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Kurzfassung
Warmumformwerkzeuge unterliegen während des Betriebes komple-
xen thermischen und mechanischen Beanspruchungen. In kritischen
Bereichen können dadurch lokal Spannungen entstehen, die die Fließ-
grenze überschreiten. Bei der Serienproduktion führt dies zu zykli-
schen plastischen Verformungen und zu thermomechanischer Ermü-
dung, welche die Lebensdauer der Warmumformwerkzeuge maßgeb-
lich beeinflussen kann.

Um den hohen Belastungen standzuhalten, werden die War-
mumformwerkzeuge typischerweise aus vergüteten martensitischen
Warmarbeitsstählen hergestellt. Während die Anlasstemperaturen
der Werkzeugstähle gewöhnlich im Bereich zwischen 400 und 600 °C
liegen, können die Stähle während der Warmformung sogar noch hö-
here Temperaturen ausgesetzt sein und daher durch Änderung der
Mikrostruktur entfestigen.

Daher werden in dieser Arbeit die temperaturabhängigen zy-
klischen Materialeigenschaften des häufig verwendeten Warmar-
beitsstahls 1.2367 (X38CrMoV5-3) bei verschiedenen Auslagerungs-
zuständen untersucht. Zu diesem Zweck werden Härtemessungen
durchgeführt. Des Weiteren werden durch das Institut für Umform-
technik und Umformmaschinen (IFUM) Versuchsergebnisse aus zy-
klischen Versuchen bei Temperaturen im Bereich von 20 °C (Raum-
temperatur) bis 650 °C bereitgestellt. Zur Beurteilung der zeit- und
temperaturabhängigen Entfestigung während des Auslagerns, wird
ein kinetisches Modell zur Beschreibung der mittleren Teilchengrö-
ße von Sekundärkarbiden (Ostwaldreifung) entwickelt. Darüber hin-
aus werden sowohl mechanismenbasierte als auch phänomenologi-
sche Beziehungen für die zyklischen mechanischen Eigenschaften des
Ramberg-Osgood-Modells in Abhängigkeit von der Karbidgröße und
der Temperatur eingeführt. Aus den ermittelten Materialeigenschaf-
ten des kinetischen und mechanischen Modells lassen sich die gemes-
senen Spannungs-Dehnungs-Hysteresen für unterschiedliche Tempe-
raturen und Auslagerungszustände gut beschreiben. Zudem eignet
sich das Modell zur Einbindung in fortschrittliche mechanismenba-
sierte Lebensdauermodelle.

Da sich das Ramberg-Osgood-Modell nicht für Berechnung mit
der Finite-Elemente-Methode (FEM) eignet, wird zudem ein tempe-
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raturabhängiges inkrementelles zyklisches Plastizitätsmodell für den
Warmarbeitsstahl vorgestellt. Somit kann die Entfestigung durch
Teilchenvergröberung bei der Finite-Elemente-Berechnung berück-
sichtigt werden. Das Plastizitätsmodell nutzt Rückspannungen zur
Beschreibung des Bauschinger-Effekts. Es ist über Subroutinen in
das Finite-Elemente-Programm ABAQUS für implizite Integration
(als UMAT bezeichnete Subroutine) und explizite Integration (als
VUMAT bezeichnete Subroutine) implementiert.

Das implementierte Modell wird zur Berechnung eines exempla-
rischen Warmumformprozesses verwendet um die Auswirkungen der
Entfestigung durch Teilchenvergröberung zu beurteilen. Dabei zeigt
sich, dass die thermische Entfestigung durch hohe Temperaturen,
die über eine längere Zeit an einem mechanisch hochbelasteten Be-
reich auftritt, einen großen Einfluss auf die plastische Verformung
hat. Bleibt dieser Effekt bei der Werkzeugauslegung unberücksich-
tigt, kann es zu einem unerwarteten Werkzeugausfall kommen, der
einen Stillstand der Produktion verursacht.

Abstract
Hot working tools are subjected to complex thermal and mechanical
loads during service. Locally, the stresses can exceed the material’s
yield strength in highly loaded areas. During production, this causes
cyclic plastic deformation and thus thermomechanical fatigue, which
can significantly shorten the lifetime of hot working tools. To sustain
this high loads, the hot working tools are typically made of tempered
martensitic hot work tool steels. While the annealing temperatures
of the tool steels usually lie in the range of 400 to 600 °C, the steels
may experience even higher temperatures during hot working, result-
ing in softening of the material due to changes in microstructure.

Therefore, the temperature-dependent cyclic mechanical proper-
ties of the frequently used hot work tool steel 1.2367 (X38CrMoV5-3)
after tempering are investigated in this work. To this end, hardness
measurements are performed. Furthermore, the Institute of Forming
Technology and Machines (IFUM) provides test results from cyclic
tests at temperatures ranging from 20 °C (room temperature) to
650 °C. To describe the observed time- and temperature-dependent
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softening during tempering, a kinetic model for the evolution of the
mean size of secondary carbides based on Ostwald ripening is de-
veloped. In addition, both mechanism-based and phenomenological
relationships for the cyclic mechanical properties of the Ramberg-
Osgood model depending on carbide size and temperature are pro-
posed. The stress-strain hysteresis loops measured at different tem-
peratures and after different heat treatments can be well described
with the proposed kinetic and mechanical model. Furthermore, the
model is suitable for integration in advanced mechanism-based life-
time models.

However, since the Ramberg-Osgood model is not suitable for
finite element implementation, a temperature-dependent incremen-
tal cyclic plasticity model is presented as well. Thus, softening due
to particle coarsening can be applied in the finite element method
(FEM). Therefore, a kinetic model is coupled with a cyclic plasticity
model including kinematic hardening. The plasticity model is im-
plemented via subroutines in the finite element program ABAQUS
for implicit integration (subroutine called UMAT) and explicit inte-
gration (subroutine called VUMAT).

The implemented model is used for the simulation of an exem-
plary hot working process to assess the effects of softening due to
particle coarsening. It shows that the thermal softening at high
temperatures, which occur over a long time at a mechanically highly
loaded area, has a great influence. If this influence is not considered
in tool design, an unexpected tool failure might occur bringing the
production to a standstill.
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Notation
Bold letters indicate vectors and tensors. Fourth order tensors are
indicated in blackboard bold. The identity tensors are Roman nu-
merals, I for the second identity and II for the fourth identity tensor.
Einstein convection, which sums over double occurring indices

n∑

i=1
aibi = aibi

is used. Each dot between vectors and tensors indicates the presence
of one Kronecker delta

δij =
{

0 if i 6= j
1 if i = j

.

The following notations will be used for vector and tensor operations:

scalar product of two vectors a · b

c = aibi = aibjδij

scalar product of two second order tensors A : B

c = AijBij = AijBklδikδjl

inner product of two second order tensors A ·B

Cil = AijBjl = AijBklδjk

tensor product of two vectors a⊗ b

Cij = aibj

other product of second order tensor and vector A · b

ci = Aijbj = Aijbkδjk

other product of fourth order and second order tensor AAA : B

Cij = AijklBkl = AijklBmnδkmδln.
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Additional notations for vectors are

nabla operator: ∇ =
(

∂
∂x1

, · · · , ∂
∂xn

)

gradient: grad(a) = (∇⊗ a)T

divergence: div(a) = ∇ · a.

Additional notations for second order tensors are

symmetric part: sym(A) = 1
2

(
A+AT

)

skew symmetric part: skew(A) = 1
2

(
A−AT

)

trace: tr(A) = Aii

deviator: dev(A) = A− 1
3 tr(A)I.

Further notations:

time derivative: ˙(·) = d(·)
dt

exponential integral: Ei(x) = −
∫∞
−x

e−t

t dt

natural logarithm: ln(x) = loge(x) with the Euler’s number e

Macaulay brackets: 〈x〉 = 1
2 (a+ |a|).
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Chapter 1

Introduction

1.1 Motivation
Hot working is a reliable and relatively economic manufacturing pro-
cess for metal parts. It is a process in which the metal parts are
plastically formed above their recrystallization temperature. In the
case of hot forging of steel the temperature of the material lies be-
tween 1000 and 1250 °C [DB10, p. 584]. In this state the blank is
relatively soft, since the recrystallization produces new grain struc-
ture, which degrades dislocations [DeG03, pp. 387–389]. This allows
the production of complex parts with high strength in a very short
time.

In die forging, the tools consist of a punch at the top and a die
at the bottom. They can be made of several parts and the forming
process itself can be separated into stages. The tools partly contain
the negative shape of the desired product. After external heating,
the blank is inserted between the tools and the punch pushes the hot
blank into the die to gain the desired shape.

During hot working, the tools are exposed to thermal and me-
chanical loads resulting in highly stressed regions such as small radii
in die cavities. To sustain high loads, the hot work tools are typically
made of martensitic hot work tool steels that are hardened and an-
nealed in order to obtain a microstructure of the material resulting in
the desired combination of strength, toughness and thermal stability.
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2 CHAPTER 1. INTRODUCTION

However, in the highly stressed regions of forming tools local cyclic
plastic deformations are still possible. Thus, temperature-dependent
cyclic mechanical material properties of the hot work tool steels are
required to assess the forming tools with respect to their fatigue life.

While temperatures for annealing of the tool steels usually lie
in the range between 400 and 600 °C, the steels may experience
even higher temperatures during hot working. According to the
Tammann-rule, 40% of the melting temperature can be assumed for
an estimation of the recrystallization temperature [Sch91, p. 130].
Hence, a further evolution of the mechanical material properties
during service is expected. Microstructural changes during tem-
pering as coarsening of strengthening particles (e.g. secondary car-
bides) known as Ostwald ripening result in softening of the mate-
rial [CSE+02, ZDB04, HLWZ06,MBGA09]. If this softening is not
considered in tool design, unexpected tool failures could occur.

In industry, usually pure linear elastic material behavior is as-
sumed in finite element calculations of hot working tools. Further-
more, the tool temperature is usually assumed constant and not
determined by a thermomechanically coupled simulation. Due to
these simplifications, the complex material behavior can only be
partially described, which can lead to an inappropriate tool design.
Hence, there is a demand for models that describe the temperature-
dependent cyclic mechanical properties even after softening at dif-
ferent tempering times and temperatures.

Instead of using a purely phenomenological description of soften-
ing, mechanism-based models could be used. The mechanism-based
models allow the description of the evolution of material properties
on the basis of the evolution of measurable microstructural quanti-
ties (e.g. mean particle size) with a relatively low number of material
properties. As long as the mechanisms do not change, the models are
often able to describe the material behavior also for loading condi-
tions that are outside of the range of conditions used for the determi-
nation of the material properties. Models describing the coarsening
of strengthening particles and reduction of the dislocation density are
used in [EL88] to evaluate softening of a hot work tool steel. The
coarsening kinetics of particles is considered in describing the loss of
hardness during thermal loading in [CSE+02]. However, in the latter
two references the kinetic models are not incorporated into a model
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to describe the time- and temperature-dependent cyclic mechanical
material properties depending on the current tempering state.

1.2 Aim
It is the aim of the present work to develop and implement advanced
material models including integrated descriptions of the mechanical
behavior and microstructural changes for the frequently used hot
work tool steel 1.2367 (X38CrMoV5-3). On the one hand, the devel-
opment of an incremental cyclic plasticity model for the implemen-
tation in finite element programs is needed. On the other hand, a
plasticity model for the integration in mechanism-based models for
thermomechanical fatigue life prediction has to be developed. This
enables to asses the effect of softening on the thermomechanical fa-
tigue life of hot work tools.

1.3 Structure
The thesis is structured as follows: In the next chapter, the theoret-
ical foundations required for this work are presented. Afterwards,
the material behavior of hot work tool steels and existing material
models, that have already been used by other researchers are pre-
sented in chapter 3. Then, the experimental material testing of the
investigated steel is described in chapter 4. In chapter 5, which
is a main contribution of this work, the material models including
the kinetic model, the Ramberg-Osgood model and the incremental
cyclic plasticity model are described. The cyclic mechanical mate-
rial properties of the Ramberg-Osgood model are considered because
they are the basic properties entering a mechanism-based model for
thermomechanical fatigue crack growth and life prediction that is
well established for hot parts in internal combustion engines and ex-
haust systems, e.g. [SR10,SSS+10]. However, the Ramberg-Osgood
model cannot be used in finite element calculations, where incremen-
tal models are needed. Hence, an incremental cyclic plasticity model
including time- and temperature-dependent softening is additionally
developed.
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Chapter 6 deals with the model’s implementation in the finite el-
ement program ABAQUS using the ABAQUS subroutines VUMAT
for an explicit calculation and UMAT for an implicit one. After the
model is applied to a die forging simulation, the results obtained
are discussed in chapter 8. Finally, the works summary and the
conclusions can be found in chapter 9.

Contents of this thesis are partly published in [JSB17, JS18a,
JS18b].



