
An identification of groups of Lie type
in parabolic characteristic 2

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der Naturwissenschaftlichen Fakultät II
Chemie, Physik und Mathematik

der Martin-Luther-Universität
Halle-Wittenberg,

vorgelegt

von Herrn Mathias Grimm,

geb. am 06.07.1979 in Stuttgart

Gutachter:
Prof. Dr. G. Stroth (Martin-Luther-Universität Halle-Wittenberg)
Prof. Dr. C. Parker (University of Birmingham)

Tag der Verteidigung: 10.01.2019





Contents

Abstract iii

Acknowledgement v

1 Introduction 1

2 Preliminaries 7

2.1 Notation and general group theoretical results . . . . . . . . . . . . . . . . . . 7

2.2 The simple groups of Lie type . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Other preliminary group theoretical results . . . . . . . . . . . . . . . . . . . 26

3 Preparatory results and centralizers of 2-central involutions 37

4 Some families of classical and exceptional groups 45

5 Centralizers of involutions in Q 63

6 The remaining families of exceptional groups of Lie type 79

7 The orthogonal groups in even dimension 85

Bibliography 99

Appendix 105

i



CONTENTS

ii



Abstract

Let G be a K2-group of parabolic characteristic 2 and H a subgroup of G such that F ∗(H)

is a simple group of Lie type in characteristic 2. Assume further that for a Sylow 2-subgroup
S of H, which is also a Sylow 2-subgroup of G, the following holds: For every non-trivial
normal subgroup X of S, it is NG(X) contained in H.

Then G equals H or G′ is isomorphic to the alternating group A9. So for p = 2 this
thesis provides a generalization of Mohammad Reza Salarian’s and Gernot Stroth’s result
“Existence of strongly p-embedded subgroups”, see [SaSt], where the property of G being of
local characteristic p is assumed.
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Chapter 1

Introduction

In this thesis the result of M. Salarian and G. Stroth from their article “Existence of strongly p-
embedded subgroups” [SaSt], which is formulated under the assumption of local characteristic
p, is generalized to parabolic characteristic in case of p = 2.
Therefore, the present paper is part of the so-called MSS-project. The MSS-project, named
after Ulrich Meierfrankenfeld, Bernd Stellmacher and Gernot Stroth, can be seen as a revision
project to the classification of the finite simple groups (CFSG).

A finite group is called simple if it has exactly two normal subgroups. Hence the trivial
group 〈1〉 is not called simple and the only normal subgroups of a simple group are the trivial
subgroup and the whole group itself. Given a finite group G 6= 〈1〉, for a maximal normal
subgroup U1 in G the factor group G/U1 is simple. If U1 is not trivial, a maximal normal
subgroup U2 of U1 can be found and so on. Using this, for every non-trivial finite group G
there is a number n ∈ N and a series of subnormal groups G = U0�U1�· · ·�Un−1�Un = 〈1〉
such that all factors Uk−1/Uk with k ∈ {1, . . . , n} are finite simple groups. These factors are
called composition factors of G and the series is called a composition series of G. The Jordan-
Hölder Theorem states, that for a given finite group G the length of every composition series is
uniquely determined. Furthermore, the composition factors are, up to isomorphisms, uniquely
determined, including their multiplicity in the above composition series. The converse of the
Jordan-Hölder Theorem is not true, as there are non-isomorphic groups having isomorphic
composition factors with the same multiplicities. Nevertheless, the classification of finite
simple groups is essential to understand the structure of finite groups.

The task of classifying all finite simple groups (CFSG) is deemed to be completed since the
end of the 20th century. The result of this classification says that a finite simple group is
either a cyclic group of prime order, an alternating group An for n ≥ 5, a simple group of
Lie type or one of 26 so-called sporadic groups. But due to the length and complexity of the
original proof, which consists of a large number of different books and articles, there is the
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1. INTRODUCTION

ambition to publish the proof in a unified form, thereby closing possibly existing gaps and
correcting mistakes. The MSS-project is a revision of parts of the CFSG and this thesis is
part of it.

For further argumentation the following definitions are needed: Let p be a prime and G a
finite group whose order is divisible by p. Then Op(G) denotes the largest normal p-subgroup
in G. The normalizer M := NG(P ) of a non-trivial p-subgroup P of G is called a p-local
subgroup. In particular, P is contained in Op(M). Furthermore, the elements in the center
of a Sylow p-subgroup are called p-central.

Definition 1.1: Let p be a prime and G a finite group whose order is divisible by p.

(a) If U is isomorphic to a factor group of a subgroup of G, U is called a section of G.
Hence composition factors are examples of simple sections.

(b) The group G is of characteristic p if CG(Op(G)) ≤ Op(G) or if, equivalently to this,
F ∗(G) = Op(G) holds.

(c) If all p-local subgroups are of characteristic p, G is of local characteristic p.

(d) Let U be a subgroup of G. If U contains a Sylow p-subgroup of G, then U is called a
parabolic subgroup.

(e) Let S be a Sylow p-subgroup of G. The group G is of parabolic characteristic p

if all p-local subgroups containing S, i.e. all p-local and parabolic subgroups, are of
characteristic p.

(f) The group G is called a Kp-group if every simple section of every p-local subgroup of G
is a known finite simple group, that means cyclic of prime order, an alternating group,
a simple group of Lie type or a sporadic group.

Every groupG of characteristic p is of local characteristic p, which impliesG being of parabolic
characteristic p. The first implication is quite elementary and can be shown using Thompson’s
A × B-Lemma, see for example (31.16) in [Asc1]. The second implication is obvious from
the above definition. Typical examples for groups of local characteristic p are the groups of
Lie type over a field of characteristic p, see 3.1.4 in [GLS3]. But also some of the sporadic
groups are of local characteristic p for a certain prime; for example J4, M24 and Th are of
local characteristic 2, see for example page 2 in [MSS1].

The prime 2 plays a key role in the proof of the classification of the finite simple groups:
By the famous Odd Order Theorem of Walter Feit and John Thompson [FeTh], published in
1963, every non-abelian finite simple group contains an involution, i.e. an element of order
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1. INTRODUCTION

2. Therefore, every non-abelian finite simple group contains a 2-local subgroup, since the
centralizer of an involution is a 2-local subgroup. Besides that, a result of Richard Brauer
and Kenneth Fowler [BrFo] from 1955 shows that there are only finitely many simple groups
such that the centralizer of an involution is isomorphic to a given finite group. This led to
the idea of classifying the finite simple groups by the centralizers of their involutions.

To do so, two cases are considered: A simple group G can be of local characteristic 2 or not.
In the latter case, the original proof of the CFSG contains an effortful but reliable strategy
to classify these groups: Either the 2-rank of the groups is small enough to determine the
group effectively or there exists an involution whose centralizer has a known simple group as
a component, which also leads to an identification of the simple group.
In the case of G being of local characteristic 2, there is no standard procedure, the situation
is more complicated. The original proof of the CFSG deals with these groups by finding an
odd prime in order to identify the groups by centralizers of prime elements of the suitably
chosen odd prime.

At this point the MSS-project steps in with the aim, to understand the p-local structure of
finite simple groups of local characteristic p and, in particular, classifying the simple groups
of local characteristic 2. For this purpose the property of local characteristic 2 is used to
treat these groups uniformly. To clarify the intention of this thesis, a short overview over
the strategy of the MSS-project is given, see [MSS1] for a more detailed description of the
MSS-project:

Let p be a prime and let G be a non-abelian finite simple group of local characteristic p. As
the generic example of a non-abelian finite simple group of local characteristic p is a group
of Lie type over a field of characteristic p, the aim is to show that G is isomorphic to such a
simple group of Lie type and to classify the occurring exceptions.
To do so, the structure of some of the maximal p-local subgroups which contain a fixed Sylow
p-subgroup is investigated. A subgroup H, which is generated by two of these maximal p-
local and parabolic subgroups of G, is constructed. This subgroup itself is not contained in
a p-local subgroup. By construction of H, the prime p does not divide the index |G : H|, see
[PPSS]. It can be deduced, using a result of U. Meierfrankenfeld, G. Stroth and R. Weiss
[MSW], that in the typical case H is a group of automorphisms of a group of Lie type over
a field of characteristic p. So one can assume that F ∗(H) is a group of Lie type over a field
of characteristic p.

The aim is to show that H equals G and if not, to determine the exceptions. To do so, the
situation is restricted to the cases where the Lie rank of F ∗(H) is at least 2. In case of p = 2,
this provides an identification of the simple groups of local characteristic 2 with a finite group
of Lie type over a field of even characteristic, compare [SaSt].

In the MSS-project the concept of a so-called large subgroup is frequently used. So we define:
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1. INTRODUCTION

Definition 1.2: Let p be a prime and G a finite group. A p-subgroup Q of G is called a
large subgroup of G if the following conditions hold:

• CG(Q) ≤ Q and

• for all 1 6= U ≤ CG(Q) it is NG(U) ≤ NG(Q).

A large subgroup Q of G is therefore large in the sense that the normalizer NG(Q) contains
the normalizer of every non-trivial subgroup of the center of Q. In particular, NG(Q) is a
parabolic and p-local subgroup of G. Furthermore, by Lemma 1.13 in [MSS2], the existence
of a large p-subgroup in G implies G being of parabolic characteristic p.

If Q is a large p-subgroup in G, then CG(Op(NG(Q))) ≤ CG(Q) ≤ Q ≤ Op(NG(Q)) and for
each subgroup 1 6= U ≤ CG(Op(NG(Q))) also NG(U) ≤ NG(Q) ≤ NG(Op(NG(Q))) holds.
Hence Op(NG(Q)) is also a large p-subgroup in G.
So, without loss of generality, we may assume in the following for any occurring large p-
subgroup Q of G that Q = Op(NG(Q)) holds.

The property for a group to be of parabolic characteristic p is weaker than being of local
characteristic p and the latter one is often harder to prove. In addition, every simple group,
which is not of parabolic characteristic 2, contains a 2-central involution whose centralizer is
not of characteristic 2. This is a quite limiting property. These arguments justify the ambition
to generalize the assumption of G being of local characteristic p to parabolic characteristic p.

By a result of C. Parker, G. Pientka, A. Seidel and G. Stroth, which is submitted for publi-
cation, the following statements hold for p = 2, see Main Theorem 1 in [PPSS]:

Theorem 1.3 ([PPSS]): Let G be a finite group, S a Sylow 2-subgroup of G and let H be
a subgroup of G with S ≤ H. Additionally, let the following three conditions hold:

• Let F ∗(H) be a group of Lie type in characteristic 2 and with Lie rank at least 2.
Further assume H = NG(F ∗(H));

• it is G a K2-group;

• it is G of parabolic characteristic 2.

Then either NG(E) ≤ H holds for all non-trivial, normal subgroups E�S or (F ∗(H), F ∗(G))

is one of the following pairs:

(U4(2), L4(3)), (L4(2), A10), (Sp4(2)′,Mat(11)),

(L3(4),Mat(23)), (G2(2)′, G2(3)) or (PΩ+
8 (2), PΩ+

8 (3)).
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1. INTRODUCTION

Considering this result, in order to prove G = H, we work in this thesis under the following
hypothesis:

Hypothesis 1.4: (a) Let G be a finite K2-group and let H be a subgroup of G such that
2 - |G : H| holds. Further let F ∗(H) be a simple group of Lie type over a field of
characteristic 2. So H is a group of automorphisms of a simple group of Lie type.

(b) Let G be a group of parabolic characteristic 2.

(c) Let S be a Sylow 2-subgroup of H. For every subgroup 〈1〉 6= Y � S, we assume
NG(Y ) ≤ H.

Under the stronger assumption of G being a group of local characteristic 2, instead of
parabolic characteristic 2, the result G = H follows by the article “Existence of strongly
p-embedded subgroups” of M. Salarian and G. Stroth [SaSt]. The two authors also show
G = H for an arbitrary prime p, whereas for odd primes, G is supposed to be a K2-group
and a Kp-group. Additionally, M. Salarian and G. Stroth require F ∗(H) to be of Lie rank at
least 2 for p = 2 and at least 3 for p being odd.

To generalize their result in case p = 2 from G being of local characteristic to parabolic
characteristic is the aim of this thesis. Hence we prove the following result:

Theorem 1.5: Suppose that Hypothesis 1.4 holds.

Then G = H or F ∗(G) ∼= A9 follows.

In the following chapter some preliminary group theoretical results, in particular, some facts
considering simple groups of Lie type, are collected.
In Chapter 3 some technical and helpful results are provided which are needed in the following.
In particular, we show that for each 2-central involution s, the centralizer CG(s) is contained
in H and that F ∗(G) must be a simple group.
Using this, we deduce in the following chapters that H ∩F ∗(G) controls the F ∗(G)-fusion of
such a 2-central involution to obtain with a result due to D. Holt, see Lemma 2.16 in [PaSt2],
that either G equals H or that F ∗(H) is isomorphic to the alternating group A8 as a point
stabilizer in F ∗(G) ∼= A9.
In Chapter 4 this is done for F ∗(H) being isomorphic to a linear, symplectic or unitary simple
group and also for F ∗(H) being isomorphic to one of the simple exceptional groups of Lie
type F4(2f ), 2

F4(2f )′ and G2(2f )′.
For F ∗(H) being isomorphic either to a simple orthogonal group in even dimension or to
E6(2f ), 2

E6(2f ), E7(2f ), E8(2f ) or to 3
D4(2f ), we consider a large 2-subgroup Q. We prove

in Chapter 5 that CG(t) is contained in H for every involution t ∈ Q. This can be used
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1. INTRODUCTION

to show again that H ∩ F ∗(G) controls the F ∗(G)-fusion of a 2-central involution. Then,
again by using Holt’s result, we have that G equals H. If F ∗(H) is isomorphic to E6(2f ),
2
E6(2f ), E7(2f ), E8(2f ) or to 3

D4(2f ), this is done in Chapter 6, while Chapter 7 deals with
the concluding treatment of F ∗(H) ∼= Ω±2n(2f ).
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Chapter 2

Preliminaries

The notation in this thesis is mostly standard, nevertheless, the definitions of frequently used
terms are given in this chapter. Also some basic results, which are needed for the argumen-
tation, are stated here, whereas elementary and well-known results, as for example the Three
Subgroups Lemma or Frattini’s argument, are not listed, but used without reference. In
this chapter a brief introduction to the topic of simple groups of Lie type is given, following
[GLS3] in notation and argumentation.

2.1 Notation and general group theoretical results

Notation 2.1: Let G be a finite group. The following terminology is used in this text:

• The notation 1, or more explicit 1G, is used for the identity element as well as for the
trivial subgroup 〈1〉 of G. The set G \ {1} is denoted by G#.

• The order of G is denoted by |G| and for an element g ∈ G, the order of g is written as
o(g).

• With gcd(m,n), or in unambiguous cases just (m,n), we denote the greatest common
divisor of two integers m and n.

• For g, h ∈ G and subsets A,B ⊆ G, we define gh := h−1gh and
AB := {ab | a ∈ A, b ∈ B}. If, for elements g, h ∈ G, there is an element x ∈ H ≤ G

with gx = h, the elements g and h are called conjugate or fused in H. This is denoted
by g ∼H h.

• For U ≤ H ≤ G, it is said that H controls fusion in U with respect to G, or shorter,
that H controls the G-fusion in U , whenever two elements g, h ∈ U which are fused in
G are also fused in H. This is when uG ∩ U = uH holds for all u ∈ U .

7



2. PRELIMINARIES

• Let U ≤ H ≤ G. Then U is called weakly closed in H with respect to G if Ug ≤ H

implies Ug = U for all g ∈ G.

• With NG(U) we denote the normalizer, with CG(U) the centralizer of a subgroup U

of G. It is Z(G) the center of G. As usual, it is Aut(G) the full automorphism group
of G, Inn(G) the group of inner automorphisms and Out(G) = Aut(G)/ Inn(G) the
outer automorphism group of G. For H ≤ G, the group AutG(H) consists of the
automorphisms of H which are induced by elements of G. For a simple group L, we
identify L and Inn(L), so we can write, by abuse of notation, L ≤ Aut(L).

• If A and B are subgroups of G, then A ∗ B is the central product of two subgroups A
and B of G, and A×B is the direct product of these groups. With A : B we denote a
split extension, which is a semidirect product of a normal subgroup A and a subgroup
B, whereas A•B denotes a non-split extension with normal subgroup A and factor
group B. If the extension is unspecified, it is merely denoted by AB or A · B. If the
underlying operations are unambiguous, the wreath product of the group A by the
group B is denoted by A oB.

• Let P be the set of prime numbers. For π ⊆ P the set π′ is defined as P\π. Furthermore,
π(G) is the set of prime numbers which the order of G is divisible by. The group G is
a π-group if and only if π(G) ⊆ π. If G is a {p}-group, we say that G is a p-group.

• With |G|p we denote the greatest power of a prime p which divides |G|. The p-rank of
G, which is defined as the logarithm (to base p) of the order of the largest elementary
abelian p-subgroup of G, is denoted by mp(G).

• If p is a prime, Sylp(G) is the set of all Sylow p-subgroups of G.

• For π ⊆ P the largest normal π-subgroup contained in G is denoted by Oπ(G), and
Oπ(G) is the smallest normal subgroup in G for which G/Oπ(G) is a π-group. It is
Oπ(G) called π-radical and Oπ(G) is called π-residue.
In particular, the 2′-radical O2′(G) is the largest normal subgroup of odd order and
it is often referred to as O(G). For a prime number p, Op(G) is the largest normal
p-subgroup of G and Op(G) is the smallest normal subgroup of G such that G/Op(G)

is a p-group.

• Let p be a prime. The group G is called p-closed if |Sylp(G)| = 1. In this case, Op(G)

is a Sylow p-subgroup of G.

• The commutator [a, b] of elements a, b ∈ G is defined as a−1b−1ab. The commutator
subgroup 〈[a, b] | a, b ∈ G〉 is denoted by G′. For subsets A, B, C ⊆ G, we define [A,B]

as 〈[a, b] | a ∈ A, b ∈ B〉 and [A,B,C] := [[A,B], C].

• A non-trivial group G is said to be perfect if and only if G′ = G holds.

8



2. PRELIMINARIES

• A perfect group G whose factor group G/Z(G) is simple is called quasisimple. The
quasisimple subnormal subgroups of G are called components and E(G) denotes the
central product of the components of G.

• A finite group is called semisimple if and only if it is the central product of quasisimple
groups.

• The Frattini subgroup of G is denoted by Φ(G), F (G) is the Fitting subgroup and
F ∗(G) = F (G) ∗ E(G) is the generalized Fitting subgroup of G.

• The characteristic subgroup Z∗(G) of G is defined to be the full preimage of Z(G/O(G))

in G.

• Let P be a p-subgroup of G for a prime number p. Then J(P ) denotes the Thompson
subgroup of P . It is J(P ) generated by all elementary abelian subgroups of P which
are of maximal p-rank.

• The subgroup of a p-group P which is generated by the elements of P of order p is
denoted by Ω1(P ), or just by Ω(P ).

• We say a group U is involved in G if U is a section of G, so if U is isomorphic to a
factor group of a subgroup of G. And we write U . G if U is isomorphic to a subgroup
of G and say that U can be embedded into G.

• The symmetric group on n letters is denoted by Sn and the corresponding alternating
group by An. A cyclic group of order n is denoted by Zn and an elementary abelian
p-group of order pn by Epn . Additionally, D2n is a dihedral group of order 2n and Q2n

is a quaternion group of order 2n. We also use the ATLAS-notation from [CoCu]; so
for example, 2k+n denotes a special group of order 2k+n with elementary abelian center
of order 2k. It is in every case unambiguous, whether a group or an integer is meant
by this notation.

Definition 2.2: Let V be a vector space of finite dimension over a field k. An element
t ∈ GL(V ) is called a transvection if and only if [V, t] ⊆ CV (t) holds and CV (t) is a
subspace of V of codimension 1.

The famous Odd Order Theorem of Walter Feit and John G. Thompson is stated here and
will be used in the following without being explicitly mentioned.

Theorem 2.3: All finite groups of odd order are solvable.

Proof: See [FeTh]. 2

A few more well-known results are stated in the following lemmas. Afterwards some defini-
tions and statements concerning finite groups of Lie type are presented.

9



2. PRELIMINARIES

Lemma 2.4 (Coprime action): If a finite group A acts coprimely on a finite group G, the
following statements hold:

(a) Let N be an A-invariant normal subgroup of G. Then CG/N (A) = CG(A)N/N . In
particular, if A centralizes N and G/N , then its action on G is also trivial.

(b) G = CG(A)[G,A].

(c) [G,A,A] = [G,A].

(d) If G is abelian, then G = CG(A)× [G,A] holds.

(e) If A is abelian but not cyclic, then it is G = 〈CG(a) | a ∈ A#〉.

Proof: See chapters 8.2–8.4 in [KuSt]. 2

Lemma 2.5 (A × B-Lemma): Let H = A× B be a direct product of a p-group A and a
p′-group B. Let G be a p-group such that H acts on G with CG(A) ≤ CG(B). Then B acts
trivially on G.

Proof: See 8.2.8 in [KuSt]. 2

Lemma 2.6: Let Sn be the symmetric and An the alternating group, both acting on the set
Ω = {1, 2, . . . , n}. Then the following holds:

(a) For n ≥ 3, An is (n− 2)-transitive on Ω.

(b) Let G ≤ Sn be primitive on Ω and let G contain a transposition, i.e. a 2-cycle. Then
G = Sn holds.

(c) Let G ≤ An be primitive on Ω and let G contain a 3-cycle. Then G = An holds.

(d) Let G ≤ An be primitive on Ω such that StabG(∆) is transitive on Ω \∆ for a subset
∆ of Ω with n

2 < |∆| < n. Then G = An follows.

Proof: See 9.7, 13.3 and 13.5 in [Wiel]. 2

The following two lemmas provide arguments concerning the fusion of involutions. The first
lemma is called Thompson’s Transfer Lemma and the second deals with control of fusion in
the center of the Thompson subgroup.

10



2. PRELIMINARIES

Lemma 2.7 (Thompson Transfer): Let G be a finite group, S a Sylow 2-subgroup of G
and assume T ≤ S with |S : T | = 2. If there is an involution x ∈ S \ T with xG ∩ T = ∅,
then G contains a subgroup of index 2. In particular, G has a normal subgroup of index 2.

Proof: See 12.1.1 in [KuSt]. 2

Lemma 2.8: Let G be a finite group and S a Sylow 2-subgroup of G. Then Z(J(S)) is a
characteristic subgroup of S and NG(J(S)) controls the G-fusion in Z(J(S)).

Proof: The Thompson subgroup J(S), which by definition is generated by the elementary
abelian subgroups of maximal rank in S, is characteristic in S. So Z(J(S)) is a characteristic
subgroup of S and Z(J(S)) is the intersection of the elementary abelian subgroups in S,
which are of maximal 2-rank.
Let t1 and t2 be elements of Z(J(S)), for which there exists an element g ∈ G with tg1 = t2.
Then J(S)g ≤ CG(t1)g = CG(tg1) = CG(t2) and J(S) ≤ CG(t2) hold.
Let P1 and P2 be Sylow 2-subgroups of CG(t2) such that we have J(S)g�P1 and J(S)�P2.
Then there is an element g̃ ∈ CG(t2) such that J(S)gg̃ = J(S) holds. Hence gg̃ ∈ NG(J(S))

and tgg̃1 = tg̃2 = t2 follow. So t1 and t2 are conjugate in NG(J(S)). 2

The following three results are needed later on, but are presented here, as the statements are
well-known.

Lemma 2.9: Let G be a finite group with a subgroup U and let p be a prime.
If P ∈ Sylp(U) and NG(P ) ≤ U hold, then P is a Sylow p-subgroup of G.

Proof: Let Q be a Sylow p-subgroup of NG(P ). Then PQ is a p-group, which is contained
in Q, so P ≤ Q holds. Assume now P /∈ Sylp(G). Then there is a p-subgroup S with
P < NS(P ) ≤ NG(P ). Together with NG(P ) ≤ U , this implies P /∈ Sylp(U), which is a
contradiction. So P has to be a Sylow p-subgroup of G. 2

Remark 2.10: Let G be a non-abelian quasisimple group. Then Aut(G) . Aut(G/Z(G))

holds by the following: Every element α ∈ Aut(G) normalizes Z(G) and induces an automor-
phism on G/Z(G). Assume, that there is an element α ∈ Aut(G) such that α acts trivially on
G/Z(G). Then [G,α] ≤ Z(G) implies [G,α,G] = 1 and, as G is perfect, the Three Subgroups
Lemma implies [G,α] = 1. Hence Aut(G) can be embedded into Aut(G/Z(G)).

Lemma 2.11: Let q = 2f for f ∈ N and 2 ≤ n ∈ N. If (q, n) 6= (2, 6), there is a prime
number which divides qn−1 and does not divide qk−1 for every integer 1 ≤ k < n. A prime
number with this property is called a Zsigmondy prime.

Proof: See [Zsig]. 2
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2. PRELIMINARIES

2.2 The simple groups of Lie type

In this section a short introduction to the theory of finite groups of Lie type is given. In
particular, simple groups of Lie types over a field of characteristic p are defined and some
properties and results are listed which are essential for the proof of the main theorem.

There are 16 families of finite groups of Lie type, each family consisting of infinitely many
groups. The so-called classical groups, which are the linear, symplectic, unitary and orthog-
onal groups, cover 6 of these families. They can be interpreted as a section of the group
of isometries of a finitely dimensional vector space preserving a suited bilinear or quadratic
form, see for example [Wils].

In the following paragraphs a uniform approach to the simple groups of Lie type is given in
terms of linear algebraic groups. This approach covers also the exceptional groups of Lie type
and allows a short overview of Dynkin diagrams, root groups, the Lie rank and other terms
and connections between them. The argumentation in this section follows mostly [GLS3].

Let p be a prime, F := GF (p) the field of p elements and F := GF (p) an algebraic closure of
F . Furthermore let K be a linear algebraic group over F which is defined to be an affine
algebraic variety and additionally a topological group with respect to the Zariski topology.
A linear algebraic group K can be seen as a, with respect to the Zariski topology, closed
subgroup of the linear algebraic group GLn(F ) for n ∈ N, where GLn(F ) denotes the group
of invertible n× n matrices such that all entries are from F .

A morphism of algebraic groups is a group homomorphism which is additionally a morphism
of algebraic varieties. According to this, an isomorphism of algebraic groups is a group
isomorphism such that the map itself and its inverse are morphisms of algebraic groups. The
algebraic groups and their morphisms build a category.

A connected algebraic group K is called simple if and only if [K,K] 6= 1 and if all proper,
closed normal subgroups are finite and central. These definitions and facts are due to 1.1.6,
1.5.1, 1.7.1 and 1.7.2 in [GLS3]. From now on, K is assumed to be a simple algebraic group.

To classify the simple algebraic groups, the terminology of root systems is used. Let Rn

denote the n-dimensional Euclidean vector space equipped with a positive definite scalar
product (·, ·). For v, w ∈ Rn such that v 6= 0Rn , the mapping rv : Rn → Rn is defined by

rv(w) = w − 2
(v, w)

(v, v)
v.

Hence rv describes the reflection that fixes the hyperplane 〈v〉⊥.

Definition 2.12 ([GLS3], 1.8.1): A root system Σ is a finite set of elements of the Eu-
clidean space Rn with the following properties:

12
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• 0Rn /∈ Σ,

• Σ is a generating set for Rn,

• rv(Σ) ⊆ Σ for all v ∈ Σ,

• 2 · (v,w)
(v,v) ∈ Z for all v, w ∈ Σ and

• if for λ ∈ R and w ∈ Σ also λ · w ∈ Σ holds, necessarily λ ∈ {1,−1}.

The elements of a root system Σ are called roots. Let Σ = Σ1 ∪ . . . ∪ Σl be a partition such
that vi ⊥ vj for all vi ∈ Σi, vj ∈ Σj with i 6= j. Such a partition is called an orthogonal
decomposition of Σ. If Σ does not have any non-trivial, which means l ≥ 2, orthogonal
decomposition, Σ is called an irreducible root system; otherwise it is called reducible,
compare 1.8.4 in [GLS3].

For every root system Σ, the group W (Σ) = 〈rα | α ∈ Σ〉, which is called Weyl group, is
finite. Assume a subset Π = {α1, . . . , αn} of Σ which is a R-basis of Rn with the following

property: Every element of Σ is either contained in the set Σ+ = {
n∑
i=1

λiαi | ∀i ∈ {1, . . . , n} :

0 ≤ λi ∈ R} ∩Σ or in Σ− = {
n∑
i=1

λiαi | ∀i ∈ {1, . . . , n} : 0 ≥ λi ∈ R} ∩Σ. Then the set Σ+ is

called the set of positive roots, and accordingly, Σ− consists of the negative roots. The basis
Π is called a fundamental system. For every root system Σ there is a fundamental system
Π and W (Σ) = 〈rα | α ∈ Π〉 holds. The dimension of the vector space 〈Σ〉R, which coincides
with the cardinality of the basis Π, is called the rank of the root system Σ. This information
about root systems can be found in Section 1.8 in [GLS3].

Definition 2.13 ([GLS3], 1.8.6): The Dynkin diagram of a root system Σ with fundamen-
tal system Π is defined as a diagram with nodes labeled by the elements of Π. Two nodes v
and w are joined by an edge of strength 4 · cos2(θ) = 2 · (v,w)

(v,v) · 2 ·
(w,v)
(w,w) , where θ is the obtuse

angle between the vectors v and w. The strength of such an edge can be 0, 1, 2 or 3, where
an edge of strength 0 between two nodes means that these nodes are not directly connected
in the diagram. If two nodes are not of equal length as vectors in Rn and not perpendicular,
the edge between them is orientated, which is denoted by > aiming in direction of the root
of smaller length. Two Dynkin diagrams are isomorphic if there is a bijection between the
vertices which preserves orientation and strength of all edges.

Two root systems are isomorphic if and only if their Dynkin diagrams are isomorphic, see
1.8.7 in [GLS3]. Thus the classification of all irreducible root systems corresponds to a list
of the corresponding Dynkin diagrams. The Dynkin diagram of an irreducible root system
is connected and denoted by An, Bn, Cn, Dn, E6, E7, E8, F4, G2 for arbitrary n ∈ N, where
the index gives the number of nodes in the Dynkin diagram and therefore the rank of the

13
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root system. Considering A1 = B1 = C1 = D1, B2 = C2, A3 = D3 and D2 = A1 × A1,
the following table gives a complete list of all Dynkin diagrams of irreducible root systems,
labeling also the fundamental root system Π = {α1, . . . , αn}, compare Table 1.8 in [GLS3].

Table 2.1: Dynkin diagrams of irreducible root systems

An (n ≥ 1)
α1 α2 αn−1 αn

Bn (n ≥ 2)
α1 α2 αn−1 αn

Cn (n ≥ 3)
α1 α2 αn−1 αn

Dn (n ≥ 4)

α1 α2 αn−2
αn−1

αn

E6 α1 α2 α3

α4

α5 α6

E7 α1 α2 α3

α4

α5 α6 α7

E8 α1 α2 α3

α4

α5 α6 α7 α8

F4

α1 α2 α3 α4

G2

α1 α2

It will be always obvious in this thesis, whether An denotes a Dynkin diagram with n nodes
or the alternating group on n letters. The same holds for Dynkin diagrams of type Dn and
a dihedral group with the same notation.

14



2. PRELIMINARIES

A torus of an algebraic groupK is a closed subgroup ofK which is isomorphic as an algebraic
group to a direct product of finitely many copies of the algebraic group GL1(F ). The group
GL1(F ) is identified with the multiplicative group of the field F . A torus in K which is
maximal with respect to inclusion is called a maximal torus in K, see 1.4.1 in [GLS3].
Let T be such a maximal torus in K. A so-called T -root subgroup X is a closed and T -
invariant algebraic subgroup of K which is isomorphic as an algebraic group to the additive
group F+ of the field F . The parametrization map F+ → X with t 7→ x(t) is an isomorphism
of algebraic groups. So by 1.3.4 in [GLS3], one gets

X = {x(t) | t ∈ F} .

A morphism of algebraic groups α : T → GL1(F ) is called a character. For any T -root
subgroup X of K, a character α such that x(t)s = x(sαt) holds for any parametrization x(t)

of X and for all t ∈ F and s ∈ T is called a T -root in K. The set of T -roots in K is denoted
by ΣK(T ), following 1.4.4 and 1.9.1–1.9.3 in [GLS3]. The set of T -roots ΣK(T ) is a root
system whose structure does not depend on the choice of T . There is a bijection between
ΣK(T ) and the set of T -root subgroups of K. Actually, ΣK(T ) is uniquely determined by
K alone and therefore ΣK(T ) is called the root system of K and it is denoted by just Σ,
according to 1.9.5 and 1.9.6 in [GLS3].
Also CK(T ) = T holds and NK(T )/T is finite and is isomorphic to the Weyl group of the
root system Σ of K by 1.9.5–1.9.6 in [GLS3].

Lemma 2.14: (a) Let K be a simple algebraic group. Then the root system Σ of K is
uniquely determined and it is irreducible.

(b) LetK be a simple algebraic group with a maximal torus T and root system Σ = ΣK(T ).
For each T -root α ∈ Σ let Xα be the uniquely determined T -root subgroup. Then

K = 〈Xα | α ∈ Σ〉 .

(c) Let Σ be an irreducible root system. Then there are, up to isomorphisms of algebraic
groups, two uniquely determined simple algebraic groups Ku and Ka, both sharing Σ

as corresponding root system. And for every simple algebraic groupK with root system
Σ, there are surjective morphisms of algebraic groups α : Ku → K and β : K → Ka

with finite kernels. It is Ku called the universal version and Ka is called the adjoint
version of K. Furthermore, Z(Ka) = 1 holds.

Proof: See 1.10.1–1.10.5 in [GLS3]. 2

For a simple algebraic group K, the corresponding root system is irreducible and so the
Dynkin diagram is listed in Table 2.1.
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The group structure ofK can be determined using the structure of the root subgroups and the
so-called Chevalley relations, which give relations between root subgroups, compare 1.12.1–
1.12.4 in [GLS3]. These relations are not explicitly needed here and hence are omitted.
Using these results and definitions about algebraic groups, it is possible to define finite groups
of Lie type as the fixed points of so-called Steinberg endomorphisms:

Definition 2.15 ([GLS3], 1.15.1,2.2.1): Let K be a linear algebraic group over GF (p).

(a) A Steinberg endomorphism σ : K → K is an epimorphism of algebraic groups such
that the group of fixed points CK(σ) is finite.

(b) If K is simple and σ : K → K is a Steinberg endomorphism, the group

K := Op
′
(CK(σ))

is defined to be a finite group of Lie type over a field of characteristic p.
The set of all groups of Lie type over a field of characteristic p is denoted by Lie(p).

Definition 2.16 ([GLS3],1.15.2,1.15.4): Let K be a simple algebraic group over the field
F = GF (p), T a maximal torus and Σ the T -root system of K with fundamental system Π

and q = pa for a ≥ 1.

(a) Let a > 1. Then ϕq : K → K is a so-called field automorphism of K which is defined
by

Xα
ϕq

= {xα(t) | t ∈ F}ϕq = {xα(tq) | t ∈ F}

for each T -root subgroup Xα, using K = 〈Xα | α ∈ Σ〉 by Lemma 2.14.
For a > 1, it is ϕq a Steinberg endomorphism.

(b) If Σ equals An for n ≥ 2 or Dn for n ≥ 4 or E6, there is a non-trivial symmetry of
the Dynkin diagram which induces an isometry % on 〈Σ〉R with Π% = Π. This isometry
induces a so-called graph-automorphism γ% of the algebraic group K which is uniquely
determined by

xα(t) 7→ xα%(t).

The order of % is 2, except for D4 in which case % can also be of order 3. It is CK(γ%)

a simple algebraic group.

(c) For p = 2 and Σ ∈ {B2, F4} or for p = 3 in case of Σ = G2 there is an angle-preserving
bijection % : Σ → Σ which interchanges short and long roots and with Π% = Π. The
bijection % induces an automorphism ψ of K which is also called a graph automorphism.
This automorphism ψ is uniquely determined by

xα(t)ψ :=

xα%(t) if α is a long root,

xα%(t
p) if α is a short root.

