such that

• P ∩Dt
(
π1, π2, γ1, γ2

)
= ∅ and

•
(

(0m)
T

(0n)
T
)

( · ) ≥ 1 is a non-trivial parametric cross cut for P with respect to Dt
(
π1, π2, γ1, γ2

)
.

Then the inequality
(

(0m)
T

(0n)
T
)

( · ) ≥ 1 is a conic combination of two parametric cross cuts with

respect to Dt
(
π1, π2, γ1, γ2

)
of two 2-row relaxations of P .

Note that for the statements in [DDG12] for what we state here as Theorem 297 and Theorem 298, A, G
and b are demanded be rational. However the proofs in this paper do not depend on this fact.
From Theorem 297 and Theorem 298, we obtain:

Corollary 299. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0). Then

cl3R (A,G, b) ⊆ clCC (P ) .
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6. Expressivity of various classes of cutting planes

We next get to a result that is shown in [DGM15, Theorem 1.6 (Restated)], which states that the 2-branch
split closure can be stronger than the 2-row closure:

Theorem 300. Let

P :=

{(
x
y

)
∈ R2 × R4

≥0 :

 1 0

0 1

0 0


︸ ︷︷ ︸

=:A

x+

 − 1
2 0 0 1

2

− 1
2 0 1

2 0

−1 −1 1 1


︸ ︷︷ ︸

=:G

y =

 1
2
1
2

0


︸ ︷︷ ︸

=:b

}
.

We have

P ∩

( ⋂
M∈R2×3

conv

({(
x
y

)
∈ R2 × R4

≥0 : MAx+MGy = Mb

}
I

))
* cl2BC (P ) .

This obviously means
cl2R (A,G, b) * cl2BC (P ) .

We remark that in Theorem 577, we show an additional non-inclusion result for k rows cuts versus t-branch
split cuts and Lk′ cuts.
We now show that for polyhedra that are neither rational nor full-dimensional, even the 1-row closure can

be stronger than any t-branch split closure (thus any parametric cross closure, which in particular includes
the crooked cross closure). For this, let us recall Theorem 255 before we state our result in Theorem 301.

Theorem 255. Let t ∈ Z≥0, π
1, . . . , πt ∈ Z2 and γ1, . . . , γt ∈ Z. Then

conv
(
P 114 ∩D

(
π1, . . . , πt, γ1, . . . , γt

))
= P 114. (5.21)

In particular, for all parametric cross disjunctions Dt′
(
π1, π2, γ1, γ2

)
(cf. De�nition 150) with respect to

some t′ ∈ Z (this includes crooked cross disjunctions), we have:

conv
(
P 114 ∩Dt′

(
π1, π2, γ1, γ2

))
= P 114. (5.22)

On the other hand,
(
02
)T

( · ) ≤ −1 is an L2,Q cut for P 114.

We thus obtain:

Theorem 301. Let
P := P=

(( √
2 −1

)︸ ︷︷ ︸
=:A

,
(
− 1

2

)︸ ︷︷ ︸
=:b

)
⊆ R2.

Clearly, P = P 114 and
(
02
)T

( · ) ≤ −1 is a 1-row cut for P . On the other hand, we have for all t ∈ Z≥0:

cl1R (A, b) = ∅ ( P = clCC (P ) = cltBS (P ) .

Proof. By de�nition,
(
02
)T

( · ) ≤ −1 is a 1-row cut for P with respect toA and b. clCC
(
P 114

)
= cltBS

(
P 114

)
=

P 114 is a direct consequence of Theorem 255.

We write down another consequence of Theorem 255:

Theorem 302. We have for all t ∈ Z≥0:

clL
1− 1

2
,R

(
P 114

)
= clL1,R

(
P 114

)
= clL

2− 1
2
,Q

(
P 114

)
= clL2,Q

(
P 114

)
= clI

(
P 114

)
= ∅

(P 114 = cltBS
(
P 114

)
.

Proof. clL
1− 1

2
,R

(
P 114

)
= clL

1− 1
2
,R

(
P 114

)
= clL

2− 1
2
,Q

(
P 114

)
= clL2,Q

(
P 114

)
= clI

(
P 114

)
= ∅ holds by Theo-

rem 187, Theorem 188 and Theorem 202. cltBS
(
P 114

)
= P 114 is a direct consequence of Theorem 255.

6.1.6.2. k row cuts, Lk′,Q cuts and lattice-free bodies

The goal of this section is to give an inclusion result for the k row closure versus the Lk′,Q closure. This result
is formulated in Theorem 304. To show it, we �rst prove a result about lattice-free bodies and k row cuts,
which we believe is also out of itself of mathematical relevance.
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Theorem 303. Let

∅ 6= P =

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rr×m, G ∈ Rr×n and b ∈ Rr (r,m, n ∈ Z≥0). Clearly, P is in the form that is required in
De�nition 154. Let P ′ := P≤ (A′, b′) ⊆ Rm be a (w.l.o.g full-dimensional) lattice-free polyhedron, where
A′ ∈ Rm×k′ and b′ ∈ Rk′ (k′ ∈ Z≥2).

• If

P ∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
= ∅,

de�ne (
c1 c2

)
:=
(

(0m)
T

(0n)
T
)
, c0 := 1.

• Otherwise, i.e. if

P ∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
6= ∅,

let
(
c1 c2

)
( · ) ≥ c0 (c1 ∈ (Rm)

T
, c2 ∈ (Rn)

T
and c0 ∈ R) be a cutting plane that is not valid for P ,

but for

P ∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
.

Then there exists an M ∈ R(k′−1)×r such that
(
c1 c2

)
( · ) ≥ c0 is a translation (cf. De�nition 290) of a

valid inequality for{(
x
y

)
∈ Rm × Rn≥0 : MAx+MGy = Mb

}
︸ ︷︷ ︸

=:P (M)

∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
.

Proof. W.l.o.g. we assume that in the second case, we have P ∩
(
P≥

(
A′1,∗, b

′
1

)
× Rn

)
6= ∅. Additionally, we

assume that the rows of A′ and b′ are ordered such that for all 2 ≤ i ≤ k′′, we have P∩
(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
6= ∅

and for k′′+ 1 ≤ i ≤ k′, we have P ∩
(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
= ∅ (k′′ ∈ {1, . . . , k′}). Thus, it is a consequence of

Lemma 88, Lemma 89 and Lemma 90 that there exist multipliers λ1, . . . , λk
′ ∈ (Rr)T and µ1, . . . , µk

′ ∈ R≥0

such that

c1 = λ1A+ µ1A′1,∗, (6.1)

c2 ≥ λ1G, (6.2)

c0 ≤ λ1b+ µ1b′1, (6.3)

c1 = λiA+ µiA′i,∗ ∀i ∈ {2, . . . , k′′} , (6.4)

c2 ≥ λiG ∀i ∈ {2, . . . , k′′} , (6.5)

c0 ≤ λib+ µib′i ∀i ∈ {2, . . . , k′′} , (6.6)

(0m)
T

= λiA+ µiA′i,∗ ∀i ∈ {k′′ + 1, . . . , k′} , (6.7)

(0n)
T ≥ λiG ∀i ∈ {k′′ + 1, . . . , k′} , (6.8)

1 = λib+ µib′i ∀i ∈ {k′′ + 1, . . . , k′} (6.9)
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6. Expressivity of various classes of cutting planes

holds. Let

M :=



λ2 − λ1

...
λk
′′ − λ1

λk
′′+1

...
λk
′


and let (

x
y

)
∈ P (M) ∩

k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
.

By de�nition, there exists an i ∈ [k′] such that A′i,∗x ≥ b′i. We distinguish three cases:

1. i = 1,

2. i ∈ {2, . . . , k′′},

3. i ∈ {k′′ + 1, . . . , k′}.

We show that in all three cases, the identitity

c1x+ c2y − λ1Ax− λ1Gy ≥ c0 − λ1b (6.10)

holds.

Case 1 (i = 1):

c1x+ c2y − λ1Ax− λ1Gy ≥ µ1A′1,∗x (by (6.1), (6.2), y ≥ 0)

≥ µ1b′1 (case assumption, µ1 ≥ 0)

≥ c0 − λ1b. (by (6.3))

Case 2 (i ∈ {2, . . . , k′′}):

c1x+ c2y − λ1Ax− λ1Gy =c1x+ c2y − λ1Ax− λ1Gy

−
(
λi − λ1

)
Ax−

(
λi − λ1

)
Gy +

(
λi − λ1

)
b (( xy ) ∈ P (M))

=c1x− λiAx+ c2y − λiGy +
(
λi − λ1

)
b

≥µiA′i,∗x+
(
λi − λ1

)
b (by (6.4), (6.5))

≥µib′i +
(
λi − λ1

)
b (case assumption, µi ≥ 0)

≥c0 − λ1b. (by (6.6))

Case 3 (i ∈ {k′′ + 1, . . . , k′}): We show that P (M) ∩ P≥ (A′i, b
′
i) = ∅. Thus, any inequality (in particular

(6.10)) is valid for P (M) ∩ P≥ (A′i, b
′
i):

(0m)
T
x+ (0n)

T
y = −λiAx− λiGy + λib (( xy ) ∈ P (M))

≥ µiA′i,∗x+ λib (by (6.7), (6.8))

≥ µib′i + λib (case assumption, µi ≥ 0)

= 1. (by (6.9))

Theorem 304. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,
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where A ∈ Qr×m, G ∈ Qr×n and b ∈ Qr (r,m, n ∈ Z≥0). Let k ∈ {0, . . . ,m} and let c ( · ) ≥ c0 be an Lk,Q
cut for P , where c ∈ (Qm ×Qn)

T
and c0 ∈ Q. If P 6= ∅, then c ( · ) ≥ c0 is a translate of a 2k − 1 row cut

with respect to A, G and b. In particular, we have

cl(2k−1)R (A,G, b) ⊆ clLk,Q (P ) .

Remark 305. The condition of Theorem 304 that c and c0 are rational is not a restriction, since it is a
consequence of Theorem 178 that for a rational polyhedron P , every Lk,Q cut is dominated absolutely by a
�nite set of rational Lk,Q cuts.

Proof. (Theorem 304) Since c ( · ) ≥ c0 is an Lk,Q cut for P and P is rational, by Theorem 240, there exists a
rational, full-dimensional, maximal lattice-free body L := P≤ (A′, b′) ⊆ Rm with dim (linealL) ≥ m− k such
that c ( · ) ≥ c0 is valid for

P ∩
k′⋃
i=1

(
P≥

(
A′i,∗, b

′
i

)
× Rn

)
.

Since L is maximal lattice-free, by Theorem 108, L has at most 2k facets. Thus, we immediately conclude
from Theorem 303 that c ( · ) ≥ c0 is a 2k − 1 row cut with respect to A, G and b.

We remark that in Theorem 316 in section 6.2.5, we state an important consequence of Theorem 304.

6.2. Convergence to the (mixed-)integral closure

Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let cl( · ) (P ) be the closure of P with respect
to the class ( · ) of cutting planes. For t ∈ Z≥0, we de�ne the iterated closure with respect to the class ( · ) as

cl
(t)
( · ) (P ) :=

{
P for t = 0,

cl( · )

(
cl

(t−1)
( · ) (P )

)
for t > 0.

In this section, we consider the following questions for various classes of cutting planes (in order of essentially
decreasing strength):

1. Does cl( · ) (P ) = clI (P ) hold?

2. Does there exist a t ∈ Z≥0 such that cl
(t)
( · ) (P ) = clI (P ) holds? In general (i.e. P ⊆ Rm×Rn arbitrary),

we de�ne:
rank( · ) (P ) := min{t ∈ Z≥0 : cl

(t)
( · ) (P ) ⊆ clI (P )} ∈ Z≥0 ∪̇ {∞} (6.11)

as the ( · ) rank of P (e.g. Chvátal-Gomory rank of P ).

3. Does lim
i→∞

cl
(i)
( · ) (P ) = clI (P ) hold? We de�ne the Hausdor� convergence that is used here in De�nition

308.

4. Unter what conditions on, for example, c ∈ (Qm ×Qn)
T and P does

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
( · ) (P )

}
= max {cx : x ∈ clI (P )} (6.12)

hold?

6.2.1. Chvátal-Gomory closure

If P ⊆ Rm is a rational polyhedron, where m ∈ Z≥0 (i.e. we consider the pure integral case), there exists a
positive answer to question 2: in [CGST86] (also cf. [Sch86, Theorem 23.4; p. 345]), the following theorem is
shown:

Theorem 306. Let P ⊆ Rm (m ∈ Z≥0) be a rational polyhedron. Then there exists a t ∈ Z≥0 such that

cl
(t)
CG (P ) = clI (P ).

For question 1: already for P ⊆ R2, one can �nd examples such that the Chvátal-Gomory rank of the
rational polytope P is arbitrarily large:
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6. Expressivity of various classes of cutting planes

Lemma 307. (cf. [Sch86, section 23.3]) For k ∈ Z≥0, de�ne

P 307,k := conv

{(
0
0

)
,

(
0
1

)
,

(
k
2
1
2

)}
⊆ R2.

Then for all k ∈ Z≥1, we have
clCG

(
P 307,k

)
= P 307,k−1.

Since for all k ∈ Z≥0, we have clI
(
P 307,k

)
= P 307,0, we thus conclude

∀k ∈ Z≥0 : rankCG
(
P 307,k

)
= k.

Proof.

For k = 1: Clearly
P 307,1 ⊆ P≤

((
1 0

)
,
(

1
2

))
.

Thus,
clCG

(
P 307,1

)
⊆ P 307,1 ∩ P≤

((
1 0

)
,
( ⌊

1
2

⌋ ))
= P 307,0.

On the other hand, we have
P 307,0 = clI

(
P 307,1

)
⊆ clCG

(
P 307,1

)
.

So, we conclude clCG
(
P 307,1

)
= P 307,0.

For k ≥ 2: Obviously, (
1 k − 1

)
( · ) ≤

⌊
k

2
+
k − 1

2

⌋
︸ ︷︷ ︸
=bk− 1

2c=k−1

and (
1 − (k − 1)

)
( · ) ≤

⌊
k

2
− k − 1

2

⌋
︸ ︷︷ ︸

=b 1
2c=0

are valid Chvátal-Gomory cuts for P 307,k. So, we have

clCG
(
P 307,k

)
⊆ P 307,k ∩ P≤

((
1 k − 1
1 − (k − 1)

)
,

(
k − 1

0

))
= P 307,k−1.

For clCG
(
P 307,k

)
⊇ P 307,k−1, let c ( · ) ≤ c0 (c ∈

(
Z2
)T

and c0 ∈ R, where w.l.o.g. c0 /∈ Z) be a valid
inequality for P 307,t such that c ( · ) ≤ bc0c is not valid for P 307,t. This clearly implies c1 ≥ 1. Since(
k
2
1
2

)
∈ P 307,k, we obtain

c1
k

2
+ c2

1

2
≤ c0. (6.13)

Clearly, c1 k2 + c2
1
2 ∈

1
2Z. If c1

k
2 + c2

1
2 ∈ Z, we thus obtain using (6.13) and c1 ≥ 1:

c

(
k−1

2
1
2

)
= c1

k − 1

2
+ c2

1

2
= c1

k

2
+ c2

1

2︸ ︷︷ ︸
≤bc0c

−c1
1

2
≤ bc0c − c1

1

2
< bc0c .

On the other hand, if c1 k2 + c2
1
2 ∈ Z+ 1

2 , we conclude using (6.13) and c1 ≥ 1:

c

(
k−1

2
1
2

)
= c1

k

2
+ c2

1

2
− 1

2
− (c1 − 1)

1

2
=

⌊
c1
k

2
+ c2

1

2
− 1

2

⌋
︸ ︷︷ ︸

≤bc0c

− (c1 − 1)
1

2︸ ︷︷ ︸
≤0

≤ bc0c .

This shows

c

(
k−1

2
1
2

)
≤ bc0c .
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6.2. Convergence to the (mixed-)integral closure

6.2.2. Split closure

We start with a theorem, which we show in section 9.2.5:

Theorem 430. For ε ∈ R>0, let

P 430,ε := conv


 0

0
0

 ,

 2
0
0

 ,

 0
2
0

 ,

 2
3
2
3
ε


= P≤



−1 0 2

3ε

0 −1 2
3ε

1 1 2
3ε

0 0 −1

 ,


0
0
2
0




=: P≤
((

A Gε
)
, b
)

⊆ R2 × R1.

Then clsplit
(
P 430,ε

)
= P 430, ε2 . In particular, for every t ∈ Z≥0, we have

cl
(t)
split

(
P 430,ε

)
= P 430, ε

2t .

So, there exists a rational polytope P ( R2 × R1 such that for all t ∈ Z≥0, we have: cl
(t)
split (P ) ) clI (P ).

In Theorem 306, we saw that in the pure integer case, the iterated Chátal-Gomory closure of a rational
polyhedron P is equal to clI (P ) after some iterations. Theorem 430 shows that there is no analogue theorem
for the iterated split closure in the mixed-integer setting. More concisely: question 2 (and thus trivially also
question 1) from the list at the beginning of section 6.2 can be answered with �no� for the split closure in the
mixed-integer case.
Nevertheless, a weaker property is satis�ed: the iterated split closure of a rational polyedron P ⊆ Rm×Rn

(m,n ∈ Z≥0) at least converges to the mixed-integer hull clI (P ). To be able to formalize this property, we
introduce the concept of Hausdor� covergence of closed sets. This concept is de�ned in [DPW12, section 2]
the following way (also cf. [OM01] and [SW79]):

De�nition 308. Let P̃ ,
{
P i
}
i∈N ⊆ R

d (d ∈ Z≥0) be closed sets such that P̃ ⊆ Pi+1 ⊆ Pi for every i ∈ N
(i.e.

{
P i
}
i∈N is antitone). We say that

{
P i
}
i∈N (Hausdor�) converges to P̃ ( lim

i→∞
P i = P̃ ) if for every

ε > 0, there exists a k ∈ N such that P k ⊆ P̃ +Bε.

Remark 309. (Cf. [DPW12, section 2]) If
{
P i
}
i∈N converges, we have lim

i→∞
P i =

⋂
i∈N P

i. This is a

consequence of [SW79, Proposition 2 and Theorem 2]). For this to hold, of course, the antitonicity condition
for

{
P i
}
i∈N from De�nition 308 has to be satis�ed.

The following theorem is shown in [OM01] for P being polytope and in [DPW12, Theorem 2] for the case
that P is a rational polyhedron:

Theorem 310. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a polytope or rational polyhedron. Then

lim
i→∞

cl
(i)
split (P ) = clI (P ) .

Remark 311. It is a natural question to ask whether Theorem 310 also holds for arbitrary polyhedra. This is
not the case. For this, consider that we have shown in Theorem 301 that clsplit

(
P 114

)
= P 114. On the other

hand, by De�nition 114, we have
(
P 114

)
I

= ∅.

We now consider question 4 for the split closure, i.e. what conditions on the rational polyhedron P ⊆
Rm × Rn (m,n ∈ Z≥0) and c ∈ (Qm ×Qn)

T need to be satis�ed so that we have (cf. (6.12))

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
split (P )

}
= max {cx : x ∈ PI} .

The following theorem, which is shown in [Jör07, Theorem 4], provides a su�cient condition for this:

163



6. Expressivity of various classes of cutting planes

Theorem 312. Let ∅ 6= P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let c ∈ (Qm ×Qn)
T
be a

vector such that max {cx : x ∈ P} <∞. Set γ∗ := max {cx : x ∈ PI} and M := clI (P ) ∩ P= (c, γ∗). If

(relint (projRmM)) ∩ Zm 6= ∅, (6.14)

then there exists a t ∈ Z≥0 such that max
{
cx : x ∈ cl

(t)
split (P )

}
= γ∗.

We now consider what Theorem 312 tells us for the situation occuring in Theorem 430. Let ε ∈ Q>0,
c ∈

(
Q2 ×Q

)T
and consider P 430,ε as the P in Theorem 312. Then:

• If c /∈ lin
{(

0 0 1
)}
, it is easy to check that (6.14) holds for M . Thus, by Theorem 312, we have:

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
split

(
P 430,ε

)}
= max

{
cx : x ∈

(
P 430,ε

)
I

}
.

• On the other hand, if c ∈ lin
{(

0 0 1
)}
, we have

M = conv

{(
e2,0

0

)
,

(
e2,1

0

)
,

(
e2,2

0

)}
.

Clearly, (6.14) does not hold for M . Indeed, if c ∈
(
cone

{(
0 0 1

)})
\
{(

0 0 0
)}
, we have by

Theorem 430:

∀t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
split

(
P 430,ε

)}
=

ε

2t
> 0 = max

{
cx : x ∈

(
P 430,ε

)
I

}
.

On the other hand, if c ∈ cone
{(

0 0 −1
)}
, we have

max
{
cx : x ∈ cl

(0)
split

(
P 430,ε

)}
= max

{
cx : x ∈

(
P 430,ε

)
I

}
,

but (6.14) does not hold. Thus, the condition of Theorem 312 is only su�cient, but not necessary.

6.2.3. Integral lattice-free closure

In [DPW12], it is shown (on the basis of Theorem 310 and [ALW10]):

Theorem 313. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be rational polyhedron. Then there exists a k ∈ Z≥0 such

that cl
(k)
ILF (P ) = clI (P ).

So question 2 can be answered positively with respect to the integral lattice-free closure. We now recall the
stronger question 1, i.e. whether for every rational polyhedron P ⊆ Rm × Rn, we even have

clILF (P ) = clI (P ) .

We have seen in Lemma 275 and Theorem 276 that this is in general not the case.

6.2.4. k-disjunctive closure

For k-disjunctive cuts, we can answer question 1 positively as long as we choose k su�ciently large. The
following Theorem is shown in [Jör07, Lemma 2 and Theorem 2]. Another possible proof is by setting k := m
in Theorem 288 and considering that for a rational polyhedron P ⊆ Rm × Rn, we have clLm,Q (P ) = clI (P ) .
This is similar to how we derive Theorem 316 from Theorem 304 later on in this text.

Theorem 314. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let c ( · ) ≤ c0 be a valid

inequality for PI (c ∈ (Qm ×Qn)
T
and c0 ∈ Q). Then c ( · ) ≤ c0 is a 2m-disjunctive cut for P . Since every

facet-de�ning inequality for clI (P ) can be assumed to have rational coe�cients, we have

cl2mD (P ) = clI (P ) .

Since the 2m in Theorem 314 grows exponentially in m, one is interested in answering question 4 positively
for a smaller k than the 2m from Theorem 314, i.e. one wants to �nd su�cient conditions on P ⊆ Rm × Rn,
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6.2. Convergence to the (mixed-)integral closure

c ∈ (Qm ×Qn)
T and k ∈ Z≥2 such that we have (recall (6.12)):

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
kD (P )

}
= max {cx : x ∈ PI} .

The following theorem, which is shown in [Jör07, Theorem 5], delivers an analogue of Theorem 312 for
k-disjunctive cuts:

Theorem 315. Let ∅ 6= P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron and let c ∈ (Qm ×Qn)
T
be

such that max {cx : x ∈ P} < ∞. Set γ∗ := max {cx : x ∈ PI} and M := clI (P ) ∩ P= (c, γ∗). Let F denote
the set of faces of M that satisfy

f ∈ F ⇒ (relint (projRm (f))) ∩ Zm = ∅

and let k ∈ Z≥2. If

• there exist AM ∈ Qk×m and bM ∈ Q such that P≤
(
AM , bM

)
is lattice-free and

x ∈ relint (projRm (M))⇒ x ∈ P<
(
AM , bM

)
and

• for every f ∈ F , there exist Af ∈ Qk×m and bf ∈ Q such that P≤
(
Af , bf

)
is lattice-free and

x ∈ relint (projRm (f))⇒ x ∈ P<
(
Af , bf

)
,

then there exists a t ∈ Z≥0 such that max
{
cx : x ∈ cl

(t)
kD (P )

}
= γ∗.

Let us revisit the example that we analyzed at the end of section 6.2.2 with respect to Theorem 312. Here,
the remaining situation was c ∈

(
lin
{(

0 0 −1
)})
∩
(
Q2 ×Q

)T
. Indeed, for

M = conv

{(
e2,0

0

)
,

(
e2,1

0

)
,

(
e2,2

0

)}
,

all faces f of M satisfy (relint (projRm (f))) ∩ Zm 6= ∅. Thus, F = ∅. For M , there exist

AM :=

 −1 0
0 −1
1 1

 , bM :=

 0
0
2


such that x ∈ relint (projRm (M))⇒ x ∈ P<

(
AM , bM

)
. Thus, we have by Theorem 315:

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
3D

(
P 430,ε

)}
= max

{
cx : x ∈

(
P 430,ε

)
I

}
.

We remark that one can easily show that in this case, t = 1 satis�es this property by just considering the
3-disjunctive cut y1 ≤ 0 for ( xy ) ∈ P 430,ε with respect to the (integral) lattice-free body

P≤

 −1 0
0 −1
1 1

 ,

 0
0
2

 .

6.2.5. k row closure

A similar statement to the situation for k-disjunctive cuts that we considered in section 6.2.4, where we saw
in Theorem 315 that as long as �k is large enough�, we have clkD (P ) = clI (P ), also holds for k row cuts:

Theorem 316. Let

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Qr×m, G ∈ Qr×n and b ∈ Qr (i.e. P is a rational polyhedron), where r,m, n ∈ Z≥0. Let c ( · ) ≥ c0
be a valid linear inequality for PI , where c ∈ (Qm ×Qn)

T
and c0 ∈ Q. If P 6= ∅, then c ( · ) ≥ c0 is a translate
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6. Expressivity of various classes of cutting planes

of a 2m − 1 row cut with respect to A, G and b. In particular, we have

cl(2m−1)R (A,G, b) = clI (P ) .

Proof. For P = ∅, the statement is trivial. If P 6= ∅, the statement is an immediate consequence of Theorem
304 and the considerations that

• if P is a rational polyhedron, so is clI (P ) and

• every linear inequality for PI is an Lm,Q cut for P .

6.2.6. t-branch split closure

For t-branch split cuts, we can answer question 1 positively as long as we choose t su�ciently large, since in
[DDG+13, Theorem 3.5], it is shown:

Theorem 317. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be a rational polyhedron. Then every facet-de�ning inequality
for clI (P ) is an h (m)-branch split cut for P , where h ( · ) is as in Remark/De�nition 248. In particular, we
have

clh(m)BS (P ) = clI (P ) .

6.3. Polyhedricity

There are two natural approaches how one can approach the problem of proving that the closure of some P
with respect to a given class of cutting planes is a polyhedron:

• Prove a polyhedricity result that is rather speci�c to the class of cutting planes that one considers.

• Prove a rather general polyhedricity result and apply it to the concrete class of cutting planes.

As one can imagine, this is rather a rough guide than a precise classi�cation. Nevertheless, we use it to
structure the remainder of this section.

6.3.1. Polyhedricity results that are speci�c to a particular class of cutting planes

6.3.1.1. Chvátal-Gomory closure

For a rational polyhedron P ⊆ Rm, its Chvátal-Gomory closure is a again a rational polyhedron:

Theorem 318. Let P ⊆ Rm (m ∈ Z≥0) be a rational polyhedron. Then clCG (P ) is a again a rational
polyhedron.

This is proved in [Chv73, Corollary 3.3] if P is a rational polytope and in [Sch80, Theorem 1] if P is a
rational polyhedron (also cf. [Sch86, Theorem 23.1; p. 340]). In [CCZ10, section 11.6.1], the authors simplify
the proof from [Chv73] and generalize it from rational polytopes to arbitrary rational polyhedra.
We remark that in Theorem 399, we show that the Chvátal-Gomory closure of a polyhedron P ⊆ Rm

(m ∈ Z≥0) with rational face normals is a rational polyhedron and in Theorem 405, we prove a similar result
for the projected Chvátal-Gomory closure of a polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0) (i.e. mixed-integer
setting) with rational face normals.
We now consider the situation for clCG (K) if K ⊆ Rm is not a rational polyhedron. For this, we start with

a de�nition (cf. [DV10, section 1]):

De�nition 319. A rational ellipsoid is the image of an (Euclidian) unit ball under a rational a�ne map.

In [DV10, Theorem 2], it is shown:

Theorem 320. Let K ⊆ Rm (m ∈ Z≥0) be a full-dimensional rational ellipsoid. Then clCG (K) is a rational
polytope that is de�ned by a �nite number of Chvátal-Gomory cuts for K.

In [DS11], it is shown:

Theorem 321. Let K ⊆ Rm (m ∈ Z≥0) be a (not necessarily rational) polytope. Then clCG (K) is a rational
polytope that is de�ned by a �nite number of Chvátal-Gomory cuts for K.
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6.3. Polyhedricity

We next de�ne (cf. [DDV11b, section 2]):

De�nition 322. Let K ⊆ Rd (d ∈ Z≥0). We call K strictly convex if for all k1, k2 ∈ K and λ ∈ (0, 1), we
have λk1 + (1− λ) k2 ∈ relintK.

In [DDV11b, Theorem 2.3], the authors prove the following generalization of Theorem 320:

Theorem 323. Let K ⊆ Rm (m ∈ Z≥0) be compact and strictly convex and let P ⊆ Rm be a rational
polyhedron. Then clCG (K ∩ P ) is a rational polytope that is de�ned by a �nite number of Chvátal-Gomory
cuts for K ∩ P .

In Theorem 323, one can, of course, set P := Rm; in this case, one obtains that the Chvátal-Gomory closure
of a strictly convex body is a rational polytope, which we state as corollary and is the statement of [DDV11b,
Theorem 2.2]:

Corollary 324. Let K ⊆ Rm (m ∈ Z≥0) be compact and strictly convex. Then clCG (K) is a rational polytope
that is de�ned by a �nite number of Chvátal-Gomory cuts for K.

In [DDV14, Theorem 1], the statements of Theorem 320, Theorem 321 and Theorem 323 are generalized
to the case that K ⊆ Rm is convex and compact. In [BP14, Theorem 6], one can �nd a simpli�ed proof of
this statement. We write this down as the following theorem:

Theorem 325. Let K ⊆ Rm (m ∈ Z≥0) be convex and compact. Then clCG (K) is a rational polytope that
is de�ned by a �nite number of Chvátal-Gomory cuts for K.

6.3.1.2. Split closure

For a rational polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0), its split closure is again a rational polyhedron:

Theorem 326. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron. Then clsplit (P ) is a again a
rational polyhedron.

There exist several proofs of Theorem 326 in the literature. Here, we only consider proofs that are speci�c
to the (1-branch) split closure; for a more general perspective cf. section 6.3.1.3 and section 6.3.2.1:

• The �rst proof of Theorem 326 can be found in [CKS90].

• A second proof can be found in [ACL05].

• While the previous two proofs are non-constructive, in [Vie07] or the extended version [Vie05], respec-
tively, one can �nd a constructive proof of Theorem 326.

• In [DGL10, section 4], one can �nd a proof of Theorem 326 for (rational) polyhedra of the form{(
x
y

)
∈ Rm≥0 × Rn≥0 : Ax+Gy = b

}
(A, G and b rational) that is based on the framework of MIR cuts, which we introduce in chapter 9.
This proof is simpli�ed and generalized in [CCZ10, section 11.6.2] to polyhedra of the form{(

x
y

)
∈ Rm≥0 × Rn≥0 : Ax+Gy ≤ b

}
(A, G and b again rational).

Our proof of Theorem 417 later on in section 9.2.4 constitutes an independent and constructive proof of
Theorem 326. In this theoren, we additionally show that if P ⊆ Rm × Rn is a polyhedron with rational face
normals, then clsplit (P ) is a polyhedron.
Similarly to how we structured section 6.3.1.1, we now again consider the situation if K ⊆ Rm is not a

rational polyhedron.
In [DDV11a, Theorem 1.3], it is shown (recall the related result by the same authors concerning the

Chvátal-Gomory closure of a compact and strictly convex set that we stated in Theorem 323):
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6. Expressivity of various classes of cutting planes

Theorem 327. Let K ⊆ Rm (m ∈ Z≥0) be compact and strictly convex and let aff K be a rational a�ne
subspace. Then clsplit (K) is �nitely de�ned, i.e. there exists a �nite set D ⊆ Zm × Z such that

clsplit (K) =
⋂

(π,γ)∈D

conv (K ∩D (π, γ)) .

Does Theorem 327 imply that the split closure of a compact and strictly convex body K ⊆ Rm, where
aff K is a rational a�ne subspace, is a polytope? For m ∈ {0, 1, 2}, this is the case, as the following theorem
shows:

Theorem 328. Let K ⊆ Rm (m ∈ {0, 1, 2}) be compact and strictly convex and let aff K be a rational a�ne
subspace. Then clsplit (K) is a polytope.

The statement of Theorem 328 is easy to verify for m ∈ {0, 1}. The case m = 2 of Theorem 328 is shown
in [DDV11a, Corollary 3.2]. We now consider the situation for m = 3. In this case, it can happen that for
K ⊆ R3 compact and strictly convex, clsplit (K) is not a polyhedron. For this, we consider the following
example:

Example 329. (cf. [DDV11a, Example 3.8]) Let

K :=

{
x ∈ R3 :

∥∥∥∥x− 1

2
· 13

∥∥∥∥
A

≤ 1

}
,

where

A :=
64

33

 1 0 0
0 1 0
0 0 1

10000

 ,

‖y‖A := yTAy for y ∈ R3.

Then 
 t

t

1+25
√

17−64(t− 1
2 )

2

2

 : t ∈
[

1

2
,

1

2
+

1

100

] ⊆ bd (clsplit (K)) .

Thus, clearly, clsplit (K) is not a polyhedron.

6.3.1.3. 2-branch split closure

In [DGMR16b, Corollary 3], it is shown (also cf. [DGMR13], an older version of [DGMR16b]):

Theorem 330. For m ∈ Z≥0, de�ne

C∗ := {{S1, S2} : S1, S2 ⊆ Rm split sets} .

Let P ⊆ Rm × Rn (n ∈ Z≥0) be a rational polyhedron and let C ⊆ C∗. Then there exists a �nite set Ĉ ⊆ C
such that ⋂

{S1,S2}∈C

conv (P\ ((S1 ∪ S2)× Rn)) =
⋂

{S1,S2}∈Ĉ

conv (P\ ((S1 ∪ S2)× Rn)) .

In particular (using Lemma 128), this implies that cl2BS (P ) is a again a rational polyhedron.

We remark that in Theorem 335 and Corollary 336, Theorem 330 is generalized.

6.3.1.4. Lk,Q closure

We recall that in Theorem 264 in section 5.4.5, we showed that the Lk,Q closure of a rational polyhedron
P ⊆ Rm × Rn (m,n ∈ Z≥0) is again a rational polyhedron, which was independently proved in [DGMR17,
Theorem 2].
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6.3.2. General methods for proofs of polyhedricity

6.3.2.1. Theorems

De�nition 331. (cf. [Ave12]; also cf. [DGMR16a, section 4.1])) Let L ⊆ Rd (d ∈ Z≥0) be a d-dimensional
rational polyhedron. Then we denote by m (L) the minimal m ∈ Z≥0 such that

L =
{
x ∈ Rd : bi −m ≤ aix ≤ bi∀i ∈ [n]

}
,

where n ∈ Z≥1, a
1, . . . , an ∈

(
Zd
)T \{(0d)T} and b1, . . . , bn ∈ Z. If L = Rd or (recL) \ (linealL) 6= ∅, set

m (L) := +∞.

De�nition 332. (cf. [DGMR16a, section 4.2]) For l ∈ Z≥1 and d ∈ Z≥0, set

Ml,d :=
{

intP ( Rd : P is a rational polyhedron having dimP = d and m (P ) ≤ l
}

and for l ∈ Z≥1 and t, d ∈ Z≥0, set

T ∗t,l,d :=

T ( Rd : T =

t⋃
j=1

Mj , where Mj ∈Ml,d for j ∈ [t]


(in [DGMR16a], the notationsMl and T ∗t,l are used instead of our notationsMl,d and T ∗t,l,d).

De�nition 333. (cf. [DGMR16a, section 2] Let Q ⊆ Rd (d ∈ Z≥0) and let V ⊆ P
(
Rd
)
be a family of subsets

of Rd. Then we say that V ′ ∈ V dominates V ∈ V on Q if conv (Q\V ′) ⊆ conv (Q\V ). For this, we write
V ′ �Q V .

Clearly, �Q forms a quasi-order (also called preorder) on V, since it is re�exive and transitive (though not
necessarily antisymmetric). Thus, for all Q and V as in De�nition 333, (V,�Q) forms a quasi-ordered set
(qoset).

De�nition 334. (cf. [DGMR16a, De�nition 1]) Given a qoset (X,�), we say that Y ⊆ X is a dominating
subset of X if for all x ∈ X, there exists a y ∈ Y such that y � x. The qoset (X,�) is called fairly
well-ordered if X ′ has a �nite dominating subset for each X ′ ⊆ X.

The following theorem is shown for t = 1 in [Ave12] (also cf. [ALW10]) and for general t in [DGMR16a,
Theorem 2 and section 5.1]:

Theorem 335. Let l ∈ Z≥1, let t, d ∈ Z≥0, let P ⊆ Rd be a rational polyhedron and let T ⊆ T ∗t,l,d. Then
(T ,�P ) is fairly well-ordered, i.e. T has a �nite dominating subset Tf . By Lemma 128, this implies that⋂

T∈T
conv (P\T ) =

⋂
T∈Tf

conv (P\T )

is a rational polyhedron. For mixed-integer programming we are in particular interested in the following case:
let m,n ∈ Z≥0, let P ⊆ Rm × Rn be a rational polyhedron and let T ′ × Rn := T ⊆ T ∗t,l,m × Rn ⊆ T ∗t,l,m+n.
Then there exists a �nite dominating subset T ′f of T ′. In particular (using Lemma 128), this implies that⋂

T∈T ′
conv (P\ (T × Rn)) =

⋂
T∈T ′f

conv (P\ (T × Rn))

is a rational polyhedron.

An immediate consequence of Theorem 335 is that the t-branch split closure of a rational polyhedron is
again a rational polyhedron, which is also stated in [DGMR16a, Theorem 1]:

Corollary 336. Let m,n ∈ Z≥0, let t ∈ Z≥1, let T ∗ be a collection of t-branch split sets in Rm, let P ⊆
Rm × Rn be a rational polyhedron and let T ⊆ T ∗. Then there exists a �nite set T̂ ⊆ T such that⋂

S∈T
conv (P\ (S × Rn)) =

⋂
S∈T̂

conv (P\ (S × Rn)) .

In particular (using Lemma 128), cltBS (P ) is a again a rational polyhedron.
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6. Expressivity of various classes of cutting planes

6.3.2.2. Consequences for the integral lattice-free closure

For d ∈ Z≥1, let (for the notation cf. [AWW11, section 2])

• Pd
if denote the set of of integral lattice-free (with respect to the lattice Zd) polyhedra in Rd,

• Pd
ifm denote the elements of Pd

if that are maximal in Pd
if with respect to inclusion,

• C d
fm denote the set of maximal lattice-free (with respect to the lattice Zd) polyhedra in Rd and

• Pd
fmi denote the polyhedra from C d

fm which are integral.

Remark 337. In [AWW11, section 2], instead the symbols Pif (1), Pifm (1), Cfm (1) and Pfmi (1) are
used for what we denote Pd

if , Pd
ifm, C d

fm and Pd
fmi.

De�nition 338. For d ∈ Z≥1, let P1, P2 ∈Pd
ifm. We de�ne

P1 ≡ P2 mod Aff
(
Zd
)
⇔ ∃ a�ne-unimodular map f : P2 = f (P1) .

This, of course, de�nes an equivalence relation on Pd
ifm.

We have:

Theorem 339. Let d ∈ Z≥1. Then there exists an N (d) ∈ Z≥1 and polyhedra P d1 , . . . , P
d
N(d) ∈ Pd

ifm such

that for every P ∈Pd
ifm, one has P ≡ P dj mod Aff

(
Zd
)
for some j ∈ {1, . . . , N (d)}.

Theorem 339 is shown in [AWW11, Theorem 1.1] and independently in [NZ11, Corollary 1.1]. This, of
course, implies Pd

ifm ⊆ intMl,d (for the de�nition of Ml,d, cf. De�nition 332) for some l ≥ 1, from which
we conclude using Theorem 335 (also cf. [DPW12]):

Theorem 340. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be a rational polyhedron. Then clILF (P ) is again a rational
polyhedron.

For the end of the section, we consider for speci�c values of d:

1. what the relationship between Pd
ifm and Pd

fmi is and

2. how polyhedra P d1 , . . . , P
d
N(d) that satify the conditions of Theorem 339 look like.

For 1: It is easy to check that for all d ∈ Z≥1, the inclusion

Pd
fmi ⊆Pd

ifm (6.15)

holds (cf. [AWW11, section 2]). One might ask whether this inclusion can be strict. For d ∈ {1, 2}, one can
show that equality holds (cf. [AWW11, section 2], [NZ11, section 1.3]). The proof that equality also holds in
(6.15) for d = 3 was recently done in [AKW15]. On the other hand, in [NZ11, Theorem 1.2], it is shown that
for d ≥ 4, the inclusion (6.15) is strict. So, we obtain:

Theorem 341. Let d ∈ Z≥1. Then Pd
fmi = Pd

ifm if 1 ≤ d ≤ 3 and Pd
fmi ( Pd

ifm if d ≥ 4.

For 2: We would like to know how the polyhedra P d1 , . . . , P
d
N(d) in Theorem 339 concretely look like. W.l.o.g.

we additionally want to assume

P di 6≡ P dj mod Aff
(
Zd
)
for i, j ∈ N (d) having i 6= j.

We �rst claim that we can restrict ourselves to the case that the P di are polytopes. This is the statement
of Theorem 342, which is shown in [AWW11, Proposition 3.1]:

Theorem 342. ([AWW11, Proposition 3.1]) Let d ∈ Z≥1 and let P ∈ Pd
ifm. Then there exists a k ∈

{1, . . . , d} and a polytope P ′ ∈Pk
ifm such that P ≡ P ′ × Rd−k mod Aff

(
Zd
)
.

The statement of the following theorem

• is well-known for P1
ifm, P1

fmi, P2
ifm and P2

fmi (cf. [AWW11, section 2] and [NZ11, section 1.3]),
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6.3. Polyhedricity

• is shown in [AWW11, Theorem 2.2] for P3
fmi and

• is shown in [AKW15] for P3
ifm.

Theorem 343. We have:

• Let P ∈P1
ifm = P1

fmi be a polytope. Then P ≡ [0, 1] mod Aff
(
Z1
)
.

• Let P ∈P2
ifm = P2

fmi be a polytope. Then P ≡ conv {( 0
0 ) , ( 2

0 ) , ( 0
2 )} mod Aff

(
Z2
)
.

• Let P ∈ P3
ifm = P3

fmi be a polytope. Then P ≡ Pi mod Aff
(
Z3
)
for some i ∈ {1, . . . , 12}, where

P1, . . . , P12 ∈P3
ifm = P3

fmi are the 12 polytopes that are listed in [AWW11, Theorem 2.2].

For d ≥ 4, we are not aware of a similar classi�cation of the polytopes in either Pd
fmi or Pd

ifm.
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Part III.

(Mixed-)Integral polyhedra,
L
1−1

2,Q×Q
/L

1−1
2,Q×R

cuts and L1,Q cuts
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7. (Mixed-)Integral polyhedra

This chapter is centrally about integral polyhedra with a small digression into mixed-integral polyhedra in
Theorem 347.
In section 7.1, we consider how we can characterize integral polyhedra (Theorem 345) and mixed-integral

polyhedra (Theorem 347) in terms of optimization problems. We remark that such a characterization of
mixed-integrality has to our knowledge not appeared in the literature before.
In section 7.2, we analyze a class of systems of linear inequalities Ax ≤ b, where A is rational, with the

property that if b is integral, the polyhedron P≤ (A, b) ⊆ Rm is integral. A well-known class of systems
of linear inequalities with this property are TDI systems (cf. [Sch86, section 22.1]), which we rede�ne in
De�nition 348 in a slightly more general way than what is common in the literature (we do not demand
rationality of b).
But TDI systems are just one class of systems of linear inequalities that satisfy this property. Another

class of systems, which we introduce, that satis�es this property are what we call TDZ + {0, 1} systems
(cf. De�nition 349). These can be considered as a formulation of the fact that a polyhedron P ⊆ Rm with
rational face normals is integral if and only

∀c ∈ (Zm)
T

: max {cx : x ∈ P} ∈ R⇒ max {cx : x ∈ P} ∈ Z

(cf. Theorem 345) in terms of dual programs.
These two classes (TDI systems and TDZ + {0, 1} systems) are our basic building blocks. Since one can

show (cf. section 7.6) that there are both polyhedra for which, under weak assumptions, there exists a TDI
system that is smaller (with respect to number of inequalities) than every TDZ+{0, 1} system for it and vice
versa, we develop TDZ + I systems as generalization of both TDI systems and TDZ + {0, 1} systems (cf.
De�nition 348). On the other hand, we de�ne TD(I ∩ Z) + {0, 1} systems (cf. De�nition 349). These form
a class of systems which are both TDI systems and TDZ+ {0, 1} systems.
Now something interesting happens: as we state in Theorem 354, for integral polyhedra, any description

of them via rational inequalities already forms a TDZ+ {0, 1} system. So, one can ask: if we know that the
system is additionally TDI: does an even stronger property than TDI hold here? The answer is (cf. Theorem
355): the TD(I ∩ Z) + {0, 1} property exactly serves this role.
In section 7.3 and section 7.4, we consider the following problem: it is known that Ax ≤ b is TDI if and only

if for each minimal face F of P≤ (A, b), the rows of A that are active in F form a Hilbert basis (cf. Theorem
367). So, one wants to �nd other types of generating systems than Hilbert bases that work for the other types
of systems that we just outlined. The central idea for this is to consider not only the left-hand side matrix A,
but also the right-hand side vector b to de�ne suitable generalizations, but on the other hand restrict oneself
to some very speci�c class of cones that form what we named LP face cones (cf. De�nition 356). These
types of generating systems are de�ned in De�nition 358 and De�nition 359. In this new framework, Hilbert
bases are reinterpreted as � icone systems� . In Lemma 361, we write down how Hilbert bases relate to these
icone systems.
The central topic of section 7.4 is to show Theorem 368, which relates the systems of dual integrality from

section 7.2 with the generating systems from section 7.3.
In section 7.5, Theorem 369, we show that for any polyhedron P ⊆ Rm with rational face normals (m ∈

Z≥0), there exists a TDI system Ax ≤ b describing it. If P is a rational polyhedron, there even exists a
TD(I ∩ Z)+{0, 1} system for it. In both cases, b can be assumed to be integral if P is an integral polyhedron.
Finally, in section 7.6, we compare sizes of the di�erent types of systems of dual integrality and generating

systems and �nd examples where the respective types are �small� versus �large� (with respect to the number
of inequalities or number of elements).

7.1. De�nitions and (mixed-)integral polyhedra

We start by de�ning � icone� as a variant of �cone� (cf. De�nition 41) where we only allow integral coe�cients
in the conic combinations:
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7. (Mixed-)Integral polyhedra

De�nition 344. Let S ⊆ V , where V is a vector space over R. We de�ne

iconeS :=
⋃

k∈Z≥0

⋃
λ∈Zk≥0,

s1,...,sk∈S

{
k∑
i=1

λis
i

}
.

The following theorem generalizes [Sch86, Corollary 22.1a; p. 310] from rational polyhedra to polyhedra
with rational face normals. Its proof is an immediate consequence of the proofs of [Sch86, Theorem 22.1;
p. 310] and [Sch86, Corollary 22.1a; p. 310] if one considers the argument that if we have an inequality
description Ax ≤ b (A ∈ Zl×m, b ∈ Rl, where l,m ∈ Z≥0) of an integral polyhedron with no redundant
inequalities, we have b ∈ Zl.

Theorem 345. Let P ⊆ Rm (m ∈ Z≥0) be a polyhedron with rational face normals. Then P is integral (cf.
De�nition 76) if and only if

∀c ∈ (Zm)
T

: max {cx : x ∈ P} ∈ R⇒ max {cx : x ∈ P} ∈ Z.

We now consider how an analogue of Theorem 345 for the mixed-integer case looks like. This is the
statement of Theorem 347, but before, we state a simple observation in the following proposition:

Proposition 346. Let P = P≤ (A, b) ⊆ Rd, where A ∈ Rl×d and b ∈ Rl (l, d ∈ Z≥0). Let ∅ 6= F be a face of
P , let LF ⊆ [l] denote the rows of A ( · ) ≤ b that are active in F and let c ∈ rowconeALF ,∗. Then

max {cx : x ∈ P} = cx∗,

where x∗ ∈ F is an arbitrary point in F .

Proof. Since c ∈ rowconeALF ,∗, there exists a y
∗ ∈

(
Rl≥0

)T
having supp y∗ ⊆ LF and y∗A = c. Thus,

Ax∗ ≤ b, cx∗ = y∗Ax∗ = y∗b, z∗A = c.

So, x∗ and y∗ form a primal-dual pair.

Theorem 347. Let ∅ 6= P ⊆ Rm × Rn (m,n ∈ Z≥0) be a rational polyhedron. Then P is mixed-integral (cf.

De�nition 76) if and only if for all c1, c2 ∈ (Rm × Rn)
T
having

max
{
c1x : x ∈ P

}
=: c10 ∈ R ∧max

{
c2x : x ∈ P

}
=: c20 ∈ R ∧ c2 − c1 ∈ (Zm × 0n)

T
,

we have
max

{(
fc1 + (1− f) c2

)
x : x ∈ P

}
≤ fc10 + (1− f) c20 − f (1− f) , (7.1)

where f := frac
(
c20 − c10

)
.

Proof. Let ∅ 6= P = P≤
((

A G
)
, b
)
, where A ∈ Ql×m, G ∈ Ql×n and b ∈ Ql (l ∈ Z≥0).

For �if�: Assume that P is not mixed-integral. Let F be a minimal face of P such that F 6= clI (F ). Let
LF ⊆ [l] denote the rows of Ax + Gy ≤ b that are active in F . Since F is a chosen minimally, we have
F = aff F and (aff F )I = ∅. Thus,

F = P=
((

A G
)
LF ,∗

, bLF ,∗

)
,

@x ∈ Zm × Rn :
(
A G

)
LF ,∗

x = bLF . (7.2)

By Theorem 92, (7.2) is equivalent to

∃y ∈
(
RLF

)T
: y
(
A G

)
LF ,∗

∈ (Zm × 0n)
T ∧ ybLF ,∗ /∈ Z. (7.3)
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7.1. De�nitions and (mixed-)integral polyhedra

Let (De�nition 410 gives a hint about what we want to achieve)

µ ∈
(
Rl
)T

:

µi =

{
yi if i ∈ LF ,
0 otherwise

∀i ∈ [l] ,

c1 := µ−
(
A G

)
,

c2 := µ+
(
A G

)
,

x∗ ∈ F.

By Proposition 346, we get using

• LF is the set of rows of Ax+Gy ≤ b that are active in F ,

• suppµ−, suppµ+ ⊆ LF ,

• c1 ∈ rowcone
(
A G

)
suppµ−,∗ ⊆ rowcone

(
A G

)
LF ,∗

and

• c2 ∈ rowcone
(
A G

)
suppµ+,∗ ⊆ rowcone

(
A G

)
LF ,∗

that

max
{
c1x : Ax ≤ b

}
= c1x∗ =: c10,

max
{
c2x : Ax ≤ b

}
= c2x∗ =: c20.

So let

f := frac
(
c20 − c10

)
= frac

((
c2 − c1

)
x∗
)

= frac
((
µ+ − µ−

) (
A G

)
x∗
)

= frac
(
µ
(
A G

)
x∗
)

= frac (µb)

∈ (0, 1) . (µb = ybLF /∈ Z (using (7.3)))

To use Proposition 346 again, consider that(
fc1 + (1− f) c2

)
=
(
fµ− + (1− f)µ+

) (
A G

)
∈ rowcone

(
A G

)
(suppµ−)∪̇(suppµ+),∗

⊆ rowcone
(
A G

)
LF ,∗

.

Thus,

max
{(
fc1 + (1− f) c2

)
x : x ∈ P

}
=
(
fc1 + (1− f) c2

)
x∗

= fc10 + (1− f) c20

> fc10 + (1− f) c20 − f (1− f) .

For �only if�: Consider dual variables y1,∗, y2,∗ ∈
(
Rl≥0

)T
having

y1,∗ ( A G
)

= c1, c10 = y1,∗b,

y2,∗ ( A G
)

= c2, c20 = y2,∗b.

Additionally, let

µ := y2,∗ − y1,∗,

f = frac
(
c20 − c10

)
= frac

(
y2,∗b− y1,∗b

)
= frac (µb) .
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7. (Mixed-)Integral polyhedra

Then for x ∈ PI , we have(
fc1 + (1− f) c2

)
x =

(
fy1,∗ ( A G

)
+ (1− f) y2,∗ ( A G

))
x− fc10 − (1− f) c20 + f (1− f)

=
(
(1− frac (µb)) y2,∗ ( A G

)
+ frac (µb) y1,∗ ( A G

))
x

− (1− frac (µb)) y2,∗b− frac (µb) y1,∗b+ frac (µb) (1− frac (µb))

=
(
(1− frac (µb)) y2,∗ + frac (µb) y1,∗) (( A G

)
x− b

)
+ frac (µb) (1− frac (µb))

≤
(
(1− frac (µb))µ+ + frac (µb)µ−

) ((
A G

)
x− b

)
+ frac (µb) (1− frac (µb)) (7.4)

=f≤0,MIR,µ
A,G,b (x) (7.5)

≤0. (7.6)

For the explanations why the individual equations hold:

• (7.4) holds since
(
A G

)
x− b ≤ 0,

(
0l
)T ≤ y1,∗ ≤ µ− and

(
0l
)T ≤ y2,∗ ≤ µ+.

• (7.5) holds by De�nition 410.

• (7.6) holds by Theorem 412.

7.2. Systems of dual integrality

In section 7.2.1, we de�ne the classes of systems whose properties we already outlined at the introduction of
this chapter.
For section 7.2.2: in Lemma 350 and Lemma 351, we state how the di�erent types of systems of dual

integrality relate to each other (we also gave an overview in the introduction of this chapter about this).
What we want to show is that if Ax ≤ b is such a system and b is integral, then the polyhedron P≤ (A, b) is
integral. By these two lemmas, it su�ces to consider TDZ+ I systems, for which we show the statement in
Theorem 352. We then conslude the general case in Corollary 353.
On the other hand, we also mentioned in the introduction that if we have some integral polyhedron P≤ (A, b)

in terms of rational inequalities be given, we have:

• the system Ax ≤ b is TDZ+ {0, 1},

• if Ax ≤ b is TDI, it even satis�es the TD(I ∩ Z) + {0, 1} property.

These are statements of Theorem 354 and Theorem 355.

7.2.1. De�nitions

De�nition 348. Let A ∈ Ql×m and b ∈ Rl, where l,m ∈ Z≥0. If for every c ∈ (Zm)
T
such that

(7.7) := max {cx : Ax ≤ b, x ∈ Rm} ∈ R,

we have

• (7.7) = min
{
zb : zA = c, z ∈

(
Zl≥0

)T}
, then we call the system Ax ≤ b TDI (totally dual integral),

• (7.7) = min
{(
z1 + z2

)
b :
(
z1 + z2

)
A = c, z1b ∈ Z, z1 ∈

(
Rl≥0

)T
, z2 ∈

(
Zl≥0

)T}
, then we call the sys-

tem Ax ≤ b TDZ+ I.

De�nition 349. Let A ∈ Ql×m and b ∈ Ql, where l,m ∈ Z≥0. If for every c ∈ (Zm)
T
such that

(7.8) := max {cx : Ax ≤ b, x ∈ Rm} ∈ R,

we have

• (7.8) = min
{(
z1 + z2

)
b :
(
z1 + z2

)
A = c, z1b ∈ Z, z1 ∈

(
Rl≥0

)T
, z2 ∈

(
Zl≥0

)T
,
∥∥z2
∥∥

1
≤ 1
}
, then we call

the system Ax ≤ b TDZ+ {0, 1},

• (7.8) = min
{(
z1 + z2

)
b :
(
z1 + z2

)
A = c, z1b ∈ Z, z1 ∈

(
Zl≥0

)T
, z2 ∈

(
Zl≥0

)T
,
∥∥z2
∥∥

1
≤ 1
}
, then we call

the system Ax ≤ b TD(I ∩ Z) + {0, 1}.
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7.3. Generating systems for integral vectors in cones

7.2.2. Properties

The following two lemmas clearly hold:

Lemma 350. Let Ax ≤ b be TD(I ∩ Z) + {0, 1}. Then Ax ≤ b is TDZ+ {0, 1} and TDI.

Lemma 351. Let Ax ≤ b be TDZ+ {0, 1} or TDI. Then Ax ≤ b is TDZ+ I.

After these preparations, we give a short remark about the importance of the di�erent types of systems:

• The most important type of system for this text are TDZ+ I systems:

� If Ax ≤ b is a TDZ + I system, where b is integral, then P≤ (A, b) is an integral polyhedron
(Theorem 352) and, as we saw in the two preceding lemmas, every other type of dual integrality
that we consider, implies the TDZ+ I property.

� If Ax ≤ b is a TDZ+ I system, where A is integral, then this system can be used to represent the
Chvátal-Gomory closure of P≤ (A, b) (Theorem 398).

� One can show that TDZ+I systems can be signi�cantly smaller than TDI systems or TDZ+{0, 1}
systems (Theorem 372 and Theorem 376).

• The importance of TDZ + {0, 1} lies in the property that one can show that if P≤ (A, b) is integral
(where A and b are rational), then Ax ≤ b is TDZ+ {0, 1}.

• The importance of TDI and TD(I ∩ Z) + {0, 1} comes from the fact that for a given P≤ (A, b), where
A ∈ Ql×m and b ∈ Rl or b ∈ Ql, respectively, there exists a system A′x ≤ b′ that satis�es the TDI
property or TD(I ∩ Z) + {0, 1} property, respectively, such that P≤ (A, b) = P≤ (A′, b′) (Theorem 369).

Theorem 352. Let Ax ≤ b be TDZ+ I and let b be integral. Then P≤ (A, b) is an integral polyhedron.

Proof. Let c ∈ (Zm)
T be such that

max {cx : Ax ≤ b, x ∈ Rm} =: c0 ∈ R

and let
(
z1,∗ z2,∗ ) be a minimizer for the dual program in the TDZ+ I de�nition. Then

c0 = z1,∗b︸︷︷︸
∈Z

+ z2,∗︸︷︷︸
∈Z

b︸︷︷︸
∈Z

∈ Z.

Thus, by Theorem 345, P≤ (A, b) is integral.

Using Lemma 350 and Lemma 351, we conclude from Theorem 352:

Corollary 353. Let Ax ≤ b be TDZ + I, TD(I ∩ Z) + {0, 1}, TDZ + {0, 1} or TDI and let b be integral.
Then P≤ (A, b) is integral.

On the other hand, we have the following two theorems, which are obvious consequences of Theorem 345,
De�nition 348 and De�nition 349.

Theorem 354. Let P≤ (A, b) be an integral polyhedron, where A ∈ Ql×m and b ∈ Ql (l,m ∈ Z≥0). Then
Ax ≤ b is TDZ+ {0, 1}.

Theorem 355. Let P≤ (A, b) be an integral polyhedron, where A ∈ Ql×m and b ∈ Ql (l,m ∈ Z≥0), such that
additionally Ax ≤ b is a TDI system. Then Ax ≤ b is TD(I ∩ Z) + {0, 1}.

7.3. Generating systems for integral vectors in cones

Our goal is to generalize Hilbert bases (cf. De�nition 360) to more general basis concepts. A well-known
theorem that links Hilbert bases to TDI systems is the following one:

Theorem 367. ([Sch86, Theorem 22.5; p. 315]) A rational system Ax ≤ b is TDI if and only if for each
face F of the polyhedron P≤ (A, b), the rows of A which are active in F form a Hilbert basis.
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7. (Mixed-)Integral polyhedra

We remark that Theorem 368, which we show section 7.4, is a generalization of Theorem 367.
A natural approach to construct more general generating systems is not to just consider cones that are

generated by subsets of rows of A, but by subsets of rows of
(
A −b

)
. On the other hand, we restrict ourself

to a speci�c subset of such cones, which we named LP face cones. We de�ne LP face cones in De�nition
356 and prove an important characterization of them in Theorem 357.
After this, we de�ne multiple classes of generating systems for LP face cones (icone systems, Z + icone

systems, Z + {0, 1} systems and (icone∩Z) + {0, 1} systems) in De�nition 358 and De�nition 359 of section
7.3.2. In Lemma 361, we write down how icone systems are related to Hilbert bases (cf. De�nition 360).
Finally, in section 7.3.4, we prove existence results for (icone∩Z) + {0, 1} systems and icone systems.

7.3.1. LP face cones

De�nition 356. Let C ⊆ Rd ×R (d ∈ Z≥0) be a polyhedral cone. C is called an LP face cone if for every

c ∈ projRd C, there exists a unique c ∈ R such that

(
c
c

)
∈ C.

Theorem 357. Let
C := cone

{(
r1 r1

)
, . . . ,

(
rk rk

)}
⊆
(
Rd × R

)T
,

where k, d ∈ Z≥0, r
1, . . . , rk ∈

(
Rd
)T

and r1, . . . , rk ∈ R. Then C is an LP face cone if and only if

∃z∗ ∈ Rd :

 r1 r1

...
...

rk rk

( z∗

1

)
= 0k.

Proof.

@c ∈ projRm C, c
1, c2 ∈ R, c1 6= c2 :

(
c c1

)
,
(
c c2

)
∈ C

⇔ @
(
λ1 λ2

)
∈
(
Rk≥0 × Rk≥0

)T
:

(
λ1 λ2

)


r1

...
rk

−r1

...
−rk


=
(
0d
)T ∧ ( λ1 λ2

)


r1

...
rk

−r1

...
−rk


6= 0

⇔ @λ ∈
(
Rk
)T

: λ

 r1

...
rk

 =
(
0d
)T ∧ λ

 r1

...
rk

 6= 0

⇔ ∃z∗ ∈ Rd :

 r1

...
rk

 z∗ =

 −r
1

...
−rk

 (by Corollary 84)

⇔ ∃z∗ ∈
(
Rd
)T

:

 r1 r1

...
...

rk rk

( z∗

1

)
= 0k.

7.3.2. De�nitions

De�nition 358. Let S :=

{(
r1

r1

)
, . . . ,

(
rk

rk

)}
⊆ Qm × R (k,m ∈ Z≥0) be given such that C := coneS

forms an LP face cone.

• S is called an icone system if ∀c ∈ C ∩ (Zm × R) : c ∈ iconeS.
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7.3. Generating systems for integral vectors in cones

• S is called a Z+ icone system if ∀c ∈ C ∩ (Zm × R) : c = c1 + c2, where

c1 ∈ C ∩ (Qm × Z) ,

c2 ∈ iconeS.

De�nition 359. Let S :=

{(
r1

r1

)
, . . . ,

(
rk

rk

)}
⊆ Qm ×Q (k,m ∈ Z≥0) be given such that C := coneS

forms an LP face cone.

• S is called a Z+ {0, 1} system if ∀c ∈ C ∩ (Zm × R) : c = c1 + c2, where

c1 ∈ C ∩ (Qm × Z) ,

c2 ∈ S ∪
{(

0m

0

)}
.

• S is called an (icone∩Z) + {0, 1} system if ∀c ∈ C ∩ (Zm × R) : c = c1 + c2, where

c1 ∈ (iconeS) ∩ (Qm × Z) ,

c2 ∈ S ∪
{(

0m

0

)}
.

Let us have a look how icone systems are related to Hilbert bases. For this, we, of course, have to de�ne
Hilbert bases:

De�nition 360. (cf. [Sch86, section 16.4; p. 232f]) Let a1, . . . , ak ∈ Qm (k,m ∈ Z≥0). Then the set{
a1, . . . , ak

}
is called a Hilbert basis if

(
cone

{
a1, . . . , ak

})
I
⊆ icone

{
a1, . . . , ak

}
.

The following lemma clearly holds:

Lemma 361. We have:

1. Let C ′ be a polyhedral cone generated by
(
r1

r1

)
, . . . ,

(
rk

rk

)
∈ Rm×R (k,m ∈ Z≥0) and let C := projRm C

′.

Then
C = cone

{
r1, . . . , rk

}
.

2. Let C, C ′ be as in 1, but this time let
(
r1

r1

)
, . . . ,

(
rk

rk

)
∈ Qm × R (k,m ∈ Z≥0). Additionally, let{(

s1

s1

)
, . . . ,

(
sl

sl

)}
(l ∈ Z≥0) be an icone system of C ′. Then

{
s1, . . . , sl

}
forms a Hilbert basis of C.

3. Let C ⊆ Rm be a polyhedral cone generated by r1, . . . , rk ∈ Rm (k,m ∈ Z≥0) and let C ′ ⊆ Rm × R be
an LP face cone having projRd C

′ = C. Then there exist unique r1, . . . , rk ∈ R such that

C ′ = cone

{(
r1

r1

)
, . . . ,

(
rk

rk

)}
.

4. Let C, C ′ be as in 3, but this time let r1, . . . , rk ∈ Qm. Additionally, let s1, . . . , sl (l ∈ Z≥0) be a Hilbert

basis of C. Then there exist unique s1, . . . , sl ∈ R such that
{(

s1

s1

)
, . . . ,

(
sl

sl

)}
is an icone system of C.

In the sense of Lemma 361, icone systems can be considered as the analogue of Hilbert bases for LP face
cones.

7.3.3. Properties

In section 7.2.2, we saw how the di�erent kind of systems of dual integrality relate to each other. We now do
the same for the di�erent kinds of systems of integral vectors in cones that we de�ned in the previous section.
The following two lemmas clearly hold:

Lemma 362. Let S be an (icone∩Z) + {0, 1} system. Then S is a Z+ {0, 1} system and an icone system.

Lemma 363. Let S be a Z+ {0, 1} or an icone system. Then S is a Z+ icone system.
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7. (Mixed-)Integral polyhedra

Just as we already remarked in section 7.2.2 about the importance of the di�erent types of systems of dual
integrality, we again bring up a few points concerning which of the generating systems are important for
which purpose:

• The most important type of system in this text are Z+ icone systems:

� Z+ icone systems are deeply related to Chvátal-Gomory cuts (cf. Theorem 404) and MIR cuts (cf.
Theorem 429).