Chapter 2

Theoretical foundations

In this chapter, theoretical foundations needed for this work are
presented. First, the linear elasticity is described. Afterwards,
elements of plasticity that are used for the materials description
are shown. The special focus lies on the Ramberg-Osgood model
and on incremental plasticity models. Finally, numerical methods,
that will be used in this work are presented. In particular, the
Newton-Raphson method, the FEM and gradient based optimiza-
tion is described. The following presentations refer to the works
[Alt18,Nas15,Sei15,Sei17,Wri08], where more detailed explanations
can be found.
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6 CHAPTER 2. THEORETICAL FOUNDATIONS

2.1 Linear elasticity
Linear elasticity is a branch of continuum mechanics, where a body
is considered as the sum of its connected points. The displacement u
of a point from an initialX to the current status x can be calculated
by

u = x−X. (2.1)

Since the tools have to withstand several hot working cycles,
small strains ‖grad(u) � 1‖ can be assumed. Therefore, the in-
finitesimal strain tensor is used

ε = 1
2(grad(u)− grad(u)T). (2.2)

Now, the Cauchy stress tensor can be calculated by

σ = CCC : ε (2.3)

with the continuum tangent CCC.
For the purely isotropic (invariance to rotation) elastic case, equa-

tion (2.3) can be written as

σ = CCCe : εe (2.4)

with the isotropic elasticity tensor

CCCe = Eν

(1− 2ν)(1 + ν)I⊗ I + E

1 + ν
II, (2.5)

the elastic strain εe, and the elastic properties Young’s modulus E
and Poisson’s ratio ν. This relationship is also known as Hooke’s
law. The isotropic elasticity tensor can also be calculated by

CCCe = λLI⊗ I + 2µLII (2.6)

with the Lamé constants λL and µL, which can be calculated from
the Young’s modulus E and Poisson’s ratio ν, compare equation (2.5).
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2.2 Elements of plasticity
The mathematical description of the mechanical behavior of the in-
vestigated hot work tool steel is a main contribution of this work.
Elastic-plastic material properties are to be considered, so that the
elements of plasticity used in this work are addressed in this sec-
tion. The total strain ε is additively decomposed into an elastic εe,
a plastic εp and a thermal part εth:

ε = εe + εp + εth. (2.7)

The thermal strain rate is given by

ε̇th = αthΘ̇I (2.8)

with the temperature-dependent thermal expansion coefficient αth

and the time derivative of the temperature Θ̇. Assuming a con-
stant thermal expansion coefficient in the temperature range ∆T ,
the thermal strain can be calculated by

εth = αth∆T I. (2.9)

For the determination of plastic strain the Ramberg-Osgood plas-
ticity and incremental plasticity is presented in the following sec-
tions. The Ramberg-Osgood plasticity is used, since it can be well
integrated in mechanism-based lifetime models. Whereas the in-
cremental plasticity is needed for implementation in finite element
programs.
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2.2.1 Ramberg-Osgood plasticity
Ramberg-Osgood plasticity describes nonlinear material with an ex-
plicit relation between stress and strain [RO43]. This implies, that
the model has no history dependency. The plastic flow curve is de-
scribed by power law hardening. In the uniaxial case, the plastic
part of the Ramberg-Osgood model is described by

εp = K
( σ
E

) 1
n (2.10)

with the Young’s modulus E and the material parameters K and n.
With the 0.2% offset yield strength Rp0.2 the parameter K can be
calculated

K = 0.002
(

E

Rp0.2

) 1
n

. (2.11)

The integration of K in equation (2.10) leads to

εp = 0.002
(

σ

Rp0.2

) 1
n

. (2.12)

In the three-dimensional case for incompressible materials the
plastic strain tensor is

εp = 3
20.002

(
σeq
Rp0.2

)( 1
n−1) dev(σ)

Rp0.2
(2.13)

with the von Mises stress (also known as equivalent stress)

σeq =
√

3
2‖dev(σ)‖. (2.14)

For cyclic plasticity, the Ramberg-Osgood model is referenced to the
reversal point. Therefore, from now on deltas of stress and strain
are used with respect of the points of load reversal. Furthermore,
a cyclic yield strength σcy and a cyclic hardening exponent n′ is
introduced. Together with Hooke’s law, the cyclic Ramberg-Osgood
model is given by

δε = CCCe−1
: δσ + 3

20.002
(
δσeq
σcy

)( 1
n′−1) dev(δσ)

σcy
. (2.15)
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2.2.2 Incremental plasticity
The elastic behavior is described by Hooke’s law, see equation (2.4).
If plastic flow in metals takes place, the von Mises yield criterion
(plastic incompressibility)

φ =
√

3
2‖ξ‖ −R (2.16)

is equal to (plastic behavior) or greater than zero (viscoplastic behav-
ior). R is the yield stress, which can include isotropic hardening. A
backstress, which evolves with the thermomechanical load is taking
into account via the von Mises stress, see equation (2.14). Therefore,
the variable

ξ = dev (σ)−α (2.17)
is introduced. The backstress describes kinematic hardening and,
thus, the Bauschinger effect, which leads to a lower flow stress after
a reversal load compared to the previous flow stress. The evolution
of the backstress is described by the Armstrong-Frederick kinematic
hardening law [FA07]

α̇ = 2
3Cε̇

p − γ ˙̄εpα+ 1
C

∂C

∂T
Ṫα, (2.18)

where C and γ are temperature-dependent material properties.
The plastic part of the strain rate can be expressed in the general

form
ε̇p = λN , (2.19)

where λ is a plastic multiplier, which corresponds to the amount of
inelastic flow, and N is the flow direction, which can be calculated
by the derivative of the yield criterion φ with respect to the stress
tensor (normality rule):

N = ∂φ

∂σ
=
√

3
2
ξ

‖ξ‖ . (2.20)

In case of von Mises plasticity, the plastic multiplier corresponds to
the accumulated plastic strain rate

˙̄εp =
√

2
3‖ε̇

p‖ = λ. (2.21)
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2.3 Numerical methods
This section presents numerical methods used in this work. First, the
Newton-Raphson method is described. On the one hand, it is used
to calculate internal variables, see chapter 6. On the other hand, it
is used for implicit finite element calculation. The FEM is a common
method for continuum mechanical calculations and it is described in
the following section. Thereby, the special focus lies on explicit and
implicit time integration. Finally, the gradient-based optimization
is described, which is a method used for parameter identification.

2.3.1 Newton–Raphson method
The Newton-Raphson method is a method for finding approxima-
tions to the roots of a function

f(x) = 0. (2.22)

For this, the function is linearized at a starting point (x0|f (x0)),
this means the tangent t(x) is determined:

t(x) = f ′(x0) (x− x0) + f(x0). (2.23)

With this tangent equation, the root is calculated to an approxima-
tion. The approximate solution then serves as the new starting point
for the next iteration step. This leads to the following iteration rule:

xn+1 = xn −
f(xn)
f ′(xn) . (2.24)

In the multi-dimensional case the iteration rule is given by

xn+1 = xn − (J(xn))−1 · f(xn) = xn + ∆xn (2.25)

with the Jacobian matrix

J(x) = ∂fi
∂xj

. (2.26)

Since the calculation of the inverse of the Jacobian matrix is numer-
ically unfavorable, ∆xn is determined by solving the linear equation

J(xn) ·∆xn = −f(xn). (2.27)
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2.3.2 Finite element method
In hot working simulation, the tool analysis is carried out either cou-
pled or decoupled. In the coupled analysis, the blank and the tools
are modeled deformable. The coupled analysis is more realistic than
the decoupled one, where the simulation is separated in two steps.
First, a pure material flow simulation with rigid tools is performed.
This is followed by the actual stress analysis of the tools, which are
then modeled as deformable parts. The loads from material flow
simulation are transferred to the tools.

Additionally, the thermodynamic problem can be calculated ei-
ther thermomechanically coupled or decoupled. Since the mechanical
and the thermal field influence each other, the thermomechanically
coupled simulation is more realistic. For the coupled calculation, the
balance law of linear momentum and the balance law of energy must
be taken into account. For simplicity, the FEM is introduced on the
basis of the balance law of linear momentum (here in the static case
and in the strong form)

div(σ) + %b = 0, (2.28)

where % is the density and b is the body force per unit mass. In
FEM, the weak form of the boundary value problem is used
∫

B
σ : grad(δu)dV −

∫

B
%b · δudV −

∫

∂Bt
t · δuda = 0, (2.29)

where δu is a test function (virtual displacement), B the continuum
body, and t are stress vectors on the surfaces ∂Bt.

In the FEM the complex problem is divided in finite elements
(spatial discretization), which are connected by nodes. The displace-
ment of the nodes are the unknowns and they are summarized in the
vector uA. The displacement field within an element ue(xe) can be
calculated by an interpolation of the individual displacements of the
nodes with an interpolation function NA, resulting in

ue(xe) = NA(xe) · uA. (2.30)

This also works with the virtual displacement

δue = NA · δuA, (2.31)
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where
grad(δu) = grad(NA) · δuA = BA · δuA. (2.32)

Now, the equilibrium can be calculated by
[∫

Be
σ : BAdV −

∫

Be
b ·NA%dV −

∫

∂Bte
t ·NAda

]
δuA = 0.

(2.33)
Taking the zero product properties into account, the equilibrium of
an element can be calculated by

∫

Be
σ : BAdV −

∫

Be
b ·NA%dV −

∫

∂Bte
t ·NAda = 0 (2.34)

with σ(ε(u)). This equation can also be expressed in the form of
f int = f ext, where the internal forces f int =

∫
Be σ : BAdV must

have the same size as the external forces f ext =
∫

Be b ·NA%dV +∫
∂Bte

t ·NAda. The relationship between stress and strain is defined
by the material model. Finally, the relationship between displace-
ment and strain is provided by equation (2.2).

The linearized equilibrium equations of the individual elements
are assembled considering the nodal connectivity among the ele-
ments. Integrating the equations leads to a system of equations
in the form of

R = K(u) · u− P (u) = 0, (2.35)

whereK is the stiffness matrix and P are external forces. Since a nu-
merical integration with a quadrature rule is used, the location of ob-
tained stresses and strains are at integration points instead of nodal
positions. The nodal solution can be calculated by an inter- and ex-
trapolation. Using the Newton-Raphson method (section 2.3.1) the
displacement can be calculated iterative by

un+1 = un + ∆u, (2.36)

where
KT ·∆u = dR

du ·∆u = −R (2.37)

with KT being the tangential stiffness matrix.
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In the dynamic case, a term must be added to the balance law of
linear momentum (2.29), since it no more equals zero. The momen-
tum can be calculated by I = %a, with the acceleration a. Thus,
the external forces result in

f ext =
∫

Be
(b− a) ·NA%dV +

∫

∂Bte
t ·NAda. (2.38)

Assembling and integrating the linearized equilibrium equations of
the elements leads again to a system of equations. However, in the
dynamic case the system is extended with a mass matrix M and a
damping matrix D:

R = M · ü+K(u, u̇) · u+D(u, u̇) · u̇− P (u, u̇) = 0. (2.39)

This equation can be solved implicit or explicit, where no Newton
iteration is needed, see sections below.

2.3.2.1 Explicit time integration

Due to time discretization in dynamic processes, time integration is
required. Explicit time integration is suitable for short-term, highly
nonlinear problems. In the explicit time integration, the displace-
ments are independent from the accelerations at the current time
tn+1. The calculation for a two-step explicit procedure is given by

un+2 = un + 2∆tu̇n+1 (2.40)

with
u̇n+1 = u̇n−1 + 2∆tün. (2.41)

The internal forces

I = D · u̇+K · u (2.42)

and the external forces P can be directly calculated with the vari-
ables from equation (2.40) and (2.40). The accelerations ü at the
time tn+1 can then be calculated by

ün+1 = M−1 · (P n+1 − In+1) . (2.43)
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Since the explicit method works without an iteration procedure,
the computing effort for one time increment is small. Thus, the
dynamic problem can be solved efficiently with a large number of
small time increments. However, when the time increments exceed
the stable time increment

∆tstable = l

√
ρ

E
(2.44)

with the smallest element length l, the calculation becomes unstable.
Therefore, the number of time increments is usually much larger com-
pared to implicit simulation. Examples for explicit simulations are
crash simulations or quasistatic analyses such as forming processes
with complex contact conditions and nonlinear material behavior.

2.3.2.2 Implicit time integration

In implicit time integration, the displacements and velocities are
dependent on the accelerations at the current time tn+1. The calcu-
lation for a one-step implicit procedure is given by

un+1 = un + ∆tu̇n + ∆t2
2 ün+1 (2.45)

with
u̇n+1 = u̇n + ∆t

2 (ün + ün+1) . (2.46)

For implicit time integration an iterative solution is required, see
section 2.3.1. It has unconditional numerical stability compared to
explicit integration. Therefore, linear and slight non-linear problems,
can be efficiently solved. However, the implicit integration involves a
high amount of computing effort per time step. High nonlinearities
can cause convergence problems leading to an increased number of
time increments. As a result, the computing effort can exceed that
of the explicit time integration.



2.3. NUMERICAL METHODS 15

2.3.3 Gradient based optimization
For the determination of the material parameters p, the method of
least squares is a typical procedure. The material model calculates
the stress in dependency of the material parameters p. For optimiza-
tion, the local minimum of the least square sum between calculated
von Mises stress σeq and experimental stress σexp (from uniaxial ten-
sile tests) has to be determined:

Rsq(p) = 1
2

m∑

i=1
(σeq,i(p)− σexp,i)2 (2.47)

with the number of data points m.
For the solution of this optimizing problem a gradient based al-

gorithm is used. To find a local minimum, steps are performed that
are proportional to the negative of the gradient at the current point:

∇Rsq =
m∑

i=1

[
(σeq,i − σexp,i)

∂σeq,i
∂p

]
. (2.48)

Hence, the iteration rule is given by

pn+1 = pn −αn∇Rsq,n (2.49)

with αn being the step size. In this work the Levenberg-Marquardt
algorithm, also known as damped least-squares method is used [LY16,
p. 213 ff.], [Mor77]. Thereby, the step size is a matrix calculated by

αn = [Hn + λndI]−1 (2.50)

with the Hessian matrix

H = ∇∇Rsq =
m∑

i=1

[(
∂σeq,i
∂p

)T
∂σeq,i
∂p

+ (σeq,i − σexp,i)
∂2σeq,i
∂p⊗ ∂p

]
,

(2.51)
the damping parameter λd and the identity matrix I. The damping
parameter λd enables the interpolation between the Gauss-Newton
algorithm and the method of gradient descent, which makes it more
robust than the Gauss-Newton algorithm. In this work, the gradient
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and the Hessian are calculated numerically based on forward finite
difference schemes with the first order finite difference approximation
of the second order derivative:

dRsq

dpk
= Rsq(pk + ∆pk)−Rsq(pk)

∆pk
(2.52)

and

d2Rsq

dpkdpl
= 1

∆pk∆pl
[Rsq(pk + ∆pk, pl + ∆pl)

−Rsq(pk + ∆pk, pl + ∆pl)−Rsq(pk, pl)].

(2.53)

The projected Newton method from [Ber82] is used to keep the pa-
rameters within the given range.