16



2. PRELIMINARIES

Additionally, ψ is a Steinberg endomorphism of K with ψ2 = ϕp.

Definition 2.17 ([GLS3], 2.2.1–2.2.8): Let K be a simple algebraic group, σ a Steinberg
endomorphism, T a σ-invariant maximal torus and Σ the T -root system of K. By conjugation
with an inner automorphism of K, which does not effect the isomorphism type of K :=

Op
′
(CK(σ)), it is possible to bring σ in one of the following forms:

(a) It is σ = ϕq with ϕq as defined in Definition 2.16. In this case, K = Op
′
(CK(σ)) is an

untwisted group of Lie type and denoted by K = Σ(q), i.e. Am(q), Bm(q), Cm(q),
Dm(q), E6(q), E7(q), E8(q), F4(q) or G2(q) for m ≥ 2.

(b) It is σ = γ% ◦ ϕq with ϕq and γ% defined as in Definition 2.16 and it is % of order
d ∈ {2, 3}. In this case, K = Op

′
(CK(σ)) is a so-called Steinberg group and denoted

by K = dΣ(q), i.e. 2Am(q) for m > 1, 2Dm(q) for m ≥ 3, 3D4(q) or 2E6(q).

(c) It is σ = ψ ◦ ϕq with ϕq and ψ defined as in Definition 2.16. Then it is σ = ψ2a+1 for
q = pa.
In this case, K = Op

′
(CK(σ)) is a so-called Suzuki-Ree group, leading to groups

K =
2
B2(22a+1), K =

2
F4(22a+1) and K =

2
G2(32a+1).

Together the Steinberg and Suzuki-Ree groups are the twisted groups of Lie type.

Let K be a simple algebraic group. Different versions of K, compare Lemma 2.14, may lead
to non-isomorphic finite groups of Lie type K. If K is an untwisted group of Lie type or a
Suzuki-Ree group, the isomorphism type of K is uniquely determined by the version of K
together with Σ and the integer q. In case of the Steinberg groups, additionally the integer
d is needed to determine the isomorphism type of K, see 2.2.5 in [GLS3].

There are, up to isomorphisms, two uniquely determined groups of Lie type Ku and Ka,
where Ku comes from the algebraic group Ku and Ka comes from the algebraic group Ka.
Ku is called the universal version and Ka is called the adjoint version of K. For every finite
group of Lie type K there are surjective homomorphisms α : Ku → K and β : K → Ka. The
kernels of these epimorphisms are central. It is K/Z(K) ∼= Ku/Z(Ku) ∼= Ka by 2.2.6 in
[GLS3], and K is a simple group if and only if K ∼= Ka.

Every version of K is a quasisimple group with the following eight exceptions: A1(2), A1(3),
2A2(2), 2B2(2) = Sz(2), B2(2), G2(2), 2F4(2) and 2G2(3). The adjoint version Ka is a simple
group with the same exceptions. The first four exceptions are solvable groups and the other
four are not perfect but have a simple commutator subgroup by 2.2.7 in [GLS3].

Definition 2.18 ([GLS3], 2.2.8): The set of finite simple groups of Lie type consists
of the adjoint versions Ka such that Ka is a simple group, together with the groups B2(2)′,
G2(2)′, 2F4(2)′ and 2G2(3)′.
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The notation K ∼= dΣ(q) does not include information about the version of K. Unless stated
otherwise, in this thesis always the adjoint version is assumed.

The following lemma gives a complete list of isomorphisms between simple groups of Lie type
over a field in characteristic p and between a simple group of Lie type and an alternating
group An.

Lemma 2.19: Let all the listed groups in this Lemma be simple. Then it is

B2(q) ∼= C2(q), D3(q) ∼= A3(q),

2D3(q) ∼= 2A3(q), 2D2(q) ∼= A1(q2)

A1(4) ∼= A1(5) ∼= 2D2(2) ∼= A5, A1(7) ∼= A2(2),

A1(8) ∼= 2G2(3)′, A1(9) ∼= B2(2)′ ∼= C2(2)′ ∼= A6,

2A2(3) ∼= G2(2)′, A3(2) ∼= A8,

2A3(2) ∼= 2D3(2) ∼= B2(3) ∼= C2(3), Bm(2f ) ∼= Cm(2f ) for m, f ∈ N,

and d1Σ1(q1) ∼= d2Σ2(q2) if Σ1
∼= Σ2, d1 = d2 and q1 = q2.

Proof: See Theorem 2.2.10 in [GLS3]. 2

For the classical groups, i.e. the linear, symplectic and orthogonal groups, the following
isomorphisms hold:

Lemma 2.20: Let K be a finite group of Lie type. If dΣ(q) is the adjoint version, then it is

Am(q) ∼= Lm+1(q), 2Am(q) ∼= Um+1(q),

Bm(q) ∼= PΩ2m+1(q), Cm(q) ∼= PSp2m(q),

Dm(q) ∼= PΩ+
2m(q), 2Dm(q) ∼= PΩ−2m(q).

Proof: See chapter 2.7 in [GLS3]. 2

For a group of Lie type which is isomorphic to a classical group the notation of the classical
group is used in this text. And instead of 2

B2(22a+1) in the adjoint version the notation
Sz(22a+1) is used. If q is even, the groups PSp2m(q) and PΩ2m+1(q) are isomorphic by the
above lemmas. Hence they are identified in this thesis to provide a simultaneous treatment.
Also the orthogonal groups PΩ±2m(q) for m ≤ 3 are identified with the isomorphic linear or
unitary group.

Definition 2.21 ([Wils], 2.7.1): A covering group E of a finite group G is a finite group
such that Z(E) ≤ E′ and E/Z(E) ∼= G hold. A maximal covering group E is maximal in
the sense that every covering group is a quotient of E. If G is perfect, then there is, up to
isomorphisms, a unique maximal covering group, which is called universal covering group.
The center of the universal covering group of G is the so-called Schur multiplier of G.
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The structure of the (uniquely determined) Schur multiplier of the simple groups of Lie type
is described in the following lemma:

Lemma 2.22: Let K ∼= dΣ(q)′ be a simple group of Lie type. Then the Schur multiplier is
the direct productMc(K)×Me(K), whereMc(K) is the so-called canonical part andMe(K)

is the exceptional part of the Schur multiplier. The canonical part Mc(K) coincides with the
center Z(Ku) of the universal version of K and the exceptional part is mostly trivial except
for q being a power of 2 or 3. The structure ofMc(K) andMe(K), if not trivial, is as follows:

K Ln(q) Un(q) PΩ2n+1(q), PSp2n(q) PΩ+
2n(q) (n even) PΩ−2n(q) (n even)

Mc(K) Z(n,q−1) Z(n,q+1) Z(2,q−1) E(2,q−1)2 Z(2,q−1)

K PΩ+
2n(q) (n odd) PΩ−2n(q) (n odd) E6(q) 2E6(q) E7(q)

Mc(K) Z(4,q−1) Z(4,q+1) Z(3,q−1) Z(3,q+1) Z(2,q−1)

The exceptional part is trivial, except for the following groups:

K L2(4) L3(2) L3(4) L4(2) U4(2) U6(2) Sp4(2)′ Sp6(2)

Me(K) Z2 Z2 Z4 × Z4 Z2 Z2 Z2 × Z2 Z6 Z2

K Sz(8) PΩ+
8 (2) G2(4) F4(2) 2E6(2) L2(9) U4(3) Ω7(3) G2(3)

Me(K) Z2 × Z2 Z2 × Z2 Z2 Z2 Z2 × Z2 Z3 Z3 × Z3 Z3 Z3

Proof: See 6.1.1–6.1.4 in [GLS3]. 2

Hence for a simple group of Lie type over a field in characteristic 2, which is of main interest
in this thesis, the canonical part of the Schur multiplier is trivial, except for Ln(q), Un(q),
E6(q) and 2E6(q) with q = 2a and a ∈ N.
In particular, instead of PSp2n(q) we denote Sp2n(q) and Ω±2n(q) instead of PΩ±2n(q). The
universal version of Ln(q) is SLn(q) and the universal version of Un(q) is SUn(q).

By Lemma 2.14, the group theoretical structure of simple algebraic groups is determined by
their root subgroups and the Chevalley relations, which are relations between different root
groups.
There is an analogy to these root groups for the finite groups of Lie type, which is summarized
in the following remarks.

Remark 2.23 ([GLS3], 2.3.1–2.3.3,2.3.6, 2.4.1): • Let V := 〈Σ〉R be the Euclidean
space spanned by Σ. Then there is an isometry τ of V as follows: If K is untwisted,
then τ is the identity on V . If K is a Steinberg group with σ = γ% ◦ ϕq, then τ is
the isometry % of V from Definition 2.16. And in case of K being a Suzuki-Ree group,
let τ be the isometry of V , which, up to scalars, extends the bijection % : Σ → Σ from
Definition 2.16. The order of τ is 1, 2 or 3 and the image of any positive root α ∈ Σ+

under τ is denoted by α̃ and is a positive multiple of an element of Σ+. We define

19



2. PRELIMINARIES

Ṽ := CV (τ) and Σ̃ as the orthogonal projection of Σ on Ṽ . It is Σ̃ itself a root system
with fundamental system Π̃ and, in case of an untwisted group K, Σ = Σ̃ holds. On
Σ an equivalence relation ∼ can be defined by α1 ∼ α2 if and only if α̃1 = c · α̃2 for
some c > 0. With α̂ we denote the equivalence class of α and let Σ̂ be the set of
corresponding equivalence classes. Then Σ̂+ and Π̂ are the images of the set of positive
roots Σ+ and of the fundamental system Π in Σ̂.

• The cardinality of Σ̂ is the Lie rank of K. In case of an untwisted group K, the Lie
rank coincides with the rank of the root system Σ as it is defined above, because all
equivalence classes are singletons and Σ̂ can be identified with Σ in this case. In case
of a twisted group of Lie type K, the Lie rank equals the number of orbits of Π under
the underlying symmetry of the Dynkin diagram, as the isometry τ is just an extension
of this symmetry.

• Further, Σα̂ is defined as the subset {β ∈ Σ | α̃ ∼ β̃} of Σ. Then

Xα̂ :=
∏
β∈Σα̂

Xβ ∩K

is called a root group of K. If K is an untwisted group of Lie type, α̂ = α holds for
every root α ∈ Σ. Then the root group Xα̂ is just Xα ∩ K = {xα(t) | t ∈ GF (q)}.
So it is an elementary abelian group of order q. The root groups in twisted groups of
Lie type need not to be abelian, but there are roots α such that α̂ = {α}, in which
case Xα̂ = {xα(t) | t ∈ GF (q)} holds. Root groups of this type are called long root
groups, the others are called short root groups of K.

An algebraic group is solvable if and only if there is a finite series of closed subnormal
subgroups such that all factors are abelian. A closed, connected and solvable subgroup of an
algebraic group K which is maximal with respect to these three properties is called a Borel
subgroup, compare 1.5.1, 1.6.1 in [GLS3].
Let K be a simple algebraic group, σ a Steinberg endomorphism of K and T a σ-invariant
maximal torus. Then there is a σ-invariant Borel subgroup B such that B contains T and it
is B = U : T for a normal subgroup U in B. The group U is called the unipotent radical of
B, see 2.1.6 in [GLS3].

For the rest of this section let K be a simple algebraic group over a field of characteristic p
and let σ be a Steinberg endomorphism of K, as it is described in Definition 2.17. Further
let T be a σ-invariant maximal torus which is contained in a σ-invariant Borel subgroup
B = U : T , and let Σ be the corresponding system of T -roots with fundamental system Π

and positive roots Σ+. And at last, let K = Op
′
(CK(σ)) be the corresponding finite group

of Lie type.
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For the so-called Cartan subgroup T := T ∩K and the subgroups B := B∩K, U := U ∩K
and N := NK(T ) ∩K of K, the following properties hold:

Lemma 2.24: We assume the conditions made in the paragraph above. Then the following
statements hold:

(a) B = U : T and U = Op(B).

(b) K = BNK(T ) with B ∩NK(T ) = T and K = BN with B ∩N = T . The subgroups B
and N build a so-called BN -pair for K.

(c) W := N/T ∼= NK(T )/T and W is called the Weyl group of K.

(d) U =
∏

α∈Σ+

Xα and U =
∏

α̂∈Σ̂+

Xα̂ is a Sylow p-subgroup of K.

(e) It is Z(U) a long root group of K or K is isomorphic to Sp2n(2a), F4(2a) or G2(3a). In
these three exceptional cases, Z(U) is the product of a long and a short root group, which
are interchanged by a graph automorphism if there is a symmetry of the corresponding
Dynkin diagram.

(f) The Cartan subgroup T normalizes every root group Xα̂ of K.

Proof: See 1.9.5, 2.3.4, 2.3.7, 2.3.8 and 3.3.1 in [GLS3]. 2

Remark 2.25: Let K be a finite group of Lie type over a field in characteristic p and
U ∈ Sylp(K). In this thesis a subgroup of K is called parabolic if it contains a Sylow p-
subgroup of K, see Definition 1.1.
Usually in the context of groups of Lie type, a subgroup P of K is defined to be parabolic
if and only if it contains the K-conjugate of a Borel group B. In this thesis, we call such a
group a Lie-parabolic subgroup to avoid any misunderstanding.
By a result of Jacques Tits, every parabolic subgroup Q of K is normalized by the Cartan
subgroup T and QT is a Lie-parabolic subgroup in K, see 2.6.7 in [GLS3].

In the following three lemmas we collect terminology and some statements to deal with the
structure of Lie-parabolic subgroups.

Lemma 2.26: Assume the conditions listed above and let J be a subset of Π̂ and J ′ := Π̂\J .
Further define UJ := 〈Xα̂ | α =

∑
αi∈Π

λiαi ∈ Σ+ with at least one α̂i ∈ J ′〉,

MJ := 〈Xα̂ | ±α̂ ∈ J〉 and LJ := TMJ . Then PJ = UJLJ is a Lie-parabolic subgroup and
every Lie-parabolic subgroup of K is K-conjugate to PJ for a uniquely determined set J ⊆ Π.
For |J | = 1, the corresponding Lie-parabolic subgroups are called minimal Lie-parabolic
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subgroups and for |J | = |Π̂| − 1, the corresponding Lie-parabolic subgroups are called max-
imal Lie-parabolic subgroups.
Furthermore, it is UJ ∩ LJ = 1, Op(PJ) = UJ and CK(UJ) = Z(UJ) Z(K). Hence PJ is of
characteristic p if Z(K) = 1. It is CAut(K)(UJ) the image of Z(UJ) in Aut(K).
The group Op′(LJ) = MJ is a central product of groups of Lie type over a field in charac-
teristic p, where all factors are normalized by T , and with root system 〈J〉R ∩ Σ. This root
system is not necessarily irreducible.
In particular, B = NK(U) holds.

The decomposition PJ = UJLJ is called a Levi decomposition. The group LJ and its
PJ -conjugates are called Levi complements and UJ is called unipotent radical.

Proof: See 2.6.4-2.6.6 in [GLS3]. 2

Lemma 2.27: Let K be a group of Lie type over a field GF (pf ) for a prime p and let U be
a Sylow p-subgroup of K.

(a) If L is a proper subgroup of K with U ≤ L, i.e. L is a parabolic subgroup of K, then
L is contained in a maximal Lie-parabolic subgroup of K.

(b) Let X be a non-trivial p-subgroup of K with X = Op(NK(X)). Then P := NK(X) is
a Lie-parabolic subgroup of K and X = Op(P ) is the corresponding unipotent radical.

Proof: The first part is due to Jacques Tits and can be found in Lemma (2.3) in [CKS].
The second statement is Corollary 3.1.5 in [GLS3]. 2

Lemma 2.28: Let K be a group of Lie type over a field GF (pf ) for a prime p and V an
absolutely irreducible K-module over GF (pf ). If P is a Lie-parabolic subgroup of X, then
CV (Op(P )) is an irreducible P -module over GF (pf ).
In particular, for S ∈ Sylp(K), the centralizer CV (S) is one-dimensional as module over
GF (pf ).

Proof: This is the main result in [Smit]. 2

To embed a group of Lie type into another group of Lie type, the following lemma gives a
necessary condition:

Lemma 2.29: Let K1 and K2 be simple groups of Lie type, both over fields of characteristic
p and with Lie ranks r1 and r2, respectively. If K1 . K2, then r1 ≤ r2 holds.

Proof: See 5.2.12 in [KlLi]. 2

22



2. PRELIMINARIES

Also some results concerning the automorphisms of a finite group of Lie type are listed here:

Lemma 2.30 ([GLS3], 2.5.1, 2.5.12): Let K be a finite group of Lie type over a field of
characteristic p. Then every automorphism x of K is a product x = idfg with the following
properties:

(a) i is an inner automorphism of K;

(b) d is a so-called diagonal automorphism, which means that it is induced by an element
of the maximal torus T that normalizes K. Then d normalizes every root group of K
and p and o(d) are coprime;

(c) f is called a field automorphism of K, which arises from a field automorphism ϕ of the
underlying field GF (p), acting on the root elements by xα(t)ϕ = xα(tϕ);

(d) g is a graph automorphism, which arises from a symmetry of the corresponding Dynkin
diagram. In particular, if K is twisted, then g = 1. If g 6= 1, then o(g) ∈ {2, 3}.

It is Out(K) a split extension of the group of the outer diagonal automorphisms Outdiag(K)

by the group ΦKΓK , where ΦK is the group of field automorphisms and ΓK is the cyclic
group of graph automorphisms. The group Outdiag(K) is isomorphic to the canonical part
of the Schur multiplier, see Lemma 2.22 for its structure, and ΦKΓK is abelian. Hence if K
is a finite group of Lie type over a field of even characteristic, the Sylow 2-subgroups of the
outer automorphism group are abelian.

Proof: See Theorems 2.5.1 and 2.5.12 in [GLS3]. 2

For some simple groups of Lie type K =
d
Σ(2f ) over a field of even characteristic, the

conjugacy classes and centralizers of involutions in Out(K) are described in the following
lemma. There we omit the outer automorphisms of orthogonal groups in even dimension.
These are needed only in the last chapter and are described there.

Lemma 2.31: Let K =
d
Σ(2f ) be a simple group of Lie type over a field of characteristic

2. Further let K be not isomorphic to Sp4(2)′ or G2(2)′. We suppose x to be an involution
in Aut(K) \ Inn(K). Define Inndiag(K) as the group generated by the inner and diagonal
automorphisms of K. And let S be a Sylow 2-subgroup of K such that S is normalized
by x. To simplify the notation, we identify the groups K and Inn(K). Then the following
statements hold:

(a) For K ∼= 2
F4(2f )

′ or K ∼= Sz(2f ), there is no involution in Aut(K) \ Inn(K).
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(b) For K ∼= Sp4(2f ), it is Out(K) cyclic of order 2f . Then all involutions in Aut(K) \
Inn(K) are Inndiag(K)-conjugate to x. It is CK(x) ∼= Sp4(2

f
2 ) for f even and CK(x) ∼=

Sz(2f ) otherwise.

(c) ForK ∼= F4(2f ), it is Out(K) cyclic of order 2f . Then all involutions in Aut(K)\Inn(K)

are Inndiag(K)-conjugate to x. It is CK(x) ∼= F4(2
f
2 ) if f is even and CK(x) ∼= 2

F4(2f )

otherwise.

(d) Assume K to be isomorphic to G2(2f ), 3
D4(2f ), Sp2n(2f ) for n ≥ 3, E7(2f ) or E8(2f ).

If f is even, x is Inndiag(K)-conjugate to a field automorphism, for which O2′(CK(x))

is isomorphic to G2(2
f
2 ),

3
D4(2

f
2 ), Sp2n(2

f
2 ), E7(2

f
2 ) or to E8(2

f
2 ), respectively. If f is

odd, there is no involution in Out(K) for these groups.

(e) Let K be isomorphic to Ln(2f ) or to E6(2f ) and let x be a field automorphism on K.
Then f is even and every involution in the coset Kx is Inndiag(K)-conjugate to x.
Additionally, O2′(CK(x)) is isomorphic to Ln(2

f
2 ) or E6(2

f
2 ), respectively.

(f) Let K be isomorphic to Ln(2f ) or to E6(2f ) and let x induce a graph automorphism.
Then the following hold:

(i) For K ∼= Ln(2f ) and n odd, all involutions in Kx are Inndiag(K)-conjugate to x
and CK(x) ∼= Spn−1(2f ).

(ii) For K ∼= Ln(2f ) and n = 2m > 2 even or for K ∼= E6(2f ) each involution y ∈ Kx
is either Inndiag(K)-conjugate to x or to xz for an involution z in a long root
group R ≤ Z(S). In this case CK(x) ∼= Sp2m(2f ) or CK(x) ∼= F4(2f ) respectively.
And it is CK(xz) = CK(x)∩CK(z) = CCK(x)(z). Hence forK ∼= Ln(2f ), CK(xz)

is isomorphic to the centralizer of a transvection in Sp2m(2f ).

(g) Let K be isomorphic to Un(2f ) or 2
E6(2f ). If x is the restriction to K of the graph au-

tomorphism of the corresponding untwisted group, which is called a field automorphism
of K, the following statements hold:

(i) For K ∼= Un(2f ) and n ≥ 3 odd, all involutions in Kx are Inndiag(K)-conjugate
to x and CK(x) ∼= Spn−1(2f ).

(ii) ForK ∼= Un(2f ) and n = 2m ≥ 4 even or forK ∼= 2
E6(2f ), it isCK(x) ∼= Sp2m(2f )

or CK(x) ∼= F4(2f ), respectively. Let z be an involution in a long root group
R ≤ Z(S). Each involution y ∈ Kx is either Inndiag(K)-conjugate to x or to xz
and CK(xz) = CK(x) ∩CK(z) = CCK(x)(z) holds.

(h) If x is a product of a field and a graph automorphism, a so-called field-graph auto-
morphism, then K ∼= Σ(2f ) has to be untwisted and O2′(CK(x)) ∼= 2Σ(2

f
2 ) is the

adjoint version. If y is an involutory field-graph automorphism of K, then x and y are
conjugate in Inndiag(K).
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Proof: For K ∼= 2
F4(2f )

′ see (9-1) in [GoLy] for f > 1 and (18.6) in [AsSe] for f = 1. See
Section 19 in [AsSe] and 4.9.1–4.9.2 in [GLS3] otherwise. 2

In the last lemma of this section, the 2-parts and 2-ranks of some simple groups K ∈ Lie(2)

are given.

Lemma 2.32 ([GLS3], 3.3.3): Let K be a finite group of Lie type over a field GF (2f ) for
f ∈ N. Let |K|2 = (2f )N for N ∈ N. Then the integer N and the 2-rank of K are as follows:

K N m2(K)

Ln(2f )
(
n
2

)
b
(
n
2

)2cf
Un(2f )

(
n
2

)
bn2 c

2f

Sp2n(2f ) (n ≥ 2) n2
(
n+1

2

)
f

Sp4(2)′ 3 2

Ω±2n(2f ) (n ≥ 2) n(n− 1)
(
n
2

)
f

G2(2f ) (f ≥ 2) 6 3f

G2(2)′ 5 2

E6(2f ) 36 16f
2
E6(2f ) 36 13f

E7(2f ) 63 27f

E8(2f ) 120 36f

F4(2f ) 24 11f
2
F4(2f ) 12 5f

3
D4(2f ) 12 5f

Proof: This can be found in Theorems 2.2.9 and 3.3.3 in [GLS3]. 2
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2.3 Other preliminary group theoretical results

In the following part of this chapter some group theoretical definitions and statements are
listed, which are closely related to the simple groups of Lie type.
As semi-extraspecial groups are frequently used in this thesis, a definition and some properties
are given in the following lemma. After that, a Levi decomposition of a Lie-parabolic sub-
group, which is of importance in the following text, is discussed. Also some results concerning
strongly 2-embedded subgroups, a classification result due to D. Holt, which is needed a lot
to prove Theorem 1.5, and some facts about so-called minimal parabolic groups are listed.
The chapter ends with a result about F-modules, which is needed in Chapter 4. We begin
by defining what a semi-extraspecial group is, following Definition 1 in [Beis].

Definition 2.33 ([Beis]): Let p be a prime.

(a) A non-abelian p-group G is called special if and only if Φ(G) = G′ = Z(G) holds.

(b) If additionally Z(G) is cyclic, G is called extraspecial.

(c) If G is a special group such that for every maximal subgroup M of Z(G) the factor group
G/M is extraspecial, G is called semi-extraspecial.

Lemma 2.34: Let q = 2f for f ∈ N.

(a) There are, up to isomorphisms, two semi-extraspecial 2-groups of order q1+2·n for n ∈
N. They are denoted by Dn(q) = q1+2·n

+ and Qn(q) = q1+2·n
− . The group Dn(q) is

isomorphic to the central product of n copies of a Sylow 2-subgroup D1(q) = q1+2
+

of L3(q), while Qn(q) is isomorphic to the central product of n − 1 copies of a Sylow
2-subgroup D1(q) of L3(q) and one Sylow 2-subgroup Q1(q) = q1+2

− of U3(q).

(b) The groups D2(q) and Q2(q) are isomorphic.

(c) In case of q = 2, the groups Dn(q) and Qn(q) are extraspecial 2-groups, denoted by
21+2·n

+ and 21+2·n
− , respectively. In this case, D1(2) is isomorphic to the dihedral group

D8 and Q1(2) is isomorphic to the quaternion group Q8.

(d) Every involution in Q1(q) is 2-central and D1(q) is generated by involutions.

Proof: See Lemmas 4 – 7 in [Beis] and for the last part see [Col1] and [Col2]. 2

Lemma 2.35: Let Q be an extraspecial 2-group with R = Z(Q) and |Q| > 23. If x ∈ Q\R is
an involution, then CQ(x) = 〈x〉 ×U holds for an extraspecial group U such that Z(U) = R.
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The group U is of the same type (+-type or −-type) as Q.
Furthermore, CQ(CQ(x)) = Z(CQ(x)) = 〈x〉 ×R holds.1

Proof: Let be R = 〈r〉 and let x ∈ Q\R be an involution. Then there is an involution y ∈ Q
such that [x, y] 6= 1 holds. So it is [x, y] = r and |Q : CQ(x)| = |xQ| = |{x, x · r}| = 2 follows.
For U := 〈x, y〉, it is U = 〈x, y, r〉 � Q an extraspecial group of order 8 and Z(U) = 〈r〉.
Then U is dihedral of order 8 and, by construction of U , U · CQ(U) ≤ Q holds. Let g be
an arbitrary element in Q. As U �Q holds, it is g ∈ NQ(U) and it is xg = x · [x, g] = x · ri

and yg = y · [y, g] = y · rj for suitable i, j ∈ {0, 1}. Hence there are 4 such automorphisms
induced by Q, which are, due to |Inn(U)| = |U/Z(U)| = 4, all inner automorphisms. Without
restriction, it is g ∈ U ·CQ(U) and so Q = U ·CQ(U) follows. Furthermore, it is Z(CQ(U)) =

〈r〉, so CQ(U) is extraspecial and, because of U ∼= D8, CQ(U) is of the same type as Q.
Additionally, one gets CQ(x) = (U ∩CQ(x))∗CQ(U) = 〈x, r〉∗CQ(U) = 〈x〉×CQ(U). Thus,
CQ(CQ(x)) = CQ(〈x〉 ×CQ(U)) = 〈x〉 × Z(CQ(U)) = 〈x〉 × 〈r〉 holds. 2

In the following text, it is always unambiguous, whether Dn(q) denotes a semi-extraspecial
group or a group of Lie type.

Let now K be a simple group of Lie type over a field of characteristic 2 and with Lie rank
at least 2. Let U be a Sylow 2-subgroup of K. We exclude K ∼= Sp2n(2f )′ and K ∼= F4(2f ).
Then R := Z(U) is a long root group by Lemma 2.24. In the following the action of NK(R)

on Q = O2(CK(R)) is needed. As the Cartan subgroup normalizes R by Lemma 2.24, NK(R)

is a Lie-parabolic subgroup of K, which gives rise to a Levi decomposition of NK(R). This
Levi decomposition is described in the following lemma. We restrict to groups, for which the
statement of the lemma is needed in this thesis.

Lemma 2.36: Let K be a simple group of Lie type over GF (q) with q = 2f and with
Lie rank of at least 2 and fundamental root system Π̂. Additionally, K is assumed to be
isomorphic to one of the groups listed below.

Let R = Z(U) for U ∈ Syl2(K) be a long root group and L a Levi complement in NK(R).
Then Q = Q/R is a faithful L-module, whose structure is given in the following list. In all
listed cases, Q is a module over the field GF (q), except for K ∼= Un(q) where Q is a module
over GF (q2). In each case, Q is a special group with Z(Q) = R.

(a) If K ∼= Ln(q) and n ≥ 4, then it is O2′(L) ∼= SLn−2(q) and Q = V1⊕V2 such that V1 is
the natural L-module and V2 the dual module. The order of the module is |Q| = q2(n−2).

(b) If K ∼= Ω±2n(q) and n ≥ 4, then it is O2′(L) ∼= Ω±2n−4(q) × L2(q). Set L1 := Ω±2n−4(q)

and L2 := L2(q) ∼= SL2(q). Then it is Q = V1 ⊗ V2 such that Vi for i ∈ {1, 2} is the
natural Li-module. Additionally, |Q| = q2(2n−4) holds.

1Parts of this statement can be found in Excercise 4A.5. in [Isa].
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(c) If K ∼= Un(q) and n ≥ 5, then O2′(L) ∼= SUn−2(q) holds. It is Q the natural module
and |Q| = q2(n−2).

(d) If K ∼= E6(q), then O2′(L) ∼= SL6(q) holds. It is Q the exterior cube of the natural
module with |Q| = q20.

(e) If K ∼= 2E6(q), then it is O2′(L) ∼= SU6(q) and Q is the exterior cube of the natural
module with |Q| = q20.

(f) If K ∼= E7(q), then O2′(L) ∼= Ω+
12(q) holds. It is Q a half-spin module with |Q| = q32.

(g) If K ∼= E8(q), then it is O2′(L) ∼= E7(q) and Q is the natural module of order q56.

(h) If K ∼= 3D4(q), then O2′(L) ∼= SL2(q3) holds. It is Q the 8-dimensional module
V ⊗ V σ ⊗ V σ2 over GF (q), where V is the natural module and σ is the Frobenius
automorphism of the field extension GF (q3) over GF (q). Additionally, |Q| = q8 holds.

In case of K ∼= Ln(q), it is Q the direct sum of two irreducible L-modules over GF (q). In
every other case listed in the lemma, Q is an irreducible module over GF (q), or over GF (q2)

in case of K ∼= Un(q). Furthermore, the occurring irreducible modules, and for K ∼= Ln(q)

the two irreducible submodules, are absolutely irreducible.

Proof: This can be found in Lemma 1.8 in [SaSt]. 2

The statement of the following lemma describes the structure of the normalizer of a long root
group in G2(q) for q ≥ 2.

Lemma 2.37: Let F ∗(H) ∼= G2(q) for q = 2f with f ≥ 2. Let further P be the normalizer
of a long root group R in F ∗(H) with Q := O2(NF ∗(H)(R)). Then it is O2′(P ) ∼= q1+4 : L2(q),
where q1+4 denotes a special 2-group of order q5 with elementary abelian center of order q.
For q > 4, O2′(P )/Q acts irreducibly on Q/R. For q = 4, P acts irreducibly on Q/R, but
O2′(P )/Q ∼= L2(4) ∼= A5 induces a direct sum of two permutation modules for the alternating
group A5 on Q/R.

Proof: This is 10.10 and page 238 in [DGS]. 2

Lemma 2.38: Let K be a simple group of Lie type over GF (q) with q = 2f and with Lie
rank at least 2, excluding K ∼= Sp2n(q) and K ∼= F4(q). Further let U be a Sylow 2-subgroup
of K. Then R := Z(U) is a long root group and Q = O2(NK(R)) equals O2(CK(R)).
Additionally, Q is a large subgroup in Aut(K).

Proof: Due to Lemma 2.24, R := Z(U) is a long root group of K. And O2(NK(R)) equals
O2(CK(R)), as on the one hand CK(R) is a normal subgroup in NK(R) and on the other
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hand O2(NK(R)) ≤ U ≤ CK(R) holds.
And due to Lemma 2.11 in [Pie], Q is a large subgroup in Aut(K). 2

Lemma 2.39: Let K be a simple group of Lie type over GF (q) for q = 2f and with Lie rank
at least 2. Let K be isomorphic to one of the groups listed in Lemma 2.36. For U ∈ Syl2(K),
R = Z(U) and Q = O2(NK(R)), it is Z2(U) ≤ Q of order q2 or K is isomorphic to Un(q) or
to Ln(q). In the last two cases, |Z2(U)| = q3 holds.

Proof: Due to Lemma 2.24, R := Z(U) is a long root group of K. By Lemma 2.38, Q =

O2(NK(R)) is a large subgroup in K with CK(Q) = Z(Q) = R and with Levi complement
L in NK(R) acting faithfully on Q = Q/R, as it is described in Lemma 2.36. Then Z2(U) ≤
NK(Q). Together with [Z2(U), Q] ≤ R, the faithful action of L on Q/R implies Z2(U) ≤ Q.
If L acts absolutely irreducible on Q over GF (q), then CQ(U) is one-dimensional as a GF (q)-
module by Lemma 2.28. Hence |Z2(U)| = q2 follows. If L does not act absolutely irreducible
on Q over GF (q), then K ∼= Un(q) or K ∼= Ln(q). For K ∼= Ln(q), Q is a direct sum of
absolutely irreducible L-modules over GF (q). Then by Lemma 2.28, |CQ(U)| = q2 holds,
implying |Z2(U)| = q3. If K ∼= Un(q), Q is an absolutely irreducible L-module over GF (q2).
Hence it is |CQ(U)| = q2, which implies |Z2(U)| = q3. 2

Definition 2.40: Let p be a prime and G a finite group with a proper subgroup H such that
|H| is divisible by p. It is H called strongly p-embedded if and only if for all g ∈ G \H,
|H ∩Hg| is not divisible by p.

Remark 2.41: Assume that a proper subgroup H < G is strongly p-embedded. This is
equivalent to NG(X) ≤ H for every p-subgroup 1 6= X ≤ H.

Proof: Let H be a strongly p-embedded subgroup of G. Assume NG(X) 6≤ H for a non-
trivial p-subgroup X of H. Then there is an element g ∈ NG(X) \ H and Xg = X ≤ H,
implying 1 6= X = Xg ∩H ≤ Hg ∩H. So p divides the order of H ∩Hg. But this contradicts
H being strongly p-embedded in G.
Let now NG(X) be contained in H for every non-trivial p-subgroup X ≤ H. Let g be an
element in G. Then it is NG(Y ) ≤ Hg for every non-trivial p-subgroup Y ≤ Hg.
If there is a non-trivial p-subgroup U ≤ H ∩Hg, then there is P ∈ Sylp(H ∩Hg) such that
U ≤ P holds. With P ≤ Hg also P g−1 ≤ H holds. There is a Sylow p-subgroup S of H with
P ≤ S. Then it is NS(P ) ≤ H ∩Hg, according to the previous paragraph. In particular, it
is P = S a Sylow 2-subgroup of H. By Sylow’s Theorem there is an element h ∈ H such
that P g−1h = P holds. Hence it is g−1h ∈ NG(P ) ≤ H and so g ∈ H follows, which is a
contradiction. 2

In case of p = 2, there are well-known results to classify strongly p-embedded subgroups.
Two of them are given in the following lemmas.
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Lemma 2.42: Let G be a finite group with a proper subgroup H of even order and let S
be a Sylow 2-subgroup of H. Then H is strongly 2-embedded in G if and only if CG(t) ≤ H
holds for every involution t ∈ S and if additionally NG(S) is contained in H.

Proof: See Proposition 17.11 in [GLS2]. 2

Lemma 2.43 ([Bend]): Let G be a finite group with a strongly 2-embedded subgroup.
Then the following holds:

• A Sylow 2-subgroup of G is cyclic or a quaternion group or

• there is a series of subgroups 1 ≤M ≤ L ≤ G, all normal in G, such that M and G/L
are of odd order and L/M is isomorphic to one of the simple groups L2(2f ), Sz(2f ) or
U3(2f ) for suitable f ≥ 2.