� One can show that Z+ icone systems can be signi�cantly smaller than icone systems or Z+ {0, 1}
systems (Theorem 370 and Theorem 375).

• The importance of icone systems lies in the following properties:

� They bear a strong relationship to Hilbert bases (cf. Lemma 361).

� For LP face cones generated by vectors from Qm×R, one can show their existence (Theorem 366)
and use this existence result to prove the existence of Z+ icone systems (a consequence of Lemma
363).

• (icone∩Z) + {0, 1} are important, since for LP face cones generated by vectors from Qm ×Q, one can
show their existence (Theorem 365) and use this existence result to prove the existence of Z + {0, 1}
systems, icone systems and Z+ icone systems (a consequence of Lemma 362 and Lemma 363).

7.3.4. Existence

Before we state our existence results for (icone∩Z) + {0, 1} systems and icone systems in Theorem 365 and
Theorem 366, we prove a small lemma about rational vectors in LP face cones:

Lemma 364. Let C ⊆ Rm × R (m ∈ Z≥0) be an LP face cone generated by(
r1

r1

)
, . . . ,

(
rk

rk

)
∈ Qm ×Q,

where k,m ∈ Z≥0, and let

(
c
c

)
∈ C ∩ (Zm × R). Then c ∈ Q.

Proof. Since, by the LP face cone property, c is uniquely determined, it su�ces to show that there exists a
λ ∈ Qk≥0 having

(
r1 · · · rk

)
λ = c. So, we have using Lemma 88:

∃λ ∈ Rk≥0 :
(
r1 · · · rk

)
λ = c⇔ @y ∈ (Rm)

T
: y
(
r1 · · · rk

)
≥
(
0k
)T ∧ yc < 0

⇒ @y ∈ (Qm)
T

: y
(
r1 · · · rk

)
≥
(
0k
)T ∧ yc < 0

⇔ ∃λ ∈ Qk≥0 :
(
r1 · · · rk

)
λ = c.

The initial condition in this chain of implications holds since c ∈ projRm C.

Theorem 365. Let C ⊆ Rm × R (m ∈ Z≥0) be an LP face cone that is generated by(
r1

r1

)
, . . . ,

(
rk

rk

)
∈ Zm × Z,

where k ∈ Z≥0. Then

S :=

({
k∑
i=1

λi

(
ri

ri

)
: 0k � λ < 1k

}
∩ (Zm × R)

)
︸ ︷︷ ︸

=:S′

∪
k⋃
i=1

{(
ri

ri

)}
︸ ︷︷ ︸

=:S′′

is an (icone∩Z) + {0, 1} system that generates C and consists of vectors from Zm ×Q.
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7.4. Systems of dual integrality and generating systems

Proof. Clearly, coneS = C. Since projRm S ′ is �nite, by the LP face cone property, also S ′ and thus S is

�nite. Let

(
c
c

)
∈ C ∩ (Zm × R). We claim that

(
c
c

)
∈ iconeS ′′︸ ︷︷ ︸
⊆(iconeS)∩(Qm×Z)

+

(
S ′ ∪

{(
0m

0

)})
︸ ︷︷ ︸
⊆
(
S∪
{(

0m

0

)})
.

For this, let λ ∈ Rk≥0 be such that

(
c
c

)
=

k∑
j=1

λj

(
rj

rj

)
. Then

(
c
c

)
=

k∑
j=1

bλjc︸︷︷︸
∈Z≥0

(
rj

rj

)
︸ ︷︷ ︸

∈iconeS′′

+

d∑
j=1

(λj − bλjc)︸ ︷︷ ︸
<1

(
rj

rj

)
︸ ︷︷ ︸

∈S′∪
{(

0m

0

)}
.

The statement that S consists of vectors from Zm ×Q is a consequence of Lemma 364.

Theorem 366. Let C ⊆ Rm × R (m ∈ Z≥0) be an LP face cone that is generated by(
r1

r1

)
, . . . ,

(
rk

rk

)
∈ Zm × R,

where k ∈ Z≥0. Then

S :=

({
k∑
i=1

λi

(
ri

ri

)
: 0k � λ < 1k

}
∩ (Zm × R)

)
︸ ︷︷ ︸

=:S′

∪
k⋃
i=1

{(
ri

ri

)}
︸ ︷︷ ︸

=:S′′

is an icone system that generates C and consists of vectors from Zm × R. If r1, . . . , rk ∈ Q, then S consists
of vectors from Zm ×Q.

Proof. Clearly, coneS = C. Since projRm S ′ is �nite, by the LP face cone property, also S ′ and thus S is

�nite. Let

(
c
c

)
∈ C ∩ (Zm × R). We claim that

(
c
c

)
∈ iconeS ′′ +

(
S ′ ∪

{(
0m

0

)})
︸ ︷︷ ︸

⊆iconeS

.

For this, let λ ∈ Rk≥0 be such that

(
c
c

)
=

k∑
j=1

λj

(
rj

rj

)
. Then

(
c
c

)
=

k∑
j=1

bλjc︸︷︷︸
∈Z≥0

(
rj

rj

)
︸ ︷︷ ︸

∈iconeS′′

+

d∑
j=1

(λj − bλjc)︸ ︷︷ ︸
<1

(
rj

rj

)
︸ ︷︷ ︸

∈S′∪
{(

0m

0

)}
.

The statement that S consists of vectors from Zm×Q if r1, . . . , rk ∈ Q, is a consequence of Lemma 364.

7.4. Systems of dual integrality and generating systems

We already mentioned the following result from the literature, which relates TDI systems and Hilbert bases,
in the introduction of this chapter and in the introduction of section 7.3.

Theorem 367. ([Sch86, Theorem 22.5; p. 315]) A rational system Ax ≤ b is TDI if and only if for each
face F of the polyhedron P≤ (A, b), the rows of A which are active in F form a Hilbert basis.
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7. (Mixed-)Integral polyhedra

In the following theorem, we consider how the systems of dual integrality that we introduced in section 7.2
relate to the generating systems for cones that we introduced in section 7.3. Its proof generalizes the proof
of Theorem 367 in [Sch86, p. 315f].

Theorem 368. Let A ∈ Ql×m and let b ∈ Rl or b ∈ Ql, respectively, where l,m ∈ Z≥0. Then:

1. Let Ax ≤ b be
• TDI,

• TDZ+ {0, 1},
• TD(I ∩ Z) + {0, 1} or
• TDZ+ I,

respectively. For every face F of P≤ (A, b), let SF ⊆ [l] denote the indices of the rows of Ax ≤ b that
are active in F . Then for each such F , the rows of

(
A −b

)
SF ,∗

form

• an icone system,

• a Z+ {0, 1} system,

• an (icone∩Z) + {0, 1} system or

• a Z+ icone system,

respectively.

2. For each minimal face ∅ 6= F of P≤ (A, b), let SF ⊆ [l] denote the indices of rows of Ax ≤ b that are
active in F . If for each such F , the rows of

(
A −b

)
SF ,∗

form

• an icone system,

• a Z+ {0, 1} system,

• an (icone∩Z) + {0, 1} system or

• a Z+ icone system,

respectively, then Ax ≤ b is
• TDI,

• TDZ+ {0, 1},
• TD(I ∩ Z) + {0, 1} or
• TDZ+ I,

respectively.

Proof. W.l.o.g. we can assume P≤ (A, b) 6= ∅.

For 1: Let ∅ 6= F be a face of P≤ (A, b) and let c ∈
(
cone

⋃
s∈SF {As,∗}

)
I
. Then, clearly,

max {cx : Ax ≤ b} =: c0 ∈ R.

By Proposition 346, the maximum is attained for every x ∈ F . So, let x∗ ∈ relintF . On the other hand,
the dual minimum (where the dual program is de�ned as in the de�nition of the respective system of dual
integrality) is attained for a

• z∗ ∈
(
Zl≥0

)T
,

• z1,∗ ∈
(
Rl≥0

)T
, z2,∗ ∈

(
Zl≥0

)T
having

� z1,∗b ∈ Z,
�
∥∥z2,∗

∥∥
1
≤ 1,

• z1,∗ ∈
(
Zl≥0

)T
, z2,∗ ∈

(
Zl≥0

)T
having

� z1,∗b ∈ Z,
�
∥∥z2,∗

∥∥
1
≤ 1 or
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7.4. Systems of dual integrality and generating systems

• z1,∗ ∈
(
Rl≥0

)T
, z2,∗ ∈

(
Zl≥0

)T
having z1,∗b ∈ Z,

respectively. So, x∗ and z∗ or
(
z1,∗ z2,∗ ), respectively, form a primal-dual pair. Since x∗ ∈ relintF , we

have ∀i ∈ [l] \SF : Ai,∗x
∗ < bi. So, by complementary slackness, we have

∀i ∈ [l] \SF : z∗i = 0

or
∀i ∈ [l] \SF : z1,∗

i = 0 ∧ z2,∗
i = 0,

respectively. Thus, (
c −c0

)
∈
(
RSF≥0

)T (
A −b

)
SF ,∗

.

By the additional properties of the dual variables, it is easy to check that
(
c −c0

)
can be represented by

the rows of
(
A −b

)
SF ,∗

as the property (TDI, TDZ+ {0, 1}, TD(I ∩ Z) + {0, 1} or TDZ+ I) requires.

For 2: Let c ∈ (Zm)
T be such that

max {cx : Ax ≤ b} =: c0 ∈ R.

Let F be a minimal face of P≤ (A, b) such that for each point in F the maximum is attained. We claim that

c ∈ cone
⋃
s∈SF

{As,∗} . (7.9)

For this, let x∗ ∈ relintF . Clearly (since any point in F is by construction such a maximizer), x∗ is a
maximizer for

max {cx : Ax ≤ b} = c0 = min
{
zb : zA = c, z ∈

(
Rl≥0

)T}
.

On the other hand, since x∗ ∈ relintF , we have Ai,∗x∗ < bi for any i ∈ [l] \SF . Let zpre,∗ be a minimizer for
the dual program. Then, by complementary slack, we have zpre,∗i = 0 for any i ∈ [l] \SF . This shows (7.9).
Since

⋃
s∈SF

{(
A −b

)
s,∗

}
forms

• an icone system,

• a Z+ {0, 1} system,

• an (icone∩Z) + {0, 1} system or

• a Z+ icone system,

respectively, there exists

• zpre,∗ ∈
(
ZSF≥0

)T
having (

c −c0
)

= zpre,∗
(
A −b

)
SF
,

• z1,pre,∗ ∈
(
RSF≥0

)T
, z2,pre,∗ ∈

(
ZSF≥0

)T
,
∥∥z2,pre,∗

∥∥ ≤ 1 having

z1,pre,∗ (−b)SF ∈ Z,(
c −c0

)
=
(
z1,pre,∗ + z2,pre,∗) ( A −b

)
SF
,

• z1,pre,∗ ∈
(
ZSF≥0

)T
, z2,pre,∗ ∈

(
ZSF≥0

)T
,
∥∥z2,pre,∗

∥∥ ≤ 1 having

z1,pre,∗ (−b)SF ∈ Z,(
c −c0

)
=
(
z1,pre,∗ + z2,pre,∗) ( A −b

)
SF

or
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• z1,pre,∗ ∈
(
RSF≥0

)T
, z2,pre,∗ ∈

(
ZSF≥0

)T
having

z1,pre,∗ (−b)SF ∈ Z,(
c −c0

)
=
(
z1,pre,∗ + z2,pre,∗) ( A −b

)
SF
,

respectively. Set

z∗ ∈ Zl,

z∗i :=

{
zpre,∗i if i ∈ SF ,
0 if i ∈ [l] \SF

∀i ∈ [l]

or

z1,∗, z2,∗ ∈ Rl,

z1,∗
i :=

{
z1,pre,∗
i if i ∈ SF ,

0 if i ∈ [l] \SF
∀i ∈ [l] ,

z2,∗
i :=

{
z2,pre,∗
i if i ∈ SF ,

0 if i ∈ [l] \SF
∀i ∈ [l] ,

respectively. It is easy to check that z∗ or
(
z1,∗ z2,∗ ) is a minimizer for the dual program

min
{
zb : zA = c, z ∈

(
Rl≥0

)T}
or

min

{(
z1 z2

)( b
b

)
: z

(
A
A

)
= c,

(
z1 z2

)
∈
(
Rl≥0 × Rl≥0

)T}
,

respectively, and satis�es the additional dual minimizer properties that de�nes a

• TDI system,

• TDZ+ {0, 1} system,

• TD(I ∩ Z) + {0, 1} system or

• TDZ+ I system,

respectively.

7.5. Existence of systems of dual integrality

We now show that

• for every polyhedron with rational face normals, one can �nd a TDI system with an integral left-hand
side describing it,

• for every rational polyhedron, one can even �nd a TD(I ∩ Z) + {0, 1} system with an integral left-hand
side describing it.

For the case of rational polyhedra and TDI systems, this is well-known in literature (cf. [Sch86, Theorem 22.6;
p. 316]). The proof of Theorem 369 generalizes the idea for the proof of this result.

Theorem 369. Let P ⊆ Rm (m ∈ Z≥0). Then:

• If P is a polyhedron with rational face normals, there exists a TDI system A′x ≤ b′, where A′ ∈ Zl′×m
and b′ ∈ Rl′ (l′ ∈ Z≥0), having P = P≤ (A′, b′). Here, we can assume that b′ is integral if P is an
integral polyhedron.

• If P is a rational polyhedron, there exists a TD(I ∩ Z) + {0, 1} system A′x ≤ b′, where A′ ∈ Zl′×m and
b′ ∈ Ql′ (l′ ∈ Z≥0), having P = P≤ (A′, b′). Here, we can assume that b′ is integral if P is an integral
polyhedron.
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Proof. W.l.o.g. we can assume P 6= ∅. For each minimal face F of P , let

CF :=
{(

c −max {cx : x ∈ P}
)

: c ∈ (Rm)
T
,max {cx : x ∈ P} is attained for all x ∈ F

}
.

Clearly, for each minimal face F of P , CF is an LP face cone that has generators from

• (Zm × R)
T or

• (Zm × Z)
T ,

respectively. Thus, by Theorem 365 or Theorem 366, respectively, there exists an

• icone system or

• (icone∩Z) + {0, 1} system,

respectively, for CF that consists of vectors from

• (Zm × R)
T or

• (Zm × Z)
T ,

respectively. We denote it by SF . For every
(
c c

)
∈ SF , the inequality cx ≤ −c valid for x ∈ P . Let

S :=
⋂

F minimal
face of P

SF =:
{(

c1 c1
)
, . . . ,

(
c|S| c|S|

)}
,

l′ := |S|

and set for i ∈ [l′]:

A′i,∗ := ci, b′i := −ci.

Clearly, P = P≤ (A′, b′). By Theorem 368, A′x ≤ b′ is TDI or TD(I ∩ Z) + {0, 1}, respectively.

7.6. Sizes of generating systems for integral vectors in
cones/systems of dual integrality

In this section, we consider the following questions:

• How large has a minimal system of dual integrality (in the sense of section 7.2) to be for some polyhedra
(with respect to the number inequalities).

• How large has a minimal generating system (in the sense of section 7.3) to be for some cones (with
respect to the number of elements).

For the outline:

• In section 7.6.1, we construct a series of cones such that any icone system for one of them that consists
of vectors from

(
Z2 × R

)T
or
(
Q2 × Z

)T
has to be �large� (with respect to the number of elements),

but there exists a �small� Z+ {0, 1} system for them (Theorem 370).

We use this result to construct integral polyhedra in R2 such that any TDI system Ax ≤ b for them,
where either A or b is integral, needs a �large number� of rows (Theorem 372). We remark (Remark
373) that these integrality conditions are essential. On the other hand, for any polyhedron from this
series, there exists a �small� TD Z+ {0, 1} system Ax ≤ b describing it, where A and b are integral.

• In section 7.6.2, we similarly construct a series of cones such that any Z+ {0, 1} system that generates
one of them contains a �large� number of vectors, but for which there exists a �small� icone system
(Theorem 375).

We use this to construct a series of rational polyhedra with the property that any TDZ+ {0, 1} system
for them has a �large� number of rows, but for which there exists a �small� TDI system Ax ≤ b describing
it, where, additionally, A is integral.
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• In section 7.6.3, we construct a series of polyhedra P 377,k1,k2 indexed by (k1, k2) ∈ Z≥1 × Z≥2, where
for suitable k1, k2, the minimal sizes of a

� TD(I ∩ Z) + {0, 1} system,

� TDI system,

� TDZ+ {0, 1} system and

� TDZ+ I system

Ax ≤ b for P 377,k1,k2 , where A is integral, di�er (Theorem 379). The high-level idea for this is to
construct a rational polyhedron in R2 with two vertices such that for one vertex, the cone of rows that
are active in it requires a large icone system and for the other vertex, the similarly de�ned cone warrants
a large Z+ {0, 1} system.

• In section 7.6.4, we construct a series of (rational, non-integral) polyhedra in R2 with two facets such
that any TDZ+I system Ax ≤ b for it, where A is integral, requires a �large� number of rows (Theorem
381).

This shows that there exist polyhedra that have a simple facet structure, but still require a �large�
TDZ+ I system Ax ≤ b to describe them if one demands A to be integral.

Another application of this series of polyhedra is later on presented in section 8.2.3.3, where this result
turns out to be an important counterexample for a minimality problem (Problem 401) about a rounding
procedure for TDZ+ I systems to represent the Chvátal-Gomory closure of a polyhedron with rational
face normals.

7.6.1. TDI systems and icone systems

Theorem 370. For k ∈ Z≥1, de�ne

C370,k := cone
{(

1 0 −1
)
,
(

1 k −1
)}
.

Let S be an icone system for C370,k, where either

• S ⊆
(
Z2 × R

)T
or

• S ⊆
(
Q2 × Z

)T
.

Then
k⋃̇
i=0

{(
1 i −1

)}
︸ ︷︷ ︸

=:S′

⊆ S.

In particular, |S| ≥ k + 1. On the other hand,

• S ′ is an (icone∩Z) + {0, 1} system (and thus an icone system) for C370,k that consists of exactly k + 1

elements from
(
Z2 × Z

)T
,

•
{(

1 0 −1
)
,
(

1 k −1
)}

=: S ′′ is a Z + {0, 1} system for C370,k that consists of exactly 2

elements from
(
Z2 × Z

)T
.

Before we prove Theorem 370, we �rst have a look at how we use the statement of Theorem 370 to construct
a polyhedron that can only be represented by a �large� TDI system Ax ≤ b if one demands that either A or
b is integral:

De�nition 371. For k ∈ Z≥1, de�ne

P 371,k :=

{(
1
0

)}
+ cone

{(
−k
1

)
,

(
0
−1

)}
= P≤

((
1 0
1 k

)
,

(
1
1

))
⊆ R2.

Clearly, for every k ∈ Z≥1, the polyhedron P 371,k is integral, but on the other hand, we have:
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Theorem 372. Let k ∈ Z≥1 and let Ax ≤ b be a TDI system for P 371,k such that either A or b is integral.
Then

(
A −b

)
contains the rows

k⋃̇
i=0

{(
1 i −1

)}
.

In particular,
(
A −b

)
has at least k + 1 rows. On the other hand,

•  1 0
...

...
1 k


︸ ︷︷ ︸

=:A372,k

x ≤

 1
...
1


︸ ︷︷ ︸
=:b372,k

is a TD(I ∩ Z) + {0, 1} system (and thus TDI system) for P 371,k with both an integral left-hand and
right-hand side that consists of exactly k + 1 rows,

• (
1 0
1 k

)
︸ ︷︷ ︸

=:A′372,k

x ≤
(

1
1

)
︸ ︷︷ ︸
=:b′372,k

is a TDZ+{0, 1} system for P 371,k with an integral left-hand and right-hand side that consists of exactly
2 rows.

Remark 373. The restrictions

• S ⊆ Z2 ×Q or S ⊆ Q2 × Z in Theorem 370,

• A or b is integral in Theorem 372

are necessary for the respective statements to hold, since one can easily check that

•
{(

1
k 0 − 1

k

)
,
(

1
k 1 − 1

k

)}
is an (icone∩Z)+{0, 1} system (and thus an icone system) for C370,k,

•
(

1
k 0
1
k 1

)
x ≤

(
1
k
1
k

)
is a TD(I ∩ Z) + {0, 1} system (and thus a TDI system) for P 371,k.

Remark 374. Let k ∈ Z≥1. The polyhedron

P 374,k :=

(
0
0

)
+ cone

{(
−k
1

)
,

(
0
−1

)}
= P≤

((
1 0
1 k

)
,

(
0
0

))
⊆ R2,

which is simply an integral translate of P 371,k, can be represented by a TDI system with two inequalities and
an integral right-hand side:

P 374,k = P≤
((

1
k 0
1
k 1

)
,

(
0
0

))
.

Thus, a �short� integrality proof for P 371,k via TDI systems is that P 371,k is an integral translate of P 374,k,
which can be represented by a �small� TDI system with an integral right-hand side.

Now for the proofs of Theorem 370 and Theorem 372:

Proof. (Theorem 370)

For S ′ ⊆ S: Let i ∈ {0, . . . , k}. Consider the vector ci :=
(

1 i −1
)
∈ C370,k. We have

∀c ∈
(
C370,k ∩

((
Z2 ×Q

)T ∪ (Q2 × Z
)T)) \{( 0 0 0

)}
: c1 ≥ 1 ∧ c3 ≤ −1.

From this, we conclude ci ∈ iconeS ⇒ ci ∈ S.

S ′ is an (icone∩Z) + {0, 1} system: Clearly, coneS ′ = C370,k. The rest is a consequence of Theorem 365.
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S ′′ is a Z+ {0, 1} system: Clearly, coneS ′′ = C370,k. Let c ∈ C370,k ∩
(
Z2 ×Q

)T
. Then c3 = −c1 and thus

c ∈ C370,k ∩
(
Z2 × Z

)T ⊆ C370,k ∩
(
Q2 × Z

)T
. So

c = c︸︷︷︸
∈C370,k∩(Q2×Z)T

+
( (

02
)T

0
)

︸ ︷︷ ︸
∈S′′∪

{( (
02
)T

0
)}

.

Proof. (Theorem 372)

For the �rst statement: By Theorem 368, we have to show that the rows of
(
A −b

)
that are active in(

1
0

)
(the only minimal face of P 371,k) form an icone system of

cone
{(

1 0 −1
)
,
(

1 k −1
)}

= C370,k.

By Theorem 370, every icone system for C370,k that consists of vectors from
(
Z2 ×Q

)T
or
(
Q2 × Z

)T
, has to

contain
k⋃̇
i=0

{(
1 i −1

)}
.

A372,kx ≤ b372,k is a TD(I ∩ Z)+{0, 1} system for P 371,k: Clearly, all the rows of A372,kx ≤ b372,k are active
in {( 1

0 )}, the only minimal face of P 371. By Theorem 370, the rows of
(
A372 −b372

)
form a Z + icone

system. Thus, we conclude the statement using Theorem 368.

A′372,kx ≤ b′372,k is a TDZ+{0, 1} system for P 371,k: For this statement, we present two di�erent arguments:

• For every k ∈ Z≥1, the polyhedron P 371,k is integral. By Theorem 354, we thus know that A′372,kx ≤
b′372,k is a TDZ+ {0, 1} system for P 371,k.

• By Theorem 370, the rows of
(
A′372 −b′372

)
form a Z+{0, 1} system. All rows of A′372,k ( · ) ≤ b′372,k

are active in {( 1
0 )}, the only minimal face of P 371. Thus, we conclude the statement from Theorem 368.

7.6.2. TDZ+ {0, 1} systems and Z+ {0, 1} systems

Theorem 375. For k ∈ Z≥2, de�ne

C375,k := cone
{(

1 − 1
k

)}
.

Let S be an Z+ {0, 1} system for C375,k. Then

k−1⋃̇
i=1

{(
i − i

k

)}
︸ ︷︷ ︸

=:S′

⊆ S.

In particular, |S| ≥ k − 1. On the other hand,

• S ′ is an (icone∩Z) + {0, 1} system for C375,k that consists of exactly k − 1 elements from (Z×Q)
T
,

•
{(

1 − 1
k

)}
=: S ′′ is an icone system for C375,k that consists of exactly 1 element from (Z×Q)

T
.

Again, before we prove Theorem 375, let us have a look at how the construction behind C375,k can be used
to construct a polyhedron that requires a large TDZ+ {0, 1} system to describe:
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Theorem 376. For k ∈ Z≥2, de�ne

P 376,k := P≤
((

1
)
,
(

1
k

))
⊆ R1.

Then every TDZ+ {0, 1} system Ax ≤ b for P 376,k must contain

k−1⋃̇
i=1

{(
i − i

k

)}
as rows of

(
A −b

)
. On the other hand,

•  1
...

k − 1


︸ ︷︷ ︸

=:A376,k

x ≤


1
k
...

k−1
k


︸ ︷︷ ︸

=:b376,k

is a TD(I ∩ Z)+{0, 1} system for P 376,k that has an integral left-hand side and consists of exactly k−1
rows,

• (
1
)︸ ︷︷ ︸

=:A′376,k

x ≤
(

1
k

)︸ ︷︷ ︸
=:b′376,k

is a TDI system for P 376,k that has an integral left-hand side and consists of exactly 1 row.

Now for the proofs of Theorem 375 and Theorem 376:

Proof. (Theorem 375)

For S ′ ⊆ S: Let i ∈ {1, . . . , k − 1}. Then, clearly, c :=
(
i − i

k

)
∈ C375,k ∩ (Z× R)

T
. Assume c = c1 + c2,

where

c1 ∈ C ∩ (Q× Z)
T
,

c2 ∈ S ∪
{(

0 0
)}
⊆ C375,k.

Since x ∈ C375,k ⇒ x2 ≤ 0, we conclude c12 = 0. Thus, c1 =
(

0 0
)
and we have c2 = c ∈ S.

S ′ is an (icone∩Z) + {0, 1} system: Consider that C375,k = cone
{(

k −1
)}
. Then the statement is a

consequence of Theorem 365.

S ′′ is an icone system: Let c ∈ C375,k ∩ (Z× R)
T . Then c = c1︸︷︷︸

∈Z

(
1 − 1

k

)︸ ︷︷ ︸
∈S′′

.

Proof. (Theorem 376)

For the �rst statement: By Theorem 368, we have to show that the rows of
(
A −b

)
that are active in(

1
)
(the only minimal face of P 376,k) form a Z+{0, 1} system of cone

{(
1 − 1

k

)}
= C375,k. By Theorem

375, any such system has to contain the stated vectors.

A376,kx ≤ b376,k is a TD(I ∩ Z) + {0, 1} system for P 376,k: Clearly, all the rows of A376,kx ≤ b376,k are
active in

(
1
k

)
, the only minimal face of P 376. By Theorem 375, the rows of

(
A376 −b376

)
form an icone

system. Thus, the statement is a consequence of Theorem 368.

A′376,kx ≤ b′376,k is a TDI system for P 376,k: By Theorem 375, the rows of
(
A′376 −b′376

)
form an

icone system. All rows of A′376,k ( · ) ≤ b′376,k are active in
(

1
k

)
, the only minimal face of P 376. Thus, the

statement is a consequence of Theorem 368.
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7.6.3. Comparing all kinds of systems of dual integrality

We now come up with an example where all of the presented systems of dual integrality can be of di�erent
sizes (with respect to the number of ineuqalities):

De�nition 377. For k1 ∈ Z≥1 and k2 ∈ Z≥2, de�ne

P 377,k1,k2 := conv

{(
1
0

)
,

(
1
− 1
k2

)}
+ cone

{(
−k1

1

)
,

(
−1
0

)}

= P≤

 1 0
1 k1

0 −1

 ,

 1
1
1
k2


⊆ R2.

Before we state and show Theorem 379, we show a small proposition:

Proposition 378. For k2 ∈ Z≥2, let C := cone
{(

1 0 −1
)
,
(

0 −1 − 1
k2

)}
. Then:

1. Any icone system S for C that consists of vectors from
(
Z2 × R

)T
contains(

1 0 −1
)
,
(

0 −1 − 1
k2

)
.

2. Any Z+ {0, 1} system S for C that consists of vectors from
(
Z2 × R

)T
contains

k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
.

Proof.

For 1: Any vector c ∈ C ∩
(
Z2 × R

)T
satis�es c1 ≥ 0 and c2 ≤ 0. Thus, we have(

1 0 −1
)
,
(

0 −1 − 1
k2

)
∈ iconeS ⇒

(
1 0 −1

)
,
(

0 −1 − 1
k2

)
∈ S.

For 2:
k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
⊆ S

is shown similarly to Theorem 375.

Theorem 379. Let k1 ∈ Z≥1, k2 ∈ Z≥2. Then:

1.  1 0
1 k1

0 −1

x ≤

 1
1
1
k2


is a TDZ+ I system for P 377,k1,k2 with an integral left-hand side that consists of 3 rows.

2. If Ax ≤ b is a TDI system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the following k1 + 2

rows:  k1⋃̇
i=0

{(
1 i −1

)} ∪̇ {( 0 −1 − 1
k2

)}
.

On the other hand, 
1 0
...

...
1 k1

0 −1

x ≤


1
...
1
1
k2


is a TDI system for P 377,k1,k2 with an integral left-hand side that consists of k1 + 2 rows.
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3. If Ax ≤ b is a TDZ+{0, 1} system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the following

k2 − 1 rows:
k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
.

On the other hand, 
1 0
1 k1

0 −1
...

...
0 − (k2 − 1)

x ≤


1
1
1
k2
...

k2−1
k2


is a TDZ+ {0, 1} system for P 377,k1,k2 with an integral left-hand side that consists of k2 + 1 rows.

4. If Ax ≤ b is a TD(I ∩ Z) + {0, 1} system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the

following k1 + k2 rows:  k1⋃̇
i=0

{(
1 i −1

)} ∪̇
k2−1⋃̇

i=1

{(
0 −i − i

k2

)} .

On the other hand, 

1 0
...

...
1 k1

0 −1
...

...
0 − (k2 − 1)


x ≤



1
...
1
1
k2
...

k2−1
k2


is a TD(I ∩ Z)+{0, 1} system for P 377,k1,k2 with an integral left-hand side that consists of k1 +k2 rows.

Proof.

For 1: We have to show that {(
1 0 −1

)
,
(

1 k1 −1
)}

(7.10)

(the subset of the rows of
(
A −b

)
that are active in ( 1

0 )) and{(
1 0 −1

)
,
(

0 −1 − 1
k1

)}
(7.11)

(the subset of the rows of
(
A −b

)
that are active in

(
1
− 1
k2

)
), respectively, each form a Z+ icone system.

By Theorem 370, (7.10) forms a Z + {0, 1} system, thus a Z + icone system. By Theorem 366, (7.11) forms
an icone system, thus a Z+ icone system.

For 2:

For the �rst statement: Since Ax ≤ b is a TDI system for P 377,k1,k2 , the rows of
(
A −b

)
that are

active in ( 1
0 ) form an icone system. By Theorem 370, any icone system for

cone
{(

1 0 −1
)
,
(

1 k1 −1
)}

that consists of vectors from
(
Z2 × R

)T
has to contain

k1⋃̇
i=0

{(
1 i −1

)}
.
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On the other hand, we know from Proposition 378 that any icone system for

cone
{(

1 0 −1
)
,
(

0 −1 − 1
k2

)}
(cone generated by the rows of

(
A −b

)
that are active in

(
1
− 1
k2

)
) has to contain{(

1 0 −1
)
,
(

0 −1 − 1
k2

)}
.

For the second statement: We have to show that

k1⋃̇
i=0

{(
1 i −1

)}
(7.12)

(the subset of the rows of
(
A −b

)
that are active in ( 1

0 )) and{(
1 0 −1

)
,
(

0 −1 − 1
k2

)}
(7.13)

(the subset of the rows of
(
A −b

)
that are active in

(
1
− 1
k2

)
), respectively, each form an icone system. By

Theorem 370, (7.12) forms an icone system. By Theorem 366, (7.13) forms an icone system.

For 3:

For the �rst statement: Since Ax ≤ b is a TDZ + {0, 1} system for P 377,k1,k2 , the rows of
(
A −b

)
that are active in

(
1
− 1
k2

)
form a Z+ {0, 1} system. By Proposition 378, any Z+ {0, 1} system for

cone
{(

1 0 −1
)
,
(

0 −1 − 1
k2

)}
has to contain {(

1 0 −1
)
,
(

1 k1 −1
)}
.

For the second statement: We have to show that{(
1 0 −1

)
,
(

1 k1 −1
)}

(7.14)

(the subset of the rows of
(
A −b

)
that are active in ( 1

0 )) and

{(
1 0 −1

)}
∪̇
k1−1⋃̇
i=1

{(
0 −i − i

k1

)}
(7.15)

(the subset of the rows of
(
A −b

)
that are active in

(
1
− 1
k2

)
), respectively, each form a Z+ {0, 1} system.

Using Theorem 365, it is easy to check that (7.15) forms an (icone∩Z)+{0, 1} system (thus Z+{0, 1} system).
So, what remains is to show that (7.14) forms a Z+ {0, 1} system. Let

c ∈
(
cone

{(
1 0 −1

)
,
(

1 k1 −1
)})︸ ︷︷ ︸

=:C

∩ (Zm × R) .

Then, clearly, c = c1 + c2, where

c1 := c ∈ C ∩ (Qm × Z) ,

c2 :=
(

0 0 0
)
∈
{(

0 0 0
)}
∪̇
{(

1 0 −1
)
,
(

1 k1 −1
)}
.

For 4:

For the �rst statement: Since Ax ≤ b is a TD(I ∩ Z)+{0, 1} system for P 377,k1,k2 , the rows of
(
A −b

)
that are active in

(
1
0

)
and

(
1
− 1
k2

)
, respectively, each form an (icone∩Z) + {0, 1} system. By Theorem
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370, any icone system (thus (icone∩Z) + {0, 1} system) for

cone
{(

1 0 −1
)
,
(

1 k1 −1
)}

that consists of vectors from
(
Z2 × R

)T
has to contain

k1⋃̇
i=0

{(
1 i −1

)}
.

On the other hand, by Proposition 378, any Z+ {0, 1} system (thus (icone∩Z) + {0, 1} system) for

cone
{(

1 0 −1
)
,
(

0 1 − 1
k2

)}
has to contain

k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
.

For the second statement: We have to show that

k1⋃̇
i=0

{(
1 i −1

)}
(7.16)

(the subset of the rows of
(
A −b

)
that are active in ( 1

0 )) and

{(
1 0 −1

)}
∪̇
k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
(7.17)

(the subset of the rows of
(
A −b

)
that are active in

(
1
− 1
k2

)
), respectively, each form an (icone∩Z)+{0, 1}

system. By Theorem 370, (7.16) forms an (icone∩Z) + {0, 1} system. Using Theorem 365, it is easy to check
that (7.17) forms an (icone∩Z) + {0, 1} system.

7.6.4. Polyhedra that require a large TDZ+ I system

In this section, we prove that there exist polyhedra in R2 which are de�ned by just two rational inequalities
and require large TDZ + I systems (the weakest type of system that we considered in section 7.2) Ax ≤ b
if one demands that A is integral. This result becomes important in section 8.2.3.3, but since the statement
and its proof are very related to the other results of section 7.6, we state and prove it here.

De�nition 380. For k ∈ Z≥2, de�ne

P 380,k :=

{(
k
2
1
2

)}
+ cone

{(
−k2

1
2

)
,

(
−k2
− 1

2

)}
= P≤

((
1 k
1 −k

)
,

(
k
0

))
⊆ R2.

Theorem 381. Let k ∈ Z≥2. Then:

1. Let Ax ≤ b, where A ∈ Zl×2 and b ∈ Rl (l ∈ Z≥0), be a TDI system such that P≤ (A, b) = P 380,k. Then{(
1 i −k+i

2

)
: i ∈ {−k, . . . , k}

}
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are rows of
(
A −b

)
, i.e. Ax ≤ b consists of at least 2k + 1 rows. On the other hand,

1 k
1 k − 1
1 k − 2
...

...
1 − (k − 2)
1 − (k − 1)
1 −k


x ≤



k
k − 1

2
k − 1
...
1
1
2
0


is a TD(I ∩ Z) + {0, 1} system (and thus TDI system) for P 380,k with an integral left-hand side that
consists of 2k + 1 rows.

2. Let Ax ≤ b, where A ∈ Zl×2 and b ∈ Rl (l ∈ Z≥0), be a TDZ+ I system such that P≤ (A, b) = P 380,k.
Then {(

1 i −k+i
2

)
: i ∈ {− (k − 1) , . . . , k − 1} , k + i odd

}
are rows of

(
A −b

)
, i.e. Ax ≤ b consists of at least k rows. On the other hand,

1 k
1 −k
1 k − 1
1 k − 3
...

...
1 − (k − 3)
1 − (k − 1)


x ≤



k
0

k − 1
2

k − 3
2

...
3
2
1
2


is a TDZ+ {0, 1} system (and thus TDZ+ I system) for P 380,k that consists of k + 2 rows.

Proof. De�ne C := cone
{(

1 k −k
)
,
(

1 −k 0
)}
. It is easy to verify that

∀c ∈ C ∩
(
Z2 × R

)T
: c1 = 0⇒ c =

(
0 0 0

)
, (7.18)

∀c ∈ R2 × R : c ∈ C ⇔
(
c1 ≥ 0 ∧ −kc1 ≤ c2 ≤ kc1 ∧ c3 = −kc1 + c2

2

)
(7.19)

hold.

For 1:

For the �rst statement: By Theorem 368, the rows of
(
A −b

)
that are active in

(
k
2
1
2

)
form an

icone system of C. We denote these active rows of
(
A −b

)
by S. Let i ∈ {−k, . . . , k} be �xed and set

c :=
(

1 i −k+i
2

)
∈ C ∩

(
Z2 × R

)T
.

From (7.18) and (7.19), we conclude that c cannot be represented by an integral conic combination of vectors

from C ∩
(
Z2 × R

)T \{( 0 0 0
)}
. Thus, c ∈ S.

For the second statement: Clearly, P≤ (A′, b′) = P 380,k. We have to show that the rows of
(
A′ −b′

)
that are active in

(
k
2
1
2

)
(all rows) form an (icone∩Z)+{0, 1} system of C. From Theorem 365, we conclude

that this is indeed the case.

For 2:

For the �rst statement: By Theorem 368, the rows of
(
A −b

)
that are active in

(
k
2
1
2

)
form a

Z + icone system of C. We denote these active rows of
(
A −b

)
by S. Let i ∈ {− (k − 1) , . . . , k − 1} be
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�xed such that k + i is odd and set

c :=
(

1 i −k+i
2

)
∈ C ∩

(
Z2 × R

)T
.

We want to show that c ∈ S.
Since S is a Z + icone system of C, we can represent c as c = c1 + c2, where c1 ∈ C ∩

(
Q2 × Z

)T
and

c2 ∈ iconeS. Since S ⊆
(
Z2 × R

)T
, we have c1 ∈ C ∩

(
Z2 × Z

)T
. From c1 ∈ C, we conclude c11 ≥ 0.

Case 1: c11 = 0: From c11 = 0, we obtain c1 =
(
02 × 0

)T
; thus, c = c2 ∈ iconeS. Using (7.18) and (7.19),

we conclude that c2 ∈ S.
Case 2: c11 = 1: From the case assumption, we obtain c21 = 0, which implies c2 =

(
0 0 0

)
. So, we

have c = c1. But this cannot happen, since

k + i ∈ 2Z+ 1⇒ k + i

2
∈ Z+

1

2
⇒ c3 = c13 ∈ Z+

1

2
,

which is a contradiction to c1 ∈ C ∩
(
Z2 × Z

)T
.

Case 3: c11 ≥ 2: Since c2 ∈ C, by (7.19), we have c21 ≥ 0. But on the other hand, we have

c21 = c1 − c11 = 1− c11 ≤ −1,

which is clearly a contradiction.

For the second statement: Clearly, P≤ (A′′, b′′) = P 380,k. We have to show that the rows of
(
A −b

)
that are active in

(
k
2
1
2

)
(all rows), which we denote by S, form a Z+ {0, 1} system of C. Let

c ∈ C ∩
(
Z2 × R

)T
.

Case 1: c ∈
(
Z2 × Z

)T
: Let

c1 := c, c2 :=
(

0 0 0
)
.

Indeed c = c1 + c2, where c1 ∈ C ∩
(
Q2 × Z

)T
and c2 ∈ S ∪

{(
0 0 0

)}
.

Case 2: c ∈
(
Z2 ×

(
Z+ 1

2

))T
: We clearly have c1 ≥ 1. We distinguish the following subcases:

a c1 = 1,

b c1 ≥ 2 ∧ k ∈ 2Z+ 1 ∧ −k (c1 − 1) < c2 < k (c1 − 1),

c c1 ≥ 2 ∧ k ∈ 2Z ∧ −k (c1 − 1) < c2 < k (c1 − 1),

d c1 ≥ 2 ∧ c2 ≥ k (c1 − 1),

e c1 ≥ 2 ∧ c2 ≤ −k (c1 − 1).

For case a: It is easy to see that

c ∈
k−1⋃̇

i=−(k−1),
k + i odd

{(
1 i −k+i

2

)}
⊆ S.

Thus, c = c1 + c2, where

c1 :=
(

0 0 0
)
∈ C ∩

(
Q2 × Z

)T
,

c2 := c ∈ S ⊆ S ∪
{(

0 0 0
)}
.

For case b: Let c = c1 + c2, where

c1 :=
(
c1 − 1 c2 c3 + k

2

)
∈ C ∩

(
Q2 × Z

)T
,

c2 :=
(

1 0 −k2
)
∈ S ⊆ S ∪

{(
0 0 0

)}
.
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The statement c1 ∈ C is easy to check via (7.19): c11 ≥ 0 is clear, −kc11 ≤ c12 ≤ kc11 holds by case assumption
(even with strict inequalities). Finally, using c ∈ C and (7.19), we obtain

c13 = c3 +
k

2
= −kc1 + c2

2
+
k

2
= −k (c1 − 1) + c2

2
= −kc

1
1 + c12
2

.

For case c: Let c = c1 + c2, where

c1 :=
(
c1 − 1 c2 − 1 c3 + k+1

2

)
∈ C ∩

(
Q2 × Z

)T
,

c2 :=
(

1 1 −k+1
2

)
∈ S ⊆ S ∪

{(
0 0 0

)}
.

The statement c1 ∈ C is easy to check via (7.19): c11 ≥ 0 is clear, −kc11 ≤ c12 ≤ kc11 holds by case assumption
(even with strict inequalities). Finally, using c ∈ C and (7.19), we obtain

c13 = c3 +
k + 1

2
= −kc1 + c2

2
+
k + 1

2
= −k (c1 − 1) + (c2 − 1)

2
= −kc

1
1 + c12
2

.

For case d: Let c = c1 + c2, where

c1 :=
(
c1 − 1 k (c1 − 1) k (c1 − 1)

)
∈ C ∩

(
Q2 × Z

)T
,

c2 :=
(

1 c2 − k (c1 − 1) c3 − k (c1 − 1)
)
∈ S ⊆ S ∪

{(
0 0 0

)}
.

Note that k (c1 − 1) ≤ c2 ≤ kc1; thus, 0 ≤ c2 − k (c1 − 1) ≤ k.
For case e: Let c = c1 + c2, where

c1 :=
(
c1 − 1 −k (c1 − 1) 0

)
∈ C ∩

(
Q2 × Z

)T
,

c2 :=
(

1 c2 + k (c1 − 1) c3
)
∈ S ⊆ S ∪

{(
0 0 0

)}
.

Note that −kc1 ≤ c2 ≤ −k (c1 − 1); thus, −k ≤ c2 + k (c1 − 1) ≤ 0.
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cuts and strong Chvátal-Gomory cuts

This chapter consists of two rather independent parts:

• In the �rst part (section 8.1), we consider the following classes of cutting planes:

� (projected) Chvátal-Gomory cuts (cf. De�nition 122),

� dual (projected) Chvátal-Gomory cuts (which we de�ne in De�nition 382 and are sometimes used
in the literature interchangeably with (projected) Chvátal-Gomory cuts because they are deeply
related to each other for polyhedra (cf. Theorem 385)),

� strong (projected) Chvátal-Gomory cuts (cf. De�nition 384),

� L1− 1
2 ,Q×Q

cuts and

� L1− 1
2 ,Q×R

cuts.

We analyze in section 8.1.2 in what sense these classes are equivalent or not. In section 8.1.2.4, we
give a summary of all these results. Concerning this, in particular cf. Theorem 391 for the equivalence
results for the associated closure operators for polyhedra.

• In the second part (section 8.2), we consider the question of how one can compute the Chvátal-Gomory
closure of a polyhedron with rational face normals:

� In section 8.2.1, in particular Theorem 394, we consider that, when we want to compute the
Chvátal-Gomory closure of a polyhedron P≤

((
A G

)
, b
)
⊆ Rm × Rn, it su�ces to consider

polyhedra that are described by a subset of the inequalities such that the cone spanned by the
normal vectors of these inequalities forms an LP face cone (recall De�nition 356). We remark that
these results are in principle already known in the literature, though often only formulated for
non-projected Chvátal-Gomory cuts (i.e. only pure integer case) and implicitly.

� In section 8.2.2, we derive some abstract dominance relationships for dual projected Chvátal-
Gomory cuts, which turn out to be important for an explicit characterization of the Chvátal-
Gomory closure in the subsequent two sections (section 8.2.3 and section 8.2.4).

� In section 8.2.3, we have a look at how TDZ + I systems with an integral left-hand side can be
used for computing the Chvátal-Gomory closure (Theorem 398). We remark that this result is
well-known for the weaker TDI systems (cf. [Sch86, Theorem 23.1; p. 340]). So, in the subsequent
subsections, we analyze the size of TDZ+ I systems for this purpose and ask whether the number
of rows of such a TDZ + I system can be smaller than the size of a TDI system (section 8.2.3.2)
and whether there is potential for future improvements (section 8.2.3.3).

� In section 8.2.4, we give an alternative procedure for computing the projected Chvátal-Gomory
closure of a polyhedron by reducing this problem to the problem of computing the Chvátal-Gomory
closure of a polyhedron P≤

((
A G

)
, b
)
where the rows of

(
A G −b

)
form an LP face cone.

This approach has the advantage that it also works in the mixed-integer case (projected Chvátal-
Gomory closure) and can be generalized to the MIR closure. The latter topic is considered later
on in section 9.2.3 of chapter 9 (Theorem 429).

8.1. Equivalences/non-equivalences

8.1.1. De�nitions

For convenience, we restate De�nition 122 and De�nition 123, in which we de�ne (projected) Chvátal-Gomory
cuts and their closure:
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De�nition 122. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Let c ∈ (Zm)
T
and let c0 ∈ R (w.l.o.g. we

can assume c0 ∈ R\Z) be such that

P ⊆ P≤
((

c (0n)
T
)
, c0

)
.

Then the inequality (
c (0n)

T
)

( · ) ≤ bc0c

is called a projected Chvátal-Gomory cut for P . If n = 0, we simply use the term Chvátal-Gomory
cut for P .

De�nition 123. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then we de�ne

clpCG (P ) := P ∩
⋂

c∈(Zm)T ,c0∈R:

P⊆P≤(( c (0n)T ),c0)

P≤
((

c (0n)
T
)
, bc0c

)

as the projected Chvátal-Gomory closure of P . If n = 0, we also use the term Chvátal-Gomory
closure of P (clCG (P )).

We now give a kind of dual de�nition for (projected) Chvátal-Gomory cuts. We clearly state that the term
�dual (projected) Chvátal-Gomory cut� is to our knowledge used nowhere else in the literature � we invented
it to distinguish these cuts from the (projected) Chvátal-Gomory cuts that are de�ned in De�nition 122.

De�nition 382. Let A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0. De�ne

MCG (A,G) :=
{
µ ∈

(
Rl≥0

)T
: µ
(
A G

)
∈ (Zm × 0n)

T
}
.

If n = 0, we also use the notationMCG (A). Let µ ∈MCG (A,G). Then we call the inequality

µ (Ax+Gy − b)︸ ︷︷ ︸
=µAx−µb

≤ − frac (µb)

a dual projected Chvátal-Gomory cut for ( xy ) ∈ P≤
((

A G
)
, b
)
with respect to A, G and b. We

de�ne

f≤,CG,µA,G,b : Rm × Rn → R,(
x
y

)
7→ µ (Ax− b) + frac (µb) .

De�nition 383. Let A, G, b, m and n be as in De�nition 382. We de�ne

cldpCG (A,G, b) :=P≤
((

A G
)
, b
)

∩
⋂

µ∈MCG(A,G)

{(
x
y

)
∈ Rm × Rn : f≤0,CG,µ

A,G,b

((
x
y

))
≤ 0

}

as the dual projected Chvátal-Gomory closure with respect to A, G and b.

Note that the de�nition of dual projected Chvátal-Gomory cuts in De�nition 382 closely mirrors the de�ni-
tion of MIR cuts that we introduce in De�nition 410 and the de�nition of the dual projected Chvátal-Gomory
closure in De�nition 383 closely mirrors the de�nition of the MIR closure that we introduce in De�nition 411.
Next, we de�ne �strong projected Chvátal-Gomory cuts� and their respective closure. This is also a term

that we invented.

De�nition 384. Let P ⊆ Rm × Rn be arbitrary. Let c ∈ (Zm)
T
and c0 ∈ Z be such that

P ∩ P≥
((

c (0n)
T
)
, c0 + 1

)
= ∅.

Then we call the inequality
(
c (0n)

T
)

( · ) ≤ c0 a strong projected Chvátal-Gomory cut for P . If
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n = 0, we simply use the term strong Chvátal-Gomory cut for P . We de�ne

clspCG (P ) := P ∩
⋂

c∈(Zm)T ,c0∈Z:

P∩P≥(( c (0n)T ),c0+1)=∅

P≤
((

c (0n)
T
)
, c0

)

as the strong (projected) Chvátal-Gomory closure of P .

8.1.2. Equivalences and inclusions

8.1.2.1. Dual projected Chvátal-Gomory cuts vs projected Chvátal-Gomory cuts

In the following theorem, we show that projected Chvátal-Gomory cuts are �mostly identical� to dual projected
Chvátal-Gomory cuts and their closures are identical:

Theorem 385. Let P = P≤
((

A G
)
, b
)
be a polyhedron, where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl

(l,m, n ∈ Z≥0). Then:

1. Every dual projected Chvátal-Gomory cut (for P ) with respect to A, G and b is a projected Chvátal-
Gomory cut for P .

2. Let
(
c (0n)

T
)

( · ) ≤ bc0c be a projected Chvátal-Gomory cut for P .

a) If P = ∅, there exists a µ ∈MCG (A,G) such that f≤,CG,µA,G,b ( · ) = −1.

b) If P 6= ∅, but
(
c (0n)

T
)

( · ) ≤ bc0c is already valid for P , there exists a µ ∈ MCG (A,G) such

that f≤,CG,µA,G,b (( xy )) = cx− c′0 (( xy ) ∈ Rm × Rn), where c′0 ∈ Z and c′0 ≤ bc0c, i.e. f
≤,CG,µ
A,G,b ( · ) ≤ 0

dominates
(
c (0n)

T
)

( · ) ≤ bc0c absolutely.

c) Otherwise (P 6= ∅ and
(
c (0n)

T
)

( · ) ≤ bc0c is not valid for P ), there exists a µ ∈MCG (A,G)

such that f≤,CG,µA,G,b (( xy )) = cx− bc0c (x ∈ Rm, y ∈ Rn).
In any case: every projected Chvátal-Gomory cut for P is dominated dominated absolutely by a dual
projected Chvátal-Gomory cut with respect to A, G and b.

In particular, we have
clpCG (P ) = cldpCG (A,G, b) .

Remark 386. We remark that in Theorem 385 in point 2a and point 2b, the cutting plane(
c (0n)

T
)

( · ) ≤ bc0c

is not necessarily a dual projected Chvátal-Gomory cut for with respect to A, G and b (as we stated in Theorem
385: it is only dominated absolutely by a dual projected Chvátal-Gomory cut with respect to A, G and b):
For 2a: Consider

∅ = P := P≤
((

1 0
−1 0

)
,

(
0
−1

))
=: P≤ (A, b) ⊆ R2.

It is easy to check that any dual Chvátal-Gomory cut for with respect to A and b is of the form

f≤,CG,µA,b (x) = C1x1 − C2 (8.1)

(x ∈ R2), where C1, C2 ∈ Z. On the other hand, x2 ≤ 0 clearly is a valid Chvátal-Gomory cut for x ∈ P . But,
by (8.1), there exists no dual Chvátal-Gomory cut for with respect to A, b that induces the same half-space as

f≤,CG,µA,b .
For 2b: Consider

P := P≤
((

1
)
,
(

1
2

))
=: P≤ (A, b) ⊆ R1.

Clearly, x1 ≤ 1 is a valid Chvátal-Gomory cut for x ∈ P (though this inequality is already valid for P : thus,
it is a trivial Chvátal-Gomory cut for P ). On the other hand, it is easy to check that if one has a dual

Chvátal-Gomory cut f≤,CG,µA,b (x) = C1x1 − C2 (x ∈ R1) with respect to A and b be given, one can show that
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• C1 ≥ 0 and

• if C1 > 0, we have C2 ≤ 1
2C1.

Thus, ( · )1 ≤ 1 cannot be represented as a dual Chvátal-Gomory cut with respect to A and b (but is dominated
absolutely by one).

Proof. (Theorem 385)

For 1: Clearly, for µ ∈ MCG (A,G), the inequality µAx ≤ µb is a valid for ( xy ) ∈ P (since µ ∈
(
Rl≥0

)T
and

Gy = (0n)
T ). On the other hand, µA is integral and we have

µb− frac (µb) = bµbc .

Thus,
(
µA (0n)

T
)

( · ) ≤ bµbc is a projected Chvátal-Gomory cut for P and we have{(
x
y

)
∈ Rm × Rn : f≤,CG,µA,G,b

((
x
y

))
≤ 0

}
= P≤

((
µA (0n)

T
)
, bµbc

)
.

For 2a: Since P = ∅, by the Farkas lemma (Lemma 89), there exists a µ ∈
(
Rl≥0

)T
having

µ
(
A G

)
=
(

(0m)
T

(0n)
T
)
, µb = −1.

Clearly, f≤,CG,µA,G,b ( · ) ≤ 0 is a projected dual Chvátal-Gomory cut with respect to A, G and b and we have

f≤,CG,µA,G,b ( · ) = −1.

For 2b and 2c: Let
(
c (0n)

T
)

( · ) ≤ c0 be valid for P 6= ∅ (recall that, by case assumption, we have

c ∈ (Zm)
T ). Let c′0 := max

{
cx :

(
x
y

)
∈ P

}
. By LP duality, there exists a µ ∈

(
Rl≥0

)T
such that

µ
(
A G

)
=
(
c (0n)

T
)
, µb = c′0.

Clearly, µ ∈ MCG (A,G). Thus, f≤,CG,µA,G,b is de�ned. Since c′0 ≤ c0, we clearly have bc′0c ≤ bc0c. We now
distinguish two cases:

1. bc′0c < bc0c,

2. bc′0c = bc0c.

Note that the situation of 2c immediately implies the second case, since by the case assumption and bc′0c <
bc0c, using

c′0 = max

{
cx :

(
x
y

)
∈ P

}
> bc0c > bc′0c ,

we obtain bc′0c < bc0c < c′0. But this chain of inequalities clearly cannot be satis�ed.

For case 1: We have for ( xy ) ∈ Rm × Rn:

f≤,CG,µA,G,b (( xy )) = µ (Ax+Gy − b) + frac (µb) = µAx− bµbc = cx− bc′0c = cx− bc0c − (bc′0c − bc0c)︸ ︷︷ ︸
<0

.

Thus, f≤,CG,µA,G,b (( xy )) ≤ 0 clearly dominates cx ≤ bc0c absolutely.

For case 2: We have for ( xy ) ∈ Rm × Rn:

f≤,CG,µA,G,b (( xy )) = µ (Ax+Gy − b) + frac (µb) = µAx− bµbc = cx− bc′0c = cx− bc0c .

Thus, f≤,CG,µA,G,b (( xy )) ≤ 0 is equivalent to cx ≤ bc0c.
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8.1.2.2. Projected Chvátal-Gomory cuts vs strong projected Chvátal-Gomory cuts

We next compare projected Chvátal-Gomory cuts to strong projected Chvátal-Gomory cuts:

Theorem 387. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then:

1. Every projected Chvátal-Gomory cut for P is a strong projected Chvátal-Gomory cut for P .

2. If P is either convex and compact or a polyhedron, also the reverse holds.

3. If, on the other hand, P is convex, but either unbounded or not closed, there can exist strong (projected)
Chvátal-Gomory cuts for P that are not (projected) Chvátal-Gomory cuts for P . Furthermore: there
exists a convex and bounded (but, of course, not closed) P ′ ⊆ R1 such that

clspCG (P ) ( clCG (P ) .

Proof.

For 1: Let
(
c (0n)

T
)

( · ) ≤ c0 be a projected Chvátal-Gomory cut for P . This implies

sup

{
cx :

(
x
y

)
∈ P

}
< c0 + 1.

So, P ∩ P≥
((

c (0n)
T
)
, c0 + 1

)
= ∅ and thus

(
c (0n)

T
)

( · ) ≤ c0 is a strong Chvátal-Gomory cut for

P .

For 2: Let P either be convex and compact or a polyhedron and let
(
c (0n)

T
)

( · ) ≤ c0 be a strong

projected Chvátal-Gomory cut for P . Then

max

{
cx :

(
x
y

)
∈ P

}
=: c′0 < c0 + 1

is attained and thus
(
c (0n)

T
)

( · ) ≤ c0 is a projected Chvátal-Gomory cut for P .

For 3: For the �rst statement, consider

• P := [0, 1) ⊆ R1 or

• P :=
{
x ∈ R2

≥0 : x1 · x2 ≥ 1
}
⊆ R2,

respectively, and the respective strong Chvátal-Gomory cuts

• ( · )1 ≤ 0 or

• − ( · )1 ≤ −1,

respectively.
For the second statement, let P ′ := [0, 1) ⊆ R1. Clearly,{

01
}

= clI (P ′) = clspCG (P ′) .

On the other hand, we claim that for every Chvátal-Gomory cut c ( · ) ≤ bc0c for P ′, we have

P ′ ∩ P≤ (c, bc0c) = P ′.

For this, we distinguish three cases:

1. c1 = 0,

2. c1 < 0,

3. c1 > 0.
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In case 1, we have c0 ≥ 0, since c ( · ) ≤ c0 is valid for P ′ 6= ∅. Thus,

P ′ ∩ P≤ (c, bc0c) = P ′ ∩ R1 = P ′.

In case 2, we have c0 ≤ 0, since c ( · ) ≤ c0 is valid for P ′ and 01 ∈ P ′. Thus,

P ′ ∩ P≤ (c, bc0c)︸ ︷︷ ︸
⊇R1
≥0

= P ′.

In case 3, we have c0 ≥ c1, since c ( · ) ≤ c0 is valid for P ′. Thus,

P ′ ∩ P≤ (c, bc0c)︸ ︷︷ ︸
⊇P≤(( 1 ),( 1 ))

= P ′.

8.1.2.3. Strong projected Chvátal-Gomory cuts vs L1− 1
2 ,Q×Q

cuts and L1− 1
2 ,Q×R

cuts

Now for the relationship between strong projected Chvátal-Gomory cuts and L1− 1
2 ,Q×Q

cuts/L1− 1
2 ,Q×R

cuts.
The �nal result is stated in Theorem 389, but before, we show a small proposition:

Proposition 388. Let a ∈ (Zm)
T \
{

(0m)
T
}
and α ∈ Z. Let k := gcd {a1, . . . , am} ≥ 1. Then

F := conv ({x ∈ Zm : ax ≤ α}) =
{
x ∈ Rm : ax ≤ k

⌊α
k

⌋}
, (8.2)

F ′ := conv ({x ∈ Zm : ax < α}) =
{
x ∈ Rm : ax ≤ k

⌈α
k
− 1
⌉}

. (8.3)

Proof. (8.2) is shown in [BW05, Proposition 6.1, p. 209]. So, we only prove (8.3). If α /∈ kZ, we clearly
have {x ∈ Zm : ax < α} = {x ∈ Zm : ax ≤ α} and

⌊
α
k

⌋
=
⌈
α
k − 1

⌉
, so that we immediately obtain (8.3) from

(8.2). On the other hand, if α ∈ kZ, we have {x ∈ Zm : ax < α} = {x ∈ Zm : ax ≤ α− k} and we thus obtain⌊
α−k
k

⌋
=
⌈
α
k − 1

⌉
. Again, we immediately conclude (8.3) from (8.2).

Theorem 389. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 1) be arbitrary. Then:

1. Every strong projected Chvátal-Gomory cut for P is an L1− 1
2 ,Q×Q

cut for P (and thus an L1− 1
2 ,Q×R

cut

for P ).

2. Let P be convex and let c ( · ) ≤ c0 be an L1− 1
2 ,Q×R

cut for P with respect to some V ≤ Rm × Rn.

a) Let projRn V < Rn. Then every inequality for (P + V )I is already valid for P .

b) Let projRn V = Rn (i.e. there exists a V ′ such that V = V ′ × Rn).
i. Let (P + V )I = ∅. Then c ( · ) ≤ c0 is dominated relatively to P by a strong projected Chvátal-

Gomory cut for P .

ii. Let (P + V )I 6= ∅. Then c ( · ) ≤ c0 is dominated absolutely by a strong projected Chvátal-
Gomory cut for P .

In any case: every L1− 1
2 ,Q×R

cut for P is dominated relatively to P by a strong projected Chvátal-Gomory
cut for P .

So, if P is convex, we have

clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×Q

(P ) = clspCG (P ) .

On the other hand, if P is not convex, the situation

clL
1− 1

2
,Q×Q

(P ) ( clspCG (P ) (8.4)

can occur.

Remark 390. For the tightness of 2(b)i and 2(b)ii in Theorem 389:
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• 2(b)i can only hold up to relative (not absolute) dominance. For this, consider

P := P≤
((

1 0
−1 0

)
,

( 2
3

− 1
3

))
( R2.

Clearly, ( · )2 ≤ 0 is an L1− 1
2 ,Q

cut for P with respect to 01 × R1. It is easy to check that there exists

no Chvátal-Gomory cut that dominates ( · )2 ≤ 0 absolutely. On the other hand, ( · )1 ≤ 0 dominates
( · )2 ≤ 0 relatively to P .

• In 2(b)ii, not every L1− 1
2 ,Q×Q

cut (or L1− 1
2 ,Q×R

cut) c ( · ) ≤ c0 for P is a strong projected Chvátal-

Gomory cut for P (there only exists a strong projected Chvátal-Gomory cut for P that dominates c ( · ) ≤
c0 absolutely), even if we consider only the half-spaces that are induced by the respective type of cutting
plane. For this, consider

P := P≤
((

1
)
,
(

1
2

))
( R1.

Clearly, ( · )1 ≤
1

2
√

2
is an L1− 1

2 ,Q
cut for P with respect to R1, but not a strong Chvátal-Gomory cut

for P . On the other hand, the strong Chvátal-Gomory cut ( · )1 ≤ 0 clearly dominates ( · )1 ≤
1

2
√

2
absolutely.

Proof. (Theorem 389)

For 1: Let
(
c (0n)

T
)

( · ) ≤ c0 be a strong projected Chvátal-Gomory cut for P , where w.l.o.g. c ∈ (Zm)
T

has coprime components and c 6= (0m)
T . By de�nition, we have c0 ∈ Z and

P ∩ P≥
((

c (0n)
T
)
, c0

)
= ∅;

thus,

∀
(
x
y

)
∈ P : cx < c0 + 1.

Let V :=
(
lin
{(

cT

0n

)})⊥
. We surely have

P + V ⊆ P<
((

c (0n)
T
)
, c0 + 1

)
.

Thus, we conclude using Proposition 388:

clI (P + V ) ⊆ P≤
((

c (0n)
T
)
, dc0 + 1− 1e

)
= P≤

((
c (0n)

T
)
, c0

)
.

For 2: W.l.o.g. we assume that P 6= ∅ and ( · ) ≤ c0 is not be valid for P .

For 2a: We show that if c ( · ) ≤ c0 is not valid for P , we have projRm V < Rm. We �rst recapitulate (cf.
Remark 162) that L0,Q cuts for P are simply linear inequalities that are valid for P . So, c ( · ) ≤ c0 is not an
L0,Q cut for P . Since c ( · ) ≤ c0 is not an L0,Q cut for P , by Theorem 208, it is an essential L1− 1

2 ,Q
cut for P

with respect to a rational subspace V := V ′ × Rn ≤ Rm × Rn, where codimV ′ = 1.

For 2b: Let c′ ∈ (Zm\ {0m})T be an integral vector with coprime component that satis�es c′T ⊥ V ′. We
�rst show that for c0 ∈ Z, we have(

∃
(
x
y

)
∈ P : c′x = c0

)
⇔
(
∃
(
x′

y′

)
∈ (P + V )I : c′x′ = c0

)
. (8.5)

For �⇐� in (8.5): Let
(
x′

y′

)
= ( xy ) + v ∈ (P + V )I , where ( xy ) ∈ P , v ∈ V and c′x′ = c0. Then, by

de�nition, ( xy ) ∈ P and we have using c′ ⊥ V ′: c′x = c′
(
x′ − v(1,...,m)

)
= c′x′ = c0.

For �⇒� in (8.5): Let ( xy ) ∈ P , where c′x = c0. Since

• c′ is integral,

205



8. L1− 1
2 ,Q×Q

/L1− 1
2 ,Q×R

cuts, Chvátal-Gomory cuts and strong Chvátal-Gomory cuts

• the components of c′ are coprime and

• c′ ⊥ V ′,

{c′} is a lattice basis of Zm ∩ V ′⊥. By Lemma 98,

Zm + V ′ = {q ∈ Rm : c′q ∈ Z} .

So, since c0 ∈ Z, there exists a z ∈ Zm×Rn and a v ∈ V such that ( xy ) = z+v. This implies ( xy )−v ∈ (P + V )I .