Chapter 3

State of the art

The heat transfer from blank to tool generates a temperature gra-
dient leading to thermal stresses. These thermal stresses and the
mechanical stresses caused by the forming process superimpose each
other. Despite the high strengths of the hot work tool steels, lo-
cal plastic deformations can occur. Especially, tool radii and tool
notches are threatened. The plastic deformations can cause micro-
scopically small fatigue cracks (usually in the dimension of micro
structural features such as the grain size or the length of martensite
needles) at an early stage in tool life. Its growth determines the
fatigue lifetime of the hot work tools. Therefore, it is of great inter-
est for the tool design to have a simulation method with a precise
description of the material behavior.

17
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3.1 Material behavior
For a reliable assessment of hot work tools regarding their lifetime,
the plasticity behavior in the complete operating temperature range
must be well described. The steels are hardened and annealed in
order to obtain a microstructure of the material resulting in the de-
sired combination of strength, toughness and thermal stability. After
quenching, the microstructure consists of martensitic laths, retained
austenite, bainit and a small amount of primary carbides [ZDB07,
BU17]. During annealing, the structure changes due to a diffusion
type phase transformation to a structure with tempered martensit
and bainite, retained austenite, primary carbides and newly formed
martensit (from retained austenite decay) and secondary carbides
[BU17,Sch12].

Figure 3.1 shows secondary carbides of a hot work tool steel
measured by transmission electron microscopy. Typical carbides of
the investigated steel (X38CrMoV5-3: chrome molybdenum vana-
dium alloyed steel) are for example vanadium-rich MC, chrome-rich
M23C6 and molybdenum-rich M6C and M2C carbides [HLWZ06,
Abe04,KPJ+15,LWL+15], where M stands for metallic element and
C means carbon. The secondary carbides provide an increased car-
bide hardening in the material, which causes a heat resistance by
preventing the motion of dislocations (Orowan mechanism) [BMN11,
pp. 136–144].

During cyclic loading, the hardening of the material is signifi-
cantly influenced by the Bauschinger effect. It leads to a lower flow
stress after a reversal load compared to the previous flow stress.
Cyclic plasticity experiments were carried out at temperatures of
20 to 600 °C for the material 55NiCrMoV7 [Ber99,ZBD08,ZDB07].
Ratchetting effects may appear due to occurring medium stresses.
This means that no stationary plastic deformation occurs, however,
the plastic deformation increases or decreases as well with increasing
load cycles. This effect was observed for the material 55NiCrMoV7
at temperatures of 20 to 500 °C in [VBP06] and for a chromium nickel
molybdenum hot working steel at temperatures of 250 to 550 °C un-
der isothermal low cycle fatigue (LCF) and thermomechanical fa-
tigue (TMF) in [JFG01].

At higher temperatures, such as those occurring in hot work tools,
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Fig. 3.1: Transmission electron microscopy measurement of a hot work
tool steel [ZDB04]

thermally activated processes can take place. They can lead to a
time-dependent material behavior such as stress relaxation, creep
and the recovery of hardening. The time-dependent material behav-
ior was determined experimentally in the temperature range of 20 to
600 °C for the material 55NiCrMoV7 [VBP06,ZBD08,ZDB07].

While temperatures for annealing of the tool steels usually lie in
the range between 400 and 600 °C, the steels may experience even
higher temperatures during hot forming, resulting in a further evo-
lution of the mechanical material properties during service. An in-
dication for this further evolution is a loss of strength that can be
observed for different hot work tool steels. The softening can be ex-
plained by microstructural changes due to tempering as coarsening
of strengthening particles (e.g. secondary carbides) while the vol-
ume fraction of the secondary carbides remains constant, as shown
in [ZDB07]. This process is called Ostwald ripening and causes large
particles to grow at the expense of small ones [LH14, pp. 965–968],
which reduces the total number of particles, driven by the reduc-
tion of stored interfacial energy. Less carbides and the resulting
larger distances eases dislocation motions, which causes a reduction
in the strength. With a transmission electron microscope (TEM)
the coarsening of carbides (especially M23C6) during aging tests
at 550 and 650 °C for 9-chromium-tungsten-steels [Abe04] and at
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700 °C for the high-temperature steel X40CrMoV5-1 [HLWZ06] was
proved. Further tests were carried out at 600 and 650 °C for the hot
work tool steel X38CrMoV5-3 [CSE+02] and for the hot work tool
steels THG2000, QRO90 and MCG2006 at temperatures of 500 to
650 °C [MBGA09].

In [TKM01], a strain dependency of the carbide coarsening in
a chromium-containing steel was determined. Furthermore, acceler-
ated coarsening was observed in TMF tests. However, these tests
were carried out at extremely high heating rates (Ṫ > 180 K/s),
whereby, additional effects could be superimposed since high tem-
preature gradients in the specimen can be expected. In [CSE+02],
hardness curves for the steel X38CrMoV5-3 are shown, which in-
dicate softening processes through Ostwald ripening. Similarly, the
TMF tests indicate additional softening mechanisms, which have also
been observed in [JFG01] for a chrome-nickel-molybdenum hot work
tool steel. The materials have a longer lifetime under isothermal
low cycle fatigue tests than under thermomechanical low cycle fa-
tigue tests, although the maximum temperature does not exceed the
isothermal temperature. This behavior can not be described by Ost-
wald ripening.

In [MBGA09], it is shown that the dislocation density of the
tested hot work tool steels decreases further, if isothermal fatigue
tests are carried out instead of aging tests at the same temperature
and time. This is indicative of a mechanical softening of the steels
(e.g. kinematic or isotropic softening). Moreover, a thermal based
reduction of the dislocation density or a decrease in the lattice distor-
tion as a result of thermally activated carbon diffusion may lead to
a softening of the material. In addition, softening due to plasticity-
induced changes in the dislocation structure can occur [GKS08].

In addition to time- and temperature-dependent plasticity, an
understanding of damage mechanisms of the hot work tool steels is
required to finally establish a reliable method for thermomechanical
fatigue life prediction of hot work tools. In the case of thermome-
chanical fatigue stresses, the growth of microcracks plays a decisive
role. The fatigue crack growth can also be accelerated by thermally
activated processes such as creep and oxidation or corrosion and
through softening of the material at relatively high operating tem-
peratures.
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For the hot work tool steel X38CrMoV5-1, the crack initiation
was investigated in [GLS10] at isothermal (20, 300, 400 and 500 °C),
and thermal fatigue tests from 100 to 650 °C. In the isothermal tests,
only one major crack was detected, which grew until failure. During
the thermal tests it was found that many small cracks with different
lengths arose, and their frequency increased with increasing maxi-
mum temperature.

The crack growth was measured by [Eba10] for the hot work tool
steel X37CrMoV5-1 with two different hardnesses at room temper-
ature in the low-cycle fatigue area. A determined higher fatigue
strength at the higher hardness was attributed to a delayed crack
initiation, since the measured crack growth hardly differs. Addition-
ally, thermal fatigue tests with maximum temperatures of 400, 600,
800 and 1000 °C were carried out and the crack length during the first
100 cycles was measured. At 400 °C no crack growth was observed,
whereas, different growth rates were measured at the higher temper-
atures. In [MHKA14], crack growth measurements for the hot work
tool steel X40CrMoV5-1 with two different hardnesses under thermal
cycles from 25 to 750 °C can be found. The difference in the crack
growth behavior can be attributed to the strongly different cyclic
behavior of the two hardnesses (proportion of plastic deformation
increases with lower strengths). In addition, crack growth measure-
ments were carried out for the material X38CrMoV5 at 25 °C in the
low-cycle fatigue area at different stress ratios [SMB+09].
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3.2 Phenomenological models
In this section, advanced phenomenological models are presented,
which are suitable for the description of cyclic plasticity of hot work
tool steels and which can be implemented in finite-element programs
for the analysis of hot working tools. Besides isotropic hardening,
the models take also kinematic hardening and thus the Bauschinger
effect (section 3.1) into account. They are typically based on the
Chaboche model [Cha86,Cha89]. The time-dependent material be-
havior is thereby described by a power law in the flow rule (similar to
the Norton creep law), which determines the evolution of the plastic
strain tensor over time according to (2.19) and (2.20). The plastic
multiplier is calculated by

λ = 〈 φ
K
〉n. (3.1)

The Macaulay brackets indicate that the plastic deformation occurs
only for positive overstresses φ. K and n are temperature-dependent
material parameters.

In [Ber99], a plasticity model based on a Chaboche model is
presented for the hot working tool steel 55NiCrMoV8. It is a model
with a special focus to softening of the steel. The strength component
through isotropic hardening R is calculated by a saturation function
depending on the accumulated plastic strain ε̄p:

Rε̄p = Q1ε̄
p +Q2(q)(1− e−bε̄p

) (3.2)

with
Q2(q) = Q∞2(1− e−2µq), (3.3)

where q represents the half of the current plastic strain range. Q1,
b, µ and Q∞2 are material- and temperature-dependent parameters.
Q1 and Q∞2 are negative, and thus describe softening. In this plas-
ticity model, the Bauschinger effect is taken into account by two
backstresses. Time- and temperature-dependent softening mecha-
nisms, such as the coarsening of the carbides or the reduction of the
dislocation density are not considered.

Another plasticity model can be found in [VBP06]. It is also
an extension of the Chaboche model, which was developed for the
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material 55NiCrMoV7. It contains two inelastic strain components
and is therefore referred to as a non-unified plasticity model. The
total plastic strain tensor thus consists of two parts:

εp = A1ε
p
1 +A2ε

p
2 (3.4)

with the localization coefficients of the strain mechanisms A1 and
A2. For each part, a separate flow rule exists. The splitting allows
for example a good description of the material behavior for both high
stresses (thermomechanical fatigue) and low stresses (creep) [CC89].
The softening and the Bauschinger effect are also taken into ac-
count via isotropic variables and back stresses respectively. With
this model, a time-dependent softening can be described phenomeno-
logically. However, this model does not consider softening effects as
well.

Material models that describe softening of the material as a re-
sult of microstructural changes are now referred to as aging models.
In [ZDB04] a time- and temperature-dependent aging model is in-
troduced, which takes the aging of the material by a Johnson-Mehl-
Avrami equation type into account:

τv = 1− e−(Dt)m = Hv −H0
H∞ −H0

(3.5)

with
D = D0e

− Q
RT . (3.6)

The tempering ratio τv is dependent on the diffusion coefficient D,
the tempering exponent m and the tempering time t. The diffusion
coefficient is, as usual, described by an Arrhenius approach, where
D0 is a temperature-independent prefactor, Q being the activation
energy for the aging determining diffusion mechanism, and R is the
universal gas constant. The hardness after quenching H0 and the
limit value (after long tempering) H∞ must be known to determine
the hardness after an arbitrary annealing step. The model was ap-
plied to the material 55NiCrMoV7. In [ZDB07], this model is tested
at cyclic conditions as well, however, a cyclic softening could not be
described. Thus, the softening model was embedded in a fully time-
dependent plasticity model with isotropic softening and kinematic
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hardening [ZBD08]. All temperature-dependent material parame-
ters of the plasticity model are linearly dependent on the tempering
ratio. This leads to a high number of material parameters, which
must be determined on the basis of experimental data. Another ap-
plication of the model is in the case of DM hot work tool steels, as
shown in [ZXS+11].

The plasticity of the tool steels can be described with the phe-
nomenological models presented so far, and in some cases the in-
fluence on the time- and temperature-dependent softening due to
microstructural changes is considered phenomenologically. However,
the models do not consider material damage by thermo-mechanical
fatigue. An extension of the phenomenological models is achiev-
able by introducing appropriate damage parameters. In [ØP00] a
model for cold forming tools is shown, which is also an extension
of the time-dependent Chaboche model with isotropic softening or
hardening and kinematic hardening. In addition, it contains a dam-
age parameter D, which can reach values from 0 (undamaged) to 1
(damaged):

Ḋ = Y

S
ṗα(p) (3.7)

with
α(p) =

{
1 if p > pd
0 if p < pd

, (3.8)

where Y is the strain energy release rate, p is the accumulated plastic
strain, and S is a material parameter.

Another extended time-dependent Chaboche model with
isotropic softening (including static recovery) and two kinematic
hardening terms is presented in [SSW+07] for the hot work tool steel
X36CrMoV5-1 for aluminum and copper extrusion and in [SSWR08]
for the hot work tool steel X36CrMoV5-1 for aluminum extrusion.
In the aging model, a time depending decrease of the viscosity coef-
ficient K in the flow rule equation (3.1) is implemented:

K = K0(T )κ (3.9)

with
κ̇ = g

K0

( 〈K −K∞〉
K0 −K∞

)z
(3.10)
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and

κ(t = 0) = 1. (3.11)

The quantities g, z, K∞ and K0 (initial viscosity coefficient) are
temperature-dependent material parameters. The quantity κ is a
phenomenological aging variable which can reach values between 0
(fully aged) and 1 (unaged). AsK becomes smaller, the plastic strain
rate increases, which on the one hand, build up lower overstresses
and on the other hand, reduce already built-up overstresses more
quickly.

The damage in this model is calculated by [SSW+07, SSWR08,
SWHR08]:

Ḋ =
(σeq
A

)m( λ

λ0

)n
λ0. (3.12)

The material parameters A and m describe the stress dependence,
the material-specific exponent n considers the influence of dwell
times in low-cycle fatigue tests, and λ0 is a normalization constant.
The model describes the experimental data quite well, but a large
number of material parameters has to be determined. A further
phenomenological evolution law for a damage parameter, which also
takes the mean stress into account but includes even more mate-
rial parameters than the previously presented models, was applied
in [VBDP05] to the martensitic steel X38CrMoV5. Similarly, a good
description of the data is achieved.

