
Networks-on-Chip
for heterogeneous
3D Systems-on-Chip

Dissertation
z u r E r l a n g u n g d e s a k a d e m i s c h e n G r a d e s

Doktoringenieur (Dr.-Ing.)
von M. Sc. Jan Moritz Joseph
geb. am 27. März 1990 in Berlin, genehmigt durch die

F a k u l t ä t f ü r E l e k t r o t e c h n i k
u n d I n f o r m a t i o n s t e c h n i k de r
O t t o – v o n – G u e r i c k e
U n i v e r s i t ä t M a g d e b u r g
Gutachter:
Prof. Dr.-Ing. Thilo Pionteck
Prof. Dr.-Ing. Alberto García-Oritz
Prof. Dr. Gert Jervan
Promot ionsko l l oqu ium am 20 . Augus t 2019

Jan Moritz Joseph: Networks-on-Chip for heterogenenous 3D Systems-on-
Chip, © February 2019

A B S T R A C T

Recently proposed manufacturing methods enable the production of
heterogeneous 3D System-on-Chips (3D SoCs), in which dies man-
ufactured in different technology nodes are stacked and vertically
interconnected. This allows for the combination of components with
different electrical requirements on a single chip. One example of
such systems are “Vision System-on-Chips” that combine analog im-
age sensors, analog-digital converters and digital signal processing.

Communication architectures using the advantages of heterogene-
ity have not been considered prior to this thesis. We propose Asymmet-
ric 3D Networks-on-chips (A-3D NoCs) for this purpose. A-3D NoCs
are NoCs that target heterogeneous 3D SoCs and further exploit the
specific properties of silicon dies in disparate technologies. Asymme-
try for 3D NoCs is a novel design paradigm, offering advantages in
performance, power consumption and area. It further unleashes the
full potential of heterogeneous integration for the network itself.

The approach of this thesis is twofold: First, we consider A-3D
NoCs on a system level to take the advantages of heterogeneous in-
tegration for NoC planning including, optimized topology and place-
ment. Second, we improve routers on an architectural and micro-ar-
chitectural level to tackle technological challenges emerging from het-
erogeneity. This thesis provides the following specific contributions:

The design space of A-3D NoCs is modeled. Technology-specific
features are taken into account, in contrast to models for conven-
tional on-chip networks. This results in a deeper understanding of
the design space and leads to a systematic approach for its explo-
ration. Next, we propose an analytical approach to system-level op-
timizations by means of modeling via linear programs for exact so-
lutions and heuristics for efficient solutions. For the first time, mod-
els account for technology-specific properties of routers and compo-
nents. Furthermore, routers and components are placed simultane-
ously. This combination of models and methods is necessary because
properties vary between layers. Area reductions of up to 26.3% over
related approaches are possible while maintaining performance of the
network. Plus, we achieve white space reductions of up to 21.6% over
traditional linear models for placement of components. Thereafter, we
propose a comprehensive design and simulation framework includ-
ing processes for design space exploration and analysis. As a novel
feature, it accounts for the described structure and proposed hierar-
chical order of the design space and it includes technology-specific
properties. Furthermore, it considers architectures that are only rea-
sonable due to heterogeneity. This allows for rapid prototyping using

iii

parameter sets. Therefore, we propose well-reasoned models. These
are implemented in a simulator which is embedded in a design and
simulation process, including tools for benchmarking, reporting and
analysis. The performance of the simulator is close to state-of-the-art,
despite extended features, and it allows for faster design space ex-
ploration using parameter sets. Going further, we improve the router
architecture by means of better buffer depth and buffer distributions.
As a novel feature, memory of routers is divided over heterogeneous
layers to reduce area and power in those that are more expensive.
This allows for cost reductions. We achieve up to 8.3% area savings
and 5.4% power reductions at a minor performance loss of 2.1%; Area
reduction of 28% and power savings of 15% are possible at 4.6% per-
formance loss. Hereafter, we optimize routing in A-3D NoCs. For the
first time, general principles and models are proposed, which mea-
sure the impact of heterogeneity on router area, speed, packet latency
and router throughput for any set of commercial technologies. Based
on these models, concrete implementations of routing algorithms for
heterogeneous 3D SoCs are proposed. Latency reductions of between
1.5× and 6.5× for packets between layers in different technologies
and about 1.6× for packets within slow technologies are achieved
for a given case study. After that, network throughput reductions
are analyzed with the aforementioned models, which are a result of
non-purely synchronous communication between routers due to het-
erogeneity. A co-design of a router architecture with the proposed
routing algorithms allows for up to 4× throughput increase with neg-
ligible hardware overhead.

This thesis comprehensively introduces asymmetry as a novel par-
adigm for NoCs targeting heterogeneous 3D SoCs. Further, it con-
tributes methods and tools for their design, optimizations on their
system level and novel router architectures and microarchitectures.
The contributions tackle the most important challenges for imple-
mentation of communication networks in heterogeneous 3D systems.
Thereby, the design of diverse heterogeneous 3D SoCs is made possi-
ble for many new application fields.

iv

K U R Z FA S S U N G

Durch Fortschritte in der Fertigung ist es mittlerweile möglich, hete-
rogene 3D System-on-Chips (3D SoCs) zu erstellen, in denen Chips
unterschiedlicher Technologie gestapelt und vertikal verbunden sind.
Dieses erlaubt es, Komponenten mit verschiedenen elektrischen An-
forderungen in einem einzigen Chip zusammenzuführen. Ein Bei-
spiel dafür sind sogenannte „Vision System on Chips“, die analo-
ge Bildsensoren, Analog-Digital-Wandler und digitale Signalverarbei-
tung kombinieren.

In dieser Arbeit werden erstmals Kommunikationsnetze erforscht,
die Vorteile aus heterogener Integration ziehen. Dafür wird Asymme-
trie als ein neues Entwurfsparadigma für Networks-on-chips (NoCs)
eingeführt. Asymmetrische 3D NoCs, kurz A-3D NoCs, sind solche
NoCs, die eigens für heterogene 3D Chips entworfen werden und
die dabei spezifische Charakteristika einzelner Chipebenen ausnut-
zen. Dieses bietet viele Vorteile, da Flächenkosten, Energieverbrauch
und Leistungsfähigkeit verbessert werden. So kann das große Poten-
tial heterogener Integration auch für Kommunikationsnetze ausge-
schöpft werden.

Wir verwenden einen zweistufigen Ansatz: Zuerst werden Opti-
mierungen von A-3D NoCs auf Systemebene erforscht. Bei der Netz-
werkplanung werden Eigenschaften der Netzwerktopologie und der
Platzierung von Routern und Komponenten verbessert. Danach be-
rücksichtigen wir die einzelnen Router und schlagen Optimierungen
derer Architektur und Mikroarchitektur vor, sodass Größe, Leistungs-
aufnahme und Geschwindigkeit verbessert werden.

Diese Arbeit leistet die folgenden wissenschaftlichen Beiträge: Wir
modellieren den Entwurfsraum von A-3D NoCs und berücksichtigen
dabei, im Gegensatz zu bisherigen Modellen, spezifische Eigenschaf-
ten der Fertigungstechnologien. Durch dieses Verständnis ist eine sys-
tematische Erkundung des Entwurfsraums möglich. Als Nächstes op-
timieren wir die Systemebene von A-3D NoCs und stellen dafür ein
analytisches Modell in Form eines ganzzahlig linearen Programms
vor. Darauf aufbauend wird ein heuristischer Algorithmus präsen-
tiert, der effizient eine Lösung für große Eingaben findet. Dabei be-
rücksichtigen wir, dass sich die Eigenschaften von Routern und Kom-
ponenten zwischen Chipebenen ändern. Damit verbessern wir die
Flächenausnutzung um bis zu 26,3% bei gleicher Leistungsfähigkeit
des Netzwerks für Anwendungsdatenströme gegenüber vergleichba-
ren Ansätzen. Außerdem verringern wir die ungenutzte Chipfläche
um bis zu 21,6% im Vergleich zu typischerweise verwendeten linea-
ren Modellen bei der Platzierung von Komponenten. Weitergehend
stellen wir Methoden und Werkzeuge zur empirischen Exploration

v

des Entwurfsraums vor, um Architektur und Mikroarchitektur von
Routern zu verbessern. Wir berücksichtigen dabei sowohl die Struk-
tur des Entwurfsraums als auch die Eigenschaften der zu modellie-
renden Systeme und erstellen ein wohlbegründetes Simulationsmo-
dell. Eine schnelle und effiziente Erkundung des Entwurfsraums, im
Sinne eines Rapid Prototyping, ist möglich, da das Simulationsmodell
mittels einstellbaren Parametern flexibel an sinnvolle Architekturen
angepasst werden kann, ohne dass diese einzeln implementiert wer-
den müssen. Der Simulator bietet, trotz erweiterter Funktionen, eine
ähnliche Simulationsgeschwindigkeit wie Konkurrenzprodukte. Des
Weiteren optimieren wir Routerarchitekturen. Durch eine innovative
Herangehensweise, in der Router über mehrere, heterogene Chipebe-
nen aufgeteilt werden, können wir die Größe und Leistungsaufnah-
me des Routers minimieren: Durch eine verbesserte Speicherstruktur
wird der Router bis zu 8,3% kleiner und benötigt bis zu 5,4% weniger
Leistung. Dieses wird durch eine kleine Verminderung der Latenz
von 2,1% erkauft. Es ist sogar möglich, bis zu 28% Routerfläche und
bis zu 15% Leistungsaufnahme zu sparen, wenn eine 4,6%-ige Reduk-
tion der Latenz im Netzwerk akzeptiert wird. Als nächsten Punkt
optimieren wir Routing in A-3D-NoCs mit dem Ziel einer besseren
Übertragungslatenz. Wir stellen dafür erstmals allgemeingültige Mo-
delle für beliebige Kombinationen von Technologien vor, die den Ein-
fluss von Heterogenität auf Größe und Taktrate von einzelnen Rou-
tern sowie die Latenz und den Durchsatz des gesamten Netzwerks
erfassen. Daraus leiten wir allgemeine Prinzipien für Routingverfah-
ren ab. Außerdem zeigen wir, wie heterogene Integration bei kon-
ventionellen Routerarchitekturen den Netzwerkdurchsatz beschränkt.
Durch neue Routingverfahren und eine verbesserte Mikroarchitek-
tur können wir die Übertragungslatenz um bis zu Faktor 6,5 zwi-
schen Ebenen in unterschiedlichen Technologien reduzieren. Die La-
tenz bei Übertragung zwischen Routern in einer langsameren Techno-
logie wird um etwa Faktor 1,6 verbessert. Beide Ergebnisse werden
für einen realistischen Testfall mit kommerziellen Fertigungstechno-
logien ermittelt. Ein integrierter Entwurf von Routingverfahren und
Routerarchitektur ermöglicht weiterhin einen höheren Durchsatz um
Faktor 4 bei zu vernachlässigendem Flächenmehrbedarf.

Damit stellt diese Arbeit nicht nur ein neues Entwurfsparadigma
für NoCs in heterogene 3D Systeme vor, sondern präsentiert auch
Methoden und Werkzeuge für deren Entwurf, deren Optimierung auf
Systemebene und neue Routerarchitekturen und -mikroarchitekturen.
Es werden die wichtigsten Hürden für die Implementierung von Kom-
munikationsnetzen in heterogenen 3D Systemen beseitigt. Somit eb-
net diese Arbeit den Weg für den Entwurf heterogener 3D Chips für
neue Anwendungsgebiete.

vi

P U B L I C AT I O N S

publications as first author

Original works in peer-reviewed international journals

[JM 1] Joseph, J. M., L. Bamberg, D. Ermel, B. R. Perjikolaei, T. Drewes,
A. García-Oritz, and T. Pionteck. “Routing in Network-on-Chips
for heterogeneous 3D System-on-Chips.” In: under revision in IEEE
Access (2019).

[JM 2] J. M. Joseph with Bamberg, L. (authors contributed equally), I.
Hajjar, R. Schmidt, T. Pionteck, and A. García-Ortiz. “Simulation
Environment for Link Energy Estimation in Networks-on-Chip
with Virtual Channels.” In: Integration 68 (2019), pp. 147 –156. issn:
0167-9260. doi: 10.1016/j.vlsi.2019.05.005.

[JM 3] Joseph, J. M., C. Blochwitz, A. García-Ortiz, and T. Pionteck. “Area
and power savings via asymmetric organization of buffers in 3D-
NoCs for heterogeneous 3D-SoCs.” In: Microprocessors and Microsys-
tems 48 (2017), pp. 36–47. issn: 0141-9331. doi: 10.1016/j.micpro.
2016.09.011.

Original works in peer-reviewed international conferences

[JM 4] J. M. Joseph, D. Ermel, T. Drewes, L. Bamberg, A. García-Oritz,
and T. Pionteck. “Area Optimization with Non-linear Models in
Core Mapping for System-on-Chips.” In: International Conference
on Modern Circuits and Systems Technologies (2019), pp. 1–4. doi:
10.1109/MOCAST.2019.8742035.

[JM 5] Joseph, J. M., L. Bamberg, G. Krell, I. Hajjar, A. García-Oritz, and
T. Pionteck. “Specification of Simulation Models for NoCs in Het-
erogeneous 3D SoCs.” In: International Symposium on Reconfigurable
Communication-centric Systems-on-Chip. IEEE, 2018, pp. 1–8. doi: 10.
1109/ReCoSoC.2018.8449387.

[JM 6] Joseph, J. M., L. Bamberg, S. Wrieden, D. Ermel, A. García-Oritz,
and T. Pionteck. “Design method for asymmetric 3D interconnect
architectures with high level models.” In: International Symposium
on Reconfigurable Communication-centric Systems-on-Chip. IEEE, 2017,
pp. 1–8. isbn: 978-1-5386-3344-1. doi: 10 . 1109 / ReCoSoC . 2017 .

8016143.

[JM 7] Joseph, J. M., M. Mey, K. Ehlers, C. Blochwitz, T. Winker, and
T. Pionteck. “Design space exploration for a hardware-accelerated
embedded real-time pose estimation using vivado HLS.” In: Inter-
national Conference on ReConFigurable Computing and FPGAs. IEEE,
2017, pp. 1–8. isbn: 978-1-5386-3797-5. doi: 10.1109/RECONFIG.
2017.8279785.

vii

https://doi.org/10.1016/j.vlsi.2019.05.005
https://doi.org/10.1016/j.micpro.2016.09.011
https://doi.org/10.1016/j.micpro.2016.09.011
https://doi.org/10.1109/MOCAST.2019.8742035
https://doi.org/10.1109/ReCoSoC.2018.8449387
https://doi.org/10.1109/ReCoSoC.2018.8449387
https://doi.org/10.1109/ReCoSoC.2017.8016143
https://doi.org/10.1109/ReCoSoC.2017.8016143
https://doi.org/10.1109/RECONFIG.2017.8279785
https://doi.org/10.1109/RECONFIG.2017.8279785

[JM 8] Joseph, J. M., C. Blochwitz, and T. Pionteck. “Adaptive allocation
of default router paths in Network-on-Chips for latency reduc-
tion.” In: International Conference on High Performance Computing &
Simulation. IEEE, 2016, pp. 140–147. isbn: 978-1-5090-2088-1. doi:
10.1109/HPCSim.2016.7568328.

[JM 9] Joseph, J. M., T. Winker, K. Ehlers, C. Blochwitz, and T. Pionteck.
“Hardware-Accelerated Pose Estimation for Embedded Systems
using Vivado HLS.” In: International Conference on ReConFigurable
Computing and FPGAs. IEEE, 2016, pp. 1–7. doi: 10.1109/ReConFig.
2016.7857173.

[JM 10] Joseph, J. M., S. Wrieden, C. Blochwitz, A. García-Oritz, and T. Pio-
nteck. “A simulation environment for design space exploration for
asymmetric 3D-Network-on-Chip.” In: International Symposium on
Reconfigurable Communication-centric Systems-on-Chip. IEEE, 2016,
pp. 1–8. isbn: 978-1-5090-2520-6. doi: 10 . 1109 / ReCoSoC . 2016 .

7533908.

[JM 11] Joseph, J. M., C. Blochwitz, A. García-Oritz, and T. Pionteck. “Area
and power savings via buffer reorganization in asymmetric 3D-
NoCs for heterogeneous 3D-SoCs.” In: Nordic Circuits and Systems
Conference. IEEE, 2015, pp. 1–4. isbn: 978-1-4673-6576-5. doi: 10.
1109/NOR-CHIP.2015.7364370.

[JM 12] Joseph, J. M. and T. Pionteck. “A cycle-accurate Network-on-Chip
simulator with support for abstract task graph modeling.” In: In-
ternational Symposium on System-on-Chip. IEEE, 2014, pp. 1–6. isbn:
978-1-4799-6890-9. doi: 10.1109/ISSOC.2014.6972440.

publications as coauthor

Original works in peer-reviewed international journals

[JM 13] L. Bamberg, J. M. Joseph, T. Pionteck, and A. Garcıa-Ortiz. “Cross-
talk optimization for through-silicon and through-interposer vias
by exploiting temporal signal misalignment.” In: Integration 67
(2018), pp. 60 –72. issn: 0167-9260. doi: 10.1016/j.vlsi.2019.
04.009.

Original works in peer-reviewed international conferences

[JM 14] L. Bamberg, J. M. Joseph, R. Schmidt, T. Pionteck, and A. García-
Oritz. “Coding-aware Link Energy Estimation for 2D and 3D Net-
works-on-Chip with Virtual Channels.” In: International Symposium
on Power and Timing Modeling, Optimization and Simulation (2018),
pp. 222–228. doi: 10.1109/PATMOS.2018.8464171.

[JM 15] C. Blochwitz, J. Wolff, M. Berekovic, D. Heinrich, S. Groppe, Joseph,
J. M., and T. Pionteck. “Hardware-Triplestore – a Hardware-centric
Database for Semantic Web.” In: International Conference on Field-
Programmable Technology. IEEE, 2018.

[JM 16] T. Drewes, B. Gurumurthy, Joseph, J. M., D. Broneske, G. Saake,
and T. Pionteck. “Efficient Inter-Kernel Communication for OpenCL

viii

https://doi.org/10.1109/HPCSim.2016.7568328
https://doi.org/10.1109/ReConFig.2016.7857173
https://doi.org/10.1109/ReConFig.2016.7857173
https://doi.org/10.1109/ReCoSoC.2016.7533908
https://doi.org/10.1109/ReCoSoC.2016.7533908
https://doi.org/10.1109/NOR-CHIP.2015.7364370
https://doi.org/10.1109/NOR-CHIP.2015.7364370
https://doi.org/10.1109/ISSOC.2014.6972440
https://doi.org/10.1016/j.vlsi.2019.04.009
https://doi.org/10.1016/j.vlsi.2019.04.009
https://doi.org/10.1109/PATMOS.2018.8464171

Database Operators on FPGAs.” In: International Conference on Field-
Programmable Technology. IEEE, 2018.

[JM 17] C. Blochwitz, R. Klink, Joseph, J. M., and T. Pionteck. “Contin-
uous live-tracing as debugging approach on FPGAs.” In: Inter-
national Conference on ReConFigurable Computing and FPGAs. IEEE,
2017, pp. 1–8. doi: 10.1109/RECONFIG.2017.8279783.

[JM 18] C. Blochwitz, J. Wolff, Joseph, J. M., S. Werner, D. Heinrich, S.
Groppe, and T. Pionteck. “Hardware-Accelerated Radix-Tree Based
String Sorting for Big Data Applications.” In: Architecture of Com-
puting Systems. Springer, 2017, pp. 47–58. isbn: 978-3-319-54999-6.

[JM 19] T. Drewes, Joseph, J. M., and T. Pionteck. “An FPGA-based pro-
totyping framework for Networks-on-Chip.” In: International Con-
ference on ReConFigurable and FPGAs. IEEE, 2017, pp. 1–7. doi: 10.
1109/RECONFIG.2017.8279775.

[JM 20] C. Blochwitz, Joseph, J. M., R. Backasch, S. Werner, D. Heinrich, S.
Groppe, and T. Pionteck. “An optimized radix-tree for hardware-
accelerated dictionary generation for semantic web databases.” In:
International Conference on ReConFigurable Computing and FPGAs.
IEEE, 2015, pp. 1–7. doi: 10.1109/ReConFig.2015.7393291.

ix

https://doi.org/10.1109/RECONFIG.2017.8279783
https://doi.org/10.1109/RECONFIG.2017.8279775
https://doi.org/10.1109/RECONFIG.2017.8279775
https://doi.org/10.1109/ReConFig.2015.7393291

A C K N O W L E D G M E N T S

This work was funded by Deutsche Forschungsgesellschaft’s grant PI
447/8.

xi

C O N T E N T S

i prelude

1 next decade’s communication architectures 3
2 contribution 5

2.1 Objectives . 5
2.2 Working hypothesis . 5
2.3 Outcomes . 6
2.4 Outline . 6

ii background

3 3d technologies 11
3.1 Potentials . 12
3.2 Challenges . 13
3.3 Fabrication . 16
3.4 Applications (heterogeneous 3D chips) 21

4 networks-on-chip 25
4.1 Packet transmission . 26
4.2 Router architecture . 28
4.3 Timing of routers . 30
4.4 Flow control . 30
4.5 Virtual channels . 30
4.6 Network topology . 31
4.7 Routing algorithm . 32
4.8 Application mapping . 35
4.9 Evaluation . 35
4.10 3D NoCs . 40

iii innovation

5 specification and design space 45
5.1 Definition . 45
5.2 Limitations of today’s approaches 45
5.3 Potentials . 46
5.4 Challenges solely present in A-3D NoCs 47
5.5 Typical example for NoCs in heterogeneous 3D SoCs . 49
5.6 Design space of A-3D NoCs 49

6 system-level optimization 57
6.1 Introduction . 57
6.2 Problem formulation and technology model 60
6.3 Mixed integer linear program model 64
6.4 Heuristic algorithm . 75
6.5 Performance and computational complexity 82
6.6 Results . 84
6.7 Discussion . 93

xiii

xiv contents

6.8 Conclusion . 99
7 tools and methods for simulation 101

7.1 Models . 103
7.2 Tools . 109
7.3 Exploration process . 117
7.4 Analysis . 119
7.5 Results and discussion 121
7.6 Conclusion . 125

8 optimization of router memory 127
8.1 Buffer distributions and buffer depths 127
8.2 Routers with optimized buffer distribution 129
8.3 Routers with optimized buffer depths 131
8.4 Results . 132
8.5 Discussion . 138
8.6 Conclusion . 140

9 optimization of routing and architectures 141
9.1 Influence of heterogeneity on routing 141
9.2 Modeling technology heterogeneity 142
9.3 Modeling communication 145
9.4 Limitations of routing due to heterogeneity 147
9.5 Tackling latency: Routing algorithms 150
9.6 Tackling throughput: Router architectures 162
9.7 Results . 165
9.8 Discussion . 170
9.9 Conclusion . 172

iv finale

10 summary and outlook 175
10.1 Asymmetry – a novel design paradigm 175
10.2 Impact of future technologies 176

v appendix

a system-level optimization 181
a.1 Overview of symbols . 181
a.2 Component, router and tile count 182
a.3 Definitions, notations and prerequisites 183
a.4 Cost function . 184
a.5 Constraints . 185
a.6 Auxiliary variables . 211
a.7 Heuristic algorithm . 222

b simulation models 225
b.1 Application model . 225

glossary 229

bibliography 235

Part I

P R E L U D E

1
C O M M U N I C AT I O N F O R T H E N E X T D E C A D E ’ S
C H I P S

DRAM layer

FPGA layer

CPU layer

Figure 1: 3D CPU-
FPGA-DRAM [1].

It is an everlasting challenge to increase the
performance of computer systems with tight
area and power constraints. One promising ap-
proach is 3D integration, in which Through-
Silicon Vias (TSVs) directly connect the stacked
dies. The promises of 3D integration are man-
ifold: smaller area footprint, less power con-
sumption and increased performance [2]. Be-

side these incremental advantages, 3D manufacturing provides a
unique feature which is currently impossible with 2D production: It
allows for heterogeneous integration. In traditional chip design, chips
can only be manufactured in a single technology node, since it is pro-
duced using a single die. If different components such as memory
(digital), logic (digital), mixed-signal components, or sensors (analog)
are implemented on the same chip, these will present contradicting
electronic requirements: For instance, mixed-signal components can-
not be implemented in small technology nodes; memory and pro-
cessing profits from small technology nodes. In addition, technology
nodes can be optimized either for memory or logic. These contra-
dicting requirements limit the integration of components on single
dies. 3D technology can overcome this, since dies manufactured in
disparate technologies can be stacked. Each die is optimized for elec-
tronic requirements of its components. Furthermore, tight integration
is possible, since 3D technology removes the need for long and slow
interconnects between different dies. One example of such chips is
shown in Figure 1: Dies optimized for memory, logic and even field
programmable gate arrays (FPGAs) are stacked to build high perfor-
mance processors [1]. There is a clear trend towards a higher degree
of heterogeneity for 3D technology. The EU has recently founded a
project, FlexTiles [3], targeting the integration of a heterogeneous 3D
platform including a manycore layer and reconfigurable layer, with
an investment of 5,336,349e. As reported in the project, “the intercon-
nection is a tremendous issue for using reconfigurable technologies
with manycore. The solution proposed by the FlexTiles consortium
focuses on the interfaces between the layers of the 3D stacked chip to
ensure an efficient access to the reconfigurable layer by the manycore
layer” [3].

One everlasting challenge in chip design poses the integration of
even larger component counts. This results in more sophisticated

3

4 next decade’s communication architectures

requirements to communication architectures, which connect these
components. Efficient and scalable communication architectures have
become one major concern. Bus systems, which are widely used to-
day, are limited in scalability. Furthermore, globally asynchronous lo-
cally synchronous (GALS) clock frequencies are the most common de-
sign principle for heterogeneous designs. Bus systems are challenged
because these would implement global wires spanning multiple clock
domains. Networks-on-Chip (NoCs) [4] promise scalability and non-
purely synchronous communication. NoCs implement a micro-net-
work on the chip to diminish the limitations of bus systems.

3D technology and heterogeneous integration provide novel chal-
lenges and perspectives for interconnect architectures: The unique
electrical characteristics of individual dies due to heterogeneity result
in a larger number of influential factors. In addition, properties of 2D
and 3D links are different and, partially, even complementary. Con-
trolling technological heterogeneity and communication complexity
are essential factors for successful application of 3D System-on-Chips
(SoCs). The relevance of heterogeneous 3D systems and their complex
communication requirements are widely recognized [5–9].

3
D

 t
e
ch

n
o

lo
g

y

N
e
tw

o
rk

-o
n

-C
h

ip

stacked dies

heterogeneity

numerous components

3D communication

asymmerty

scalability

technology-asymmetric 3D Network-on-Chip

Figure 2: Heterogeneous 3D integration and packet based on chip trans-
mission yield asymmetric 3D NoCs.

To summarize, there are three major trends today: First, 3D tech-
nology allows for stacked dies. Second, the dies can be manufactured
in different nodes, i. e. are heterogeneous. Third, 3D systems will pos-
sibly consist of many components. These trends, as shown in Fig-
ure 2, require a new concept for on-chip communication and its cen-
tral component should be a on-chip network: It has the capacity for
3D communication. It can be asymmetric to exploit the advantages
of heterogeneity. It offers scalability to connect many different com-
ponents. In this thesis, technology-asymmetric 3D NoCs are introduced,
these being the most promising solution for such networks. Thereby,
this work lays the foundations to build communication architectures
for the next decade’s chips.

2
C O N T R I B U T I O N

2.1 objectives

New production methods enable the design of heterogeneous 3D
SoCs, which consist of stacked silicon dies manufactured with dis-
parate technologies. In contrast to homogeneous 3D SoCs, this allows
for adjusting the technological characteristics of each die to specific
requirements of components. Heterogeneous 3D SoCs are the most
promising concept to combine sensing and processing in a single chip
to, for instance, build SoCs targeting vision applications. Powerful,
flexible and scalable communication infrastructures are required to
fully exploit their potential. Current interconnect networks tacitly as-
sume homogeneous 3D SoCs and do not consider the influence of
different technology parameters on the communication architectures.

This thesis proposes technology-asymmetric 3D Network-on-chips
(A-3D NoCs) targeting communication in heterogeneous 3D SoCs.
These networks span multiple layers manufactured in disparate tech-
nologies and incorporate distributed interconnect components among
layers, specialized communication infrastructure per layer, as well as
specialized inter-layer links using TSVs. A-3D NoCs are orthogonal to
related works, since most of them consider NoCs or dedicated links
in combination with homogeneous 3D SoCs.

Two main innovations are targeted. First, we exploit the specific
technology characteristics at system level. This requires re-evaluation
and extension of existing approaches. Second, new interaction me-
chanics between components are invented, at architectural and micro-
architectural level. The components may be spatially distributed among
layers. We innovate by means of systematic design methodologies, us-
ing a novel design framework and providing automatic optimization
and custom architectures.

2.2 working hypothesis

The working hypothesis is that existing 3D NoCs do not fully exploit
the intrinsic asymmetry present in heterogeneous 3D SoCs. Limita-
tions posed by heterogeneity as well as additional degrees of free-
dom provided by the individual characteristics of layers have not
been considered so far. This thesis demonstrates how existing ap-
proaches must be extended, since they neither consider the influence
of disparate technologies nor the potentials arising from spatial dis-
tribution of components among layers.

5

6 contribution

2.3 outcomes

The main outcome of this thesis is a deeper understanding of 3D
NoCs targeting heterogeneous 3D SoCs; in particular, a deeper un-
derstanding of limitations and potentials of heterogeneity in the con-
text of communication networks. This thesis provides the following
novelty: It is the first work that exploits advantages and tackles limi-
tations of heterogeneous 3D integration for NoCs by introduction of
the novel paradigm of asymmetric 3D NoCs. Due to the special char-
acteristics of heterogeneity, the design of A-3D NoCs cannot rely on
existing methods. Asymmetry in 3D NoCs is not considered, in terms
of research, as up to date. This thesis contributes novel methods, tools
and architectures to fill the gap. A-3D NoCs can only be designed by
a holistic approach that considers aspects from system level down to
microarchitectural level.

This thesis provides the following concrete contributions:
1. Systematic design methodologies are provided to optimize A-

3D NoCs. The approach exploits the additional degrees of free-
dom arising when considering the specific technological charac-
teristics of each individual die.

2. A full-fledged simulation and evaluation framework is provided
for the analysis of A-3D NoCs. Its open source simulator sup-
ports cycle-accurate models as well as high level models for fast
evaluation. It is capable of accounting for technology-specific
parameters in components, which are possibly distributed on
neighboring dies.

3. Design optimizations are proposed; novel architectural and mi-
croarchitectural optimizations for routers are introduced under
exploitations of heterogeneity to improve performance, power
and area.

2.4 outline

In the first part, the technological background is explained: In Chap-
ter 3, manufacturing of heterogeneous 3D chips is introduced1. The
work specially focuses on potentials and challenges of 3D technology,
fabrication of vertical interconnects and application examples for het-
erogeneous 3D systems. In Chapter 4, NoCs are introduced. After
defining the basic building blocks, their functionality is presented. Fi-
nally, 3D NoCs are discussed and we highlight related approaches to
this thesis.

The second part presents the innovation provided by this thesis:
In Chapter 5, we introduce the 3D NoCs targeting heterogeneous 3D
SoCs: Asymmetric 3D NoCs. The chapter comprises potentials, chal-
lenges, open research issues, a detailed model of the design space

1 The terms 3D chips and 3D integrated circuits (3D ICs) are synonymous, here.

2.4 outline 7

and approaches to design space exploration. Here, we explain the
differentiation of system-level, architectural and microarchitectural
optimization of these networks. In Chapter 6 NoCs are optimized
on system level. We describe the optimization problem and formu-
late it as a mixed-integer linear program. Based hereupon, we con-
tribute a heuristic algorithm for an efficient solution. It is applied to
heterogeneous 3D chip example sets and case studies to highlight
properties that are not present in a homogeneous 3D scenario. In
Chapter 7, we focus on simulation of asymmetric 3D NoCs. We in-
troduce models, tools, processes and analysis and thus are covering
the full range of empirical design space exploration with simulations.
To conclude the section on innovation, concrete (micro-) architectural
optimizations for routers are presented, which exploit potentials of
asymmetry. In Chapter 8, novel router architectures with asymmetric
buffer distributions and buffer depths are proposed. In Chapter 9, we
focus on routing. Novel routing algorithms are presented. Further, a
mesochronous router architecture is presented to handle the clock dif-
ferences present due to heterogeneity. In summary, this part regards
all aspects of asymmetric 3D NoCs.

The third part brings us to the conclusion of the thesis. In Chap-
ter 10, we summarize the findings of the thesis. We highlight their
practical applicability by explaining how they are useful when de-
signing A-3D NoCs based on communication requirements for a het-
erogeneous 3D chip. Finally, we explain the impact of future technolo-
gies, which are expected to become available in the next decade, on
the thesis’ results.

Part II

B A C K G R O U N D

3
3 D T E C H N O L O G I E S

Throughout the last decades, there has been a clear trend towards
requirements for lower power consumption, higher performance and
smaller area footprint of computing systems. Therefore, difficulty and
complexity of chip design are steadily increasing. The demands can-
not always be fulfilled by traditional 2D structures, due to limita-
tions such as global interconnect delays and restricted functionality
on single substrates. Stacking silicon dies to 3D structures is one so-
lution; different manufacturing processes for package, die and waver
level were proposed in 2005 [10]. The promises of the 3D technol-
ogy are significant and therefore many architectures have been pro-
posed. Among them are 3D Vision Systems-on-Chip (3D VSoCs) with
stacked sensors [11] and 3D FPGAs [12]. Only recently, 3D technology
reached market maturity with the foundation of the hybrid memory
cube (HMC) consortium in 2012 and the release of first products con-
taining stacked high bandwidth memory (HBM) in June 2015, such
as the AMD Radeon R9 graphic cards. Obstacles of 3D technologies
were mainly their high production and development costs. Their po-
tentials however are worth the effort.

Stacked architectures use either a 2.5D approach, where a silicon
interposer connects wire-bonded or micro-bump-bonded dies, or a
true 3D approach, where TSVs directly connect the stacked dies. 3D
chips distinguish themselves from 2.5D systems by more dense and
shorter vertical interconnects. Hence, communication within and in
between dies has similar performance. TSVs are the most common
and most promising technique for vertical connections. 3D chips are
better than 2.5D chips, in terms of price, power consumption and long
(i. e. slow) interconnects. Thus, 3D chips unleash the full potential of
3D systems but are more difficult to produce. 3D chips are a truly
innovative design paradigm: They do not only offer higher integra-
tion density, but also allow for heterogeneous chip design: Dies are
manufactured in different technologies, such as analog, mixed-signal
or (purely) digital, and then are stacked and are connected by TSVs
[13, 14]. 3D technology is gaining maturity with promising applica-
tion areas such as high-performance processors with DRAM stacking [15,
16], wireless sensors [17], and 3D Vision Systems-on-Chip (3D VSoCs) [11,
18].

11

12 3d technologies

3.1 potentials

3.1.1 Electrical performance

The maximum achievable clock frequency of a chip is dependent on
the length of the longest wire. In general, the worst case approxi-
mation for the longest interconnect is the summed length of the die
edges. For a squared 2D chip with a total area of A, the length of
a single die edge is

√
A estimating the wire length as L2D = 2

√
A

(Figure 3a). For 3D designs, this length is reduced; we do not con-
sider the length of vertical links due to their relatively small length.
For a 3D chip with two layers and a total area of A, a single edge
is
√
A/2 long (Figure 3b). Hence, the maximum wire length is esti-

mated with L3D, 2 dies =
√
2
√
A, which is considerably smaller than

L2D. A 3D chip with N die layers and a total area of A reduces the
edge length to

√
A/N, resulting in a maximum wire length estimation

of L3D =
√
N
√
A (Figure 3c). In a statistical analysis with a variable

separation of die connections, the link length between layers was con-
sidered [19], which reveals a similar trend for two and three stacked
dies despite our simplification. In summary, the potential of 3D in-
tegration lies in reduced wire length, which is generally beneficial
and results, for instance, in higher clock frequency and hence perfor-
mance.

A

√
A

√
A

(a) 2D chip.

A/2√
A/2

√
A/2

A/2

(b) Dual die 3D chip.

...

A/N√
A/N

√
A/N

A/N

A/N

(c) Chip with N dies.

Figure 3: Wire length estimation for chips, with a total area of A.

3.1.2 Power consumption and noise

Due to reduced interconnect wire length, the average load capaci-
tance, the resistance, and the number of repeaters in long links are
decreased. Furthermore, in 3D systems less total wiring is required.
Therefore, the energy consumption of the interconnect is reduced,
which has a significant share of the overall chips energy consumption.
In addition, the reduction of load capacitance reduces noise from si-
multaneous switching events. Plus, shorter wires have less coupling
noise due to lower wire-to-wire capacitance. [20]

3.2 challenges 13

3.1.3 Form factor

3D integration can provide important contributions to build systems
with a reduced area footprint. For instance, stacking memory on
processing layers reduces the access times along with providing im-
proved packaging efficiency. Typically, reducing the area footprint
of memory relies on utilization of the advancement in lithography,
which increases the memory density. Stacking provides similar advan-
tages without using next generation lithography. 3D stacked memory
is an example of form factor benefits [21]. Another example is com-
plementary metal-oxide-semiconductor (CMOS) sensors, in which 3D
links directly connect from the sensor to its back side [11].

3.1.4 Heterogeneous integration

Layers in 3D chips can be manufactured in disparate technologies
which yield heterogeneous systems combining multiple functions on
a single SoC. Components may require different, or even contradict-
ing, electrical characteristics and the technology of individual dies
can be aligned. Due to aligned technology properties and component
requirements this leads to potentially higher performance or lower
power consumption. This allows integration of digital logic, memory,
analog, and mixed-signal components in a single SoC by stacking
them into different die layers. Heterogeneity can provide advantages
in many SoC applications, as introduced in Section 3.4.

3.2 challenges

3.2.1 Technologies and fabrication

One important issue lies in the fabrication process, during which mul-
tiple layers are bonded. The lamination process must fulfill two re-
quirements: First, the performance of each individual layer must not
be degraded. Second, the lamination must ensure bonding of the lay-
ers for the lifetime of the system. Furthermore, packaging solutions
must be developed for heterogeneous 3D systems that are consider-
ably more complicated in comparison to 2D chips. Plus, vertical in-
terconnects for both signal and power transmission become one key
factor for the fabrication of 3D systems, as they must provide high
density and quality, otherwise the potentials in performance of 3D
chips are diminished or even reversed [22]: Too low density reduces
performance by up to 10% in comparison to 2D; up to 20% increased
performance is possible for the published setting in comparison with
2D chips.

14 3d technologies

3.2.2 Yield

In comparison to 2D systems, 3D chips of the same size have a re-
duced yield, since the particle contamination probability is propor-
tional to the layer area and the number of mask levels and each addi-
tional layer adds area. Thus, yield is proportional to the layer count.
The yield of a bonding process effecting the interconnect’s reliability
further decreases the overall yield. However, there are two advan-
tages for increasing 3D systems’ yield: First, the process complexity
of single layers can be significantly reduced, since only a single type
of component is implemented per layer. For instance, memory pro-
cessing has significantly less mask levels than logic ones. Second, the
area of each individual layer may be reduced and layers can be tested
individually before bonding. Currently, the yield of 3D chips is rather
low due to the very low yield of TSVs. [20]

3.2.3 Testing

New testing methods must be developed, which test both the bond-
ing process and the functionality of layers. With traditional methods,
bonding is not tested and dies are only considered individually. This
results in three challenges [23]: First, methods must be developed to
generate useful input per individual layer to test the overall function
of the system. Second, minimizing the additional circuitry per layer
for testing is beneficial for system’s costs. Third, bonding test meth-
ods are sought after. Solutions have been proposed for TSVs [24].

3.2.4 Thermal issues

The advantage of shorter interconnects in 3D systems is a double-
edged sword: Shorter interconnects allow for a larger component
count in equal area. As a consequence, the power density in these
areas is higher, yielding higher heat loss. Furthermore, some layers
are not adjacent to a heat sink, thus thermal hot-spots in the inner
of 3D chips emerge. Both factors result in performance degradation
and faster wear-out effects. To tackle thermal issues of 3D systems,
design methods must be developed considering thermal effects. Bet-
ter heat sinks must be found, as well. Many works on thermal issues
have been published. For instance, [25] optimizes the location of TSVs
based on thermal considerations. Thermal driven floor planning is
proposed in [26] and thermal driven standard cell placement in [27]
for 3D chips. Planning of viae is conducted considering their thermal
properties in [28, 29]. Furthermore, analytical models are introduced
for the thermal performance of 3D chips [30].

3.2 challenges 15

3.2.5 Interconnect architectures

3D systems result in novel research questions for interconnect archi-
tectures: First, clock and power distribution networks are more rel-
evant. Second, well-known 2D noise mitigation techniques must be
reconsidered due to inductive and capacitive coupling between adja-
cent dies [31]. This can be easily exemplified considering a dual die
chip, in which the metal die of the digital layer is bonded front-to-
front to the analog die. As a consequence, switching located in the
digital die result in noise spikes in the analog die. Third, 3D links
have different or even complementary characteristics in comparison
to 2D links. For full 3D integration the properties of TSVs are not fully
understood and currently under investigation [32]. Heterogeneous in-
tegration provides further challenges, as tackled in this thesis.

3.2.6 Physical design

Physical design of chips is a difficult problem since it comprises NP-
hard subproblems. Deterministic algorithms do not allow finding
optimal solutions in acceptable, i. e. polynomial, computation time.
Therefore, heuristic algorithms, that allow for efficient yet approxi-
mate solutions, are researched. The physical design of 3D systems
itself comprises similar subproblems as 2D physical design. While its
computation complexity is not higher, it poses two important new
challenges. First, there are more feasible points to consider in the
solution space. Second, traditional algorithms cannot be applied di-
rectly and are modified due to interdependencies between steps of
the layout synthesis, which are handled interdependently for 2D.

The physical design is composed of the following steps: The subject
of floor planning is to place blocks, i. e. parts of the circuit, while min-
imizing the chip area used and the wire length of the interconnects.
This is shown in Figure 4. Many approaches have been proposed tack-
ling the computational complexity via different partitioning schemes,
e. g. [33, 34]. Algorithms considering power, temperature, and noise,
beside area and wirelength, propose different objective functions [35].

Figure 4: Floorplanning for 3D chips.

Next, in placement, area and wire length are minimized. For 3D
systems new trade-offs emerge, which do not exist for 2D systems,
since vertical and horizontal links have different properties (cf. Sec-
tion 3.3.4). Moving from 2D to 3D placement, the components must

16 3d technologies

be located in a volume rather than on a die. Therefore, diverse ap-
proaches are proposed, e. g. [36]. The problem is rather hard, partially
due to discrete dies [37, 38], i. e. integer variables in optimizations.
More recently, with the introduction of via-middle processes, place-
ment of components and vertical links must be considered simultane-
ously ([39], area requirements of TSVs, Section 3.3.4). One approach is
to exploit white spaces (area without any other placed cells) [40]. The
placement of TSVs can be done prior, after or along with components.
The impact of the order is evaluated in [41].

As a final step, routing determines the actual position of nets in the
interconnect. If the position of vertical links is known, routing will
be reduced to traditional, efficient 2D routing algorithms [42]. Other-
wise, techniques are required to route vertical links as well. Enbody
et al. demonstrated the complexity of the problem in 1991 [43] for a
simple example; in fact, it is NP-hard [44]. Therefore, the research
focuses on finding efficient heuristic algorithms [45].

Few commercial tools are available for fully-integrated 3D chip de-
sign. Cadence advertises a 3D chip tool flow [46], yet it is currently, to
the best of the author’s knowledge, not all-embracing. Features such
as TSV positioning are still missing out on good solutions. Only re-
cently, academia adopted the Cadance 2D flow for 3D. Components
are placed in 3D via size shrinking, partitioning and size restoring
for two and three layers [47]. There hardly exist any tools targeting
heterogeneous 3D chips.

3.3 fabrication

In general, full 3D integration can be separated into monolithic and
stacked 3D chips. For monolithic fabrication a sequential process is set
up, in which the whole chip is produced on a single wafer. Mono-
lithic fabrication is still experimental. For stacked 3D chips, individ-
ual layers are manufactured on different wafers and bonded after-
wards. Stacking does not require changes in the conventional fabrica-
tion process per layer and is the more practical approach. For full 3D
integration, high vertical interconnect density is essential.

3D chips with TSVs are the most promising and most advanced ap-
proach to 3D integration. Face-to-back bonding is possible by stack-
ing die layers with vertical interconnections traversing the silicon sub-
strate of each layer. The fabrication of TSVs is well-controlled and can
be realized at acceptable costs. High vertical interconnection density
can be achieved as well. The potential of 3D chips with TSVs is im-
pressively demonstrated by the application of TSVs for vertical inter-
connection, like in commercial applications such as Micron’s Hybird
Memory cube [48].

3.3 fabrication 17

3.3.1 Through-silicon viae

TSV

CMOS CMOS

SiO2 insulator SiO2 insulator

wiring

top bump

bump

silicon substrate silicon substrate

Figure 5: Sectional drawing of a TSV.

A TSV is a vertical interconnect passing completely through silicon. This
is shown in Figure 5. As depicted, there are CMOS components, e. g.
transistors, located on the silicon substrate. In the middle of the Fig-
ure, a TSV is located, which is insulated against the substrate with
an SiO2 insulator. This TSV passes through the complete silicon. On
the top of the insulator, wiring connects the CMOS component on
the left-hand side with the TSV. The TSV itself has two bumps, on the
top and the bottom, which can be used for vertical interconnection
between multiple dies of a 3D chip. This is depicted in Figure 6. TSVs
can be used for vertical interconnection between more than two lay-
ers and offer high interconnect density. This thesis relies extensively
on diverse characteristics of TSVs. Therefore, these are discussed in
detail in this section.

Figure 6: Three-layer 3D chip with TSVs for vertical interconnection.

The TSV was originally invented by William Shockley and granted
as US Patent “Semiconductive wafer and method of making the same”
in 1962 [49]. A process was patented, in which holes are etched into
silicon. These can be filled with a conductive material. Etching holes
into silicon is used for TSV production to this day. In the 1990s a
significant advancement in the production of TSVs was the invention
of the BOSCH process, patented in [50]. The BOSCH process is a
pulsed or time-multiplexed etching process to produce vertical holes
in silicon. It is shown in Figure 7. The process iteratively conducts
two steps until a hole is etched:

18 3d technologies

etching For vertical ionic plasma etching the silicon is charged
with a bias voltage for directional bombardment with plasma. Sul-
fur hexafluoride (SF6) is used. The etching is shown in Figure 7b
and Figure 7d.

deposition The lateral walls of the TSV must be passivated, which
prevents (or minimizes) further, lateral etching. Different deposi-
tion materials can be used; octafluorocabon (C4F8) is the most com-
mon. The deposition step is shown in Figure 7c.

(a) Initial chip.

SF6

(b) Etching.

C4F6 passivation

(c) Deposition.

SF6

(d) Etching.

Figure 7: BOSCH process.

After the BOSCH process etches a hole though the silicon, it can
be filled with a conductive material. Therefore, the edges of the hole
must be covered with a barrier to prevent diffusion of the conductive
material into the silicon. Typically, TiN or TaN is used. The coating
process is done at approx. 623.15 K.1 As filling material, copper, tung-
sten, or poly-Si is filled into the hole at high temperatures of approx.
725 K. The selection of the material depends on its compatibility with
the rest of the manufacturing process, most commonly copper.

There are three major issues during the production of TSVs, which
are shown in Figure 8. First, the shape and the tampering of the TSV
must be controlled. In general, slight tampering, as shown in Fig-
ure 8a, is favorable due to better deposition. However, a uniform
width of a TSV as shown in Figure 8b results in better bonding at
the bottom. Second, sufficient adhersion and deposition of both bar-
rier and filling (seed) is required. During the BOSCH process scallops
can emerge from the iterative etching and deposition, as shown in Fig-
ure 8c. This irregular surface limits uniformly-distributed adhersion
of barrier and filling. Therefore, as an alternative to the BOSCH pro-
cess, laser drilling through the silicon was proposed [51]. This, how-
ever, is currently not realizable for state-of-the-art technology nodes.
The laser drilling process is, in contrast to the BOSCH process, not
sequential, and therefore, is less manageable. Third, void-free filling
is important for a high quality signal paths, which requires well-
controlled Cu-seed injection.

1 Reduced temperatures to 443.15 K with highly concentrated NH3 in the seed stream
are possible [20].

3.3 fabrication 19

(a) TSV tamper-
ing.

(b) TSV width
and height.

(c) Scallops. (d) Poor filling
with voids.

Figure 8: Common issues in TSV production.

3.3.2 TSV production methods

There are three methods of TSV production, via first, via last and via
middle. The current rule of technology is via middle process flow, in
which the TSV is produced between device placement and intercon-
nection. The process flow is shown in Figure 9. At the beginning,
during front-end-of-line (FEOL), devices are patterned into the semi-
conductor (cf. Figure 9a). The functionality of the chip emerges from
these devices. Next, using BOSCH-process, a via is etched into the
silicon (Figure 9b). In the following step, an insulator material (SiO2)
is placed on the complete chip and the edgings of the TSV via ox-
idation of the silicon (cf. Figure 9c). Due to this barrier separating
the TSV from the silicon, conductive material can be filled into the
TSV without interfering with the devices or the silicon. This filling
with a seed is shown in Figure 9d. Next, there is a step of chemical
mechanical polishing and planarization (CMP). This is conducted to
remove insulator and filling material from the surface and to smooth
the surface. It is realized via hybrid chemical etching and free abra-
sive mechanical polishing (cf. Figure 9e). Following thereafter, the
components from FEOL are interconnected via wiring of the waver
within the metalization layer. This is called back-end-of-line (BEOL).
During this step, the TSV is connected as well as depicted in Figure 9f.
At this point, a single layer chip is produced with a TSV. For face to
back bonding, CMP can be applied for TSV backside reveal, in which
the bump of the TSV is exposed (cf. Figure 9g). Then, a second layer
is bond as shown in Figure 9h. This process flow is currently used
by many companies during their 3D chip production such as UMC,
TSMC and Global Foundries [52].

3.3.3 Keep-out zone

TSVs induct stress to components in the area around the TSV. A con-
servative method to tackle this issue is the introduction of keep-out-
zones (KOZs) around the TSV landing zone, in which no other com-
ponents are placed. If the zone is large enough, the stress will not im-
pact any components. Tensile mechanical stress is introduced around
the TSV during production [53]. The coefficients of thermal expansion

20 3d technologies

(a) FEOL. (b) Etching. (c) Insulator depo-
sition.

(d) Fill.

(e) CMP. (f) BEOL. (g) CMP. (h) Bonding.

Figure 9: Via middle process flow.

of copper (17×10−6K−1) and silicon (3×10−6K−1) mismatch. Cop-
per is filled into the etched hole in the silicon at high temperature,
typically at 573.15 K for TSV fabrication. This high temperature influ-
ences the electron mobility and therefore has a negative impact on
timing and reliability of components [54]. Furthermore, during cool-
ing to room temperature, copper contracts faster than silicon. Thus,
the surface of the silicon around the TSV is pulled [55] and compo-
nents, which are located in the near surroundings of a TSV, could
potentially be damaged [56]. The size of the KOZ is, hence, a critical
design parameter, which was for instance studied in [57].

The KOZs have two important impacts on chip design. First, the in-
fluence of TSVs on the overall chip area is large, since the KOZs are large.
Second, TSVs do only induce additional KOZ area costs if the TSV connects
downwards, i. e. connect through the silicon. Many works, especially
those considering chips on a high level of abstraction, are not aware
of both design factors and therefore, introduce too many TSVs for
realistic chip design. For instance Xu et al. [58] optimizes the number
and location of TSVs for symmetric 3D NoCs, yet does not consider
any area costs of TSV. In another example, in [59], a NoC router is
split up over multiple layers in a 3D chip and the components of the
router communicate via TSVs.

3.4 applications (heterogeneous 3d chips) 21

3.3.4 Characteristics and properties of TSVs

The electrical properties and characteristics of TSVs are not fully un-
derstood [32]. Many current works are based on incomplete models;
for instance, energy models are incomplete [JM 6]. Some TSV charac-
teristics, however, are already known and show that 3D links realized
via TSVs have different, even contradicting properties in comparison
to 2D links within each layer of a 3D chip. This allows for a large,
unprecedented optimization potential.

The following properties of TSVs are currently well-understood.
TSVs are short in comparison to 2D links, since the distance between
two layers in a 3D chip is approx. 50 µm. The pitch of TSVs could
be, in theory, even smaller, but is currently limited by the stability
of each chip layer to avoid cracking and bending. TSVs show large
capacitive coupling because of their conductive substrate and the in-
creased number of aggressors despite their length. The coupling is
comparable to the values of 2D links. Inductivities play a minor role
[60, 61]. TSVs are rather wide, approx. 1-2 µm. In combination with
the high conductivity of the seed material and the short length of
each TSV, the resistance of TSVs is low (R = ρA−1). 2D links, in com-
parison, have a larger resistance by a factor 100×-1000×, mainly due
to their larger length.

In summary, the delay of 3D links via TSVs is smaller than those
of 2D links. However, the energy consumption, and thus the thermal
temperature rise, of TSVs under load is high. 2D links can be used to
connect to TSV arrays.

3.4 applications (heterogeneous 3d chips)

Heterogeneous integration will be advantageous if and only if compo-
nents of a SoCs have different requirements to the technology. Three
main application areas provide this requirement: High performance
processors, combining digital circuits and memory; wireless sensors,
combining analog or mixed-signal components for the sensors and
digital circuits for the data processing; and 3D vision system on chips
(3D VSoc), combining digital circuits for the data processing with ana-
log co-processors. The following examples review state-of-the-art.

For high performance processors, heterogeneity increases energy effi-
ciency of multi-core processors [62]. Dynamic Random Access Mem-
ory (DRAM) stacking [63] allows to mitigate the memory wall in
processor based systems. Interleaving of dedicated dies with either
memory or processing increases performance in comparison to dies
with both [64]. Examples of these kinds of 3D designs are [65–68].
These designs comprise two different silicon technologies and at least
two silicon layers, one optimized for logic and the other for memory.
However, the dies are most often designed as individual components

22 3d technologies

and thus the holistic system aspect is limited to the adjustment of the
number and locations of TSVs. 3D technology for memory is steadily
gaining in maturity; even commercial applications are available, such
as the HMC. In the HMC four DRAM dies on a logic (SerDES) are
stacked on top of an interface chip [69] to increase memory band-
width. A more advanced technique, which does not only combine
RAM blocks per die but uses several dies to form a RAM block, is
DiRAM (dis-integrated memory) [70]. Here, memory cells and access
transistors of one RAM block are spread among dies. An integrated
3D stacked multi-core processor with stacked memory layers is pre-
sented by [71]. In contrast to the previously mentioned work, four pro-
cessor layers are stacked on top of each other in addition to two RAM
layers. [1] advocates to increase the degree of heterogeneity with an
intermediate FPGA layer between central processing unit (CPU) and
DRAM layers as shown in Figure 1; this reduces the power consump-
tion by 47.5% versus a baseline system, but requires a richer and a
more complex communication architecture than the traditional ones
found in multiprocessor systems.

Antenna

rf-circuits

Radio digital baseband

Processing unit

Sensor function

Power management

Power storage

Energy scavenging

R
ad

io
A

pp
lic

at
io

n
Po

w
er

Figure 10: “e-Cube” [17].

For wireless sensors, a current approach
[17] proposes to use 3D stacking of more
than eight heterogeneous layers. The work
targets ambient intelligence applications.
Small chips with broad functionality are
required for sensing and interaction with
the environment. This so-called “eCube”
is a wireless, autonomous module concept
which consists of multiple stacked layers
for power scavenging and saving, applica-
tion, sensing, processing and radio com-
munication (see Figure 10). The require-
ments of bandwidth, latency and flexibil-
ity of each part differs.

Analog die: photo sensors

Mixed-signal die: AD conversion

Digital die: filtering, preprocessing

Digital die: image interpretation

Figure 11: 3D VSoC: exemplary
design [11].

In terms of 3D VSoCs [11],
high-speed digital technologies are
connected with more conservative
mixed-signal and analog technolo-
gies. The layers are optimized for
their functions: There are layers for
(analog) photo sensor arrays, mixed-
signal layers for signal conversion,
memory layers with frame buffers,
and digital layers for a foveal pro-
cessor array. In recent research, a SoC is proposed for self-driving
cars that realizes up to 10,000 frame per second integrating analog
sensors, mixed-signal conversion, digital image processing and mem-
ory on a single die [72]. Going further, the mixed-signal layers can be

3.4 applications (heterogeneous 3d chips) 23

used to implement analog accelerators. For instance, these calculate
a cellular neural network [73]. Implementations of such accelerators
have been proposed for 180 nm [74] and 130 nm [75] CMOS technol-
ogy. An example for VSoC is shown in Figure 11. Data flow from
CMOS sensors on top to the analog digital conversion below. Then,
the data are transmitted to the digital processing. Complex commu-
nication patterns emerge both between and within digital and mixed-
signal components: Calculations rely on results of other components
due to the complex image processing tool flow.

Beyond these design paradigms, the VSoC “Viscube” [11] is a 3D
SoC design composed of multiple layers with stacked sensors, mixed-
signal components and processors. As a defining feature, this chip
design is composed of multiple, heterogeneous, and stacked layers
and thus a truly integrated 3D design. An entire 3D sensor-processor
circuit design is presented within the Viscube project [11]. This 3D
sensor-processor does not only readout the sensor data but offers
image processing as well as basic feature extraction capabilities on-
chip. A 3D layout was chosen to meet the strict performance require-
ments and thus allowing for a frameless sensor plate and high frame
rates. The design is intrinsically heterogeneous as it comprises four
different layers. The top layer is the sensor layer that is connected to
the subjacent layer using a bump-bonding interface. The second is a
mixed-signal processing layer that is connected to the frame buffer
layer via TSVs. TSVs are also used to connect the digital processor
layer that is the lowest layer of the 3D stack. The communication
infrastructure is adapted to the expected communication patterns in-
side such a system, e.g. only local links between processors. An even
more disruptive architecture which combines the sensing and data-
processing as in [11] with the radio part as in [17] has been proposed
in [18].

4
N E T W O R K S - O N - C H I P

The number of components in SoCs is steadily increasing, since this
allows for higher performance and more diverse functions. This brings
traditional interconnects architectures to limits: Dedicated point-to-
point connections are not flexible enough for the complex commu-
nication patterns. Fully connected crossbars yield unbearable costs
since their area grows quadratically with the number of components.
Bus systems are limited in arbitration for many components. In con-
trast, Networks-on-Chip (NoCs) [4] offer better scalability. NoCs are in-
terconnection architectures, in which components are connected via
a network of routers and data is transmitted via packets. The number
of routers can be adjusted to the number of components. One distinc-
tive feature between NoCs and the other interconnect architectures is
that NoCs implement packet based transmission, in contrast to wire-
based transmission of data, as in the case of direct links, crossbars
and buses.1 This follows the principle “route packets, not wire” [76].
Therefore, the payload data are split up into packets and configura-
tion data are attached with information, for instance on the packet’s
destination address.

CPU FPGA Memory

IO Component Component

network
interface

router

Figure 12: NoC with different components.

There is a wide variety
of NoC architectures and
possible implementations.
An example is shown in
Figure 12: There are dif-
ferent processing elements,
each of which is connected
to a network interface. This
is the entry point for data
into the network. Data is
transmitted via the routers. These three parts are the typical build-
ing blocks of NoCs; these have the following functions:

processing element : Processing elements (PEs) connect via a net-
work interface to the interconnection network. Each PE represents
one component of the SoC. Addresses are associated with PEs,
which are used for the calculation of packet paths. The set of a
router, a network interface and a PE at the same location (i. e. with
the same address) is called tile.

network interface : Network interfaces (NIs) connect PEs and
routers. Within the NI the data from the PE are serialized, split up

1 The nature of buses is also wire-based in that a sender and a receiver are directly
connected by a wire, shared among resources, by arbitration.

25

26 networks-on-chip

into packets, and vice versa. The NI connects to the local port of
the router.

router : Routers transmit data through the network. Routers are
connected among each other following a given topology. A very
simple mesh network is shown in Figure 12; routers are connected
via their four output ports, which are called north, east, south and
west to other routers. Routers may have different number of ports
in other network topologies (connection schemes between routers).
Routers receive and send packets to transmit data. The correct out-
put port is calculated in each router per packet following a routing
algorithm. If the output port is not in use, i. e. not blocked, the
router sends the data via an internal small crossbar to the next
downstream router. Otherwise, depending on the router architec-
ture, the data are held back or stored until a path is available.

There are still many challenges for NoC design. For instance, NoCs
are ultimately limited in scalability, as well, since every new router
increases the maximum communication latency due to an additional
hop. Although less severe in comparison to other interconnect para-
digms, it leads to large performance degradations for some appli-
cations, e. g. [77]. Therefore, optimized architectures are proposed,
which for instance accelerate data streams in network loads [JM 8].
Another challenge lies in router costs. This is tackled for example by
small and efficient routers which are frugal in terms of implementa-
tion area and power consumption [78]. Furthermore, the incorpora-
tion of today’s emerging technologies, such as 3D production chips,
is a relevant research topic, which is also within the scope of this
thesis.

4.1 packet transmission

The switching method determines how data are transmitted through
the network. Switching can be either packet based, in which data are
transmitted using packets without path reservation, or circuit switch-
ing, in which data packets are transmitted along a reserved path.

Message 1, Package 1-3Message 2, Package 1
Msg. 2,
Pkg. 2 & 3

Figure 13: Store-and-forward switching: Message transmission is started
after prior transmission is completed.

Store-and-forward switching is a packet based method, in which
packets are completely stored in a router before they are forwarded

4.1 packet transmission 27

Packet 1,

Flits 1, 2 & 3
Packet 2,

Flits 2 & 3

Packet 2,

Flit 1

Figure 14: Virtual-cut-through switching with packets spanning multiple
routers with three flits. Filled buffers are marked in gray.

Flit 1Flit 2 & 3

Flit 4

Figure 15: Wormhole switching with a packet spanning multiple routers
with four flits. Buffers with flits are gray.

to the next downstream router as shown in Figure 13. Since each
message is completely stored in routers along the path, large buffer
space is required. Packet switching was the first transmission scheme
used in NoCs (e. g. [79]). Today it is obsolete due to its large area
costs. In virtual cut through switching, a packet header is allowed to
leave the router before receiving the entire packet. The header allo-
cates crossbar connections and this allocation is kept until the packet
is completely transmitted. If the header is blocked, the buffer space
for the remaining packet part will be allocated and the part of the
packet which is still in transmission can be stored at the blocking
router. This is shown in Figure 14. Wormhole switching is the most
common packet based switching method. It was proposed by Dally
et at. [80]. Packets are split up into flits (short for flow control dig-
its or flow control unit). The head flit contains routing information,
the body flits contain payload and tail flits finish the transmission of
the packet.2 Flow control is applied at flit level rather than on packet
level: Each flit must secure its buffer space downstream separately.
This allows reducing buffer sizes required in routers, since packets
must not be stored completely within each router, as shown in Fig-
ure 15. If a packet is stalled in a wormhole based network, it can block
many links. This is called head of line blocking and results in conges-
tion, which is propagated through the network. Virtual-cut-through
and wormhole switching have the same latency in a zero load model
i. e. without congestion. Virtual-cut-through switching has reduced
latency and higher acceptance rates for light traffic and equal buffer
sizes [81]. In any case, wormhole switching is widely used in NoCs
due to its acceptable area costs. It can be found in industry-near re-

2 Depending on the implementation, tail flits can be the last body flit.

28 networks-on-chip

search such as Intel’s Teraflops [82], the Tile64 [83] or the TRIPS [84]
chips.

When circuit switching is used, a virtual circuit from the source
to the destination is established in the network. The data are trans-
mitted through this connection. After successful transmission, the
connection is terminated. One possible application is quality of ser-
vice (QoS) in the network, since circuit connections allow for service
guarantees of bandwidth and throughput. For instance, the Æther-
nal NoC [85] consists of separated subrouters, of which one is opti-
mized for guaranteed throughput traffic using circuit switching and
the other subrouter targets best-effort traffic by wormhole switching.
The QoS is managed by service guarantees, which determine the cho-
sen subnetwork. Routers can combine multiple switching methods to
add advantages.

4.2 router architecture

switch /
crossbar

switch arbiter

VC allocatorrouting

input unit output unit

FiFo input buffers output buffers

... ...
......

flow control

data

flow controller

Figure 16: Schematics of an exemplary router design.

The router architecture is the hardware structure in which a router
is build. An exemplary, basic router architecture is shown in Figure 16.
It is not optimized and is used to exemplify the functionality of NoC
routers. It is based on [86]. Data are transmitted from the input ports
(left) to the output ports (right). Flits are stored in the input unit’s
buffers. Based on the routing information in the head flits, the routing
unit calculates a path for the packet. The switch arbiter allocates the
crossbar using the state of the output unit and the results of routing
calculation and virtual channel (VC) allocation (cf. Section 4.5). Data
transmission can, for instance, be done using status fields in the input
and output units (see [86]). The microarchitecture of such a router
consists of the following components:

buffer : There are two buffer locations in the exemplary router de-
sign. In the input unit, First-in-first-out (FiFo) buffers are used.
Each buffer has the same width as a single flit and is some flits deep.
Buffers are replicated per VC and per port. There are also buffers in

4.3 timing of routers 29

Tail 2

Body 2

Head 2

Tail 1

Body 1

Head 1

Cycle 1 2 3 4 5 6 7 8 9 10 11

RC VA SA ST

SA ST

SA ST

RC VA SA ST

SA ST

SA ST

Figure 17: Exemplary router pipeline in a zero load model.

the output unit in the exemplary design, which reduces the length
of the critical path but increases area costs. Since memory adds sig-
nificant area overhead to the router design, many works reduce the
buffer area, for instance by buffer sharing [87, 88] or by (buffer-less)
deflection routing schemes [78].

crossbar : In general, crossbars consist of multiplexers and demul-
tiplexers, which pairwise connects input and output ports. These
are configured by the arbiter. Optimized crossbar designs to save
costs are proposed in [89].

routing unit : The routing decision is computed here for incom-
ing packets. There are different routing algorithms; in general, those
with smaller area and power overhead are preferred.

vc allocator : The VC controller allocates a virtual channel for
incoming packets. Therefore, the VC controller reads the status of
each input port and VC. It selects the next free VC available at
the output port based on the state of the downstream router. In
general, VCs enable deadlock-free routing methods, a better router
utilization and QoS. VCs are explained in Section 4.5.3

arbitration unit : The arbitration unit selects which pairs of in-
put and output ports are allowed to transmit data via the cross-
bar in each clock cycle. It reads the status of input channels and
finds a cover between the requests. An optimal solution of the cov-
erage problem is impossible, so heuristics are implemented. The
most common is round robin due to low costs, but priority-based,
congestion-aware or fixed orders are also published.

flow and link controller : The flow and link controller man-
ages the data transmission between adjacent routers or routers and
PEs. It ensures that data are not duplicated or lost during transmis-
sion and it prevents buffer overflow by flow control. Flow control
is explained in Section 4.4.