For 2(b)i: We claim that
@c0 ∈ Z : ∃ ( xy ) ∈ P : c′x = c0.

If there existed such a c0, we would by (8.5) get a contradiction to (P + V )I = ∅. Let

c0 := inf

{
c′x :

(
x
y

)
∈ P

}
= inf

{
c′x :

(
x
y

)
∈ P + V

}
,

c0 := sup

{
c′x :

(
x
y

)
∈ P

}
= sup

{
c′x :

(
x
y

)
∈ P + V

}
.

We note that −∞ < c0 ≤ c0 < ∞ (in particular c0, c0 ∈ R): since P 6= ∅, we have c0 ∈ R ∪̇ {−∞} and
c0 ∈ R ∪̇ {∞}. On the other hand, if ±∞ were attained, we would have (since P is convex):

∃c0 ∈ Z,
(
x
y

)
∈ P : c′x = c0,

which, by (8.5), is a contradiction to (P + V )I = ∅. We next claim that

dc0e − bc0c = 1. (8.6)

For ≥ in (8.6): dc0e = bc0c implies c0 = c0 ∈ Z. Because of (8.5) and (P + V )I = ∅, this cannot happen.

For ≤ in (8.6): Assume
dc0e − bc0c ≥ 2.

Then there exists a c0 ∈ Z having
c0 < c0 < c0.

Thus, since P is convex, there exists an ( xy ) ∈ P such that cx = c0. So, using (8.5), we get a contradiction to
(P + V )I = ∅.

Finally, note that there exists no ( xy ) ∈ P having either c′x = c0 or c′x = c0, since otherwise, we again get
the contradiction (P + V )I 6= ∅ from (8.5). Thus,

P ∩ P≥
((

c′ (0n)
T
)
, c0

)
= ∅.

So,
(
c′ (0n)

T
)

( · ) ≤ c0 − 1 is a strong projected Chvátal-Gomory cut for P and we have

P ∩ P≤
((

c′ (0n)
T
)
, c0 − 1

)
= ∅.

For 2(b)ii: By Lemma 159, we have cT ⊥ V . On the other hand, since we assumed that c ( · ) ≤ c0 is not
valid for P , we have cT 6=

(
0m

0n
)
. Thus, there exists a λ ∈ R 6=0 such that(

c′ (0n)
T
)

= λc.

W.l.o.g. we can assume that λ = 1. In other words: c =
(
c′ (0n)

T
)
. By de�nition, we have

(P + V )I ∩ P
> (c, c0) = (P + V )I ∩ P

>
((

c′ (0n)
T
)
, c0

)
= ∅. (8.7)
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We now show that
(
c′ (0n)

T
)

( · ) ≤ bc0c is a strong projected Chvátal-Gomory cut for P . For this, we
prove

P ∩ P≥
((

c′ (0n)
T
)
, bc0c+ 1

)
= ∅.

Assume that there exists an
(
x1,∗

y1,∗

)
∈ P such that c′x1,∗ ≥ bc0c + 1. Since (P + V )I 6= ∅, there exists

an
(
x2,∗

y2,∗

)
∈ (P + V )I , which, by (8.5), implies c∗0 := c′x2,∗ ∈ Z. Because of (8.7) and x2,∗ ∈ Zm, we have

c∗0 ≤ bc0c. So, by (8.5), there exists a
(
x3,∗

y3,∗

)
∈ P having c∗0 := c′x3,∗.

Let (
x4,∗

y4,∗

)
:= λ

(
x1,∗

y1,∗

)
+ (1− λ)

(
x3,∗

y3,∗

)
,

where

λ :=
bc0c+ 1− c∗0
c′x1,∗ − c∗0

.

By convexity of P , we have
(
x4,∗

y4,∗

)
∈ P . On the other hand,

c′x4,∗ = λc′x1,∗ + (1− λ) c′x3,∗

= λc′x1,∗ + (1− λ) c∗0

=
bc0c+ 1− c∗0
c′x1,∗ − c∗0

c′x1,∗ +

(
1− bc0c+ 1− c∗0

c′x1,∗ − c∗0

)
c∗0

=
bc0c+ 1− c∗0
c′x1,∗ − c∗0

c′x1,∗ +
c′x1,∗ − bc0c − 1

c′x1,∗ − c∗0
c∗0

= bc0c+ 1.

By (8.5), this implies

∃
(
x
y

)
∈ (P + V )I : c′x = bc0c+ 1,

which is a contradiction to (8.7).

For (8.4): Consider
P := (−2,−1) ∪̇ (−1, 0) ∪̇ (0, 1) ⊆ R1.

It is easy to check that clL
1− 1

2
,Q

(P ) = ∅. On the other hand, every strong Chvátal-Gomory cut for P is

dominated absolutely by either ( · )1 ≤ 0 or − ( · )1 ≤ 1. Thus, clsCG (P ) = (−1, 0) ⊆ R1.

8.1.2.4. Conclusion and summary

Using Theorem 385, Theorem 387 and Theorem 389, we obtain the following result for the types of cutting
planes that we presented in section 8.1.1:

Theorem 391. Let P = P≤
((

A G
)
, b
)
be a polyhedron, where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl

(l,m, n ∈ Z≥0). Then:

• Every dual projected Chvátal-Gomory cut (for P ) with respect to A, G and b is a projected Chvátal-
Gomory cut for P .

• Every projected Chvátal-Gomory cut for P is a strong projected Chvátal-Gomory cut for P .

• Every strong projected Chvátal-Gomory cut for P is an L1− 1
2 ,Q×Q

cut (and thus an L1− 1
2 ,Q×R

cut) for
P .

Additionally, we have

clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) = clspCG (P ) = clpCG (P ) = cldpCG (A,G, b) .

Now for a more encompassing summary of the results that we have shown in section 8.1.2:
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• In Theorem 385, we saw that for a polyhedron P := P≤
((

A G
)
, b
)
⊆ Rm × Rn (A ∈ Rl×m,

G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0), every dual projected Chvátal-Gomory cut (for P ) with
respect to A, G and b is a projected Chvátal-Gomory cut for P and, on the other hand, every projected
Chvátal-Gomory cut for P is dominated absolutely by a dual projected Chvátal-Gomory cut (for P )
with respect to A, G and b. Thus, in particular, we have

clpCG (P ) = cldpCG (A,G, b) .

Note however (cf. Remark 386) that not every projected Chvátal-Gomory cut for P is necessarily a dual
projected Chvátal-Gomory cut with respect to A, G and b. In other words: projected Chvátal-Gomory
cuts and dual projected Chvátal-Gomory cuts are nevertheless not completely identical concepts.

Additionally, note that it does not make sense to ask the question about the relationship between
projected Chvátal-Gomory cut vs dual projected Chvátal-Gomory cuts for non-polyhedra, since (recall
De�nition 382 and De�nition 383) we only de�ned dual projected Chvátal-Gomory cuts and their closure
for polyhedra.

• In Theorem 387, we showed that every projected Chvátal-Gomory cut for an arbitrary P ⊆ Rm × Rn
(m,n ∈ Z≥0) is also a strong projected Chvátal-Gomory cut for P (as the naming implies) and the
reverse does hold if P is either convex and compact or a polyhedron.

On the other hand, if P is convex, but either unbounded or not closed, there can exist strong projected
Chvátal-Gomory cuts for P that are not projected Chvátal-Gomory cuts for P . Indeed: if P is convex,
but not closed, the situation

clspCG (P ) ( clCG (P ) .

can occur.

• Finally, in Theorem 389, we proved that for an arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), every strong
projected Chvátal-Gomory cut for P is an L1− 1

2 ,Q×Q
cut (and thus an L1− 1

2 ,Q×R
cut) for P . If P is

convex (but not in general), also the reverse holds up to dominance relatively to P (cf. Remark 390 for
the technical details concerning the reverse inclusion).

8.2. Dominance and representation of the Chvátal-Gomory closure

8.2.1. Restriction to smaller support

De�nition 392. For A ∈ Rl×(m+n) and b ∈ Rl (l,m, n ∈ Z≥0), let r := rankA. De�ne

B∗ (A) := {S ⊆ [l] : |S| = r ∧ rankAS,∗ = r} ,
B∗,feas (A, b) :=

{
S ⊆ [l] : |S| = r ∧ rankAS,∗ = r ∧

(
∃x ∈ Rd : AS,∗x = bS ∧Ax ≤ b

)}
,

F∗,feas (A, b) :=
{
S ⊆ [l] : rankAS,∗ = r ∧

(
∃x ∈ Rd : AS,∗x = bS ∧A[m+n]\Sx < b[m+n]\S

)}
as the row indices of bases, feasible bases and minimal faces, respectively.

Proposition 393. Let
∅ 6= P := P≤

((
A G

)
, b
)
⊆ Rm × Rn,

where A, G b, m and n are as in De�nition 382. Then for every c ∈ (Zm × 0n)
T
that satis�es

max
{
cx : x ∈ P≤

((
A G

)
, b
)}

<∞,
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we have

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
, b
)}⌋)

=
⋂

S∈F∗,feas((A G ),b):

max{cx:x∈P≤((A G )S,∗,bS)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}⌋)

=
⋂

S∈B∗,feas((A G ),b):

max{cx:x∈P≤((A G )S,∗,bS)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}⌋)

=
⋂

S∈B∗((A G )):

max{cx:x∈P≤((A G )S,∗,bS)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}⌋)
.

Proof. Let F be a minimal face of P≤
((

A G
)
, b
)
in which max

{
cx : x ∈ P≤

((
A G

)
, b
)}

is attained.
Then there exist r linearly independent rows with row indices S such that

max
{
cx : x ∈ P≤

((
A G

)
, b
)}

= max
{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}
.

From this, the statements immediately follow.

Theorem 394. Let P := P≤
((

A G
)
, b
)
⊆ Rm×Rn be given, where A, G b, m and n are as in De�nition

382. Then

clpCG
(
P≤

((
A G

)
, b
))

=
⋂

S∈F∗,feas((A G ),b)

clpCG

(
P≤

((
A G

)
S,∗ , bS

))
(8.8)

=
⋂

S∈B∗,feas((A G ),b)

clpCG

(
P≤

((
A G

)
S,∗ , bS

))
=

⋂
S∈B∗((A G ))

clpCG

(
P≤

((
A G

)
S,∗ , bS

))
.

By Theorem 391, we can replace clpCG ( · ) by clL
1− 1

2
,Q×Q

( · ), clL
1− 1

2
,Q×R

( · ), clspCG ( · ) or cldpCG ( · , · , · ) in

these equations.

Proof. If P = ∅, there is nothing to show. So, let P 6= ∅. W.l.o.g. we only show (8.8). Using the de�nition of
the projected Chvátal-Gomory closure (De�nition 122) and Proposition 393, we obtain

clpCG
(
P≤

((
A G

)
, b
))

=
⋂

c∈(Zm)T ,c0∈R:

P⊆P≤(( c (0n)T ),c0)

P≤
((

c (0n)
T
)
, bc0c

)

=
⋂

c∈(Zm×0n)T :

max{cx:x∈P≤((A G ),b)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
, b
)}⌋)

=
⋂

S∈F∗,feas((A G ),b)

⋂
c∈(Zm×0n)T :

max{cx:x∈P≤((A G )S,∗,bS)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}⌋)

=
⋂

S∈F∗,feas((A G ),b)

(
P≤

((
A G

)
S,∗ , bS

)
∩

⋂
S∈F∗,feas((A G ),b):

max{cx:x∈P≤((A G )S,∗,bS)}<∞

P≤
(
c,
⌊
max

{
cx : x ∈ P≤

((
A G

)
S,∗ , bS

)}⌋))

=
⋂

S∈F∗,feas((A G ),b)

(
P≤

((
A G

)
S,∗ , bS

)
∩

⋂
c∈(Zm)T ,c0∈R:

P≤((A G )S,∗,bS)⊆P≤(( c (0n)T ),c0)

P≤
((

c (0n)
T
)
, bc0c

))
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=
⋂

S∈F∗,feas((A G ),b)

clpCG

(
P≤

((
A G

)
S,∗ , bS

))
.

8.2.2. Dominance

Lemma 395. Let A, G and b be as in De�nition 382 and let µ1, µ2 ∈ MCG (A,G) be such that µ1b ∈ Z.
Then the dual projected Chvátal-Gomory cut f≤0,CG,µ1+µ2

A,G,b ( · ) ≤ 0 is dominated relatively to

P≤
((

A G
)

suppµ,∗ , bsuppµ

)
⊇ P≤

((
A G

)
, b
)

by the dual projected Chvátal-Gomory cut f≤0,CG,µ2

A,G,b ( · ) ≤ 0.

Proof. Let ( xy ) ∈ P≤
((

A G
)
, b
)
satisfy f≤,CG,µ

2

A,G,b (( xy )) ≤ 0. Then

f≤,CG,µ
1+µ2

A,G,b

((
x
y

))
=
(
µ1 + µ2

)
(Ax− b) + frac

((
µ1 + µ2

)
b
)

=
∑

i∈suppµ1

µ1
i (Ax+Gy − b)i + µ2 (Ax− b) + frac

(
µ2b
)

≤ µ2 (Ax− b) + frac
(
µ2b
)

= f≤,CG,µ
2

A,G,b

((
x
y

))
≤ 0.

Lemma 396. Let A, G and b be as in De�nition 382 and let µ1, µ2 ∈MCG (A,G). Then f≤0,CG,µ1+µ2

A,G,b ( · ) ≤
0 is dominated absolutely by f≤0,CG,µ1

A,G,b ( · ) + f≤0,CG,µ2

A,G,b ( · ) ≤ 0 (in particular by the dual projected Chvátal-

Gomory cuts f≤0,CG,µ1

A,G,b ( · ) ≤ 0 and f≤,CGA,G,b,µ2 ( · ) ≤ 0).

Proof. Let ( xy ) ∈ Rm × Rn satisfy f≤0,CG,µ1

A,G,b (( xy )) + f≤0,CG,µ1

A,G,b (( xy )) ≤ 0. Then

f≤,CG,µ
1+µ2

A,G,b

((
x
y

))
=
(
µ1 + µ2

)
(Ax− b) + frac

((
µ1 + µ2

)
b
)

≤
(
µ1 + µ2

)
(Ax− b) + frac

(
µ1b
)

+ frac
(
µ2b
)

(by (2.25))

= µ1 (Ax− b) + frac
(
µ1b
)

+ µ2 (Ax− b) + frac
(
µ2b
)

= f≤,CG,µ
1

A,G,b

((
x
y

))
+ f≤,CG,µ

2

A,G,b

((
x
y

))
≤ 0.

Lemma 397. Let A, G and b be as in De�nition 382 and let µ1, µ2 ∈MCG (A,G) satisfy

µ1
(
A G

)
= µ2

(
A G

)
, µ1b ≥ µ2b.

Then f≤,CG,µ
1

A,G,b ( · ) ≤ 0 is dominated absolutely by f≤,CG,µ
2

A,G,b ( · ) ≤ 0.

Proof. Let ( xy ) ∈ Rm × Rn satisfy f≤,CG,µ
2

A,G,b (( xy )) ≤ 0. Then

f≤,CG,µ
1

A,G,b

((
x
y

))
= µ1 (Ax− b) + frac

(
µ1b
)

= µ1Ax−
⌊
µ1b
⌋

≤ µ1Ax−
⌊
µ2b
⌋
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= µ2Ax−
⌊
µ2b
⌋

= µ2 (Ax− b) + frac
(
µ2b
)

= f≤,CG,µ
2

A,G,b

((
x
y

))
≤ 0.

8.2.3. Representation via TDZ+ I systems with an integral left-hand sides

8.2.3.1. Statement

The following theorem is well-known for TDI systems (instead of the more general TDZ + I systems); cf.
[Sch86, Theorem 23.1; p. 340]:

Theorem 398. Let Ax ≤ b be a TDZ+I system, where A ∈ Zl×m (i.e. A is integral) and b ∈ Rl (l,m ∈ Z≥0).
Then

clCG
(
P≤ (A, b)

)
= P≤ (A, bbc) .

Proof. (Theorem 398) W.l.o.g. let P≤ (A, b) 6= ∅. The inclusion clCG
(
P≤ (A, b)

)
⊆ P≤ (A, bbc) is obvious.

So for clCG
(
P≤ (A, b)

)
⊇ P≤ (A, bbc): let µ ∈MCG (A). We, of course, consider the dual projected Chvátal-

Gomory cut f≤,CG,µA,b ( · ) ≤ 0.
By the TDZ+ I property, we have

max

{
cx : Ax ≤ b,

(
x
y

)
∈ Rm × Rn

}
= min

{(
z1 + z2

)
b :
(
z1 + z2

)
A = c, z1b ∈ Z, z1 ∈

(
Rl≥0

)T
, z2 ∈

(
Zl≥0

)T}
.

Let
(
z1,∗ z2,∗ ) be a minimizer of the dual program. Now we argue:

• Since µA ( · ) ≤ µb is a valid inequality for P≤ (A, b), we have µb ≥
(
z1,∗ + z2,∗) b. Thus, by Lemma 397,

f≤,CG,µA,b ( · ) ≤ 0

is dominated absolutely by
f≤,CG,z

1,∗+z2,∗

A,b ( · ) ≤ 0.

• By Lemma 395 (using z1b ∈ Z),
f≤,CG,z

1,∗+z2,∗

A,b ( · ) ≤ 0

is dominated relatively to P≤ (A, b) by

f≤,CG,z
2,∗

A,b ( · ) ≤ 0.

• By Lemma 396 (using that A and z2,∗ are integral),

f≤,CG,z
2,∗

A,b ( · ) ≤ 0,

is dominated absolutely by the inequalities{
f
≤,CG,(el,i)

T

A,b ( · ) ≤ 0 : i ∈ supp z2,∗︸ ︷︷ ︸
⊆[l]

}
.

But for x ∈ P≤ (A, bbc) and i ∈ supp z2,∗, we have

f
≤,CG,(el,i)

T

A,b (x) = Ai,∗x− bix+ frac (bi) = Ai,∗x− bbic ≤ 0.
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Since, by Theorem 369, for every polyhedron P ⊆ Rm with rational face normals, there exists a TDI system
(thus TDZ + I system) Ax ≤ b having P = P≤ (A, b), where A is integral, we immediately conclude from
Theorem 398:

Theorem 399. Let P ⊆ Rm (m ∈ Z≥0) be a polyhedron with rational face normals. Then clCG (P ) is a
rational polyhedron.

We remark that in Theorem 405, we write down a similar polyhedricity result for the mixed-integer case.

8.2.3.2. Advantages of TDZ+ I systems over TDI systems and TDZ+ {0, 1} systems

One can use Theorem 398 to compute the Chvátal-Gomory closure of a polyhedron P ⊆ Rm (m ∈ Z≥0),
where all variables are integral. Unluckily, the TDZ+ I system that is necessary to use Theorem 398 might
potentially be large (in the sense of the number of necessary inequalities). In this section, we analyze how
using a TDZ+I system instead of a TDI system or TDZ+{0, 1} system can reduce the number of inequalities.
Let us recapitulate the de�nition of P 377,k1,k2 :

De�nition 377. For k1 ∈ Z≥1 and k2 ∈ Z≥2, de�ne

P 377,k1,k2 := conv

{(
1
0

)
,

(
1
− 1
k2

)}
+ cone

{(
−k1

1

)
,

(
−1
0

)}

= P≤

 1 0
1 k1

0 −1

 ,

 1
1
1
k2


⊆ R2.

We obviously conclude from Theorem 398, since by Theorem 379,
(

1 0
1 k1
0 −1

)
x ≤

(
1
1
1
k2

)
is a TDZ+ I system

for P 377,k1,k2 :

Lemma 400. Let k1 ∈ Z≥1, k2 ∈ Z≥2. Then

clCG
(
P 377,k1,k2

)
= P≤

((
1 0
1 k1

)
,

(
1
1

))
.

On the other hand, we saw in Theorem 379, which we restate here:

Theorem 379. Let k1 ∈ Z≥1, k2 ∈ Z≥2. Then:

1.  1 0
1 k1

0 −1

x ≤

 1
1
1
k2


is a TDZ+ I system for P 377,k1,k2 with an integral left-hand side that consists of 3 rows.

2. If Ax ≤ b is a TDI system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the following k1 + 2

rows:  k1⋃̇
i=0

{(
1 i −1

)} ∪̇ {( 0 −1 − 1
k2

)}
.

On the other hand, 
1 0
...

...
1 k1

0 −1

x ≤


1
...
1
1
k2


is a TDI system for P 377,k1,k2 with an integral left-hand side that consists of k1 + 2 rows.

3. If Ax ≤ b is a TDZ+{0, 1} system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the following

k2 − 1 rows:
k2−1⋃̇
i=1

{(
0 −i − i

k2

)}
.
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On the other hand, 
1 0
1 k1

0 −1
...

...
0 − (k2 − 1)

x ≤


1
1
1
k2
...

k2−1
k2


is a TDZ+ {0, 1} system for P 377,k1,k2 with an integral left-hand side that consists of k2 + 1 rows.

4. If Ax ≤ b is a TD(I ∩ Z) + {0, 1} system for P 377,k1,k2 where A is integral,
(
A −b

)
contains the

following k1 + k2 rows:  k1⋃̇
i=0

{(
1 i −1

)} ∪̇
k2−1⋃̇

i=1

{(
0 −i − i

k2

)} .

On the other hand, 

1 0
...

...
1 k1

0 −1
...

...
0 − (k2 − 1)


x ≤



1
...
1
1
k2
...

k2−1
k2


is a TD(I ∩ Z)+{0, 1} system for P 377,k1,k2 with an integral left-hand side that consists of k1 +k2 rows.

This shows that if we use Theorem 398 to represent the Chvátal-Gomory closure, it can be advantageous
to use TDZ + I systems instead of �only� using TDI systems, TDZ + {0, 1} systems or TD(I ∩ Z) + {0, 1}
systems (recall that by Lemma 350 and Lemma 351, these classes of systems are all TDZ+ I systems), since
through this, it can happen that we have to consider much less inequalities.

8.2.3.3. Considerations about minimality

Now one might ask whether the following �reverse� of Theorem 398 holds:

Problem 401. Let A ∈ Zl×m and b ∈ Rl (l,m ∈ Z≥0) be such that

• P≤ (A, b) 6= ∅,

• @b′ ∈ Rl : b′ � b ∧ P≤ (A, b) = P≤ (A, b′) (i.e. b is chosen minimally) and

• clCG
(
P≤ (A, b)

)
= P≤ (A, bbc) .

Is Ax ≤ b then a TDZ+ I system?

If the answer to Problem 401 was �yes�, this would imply that TDZ+ I systems (with an integral left-hand
side) are in some sense the �best possible� systems from which we can derive the Chátal-Gomory closure by
rounding the right-hand side down. Unluckily, the answer to Problem 401 is �no�, even if we restrict ourselves
to simple polyhedra P≤ (A, b) that have exactly one vertex.
For convenience, we restate De�nition 380:

De�nition 380. For k ∈ Z≥2, de�ne

P 380,k :=

{(
k
2
1
2

)}
+ cone

{(
−k2

1
2

)
,

(
−k2
− 1

2

)}
= P≤

((
1 k
1 −k

)
,

(
k
0

))
⊆ R2.

The following lemma is easy to show (its proof is very similar to the proof of Lemma 307):
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Lemma 402. Let k ∈ Z≥1. Then

P 402,k := clCG
(
P 380,k

)
= conv

{(
0
0

)
,

(
0
1

)
,

(
k−1

2
1
2

)}
+ cone

{(
−k2

1
2

)
,

(
−k2
− 1

2

)}

= P≤




1 k
1 −k
1 k − 1
1 − (k − 1)

 ,


k
0

k − 1
0


 .

Theorem 403 is a simple consequence of Lemma 402:

Theorem 403. Let k ∈ Z≥2. De�ne

A403,k :=


1 k
1 −k
1 k − 1
1 − (k − 1)

 , b403,k :=


k
0

k − 1
2

1
2

 .

Then

• P≤
(
A403,k, b403,k

)
= P 380,k,

• there exists no b′ ∈ R4 such that b′ � b403,k and P≤
(
A403,k, b′

)
= P 380,k and

• P≤
(
A403,k,

⌊
b403,k

⌋)
= P 402,k = clCG

(
P≤

(
A403,k, b403,k

))
.

In other words: the conditions of Problem 401 are satis�ed for A403,k and b403,k.

On the other hand, we saw in Theorem 381, which we restate here:

Theorem 381. Let k ∈ Z≥2. Then:

1. Let Ax ≤ b, where A ∈ Zl×2 and b ∈ Rl (l ∈ Z≥0), be a TDI system such that P≤ (A, b) = P 380,k. Then{(
1 i −k+i

2

)
: i ∈ {−k, . . . , k}

}
are rows of

(
A −b

)
, i.e. Ax ≤ b consists of at least 2k + 1 rows. On the other hand,

1 k
1 k − 1
1 k − 2
...

...
1 − (k − 2)
1 − (k − 1)
1 −k


x ≤



k
k − 1

2
k − 1
...
1
1
2
0


is a TD(I ∩ Z) + {0, 1} system (and thus TDI system) for P 380,k with an integral left-hand side that
consists of 2k + 1 rows.

2. Let Ax ≤ b, where A ∈ Zl×2 and b ∈ Rl (l ∈ Z≥0), be a TDZ+ I system such that P≤ (A, b) = P 380,k.
Then {(

1 i −k+i
2

)
: i ∈ {− (k − 1) , . . . , k − 1} , k + i odd

}
are rows of

(
A −b

)
, i.e. Ax ≤ b consists of at least k rows. On the other hand,

1 k
1 −k
1 k − 1
1 k − 3
...

...
1 − (k − 3)
1 − (k − 1)


x ≤



k
0

k − 1
2

k − 3
2

...
3
2
1
2


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is a TDZ+ {0, 1} system (and thus TDZ+ I system) for P 380,k that consists of k + 2 rows.

So the answer to Problem 401 is �no�, which means that it is arguably an open research question to �nd a
type of system (presumably generalizing TDZ+ I systems) which satis�es the property of Problem 401.

8.2.4. Representation via LP face cones

In section 8.2.3, we saw (Theorem 398) how one can represent the Chvátal-Gomory closure via a TDZ+I
system. This representation has the disadvantage that it is very speci�c to the Chvátal-Gomory closure and
additionally only works in the situation where all variables are integral (i.e. no variable is continuous, which
means that we cannot generalize it easily to the mixed-integer case (projected Chvátal-Gomory closure)). In
particular, being very speci�c to the Chvátal-Gomory closure means that we are not aware of any method
how this result can be generalized to other types of closures, in particular the split closure. In this section,
we formulate a way of representing the Chvátal-Gomory closure for which such a generalization to the split
closure exists. For this, compare Theorem 404, which we show here, to Theorem 429, which one can consider
as its analogue for the split closure (MIR closure).
To �nd an alternative representation, we �rst remark that it su�ces to consider the situation that the rows

of
(
A G −b

)
in P≤

((
A G

)
, b
)
form an LP face cone. Indeed, by Theorem 394, the computation of

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

can be reduced to the computation of some set of

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

where either S ∈ F∗,feas
((

A G
)
, b
)
, S ∈ B∗,feas

((
A G

)
, b
)
or S ∈ B∗

((
A G

))
. By Theorem

357, rowcone
(
A G −b

)
S,∗ is indeed an LP face cone for such an S.

The next theorem (Theorem 404) provides a method for computing the Chvátal-Gomory closure of such a
polyhedron if A and G are rational matrices. We recall that Theorem 366 provides a method to compute an
icone system of a cone with generators from Zd × R (d ∈ Z≥0). Recall that, by Lemma 363, the property of
being an icone system implies being a Z+icone system (the latter is what is necessary for the characterization in
Theorem 404). These components can be used together to formulate an algorithm for computing the projected
Chvátal-Gomory closure of either a rational polyhedron or a polyhedron with rational face normals.

Theorem 404. Let P := P≤
((

A G
)
, b
)
, where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0), be such

that
C := rowcone

(
A G −b

)
is an LP face cone. Additionally, let

C ′ := C ∩ (Rm × 0n × R)
T

be �nitely generated by vectors from (Qm × 0n × R)
T
(this is surely the case if A and G are rational). Let S

be a Z+ icone system generating C ′ that consists of vectors from (Zm × 0n × R)
T
. Then

clpCG (P ) = P ∩
⋂

( â (0n)T −b̂ )∈S:

frac b̂ 6=0

P≤
((

â (0n)
T
)
, b̂
)
.

Proof. W.l.o.g. let P≤
((

A G
)
, b
)
6= ∅. Let µ ∈MCG (A,G). Then, clearly,

µ
(
A G −b

)
∈ C ′ ∩ (Zm × 0n × R)

T︸ ︷︷ ︸
=C′∩(Zm×Zn×R)T

.

On the other hand, since S is an Z+ icone system for C ′, there exist(
â1 (0n)

T −b̂1
)
∈ C ′ ∩ (Zm × Zn × Z)

T
= C ′ ∩ (Zm × 0n × Z)

T

and (
â2,1 (0n)

T −b̂2,1
)
, . . . ,

(
â2,k (0n)

T −b̂2,k
)
∈ S
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(k ∈ Z≥0) such that

µ
(
A G −b

)
=
(
â1 (0n)

T −b̂1
)

+

k∑
i=1

(
â2,i (0n)

T −b̂2,i
)
.

W.l.o.g. we can assume that

∀i ∈ [k] :
(
â2,i (0n)

T −b̂2,i
)
/∈ (Zm × 0n × Z)

T
.

There exist (not necessarily uniquely de�ned) µ1, µ2,1, . . . , µ2,k ∈
(
Rl≥0

)T
having(

â1 (0n)
T −b̂1

)
= µ1

(
A G −b

)
,

∀i ∈ [k] :
(
â2,i (0n)

T −b̂2,i
)

= µ2,i
(
A G −b

)
.

Let

µ′ := µ1 +

k∑
i=1

µ2,i.

Since µ
(
A G −b

)
= µ′

(
A G −b

)
, clearly f≤,CG,µA,G,b = f≤,CG,µ

′

A,G,b . On the other hand, by Lemma 395

(since µ1b ∈ Z) and Lemma 396, the inequality f≤,CG,µ
′

A,G,b ( · ) ≤ 0 is dominated relatively to P by{
f≤,CG,µ

2,1

A,G,b ( · ) ≤ 0, . . . , f≤,CG,µ
2,k

A,G,b ( · ) ≤ 0
}
.

We �nally consider that for all i ∈ [k], we have

f≤,CG,µ
2,i

A,G,b ( · ) =
(
â2,i (0n)

T
)

( · )− b̂2,i.

Now for a second polyhedricity proof for the (projected) Chvátal-Gomory closure of a polyhedron. In
contrast to Theorem 399, this time, we do not only consider the pure integer case, but also the mixed-integer
case.

Theorem 405. We have:

1. Let P ⊆ Rm×Rn (m,n ∈ Z≥0) be a rational polyhedron. Then clpCG (P ) is again a rational polyhedron.

2. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be a polyhedron with rational face normals. Then clpCG (P ) is again a
polyhedron with rational face normals such that projRm (clpCG (P )) is a rational polyhedron.

Proof. Let P := P≤
((

A G
)
, b
)
⊆ Rm × Rn be given, where A ∈ Ql×m, G ∈ Ql×n and b ∈ Rl or b ∈ Ql,

respectively (l ∈ Z≥0). Then, by Theorem 394, we have

clpCG (P ) =
⋂

S∈F∗,feas((A G ),b)

clpCG

(
P≤

((
A G

)
S,∗ , bS

))
.

By Theorem 357, for every S ∈ F∗,feas
((

A G
)
, b
)
, the cone

rowcone
(
A G −b

)
S,∗ =: CS

is an LP face cone. For S ∈ F∗,feas
((

A G
)
, b
)
, let S (S) be a Z + icone system that generates CS and

consists of vectors from (Zm × 0n × R)
T or (Zm × 0n ×Q)

T , respectively (such a Z+ icone system exists by
Theorem 366). Using Theorem 404, we thus conclude:

clpCG (P ) = P ∩
⋂

S∈F∗,feas((A G ),b)

⋂
( â (0n)T −b̂ )∈S(S):

frac b̂ 6=0

P≤
((

â (0n)
T
)
, b̂
)
. (8.9)
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The statement that clpCG (P ) is a rational polyhedron/a polyhedron with rational face normals if P is, is
then an immediate consequence of (8.9).
For projRm (clCG (P )) being a rational polyhedron in 2: if n = 0, this is an immediate consequence of (8.9)

by considering that for each i ∈ [l], the inequality Ai,∗ ( · ) ≤ bi is dominated by the Chvátal-Gomory cut
Ai,∗ ( · ) ≤ bbic. In the general case, it is easy to check that

clpCG (P ) = P ∩ (clCG (projRm P )× Rn)

holds. Thus,
projRm (clpCG (P )) = (projRm P ) ∩ clCG (projRm P ) = clCG (projRm P ) .

The �nal statement is then a consequence of the fact that, by Corollary 65, projRm P is a polyhedron with
rational face normals.
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9. L1,Q cuts, split cuts and MIR cuts

This chapter consists of two rather independent parts:

• In section 9.1, we analyze the relationship between L1,Q cuts (cf. De�nition 161), split cuts (cf. De�nition
126) and MIR cuts (which we de�ne in De�nition 410):

� In section 9.1.1, Theorem 409, we prove the the equivalence of L1,Q cuts and split cuts for a given
P ⊆ Rm×Rn (m,n ∈ Z≥0) if P is convex (or more precisely: prove the missing part (Lemma 406)
for a complete proof of this statement) and see (Remark 407) that convexity is indeed essential for
this equivalence to hold.

� In section 9.1.2, we de�ne MIR cuts and prove the equivalence of the MIR closure and the split
closure. This equivalence is in principle well-known in the literature. What is the reason why we
reprove these results from ground up?

∗ There exist multiple de�nitions of MIR cuts in the literature. For example, a classic de�nition
of MIR cuts can be found in [NW90]. This construction is simpli�ed in [DGL10] by Dash,
Günlük and Lodi. Another di�erent de�nition can be found in [CCZ14, section 5.1.5].

Because our goal is to generalize Theorem 404 (which stated how one can compute the Chvátal-
Gomory closure of a polyhedron P≤

((
A G

)
, b
)
with rational face normals, where the rows

of
(
A G −b

)
form an LP face cone) from the (dual projected) Chvátal-Gomory closure

to the MIR closure (the �nal result of this journey is Theorem 429 in section 9.2), we de�ne
MIR cuts in De�nition 410 in a way that is as similar as possible to the de�nition of dual
(projected) Chvátal-Gomory cuts that we gave in De�nition 382 .

Our presentation of MIR cuts is guided by the presentation that is given in [DGL10] (though
not completely equivalent).

∗ The �equivalence� of MIR cuts and split cuts is not symmetric. While every MIR cut is a split
cut (Theorem 412), not every split cut is a MIR cut. One can only show (Theorem 415) that
every split cut for some P := P≤

((
A G

)
, b
)
is dominated relatively to P by a MIR cut

with respect to A, G and b (not even dominated absolutely; cf. Example 416). This subtle
asymmetry is typically only touched on in the literature.

• In section 9.2, we show that the split closure of a polyhedron P = P≤
((

A G
)
, b
)
⊆ Rm × Rn

(m,n ∈ Z≥0) with rational face normals is a polyhedron (a rational polyhedron if P was a rational
polyhedron). This is the statement of Theorem 417, which we show in section 9.2.4. While there exist
multiple proofs of the (rational) polyhedricity of the split closure of a rational polyhedron (in section
6.3, we gave an overview), our method has multiple advantages:

� It also works for polyhedra with rational face normals and sometimes even for non-rational polyhe-
dra (in section 9.2.5, we consider such an example), while in the literature typically only rational
polyhedra are considered.

� Theorem 429 is a natural generalization of the method that we used in Theorem 398 to compute
the Chvátal-Gomory closure of a polyhedron P≤

((
A G

)
, b
)
, where the rows of

(
A G −b

)
form an LP face cone:

∗ The dominance result that we formulate in Lemma 423 is the analogue of Lemma 395.

∗ The dominance result that we formulate in Lemma 424 is the analogue of Lemma 396.

∗ Theorem 427, which tells us that we can restrict ourselves to �MIR closures of basic relaxations�,
is the analogue of Theorem 394.

� Our method can easily be turned into an algorithm. The only necessary algorithmic ingredients
for this are:

∗ a method to compute B∗
((

A G
))

(cf. De�nition 392) so that we can apply Theorem 267,

∗ a method to compute generating rays from Zm × 0n ×R for C ∩ (Rm × 0n × R), where C is a
simplicial cone with rows from

(
A G −b

)
,
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∗ a method to compute a Z+icone system of a polyhedral cone that is given in terms of generating
rays from Zm × 0n × R. Theorem 366 gives a method to compute an icone system, which, by
Lemma 363, is an even stronger property.

In Theorem 430, we execute the steps by hand that a computer would perform to �nd an explicit
representation of the split/MIR closure of the Cook-Kannan-Schrijver example.

9.1. Equivalences/non-equivalences

9.1.1. Equivalence of L1,Q cuts and split cuts

We already proved in Corollary 278 that for arbitrary sets P ⊆ Rm × Rn (m,n ∈ Z≥0, where m + n ≥ 1),
every split cut for P is an L1,Q cut for P . We now show that if P is convex, also the converse holds:

Lemma 406. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 1) be convex. Then every L1,Q cut for P is a
split cut for P .

Remark 407. The condition that P is convex is essential for Theorem 406 to hold. For this, consider

P :=
(
R1 × R1

)
\
(
Z1 × R1

)
.

Obviously, 0 ( · ) ≤ −1 is a valid L1,Q cut for P (cf. Theorem 202), but for all split disjunctions D (π, γ) ⊆ R1,
we have

conv
(
P ∩

(
D (π, γ)× R1

))
= R1 × R1.

Proof. (Lemma 406) W.l.o.g. we can assume m ≥ 1. Let c ( · ) ≤ c0 be an L1,Q cut for P . By Lemma 98,
there thus exists a w ∈ Zm\ {0m} such that c ( · ) ≤ c0 is a valid inequality for

P ∩
{(

x
y

)
∈ Rm × Rn : wTx ∈ Z

}
=: (9.1).

W.l.o.g. let c ( · ) ≤ c0 not be a valid inequality for P . We claim that there exists at most one z∗ ∈ Z such
that

∃p ∈ P ∩
{(

x
y

)
∈ Rm × Rn : z∗ < wTx < z∗ + 1

}
: cp > c0. (9.2)

If we can show this, we are done, since this demonstrates that c ( · ) ≤ c0 is valid for P ∩D
(
wT , z∗

)
.

Remark 408. One can show that a z∗ such that (9.2) is satis�ed does indeed exist, since if none existed,
c ( · ) ≤ c0 would already be valid for P , which we have excluded.

So assume that the statement does not hold, i.e. there exist z∗,1, z∗,2 ∈ Z, where z∗,1 < z∗,2, and(
p∗,1

q∗,1

)
,
(
p∗,2

q∗,2

)
∈ P having

∀i ∈ [2] : c

(
p∗,i

q∗,i

)
> c0,

∀i ∈ [2] : wT p∗,i ∈
(
z∗,i, z∗,i + 1

)
.

Let

λ1 :=
wT p∗,2 − z∗,2

wT (p∗,2 − p∗,1)
,

λ2 :=
z∗,2 − wT p∗,1

wT (p∗,2 − p∗,1)
,(

p∗

q∗

)
:= λ1

(
p∗,1

q∗,1

)
+ λ2

(
p∗,2

q∗,2

)
.

Obviously, we have λ1, λ2 > 0 and λ1 + λ2 = 1. Thus,
(
p∗

q∗

)
∈ convP = P. On the other hand, we have

wT p∗ =
wT p∗,2 − z∗,2

wT (p∗,2 − p∗,1)
wT p∗,1 +

z∗,2 − wT p∗,1

wT (p∗,2 − p∗,1)
wT p∗,2 = z∗,2 ∈ Z.
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So,
(
p∗

q∗

)
∈ (9.1). Finally, we have

c

(
p∗

q∗

)
= c

(
λ1

(
p∗,1

q∗,1

)
+ λ2

(
p∗,2

q∗,2

))
= λ1 · c

(
p∗,1

q∗,1

)
+ λ2 · c

(
p∗,2

q∗,2

)
> λ1 · c0 + λ2 · c0 = c0,

which is a contradiction, since we have seen that
(
p∗

q∗

)
∈ (9.1), but c ( · ) ≤ c0 is valid for (9.1).

So, we get the following theorem:

Theorem 409. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 1) be convex. Then every L1,Q cut for P is
a split cut for P and vice versa. We thus have

clL1,Q (P ) = clsplit (P ) .

9.1.2. Equivalence of the MIR closure and the split closure

9.1.2.1. De�nitions for MIR cuts

De�nition 410. Let A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0. De�ne

MMIR (A,G) :=
{
µ ∈

(
Rl
)T

: µ
(
A G

)
∈ (Zm × 0n)

T
}
.

Let µ ∈MMIR (A,G). Then we call the inequality(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b) ≤ − frac (µb) (1− frac (µb))

a MIR cut for ( xy ) ∈ P≤
((

A G
)
, b
)
with respect to A, G and b. We set

f≤0,MIR,µ
A,G,b : Rm × Rn →R,(

x
y

)
7→
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b)

+ frac (µb) (1− frac (µb))

=
(
µ+ − frac (µb)µ

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

=
(
µ− + (1− frac (µb))µ

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

(see also [DGL10]). If n = 0, we also use f≤0,MIR,µ
A,b instead of f≤0,MIR,µ

A,G,b

Now one might ask what the idea behind the de�nition of a MIR cut is. For an alternative presentation of
the explanation cf. [Wol98, section 8.7] and [DGL10, section 2].
We start with the mixed-integral set

Xb :=

{(
x
y

)
∈ Z1 × R1 : x+ y ≥ b, y ≥ 0

}
,

where b ∈ R. It is easy to check that

clI (Xb) =

{(
x
y

)
∈ R1 × R1 : x+ y ≥ b, y ≥ 0, (frac b)x+ y ≥ (frac b) (b+ 1− frac b)

}
(if b ∈ Z, the inequality (frac b)x+ y ≥ (frac b) (b+ 1− frac b) is redundant); in particular,

(frac b)x+ y ≥ (frac b) (b+ 1− frac b) (9.3)

is valid for Xb. Now we consider the polyhedron P := P≤
((

A G
)
, b
)
⊆ Rm × Rn, where A, G and b are

as in De�nition 410. Let µ ∈MMIR (A,G) and let ( xy ) ∈ PI . Then(
µAx

µ+ (b−Ax−Gy)

)
∈ Xµb. (9.4)
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For µAx+ µ+ (b−Ax−Gy) ≥ µb: using µG = (0n)
T , we get

µAx+ µ+ (b−Ax−Gy) =
(
µ+ − µ

)︸ ︷︷ ︸
≥(0l)T

(b−Ax−Gy)︸ ︷︷ ︸
≥0l

+µb ≥ µb.

Thus, by combining (9.3) and (9.4), we obtain the inequality

(frac (µb)) (µAx) + µ+ (b−Ax−Gy) ≥ (frac (µb)) (µb+ 1− frac (µb)) .

for PI . Finally, note that

(frac (µb)) (µb+ 1− frac (µb))− frac (µb) (µAx)− µ+ (b−Ax−Gy)

=
(
µ+ − frac (µb)µ

)
(Ax+Gy − b) + frac (µb) (1− frac (µb)) (µG = (0n)

T )

=f≤0,MIR,µ
A,G,b

((
x
y

))
.

De�nition 411. Let A, G, b, m and n be as in De�nition 410. We de�ne

clMIR (A,G, b) :=P≤
((

A G
)
, b
)
∩

⋂
µ∈MMIR(A,G)

{
x ∈ Rm × Rn : f≤0,MIR,µ

A,G,b (x) ≤ 0
}

as the MIR closure with respect to A, G and b.

In section 8.1.1, we already remarked that the de�nition of MIR cuts (De�nition 410) closely mirrors
the de�nition of dual projected Chvátal-Gomory cuts (De�nition 382) and, similarly, the de�nition of the
MIR closure (De�nition 411) closely mirrors the de�nition of the dual (projected) Chvátal-Gomory closure
(De�nition 383).

9.1.2.2. MIR cuts are split cuts

Theorem 412. Let A, G and b be as in De�nition 410 and let µ ∈MMIR (A,G). Then

f≤0,MIR,µ
A,G,b

((
x
y

))
≤ 0

is a valid inequality for(
x
y

)
∈ P≤

((
A G

)
suppµ,∗ , bsuppµ

)
∩
(
D
(

(µA)
T
, bµbc

)
× Rn

)
.

In other words: every MIR cut is a split cut.

Proof. Let (
x
y

)
∈ P≤

((
A G

)
)suppµ,∗, b)suppµ

)
∩
(
D
(

(µA)
T
, bµbc

)
× Rn

)
and let µ ∈MMIR (A,G). We distinguish two cases:

1. µAx ≤ bµbc,

2. µAx ≥ bµbc+ 1.

For case 1:

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

=(µ− + (1− frac (µb))µ+ − (1− frac (µb))µ−︸ ︷︷ ︸
=(1−frac(µb))µ

) (Ax+Gy − b)

+ frac (µb) (1− frac (µb))

=µ− (Ax+Gy − b) + (1− frac (µb))µ (Ax+Gy − b)︸ ︷︷ ︸
=µAx−µb

+ frac (µb) (1− frac (µb))
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=µ−suppµ (Ax+Gy − b)suppµ︸ ︷︷ ︸
≤0

+ (1− frac (µb)) (µAx− µb) + frac (µb) (1− frac (µb))

≤ (1− frac (µb)) (µAx− µb) + frac (µb) (1− frac (µb))

≤ (1− frac (µb)) (bµbc − µb) + frac (µb) (1− frac (µb))

= (1− frac (µb)) frac (µb) + frac (µb) (1− frac (µb))

=0.

For case 2:

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

=µ+ (Ax+Gy − b)− frac (µb)µ (Ax+Gy − b)︸ ︷︷ ︸
=µAx−µb

+ frac (µb) (1− frac (µb))

=µ+
suppµ (Ax+Gy − b)suppµ︸ ︷︷ ︸

≤0

− frac (µb) (µAx− µb) + frac (µb) (1− frac (µb))

≤− frac (µb)︸ ︷︷ ︸
≤0

( µAx︸︷︷︸
≥bµbc+1

−µb) + frac (µb) (1− frac (µb))

≤− frac (µb) (1− (µb− bµbc)) + frac (µb) (1− frac (µb))

=− frac (µb) (1− frac (µb)) + frac (µb) (1− frac (µb))

=0.

9.1.2.3. Split cuts are dominated by MIR cuts

We start this section with two propositions (Proposition 413 and Proposition 414), before we write down our
�nal result in Theorem 415.

Proposition 413. Let A, G, b, l, m and n be as in De�nition 410. Let π ∈ Zm, γ ∈ Z, c ∈ (Rm × Rn)
T
,

c0 ∈ R and z1, z2 ∈
(
Rl+1
≥0

)T
be such that

z1

(
A G

πT (0n)
T

)
= c, z1

(
b
γ

)
= c0,

z2

(
A G

−πT (0n)
T

)
= c, z2

(
b

− (γ + 1)

)
= c0,

where z1
l+1, z

2
l+1 > 0. De�ne

µ :=
z2

[l] − z
1
[l]

z1
l+1 + z2

l+1

,

S :=
(
supp z1

)
∪
(
supp z2

)
.

Then

µ
(
A G

)
=
(
πT (0n)

T
)
, (9.5)

µb = γ +
z2
l+1

z1
l+1 + z2

l+1

∈ (γ, γ + 1) , (9.6)

and c ( · ) ≤ c0 is dominated by
(
A G

)
S,∗ ( · ) ≤ bS and f≤0,MIR,µ

A,G,b ( · ) ≤ 0.

Proof.
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For (9.5):

µ
(
A G

)
=

z2

z1
l+1 + z2

l+1

(
A G

−πT (0n)
T

)
− z1

z1
l+1 + z2

l+1

(
A G

πT (0n)
T

)
+
(
πT (0n)

T
)

=
1

z1
l+1 + z2

l+1

c− 1

z1
l+1 + z2

l+1

c+
(
πT (0n)

T
)

=
(
πT (0n)

T
)
.

For (9.6):

µb =
z2

z1
l+1 + z2

l+1

(
b

− (γ + 1)

)
− z1

z1
l+1 + z2

l+1

(
b
γ

)
+ γ +

z2
l+1

z1
l+1 + z2

l+1

=c0 − c0 + γ +
z2
l+1

z1
l+1 + z2

l+1

=γ +
z2
l+1

z1
l+1 + z2

l+1

.

For the dominance: We have

z2
[l]

z1
l+1 + z2

l+1

− µ+ =
z2

[l]

z1
l+1 + z2

l+1

−

(
z2

[l] − z
1
[l]

z1
l+1 + z2

l+1

)+

≥
(
0l
)T
. (9.7)

Let ( xy ) ∈ P≤
((

A G
)
, b
)
satisfy f≤0,MIR,µ

A,G,b (( xy )) ≤ 0. Then

c

(
x
y

)
=
(
z1
l+1 + z2

l+1

) z2

z1
l+1 + z2

l+1

(
A G

−πT (0n)
T

)(
x
y

)
=
(
z1
l+1 + z2

l+1

)( z2
[l]

z1
l+1 + z2

l+1

−
z2
l+1

z1
l+1 + z2

l+1

µ

)(
A G

)( x
y

)

=
(
z1
l+1 + z2

l+1

)︸ ︷︷ ︸
≥0

(
µ+ −

z2
l+1

z1
l+1 + z2

l+1︸ ︷︷ ︸
=frac(µb)

µ

)(
A G

)( x
y

)

+
(
z1
l+1 + z2

l+1

)( z2
[l]

z1
l+1 + z2

l+1

− µ+

)(
A G

)( x
y

)
≤
(
z1
l+1 + z2

l+1

)(
µ+ −

z2
l+1

z1
l+1 + z2

l+1

µ

)
b−

z1
l+1z

2
l+1

z1
l+1 + z2

l+1

+
(
z1
l+1 + z2

l+1

)︸ ︷︷ ︸
≥0

(
z2

[l]

z1
l+1 + z2

l+1

− µ+

)
︸ ︷︷ ︸
≥(0l)T (by (9.7))

(
A G

)( x
y

)
(f≤0,MIR,µ
A,G,b

((
x
y

))
≤ 0)

≤
(
z1
l+1 + z2

l+1

)(
µ+ −

z2
l+1

z1
l+1 + z2

l+1

µ

)
b−

z1
l+1z

2
l+1

z1
l+1 + z2

l+1

+
(
z1
l+1 + z2

l+1

)( z2
[l]

z1
l+1 + z2

l+1

− µ+

)
b (

(
A G

)
S,∗

(
x
y

)
≤ bS)

=− z2
l+1µb+ z2

[l]b−
z1
l+1z

2
l+1

z1
l+1 + z2

l+1

=z2
[l]b− z

2
l+1 − z2

l+1

(
µb−

z2
l+1

z1
l+1 + z2

l+1

)
(−

z1
l+1z

2
l+1

z1
l+1 + z2

l+1

= −z2
l+1 +

(
z2
l+1

)2
z1
l+1 + z2

l+1

)
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=z2
[l]b− z

2
l+1 (γ + 1) (by (9.6))

=c0.

Proposition 414. Let A, G, b, l, m and n be as in De�nition 410, let

A′ :=

(
A

(0m)
T

)
, G′ :=

(
G

(0n)
T

)
, b′ :=

(
b
1

)
.

and let µ′ ∈ MMIR (A′, G′) satisfy µ′l+1 > 0 (µ′l+1 ≥ 0 can be assumed by Lemma 421 and if µ′l+1 = 0,

the statement is trivial). De�ne µ := µ′[l]. Then the MIR cut f≤0,MIR,µ′

A′,G′,b′ ( · ) ≤ 0 is dominated relatively to

P≤
((

A G
)

suppµ,∗ , bsuppµ

)
by f≤0,MIR,µ

A,G,b ( · ) ≤ 0.

Proof. By Lemma 424, which we state and prove later on, the MIR cut f≤0,MIR,µ′

A′,G′,b′ ( · ) ≤ 0 is dominated
relatively to

P≤
((

A′ G′
)

suppµ′,∗ , b
′
suppµ′

)
= P≤

((
A G

)
suppµ,∗ , bsuppµ

)
by the MIR cuts f≤0,MIR,(µ 0 )

A′,G′,b′ ( · ) ≤ 0 and f
≤0,MIR,( (0l)

T
µ′l+1 )

A′,G′,b′ ( · ) ≤ 0, where f≤0,MIR,(µ 0 )
A′,G′,b′ ( · ) ≤ 0 is

equivalent to f≤0,MIR,µ
A,G,b ( · ) ≤ 0. On the other hand, for ( xy ) ∈ Rm × Rn, we have

f
≤0,MIR,( (0l)

T
µ′l+1 )

A′,G′,b′

((
x
y

))
=
(
1− fracµ′l+1

) ( (
0l
)T

µ′l+1

)
(A′x+G′y − b′)

+ fracµ′l+1

(
1− fracµ′l+1

)
=
(
1− fracµ′l+1

) (
−µ′l+1 + fracµ′l+1

)
≤0.

Thus, f
≤0,MIR,( (0l)

T
µ′l+1 )

A′,G′,b′ ( · ) ≤ 0 is valid for P≤
((

A G
)

suppµ,∗ , bsuppµ

)
and we conclude that the MIR

cut f≤0,MIR,µ′

A′,G′,b′ ( · ) ≤ 0 is dominated relatively to P≤
((

A G
)

suppµ,∗ , bsuppµ

)
by f≤0,MIR,µ

A,G,b ( · ) ≤ 0.

Theorem 415. Let A, G, b, l and m be as in De�nition 410. Let D (π, γ) ⊆ Rm be a split disjunction and
let c ( · ) ≤ c0 be a split cut for P := P≤

((
A G

)
, b
)
with respect to D (π, γ) that is not already valid for

P . Then there exists a MIR cut f≤0,MIR,µ
A,G,b ( · ) ≤ 0 that dominates c ( · ) ≤ c0 relatively to P such that

µA = πT , bµbc = γ.

Proof. W.l.o.g. we can assume that P 6= ∅ and c ( · ) ≤ c0 is not already valid for P . We distinguish three
cases:

1. P ∩ (D (π, γ)× Rn) = ∅,

2. P ∩P≤
((

πT (0n)
T
)
, γ
)

= ∅ ∧P ∩P≥
((

πT (0n)
T
)
, γ + 1

)
6= ∅ (or the other way round) and

3. P ∩ P≤
((

πT (0n)
T
)
, γ
)
6= ∅ ∧ P ∩ P≥

((
πT (0n)

T
)
, γ + 1

)
6= ∅.

For case 1: By the Farkas lemma (Lemma 89), there exist z1, z2 ∈
(
Rl+1
≥0

)T
such that

z1

(
A G

πT (0n)
T

)
=
(

(0m)
T

(0n)
T
)
, z1

(
b
γ

)
= −1,

z2

(
A G

−πT (0n)
T

)
=
(

(0m)
T

(0n)
T
)
, z2

(
b

− (γ + 1)

)
= −1.
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Clearly, z1
l+1, z

2
l+1 > 0 (since otherwise P≤

((
A G

)
, b
)

= ∅). Let

µ :=
z2

[l] − z
1
[l]

z1
l+1 + z2

l+1

.

The rest is a consequence of Proposition 413 (let c :=
(

(0m)
T

(0n)
T
)
and c0 := −1).

For case 2: W.l.o.g. let

P ∩ P≥
((

πT (0n)
T
)
, γ + 1

)
= ∅

(otherwise replace π by −π and γ by − (γ + 1)). Clearly, every inequality for P ∩ P≤
((

πT (0n)
T
)
, γ
)

is dominated relatively to P by (
πT (0n)

T
)

( · ) ≤ γ.

Consider the primal-dual pair

γ + 1 > γ∗ := max

{
πTx :

(
A G

)( x
y

)
≤ b,

(
x
y

)
∈ Rm × Rn

}
= min

{
zb : z

(
A G

)
=
(
πT (0n)

T
)
, z ∈

(
Rl≥0

)T}
and let z∗ be a minimizer of the dual program. Then, clearly, z∗ ∈MMIR (A,G) (even z∗ ∈MMIR,[l] (A,G)

(cf. De�nition 418)). The only remaining statement to show is that the MIR cut f≤0,MIR,z∗

A,G,b ( · ) ≤ 0 dominates(
πT (0n)

T
)

( · ) ≤ γ relatively to P (we show that it even dominates this inequality absolutely). For this,

let ( xy ) ∈ Rm × Rn be such that f≤0,MIR,z∗

A,G,b (( xy )) ≤ 0. Then

πTx = z∗ (Ax+Gy − b) + z∗b

=
1

1− frac (z∗b)
(1− frac (z∗b)) z∗ (Ax+Gy − b) + z∗b

=
1

1− frac (z∗b)

(
(1− frac (z∗b)) z∗+ + frac (z∗b) z∗−

)
(Ax+Gy − b) + z∗b (z∗ ≥

(
0l
)T

))

≤ − 1

1− frac (z∗b)
frac (z∗b) (1− frac (z∗b)) + z∗b (f≤0,MIR,z∗

A,G,b (( xy )) ≤ 0)

= − frac (z∗b) + z∗b

= γ∗ − frac γ∗

≤ γ.

For case 3: We have

c0 ≥ c10 = max

{
c

(
x
y

)
:

(
A G

πT (0n)
T

)(
x
y

)
≤
(

b
γ

)
,

(
x
y

)
∈ Rm × Rn

}
= min

{
z

(
b
γ

)
: z

(
A G

πT (0n)
T

)
= c, z ∈

(
Rl≥0

)T}
,

c0 ≥ c20 = max

{
c

(
x
y

)
:

(
A G

−πT (0n)
T

)(
x
y

)
≤
(

b
− (γ + 1)

)
,

(
x
y

)
∈ Rm × Rn

}
= min

{
z

(
b

− (γ + 1)

)
: z

(
A G

−πT (0n)
T

)
= c, z ∈

(
Rl≥0

)T}
.

Let z∗,1 and z∗,2 be minimizers for the dual programs and let

A′ :=

(
A

(0m)
T

)
, G′ :=

(
G

(0n)
T

)
, b′ :=

(
b
1

)
,

z′∗,1 :=
(
z∗,1[l] c20 − c10 z∗,1l+1

)
, z′∗,2 :=

(
z∗,2 0 z∗,2l+1

)
.
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9.1. Equivalences/non-equivalences

Then

c0 = z′∗,1

 b
1
γ

 = z′∗,2

 b
1

− (γ + 1)

 ,

c = z′∗,1

 A G

(0m)
T

(0n)
T

πT (0n)
T

 = z′∗,2

 A G

(0m)
T

(0n)
T

−πT (0n)
T

 .

By Proposition 413, c ( · ) ≤ c0 is dominated relatively to P≤
((

A′ G′
)
, b′
)
, and thus P≤

((
A G

)
, b
)
,

by f≤0,µ′

A′,G′,b′ ( · ) ≤ 0, where

µ′ :=
z′∗,2[l+1] − z

′∗,1
[l+1]

z′∗,1l+2 + z′∗,2l+2

.

Finally, by Proposition 414, f≤0,µ′

A′,G′,b′ ( · ) ≤ 0 is dominated relatively to P≤
((

A G
)
, b
)
by f≤0,µ

A,G,b ( · ) ≤ 0,
where

µ :=
z′∗,2[l] − z

′∗,1
[l]

z′∗,1l+2 + z′∗,2l+2

=
z∗,2[l] − z

∗,1
[l]

z′∗,1l+1 + z′∗,2l+1

.

We remark that not every split cut is a MIR cut and neither every split cut is dominated absolutely by a
MIR cut. For this, we consider the following example:

Example 416. (See Figure 9.1) Let

P 416 := P≤
((

A G
)
, b
)

:= P≤
((

1 1
1 −1

)
,

(
1
0

))
⊆ R1 × R1

(see Figure 9.1a). Then:

1. 2x1+x2 ≤ 1 is a split cut for x ∈ P 416 (see Figure 9.1e) with respect to the split disjunction D
((

1
)
, 0
)

(see Figure 9.1c and Figure 9.1d).

2. There exists no MIR cut with respect to A, G and b that dominates
(

2 1
)

( · ) ≤ 1 absolutely.

3. Let µ :=
(

1
2

1
2

)
. Then f≤0,MIR,µ

A,b (x) ≤ 0 ( 1
2x1 ≤ 0, which is equivalent to x1 ≤ 0) is a MIR cut for

x ∈ P 416 that dominates 2x1 + x2 ≤ 1 relatively to P 416, but not absolutely. By Theorem 412, 1
2x1 ≤ 0

is also a split cut for P 416 with respect to the split disjunction D
((

1
)
, 0
)
(see Figure 9.1f).

Proof. We only show 2. The validity of the other statements can be seen from Figure 9.1. Assume that
there exists a µ ∈MMIR (A,G) such that f≤0,MIR,µ

A,b ( · ) ≤ 0 dominates
(

2 1
)

( · ) ≤ −1 absolutely. Since
µ ∈ MMIR (A,G), we have µ1 = µ2. On the other hand, it is easy to check (we write this down formally in

Lemma 420) that if µb ∈ Z, then f≤0,MIR,µ
A,b ( · ) ≤ 0 is already valid for P . So, we can assume µ 6=

(
02
)T

.

Additionally, by Lemma 421, we can assume µ1 > 0 (thus, µ >
(
02
)T

). But then

f≤0,MIR,µ
A,G,b

((
x
y

))
= (1− frac (µb))µ (Ax+Gy − b) + frac (µb) (1− frac (µb)) (µ >

(
02
)T

)

= (1− fracµ1)
(

2µ1 0
)︸ ︷︷ ︸

/∈cone
{(

2 1
)}

(
x
y

)
− (1− fracµ1) (µ1 − fracµ1) .
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x2

−2

−1

1

2

3

x1
−2 −1 1 2

(a) P 416 and P 416 ∩
(
Z1 × R1

)

x2

−2

−1

1

2

3

x1
−2 −1 1 2

(b) clI
(
P 416

)
(for reference)

x2

−2

−1

1

2

3

x1
−2 −1 1 2

(c) D
((

1
)
, 0
)
× R1

x2

−2

−1

1

2

3

x1
−2 −1 1 2

(d) P 416 ∩
(
D
((

1
)
, 0
)
× R1

)
x2

−2

−1

1

2

3

x1
−2 −1 1 2

(e) 2x1 + x2 ≤ 2 is a valid inequality for
x ∈ P 416 ∩

(
D
((

1
)
, 0
)
× R1

)

x2

−2

−1

1

2

3

x1
−2 −1 1 2

(f) 1
2
x1 ≤ 0 is a valid inequality for

x ∈ P 416 ∩
(
D
((

1
)
, 0
)
× R1

)
Figure 9.1.: Visualisation of Example 416

9.2. Polyhedricity of the MIR closure

The goal of this section is to prove the following theorem:
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9.2. Polyhedricity of the MIR closure

Theorem 417. Let P = P≤
((

A G
)
, b
)
be a polyhedron, where A ∈ Ql×m, G ∈ Ql×n and b ∈ Rl (i.e.

P is a polyhedron with rational face normals). Then clsplit (P ) = clMIR (A,G, b) is a polyhedron and this
polyhedron is rational if b is.

Theorem 417 is proved in section 9.2.4. But we believe that here the journey is the destination: for example
in section 9.2.5, Theorem 430, we compute the split closure of the so-called Cook-Kannan-Schrijver example
(i.e. the polyhedron P 430,ε, which we de�ne in Theorem 430). For ε ∈ R\Q, this is a polyhedron that not
even has rational face normals. Nevertheless, using the methods that we developed on the journey, we can
still compute its split closure.
We begin by generalizing some de�nitions that we introduced in section 9.1.2.1 (concretely,MMIR (A,G)

in De�nition 410 and the MIR closure clMIR (A,G, b) in De�nition 411):

De�nition 418. Let A, G, b, l, m and n be as in De�nition 410. For L ∈ P ([l]), de�ne

MMIR,L (A,G) :=MMIR (A,G) ∩
{
µ ∈

(
Rl
)T

: µi ≥ 0 ∀i ∈ L, µi ≤ 0 ∀i ∈ [l] \L
}
,

clMIR,L (A,G, b) :=P≤
((

A G
)
, b
)
∩

⋂
µ∈MMIR,L(A,G)

{
x ∈ Rm × Rn : f≤0,MIR,µ

A,G,b (x) ≤ 0
}
.

We clearly have:

Lemma 419. Let A, G, b and l be as in De�nition 410. Then

clMIR (A,G, b) =
⋂

L∈P([l])

clMIR,L (A,G, b) .

We remark that in Theorem 422, we tighten Lemma 419.

9.2.1. Dominance of MIR cuts

Lemma 420. Let A, G, b and l be as in De�nition 410, and let µ ∈MMIR (A,G) be such that µb ∈ Z. Then
f≤0,MIR,µ
A,G,b ( · ) ≤ 0 is already valid for

P≤
((

A G
)

suppµ+,∗ , bsuppµ+

)
⊇ P≤

((
A G

)
, b
)
.

Proof. Let ( xy ) ∈ P≤
((

A G
)

suppµ+,∗ , bsuppµ+

)
. Then

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

= µ+ (Ax+Gy − b)

=
∑

i∈suppµ+

µ+
i (Ax+Gy − b)i

≤ 0.

Lemma 421. Let A, G, b and l be as in De�nition 410 and let µ ∈ MMIR. Then also −µ ∈ MMIR and if
µb /∈ Z, we have

f≤0,MIR,µ
A,G,b = f≤0,MIR,−µ

A,G,b .

Proof. The statement that −µ ∈MMIR is obvious. For the second statement: let ( xy ) ∈ Rm × Rn. Then

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b)

+ frac (µb) (1− frac (µb))

=
(
(1− (1− frac ((−µ) b)))µ+ + (1− frac ((−µ) b))µ−

)
(Ax+Gy − b)

+ (1− frac ((−µ) b)) (1− (1− frac ((−µ) b))) (µb /∈ Z)
=
(
frac ((−µ) b)µ+ + (1− frac ((−µ) b))µ−

)
(Ax+Gy − b)
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9. L1,Q cuts, split cuts and MIR cuts

+ (1− frac ((−µ) b)) frac ((−µ) b)

=
(

(1− frac ((−µ) b)) (−µ)
+

+ frac ((−µ) b) (−µ)
−
)

(Ax+Gy − b)

+ frac ((−µ) b) (1− frac ((−µ) b))

=f≤0,MIR,−µ
A,G,b

((
x
y

))
.