While material stresses have been determined by advanced plas-
ticity models up to this point, in [BM05], an advanced statis-
tical approach to lifetime assessment of the hot work tool steel
X37CrMoV5-1 is shown. It is using the response surface methodol-
ogy (RSM). This method is a mathematical and statistical technique
for modeling mechanisms that depend on several variables [MR10].
In this case, there are three variables: the maximum temperature
x1 = Tmax, the minimum temperature x2 = Tmin and the ratio
of equivalent stress to the temperature-dependent yield strength
x3 = σeq/Y (T ). The lifetime, i.e. the number of cycles to failure,
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was modeled with a second order polynomial:

N = β0 +
k∑

i=1
βixi +

k∑

i=1
βiix

2
i +

∑

i<j

∑
βijxixj + ε (3.13)

The model parameters βi and βij and the measurement error ε
are determined based on experimental test results. For the measure-
ment error ε, a normal distribution was determined. Even if decent
predictions can be made with this model, these are only correct for
a small predetermined range of application. Thus a generalization is
not possible.

The models can basically describe the material behavior mea-
sured in the respective experiments. However, due to the increasing
complexity, the phenomenological models contain an ever increas-
ing number of material parameters, which must be determined on
the basis of corresponding experiments. A generalization is com-
plex and associated with uncertainties. By taking into account prior
knowledge of the material and its mechanical relationships a reduc-
tion in the number of material parameters is possible. This leads to
mechanism-based models presented in the following section.

3.3 Mechanism-based models
In this section, mechanism-based models whose functional depen-
dencies relate to physical mechanisms are introduced. In this way
a well-founded basis is provided leading to more reliable predictions
and generalizations. The predominantly investigated mechanism in
this work is particle coarsening, because Ostwald ripening is a major
mechanism resulting in thermal softening of the hot work tool steels,
see section 3.1. However, also mechanism-based model for TMF life
prediction are presented here, since related softening-dependent ma-
terial properties will be addressed in this work.

In [EL88], an aging model for the hot work tool steel
X40CrMoV5-1 is presented, which is based on the Ostwald ripen-
ing, describing the coarsening of particles (for example secondary
carbides in case of hot work tool steels). The modeling follows the
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LSW theory, by Lifshitz, Slyozov and Wagner [SN14]:

dr
dt = 1

r2
B1(

1−B2
√
f
)
T
e−

Q
RT . (3.14)

The evolution of the average particle radius r is a thermally activated
process with the activation energy Q. The material properties B1
and B2 are temperature-independent quantities, and f is the volume
fraction of the particles.

In [Abe04], the mechanism of particle coarsening according to
Ostwald for a martensitic steel is demonstrated. For this purpose,
M23C6 carbides are measured and their coarsening is modeled by the
solution of the LSW theory in the isothermal case:

r3 − r3
0 = kt = f(T, t). (3.15)

It is the result of equation (3.14) after integration from an initial
radius r0 in the isothermal case. The particle radius r depends
on the coarsening constant k (T ) and the time t. It is additionally
shown, that the degradation of dislocation density due to coarsening
of martensite laths accelerate creep.

In [TKM01], another coarsening term is introduced, which takes
the strain rate into account, and thus leading to:

r3 − r3
0 = kt = f(T, t) + f(T, ε). (3.16)

In [HLWZ06], the LSW theory for the steel X40CrMoV5-1 was vali-
dated by means of transmission electron microscopy measurements.

None of these mechanism-based aging models for the description
of the softening is integrated into a cyclic plasticity model. For that
reason, they cannot be used in finite element calculations to assess
the fatigue life of the tools. However, they are generally suitable for
integration into an advanced material model such as the Chaboche
model.

Mechanism-based models to asses lifetime are based on the dam-
age mechanisms associated with thermomechanical fatigue. The Se-
hitoglu model [NS89a, NS89b], which is a model available in com-
mercial lifetime programs, considers damage fractions due to fatigue
(fat), oxidation (ox), and creep damage (creep). A linear damage
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accumulation is assumed, so that the number of cycles to failure can
be calculated by

1
Nf

= 1
N fat

f
+ 1
Nox

f
+ 1
N creep

f
(3.17)

This method was applied in [EBHG+17] to hot work tool steels for a
tube-manufacturing process. While oxidation damage is due to the
mechanism of repeated growth and rupture of an oxide layer, the
models of creep damage and fatigue damage are phenomenological.
The calculation of fatigue damage is only based on the phenomeno-
logical Coffin-Manson-Basquin equation. In addition, a large number
of material parameters are needed to describe all damage fractions
whose determination is complex. Since the dominant mechanism in
thermo-mechanical fatigue is crack growth, [SB97] presents a crack
propagation-based model for the hot work tool steel X40CrMoV5-1.
First, the crack initiation is determined by a Manson-Coffin relation-
ship [Man54,Cof54] describing the plastic strain amplitude

∆εp

2 = ε′f (2N)c (3.18)

with the fatigue ductility coefficient ε′f , the number of cycles N and
the fatigue ductility coefficient c. Then, the crack rate per cycle is
modeled by Paris Law

da
dN = C∆Km, (3.19)

where
∆K = Y∆σ

√
πa (3.20)

with the material properties C and m, the cyclic stress intensity
factor ∆K and the geometry factor Y . The cycles to fatigue failure
can be calculated by integrating from a presumed initial crack length
to a given length of the technical crack.

In [SMB+09], the Paris Law is applied to the hot work tool steel
X38CrMoV5. However, the Paris Law is a model of linear-elastic
fracture mechanics. Although it is also commonly used on metals
(assuming a small plastic zone around the crack tip), the predic-
tive power is limited in high stress areas, where significant plastic
deformations occur [RBH06].
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For low-cycle and thermomechanical fatigue, where plastic defor-
mation is assumed, the description of the rate of crack growth via
the cyclic crack tip opening displacement ∆CTOD has proved to be
useful [Rie87, pp. 365 ff.]

da
dN = β∆CTOD. (3.21)

As a crack growth mechanism, this model is based on the idea that
blunting of the crack tip and the following opening of the crack
creates a fresh metallic surface at the crack tip. The surface is
covered by oxygen from the environment and is rough, so that no
re-welding takes place when closing the crack. ∆CTOD can be es-
timated by means of elastic-plastic fracture mechanics via the cyclic
J-integral ∆J [Wüt82]

∆CTOD = dn
∆J
σcy

(3.22)

where dn is a function depending on the hardening of the material
according to the Ramberg-Osgood model. For short cracks, which
are significantly smaller than characteristic dimensions of the compo-
nent, an analytical solution for ∆J exists, which interpolates between
elastic and fully plastic solutions [KGS81]:

∆CTOD = dn′
ZD
σcy

a, (3.23)

where ZD is a damage parameter according to Heitmann.
With creep fracture mechanics, the influence of the time-

dependent material behavior on the crack opening can be taken into
account. This finally leads to the damage parameter DTMF [SSS+10]

∆CTOD = dn′DTMFa. (3.24)

The crack growth law, see equation (3.21), can now be integrated
with the relationships for ∆CTOD for time-dependent elastic-plastic
material behavior from an initial crack length a0 (typically associated
with a characteristic length of the microstructure) up to a defined
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crack length of the technical crack af . This results in the number of
cycles up to the technical crack

Nf =
ln
(
af
a0

)

βdn′DTMF
. (3.25)

By introducing the parameters A and B, which are determined from
experimental data, the formula can be generalized with

Nf = A

(dn′DTMF)B
(3.26)

and thus, is more widely applicable [SR10, SSS+10]. The DTMF
model is of special interest for this work because it contains ex-
plicitely the mechanical material properties of the considered mate-
rial. Changing material properties due to softening, thus, directly
have an effect on the fatigue life.



Chapter 4

Experimental

This chapter describes the hot work tool steel considered in this
work, the performed material tests and the measured test results.
In particular, these are hardness and tensile tests after time and
temperature-dependent softening.

4.1 Material

To sustain the high loads, the hot working tools are typically made of
heat-treated martensitic hot work tool steels. In this work, the hot
work tool steel 1.2367 (X38CrMoV5-3) is investigated. The chemical
composition determined by melt analysis is summarized in table 4.1.
The hardened and annealed material with a hardness of 54HRC
defines the initial as received state. In the following, the material in
the initial state is denoted as HT0 (heat treatment 0).

C Si Mn P S Cr Mo V
0.36 0.39 0.43 0.019 0.0008 4.99 2.85 0.53

Table 4.1: Chemical composition of the investigated material in %
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4.2 Tempering
To investigate time- and temperature-dependent softening, the HT0
material was tempered for different tempering times and at different
tempering temperatures in a heat-treatment furnace. The temper-
ature range was between 450 °C and 650 °C. The longest tempering
time was 14000min (= 9d 17 h 20min). In particular, tempering at
600 °C for 350min will be referred as HT1 (heat treatment 1) and
tempering at 650 °C for 1000min as HT2 (heat treatment 2).

Besides isothermal tempering, a non-isothermal temperature his-
tory is applied, where in the first 15min the furnace was heated from
600 °C to 650 °C with constant heating rate (part 1). Then, the tem-
perature was held constant until minute 150 (part 2), followed by
cooling of the furnace to 600 °C with constant cooling rate until
minute 350 (part 3). Finally, the temperature was held constant at
600 °C (part 4).

4.3 Mechanical testing
Mechanical material tests were performed on untempered and tem-
pered specimen to determine the mechanical material properties and
their evolution during softening of the material. On the one hand,
the hardness according to the standard DINEN ISO6507 was mea-
sured on specimen with a diameter of 36mm and a height of 10mm.

For the generation of a correlation plot of hardness and 0.2 % off-
set yield strength, room temperature tensile tests according to the
standard DINEN ISO6892 are performed on the other hand. The
tensile specimens were produced according to DIN EN ISO 50125
with the geometry DIN50125-A10x50. Seven tensile tests are done
with specimen S1 to S6 being tempered according to the tempering
time and temperature compiled in table 4.2 and specimen S7 be-
ing tempered up to 7174min using the non-isothermal temperature
history.

For the determination of cyclic mechanical material properties,
stress-strain hysteresis loops were measured in cyclic tests with a
dilatometer at the IFUM [BBB+17]. These tests were performed
at room temperature, 200, 300, 400, 500 and 600 °C with HT0,
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T in °C time in min
100 187 350 1000 1600 2850

600 S6 S5 S4
650 S3 S2 S1

Table 4.2: Isothermal tempering conditions of tensile specimens S1 to
S6
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Fig. 4.1: Measured tempering hardness curves

HT1 and HT2 material. The German research foundation Deutsche
Forschungsgemeinschaft (DFG) funded the tests as part of the joint
research project ‘Entwicklung einer Methodik zur Bewertung der Er-
müdungslebensdauer von hochbelasteten Warmumformwerkzeugen
auf Basis fortschrittlicher Werkstoffmodelle’ (Bo 3616/5-1).

4.4 Results
In figure 4.1 the results of the isothermal and the non-isothermal
tempering hardness curves are shown. A noticeable drop in hard-
ness can be observed especially at the higher temperatures (600 and
650 °C).

For the material tempered at isothermal conditions (table 4.2),
the measured room temperature 0.2 % offset yield strengths Rp0.2 in



34 CHAPTER 4. EXPERIMENTAL

200 400 6000

1000

2000

3000

hardness in HV10

st
re

ng
th

in
M

Pa
Rp0.2
σcy
Re
linear regressions

Fig. 4.2: Correlation plot of hardness and strength

dependency of the measured hardness are shown as symbols in the
correlation plot in figure 4.2. A linear correlation is existent, which
will be exploited in section 5.1 for the mathematical description of
the mechanical properties.

The measured stress-strain hysteresis loops are shown in figures
4.3 to 4.5. The axis format has been retained in all three figures for
a better comparison. A comparison of the figures shows a decrease
in strength with increasing temperature as well as with increasing
tempering.
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Chapter 5

Material model

In this chapter, a kinetic model for the evolution of the mean size of
secondary carbides based on Ostwald ripening is coupled with me-
chanical models to describe the thermal softening of the considered
hot work tool steel. The stress-strain hysteresis loops measured in
the cyclic mechanical tests are described with the Ramberg-Osgood
model on the one hand, and with an incremental plasticity model in-
cluding kinematic hardening on the other hand. While the Ramberg-
Osgood model is directly involved in the mechanism-based DTMF
model for TMF life prediction (section 3.3), the incremental cyclic
plasticity model is necessary in order that time- and temperature-
dependent softening can be accounted for in finite element calcula-
tions. In the next section, the kinetic model for the description of
the evolution of carbide’s mean radius and its effect on the room
temperature yield stress and hardness is developed, followed by the
mechanical models in the subsequent sections.

5.1 Kinetic model
In the following, a kinetic model that describes coarsening of the
secondary carbides, and a correlation of the size of the carbides with
hardness is presented. The secondary carbides are not further speci-
fied (e.g. asM26C6 orM6C). Instead, it is assumed that one carbide

37
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species dominates softening, resulting in a mechanism-based engi-
neering approach.

The yield strength σy of the material is described by the sum of
the intrinsic strength σy,i and the contribution of particle hardening
∆σp of the material:

σy = σy,i + ∆σp. (5.1)

Assuming particle hardening due to the Orowan mechanism, the
dependency of particle hardening ∆σp on the mean particle radius r
(assuming spherical particles) is, e.g. [RBH06, pp. 189–214]

∆σp = GbM
√
f√

2
1
r

= By
r
, (5.2)

where G is the shear modulus, b is the Burgers vector, f is the vol-
ume fraction of the particles and M is the Taylor factor relating the
critical resolved shear stress of single crystals and to the yield stress
of a polycrystal. Hence, the strength decreases with increasing mean
radius of the particles. This relationship between hardness and par-
ticle size is demonstrated in [ZDB04] for a different hot work tool
steel. Assuming that the volume fraction f of secondary carbides re-
main constant during coarsening (as shown in [ZDB04]), the process
can be described by Ostwald ripening, where large particles grow at
the expense of small particles, reducing the stored interfacial energy.
Hence, the constants in equation (5.2) are combined to one mate-
rial property related to particle hardening By, which has the same
temperature dependency as the shear modulus, i.e. By ∝ G.