30 networks-on-chip

4.3 timing of routers

The timing behavior of an exemplary, basic router architecture is
shown in Figure 17 under zero load, in which only two subsequent
packets traverse the router without congestion or collision. After the
head flit of the first packet was received, in the first cycle the routing
is calculated (RC). In the second clock cycle, the virtual channel is allo-
cated for the packet (VC). Next, the switch is arbitrated (SA). Finally,
the first head flit traverses the switch (ST) in the fourth clock cycle. In
parallel, the body flit wins switch arbitration. This is repeated for all
body flits and, finally, the tail flit, which resets the routing calculation
and the virtual channel allocation for the next packet. Then, the sub-
sequent packet is processed. Other router architectures require less
clock cycles to set up a connection.

4.4 flow control

Flow control assures that packets are neither lost nor duplicated. It
is on packet level or flit level, depending on the switching method.
There are two basic schemes for flow control. First, ready-valid method
or on-off method uses two binary signals: Valid indicates that the sender
is providing data. Ready indicates that the receiver can accept data.
Thus, if both signals are true, a flit will be transmitted. Second, credit-
based method has a counter in the sender which stores the available
space in the receiver. The counter is decremented for each data unit
sent and incremented for each data unit removed from the receiver’s
buffers. Both methods provide the required functionality. A credit-
based method is more costly in terms of area. However, it has the
advantage of better buffer utilization because the equivalent ready
signal is generated locally in the sender and therefore must not be
transmitted with a delay.

4.5 virtual channels

Virtual channels (VCs) are a time multiplexing of a physical chan-
nel between senders and receivers: If a packet is blocked, another
packet on a different VC will be allowed to pass the channel in the
otherwise idle time. This reduces the impact of head-of-line block-
ing in wormhole switching [91]. VC-based wormhole and virtual cut
through switching are compared in [92]. The latency of both methods
is comparable, yet a much higher throughput can be achieved using
VCs for equal buffer capacity. Therefore, wormhole switching with
VCs is preferable compared to virtual-cut-through switching. Routers
with VCs have higher energy consumption and yield a larger area,

3 Please note that allocators may also be separated between inputs and output. We do
not explain this architecture here for the sake of brevity and kindly refer to [90].

4.6 network topology 31

since buffers are replicated per VC in every physical channel. In [77]
it is found that more than four VCs per channel only add a marginal
performance advantage. There are different selection strategies for
VCs. Dynamic VC allocation in each router allows for time-efficient
multiplexing of the physical channel, which can be realized for in-
stance using a round-robin arbiter. VCs that are assigned to packets
during payload generation and do not change during transmission
can be used for QoS by prioritization of channels.

4.6 network topology

The network topology is the interconnection scheme between routers.
It can be defined as the topology graph of the network.

Definition 4.1 (Topology graph). The topology graph of a NoC is given
by the digraph N = (R,EN), in which the set R of vertices in the
network consists of all routers ri, with i ∈ {1, . . . , |R|}, and the set of
directed edges ei,j ∈ EN models the connections between the routers
ri and rj ∈ R.

The graph is not directed, since links are bidirectional, usually.4

Routers are not self-connected, i. e. EN = {(i, j) | i, j ∈ R, i 6= j}. Net-
work topologies are characterized as follows:
network diameter : The average diameter is defined as the max-

imum shortest distance in counted hops in the network. In a net-
work with large diameter, packets travel many hops to reach their
destination in the worst case. In general, small network diameters
are preferable [93].

average distance : The average distance, counted in hops, is cal-
culated by the average of the shortest distance between all pairs
of routers. Large average distances have a negative influence on
performance, since it increases the average transmission latency.

node degree : The node degree denotes the number of ports in
routers. Routers with fewer ports generally have reduced area costs
but yield a possibly worse network performance.

bisection width : The bisection width is defined as the number of
edges that can be removed before the network bisects. For a large
number the network is more prone to errors due to link failures.

number of links : The amount of links in a network should be
large, since it increases the network’s bandwidth.
There are many works on the influence of different topologies.

Most common is 2D mesh, in which routers are located in a grid and
neighbored routers connect as shown in Figure 18a. It has an obvious

4 Please note that link are unidirectional from an architectural point of view. However,
from a network perspective they are bidirectional, because in nearly all proposed
practical implementations connected pairs of routers have links in both directions.
Hence, we prefer modeling via an undirected graph.

32 networks-on-chip

(a) Mesh. (b) Torus. (c) Tree. (d) Small world.

Figure 18: NoC topologies.

structure and allows for lightweight routing algorithms. This topol-
ogy is also used in industry-near research. For instance, in 2007 Intel
implemented a prototype, the Teraflops, with 80 core and a NoC as in-
terconnect following mesh topology [94]. A 2D mesh topology with n
and m routers per dimension has a rather large diameter of m+n− 2

[95]. The bisection width is also rather large with min (n,m) and the
number of links is 2(m(n− 1)+ n(m− 1)) [95]. The node degree is
between 3 and 5 depending on the router’s position. The average dis-
tance is (m+n) /3 [95]. A mesh topology can be extended to a torus
by connecting the outer routers to peers at the opposing side of the
network (Figure 18b). Torus topology reduces the average hop dis-
tance, but is difficult to implement in production chips due to wire
length restrictions and layout complications. It is gaining attention
again with optical NoCs [96] and 3D technologies [97] due to reduced
layout constraints. Another topological type, which is rather popular,
are tree-based networks. One example is shown in Figure 18c. Send-
ing data via the network requires moving them up and down in the
tree, depending on the number of components, their location and the
tree structure. Routing algorithms are rather simple, in particular for
binary trees. Finally, the advantages of small world graphs such as a
small diameter can be used in NoCs as well, [98] (Figure 18d).

4.7 routing algorithm

The routing algorithm, or routing function, calculates the path of
packets from source to destination. The calculation depends on the
topology of the network and might as well consider the state of the
network. The routing function is defined as ([99]): S : N×N→ P(EN),
in which P(EN) denotes the power set of EN. Routing functions pos-
sess the following properties:

unique addresses of nodes : A unique address is be assigned to
each node. Otherwise addressing is ambiguous.

deadlock freedom : Deadlocks stall the network and thus pre-
vent packet delivery. Therefore, deadlock freedom must be guar-
anteed by the routing algorithm. Deadlocks are explained in detail
in Section 4.7.1.

4.7 routing algorithm 33

livelock freedom : Packets travel without ever reaching their des-
tination in a livelock. This prevents packet delivery. Livelock free-
dom must be proven. Livelocks are explained in Section 4.7.2 in
further detail.

NoCs can implement two options for the locality of the calcula-
tion of the routing algorithm. First, in source routing, the path of each
packet is calculated in the source and attached to the packet. Dur-
ing transmission, this information is read and routing is executed
without further calculations. Second, in distributed routing each node
calculates the route with the header information in the packet from
the destination address. Both techniques can be either implemented
using look-up tables, in which for the destination address a routing
decision is stored or via dynamic calculation using a routing func-
tion. The latter is preferable because look-up tables requires large
area overhead for larger networks.

Routing function can be classified in two categories. In the first cat-
egory, routing algorithms can be minimal, in which packets follow the
shortest path between source and destination, or non-minimal, where
longer routes can be selected. The second category distinguishes the
information sources, which the routing function takes as input. If
the path between source and destination is known before the trans-
mission starts, this is called deterministic routing. The path does not
depend on network configurations such as the link loads, congestion
or faulty links. In oblivious routing the selected path of the packet
does not depend on the state of the network, but it is selected ran-
domly or cyclically from a given set of alternatives. If the decision
about the path taken depends on the network status during run
time, adaptive routing will be applied. Adaptive routing algorithms
can adapt to influences on the network from external sources, such
as faulty links and from internal sources, such as congestion or high
link loads. However, adaptive routing algorithms have larger area
overhead and might even further increase the total network load due
to detours. Many adaptive routing algorithms have been proposed
for NoCs [100–102]. It is required to differentiate between routing al-
gorithm and selection for deterministic routing algorithms. While the
routing algorithm defines a set of possible paths, the selection selects
one element in this set.

Popular algorithms are turn-based models [103], in which one of
the turns in the network is forbidden to avoid cyclic dependencies
and deadlocks. The most common routing algorithm, which imple-
ments a turn-based model, is dimension order routing, short DOR.
The packet travels along one dimension of the network until the dif-
ference between packet location and the destination is zero in this
dimension. Then, this is repeated in the next dimensions until the
destination is reached. In a 2D mesh NoC, this routing algorithm is

34 networks-on-chip

called “XY routing”, which describes that the X dimension is zeroed
before the Y dimension.

4.7.1 Deadlocks

Deadlocks occur due to cyclic dependencies between packets in a net-
work. This is depicted in Figure 19. Starting in the upper left router,
the gray flits cannot be transmitted since the northern input ports
of the router on the lower right-hand side is blocked by green flits.
The green flits themselves cannot be transmitted, as well, since their
route is blocked by red flits. Those, in turn, are blocked by blue
flits. These, closing the cyclic dependency, are blocked by the gray
flits again. The network stalls since none of the flits can be trans-
mitted. Deadlocks can be identified using the channel dependency
graph [104]. The vertices of this graph are channels in the NoC. For
each dependency between channel pairs in the network, an edge is
drawn. Each cycle in this graph represents a deadlock configuration.

Figure 19: Deadlock configura-
tion in the network due to cyclic
dependency between four pack-
ets. The network stalls, since
none of the packets can be trans-
mitted, although subsequent
routes are not blocked.

In the example in Figure 19, the four
channels between the four routers
have a cyclic dependency. There-
fore, a cycle can be found in the
corresponding channel dependency
graph. Deadlock freedom can be
proved using the channel depen-
dency graph with Duato’s Theo-
rem [99]. A simple way to avoid
deadlocks is the usage of routing
algorithms, in which one of the
turn directions is prohibited. An-
other solution is the introduction
of VCs: The dependency between
the blocked packets can be resolved
by switching VCs for one of the
packets, which then can be transmit-
ted, thus resolving the cyclic depen-
dency.

4.7.2 Livelocks

Livelocks will occur if packets infinitely travel in the network but
never reach the destination. As a solution, packets can be only al-
lowed to take minimal paths: Packets reduce the distance to their
destination in each step and therefore ultimately will reach their des-
tination. If the routing algorithm is non-minimal, nonexistence of live-
locks must either be proven or mechanisms must be implemented for
livelock detection. The latter can, for instance, be realized via coun-

4.8 application mapping 35

ters, how often a packet traverses nodes. If a threshold is surpassed,
a livelock will be detected and the packet will be treated specially.

4.8 application mapping

The problem of assigning cores to PEs in a chip is called application
mapping. The aim is reduction of communication latency for a given
network and application. It is a rather important problem because
it allows for efficient application execution on chips connected by
a NoC. The mapping consists of two steps: First, the task graph of
the application is used to allocate tasks to cores. The resulting core
graph has cores as vertices and the bandwidth requirements are edge
weights:

Definition 4.2. Core Graph: The core graph is defined as the digraph
G = (C,E). Vertexes ci ∈ C represents cores. Edges e(i,j) ∈ E model
communication between cores ci and cj. The bandwidth requirement
between the two cores is given by the edge weight u(i,j).

Second, during the actual mapping, cores from the core graph are
mapped onto PEs under consideration of the topology graph. The ob-
jective is to reduce the communication delay of the application. The
mapping problem is NP hard [105]. Mapping is divided into two
classes: In static mapping, the core graph is assigned to the topology
graph during design time. For a dynamic mapping, this is allowed
to change during run time, which may yield performance benefits by
avoiding congestion for other task communicating [106]. There are ex-
act methods to solve the problem via formulation as a mixed-integer
linear program (MILP) [107]. This allows for an exact solution, yet
yields large or even unbearable compute times, so that heuristics are
developed. An overview on those can be found in the survey [106].

4.9 evaluation

Network performance, area costs and power consumption are the
most important design metrics for NoCs. This set is called Quality
of Results (QoR) or PPA (performance, power, area). Other, less rel-
evant metrics are defined as well: For instance, reusability allows to
reduce time-to-market. Reliability is relevant for special applications
such as space. Scalability measures how many components can be
connected. Good PPA naturally increases scalability, why it is seldom
considered as a separate measure.

4.9.1 Performance

The performance of a NoC measures its capability to transmit data.
Different design targets can be relevant: If transmission is time-critical,

36 networks-on-chip

the latency must be small. If large amounts of data are transmitted,
the throughput must be large.

packet latency : Packet latency is the time for a transmission of a
packet via the NoC. If a packet p is injected at time ti and received
at time tr, the packet’s latency will be lp = |ti − tr|. Latency can
be measured in simulations for every packet and usual statistical
measures can be applied. It is denoted in clock cycles, independent
of the implementation, or in seconds, if the clock frequency is avail-
able.

throughput : Throughput measures available bandwidth for com-
munication. It is defined as the number of packets npackets that are
accepted per period of time ∆t: Throughput =

npackets
∆t . This metric is

denoted in packets or flit per cycle or per second. The throughput
can be converted to [Mb/s] using link widths and packet size.

There are three options to evaluate the metrics: First, analytical
models are fast but demanding to formulate. Second, emulations can
be conducted on transaction level (TLM) or cycle-accurate level (CA).
These offer less speed but can rather effortlessly cover many effects.
Finally, simulations on register transfer level (RTL) or via FGPA proto-
typing are possible, in which the actual circuit is modeled and there-
fore offers the highest precision.

Since the network load depends on the traffic patterns within the
network, it is essential to compare different NoCs under the same
load. Therefore, different traffic patterns, so called benchmarks, are
defined. Using a clear definition of benchmarks, a fair comparison
and, therefore, a valid evaluation is possible.

4.9.1.1 Synthetic traffic patterns

Synthetic traffic patterns follow mathematically defined spacial and
temporal distributions, which do not necessarily reflect properties of
a real system. Synthetic traffic patterns offer high comparability be-
tween different designs but limited modeling of realistic traffic prop-
erties. The spacial distribution can be modeled via a relationship be-
tween source and destination addresses. Assuming a n-bit long bi-
nary address b1,b2, . . . ,bn per component, the source destination
relation is given by an address permutation fp : {1, . . . , 2n − 1} →
{1, . . . , 2n− 1}. The most common spacial distributions are the follow-
ing:

uniform random : In uniform random traffic, a new destination
address is drawn per packet prior to transmission following a uni-
form random function. It is a very common traffic pattern, which
(nearly) all simulators offer. The traffic pattern is shown in Fig-
ure 20a.

4.9 evaluation 37

hotspot : In the hotspot traffic scenario, each component sends data
to the same destination with the address d1,d2, . . . ,dn. It follows
the function fhotspot(b1, b2, . . . ,bn) = d1,d2, . . . ,dn. The spacial
distribution is not a permutation since it is not bijective. Hotspot
traffic is used to test the worst case communication in a network
since the router at the global destination is used as much as possi-
ble. The traffic pattern is shown in Figure 20b.

transpose : Here, data are sent to the diagonal opposite side of the
network, which is equivalent to a matrix transposition permutation.
This traffic pattern put high stress on both vertical and horizontal
links. The traffic pattern is shown in Figure 20c.

bit complement : Here, data are sent to the opposing side of the
network. The permutation function of the bit complement spacial
distribution is fbit complement(b1,b2, . . . ,bn) = ¬bn,¬bn−1, . . . ,¬b1.
This traffic pattern stresses vertical and horizontal links (from diag-
onally opposing nodes) similar to transpose traffic pattern; its dis-
tribution is more homogeneous, because some links are not loaded
at all in transpose traffic pattern. The traffic pattern is shown in
Figure 20d.

bit reversal : Data are sent between nodes with reversed bit ad-
dresses. The permutation function for the spacial distribution is
fbit reversal(b1,b2, . . . ,bn) = bn,bn−1, . . . ,b1. The pattern stresses
horizontal and vertical links, locally, from locally vertically oppos-
ing nodes. The traffic pattern is shown in Figure 20e.

(a) Uniform
random.

(b) Hotspot. (c) Transpose. (d) Bit comple-
ment.

(e) Bit reversal.

Figure 20: Synthetic traffic patterns.

In terms of temporal distribution, the injection rate is modulated
from low to high to find the saturation point of the network. Injection
rates are measured in flits or packets per cycle. Therefore, the average
time between two injected packets/flits must leave enough idle time
in between that their ratio gives the desired injection rate. This is
shown In Figure 21: The PEs inject at a random time in each time
slot; the length of the time slots is proportional to the injection rate.
Please note, that the injection rate can be measured per component or
for the whole network. If measured per component, the instances of
time for injection must necessarily be different between components:
Otherwise bursts in the traffic result in (virtually) higher injection
rates and disproportionate traffic properties.

38 networks-on-chip

idle

idle

idle

send

send

send

∝ inj. rate

. . .

PE 1

PE 2

PE n

Figure 21: Modeling a random injection rate. Time-slot length (gray) is
given by the injection rate and PEs send data at a random instance of time
in the slots.

4.9.1.2 Task graph based traffic patterns

To increase the realism of traffic patterns without the burden of full-
system simulation, task-graph-based traffic patterns have been pro-
posed. Combining simulation of application-based data streams and
router simulation on a low abstraction level is conducted in the Noc-
Bench project [108]. Applications are modeled using Kahn process
networks [109], a common software model. There are different bench-
marks such as universal mobile telecommunication system (UMTS)
modems or video encoders and decoders [110]. Liu et al. propose traf-
fic patterns for NoCs based on real-world traffic patterns using a task
graph in the MCSL suite [111]. The suite comprises eight benchmarks
covering applications such as a sample rate converter, media encoders
and decoders or robot control.

4.9.1.3 Real-world based traffic patterns

The most precise method to benchmark NoCs with real-world-based
applications is a full-system simulation in parallel to the simulation
of the NoC. This method suffers from very bad performance. For
full-system simulation of multi-core processors, simulators such as
Gem5 [112] can be used. To benchmark modern multi-core proces-
sors, the “Princeton Application Repository for Shared-Memory Com-
puters” (PARSEC) benchmark suite [113] is proposed with focus on
workloads that are emerging as representative of the design of next
generation multi-core processors.It is not focused on SoC workloads.

To tackle limited performance of full system simulation, trace-driv-
en simulation is possible. A trace of the activity of packet injection in
the network is recorded within a single full-system simulation. Then,
this trace can be played to generate the same traffic again. Modifica-
tions in the system architecture (not the interconnect architecture) re-
quire newly recorded traces. To cover the effects of slow interconnects,
dependency-tracking can be used, as proposed in “Netrace” [114].
The traces are generated using full-system simulation of a 64-core
system. To further increase the performance, these trace-driven simu-
lations can be conducted on an FPGA [JM 19].

4.9 evaluation 39

4.9.2 Area

The second important design metric is area costs. In general, it should
be minimized, since auxiliary functions such as the interconnection
network must occupy as little area as possible, in order to increase
chip area for functional components. Usually the area costs are ei-
ther evaluated via router architecture synthesis for FPGA or stan-
dard cells. In case of FPGAs, vendor specific compilers such as Xil-
inx Vivado are used to synthesize the very high speed integrated cir-
cuit hardware description language (VHDL) or Verilog description of
routers. Since NoCs yield relatively large resource utilization on FP-
GAs, NoCs are normally not used to connect components. Therefore,
FPGAs are used for NoC prototyping or verification rather than pro-
duction purposes. A NoC performance evaluation framework for FP-
GAs was proposed as part of the work on this thesis [JM 19]. If NoCs
are to be used in production, a synthesis for standard-cell technol-
ogy will be conducted with synthesis tools; for instance from Synop-
sys [115] or from Cadence [116]. This also requires libraries of target
technology nodes, which are available for commercial technologies
from the vendors as closed-source. One finds open-source libraries
for predictive technologies, as well. Synthesis for standard cells is the
only reasonable evaluation for heterogeneous 3D integration because
effects of disparate technologies can be revealed.

4.9.3 Power

Synthesis both for FPGA and standard cells provide power consump-
tion estimations per transaction and for average usage patterns. NoC
simulators sometimes also provide power estimations. Most often,
power consumption of routers is estimated by simply counting events
such as buffer writes, buffer reads, routing calculations or data trans-
missions [117]. This is highly unrealistic, since the power consump-
tion depends on the actual transmitted data [118]. Therefore, novel
methods and models for power estimation of NoCs are required, es-
pecially with heterogeneity being present.

4.9.4 NoC evaluation via simulations

A fair and comparable evaluation of NoCs design methods and imple-
mentations is rather complex, since an assessment in terms of perfor-
mance and power consumption is complicated. The power consump-
tion is vaguely estimated by common design tools and the estimation
quality differs largely depending on the assumptions about the uti-
lization of the on-chip network. A detailed knowledge about the net-
work load is required for an exact power evaluation. These data can
often only be received via simulations. Many simulators have been

40 networks-on-chip

Figure 22: Exemplary 3D NoC.

proposed for this purpose. Both universal simulators, as well as spe-
cific tools dedicated to a specific use case exist (e.g. [119]). According
to the NoC Blog [120] the most popular NoC simulators are BookSim
2.0 [121] and Noxim [122], which offer manifold features and are ac-
tively maintained.

Noxim is a cycle-accurate simulator. It is implemented in SystemC
and many parameters, such as depth of buffers, size of packets and
the routing algorithm used, can be set. For benchmarking, synthetic
traffic patterns are implemented. Noxim measures throughput and
packet delay and estimates power consumption. The power consump-
tion is based on a simple, cycle-accurate model, which tracks different
events. The timing behavior of routers in Noxim is rather static, yet
can be modified via the source code. The router model is divided into
a receive method, which handles incoming flits and stores them into
buffers and a transmit process, which send flits and calculates routes.

The simulator Booksim is comparable in features to Noxim: Its router
model is also cycle accurate and the implementation is written in C++.
Booksim is more flexible, since many topologies can be read from con-
figuration files. Also, multiple router architectures with diverse rout-
ing algorithms are already implemented. Again, only synthetic traffic
patterns can be injected into the network. The evaluation features are
similar to Noxim; a power model is not provided.

4.10 3d nocs

In general, characteristics and properties of 3D NoCs are quite sim-
ilar to those of 2D NoCs. An exemplary 3D NoC with two layers
and 32 routers following 3D mesh topology is shown in Figure 22.
Each router is connected vertically via an array of TSVs (dashed) and
within the layer via links (solid). Most of the considerations and re-
search results from 2D NoCs can be applied to 3D systems, as well.
3D NoCs offer similar advantages as general 3D technology, only ap-
plied to the interconnection networks. For instance, 3D NoCs profit
from smaller network diameters. Some results from the research on
2D NoCs must be reconsidered. 3D technologies enable previously
discarded topologies, since wire-length constraints from 2D NoCs are

4.10 3d nocs 41

not present [123]. As an example, torus topology is again promising
for 3D designs, since its main drawback (long wires on 2D chips) is
nullified [12]. Currently, there are three categories of 3D NoCs:

Homogeneous 3D NoCs

Homogeneous 3D NoCs extend 2D designs by a spa-
cial dimension, yet not by new manufacturing technolo-
gies (e.g. see [124]): Existing works tacitly assume a
multi-layer homogeneous 3D SoC, such that commu-
nication costs in each die are identical. [JM 3]

Heterogeneous 3D NoC

Heterogeneous 3D NoC [5, 125] denote NoC designs
with non-uniform properties at the architectural level [JM
3].5 In one approach, a heterogeneous mixture of 2D
and 3D routers is constructed. This inter-router hetero-
geneity has been investigated in [5] achieving power
reductions of around 20% with a negligible performance degradation.
Further on, [7] reports additional energy reductions by 40%. Interest-
ingly, this later work claims that 3D systems require heterogeneous
NoCs due to the technology asymmetry typically found in 3D sys-
tems. However, the technology asymmetry is not further investigated.
In another approach, multiple router architectures are implemented side-
by-side on homogeneous 3D SoCs targeting cost reductions. A standard
router can be divided [59], providing a multi-layered 3D NoC router.
Units, which can be separated, span multiple layers (e. g. crossbars
and buffers). Routing and arbitration are inseparable and thus located
in one layer. Signals within the router are transmitted using TSVs.
This 3D router architecture with a 2D network topology has 42% area
reduction and 51% performance increase for synthetic traffic patterns
in comparison to a 2D router architecture. For real-world applications,
energy savings are achieved by dynamically shutting down unused
layers. In [6], link and crossbar sharing between routers decreases the
network latency by up to 21% compared with a standard 3D router.
[JM 3]

Hybrid 3D NoCs

Methods in which buses connect NoC routers are refer-
eed to as hybrid NoCs [8, 9, 125]. Buses can be verti-
cal or horizontal. The key premise for vertical buses
is that these transmissions do not need to be hop-to-
hop: Routers communicating vertically via a local bus
is sufficient. It not only saves area since the number of ports in the

5 The term can also be used for 2D NoCs. In this case, heterogeneous (non-uniform)
designs combine different router architectures in a single silicon layer.

42 networks-on-chip

router are reduced but also improves performance since the pack-
ets can cross more than one die in one step. The logical bus can be
implemented either with tri-state logic [125] or with a simple demul-
tiplexing and multiplexing stage [9]. The number of buses connecting
the silicon layers in the hybrid 3D mesh topology has been optimized
in [125]; it produces an intra-router heterogeneity which saves up to
20% of area of 3D mesh NoCs. Finally, fault tolerant and thermal
issues are discussed in [8].

4.10.1 Performance, power and area

The same optimizations for throughput and latency from 2D NoCs
are also valid for (homogeneous) 3D systems. Look-ahead routing,
for instance, reduces the system latency and increases the throughput
by approximately 45% in 3D systems [126], which is a similar result
as in 2D networks [127]. While for 2D systems many benchmarks ex-
ist, there are few for 3D NoCs. Synthetic benchmarks can be applied
to both 2D and 3D NoCs. Most of the real-world-based benchmarks
are tailored for 2D ICs and therefore cannot be used. Common NoC
simulators offer the capability to model 3D networks, as well, but are
not focused on the special properties of 3D technology. [JM 3]

Area and power of routers will increase if 2D designs are extended
to the third dimension: Additional buffer space is required for ports
in vertical directions. The vertical links themselves require area for
instance for KOZs (cf. Sec. 3.3.3). The crossbar is larger and, although
marginal, additional logic is needed for arbitration and routing cal-
culation. Reference [123] shows that the area increase per router is
about 50% when moving from 2D mesh to 3D mesh topology with-
out optimizing the router architecture. Therefore, area reductions in
3D NoCs are essential. The majority of works addressing this focus
on the placement and number of vertical links: The TSV count is re-
duced by partially connecting layers [128, 129] or by sharing TSVs
among neighbored routers [130]. The router architecture can be opti-
mized, as well [131]. Optimization of power consumption is achieved
by novel router architectures. For instance, reference [132] proposes
to use partially activated crossbars, clock-frequency scaling and serial-
link coding. This can be applied to 2D and 3D NoCs; different prop-
erties of vertical and horizontal links are only investigated recently,
which has a vast influence on energy consumption [32]. [JM 3]

Part III

I N N O VAT I O N

5
S P E C I F I C AT I O N A N D D E S I G N S PA C E

5.1 definition

If NoCs are used for communication in heteroge-
neous 3D SoCs, routers in different layers are imple-
mented in different manufacturing technologies such
as (purely) digital and mixed-signal nodes. These
NoCs are called technology asymmetric.

Definition 5.1 (Asymmetric 3D NoCs). Technology-asymmetric 3D
NoCs (A-3D NoCs) are 3D NoCs that explicitly target heterogeneous
3D SoCs and exploit the technology-specific properties on each silicon
die implemented in disparate technologies.

The novelty of this approach lies in the exploitation of technology
heterogeneity for interconnection architectures. An implicit assump-
tion of the current state of research on 3D NoCs is that the silicon
layers in a 3D SoC are technologically homogeneous; the network
designs are extended “only” by a dimension, but not by “new tech-
nologies”. A-3D NoCs overcome this limitation. A-3D NoCs will be
useful in 3D SoCs if two conditions are met: First, the application
itself demands disparate technologies since it incorporates analog cir-
cuits, mixed-signal circuits and digital logic. Otherwise, the electrical
requirements of components are uniform and a homogeneous 3D SoC
is advantageous in performance, or a 2D SoC is cheaper in production.
Second, complex communication patterns must be prevalent between
components and layers. Otherwise, a full-fledged network will yield
disproportionate overhead if the prevalent data flow is unidirectional.
[JM 1, JM 3]

5.2 limitations of today’s approaches

Existing approaches to communication networks in 3D SoCs only ex-
ploit incremental improvements of 3D technology that directly emerge
from the potentials of 3D integration as discussed in Section 3.1. Thus,
these works assume identical routers and manufacturing technologies
on all silicon layers. The evaluated objective functions for NoC opti-
mization incorporate parameters such as area, power, performance,
Quality of Service (QoS), and reliability. However, these parameters
differ significantly between dies manufactured in disparate technolo-
gies. Thus, neither limitations nor advantages of heterogeneity are
considered so far. There are three main related approaches to A-3D

45

46 specification and design space

NoCs, which have already been introduced in Section 4.10. Each of
these concepts is different to A-3D NoCs: Homogeneous 3D NoCs as-
sume a homogeneous 3D SoC. If heterogeneity is present, costs and
constraints of the communication infrastructure in each die will vary.
While heterogeneous 3D NoC are designed with non-uniform architec-
tural properties, they do not consider influence of disparate manufac-
turing technologies. Therefore, A-3D NoCs again add a new design
dimension. Hybrid 3D NoCs, which combine NoCs and other inter-
connection architectures, are not directly implementable in a techno-
logy-asynchronous scenario. For instance, bus systems spanning mul-
tiple heterogeneous dies face severe limitations with the not purely
synchronous clocks in heterogeneous 3D SoCs. To summarize, the re-
search scope of A-3D NoCs is not considered in the previous works.
[JM 3]

5.3 potential for optimization through a-3d nocs

The presence of different die manufacturing technologies has a vast
influence on the overall architecture. It allows for NoC optimizations
on multiple levels:

1. At system-level, technology characteristics can be exploited by
combining different communication strategies as well as sets of
components at different chip layers. System-level optimizations
comprise: placement, mapping and topology.

2. At architectural level another optimization potential arises from
the possibility to utilize technology heterogeneity to optimize
parameters of sets of routers per layer. Architectural level opti-
mizations comprise: routing and number of virtual channels.

3. At micro-architectural level, communication components them-
selves can be spatially split up and distributed among adjacent
chip layers to exploit the heterogeneity in manufacturing tech-
nologies such that new features can emerge beyond the means
of today’s systems. Micro-architectural-level optimizations com-
prise: buffer depths, buffer distributions, router architectures
and router synchronization.

The following examples, which will be researched within this thesis,
illustrate the optimization potential:

First, considering routing: We will show that it is advantageous to
route long-distance packages via the more efficient and higher per-
forming adjacent layer, and to pay the extra delay required for the
traversal of vertical links. Routing adaptation will also consider dif-
ferent clock frequencies in different layers. Thinking further, global
routing decisions can be outsourced from a slower layer to a faster
one. Run-time-adaptive routing mechanisms on faster chip layers can
complement source routing on slower chip layers.

5.4 challenges solely present in a-3d nocs 47

Second, considering router resources: These will be reduced in area-
inefficient and power-inefficient layers. Providing more communica-
tion resources than strictly needed by its processing elements in the
more efficient layers compensates for performance losses. Examples
are buffers and links.

Third, considering locations of routers: The assignment of compo-
nents to layers is critical, because the electrical characteristics of layers
must suit the requirements of components. As the size of components
potentially differs between layers, the positions of routers varies, as
well. Thus, the network topology must be optimized not only with
respect to the network but also the components.

As can be seen, these scenarios extend the design choices tremen-
dously. The potential is large, but it demands that current NoC topolo-
gies and architectures are re-thought, re-analyzed and extended in a
technology-asymmetrical scenario.

5.4 challenges solely present in a-3d nocs

There are unique challenges for NoCs in heterogeneous 3D SoCs due
to disparate technologies, as partially published in [JM 3]:

1. Costs in mixed-signal layers: If homogeneous routers are used, as
state-of-the-art [128, 130], these will yield unbearable costs (in
terms of area and power) in some layers.

2. Not purely synchronous timing: Clock speeds in A-3D NoCs are
not purely synchronous; in particular, components in mixed-
signal layers are clocked slower (as shown in Section 9.2). The
clock differences between layers can be rather large, which must
be reflected in the router architectures. Therefore, synchronous
implementation is not realistic due to large performance losses:
Heterogeneous 3D SoCs will implement globally asynchronous,
locally synchronous (GALS) clocks.

3. Design space complexity: Asymmetry adds multiple degrees of
freedom. In addition, design metrics are interleaved, i. e. de-
sign decisions influence multiple metrics at once with possibly
contradictory tendencies. This is not necessarily unique to A-
3D NoCs (buffer resources have a positive influence on perfor-
mance and a negative on area), but it is more severe (e. g. mem-
ory is more expensive in mixed-signal layers). Therefore, an in-
tegrated power, area and performance assessment is mandatory.

4. Irregular topologies: Heterogeneity influences the network topol-
ogy, as shown in Figure 23. The sectional drawing shows a three-
layered SoC. The size of components and routers is larger in the
mixed-signal layer, even for structural identical units. Therefore,
routers must not be located in a regular and aligned topology as
usually found in homogeneous 3D SoCs. Rather, any irregular
connection scheme is possible.

48 specification and design space

PE A PE A

PE APE A

PE B

R R 1

R 2R

R

digital layer

mixed signal layer

digital layer

TSV

array

TSV

array

Figure 23: Sectional drawing of a heterogeneous 3D SoC in which
dimension-ordered routing is impossible [JM 3].

(a) Faulty distribution. (b) Corrected distribution.

Figure 24: Bit-complement’s spatial distribution. The first four sources and
destinations are in the same color. Using the same mathematical relational
between addresses as in 2D NoCs yields the faulty distribution (left-hand
side) while the desired distribution is different (right-hand side).

5. Routing algorithms: Simple and robust routing algorithms such
as dimension-order routing might not be connected as shown in
Figure 23 for communication between routers R1 and R2. Rout-
ing algorithms must consider these technology constraints. This
is a general principle in A-3D NoCs as shown by means of mod-
eling in Section 9.5 (cf. Figure 75).

6. Synthetic traffic patterns: At first glance it appears to be trivial
to extend synthetic patterns to heterogeneous 3D SoCs. How-
ever, due to irregular topologies, their definition cannot always
be translated without losing the pattern’s characteristics: For in-
stance, in bit-complement traffic, packets are sent to the other
side of the network. This is modeled using addresses as intro-
duced in Section 4.9.1.1. For heterogeneous 3D SoCs, however,
the bit-complement of the address is not necessarily located at
the opposing side of the network in A-3D NoCs, cp. Figure 24.
Despite same mathematical distribution, different spacial traf-
fic patterns emerge. Therefore, synthetic traffic pattern must be
handled with care.

7. Real-world based benchmarks: Standardized benchmarks and eval-
uation platforms are essential for evaluation. Tools such as Ne-
trace [114] provide this for 2D NoCs; A-3D NoCs are not tar-
geted. Using abstract task graphs [JM 12, 110] requires task-
mapping algorithms that reflect technological properties. Ap-
plication benchmarks must be defined specifically targeting het-
erogeneous 3D SoCs.

5.5 typical example for nocs in heterogeneous 3d socs 49

sensors: layer
in analog node

AD conversion,
analog accelerators:
layer in mixed-signal node

memory: layer in node
optimized for memory

processing: layer
in digital node

TSV arrays
sensors to processors

AD converter
& coprocessor NoC

processor NoC

TSV arrays connecting NoCs
TSV arrays memory

to processors

Figure 25: Sectional drawing of a heterogeneous 3D SoC with four types
of layers: analog, mixed-signal, memory and digital. Two 3D NoCs span
layers in digital and mixed-signal technology. Analog components and AD-
converters, as well as memory and processors, connect via point-to-point
connections [JM 1].

5.5 typical example for nocs in heterogeneous 3d socs

One possible example for a NoC in a heterogeneous 3D SoCs is ex-
plained here, as originally published in [JM 1]. It is derived from the
typical properties of chips in the class of 3D VSoCs. It is shown in Fig-
ure 25. There are analog layers () typically implemented in a wide
variety of technology nodes. The sensors on these layers connect to
analog-digital (AD) conversion on mixed-signal layers (). This com-
munication is usually unidirectional and uses point-to-point connec-
tions. Next, there are layers in a purely digital technology node ().
For both mixed-signal and digital layers it is preferred to use one tech-
nology node each. The selection depends on the design targets; e.g.
the fastest digital node and the most advanced mixed-signal node. 3D
NoCs would typically span these two classes of layers. The networks
are homogeneous within, yet both have disparate properties. Finally,
there are memory layers (). Those are placed between the layers in
mixed-signal node and the layers for digital processing, since digi-
tal layers must be placed at the bottom for thermal reasons and the
latency between logic and memory must be minimized, hence adja-
cent placement. Dedicated point-to-point connections are used due
to their low latency, which is critical. It is important to highlight that
it is especially relevant to the design of NoCs for heterogeneous 3D
SoCs to consider two 3D NoCs, implemented in disparate nodes, and
the interplay between those two networks. [JM 1]

5.6 design space of a-3d nocs

In this section, we present a model to describe the design space of A-
3D NoCs. We further propose a hierarchy which facilitates systematic
exploration. Both results were originally published in [JM 6].

50 specification and design space

5.6.1 Terminology, structure and hierarchy

We highlight the structure of the design space and propose a hierar-
chy, which facilitates exploration. Due to the influence of varying tech-
nologies, the design space differs from conventional NoCs, of which
the design is less dependent on technologies. Finally, we propose
methods for systematic exploration. This is important, since the de-
sign space of A-3D NoCs has non-linear, non-convex and non-trivial
properties, that impede exploration.

Definition 5.2. Design space. Let there be n design dimensions. The
design space is defined as:

D = {di | i = 1, . . . ,n}. (1)

Each design dimension di represents a set of optimization variables.
A simple graphical representation of the design space is given in Fig-
ure 26.

d1 d2 d3 dn−1 dn. . .

D

Figure 26: Representation of a design space with n design dimensions di.

Optimization variables determine the subject of the optimization in
a particular design dimension. If for instance the design dimension
indicates placement of components on a heterogeneous 3D SoC, the
optimization variables will denote the actual position of each compo-
nent or its bounding box. As another example, a design dimension
denotes the properties of vertical connections. Then, the variables de-
scribe number, position and dimension of the TSV arrays. Consid-
ering a third example, design variables with the size of each buffer
in the network denote the design dimension of router buffer depths.
The organization of design variables into design dimensions thus fol-
lows the natural understanding of topics for design space exploration.
Each optimization variable is given by its value sik. It holds for every
design dimension di ∈ D that

di = {si1, . . . , siki}, (2)

with ki ∈ N∞ for all indexes i ∈ {1, . . . ,n}. In general, it is possible
that dimensions consist of an infinite set of variables. For instance,
the variable describing the position of components on the chip may
be infinite as there exist an infinite number of locations in R3. The
design variables are depicted in Figure 27. The design dimension with
index 1 consists of three variables, number 3 of four variables. The
remaining dimensions depicted (2,n− 1 and n) consist of an infinite
number of variables.

5.6 design space of a-3d nocs 51

d1 d2 d3 dn−1 dn. . .

D
s11

s12

s13

s21

s22

s23

s31

s32

s33

s34

sn−11

sn−12

sn−13

sn1

sn2

sn3

Figure 27: Each design dimension consist of several design variables siki ,
which are optimized during design space exploration.

Optimization variables are set during design space exploration. The
input constants define the scope of the exploration. There are two
types of input constants:

Definition 5.3. Technology constants. The set T consists of technol-
ogy constants, which describe technological characteristics, with an
influence on the network architecture. These input constants, for ex-
ample, comprise manufacturing technologies, component implemen-
tation costs or the size of KOZs.

Definition 5.4. Application constants. The setA gives application con-
stants. These characterize applications, which are executed on hetero-
geneous 3D SoCs. Again, these constants are fixed during the design
process. Examples for application constants are application or task
graphs, or network traffic characteristics such as toggle or bit self-
switching activity. We model application constants as invariant dur-
ing application execution. However, the properties of the application
might actually change, which cannot directly be taken into consid-
eration during the design phase. For instance, a sensor yields differ-
ent data depending on context and surroundings. This can influence
the control flow of the application and thus its requirements for the
communication infrastructure. The time-variant properties can only
be modeled using statistical properties. For example, sensor data are
uncorrelated and independent of the environment.

The optimization must be measured using cost functions:

Definition 5.5. Evaluation metrics. Variables are optimized for a set
of evaluation metrics M. The most important evaluation metrics are
PPA, i. e. power consumption, performance, and area costs. Less com-
mon, additional design metrics, such as reusability and scalability,
can be assessed as well. If multiple metrics will be considered simul-
taneously during an optimization, this optimization is called “multi-
objective”. Multi-objective optimization is mandatory for A-3D NoCs:
Parameters of the interconnection network and the manufacturing
technologies are interwoven. Both analytical and simulative design
space exploration methods must reflect this.

52 specification and design space

Technology and application constants together with an instance d
of the design space are used to calculate the evaluation metrics M.
This is shown in Figure 28.

optimizationd ∈D

M

AT

Figure 28: Technology and application constants influence the optimization
of design variables under minimization of M.

The structure of the design space can be ordered hierarchically:
There are different models and sub-models for application, network,
routers, components, links, etc. For instance, the combination of buffer
depths with other router-specific design variables, such as link widths
or the number of virtual channels generate (sub-)models. This hierar-
chical classification is, however, not unique. Variables may be used in
two models: The link width influences properties of routers, network
interfaces, and links; even packet sizes may change for the application.
To cope with this intersections, we propose a separation of the design
space depending on mutual influence and not purely on functionality.
This yields two subclasses, namely: system-level decisions and architec-
tural and microarchitectural features. The distinguishing characteristic
between the two classes is that system-level decisions influence op-
timizations of (micro-)architectural features but not vice versa – a
hierarchical order.

Definition 5.6. System-level decisions. The system-level decisions are
given by the set G = {d1, . . . ,dj}, with j 6 n. Figuratively spoken,
these are the first j design dimensions. These are depicted on the
left-hand side of Figure 29.

System-level decisions are influencing optimization are influencing
the optimization of every other design dimension. In other words,
(micro-)architectural features are not independent of system-level de-
cisions. System-level decisions also influence other variables on G.
Therefore, a single, closed model is essential for system-level deci-
sions. Examples for global decisions are physical dimensions of the
chip, its component floor planning or placement, or the network topol-
ogy.

Definition 5.7. Architectural and microarchitectural features. There
are k architectural and microarchitectural features given by the set
Ll = {drl , . . . ,dtl}, with j < rl 6 tl 6 n and l 6 ki. This is shown in
Figure 29 in orange. Note that it holds n = j+ k.

(Micro-)architectural features represent components, methods or
techniques, whose design decisions are (at least partially) indepen-

5.6 design space of a-3d nocs 53

dent from each other, i. e. have limited influence on each other. Exam-
ples for (micro-)architectural features are coding, properties of hori-
zontal links and vertical links (TSV arrays) or router methods such
as long range links [133] or router architectures with special features
e.g. prioritization of semi-static data streams [JM 8]. In general, it can-
not be ensured that all of these features do not influence one-another,
i. e. are independent. Independence is assumed as approximation for
efficient design optimization.

d1 dj dl3 dr3 dn−1 dn.

D

G Lk Llinfluences

Figure 29: Exemplary design space with system-level decisions G and
(micro-)architectural features Lk and Ll. The system-level decisions influ-
ence the individual features.

Considering a different hierarchical order, the design space can also
be separated into different levels of abstraction. This allows to con-
sider only some variables for faster optimization.

Definition 5.8. Abstraction levels. Abstraction levels reduce a specific
subset of the design space by representation via a smaller set of vari-
ables. This allows for reduced model complexity.

TLM: DTLM
delay of router

CA: DCA

timing of router
(clock, stages, . . .)

RTL: DRTL

router
architecture

VC allocator
architecture

Figure 30: Design spaces for different abstraction levels. The timing behav-
ior of the router is described using different variables per level.

Certain abstraction levels serve a specific purpose. For instance,
both transaction-level modeling (TLM) and cycle accurate (CA) ab-
straction yield models of timing behavior. But TLM is less accurate,
in general, since only single and important events and not the whole
time is simulated. Both levels do not allow to evaluate the area re-
quirements of a circuit. Register-transfer level (RTL) models allow to
evaluate the area requirements yet are too complex for the simulation
of larger systems and rapid prototyping. This is shown in Figure 30.
The timing of a NoC router is described there. In a transaction-level
model, a single variable with the router’s delay is sufficient. This vari-
able relates to multiple variables on cycle-accurate level. These de-
scribe the timing of the router and comprise, for example, the clock

54 specification and design space

rates or the stages of the router. Again, these variables relate to mul-
tiple variables on RT-level. The stages, for instance, are now given
by the router architecture. The clock rate could be dominated by the
architecture of the VC allocator for the sake of the example.

Different abstraction levels model different parts of the design space
and allow to set different optimization variables. Let a be an abstrac-
tion level. Then, the subsets of variables Ga ⊆ G and Lal ⊆ Ll must
be considered for system-level decisions and for features. Please note,
that not all (technology and application) constants are relevant in ev-
ery abstraction level a; therefore only a subset Ta ⊆ T and Aa ⊆ A,
respectively, is considered. We denote the sets of all possible parame-
ter sets Aa, Ta,Ga, and Lal using the symbols Aa,Ta,Ga,Lal .

Definition 5.9. Objective function. The objective function guides the
design space exploration towards an optimum using evaluation met-
rics. The objective function models the influence of the optimization
variables on the evaluation metrics under a given set of constants. Ob-
jective functions for system-level decisions and (micro-)architectural
features are:

ζa : Aa × Ta × Ga −→M, (3)

ξal : Aa × Ta ×Lal −→M. (4)

Definition 5.10. Accuracy. In general, different abstraction levels can
yield different model accuracy because the design space is not always
considered as a whole. A numerical value for this accuracy can be
found per abstraction level and model. It is determined by compari-
son of models on different abstraction levels. For instance, the timing
behavior of a circuit will be compared if modeled on transaction level,
cycle-accurate level or on gate level. The downside of higher abstrac-
tion is descending accuracy. The upside is reduced model complexity
and faster simulation, which allows for more efficient design space
exploration.

5.6.2 Exploration

In general, design space exploration is a hard and complex topic,
since many subproblems are NP hard (e. g. non-overlapping area min-
imization). Since NP hardness impedes optimization, approximate
heuristic approaches are essential. Here, we explain how to exploit
structural properties of the design space allowing for faster explo-
ration. It is noteworthy that this is orthogonal to approximate solu-
tions of individual subproblems within the hierarchy, which actually
tackle NP hardness, such as proposed in Section 6.4.

The design space is ordered by hierarchy, such that system-level de-
cisions influence the (micro-)architectural features but not vice versa.
This is only possible, since independence between system level and

5.6 design space of a-3d nocs 55

system level decisions G

I: architectural feature L1 II: architectural feature La2

IV: architectural feature Lb2III: architectural feature L3

dependancy approximtive
independence

already resolved by abstraction

in
cr

em
en

ta
la

pp
ro

ac
h

Figure 31: The incremental approach exploits structure and hierarchy of
the design space. The exploration sets parameters following dependencies
between features. Some are treated as independent despite actual depen-
dence as approximation.

single (micro-)architectural features is assumed as an acceptable com-
promise. Furthermore, the design space can be ordered by abstraction
levels. This allows to reduce the number of parameters by partial ex-
ploration, since models with fewer variables are less complex; this re-
duces design time. We call this an incremental approach: First, system-
level decisions set the boundaries, in which further exploration is
possible. Second, the (micro-)architectural level is explored. There-
fore, abstraction levels allow to reduce the number of variables which
must be set per optimization. Fixed variables on a higher abstraction
level are constraints for lower abstraction levels. This is shown in Fig-
ure 31.

6
S Y S T E M - L E V E L O P T I M I Z AT I O N

6.1 introduction

The design space of 3D NoCs for heterogeneous 3D SoCs consists
of system-level decisions and (micro-)architectural features, as intro-
duced in Section 5.6. In this chapter, we optimize the system-level
parameters, as defined in Definition 6.3. It is important to optimize at
system-level because these decisions have a huge impact on (micro-)
architectural features. Therefore, an extensive design-space explora-
tion is essential. Before we define the problem itself, we start by defin-
ing two basic terms:

Definition 6.1 (Components). Components denote an abstract repre-
sentation of PEs: Components are defined as parts of a SoC, which
consume and generate data and have area requirements.

Definition 6.2 (Bounding boxes). Bounding boxes are rectangular
shapes on the chip, in which there is enough space to place a compo-
nent, a router and TSV arrays.

Using these terms, we can give a concrete definition of the problem:

Definition 6.3 (System-level optimization of NoCs in heterogeneous
3D SoCs). System-level optimization of NoCs in heterogeneous 3D
SoCs consists of NoC planning with simultaneous layer assignment and
component positioning. Using the basic terms, we specify:

• NoC planning is defined as the optimization of the interconnec-
tion network by assigning routers and TSVs to bounding boxes.

• Layer assignment and component positioning is defined as assign-
ment of components to layers and then to bounding boxes.

The following properties of heterogeneous 3D SoCs are especially
challenging and render system-level optimization difficult: Compo-
nent positioning and NoC planning cannot be separated because the
topology and locations of components and routers mutually influ-
ence each other. Also, the location and vertical link count is deter-
mined, which is interwoven with the components’ locations. Further-
more, the optimization is multivariate; the objective function com-
prises models for area, power, performance, network load and net-
work congestion.

In general, this optimization problem can be solved with two differ-
ent approaches: The first approach is analytical, by defining a closed
model for the system. The second approach is empirical, by defining
sets of parameters with their properties and then analyzing their

57

58 system-level optimization

effect after running several simulations. System-level optimization
must be conducted analytically for two reasons: Firstly, system-level
decisions must be accurate because of their impact on all features.
Secondly, an extensive exploration is too time-consuming using sim-
ulations.

To tackle system-level optimization, we contribute a well-reasoned
analytical formulation accounting for technology parameters in Sec-
tion 6.2. Next, we provide a model for an optimal solution in Sec-
tion 6.3. Due to infeasible computation time, we propose a heuristic
algorithm which allows for a relaxed solution in Section 6.4. We dis-
cuss the performance of the solution in Section 6.5. Next, we apply
the models and heuristics to different input sets. The results are pre-
sented in Section 6.6 and discussed in Section 6.7. Finally, we draw
a conclusion in Section 6.8. The chapter is partly published in the
articles [JM 4].

6.1.1 Differentiation to today’s approaches

NoC planning with simultaneous layer assignment and component
positioning has not been considered so far. The reason lies in the nov-
elty of A-3D NoCs. A-3D NoCs have properties that are not accounted
for in existing literature: Only in heterogeneous 3D SoCs the size of
components varies with technology, which influences network topol-
ogy. Also unique to heterogeneous 3D SoCs, is that performance and
energy consumption of components differ with their location. Plus,
properties of routers change between layers. Despite the novelty of
A-3D NoCs and their unique features, there are similar approaches.
Naturally, these are applied in different context and target other sys-
tems. Here, we introduce them and discuss distinguishing features
and why they cannot be applied to A-3D NoCs.

There are two problem categories that can be found in system-level
optimization for A-3D NoCs, which can be found in other optimiza-
tions, as well. These categories are partitioning of resources and position-
ing of TSV (arrays).

Partitioning of resources is found during system-level optimization
for A-3D NoCs when components are assigned to layers. A mathe-
matically similar problem is partitioning for ASIC design [134]. This
cannot directly be applied here: ASIC design targets gate-level inputs,
in which circuits with a huge number of gates are partitioned and
the gates have the same properties in each partition. Solely commu-
nication is optimized. In contrast, system-level optimizations target
a network level, in which the number of components is significantly
smaller, but their properties differ between layers.

Positioning of TSVs is a well-researched topic. There are three gen-
eral approaches: Positioning of individual TSVs for ASIC design, po-

6.1 introduction 59

sitioning of TSV arrays modeled as macroblocks, and positioning of
TSV arrays in 3D NoCs determining a topology for vertical links:

• Positioning of individual TSVs for ASIC design:
In this scope, the objective is a reduction of wire lengths to in-
crease the performance of the 3D chip by optimized placement
of single TSVs. For instance, [135] proposes a method to shorten
wire by an average of 20% using an analytical placer. The opti-
mization can also effect the gates connected by the TSV. For
instance, both [136] and [137] propose to combine layout place-
ment and TSV placement by a 3D cell placement algorithm. All
these publications target the placement of individual TSVs in
homogeneous 3D chips at gate level. These are not directly ap-
plicable to A-3D NoCs, since we optimize at network level, with
heterogeneous integration.

• Positioning of TSV arrays modeled as macroblocks:
When moving the focus from individual TSVs to arrays of TSVs,
their area becomes considerably larger. Therefore, a large area-
consuming block must be placed in a chip. This is very simi-
lar to placement of macroblocks, which is a common problem
found in ASIC design. To tackle macroblock placement, many
works pursue a twofold approach: First, the macroblocks are
placed but may overlap with other chip components. Second,
the design is legalized by removing overlaps [137]. This ap-
proach is rather similar to our method but can also not be di-
rectly applied, as we explain using the following example: Po-
larBear [138] proposes a method for mixed-size placement, with
less than 5% non-utilized space (white space). As usual, this ap-
proach uses graph-based legalization, which is very well appli-
cable to unrestrained orders of placements. It cannot be applied
to our problem, since components are positioned according to
the network topology in A-3D NoCs and thus the order is in fact
restrained. Other algorithms, such as Capo [139] are correct-by-
construction, which avoid legalization; we do not pursue this
because simultaneous TSV array placement and component po-
sitioning considerably increases the required computational ef-
fort. Please note that all methods for placement of TSVs can
directly be applied in post-processing to the solutions for A-3D
NoCs to determine the precise location of TSVs within their
given bounding boxes.

• Positioning of TSV arrays in 3D NoCs:
There are a few publications addressing placement of TSV ar-
rays, i. e. vertical links, in homogeneous 3D NoCs. In general,
all of these publications target NoCs with stacked layers of
2D meshes, in which routers are located at the same positions

60 system-level optimization

in each layer. The objective is optimization of network proper-
ties by determining a good topology for vertical connections.
In [140] the target number of TSV arrays is given. For 25% of
all possible locations filled with vertical links, the network per-
formance is reduced by 18.7% while the energy of the NoC is
reduced by 23.5% in comparison to a fully connected network.
[141] presents another algorithm based on a similar principle.
For 25% connectivity, 7.96% throughput decrease, 0.39% latency
decrease and 7.69% packet energy reduction are measured in
comparison to full connectivity. We differentiate from these ap-
proaches as follows: We do not assume homogeneous NoC with
uniformly-sized grids in each layer, which is very wasteful for
heterogeneous 3D SoC. Furthermore, our technology model is
more accurate because we are using redistribution to increase
the freedom of placement. Plus, our models for routers and
TSV arrays are more modern, because we account for physi-
cal properties of state-of-the-art via middle process flow. Hence,
our models are more area-precise.

6.2 problem formulation and technology model

Here, we define input, objective function and solution space of system-
level optimization of NoCs for heterogeneous 3D SoCs:

The input of the system-level optimization consists of technology
and application constants as defined in Section 5.6: As technology
constants, the layers-count and a set of available technologies are
given, along with ordering of layers and their technologies. As appli-
cation constants, the expected communication between components
is accounted for, including the amount of data each component con-
sumes and produces over time, as well as the data flow direction
(Figure 32b). This is analog to the definition of the core graph [142].
We extend this graph by a description of components that includes
their properties, i. e. power and area requirements, as well as their per-
formance, in different technologies (Figure 32c). For their estimation,
standard approaches exist [143].

The objective is to minimize the area and power requirements of the
resulting SoC while maximizing performance of components and net-
work implemented on the SoC. The latter includes avoiding conges-
tion and utilizing the available resources efficiently. The area is min-
imized by the physical dimensions of the chip; we target quadratic
chips, which are rather common and require less computational ef-
fort during optimization (Figure 32a). We model this using a linear
weighted objective function with five addends for area, power, compo-
nent performance, network latency and network throughput. The re-
sulting five weighted addends account for all relevant metrics which
describe the quality of a design. Using PPA (power, performance,

6.2 problem formulation and technology model 61

130 nm mixed-signal

90 nm digital

45 nm digital

(a) Technology constants: SoC
properties.

Comp. 1

Comp. 2 Comp. 3

10 Mb/s 8 Mb/s

5 Mb/s

(b) Application constants: compo-
nent communication.

Comp. 1 Comp. 2 Comp. 3

130 nm mixed-signal 3 4 6

90 nm digital 5 12 3

45 nm digital 7 3 1

(c) Application constants: Component properties (ab-
stract representation, thus unit-less).

Figure 32: Depiction of example inputs.

layer 2

layer 1

TSV
array bounding box for

component, router
and KOZs

link

router

Figure 33: Depiction of a solution candidate.

area) is the de-facto standard and our first three addends models this
for the components and routers on a SoC. Since this does not account
for the network performance, we included the latter two addends
that model latency (distance of communication times bandwidth) and
throughput limitations. We chose a quite general approach, which in-
cludes a broad set of design targets. Their actual relevance in each
individual design can be set through the weights. Of course, the lin-
ear model allows for an easy extension of the objective function, if
necessary. Therefore, the objective function considers the targets for
the optimization problem properly.

For a solution, bounding boxes are found, which provide space for
components, routers and TSV arrays. Since components and routers
have different sizes in each layer due to heterogeneity, the sizes of
bounding boxes differ. A solution candidate is shown in Figure 33:
Bounding boxes are shown in gray; Routers in different layers have
varying properties depicted by color-coding. The floorplanning within
each bounding box can be done using well-known methods. Meth-
ods for placement of individual TSVs of TSV arrays also exist. They
require bounding boxes and have been discussed in Section 6.1.1.
The KOZ’s placement can be realized by modeling them as mac-
roblocks. Solutions also define the network topology, indirectly, as

62 system-level optimization

shown.1 Routers are located near the upper left corner in the solution
candidate shown in Figure 33. In general, their actual location in a
bounding box will be a result of floorplanning.

6.2.1 Router model

Routers have up to four ports in each cardinal direction in their layer
and one local port. To the latter, at maximum one component is con-
nected. Furthermore, routers can implement one port to the layer
above or one to the layer below. Routers consume area and power
and are connected within their layer via links and vertically via TSV
arrays. The router size depends on the port count, i. e. 2D routers are
smaller than 3D routers. Please note that routers will have a different
port count if implemented inlying or peripheral (e. g. a router at the
edge of the chip cannot connect in every direction). Therefore, the
size of routers varies depending on their position; this is only mod-
eled in the heuristics, since it would further increase the complexity
of the model. Furthermore, vertical links in 3D routers require addi-
tional area. This is shown in detail in Figure 34. The area of the 3D
routers consists of the area for the router and the KOZ as shown in
Figure 34a. If the router only connects downwards, the TSV area will
still be required, see Figure 34b. A KOZ will not be required if routers
connect only upwards, because we assume via-middle process flow,
as shown in Figure 34c (cf. Section 3.3.2). Also, we allow connecting
routers and TSV arrays via redistribution, as explained in the next
paragraph on the technology model. Our model allows routers to im-
plement any routing algorithm. As an example, we model elevator
first dimension order routing algorithm. Packets are sent to the next
TSV array following dimension order routing in each layer until the
destination is reached, as implemented in LBDR3D [144]. Advantages
are simplicity and reduced number of TSVs. An example of a path is
shown in Figure 35.

6.2.2 3D technology model

As already explained, components and routers have varying sizes, im-
plementation costs, performance and energy consumption per man-
ufacturing technology in heterogeneous 3D SoCs. Some components
cannot be implemented in certain manufacturing technologies due
to physical limitations. For instance, analog sensors cannot be imple-
mented in digital technologies. Furthermore, horizontal connections
(wires) and vertical connections (TSVs) have different and even con-
tradicting characteristics, such as KOZs of TSVs. Furthermore, for
horizontal links, a redistribution (RD) can be used to route to TSV
arrays. Using a RD yields additional freedom to place routers and

1 Please note that the term network topology refers to the network graph.

6.2 problem formulation and technology model 63

KOZRouter

TSV array

TSV array

Link

Link

Link

Link

(a) Two vertical connec-
tions.

KOZRouter

TSV array

Link

Link

Link

Link

(b) Direct downward con-
nection.

Router

TSV array

Link

Link

Link

Link

(c) Direct upward connec-
tion.

Figure 34: Router model with TSVs.

source

destintation

Figure 35: Elevator first DOR.

mixed-signal
layer

digital layer

router

router

TSVRD length

driver for TSV

driver for RD

Figure 36: Example for redistribution connect-
ing a router in a less advanced technology to a
router in a more advanced technology.

Router

TSV array

Link

Link

Link

Link

RD

Figure 37: Router model
with vertical connection
and redistribution.

components. An exemplary RD of a single bit connection is shown
in Figure 36 for a scenario, in which the upper layer is implemented
in a less advanced node than the lower layer. When connecting these
two layers, the RD in the less advanced node is as short as possible to
reduce the driver size, since it is relatively expensive. Therefore, the
driver connects directly to the TSV and the driver of the RD in the
more advanced layer is located directly after the TSV. In the opposite
directions, the driver in the more advanced layer is located behind the
router and drives both RD and TSV. The freedom in router’s place-
ment is given by the maximum length of the RD without violating
the clock frequency of the routers; this RD length is called D. It can
be calculated from data provided by the vendors in their library for
the commercial technologies. Please note that D will vary for both
directions, if technologies are heterogeneous. Since we assume bidi-
rectional links between routers, we use the minimum of both direc-
tions as actual RD length. The router design using an RD is shown in
Figure 37; KOZs are only required for downwards connections.

64 system-level optimization

6.2.3 Model assumptions and simplifications

The proposed optimization is valid under these model assumptions
and simplifications:

– Bounding boxes for components and routers are rectangular.
This restricts optimization potential, yet is a usual approxima-
tion to reduce the problem complexity [134].

– The optimization only models system-level decisions and not
(micro-)architectural features. For instance, routers are not sep-
arated on multiple layers.

– NoC synthesis does not account for direct links and buses. Hy-
brid architectures are not modeled.

– Components (and routers) are positioned in a structure imple-
menting a grid, within layers, as shown in Figure 33.

– Routers are positioned at joints of the component grid whenever
required. The routers are within bounding boxes.

– Routers are always connected by horizontal links in a layer.
These wires form the network topology in a layer. For instance,
neighboring routers are connected to form a mesh.

6.3 mixed integer linear program model

In general, a MILP is defined as:

minimize cTx+ dTy,

subject to Ax+By 6 b,

with x ∈ Zn,y ∈ Rk,A ∈ Rm×n,B ∈ Rm×kb ∈ Rm, c ∈ Rn,d ∈ Rk

We only highlight concepts of the model. The whole model is given
in the Appendix, Section a. It begins with an overview of definitions,
variables and cost functions, given in Sections a.1.1, a.1.2 and a.1.3;
the definitions follow thereafter. The following notations are used.
For n ∈ N we introduce the notation [n] := {1, . . . ,n}. The symbols
px, py and pz denote the entries of a vector p ∈ R3: p = (px,py,pz).
By χ we mean the indicator function as commonly defined: it will hold
χA(x) = 1, if x in A; else it will hold χA(x) = 0.

6.3.1 Constants and Definitions

Component and communication model

There are n components; the set of components is [n].2 There are m
routers. The number of routers is set prior to optimization. It limits
the number of components and bounding boxes (Proof: Lemma a.1,

2 [n] is treated as if it were the set of components in the way that each number rep-
resents a particular component. In fact, it is just a set of indices, which are used to
reference components.

6.3 mixed integer linear program model 65

Section a.2). Within the MILP model, we refer to the bounding boxes
as “tiles”. The reason is that tiles have a slightly different defini-
tion than bounding boxes: Similarly, tiles provide area for routers,
components, and vertical links. But tiles can contain more than one
router (cf. Section 6.3.2), because this allows to place routers with-
out an own component at junctions required from the routing algo-
rithm with higher packaging efficiency. The communication between
components is modeled by a directed graph with weighted edges.
The edge set of the component digraph (directed graph) contains all di-
rected pairs of components which communicate. An edge follows the
pattern (sender, receiver), which yields the edge set: EA =

{
(i, j) ∈

[n]× [n] | component i sends to j
}

. Together this yields the directed
and weighted component graph:

A = ([n],EA) (5)

The weights of the graph’s edges represent communication between
components, called bandwidth requirement, given by the function:

u : EA → R+ (6)

with R+ := {x ∈ R | x > 0}. An example of this graph is depicted
in Figure 32b. Three components communicate with a bandwidth re-
quirement of 5-8 Mb/s.

Technologies and layers model

There are k available manufacturing technologies and ` layers. The
sets [k] and [`] are regarded as the sets of manufacturing technologies
and the set of layers. A technology is assigned to each layer using the
function τ : [`] → [k]. This is depicted in Figure 32a, in which three
different technologies are combined in one SoC.

Implementation costs model

Each component can be implemented in different technologies, yield-
ing the set of available implementations I = [n]× [k]. For each imple-
mentation of a component, area costs are given:

fc : I −→ R∪ {∞} (7)

A component cannot be realized in a technology if costs are infinite.
The implementation costs fc are depicted in Figure 32c, as a matrix,
with area costs per technology and component index. Furthermore,
routers must be implemented, which are of same size within a layer
but not between layers. Router implementation costs are given for 2D
routers and 3D routers as:

fR2D : [k] −→ R (8)

fR3D : [k] −→ R (9)

66 system-level optimization

TSV arrays have area costs, due to KOZs, as well. It does not depend on
the layer’s manufacturing technology, when via-middle process flow
is used. Thus, a constant fKOZ is given.