Proof: This is the main result in [Bend]. 2

The classification of groups with a strongly 2-embedded subgroup in the previous lemma was
published by Helmut Bender in 1971. The simple groups listed in this lemma, L2(2f ), Sz(2f )

and U3(2f ), are of Lie rank 1. A Sylow 2-subgroup of a finite non-abelian simple group G can
neither be a cyclic nor a quaternion group. The former is due to Burnside’s theorem about
p-complements, see 7.2.2 in [KuSt], the latter follows from a result of Brauer-Suzuki, see
Theorem 15.2 in [GLS2], stating that the 2-central involution would be contained in Z∗(G),
which contradicts the simplicity of G.

The following lemma, based on a result of Derek Holt, see [Holt], is used in this thesis in
the following form to characterize simple groups by the fusion of a 2-central element. It
allows, roughly spoken, to restrict the consideration of centralizers of arbitrary involutions
to involutions which are conjugate to a 2-central involution. This can be seen as a key result
in the following in order to prove the main theorem of this thesis.

Lemma 2.44: Let G be a simple group and H a proper subgroup of G. Further let r be a
2-central element in G such that CG(r) ≤ H and rG ∩H = rH hold. Then G is isomorphic
to L2(2f ) for f ≥ 2, U3(2f ) for f ≥ 2, Sz(2f ) for f ≥ 3 odd, or to an alternating group An.
In the first three cases, H is a Borel subgroup of G. In particular, H is solvable. And in the
last case, one gets H ∼= An−1.

Proof: This is Lemma 2.16 in [PaSt2]. 2

Additionally, we denote a result, which is due to Bernd Baumann. The result is needed in
Chapter 5 to provide, under certain conditions, a restriction of the set of possible components
to some groups of Lie type of Lie rank 1 or 2.
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Lemma 2.45 ([Baum]): Let G be a finite group without any non-trivial solvable normal
subgroups. Further we assume that G contains an involution, in whose centralizer a Sylow
2-subgroup of G is normal. Then the smallest normal subgroup N of G with 2-closed factor
group is a direct product of simple groups. Every simple, direct factor of N is isomorphic to
one of the following groups:

(a) L2(q), Sz(q), U3(q), L3(q), Sp4(q) for q = 2f > 2;

(b) L2(q) for q = 2f ± 1 > 3.

Proof: This is the main result in [Baum]. 2

In the following, the characterization of so-called minimal parabolic groups is needed. Despite
this term is closely related to minimal Lie-parabolic groups, the meaning is different and the
two terms should be distinguished carefully.

Definition 2.46: Let T be a Sylow p-subgroup of a finite group G. The group G is called
minimal parabolic (with respect to T ) if and only if T is not normal in G and there is a
unique maximal subgroup in G which contains T .

The characterization of minimal parabolic groups with respect to a Sylow 2-subgroup, which
arise from simple groups of Lie type in even characteristic, from sporadic or from alternating
groups, is well-known, as well as the arguments to prove this result. This characterization is
stated in the following three lemmas. We omit a corresponding statement concerning simple
groups of Lie type over a field in odd characteristic, as it is not needed in the proof of the
main theorem.

Lemma 2.47: Let K = LT be a finite group such that F ∗(K) = L is a non-abelian simple
group of Lie type over a field of characteristic 2. Additionally, let K be minimal parabolic
with respect to T ∈ Syl2(K).
Then L is isomorphic to L2(2f ), Sz(2f ), U3(2f ), L3(2f ) or Sp4(2f ) for f ∈ N such that L is
simple. In the last two cases, hence for L ∼= L3(2f ) or L ∼= Sp4(2f ), T acts non-trivially on
the Dynkin diagram of L.
Furthermore, it is NK(T ∩L) the uniquely determined maximal subgroup ofK which contains
the Sylow 2-subgroup T .

Proof: It is K = LT an automorphism group of a simple group of Lie type. Let M be the
uniquely determined maximal subgroup of K which contains T . Let further Ω be the set of
minimal Lie-parabolic subgroups of L which contain T ∩ L.
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To show that T acts transitively on Ω, let k be the number of T -orbits Ωi of Ω and define
Ui := 〈Ωi, T 〉. Then K is generated by the groups Ui := 〈Ωi, T 〉. This is a consequence of
Lemma 2.14.
For k > 1, each group Ui is properly contained in K and contains T , so Ui = 〈Ωi, T 〉 ≤ M

follows for each i. But this contradicts K = 〈Ui | 1 ≤ i ≤ k〉. So T acts transitively on Ω.

The elements of Ω are minimal Lie-parabolic subgroups of L. As the action of T on Ω

corresponds to graph automorphisms of even order, the size of Ω is at most 2, by Lemma 2.30.
Hence L has to be of Lie rank 1 or of Lie rank 2, where in the latter case T induces a graph
automorphism on the Dynkin diagram of L. This implies the list of simple groups, given in
the lemma.
It is NL(T ∩ L) ≤M ∩ L a Lie-parabolic subgroup of L, so M ∩ L = NL(T ∩ L) holds. This
implies the statement of the lemma. 2

Lemma 2.48: Let K = LT be a finite group such that F ∗(K) = L is non-abelian simple.
Let further K be minimal parabolic with respect to T ∈ Syl2(K). Then L cannot be a
sporadic group.

Proof: We assume that K = LT is an automorphism group of a sporadic simple group
L. By Table 1 in [RoSt], we are left with L being isomorphic to the Mathieu group M11

or to the Janko group J1. As Out(L) is trivial for these groups, compare [CoCu], we may
assume K = J1 or K = M11. But, according to [CoCu], J1 contains two maximal subgroups
which contain a Sylow 2-subgroup, and in M11 there are three maximal subgroups with this
property. Hence L is not a sporadic group. 2

Lemma 2.49: Let K = LT be a finite group such that F ∗(K) = L is isomorphic to an
alternating group An for n ≥ 5 and let K be minimal parabolic with respect to T ∈ Syl2(K).
Let M be the unique maximal subgroup of K which contains T . Then either it is

• n = 2m + 1 and M is the stabilizer of a point in the permutation representation of
degree n = 2m + 1 in K ∼= A2m+1 or K ∼= S2m+1, or

• L ∼= A6 with M = T holds.

Proof: The argumentation in this proof follows mostly Lemma 2.2 in [LPR].
Except for n = 6, K ∼= An or K ∼= Sn holds. For n = 5 and n = 6, the lemma holds by using
[CoCu] to look up the maximal subgroups of An.
So from now on let be n ≥ 7. It is L the alternating group on Ω = {1, 2, . . . , n} for n ≥ 7.
Let n = 2n1 + 2n2 + . . . + 2nk with n1 > n2 > . . . > nk ≥ 0 be the 2-adic representation
of n. To consider the structure of a Sylow 2-subgroup of L, let S be a Sylow 2-subgroup of
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the symmetric group Sn. Then, for example by 15.3 in [Hupp], S is isomorphic to a direct
product Pn1 × . . . × Pnk , where each direct factor Pni is a Sylow 2-subgroup of S2ni and
is isomorphic to an iterated wreath product of ni many cyclic groups of order 2. So it is
Pni
∼= (Z2 o Z2) o . . . o Z2︸ ︷︷ ︸

ni

∼= D8 o Pni−2, using Z2 o Z2
∼= D8.

We assume first K ∼= An, which implies K = L.
For n = 2n1 ≥ 8 and T ∈ Syl2(L), T equals S∩L for S being isomorphic to a Sylow 2-subgroup
of the symmetric group Sn. Hence T stabilizes a system Γ1 of blocks of size 2 and a system
Γ2 of blocks of size 4. Without restriction, we assume Γ1 = {{1, 2}, {3, 4}, . . . , {2n1−1, 2n1}}
and Γ2 = {{1, 2, 3, 4}, . . . , {2n1 − 3, 2n1 − 2, 2n1 − 1, 2n1}}. Hence U1 := StabL(Γ1) and
U2 := StabL(Γ1) are subgroups of L which contain T . As L acts (n − 2)-transitively on Ω,
U1 and U2 are proper subgroups of L. Additionally, 〈U1, U2〉 acts 2-transitively on Ω and
〈U1, U2〉 contains the 3-cycle (1, 2, 3). Hence by Lemma 2.6, 〈U1, U2〉 = L holds and so K is
not minimal parabolic with respect to T .
Let now be n = 2n1 + 1 ≥ 9. Then T ∈ Syl2(L) may be chosen to be contained in
StabL({n}) ∼= An−1. As L acts primitively on Ω, it is StabL({n}) a maximal subgroup
of L. To show that StabL({n}) is the only maximal subgroup which contains T , we assume
the existence of a maximal subgroup M̃ in L such that T ≤ M̃ 6≤ StabL({n}). As L acts
(n − 2)-transitively on Ω, M̃ acts 2-transitively and thus primitively on Ω. Additionally,
T ≤ M̃ contains the subgroup 〈(1, 2)(3, 4), (1, 3)(2, 4)〉, which acts transitively on {1, 2, 3, 4}.
As it is 1 < |{1, 2, 3, 4}| < n

2 , Lemma 2.6 implies M̃ = L, in contradiction to M̃ being a
maximal subgroup. Hence StabL({n}) is the only maximal subgroup of L which contains T .
Therefore, K is minimal parabolic with respect to T .
For n = 2n1 + 2n2 + . . . + 2nk ≥ 7, we consider the remaining cases. Hence T ∈ Syl2(L)

acts intransitively on Ω. Without restriction, let Ω1 = {1, 2, . . . , 2n1} be one of the T -orbits.
Additionally, as described in the first case, T stabilizes a system Γ1 of blocks of size 2. Then
U1 := StabL(Ω1) and U2 := StabL(Γ1) are proper subgroups of L, both containing T . And as
before, 〈U1, U2〉 acts primitively on Ω and contains the 3-cycle (1, 2, 3). Hence by Lemma 2.6,
〈U1, U2〉 = L holds. Hence K is not minimal parabolic with respect to T . Altogether, for
K ∼= An, the lemma holds.
Now let be K ∼= Sn:
Without loss of generality, T contains the transposition (1, 2) and the rest of the proof is
analogously to the arguments above, using again Lemma 2.6. 2

The statements of the following three lemmas allow to generate some quasisimple groups
by centralizers of certain involutions which act on the quasisimple group. In particular, the
minimal parabolic groups, which are listed in the previous lemma, have this property. And
also most quasisimple groups of Lie type over a field in odd characteristic, for which we have
not given a classification of minimal parabolic groups, can be generated by centralizers of
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suitable involutions.

Lemma 2.50: Let K be a group such that K/Z(K) is an alternating group on a set Ω

with |Ω| = n ≥ 5 and n an odd integer. Let E be an elementary abelian 2-group of 2-
rank m ≥ 2 such that E acts on K. So the isomorphic image E∗ of E in Aut(K) is
contained in the symmetric group on the set Ω. The partition of Ω into E∗-orbits leads
to n = a0 + a1 · 2 + . . .+ ar · 2r, where ai is the number of orbits of size 2i. Additionally, we
suppose a0 6= 0 6= ar, where 2r is the size of the longest orbit.
Then K = 〈CK(F ) | F ≤ E, m2(F ) ≥ m− r〉 holds.

Proof: See 7.5.1 in [GLS3]. 2

And also the alternating group A6
∼= Sp4(2)′ can be generated by centralizers of involutions.

Lemma 2.51: Let E be an elementary abelian subgroup of order 8 which acts faithfully on
the alternating group A6. Then A6 = 〈CA6(t) | t ∈ E#〉.

Proof: As E acts faithfully on A6, we may assume that E is a subgroup of Aut(A6). We
identify A6 and Inn(A6) to simplify notation. It is m2(A6) = 2 and m2(Aut(A6)) = 3. As
|E| = 8, E is a maximal elementary abelian subgroup of Aut(A6) which is not contained in
A6. If τ is an involution in Aut(A6) \ A6, then by [CoCu] there are two possibilities: Either
CA6(τ) is of order 10 and, by examining the structure of maximal subgroups of A6, τ is
not contained in a maximal elementary abelian subgroup of Aut(A6) or τ ∈ S6 \ A6 and
CA6(τ) ∼= S4 is a maximal subgroup in A6. Let T be a Sylow 2-subgroup of A6. We may
assume T = 〈(1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(5, 6)〉. Using the information about centralizers of
outer involutions in Aut(A6), we may further assume that the elementary abelian subgroup
V equals 〈(1, 2)(3, 4), (1, 3)(2, 4), (5, 6)〉 = 〈(1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(3, 4)(5, 6)〉. We set
t1 := (1, 3)(2, 4) and t2 := (1, 2)(3, 4)(5, 6). It is CA6(t2) ∼= S4 a maximal subgroup of A6

which does not contain the element (2, 4)(5, 6) ∈ CA6(t1), see [CoCu]. Hence A6 is generated
by the centralizers of the involutions t1 ∈ V and t2 ∈ V . 2

Lemma 2.52: Let K be a quasisimple group of Lie type over a field of odd characteristic.
Further let E 6= 1 be a non-cyclic, elementary abelian 2-group which acts faithfully on K.
Then either K = 〈CK(F ) | 1 6= F ≤ E〉 holds or K/Z(K) is isomorphic to one of the
following groups:
L2(5), L2(7), L2(9), 2G2(3)′ or PSp4(3).

Proof: See 7.3.4 in [GLS3]. 2

At the end of this chapter, we introduce the terminology of so-called F-modules and the
corresponding offenders.
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Definition 2.53: Let G be a finite group and V a G-module which is of finite dimension
over GF (2). Then V 6= 1 is called F-module for G if G contains a subgroup A such that
A/CA(V ) is an elementary abelian 2-group and

|V | · |CA(V )| ≤ |A| · |CV (A)|

holds.

Such a subgroup A ≤ G is called a non-trivial offender for V if additionally [V,A] 6= 1 holds.
The subgroup A is called a quadratic offender if the action of A on V is quadratic, hence
if [V,A,A] is trivial.

A subgroup A ≤ G is called a best offender for V if A/CA(V ) is an elementary abelian
2-group and if for every subgroup B ≤ A the inequality |B| · |CV (B)| ≤ |A| · |CV (A)| holds.
Using B = CA(V ), every best offender for V is an offender for V .

And A is called an over-offender for V if A is an offender for V and

|V | · |CA(V )| < |A| · |CV (A)|

holds.

Timmesfeld’s Replacement Theorem, see for example 9.2.3 in [KuSt], implies that if A ≤ G

is a best offender for V , then CA([V,A]) is a quadratic best offender. As a consequence, if
there is an offender A ≤ G for V , then one can choose a group Ã among the subgroups of
A such that |Ã| · |CV (Ã)| is maximal to get a best offender. By Timmesfeld’s Replacement
Theorem, then there exists also a quadratic best offender for V .
The following result on offenders and F-modules can be found in [MeSt]:

Lemma 2.54: Let G be isomorphic to SLn(q) with n ≥ 2 and with q a power of 2. Let
further V = Nn be a direct product of n natural SLn(q)-modules N . Then V is no F-module
for G.

Proof: Let be G ∼= SLn(q) with n ≥ 2 and with q a power of 2. Then it is O2(G) = 1.
We suppose that V = Nn is a F-module for G. Then the normal subgroup J of G, which
is generated by the best offenders in G for V , is not trivial. A non-trivial subgroup K of
J is called a J-component if K is minimal with respect to K = [K,J ]. Let K be such a
J-component.
Then by Lemma 2.2 and Theorem 8.2 in [MeSt], which are included in Theorem 1 of the
same paper, the following statements hold:

• For n = 2, it is K ∼= SL2(2)′ ∼= Z3 and [V,K] is a natural SL2(2)-module, contradicting
V = N2.
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• For n ≥ 3, it is K ∼= SLn(q) and V = N r ⊕N∗ s, where N is a natural SLn(q)-module,
N∗ its dual, and r, s are integers with 0 ≤ r, s < n. Hence this also contradicts V = Nn

being a direct product of n natural SLn(q)-modules.

Hence V = Nn is no F-module for G. 2
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Chapter 3

Preparatory results and centralizers of
2-central involutions

In order to outline the strategy of the proof of Theorem 1.5, some definitions are introduced
and first conclusions from the assumptions in Hypothesis 1.4 are made in this chapter. We
show that for F ∗(H) ∼= L4(2) there exists an example with G 6= H. Also it is shown that
the centralizer CG(t) is contained in H for every 2-central involution t ∈ H. We start with
a short remark.

Remark 3.1: Suppose that Hypothesis 1.4 holds.

As the index |G : H| is odd, S ∈ Syl2(H) implies S ∈ Syl2(G). According to Hypothesis
1.4 (c), it is NG(S) ≤ H and, using Frattini’s argument, NG(H) = H follows.

Let S̃ be an arbitrary Sylow 2-subgroup of H. Then it is S̃h = S for an element h ∈ H by
Sylow’s Theorem. If X is a non-trivial and normal subgroup of S̃, then 1 6= Xh � S holds.
So it is NG(X) = NG(Xhh−1

) = NG(Xh)h
−1 ≤ Hh−1

= H. In particular, the statements of
Hypothesis 1.4 hold for every Sylow 2-subgroup of H.

Lemma 3.2: Let Hypothesis 1.4 hold. Without loss of generality, F ∗(G) may supposed to
be a non-abelian simple group. Additionally, F ∗(H) is a subgroup of F ∗(G).

Proof: If G = H holds, then Theorem 1.5 is proved. So let H be a proper subgroup of G.
Let further S be a Sylow 2-subgroup of H and S1 := S ∩ F ∗(H). Then S1 ∈ Syl2(F ∗(H))

and, by the remark above, S ∈ Syl2(G) follows.

We assume first O2(G) 6= 1. Then Hypothesis 1.4 (c) implies G = NG(O2(G)) ≤ H, contra-
dicting H 6= G. So without loss of generality, O2(G) is trivial.
Now we assume Op(G) 6= 1 for an odd prime p. As F ∗(H) is a simple group, Op(G) ∩H is
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trivial. As Op(G) by assumption is not trivial, V := Ω1(Z(Op(G))) is a non-trivial elementary
abelian p-group. The simple group F ∗(H) acts faithfully on V , as otherwise S1 ≤ F ∗(H)

centralizes V ; but V ≤ CG(S1) ≤ H contradicts Op(G) ∩H = 1. So F ∗(H) is isomorphic to
a subgroup of GL(V ). Since p is odd, the minimal polynomial of every involution t ∈ F ∗(H)

divides x2 − 1 = (x − 1)(x + 1). Either such an involution t ∈ F ∗(H) inverts every element
in V or it fixes a non-trivial element in V . If t ∈ S1 acts by inverting all elements of V , then
tF
∗(H)∩CS1(t) = {t}, so by Glauberman’s Z∗-Theorem, see [Glau], t ∈ Z∗(F ∗(H)) = 1 holds.

Hence every involution t ∈ Z(S1) fixes an element 1 6= v ∈ V . Again by Hypothesis 1.4 (c),
v ∈ NG(〈t〉) is contained in H ∩Op(G) = 1. This implies Op(G) = 1 for every prime number
p. Thus G is a group of automorphisms of a semisimple group.

As F ∗(G)∩F ∗(H)�F ∗(H) and F ∗(H) is simple, either F ∗(H) ≤ F ∗(G) or F ∗(G)∩F ∗(H) = 1

holds.
Assume first that F ∗(H) ∩ F ∗(G) = 1 holds. It is T := S ∩ F ∗(G) not trivial and,
using F ∗(H) ≥ [F ∗(H), T ] ≤ [F ∗(H), F ∗(G)] ≤ F ∗(G), one gets [F ∗(H), T ] = 1. So
T ≤ CH(F ∗(H)) ≤ F ∗(H) follows, which contradicts F ∗(H) ∩ F ∗(G) = 1. Hence it is
F ∗(H) ≤ F ∗(G).
Let F ∗(G) = L1 × · · · × Lk for k > 1 with non-abelian simple groups L1,. . . , Lk. For every
i ∈ {1, . . . , k}, the group Ti := S ∩ Li 6= 1 is a Sylow 2-subgroup of Li. As before, one gets
F ∗(H) ≥ [F ∗(H), Ti] ≤ [F ∗(H), Li] ≤ Li.
This implies [F ∗(H), Ti] ≤ F ∗(H) ∩ Li � F ∗(H). If there is an i ∈ {1, . . . , k} such that
F ∗(H) ∩ Li = 1 holds, then Ti ≤ CH(F ∗(H)) ≤ F ∗(H) follows, which is an immediate
contradiction.
So F ∗(H)∩Li = F ∗(H) and therefore F ∗(H) ≤ Li holds for every i ∈ {1, . . . , k}. As F ∗(H)

is simple, this implies k = 1. Hence F ∗(G) is a non-abelian simple group.
The aim of this thesis is to show that, up to the exceptions listed in Theorem 1.5, al-
ways F ∗(H) = F ∗(G) holds. Using Hypothesis 1.4 and Frattini’s argument, this implies
G = F ∗(H) ·NG(S1) ≤ H and therefore G = H. 2

Hence we assume in the following that F ∗(G) is a non-abelian simple group which contains
the also simple group F ∗(H). This assumption is made throughout the rest of this text
without being explicitly mentioned in every case.

In M. Salarian’s and G. Stroth’s article [SaSt], a certain set of subgroups of G is defined,
to show that CG(t) is contained in H for every involution t ∈ S ∈ Syl2(H). This implies
CF ∗(G)(t) ≤ H ∩ F ∗(G) for every involution t ∈ S. And NF ∗(G)(S) ≤ H ∩ F ∗(G) holds,
compare for example Remark 3.1.
Then it is H ∩ F ∗(G) a strongly 2-embedded subgroup in F ∗(G), by Lemma 2.42.
It is F ∗(H) a simple group of Lie type which is additionally assumed to be of Lie rank at
least 2 in [SaSt]. As also F ∗(G) is simple, the simple sections L2(2f ), Sz(2f ) and U3(2f )
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listed in Lemma 2.43 can be excluded as well as S ∩ F ∗(G) ∈ Syl2(F ∗(G)) being a cyclic or
quaternion group. This is due to the comment following Lemma 2.43.
But this is a contradiction to F ∗(H) being strongly 2-embedded in F ∗(G), so the assumption
G 6= H is disproved.

The strategy in this thesis is similar and in order to prove Theorem 1.5, the following defini-
tions from [SaSt] are required.

Definition 3.3: Let X be a non-trivial 2-subgroup of H.

(a) The set M(X) consists of subgroups of G which are not contained in H and which
contain a non-trivial normal 2-subgroup:

M(X) := {K | X ≤ K ≤ G,K 6≤ H,O2(K) 6= 1} .

(b) With < we denote a relation on the elements of M(X) which is defined as follows. Let
K1, K2 be elements of M(X).

K1 < K2 :⇐⇒ ∃T ∈ Syl2(K2 ∩H) : (T ∩K1 ∈ Syl2(K1 ∩H) ∧ T 6= T ∩K1) .

The set M(X) is finite. Thus, despite < does not give a partial order on M(X),
maximal elements with respect to < can be defined as follows:

Mmax(X) := {K | K ∈M(X),K is maximal with respect to <} .

(c) Among these maximal elements of M(X) we are interested in the ones which are min-
imal by inclusion. So we define

P (X) := {K | K ∈Mmax(X),K is minimal with respect to inclusion} .

(d) Eventually, the set P ∗(X) consists of the 2-constrained elements in P (X) for which
O2′(K) ≤ H holds, so

P ∗(X) := {K | K ∈ P (X), O2′(K) ≤ H,F ∗(K/O2′(K)) = O2(K/O2′(K))} .

In the following remark some direct consequences from these definitions are stated.

Remark 3.4: Suppose that Hypothesis 1.4 holds.

• For S ∈ Syl2(H), the set M(S) is empty:
Assume K ∈ M(S). Then K = NK(O2(K)) and S ≤ K. So one gets 1 6= O2(K) � S.
Due to Hypothesis 1.4 (c), NG(O2(K)) ≤ H follows. Altogether, K = NK(O2(K)) ≤
NG(O2(K)) ≤ H, which contradicts K ∈M(S).
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• For 1 6= X ≤ S with NG(X) 6≤ H, the set M(X) is not empty:
For K = NG(X) it is X � NG(X) = K and, as X ≤ S is a 2-group, O2(K) =

O2(NG(X)) 6= 1 and K 6≤ H. Hence K ∈M(X).

• If M(X) 6= ∅ , then also P (X) 6= ∅. So P (X) = ∅ implies M(X) = ∅, from which
NG(X) ≤ H follows.

Whereas in [SaSt], due to the assumption of G being of local characteristic 2, the set P ∗(X)

of 2-constrained groups is in the spotlight, in this paper the main focus is on the set P (X).
Under the assumption G 6= H, the existence of an involution t ∈ H is assumed such that
CG(t) 6≤ H holds. Then for 1 6= X ≤ S, the structure of possible groups K ∈ P (X)

is investigated, in order to get a contradiction. Therefore, P (X) is the empty set and so
CG(t) ≤ H holds.
The main difference to the strategy pursued in [SaSt] is the usage of D. Holt’s result, given
in Lemma 2.44. This allows to eliminate a lot of possible groups for F ∗(H) nearly from
the beginning and quite simplifies the proof. If F ∗(H) is isomorphic to a linear, symplectic,
unitary or to one of the following groups of Lie type G2(2f )′, F4(2f ), 2

F4(2f )′, Sz(2f ), this
is done in Chapter 4.
The strategy to prove Theorem 1.5 for the remaining possibilities for F ∗(H) is similar to the
approach of M. Salarian and G. Stroth in [SaSt].

The following lemma illustrates that F ∗(H) ∼= A8 as proper subgroup of F ∗(G) ∼= A9 satisfies
the assumptions in Hypothesis 1.4, so it is really an exception to G = H in Theorem 1.5.

Lemma 3.5: Let F ∗(G) = A9 be the alternating group acting on the set {1, . . . , 9} and let
F ∗(H) be a point stabilizer in F ∗(G). This situation satisfies the conditions of Hypothesis
1.4 and G 6= H holds.

Proof: We identify F ∗(H) with the point stabilizer of the letter 9 in F ∗(G) = A9. Then it
is F ∗(H) ∼= A8 a maximal subgroup in F ∗(G) and F ∗(H) ∼= A8

∼= L4(2) is a simple group of
Lie type over a field of characteristic 2.
As Aut(A8) ∼= S8 and Aut(A9) ∼= S9, there are two possibilities to consider: Either it is
G = F ∗(G) = A9 or it is G = S9. In the first case, it is H = F ∗(H), as A8 is a maximal
subgroup in A9. In the second case, it is H ∼= S8, as otherwise the index |G : H| is even.
In both cases, G is of parabolic characteristic 2, as the centralizer of a 2-central involution in
A9 and also in S9 is of characteristic 2. Also in both cases, H is a point stabilizer and hence
a maximal subgroup in G. Let S be a Sylow 2-subgroup of H. As G is minimal parabolic
with respect to S, see Lemma 2.49, H is the only maximal subgroup of G that contains S.
For every non-trivial subgroup Y � S, one gets 1 6= NG(Y ) 6= G, as O2(G) is trivial. So
NG(Y ) is contained in a maximal subgroup that contains S. Hence NG(Y ) ≤ H holds for
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every non-trivial normal subgroup Y of S. Thus G and H satisfy all properties listed in
Hypothesis 1.4.

This exception to G = H does not occur, if we require G to be of local characteristic 2 instead
of parabolic characteristic 2: For the non-trivial 2-subgroup X = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉,
the normalizer NG(X) contains a subgroup U ∼= A5 on the letters 5 to 9, so NG(X) is not
contained in the point stabilizer H and therefore M(X) 6= ∅ holds. In particular, the groups
A9 and S9 are of parabolic characteristic 2 but not of local characteristic 2. 2

In the following three lemmas some basic properties of the groups in P (X) are collected.
Most of the results could just have been quoted from [SaSt]. But as the results are heavily
used in the following and to make this thesis more self-contained, they are given with a proof.
The first four statements of the first lemma are citations from Lemma 1.2 in [SaSt].

Lemma 3.6 ([SaSt], Lemma 1.2): Suppose Hypothesis 1.4. Further let S be a Sylow 2-
subgroup of H,
1 6= X ≤ S, K ∈ Mmax(X) and T ∈ Syl2(K ∩ H) such that X ≤ T . Then the following
statements hold:

(a) It is T ∈ Syl2(K) and NK(T ) ≤ H.

(b) If Y is a non-trivial 2-group which is normal in K, then K contains a Sylow 2-subgroup
of NG(Y ).

(c) Let C be non-trivial characteristic subgroup of T . Then NG(C) ≤ H holds.

(d) If K ∈ P (X), then K is minimal parabolic with respect to T .

(e) Let L ∈M(X) such that T ∈ Syl2(L). Then L ∈Mmax(X).

(f) It is NG(O2(K)) ∈Mmax(X).

Proof:

(a) By definition of K ∈M(X), it is K 6≤ H, X ≤ K and O2(K) 6= 1. Using T ≤ K ∩H ≤
K, then K ∈ M(T ). If T ∈ Syl2(H), by Remark 3.4, M(T ) = ∅. Thus T /∈ Syl2(H);
so T is a proper subgroup of S. Hence T is a proper subgroup of NS(T ).
We assume now NK(T ) 6≤ H. Then also NG(T ) 6≤ H holds and so, using X ≤ T ≤
NG(T ) and O2(NG(T )) ≥ T 6= 1, this implies NG(T ) ∈M(X).
As T is a proper subgroup of NS(T ), T /∈ Syl2(NG(T ) ∩ H). So there is a group
T̃ ∈ Syl2(NG(T ) ∩H) with T � T̃ . Because of that, T ∈ Syl2(K ∩H) is contained in
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T̃ ∩K. Hence T = T̃ ∩K ∈ Syl2(K ∩H) and, using T � T̃ , one gets K < NG(T ). But
this contradicts K ∈Mmax(X). Therefore, NK(T ) ≤ K ∩H holds.
Applying Lemma 2.9, T is a Sylow 2-subgroup of K.

(b) Let 1 6= Y � K. Then K = NK(Y ) ≤ NG(Y ), so NG(Y ) � H. Therefore, NG(Y ) ∈
M(X). Due to part (a), also T ∈ Syl2(K) holds. Hence it is K ≤ NG(Y ), NG(Y ) ∈
M(X) and K ∈ Mmax(X). Then one gets T ∈ Syl2(NH(Y )). Hence NG(Y ) ∈
Mmax(X). By using part (a), T is a Sylow 2-subgroup of NG(Y ).
In particular, T = NS(O2(K)).

(c) According to part (a), T ∈ Syl2(K). Assuming NG(C) � H, it is NG(C) ∈ M(X).
Furthermore, T ≤ NG(C) and K ∈ Mmax(X), so exactly as in the arguments above
T ∈ Syl2(NH(C)). So NG(C) ∈Mmax(X) holds, and again with part (a) of this lemma,
T ∈ Syl2(NG(C)) follows.
But exactly as in the proof of part (a), T 6= NS(T ) ≤ NG(C), which is a contradiction.
So NG(C) ≤ H holds.

(d) Let S, T , X and K as before and additionally let K ∈ P (X). Using part (a) of this
lemma gives NK(T ) ≤ H, so T is not normal in K.
Assume X1 to be a proper subgroup of K such that T ≤ X1 and X1 � H. Then
X1 ∈M(X) and, due to (a), T ∈ Syl2(K). So also T ∈ Syl2(X1) holds.
We assume that there is a group X2 ∈M(X) such that X1 < X2. Then there is a Sylow
2-subgroup T2 of X2 ∩H such that T2 ∩X1 ∈ Syl2(X1 ∩H) and T2 6= T2 ∩X1 holds.
Using T ∈ Syl2(X1), without loss of generality T2 > T follows, which implies K < X2.
This contradicts K ∈Mmax(X). So X1 ∈Mmax(X) holds. But it is K ∈ P (X), which
is a contradiction to X1 < K. Therefore, H ∩K is the unique maximal subgroup of K
containing T .

(e) We assume L /∈ Mmax(X). Then there is L1 ∈ M(X) with a Sylow 2-subgroup T1 ∈
Syl2(L1 ∩H) such that T1 ∩L ∈ Syl2(L∩H) and T1 6= T1 ∩L. Then T h1 ∩L = T for an
element h ∈ L∩H and T h1 6= T ∩L. So T1 can be chosen such that T1∩L = T and T is
a proper subgroup of T1. But then also K∩T1 = T holds, contradicting K ∈Mmax(X).
So L ∈Mmax(X) follows.

(f) We denote L := NG(O2(K)). According to part (b), it is T = NS(O2(K)) ≤ L. So
T ∈ Syl2(L) holds. Part (e) implies L ∈Mmax(X).

2
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Lemma 3.7 ([SaSt], Lemma 1.4): LetK ∈ P (X) and T ∈ Syl2(K∩H) such that X ≤ T .
Then Y ≤ T implies K ∈ P (Y ).

Proof: As K ∈M(X) and Y ≤ T ≤ K, it is K ∈M(Y ).
Assume K /∈ Mmax(Y ). Then there is a group K1 ∈ M(Y ) and a Sylow 2-subgroup T1 of
H ∩ K1 such that T1 ∩ K ∈ Syl2(K ∩ H) and T1 6= T1 ∩ K hold. Then (T1 ∩ K)h = T

for an element h ∈ H ∩ K. Hence Y ≤ T ≤ Kh
1 and, using O2(Kh

1 ) 6= 1 and Kh
1 6≤ H, it

implies Kh
1 ∈ M(Y ). Because of X ≤ T ≤ Kh

1 , also Kh
1 ∈ M(X). But T h1 ∈ Syl2(H ∩Kh

1 ),
T h1 ∩K = (T1 ∩K)h = T and T h1 > T . So it is K < Kh

1 , contradicting K ∈Mmax(X).
Therefore, it is K ∈Mmax(Y ) and so Mmax(X) ⊆Mmax(Y ). Then K ∈ P (Y ) follows. 2

Lemma 3.8 ([SaSt], Lemma 1.3): Suppose Hypothesis 1.4.

(a) Let K ∈ P ∗(X), then O2′,2(K) = O2(K)×O(K).

(b) Let be K ∈ P (X) \ P ∗(X). Then Z(K) is of even order. If O(K) 6≤ H, then K =

O(K)T .

Proof: Let T ∈ Syl2(K∩H) such that X ≤ T . According to Lemma 3.6, it is T ∈ Syl2(K).

(a) Denote U := T ∩ O2′,2(K). Then U ∈ Syl2(O2′,2(K)) and Frattini’s argument implies
K = O2′,2(K) NK(U). Hence O2′,2(K)/O(K) = O2(K/O(K)) is a normal 2-subgroup
of TO(K)/O(K), so O2′,2(K) is a normal subgroup of TO(K). By definition of K ∈
P ∗(X), it is O(K) ≤ H. Hence TO(K) ≤ H and therefore it is O2′,2(K) ≤ H.
Because of K 6≤ H, then NK(U) 6≤ H holds. According to this, NK(U) ∈ M(X) and,
as T ≤ NK(U), also NK(U) ∈Mmax(X) follows. It is K ∈ P (X) minimal inMmax(X),
hence K = NK(U) and so U = O2(K). This implies the assertion.

(b) For K ∈ P (X) \ P ∗(X) with O(K) ≤ H, it is E(K/O(K)) 6= 1. Let U be the full
preimage of E(K/O(K)) in K. Then U �K follows and, because of T ∩ U ∈ Syl2(U)

and Frattini’s argument, also K = UNK(T ∩ U). In particular, it is U 6≤ H and, by
the minimality of K ∈ P (X), it is K = UT . Furthermore, 1 6= Z(T ) ∩ O2(K) ≤ Z(K)

holds.

If O(K) 6≤ H, because of the minimality of K ∈ P (X), it is K = O(K)T . So again
1 6= Z(T ) ∩O2(K) ≤ Z(K) follows. Altogether, Z(K) is of even order.

2

Throughout the following, we assume that Hypothesis 1.4 holds and, using Lemma 3.2, that
F ∗(G) is a non-abelian simple group which contains F ∗(H).
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So F ∗(H) is a simple group of Lie type over a field GF (q) for q = 2f . We fix S ∈ Syl2(H)

and S1 := S ∩ F ∗(H). We further choose a root system Σ for K such that S1 =
∏

α∈Σ̂+

Xα̂

holds. Let R be a long root subgroup in Z(S1). In particular, R is an elementary abelian
group of order q. We fix this notation for the rest of this thesis.
We prove CG(s) ≤ H for every involution s in R if F ∗(H) is neither isomorphic to Sp2n(2f )′,
F4(2f ) nor to a Suzuki-Ree group. In general we show that the centralizer of every 2-central
involution in G coincides with the centralizer in H.