Lifshitz, Slyozov and Wagner described in the LSW-Theory the
evolution of the mean particle radius at constant volume fraction
by [SN14, p. 521], [EL88]

ṙ = k

r2 . (5.3)

k is the coarsening constant, defined as

k = 4
9DΩc∞L, (5.4)
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where Ω is the atomic volume, c∞ is the equilibrium concentration
and D is the diffusion coefficient, given by the Arrhenius equation

D = D0e
− Q
RT . (5.5)

T is the absolute temperature, R the universal gas constant, D0
the temperature-independent pre-factor and Q the activation energy
for diffusion. Since L ∝ 1/T holds for the capillary length L, the
expression for the coarsening constant can be put in the engineering
form

k = k1
e−

Q
RT

T
(5.6)

with the material property k1. Both, Q and k1, are determined
on the basis of the measured isothermal tempering hardness curves
in the next section. To this end, the analytical solution to equa-
tion (5.3) for isothermal conditions, see equation (3.15), with the
mean particle radius r0 at the beginning of the coarsening process
is used and the linear correlation of yield stress and hardness is ex-
ploited, see figure 4.2. Hence, from equations (5.1), (5.2) and (3.15),
the expression for the yield stress

σy = σy,i + By
3
√
kt+ r3

0
(5.7)

is obtained, resulting in the expression in terms of hardness

H = Hi + BH
3
√
kt+ r3

0
(5.8)

with the intrinsic hardness Hi and the material property BH ∝ By ∝
G.

5.1.1 Determination of the parameters
To describe the tempering hardness curves with the model, see equa-
tion (5.8), the intrinsic hardness Hi, the room temperature value of
material property BH , and the coarsening constant k for each tem-
pering temperature are fitted such that a good description of the
experimental data is obtained, see section 2.3.3. r0 = 0.1µm is used
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Fig. 5.1: Isothermal tempering hardness curves

as initial mean particle radius, which is in the order of compara-
ble steels [HLWZ06,Abe04, LWL+15]. The black lines in figure 5.1
show a good model description using the following fitted param-
eters: The intrinsic hardness is 208.58 HV10 and the room tem-
perature value of material property BH is 47.42 HV10. The fitted
values of the coarsening constant k are shown in figure 5.2 for each
tempering temperature. The coarsening constant exponentially in-
creases with temperature. For the mathematical description of the
temperature-dependent coarsening constant k, the engineering ex-
pression given in equation (5.6) is applied. The activation energy
Q and the material property k1 are determined such that the tem-
perature dependency of the coarsening constant is described well,
resulting in Q = 340.2 mol/kJ and k1 = 10−18 µm3/(minK). Fig-
ure 5.2 shows that the temperature dependency is well described by
the model.

5.1.2 Validation
The determined material parameters are validated on the basis of
the non-isothermal tempering hardness curve shown in figure 5.3. A
temperature range from 600 to 650 °C, where the coarsening constant
changes significantly, and different constant temperature rates Ṫ dur-
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Fig. 5.2: Temperature dependency of coarsening constant k

ing heating and cooling are used, see section 4.2.
For the calculation of the non-isothermal tempering hardness

curve, equation (3.15) is used for the isothermal parts of the temper-
ature history. For the heating and cooling parts of the history, the
solution of equation (5.3) for a linear temperature variation from an
initial temperature Ti is used:

1
3
(
r3 − r3

0
)

= k1

Ṫ

(
Ei
(−Q
TiR

)
− Ei

(
−Q

R
(
Ṫ t+ Ti

)
))

. (5.9)

Figure 5.3 shows the evolution of the hardness predicted by the
model for the non-isothermal loading history. The measured and
the calculated non-isothermal tempering hardness curves are in good
agreement.

5.2 Ramberg-Osgood model
The cyclic Ramberg-Osgood model provides an explicit relation be-
tween the stress δσ and the strain δε with respect to the point of
load reversal, see section 2.2.1. Since cyclic tests are performed, the
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uniaxial description of the cyclic Ramberg-Osgood model is used:

δε = δσ

E
+ 0.002 δσ

σcy

1
n′

(5.10)

In the next section, the material properties E, n′ and σcy are fitted
to each cyclic mechanical test individually, before the mathematical
description of the properties depending on temperature and on heat
treatment is developed in section 5.2.2.

5.2.1 Determination of properties
Young’s modulus E is determined by a linear regression of the hys-
teresis loading branch to the apparently linear part of the branch. In
figure 5.4, the determined temperature-dependent values are plotted
for the three different heat treatments (HT0, HT1 and HT2) as sym-
bols. Additionally, values from a data sheet [vBE17] at 20, 500 and
600 °C are presented. The values determined in this work are close
to the values of the data sheet. A dependency of Young’s modulus
on the heat treatment is not observed, confirming the assumption
that the volume fractions of the carbides remain constant during
tempering.
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Fig. 5.4: Temperature dependency of Young’s modulus E for different
heat treatments

The cyclic yield stress σcy is directly obtained from the mea-
sured stress-strain hysteresis loops as the stress δσ at plastic strain
δε = 0.2 %. In figure 5.5, the determined temperature-dependent
values of σcy for HT0, HT1 and HT2 are shown as symbols. Due to
coarsening of the carbides during tempering, the cyclic yield stress
strongly depends on the heat treatment. While for HT1 and HT2 an
expected decrease of cyclic yield stress with increasing temperature
is observed, the cyclic yield stress shows a peak at 400 °C for the
HT0 material. A possible explanation for the peak is the presence
of dynamic strain aging at the considered temperatures and strain
ranges [MZ14, pp. 231–235]. However, the typical serrated flow is not
found in the stress-strain data. The determined cyclic yield stress
indicates also a linear correlation, see figure 4.2.

The hardening exponent n′ is finally determined by fitting to the
stress-strain hysteresis loops using gradient based optimization, see
section 2.3.3. The temperature-dependent values for HT0, HT1 and
HT2 are plotted in figure 5.6 as symbols. For the lower temperatures,
there is no unique dependency of the hardening exponent on the heat
treatment and relatively low variation of the values. For the higher
temperatures, however, the exponent is decreasing with an increasing
temperature also depending on the heat treatment.
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Fig. 5.5: Temperature dependency of cyclic yield stress σcy for different
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Fig. 5.6: Temperature dependency of hardening exponent n′ for different
heat treatments

With the material properties of the Ramberg-Osgood model that
are fitted for each stress-strain hysteresis loop individually, a good
description of each experimentally measured hysteresis loop is pos-
sible (figures 5.7 to 5.12).
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5.2.2 Mathematical description of properties
For Young’s modulus E, only a dependency on temperature is con-
sidered. A quadratic function is used to describe the E values of the
data sheet (figure 5.4). Assuming a constant Poisson’s ratio, G ∝ E
is assumed for the shear modulus.

The dependency of the cyclic yield stress on the heat treatment
is described in analogy to the dependency of the yield stress in equa-
tion (5.2), resulting in

σcy = σcy,i + Bcy
r
. (5.11)

From the linear correlations of cyclic yield stress, yield stress and
hardness, the room temperature value of the material property Bcy
can directly be obtained from the already determined room tem-
perature value of BH , namely Bcy = 211, 6 MPa. The temperature
dependency of Bcy is given by Bcy ∝ G. Temperature dependency of
the intrinsic cyclic yield strength σcy,i is described with a mechanism-
based approach as follows:

The resistance against plastic yielding (i.e. against dislocation
glide) is decomposed in an athermal and thermal part [MZ14,
pp. 207–217]. The athermal part is influenced by long-range in-
ternal stress fields acting over higher number of atomic distances.
Like it is the case for particle hardening with its long-range internal
stress fields, the temperature dependency of the athermal part cor-
responds to the temperature dependency of G. Hence, an athermal
part of the cyclic yield stress σatherm

cy,i is defined with σatherm
cy,i ∝ G.

The thermal part σtherm
cy,i , however, is influenced by short-range inter-

nal stress fields and thermal fluctuations that support dislocations
in overcoming barriers. It can be described by [MZ14, p. 213]:

σtherm
cy,i = σcy,0

[
1−

(
T

T0

)ncy]mcy

, (5.12)

where the material properties σcy,0, mcy and ncy do not depend on
temperature. At temperature T0 only thermal energy is required to
overcome barriers. In general, it depends on strain rate, however it
is assumed constant in this work since the same strain rate is used in
the mechanical tests. According to data sheets of the hot work tool
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steel, the strength strongly reduces at 700 °C [DES18]. Therefore,
T0 = 700 °C is assumed.

Using the thermal and athermal part to the cyclic yield stress,
one obtains the mechanism-based approach for the temperature de-
pendency

σcy = σatherm
cy,i + σcy,0

[
1−

(
T

T0

)ncy]mcy

+ Bcy
r
. (5.13)

The proportionality constants in σatherm
cy,i ∝ G and Bcy ∝ G as well

as the material properties σcy,0, ncy and mcy are determined on
the basis of the measured cyclic yield stresses. The values for the
yield stresses at 400 and 500 °C are not taken into account since the
model cannot describe the observed peak. The following values are
obtained: the proportionality constants are 3.75 · 10−4 and 9.84 ·
10−4 µm and σcy,0 = 629 MPa, mcy = 4 and ncy = 5.76. The lines
in figure 5.5 show the model description that is in good agreement
with the considered measured values.

A purely phenomenological description of the dependency of the
hardening exponent n′ on temperature T and mean particle radius r
on the basis of the measured exponents

n′ =
{
n′0 if T < Tstart(r)
mT + c if T > Tstart(r)

(5.14)

with

Tstart(r) = (Tmax − Tmin)(1− e−d(r−r0)) + Tmin (5.15)

is proposed. n′0,m, c, Tmin, Tmax and d are temperature-independent
parameters. Tmin and Tmax indicate the lowest and the highest tem-
perature at which the reduction of the parameter n′ begins. In fig-
ure 5.6, the model description obtained with the fitted parameters
and the measured values for n′ for the different temperatures and
heat treatments are plotted.

5.2.3 Stress-strain hysteresis loops
In figures 5.7 to 5.12, the stress-strain hysteresis loops computed with
the mathematically described material properties (gray dashdotted
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lines) are compared with the measured stress-strain hysteresis loops
(solid lines) and the loops computed using the material properties
determined individually for each test (black dashed lines). The same
scale is used in all figures to visualize the temperature dependency
of the material behavior. A good overall description of the stress-
strain hysteresis loops for all temperatures depending on the time-
and temperature-dependent softening during heat treatment is ob-
tained. The discrepancy at 400 and 500 °C for HT0 material occurs
since these temperatures are not considered in the mathematical de-
scription of the material properties.
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Fig. 5.7: Measured and calculated stress-strain hysteresis loops at 20 °C
for different heat treatments; for the calculation, the individually fitted
material properties and the mathematically described material properties
are used
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Fig. 5.8: Measured and calculated stress-strain hysteresis loops at 200 °C
for different heat treatments; for the calculation, the individually fitted
material properties and the mathematically described material properties
are used
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Fig. 5.9: Measured and calculated stress-strain hysteresis loops at 300 °C
for different heat treatments; for the calculation, the individually fitted
material properties and the mathematically described material properties
are used
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Fig. 5.10: Measured and calculated stress-strain hysteresis loops at
400 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.11: Measured and calculated stress-strain hysteresis loops at
500 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.12: Measured and calculated stress-strain hysteresis loops at
600 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used

5.3 Incremental cyclic plasticity model
In this section, the stress-strain hysteresis loops measured in the
cyclic mechanical tests are described with an incremental plastic-
ity model including kinematic hardening, see section 2.2.2. In the
following, the uniaxial formulation of the cyclic plasticity model is
presented, as it is used for the determination and mathematical de-
scription in the next sections. In the uniaxial formulation the elastic
strain can be calculated by

εe = σ

E
. (5.16)

The yield criterion is defined as

φ = |σ − α| −Re. (5.17)

The evolution of the backstress is described by

α̇ = Cε̇p − γ ˙̄εpα+ 1
C

∂C

∂T
Ṫα (5.18)
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and the flow rule is
ε̇p = ˙̄εp ∂φ

∂σ
(5.19)

with
˙̄εp = |ε̇p|. (5.20)

5.3.1 Determination of properties
The material properties for the incremental plasticity model are
again determined by gradient based optimization, see section 2.3.3.
In this way, the obtained curves are fitted to the measured cyclic
stress-strain loops (full parameter fit). The determined temperature-
dependent values of Young’s modulus E are plotted for the three
different heat treatments (HT0, HT1 and HT2) in figure 5.13 as
symbols. The determined room temperature values for the initial
yield strength Re of the HT0, HT1 and HT2 material show once
more a linear correlation with hardness, see figure 4.2. The deter-
mined temperature-dependent values of Re for HT0, HT1 and HT2
material are shown as symbols in figure 5.14. For the HT1 and HT2
material an expected decrease with increasing temperature due to
carbide coarsening is observed. However, for the HT0 material the
yield strength shows again the peak at 400 °C, see section 5.2.1.
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Fig. 5.13: Temperature dependency of Young’s modulus E for different
heat treatments
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Fig. 5.14: Temperature dependency of yield strength Re for different
heat treatments

The kinematic hardening modulus C was found to be not
temperature-dependent and its values are shown as symbols in fig-
ure 5.15. The determined temperature-dependent values of the kine-
matic hardening C∞ = C/γ are shown in figure 5.16. A good de-
scription of the measured stress-strain hysteresis loops is possible
with the fitted material properties (figures 5.17 to 5.22).
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Fig. 5.15: Kinematic modulus C for different heat treatments
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Fig. 5.16: Temperature dependency of Kinematic saturation value C∞
for different heat treatments

5.3.2 Mathematical description of properties
For the description of the dependency of yield strength Re on heat
treatment, the linear correlation of yield strength and hardness at
room temperature is employed, resulting in

Re = Ratherm
e,i +Re,0

[
1−

(
T

T0

)ne]me

+ Be
r
. (5.21)

The first two terms represent the intrinsic yield strength, which
is, according to the mechanism-based approach derived in [JS18a],
separated into an athermal part Ratherm

e,i ∝ G and a thermal part.
G ∝ E is the temperature-dependent shear modulus (constant Pois-
son’s ratio assumed). Re,0, me and ne are temperature-independent
material properties. T0 is the temperature, where only thermal en-
ergy is required to overcome barriers and it is set to T0 = 700 °C, see
section 5.2.2. The room temperature value of the material property
Be can again directly be obtained from the already determined room
temperature value of BH , namely Be = 55, 8 MPa. The temperature
dependency of Be is given by Be ∝ G.