Energy model

Components will consume different amounts of energy, if implement-
ed in different layers due to disparate technologies. The energy con-
sumption of components is modeled per implementation by the func-
tion fE : I −→ R ∪ {∞}. Furthermore, routers consume energy which is
modeled as technology-dependent, i. e. the layer, in which the routers
are implemented: fER : [k] −→ R.

Performance model

Components have varying performance in different technologies. We
use a performance index, which numerically estimates the performance
given by: fP : I −→ {x ∈ R | x > 0}.

Coordinates

The SoC is modeled to be spatially embedded in a three dimensional
coordinate system, with upper bounds for the x- and y-dimension
xmax and ymax

P := {x|x ∈ R, 0 6 x 6 xmax}× {y|y ∈ R, 0 6 y 6 ymax}× [`]

P is bounded to model logical OR relations: This allows for two con-
straints, of which only one must be satisfied (cf. Section a.3.1). The co-
ordinates are shown in Figure 38. The upper left corner of the coordi-
nate system is the source. The upper layer, in orange-colored shading,
has one tile (area reserved for routers and components). The second
layer, in green shading, has two tiles.

y ∈ R>0

1
2

3
4

5
6

x ∈ R>0
1 2 3 4 5 6

z ∈ [`]

Figure 38: Coordinate system with three tiles in two layers.

6.3.2 Variables

During component positioning and NoC synthesis, positions of com-
ponents, network topology, positions of routers and physical dimen-

6.3 mixed integer linear program model 67

sions are optimized. The places of components are given by their upper
left corner, with positions si ∈ P for all routers i ∈ [n].3

This is also the place of the first n routers, which connect one com-
ponent each. We introduce tiles, which are bounding boxes for routers
and components belonging to the same place. A variable denotes tiles
places, with positions ti ∈ P for all i ∈ [m].

Tiles represent rectangular bounding boxes, with the summed size
of their component, routers and KOZs, represented by length ai and
width bi for all i ∈ [m]. A tile at position pi ∈ T is given by the
interval

Ap = [pi,x,pi,x + ai)× [pi,y,pi,y + bi)× pi,z (10)

The chip’s physical dimensions are given by the position of tiles and
their size, i.e. the most exterior and largest tiles determine the pro-
duction size of the chip.

We model the NoC as a spatially embedded graph. Router locations
are given by their positions ri for all i ∈ [m].

A variable is defined that denotes the connection of two routers, p
and q: e{p,q} ∈ {0, 1}. The variable

e{p,q} ∈ {0, 1}. (11)

The variable is 1 for a physically implemented connection or 0 oth-
erwise. Wires and TSVs are bidirectional. This yields the connections
between all pairs of routers p,q: EN =

{
(p,q) | e{p,q} = 1

}
. The net-

work topology N is defined as the spatially-embedded directed graph

N = ([m],EN) (12)

6.3.3 Objective function

Objective: SoC area minimization. The size of the actual production chip
is determined by the size of the largest layer, since each layer is pro-
duced with the same dimensions. The external dimensions are equal
to the size of the outer-most component in each dimension given by
its position p and its size ap and bp, respectively. Thus the costs of
the chip are defined as c̃area = maxi∈[m](ti,x+ai)maxi∈[m](ti,y+bi).
This must be linearized. Therefore, we rather use a cost function that
minimizes the area of the chip for square-shaped components:

carea = max{max
i∈[m]

(ti,x + ai), max
i∈[m]

(ti,y + bi)} (13)

The inequalities are given in Section a.4.1.

3 Please note that the positions of routers cannot be directly at the upper limits of
the coordinates P, since they have a size. This is not modeled here, but taken into
account by constraints.

68 system-level optimization

Objective: The total energy consumption reduction. It is given by the
sum of router and component power consumption. This is given by
the cost function:

cpower =
∑
i∈[n]

fE(i, τ(ti,z)) +
∑
j∈[m]

fEr(τ(ti,z)) (14)

Objective: System performance maximization: It is given by the sum
of component performances. The sum is considered as negative for
maximization.

cperf = −
∑
i∈[n]

fP(i, τ(ti,z)) (15)

Objective: The data transmission in the network is optimized. To mea-
sure the utilization on each link, we use flows: The »flow« of packets
is modeled by a source-sink-flow in the network digraph. The flow
is smaller or equal to one, since we multiply with the bandwidth re-
quirement u in the cost function. We define the function fwhich gives
us this flow for each pair of components:

f : EA →
⋃

(i,j)∈EA

{
f | f is a si-sj-flow in N, value(f) = 1

}
. (16)

The value of the flow is denoted by value(f), following the convention
used in [145]. If we write f(s, t) (which is technically not defined), we
mean f((s, t)). f(i,j)(k,l) denotes the corresponding variable for all net-
work links k, l ∈ [m] and components i, j ∈ [n]. Flows allow modeling
different routing algorithms. Deterministic routing algorithms have
binary flows; for adaptive routing, flow values are in the interval [0, 1]
and represent the probability that packets use a link.

Objective: Optimize data flow. Congestion increases the average net-
work delay, reduces throughput and increases the energy consump-
tion. To minimize risk of congestion, the overall network load is re-
duced. The complete network load cannot be influenced, since it is
an application constant. Still, the individual router’s utilization can
be reduced by ensuring that packets travel shorter distances and pass
through fewer routers on their path. According to the following func-
tion, the costs to reduce the overall network utilization are given:

cutil =
∑
e∈EA

u(e)

∑
v∈EN

(f(e)) (v)

 (17)

To further reduce congestion risk, peak loads are avoided. Loads are
defined by the function load : EN → R>0, which returns the summed
utilization on a link:

load(v) :=
∑
e∈EA

u(e) (f(e)) (v) (18)

6.3 mixed integer linear program model 69

We propose a load-heterogeneity measure that penalizes loads larger
than the average link load given by:

µl =
1

|EN|

∑
∀v∈EN

load(v) (19)

We estimate |EN| ≈ n2 − n as approximate linearization; this cor-
responds to a fully-connected network and underestimates µl. With
the indicator function χ, the peak costs are defined as

cpeak =
∑
v∈EN

(
χ(µ,∞)(load(v))(load(v) − µ)

)
(20)

=
∑

(k,l)∈[m]×[m]

(
max{0, load((k, l)) − µ}

)
(21)

The complete objective function comprises the summed costs, with
weighting factors ω1 to ω5:

c = ω1cutil +ω2cpower +ω3cperf +ω4cpeak +ω5carea. (22)

An overview of the costs functions is given in Section a.1.3.

6.3.4 Constraints

The model constraints define the boundaries, in which the optimi-
zation takes place. We explain and illustrate these; the inequalities
are given in the Appendix, Section a.5. Prior to actual functional con-
straints for the chip’s properties, we define four technical constraints
for easy indexing: Components, tiles (the representation of bounding
boxes in the MILP model, cf. Section 6.3.1) and routers with an in-
dex i ∈ [n] are at the same location. Tiles and routers, which are not
placed on the SoC, i. e. are not required, are at the end of the index
range [m]. The rather technical constraints are given in Section a.5.1.

6.3.4.1 Modeling the network

The bounding boxes of routers and components, i. e. tiles, are mod-
eled such that the router is located in the upper left corner of the
bounding box. The reason for this lies in easier modeling in the MILP.
The network implements a grid-like topology; therefore, neighbor-
ing routers with either same x- or y-coordinates are connected. Long-
range links are prohibited. 3D routers connect adjacent layers. Which
router can be connected depends on its projected distance within lay-
ers, which must be smaller than D (|px − qx|+ |py − qy| 6 D). Man-
hattan distance linearizes the equation and is reasonable to model
link manufacturing. Each component is connected to the local port
of a router and routers are not connected to themselves. The result-
ing constraints can be illustrated as follows; inequalities are given in
Section a.5.2:

70 system-level optimization

Topology as grid and TSVs connect to adjacent layers

Within a layer, wires form
grids.

TSVs only connect
neighboring layers.

Components are connected to routers Routers are not self-connected

Each component has a
router since it has a
network interface with a
unique address.

Routers connect among
each other yet not to
themselves.

Forbid connections between non-neighboring routers

Only neighboring routers can be connected.
Long-range and diagonal links are prohibited.

6.3.4.2 Modeling tiles (bounding boxes)

The tiles provide SoC area to implement components, routers and
TSV arrays. The assigned area of tiles is given by the product of
its sides apbp, which is constrained to be larger than its area re-
quirement. The area requirement Âp is the sum of the component
size, the size of each router in the tile and their KOZs. This yields
a constraint apbp > Âp for all p ∈ T . A detailed formula is given
within this section. Furthermore, tiles are without overlaps. Routers
and components are assigned to tiles. In general, it is possible to have
more routers than components to fulfill the connectivity of the rout-
ing algorithm: Routers may belong to a tile without a component,
i. e. start their own tile, or belong to an existing tile. Links connect
routers. These are only allowed to be along the borders of tiles and
may not cross them. This router placement allows easy modeling.
Routers must not be at the same location in the model. Since we
are using tiles/bounding boxes, the actual router placement can be
done in post-processing (routers can be at any location within the
tile). Thus, routers can be freely placed in the tiles and links might
cross them in an actual implementation after post processing. The re-
sulting constraints can be illustrated as follows; inequalities are given
in Section a.5.3:

Starting positions of tiles Components start tiles

Each tile has a router. Each component has its
own tile.

Routers and tiles Sizes of tiles

Routers are either part of a
component’s tile or their
own.

Tiles provide enough space
for their component,
routers, TSVs.

Tiles may not overlap Links do not cross tiles

Tiles are forbidden to
overlap.

Links cannot be placed
within a tile.

Routers have different locations
r
i

r
j Routers are not at the same location.

6.3 mixed integer linear program model 71

To model these constraints, we introduce a minimum distance and area
linearization. The former allows modeling the inequality of positions
and the latter enables the calculation of area, which intrinsically are
a product, i. e. non-linear.

Modeling unequal positions on the SoC

It is not possible to state a 6= b for two reals a and b through an
MILP, since this would require the possibility to model open sets.
To model this, a minimum distance δ around one of the variables
is introduced. This allows modeling the unequal relations such as,
a 6 b− δ or b 6 a− δ. The physical representation of δ is the semi-
conductor scale (i. e. feature size). Modeling the unequal relation is
shown in Figure 39: The variables a,b ∈ R are constrained to be
unequal using the distance δ. The variable b1 is within the interval
[a,a+ δ], which is not allowed. The variable b2 is larger than a+ δ,
which models the unequal relation.

a 6= b1
ab1

a 6= b2
a−δ

ab1

a+δ

b2

Figure 39: In general, it holds a 6= b1 (left-hand side). In the model how-
ever, a 6= b2 is modeled using the distance δ and a ≡ b1.

Linearization of area product

In the definition of constraints on sizes of tiles (Section a.5.3), the
product of a tile’s edges aibi is calculated, which is not linear. There-
fore, we use the following linearization. We follow the approach pro-
posed by Montreuil [146]. The idea is illustrated in Figure 40. The
size of the tile i ∈ [m] must be larger than the summed size of its
component i, α implemented routers (2D and 3D routers), of which
β are 3D routers and γ KOZs with the technology costs of the com-
ponent’s layer ξ ∈ [`]. For this given area Fξ,i

α,β,γ, the possible lengths
and widths combinations of the tile are given by the half-space:

aibi > F
ξ,i
α,β,γ (23)

In addition, each side of a tile is constrained by the maximum size of
the layer:

ai 6 xmax (24)

bi 6 ymax (25)

To estimate the product from Equation 23, we introduce a limit on
the aspect ratio η. In general, the aspect ratio is between 0 and 1, i. e.

72 system-level optimization

b
i

a
i

a
i
 b

i
 = F

i

y
max

x
max

a
i
 = η-1b

i

a
i
 = ηb

i

possibile solutions for
the size of a tile

linearization
error

linearization of product
using aspect ratio η
and upper bound x

max

Figure 40: Linearization of a product aibi, with aspect ratio η and bounds
xmax and ymax.

0 < η 6 1. Stricter bounds for η reduce the estimation error. The
constraints for a given η, also shown in Figure 40, are:

ai > ηbi (26)

ai 6 η
−1bi (27)

Connecting the intersection between aibi = Fξ,i
α,β,γ and ai = ηbi as

well as the intersection between aibi = F
ξ,i
α,β,γ and ai = η−1bi yields

a line equation, which linearly approximates aibi. This linearization
is given by:

ai + bi >
√
Fξ,i
α,β,γη

−1 +
√
Fξ,i
α,β,γη (28)

This approximation will have an error of 9% to 12% if applied to
the facility layout problem [147], which is similar to our model. The
square root of Fξ,i

α,β,γ cannot be calculated using the MILP model,
since it contains variables for the area of component size, routers and
KOZs. The 2D and 3D router count in a tile has an upper bound, i. e.
α,β,γ ∈ [m − n + 1]. Therefore, `m matrices are introduced which
contain all precomputed square roots of tiles’ sizes depending on the
router and TSV count: F̃ξ,i = (f̃ξ,i

α,β,γ) ∈ R[m−n+1]×[m−n+1]×[m−n+1].
The corresponding area requirement of a tile i implemented in layer
ξ is given by the i, ξ-th matrix element: f̃ξ,i

α,β,γ. We introduce auxil-
iary binary variables hξ,i, 11

α,β,γ for each i ∈ [m], ξ ∈ [`], and α, β ∈
[m − n + 1], selecting the element of this matrix (Note that the ex-
ponent 11 is part of the variable name; variable names are generated
from a counter and therefore only appear to be arbitrary at this point).
These variables can be arranged in the form of a matrix of the same
dimensions as F̃ξ,i. Using an analogy of the Frobenius scalar prod-
uct of matrices A = (ai,j,k) ∈ Rm×n×q and B = (bi,j,k) ∈ Rm×n

6.3 mixed integer linear program model 73

〈A,B〉 =
∑m
i=1

∑n
j=1

∑q
k=1 ai,j,kbi,j,k, the constraint in Equation 23

can be written as m inequalities:

ai + bi >
∑
ξ∈[`]

〈Hξ,i, 11F̃ξ,i〉
(√

η−1 +
√
η
)

(29)

which is a linear equation using hξ,i, 11
α,β,γ as elements in Hξ,i, 11. It must

hold for all i ∈ [m], ξ ∈ [`] and α,β,γ ∈ [m−n+ 1]:

hξ,i, 11
α,β,γ =

1

if tile i is in layer ξ, has (α− 1) routers,

(β− 1) 3D routers, and (γ− 1) KOZs

0 else

(30)

The linarization error can be reduced by using multiple linear equa-
tions that piecewise approximate a segment of the iso-area line aibi =
Fξ,i
α,β,γ. This method increases the number of inequalities.

6.3.4.3 Modeling common properties of routing algorithms

Common properties of all routing algorithms are modeled. The ac-
tual implemented routing algorithm must be defined separately. We
model routing algorithms via the flow f(s, t) [145]. The routing algo-
rithm only traverses existing links between routers. Packets cannot be
duplicated or lost, so flow is conserved. This approach allows to ver-
ify the routing algorithm: If the constraints are fulfilled, the routing
will be connected. Also livelock freedom is proven, since the flow is
acyclic. Deadlock freedom cannot be proved with this model, since it
does not comprise channels. The resulting constraints are illustrated
as follows; inequalities are given in the next paragraphs.

Flow in EN Flow conservation

Only existing links can be
traversed.

Packets are not lost or
duplicated.

Live-lock freedom

Routing algorithms are live-lock free.

Flow in EN: The flow in EN can traverse existing links only. It is
defined on a fully connected network graph. If only the actual imple-
mented links in each solution candidate has been used, the size of the
constraints would depend on the solution and not on the input con-
stants, which is illegal for MILPs. Therefore, all flow values of edges,
which are not found in the network topology EN, are set to zero by
the following m2|EA| inequalities for all (i, j) ∈ EA,k, l ∈ [m]:

f
(i,j)
(k,l) 6 e{k,l}. (31)

Flow is conserved: Flow must be conserved, or else packets are
duplicated or lost. We define flows in the network EN with value
1, which are also non-circular. The latter is given by the subsequent
constraint. According to [148] (Definition 8.1.), the flow for a vertex
v will be conserved if the summed flow from all incoming edges e ∈

74 system-level optimization

δ−(v) is equal to the sum of the flows on the outgoing edges e ∈ δ+(v):∑
e∈δ−(v) f(e) =

∑
e∈δ+(v) f(e). In our model, the incoming edges e

to a vertex with index l (i. e. a router) are given by e ∈ [m] × {l}.
Analog, the outgoing links e are given by: e ∈ {l}× [m]. This yields
the equations for the flow conservation rule for the fully connected
network for all q ∈ [m], (i, j) ∈ EA and l ∈ [m] \ {i, j} (since the source
and the sink do not have flow conservation):∑

k∈[m]

f
(i,j)
(k,l) =

∑
k∈[m]

f
(i,j)
(l,k) (32)

This relates to 2(m− 2)|EA| inequalities. For the source i, the inequal-
ity is given by

1+
∑
k∈[m]

f
(i,j)
(k,i) =

∑
k∈[m]

f
(i,j)
(i,k) (33)

and for the sink j, it is given by:∑
k∈[m]

f
(i,j)
(k,j) =

∑
k∈[m]

f
(i,j)
(j,k) + 1 (34)

Flow is acyclic: Flows in the network must be acyclic for live-lock
freedom of routing algorithms. A digraph will have a topological
order if and only if it is acyclic ([148], Definition 2.8. and Propo-
sition 2.9.). To generate a topological order, variables ΓeAr ∈ Z are
defined such that they enumerate the vertexes in the network EN
for all eA ∈ EA and r ∈ [m]: . The enumeration is modeled for all
k, l ∈ [m]×[m]:

feA(k,l) > 0→ ΓeAi < ΓeAj ↔ feA(k,l) = 0 or ΓeAi < ΓeAj (35)

For a binary flow (i. e. f(i,j)(k,l) ∈ B) this yields the following m2|EA|
inequalities for all k, l ∈ [m]× [m] and (i, j) ∈ EA using the constant
c17 = m+ 1 (Again, the “exponent” 17 is a variable name):

Γ
(i,j)
k + 1/2 6 Γ (i,j)l + (1− f

(i,j)
(k,l))c

17. (36)

For non-binary flows, the auxiliary binary variable hi,j 17k,lOR, which is

1 if the flow is non-zero (hi,j 17k,lOR > f
(i,j)
(k,l)) is introduced. This changes

the inequalities to Γ (i,j)k + 1/2 6 Γ (i,j)l + (1− hi,j 17k,lOR)c
17.

6.3.5 Case study: Modeling elevator-first dimension order routing

As an exemplary application, we model elevator-first dimension-order
routing to demonstrate the expressiveness of our approach. For di-
mension-order routing, each pair of two routers within a layer must
span a rectangle with two further routers. Thus, wires between all
neighboring routers must be implemented. The flow is binary: the
flow is 1 on the paths following the routing algorithm and zero on all
other edges. The constraints can be illustrated as follows. The inequal-
ities are provided in Section a.5.4. They require the implementation

6.4 heuristic algorithm 75

of a search algorithm for the next router with a TSV by means of an
MILP, which is rather inefficient.

Connect neighboring routers Topology

Forces wires between
routers within a layer to
enable routing.

For dimension order
routing routers must form
rectangles.

Flow for the routing algorithm Flow is binary

“Extended” dimension
order routing is performed.

1

1 0

0

Packets follow a single path
in deterministic routing.

6.4 heuristic algorithm

The proposed model in form of MILP provides an optimal solution.
However, it is not efficient and therefore hardly provides any solution
for large input sets. Defining a modified MILP model, with higher
performance, is not a promising approach. Instead, we propose an ef-
ficient heuristic to construct approximate solutions. One major issue
with the MILP is that a multitude of variables are optimized simul-
taneously. This is essential to achieve a precise solution but poses a
severe performance limitation. To tackle this, we propose to dissect
the problem and split it up into a set of steps, each of which can be
efficiently optimized. This reduces the optimization potential, but a
fast heuristic can be developed.

The proposed heuristic applies an incremental approach as pro-
posed in Section 5.6.2. We identify the following five steps, for each
of which a graphical representation is given in Figure 41.

1 Components are partitioned into layers (Figure 41a). Since lay-
ers of identical size are stacked, the overall area consumption of the
SoC is determined by its largest layer. Thus, the optimization adds up
the area requirements of components per layer and targets a homo-
geneous distribution. This step appears to be similar to partitioning,
which is known from VLSI (Very Large Scale Integration) design. In
partitioning, units are clustered by their communication, yet here we
optimize area, power and performance. At the end of the first step,
power and performance of components is optimal; the area is only
approximated, but yields similar-sized layers.

2 A floor plan is given per layer for bounding boxes of compo-
nents (Figure 41b). We use rectangular bounding boxes, which is in
line with the tiles of the MILP model. This optimization targets two
objectives: Minimizing the layer area by reducing the sizes of bound-
ing boxes and tightly packaging them, and minimizing the communi-
cation within layers by locating components according to their band-
width (pairs of components with large communication requirements
are located adjacent in layers). This step determines the size of the
layer rather precisely; only the area of 3D communication is missing.

76 system-level optimization

Furthermore, by only optimizing communication within layers, the
complexity of this problem is vastly reduced.

3 The communication between layers is optimized: The number
of TSV arrays connecting layers is calculated (Figure 41c). There are
two adversaries: Many TSV arrays reduce the bandwidth via TSV
arrays, but for each array, the area of its KOZ and router ports are
required. Therefore, an optimum with low link utilization and area is
required. Determining only the TSV array count but not their precise
location, allows for a very efficient solution.4 Up to now, interlayer
and intralayer communication have been optimized separately.

4 The global communication is accounted for: TSV arrays and 3D
routers are placed by adding them to bounding boxes of components
(Figure 41d); this results in bounding boxes, as already shown in the
MILP model (as tiles). This is done using the TSV connection model
and the actual routing algorithm, so that the paths of data are known.
Constrained by the given TSV count and the order of components
in their layer, this is an extensive optimization which accounts for
very detailed network information. At the end of this step the size of
bounding boxes increases and they might overlap.

5 The solution is legalized to accommodate the area of the added
connections.5

In order to make optimization fast, i. e. feasible, step 1 splits the
design in layers before floor planning each layer in step 2 . Deciding
step 3 as late as possible is beneficial for network design, since then
component floor plans can accounted for. This avoids overallocation
of network resources. Steps 3 and 4 are separated to allow for
comparison against standard approaches.

1
2
. . .

n

(a) Component-to-layer
assignment.

1
. . .

2
nξ

(b) Component
floor planning.

t

(c) TSV array
count.

(d) Place 3D
routers.

(e) Legalization.

Figure 41: Visual representation of the steps.

4 The TSV array count is, in short, referred to by TSV count throughout this thesis.
5 Strictly speaking, this step might generate illegal solutions by violating the constraint

that the distance between routers must be below D if connected vertically. However,
this issue is easily fixed by post-processing or by using a slightly reduced D.

6.4 heuristic algorithm 77

6.4.1 Heuristic algorithm

Using the introduced steps, we develop an efficient heuristic. The
solutions proposed per step represent only one possible implementa-
tion. The structure of the resulting heuristic is illustrated in Figure 42
as a flow chart and explained in the following paragraphs.

input

component-to-layer assignement
minimize area, power and performance

component floor planning
minimize area & communication in layers

number of TSV arrays
minimize area & communication between layers

place 3D routers
minimize communication

legalize solution
minimize area

solution

1

2

3

4

5

area, power
& performance

comm. & bandwidth (in layers),
component area

comm. & bandwidth (between layers),
component area

TSV connection model

3D router and
KOZ area model

Figure 42: Flow chart of heuristic algorithm.

1 The heuristic starts with a component-to-layer assignment. An
optimized assignment function α : [n] → [`] is found, which as-
signs components to layers w.r.t. an optimized area, power and per-
formance. We use this objective function, with weights ωC,ωE and
ωP ∈ R:

c(1) = ωCh+ωE
∑
i∈[n]

fE(i,α(i)) −ωP
∑
i∈[n]

fP(i,α(i)) (37)

whereas

h = max
k∈[`]

{ ∑
i∈{j|α(j)=k}

fC(i,α(i))
}

. (38)

This is an integer linear program, of which the inequalities are given
in Section a.7.1. The first step is shown in Figure 42 on top; it takes
technology parameters of components as input and returns an assign-
ment.

2 In a second step, relative positions and bounding boxes are
determined for components in their layer w.r.t. minimized area and
communication. This is called component floor planning. To remain
with the structure of a grid, which is the well-known topological base
of the MILP model, we define an order that describes the relative posi-
tioning of components by assigning them to rows and columns. Each

78 system-level optimization

component gets its own bounding box in the grid, which we display
by assigning a row number and a column number to the component.
The advantages of using the order to describe the positioning of com-
ponents are twofold: First, efficient (polynomial-time) area minimiza-
tion via a linearized LP or an exact semidefinite programming (SDP)
is possible under a given maximum aspect ratio η. Second, it allows
to modify the size of bounding boxes (to add routers and TSVs) while
maintaining the order. The solution can be legalized and the bound-
ing boxes are non-overlapping after adding 3D infrastructure. The LP
and SDP, originally published in [JM 4], are formulated as follows:

The area optimization problem is formulated as follows: Assume
we have a given order of l k or fewer components in l rows and k

columns. Each component has the size ai,j, for certain i ∈ [l] and
j ∈ [k]. ai,j = 0 if there is no component at row i, column j for all
pairs (i, j) ∈ [l]× [k]. The height of rows is denoted by ri ∈ R for all
i ∈ [l]. The width of columns is denoted by cj ∈ R for all j ∈ [k].

ricj > ai,j for all i ∈ [l], j ∈ k. (39)

The objective function is: Minimize the side length of a square that
encloses all bounding boxes.

max

∑
i∈[l]

ri,
∑
j∈[k]

cj

 −→ min (40)

Using LP and linearization: The optimization is conducted subject to

ri > ηcj ∀i ∈ [l], ∀j ∈ [k] (41)

cj > ηri ∀i ∈ [l], ∀j ∈ [k] (42)

ri + cj >
√
ai,jη+

√
ai,j/η ∀i ∈ [l], ∀j ∈ [k] (43)

with a given bounding box aspect ratio limit η ∈ (0, 1). The lineariza-
tion is conducted in Equation 43. The formulation as an LP allows for
an efficient solution.

Using SDP: Variables in SDPs are positive semidefinite matrices.
Here, these are l k variables Xk(i−1)+j. We define them such that the
desired product ricj > ai,j is directly modeled:

We set l k variables Xk(i−1)+j such that

Xk(i−1)+j =

[
ri

√
ai,j

√
ai,j cj

]
� 0, ∀i ∈ [l], ∀j ∈ [k] (44)

These are positive semidefinite matrices; thus each principal minor is
greater or equal to 0:

det
(
Xk(i−1)+j

)
> 0 (45)

⇒ ricj − ai,j > 0 (46)

⇒ ricj > ai,j, ∀i ∈ [l], ∀j ∈ [k] (47)

6.4 heuristic algorithm 79

We formulate it as an SDP. The objective function minimizes the vari-
able x subject to these constraints:

We assign the corresponding area values to each matrix:

2
√
aij 6

〈[
0 1

1 0

]
, Xk(i−1)+j

〉
6 2
√
aij, ∀i ∈ [l],∀j ∈ [k] (48)

For each i ∈ [l], the upper left entry of the matrices Xk(i−1)+j has the
same value for all j ∈ [k] (this models ri):

0 6

〈[
1 0

0 0

]
, Xk(i−1)+1

〉
+

〈[
−1 0

0 0

]
, Xk(i−1)+j

〉
6 0

(49)

For each j ∈ [k], the lower right entry of the matrices Xk(i−1)+j has
the same value for all i ∈ [l] (this models cj):

0 6

〈[
0 0

0 1

]
, Xj

〉
+

〈[
0 0

0 −1

]
, Xk(i−1)+j

〉
6 0 (50)

We model the maximum variable x for the objective function:

0 6 x+
l∑
i=1

〈[
−1 0

0 0

]
, Xk(i−1)+1

〉
(51)

0 6 x+
k∑
j=1

〈[
0 0

0 −1

]
, Xj

〉
(52)

Areas of components are constrained by an aspect ratio η (to maintain
a lower length of a critical path). Note that this aspect ratio is not
violated by the relation between ri and cj. Rather, a component can
find a rectangle inside the bounding box given by ricj. This rectangle
has the size of the component and the length of each one of its edges
is within the aspect ratio η. We formulate for all i ∈ [l] and for all
j ∈ [k]:

√
ηai,j 6

〈[
1 0

0 0

]
, Xk(i−1)+1

〉
(53)

√
ηai,j 6

〈[
0 0

0 1

]
, Xj

〉
(54)

We optimize the assignment of components to rows and columns
by simulated annealing. In general, simulated annealing algorithms
optimize as follows: An initial solution candidate is generated. Start-
ing from there, neighboring candidates are constructed and their costs
are evaluated. If costs decrease, the new solution will be accepted. If
costs are higher, the solution will only be accepted if a random vari-
able allows for it. The probability of accepting a solution with higher
costs than the current (local) minimum depends on an initial “temper-
ature” parameter, which is reduced by a “cooling” percentage param-
eter. The optimization terminates after a given number of iterations.

80 system-level optimization

Regarding the relative placement of components, nξ×nξ rows and
columns will be sufficient for every possible placement, if there are
nξ components layer ξ. As an initial solution, we position compo-
nents with an area-efficient approach. The optimization of row and
column sizes will yield large white space if the size difference be-
tween adjacent components is large and the area requirements alter-
nate. Therefore, we cluster components in rectangles by their sizes
in descending order. Rows (columns) are filled with components, as
long as the summed height (width) of the chip under assumption of
squared component shapes is smaller than the width (height). Other-
wise, a new column (row) is filled. In every iteration of the simulated
annealing, we move a component, selected from a uniform random
distribution, to any other row or column, also selected from a uniform
random distribution. If another component is located there, the com-
ponents will be swapped. After deletion of rows and columns without
components, the aforementioned optimization minimizes the area of
the layer. For this solution candidate, we evaluate the following objec-
tive function, with the weights ωa to minimize area and ωc for com-
munication. The communication between two components i, j is cal-
culated by summing their bandwidth u(i, j) multiplied by their hop
distance ∆(i, j), i. e. their distance in numbers of rows and columns.
We minimize:

c(2) = ωamax
(∑
i∈[n]

ri,
∑
j∈[n]

cj

)
+ωc

(∑
i∈[n]

∑
j∈[n]

u(i, j)∆(i, j)
)

(55)

This second step is shown in Figure 42; it takes intralayer communi-
cation and component area as input and returns bounding boxes.

3 In a third step, the TSV array count connecting adjacent layers
t : [`− 1]→ [n] is determined by optimizing communication between
layers and minimizing area requirements of KOZs and routers. Based
on the router and TSV model as defined in Section 6.2.1, all possible
implementations are modeled by a “TSV graph”, with all bounding
boxes as vertices and all possible (physically implementable) TSV ar-
rays as edges. The subgraphs of nodes located in adjacent layers are
bipartite. An example is shown in Figure 43 for a chip with two lay-
ers. In this example, components 1 and 2 are located in the upper
layer and components 3 to 6 in the lower. It is physically possible
to connect component 1 to all other components in the lower layer;
component 2 can only connect to 5 and 6. The vertical links, which
can be implemented, form a matching in the TSV graph, as shown by
the dashed links in Figure 43. The upper bound for TSV arrays con-
necting two layers is given by the largest maximum matching in these
subgraphs and it is rather low, since it is bounded by the number of
components per layer. Therefore, an optimal solution can be found
efficiently by iterating all numbers of TSVs. The locations of bound-
ing boxes for components are already known. The actual location of
TSVs is unknown and only determined in the next step. Therefore, it

6.4 heuristic algorithm 81

is approximated by dissecting the covered area of bounding boxes in
equal-sized rectangles. The number of rectangles is given by the next

1 2

3

4

5

6

1 2

3 4 5 6

Figure 43: Exemplary chip with corresponding TSV graph, which is bipar-
tite. Selected TSVs are dashed and demonstrate matching property.

3

1

4

2

Figure 44: Approximated places of TSV arrays in green for four bounding
boxes.

larger square number of the number of TSVs (i. e. , for 6 TSV arrays,
9 rectangles are defined, with 3 rows and 3 columns). This retains
the well-known topological grid. TSVs are positioned in the center
of these rectangles, as shown in Figure 44, filling the rectangles ran-
domly. The distance of the center of each component bounding box
to the next TSV array is calculated, in the form of a hop distance, and
multiplied by the communication of the component to all other layers,
both in upward and downward direction. The sum of these weighted
distances is an estimate of the communication costs. We call the esti-
mated communication costs c. The best solution candidate is selected
using the objective function, with weights ωa and ωc:

c(3) = ωa
∑

ξ∈[`−1]

(fKOZ + fR3D)t(ξ) +ωcc −→ min (56)

The third step is shown in Figure 42 in the middle. It takes interlayer
communication and component area as input and returns the number
of TSV arrays.

4 In the fourth step, the position of 3D routers are determined
and TSV arrays are associated with bounding boxes. This increases
the area requirement of bounding boxes. If necessary, routers are
added to connect the routing algorithm, as already described in the
MILP model. Simulated annealing is used to find an optimized net-
work EN. The possible connection candidates are already given in
the “TSV graph” from the previous problem. Since routers are only al-
lowed to connect to a single TSV array per direction, a legal solution
must be a matching in the subgraph of the “TSV graph” with edges

82 system-level optimization

from adjacent layers. The initial solution generates a random match-
ing for every pair of adjacent layers, using a simple greedy algorithm,
with a matching size smaller or equal to the number of TSV arrays as
determined in step three. The neighbor function randomly selects a
pair of layers and includes a new random TSV array from the “TSV
graph”. If an added connection violates the matching, all TSVs, which
connect the routers at the end of the novel connection, are deleted.
If the maximum number of TSVs is violated, another random con-
nection is deleted. Then, a greedy algorithm finds a novel matching,
with a size smaller or equal to the number of TSV arrays. The objec-
tive function minimizes the communication for the given network EN
and the flow of the routing algorithm, with Equation 17. At the end
of this step, a complete network graph is defined. The fourth step
is shown in Figure 42 in the last node; it takes the TSV connection
model as input and returns bounding boxes for TSVs and routers.

5 After adding 3D router area and KOZs, the area of bounding
boxes may be too small or boxes may overlap. In the fifth step, the
solution from step four is legalized while retaining the order of com-
ponents in layers, rows, and columns. The LP or SDP, which is for-
mulated in step two (floor planning of components), is used again.
This step is shown in Figure 42 at the end. It returns an optimized
solution based on the router and TSV area model. With this final step,
a complete network graph and non-overlapping bounding boxes are
defined and the network can be designed. The solution can be further
optimized by determining the exact location of routers, components
and TSV arrays within their bounding boxes. This post-processing is
not discussed in this thesis, since standard approaches from layout
synthesis can be used.

6.5 performance and computational complexity

Component positioning and NoC synthesis contain similar subprob-
lems as layout synthesis, since problems similar to floor planning
and partition must be solved. Layout synthesis is an NP-hard prob-
lem [134]. The solution space is significantly larger for 3D systems: As
reported in [33], the possible arrangements in the solution space for
3D chip floorplanning is increased by factor Nn−1/(n− 1)! with N
components and n layers in comparison to 2D. Thus, system-level op-
timization of A-3D NoCs is naturally NP hard, as well, and (possibly)
has a larger solution space. Standard divide and conquer approaches,
as conducted in layout synthesis, cannot be applied directly due to in-
terdependencies: Positions of components in one layer influence the
positions in other layers. Some constraints, such as non-overlapping
tiles, are individually hard to satisfy.

6.5 performance and computational complexity 83

6.5.1 MILP model

The complexity of the MILP model can be demonstrated by exem-
plary implementation. The model is implemented using MATLAB
R2018a and optimized with IBM CPLEX 12.8.0 [149]. Inequalities and
variables are generated automatically from input sets. With the use of
sparse matrices, millions of inequalities can be stored with less than
16 GB of memory. MATLAB’s internal intlinprog function is too slow
to optimize even small input sets with only a few constraints acti-
vated. CPLEX is able to find a solution candidate in few minutes for
less than 3 layers and 5 components on an Intel i7-6700 CPU running
Windows 10. For larger, realistic sets (with more than 5 components),
the performance of CPLEX is too low, as well. Therefore, efficient
heuristics are necessary.

6.5.2 Heuristic algorithm

We analyze the computational time of the heuristic algorithm for each
step depending on the input and parameters.

1 The calculation time of component-to-layer assignment is dif-
ficult to estimate without experiments, since it is solved using MILP.
Experiments show that the problem is solved in less than a second,
even for larger input sets (cf. Table 4).

2 The component floor planning uses simulated annealing; its
run time is determined by the maximum number of iterations and
the time required to generate solution candidates and assess the cost
function. Calculating an initial solution and the neighbor function is
costs O(m), since a random vector is generated. For the cost function,
the area of each configuration must be minimized. Therefore, an LP
(with linearization) or a SDP is used. Both are polynomial time opti-
mizations. We use an ellipsoid algorithm for an upper bound of the
LP’s computation time, i. e. a worst case approximation. Following
Khachiyan’s approach, solving an LP costs O(n4L), with n variables
and L input bits [150]. A layer with k rows and l columns yields
O(k+ l) variables. L is essentially the bit size of xmax and η, so it is
bounded. For the cost function, the pairwise distance between com-
municating components is calculated, i. e. takes O(kl).

3 To calculate the number of TSVs, we inspect every possible solu-
tion and find the global minimum. The largest maximum matchings
are calculated, which takes O(|EN|n) = O(n3) ([145], Theorem 10.4).
The number of inspected solutions is equal to the largest maximum
matching, which is a constant smaller than nl−1; for each candidate,
a cost function is evaluated by calculating pairwise distances between
components, i. e. O(n2).

4 Placing the 3D routers uses simulated annealing. Initial and
neighboring solutions are generated with a greedy algorithm, which

84 system-level optimization

constructs a matching by iterating all possible edges in the network,
i. e. O(m2). The cost function calculates the routing algorithm for all
edges in EA yielding |EA| 6 n2 iterations. Calculating the routing
function is of similar complexity as breadth-first search in the net-
work, i. e. takes O(m+m2) ([145], Theorem 2.19). Together this yields
O(n2m2).

5 The legalization uses the same LP or SDP as already discussed.
Summing up, the proposed heuristic allows for an efficient solution

in polynomial time, since it is in O(n2m2L).

6.6 results

Both the MILP model and the heuristic algorithm are implemented
using MATLAB. The following results are generated from this imple-
mentation. We use a Core i7-6700 running at 3.4 GHz, Windows 10 op-
erating system, MATLAB R2018a. For optimizing LPs, we use CPLEX
12.8.0 [149]. For optimizing SDPs, we use Mosek 8.1 [151]. Both tools
utilize all 8 logical cores with 8 threads. The evaluation is conducted
using homogeneous 3D SoC examples. Properties of “correct” solu-
tions are known, since homogeneity allows for manual optimization.
Therefore, we demonstrate that the results are correct and as expected
(Section 6.7.2). Later on, we compare our heuristics with state-of-the-
art NoC planning for a heterogeneous 3D SoC to demonstrate area,
power and performance advantages of the proposed heuristic algo-
rithms.

6.6.1 Case study for technology model

The RD length D can be calculated using the formula provided by
technology vendors. We encapsulated this into python modules [JM
14], which are available as open source. As an exemplary case study,
we connect two layers with a 9 bit vertical link. One layer is imple-
mented in a 45 nm commercial digital technology and the other in
a 180 nm commercial mixed-signal node. For a target frequency of
10 MHz, with 20% delay margin left for the remaining circuit, the
length of the RD from 45 nm node to 180 nm node is 0.07 m; in op-
posite direction, it is 0.03 m. This shows the difference for both direc-
tions, for which we use the minimum to determine D. Please note,
that we cannot assess the precision of the models as those are pro-
vided by the vendors.

6.6.2 Comparison to related work

The proposed heuristic algorithm, as it is, cannot be compared to
the related work, since it targets designs not considered previously.
Nonetheless, individual steps are similar and therefore can be com-

6.6 results 85

pared. It is not useful to compare steps 1 and 3 : The first step
is merely a linear optimization as a preparation of the remainder
of the heuristic algorithm. The third step determines the number of
TSVs. The result is highly dependent on the parameters of the cost
function. Therefore, realistic parameters must be found for each set
of technologies. This is not possible here, since the properties of 3D
technology are not completely available to academia. Therefore, the
related works, such as [152], use a fixed ratio between implemented
TSVs and available TSV positions. We compare steps 2 and 4 in
the next sections. The SDP or LP in step 5 is reused from the second
step and therefore is not assessed individually.

6.6.2.1 Step 2 and 5: Placement of components

In the second step of the heuristic algorithm, components are placed.
Since different types of components are integrated into SoCs, the
size of each component may differ even within layers. Traditional
approaches assume identical cores’ sizes and thus, regular 2D mesh
topologies [106]. However, [142] maps quadratic-shaped cores of vary-
ing size in a 2D mesh NoC. The work proposes a MILP and a heuris-
tic approach. The aim is optimizing network performance by mini-
mizing transmission energy. We compare the results of our heuristic
algorithm, step 2 , with the results of [142] using the three bench-
marks provided by [142], namely H.256 decoder mp3 decoder, H.263
encoder mp3 decoder, and mp3 encoder mp3 decoder. Traffic patterns
are taken from benchmarks in [106] and the cores’ area from [142].
The results of area and network performance are given in Table 1. The
area is measured by the area of the complete chip embracing the com-
ponents. Network performance is measured by accumulated link load
(measuring delay) and maximum link load (measuring throughput).
Five data sets are given per benchmark: First, the baseline is given by
[142] for their mesh-based solutions; we do not compare with non-
mesh solutions, since they allow for additional degree of freedom
and therefore provide an unfair baseline. Second, this configuration
is optimized using the proposed SDP. The aspect ratio in the SDP
is set to η = 0.1, so that non-quadratic, rectangular shapes of compo-
nents with that maximum aspect ratio are possible. Thereby we assess
the optimization potential from the additional degree of freedom in
cores’ shapes. Third, the initial solution for the subsequent simulated
annealing is given, which is an area-efficient, communication-ineffi-
cient solution. It shows the optimization potential in terms of area.
Fourth, the proposed simulated annealing is executed 30 times with
15,000 iterations, an initial temperature of 30 and a cooling of 0.98.
The results of the 30 reruns are averaged and the standard deviation
is calculated. We set the weight of the area in the cost function to
zero to optimize communication only. Fifth, we balance the weights
in the cost function and prioritizes neither area nor communication. A

86 system-level optimization

single run of the simulated annealing terminates after approx. 17 min-
utes on a Windows 10 workstation using an Intel i7-7740X at 4.3 GHz
processor. The results are discussed in Section 6.7.1.

6.6.2.2 Step 4: Placement of vertical links (TSV array placement)

There are multiple publications on methods to place vertical links in
a 3D NoC under the assumption of a given TSV count (usually in
the form of a ratio of implemented TSVs). At the time of writing this
thesis, [152] is the most recent work on TSV placement with simulta-
neous application mapping on a 3D mesh NoC. The authors propose
an ILP model and a particle swarm optimization (PSO) algorithm.
Since the mapping is already conducted in step 2 , we only compare
with the TSV placement part of this work. Therefore, we take video
object plane detection (VOPD) and double video object plane detec-
tion (DVOPD) [106] as benchmarks. The other benchmarks from [106]
are smaller; comparison is not useful, because both the PSO and the
proposed heuristic algorithm using a simulated annealing will find
the global minimum in a very small search space. We chose an arbi-
trary but fixed mapping for both benchmarks. We use 20 reruns for
both PSO and simulated annealing and both algorithms have approx-
imately the same computation time budget. The parameters of the
PSO are given by [152] (k1 = 1,k2 = 0.04,k3 = 0.02). The parameters
for the simulated annealing are: initial temperature 30, cooling 0.97,
1,000 iterations. Both [152] and the proposed heuristic algorithm use
the same objective: minimizing bandwidth times communication hop
distance. The results are shown in Table 2 for VOPD and in Table 3
for DVOPD. The proposed heuristic algorithm allows for up to 15%
improved performance.

6.6.3 Small homogeneous 3D SoC

For very small input sets, both MILP model and heuristic algorithm
can generate optimized results. This allows to compare them. We
take the following input sets: We use (homogeneous) 3D SoCs with
` = 2 layers and 5 components. Components require 10 area units (A),
routers per port 3/5 A and KOZs are 2 A large. The performance and
energy consumption of all components and routers is identical. The
maximum length of the RD is set to 5

√
A. We model a fully-adaptive

routing algorithm, i. e. we only require connectivity of the network.
We do not model elevator-first dimension order routing, since this
has a significant negative impact on the optimization performance.
All weights of the cost functions are set to 1. The component com-
munication digraph has bidirectional link with bandwidth 1 between
subsequent components, as shown in Figure 45 for five components.

The result of the optimization using the MILP is shown for 5 com-
ponents in Figure 46. The model comprises 23,277 inequalities and

6.6 results 87

A
r

e
a

[A
]

C
o

m
m

u
n

i
c

a
t

i
o

n
[H

d
M

b
]

Ba
n

d
w

i
d

t
h

[M
b
/s

]

m
e

a
n

s
t

d
r

a
t

i
o

m
e

a
n

s
t

d
r

a
t

i
o

m
e

a
n

s
t

d
r

a
t

i
o

H256decmp3dec

Ba
s
e

l
i
n

e
[1

42
]

11
30

1
—

—
19

85
8

—
—

40
60

—
—

Ba
s
e

l
i
n

e
w

i
t

h
SD

P
10

17
8

—
-9

.9
4%

19
85

8
—

0.
0%

40
60

—
0.

0%

i
n

i
t

i
a

l
s
o

l
u

t
i
o

n
79

02
—

-3
0.

1%
33

70
7

—
+6

9.
7%

79
94

—
+9

6.
9%

SA
c

o
m

m
u

n
i
c

a
t

i
o

n
11

69
9

15
98

+3
.5

2%
20

44
9

40
4

+2
.9

8%
42

65
20

1
+5

.0
5%

SA
b

a
l

a
n

c
e

d
82

44
50

5
-2

7.
1%

21
28

0
62

4
+7

.1
6%

44
52

67
4

+9
.6

6%

H263encmp3dec

Ba
s
e

l
i
n

e
[1

42
]

12
53

5
—

—
25

53
24

—
—

84
88

4
—

—

Ba
s
e

l
i
n

e
w

i
t

h
SD

P
10

17
8

—
-1

8.
8%

25
53

24
—

0.
0%

84
88

4
—

0.
0%

i
n

i
t

i
a

l
s
o

l
u

t
i
o

n
69

93
—

-4
4.

2%
52

55
37

—
+1

06
%

85
24

4
—

+0
.4

2%

SA
c

o
m

m
u

n
i
c

a
t

i
o

n
15

76
2

17
23

-2
5.

7%
24

14
79

15
33

3
-5

.4
2%

73
01

2
14

30
2

-1
4.

0%

SA
b

a
l

a
n

c
e

d
10

47
4

21
48

-1
6.

4%
25

01
87

14
76

3
-2

.0
%

73
16

1
17

49
7

-1
3.

8%

mp3encmp3dec

Ba
s
e

l
i
n

e
[1

42
]

85
68

—
—

17
54

6
—

—
40

85
—

—

Ba
s
e

l
i
n

e
w

i
t

h
SD

P
80

91
—

-5
.5

7%
17

54
6

—
0.

0%
40

85
—

0.
0%

i
n

i
t

i
a

l
s
o

l
u

t
i
o

n
72

81
—

-1
5.

0%
39

17
1

—
+1

23
.3

%
65

60
—

+6
0.

1%

SA
c

o
m

m
u

n
i
c

a
t

i
o

n
10

77
9

14
60

+2
5.

8%
17

34
1

34
2

-1
.1

7%
50

65
90

6
+2

4.
0%

SA
b

a
l

a
n

c
e

d
85

16
79

6
-0

.6
1%

17
57

2
48

7
+0

.1
5%

49
74

90
2

+2
1.

8%

Table 1: Area and performance comparison with benchmarks [142]. The
simulated annealing is executed with 30 reruns, initial temperature 30,
cooling 0.98 and 15,000 iterations. The SDPs allow for an aspect ratio of
up to 0.1.

88 system-level optimization

TSV count Network Performance [Hd Mb] Difference

PSO Proposed

mean std mean std

1 12229 0 12229 0 0%

2 10591 581 9005 0 15%

3 8894 102 8659 0 3%

4 9013 364 8595 0 5%

5 8725 155 8595 0 1%

6 8723 148 8595 0 1%

7 8595 0 8595 0 0%

8 8595 0 8595 0 0%

Average Improvement 3.125%

Table 2: VOPD benchmarks [152] network performance comparison (hop
distance [HD] times bandwidth [Mb]) in a 4×2×2 NoC. 20 reruns for PSO
and simulated annealing with same computational time budget.

TSV count Network Performance [Hd Mb] Difference

PSO Proposed

mean std mean std

1 43330 0 43330 0 0%

2 38274 163 37954 395 1%

3 34636 0 33854 0 2%

4 34217 674 32382 0 5%

5 33249 555 31014 0 7%

6 32351 699 30168 0 7%

7 31920 575 29916 0 6%

8 30767 679 29744 0 3%

9 30767 679 29744 0 3%

10 30318 453 29712 0 2%

11 30235 409 29712 0 2%

12 29764 69 29712 0 0%

13 29996 340 29712 0 1%

14 29805 208 29712 0 0%

15 29712 0 29712 0 0%

16 29712 0 29712 0 0%

Average Improvement 2.563%

Table 3: DVOPD benchmarks [152] network performance comparison
(bandwidth times hop distance) in a 4×4×2 NoC. 20 reruns for PSO and
simulated annealing with same computational time budget.

6.6 results 89

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
1

1

1

1

1

1

1

1

Figure 45: Component communication digraph for small input.

18,121 variables, and takes 7.95 s to set up and requires 1.3 GB of
memory. By using sparse matrices, the memory consumption only
changes for larger problems with more than 100,000 inequalities. The
optimization is terminated after 10 minutes. It takes 94 s to find an
initial solution with a gap of 25.93%; after 599.34 s a second solution
is found and the gap is reduced to 25.00%. The area of the upper layer
is 57.43 A and of the lower layer 29.35 A.

Figure 46: Result for 5 components using the MILP to optimize. Bounding
boxes are shown in gray and TSV arrays in red. Skewed TSVs use RD.

Figure 47: Result for 5 components
using the heuristic algorithm with
LP area optimization. Bounding
boxes are shown in gray and TSV
arrays in red. Skewed TSVs use RD.

Figure 48: Result for 5 components
using the heuristic algorithm with
SDP area optimization. Bounding
boxes are shown in gray and TSV
arrays in red. Skewed TSVs use RD.

An exemplary result for the input using 5 components is shown
in Figure 47 (optimization with linearized LP) and Figure 48 (opti-
mization with SDP). To provide comparability with the results of the
MILP model, we use the linearized LP. The SDP reduces the linar-
ization error. The simulated annealing for component-floor planning
is executed with an initial temperature of 20, 120 iterations and 0.97

90 system-level optimization

Part of heuristic: Homogeneous 3D SoC

execution time 5 components 40 components 80 components

2 layers 4 layers 4 layers

LP SDP LP SDP LP SDP

1 comp. to layer assignm. 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s

2 layer floor planning 20.2 s 146 s 194 s 375 s 609 s 802 s

3 number of TSV arrays 0.1 s 0.1 s 0.2 s 0.2 s 0.2 s 0.2 s

4 placement of TSV arrays 3.9 s 3.8 s 308 s 298 s 1246 s 1300 s

5 legalization 0.2 s 0.2 s 0.3 s 0.5 s 0.3 s 0.5 s

complete 24.7 s 152 s 503 s 675 s 1856 s 2104 s

Table 4: Execution time of heuristic algorithm for exemplary input sets.

cooling per iteration; the placement of routers uses an initial tem-
perature of 100, and 50 iterations and 0.97 cooling per iteration. All
weights of the cost functions are set to 1. As shown in Table 4, the
heuristic algorithm using an LP requires approximately 24 s to find a
solution; when using the SDP, 152.4 s elapse until termination. In both
cases, 1.3 GB of memory are used. The area of the results are given
in Table 5. For the LP, the size of the upper layer is 43.0 A and of the
lower layer 25.7 A; for the SDP, the area requirements are smaller with
36.8 A and 23.0 A, respectively.

6.6.4 Large homogeneous 3D SoC

The proposed heuristic is executed for a large input instance with a
homogeneous 3D SoC. The homogeneity allows to assess the solution
from a practical perspective, since properties of optimal solutions are
known. We use a SoC with ` = 4 identical layers and a fully connected
component graph EA with 40 and 80 components. The bandwidth
requirement is 1 between all components. Components require 10 A,
routers 3/5 A per port and KOZs are 2 A large. The performance and
energy consumption are identical for all components and routers. The
RD can be 5

√
A long. The simulated annealing of component-floor

planning is executed with an initial temperature of 20, 120 iterations
and 0.97 cooling per iteration; the placement of routers uses an initial
temperature of 100, 50 iterations and 0.97 cooling per iteration. All
weights of all cost functions are set to 1. Again, both LP and SDP
formulation are used.

One exemplary result for the optimization of a SoC with 80 compo-
nents, using LP for optimization, is shown in Figure 49a. The corre-
sponding exemplary result for the SDP is shown in Figure 49b. For an
input set with 40 components, the heuristic algorithm terminates af-
ter 503 s using the LP, and after 675 s using the SDP. For an input set
with 80 components, the heuristic algorithm terminates after 1856 s
using the LP, and after 2103 s using the SDP. The execution times are

6.6 results 91

(a) Result from linearized LP. (b) Result from SDP.

Figure 49: Result for homogeneous 3D SoC with 80 components and with
fully-connected component communication graph using linearized LP and
SDP. Bounding boxes are shown in gray and TSV arrays in red. Skewed
TSVs use RD.

Area of homogeneous SoC [A]

5 components 40 components 80 components

LP SDP DIFF LP SDP DIFF LP SDP DIFF

Layer 1 43.0 36.8 16.8% 211 178 18.5% 364 301 20.9%

Layer 2 25.7 23.0 19.6% 222 180 23.3% 379 313 21.1%

Layer 3 — — — 214 183 16.9% 378 313 20.8%

Layer 4 — — — 185 154 27.6% 316 261 21.1%

Average 18.2% 21.6% 21.1%

Table 5: Area comparison LP and SDP.

shown in detail in Table 4. The average hop distance in the network
with 40 components is 3.19 (LP), and 3.29 (SDP). In the example with
80 components, it is 3.76 (LP) and 4.71 (SDP). The area of the 3D SoC
with 40 components is 214 A for the LP, and 183 A for the SDP. The
area of the 3D SoC with 80 components is 379 A, for the LP, and 313 A
for the SDP. The detailed area results are shown in Table 5. The input
set with 80 components requires approximately 1.2 GB of memory.
Note, that the implementation is not optimized for memory.

6.6.5 3D VSoC case study

We use the proposed heuristic algorithm optimizing a heterogeneous
3D SoC, which follows a typical 3D VSoC application. The SoC con-
sists of two layers: There is a mixed-signal layer on top for analog-
digital conversion of image data from a sensor. (The analog sensor
layer is not optimized in this example.) Furthermore, there is a digi-

92 system-level optimization

tal layer, for digital data processing. The chip implements 18 compo-
nents, 9 of which are analog-digital converters (ADCs), that can only
be implemented in the mixed-signal layer, and 9 processors, that can
be implemented in both layers, but are larger and perform less in
the mixed-signal layer than in the digital layer (100 and 130 A). The
ADCs are smaller than the processors in the digital layer with 25 A.
Each ADC sends data to one processor. The processors send data
among each other, i. e. a fully connected component subgraph. We do
not consider energy and performance in this example and set it to
the same value in each layer for each component. This is reasonable,
since the LP in the first step must not be evaluated due to its reduced
complexity.

The traditional design for this chip is shown in Figure 50a. The
ADCs are located in a 3×3 grid in the mixed-signal layer; the proces-
sors are located in a 3×3 grid in the digital layer. Since traditional
approaches do not use a RD and rely on same sized components, the
grids in both layers are similar and routers are located at the same
positions. Please note the white space in the mixed-signal layer and
the dense packaging in the digital layer.

The design, as a result of the proposed heuristic algorithm, with 0.1
maximum aspect ratio, 500 iterations, a cooling of 0.97 and an initial
temperature of 30 in the simulated annealing is shown in Figure 50b.
Three processors are located in the mixed-signal layer to save overall
implementation costs. Fewer TSV arrays between routers are imple-
mented than in the traditional approach. The run time of the example
is 93 s.

(a) Conventional result. (b) Result from heuristic.

Figure 50: Design of a heterogeneous 3D SoC with 9 ADCs (yellow) in
a mixed-signal layer (on top) and 9 processors (gray) with a digital layer
(on bottom). Bounding boxes are shown in gray and TSV arrays in red.
Skewed TSVs use RD.

6.7 discussion 93

6.7 discussion

6.7.1 Comparison to related work

6.7.1.1 Step 2 and 5: Placement of components

The placement of different sized components in each layer is com-
pared to [142] in Table 1. Applying the SDP, which offers further opti-
mization potential of area by non-quadratic component areas, shows
a reduced area of between 5.57% and 18.8%. Communication is not
changed, since the configuration of components is unchanged.

The initial solution for the simulated annealing only optimizes area
without considering communication. This shows an area optimiza-
tion potential between 15.0% and 44.2%. This is the magnitude by
which area optimization is possible for each individual benchmark.
Please note, that communication properties are worse, as expected,
by an increase of up to 123.3%.

The proposed simulated annealing begins with this initial solu-
tion and is able to restore the good properties of the communication
as given by the baseline: The communication is only 2.98% worse
and the maximum link load 5.05% worse on average for the H.256

decoder mp3 decoder. Communication and link load is even better
than the baseline on average for the H.263 encoder mp3 decoder, by
5.42% and 14.0% respectively, which is the result of different cost
functions between our approach and [142]. In the case of the mp3

decoder mp3 encoder, communication is slightly improved by 1.17%,
while the maximum link load is worse by 24%. These three bench-
marks demonstrate that the proposed heuristic algorithm is able to
optimize network performance even though it is given a very bad ini-
tial solution (in terms of communication/link load). Therefore, it is
reasonable to use an area-optimized inital solution.

Both area and communication are optimized in a realistic scenario.
The results for this are shown in the last rows of Table 1 by us-
ing a balanced cost function, in which the weights for area and net-
work performance are set such that both of them participate approx-
imately equally to the overall costs. The optimized H.256 decoder

mp3 decoder has a area reduction of 27.1%, while the communication
and link load are worse than the baseline on average between 7.16%
and 9.66%. This shows that large area reductions will be possible for
benchmarks with comparable communication properties. Optimiza-
tion of the H.263 encoder mp3 decoder reduces area by 16.4%, the
accumulated network load is better by 2% and the maximum link
load is better by 13.8% on average. This is a very promising result:
The heuristic algorithm finds a better solution than state-of-the-art.
The result for the mp3 decoder mp3 encoder shows a reduced area
of 0.61%, a communication reduction by 0.15% and a maximum link

94 system-level optimization

load that is 21.8% worse, on average. In general, better results can be
achieved by a longer optimization time.

In summary, the proposed heuristic algorithm allows for up to
16.4% reduced area with simultaneous improvements in network per-
formance over state-of-the-art. In general, up to 44.2% area reduction
is possible, while the communication properties hardly improve. The
difference between the second and the third benchmark shows that
precise adjustment of parameters of the heuristic algorithm is neces-
sary. Furthermore, the quality of the results has increased when larger
than 17 minutes optimization time was used.

6.7.1.2 Step 4: Placement of vertical links

The placement of vertical links is compared to [152]. The results are
shown in Table 2 for the VOPD benchmark and in Table 3 for the
DVOPD benchmark. In the case of the VOPD benchmark, the pro-
posed simulated annealing finds better solutions than the PSO [152]
with up to 15% better communication (measured in bandwidth times
hop distance). Also, the SA is more efficient: Within the same time
budget, it always finds the global optimum in every rerun. This is
shown by a standard deviation of 0 and by means of ILP formulation.
For a TSV count of 2 – 6, the PSO does not find the global minimum
and therefore yields worse communication. We achieve an average
improvement of 3.125% for the VOPD benchmark. The results for the
DVOPD benchmark demonstrate the efficiency of the proposed simu-
lated annealing, as well. It converges to the global optimum for every
TSV count except 2. This allows for up to 7% better communication
costs and 2.56% average improvement.

6.7.2 Validity and quality of the results

It is not trivial to assess the validity and the quality of the results
of the heuristic algorithm, since the calculation of an optimal solu-
tion (using the MILP model) is impossible. Furthermore, the scope
of this optimization is orthogonal to all existing approaches; thus,
in comparison to existing benchmarks is not possible. Nonetheless,
evaluation is possible using two scenarios: First, the MILP model can
calculate solutions for very small input sets, which can be compared
to the results of the heuristic for the same input set. Second, input
scenarios can be used, for which properties of good solutions are
already known. Therefore, we use a homogeneous 3D SoC with a
fully-connected communication graph between all components.

6.7.2.1 Small homogeneous 3D SoC

We evaluate two small input sets to compare the results of the MILP
model optimization and the proposed heuristic. In terms of perfor-

6.7 discussion 95

mance, the heuristic shows a clear advantage: To generate a first solu-
tion candidate for a homogeneous 3D SoC with two layers and 5 com-
ponents, CPLEX requires a little over 3 minutes, while the heuristic
terminates after 25 s (LP) or 152 s (SDP). Considering chip area, the
heuristic algorithm outperforms the MILP for similar optimization
times: The upper layer is 34% (LP) or 56% (SDP) smaller and the lower
layer is 14% (LP) or 28% (SDP) smaller than the result from the MILP
model. Both MILP model and the heuristic algorithm with the LP use
the same linearization and can be directly compared. The better opti-
mization capabilities of the SDP are demonstrated. Regarding power
and (component) performance, the results are equivalent since homo-
geneous 3D SoCs are used and no further assessment is needed here.
Considering network performance, the result of the MILP is clearly
superior: The components are strung together like a necklace, which
directly represents the properties of the application graph. Thus, the
average hop distance of packets is 2. In the result from the heuris-
tic, the average hop distance is 2.5, i. e. a 25% worse result. Actually,
the proposed heuristic algorithm can provide results with a hop dis-
tance as low as the MILP model. However, these are purely the result
of chance, since the heuristic algorithm considers interlayer and in-
tralayer communication separately. Therefore, solutions with larger
average hop distances are Pareto-optimal for the heuristic algorithm.
In summary, results obtained with the heuristic algorithm are supe-
rior in terms of area, since non-linearized, non-approximated optimi-
zation is possible. The results are inferior in terms of network traffic,
since communication spanning multiple layers is not considered.

6.7.2.2 Large homogeneous 3D SoC

Two exemplary results for a homogeneous 3D SoC with 4 layers and
80 components are shown in Figure 49a using the LP and in Fig-
ure 49b using the SDP. The component layer assignment assigns 20
components to each layer, so one of the Pareto-optimal solutions is se-
lected (each solution with 20 components per layer is Pareto-optimal).
As expected, the number of TSV arrays is identical between all layers;
it is 16 in the current solutions. The assignment of components and
routers to rows and columns also returns the expected result with
5×4-NoCs in all layers. One would expect that the positions of TSV
arrays are similar between all layers. In this homogeneous 3D SoC, we
set the length of RD in all layers to 5

√
A. Therefore, a hop distance

between 2 and 3 routers can be spanned by the RD to TSV arrays.
Since the component communication graph is fully connected and
all edge weights are identical, every connection scheme within this
distance is Pareto-optimal. This is illustrated in Figure 51 for four
routers in two layers and XYZ routing. The distance for the RD is
large enough that TSV arrays can potentially be crossed. Both shown
configurations have the same link utilization. Therefore, the solutions

96 system-level optimization

Conventional Proposed Difference

Area 3712 A 2676 A -28%

Whitespace 663 A 110 A -84%

Communication 1890 Mb
√

A/s 2810 Mb
√

A/s +49%

Maximum link load 100 Mb/s 160 Mb/s +60%

Table 6: Comparison of traditional and proposed NoC planning for a het-
erogenenous 3D SoC, with one mixed-signal and one digital layer and
with 18 components, 9 ADCs and 9 processors. Parameters: initial tem-
perature 30, cooling 0.98 and 500 iterations. The aspect ratio of bounding
boxes is set to a maximum of η = 0.1.

are Pareto-optimal and crossed TSVs can be found in solutions, as
well. From a practical point of view, these crossings can be deleted
in post-processing or used to merge two individual TSV arrays into
a single one, placed in the middle, with less area overhead for KOZs.
In an optimal solution, the area of all layers is identical. Since solely
downward TSV connections have KOZs, the bottom layer is smaller.
(The KOZs are not accounted for in the component-to-layer assign-
ment.) The area of individual layers is given in Table 5. As expected,
the lower layer is approximately 18% smaller than the average of the
other layers for both LP and SDP of the current results. To summa-
rize, the heuristic algorithm is validated for a homogeneous 3D SoC,
in which optimal results are known.

6

4 4

6

6

4 4

6

≡
load

Figure 51: Two identical solutions in terms of link utilization, for fully-
connected component communication graph and sufficient RD length for
TSV arrays. Edge weight is the link load.

6.7.3 3D VSoC case study

The comparison for the heterogeneous yields the expected results
as shown in Table 6: We are able to achieve an area reduction of
28% by more efficient packaging and 83% reductions in white space.
The heuristic algorithm does not consider inter-layer communication.
Thus, both communication and maximum link load are both worse
by 49% and 60%, respectively. Please note, that this does not necessar-
ily limit the system performance as long as the maximum link load is
below the throughput capabilities of the corresponding link.

6.7 discussion 97

6.7.4 Performance of the heuristic algorithm

The individual execution times per part of the heuristic algorithm
are shown in Table 4. The results show that the MILP for layer-to-
component assignment is efficient and participates only at a fraction
of the overall computation time. The layer floor planning requires
3.1× more time for a doubled input size using the LP. This is not a
result of a larger input size to the LP for area minimization, since the
legalization in the last step does not suffer from a larger input size
and the optimization is identical. This demonstrates that the worst
case approximation of O(n4) vastly overestimates the execution time.
The increase of computation time is rather a result of calculating the
cost function. This matches the theoretical findings, since the com-
plexity scales quadratically with the number of components. Using
the SDP is more efficient for larger input sets in comparison to the
LP; for small sets, the SDP has a high overhead. Iterating all possible
solutions for the TSV count is a reasonable choice, since the increase
of computation time was not measurable for the given precision. The
placement of TSV arrays increases its computation time by a factor of
4 for a double-sized input. This also matches the theoretical findings,
since the cost calculation scales quadratically. The legalization scales
very well, as already discussed.