Lemma 3.9: Let the notation and properties listed in Hypothesis 1.4 hold.

(a) For every element s ∈ Z(S)#, the centralizer CG(s) is contained in H.

(b) If F ∗(H) is not isomorphic to Sp2n(2f )′, F4(2f ), 2
F4(2f )

′ or to Sz(2f ), then CG(r) ≤ H
holds for every r ∈ R#.

Proof: For s ∈ Z(S)# one gets 1 6= 〈s〉 � S and therefore, by Hypothesis 1.4, CG(s) =

NG(〈s〉) ≤ H. So part (a) holds.
Set |R| = q = 2f for f ∈ N and S1 = S ∩ F ∗(H). If F ∗(H) is not isomorphic to Sp2n(2f )′ or
to F4(2f ), it is 1 6= R = Z(S1) � S. So, again by 1.4, NG(R) = NH(R) holds. Furthermore,
there is an involution s ∈ Z(S) ∩R, implying CG(s) ≤ H.
It is F ∗(H) not a Suzuki-Ree group, so by Example 3.2.6 and Theorem 2.4.8 in [GLS3], all
elements of R# are conjugate in H, as the Lie-parabolic subgroup NH(R) acts transitively
on the elements of R# = Z(S1)#. Hence part (b) follows. 2

The previous lemma providesCG(r) ≤ H for a 2-central involution r. Hence it isCF ∗(G)(r) ≤
H ∩ F ∗(G). We need to show in the following rF ∗(G) ∩ (H ∩ F ∗(G)) = rH∩F

∗(G) to apply
D. Holt’s result from Lemma 2.44 to the simple group F ∗(G).
In the following chapter the previous lemma is heavily used to prove Theorem 1.5 for F ∗(H)

being isomorphic to a linear, unitary or symplectic group or to an exceptional group of type
Sz(2f ), G2(2f )′, 2

F4(2f )′ or F4(2f ).
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Chapter 4

Some families of classical and
exceptional groups

In this chapter the statement of Theorem 1.5 is proved for F ∗(H) being isomorphic to a
linear, unitary or symplectic group. The main result is also shown if F ∗(H) is isomorphic
to Sz(2f ), F4(2f ), 2

F4(2f )′ or G2(2f )′ for some f ∈ N. The strategy of the proof is to
show first that H ∩F ∗(G) controls the F ∗(G)-fusion of a 2-central involution. This, together
with Lemma 3.9 and the result of Holt in Lemma 2.44, implies that either F ∗(G) is an
alternating group or that F ∗(G) = H ∩ F ∗(G) holds. We show that the first case may only
occur for F ∗(H) ∼= L4(2) ∼= A8. In every other case, as F ∗(H) is a subgroup of F ∗(G), it is
F ∗(H) = F ∗(G). By Frattini’s argument, this implies G = F ∗(H) NG(S1) ≤ H.

In the following lemma, Theorem 1.5 is proved for F ∗(H) being a group of Lie rank 1.

Lemma 4.1: Assume Hypothesis 1.4. If F ∗(H) is isomorphic to a simple group Sz(q), L2(q)

or U3(q) for q = 2f , then G = H holds.

Proof: We assume Hypothesis 1.4. So let be S ∈ Syl2(H) and let be S1 := S ∩ F ∗(H).

We first consider F ∗(H) being isomorphic to Sz(q) for q = 2f ≥ 8. Then all involutions in
F ∗(H) are conjugate in F ∗(H) to an involution s ∈ Z(S1). Additionally, |Out(F ∗(H)| is odd
by Lemma 2.31, so it is S = S1. Using Lemma 3.9(a), CF ∗(G)(s) ≤ H ∩ F ∗(G) holds. As
there is only one conjugacy class of involutions in S, using 2 - |G : H|, sF ∗(G)∩(H∩F ∗(G)) =

sH∩F
∗(G) follows.

Let be F ∗(H) ∼= L2(q) with q = 2f ≥ 4. There is only one conjugacy class of involutions in
F ∗(H), so we consider an involution r ∈ Z(S1). Then by Lemma 3.9 it is CG(r) ≤ H. It is
CF ∗(H)(r) = S1, so CG(r) = CH(r) is solvable.
For F ∗(H) 6= H, let t be an involution in S \ S1. Then t induces a field automorphism
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on F ∗(H) and CH(t) involves a group L2(q0) for q2
0 = q. If F ∗(H) is not isomorphic to

L2(4), it is L2(q0) a non-abelian simple group; then CH(t) cannot be embedded into CH(r).
For F ∗(H) ∼= L2(4), it is Out(F ∗(H)) ∼= Z2. In this case CH(r) does not involve a group
L2(q0) ∼= S3. Altogether, it is CF ∗(G)(r) ≤ H ∩F ∗(G) and rF ∗(G)∩ (H ∩F ∗(G)) = rH∩F

∗(G).

Let be F ∗(H) ∼= U3(q) with q = 2f ≥ 4. Also in this case, there is only one conjugacy class of
involutions in F ∗(H). Let r be an involution in Z(S1). Again by Lemma 3.9, it is CG(r) ≤ H.
It is CF ∗(H)(r) ∼= Q1(q) : Z q+1

(3,q+1)
, where Q1(q) = q1+2

− denotes a semi-extraspecial group of

−-type, see Lemma 2.34. So CG(r) = CH(r) is solvable.
In case of F ∗(H) 6= H, we consider an involution t ∈ S \ S1. Then CH(t) involves a
group L2(q). As q ≥ 4 holds, it is L2(q) a non-abelian simple group. Hence CH(t) cannot
be embedded into CH(r). So also for F ∗(H) ∼= U3(q) it is CF ∗(G)(r) ≤ H ∩ F ∗(G) and
rF
∗(G) ∩ (H ∩ F ∗(G)) = rH∩F

∗(G).

So in all considered cases, we can apply Holt’s result from Lemma 2.44. Then either F ∗(G)

is an alternating group or it is F ∗(G) = H ∩ F ∗(G). The first case could possibly occur for
F ∗(H) ∼= A5 and F ∗(G) ∼= A6. But this contradicts 2 - |G : H| from Hypothesis 1.4. Hence
F ∗(G) = F ∗(H) holds. By Frattini’s argument, this implies G = F ∗(H) NG(S) ≤ H.

2

Lemma 4.2: Assume Hypothesis 1.4. If F ∗(H) is isomorphic to Ln(q) or Un(q) with q = 2f

and n ≤ 4, then Theorem 1.5 holds.

Proof: Let F ∗(H) be isomorphic to Ln(q) or Un(q) with q = 2f and n ≤ 4. By Lemma 3.9,
CG(r) = CH(r) holds for all elements r ∈ R# = Z(S1). Then also CF ∗(G)(r) ≤ H ∩ F ∗(G)

follows. By the previous lemma, we may assume that F ∗(H) is isomorphic to L3(q), L4(q)

or U4(q) for q = 2f .
By (4.2) and (6.1) in [AsSe], there is only one conjugacy class of involutions in L3(q) and
exactly two conjugacy classes in L4(q) and U4(q). The information about centralizers of
involutions in these groups can be found using (4.1)–(4.6) and (6.1)–(6.2) in [AsSe] and by
using the information about outer automorphisms collected in Lemma 2.31.

At first, let be F ∗(H) ∼= L3(q). Then all involutions in F ∗(H) are conjugate in H to an
involution r ∈ Z(S1). If F ∗(H) = H, then rF ∗(G) ∩ (H ∩F ∗(G)) = rH∩F

∗(G) holds. If F ∗(H)

is a proper subgroup of H, let x be an involution in S \S1. It is CF ∗(H)(r) ∼= D1(q) : Z q−1
(3,q−1)

,

where D1(q) = q1+2
+ denotes a semi-extraspecial group of +-type, see Lemma 2.34. In par-

ticular, CH(r) is solvable. Now x can be chosen to induce a field automorphism, a graph
automorphism or a field-graph automorphism of F ∗(H) ∼= L3(q). In the field automorphism
case, CF ∗(H)(x) involves L3(q0) with q2

0 = q, which is not solvable. If x induces a graph
automorphism, then we have CF ∗(H)(x) ∼= L2(q). And if x induces a field-graph automor-
phism, then CF ∗(H)(x) involves U3(q0) with q2

0 = q. In all three cases CG(x) is not solvable,
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except for CL3(2)(x) ∼= L2(2) ∼= S3 or CL3(4)(x) ∼= U3(2) ∼= E32 : Q8. For F ∗(H) ∼= L3(2), it is
CF ∗(H)(r) a 2-group and Out(F ∗(H)) ∼= Z2, soCH(r) does not involve a symmetric group S3.
And for F ∗(H) ∼= L3(4), CF ∗(H)(r) is also a 2-group. Hence CH(r) does not involve E32 : Q8,
as it is Out(L3(4)) ∼= Z2 × S3 by [CoCu]. Therefore, CF ∗(G)(x) cannot be embedded into
CH(r) = CG(r). Hence rF ∗(G)∩(H∩F ∗(G)) = rH∩F

∗(G) holds for F ∗(H) ∼= L3(q). This, to-
gether with CF ∗(G)(r) ≤ H∩F ∗(G), see Lemma 3.9, implies F ∗(H) = F ∗(G), by using Holt’s
result from Lemma 2.44. By Frattini’s argument and Hypothesis 1.4, G = F ∗(H) NG(S) ≤ H
follows.

For F ∗(H) ∼= L4(q) or F ∗(H) ∼= U4(q) let r ∈ Z(S1) be a 2-central involution and t ∈ S1 a rep-
resentative of the conjugacy class of involutions, which are not 2-central in F ∗(H). We identify
in this proof F ∗(H) with L4(q) or U4(q), respectively. Then it is CL4(q)(r) ∼= q1+4 : GL2(q),
CU4(q)(r) ∼= q1+4 : GU2(q) and O2′(CF ∗(H)(t)) ∼= Eq4 : L2(q). AsO2(CF ∗(H)(r)) does not con-
tain an elementary abelian normal subgroup of order q4, a group L2(q) acts on, O2′(CF ∗(H)(t))

cannot be embedded into CF ∗(H)(r). So rF ∗(G) ∩ F ∗(H) = rH∩F
∗(G) follows. In case of

S1 = S, rF ∗(G) ∩ (H ∩ F ∗(G)) = rH∩F
∗(G) holds.

For S1 6= S, let x be an involution in S \ S1. Then in case of F ∗(H) ∼= L4(q), the fol-
lowing holds: The involution x can be chosen to induce a field, a field-graph or a graph
automorphism of L4(q). If x induces a field or a field-graph automorphism, CL4(q)(x) in-
volves a simple group L4(q0) or U4(q0) for q2

0 = q. So both centralizers are not isomorphic
to a subgroup of CH(r), see Lemma 2.29. If x induces a graph automorphism, there are two
conjugacy classes of involutions: Either it is CL4(q)(x) ∼= Sp4(q), which is not involved in
CH(r), or CL4(q)(x) ∼= Sp4(q)∩CSp4(q)(r) ∼= O2(CL4(q)(x))L2(q) holds, where O2(CL4(q)(x))

is elementary abelian of order q3 with R ≤ O2(CL4(q)(x)). It is O2(CL4(q)(x))/R the natural
L2(q)-module.
In the latter case, we distinguish between the cases q > 2 and q = 2: For q > 2, CL4(q)(x) in-
volves a simple group L2(q) and an embedding of CL4(q)(x) into CH(r) embeds O2(CL4(q)(x))

into O2(CH(r)) and maps R onto R, compare Proposition 3.2 in [CKS]. Hence if there is an
element g ∈ G such that (CL4(q)(x))g ≤ CH(r) holds, g normalizes R � S, implying g ∈ H.
The case q = 2 is treated at the end of this proof.

In case F ∗(H) ∼= U4(q) with q > 2, the arguments are the same as in the L4(q)-case: There
are also two conjugacy classes of outer involutions such that for an involution x ∈ S \ S1,
either CU4(q)(x) ∼= Sp4(q) or CU4(q)(x) ∼= O2(CU4(q)(x))L2(q) holds, where O2(CU4(q)(x)) is
elementary abelian of order q3 with R ≤ O2(CU4(q)(x)). Also here it is O2(CU4(q)(x))/R the
natural L2(q)-module; this is exactly as before in the case F ∗(H) ∼= L4(q). As Sp4(q) cannot
be embedded into CH(r), we are left with CU4(q)(x) ∼= q3L2(q), which can be embedded into
CH(r). As above for q > 2, an embedding of CU4(q)(x) into CU4(q)(r) via conjugation with
an element g ∈ G maps R onto R. Hence g ∈ NG(R) ≤ H follows.
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Altogether, if it is q > 2, hence if F ∗(H) is not isomorphic to L4(2) or U4(2), rF ∗(G) ∩ (H ∩
F ∗(G)) = rH∩F

∗(G) holds. For H ∼= L4(2) or H ∼= U4(2), also rF ∗(G) ∩ (H ∩ F ∗(G)) =

rH∩F
∗(G) follows. Additionally, CF ∗(G)(r) is contained in H ∩ F ∗(G) by Lemma 3.9. Then

Holt’s result, compare Lemma 2.44, implies that either F ∗(H) equals F ∗(G) or it is F ∗(H) ∼=
An−1 and F ∗(G) ∼= An. Hence either G = H follows by Frattini’s argument or F ∗(H) ∼=
L4(2) ∼= A8 together with F ∗(G) ∼= A9 arises. This exceptional case is explicitly described in
Lemma 3.5.

We are left with F ∗(H) ∼= L4(2) or F ∗(H) ∼= U4(2) and F ∗(H) being a proper subgroup of
H. For F ∗(H) ∼= L4(2) ∼= A8, it is H ∼= L4(2) : Z2

∼= S8 and for F ∗(H) ∼= U4(2) ∼= PSp4(3),
it is H ∼= U4(2) : Z2 by [CoCu]. In particular, it is H = H ∩ F ∗(G) if we suppose that
F ∗(H) is a proper subgroup of F ∗(G). Let be S ∈ Syl2(H). Then S ∼= D8 o Z2 holds. By
Lemma 3.2, F ∗(G) is simple. By Theorem 3.15 in [Mas], F ∗(G) must be isomorphic to one of
the following groups: A10, A11, PSL4(m) for m ≡ 3 mod 4 or PSU4(m) for m ≡ 1 mod 4.
To restrict these possibilities to F ∗(G) ∼= PSL4(3) and H = H ∩F ∗(G) ∼= U4(2) : Z2, we use
arguments from Proposition 14.3 in [PPSS]. Calculations, excluding the trivial ones, were
performed using [GAP].

Let first F ∗(G) being isomorphic to A10. As by Table 5.2.A in [KlLi], a minimal permutation
representation of U4(2) is of degree 27, we may identify H with the symmetric group S8 on
the set {1, 2, 3, 4, 5, 6, 7, 8} where each element in S8 \ A8 is multiplied with the additional
transposition (9, 10). Let S be a Sylow 2-subgroup of H with Z(S) = 〈(1, 2)(3, 4)(5, 6)(7, 8)〉.
It is E := 〈(1, 2)(9, 10), (3, 4)(9, 10), (5, 6)(9, 10), (7, 8)(9, 10)〉 ≤ A10 a normal subgroup of S.
Then NA10(E)/E ∼= S5, while NH(E)/E ∼= S4 holds. This contradicts Hypothesis 1.4, as
NG(E) 6= NH(E). So F ∗(G) cannot be isomorphic to A10.

We assume now that F ∗(G) is isomorphic to A11 and identify these groups to simplify nota-
tion. It is r = (1, 2)(3, 4)(5, 6)(6, 7) a 2-central involution in A11. Then it is O3(CA11(r)) =

〈(9, 10, 11)〉. But by Hypothesis 1.4, G is of parabolic characteristic 2, so O3(CF ∗(G)(r)) must
be trivial. Hence F ∗(G) cannot be isomorphic to A11, either.

Let now F ∗(G) be isomorphic to PSL4(m) for m ≡ 3 mod 4 or to PSU4(m) for m ≡ 1

mod 4. Let r ∈ S be a 2-central involution. For m > 3, CF ∗(G)(r), and then CG(r) has
components SL2(m), see Table 4.5.1 in [GLS3]. As G is of parabolic characteristic 2, this
implies m = 3. So F ∗(G) ∼= PSL4(3) follows. As |PSL4(3)| is not divisible by 7 by [CoCu],
it is F ∗(H) ∼= U4(2). Hence it is H ∼= U4(2) : Z2 and F ∗(G) ∼= PSL4(3). As a dihedral group
of order 8 contains exactly two elementary abelian subgroups of order 4, S ∼= D8 o Z2 has
exactly two normal elementary abelian subgroups of order 16. Let E1 and E2 be these normal
elementary abelian subgroups. Let E1 consist of 5 involutions out of the conjugacy class of the
2-central involutions and 10 involutions from the other class. Then the 2-local parabolic group
NH(E1) is isomorphic to E1 : S5 and is contained in H by page 26 in [CoCu]. For the other
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group E2, in analogy to the A10-case above, NH(E2)/E2
∼= S4 holds. But NF ∗(G)(E2)/E2

is isomorphic to S5. So NG(E2) 6= NH(E2) follows. Therefore, H ∩ F ∗(G) ∼= U5(2) : Z2 in
F ∗(G) ∼= PSL4(3) contradicts Hypothesis 1.4.

Hence all cases with F ∗(H) ∼= L4(2) or F ∗(H) ∼= U4(2) and F ∗(H) being a proper subgroup
of H cannot occur and the statement of the lemma holds. 2

In the following four lemmas the statement of Theorem 1.5 is shown for F ∗(H) being a linear
or unitary group over a vector space in dimension at least 5.

Lemma 4.3: Assume Hypothesis 1.4.

(a) Let F ∗(H) be isomorphic to Ln(q) with n = 2k+ 1 and q = 2f for f, k ∈ N and k ≥ 2.
Then H ∩ F ∗(G) controls the F ∗(G)-fusion of involutions in F ∗(H).

(b) Let F ∗(H) be isomorphic to L2k(q) with q = 2f for k, f ∈ N and k ≥ 3. For a Sylow
2-subgroup S of H, the Thompson subgroup J(S) is a maximal elementary abelian
subgroup of H. And H ∩ F ∗(G) controls the F ∗(G)-fusion of involutions in F ∗(H).

Proof:

(a) Suppose that F ∗(H) is isomorphic to Ln(q) with n = 2k + 1 and q = 2f for f, k ∈ N
and k ≥ 2. Let V be the natural module for F ∗(H), S ∈ Syl2(H) and S1 = S ∩F ∗(H).
By Lemma 2.32, the 2-rank of F ∗(H) equals k(k + 1)f .
Without restriction, we identify S1 with the set of upper right n × n-matrices where
all diagonal entries are equal to 1. We denote the m × m-identity matrix with Im.
Then we choose elementary abelian 2-groups E1 and E2 of maximal rank in S1 in the

following way: Let E1 be the set of block matrices of shape

(
Ik X

0 Ik+1

)
, where X is a

k × (k + 1)-block, and let E2 be the set of matrices of shape

(
Ik+1 Y

0 Ik

)
, where Y is

a (k + 1)× k-block.
Then [V,E1] ≤ CV (E1) holds, where CV (E1) is of GF (q)-dimension k + 1. Also
[V,E2] ≤ CV (E2) holds, where [V,E2] is a hyperplane in CV (E1). So for every element
x ∈ E1 ∩E2, [V, x] ≤ [V,E2] ≤ CV (E1) holds. It is 〈E1, E2〉 = E1E2, as E1 and E2 are
normal in S1. Additionally, E1 ∩ E2 = Z(E1E2) is elementary abelian of order q(k2).
Let t ∈ S1 be an involution. As t centralizes a subspace of dimension k+1, t is conjugate
in Ln(q) to an involution in E1, so we may assume t ∈ E1. Then [V, t] is contained in
a hyperplane of CV (E1). As E1 can be seen as a vector space over GF (q), Aut(E1)
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induces a group Lk+1(q) on CV (E1); thus all hyperplanes in CV (E1) may supposed to
be conjugate. In particular, t is F ∗(H)-conjugate to an involution in E1 ∩ E2.

It isM := NF ∗(H)(E1E2)/(E1E2) ∼= Lk(q)×Lk(q) and E := E1∩E2 is the correspond-
ing tensor product module for M . So for both factors of M , E is a direct product of k
natural Lk(q)-modules. Then by Lemma 2.54, E is no F-module for Lk(q).
To show that E is no F-module for M = NF ∗(H)(E1E2)/(E1E2), we assume the exis-
tence of a quadratic offender A in M .
If (k, q) 6= (2, 2) holds, M is a direct product of two non-abelian simple groups, hence
A ≤ M has to normalize both simple components of M , which are isomorphic to
Lk(q). We denote these components by L1 and L2. If (k, q) equals (2, 2), in which case
F ∗(H) ∼= L5(2) holds, M is isomorphic to S3 × S3. And also here A normalizes the
factors Li ∼= S3 for i ∈ {1, 2}.
We assume first that A is a direct product A1×A2 such that A1 centralizes L1 and acts
faithfully on L2, whereas A2 acts trivially on L2 and faithfully on L1. As A acts quadrat-
ically on E, [E,A2] ≤ CE(A1) holds and L2 acts on [E,A2]. Then [E,A2, A1] = 1,
so also [E,A2, L2] is trivial. But E is a direct product of natural L2-modules, so
CE(L2) = 1 holds. Hence, it is [E,A2] = 1 and A2 ≤ E1E2. So A2 is trivial. Ana-
logously, A1 ≤ E1E2 follows, so A1 is trivial. Hence A acts faithfully on L1, but E is
no F -module for L1

∼= Lk(q), implying that A ≤ E1E2 holds. But then A centralizes
Z(E1E2) = E. So E is no F-module for M . This implies J(S1) = E1E2, as otherwise
an elementary abelian 2-subgroup of maximal rank, which is not contained in E1E2, is
an offender with E an F-module for M .

To show that E1E2 coincides with the Thompson subgroup J(S), we assume that an
involution x ∈ S \S1 is contained in a maximal elementary abelian subgroup A. Then,
using Lemmas 2.31 and 2.32 for information about automorphisms and 2-ranks, the
following cases are possible:
The involution x admits a field automorphism of F ∗(H) ∼= L2k+1(q), in which case
O2′(CF ∗(H)(x)) ∼= L2k+1(q0) for q2

0 = q holds. Then m2(CH(x)) = m2(F ∗(H))
2 + 1 holds.

Or x admits a graph automorphism, in which case CF ∗(H)(x) is isomorphic to Sp2k(q).
So in both cases, it is m2(CH(x)) = m2(F ∗(H))

2 + 1 = k·(k+1)·f
2 + 1 < k · (k + 1) · f =

m2(F ∗(H)), using k ≥ 2. Thus, there cannot be an elementary abelian 2-group A of
maximal rank in S with x ∈ A. Obviously the same holds if x admits a field-graph
automorphism. Hence E1E2 = J(S) holds.

As every involution t ∈ F ∗(H) is F ∗(H)-conjugate to an involution in E1 ∩ E2 =

Z(E1E2) = Z(J(S)), Lemma 2.8 implies that NG(J(S)) controls the G-fusion of invo-
lutions in F ∗(H). It is 1 6= J(S) � S, so by Hypothesis 1.4, it is NG(J(S)) ≤ H. In
particular, also NF ∗(G)(J(S)) ≤ H ∩ F ∗(G) holds and H ∩ F ∗(G) controls the F ∗(G)-
fusion of involutions in F ∗(H).

50



4. SOME FAMILIES OF CLASSICAL AND EXCEPTIONAL GROUPS

(b) Suppose now that F ∗(H) is isomorphic to Ln(q) with n = 2k and q = 2f for f, k ∈ N
and k ≥ 3. Let V be the natural module for F ∗(H), S ∈ Syl2(H) and S1 = S ∩F ∗(H).
By Lemma 2.32, the 2-rank of F ∗(H) equals k2 · f .
Without restriction, we identify S1 with the set of upper right n×n-matrices where all
diagonal entries are equal to 1. We denote the m ×m-identity matrix with Im. Then
we choose an elementary abelian 2-group E of maximal rank in S1 in the following way:

Let E be the set of block matrices of shape

(
Ik X

0 Ik

)
, where X is a k × k-block.

Then [V,E] ≤ CV (E) holds, where CV (E) is of GF (q)-dimension k. It is E normal in
S1 and E is elementary abelian of order q(k2).
Let t ∈ S1 be an involution. As t centralizes a subspace of dimension k, t is conjugate
in Ln(q) to an involution in E, so we may assume t ∈ E.

It is M := NF ∗(H)(E)/E ∼= Lk(q) × Lk(q) and E is the corresponding tensor product
module for M . So for each factor Lk(q), E is a direct product of k natural modules.
Then by Lemma 2.54, E is no F -module for the simple components Lk(q). To show that
E is no F-module for M = NF ∗(H)(E)/E, one can simply copy the above arguments.
Then E = J(S1) follows.

To show that E coincides with the Thompson subgroup J(S), we assume that an
involution x ∈ S \S1 is contained in a maximal elementary abelian subgroup A. Then,
using Lemmas 2.31 and 2.32 for information about automorphisms and 2-ranks, the
following cases are possible:
If x admits a field automorphism of F ∗(H) ∼= L2k(q), O2′(CF ∗(H)(x)) ∼= L2k(q0) with
q2

0 = q holds. In this case, it is m2(CF ∗(H)(x)) = m2(F ∗(H))
2 . But as m2(CH(x)) =

m2(F ∗(H))
2 + 1 = k2·f

2 + 1 < k2 · f = m2(F ∗(H)) holds, there cannot exist an elementary
abelian 2-group of maximal rank in S with x ∈ A.
So we assume now that x admits a graph automorphism of F ∗(H). Then one gets
either x = y or x = ys for s ∈ Z(S1) and y such that CF ∗(H)(y) ∼= Sp2k(q). It is
CF ∗(H)(ys) = CF ∗(H)(y) ∩CF ∗(H)(s). Hence, it is m2(Sp2k(2

f )) + 1 =
(
k+1

2

)
· f + 1 <

k2 ·f = m2(F ∗(H)), using k ≥ 3. So also in this case, there cannot exist an elementary
abelian 2-group of maximal rank in S with x ∈ A. Obviously for the same reason, x
cannot admit a field-graph automorphism either. Hence E = J(S) holds and J(S) is a
maximal elementary abelian subgroup in H.

As every involution t ∈ F ∗(H) is F ∗(H)-conjugate to an involution in E = J(S) =

Z(J(S)), Lemma 2.8 implies that NG(J(S)) controls the G-fusion of involutions in
F ∗(H) and by Hypothesis 1.4, it is NG(J(S)) ≤ H. Then also H ∩ F ∗(G) controls the
F ∗(G)-fusion of involutions in F ∗(H).

2
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Lemma 4.4: Assume Hypothesis 1.4. If F ∗(H) is isomorphic to Ln(q) with n ≥ 5 and
q = 2f for f ∈ N, then G = H holds.

Proof: As before, we fix S ∈ Syl2(H) and S1 = S ∩ F ∗(H). Let r ∈ R = Z(S1)

be an involution. Lemma 3.9 implies CF ∗(G)(r) = CH∩F ∗(G)(r). And by Lemma 4.3,
rF
∗(G) ∩ F ∗(H) = rH∩F

∗(G) holds.
Let x be an involution in S \S1. To show that x cannot be F ∗(G)-conjugate to r, we assume
the opposite. Then CF ∗(G)(x) ∼= CH∩F ∗(G)(r) holds. The simple group Ln−2(q) is involved
in the Levi complement of CH∩F ∗(G)(r), see Lemma 2.36.
Using Lemma 2.30, x induces a field or a graph or a field-graph automorphism. If x in-
duces a field automorphism, CF ∗(H)(x) involves the simple group Ln(q0) with q2

0 = q, see
Lemma 2.31. To embed Ln(q0) into CH∩F ∗(G)(r), Ln(q0) must be embedded into Ln−2(q),
which contradicts Lemma 2.29.
If x induces a field-graph automorphism, then CF ∗(H)(x) involves a simple group Un(q0) with
q2

0 = q, see Lemma 2.31. SoCH∩F ∗(G)(x) cannot be embedded intoCH∩F ∗(G)(r) = CF ∗(G)(r)

by construction of Un(q0) and Lemma 2.29. Hence we may assume that x induces a graph
automorphism.
In case of n being odd, CF ∗(H)(x) involves a simple group Spn−1(q). Then qn−1 − 1 divides
|Spn−1(q)|, and, except for (q, n − 1) = (2, 6), there is a Zsigmondy prime that does not

divide |Ln−2(q)| = q(
n−2
2 )

n−2∏
i=2

(qi − 1), see Lemma 2.11. For n = 7, the order of Sp6(2) equals

29 · 34 · 5 · 7, which does not divide |L5(2)| = 210 · 32 · 5 · 7 · 31 either. Hence Spn−1(q) cannot
be embedded into Ln−2(q). In particular, if n is odd, x ∈ S \ S1 cannot be F ∗(G)-conjugate
to r.
If n is even, there are two possibilities for CF ∗(H)(x), see Lemma 2.31: Either it is
CF ∗(H)(x) ∼= Spn(q) or CF ∗(H)(x) ∼= CSpn(q)(s) for s ∈ R.
It is |Spn(q)| divisible by qn − 1, so again by Lemma 2.11 there is a Zsigmondy prime that
divides the order of Spn(q) but not the order of Ln−2(q), except for n = 6. But also |Sp6(2)|
does not divide |L4(2)| = 26 · 32 · 5 · 7. Hence in the first case, CH∩F ∗(G)(x) cannot be
embedded into CF ∗(G)(r).
In the second case, using Proposition 3.2 in [CKS], CF ∗(H)(x) involves L ∼= Spn−2(q), which
acts indecomposably on O2(CF ∗(H)(x))/R. In particular, an embedding of CH∩F ∗(G)(x) into
CF ∗(G)(r) normalizes R. Hence, if there exists an element g ∈ F ∗(G) such that xg = r holds,
then it is g ∈ NF ∗(G)(R) ≤ H ∩ F ∗(G) by Hypothesis 1.4.
Altogether, rF ∗(G)∩(H∩F ∗(G)) = rH∩F

∗(G) follows. Together with CF ∗(G)(r) ≤ H∩F ∗(G),
Holt’s result, compare Lemma 2.44, implies F ∗(G) = F ∗(H) and therefore G = H. 2

This completes the proof of Theorem 1.5 for F ∗(H) being isomorphic to a simple group Ln(2f )

for n, f ∈ N. In the following two lemmas, we use similar methods to prove Theorem 1.5
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for F ∗(H) ∼= Un(2f ) and n ≥ 4. The statements concerning the Thompson subgroup in
Lemma 4.3 and Lemma 4.5 are used later in the proof of Lemma 6.3.

Lemma 4.5: Assume Hypothesis 1.4. Let S be a Sylow 2-subgroup of H and S1 = S ∩
F ∗(H). Let F ∗(H) be isomorphic to Un(q) with n ≥ 5 and q = 2f for f ∈ N. Then the
following statements hold:

(a) If (n, q) 6= (5, 2), then H ∩ F ∗(G) controls the F ∗(G)-fusion of involutions in F ∗(H).

(b) If (n, q) = (5, 2), then H ∩ F ∗(G) controls the F ∗(G)-fusion of 2-central involutions in
H.

(c) If n is even, the Thompson subgroup J(S) is a maximal elementary abelian subgroup
of H.

Proof: Suppose that F ∗(H) is isomorphic to Un(q) with n = 2k+ 1 for k ≥ 2 or n = 2k for
k ≥ 3 and q = 2f for f ∈ N. Let V be the natural unitary module for F ∗(H), S ∈ Syl2(H)

and S1 = S ∩ F ∗(H). By Lemma 2.32, the 2-rank of F ∗(H) is k2 · f .
We consider an arbitrary involution t ∈ S1. As t acts quadratically on V and centralizes
a subspace of V of at least GF (q)-dimension k, we can choose a k-dimensional subspace U
of V such that [V, t] ≤ U ≤ CV (t) = [V, t]⊥ holds. Hence U is a maximal totally isotropic
subspace.
The stabilizer of U in F ∗(H) is a maximal Lie-parabolic subgroup P of shape

qk·(2n−3k) : (GLk(q
2)× SUn−2k(q)) ,

where O2(P ), denoted by qk·(2n−3k), is a special 2-group, where E := Z(O2(P )) is elementary
abelian of order q(k2) and O2(P ) � S1, see 2.6.2 in [Wils]. Additionally, E is the tensor
product module for Lk(q2).
As a consequence of Witt’s Lemma, see (20.8) in [Asc1], all the maximal totally isotropic
subspaces are conjugate in Aut(F ∗(H)). Hence without loss of generality, every involution
in F ∗(H) is H-conjugate to an involution in E.
By Theorem B in [GuMa], E is no F-module for Lk(q2). Let A ≤ S1 be an arbitrary
maximal elementary abelian subgroup. Then A cannot be a quadratic offender in P/O2(P )

for E; hence A ≤ O2(P ) follows. So A ≤ CS1(E) and J(S1) ≤ O2(P ) follow and E =

Z(O2(P )) = Z(J(S1)) holds.
In case n = 2 · k, we additionally have that O2(P ) is of order q(k2); thus E = O2(P ) = J(S1)

follows.
Let (n, q) 6= (5, 2), so we have k ≥ 3. Then we can show that J(S1) coincides with J(S):
We assume first that an involution x ∈ S \ S1 is contained in a maximal elementary abelian
subgroup A. By Lemma 2.31, for n = 2k + 1, it is CF ∗(H)(x) ∼= Sp2k(2

f ) and for n = 2k, it
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is either CF ∗(H)(x) ∼= Sp2k(2
f ) or CF ∗(H)(x) ∼= CSp2k(2f )(s) for an element s ∈ Z(S1). By

Lemma 2.32 for k ≥ 3, it is m2(Sp2k(2
f )) + 1 =

(
k+1

2

)
· f + 1 < k2 · f = m2(F ∗(H)). So an

elementary abelian 2-group A of maximal rank in S which contains x cannot exist.
Hence E = Z(J(S)) holds. If additionally n is even, E = J(S1) = J(S) holds.
As every involution in F ∗(H) is Aut(F ∗(H))-conjugate to an involution in E, NF ∗(G)(J(S)) ≤
H ∩ F ∗(G) controls the F ∗(G)-fusion of involutions in F ∗(H), using Hypothesis 1.4 and
Lemma 2.8.
Let now F ∗(H) be isomorphic to U5(2). There are exactly two conjugacy classes of involutions
in F ∗(H), see [CoCu]. Let r be a representative of the conjugacy class of 2-central involutions
and let t be a representative of the conjugacy class of involutions, which are not 2-central in
F ∗(H). It is CF ∗(G)(r) = CH∩F ∗(G)(r) by Lemma 3.9.
If H equals F ∗(H), then also E = Z(J(S)) holds and we are done, using Lemma 2.8 and
Hypothesis 1.4.
So we assume that F ∗(H) is a proper subgroup of H ∩ F ∗(G). Then H = H ∩ F ∗(G) is
isomorphic to Aut(U5(2)) by [CoCu]. Let x ∈ S\S1 be an involution. Then 5 | |CH∩F ∗(G)(x)|
as CF ∗(H)(x) ∼= Sp4(2) ∼= S6 by Lemma 2.31. But 5 - |CH∩F ∗(G)(r)|, as CF ∗(G)(r) =

CH∩F ∗(G)(r) = CH(r) is of order 156888 by [CoCu], so CF ∗(G)(x) cannot be embedded into
CF ∗(G)(r). Hence x cannot be F ∗(G)-conjugate to r.
Assume now that t is F ∗(G)-conjugate to r. Then it is |S : S1| = 2 and every involution
in S1 is F ∗(G)-conjugate to r. Hence xF ∗(G) ∩ S1 = ∅ holds. But by Thompson Transfer,
see Lemma 2.7, then F ∗(G) cannot be simple which contradicts Lemma 3.2. Hence for
F ∗(H) ∼= U5(2), rF ∗(G) ∩ (H ∩ F ∗(G)) = rH∩F

∗(G) holds. 2

Lemma 4.6: Assume Hypothesis 1.4. If F ∗(H) is isomorphic to Un(q) with n ≥ 5 and
q = 2f for f ∈ N, then G = H holds.