The proportionality constants in Ratherm
e,i ∝ G and Be ∝ G as well

as the material properties Re,0, ne and me are determined on the ba-
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sis of the measured yield strength. The values for the yield strengths
at 400 and 500 °C are not taken into account since the model can-
not describe the observed peak. The following values are obtained:
the proportionality constants are 2, 99 · 10−04 and 2.60 · 10−07 µm,
Re,0 = 328.8 MPa, me = 4 and ne = 7.5. The lines in figure 5.14
show the model description that is in good agreement with the con-
sidered measured values. For the material property C, no tempera-
ture dependency was observed. Since it is also a property with the
unit of the stress a description in analogy of equation (5.8) is used:

C = Ci + Bc
r

(5.22)

with an intrinsic property Ci and a material property related to
particle hardening Bc, figure 5.15. Their obtained values are:
Ci = 7964, 7 MPa and Bc = 26255, 4 MPa/µm. The description for
the material property C∞ is based on equation (5.21) as it is also
describing the strength

C∞ = Catherm
∞,i + C∞,0

[
1−

(
T

T0

)n∞]m∞
+ B∞

r
. (5.23)

The identical temperature dependencies are assumed and the follow-
ing values are obtained for the proportionality constants: 8.7 · 10−05

and 2.77 ·10−04 µm. C∞,0 = 246.1 MPa, m∞ = 4 and n∞ = 2.73 are
determined. The description is in good agreement with the consid-
ered measured values, as shown in figure 5.16.

5.3.3 Stress-strain hysteresis loops
In figures 5.17 to 5.22 the measured stress-strain hysteresis loops at
the temperatures from 20 to 600 °C are shown. At each temperature,
a measured loop is plotted for each softening condition. Additionally,
for each measured loop (solid lines) there is a loop, computed with
the mathematically described material properties (gray dashdotted
lines) and a loop computed using the material properties determined
individually for each test (black dashed lines). For the visualization
of the temperature dependency of the material behavior, the same
scale is used in all figures. The measured and the calculated loops
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are in good agreement at all temperatures depending on the time-
and temperature-dependent softening during heat treatment. The
discrepancy at 400 and 500 °C for HT0 material is also evident here
and it occurs since these temperatures are not considered in the
mathematical description of the material properties.
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Fig. 5.17: Measured and calculated stress-strain hysteresis loops at 20 °C
for different heat treatments; for the calculation, the individually fitted
material properties and the mathematically described material properties
are used
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Fig. 5.18: Measured and calculated stress-strain hysteresis loops at
200 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.19: Measured and calculated stress-strain hysteresis loops at
300 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.20: Measured and calculated stress-strain hysteresis loops at
400 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.21: Measured and calculated stress-strain hysteresis loops at
500 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used
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Fig. 5.22: Measured and calculated stress-strain hysteresis loops at
600 °C for different heat treatments; for the calculation, the individually
fitted material properties and the mathematically described material prop-
erties are used



Chapter 6

Finite element
implementation

The implementation of the described material model is performed
with the finite element program ABAQUS. In the next sections the
schematic structure of the algorithm and the used predictor-corrector
method is described. Large deformations, non-linear plastic behav-
ior and many contact conditions lead to a highly nonlinear overall
problem for FEM simulations. Explicit time integration is suitable
for such highly nonlinear problems. Therefore, hot working pro-
cesses are often calculated with explicit solvers. Thus, the model
is implemented via a subroutine (VUMAT) in ABAQUS/Explicit
(implementation in cooperation with Simon Schilli).

The detailed investigation of small critical areas requires strong
mesh refinements. However, the critical step size for the explicit
calculations depends on the minimal element length l, see equa-
tion (2.44). Thus, strong mesh refinements lead to high comput-
ing power. Therefore, the material model is also implemented in
ABAQUS/Standard using the subroutine UMAT.

59
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6.1 Algorithm structure

driving
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Fig. 6.1: Structure of algorithms

Figure 6.1 shows the input and output variables of the algorithm.
It calculates the variables at time tn+1 out of the input variables at
time tn. ABAQUS provides the variables stress σn, strain εn and
temperature Tn at time tn, as well as the driving increments of strain
∆ε, temperature ∆T and time ∆t. Further variables required for the
calculation must be stored as internal variables (stored in an array
statev). The material properties are provided to the algorithm in
an array props. The internal variables are integrated numerically
implicit in the general form

xn+1 = xn + ∆xn+1 = xn + ∆tẋn+1. (6.1)
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Fig. 6.2: Predictor-corrector-method using the example of a uniaxial
tensile test [Sch18, p. 25]

The advantage of the implicit method is its unconditional stability.
After the calculation, the algorithm passes the stress σn+1, the in-
ternal variables statevn+1 and in the case of UMAT, the derivative
∂σn+1/∂εn+1 (required for implicit time integration) to ABAQUS.

6.2 Predictor-corrector method
Both subroutines use a predictor-corrector method. This method is
particularly suitable for material models in which elastic and plas-
tic effects are connected in series. First, a purely elastic predictor
step is made. Then it is checked whether the result is in the elastic
range. If necessary, the result is optimized by a subsequent correc-
tor step [Wri08, pp. 239–242]. In figure 6.2, the procedure of the
predictor-corrector method using the example of a uniaxial tensile
test is shown. First, for the determination of the stress at time tn+1,
the purely elastic trial stress σtr,n+1 (predictor, blue) is calculated.
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The slope of the straight line corresponds to the Young’s modulus.
If the yield criterion is greater than the specified tolerance, the stress
is corrected by the plastic corrector (red), so that the yield criterion
is within the tolerance. In figure 6.3, the schematic structure of the
used predictor-corrector method is shown.

ABAQUS
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material
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predictor
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criterion

iterative
calculation
of variables

update of
variables

ABAQUS
output

φ ≥ 0φ < 0

Fig. 6.3: Schematic structure of predictor-corrector-method
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6.3 Integration algorithm
The variables are determined implicitly. The plastic strain εp, back-
stress α, particle radius r and accumulated strain εp are combined
in one vector

Y =
[
εp α r εp

]T
. (6.2)

The first three entrees of the vector Y at time tn+1 can be calcu-
lated by equation (6.1) together with the rates of εp (2.19), α (2.18)
and r (5.3) leading to

Ȳ n+1 = Ȳ n + ∆tλn+1D̄n+1 + M̄n+1, (6.3)

where (̄·) cuts off the last entry of the vectors. The flow directions
D̄n+1 can be calculated by

D̄n+1 =
[
Nn+1

2
3Cn+1Nn+1 − γn+1αn+1 0

]T (6.4)

and the static contributions M̄n+1 (i.e. contributions independent
on plastic deformations) by

M̄n+1 =




0
αn+1
Cn+1

∂Cn+1
∂rn+1

dr
∆tkn+1

r2
n+1


 . (6.5)

The second entry of Mn+1 must be taken into account, since
C depends on particle radius, see equation (5.22). This is done in
analogy to the temperature history effect when the parameter C is
depending on temperature [Cha89]. However, the temperature his-
tory effect itself need not be taken into account, since no temperature
dependency for C was observed. Transforming equation (6.3) into a
residual one obtains

R̄ (Y n+1) = Ȳ n+1 + Ȳ n + ∆tλn+1D̄n+1 + M̄n+1. (6.6)

For the elastic predictor step λn+1 is set to zero, whereas, for plastic
behavior it is calculated by

λn+1 =
εpn+1 − εpn

∆t . (6.7)



64 CHAPTER 6. FINITE ELEMENT IMPLEMENTATION

Here, it is helpful to insert the side condition φ = 0 in the residual
leading to

R
(
Ȳ n+1, φn+1

)
=
[
−Ȳ n+1 + Ȳ n + ∆tλn+1D̄n+1 + M̄n+1

φn+1

]
.

(6.8)
This equation can be solved with the Newton’s method, see section
2.3:

Y i+1
n+1 = Y i

n+1 − (J(Y i
n+1))−1 ·R(Y i

n+1) = Y i
n+1 + δY i. (6.9)

δY i is determined by solving

J(Y i
n+1)δY i = −R(Y i

n+1) (6.10)

using linear solvers. Calculating the Jacobian matrix one obtains

∂R̄

∂Y n+1
= −II + ∆tD̄n+1 ⊗

∂λn+1
∂Y n+1

+ ∆tλn+1
∂D̄n+1
∂Y n+1

+ ∂M̄n+1
∂Y n+1

(6.11)
and

∂Rφ
∂Y n+1

=
[

∂Rφ
∂εp

∂Rφ
∂α

∂Rφ
∂r

∂Rφ
∂φ

]
. (6.12)

The analytical derivatives are implemented in the subroutines and
documented in Appendix. The Newton’s method is carried out until
the largest value among the residuals max (Ri) is less than a specified
tolerance. Once Y n+1 and thus εe = ε−εp is determined, the stress
at time tn+1 can be calculated with equation (2.4).

In implicit time integration (UMAT), the weak form of the FEM
balance law of linear momentum, see equation (2.29), must be solved
in each time increment. Therefore, the derivative of the stress in
respect to strain (also called consistent tangent) must be calculated:

∂σn+1
∂εn+1

= ∂σn+1
∂εpn+1

· ∂ε
p
n+1

∂εn+1
. (6.13)

Together with equation (2.4) and (2.7) the first factor results in

∂σn+1
∂εpn+1

= −CCCen+1. (6.14)
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For the second factor it is helpful to build the total differential of
R (Y (εεε) , ε) in respect to total strain

dR
dεn+1

= ∂R

∂εn+1
+ ∂R

∂Y n+1
· ∂Y n+1
∂εn+1

= 0 (6.15)

leading to

∂Y n+1
∂εn+1

= −
[

∂R

∂Y n+1

]−1
· ∂R

∂εn+1
. (6.16)

Since the first entries of Y correspond with the plastic strain,
the second factor of the consistent tangent can now be calculated.
∂R/∂εn+1 results in the identity tensor (at the first entries) and
∂R/∂Y n+1 is the Jacobian matrix, see equation (6.11). Now all
variables are available for the ABAQUS input.

6.4 Validation

Before the model was implemented in the user subroutines UMAT
and VUMAT, its uniaxial formulation was implemented in the pro-
gramming language Python. For the validation of the correct im-
plementation, the results of the ABAQUS subroutines are compared
with the Python implementation. For the ABAQUS simulations,
a model is needed, in which no model dependent influences exist.
Therefore a simple one-element-model is created in ABAQUS. On
this model, a uniaxial cyclic load is used for investigating the cyclic
behavior. During monotonic tensile loading, the resulting stress re-
sponse is equivalent to the von Mises stress.

Since the investigated material model shows only a microstruc-
tural evolution at high temperatures, the model at low temperatures
can additionally validated by analytical calculations. Analytical cal-
culations can also be made in case of thermal softening without ad-
ditional mechanical load according to equation (3.15).
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Fig. 6.4: Strain-time curve for loading history 1 (LH1) and loading his-
tory 3 (LH3)

For the validation, three different loading histories are investi-
gated. At first a cyclic leading history is applied at room tempera-
ture, and it will be referred as LH1 (Loading History 1), shown in
figure 6.4. Then a tempering process is investigated with temper-
ing for 350min at 600°C (LH2). The third loading history LH3 is a
combined one: history two followed by history one.

The used material parameters are the determined ones from sec-
tion 5.1.1 and 5.3.2. The stress responses of the three different load-
ing histories are shown in figure 6.5 to 6.7. Since LH2 is a long term
process, the computing effort for an explicit calculation is very high.
Thus, only the first two seconds of the VUMAT results are compared
and it shows that the slope of the curve is of the same amount as at
the other calculations. Generally, all stress responses for each load-
ing history show a very small deviation, which indicates the correct
implementations for both subroutines.
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Fig. 6.5: Stress-strain curves for loading history 1 (LH1)

0 0.5 1 1.5 2

·104

1

1.2

1.4

·10−4

time in s

p
a
rt
ic
le
si
ze

in
m
m

Python

analytical

UMAT

Fig. 6.6: Coarsening curve for loading history 2 (LH2)
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Fig. 6.7: Stress-strain curves for loading history 3 (LH3)



Chapter 7

Influence of thermal
softening during die
forging

A forming process is selected for which experimental tests were car-
ried out at the IFUM [BBB+17]. The structure of the simulation
model is presented in the next section. Followed by the simulation
results at non-isothermal conditions with and without thermal soft-
ening.

7.1 Simulation model

The investigated process is a die forging process. Figure 7.1 and
figure 7.2 illustrate the schematic process, where red areas indicate
high temperatures. A hot working cycle is separated into four steps
with equally time intervals: forging, unloading, ejection and cooling.

69
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Fig. 7.1: Schematic forming process, first half cycle

Fig. 7.2: Schematic forming process, second half cycle

7.1.1 Parts
The chosen geometries of the parts correspond to the used parts in
experimental tests. The assembly consists of a blank, a punch, a die
and an ejector. Their dimension is provided by the IFUM and can
be found in Appendix. However, no measure of the radius in the
cavity of the die is specified. Therefore, a measure is used, which
turns out due to industrial production. For the production of sharp
edges for hot work tools possible cutting tools have a cutting radius
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Fig. 7.3: Crack formation in the radius of die after several hot working
cycles, provided by the IFUM

of approximately 0.4mm. Therefore, this value is chosen for the
radius. The simulation model is 2-dimensional and axisymmetrical.
The experimental lifetime tests showed, that the die is the critical
part, see figure 7.3. Hence, the punch is defined as a rigid body for
saving computing effort.