6.7.5 Lost optimization potential

In general, it is impossible to precisely determine the lost optimiza-
tion potential using the proposed heuristic algorithm, since it is im-
possible to calculate an exact solution efficiently. Nonetheless, our
results clearly highlight the potential, which is lost by the approxima-
tion of the heuristic. During component-to-layer assignment, only the
component area is considered, since the count of TSV arrays is still un-
known. This clearly influences the area of the layer: For the input set
with 80 components, the bottom layer is 16% smaller than the average
of the other layers. During the determination of the TSV count and
the component floor planning, interlayer and intralayer communica-
tion is considered separately. As demonstrated in the example with
5 components, the result of the MILP model has up to 25% lower av-
erage hop distance for packets. The quality of results of the heuristic
algorithm varies a lot and the results are rather often stuck in local
minima. Further fine-tuning of algorithmic parameters is required.

One can either use SDP or LP to optimize the area of layers. Us-
ing the LP provides comparability to the MILP model but is expected
to have worse results, since the LP is linearized with an approxima-

98 system-level optimization

tion error while the SDP does not rely on an approximation.6 One
exemplary result for a homogeneous 3D SoC with 80 components is
shown in Figure 49a using the linearized LP and in Figure 49b us-
ing the SDP. The average hop distance of packets for both solutions
is similar (4.71 and 4.78). The area of both chips should be similar,
as well, with a linearization error of approximately 12% [147]. We can
validate this for our input examples, as shown in the area comparison
of results from LP and SD in Table 5; on average, the SDP performs
20.3% better for our benchmarks. In terms of computational speed,
the LP offers up to 6× higher performance than the SDP as shown
in Table 4. Only during component floor planning there is an exten-
sive use of the LP or SDP. For 80 components, the computation time
for this part of the heuristic algorithm is approximately 40% higher,
which also has a large effect on the complete execution time. In sum-
mary, the LP has higher speed but the SDP produces better results,
as expected. The linearization error of the LP results in white spaces
of approximately 20% more than in solutions from the SDP for our
benchmarks. Competing approaches in the field of placement such
as [138] report between 5% and 20% white space, depending on the
benchmarks.

6.7.6 Combining MILP and heuristic

In general, it is possible to use the result of the heuristic as an initial
solution for the MILP model. This potentially increases optimization
time and further increases the quality of results. To demonstrate, we
apply this principle to the small SoC with 5 components. We com-
pare results using solely the MILP, running 10 minutes, and using
the heuristic for an initial solution and then applying the MILP, in
which the heuristic algorithm requires 24 s and the MILP executes
further 9.5 minutes. The MILP produces a gap of 25%, while the dual
approach reduces the gap to 18.54% in the same computation time.
The initial solution improves the optimization performance. This ap-
proach does not help with the larger input sets. The MILP is not able
to improve the solution quality even after one week.

6.7.7 Post-processing

The provided solution requires further post-processing. For actual
placement of gates in the provided bounding boxes, standard ap-
proaches exist. To place individual TSVs in the bounding boxes, meth-
ods as introduced in the related work can be used; thus, this issue is
solved, as well. The placement of routers in the bounding boxes can

6 The SDP is optimal and does not yield an error, for instance from linearization.
However, it will yield solutions with white space if the configuration of components
is inefficient and does not allow for tight packaging.

6.8 conclusion 99

also be optimized. For instance, it is useful to place routers at the
edges of the network in the inner sides of the bounding boxes to
reduce the lengths of links. The complexity of this optimization prob-
lem is rather low and can either be done manually or with standard
methods by pin-placing the blocks [134]. Please note, that we are not
discussing post-processing as part of this work, since solutions ex-
ist for these problems. Finally, the discussed Pareto-optimal solutions
should be eliminated, which is possible using a trivial algorithm.

6.8 conclusion

We describe the system-level optimization of NoC targeting hetero-
geneous 3D SoCs for the first time. The problem is also solved by
means of modeling and a heuristic using a decomposition of the
problem in individual, solvable parts: The MILP model provides a
precise solution based on a well-reasoned technology model. Since
solutions can not be found efficiently with this approach, we further
provide an efficient heuristic. With this heuristic, it is possible to find
an optimized solution for large input sets of 80 components in ap-
proximately 35 minutes. We compare different optimization methods
within the heuristic and are able to remove 20% white spaces from the
design. We have proven the validity of our results with input sets, for
which properties of optimal solution are well-known and can high-
light limitations of the heuristic algorithm, such as the estimation
of inter-layer communication, as well as discuss Pareto-optimal so-
lutions. The decomposition allows for using existing approaches to
solve these. We find that our solution is better than state-of-the-art in
terms of area, because we use an SDP with more degrees of freedom
in placing and forming components. Please note, that better solutions
in terms of communication exist, which can be used instead of the
proposed approach. For TSV placement, we achieve up to 15% better
communication. Furthermore, our approach converges faster. We also
show that algorithms are required for further post-processing of the
solution.

7
T O O L S A N D M E T H O D S F O R S I M U L AT I O N

As highlighted multiple times throughout this thesis, the design space
of 3D NoCs for heterogeneous 3D SoCs consists of system-level de-
cisions and (micro-)architectural features (cf. Section 5.6). In the pre-
vious chapter, we introduced methods to optimize system-level de-
cisions. We chose an analytical approach, for which a mathematical
model is defined and optimized. We will focus on the optimization
of individual features for the remainder of this thesis: We will pro-
pose optimizations of buffer size and buffer distribution in routers
in Chapter 8 and we will contribute optimized co-designs of routing
algorithms and router architectures in Chapter 9. The design space ex-
ploration for individual features is best done using simulations (and
subsequent prototyping). This is due to the fact that fewer options are
reasonable, and thus less effort is required to assess possible designs.
Further, simulations are able to model all dynamic effects of the sys-
tems under test. In this chapter, we contribute the whole set of tools
and methods for simulation-driven design space exploration of A-3D
NoCs.

There are two popular NoC simulators, namely Noxim [122] and
Booksim 2.0 [121] (cf. Section 4.9.4). Both software are targeting con-
ventional NoCs, which are not implemented in a technology-hetero-
geneous setting. This, however, requires a novel approach, due to the
following special challenges from heterogeneity:

– Consideration of technology constants: It is not sufficient only
to account for architectural characteristics. Rather, the effects
of disparate technologies require consideration of technology
constants in simulations. Examples are discussed in Section 5.4
(1., 2., 4. and 5.). Regarding simulations, important ones are:
Clock speeds of routers differ within a single chip, thus the sim-
ulation must support non-purely synchronous communication.
The area footprint of routers and components varies, thus the
simulation must cope with irregular network topologies.

– Benchmarks and traffic generation: Benchmark traffic patterns
for heterogeneous 3D SoCs have more complex properties, since
these chips typically combine sensing and processing, as intro-
duced in Section 5.4 (6. and 7.). Therefore, the simulation must
support application models with more sophisticated capabili-
ties than related tools.

– Analysis of interwoven design metrics: There is mutual influ-
ence between different evaluation metrics, as introduced in Sec-
tion 5.6 (Definition 5.5). Therefore, several metrics must be ac-

101

102 tools and methods for simulation

Models → Tools → Processes → Analysis

Definition of
design space
that can be
simulated.

Implementation
of NoC
simulator in
this design
space.

Definition of
tool flow using
the simulator.

Evaluation of
results
generated
during
application of
tool flow.

Figure 52: Models, tools, processes and analysis for design space explo-
ration using simulations.

counted for simultaneously during evaluation of designs. Sim-
ple analysis of traditional simulation results is not sufficient.
Considering buffer depths (Chapter 8) as an example: In gen-
eral, reduced buffer depths increase the network latency espe-
cially for high loads. However, reduced buffer depths will vastly
decrease the chip’s costs, especially if the memory area is very
expensive in certain chip layers. Therefore, area must be con-
sidered as an evaluation metric, as well, which is (naturally)
not the result of a simulation. Therefore, we advocate methods,
which embed simulations into a process considering results of
prototyping, as well.

To tackle the aforementioned challenges, we do not only introduce a
novel NoC simulator; Much more, we propose models, tools, processes
and analysis, which cover all aspects of tools and processes for design
space exploration as shown in Figure 52. We structure this chapter as
follows:

– Models: First, we define simulation models in Section 7.1. The
model serves as a basis for the implementation of tools, pro-
cesses and analysis. Therefore, a precise model definition clearly
shows properties and limitations of the remainder. Therefore,
the influence of technological (i. e. in terms of routers: architec-
tural) constants, as well as application constants, must be cov-
ered, and the application must be modeled.

– Tools: Second, we describe the implementation of the simula-
tion models in a toolbox in Section 7.2. The tools also comprise
the NoC simulator, which is configurable for design space ex-
ploration.

– Processes: Third, we explain the tool flow using the tools in
Section 7.3. This facilitates design space exploration.

– Analysis: Fourth, the results of the simulations are evaluated
using the tool flow, as explained in Section 7.4.

The four elements together yield integrated tools and methods for de-
sign space exploration. We conclude this chapter with the presenta-
tion of results (Section 7.5), which focus on properties of simulations
using the proposed design space exploration. The whole chapter is
based on peer-reviewed articles [JM 2, JM 5, JM 6, JM 10, JM 12].

7.1 models 103

7.1 models

To fulfill the special characteristics of A-3D NoCs, novel simulation
models are defined. As published in [JM 5], the models must be ...

... accurate to describe all system parameters.

... precise to measure each design metric.

... adjustable to cover every possible use case.

... versatile to adapt to many possible architectures.
As proposed in [JM 5], this is achieved by the following approach:

– Decomposition of the model into functional components that rep-
resent different parts of the system. This allows identifying pa-
rameters influencing and precisely determine their location of
effect.

– Modeling components on the most abstract level as possible. This
has a positive influence on the simulation speed. Furthermore,
well-defined abstraction isolates important design parameters
of the component.

– For different degrees of accuracy, multiple levels of abstraction
must be covered by the model.

– Definition of interfaces to encapsulate the interaction between
components. These interfaces include the relevant data, which
are passed between components. They may include more data
than required for an actual hardware implementation to enable
efficient modeling.

– Definition of parameter sets, which encapsulate parameters influ-
encing, as well as providing sufficient flexibility per component.
This allows for rapid prototyping of different technologies, ar-
chitectures, and design features.

The simulation model for A-3D NoCs comprises two parts, namely,
application model and hardware model, as shown in Figure 53. The
application model generates network traffic. It is modeled on transac-
tion level. The hardware model consists of processing elements, net-
work interfaces, routers, and links, i. e. all parts of a NoC, which are
all modeled on cycle-accurate abstraction level. The models allows
measuring network performance and energy consumption. Parame-
ter sets allow setting properties of the hardware models. Their defini-
tion is delicate, since it sets boundaries to the expressiveness of the
model: All relevant use cases and possible architectures must be ac-
counted for. The interfaces, which connect components in the model,
are shown in Figure 53, as well: Data are transmitted between tasks in
the application model. These application data are converted to pack-
ets for injection into the network in the hardware model. Packets split
up into flits, since routers implement flit based transmission. We pro-
vide a detailed definition of interfaces in Section 7.1.3.

104 tools and methods for simulation

Model

Processing element

Network interface

Router

Link

Packets

Flits

Flits

Task

Hardware modelApplication model

A
p
p
lic
a
t
io
n
d
a
t
a

cycle-accurate
level

transaction-level
model

Figure 53: Simulation model for A-3D NoCs.

7.1.1 Application model

The application model must cover all possible use cases of heteroge-
neous 3D SoCs, which typically combine sensing and processing in
a single chip. Further, it must be both abstract and accurate. There
are three unique properties: First, the model includes timing of data
processing. Processing times vary significantly depending on technol-
ogy, data and component type. As an instance for the influence of
component type, analog digital conversion has different properties
than complex (digital) data processing. These can be found in het-
erogeneous 3D SoCs because these can efficiently combine sensing
and processing. Second, there are dynamic effects of varying input
data from sensors. For the sake of abstraction, the expected behav-
ior for sets of inputs is modeled, rather than the actual control and
data flows per input. thus, statistical properties of control and data
flow are relevant. Third, the dynamic energy consumption of links
and routers, which depends on the properties of transmitted data,
is calculated. Again, we use statistical modeling: Data are classified
by similar statistical properties and annotated with these properties
instead of modeling each data individually.

In general, Petri nets are one possible model of applications, with
well-known properties. In these nets, data are represented as tokens
and are passed between places via transitions. Conventional Petri nets
are not sufficient here, since the three aforementioned properties are
not covered. Therefore, we extend the model as follows:

1. Timing: Places have a delay, which models calculation times
within the application. Places must be invalid for a time period
after token consumption. We use the concept of retention time on
places [153].

2. Statistical communication selection: Tokens are transmitted via
enabled transitions, of which a random one is selected. This
models applications with non-deterministic behavior originat-

7.1 models 105

p1 : [4,7]
p(·) = 1

p(·) = p̂
p2 : [2,3]

p(·) = 1− p̂ p(·) = 1

p(·) = 1

Figure 54: Colored stochastic Petri net with retention time for places [JM
5]. Please note that not only the color but also the form of the tokens is
changed for the sake of accessibility.

ing from input data, e.g. sensing different environments influ-
ences the control flow. We use statistical Petri nets [154].

3. Annotation with data: Tokens must be annotated with data
classes to compute the energy consumption of links and routers.
The energy consumption depends on the statistical properties of
data and the used coding method (since these influence the data
properties, such as the bit self-switching activity [155]). Here,
we colorize data transmitted in the network using colored Petri
nets. Each color represents one data type; we denote colors by
σ ∈ C.

For the sake of brevity, we kindly refer to Section b.1 for a detailed
definition of the model, which was originally published in [JM 5]. A
small example of such a Petri net is shown in Figure 54, which gives
an illustrative overview of the model. There are two places in the
model, which are depicted as blue circles. The retention time is given
for both places; place p1 has a retention time between 4 and 7 s and
place p2 between 2 and 3 s. Both places hold a different amount of
tokens. The tokens are of varying type i. e. color, which is illustrated
by red rectangles and purple circles. Please note that not only the
color but also the form of the tokens is changed in the figure for the
sake of accessibility. Transitions are shown as gray rectangles, which
is a usual depiction. The probability to transmit tokens from place
p1 back to place p1 is p̂.1 The probability to transmit tokens from
place p1 back to place p2 is 1− p̂. Tokens from place p2 are always
transmitted to place p1 (i. e. p(·) = 1).

The applicability of the model is demonstrated in Section 7.5.6, in
which it is used to model a typical VSoC example.

7.1.2 Hardware model and parameter sets

The hardware model is given by all basic building blocks, the com-
ponents, namely PEs, NIs, routers and links, as shown in Figure 53.
Their role within the model, their functionality and their parameter
sets are introduced here. The latter define the architectural properties
and enable rapid prototyping.

1 Transmission from a task to itself does not make sense for actual applications, but
can be modeled.

106 tools and methods for simulation

routing /
selection

VC allocation

arbitration

crossbar
in out

..
.

..
.

for each port:

depth d
VCs v

delay ∆

Figure 55: Router model with data path, control path and parameter set.

Processing Elements (PEs)

definition : The PE model is an abstract representation of any type
of hardware with focus on traffic generation. PEs typically represent
sensors, actors, processors, memory and hardware accelerators.
function : PEs inject traffic into the network, as application tasks
are mapped onto PEs. The model comprises a static mapping of tasks
to PEs; dynamic remapping is not modeled, since dynamic properties
can be defined using the stochastic property of the application model.
parameter sets : The number of PEs o is adjusted by defining
their set [o]. The mapping function M : P → [o] maps places in the
application to PEs. Places are in the set P, as introduced in Section b.1.

Network Interface (NI)

definition : The NI serializes packet streams into packets, consist-
ing of flits, and vice versa. There is one NI per PE.
function : NIs are modeled as message queues (with infinite depth).
Further, NIs realize the TLM interconnect between application model
and hardware model in the simulation.
parameter sets : The NI divides the payload size of a packet into
flits using the link bit width b ∈ N. It adds a header flit of bit size
h ∈ N and the last flit is marked as tail flit (it contains valid pay-
load data). The NI is modeled on cycle-accurate abstraction level. As
introduced in Section 5.4, A-3D NoCs are non-purely synchronous:
Different layers of the 3D SoC are in disparate technologies. Thus,
components have different clock speeds. Therefore, we model the NIs
as GALS using the parameter clkNI : [`]→ R>0 for ` layers.

Router

definition : Routers send packets through the network following
a routing function. Here, we model input-buffered routers, with a ar-
chitecture shown in Figure 55. Based on the flits in the input buffers,

7.1 models 107

routes are calculated, a route is selected and a path and VC is allo-
cated.
function : Routers are modeled cycle accurate with a state machine
per input channel. The states are given by idle, routing calculation
(RC), virtual channel calculation (VC), switch arbitration (SA) and
switch traversal (ST): state = {idle, RC, VC, SA, ST}, which are as-
signed to each input port via [m]× in → state, in which m is the
number of routers, in the set of input ports (see below). A transla-
tion relation is defined: δ ⊂ state× Flits× state, which models the
architectural behavior of the router. Function reports power-relevant
events to the reporting, which can be counted and evaluated in post-
processing.
parameter sets : The parameter set of routers is rather large, since
it covers all possible architectures for heterogeneous 3D SoCs. The
number of routers is adjusted via m, with [m] their set. The network
topology is defined as a network graph, in which vertices represent
routers and edges represent links. The set of all possible directed
edges is given by: EN = {(k, l) | k, l ∈ [m]}. The set of network graphs
is given by N =

(
[m],EN

)
(of course, not every router pair can be

connected in a real system due to production constraints.). The graph
is spatially embedded with positions of routers: p : [m] → R2>0 × [`].
As shown in Figure 55, input and output ports of routers are given by
in : [m]→ P(EN) and out : [m]→ P(EN), in which P(EN) represents
the power set of EN.2 All links connected to the input port of the
router r are given by in(r) = EN,r = {(k, l) | l = r, (k, l) ∈ EN} ⊂
EN. The number of input ports of this router is given by: |in(r)|. The
definition of output port is analog.

Based on the same consideration as for the timing of NIs, routers are
modeled cycle-accurate using GALS set by clkrouter, GALS : [`]→ R>0.

The number of VCs can be set per router v : [m] → N and the buffer
depth can be set per port d : [m] × in → N. Both are shown in
Figure 55. This allows modeling asymmetric router buffer depths [JM
3].

Routing function, selection function and allocation can be set via
routing : [m]× Flits→ out3 and selection : Flit× state× state→ v,
depending on the state of the corresponding downstream router.

The timing behavior of each input port of a router can be set by its
delay to evaluate the head flit in clock cycles: ∆ : [m]× in → R. To
exemplify: For a router with three stages until the head flit can be sent,
∆ is set to three. Please note, that the head flit will leave the router
without congestion after four clock cycles, since sending requires one
additional cycle. Since this is required for all flits, it is not part of

2 The power set of a set A denotes the set of all subsets of A.
3 This is valid for deterministic routing algorithms. Adaptive routing algorithms re-

quire the state of adjacent routers.

108 tools and methods for simulation

the parameter set. The parameter set enables versatile modeling of
different router architectures.

Links

definition : Links send data between routers.
function : Links calculate transmission matrices. These are used to
evaluate their dynamic energy consumption, because this depends on
different factors such as the transferred data [155] or the VCs [JM 2,
JM 14].
parameter sets : The links do not require parameter sets. Their
properties are already modeled by means of link widths (in the NIs)
and their energy consumption is calculated using data flow matrices
in post-simulation processing (cf. Section 7.2.3.1).

7.1.3 Simulator interfaces

Interfaces are the means of communication between components of
the model. The interfaces, as published in [JM 5], are defined as fol-
lows:

Definition 7.1 (Application data). Application data are used for com-
munication between application and hardware model, i. e. between
places P in the application model and PEs. The amount of data is
represented by the number of transmitted tokens. Statistical proper-
ties of the data are annotated using colors C. The amount of data per
stream is given by u. This yields:

ApplicationData = (P× P,C,u) (57)

Definition 7.2 (Packets). Within the network, packets are transmitted
between PEs. These contain source and destination addresses of the
PEs ([o]× [o]). This yields:

Packets = ([o]× [o],P× P,C) (58)

Please note, that it is required to include the source and destination
within the application (P × P), since the inverse mapping function
between task addresses and hardware addresses M−1 is not always
well-defined, as multiple tasks can be executed on a single PE. Packets
always have the same size in this model; their number is calculated
from u per stream in the NIs.

Definition 7.3 (Flits). Within the network, flits are transmitted among
routers. The type of the flit is denoted by the set Type = {head,body,
tail}. This yields:

Flits = ([o]× [o],P× P, Type,C) (59)

Please note the following technical detail: additional information
are transmitted between parts of the model in the implementation.

7.2 tools 109

We transmit the application data generation time Γ between applica-
tion and hardware model. The packet generation time, i. e. the time
the head flit is generated, Γp is transmitted on packet level and the flit
generation time Γf for each flit. The flit and packet generation time dif-
fer for body and tail flits, which allows measuring flit latency. Strictly
speaking, these are not part of the interfaces, which model the actual
hardware implementation. However, this information is required for
analysis of the simulation, for instance to calculate network, packet
and flit delay.

7.2 tools

The tools implement the aforementioned model. Due to the special
characteristics of A-3D NoC’s design space, they further fulfill these
requirements:

1. They cover technological and architectural parameters.
2. They comprise a simulator that is parameterized to modify pa-

rameters of the model, and configurable to modify parameters
of the simulator. All these parameters are set during initializa-
tion to reduce unnecessary compile times and meta program-
ming.

3. They are implemented at multiple levels of abstraction, i. e. the
application is modeled with transactions and the hardware is
modeled cycle-accurate.

4. They provide methods for an integrated tool flow, as proposed
later in Section 7.3. Further, it is possible to generate evaluation
results for different hardware models without rerunning simu-
lations for certain evaluation metrics.

The proposed model for A-3D NoCs is implemented in Modern
C++ using SystemC 2.3.1a class library [156]. It is open source and
available on github at github.com/jmjos/ratatoskr. The structure of
the tools, implementing the models from the last section, is shown in
Figure 56. There are three parts:

The benchmark tool sets up system benchmarks. It implements the
application model, which is on transaction level. Further, it provides
synthetic traffic patterns and multithreaded benchmark programs.
Please note, that the latter two options have limited applicability for
A-3D NoC, yet are implemented to provide comparability to other
tools.

The NoC simulator implements the hardware model and is on cycle-
accurate abstraction level. The PEs implement a technology-aware
TLM interface to convert the different abstraction levels of hardware
and application model.

The reporting tool is crucial for the process of evaluation during
design space exploration. It is on the highest abstraction level. It
generates (static) reports including network and application statistics,

github.com/jmjos/ratatoskr

110 tools and methods for simulation

L
ev

el
 o

f
ab

st
ra

ct
io

n
H

ig
h

L
o

w

Processing
element

TLM interface

Router
Network
interfaceremaining

3D NoC

Flits Network packets

Hardware model

NoC simulator

Benchmark tool

synthetic
traffic

patterns

application
model

PARSEC
(netrace)

Application model

Reporting tool

Database

Adjustable
reporting

......

...

Reports

Figure 56: Architecture of simulation and evaluation tools. [JM 6]

which is similar to the two competitors. In addition, it is possible to
evaluate different configurations of parameters without rerunning the
simulation with the reporting tool. This is achieved by means of inno-
vative data aggregation, see the data flow matrices in Section 7.2.3.1,
and by means of a database, which stores events and allows for post-
simulation data manipulation, see Section 7.2.3.2. Both features are
not found in current simulators.

7.2.1 Implementation of application model – the benchmarking tool

The benchmarking tool provides network traffic and implements three
options, as shown in Figure 56: An implementation of the application
model, synthetic traffic patterns and PARSEC multithreaded bench-
marks. Here, we explain the implementation and introduce the con-
figuration of the application model using XML files.

The application model implements colored, stochastic Petri nets
with retention time on places, as introduced in Section 7.1.1. Places
are implemented in the class Task, while the class TaskPool stores
the entirety of places. The application configuration is done via XML
files. Each task is configured as shown in Listing 1. In and out going
data connections are configured with the requires and generates

fields. Application data are generated after all required data, from
the requires field, are available. To model the stochastic property,
data can be sent to different destinations, which are grouped into a
possibility each that is selected following a given probability. The
timing of tasks and the retention time on places is modeled using the

7.2 tools 111

idle

send

time
start start+duration

interval

delay

count = 3

repeat = 2

Figure 57: Timing of tasks with all parameters, which can be set using
XML files.

fields start, duration, repeat, interval and delay. The behavior is
exemplified in Figure 57: A task is only executed in between the start

time and until its duration is finished. A task will also stop execution,
if it was repeated for as many times as given by the field repeat.
For each repetition, one data send possibility is taken. If tokens are
available, a task sends data to this destination. It will send data count

times. There is a delay in-between sending data, in which the task
is idle; this implements the retention time. The colored Petri net is
realized by defining data types: A set of data types can be defined
as shown in Listing 2. Data in the network are identified by type
allowing for precise energy estimation [JM 2].

The implementation of synthetic traffic patterns relies on the same
implementation of tasks. The class SyntheticPool provides hotspot,
uniform random, transpose and tornado traffic patterns and instan-
tiates Task-objects automatically following the distribution. Multiple
phases can be defined, for instance to generate periods with varying
injection rates. The definition of the synthetic traffic patterns is done
as exemplified in Listing 3 for uniform random traffic pattern. The
start and duration fields set the length of the phase. Alternatively, a
count can be defined to stop the execution after a given number of
packets. The injection rate is set, as well. The spacial distribution of
the patterns is as usual for 2D NoCs and it is adopted to reassemble
the characteristic for A-3D NoCs (cf. Figure 24). Please note that all
synthetic traffic patterns are realized by using the application model,
which shows its expressiveness. Only uniform random traffic cannot
be modeled, since the times between injecting traffic must be non-
deterministic but within certain intervals to model correct injections
rates, without biased results from bursts. Therefore, uniform random
traffic extends the functionality of the task model and has a partly
different implementation.

Finally, PARSEC benchmarks are implemented using the netrace
library, in which traces of benchmark simulation for a 64 core proces-
sor with dependency tracking are sorted. Please note, that this option
has limited applicability for heterogeneous 3D SoCs, since it targets a
homogeneous multi-core processor. It will be useful, if traditional 2D
NoCs are modeled using the proposed tool.

112 tools and methods for simulation

Listing 1: Definition of a task.

<task id = "1">

<start min = "0" max = "0"/>

<duration min = "100" max = "100"/>

<repeat min = "2" max = "2"/>

<requires>

<requirement id = "0">

<type value = "1"/>

<source value = "0"/>

<count min = "1" max = "1"/>

</requirement>

</requires>

<generates>

<possibility id = "0">

<probability value = "1"/>

<destinations>

<destination id = "0">

<delay min = "0" max = "50"/>

<interval min = "10" max = "10"/>

<count min = "3" max = "3"/>

<type value = "1"/>

<task value = "3"/>

</destination>

</destinations>

</possibility>

</generates>

</task>

Listing 2: Definition of data types.

<data>

<dataTypes>

<dataType id = "0">

<name value = "image"/>

</dataType>

</dataTypes>

</data>

Listing 3: Examplary synthetic traffic.

<synthetic>

<phase name = "warmup">

<distribution value = "uniform"/>

<start min = "1000" max = "1000"/>

<duration min = "500" max = "500"/>

<injectionRate value = "0.04"/>

<count min = "-1" max = "-1"/>

<hotspot value = "0"/>

</phase>

</synthetic>

7.2 tools 113

7.2.2 Implementation of hardware model – the NoC simulator

As already introduced, the NoC simulator implements the hardware
model. Here, we explain details of the implementation. Further, we
describe the configuration of the simulator, which is parsed from
XML files during initialization.

Top module

The class LayerTop is the top module. It contains all instances of
routers, NIs, PEs and links. XML configuration files are read dur-
ing initialization. Based hereupon, LayerTop instantiates classes of
the hardware model, which results in a complete NoC. The available
hardware is given by defining a set of nodes (in XML). Nodes either
represent PEs or routers here. In general, the strength of the concept
of nodes is that the model can easily be extended to include other
interconnect architectures, such as direct links or buses, simply by
defining and implementing new types of nodes; thus, hybrid designs
can potentially be modeled in future work.

An exemplary definition of two nodes, namely a router and a PE, is
shown in Listing 4. The other fields for further configuration are dis-
cussed later. The network topology is read from an XML file, as well.
Next, a set of nodes is defined by assigning a node type and a posi-
tion to each node. This is shown in Listing 5: The node with id 0 is
at position (0, 0, 0). The network topology is defined by a set of links,
which connect nodes. Connections are bidirectional. This is exempli-
fied in Listing 6, in which a connection is defined in the con-field,
which connects two nodes via ports. For the sake of brevity, only one
of two ports is shown. These configuration options are discussed in
detail later, as well.

Processing Elements (PEs)

The class ProcessingElementTasks implements the PE model, which
is able to connect to the given benchmark tool. Please note, that the
implementation provides an abstract class ProcessingElement, which
would allow to extend the simulator by other PE models, if different
application had been implemented.

There are two important functions: First, void receive() receives
packets from the network-side, i. e. the corresponding NI, and exe-
cutes the TL-modeled receive function in the application model. Sec-
ond, void execute(task*) manages the application model’s tasks,
which are mapped to the PE. This function keeps track of the task’s
execution status by triggering the events for timing and updating rel-
evant member variables of the tasks. Thereby, PEs provide the TLM
interconnect between application model and hardware model. The
function of the TLM interconnect is shown in Figure 58: Tasks i and j

114 tools and methods for simulation

Listing 4: Node types.

<nodeTypes>

<nodeType id = "0">

<nodeModel value = "RouterVC"/>

<routing value = "DPR"/>

<selection value = "EDXYZ"/>

<clockDelay value = "1"/>

</nodeType>

<nodeType id = "1">

<nodeModel value = "ProcessingElement"/>

<clockDelay value = "2"/>

</nodeType>

<nodeType> ... </nodeType>

</nodeTypes>

Listing 5: Position of nodes.

<nodes>

<node id = "0">

<xPos value = "0"/>

<yPos value = "0"/>

<zPos value = "0"/>

<nodeType value = "0"/>

</node>

<node> ... </node>

</nodes>

Listing 6: Connections.

<connections>

<con id = "0">

<width value = "32"/>

<depth value = "1"/>

<interface value = "0"/>

<ports>

<port id = "0">

<node value = "0"/>

<bufferDepth value = "16"/>

<vcCount value = "4"/>

</port>

<port> ... </port>

</ports>

</con>

<con> ... </con>

</connections>

Listing 7: Mapping.

<map>

<bind>

<task value = "0"/>

<node value = "8"/>

</bind>

</map>

7.2 tools 115

Task i Task j Application model

PE k PE l Hardware model

TLM interface:
function call

Packets in NoC

Mapping M

Figure 58: TLM interface between application and hardware model using
mapping [JM 12].

communicate on transaction level in the form of a function call. This
function call is redirected to the PE k, which sends the corresponding
packets to PE l via the NoC. After reception, PE l calls the correspond-
ing function in task j.

PEs have a mapping function M, mapping tasks to PEs, as a param-
eter, as defined in the model. This can be set using a mapping file in
XML. An example is shown in Listing 7, in which task number 0 is
mapped to PE number 8. Please note that PEs are assigned a clock
speed of the PE in Listing 4, which is passed to the corresponding NI
(see below). Strictly speaking, this is not defined in the model, but are
implemented as such for a less complicated description.

Network Interface (NI)

The class NetworkInterfaceVC implements the NI model with VCs
based on the abstract class NetworkInterface. NIs convert applica-
tion data into networks packets by knowledge of the bit width of links
in the network, and vice versa. There is one function per direction of
transmission, void receivePacket() and void receiveFlit(), which
are executed for each clock cycle of the NI. The parameters of the NI
are: The clock frequency, as defined in Listing 4, and the bit width
of links in the network from Listing 6. Please note, that the bit width
must be identical for each connection in the network.

Router

The class RouterVC implements the router model with VCs based on
the abstract class Router. Routers are connected among each other
and to PEs/NIs via a buffer model implementing a first-in-first-out
(FiFo) memory. The buffer is asynchronous to model the GALS nature
of heterogeneous 3D SoCs.

There are two important router functions: void receive() imple-
ments flits reception and void thread() flit sending. In the latter
function, there are three sub-functions implementing the state ma-
chine of the router: A path is calculated for head flits in the function
void route(), in which routing and selection function are in separate
classes; further, a VC is allocated. The function void arbitrate() cal-

116 tools and methods for simulation

culates a matching between requests and resources; different arbitra-
tion schemes are implemented. Arbitrated flits are sent in the function
void send().

The parameters of the routers can be set using XML configuration.
The basic parameters are set via the nodes-field as shown in Listing 4:
Router model (with VCs), routing algorithm (e. g. DPR [100]), selec-
tion (e. g. EDXYZ [157] or round robin) and the clock speed (1 GHz)
are set there. Defining multiple node types enables simulating differ-
ent router architectures in a single model.

Please note, that the router is limited in capability by the model.
Therefore, it is not possible to use other designs than input buffered
routers, with architectures similar to [93], as is shown in this very
work’s Figure 55. For instance, routers, which accelerate semi-static
data streams via pre-allocation of prioritized paths, require a different
model as proposed with an implementation in [JM 8].

Links

The class Link implements the link model. It generates the data flow
matrices (cf. Section 7.2.3.1) by connecting to the reporting tool and
issuing data transitions clock-wise. The correct functionality of the
link class is verified by output raw data. Links do not need to be
further configured, since their energy model can be calculated in post-
simulation processing (cf. Section 7.4.2).

7.2.3 Reporting Tool

7.2.3.1 Data flow matrices

Links are modeled in a more abstract way than calculating the en-
ergy consumption cycle-by-cycle: We propose the use of data flow
matrices R for each link defined as R : [m]× out → R, with matrices
R :
(
{idle} ∪

(
{head,Σ}× {idle, data}

))2 → [0, 1]. The data flow matri-
ces yield the proportion, at which different data types subsequently
pass through a link. The data types are determined by the colors
Σ from the application model (cf. [JM 5]). Head flits are considered
separately as their data are always uncorrelated. Tail flits are treated
as body flits, since they only terminate the transmission and usu-
ally contain payload data, depending on the router hardware model.
Both “idle” and active (“data”) cycles of the link are saved with the last
sent data type, read row-wise. Data flow matrices allow reconstruct-
ing many network statistics after simulation and calculating dynamic
link energy and even assess the impact of different link-level codings
from a single simulation; a short example is given in Section 7.4.2.
Computational properties of the data flow matrices are discussed in
Section 7.5.4 along with the accuracy of energy models that rely on
these matrices [JM 2].

7.3 exploration process 117

RUN

id (Name, Pattern, Architecture, ...)

ELEMENT

run id (type, name, ...)

EVENT

run element id (type, data, time, ...)

Figure 59: Database structure in the reporting tool [JM 10].

7.2.3.2 Event database

The report tool generates reports from simulation results. As usual,
textual reports are generated for average network, packet and flit de-
lay. Further, the data transmission matrices are stored in csv (comma
separated value) file format for further data processing. As an inno-
vative feature, the reporting tool connects a simulation database with
all simulation events. The structure of the database is shown in Fig-
ure 59 with its three tables, Run, Element and Event. The Run-Table
stores simulation run with an ID and attributes such as parameters,
benchmark, and router architectures. The Element-table contains all
components per simulation run, i. e. the hardware (routers, NIs, PEs).
Each element has a unique identifier, also over multiple runs. A type
and a name field associated to each element allow easy filtering. The
actual simulation events are stored in the Event-table, with a time
stamp, a type of event and a data field for debug text or references
to other database entries. This structure of the database enables very
flexible reporting. Even after the simulation is finished, detailed infor-
mation about the simulation can be accessed. For instance, traces of
individual packets can be generated from the Event-table by evaluat-
ing the packet’s sending and receiving events. The class Report offers
the API three important functions: A new simulation run is regis-
tered with the function startRun(). All components in this simula-
tion register themselves via the function registerElement(). Events
are reported via reportEvent() during simulations. The database is
connected via network (TCP) and can be run on an external server
to reduce the performance impact on simulations. Since the report-
ing tool uses a generic event-based approach, it can also be used for
FPGA-based NoC prototyping such as [JM 19].

7.3 exploration process

The process of empirical design space exploration with simulations
is depicted in Figure 60 as proposed in [JM 10]. Following the incre-
mental approach from Section 5.6.2, the designer selects variable pa-

118 tools and methods for simulation

Python scripts:
Variable & fixed system parameters
for design space exploration

XML: System
& benchmarks

XML: NoC &
Manuf. technologies

VHDL Model &
Technol. description

Reporting tool

Designer

TLM/SystemC

SQL SQL

SQL/CSV

ReportsDebugging

Benchmark tool NoC simulator Synthesis tool

Python scripts:
Evaluation of results

Spread-
sheets, CSV

Generation of
sets in design space

Exploration of
set in design space

Analysis of
design space

Figure 60: Design process using proposed tools [JM 10].

rameters and fixed system parameters; only the variable parameters
are part of the exploration process. The parameter sets are passed
to initialization scripts written in Python, as shown at the top of the
figure. The scripts generate three sets of input data for the tools, as
shown in first section of Figure 60. First, depicted on the left-hand
side, there are the XML description files for the benchmark tool, with
the application model. Second, in the middle part, the XML descrip-
tion for the NoC simulator is shown, with the hardware model. Third,
as shown on the right-hand side, there are script files that select the
correct VHDL models of the routers and assign parameters of the
used manufacturing technologies.

After the initialization, simulation and syntheses are started, as
shown in the second section of Figure 60. The NoC simulator is run
with each parameter set to explore the design space. The traffic in the
NoC is injected by the benchmark tool. The reporting tool collects the
results of the simulations. Furthermore, the synthesis for standard
cells is invoked. The output is stored in csv files. As a special feature
of the reporting tool, it is possible to retrospectively modify results
based on the synthesis, which for instance can be used to calculate
the energy consumption.

After running all simulations and syntheses, python scripts gen-
erate complete reports for all variable parameters as shown in the
lowermost section of Figure 60. If required, debugging information is
contained either in the reporting tool or in traditional vcd-files (value
change dump). The designer again interacts with the design process

7.4 analysis 119

Figure 61: Screen shot of graphical reports. [JM 10].

by analyzing the results and setting the parameters for the next itera-
tion in this particular incremental approach.

7.4 analysis

The analysis of the results utilizes the data in form of reports and
events in the database. Furthermore, we highlight the usage of data
flow matrices as those are unique and novel features.

7.4.1 Reports

During the design process, reports are generated for the designer to
assess the properties of the units under test. In general, there are three
types of reports:

First, the evaluation scripts generate textual reports about the design
space exploration including the most relevant parameters of the sim-
ulation. Using the XML configuration files, the level of verbosity and
thus the included results can be chosen by the designer.

Second, we provide a flexible graphical user interface, which presents
the data from the database in the reporting tool. An HTML5 dash-
board with interactive graphs can be accessed from any standard
browser. It is shown in Figure 61: The average flit latency in a 2×8×8
NoC for uniform random traffic is plotted, which converges already
after 1,200 clock cycles. Also, average and maximum flit latency are
printed. The advantage of the dashboard is its flexibility: All data are
shown in frames, which can be moved, adjusted in size and whose
contents can be freely set by SQL queries.

Third, direct database access via SQL is possible. This will be espe-
cially useful if the desired design metric is not already programmed
or for debugging, e. g. by tracing objects in the network. The database

120 tools and methods for simulation

extends the functionality of vcd files, since these do not allow tracing
of moving objects and must be programmed per component. Fur-
ther, data can be modified in retrospection using the synthesis results.
The disadvantage of the system is that even short simulations will
generate many gigabytes of data if very detailed events are traced.
Fortunately, this is only required for debugging and can be adjusted.

7.4.2 Data flow matrices

The data flow matrices R allow to reconstruct the state of links during
the simulation. In [JM 6] we demonstrated that the energy consump-
tion of link depends on the coding of data and proposed models
for both hop-to-hop coding and end-to-end coding. This model is ex-
tended in [JM 14] to calculate the dynamic energy consumption of
links based on data flow matrices. Different hop-to-hop and end-to-
end codings can be assessed without rerunning the simulation. We
integrated these models into our simulation tool and assessed the
influence of VCs on the energy consumption of NoCs in [JM 2].

We exemplify the form of the matrices with a small example as
introduced in [JM 5]. We assume a network, in which two types of
data σ1 and σ2 are transmitted. A basic router without VCs and a
single pipeline stage is simulated. Both types of data pass the router
and are transmitted via a single link. The average injection rate in
the network is 0.75 flits/cycle. 25 % of injected flits are of type σ1
and 75 % of injected flits are of type σ2. Packets have ten flits. The
transmission starts after 100 clock cycles; after 10,000 clock cycles, the
data flow matrix for the link is, as published in [JM 5]:

R =

idle (head, data) (head, idle) (σ1 , data) (σ1 , idle) (σ2 , data) (σ2 , idle)

idle 0.010 0.000 − − − − −

(head, data) − − 0.019 0.042 − 0.014 −

(head, idle) − − 0.007 0.013 − 0.005 −

(σ1 , data) − 0.041 − 0.326 0.126 − −

(σ1 , idle) − 0.013 − 0.113 0.039 − −

(σ2 , data) − 0.014 − − − 0.114 0.045

(σ2 , idle) − 0.006 − − − 0.040 0.014

The matrix is read row-wise: Data σ1 are succeeded by data of the
same type in 32.6% of cases. Please note, that zero-element are marked
by −, while 0.000 is rounded and non-zero. The matrix allows recon-
structing many properties of the link: The idle state of the link for
100 clock cycles can be found in the first element. The active and idle
times of the link can calculated by summation of the rows. Also, the
matrix shows the absence of VCs, since there the probability to switch
from (σi,data) to (σj,data) is zero. These types of matrices can be used
for energy estimation as explained in Section 7.5.4

7.5 results and discussion 121

7.5 results and discussion

7.5.1 Comparison with related work

We compare the performance of the proposed implementation of
the simulator with the two important competitors Booksim 2.0 and
Noxim. All three simulators are compiled with gcc 7.3.0 with opti-
mizations (-O3) and debug symbols (-g) using Linux Mint 19. The
software is executed on a machine with an Intel i7-7740X clocked at
a base frequency of 4.3 GHz and up to 4.5 GHz in turbo mode. We
run 10 simulations per software; we model a 4×4 NoC, with 32 flit
per packet, 4 VCs, 4 flit deep buffers, dimension-order routing and
simulate for 100,000 clock cycles and 3 % packet injection rate. The ex-
ecution times are measured with the program time (Unix, using real),
with suppressed terminal output. The results are shown in Table 7.

The comparison of the simulation speed shows, that Noxim has
the fastest simulation speed with 28,000 clock cycles per second. Our
simulator offers 79.3 % worse performance with 5,800 clock cycles
per second. However, it is 26 % faster than Booksim 2.0, which offers
4,600 clock cycles per second simulation speed. Since neither Noxim
nor Booksim implement a complex application model, we offer ex-
tended functionality with performance in between of the two most
common simulators. Therefore, the proposed simulator offers good
performance.

We compare the code complexity on basis of lines of code. Both
Noxim and the proposed simulator use SystemC. Thus, these two are
comparable. Although we offer additional functionality, the code size
is smaller than Noxim. Please note, that BookSim 2 implements its
own simulation engine and, therefore, is larger than the two competi-
tors.

Finally, the proposed tools are the only ones providing a reporting
tool with dataflow matrices support along side a report database. The
advantages are, that energy estimation is possible for different cod-
ings and technologies without running simulations twice. In contrast,
Booksim 2.0 does not generate power estimates and Noxim relays on
a static power profile for each simulation run. Further, the proposed
data flow matrices allow for energy models with exceptional perfor-
mance (see Section 7.5.4).

7.5.2 Performance of application model

To evaluate the performance of the application model, a small exem-
plary application is executed with and without using a NoC for data
transmission. A simulation without a NoC attached is a application
simulation at transaction level. We use a VOPD for a MPEG-4 compat-
ible decoder with data rates from [158]. We use a conventional 2D 4×4

122 tools and methods for simulation

Simulator Execution time Lines

Average Std. dev. of code

Booksim 2.0 [121] (27 Jun 2017, 28f4329) 21.9 s 0.11 s 25,000

Noxim [122] (30 Jul 2018, df472c0) 3.61 s 0.04 s 8,600

Proposed here, version 1.1.8, 30 Aug 2018, d7dba08 17.32 s 0.25 s 7,700

Table 7: Comparison between NoC simulators; 10 simulations of
100,000 clock cycles, for a 4×4 NoC, with 32 flit per packet, 4 VCs, 4 flit
deep buffers, dimension-order routing.

NoC. The mapping was done manually and minimizes traffic in the
NoC with sequential tasks in adjacent PEs (cf. [JM 12, Figure 7]). In
application-only mode, the simulation requires approximately 1/30
less CPU time than with a hardware model. This result is within the
expected speed difference when using TL models [159]. This shows
that the application model has a small and acceptable performance
impact on the overall simulation. The simulation time is dominated
by the context switches that cannot be avoided in cycle-accurate sim-
ulations.

7.5.3 Performance of the reporting tool

We assess the performance impact of the reporting tool’s database
using a simulation of uniform random traffic in a 2×8×8 NoC, as
published in [JM 10]. After 2,200 simulated clock cycles, there are
approximately 3 million events in the database including 500,000 flit
send and receive events (SEND_FLIT, RECV_FLIT). The performance
of the database is evaluated using a query to calculate the average flit
latency. The query is published in [JM 10], Figure 6. On an Intel Xeon
E3-1230, running Ubuntu Server 14.04.4 LTS and MySQL Server 5.6,
the query takes 10 seconds. The time grows linearly with the num-
ber of assessed events. This is considerably longer than calculating a
floating average during simulation and is the downside of the flex-
ible reporting tool. Further, we compare the reporting tool against
conventional vcd files. These are written to a storage device during
simulation and can become rather large for long simulation runs. The
advantage of the database is that an external server can be used to re-
duce the impact on performance. To summarize, only a subset of all
events should be stored in the database. In that case, the reporting
tool provides high flexibility and satisfying performance.

7.5.4 Accuracy, performance and complexity of data flow matrices R

We assess the complexity of the data flow matrices. A single entry of
the data flow matrix is updated per simulation time and per link. At
the end of the simulation, all entries are divided by the number of

7.5 results and discussion 123

simulation times. Let n be the number of data stream types. Let l be
the number of links in the network and t be the number of simulated
clock cycles. Each data flow matrix has 2n2 + 3 entries. Then, the
time complexity to estimate all data flow matrices is O(n2lt). The
link matrices require O(tn2) memory. Storing the raw data of the
links also requires O(n2lt) time, but O(lt) memory is required. This
is significantly more, since usual simulation times are larger by a
few magnitudes than n and l. This impressively demonstrates the
advantages of data flow matrices.

Energy modeling based on the data flow matrices is proposed in
[JM 2]. Since the actual energy models are not part of this thesis, we
kindly refer to the aforementioned publication for details. Nonethe-
less, we report the accuracy of the models. The matrices allow to cover
the effects of VCs and coding for the dynamic energy consumption
of links between routers, which is not possible with state-of-the-art
[160]. We simulate a 3D VSoC, in which digitized image data from
AD converters in a mixed signal layer store their data in a memory
layer. We use daytime and nighttime 512×512 pixel image. We assign
one color in the application model for each sensor and estimate the
dynamic link energy consumption of links. We compare a novel high-
level model [JM 2], a standard model (which does not model the
effects of VCs) and bit-level simulations. Uncoded, gray-coded and
correlated data are compared as presented in Tables 8 and 9. For the
analyzed case study, the average flit and network latency is decreased
by 52.2% and 45.5%, respectively, when using virtual channels. This
performance gain results in a dramatic increase in link’s power con-
sumption of 74.9%. In terms of model accuracy, the proposed method,
which relays on link matrices, predicts the energy consumption at a
very low error rate below 1%. The previous model yields an error of
almost 50%, for NoCs with VCs.

7.5.5 Productivity

The productivity of the proposed tools and processes is evaluated,
as published in [JM 10]. The design of a 3D NoC with asymmetric
buffer distributions and depths (cf. Chapter 9.6) is the exemplary use
case. The proposed tools allow for an incremental approach, in which
the level of detail is gradually increased. For a fast initial evaluation,
small applications are modeled (video object plane decoder applica-
tions and MPEG-4, mp3, and h.256 converters from [106]). Although
lacking generality, being application specific, these application mod-
els allow for a very fast evaluation of designs: simulations run only be-
tween 20 s and 60 s on an Intel Core i7-4770 CPU, with 16 GB RAM us-
ing CentOS 7.1. We thereby were able to exclude unnecessarily large
buffer sizes at the beginning of the design space exploration and find
a set of possible parameters. Next, we conducted detailed simulations

124 tools and methods for simulation

Data

Energy per transmitted packet [pJ]

Bit-level sim. Proposed model [JM 2] Standard model [160]

Uncoded 4.18 4.15 2.40

Gray 4.11 (-1.67 %) 4.09 (-1.44 %) 2.23 (-7.08 %)

Corr 2.69 (-35.64 %) 2.68 (-35.42 %) 2.71 (+12.92 %)

Avg. flit latency: 19.2 ns Avg. network latency: 105.4 ns

Table 8: Link energy quantities and network performance with 4 VCs for
uncoded, gray-coded and correlated data [JM 2].

Data

Energy per transmitted packet [pJ]

Bit-level sim. Proposed model [JM 2] Standard model [160]

Uncoded 2.39 2.40 2.40

Gray 2.22 (-7.11 %) 2.23 (-7.08 %) 2.23 (-7.08 %)

Corr 2.70 (+12.94 %) 2.71 (+12.92 %) 2.71 (+12.92 %)

Avg. flit latency: 40.2 ns Avg. network latency: 193.3 ns

Table 9: Link energy quantities and network performance without VCs for
uncoded, gray-coded and correlated data [JM 2].

using synthetic traffic patterns. Simulating a NoC, with 32 PEs, using
uniform random traffic, with flit injection rates between 20% and 95%
and 32 restarts per injection rate, took between 1.5 and 2 hours per
set. SystemC only supports single thread simulations, but parallel
execution on many cores is possible. In the next step, the best param-
eters can be further tested with real world applications. For instance,
the simulation of 25 ms of CPU time in the PARSEC region of interest
(ROI) from netrace files takes 41 hours. This demonstrates, why an in-
cremental approach is essential for high productivity during design
space exploration and how the proposed tools and processes allow
for such an analysis.

7.5.6 Application example: adaptive face tracking

(a) Detection of a
single face with
bounding box (yel-
low) and feature
points (white).

(b) Additional faces
enter scene; three
faces detected with
number of feature
points.

(c) Moving faces
are tracked and
right face (paritally)
leaves the scene.

(d) Middle face is
partially hidden by
front face which
reduces number of
trackable features.

Figure 62: Face detection and tracking algorithm for a 3D VSoC [JM 5].

7.6 conclusion 125

...

...

...

Master

 II

Node

1

Node

1

Node

N
F
-1

Node

N
F

Node

2

Node

K
VJ

-1

Node

K
VJ

Master

 III

I

II

III
Node

1

Node

N
F
-1

Node

N
F

Figure 63: Stages of the application with nodes and data flows. Edges of
same color belong to the same part of the algorithm and are similar in
bandwidth. [JM 5].

We demonstrate the expressiveness of the proposed application
model by a typical use case of heterogeneous 3D SoCs: An adaptive
face tracking algorithm. It can be, for instance, used for video confer-
ences or surveillance. Since a small, efficient and high-performance
device is necessary, a 3D VSoC is a very good target. The function
and model of the application is published in [JM 5]. Here, we only
highlight the properties of the resulting Petri net. The four basic steps
of the algorithm are shown in Figure 62: Viola-Jones algorithm [161]
initially detects faces (Phase I). Shi and Tomasi algorithm [162] finds
features, which are tracked (Phase II). Kanade-Lucas-Tomasi (KLT) al-
gorithm [163] tracks these in the video (Phase III). KLT algorithm is
fast an allows for real-time tracking but may lose some features. Thus,
a periodic re-initialization is necessary. All stages of the algorithms
run in parallel and are mapped to a 3D SoC as shown in Figure 63 in-
cluding data flows. Edges of same color belong to the same part of the
algorithm and are similar in bandwidth. For the sake of brevity, we
kindly refer to [JM 5] for bandwidths and statistics. Python scripts are
written to generate the XML description of the application depending
on the number of available cores in the VSoC. From approximately
500 lines of python code, 35,305 lines of XML model are generated for
8 PEs. This example shows that it is possible to model even complex
applications using the proposed tools. Since the XML description is
rather bulky, generation via python is an easy and usable option.

7.6 conclusion

In this chapter we introduced models, tools, processes and analy-
sis for empirical design space exploration using simulations in A-3D
NoCs. The clear definition of models highlights possibilities and lim-
itations, i. e. the expressiveness, of the design space exploration. The

126 tools and methods for simulation

models are implemented as a box of tools for simulation and evalua-
tion. These tools assist the designers during design space exploration
process. A standard process is proposed based on the incremental
approach as proposed in the previous chapter. The analysis of the
results is also demonstrated. In comparison to existing solutions, the
proposed simulator offers similar performance while providing more
features: A novel application model is provided, which allows for sim-
ulation of traffic pattern found in heterogeneous 3D SoCs. The NoC
simulator is configurable during execution using XML files enabling
rapid prototyping via simulations of A-3D NoCs. Finally, innovative
report features, such as a report database and data flow matrices,
allow for efficient design evaluation, with high, unparalleled model
accuracy. To summarize, the proposed software and processes enable
design space exploration via simulations in A-3D NoCs and there-
fore will be used in the subsequent work to assess architectural level
optimizations.

8
O P T I M I Z AT I O N O F R O U T E R M E M O RY

In the previous chapters, system-level optimizations for A-3D NoCs
and tools and methods for empirical design space exploration have
been presented. Using the incremental approach from Section 5.6.2,
we will focus on (micro-) architectural features in this and the subse-
quent chapter. Here, we draw attention to router buffers, since these
are one major source of area and power consumption: The area of the
buffers is approx. 79% of the overall router area and buffers account
for 85% of the energy consumption for a standard 3D router, with 4
VCs and 8 flit deep buffers synthesized for commercial 65 nm digital
technology. Therefore, many works aim at reducing router area by
tackling router buffer area as discussed in Chapter 4. Buffer area and
power consumption is a topic of even higher importance in hetero-
geneous 3D SoCs: The same buffer space will require more area and
energy if implemented in a mixed-signal node or a less advanced dig-
ital technology in comparison to modern digital nodes. Therefore, it
is advantageous to reduce the implemented buffer space in expensive
layers.

In general, area reductions via buffers is not a novel topic. Here,
we peruse novel approaches for buffer distributions and asymmetric
buffer depth, which both reduce area and power for heterogeneous
3D SoCs. The approaches are not useful for homogeneous systems.
The novelty lies in exploitation of heterogeneity enabling new archi-
tectures. To the best of our knowledge, comparable ideas have not
been investigated in literature so far. The proposed buffer redistribu-
tion scheme can be applied to many input-buffered router architec-
tures, which are already optimized for other features.

8.1 buffer distributions and buffer depths

Buffers differ in area and power requirements between layers in a
heterogeneous 3D SoC, as already discussed. Therefore, the number
of implemented buffers must be reduced in layers, in which mem-
ory is expensive; this has the largest positive effect on the system’s
costs. This approach is given by the principle that “it is advantageous
to place as many buffers as possible in a layer, which is optimized for mem-
ory” [JM 3]. There are two options to realize the principle: On a router
microarchitectural level, buffers can be redistributed among routers
and layers. This results in novel buffer distributions with improvements
as discussed in Section 8.4.1. On a router architectural level, buffer
depths in layers can be different. This results in asymmetric buffer

127

128 optimization of router memory

digital layer

mixed-signal
layer

TSV arrays

Figure 64: Two-layered 3D NoC.

router ea
st

w
es
t

north

south
lo
ca
l

up

dow
n

Figure 65: Router architecture.

depths, with advantages as discussed in Section 8.4.2. We also assess a
combined approach for additional benefits. The router architectures
and results of this chapter have originally been presented in [JM 3]
and [JM 11]. As part of this thesis, the content of these publications
is not substantially extended, since the work was completed. Rather,
the presentation is clarified.

8.1.1 Technology and network setting for evaluation

We model a simplified technology and network scenario. This avoids
unnecessary complications of a generalized heterogeneous 3D SoC
model. We use a 3D SoC consisting of two, heterogeneous layers (Fig-
ure 64). The influence of buffer distributions and buffer depths can
be evaluated using only two layers, as argued in Section 5.5 for a typi-
cal example for NoCs in heterogeneous 3D SoCs. The more advanced
node, with smaller features size, is below the other layer. This layer,
with a less advanced technology, is on top. Buffers are more expen-
sive in the upper layer. The NoC topology is two stacked 4×4 grids.
The results can be generalized to any combination of a more and a
less expensive technology, such as digital and mixed-signal nodes.

We are only interested in the influence of buffers. This implies the
following simplifications: We do not consider different topologies or
clock frequencies per layer. We model a synchronous SoC, in which
all components are clocked in the lowest speed. This is the most pes-
simistic scenario. In a separated approach, we assess the potential
performance gains from a GALS implementation.1

8.1.2 Baseline: symmetric routers

We use a symmetric input-buffered router as baseline, with determin-
istic dimension-order routing, 8 flit deep buffers and 4 VCs. Routers
are connected to neighbors, which are directly adjacent, i. e. in each
cardinal direction, to a local port and downwards or upwards, de-
pending on the layer (Figure 65). The default router pipeline of con-
ventional routers is used (comp. [76]), which was already introduced

1 Implementing asynchronous communication is rather expensive and complicated.
The actual microarchitectural modifications are assessed separately, see Section 9.6.

8.2 routers with optimized buffer distribution 129

Cycle

Head Flit

First Body Flit

1 2 3 4 5

RC VC SA

SA

ST, LT

ST, LT

Body & Tail Flit SA ST, LT

6

(a) Baseline router pipeline.

Cycle

Head Flit

First Body Flit

1 2 3 4 5 6 7

RC VC SA

SA

ST, LTF

ST, LTF

Body & Tail Flit SA ST, LTF

98

(b) “Aggressive” pipeline.

Cycle

Head Flit

First Body Flit

1 2 3 4 5 6

RC VC SA

SA

ST, LT

ST, LT

F

F

Body & Tail Flit SA ST, LTF

7

(c) “Delay-oriented” pipeline.

Figure 66: Time behavior of input buffers of vertical links (RC – routing
calculation, VC – VC calculation, SA – switch allocation, F – fetch, ST – switch
traversal, and LT – link traversal) [JM 3].

in Figure 17: There are four stages (Figure 66a): First, a routing is
calculated (RC). Second, a virtual channel is allocated (VC). A route
and VC arbitration are only calculated for head flits. Third, the switch
is arbitrated among flits (SA). During arbitration, VCs with a lower
number have a higher priority. Fourth, the arbitrated flits traverse
switch (ST) and link (LT).

8.2 routers with optimized buffer distribution

The microarchitecture of routers is optimized for area and power by
distributing buffers among pairs of adjacent routers in different layers.
Buffers are more expensive in the upper layer. To tackle this constraint
of heterogeneity, we change the distribution of buffers of vertical, up-
ward links: We place the input buffers of this very link from the upper
router to the lower router as output buffers. We change the location of
all VC buffers and do not consider individual VCs. The buffer status
registers for state, route and output VC remain in the upper router.
The buffer location of all other links in the network are not changed.
This yields a novel router microarchitecture, as shown in Figure 67b:
In the upper layer, input buffers are located on all links except the
incoming vertical links. In the lower layer, input buffers are located
in all links and output buffers are located on vertical, upward links.

130 optimization of router memory

input buffer

TSV

upper layer (mixed signal)

lower layer (digital)

input buffers
with VCs

(a) Baseline router.

TSV

upper layer (mixed signal)

lower layer (digital)

input buffers
with VCs

o
u

tp
u

t
bu

ffe
r

(b) “Aggressive” router.

additional
buffer
TSV

upper layer (mixed signal)

lower layer (digital)

input buffers
with VCs

o
u
tp
u
t

bu
ffe

r

(c) “Delay-oriented”
router.

Figure 67: Architecture of router pairs for the proposed microarchitectural
optimization [JM 3].

The area and power consumption of the routers in the upper layer
is reduced by this optimization. However, the increased delay of buffer
access impedes performance. Therefore, the architecture is called “ag-
gressive”, in terms of area savings. To reduce this performance impact
of heterogeneity, we additionally propose a “delay-oriented” microar-
chitectural optimization: We split the buffers of the vertical links into
two parts. A flit can be stored in an intermediate buffer in the up-
per router, located between output buffers in the lower layer and the
crossbar in the upper router. The remainder of the buffers is located
as output buffers in the lower router. This is shown in Figure 67c.

8.2.1 Router pipelines

The router pipeline of routers in the faster (digital) layer is shown in
Figure 66a. It is standard and not modified. The proposed modifica-
tions to the router buffer do not influence the router pipeline: Only
flits transmitted from lower to upper layer could be influenced, be-
cause buffers from the upper layer are moved downwards as output
buffer. Thus, the critical path from the input buffers via the cross-
bar to the output buffers in the lower layer is shorter. However, this
does not yield a performance advantage. Only these links would be
clocked faster, which is not realistic, since intrinsically asynchronous
routers are very costly and the faster clocked part of the circuit could
not be fed with incoming data.

The router pipeline of the “aggressive” architecture is shown in Fig-
ure 66b. Flits traveling the vertical, upward connections have a longer
critical path due to the traversal of the TSVs. To fetch data, which is
stored in the output buffers in the adjacent layer, an additional cycle

8.3 routers with optimized buffer depths 131

input buffer

TSV

upper layer (mixed signal)

lower layer (digital)

input buffers
with VCs

Figure 68: Conventional pair of
routers with buffer depths optimi-
zation [JM 3].

reduced buffer
depth

TSV

upper layer (mixed signal)

lower layer (digital)

input buffers
with VCs

o
u

tp
u

t
bu

ffe
r

Figure 69: “Aggressive” pair of
routers with buffer depths optimi-
zation [JM 3].

is introduced (“F”). Therefore, flits from this link leave the router only
every other cycle (under zero load). All other input ports and their
pipelines are standard, i. e. as shown in Figure 66a.

The router pipeline of the “delay-oriented” router is shown in Fig-
ure 66c. In this architecture, only head flits require the additional
fetch cycle, since follow-up flits are sent in parallel to the interme-
diate buffer in the upper router while the previous flits traverse the
router. Hence, flits from the vertical links leave the router in every
clock cycle after an initial delay (under zero load).

8.3 routers with optimized buffer depths

We also optimize routers on architectural level by reducing buffer
depths in the more expensive layer. This is depicted for a pair of “ag-
gressive” routers in Figure 69. Asymmetric buffer-depth reductions
offer large optimization potential: While minimizing the area foot-
print of the whole NoC has a linear relation, the performance does not
decline proportionally, since the relation between buffer depth and
performance is non-linear: It declines slowly until network saturation
is reached and then collapses. The theoretical relation between buffer
depths, network costs, power consumption and performance (mea-
sured in package latency) is well-known for 2D systems (e.g. [77]).
For NoCs targeting heterogeneous 3D SoCs, this relation is exem-
plified in Figure 70, with asymmetric buffer depths of 8 flits in the
lower layer and 2 – 16 flits in the upper layer using uniform traffic at
3.2 GB/sec traffic injection. We synthesized a gate-level router model
for 130 nm and 65 nm commercial digital technologies to generate the
results. Area and power results are normalized by their maximum
value. The plot shows a non-linear relation between buffer depth and
costs; large buffer depths do not offer performance advantages. The

132 optimization of router memory

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

buffer depth

no
rm

al
iz

ed
PP

A

Power
Area

Performance

Figure 70: Relation between buffer depths and PPA, with area and power
from synthesis and simulated performance (buffer depths: 8 flits in faster
layer, 2 up to 16 flits in slower layer).

results imply that a small buffer depth will offer a good compromise
with low costs and adequate performance if the buffer depth is still
located on the left-hand side of the plateau. Based on these findings,
we optimize buffer depths both for traditional router architectures
with standard buffer organization, see Figure 68, and the proposed
microarchitectural buffer reorganization, see Figure 69.

8.4 results

The results are originally presented in [JM 11] for buffer redistribu-
tion and in [JM 3] for buffer depths. As argued in Chapter 5, the de-
sign space exploration for buffer optimization is rather complicated,
since both microarchitectural and architectural optimizations must
be assessed and their effects are interwoven. Therefore, we chose the
incremental approach from Section 5.6.2 using the introduced hier-
archical order. First, we evaluate microarchitectural optimizations by
benchmarking the proposed router architectures, with buffer reorga-
nization and with 8 flit deep buffers in all layers in Section 8.4.1. We
choose this buffer depth as baseline, since larger buffers only increase
area and power overhead without performance advantages. Second,
we evaluate architectural optimizations by different buffer depths
from 4 – 8 flits to find the tripping point, at which buffer size in-
creases add additional costs, without positive performance influence
in Section 8.4.2. Third, the findings are combined by simultaneously
applying microarchitectural and architectural optimizations. The “ag-
gressive” router microarchitecture is evaluated with buffer depths of
8 flits in lower layer and 4 – 8 flits in the upper layer. Since the other
architectures show similar results, we do not present the results in
detail. Thereby, we find the optimal buffer depth per layer. This is
applied to the baseline (symmetric) and the “delay-oriented” router
architecture in Section 8.4.3.

8.4 results 133

Router Power Consumption Savings

Architecture 65 nm 130 nm Router pair

Symmetric 20.7 mW 58.3 mW 79 mW –

“Aggressive” 23.6 mW 49.7 mW 73.3 mW 7.2 %

“Delay-oriented” 22.9 mW 51.9 mW 74.8 mW 5.4 %

Table 10: Power of a router pair with symmetric buffer depths [JM 3].