From Lemma 419 and Lemma 421, we immediately conclude:

Theorem 422. Let A, G, b and l be as in De�nition 410 and let L ⊆ P ([l]) be such that

∀L ∈ P ([l]) : L ∈ L ∨ [l] \L ∈ L.

Then
clMIR (A,G, b) =

⋂
L∈L

clMIR,L (A,G, b) .

Lemma 423. Let A, G, b and l be as in De�nition 410, let L ∈ P ([l]) and let µ1, µ2 ∈ MMIR,L (A,G),

where µ1b ∈ Z. Then f≤0,MIR,µ1+µ2

A,G,b ( · ) ≤ 0 is dominated relatively to

P≤
((

A G
)

suppµ1,∗ , bsuppµ1

)
⊇ P≤

((
A G

)
, b
)

by the MIR cut f≤0,MIR,µ2

A,G,b ( · ) ≤ 0.

Proof. Let

(
x
y

)
∈ P≤

((
A G

)
suppµ,∗ , bsuppµ

)
satisfy f≤0,MIR,µ2

A,G,b

((
x
y

))
≤ 0. Then

f≤0,MIR,µ1+µ2

A,G,b

((
x
y

))
=
((

1− frac
((
µ1 + µ2

)
b
)) (

µ1 + µ2
)+

+ frac
((
µ1 + µ2

)
b
) (
µ1 + µ2

)−)
(Ax+Gy − b)

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

=
((

1− frac
(
µ2b
)) (

µ1 + µ2
)+

+ frac
(
µ2b
) (
µ1 + µ2

)−)
(Ax+Gy − b)

+ frac
(
µ2b
) (

1− frac
(
µ2b
))

(µ1b ∈ Z)

=
((

1− frac
(
µ2b
)) (

µ1
)+

+ frac
(
µ2b
) (
µ1
)−)

(Ax+Gy − b)

+
((

1− frac
(
µ2b
)) (

µ2
)+

+ frac
(
µ2b
) (
µ2
)−)

(Ax+Gy − b)

+ frac
(
µ2b
) (

1− frac
(
µ2b
))

=
((

1− frac
(
µ2b
)) (

µ1
)+

+ frac
(
µ2b
) (
µ1
)−)

suppµ1
(Ax+Gy − b)suppµ1 + f≤0,MIR,µ2

A,G,b (( xy ))

≤0.

Lemma 424. Let A, G, b and l be as in De�nition 410, let L ∈ P ([l]) and let µ1, µ2 ∈ MMIR,L (A,G).

Then f≤0,MIR,µ1+µ2

A,G,b ( · ) ≤ 0 is dominated relatively to

P≤
((

A G
)

(suppµ1)∪(suppµ2),∗ , b(suppµ1)∪(suppµ2)

)
⊇ P≤

((
A G

)
, b
)

by the MIR cuts f≤0,MIR,µ1

A,G,b ( · ) ≤ 0 and f≤0,MIR,µ2

A,G,b ( · ) ≤ 0.

Proof. We �rst note that the case
frac

(
µ1b
)
∈ Z ∨ frac

(
µ2b
)
∈ Z
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9.2. Polyhedricity of the MIR closure

has already been analyzed in Lemma 423. So, we can assume

frac
(
µ1b
)
, frac

(
µ2b
)
/∈ Z.

For i ∈ {1, 2}, let

Ci :=
((

1− frac
((
µ1 + µ2

)
b
)) (

µi
)+

+ frac
((
µ1 + µ2

)
b
) (
µi
)−)

−min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µib)
,

frac
((
µ1 + µ2

)
b
)

frac (µib)

)((
1− frac

(
µib
)) (

µi
)+

+ frac
(
µib
) (
µi
)−)

.

Clearly, for i ∈ {1, 2}, we have suppCi ⊆ suppµi. We now show that for i ∈ {1, 2}, we have Ci ≥ 0:

Ci =

((
1− frac

((
µ1 + µ2

)
b
))
−min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µib)
,

frac
((
µ1 + µ2

)
b
)

frac (µib)

)(
1− frac

(
µib
))) (

µi
)+

+

(
frac

((
µ1 + µ2

)
b
)
−min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µib)
,

frac
((
µ1 + µ2

)
b
)

frac (µib)

)
frac

(
µib
)) (

µi
)−

≥

((
1− frac

((
µ1 + µ2

)
b
))
−

1− frac
((
µ1 + µ2

)
b
)

1− frac (µib)

(
1− frac

(
µib
))) (

µi
)+

+

(
frac

((
µ1 + µ2

)
b
)
−

frac
((
µ1 + µ2

)
b
)

frac (µib)
frac

(
µib
)) (

µi
)−

=
(
0l
)T
.

Now for the main statement: let(
x
y

)
∈ P≤

((
A G

)
(suppµ1)∪(suppµ2),∗ , b(suppµ1)∪(suppµ2)

)
satisfy f≤0,MIR,µ1

A,G,b (( xy )) ≤ 0 and f≤0,MIR,µ2

A,G,b (( xy )) ≤ 0. Then

f≤0,MIR,µ1+µ2

A,G,b

((
x
y

))
=
((

1− frac
((
µ1 + µ2

)
b
)) (

µ1 + µ2
)+

+ frac
((
µ1 + µ2

)
b
) (
µ1 + µ2

)−)
(Ax+Gy − b)

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

= min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ1b)
,

frac
((
µ1 + µ2

)
b
)

frac (µ1b)

)((
1− frac

(
µ1b
)) (

µ1
)+

+ frac
(
µ1b
) (
µ1
)−) · (Ax+Gy − b)︸ ︷︷ ︸

≤− frac(µ1b)(1−frac(µ1b)) (since f≤0,MIR,µ1

A,G,b

(( x
y

))
≤ 0)

+ min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ2b)
,

frac
((
µ1 + µ2

)
b
)

frac (µ2b)

)((
1− frac

(
µ2b
)) (

µ2
)+

+ frac
(
µ2b
) (
µ2
)−) · (Ax+Gy − b)︸ ︷︷ ︸

≤− frac(µ2b)(1−frac(µ2b)) (since f≤0,MIR,µ2

A,G,b

(( x
y

))
≤ 0)

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

+
(
C1 + C2

)︸ ︷︷ ︸
supp(C1+C2)⊆(suppµ1)∪(suppµ2)

(Ax+Gy − b)

︸ ︷︷ ︸
≤0

≤−min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ1b)
,

frac
((
µ1 + µ2

)
b
)

frac (µ1b)

)
frac

(
µ1b
) (

1− frac
(
µ1b
))

−min

(
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ2b)
,

frac
((
µ1 + µ2

)
b
)

frac (µ2b)

)
frac

(
µ2b
) (

1− frac
(
µ2b
))

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

=:(9.8)
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We distinguish four cases:

1.
1−frac((µ1+µ2)b)

1−frac(µ1b) ≤ frac((µ1+µ2)b)
frac(µ1b) ∧ 1−frac((µ1+µ2)b)

1−frac(µ2b) ≤ frac((µ1+µ2)b)
frac(µ2b) ,

2.
1−frac((µ1+µ2)b)

1−frac(µ1b) ≥ frac((µ1+µ2)b)
frac(µ1b) ∧ 1−frac((µ1+µ2)b)

1−frac(µ2b) ≥ frac((µ1+µ2)b)
frac(µ2b) ,

3.
1−frac((µ1+µ2)b)

1−frac(µ1b) ≤ frac((µ1+µ2)b)
frac(µ1b) ∧ 1−frac((µ1+µ2)b)

1−frac(µ2b) ≥ frac((µ1+µ2)b)
frac(µ2b) ,

4.
1−frac((µ1+µ2)b)

1−frac(µ1b) ≥ frac((µ1+µ2)b)
frac(µ1b) ∧ 1−frac((µ1+µ2)b)

1−frac(µ2b) ≤ frac((µ1+µ2)b)
frac(µ2b) .

For case 1:

(9.8) =−
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ1b)
frac

(
µ1b
) (

1− frac
(
µ1b
))
−

1− frac
((
µ1 + µ2

)
b
)

1− frac (µ2b)
frac

(
µ2b
) (

1− frac
(
µ2b
))

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

=−
(
1− frac

((
µ1 + µ2

)
b
)) (

frac
(
µ1b
)

+ frac
(
µ2b
)
− frac

((
µ1 + µ2

)
b
))︸ ︷︷ ︸

≥0 (by (2.25))

≤0.

For case 2:

(9.8) =−
frac

((
µ1 + µ2

)
b
)

frac (µ1b)
frac

(
µ1b
) (

1− frac
(
µ1b
))
−

frac
((
µ1 + µ2

)
b
)

frac (µ2b)
frac

(
µ2b
) (

1− frac
(
µ2b
))

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

=− frac
((
µ1 + µ2

)
b
) (

1 + frac
((
µ1 + µ2

)
b
)
− frac

(
µ1b
)
− frac

(
µ2b
))︸ ︷︷ ︸

≥0 (by (2.26))

≤0.

For case 3 and 4: By exchanging µ1 and µ2 if necessary, we can assume that case 3 holds.

(9.8) =−
1− frac

((
µ1 + µ2

)
b
)

1− frac (µ1b)
frac

(
µ1b
) (

1− frac
(
µ1b
))
−

frac
((
µ1 + µ2

)
b
)

frac (µ2b)
frac

(
µ2b
) (

1− frac
(
µ2b
))

+ frac
((
µ1 + µ2

)
b
) (

1− frac
((
µ1 + µ2

)
b
))

= frac
((
µ1 + µ2

)
b
) (

frac
(
µ1b
)

+ frac
(
µ2b
))
−
(
frac

((
µ1 + µ2

)
b
))2 − frac

(
µ1b
)︸ ︷︷ ︸

≤0 (by (2.27): set x := µ1b and y := µ2b)

≤0.

9.2.2. Restriction to linearly independent support

Let us recall Theorem 267 and Theorem 269:

Theorem 267. Let A ∈ Rl×(m+n) and b ∈ Rl (l,m, n ∈ Z≥0). Additionally, let π ∈ Zm and γ ∈ Z be given.
Then

conv
(
P≤ (A, b) ∩ (D (π, γ)× Rn)

)
=

⋂
S∈B∗(A)

conv
(
P≤ (AS,∗, bS) ∩ (D (π, γ)× Rn)

)
,

where B∗ (A) is as in De�nition 392.
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Theorem 269. Let P := P≤ (A, b) ⊆ Rm × Rn, where A ∈ Rl×(m+n) and b ∈ Rl (l,m, n ∈ Z≥0). Then

clL1,Q
clsplit

(P ) =
⋂

S∈B∗(A)

clL1,Q
clsplit

(
P≤ (AS,∗, bS)

)
.

Here, the equation for clL1,Q ( ·), of course, only holds if m+ n ≥ 1 (otherwise, clL1,Q ( · ) is not de�ned).

We already mentioned in section 6.1.2 that in this section, we want to introduce Theorem 427 as a tightening
of Theorem 269. For this, we present a theorem (Theorem 425) which is shown in [DGR11] and is very related
to Theorem 267 and Theorem 269. The original formulation that is given in [DGR11] is weaker, but it is easy
to check that the proof given in that paper also goes through for this stronger formulation.

Theorem 425. Let A, G, b, l, m and n be as in De�nition 410. Let x∗ ∈ P≤
((

A G
)
, b
)
and let

µ ∈ MMIR (A,G) be such that f≤0,MIR,µ
A,G,b (x∗) > 0 (by Theorem 420, this implies µb /∈ Z). Then there exists

a µ′ ∈MMIR (A,G) having

µ′
(
A G

)
= µ

(
A G

)
,

bµ′bc = bµbc ,
{i ∈ [l] : µ′i > 0} ⊆ {i ∈ [l] : µi > 0} ,
{i ∈ [l] : µ′i < 0} ⊆ {i ∈ [l] : µi < 0} ,

∃B ∈ B∗
((

A G
))

: suppµ′ ⊆ B,

f≤0,MIR,µ′

A,G,b (x∗) > 0 (9.9)

(by Theorem 420, (9.9) implies µ′b /∈ Z).

Remark 426. It is easy to check that Theorem 267 can immediately be concluded from Theorem 415, Remark
268 and Theorem 425.

From Theorem 425, we �nally obtain the following tightening of Theorem 269:

Theorem 427. Let A, G, b and l be as in De�nition 410. Let L ∈ P ([l]). Then

clMIR,L (A,G, b) =
⋂

S∈B∗((A G ))

clMIR,L (AS,∗, GS,∗, bS) .

9.2.3. Representation

De�nition 428. Let V 1, V 2 ≤ V be subspaces of a vector space V that satisfy V1∩V2 = {0V }. Let v ∈ V1+V2.
Then there exist unique v1 ∈ V 1, v2 ∈ V 2 such that v = v1 + v2. We de�ne

proj1V 1,V 2 v := v1,

proj2V 1,V 2 v := v2.

Theorem 429. Let A, G, b and l be as in De�nition 410 such that additionally the rows of
(
A G

)
are

linearly independent, and let L ∈ P ([l]). Let

C ′ :=

cone

(⋃̇
i∈L

{(
A G −b

)
i,∗

})
∪̇

 ⋃̇
i∈[l]\L

{
−
(
A G −b

)
i,∗

} ∩ (Rm × 0n × R)

be a cone that is generated by vectors from (Qm × 0n × R)
T
(this is surely the case if A and G are rational).

Let S be a Z + icone system for C ′ that consists of vectors from Zm × 0n × R (the existence is assured by
Theorem 366). Set

V 1 := lin
⋃̇
i∈L

{(
A G −b

)
i,∗

}
,

V 2 := lin
⋃̇

i∈[l]\L

{(
A G −b

)
i,∗

}
.
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9. L1,Q cuts, split cuts and MIR cuts

Then

clMIR,L (A,G, b)

=P≤
((

A G
)
, b
)
∩

⋂
( â ĝ −b̂ )∈S: frac b̂6=0,

( â1 ĝ1 −b̂1 ):=proj1
V 1,V 2( â ĝ −b̂ ),

( â2 ĝ2 −b̂2 ):=proj2
V 1,V 2( â ĝ −b̂ )

P≤
((

1− frac b̂
) (

â1 ĝ1
)
−
(

frac b̂
) (

â2 ĝ2
)
,
(

1− frac b̂
)
b̂1 −

(
frac b̂

)
b̂2 −

(
1− frac b̂

)(
frac b̂

))
.

(9.10)

Proof. Let
(
â ĝ −b̂

)
∈ C ′∩(Zm × 0n × R)

T . Because of the linear independence of the rows of
(
A G

)
,

there exists a unique µ ∈
(
Rl
)T

such that

µ
(
A G −b

)
=
(
â ĝ −b̂

)
. (9.11)

Let (
â1 ĝ1 −b̂1

)
:= proj1V 1,V 2

(
â ĝ −b̂

)
,(

â2 ĝ2 −b̂2
)

:= proj2V 1,V 2

(
â ĝ −b̂

)
.

Since
(
â ĝ −b̂

)
∈ C ′ and because of the construction of C ′, we have(

â1 ĝ1 −b̂1
)

= µ+
(
A G −b

)
,(

â2 ĝ2 −b̂2
)

= µ−
(
A G −b

)
.

We have for ( xy ) ∈ Rm × Rn:

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy − b) + frac (µb) (1− frac (µb))

=
(
(1− frac (µb))µ+ + frac (µb)µ−

)
(Ax+Gy)

−
(
(1− frac (µb))µ+ + frac (µb)µ−

)
b+ frac (µb) (1− frac (µb))

=
((

1− frac b̂
)
µ+ +

(
frac b̂

)
µ−
)

(Ax+Gy)

−
((

1− frac b̂
)
µ+ +

(
frac b̂

)
µ−
)
b+

(
frac b̂

)(
1− frac b̂

)
=
(

1− frac b̂
) (
â1x+ ĝ1y

)
−
(

frac b̂
) (
â2x+ ĝ2y

)
−
(

1− frac b̂
)
b̂1 +

(
frac b̂

)
b̂2 +

(
frac b̂

)(
1− frac b̂

)
. (9.12)

For ⊆ in (9.10): Let
(
â ĝ −b̂

)
∈ S ⊆ C ′ ∩ (Zm × 0n × R)

T and let µ satisfy (9.11) (we saw that such
a µ always exists). Then µ ∈MMIR,L (A,G). Using (9.12), we obtain

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(

1− frac b̂
) (
â1x+ ĝ1y

)
−
(

frac b̂
) (
â2x+ ĝ2y

)
−
(

1− frac b̂
)
b̂1 +

(
frac b̂

)
b̂2 +

(
frac b̂

)(
1− frac b̂

)
,

which shows the statement.

For ⊇ in (9.10): Let µ ∈ MMIR (A,G). If frac (µb) = 0, then f≤0,MIR,µ
A,G,b ≤ 0 is already valid for

P≤
((

A G
)
, b
)
(by Lemma 420); so, we can assume frac (µb) 6= 0. Let(

â ĝ −b̂
)

:= µ
(
A G −b

)
.
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Since S is a Z+ icone system that consists of vectors from (Zm × 0n × R)
T , there exist

•
(
a1 g1 −b1

)
∈ C ′ ∩ (Zm × 0n × Z)

T and

•
(
a2,1 g2,1 −b2,1

)
, . . . ,

(
a2,k g2,k −b2,k

)
∈ S ⊆ C ′ ∩ (Zm × 0n × (R\Z))

T (k ∈ Z≥0)

such that (
â ĝ −b̂

)
=
(
a1 g1 −b1

)
+

k∑
i=1

(
a2,i g2,i −b2,i

)
.

There exist uniquely de�ned µ1, µ2,1, . . . , µ2,k ∈
(
Rl
)T

such that

µ1
(
A G −b

)
=
(
a1 g1 −b1

)
,

∀j ∈ [k] : µ2,j
(
A G −b

)
=
(
a2,j g2,j −b2,j

)
.

These satisfay {
i ∈ [l] , µ1

i > 0
}
⊆ L,

∀j ∈ [k] :
{
i ∈ [l] , µ2,j

i > 0
}
⊆ L,{

i ∈ [l] , µ1
i < 0

}
⊆ [l] \L,

∀j ∈ [k] :
{
i ∈ [l] , µ2,j

i < 0
}
⊆ [l] \L.

By Lemma 423 and Lemma 424, f≤0,MIR,µ
A,G,b ( · ) ≤ 0 is dominated relatively to P≤

((
A G

)
, b
)
by the MIR

cuts f≤0,MIR,µ2,1

A,G,b ( · ) ≤ 0, . . . , f≤0,MIR,µ2,k

A,G,b ( · ) ≤ 0. Thus, we can assume
(
a g −b

)
∈ S. Let(

â1 ĝ1 −b̂1
)

:= proj1V 1,V 2

(
â ĝ −b̂

)
,(

â2 ĝ2 −b̂2
)

:= proj2V 1,V 2

(
â ĝ −b̂

)
.

Then, by (9.12), we have

f≤0,MIR,µ
A,G,b

((
x
y

))
=
(

1− frac b̂
) (
â1x+ ĝ1y

)
−
(

frac b̂
) (
â2x+ ĝ2y

)
−
(

1− frac b̂
)
b̂1 +

(
frac b̂

)
b̂2 +

(
frac b̂

)(
1− frac b̂

)
,

which shows the statement.

9.2.4. Proof of Theorem 417

We now prove Theorem 417. For convenience, let us recapitulate it here:

Theorem 417. Let P = P≤
((

A G
)
, b
)
be a polyhedron, where A ∈ Ql×m, G ∈ Ql×n and b ∈ Rl (i.e.

P is a polyhedron with rational face normals). Then clsplit (P ) = clMIR (A,G, b) is a polyhedron and this
polyhedron is rational if b is.

Proof. clsplit (P ) = clMIR (A,G, b) holds by Theorem 412 and Theorem 415. By Lemma 419 and Theorem
427, we have:

clMIR (A,G, b) =
⋂

L∈P([l])

⋂
S∈B∗((A G ))

clMIR,L (AS,∗, GS,∗, bS) .

By Theorem 429, for each L ∈ P ([l]) and S ∈ B∗
((

A G
))
, the set clMIR,L (AS,∗, GS,∗, bS) is a polyhedron

(a rational polyhedron if b is rational).
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9. L1,Q cuts, split cuts and MIR cuts

9.2.5. Cook-Kannan-Schrijver example

Theorem 430. For ε ∈ R>0, let

P 430,ε := conv


 0

0
0

 ,

 2
0
0

 ,

 0
2
0

 ,

 2
3
2
3
ε


= P≤



−1 0 2

3ε

0 −1 2
3ε

1 1 2
3ε

0 0 −1

 ,


0
0
2
0




=: P≤
((

A Gε
)
, b
)

⊆ R2 × R1.

Then clsplit
(
P 430,ε

)
= P 430, ε2 . In particular, for every t ∈ Z≥0, we have

cl
(t)
split

(
P 430,ε

)
= P 430, ε

2t .

Proof. We �rst note that

clMIR

(
P 430,ε

)
= P 430,ε ∩ clMIR

(
P≤

((
A Gε

)
(1,2,3),∗ , b(1,2,3)

))
. (9.13)

For (9.13): since rank
(
A Gε

)
= 3, by Lemma 419 and Theorem 427, we just have to consider subsets of

3 rows. Note that for J ∈
(

[4]
3

)
, where J 6= {1, 2, 3}, we have

P≤
((

A Gε
)
J,∗ , b

ε
J,∗

)
= clI

(
P≤

((
A Gε

)
J,∗ , bJ,∗

))
;

so, we only have to consider clMIR

(
P≤

((
A Gε

)
(1,2,3),∗ , b(1,2,3)

))
.

By Theorem 422, it su�ces to compute clMIR,L

(
P 430,ε

)
where

L ∈ {{1, 2, 3} , {2, 3} , {1, 3} , {1, 2}} .

So, we just have to apply Theorem 429 to the cones

1. C ′ :=
(
cone

{(
−1 0 2

3ε 0
)
,
(

0 −1 2
3ε 0

)
,
(

1 1 2
3ε −2

)})
∩
(
R2 × 01 × R

)T
,

2. C ′ :=
(
cone

{
−
(
−1 0 2

3ε 0
)
,
(

0 −1 2
3ε 0

)
,
(

1 1 2
3ε −2

)})
∩
(
R2 × 01 × R

)T
,

3. C ′ :=
(
cone

{(
−1 0 2

3ε 0
)
,−
(

0 −1 2
3ε 0

)
,
(

1 1 2
3ε −2

)})
∩
(
R2 × 01 × R

)T
,

4. C ′ :=
(
cone

{(
−1 0 2

3ε 0
)
,
(

0 −1 2
3ε 0

)
,−
(

1 1 2
3ε −2

)})
∩
(
R2 × 01 × R

)T
.

We clearly have in case 1:(
cone

{(
−1 0 2

3ε 0
)
,
(

0 −1 2
3ε 0

)
,
(

1 1 2
3ε −2

)})
∩
(
R2 × 01 × R

)T
=
(
02 × 01 × 0

)T
.

So for the remaining three cases:

For case 2: Let

x ∈ C ′ :=

cone

−

−1
0
2
3ε
0


T

,


0
−1
2
3ε
0


T

,


1
1
2
3ε
−2


T
 ∩ (R2 × 01 × R

)T
.
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Then

x = − (λ2 + λ3)


−1
0
2
3ε
0


T

+ λ2


0
−1
2
3ε
0


T

+ λ3


1
1
2
3ε
−2


T

= λ2


1
−1
0
0


T

+ λ3


2
1
0
−2


T

,

where λ2, λ3 ∈ R≥0. Indeed, any such vector lies in C ′. Thus,

C ′ = cone
{(

1 −1 0 0
)
,
(

2 1 0 −2
)}
.

We have((
[0, 1)

2 \
{

02
})T ( 1 −1 0 0

2 1 0 −2

))
∩
(
Z2 × 01 × R

)T
=
{(

1 0 0 − 2
3

)
,
(

2 0 0 − 4
3

)}
.

So, we can apply either Theorem 365 or Theorem 366 to compute a Z+ icone system that generates C ′. Note
that the vector

(
2 0 0 − 4

3

)
is redundant for such a Z+ icone system.

For
(

1 0 0 − 2
3

)
:

(
1 0 0 − 2

3

)︸ ︷︷ ︸
=:
(
â ĝ −b̂

) =
1

3

(
1 −1 0 0

)
+

1

3

(
2 1 0 −2

)

=
1

3

(
0 −1 2

3ε 0
)

+
1

3

(
1 1 2

3ε −2
)
− 2

3

(
−1 0 2

3ε 0
)

=
(

1
3 0 4

9ε − 2
3

)︸ ︷︷ ︸
=:
(
â1 ĝ1 −b̂1

)−
(
− 2

3 0 4
9ε 0

)︸ ︷︷ ︸
=:−

(
â2 ĝ2 −b̂2

) .

By Theorem 429, this yields the following half-space:

P≤
((

1− frac b̂
) (

â1 ĝ1
)
−
(

frac b̂
) (

â2 ĝ2
)
,
(

1− frac b̂
)
b̂1 −

(
frac b̂

)
b̂2 −

(
1− frac b̂

)(
frac b̂

))
=P≤

(
1

3

(
1
3 0 4

9ε

)
− 2

3

(
2
3 0 − 4

9ε

)
,

1

3
· 2

3
− 2

3
· 0− 1

3
· 2

3

)
=P≤

((
−1 0 2 · 2

3ε

)
, 0
)

=P≤
((

A G
ε
2

)
1,∗ , b1

)
.

For case 3: Note that

C ′ :=

cone



−1
0
2
3ε
0


T

,−


0
−1
2
3ε
0


T

,


1
1
2
3ε
−2


T
 ∩ (R2 × 01 × R

)T

is the same C ′ as in case 2, just with the �rst two coordinates �ipped. So, if we append
(

0 1 0 − 2
3

)
to

the generators {(
−1 1 0 0

)
,
(

1 2 0 −2
)}

of C ′, we obtain a Z+ icone system that generates C ′ and consists of vectors from Z2 × 01 ×R. Putting the
vector

(
â ĝ −b̂

)
:=
(

0 1 0 − 2
3

)
into Theorem 429, one obtains (similarly to case 2) the half-space

P≤
((

A G
ε
2

)
2,∗ , b2

)
.
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For case 4: Let

x ∈ C ′ :=

cone



−1
0
2
3ε
0


T

,


0
−1
2
3ε
0


T

,−


1
1
2
3ε
−2


T
 ∩ (R2 × 01 × R

)T
.

Then

x = λ1


−1
0
2
3ε
0


T

+ λ2


0
−1
2
3ε
0


T

− (λ1 + λ2)


1
1
2
3ε
−2


T

= λ1


−2
−1
0
2


T

+ λ2


−1
−2
0
2


T

,

where λ1, λ2 ∈ R≥0. Indeed, any such vector lies in C ′. Thus,

C ′ = cone
{(
−2 −1 0 −2

)
,
(
−1 −2 0 −2

)}
.

We have((
[0, 1)

2 \
{

02
})T ( −2 −1 0 2

−1 −2 0 2

))
∩
(
Z2 × 01 × R

)T
=
{(
−1 −1 0 4

3

)
,
(
−2 −2 0 8

3

)}
.

So, we can apply either Theorem 365 or Theorem 366 to compute a Z+ icone system that generates C ′. Note
that the vector

(
−2 −2 0 8

3

)
is redundant for such a Z+ icone system.

For
(
−1 −1 0 4

3

)
:

(
−1 −1 0 4

3

)︸ ︷︷ ︸
=:
(
â ĝ −b̂

) =
1

3

(
−2 −1 0 2

)
+

1

3

(
−1 −2 0 2

)

=
1

3

(
−1 0 2

3ε 0
)

+
1

3

(
0 −1 2

3ε 0
)
− 2

3

(
1 1 2

3ε −2
)

=
(
− 1

3 − 1
3

4
9ε 0

)︸ ︷︷ ︸
=:
(
â1 ĝ1 −b̂1

) −
(

2
3

2
3

4
9ε − 4

3

)︸ ︷︷ ︸
=:−

(
â2 ĝ2 −b̂2

) .

By Theorem 429, this yields the following half-space:

P≤
((

1− frac b̂
) (

â1 ĝ1
)
−
(

frac b̂
) (

â2 ĝ2
)
,
(

1− frac b̂
)
b̂1 −

(
frac b̂

)
b̂2 −

(
1− frac b̂

)(
frac b̂

))
=P≤

(
1

3

(
− 1

3 − 1
3

4
9ε

)
− 2

3

(
− 2

3 − 2
3 − 4

9ε

)
,

1

3
· 0− 2

3
·
(
−4

3

)
− 2

3
· 1

3

)
=P≤

((
1 1 2 · 2

3ε

)
, 2
)

=P≤
((

A G
ε
2

)
3,∗ , b3

)
.

Thus,

clMIR

(
P 430,ε

)
= P≤

((
A Gε

A[3],∗ G
ε
2

[3],∗

)
,

(
b
b[3]

))
= P≤

((
A G

ε
2

)
, b
)

= P
ε
2 .
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Part IV.

Disjunctions, L2,Q cuts and essential
L
2−1

2,Q
cuts
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10. Embedding two-dimensional lattice-free
bodies into disjunctions

10.1. Central statements

The purpose of this chapter is to prove Theorem 431 and Theorem 434. These two theorems are used in
chapter 11 to derive characterizations of the L2,Q and essential L2− 1

2 ,Q×Q
closure via disjunctions. Speci�cally,

Theorem 431 is used in section 11.1 for the proof of Theorem 459 and Theorem 434 is used in section 11.2.2
for the proof of Theorem 470.

Theorem 431. Let S ⊆ R2 be convex and let L = P≤ (A, b) (A ∈ Rl×2 and b ∈ Rl, where l ∈ Z≥0) be a
full-dimensional maximal lattice-free polyhedron such that we have

S ⊆ (intL) ∪̇ ((bdL) \ (bdL)I) .

Then there exists a crooked cross disjunction (cf. De�nition 146) Dc
(
π1, π2, γ1, γ2

)
⊆ R2 such that

S ∩Dc
(
π1, π2, γ1, γ2

)
= ∅.

We remark that in [DDG12], the following weaker version of Theorem 431 is shown:

Theorem 432. Let L = P≤ (A, b) (A ∈ Rl×2 and b ∈ Rl, where l ∈ Z≥0) be a full-dimensional maximal
lattice-free polyhedron. Then there exists a crooked cross disjunction Dc

(
π1, π2, γ1, γ2

)
⊆ R2 such that

Dc
(
π1, π2, γ1, γ2

)
∩ intL = ∅.

We now de�ne T disjunctions, which we need to formulate Theorem 434:

De�nition 433. Let π1, π2 ∈ Zm and γ1, γ2 ∈ Z, where m ∈ Z≥0. Let

DT
1

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≤ γ1

}
,

DT
2

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≥ γ1 + 1 ∧ π2Tx ≤ γ2

}
,

DT
3

(
π1, π2, γ1, γ2

)
:=
{
x ∈ Rm : π1Tx ≥ γ1 + 1 ∧ π2Tx ≥ γ2 + 1

}
,

DT
(
π1, π2, γ1, γ2

)
:=

3⋃
i=1

DT
i

(
π1, π2, γ1, γ2

)
.

Then we denote the set DT
(
π1, π2, γ1, γ2

)
as T disjunction and the sets DT

i

(
π1, π2, γ1, γ2

)
(i ∈ [3]) as the

atoms of the T disjunction.

Figure 10.1 shows an example of a T disjunction.

Theorem 434. Let L = P≤ (A, b) (A ∈ Rl×2 and b ∈ Rl, where l ∈ Z≥0) be a full-dimensional maximal
lattice-free polyhedron such that every inequality is facet-de�ning. Let j∗ ∈ [l] be arbitrary. Then there either
exists

• a T disjunction (cf. De�nition 433) DT
(
π1, π2, γ1, γ2

)
⊆ R2 and an i∗ ∈ [3] such that

P≥ (Aj∗,∗, bj∗) ⊇ DT
i∗
(
π1, π2, γ1, γ2

)
,⋃

j∈[l]\{j∗}

P≥ (Aj,∗, bj) ⊇
⋃

i∈[3]\{i∗}

DT
i

(
π1, π2, γ1, γ2

)
or
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10. Embedding two-dimensional lattice-free bodies into disjunctions

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

Figure 10.1.: The T disjunction DT (( 1
0 ) , ( 0

1 ) , 0, 0)

• a crooked cross disjunction (cf. De�nition 146) Dc
(
π1, π2, γ1, γ2

)
⊆ R2 and an i∗ ∈ [4] such that

P≥ (Aj∗,∗, bj∗) ⊇ Dc
i∗
(
π1, π2, γ1, γ2

)
,⋃

j∈[l]\{j∗}

P≥ (Aj,∗, bj) ⊇
⋃

i∈[4]\{i∗}

Dc
i

(
π1, π2, γ1, γ2

)
,

where π1, π2 are linearly independent (i.e. the T disjunction or crooked cross disjunction, respectively, is not
degenerate).

Theorem 432 is su�cient to show the cases

• P polyhedron with rational face normals and

• P convex and compact,

but not the situation if

• P is convex and projR2 P is full-dimensional

in Theorem 459, Theorem 461 and Theorem 462 (for this, we indeed need the stronger Theorem 431).
The high level strategy for the proof of Theorem 431 and Theorem 434 is the following:

• Every lattice-free body in R2 can by an a�ne-unimodular map be transformed into a standard form
with a speci�c standard description (this is de�ned in Theorem 437).

• In section 10.3, Lemma 441, we show it su�ces to prove the respective theorems for lattice-free bodies
that are in standard description.

• In section 10.5, we show Theorem 431 for L in standard description.

• In section 10.6, we show Theorem 434 for L in standard description.

10.2. Latticefree bodies in R2

10.2.1. Classi�cation

The following theorem is proved in [DW10] (also cf. [DDG12], from where we obtained the following version):

Theorem 435. a full-dimensional maximal lattice-free convex set in R2 is one of the following sets:

1. a split set
{

( x1
x2

) ∈ R2 : b ≤ a1x1 + a2x2 ≤ b+ 1
}
, where a1, a2 are coprime integers and b ∈ Z (see

Figure 10.2a);
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10.2. Latticefree bodies in R2

2. a triangle with at least one integral point in the relative interior of each of its sides, which in turn is
either:

a) a type 1 triangle, i.e. a triangle with integral vertices and exactly one integral point in the relative
interior of each side (see Figure 10.2b),

b) a type 2 triangle, i.e. a triangle with at least one fractional vertex v, exactly one integral point in
the relative interior of the two sides incedent to v and at least two integral points in the relative
interior of the third side (see Figure 10.2c),

c) a type 3 triangle, i.e. a triangle with exactly three integral points on the boundary, one in the
relative interior of each side (see Figure 10.2d);

3. a quadrilateral containing exactly one integral point in the relative interior of each of its sides (see Figure
10.2e).

Remark 436. Concerning Theorem 435, we remark:

• If we don't assume the maximal lattice-free body in Theorem 435 to be full-dimensional, it can also be an
irrational, one-dimensional hyperplane (cf. Theorem 108). For this type, P 114 and P 115 are concrete
examples.

• If we demand the maximal lattice-free body in Theorem 435 to be a rational polyhedron, it is full-
dimensional (cf. Theorem 111).

10.2.2. Standard forms

x2

−1

1

2

x1
−1 1 2

1 2

(a) Split set

x2

−1

1

2

x1
−1 1 2

1
2

3

(b) Type 1 triangle

x2

−1

1

2

x1
−1 1 2

1

2

3

(c) Type 2 triangle

x2

−1

1

2

x1
−1 1 2

3

1

2

(d) Type 3 triangle

x2

−1

1

2

x1
−1 1 2

1

23

4

(e) Quadrilateral

Figure 10.2.: The �ve types of two-dimensional lattice-free bodies in R2 in standard form

The following theorem can be concluded from results that are proved in [DW10] and [DDG12]:

Theorem 437. Let L ⊆ R2 be maximal lattice-free and either a rational polyhedron or full-dimensional. We
�rst remark that then for every a�ne-unimodular map f : R2 → R2, we have by construction that f (L) is
also maximal lattice-free.

There exists an a�ne-unimodular map f : R2 → R2 (cf. De�nition 23) such that for L′ := f (L), we have:
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10. Embedding two-dimensional lattice-free bodies into disjunctions

• If L is a split disjunction, we have (see Figure 10.2a)

L′ = P≤
((
−1 0
1 0

)
,

(
0
1

))
=: P≤ (A, b) .

• If L is a type 1 triangle, we have (see Figure 10.2b)

L′ = P≤

 1 1
−1 0
0 −1

 ,

 2
0
0

 =: P≤ (A, b) .

• If L is a type 2 triangle, we have L′ = P≤ (A, b), where A ∈ R3×2 and b ∈ R3, such that (see Figure
10.2c)

(relint (L′ ∩ P= (A1,∗, b1)))I =

{(
1
1

)}
,

A2,∗ =
(
−1 0

)
, (10.1)

b2 = 0, (10.2)

(relint (L′ ∩ P= (A2,∗, b2)))I ⊇
{(

0
0

)
,

(
0
1

)}
,

(relint (L′ ∩ P= (A3,∗, b3)))I =

{(
1
0

)}
.

On the other hand, the polyhedron

P≤

 A1,1 A1,2

−1 0
A3,1 A3,2

 ,

 A1,1 +A1,2

0
A3,1

 ,

where A1,1, A1,2, A3,1 > 0 and A3,2 < 0, is a maximal lattice-free type 2 triangle.

• If L is a type 3 triangle, we have L′ = P≤ (A, b), where A ∈ R3×2 and b ∈ R3, such that (see Figure
10.2d)

(L′ ∩ P= (A1,∗, b1))I =

{(
1
0

)}
,

(L′ ∩ P= (A2,∗, b2))I =

{(
0
1

)}
,

(L′ ∩ P= (A3,∗, b3))I =

{(
0
0

)}
. (10.3)

• If L is a quadrilateral, we have L′ = P≤ (A, b), where A ∈ R4×2 and b ∈ R4, such that (see Figure
10.2e)

(L′ ∩ P= (A1,∗, b1))I =

{(
1
0

)}
,

(L′ ∩ P= (A2,∗, b2))I =

{(
1
1

)}
,

(L′ ∩ P= (A3,∗, b3))I =

{(
0
1

)}
,

(L′ ∩ P= (A4,∗, b4))I =

{(
0
0

)}
.
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10.3. Reducing Theorem 431 and Theorem 434 to lattice-free bodies in standard form

On the other hand, the polyhedron

P≤




A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

A4,1 A4,2

 ,


A1,1

A2,1 +A2,2

A3,2

0


 ,

where

A1,1 > 0, A1,2 < 0,

A2,1 > 0, A2,2 > 0,

A3,1 < 0, A3,2 > 0,

A4,1 < 0, A4,2 < 0

is a maximal lattice-free quadrilateral.

Additionally, every inequality of A ( · ) ≤ b (which describes L′) is facet-de�ning. We then say that L′ is in
standard form and we call the desciption A ( · ) ≤ b a standard description of L′.

We �nish this section with some properties that one can show for the maximal lattice-free bodies in standard
description as in Theorem 437:

Remark 438. Let L = P≤ (A, b) be a maximal lattice-free type 2 triangle in standard description. Then

A1,1 > 0, A1,2 > 0,

A3,1 > 0, A3,2 < 0.

Remark 439. Let L = P≤ (A, b) be a maximal lattice-free type 3 triangle in standard description. Then we
have A3,1 6= A3,2 and if we assume A3,1 > A3,2 (which, using (10.3), is equivalent to

(
1
−1

)
/∈ P≤ (A3,∗, b3)),

we have

A1,1 > A1,2 > 0,

A2,1 < 0,

A2,2 > 0,

A3,2, A3,1 < 0

(some of these identities also hold if A3,2 > A3,1).

Remark 440. Let L = P≤ (A, b) be a maximal lattice-free quadrilateral in standard description. Then

A1,1 > 0, A1,2 < 0,

A2,1 > 0, A2,2 > 0,

A3,1 < 0, A3,2 > 0,

A4,1 < 0, A4,2 < 0.

10.3. Reducing Theorem 431 and Theorem 434 to lattice-free
bodies in standard form

The following Lemma is easy to check using Lemma 63:

Lemma 441. Let

f : R2 → R2 :

x 7→ Ux+ v

be an a�ne-unimodular map (cf. De�nition 23). Then:

• Let DT
(
π1, π2, γ1, γ2

)
or Dc

(
π1, π2, γ1, γ2

)
be a T disjunction or crooked cross disjunction, respectively.
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10. Embedding two-dimensional lattice-free bodies into disjunctions

Then for any i ∈ [3] or i ∈ [4], respectively, we have

f
(
DT
i

(
π1, π2, γ1, γ2

))
= DT

i

(
U−Tπ1, U−Tπ2, γ1 +

(
U−Tπ1

)T
v, γ2 +

(
U−Tπ2

)T
v
)
,

f
(
Dc
i

(
π1, π2, γ1, γ2

))
= Dc

i

(
U−Tπ1, U−Tπ2, γ1 +

(
U−Tπ1

)T
v, γ2 +

(
U−Tπ2

)T
v
)
,

f−1
(
DT
i

(
π1, π2, γ1, γ2

))
= DT

i

(
UTπ1, UTπ2, γ1 −

(
π1
)T
v, γ2 −

(
π2
)T
v
)
,

f−1
(
Dc
i

(
π1, π2, γ1, γ2

))
= Dc

i

(
UTπ1, UTπ2, γ1 −

(
π1
)T
v, γ2 −

(
π2
)T
v
)
.

• Let the prerequisites of Theorem 431 hold for S and L. Then they also hold for

� f (L) and f (S),

� f−1 (L) and f−1 (S).

• Let the prerequisites of Theorem 434 hold for P≤ (A, b) and j∗. Then they also hold for

� f
(
P≤ (A, b)

)
= P≤

(
AU−1, b+AU−1v

)
and j∗,

� f−1
(
P≤ (A, b)

)
= P≤ (AU, b−Av) and j∗.

• Let Theorem 431 hold for S and L with respect to Dc
(
π1, π2, γ1, γ2

)
. Then Theorem 431 also holds for

� f (L) with respect to

f
(
Dc
(
π1, π2, γ1, γ2

))
= Dc

(
U−Tπ1, U−Tπ2, γ1 +

(
U−Tπ1

)T
u, γ2 +

(
U−Tπ2

)T
u
)
,

� f−1 (L) with respect to

f−1
(
Dc
(
π1, π2, γ1, γ2

))
= Dc

(
UTπ1, UTπ2, γ1 −

(
π1
)T
u, γ2 −

(
π2
)T
u
)
.

• Let Theorem 434 hold for P≤ (A, b) and j∗ with respect to DT
(
π1, π2, γ1, γ2

)
or Dc

(
π1, π2, γ1, γ2

)
,

respectively, and i∗. Then Theorem 431 also holds for

� f
(
P≤ (A, b)

)
= P≤

(
AU−1, b+AU−1u

)
and j∗ with respect to

f
(
DT

(
π1, π2, γ1, γ2

))
= DT

(
U−Tπ1, U−Tπ2, γ1 +

(
U−Tπ1

)T
u, γ2 +

(
U−Tπ2

)T
u
)

or

f
(
Dc
(
π1, π2, γ1, γ2

))
= Dc

(
U−Tπ1, U−Tπ2, γ1 +

(
U−Tπ1

)T
u, γ2 +

(
U−Tπ2

)T
u
)
,

respectively, and i∗,

� f−1
(
P≤ (A, b)

)
= P≤ (AU, b−Au) and j∗ with respect to

f−1
(
DT

(
π1, π2, γ1, γ2

))
= DT

(
UTπ1, UTπ2, γ1 −

(
π1
)T
u, γ2 −

(
π2
)T
u
)

or

f−1
(
Dc
(
π1, π2, γ1, γ2

))
= Dc

(
UTπ1, UTπ2, γ1 −

(
π1
)T
u, γ2 −

(
π2
)T
u
)
,

respectively, and i∗.

By Theorem 437 and Lemma 441, it thus su�ces to prove Theorem 431 and Theorem 434, respectively, in
the case that L is in standard form. These proofs are done in section 10.5 and 10.6, respectively.

But before that, in section 10.4, we write down some statements that are needed in both sections. Note
that to save space, we typically only state the individual lemmas and sometimes give high-level ideas for their
proofs. The reason why we do this is that the proofs are in principle typically rather simple, but have lots of
tedious technical details to care about.
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10.4. Embedding lattice-free bodies in standard form into disjunctions

10.4. Embedding lattice-free bodies in standard form into
disjunctions

10.4.1. Type 2 triangles

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

1

2

3

Figure 10.3.: Situation for type 2 triangles

Remark 438 is a central tool for proving the following lemma:

Lemma 442. Let L = P≤ (A, b) be a lattice-free type 2 triangle in standard description. Then (see Figure
10.3)

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
⊆ P≥ (A1,∗, b1) , (10.4)

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
∩ P= (A1,∗, b1) =

{(
1
1

)}
, (10.5)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
⊆ P≥ (A3,∗, b3) , (10.6)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
∩ P= (A3,∗, b3) =

{(
1
0

)}
. (10.7)

10.4.2. Type 3 triangles

Lemma 443. Let L = P≤ (A, b) be a lattice-free type 3 triangle in standard description. Let(
1
−1

)
/∈ P≤ (A3,∗, b3) (10.8)

(which, as we have noted in Remark 439, is equivalent to A3,1 > A3,2). Then (see Figure 10.4)

P≤
((
−1 −1
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc1(e2,2,−e2,1,0,−1)

⊆ P≤ (A1,∗, b1) ,

P≤
((
−1 −1
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc1(e2,2,−e2,1,0,−1)

∩P≤ (A1,∗, b1) =

{(
1
0

)}
,

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc3(e2,2,−e2,1,0,−1)

∩P≤ (A1,∗, b1) = ∅,

247
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x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

4

2

3

3

1

2

Figure 10.4.: Situation for type 3 triangles

P≤
((

1 0
0 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc4(e2,2,−e2,1,0,−1)

⊆ P≤ (A2,∗, b2) ,

P≤
((

1 0
0 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc4(e2,2,−e2,1,0,−1)

∩P≤ (A2,∗, b2) =

{(
0
1

)}
,

P≤
((

1 1
0 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc2(e2,2,−e2,1,0,−1)

⊆ P≤ (A3,∗, b3) ,

P≤
((

1 1
0 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc2(e2,2,−e2,1,0,−1)

∩P≤ (A3,∗, b3) =

{(
0
0

)}
.

Lemma 444. Let L = P≤ (A, b) be a type 3 triangle in standard description such that A3,1 < A3,2 (by
Remark 439, A3,2 = A3,1 cannot happen). Let

f : R2 → R2 :

x 7→
(

0 1
1 0

)
x.

Then

f (L) = P≤
(
A

(
0 1
1 0

)
, b

)
=: P≤ (A′, b)

is a type 3 triangle in standard description such that A′3,1 > A′3,2 (as required for the second part of Remark
439 and for Lemma 443).

10.4.3. Quadrilaterals

Remark 440 is a central tool for proving the following lemma:

Lemma 445. Let L = P≤ (A, b) be a maximal lattice-free quadrilateral in standard description. Let L =
conv

{
v1, . . . , v4

}
be such that for i ∈ [4], we have L ∩ P= (Ai,∗, bi) = conv

{
vi, vi+41

}
, where the points

v1, . . . , v4 are in counter-clockwise order. For i ∈ [4], let ui ∈ L ∩ P= (Ai,∗, bi)I (i.e.

u1 =

(
1
0

)
, u2 =

(
1
1

)
, u3 =

(
0
1

)
, u4 =

(
0
0

)
)
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x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

2

1

4

3

1

23

4

Figure 10.5.: Situation for quadrilaterals

and let
A4,1 ≤ A4,2. (10.9)

Then (see Figure 10.5)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc4(e2,1,−e2,2,0,−1)

⊆ P≥ (A1,∗, b1) ,

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc4(e2,1,−e2,2,0,−1)

∩P= (A1,∗, b1) =
{
u1
}
,

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc3(e2,1,−e2,2,0,−1)

⊆ P≥ (A2,∗, b2) ,

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc3(e2,1,−e2,2,0,−1)

∩P= (A2,∗, b2) =
{
u2
}
,

P≤
((

1 0
−1 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc1(e2,1,−e2,2,0,−1)

⊆ P≥ (A3,∗, b3) ,

P≤
((

1 0
−1 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc1(e2,1,−e2,2,0,−1)

∩P= (A3,∗, b3) =
{
u3
}
,

P≤
((

1 0
1 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc2(e2,1,−e2,2,0,−1)

⊆ P≥ (A4,∗, b4) ,

P≤
((

1 0
1 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc2(e2,1,−e2,2,0,−1)

∩L = conv
{
v4, u4

}
if A4,1 = A4,2,

P≤
((

1 0
1 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc2(e2,1,−e2,2,0,−1)

∩P= (A4,∗, b4) =
{
u4
}

if A4,1 < A4,2.
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10. Embedding two-dimensional lattice-free bodies into disjunctions

10.5. Proof of Theorem 431 for L in standard form

In this section, we consider the �ve di�erent cases for a full-dimensional lattice-free body L in standard form
(cf. Theorem 437):

• Split set: section 10.5.1, Theorem 446,

• Type 1 triangle: section 10.5.2, Theorem 448,

• Type 2 triangle: section 10.5.3, Theorem 451,

• Type 3 triangle: section 10.5.4, Theorem 452,

• Quadrilateral: section 10.5.5, Theorem 453

and prove that in each of them, Theorem 431 holds. Recall that we saw at the end of section 10.3 that this
su�ces to prove Theorem 431.

10.5.1. Split sets

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

2

1

4

3

1 2

Figure 10.6.: Situation for split sets after applying f in the proof of Theorem 446

Theorem 446. Theorem 431 holds if L is a split set in standard form.

Proof. There exists at most one of each γ1, γ2 ∈ Z such that

({0} × (γ1, γ1 + 1)) ∩ S 6= ∅,
({1} × (γ2, γ2 + 1)) ∩ S 6= ∅.

For the reason: assume that there exist two δ, δ′ ∈ R\Z such that bδc < bδ′c, but (w.l.o.g.) ( 0
δ ) ,
(

0
δ′
)
∈ S.

Then, since S is convex:

δ′ − bδ′c
δ′ − δ

(
0
δ

)
+
bδ′c − δ
δ′ − δ

(
0
δ′

)
=

(
0
bδ′c

)
∈ S ∩ Z.  

If no such γ1 or γ2 exists, set the respective variable to an arbitrary values from Z. Apply the a�ne-unimdular
shearing

f : z 7→
(

1 0
γ1 − γ2 1

)
z +

(
0
−γ1

)
on L. Then f (L) = L, but

f (S) ∩ ({0} × R≥1) , f (S) ∩ ({0} × R≤0) , f (S) ∩ ({1} × R≥1) , f (S) ∩ ({1} × R≤0) = ∅. (10.10)

Additionally, we have
f (S) ∩ (R<0 × R) , f (S) ∩ (R>1 × R) = ∅. (10.11)
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10.5. Proof of Theorem 431 for L in standard form

From now on, w.l.o.g. (cf. Lemma 441) assume that S is transformed by f , if necessary, such that (10.10) and
(10.11) are satis�ed. Consider the crooked cross disjunction Dc

(
e2,1, e2,2, 0, 0

)
. We clearly have (see Figure

10.6)
Dc

1

(
e2,1, e2,2, 0, 0

)
, Dc

2

(
e2,1, e2,2, 0, 0

)
⊆ (R<0 × R) ∪̇ ({0} × R≤0) ∪̇ ({0} × R≥1) ,

since

Dc
1

(
e2,1, e2,2, 0, 0

)
= P≤

((
1 0
−1 1

)
,

(
0
0

))
,

Dc
2

(
e2,1, e2,2, 0, 0

)
= P≤

((
1 0
1 −1

)
,

(
0
−1

))
.

Finally, we have

Dc
3

(
e2,1, e2,2, 0, 0

)
, Dc

4

(
e2,1, e2,2, 0, 0

)
⊆ (R>1 × R) ∪̇ ({1} × R≤0) ∪̇ ({1} × R≥1) ,

since

Dc
3

(
e2,1, e2,2, 0, 0

)
= P≤

((
−1 0
0 1

)
,

(
−1
0

))
,

Dc
4

(
e2,1, e2,2, 0, 0

)
= P≤

((
−1 0
0 −1

)
,

(
−1
−1

))
.

10.5.2. Type 1 triangles

x2
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−1

1

2

3

x1
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3

2

4

1
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3

Figure 10.7.: Situation for type 1 triangles

The following lemma is easy to check:

Lemma 447. Let L = P≤ (A, b) be a type 1 triangle in standard description. Then (see Figure 10.7)

P≤
((

1 1
0 −1

)
,

(
1
−1

))
︸ ︷︷ ︸

=Dc1(−e2,2,e2,1,0,0)

⊆ P≥ (A2,∗, b2) ,

P≤
((

1 1
0 −1

)
,

(
1
−1

))
︸ ︷︷ ︸

=Dc1(−e2,2,e2,1,0,0)

∩L =

{(
0
1

)}
,

P≤
((
−1 −1
0 −1

)
,

(
−2
−1

))
︸ ︷︷ ︸

=Dc2(−e2,2,e2,1,0,0)

⊆ P≥ (A1,∗, b1) ,

251



10. Embedding two-dimensional lattice-free bodies into disjunctions

P≤
((
−1 −1
0 −1

)
,

(
−2
−1

))
︸ ︷︷ ︸

=Dc2(−e2,2,e2,1,0,0)

∩L = conv

{(
0
2

)
,

(
1
1

)}
,

P≤
((

1 0
0 1

)
,

(
0
0

))
︸ ︷︷ ︸

Dc3(−e2,2,e2,1,0,0)

⊆ P≥ (A2,∗, b2) , P≥ (A3,∗, b3) ,

P≤
((

1 0
0 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc3(−e2,2,e2,1,0,0)

∩L =

{(
0
0

)}
,

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc4(−e2,2,e2,1,0,0)

⊆ P≥ (A3,∗, b3) ,

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc4(−e2,2,e2,1,0,0)

∩L = conv

{(
1
0

)
,

(
2
0

)}
.

Theorem 448. Theorem 431 holds if L is a type 1 triangle.

Proof. Let

u1 :=

(
2
0

)
, u2 :=

(
0
2

)
, u3 :=

(
0
0

)
,

v1 :=

(
1
1

)
, v2 :=

(
0
1

)
, v3 :=

(
1
0

)
.

Since (by assumption of Theorem 431) we have

∀i ∈ [l] : S ∩ P= (Ai,∗, bi)I = ∅,

we conclude by convexity of L that for every i ∈ [3], at most one of

•
(
relint

(
conv

{
ui, vi

}))
∩ S 6= ∅,

•
(
relint

(
conv

{
vi, ui+31

}))
∩ S 6= ∅

holds. In other words: for every i ∈ [3], we have at least one of

•
(
relint

(
conv

{
ui, vi

}))
∩ S = ∅,

•
(
relint

(
conv

{
vi, ui+31

}))
∩ S = ∅.

This in particular implies (by case distinction) that at least one of

∃i ∈ [3] :
(
relint

(
conv

{
vi−31, ui

}))
∩ S = ∅ ∧

(
relint

(
conv

{
vi, ui+31

}))
∩ S = ∅, (10.12)

∃i ∈ [3] :
(
relint

(
conv

{
ui−31, vi−31

}))
∩ S = ∅ ∧

(
relint

(
conv

{
ui, vi

}))
∩ S = ∅ (10.13)

holds. By applying

f1 : R2 → R2 :

x 7→
(

0 1
1 0

)
x

to L and S in the case of (10.13) (by Lemma 441, it su�ces to prove the statement for f1 (L) = L and f1 (S)),
we can assume that (10.12) holds. For the sake of exactness, let

S′ :=

{
S in the �rst case,

f1 (S) in the second case.
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10.5. Proof of Theorem 431 for L in standard form

In Lemma 441, we saw that it su�ces to prove the statement for L and S′. Let i∗ ∈ [3] be an i for which the
inner condition of (10.12) holds with respect to S′. De�ne

f2 : R2 → R2 :

x 7→



x if i∗ = 1,(
0 1

−1 −1

)
x+

(
0

2

)
if i∗ = 2,(

−1 −1

1 0

)
x+

(
2

0

)
if i∗ = 3.

Again, it su�ces to prove the statement for f2 (L) = L and S′′ := f2 (S′). By the transformation f2, (10.12)
holds for i = 1 with respect to S′′; thus,(

relint
(
conv

{
v1−31, u1

}))
∩ S′′ = ∅ ∧

(
relint

(
conv

{
v1, u1+31

}))
∩ S′′ = ∅

⇔
(
relint

(
conv

{
v3, u1

}))
∩ S′′ = ∅ ∧

(
relint

(
conv

{
v1, u2

}))
∩ S′′ = ∅

⇔
(

relint

(
conv

{(
1
0

)
,

(
2
0

)}))
∩ S′′ = ∅ ∧

(
relint

(
conv

{(
1
1

)
,

(
0
2

)}))
∩ S′′ = ∅.

Thus, by Lemma 447, the statement holds for L = (f2 ◦ f1) (L) and S′′. So, the statement can be concluded
from Lemma 441.

10.5.3. Type 2 triangles

x2

−2

−1

1

2

3

x1
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3

Figure 10.8.: Situation for type 2 triangles: case 1

In the following lemma (Lemma 449)

• (10.14) and (10.15) hold by (10.1) and (10.2),

• (10.16), (10.17), (10.18) and (10.19) hold by Lemma 442 (equations (10.6), (10.7), (10.4) and (10.5)).

Lemma 449. Let L = P≤ (A, b) be a type 2 triangle in standard description. Let L = conv
{
v1, . . . , v3

}
be such that for all i ∈ [3], we have L ∩ P= (Ai,∗, bi) = conv

{
vi, vi+31

}
, where the points v1, . . . , v3 are in

counter-clockwise order. Then (see Figure 10.8)

P≤
((

1 0
−1 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc1(e2,1,e2,1,0,0)

⊆ P≥ (A2,∗, b2) , (10.14)

P≤
((

1 0
−1 1

)
,

(
0
0

))
︸ ︷︷ ︸

=Dc1(e2,1,e2,1,0,0)

∩L = conv

{(
0
0

)
, v3

}
,
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10. Embedding two-dimensional lattice-free bodies into disjunctions

P≤
((

1 0
1 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc2(e2,1,e2,1,0,0)

⊆ P≥ (A2,∗, b2) , (10.15)

P≤
((

1 0
1 −1

)
,

(
0
−1

))
︸ ︷︷ ︸

=Dc2(e2,1,e2,1,0,0)

∩L = conv

{
v2,

(
0
1

)}
,

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc3(e2,1,e2,1,0,0)

⊆ P≥ (A3,∗, b3) , (10.16)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc3(e2,1,e2,1,0,0)

∩P= (A3,∗, b1) =

{(
1
0

)}
, (10.17)

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc4(e2,1,e2,1,0,0)

⊆ P≥ (A1,∗, b1) , (10.18)

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc4(e2,1,e2,1,0,0)

∩P= (A1,∗, b1) =

{(
1
1

)}
. (10.19)
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Figure 10.9.: Situation for type 2 triangles: case 2

In the following lemma (Lemma 450)

• (10.25) and the inclusion Dc
4

((−1
0

)
,
(−1
−1

)
,−1,−2

)
⊆ P≥ (A2,∗, b2) in (10.24) hold by (10.1) and (10.2),

• (10.20), (10.21), (10.22) and (10.23) hold by Lemma 442 (equations (10.4), (10.5), (10.6) and (10.7)).

Lemma 450. Let L = P≤ (A, b) be a type 2 triangle in standard description. Let L = conv
{
v1, . . . , v3

}
be such that for i ∈ [3], we have L ∩ P= (Ai,∗, bi) = conv

{
vi, vi+31

}
, where the points v1, . . . , v3 are in

counter-clockwise order. Additionally, let
A1,1 ≤ A1,2.

Then (see Figure 10.9)

P≤
((
−1 0
0 −1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc1

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
⊆ P≥ (A1,∗, b1) , (10.20)
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10.5. Proof of Theorem 431 for L in standard form

P≤
((
−1 0
0 1

)
,

(
−1
−1

))
︸ ︷︷ ︸

=Dc1

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
∩L =

{(
1
1

)}
, (10.21)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc2

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
⊆ P≥ (A3,∗, b3) , (10.22)

P≤
((
−1 0
0 1

)
,

(
−1
0

))
︸ ︷︷ ︸

=Dc2

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
∩L =

{(
1
0

)}
, (10.23)

P≤
((

1 0
−1 −1

)
,

(
0
−2

))
︸ ︷︷ ︸

=Dc3

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
⊆ P≥ (A1,∗, b1) , P≥ (A2,∗, b2) , (10.24)

P≤
((

1 0
−1 −1

)
,

(
0
−2

))
︸ ︷︷ ︸

=Dc3

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
∩L =


∅ if A1,1 < A1,2,(

0

2

)
if A1,1 = A1,2,

P≤
((

1 0
1 1

)
,

(
0
1

))
︸ ︷︷ ︸

=Dc4

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
⊆ P≥ (A2,∗, b2) , (10.25)

P≤
((

1 0
1 1

)
,

(
0
1

))
︸ ︷︷ ︸

=Dc4

((
−1
0

)
,
(−1
−1

)
,−1,−2

)
∩P= (A2,∗, b2) = conv

{(
0
0

)
, v3

}
.

Theorem 451. Theorem 431 holds if L = P≤ (A, b) is a type 2 triangle in standard description.

Proof. It is easy to check that

v2 :=

(
0

1 +
A1,1

A1,2

)
, v3 :=

(
0

A3,1

A3,2

)
(10.26)

are vertices of L and we have {
v2
}

= P= (A1,∗, b1) ∩ P= (A2,∗, b2) ,{
v3
}

= P= (A2,∗, b2) ∩ P= (A3,∗, b3) .

By convexity of S and S ∩ P= (A2,∗, b2)I = ∅, there can exist at most one z∗ ∈ Z such that

S ∩ L ∩
{(

0
z∗ + λ

)
: λ ∈ (0, 1)

}
6= ∅. (10.27)

If no such z∗ exists, we set w.l.o.g. z∗ := 0. From (10.26), (10.27) and Remark 438, we immediately obtain⌊
A3,1

A3,2

⌋
≤ z∗ ≤

⌈
A1,1

A1,2

⌉
.

We �rst note that, by Lemma 441, it su�ces to prove Theorem 431 for L′ = f (L), where f is an a�ne-
unimodular map. We distinguish three cases:

1.
⌊
A3,1

A3,2

⌋
+ 1 ≤ z∗ ≤

⌈
A1,1

A1,2

⌉
− 1,

2. z∗ =
⌈
A1,1

A1,2

⌉
,

3. z∗ =
⌊
A3,1

A3,2

⌋
.
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10. Embedding two-dimensional lattice-free bodies into disjunctions

In the third case, we mirror L and S at the line
{
x ∈ R2 : x2 = 1

2

}
, i.e. we apply the a�ne-unimodular map

f : R2 → R2,

x 7→
(

1 0
0 −1

)
x+

(
0
1

)
.

Then, using Lemma 63, we have:

f (L) = P≤


 A1,1 A1,2

−1 0
A3,1 A3,2


︸ ︷︷ ︸

=A

(
1 0
0 −1

)−1

,

 A1,1 +A1,2

0
A3,1


︸ ︷︷ ︸

=b

+

 A1,1 A1,2

−1 0
A3,1 A3,2


︸ ︷︷ ︸

=A

(
1 0
0 −1

)−1(
0
1

)
= P≤

 A3,1 −A3,2

−1 0
A1,1 −A1,2

 ,

 A3,1 −A3,2

0
A1,1


=: P≤ (A′, b′) .

It is easy to check, using Lemma 441, that P≤ (A′, b′) is in standard description. Additionally, we have for
z ∈ Z\ {0}:

f (S) ∩ f (L) ∩

{(
0⌈

A′1,1
A′1,2

⌉
+ z + λ

)
: λ ∈ (0, 1)

}

=f (S) ∩ f (L) ∩ f

({(
0

−
(⌈

A′1,1
A′1,2

⌉
+ z
)

+ (1− λ)

)
: λ ∈ (0, 1)

})

=f (S) ∩ f (L) ∩ f

({(
0

−
(⌈

A′1,1
A′1,2

⌉
+ z
)

+ λ

)
: λ ∈ (0, 1)

})

=f

(
S ∩ L ∩

{(
0

−
(⌈

A′1,1
A′1,2

⌉
+ z
)

+ λ

)
: λ ∈ (0, 1)

})
(f bijective)

=f

(
S ∩ L ∩

{(
0

−
(⌈
−A3,1

A3,2

⌉
+ z
)

+ λ

)
: λ ∈ (0, 1)

})

=f

(
S ∩ L ∩

{(
0⌊

A3,1

A3,2

⌋
− z + λ

)
: λ ∈ (0, 1)

})
=∅. (by (10.27) and case assumption)

So, we have reduced the statement for f (S) and f (L) to case 2 (since we showed that if z′ ∈ Z\
{
A′1,1
A′1,2

}
,

we have

f (S) ∩ f (L) ∩
{(

0
z′ + λ

)
: λ ∈ (0, 1)

}
= ∅)

and we thus only have to consider case 1 and 2.