7.1.2 Mesh
In case of ABAQUS/Explicit, a thermomechanically coupled simu-
lation is used to calculate the temperature distribution after several
hot working cycles. Therefore, elements out of the family ‘Coupled
Temperature-Displacement’ are used. Since explicit dynamics do not
require an equation solver, the total computing time depends largely
on the number of integration points. Therefore, linear, reduced in-
tegrated elements that have only one central integration point are
used. This reduces the computing time by factor three to five com-
pared to fully integrated elements [Nas15, p. 122]. To reduce the
risk of hourglassing, an artificial stiffness, using the default settings
is implemented. This results in elements with the ABAQUS specific
name: CAX4RT (a 4-node thermally coupled axisymmetric quadri-
lateral, bilinear displacement and temperature, reduced integration,
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hourglass control).
To allow the blank to be able to flow in all cavities, the mesh

must be chosen fine enough. On the other hand, the mesh should
not be too fine to reduce computing effort. Hence, a suitable element
length for the blank’s mesh was found to be 0.6mm (approximate
global size), see figure 7.4 a). Since large deformations take place
during the investigated hot working process, Arbitrary Lagrangian-
Eulerian (ALE) adaptive meshing is used for the blank’s mesh. The
ALE technique is a combination of a Lagrangian and an Eulerian
mesh. For the edges, the Langragian mesh, which is firmly connected
to the part is used. For the internal elements, however, the Eulerian
mesh is used. As a result, the inner nodes can move independently
of the part, and thus avoid inappropriate element geometries. As a
consequence, the ALE technique enables to maintain a high-quality
mesh throughout the analysis [Sys16]. The used element length for
the tools (punch, ejector and die) is 2mm.

For the calculation with ABAQUS/Standard, the die’s mesh is
refined in the critical area (in the radius of the cavity) with a element
length of 0.5mm, see figure 7.4 b). In this case, no thermomechan-
ically coupled simulation is needed, since the temperature distri-
bution is predetermined through the results of the explicit calcula-
tion, see section 7.1.7. Additionally, no reduced integrated elements
for reducing computing effort are needed. Therefore, elements with
the ABAQUS specific name CAX4 (a 4-node bilinear axisymmetric
quadrilateral) are used.

7.1.3 Mechanical boundary conditions
For the blank and the ejector, an x-symmetry (u1 = u2 = ur3 = 0)
is chosen on the center line (symmetry axis). The bottom line of
the die is fixed in Y-direction. For the rigid body punch a sinusoidal
movement according to the pressing curve of the eccentric press is
used. For avoiding inertia (resistance to change in position) prob-
lems, the movement of the punch is implemented by initial velocity.
The velocity time curve is shown in figure 7.5. The red dashed line
indicates the end of the actual forming process. The movement of
the ejector, which begins after the actual forming process is added
as well.
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Fig. 7.4: a) mesh whole model b) die with mesh refinement
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Fig. 7.5: Velocity-time curve of the hot working tools
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7.1.4 Thermal boundary conditions
For the start temperature of the tools, a value of 500 °C is defined.
The temperature distribution within the cycles result from friction,
conduction and convection.

In cooperation with Dennis Tritschler [Tri18], the thermome-
chanical properties for friction, radiation and conduction were de-
termined. The heat radiation makes a very small contribution to
the temperature development during the short cycle time. Hence, it
is neglected in the simulation model. The used material parameters
for conductivity and specific heat can be found in [Tri18].

The cooling by injection of emulsion is approximated by convec-
tion. Therefore, the convection coefficient at the surface of the tool
cavity is chosen such that the surface temperature at the end of the
cycle approaches the start temperature. The resulting convection co-
efficient for this area is 100 mW/(mm2K) and the sink temperature
is 500 °C. In addition, the free convection of the outer surface is con-
sidered. It is calculated with the parameters and empirical formulas
from [VDI13]. Although the condition of the small temperature dif-
ference is not met, the case of independent material properties is
nevertheless assumed for the sake of simplicity. The reference tem-
perature is chosen to be 250 °C. The calculated convection coefficient
for the outer surface is 0.06 mW/(mm2K), and corresponds to mod-
erately moving air perpendicular to a metal wall [Kuc14, p. 646].
The ambient temperature is 20 °C.

7.1.5 Contact definitions
The contact type surface to surface with penalty contact method is
used. The friction coefficient is set to 0.1, which is between the dry
sliding friction (0.15) and the greased sliding friction (0.05) of steel
on steel [BB17, p. 93]. For heat generation it is assumed that all
dissipated energy is converted to heat.

7.1.6 Materials
The blank’s material was defined in cooperation with Johannes
Kurz [Kur16]. The required material parameters were provided by
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the IFUM. The yield stress is calculated using the Hensel-Spittel
approach [HS78]

kf = Aem1Tφm2 φ̇m3e
m4
φ (7.1)

with the temperature-independent material parameters A, m1, m2,
m3 and m4. The values for the material 1.7225 (42CrMo4) are sum-
marized in table 7.1.

A 1872
m1 -0.0029
m2 -0.1123
m3 0.1437
m4 -0.0488

Table 7.1: Hensel-Spittel-factors for 1.7225

The application range of the calculated flow curves lies between
the strains 0.04 and 4, between the strain rates of 0.001 and 500 1/s
and between the temperatures of 687.6 and 1250 °C. The flow curves
calculated from equation (7.1) at the initial temperature of 1200 °C in
the specified range 0.04 ≤ φ ≤ 4 are shown in figure 7.6. To generate
a distinctive plastic zone in the radius of the die, these flow curves of
the blank are scaled by scaling factor 2. The calculated flow curves
are tabular implemented in ABAQUS using strain-, strain-rate- and
temperature-dependent data.

For the material of the punch, ejector and die, the user subrou-
tines UMAT or VUMAT, respectively with the determined material
parameters are implemented, see section 6.3. Additionally, a sim-
plified model based on the measured stress-strain curves is used to
reduce computing effort, see section 7.1.7.

7.1.7 Simulation technique
Figure 7.7 summarizes the simulation technique. First, the whole
model is used to determine the temperature distribution and the
mechanical loads during a stabilized cycle. This calculation is per-
formed due to the high nonlinearities with ABAQUS/Explicit. The
results are then passed to a submodel that consists only of the die
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Fig. 7.6: Hensel-Spittel flow curves at 1200 °C for 1.7225

with a mesh refinement at the critical point (radius of the cavity).
Due to the mesh refinement and the missing contact, the simula-
tion continues using ABAQUS/Standard. With the unstressed die,
three cycles are simulated to achieve an almost stabilized hysteresis.
Then, the tempering process itself takes place, where 10000 cycles
are simulated by one scaled cycle. Finally, six cycles are performed
in the tempered condition.

For the determination of the temperature distribution, a dynamic
(quasi-static), thermomechanically coupled analysis is used. For im-
proving computational efficiency, mass scaling is used by scaling to a
specified minimum stable time increment, see equation (2.44). The
mass scaling is chosen in order that the kinetic energy generated by
inertial effects is lower than 5% of the total strain energy [Nas15,
p. 124]. Since very little time passes during the first cycles, the
influence of thermal softening is negligible in determining the tem-
perature curve within a cycle. This is why kinematic plasticity which
is already implemented in ABAQUS is used. Thus, the VUMAT is
not needed and computing time is reduced. The used parameters
(at r0 = 0.1µm) are shown table 7.2.

For saving even more computing effort, the second half cycle
(ejection and cooling) is simulated in a new job without blank and
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unstressed sub-
model (die)

whole model,
ABAQUS/Explicit

before tempering: three cycles, ABAQUS/Standard

tempering: one scaled cycle, ABAQUS/Standard

after tempering: six cycles, ABAQUS/Standard

Fig. 7.7: Schematic structure of simulation technique

temperature yield stress kinematic kinematic
in °C in MPa modulus hardening

C in MPa exponent γ
20 950.9 270518.7 327.7
200 910.6 270518.7 378.2
300 869.1 270518.7 421.8
400 791.8 270518.7 473.3
500 659.5 270518.7 525.4
600 509.1 270518.7 572.1

Table 7.2: Parameters for kinematic hardening

punch. Since blank and punch are not in contact with the other
parts during the second half cycle, an exclusion does not affect the
simulation results of the die. With predefined fields, the results of
the previous simulation (last step, last increment) can be defined as
initial state for die and ejector.

For the following cycles, the results of the previous calculation are
transmitted. Therefore, the results of the last step are again defined
as a ‘predefined field’ in the initial state. In this way, the cycles
are repeated until the cyclic temperature distribution in the surface
within the current cycle hardly changes compared to the previous
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one. The simulation has shown that this condition is reached after
approximately ten cycles.

Then, the last cycle is used to transfer its results (temperatures
and loads) to a submodel. The submodel consists only of the die,
since it contains the critical area. The mesh in this critical area is
refined (element length of 0.1mm) for further investigations. Be-
cause of the small elements and the absence of complex contacts,
the static implicit calculation with ABAQUS/Standard using the de-
scribed UMAT (section 6.3) is better suited, compare section 2.3.2.

In order to reach the stabilized hysteresis, three cycles are simu-
lated. With the third cycle, the material’s behavior before tempering
should be evaluated. Afterwards, the tempering during 10000 cycles
(approximate limit of LCF [RBH06, p. 361]) is calculated. For sav-
ing computing time, one cycle is scaled in a way to obtain the same
effects as at many single cycles. To this end, the aging parameter
(here the particle radius r) should show the same evolution in this
cycle as it would be the case in many cycles. Through separation
of the variables in the evolution of the particle radius equation (5.3)
one obtains

r2dr = kdt = k1
e−

Q
RT

T
dt. (7.2)

Integrating the left side leads to

r3

3 −
r3
0
3 =

∫ t

0
kdt =

∫ t

0
k1
e−

Q
RT

T
dt. (7.3)

Assuming that the same temperature curve is repeated n times, the
right side may be expressed by

n

∫ tcy

0
k(t)dt = n [K(t)]tcy

0 (7.4)

with tcy being the cycle time and K(t) being the integral of k(t).
For the scaled cycle, the time is scaled by the inverse of the cycle
number n. Thus, the scaled cycle time is n tcy. The integral of the
scaled cycle can now be calculated by

∫ n tcy

0
k

(
t

n

)
dt =

[
nK

(
t

n

)]n tcy

0
. (7.5)
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Both cases, equation (7.4) and equation (7.5) result in

n (K(tcy)−K(0)) . (7.6)

Thus, the scaled long cycle can be used instead of n (=10000) short
cycles without losing computing accuracy. Then, six cycles are sim-
ulated to reach a stabilized hysteresis and to evaluate the material’s
behavior after tempering.

7.2 Results
For direct comparison of the simulations, the same result variables
and representations are used. These are in particular temperature,
von Mises stress, accumulated plastic strain and in case of particle
hardening the particle size. For the generation of stress-strain hys-
teresis, the direction must be assigned to stresses and strains. This
can be achieved through the hydrostatic pressure σm = −1/3 tr(σ).
For this purpose, the sign information of the von Mises stress is
assigned by

σeq,sgn = σeq sgn (σm) . (7.7)

For the accumulated plastic strain, the sign information is iterative
added by

ε̄p
sgn,n+1 = ε̄p

sgn,n + ∆ε̄p sgn (σm) . (7.8)

The temperature distribution in the tenth cycle, before the cool-
ing takes place (right after ejection) is shown in figure 7.8. The most
critical point in regard of lifetime is marked with red cycles in the
section area. The temperature curve of this critical point (radius
in the cavity) within the tenth cycle is shown in figure 7.9. When
the curve is compared with figure 4.1, it shows that a significant
coarsening is to be expected.

7.2.1 Without thermal softening
For the simulation without thermal softening, the particle radius is
held constant (r = 0.1µm) in the UMAT (no particle coarsening).
Figure 7.10 shows the stress-strain hysteresis loops that arise when
no thermal softening is considered. The loops show a ratcheting
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Fig. 7.8: Temperature distribution in the tenth cycle, before cooling
(after ejection)
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Fig. 7.9: Temperature curve of the critical point within the tenth cycle
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Fig. 7.10: Hysteresis loops in critical area without thermal softening

effect. However, the ratcheting strain continues to decline and a
steady hysteresis seems to approach. Furthermore, there is almost
no difference between the cycles before aging (first three) and after
aging (following six).

7.2.2 Including thermal softening
Since the thermal softening is no longer suppressed in current cal-
culation, the distribution of the particle radius can be investigated,
see Fig. 7.11 a), where the output SDV26 corresponds to the variable
r. The distribution is shown at the end of simulation. The largest
particle sizes do not occur in the radius. In addition, the particle
radius in the surface area are larger than in areas with a larger dis-
tance from the surface. This is due to the fact, that the number
of previous simulations to determine the temperature distribution
is not sufficient to completely heat the die. However, the focus lies
on the near surface regions (especially at the critical radius), where
a constant temperature profile is already reached after the explicit
simulation. Although the particle radius in the critical area is not
maximal, this remains the highest loaded area. This is clarified in
figure 7.11 b), where von Mises stress is shown and its maximum can
be found in the radius of the cavity.

Figure 7.12 shows the accumulated plastic strain (SDV25 corre-
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Fig. 7.11: a) Particle distribution after simulation b) von-Mises stress

sponds to ε̄p) after the simulation. The largest accumulated plastic
strain occurs in the radius. Therefore, this area is shown enlarged.
The maximum occurring accumulated plastic strain is 2.0%. How-
ever, the strains are very localized. Stress peaks on surface nodes
could be caused by inaccurate extrapolation due to a rough mesh.
However, the values of the nearest integration points are 1.8% and
1.5%, and indicate a strong concentration in this area.

Figure 7.13 shows the stress-strain hysteresis in the radius. Here,
a clear influence by softening (between third and fourth cycle) can
be seen. Analogous to figure 7.10, a ratcheting effect occurs, which
decreases, and thus presumably approaches a steady state. To com-
pare the two stress-strain hysteresis, both are shown in figure 7.14.
The first three cycles are not shown because they match exactly,
whereas, the following six cycles show a clear deviation. In partic-
ular, the strain range is much larger with thermal softening than
without.