We compare our results with a baseline, which is set by a symmetric
standard router synthesized from RTL for commercial digital 130 nm
and 65 nm technologies, with 8 flits per VC, a single VC and a flit size
of 32 bit. The clock frequency of routers depends mainly on the tech-
nology: For the 65 nm-technology, the routers clock at approximately
1 GHz and for 130 nm at 820 MHz. We use this to compare power and
area savings. Please note, that we refer to a pair of routers as those
with the same x- and y-coordinates in adjacent layers.

8.4.1 Routers with optimized buffer distribution

Power savings:

The total power of the routers are given in Table 10 for a stacked pair
of routers with 50% toggle activity. The savings are calculated from
comparison with the baseline (conventional architecture, symmetric
buffers). The power consumption in the 65 nm layer increases by mov-
ing buffers there. Since single buffers consume less power in this layer,
the overall power consumption declines by 7.2% for the “aggressive”,
asymmetric architecture and by 5.4% for the “delay-oriented” design,
using a linear dependency, as presented in [JM 3].

Area savings:

The buffers occupy 84% of the router area for the 130 nm technology
and 79% for the 65 nm technology in the conventional design. Dif-
ferent silicon nodes yield varying memory cell sizes; we measure an
actual ratio of 3.7 for similar flip-flops in the commercial 65 nm and
130 nm technologies. By exploiting this area difference, the “aggres-
sive” router and “delay-oriented” router are smaller than baseline by
9.6% and 8.3%, respectively (Table 11).

Performance loss:

For the performance evaluation we use the cycle-accurate simulation
model, as proposed in Chapter 7. The timing of routers is modeled
using the parameter ∆ as introduced in Section 7.1.2 by setting it to 4
for downward input ports of routers in the upper layer and to 3 for
all remaining ports. We benchmark with synthetic traffic patterns and

134 optimization of router memory

T
r

a
f
f
i
c/A

p
p

l
i
c

a
t
i
o

n
T

a
s
k

s
P

a
c

k
e

t
s

/
s
y

m
.

r
o

u
t

e
r

“
a

g
g

r
e

s
s
i
v

e”
r

o
u

t
e

r
“
d

e
l

a
y-

o
r

i
e

n
t

e
d”

r
o

u
t

e
r

i
n

j.
r

a
t

e
c

l
o

c
k

c
y
c

l.
c

l
o

c
k

c
y
c

l.
d

i
f
f.

c
l

o
c

k
c

y
c

l.
d

i
f
f.

u
n

i
f
o

r
m

(
m

e
d

i
a

n
)

—
0.8

G
B/s

1318
1310

.6%
1322

-.3%

c
o

m
p
l

e
m

e
n

t
—

0.8
G

B/s
170

210
-19%

178
-4.4%

h
o

t
s
p

o
t

—
0.8

G
B/s

1290
1930

-33%
1656

-4.9%

V
O

PD
&

S
h

a
p

e
D

e
c.[158]

17
3416

55188
55208

-.7%
55192

-.7%

V
O

PD
[106]

16
4044

63766
69766

-8.6%
64368

-.9%

D
V

O
PD

[106]
32

8762
65202

77316
-16%

66458
-1.9%

M
PEG

-4
[106]

12
3467

142010
142010

.0%
142010

.0%

PIP
[106]

8
576

9984
11364

-11%
10114

-1.3%

M
W

D
[106]

12
1120

14114
16216

-13%
14338

-1.6%

H
.263

d
e
c.,

m
p3

d
e

c.[106]
13

19636
172554

181068
-4.7%

173232
-.4%

m
p3

e
n

c.,
m

p3
d

e
c.[106]

12
1652

18500
30752

-40%
19730

-6.2%

H
.263

e
n

c.,
m

p3
d

e
c.[106]

14
24291

373778
430884

-13%
378704

-1.3%

a
v

e
r

a
g

e
p
e

r
f
o

r
m

a
n

c
e

l
o

s
s

t
o

s
y

m
m

e
t

r
i
c

b
a

s
e

l
i
n

e
14%

2.1%

a
r

e
a

s
a

v
i
n

g
f
o

r
r

o
u

t
e
r

i
n

p
u

t
b

u
f
f
e

r
s

t
o

s
y
m

m
e

t
r

i
c

b
a

s
e

l
i
n

e
9.6%

8.3%

Table 11: Benchmark results with symmetric buffer depth. [JM 3].

8.4 results 135

real-world based with application traffic from [106, 158]. A manual
mapping of tasks to PEs prioritizes short communication distances
to reduce the network load; further, the load in the upper layer in
a less advanced technology is reduced. For some benchmarks, there
are fewer tasks than PEs, in which some PEs are not used. The results
of the simulations are shown in Table 11. We use a single instance
of inputs per application and measure the total delay in clock cycles.
Therefore, the performance measurement is independent of the target
clock frequency.

It is expected, that the proposed router architectures have reduced
performance due to the additional fetch cycles in the router pipelines.
Further, the “aggressive” router has lower performance than the “de-
lay-oriented” router. This is supported by the experimental results:
The “aggressive” router has 14% worse average performance in com-
parison with baseline. The “delay-oriented” router is only 2.1% worse.
The first approach to the worst case approximation is given by hot-
spot traffic, in which all PEs send data to a single destination located
in the more advanced layer. This yields high performance losses of
33% and 4.9%. If the hot-spot was located in the other layer, the per-
formance would be even worse. This is demonstrated by the audio
decoder and encoder benchmark, whose mapping yields a high uti-
lization of vertical links: This benchmarks yields the highest perfor-
mance losses of 40% and 4.9% among the test cases. Please note, that
the performance increase of 0.6% for uniform random traffic is an ar-
tifact with reasons in statistics of our measurement. The performance
results demonstrates the full range of performance impact.

8.4.2 Routers with optimized buffer depths

To evaluate the effect of optimized buffer depths, we use the simula-
tion model from Chapter 7. Modification of the parameter d as intro-
duced in Section 7.1.2 allows for rapid design space exploration. The
baseline is set by symmetric buffer depth. We asses both symmetric
and asymmetric buffer depth reductions.

Symmetric buffer depth reductions are evaluated by comparison
with the baseline using 8 flit deep buffers in both layers to a baseline
router using 4 flit deep buffers. The results are shown in Table 12.
Reducing the buffer depth in the conventional router pipeline yields
a large performance loss of 49%. In combination with the proposed
router architectures, the performance declines by additional 2.5% and
1.2%. The power and area savings of all three router architectures are
between 36.1% and 41.6%. As expected, the proposed novel router
architectures have lower performance, but also lower area and lower
power than baseline. In general, the performance loss of symmetric
buffer depth reductions is high, for which power and area savings are
not justified.

136 optimization of router memory

T
r

a
f
f
i
c/

b
a

s
e

l
i
n

e
s
y

m
m

e
t

r
i
c

“
a

g
g

r
e

s
s
i
v

e”
“
d

e
l

a
y-

o
r

i
e

n
t

e
d”

A
p
p

l
i
c

a
t

i
o

n
e
x

e
c

u
t
i
o

n
r

o
u

t
e

r
(4

f
l

i
t)

r
o

u
t

e
r

(4
f
l

i
t)

r
o

u
t

e
r

(4
f
l

i
t)

c
l

c.
c

y
c

l.
c

l
c.

c
y
c

l.
l

o
s
s

c
l

c.
c

y
c

l.
l

o
s
s

c
l

c.
c

y
c

l.
l

o
s
s

u
n

i
f
o

r
m

1318
2411

45%
2480

47%
2448

46%

c
o

m
p

l
e

m
e

n
t

170
292

42%
310

45%
302

44%

h
o

t-
s
p
o

t
1290

2380
46%

2542
49%

2438
47%

V
O

PD
&

S
h

a
p

e
55188

124574
56%

124578
56%

124578
56%

D
e

c
o

d
e
r

[158]

D
V

O
PD

[106]
63766

131556
52%

134460
53%

132734
52%

V
O

PD
[106]

65202
132236

51%
133636

51%
132838

0.5%

M
PEG

-4
[106]

142010
267264

47%
267264

47%
267264

47%

PIP
[106]

9984
21670

54%
21926

54%
21800

54%

M
W

D
[106]

14114
27120

48%
27868

49%
27414

49%

a
v.

p
e

r
f.

l
o

s
s

49%
50%

50%

a
r

e
a

s
a

v
i
n

g
s

36.1%
40.1%

39.8%

p
o

w
e
r

s
a

v
i
n

g
s

37.3%
41.6%

40.6
%

Table 12: Performance results for a symmetric buffer depth of four flits.
[JM 3].

8.4 results 137

Tr
a

f
f
i
c

/a
p

p
l

i
c

a
t

i
o

n
b

a
s
e

l
i
n

e
“a

g
g

r
e

s
s
i
v

e
”

r
o

u
t

e
r

,b
u

f
f
e
r

d
e
p

t
h

i
n

u
p

p
e

r
l

a
y
e

r

e
x

e
c

u
t
.

e
x

e
c

.t
i
m

e
i
n

c
l

o
c

k
c

y
c

l
e

s
|

l
o

s
s

–
d

e
p
e

n
d

i
n

g
o

n
t
h

e
b

u
f
f
e
r

s
i
z
e

(4
–

8)
i
n

u
p
p

e
r

l
a

y
e
r

c
l

c
.c

y
c

l
.

4
5

6
7

8

u
n

i
f
o

r
m

(m
e

d
i
a

n
)

13
18

18
04

27
%

14
38

8.
3%

13
64

3.
4%

13
20

.2
%

13
10

-.6
%

c
o

m
p

l
e

m
e

n
t

17
0

28
8

41
%

21
8

22
%

21
4

21
%

21
0

19
%

21
0

19
%

h
o

t
s
p

o
t

12
90

24
66

48
%

19
78

35
%

19
30

33
%

19
30

33
%

19
30

33
%

V
O

PD
&

Sh
.D

e
c

.[
15

8]
55

18
8

11
86

86
54

%
90

00
0

39
%

70
56

0
22

%
55

20
8

0%
55

20
8

0%

V
O

PD
[1

06
]

63
76

6
94

75
4

33
%

81
49

0
22

%
75

03
8

15
%

69
76

6
8.

6%
69

76
6

8.
6%

D
V

O
PD

[1
06

]
65

20
2

11
55

32
44

%
93

30
0

30
%

79
83

0
18

%
77

31
6

16
%

77
31

6
16

%

M
PE

G
-4

[1
06

]
14

20
10

17
59

72
19

%
15

91
58

11
%

14
96

80
5.

1%
14

20
10

.0
%

14
20

10
.0

%

PI
P

[1
06

]
99

84
13

38
2

25
%

12
14

8
18

%
11

64
2

14
%

11
26

4
11

%
11

26
4

11
%

M
W

D
[1

06
]

14
11

4
21

21
4

33
%

17
86

4
21

%
16

80
8

16
%

16
22

0
13

%
16

21
6

13
%

H
.2

63
d

e
c

.,
m

p
3

d
e

c
.[

10
6]

17
25

54
37

09
04

53
%

28
38

72
39

%
23

00
20

25
%

18
10

72
4.

7%
18

10
68

4.
7%

m
p

3
e

n
c

.,
m

p
3

d
e

c
.[

10
6]

18
50

0
39

62
2

53
%

33
80

8
45

%
32

08
6

42
%

30
75

6
40

%
30

75
2

40
%

H
.2

63
e

n
c

.,
m

p
3

d
e

c
.[

10
6]

37
37

78
55

43
12

33
%

48
43

78
23

%
45

38
32

18
%

43
08

88
13

%
43

08
84

13
%

a
v

e
r

a
g

e
p

e
r

f
.l

o
s
s

0%
40

%
28

%
21

%
14

%
14

%

a
r

e
a

s
a

v
i
n

g
0%

44
%

36
%

27
%

18
%

9.
6%

p
o

w
e

r
s
a

v
i
n

g
s

0%
29

.3
%

23
.8

%
18

.2
%

12
.8

%
7.

2%

Table 13: Results for asymmetric buffer depths with asymmetric “aggres-
sive” router architecture [JM 3].

138 optimization of router memory

Asymmetric buffer depth reductions are evaluated by comparison
of the “aggressive” router architecture with 8 flit deep buffers in all
layers to a NoC with 8 flit deep buffers in the lower, more advanced,
layer and 4 – 8 flit deep buffers in the upper layer. The results are
shown in Table 13. For small buffer depth in the upper layer, the
performance losses are rather high, with up to 40%. Therefore, a
large asymmetry in buffer depth is not advantageous. However, a
light asymmetry is promising: Reducing the buffer depth from 8 to 7
flits in the upper layer yields a constant performance loss of 14% in
comparison to the conventional baseline architecture, but doubles the
area savings from 9.6% to 18% and increases the total power savings
from 7.2% to 12.8%.

8.4.3 Combination of both optimizations

The results suggest evaluating a combination of both proposed op-
timization approaches, as those might reduce area and power while
maintaining acceptable performance. In terms of microarchitecutral
optimizations, the “delay-oriented” router offers the best compro-
mise. In terms of architectural optimizations, slight asymmetry of
7 and 8 flit deep buffers has the best properties. The combination
of both approaches is compared in Table 14. Without microarchitec-
tural optimizations, using the conventional router, with asymmetric
buffer depth yields a negligible performance loss of 0.06%, with 13%
reduced area and 9.3% power decline. With microarchitectural op-
timizations, i. e. using the “delay-oriented” router, the performance
declines by 4.6%, with 28% area savings and 15% total power reduc-
tion.

8.4.4 Influence of clock frequency deviation

As worst case approximation, we assume globally synchronous clocks.
Here, we assess the influence of this assumption. We use the maxi-
mum clock frequencies from RTL model synthesis for the routers and
model a GALS system, in which the upper layer is clocked at 820 MHz
and the lower at 1000 MHz. We do not consider the actual hardware
implementation of router interfaces supporting different clock speed
(cf. Chapter 9 for a detailed discussion). Uniform random traffic is
injected at 3.2 GB/sec. The results vary by 2% on average.

8.5 discussion

Heterogeneity poses severe limitations to 3D SoCs, since mixed-signal
layers or layers in a less advanced digital node are more restricted
in terms of area, power and, thus ultimately, performance. Here we
demonstrate that power and area consumption in the NoC will be

8.5 discussion 139

Traffic/ baseline sym. router “delay-oriented”

Application execution 7 flit buffers 7 fl. buf.

clc. cycl. clc. cyc. loss clc. cyc. loss

uniform 1318 1316 -0.2% 1372 4.0%

complement 170 170 .0% 186 8.6%

hot-spot 1290 1300 .8% 1412 8.6%

VOPD & Shape 55188 55188 .0% 55192 .01%

Decoder [158]

VOPD [106] 63766 63766 .0% 65564 2.7%

DVOPD [106] 65202 65210 0.01% 67170 3.0%

MPEG-4 [106] 142010 142014 .003% 142014 .003%

PIP [106] 9984 9984 .0% 10366 3.7%

MWD [106] 14114 14118 0.03% 14476 2.5%

H.263 enc, 373778 373780 .0% 388554 3.8%

mp3 dec. [106]

mp3 encoding, 18500 18500 .0% 22182 17%

mp3 dec. [106]

H.263 dec, 172554 172558 .0% 174976 1.4%

mp3 dec. [106]

average performance loss 0% 0.06% 4.6%

buffer area savings 0% 13% 28%

total power savings 0% 9.3% 15%

Table 14: Benchmarks for the symmetric and proposed asymmetric archi-
tectures with a buffer size of 7 flits. The execution time is measured in
clock cycles [JM 3].

reduced if router buffers are optimized on an architectural and micro-
architectural level using asymmetry.

Applying the proposed microarchitectural optimizations, only the
“delay-oriented” router is promising: A relatively low performance
loss of 2.1% offers area savings of 8.3%. For the “aggressive” router,
the area savings are similar, with 9.6%, but the performance loss is
rather high at 14%.

Applying architectural optimizations, large heterogeneity results
in large performance losses of up to 41%. However, network perfor-
mance can be maintained using light asymmetry; We achieved cost
reductions of 13% and 9.6% at a negligible performance loss of 0.06%.

Applying both approaches simultaneously is promising for low-
power designs, with lavish performance constraints. Using the pro-
posed “delay-oriented” router with a light asymmetry in buffer depth
of one flit offers large area reductions of 28% and power reductions
of 15% at a minor performance loss of 4.6%.

140 optimization of router memory

8.6 conclusion

Area and power consumption of NoCs in heterogeneous 3D SoCs
can be reduced by applying architectural and microarchitectural op-
timization to buffer distribution and buffer depths. These types of
optimizations require delicate fine-tuning of parameters, since the in-
fluence on performance is non-linear. Therefore, it is necessary to
find buffer depths and distributions which offer the best compromise
between performance penalty and reduced area and power consump-
tion. The two proposed options offer either cost reductions of up to
13% and 9.6% for area and power, respectively, at negligible perfor-
mance loss or larger area and power savings at a larger performance
loss. Therefore, a universal design principle cannot be derived – it de-
pends on the power and area budget as well as on the performance
needs of an individual design. The proposed approach offers high
re-usability: It can be applied to any router architecture, which has
input buffers and does not require special buffer features. It is not ap-
plicable to router architectures with special buffer designs such as the
SMART router [164] that implements buffers with repeaters to allow
for single-cycle flit transmission.

9
O P T I M I Z AT I O N O F R O U T I N G A N D
A R C H I T E C T U R E S

In the previous chapter, we discussed (micro-) architectural router
optimizations with regard to router buffers. In this chapter we con-
tinue to follow the incremental approach from Section 5.6.2 and shift
focus on the design of routing algorithms and co-designed router ar-
chitectures in A-3D NoCs. In general, there are many publications
on routing algorithms in 3D NoCs, such as [126, 165]. These do not
consider the effect of implementation technology, because homoge-
neous 3D SoCs offer the same properties in all parts of the chip. In
contrast, novel routing algorithms are required for heterogeneous 3D
SoCs, since the technology node, in which routers are implemented,
influences their properties. For instance, the performance of routers
in mixed-signal layers is smaller than the performance in advanced
digital nodes. This can be exploited by routing: It is advantageous
to send packets along path with high-performance routers. Models,
which allow to calculate the transmission time along heterogeneous
paths, i. e. path through layers in disparate technologies, do not ex-
ist so far. Since these allow finding paths for packets with optimized
performance, we present novel models for this very purpose in this
chapter. We further propose two routing algorithms and introduce
an exemplary, bespoke router architecture. Both increase the network
performance to beyond state-of-the-art in heterogeneous 3D SoCs as
originally presented in [JM 1]. Since this publication concluded the
topic, we only improve the clarity of presentation here.

9.1 influence of heterogeneity on routing

If components in a heterogeneous 3D SoC are connected via a NoC,
the network will span layers in different nodes. This causes a severe
issue: Homogeneous routers, which are common for state-of-the-art
3D NoC designs [128, 130], yield unbearable costs (in terms of area
and power) in layers in mixed-signal nodes. To solve this, routers
with heterogeneous characteristics but with aligned properties are re-
quired. NoCs implementing this principle are called asymmetric, i.e.
A-3D NoCs. Their architecture needs careful consideration of numer-
ous trade-offs. Among the different challenges, the most relevant are:
Challenge 1: Routers in mixed-signal layers are disproportionately expen-

sive.
Challenge 2: The different technology nodes influence the maximum num-

ber of routers per layer.

141

142 optimization of routing and architectures

Challenge 3: Routers in mixed-signal layers are slower clocked. Routers in
the more advanced or digital nodes can be clocked faster
than mixed-signal layers.

Challenge 4: Interaction between routers in adjacent layers is not purely
synchronous, intrinsically. Routers in different layers are
clocked differently. This influences packet provision.

The challenges must be tackled, especially since communication in A-
3D NoCs has a unique characteristic: Throughput and latency differ
between layers because of varying router numbers and router clock
speeds. We will contribute that low packet provision in some layers
impedes the packet’s performance in the whole network. We demon-
strate this by means of modeling in Sections 9.2 and 9.3. Next, we
quantify the impact of heterogeneity in Section 9.4 and tackle this
obstacle by novel principles for routing algorithms and novel router
microarchitectures. We apply the principles to concrete routing al-
gorithms in Section 9.5 and design a fitting router architecture in
Section 9.6. We quantify advantages in Section 9.7 and discuss the
findings in Section 9.8.

9.2 modeling technology heterogeneity

We model the influence of heterogeneity on area and timing. The
models cover any type of commercial technology and any feature
size under the following assumptions. We assume that the delay of
TSVs is negligibly small compared to delay of links and logic. This is
reasonable, since TSVs are only 50 µm long (cf. Section 3.3.4). Next,
we do not model KOZs, because these are a constant overhead inde-
pendent of technology node. Further, routers must not be located at
the identical position in their layer, since a redistribution (RD) can
connect routers and TSVs (cf. Section 6.2.1). The variability of the RD
is modeled by converting router locations to router addresses. We as-
sume a GALS design, in which components are clocked at different
speeds. A synchronous model would waste performance, especially
since mixed-signal components have very low clock speeds.

We do not contribute a power model for routing due to diverse
influence parameters. For instance, the actual data transmitted vastly
affect dynamic power consumption of links, which is hard to model
a priori without simulations, as shown in Section 7.2.3.1.

We consider a chip with ` layers and their index set [`] = {1, . . . , `}.
We assume n-m-mesh topologies of NoCs per layer. The structure
size of the technology nodes of layers, measured in [nm], is given by
τ : [`] → N. A chip layer with index ι will be called »more advanced
node« than a layer with index ξ if τ(ι) is smaller than τ(ξ) (for easy
notation). Further, we define:

9.2 modeling technology heterogeneity 143

Definition 9.1 (Relative technology scaling factor [JM 1]). Let ξ and
ι be the indexes of layers with technologies τ(ξ) and τ(ι) and with
τ(ξ) > τ(ι). The relative technology scaling factor Ξ is:

Ξ(ξ, ι) :=
τ(ξ)

τ(ι)
(60)

Please note, that the proposed model has been published in [JM 1].
Definitions are directly taken from this publication, since their defini-
tion is unique.

9.2.1 Area model

The area of the communication infrastructure in layers is determined
by the size of individual routers and their number. We propose an
abstract model covering the influence of technology nodes, synthesis
constraints, synthesis tools and router architectures.

9.2.1.1 Area of routers

The technology node, in which a router is implemented, affects the
size of each of its architectural components. Requirements for area
of both combinatorial and sequential logic are influenced; thus, the
size of routing computation, crossbars and buffers differs. The area
of logic reduces its size (ideally) quadratically for more advanced
nodes. The remainder of routers (e. g. power supply) does not scale.
This yields a total area model of the form α̂+ ασ2, in which α̂ is the
constant part, α is an non-ideality factor, and σ is the feature size.
This model is depicted in Figure 71. By this model we define the area
scaling factor as the difference between baseline technology, i.e. the
largest node, and any target technology:

scaling
by factor 2

Figure 71: Area size model with constant area (orange, lined) and scalable
area (green, dotted) [JM 1].

Definition 9.2 (Area scaling factor [JM 1]). Let ξ and ι be the indices
of two chip layers with technologies τ(ξ) and τ(ι) and with relative
technology scaling factor Ξ(ξ, ι). The area scaling factor sf : (R) → R

is given by:

sf(Ξ) :=
α+ α̂
α
Ξ2

+ α̂
(61)

The model assumes that the chip area is normalized to one area unit.
The non-ideality factor α denotes, how well the technology scales
quadratically. The base technology area offset α̂ is dominated by com-
ponents which do not scale. Both parameters are evaluated for the

144 optimization of routing and architectures

used set of technology nodes by synthesis of a small circuit with typi-
cal properties, such as a basic router model (see Sec. 9.7.1). Then, the
parameters can be estimated using function fitting. In an ideal set-
ting, α = 1 and α̂ = 0. For instance, if two layers are implemented in
an ideal theoretical technology node with τ(1) = 180nm and τ(2) =
45nm, the technology scaling factor will be sf(Ξ(180, 45)) = 16. For a
setting with 90 nm and 180 nm nodes, it will be sf(Ξ(180, 90)) = 4.

9.2.1.2 Number of routers

Not only the size of individual routers is influenced by varying nodes,
but also the number of routers in layers is affected. This can also be
modeled using the area scaling factor sf for an approximate lower
bound for the number of routers, which can be implemented in a
more advanced node.

9.2.2 Timing model

We model the transmission time of packets in heterogeneous 3D SoCs.
It is determined by the timing of individual routers and their interac-
tion, i. e. the network topology. We account for the clock delay of indi-
vidual routers, and deduct the propagation speed of packets, which
traverse multiple routers.

9.2.2.1 Clock delays

The clock delays in heterogeneous 3D SoCs vary; in digital and more
advanced layers, routers are potentially faster, while routers in mixed-
signal layers are constrained by slower clock frequencies. The clock
delay of routers is determined by two drivers: The interconnect de-
lay does not scale and therefore limits router performance in small
nodes (power constraints also limit the maximum achievable clock
frequency); the logic delay does scale and is larger than the intercon-
nect delay for large nodes. We model a clock scaling factor, which
gives the ratio, at which the clock delays in different nodes scale.
There are two drivers, one of which is scaling and one of which is
non-scaling. Since the actual, physical influence is hard to estimate
in models, we propose an empirical approach by fitting a sigmoid
function. Unlike the area model, we do not propose a physical model.
Since the proposed timing model shows high accuracy of the function
fitting, as shown in Section 9.7.1, the results presented in this Chapter
will not change, if another (physical or empirical) model with similar
or higher accuracy is used.

Definition 9.3 (Clock scaling factor [JM 1]). Let ξ and ι be the indices
of two chip layers with technologies τ(ξ) and τ(ι), with τ(ξ) > τ(ι)

and with technology difference Ξ(ξ, ι). Let cb be the base clock delay
of the layer with index ξ and cc be the minimum achievable clock

9.3 modeling communication 145

delay, which is limited from physical effects such as power dissipation
or interconnect delays. Let β be the maximum speedup achievable:
β := cb/cc. The clock scaling factor cf : (R)→ R is given by:

cf(Ξ) :=
β

1+ β̂ exp
(
−β̃

(
Ξ− β̄

)) (62)

The function converges to the maximum achievable speedup β. The
other parameters must be set by fitting the function to a set of synthe-
sis results (see Section 9.7.1).

9.3 modeling communication

We model latency, throughput and transmission speed in the NoC un-
der zero load. Two separate models for communication are required.
Horizontal communication within a layer is synchronous. Vertical
communication between layers is not purely synchronous, depend-
ing on router architecture and technology nodes.

9.3.1 Horizontal communication

We call the speed at which packets are transmitted horizontally, under
zero load, propagation speed. It varies with technology nodes, since
the number and clock frequency of routers differ. Communication
is synchronous. The propagation speed is given by the distance traveled
divided by the packet latency.

To calculate the distance, we use the following notations: All pos-
sible positions of routers are given by the set P = R×R× [`]. The
x- and y-coordinates of routers are measured in [m]1. The symbols
px, py and pz denote the components of each position p ∈ P. Fur-
ther, packets have a payload. This is modeled using the number of
flits transmitted l ∈ L = N. Together, the set of packets is given by
D = P × P × L. Packets are transmitted from a current (source) posi-
tion to a destination position. (Please note, that the current position
describes the location of a packet during transmission, which does
change. It does not refer to the position, at which the packet was
injected.) This yields the definition of the transmission distance.

Definition 9.4 (Horizontal transmission distance [JM 1]). Let π be a
packet with π = (p1,p2, l), with source node p1, destination node
p2 and l flits. The horizontal transmission distance s(π) is defined
as the distance between source and destination positions in x- and y-
dimension:

s(π) =
∥∥(p1,x,p1,y

)
−
(
p2,x,p2,y

)∥∥ (63)

1 Please note that “measured in [m]” refers to SI-unit meter; “[m]” refers to the set
{1, . . . ,m}. Thereby we avoid ambiguity.

146 optimization of routing and architectures

For example, in a mesh topology, the distance between source and
destination position in x- and y-dimension of a packet π = (p1,p2, l)
is calculated by s(π) :=

∥∥(p1,x,p1,y
)
−
(
p2,x,p2,y

)∥∥
1

. The norm ‖·‖1
denotes the Manhattan norm.2

The latency of a packet is calculated by the accumulating the latency
of routers on the packet path. This is shown in Figure 72. Each router
requires δ(ξ) clock cycles to process the head flit in the layer ξ ∈ [`].
After this initial delay, one flit is sent per clock cycle until the packet is
fully transmitted. If a single packet with l flits passes through a single
router, the transmission will be finished after δ(ξ) + l cycles. Let the
constant ρ(ξ) be defined as the average distance between routers in
the layer ξ. Hence, a packet traverses s(π)/ρ(ξ)+ 1 routers including
the destination router during its transmission. This yields the hori-
zontal packet latency and throughput:

Definition 9.5 (Horizontal packet head latency under zero load [JM
1]). Let π be a packet with π = (p1,p2, l) and ξ ∈ [`] a layer. The
average distance between routers in the layer ξ is ρ(ξ) and the delay
for processing head flits per router is δ(ξ). The clock delay of routers
is clk(ξ), measured in [s]. The horizontal packet head latency under zero
load, measured in [s], in layer ξ is

∆H(π, ξ) =
(
s(π)

ρ(ξ)
+ 1

)
δ(ξ)clk(ξ). (64)

router n+0

router n+1

router n+2
t+0 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14

pipelining δ−χ

δ

latency ∆(π,ξ)

Figure 72: Horizontal communication of two consecutive packets (orange,
green). Routers have delay δ = 3 and pipelining χ = 2. The latency ∆(π, ξ)
is the difference between head flit send and receive time [JM 1].

Definition 9.6 (Horizontal router throughput [JM 1]). Let π be a
packet with π = (p1,p2, l) and ξ ∈ [`] a layer. The delay for pro-
cessing head flits per router is δ(ξ). The router is pipelined with χ(ξ)
∈ [0, δ(ξ)] steps. The clock delay of routers is clk(ξ), measured in [s].
The horizontal router throughput, measured in [flits/s], is given by the
number of flits that a router can pass in a period:

∆̂H(π, ξ) =
l

(l+ δ(ξ) − χ(ξ)) clk(ξ)
(65)

2 ‖p‖1 =
∑n
i=1 pn for p ∈ Rn.

9.4 limitations of routing due to heterogeneity 147

9.3.2 Vertical communication

While horizontal communication is essentially homogeneous, vertical
communication may be effected by heterogeneity, especially by devi-
ations in clock speed between routers. Therefore, the model must
comprise non purely synchronous communication, but also different
router and link architectures (such as the mesosynchronous router in
Section 9.6).

Definition 9.7 (Vertical packet head latency under zero load [JM 1]).
Let π be a packet with π = (p1,p2, l) and ξ and λ ∈ [`] layers with
p1z = ξ and p2z = λ. Without loss of generality, assume that ξ 6
λ and that slower layers are above faster layers. The clock delay of
routers is clk(i) for all layers i ∈ [`], measured in [s]. The vertical packet
head latency under zero load (downwards), measured in [s], is given by
the delay each router adds during head flit processing

∆
↓
V(π, ξ, λ) =

λ∑
i=ξ

δ(i)clk(i). (66)

The vertical packet head latency under zero load (upwards), measured in
[s], is given by the delay each router adds during head flit process-
ing plus a clock cycle for synchronization as illustrated in Figure 73.
This occurs only once during the path of the packet, since only two
types of technology nodes are combined, for the typical scenario for
heterogeneous 3D SoCs as considered here. Thus, the overhead for
synchronization only occurs once. The slower clock frequency domi-
nates.

∆
↑
V(π, ξ, λ) =

ξ∑
i=λ

δ(i)clk(i) + clk(ξ). (67)

Definition 9.8 (Vertical router throughput [JM 1]). Let π be a packet
with π = (p1,p2, l) and ξ and λ ∈ [`] layers with p1z = ξ and
p2z = λ. Without loss of generality, assume that ξ 6 λ. Routers are
pipelined with χ(i) ∈ [0, δ(ξ)] steps in each layer i ∈ [`]. The clock
delay of routers is clk(i), measured in [s]. The horizontal through-
put of routers in any layer i is ∆̂(π, i). The vertical router throughput,
measured in [flits/s], is given by the slowest router:

∆̂V(π, ξ, λ) = min
i∈[ξ,...,λ]

{
∆̂(π, i)

}
(68)

Long delays for processing a head flit are not relevant in the case of
pipelining. Figure 73 demonstrates that the slowest clock dominates
the throughput of the transmission for asynchronous chips.

9.4 limitations of routing due to heterogeneity

The main limiting factor for conventional routing of packets in het-
erogeneous 3D SoCs is the varying clock speed of routers in dis-

148 optimization of routing and architectures

slower layer

faster layer

t+0 t+2 t+4 t+6 t+8 t+10 t+12

vertical delay vertical delay
throughput dominated by slowest clock frequency

Figure 73: Vertical communication is dominated by the slowest clock fre-
quency in a GALS model. Routers are clocked at a delay of 1 and 1/2.
Routers have head delay δ = 0 and pipelining χ = 0 [JM 1].

parate technologies. This impedes latency; this issue can only be over-
come by novel routing algorithms, which reduce the length of parts
of the packet path with long latency. Heterogeneity also will im-
pede throughput if interaction between routers is not purely syn-
chronous. This issue can only be overcome by novel router archi-
tectures, which increase the throughput between layers in disparate
technologies. Since efficient routing algorithms must provide low la-
tency and high throughput, there is an essential need for a co-design
of router architectures and routing algorithms in heterogeneous 3D
SoCs.

9.4.1 Tackling latency limitations via novel routing algorithms

180 nm
mixed-signal

130 nm 90 nm 65 nm 45 nm 28 nm 20 nm 14 nm 10 nm 7 nm
0

0.2

0.4

0.6

0.8

digital technology node

pr
op

ag
at

io
n

sp
ee

d
ω

in
[m

/s
]

model with predictive technology commercial technology (measured)

Figure 74: Propagation speed ω based on our experiments (green) for com-
mercial 180 nm mixed-signal and 130 nm – 45 nm digital technology using
the synthesis results for our NoC router with a head flit delay of δ = 3 and
a 2×2 NoC in the mixed-signal layer and based on the model (orange) for
180 nm – 7 nm predictive technology [JM 1].

Depending on the manufacturing technology of a layer, the commu-
nication speed differs. Routing algorithms can exploit this to reduce
the limitations of heterogeneity. This requires identification of faster
layers. In more advanced layers, routers are clocked faster, which in-
creases the speed. But there are also more routers in these layers, since
their individual size shrinks, which add delays to transmission. These
two effects must be considered simultaneously to calculate the trans-
mission speed. We use Equations 63, and 64, with derivation, which

9.4 limitations of routing due to heterogeneity 149

yield the propagation speed of a packet under zero load in horizontal
direction.

Definition 9.9 (Propagation speed [JM 1]). Let ξ ∈ [`] be a layer. The
propagation speed in layer ξ is

ω(ξ) =
ρ(ξ)

δ(ξ)clk(ξ)
(69)

measured in [m/s]. It can be obtained by considering any packet π
with π = (p1,p2, l) with distance s(π). The speed is distance per time,
i.e. ω(ξ) =

s(π)
∆H(π,ξ) .

The propagation speed ω is shown in Figure 74. We use a commer-
cial 180 nm general purpose mixed-signal node and 130 nm – 45 nm
general purpose digital nodes. The results are based on synthesis for
a standard NoC router with a head flit delay of δ = 3. The NoC in
the mixed-signal layer has 2×2 routers; in the digital layer, there are
larger, scaled NoCs. These transmission speeds are depicted in green.
Comparing mixed-signal and digital technologies, we observe a prop-
agation speed improvement of between 2.7× and 4.3×. The effect of
clock scaling is stronger than the effect of area scaling throughout all
technologies, in our experiments.

For a further evaluation, we use the proposed models and fit syn-
thesis results (cf. Section 9.7.1). This enables prediction of propaga-
tion speeds of layers manufactured in nodes with a feature size below
45 nm, which are not available to academia. We set the maximum
clock frequency of the delay model to 5 GHz. We observe a maxi-
mum speed improvement of 5.1× for 28 nm. For smaller nodes, it is
reduced to 3.3× as a result of the limit in clock speed. Summing up,
the clock frequency scaling remains dominant over area scaling for
all nodes, but its advantage declines. Hence, smaller nodes are faster
than mixed-signal nodes, in general.

9.4.2 Tackling throughput limitations via novel router microarchitectures

We motivated in the last paragraph, that we can reduce communica-
tion latency by routing algorithms, which use paths through faster
layers. Here we demonstrate that routing algorithms cannot increase
throughput; the throughput limitation due to heterogeneity can only
be tackled by means of router architectures. We consider packets
with length l. According to Equation 65, the throughput of horizontal
communication is ∆̂H = 1

clk(ξ) ; it is determined by the layer’s clock
frequency. If communication spans layers in another technology (i.e.
layer with another clock frequency), Equation 68 will yield the verti-
cal throughput:

∆̂(π, λ) =min{∆̂V(π, ξ, λ), ∆̂(π, λ)} = ∆̂V(π, ξ, λ) 6
1

clk(ξ)
(70)

150 optimization of routing and architectures

This shows that the throughput on paths, which span multiple, het-
erogeneous layers, is limited by the slowest clock frequency. In other
words, the chain is only as strong as its weakest link. This limitation
is universal for routing in heterogeneous 3D SoCs; thus, “communica-
tion may not span slower clocked layers if high throughput is required” [JM
1]. Due to this principle, increases in transmission speed are still lim-
ited by reduced throughput. Even worse, packets from and to slower
layers are inevitably throughout limited. Therefore, horizontal trans-
mission in slower layers must be reduced to a minimum. Further,
novel router architectures are required, which tackle the throughput
limitations for packets, which originate from or are designated to a
slower layer. In the next sections, we consider both novel routing al-
gorithms (Section 9.5) and novel router architectures (Section 9.6) to
tackle both throughput and latency limits.

9.5 tackling latency : routing algorithms

Conventional XYZ routing is not applicable to heterogeneous 3D SoCs
because the routing algorithm is not connected. This was already in-
troduced in Section 5.4. Using the models, this can also be proven as a
general principle due to heterogeneity: Not all routers in digital layers
are connected to a router in mixed-signal layers, since the number of
routers differ. The routing algorithm is not connected: packets from
a node in the mixed-signal layer to a destination in a digital layer
cannot be routed if the destination router is not connected upwards.
This is shown in Figure 75, orange path. The closest variation of con-
ventional XYZ routing for heterogeneous 3D SoCs is also shown in
Figure 75. We call this routing heterogenenous XYZ; packets are routed
to the digital layers via the vertical connection, which is closest on
the path to the destination. We do not prove livelock and deadlock
freedom for this routing method, since the proof is merely rearrang-
ing the arguments from Section 9.5.5. Naturally, heterogenenous XYZ
performs worse in every metric in comparison to the proposed novel
routing algorithms and is only used as a baseline for comparison.

slower layer
e.g. 180 nm

faster layer
e.g. 90 nm

R 1

R 2

not connected

DOWN as late as possible

Figure 75: Sectional drawing of a 3D NoC with two layers in disparate
technologies: conventional XYZ routing is not connected (orange, path
from R 1 to R 2). The closest variation routes down as late as possible
(green) [JM 1].

9.5 tackling latency : routing algorithms 151

9.5.1 Principles for routing algorithms in heterogeneous 3D SoCs

As discussed, transmission through different layers can reduce the
latency. This can be exploited by the following two paradigms for
routing algorithms:

– "Stay in faster layers!": Packets should stay in layers with high
propagation speed as long as possible. This is exemplified in
Figure 76 using a sectional drawing of a two-layered chip, with
two disparate technologies and sf = 4. Usually, data transmit-
ted from routers R 1 to R 2 stay in the upper layer until reaching
the router above R 2 (path in orange color). This yields higher
latency than the way back via the lower layer in the more ad-
vanced technology node. Thus, it is favorable to route all pack-
ets via the preferred path, depicted in green.

slower layer
e.g. 180 nm

faster layer
e.g. 90 nm

R 1

R 2

standard path

preferred path

Figure 76: “Stay in faster layers!”: A sectional drawing of the 3D NoC with
routers plotted in gray and links in black. The green paths are faster than
the orange paths [JM 1].

– "Go through faster layers!" If the performance gain is large enough,
packets can be routed via adjacent, faster layers (even though
this is a detour). Figure 77 exemplifies this with a sectional
drawing of a two-layered chip, with two technologies and sf =
4. The routers R 1 and R 2 are communicating. Usually, data is
transmitted via the upper layer, which is slower than the lower
layer. Therefore, it is favorable to route packets via the green
path.

slower layer
e.g. 180 nm

faster layer
e.g. 90 nm

R 1 R 2standard path

preferred path

Figure 77: “Go through faster layers!”: A sectional drawing of the 3D NoC
with routers plotted in gray and links in black. The orange path between
R 1 and R 2 is longer yet faster than the green path [JM 1].

We apply the two aforementioned paradigms and propose two ex-
emplary routing algorithms. The proposed models provide relevant
information to set parameters of the algorithms and assess, under
which (technological) circumstances the routing algorithms are appli-
cable, since the models are generally valid, i.e. can be applied to any

152 optimization of routing and architectures

topology and set of technology parameters (beyond the proposed al-
gorithms and the setting).

9.5.2 Preliminary considerations for the routing algorithms

9.5.2.1 Setting

A heterogeneous 3D SoC with ` ∈ N layers is used. Its layers are
ordered by technology node, as in the vast majority of works on 3D
SoCs, e.g. [1]. The most coarse-grained technology is at the top whilst
the most fine-grained technology is bottommost. Reordering the lay-
ers does not influence the models and principles and only requires
minor changes to the proposed routing algorithms; hence, this does
not lead to a loss of generality. But the order reduces the complex-
ity of descriptions. Our approach is applicable to scenarios without
ordered layers, with minor modifications.

A 3D NoC is implemented in the heterogeneous 3D SoC. As net-
work topology, each layer has a grid with mξ rows and nξ columns,
wherein ξ ∈ [`] is the layer index; routers are arranged in rows and
columns. Therein, neighboring routers connect horizontally which
yields a mξ-nξ-mesh topology. We do not model long range links or
express virtual channels; thus, routers only have one link in the same
direction. All routers, except those on the bottommost layer, have a
(bidirectional) vertical link to the adjacent router in the next lower
layer. This is possible due to the ordering of layers (cf. Figure 78).
The set of routers V is also the vertex set of the network digraph
T = (V ,A).3 The set of arcs A contains the directed links between
routers.

9.5.2.2 Addresses in the network

The coordinate system of the SoC is shown in Figure 79, which mod-
els location of routers. The origin of the coordinates is the SoC’s top
left corner. Calculation of routing algorithms must be efficient, thus
using the (physical) locations in the 3D SoC is not realistic. We in-
troduce row and column and layer number for routers as a solution.
Rows and columns are based on the network digraph and not the
physical locations: For example, pairs of neighbored routers in adja-
cent layers do not necessarily have the same physical x- and y- co-
ordinate but the same column and row number. This is shown in
Figure 78. We do not depict this in all figures for sake of simplicity. If
routers are stacked, such as in Figure 76, this will model a physical
placement comparable to Figure 78, in which routers are not necessar-
ily stacked. Connecting these routers is done using redistribution. We
notate row, column, and layer of each router as w = (wx,wy,wz) for

3 In Duato [99] the network digraph is called interconnection network.

9.5 tackling latency : routing algorithms 153

w ∈ W = N3, which is also the network address space. An injective
function

m :W → P (71)

converts addresses to locations of routers. Packets with source and
destination address are given by D̃ =W ×W × L.

1 2 3 4 5

layer wz = 1

layer wz = 2

layer wz = 3

row/col (wx/wy)

Figure 78: Layers are ordered by technology. Routers in same row and col-
umn must not be at the same physical location in their layer. Links connect
routers via redistribution and TSV arrays (bold) [JM 1].

vx ∈N

vz ∈ [`]

vy ∈N

down

up

eastwest

south

north

Figure 79: Cardinal directions in model coordinates W [JM 1].

9.5.2.3 Cardinal Directions

We use the six cardinal directions C := {north, east, south, west, up,
down} to sort the arcs, i. e. links in the network, as shown in Fig-
ure 79. We define functions which return the set of all links in one of
these cardinal directions. These are given for all links (v,w) ∈ A, as
published in [JM 1]:

(v,w) ∈ north(A) ⇔ vx = wx, vy > wy, vz = wz
(v,w) ∈ east(A) ⇔ vx < wx, vy = wy, vz = wz
(v,w) ∈ south(A) ⇔ vx = wx, vy < wy, vz = wz
(v,w) ∈ west(A) ⇔ vx > wx, vy = wy, vz = wz
(v,w) ∈ up(A) ⇔ vz > wz

(v,w) ∈ down(A) ⇔ vz < wz

For example, north(A) contains all links which point to north. We
further introduce functions that will return neighbors of routers in

154 optimization of routing and architectures

a certain cardinal direction, if a link exists.4 Routers at the edges of
the network do not have links in that direction which is given by the
value 0. We define for all f ∈ C:

f : V → V ∪ {0}

v 7→

w if (v,w) ∈ f(A)

0 otherwise.

9.5.3 Applying principle 1: Z+(XY)Z- routing algorithm

We apply principle 1, "Stay in faster layers!" and develop a minimal
and deterministic routing algorithm, as originally proposed in [JM
1]. Let π̃ = (v,w, l) be a packet. If source and destination are in dif-
ferent layers, i.e. vz 6= wz, the faster of the two layers is taken for
transmission. Therefore, we apply Equation 69 to calculate the aver-
age propagation speed at design time. This yields the following rules
for transmission of packet π (in router with address v):

– If ω(vz) < ω(wz), XYZ routing will be applied.
– If ω(vz) > ω(wz), ZXY routing will be applied.
– If ω(vz) = ω(wz), either XYZ routing or ZXY routing will be

applied, selected at design time, depending on other network
properties such as energy consumption of routers.

We call this routing algorithm Z+(XY)Z-. Since layers are ordered by
technology and hence by transmission speed, the implementation as
shown in Listing 8 modifies deterministic XYZ simply by reordering
if-statements. In a more general case, routers will require a flag stor-
ing information if faster layer is located below, above or is indeed this
actual layer. The resulting routing is illustrated in Figure 80.

slower layer
e.g. 180 nm

faster layer
e.g. 90 nm

R 1

R 2

Z+XY path

XYZ- path

ω(1) <ω(2)

Figure 80: Z+(XY)Z- routing: transmission through the lower layer is faster
in this NoC with two layers in disparate technologies (sectional drawing)
[JM 5].

Definition 9.10 (Routing function R1 for Z+(XY)Z- routing [JM 1]).
Let T = (V ,A) be the topology digraph with the set of routers V and

4 Note, that the above functions will be only well-defined, if no router has more than
one link to the same direction.

9.5 tackling latency : routing algorithms 155

the set of links A. Further, P(A) is the power set of A. The routing
function R1 : V × V → P(A) is defined as:

(v,d) 7→

∅ for v = d

{north(v)} for vx = dx, vy > dy, vz > dz

{east(v)} for vx < dx, vz > dz

{south(v)} for vx = dx, vy < dy, vz > dz

{west(v)} for vx > dx, vz > dz

{up(v)} for vx = dx, vy = dy, vz > dz

{down(v)} for vz < dz.

Please note that {0} is impossible by construction, since all routers
have a downward link in our setting (except those in the bottommost
layer). This is formally proven in Lemma 9.3.

The following must be considered for minimality for this routing
algorithm: Minimality refers to the shortest path in the interconnec-
tion network. Our routing algorithm will be minimal if links in the
interconnection graph are weighted with their speed. In terms of hop
distance (which are usually used to assess minimality) the proposed
routing algorithm is not minimal.

9.5.4 Applying principle 2: ZXYZ routing algorithm

We apply principle 2, "Go through faster layers!". Packets will be trans-
mitted via detours if these paths are faster. Since there is an overhead
when routing to the fastest layer for vertical transmission, it depends
on the position of source and destination, if transmission to a faster
layer is actually beneficial. Let π̃ = (v,w, l) be a packet with source
address v, destination address w and l flits. Let π be the correspond-
ing packet after applying m to convert addresses to locations. The
transmission time under zero load in the layer vz is ∆H(π, vz) (Equa-
tion 64). Let λ ∈ [`] be another layer, through which the packet could
be transmitted. The transmission time detouring via layer λ is the
transmission time for traversing vertical links, plus time within layer
λ. Applying the model will yield a condition for routing via layer λ,
if this path has smaller latency:

∆H(π, ξ) > ∆↓V(π, ξ, λ) +∆H(π, λ) +∆↑V(π, ξ, λ) − 2δ(λ)clk(λ) (72)

Please note, that delay of the routers at the edges of the vertical
and horizontal paths are calculated double and therefore must be
subtracted. The threshold distance φ(ξ, λ) determines the minimum
distance in layer ξ for which rerouting via layer λ is faster. In our
setting it is not useful to use another than the top digital layer to
save vertical transmission time. Non-adjacent layers in mixed-signal
nodes have larger thresholds. Equation 72, with φ := s(π) yields

156 optimization of routing and architectures

(
φδ(ξ)
ρ(ξ) − ρ(ξ) − 1

)
clk(ξ) =

(
φ
ρ(λ) + 1

)
δ(λ)clk(λ). This term is trans-

formed to:

φ(ξ, λ) =

(δ(ξ)clk(ξ)+δ(λ)clk(λ)+clk(ξ))ρ(ξ)ρ(λ)

δ(ξ)clk(ξ)ρ(λ)−δ(λ)clk(λ)ρ(ξ) for ξ < λ

∞ else
(73)

Note, that∞ can be replaced by any value larger the size of the chip.
The two routing conditions are: (a) If a λ exists with s(π) = s((m(v),
m(w), l)) > φ(vz, λ), vertical routing will be applied in direction of
arg minλ∈[`]φ(vz, λ) (i. e. ZXY routing). (b) If the condition s(π) =

s((m(v),m(w), l)) 6 φ(vz, λ) is true for all λ ∈ [`], the horizontal paths
will be taken and then vertical routing is applied (i. e. XYZ routing).
There are two bottlenecks for run-time calculation: First, selection of
the best layer by evaluation of arg min is too expensive at runtime.
Thus, a static layer Λ must be selected at design time. From a practi-
cal standpoint, the top digital layer is preferred because it offers high
speed and low overhead for vertical transmission. (Without loss of
generality, we set Λ := ` in proofs.) Second, locations must be con-
verted into network address space. The location threshold distance φ
is transformed into a hop distance threshold by division through the
average router distance in the digital layers:

Φ(ξ,Λ) := dφ(ξ,Λ)/ρ(`)e (74)

The threshold φ is required to be smaller than the outside measure-
ments of the chip so that the routing can be applied. For a combina-
tion of a commercial 180 nm mixed-signal node with commercial 130
– 45 nm digital nodes and a 4×4 NoC in the layer in mixed-signal tech-
nology, φ is between 0.63 and 0.45 for a chip with edge length normal-
ized to 1. Hence, packets traveling more than 2 or 3 hops in the layer
in mixed-signal node are routed via the adjacent layer (Φ130,90nm = 2

and Φ65,45nm = 3).
To summarize, the routing algorithm has these conditions for a

packet π̃ = (v,w, l) in router v:
– If |vx −wx|+ |vy −wy| 6 Φ(ξ,Λ), XYZ routing will be applied.
– If |vx − wx| + |vy − wy| > Φ(ξ,Λ), the packet will be routed

down.
We call this routing ZXYZ. It is illustrated in Figure 81. The algorithm
is given in Listing 9. The routing function for ZXYZ is, as originally
published in [JM 1]:

Definition 9.11 (Routing function R2 for ZXYZ [JM 1]). Let T = (V ,A)
be the topology digraph with the set of routers V and the set of links
A. Let Λ be a layer which is selected for rerouting at design time. Let
Φ(ξ,Λ) be a threshold for rerouting according to Equation 74. The
routing function R2 : V × V → P(A) is defined as:

9.5 tackling latency : routing algorithms 157

slower layer ξ

faster layer Λ

R 1

Φ(ξ,Λ)

φ(ξ,Λ)

Figure 81: Different paths from router R 1 in layer ξ based on a threshold
Φ(ξ, λ) to the other routers in its layer; the distance to the destinations in
green cases is short, thus XYZ routing. Sectional drawing of a 3D NoC
with two layers in disparate technologies; layer ξ is slower than layer λ [JM
5].

(v,d) 7→

∅ for v = d

{down(v)} for |vx − dx|+ |vy + dy| > Φ(vz,Λ), vz > dz
{down(v)} for vz < dz.

{north(v)} for vx = dx, vy > dy, vz > dz, |vy − dy| 6 Φ(vz,Λ)

{east(v)} for vx < dx, vz > dz, |vx − dx|+ |vx − dx| 6 Φ(vz,Λ)

{south(v)} for vx = dx, vy < dy, vz > dz, |vx − dx| 6 Φ(vz,Λ)

{west(v)} for vx > dx, vz > dz, |vx − dx|+ |vx − dx| 6 Φ(vz,Λ)

{up(v)} for vx = dx, vy = dy, vz > dz

Listing 8: Z+(XY)Z-.

i f vz − dz < 0 then
2 route to DOWN

e lse i f vx − dx < 0 then
4 route to EAST

e lse i f vx − dx > 0 then
6 route to WEST

e lse i f vy − dy > 0 then
8 route to NORTH

e lse i f vy − dy < 0 then
10 route to SOUTH

e lse i f vz − dz > 0 then
12 route to UP

e lse
14 route to LOCAL

end i f

Listing 9: ZXYZ.

1 i f |vx,y−ux,y| > Φ(vz,Λ) then
route to DOWN

3 e lse i f vz − dz < 0 then
route to DOWN

5 e lse i f vx − dx < 0 then
route to EAST

7 e lse i f vx − dx > 0 then
route to WEST

9 e lse i f vy − dy > 0 then
route to NORTH

11 e lse i f vy − dy < 0 then
route to SOUTH

13 e lse i f vz − dz > 0 then
route to UP

15 e lse
route to LOCAL

17 end i f

9.5.5 Proof of validity: deadlock and livelock freedom

The proof of deadlock and livelock freedom have been originally pub-
lished in [JM 1]. Due to their unique nature, these are taken directly
from this work:

“We prove that the routing algorithms Z+(XY)Z- and ZXYZ are free
of deadlocks and livelocks. We make use of Duato’s theorem [99], ac-

158 optimization of routing and architectures

g: n. e. s. w. u. d.

f:

n. 1 0 0 0 1 0

e. 1 1 1 0 1 0

s. 0 0 1 0 1 0

w. 1 0 1 1 1 0

u. 0 0 0 0 1 0

d. 1 1 1 1 0 1

Table 15: Possible turns (f,g) in R1 and R2.

cording to which a routing will be deadlock-free if the routing func-
tion is connected and the channel dependency graph is cycle free.
We also use terms and definitions [99] without further explanation.
Among them are routing function, adaptive, connected, direct dependency,
and channel dependency graph. To clarify: If there is a direct depen-
dency from a to b, we also say: »b is direct dependent on a.« Graph
related terms like path, closed walk, or cycle are used as defined in
[145].

We introduce the terms possible turn and impossible turn according to
a routing function R. These terms will denote, if the routing functions
permits consecutive flow of packets in these directions.

Definition 9.12. A pair of cardinal directions (f,g) ∈ C×C is called a
possible turn according to R, if there exist two consecutive arcs, (u, v)
and (v,w) ∈ A, with: (u, v) ∈ f(A), (v,w) ∈ g(A) and there is a direct
dependency from (u, v) to (v,w). A pair of cardinal directions that is
not a possible turn is called an impossible turn according to R.

Lemma 9.1. If there is a cycle in the channel dependency graph (CDG),
then we can also find a closed walk (v1,a1, v2, . . . , vk,ak, v1) (for k ∈ N)
in the topology digraph with

– ai+1 is direct dependent on ai for all i ∈ {1, . . . ,k− 1},
– and a1 is direct dependent on ak.

Proof. Assume that there is a cycle ({a1, . . . ,ak}, {(a1,a2), . . . , (ak−1,
ak), (ak,a1)}) in the CDG. According to the definition of direct de-
pendency, the destination node of ai in the topology digraph is also
the source node of ai+1 (for all i ∈ {1, . . . ,k}, and ak+1 := a1). Let us
call this node vi+1 (for all i ∈ {1, . . . ,k}). Then, (vk+1, a1, v2, . . . , vk,
ak, vk+1) is a closed walk in the topology digraph.

9.5.6 Z+(XY)Z-: R1 is deadlock-free

From the definition of R1, we determine the impossible turns and
the possible turns, as shown in Table 15. Here, we assume that the
numbers of rows, columns and layers mξ, nξ and ` are not too small.
We assume mξ,nξ, ` > 2 for all ξ ∈ {1, . . . , `} as a precaution.

9.5 tackling latency : routing algorithms 159

Lemma 9.2. When R1 gives a direction, then the necessary link always
exists.

Proof. Places without links in some directions are: (a) At the outside
faces of the 3D NoC cuboid links at edges of layers, upward links
from the topmost layers and downward links from the bottommost
layer do not exist. (b) Some upward links do not exist between layers
if one layer is in another technology than the other layer. a) By looking
at the definition of R1, one can check that every routing step brings
the packet nearer to d. Hence, the nonexistent links on the outer bor-
der of the 3D-NoC are never taken by R1. b) Not every router has
a link in direction up. Every router, except those in the bottommost
layer, has a down link by premise. Downward links in a router are
upward links in the router below: When router v has the same x- and
y-coordinates as the destination router d and v is below d, v has an
up-link. These are also the conditions for traveling up in R1.

Lemma 9.3. R1 is connected.

Proof. Let s and d be any two vertices in V . R1 returns a direction for
every vertex except d (it returns ∅). The links in the chosen direction
always exist (Lemma 9.2). If we apply the routing function step by
step and proceed through the network in the returned directions, we
will find a route. As shown in the proof of livelock-freedom, the route
is not infinite (Theorem 9.3). Hence, it terminates. Termination can
only happen at d, by definition. Hence, with the routing function R1,
we always find a path from s to d.

Theorem 9.1. R1 is deadlock-free.

Proof. R1 is connected, because of Lemma 9.3. Assume, that the CDG
of T and R1 has a cycle. Lemma 9.1 proves that T has a cycle where
each two consecutive arcs are direct dependent.
Case 1: All vertexes of the cycle are in the same layer. We know by [104]
that XY routing has a cycle free CDG due to impossible turns. Thus,
Case 1 does not occur.
Case 2: The vertexes of the cycle are in at least two different layers. Since the
vertexes are in different layers, there is at least one arc, which goes up.
According to table 15, the only possible direction after »up« is »up«
and the cycle could never be closed. Hence, Case 2 is also impossible.
We have shown by contradiction that the CDG is cycle-free and apply
Duato’s Theorem on R1.

9.5.7 ZXYZ: R2 is deadlock-free

Again, we can determine the set of possible turns. It can be seen in
Table 15.

Lemma 9.4. R2 is connected.

160 optimization of routing and architectures

Proof. Let s and d be any two vertexes in V . We construct a path
(s = v1, . . . , vk = d) with vi ∈ V for all i ∈ [k], k ∈ N from s to d by
using links (c1 = (v1, v2) , . . . , ck−1 = (vk−1, vk)) with ci ∈ A for all
i ∈ [k− 1], which are consecutively delivered by the routing function
R2.

Case 1 (The source is above the destination sz < dz): As in the proof
of Lemma 9.3, the route starts with a sequence of downs until the
destination layer is reached. Now the routing goes as explained in
Case 2.

Case 2 (The source is below the destination or on the same layer sz > dz):
The next links depend on the logical value of ||s− d|| > Φ(sz).

Case 2.1 (||s−d|| > Φ(sz)): If the condition is true, the next link will
be down. The value of ||s− d|| is the same as ||v2 − d||. The value of
Φ(z) is the same for all z < Λ. Hence, layer Λ will be reached via a
sequence of downs. The rest of the path is constructed as in Case 2.2.

Case 2.2 (||s− d|| < Φ(sz)): Here, R2 is identical to R1. Connectivity
is proven in Lemma 9.3.

Theorem 9.2. R2 is deadlock-free.

Proof. The proof is analog to the proof of Theorem 9.1. R2 is connected
because of Lemma 9.4. We assume that the CDG of T and R2 has a
cycle. Then T has a cycle, in which each two consecutive arcs are
direct dependent, according to Lemma 9.1.
Case 1: All vertexes of the cycle are in the same layer. Case does not occur,
cp. Theorem 9.1, Case 1.
Case 2: The vertexes of the cycle are in at least two different layers. There
is at least one arc going up. According to table 15, the only possible
direction after »up« is »up«. Thus, the cycle can not be closed. Hence,
case 2 is impossible.
We have shown by contradiction that the CDG is cycle-free. We apply
Duato’s Theorem on R2.

9.5.8 Livelock freedom

Palesi et al. [166] define that “livelock is a condition where a packet keeps
circulating within the network without ever reaching its destination”. Hence
the following definition.

Definition 9.13 (Livelock-free). A routing algorithm is livelock-free,
if every packet has no other choice, but to reach its destination after
a finite number of hops.

Remark. A routing algorithm consists of a routing function and a
selection. R1 and R2 are examples for routing functions. If an adap-
tive routing function returns more than one link, the selection chooses
one. The property livelock-free belongs to the routing algorithm. Nev-
ertheless, we call a routing function livelock-free if every routing algo-

9.5 tackling latency : routing algorithms 161

rithm with this routing function is livelock-free, independent of the
selection.

Theorem 9.3. R1 and R2 are livelock-free.

Proof. Assume there were two vertexes s and dwith the property that
the routing R1 makes infinite steps and never reaches d starting from
s (the same arguments hold for R2). Under this assumption, at least
one cardinal direction must be traveled infinite times. We do a case-
by-case analysis in which we assume that this applies to the different
cardinal directions. We thereby show that it works for none of them.
This contradicts the assumption that there could be a livelock.

Case 1: »up« is traveled infinite times. By the definition of R1 (Defi-
nition 9.10), up is only used if vx = dx and vy = dy and vz > dz,
with v being the current vertex. Traveling up one layer will remain
vx = dx and vy = dy and results either in vz = dz or vz > dz. The
only possible direction after »up« is »up«. Since there are only ` <∞
layers, d will be reached after finite steps. Thus, Case 1 can not occur.

Case 2: »down« is traveled infinite times. Since up can not be traveled
infinite times (Case 1), down can not either. It is limited by the number
of layers, `, plus the number of times up could be traveled.

Case 3: »east« and »west« are traveled infinite times. Similar to Case 2,
infinite steps to west imply infinite steps to east and vice versa. From
the definition of R1, we know:

– east and west are the only directions, which affect the x-value of
v.

– A step to east is only done if vx < dx
– A step to west is only done if vx > dx
– A step to west or east is only done if vz > dz.

We never step on a router with vx = dx. If we reached a router with
vx = dx, north-, south-, up- or down-routing would be done and the
destination would be reached. Steps to east or west are only done in
the destination layer or below. In these layers, each row has a router
at position dx. Routing from west to east and back without using one
of these routers is impossible.

Case 4: »north« and »south« are traveled infinite times. This case is
analog to Case 3.

None of the cases occur. Thus, the assumption is wrong. R1 is
livelock-free.

The same arguments hold for R2 (defined in Definition 9.11). R2 is
livelock-free.

Remark: The proof relies on our special setting. It requires that for
u and v with down(u) = v it holds: up(v) = u, ux = vx, and uy = vy.
It also requires the mesh topology in layers.” [JM 1]

162 optimization of routing and architectures

9.6 tackling throughput : router architectures

In Section 9.4.2 a fundamental limitation of routing in heterogeneous
3D SoCs was revealed, described by the principle the chain is as strong
as its weakest link: Throughput is limited by the slowest clock fre-
quency of a router along a path of a packet. The limitation is only
found in heterogeneous 3D SoCs, since clock frequencies of routers
potentially vary by a large factor. The deviation of clock frequencies
in homogeneous 3D or 2D systems is much smaller, so this princi-
ple is not relevant for these systems (even for GALS). This limita-
tion can only be tackled by novel router architectures. We propose
one possible solution here. We assume an integer relation between
the clock frequencies cf, with a constant phase shift. We propose a
co-design of routing architectures and routing algorithms. Therefore,
we exploit the finding of this work, that horizontal transmission in
slower layers must be minimized. This is guaranteed by the routing
algorithms propose in the previous section: If a packet traverses mul-
tiple heterogeneous layers, it will always be horizontally transmitted
in the fastest layer. Thus, packets are directly forwarded from local
ports or incoming upward port to the vertical port in direction of the
fastest layer (i. e. down) in slower router. In opposite direction, pack-
ets from the downward direction are only transmitted to upward or
local ports. We contribute a router architectures, which exploits this
by enabling transmission along these paths in the router with multi-
ple flits in parallel. Thus, the same throughput as in the faster layers
can be reached between local and vertical ports. This architecture is
called high vertical-throughput router.

9.6.1 High vertical-throughput router architecture

We propose a router architecture for the slower layers, which uses
parallelism to achieve a higher throughput between vertical and local
ports. The router architecture was developed in close collaboration
with Lennart Bamberg from the university of Bremen. In the faster lay-
ers, the router architecture must not be modified; only the vertical link
architecture is changed, as explained in the next section. To achieve
the desired parallelism, we exploit that PEs, connected to the router’s
local port, can provide multiple flits in parallel, because the complete
packet is available before transmission.

We modify a conventional input buffered 3D router, with link width
of N, as shown in Figure 82. To achieve parallelism, the input buffers
of vertical and local links can read up to cf flits, each N bits wide,
simultaneously. The modified buffers are shown in Figure 83. The
crossbar also can read single flits or cf flits, in parallel. Its modifi-
cations are shown in Figure 84, which comprise: First, some turns
cannot occur in the proposed routing algorithms (e. g. down to north,

9.6 tackling throughput : router architectures 163

modified
crossbar

N N

north

NN

south

N

Nw
es

t

N

N

ea
stc

fN

c
fN

loca
l

c f
N

c f
N

up

c f
N

c f
N

down

Figure 82: High vertical-throughput
router architecture [JM 1].

1

...

cf

1

...

cf...

In

cfN N

...

OutPOutS

cfN

N

N

Figure 83: Novel, modified input
buffer [JM 1].

east, west or south), which reduces the size of the crossbar. Second,
it is extended to route up to cf flits between local and vertical ports.
For other connections, i. e. horizontal routes via the slower layer, the
crossbar can switch single flits between horizontal ports, the upward
port or the local port. In this case, the remaining (cf − 1)N lines of
the output (to local or up) are zero and a single flit is transmitted, per
cycle.