For case 1 and 2: Let

z∗∗ :=

{
z∗ in case 1,⌈
A1,1

A1,2

⌉
− 1 in case 2

and consider the map

f : R2 → R2 :

x 7→
(

1 0
z∗∗ 1

)
x+

(
0
−z∗∗

)
.
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10.5. Proof of Theorem 431 for L in standard form

We �rst note that in case 1, we have

∀z ∈ Z\ {0} : f (S) ∩ f (L) ∩
{(

0
z + λ

)
: λ ∈ (0, 1)

}
= ∅ (10.28)

and in case 2, we have

∀z ∈ Z\ {1} : f (S) ∩ f (L) ∩
{(

0
z + λ

)
: λ ∈ (0, 1)

}
= ∅. (10.29)

W.l.o.g. we only show (10.28): Let z ∈ Z\ {0}. Then

f (S) ∩ f (L) ∩
{(

0
z + λ

)
: λ ∈ (0, 1)

}
=f (S) ∩ f (L) ∩ f

({(
0

z + z∗∗ + λ

)
: λ ∈ (0, 1)

})
=f

(
S ∩ L ∩

{(
0

z + z∗∗ + λ

)
: λ ∈ (0, 1)

})
(f bijective)

=∅. (by (10.27))

By Lemma 441, it su�ces to prove the statement for f (L) and f (S). We note that also f (S) and f (L)
satisfy the prerequisites of Theorem 431 and we have

f (L) =P≤


 A1,1 A1,2

−1 0
A3,1 A3,2


︸ ︷︷ ︸

=A

(
1 0
z∗∗ 1

)−1

,

 A1,1 +A1,2

0
A3,1


︸ ︷︷ ︸

=b

+

 A1,1 A1,2

−1 0
A3,1 A3,2


︸ ︷︷ ︸

=A

(
1 0
z∗∗ 1

)−1(
0
−z∗∗

)
=P≤

 A1,1 A1,2

−1 0
A3,1 A3,2

( 1 0
−z∗∗ 1

)
,

 A1,1 +A1,2

0
A3,1

+

 A1,1 A1,2

−1 0
A3,1 A3,2

( 1 0
−z∗∗ 1

)(
0
−z∗∗

)
=P≤

 A1,1 − z∗∗A1,2 A1,2

−1 0
A3,1 − z∗∗A3,2 A3,2

 ,

 A1,1 + (1− z∗∗)A1,2

0
A3,1 − z∗∗A3,2


=:P≤ (A′, b′) .

By de�nition, we have A′1,2 > 0 and A′3,2 < 0. What remains to be shown is A′1,1, A
′
3,1 > 0:

For A′1,1 > 0:

A′1,1 = A1,1 − z∗∗A1,2

=

(
A1,1

A1,2
−
(⌈

A1,1

A1,2

⌉
− 1

))
︸ ︷︷ ︸

>0

A1,2︸︷︷︸
>0

+

((⌈
A1,1

A1,2

⌉
− 1

)
− z∗∗

)
A1,2

>

((⌈
A1,1

A1,2

⌉
− 1

)
− z∗∗

)
︸ ︷︷ ︸

≥0

A1,2︸︷︷︸
>0
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10. Embedding two-dimensional lattice-free bodies into disjunctions

≥ 0.

For A′3,1 > 0:

A′3,1 = A3,1 − z∗∗A3,2

=

(
A3,1

A3,2
−
(⌊

A3,1

A3,2

⌋
+ 1

))
︸ ︷︷ ︸

<0

A3,2︸︷︷︸
<0

+

((⌊
A3,1

A3,2

⌋
+ 1

)
− z∗∗

)
A3,2

>

((⌊
A3,1

A3,2

⌋
+ 1

)
− z∗∗

)
︸ ︷︷ ︸

≤0

A3,2︸︷︷︸
<0

≥ 0.

Thus, by Theorem 437, P≤ (A′, b′) is again a type 2 triangle in standard description. Because of (10.28) or
(10.29), respectively, the statement holds by Lemma 449 (case 1) or Lemma 450 (case 2), respectively.

10.5.4. Type 3 triangles

Theorem 452. Theorem 431 holds if L = P≤ (A, b) is a type 3 triangle in standard description.

Proof. By Remark 439, the condition (10.8) is equivalent to A3,1 > A3,2. If this is the case, the statement
is an immediate consequence of Lemma 443. On the other hand, if A3,1 < A3,2, we can use Lemma 444 and
Lemma 441 to reduce the statement to Lemma 443 again.

10.5.5. Quadrilaterals

Theorem 453. Theorem 431 holds if L = P≤ (A, b) is a quadrilateral in standard description.

Proof. Let u1, . . . , u4, v1, . . . , v4 be as in Lemma 445 (with respect to L). If we have

A4,1 < A4,2 ∨
(
A4,1 = A4,2 ∧

(
conv

{
v4, u4

})
∩ S = ∅

)
,

the statement is an immediate consequence of Lemma 445. So, we assume that either

• A4,1 > A4,2 or

• A4,1 = A4,2 ∧
(
conv

{
v4, u4

})
∩ S 6= ∅

holds. Consider

f : R2 → R2 :

x 7→
(

0 1
1 0

)
x.

Then, by Lemma 441, we have

L′ := f (L) = P≤




A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

A4,1 A4,2

( 0 1
1 0

)
, b

 = P≤




A3,2 A3,1

A2,2 A2,1

A1,2 A1,1

A4,2 A4,1

 ,


b3
b2
b1
b4


 =: P≤ (A′, b′) .

By Theorem 437, P≤ (A′, b) is a lattice-free quadrilateral in standard description. If we have A4,1 > A4,2, we
conclude A′4,1 < A′4,2; thus, the statement holds by Lemma 445 for f (S) and L′.
On the other hand, if A4,1 = A4,2 (from which we conclude A′4,1 = A′4,2), we have

(
conv

{
u4, v1

})
∩ S = ∅,

since if there exist s1 ∈
(
conv

{
v4, u4

})
∩S (by case assumption) and s2 ∈

(
conv

{
u4, v1

})
∩S, we immediately

conclude u4 ∈ S. But we also have u4 ∈ (bdL)I � a contradiction to the conditions on S and L in Theorem
431.
Let u′1, . . . , u′4, v′1, . . . , v′4 be the points u1, . . . , u4, v1, . . . , v4 from Lemma 445 for L′. It is easy to check

that

258



10.6. Proof of Theorem 434 for L in standard form

• f
(
v4
)

= v′1,

• f
(
v1
)

= v′4,

• f
(
u4
)

= u′4.

We thus get:
A′4,1 = A′4,2 ∧

(
conv

{
v′4, u′4

})
∩ f (S) = ∅.

So, we again conclude from Lemma 445 that the statement holds for f (S) and L′. Finally, we conclude from
Lemma 441 that if the statement holds for f (S) and L′ (which we just proved), it also holds for S and L.

10.6. Proof of Theorem 434 for L in standard form

In this section we consider the �ve di�erent cases for a lattice-free L in standard form (cf. Theorem 437):

• Split set: section 10.6.1, Theorem 454,

• Type 1 triangle: section 10.6.2, Theorem 455,

• Type 2 triangle: section 10.6.3, Theorem 456,

• Type 3 triangle: section 10.6.4, Theorem 457,

• Quadrilateral: section 10.6.5, Theorem 458

and prove that in each of them, Theorem 434 holds. Recall that we saw at the end of section 10.3 that this
su�ces to prove Theorem 434.

10.6.1. Split sets

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

1 2

(a) Situation for split sets: case 1

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

1 2

(b) Situation for split sets: case 2

Figure 10.10.: Situation for split sets

Theorem 454. Theorem 434 holds if L is a split set in standard form.

259



10. Embedding two-dimensional lattice-free bodies into disjunctions

Proof. If j∗ = 1, we have (see Figure 10.10a)

P≥ (A1,∗, b1) = P≤
((
e2,1
)T
, 0
)

= DT
1

(
e2,1, e2,2, 0, 0

)
,⋃

j∈[2]\{1}

P≥ (Aj,∗, bj) = P≥ (A2,∗, b2)

= P≥
((
e2,1
)T
, 1
)

⊇ P≥
((
−1 0
0 1

)
,

(
−1
0

))
∪ P≥

((
−1 0
0 −1

)
,

(
−1
−1

))
= DT

2

(
e2,1, e2,2, 0, 0

)
∪DT

3

(
e2,1, e2,2, 0, 0

)
=

⋃
i∈[3]\{1}

DT
i

(
e2,1, e2,2, 0, 0

)
.

On the other hand, if j∗ = 2, we have (see Figure 10.10b)

P≥ (A2,∗, b2) = P≤
((
−e2,1

)T
,−1

)
= DT

1

(
−e2,1, e2,2,−1, 0

)
,⋃

j∈[2]\{2}

P≥ (Aj,∗, bj) = P≥ (A1,∗, b1)

= P≥
((
e2,1
)T
, 1
)

⊇ P≥
((

1 0
0 1

)
,

(
0
0

))
∪ P≥

((
1 0
0 −1

)
,

(
0
−1

))
= DT

2

(
−e2,1, e2,2,−1, 0

)
,∪DT

3

(
−e2,1, e2,2,−1, 0

)
=

⋃
i∈[3]\{1}

DT
i

(
−e2,1, e2,2,−1, 0

)
.

10.6.2. Type 1 triangles

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

1
2

3

Figure 10.11.: Situation for type 1 triangles

Theorem 455. Theorem 434 holds if L = P≤ (A, b) is a type 1 triangle in standard description.
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10.6. Proof of Theorem 434 for L in standard form

Proof. We have (see Figure 10.11)

DT
1

(
e2,1, e2,2, 0, 0

)
=
{
x ∈ R2 : x1 ≤ 0

}
= P≥ (A2,∗, b2) , (10.30)

DT
2

(
e2,1, e2,2, 0, 0

)
=
{
x ∈ R2 : x1 ≥ 1 ∧ x2 ≤ 0

}
⊆
{
x ∈ R2 : x2 ≤ 0

}
= P≥ (A3,∗, b3) , (10.31)

DT
3

(
e2,1, e2,2, 0, 0

)
⊆ P≥ (A1,∗, b1) . (10.32)

(10.30) and (10.31) are obvious. For (10.32): let x ∈ DT
3

(
e2,1, e2,2, 0, 0

)
. Then x1 ≥ 1 and x2 ≥ 1. So

x1 + x2 ≥ 1 + 1 = 2. Thus, x ∈ P≥
((

1 1
)
, 2
)

= P≥ (A1,∗, b1).
So from (10.30)-(10.32), we conclude

P≥ (A2,∗, b2) = DT
1

(
e2,1, e2,2, 0, 0

)
,⋃

j∈[3]\{2}

P≥ (Aj,∗, bj) ⊇
⋃

i∈[3]\{1}

DT
i

(
e2,1, e2,2, 0, 0

)
.

10.6.3. Type 2 triangles

x2

−2

−1

1

2

3

x1
−2 −1 1 2 3

1

3

2

1

2

3

Figure 10.12.: Situation for type 2 triangles

Theorem 456. Theorem 434 holds if L is a type 2 triangle in standard form.

Proof. (See Figure 10.12) Using Lemma 442, we get

DT
1

(
e2,1, e2,2, 0, 0

)
=
{
x ∈ R2 : x1 ≤ 0

}
= P≥ (A2,∗, b2) ,

DT
2

(
e2,1, e2,2, 0, 0

)
=
{
x ∈ R2 : x1 ≥ 1 ∧ x2 ≤ 0

}
⊇ P≥ (A3,∗, b3) ,

DT
3

(
e2,1, e2,2, 0, 0

)
=
{
x ∈ R2 : x1 ≥ 1 ∧ x2 ≥ 1

}
⊇ P≥ (A1,∗, b1) .

Thus,

P≥ (A2,∗, b2) = DT
1

(
e2,1, e2,2, 0, 0

)
,⋃

j∈[3]\{2}

P≥ (Aj,∗, bj) ⊇
⋃

i∈[3]\{1}

DT
i

(
e2,1, e2,2, 0, 0

)
.

10.6.4. Type 3 triangles

Theorem 457. Theorem 434 holds if L = P≤ (A, b) is a type 3 triangle in standard description.

Proof. By Remark 439, the condition (10.8) is equivalent to A3,1 > A3,2. If this is the case, the statement
is an immediate consequence of Lemma 443. On the other hand, if A3,1 < A3,2 (recall that by Remark 439,
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10. Embedding two-dimensional lattice-free bodies into disjunctions

the situation A3,1 = A3,2 cannot happen), we can use Lemma 444 and Lemma 441 to reduce the statement
to Lemma 443 again.

10.6.5. Quadrilaterals

Theorem 458. Theorem 434 holds if L = P≤ (A, b) is a quadrilateral in standard description.

Proof. If A4,1 ≤ A4,2 (equation (10.9)), the statement holds by Lemma 445. On the other hand, if A4,1 > A4,2,
let

f : R2 → R2 :

x 7→
(

0 1
1 0

)
x.

Then, by Lemma 441, we have

L′ := f (L)

= P≤




A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

A4,1 A4,2

( 0 1
1 0

)
,


b1
b2
b3
b4




= P≤




A3,2 A3,1

A2,2 A2,1

A1,2 A1,1

A4,2 A4,1

 ,


b3
b2
b1
b4




=: P≤ (A′, b′) .

Thus, by Theorem 437, P≤ (A′, b) is a lattice-free quadrilateral in standard description and we have A′4,1 <
A′4,2; thus, the statement holds by Lemma 445 for L′. So, we conclude from Lemma 441 that the statement
also holds for L = f−1 (f (L)) = f−1 (L′).
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11. Characterizing L2,Q cuts/closure and
essential L2−1

2 ,Q
cuts/closure via

disjunctions

The central goal of this section is to give an alternative characterization of the L2,Q closure (in section 11.1)
and the essential L2− 1

2 ,Q
closure (in section 11.2).

• The goal of section 11.1 is to establish the equivalence between the L2,Q closure clL2,Q (P ) and the
crooked cross closure clCC (P ) for P ⊆ Rm × Rn (m,n ∈ Z≥0) in the situation that P is either

� a rational polyhedron,

� convex and projR2 P be full-dimensional or

� convex and compact.

Note that parts of these statements have already been shown in [DDG11].

For the structure of section 11.1:

� In section 11.1.1, Theorem 459, we show the statement for m = 2.

� In section 11.1.2, Theorem 461, we generalize this to arbitrary m ∈ Z≥2 by showing that in this
case, we have clCC (P ) ⊆ clL2,Q (P ).

� In section 11.1.3, Theorem 462, we show the equivalence of the L2,Q closure clL2,Q (P ) and the
crooked cross closure clCC (P ) under the stated conditions on P .

� In section 11.1.4, Theorem 464, we show that we can replace �conv� by �conv� in the de�nition
of the crooked cross closure clCC (P ) (cf. De�nition 148) if P is either a rational polyhedron or
convex and compact.

• The goal of section 11.2 is to show that for rational polyhedra, the essential L2− 1
2 ,Q

closure is equivalent
the intersection of the essential T closure and the essential crooked cross closure. We use this statement
to give an alternative characterization of the L2− 1

2 ,Q×Q
closure of a rational polyhedron (which, by

Theorem 193, is equivalent to its L2− 1
2 ,Q×R

closure).

The structure of section 11.2 is the following:

� In section 11.2.1, we de�ne essential T cuts and essential crooked cross cuts (De�nition 465) and
their respective closures (De�nition 466).

� In section 11.2.2, Theorem 470, we show that for a rational polyhedron P ⊆ R2 × Rn (n ∈ Z≥0),
we have

clessCC (P ) ∩ clessT (P ) ⊆ clessL
2− 1

2
,Q

(P ) .

� In section 11.2.3, Theorem 471, we extend this result to arbitrary rational polyhedra P ⊆ Rm×Rn
(m ∈ Z≥2 and n ∈ Z≥0).

� In section 11.2.4, we consider the other direction of inclusions: in Theorem 472, we show that for
an arbitrary P ⊆ Rm × Rn (m ∈ Z≥2 and n ∈ Z≥0), we have

clessL
2− 1

2
,Q

(P ) ⊆ clessCC (P ) ∩ clessT (P ) .

In Theorem 473, we use this to show that if P is a rational polyhedron, we have

clL
2− 1

2
,Q×Q

(P ) ⊆ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) .

263
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2 ,Q

cuts/closure via disjunctions

� In section 11.2.5, we �nally conclude that for rational polyhedra P ⊆ Rm × Rn (with obvious
conditions on m and n), we have

clessL
2− 1

2
,Q

(P ) = clessT (P ) ∩ clessCC (P ) , (Theorem 474)

clL
2− 1

2
,Q×Q

(P ) = clL
2− 1

2
,Q×R

(P ) = clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) . (Theorem 475)

11.1. L2,Q closure

11.1.1. m = 2

We want to mention that the following cases that occur in the next theorem (Theorem 459) are well-known
in the literature:

• The case that P is a rational polyhedron of the form
(
R2 × Rn≥0

)
∩ P=

((
A G

)
, b
)
is shown in

[DDG11, Lemma 2.1]. Despite this restriction, the proof given there is easy to extend to arbitrary
rational polyhedra.

• The case that P is convex and compact is shown in [DDG11, Theorem 5.1].

So, only the case �P is convex and projR2 P is full-dimensional� has to our knowledge not yet been considered
in the literature. We remark that both of these proofs from [DDG11] depend on results that are shown in
[DDG12].

Theorem 459. Let P ⊆ R2 × Rn (n ∈ Z≥0) be

1. a rational polyhedron,

2. convex and projR2 P be full-dimensional or

3. convex and compact,

respectively, and let

1. c ( · ) ≥ c0, where c ∈
(
Q2 ×Qn

)T
, be a valid inequality for PI ,

2. c ( · ) ≥ c0, where c ∈
(
R2 × Rn

)T
, be a valid inequality for PI or

3. c ( · ) > c0, where c ∈
(
R2 × Rn

)T
, be a valid strict inequality for PI ,

respectively. Let P ∩P< (c, c0) 6= ∅. Then there exists a crooked cross disjunction Dc
(
π1, π2, γ1, γ2

)
such that

c ( · ) ≥ c0 is a valid inequality for P ∩Dc
(
π1, π2, γ1, γ2

)
. In particular, we have

clCC (P ) = clI (P ) (11.1)

in case 1 and 3 and, if P is closed, also in case 2. In all three cases, the more general identities

clCC (P ) ⊆ clI (P ) , (11.2)

clCC (P ) = P ∩ clI (P ) (11.3)

hold.

Remark 460. In case 2 of Theorem 459, in general only identity (11.2), but not the stronger identity (11.1),
holds if P is not closed. For this, consider

P :=

{(
x
y

)
∈ R2 × R1 : y1 < 1

}
.

It is easy to check that

clI (P ) =

{(
x
y

)
∈ R2 × R1 : y1 ≤ 1

}
.

So, we have using (11.3):
clCC (P ) = P ∩ clI (P ) = P ( clI (P ) .

Proof. (Theorem 459)
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11.1. L2,Q closure

For the �rst part: De�ne R := P ∩ P< (c, c0) 6= ∅. By Theorem 231, Theorem 233 or Theorem 234,
respectively, there exists a full-dimensional maximal lattice-free body L ⊆ Rm which satis�es

projRm R ⊆ (intL) ∪̇ ((bdL) \ (bdL)I) .

Thus, by Theorem 431, there exists a crooked cross disjunction Dc
(
π1, π2, γ1, γ2

)
having

(projRm R) ∩Dc
(
π1, π2, γ1, γ2

)
= ∅. (11.4)

From (11.4), we obtain
projR2

(
P ∩ P< (c, c0)

)
∩Dc

(
π1, π2, γ1, γ2

)
= ∅

and thus
P ∩ P< (c, c0) ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

)
= ∅.

This means that c ( · ) ≥ c0 is a valid inequality for P ∩Dc
(
π1, π2, γ1, γ2

)
.

For (11.1): In case 1, note that (cf. Theorem 75) clI (P ) is a rational polyhedron and thus closed. So, every
inequality for PI is dominated absolutely by a �nite set of linear inequalities with rational coe�cients. In case
3, note that, because P is convex and compact, we have clI (P ) ⊆ P . Let c′ ( · ) ≥ c′0 be a valid inequality for
PI . In the �rst part of this proof, we proved that for every ε > 0, c′ ( · ) ≥ c′0 − ε is a crooked cross cut for P .
Thus, c′ ( · ) ≥ c′0 is valid for clCC (P ). In case 2, (11.1) holds by de�nition.

For (11.2): For clI (P ) ⊆ clCC (P ), consider that, since P is closed and convex, we have clI (P ) ⊆ P . Also
note that for every crooked cross cut c ( · ) ≥ c0 for P (c ∈ (Rm × Rn)

T and c0 ∈ R), we have

clI (P ) ⊆ P≥ (c, c0) .

Thus,
clI (P ) ⊆ clCC (P ) .

For (11.3): By (11.2), we have clCC (P ) ⊆ clI (P ). Additionally, by de�nition, we have clI (P ) ⊆ P . Thus,
clCC (P ) ⊆ P ∩ clI (P ). For the inclusion clCC (P ) ⊇ P ∩ clI (P ), it su�ces to consider case 2, since by (11.1),
the statement holds in case 1 and 3. We saw that in this case, every valid inequality for PI is a crooked cross
cut for P . Thus,

P ∩ clI (P ) = P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:

PI⊆P≤(c,c0)

P≤ (c, c0)

= P ∩
⋂

c∈(Rm×Rn)T ,c0∈R:
c( · )≤c0 crooked cross cut for P

P≤ (c, c0)

= clCC (P ) .

Now we consider that the conditions of Theorem 459 that are imposed on P are necessary by presenting
an example P ( R2 that is convex and closed, but not a rational polyhedron, full-dimensional or bounded,
where we have clI (P ) = clI (P ) = clL2,Q (P ) ( clCC (P ). For this, let us recall Theorem 255:

Theorem 255. Let t ∈ Z≥0, π
1, . . . , πt ∈ Z2 and γ1, . . . , γt ∈ Z. Then

conv
(
P 114 ∩D

(
π1, . . . , πt, γ1, . . . , γt

))
= P 114. (5.21)

In particular, for all parametric cross disjunctions Dt′
(
π1, π2, γ1, γ2

)
(cf. De�nition 150) with respect to

some t′ ∈ Z (this includes crooked cross disjunctions), we have:

conv
(
P 114 ∩Dt′

(
π1, π2, γ1, γ2

))
= P 114. (5.22)

On the other hand,
(
02
)T

( · ) ≤ −1 is an L2,Q cut for P 114.
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11.1.2. m ≥ 2

We already stated that some of the cases in Theorem 459 are well-known in the literature. A similar statement
also holds for following theorem (Theorem 461):

• The case that P is rational polyhedron of the form
(
Rm × Rn≥0

)
∩P=

((
A G

)
, b
)
is shown in [DDG11,

Theorem 3.1]. Despite this restriction, the proof given there is easy to extend to arbitrary rational
polyhedra.

• The case that P convex and compact is shown in [DDG11, Proposition 5.2].

So, only the case that P is convex and projRm P is full-dimensional has to our knowledge not yet been
considered in the literature. We remark that the proofs in [DDG11] are not for L2,Q cuts, but for an implicit
version of 2-dimensional lattice cuts (cf. De�nition 175 and Theorem 176), even though the framework of
k-dimensional lattice cuts was only later on introduced in the literature ([DGMR17]; see section 4.2.2.2 for
details).

Theorem 461. Let P ⊆ Rm × Rn (m ∈ Z≥2 and n ∈ Z≥0) be

1. a rational polyhedron,

2. convex and projRm P be full-dimensional or

3. convex and compact,

respectively, and let

1. c ( · ) ≥ c0, where c ∈ (Qm ×Qn)
T
, be a valid L2,Q cut for P ,

2. c ( · ) ≥ c0, where c ∈ (Rm × Rn)
T
, be a valid L2,Q cut for P or

3. c ( · ) > c0, where c ∈ (Rm × Rn)
T
, be a valid strict L2,Q cut for P ,

respectively. Then there exists a crooked cross disjunction Dc
(
π1, π2, γ1, γ2

)
such that c ( · ) ≥ c0 is a valid

inequality for P ∩Dc
(
π1, π2, γ1, γ2

)
. In particular, we have

clCC (P ) ⊆ clL2,Q (P ) . (11.5)

Proof. Let W ∈ Zm×2 be as in the proof in section 5.2.3 and let

SLP :=


 x

y
z

 ∈ P × R2 : z = WTx

 ,

S := SLP ∩
(
Rm × Rn × Z2

)
(also as in the proof in section 5.2.3). Since c ( · ) ≥ c0 is valid for{(

x
y

)
∈ P :

(
w1
)T
x,
(
w2
)T
x ∈ Z

}
,

we have seen in the proof in section 5.2.3 that(
c(1,...,m)

(
Im −

(
W
(
WTW

)−1
)
WT

))
x+ c(m+1,...,m+n)y +

(
c(1,...,m)W

(
WTW

)−1
)
z ≥ c0 (11.6)

is valid for
(
x
y
z

)
∈ S ⊆ Rm × Rn × Z2. Thus, by Theorem 459, there exists a crooked cross disjunction

Dc
(
π1,pre, π2,pre, γ1, γ2

)
(π1,pre, π2,pre ∈ Z2 and γ1, γ2 ∈ Z) such that (11.6) is a valid inequality for

SLP ∩
(
Rm × Rn ×Dc

(
π1,pre, π2,pre, γ1, γ2

))
.

We claim that c ( · ) ≥ c0 is valid for P ∩
(
Dc
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
. For this, let(

x
y

)
∈ P ∩

(
Dc
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
.
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Then, using  x
y

WTx

 ∈ SLP ∩ (Rm × Rn ×Dc
(
π1,pre, π2,pre, γ1, γ2

))
,

we obtain

c

(
x
y

)
= c(1,...,m)

(
Im −W

(
WTW

)−1
WT

)
x+ c(m+1,...,m+n)y + c(1,...,m)W

(
WTW

)−1 (
WTx

)
≥ c0.

Finally for (11.5): for case 1, consider that, by Theorem 177,{(
x
y

)
∈ P :

(
w1
)T
x,
(
w2
)T
x ∈ Z

}
is a rational polyhedron if P is. So, it su�ces to consider linear inequalities c ( · ) ≥ c0 with rational coe�cients.
For case 3, one argues similarly to how we showed in the proof of Theorem 459 that (11.1) holds in case 3.

11.1.3. Conclusion

Again (see the remarks before Theorem 459 and Theorem 461), the following result (Theorem 462) is known
to be true

• in the case that P rational polyhedron of the form
(
Rm × Rn≥0

)
∩ P=

((
A G

)
, b
)
(cf. [DDG11,

Theorem 3.1]) and

• in the case that P is convex and compact (cf. [DDG11, Proposition 5.2]).

So, only the case that P is convex and projRm P is full-dimensional has to our knowledge not yet been
considered in the literature. Again, we remark that in the given literature reference, the results are shown for
2-dimensional lattice cuts.

Theorem 462. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 2) be either

• a rational polyhedron,

• convex and projRm P be full-dimensional or

• convex and compact.

Then
clL2,Q (P ) = clCC (P ) .

Proof. The inclusion clL2,Q (P ) ⊆ clCC (P ) is an immediate consequence of Corollary 279. On the other hand,
the inclusion clL2,Q (P ) ⊇ clCC (P ) clearly holds for m = 0 and is for m ≥ 2 a direct consequence of Theorem
461. So, we only have to show

clL2,Q (P ) ⊇ clCC (P ) (11.7)

for m = 1. In this case, we have

clL2,Q (P ) = clL1,Q (P ) = P ∩ clI (P ) .

By Theorem 409, if P is convex (which is the case here), every cutting plane for P is a split cut for P .
Let D (π, γ) be the corresponding split disjunction. Then, clearly, D (π, γ) = Dc

(
π, 01, γ, 0

)
, from which we

conclude that every cutting plane for P is a crooked cross cut for P , which implies (11.7).

11.1.4. Replacing conv by conv in the de�nition of the crooked cross closure

Recall that in De�nition 148, we de�ned the crooked cross closure as

clCC (P ) = P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
(11.8)
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and we saw in Example 149 that for a concrete rational polyhedron P ⊆ R2 and a concrete crooked cross
disjunction Dc

(
π1, π2, γ1, γ2

)
, the situation

conv
(
P ∩Dc

(
π1, π2, γ1, γ2

))
) conv

(
P ∩Dc

(
π1, π2, γ1, γ2

))
can occur. Thus, in comparison to the situation for the t-branch split closure and the integral lattice-free
closure (recall Theorem 140), it is much less obvious that we can simply replace �conv� by �conv� in (11.8).
Nevertheless, in the literature (see for example [DGM15]), the crooked cross closure is often de�ned as

clCC (P ) =
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
.

So, at the end of section 3.4.2.2, we gave an outlook that if P ⊆ Rm ×Rn (m,n ∈ Z≥0) is either a rational
polyhedron or convex and compact, these de�nitions are equivalent. This is the statement of Theorem 464,
which forms the center of this section. To show it, we buid on a related result that is shown in [DDG11]:

Theorem 463. ([DDG11, Theorem 3.1 and Proposition 5.2]) Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be either

• a rational polyhedron or

• convex and compact.

Then⋂
π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
=

⋂
π1,π2∈Zm

conv

{(
x
y

)
∈ P :

(
π1
)T
x ∈ Z,

(
π2
)T
x ∈ Z

}
.

Theorem 464. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be either

• a rational polyhedron or

• convex and compact.

Then
clCC (P ) =

⋂
π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
,

i.e. we can replace conv by conv in the de�nition of the crooked cross closure of P (recall De�nition 148).

Proof.

clCC (P ) = P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))

= P ∩
⋂

π1,π2∈Zm
conv

{(
x
y

)
∈ P :

(
π1
)T
x ∈ Z,

(
π2
)T
x ∈ Z

}
(by Theorem 462)

=
⋂

π1,π2∈Zm
conv

{(
x
y

)
∈ P :

(
π1
)T
x ∈ Z,

(
π2
)T
x ∈ Z

}
(P convex and closed)

=
⋂

π1,π2∈Zm
conv

{(
x
y

)
∈ P :

(
π1
)T
x ∈ Z,

(
π2
)T
x ∈ Z

}
(by Theorem 177)

=
⋂

π1,π2∈Zm,
γ1,γ2∈Z

conv
(
P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

))
. (by Theorem 463)
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11.2.1. Essential crooked cross closure and essential T closure

De�nition 465. Let DT
(
π1, π2, γ1, γ2

)
⊆ Rm (m ∈ Z≥0) be a T disjunction (cf. De�nition 433) and let

P ⊆ Rm×Rn be arbitrary. Then we call DT
(
π1, π2, γ1, γ2

)
essentially valid for P if there exists an i∗ ∈ [3]

such that
∀i ∈ [3] \ {i∗} : P ∩

(
DT
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅.

In a similar way, we call the crooked cross disjunction (cf. De�nition 146) Dc
(
π1, π2, γ1, γ2

)
⊆ Rm × Rn

essentially valid for P if there exists a i∗ ∈ [4] such that

∀i ∈ [4] \ {i∗} : P ∩
(
Dc
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅.

A valid linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T

and c0 ∈ R) for P ∩ DT
i∗
(
π1, π2, γ1, γ2

)
is called an

essential T cut and, similarly, a linear inequality for P ∩Dc
i∗
(
π1, π2, γ1, γ2

)
is called an essential crooked

cross cut.

De�nition 466. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. We de�ne

clessT (P ) := P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[3]:∀i∈[3]\{i∗}:

P∩(DTi (π1,π2,γ1,γ2)×Rn)=∅

⋂
c∈(Rm×Rn)T ,c0∈R:

P≤(c,c0)⊆P∩(DTi∗(π
1,π2,γ1,γ2)×Rn)

P≤ (c, c0) ,

clessCC (P ) := P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[4]:∀i∈[4]\{i∗}:

P∩(Dci (π
1,π2,γ1,γ2)×Rn)=∅

⋂
c∈(Rm×Rn)T ,c0∈R:

P≤(c,c0)⊆P∩(Dci∗(π
1,π2,γ1,γ2)×Rn)

P≤ (c, c0)

as the essential T closure of P and the essential crooked cross closure of P , respectively.

At the end of section 5.4.1, we already discussed the di�erences in the de�nitions of essential t, k-branch
split cuts vs essential T cuts/essential crooked cross cuts (De�nition 465). To recall the central points:

• The de�nition of t, k-branch split cuts makes it easier to prove analogues of results on Lk,Q cuts/closure vs
k, t-branch split cuts/closure for essential Lk− 1

2 ,Q
cuts/closure vs essential k, t-branch split cuts/closure.

• The de�nitions of essential T cuts and essential crooked cross cuts more closely mirror the characteri-
zation of essential Lk− 1

2 ,Q
cuts via lattice-free bodies that we gave in Theorem 246.

The following lemma is a very simple, but important observation:

Lemma 467. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) and let DT
(
π1, π2, γ1, γ2

)
⊆ Rm or Dc

(
π1, π2, γ1, γ2

)
⊆ Rm,

respectively, be given (π1, π2 ∈ Zm and γ1, γ2 ∈ Z). Let there exist an i∗ ∈ [3] or i∗ ∈ [4], respectively, such
that

∀i ∈ [3] \ {i∗} : P ∩
(
DT
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅

or

∀i ∈ [4] \ {i∗} : P ∩
(
Dc
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅,

respectively. Denote D := DT
i∗
(
π1, π2, γ1, γ2

)
or D := Dc

i∗
(
π1, π2, γ1, γ2

)
, respectively, and let c ( · ) ≤ c0 be

a valid linear inequality for P ∩ (D × Rn). Then

P ∩ (D × Rn) ⊆ P ∩ P≤ (c, c0) .

Proof. Let x ∈ P ∩(D × Rn). We clearly have x ∈ P . On the other hand, c ( · ) ≤ c0 is a valid linear inequality
for P ∩ (D × Rn). Thus, cx ≤ c0.

Remark 468. By Lemma 467, it su�ces to consider linear inequalities for DT
i∗
(
π1, π2, γ1, γ2

)
× Rn instead

of P ∩
(
DT
i∗
(
π1, π2, γ1, γ2

)
× Rn

)
and Dc

i∗
(
π1, π2, γ1, γ2

)
×Rn instead of P ∩

(
Dc
i∗
(
π1, π2, γ1, γ2

)
× Rn

)
as in

De�nition 465.

From De�nition 466, Lemma 467 and Remark 468, we immediately conclude:
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Lemma 469. Let P ⊆ Rm × Rn (m,n ∈ Z≥0) be arbitrary. Then

clessT (P ) := P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[3]:∀i∈[3]\{i∗}:

P∩(DTi (π1,π2,γ1,γ2)×Rn)=∅

⋂
c∈(Rm×Rn)T ,c0∈R:

P≤(c,c0)⊆P∩(DTi∗(π
1,π2,γ1,γ2)×Rn)

P≤ (c, c0)

= P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[3]:∀i∈[3]\{i∗}:

P∩(DTi (π1,π2,γ1,γ2)×Rn)=∅

(
DT
i∗
(
π1, π2, γ1, γ2

)
× Rn

)
,

clessCC (P ) := P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[4]:∀i∈[4]\{i∗}:

P∩(Dci (π
1,π2,γ1,γ2)×Rn)=∅

⋂
c∈(Rm×Rn)T ,c0∈R:

P≤(c,c0)⊆P∩(Dci∗(π
1,π2,γ1,γ2)×Rn)

P≤ (c, c0)

= P ∩
⋂

π1,π2∈Zm,
γ1,γ2∈Z

⋂
i∗∈[4]:∀i∈[4]\{i∗}:

P∩(Dci (π
1,π2,γ1,γ2)×Rn)=∅

(
Dc
i∗
(
π1, π2, γ1, γ2

)
× Rn

)
.

11.2.2. m = 2

Theorem 470. Let ∅ 6= P ⊆ R2 × Rn (n ∈ Z≥0) be a rational polyhedron. Then:

1. If PI = ∅, there exist linearly independent π1, π2 ∈ Zm and γ1, γ2 ∈ Z such that

P ∩
(
DT

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅ ∨ P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

)
= ∅.

2. If PI 6= ∅, let
(
c′ (0n)

T
)

( · ) ≥ c0, where c′ ∈
(
Q2
)T

and c0 ∈ R, be a valid inequality for(
P +

(
02 × Rn

))
I

= (projR2 P )I × R
n,

which is not already valid for P (the fact that we only consider inequalities of the type
(
c′ (0n)

T
)

( · ) ≥
c0 is, by Lemma 159, no loss of generality). Then there exist π1, π2 ∈ Z2 (π1, π2 linearly indepdendent),
γ1, γ2 ∈ Z and an i∗ ∈ [3] or i∗ ∈ [4], respectively, such that

∀i ∈ [3] \ {i∗} : P ∩
(
DT
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅,

DT
i∗
(
π1, π2, γ1, γ2

)
⊆ P≤ (c′, c0)

or

∀i ∈ [4] \ {i∗} : P ∩
(
Dc
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅,

Dc
i∗
(
π1, π2, γ1, γ2

)
⊆ P≤ (c′, c0) ,

respectively.

We thus have
clessT (P ) ∩ clessCC (P ) ⊆ clessL

2− 1
2
,Q

(P ) . (11.9)

Proof.

For 1: Since PI = ∅, by Theorem 241, there exists a full-dimensional rational maximal lattice-free polyhedron
L := P≤

(
AL, bL

)
⊆ R2 (AL ∈ Zl×2 and bL ∈ Zl, where l ∈ Z≥0) such that

∀j ∈ [l] : P ∩
(
P≥

(
ALj,∗, b

L
j

)
× Rn

)
= ∅.

Thus, by Theorem 434, there exist linearly independent π1, π2 ∈ Z2 and γ1, γ2 ∈ Z such that either⋃
j∈[l]

P≥
(
ALj,∗, b

L
j

)
⊇
⋃
i∈[3]

DT
i

(
π1, π2, γ1, γ2

)
= DT

(
π1, π2, γ1, γ2

)
or ⋃

j∈[l]

P≥
(
ALj,∗, b

L
j

)
⊇
⋃
i∈[4]

Dc
i

(
π1, π2, γ1, γ2

)
= Dc

(
π1, π2, γ1, γ2

)
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holds. So, we either have

P ∩
(
DT

(
π1, π2, γ1, γ2

)
× Rn

)
⊆ P ∩

⋃
j∈[l]

P≥
(
ALj,∗, b

L
j

)
× Rn

 = ∅

or

P ∩
(
Dc
(
π1, π2, γ1, γ2

)
× Rn

)
⊆ P ∩

⋃
j∈[l]

P≥
(
ALj,∗, b

L
j

)
× Rn

 = ∅.

For 2: Since PI 6= ∅, consider that, by Theorem 241, there exists a full-dimensional, rational, maximal
lattice-free polyhedron

L = P≤
((

AL

c′

)
,

(
bL

c̃0

))
⊆ Rm

(AL ∈ Zl×2 and bL ∈ Zl, where l ∈ Z≥0) having

• P ∩ P<
((

c′ (0n)
T
)
, c0

)
⊆ (intL)× Rn,

• ∀j ∈ [l] :
(
P≥

(
ALj,∗, b

L
j

)
× Rn

)
∩ P = ∅ and

• c̃0 ≥ c0.

Thus, by Theorem 434, there exist linearly independent π1, π2 ∈ Z2, γ1, γ2 ∈ Z and an i∗ ∈ [3] or i∗ ∈ [4],
respectively, such that either ⋃

j∈[l]

P≥
(
ALj,∗, b

L
j

)
⊇

⋃
i∈[3]\{i∗}

DT
i

(
π1, π2, γ1, γ2

)
,

P≥ (c′, c̃0) ⊇ DT
i∗
(
π1, π2, γ1, γ2

)
or ⋃

j∈[l]

P≥ (Aj,∗, bj) ⊇
⋃

i∈[4]\{i∗}

Dc
i

(
π1, π2, γ1, γ2

)
,

P≥ (c′, c̃0) ⊇ Dc
i∗
(
π1, π2, γ1, γ2

)
,

respectively, holds. Thus, in the �rst case (T disjunction), we obtain

∀i ∈ [3] \ {i∗} : P ∩DT
i

(
π1, π2, γ1, γ2

)
⊆ P ∩

⋃
j∈[l]

P≥
(
ALj,∗, b

L
j

)
= ∅

and
DT
i∗
(
π1, π2, γ1, γ2

)
⊆ P≥

((
c′ (0n)

T
)
, c̃0

)
⊆ P≥

((
c′ (0n)

T
)
, c0

)
.

The proof for the second case (crooked cross disjunction) is completely similar.

For (11.9): If PI = ∅, by 1,
(
02 × 0n

)T
( · ) ≤ −1 is either an essential T cut or an essential crooked cross

cut for P .
If PI 6= ∅, by Lemma 159, every essential L2− 1

2 ,Q
cut c ( · ) ≥ c0 satis�es cT ⊥ 02×Rn, thus c ∈

(
R2 × 0n

)T
.

On the other hand, clI
(
P +

(
02 × Rn

))
is a rational polyhedron. So, every essential L2− 1

2 ,Q
cut for P is

dominated absolutely by a �nite set of essential L2− 1
2 ,Q

cuts for P with rational coe�cients. So, we can

assume c ∈
(
Q2 × 0n

)T
and conclude the statement from 2.

11.2.3. m ≥ 2

Theorem 471. Let ∅ 6= P ⊆ Rm × Rn (m ∈ Z≥0, n ∈ Z≥0) be a rational polyhedron. Let V ′ ≤ Rm be a
rational subspace of codimension 2. De�ne V := V ′ × Rn. Then:

1. If (P + V )I = ∅, there exist linearly independent π1, π2 ∈ Zm and γ1, γ2 ∈ Z such that π1, π2 ⊥ V ′ and

P ∩
(
DT

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅ ∨ P ∩

(
Dc
(
π1, π2, γ1, γ2

)
× Rn

)
= ∅.
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2. If (P + V )I 6= ∅, let
(
c′ (0n)

T
)

( · ) ≥ c0, where c′ ∈ (Qm)
T ∩ V ′⊥ and c0 ∈ R, be a valid in-

equality for PI which is not already valid for P (the fact that we only consider inequalities of the type(
c′ (0n)

T
)

( · ) ≥ c0, where c
′ ⊥ V ′ is, by Lemma 159, no loss of generality). Then there exist

π1, π2 ∈ Z2 (π1, π2 linearly indepdendent) and γ1, γ2 ∈ Z such that π1, π2 ⊥ V ′ and an i∗ ∈ [3] or
i∗ ∈ [4], respectively, such that

∀i ∈ [3] \ {i∗} : P ∩
(
DT
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅,

DT
i∗
(
π1, π2, γ1, γ2

)
⊆ P≤

((
c′ (0n)

T
)
, c0

)
or

∀i ∈ [4] \ {i∗} : P ∩
(
Dc
j

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅,

Dc
i∗
(
π1, π2, γ1, γ2

)
⊆ P≤

((
c′ (0n)

T
)
, c0

)
,

respectively.

We thus have
clessT (P ) ∩ clessCC (P ) ⊆ clessL

2− 1
2
,Q

(P ) . (11.10)

Proof. Let W ∈ Zm×2 be as in the proof of Theorem 244 and let

SLP :=

{(
x
z

)
∈ (projRm P )× R2 : z = WTx

}
,

S :=
(
SLP

)
∩
(
Rm × Z2

)
(also as in the proof of Theorem 244).

For 1: By construction, S = ∅. Thus, by Theorem 470, there exist linearly independent π1,pre, π2,pre ∈ Z2

and γ1, γ2 ∈ Z such that(
Rm ×DT

(
π1,pre, π2,pre, γ1, γ2

))
∩ SLP = ∅ ∨

(
Rm ×Dc

(
π1,pre, π2,pre, γ1, γ2

))
∩ SLP = ∅

holds. We claim that

P ∩
(
DT

(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
= ∅ ∨ P ∩

(
Dc
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
= ∅.

W.l.o.g. let
(
Rm ×DT

(
π1,pre, π2,pre, γ1, γ2

))
∩ SLP = ∅ (the proof for

(
Rm ×Dc

(
π1,pre, π2,pre, γ1, γ2

))
∩

SLP = ∅ works completely similarly). Assume that

∃
(
x∗

y∗

)
∈ P ∩

(
DT

(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
.

Then it is easy to check that WTx∗ ∈ DT
(
π1,pre, π2,pre, γ1, γ2

)
. Additionally, by de�nition, x∗ ∈ projRm P .

Thus, (
x∗

WTx∗

)
∈
(
Rm ×DT

(
π1,pre, π2,pre, γ1, γ2

))
∩ SLP .

But this set is, as we have seen above, empty. So, P ∩
(
DT

(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn

)
= ∅.

Next, consider thatWπ1,pre,Wπ2,pre are linearly independent as π1,pre, π2,pre are linearly independent and
W has linearly independent columns.
Finally, since by construction imW ⊥ V ′, we have Wπ1,pre,Wπ2,pre ⊥ V ′.

For 2: We have seen in the proof of Theorem 244 that(
cW

(
WTW

)−1
)
z ≥ c0 (11.11)

is a valid inequality for ( xz ) ∈ S. Thus, by Theorem 470, there exist linearly independent π1,pre, π2,pre ∈ Z2,
γ1, γ2 ∈ Z and an i∗ ∈ [3] or i∗ ∈ [4], respectively, such that

∀i ∈ [3] \ {i∗} : SLP ∩
(
Rm ×DT

i

(
π1,pre, π2,pre, γ1, γ2

))
= ∅
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or

∀i ∈ [4] \ {i∗} : SLP ∩
(
Rm ×Dc

i

(
π1,pre, π2,pre, γ1, γ2

))
= ∅,

respectively, and

DT
i∗
(
π1,pre, π2,pre, γ1, γ2

)
⊆ P≥

(
cW

(
WTW

)−1
, c0

)
(11.12)

or

Dc
i∗
(
π1,pre, π2,pre, γ1, γ2

)
⊆ P≥

(
cW

(
WTW

)−1
, c0

)
, (11.13)

respectively, hold.
Consider the disjunction DT

(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
or Dc

(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
, respectively. The

proof for

∀i ∈ [3] \ {i∗} : P ∩DT
i

(
(Wπ1,pre,Wπ2,pre, γ1, γ2

)
= ∅

or

∀i ∈ [4] \ {i∗} : P ∩Dc
i

(
(Wπ1,pre,Wπ2,pre, γ1, γ2

)
= ∅

respectively, works completely similar to the proof of statement 1. So, we only have to show

DT
i∗
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn ⊆ P≤

((
c′ (0n)

T
)
, c0

)
(11.14)

or

Dc
i∗
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn ⊆ P≤

((
c′ (0n)

T
)
, c0

)
,

respectively. W.l.o.g. let (11.12) hold (the argumentation for (11.13) is similar) and we show (11.14). Let(
x∗

y∗

)
∈ DT

i∗
(
Wπ1,pre,Wπ2,pre, γ1, γ2

)
× Rn.

This means (
x∗

WTx∗

)
∈ Rm ×DT

i∗
(
π1,pre, π2,pre, γ1, γ2

)
.

Using (11.12), we obtain

cW
(
WTW

)−1
WTx∗ ≥ c0.

By equation (5.16), which we showed in the proof of Theorem 244, we have c′W
(
WTW

)−1
WT = c′. Thus,

using (11.11), we conclude

c′x∗ = c′W
(
WTW

)−1
WTx∗ ≥ c0.

The properties that Wπ1,pre, Wπ2,pre are linearly independent and Wπ1,pre,Wπ2,pre ⊥ V ′ are shown
completely similar as as in the proof of statement 1.

For (11.10): Let V = V ′ × Rn ≤ Rm × Rn be a �xed rational subspace of codimension 2.

If (P + V )I = ∅, by statement 1,
(
02 × 0n

)T
( · ) ≤ −1 is either an essential T cut or an essential crooked

cross cut for P .
If (P + V )I 6= ∅, by Lemma 159, every essential L2− 1

2 ,Q
cut c ( · ) ≥ c0 for P with respect to V satis�es

cT ⊥ V ′ × Rn, thus c ∈ (Rm × 0n)
T and

(
c(1,...,m)

)T ⊥ V ′. On the other hand, clI (P + V ) is a rational
polyhedron. So, every essential L2− 1

2 ,Q
cut for P with respect to V is dominated by a �nite set of essential

L2− 1
2 ,Q

cuts for P with respect to V that have rational coe�cients. So, we can assume that c ∈ (Qm × 0n)
T

and thus conclude (11.10) from statement 2.

11.2.4. Reverse inclusions

Theorem 472. Let ∅ 6= P ⊆ Rm × Rn (m ∈ Z≥2 and n ∈ Z≥0) be arbitrary. Let there exist a

DT
(
π1, π2, γ1, γ2

)
⊆ Rm × Rn or Dc

(
π1, π2, γ1, γ2

)
⊆ Rm × Rn,
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respectively (π1, π2 ∈ Zm and γ1, γ2 ∈ Z), and an i∗ ∈ [3] or i∗ ∈ [4], respectively, such that

∀i ∈ [3] \ {i∗} : P ∩
(
DT
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅ (11.15)

or

∀i ∈ [4] \ {i∗} : P ∩
(
Dc
i

(
π1, π2, γ1, γ2

)
× Rn

)
= ∅, (11.16)

respectively, holds. De�ne D := DT
i∗
(
π1, π2, γ1, γ2

)
or D := Dc

i∗
(
π1, π2, γ1, γ2

)
, respectively. Additionally,

let V ′ :=
(
lin
{
π1, π2

})⊥
. Then every linear inequality c ( · ) ≤ c0 (c ∈ (Rm × Rn)

T
and c0 ∈ R) for D (recall

that by Remark 468, it su�ces to consider linear inequalities for D instead of P ∩D) is an essential Lk− 1
2 ,Q

cut for P with respect to V := V ′ × Rn, where k := codimV ′ ≤ 2. In particular, we have

clessL
2− 1

2
,Q×Q

(P ) ⊆ clessCC (P ) ∩ clessT (P ) .

Proof. W.l.o.g. we assume D 6= ∅. Note that for every non-empty atom D′ of our disjunction D, we have

V ′ ≤ linealD′. (11.17)

Thus, since D 6= ∅ and c ( · ) ≤ c0 is valid for D, we have

cT ⊥ V. (11.18)

Additionally, we have

3⋃
j=1

DT
j

(
π1, π2, γ1, γ2

)
⊇ Zm × Rn or

4⋃
j=1

Dc
j

(
π1, π2, γ1, γ2

)
⊇ Zm × Rn, (11.19)

respectively. Combining (11.17) and (11.19), we obtain

3⋃
j=1

DT
j

(
π1, π2, γ1, γ2

)
⊇ (Zm × Rn) + V or

4⋃
j=1

Dc
j

(
π1, π2, γ1, γ2

)
⊇ (Zm × Rn) + V, (11.20)

respectively.
Let z = p + v ∈ (P + V )I , where, of course, z ∈ Zm × Rn, p ∈ P and v ∈ V . We have to show cz ≤ c0.

Using (11.15) or (11.16), respectively, and (11.20), we obtain p ∈ D. Thus, using (11.18) and the fact that
c ( · ) ≤ c0 is valid for D, we conclude

cz = cp+ cv = cp ≤ c0.

Theorem 473. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 2) be a rational polyhedron. Then

clL
2− 1

2
,Q×Q

(P ) ⊆ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) .

Proof. For m = 0, the statement is obvious. We distinguish between the two remaning cases:

1. m = 1,

2. m ≥ 2.

In the �rst case, we conclude from Theorem 202:

clL
2− 1

2
,Q×Q

(P ) = clI (P ) ⊆ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) .

In the second case, we have

clL
2− 1

2
,Q×Q

(P ) = clL1,Q (P ) ∩ clessL
2− 1

2
,Q

(P ) (by Theorem 211)

= clsplit (P ) ∩ clessL
2− 1

2
,Q

(P ) (by Theorem 409)

⊆ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) . (by Theorem 472)
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11.2.5. Conclusions

Theorem 474. Let P ⊆ Rm × Rn (m ∈ Z≥2 and n ∈ Z≥0) be a rational polyhedron. Then

clessL
2− 1

2
,Q

(P ) = clessT (P ) ∩ clessCC (P ) .

Proof. The inclusion �⊆� holds by Theorem 472. �⊇� is a consequence of Theorem 471.

Theorem 475. Let P ⊆ Rm × Rn (m,n ∈ Z≥0, where m+ n ≥ 2) be a rational polyhedron. Then

clL
2− 1

2
,Q×Q

(P ) = clL
2− 1

2
,Q×R

(P ) = clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) .

Proof. The equivalence clL
2− 1

2
,Q×Q

(P ) = clL
2− 1

2
,Q×R

(P ) is shown in Theorem 212. So, it su�ces to show

clL
2− 1

2
,Q×Q

(P ) = clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) . (11.21)

The inclusion �⊆� in (11.21) holds by Theorem 473. For �⊇�: for m = 0, the statement is obvious. So, assume
m ≥ 1. We distinguish between the two remaning cases:

1. m = 1,

2. m ≥ 2.

In the �rst case, we have

clL
2− 1

2
,Q×Q

(P ) = clI (P ) (by Theorem 202)

= clL1,Q (P ) (by Theorem 202)

= clsplit (P ) (by Theorem 409)

⊇ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) .

In the second case, we have

clL
2− 1

2
,Q×Q

(P ) = clL1,Q (P ) ∩ clessL
2− 1

2
,Q×Q

(P ) (by Theorem 211)

= clsplit (P ) ∩ clessL
2− 1

2
,Q×Q

(P ) (by Theorem 409)

⊇ clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) . (by Theorem 471)
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12. Sizes of subsets of inequalities to consider

12.1. Problem statement and outline

For the remainder of this chapter, let always A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0. We saw
in Theorem 394 and Theorem 269 that we have:

clL
1− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈B∗,feas((A G ),b)

clL
1− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

clL1,Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈B∗((A G ))

clL1,Q

(
P≤

((
A G

)
S,∗ , bS

))
,

where of course

B∗,feas
((

A G
)
, b
)
,B∗

((
A G

))
⊆
(

[l]

rank
(
A G

)).
Thus, for all

S ∈ B∗,feas
((

A G
)
, b
)
,B∗

((
A G

))
,

we have |S| = rank
(
A G

)
≤ min (l,m+ n). So, in particular, we have

clL
1− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈( [l]
min(l,m+n))

clL
1− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

clL1,Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈( [l]
min(l,m+n))

clL1,Q

(
P≤

((
A G

)
S,∗ , bS

))
,

In contrast, for general k, the identities

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈( [l]
min(l,m+n))

clL
k− 1

2
,Q×Q

(
P≤ (AS,∗, bS)

)
,

clLk,Q
(
P≤

((
A G

)
, b
))

=
⋂

S∈( [l]
min(l,m+n))

clLk,Q
(
P≤ (AS,∗, bS)

)
do not hold. For this, let A ∈ Q4×3 and b ∈ Q4 be as in Theorem 274. Then

clL
3− 1

2
,Q

(
P≤ (A, b)

)
⊆ clL2,Q

(
P≤ (A, b)

)
(by Theorem 199)

⊆ cl2BS
(
P≤ (A, b)

)
(by Corollary 278)

( clBR (A, b) (by Theorem 274)

=
⋂

S∈([4]
3 )

clI
(
P≤ (AS,∗, bS)

)
⊆

⋂
S∈([4]

3 )

clL
3− 1

2
,Q

(
P≤ (AS,∗, bS)

)
⊆

⋂
S∈([4]

3 )

clL2,Q

(
P≤ (AS,∗, bS)

)
. (by Theorem 199)

So, only considering subsets of m + n rows at the same time does in general not su�ce to characterize the
Lk− 1

2 ,Q×Q
closure or Lk,Q closure of P≤ (A, b). Thus, we de�ne the following problem:

Problem/De�nition 476. Let P≤
((

A G
)
, b
)
⊆ Rm×Rn be given and let k ∈ {0, . . . ,m+ n}. What is
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the smallest h ∈ {0, . . . , l} such that

clLk,Q
(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clLk,Q

(
P≤

((
A G

)
S,∗ , bS

))
or

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

respectively, holds? This smallest h is referred to as h∗Lk,Q (A,G, b) or h∗L
k− 1

2
,Q×Q

(A,G, b), respectively. If

n = 0, we also use the notations h∗Lk,Q (A, b) or h∗L
k− 1

2
,Q×Q

(A, b), respectively.

In particular, we are, of course, interested whether there exists an upper bound for h∗L
k− 1

2
,Q×Q

(A,G, b) or

h∗Lk,Q (A,G, b), respectively, that only depends on m and n. This is the topic of this chapter. For its outline:

• In section 12.2, we give an overview about results on Helly numbers that follows the exposition in
[AW12].

• Section 12.3 is about upper bounds for h∗Lk,Q (A,G, b). The central result of this section is Theorem 487.
The central helper statement for its proof is Theorem 485.

• Section 12.4 is about upper bounds for h∗L
k− 1

2
,Q×Q

(A,G, b). The central result of this section is Theorem

495. For its proof, we show two central helper statements: Theorem 490 (its proof is centrally what
section 12.4.1 is about) and Theorem 493. In section 12.4.3, we generalize these results to other types
of Lk− 1

2
closures: the essential Lk− 1

2 ,Q
closure is the topic of Theorem 496 and the Lk− 1

2 ,Q×R
closure is

considered in Theorem 497.

• In section 12.5, we show lower bounds for h∗L
k− 1

2
,Q×Q

(A,G, b) and h∗Lk,Q (A,G, b).

• In section 12.6, we summarize our results on the bounds for h∗L
k− 1

2
,Q×Q

(A,G, b) and h∗Lk,Q (A,G, b):

Theorem 504 summarizes the upper bounds and Theorem 505 summarizes the lower bounds.

12.2. Helly numbers

Most of the material that is presented in this section (except for Corollary 483) is taken from [AW12].

De�nition 477. Let M 6= ∅ be a closed subset of Rd (d ∈ Z≥0). A subset C ⊆ M is called M-convex if
C = C ′ ∩M , where C ′ ⊆ Rd is convex.

De�nition 478. Let M be as in De�nition 477. h (M) ∈ Z≥0 ∪̇ {∞} is called the Helly number of M if
h (M) is the minimal possible h satisfying the following condition:

(12.1) Every �nite collection C1, . . . , Cm (m ≥ h) ofM -convex sets, for which every subcollection of h elements
has a non-empty intersection, necessarily satis�es

⋂m
i=1 Ci 6= ∅.

If h as above does not exist, we set h(M) :=∞.

How is this de�nition of the Helly number (De�nition 478) related to mixed-integer linear optimization?
There exists the following theorem, of which the �rst part tells us that for Helly numbers, one only has to
consider linear half-spaces in (12.1) and the second part relates Helly numbers to optimization overM (which
is mixed-integer linear optimization if one sets M := Zm × Rn).

Theorem 479. ([AW12, Proposition 1.2]) Let M be as in De�nition 477 and let h ∈ Z≥0. Then (12.1) is
equivalent to each of the following two conditions:

(12.2) For every collection of a�ne-linear functions a1, . . . , am : Rd → R (m ≥ h)

� either ∃x ∈M ∀j ∈ [m] : aj (x) ≥ 0

� or ∃i1, . . . , ih ∈ [m]@x ∈M ∀j ∈ [h] : aij (x) ≥ 0.
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(12.3) For every collection of a�ne-linear functions b1, . . . , bm, c : Rd → R (m ≥ h− 1) such that

µ := sup {c (x) : x ∈M, bj (x) ≥ 0 ∀j ∈ [m]} ∈ R

(in other words: µ 6= ±∞), there exist i1, . . . , ih−1 ∈ [m] such that

µ = sup
{
c (x) : x ∈M, bij (x) ≥ 0∀j ∈ [h− 1]

}
.

For M = Zm × Rn, the following bounds are important:

Theorem 480. ([AW12, Theorem 1.1]) Let M ⊆ Rd (d ∈ Z≥0) be as in De�nition 477 and let m,n ∈ Z≥0.
Then

h (M × Rn) ≤ (n+ 1)h (M) , (12.4)

h (Zm ×M) ≥ 2mh (M) . (12.5)

Additionally, we have:

Theorem 481. Let m,n ∈ Z≥0. Then

h (Zm) = 2m, (12.6)

h (Rn) = n+ 1. (12.7)

A proof for (12.6) can be found in [Sch86, Theorem 16.5; p. 234]. Equation (12.7) is implied by the Farkas
lemma and Carathéodory's theorem (cf. [Sch86, section 7.7]).
From (12.4)�(12.7), one obtains:

Corollary 482. ([AW12, Theorem 1.1]) Let m,n ∈ Z≥0. Then

h (Zm × Rn) = 2m (n+ 1) . (12.8)

We thus obtain the following corollary:

Corollary 483. Let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T
and c0 ∈ R) be a valid inequality for P≤

((
A G

)
, b
)
I
⊆

Zm × Rn. Then there exists an S ⊆ [l] having

• |S| ≤ 2m (n+ 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

• |S| ≤ 2m (n+ 1) in general,

respectively, such that c ( · ) ≤ c0 is a valid inequality for P≤
((

A G
)
S,∗ , bS

)
I
.

Proof. The �rst case is an immediate consequence of (12.3) and (12.8). In the second case, we only have
to consider the case P≤

((
A G

)
, b
)
I

= ∅. In this case, one concludes from (12.2) and (12.8) that there

exists an S ∈ P ([l]) having |S| ≤ 2m (n+ 1) such that P≤
((

A G
)
S,∗ , bS

)
I

= ∅. Thus, any inequality (in

particular c ( · ) ≤ c0) is valid for P≤
((

A G
)
S,∗ , bS

)
I
.

We note that in general, (12.5) cannot be improved to equality (and thus the case M = Rn, for which
equality holds, is quite likely an exception). For this, consider the following example:

Example 484. (cf. [AW12]) Let M :=
{

0, 1, 2, 5
2

}
( R1. Obviously, h (M) = 2. We show that

h (M × Z) ≥ 5 > 4 = 2h (M) .

For this, consider the set

A :=

{(
0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
2
1

)
,

(
5
2
2

)}
=: {a1, . . . , a5}

(also see Figure 12.1). Let Ai := A\ {ai} for i ∈ [5]. Then every Ai is M × Z-convex and {A1, . . . , A5}
does not satisfy (12.1) for h = 4, since for every i ∈ [5], we have ai ∈

⋂
j∈[5]\{i}Aj. On the other hand,⋂

j∈[5]Aj = ∅ holds.
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x2

−1

1

2

3

x1
1 2

Figure 12.1.: Example of h (M × Zm) > 2mh (M) for m = 1 (also cf. [AW12, Figure 1])

12.3. Upper bounds for h∗Lk,Q (A,G, b)

In this section, we derive a general upper bound for h∗Lk,Q (A,G, b). The �nal result of this section can be
found in Theorem 487.

Theorem 485. Let P := P≤
((

A G
)
, b
)
, let k ∈ {0, . . . ,m+ n} and let V ≤ Rm × Rn be a rational

subspace of codimension k. Let (k − s, s) be the signature of the lattice proj⊥V ⊥ (Zm × Rn). Then there exists
some p ∈ {0, . . . , l} such that

conv
(
P≤

((
A G

)
, b
)
∩ ((Zm × Rn) + V )

)
=

⋂
S∈([l]

p )

conv
(
P≤

((
A G

)
S,∗ , bS

)
∩ ((Zm × Rn) + V )

)

(which implies

P ∩ conv
(
P≤

((
A G

)
, b
)
∩ ((Zm × Rn) + V )

)
=P ∩

⋂
S∈([l]

p )

conv
(
P≤

((
A G

)
S,∗ , bS

)
∩ ((Zm × Rn) + V )

)
)

having:

• If P≤
((

A G
)
, b
)
∩((Zm × Rn) + V ) 6= ∅ (this is, in particular, satis�ed if P≤

((
A G

)
, b
)
I
6= ∅),

we have
p ≤ 2k−s (m+ n− (k − s) + 1)− 1.

• In general, we have
p ≤ 2k−s (m+ n− (k − s) + 1) .

Proof. Let C be as in Lemma 157 and let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T and c0 ∈ R) be a valid inequality for

P≤
((

A G
)
, b
)
∩ ((Zm × Rn) + V ). Then, by Lemma 157, cC ( · ) ≤ c0 is a valid inequality for(

C−1P≤
((

A G
)
, b
))
∩
(
Zk−s × Rm+n−(k−s)

)
=P≤

((
A G

)
C, b

)
∩
(
Zk−s × Rm+n−(k−s)

)
. (by Lemma 63)

By Corollary 483, there exists some S ⊆ [l] having

|S| ≤

{
2k−s (m+ n− (k − s) + 1)− 1 if P≤

((
A G

)
, b
)
∩
(
Zk−s × Rm+n−(k−s)) 6= ∅,

2k−s (m+ n− (k − s) + 1) in general,

282



12.3. Upper bounds for h∗Lk,Q (A,G, b)

respectively, such that cC ( · ) ≤ c0 is a valid inequality for

P≤
(((

A G
)
C
)
S,∗ , bS

)
∩
(
Zk−s × Rm+n−(k−s)

)
= P≤

((
A G

)
S,∗ C, bS

)
∩
(
Zk−s × Rm+n−(k−s)

)
.

This means (again because of Lemma 157) that c ( · ) ≤ c0 is a valid inequality for

P≤
((

A G
)
S,∗ , bS

)
∩ ((Zm × Rn) + V ) .

Proposition 486. Let d ∈ Z≥0, k ∈ {0, . . . , d} and k′ ∈ {0, . . . , k}. Then

2k
′
(d− k′ + 1) ≤ 2k (d− k + 1) .

Proof. We have

2k (d− k + 1)− 2k
′
(d− k′ + 1) =

k−k′−1∑
i=0

(
2k−i

(
d− (k − i) + 1

)
− 2k−(i+1) (d− (k − (i+ 1)) + 1)︸ ︷︷ ︸

=(d−(k−i))+2

)

=

k−k′−1∑
i=0

2k−(i+1)︸ ︷︷ ︸
≥0

(d− (k − i)︸ ︷︷ ︸
≤k

)

︸ ︷︷ ︸
≥0

≥ 0.

Theorem 487. We have for k ∈ {0, . . . ,m+ n}:

h∗Lk,Q (A,G, b) ≤

{
2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤

((
A G

)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general.

Remark 488. Because of Theorem 269, for all l,m, n ∈ Z≥0, the statement

h∗L1,Q
(A,G, b) ≤ m+ n

holds for arbitrary A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl. From Theorem 487, we only get the weaker bound

h∗L1,Q
(A,G, b) ≤

{
2 (m+ n)− 1 if P≤

((
A G

)
, b
)
6= ∅,

2 (m+ n) in general.