Proof: As before, we fix S ∈ Syl2(H) and S1 = S ∩ F ∗(H). Let r ∈ R = Z(S1) be an
involution. Lemma 3.9 implies CF ∗(G)(r) = CH∩F ∗(G)(r). And by Lemma 4.5, rF ∗(G) ∩
F ∗(H) = rH∩F

∗(G) holds.
Let x be an involution in S \S1. To show that x cannot be F ∗(G)-conjugate to r, we assume
the opposite. Then CF ∗(G)(x) ∼= CH∩F ∗(G)(r) holds. The group Un−2(q) is involved in the
Levi complement of CF ∗(G)(r), see Lemma 2.36. The group Un−2(q) is simple, except for
F ∗(H) ∼= U5(2).
At first let n be odd with (n, q) 6= (5, 2). Using Lemma 2.31, it is CF ∗(H)(x) ∼= Spn−1(q).
As the Lie rank of Spn−1(q) is n−1

2 and the Lie-rank of Un−2(q) is n−3
2 , Lemma 2.29 implies

that CH∩F ∗(G)(x) cannot be embedded into CF ∗(G)(r). Hence if n is odd, x ∈ S \ S1 cannot
be F ∗(G)-conjugate to r.
If n is even, there are two possibilities for CF ∗(H)(x), see Lemma 2.31: Either it is
CF ∗(H)(x) ∼= Spn(q) or CF ∗(H)(x) ∼= CSpn(q)(s) for an involution s ∈ R. The Lie-rank
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of Spn(q) is n
2 . This exceeds n−2

2 , which is the Lie rank of Un−2(q). Hence in the first
case, again with Lemma 2.29, CH∩F ∗(G)(x) cannot be embedded into CF ∗(G)(r). In the
second case, using Proposition 3.2 in [CKS], CF ∗(H)(x) involves L ∼= Spn−2(q), which acts
indecomposably on O2(CF ∗(H)(x))/R. In particular, an embedding of CH∩F ∗(G)(x) into
CF ∗(G)(r) normalizes R. Hence, if there exists an element g ∈ G such that xg = r, then
g ∈ NG(R) ≤ H by Hypothesis 1.4.
We consider now F ∗(H) ∼= U5(2). Then by Lemma 4.5, rF ∗(G) ∩ (H ∩ F ∗(G)) = rH∩F

∗(G)

holds.
Altogether, rF ∗(G)∩ (H ∩F ∗(G)) = rH∩F

∗(G) follows. Together with CF ∗(G)(r) ≤ H ∩F ∗(G)

this implies F ∗(G) = F ∗(H), using Holt’s result from Lemma 2.44. Using Frattini’s argument,
G = H follows. 2

Next we show for F ∗(H) being isomorphic to G2(2f )′, 2F4(q)′, F4(q) or a symplectic group
that G = H holds. In all these cases, we use Lemma 3.9 and Holt’s result from Lemma 2.44.
To do so, we have to show that H∩F ∗(G) controls the F ∗(G)-fusion of a 2-central involution.

Lemma 4.7: Assume Hypothesis 1.4. If it is F ∗(H) ∼= G2(q)′ for q = 2f , then G = H holds.

Proof: Suppose F ∗(H) ∼= G2(q)′ for q = 2f . We identify F ∗(H) and G2(q)′ to simplify
notation. Due to Lemma 3.9, it is CF ∗(G)(r) ≤ H ∩ F ∗(G) for all elements r ∈ R#.
Assume first q ≥ 4. Then there are, according to (18.2) in [AsSe], exactly two conjugacy
classes of involutions in G2(q), one of which is 2-central. Let r ∈ R# be a representative
of the class of 2-central involutions and let t be a representative of the other class. By
(18.4) in [AsSe], it is O2′(CG2(q)(r)) ∼= q1+4 : L2(q) and O2′(CG2(q)(t)) ∼= q3 : L2(q). Assum-
ing r and t being F ∗(G)-conjugate, implies the existence of an embedding of CF ∗(G)(t)

into CF ∗(G)(r) = CH∩F ∗(G)(r) which maps O2′(CG2(q)(t))/O2(CG2(q)(t)) ∼= L2(q) onto
O2′(CG2(q)(r))/O2(CG2(q)(r)) ∼= L2(q). Hence an embedding of CF ∗(G)(t) into CF ∗(G)(r)

embeds O2(CG2(q)(t)) into O2(CH(r)).
But for q > 4, L2(q) acts irreducibly on O2(CG2(q)(r)) modulo its center and there is no ele-
mentary abelian normal subgroup of order q3 in O2(CG2(q)(r)) ∼= q1+4. Hence O2′(CG2(q)(t))

cannot be embedded into CF ∗(G)(r). So r and t are not conjugate in F ∗(G) for q > 4.
In case q = 4, by Lemma 2.37, L2(4) ∼= A5 induces a direct sum of two permutation modules
for the alternating group A5 on O2(CG2(4)(r)) modulo its center, in which case it is not
possible to embed an elementary abelian group of order 43 into O2(CG2(4)(r)). So for q = 4,
also rF ∗(G) ∩ F ∗(H) = rH∩F

∗(G) holds.
Additionally, for q ≥ 4, every involution x ∈ S which induces an outer automorphism on
G2(q), is, due to Lemma 2.31, conjugate to a field automorphism. Therefore, the centralizer
of x in G2(q) involves a group G2(q0) for q2

0 = q. As Sylow 2-subgroups of G2(q0) are not
abelian, G2(q0) does not occur as a subgroup of L2(q), because the Sylow 2-subgroups of L2(q)
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are abelian. HenceCF ∗(G)(x) cannot be embedded intoCF ∗(G)(r) and rF
∗(G)∩(H∩F ∗(G)) =

rH∩F
∗(G) holds for q ≥ 4.

So we are left with q = 2. According to [CoCu], there is exactly one conjugacy class
of involutions in G2(2)′. So every involution r ∈ G2(2)′ is 2-central and by Lemma 3.9,
CF ∗(G)(r) = CH∩F ∗(G)(r) holds. The outer automorphism group of G2(2)′ is of order 2. So
let x be an involution in S \ S1, inducing an outer automorphism. Then, by [CoCu], it is
CG(r) = CH(r) ∼= 21+4

+ S3, in which case no alternating group A4 is involved in CF ∗(G)(r).
But, due to [CoCu], CF ∗(G)(x) involves a group S4, so also an alternating group A4. So again
rF
∗(G) ∩ (H ∩ F ∗(G)) = rH∩F

∗(G) follows.
Altogether, Lemma 2.44 is applicable and F ∗(G) = F ∗(H) follows which implies G = H as
before. 2

Lemma 4.8: Assume Hypothesis 1.4. If it is F ∗(H) ∼= 2F4(q)′, then G = H holds.

Proof: We identify the groups F ∗(H) and 2F4(q)′. By Lemma 2.31, there is no involution
in Aut(F ∗(H)) \ Inn(F ∗(H)). So every involution in H is contained in F ∗(H). Further-
more, in 2F4(q)′ there are, due to (18.2) in [AsSe], exactly two classes of involutions with
representatives s and t, one of which is 2-central. Let the involution s be 2-central in H,
so CF ∗(G)(s) = CH∩F ∗(G)(s) holds by the first part of Lemma 3.9. By (18.6) in [AsSe],
|CF ∗(G)(s)| is not divisible by 3, whereas the order of CF ∗(H)(t), and therefore CF ∗(G)(t),
is divisible by 3. So sF ∗(G) ∩ (H ∩ F ∗(G)) = sH∩F

∗(G) follows. Again Lemma 2.44 implies
F ∗(G) = F ∗(H) and therefore G = H. 2

Lemma 4.9: Assume Hypothesis 1.4. For F ∗(H) ∼= F4(q) with q = 2f and f ∈ N, it is
G = H.

Proof: Let F ∗(H) ∼= F4(q) with q = 2f and f ∈ N. We identify the groups F ∗(H) and
F4(q) to simplify notation and fix S ∈ Syl2(H) with S1 = S ∩ F ∗(H) ∈ Syl2(F ∗(H)). It is
Z(S1) = R1R2, where R1 is a long root subgroup of F ∗(H) and R2 a short root subgroup of
F ∗(H), compare Lemma 2.24.
By (13.1) in [AsSe] there are exactly four conjugacy classes of involutions in F ∗(H). Let t1,
t4, s := t1 · t4 and v be representatives of these four conjugacy classes in S1. Thereby t1, t4
and s are 2-central involutions in F ∗(H), while v is not 2-central. We can choose s ∈ Z(S)

such that s is 2-central in H, as a graph automorphism of F4(q) fuses t1 and t4, see (13.1)
in [AsSe]. Hence CG(s) = CH(s) follows from the first part of Lemma 3.9. This implies
CF ∗(G)(s) = CH∩F ∗(G)(s).

By (13.1)–(13.3) in [AsSe], it is CF ∗(H)(t1) = O2′(P{1}′) and CF ∗(H)(t4) = O2′(P{4}′) and
CF ∗(H)(s) = O2′(P{1,4}′), where PJ is a Lie-parabolic subgroup of F ∗(H), which corresponds

to the Dynkin diagram of type F4

α1 α2 α3 α4

with the roots labelled by elements in
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J = Π̂ \ J ′. Additionally, a graph automorphism interchanges P{1}′ and P{4}′ .
Section 13 in [AsSe] provides the following information:
It is CF ∗(H)(t1) = Q1 : L1, CF ∗(H)(t4) = Q4 : L4, CF ∗(H)(s) = Q1,4 : L1,4 and CF4(q)(v) =

Qv : Lv with L1
∼= L4

∼= Sp6(q), L1,4
∼= Sp4(q) and Lv ∼= L2(q)×L2(q) ∼= Ω+

4 (q). Additionally,
Q1 = O2(CF ∗(H)(t1)) ∼= O2(CF ∗(H)(t4)) = Q4 is a group of order q15 with Φ(Q1) = Q′1 = R1

and Φ(Q4) = Q′4 = R2. By Example 3.2.4 in [GLS3], for both i ∈ {1, 4}, Qi/Z(Qi) is a spin
module, Z(Qi)/Ri is a natural module and Ri is a trivial module ofGF (q)-dimensions 8, 6 and
1, respectively. Additionally, by the same source, Z(Qi) and Qi/Ri are both indecomposable
as Li-modules over GF (q). Furthermore, it is |Z(CF ∗(H)(v))| = q2 and Z(CF ∗(H)(s)) = R1R2

is of order q2 by (13.3) in [AsSe].

The simple group Sp6(q) is involved in CF ∗(H)(t1) and in CF ∗(H)(t4). So these centralizers
cannot be embedded into CH∩F ∗(G)(s) = CF ∗(G)(s), as Sp6(q) cannot be embedded into
Sp4(q), due to Lemma 2.29. Hence both involutions, t1 and t4, cannot be F ∗(G)-conjugate
to s.

To show that the remaining involution v cannot be conjugate to s in F ∗(G), the structure of
the centralizers of these involutions needs to be considered in more detail:
By (13.3) in [AsSe], Q1,4 = O2(CF ∗(H)(s)) equals Q1Q4, which is of order q20. Additionally,
by the same source, Q1,4 = [Q1,4, L1,4] holds. It is Φ(Q1 ∩Q4) ≤ Φ(Q1) ∩Φ(Q4) = R1 ∩R2,
which is trivial. Hence Q1 ∩ Q4 is elementary abelian and |Qi/(Q1 ∩ Q2)| = |Q1,4/Qi| =

q20−15 = q5 holds for both i ∈ {1, 4}. Hence Q1∩Q4 is of order q10. As NL1(CF ∗(H)(s)/Q1) is
a Lie-parabolic subgroup in L1

∼= Sp6(q), Proposition (3.2) in [CKS] provides that Q1,4/Q1
∼=

Q4/(Q1∩Q4) is an elementary abelian and indecomposable L1,4-module of GF (q)-dimension
5. Additionally, it is Q4/(Q1∩Q4) a non-split extension of a 1-dimensional module, L1,4 acts
trivially on, and an irreducible L1,4-module of GF (q)-dimension 4. As P{1}′ and P{4}′ are
interchanged by a graph automorphism, the same holds for Q1/(Q1 ∩Q4).
Hence Q1,4/(Q1 ∩ Q4) is a direct sum of two indecomposable L1,4-modules of dimension 5

and involves a direct sum of two irreducible L1,4-modules of GF (q)-dimension 4.
Example 3.2.4 in [GLS3] states that Z(Q1)/R1 is a natural L1-module of GF (q)-dimension
6. Hence, using |Q1 ∩ Q4| = q10 and the symmetry of Q1 and Q4, (Q1 ∩ Q4)/(R1R2) is a
direct sum of two irreducible L1,4-modules of GF (q)-dimension 4.
As Lv ∼= Ω+

4 (q) can be embedded into L1,4
∼= Sp4(q), we assume the existence of an embedding

of CF ∗(H)(v) into CF ∗(G)(s) = CH∩F ∗(G)(s). Let X be the corresponding image of CF ∗(H)(v)

in CF ∗(G)(s). Then, as Ω+
4 (q) . L1,4 cannot normalize a non-trivial 2-subgroup in L1,4

∼=
Sp4(q), there has to exist an isomorphic image of Qv = O2(CF ∗(H)(v)) in Q1,4. It is Qv a
group of order q18 by (13.1) in [AsSe] and Q1,4 is of order q20. The existence of a subgroup
Y ≤ X of order q18 in Q1,4, which is normalized by an orthogonal group Ω+

4 (q), implies that Y
involves the four irreducible L1,4-modules of GF (q)-dimension 4 and R1R2 = Z(CF ∗(H)(s)).
In particular, Z(CF ∗(H)(s)) = R1R2 ≤ Z(X). By (13.3) in [AsSe], it is |Z(X)| = q2, hence
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Z(X) = R1R2. But this is a contradiction to |Z(X)| ≥ |〈R1, R2, v〉| = 2q2. Hence there is
no such embedding of CF ∗(H)(v) into CF ∗(G)(s) = CH∩F ∗(G)(s) and v cannot be F ∗(G)-
conjugate to s.

So it is sF ∗(G) ∩ F ∗(H) = sH∩F
∗(G). If there is an involution x ∈ S \ S1, the following

holds: If f is even, every involution x ∈ S \ S1 which induces an outer automorphism on
F ∗(H) induces a field automorphism, see Lemma 2.31. Then it is O2′(CF ∗(H)(x)) ∼= F4(q0)

for q2
0 = q, again by Lemma 2.31. The group F4(q0) is simple and of Lie rank 4, whereas

Sp4(q) is of Lie rank 2. So by Lemma 2.29, CF ∗(H)(x) cannot be embedded into CF ∗(G)(s).
Hence x is not F ∗(G)-conjugate to s if f is even.
If f is odd, every involution x ∈ S \ S1 induces a graph automorphism with CF ∗(H)(x) ∼=
2F4(q), see Lemma 2.31. Here we use Lemma 2.32 to see that |2F4(q)|2 > |Sp4(q)|2 holds.
Hence again, CF ∗(H)(x) cannot be embedded into CF ∗(G)(s). So x cannot be F ∗(G)-
conjugate to s if f is odd.

Altogether, sF ∗(G) ∩ (H ∩ F ∗(G)) = sH∩F
∗(G) and CF ∗(G)(s) ≤ H ∩ F ∗(G) hold. So

Lemma 2.44 implies F ∗(G) = F ∗(H). By Frattini’s argument G = H follows. 2

If F ∗(H) is isomorphic to a symplectic group F ∗(H) ∼= Sp2n(2f )′ for f ∈ N, then G = H

holds, which is shown in the following three lemmas.
First we deal with F ∗(H) ∼= Sp4(2)′ ∼= A6.

Lemma 4.10: Assume Hypothesis 1.4. If it is F ∗(H) ∼= Sp4(2)′, then G = H holds.

Proof: There is only one conjugacy class of involutions in Sp4(2)′ ∼= A6. Let S be a Sylow
2-subgroup of H ∩ F ∗(G), so S1 = S ∩ F ∗(H) is a Sylow 2-subgroup of F ∗(H). It is S1

a dihedral group of order 8 and every involution z ∈ F ∗(H) is conjugate in F ∗(H) to a
2-central involution. Let z ∈ S1 be an involution. Then we may assume that 〈z〉 = Z(S1)

holds. Hence z is normalized by every element in S ∈ Syl2(H). So 1 6= 〈z〉� S holds, which
implies CG(z) ≤ H, by Hypothesis 1.4. Then also CF ∗(G)(z) ≤ H ∩ F ∗(G) holds.
The outer automorphism group of F ∗(H) ∼= Sp4(2)′ is elementary abelian of order 4, so it
is Out(F ∗(H)) = 〈α1, α2〉 for involutions α1 and α2. If there are involutions in S \ S1, then
four possibilities for H need to be investigated. The used information about involutions in
S \ S1 can be found in [CoCu].
For H∩F ∗(G) ∼= Sp4(2)′〈α1〉 ∼= S6, one gets CF ∗(G)(z) = CH∩F ∗(G)(z) ∼= D8×Z2. There are
two conjugacy classes of outer involutions; for every involution t ∈ S \S1, it is CH∩F ∗(G)(t) ∼=
S4 × Z2. So the order of CF ∗(G)(t) is divisible by 3, while |CF ∗(G)(z)| is not.
For H ∩ F ∗(G) ∼= Sp4(2)′〈α2〉 ∼= PGL2(9), CF ∗(G)(z) = CH∩F ∗(G)(z) is of order 16 and
there is only one class of outer involutions. For every involution t ∈ S \ S1, the order of
CH∩F ∗(G)(t) equals 20. So the order of CF ∗(G)(t) is divisible by 5, while |CF ∗(G)(z)| is not.
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For H ∩ F ∗(G) ∼= Sp4(2)′〈α1 · α2〉 ∼= M10, there are no involutions in S \ S1.
And for H ∩F ∗(G) ∼= Aut(Sp4(2)′), it is CF ∗(G)(z) = CH∩F ∗(G)(z) of order 32 and there are
exactly two conjugacy classes of outer involutions with representatives t1 and t2, such that
CH∩F ∗(G)(t1) is of order 48 and CH∩F ∗(G)(t2) is of order 40. Then |CF ∗(G)(t1)| is divisible
by 3 and |CF ∗(G)(t2)| is divisible by 5, while |CF ∗(G)(z)| is not.
Altogether, zF ∗(G)∩(H∩F ∗(G)) = zH∩F

∗(G) holds. Together withCF ∗(G)(z) ≤ H∩F ∗(G) we
can apply Holt’s result from Lemma 2.44. Then either F ∗(G) = F ∗(H) holds or it is F ∗(G) ∼=
A7. For F ∗(G) ∼= A7 it is G ∼= A7 or G ∼= S7. Considering NA7(〈(1, 2)(3, 4), (1, 3)(2, 4)〉)
and NS7(〈(1, 2)(3, 4), (1, 3)(2, 4)〉), which both contain a full Sylow 2-subgroup and a non-
trivial normal 3-subgroup, neither A7 nor S7 are of parabolic characteristic 2. Hence we get
F ∗(G) = F ∗(H) and as before G = H. 2

Lemma 4.11: Assume Hypothesis 1.4. If it is F ∗(H) ∼= Sp4(q) for q = 2f > 2, then G = H

holds.

Proof: Let F ∗(H) ∼= Sp4(q) for q = 2f > 2 and let S1 be a Sylow 2-subgroup of F ∗(H) ∼=
Sp4(q). Due to Theorem 6 and Theorem 10 in [Dye1], there are exactly three conjugacy
classes of involutions, which are all 2-central in F ∗(H). It is Z(S1) the product of two root
groups R1 and R2, which are interchanged in case of a graph automorphism, see Lemma 2.24.
The information about centralizers of involutions in Sp4(q) are taken from (7.9)–(7.11) in
[AsSe]. Let r1 ∈ R1 and r2 ∈ R2 be involutions. Then their centralizers in F ∗(H) involve a
simple group L2(q), hence they are not solvable, as q 6= 2. We choose r1 and r2 such that
s := r1 · r2 is an involution which is diagonal in Z(S1) and for which CH(s) = S1 · A holds,
where A ≤ H contains the elements of H which induce outer automorphisms on F ∗(H).
Hence s is 2-central in H and A is isomorphic to a subgroup of Out(Sp4(q)). In particular,
CH(s), and therefore CH∩F ∗(G)(s) is solvable by Lemma 2.31. As r1, r2 and s represent all
three conjugacy classes of involutions in F ∗(H), we have shown sF ∗(G) ∩F ∗(H) = rH∩F

∗(G).
As s is 2-central in H, by applying Lemma 3.9 (a), it is CF ∗(G)(s) = CH∩F ∗(G)(s).
It is Out(F ∗(H)) a cyclic group of order 2 · f and all involutions in S \ S1 are conjugate in
H. If f is even, every involution x ∈ S \S1 can be assumed to be a field automorphism with
CF ∗(H)(x) ∼= Sp4(q0) for q2

0 = q, which is not solvable. If f is odd, the centralizer CSp4(q)(x)

of any involution x ∈ H \ F ∗(H) is isomorphic to Sz(q), which is also not solvable. Hence
Sp4(q0) with q2

0 = q or Sz(q) cannot be embedded into CF ∗(G)(s).
Altogether, CF ∗(G)(s) ≤ H ∩ F ∗(G) and sF ∗(G) ∩ (H ∩ F ∗(G)) = sH∩F

∗(G) hold. The result
follows as before with Lemma 2.44. 2

Lemma 4.12: Assume Hypothesis 1.4. If F ∗(H) ∼= Sp2n(q) holds for q = 2f and n ≥ 3,
then G = H follows.

Proof: Let F ∗(H) ∼= Sp2n(q) for q = 2f and n ≥ 3 and let t be an involution in S1 =
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S ∩ F ∗(H) ∈ Syl2(F ∗(H)). Let V be the natural symplectic module. Then t normalizes the
natural module V for Sp2n(q) and, as t is an involution, [V, t] ≤ CV (t) = [V, t]⊥ holds. Hence
[V, t] is a totally isotropic subspace. Then there is a maximal totally isotropic subspace U
such that [V, t] ≤ U ≤ [V, t]⊥ = CV (t) holds. In particular, [U, t] = 1 follows.
Let P be the stabilizer of U in F ∗(H). Then P is a Lie-parabolic subgroup of F ∗(H) with
unipotent radical O2(P ). Hence O2(P ) is elementary abelian of maximal 2-rank, so by 3.12
in [GuMa] the rank of O2(P ) equals f ·

(
n+1

2

)
. By 3.13 in [GuMa], every unipotent elementary

abelian subgroup of F ∗(H) which is of maximal 2-rank is F ∗(H)-conjugate to O2(P ). As
O2(P ) has to be a weakly closed subgroup in S1 relative to Sp2n(q) by 4.2 in [Gro], O2(P )

equals the Thompson subgroup J(S1).
As a consequence of Witt’s Lemma, see (20.8) in [Asc1], all the maximal totally singular
subspaces are conjugate in F ∗(H), so every involution in F ∗(H) is F ∗(H)-conjugate to an
involution in J(S1) � S for S1 ≤ S ∈ Syl2(H).

To show that J(S1) = J(S), we assume the existence of an elementary abelian 2-group
A of maximal rank which contains an involution x ∈ S \ S1. Lemma 2.31 implies that
every involution x ∈ S \ S1 can be assumed to induce a field automorphism, for which
O2′(CF ∗(H)(x)) ∼= Sp2n(q0) with q2

0 = q holds. But it is m2(Sp2n(q0)) + 1 = n·(n+1)·f
4 + 1 <

n·(n+1)·f
2 = m2(Sp2n(q)), hence such an elementary abelian group A cannot exist. Hence

J(S) = J(S1) and so Hypothesis 1.4 and Lemma 2.8 imply that NF ∗(G)(J(S)) ≤ H ∩ F ∗(G)

controls the F ∗(G)-fusion of involutions in J(S).

Let s ∈ Z(S) be an involution. Then by Lemma 3.9 (a), it is CF ∗(G)(s) = CH∩F ∗(G)(s).
Additionally, for an involution x ∈ S \ S1 such that x ∼F ∗(G) s holds, Sp2n(q0) has to
be embedded into Sp2n−4(q), see Lemma 2.31 and (7.9) in [AsSe]. But this contradicts
Lemma 2.29. In conclusion, one gets CF ∗(G)(s) ≤ H ∩ F ∗(G) and sF ∗(G) ∩ (H ∩ F ∗(G)) =

sH∩F
∗(G). Thus Lemma 2.44 implies F ∗(G) = F ∗(H). Hence G ≤ F ∗(H) NG(S1) ≤ H

follows. 2

The following lemma from [SaSt] states that Q = O2(CF ∗(H)(R)) can be assumed to be not
contained in any group K ∈ P (X).

Lemma 4.13 ([SaSt], Lemma 4.9): Assume Hypothesis 1.4. If F ∗(H) is not isomorphic
to 2

F4(2f )′, L3(2f ), Sp4(2f )′, G2(2)′ or to a simple group of Lie rank 1, then M(Q) = ∅
holds. For K ∈ P (X) with 1 6= X ≤ S, this implies Q 6≤ K.
For F ∗(H) being isomorphic to 2

F4(2f )′, L3(2f ), Sp4(2f )′, G2(2)′ or a simple group of Lie
rank 1, the result G = H follows by the previous results; so we may assume in the following
that Q 6≤ K for every K ∈ P (X) with 1 6= X ≤ S.

Proof: This is Lemma 4.9 in [SaSt]. 2
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We end this chapter with a concluding remark, assembling some facts, which have been
proved so far.

Remark 4.14: Let the notation and properties listed in Hypothesis 1.4 hold. Then the
following statements hold:

(a) Lemma 4.1, Lemma 4.2, 4.4 and 4.6 imply that Theorem 1.5 holds for F ∗(H) ∼= Ln(2f )

or F ∗(H) ∼= Un(2f ) and F ∗(H) being isomorphic to a simple group of Lie rank 1 over
a field of characteristic 2. Lemma 4.10, 4.11 and 4.12 show that G = H also holds for
F ∗(H) being isomorphic to a simple symplectic group. And by Lemma 4.9, Lemma 4.8
and Lemma 4.7, the result G = H also holds for F ∗(H) being isomorphic to any of the
simple exceptional groups F4(2f ), 2

F4(2f )′ and G2(2f )′.

(b) Lemma 2.19 and Lemma 2.20 provide Ω+
4 (2f ) ∼= L2(2f ) × L2(2f ), Ω−4 (2f ) ∼= L2(22f ),

Ω+
6 (2f ) ∼= L4(2f ) and Ω−6 (2f ) ∼= U4(2f ). Hence Theorem 1.5 still has to be shown for

F ∗(H) being isomorphic to one of the following groups: Ω±2m(2f ) with m ≥ 4, 3
D4(2f ),

E6(2f ), 2
E6(2f ), E7(2f ) and E8(2f ) for f ∈ N.

(c) For F ∗(H) being isomorphic to Ω±2m(q) with m ≥ 4, 3D4(q), E6(q), 2E6(q), E7(q) or
E8(q), each with q = 2f , it is |Q| ≥ q9 for Q = O2(CF ∗(H)(R)) by Lemma 2.36. Hence
we assume |Q| ≥ q9 in the following.
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Chapter 5

Centralizers of involutions in Q

Throughout the following section we assume that Hypothesis 1.4 holds and, by Lemma 3.2,
that F ∗(G) is a non-abelian simple group. We fix a Sylow 2-subgroup S ∈ Syl2(H), hence
S1 = S ∩ F ∗(H) is a Sylow 2-subgroup of the simple group of Lie type F ∗(H).
Using the results of the previous chapter, collected in Remark 4.14, we may assume that
F ∗(H) is isomorphic to one of the following groups: Ω±2m(2f ) with m ≥ 4, 3

D4(2f ), E6(2f ),
2
E6(2f ), E7(2f ) or E8(2f ).

It is R = Z(S1) a long root group, hence elementary abelian of order q = 2f , see Remark 2.23.
And it is Q = O2(CF ∗(H)(R)) a large subgroup in F ∗(H) and also in H by Lemma 2.38.
Particularly, as S ∈ Syl2(H) centralizes a non-trivial element in R = Z(Q), S ≤ NH(Q) holds.
Hence, using Hypothesis 1.4, it is NG(Q) = NH(Q). Additionally, Q is a special 2-group with
R = Q′ = Φ(Q) = Z(Q), compare Lemma 2.36. By Remark 4.14, we may assume |Q| ≥ q9.

The aim of this chapter is to show CG(z) ≤ H for every involution z ∈ Q. As z is an element
of O2(CG(z)), it is sufficient to show that the set {K | K ∈ P (CQ(z)), z ∈ O2(K)} is empty,
as then also {K | K ∈M(CQ(z)), z ∈ O2(K)} = ∅ holds. This implies CG(z) ≤ H.
Hence we assume the existence of an involution z ∈ Q such that CG(z) 6≤ H holds. Then it
is CG(z) ∈ M(CQ(z)) and so P (CQ(z)) 6= ∅. We suppose K ∈ P (CQ(z)) and additionally
let z be an element of O2(K).

The structure of the centralizer of an involution in Q is described in the following lemma.
In its proof we cite Lemma 2.36, so we restrict F ∗(H) to be isomorphic to the groups listed
above, although the lemma holds in more generality.

Lemma 5.1: Let Hypothesis 1.4 hold and let F ∗(H), R and Q = O2(CF ∗(H)(R)) be as
described in the paragraphs at the beginning of this chapter. In particular, we assume
F ∗(H) being isomorphic to Ω±2m(q) with m ≥ 4, 3D4(q), E6(q), 2E6(q), E7(q) or E8(q) for
q = 2f ∈ N. Then the following statements hold:

63



5. CENTRALIZERS OF INVOLUTIONS IN Q

(a) The group Q ist semi-extraspecial. Hence for every maximal subgroupM in R = Z(Q),
the factor group Q/M is extraspecial.

(b) For |R| = q > 2, there is an integer l such that Q ∼= Dl(q) holds. By Lemma 2.34, Q is
a central product of groups D1(q) ∈ Syl2(L3(q)).
In case of |Q| > q3, for every involution x ∈ Q \R, the centralizer CQ(x) is isomorphic
to Z̃ × U for an elementary abelian subgroup Z̃ of order q and a semi-extraspecial
2-group U with Z(U) = R. Additionally, U is of the same type (+ or −) as Q.

Proof:

(a) Due to Remark 4.14, all possibilities for F ∗(H) and Q are listed in Lemma 2.36. In
particular, Q is special. LetM be a maximal subgroup of R = Z(Q). As R is elementary
abelian, R/M is a group of order 2. It is (Q/M)′ = Q′/M = R/M , Φ(Q/M) =

Φ(Q)/M = R/M and R/M ≤ Z(Q/M). Due to Lemma 7.1 in [Pie], [Q, y] = R holds
for every element y ∈ Q \ R. For yM /∈ R/M then yM /∈ Z(Q/M) follows, as it is
y ∈ Q \R. So Z(Q/M) = R/M holds. Hence Q is semi-extraspecial.

(b) The structure of Q follows from [Beis] and [Timm]. Let x ∈ Q \ R be an involution.
If x ∈ D1(q), then by (4.2) in [Col2], CD1(q)(x) is elementary abelian of order q2; for
x ∈ Q1(q), one gets that CQ1(q)(x) is a homocyclic group of order q2, see [Col1]. For
F ∗(H) ∼= Un(q), the structure of CQ(x) follows from [Timm] and in this case, Q/R is
the natural unitary module over GF (q2) for Un−2(q). Hereby Un−2(q) acts transitively
on the one-dimensional subspaces of the module, see 10.12 in [Tayl]. As every involution
generates such a subspace, we may assume x ∈ D1(q) and the claim, concerning the
structure of CQ(x), follows.
As by assumption F ∗(H) is not isomorphic to Un(q), it is Q ∼= Dl(q) with l ∈ N.

2

For the remainder of this chapter we work under the following hypothesis:

Hypothesis 5.2: Let the notation and properties listed in Hypothesis 1.4 hold. Using Re-
mark 4.14, we assume F ∗(H) to be isomorphic to Ω±2m(q) with m ≥ 4, 3D4(q), E6(q), 2E6(q),
E7(q) or E8(q) for q = 2f ∈ N. We further let be S ∈ Syl2(H), S1 = S ∩ F ∗(H), R = Z(S1)

and Q = O2(CF ∗(H)(R)) and we assume the existence of an involution z ∈ Q \ R such that
CG(z) 6≤ H holds.
This implies CG(z) ∈ M(CQ(z)) with z ∈ O2(CG(z)), hence P (CQ(z)) 6= ∅. Suppose
K ∈ P (CQ(z)) with additional condition z ∈ O2(K).
Remark 4.14 allows to assume |Q| ≥ q9. Due to Lemma 5.1, CQ(z) = Z̃ ×U holds such that
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Z̃ is elementary abelian of order q = |R| and U is special. And we may assume that Q is of
+-type, as F ∗(H) is not isomorphic to an unitary group. In particular, using Lemma 2.34
and Lemma 5.1, Q, and hence also U , is generated by involutions.

Lemma 5.3: Suppose Hypothesis 5.2. Then O(K) ≤ H holds for every K ∈ P (CQ(z)).

Proof: Let z ∈ Q be an involution such that CG(z) 6≤ H holds. This implies CG(z) ∈
M(CQ(z)). So it is P (CQ(z)) 6= ∅. Suppose K ∈ P (CQ(z)), thus CQ(z) ≤ K 6≤ H and
O2(K) 6= 1 holds. Because of CQ(z) ≤ S ∩ F ∗(H) = S1, we can choose T ∈ Syl2(K ∩ H)

such that CQ(z) ≤ T ≤ S holds. Particularly, it is R = Z(Q) ≤ T and we may assume
K ∈ P (CQ(z)) \ P ∗(CQ(z)), as otherwise O(K) ≤ H holds by definition of P ∗(CQ(z)).
It is O2(K) a non-trivial normal 2-subgroup in K, so, using Lemma 3.6, K contains a
Sylow 2-subgroup of NG(O2(K)). Then T ≤ NG(O2(K)) and T ∈ Syl2(K) together imply
T ∈ Syl2(NG(O2(K))) and, because of T ≤ S, one gets T = NS(O2(K)).

We assume now that O(K) is not a subgroup of H. Because of the minimality of elements
in P (CQ(z)), then K = O(K) : T follows. Hence K is solvable, using the Odd Order Theo-
rem 2.3. If R is not cyclic, it is O(K) = 〈CO(K)(r) | r ∈ R#〉 ≤ H by Coprime action, see
Lemma 2.4. Hence R has to be cyclic and, as it is elementary abelian, |R| = 2 follows. In par-
ticular, Q is an extraspecial 2-group. We set R = 〈r〉. Lemma 2.35 implies |Q : CQ(z)| = 2

and CQ(z) = 〈z〉 × U for an extraspecial 2-group U with Z(U) = 〈r〉.
Additionally, by Lemma 4.13, it is Q 6≤ K, so Q ∩K = CQ(z) follows.

By Hypothesis 5.2, F ∗(H) is not isomorphic to Ln(q) or Un(q) for n ∈ N. So by Lemma
2.39, Z2(S1) is an elementary abelian subgroup of Q of order 4, and x ∼H r holds for any
x ∈ Z2(S1)#. As Z2(S1) is elementary abelian of order 4, |S1 : CS1(Z2(S1))| = 2 holds.
As F ∗(H) is a simple group, Thompson’s Transfer Lemma, see Lemma 2.7, implies that
every involution in S1 is H-conjugate to an involution in CS1(Z2(S1)). So without loss of
generality, [Z2(S1), z] = 1 holds. Hence, it is Z2(S1) ≤ CQ(z) ≤ T . So Z2(S1) is a non-cyclic,
elementary abelian group whose involutions all are H-conjugate to r. Lemma 2.4 (Coprime
action) implies O(K) = 〈CO(K)(x) | x ∈ Z2(S1)#〉 ≤ H.