Despite these modifications, the complexity of this router architec-
ture will be reduced in the most common scenario, in which a slower
mixed-signal layer is located above and a faster digital layer at the
bottom. The routers in the upper layer do not have a port in up di-
rection; therefore, the high throughput path only connects the down
and local ports. The modified crossbar with cfN bits (Figure 84, left-
hand side) has two input and output ports. Thus, the local and down
ports are directly connected without hardware costs. In comparison
to the baseline router, this reduces the router’s area costs. Further,
only two input buffers are modified for parallelism, which reduces
the complexity of the design. The complexity can be further reduced
by considering possible paths in the routing algorithms: Single flits
will not travel from horizontal to vertical ports. Therefore, the com-
plexity of the crossbar is further decreased.

9.6.2 Pseudo-mesochronous high-throughput link

The architecture of the vertical links is modified for the increased
throughput. We propose two designs: The first option targets future
technologies with increased TSV yield. The second option is already
implementable at the time of writing this thesis, yet its structure is
more delicate. Both link architectures require that a circuitry in the
mixed-signal layers is driven by clocks from a layer in a digital node.

164 optimization of routing and architectures

crossbar
N-bit

crossbar
cfN-bit

Ups
N

East
N

West
N

North
N

South
N

Locals
N

Inputs

Outputs

Upp
cfN

Localp
cfN

Downp
cfN

Down

cfN cfN cfN N N N N N N

cfN cfN

extend

Up

extend

Local East West North South

Figure 84: Modified crossbar which allows routing cf flits between the
local and the vertical ports [JM 1].

9.6.2.1 Implementation for future technologies

A large TSV array transmits cfN bits in parallel in this implementa-
tion. TSV yield is rather low at the time of writing this thesis. Thus,
this architecture can not be manufactured, practically, and targets fu-
ture technologies with higher yield. Before transmission, the data are
paralleled in the faster layer by a shift register. From slower to faster
layer, data is transmitted in parallel using the slower clock frequency
via the large TSV array. The data are stored in the input buffers, which
is modified to be able to fetch cfN bit in parallel at the slower clock
frequency. The link architecture is shown in Figure 85a.

1...
cf

NN . . .

1 . . . cf

cfN-bit shift-in reg.

router out
Up

N

fa
st

la
ye

r
sl

ow
la

ye
r

(a) Upward, with large
TSV array.

1...
cf

...

1 . . . cf

cfN-bit shift-in reg.

N

router out
Up

fast
clock

fa
st

la
ye

r
sl

ow
la

ye
r

(b) Upward, with small TSV
array and shift regsiter.

router out Down

1 . . . cf

cfN-bit shift-out reg.

N

router in
Up

fast
clock

fa
st

la
ye

r
sl

ow
la

ye
r

(c) Downward, with small
TSV array and shift regsiter.

Figure 85: High-throughput connection [JM 1].

9.6.2.2 Implementation for today’s technologies

The previous solution requires higher TSV yield than available. To
tackle this, we also propose a more delicate solution for today’s state

9.7 results 165

of the art. We propose to clock parts of the logic in the slower layer at
the faster clock speed. The clock is transmitted via a clock TSV from
the faster layer. This architecture is shown in Figures 85b and 85c. The
shift registers in the slower layer are triggered by the faster clock.

For the upward path (Figure 85b), a shift register is filled with data
from the faster layer at its clock speed. Then, the flits are transmitted
in parallel to the input buffers of the router in the upper layer at the
slower clock frequency. Alternatively, the input buffers in the upper
layer can be directly clocked at a higher rate by the faster clock, which
removes the shift register’s costs.

For the downward path (Figure 85c), in which data are sent from
a slower to a faster layer, the shift register is loaded with data in
parallel with up to cf flits and at the slower clock rate. Then, the data
is shifted out right, at the faster clock speed. Each flit is transmitted
via an N-bit TSV array to the input buffers in the faster layer.

9.7 results

9.7.1 Model fitting

As published in [JM 1], we evaluate the accuracy of the model fit
for the proposed area and timing models to synthesis results of a 3D
NoC router. This router has two VCs, four flit deep input buffer per
channel, credit based flow control, uses wormhole switching with de-
centralized arbiters. A deterministic XYZ routing algorithm is imple-
mented. The synthesis is conducted with Synopsis design compiler
for commercial 180 nm mixed-signal technology and commercial 45
– 130 nm digital technology. To exemplify potential differences, we
use both general purpose (GP) and ULV mixed-signal technology for
each structure size.

We show synthesis results and model fit for the area model, i. e. the
area scaling factor, in Figure 86. Mathematica 10 [167] is used for
curve fitting. As reported in [JM 1], a non-ideality factor α = 3462.7
and an offset of α̂ = 29.8 for 180 nm GP technology with a root mean
square error (RMSE) of 0.1286 is calculated for our example. ULV
technology yields α = 13.2 and an offset of α̂ = 0.124 with a RMSE
of 0.1414.

We show synthesis results and model fit for the timing model, i. e.
the clock scaling factor, in Figure 87. We use a predicted maximum
achievable clock frequency of 5.0 GHz in this example.5 Mathematica
10 is used for curve fitting. The results for GP nodes are, as reported
in [JM 1], β = 32.85, β̂ = 7.88, β̃ = 0.76, and β̄ = 1.26 with a RMSE
of 0.30. For ULV nodes, the model yields the parameters β = 77.45,
β̂ = 2.48, β̃ = 0.76 and β̄ = 2.77, with a RMSE of 0.71.

5 We must set β in the model, instead of fitting it, since commercial technology nodes
below 45 nm are not available to academia.

166 optimization of routing and architectures

130 90 65 45 28

5

10

15

20

25

technology node

re
la

tiv
e

Sa
vi

ng
s

Figure 86: Area comparison of commercial 180 nm mixed-signal GP (blue)
and ULV (orange) node with 45 – 130 nm digital GP nodes for synthesized
router and model fit [JM 1].

130 90 65 45 28
0

10

20

30

40

50

60

technology node

re
la

tiv
e

Sa
vi

ng
s

Figure 87: Timing comparison of commercial 180 nm mixed-signal GP
node (blue) and ULV node (orange) with 45 – 130 nm ULV digital nodes
for a synthesized NoC router and model fit with predictive 5 GHz maxi-
mum achievable clock speed [JM 1].

9.7.2 Latency of routing algorithms

We evaluate the performance of the routing algorithms by using the
models to calculate the latency.

9.7.2.1 Latency of Z+(XY)Z-

The latency of packets from nodes in the mixed-signal layers to nodes
in the digital layers is reduced by Z+(XY)Z-. We compare to the la-
tency under zero load for conventional XYZ for a 3D SoC with two
layers. In the upper layer, a 4×4 NoC is implemented in commercial
180 nm mixed-signal technology. In the lower layer, a NoC with more
nodes according to the area model and the synthesis results (Equa-
tion 61) in one commercial 130 nm – 45 nm digital node is used. The
latency speedup is calculated using ∆H from Equation 64 and it is
determined via simulations using the proposed NoC simulator (Sec-
tion 7.2) with 16 flit deep buffer, wormhole routers and four VCs.
The results, as originally presented in [JM 1] are shown in Figure 88
for all available hop distances in the layer in mixed-signal technology.
Model and simulation yield identical results, as expected, since the

9.7 results 167

model is accurate under zero load. The results show a speedup be-
tween 1.5× and 6.5×. The speedup will be larger if the mixed-signal
is accompanied by a more advanced digital node. This is also con-
sistent with the expectations (cf. Section 9.4). It is noteworthy, that
Z+(XY)Z-, and thus the speedup, does not impose implementation
costs (cf. Section 9.7.4).

1 2 3 4 5 6
0

2

4

6

hop distance in 4x4 mixed-signal layer

la
te

nc
y

sp
ee

du
p

180 nm mixed-signal to
130 nm digital: simulation , model 65 nm digital: simulation , model
90 nm digital: simulation , model 45 nm digital: simulation , model

Figure 88: Latency speedup of Z+(XY)Z- to conventional XYZ in simula-
tions and model for packets from any node in a 4x4 NoC in 180 nm layer
in commercial mixed-signal technology to any node in layers in different
130 nm – 45 nm commercial digital node [JM 1].

9.7.2.2 Latency of ZXYZ

The latency of packets from nodes in the mixed-signal layers to nodes
in the mixed-signal layers is reduced by ZXYZ. Again, we compare
to the latency under zero load for conventional XYZ for a 3D SoC
with the same setting as in the previous evaluation of Z+(XY)Z-: In
the upper layer, a 4×4 NoC is implemented in commercial 180 nm
mixed-signal technology. In the lower layer, a NoC with more nodes
according to the area model and the synthesis results (Equation 61)
in one commercial 130 nm – 45 nm digital node is used. The latency
speedup is calculated using ∆V from Equations 64, 66 and 67 and
it is determined via simulations using the proposed NoC simulator
(Section 7.2) with 16 flit deep buffer, wormhole routers and four VCs.
The results, as originally presented in [JM 1], are shown in Figure 89
for all available hop distances in the layer in mixed-signal technology.
The latency speedup is between 0.54× and 1.79×. Please note that the
speedup is achieved at negligible hardware costs (cf. Section 9.7.4).

9.7.3 Throughput of high vertical-throughput router

The throughput for packets will be increased if a slower layer is part
of the path of the packet. It will be increased up to the throughput

168 optimization of routing and architectures

1 2 3 4 5 6

0.5

1

1.5

2

hop distance in 4x4 layer in mixed-signal node

la
te

nc
y

sp
ee

du
p

180 nm mixed-signal to
130 nm digital: simulation , model 65 nm digital: simulation , model
90 nm digital: simulation , model 45 nm digital: simulation , model

Figure 89: Latency speedup of ZXYZ to conventional XYZ for packets from
any node to any node in a 4x4 NoC in 180 nm layer in commercial mixed-
signal technology with layers in different 130 nm – 45 nm commercial digi-
tal node from simulations and model [JM 1].

slower layer

faster layer

t+0 t+2 t+4 t+6 t+8 t+10

throughput not dominated by slowest clock frequency

pseudosynchronous, high-throughput packet transmission

Figure 90: Throughput of high vertical-throughput router [JM 1].

in the faster layer if area for links and routers is expendable. For
a transmission from a slower to a faster layer, the slower clock fre-
quency does not dominate the throughput anymore, since the packet
is transmitted at once as a whole. This is shown in Figure 90, on the
left-hand side. For a transmission from a faster to a slower layer, the
slower clock frequency does not dominate the throughput anymore,
as well, since the packet is available at the faster router as a whole.
This is shown in Figure 90, on the right-hand side.

9.7.4 Area costs of proposed router architecture and routing algorithms

As originally published in [JM 1], we evaluate the area costs of the
proposed high vertical-throughput router using Z+(XY)Z-/ZXYZ rout-
ing in a commercial 180 nm ULV mixed-signal technology. We assume
a 4×4×2 NoC (The mixed-signal layer is accompanied by one digi-
tal layer.). As baseline, we also synthesize a standard router using
conventional XYZ routing, which has also an optimized crossbar in-
cluding only possible turns. The flit width in all routers is 16 b, input
buffers are four flit deep. The routers implement credit-based flow

9.7 results 169

control. VCs are only used in digital layers. Both the baseline, stan-
dard router and the high vertical-throughput router support a maxi-
mum frequency of 150 MHz, since the routing algorithm is not part
of the critical path.

Z+(XY)Z- routing has 0% overhead compared to conventional XYZ
routing. ZXYZ routing increases the area by three gate equivalents
from 18 to 21 gate equivalents, which affects the whole router area
by less than 0.01%. Thus, the overhead for both routing algorithms is
negligible.

The costs of the high vertical-throughput router depends on the
clock frequency difference between routers in mixed-signal and dig-
ital technology. As published in [JM 1], for a clock frequency in the
digital layer of 300 MHz (cf=2), the silicon area required for the cross-
bar and the routers reduces by -7.29%. For routers clocked at 600 MHz
(cf=4), the area increases by 4.36%. A higher scaling factor is not pos-
sible for an input buffer depth of 4. The complete area increase of the
router also depends on the implementation of the switch arbitration,
i. e. centralized or decentralized; it is typically between 3% and 4%.
Summing up, the router area will be reduced, if the throughput is
doubled. The router area slightly increases for a speed up of 4.

9.7.5 Case Study

We analyze our approach for a 3D VSoC based on [11] with four
layers as shown in Figure 91: The first layer is a sensing die, im-
plementing a 180 nm CIS (CMOS Imaging Sensor). The second layer
implements nine analog digital converters (ADCs) and three analog
accelerators [74] in 180 nm mixed-signal node. The third layer imple-
ments 6 processors and 6 SIMD (single instruction multiple data) ac-
celeration units in 90 nm digital node. In the fourth layer there are 12
processor cores in 90 nm digital node. The first and second layer are
connected via point-to-point links. The second, third and fourth layer
are connected via a 3D NoC with 32 b wide links, 8 flit deep buffers
and 4 VCs. Packets are 32 flits long. Routers in the digital layer are
clocked at 1 GHz and in the mixed-signal layer at 0.5 GHz.

The 3D VSoC implements an image processing pipeline for face
recognition. The image sensor records at 720p. The ADCs send the
digital raw image to the processors in the third layer, which apply
Bayer filter. Then, the SIMD units reduce the resolution by a factor
of 4 to increase feature extraction speed. The result is transmitted
to the analog accelerators in the second layer, which extract features
using Viola-Jones algorithm [161]. The resulting region of interest is
transmitted to the fourth layer, in which the processors execute Shi
and Tomasi algorithm [162] to find features to track and Kande-Lucas-
Tomasi algorithm [163] tracks them. Work is split up equally among
the available resources in each step.

170 optimization of routing and architectures

Digital die: 90 nm node3×4 CPUs

Digital die: 90 nm node3×2
SIMD

3×2
CPUs

Mixed-signal die: 180 nm node3×1
ACCs

3×3 ADCs

Sensing die: 180 nm nodeCIS

Figure 91: 3D VSoC case study based on [11]. The CIS directly connects
to ADCs. The other components are connected by a NoC, with a 3× 3×4
mesh.

We simulate the VSoC’s NoC using the described application traf-
fic. Thereby, we compare Z+(XY)Z- and ZXYZ with conventional XYZ
routing. We simulate 3M clock cycles in the digital layers and 1.5M
in the mixed-signal layer. We measure the average flit latency as
145.91 ns for conventional routing and as 64.46 ns for the proposed
routing. This equates to a speedup of 2.26×. Using the models, we
calculate a theoretical speedup of 2.28× under zero load. Average de-
lay for whole packets is reduced from 229.23 ns to 123.07 ns, which is
a speedup of 1.86×.

9.8 discussion

9.8.1 Model accuracy

The models assess the impact of heterogeneous integration on NoCs.
Figures 86 and 87 show the area and timing model for an exemplary
NoC router. Both models have a very good fit to technologies, which
are available to academia. As a result of the physical foundation of
the area model, it has small RMSEs. The model only covers a constant
and a cubic term; it was not beneficial to add a linear term, due to in-
creased RMSE. The timing model is empirical, and thus yields a less
accurate fit than the area model, which is demonstrated by increased
RMSEs. Also, the model converges to the target maximum clock fre-
quency, as desired. If more modern technology nodes were available,
either a better model with a physical foundation could be found or
the fit of our model could be improved.

As demonstrated by the small RMSEs, the accuracy of the proposed
area and timing model are sufficient to evaluate the influence of het-
erogeneity. We further evaluate their expressiveness in terms of rout-
ing. As shown in Figure 74, we use data from the model fits to cal-
culate the propagation speed ω for predictive technologies. Compar-
ing predictive technology to the synthesis results for 180 nm commer-
cial mixed-signal and 130 nm – 45 nm commercial digital technologies

9.8 discussion 171

yields an accuracy of between 1.4% and 7.8%. This small error further
supports the validity of the proposed models.

In terms of communication, the accuracy of the model for trans-
mission latency is shown in Figures 88 and 89. Model and simulation
yield identical results; the communication models are precise under
zero load. Thus, there is no urgent need to model the behavior under
load to develop routing for NoCs targeting heterogeneous 3D SoCs.

9.8.2 Implementation

We proposed exemplary routing algorithms and router architectures
for heterogeneous 3D SoCs. Their implementation is evaluated. We
are aiming at reductions of the negative effects of heterogeneity, i. e.
limitations in throughput and latency, at as low area costs as possible.
The limitations of heterogeneity are more severe for larger differences
between mixed-signal and purely digital technology. The worst case,
available here, is a combination of 180 nm commercial mixed-signal
technology and 45 nm commercial digital technology, which we as-
sess. Please note, that the results are valid for any other combination
of technology nodes with similar relative technology scaling factor Ξ.
The baseline for comparison is a conventional, homogeneous NoC,
with dimension order routing.

The routing algorithms Z+(XY)Z- and ZXYZ provide up to 6.5× la-
tency reductions for packets from routers in the mixed-signal nodes
to routers in the digital layer and up to 1.79× latency reductions for
packets within the layer in the mixed-signal node. This is shown in
Figures 88 and 89. For ZXYZ, there is a performance penalty for dis-
tances belowΦ (Equation 74) of up to 45%, as expected (see Figure 89,
left-hand side); therefore, for small distances, the packets are routed
via the mixed-signal layer. The threshold distance shrinks for more
advanced technology nodes and larger distances, which is also ex-
pected. It is noteworthy, that conventional XYZ outperforms ZXYZ
for low technology differences, such as 180 nm to 130 nm, for all dis-
tances.

The vertical high-throughput router offers increased throughput of
up to 2×, with router area savings comparing to a standard router for
conventional XYZ routing. Further, a 4× throughput increase is pos-
sible with a small router area increase of 61%. If a larger throughput
increase will be desired, additional area costs must be expended for
crossbar and buffer depth in the mixed-signal layer (which is unreal-
istic, due to high costs). The overhead for link area depends on the
TSV technology; the area costs will be reduced by both improvements
in yield and monolithic stacking.

For a real-world based benchmark, we simulate a face recognition
image processing pipeline on a 3D VSoC based on [11] with 180 nm
mixed-signal technology and 90 nm digital technology. We calculate

172 optimization of routing and architectures

a flit latency speedup under zero load of 2.28×. In simulations, we
achieve 2.26×, which shows the expressiveness of the models. The
speedup demonstrates an impressive performance benefit of the pro-
posed approach for typical applications of heterogeneous 3D SoCs.

To summarize, Z+(XY)Z- and ZXYZ, in combination with the novel
router architectures, have negligible area overhead and better perfor-
mance than state-of-the-art both in theoretical and practical evalua-
tions. Therefore, limitations of heterogeneity on routing in 3D NoCs
are mitigated.

9.9 conclusion

In this chapter, we contribute that conventional routing algorithms
and router architectures pose severe limitations, with heterogeneity.
This is an expected result, yet was not quantified by means of well-
founded models that express relevant effects of heterogeneity at a
low error of 1.4% – 7.8% for the evaluated scenarios. Particularly, we
have shown that varying throughput and latency of NoCs in layers
in disparate technologies drastically degrades network performance.
We apply the models to develop universal principles for routing in
heterogeneous 3D SoCs; further, we develop two exemplary routing
algorithms and a co-designed router architecture implementing these
principles. For an exemplary SoC, with layers in commercial 45 nm
digital and commercial 180 nm mixed-signal technology, we achieve
a latency reduction of up to 6.5× at negligible hardware area over-
head in comparison to conventional dimension ordered routing. The
novel vertical high-throughput router architecture and a vertical link
design overcome throughput limitations and increase it by up to 2×
at 6% reduced router hardware costs for the same exemplary set of
technologies. Thus, a co-design of routing algorithms and router ar-
chitectures based on the proposed principles exploit heterogeneity for
performance advantages to mitigate the limitations of conventional
routing algorithms without drawbacks in implementation costs. The
area of vertical links connecting heterogeneous routers is an open is-
sue, which will be tackled by advances in TSV production methods.

Part IV

F I N A L E

10
S U M M A RY A N D O U T L O O K

10.1 asymmetry – a novel design paradigm

Since the relevance of heterogeneous 3D integration is steadily in-
creasing, research on communication systems specifically for these
chips is highly important. As one integral approach, this thesis pro-
poses asymmetry as a novel design paradigm for NoCs targeting het-
erogeneous 3D SoCs. Applying the paradigm of asymmetry to an
on-chip interconnection network requires exploitation of the varying
technology-specific properties on each silicon die. Thereby it is pos-
sible for the first time to find both efficient system parameters for
the network and effective architectures for routers. Conventional ap-
proaches applied to heterogeneous 3D chips are either rather ineffi-
cient (e. g. homogeneous 3D NoCs with synchronous clocked routers
(cf. Section 5.4)), or practically impossible (e. g. hybrid 3D NoCs with
a bus spanning multiple layers (cf. Section 5.2)). Thus, the proposed
design paradigm extends state-of-the-art and enables usage of NoCs
in heterogeneous 3D chips. We call implemented networks asymmetric
3D NoCs, in short A-3D NoCs.

The proposed novel design paradigm is established by the follow-
ing concrete contributions as shown in Figure 92: In Chapter 5 we
specify A-3D NoCs and define the design space. As one very im-
portant contribution, we thereby define the incremental approach for
design space exploration that is used throughout the whole thesis.
Next, we focus on system-level optimization in Chapter 6 following
the incremental approach. We contribute a model and a heuristic algo-
rithm that enable NoC planning with simultaneous layer assignment
and component positioning. It improves NoC planning over state-of-
the-art and, for the first time , includes the effects of heterogeneity,
redistribution and a realistic through-silicon via array area and router
area model. Thereby, efficient networks can be found. Thereafter, we
direct attention to tools and methods for simulation in Chapter 7.
The introduced simulation models and the implemented tools facil-
itate an empirical design space exploration process, including net-
work simulation. Unlike competitors, the NoC simulator accounts
for the technology effects of heterogeneous 3D integration. Subse-
quently, we continue to follow the incremental approach and opti-
mize router memory in Chapter 8. Novel buffer distributions among
routers yield architectures that reduce the router area and power. To
the best of our knowledge, these are the first optimizations of router
costs specifically exploiting effects of heterogeneous integration. Fi-

175

176 summary and outlook

Communication patterns in heterogeneous 3D chip

Specification and
design space

System-level
optimization

Tools and methods
for simulation

Optimization of
router memory

Optimization of routing
and architectures

Asymmetric 3D NoC design

incremental approach

efficient networks

network simulation

reduced area & power

better performance

Figure 92: Thesis’ contributions: From communication patterns in heteroge-
neous 3D SoCs to A-3D NoC designs.

nally, we further optimize routing and architectures in Chapter 9. We
thereby contribute router architectures and routing algorithms with
improved network performance, specifically reduced packet latency
and improved throughput. In summary, this thesis covers the rele-
vant aspects of design of A-3D NoCs by the incremental approach.
Thereby, this thesis’ contributions pave the way for novel, truly asym-
metric interconnect architectures, which will play a significant role
for communication in heterogeneous 3D SoCs.

10.2 impact of future technologies

To conclude this thesis, we offer a discursive outlook of the impact
of future technologies. Therefore, we will consider the most impor-
tant trends, which can currently be found in heterogeneous 3D chips:
The first trend is increasing TSV yield thanks to better production pro-
cesses. This increases density of vertical interconnects. The second
trend is gradually reducing production costs because of better yield and
experience curve effects. The third trend is permission for more applica-
tions that will use heterogeneous integration. One example are chips
combining processing and sensing. This principle can be found in 3D
VSoC, as extensively applied as a use case in this thesis, and in many
other application fields, such as mobile sensors. With cheaper pro-
duction costs, heterogeneous 3D chips are increasingly usable. The
impact of these trends on the findings of this thesis is as follows:

In Chapter 5 we specify the asymmetric design paradigm. It will
still be reasonable for the aforementioned future technologies because

10.2 impact of future technologies 177

the limitations of today’s approaches would still apply. The trends do
not change our model of the design space. The proposed incremen-
tal approach will be even more relevant, because the increased TSV
yield will allow for more architectural freedom. Therefore, more fea-
tures must be explored. Hence, our approach to the design of NoCs
targeting heterogeneous 3D chips will stay valid.

In Chapter 6 we introduced methods for system-level optimiza-
tion. The technological models will stay valid, because the discussed
trends do not change technological parameters, which the models ac-
count for. With increased TSV yield, the density of vertical intercon-
nects will increase. Furthermore, reduced costs will drive the devel-
opment for even more layers. Therefore, it will be very relevant that
our proposed heuristic algorithm is also fast and efficient for high
layer count and TSV array count.

In Chapter 7 we contributed models and tools for simulation. As
already explained, higher TSV yield will increase the set of reason-
able architectural and mircoarchitectural features. Therefore, our tech-
nological well-reasoned and well-structured definition of simulation
models will still be applicable. Furthermore, the proposed parameter
sets and introduced options to measure power and performance will
be increasingly relevant with higher TSV array count in 3D NoCs.

In Chapter 8 we demonstrated a novel approach to router buffer
area and power optimization exploiting heterogeneity. With more
TSVs at lower costs, even more sophisticated architectures will be pos-
sible, extending this approach not only to memory but also to other
parts of the router’s microarchitecture.

In Chapter 9 we proposed routing and co-designed router archi-
tectures to increase network performance. The proposed models will
stay valid. Therefore, different clock speeds in heterogeneous 3D chips
will remain one important limitation to throughput. But increased
TSV yield will mitigate this issue using approaches such as our novel
link designs. Plus, reduced costs will increase the performance advan-
tages of routing along paths spanning multiple heterogeneous layers.

To summarize, increased TSV yield and overall reduced manufac-
turing costs are very beneficial for NoCs as communication architec-
ture in heterogeneous 3D chips. Therefore, it will be applicable to
even more application areas and it will play a major role in future
SoCs. The findings of this thesis will contribute to finally extend
NoCs over multiple heterogeneous layers and optimally distribute
parts of the interconnection architecture. This will allow for exploit-
ing unprecedented optimization potential of heterogeneous integra-
tion, not only for on-chip communication networks.

Part V

A P P E N D I X

a
S Y S T E M - L E V E L O P T I M I Z AT I O N

a.1 overview of symbols

a.1.1 Constants and definitions

The definitions slightly vary between Chapter 6 and the appendix
due to conversion between places and indexes for locations of com-
ponents, tiles and routers. We introduce the conversion in Section a.2
and Figure 94.

values meaning

n component count

k available technology count

` layer count

m maximum router count

xmax, ymax upper bounds for size of chip, i.e. waver size

[n], [k], [l], [m] Sets used as if they were sets of components, technologies and layers
and routers/tiles.

EA set of ordered pairs of communicating components ((sender, receiver)),
EA ⊆ [n]× [n]

A = ([n],EA) application digraph

u bandwidth requirement, u : EA→ R+

τ τ : [l]→ [k], assignment of technologies to layers

fc implementation costs of components

fR2D implementation costs of a 2D router

fKOZ area of KOZ

fR3D implementation costs of a 3D router

dmax maximum length of links per layer, dmax : [k] → R∞>0. Used for
redistribution and distance between routers in a layer.

P Coordinates P := {x|x ∈ R,0 6 x 6 xmax}× {y|y ∈ R,0 6 y 6
ymax}× [l]

px,py,pz x-, y- and z-entries of a vector p ∈ P, p = (px,py,pz)

flow-Algorithm rule providing flows of the function f

ϕ = {(0,0,0)} position of the non-placed position outside of the chip area

η maximum aspect ratio of tiles

a.1.2 Variables

values meaning

r1, . . . , rm ∈ P∪ϕ positions of routers in the network

s1, . . . ,sn ∈ P positions of components in the mapping

t1, . . . , tm ∈ P∪ϕ positions of tiles on the chip

R R := {r1, . . . , rm}, set of router positions

S S := {s1, . . . ,sn}, set of positions of the components

181

182 system-level optimization

T T := {t1, . . . , tm}, set of positions where a tile starts

ρ1, . . . ,ρm ∈ P is one for placed routers, i.e. ρi = 0⇔ ri = ϕ
τ1, . . . ,τn ∈ P is one for placed tiles, i.e. ρi = 0⇔ ri = ϕ
a1, . . . ,am ∈ R length ai of tile ti ∈ T
b1, . . . ,bm ∈ R width bi of tile ti ∈ T
A1, . . . ,Am ⊂ P specific area of the tile ti ∈ T

Ai is a closed two-dimensional interval embedded in a layer: Ai :=[
(ti,x, ti,y), (ti,x+ai, ti,y+bi)

]
× {ti,z}

e{i,j} ∈ {0,1} for i, j ∈ [m], information if the routers ri and rj are connected

EN EN := {(i, j) ∈ [m]× [m]|e{i,j} = 1}

N = ([m],EN) Topology, digraph of routers links

f f : EA→
⋃

(i,j)∈EA
{
f | f is an i-j-flow in N, value(g) = 1

}1

f(i,j) variable for the flow between si and sj, i. e. f(i,j) := f((i, j))

f
(i,j)
(k,l) flow on the link (k, l) ∈ [m]× [m] of the flow f(i,j) (which is

modeling flows in EN)

a.1.3 Cost function

values meaning

carea carea := max{maxi∈[m](ti,x+ai), maxi∈[m](tiy +bi)}

cpeak cpeak :=
∑
v∈EN

(
χ(µ,∞)(load(v))(load(v)−µ)

)
cutil cutil :=

∑
e∈EA

(
u(e)

∑
v∈EN (f(e))(v)

)
, costs for overall network

utilization

load load : EN → R>0, v 7→
∑
e∈EA u(e)(f(e))(v), communication

cost on a link or TSV

χA indicator function of a set A

µl average link load, µl := 1
|EN|

∑
∀v∈EN load(v)

σl sample variance of the loads in the network, σl :=
1

|EN|

∑
∀v∈EN (load(v)−µl)2

σa sample variance of bandwidth requirement u on EA
µ maximum value of u, µ := maxe∈EA u(e)

ω1, . . . weights in the cost function

ctotal cost function ctotal =ω1carea . . . weighted for all costs

a.2 component, router and tile count

Lemma a.1. The number of routers m limits the number of tiles and com-
ponents. Hence, n 6 m.

Proof. The auxiliary variable σp ∈ {0, 1} is introduced. It holds that
σp = 1⇔ p ∈ S, i. e. σp indicates each position in the chip, whether a
component is placed there. Hence, the following inequalities are valid
for every individual variable:

– For each position of a component, there is a router: rp > σp.
Since there is a router at each position of a component, the total
number of routers is greater or equal to those of the compo-
nents.

1 The explanation of flow and its value can be found in Section 6.3.4.3.

a.3 definitions , notations and prerequisites 183

– For each position of a component, there is a tile: tp > σp. Since
a tile starts at each position of a component or router, the total
number of tiles is greater or equal to the number of the compo-
nents.

– For each position of a tile, there is a router: rp > tp. Since there
is at least one router at each position of a tile, the number of
routers is larger or equal to the number of tiles.

Together, it holds that rp > tp > σp. Therefore, it is sufficient to
limit the number of routers as this also limits the number of tiles and
positions of components.

a.3 definitions , notations and prerequisites

a.3.1 Modeling a logical relations

Modeling the logical OR relation with the upper bounds is shown in
Figure 93. On the left-hand side, the optimization curves of the OR-
relation in z-dimension is shown. A variable should either be on the
top or bottom orange line. Assuming, that the lines are not bounded,
no convex optimization space can be defined as the red lines indicate.
This is not the case with upper bounds as shown on the right-hand
side of the Figure, in which xmax and ymax are used to limit the size
of the optimization space. It now has a tetraedic shape and is convex.
Therefore, bounds allow to model the logical OR. The logical AND
relation can be modeled using multiple constraints, which must be
satisfied together. The logical implication a → b can be transformed
into an OR relation using the equivalence: a→ b↔ ā or b. ā is equal
to not a.

y

x

z

xmax

ymax

Figure 93: Modeling a logical or is possible via limits.

a.3.2 Line connections

Definition a.1 (Line between two points within a layer). The line be-
tween two points p and q ∈ P within a layer is given by:

L(p,q) = {p+ λ(p− q)|λ ∈ [0, 1]} = conv(p,q) (75)

184 system-level optimization

This definition is equivalent to the convex hull of p and q, since (1−

λ)p+ λq = p+ λ(p− q). In case the points p and q have the same
x- or y-coordinate in our model, the line between the two points can
also be defined as:

L̂(p,q) := {(λ1, λ2,pz)|

λ1 ∈ [min{px,qx}, max{px,qx}],

λ2 ∈ [min{py,qy}, max{py,qy}]}

(76)

a.3.3 Neighbored routers

Definition a.2 (Neighbored routers (in a layer)). For indexes i, j ∈ [m]

we call two routers ri and rj neighbored, if:
• they are in the same layer (ri,z = rj,z)
• they share the same x- or y-coordinate (ri,x = rj,x or ri,y = rj,y)
• there is no other router on the direct line between them (∀rk ∈

[m] \ {ri, rj} : rk /∈ L(ri, rj) \ {ri, rj}).
• and the indexes are not the same (i 6= j).

a.4 cost function

a.4.1 SoC area

The SoC area carea can be realized using a simple auxiliary variable
Harea ∈ R>0:

∀i ∈ [m] : ti,x + ai 6 Harea, (77)

∀i ∈ [m] : ti,y + bi 6 Harea (78)

and minimizing the cost function carea = Harea.

a.4.2 Peak loads

We introduce the auxiliary variables hµ and hpeak ∈ R as well as the
auxiliary variables hload

i,j and hmax
i,j ∈ R for all i, j ∈ [m]. This yields

2m2 inequalities and m2 + 2 equations:

hpeak =
∑
i,j∈[m]

hmax
i,j , (79)

hµ = n2−n, (80)

hload
i,j =

∑
e∈EA

u(e)f
(i,j)
e ∀i ∈ [m], j ∈ [m] (81)

hmax
i,j > 0 ∀i ∈ [m], j ∈ [m] (82)

hmax
i,j > hload

i,j −hµ ∀i ∈ [m], j ∈ [m] (83)

a.5 constraints 185

a.5 constraints

Constants

The following constants are given, which also allow modeling OR
relations:

Definition a.3 (Constants). The following constants are given: c1 =

xmax + ymax, c2 = xmax + ymax + `, c3 = ymax + xmax + `+ 1, and c4 =

ymax + xmax + 1.

a.5.1 Technical constraints

Technical constraints enable easy indexing within the other constraints.
These constraints are not directly defining chip properties.

Indexes of components and routers Indexes of tiles and routers

i

i

Routers at the
upper left corner
of a tile have the
same index as the
tile’s components.

i

i

Routers start tiles
with the same
index.

Indexes of unplaced Routers Force ai, bi to zero
not placed Unplaced routers

are a the end of
the index range.

i0

0

Unplaced tiles
have no size.

Indexes of components and routers

As shown in Figure 94, components have the same indexes as routers:

∀i ∈ [n] : si = ri (84)

This yields 6n inequalities:

si,x 6 ri,x, si,y6 ri,y, si,z 6 ri,z, (85)

ri,x 6 si,x, ri,y6 si,y, ri,z 6 si,z. (86)

Indexes of tiles and routers

Tiles will be started by the router with the same index if the tile is
not started by a component and router together. Some routers will
not start an own tile as shown in Figure 95. Thus, it holds for all
i ∈ {n+ 1, . . . ,m}:

ti 6= ϕ⇒ ti = ri (87)

↔ ti = ϕ or ti = ri. (88)

186 system-level optimization

1 n
Components

initialze tile

1 n m
Tiles

started by component by router not placed

1 n m
Routers start tile

with component start tile
do not

start tile
not placed

Figure 94: Indexes of routers, components, and tiles are the same if possi-
ble. Not placed routers and tiles have the highest indexes.

r1

r2

r3

r4

Figure 95: Area of router r4 belongs to lower tile (orange). Router r4 does
not start individual tile for better packaging.

This yields the following (m − n + 1) inequalities for all i ∈ {n +
1, . . . ,m} using the binary auxiliary variables h1i and the constant c1:

ti,z 6ϕz+h
1
ic1 (89)

ϕz 6 ti,z+h
1
ic1 (90)

ti,x 6 ri,x+(1−h1
i)c1 (91)

ri,x 6 ti,x+(1−h1
i)c1 (92)

ti,y 6 ri,y+(1−h1
i)c1 (93)

ri,y 6 ti,y+(1−h1
i)c1 (94)

ti,z 6 ri,z+(1−h1
i)c1 (95)

ri,z 6 ti,z+(1−h1
i)c1 (96)

Indexes of unplaced tiles and routers

Non-placed tiles and routers are assigned to the highest indexes. Thus,
it holds for all tiles with index i ∈ [m− 1]:

ti,z = 0→ ti+1,z = 0 (97)

↔ ti,z 6= 0 or ti+1,z = 0 (98)

This can be written into the following 2(m− 1) inequalities using the
auxiliary binary variable c1:

ti,zc1 > ti+1,z (99)

ri,zc1 > ri+1,z (100)

a.5 constraints 187

Force ai and bi to zero

The variables ai and bi for unplaced tiles with indexes i ∈ [n +

1, . . . ,m] must be zero:

ti = ϕ→ ai = 0 and bi = 0 (101)

This leads to the following 2m−n+ 1 inequalities using the constant
c1 for all i ∈ [n+ 1, . . . ,m]:

ai 6 c1tiz (102)

bi 6 c1tiz (103)

Unplaced routers in ϕ

The auxiliary binary variables ρi for all i ∈ [m] are introduced, which
indicate whether a router is placed. Routers, which are unplaced, are
assigned to the position ϕ = (0, 0, 0) outside of the chip area, i.e.
ϕ /∈ P. Thus, the following inequalities for each i ∈ [m] yield the total
of 3m inequalities:

ρi 6 ri,z 6 ϕil (104)

ri,y 6 ymaxϕi (105)

ri,x 6 xmaxϕi (106)

a.5.2 Network constraints

Connectivity

Utilizing the connectivity of routing algorithms via the definition of
flow in the network, network graphs in valid solutions of the optimi-
zation problem are connected. Therefore, the connectivity is included
via the constraints for flow and routing algorithms.

Grid-based topology and TSVs connect adjacent layers

The constraint is formulated as:
∀(i, j) ∈ [m]×[m] :

e{i,j} = 1→

ri,z = rj,z and (ri,x = rj,x or ri,y = rj,y)

or

ri,z ∈ {rj,z+1, rj,z−1} and |ri,x− rj,x|+ |ri,y− rj,y| 6

dmax(max (ri,z, rj,z)).

(107)

This is translated into m2 inequalities. Therefore, the binary auxil-
iary variables h4i,j 1, h4i,jOR1, and h

4
i,jOR2 are introduced using the

constant c3. For all tuples (i, j) ∈ [m]×[m], i 6= j these 14m(m− 1)
inequalities must be satisfied:

ri,z 6rj,z+h
4
i,j 1c3+(1− e{i,j})c3 (108)

rj,z 6ri,z+h
4
i,j 1c3+(1− e{i,j})c3 (109)

ri,x 6rj,x+h
4
i,jOR1c3+h

4
i,j 1c3+(1− e{i,j})c3 (110)

188 system-level optimization

rj,x 6ri,x+h
4
i,jOR1c3+h

4
i,j 1c3+(1− e{i,j})c3 (111)

ri,y 6rj,y+(1−h4
i,jOR1)c3+h

4
i,j 1c3+(1− e{i,j})c3 (112)

rj,y 6ri,y+(1−h4
i,jOR1)c3+h

4
i,j 1c3+(1− e{i,j})c3 (113)

(rj,z+ 1) 6ri,z+h
4
i,jOR2c3+(1−h4

i,j 1)c3+(1− e{i,j})c3 (114)

ri,z 6(rj,z+ 1)+h
4
i,jOR2c3+(1−h4

i,j 1)c3+(1− e{i,j})c3 (115)

(rj,z− 1) 6ri,z+(1−h4
i,jOR2)c3+(1−h4

i,j 1)c3+(1− e{i,j})c3 (116)

ri,z 6(rj,z− 1)+ (1−h4
i,jOR2)c3+(1−h4

i,j 1)c3+(1− e{i,j})c3 (117)

|ri,x− rj,x|+ |ri,y− rj,y| 6 dmax(max (ri,z, rj,z))+

(1−h4
i,j 1)c3+(1− e{i,j})c3

(118)

The last inequality (118) must be further transformed. We replace
the absolute values and dmax(max (ri,z, rj,z)) by auxiliary variables.
The Equation 118 changes to:

dist(ri,x, rj,x)+dist(ri,y, rj,y) 6 dij+ (119)

(1− h4i,j 1)c3 + (1− e{i,j})c3 (120)

with the auxiliary variables
dist(ri,x, rj,x) ∀(i, j) ∈ [m]×[m], i 6= j (121)

dist(ri,y, rj,y) ∀(i, j) ∈ [m]×[m], i 6= j (122)

dij ∀(i, j) ∈ [m]×[m], i 6= j (123)

The dist-"function" dist(a,b) = |a− b| is given by these six inequal-
ities which must be satisfied in the MILP model using the auxiliary
binary variable ha6b and the constant c32:

dist(a,b) > a−b (124)

dist(a,b) > b−a (125)

a 6 b+(1−ha6b)c3 (126)

b 6 a+ha6bc3 (127)

dist(a,b) 6 a−b+ha6bc3 (128)

dist(a,b) 6 b−a+(1−ha6b)c3 (129)

For each of the dist-auxiliary-variables, these six inequalities with
the respective variables instead of a and b are required to model the
dist-function-value. Hence, 6 · 2m(m− 1) extra inequalities are given
for the absolute values.

Now, we need some inequalities to define the value of dij. Let us
use the symmetry of these variables:

dij = dji for all (i, j) ∈ [m]×[m], i > j. (130)

Since the value of dij depends on ri,z and rj,z, we need further auxil-
iary variables.

The term dij = dmax(max (ri,z, rj,z)) is equivalent to
For all (i, j) ∈ [m]×[m], i < j :

dij =
∑̀
ξ=1

dmax(ξh
4
i,j,ξ) (131)

and h4
i,j,ξ ∈ {0,1} for all ξ ∈ ` (132)

2 Again, we exploit that a and b are bounded. Hence, dist is a function from [0, xmax +

ymax]×[0, xmax + ymax] which maps to[0, xmax + ymax]

a.5 constraints 189

Lr1 r2
δ

Figure 96: A small area around the line between r1 and r2 is defined since
open sets cannot be modeled through an MILP.

and
∑̀
ξ=1

h
4
i,j,ξ = 1 (133)

and for all ξ ∈ ` :
ri,z 6ξ+(1−h4

i,j,ξ)` and (134)

rj,z 6ξ+(1−h4
i,j,ξ)` and (135)(

ξ 6ri,z+(1−h4
i,j,ξ)` or (136)

ξ 6rj,z+(1−h4
i,j,ξ)`

)
(137)

which is, written in inequalities for all (i, j) ∈ [m]×[m], i < j, ξ ∈ [`],
with h4i,j,ξ ∈ {0, 1} :

dij =
∑̀
ξ=1

dmax(ξh
4
i,j,ξ) (138)

1 =
∑̀
ξ=1

h
4
i,j,ξ (139)

For all (i, j) ∈ [m]×[m], i < j and for all ξ ∈ `:
ri,z 6 ξ+(1−h4

i,j,ξ)` (140)

rj,z 6 ξ+(1−h4
i,j,ξ)` (141)

ξ 6 ri,z+(1−h4
i,j,ξ)`+(1−h4

i,j,ξ,OR)` (142)

ξ 6 rj,z+(1−h4
i,j,ξ)`+h

4
i,j,ξ,OR` (143)

Forbid connections between non-neighbored routers

We formulate:

∀(i, j) ∈ EN, ∀k ∈ [m] \ {i, j} : rk 6∈ L(ri, rj) (144)

↔∀(i, j) ∈ [m]×[m], i 6= j : e{i,j} = 1
→ ∀k ∈ [m] \ {i, j} : rk 6∈ L(ri, rj)

(145)

Since rk ∈ R \ L(ri, rj) is an open set, we introduce a small area
around the connecting line as shown in Figure 96. To fulfill the latter
part ∀k ∈ [m] \ {i, j} : rk 6∈ L(ri, rj), at least one of the four inequali-
ties in Figure 97 must be fulfilled. This yields these four inequalities,
which are connected by a logical OR relation for any k ∈ [m]:

I: aT1rk 6 b1 or (146)

II: −aT1rk6 b2 or (147)

III: aT2rk 6 b3 or (148)

IV: −aT2rk6 b4 (149)

These line equations are solved to calculate the values of b1 to b4 (the
normal is calculated). Therefore, points which are located on each line
are required. A known point on the line (I) is ri, on line (II) it is rj, on
line (III) it is ri − δa2, and on line (IV) it is ri + δa2. We further know

190 system-level optimization

r
i

r
j

L

δ
a
1

-a
2

-a
1

a
2

Lδ

δ

I II

III

IV

Figure 97: The routers ri and rj are connected by a 2D-link L. Around the
link, the δ-area Lδ is defined and shown in red. Part of the constraint is
∀k ∈ [m] \ {i, j} : rk 6∈ L(ri, rj). Therefore, at least one of the four inequalities
given by the line equations (I) to (IV) must be fulfilled, which are shown in
green.

r
i

r
j

r
j

r
i

r
i

r
j

r
j

r
i

y

x

z
a
1
=(0,1,0)

a
1
=(0,-1,0)

a
1
=(-1,0,0)a

1
=(1,0,0)

a
2
=(-1,0,0)

a
2
=(0,1,0)

a
2
=(1,0,0)

a
2
=(0,-1,0)

(A) (B)

(C) (D)

Figure 98: Only allowed configurations for grid based topology for the
location of links and the resulting line equations.

that in our model it holds ri,z = rj,z and ri,x = rj,x or ri,y = rj,y. This
yields

I: aT1ri = b1 (150)

II: −aT1rj = b2 (151)

III: aT2 (ri− δa2) = b3 (152)

IV: −aT2 (rj+ δa2)= b4 (153)

as well as a1:

a1 =
rj − ri
|rj − ri|

=
1

|rj − ri|

 rj,x − r1,x

rj,y − ri,x

0

 (154)

and the analog for a2. As shown in Figure 98 only the four configura-
tions (A), (B), (C), and (D) are possible. Solving the linear equations
in Equation 150 to Equation 153 yields:

a.5 constraints 191

a1 a2 b1 b2 b3 b4

(A) (0, 1, 0)T (1, 0, 0)T ri,y −rj,y ri,x − δ −ri,x − δ

(B) (0,−1, 0)T (−1, 0, 0)T −ri,y rj,y −ri,x − δ ri,x − δ

(C) (1, 0, 0)T (0,−1, 0)T ri,x −rj,x −ri,y − δ ri,y − δ

(D) (−1, 0, 0)T (0, 1, 0)T −ri,x rj,x ri,y − δ −ri,y − δ

The line equations are used to formulate the constraint:

∀(i, j) ∈ [m]×[m],i 6= j : e{i,j} = 1 and ri,z = rj,z
→ ∀k ∈ [m] \ {i, j} : (A) or (B) or (C) or (D),

(155)

which, including the case differentiation, yields:
∀(i, j) ∈ [m]×[m], i 6= j : e{i,j} = 1 and ri,z = rj,z→ ∀k ∈ [m] \ {i, j} :

ri,y 6 rj,y and ri,x = rj,x and (1(A) or 2(A) or 3(A) or 4(A))

or

rj,x 6 ri,x and ri,x = rj,x and (1(B) or 2(B) or 3(B) or 4(B))

or

ri,x 6 rj,x and ri,y = rj,y and (1(C) or 2(C) or 3(C) or 4(C))

or

rj,x 6 ri,x and ri,y = rj,y and (1(D) or 2(D) or 3(D) or 4(D))

(156)

For easy notation, we write
A0 = e{i,j} = 1 and ri,z = rj,z (157)

(A)1 = ri,y 6 rj,y and ri,x = rj,x (158)

(A)2 = I(A) or II(A) or III(A) or IV (A) (159)

(B)1 = rj,x 6 ri,x and ri,x = rj,x (160)

(B)2 = I(B) or II(B) or III(B) or IV (B) (161)

(C)1 = ri,x 6 rj,x and ri,y = rj,y (162)

(C)2 = I(C) or II(C) or III(C) or IV (C) (163)

(D)1 = rj,x 6 ri,x and ri,y = rj,y (164)

(D)2 = I(D) or II(D) or III(D) or IV (D) (165)

Using this, Equation 156 is transformed3:
∀(i, j) ∈ [m]×[m] : Ā0 or ∀k ∈ [m] \ {i, j} :

((A)1 and (A)2) or ((B)1 and (B)2) or

((C)1 and (C)2) or ((D)1 and (D)2)

(166)

Due to the complexity of the constraint, it is split up into modules
to write the inequalities. In addition, the inequalities are color coded:
green denotes inequalities, the or relation between cases A, B, C, and
D is coded in red, the or relation between Ā0 and the rest is given in
purple.

Module 1 is (A)1 and (A)2. The auxiliary binary variables h5i,j,k 1,
h
5
i,j,kA1, h5i,j,kA2, h5i,j,kA3, h5i,j,kA4, and h5i,j, OR , as well as the constant
c4 are used. The following inequalities must be satisfied for all (i, j) ∈
[m]×[m], i 6= j and per tuple (i, j) are given for all k ∈ [m]\ {i, j}, hence,

3 Ā0 denotes not A0.

192 system-level optimization

m − 2 times. All in all, the inequalities are given m(m − 1)(m − 2)
times.

ri,y6 rj,y +h5
i,j,k 1c4+h

5
i,j, ORc4 (167)

ri,x6 rj,x +h5
i,j,k 1c4+h

5
i,j, ORc4 (168)

rj,x6 ri,x +h5
i,j,k 1c4+h

5
i,j, ORc4 (169)

rk,y6 ri,y +h5
i,j,kA1c4+h

5
i,j,k 1c4+h

5
i,j, ORc4 (170)

−rk,y6 −rj,y +h5
i,j,kA2c4+h

5
i,j,k 1c4+h

5
i,j, ORc4 (171)

rk,x6 ri,x− δ +h5
i,j,kA3c4+h

5
i,j,k 1c4+h

5
i,j, ORc4 (172)

−rk,x6 −ri,x− δ+h
5
i,j,kA4c4+h

5
i,j,k 1c4+h

5
i,j, ORc4 (173)

The logical OR is given by:

h
5
i,j,kA1 + h

5
i,j,kA2 + h

5
i,j,kA3 + h

5
i,j,kA4 6 3 (174)

Module 2 is (B)1 and (B)2. The auxiliary binary variables h5i,j,k 2,
h
5
i,j,k B1, h5i,j,k B2, h5i,j,k B3, h5i,j,k B4, and h5i,j, OR Again, the inequalities

must be satisfied for all (i, j) ∈ [m]×[m], i 6= j and for all k ∈ [m] \ {i, j}.
Thus m(m− 1)(m− 2) inequalities are given.

rj,y6 ri,y +h5
i,j,k 2c4+h

5
i,j, ORc4 (175)

ri,x6 rj,x +h5
i,j,k 2c4+h

5
i,j, ORc4 (176)

rj,x6 ri,x +h5
i,j,k 2c4+h

5
i,j, ORc4 (177)

−rk,y6 −ri,y +h5
i,j,k B1c4+h

5
i,j,k 2c4+h

5
i,j, ORc4 (178)

rk,y6 rj,y +h5
i,j,k B2c4+h

5
i,j,k 2c4+h

5
i,j, ORc4 (179)

−rk,x6 −ri,x− δ+h
5
i,j,k B3c4+h

5
i,j,k 2c4+h

5
i,j, ORc4 (180)

rk,x6 ri,x− δ +h5
i,j,k B4c4+h

5
i,j,k 2c4+h

5
i,j, ORc4 (181)

h
5
i,j,k B1 +h

5
i,j,k B2 +h

5
i,j,k B3 +h

5
i,j,k B4 6 3 (182)

Module 3 is (C)1 and (C)2. The auxiliary binary variables h5i,j,k 3,
h
5
i,j,kC1, h5i,j,kC2, h5i,j,kC3, h5i,j,kC4, and h

5
i,j, OR are used. Again, the

inequalities must be satisfied for all (i, j) ∈ [m]×[m], i 6= j and for all
k ∈ [m] \ {i, j}. This yields m(m− 1)(m− 2) inequalities.

ri,x6 rj,x +h5
i,j,k 3c4+h

5
i,j, ORc4 (183)

rj,y6 ri,y +h5
i,j,k 3c4+h

5
i,j, ORc4 (184)

ri,y6 rj,y +h5
i,j,k 3c4+h

5
i,j, ORc4 (185)

rk,x6 ri,x +h5
i,j,kC1c4+h

5
i,j,k 3c4+h

5
i,j, ORc4 (186)

−rk,x6 −rj,x +h5
i,j,kC2c4+h

5
i,j,k 3c4+h

5
i,j, ORc4 (187)

−rk,y6 −ri,y− δ+h5
i,j,kC3c4+h

5
i,j,k 3c4+h

5
i,j, ORc4 (188)

rk,y6 ri,y− δ +h5
i,j,kC4c4+h

5
i,j,k 3c4+h

5
i,j, ORc4 (189)

h
5
i,j,kC1 +h

5
i,j,kC2 +h

5
i,j,kC3 +h

5
i,j,kC4 6 3 (190)

Module 4 is (D)1 and (D)2. The auxiliary binary variables h5i,j,k 4,
h
5
i,j,kD1, h5i,j,kD2, h5i,j,kD3, h5i,j,kD4, and h

5
i,j, OR are used. Again, the

inequalities must be satisfied for all (i, j) ∈ [m]×[m], i 6= j and for all

a.5 constraints 193

k ∈ [m]\ {i, j}. Thus, all in all, the equations are givenm(m−1)(m−2)
times.

rj,x6 ri,x +h5
i,j,k 4c4+h

5
i,j, ORc4 (191)

rj,y6 ri,y +h5
i,j,k 4c4+h

5
i,j, ORc4 (192)

ri,y6 rj,y +h5
i,j,k 4c4+h

5
i,j, ORc4 (193)

−rk,x6 −ri,x +h5
i,j,kD1c4+h

5
i,j,k 4c4+h

5
i,j, ORc4 (194)

rk,x6 rj,x +h5
i,j,kD2c4+h

5
i,j,k 4c4+h

5
i,j, ORc4 (195)

rk,y6 ri,y− δ +h5
i,j,kD3c4+h

5
i,j,k 4c4+h

5
i,j, ORc4 (196)

−rk,y6 −ri,y− δ+h5
i,j,kD4c4+h

5
i,j,k 4c4+h

5
i,j, ORc4 (197)

h
5
i,j,kD1 +h

5
i,j,kD2 +h

5
i,j,kD3 +h

5
i,j,kD4 6 3 (198)

There are m(m− 1)(m− 2) inequalities for the OR relations between
the modules for all i, j, [m]×[m], i 6= j and for all k ∈ [m] \ {i, j}:

h
5
i,j,k 1 +h

5
i,j,k 2 +h

5
i,j,k 3 +h

5
i,j,k 4 6 3 (199)

Module 5 denotes Ā0. We define the binary auxiliary variables
h
5
i,j, 1, h5i,j, 2, and h5i,j, 3. There are m(m− 1) inequalities.

e{i,j}6 0 +h5
i,j, 1c4+(1−h5

i,j, OR)c4 (200)

ri,z6 rj,z− 1/2+h5
i,j, 2c4+(1−h5

i,j, OR)c4 (201)

rj,z6 ri,z− 1/2+h5
i,j, 3c4+(1−h5

i,j, OR)c4 (202)

h
5
i,j, 1 +h

5
i,j, 2 +h

5
i,j, 3 6 2 (203)

Summing up, this constrain consists of 4(m(m− 1)) + 4 ∗ 8 ∗m(m−

1)(m− 2) inequalities.

Components are connected to routers

Due to the indexing as defined in the technical constraints, the first n
routers have the same index as the n components. Thus, the condition
of this constraints is already given since each component is associated
with a router at the same index and position.

Routers are not self-connected

The constraint is modeled for all i ∈ [m] by e{i,i} = 0. This yields m
inequalities for all i ∈ [m]:

e{i,i} 6 0. (204)

a.5.3 Bounding boxes

Starting position of tiles

This is formulated as ∀ti ∈ T : ti 6= ϕ → ∃ri : ti = ri. Utilizing
the indexing, this condition is separated in two cases. First, for all
i ∈ [n] : ti = ri. This yields 6n inequalities representing the equality
between ti and ri for all i ∈ [n] in each dimension. Second, for all
i ∈ {n+ 1, . . . ,m} : ti 6= ϕ → ti = ri, which is already given by the
constraint in Figure a.5.1.

194 system-level optimization

Components start tiles

This is formulated as ∀i ∈ [n] ∃j ∈ [m] : si = tj. Due to the indexing,
this can be further simplified for all i ∈ [n] : si = ti, which is already
given by Section a.5.3 and Figure a.5.1 (ri = si = ti). In addition, all
components must be placed. Therefore, for all i ∈ [n] it holds that
ti 6= ϕ. Since ϕz = 0, this can be modeled with a lower bound for all
i ∈ [n] : ti,z > 1.

Routers and tiles

This is formulated for all routers with indexes i ∈ [m] and tiles with
index k ∈ [m]:

∀i ∈ [m] : ri 6= ϕ→ ∃k ∈ [m] : ri ∈ Ak, (205)

↔∀i ∈ [m] : ri = ϕ or (∃tk : ri ∈ Atk). (206)

In our model, the first n routers are located at the same position as the
first n components. Thus, this constraint must only consider routers
with indexes i ∈ [n+ 1, . . . ,m]. Furthermore, additional routers can-
not be placed within a tile, because links between routers cannot cut
through tiles: Routers are always placed on borders of tiles. Hence, it
is sufficient to consider the borders of each tile and ensure that each
router i is located on one of the four edgings of a tile k:

∀i ∈ [n+ 1, . . . ,m] : ri = ϕ or ∃k ∈ [m] :

ri ∈ [(tk,x, tk,y), (tk,x+ak, tk,y)]×tk,z or

ri ∈ [(tk,x, tk,y), (tk,x, tk,y+bk)]×tk,z or

ri ∈ [(tk,x, tk,y+bk), (tk,x+ak, tk,y+bk)]×tk,z or

ri ∈ [(tk,x+ak, tk,y), (tk,x+ak, tk,y+bk)]×tk,z.

(207)

This can be further simplified since the first part of the equation,
ri = ϕ, can be omitted. If a router is unplaced, ri = ϕ, there will also
be at least one tile that is unplaced, i. e. ∃j ∈ [m] : tj = ϕ. Thus, the
inequalities are satisfied since ri = tj = ϕ.

For each of the four intervals there are 6 inequalities. The four
blocks of inequalities are connected by a logical OR since it is suf-
ficient that a router is in one of these intervals. The inequalities for
the interval of the upper edging of the tile are given by:

tk,x 6 ri,x 6 tk,x+at (208)

tk,y 6 ri,y 6 tk,y (209)

tk,z 6 ri,z 6 tk,z (210)

The inequalities are given by for the interval of the tile’s left edging:
tk,x 6 ri,x 6 tk,x (211)

tk,y 6 ri,y 6 tk,y+bt (212)

tk,z 6 ri,z 6 tk,z (213)

The inequalities for the intervals of the right and lower edging of the
tile are given by:

tk,x+at 6 ri,x 6 tk,x+at (214)

tk,y 6 ri,y 6 tk,y+bt (215)

tk,z 6 ri,z 6 tk,z and (216)

tk,x 6 ri,x 6 tk,x+at (217)

a.5 constraints 195

tk,y+bt 6 ri,y 6 tk,y+bt (218)

tk,z 6 ri,z 6 tk,z. (219)

We introduce the binary auxiliary variables h10i 1, h10i 2, h10i 3, and h10i 4
for each i ∈ [n + 1, . . . ,m] and h10i,k for each i ∈ [n + 1, . . . ,m] and
k ∈ [m]. Thus, the 25m(m− n+ 1) inequalities for each i ∈ [n] and
k ∈ [m] are given:

tk,x 6 ri,x+ c3(h
10
i 1+h

10
i,k) (220)

ri,x 6 tk,x+at+ c3(h
10
i 1+h

10
i,k) (221)

tk,y 6 ri,y+ c3(h
10
i 1+h

10
i,k) (222)

ri,y 6 tk,y+ c3(h
10
i 1+h

10
i,k) (223)

tk,z 6 ri,z+ c3(h
10
i 1+h

10
i,k) (224)

ri,z 6 tk,z+ c3(h
10
i 1+h

10
i,k) (225)

tk,x 6 ri,x+ c3(h
10
i 2+h

10
i,k) (226)

ri,x 6 tk,x+ c3(h
10
i 2+h

10
i,k) (227)

tk,y 6 ri,y+ c3(h
10
i 2+h

10
i,k) (228)

ri,y 6 tk,y+bt+ c3(h
10
i 2+h

10
i,k) (229)

tk,z 6 ri,z+ c3(h
10
i 2+h

10
i,k) (230)

ri,z 6 tk,z+ c3(h
10
i 2+h

10
i,k) (231)

tk,x+at 6 ri,x+ c3(h
10
i 3+h

10
i,k) (232)

ri,x 6 tk,x+at+ c3(h
10
i 3+h

10
i,k) (233)

tk,y 6 ri,y+ c3(h
10
i 3+h

10
i,k) (234)

ri,y 6 tk,y+bt+ c3(h
10
i 3+h

10
i,k) (235)

tk,z 6 ri,z+ c3(h
10
i 3+h

10
i,k) (236)

ri,z 6 tk,z+ c3(h
10
i 3+h

10
i,k) (237)

tk,x 6 ri,x+ c3(h
10
i 4+h

10
i,k) (238)

ri,x 6 tk,x+at+ c3(h
10
i 4+h

10
i,k) (239)

tk,y+bt 6 ri,y+ c3(h
10
i 4+h

10
i,k) (240)

ri,y 6 tk,y+bt+ c3(h
10
i 4+h

10
i,k) (241)

tk,z 6 ri,z+ c3(h
10
i 4+h

10
i,k) (242)

ri,z 6 tk,z+ c3(h
10
i 4+h

10
i,k). (243)

The OR relation is modeled by the following equation for each i ∈
[n+ 1, . . . ,m]

h10i 1 + h
10
i 2 + h

10
i 3 + h

10
i 4 6 3 (244)

Additionally, satisfying the inequality∑
k∈[m]

h10i,k 6 m− 1 (245)

for all routers i ∈ [n+ 1, . . . ,m] ensures that each router is located in
a tile. This can be further simplified using the next constraint about
the sizes of tiles (cf. Section a.5.3). There the auxiliary binary variable
hi,j is defined in Equation 247 that is 1 iff the router j is located

196 system-level optimization

in tile i. Hence, the constraint can be simply modeled by m− n+ 1

inequalities fore each router j ∈ [n+ 1, . . . ,m]:∑
i∈[m]

hi,j > 1. (246)

Size of tiles

The size of each tile must be larger than the summed size of its com-
ponent, routers and TSVs. Using the same indexes of routers, tiles,
and components and the modified function fc, this yields m inequal-
ities for all i ∈ [m]:

aibi >fc(i, τ(ri,z)) + hiRouterfR2D(τ(ri,z))+

hi TSV(fR3D(τ(ri,z)) − fR2D(τ(ri,z))) + hiKOZfKOZ
(247)

This requires the three auxiliary integer variables hiRouter, hi TSV, and
hiKOZ which contain the number of routers and TSVs (KOZs) in a
tile. Their definition is given in Section a.6.10, Section a.6.9, and Sec-
tion a.6.8. Using the variables defined in the appendix, Equation 247
is given by m inequalities for all i ∈ [m]:

aibi >fc(i, τ(ri,z)) + hiRouterfR2D(τ(ri,z))+

hi TSV(fR3D(τ(ri,z)) − fR2D(τ(ri,z))) + hiKOZfKOZ or ti = ϕ.
(248)

This equation is linearized according to Section 6.3.4.2. For hξ,i, 11
α,β,γ ,

the variables hiRouter, hi TSV, and hiKOZ can be re-used. The follow-
ing two constraints must be satisfied. First, only one element of each
matrix Hξ,i, 11 is allowed to be one using these m inequalities:∑

ξ∈[`],α,β,γ∈[m−n+1]

hξ,i, 11
α,β,γ 6 1 (249)

In addition, the implication "tile i is in layer ξ and has (α− 1) routers,
(β− 1) 3D-routers, and (γ− 1) KOZs → hξ,i, 11

α,β,γ = 1" ↔ ti,z 6= ξ or
hiRouter 6= (α− 1) or hi TSV 6= (β− 1) or hiKOZ 6= (γ− 1) or hξ,i, 11

α,β,γ = 1

must be modeled. This yields 9m`(m−n+ 1)(m−n+ 1) inequalities
for all i ∈ [m], ξ ∈ [`],α ∈ [m − n + 1], , β ∈ [m − n + 1], and γ ∈
[m−n+ 1]:

1/2+ ti,z 6 ξ+hξ,i 11
α,β 1 c3, (250)

1/2+ξ 6 ti,z+h
ξ,i 11
α,β 2 c3, (251)

1/2+hiRouter 6 (α− 1)+hξ,i 11
α,β 3 c3, (252)

1/2+(α− 1) 6 hiRouter +h
ξ,i 11
α,β 4 c3, (253)

1/2+hi TSV 6 (β− 1)+hξ,i 11
α,β 5 c3, (254)

1/2+(β− 1) 6 hi TSV +hξ,i 11
α,β 6 c3, (255)

1/2+hiKOZ 6 (γ− 1)+hξ,i 11
α,β 7 c3, (256)

1/2+(γ− 1) 6 hiKOZ +hξ,i 11
α,β 8 c3, (257)

hξ,i 11
α,β 1 +hξ,i 11

α,β 2 +h
ξ,i 11
α,β 3 +hξ,i 11

α,β 4 +hξ,i 11
α,β 5 +

hξ,i 11
α,β 6 +h

ξ,i 11
α,β 7 +hξ,i 11

α,β 8 +(1−hξ,i, 11
α,β,γ) 6 8

(258)

a.5 constraints 197

In addition, not placed tiles i in layer 0 must force all values of their
matrices Hξ,i, 11 to zero by the following `(m−n+ 1)3 inequalities:

hξ,i, 11
α,β,γ 6 ti,z (259)

The actual inequalities for this model here are skipped due to
brevity.