Proof. (Theorem 487) Let V be as in Theorem 485. Consider the signature (k − s, s) of proj⊥V ⊥ (Zm × Rn).
We know from Theorem 100 that 0 ≤ k − s ≤ min (k,m). Thus,

h∗Lk,Q (A,G, b)

≤ max
i∈{0,...,min(k,m)}

{{
2i (m+ n− i+ 1)− 1 if P≤

((
A G

)
, b
)
I
6= ∅,

2i (m+ n− i+ 1) in general

}
(by Theorem 485)

≤

{
2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤

((
A G

)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general,
(by Proposition 486)

where in Proposition 486, we set

• d := m+ n,

• k := min (k,m),

• k′ := i.
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12.4. Upper bounds for h∗L
k− 1

2 ,Q×Q
(A,G, b)

12.4.1. Considerations for the case PI 6= ∅
For the remainder of this section, we introduce the following notations:

De�nition 489. Let f : Rd → R be an a�ne-linear function, where d ∈ Z≥0. We set

P≥0 (f) :=
{
x ∈ Rd : f (x) ≥ 0

}
,

P=0 (f) :=
{
x ∈ Rd : f (x) = 0

}
.

The following theorem generalizes ideas that are used in [AW12] to prove (12.4) in Theorem 480:

Theorem 490. Let P :=
{
x ∈ Rk1 × Rk2 : f1 (x) ≥ 0, . . . , fl (x) ≥ 0

}
6= ∅ (k1, k2, l ∈ Z≥0), where the fi

(i ∈ [l]) are a�ne-linear functions. Let M ⊆ Rk2 be as in De�nition 477, let P ∩
(
M × Rk2

)
6= ∅, but let

there exist some a�ne-linear function fl+1 : Rk1 × Rk2 → R which is constant on 0k1 × Rk2 such that(
P ∩ P≥0 (fl+1)

)
∩
(
M × Rk2

)
= ∅.

Then there exists some S ⊆ [l] having |S| ≤ (h (M)− 1) (k2 + 1) such that{
x ∈ Rk1 × Rk2 : ∀i ∈ S : fi (x) ≥ 0 ∧ fl+1 (x) ≥ 0

}
∩
(
M × Rk2

)
= ∅.

W.l.o.g. we assume that h (M) <∞ for the following proofs, since otherwise Theorem 490 holds trivially.
The proof of Theorem 490 is done in multiple steps, similarly to the approach that is used in [AW12] to show
(12.4) in Theorem 480:

• In Proposition 491, we show Theorem 480 in the case where P ∩ P≥0 (fl+1) is full-dimensional and
bounded.

• In Proposition 492, we generalize this to the case where P ∩ P≥0 (fl+1) is bounded, but not necessarily
full-dimensional.

• After these preparations, we �nally show Theorem 490 in general.

Proposition 491. Theorem 490 holds if P ∩ P≥0 (fl+1) is full-dimensional and bounded.

Proof. Let P ′ := projRk1 P . Then

P ′ =
{
x′ ∈ Rk1 : f ′1 (x′) ≥ 0, . . . , f ′l′ (x

′) ≥ 0
}
,

where all f ′i′ (i
′ ∈ [l′]) are facet-de�ning. In other words: for all i′ ∈ [l′],

F ′i′ := P=0 (f ′i′) ∩ P ′

is a facet of P ′. Let

f ′l′+1 : Rk1 → R :

x′ 7→ fl+1

((
x′

0k2

))
.

One can easily check (since fl+1 is constant on 0k1 × Rk2) that

projRk1
(
P ∩ P≥0 (fl+1)

)
= P ′ ∩ P≥0

(
f ′l′+1

)
.

Since P ∩ P≥0 (fl+1) is full-dimensional, so is P ′ ∩ P≥0
(
f ′l′+1

)
.

So, for i′ ∈ [l′], we have dimF ′i′ = k1 − 1 and thus Gi′ :=
(

(projRk1 )
−1
F ′i′
)
∩ P is a face of P having

dimGi′ ≥ k1 − 1. (12.9)
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Also Gl′+1 := P ∩
(

(projRk1 )
−1
F ′l′+1

)
is a face of P , but (because fl+1 is constant on

{
0k1
}
× Rk2) with

Gl′+1 = P=0 (fl+1) ∩ P. (12.10)

By assumption, P ∩ P≥0 (fl+1) is full-dimensional and we have

• P ∩
(
M × Rk2

)
6= ∅ and

• P ∩ P≥0 (fl+1) ∩
(
M × Rk2

)
= ∅.

Thus, fl+1 is facet-de�ning for P ∩ P≥0 (fl+1). So, one concludes from (12.10) together with the full-
dimensionality of P ∩ P≥0 (fl+1):

dimGl′+1 = k1 + k2 − 1. (12.11)

For i′ ∈ [l′ + 1], consider the cone Ni′ of a�ne-linear functions Rk1 × Rk2 → R vanishing on Gi′ that are
non-negative on P . We have for all i′ ∈ [l′ + 1]:

Ni′ = cone
{
fi : i ∈ [l] , fi vanishes on some facet of P ∩ P≥0 (fl+1) containing Gi′

}
(we remark that Nl′+1 = cone {fl+1}). Thus, using (12.9) and (12.11), respectively, we obtain

∀i′ ∈ [l′] : dimNi′ = (k1 + k2)− dimGi′ ≤ (k1 + k2)− (k1 − 1) = k2 + 1, (12.12)

dimNl′+1 = (k1 + k2)− dimGl′+1 = (k1 + k2)− (k1 + k2 − 1) = 1.

For i′ ∈ [l′ + 1], let

f̂ ′i′ : Rk1 × Rk2 → R :(
x′

x′′

)
7→ f ′i′ (x

′) .

Since for all i′ ∈ [l′], we have f̂ ′i′ ∈ Ni′ , we obtain

f̂ ′i′ =
∑
i∈Ii′

λi,i′fi ∀i′ ∈ [l′ + 1] ,

where

∀i′ ∈ [l′] : Ii′ ⊆ [l] ,

∀i′ ∈ [l′] , i ∈ Ii′ :λi,i′ ≥ 0.

Using (12.12), we thus get from Carathéodory's theorem for convex cones (for example cf. [Sch86, section 7.7])
that we can assume

∀i′ ∈ [l′] : |Ii′ | ≤ dimNi′ ≤ k2 + 1. (12.13)

Additionally, we surely have f̂ ′l′+1 ∈ cone {fl+1} \ {0}. Since P ′ ∩ P≥0
(
f ′l′+1

)
∩ M = ∅, there exists an

S′pre ⊆ [l′ + 1] such that ∣∣S′pre∣∣ ≤ h (M) (12.14)

and {
x′ ∈ Rk1 : f ′s′ (x

′) ≥ 0 ∀s′ ∈ S′pre
}
∩M = ∅. (12.15)

Since P ′ ∩M 6= ∅, we have l′ + 1 ∈ S′pre. Thus, by (12.14) or (12.15), respectively, there exists an S′ :=
S′pre\ {l′ + 1} having

|S′| ≤ h (M)− 1 (12.16)

and {
x′ ∈ Rk1 : f ′s′ (x

′) ≥ 0 ∀s′ ∈ S′
}
∩ P≥0

(
f ′l′+1

)
∩M = ∅. (12.17)

Because of (12.17), we have{
x ∈ Rk1 × Rk2 : fi (x) ≥ 0 ∀i ∈

⋃
i′∈S′

Ii′

}
∩ P≥0 (fl+1) ∩M = ∅.
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Thus, using (12.13) and (12.16), we conclude∣∣∣∣∣ ⋃
i′∈S′

Ii′

∣∣∣∣∣ ≤ ∑
i′∈S′

|Ii′ | ≤ (h (M)− 1) (k2 + 1) .

Proposition 492. Theorem 490 holds if P ∩ P≥0 (fl+1) is bounded.

Proof. Since M is closed and P is compact and (by assumption) non-empty, there exists an ε > 0 such that

Pε :=
{
x ∈ Rk1 × Rk2 : f1 (x) + ε ≥ 0, . . . , fl (x) + ε ≥ 0

}
∩ P≥0 (fl+1 + ε)

is full-dimensional and satis�es Pε ∩M = ∅. Because of Proposition 491, there exists some S ⊆ [l] such that
|S| ≤ (h (M)− 1) (k2 + 1) and{

x ∈M × Rk2 : fs (x) + ε ≥ 0 ∀s ∈ S, fl+1 + ε ≥ 0
}

= ∅.

From this, we obtain the statement of Theorem 490, since for all i ∈ [l + 1], we have

fi (x) + ε ≥ 0⇒ fi (x) ≥ 0.

Proof. (Theorem 490) For t ∈ Z≥1, let

Qt := {x ∈ P, x1 + t ≥ 0,−x1 + t ≥ 0, . . . , xk1+k2 + t ≥ 0,−xk1+k2 + t ≥ 0} .

Because of Proposition 492, there exist It, J
+
t , J

−
t such that

|It|+
∣∣J+
t

∣∣+
∣∣J−t ∣∣ ≤ (h (M)− 1) (k2 + 1) (12.18)

and

{x ∈M × Rk2 :

xj + t ≥ 0 ∀j ∈ J+
t ,

−xj + t ≥ 0 ∀j ∈ J−t ,
fi (x) ≥ 0 ∀i ∈ It,

fl+1 (x) ≥ 0} = ∅ (12.19)

holds. Since P ∩
(
M × Rk2

)
6= ∅ and

(
P ∩ P≥0 (fl+1)

)
∩
(
M × Rk2

)
= ∅, there exists a t∗ ∈ Z≥1 such that

l + 1 ∈ It for all t ≥ t∗. Next, note that, because there is only a �nite amount of possibilities of sets for It,
J+
t and J−t , there exist I∗, J

+
∗ and J−∗ which satisfy (12.18) and (12.19) for an in�nite number of t ∈ Z≥1 as

It, J
+
t and J−t . This means that we can assume J+

∗ , J
−
∗ = ∅. Thus, we have

|I∗| ≤ (h (M)− 1) (k2 + 1) (by (12.18))

and {
x ∈M × Rk2 : fi (x) ≥ 0 ∀i ∈ I∗, fl+1 (x) ≥ 0

}
= ∅. (by (12.19) and J+, J− = ∅)

12.4.2. Proof of the bounds

We now have all the tools available to prove an upper bound for h∗L
k− 1

2
,Q×Q

(A,G, b). The �nal result is

formulated in Theorem 495.

Theorem 493. Let P := P≤
((

A G
)
, b
)
, let V ≤ Rm × Rn be a rational subspace of codimension

k ∈ {0, . . . ,m+ n} and let (k − s, s) be the signature of the mixed lattice proj⊥V ⊥ (Zm × Rn). Then there

286



12.4. Upper bounds for h∗L
k− 1

2
,Q×Q

(A,G, b)

exists some p ∈ {0, . . . , l} having

conv
((
P≤

((
A G

)
, b
)

+ V
)
I

)
=

⋂
S∈([l]

p )

conv
((
P≤

((
A G

)
S,∗ , bS

)
+ V

)
I

)

(which implies

P ∩ conv
((
P≤

((
A G

)
, b
)

+ V
)
I

)
= P ∩

⋂
S∈([l]

p )

conv
((
P≤

((
A G

)
S,∗ , bS

)
+ V

)
I

)
)

that satis�es the following bound:

• If (P + V )I 6= ∅ (this is in particular satis�ed if PI 6= ∅), then

p ≤

{(
2k − 1

)
(m+ n− k + 1) if s = 0 and k ≤ m,

2k−s (m+ n− (k − s) + 1)− 1 in general.

• In general
p ≤ 2k−s (m+ n− (k − s) + 1) .

Proof. Let C be as in Lemma 157 and let c ( · ) ≤ c0 (c ∈ (Rm × Rn)
T and c0 ∈ R) be a valid inequality for

(P + V )I . W.l.o.g. (see Lemma 159) we can assume cT ⊥ V . We �rst prove that there exists an S ∈ P ([l])
having

|S| ≤

{
2k−s (m+ n− (k − s) + 1)− 1 if (P + V )I 6= ∅,
2k−s (m+ n− (k − s) + 1) in general

(12.20)

such that c ( · ) ≤ c0 is a valid inequality for
(
P≤

((
A G

)
S,∗ , bS

)
+ V

)
I
.

It is a consequence of Theorem 485 that there exists some S ⊆ [l] having

|S| ≤

{
2k−s (m+ n− (k − s) + 1)− 1 if P ∩ ((Zm × Rn) + V ) 6= ∅,
2k−s (m+ n− (k − s) + 1) in general

such that c ( · ) ≤ c0 is a valid inequality for

P≤
((

A G
)
S,∗ , bS

)
∩ ((Zm × Rn) + V ) .

Next, note that, by Theorem 213 (because cT ⊥ V ), c ( · ) ≤ c0 is a valid inequality for(
P≤

((
A G

)
S,∗ , bS

)
+ V

)
I
.

Finally, by additionally observing that

P ∩ ((Zm × Rn) + V ) 6= ∅ ⇔ (P + V )I 6= ∅,

we conclude (12.20).
Now for the bound if s = 0 and k ≤ m. Let c ( · ) ≤ c0 be an Lk− 1

2 ,Q×Q
cut for P with respect to V . This

is equivalent to
∀ε ∈ R>0 :

(
P≤ (A, b) + V

)
∩ P≥ (c, c0 + ε) ∩ (Zm × Rn) = ∅.

Let C be as in Lemma 160. Then, by this lemma, c ( · ) ≤ c0 is valid for (P + V )I if and only if cC ( · ) ≤ c0
is a valid inequality for((

C−1P
)

+
(
0k × Rm+n−k)) ∩ (Zk × Rm+n−k)

=
(
P≤ (AC, b) +

(
0k × Rm+n−k)) ∩ (Zk × Rm+n−k) (by Lemma 63)

and we then have cC ∈
(
Rk × 0m+n−k)T . But this is the case if and only if for every ε > 0, we have

P≤ (AC, b) ∩ P≥ (cC, c0 + ε) = ∅.

287



12. Sizes of subsets of inequalities to consider

Let us check the conditions of Theorem 490:

1. P≤ (AC, b) ∩
(
Zk × Rm+n−k) 6= ∅,

2. cC ( · ) is constant on 0k × Rm+n−k.

Concerning 1:

P≤ (AC, b) ∩
(
Zk × Rm+n−k) 6= ∅

⇔ (0m × 0n)
T

( · ) ≤ −1 is not valid for P≤ (AC, b) ∩
(
Zk × Rm+n−k)

⇔ (0m × 0n)
T

( · ) = (0m × 0n)
T
C−1 ( · ) ≤ c0 is not valid for (P + V )I (by Lemma 160)

⇔ (P + V )I 6= ∅.

Concerning 2: In Lemma 160, we de�ned

C :=
(
w1 · · · wk v1 · · · vm+n−k ) ,

where {v1, . . . , vm+n−k} is a basis of V . Because of Lemma 159, we have cT ⊥ V . From this, the statement
immediately follows.

So, by Theorem 490, there exists some S ⊆ [l] having

|S| ≤
(

h
(
Zk
)︸ ︷︷ ︸

=2k (by (12.6))

−1
)

((m+ n− k) + 1)

such that

∅ = P≤
(

(AC)S,∗ , bS

)
∩ P≥ (cC, c0 + ε) ∩

(
Zk × Rm+n−k)

= P≤ (AS,∗C, bS) ∩ P≥ (cC, c0 + ε) ∩
(
Zk × Rm+n−k) .

Again, by Lemma 160, this is equivalent to(
P≤ (AS,∗, bS) + V

)
∩ P≥ (c, c0 + ε) ∩ (Zm × Rn) = ∅.

Finally, we conclude from

∀ε ∈ R>0∃S ⊆ [l] : |S| ≤
(
2k − 1

)
(m+ n− k + 1) ∧

(
P≤ (AS,∗, bS) + V

)
∩ P≥ (c, c0 + ε) ∩ (Zm × Rn) = ∅

that

∃S ⊆ [l] : |S| ≤
(
2k − 1

)
(m+ n− k + 1) ∧

(
P≤ (AS,∗, bS) + V

)
∩ P≥ (c, c0) ∩ (Zm × Rn) = ∅.

Proposition 494. Let m,n ∈ Z≥0 and let k ∈ {0, . . . ,m+ n}. Then(
2k − 1

)
(m+ n− k + 1) ≤ 2k (m+ n− k + 1)− 1, (12.21)(

2k − 1
)

(m+ n− k + 1) ≥ 2k−1 (m+ n− (k − 1) + 1)− 1. (12.22)

Proof.

For (12.21): (
2k (m+ n− k + 1)− 1

)
−
(
2k − 1

)
(m+ n− k + 1) = m+ n− k ≥ 0.

For (12.22):(
2k − 1

)
(m+ n− k + 1)−

(
2k−1 (m+ n− (k − 1) + 1)− 1

)
=
(
2k−1 − 1

)
(m+ n− k) ≥ 0.
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Theorem 495. We have for k ∈ {0, . . . ,m+ n}:

h∗L
k− 1

2
,Q×Q

(A,G, b) ≤


(
2k − 1

)
(m+ n− k + 1) if P≤

((
A G

)
, b
)
I
6= ∅ ∧ k ∈ {0, . . . ,m},

2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general.

Proof. Consider the signature (k − s, s) in Theorem 493. From Theorem 100, we obtain 0 ≤ k−s ≤ min (k,m)
and 0 ≤ s ≤ min (k, n).

For the bound if PI 6= ∅ and k ∈ {0, . . . ,m}: By case distinction between s = 0 and 1 ≤ s ≤ k, we obtain
from Theorem 493:

h∗L
k− 1

2
,Q×Q

(A,G, b) ≤max
(
min

((
2k − 1

)
(m+ n− k + 1) , 2k (m+ n− k + 1)− 1

)︸ ︷︷ ︸
=(2k−1)(m+n−k+1) (by (12.21))

,

max
s∈{1,...,k}

{
2k−s (m+ n− (k − s) + 1)− 1

}
︸ ︷︷ ︸

=2k−1(m+n−(k−1)+1)−1 (by Proposition 486)

)
(by Theorem 493)

= max
((

2k − 1
)

(m+ n− k + 1) , 2k−1 (m+ n− (k − 1) + 1)− 1
)

=
(
2k − 1

)
(m+ n− k + 1) . (by (12.22))

For the two other bounds: By computing the maximum for i := k − s ∈ {0, . . . ,min (k,m)}, we obtain:

h∗L
k− 1

2
,Q×Q

(A,G, b)

≤ max
i∈{0,...,min(k,m)}

{{
2i (m+ n− i+ 1)− 1 if P≤

((
A G

)
, b
)
I
6= ∅,

2i (m+ n− i+ 1) in general

}
(by Theorem 493)

=

{
2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤

((
A G

)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general.
(by Proposition 486)

12.4.3. Generalizations of the upper bounds for h∗
L
k− 1

2 ,Q×Q
(A,G, b)

In a completely similar way as in Problem/De�nition 476, we can also de�ne h∗( · ) (A,G, b) with respect to
other types of cutting planes, in particular

• h∗essL
k− 1

2
,Q

(A,G, b): with respect to essential Lk− 1
2 ,Q

cuts and

• h∗L
k− 1

2
,Q×R

(A,G, b): with respect to Lk− 1
2 ,Q×R

cuts.

In this section, we show two small results for these two generalizations of h∗L
k− 1

2
,Q×Q

(A,G, b).

Theorem 496. Let k ∈ {0, . . . ,m} (otherwise essential Lk− 1
2 ,Q

cuts are not de�ned). Then

h∗essL
k− 1

2
,Q

(A,G, b) ≤

{(
2k − 1

)
(m+ n− k + 1) if P≤ (A, b)I 6= ∅,

2k (m+ n− k + 1) in general.

Proof. The statement is an immediate consequence of Theorem 493 by considering that for essential Lk− 1
2 ,Q

cuts, we only consider rational subspaces of the form V ′×Rn. Thus, we have s = 0 in the signature (k − s, s)
of proj⊥V ⊥ (Zm × Rn).

Theorem 497. Let A, G and b be rational and let k ∈ {0, . . . ,m+ n}. Then

h∗L
k− 1

2
,Q×R

(A,G, b) = h∗L
k− 1

2
,Q×Q

(A,G, b) .
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Proof. For brevity, let h := h∗L
k− 1

2
,Q×Q

(A,G, b) < ∞ (the �< ∞� is a consequence of Theorem 495). Using

Theorem 193 and the de�nition of h∗L
k− 1

2
,Q×Q

(A,G, b) (Problem/De�nition 476), we obtain

clL
k− 1

2
,Q×R

(
P≤

((
A G

)
, b
))

= clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
=

⋂
S∈([l]

h)

clL
k− 1

2
,Q×R

(
P≤

((
A G

)
S,∗ , bS

))
,

and if h ≥ 1, we have

clL
k− 1

2
,Q×R

(
P≤

((
A G

)
, b
))

= clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

(
⋂

S∈( [l]
h−1)

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
=

⋂
S∈( [l]

h−1)

clL
k− 1

2
,Q×R

(
P≤

((
A G

)
S,∗ , bS

))
.

Thus,
h∗L

k− 1
2
,Q×R

(A,G, b) = h∗L
k− 1

2
,Q×Q

(A,G, b) = h.

12.5. Lower bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2 ,Q×Q
(A,G, b)

After we have considered upper bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2
,Q×Q

(A,G, b) in section 12.3 and section

12.4, we now consider lower bounds for them.

12.5.1. Remarks concerning lower bounds for h∗
Lm+n,Q

(A,G, b) and h∗
L
m+n− 1

2 ,Q×Q
(A,G, b)

In this section, we have a look at the case k = m+n for lower bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2
,Q×Q

(A,G, b).

At �rst sight, it seems to be reasonable for �nding lower bounds for hLk,Q (A,G, b) and hL
k− 1

2
,Q×Q

(A,G, b) to

just consider an instance of (12.3) where we need h (M)− 1 inequalities such that

µ := sup {c (x) : x ∈M, bj (x) ≥ 0∀j ∈ [h (M)− 1]} ∈ R,

but for all S ( [h (M)− 1], we have

µ < sup {c (x) : x ∈M, bj (x) ≥ 0 ∀j ∈ S} ∈ R.

In this section, we write down why this strategy does in general not su�ce to �nd a best possible lower bound
for hL

k− 1
2
,Q×Q

(A,G, b) and hLk,Q (A,G, b). For this, we consider the following example:

Example 498. (See Figure 12.2) Let

P 498 := P≤
(
A498, b498

)
= P≤

 −1 1
1 −1
1 1

 ,

 1
2
1
2
3
2


(see Figure 12.2a). Then max

{
x1 + x2 : x ∈ P 498

I

}
= 0, but for every S ( [3] :=

[
h
(
Z2
)
− 1
]
, we have

max
{
x1 + x2 : x ∈ P≤

(
A498
S,∗ , b

498
S

)
I

}
≥ 1.
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12.5. Lower bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2
,Q×Q

(A,G, b)

On the other hand, hL
2− 1

2
,Q

(
A498, b498

)
= hL2,Q

(
A498, b498

)
= 2. For this, consider that

clL
2− 1

2
,Q

(
P 498

)
= clL2,Q

(
P 498

)
= clI

(
P 498

)
=
{
x ∈ R2 : x1 = x2, x1 + x2 ≤ 0

}
=
{
x ∈ R2 : x1 = x2, x1 ≤ 0, x2 ≤ 0

}
(see Figure 12.2b). On the other hand:

•

clL
2− 1

2
,Q

(
P≤

(
A498
{1,2},∗, b

498
{1,2}

))
= clL2,Q

(
P≤

(
A498
{1,2},∗, b

498
{1,2}

))
= clI

(
P≤

(
A498
{1,2},∗, b

498
{1,2}

))
=
{
x ∈ R2 : x1 = x2

}
(see Figure 12.2c and Figure 12.2d),

•

clL
2− 1

2
,Q

(
P≤

(
A498
{1,3},∗, b

498
{1,3}

))
= clL2,Q

(
P≤

(
A498
{1,3},∗, b

498
{1,3}

))
= clI

(
P≤

(
A498
{1,3},∗, b

498
{1,3}

))
⊆ P≤

((
0 1

)
,
(

0
))

(see Figure 12.2e and Figure 12.2f) and

•

clL
2− 1

2
,Q

(
P≤

(
A498
{2,3},∗, b

498
{2,3}

))
= clL2,Q

(
P≤

(
A498
{2,3},∗, b

498
{2,3}

))
= clI

(
P≤

(
A498
{2,3},∗, b

498
{2,3}

))
⊆ P≤

((
1 0

)
,
(

0
))

(see Figure 12.2g and Figure 12.2h).

Thus,
clL

2− 1
2
,Q

(P 498)

clL2,Q(P 498)
clI(P 498)

=
⋂

S∈([3]
2 )

clL
2− 1

2
,Q

(P≤(A498
S,∗,b

498
S ))

clL2,Q(P≤(A498
S,∗,b

498
S ))

clI(P≤(A498
S,∗,b

498
S )).

By Theorem 479, there always exists a polyhedron P≤
((

A G
)
, b
)
(A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl,

where m,n ∈ Z≥0 and l := h (Zm × Rn) − 1) and an inequality c ( · ) ≤ c0 such that there exists no subset

S ( [l] such that c ( · ) ≤ c0 is valid for P := P≤
((

A G
)
S,∗ , bS

)
I
. Example 498 gives a concrete instance

form = 2 and n = 0. But, as we saw in Example 498, this does not necessarily imply that for the facet-de�ning
inequalities of clI (P ) (or more general: of clLk,Q (P ) or clL

k− 1
2
,Q×Q

(P )), this has to be true.
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x2

−2

−1

1

2

x1
−2 −1 1 21

2

3

(a) P 498 = P≤
(
A498, b498

)
and P 498 ∩ Z2

x2

−2

−1

1

2

x1
−2 −1 1 2

(b) clI
(
P≤

(
A498, b498

))
x2

−2

−1

1

2

x1
−2 −1 1 2

(c) P≤
(
A498
{1,2},∗, b

498
{1,2}

)
and P≤

(
A498
{1,2},∗, b

498
{1,2}

)
∩ Z2

x2

−2

−1

1

2

x1
−2 −1 1 2

(d) clI
(
P≤

(
A498
{1,2},∗, b

498
{1,2}

))
x2

−2

−1

1

2

x1
−2 −1 1 2

(e) P≤
(
A498
{1,3},∗, b

498
{1,3}

)
and P≤

(
A498
{1,3},∗, b

498
{1,3}

)
∩ Z2

x2

−2

−1

1

2

x1
−2 −1 1 2

(f) clI
(
P≤

(
A498
{1,3},∗, b

498
{1,3}

))
; ( · )2 ≤ 0 is valid for

clI
(
P≤

(
A498
{1,3},∗, b

498
{1,3}

))
x2

−2

−1

1

2

x1
−2 −1 1 2

(g) P≤
(
A498
{2,3},∗, b

498
{2,3}

)
and P≤

(
A498
{2,3},∗, b

498
{2,3}

)
∩ Z2

x2

−2

−1

1

2

x1
−2 −1 1 2

(h) clI
(
P≤

(
A498
{2,3},∗, b

498
{2,3}

))
; ( · )1 ≤ 0 is valid for

clI
(
P≤

(
A498
{2,3},∗, b

498
{2,3}

))
Figure 12.2.: Illustration of Example 498
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12.5. Lower bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2
,Q×Q

(A,G, b)

12.5.2. Proofs of lower bounds

12.5.2.1. k = 1

The following theorem, which considers the case m = 1 ∧ n = 0, clearly holds.

Theorem 499. Let m = 1 and n = 0. Let A :=
(

1
)
∈ Q1×1 = Q1×m and b :=

(
1
2

)
∈ Q1. Then

h∗L1,Q
(A, b) = h∗L

1− 1
2
,Q×Q

(A, b) = 1 = m+ n.

Now for the case m ≥ 1 ∧m+ n ≥ 2:

Theorem 500. Let

A :=

 1m−1 −Im−1

1n 0n×(m−1)

1
(
1m−1

)T
 , G :=

 0(m−1)×n

−In
(1n)

T

 , b :=

 0m−1

0n

1

 ,

where m ∈ Z≥1 and n ∈ Z≥0 are such that m+ n ≥ 2. Let P := P≤
((

A G
)
, b
)
. Then:

• ( · )1 ≤ 0 is a valid L1− 1
2 ,Q×Q

cut (and thus also L1,Q cut) for P with respect to
(
01 × Rm−1

)
× Rn.

• For every i ∈ [m+ n], we have

1

m+ n

(
1

1m+n−1

)
∈ clI

(
P≤

((
A G

)
[m+n]\{i},∗ , b[m+n]\{i}

))
.

Thus, in particular, we have

h∗L1,Q
(A,G, b) = h∗L

1− 1
2
,Q×Q

(A,G, b) = m+ n.

Proof.

For the �rst statement: For x ∈ P , we have

x1 =
1

m+ n

((
x1 +

m+n∑
i=2

xi

)
+

m+n∑
i=2

(x1 − xi)

)

≤ 1

m+ n

(
1 +

m+n∑
i=2

0

)

=
1

m+ n
< 1.

Thus, x1 ≤ 1
m+n is valid for x ∈ P +

((
01 × Rm−1

)
× Rn

)
. Since 1

m+n < 1, this implies that x1 ≤ 0 is valid
for x ∈

(
P +

((
01 × Rm−1

)
× Rn

))
I
.

For the second statement: Consider that for all j ∈ {0, . . . ,m+ n− 1}, we have
(

0
em+n−1,j

)
∈ PI . Let

i′ := i mod m+ n ∈ {0, . . . ,m+ n− 1}. We claim that

δ :=

(
1

1m+n−1

)
−
(

0

(m+ n− 1) em+n−1,i′

)
∈ P≤

((
A G

)
[m+n]\{i},∗ , b[m+n]\{i}

)
∩ (Zm × Rn) .

(12.23)
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If (12.23) holds, we have

1

m+ n

(
1

1m+n−1

)
=
m+ n− 1

m+ n

(
0

em+n−1,i′

)
︸ ︷︷ ︸

∈PI⊆P≤
((

A G
)
,b
)
I

+
1

m+ n

((
1

1m+n−1

)
−
(

0

(m+ n− 1) em+n−1,i′

))
∈ clI

(
P≤

((
A G

)
[m+n]\{i},∗ , b[m+n]\{i}

))
and we are thus done.
So for (12.23): we show that for j ∈ [m+ n] \ {i}, we have

(
A G

)
j,∗ δ = bj .

Case 1: j ∈ [m+ n− 1]:
Aj,∗δ = δ1 − δj+1 = 1− 1 = 0 = bj .

Case 2: j = m+ n:

Am+n,∗δ = δ1 +

m+n∑
j′=2

δj′ = 1 + (m+ n− 1)− (m+ n− 1) = 1 = bm+n.

12.5.2.2. k,m, n arbitrary

Before we state our result in Theorem 503, we show two results (Theorem 501 and Theorem 502), which build
on one another.

Theorem 501. Let m ∈ Z≥1 and n ∈ Z≥0 be such that m+ n ≥ 2. Let

m′ :=

{
m− 1 if n = 0,

m if n ≥ 1

and let k ∈ {1, . . . ,m′}. Let A501,m,n,k ∈ ZP([k])×(m+n) and b501,m,n,k ∈ ZP([k]), where

A501,m,n,k
I,j :=



1 if j ∈ I,
−1 if j ∈ [k] \I,
0 if j ∈ {k + 1, . . . ,m′} ,
1 if j = m′ + 1,

0 if k ∈ {m′ + 2, . . . ,m+ n} ,

b501,m,n,k
I := |I| .

Then

∅ 6= P
(
A501,m,n,k, b501,m,n,k

)
I
⊆ P≤

((
em+n,m′+1

)T
, 0

)
(12.24)

and for every J ∈ P ([k]), y ∈ Zm′−k and y′ ∈ Rn−1 (if n ≥ 1), we have
1
2 · 1

k

y
1
2
y′

 ∈ clI

(
P≤

(
A501,m,n,k
P([k])\{J},∗, b

501,m,n,k
P([k])\{J}

))
, (12.25)

where the ( ·)I and clI ( · ) in (12.24) and (12.25) are with respect to the lattice Zm × Rn.
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12.5. Lower bounds for h∗Lk,Q (A,G, b) and h∗L
k− 1

2
,Q×Q

(A,G, b)

Proof. (12.24) is obvious.

For (12.25): We surely have

x1 :=


1k − χ[k]

J

y
0
y′

 ∈ P≤ (A501,m,n,k, b501,m,n,k
)
I
⊆ P≤

(
A501,m,n,k
P([k])\J,∗, b

501,m,n,k
P([k])\J

)
I
.

Additionally, we claim that

x2 :=


χ

[k]
J

y
1
y′

 ∈ P≤ (A501,m,n,k
P([k])\J,∗, b

501,m,n,k
P([k])\J

)
I
.

For the reason: let I ∈ P ([k]) \ {J}. Then

A501,m,n,k
I,∗ x2 =

∑
i∈I

(
x2
)
i
−
∑

i∈[k]\I

(
x2
)
i
+
(
x2
)
m′+1

=
∑
i∈I∩J

(
x2
)
i︸ ︷︷ ︸

=1

+
∑
i∈I\J

(
x2
)
i︸ ︷︷ ︸

=0

−
∑
i∈J\I

(
x2
)
i︸ ︷︷ ︸

=1

−
∑

i∈[k]\(I∪J)

(
x2
)
i︸ ︷︷ ︸

=0

+1

= |I ∩ J | − |J\I|+ 1

=: (12.26).

We distinguish two cases (since I 6= J , at least one of them has to occur):

1. J\I 6= ∅,

2. I\J 6= ∅.

In case 1, we have
(12.26) = |I ∩ J |︸ ︷︷ ︸

≤|I|

− |J\I|︸ ︷︷ ︸
≥1

+1 ≤ |I| .

In case 2, we have
(12.26) = |I ∩ J | − |J\I|+ 1 ≤ |I| − |I\J |︸ ︷︷ ︸

≥1

− |J\I|︸ ︷︷ ︸
≥0

+1 ≤ |I| .

In any case, the inequality ∑
i∈I

(
x2
)
i
−
∑

i∈[k]\I

(
x2
)
i
+
(
x2
)
m′+1

≤ |I|

is satis�ed, from which x2 ∈ P≤
(
A501,m,n,k
P([k])\J,∗, b

501,m,n,k
P([k])\J

)
and, thus, x2 ∈ P≤

(
A501,m,n,k
P([k])\J,∗, b

501,m,n,k
P([k])\J

)
I
follows.

Thus, we obviously obtain

1

2

(
x1 + x2

)
∈ clI

(
P≤

(
A501,m,n,k
P([k])\J,∗, b

501,m,n,k
P([k])\J

))
.

Theorem 502. Let m ∈ Z≥1 and n ∈ Z≥0 be such that m+ n ≥ 2. Let

m′ :=

{
m− 1 if n = 0,

m if n ≥ 1

and let k ∈ {1, . . . ,m′}. Then there exist A502,m,n,k ∈ Z2k×m, G502,m,n,k ∈ Z2k×n and b502,m,n,k ∈ Z2k such
that

P := P≤
((

A502,m,n,k G502,m,n,k
)
, b502,m,n,k

)
I
6= ∅ (12.27)
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and

P≤
((

em+n,m′+1
)T

, 0

)
⊇ P ∩ ((Zm × Rn) +

((
0k × Rm−k

)
× Rn

)︸ ︷︷ ︸
codim( · )=k

), (12.28)

P≤
((

em+n,m′+1
)T

, 0

)
⊇



(
P +

(
0k × Rm

′−k × 0
)

︸ ︷︷ ︸
codim( · )=k+1

)
I

if n = 0,

(
P +

(
0k × Rm

′−k × 0× Rn−1
)

︸ ︷︷ ︸
codim( · )=k+1

)
I

if n ≥ 1.
(12.29)

On the other hand, for every i ∈
[
2k
]
, y ∈ Zm′−k and y′ ∈ Rn−1 (if n ≥ 1), we have

1
2 · 1

k

y
1
2
y′

 ∈ clI

(
P≤

((
A502,m,n,k G502,m,n,k

)
[2k]\{i},∗ , b

502,m,n,k
[2k]\{i}

))
. (12.30)

Proof. Let

A502,m,n,k := A501,m,n,k
∗,(1,...,m), G502,m,n,k := A501,m,n,k

∗,(m+1,...,m+n), b502,m,n,k := b501,m,n,k.

Then:

• (12.27) holds by Theorem 501, equation (12.24).

• For (12.28), consider that for x ∈ P , where x(1,...,k) ∈ Zk, we have xm′+1 ≤ 0 (this is easy to verify).
From this, (12.28) is an immediate consequence.

• For (12.29), consider that

linealP ⊇

{
0k × Rm−(k+1) × 0 if n = 0,

0k × Rm−k × 0× Rn−1 if n ≥ 1.

Thus, we conclude (12.29) from Theorem 217 and Theorem 501, equation (12.24).

• (12.30) holds by Theorem 501, equation (12.25).

Theorem 503. Let m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m+ n}.

• Let

h :=

{
2min(k,m−1) if n = 0,

2min(k,m) if n ≥ 1.

Then there exist A ∈ Qh×m, G ∈ Qh×n and b ∈ Qh such that

P≤
((

A G
)
, b
)
I
6= ∅ (12.31)

and
h∗Lk,Q (A,G, b) = h. (12.32)

• Let

h :=

{
2k−1 if n = 0,

2min(k−1,m) if n ≥ 1.

Then there exist A ∈ Qh×m, G ∈ Qh×n and b ∈ Qh such that

P≤
((

A G
)
, b
)
I
6= ∅ (12.33)

and
h∗L

k− 1
2
,Q×Q

(A,G, b) = h. (12.34)
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12.6. Summary of bounds for h∗L
m+n− 1

2
,Q×Q

(A,G, b) and h∗Lm+n,Q
(A,G, b)

Proof.

For (12.31) and (12.32): If m = 1 and n = 0, the statement holds by Theorem 499. For m+ n ≥ 2, let m′

be as in Theorem 502 and consider

A := A502,m,n,min(k,m′), G := G502,m,n,min(k,m′), b := b502,m,n,min(k,m′).

Then (12.31) holds by (12.27). If k ∈ {1, . . . ,m′}, (12.32) is an immediate consequence of (12.28) and (12.30).
On the other hand, if k ≥ m′ + 1, we immediately conclude (12.32) from (12.28), (12.30) and

P≤
((

A G
)
, b
)
∩
(
(Zm × Rn) +

(
0m ×

(
Rm+n−k × 0k−m

)))
⊆P≤

((
A G

)
, b
)
∩
(

(Zm × Rn) +
((

0m
′
× Rm−m

′
)
× Rn

))
.

For (12.33) and (12.34): If k = 1, the statement holds by Theorem 499. For k ≥ 2 (this implies m+n ≥ 2),
let m′ be as in Theorem 502 and consider

A := A502,m,n,min(k−1,m′), G := G502,m,n,min(k−1,m′), b := b502,m,n,min(k−1,m′).

Then (12.31) holds by (12.27). If k − 1 ∈ {1, . . . ,m′} (thus, k ∈ {2, . . . ,m′ + 1}), (12.34) is an immediate
consequence of (12.29) and (12.30). On the other hand, if k ≥ m′ + 2 (which implies n ≥ 2), we immediately
conclude (12.34) from (12.29), (12.30) and(

P≤
((

A G
)
, b
)

+
(
0m ×

(
0k−m × Rm+n−k))︸ ︷︷ ︸
codim( · )=k

)
I

⊆
(
P≤

((
A G

)
, b
)

+
((

0m × Rm−m
)
×
(
0× Rn−1

))︸ ︷︷ ︸
codim( · )=m+1=m′

)
I
.

12.6. Summary of bounds for h∗L
m+n− 1

2 ,Q×Q
(A,G, b) and h∗Lm+n,Q

(A,G, b)

12.6.1. Upper bounds

Theorem 504. Let k ∈ {0, . . . ,m+ n}. Then

h∗Lk,Q (A,G, b) ≤


rank

(
A G

)
(≤ m+ n) if k = 1,

2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general,

h∗L
k− 1

2
,Q×Q

(A,G, b) ≤



rank
(
A G

)
(≤ m+ n) if k = 1,(

2k − 1
)

(m+ n− k + 1) if P≤
((

A G
)
, b
)
I
6= ∅ ∧ k ∈ {0, . . . ,m},

2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general.

Proof. The �rst bound for h∗Lk,Q (A,G, b) is a consequence of Theorem 269. The second and third bound for
h∗Lk,Q (A,G, b) are shown in Theorem 487. The �rst bound for h∗L

k− 1
2
,Q×Q

(A,G, b) holds by Theorem 394. The

other three bounds for h∗L
k− 1

2
,Q×Q

(A,G, b) are shown in Theorem 495.
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12.6.2. Lower bounds

Theorem 505. Let m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m+ n}. Then there exist rational A, G and b such
that P≤

((
A G

)
, b
)
6= ∅ and

h∗L
k− 1

2
,Q×Q

(A,G, b) =


m+ n,

2k−1 if n = 0,

2min(k−1,m) if n ≥ 1,

h∗Lk,Q (A,G, b) =


m+ n,

2min(k,m−1) if n = 0,

2min(k,m) if n ≥ 1.

Proof. The m+ n bounds for h∗L
k− 1

2
,Q×Q

(A,G, b) and h∗Lk,Q (A,G, b) are immediately implied

• by Theorem 499 if m = 1 and n = 0 and

• by Theorem 500 if m+ n ≥ 2.

The remaining bounds are immediate consequences of Theorem 503.
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13. Bounds on the Lk,Q rank and Lk−1
2 ,Q

rank

of polyhedra with 0/1 integer variables

In this chapter, we consider bounds on the Lk,Q and Lk− 1
2 ,Q

rank for polyhedra where the integer variables are
0/1 variables (recall (6.11) for the de�nition of the Lk,Q and Lk− 1

2 ,Q
rank (rankLk,Q ( · ) and rankL

k− 1
2
,Q

( · ))).

• In section 13.1.1, Theorem 515, we show the bound

rankLk,Q (P ) ≤
⌈m
k

⌉
(13.1)

for the Lk,Q rank of a polyhedron P ⊆ [0, 1]
m ×Rn, where m,n ∈ Z≥0 and k ∈ {1, . . . ,m} (we actually

prove that this bound holds for a somewhat larger class of convex sets; cf. De�nition 506).

• Now one can ask whether this bound is tight. This is the topic of section 13.1.2. In Theorem 526,
we prove that for every m ∈ Z≥1, there exists a rational polytope P ⊆ [0, 1]

m such that for all k ∈
{1, . . . ,m}, we have

rankLk,Q (P ) ≥
⌈m
k

⌉
.

Thus, the bound (13.1) is indeed tight.

• At the beginning of section 13.2, in Theorem 528, we use these results that we showed on the Lk,Q
rank to estimate the Lk− 1

2 ,Q×Q
rank of a rational polyhedron. In the case k = 1, this gives us only

a lower bound. Luckily, the problem of �nding bounds for the L1− 1
2 ,Q

rank (Chvátal-Gomory rank)
of, for example, a polytope P ⊆ [0, 1]

m (m ∈ Z≥0) is a well-studied problem in the literature. So, in
section 13.2.1, we give an overview about some results from the literature concerning upper bounds for
the Chvátal-Gomory rank and in section 13.2.2, we do the same for lower bounds.

13.1. Lk,Q rank

13.1.1. Upper bounds for the Lk,Q rank

De�nition 506. Let P ⊆ [0, 1]
m × Rn (m,n ∈ Z≥0) satisfy

P = Q+ C,

where Q ⊆ [0, 1]
m × Rn is convex and compact and C ⊆ 0m × Rn is a polyhedral cone generated by vectors

from 0m × Rn. For K ⊆ [m], we de�ne

PK,I :=

{(
x
y

)
∈ P : xK ∈ {0, 1}K

}
,

PK := convPK,I .

Remark 507. The conditions on P in De�nition 506 include the situation that P ⊆ [0, 1]
m × Rn is an

arbitrary polyhedron (i.e. not �only� a rational polyhedron) as special case.

Lemma 508. Let P = Q+C, where P , Q and C are as in De�nition 506. Additionally, let also K be as in
De�nition 506. Then PK = QK + C, where the sets PK and QK are closed.

Proof. W.l.o.g. let K := {1, . . . , k}, where k ∈ {0, . . . ,m}. Obviously,

PK = conv

(
P ∩

{(
x
y

)
∈ P : xK ∈ ZK

})
.
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13. Bounds on the Lk,Q rank and Lk− 1
2 ,Q

rank of polyhedra with 0/1 integer variables

In other words:
PK = conv

(
P ∩

(
Zk × Rm+n−k)) .

The cone C is �nitely generated. Each generator
(
c1

c2

)
∈ 0m × Rn satis�es c1i = 0 ∈ Z for i ∈ [k]. Thus, the

conditions of Theorem 75 are satis�ed for P with respect to a mixed lattice that is isomorphic to the mixed
lattice Zk × Rm+n−k. So, PK = QK + C, and the sets PK and QK are closed.

Lemma 509. Let m, n and P be as in De�nition 506. Let K ∈
(

[m]
k

)
, where k ∈ {0, . . . ,m}. Then

clLk,Q (P ) ⊆ clkBS (P ) ⊆ PK.

Proof. Let K := {i1, . . . , ik}. Obviously,
clkBS (P ) ⊆ PK (13.2)

holds, since any valid inequality for PK is a valid inequality for P ∩D
(
em,i1 , . . . , em,ik , 0, . . . , 0

)
. Because of

Lemma 508, we have PK = PK. Combined with (13.2), we get the inclusion clkBS (P ) ⊆ PK. The inclusion
clLk,Q (P ) ⊆ clkBS (P ) is an immediate consequence of Corollary 278.

The proof of the following Lemma is taken from [CCZ10, Lemma 11.10].

Lemma 510. Let H := P= (c, c0) ⊆ Rd (c ∈
(
Rd
)T \{(0d)T} and c0 ∈ R, where d ∈ Z≥0) be a hyperplane

and let S ⊆ P≤ (c, c0). Then
(convS) ∩H = conv (S ∩H) .

Remark 511. (Also cf. [CCZ10, section 11.7.4]) The condition S ⊆ P≤ (c, c0) in Lemma 510 is essential
for the inclusion (convS) ∩ H ⊆ conv (S ∩H) to hold. To that end, let a hyperplane H = P= (c, c0) ⊆ Rd

(c ∈
(
Rd
)T \{(0d)T} and c0 ∈ R) be given. Let S :=

{
x1, x2

}
, where cx1 > c0 and cx2 < c0. Then

conv (S ∩H) = ∅,
but

c0 − cx2

c (x1 − x2)
x1 +

cx1 − c0
c (x1 − x2)

x2 ∈ (convS) ∩H.

Proof. (Lemma 510) Because of conv (S ∩H) ⊆ convS and conv (S ∩H) ⊆ H, we immediately obtain

conv (S ∩H) ⊆ (convS) ∩H.

Thus, we only have to show (convS) ∩H ⊆ conv (S ∩H) . Let x ∈ (convS) ∩H. This means cx = c0 and
x =

(
x1 · · · xk

)
λ, where k ∈ Z≥1, λ ∈ ∆k−1 and for i ∈ [k], xi ∈ S . We have

c0 = cx =

k∑
i=1

λicx
i ≤

k∑
i=1

λic0 = c0.

Thus, equality holds. In other words, we have cxi = c0 for all i ∈ [k]. Therefore xi ∈ S ∩ H. This implies
x ∈ conv (S ∩H).

Lemma 512. Let k ∈ Z≥1 and let {Hi}ki=1 be a collection of hyperplanes, where Hi := P=
(
ci, c0,i

)
⊆ Rd

(ci ∈
(
Rd
)T \{(0d)T}, c0,i ∈ R for all i ∈ [k], where d ∈ Z≥0) such that for all i ∈ [k], we have S ⊆

P≤
((
ci
)T
, c0,i

)
. Then

(convS) ∩
k⋂
i=1

Hi = conv

(
S ∩

k⋂
i=1

Hi

)
.

Proof. We do a proof by induction. For k = 1, this is the statement of Lemma 510. For the induction step,
assume that the statement holds for k∗. Then

(convS) ∩
k∗+1⋂
i=1

Hi = (convS) ∩
k∗⋂
i=1

Hi ∩Hk∗+1
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=

(
conv

(
S ∩

k∗⋂
i=1

Hi

))
∩Hk∗+1 (induction hypothesis)

= conv

(
S ∩

k∗+1⋂
i=1

Hi

)
. (Lemma 510)

Lemma 513. Let m and P be as in De�nition 506 and let K1,K2 ⊆ [m]. Then

(PK1
)K2

= PK1∪K2
.

Proof.

(PK1)K2
= (convPK1,I)K2

= conv
⋃

J∈{0,1}K2

(
(convPK1,I) ∩

{(
x
y

)
∈ Rm × Rn : xK2

= J

})

= conv
⋃

J∈{0,1}K2

conv

(
PK1,I ∩

{(
x
y

)
∈ Rm × Rn : xK2

= J

})
(Lemma 512)

= conv
⋃

J∈{0,1}K2

(
PK1,I ∩

{(
x
y

)
∈ Rm × Rn : xK2

= J

})
= convPK1∪K2,I

= PK1∪K2
.

We note that, if K ⊆ [m] and P = Q+C are as in De�nition 506, we have (cf. Lemma 508) PK = QK +C
and QK satis�es the conditions for Q in De�nition 506. Thus, we may apply Lemma 513 inductively and get:

Corollary 514. Let m and P be as in De�nition 506 and let let K1, . . . ,Kt ⊆ [m], where t ∈ Z≥1. Then(
. . .
(
(PK1

)K2

)
...

)
Kt

= P⋃t
i=1 Ki .

In particular, if
⋃t
i=1Ki = [m], we have(

. . .
(
(PK1

)K2

)
...

)
Kt

= clI (P ) .

Now we come to the central theorem of this section:

Theorem 515. Let P ⊆ Rm × Rn (m ∈ Z≥1, n ∈ Z≥0) be as in De�nition 506 and let k ∈ [m]. Then

rankLk,Q (P ) ≤
⌈m
k

⌉
(recall (6.11) for the de�nition of the Lk,Q rank).

Proof. By setting

K1 := {1, . . . , k} ,
K2 := {k + 1, . . . , 2k} ,

...

Kdmk e−1 :=
{(⌈m

k

⌉
− 2
)
k + 1, . . . ,

(⌈m
k

⌉
− 1
)
k
}
,

Kdmk e := {m− k + 1, . . . ,m}
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in Corollary 514, one obtains: (
. . .
(
(PK1)K2

)
...

)
Kdmk e

= clI (P ) .

By observing that for all i ∈
⌈
m
k

⌉
, we have |Ki| = k, we obtain rankLk,Q (P ) ≤

⌈
m
k

⌉
from Lemma 509.

13.1.2. Lower bounds for the Lk,Q rank

De�nition 516. For m ∈ Z≥1, let

P 516,m :=

x ∈ [0, 1]
m

:
∑
j∈J

xj +
∑

j∈[m]\J

(1− xj) ≥
1

2
∀J ∈ P ([m])

 .

Remark 517. We have
(
P 516,m

)
I

= ∅.

Proof. Let x ∈ {0, 1}m and let J := {j ∈ [m] : xj = 0} . Then∑
j∈J

xj +
∑

j∈[m]\J

(1− xj) =
∑
j∈J

0 +
∑

j∈[m]\J

(1− 1) = 0 �
1

2
.

Remark 518. The statement of Theorem 515 particularly holds for P = P 516,m, i.e. for m ∈ Z≥1 and
k ∈ {1, . . . ,m}, we have

rankLk,Q
(
P 516,m

)
≤
⌈m
k

⌉
.

De�nition 519. For m ∈ Z≥1 and j ∈ {1, . . . ,m}, de�ne the set

Fj,m :=

{
x ∈

{
0,

1

2
, 1

}
:

∣∣∣∣{j′ ∈ [m] : xj′ =
1

2

}∣∣∣∣ = j

}
.

Remark 520. We have (cf. Example 11.2 in [CCZ10]) for m ∈ Z≥1:

convF1,m = P 516,m.

Lemma 521. For m ∈ Z≥1 and k1, k2 ∈ {1, . . . ,m}, where k1 ≤ k2, the identity Fk2,m ⊆ convFk1,m holds.

Proof. For k1 = k2 the statement is trivial. This shows the induction basis. Concerning the induction step:
let the statement hold for k2 − k1 =: l∗. Let k2 − k1 = l∗ + 1 and let v ∈ Fk2,m. Since k2 ≥ 1, there exists at
least one i ∈ [m] such that vi = 1

2 . Let

v1 := v +
1

2
em,i,

v2 := v − 1

2
em,i.

Then v1, v2 ∈ Fk2−1,m and v = 1
2v

1 + 1
2v

2 ∈ convFk2−1,m. Thus,

v =
1

2
v1 +

1

2
v2 ∈ convFk2−1,m︸ ︷︷ ︸

⊆conv(convFk1,m)
(induction hypothesis)

⊆ conv (convFk1,m) = convFk1,m.

Lemma 522. Let A ∈ F l×d (l, d ∈ Z≥0) be a matrix with linearly independent rows over an arbitrary �eld
F and let v∗ ∈ F d. Then there exists a v ∈ F d such that

v∗ − v ∈ kerA

and v has at most l non-zero components.
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Proof. Clearly, v := v∗ satis�es v∗ − v ∈ kerA. So, there (trivially) exists a v ∈ F d such that v∗ − v ∈ kerA.
Now let v ∈ F d be such that v∗−v ∈ kerA and |supp v| is minimal. Assume |supp v| ≥ l+1. Since rankA = l,
there exist linearly dependent vectors among

⋃
i∈supp v {A∗,i} . This means that there exist a λ ∈ F l\

{
0l
}

such that Aλ = 0l and suppλ ⊆ supp v. Now let i∗ ∈ suppλ ⊆ supp v and let

v′ := v − vi∗

λi∗
λ.

Clearly, supp v′ ( supp v, since supp v′ ⊆ supp v and v′i∗ = vi∗ − vi∗
λi∗

λi∗ = 0. On the other hand

A (v∗ − v′) = Av∗ −A
(
v − vi∗

λi∗
λ

)
= Av∗ −Av = 0l,

which is a contradiction to the fact that |supp v| is chosen minimally.

By setting F := F2, v∗ := 1l in Lemma 522 and observing that in F2

• 1 is the only element di�erent from 0 and

• for all x ∈ F2, we have −x = x,

we obtain:

Corollary 523. Let A ∈ Fl×d2 (l, d ∈ Z≥0) be a matrix with linearly independent rows. Then there exist
distinct i1, . . . , il′ ∈ [d], where 0 ≤ l′ ≤ l, such that

1d +

l′∑
j=1

ed,ij ∈ kerA.

The following theorem generalizes the statement of [CCZ10, Lemma 11.14]:

Theorem 524. Let m ∈ Z≥1, k ∈ [m− 1] and j ∈ [m− k]. Then Fj+k,m ⊆ clLk,Q (convFj,m).

x2

1

x1
1

(a) convF1,2 = cl
(0)
L1,Q

(
P 516,2

)

x2

1

x1
1

(
1
2
1
2
1
2

)

(b)
{( 1

2
1
2

)}
= convF2,2

= cl
(1)
L1,Q

(
P 516,2

)

x2

1

x1
1

(c) ∅ = cl
(2)
L1,Q

(
P 516,2

)
= cl

(1)
L2,Q

(
P 516,2

)
Figure 13.1.: Iterative Lk,Q closure of P 516,2 = convF1,2

Remark 525. By combining Theorem 524 with Corollary 514, one can even show that for m, k and j as in
Theorem 524, we have

clLk,Q (convFj,m) = convFj+k,m.

This enables us to compute all iterated Lk,Q closures of P 516,m. For m = 2 and m = 3, we visualized these in
Figure 13.1 and Figure 13.2.

Proof. (Theorem 524) Let w1, . . . , wk ∈ Zm be as in Theorem 172. We show that

Fj+k,m ⊆ conv
(

(convFj,m) ∩
{
x ∈ Rm :

(
wi
)T
x ∈ Z ∀i ∈ [k]

})
.
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x3

1

x2
1

x1

1

(a) convF1,3 = P 516,3 = cl
(0)
L1,Q

(
P 516,3

)
= cl

(0)
L2,Q

(
P 516,3

)

x3

1

x2
1

x1

1

(b) convF2,3 = cl
(1)
L1,Q

(
P 516,3

)
x3

1

x2
1

x1

1

(
1
2
1
2
1
2

)

(c)

{(
1
2
1
2
1
2

)}
= convF3,3 = cl

(2)
L1,Q

(
P 516,3

)
= cl

(1)
L2,Q

(
P 516,3

)

x3

1

x2
1

x1

1

(d) ∅ = cl
(3)
L1,Q

(
P 516,3

)
= cl

(2)
L2,Q

(
P 516,3

)
= cl

(1)
L3,Q

(
P 516,3

)

Figure 13.2.: Iterative Lk,Q closure of P 516,3 = convF1,3

Let v ∈ Fj+k,m. W.l.o.g. let

v ∈
{

1

2

}j+k
× {0, 1}m−(j+k) (13.3)

(if this is not the case, do a permutation of the coordinates). For a vector x ∈ Zd (where d may be chosen
freely and is apparent from context), let

ΨF2 (x) := x mod 2 · 1d ∈ Fd2.

Conversely, we de�ne for x ∈ Fd2
ΨZ (x) := x ∈ Zd

as the embedding of x into Zd. Let

w′i := ΨF2

(
wi(1,...,j+k)

)
∈ Fj+k2

for all i ∈ [k]. W.l.o.g. let w′1, . . . , w′r (r ∈ {0, . . . , k}) be linearly independent over F2 and let w′r+1, . . . , w′k
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be representable as linear combination of w′1, . . . , w′r (over F2). De�ne

W ′ :=


(
w′1
)T
...

(w′r)
T

 ∈ Fr×(j+k)
2 .

By Corollary 523, there exist distinct i1, . . . , ir∗ ∈ [r] (r∗ ∈ {0, . . . , r}) having

1j+k +

r∗∑
j′=1

ej+k,ij′ ∈ kerW ′ (13.4)

(over F2). For I ∈ P ([r∗]), de�ne

vI := v +
1

2

∑
j′∈I

em,ij′ −
∑

j′∈[r∗]\I

em,ij′

 . (13.5)

Using these de�nitions, we obtain the following two statements:

•
v =

1

2r∗
∑

I∈P([r∗])

vI ,

•

vIi


∈ {0, 1} if i ∈ {i1, . . . , ir∗}
= 1

2 if i ∈ [j + k] \ {i1, . . . , ir∗}
∈ {0, 1} if i ∈ {j + k + 1, . . . ,m}

∀I ∈ P ([r∗]) . (13.6)

For (13.6):

� If i ∈ {i1, . . . , ir∗}, we have using i ∈ {i1, . . . , ir∗} ⊆ [r] ⊆ [k] ⊆ [j + k]:

vIi = vi +
1

2

∑
j′∈I

e
m,ij′
i −

∑
j′∈[r∗]\I

e
m,ij′
i

 =
1

2
± 1

2
∈ {0, 1} .

� If i ∈ [j + k] \ {i1, . . . , ir∗}, we have:

vIi = vi +
1

2

∑
j′∈I

e
m,ij′
i −

∑
j′∈[r∗]\I

e
m,ij′
i

 =
1

2
+ 0 =

1

2
.

� If i ∈ {j + k + 1, . . . ,m}, we have using {i1, . . . , ir∗} ⊆ [r] ⊆ [k] ⊆ [j + k]:

vIi = vi +
1

2

∑
j′∈I

e
m,ij′
i −

∑
j′∈[r∗]\I

e
m,ij′
i

 ∈ {0, 1}+ 0 = {0, 1} .

Because vI ∈ Fj+k−r∗,m for all I ∈ P ([r∗]), we surely have using Lemma 521: vI ∈ convFj,m. What remains
to be shown is

∀i ∈ [k] , I ∈ P ([r∗]) :
(
wi
)T
vI ∈ Z. (13.7)

For this purpose, we show the following auxiliary statement: for all I ∈ P ([r∗]) and r ∈ [r], we have(
w′

r)T
ΨF2

(
2vI(1,...,j+k)

)
= 0. (13.8)

For (13.8): (
w′

r)T
ΨF2

(
2vI(1,...,j+k)

)
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=
(
w′

r)T
ΨF2

2

v(1,...,j+k) +
1

2

∑
j′∈I

ej+k,ij′ −
∑

j′∈[r∗]\I

ej+k,ij′

 (by (13.5))

=
(
w′

r)T
ΨF2

 2v(1,...,j+k)︸ ︷︷ ︸
=1j+k (by (13.3))

+
∑
j′∈I

ej+k,ij′ +
∑

j′∈[r∗]\I

ej+k,ij′


=
(
w′

r)T
ΨF2

1j+k +
∑
j′∈[r∗]

ej+k,ij′


=0. (by (13.4))

Now for the proof of (13.7): because of ∀i ∈ [k] : w′i = ΨF2

(
wi(1,...,j+k)

)
, there exists a δi ∈ (2Z)

j+k having

wi(1,...,j+k) = ΨZ
(
w′i
)

+ δi. (13.9)

Additionally, note that for all i ∈ [k], there exists a λ ∈ Fr2 having

w′i =

r∑
i′=1

λi′w
′i′ . (13.10)

For i ∈ {1, . . . , r}, this is obvious (just let λ := er,i). For i ∈ {r + 1, . . . , k}, this is implied by the fact that
w′r+1, . . . , w′k can be represented as a linear combination of w′1, . . . , w′r (over F2). Thus, for i ∈ [k] and
I ∈ P ([r∗]), we have

(
wi
)T
vI =

j+k∑
i′=1

wii′v
I
i′ +

m∑
i′=j+k+1

wii′︸︷︷︸
∈Z

vIi′︸︷︷︸
∈Z (by (13.6))

∈
j+k∑
i′=1

(
ΨZ
(
w′i
)

+ δi
)
i′
vIi′ + Z (by (13.9))

=

j+k∑
i′=1

(
ΨZ
(
w′i
))
i′
vIi′ +

j+k∑
i′=1

δii′︸︷︷︸
∈2Z

vIi′︸︷︷︸
∈{0, 12 ,1}
(by (13.6))

+Z

=
1

2

j+k∑
i′=1

(
ΨZ
(
w′i
))
i′

(
2vIi′

)
+ Z

=
1

2

j+k∑
i′=1

ΨZ

 r∑
j′=1

λj′w
′j′


i′

(
2vIi′

)
+ Z (by (13.10))

⊆ 1

2

ΨZ

j+k∑
i′=1

 r∑
j′=1

λj′w
′j′


i′

ΨF2

(
2vIi′

)+ 2Z

+ Z (13.11)

=
1

2
ΨZ


r∑

j′=1

λj′
j+k∑
i′=1

w′j
′

i′

(
ΨF2

(
2vI
))
i′︸ ︷︷ ︸

=0 (by (13.8))


︸ ︷︷ ︸

=0

+Z

= Z.

We remark that (13.11) holds because for all z ∈ Z, we have z ∈ ΨZ (ΨF2
(z)) + 2Z.
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Theorem 526. Let m ∈ Z≥1 and k ∈ {1, . . . ,m}. Then

rankLk,Q
(
P 516,m

)
≥
⌈m
k

⌉
(recall (6.11) for the de�nition of the Lk,Q rank).

Proof. For k ∈ {1, . . . ,m − 1}, the statement is an immediate consequence of Theorem 524. For k = m, we
know by Remark 517 that

(
P 516,m

)
I

= ∅. On the other hand, clearly P 516,m 6= ∅. Thus,

rankLk,Q
(
P 516,m

)
≥ 1 =

⌈m
k

⌉
.

We immediately obtain as corollary of Theorem 515 and Theorem 526:

Corollary 527. Let P and k be as in De�nition 506. Then

rankLk,Q (P ) ≤
⌈m
k

⌉
(13.12)

and there exists a rational polytope P ⊆ [0, 1]
m

having

rankLk,Q (P ) =
⌈m
k

⌉
(in particular P 516,m). So, the bound (13.12) is tight.

13.2. Lk− 1
2 ,Q×( · ) rank

We now consider the situation for the Lk− 1
2 ,Q×( · ) rank. From Theorem 197, Theorem 199, Theorem 515 and

Theorem 526, we conclude:

Theorem 528. Let P ⊆ [0, 1]
m × Rn (m ∈ Z≥1 and n ∈ Z≥0) be a rational polyhedron. Then:

• If n = 0, we have for every k ∈ {1, . . . ,m− 1}:

rankL
k+1− 1

2
,Q

(P ) ≤
⌈m
k

⌉
.

• If n ≥ 1, we have for every k ∈ {1, . . . ,m}:

rankL
k+1− 1

2
,Q×Q

(P ) = rankL
k+1− 1

2
,Q×R

(P ) ≤
⌈m
k

⌉
.

On the other hand, for every k ∈ {1, . . . ,m− 1}, we have

rankL
k− 1

2
,Q

(
P 516,m

)
≥
⌈m
k

⌉
.

Theorem 528 allows to bound the Lk− 1
2 ,Q×Q

rank/Lk− 1
2 ,Q×R

rank for k ≥ 2 both from above and below, so
that the upper and lower bound di�er only by a constant factor. The situation is di�erent for k = 1: Theorem
528 gives no upper bound for the Lk− 1

2 ,Q
rank of a (w.l.o.g. rational) polyhedron P ⊆ [0, 1]

m (only a lower
bound of m). Thus, it gives no idea whether there exists a polyhedron P ⊆ [0, 1]

m such that

rankL
1− 1

2
,Q

(
P 516,m

)
>
⌈m

1

⌉
= m

holds. In other words: we don't know whether the lower bound in Theorem 528 is tight or not for k = 1.
Luckily, the problem of estimating the Chvátal-Gomory rank of a polyhedron P ⊆ [0, 1]

m (which, by
Theorem 391, is equivalent to the L1− 1

2 ,Q
rank of P ) has been studied extensively in the literature. In the

remainder of this section, we give a short overview about some results concerning this topic.
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13.2.1. Upper bounds for the Chvátal-Gomory rank

We now summarize some results from the literature about the Chvátal-Gomory rank of a polytope contained
in the 0/1 cube. In [BEHS99, Lemma 3 and Corollary 4], it is shown:

Theorem 529. Let ∅ 6= P ⊆ [0, 1]
m

(m ∈ Z≥1) be a rational polytope of dimension d with PI = ∅. Then

rankCG (P ) ≤ max (1, d) .