For further comparison, the accumulated plastic strains are
shown in figure 7.15. The strain range per cycle is about twice as
large when the thermal softening is considered. The strain range is



7.2. RESULTS 83

a critical quantity for lifetime evaluations and often correlates with
the fatigue life. Hence, a significant reduction of lifetime can be as-
sumed. The negligence of the thermal softening in tool design can
lead to unexpected tool failure.

Fig. 7.12: Accumulated plastic strain distribution
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Fig. 7.13: Hysteresis loops in critical area including thermal softening
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Fig. 7.15: Accumulated plastic strain after tempering



Chapter 8

Discussion

In this work, models for the description of time- and temperature-
dependent plasticity are developed and applied to describe the stress-
strain hysteresis loops measured at different temperatures and for
different heat treatments. The models consist of a kinetic model
and a mechanical model. Currently, an interaction of both models
is not included, so that the evolution of the microstructure has an
effect on the mechanical behavior but not vice versa. Generally,
additional dependencies can be included into the kinetic model by
adding, e.g. contributions to the evolution of the mean particle radius
by plastic deformations to consider an accelerated diffusion by pipe
diffusion with moving dislocations, see equation (3.16). In this work,
however, the mechanical properties are investigated on specimen that
did not experience plastic deformations during tempering rather than
on specimen that continuously softened during a mechanical test.
The latter is advisable for future investigations to gain information
on the interaction. Furthermore, these investigations could validate
if the model is already able to describe continuous softening of a
specimen that softens during cyclic loadings at higher temperatures.

In the kinetic model, the evolution of the mean particle radius
is described for one type of particle species. It is assumed that
one carbide species exists that dominantly determines the mechan-
ical properties. For hot work tool steels, however, several carbides
can be identified [Abe04,HLWZ06,KPJ+15, LWL+15]. Microstruc-
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tural investigations should clarify which carbides primarily prevent
dislocation motions for the considered hot work tool steel 1.2367.
Nevertheless, a good description of the isothermal hardening curves
as well as the non-isothermal hardening curve is obtained with the
current model and the determined material properties. In particular,
the determined temperature dependency of the coarsening constant
corresponds very well to the description with the Arrhenius equa-
tion with a reasonable value for the activation energy for diffusion
of 235 kJ/mol. This value is in the order of typical values for the
activation energy of diffusion [CDW+09,HHH98,Tru08].

Generally, since only one cyclic test per material state and ther-
mal and mechanical loading condition is performed, some scatter in
the experimental data can be expected. However, a good overall
description of the temperature-dependent cyclic material properties
after time and temperature-dependent softening is achieved with the
models. The peak in cyclic yield stress (Ramberg-Osgood), as well
as in yield strength (cyclic plasticity model) observed for the un-
tempered (HT0) material is maybe due to dynamic strain aging.
However, serrated flow is not found in the related stress-strain data.
Further investigations could give more insight in which temperature
and strain rate range and for which material state dynamic strain
aging occurs. The observed higher yield stresses for 400 and 500 °C
for the HT0 heat treated material could be described using a phe-
nomenological approach based on the results of further investiga-
tions.

Since a mechanism-based approach is developed for the descrip-
tion of the kinetics and the temperature-dependent cyclic yield
stress, it can be assumed that the models as well as the methodology
for the determination of the corresponding material properties can
be applied to other hot work tool steels as well as long as the mecha-
nisms are the same (i.e. Ostwald ripening, Orowan mechanism). The
temperature and particle radius dependencies of the material prop-
erties C∞ and C are also based on this mechanism-based approach
since it provides a good description of the considered measured values
and the properties also have the unit of the stress. The transferabil-
ity of the developed models to other hot work tool steels is, however,
only possible if the linear correlations between yield stress, cyclic
yield stress and hardness prevail. Linear correlations between yield
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stress and hardness of various nonaustenitic, hypoeutectoid steels
are documented in [Pv08]. Moreover, the temperature dependency
of the hardening exponent is based on a purely phenomenological
equation that might need adaption if another steel is considered. A
mechanism-based approach to describe the temperature dependency
of the hardening exponent is desired but not known by the author.

The material properties mcy = 4 for the description of the ther-
mal part of the cyclic yield stress and as well as me = 4 in the
description of yield strength are consistent with the documented
one in [MZ14, p. 213], whereas, the material property ncy = 5.76
(Ramberg-Osgood model) and ne = 7.5 respectively (cyclic plastic-
ity model) differs from the documented value of n = 1. The higher
values of n provide a better fitting of the observed loss in strength
at higher temperatures as it would be the case for n = 1. For the de-
scription of C∞ the material propertym∞ was also found to be 4 and
the obtained value of n∞ = 2.73 was even closer to the documented
one of 1.

The Ramberg-Osgood model can well be integrated into the
mechanism-based model for thermomechanical fatigue crack growth
in [SR10, SSS+10], see section 3.3. Thus, the combination of the
Ramberg-Osgood model with its time and temperature-dependent
material properties and the model for thermomechanical fatigue
crack growth enables the integration of softening into fatigue life
assessment of hot work tools. However, it is not suitable for the
integration into finite element programs.

The incremental plasticity model is implemented in the finite el-
ement program ABAQUS. In section 6.4 the ABAQUS subroutines
UMAT and VUMAT are compared with a Python implementation
and partly with analytical solutions. Since a very good agreement
has been shown, a correct implementation of the model can be as-
sumed.

With the VUMAT a thermomechanically coupled analysis can be
performed to determine the temperature distribution within the die.
However, this is not possible with the current UMAT. Since implicit
time integration requires the derivation of the weak form of the FEM
balance law of linear momentum, see equation (2.29), and the energy
balance in case of a thermomechanical coupled analysis, the stress
must also be derived with respect to temperature (∂σn+1/∂Tn+1).
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This can be achieved in analogy to ∂σn+1/∂εn+1 in section 6.3:

∂σn+1
∂Tn+1

= ∂σn+1
∂εpn+1

· ∂ε
p
n+1

∂Tn+1
(8.1)

with
∂σn+1
∂εpn+1

= −CCCn+1. (8.2)

For the second factor, it is again helpful to build the total differential
of R, but this time in respect to temperature

dR
dTn+1

= ∂R
∂Tn+1

+ ∂R
∂Yn+1

· ∂Yn+1
∂Tn+1

= 0 (8.3)

leading to
∂Yn+1
∂Tn+1

= −
[

∂R
∂Y n+1

]−1
· ∂R
∂Tn+1

. (8.4)

As described in section 6.3, the first entries of Y correspond with
the plastic strain, and thus the second factor can now be calcu-
lated. However, the derivatives ∂R/∂Tn+1 must be calculated (at
the first entries), but ∂R/∂Y n+1 is the already calculated Jacobian
matrix, see equation (6.11). Then, all variables are available for ex-
tension of the UMAT to provide thermomechanical simulation with
ABAQUS/Standard. In this work, this extension is not necessary
because the forming process is simulated explicit due to its high
nonlinearities. However, in other applications (low nonlinearities,
high mesh refinements), the model’s extension may be necessary.

For the application several simplifications were made, which can
strongly influence the simulation results. However, the associated
goal is the evaluation of the developed model and not the evalua-
tion of a forming process. Due to the selected boundary conditions
a strong influence of thermal softening is visible in the investigated
case. Nevertheless, no conclusions about forming processes in general
can be made with this arbitrary application. Whether the model has
an influence or not must be investigated in each specific case. The
decisive factors are the temperature and the time at which it occurs.
For example, a tempering time of five hours and a temperature of
500 °C leads to a mean particle radius of 100.1 nm according to equa-
tion (3.15), and thus to a yield strength of 658.8MPa at 500 °C, see
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equation (5.21). This is a very small coarsening since the initial par-
ticle radius being 100 nm. However, if the same tempering time takes
place at a temperature of 600 °C, this leads to a mean particle ra-
dius of 136.3 nm, and thus to a yield strength of 537.9MPa at 500 °C.
This corresponds to a reduction of 18.4%. If high temperatures take
place for a long time on mechanically highly stressed areas, this can
lead to a considerable increase in plastic strain, and thus leading to
a significant shortening of the lifetime.

In the investigated process, a doubling of the strain range has
been shown by the consideration of the softening. This is a significant
increase, which probably greatly reduces the lifetime. If, in this
case, the developed model is not used for tool design, it can lead to
an unexpected tool failure, and thus bringing the production to a
standstill.

In the current plasticity model, time-dependent behavior as stress
relaxation, creep and strain rate dependency are not yet considered.
These phenomena might, however, occur at the high temperatures
considered. The extension of the plasticity model used in this work
to time-dependent behavior can easily be done by introducing a cor-
responding flow rule using an overstress formulation [Cha86,Cha89].
Therefore, values greater than zero must be allowed for φ in equa-
tion (2.16). The plastic multiplier λ can be calculated by equa-
tion (3.1) to take viscoplastic behavior into account. Furthermore,
the last entry of the residual must be replaced by

Rεp = −εpn+1 + εpn∆tλn+1 (8.5)

leading to the following Jacobian

J (Y n+1) = −II + ∆tDn+1⊗
∂λn+1
∂Y n+1

+ ∆tλn+1
∂Dn+1
∂Y n+1

+ ∂Mn+1
∂Y n+1

.

(8.6)
In addition, static recovery of the backstress, see equation (2.18) can
be considered with the parameter R leading to

α̇ = 2
3Cε̇

p − γ ˙̄εpα−Rα. (8.7)

For the determination of the material parameters n, K and R, fur-
ther experimental data is needed, where dwell times in stress or
strain and different strain rates are applied.
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Nevertheless, with the three-dimensional formulation of the cyclic
plasticity model and its numerical implementation into a finite ele-
ment program, the effect of softening on the thermomechanical fa-
tigue life of hot work tools can be assessed.



Chapter 9

Summary and
conclusions

The state of the art shows that there are currently no mechanism-
based models for the thermomechanical fatigue life prediction of hot
working tools available.

In this thesis, the temperature-dependent cyclic material prop-
erties are determined for the martensitic hot work tool steel 1.2367
(x38CrMoV5-3) after time- and temperature-dependent softening.
A model is proposed that describes the kinetics of microstructural
changes during tempering.

Furthermore, the correlations of the microstructural changes with
changes in the material properties of the Ramberg-Osgood model are
determined and a model for its time- and temperature-dependent be-
havior is developed. With the model a description of the cyclic me-
chanical properties during tempering at various tempering times and
temperatures is possible. It can well be integrated in mechanism-
based models for thermomechanical fatigue life prediction of hot
work tools.

Since, the Ramberg-Osgood model is not suitable for finite ele-
ment calculations, a temperature-dependent incremental cyclic plas-
ticity model with kinematic hardening and thermal softening is de-
veloped. With the model a continuous description of the cyclic me-
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chanical properties during tempering at various tempering times and
temperatures is possible and time- and temperature-dependent soft-
ening can be accounted for in finite element calculations.

The developed incremental cyclic plasticity model is implemented
in the finite element Program ABAQUS via subroutines for implicit
integration (UMAT) and explicit integration (VUMAT). Both sub-
routines use a predictor-corrector method. The calculation of the
internal variables at plastic corrector step is done through implicit
integration using the Newton-Method. For the calculation of the
Jacobian the analytical derivatives are implemented.

The subroutines are used to simulate an exemplary hot work pro-
cess. The results are compared with a calculation where no thermal
softening is considered. The simulation with thermal softening by
particle coarsening show a significant increase of plastic strain range.
This demonstrates, if the developed model is not considered in tool
design, unexpected tool failure might occur.
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Appendix

Derivatives
For the calculation of the derivatives the Voigt notation is used
[Alt18, p. 328]. This allows symmetric 3x3 tensors to be written
as 6x1 vectors. Thus, the derivations can be written with matrices
rather than tensors of higher orders. Furthermore, the indexes of
time-dependent variables are dispensed, since all variables apply for
the time tn+1.

To obtain the Jacobian (6.11) the determination of ∂D̄/∂Y and
∂M̄/∂Y is required and their calculation is described bellow starting
with

∂D̄

∂Y
=




∂Dεp
∂εp

∂Dεp
∂α

∂Dεp
∂r

∂Dεp
∂ ˙̄εp

∂Dα
∂εp

∂Dα
∂α

∂Dα
∂r

∂Dα
∂ ˙̄εp

∂Dr
∂εp

∂Dr
∂α

∂Dr
∂r

∂Dr
∂ ˙̄εp



.

As the following derivatives appear several times, new variables are
introduced:

∂N

∂dev(σ) = dN ′ (9.1)

and
∂N

∂σ
= dN , (9.2)

leading to

∂Dεp

∂εp = −CdN ′, ∂Dεp

∂α
= −dN ′, ∂Dα

∂εp = −CdNC (9.3)
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and
∂Dα

∂α
= −CdN − γI.

The 6x1 vectors ∂Dεp/∂r, ∂Dεp/∂ ˙̄εp and ∂Dα/∂ ˙̄εp are equal to
zero vector, whereas

∂Dα

∂r
= −2

3
Bc
r2 N −

CiB∞ −BcC∞,i

(C∞,ir2 +B∞)2α.

All other derivatives are equal zero, or the zero vector. Following
the same scheme, the derivatives for ∂M̄/∂Y are calculated. The
6x6 matrix

∂Mα

∂α
= 1
C

∂C

∂r
drI.

The 6x1 vector ∂Mα/∂r can be calculated by

∂Mα

∂r
= −

1 + 2 Ci
BC

r
(
Ci
BC

r2 + r
)2αdr.

At least,
∂Mr

∂r
= −2 k

r3 .

All remaining derivatives are equal to 0, 0 respectively.
For purely elastic-plastic behavior, the deviation of the last line

of the residual can be calculated by

∂Rφ
∂εp = −CeN ,

∂Rφ
∂α

= −N ,
∂Rφ
∂r

= Be
r2

and
∂Rφ

∂φ
= 0.

Furthermore, the derivative of the plastic multiplier is

∂λ

∂Y
=
[

0 0 0 1
∆t
]T
. (9.4)
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