2

Lemma 5.4: Suppose Hypothesis 5.2. Then O(K) = 1 holds for every K ∈ P (CQ(z)).

Proof: Suppose K ∈ P (CQ(z)). Due to Lemma 5.3, O(K) is contained in H. We assume
first |R| = q > 2. For every involution r ∈ R, the centralizer CO(K)(r) is contained in
NH(Q), as any group which centralizes an element in Z(Q)# normalizes the large subgroup
Q. Hence it is [CQ(z),CO(K)(r)] ≤ Q ∩O(K) = 1. Let ω ∈ CO(K)(r) and u ∈ Q \CQ(z) be
arbitrary elements. Then R 3 [z, u] = [z, u]ω = [z, uω] holds, so it is u−1uω ∈ CQ(z). Hence
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[Q,ω] ≤ CQ(z) follows, and every element in CO(K)(r) centralizes Q/CQ(z). In conclusion,
using Coprime action, [Q,ω] = 1 holds for every element ω ∈ CO(K)(r). But as Q is a large
subgroup in H, it is CH(Q) = Z(Q). Hence CO(K)(r) = 1 follows. Again by Coprime action,
O(K) equals 〈CO(K)(r) | r ∈ R#〉 = 1.
So we may assume that R = 〈r〉 is cyclic. We use the same arguments as in Lemma 5.3 to
show that Z2(S1) ≤ Q ∩K = CQ(z) holds: It is Z2(S1) an elementary abelian subgroup of
Q of order 4, and x ∼H r holds for any x ∈ Z2(S1)#. So |S1 : CS1(Z2(S1))| equals 2 and
by Lemma 2.7, every involution in S1 is H-conjugate to an involution in CS1(Z2(S1)). Thus,
without loss of generality, [Z2(S1), z] = 1 holds. Hence it is Z2(S1) ≤ CQ(z) ≤ T .
So we may assume Z2(S1) = 〈r, r1〉 with r ∈ R and r1 = rh for a suitable element h ∈ H.
With the same arguments as above CO(K)(r) = 1 holds. If CO(K)(r1) is trivial, we are
done by Coprime action as above. Hence we assume that CO(K)(r1) is not trivial. So it
is CO(K)(r1) = CO(K)(r

h) ≤ NH(Qh) and r normalizes CO(K)(r1). As h ∈ H acts like an
element in NH(Z2(S1)) on r and r1 ∈ Q ∩ Qh, also r ∈ Qh holds. Together with Coprime
action, this implies CO(K)(r1) ≤ [r,CO(K)(r1)] ·CO(K)(r) = [r,CO(K)(r1)] ≤ O(K)∩Qh = 1.
And again by using Coprime action, O(K) is generated by trivial centralizers, henceO(K) = 1

follows.

2

In the remainder of this chapter K ∈ P (CQ(z)) is further investigated. By Proposition 5.11
in [SaSt], it is P ∗(CQ(z)) = ∅.
So from now on we assume that K is contained in P (CQ(z)) \ P ∗(CQ(z)) with O(K) = 1.
Then there are components L1, . . . , Lm ofK such thatK = (L1∗· · ·∗Lm)·T with R ≤ T ≤ S,
where T is a Sylow 2-subgroup of K ∩H and, using Lemma 3.6, also from K.

In the following lemma, the possible components L1, . . . , Lm of K are determined under the
assumption that there is more than one component.

Lemma 5.5: Suppose Hypothesis 5.2. Then it is K ∈ P (CQ(z)) \ P ∗(CQ(z)) with z ∈
O2(K). Additionally, let be O(K) = 1 and K having m > 1 many components L1, . . . , Lm.
As before, let be T ∈ Syl2(K ∩H) and R ≤ CQ(z) ≤ T ≤ S. Then the following statements
hold:

(a) All components are isomorphic and T acts transitively on the set {L1, . . . , Lm}.

(b) Every component Li of K is normalized by R.

(c) For every 1 ≤ i ≤ m, Li/Z(Li) is isomorphic to one of the following simple groups:

L2(2n), Sz(2n), Sp4(2n) for n ≥ 2, L3(4) or L2(q) for q = 2n ± 1 > 3.
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Proof: We assume K ∈ P (CQ(z))\P ∗(CQ(z)) with O(K) = 1 and K = (L1 ∗ · · · ∗Lm) ·T .
As before, let L1, . . . , Lm with m > 1 be the components of K and T ∈ Syl2(K ∩ H). In
consequence of the minimality of K ∈ P (CQ(z)), the Sylow 2-subgroup T acts transitively
on {L1, . . . , Lm} and none of the components is contained in H. In particular, the number
of components m divides the order of T and all the components are isomorphic.
Also [R,O2(K)] ≤ R ∩ O2(K) = 1 holds, as otherwise there would exist a root element
1 6= r ∈ O2(K)∩R such that E(K) ≤ CG(r) ≤ H holds by Lemma 3.9. But this contradicts
the fact that no component is contained in H. With the same argumentation also R∩Li = 1

holds for all 1 ≤ i ≤ m, using m > 1 and the well-known fact that different components
centralize each other.
Now we show that every component Li for 1 ≤ i ≤ m is normalized by R: We assume that
there is an element r ∈ R such that Lri = Lj holds for some i 6= j. By Lemma 3.6, K is
minimal parabolic and H ∩ K is the unique maximal subgroup of K which contains T . It
is H ∩ E(K) ≤ H ∩K and E(K) � H. Since it is Li � H, there is an element u ∈ Li \H
and u · ur ∈ CLi∗Lj (r) ≤ H and E(K) ≤ 〈H ∩ K,u · ur〉 ≤ H, by Lemma 3.9. This is a
contradiction, so (b) holds.

The strategy for the third statement is to apply a result of Bernd Baumann, see Lemma 2.45,
to restrict the set of possible components. We set K = K/O2(K) and U = UO2(K)/O2(K)

for subgroups U ofK. It isK = E(K)·T , with T ∈ Syl2(K) and we know that all components
of K are isomorphic. Additionally, it is O(K) normal in L1 ∗ · · · ∗ Lm and, as the groups Li
are all isomorphic, O(K) = 1 implies also O(K) = 1.
Hence K = (L1 × · · · × Lm)T follows, where T is a Sylow 2-subgroup of K.

Choose 1 6= s ∈ R∩Z(S). We show now that CLi(s) is a 2-group. Without loss of generality,
we fix i = 1. It is Q a large subgroup in H, see Lemma 2.38, and it is [T ∩ L1, s] = 1. So
T ∩L1 ≤ NH(Q) holds. We assume now the existence of an element of odd order ω ∈ CL1(s).
By Lemma 3.9, it is ω ∈ H. So ω centralizes 1 6= 〈s〉 ≤ R = Z(Q), hence ω normalizes the
large subgroup Q. Therefore, ω also normalizes Z(Q) = R. Then [R,ω] ≤ R∩L1 = 1 follows,
as R normalizes L1, using m > 1.
We now suppose the existence of an element x ∈ Q ∩K such that Lx1 = Lj holds for j 6= 1.
Then, using ω ∈ NH(Q), [ω, x] ∈ 〈ω〉 ∗ 〈ωx〉 ∩Q = 1 follows. So it is ωx = ω ∈ L1 ∩ Lj , but,
using O(K) = 1 this implies ω = 1, as ω is of odd order.
Therefore, we may assume that Q ∩ K normalizes L1. Hence it is [L1,K ∩ Q] ≤ L1. In
particular, [L1,CQ(z)] ≤ L1 ∩Q holds.
This implies [ω,CQ(z),CQ(z)] ≤ L1∩Q′ = L1∩R = 1. Then [ω,CQ(z)] ≤ L1∩CQ(CQ(z)) =

Z(CQ(z))∩L1 follows. As R∩L1 is trivial, we may assume that CQ(z) equals Z×Q1, where
Z is an elementary abelian group of order q, Q1 is special and Z(CQ(z)) ∩ L1 ≤ Z. Hence ω
centralizes CQ(z)/Z.
By Hypothesis 5.2, it is z ∈ Q ∩ O2(K) and, as ω is an element in the component L1, it is
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[Q ∩O2(K), ω] = 1. This implies [z, ω] = 1. And as before, [R,ω] ≤ R ∩ L1 = 1 holds.
Let u be an element in Q \ CQ(z). Then R 3 [u, z] = [u, z]ω = [uω, z] holds. This implies
u−1 · uω ∈ CQ(z). Therefore, ω centralizes Q/CQ(z) and, as proved before, also CQ(z)/Z.
So by Coprime action, [Q/Z, ω] = 1 follows.
Hence there is an element u ∈ Q \CQ(z) with uω = u. Let x be an arbitrary element in Z#.
Then R 3 [x, u] = [x, u]ω = [xω, u] holds. So it is [x, ω] ∈ CQ(u) and, as ω normalizes Z,
[x, ω] ∈ CZ(u) holds. But CZ(u) is trivial, as otherwise there is a non-trivial element z̃ ∈ Z
which centralizes u ∈ Q \CQ(z). In this case, z̃ is centralized by u, so u ∈ CQ(z̃) = CQ(z),
which contradicts the choice of u. Altogether, ω centralizes Z and Q/Z, so by Coprime
action [Q,ω] = 1 holds. As ω is an element of H and Q is a large subgroup in H, this implies
ω ∈ CH(Q) ≤ Q. Thus, ω must be trivial.
Therefore, CLi(s) is a 2-group for all i ∈ {1, . . . ,m}.

Next we show that also CLi(s) is a 2-group. To do so, let ω ∈ CLi(s) be an element of odd
order. Then it is [sO2(K), ωO2(K)] ≤ O2(K) and ω ∈ O2(LiO2(K)) = Li. Hence we have
[ω,O2(K)] = 1 and [〈s〉O2(K), 〈ω〉, 〈ω〉] = 1. By Coprime action, [〈s〉O2(K), 〈ω〉] must be
trivial. And, again by Coprime action, [〈s〉, 〈ω〉] is trivial. So we have ω ∈ CLi(s) and, as
CLi(s) is a 2-group by the arguments above, CLi(s) is a 2-group.

Let x be an element in CK(s). Then it is x = x1 . . . xm · t for elements xi ∈ Li and t ∈ T .
It is t ∈ CK(s), so x1 . . . xm ∈ CK(s) ∩ L1 × · · · × Lm follows. As the components Li are
normalized by s ∈ R#, we have x1 . . . xm = (x1 . . . xm)s = x1

s . . . xm
s ∈ L1 × · · · × Lm. For

all i ∈ {1, . . . ,m}, then [xi, s] ∈ Li ∩×
j 6=i

Lj follows by induction, which leads to xi ∈ CLi(s).

Altogether, x is a 2-element, so CK(s) is a 2-group.
Now we can apply Lemma 2.45, to get that the simple groups Li must be isomorphic to
one of the following groups: L2(2n), Sz(2n), U3(2n), L3(2n), Sp4(2n) for n ≥ 2 or L2(q) for
q = 2n ± 1 > 3.

In case of Li ∼= L3(r) with r = 2n > 2, we consider the subgroup

U :=

{a 0 0

0 a−2 0

0 0 a

 | a ∈ GF (r)∗

}

in SL3(r). It is U of order r−1. The projection of s into Li can be identified with the matrix1 0 1

0 1 0

0 0 1

 ,

which is centralized by U . The group U/(U ∩ Z(SL3(r))) can be identified with a subgroup
of L3(r). As Z(SL3(r)) is of order gcd(3, r − 1), U/(U ∩ Z(SL3(r))) can be a 2-group only
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if r − 1 = 3 holds; hence for r = 4. As CLi(s) is a 2-group, the only remaining possibility is
Li ∼= L3(4).

For Li ∼= U3(r) with r = 2n > 2, the group

Ũ :=

{a 0 0

0 a−2 0

0 0 a

 | a ∈ GF (r2)∗, ar+1 = 1

}

is a subgroup of SU3(r), as it isa 0 0

0 a−2 0

0 0 a

 ·
a

r 0 0

0 a−2r 0

0 0 ar

 =

a · a
r 0 0

0 (a · ar)−2 0

0 0 a · ar

 =

1 0 0

0 1 0

0 0 1

 .

It is GF (r2)∗ cyclic of order r2 − 1 = (r − 1)(r + 1), so the order of Ũ equals r + 1. Again,
the projection of s into Li can be identified with1 0 1

0 1 0

0 0 1

 ,

which is centralized by Ũ . The group Ũ/(Ũ ∩ Z(SU3(r))) can be identified with a subgroup
of U3(r). As Z(SU3(r)) is of order gcd(3, r+ 1), Ũ/(Ũ ∩ Z(SU3(r))) can only be a 2-group if
r + 1 = 3 holds; hence for r = 2. As CLi(s) is a 2-group and r > 2 holds, the claim of the
lemma follows. 2

In the following remark some facts about K and its components are collected, which are
frequently needed in the following. The terminology is the one from the previous results.

Remark 5.6: (a) The structure of the Sylow 2-subgroups of the simple groups, listed in
the previous lemma, is well-known:

L L2(2n) Sp4(2n) L2(2n ± 1) L3(4) Sz(2n)

P ∈ Syl2(L) E2n E23n : E2n D2n D1(4) ∼= 41+2 2n+n

(b) It is T ≤ CH(s) for an element 1 6= s ∈ Z(S)∩R; hence T normalizes the large subgroup
Q and its center R.

(c) The components L1, . . . , Lm are normalized by R, see Lemma 5.5. And for all i ∈
{1, . . . ,m}, Li ∩R = 1 as both as [O2(K), R] ≤ O2(K)∩R = 1 hold. Otherwise, there
would be at least one component in the centralizer of a non-trivial element in R and
therefore contained in H, by Lemma 3.9.
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In the following two lemmas, we show that K can only have one component. To do so, we
first show that, in case of more than one component, each component is normalized by CQ(z).

Lemma 5.7: Let Hypothesis 5.2 hold and K be an element of P (CQ(z)) with O(K) = 1 and
components L1, . . . , Lm andm > 1. Further let be T ∈ Syl2(K∩H) and R ≤ CQ(z) ≤ T ≤ S.
Then L1 is normalized by CQ(z).

Proof: To show that L1 is normalized by CQ(z), we assume the opposite. By Lemma 5.4,
we may assume O(K) = 1 and we define K := K/O2(K) = (L1 × · · · × Lm) · T , where the
components Li of K are isomorphic to exactly one of the following groups:
L2(2n), Sz(2n), Sp4(2n) for 2n > 2, L3(4) or L2(2n ± 1) for 2n ± 1 > 3.
The group R normalizes each component, see Lemma 5.5, and for all i ∈ {1, . . . ,m}, it
is Li ∩ R = 1 and O2(K) ∩ R = 1, as otherwise at least one component would be in the
centralizer of an involution in R and hence in H. Also T1 := T ∩ L1 centralizes a non-trivial
element s ∈ Z(S) ∩R and hence, normalizes the large subgroup Q and its center Z(Q) = R.
Additionally, it is [T1, R] ≤ L1 ∩ R = 1. The same holds for T1 = T1O2(K)/O2(K), instead
of T1.
Due to Lemma 5.1, it is CQ(z) = Z̃ × Q1, where Z̃ is elementary abelian of order q = |R|
and Q1 is a semi-extraspecial 2-group with Z(Q1) = R.
The component L1 is not normalized by CQ(z) by supposition. We define U := NK∩Q(L1)

and QL := U ∩CQ(z).
There is no element x of order 4 in CQ(z) which permutes 4 different components, as x2 ∈
Φ(Q) = R normalizes every component by Lemma 5.5.
Hence for 1 6= t ∈ CQ(z) \QL, [T1, t] is a diagonal subgroup in L1 ∗ Lt1 and it is [T1, t] ≤ Q,
as T1 normalizes Q. If there is an element t̃ ∈ CQ(z) \ QL for which Lt̃1 6= Lt1 holds, then[
T1, t, t̃

]
≤ Q′ = R is a diagonal subgroup in the central product of the corresponding four

components.
So every orbit of the component L1 under the action of CQ(z) on E(K) contains at most 4

components, as there are non-trivial elements of R contained in this orbit, which cannot be
centralized by any component, due to Lemma 3.9.
Let m1 be the length of the orbit of L1 under CQ(z). So, as CQ(z) is a 2-group, which by
assumption does not normalize L1, we are left with orbits of length m1 = 2 or m1 = 4 within
this lemma.
Furthermore, U = NK∩Q(L1) equals NK∩Q(Li) for every component Li in the orbit of L1

under Q: We suppose an element u ∈ U and Li = Ly1 for some y ∈ Q. Then it is Lui = Lyu1 =

Luys1 = Lys1 = Lsi = Li, where s is an element in R that therefore normalizes every component.
So U normalizes every component Li and, analogously, we deduce NK∩Q(Li) ≤ U . The same
arguments imply QL = NCQ(z)(Li) for all i ∈ {1, . . . ,m}.
In the following, we distinguish between CQ(z)-orbits of length m1 = 4 and m1 = 2.
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• At first, we consider the case m1 = 4, where CQ(z) acts transitively on the set of 4

components which build the orbit of L1 under CQ(z). Let B := L1 ∗ Lt1 ∗ Lt̃1 ∗ Ltt̃1 be
the CQ(z)-orbit of L1 for suitable elements t, t̃ ∈ CQ(z). It is

[
T1, t, t̃

]
≤ R, hence[

T1, t, t̃
]
is a diagonal subgroup of B, and

[
T1, t, t̃

]
is an isomorphic copy of T1. As R is

elementary abelian, the same holds for T1. This implies L1
∼= L2(r) for r = 2n ≥ 4, by

Remark 5.6. The Schur multiplier of L2(2n) is trivial, except for L2(4) by Lemma 2.22.
Hence, up to L2(4), it is L1

∼= L1 and T1 = T1.
Additionally, it is 4 ≤ r = |T1| ≤ |R|. Due to the orbit length, |CQ(z) : QL| = 4 holds
and the elements in QL induce automorphisms on L1 which normalize the Sylow 2-
subgroup T1. Looking at the Dynkin diagram of L2(r), these automorphisms have to be
inner or field automorphisms, where T1 cannot be centralized by a field automorphisms.
As [T1, R] ≤ R ∩ L1 = 1 holds, the automorphisms on L1, which are induced by
elements of R, have to be inner. We assume that an element x ∈ QL induces a field
automorphism. Then, using R ≤ Z(CQ(z)), it is |CT1(x)| ≥ |R| ≥ |T1|; so x ∈ QL acts
trivially on T1. Therefore, x cannot induce a field automorphism. Hence QL induces
inner automorphisms on L1 only, which all centralize T1. Therefore, QL is an abelian
subgroup of CQ(z) of index 4. This implies |R| ≤ 4, so in total, it is r = |R| = 4 and
L1
∼= L2(4).

In particular, |CQ(z)| ≤ |R|4 = 44 = q4 holds. Hence it is |Q| ≤ q5 for q = 4.
This contradicts |Q| ≥ q9 in Hypothesis 5.2. As these arguments hold for all i ∈
{1, . . . ,m} and not only for i = 1, CQ(z)-orbits of length 4 in the set of components
are not possible.

• Let the orbit of L1 under CQ(z) be of length 2. Hence |CQ(z) : QL| = 2 holds. Then
there is an element t ∈ CQ(z) \ QL such that [T1, t] ≤ Q and QL normalizes both
components L1 and L2 := Lt1. At this, t ∈ CQ(z) is either an involution or an element
of order 4 with t2 ∈ R.
There is no element of order at least 8 in T1: If there was an element x ∈ T1 with
o(x) ≥ 8, it would be [x, t] ∈ Q and o([x, t]) ≥ 8. But there is no element of such order
in the special group Q.
For T1 ∈ Syl2(L2(2n ± 1)) with 2n ± 1 > 3 this implies T1

∼= D8 and hence L1
∼= L2(7)

or L1
∼= L2(9), using Remark 5.6. So, if L1 is not isomorphic to one of the groups

L2(4), L3(4), Sz(8), L2(7) or L2(9), then L1 is a simple group, using the information
about Schur multipliers provided in Lemma 2.22.

We now consider the case that L1 and L2 are simple components. In this case L1∩L2 = 1

holds. So we may assume for now that L1 × L2 is the orbit of L1 under CQ(z). We
remember that QL = NCQ(z)(L1) is a subgroup of index 2 in CQ(z).
We want to show q = 2. Therefore, we assume q > 2. As before, it is [T1, Q] ≤
Q and [T1, R] = 1. Further, [T1 ∩ Q,QL] ≤ Q′ ∩ T1 = R ∩ T1 = 1 holds and so
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T1 ∩Q ≤ CQ(QL)∩ T1 follows. As CT1(QL) equals CT1(CQ(z)), this implies T1 ∩Q ≤
CQ(CQ(z)) ∩ T1 = Z(CQ(z)) ∩ T1. Particularly, T1 ∩Q ≤ T1 ∩ T t1 ≤ L1 ∩ L2 = 1 holds
and so [T1, QL] ≤ T1 ∩Q is trivial. So the elements in T1 act on Q/R and centralize a
subgroup of index at most 2 · q in Q.
As L1 is a component, NL1(T1) is a proper subgroup in L1 and, using the minimality of
K ∈ P (CQ(z)), NL1(T1) ≤ H holds. If T1 is abelian, then it is T1 = [T1,NL1(T1)] ≤ H ′

and, as the Sylow 2-subgroups of Out(L1) are abelian by Lemma 2.30, we may assume
the existence of an involution x ∈ T1 ∩ F ∗(H). If T ′1 is not trivial, for the same
reason, we can find an involution x ∈ T ′1 ∩F ∗(H). Altogether, we choose an involution
x ∈ T1 ∩ F ∗(H) which induces an inner automorphism on L1 and hence induces a
GF (q)-linear action on Q/R. Then |Q : CQ(x)| is a power of q.
And, as by assumption q > 2 holds, x centralizes a subgroup of index at most q in Q.
So either x ∈ T1 centralizes Q or x induces a GF (q)-transvection on Q/R. If x induces
a transvection, the Levi complement in NF ∗(H)(Q) is a classical group of Lie type and
Q/R the corresponding natural module. But unitary transvections are defined over
GF (q2) and not over GF (q), and linear and symplectic transvections act transitively
on the one-dimensional subspaces of Q/R, hence they induce a transitive action on Q#,
which consists of elements of order 2 and 4, a contradiction. Due to Lemma 2.36, there
is no orthogonal group acting as Levi complement in the described way on Q/R, so x
induces no orthogonal transvection. Hence it is x ∈ CH(Q) ∩ T1 and, as CH(Q) ≤ Q

holds, we get x ∈ Q ∩ T1 = 1, which is a contradiction. So without restriction, we may
assume q = 2.
Therefore, Q is extraspecial and it is CQ(z) = 〈z〉 × Q1, where Q1 is an extraspecial
2-group with Z(Q1) = R = 〈s〉, see Lemma 2.35. It is T1

∼= [T1, t] and [T1, t]
′ ≤ Q′ = R.

This and q = |R| = 2 imply |T ′1| ≤ 2. So either it is T1 abelian or it is |T ′1| = 2

by Remark 5.6. If T1 is abelian, it is L1
∼= L2(2n) for n ≥ 2. If T1 is not abelian,

L1
∼= L2(7) or L1

∼= L2(9) and T1
∼= D8 are the only possibilities for the component

L1, due to Remark 5.6.

It is QL = NCQ(z)(L1) a subgroup of CQ(z) of index 2. Hence QL is isomorphic to
Z̃2 × Q2, where Z̃2 is an abelian group and Q2 is an extraspecial group with center
R = 〈s〉. Hence Q2 acts faithfully on L1 and normalizes T1 = T ∩ L1 by definition.
By the paragraph above, we only have to deal with L1 being isomorphic to L2(2n) for
n ≥ 2, L2(7) or L2(9), where Q2 acts faithfully on L1 and normalizes T1.
For L1

∼= L2(2n) and n ≥ 2, Out(L1) is cyclic of order n, so Q2 is of order 8 and
L1
∼= L2(4). It is Out(L2(7)) ∼= Z2 and Out(L2(9)) ∼= E4. So in all three cases, Q2

has to be a group of order 8. Then |Q| = 27 follows, which contradicts |Q| ≥ q9 in
Hypothesis 5.2.

Until now, we dealt with the case that the Schur multiplier of L1 is trivial. So we now
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have to consider a CQ(z)-orbit L1 ∗L2, where L1
∼= L2 is a quasisimple covering group

of one of the following groups: L2(4) ∼= L2(5), L2(7), L2(9), Sz(8) or L3(4).
As O(K) = 1 holds, the Schur multiplier is a 2-group, hence L1 is isomorphic to SL2(5),
SL2(7), SL2(9) or to a Schur cover of Sz(8) or of L3(4).
We again consider QL = Z̃2×Q2, which is a subgroup of index 2 in CQ(z). And again
Z̃2 is abelian and Q2 is a semi-extraspecial 2-group with Z(Q2) = R by Lemma 5.1.
Then Q2 acts faithfully on L1, as otherwise there would exist an element r ∈ R# in the
kernel of the operation and L1 ≤ CG(r) ≤ H would follow by Lemma 3.9. Additionally,
it is Aut(L1) . AutL1 by Remark 2.10. Because of that, if Q2 cannot be embedded
into Aut(L1), it cannot be embedded into Aut(L1).
We first consider L1 being isomorphic to L2(4), L2(7) or to L2(9). The same argu-
ments as before imply that Q2 can only be embedded into Aut(L1), and therefore in
Aut(L1) if |Q2| = 8 holds. So we are left with L1 being isomorphic to a Schur cover of
Sz(8) or of L3(4), as |Q2| = 8 implies |Q| = 27, which contradicts |Q| ≥ q9, compare
Hypothesis 5.2.
For L1

∼= Sz(8), there is no outer automorphism of even order, see Lemma 2.31. So Q2

is isomorphic to a subgroup of T1
∼= 23+3, using Remark 5.6. This only works out for

q = 2 and |Q2| = 8. So again |Q| = 27 holds, which contradicts |Q| ≥ q9 in Hypothe-
sis 5.2.
For L1

∼= L3(4), the diagonal subgroup [T1, t] is contained in Q and is isomorphic to
T1
∼= D1(4). This implies q ≥ 4, and because of |Aut(L3(4))|2 = 28 and |Q2| ≥ q3,

necessarily q = 4 follows. But for q = 4, it is |Q2| = q3 = 43. This implies |Q| = q7.
Hence it contradicts |Q| ≥ q9, compare Hypothesis 5.2.

Altogether, we can conclude that CQ(z) normalizes L1 and therefore each component of K.
2

Lemma 5.8: Suppose Hypothesis 5.2, K ∈ P (CQ(z)) with O(K) = 1 and components
L1, . . . , Lm, T ∈ Syl2(K ∩H) and R ≤ CQ(z) ≤ T ≤ S. If L1 is normalized by CQ(z), then
m = 1 follows.

Proof: To show m = 1, we assume m > 1. For T1 := T ∩ L1 ∈ Syl2(L1), it is [T1, R] ≤
L1∩R = 1, as T normalizes R = Z(S1). By supposition, CQ(z) ≤ K normalizes L1 and, it is
CQ(z) = Z̃×Q1, where Z̃ is elementary abelian of order |R| = q and Q1 is semi-extraspecial
with Z(Q1) = Z(Q) = R, by Lemma 5.1. As before, [R,O2(K)] ≤ O2(K) ∩ R = 1 holds.
The group Q1 acts faithfully on L1, as otherwise there would exist an element r ∈ R# in the
kernel of the operation, so L1 ≤ CG(r) ≤ H would hold, by Lemma 3.9. So the elements
in Q1 induce non-trivial automorphisms on L1 and, in case of a non-trivial Schur multiplier,
also on L1 = L1O2(K)/O2(K).
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The strategy of this proof is to show that, if Q1 can be embedded into the automorphism
group of L1, the order of Q1 is at most q5 for |R| = q, which implies |Q| ≤ q7.
In case of a non-trivial Schur multiplier, which by O(K) = 1 can only be of even order, Q1

can only be embedded into Aut(L1) if this also holds for Aut(L1), see Remark 2.10. Hence
without loss of generality, we may assume that L1 is simple.
Using Lemma 5.5, L1 has to be isomorphic to L2(2n), Sz(2n), Sp4(2n), all for n ≥ 2, L3(4)

or L2(2n± 1) for 2n± 1 > 3. The Sylow 2-subgroups of Out(L1) are abelian by Lemma 2.30,
as either Outdiag(L1) is trivial or of order 2 in case of L2(2n ± 1). As Q1 is not abelian, it
cannot be embedded into Out(L1).

• Let L1
∼= L2(2n) for n ≥ 2. Then T1 is elementary abelian of order 2n and Out(L2(2n))

is cyclic of order n. Hence the elements of Q′1 induce inner automorphisms. As Q1/Q
′
1

is elementary abelian, Q1 modulo inner automorphisms has to be cyclic of order 2. This
implies q = 2. Hence we have L1

∼= L2(4) and |Q1| = 23 follows.

• Let L1
∼= Sz(2n) for n ≥ 2. Then T1

∼= 2n+n by Remark 5.6, so T1 is a special group
with Z(T1) ∼= E2n and every involution in T1 is 2-central, see [Hig]. By Lemma 2.31,
there is no outer automorphism of even order in Aut(L1), so Q1 has to be isomorphic to
a subgroup of T1. As in Sz(2n) every involution is 2-central, Ω1(Q1) = Z(Q1) follows,
which implies Q1

∼= Q1(q), using Lemma 2.34 and the structure of T1. Hence Q1 is of
−-type and of order q3, which both is a contradiction to Hypothesis 5.2.

• Let L1
∼= Sp4(2n) for n ≥ 2. It is T1 generated by two elementary abelian groups

E1 and E2, which intersect in Z(T1) and for every involution i ∈ T1 \ Z(T1), CT1(i)

is abelian. Additionally, Out(L1) is cyclic of order 2n, see Lemma 2.31, and, as Q1

is a special 2-group, every abelian factor group of Q1 is elementary abelian. Hence
|Q1 : Q1 ∩ T1| ≤ 2 holds. To show |Q1| ≤ q3, we assume |Q1| > q3.
It is Q1 generated by involutions, using Lemma 2.34 and Lemma 5.1. And for all invo-
lutions i ∈ Q1, it is CQ1(i) not abelian, using |Q1| ≥ q5. For Q1 ≤ T1, every involution
in Q1 must be contained in Z(T1). But Q1 is special, so it cannot be embedded into
the abelian group Z(T1). Thus |Q1 : Q1 ∩ T1| = 2 follows. Let i be an involution in
Q1 ∩ T1 which is not contained in Z(T1). Then 2q ≥ |Q1 : CQ1∩T1(i)| holds and this
index is of at least q2, as |Q1| ≥ q5 and the centralizer CQ1∩T1(i) is elementary abelian.
This inequality only holds for q = 2 and |Q1| ≤ 25. Hence for q > 2 or |Q1| > 25, every
involution in Q1 which not embeds into Z(T1), embeds into Out(L1). Thus there is an
elementary abelian subgroup of index 2 in Q1, which implies Q1

∼= D8. Altogether,
|Q1| ≤ q5 holds.

• Let L1
∼= L3(4). Then it is Aut(L1) ∼= L3(4) : D12 by [CoCu], so |Aut(L1)|2 = 28.

Comparing orders, for q > 4 there is no semi-extraspecial subgroup in Aut(L1). As
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T1
∼= D1(4) holds, one gets |Q1| = q3 for q = 4. A Sylow 2-subgroup of Aut(L1) is,

by [CoCu], of shape 21+4 ·D8, where the product is not central, so Aut(L1) does not
contain an extraspecial subgroup of order 27. Hence for q = 2, there is no extraspecial
subgroup in Aut(L1) of order greater than 25. So, also in this case, |Q1| ≤ q5 holds.

• Let L1
∼= L2(2n ± 1) for 2n ± 1 > 3. Then (2n ± 1) ≡ ±1 mod 8 holds, so T1 is a

dihedral group of order 2n. With m2(T1) = 2, there is an elementary abelian 2-group of
order at most 24 in Aut(L1), see Lemma 2.30. As Q1 is special and Sylow 2-subgroups
of Out(L1) are abelian, Q′1 induces inner automorphisms. For q > 2, this implies q = 4,
but then there has to be an elementary abelian 2-group of order q2 > 4 in Out(L1),
which is impossible. For q = 2, only an extraspecial group of order 8 can be embedded
into T1. And using |Q1 : T1 ∩Q1| ≤ 4, the order of Q1 is at most 25.

So it is |Q1| ≤ q5 and therefore, |Q| ≤ q7 in all cases. Again, this contradicts |Q| ≥ q9 in
Hypothesis 5.2. Hence m = 1 holds. 2

Remark 5.9: Suppose Hypothesis 5.2. Using the previous results for K ∈ P (CQ(z)), we
may assume K = L · T with O(K) = 1 and O2(K) 6= 1, where L is a component of K
and T a Sylow 2-subgroup of K ∩ H and also of K, see Lemma 3.6 (a). Additionally, we
assume R ≤ T ≤ S and S1 = S ∩ F ∗(H). It is K minimal parabolic with respect to T , see
Lemma 3.6(d). By defining K = K/O2(K), one gets K = LT for L = LO2(K)/O2(K) and
T = T/O2(K) ∈ Syl2(K). Then M = (K ∩H)/O2(K) is the only maximal subgroup of K
which contains T . Additionally, F ∗(K) = L is a non-abelian simple group and, because of
CK(L) = O2(K), K is a group of automorphisms of the simple group L.
As K is a subgroup of the 2-local subgroup NG(O2(K)), by the K2-group assumption in
Hypothesis 1.4, L is a known finite simple group. As Lemma 5.5 is formulated under the
assumption of K having more than one component, the possible component is not (only) one
considered in the previous lemmas.

Lemma 5.10: Let Hypothesis 5.2 hold. Then it is CG(z) ≤ H for all z ∈ Q.

Proof: Using the results of the previous lemmas, collected in Remark 5.9, we have to deal
with K = L · T , with properties and notation as above.
AlsoCQ(z) ≤ K normalizes E(K) = L andCQ(z) = Z̃×Q1, where Z̃ is elementary abelian of
order |R| = q and Q1 is semi-extraspecial with Z(Q1) = Z(Q) = R, see Lemma 5.1. For q = 2,
Q1 and Q are extraspecial. As before, O2(K) ∩R = 1 holds and it is T1 := T ∩L ∈ Syl2(L).
Then CQ(z), and in particular Q1, normalize T1.
Additionally, Q1 acts faithfully on L, as otherwise there would be a non-trivial element s ∈ R
in the kernel of the operation, so L ≤ CG(s) ≤ H would hold by Lemma 3.9. Hence Q1 is
isomorphic to a subgroup of Aut(L). We now consider the possibilities for L:
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If L is a simple group of Lie type over a field of characteristic 2, then Lemma 2.47 states
that L is isomorphic to one of the simple groups: L2(2n), Sz(2n), U3(2n), L3(2n) or Sp4(2n),
where in the last two cases, T acts non-trivially on the Dynkin diagram of L.
If L is an alternating group, then Lemma 2.49 states that either

• L ∼= A2m+1 form ∈ N holds, where H ∩K is the stabilizer of a point in the permutation
representation of degree 2m + 1 in K ∼= A2m+1 or K ∼= S2m+1, or

• L ∼= A6 holds.

By Lemma 2.48, L cannot be isomorphic to one of the 26 sporadic simple groups.
If L is a simple group of Lie type over a field of odd characteristic, we distinguish between
the cases that R is cyclic and that R is not cyclic. The group R acts on L and CL(s) ≤ H

holds for all elements s ∈ R# by Lemma 3.9. Then also CR(L) is trivial, as otherwise L
centralizes an element in s ∈ R#, implying L ≤ H.