Tiles do not overlap

There may not exist pairs of placed tiles with index i and j of which
the areas intersect:

∀i ∈ [m] : ti = ϕ or (∀j ∈ [m], i 6= j : tj = ϕ
or Ati ∩Atj = ∅)

(260)

↔∀(i, j) ∈ [m]×[m], i 6= j : ti = ϕ or tj = ϕ

or (Ati ∩Atj = ∅)
(261)

The intersection of the areas Ati ∩Atq separates into two cases: First,
it can only occur in the same layer, i. e. it will always be false if ti,z 6=
tj,z. Second, if the areas are located in the same layer, they will only
overlap if and only if their x- and y-dimension both overlap as shown
in Figure 99. This yields:

∀(i, j) ∈ [m]×[m], i 6= j : ti = ϕ or tj = ϕ or ti,z 6= tj,z or(
[ti,x, ti,x + ai]∩ [tj,x, tj,x + aj] = ∅ and

[ti,y, ti,y + bi]∩ [tj,y, tj,y + bj] = ∅
) (262)

The equation [ti,x, ti,x + ai] ∩ [tj,x, tj,x + aj] = ∅ can be transformed
into ∀p ∈ [ti,x, ti,x + ai] : p /∈ [tj,x, tj,x + aj]. It is sufficient to test the
borders of the intervals:

Lemma a.2. The closed I1 = [a,b] ⊂ P and I2 = [c,d] ⊂ P overlap iff
c 6 b and a 6 d.

Proof. The intervals I1 = (a,b) ⊂ P and I2 = (c,d) ⊂ P overlap, i. e.
I1 ∩ I2 6= ∅, if and only if ∃p ∈ P with p ∈ I1 and p ∈ I2. For p it
holds that: a < p < b and c < p < d. Therefore, this two conditions
are met iff the intervals overlap: c < b and a < d. Consideration of
the boarder cases leads to the extension for closed intervals.

Using this lemma, the areas of the tiles overlap iff(
tj,x 6 ti,x + ai and ti,x 6 tj,x + aj and

tj,y 6 ti,y + bi and ti,y 6 tj,y + bj
) (263)

Using negation and DeMorgan’s Law, Equation 262 yields:

∀(i, j) ∈ [m]×[m], i 6= j : ti = ϕ or tj = ϕ or ti,z 6= tj,z or(
tj,x > ti,x + ai + δ or ti,x > tj,x + aj + δ or

tj,y > ti,y + bi + δ or ti,y > tj,y + bj + δ
) (264)

We introduce for all i ∈ [n] and for all j ∈ [n] with i 6= j binary aux-
iliary variables h12i,j 1, h12i,j 2, h12i,j 3, h12i,j 4, h12i,j 5, h12i,j 6, h12i,j 7, and h12i,j 8 ∈

198 system-level optimization

Figure 99: Only of the x- and y-dimension of the areas overlap, there is an
non-empty intersection.

{0, 1}. This yields 11(m2 −m) inequalities for all (i, j) ∈ [m]×[m] with
i 6= j:

ti,z 6ϕz+h
12
i,j 1c1 (265)

tj,z 6ϕz+h
12
i,j 2c1 (266)

ti,z 6 tj,z− 1/2+h12
i,j 3c1 (267)

tj,z 6 ti,z− 1/2+h12
i,j 4c1 (268)

tj,x > ti,x+ai+ δ−h
12
i,j 5c1 (269)

ti,x > tj,x+aj+ δ−h
12
i,j 6c1 (270)

tj,y > ti,y+bi+ δ−h
12
i,j 7c1 (271)

ti,y > tj,y+bj+ δ−h
12
i,j 8c1 (272)

h12
i,j 1+h

12
i,j 2+h

12
i,j 3+h

12
i,j 4+h

12
i,j 5+h

12
i,j 6+h

12
i,j 7+h

12
i,j 8 6 7 (273)

Components have different locations

All components with index i ∈ [n] and j ∈ [n], j 6= i must have differ-
ent locations. Due to the indexing and the non-overlapping property
of tiles, this constraint is already modeled. Components have a mini-
mum distance of δ.

Links are not allowed to intersect tiles

Links are not allowed to intersect tiles, i. e. the line between two con-
nected routers with index i ∈ [m] and j ∈ [m], j 6= must not intersect
a tile area:

∀i, j ∈ [m]× [m], i 6= j : e{i,j} = 1→
(
ri,z = rj,z

→ ∀t ∈ T : Ãt ∩ L(ri, rj) = ∅
) (274)

↔∀i, j ∈ [m]× [m], i 6= j : e{i,j} = 0 or ri,z 6= rj,z
or ∀t ∈ T : Ãt ∩ L(ri, rj) = ∅

) (275)

The set equality Ãt ∩ L(ri, rj) = ∅ yields inequalities since a link and
a tile do not overlap iff the link is left, right, below, or above the tile.
Modeling this requires the auxiliary binary variables h14i,j,k1, h14i,j,k2,
h
14
i,j,k3, h14i,j,k4, h14i,j,k5, h14i,j,k6, and h14i,j,k7. There are 13m(m− 1)(m−

a.5 constraints 199

2) inequalities for all k ∈ [m] \ {i, j}. The link between routers ri and
rj intersects the tile with index k if one of these conditions is met:

ri,x 6 tk,x+h
14
i,j,k1c1+h

14
i,jORc1 (above) (276)

rj,x 6 tk,x+h
14
i,j,k1c1+h

14
i,jORc1 (above) (277)

ri,y 6 tk,y+h14
i,j,k2c1+h

14
i,jORc1 (left) (278)

rj,y 6 tk,y+h14
i,j,k2c1+h

14
i,jORc1 (left) (279)

ri,x > tk,x+ak−h
14
i,j,k3c1−h

14
i,jORc1 (below) (280)

rj,x > tk,x+ak−h
14
i,j,k3c1−h

14
i,jORc1 (below) (281)

ri,y > tk,y+bk−h
14
i,j,k4c1−h

14
i,jORc1 (right) (282)

rj,y > tk,y+bk−h
14
i,j,k4c1−h

14
i,jORc1 (right) (283)

It remains to model whether the tile and the routers are located on
the same layer, if ri,z 6= rj,z, and the OR relation between the link
locations:

1/2+ tk,z 6 rj,z+h
14
i,j,k5c1+h

14
i,jORc1 (284)

1/2+ rj,z 6 tk,z+h
14
i,j,k6c1+h

14
i,jORc1 (285)

1/2+ ri,z 6 rj,z+h
14
i,j,k7c1+h

14
i,jORc1 (286)

1/2+ rj,z 6 ri,z+h
14
i,j,k8c1+h

14
i,jORc1 (287)

h
14
i,j,k1+h

14
i,j,k2+ · · ·+h

14
i,j,k8 6 7. (288)

Finally, there must be a link between the two routers for all i, j ∈
[m], i 6= j:

e{i,j} 6 (1− h14i,jOR)c
14
1 . (289)

All in all, this constraint adds 13m(m− 1)(m− 2)+m(m− 1) inequal-
ities.

Routers have different locations

Placed routers are not allowed to be at the same position. Routers
with index i ∈ [n] are located at different positions due to forbidden
intersections between tiles. Only routers with indexes larger n are
relevant here. Therefore, it holds for all (i, j) ∈ {n+ 1, . . . ,m}×[m]:

ri 6= rj or ri = ϕ. (290)

This translates into the following 4(m − 1)m inequalities using the
auxiliary binary variable h14i,jOR and h

14
i,j,k2 and the constant c =

xmax + ymax + l for all i, j ∈ [m]×[m], i 6= j:

ri,z = ϕz or ri,x > rj,x or ri,x < rj,x or ri,y > rj,y
or ri,y < rj,y or ri,z > rj,z or ri,z < rj,z

(291)

Since the positions of the routers are vectors, this in total yields these
9(m − 1)m inequalities using the binary auxiliary variables h156= i,j,1,
h
15
6= i,j,2, h156= i,j,3, h156= i,j,4, h156= i,j,5, h156= i,j,6, and h14i,jOR:

ri,z 6ϕz+h
14
i,jORc3 (292)

ϕz 6 ri,z+h
14
i,jORc3 (293)

δ+ ri,x 6 rj,x+h
15
6= i,j,1c3 (294)

δ+ rj,x 6 ri,x+h
15
6= i,j,2c3 (295)

δ+ ri,y 6 rj,y+h15
6= i,j,3c3 (296)

200 system-level optimization

s
i

s
j

1
1

1 1 1 1 1

1

Figure 100: Constraints for 2D DOR. At the source si a flow of one is given
into the network and it is removed from the network at destination sj.
Along the red path, the flow is 1. The green links have flow 0. The dot-
ted red links could potentially have flow 1 following the constraints from
Equation 301. However, the flow form these edges cannot be removed due
to flow conversation, binary flows and acyclic flows. Therefore, these links
indirectly also have flow 0.

δ+ rj,y 6 ri,y+h15
6= i,j,4c3 (297)

1/2+ ri,z 6 rj,z+h
15
6= i,j,5c3 (298)

1/2+ rj,z 6 ri,z+h
15
6= i,j,6c3 (299)

h
15
6= i,j,1+h

15
6= i,j,2+h

15
6= i,j,3+h

15
6= i,j,4+h

15
6= i,j,5+h

15
6= i,j,6+h

14
i,jOR 6 6 (300)

a.5.4 Constraints for elevator first dimension order routing

a.5.4.1 Flow as binary variable

For “extended” DOR the flow must be binary since only a single path
through the network is valid per source and destination pair. Thus, it
must hold, that for all i, j,k, l ∈ [m]: f(i,j)(k,l) ∈ {0, 1}.

Flow f(i, j) for DOR

The variables of the flow f
(i,j)
(k,l) must be set within the network to fol-

low elevator-first DOR. As a prerequisite, we consider 2D DOR. This
is depicted in Figure 100. 2D DOR starts by minimizing the differ-
ence of the packet’s destination and location first in y-dimension and
then in x-dimension. Thus, during transmission, the x-coordinate of
the packet remains the same until the packet’s transmission direction
changes. Then, the y-coordinate is static. Thus, for an edge (k, l) on
the packet’s path from component si to sj it must hold:

si,x = rk,x = rl,x or sj,y = rk,y = rl,y (301)

The flow-constraints, namely the definition of a flow (Section 6.3.4.3),
flow conservation (Equation 6.3.4.3), acyclic flows (Equation 6.3.4.3),
and the binary flow variable for DOR (Section a.5.4.1) ensure that only
the desired flow following 2D DOR can be selected from source to
destination with the aforementioned constraints. In case of elevator-
first DOR, the source component si and the destination component
sj can be located in any two arbitrary layers in the chip. Therefore
two auxiliary variables s̃ijξ and d̃ijξ ∈ P are introduced for each layer

a.5 constraints 201

s
i
 = s

3

s
j
 = d

1

d
3

s
2

s
1

d
2

TSV

TSV

layer 1

layer 3

layer 2

~

~

~

~

~

Figure 101: A packet travels from the lowermost to the uppermost layer
via two TSVs. The variables s̃ijξ and d̃ijξ are set to the positions of routers,
which revive or send the packet through the TSVs.

ξ ∈ [`] and per source-destination-pair i, j ∈ [m] that represent the
start- and endpoint of the 2D DOR, which is performed in this layer4.
This is shown in Figure 101. A packet travels from the lowermost to
the uppermost layer via two TSVs. The variables s̃ijξ and d̃ijξ are set to
the positions of routers, which receive or send the packet through the
TSVs. For these variables the following conditions must be fulfilled
for the upward transmission direction (si,z > sj,z):

– In the start layer si,z the packets start at the start component:
s̃
ij
ξ = si.

– In the destination layer sj,z the packets must travel to the desti-
nation: d̃ijξ = sj.

– In layers, which are not traversed by packets, s̃ijξ and d̃ijξ are not
set. Thus in layers ξ with ξ > si,z and ξ > sj,z or ξ < si,z and
ξ < sj,z it holds that s̃ijξ = d̃ijξ = ϕ.

– For all (temporary) destinations d̃ijξ in each traversed layer, a
link from d̃

ij
ξ is directed upward for all ξ ∈ {sj,z + 1, sj,z +

2, . . . , si,z} and i, j ∈ [m]. Thus, the link can be used to trans-
mit packets.

– In layers, which are traversed by packets, the destination of the
previous layer must be connected to the source of the next layer.

– For each (temporary) destination in each layer, which is used
as a gateway, the packet travels the shortest possible distance.
Thus, the distance between the source in this layer and each
other router with a TSV in the correct direction must be larger:
For all routers rι with rι has a downward TSV and is in a tra-
versed layer (rι,z = ξ) the following is valid:

||rι− s̃
ij
ξ || 6 ||d̃

ij
ξ − s̃ijξ || ∀ξ ∈ {sj,z+ 1, . . . , si,z}, i, j ∈ [m] (302)

4 The z-component of s̃ijξ and d̃ijξ is ξ.

202 system-level optimization

For the downward direction (si,z < sj,z), the directions of the TSVs
are altered.

Summing up, there are three cases: the packet travels upwards,
downwards, or stays within the same layer. The third case can be
seen as a special case of either case I or case II. We have chosen to
assign the case, in which both routers are in the same layer, to case
I (traveling upwards). In both of these cases the following must be
valid:

– In source layer si,z : s̃
ij
ξ = si.

– In destination layer sj,z : d̃
ij
ξ = sj.

– The condition for 2D DOR holds for each edge eN = (k, l) ∈ EN:

f
(i,j)
(k,l) = 1→eN > 0 and rk,z = rl,z

and s̃ijξ = rk,x = rl,x or d̃ijξ = rk,y = rl,y
(303)

In the first case (I,) the packets travel upwards or stay within the same
layer (si,z > sj,z), these conditions must be fulfilled for all i, j ∈ [m]:

– The traversed layers are combined in the setD1 = {sj,z+ 1, sj,z+
2, . . . , si,z}. Note, that we are excluding the destination layer, i. e.
the layer, in which the destination component sj is located.

– For all ξ ∈ D1 a link is heading upwards from d̃
ij
ξ .

– For all ξ ∈ D1 the destination in the previous layer are identical
with the source in the next layer. Thus, for all k, l ∈ [m]: rk = d̃ijξ
and rl = s̃

ij
ξ−1 implies e(k,l) = 1.

– For all routers rι with rι has a upward TSV and rι,z = ξ: ||rι −
s̃
ij
ξ || > ||d̃

ij
ξ − s̃ijξ ||.

– For each connection {k, l} with the link (k, l) heading upwards
(i. e. rk,z = rl,z + 1):

1. f(i,j)(l,k) = 0

2. If rk = d̃
i,j
rk,z and rl = s̃

i,j
rl,z and rk,z 6 si,z and rl,z > sj,z

then f(i,j)(k,l) = 1

3. The otherwise case ("f(i,j)(k,l) = 0 else") is fulfilled: Because

of the flow conservation and the first condition (f(i,j)(l,k) = 0),
the sum of flows into and out of layers is always zero ex-
cept for the start and destination layer, which have flow 1
and -1 respectively. In addition, the flow between two tra-
versed layers is 1. Using the second condition, a single TSV
between two traversed layers has a flow of 1. Therefore, all
other TSV are forced to flow 0.

In the second case (II), the packets travel downwards (si,z < sj,z),
these conditions must be fulfilled for all i, j ∈ [m]:

– The traversed layers are combined in the set D0 = {si,z, si,z +
1, . . . , sj,z − 1}. Again the destination layer is excluded.

– A link heads downwards from d̃
ij
ξ for all ξ ∈ D0.

a.5 constraints 203

– For all ξ ∈ D1 the destination in the previous layer are identical
with the source in the next layer. Thus, for all k, l ∈ [m]: rk = d̃ijξ
and rl = s̃

ij
ξ+1 implies e(k,l) = 1.

– For all routers rι with rι has a downward link and rι,z = ξ:
||rι − s̃

ij
ξ || > ||d̃

ij
ξ − s̃ijξ ||.

– For each TSV {k, l} with the link (k, l) heading upwards (i. e.
rk,z = rl, z+ 1):

1. f(i,j)(k,l) = 0

2. If rl = d̃
i,j
rl,z and rk = s̃

i,j
rk,z and rl,z > si,z and rk,z 6 sj,z:

f
(i,j)
(l,k) = 1

3. The otherwise case ("f(i,j)(l,k) = 0 else") is automatically ful-
filled (with the same arguments).

We use the auxiliary variable h18ijUP from Section a.6.13 to model the
packet travel direction.

To fulfill the five conditions, we start by modeling the first one,
namely the sets of traversed layers D0 and D1. Therefore, auxiliary vari-
ables h18ijDξ are required indicating layers, in which a packet from any
source component with index i to destination component with index
j is transmitted. The variable h18ijDξ is given in Section a.6.12.

Next, for case I we model the third condition for all ξ ∈ D15, k, l ∈
[m]: rk = d̃

ij
ξ and rl = s̃

ij
ξ−1 implies e(k,l) = 1. These inequalities exist

for all ξ ∈ [`] \ {1}:

rk,x+ δ 6 d̃i,jξ,x+h
18
ijklξ 1c+(1−h18

ijDξ)c+(1−h18
ijUP)c (304)

d̃
i,j
ξ,x+ δ 6 rk,x+h

18
ijklξ 2c+(1−h18

ijDξ)c+(1−h18
ijUP)c (305)

rk,y+ δ 6 d̃i,jξ,y+h18
ijklξ 3c+(1−h18

ijDξ)c+(1−h18
ijUP)c (306)

d̃
i,j
ξ,y+ δ 6 rk,y+h18

ijklξ 4c+(1−h18
ijDξ)c+(1−h18

ijUP)c (307)

rk,z+ 1/2 6 d̃i,jξ,z+h
18
ijklξ 5c+(1−h18

ijDξ)c+(1−h18
ijUP)c (308)

d̃
i,j
ξ,z+

1/2 6 rk,z+h
18
ijklξ 6c+(1−h18

ijDξ)c+(1−h18
ijUP)c (309)

rl,x+ δ 6 s̃i,jξ−1,x+h
18
ijklξ 7c+(1−h18

ijDξ)c+(1−h18
ijUP)c (310)

s̃
i,j
ξ−1,x+ δ 6 rl,x+h

18
ijklξ 8c+(1−h18

ijDξ)c+(1−h18
ijUP)c (311)

rl,y+ δ 6 s̃i,jξ−1,y+h18
ijklξ 9c+(1−h18

ijDξ)c+(1−h18
ijUP)c (312)

s̃
i,j
ξ−1,y+ δ 6 rl,y+h18

ijklξ 10c+(1−h18
ijDξ)c+(1−h18

ijUP)c (313)

rl,z+ 1/2 6 s̃i,jξ−1,z+h
18
ijklξ 11c+(1−h18

ijDξ)c+(1−h18
ijUP)c (314)

s̃
i,j
ξ−1,z+

1/2 6 rl,z+h
18
ijklξ 12c+(1−h18

ijDξ)c+(1−h18
ijUP)c (315)

12∑
ι=1

h18
ijklξ ι+(1− e{k,l}) 6 12 (316)

The second case II requires modeling rk = d̃
ij
ξ and rl = s̃

ij
ξ+1

implies e(k,l) = 1. Thus, we have the following inequalities for all
ξ ∈ [`− 1] and k, l ∈ [m]:

rk,x+ δ 6 d̃i,jξ,x+h
18
ijklξ 13c+(1−h18

ijDξ)c+(1−h18
ijUP)c (317)

d̃
i,j
ξ,x+ δ 6 rk,x+h

18
ijklξ 14c+(1−h18

ijDξ)c+(1−h18
ijUP)c (318)

5 For ξ /∈ D1, the inequalities are always true.

204 system-level optimization

rk,y+ δ 6 d̃i,jξ,y+h18
ijklξ 15c+(1−h18

ijDξ)c+(1−h18
ijUP)c (319)

d̃
i,j
ξ,y+ δ 6 rk,y+h18

ijklξ 16c+(1−h18
ijDξ)c+(1−h18

ijUP)c (320)

rk,z+ 1/2 6 d̃i,jξ,z+h
18
ijklξ 17c+(1−h18

ijDξ)c+(1−h18
ijUP)c (321)

d̃
i,j
ξ,z+

1/2 6 rk,z+h
18
ijklξ 18c+(1−h18

ijDξ)c+(1−h18
ijUP)c (322)

rl,x+ δ 6 s̃i,jξ+1,x+h
18
ijklξ 19c+(1−h18

ijDξ)c+(1−h18
ijUP)c (323)

s̃
i,j
ξ+1,x+ δ 6 rl,x+h

18
ijklξ 20c+(1−h18

ijDξ)c+(1−h18
ijUP)c (324)

rl,y+ δ 6 s̃i,jξ+1,y+h18
ijklξ 21c+(1−h18

ijDξ)c+(1−h18
ijUP)c (325)

s̃
i,j
ξ+1,y+ δ 6 rl,y+h18

ijklξ 22c+(1−h18
ijDξ)c+(1−h18

ijUP)c (326)

rl,z+ 1/2 6 s̃i,jξ+1,z+h
18
ijklξ 23c+(1−h18

ijDξ)c+(1−h18
ijUP)c (327)

s̃
i,j
ξ+1,z+

1/2 6 rl,z+h
18
ijklξ 24c+(1−h18

ijDξ)c+(1−h18
ijUP)c (328)

24∑
ι=13

h18
ijklξ ι+(1− e{k,l}) 6 12 (329)

Next, we model: "A TSV is heading upwards (case I) (or downwards
for case II) from location d̃ijξ for all ξ ∈ D1 (or D0)". We use the
properties of ĥ+k and ĥ−k (cf. Section a.6.7). They indicate for router
k if it has a vertical link downwards (or upwards). The destination
routers d̃ijξ need to be such routers.

For all routers rk ∈ [m] it holds for case I that if rk = d̃
ij
ξ for a

ξ ∈ D1, then ĥ−k > 1. Analog, for case II it holds if rk = d̃
ij
ξ for a

ξ ∈ D0, then ĥ+k > 1. For case I this yields:

rk = d̃ijξ and case I and ξ ∈D1⇒ ĥ−
k > 1 (330)

⇔rk 6= d̃ijξ or not case I or ξ 6∈D1 or ĥ−
k > 1 (331)

⇔rk 6= d̃ijξ or h18
ijUP = 0 or h18

ijDξ = 0 or ĥ−
k > 1 (332)

⇔rk < d̃ijξ or rk > d̃
ij
ξ or h18

ijUP = 0 or h18
ijDξ = 0 or ĥ−

k > 1 (333)

⇔rk,x < d̃
ij
ξ,x or rk,x > d̃

ij
ξ,x or rk,y < d̃

ij
ξ,y or

rk,y > d̃
ij
ξ,y or rk,z < ξ or rk,z > ξ or

h18
ijUP = 0 or h18

ijDξ = 0 or ĥ−
k > 1

(334)

This yields the following 7(m− 1)l|EA| inequalities for all (i, j) ∈ EA,
ξ ∈ [`], and k ∈ [m] \ {j}6 using the auxiliary binary variables h18ijkξ 1,
h18ijkξ 2, h18ijkξ 3, h18ijkξ 4, h18ijkξ 5, and h18ijkξ 6:

1/2+ rk,x 6 d̃ijξ,x+h
18
ijkξ 1c, (335)

1/2+ rk,y 6 d̃ijξ,y+h18
ijkξ 2c, (336)

1/2+ rk,z 6 ξ+h18
ijkξ 3c, (337)

rk,x > d̃ijξ,x+
1/2−h18

ijkξ 4c, (338)

rk,y > d̃ijξ,y+ 1/2−h18
ijkξ 5c, (339)

rk,z > ξ+ 1/2−h18
ijkξ 6c, (340)

h18
ijkξ 1+ · · ·+h18

ijkξ 6+h
18
ijUP +h18

ijDξ+(1− ĥ−
k) 6 8 (341)

6 Router with index j can be excluded since its layer is not in D0 (or D1 depending
on the case).

a.5 constraints 205

For case II the analog is given:

⇔rk,x < d̃
ij
ξ,x or rk,x > d̃

ij
ξ,x or rk,y < d̃

ij
ξ,y or

rk,y > d̃
ij
ξ,y or rk,z < ξ or rk,z > ξ or

h18
ijUP = 0 or h18

ijDξ = 1 or ĥ+
k > 1

(342)

This adds one additional inequality for all (i, j) ∈ EA, ξ ∈ [`], and
k ∈ [m] \ {j}

h18ijkξ 1+h
18
ijkξ 2 + h

18
ijkξ 3 + h

18
ijkξ 4 + h

18
ijkξ 5 + h

18
ijkξ 6

+(1− h18ijUP) + h
18
ijDξ + (1− ĥ+k) 6 8

(343)

Summing up, 8(m− 1)l|EA| inequalities are given here.
Now, the fourth condition about the distance of the gateway to other

routers is modeled. The condition is given for all (i, j) ∈ EA, for all
routers ι ∈ [m] \ {j}, and for all ξ ∈ [`] by ĥ−ι = 1 and rι,z = ξ and
ξ ∈ D1 (i. e. h18ijDξ = 1) and h18ijUP = 1 (i. e. indicating case I) ⇒
||rι − s̃

ij
ξ || > ||d̃

ij
ξ − s̃ijξ || with || · || denoting the Manhattan norm. This

can be rewritten:
ĥ−ι = 0 or rι,z 6= ξ or h18ijDξ = 0 or h18ijUP = 0

or ||rι − s̃
ij
ξ || > ||d̃

ij
ξ − s̃ijξ ||

(344)

Next, the norm distance ||rι − s̃
ij
ξ || > ||d̃

ij
ξ − s̃ijξ || must be brought into

the MILP model. Due to the grid-based network topology within each
layer the Manhattan norm is used. ||ri − rj|| denotes the hop distance
between routers i and j of the same layer.

||rι − s̃
ij
ξ ||1 > ||d̃

ij
ξ − s̃ijξ ||1 (345)

⇔|rι,x − s̃
ij
ξ,x|+ |rι,y − s̃

ij
ξ,y|+ |rι,z − s̃

ij
ξ,z| >

|d̃
ij
ξ,x − s̃

ij
ξ,x|+ |d̃

ij
ξ,y − s̃

ij
ξ,y|+ |d̃

ij
ξ,z − s̃

ij
ξ,z|

(346)

The difference in the z-dimension is always zero, thus |rι,z − s̃ξ,z| = 0
and |d̃ξ,z − s̃ξ,z| = |ξ − ξ| = 0. For the other terms of the sum an
auxiliary absolute value "function" dist(·, ·) is introduced, which is
given by dist(a,b) = |a − b|. The dist-"function" is given by these
six inequalities which must be satisfied in the MILP model using the
auxiliary binary variable ha6b and the constant c7:

dist(a,b) > a−b (347)

dist(a,b) > b−a (348)

a 6 b+(1−ha6b)c (349)

b 6 a+ha6bc (350)

dist(a,b) 6 a−b+ha6bc (351)

dist(a,b) 6 b−a+(1−ha6b)c (352)

7 Again, we exploit that a and b are bounded. Hence, dist is a function from [0, xmax +

ymax]×[0, xmax + ymax] which maps to[0, xmax + ymax]

206 system-level optimization

Here, the dist-function values are auxiliary variables. These exist for
those very cases in which they are required in:

dist(rι,x, s̃i,jξ,x) ∀(i, j) ∈ EA, ι ∈ [m] \ {j},ξ ∈ [`] (353)

dist(rι,y, s̃i,jξ,y) ∀(i, j) ∈ EA, ι ∈ [m] \ {j},ξ ∈ [`] (354)

dist(d̃i,jξ,x, s̃i,jξ,x) ∀(i, j) ∈ EA,ξ ∈ [`] (355)

dist(d̃i,jξ,y, s̃i,jξ,y) ∀(i, j) ∈ EA,ξ ∈ [`] (356)

For each of these auxiliary variables, 6 further inequalities are re-
quired to model the dist-function value. Therefore, a total of 12|EA|`(m−
1) + 12|EA|` inequalities are given. Using these auxiliary variables,
Equation 346 can be written as:

dist(rι,x, s̃ξ,x)+ dist(rι,y, s̃ξ,y) > dist(d̃ξ,x, s̃ξ,x)+ dist(d̃ξ,x, s̃ξ,x) (357)

Continuing, the term 344 is given for case (I) by the inequalities using
the binary auxiliary variables h18ιξOR1, h18ιξ 1, and h18ijιξ 2 for all ι ∈ [m],
and ξ ∈ [`]:

rι,z > ξ+ 1/2−h18
ιξOR1c−h

18
ιξ 1c, (358)

rι,z 6 ξ− 1/2+(1−h18
ιξOR1)c+h

18
ιξ 1c, (359)

Furthermore, for all (i, j) ∈ EA, ι ∈ [m], and ξ ∈ [`] it is given:

dist(rι,x, s̃i,jξ,x)+ dist(rι,y− s̃i,jξ,y) >

dist(d̃i,jξ,x− s̃
i,j
ξ,x)+ dist(d̃i,jξ,x− s̃

i,j
ξ,x)−h

18
ijιξ 2c

(360)

ĥ−
ι +h

18
ιξ 1 +h

18
ijDξ+h

18
ijUP +h18

ijιξ 2 6 4 (361)

Case II is modeled by condition for all routers ι ∈ [m] \ {j} and for
all ξ ∈ [`] by ĥ+ι = 1 and rι,z = ξ and ξ ∈ D0 (i. e. h18ijDξ = 1) and
h18ijUP = 0 (indicating case I) implies ||rι − s̃

ij
ξ || > ||d̃

ij
ξ − s̃ijξ ||. This can

be rewritten:
ĥ+ι = 0 or rι,z 6= ξ or h18ijDξ = 0 or h18ijUP = 1

or ||rι − s̃
ij
ξ || > ||d̃

ij
ξ − s̃ijξ ||

(362)

Thus, the equations 358 to 360 are identical in this case, only the
following must be added for all (i, j) ∈ EA, ι ∈ [m] \ {j}, and ξ ∈ [`]:

ĥ+ι + h18ιξ 1 + h
18
ijDξ + (1− h18ijUP) + h

18
ijιξ 2 6 4 (363)

Summing up, 3|EA|(m− 1)l+ 2(m− 1)l inequalities are given.
Next, the fifth condition is modeled concerning flow in the network.

The flow from layers to layers in the opposite direction of the source
to destination must be set to zero. Therefore, in case I for each TSV
{k, l} which is an upwards connection from router k to router l, the
flow f

(i,j)
(l,k) = 0. Hence, the conditions can be formulated as follows:

h18ijUP = 1 and e{k,l} = 1 and rk,z = rl,z+1 ⇒ f
(i,j)
(l,k) = 0 (364)

⇔h18ijUP = 0 or e{k,l} = 0 or rk,z 6= rl,z+1 or f(i,j)(l,k) = 0 (365)

a.5 constraints 207

These condition yields the inequalities using the auxiliary binary vari-
ables h18ijklOR and h18ijkl for all (i, j) ∈ EA, and for all k, l ∈ [m]:

rk,z 6 rl,z + 1/2+ h
18
ijklORc+ h

18
ijklc (366)

rl,z + 3/2 6 rk,z + (1− h18ijklOR)c+ h
18
ijklc (367)

f
(i,j)
(l,k)+h

18
ijUP + e{k,l} + h

18
ijkl 6 3 (368)

For case II, one additional inequality is added since the first two are
the same again:

f
(i,j)
(k,l) + (1− h18ijUP) + e{k,l} + h

18
ijkl 6 3 (369)

Next, we model f(i,j)(k,l) = 1 if rk = d̃
i,j
rk,z and rl = s̃

i,j
rl,z and rk,z 6 si,z

and rl,z > sj,z and h18ijUP = 1. The formulations of form rk = d̃
i,j
rk,z

are elegant yet permitted. Therefore, we remodel the conditions for
all (i, j) ∈ EA, k, l ∈ [m], and ξ ∈ [`]:

rk = d̃ijξ and rl = s̃
i,j
ξ−1 and ξ ∈D1 and h18

ijUP = 1⇒ f(i,j)
(k,l) = 1 (370)

⇔rk 6= d̃ijξ or rl 6= s̃i,jξ−1 or ξ 6∈D1 or h18
ijUP = 0 or f(i,j)

(k,l) = 1 (371)

Some parts of this conditions are already evaluated in terms 335
to 340. Therefore, the auxiliary variables defined there are re-used
here. This yields 6|EA|m2(l−1) inequalities using the binary auxiliary
variables h18ijklξ 1 to h18ijklξ 12 for all (i, j) ∈ EA, k, l ∈ [m], and ξ ∈
[`− 1]:

1/2+ rl,x 6 s̃i,jξ−1,x+h
18
ijklξ 1c (372)

1/2+ rl,y 6 s̃i,jξ−1,y+h18
ijklξ 2c (373)

1/2+ rl,z 6 (ξ− 1)+h18
ijklξ 3c (374)

1/2+ s̃i,jξ−1,x 6 rl,x+h
18
ijklξ 4c (375)

1/2+ s̃i,jξ−1,y 6 rl,y+h18
ijklξ 5c (376)

1/2+(ξ− 1) 6 rl,z+h
18
ijklξ 6c (377)

The next inequality is defined for all (i, j) ∈ EA, k, l ∈ [m] with
k 6= j, and ξ ∈ [`− 1]. Technically, this inequality stands for |EA|(m−
1)m(l− 1) inequalities:

h18
ijUP+h

18
ijDξ+(1− f

(i,j)
(k,l))+h

18
ijklξ 1 +h

18
ijklξ 2 +h

18
ijklξ 3 +h

18
ijklξ 4 +h

18
ijklξ 5+

h18
ijklξ 6+h

18
ijkξ 1+h

18
ijkξ 2+h

18
ijkξ 3+h

18
ijkξ 4+h

18
ijkξ 5+h

18
ijkξ 6 6 14

(378)

The condition for case II is rewritten to
rl = d̃

ij
ξ and rk = s̃i,jξ+1 and ξ ∈D0 and h18

ijUP = 0⇒ f(i,j)
(l,k) = 1 (379)

rl 6= d̃ijξ or rk 6= s̃i,jξ+1 or ξ 6∈D0 or h18
ijUP = 1 or f(i,j)

(l,k) = 1 (380)

This yields additional 6|EA|m2(l − 1) inequalities using the binary
auxiliary variables h18ijklξ 13 to h18ijklξ 18 for all (i, j) ∈ EA, k, l ∈ [m],

208 system-level optimization

and ξ ∈ [`] \ {1}. The auxiliary variables h18ijklξ 1 to h18ijklξ 6 can be
reused along with their inequalities.

1/2+ rk,x 6 s̃i,jξ+1,x+h
18
ijklξ 7c (381)

1/2+ rk,y 6 s̃i,jξ+1,y+h18
ijklξ 8c (382)

1/2+ rk,z 6 (ξ+ 1)+h18
ijklξ 9c (383)

1/2+ s̃i,jξ+1,x 6 rk,x+h
18
ijklξ 10c (384)

1/2+ s̃i,jξ+1,y 6 rk,y+h18
ijklξ 11c (385)

1/2+(ξ+ 1) 6 rk,z+h
18
ijklξ 12c (386)

The next inequality is like 378 not defined for l = j, but for all (i, j) ∈
EA, k, l ∈ [m] with l 6= j, and ξ ∈ [`] \ {1}. Technically, this inequality
stands for |EA|m(m− 1)(l− 1) inequalities:

(1−h18
ijUP)+ (1−h18

ijDξ)+ (1− f
(i,j)
(l,k))+

h18
ijklξ 7+h

18
ijklξ 8 +h

18
ijklξ 9 +h

18
ijklξ 10 +h

18
ijklξ 11 +h

18
ijklξ 12+

h18
ijlξ 1+h

18
ijlξ 2+h

18
ijlξ 3+h

18
ijlξ 4+h

18
ijlξ 5+h

18
ijlξ 6 6 14

(387)

Finally, we model the conditions that are valid for both case I and
II. First, in the source is given in the source layer si,z = ξ with s̃ijξ = si.
This is given by the implication

si,z = ξ⇒ s̃
ij
ξ = si, (388)

⇔si,z 6= ξ or s̃ijξ = si (389)

This yields 9m inequalities using the auxiliary binary variables h18ijξ 1,
h18ijξ 2, and h18ijξ 3 for all (i, j) ∈ EA and ξ ∈ [`]:

si,z+ 1/2 6 ξ+h18
ijξ 1c (390)

ξ+ 1/2 6 si,z+h
18
ijξ 2c (391)

s̃
ij
ξ,x 6 si,x+h

18
ijξ 3c (392)

s̃
ij
ξ,y 6 si,y+h18

ijξ 3c (393)

ξ 6 si,z+h
18
ijξ 3c (394)

si,x 6 s̃ijξ,x+h
18
ijξ 3c (395)

si,y 6 s̃ijξ,y+h18
ijξ 3c (396)

si,z 6 ξ+h18
ijξ 3c (397)

h18
ijξ 1 +h

18
ijξ 2 +h

18
ijξ 3 6 2 (398)

Similar considerations lead to sj,z 6= ξ or d̃ijξ = sj for the condition
in the destination layer sj,z = ξ, in which d̃ijξ = sj. This yields 9m ad-

a.5 constraints 209

ditional inequalities using the auxiliary binary variables h18ijξ 4, h18ijξ 5,
and h18ijξ 6 for all (i, j) ∈ EA and ξ ∈ [`]:

sj,z+ 1/2 6 ξ+h18
ijξ 4c (399)

ξ+ 1/2 6 sj,z+h
18
ijξ 5c (400)

d̃
ij
ξ,x 6 sj,x+h

18
ijξ 6c (401)

d̃
ij
ξ,y 6 sj,y+h18

ijξ 6c (402)

ξ 6 sj,z+h
18
ijξ 6c (403)

sj,x 6 d̃ijξ,x+h
18
ijξ 6c (404)

sj,y 6 d̃ijξ,y+h18
ijξ 6c (405)

sj,z 6 ξ+h18
ijξ 6c (406)

h18
ijξ 4 +h

18
ijξ 5 +h

18
ijξ 6 6 2 (407)

Next, the conditions for 2D DOR are modeled:
e{k,l} = 1 and rk,z = rl,z⇒[
f
(i,j)
(k,l) = 1⇒

(
s̃ijrk,z ,x = rk,x = rl,x

)
or
(
d̃ijrk,z ,y = rk,y = rl,y

)] (408)

e{k,l} = 1 and rk,z = rl,z⇒[
f
(i,j)
(k,l) = 0 or

(
s̃ijrk,z ,x = rk,x = rl,x

)
or
(
d̃ijrk,z ,y = rk,y = rl,y

)] (409)

e{k,l} = 0 or rk,z 6= rl,z or[
f
(i,j)
(k,l) = 0 or

(
s̃ijrk,z ,x = rk,x = rl,x

)
or
(
d̃ijrk,z ,y = rk,y = rl,y

)] (410)

e{k,l} = 0 or rk,z 6= rl,z or[
f
(i,j)
(k,l) = 0 or

(
s̃
ij
ξ,x = rk,x = rl,x or rk,z 6= ξ

)
or(

d̃
ij
ξ,y = rk,y = rl,y or rk,z 6= ξ

)] (411)

This yields the following 11m2 inequalities for all (i, j) ∈ EA, k, l ∈
[m]×[m], and ξ ∈ [`] using the auxiliary binary variables :

1/2+ξ 6 rk,z+h
18
ijklξ 19c (412)

1/2+ rk,z 6 ξ+h18
ijklξ 20c (413)

1/2+ rk,z 6 rl,z+h
18
ijklξ 23c (414)

1/2+ rl,z 6 rk,z+h
18
ijklξ 24c (415)

s̃
ij
ξ,x 6 rk,x+h

18
ijklξ 25c (416)

rk,x 6 s̃ijξ,x+h
18
ijklξ 25c (417)

rk,x 6 rl,x+h
18
ijklξ 25c (418)

rl,x 6 rk,x+h
18
ijklξ 25c (419)

d̃
ij
ξ,y 6 rk,y+h18

ijklξ 26c (420)

rk,y 6 d̃ijξ,y+h18
ijklξ 26c (421)

rk,y 6 rl,y+h18
ijklξ 26c (422)

rl,y 6 rk,y+h18
ijklξ 26c (423)

h18
ijklξ 19+h

18
ijklξ 20 +h

18
ijklξ 23 +h

18
ijklξ 24+

h18
ijklξ 25+h

18
ijklξ 26 + f

(i,j)
(k,l) + e{k,l} 6 7

(424)

210 system-level optimization

Connect neighbored routers

Using the neighbored-property from definition a.2, the constraint is
given by:

∀i, j ∈ [m]× [m] : neighbored(ri, rj)→ e{i,j} = 1 (425)

⇔∀i, j ∈ [m]× [m] : not neighbored(ri, rj) or e{i,j} = 1 (426)

⇔

∀i, j ∈ [m]× [m] : e{i,j} = 1 or i = j or ri,z 6= rj,z
or
(
ri,x 6= rj,x and ri,y 6= rj,y

)
or ∃k ∈ [m] : rk ∈ L(ri, rj) \ {ri, rj}

(427)

The part ∃k ∈ [m] : rk ∈ L(ri, rj) \ {ri, rj} is given by these inequalities
for all k ∈ [m] \ {i, j}:

aT1rk > b̃1 (428)

−aT1rk > b̃2 (429)

aT2rk > b̃3 (430)

−aT2rk > b̃4 (431)

with b̃1 = b1, b̃2 = b2, b̃3 = b3 + δ, and b̃4 = b4 + δ. We introduce
the binary auxiliary variables h20i,j 1, h20i,j 2, h20i,j 3, h20i,j 4, h20i,j,k5, h20i,j 6,
h20i,jOR1, h20i,jOR2 and the constants c201 = xmax + ymax + l and c202 =

xmax + ymax. For all i, j ∈ [m] the following 7m + 1 inequalities are
satisfied for the first part of Equation 427:

h20
i,j 1+ e{i,j} > 1 (432)

ri,z 6 rj,z− 1/2+h20
i,j 2c

20
1 (433)

ri,z > rj,z+ 1/2−h20
i,j 3c

20
1 (434)

ri,y− rj,y 6 −δ+h20
i,jOR1c

20
1 +h20

i,j 4c
20
1 (435)

ri,y− rj,y > δ−(1−h20
i,jOR1)c

20
1 −h20

i,j 4c
20
1 (436)

ri,x− rj,x 6 −δ+h20
i,jOR2c

20
1 +h20

i,j 4c
20
1 (437)

ri,x− rj,x > δ−(1−h20
i,jOR2)c

20
1 −h20

i,j 4c
20
1 (438)

and

h20
i,j 6 =

1, i 6= j

0, otherwise.
(439)

Furthermore, for all i, j ∈ [m] and k ∈ [m] \ {i, j} these 4m2(m− 2)
inequalities from Equation 428 with the logical operations are given
as:

c202 h
20
i,j,k5+a

T
1rk > b̃1 (440)

c202 h
20
i,j,k5−a

T
1rk > b̃2 (441)

c202 h
20
i,j,k5+a

T
2rk > b̃3 (442)

c202 h
20
i,j,k5−a

T
2rk > b̃4 (443)

Finally, the logical OR operations must be formulated as MILP con-
straint as well:

h20
i,j 1+h

20
i,j 2+h

20
i,j 2+h

20
i,j 4+h

20
i,j 6+

∑
k∈[m]\{i,j}

h20
i,j,k5 6m+ 2 (444)

Topology for (gateway) DOR

To enable 2D dimension order routing within each layer, for each pair
of placed routers there must be another pair of routers so that these

a.6 auxiliary variables 211

four routers are located at the edges of a rectangle. This constraint is
formulated as follows:

ri,z = rj,z →
∃k ∈ [m] : rk,z = ri,z and rk,x = ri,x and rk,y = rj,y and

∃l ∈ [m] : rl,z = ri,z and rl,x = rj,x and rl,y = ri,y

(445)

This can be transformed into:
ri,z 6= rj,z or

∃k ∈ [m] : rk,z = ri,z and rk,x = ri,x and rk,y = rj,y and

∃l ∈ [m] : rl,z = ri,z and rl,x = rj,x and rl,y = ri,y

(446)

The binary auxiliary variable h21ij indicates whether the z-component
of the routers with index i and j are identical. The binary auxiliary
variable h21ijOR1 realized the OR relation for the inequality. This yields
for all i, j ∈ [m] with i < j the inequalities:

1/2+ ri,z 6 rj,z + h
21
ijOR1c1 + h

21
ij c1, (447)

1/2+ rj,z 6 ri,z + (1− h21ijOR1)c1 + h
21
ij c1 (448)

Additionally, m4 binary auxiliary variables h21ijkl are required to real-
ize the OR relation between the ∃-quantifiers for all i, j,k, l ∈ [m]:

rk,z 6 ri,z+h
21
ijklc1, (449)

ri,z 6 rk,z+h
21
ijklc1, (450)

rl,z 6 ri,z+h
21
ijklc1, (451)

ri,z 6 rl,z+h
21
ijklc1, (452)

rk,x 6 ri,x+h
21
ijklc1, (453)

ri,x 6 rk,x+h
21
ijklc1, (454)

rk,y 6 rj,y+h21
ijklc1, (455)

rj,y 6 rk,y+h21
ijklc1, (456)

rl,x 6 rj,x+h
21
ijklc1, (457)

rj,x 6 rl,x+h
21
ijklc1, (458)

rl,y 6 ri,y+h21
ijklc1, (459)

ri,y 6 rl,y+h21
ijklc1 (460)

The OR relation is given for all i, j ∈ [m] with i < j:∑
k∈[m]

∑
l∈[m]

h21ijkl 6 m
2 − h21ij (461)

a.6 auxiliary variables

a.6.1 Not all routers placed are in a subset of all routers

Name

For all Q ⊆ [m]:

hQ

212 system-level optimization

Definition

hQ =

1 if not all placed routers are in Q

0 otherwise.
(462)

Logical Constraint

This is given by the following 2m constraints:

hQ 6
∑
i∈[m]

ρi −
∑
i∈Q

ρi 6 mhQ (463)

a.6.2 At least one router placed is in a subset of all routers

Name

For all Q ⊆ [m]:

h̃Q

Definition

h̃Q,=

1 if at least one placed router is in Q

0 otherwise.
(464)

Logical Constraint

This is given by the following 2m constraints:

h̃Q 6
∑
i∈[m]

ρi −
∑

i∈[m]\Q

ρi 6 mh̃Q (465)

a.6.3 Router j is in tile i

Name

For all i, j ∈ [m]:

hi,j

Definition

hi,j =

1 if router j is in tile i

0 otherwise.
(466)

a.6 auxiliary variables 213

Logical Constraint

The conditions for router rj, which does not start a tile itself, is located
in the tile i for all j ∈ {n+ 1, . . . ,m} is given by:

ti,x 6 rj,x6 ti,x+ai, (467)

ti,y 6 rj,y6 ti,y+bi, (468)

ti,z 6 rj,z 6 ti,z (469)

For this, first, we model the implication "Router j is located in tile
i → (hi,j = 1)" ↔ "hi,j = 1 or router j is not located in tile i". Using
the auxiliary binary variables h11i,j 1, h11i,j 2, h11i,j 3, h11i,j 4, h11i,j 5, and h11i,j 6
this yields:

rj,x+ 1/2δ 6 ti,x+hi,jc3+h
11
i,j 1c3, (470)

ti,x+ai+ 1/2δ 6 rj,x+hi,jc3+h
11
i,j 2c3, (471)

rj,y+ 1/2δ 6 ti,y+hi,jc3+h
11
i,j 3c3, (472)

ti,y+bi+ 1/2δ 6 rj,y+hi,jc3+h
11
i,j 4c3, (473)

rj,z+ 1/2 6 ti,z+hi,jc3+h
11
i,j 5c3, (474)

ti,z+ 1/2 6 ri,z+hi,jc3+h
11
i,j 6c3, (475)

h11
i,j 1+ · · ·+h11

i,j 6 6 5. (476)

Here, addition with 1/2δ is used in Equation 470 to 473 to model the
<-relation from the negation of Equation 467 and 468. Hence, there is
an area around each tile with width 1/2δ. The variable hi,j is set to 0
and 1 simultaneously for a router located in this area. In consequence,
within this region no router can be placed. This is coherent with the
other constraints requiring that routers are located within tiles and
tiles do not overlap with a distance of at least δ.

Second, we model the implication "Router j is not located in tile
Ai =⇒ (hi,j = 0)" ↔ "hi,j = 0 or router j is located in tile Ai". This
yields:

ti,x 6 rj,x+(1−hi,j)c3 (477)

rj,x 6 ti,x+ai+(1−hi,j)c3 (478)

ti,y 6 rj,y+(1−hi,j)c3 (479)

rj,y 6 ti,y+bi+(1−hi,j)c3 (480)

ti,z 6 rj,z+(1−hi,j)c3 (481)

rj,z 6 ti,z+(1−hi,j)c3 (482)

a.6.4 Router j is in tile i and is a 3D router

Name

For all i, j ∈ [m]:

ĥi,j

214 system-level optimization

Definition

It must hold for all i, j ∈ [m]:

ĥi,j =

1 if router j has a TSV and is located in tile i

0 otherwise.
(483)

Logical Constraint

The variable ĥi,j can be modeled using the variables hi,j and ĥj:

ĥi,j =

1, if hi,j = 1 and ĥj = 1

0, otherwise.
(484)

For ĥi,j there are four cases:
1. For all tiles i ∈ [n] and routers j ∈ [n] the routers’ and tiles’

indexes are identical and the routers are associated with this
very tile. Therefore, ĥi,j = 1 iff i = j and ĥj = 1 and ĥi,j = 0

otherwise. This case is not of special interest since for i = j the
variable ĥi,j is already given by ĥi,j = ĥj.

2. For all tiles i ∈ [n] and routers j ∈ [n+ 1, . . .m] it holds that
ĥi,j = 1 if and only if hi,j = 1 and ĥj = 1. This case must be
modeled as it is not already given by any other variable.

3. For all tiles i ∈ [n+ 1, . . .m] and routers j ∈ [n] the variable ĥi,j
is always zero since those routers are located in the tiles with
indexed in [n].

4. For all tiles i ∈ [n + 1, . . .m] and routers j ∈ [n + 1, . . .m] it
holds that ĥi,j = 1 if and only of hi,j = 1 and ĥj = 1. This case,
again, must be modeled as it is not already given by any other
variable.

The cases 2 and 3 are modeled for all tiles with index i ∈ [m] and
routers with index j ∈ [n+ 1, . . .m]. Thus, the variable ĥi,j is given
m(m− n) times. First, we model the implication "(hi,j = 1 and ĥj =
1) → ĥi,j = 1" which yields ĥi,j = 1 or hi,j = 0 or ĥj = 0 using
DeMorgan’s laws. This is given by m(m− n) inequalities for all i ∈
[m] and j ∈ [n+ 1, . . . ,m]:

(1− ĥi,j) + hi,j + ĥj 6 2. (485)

Second, we model the implication "(hi,j = 0 or ĥj = 0) → ĥi,j = 0",
which is equivalent to ĥi,j = 0 or (hi,j = 1 and ĥj = 1). This yields
2m(m−n) inequalities for all i ∈ [m] and j ∈ [n+ 1, . . . ,m]:

ĥi,j 6 ĥj, (486)

ĥi,j 6 hi,j. (487)

a.6 auxiliary variables 215

a.6.5 Router j is in tile i and has a vertical and downward link

Name

For all i, j ∈ [m]:

ĥ+i,j

Definition

Similar to ĥi,j, we now define ĥ+i,j:

ĥ+i,j =

1, if router j has a TSV leading downwards

and is located in tile i
0, otherwise.

(488)

Logical Constraint

Equation 488 is equivalent to:

ĥ+i,j =

1, if hi,j = 1 and ĥ+j = 1

0, otherwise,
(489)

which is easily obtained by the following four inequalities, using the
auxiliary variable h11i,j,OR2:

ĥ+
i,j 6 hi,j (490)

ĥ+
i,j 6 ĥ

+
j (491)

ĥ+
i,j 6 hi,j+h

11
i,j,OR2c3 (492)

ĥ+
i,j 6 ĥ

+
j +(1−h11

i,j,OR2)c3 (493)

(494)

While inequality 490 and inequality 491 model the implication

(not (hi,j = 1 and ĥ+j = 1))→ ĥ+i,j = 0, (495)

Inequation 492 and inequality 493 guarantee that

(hi,j = 1 and ĥ+j = 1)→ ĥ+i,j = 1. (496)

a.6.6 Router j is a 3D router (

Name

For all j ∈ [m]:

ĥj

216 system-level optimization

Definition

Router j has at least a vertical link:

ĥj =

1, if router j has a TSV

0, otherwise.
(497)

Logical Constraint

For all k, j ∈ [m] it holds that routers rk and rj have a TSV iff e{k,j} =

1 and rk,z ∈ {rj,z + 1, rj,z − 1} and rk,x = rj,x and rk,y = rj,y. For
Equation 497 we first model the relation "router j has a TSV→ (ĥj =

1)" ↔ "ĥj = 1 OR router j has no TSV". The latter is given if for all
k ∈ [m] with k 6= j if it holds e{j,k} = 1 → rj,z = rk,z. It is sufficient
to evaluate whether two routers are connected and have the same
z-coordinates. This can be rewritten: ∀k ∈ [m],k 6= j : rj,z = rk,z

or e{j,k} = 0. This yields 3m(m− 1) inequalities using the auxiliary
binary variables h11j,kOR for all j ∈ [m] and k ∈ [m],k 6= j:

rj,z 6 rk,z + h
11
j,kORc

11
1 + ĥjc3, (498)

rk,z 6 rj,z + h
11
j,kORc

11
1 + ĥjc3, (499)

e{j,k} 6 0+ (1− h11j,kOR)c
11
1 + ĥjc3. (500)

Second, we model the implication "router j has no TSV =⇒ (ĥj = 0)"
↔ "ĥj = 0 OR router j has a TSV". We model the latter by: ∃k ∈ [m] :

e{j,k} = 1 and rj,z 6= rk,z. This can be expressed in form of 4m(m− 1)

inequalities using the auxiliary binary variables h̃11j,k and h̃11j,kOR for
all j ∈ [m] and k ∈ [m],k 6= j:

1 6 e{j,k} + h̃
11
j,kc3, (501)

rj,z 6 rk,z − 1/2+ h̃
11
j,kORc3 + h̃

11
j,kc3, (502)

rk,z 6 rj,z − 1/2+ (1− h̃11j,kOR)c3 + h̃
11
j,kc3 (503)

Using this, the variable ĥj is given by satisfying the inequalities for
all j ∈ [m]:

ĥj +
∑

k∈[m],k6=j

h̃11j,k 6 m− 1. (504)

In this sum, h̃11j,k is 1 if there is no TSV between routers j and k. There
are m− 1 possible routers to connect from router j. Thus, using the
sum

∑
k∈[m],k6=j h̃

11
j,k 6 m− 2 it would be required that at least one

TSV connects to router j, i. e. h̃11j,k = 0 for this router. This is impos-
sible if router j does not have a TSV, and therefore, in the sum in
Equation 504 the variable ĥj adds the missing addend.

a.6 auxiliary variables 217

a.6.7 Router k has a vertical upward/downward link

Name

For all k ∈ [m]:

ĥ−k , ĥ+k

Definition

The auxiliary binary variables ĥ−k and ĥ+k are introduced, which in-
dicate whether a router has a upward (or downward) vertical link:

ĥ+k =

1, iff router k has a link heading downwards

0, otherwise.
(505)

ĥ−k =

1, iff router k has a link heading upwards

0, otherwise.
(506)

Logical Constraint

The implication "router k has a link leading downwards⇒ ĥ+k = 1" is
modeled. This is equivalent to ĥ+k = 1 or router k has no link leading
downwards. This is given for all k ∈ [m] by:

∀j ∈ [m] \ {k} with rj,z = rk,z + 1 : e{k,j} = 0 or ĥ+k = 1,
(507)

⇔∀j ∈ [m] \ {k} : rj,z 6= rk,z + 1 or e{k,j} = 0 or ĥ+k = 1 (508)

This yields 3m(m− 1) inequalities for all k ∈ [m], j ∈ [m] \ {k} using
the binary auxiliary variables h+kjOR, h+kj1 and the constant c111 :

rj,z 6 rk,z + 1/2+ h
+
kjORc

11
1 + h+kj1c

11
1 , (509)

rj,z > rk,z + 3/2− (1− h+kjOR)c
11
1 − h+kj1c

11
1 , (510)

e{k,j} 6 0+ (1− h+kj1) + ĥ
+
k (511)

The analog is given for ĥ−k for all k ∈ [m]:

∀j ∈ [m] \ {k} : rj,z 6= rk,z − 1 or e{k,j} = 0 or ĥ−k = 1 (512)

This yields 3m(m− 1) inequalities for all k ∈ [m], j ∈ [m] \ {k} using
the binary auxiliary variables h−kjOR, h−kj1 and the constant c111 :

rj,z 6 rk,z − 3/2+ h
−
kjORc

11
1 + h−kj1c

11
1 , (513)

rj,z > rk,z − 1/2− (1− h−kjOR)c
11
1 − h−kj1c

11
1 , (514)

e{k,j} 6 0+ (1− h−kj1) + ĥ
−
k (515)

218 system-level optimization

The implication "router k has a no link leading downwards ⇒ ĥ+k =

0" is modeled, as well. This is equivalent to ĥ+k = 0 or router k has a
link heading downwards. This is given for all k ∈ [m] by:

∃j ∈ [m] \ {k} with rj,z = rk,z + 1 and e{k,j} = 1 or ĥ+k = 0 (516)

This yields the 3m(m − 1) +m inequalities for all k ∈ [m] and j ∈
[m] \ {k} using the auxiliary binary variables h+kj2:

rj,z 6 rk,z + 1+ h
+
kj2c

11
1 , (517)

rj,z > rk,z + 1− h
+
kj2c

11
1 , (518)

e{k,j} > 1− h
+
kj2 (519)

In addition, this inequality must be satisfied for all k ∈ [m]8:∑
j∈[m]\{k}

h+kj2 6 m− 2+ (1− ĥ+k) (520)

The analog is given for ĥ−k with rj,z = rk,z − 1 for all k ∈ [m] and for
all j ∈ [m] \ {k}:

rj,z 6 rk,z − 1+ h
−
kj2c

11
1 , (521)

rj,z > rk,z − 1− h
−
kj2c

11
1 , (522)

e{k,j} > 1− h
−
kj2 (523)

In addition, this inequality must be satisfied for all k ∈ [m]:∑
j∈[m]\{k}

h−kj2 6 m− 2+ (1− ĥ−k) (524)

In total, we have now required 12m(m− 1) + 2m inequalities to set
ĥ+k and ĥ−k .

a.6.8 Number of KOZs in tile i

Name

For all i ∈ [m]:

hiKOZ

Definition

The auxiliary variable hiKOZ is the number of TSVs which are leading
downwards from tile i.

8 This model excludes the case m = 0 for a chip without routers (a trivial case).

a.6 auxiliary variables 219

Logical Constraint

The m inequalities are very similar to the inequalities of hi TSV.

∀i ∈ [n] : hiKOZ = ĥ+i +
∑

j∈[n+1,...,m]

ĥ+i,j, (525)

∀i ∈ [n+ 1, . . . ,m] : hiKOZ =
∑

j∈[n+1,...,m]

ĥ+i,j, (526)

a.6.9 Number of routers in tile i

Name

For all i ∈ [m]:

hiRouter

Definition

The auxiliary variable hiRouter ∈ N is equal to the number of routers
in tile i.

Logical Constraint

The variable hiRouter is defined as:

∀i ∈ [n] : hiRouter =
∑

j∈[n+1,...,m]

hi,j + 1, (527)

∀i ∈ [n+ 1, . . . ,m] : hiRouter =
∑

j∈[n+1,...,m]

hi,j. (528)

a.6.10 Number of 3D routers in tile i

Name

For all i ∈ [m]:

hi TSV

Definition

The auxiliary variable hi TSV ∈N is equal to the number of routers in
tile i.

Logical Constraints

This auxiliary variable has the value of the number of routers rj in
the tile i with a vertical link. This can be modeled using the auxiliary
variables hi,j and ĥj by:

∀j ∈ [m] : hi TSV is incremented

↔ hi,j = 1 and ĥj = 1
(529)

220 system-level optimization

The variable hi TSV is given by the m inequalities:

∀i ∈ [n] : hi TSV = ĥi +
∑

j∈[n+1,...,m]

ĥi,j, (530)

∀i ∈ [n+ 1, . . . ,m] : hi TSV =
∑

j∈[n+1,...,m]

ĥi,j, (531)

a.6.11 Find correct element in matrix with tile areas

Name

For all i ∈ [m], ξ ∈ [`] and α,β,γ ∈ [m−n+ 1]:

hξ,i, 11
α,β,γ

Definition

It must hold for all i ∈ [m], ξ ∈ [`] and α,β,γ ∈ [m−n+ 1]:

hξ,i, 11
α,β,γ =

1 if tile i is in layer ξ, has (α− 1) routers,

(β− 1) 3D-routers, and (γ− 1) KOZs

0 otherwise.

(532)

Logical Constraint

The variables hiRouter, hi TSV, and hiKOZ can be re-used. The follow-
ing two constraints must be satisfied. First, only one element of each
matrix Hξ,i, 11 is allowed to be one using these m inequalities:∑

ξ∈[`],α,β,γ∈[m−n+1]

hξ,i, 11
α,β,γ 6 1 (533)

The implication "tile i is in layer ξ and has (α− 1) routers, (β− 1)

3D-routers, and (γ− 1) KOZs→ hξ,i, 11
α,β,γ = 1"↔ ti,z 6= ξ or hiRouter 6=

(α− 1) or hi TSV 6= (β− 1) or hiKOZ 6= (γ− 1) or hξ,i, 11
α,β,γ = 1 must be

modeled. This yields 9m`(m− n+ 1)(m− n+ 1) inequalities for all
i ∈ [m], ξ ∈ [`],α ∈ [m−n+ 1], β ∈ [m−n+ 1] and γ ∈ [m−n+ 1]:

1/2+ ti,z 6 ξ+hξ,i 11
α,β 1 c3, (534)

1/2+ξ 6 ti,z+h
ξ,i 11
α,β 2 c3, (535)

1/2+hiRouter 6 (α− 1)+hξ,i 11
α,β 3 c3, (536)

1/2+(α− 1) 6 hiRouter +h
ξ,i 11
α,β 4 c3, (537)

1/2+hi TSV 6 (β− 1)+hξ,i 11
α,β 5 c3, (538)

1/2+(β− 1) 6 hi TSV +hξ,i 11
α,β 6 c3, (539)

1/2+hiKOZ 6 (γ− 1)+hξ,i 11
α,β 7 c3, (540)

1/2+(γ− 1) 6 hiKOZ +hξ,i 11
α,β 8 c3, (541)

hξ,i 11
α,β 1 +hξ,i 11

α,β 2 +h
ξ,i 11
α,β 3 +hξ,i 11

α,β 4 +hξ,i 11
α,β 5 +

hξ,i 11
α,β 6 +h

ξ,i 11
α,β 7 +hξ,i 11

α,β 8 +(1−hξ,i, 11
α,β,γ) 6 8

(542)

a.6 auxiliary variables 221

Tiles i not placed in layer 0 must force all values of their matrices
Hξ,i, 11 to zero by the following `(m−n+ 1)3 inequalities:

hξ,i, 11
α,β,γ 6 ti,z (543)

a.6.12 Layer with index ξ is in set D0/D1

Name

For all ξ ∈ [`], i, j ∈ [m]:

h18ijDξ

Definition

This variable is the equivalent of the sets D0 and D1 in terms of
inequalities. It is given for all ξ ∈ [`]:

h18ijDξ,=

1, iff ξ ∈ Dh18
ijUP

0, otherwise.
(544)

Logical Constraint

The first implication "ξ /∈ Dh18
ijUP
→ h18ijDξ = 0" is expressed. This is

equivalent to

h18ijDξ = 0 or ξ ∈ Dh18
ijUP

(545)

For case I this is equivalent to:

h18ijDξ = 0 or (ξ 6 si,z and sj,z + 1 6 ξ), (or h18ijUP = 0), (546)

for case II, we have:

h18ijDξ = 0 or (ξ 6 sj,z − 1 and si,z 6 ξ), (or h18ijUP = 1). (547)

For the first case, this yields these two inequalities for all i, j ∈ [m], ξ ∈
[`]:

ξ 6 si,z+(1− h18ijUP)c
11
1 + (1− h18ijDξ)c

11
1 (548)

sj,z + 1 6 ξ +(1− h18ijUP)c
11
1 + (1− h18ijDξ)c

11
1 (549)

and these two for the second case:

ξ 6 sj,z − 1+h
18
ijUPc

11
1 + (1− h18ijDξ)c

11
1 (550)

si,z 6 ξ +h18ijUPc
11
1 + (1− h18ijDξ)c

11
1 (551)

Second, the implication "ξ ∈ Dh18
ijUP
→ h18ijDξ = 1" is expressed. This

is equivalent to

h18ijDξ = 1 or ξ /∈ Dh18
ijUP

(552)

222 system-level optimization

For the first case this is given by two inequalities ξ 6 sj,z and
ξ > si,z + 1, which yields the inequalities using the binary auxiliary
variable

ξ 6 sj,z + h
18
ijξOR1c

11
1 + (1− h18ijUP)c

11
1 + h18ijDξc

11
1 , (553)

si,z 6 ξ+ (1− h18ijξOR1)c
11
1 + (1− h18ijUP)c

11
1 + h18ijDξc

11
1 (554)

and the two inequalities ξ 6 si,z − 1 and ξ > sj,z, for the second case,
which yields:

ξ 6 si,z − 1+ h
18
ijξOR2c

11
1 + h18ijUPc

11
1 + h18ijDξc

11
1 , (555)

sj,z 6 ξ+ (1− h18ijξOR2)c
11
1 + h18ijUPc

11
1 + h18ijDξc

11
1 . (556)

a.6.13 Packet travel direction

Name

For all i, j ∈ [m]:

h18ijUP

Definition

A packet may be transmitted upwards or downwards. The auxiliary
variable indicates, whether for a pair of components i, j the packets
are traveling upwards or downwards. We introduce an auxiliary bi-
nary variable h18ijUP to separate the two cases for upward and down-
ward direction (I) and (II).