This implies that for every (not necessarily rational) polytope P ⊆ [0, 1]
m
, we have

rankCG (P ) ≤ m.

We now can ask: �How do polytopes P ⊆ [0, 1]
m (m ∈ Z≥1) having rankCG (P ) = m look like?�. In [ES03,

Proposition 2.4], it is shown (we remark that some of the statements in Theorem 530 are not stated explicitly
in [ES03, Proposition 2.4], but are shown in the proof):

Theorem 530. Let P ⊆ [0, 1]
m

(m ∈ Z≥1) be a polytope with PI = ∅ and rankCG (P ) = m. Then any
inequality description A ( · ) ≤ b (A ∈ Rl×m, b ∈ Rl, where l ∈ Z≥1) of P satis�es the following two properties:

• For each point x ∈ {0, 1}m, there exists an i ∈ [l] such that Ai,∗x > bi.

• For every i ∈ [l], there exists at most one x ∈ {0, 1}m having Ai,∗x > bi.

Thus, in particular, we have l ≥ 2m, i.e. P has at least 2m facets.

This characterization is made more precise in [PS11a]:

Theorem 531. [PS11a, Theorem 3.12] For m ∈ Z≥1, let

P 531,m :=

x ∈ [0, 1]
m

:
∑
j∈J

xj +
∑

j∈[m]\J

(1− xj) ≥ 1 ∀J ∈ P ([m])


(note how the de�nitions of P 516,m and P 531,m are very related: the only di�erence is the coe�cient at the
right-hand side of the inequalities ( 1

2 vs 1)). Let P ⊆ [0, 1]
m

(m ∈ Z≥1) be a polytope with PI = ∅. Then the
following statements are equivalent:

1. rankCG (P ) = m,

2. clCG (P ) = P 531,m,

3. P ∩ F 6= ∅ for all 1-dimensional faces F of [0, 1]
m
,

4. rankCG (P ∩ F ) = k for all k-dimensional faces F of [0, 1]
m

(k ∈ {1, . . . ,m}).

Now what if PI 6= ∅? In [BEHS99, Theorem 10 and Theorem 11], it is shown:

Theorem 532. Let P ⊆ [0, 1]
m

(m ∈ Z≥1) be a rational polytope of dimension d. Then

rankCG (P ) ≤ md
(

1 +
⌊m

2
log2m

⌋)
.

This implies that for every (not necessarily rational) polytope P ⊆ [0, 1]
m
, we have

rankCG (P ) ≤ m2
(

1 +
⌊m

2
log2m

⌋)
.

This bound is improved in [ES03, Theorem 3.3]:

Theorem 533. Let P ⊆ [0, 1]
m

(m ∈ Z≥1) be a polytope. Then

rankCG (P ) ≤ m2 (1 + logm) ,

where

log : Z≥0 → Z≥0 :

n 7→

{
1 if n = 0,

1 + blog2mc if n ≥ 1.
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A di�erent kind of upper bound is shown in [ES03, Theorem 4.6]. For this, we need the following de�nition:

De�nition 534. (cf. [ES03, section 2]) Let P ⊆ Rm (m ∈ Z≥1) be a polyhedron and let c ( · ) ≤ c0 (c ∈ (Rm)
T

and c0 ∈ R) be a linear inequality. The depth of c ( · ) ≤ c0 with respect to P is the smallest k ∈ Z≥0 ∪̇{∞}
such that c ( · ) ≤ c0 is valid for cl

(k)
CG (P ).

Theorem 535. ([ES03, Theorem 4.6]) Let ∅ 6= P ⊆ [0, 1]
m

(m ∈ Z≥1) be a polytope and let c ( · ) ≤ c0 be a

linear inequality for PI with c ∈ (Zm)
T
. Then c ( · ) ≤ c0 has depth at most n+ ‖c‖1 with respect to P .

13.2.2. Lower bounds for the Chvátal-Gomory rank

From Theorem 528, we immediately obtain that rankCG (P ) = m can be attained for a full-dimensional
rational polyhedron P ⊆ [0, 1]

m having PI = ∅. So, the upper bound from Theorem 529 is tight in this
situation and we only have to consider the case PI 6= ∅. In [ES03, section 5], it is shown:

Theorem 536. There exists an ε ∈ R>0 and an in�nite number of m ∈ Z≥1 for which there exists a rational
polytope P ⊆ [0, 1]

m
having rankCG (P ) > (1 + ε)m.

We remark that according to [ES03], this is the �rst time that someone gave an example of a polytope
P ⊆ [0, 1]

m for some m ∈ Z≥1 such that rankCG (P ) > m. What are the polyhedra P that the authors
consider for Theorem 536? They de�ne

P := conv
(
P 516,m ∪QG

)
⊆ [0, 1]

m
,

where QG is a fractional stable set polytope associated with a suitable graph G := ([m] , E) (i.e.

QG :=
{
x ∈ Rm≥0,∀C ∈ C : x (C) ≤ 1

}
⊆ [0, 1]

m
,

where C is the family of all cliques in G).
Nevertheless, in [PS11b], it is remarked that for the bound in Theorem 536, the linear factor is very small.

They also admit that the proof only yields a bound rankCG (Pm) ≥ (1 + ε)m− 1, where ε ≤ 3.12 · 10−6. In
[PS11b], the authors construct a family of polytopes, where the linear factor is larger:

Theorem 537. [PS11b, Theorem 3.5] For any ε > 0 and any m0 ∈ Z≥1, there exists an m ∈ Z≥1 having
m ≥ m0 and a polytope P ⊆ [0, 1]

m
with rankCG (P ) ≥

(
1 + 1

e

)
n− 1− ε.

The polytope that the authors consider in Theorem 537 is

P := conv

(
P 516,m ∪

{
x ∈ [0, 1]

m
: (1m)

T
x ≤ d

}
∪
{

1

2
1m
})
⊆ [0, 1]

m
,

where d ∈ [m] is suitably chosen.
This leaves the question open whether there exists a series of polytopes

{
P i
}
i∈Z≥1

, where P i ⊆ [0, 1]
i, such

that
Z≥1 → Z≥1 : t 7→ rankCG

(
P t
)

grows superlinearly. This question is answered positively in [RS17]:

Theorem 538. ([RS17, Theorem 1, section 7 and Theorem 3]) For every m ∈ Z≥1, there exists a vector
c ∈

{
0, . . . , 2

m
16

}m
such that the polytope

conv

({
x ∈ {0, 1}m : cTx ≤

‖c‖1
2

}
∪
{

3

4
· 1m

})
⊆ [0, 1]

m

has Chvátal-Gomory rank Θ
(
m2
)
. Its linear relaxation

conv

({
x ∈ [0, 1]

m
: cTx ≤

‖c‖1
2

}
∪
{

3

4
· 1m

})
⊆ [0, 1]

m

has Chvátal-Gomory rank Θ
(
m2
)
, too, and can be decribed with O (m) inequalities with integral coe�cients

of size (at most) 2O(m).

Even though the authors admit in [RS17, section 7] that they have no insight whether the worst case
Chvátal-Gomory rank of a polytope P ⊆ [0, 1]

m should be Θ
(
m2
)
or Θ

(
m2 logm

)
, they nevertheless give a

rough sketch of an observation that might be used to tighten the upper bound of Theorem 533 even further.
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14. Pyramids over cross polytopes

14.1. Motivation

We saw in Theorem 197, Theorem 199 and Theorem 202 that for every rational polyhedron P ⊆ Rm (m ∈
Z≥0), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clI (P )

and for all rational polyhedra P ⊆ Rm × Rn (m ∈ Z≥0, n ∈ Z≥1), the chain of inclusions

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

holds (recall that the equality of the L( · )− 1
2 ,Q×Q

and L( · )− 1
2 ,Q×R

closure in this chain of inclusions holds by
Theorem 193). What is still open up to here is whether for �xed m and n, there can be a strict inclusion for
any arbitrarily chosen inclusion of this chain. In other words:

• Does for every m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m} exist a rational polyhedron P ⊆ Rm × Rn such
that

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,Q (P )?

• Does for every m ∈ Z≥1, n ∈ Z≥0 and k ∈

{
{1, . . . ,m− 1} if n = 0,

{1, . . . ,m} if n ≥ 1
exist a rational polyhedron

P ⊆ Rm × Rn such that
clLk,Q (P ) ( clL

k− 1
2
,Q×Q

(P )?

For this, we consider the following even stronger questions:

• Does for every m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m} exist a rational polyhedron P ⊆ Rm × Rn such
that

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P )? (14.1)

• Does for every m ∈ Z≥1, n ∈ Z≥0 and k ∈

{
{1, . . . ,m− 1} if n = 0,

{1, . . . ,m} if n ≥ 1
exist a rational polyhedron

P ⊆ Rm × Rn such that
clLk,Q (P ) ( clL

k− 1
2
,R×R

(P )? (14.2)

We resolve these questions in the remainder of this chapter, except for the situation in (14.2) if n ≥ 1 and
k = m. In section 14.9.3, we give an outlook for this remaining inclusion, which we �nally resolve at the end
of chapter 15 (section 15.5.2).

14.2. De�nition of the polytopes

De�nition 539. For m ∈ Z≥1, let

C539,m := conv

m⋃̇
i=1

{
1

2
· 1m ± m

2
em,i

}
.
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We have

C539,m =

x ∈ Rm :
∑
i∈I

xi −
∑

i∈[m]\I

xi ≤ |I| ∀I ∈ P ([m])

 . (14.3)

(14.3) holds because of:

Lemma 540. Let d ∈ Z≥1 and let C ∈ R≥0. Then

{
x ∈ Rd :

∥∥∥∥x− 1

2
· 1d
∥∥∥∥

1

≤ C
}

=

x ∈ Rd :
∑
i∈I

xi −
∑

i∈[d]\I

xi ≤ |I|+ C − d

2
∀I ∈ P ([d])

 .

Proof.

{
x ∈ Rd :

∥∥∥∥x− 1

2
· 1d
∥∥∥∥

1

≤ C
}

=

x ∈ Rd :
∑
i∈I

(
xi −

1

2

)
−
∑

i∈[d]\I

(
xi −

1

2

)
≤ C ∀I ∈ P ([d])


=

x ∈ Rd :
∑
i∈I

xi −
|I|
2
−
∑

i∈[d]\I

xi +
d− |I|

2
+ ≤ C ∀I ∈ P ([d])


=

x ∈ Rd :
∑
i∈I

xi −
∑

i∈[d]\I

xi ≤ |I|+ C − d

2
∀I ∈ P ([d])

 .

De�nition 541. Let m ∈ Z≥2 and let h ∈ R>0 (h � �height�). De�ne

P 541,m,h := conv

((
C539,m−1 × {0}

)
∪̇
{(

1
2 · 1

m−1

h

)})
⊆ Rm.

We have

P 541,m,h =

x ∈ Rm : xm ≥ 0 ∧
∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2h
xm ≤ |I| ∀I ∈ P ([m− 1])

 .

De�nition 542. Let m ∈ Z≥2 and let h ∈ R>0. De�ne

P 542,m,h =

x ∈ Rm : xm ≥ 0 ∧
∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2h
xm ≤ |I|+

m− 1

4h
∀I ∈ P ([m− 1])

 .

In Figure 14.1 and Figure 14.2, we visualized instances of P 541,m,h and P 542,m,h for m = 2 and m = 3.
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x2

1

2

x1
1

(a) P 541,2,2 and P 541,2,2 ∩ Z2

x2

1

2

x1
1

(b) P 542,2,2 and P 542,2,2 ∩ Z2

Figure 14.1.: P 541,2,2 and P 542,2,2

14.3. Statements

Theorem 543. For m ∈ Z≥2, we have(
1
2 · 1

m−1

1
2

)
∈ clLm−2,R

(
P 541,m,2(m−1)

)
(14.4)

⊆ cl(m−2)BC

(
P 541,m,2(m−1)

)
, (14.5)(

1
2 · 1

m−1

1

)
∈ clL

m−1− 1
2
,R

(
P 541,m,2(m−1)

)
, (14.6)

[0, 1]
m−1 × {0} = clI

(
P 541,m,2(m−1)

)
= cl(m−1)BS

(
P 541,m,2(m−1)

)
(14.7)

= clLm−1,Q

(
P 541,m,2(m−1)

)
. (14.8)

In particular, xm ≤ 0 is not valid for x ∈ clLm−2,R

(
P 541,m,2(m−1)

)
and x ∈ clL

m−1− 1
2
,R

(
P 541,m,2(m−1)

)
.

Theorem 544. For m ∈ Z≥2, we have(
1
2 · 1

m−1

1

)
∈ clL

m−1− 1
2
,R

(
P 542,m,2(m−1)

)
, (14.9)(

1
2 · 1

m−1

1
2

)
∈ clLm−1,R

(
P 542,m,2(m−1)

)
, (14.10)

[0, 1]
m−1 × {0} = clI

(
P 542,m,2(m−1)

)
= clL

m− 1
2
,Q

(
P 542,m,2(m−1)

)
. (14.11)

In particular, xm ≤ 0 is not valid for x ∈ clL
m−1− 1

2
,R

(
P 542,m,2(m−1)

)
and x ∈ clLm−1,R

(
P 542,m,2(m−1)

)
.

Theorem 543 and Theorem 544, respectively, are shown in section 14.7 and section 14.8, respectively. In
Figure 14.1, one can see a visualization of the polytopes of Theorem 543 and Theorem 544 for m = 2 and in
Figure 14.2 for m = 3.
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x3

1

2

3

4

x2
1 2

x1

1

2

(a) P 542,3,4 and P 542,3,4 ∩ Z3

x3

1

2

3

4

x2
1 2

x1

1

2

(b) P 541,3,4 and P 541,3,4 ∩ Z3

Figure 14.2.: P 541,3,4 and P 542,3,4

14.4. General preparations

Lemma 545. We have for m ∈ Z≥2:{
x ∈ Rm−1 :

∥∥∥∥x− 1

2
· 1m−1

∥∥∥∥
1

≤ m− 2

2

}
× [0, 2] ⊆ P 541,m,2(m−1).

Proof. Using Lemma 540, we conclude:{
x ∈ Rm−1 :

∥∥∥∥x[m−1] −
1

2
· 1m−1

∥∥∥∥
1

≤ m− 2

2

}

=

x ∈ Rm−1 :
∑
i∈I

xi −
∑

i∈[m−1]\I

xi ≤ |I|+
m− 2

2
− m− 1

2
∀I ∈ P ([m− 1])


=

x ∈ Rm−1 :
∑
i∈I

xi −
∑

i∈[m−1]\I

xi ≤ |I| −
1

2
∀I ∈ P ([m− 1])

 .

Let x ∈
{
x′ ∈ Rm−1 :

∥∥x′ − 1
2 · 1

m−1
∥∥

1
≤ m−2

2

}
× [0, 2]. Then surely xm ≥ 0. Let I ∈ P ([m− 1]). Then

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2 · 2 (m− 1)
xm ≤

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
1

2
(xm ≤ 2)
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14.5. Preparations for Lk− 1
2 ,R

cuts

≤ |I| − 1

2
+

1

2
= |I| .

Thus, x ∈ P 541,m,m−1.

Lemma 546. Let v ∈ Rd (d ∈ Z≥1) satisfy ‖v‖1 = 1
2 . Let J (v) ∈ {0, 1}d be such that

J (v)i =

{
1 if vi ≥ 0,

0 if vi < 0
∀i ∈ [d] .

Then ∥∥∥∥J (v)− v − 1

2
· 1d
∥∥∥∥

1

=
d− 1

2
.

Proof. ∥∥∥∥J (v)− v − 1

2
· 1d
∥∥∥∥

1

=

d∑
i=1

∣∣∣∣J (v)i − vi −
1

2

∣∣∣∣
=

d∑
i=1

{∣∣−vi + 1
2

∣∣ if vi ≥ 0,∣∣−vi − 1
2

∣∣ if vi < 0

=

d∑
i=1

{∣∣ 1
2 − vi

∣∣ if vi ≥ 0,∣∣ 1
2 + vi

∣∣ if vi < 0

=

d∑
i=1

∣∣∣∣12 − |vi|
∣∣∣∣

=

d∑
i=1

(
1

2
− |vi|

)
(‖v‖1 =

1

2
)

=
d

2
− ‖v‖1

=
d− 1

2
. (‖v‖1 =

1

2
)

14.5. Preparations for Lk− 1
2 ,R

cuts

Lemma 547. Let v ∈ Rm\ {0m} (m ∈ Z≥2). Then there exists an x (v) ∈ {0, 1}m−1 × Z≥2 such that

x (v) ∈ P 541,m,2(m−1) + lin {v} .

Proof. If v[m−1] = 0m−1, the statement is obvious, since using Lemma 545, we have

{0, 1}m−1 × {2} ⊆ P 541,m,2(m−1) ⊆ P 541,m,2(m−1) + lin {v} .

So assume v[m−1] 6= 0m−1. W.l.o.g. let

∥∥v[m−1]

∥∥
1

=
1

2
,

vm ≥ 0.

Let J
(
v[m−1]

)
∈ {0, 1}m−1 be as in Lemma 546. Set

x (v) :=

(
J
(
v[m−1]

)
2 + bvmc

)
,

p (v) := x (v)− v.
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14. Pyramids over cross polytopes

Clearly, x (v) ∈ {0, 1}m−1 × Z≥2 and x (v)m ≥ 2. We now show

p (v) ∈ P 541,m,2(m−1). (14.12)

From Lemma 546, we obtain∥∥∥∥p (v)[m−1] −
1

2
· 1m−1

∥∥∥∥
1

=

∥∥∥∥J (v)[m−1] − v[m−1] −
1

2
· 1m−1

∥∥∥∥
1

≤ m− 2

2
.

Thus, (14.12) is implied by Lemma 545, since 1 < p (v)m ≤ 2.

Lemma 548. Let v ∈ Rm\ {0m} (m ∈ Z≥2). Then(
1
2 · 1

m−1

1

)
∈ clI

(
P 541,m,m−1 + lin {v}

)
.

Proof. By Lemma 547, there exists an x (v) having

x (v) ∈
(
{0, 1}m−1 × Z≥2

)
∩
(
P 541,m,m−1 + lin {v}

)
.

Surely (
1m−1 − x (v)[m−1]

0

)
∈
(
P 541,m,m−1

)
I
⊆ clI

(
P 541,m,m−1 + lin {v}

)
.

Additionally, since for every J ∈ {0, 1}m−1, we have

(
J
0

)
∈
(
P 541,m,m−1

)
I
, we obtain

(
1
2 · 1

m−1

0

)
∈ clI

(
P 541,m,m−1

)
⊆ clI

(
P 541,m,m−1 + lin {v}

)
.

Thus, (
1
2 · 1

m−1

1

)
=

(
1− 2

x (v)m

)(
1
2 · 1

m−1

0

)
+

1

x (v)m
x (v) +

1

x (v)m

(
1m−1 − x (v)[m−1]

0

)
∈ clI

(
P 541,m,m−1 + lin {v}

)
(since x (v)m ≥ 2, we have 0 < 2

x(v)m
≤ 1).

14.6. Preparations for Lk,R cuts

Lemma 549. Let v ∈ Rm (m ∈ Z≥2) be given such that v[m−1] 6= 0m−1. Then there exists a p (v) ∈
{0, 1}m−1 × (1, 2] such that

p (v) ∈ P 541,m,2(m−1) ∩ (Zm + lin {v}) .

Proof. W.l.o.g. let ∥∥v[m−1]

∥∥
1

=
1

2
.

Let J
(
v[m−1]

)
be as in Lemma 546 and let

p (v) :=

(
J
(
v[m−1]

)
2 + bvmc

)
− v,

x (v) := p (v) + v.

Clearly, x (v) ∈ Zm and p (v)m ∈ (1, 2]. So, p (v) = x (v)− v ∈ Zm + lin {v}. We claim that

p (v) ∈ P 541,m,2(m−1). (14.13)
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14.7. Proof of Theorem 543

Using Lemma 546, we obtain∥∥∥∥p (v)[m−1] −
1

2
1m−1

∥∥∥∥
1

=

∥∥∥∥J (v)[m−1] − v[m−1] −
1

2
1m−1

∥∥∥∥
1

≤ m− 1− 1

2
=
m− 2

2
.

Thus, (14.13) is implied by Lemma 545, since 1 < p (v)m ≤ 2.

Lemma 550. Let v ∈ Rm (m ∈ Z≥2) be such that v[m−1] 6= 0m−1. Then(
1
2 · 1

m−1

1
2

)
∈ conv

(
P 541,m,2(m−1) ∩ (Zm + lin {v})

)
.

Proof. By Lemma 549, there exists some p (v) ∈ {0, 1}m−1 × (1, 2] such that

p (v) ∈ P 541,m,2(m−1) ∩ (Zm + lin {v}) .

So, clearly,(
1
2 · 1

m−1

0

)
, p (v) ,

(
1m−1 − p (v)[m−1]

0

)
∈ conv

(
P 541,m,2(m−1) ∩ (Zm + lin {v})

)
.

Thus, we just have to show that

(
1
2 · 1

m−1

1
2

)
is a convex combination of these three points:

(
1
2 · 1

m−1

1
2

)
=

(
1− 1

p (v)m

)(
1
2 · 1

m−1

0

)
+

1

2p (v)m
p (v) +

1

2p (v)m

(
1m−1 − p (v)[m−1]

0

)
.

14.7. Proof of Theorem 543

We restate Theorem 543:

Theorem 543. For m ∈ Z≥2, we have(
1
2 · 1

m−1

1
2

)
∈ clLm−2,R

(
P 541,m,2(m−1)

)
(14.4)

⊆ cl(m−2)BC

(
P 541,m,2(m−1)

)
, (14.5)(

1
2 · 1

m−1

1

)
∈ clL

m−1− 1
2
,R

(
P 541,m,2(m−1)

)
, (14.6)

[0, 1]
m−1 × {0} = clI

(
P 541,m,2(m−1)

)
= cl(m−1)BS

(
P 541,m,2(m−1)

)
(14.7)

= clLm−1,Q

(
P 541,m,2(m−1)

)
. (14.8)

In particular, xm ≤ 0 is not valid for x ∈ clLm−2,R

(
P 541,m,2(m−1)

)
and x ∈ clL

m−1− 1
2
,R

(
P 541,m,2(m−1)

)
.

Proof. For (14.4): Let V = lin
{
v1, v2

}
≤ Rm be a subspace of codimension 2, where v1, v2 ∈ Rm are linearly

independent. Then at least one of these two vectors does not lie in lin {em,m} (w.l.o.g. let v1 /∈ lin {em,m}).
So, by Lemma 550, we have(

1
2 · 1

m−1

1
2

)
∈ conv

(
P 541,m,2(m−1) ∩

(
Zm + lin

{
v1
}))

.

(14.5) holds because of

clLm−2,R

(
P 541,m,2(m−1)

)
⊆ clLm−2,Q

(
P 541,m,2(m−1)

)
⊆ cl(m−2)BC

(
P 541,m,2(m−1)

)
,
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14. Pyramids over cross polytopes

where the second inclusion is a consequence of Corollary 278.
(14.6) holds by Lemma 548.
For (14.8), consider that

conv
(
P 541,m,2(m−1) ∩ (Zm + lin {em,m})

)
= [0, 1]

m−1 × {0} = clI

(
P 541,m,2(m−1)

)
.

For (14.7), we show that

xm ≤ 0, (14.14)

xi ≥ 0 ∀j ∈ [m− 1] , (14.15)

xi ≤ 1 ∀j ∈ [m− 1] (14.16)

are valid inequalities for x ∈ P 541,m,2(m−1) ∩D
(
em,1, . . . , em,m−1, 0, . . . , 0

)
.

For (14.14): Let I ∈ P ([m− 1]). We show that (14.14) is valid for

x ∈ P 541,m,2(m−1) ∩
⋂

i∈[m−1]\I

P≤
((
em,i

)T
, 0
)
∩
⋂
i∈I

P≥
((
em,i

)T
, 1
)
.

For this, let such an x be given. Then

xm = 4

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2 · 2 (m− 1)
xm

− 4

∑
i∈I

xi −
∑

i∈[m−1]\I

xi


≤ 4 |I| − 4

∑
i∈I

xi︸︷︷︸
≥1

−
∑

i∈[m−1]\I

xi︸︷︷︸
≤0

 (x ∈ P 541,m,2(m−1))

≤ 4 |I| − 4 |I|
= 0.

For (14.15) and (14.16): W.l.o.g. we only prove (14.15). Let j ∈ [m− 1] and let I ∈ P ([m− 1]). We show
that (14.15) is valid for

x ∈ P 541,m,2(m−1) ∩
⋂

i∈[m−1]\I

P≤
((
em,i

)T
, 0
)
∩
⋂
i∈I

P≥
((
em,i

)T
, 1
)
.

If j ∈ I, there is nothing to prove; so w.l.o.g. let j ∈ [m− 1] \I. Then

xj =xj +

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2 · 2 (m− 1)
xm


−

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2 · 2 (m− 1)
xm


≥xj +

∑
i∈I

xi −
∑

i∈[m−1]\I

xi +
m− 1

2 · 2 (m− 1)
xm

− |I| (x ∈ P 541,m,2(m−1))

=

(∑
i∈I

xi︸︷︷︸
≥1

−
∑

i∈[m−1]\(I∪{j})

xi︸︷︷︸
≤0

+
m− 1

2 · 2 (m− 1)
xm︸ ︷︷ ︸

≥0

)
− |I|

≥ |I| − |I|
=0.

320



14.8. Proof of Theorem 544

Finally, for (14.8), consider that

clI

(
P 541,m,2(m−1)

)
⊆ clLm−1,Q

(
P 541,m,2(m−1)

)
⊆ cl(m−1)BS

(
P 541,m,2(m−1)

)
(by Corollary 278)

= clI

(
P 541,m,2(m−1)

)
. (by (14.7))

14.8. Proof of Theorem 544

We restate Theorem 544:

Theorem 544. For m ∈ Z≥2, we have(
1
2 · 1

m−1

1

)
∈ clL

m−1− 1
2
,R

(
P 542,m,2(m−1)

)
, (14.9)(

1
2 · 1

m−1

1
2

)
∈ clLm−1,R

(
P 542,m,2(m−1)

)
, (14.10)

[0, 1]
m−1 × {0} = clI

(
P 542,m,2(m−1)

)
= clL

m− 1
2
,Q

(
P 542,m,2(m−1)

)
. (14.11)

In particular, xm ≤ 0 is not valid for x ∈ clL
m−1− 1

2
,R

(
P 542,m,2(m−1)

)
and x ∈ clLm−1,R

(
P 542,m,2(m−1)

)
.

Proof. (14.9) is a consequence of Lemma 548 by considering that P 542,m,2(m−1) ⊇ P 541,m,2(m−1). Thus, we
obtain from (14.6) in Theorem 545:(

1
2 · 1

m−1

1

)
∈ clL

m−1− 1
2
,R

(
P 541,m,2(m−1)

)
⊆ clL

m−1− 1
2
,R

(
P 542,m,2(m−1)

)
.

(14.11) holds by Theorem 202 using(
P 541,m,2(m−1)

)
I

=
(
P 542,m,2(m−1)

)
I

= {0, 1}m−1 × {0} .

So for (14.10): let v ∈ Rm\ {0m}. We claim that(
1
2 · 1

m−1

1
2

)
∈ conv

(
P 542,m,2(m−1) ∩ (Zm + lin {v})

)
. (14.17)

For this, we distinguish two cases:

1. v[m−1] = 0m−1,

2. v[m−1] 6= 0m−1.

For case 1: If v[m−1] = 0m−1, we have lin {v} = 0m−1 × R1. We claim that for every J ∈ P ([m− 1]), we
have

xJ :=

(
χ (J)

1
2

)
∈ P 542,m,2(m−1) ∩ (Zm + lin {v}) . (14.18)

For (14.18): xJ ∈ Zm + lin {v} is obvious; so, we only have to show xJ ∈ P 542,m,2(m−1). Clearly, xJm ≥ 0. Let
I ∈ P ([m− 1]). We have to show∑

i∈I
xJi −

∑
i∈[m−1]\I

xJi +
m− 1

2h
xJm ≤ |I|+

m− 1

4h
.
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14. Pyramids over cross polytopes

If I = J , we have∑
i∈I

xJi −
∑

i∈[m−1]\I

xJi +
m− 1

2h
xJm =

∑
i∈I

1−
∑

i∈[m−1]\I

0 +
m− 1

2h
· 1

2
= |I|+ m− 1

4h

(
≤ |I|+ m− 1

4h

)
.

Otherwise (I 6= J), we have∑
i∈I

xJi −
∑

i∈[m−1]\I

xJi +
m− 1

2h
xJm =

∑
i∈I∩J

xJi +
∑
i∈I\J

xJi −
∑

i∈[m−1]\(I∪J)

xJi −
∑
i∈J\I

xJi +
m− 1

2h
xJm

=
∑
i∈I∩J

1 +
∑
i∈I\J

0−
∑

i∈[m−1]\(I∪J)

0−
∑
i∈J\I

1 +
m− 1

2h
· 1

2

= |I ∩ J | − |J\I|+ m− 1

4h

≤ |I|+ m− 1

4h
.

From (14.18), we conclude (14.17).

For case 2: (14.17) is a consequence of Lemma 550, since P 542,m,2(m−1) ⊇ P 541,m,2(m−1).

14.9. Back to the initial question

Now we go back to the initial question that we introduced in section 14.1.

14.9.1. m = 1

For the situation of (14.2) in the case k = m = 1 (and n ≥ 1, as required in the statement of (14.2)), consider
the outlook in section 14.9.3. Thus, we only consider the situation for (14.1) here.
The only inclusion that we have to consider for m = 1 in (14.1) is

clL
1− 1

2
,Q×Q

(P ) ( clL0,R (P ) .

The following lemma holds obviously:

Lemma 551. Let P :=
{(

1
2

)}
⊆ R1. Then

clL
1− 1

2
,Q×Q

(P ) = clI (P ) = ∅ ( P ( clL0,R (P ) .

Thus, by combining Lemma 551 and Theorem 220, we obtain:

Theorem 552. For every n ∈ Z≥0, there exists a rational polyhedron P ⊆ R1 × Rn such that

clL
1− 1

2
,Q×Q

(P ) = clI (P ) = ∅ ( P = clL0,R (P ) .

14.9.2. m ≥ 2

Theorem 553. For every m ∈ Z≥2, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron
P ⊆ Rm × Rn such that

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P ) .

Proof. By Theorem 544, we have

clL
k− 1

2
,Q

(
P 542,k,2(k−1)︸ ︷︷ ︸

⊆Rk

)
( clLk−1,R

(
P 542,k,2(k−1)︸ ︷︷ ︸

⊆Rk

)
.

Thus, by Theorem 220, there exists a rational polyhedron P ⊆ Rm × Rn such that

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P ) .
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14.9. Back to the initial question

Theorem 554. For every m ∈ Z≥2, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron
P ⊆ Rm × Rn such that

clLk,Q (P ) ( clL
k− 1

2
,R×R

(P ) .

Proof. By Theorem 543, we have

clLk,Q

(
P 541,k+1,2k︸ ︷︷ ︸
⊆Rk+1

)
( clL

k− 1
2
,R

(
P 541,k+1,2k︸ ︷︷ ︸
⊆Rk+1

)
.

Thus, by Theorem 220, there exists a rational polyhedron P ⊆ Rm × Rn such that

clLk,Q (P ) ( clL
k− 1

2
,R×R

(P ) .

14.9.3. Summary and outlook

From Theorem 552, Theorem 553 and Theorem 554, we conclude:

Theorem 555. For every m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron
P ⊆ Rm × Rn such that

clL
k− 1

2
,Q×Q

(P ) ( clLk−1,R (P )

and for every m ∈ Z≥2, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron P ⊆ Rm × Rn
such that

clLk,Q (P ) ( clL
k− 1

2
,R×R

(P ) .

Considering the inclusion problem in (14.2), i.e. whether there exists a rational polyhedron P ⊆ Rm × Rn
(m ∈ Z≥1 and n ∈ Z≥0) such that for a suitable k, we have

clLk,Q (P ) ( clL
k− 1

2
,R×R

(P ) ,

we thus only have not yet considered the case k = m and n ≥ 1. This is done in section 15.5.2 (more precisely:
Theorem 578), where we prove the even tighter inclusion that for every m,n ∈ Z≥1 and k ∈ {1, . . . ,m}, there
exists a rational polyhedron P ⊆ Rm × Rn such that for every ` ∈ Z≥0, we have

clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) .
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15. Li-Richard example

15.1. De�nition of the polytopes

In this chapter, we want to consider the polytopes of the Li-Richard example (cf. [LR08]). Since di�erent
kinds of cutting planes expect di�erent representations of this polyhedron, we de�ne two variants in this
section. The central motivation to analyze this polytope is to prove some separation results for various classes
of cutting planes. The central results for this are stated in section 15.2 and the inclusions which these imply
are stated in section 15.5.1. Finally, in section 15.5.2, we answer the question that was still open at the end
of section 14.9.3.

De�nition 556. For m ∈ Z≥1 and ε ∈ R>0, let

Xm
m := conv

m⋃̇
i=0

{
m · em,i

}
( Rm,

P 556,m,ε,≤ := conv

(
(Xm

m × {0}) ∪̇
{(

m
m+1 · 1

m

ε

)})
( Rm × R1. (15.1)

We have
P 556,m,ε,≤ = P≤

(
A556,m,ε,≤, b556,m,ε,≤) ,

where

A556,m,ε,≤ :=

 −Im m
ε(m+1)1m

(1m)
T m

ε(m+1)

(0m)
T −1

 , b556,m,ε,≤ :=

 0m

m
0

 .

x2

1

2

x1
1

(a) P 556,2, 3
2
,≤ and P 556,2, 3

2
,≤ ∩

(
Z1 × R

)

x3

1

x2
1 2

x1

1

2

(b) P 556,3, 3
2
,≤ and P 556,3, 3

2
,≤ ∩

(
Z2 × R

)
Figure 15.1.: P 556,2, 32 ,≤ and P 556,3, 32 ,≤

A visualization of P 556,2, 32 ,≤ and P 556,3, 32 ,≤ can be found in Figure 15.1. The series of polyhedra P 556,m,ε,≤

was originally conceived by Li and Richard ([LR08]) as a generalization of the famous Cook-Kannan-Schrijver
example (cf. [CKS90]). Li and Richard considered the following question: on one hand (Theorem 562), it is
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15. Li-Richard example

easy to show that applying a single m-branch split cut to P 556,m,ε,≤ su�ces to obtain clI
(
P 556,m,ε,≤). On

the other hand, they conjectured (Theorem 560) that even applying the m− 1-branch split closure iteratively
an arbitrary amount of times does not su�ce to obtain clI

(
P 556,m,ε,≤). This conjecture was �nally resolved

by Dash and Günlük (cf. [DG12]).

Since k row cuts expect the polyhedron in equation form (recall De�nition 154), we de�ne:

De�nition 557. Let m ∈ Z≥1 and ε ∈ R>0. Then

P 557,m,ε,= :=

{(
x
y

)
∈ Rm × R1+(m+1)

≥0 :

xi −
m

ε (m+ 1)
y1 − yi+1 = 0 ∀i ∈ [m] ,

−
m∑
i=1

xi −
m

ε (m+ 1)
y1 − ym+2 = −m

}
. (15.2)

One obtains this polyhedron by multiplying all facet-de�ning inequalities of P 556,m,ε,≤ by −1 and introducing
slack variables afterwards. Let

A557,m,ε,= :=

(
Im

− (1m)
T

)
, G557,m,ε,= :=

(
− m
ε(m+1)1m+1 −Im+1

)
, b557,m,ε,= :=

(
0m

−m

)
.

Then
P 557,m,ε,= = P=

((
A557,m,ε,= G557,m,ε,=

)
, b557,m,ε,=

)
∩
(
Rm × R1+m+1

≥0

)
.

For a given M ∈ Rk×(m+1), where k ∈ Z≥0, let (cf. De�nition 154)

P 557,m,ε,= (M) := P=
((

MA557,m,ε,= MG557,m,ε,=
)
,Mb557,m,ε,=

)
∩
(
Rm × R1+m+1

≥0

)
.

15.2. Statements

15.2.1. Statements for cuts of basic relaxations

In the following theorem, we consider the strength of cuts of a basic relaxation.

Theorem 558. Let m ∈ Z≥1 and ε ∈ R>0. Then y1 ≤ 0 is a valid inequality for(
x
y

)
∈ P≤

((
A556,m,ε,≤)

[m+1],∗ ,
(
b556,m,ε,≤)

[m+1]

)
I
,

i.e. it is a cut of a basic relaxation with respect to A556,m,ε,≤ and b556,m,ε,≤.

Proof. We consider

P≤
((
A556,m,ε,≤)

[m+1],∗ ,
(
b556,m,ε,≤)

[m+1]

)
= P≤

((
−Im m

ε(m+1) · 1
m

(1m)
T m

ε(m+1)

)
,

(
0m

m

))
.

Clearly, the rows at the left-hand side are linearly independent. To see that y1 ≤ 0 is a valid inequality for(
x
y

)
∈ P≤

((
A556,m,ε,≤)

[m+1],∗ ,
(
b556,m,ε,≤)

[m+1]

)
I
,

consider that it is a valid inequality for

P≤
((
A556,m,ε,≤)

[m+1],∗ ,
(
b556,m,ε,≤)

[m+1]

)
∩ ((Rm\ intXm

m )× R) ,

where Xm
m is clearly a lattice-free polyhedron.
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15.2.2. Statements for integral lattice-free cuts

Theorem 559. Let m ∈ Z≥1 and ε ∈ R>0. Then y1 ≤ 0 is a valid integral lattice-free cut with respect to Xm
m

for (
x
y

)
∈ P 556,m,ε,≤ ⊆ Rm × R

and (
x
y

)
∈ P 557,m,ε,= ⊆ Rm × R1+(m+1).

Proof. It is easy to check that y1 ≤ 0 is valid for(
x
y

)
∈ P 556,m,ε,≤ ∩

(
(Rm\ intXm

m )× R1
)

or (
x
y

)
∈ P 557,m,ε,= ∩

(
(Rm\ intXm

m )× R1+(m+1)
)
,

respectively.

15.2.3. Statements for t-branch split cuts

In [DG12, Theorem 2.7 and following remark], the following theorem is shown:

Theorem 560. Let m ∈ Z≥1 and ε ∈ R>0. Then there exists an ε∗ ∈ R>0 (having ε∗ ≤ ε) such that(
m
m+1 · 1

m

ε∗

)
∈ cl(m−1)BS

(
P 556,m,ε,≤) .

A similar result to Theorem 560 holds for P 557,m,ε,=:

Theorem 561. Let m ∈ Z≥1 and ε ∈ R>0. Then there exists an ε∗ ∈ R>0 (having ε∗ ≤ ε) such that
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
· 1m+1

 ∈ cl(m−1)BS

(
P 557,m,ε,=

)
.

Proof. We have by Corollary 278:

cl(m−1)BS

(
P 557,m,ε,=

)
⊇ clLm−1,Q

(
P 557,m,ε,=

)
.

Thus, by Theorem 565 (which we prove further below), there exists an ε∗ > 0 such that
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
· 1m+1

 ∈ cl(m−1)BS

(
P 557,m,ε,=

)
.

On the other hand, we have:

Theorem 562. For m ∈ Z≥1 and ε ∈ R>0, the inequality y1 ≤ 0 is an m-branch split cut for ( xy ) ∈ P 556,m,ε,≤

and ( xy ) ∈ P 557,m,ε,= with respect to the split disjunction D
(
em,1, . . . , em,m, 0, . . . , 0

)
. In particular

clmBS
(
P 556,m,ε,≤) = clI

(
P 556,m,ε,≤) ,

clmBS
(
P 557,m,ε,=

)
= clI

(
P 557,m,ε,=

)
.

Proof. Clearly Xm
m ⊆ D

(
em,1, . . . , em,m, 0, . . . , 0

)
. Thus, the statement is a consequence of Theorem 559.
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15.2.4. Statements for Lk− 1
2
/Lk cuts

Theorem 563. Let m ∈ Z≥1 and ε ∈ R>0. Then there exists an ε∗ ∈ R>0 (having ε∗ ≤ ε) such that(
m
m+1 · 1

m

ε∗

)
∈ clL

m− 1
2
,R×R

(
P 556,m,ε,≤) .

In particular, for every ` ∈ Z≥1, the inequality y1 ≤ 0 is not valid for(
x
y

)
∈ cl

(`)
L
m− 1

2
,R×R

(
P 556,m,ε,≤) .

Theorem 564. Let m ∈ Z≥1 and ε ∈ R>0. Then there exists an ε∗ ∈ R>0 (having ε∗ ≤ ε) such that
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
· 1m+1

 ∈ clL
m− 1

2
,R×R

(
P 557,m,ε,=

)
.

Theorem 565. Let m ∈ Z≥1 and ε ∈ R>0. Then there exists an ε∗ ∈ R>0 (having ε∗ ≤ ε) such that(
m
m+1 · 1

m

ε∗

)
∈ clLm−1,R

(
P 556,m,ε,≤) ,

m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
· 1m+1

 ∈ clLm−1,R

(
P 557,m,ε,=

)
.

Proof. The statement is a consequence of Theorem 563, Theorem 564 and Theorem 199.

Theorem 566. We have for all m ∈ Z≥1 and ε ∈ R>0:

clL
(m+1)− 1

2
,Q×Q

(
P 556,m,ε,≤) = clLm,Q

(
P 556,m,ε,≤) = clI

(
P 556,m,ε,≤) = Xm

m × {0} .

Proof. Clearly, y1 ≤ 0 is valid for ( xy ) ∈ P 556,m,ε,≤
I . Thus, by Theorem 202, it is an Lm,Q cut for P 556,m,ε,≤

with respect to V := 0m × R1. From Theorem 199, we conclude that it is also an L(m+1)− 1
2 ,Q×Q

cut for

P 556,m,ε,≤.

We conclude this section with a remark about a result from the literature. Let us recapitulate (cf. De�nition
175 and Theorem 176) that Dash, Günlük and Morán developed Lk,Q cuts independently from us under the
name �k-dimensional lattice cuts� in [DGMR17]. In this paper, the authors prove in section 6 (in particular
cf. [DGMR17, Theorem 3]):

De�nition/Theorem 567. For m ∈ Z≥1 and ε ∈ R>0, let

P 567,m,ε := conv

(
(Xm

m × {0}) ∪̇
{(

1
2 · 1

m

ε

)})
( Rm × R1.

Then for all ` ∈ Z≥0, we have

cl
(`)
Lm−1,R

(
P 567,m,ε

)
) clI

(
P 567,m,ε

)
.

We remark that the central di�erence between P 556,m,ε,≤ and P 567,m,ε lies in the position of the apex of
P 556,m,ε,≤ vs P 567,m,ε.

One additional remark concerning De�nition/Theorem 567: Dash, Günlük and Morán only proved De�ni-
tion/Theorem 567 for the closure with respect to m−1-dimensional lattices, which, as we saw in Theorem 176
is equivalent to the Lm−1,Q closure. But if one uses the concept of Lm−1,R cuts instead of m− 1-dimensional
lattice cuts (cf. De�nition 175), their proof goes through for the Lm−1,R closure.
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15.2.5. Statements for k row cuts

Theorem 568. There exists a matrix M ∈ Qm×(m+1) such that y1 ≤ 0 is a translate of (cf. De�nition 290)
a valid inequality for (

x
y

)
∈ P 557,m,ε,= (M)I .

Proof. By Theorem 559, y1 ≤ 0 is a valid inequality for(
x
y

)
∈ P 557,m,ε,= ∩

(
Xm
m × R1+(m+1)

)
.

Clearly, Xm
m has m+ 1 facets. Thus, by Theorem 303, y1 ≤ 0 is a translate of a valid inequality of an m row

relaxation of
P=

((
A557,m,ε,= G557,m,ε,=

)
, b557,m,ε,=

)
∩
(
Rm × R1+(m+1)

)
.

15.3. Auxiliary statements

15.3.1. Height Lemma

In [DGM15, Lemma 3.1 and following remark], the following lemma is shown:

Lemma 569. (Height Lemma) Consider some a ∈
(
Rd\

{
0d
})T

and b ∈ R, where d ∈ Z≥1. Let s
1, . . . , sd be

a�nely independent points in the hyperplane H := P= (a, b), let b′ ∈ R be such that b′ > b and let U ∈ R≥0.
Finally, let

Q :=
{
x ∈ Rd : ax ≥ b′,

∥∥proj⊥H x
∥∥ ≤ U} 6= ∅.

Then there exists a point

x∗ ∈
⋂
q∈Q

conv
{
s1, . . . , sd, q

}
that satis�es ax∗ > b.

Remark 570. Let a, b′, d, s1, . . . , sd, U and Q be as as in Lemma 569. De�ne

Q′ :=
{
x ∈ Rd : ax ≥ b′, ‖x‖ ≤ U

}
,

Then, obviously, Q′ ⊆ Q and thus, by Lemma 569, there exists a point

x∗ ∈
⋂
q∈Q

conv
{
s1, . . . , sd, q

}
⊆
⋂
q∈Q′

conv
{
s1, . . . , sd, q

}
.

So in Lemma 569 we can replace Q by Q′.

Lemma 571. Let a, d, s1, . . . , sd and Q be as in Lemma 569 and let s∗ ∈ relint
(
conv

{
s1, . . . , sd

})
. Then

there exists an ε ∈ R>0 such that

t∗ := s∗ + εa ∈
⋂
q∈Q

conv
{
s1, . . . , sd, q

}
.

Proof. Let x∗ be as in Lemma 569 and let

s∗ =

d∑
i=1

λis
i,

where λ ∈ relint ∆d−1 (i.e. λ ∈ Rd>0 and
∑d
i=1 λi = 1). Additionally, let

x∗ =

d∑
i=1

λ′is
i + δa,
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where
∑d
i=1 λ

′
i = 1 and δ > 0. Set

M∗ := max

{
λ′i
λi

: i ∈ [d]

}
.

Since λ > 0d and since there exists an i∗ ∈ [d] such that λ′i∗ > 0, we clearly have M∗ > 0. Set

t∗ :=

d∑
i=1

λis
i

︸ ︷︷ ︸
=s∗

+
1

M∗
δ︸ ︷︷ ︸

=:ε

a

=
1

M∗

d∑
i=1

(λ′i + (M∗λi − λ′i)) si +
1

M∗
δa

=
1

M∗

(
d∑
i=1

λ′is
i + δa

)
+

d∑
i=1

(
λi −

1

M∗
λ′i

)
si

=
1

M∗
x∗ +

d∑
i=1

(
λi −

1

M∗
λ′i

)
si.

We claim that t∗ ∈ conv
{
x∗, s1, . . . , sd

}
: clearly, for all i ∈ [d], we have

λi −
1

M∗
λ′i =

1

M∗
(M∗λi − λ′i) ≥

1

M∗

(
λ′i
λi
λi − λ′i

)
= 0.

Additionally, we have

1

M∗
+

d∑
i=1

(
λi −

1

M∗
λ′i

)
=

1

M∗
+

d∑
i=1

λi −
1

M∗

d∑
i=1

λ′i =
1

M∗
+ 1− 1

M∗
= 1.

15.3.2. Monotonicity

Remark 572. Let P ⊆ P ′ ⊆ Rm × Rn be arbitrary and let k ∈ Z≥0 (k ≤ m + n in the case of Lk cuts and
Lk− 1

2
cuts). Let cl( · ) ( · ) be the closure operator for either some Lk, Lk− 1

2
or k-branch split closure. Then

cl( · ) (P ) ⊆ cl( · ) (P ′) .

15.3.3. Auxiliar statements for investigating the Lm− 1
2
,R×R closure of P 556,m,ε,≤

Lemma 573. Let
v ∈ Sm−1,∞ := {x ∈ Rm : ‖x‖∞ = 1} ,

where m ∈ Z≥1. Let ε ∈ R be such that −1 ≤ ε < 1 and v ≤ ε · 1m. Then

−
m∑
i=1

vi ≥ 1− (m− 1) ε.

Proof. Since v ∈ Sm−1,∞ and v ≤ ε · 1m < 1m, there must exist a coordinate i∗ ∈ [m] such that vi∗ = −1. So

−
m∑
i=1

vi = 1−
m∑

i=1,i6=i∗
vi ≥ 1− (m− 1) ε.

Lemma 574. Let m ∈ Z≥1 and ε > 0. Then for every z ∈ (Xm
m )I , there exists a polyhedral cone Cz ⊆ Rm

such that

•
⋃
z∈(Xmm )

I
Cz = Rm and
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•
∀z ∈ (Xm

m )I , v ∈ Cz\ {0
m} : max

{
y : ( xy ) ∈ P 556,m,ε,≤ ∧ x ∈ z + cone {v}

}
≥ ε

m2
. (15.3)

Proof. For m = 1, the statement is obvious: set C01 := R1
≥0 and C11 := R1

≤0. So, we can assume m ≥ 2. By
Lemma 573 (set ε := 1

m ), we have for all v ∈ Sm−1,∞:

(
em,1

)T
v ≥ 1

m
∨ . . . ∨ (em,m)

T
v ≥ 1

m
∨ (−1m)

T
v ≥ 1

m
. (15.4)

So for a given

zi ∈
m⋃̇
i=1

{1m − em,i︸ ︷︷ ︸
=:zi

} ∪̇ { 1m︸︷︷︸
=:zm+1

},

consider the cones Czi , which we de�ne for i ∈ {1, . . . ,m+ 1} the following way:

• For i ∈ {1, . . . ,m}:

Czi :=

{
v ∈ Rm : vi ≥

1

m
‖v‖∞

}
= projRm

{(
v
δ

)
∈ Rm × R : vi ≥

1

m
δ, ∀j ∈ [m] : δ ≥ vj , δ ≥ −vj

}
.

• For i = m+ 1:

Czm+1 :=

{
v ∈ Rm : −

m∑
k=1

vk ≥
1

m
‖v‖∞

}

= projRm

{(
v
δ

)
∈ Rm × R : −

m∑
k=1

vk ≥
1

m
δ, ∀j ∈ [m] : δ ≥ vj , δ ≥ −vj

}
.

If z ∈ (Xm
m )I \

⋃
i∈[m+1]

{
zi
}
, simply set Cz := {0m}. By (15.4), for all v ∈ Rm (w.l.o.g. v 6= 0m), there exists

an i ∈ [m+ 1] such that v ∈ Czi . W.l.o.g. let ‖v‖∞ = 1. Let

x̂ := zi +
1

m+ 1
v,

ŷ :=

{
1

m+1 ·
ε(m+1)
m vi if i ∈ [m] ,

− 1
m+1 ·

ε(m+1)
m

∑m
j=1 vj if i = m+ 1.

Clearly (using the de�nitions of the cones Czi), ŷ ≥ ε
m2 > 0 and we have A556,m,ε,≤

i,∗
(
x̂
ŷ

)
= b556,m,ε,≤

i . What

is still to be shown is that for j ∈ {1, . . . ,m+ 1}\ {i}, we have A556,m,ε,≤
j,∗

(
x̂
ŷ

)
≤ b556,m,ε,≤

j

Case 1: i, j ∈ {1, . . . ,m}: We have

A556,m,ε,≤
j,∗

(
x̂
ŷ

)
= −

(
1 +

1

m+ 1
vj

)
+

1

m+ 1
vi

≤ −1 +
2

m+ 1
(‖v‖∞ = 1)

≤ 0 (m ≥ 1)

= b556,m,ε,≤
j .

Case 2: i ∈ {1, . . . ,m}, j = m+ 1: We have

A556,m,ε,≤
j,∗

(
x̂
ŷ

)
= (m− 1) +

1

m+ 1

m∑
k=1

vk +
1

m+ 1
vi
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≤ m− 1 +m · 1

m+ 1
+

1

m+ 1
(‖v‖∞ = 1)

= m

= b556,m,ε,≤
j .

Case 3: i = m+ 1: We have

A556,m,ε,≤
j,∗

(
x̂
ŷ

)
= −

(
1 +

1

m+ 1
vj

)
− 1

m+ 1

m∑
k=1

vk

≤ −1 +
1

m
+m · 1

m+ 1
(‖v‖∞ = 1)

= 0

= b556,m,ε,≤
j .

Lemma 575. Let m ∈ Z≥1 and ε ∈ R>0. Then

∀v ∈
(
Rm × R1

)
\
(
0m × 01

)
∃x∗ ∈ (Xm

m )I :

(
x∗
ε
m2

)
∈ P 556,m,ε,≤ + lin {v} .

Proof. W.l.o.g. we can assume vm+1 ≤ 0. Additionally, we can assume v[m] 6= 0m. By Lemma 574, there
exists a (not necessarily uniquely de�ned) z (v) ∈ (Xm

m )I such that v[m] ∈ Cz(v). So, by this lemma, there
exists a λ ∈ R>0 and an y∗ ∈ R having y∗ ≥ ε

m2 such that(
z (v) + λv[m]

y∗

)
∈ P 556,m,ε,≤.

So (
z (v)
y∗∗

)
:=

(
z (v) + λv[m]

y∗

)
− λv ∈ P 556,m,ε,≤ + lin {v}

and we have y∗∗ = y∗ − λvm+1 ≥ y∗ ≥ ε
m2 . On the other hand(

z (v)
0

)
∈ Xm

m × {0} ⊆ P 556,m,ε,≤ ⊆ P 556,m,ε,≤ + lin {v} .

So, since P 556,m,ε,≤ + lin {v} is convex, we conclude(
z (v)
ε
m2

)
∈ P 556,m,ε,≤ + lin {v} .

15.4. Proofs of the statements from section 15.2

15.4.1. Proof of Theorem 563

Proof. (Theorem 563) The statement is an immediate consequence of Lemma 571 and Lemma 575.

15.4.2. Proof of Theorem 564

Proof. (Theorem 564) Consider a vector space V ≤ Rm×R1+(m+1) of codimension m, thus dimension m+ 2.
Let W := ker

(
A557,m,ε,= G557,m,ε,=

)
. We clearly have

dim
(
im
(
A557,m,ε,= G557,m,ε,=

))
= m+ 1;
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thus,

dimW = dim
(
ker
(
A557,m,ε,= G557,m,ε,=

))
= (m+ (1 + (m+ 1)))− dim

(
im
(
A557,m,ε,= G557,m,ε,=

))
= 2 (m+ 1)− (m+ 1)

= m+ 1.

So, by Lemma 30, we have

dim (V ∩W ) = dimV + dimW − dim (V +W ) ≥ (m+ 2) + (m+ 1)− (2m+ 2) = 1.

Let ( vv′ ) ∈ (V ∩W ) \
{(

0m

01+(m+1)

)}
. It is easy to check that

( v
v′1

)
6=
(

0m

0

)
, since(

v
v′

)
6=
(

0m

01+(m+1)

)
and by the structure of

(
A557,m,ε,= G557,m,ε,=

)
, if(

v
v′

)
∈ ker

(
A557,m,ε,= G557,m,ε,=

)
such that v′(2,...,m+2) 6= 0m+1, we also have

( v
v′1

)
6=
(

0m

0

)
. Since(

v
v′

)
∈ ker

(
A557,m,ε,= G557,m,ε,=

)
,

we conclude

v − m

ε (m+ 1)
v′1 − v′(2,...,m+1) = 0m, (15.5)

−
m∑
i=1

vi −
m

ε (m+ 1)
v′1 − v′m+2 = 0. (15.6)

By Lemma 575, there exists an
(
x1

y1

)
∈ P 556,m,ε,≤ and µ ∈ R such that(

x2

ε
m2

)
:=

(
x1

y1

)
+ µ

(
v
v′1

)
(15.7)

∈
(
P 556,m,ε,≤ + lin

{(
v
v′1

)})
∩ ((Xm

m )I × R)

⊆
(
P 556,m,ε,≤ + lin

{(
v
v′1

)})
I

.

By Lemma 571, there thus exists an ε∗ ∈ R>0 (only depending on ε) having ε∗ ≤ ε such that(
m
m+1 · 1

m

ε∗

)
∈ conv

( m⋃̇
i=0

{(
m · em,i

0

)}
∪̇
{(

x2

ε
m2

)})
.

This means that there exists a λ ∈ ∆m+1 having(
m
m+1 · 1

m

ε∗

)
=

m∑
i=1

λi

(
m · em,i

0

)
+ λm+1

(
0m

0

)
+ λm+2

(
x2

ε
m2

)
. (15.8)
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Clearly, 
m · em,1

0
m · em,1

0

 , . . . ,


m · em,m

0
m · em,m

0

 ,


0m

0
0m

m

 ,


x1

y1

x1 − m
ε(m+1)y

1

m−
∑m
i=1 x

1
i − m

ε(m+1)y
1

+ µ

(
v
v′

)

∈
(
P 557,m,ε,= + lin

{(
v
v′

)})
I

. (15.9)

We now �nally claim that
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
1m+1

 =

m∑
i=1

λi


m · em,i

0
m · em,i

0

+ λm+1


0m

0
0m

m



+ λm+2




x1

y1

x1 − m
ε(m+1)y

11m

m−
∑m
i=1 x

1
i − m

ε(m+1)y
1

+ µ

(
v
v′

) . (15.10)

(15.10) and (15.9) together with the easily veri�able fact
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
1m+1

 ∈ P 557,m,ε,=

show 
m
m+1 · 1

m

ε∗

m
m+1

(
1− ε∗

ε

)
1m+1

 ∈ clm− 1
2 ,R×R

(
P 557,m,ε,=

)
.

For (15.10): The equality in the �rst m + 1 components holds by (15.7) and (15.8). So, we only have to
check the last m+ 1 components:

m

m+ 1

(
1− ε∗

ε

)
1m

=
m

m+ 1
· 1m − ε∗

ε
m2 1

(m+ 1)
· 1

m
1m

=
m

m+ 1
· 1m − λm+2

1

(m+ 1)
· 1

m
1m (by (15.8))

=

m∑
i=1

λim · em,i + λm+10m + λm+2

(
x2 − 1

(m+ 1)
· 1

m
1m
)

(by (15.8))

=

m∑
i=1

λim · em,i + λm+10m + λm+2

(
x2 − m

ε (m+ 1)
· ε

m2
1m
)

=

m∑
i=1

λim · em,i + λm+10m + λm+2

((
x1 + µv

)
− m

ε (m+ 1)

(
y1 + µv′1

)
1m
)

(by (15.7))

=

m∑
i=1

λim · em,i + λm+10m + λm+2

(
x1 − m

ε (m+ 1)
y11m + µ

(
v − m

ε (m+ 1)
v′1

))

=

m∑
i=1

λim · em,i + λm+10m + λm+2

(
x1 − m

ε (m+ 1)
y11m + µv′(2,...,m+1)

)
(by (15.5)).
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and

m

m+ 1

(
1− ε∗

ε

)
=

m

m+ 1
− ε∗

ε
m2 · 1

m+ 1
· 1

m

=
m

m+ 1
− λm+2 ·

1

m+ 1
· 1

m
(by (15.8))

=
m

m+ 1
− λm+2

m

ε (m+ 1)

ε

m2

=
m

m+ 1
− λm+2

m

ε (m+ 1)

(
µv′1 + y1

)
(by (15.7))

=
m

m+ 1
+ λm+2

(
−µ m

ε (m+ 1)
v′1 −

m

ε (m+ 1)
y1

)
=

m

m+ 1
+ λm+2

(
µ

m∑
i=1

vi −
m

ε (m+ 1)
y1 + µv′m+2

)
(by (15.6))

=
m

m+ 1
+ λm+2

(
m∑
i=1

x2
i −

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)
(by (15.7))

= m−

(
m2

m+ 1
− λm+2

m∑
i=1

x2
i

)
+ λm+2

(
−

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)

= m−
m∑
i=1

(
m

m+ 1
− λm+2x

2
i

)
+ λm+2

(
−

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)

= m−m
m∑
i=1

λi + λm+2

(
−

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)
(by (15.8))

= m

(
1−

m∑
i=1

λi − λm+2

)
+ λm+2

(
m−

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)

= λm+1m+ λm+2

(
m−

m∑
i=1

x1
i −

m

ε (m+ 1)
y1 + µv′m+2

)
. (λ ∈ ∆m+1)

15.5. Implications

15.5.1. Di�erences between various classes of cutting planes

We now write down some implications of the results that we stated in section 15.2.

Theorem 576. For every m ∈ Z≥1, there exists a rational polytope

P := P≤
((

A G
)
, b
)
⊆ Rm × R1

(concretely, one can choose P := P 556,m,ε,≤ = P≤
((

A556,m,ε,≤ G
)
, b556,m,ε,≤) for some ε ∈ Q>0) such

that for every ` ∈ Z≥0, we have

clI (P ) = clmBS (P ) = clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clILF (P ) = clBR (A,G, b)

( cl
(`)
(m−1)BS (P ) , cl

(`)
L
m− 1

2
,R×R

(P ) .

Proof. The statements are consequences of Theorem 558, Theorem 559, Theorem 560, Theorem 562, Theorem
563, Theorem 565 and Theorem 566 together with Remark 572.

Theorem 577. For every m ∈ Z≥1, there exist

A ∈ Q(m+1)×m, G ∈ Q(m+1)×(m+2), b ∈ Qm+1
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15. Li-Richard example

(concretely, one can choose A557,m,ε,=, G557,m,ε,= and b557,m,ε,= for some ε ∈ Q>0) such that for

P := P=
((

A G
)
, b
)
∩
(
Rm × R1+(m+1)

≥0

)
and ` ∈ Z≥0, we have

clI (P ) = clmBS (P ) = clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clILF (P ) = clmR (A,G, b)

( cl
(`)
(m−1)BS (P ) , cl

(`)
L
m− 1

2
,R×R

(P ) .

Proof. The statements are consequences of Theorem 559, Theorem 561, Theorem 562, Theorem 564, Theorem
565, Theorem 566 and Theorem 568 together with Remark 572.

15.5.2. The �nal inclusion in the Lk− 1
2
/Lk hierarchy

We �nally return to the question that was still open in section 14.9.3 and show:

Theorem 578. For every m,n ∈ Z≥1 and k ∈ {1, . . . ,m}, there exists a rational polyhedron P ⊆ Rm × Rn
such that for every ` ∈ Z≥0, we have

clI (P ) = clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) .

Proof. For m = k and n = 1, let P := P 556,m,ε,≤, where ε ∈ Q>0. In this case, the statement holds by
Theorem 576. The general statement is then a consequence of Theorem 220.
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Summary and outlook
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16. Summary

16.1. Basic de�nitions and cutting planes

The purpose of part I, which consists of chapters 2 and 3, was mainly to set up de�nitions. In chapter 2, we
established some basic de�nitions and results that were used throughout this text. In chapter 3, we de�ned
common cutting planes and their associated operators that have been studied in the literature.

16.2. Lk cuts and Lk− 1
2
cuts

In chapter 4, we started with the central topic of this dissertation: the frameworks of Lk cuts and Lk− 1
2
cuts.

The idea behind both is that one can derive cutting planes for some P ⊆ Rm×Rn (m,n ∈ Z≥0 (even though
the case m = 0 is of hardly any mathematical interest), where m denotes the number of integer variables and
n denotes the number of continuous variables) by considering valid inequalities for either

P ∩ ((Zm × Rn) + V )

(Lk cuts) or
(P + V ) ∩ (Zm × Rn)

(Lk− 1
2
cuts), where V ≤ Rm×Rn is a subspace of codimension k ∈ {0, . . . ,m+ n} (the case k = 0 is admitted

for formal reasons). By demanding di�erent rationality conditions on the generators of V , this de�nes di�erent
types of Lk cuts and Lk− 1

2
cuts such as

• Lk,Q cuts: V has generators from Qm × Rn,

• Lk,R cuts: V has generators from Rm × Rn,

• Lk− 1
2 ,Q×Q

cuts: V has generators from Qm ×Qn,

• Lk− 1
2 ,Q×R

cuts: V has generators from Qm × Rn,

• Lk− 1
2 ,R×R

cuts: V has generators from Rm × Rn.

Each of these families yields a hierarchy (indexed by k) of cutting planes or cutting plane operators/closures
(intersection of P with all cutting planes of the respective type), such as clL

k− 1
2
,Q×Q

( · ), which is increasingly

tight as k increases.
For the structure of chapter 4:

• In section 4.2, we started with the framework of Lk cuts (section 4.1 was used for proving some auxiliary
results). Here, in section 4.2.1, we de�ned Lk cuts (De�nition 161) and their closures (De�nition 165).
In section 4.2.2, we considered how Lk cuts can be represented in an alternative way:

� In section 4.2.2.1, Theorem 168, we showed that for both Lk,Q and Lk,R cuts, we can restrict
ourselves to vector spaces of the form V = V ′ × Rn.

� In section 4.2.2.2, we considered how Lk,Q cuts can be represented �in a dual way�: instead of
considering inequalities for

P ∩ ((Zm × Rn) + (V ′ × Rn)) ,

we considered inequalities for

P ∩
({
x ∈ Rm :

(
wi
)T
x ∈ Z ∀i ∈ [k]

}
× Rn

)
,

where w1, . . . , wk ∈ Zm for k ∈ Z≥0. This perspective is taken in [DGMR17], a paper where
a class of cutting planes called k-dimensional lattice cuts (cf. De�nition 175) is considered.
Indeed, k-dimensional lattice cuts turn out to be closely related to Lk,Q cuts. We formalized this
relationship in Theorem 176.
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16. Summary

• In section 4.3, we de�ned Lk− 1
2
cuts (De�nition 179) and their closures (De�nition 182) similarly to

how we did for Lk cuts in section 4.2.1.

In Remark 156, we gave some central guiding questions for chapter 4. We thus restate it here:

Remark 156. Before we continue outlining the structure of chapter 4, we want to characterize the central
questions that we want to analyze for Lk cuts/closures and Lk− 1

2
cuts/closures:

1. Analyze under what conditions one type of Lk cuts/closure or Lk− 1
2
cuts/closure is more expressive than

another one or not.