If R is not cyclic, we can apply Lemma 2.52.
IfR = 〈s〉 is cyclic, we consider Z2(S1). As F ∗(H) is not isomorphic to Ln(q) or Un(q), Lemma
2.39 states that Z2(S1) is an elementary abelian subgroup of Q of order 4, and x ∼H s holds
for any x ∈ Z2(S1)#. As Z2(S1) is elementary abelian of order 4, |S1 : CS1(Z2(S1))| = 2

holds. As F ∗(H) is non-abelian simple, Thompson’s Transfer, see Lemma 2.7, implies that
every involution in S1 is H-conjugate to an involution in CS1(Z2(S1)). So without loss of
generality, it is Z2(S1) ≤ CQ(z) ≤ K. So Z2(S1) is a non-cyclic abelian group ofH-conjugates
of s. Therefore, CL(x) ≤ H holds for every element x ∈ Z2(S1)# and Z2(S1) acts on L with
CZ2(S1)(L) = 1.
So in both cases, Lemma 2.52 is applicable. Thus L is isomorphic to L2(5) ∼= L2(4), L2(7) ∼=
L3(2), 2G2(3)′ ∼= L2(8), L2(9) ∼= A6 or to PSp4(3) ∼= U4(2), where PSp4(3) is not minimal
parabolic, due to [CoCu].
We treat these possibilities case by case. The group L2(5) is treated as Lie type group L2(4),
A6 is treated as Lie type group L2(9) and 2G2(3)′ is treated as L2(8).

• If L is isomorphic to L2(2n), Sz(2n) or Sp4(2n) for n ≥ 2, the argumentation is exactly
the same as in Lemma 5.8. So in all these cases, one ends up with |Q| < q9, which
contradicts Hypothesis 5.2.

• Let L ∼= U3(2n) with n ≥ 2. The strategy is again to embed Q1 into Aut(L) to see
that this only works out for small cases, which have been already considered. It is L ∼=
U3(2n), as there is no non-trivial Schur multiplier of even order, see Lemma 2.22. By
Lemma 2.34, it is T1

∼= Q1(2n), hence every involution in U3(2n) is 2-central and, using
Lemma 2.30, Out(L) is cyclic. So in particular, Q′ embeds into T1 and |Q : Q∩T1| ≤ 2.
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If Q1 completely embeds into T1, then Ω(Q1) = Z(Q1) follows, implying Q1
∼= Q1(q),

hence |Q1| = q3. If Q1 does not embed into T1, assuming |Q1| > q3, then Q1 contains an
elementary abelian subgroup of index 2, which implies Q1

∼= D8. Altogether, |Q1| = q3

holds. This contradicts |Q| ≥ q9 in Hypothesis 5.2.

• Let L ∼= L3(2n) and M = NK(T ∩ L). For L3(2), the 2-part of Aut(L) is 24, which
immediately implies |Q1| = 23. For L ∼= L3(4) the argumentation is identical to the
one in Lemma 5.8, leading to |Q1| ≤ q5. So one may assume n ≥ 3. The idea is again
to embed Q1 into Aut(L), to see that this only works out for small cases of Q, leading
to F ∗(H) being isomorphic to groups which have been excluded in Hypothesis 5.2. It
is L ∼= L3(2n), as there is no non-trivial Schur multiplier of even order in these groups
for n > 2 by Lemma 2.22.
The argumentation of the following is similar to the one in Lemma 5.8 for L ∼= Sp4(2n).
To show |Q1| ≤ q5, we assume |Q1| ≥ q7. Then Q1 is generated by involutions and
for every involution i ∈ Q1, CQ1(i) is not abelian. It is T1 ∈ Syl2(L) isomorphic
to D1(q), see Lemma 2.34, so there are two elementary abelian subgroups E1 and
E2 in T1, each of order 22n. Every involution in T1 is contained in E1 ∪ E2 and
it is E1 ∩ E2 = Z(T1) ∼= E2n . The centralizer CT1(t) of each involution t ∈ T1 is
elementary abelian, except for t ∈ Z(T1) by [Col2]. So if Q1 embeds into T1, it embeds
into Z(T1), which is not possible, as Q1 is special. Hence Q1 has to induce outer
automorphisms. The Sylow 2-subgroups of Out(L) are abelian and of 2-rank at most
2 by Lemma 2.30, while Q1 is not abelian; so Q1 cannot be embedded into Out(L1)

and Q′1 = R embeds into T1. As Q1/Q
′
1 is elementary abelian, 1 < |Q1 : T1 ∩Q1| ≤ 4

holds. Let i be an involution in (T1 ∩ Q) \ Z(T1). Then CT1(i) is elementary abelian
and q3 ≤ |Q1 : CQ1∩T1(i)| ≤ 4q holds, where the first inequality follows from the
assumption |Q1| ≥ q7. This inequality works out only for q = 2 and Q1

∼= 21+6
+ . Hence

for q > 2, |Q1| ≤ q5 holds or every involution embeds either in Z(T1) or in Out(L),
which implies that there is an elementary abelian subgroup of index at most 4 in Q1,
which is impossible for |Q1| ≥ q5.
So assume q = 2 and Q1

∼= 21+6
+ . By the argumentation above, Q1 embeds into

Aut(L) only in case |Q1 : (T1 ∩ Q1)| = 4. Hence Q1 induces a graph and also a field
automorphism on L. Now we show that |Q1 : (T1 ∩Q1)| = 2 holds, to get the modified
inequality q3 ≤ |Q1 : CQ1∩T1(i)| ≤ 2q, which is wrong even for q = 2. So, even if
|Q1 : T1 ∩ Q1| = 2 holds, every involution in Q1 is either embedded into Z(T1) or
into Out(L). Then there is an elementary abelian subgroup of index 2 in Q1, which is
impossible for |Q1| ≥ 25. Then also in the extraspecial case the order of Q1 is at most
25.
It remains to show |Q1 : T1 ∩ Q1| = 2. We assume x1 and x2 to be involutions in Q1

such that x1 induces a field automorphism and x2 a graph automorphism on L. It is
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R = 〈s〉 with s ∈ Z(S). Hence R embeds into Z(T1).
The involution x1 normalizes the elementary abelian subgroup E1, so [E1, x1] ≤ E1

holds. But as E1 centralizes s, it normalizes Q, so it is [E1, x1] ≤ E1 ∩ Q. The graph
automorphism x2 interchanges E1 and E2, see [Col2], so [[E1, x1], x2] ≤ [E1 ∩Q, x2] ≤
Q′ = R ≤ Z(T1) holds. But it is [E1, x1] 6≤ Z(T1) and therefore also [[E1, x1], x2] 6≤
Z(T1). This is a contradiction, so |Q1| ≤ q5 follows.

• Let L ∼= A2n+1, where M = K ∩H is the stabilizer of a point in the permutation
representation of degree 2n + 1 in K ∼= A2n+1 or in K ∼= S2n+1. As L ∼= A5

∼= L2(4)

has been already treated above, without loss of generality n ≥ 3 holds. Without re-
striction, let M be the stabilizer of the point 2n + 1. It is R ∼= R ≤ T ∩ M . Fix
s = (1, 2)(3, 4) · · · (2n − 1, 2n), which can be chosen to be in R. This is a product
of 2n−1 transpositions. As Q ∩ L ≤ K ∩H = M centralizes s, Q ∩ L is contained in
CM (s). As Q is a large subgroup in H and L = E(K) holds, CM (s) normalizes Q∩L.
Hence Q ∩ L is a normal 2-subgroup in CM (s).
It is CM (s) = 〈(1, 2), (3, 4), . . . , (2n − 1, 2n)〉 : S2n−1

∼= E
2(2

n−1) : S2n−1 for K ∼= S2n+1

and CM (s) = (〈(1, 2), (3, 4), . . . , (2n − 1, 2n)〉 : S2n−1) ∩ A2n+1
∼= E

2(2
n−1) : A2n−1 for

K ∼= A2n+1.
In both cases, for 2n−1 > 4, every normal 2-subgroup of CM (s) is contained in
〈(1, 2), (3, 4), . . . , (2n − 1, 2n)〉, as O2(S2n−1) = O2(A2n−1) = 1. Hence the non-abelian
group Q ∩ L has to be contained in an elementary abelian group, which is not possible.
So we may assume 2n−1 ≤ 4, hence n = 3. Then L ∼= A9 and CM (s) is isomorphic to
E16 : S4 or to E16 : A4. These groups contain an extraspecial 2-group of order at most
25, so it is |Q1| ≤ 25, implying |Q| ≤ 27. This contradicts the assumption of |Q| ≥ q9

in Hypothesis 5.2.

• Let L ∼= L2(7) or L2(9). Again the idea is to show that an embedding of Q1 into a Sylow
2-subgroup of Aut(L) only works out for small cases, which have already been treated.
As Aut(L) . Aut(L) holds by Remark 2.10, we may assume that L is simple, as an
embedding of Q1 into a Sylow 2-subgroup of Aut(L) implies an embedding into Aut(L).
For L ∼= L2(7) or L ∼= L2(9), it is T1 a dihedral group of order 8 and |Aut(L)|2 ≤ 25

holds. So the order of Q1 is at most 25 and so |Q| ≤ 27 follows. Again, this situation
arises only in cases which have been excluded in Hypothesis 5.2.

2
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Chapter 6

The remaining families of exceptional
groups of Lie type

In this chapter we show Theorem 1.5 for F ∗(H) being isomorphic to one of the exceptional
groups of Lie type which have not been treated before. These are the groups E6(2f ), E7(2f ),
E8(2f ), 2

E6(2f ) and 3
D4(2f ) for f ∈ N.

The strategy is again to show that Holt’s result in Lemma 2.44 can be applied to proveG = H.
Using the results of the previous chapters, we can work under the following hypothesis:

Hypothesis 6.1: Assume Hypothesis 1.4 and let be S1 = S ∩ F ∗(H), R = Z(S1) and
Q = O2(CF ∗(H)(R)) as before. Additionally, we assume F ∗(H) to be isomorphic to one of
the following groups: E6(q), E7(q), E8(q), 2E6(q) or 3D4(q) for q = 2f and f ∈ N, using
Remark 4.14. By the same remark, we may assume |Q| ≥ q9.
Lemma 5.10 implies CG(t) ≤ H for every involution t ∈ Q.

The following three lemmas are needed in the proof of Lemma 6.5, where we show that
H ∩ F ∗(G) controls the F ∗(G)-fusion of 2-central involutions.

Lemma 6.2: Let Hypothesis 6.1 hold. Then |H : NH(Q)| is odd and Q is weakly closed in
S with respect to H.

Proof: By Lemma 2.38, Q ≤ S is a large 2-subgroup in H, hence Q = O2(NH(Q)) holds.
Suppose a conjugate Qh ≤ S with h ∈ H. Then Q and Qh are centralized by Z(S). Hence,
by definition of a large subgroup, NH(S) ≤ NH(Z(S)) ≤ NH(Q) and NH(S) ≤ NH(Z(S)) ≤
NH(Qh) hold. In particular, |H : NH(Q)| is odd.
Sylow’s Theorem implies NH(Q) = NH(Qh). So Qh = O2(NH(Qh)) = O2(NH(Q)) = Q

follows. 2
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Lemma 6.3: Assume Hypothesis 6.1 with S ∈ Syl2(H) and S1 = S ∩ F ∗(H). Let L be the
Levi complement in the Lie-parabolic group NF ∗(H)(Q). We denote the subgroup of H whose
elements induce automorphisms on L by AutH(L).
Then for every maximal elementary abelian 2-subgroup V ≤ AutH(L) ∩ S, it is V ≤ S1. In
particular, m2(AutH(L)) = m2(L) holds.

Proof: As the corresponding Cartan subgroup is a 2′-group, we may identify O2′(L) with
the group of inner automorphisms in O2′(AutH(L)). Lemmas 2.36 and 2.32 imply that O2′(L)

and m2(L) are as follows: For F ∗(H) ∼= E6(2f ), it is O2′(L) ∼= SL6(2f ) and m2(L) = 9f ;
for F ∗(H) ∼= 2

E6(2f ), it is O2′(L) ∼= SU6(2f ) and m2(L) = 9f ; for F ∗(H) ∼= E7(2f ), it
is O2′(L) ∼= Ω+

12(2f ) and m2(L) = 15f ; for F ∗(H) ∼= E8(2f ), it is O2′(L) ∼= E7(2f ) and
m2(L) = 27f ; and for F ∗(H) ∼= 3

D4(2f ), it is O2′(L) ∼= SL2(23f ) and m2(L) = 3f , compare
also Table 6.1 on the page after next.

Let V be a maximal elementary abelian 2-subgroup in AutH(L) ∩ S. By Lemma 4.3 for
F ∗(H) ∼= E6(2f ) and by Lemma 4.5 for F ∗(H) ∼= 2

E6(2f ), it is V = J(S) = J(S1). In
particular, m2(AutH(L)) = m2(L) holds.
For F ∗(H) ∼= E7(2f ), F ∗(H) ∼= E8(2f ) or F ∗(H) ∼= 3

D4(2f ), we assume the existence of
an involution x ∈ S \ S1 with x ∈ V . So x induces a field automorphism on F ∗(H), using
Lemma 2.31. Then x can only induce a field automorphism on L. By Lemma 2.31, f must
be even and it is m2(CAutH(L)(x)) = m2(L)

2 + 1 < m2(L). So in all considered cases we have
V ≤ S1. Therefore, m2(L) = m2(AutH(L)) holds. 2

Lemma 6.4: Suppose Hypothesis 6.1 and additionally we allow F ∗(H) to be isomorphic to
Ω±2n(2f ) with n ≥ 4 and f ∈ N. Further let t ∈ S \Q be an involution and let Q be of order
q1+2m for q = 2f . Then CQ(t) has an abelian 2-subgroup of order qm which contains an
elementary abelian 2-subgroup of order qm−1.

Proof: It is |Q| = q1+2·m and Q/R a vector space of dimension 2m over GF (q). The space
Q/R is equipped with a quadratic form, see Satz 4 in [Beis]. The involution t ∈ CS(R)

normalizes the large 2-subgroup Q, so [Q, t] ≤ Q holds and t acts as a GF (q)-linear map
on Q/R. By Satz 4 in [Beis], t can be seen as an element of O+

2m(q), which therefore leaves
the quadratic form, defined on Q/R, invariant. By Hypothesis 6.1, it is m ≥ 4, so t is a
product of reflections. As t is an involution, it centralizes a subspace of at least dimension
m in Q/R and [Q, t]/R = [Q/R, t] ≤ CQ/R(t) holds. Hence, using Lemma 11.10 in [Tayl],
it is CQ/R(t) = [Q/R, t]⊥ = [Q, t]/R × Q̃/R, where Q̃/R is the complement of [Q, t]/R in
CQ/R(t). Let |Q̃/R| = q2r for r ∈ N0. It is CQ(t) = C[Q,t](t) ∗ U with amalgamated center
R, where U is the full preimage of Q̃/R in CQ(t). Then C[Q,t](t) contains an elementary
abelian subgroup of order |[Q, t]/R|, as the order probably loses a factor q = |R| by going
back to the preimage which is compensated by the amalgamated center R. As t is a product
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of reflections, the proof of Satz 4 in [Beis] implies that U is isomorphic to either Dr(q) or
Qr(q); in case r = 0, it is U trivial. Hence U contains an elementary abelian 2-subgroup
of order at least qr and an abelian subgroup of order at least qr+1 if r ≥ 1. In any case,
CQ(t) contains an abelian 2-subgroup of order qm which itself contains an elementary abelian
2-subgroup of order qm−1. 2

Lemma 6.5: Assume Hypothesis 6.1. Let t ∈ S1 \Q be an involution which is G-conjugate
to an involution s ∈ R. Then CG(t) ≤ H follows and t must be H-conjugate to s.
In particular, it is sF ∗(G) ∩ F ∗(H) = sH∩F

∗(G).

Proof: Let t ∈ S1 \Q be an involution which is G-conjugate to an involution s ∈ R∩Z(S).
In order to show CG(t) ≤ H, we assume CG(t) � H.
Because of t ∼G s, there is an element g ∈ G such that t = sg and CG(t) ∼= CG(s) = CH(s)

holds, using Lemma 3.9. It is Q = O2(CF ∗(H)(R)) a normal subgroup in NH(Q) and in
CG(s). Define Qt to be the isomorphic copy of Q in CG(t). This implies Qt � CG(t) and
therefore QtCQ(t) is a 2-subgroup of CG(t).
To show that Qt ∩Q is trivial, we assume the existence of an involution x ∈ Qt ∩Q. As x is
an element in Q, Hypothesis 6.1 implies CG(x) ≤ H. In particular, CQt(x) ≤ H holds.
It is t ∈ Z(Qt) by construction. To show that without loss of generality x /∈ Z(Qt) holds,
we assume x ∈ Z(Qt). This implies Qt ≤ H. As Q is a large subgroup, Qt and Q are
H-conjugate. Hence we may assume x /∈ Z(Qt) in the following.
It is |Qt : CQt(x)| = |R| = q with CQt(x) ≤ H, using Lemma 5.1. Additionally, this lemma
implies CQt(x) = Z×U , for an elementary abelian group Z of order q and a special group U
of index q2 in Qt. Using CQt(x) ≤ H, in particular, U ≤ H holds and one gets Z(Qt) = Z(U)

by definition of Qt. It is Uh ≤ S for an element h ∈ H, so without loss of generality we may
assume that U ≤ S holds, implying U ≤ NH(Q). Additionally, Z(U) is not contained in Q,
as Z(Qt) ∩Q is trivial.
As U normalizes Q, U∩Q is a normal subgroup in U . If U∩Q is not trivial, also (U∩Q)∩Z(U)

is not trivial. But as all elements in Z(U) are H-conjugates of t, this contradicts CG(t) � H.
Hence U ∩Q = 1 holds. We set |Q| = q1+2m for m ∈ N. Then, using U ∩Q = 1, NH(Q)/Q

contains a special group, isomorphic to U , of order q2m−1.
Lemma 2.36 and Lemma 2.32 provide the information in Table 6.1 on the following page. In
this table we set q = 2f for f ∈ N and let L be the Levi complement in the Lie-parabolic
group NF ∗(H)(Q).

If there is an involution x ∈ S \S1, then x induces an automorphism on the Levi complement
L. To see that NH(Q)/Q cannot contain a special group of order q2m−1, the 2-rank of
AutH(L) is considered. By Lemma 6.3, it is m2(L) = m2(AutH(L)).
A comparison of m2(L) and the 2-rank of U gives m2(L) < m2(U) in all considered cases.
So U cannot be embedded into L for F ∗(H) being isomorphic to E6(q), 2E6(q), E7(q), E8(q)
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Table 6.1: Orders and ranks of certain subgroups

F ∗(H) O2′(L) |L|2 m2(L) Q U m2(U)

E6(q) SL6(q) q15 9f q1+20 q1+18 10f
2E6(q) SU6(q) q15 9f q1+20 q1+18 10f

E7(q) Ω+
12(q) q30 15f q1+32 q1+30 16f

E8(q) E7(q) q63 27f q1+56 q1+54 28f
3D4(q) SL2(q3) q3 3f q1+8 q1+6 4f

or 3D4(q).
This implies Qt ∩Q = 1 and in particular CQ(t)∩Qt = 1. So CG(t) contains the semidirect
product Qt : CQ(t). As t is a 2-central involution in Hg and Qt is isomorphic to Q, an
isomorphic copy of CQ(t) is involved in NH(Q)/Q and thus also in AutH(L).
By Lemma 6.4, t centralizes an abelian 2-subgroup of order qm in Q, which contains an
elementary abelian subgroup of order qm−1.
We denote an isomorphic copy of this abelian group of order qm in NH(Q)/Q by A and the
elementary abelian subgroup of order qm−1 by V . Let further T be a Sylow 2-subgroup of
AutH(L) which contains A. Thus it is V ≤ A ≤ T .
A comparison of m2(Q) and m2(L), using Table 6.1, gives that V is a maximal elementary
abelian 2-subgroup in L. By Lemma 6.3, additionally V ≤ L holds.

If it is F ∗(H) ∼= 3D4(q), hence in case O2′(L) ∼= SL2(q3), V equals a Sylow 2-subgroup of
O2′(L). So V = T ∩ L follows. But in the outer automorphism group of SL2(q3) there is no
involution which centralizes a full Sylow 2-subgroup of SL2(q3), as every involution which
induces an outer automorphism on SL2(q3) is a field automorphism. This contradicts the
existence of an abelian group A which properly contains V . Hence for F ∗(H) ∼= 3D4(q), the
assumption from the beginning of this proof is refuted. And therefore, CG(t) ≤ H follows.

Let now F ∗(H) be isomorphic to E6(q) or to 2E6(q). Then it is O2′(L) ∼= SL6(q) or O2′(L) ∼=
SU6(q). Additionally, it is V of order q9. According to Lemma 4.3 and 4.5, V coincides with
J(T ∩ L) = J(T ). Then it is V the unipotent radical of a maximal Lie-parabolic subgroup
in O2′(L): For O2′(L) ∼= SL6(q) the Dynkin diagram is of type A5 and the Lie-parabolic
subgroup is P{α1,α2,α4,α5} by Example 3.2.3 on page 97 in [GLS3]. For O2′(L) ∼= SU6(q),
the Lie-parabolic subgroup is P{α̃1,α̃2} by Example 3.2.5 on page 101 in [GLS3]. Then by
Lemma 2.26, it is CAutH(L)(V ) ≤ V . In particular, it is CT (V ) = V , hence V cannot be
properly contained in an abelian 2-subgroup A. So the assumption CG(t) � H is disproved
for F ∗(H) ∼= E6(q) and for F ∗(H) ∼= 2E6(q).

For F ∗(H) ∼= E8(q), we consider a maximal elementary abelian 2-subgroup V in O2′(L) ∼=
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E7(q). By Theorem B in [GuMa], V is no F-module for O2′(L). This implies J(T ) = V , as
otherwise an elementary abelian 2-subgroup of maximal rank, which is not contained in V ,
is an offender, and V would be an F-module for O2′(L). Then by Example 3.2.4 on page
100 in [GLS3], it is V the unipotent radical of the maximal Lie-parabolic subgroup P{α6}′

in O2′(L) ∼= E7(q). Using Lemma 2.26, then also CT (V ) = V follows. So V cannot be
properly contained in an abelian 2-subgroup A. This disproves the assumption CG(t) � H

for F ∗(H) ∼= E8(q).

For F ∗(H) ∼= E7(q), the situation is more complicated, as there is more than one maximal
elementary abelian subgroup in T . We consider the maximal Lie-parabolic subgroup P{α6}′

(or P{α5}′ , alternatively) in L ∼= Ω+
12(q). Using the structure of the Dynkin diagram of Ω+

12(q)

and Lemma 2.26, L6(q) is the corresponding simple part of the Levi complement.
α1 α2 α3 α4

α5

α6

Additionally, we consider the unipotent radical E of this Lie-parabolic subgroup, which is
maximal elementary abelian of order q15. It is E the alternating square Λ2(Y6), where Y6

denotes the natural GF (q)-module for L6(q), see Theorem B in [GuMa]. In particular, E is a
faithful L6(q)-module. If V equals E, then by Lemma 2.26, V is self-centralizing in T , and we
are done. So let V be an arbitrary maximal elementary abelian 2-subgroup in T with E 6= V .
Then V is an offender for E and by Lemma 6.3, it is V ≤ T ∩ L. Theorem 3 (Best offender
theorem) in [MeSt] states that a non-trivial offender V for E is uniquely determined in its
Sylow 2-subgroup of L6(q). The source states further that |E/CE(V )| = |V/CV (E)| = q5

holds. In particular, there are no over-offenders for E. It is |V/(E ∩ V )| = |EV/E| =

|E/CE(V )| = q5. Hence |E ∩ V | = q10 follows. As EV/E ∼= V/(E ∩ V ) is a natural
module for L5(q) ≤ L6(q), the simple group L5(q) acts faithfully on V/(E∩V ). Additionally,
elements in E \V cannot centralize V , as there are no over-offenders for E. Therefore, it is V
self-centralizing in T . In particular, V cannot be properly contained in an abelian 2-subgroup
A.

Altogether, CG(t) ≤ H follows. Thus, using the notation of the beginning of this proof, it is
CG(s) = CG(t)g

−1
= CH(t)g

−1
= C

Hg−1 (s) ≤ H. Hence g ∈ NG(CH(s)) = CH(s) NG(S) ≤
H holds by Frattini’s argument. In particular, for g ∈ F ∗(G) it is g ∈ H ∩ F ∗(G). Hence
sF
∗(G) ∩ F ∗(H) = sH∩F

∗(G) holds. 2

For F ∗(H) = H, we now can apply Holt’s result, Lemma 2.44. Hence in the following lemma,
we assume the existence of an involution in S \S1, to show sF

∗(G)∩ (H ∩F ∗(G)) = rH∩F
∗(G)

for a 2-central involution s ∈ S.

Lemma 6.6: Assume Hypothesis 6.1. Let τ ∈ S \ S1 be an involution which is not H-
conjugate to an involution s ∈ Z(S). Then τ is not G-conjugate to s either.
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Proof: Let τ ∈ S\S1 be an involution such that τ is G-conjugate to an involution s ∈ Z(S).
By Lemma 2.30, τ induces a field automorphism, a graph automorphism or a field-graph au-
tomorphism. The information on centralizers of τ can be found in Lemma 2.31.
If F ∗(H) is isomorphic to one of the groups E7(q), E8(q) or 3D4(q), τ induces a field auto-
morphism and it is O2′(CE7(q)(τ)) ∼= E7(q0), O2′(CE8(q)(τ)) ∼= E8(q0) and O2′(C3D4(q)(τ)) ∼=
3D4(q0) with q2

0 = q. Hence the Lie rank of CF ∗(H)(τ) equals the Lie rank of F ∗(H).
The Lie rank of the Levi complement L of CH(s), as it can be seen in Table 6.1 above, is 6

for F ∗(H) ∼= E7(q), it is 7 for F ∗(H) ∼= E8(q) and it equals 1 for F ∗(H) ∼= 3D4(q). Hence in
all that cases, O2′(CF ∗(H)(τ)) cannot be embedded into CG(s) = CH(s), using Lemma 2.29.
Thus, we are left with F ∗(H) ∼= E6(q) and F ∗(H) ∼= 2E6(q). If τ induces a field automor-
phism, then it is O2′(CE6(q)(τ)) ∼= E6(q0) with q2

0 = q and O2′(C2E6(q)(τ)) ∼= F4(q), see
Lemma 2.31. The Lie rank of E6(q0) is 6. For F ∗(H) ∼= E6(q), CF ∗(H)(τ) cannot be embed-
ded into CG(s), again by Lemma 2.29, as the corresponding Levi complement is isomorphic
to SL6(q), which is of Lie rank 5. And for F ∗(H) ∼= 2E6(q) it is CF ∗(H)(τ) of Lie-rank
4. Hence CF ∗(H)(τ) cannot be embedded into CG(s), as the Levi complement of CG(s) is
isomorphic to SU6(q), which is of Lie rank 3.
If τ induces a field-graph automorphism, which is only possible for F ∗(H) ∼= E6(q), it is
CF ∗(H)(τ)′ ∼= 2E6(q0) with q2

0 = q. An embedding of CF ∗(H)(τ) into CG(s) = CH(s) im-
plies an embedding of 2E6(q0) into SL6(q) = SL6(q2

0). But this is impossible, because of
|2E6(q0)|2 = q36

0 > q30
0 = q15 = |SL6(q)|2.

If τ induces a graph automorphism, then there are precisely two possibilities for CF ∗(H)(τ):
Either it is CF ∗(H)(τ) ∼= F4(q) or CF ∗(H)(τ) is isomorphic to the centralizer of a 2-central
involution in F4(q). In any case, s is contained in CS(τ)′ ≤ F ∗(H). Without loss of gener-
ality, we may assume that CS(τ) is a Sylow 2-subgroup of CH(τ). If CS(τ) is not a Sylow
2-subgroup of CG(τ), let T be a subgroup of CG(τ) such that |T : CS(τ)| = 2 holds. Then
there is an element t ∈ T \CS(τ). Hence it is st ∈ CS1(τ). But by Lemma 6.5, H controls
the fusion of s in S1. Hence there is an element h ∈ H such that st = sh holds. Hence it
is h−1 · t ∈ CG(s) ≤ H, which contradicts CS(τ) ∈ Syl2(CH(τ)). Thus, CS(τ) is a Sylow
2-subgroup of CG(τ). By assumption, it is τ g = s for an element g ∈ G, so CG(τ)g = CG(s)

follows. In particular, CS(τ) ∈ Syl2(CG(τ)) and S ∈ Syl2(CG(s)) are isomorphic and there-
fore equal. But CS(τ) = S is wrong, as τ is not a 2-central involution in H. Hence τ cannot
be G-conjugate to s. 2

Corollary 6.7: Assume Hypothesis 6.1. Then G = H holds.

Proof: It is F ∗(G) a simple group by Lemma 3.2. Let s ∈ R∩Z(S) be an involution. Then
it is CF ∗(G)(s) ≤ H ∩ F ∗(G), see Lemma 3.9. Additionally, the Lemmas 6.5 and 6.6 give
sF
∗(G) ∩ (H ∩ F ∗(G)) = sH∩F

∗(G). So by Holt’s result, see Lemma 2.44, F ∗(H) = F ∗(G)

follows. And therefore, G = F ∗(H) NG(S1) ≤ H holds. 2

84



Chapter 7

The orthogonal groups in even
dimension

In this chapter we discuss the main theorem of this thesis for F ∗(H) being isomorphic to an
orthogonal group Ω±2n(q) for q = 2f with f ∈ N. Notation and properties of Hypothesis 1.4
are assumed. So let S be a Sylow 2-subgroup of H, S1 = S ∩ F ∗(H) a corresponding Sylow
2-subgroup of F ∗(H) and R = Z(S1) an elementary abelian (long) root subgroup of order q.

Using Remark 4.14, we may assume F ∗(H) ∼= Ω±2n(q) with n ≥ 4. As before, it is Q =

O2(CF ∗(H)(R)) a large subgroup in F ∗(H) and also inH, compare Lemma 2.38. Additionally,
by using Lemma 2.36, F ∗(H) ∼= Ω±2n(q) with n ≥ 4 implies |Q| ≥ q9.
It is well-known that Ω±2n(q) is the commutator subgroup of the full orthogonal group O±2n(q)

and that |O±2n(q) : Ω±2n(q)| = 2 holds.

In the following remark some properties of involutions and their centralizers in the orthogonal
group are listed. For involutions in O±2n(q) we follow the notation as it is used in [AsSe].

Remark 7.1 ([AsSe], Section 8): Let be F ∗(H) ∼= Ω±2n(q) for n ≥ 4 with q = 2f . Let
further be t an involution in the orthogonal group O±2n(q) and V the corresponding orthogonal
module. Then the following statements hold:

• The involution t is either of type al, bl or cl, where the rank l ∈ N is the dimension of
the commutator space [V, t].

• It is t ∈ Ω±2n(q) if and only if t is of type al or cl, while involutions of type bl are in
O±2n(q) \ Ω±2n(q).

• For t of type al or cl, l must be even. For involutions of type bl, l is odd.
In particular, elements of type an or cn in O±2n(q) only occur for n even, while involutions
of type bn require n to be odd.
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• If t is of type al, it is CO±2n(q)(t)/O2(CO±2n(q)(t))
∼= Spl(q) × O±2n−2l(q). If t is of type

bl, then CO±2n(q)(t)/O2(CO±2n(q)(t))
∼= Spl−1(q) × Sp2n−2l(q). And for t of type cl, it is

CO±2n(q)(t)/O2(CO±2n(q)(t))
∼= Spl−2(q)× Sp2n−2l(q).

• Let be r ∈ R# = Z(S1)# with S1 ∈ Syl2(F ∗(H)). Then it is r of type a2 and
CO±2n(q)(r) = Q : (O±2n−4(q)× L2(q)) holds with Q ∼= D+

2n−4(q).

• The conjugacy class tO
±
2n(q) contains the involutions of the same type as t. The same

holds for tΩ
±
2n(q) with exception of an involution t of type an in Ω+

2n(q): Then tO
+
2n(q)

splits into two conjugacy classes in Ω+
2n(q).

Proof: The statements above can be found in Section 8 in [AsSe]. 2

Lemma 7.2: Assume Hypothesis 1.4. Let F ∗(H) be isomorphic to Ω±8 (q) and t an involution
in H. Then G = H holds.

Proof: To simplify notation we identify F ∗(H) and Ω±8 (q). As before, we fix an involution
r ∈ Z(S∩F ∗(H)) = R. By Remark 7.1, it is r ∈ R of type a2. Additionally, from Lemmas 3.9
and the above remark, we deduce CG(r) = CH(r) and CO±8 (q)(r)/Q

∼= O±4 (q) × L2(q) with
Q = O2(CF ∗(H)(R)).

At first, we show that every involution in F ∗(H) is H-conjugate to an involution in Q. To
see that, we consider the conjugacy classes of involutions in F ∗(H) and list a representative
in Q for each conjugacy class. The calculations were performed in GAP, compare [GAP].
For F ∗(H) ∼= Ω+

8 (q), there are five conjugacy classes of involutions in F ∗(H): One of type
a2, two of type a4 (which are fused in O±8 (q)), one of type c2 and one of type c4. Let r be
the orthogonal matrix 

0 0 1 1 0 1 1 1

0 0 1 1 1 0 1 1

1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

0 1 1 1 0 0 1 1

1 0 1 1 0 0 1 1

1 1 0 0 1 1 1 0

1 1 0 0 1 1 0 1


.

It is r of type a2 and by definition contained in Q. In the following, a representative for each
remaining conjugacy class of involutions is given such that all the given representatives are
contained in Q. The involutions are listed in order c2, c4, a4, a4:
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0 1 1 1 1 1 0 0

1 0 1 1 1 1 0 0

1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


,



0 1 0 0 1 1 1 1

1 0 1 0 0 0 0 0

0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 0 0

0 1 0 1 0 1 1 0

0 1 0 1 0 1 0 1


,



0 0 1 0 0 1 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 1 1 1

0 1 0 0 0 1 0 0

1 1 1 1 1 0 1 0

0 0 0 1 0 1 0 1

1 0 0 1 1 0 1 0

0 1 0 1 0 1 0 1


,



0 0 0 0 1 0 1 0

0 0 1 0 1 0 0 1

0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0

0 0 0 1 1 0 1 0

1 1 1 1 0 1 0 1

1 0 0 1 1 0 1 0

0 1 0 1 0 1 0 1


.

For F ∗(H) ∼= Ω−8 (q), there are three conjugacy classes of involutions in F ∗(H): One of type
a2, one of type c2 and one of type c4. Let r be the orthogonal matrix

0 0 0 0 1 0 0 0

0 0 1 1 0 1 1 1

1 0 1 0 1 0 0 0

1 0 0 1 1 0 0 0

1 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1

1 0 0 0 1 0 1 0

1 0 0 0 1 0 0 1


.

As before, we list a representative for each conjugacy class of involutions, such that the given
representatives are contained in Q. The involutions are listed in order c2, c4:

1 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0

1 0 1 0 1 0 0 0

1 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


,



1 0 0 0 1 0 0 1

1 1 1 0 1 0 0 1

0 0 1 0 1 0 0 1

1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1

1 1 0 1 1 0 1 0

1 1 1 1 0 1 0 0

0 0 0 0 1 0 0 0


.

The statement of the lemma for involutions in F ∗(H) follows from Lemma 5.10.

Involutions in O±8 (q) \ Ω±8 (q) can be of type b1 or b3. If t is an involution of type b1, then
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CG(t) involves a simple group Sp6(q), which cannot be embedded into CG(r) = CH(r). If
t is of type b3, it is CO±8 (q)(t)/O2(CO±8 (q)(t))

∼= L2(q)× L2(q) and O2(CO±8 (q)(t)) is of order
2 · q7 where O2(CO±8 (q)(t))

′ = O2(CΩ±8 (q)(t))
′ is of order q and contains only involutions of

type a2. Hence conjugation with an element g ∈ G, which embeds CH(t) into CH(r) maps
O2(CΩ±8 (q)(t))

′ on O2(CΩ±8 (q)(r))
′ = R; therefore g maps a H-conjugate of R onto R. In

particular, g ∈ H follows.
Hence we may assume t /∈ CS(R).

Using Section 19 in [AsSe], this can only occur for F ∗(H) ∼= Ω+
8 (q). For F ∗(H) ∼= Ω+

8 (q), t
can only induce a field or a graph-field automorphism. If t induces a field automorphism, then
by (19.1) in [AsSe], it is O2′(CF ∗(H)(t)) ∼= Ω+

8 (q0) with q2
0 = q. Hence CG(t) involves a simple

group of Lie rank n. By Lemma 2.29, Ω+
8 (q0) cannot be embedded into Ω±4 (q)×L2(q). So it

is impossible to embed CG(t) into CG(r) = CH(r). If t induces a field-graph automorphism,
it is CF ∗(H)(t) ∼= Ω−8 (q0) with q2

0 = q. Hence CF ∗(H)(t) is a simple group of Lie rank n− 1.
Again by Lemma 2.29, it is impossible to embed CG(t) into CG(r) = CH(r).
Altogether, rG ∩H = rH holds. Then Holt’s result from Lemma 2.44 implies G = H.