Logical Constraint

We use the constant c111 = xmax + ymax + `. Note that the case si,z =

sj,z is within case I.

h18ijUP,=

1, iff packet travels upwards: si,z > sj,z

0, otherwise.
(557)

This yields these two inequalities:

si,z > sj,z − (1− h18ijUP)c
11
1 , (558)

si,z 6 sj,z − 1/2+ h
18
ijUPc

11
1 (559)

a.7 heuristic algorithm

a.7.1 Layer component assignment:

The optimization problem∑
i∈[n]

ωCh+ωE
∑

j∈[`],i∈[n]

f
i,j
E xi,j+ωP

∑
j∈[`],i∈[n]

f
i,j
P xi,j −→ min (560)

a.7 heuristic algorithm 223

is solved, with α : [n] → [`], the layer component assignment, also
being the solution of the optimization problem. This is modeled using
the binary variables xi,j ∈ {0, 1} for all components i ∈ [n] and layers
j ∈ [`], which will be 1 if and only if component i is in layer j. Further,
the auxiliary variable h is used to model the maximum layer area.
The optimization is subject to constraints that all components are in
one layer and that h is the size of the largest layer:∑

j∈[`]

xi,j > 1 ∀i ∈ [n] (561)

h >
∑
i∈[n]

f
i,j
C xi,j ∀j ∈ [`] (562)

b
S I M U L AT I O N M O D E L S

b.1 application model

The application model was originally published in [JM 5]. Since the
definition is unique, the following definition is directly taken from
this reference:

"We propose to use stochastic, colored Petri nets with retention time on
places to model the timing in the application model. We define the
model successively. A conventional Petri net is a starting point:

Definition b.1 (Petri net). A Petri net N = (P, T , F,V ,m0) is a tuple
such that:

– The finite sets P and T are called places and transitions with P ∩
T = ∅ and P ∪ T 6= ∅.

– The relation F ⊆ (P × T) ∪ (T × P) is called flow relation and
consists of arcs. Arcs connect places and transitions.

– The arcs are weighted by the weight-function V : F→N \ {0}.
– The initial marking assigns a number of inital marks to each

place: m0 : P →N.

A Petri net is shown in Figure 102. There are two places p1 and p2
with 3 and 2 tokens. Data are sent between the two places and from
the first place to itself.
The distribution of tokens in the net is given by a marking:

Definition b.2 (Marking). Let N be a Petri net with places P. The
function m : P → N is a marking. We call G the set of markings. An
element m ∈ G is given by m = (m(1), . . . ,m(|T |)) with a number of
tokens m(p) in all places p ∈ P, and |T | the number of transitions.

Tokens are transmitted via enabled transitions:

Definition b.3 (Enabled). Let N be a Petri net and let m be a marking
in N. A transition t ∈ T is enabled, if the minimum number of neces-
sary tokens is on the place is given in a marking m, i. e. V(t,p) > m.
The set of pre-places of a transition t is denoted by •t = {p ∈ P :

(p, t) ∈ F}. The set of enabled transitions for a given marking m ∈ G

p1 p2

Figure 102: Petri net.

225

226 simulation models

p1 : [4,7] p2 : [2,3]

Figure 103: Petri net with retention time for places [JM 5].

is thus T(m) = {t ∈ T : m(t) > V(•t,p)}. The set of markings, in
which a transition t is enabled is G(t) = {m ∈ G : t ∈ T(m)}. In a dual
manner, t• = {p ∈ P : (t,p) ∈ F} denotes the set of post-places the
transition t.

There are many definitions of Petri nets with timing. We aim at mod-
eling the calculation times of tasks. So, places must be invalid for
a time period although they already consumed enough tokens. This
is modeled by duration of invalidity for places. An exemplary net is
shown in Figure 103 in which both places have retention times of [4, 7]
and [2, 3]. We extend our model by Petri nets with retention times on
places [153].

Definition b.4 (Petri net with retention time on places). The tuple
I = (N, I) is called Petri net with retention time on places. The set N =

(P, T , F,V ,m0) is a Petri net, cp. Def. b.1. The function I assigns a
retention time interval to each place:

I : P → Q+
0 × (Q+

0 ∪ {∞}) (563)

It must further hold that the bounds of the retention time interval
are well-ordered ascending, i. e. it holds for all places p ∈ P with
I(p) = (lp,up): lp 6 up.1.

The retention time influences the enabling of transitions. Places are
only allowed to fire if their retention time is over. We kindly refer to
[153], Def. 5.6 – Def. 5.11, for a complete definition which is skipped
for the sake of brevity and to avoid redundancy.

Petri nets with non-deterministic transitions are called stochastic
Petri nets [154]. A firing probability is assigned to each transition:

Definition b.5 (Firing probability function). Consider a T∗ ⊆ T . The
probability of a new marking m ′ from an old marking m for the
transition T∗ is p(m ′,m, T∗). Further properties of p are:

• For each marking m ∈ G and each transition set T∗ ∈ T(m),
the function p(·,m, T∗) is a probability mass function on G:∑
m ′∈G p(m

′,m, T∗) = 1

1 Note, that it is also possible use N+
0 × (N+

0 ∪ {∞}) as target set. It is sufficiently
precise to use N [168].

b.1 application model 227

p1 : [4,7]
p(·) = 1

p(·) = p̂
p2 : [2,3]

p(·) = 1− p̂ p(·) = 1

p(·) = 1

Figure 104: Stochastic Petri net with retention time for places [JM 5].

• The function p(m ′,m, T∗) must be positive. We permit this if
m = (m(1), . . . ,m(|T |)) and m ′ = (m(1) ′, . . . ,m(|T |) ′) and T∗

satisfies for all j ∈ [1, . . . , |T |]:

mj −
∑
t∗∈T∗

V(t∗, •t∗)1•t∗(dj) 6 m ′j

6 mj +
∑
t∗∈T∗

V(t∗, t∗•)1t∗•(dj)
(564)

Here, 1S is the indicator function of a set S. The sum
∑
t∗∈T∗

1•t∗(dj) is the number of transitions t∗ with the input place
dj. Similar,

∑
t∗∈T∗ 1t∗•(dj) is the number of transitions t∗ with

the output place dj. Multiplication with the edge weights in V
ensures that the tokens increase and decrease as wished.

We extend our Petri net with timing annotation from Definition b.4
using the firing probability function:

Definition b.6 (Stochastic Petri net with retention time on places).
The tuple P = (S, I) is called stochastic Petri net with retention time on
places. The set S = (P, T , F,V ,m0,p(·,m, T∗)) is a stochastic Petri net.
The function I assigns a retention time interval to each place (cp. Def.
b.4).

An example for such a Petri net is shown in Figure 104. Two transi-
tions are non-deterministic2, which are taken with probability p̂ and
1− p̂.

We use colors to annotate tokens with data type classes.

Definition b.7 (Colored stochastic Petri net with retention time on
places). The tuple A = (P,Σ,C) is called colored stochastic Petri net
with retention time on places. The set P = (P, T , F,V ,m0,p(·,m, T∗), I) is
a stochastic Petri net with retention time on places. The set Σ is the set
of colors. The function C assigns a color Σ to each place P: C : P → Σ.

An example for such a Petri net is shown in Figure 54. Colors
model statistical properties of traffics in SoCs. For instance, the red
tokens are uncorrelated sensor data. The purple tokens represent cor-
related data of a PE. This allows to calculate the dynamic energy
consumption of links and routers and evaluate coding for the first
time in an NoC simulation model." [JM 5]

2 We refer to [154], Def. 1.5. for a definition of deterministic transitions.

L I S T O F F I G U R E S

Figure 1 3D CPU-FPGA-DRAM [1]. 3
Figure 2 A-3D NoCs trends 4
Figure 3 Wire length estimation for chips 12
Figure 4 3D chip floorplanning 15
Figure 5 TSV . 17
Figure 6 3D chip with TSVs 17
Figure 7 BOSCH process 18
Figure 8 Issues TSV production 19
Figure 9 Via middle process flow 20
Figure 10 “e-Cube” [17]. 22
Figure 11 3D VSoC . 22
Figure 12 Network-on-Chip 25
Figure 13 Packet switching 26
Figure 14 Virtual cut through switching 27
Figure 15 Wormhole switching 27
Figure 16 Input-buffered router design 28
Figure 17 Exemplary router pipeline 29
Figure 18 NoC topologies 32
Figure 19 Deadlock . 34
Figure 20 Synthetic traffic patterns. 37
Figure 21 Modeling random injection rates 38
Figure 22 Exemplary 3D NoC 40
Figure 23 Heterogeneous 3D SoC 48
Figure 24 Bit-complement traffic pattern 48
Figure 25 Heterogeneous 3D SoC 49
Figure 26 Design space . 50
Figure 27 Design space, with variables 51
Figure 28 Instance of design space 52
Figure 29 Exemplary design space 53
Figure 30 Abstraction levels 53
Figure 31 Incremental approach 55
Figure 32 Input of system-level optimization 61
Figure 33 System-level optimization solution 61
Figure 34 Router model 63
Figure 35 Elevator first DOR 63
Figure 36 Redistribution 63
Figure 37 Vertical connection with RD 63
Figure 38 Coordinate system with three tiles in two layers. 66
Figure 39 Unequal relation interval 71
Figure 40 Product linearization 72
Figure 41 Subproblems visually 76

229

230 glossary

Figure 42 Flow chart . 77
Figure 43 TSV graph . 81
Figure 44 TSV placement 81
Figure 45 Small input component communication 89
Figure 46 Result MILP 5 components 89
Figure 47 Result heursitic LP 5 components 89
Figure 48 Result heursitic SDP 5 components 89
Figure 49 Placed homogeneous 3D SoC 91
Figure 50 Placed heterogeneous 3D SoC 92
Figure 51 Link utilization 96
Figure 52 Overview chapter 7 102
Figure 53 Model . 104
Figure 54 Colored stochastic Petri net with retention times 105
Figure 55 Router model 106
Figure 56 Architect ure of simulation tools 110
Figure 57 Timinig of tasks 111
Figure 58 TLM adaptor . 115
Figure 59 Database structure in the reporting tool [JM 10]. 117
Figure 60 Process . 118
Figure 61 Examplary user interface 119
Figure 62 3D VSoC application example 124
Figure 63 Model of face tracking algorithm 125
Figure 64 Two-layered 3D NoC. 128
Figure 65 Router architecture. 128
Figure 66 Router time behavior 129
Figure 67 Microarchitectural optimization 130
Figure 68 Architectural optimization 131
Figure 69 (Micro-)architectural optimization 131
Figure 70 PPA model of buffer depths 132
Figure 71 Area scaling model 143
Figure 72 Horizontal communication model 146
Figure 73 Vertical communication model 148
Figure 74 Propagation spped ω 148
Figure 75 Connectivity of XYZ routing 150
Figure 76 Routing principle 1 151
Figure 77 Routing principle 2 151
Figure 78 Router ordering 153
Figure 79 Cardinal directions 153
Figure 80 Z+(XY)Z-routing 154
Figure 81 Routing threshold 157
Figure 82 High vertical-throughput router 163
Figure 83 Modified input buffer 163
Figure 84 Modified crossbar 164
Figure 85 High-throughput connection 164
Figure 86 Area comparison 166
Figure 87 Timing comparison 166

Figure 88 Latency speedup of Z+(XY)Z- 167
Figure 89 Latency speedup of ZXYZ 168
Figure 90 Throughput of modified router architecture . . 168
Figure 91 3D VSoC case study 170
Figure 92 Overview on contributions 176
Figure 93 logical or relation 183
Figure 94 Indexes of routers, components, and tiles . . . 186
Figure 95 Router not starting a tile. 186
Figure 96 Link Area . 189
Figure 97 Link inequalities 190
Figure 98 Line Equations Configurations 190
Figure 99 Overlapping Areas 198
Figure 100 Optimization tetraeder OR 200
Figure 101 Auxiliary variables d̃ijξ and s̃ijξ 201
Figure 102 Petri net . 225
Figure 103 Petri net with time windows 226
Figure 104 Stochastic, times Petri net 227

L I S T O F TA B L E S

Table 1 Layer planning 87
Table 2 VOPD TSV planning 88
Table 3 DVOPD TSV planning 88
Table 4 Execution time of optimization 90
Table 5 Area LP vs. SPD 91
Table 6 NoC planning for heterogenenous 3D SoC . . 96
Table 7 Simulator comparison 122
Table 8 Dynamic link energy with VCs 124
Table 9 Dynamic link energy without VCs 124
Table 10 Power results . 133
Table 11 Benchmark results 134
Table 12 Performance results 136
Table 13 Results microarchitectural optimization 137
Table 14 Benchmark results 139
Table 15 Possible turns (f,g) in R1 and R2. 158

L I S T I N G S

Listing 1 Definition of a task. 112

231

Listing 2 Definition of data types. 112
Listing 3 Examplary synthetic traffic. 112
Listing 4 Node types. 114
Listing 5 Position of nodes. 114
Listing 6 Connections. 114
Listing 7 Mapping. 114
Listing 8 Z+(XY)Z-. 157
Listing 9 ZXYZ. 157

A C R O N Y M S (I N O R D E R O F A P P E A R A N C E)

TSV Through-silicon via

FPGA Field Programmable Gate Array

EU European union

GALS globally asynchronous locally synchronous

NoC Network on chip

SoC System on chip

IC integrated circuit

3D VSoC 3D Vision System on chip

HMC Hybrid memory cube

HBM High bandwith memory

CMOS Complementary metal-oxide-semiconductor

KOZ Keep-out zone

FEOL front-end-of-line

BEOL back-end-of-line

CMP chemical mechanical polishing and planarization

DRAM Dynamic Random Access Memory

DiRAM Disintegrated Random Access Memory

CPU Central Processing Unit

PE Processing Element

NI Network Interface

QoS Quality of Service

VC Virtual Channel

FiFo First-in-First-out (buffer)

RC Routing calculation

232

acronyms 233

SA switch allocation

ST switch traversal

LT link traversal

DOR Dimension ordered routing

MILP mixed integer linear program

ILP integer linear program

QoR Quality of results

PPA Performance, power, area

CNN Convolutional neural network

PDE Partial differential equation

ODE Ordinary differential equation

SIMD Single instruction multiple data

TLM Transaction level model

CA Cycle accurate

RTL Register transfer level

UMTS Universal Mobile Telecommunication System

PARSEC Princeton Application Repository for Shared-Memory
Computers

VHDL Very High Speed Integrated Circuit Hardware Description
Language

GALS Globally Asynchronous Locally Synchronous

RD Redistribution

VLSI Very Large Scale Integration

PSO Particle Swarm Optimization

ULV Ultra Low Power

GP General Purpose

ADC Analog Digital Converter

CIS CMOS Image Sensor

B I B L I O G R A P H Y

[1] X. Chen and N. K. Jha. “A 3-D CPU-FPGA-DRAM Hybrid Ar-
chitecture for Low-Power Computation.” In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 24.5 (2016), pp. 1649–
1662. issn: 1063-8210. doi: 10.1109/TVLSI.2015.2483525.

[2] X. Dong and Y. Xie. “System-level cost analysis and design explo-
ration for three-dimensional integrated circuits (3D ICs).” In: Asia
and South Pacific Design Automation Conference (2009). doi: 10.1109/
ASPDAC.2009.4796486.

[3] F. Lemonnier et al. “Towards future adaptive multiprocessor sys-
tems-on-chip: An innovative approach for flexible architectures.”
In: 2012 International Conference on Embedded Computer Systems. 2012,
pp. 228–235. doi: 10.1109/SAMOS.2012.6404179.

[4] L. Benini and G. de Micheli. “Networks on chips: A new SoC
paradigm.” In: Computer 35.1 (2002), pp. 70–78. doi: 10.1109/2.
976921.

[5] M. O. Agyeman, A. Ahmadinia, and A. Shahrabi. “Low power
heterogeneous 3D Networks-on-Chip architectures.” In: 2011 In-
ternational Conference on High Performance Computing and Simulation
(HPCS) (2011). doi: 10.1109/HPCSim.2011.5999871.

[6] S. H. Seyyedaghaei Rezaei, A. Mazloumi, M. Modarressi, and P.
Lotfi-Kamran. “Dynamic Resource Sharing for High-performance
3-D Networks-on-Chip.” In: IEEE Computer Architecture Letters 15.1
(2015). issn: 1556-6056. doi: 10.1109/LCA.2015.2448532.

[7] E. Sotiriou-Xanthopoulos, D. Diamantopoulos, K. Siozios, G. Econo-
makos, and D. Soudris. “A framework for rapid evaluation of
heterogeneous 3-D NoC architectures.” In: Microprocessors and Mi-
crosystems 38.4 (2014), pp. 292–303. issn: 0141-9331. doi: 10.1016/
j.micpro.2013.09.003.

[8] A. M. Rahmani et al. “High-Performance and Fault-Tolerant 3D
NoC-Bus Hybrid Architecture Using ARB-NET-Based Adaptive
Monitoring Platform.” In: 63 (2014), pp. 734–747.

[9] R. Sunkam Ramanujam and B. Lin. “A Layer-Multiplexed 3D On-
Chip Network Architecture.” In: IEEE Embedded Systems Letters
1.2 (2009), pp. 50–55. issn: 1943-0663. doi: 10.1109/LES.2009.
2034710.

[10] W. R. Davis et al. “Demystifying 3D ICs: The Pros and Cons of
Going Vertical.” In: IEEE Design and Test (2005), pp. 498–510. doi:
10.1109/MDT.2005.136.

[11] Á. Zarándy. Focal-plane sensor-processor chips. Springer, 2011. isbn:
9781441964755.

[12] V. F. Pavlidis. Three-dimensional Integrated Circuit Design. Morgan
Kaufmann, 2009. isbn: 978-0-123-74343-5.

[13] M. Lee, J. S. Pak, and J. Kim. Electrical Design of Through Silicon Via.
Dordrecht: Springer, 2014. isbn: 978-94-017-9037-6.

[14] K. Salah, Y. I. Ismail, and A. El-Rouby. Arbitrary Modeling of TSVs
for 3D Integrated Circuits. Analog Circuits and Signal Processing.
Springer, 2015. isbn: 978-3-319-07610-2.

235

https://doi.org/10.1109/TVLSI.2015.2483525
https://doi.org/10.1109/ASPDAC.2009.4796486
https://doi.org/10.1109/ASPDAC.2009.4796486
https://doi.org/10.1109/SAMOS.2012.6404179
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/HPCSim.2011.5999871
https://doi.org/10.1109/LCA.2015.2448532
https://doi.org/10.1016/j.micpro.2013.09.003
https://doi.org/10.1016/j.micpro.2013.09.003
https://doi.org/10.1109/LES.2009.2034710
https://doi.org/10.1109/LES.2009.2034710
https://doi.org/10.1109/MDT.2005.136

236 bibliography

[15] E. Azarkhish, I. Loi, and L. Benini. “A case for three-dimensional
stacking of tightly coupled data memories over multi-core clusters
using low-latency interconnects.” In: Computers Digital Techniques
(2013), pp. 191–199. doi: 10.1049/iet-cdt.2013.0031.

[16] C. Weis, I. Loi, L. Benini, and N. Wehn. “Exploration and Optimi-
zation of 3-D Integrated DRAM Subsystems.” In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2013),
pp. 597–610. issn: 0278-0070. doi: 10.1109/TCAD.2012.2235125.

[17] P. E. Garrou, M. Koyanagi, and P. Ramm. 3D process technology:
Robust circuit and physical design for sub-65 nm technology nodes. First
edition. Vol. volume 3. Handbook of 3D integration. Hoboken, NJ:
Wiley, 2009. isbn: 978-3-527-32034-9.

[18] A. Heittmann and U. Ramacher. Electrical Performance of 3D Cir-
cuits. First edition. Vol. volume 3. Handbook of 3D integration.
Hoboken, NJ: Wiley, 2009. isbn: 978-3-527-32034-9.

[19] J. W. Joyner, P. Zarkesh-Ha, J. A. Davis, and J. D. Meindl. “A three-
dimensional stochastic wire-length distribution for variable sepa-
ration of strata.” In: Proceedings of the IEEE Electron Devices Society.
2000, pp. 126–128. doi: 10.1109/IITC.2000.854301.

[20] P. E. Garrou, C. A. Bower, and P. Ramm. Handbook of 3D integration.
Volume 1 and 2, Technology and applications of 3D integrated circuits.
Wiley, 2012. isbn: 978-3527332656.

[21] Samsung. Samsung Electronics Develops 16-Chip Multi-Stack Pack-
age Technology. Nov 01, 2006. url: http : / / www . samsung . com /

semiconductor/insights/news/4212.
[22] V. H. Nguyen and P. Christie. “The impact of interstratal intercon-

nect density on the performance of three-dimensional integrated
circuits.” In: Proceedings of the 2005 international workshop on Sys-
tem level interconnect prediction. 2005, p. 73. isbn: 1595930337. doi:
10.1145/1053355.1053372.

[23] H.-H. S. Lee and K. Chakrabarty. “Test Challenges for 3D Inte-
grated Circuits.” In: IEEE Design and Test (2009). doi: 10.1109/MDT.
2009.125.

[24] Y.-J. Huang et al. “A built-in self-test scheme for the post-bond
test of TSVs in 3D ICs.” In: IEEE 29th VLSI Test Symposium (VTS).
2011, pp. 20–25. doi: 10.1109/VTS.2011.5783749.

[25] J. Fu, L. Hou, B. Lu, and J. Wang. “Thermal analysis and ther-
mal optimization of through silicon via in 3D IC.” In: 12th IEEE
International Conference on Solid-State and Integrated Circuit Technol-
ogy. 2014. isbn: 978-1-4799-3282-5. doi: 10 . 1109 / ICSICT . 2014 .

7021445.
[26] J. Cong, J. Wei, and Y. Zhang. “A thermal-driven floorplanning al-

gorithm for 3D ICs.” In: International Conference on Computer Aided
Design. IEEE, 2004. isbn: 0-7803-8702-3. doi: 10.1109/ICCAD.2004.
1382591.

[27] B. Goplen and S. Sapatnekar. “Efficient thermal placement of stan-
dard cells in 3D ICs using a force directed approach.” In: Interna-
tional conference on computer aided design. IEEE, 2003. isbn: 1-58113-
762-1. doi: 10.1109/ICCAD.2003.1257591.

[28] J. Cong and Y. Zhang. “Thermal via planning for 3-D ICs.” In:
International Conference on Computer-Aided Design. IEEE, 2005. isbn:
0-7803-9254-X. doi: 10.1109/ICCAD.2005.1560164.

https://doi.org/10.1049/iet-cdt.2013.0031
https://doi.org/10.1109/TCAD.2012.2235125
https://doi.org/10.1109/IITC.2000.854301
http://www.samsung.com/semiconductor/insights/news/4212
http://www.samsung.com/semiconductor/insights/news/4212
https://doi.org/10.1145/1053355.1053372
https://doi.org/10.1109/MDT.2009.125
https://doi.org/10.1109/MDT.2009.125
https://doi.org/10.1109/VTS.2011.5783749
https://doi.org/10.1109/ICSICT.2014.7021445
https://doi.org/10.1109/ICSICT.2014.7021445
https://doi.org/10.1109/ICCAD.2004.1382591
https://doi.org/10.1109/ICCAD.2004.1382591
https://doi.org/10.1109/ICCAD.2003.1257591
https://doi.org/10.1109/ICCAD.2005.1560164

bibliography 237

[29] B. Goplen and S. S. Sapatnekar. “Placement of thermal vias in
3-D ICs using various thermal objectives.” In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2006).
issn: 0278-0070. doi: 10.1109/TCAD.2006.870069.

[30] A. Jain, R. E. Jones, R. Chatterjee, and S. Pozder. “Analytical and
Numerical Modeling of the Thermal Performance of Three-Dimen-
sional Integrated Circuits.” In: IEEE Transactions on Components and
Packaging Technologies 33.1 (2010), pp. 56–63. issn: 1521-3331. doi:
10.1109/TCAPT.2009.2020916.

[31] I. Savidis and E. G. Friedman. “Electrical modeling and character-
ization of 3-D vias.” In: IEEE International Symposium on Circuits
and Systems. 2008. isbn: 978-1-4244-1683-7. doi: 10.1109/ISCAS.
2008.4541535.

[32] L. Bamberg and A. García-Oritz. “High-Level Energy Estimation
for Submicrometric TSV Arrays.” In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25.10 (2017), pp. 2856–2866.
issn: 1063-8210. doi: 10.1109/TVLSI.2017.2713601.

[33] Z. Li et al. “Hierarchical 3-D Floorplanning Algorithm for Wire-
length Optimization.” In: IEEE Transactions on Circuits and Systems
I: Regular Papers 53.12 (2006), pp. 2637–2646. doi: 10.1109/TCSI.
2006.883857.

[34] N. A. Sherwani. Algorithms for VLSI Physical Design Automation.
Third Edition. Boston, MA: Kluwer Academic Publishers, 2002.
isbn: 9780792383932. doi: 10.1007/b116436.

[35] M. Healy et al. “Multiobjective Microarchitectural Floorplanning
for 2-D and 3-D ICs.” In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 26.1 (2007), pp. 38–52. issn:
0278-0070. doi: 10.1109/TCAD.2006.883925.

[36] M. Ohmura. “An initial placement algorithm for 3-D VLSI.” In:
IEEE International Symposium on Circuits and Systems. 1998. isbn:
0-7803-4455-3. doi: 10.1109/ISCAS.1998.705245.

[37] T. Tanprasert. “An analytical 3-D placement that reserves routing
space.” In: IEEE International Symposium on Circuits and Systems.
2000. isbn: 0-7803-5482-6. doi: 10.1109/ISCAS.2000.855998.

[38] R. Hentschke and R.A.L. Reis. “A 3D-Via Legalization Algorithm
for 3D VLSI Circuits and its Impact on Wire Length.” In: IEEE
International Symposium on Circuits and Systems. IEEE, 2007. isbn:
1-4244-0920-9. doi: 10.1109/ISCAS.2007.378497.

[39] D. H. Kim, K. Athikulwongse, and S. K. Lim. “Study of Through-
Silicon-Via Impact on the 3-D Stacked IC Layout.” In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 21.5 (2013),
pp. 862–874. issn: 1063-8210. doi: 10.1109/TVLSI.2012.2201760.

[40] E. Wong, J. Minz, and S. K. Lim. “Power supply noise-aware 3D
floorplanning for system-on-package.” In: IEEE 14th topical meeting
on electrical performance of electronic packaging. IEEE, 2004. isbn: 0-
7803-9220-5. doi: 10.1109/EPEP.2005.1563753.

[41] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim. “Through-silicon-via
management during 3D physical design: When to add and how
many?” In: International Conference on Computer-Aided Design. IEEE,
2010. isbn: 978-1-4244-8193-4. doi: 10.1109/ICCAD.2010.5653703.

[42] A. Hashimoto and J. Stevens. “Wire routing by optimizing chan-
nel assignment within large apertures.” In: Proceedings of the 1971

https://doi.org/10.1109/TCAD.2006.870069
https://doi.org/10.1109/TCAPT.2009.2020916
https://doi.org/10.1109/ISCAS.2008.4541535
https://doi.org/10.1109/ISCAS.2008.4541535
https://doi.org/10.1109/TVLSI.2017.2713601
https://doi.org/10.1109/TCSI.2006.883857
https://doi.org/10.1109/TCSI.2006.883857
https://doi.org/10.1007/b116436
https://doi.org/10.1109/TCAD.2006.883925
https://doi.org/10.1109/ISCAS.1998.705245
https://doi.org/10.1109/ISCAS.2000.855998
https://doi.org/10.1109/ISCAS.2007.378497
https://doi.org/10.1109/TVLSI.2012.2201760
https://doi.org/10.1109/EPEP.2005.1563753
https://doi.org/10.1109/ICCAD.2010.5653703

238 bibliography

design automation workshop on design automation. ACM Press, 1971.
doi: 10.1145/800158.805069.

[43] R. J. Enbody, G. Lynn, and K. H. Tan. “Routing the 3-D chip.” In:
Design Automation Conference. ACM Press, 1991. isbn: 0897913957.
doi: 10.1145/127601.127644.

[44] S. Tayu and S. Ueno. “On the Complexity of Three-Dimensional
Channel Routing.” In: IEEE International Symposium on Circuits and
Systems. IEEE, 2007. isbn: 1-4244-0920-9. doi: 10.1109/ISCAS.2007.
378297.

[45] J. Minz and S. K. Lim. “Block-level 3-D Global Routing With an
Application to 3-D Packaging.” In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25.10 (2006), pp. 2248–
2257. issn: 0278-0070. doi: 10.1109/TCAD.2005.860952.

[46] Cadence Design Systems Inc. 3D-IC Design Solutions. 2017. url:
https://www.cadence.com/content/cadence-www/global/en_US/

home/solutions/3dic-design-solutions.html.
[47] S. Panth, S. K. Samal, K. Samadi, Y. Du, and S. K. Lim. “Tier Degra-

dation of Monolithic 3-D ICs: A Power Performance Study at Dif-
ferent Technology Nodes.” In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36.8 (2017), pp. 1265–1273.
issn: 0278-0070. doi: 10.1109/TCAD.2017.2681064.

[48] J. T. Pawlowski. “Hybrid memory cube (HMC).” In: Hot Chips 23
Symposium. IEEE, 2011, pp. 1–24. isbn: 978-1-4673-8877-1. doi: 10.
1109/HOTCHIPS.2011.7477494.

[49] W. Shockley. “Semiconductive wafer and method of making the
same.” Pat. US3044909. 1962.

[50] F. Laermer and A. Schilp. “Method of anisotropically etching sili-
con.” Pat. US5501893. 1996.

[51] G. Feng, Xiao Peng, J. Cai, and S. Wang. “Through wafer via tech-
nology for 3-D packaging.” In: 6th International Conference on Elec-
tronic Packaging Technology. IEEE, 2005. isbn: 0-7803-9449-6. doi:
10.1109/ICEPT.2005.1564661.

[52] T. C. Tsai et al. “CMP Process Development for the Via-Middle
3D TSV Applications at 28nm Technology Node.” In: Advanced
Metallization Conference. 2010.

[53] Thuy Dao, Dina H. Triyoso, Mike Petras, and Michael Canonico.
“Through silicon via stress characterization.” In: IEEE International
Conference on IC Design and Technology. 2009, pp. 1–3.

[54] M. Said, M. El-Sayed, F. Mehdipour, and N. Miyakawa. “Keep-
Out-Zone analysis for three-dimensional ICs.” In: International Sym-
posium on VLSI Design, Automation, and Test. IEEE, 2014. isbn: 978-
1-4799-2776-0. doi: 10.1109/VLSI-DAT.2014.6834862.

[55] K. H. Lu et al. “Thermo-mechanical reliability of 3-D ICs contain-
ing through silicon vias.” In: Electronic components and Technology
Conference. IEEE, 2009. isbn: 978-1-4244-4475-5. doi: 10.1109/ECTC.
2009.5074079.

[56] C. S. Selvanayagam et al. “Nonlinear Thermal Stress/Strain Anal-
yses of Copper Filled TSV (Through Silicon Via) and Their Flip-
Chip Microbumps.” In: IEEE Transactions on Advanced Packaging
32.4 (2009), pp. 720–728. issn: 1521-3323. doi: 10 . 1109 / TADVP .

2009.2021661.

https://doi.org/10.1145/800158.805069
https://doi.org/10.1145/127601.127644
https://doi.org/10.1109/ISCAS.2007.378297
https://doi.org/10.1109/ISCAS.2007.378297
https://doi.org/10.1109/TCAD.2005.860952
https://www.cadence.com/content/cadence-www/global/en_US/home/solutions/3dic-design-solutions.html
https://www.cadence.com/content/cadence-www/global/en_US/home/solutions/3dic-design-solutions.html
https://doi.org/10.1109/TCAD.2017.2681064
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1109/ICEPT.2005.1564661
https://doi.org/10.1109/VLSI-DAT.2014.6834862
https://doi.org/10.1109/ECTC.2009.5074079
https://doi.org/10.1109/ECTC.2009.5074079
https://doi.org/10.1109/TADVP.2009.2021661
https://doi.org/10.1109/TADVP.2009.2021661

bibliography 239

[57] C. Okoro et al. “Analysis of the Induced Stresses in Silicon During
Thermcompression Cu-Cu Bonding of Cu-Through-Vias in 3D-SIC
Architecture.” In: Electronic Components and Technology Conference.
IEEE, 2007. isbn: 1-4244-0984-5. doi: 10.1109/ECTC.2007.373805.

[58] T. C. Xu, P. Liljeberg, and H. Tenhunen. “Optimal number and
placement of Through Silicon Vias in 3D Network-on-Chip.” In: In-
ternational Symposium on Design and Diagnostics of Electronic Circuits
and Systems. IEEE, 2011. isbn: 978-1-4244-9755-3. doi: 10.1109/
DDECS.2011.5783057.

[59] D. Park et al. “MIRA: A Multi-layered On-Chip Interconnect Router
Architecture.” In: 35th International Symposium on Computer Archi-
tecture. IEEE, 2008. doi: 10.1109/ISCA.2008.13.

[60] C. Duan, B. J. LaMeres, and S. P. Khatri. On and off-chip crosstalk
avoidance in VLSI design. Springer, 2010. isbn: 9781441909473.

[61] G. Katti, M. Stucchi, K. de Meyer, and W. Dehaene. “Electrical
modeling and characterization of through silicon via for three-
dimensional ICs.” In: IEEE Transactions on Electron Devices 57.1
(2010), pp. 256–262. doi: 10.1109/TED.2009.2034508.

[62] T. Kgil et al. “PicoServer: using 3D stacking technology to enable a
compact energy efficient chip multiprocessor.” In: ACM SIGARCH
Computing Architecture News (2006). doi: 10.1145/1168857.1168873.

[63] P. Jacob et al. “Mitigating Memory Wall Effects in High-Clock-Rate
and Multicore CMOS 3-D Processor Memory Stacks.” In: Proceed-
ings of the IEEE 97.1 (2009), pp. 108–122. doi: 10.1109/JPROC.2008.
2007472.

[64] X. Yu, L. Li, Y. Zhang, H. Pan, and S. He. “Performance and power
consumption analysis of memory efficient 3D network-on-chip ar-
chitecture.” In: International Conference on Control and Automation
(2013). doi: 10.1109/ICCA.2013.6565107.

[65] H. Sun et al. “Design of 3D DRAM and Its Application in 3D
Integrated Multi-Core Computing Systems.” In: IEEE Design and
Test (2013). doi: 10.1109/MDT.2009.93.

[66] Y. Kikuchi et al. “A 40 nm 222 mW H.264 Full-HD Decoding,
25 Power Domains, 14-Core Application Processor With x512b
Stacked DRAM.” In: IEEE Journal of Solid-State Circuits 46.1 (2011),
pp. 32–41. issn: 0018-9200. doi: 10.1109/JSSC.2010.2079370.

[67] K. Abe et al. “Ultra-high bandwidth memory with 3D-stacked
emerging memory cells.” In: IEEE International Conference on In-
tegrated Circuit Design and Technology and Tutorial. 2008. doi: 10.
1109/ICICDT.2008.4567279.

[68] D. H. Kim et al. “Design and Analysis of 3D-MAPS (3D Massively
Parallel Processor with Stacked Memory).” In: IEEE Transactions on
Computers 64.1 (2015), pp. 112–125. issn: 0018-9340. doi: 10.1109/
TC.2013.192.

[69] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specifi-
cation 1.0. 2013. url: http : / / hybridmemorycube . org / files /

SiteDownloads/HMC_Specification%201_0.pdf.
[70] Tezzaron Semiconductor. Our Technology 101. 2015. url: http://

www.tezzaron.com/about-us/our-technology-101/.
[71] K.-W. Lee et al. “Highly dependable 3-D stacked multicore pro-

cessor system module fabricated using reconfigured multichip-on-

https://doi.org/10.1109/ECTC.2007.373805
https://doi.org/10.1109/DDECS.2011.5783057
https://doi.org/10.1109/DDECS.2011.5783057
https://doi.org/10.1109/ISCA.2008.13
https://doi.org/10.1109/TED.2009.2034508
https://doi.org/10.1145/1168857.1168873
https://doi.org/10.1109/JPROC.2008.2007472
https://doi.org/10.1109/JPROC.2008.2007472
https://doi.org/10.1109/ICCA.2013.6565107
https://doi.org/10.1109/MDT.2009.93
https://doi.org/10.1109/JSSC.2010.2079370
https://doi.org/10.1109/ICICDT.2008.4567279
https://doi.org/10.1109/ICICDT.2008.4567279
https://doi.org/10.1109/TC.2013.192
https://doi.org/10.1109/TC.2013.192
http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf
http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf
http://www.tezzaron.com/about-us/our-technology-101/
http://www.tezzaron.com/about-us/our-technology-101/

240 bibliography

wafer 3-D integration technology.” In: IEEE International Electron
Devices Meeting. 2014. doi: 10.1109/IEDM.2014.7047128.

[72] M. Koyanagi, H. Kobayashi, T. Aoki, T. Sueyoshi, and T. Kamada.
“A 3D-VLSI Architecture for Future Automotive Visual Recogni-
tion.” In: VLSI Design and Test for Systems Dependability. Ed. by S.
Asai. Tokyo: Springer Japan, 2019, pp. 719–733.

[73] K. Kim, S. Lee, J. Y. Kim, M. Kim, and H. J. Yoo. “A 125 GOPS 583
mW Network-on-Chip Based Parallel Processor With Bio-Inspired
Visual Attention Engine.” In: IEEE Journal of Solid-State Circuits 44.1
(2009), pp. 136–147. issn: 0018-9200. doi: 10 . 1109 / JSSC . 2008 .

2007157.
[74] K. Jia et al. “AICNN: Implementing Typical CNN Algorithms with

Analog-to-Information Conversion Architecture.” In: IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI). IEEE, 2017. isbn:
978-1-5090-6762-6. doi: 10.1109/ISVLSI.2017.23.

[75] V. S. Ghaderi, D. Song, J. Choma, and T. W. Berger. “Nonlinear
Cognitive Signal Processing in Ultralow-Power Programmable Ana-
log Hardware.” In: IEEE Transactions on Circuits and Systems II: Ex-
press Briefs 62.2 (2015), pp. 124–128. doi: 10.1109/TCSII.2014.
2387693.

[76] W. J. Dally and B. Towles. “Route packets, not wires: On-chip in-
terconnection networks.” In: Proceedings of the Design Automation
Conference. IEEE, 2001.

[77] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. “Perfor-
mance evaluation and design trade-offs for network-on-chip in-
terconnect architectures.” In: IEEE Transactions on Computers 54.8
(2005), pp. 1025–1040. issn: 0018-9340.

[78] Y. Cai, K. Mai, and O. Mutlu. “Comparative evaluation of FPGA
and ASIC implementations of bufferless and buffered routing al-
gorithms for on-chip networks.” In: 16th International Symposium
on Quality Electronic Design. IEEE, 2015. isbn: 978-1-4799-7581-5.
doi: 10.1109/ISQED.2015.7085472.

[79] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. “Guaranteed
bandwidth using looped containers in temporally disjoint networks
within the nostrum network on chip.” In: Design, Automation and
Test in Europe Conference and Exhibition. IEEE, 2004. isbn: 0-7695-
2085-5. doi: 10.1109/DATE.2004.1269001.

[80] W. J. Dally and C. L. Seitz. “The torus routing chip.” In: Distributed
Computing 1.4 (1986), pp. 187–196. doi: 10.1007/BF01660031.

[81] N. Banerjee, P. Vellanki, and K. S. Chatha. “A power and perfor-
mance model for network-on-chip architectures.” In: Design, Au-
tomation and Test in Europe Conference and Exhibition. IEEE, 2004.
isbn: 0-7695-2085-5. doi: 10.1109/DATE.2004.1269067.

[82] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. “A 5-
GHz Mesh Interconnect for a Teraflops Processor.” In: IEEE micro
27.5 (2007), pp. 51–61. doi: 10.1109/MM.2007.4378783.

[83] T. W. Ainsworth and T. M. Pinkston. “Characterizing the Cell EIB
On-Chip Network.” In: IEEE Mirco 27.5 (2007), pp. 6–14. doi: 10.
1109/MM.2007.4378779.

[84] P. Gratz et al. “On-Chip Interconnection Networks of the TRIPS
Chip.” In: IEEE Mirco 27.5 (2007), pp. 41–50. doi: 10.1109/MM.
2007.4378782.

https://doi.org/10.1109/IEDM.2014.7047128
https://doi.org/10.1109/JSSC.2008.2007157
https://doi.org/10.1109/JSSC.2008.2007157
https://doi.org/10.1109/ISVLSI.2017.23
https://doi.org/10.1109/TCSII.2014.2387693
https://doi.org/10.1109/TCSII.2014.2387693
https://doi.org/10.1109/ISQED.2015.7085472
https://doi.org/10.1109/DATE.2004.1269001
https://doi.org/10.1007/BF01660031
https://doi.org/10.1109/DATE.2004.1269067
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/MM.2007.4378779
https://doi.org/10.1109/MM.2007.4378779
https://doi.org/10.1109/MM.2007.4378782
https://doi.org/10.1109/MM.2007.4378782

bibliography 241

[85] K. Goossens, J. Dielissen, and A. Radulescu. “AEthereal Network
on Chip: Concepts, Architectures, and Implementations.” In: IEEE
Design and Test (2005). doi: 10.1109/MDT.2005.99.

[86] J. Flich and D. Bertozzi. Designing Network On-Chip Architectures in
the Nanoscale Era. Taylor and Francis, 2010. isbn: 9781439837108.

[87] M. Langar, R. Bourguiba, and J. Mouine. “Virtual channel router
architecture for Network on Chip with adaptive inter-port buffers
sharing.” In: 13th International Multi-Conference on Systems, Signals
& Devices. IEEE, 2016. isbn: 978-1-5090-1291-6. doi: 10.1109/SSD.
2016.7473771.

[88] S. H. S. Rezaei, M. Modarressi, M. Daneshtalab, and S. Roshanise-
fat. “A Three-Dimensional Networks-on-Chip Architecture with
Dynamic Buffer Sharing.” In: 24th Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing. IEEE, 2016.
isbn: 978-1-4673-8776-7. doi: 10.1109/PDP.2016.124.

[89] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis. Microarchitecture
of Network-on-Chip Routers: A Designer’s Perspective. Springer, 2015.
isbn: 978-1-4614-4301-8.

[90] Daniel U. Becker and William J. Dally. “Allocator Implementations
for Network-on-chip Routers.” In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. ACM,
2009, pp. 1–12. doi: 10.1145/1654059.1654112.

[91] W. J. Dally. “Virtual-channel flow control.” In: IEEE Transactions on
Parallel and Distributed Systems 3.2 (1992), pp. 194–205.

[92] J. Duato, S. Yalamanchili, and L. M. Ni. Interconnection networks: An
engineering approach. Morgan Kaufmann, 2003. isbn: 9781558608528.

[93] W. J. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[94] Y. Hoskote, S. Vangal, S. Dighe, N. Borkar, and S. Borkar. “Ter-
aflops prototype processor with 80 cores.” In: Hot Chips 19 Sympo-
sium. IEEE, 2007. isbn: 978-1-4673-8869-6. doi: 10.1109/HOTCHIPS.
2007.7482494.

[95] S. Kundu. Network-on-Chip: The next generation of system-on-chip in-
tegration. CRC PRESS, 2017. isbn: 9781138749351.

[96] Y. Ye et al. “Holistic comparison of optical routers for chip multi-
processors.” In: Anti-counterfeiting, Security, and Identification. 2012,
pp. 1–5. doi: 10.1109/ICASID.2012.6325348.

[97] V. F. Pavlidis and E. G. Friedman. “3-D Topologies for Networks-
on-Chip.” In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 15.10 (2007), pp. 1081–1090. issn: 1063-8210. doi: 10.1109/
TVLSI.2007.893649.

[98] M. Coppola. “Spidergon STNoC: The technology that adds value
to your System.” In: 2010 IEEE Hot Chips 22 Symposium (HCS).
2010, pp. 1–39. doi: 10.1109/HOTCHIPS.2010.7480082.

[99] J. Duato. “A new theory of deadlock-free adaptive routing in worm-
hole networks.” In: IEEE Transactions on Parallel and Distributed Sys-
tems 4.12 (1993), pp. 1320–1331. doi: 10.1109/71.250114.

[100] M. Ebrahimi et al. “DyXYZ: Fully Adaptive Routing Algorithm
for 3D NoCs.” In: Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing. 2013, pp. 499–503. doi: 10.
1109/PDP.2013.80.

https://doi.org/10.1109/MDT.2005.99
https://doi.org/10.1109/SSD.2016.7473771
https://doi.org/10.1109/SSD.2016.7473771
https://doi.org/10.1109/PDP.2016.124
https://doi.org/10.1145/1654059.1654112
https://doi.org/10.1109/HOTCHIPS.2007.7482494
https://doi.org/10.1109/HOTCHIPS.2007.7482494
https://doi.org/10.1109/ICASID.2012.6325348
https://doi.org/10.1109/TVLSI.2007.893649
https://doi.org/10.1109/TVLSI.2007.893649
https://doi.org/10.1109/HOTCHIPS.2010.7480082
https://doi.org/10.1109/71.250114
https://doi.org/10.1109/PDP.2013.80
https://doi.org/10.1109/PDP.2013.80

242 bibliography

[101] A. Charif, N. E. Zergainoh, and M. Nicolaidis. “A new approach
to deadlock-free fully adaptive routing for high-performance fault-
tolerant NoCs.” In: 2016 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 2016,
pp. 121–126. doi: 10.1109/DFT.2016.7684082.

[102] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen. “MAFA:
Adaptive Fault-Tolerant Routing Algorithm for Networks-on-Chip.”
In: 2012 15th Euromicro Conference on Digital System Design. 2012,
pp. 201–207. doi: 10.1109/DSD.2012.82.

[103] C. J. Glass and L. M. Ni. “The Turn Model for Adaptive Routing.”
In: Proceedings the 19th Annual International Symposium on Computer
Architecture. 1992. doi: 10.1109/ISCA.1992.753324.

[104] W. J. Dally and C. L. Seitz. “Deadlock-free message routing in
multiprocessor interconnection networks.” In: IEEE Transactions on
Computers C-36.5 (1987). issn: 0018-9340. doi: 10.1109/TC.1987.
1676939.

[105] R. Pop and S. Kumar. “A survey of techniques for mapping and
scheduling applications to network on chip systems.” In: School of
Engineering, Jonkoping University, Research Report (2004).

[106] P. K. Sahu and S. Chattopadhyay. “A survey on application map-
ping strategies for Network-on-Chip design.” In: Journal of systems
architecture (2013). doi: 10.1016/j.sysarc.2012.10.004.

[107] A. Bender. “MILP Based Task Mapping for Heterogeneous Mul-
tiprocessor Systems.” In: Proceedings of the Conference on European
Design Automation. IEEE, 1996.

[108] S. K. Mandal et al. “NoCBench: a benchmarking platform for net-
work on chip.” In: Workshop on Unique Chips and Systems. 2009.

[109] G. Kahn. “The semantics of a simple language for parallel pro-
gramming.” In: Proceedings of the IFIP Congress on Information Pro-
cessing. 1974.

[110] E. Pekkarinen, L. Lehtonen, E. Salminen, and T. D. Hamalainen.
“A set of traffic models for Network-on-Chip benchmarking.” In:
International Symposium on System on Chip. 2011.

[111] W. Liu et al. “A NoC Traffic Suite Based on Real Applications.”
In: 2011 IEEE Computer Society Annual (2011), pp. 66–71. doi: 10.
1109/ISVLSI.2011.49.

[112] N. Binkert et al. “The Gem5 Simulator.” In: SIGARCH Computer
Architecture News 39.2 (2011), pp. 1–7. doi: 10 . 1145 / 2024716 .

2024718.
[113] C. Bienia. “Benchmarking Modern Multiprocessors.” PhD thesis.

Princeton University, 1.01.2011.
[114] J. Hestness and S. W. Keckler. Netrace: Dependency-Tracking Traces

for Efficient Network-on-Chip Experimentation.
[115] Synopsis. RTL Synthesis and Test. 2017. url: https://www.synopsys.

com/implementation-and-signoff/rtl-synthesis-test.html.
[116] Inc. Cadence Design Systems. Genus Synthesis Solution. 2016. url:

https://www.cadence.com/content/cadence-www/global/en_

US/home/tools/digital-design-and-signoff/synthesis/genus-

synthesis-solution.html.
[117] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. “No-

xim: An open, extensible and cycle-accurate network on chip sim-
ulator.” In: International Conference on Application-specific Systems,

https://doi.org/10.1109/DFT.2016.7684082
https://doi.org/10.1109/DSD.2012.82
https://doi.org/10.1109/ISCA.1992.753324
https://doi.org/10.1109/TC.1987.1676939
https://doi.org/10.1109/TC.1987.1676939
https://doi.org/10.1016/j.sysarc.2012.10.004
https://doi.org/10.1109/ISVLSI.2011.49
https://doi.org/10.1109/ISVLSI.2011.49
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

bibliography 243

Architectures and Processors. IEEE, 2015. doi: 10.1109/ASAP.2015.
7245728.

[118] A. García-Ortiz, L. Indrusiak, T. Murgan, and M. Glesner. “Low-
Power Coding for Networks-on-Chip with Virtual Channels.” In:
Journal of Low-Power Electronics 5 (2009), pp. 1–8. doi: 10.1166/
jolpe.2009.1006.

[119] Z. Lu, R. Thid, M. Millberg, E. Nilsson, and A. Jantsch. “NNSE:
Nostrum network-on-chip simulation environment.” In: Proceed-
ings of SSoCC (2005).

[120] NoC Blog. Top 5 most popular NoC simulators. 2012. url: https:
//networkonchip.wordpress.com/2015/11/02/what- is- the-

most-popular-full-system-simulator/.
[121] Nan Jiang et al. “A detailed and flexible cycle-accurate Network-

on-Chip simulator.” In: International Symposium on Performance Anal-
ysis of Systems and Software. IEEE, 2013, pp. 86–96. doi: 10.1109/
ISPASS.2013.6557149.

[122] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. “Cycle-
Accurate Network on Chip Simulation with Noxim.” In: ACM
Transactions on Modeling and Computer Simulation 27.1 (2016), pp. 1–
25. doi: 10.1145/2953878.

[123] B. S. Feero and P. P. Pande. “Networks-on-Chip in a Three-Dimen-
sional Environment: A Performance Evaluation.” In: IEEE Trans-
actions on Computers 58.1 (2009), pp. 32–45. issn: 0018-9340. doi:
10.1109/TC.2008.142.

[124] K. Tatas, K. Siozios, D. Soudris, and A. Jantsch. Designing 2D and
3D Network-on-Chip Architectures. Springer, 2014.

[125] M. O. Agyeman and A. Ahmadinia. “Optimising Heterogeneous
3D Networks-on-Chip.” In: Parallel Computing in Electrical Engineer-
ing. 2011. doi: 10.1109/PARELEC.2011.40.

[126] A. B. Ahmed and A. B. Abdallah. “LA-XYZ: Low Latency, High
Throughput Look-Ahead Routing Algorithm for 3D Network-on-
Chip (3D-NoC) Architecture.” In: International Symposium on Em-
bedded Multicore SoCs (2012). doi: 10.1109/MCSoC.2012.24.

[127] R. Mullins, A. West, and S. Moore. “Low-latency virtual-channel
routers for on-chip networks.” In: ACM SIGARCH Computer Archi-
tecture News. 2004.

[128] S. Foroutan, A. Sheibanyrad, and F. Petrot. “Assignment of Vertical-
Links to Routers in Vertically-Partially-Connected 3-D-NoCs.” In:
IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems 33.8 (2014), pp. 1208–1218. doi: 10.1109/TCAD.2014.
2323219.

[129] M. Bahmani, A. Sheibanyrad, F. Petrot, F. Dubois, and P. Durante.
“A 3D-NoC Router Implementation Exploiting Vertically-Partially-
Connected Topologies.” In: IEEE Computer Society Annual (2012).
doi: 10.1109/ISVLSI.2012.19.

[130] Y. Ying et al. “Economizing TSV Resources in 3-D Network-on-
Chip Design.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 23.3 (2015), pp. 493–506. issn: 1063-8210. doi: 10.
1109/TVLSI.2014.2311835.

[131] T. Webber et al. “Tiny – optimised 3D mesh NoC for area and
latency minimisation.” In: Electronics Letters 50.3 (2014), pp. 165–
166. issn: 0013-5194. doi: 10.1049/el.2013.2557.

https://doi.org/10.1109/ASAP.2015.7245728
https://doi.org/10.1109/ASAP.2015.7245728
https://doi.org/10.1166/jolpe.2009.1006
https://doi.org/10.1166/jolpe.2009.1006
https://networkonchip.wordpress.com/2015/11/02/what-is-the-most-popular-full-system-simulator/
https://networkonchip.wordpress.com/2015/11/02/what-is-the-most-popular-full-system-simulator/
https://networkonchip.wordpress.com/2015/11/02/what-is-the-most-popular-full-system-simulator/
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1145/2953878
https://doi.org/10.1109/TC.2008.142
https://doi.org/10.1109/PARELEC.2011.40
https://doi.org/10.1109/MCSoC.2012.24
https://doi.org/10.1109/TCAD.2014.2323219
https://doi.org/10.1109/TCAD.2014.2323219
https://doi.org/10.1109/ISVLSI.2012.19
https://doi.org/10.1109/TVLSI.2014.2311835
https://doi.org/10.1109/TVLSI.2014.2311835
https://doi.org/10.1049/el.2013.2557

244 bibliography

[132] K. Lee, S.-J. Lee, and H.-J. Yoo. “Low-power network-on-chip for
high-performance SoC design.” In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 14.2 (2006), pp. 148–160. issn: 1063-
8210. doi: 10.1109/TVLSI.2005.863753.

[133] U. Y. Ogras and R. Marculescu. “It’s a small world after all: NoC
performance optimization via long-range link insertion.” In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 14.7 (2006),
pp. 693–706. issn: 1063-8210. doi: 10.1109/TVLSI.2006.878263.

[134] J. Lienig. Layoutsynthese elektronischer Schaltungen - Grundlegende
Algorithmen für die Entwurfsautomatisierung. Springer, 2006. isbn:
978-3-540-29942-4. doi: 10.1007/3-540-29942-4.

[135] J. Cong and G. Luo. “A Multilevel Analytical Placement for 3D
ICs.” In: Asia and South Pacific Design Automation Conference. ASP-
DAC ’09. IEEE, 2009, pp. 361–366. isbn: 978-1-4244-2748-2.

[136] M.-C. Tsai, T.-C. Wang, and T. T. Hwang. “Through-Silicon Via
Planning in 3-D Floorplanning.” In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 19.8 (2011). issn: 1063-8210. doi:
10.1109/TVLSI.2010.2050012.

[137] M.-K. Hsu, Y.-W. Chang, and V. Balabanov. “TSV-aware Analytical
Placement for 3D IC Designs.” In: Design Automation Conference.
ACM, 2011. doi: 10.1145/2024724.2024875.

[138] J. Cong, M. Romesis, and J. R. Shinnerl. “Robust Mixed-size Place-
ment Under Tight White-space Constraints.” In: International Con-
ference on Computer-aided Design. ICCAD ’05. IEEE, 2005. isbn: 0-
7803-9254-X.

[139] J. A. Roy et al. “Capo: Robust and Scalable Open-source Min-cut
Floorplacer.” In: International Symposium on Physical Design. ACM,
2005. doi: 10.1145/1055137.1055184.

[140] Thomas Canhao Xu et al. “Optimal placement of vertical connec-
tions in 3D Network-on-Chip.” In: Journal of systems architecture
59.7 (2013), pp. 441–454. doi: 10.1016/j.sysarc.2013.05.002.

[141] Kanchan Manna, Santanu Chattopadhyay, and Indranil Sengupta.
“Through silicon via placement and mapping strategy for 3D mesh
based Network-on-Chip.” In: International Conference on Very Large
Scale Integration (VLSI-SoC). IEEE. doi: 10.1109/VLSI-SoC.2014.
7004177.

[142] K. Srinivasan, K. S. Chatha, and G. Konjevod. “Linear-program-
ming-based techniques for synthesis of network-on-chip architec-
tures.” In: IEEE Trans. on Very Large Scale Integration (VLSI) Systems
14.4 (2006), pp. 407–420. issn: 1063-8210. doi: 10.1109/TVLSI.2006.
871762.

[143] W. H. Wolf. “Hardware-software co-design of embedded systems
[and prolog].” In: Proceedings of the IEEE 82.7 (1994), pp. 967–989.
doi: 10.1109/5.293155.

[144] B. Niazmand et al. “Logic-based implementation of fault-tolerant
routing in 3D network-on-chips.” In: International Symposium on
Networks-on-Chip. IEEE, 2016. isbn: 978-1-4673-9030-9. doi: 10.1109/
NOCS.2016.7579317.

[145] B. Korte and J. Vygen. Combinatorial optimization: Theory and algo-
rithms. 2nd edition. Springer, 2002. isbn: 3662560380.

[146] B. Montreuil. “A Modelling Framework for Integrating Layout De-
sign and flow Network Design.” In: (1990).

https://doi.org/10.1109/TVLSI.2005.863753
https://doi.org/10.1109/TVLSI.2006.878263
https://doi.org/10.1007/3-540-29942-4
https://doi.org/10.1109/TVLSI.2010.2050012
https://doi.org/10.1145/2024724.2024875
https://doi.org/10.1145/1055137.1055184
https://doi.org/10.1016/j.sysarc.2013.05.002
https://doi.org/10.1109/VLSI-SoC.2014.7004177
https://doi.org/10.1109/VLSI-SoC.2014.7004177
https://doi.org/10.1109/TVLSI.2006.871762
https://doi.org/10.1109/TVLSI.2006.871762
https://doi.org/10.1109/5.293155
https://doi.org/10.1109/NOCS.2016.7579317
https://doi.org/10.1109/NOCS.2016.7579317

bibliography 245

[147] T. A. Lacksonen. “Static and Dynamic Layout Problems with Vary-
ing Areas.” In: Journal of the Operational Research Society 45.1 (1994),
pp. 59–69. doi: 10.1057/jors.1994.7.

[148] B. Korte and J. Vygen. Combinatorial optimization: Theory and algo-
rithms. 5th edition. Springer, 2012. isbn: 3642427677.

[149] IBM. Cplex 12.8 User’s Manual. 2017.
[150] L. Khachiyan. “A polynomial algorithm in linear programming.”

In: Doklady Academii Nauk SSSR 244 (1979), pp. 1093–1096.
[151] Mosek ApS. Mosek. 2018.
[152] Kanchan Manna, Shivam Swami, Santanu Chattopadhyay, and In-

dranil Sengupta. “Integrated Through-Silicon Via Placement and
Application Mapping for 3D Mesh-Based NoC Design.” In: ACM
Transactions on Embedded Computing Systems 16.1 (2016). doi: 10.
1145/2968446.

[153] L. Popova-Zeugmann. Time and Petri nets. Springer, 2013. isbn: 978-
3-642-41115-1.

[154] P. J. Haas. Stochastic Petri nets: Modelling, stability, simulation. Spring-
er, 2002. isbn: 978-0-387-21552-5.

[155] A. García-Ortiz and L. S. Indrusiak. “Practical and Theoretical
Considerations on Low-Power Probability-Codes for Networks-
on-Chip.” In: International Symposium on Power and Timing Mod-
eling, Optimization and Simulation. 2011. isbn: 978-3-642-17752-1.

[156] IEEE Standard for Standard SystemC Language Reference Manual. Pis-
cataway, NJ, USA. doi: 10.1109/IEEESTD.2012.6134619.

[157] P. Lotfi-Kamran, A. M. Rahmani, M. Daneshtalab, A. Afzali-Kusha,
and Z. Navabi. “EDXY – A low cost congestion-aware routing al-
gorithm for network-on-chips.” In: Journal of systems architecture
56.7 (2010), pp. 256–264. doi: 10.1016/j.sysarc.2010.05.002.

[158] Erik B. van der Tol and E. G. Jaspers. “Mapping of MPEG-4 decod-
ing on a flexible architecture platform.” In: Media Processors (2002).

[159] L. Cai and D. Gajski. “Transaction level modeling: an overview.”
In: International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. ACM, 2003.

[160] N. Jafarzadeh, M. Palesi, A. Khademzadeh, and A. Afzali-Kusha.
“Data Encoding Techniques for Reducing Energy Consumption in
Network-on-Chip.” In: IEEE Trans. on Very Large Scale Integration
(VLSI) Systems 22.3 (2014), pp. 675–685. doi: 10.1109/TVLSI.2013.
2251020.

[161] P. Viola and M. Jones. “Rapid object detection using a boosted
cascade of simple features.” In: Computer Society Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2001. isbn: 0-7695-1272-0.
doi: 10.1109/CVPR.2001.990517.

[162] J. Shi and Tomasi C. “Good features to track.” In: Conference on
Computer Vision and Pattern Recognition. IEEE, 1994. isbn: 0-8186-
5825-8. doi: 10.1109/CVPR.1994.323794.

[163] Tomasi C. and T. Kanade. “Detection and Tracking of Point Fea-
tures.” In: International Journal of Computer Vision (1991).

[164] C.-H. H. Chen et al. “SMART: A Single-cycle Reconfigurable NoC
for SoC Applications.” In: Conference on Design, Automation and
Test in Europe. DATE ’13. EDA Consortium, 2013. isbn: 978-1-4503-
2153-2.

https://doi.org/10.1057/jors.1994.7
https://doi.org/10.1145/2968446
https://doi.org/10.1145/2968446
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1016/j.sysarc.2010.05.002
https://doi.org/10.1109/TVLSI.2013.2251020
https://doi.org/10.1109/TVLSI.2013.2251020
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.1994.323794

246 bibliography

[165] Akram Ben Ahmed and Abderazek Ben Abdallah. “Low-overhead
Routing Algorithm for 3D Network-on-Chip.” In: ICNC (2012),
pp. 23–32. doi: 10.1109/ICNC.2012.14.

[166] M. Palesi and M. Daneshtalab. Routing algorithms in Networks-on-
Chip. Springer, 2014. isbn: 978-1-4614-8274-1.

[167] Wolfram Research. Mathematica Edition: Version 10.4. Champaign,
Illinois: Wolfram Research, Inc., 2016.

[168] P. H. Starke. “A Memo on Time Constraints in Petri Nets.” In:
Informatik-Bericht 46 (1995).

https://doi.org/10.1109/ICNC.2012.14

D E C L A R AT I O N

ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzuläss
ige Hilfe Dritter und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt habe. Die Hilfe eines kommerziellen Promo-
tionsberaters habe ich nicht in Anspruch genommen. Dritte haben
von mir weder unmittelbar noch mittelbar geldwerte Leistungen für
Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorge-
legten Dissertation stehen. Verwendete fremde und eigene Quellen
sind als solche kenntlich gemacht. Ich habe insbesondere nicht wis-
sentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse ver-
schwiegen,

• statistische Verfahren absichtlich mißbraucht, um Daten in un-
gerechtfertigter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,
• fremde Forschungsergebnisse verzerrt wiedergegeben

Mir ist bekannt, dass Verstösse gegen das Urheberrecht Unterlassungs-
und Schadensersatzansprüche des Urhebers sowie eine strafrechtli-
che Ahndung durch die Strafverfolgungsbehörden begründen kann.

Ich erkläre mich damit einverstanden, dass die Dissertation ggf. mit
Mitteln der elektronischen Datenverarbeitung auf Plagiate überprüft
werden kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in glei-
cher oder ähnlicher Form als Dissertation eingereicht und ist als Gan-
zes auch noch nicht veröffentlicht.

declaration of honor

I hereby declare that I produced this thesis without prohibited exter-
nal assistance and that none other than the listed references and tools
have been used. I did not make use of any commercial consultant
concerning graduation. A third party did not receive any nonmone-
tary perquisites neither directly nor indirectly for activities which are
connected with the contents of the presented thesis. All sources of
information are clearly marked, including my own publications. In
particular I have not consciously:

• Fabricated data or rejected undesired results
• Misused statistical methods with the aim of drawing other con-

clusions than those warranted by the available data
• Plagiarized data or publications

248 bibliography

• Presented the results of other researchers in a distorted way

I do know that violations of copyright may lead to injunction and
damage claims of the author and also to prosecution by the law en-
forcement authorities.

I hereby agree that the thesis may need to be reviewed with an
electronic data processing for plagiarism.

This work has not yet been submitted as a doctoral thesis in the
same or a similar form in Germany or in any other country. It has not
yet been published as a whole.

Magdeburg, den 28. Februar 2019

Jan Moritz Joseph

Title
Composer

6

9

13

17

	Abstract
	Kurzfassung
	Publications
	Acknowledgments
	Contents
	 Prelude
	1 Next Decade's Communication Architectures
	2 Contribution
	2.1 Objectives
	2.2 Working hypothesis
	2.3 Outcomes
	2.4 Outline

	 Background
	3 3D technologies
	3.1 Potentials
	3.2 Challenges
	3.3 Fabrication
	3.4 Applications (heterogeneous 3D chips)

	4 Networks-on-Chip
	4.1 Packet transmission
	4.2 Router architecture
	4.3 Timing of routers
	4.4 Flow control
	4.5 Virtual channels
	4.6 Network topology
	4.7 Routing algorithm
	4.8 Application mapping
	4.9 Evaluation
	4.10 3D NoCs

	 Innovation
	5 Specification and design space
	5.1 Definition
	5.2 Limitations of today’s approaches
	5.3 Potentials
	5.4 Challenges solely present in A-3D NoCs
	5.5 Typical example for NoCs in heterogeneous 3D SoCs
	5.6 Design space of A-3D NoCs

	6 System-level optimization
	6.1 Introduction
	6.2 Problem formulation and technology model
	6.3 Mixed integer linear program model
	6.4 Heuristic algorithm
	6.5 Performance and computational complexity
	6.6 Results
	6.7 Discussion
	6.8 Conclusion

	7 Tools and methods for simulation
	7.1 Models
	7.2 Tools
	7.3 Exploration process
	7.4 Analysis
	7.5 Results and discussion
	7.6 Conclusion

	8 Optimization of router memory
	8.1 Buffer distributions and buffer depths
	8.2 Routers with optimized buffer distribution
	8.3 Routers with optimized buffer depths
	8.4 Results
	8.5 Discussion
	8.6 Conclusion

	9 Optimization of routing and architectures
	9.1 Influence of heterogeneity on routing
	9.2 Modeling technology heterogeneity
	9.3 Modeling communication
	9.4 Limitations of routing due to heterogeneity
	9.5 Tackling latency: Routing algorithms
	9.6 Tackling throughput: Router architectures
	9.7 Results
	9.8 Discussion
	9.9 Conclusion

	 Finale
	10 Summary and Outlook
	10.1 Asymmetry – a novel design paradigm
	10.2 Impact of future technologies

	 Appendix
	a System-level optimization
	a.1 Overview of symbols
	a.2 Component, router and tile count
	a.3 Definitions, notations and prerequisites
	a.4 Cost function
	a.5 Constraints
	a.6 Auxiliary variables
	a.7 Heuristic algorithm

	b Simulation models
	b.1 Application model

	 Glossary
	List of Figures
	List of Tables
	Listings
	Acronyms

	 Bibliography
	Declaration
	Colophon