2. Show that the out of themselves unrelated looking hierarchies of operators for Lk,Q cuts, Lk− 1
2 ,Q×Q

cuts
and Lk− 1

2 ,Q×R
cuts can be combined into a �uni�ed hierarchy� for rational polyehdra, i.e. for a rational

polyhedron P ⊆ Rm (m ∈ Z≥0), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P )

(4.1)

and for a rational polyhedron P ⊆ Rm × Rn (m ∈ Z≥0 and n ∈ Z≥1), the chain of inclusions

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

(4.2)

holds. We remark that in part VI (chapter 14 and chapter 15), we reconsider this hierarchy and analyze
whether these inclusions can also be strict.

3. In section 4.2.2.1, Theorem 168, we show that for both Lk,Q cuts and Lk,R cuts, we can restrict ourselves
to vector spaces of the form V = V ′ × Rn. It is easy to see that such a restriction is not possible for
Lk− 1

2
cuts. Nevertheless, one can ask the question whether Lk− 1

2
cuts, speci�cally Lk− 1

2 ,Q
cuts, with

respect to such a vector space �ll an interesting role or have interesting properties.

For guiding question 1: In section 4.5, we started with the journey that was outlined in Remark 156 and
analyzed the di�erent types of Lk and Lk− 1

2
cuts/closures for di�erences:

• In section 4.5.1, we summarized results for Lk cuts that we showed in section 4.4: by Theorem 189, for
every m ∈ Z≥2, we have for P 116,m ⊆ Rm (an irrational hyperplane that contains no integral point):

clLm−1,Q

(
P 116,m

)
= P 116,m,

clL1,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
.

In this sense, L1,R cuts/the L1,R closure can be stronger than Lm−1,Q cuts/the Lm−1,Q closure.

• In section 4.5.2, we summarized results for Lk− 1
2
cuts that we showed in section 4.4: by Theorem 190,

for every m ∈ Z≥2, we have for P 116 ⊆ Rm (an irrational hyperplane that contains no integral point)
and P 117 ⊆ Zm (an irrational hyperplane that contains 0m as the only integral point):

clL
(m−1)− 1

2
,Q

(
P 116,m

)
= P 116,m,

clL
1− 1

2
,R

(
P 116,m

)
= ∅ = clI

(
P 116,m

)
= clI

(
P 116,m

)
,

clL
(m−1)− 1

2
,Q

(
P 117,m

)
= P 117,m,

clL
1− 1

2
,R

(
P 117,m

)
=
{

02
}

= clI
(
P 117,m

)
= clI

(
P 117,m

)
.

So, until here, we have cleared up that there can exist a di�erence in expressivity between

• L( · ),Q cuts/closure versus L( · ),R cuts/closure and

• L( · )− 1
2 ,Q

cuts/closure versus L( · )− 1
2 ,R

cuts/closure.
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16.2. Lk cuts and Lk− 1
2
cuts

We next compared Lk,Q×Q cuts/closure to Lk,Q×R cuts/closure. Section 4.5.3 was about the situation where
we have clLk,Q×Q ( · ) ) clLk,Q×R ( · ), while section 4.5.4 was about the situation where equality between these
closures holds.
The central result of section 4.5.3 is Theorem 191. Here, we showed that for P 118 ⊆ R1 × R2, we have:

P 118 = clL
2− 1

2
,Q×Q

(
P 118

)
) clL

2− 1
2
,Q×R

(
P 118

)
= clI

(
P 118

)
= clI

(
P 118

)
.

The essential property of P 118 that enabled this proof was that P 118 has a lineality space that is generated
by vectors from Qm × Rn, but is not a rational subspace.
So, we formulated Conjecture 192, which claims that as long as P = Q+ C + L ⊆ Rm ×Rn (m,n ∈ Z≥0),

where

• Q is convex and compact,

• C is a pointed polyhdral cone generated by vectors from Qm × Rn and

• L is a linear vector space generated by rational vectors (from Qm ×Qn),

we have
clL

k− 1
2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

for k ∈ {0, . . . ,m}. While Conjecture 192 is open, we considered important special cases in section 4.5.4:

• In Theorem 193, which we proved further back in section 4.8.4, we saw that Conjecture 192 holds if P ⊆
Rm ×Rn (m,n ∈ Z≥0) is a rational polyhedron. Moreover: every Lk− 1

2 ,Q×R
cut for P (k ∈ {0, . . . ,m})

is dominated absolutely by a �nite number of rational Lk− 1
2 ,Q×Q

cuts for P . This, of course, implies
the

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P )

equalities in (4.1) and (4.2) of guiding question 2 in Remark 156.

• Why do we put an emphasis on this stronger statement (than the statement of Conjecture 192) that
every Lk− 1

2 ,Q×R
is dominated by a �nite number of Lk− 1

2 ,Q×Q
cuts for P if P is a rational polyhedron?

The reason is that in the more general setting of Conjecture 192 (even if P is a polyhedron), it can
happen that we have

clL
k− 1

2
,Q×Q

(P ) = clL
k− 1

2
,Q×R

(P ) = clI (P )

and we need to apply just one Lk− 1
2 ,Q×R

cut to P to obtain clI (P ), but the intersection of P with an
arbitray �nite number of half-spaces induced by Lk− 1

2 ,Q×Q
cuts is always a strict superset of clI (P ). In

Theorem 194, we gave an example of this phenomenon.

For guiding question 2:

Inclusions/non-inclusions: In section 4.6, we considered the inclusions between the two hierarchies of
Lk− 1

2
cuts and Lk cuts (i.e. the inclusions in (4.1) and (4.2) with the particular goal to put these on a solid

foundation, but also related inclusions/non-inclusions). In Theorem 197, we showed that for an arbitrary
P ⊆ Rm×Rn (m,n ∈ Z≥0), every Lk− 1

2 ,Q×R
cut for it (k ∈ {0, . . . ,m+ n}) with respect to some vector space

V is also an Lk,Q cut with respect to the same vector space, which, of course, implies the

clLk,Q (P ) ⊆ clL
k− 1

2
,Q×R

(P )

inclusions in (4.1) and (4.2). Note that (cf. Remark 198) a similar result for Lk,R cuts/closure versus Lk,R
cuts/closure of an arbitrary set P ⊆ Rm × Rn does not hold in general, i.e. we don't have

clLk,R (P ) ⊆ clL
k− 1

2
,R×R

(P )

in general (even if we assume P to be a polyhedron). For this, recall from Remark 198 that

clL1,R

(
P 115

)
= P 115 )

{
02
}

= clL
1− 1

2
,R

(
P 115

)
.
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16. Summary

On the other hand, for the inclusion type clL
(k+1)− 1

2
,( · )

( · ) ⊆ clLk,( · ) ( · ) , we know by Theorem 199 that for

an arbitrary P ⊆ Rm×Rn (m,n ∈ Z≥0) and k ∈ {0, . . . ,m+ n− 1}, every Lk,R cut for P is an L(k+1)− 1
2 ,R×R

cut for P , from which we conclude

clL
(k+1)− 1

2
,R×R

(P ) ⊆ clLk,R (P ) .

We also proved there that if P is a rational polyhedron, we have

clL
(k+1)− 1

2
,Q×Q

(P ) ⊆ clLk,Q (P ) ,

which showed the other type of inclusion in (4.1) and (4.2). Recall (cf. Example 201) that P being a rational
polyhedron is essential for this inclusion to hold.

Termination: We claimed in (4.2) that if P ⊆ Rm×Rn (m ∈ Z≥0 and n ∈ Z≥1) is a rational polyhedron,
the chain of inclusions in the hierarchy already ends at

clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

instead of
clLm+n,Q (P ) = clL

m+n− 1
2
,Q×Q

(P ) = clL
m+n− 1

2
,Q×R

(P ) = clI (P ) ,

as one might expect intuitively. In Theorem 202 in section 4.7, we showed that the hierarchy indeed terminates
at this place under the stated rationality condition for P . Additionally, we showed in this theorem that for
general P ⊆ Rm × Rn, we have

clLm,R (P ) = clL
(m+1)− 1

2
,R×R

(P ) = P ∩ clI (P ) .

For guiding question 3/essential Lk− 1
2 ,Q

cuts: In section 4.8, we considered what we denoted �guiding
question 3� in Remark 156. For this, in De�nition 203, we introduced essential Lk− 1

2 ,Q
cuts, which are

Lk− 1
2 ,Q×Q

cuts/Lk− 1
2 ,Q×R

cuts with respect to a vector space V ′ × Rn, where V ′ ≤ Rm (m,n ∈ Z≥0) is a
rational subspace of codimension k ∈ {0, . . . ,m}. In De�nition 205, we de�ned their respective closure, for
which we gave an alternative characterization in Theorem 207.
In Theorem 208, we proved a result that shows the importance of the concept of essential Lk− 1

2 ,Q
cuts: we

showed that if for some arbitrary P ⊆ Rm ×Rn (m,n ∈ Z≥0), there exists an Lk− 1
2 ,Q×R

cut (k ∈ {1, . . . ,m})
which is not already an Lk−1,Q cut for P , then it is an essential Lk− 1

2 ,Q
cut for P . This exhibits that the only

�interesting� Lk− 1
2 ,Q×R

cuts (since these are not �already� Lk−1,Q cuts) are essential Lk− 1
2 ,Q

cuts.
In Theorem 211, we elaborated on this statement in particular for the case that P is a rational polyhedron.

In this case, one can even show that every Lk− 1
2 ,Q×R

cut (k ∈ {1, . . . ,m}) for P is dominated (absolutely) by
a �nite set of either rational essential Lk− 1

2 ,Q
cuts for P or rational Lk−1,Q cuts for P .

As a next step, we showed a reverse to Theorem 208. We just mentioned that in this theorem, we charac-
terized how Lk− 1

2 ,Q×R
cuts that are not already Lk−1,Q cuts look like (they are essential Lk− 1

2 ,Q
cuts). So,

the reverse question to ask is how Lk,Q cuts that are not already Lk− 1
2 ,Q×Q

cuts or Lk− 1
2 ,Q×R

cuts look like.
In Theorem 213, we showed that if we have an Lk,Q cut c ( · ) ≤ c0 for some P ⊆ Rm ×Rn (m,n ∈ Z≥0) with
respect to some vector space V be given, it is already an Lk− 1

2 ,Q×Q
or Lk− 1

2 ,Q×R
cut for P with respect to the

same vector space V if cT ⊥ V . Thus, every Lk,Q cut c ( · ) ≤ c0 with respect to some V that is not already
an Lk− 1

2 ,Q×Q
cut or Lk− 1

2 ,Q×R
cut, respectively, must satisfy cT 6⊥ V .

Finally, in Theorem 215, we considered how essential Lk− 1
2 ,Q

cuts can be characterized in a �dual way�
similar to the dual characterization of Lk,Q cuts in Theorem 174.

Lineality spaces and a�ne subspaces: The central topic of section 4.9 was the following: let some arbitrary
P ⊆ Rm × Rn (m,n ∈ Z≥0) be given. Trivially, we always have

cl(m+n)− 1
2 ,( · )

(P ) = P ∩ clI (P )

and
clm,( · ) (P ) = P ∩ clI (P ) .

But now assume that we can impose some �vector space condition� on P :
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• P or projRm P has a (w.l.o.g. non-trivial) lineality space or

• P or projRm P is contained in an (again w.l.o.g. non-trivial) a�ne subspace.

Can we then show
cl(m+n−l)− 1

2 ,( · )
(P ) = P ∩ clI (P )

or
clm−l,( · ) (P ) = P ∩ clI (P ) ,

respectively, where l ∈ Z≥1? For the results:

• In Theorem 217, we showed that given some vector space L ≤ linealP that satis�es some rationality
conditions if relevant, we can restrict ourselves to Lk− 1

2
cuts with respect to subspaces that contain

L. If we set l := dimL, we have (depending on the rationality conditions that hold for the system of
generators of L)

clL
m+n−l− 1

2
,Q×Q

(P ) = P ∩ clI (P ) ,

clL
m+n−l− 1

2
,Q×R

(P ) = P ∩ clI (P ) or

clL
m+n−l− 1

2
,R×R

(P ) = P ∩ clI (P ) ,

respectively.

• In Theorem 218, we showed that given some rational vector space L ≤ projRm (linealP ), we can restrict
ourselves to Lk cuts with respect to subspaces that contain L × Rn. See Remark/Problem 219 for an
explanation why the rationality condition for L is important here. Additionally, if we set l := dimL,
we have

clLm−l,Q (P ) = P ∩ clI (P ) .

• In Theorem 222, we showed that if P ⊆ Rm is contained in an a�ne translate of a rational subspace of
dimension l, we have

clL
max(l,1)− 1

2
,Q×Q

(P ) = P ∩ clI (P ) .

• In Theorem 223, we showed that if for P ⊆ Rm ×Rn, the projection projRm P is contained in an a�ne
translate of a rational subspace of dimension l, we have

clLmax(l,1),Q (P ) = P ∩ clI (P ) .

k-half-space cuts: In section 4.10, we brie�y considered the concept of k-half-space cuts (cf. De�nition
224), which, by Theorem 225, indeed form a special class of Lk− 1

2
cuts. On the other hand, we showed (cf.

Theorem 226) that k-half-space cuts are k row cuts.

16.3. Alternative characterizations of Lk,Q and essential Lk− 1
2 ,Q

cuts

As we have outlined in section 5.1, there exist two natural ways to derive alternative characterizations of Lk
cuts and Lk− 1

2
cuts: one can either show alternative characterizations for speci�c (typically small) values of

k or prove alternative characterizations that hold for a large general range of values for k.

16.3.1. Alternative characterizations that hold for a general range of values for k

The second approach was considered in chapter 5. Here, we gave two approaches to characterize Lk,Q cuts
and essential Lk− 1

2 ,Q
cuts in a di�erent way: via lattice-free bodies and via t-branch split cuts.

16.3.1.1. Characterizing Lk,Q cuts/essential Lk− 1
2 ,Q

cuts cuts using lattice-free bodies

In section 5.2, we characterized Lk,Q cuts for a given P ⊆ Rm × Rn (m,n ∈ Z≥0) using lattice-free bodies.
We stated the �nal result in Theorem 240.
In section 5.3, we characterized essential Lk− 1

2 ,Q
cuts cuts using lattice-free bodies. The �nal result is

stated in Theorem 246.
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16.3.1.2. Characterizing Lk,Q cuts/essential Lk− 1
2 ,Q

cuts via t-branch split cuts

In section 5.4, we characterized Lk,Q and essential Lk− 1
2 ,Q

cuts via t-branch split cuts. For this, in De�nition
252, we de�ned the concept of k, t-branch split cuts and the k, t-branch split closure. In De�nition 253,
we de�ned essential k, t-branch split cuts and the essential k, t-branch split closure.
In Theorem 259, we subsequently proved that if P ⊆ Rm×Rn (m,n ∈ Z≥0) is either a rational polyhedron

or convex and compact, then for k ∈ {1, . . . ,m}, we have

clLk,Q (P ) = clk,h(k)BS (P ) ,

where h ( · ) is as in Remark/De�nition 248. Note that (cf. Theorem 255) the condition that P is either a
rational polyhedron or convex and compact is essential for Theorem 259 to hold, i.e. if P is an irrational
hyperplane (as in Theorem 255), the Lk,Q closure can be stronger than the k, h (k)-branch split closure.
In Theorem 261, we showed that if P ⊆ Rm × Rn (m,n ∈ Z≥0) is again either a rational polyhedron or

convex and compact, then for k ∈ {1, . . . ,m}, we have

clessL
k− 1

2
,Q

(P ) = cless k,h(k)BS (P ) ,

where h ( · ) is as in Remark/De�nition 248.
In section 5.4.5, Theorem 264, we used this characterization of the Lk,Q closure of a rational polyhedron

to show that the Lk,Q closure of a rational polyhedron (even with respect to an arbitrarily chosen set of
rationally generated subspaces of codimension k) is again a rational polyhedron � a statement which has also
independently from us been proved in [DGMR17]. Our proof reduced the statement to Corollary 336, i.e. the
statement that the t-branch split closure of a rational polyehdron with respect to an arbitrary set of t-branch
split disjunctions is again a rational polyhedron.

16.3.2. Alternative characterizations that hold for speci�c values of k

We now summarize the results with respect to the �rst approach for giving alternative characterizations of
Lk cuts and Lk− 1

2
cuts, i.e. giving alternative characterizations that are speci�c to some particular (small)

value of k.

For L1− 1
2 ,Q×Q

cuts and L1− 1
2 ,Q×R

cuts: We considered the case k = 1 for Lk− 1
2 ,Q×Q

cuts and L1− 1
2 ,Q×R

cuts in section 8.1. There, we analyzed the relationship between

• (projected) Chvátal-Gomory cuts (cf. De�nition 122),

• dual (projected) Chvátal-Gomory cuts (cf. De�nition 382),

• strong (projected) Chvátal-Gomory cuts (cf. De�nition 384) and

• L1− 1
2 ,Q×Q

cuts and L1− 1
2 ,Q×R

cuts (cf. De�nition 179).

In section 8.1.2.4, we gave an overview about the relationbship between these classes of cutting planes/cutting
plane operators; so, at this place, we only recall that for polyhedra, all these types of cutting planes yield
identical cutting plane operators.

For L1,Q cuts: The case k = 1 for Lk,Q cuts was considered in section 9.1 of chapter 9. There, we analyzed
the relationship between

• L1,Q cuts (cf. De�nition 161),

• split cuts (cf. De�nition 126) and

• MIR cuts (cf. De�nition 410).

In section 9.1.1, we showed the missing part for a proof of the equivalence between L1,Q cuts and split
cuts for convex sets P ⊆ Rm × Rn (m,n ∈ Z≥0); a result that we wrote down as Theorem 409. Note that
convexity is essential for this equivalence to hold; otherwise, L1,Q cuts can be more expressive than split cuts
(cf. Remark 407).
In section 9.1.2, we gave an equivalence proof of the split closure and the MIR closure. This equivalence

is in principle well-known in the literature. Nevertheless, we think we had good reasons to reprove these
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results: on one hand, there exist multiple de�nitions of MIR cuts in the literature. This makes it hard to
reuse existing results from the literature since these proofs often rely on slightly di�erent de�nitions of MIR
cuts. On the other hand, many authors tend to skim over the subtile asymmetry in the equivalence between
split cuts and MIR cuts: while every MIR cut is a split cut (cf. Theorem 412) � thus, split cuts dominate
MIR cuts absolutely � not every split cut is a MIR cut (cf. Example 416), even though one can always �nd a
MIR cut that dominates it relatively to the polyhedron (cf. Theorem 415).

For L2,Q cuts and essential L2− 1
2 ,Q

cuts: To analyze these types of cuts, we �rst considered lattice-free

bodies in R2. For this, in chapter 10, we proved two theorems (Theorem 431 and Theorem 434) about how to
embed two-dimensional full-dimensional lattice-free bodies into disjunctions. We want to recall that a weaker
version of Theorem 431 (Theorem 432) has already been proved in [DDG12].
After this, in chapter 11, we analyzed L2,Q cuts (section 11.1) and essential L2− 1

2 ,Q
cuts (section 11.2):

• In Theorem 462, we showed that if P ⊆ Rm × Rn (m ∈ Z≥1, n ∈ Z≥0, m+ n ≥ 2) is either

� a rational polyhedron,

� convex and projR2 P is full-dimensional or

� convex and compact,

we have clL2,Q (P ) = clCC (P ) . We remark that results for

� rational polyhedra of the form
(
R2 × Rn≥0

)
∩ P=

((
A G

)
, b
)
(the proof is easy to extend to

arbitrary rational polyehdra) and

� P convex and compact

were already proved in [DDG11] (for details cf. section 11.1). So, mostly the case �P is convex and
projR2 P is full-dimensional� is fundamentally new.

Building on an existing result from the literature (Theorem 463), we proved that if P ⊆ Rm × Rn
(m,n ∈ Z≥0) is either

� a rational polyhedron or

� convex and compact,

we can indeed replace conv by conv in the de�nition of the crooked cross closure (De�nition 148), as it
is commonly done in the literature.

• In section 11.1.4, we followed a similar route as we did in section 11.1 for the L2,Q closure to show a
characterization of the

� essential L2− 1
2 ,Q

closure,

� L2− 1
2 ,Q×Q

closure and

� L2− 1
2 ,Q×R

closure

of a rational polyhedron. In Theorem 474, we saw that if P ⊆ Rm × Rn (m ∈ Z≥2, n ∈ Z≥0) is a
rational polyhedron, we have

clessL
2− 1

2
,Q

(P ) = clessT (P ) ∩ clessCC (P ) . (16.1)

In Theorem 475, we extended this result to show that for a rational polyhedron P ⊆ Rm × Rn (m,n ∈
Z≥0, where m+ n ≥ 2), we have

clL
2− 1

2
,Q×Q

(P ) = clsplit (P ) ∩ clessT (P ) ∩ clessCC (P ) . (16.2)

In both (16.1) and (16.2), clessT ( · ) denotes the essential T closure and clessCC ( · ) denotes the
essential crooked cross closure (cf. De�nition 466).

16.4. Strictness of the Lk− 1
2
/Lk hierarchy

The central question guiding part VI (chapter 14 and chapter 15) was the following (cf. section 14.1 for
a much more detailed outline): we know (recall (4.1) and (4.2) from Remark 156) that for every rational
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polyhedron P ⊆ Rm (m ∈ Z≥0), we have

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P ) ⊇ clL
m− 1

2
,Q

(P ) = clLm,Q (P ) = clI (P )

and for every rational polyhedron P ⊆ Rm × Rn (m ∈ Z≥0, n ∈ Z≥1), the chain of inclusions

P = clL0,Q (P ) ⊇ clL
1− 1

2
,Q×Q

(P ) = clL
1− 1

2
,Q×R

(P ) ⊇ clL1,Q (P ) ⊇ . . . ⊇ clLm−1,Q (P )

⊇ clL
m− 1

2
,Q×Q

(P ) = clL
m− 1

2
,Q×R

(P ) ⊇ clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clL
(m+1)− 1

2
,Q×R

(P ) = clI (P )

holds. We asked: can each of the inclusions in this chain also be strict? This was the initial motivation for
chapter 14 and chapter 15.

In chapter 14, we resolved this question positively (cf. section 14.9.3) in �almost all cases� (the remaining
case was considered in chapter 15) and proved the following even tighter inclusions (cf. Theorem 555):

• For every m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron P ⊆ Rm × Rn
such that clL

k− 1
2
,Q×Q

(P ) ( clLk−1,R (P ) holds.

• For every m ∈ Z≥2, n ∈ Z≥0 and k ∈ {1, . . . ,m− 1}, there exists a rational polyhedron P ⊆ Rm × Rn
such that clLk,Q (P ) ( clL

k− 1
2
,R×R

(P ) holds.

The only case that is absent here is k = m and n ≥ 1.

This missing case was a central topic in chapter 15. In section 15.5.2, Theorem 578, we considered it and
showed an even stricter result: for every m,n ∈ Z≥1 and k ∈ {1, . . . ,m}, there exists a rational polyhedron
P ⊆ Rm × R such that for every ` ∈ Z≥0, we have

clI (P ) = clLk,Q (P ) ( cl
(`)
L
k− 1

2
,R×R

(P ) ⊆ cl
(`)
Lk−1,R

(P ) ,

i.e. �we never attain clI (P ) via Lk− 1
2 ,R×R

cuts or Lk−1,R cuts, even if we apply them iteratively�.

16.5. Further results on Lk cuts/Lk− 1
2
cuts

16.5.1. Sizes of subsets of inequalities to consider

In chapter 12, we analyzed how many inequalities in the inequality description of the respective polyhedron
we have to consider at the same time to derive a speci�c Lk,Q cut or Lk− 1

2 ,Q×Q
cut for it. We de�ned this

in Problem/De�nition 476, which we restate here. Recall that we de�ned in section 12.1 that A ∈ Rl×m,
G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0:

Problem/De�nition 476. Let P≤
((

A G
)
, b
)
⊆ Rm×Rn be given and let k ∈ {0, . . . ,m+ n}. What is

the smallest h ∈ {0, . . . , l} such that

clLk,Q
(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clLk,Q

(
P≤

((
A G

)
S,∗ , bS

))
or

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

respectively, holds? This smallest h is referred to as h∗Lk,Q (A,G, b) or h∗L
k− 1

2
,Q×Q

(A,G, b), respectively. If

n = 0, we also use the notations h∗Lk,Q (A, b) or h∗L
k− 1

2
,Q×Q

(A, b), respectively.

Theorem 504 and Theorem 505, which we restate here, summarize the upper and lower bounds that we
showed:
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Theorem 504. Let k ∈ {0, . . . ,m+ n}. Then

h∗Lk,Q (A,G, b) ≤


rank

(
A G

)
(≤ m+ n) if k = 1,

2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general,

h∗L
k− 1

2
,Q×Q

(A,G, b) ≤



rank
(
A G

)
(≤ m+ n) if k = 1,(

2k − 1
)

(m+ n− k + 1) if P≤
((

A G
)
, b
)
I
6= ∅ ∧ k ∈ {0, . . . ,m},

2min(k,m) (m+ n−min (k,m) + 1)− 1 if P≤
((

A G
)
, b
)
I
6= ∅,

2min(k,m) (m+ n−min (k,m) + 1) in general.

Theorem 505. Let m ∈ Z≥1, n ∈ Z≥0 and k ∈ {1, . . . ,m+ n}. Then there exist rational A, G and b such
that P≤

((
A G

)
, b
)
6= ∅ and

h∗L
k− 1

2
,Q×Q

(A,G, b) =


m+ n,

2k−1 if n = 0,

2min(k−1,m) if n ≥ 1,

h∗Lk,Q (A,G, b) =


m+ n,

2min(k,m−1) if n = 0,

2min(k,m) if n ≥ 1.

In section 12.4.3, we gave a short glimpse into how the results on h∗L
k− 1

2
,Q×Q

(A,G, b) can be generalized to

other types of cutting planes that are related to Lk− 1
2 ,Q×Q

cuts:

• In Theorem 496, we showed an upper bound for h∗essL
k− 1

2
,Q

(A,G, b) .

• In Theorem 497, we showed that h∗L
k− 1

2
,Q×R

(A,G, b) = h∗L
k− 1

2
,Q×Q

(A,G, b) if A, G and b are rational.

16.5.2. Bounds on the Lk,Q rank and Lk− 1
2
,Q rank of polyhedra with 0/1 integer

variables

In section 13.1 of chapter 13, we considered bounds on the Lk,Q rank (see (6.11)) of polyhedra P ⊆ [0, 1]
m×Rn

(m ∈ Z≥1 and n ∈ Z≥0), i.e. the integer variables are 0/1-valued. In Theorem 515, we showed the bound

rankLk,Q (P ) ≤
⌈m
k

⌉
(16.3)

(this bound even holds if P is a more general closed convex set; cf. De�nition 506). Now we asked whether
this bound is tight. This was the topic of section 13.1.2: in Theorem 526, we proved that for every m ∈ Z≥1,
there exists a rational polytope P ⊆ [0, 1]

m such that for all k ∈ {1, . . . ,m}, we have

rankLk,Q (P ) ≥
⌈m
k

⌉
.

Thus, the bound in (16.3) is indeed tight.

After this result on the Lk,Q rank, we turned our focus to the Lk− 1
2 ,Q×Q

rank of rational polyhedra. At the
beginning of section 13.2, in Theorem 528, we used the results on the Lk,Q rank to estimate the Lk− 1

2 ,Q×Q
rank of rational polyhedra P ⊆ [0, 1]m × Rn (m ∈ Z≥1 and n ∈ Z≥0). In the case k = 1, this only allowed a
rather disappointing estimate. Luckily, the problem of �nding bounds for the L1− 1

2 ,Q
rank (Chvátal-Gomory

rank) of a polytope P ⊆ [0, 1]
m is a well-studied problem in the literature. So, in section 13.2.1, we gave an

overview on upper bounds for the Chvátal-Gomory rank from the literature and in section 13.2.2, we did the
same for lower bounds.
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16.6. Expressivity of various classes of cutting planes

16.6.1. Inclusions and non-inclusions

The question of inclusions and non-inclusions between the various cutting plane operators was a central topic
in section 6.1, but also in chapter 14 and chapter 15 (here, in particular, cf. section 15.5.1). Many of the
results that we list in the remainder of this section are taken from the literature.

Split cuts vs integral lattice-free cuts and k-disjunctive cuts: By Theorem 265 and Theorem 266, for an
arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), every split cut for P is also an k-disjunctive cut (k ∈ Z≥2) and an
integral lattice-free cut for P . So, we have

clkD (P ) , clILF (P ) ⊆ clsplit (P ) .

Moreover, for k = 2, we saw in Theorem 265 that also the reverse holds, i.e. every 2-disjunctive cut for P is
also a split cut for P and we thus have

cl2D (P ) = clsplit (P ) .

t-branch split cuts vs cuts from basic relaxations: In Theorem 267, which was �rst shown in [ACL05],
we saw that for an arbitrary polyhedron P := P≤

((
A G

)
, b
)
(A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl, where

l,m, n ∈ Z≥0), every split cut for P is a split cut of a basic relaxation of P≤
((

A G
)
, b
)
. Thus, one obtains

(cf. Theorem 270):
clBR (A,G, b) ⊆ clsplit

(
P≤

((
A G

)
, b
))
.

This inclusion can also be strict, as we saw in Theorem 576 (which we summarize further below).
We next considered how the t-branch split closure relates to the closure with respect to cuts from basic

relaxations. In Theorem 272, which was originally shown in [DGM15], we saw that for every m ∈ Z≥2, there
exists a rational polyhedron P := P≤ (A, b) (A ∈ Qm×m and b ∈ Qm) such that for every t ∈ {0, . . . ,m− 2},
we have

cl
(2)
CG (P ) = cl

(2)
split (P ) = clBR (A, b) = clI (P ) ( cltBS (P ) .

So both the second Chvátal-Gomory closure (and thus the second split closure) and the closure with respect
to cuts from a basic relaxations can be stronger than the t-branch split closure where t ∈ {0, . . . ,m− 2}.
We saw that also the reverse can happen: in Theorem 273, which was �rst shown in [DGM15], we saw that

there exist A ∈ Q4×2, G ∈ Q4×1 and b ∈ Q4 such that

clBR (A,G, b) * cl2BS
(
P≤

((
A G

)
, b
))
.

In Theorem 274, we showed that a similar statement also holds in the pure integer case, i.e. there exist
A ∈ Q4×3 and b ∈ Q4 such that

clBR (A, b) * cl2BS
(
P≤ (A, b)

)
.

t-branch split cuts vs integral lattice-free cuts: In Theorem 276, we saw that there exists a rational polytope
P ⊆ R2 × R1 having

cl2BS (P ) ( clILF (P ) .

A proof of Lemma 275, on which this theorem is essentially based, is sketched in [DPW12].

Lk cuts, crooked cross cuts and t-branch lattice-free cuts: These were the central topic of section 6.1.4.
In Theorem 277, we proved a rather general statement that if we have a cutting plane with respect to some
disjunction, it is an Lk cut, where

• k is the dimension of the lineality space of the disjunction and

• the type of Lk cut (Lk,Q cut or Lk,R cut) depends of the existence of rational generators for this lineality
space.

From this, we consluded that for arbitrary P ⊆ Rm × Rn (m,n ∈ Z≥0), we have:
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• In Corollary 278, we showed that for k ∈ {0, . . . ,m} and t ∈ Z≥1, every k, t-branch split cut (cf.
De�nition 252) for P is an Lk,Q cut for P . In particular, this implies

clLk,Q (P ) ⊆ clk,tBS (P )

and more speci�cally
clLk,Q (P ) ⊆ clk,kBS (P ) = clkBS (P ) .

• In Corollary 279, we showed that if m + n ≥ 2, every parametric cross cut for P (cf. De�nition 150)
and especially every crooked cross cut (cf. De�nition 146) for P is an L2,Q cut for P . In particular, this
implies

clL2,Q (P ) ⊆ clCC (P ) .

We next considered a result from the literature (Theorem 280, which was originally shown in [DGM15]),
which states that there exists a rational polytope P ( R2 × R1 having

clCC (P ) ( cl2BS (P ) .

From this, together with Corollary 279, we could immediately conclude that there exists a rational polytope
P ( R2 × R1 having

clL2,Q (P ) ( cl2BS (P ) .

We wrote this down explicitly in Corollary 282.
As a next step, we considered how this result can be generalized to arbitrary t-branch split cuts versus Lk,Q

cuts. In Theorem 285, we saw that for all m ∈ Z≥3, there exists a rational polytope P ( Rm × R1 such that
y1 ≤ 0 is a valid inequality for ( xy ) ∈ PI and thus a valid Lm,Q cut for P , but not a valid

(
3 · 2m−2 − 1

)
-branch

split cut for ( xy ) ∈ P . Note that this does not imply

clLm,Q (P ) ( cl(3·2m−2−1)BS (P )

(even though it is plausible that this strict inclusion does indeed hold).
After considering the relationship between 2-branch split cuts and crooked cross cuts, we next considered

the relationship between crooked cross cuts and 3-branch split cuts. In Theorem 286, we showed that for an
arbitrary P ⊆ Rm×Rn (m,n ∈ Z≥0), every crooked cross cut for P is also a 2, 3-branch split cut for P , thus,
in particular, a 3-branch split cut for P . This, in particular, implies

cl3BS (P ) ⊆ cl2,3BS (P ) ⊆ clCC (P ) .

Can the inclusion between cl3BS (P ) and clCC (P ) also be strict? In Theorem 287, which was originally shown
in [DGM15], we saw that there exists a rational polytope P ⊆ R3 having

∅ = cl3BS (P ) ( clCC (P ) .

k-disjunctive cuts vs Lk′,Q cuts: In Theorem 288, we showed that for a rational polyhedron P ⊆ Rm × Rn
(m,n ∈ Z≥0) and k ∈ {0, . . . ,m}, we have

cl2kD (P ) ⊆ clLk,Q (P ) .

k row cuts, split cuts, crooked cross cuts and Lk′,Q cuts: In Theorem 294, which is a consequence of
results that are shown in [DDG12], we saw that if we have a polyhedron

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
be given, where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0), we have

cl1R (A,G, b) ⊆ clsplit (P )

(this inclusion can also be strict if A, G and b are not rational; see further below).
Next, one can ask the question whether 2-row cuts can be stronger than 1-row cuts. In Theorem 295, for
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which a proof was sketched in [DGM15], we saw that there exist rational A, G and b such that

cl2R (A,G, b) ( cl1R (A,G, b) .

Corollary 299, which is again a consequence of results shown in [DDG12], served as an analogue of Theorem
294 for 3-row closure versus crooked cross closure (we just recalled that Theorem 294 was about 1-row closure
versus split closure). Here, we saw that given a polyhedron

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl (l,m, n ∈ Z≥0), we have

cl3R (A,G, b) ⊆ clCC (P ) .

In Theorem 300, which was shown in [DGM15], we saw that there exists a rational polytope

P :=

{(
x
y

)
∈ R2 × R4

≥0 : Ax+Gy = b

}
having

cl2R (A,G, b) * cl2BC (P ) .

On the other hand, for polyhedra that are neither rational nor full-dimensional, even the 1-row closure can
be stronger than the crooked cross closure or t-branch split closure. We showed this in Theorem 301, where
we gave an example of a polyhedron

P := P= (A, b) ⊆ R2

that forms a non-rational hyperplane and satis�es

cl1R (A, b) = ∅ ( P = clCC (P ) = cltBS (P )

for all t ∈ Z≥0. In Theorem 302, we wrote down a related result: for all t ∈ Z≥0, we have

clL
1− 1

2
,R

(
P 114

)
= clL1,R

(
P 114

)
= clL

2− 1
2
,Q

(
P 114

)
= clL2,Q

(
P 114

)
= clI

(
P 114

)
= ∅

(P 114 = cltBS
(
P 114

)
.

Now for the relationship between k row cuts and Lk′,Q cuts: in Theorem 304, we showed that if a rational
polyhedron

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
is given, where A, G and b are rational, we have

cl(2k−1)R (A,G, b) ⊆ clLk,Q (P ) .

Properties from pyramids over cross polytopes: In Theorem 543, which we proved in chapter 14, we showed
that for every m ∈ Z≥2, there exists a rational polytope P ⊆ Rm for which

cl(m−1)BS (P ) = clLm−1,Q (P ) = clI (P ) ( clL
m−1− 1

2
,R

(P ) ⊆ clLm−2,R (P )

holds.

Properties from the Li-Richard example: In Theorem 576, which we proved in chapter 15, we showed that
for every m ∈ Z≥1, there exists a rational polytope P ⊆ Rm × R1 such that for every ` ∈ Z≥0, we have

clmBS (P ) = clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clILF (P ) = clBR (A,G, b) = clI (P )

( cl
(`)
(m−1)BS (P ) , cl

(`)
L
m− 1

2
,R×R

(P ) .
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16.6. Expressivity of various classes of cutting planes

Relatedly, we showed in Theorem 577 that for every m ∈ Z≥1, there exist

A ∈ Q(m+1)×m, G ∈ Q(m+1)×(m+2), b ∈ Qm+1

such that for P := P=
((

A G
)
, b
)
∩
(
Rm × R1+(m+1)

≥0

)
, we have for every ` ∈ Z≥0:

clmBS (P ) = clLm,Q (P ) = clL
(m+1)− 1

2
,Q×Q

(P ) = clILF (P ) = clmR (A,G, b) = clI (P )

( cl
(`)
(m−1)BS (P ) , cl

(`)
L
m− 1

2
,R×R

(P ) .

16.6.2. Convergence to the (mixed-)integral closure

In section 6.2 of chapter 6, we mostly gave an overview of results mostly taken from the literature concerning
the following four questions (in order of essentially decreasing strength) for a cutting plane operator cl( · ) ( · )
with respect to some rational polyhedron P ⊆ Rm × Rn (where m,n ∈ Z≥0):

1. Does cl( · ) (P ) = clI (P ) hold?

2. Does there exist a t ∈ Z≥0 such that cl
(t)
( · ) (P ) = clI (P ) holds?

3. Does lim
i→∞

cl
(i)
( · ) (P ) = clI (P ) hold ( lim

i→∞
. . . is the Hausdor� convergence of closed convex sets; cf.

De�nition 308)?

4. Unter what conditions on, for example, c ∈ (Qm ×Qn)
T and P does

∃t ∈ Z≥0 : max
{
cx : x ∈ cl

(t)
( · ) (P )

}
= max {cx : x ∈ clI (P )}

hold?

Chvátal-Gomory closure: In Theorem 306, we saw that for a rational polyhedron P ⊆ Rm, if we apply the
Chvátal-Gomory closure iteratively a su�cient number of times, we obtain the integer hull clI (P ). Thus,
question 2 could be answered positively for the Chvátal-Gomory closure. On the other hand, there exist
examples of rational polytopes P ⊆ R2 with an arbitrarily large Chvátal-Gomory rank (cf. Lemma 307).
Thus, question 1 could be answered negatively for clCG ( · ) and question 2 positively.

Split closure: In Theorem 430, we gave an independent proof of the statement that there exists a rational
polytope P ( R2 × R1 such that for all t ∈ Z≥0, we have: cl

(t)
split (P ) ) clI (P ). Thus, in contrast to the

iterated Chvátal-Gomory closure in the pure-integer setting, the iterated split closure of a rational polyhedron
P ⊆ Rm × Rn does not always converge to clI (P ) in a �nite number of steps if m ∈ Z≥2 and n ∈ Z≥1. So,
question 2 could be answered negatively in the mixed-integer setting for the split closure.
On the other hand, we saw in Theorem 310 that if P ⊆ Rm × Rn (m,n ∈ Z≥0) is a polytope or rational

polyhedron, we have lim
i→∞

cl
(i)
split (P ) = clI (P ). Thus, question 3 could be answered positively for the split

closure. We showed in Remark 311 that the condition that P is either a polytope or a rational polyehdron is
necessary for Theorem 310 to hold. In other words: Theorem 310 does not hold in the general case that P is
an arbitrary polyehdron.
Finally, for question 4, a su�cient condition was given in Theorem 312.

Integral lattice-free closure: In Theorem 313, we saw that for a rational polyhedron P ⊆ Rm × Rn, there
always exists a k ∈ Z≥0 such that cl

(k)
ILF (P ) = clI (P ). So, question 2 could be answered positively for the

integral lattice-free closure. On the other hand, we saw in Lemma 275 and Theorem 276 that there exists a
polytope P ( R2 × R1 having clI (P ) ( clILF (P ). Thus, question 1 has in general a negative answer for the
integral lattice-free closure.

k-disjunctive closure: In Theorem 314, we saw that for a rational polyhedron P ⊆ Rm × Rn, we have
clI (P ) = cl2mD (P ). This answers question 1 positively for the k-disjunctive closure as long as �k is large
enough� (where �large enough� only depends on m). Since 2m is exponential in m, one is interested in
answering question 4 positively for a smaller value of k than 2m. In Theorem 315, such a su�cient condition
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16. Summary

was formulated. This theorem can be considered as the analogue of Theorem 312 (where a su�cient condition
for split cuts was formulated) for k-disjunctive cuts.

k row closure In Theorem 316, we showed that for

P :=

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
,

where A, G and b are rational, we have cl(2m−1)R (A,G, b) = clI (P ) .

t-branch split closure: For t-branch split cuts, question 1 can be answered positively if t is �su�ciently
large�: in Theorem 317, we saw that for a rational polyhedron P ⊆ Rm × Rn, every facet-de�ning inequality
for clI (P ) is a t-branch split cut for P for a su�ciently large t (only depending on m).

16.6.3. Polyhedricity

In particular in section 6.3, we considered various polyhedricity results that were mostly taken from the
literature.

Chvátal-Gomory closure: Further below, in section 16.7.2, we summarize that the Chvátal-Gomory closure
of a polyhedron P ⊆ Rm (m ∈ Z≥0) with rational face normals is a rational polyhedron (which we showed
in Theorem 399 in section 8.2.3.1). In section 6.3.1.1, we mentioned other proofs from the literature for the
result that the Chvátal-Gomory closure of a rational polyhedron P ⊆ Rm (m ∈ Z≥0) is again a rational
polyhedron.
Additionally, we summarized results from the literature which state that the Chvátal-Gomory closure of

the following objects is a rational polytope that is de�ned by a �nite number of Chvátal-Gomory cuts:

• rational ellipsoids (cf. Theorem 320 and [DV10]),

• arbitrary polytopes (cf. Theorem 321 and [DS11]),

• intersections of a rational polyhedron and a strictly convex body (Theorem 323). From this, of course,
a result for the Chvátal-Gomory of a strictly convex body follows (Corollary 324) (cf. [DDV11b] for
both results) and

• convex and compact sets (cf. Theorem 325 and [DDV14]). This result subsumes all results of this list.

Split closure: In section 6.3.1.2, we listed di�erent proofs from the literature for the statement that the split
closure of a rational polyhedron P ⊆ Rm×Rn (m,n ∈ Z≥0) is again a rational polyehdron. Further below, in
section 16.7.3, we summarize our independent proof for this, in which we additionally showed that the split
closure of a polyhedron with rational face normals is again a polyhedron.
We next looked at results from the literature concerning the split closure of convex bodies that are not

already rational polyhedra. In Theorem 327 (cf. [DDV11a]), we saw that if K ⊆ Rm (m ∈ Z≥0) is a strictly
convex and compact body such that aff K is a rational a�ne subspace, then clsplit (K) is �nitely de�ned.
Does this imply that clsplit (K) is a polyhedron (polytope)? For m ∈ {0, 1, 2}, this is the case (Theorem 328),
but for m = 3, there exists a rational ellipsoid K ⊆ R3 such that clsplit (K) is not a polyhedron/polytope (cf.
Example 329, which is taken from [DDV11a]).

A very general result: In Theorem 335, we stated a very general polyhedricity result from the literature
([DGMR16a]).

t-branch split closure: A consequence of Theorem 335 (Corollary 336) is that the t-branch split closure of a
rational polyehdron P ⊆ Rm×Rn (m,n ∈ Z≥0) with respect to an arbitrary set of t-branch split disjunctions
is again a rational polyhedron.

Integral lattice-free closure: Using Theorem 339, another consequence of Theorem 335 is that the integral
lattice-free closure of a rational polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0) is again a rational polyhedron. In
section 6.3.2.2, we gave a short overview about further results from the literature about integral lattice-free
polyhedra.

352



16.7. Integral polyhedra, Chvátal-Gomory cuts and split cuts

Lk,Q closure: In Theorem 264, we showed that the Lk,Q closure of a rational polyhedron P ⊆ Rm × Rn
(m,n ∈ Z≥0) with respect to an arbitrary subset of suitable subspaces is again a rational polyhedron. This
was independently proved in [DGMR17]. The central idea of our proof is to reduce the problem of showing
the polyhedricity of the Lk,Q closure to the stated polyhedricity result for the t-branch split closure.

16.7. Integral polyhedra, Chvátal-Gomory cuts and split cuts

16.7.1. Integral polyhedra

In chapter 7, we considered systems Ax ≤ b (A rational) with the property that if b is integral, then P≤ (A, b)
is an integral polyhedron. TDI systems are an example of such systems that is known in the literature, but,
as we saw in this chapter, there exist other types of systems with this property: we additionally introduced
TDZ+ I systems, TDZ+ {0, 1} systems and TD(I ∩ Z) + {0, 1} systems. A very interesting property to keep
in mind is that every description of an integral polyhedron using rational inequalities is already a TDZ+{0, 1}
system (cf. Theorem 354).
It is also well-known in the literature that TDI systems are related to Hilbert bases. The central idea to

�nd the analogues of Hilbert bases for the other kinds of system is not to just consider the matrix A, but also
the right-hand side vector b of Ax ≤ b. This lead to the framework of LP face cones (cf. De�nition 356). In
this framework, the analogue of Hilbert bases are icone systems (cf. Lemma 361), which correspond to TDI
systems. The analogues of the other three kinds of systems (TDZ + I systems, TDZ + {0, 1} systems and
TD(I ∩ Z) +{0, 1} systems) are what we named Z+ icone systems, Z+{0, 1} systems and (icone∩Z) +{0, 1}
systems.
In chapter 7, we also answered questions about how these concepts are related to each other (section 7.2.2

and section 7.3.3) and how for some polyhedra/LP face cones, the size of a minimal system of the di�erent
types can di�er (cf. section 7.6).
Another important result that we proved in chapter 7 was to characterize mixed-integrality in terms of an

optimization problem for the �rst time: we stated our characterization in Theorem 347.

16.7.2. Projected Chvátal-Gomory closure

We gave two proofs for the statement that the (projected) Chvátal-Gomory closure of a polyhedron with
rational face normals is again a polyhedron.

First proof: The �rst proof of the statement that the Chvátal-Gomory closure of a polyhedron P ⊆ Rm
(m ∈ Z≥0) with rational face normals is a rational polyhedron (Theorem 399) is based on the fact that the
Chvátal-Gomory closure of a polyehdron that is described by a TDZ + I system with an integral left-hand
side can be obtained by a simple rounding procedure (Theorem 398). This was the topic of section 8.2.3.1
(for the polyhedricity result) and, more generally, section 8.2.3 (mathematical properties of such a rounding
procedure).
While this rounding procedure is well-known in the literature for TDI systems with an integral left-hand

side, the fact that the weaker TDZ + I property su�ces is new. So, in section 8.2.3.2, we considered a
polyhedron where the sizes of a minimal

• TDZ+ I system,

• TDI system,

• TDZ+ {0, 1} system or

• TD(I ∩ Z) + {0, 1} system,

respectively, with an integral left-hand size are all di�erent. Thus, we know, in particular, that TDZ + I
systems can be stronger than TDI systems in the sense that a smaller system (in the sense of the number of
rows) su�ces to represent the Chvátal-Gomory closure via the stated rounding procedure.
In Problem 401, we formulated the reverse question to the rounding procedure for TDZ+ I systems: if we

have a system Ax ≤ b such that b is chosen minimally and clCG
(
P≤ (A, b)

)
= P≤ (A, bbc) : does this imply

that Ax ≤ b is TDZ+ I? In section 8.2.3.3, we saw that this is in general not the case.
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Second proof: The second proof, for which we found an analogue for the split/MIR closure in section 9.2,
was given in section 8.2.4. We wrote down the �nal polyhedricity result in Theorem 405. Here, we stated
that for a given polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0), we have:

• If P is a rational polyehdron, so is clpCG (P ).

• If P is a polyhedron with rational face normals, so is clpCG (P ). Additionally, projRm (clpCG (P )) is a
rational polyhedron.

This proof depends on the fact that, by Theorem 394 and Theorem 357, we can restrict ourselvelves to
polyhedra P≤

((
A G

)
, b
)
where the rows of

(
A G −b

)
form an LP face cone. Theorem 404 gives a

description of the projected Chvátal-Gomory closure in such a situation.

16.7.3. Split closure

In section 9.2, we showed (Theorem 417) that the split/MIR closure of a polyhedron P with rational face
normals is again a polyhedron and a rational polyhedron if P is a rational polyhedron. For this, in De�nition
410, we gave a de�nition of MIR cuts that is as similar as possible to how we de�ned dual projected Chvátal-
Gomory cuts in De�nition 382. This way, we could write down �MIR cut analogues� of results that we showed
for dual projected Chvátal-Gomory cuts:

• The dominance result that we formulated in Lemma 423 is the analogue of Lemma 395.

• The dominance result that we formulated in Lemma 424 is the analogue of Lemma 396.

• Theorem 427, which states that we can restrict ourselves to bases, is the analogue of Theorem 394.

Using these results, we could prove Theorem 429, in which we gave an explicit representation of the split/MIR
closure (or more precisely: clMIR,L ( · ); cf. De�nition 418) of a basic relaxation of a polyhedron with rational
face normals via a Z + icone system. This theorem is the analogue of Theorem 404, in which we proved
a similar result for the projected Chvátal-Gomory closure. From there, it was only a small step to prove
Theorem 417, which, as we mentioned, states that the split/MIR closure of a polyhedron P with rational face
normals is again a polyhedron and a rational polyhedron if P is a rational polyhedron.
For the scienti�c importance of these results: while the fact that the split closure of a rational polyhedron

is again a rational polyhedron is well-known in the literature (cf. in particular section 6.3.1.2, but also section
6.3.2.1), our approach has some innovations to o�er:

• The fact that the split closure of a polyhedron with rational face normals is again a polyhedron has to
our knowledge not been proved before.

• Our approach can easily be turned into an algorithm for computing the split closure explicitly (for
details, recall the summary at the beginning of chapter 9).

• The relationship between MIR cuts and speci�c generating systems for cones (in this case Z + icone
systems, which, by Lemma 363, also include the special case of icone systems (these are, as we saw in
Lemma 361, deeply related to Hilbert bases), Z + {0, 1} systems and (icone∩Z) + {0, 1} systems) has
not been noticed in the literature before.
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17. Outlook

We now present some open research questions that one might �nd interesting to do further research on to
build on this thesis.

17.1. Systems that ensure mixed-integrality

In chapter 7, we considered systems Ax ≤ b that ensure that P≤ (A, b) is integral if b is (for example TDZ+ I
systems; cf. Theorem 352). We ask: does there exist a property for systems Ax+Gy ≤ b that ensures that

P≤
((

A G
)
, b
)
⊆ Rm × Rn

is a mixed-integral polyhedron (with respect to the mixed lattice Zm × Rn)? A reason why one could
be interested to do further research into this direction is the following: such a class of system might be
suitable to �nd an analogue of Theorem 398 for characterizing the split closure via such a system (Theorem
398 characterized the Chvátal-Gomory closure of a polyhedron using a TDZ + I system). For this, recall
that we could generalize a result for representing the projected Chvátal-Gomory closure of a polyhedron
P≤

(
C :=

(
A G

)
, b
)
, where rowcone

(
A G −b

)
forms an LP face cone and

C ′ := C ∩ (Rm × 0n × R)
T

is �nitely generated by vectors from (Qm × 0n × R)
T (Theorem 404), to the split/MIR closure (Theorem

429).
How might a roadmap to achieve this goal of �nding mixed-integer analogues of properties like TDI systems,

TDZ + I systems, TDZ + {0, 1} systems and TD(I ∩ Z) + {0, 1} systems (cf. De�nition 348 and De�nition
349) look like? For this, consider that these types of systems are all relaxations of the characterization of
integrality of polyhedra in Theorem 345.
Recall that in Theorem 347, we gave a similar characterization of mixed-integrality of polyhedra. It should

not be too hard to formulate properties for systems Ax+Gy ≤ b, which under speci�c conditions (similar to the
condition that b is integral in the case of, for example, TDZ+I systems Ax ≤ b) ensure that P≤

((
A G

)
, b
)

is mixed-integral. But the central and interesting property is that one can show that for

• a rational polyhedron P or

• a polyhedron P with rational face normals,

respectively, one can always �nd a

• TD(I ∩ Z) + {0, 1} or

• TDI system,

respectively, that describes it. This was the statement of Theorem 369. Recall that its proof with all the
required helper statements was far from trivial and needed considerations about generating systems for cones
(cf. section 7.3); in particular statements about their existence (cf. section 7.3.4) and how one can describe
the systems of dual integrality using generating systems for cones (cf. Theorem 368).
So, if one wants to show that one got �the correct� generalization of, for example, TDI systems for the

mixed-integer case, one has to provide a proof that e.g. for rational polyhedra such a system always exists.
This is in our opinion the harder part of this roadmap.

17.2. More general systems for representing the Chvátal-Gomory
closure

In Theorem 398, we saw how TDZ + I systems with an integral left-hand side can be used to compute the
Chvátal-Gomory closure of a polyhedron with rational face normals. On the other hand, in Problem 401, we
considered the question that if we have a a system Ax ≤ b with integral A be given such that
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• P≤ (A, b) 6= ∅,

• b is chosen minimally with respect to ≤, i.e. there exists no b′ ≤ b such that P≤ (A, b) = P≤ (A, b′) and

• clCG
(
P≤ (A, b)

)
= P≤ (A, bbc):

does this imply that Ax ≤ b is TDZ+ I? In section 8.2.3.3, we saw that this is not the case even if P≤ (A, b)
has exactly one vertex. So, it is an open research question to �nd a property X (presumably generalizing
TDZ+ I systems) such that

• for every rational polyhedron/polyhedron with rational face normals, there exists an inequality descrip-
tion Ax ≤ b with integral A for it that satis�es property X (recall Theorem 369),

• if Ax ≤ b is a system with integral A that satis�es property X, then clCG
(
P≤ (A, b)

)
= P≤ (A, bbc) and

• if we have A and b be given, where

� A is integral,

� P≤ (A, b) 6= ∅,

� there exists no b′ � b such that P≤ (A, b) = P≤ (A, b′) and

� clCG
(
P≤ (A, b)

)
= P≤ (A, bbc),

then Ax ≤ b satis�es property X.

17.3. Polyhedricity and �nitely de�ned closures

In Theorem 264, we showed that the Lk,Q closure of a rational polyhedron P (clLk,Q (P )) is again a rational
polyhedron as it was done independently in [DGMR17]. A next step would be to show that the Lk− 1

2 ,Q×Q
closure of a rational polyhedron P (clL

k− 1
2
,Q×Q

(P )) is again a rational polyhedron. How might such a proof

work? In Theorem 211, we saw that for a rational polyhedron P ⊆ Rm × Rn (m,n ∈ Z≥0), we have for
k ∈ {1, . . . ,m}:

clL
k− 1

2
,Q×Q

(P ) = clessL
k− 1

2
,Q

(P ) ∩ clLk−1,Q (P ) .

For clLk−1,Q (P ), we already know that it is a rational polyhedron; so, it su�ces to show that clessL
k− 1

2
,Q

(P )

is also a rational polyhedron. We consider it as plausible that the ideas of at least one of the proofs of
Theorem 264 (either the one from [DGMR17, Theorem 2] or ours) can be generalized to show that for a
rational polyhedron P , also clessL

k− 1
2
,Q

(P ) is a rational polyhedron.

Let us continue with some questions related to polyhedricity. Recall that in Theorem 325, we saw that if
K ⊆ Rm (m ∈ Z≥0) is convex and compact, then clCG (K) is a rational polytope that is de�ned by a �nite
number of Chvátal-Gomory cuts for K. This, in particular, includes Theorem 320 as special case, where the
situation that K ⊆ Rm (m ∈ Z≥0) is a full-dimensional rational ellipsoid was considered.
In [DDV11a], the authors attempted to generalize such results to the split closure and could show (cf.

Theorem 327) that if K ⊆ Rm (m ∈ Z≥0) is compact and strictly convex and aff K is a rational a�ne
subspace, then clsplit (K) is �nitely de�ned, i.e. one only needs to consider a �nite number of split disjunctions
to describe clsplit (K). On the other hand, the authors could show (cf. Example 329) that in this situation,
the fact that the split closure is �nitely de�ned does not imply that the split closure is a rational polytope.
Concretely, they could �nd a rational ellipsoid K ⊆ R3 such that clsplit (K) is not a polytope. This fact
suggests the following problem:

Problem 579. Let K ⊆ Rm (m ∈ Z≥1) be

• a full-dimensional rational ellipsoid,

• a (not necessarily rational) polytope,

• strictly convex and compact or

• convex and compact,

356



17.4. Lk cuts vs k′ row cuts

respectively (these situations are inspired by Theorem 320, Theorem 321, Corollary 324 and Theorem 325).
Let k ∈ {1, . . . ,m}. Is then clL

k− 1
2
,Q

(K) or clLk,Q (K) a polytope or even a rational polytope?

Example 329 lets us conjecture that this is in general not the case for clL
k− 1

2
,Q

(K) and clLk,Q (K) if k ≥ 2

(but we only know the answer for k = 1). So, we also ask whether in one of these situations, clL
k− 1

2
,Q

(K) or

clLk,Q (K) is �nitely de�ned, i.e. whether there exist a �nite set V of rational subspaces of Rm of codimension
k such that we have

clL
k− 1

2
,Q

(K) =
⋂
V ∈V

conv ((K + V ) ∩ Zm) (17.1)

or
clLk,Q (K) =

⋂
V ∈V

conv (K ∩ (Zm + V )) , (17.2)

respectively. For k = 1, we know that (17.1) and (17.2) hold (the latter is a consequence of Theorem 327).

If one generalizes Problem 579 to the mixed-inter case, one, of course, wants to replace the Lk− 1
2 ,Q

closure
in Problem 579 by either

• the Lk− 1
2 ,Q×Q

closure,

• the Lk− 1
2 ,Q×R

closure or

• the essential Lk− 1
2 ,Q

closure.

17.4. Lk cuts vs k′ row cuts

In Theorem 304, we saw that for all A ∈ Qr×m, G ∈ Qr×n and b ∈ Qr (r,m, n ∈ Z≥0), where

∅ 6= P =

{(
x
y

)
∈ Rm × Rn≥0 : Ax+Gy = b

}
, (17.3)

we have
cl(2k−1)R (A,G, b) ⊆ clLk,Q (P ) , (17.4)

where k ∈ {0, . . . ,m}.
Now one can ask: is the bound 2k − 1 in (17.4) the best possible? In other words: do there exist rational

A, G and b such that we have
cl(2k−2)R (A,G, b) * clLk,Q (P ) , (17.5)

where P is as in (17.3) and k ∈ {1, . . . ,m}? For k = 1, this is obviously the case. For k = 2, we conclude
from Theorem 300 that there exist rational A, G and b having

cl2R (A,G, b) * cl2BC (P ) ⊇ clL2,Q (P ) ;

thus,
cl2R (A,G, b) * clL2,Q (P ) ,

where P is again as in (17.3). So, the question that we formulated in (17.5) is open for k ≥ 3.

Now for some other inclusion: in Theorem 577, we saw that for m ∈ Z≥1 and ε ∈ Q>0, we have for every
` ∈ Z≥0:

clmR
(
A557,m,ε,=, G557,m,ε,=, b557,m,ε,=

)
= clI (P ) ( cl

(`)
(m−1)BS (P ) , cl

(`)
L
m− 1

2
,R×R

(P ) ,

where
P := P=

((
A557,m,ε,= G557,m,ε,=

)
, b557,m,ε,=

)
∩
(
Rm × R1+(m+1)

≥0

)
.

So one can ask the reverse question, i.e. whether we also have

clL
(m+1)− 1

2
,Q×Q

(P ) = clLm,Q (P ) = clmBS (P ) = clI (P ) ( cl(m−1)R

(
A557,m,ε,=, G557,m,ε,=, b557,m,ε,=

)
.

For m = 1, this statement is trivial and for m = 2, it can be concluded from the proof sketch for Theorem
295 in [DGM15]. So, this question is open for m ∈ Z≥3.
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17. Outlook

17.5. clLm,Q (P ) ( cl(3·2m−2−1)BS (P )?

Recall that in Theorem 285 (also cf. section 16.6.1, where we summarized this result), we saw that for all
m ∈ Z≥3, there exists a rational polytope P ( Rm × R1 such that y1 ≤ 0 is a valid inequality for ( xy ) ∈ PI
and thus a valid Lm,Q cut for P , but not a valid

(
3 · 2m−2 − 1

)
-branch split cut for ( xy ) ∈ P . But this result

does not imply
clLm,Q (P ) ( cl(3·2m−2−1)BS (P ) . (17.6)

This leads to two natural research questions:

1. Does for the polytope P ( Rm×R1 (m ∈ Z≥3) from Theorem 285 also the strict inclusion (17.6) hold?

2. If not: does for every m ∈ Z≥3 exist a rational polytope P ( Rm × R1 for which (17.6) is satis�ed?

Note that it does not make sense to replace �rational polytope� by �arbitrary polyhedron� in the second
question, since we saw in Theorem 302 that already for the L2,Q closure of the irrational hyperplane P 114 ⊆ R2,
we have for every t ∈ Z≥1:

clL2,Q

(
P 114

)
= ∅ ( P 114 = cltBS

(
P 114

)
.

17.6. Role of Lk− 1
2 ,Q×Q

cuts vs Lk− 1
2 ,Q×R

cuts

We saw in Theorem 193 that for a rational polyhedron P ⊆ Rm×Rn (m,n ∈ Z≥0), the Lk− 1
2 ,Q×Q

closure (k ∈
{0, . . . ,m+ n}) equals the Lk− 1

2 ,Q×R
closure and in Theorem 194, we showed that there exists a polyhedron

P ⊆ R2 × R1 with a partially rational recession cone having

clL
2− 1

2
,Q×Q

(P ) = clL
2− 1

2
,Q×R

(P ) ,

but for which no �nite amount of Lk− 1
2 ,Q×Q

cuts su�ce to describe clL
k− 1

2
,Q×Q

(P ) (both of these results were

summarized in section 16.2). On the other hand, the much more general statement of Conjecture 192 is still
open. If one could prove it, this would imply that for a very large class of closed convex sets, equality between
their Lk− 1

2 ,Q×Q
closure and their Lk− 1

2 ,Q×R
closure indeed holds.

17.7. Role of Lk,R cuts and Lk− 1
2 ,R×R

cuts

We saw examples where Lk,R cuts and Lk− 1
2 ,R×R

cuts are more expressive than Lk,Q cuts and Lk− 1
2 ,Q×R

cuts
(cf. section 4.5.1 and section 4.5.2; speci�cally Theorem 189, Theorem 188 and Theorem 190). But all of
these examples are irrational hyperplanes (i.e. neither full-dimensional nor compact or rational polyhedra).
So, we ask: do there exist examples P ⊆ Rm × Rn (m,n ∈ Z≥0) such that

clLk,R (P ) ( clLk,Q (P )

or
clL

k− 1
2
,R×R

(P ) ( clL
k− 1

2
,Q×R

(P ) ,

respectively (k ∈ {1, . . . ,m− 1} for Lk cuts and k ∈ {1, . . . ,m} for Lk− 1
2
cuts), where P ⊆ Rm×Rn satis�es

properties such as

• being a rational polytope,

• being a rational polyhedron,

• being convex, full-dimensional and closed or

• being convex and compact,

respectively, or does in some of these situations always

clLk,R (P ) = clLk,Q (P )

or
clL

k− 1
2
,R×R

(P ) = clL
k− 1

2
,Q×R

(P ) ,

respectively, hold?
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17.8. Bounds for sizes of subsets of inequalities to consider

17.8. Bounds for sizes of subsets of inequalities to consider

In chapter 12 (also recall the summary in section 16.5.1), we considered how many inequalities of the inequality
description Ax+Gy ≤ b of P := P≤

((
A G

)
, b
)
we have to consider at the same time to derive all necessary

inequalities to describe the Lk,Q closure or Lk− 1
2 ,Q×Q

closure of P . We formulated this in Problem/De�nition

476 (recall that in section 12.1, we de�ned that A ∈ Rl×m, G ∈ Rl×n and b ∈ Rl, where l,m, n ∈ Z≥0):

Problem/De�nition 476. Let P≤
((

A G
)
, b
)
⊆ Rm×Rn be given and let k ∈ {0, . . . ,m+ n}. What is

the smallest h ∈ {0, . . . , l} such that

clLk,Q
(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clLk,Q

(
P≤

((
A G

)
S,∗ , bS

))
or

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
, b
))

=
⋂

S∈([l]
h)

clL
k− 1

2
,Q×Q

(
P≤

((
A G

)
S,∗ , bS

))
,

respectively, holds? This smallest h is referred to as h∗Lk,Q (A,G, b) or h∗L
k− 1

2
,Q×Q

(A,G, b), respectively. If

n = 0, we also use the notations h∗Lk,Q (A, b) or h∗L
k− 1

2
,Q×Q

(A, b), respectively.

Obviously, this problem can easily be generalized to other types of cutting plane closures such as

• essential Lk− 1
2 ,Q

closure,

• Lk− 1
2 ,Q×R

closure,

• Lk− 1
2 ,R×R

closure,

• Lk,R closure,

• t-branch split closure etc.

The generalizations for the Lk− 1
2 ,R×R

closure, Lk,R closure and t-branch split closure were not considered in
this text. For the other two closures in this list (essential Lk− 1

2 ,Q
closure and Lk− 1

2 ,Q×R
closure), we gave a

glimpse in section 12.4.3:

• In Theorem 496, we showed an upper bound for

h∗essL
k− 1

2
,Q

(A,G, b) .

• In Theorem 497, we showed that

h∗L
k− 1

2
,Q×R

(A,G, b) = h∗L
k− 1

2
,Q×Q

(A,G, b)

if A, G and b are rational. Whether this equality also holds for arbitrary A, G and b is an open research
question.

But we believe that a lot more results can be shown about h∗essL
k− 1

2
,Q

(A,G, b) and h∗L
k− 1

2
,Q×R

(A,G, b).
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