2

Using the result of the previous lemma, we assume the following hypothesis in this chapter:

Hypothesis 7.3: Let the notation and properties listed in Hypothesis 1.4 hold. Additionally,
let be F ∗(H) ∼= Ω±2n(q) with n ≥ 5 and q = 2f for f ∈ N. To simplify notation, we
identify F ∗(H) and Ω±2n(q). It is CΩ±2n(q)(R)/Q ∼= Ω±2n−4(q)×L2(q) and it is CO±2n(q)(R)/Q ∼=
O±2n−4(q)× L2(q), using Lemma 2.36. Additionally, it is |Q| ≥ q13, using Lemma 2.36.
We assume the existence of an involution z ∈ CH(R) such that CG(z) 6≤ H. We may choose
z ∈ CH(R) such that CS(z) is a Sylow 2-subgroup of CH(z). Then it is P (CS(z)) 6= ∅.
So let K be a group in P (CS(z)). By Lemma 6.12 and Proposition 8.8 in [SaSt], it is
P ∗(CS(z)) = ∅. Hence we may assume K ∈ P (CS(z)) \ P ∗(CS(z)).
As a direct consequence of Lemma 5.10, z cannot be H-conjugate to an involution in Q.

For H = F ∗(H), it is z an involution in Ω±2n(q). For H 6= F ∗(H), z ∈ CH(R) could also be
an involution of b-type in O±2n(q). Hence in the rest of this chapter, we assume z ∈ O±2n(q);
nevertheless in case of H = F ∗(H) we can always replace O±(q) by Ω±(q).
The following statement can be found as Lemma 6.3 in [SaSt]. For K ∈ P (CS(z)), it allows
us to choose T ∈ Syl2(K ∩H) such that T ≤ S ∩K holds.

Lemma 7.4: Assume Hypothesis 7.3. Without loss of generality T ≤ S ∩ K is a Sylow
2-subgroup of K ∩H.

Proof: Let K be an element of the set P (CS(z)) and let T be a Sylow 2-subgroup of
K ∩ H with CS(z) ≤ T . Using Lemma 3.6, T ∈ Syl2(K ∩ H) is also a Sylow 2-subgroup
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of K. By choice of z ∈ CS(R), R ≤ K holds. As CS(z) is a Sylow 2-subgroup of CH(z),
CS(z) ≤ T implies CS(z) = CT (z). So also CT (z) ∩H is a Sylow 2-subgroup of CH(z). By
Sylow’s Theorem, there is an element h ∈ H such that T h ≤ S holds. Then CTh(zh) ∩H =

CT (z)h ∩H is a Sylow 2-subgroup of CH(zh). Hence CTh(zh) ≤ CS(zh) ∩Kh follows. It is
Kh ∈ P (CS(zh)) and zh ∈ S centralizes R. Hence R ≤ Kh holds. Replacing z by zh and K
by Kh gives the statement of this lemma. 2

Lemma 7.5: Assume Hypothesis 7.3. Then O(K) ≤ H holds.

Proof: Let z ∈ CS(R) be an involution such that CG(z) 6≤ H holds and letK ∈ P (CS(z))\
P ∗(CS(z)). By Hypothesis 7.3, it is z ∈ S \ Q. Because of [〈z〉, R] = 1 and as Q is a large
subgroup in H, [〈z〉, Q] ≤ Q holds. Then the action of z on Q/R is linear. Hypothesis 7.3
implies |Q/R| ≥ q12. Hence, as z is an involution, CQ(z) ≤ K contains an elementary
abelian subgroup V of order q5 by Lemma 6.4. Coprime action and Lemma 5.10 give O(K) =

〈CO(K)(v) | v ∈ V #〉 ≤ H. 2

So we have K/O(K) = E(K/O(K)) · (TO(K)/O(K)) with E(K/O(K)) = (L1 ∗ · · · ∗
Lm)O(K)/O(K) for an integer m ∈ N. It is L1 ∗ · · · ∗ Lm a central product of components
of K and T ∈ Syl2(K ∩H). By definition of P (CS(z)), it is O2(K) 6= 1 and by Lemma 7.4,
we may assume R ≤ T ≤ S. By minimality of K ∈ P (CS(z)), T acts transitively on the set
{L1, . . . , Lm}. Hence all the components of K are isomorphic and none of the components is
contained in H. We assume this setting for the rest of this chapter.

By construction, it is K a subgroup of the 2-local subgroup NG(O2(K)) with O2(K) 6= 1.
Hence the K2-group assumption in Hypothesis 1.4 implies that for every component L of K,
L = L/Z(L) is a known finite simple group.

This is used in the following lemma to collect some statements, which in particular restrict
the set of possible components of K.

Lemma 7.6: Assume Hypothesis 7.3. Let L be an arbitrary component of K and T ∈
Syl2(K ∩H) with R ≤ T ≤ S. Then the following statements hold:

(a) It is [Q ∩K,O2(K)] = 1 and Q ∩O2(K) = 1.

(b) The component L is normalized by every involution x in K for which CG(x) ≤ H holds.
In particular, this holds for every involution in Q ∩K.

(c) No involution x in K for which CG(x) ≤ H holds centralizes L.
In particular, the action of Ω1(Q ∩K) on L is faithful.

(d) If there is more than one component in K, then Q ∩ L is trivial.
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(e) It is L/Z(L) isomorphic to one of the following groups: L2(2j) with j ≥ 4, Sz(2j) with
j ≥ 4, U3(2j) with j ≥ 3, L3(2j) with j ≥ 3 or Sp4(2j) with j ≥ 3.

Proof: By minimality of K ∈ P (CS(z)), it is L, and therefore E(K), not contained in H.
As before, O2(K) ≤ T ≤ S centralizes some element 1 6= s ∈ Z(S)∩R. So O2(K) normalizes
the large subgroup Q. Hence it is [Q ∩K,O2(K)] ≤ Q ∩ O2(K) = 1, as otherwise there is
an involution x ∈ O2(K) ∩ Q and, using [E(K), O2(K)] = 1, E(K) ≤ CG(x) ≤ H follows,
applying Lemma 5.10. This proves (a).

Now let x ∈ K be an involution such that CG(x) ≤ H holds. We assume that Lxi = Lj

holds for different components Li and Lj of K. By Lemma 3.6, it is T ∈ Syl2(K) and K

minimal parabolic such that H ∩K is the unique maximal subgroup of K which contains T .
By construction of K, it is H ∩ E(K) ≤ H ∩ K and E(K) 6≤ H. As Li 6≤ H, there is an
element u ∈ Li \ H. Then it is u · ux ∈ CLi∗Lj (x) ≤ H. So E(K) ≤ 〈H ∩ K,u · ux〉 ≤ H

follows, which is a contradiction. Hence every involution x in K with CG(x) ≤ H normalizes
every component of K and part (b) holds.
Additionally, no such involution centralizes L, as otherwise L would be contained in H. This
is part (c). By Lemma 5.10, parts (b) and (c) hold for every involution in Q ∩K.

If K has m > 1 many components L1, . . . , Lm, then Q∩Li is trivial for each i ∈ {1, . . . ,m}.
This is, because otherwise every other component would be contained in the centralizer of
an involution of Q, which contradicts Lemma 5.10. Hence part (d) holds.

It is K ∈ P (CS(z)) minimal parabolic with respect to T . Next we show that KL := LNT (L)

is minimal parabolic with respect to NT (L). As L ≤ KL is quasisimple, NT (L) is not normal
in KL. Assume now the existence of a proper subgroup X of KL which contains NT (L) and
is not contained in H. Then 〈X,T 〉 is a proper subgroup of K which is not contained in
K ∩H. But this contradicts K being a minimal parabolic subgroup with respect to T . So
KL is minimal parabolic with respect to NT (L).
It is K ≤ NG(O2(K)) and O2(K) 6= 1. By Hypothesis 1.4, L = L/Z(L) is a known non-
abelian, finite simple group.
As KL is minimal parabolic with respect to NT (L), L is not isomorphic to a sporadic group
by Lemma 2.48.

As the involution z centralizes R = Z(Q), it induces a GF (q)-linear action on Q/R. Hence
z centralizes a subspace of dimension at least dimGF (q)(Q/R)

2 in Q/R. As for F ∗(H) ∼= Ω±2n(q)

with n ≥ 5 the order ofQ/R is at least q12, Lemma 6.4 implies that z centralizes an elementary
abelian subgroup V of order at least q5 in Q. So it is V ≤ CQ(z) ≤ CS(z) ≤ K and V acts
on each component L of K. Additionally, the action of V on L is faithful by part (c) of this
lemma. Using Remark 2.10, V is involved in Aut(L).
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Suppose now that L = L/Z(L) is isomorphic to an alternating group.
By Lemma 2.49, it is L either isomorphic to A6 or it is L ∼= A2k+1 for k ∈ N. In case of
L ∼= A6, it is L generated by centralizers of involutions in V ≤ Q, using Lemma 2.51. If L is
generated by centralizers of involutions in V ≤ Q, then L ≤ H follows, as the centralizer of
every involution v ∈ V is contained in H by Lemma 5.10. This is a contradiction to L � H.
For L ∼= A5 it is m2(Aut(L)) ≤ m2(S5) = 2 and for L ∼= A9 it is m2(Aut(A9)) = m2(S9) = 4.
Hence there is no elementary abelian subgroup of order q5 in Aut(L) for these groups.
Hence we can identify L withA2k+1 for 4 ≤ k ∈ N. We consider the stabilizerM = KL∩H of a
point in the permutation representation of degree 2k+1 inA2k+1 or S2k+1. Without restriction
let M be the stabilizer of the point 2k + 1. It is R ≤ T , hence R ≤ T ∩M . We may assume
that ŝ = (1, 2)(3, 4) · · · (2k − 1, 2k) is contained in the projection R̂ of R in L. By part (b) of
this lemma L is normalized by Ω1(Q∩K). In particular, it is Ω1(Q∩K) ≤ KL ∩H = M . It
is V ≤ Ω1(Q ∩K) and the isomorphic projection ̂Ω1(Q ∩K) of Ω1(Q ∩K) in L centralizes
ŝ. As Q is a large subgroup in H, CM (ŝ) normalizes ̂Ω1(Q ∩K). Hence ̂Ω1(Q ∩K) is a
normal 2-subgroup in CM (ŝ). Let V̂ be the projection of V ≤ Ω1(Q ∩K) in L. In analogy
to Lemma 5.10, it is V̂ contained in 〈(1, 2), (3, 4), . . . , (2k − 1, 2k)〉 ∩KL for 2k + 1 ≥ 17.
To apply Lemma 2.50, we have to make sure that there is no elementary abelian 2-group of
rank at most k which acts on the set {1, 2, . . . , 2k + 1} by fixing the point 2k + 1 and acting
regularly on the remaining set {1, 2, . . . , 2k}. It is easy to see that the described situation
can only arise for k = 3, so for L ∼= A9. As the group A9 has already been excluded from the
set of possible components, Lemma 2.50 implies that L ∼= A2k+1 for k ≥ 4 is generated by
centralizers of involutions in V ≤ Q, which contradicts Lemma 5.10. So L is not isomorphic
to an alternating group.

If L = L/Z(L) is isomorphic to a group of Lie type over a field in odd characteristic,
Lemma 2.52 implies that either L is generated by centralizers of non-trivial elements in V or
that L is isomorphic to one of the following groups: L2(5), L2(7), L2(9), 2G2(3)′ or PSp4(3).
As it is L2(5) ∼= A5 and L2(9) ∼= A6, these possibilities have been excluded in the previous
paragraphs.
Using [CoCu], it is m2(Aut(L2(7))) = 2. Hence there is no elementary abelian 2-subgroup of
order q5 in the automorphism group of L2(7). And it is PSp4(3) not minimal parabolic,
see [CoCu]. Hence L is not isomorphic to PSp4(3). It is 2G2(3)′ ∼= L2(8) and it is
m2(Aut(L2(8))) = 3, which again contradicts V being involved in Aut(2G2(3)′).

Altogether, we have that L is a simple group of Lie type over a field of even characteristic.
Hence Lemma 2.47 gives that L is isomorphic to one of the following groups: L2(2j), Sz(2j),
U3(2j), L3(2j) or Sp4(2j)′ with j ∈ N, where in the last two cases NT (L) involves a graph
automorphism of L. Additionally, the groups L2(2), Sz(2) and U3(2) are solvable and it is
L2(4) ∼= L2(5), L3(2) ∼= L2(7) and Sp4(2)′ ∼= A6. Components are never solvable and the
latter three groups have been excluded above, which also holds for the group L2(8). And
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m2(Aut(Sz(8))) = 3, m2(Aut(L3(4))) = 3, m2(Aut(U3(4))) = 2 and m2(Aut(Sp4(4))) = 2

are contradictions to V being involved in Aut(L) for L being isomorphic to L2(2j) or Sz(2j)
for j ≤ 4 or U3(2j), L3(2j) or Sp4(2j) for j ≤ 3. 2

Lemma 7.7: Assume Hypothesis 7.3. Let L be a component of K. Then every involution
τ ∈ K with CG(τ) ≤ H induces an inner automorphism on L, which projects into Z(T ∩L).
So τ acts like a 2-central involution on L.
Additionally, CQ(z) is elementary abelian and it is 2·dim(CQ/R(z)) = dim(Q/R) over GF (q)

with CQ/R(z) = [Q/R, z].

Proof: Let L be a component of K ∈ P (CS(z)) and T ∈ Syl2(K ∩ H) with CS(z) ≤ T .
Then KL := LNT (L) is minimal parabolic with respect to NT (L) and L/Z(L) is a simple
group of Lie type over a field of characteristic 2 listed in Lemma 7.6. By Lemma 2.47,
KL ∩H = NKL(T ∩ L) is the only maximal subgroup of KL which contains NT (L).
We denote by AutK(L) the group of automorphisms of L which are induced by elements of
K. By Lemma 7.6, Ω1(Q ∩K) embeds into AutK(L) and the involutions in Q ∩K induce
non-trivial automorphisms on L/Z(L), see Remark 2.10. The possible components have no
center of even order, compare Lemma 2.22. Additionally, we only use the 2-structure of these
groups. Hence, we may assume that L is simple.

We first show that every involution τ ∈ T with CG(z) ≤ H induces an inner automorphism
on L. Therefore, we assume the existence of such an involution τ which induces an outer
automorphism on L. For L ∼= Sz(2j) there is no involution in Out(L) by Lemma 2.31. If τ
induces a field automorphism on L, then it is O2′(CL(τ)) isomorphic to a group of Lie type
of the same type but over GF (2

j
2 ), except for L ∼= U3(2j), by Lemma 2.31. In particular, τ

centralizes an element in L which does not normalize T ∩ L. Hence τ centralizes an element
which is not contained in the maximal subgroup NKL(T ∩ L) of KL. Thus τ centralizes an
element not contained in H. This is a contradiction. If τ induces a field automorphism on
L ∼= U3(2j) or a graph or a field-graph automorphism on L, CL(τ) can be isomorphic to
L2(2j) for L ∼= U3(2j) or for L ∼= L3(2j), in which case also CL(τ) ∼= L2(2

j
2 ) is possible.

Also CL(τ) can be isomorphic to Sz(2j) for L ∼= Sp4(2j), see Lemma 2.31. But in all these
cases, CL(τ) is not contained in the normalizer of T ∩ L and therefore not in H, which is
impossible. So every involution τ ∈ K with CG(z) ≤ H induces an inner automorphism on
L.
Next we show that such an involution τ ∈ T acts like a 2-central involution on L. Let τ̂ denote
the projection of τ in T ∩ L. For L ∼= L2(2j), L ∼= Sz(2j) or L ∼= U3(2j), every involution
in T ∩ L is 2-central, see [Hig] for L ∼= Sz(2j) and Lemma 2.34 for L ∼= U3(2j). Since it is
z ∈ CS(R), we have R ≤ Z(CQ(z)). Hence R ≤ S ∩ K = T holds, using Lemma 7.4. In
particular, there is an involution in R which is projected into Z(T ∩ L).
For L ∼= L3(2j) or L ∼= Sp4(2j), we assume that there are involutions τ1 and τ2 in T
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with CG(τ1) ≤ H and CG(τ2) ≤ H such that the projection τ̂1 is contained in Z(T ∩ L)

and τ̂2 ∈ T ∩ L is not 2-central. But then these centralizers generate L � H, which is a
contradiction. Therefore, τ̂ is contained in Z(T ∩L) and τ acts like a 2-central involution on
L.
In particular, using Lemma 5.10, this implies that Ω1(Q ∩K) embeds into Z(T ∩ L). Hence
Ω1(Q ∩K) is elementary abelian.

Now we can show that CQ(z) is elementary abelian. The involution z cannot centralize
a semi-extraspecial group of type D1(q) in Q, as by Lemma 2.34 D1(q) is generated by
involutions and Ω1(CQ(z)) is abelian. We assume now that CQ(z) is not abelian. Then,
using D2(q) ∼= Q2(q), it is CQ(z) = C[Q,z](z) ∗X with X ∼= Q1(q). It is C[Q,z](z) elementary
abelian. For CQ(z) ∼= Q1(q), it is [Q, z] a homocyclic group and therefore, |Q| = q5 holds.
But by assumption, it is F ∗(H) ∼= Ω±2n(q) for n ≥ 5 in this chapter, so it is |Q| ≥ q13. Hence
it is CQ(z) ∼= E ×Q1(q) where E 6= 1 is elementary abelian.
By Hypothesis 7.3, it is z an involution in CO±2n(q)(r)

∼= Q : (O±2n−4(q) × L2(q)) such that
z is not H-conjugate to an involution in Q. We fix a Levi complement K1 × K2 with
K1
∼= O±2n−4(q) and K2

∼= L2(q). The module Q/R consists of q + 1 many orthogonal K1-
modules, and K2 acts transitively on this set of orthogonal modules. Every involution in K1

acts in the same way on each of these modules. As q + 1 is odd, every involution in K2 fixes
at least one orthogonal K1-module. We distinguish the two cases z ∈ Q : K1 and z /∈ Q : K1.
For the rest of this lemma, we denote the coset of z modulo Q by z.

For z ∈ Q : K1, it is CQ(z) generated by the centralizers of z in the orthogonal K1-modules.
Hence CQ(z) is generated by involutions, while Q1(q) is not. As seen above, it is Ω1(Q∩K)

elementary abelian, so also CQ(z) ≤ K is elementary abelian.
Now we show that 2 · dimGF (q)(CQ/R(z)) = dimGF (q)(Q/R) holds in this case. We have
|Q/R| = q4(n−2) for q = 2f , compare Lemma 2.36. Then the involution z centralizes a
subspace in Q/R of GF (q)-dimension at least 2(n−2). We assume that |CQ/R(z)| > q2(n−2).
As we have [z,K2] = 1 in this case, CQ/R(z) is a K2-module. So there is an integer m ∈ N
such that |CQ/R(z)| = q2m holds. In particular, dimGF (q)(CQ/R(z)) is even. Hence it is
|CQ/R(z)| ≥ q2(n−2)+2. By the assumption, it is |CQ/R(z) : CQ(z)/R| = q. So |CQ(z)/R| ≥
q2(n−2)+1 follows. Hence it is |CQ(z)| ≥ q2(n−2)+2. As we have already shown that CQ(z)

is elementary abelian in this case, there is an elementary abelian subgroup of order at least
q2(n−2)+2 in Q. But this contradicts m2(Q) = (2(n − 2) + 1)f , which follows from the
structure of Q, compare Lemma 2.34. Therefore, 2 · dimGF (q)(CQ/R(z)) = dimGF (q)(Q/R)

and CQ/R(z) = [Q/R, z] hold in this case.

For z /∈ Q : K1, z interchanges at least two orthogonal modules and the projection of z
in K1 acts equally on every K1-module. As it is z /∈ K1, there is an element ω ∈ K2 of
order q + 1 such that ω is inverted by z. The action of ω ∈ K2 on Q/R is fixed point
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free. Then CQ/R(z) = [Q/R, z] holds. Therefore, we have CQ(z)/R ≤ CQ/R(z) = [Q/R, z],
R ≤ [Q, z] �Q and 2 · dimGF (q)(CQ/R(z)) = dimGF (q)(Q/R). It is CQ(z) ≤ [Q, z] and, as z
inverts every element in [Q, z], [Q, z] is abelian. In particular, CQ(z) is abelian. As z acts on
CQ(z) by inverting the elements, there cannot be an element of order 4 in CQ(z). So CQ(z)

is elementary abelian.

Hence in every case, the statement of the lemma holds. 2

In the following lemma, we show that H controls the G-fusion of 2-central elements in O±2n(q).
In particular, the lemma provides rG ∩ F ∗(H) = rH for r ∈ R. In case of H = F ∗(H), it
implies rG ∩H = rH , by replacing each group O±(q) by Ω±(q) and omitting all cases where
z is an involution of b-type.

Lemma 7.8: Assume Hypothesis 7.3. Then rG ∩O±2n(q) = rH holds for r ∈ R#.

Proof: As before, we identify F ∗(H) with Ω±2n(q). Let V be the orthogonal module for
O±2n(q). We consider an involution r ∈ R = Z(S ∩O±2n(q)) and an involution z ∈ S ∩O±2n(q)

such that z ∼G r holds. We show that this implies z ∼H r.

It is z contained in O±2n(q), so z is an involution of type al, bl or cl for l ∈ N. Let K be a
group in P (CS(z)) \ P ∗(CS(z)), compare Hypothesis 7.3.
By Lemma 2.36, we have CO±2n(q)(r) = Q : (K1 ×K2) for K1

∼= O±2n−4(q) and K2
∼= L2(q),

and additionally, Q/R = V1 ⊗ V2, where V1 is a natural K1-module and V2 a natural K2-
module. Hence there are q+ 1 many orthogonal K1-modules and K2 acts transitively on this
set of orthogonal K1-modules. For all involutions t1 ∈ K1 and t2 ∈ K2, the action of 〈t1〉
on every K1-module is equal and t2 fixes one of the K1-modules and interchanges the other
ones pairwise.
By Hypothesis 7.3, it is z not H-conjugate to an involution in Q. The coset of z modulo
Q is denoted by z. We distinguish the following cases: z ∈ Q : K2, z ∈ Q : K1 and z ∈
Q : (K1 ×K2), where in the third case z is a diagonal involution in (K1 ×K2)Q/Q.

We begin with an observation about the centralizer of a singular vector v in the orthogonal
O±2n(q)-module V . It is U := CO±2n(q)(v) = E : A with A ∼= O±2n−2(q) and E the natural A-
module. It is U a parabolic subgroup in O±2n(q). Hence we can choose v such that S∩O±2n(q) ≤
U holds. Hence it is E a normal subgroup in S ∩O±2n(q) and it is R = Z(S ∩O±2n(q)) ≤ E a
singular subspace of GF (q)-dimension 1 in the A-module E. So, it is E normalized by z ∈ S
and z centralizes R. In particular, z acts on Q ∩ E.
We now consider r ∈ R. As r is a singular element in E, it is CU (r) ≤ CO±2n(q)(r). And
without loss of generality, it is CU (r) = E : (W : K1), where W is a natural K1-module. As
E : W splits, we may assume that W is a subgroup of O2(CU (r)). It is CU (r) a parabolic
subgroup in O±2n(q).

94



7. THE ORTHOGONAL GROUPS IN EVEN DIMENSION

Hence Q is a normal subgroup in CU (r). This implies Q ≤ O2(CU (r)). Since W is a natural
K1-module, it is W irreducible. Additionally, Q∩E is K1-invariant. This and a comparison
of |Q| = q4n−7 and |O2(CU (r))| = q4n−6 provide W ≤ Q and |E : Q ∩ E| = q. Hence it is
Q ∩ E a submodule of codimension 1 in the natural A-module E. By Witt’s Theorem, see
Theorem 7.4 in [Tayl], A acts transitively on the set of hyperplanes in E, so every element
in E is H-conjugate to an element in Q ∩ E.
Additionally, it is R⊥ = Q ∩ E, as otherwise it is R⊥ ∩ (Q ∩ E) of codimension 2 in E and
an A-invariant complement of R in R⊥, which is impossible.

We now consider the case z ∈ Q : K2:
Using the paragraph above, it is QE a Sylow 2-subgroup of Q : K2. We may assume that
z ∈ QE holds. For z ∈ E, it is z conjugate in H to an involution in Q, which contradicts
Hypothesis 7.3. Hence we may assume z = z1 ·z2 for z1 ∈ Q\E and an involution z2 ∈ E \Q.
Then it is 1 = z2 = z2

1 · [z1, z2]. From this z2
1 = [z1, z2]−1 follows. As Q is semi-extraspecial,

it is z2
1 ∈ R. Hence [z1, z2] ∈ R holds. As E is abelian, z1 ∈ Q \ E acts as an involution in

W on E. Applying Lemma 3.1(b) in [MSS2], we get [z1, z2] /∈ R, a contradiction.

For the remaining two cases, we try to find an involution y ∈ K such that y is H-conjugate
to an involution in Q and such that y acts non-trivially on CQ(z).
Such an involution y, as it is H-conjugate to an involution in Q, induces a non-trivial auto-
morphism on each component L of K and also on L/Z(L) by Lemma 7.6. Then Lemma 7.7
provides that y induces an inner automorphism, which acts like a 2-central involution in L.
Additionally, by Lemma 7.7, it is CQ(z) ≤ K elementary abelian and, applying Lemma 7.6,
CQ(z) is contained in E(K) by the minimality of K. But this contradicts the assumption
that y acts non-trivially on CQ(z). Hence K cannot have any components. But then K is
not an element of P (CS(z))\P ∗(CS(z)), as by Lemma 7.5, it is O(K) ≤ H, so E(K) cannot
be trivial. Using M. Salarian’s and G. Stroth’s result in [SaSt], it is P ∗(CS(z)) = ∅. This
implies P (CS(z)) = ∅ and therefore, CG(z) ≤ H holds. Hence z ∼H r follows.
So we have to find an involution y with the described properties.

Let now z ∈ S be an involution in Q : K1. As before, it is z not H-conjugate to an element
in Q and we use the notation from the paragraphs above. We prove the existence of an
involution y ∈ E \ (Q ∩ E) with the following properties: It is [y, z] = 1 and y acts non-
trivially on CQ(z). Then, as y centralizes z, it is y ∈ CS(z) ≤ K. And y ∈ Q : K2 implies,
as described in the first case above, that y is H-conjugate to an involution in Q. Therefore,
y normalizes every component of K ∈ P (CS(z)), compare Lemma 7.6, and we are done.

The previous Lemma 7.7 implies 2 · dimGF (q)(CQ/R(z)) = dimGF (q)(Q/R). In particular, it
is 2 · dimGF (q)([Q/R, z]) = dimGF (q)(Q/R).
As before, it is (E ∩ Q)/R = R⊥/R a z-invariant subspace of Q/R. Now we construct
a z-invariant complement of (E ∩ Q)/R in Q/R. As we have seen before, it is W ≤ Q
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and K1 normalizes W . We now denote z = t1 · t2 with t1 ∈ Q and t2 ∈ K1. As Q/R
is elementary abelian, z ∈ Q : K1 and t2 ∈ K1 act in the same way on WR/R ≤ Q/R.
Hence WR/R is a z-invariant subspace of Q/R. And it is Q/R = (E ∩ Q)/R ⊕ WR/R

by comparing orders. Hence it is [Q/R, z] = [(E ∩ Q)/R, z] ⊕ [WR/R, z]. So we have
2·dimGF (q)(C(E∩Q)/R(z)) = dimGF (q)((E∩Q)/R). As z normalizes E/R and dimGF (q)(E/R)

is odd, it is 2 · dimGF (q)(CE/R(z)) > dimGF (q)(E/R). Therefore, we can find an involution
y ∈ E \ (E ∩Q) such that yz = y · t holds for a suitable element t ∈ R. We want to show that
we can choose y such that [y, z] = 1 holds. For t 6= 1, the involution t ∈ R is singular and
we have y /∈ (Q ∩ R) = R⊥. Then the quadratic form of yz differs from the quadratic form
of y · t. This implies t = 1. So we can find an involution y ∈ E \ (Q ∩E) such that [y, z] = 1

holds. And every such involution is H-conjugate to an involution in Q, by the argumentation
above.
Additionally, z is non-trivial on R⊥ = Q∩E by Theorem 11.11 in [Tayl]. As E is abelian, it is
Q∩E ≤ CQ(y). And, by Lemma 3.1(b) in [MSS2], CQ(y) ≤ E holds. So it is Q∩E = CQ(y).
As CQ(z) \ (E ∩Q) is not empty, it is CQ(z) � CQ(y). Hence y acts non-trivially on CQ(z).

In the third case we consider z ∈ Q : (K1 ×K2) such that the projections of z in (Q : K1)/Q

and also in (Q : K2)/Q are not trivial.
There is an element ω ∈ K2

∼= L2(q) of order q + 1 such that ω is, modulo Q, inverted by
conjugation with z. Applying the Baer Theorem, compare 6.7.7 in [KuSt], there is an element
ω1 of order q + 1 such that ωz1 = ω−1

1 holds. It is ω1 not necessarily contained in K2, but
there is a conjugate ω̃ of ω1 in K2, such that ω̃z̃ = ω̃−1 holds for a Q-conjugate z̃ of z. In
particular, it is z̃ ∈ S, as Q is contained in S.
As ω̃ ∈ K2 acts by transitively permuting the q + 1 many orthogonal K1-modules, it is
CQ(ω̃) = R. Then it is CQK2(ω̃) = R × 〈ω̃〉. So we have CC

O±2n(q)
(r)(ω̃) = R × K1 × 〈ω̃〉.

The normalizer NC
O±2n(q)

(r)(ω̃) equals R×K1× (〈ω̃〉 : Z) with Z ≤ K2 a group of order 2 that

inverts ω̃. As z̃ normalizes 〈ω̃〉, there is an element t ∈ R such that z̃ · t ∈ K1 × (〈ω̃〉 : Z)

holds. It is 〈ω̃〉 : Z ∼= D2(q+1) a dihedral group of order 2(q + 1). Then z̃ ∈ S centralizes
a 2-central involution ỹ in S ∩ K1. It is ỹ ∈ K1 not contained in Q and in particular, not
contained in Z(S ∩O±2n(q)).

To show that ỹ is H-conjugate to an involution in Q, we consider the centralizer in O±2n(q)

of a hyperbolic pair {e1, f1} in the natural O±2n(q)-module V . This centralizer induces an
orthogonal group O±2n−2(q), which acts naturally on 〈e1, f1〉⊥ and centralizes 〈e1, f1〉. An
involution in O±2n−2(q), which acts as an involution of type a2 or c2 on 〈e1, f1〉⊥ and centralizes
〈e1, f1〉, must be of type a2 or c2 inO±2n(q). We can repeat this consideration for the centralizer
of a hyperbolic pair in O±2n−2(q) to get a group O±2n−4(q), such that an involution of type a2

in O±2n−4(q) acts as an involution of type a2 or c2 on 〈e1, f1〉⊥ and then also on V .
It is ỹ a 2-central involution in K1

∼= O±2n(q). By a suitable choice of a basis for V , we can
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apply the previous argument to K1
∼= O±2n−4(q) and O±2n(q). Hence we may assume, that ỹ

acts as an involution of type a2 or c2 on V . So ỹ is H-conjugate to an involution in Q.
Going back from z̃ to z by conjugation with an element in Q ≤ S, we have an involution
y ∈ CS(z) ≤ K which is H-conjugate to an involution in Q. By Lemma 7.6, y induces a non-
trivial automorphism on each component L of K. As y ∈ CS(z) centralizes R, it normalizes
Q and therefore acts on CQ(z).
It remains to show that the action of y on CQ(z) is not trivial. As it is ỹ /∈ Q and ỹ ∼Q y, also
y /∈ Q holds. So it is y ∈ S a 2-central involution inH, but not contained in Z(S∩O±2n(q)) = R.
We now consider the action of 〈z〉 on the abelian groupQ/R in order to construct a z-invariant
complement of CQ/R(y) of GF (q)-dimension 4. As Q/R is abelian, we may assume z = z1 ·z2

for z1 ∈ K1 and z2 ∈ K2. We choose a K1-module M in Q/R = V1⊗V2 which is not fixed by
z2. Hence we can write M = V1⊗〈a〉 for an element a ∈ V2. Then it is az = az1·z2 = az2 =: b

for a 6= b ∈ V2. It is (V1⊗〈a〉)∩ (V1⊗〈b〉) trivial, so Q/R = (V1⊗〈a〉)⊕ (V1⊗〈b〉) = M ⊕M z

holds. As y ∈ K1 acts on M and M z in the same way, 1 = [y, z] = [y, z1] implies, that
M and also CM (y) are z1-invariant and CM (y)z = CMz(y) holds. Hence it is CQ/R(y) =

CM (y) ⊕CMz(y). Additionaly, 〈a〉 is 〈z1〉-invariant and CV1(y) is z-invariant. As y acts as
an involution of type a2 on M , we can find a complement N of GF (q)-dimension 2 of CM (y)

in M such that N z is a complement of CM (y)z in M z. Then N ⊕ N z is a 〈z〉-invariant
complement of CQ/R(y) in Q/R with dimGF (q)(N ⊕N z) = 4.
Applying Lemma 7.7, it is dimGF (q)(CN⊕Nz(z)) = 2.
Let the preimage of CN⊕Nz(z) in Q be denoted by Y . It is |Y | = q3. Additionally, it is
[Y, z] ≤ Z(Y ) ≤ R. Then 1.5.4 in [KuSt] implies that the map Y → R with x 7→ [x, z]

is a homomorphism. As the kernel of this map is of order at least q2, we have an element
x ∈ W \ R with [x, z] = 1. Altogether, it is x ∈ CQ(z) \ CQ(y). Hence y is not trivial on
CQ(z) and we are done. 2

Now we can prove Theorem 1.5 for F ∗(H) ∼= Ω±2n(q) with n ≥ 4. For information about
centralizers of involutions which are not contained in CS(R), we use Section 19 in [AsSe].

Lemma 7.9: We assume Hypothesis 7.3 and let be F ∗(H) ∼= Ω±2n(q) for n ≥ 4 and q = 2f

with f ∈ N. Then G = H holds.

Proof: Let r ∈ R be an involution. By Lemma 3.9, it is CG(r) ≤ H.
Now let t be an arbitrary involution in S ∈ Syl2(H) which is G-conjugate to r. For t ∈ CS(R),
it is t ∼H r by Lemma 7.8. Hence we may assume t /∈ CS(R). Using Section 19 in [AsSe],
this can only occur for F ∗(H) ∼= Ω+

2n(q), as the only involutions in Aut(Ω−2n(q)) \Ω−2n(q) are
involutions of type bl for suitable l ∈ N. And such involutions of b-type are contained in
CH(R).
For F ∗(H) ∼= Ω+

2n(q), t can only induce a field or a graph-field automorphism. If t induces
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a field automorphism, then by (19.1) in [AsSe], it is O2′(CF ∗(H)(t)) ∼= Ω+
2n(q0) with q2

0 = q.
Hence CG(t) involves a simple group of Lie rank n. By Lemma 2.29, Ω+

2n(q0) cannot be
embedded into Ω±2n−4(q) × L2(q). So it is impossible to embed CG(t) into CG(r) = CH(r).
If t induces a field-graph automorphism, then by (19.6) in [AsSe], it is CF ∗(H)(t) ∼= Ω−2n(q0)

with q2
0 = q. Hence CF ∗(H)(t) is a simple group of Lie rank n− 1. Again by Lemma 2.29, it

is impossible to embed CG(t) into CG(r) = CH(r).
Altogether, rG ∩H = rH holds. Then Holt’s result from Lemma 2.44 implies G = H. 2

By Lemma 7.9, Theorem 1.5 holds for F ∗(H) ∼= Ω±2n(q). Therefore, by Remark 4.14 and
Corollary 6.7, the proof of Theorem 1.5 is complete.
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